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Abstract

Cloud Radio Access Network (C-RAN) is a future direction in wireless communications for deploy-
ing cellular radio access subsystems in current 4G and next-generation 5G networks. In the C-RAN
architecture, BaseBand Units (BBUs) are located in a pool of virtual base stations, which are con-
nected via a high-bandwidth low latency fronthaul network to Radio Remote Heads (RRHs). In
comparison to standalone clusters of distributed radio base stations, C-RAN architecture provides
significant benefits in terms of centralized resource pooling, network flexibility and cost savings.
In this thesis, we address the problem of dynamic resource allocation and power minimization in
downlink communications for C-RAN. Our research aims to allocate baseband resources to dy-
namic flows of mobile users, while properly assigning RRHs to BBUs to accommodate the traffic
and network demands. This is a non-linear NP-hard optimization problem, which encompasses
many constraints such as mobile users’ resources demands, interference management, BBU pool
capacity, transmission power limitations and fronthaul links capacity. To overcome the high com-
plexity involved in this problem, we will present several approaches for resource allocation strate-
gies and will tackle this issue in three stages. In the first stage, a meta-heuristic algorithm using
the simulated annealing will be considered in providing sub-optimal solutions to the resource al-
location problem in C-RAN with an unconstrained fronthaul capacity. The goal is to provide near
optimal online solutions at a much reduced complexity and in minimum time compared to offline
optimization schemes. In the second stage, we will integrate different mobile users profiles and
quality-of-service requirements, while considering a capacity-limited fronthaul network between
BBUs and RRHs. A joint resource allocation and admission control approach is thus presented
to handle this issue based on a two-stage algorithm and greedy fronthaul link selection scheme.
Finally, in the third stage, we will consider a BBU-RRH assignment problem, while considering
jointly several important objectives such as resiliency, operational costs, processing power and con-
straints on BBU processing and cost budgets. An algorithm based on the branch-and-price frame-
work will be described to compute the optimal solution in minimum time period. Besides, our
analysis will evaluate several policies and provide general guidelines that can be used by operators
to decide the best optimization strategy according to their needs for their C-RAN infrastructure.
Obtained results prove the efficiency of our proposed strategies in terms of throughput satisfaction
rate, number of active RRHs, BBU pool processing power, resiliency, and virtualization cost.

Key Words

C-RAN, resource allocation, power minimization, admission control, quality-of-service, BBU-
RRH assignment, BBU virtualization, optimization.
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1.5 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 A survey of C-RAN resource allocation and BBU-RRH assignment strate-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Proposed algorithms for dynamic resource allocation in LTE downlink
for C-RAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Proposed algorithms for QoS-based admission control in C-RAN with
functional split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.4 Proposed algorithms for cost-resilience BBU selection in C-RAN . . . . 24
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Mobile Network Operators (MNOs) are facing important growths in mobile data traffic on their
networks due to the ever-increasing popularity of smartphones, tablets and new connected smart
devices, which support a wide spectrum of resource-greedy applications and services. Recent re-
ports [1] show that almost half a billion (429 million) mobile devices and connections were added
in 2016. In fact, global mobile devices grew to 8.0 billion in 2016, up from 7.6 billion in 2015.
Smartphones were accounted for a large part of that growth, which will carry on its volume’s in-
crease into the coming years due to the emergence of several new communication services including
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Machine-to-Machine (M2M), Device-to-Device (D2D) communications and the Internet of Things
(IoT). Future previsions have already been established where the number of mobile devices con-
nected to a network, including M2M terminals, is expected to grow to 11.6 billions by 2021 and
will exceed the world’s population at that time (7.8 billion) [1] [2]. Besides, global mobile data
traffic will reach 49.0 exabytes per month by 2021, realizing a compound annual growth rate of
47% in just five years.

On the other hand, MNOs are facing important issues with their current cellular systems to
handle this traffic growth. In fact, macro cells are near their physical limitations and cause MNOs
difficult and expensive plans for maintaining and upgrading them. Whereas small cells pose several
challenges regarding strategy deployment, interference management and operating complexity, re-
sulting in Capital (CAPEX) and Operating Expenditure (OPEX) costs inflation [3]. What is more,
with the arrival of new fifth generation (5G) technology in multi-network environment, system de-
signs and upgrading will become far more challenging and complex [4]. All of these issues are
putting high pressures on MNOs to conceive and adopt a new cost-effective Radio Access Network
(RAN).

Cloud-Radio Access Network, commonly known as Cloud-RAN or C-RAN, has been intro-
duced by [5] as a new cloud architecture that can address the challenges MNOs are faced with and
meet their requirements in terms of CAPEX and OPEX costs reduction. In the C-RAN philosophy,
baseband processing is shifted away from the physical location of Base Station (BS) into a “virtual
BS pool”. This approach is adopted from the cloud computing concept [6], where resources are
shared in a centralized data-center and allocated on demand. In the C-RAN application, baseband
resources can be employed more efficiently based on the whole network’s overall load instead of
the maximum loads of individual BSs. Furthermore, this concept allows the processing power in
the BS pool to be adapted to the network’s instantaneous load.

In this thesis, we will exploit the flexibility of centralized C-RAN architecture regarding ef-
ficient baseband resource pooling and power scalability to propose dynamic resource allocation
algorithms with the aim of minimizing the transmission and processing C-RAN power, and satis-
fying the Quality-of-Service (QoS) required by end-users with different profiles.

In what follows, we first introduce the C-RAN concept and the motivations behind its intro-
duction. Secondly, we will describe its architecture compared to the conventional BS one. Thirdly,
we will outline the different challenges C-RAN is currently facing and that hinder its commer-
cial deployment. Afterwards, we will present the problematics of our thesis in Section 1.4. Then,
we summarize our different contributions in Section 1.5, followed by a presentation of the thesis’
organization in Section 1.6.
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Figure 1.1 – Global Mobile Traffic Growth by Device Type [1] (numbers in parentheses refer to
2016 and 2021 traffic share)

1.1 C-RAN motivations

The premise behind the introduction of C-RAN was to propose a new cost-effective RAN solution
that can cope with the current mobile traffic growth forecasted in Figure 1.1, while sustaining and
alleviating the MNOs CAPEX and OPEX expenses. China Mobile Institue proposed first the idea
of C-RAN in 2009 [5], that stands for Centralized, Collaborative, Cloud and Clean RAN, and that
can address the aforementioned challenges. Further investigations led by Next Generation Mobile
Networks (NGMN) in 2013 [7], highlighted the key technologies critical to C-RAN implementa-
tion, and promoted it as an essential direction in wireless communications for deploying current 4G
cellular radio subsystems and future 5G networks.

C-RAN is based on the “Cloudification” or, in other terms, the migration of baseband process-
ing from standalone BSs to a cloud data center composed of a pool of virtual BSs commonly known
as BaseBand Units (BBUs). Thanks to this centralized network architecture, computation resources
are virtualized in C-RAN; they are aggregated on a pool level and flexibly allocated on demand.
This constitues the fundamental and basic feature of C-RAN. Within this cloud data center, BBUs
“collaborate”: they work together in a large BBU pool to share and exchange network information
such as signalling, traffic information and Channel State Information (CSI) of mobile users in the
system. Hence, by performing a proper load balancing between BBUs, the C-RAN can adapt itself
to non-uniform traffic during the day, allowing efficient utilization of baseband resources and better
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Figure 1.2 – MNOs motivations for C-RAN. Source: Monica Paolini, Senza Fili Consulting [9]

interference management across multiple cells [8].

By replacing “hard” wireless network equipments by “soft” BBUs, the C-RAN capabilities can
be dynamically adjusted based on the traffic load. This not only fosters efficient resource utiliza-
tion, but also allows the C-RAN to handle more areas than standalone clusters of BSs and facilitates
service deployment on the edge. In fact, exploiting C-RAN advantages of reconfigurability and ex-
tensibility permits to move services or to directly deploy new ones on the RAN side with minimum
reconfiguration and relieve the backhaul pressure. On another note, C-RAN appears as a successful
way of speeding up the network construction by lowering down difficulties of site selection and
civil work, since most equipments will be gathered in a central room. Site visits for maintenance
and upgrades will also be reduced since most monitoring tasks can be done by software, which will
contribute in more OPEX savings. What is striking, the CAPEX/OPEX cost savings brought by C-
RAN constitutes the most alluring feature (Figure 1.2) that motivates MNOs for adopting C-RAN
in their infrastructures [9].

C-RAN is not only applicable for existing wireless infrastructures but is also one of the key so-
lutions for enabling future 5G systems [10]. In fact, thanks to its centralization, flexibility and
cloud-based implementation, C-RAN can help MNOs foster their networks migration to LTE-
Advanced Pro and meet the advent of 5G by enabling several 5G technologies such as: Large
Scale Antenna Systems (LSAS), ultra-dense Multiple-Input Multiple-Output (MIMO) networks,
full-duplex systems, and so on [11]. Additionally, C-RAN can help improve the resiliency of the
wireless networks, paving the way towards ultra-reliable communications systems.

To discuss the different use cases for C-RAN implementation and deployment solutions, a
number of C-RAN projects have been recently launched by NGMN and European Commission’s
Seventh Framework Programme (EU 7 FP). In 2012 started the “Interworking and JOINt Design
of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks
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(IJOIN) project [12] that introduces the novel concept of RAN as a Service (RANaaS), where
RAN can be flexibly instantiated on demand from a centralized open IT platform based on a cloud
infrastructure. In 2013, the “Mobile Cloud Networking” (MCN) project [13] was launched to assess
the opportunities cloud computing can bring to mobile networks. In 2014, the “High capacity
network Architecture with Remote Radio Heads & Parasitic antenna arrays” (HARP) project [14]
was initiated for building an RRH-based C-RAN architecture with electronically steerable passive
antenna radiators.

Initially steered by Japanese and South Korean MNOs, many Asian-Pacific operators have al-
ready been tempted by the C-RAN benefits and have started planning the deployment of their future
networks. In fact, DoCoMO Japan and Korean SK Telecom both have announced early trials of
5G C-RAN in 2019 and for the upcoming 2020 Olympic Games [15]. Besdies, C-RAN technology
has gained momentum worldwide with many operators and vendors, including Verizon Communi-
cations, AT&T, Vodafone, Orange, Intel, ZTE, Huawei and Nokia Bell Labs that are discussing the
different investments opportunities of C-RAN and helping building its ecosystem.

1.2 C-RAN architecture

Traditionally, MNOs operate using the Distributed-Radio Access Network (D-RAN) architecture
illustrated in Figure 1.3, which consists of two components: a BBU and a Remote Radio Head
(RRH) collocated at the same macro site (or eNodeB). The interconnection between BBU and
RRH is done by fiber optic cable using the Common Protocol Radio Interface (CPRI) [16]. The
BBU is further connected to the Mobile Switching Center (MSC) via Carrier Ethernet backhaul
where the traffic is processed.

In the C-RAN architecture illustrated in Figure 1.4, BBUs are relocated from individual cell
sites to the centralized BBU hotel. The latter can be housed in a Central Office (CO) or a super
macro site, regrouping many BBUs composed of high-performance programmable processors and
real-time virtualization technology that perform baseband functions processing. Removing BBUs
from cell sites means that operators can remove routers and other hardware too. This comes with
reduced costs associated with space, heating, cooling, power and test access. What is more, the
centralized topology simplifies networks management, deployment and scaling.

BBUs connection to RRHs requires a high-bandwidth low latency transport service. Dark fiber
and Wavelength Division Multiplexing (WDM) are the most common used fronthaul solutions
supporting CPRI to interconnect the many RRHs at each cell site to the central BBU at the BBU
pool [17]. Transport reach, as limited by the strict Long Term Evolution (LTE) timing and latency
requirements, is around 15 to 20 kilometers of dark fiber for the new centralized configuration [18].
This is essentially an extension from less than 60 meters at a typical eNodeB tower.

Since multiple BBUs are colocated in C-RAN, their enhanced X2 (eX2) interface can cost-
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Figure 1.3 – Distributed RAN architecture

effectively interconnect resulting in improved performance of resource utilization. In fact, a cloud
controller, located in the BBU pool, serves as a resource manager and performs load balancing
between BBUs through eX2 to accommodate the traffic load of different RRHs [19]. Thanks to this
centralized architecture, operators can deploy more RRHs in remote sites to increase their network
coverage and allocate more baseband resources to RRHs in order to satisfy the traffic demand. This
provides operators better flexibility in network upgrading, performed adaptability to non-uniform
traffic and efficient utilization of baseband resources [20].

Furthermore, the S1 interface also comes from the BBUs to the router, providing aggregation
and transport using the Carrier Ethernet backhaul connection to the MSC. A single intermediate or
large-scale router can thus be used at the BBU pool instead of numerous small ones of individual
cell sites as in D-RAN, further lowering equipment costs. Finally, the C-RAN topology positions
the network for Software-Defined Networking (SDN) et Network Function virtualization (NFV)
applications to enable dynamic resource allocation between BBUs. A server can ultimately replace
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Figure 1.4 – Centralized RAN architecture

the purpose-built hardware and virtualize the BBU functionalities resulting in a virtual BBU. This
means greater flexibility, even higher performance and even lower cost.

1.3 C-RAN challenges

C-RAN is designed to not only solve the cost and deployment issues of operators, but also to im-
prove the network spectral efficiency via collaborative radio or joint processing techniques. How-
ever, while some C-RAN features are relatively easy to realize such as centralization, others require
long-term planning and development. This section analyzes the major challenges for C-RAN.

1.3.1 Fronthaul limitations

In the C-RAN model, a transmission link with at least 10 Gbps and a maximum latency of 250 µs is
necessary to convey the baseband data from the BBU pool to the cell site, with respect to LTE strict
timing requirement [7]. As mentioned earlier, this also limits the maximum distance between BBUs
and RRHs - up to 20 km, according to NGMN’s specifications. Consequently, fiber connections
from the cell sites are required at almost locations. In densified heterogeneous networks, the need of
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(a) 4G, early 5G (b) path to 5G, current CPRI capacity (c) path to 5G, with CPRI expanded

Figure 1.5 – Backhaul and fronthaul requirements vs. cell-site capacity (Source: KDDI, Nokia,
Viavi, Small Cell Forum 2016)

fiber-based links increases the CAPEX, especially for operators who do not own the fiber networks
and limits the scope of C-RAN deployments.

BBUs can be kilometers away from RRHs, and fronthaul links have to serve multi-cell LTE sites
that may use Carrier Aggregation (CA) or MIMO. For such complex network, CPRI can enable
the transition to C-RAN topologies in 4G (Figure 1.5 (a)), however it will encounter fundamental
limitations in 5G networks. In fact, as can be seen in Figure 1.5 (b), the fronthaul requirements will
grow with the increase of the cell-site capacity, where next-generation cell sites will have a capacity
of 10-20 Gbps and will require over 300 Gbps for CPRI. Currently, CPRI is limited to only 24 Gbps
capacity, which does not make it a viable option for 5G. Expanding the CPRI capacity in the path
to 5G can meet the network’s requirements (Figure 1.5 (c)), however, since it heavily relies on fiber
fronthaul links, its deployment will be overly expensive or unavailable.

Instead of relocating all baseband processing in a BBU pool, a functional split on the baseband
processing chain can be defined to relax the most latency-sensitive functionalities in C-RAN [21]
[22]. Recently, C-RAN functional splits have been introduced and are under extensive analysis to
address the challenge of optimizing fronthaul bit rate and flexibility [23]. Figure 1.6 presents differ-
ent use-cases of C-RAN functional splits. For instance, the PHY-MAC (also known as User-Cell)
split is based on separating user and cell specific functionalities, occasioning the traffic between
BBUs and RRHs to be traffic dependent. On the other hand, for the PDCP-RLC split, the majority
of data processing will be distributed in the RRHs, and only a small portion will be done in the
BBU pool. Such functional splits may help reduce the data bandwidth and latency requirements
between the central point and remote sites. However, they may increase the CAPEX and OPEX
costs since more equipment rooms will be needed to improve the system management.



CHAPTER 1. INTRODUCTION 19

Figure 1.6 – BBU and RRH functionalities and possible functional splits

Generally, the choice of which split to activate is a multi-dimensional tradeoff between con-
flicting objectives [24], since it depends on the topology, the fronthaul network budget, the services
MNOs want to support and their performance tradeoffs. Besides, choosing which functions to cen-
tralize and which to distribute must give MNOs the opportunity to foster the use of their network
resources.

1.3.2 Complexity management

Collaborative Multipoint (CoMP) [25] and Enhanced Inter-Cell Interference Coordination (EICIC)
[26] have been presented as efficient techniques for improving spectral efficiency and interference
mitigation in C-RAN [20]. However, interference mitigation in centralized networks usually comes
with the expense of higher complexity and system overhead due to the large number of RRHs and
the different types of backhaul links associated with each cell type [27]. In fact, a challenge for
C-RAN consists of implementing CoMP algorithms in BBUs for handling numerous cells with
high data rates, while respecting the tight LTE requirement of 1 ms processing inside the BBU
pool [12], and 3 ms of BBU-RRH transmission. These strict timing requirements are imposed
by 3GPP LTE’s Hybrid Automatic Retransmit reQuest (HARQ) protocol [7] [28]. To better clarify
these timing requirements, we make a comparison between D-RAN and C-RAN processing delays:

• In a D-RAN environment, the eNodeB completes User Equipment (UE) data processing:
(Uplink (UL) CPRI processing, frame decoding, ACK/NACK creation, Downlink (DL) frame
creation, DL CPRI processing) within 3 ms [18].

• In C-RAN, additional fronthaul delays (like transmission delay via optical fiber, fronthaul
equipment processing) are caused while the data is delivered from the RRH to the central
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BBU pool. The sum of all these delays and baseband processing time at the BBU must be
less than HARQ’s 3 ms.

In order to maintain the timing requirement constraint, the additional delay caused in the fronthaul
network must be compensated somehow, somewhere. Some vendors address the problem by expe-
diting the BBU processing to finish the UE data processing and send the ACK/NACK in less than
2.75 ms instead of 3 ms, thus allowing an additional delay of 250 µs in the fronthaul links [18].
However, this imposes tighter C-RAN BBU time processing requirement than usual D-RAN to pro-
cess mobile users data and monitor large-scale cellular networks. What is more, it severely impedes
the implementation of centralized algorithms for multi-cell coordination, which are known for their
higher complexity and processing time [29]. Besides, recent initiatives [30] [31] [32] have revealed
that CoMP gains cannot be fully harnessed in C-RAN under practical constraints due to signalling
and processing delays, signalling overhead, and limited backhaul capacities.

1.3.3 Resource management

Another challenge for C-RAN is the optimization of radio resources allocation for multiple cells. In
fact, if the problem of Radio Resource Management (RRM) has already been immensely discussed
in D-RAN for proposing diverse optimization schemes involving resource allocation (resource
scheduling [33], power control [34], interference mitigation [35] and admission control [36]) under
precise constraints, the C-RAN has other specific considerations; in particular, due to the fronthaul
limitations and the computational complexity for finding solutions. Furthermore, the C-RAN RRM
concerns also hybrid cellular networks (macro BS and small cells), which require resource sharing
algorithms between the different cells’ RRHs to limit the interference and improve the quality of
indoor coverage [37].

Additionally, C-RAN is challenged by the design of resource allocation algorithms with respect
to traffic demand, interference management and BBU pool capacity [38]. Such algorithms are
needed not only to improve the spectral efficiency of users served by specific RRHs, but also to
allow efficient BBU-RRH mappings. In fact, by properly assigning RRHs to BBUs based on traffic
load and BBU capacity, a single BBU can be assigned to manage multiple few-loaded RRHs instead
of one-one mapping. Hence, the BBU pool power consumption can be minimized with fewer BBUs
being instantiated, and the OPEX costs can also be lessened.

Moreover, to optimize energy savings and meet the power limitations of an eco-friendly C-
RAN, some RRHs need to be selected to be dynamically turned on/off based on the traffic evolution.
By doing so, the total RRHs transmission power can be minimized as well as the number of active
BBUs by less overhead in the transport network. This is a major issue for RRM algorithms for
allocating resources to users while accounting the limits of C-RAN’s power consumption, which
does not only springs from the RRHs transmission, but also from the associated fronthaul links and
BBUs.
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1.3.4 BBU virtualization

BBU virtualization technologies will be massively integrated in 5G [10]. Nevertheless, the actual
implementation of virtualization is more difficult, despite its conceptual simplicity. In fact, wireless
communication systems are distinct from Information Technology (IT) data centers, in that wireless
communications have extremely strict requirements for real-time processing and data transmission.
Building a new BBU platform based on a virtualized technology different from IT data centers is
crucial for C-RAN. Some efforts have been done in the direction of building a new virtualized RAN
ecosystem, such as the OpenAirInterface Software Alliance [39], which is an open source imple-
mentation of fully real-time stack (eNodeB, UE and core network) on general purpose processors,
combined with SDN and NFV tools to bring efficiency in C-RAN design. However, the actual
implementation in OpenAir is not always easy due to a tangled development platform.

Virtualization techniques implementation for group processing between BBUs is also an im-
portant challenge as it can enable resource sharing between multiple BBU entities and UE data
exchange. Besides, the interface interconnecting all BBUs should support a reliable, high band-
width and low latency switching network for UL and DL CSI exchange. In the same context, we
can cite other challenges for BBU virtualization in C-RAN, that reside in:

• Real-time data processing algorithms implementation,

• Dynamic BBU processing capacity allocation, to face the dynamic loads of cells,

• Group processing between multiple BBUs in central office to share radio resources incoming
from multiple operators,

• Security issue: co-location of multiple BBUs from different cloud providers requires special
security and resilience mechanisms.

Furthermore, the SDN and NFV technologies are considered as major candidates for C-RAN virtu-
alization application and for dynamic allocation of resources between BBUs. A challenge consists
then, of cost-effectively integrating these technologies in C-RAN.

1.4 Problem statement

In this thesis, we address the problematic of dynamic resource allocation and power minimization
in downlink for C-RAN, considering dynamic BBU-RRH assignment. This is motivated by the
existence of several constraints for designing a centralized resource allocation strategy such as:

• Mobile users traffic demands, profiles and QoS requirements,

• RRHs transmission power limitations,
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• Interference handling,

• Fronthaul links capacity,

• BBU virtualization,

• Cost optimization.

What is striking, dynamic resource allocation algorithms are needed to cope with significantly
fluctuating and time-varying traffic loads at different RRHs [40]. A joint optimization algorithm
can help cater to the traffic demand of mobile users located in different cells and with different
bandwidth requests. Such approach should also dynamically select the optimal RRHs to be turned
on/off based on the fluctuating traffic, so as to minimize the total C-RAN transmission power.
Incidentally, by setting the BBU-RRH connections and allocating resources to RRHs according to
users’ traffic profiles and volumes, the number of instantiated BBUs in the cloud can effectively be
reduced, which will lead to more power and OPEX savings.

Furthermore, if we consider functional splits separating user and cell related functions instead
of CPRI, the fronthaul links become constrained in terms of the baseband traffic that can be con-
veyed from the cloud to the RRHs. In fact, functional splits reduce the fronthaul links bandwidth to
few hundreds of Mbps instead of CPRI’s 10-20 Gbps. Consequently, the C-RAN capacity becomes
limited to satisfy all users demands and an admission control scheme is crucial to help maximize the
number of satisfied UEs while taking into account their QoS requirements, interference handling
and fronthaul links capacity constraints.

The more RRHs are assigned to BBUs, the higher is the C-RAN multiplexing gain [20] [38]
and the more cost savings are for operators. In this respect, the BBU-RRH assignment problem
should be further investigated while jointly considering several aspects such as BBU pool resiliency,
operational costs, BBU processing power, and constraints on cost budget. In fact, the problem
of BBU pool resiliency constitutes a major requirement for MNOs in order to guarantee limited
disruptions in network availability during the day, while respecting the budget and traffic load
handling requirements. What is more, considering that BBUs are provided from different Cloud
Service Providers (CSPs), each with distinct failure probabilities and processing costs, a careful
decision for BBUs selection must be made to meet the operators’ network and budget constraints.

1.5 Thesis contribution

In this section, we summarize the significant contributions of this thesis:
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1.5.1 A survey of C-RAN resource allocation and BBU-RRH assignment strategies

We will provide an in-depth overview of the resource allocation and BBU-RRH assignment schemes
found in literature. The majority of proposed policies in the literature can be categorized into either:
i) addressing exclusively the C-RAN power minimization problem with a limit on the total trans-
mission power; ii) focusing on the resource allocation and admission control of mobile users with
QoS requirements subject to fronthaul links capacity constraint; or iii) proposing solutions to the
BBU-RRH mappings problem subject to traffic and BBU pool capacity. A taxonomy of this kind of
strategies can be based on the main following criteria: i) static or ii) dynamic approaches, and also
based on the iii) achieved UEs data rates and iv) computational complexity of the used algorithm.
It is worth noting that a majority of related strategies are based on offline optimization approaches.
In other words, they are based on network snapshots models and do not measure the UEs time ar-
rivals in their propositions. We will highlight some existent C-RAN dynamic optimization schemes
that are applicable for online optimization thanks to their low complexity design. However such
approaches usually find limitations for large-scale networks and are only applicable for low users
data-rate and QoS requirements, which is impractical for future 5G networks.

1.5.2 Proposed algorithms for dynamic resource allocation in LTE downlink for C-
RAN

We will present in this contribution two optimization models for i) the resource allocation and
power minimization problem, and ii) the BBU-RRH assignment problem in C-RAN, considering
constraints on transmission power and Signal-to-Interference-plus-Noise-Ratio (SINR) for UEs.
Specifically, we will investigate how to dynamically optimize the set of active RRHs and baseband
resources to serve dynamic traffic flows of incoming UEs. Due to the problem’s combinatorial
nature, the computational complexity is NP-hard if an exact optimal solution is to be obtained for a
large-scale system [41]. To handle this issue, we will propose a meta-heuristic algorithm, based on
the Simulated Annealing (SA) framework, for providing quick sub-optimal solutions to the first-
stage problem at a much reduced complexity. The objective of the second stage of our contributions
consists to properly assign RRHs to BBUs based on RRHs instantaneous loads and the BBUs ca-
pacity. We formulate this BBU-RRH assignment problem as a Multiple Knapsack Problem (MKP),
which can efficiently be solved by commercial solvers such as IBM CPLEX [42]. This contribution
is the object of a conference publication in the International Conference on Communications (ICC
2016) [43] and the forthcoming publication [44].
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1.5.3 Proposed algorithms for QoS-based admission control in C-RAN with func-
tional split

In this contribution, we will extend our study to a C-RAN with capacity-constrained fronthaul
links. We will propose a joint downlink Resource Allocation and Admission Control (RAAC)
algorithm, considering two types of user profiles: Guaranteed-service users – also known as Gold
users, and Best Effort ones. The considered problem takes into consideration i) each type of mobile
users QoS requirements in terms of Physical Resource Blocks (PRBs) (i.e., bandwidth), ii) RRHs
transmission power limitations, and iii) fronthaul links capacity constraints for a user-cell functional
split. The problem is formulated as a Mixed Integer Non-Linear Program (MINLP) with a non-
linear logarithmic constraint, induced by the fronthaul data-rates. We will propose then a two-stage
framework to solve the problem. Our design will be based on problem decomposition and solving
two inter-related problems using a fixed time branch-and-cut technique. A fast greedy algorithm
will also be proposed for addressing the fronthaul admission control task, This contribution is
the object of a conference publication in the Global communication conference (GLOBECOM
2016) [45] and the forthcoming publication [46].

1.5.4 Proposed algorithms for cost-resilience BBU selection in C-RAN

In this final contribution, we will consider the case where a MNO has to select BBU equipments
from several CSPs to run its virtualized BBU pool. We assume that each CSP’s BBU is charac-
terized by a distinct failure probability [47] and a capacity cost, that can be equivalent to content
delivery network prices [48] for the services required from CSPs. We will propose in this context, a
framework addressing the problem of optimal BBUs selection from several CSPs. The instantiated
BBU pool should meet the MNO’s expectations in terms of reliability, cost efficiency, processing
power optimization and traffic load catering. We will formulate our selection problem, named Cost-
Resilience BBU Selection (CRBS), as an ILP problem, designed with a weighted objective function
focusing on three optimization goals: i) minimizing the BBU pool processing power, ii) maximiz-
ing its resiliency and iii) increasing the RRHs traffic load handling, subject to the virtualization’s
capacity and budget constraints. To solve the ILP CRBS problem, we will propose to employ the
Branch-and-Price (B&P) algorithm [49], which is a combination of the Branch-and-Bound and
Column Generation methods for efficiently solving large-scale ILP problems. Simulation results
will demonstrate the good performance of our approach to solve the BBU selection problem for
different scenarios. Additionally, our analysis will evaluate several BBU selection policies and
will provide general guidelines that can be used by MNOs to decide the best BBU optimization
strategy according to their needs. Note that this contribution is the object of a conference publi-
cation in IEEE 86th Vehicular Technology Conference (VTC-Fall 2017) [50] and the forthcoming
publication [51].
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1.6 Thesis outline

This thesis is organized as follows. In Chapter 2, we will outline the related work dealing with
resource allocation strategies in C-RAN and will classify them into different categories. In Chapter
3, we will describe our Dynamic Resource Allocation in C-RAN based on Simulated Annealing
(DRAC-SA). Afterwards, we will present our Resource Allocation and Admission Control (RAAC)
scheme in Chapter 4. In Chapter 5, we will describe our Cost-Resilience BBU Selection (CRBS)
framework and present our Branch-and-Price (B&P)-based approach. Finally, Chapter 6 will con-
clude the thesis and will present our ongoing and future work in this research field.
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2.1 Introduction

Thanks to C-RAN’s centralized architecture, operators can serve dynamic flows of mobile traffic
with more efficient use of baseband resource and lesser operation costs than the traditional Dis-
tributed RAN (D-RAN) architecture. For this reason, the implementation of dynamic resource
allocation and power minimization algorithms in the BBU pool to cope with the time-varying traf-
fic loads of RRHs is one of the most motivating challenges in C-RAN. An interesting issue that
occurs in C-RAN resource allocation is when the fronthaul links become capacity-constrained due
to functional splitting. Admission control strategies can come into play to optimize the number of
accepted UEs while taking into account their QoS requirements and the fronthaul links capacity
constraints. On another note, as virtualization of the C-RAN advances with the emergence of 5G
technologies and the migration to LTE-A, Mobile Network Operators (MNOs) have to upgrade
their infrastructure to not only support higher processing capacities but also to be more resilient.

27
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Still, a common question that arises when a MNO is faced with choosing virtualized BBUs for its
cloud is: What is the best BBU selection strategy when not only resiliency, but also virtualization
cost and RRHs traffic handling all come into play?

In this Chapter, we will give an in-depth overview of the different C-RAN resource allocation
optimization strategies proposed in literature. The next section will present resource allocation
approaches with a focus on transmission power minimization strategies in downlink. Section 2.3
will pin the problematic of admission control in C-RAN and its major related work. Afterwards,
Section 2.4 will provide an overview of the BBU-RRH traffic-based assignment strategies with an
emphasize on the cost and resilience dilemma in C-RAN. Finally, Section 2.5 will conclude this
Chapter by summarizing all main strategies with defined metrics and performance characteristics.

2.2 Overview of resource allocation and power minimization approaches
in C-RAN

The D-RAN sub-optimality

It is undeniable that the research community has known a profusion of works on resource alloca-
tion in traditional D-RAN. However it is also commonly acknowledged that distributed solutions
remain sub-optimal due to their distributed nature. In fact, the sub-optimality of these resource
allocation algorithms comes from the absence of a global network information of the network’s
cells, which forces them to only rely on a local network information at each serving eNodeB or
small-cell (femtocell or picocell) [6] [52]. Some proposals have tackled the issue through informa-
tion sharing [53], small-cells self-organization [54] and cognitive approaches [55]. Nevertheless,
in the novel C-RAN architecture, many tasks such as resource allocation, power minimization and
admission control, which were previously solved sub-optimally by distributed solutions, with only
local network information, can now benefit from the cost-effectiveness brought by the centralized
global perspective.

C-RAN resource allocation and power minimization proposals

There have been many active research efforts from the research community to design efficient
resource allocation strategies in C-RAN system. Resource allocation algorithms are essentially
designed to exploit wireless channels variations by dynamically allocating the available baseband
resources to mobile users so as they could run their mobile applications [56]. Besides, the problem
is often coupled with power minimization issues, as operators do not target to only serve users
the best way they can, but also to lessen the power consumption and antenna power radiation to
create a green and eco-friendly network [57] [58]. A common problem that arises is when we
target to minimize the total C-RAN power consumption subject to users resource requests and
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Algorithm 1: Successive RRH Selection Algorithm [59]

1: Initialize the set of inactive RRHs N (0) = ∅, the set of active RRHs A(0) = {1, ..., L} and
i = 0.

2: Solve the power minimization to optimality and obtain the optimal beamforming gains for
each RRH r.

a) If the problem is feasible, find the RRH r(i) with lowest achieved beamforming gain and
update N (i+1) = N (i)

⋃
{r(i)} and i = i+ 1, and then go to Step 2.

b) If it is infeasible, denote I = i and go to Step 3.

3: Obtain the minimum network power consumption P? = min{P (0), P (1), ..., P (I−1)}.

SINR constraints. This issue has been deeply tackled in many recent C-RAN papers that we will
highlight.

• For instance, authors in [59] presented a Group Sparse-based Beamforming approach (GSB),
that can minimize the C-RAN total power transmitted from the RRHs as well as the power
consumed in the transport network. In fact, as RRHs are deployed in cell sites, they must be
connected to the BBU pool through fronthaul transport links. Consequently, the more RRHs
are active, the more significant the power consumption in the transport network becomes. The
authors formulated the problem as a joint RRH selection and transmit-plus-transport-network
power minimization beamforming problem, with a SINR constraint at each user. They have
addressed this problematic by sorting the L active RRHs in their system in an increasing
order of their beamforming gain (i.e., transmitting power), and then proposing a successive
RRH selection algorithm. The latter, which pseudo-code is detailed in Algorithm 1, is based
on successively switching off RRHs with minimum beamforming gain until the problem
becomes infeasible to minimize the whole transmission power consumption. Besides, by
switching off a set of RRHs, their associated fronthaul links will turn into idle mode with a
low static power, which will result in the minimization of the whole transport network power
consumption.

• The GSB approach has been very successful as a benchmarking scheme and has found a lot
of echo in oder works tackling C-RAN power minimization. A notable work in view of this,
is [60]’s joint DL and UL power minimization through UE-RRH association and beamform-
ing. The authors, building on the highly stringent UL requirements for supporting interac-
tive user applications (e.g., network gaming, full high-definition video calling and real-time
broadcasting), considered jointly the power minimization of DL and UL transmissions in
C-RAN. In fact, they proposed a joint DL and UL UE-RRH association and beamforming
design to optimize the energy consumption tradeoffs between the active RRHs and UEs, sub-
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ject to UEs DL and UL QoS requirements. Their proposal is based on transforming the two
DL and UL problems into two DL inter-related subproblems by leveraging on the celebrated
DL-UL duality result [61]. Their proposal is based on the following:

– The DL power minimization problem was addressed through [59]’ GSB approach,
where the DL UE-RRH association problem is solved by optimally assigning UEs to
be served by the minimal subset of active RRHs and finding the beamforming gains to
transmit from the selected RRHs to all UEs.

– Regarding the UL problem, it was addressed by leveraging on the so-called UL-DL du-
ality result [61], where a virtual DL transmission is established to simulate the original
UL problem. The UL optimization was then converted into an equivalent DL transmis-
sion problem in C-RAN, solved using integer programming and GSB.

[60]’s work was the first attempt to unify the DL and UL UE-RRH association and beam-
forming design problems. Their numerical results exhibited improvements in the network
energy efficiency and power consumption tradeoffs between RRHs and UEs. However, the
GSB algorithms used in [59] and [60] could not exhibit the number of BBUs required to man-
age the entire system. In fact, the studies were carried out separately from the cloud, without
taking into account the reconfigurations that can be performed at the BBU pool level, nor the
online optimization delays.

• What is more, beamforming schemes may find limitations for computing-resource sharing, as
highlighted by the authors of [62]. The latter paper introduced a novel dynamic radio cooper-
ation strategy for C-RAN to maximize the downlink weighted sum-rate system utility, which
outperforms beamforming schemes used in [59] and [60]. In fact, due to the combinatorial
nature of the resource allocation problems in C-RAN and the non-convexity of the coopera-
tive beamforming design, the underlying optimization problems are generally NP-hard, and
extremely difficult to solve for a large-scale network. The authors in [62] proposed a transfor-
mation approach of the original beamforming problem into a Mixed-Integer Second-Order
Cone Program (MI-SOCP) with no computing-resource constraint on the accumulated data
rate R(u,w) of all users u in the system with beamforming gain w. They then presented
a fast iterative algorithm, detailed in Algorithm 2, for finding suboptimal solutions to the
original problem.

• Other attempts towards centralized resource allocation have been previously made. For in-
stance, Wang et al. proposed a graph-based approach for dynamic frequency reuse in C-
RAN [63]. The authors presented a load-based graph coloring method to allocate spectrum
resource to each RRH dynamically depending on traffic demands as well as reducing the
inter-cell interference. Their simulation results demonstrated good achieved throughputs for
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Algorithm 2: Cooperative Resource Sharing (CRS) design [62]

1: Solve the relaxed SOCP problem to find the optimal beamformers weights w̄.
2: Verify the dropped maximum computing-resource constraint.

– If the dropped constraint is verified, return the optimal solution w∗ = w̄.

– Otherwise: Drop users’ rates using a greedy algorithm.

∗ Repeat: Update Rate of UE u R(u, w̄) = R(u, w̄)− τ , where τ is a small
decreasing step.

∗ Go to the next UE when R(u, w̄) = 0.

∗ Until: the maximum data rate computing-resource threshold is achieved.

∗ Return w∗ = w̄.

both cell-center and cell-edge UEs. Furthermore, in [64], authors proposed to minimize the
whole energy cost in C-RAN while of optimizing the end-to-end performance of Mobile
Cloud Computing (MCC) UEs. By adopting a decision-theoretic approach, they formulated
the response latency experienced by A MCC UE as a constraint to solve the problem with re-
spect to C-RAN timing requirement. Their proposal yielded to generally good performances
in cloud energy savings for a small-scale network.

• In [36], authors presented the QoS-based resource allocation framework, which is a cen-
tralized approach for resource and power allocation in femtocells networks. In their pro-
posal, cooperation between neighboring RRHs is exploited to improve resource allocation
and throughput satisfaction via power minimization. Within each cluster of RRHs, a joint
resource and power allocation is centralized at a cluster-head that periodically optimizes the
throughput satisfaction. Later in [34], the authors presented a novel approach based on coop-
erative game theory to address the problem of interference mitigation. In their proposal,
cooperation between neighbouring RRHs is exploited based on interference maps detec-
tion. Solutions from coalitional game theory, such as Nucleolus and the Shapley value, were
adopted to solve the problem to optimality. However, in the latter, dynamic resource alloca-
tion considering online optimization delay was not taken into account, and the algorithm’s
computational time was fairly high.
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2.3 Overview of resource allocation and admission control approaches
in C-RAN

In the centralized C-RAN deployment presented in the survey [17], BBUs are housed in a cen-
tralized macro-cell room owned by the operator and interconnected to RRHs at the cell sites via
dark point-to-point fiber. The protocol used over the fiber to meet the stringent latency and jitter
requirements of LTE HARQ is usually CPRI [16] or OBSAI [65]. This poses several challenges
regarding the fronthaul deployment of C-RAN solution, as highlighted by [11] and [20] since it
may increase the global CAPEX expenses for expanding a fiber-access and high-capacity fronthaul
links from the BBU pool to the cell site. A solution would be based on defining a tradeoff between
the required centralized processing of the BBU pool and the fronthaul capacity [38], by splitting the
functionality of the BBU at different layers. The partially-centralized C-RAN introduced by [22]
has presented a family of flexible functional splits where parts of the BBU’s PHY and MAC layers
are distributed at the RRH end.

For instance, functional splits, such as the UE-Cell and PDCP-RLC examples in Section 1.3.1
of the previous Chapter, can help relax the stringent latency requirement of C-RAN fronthaul in-
frastructure [21]. They can enable traffic dependent bandwidth adaption to the actual traffic served
in the cell, unlike the CPRI protocol, which is constant bit rate. However, the fronthaul network is
limited in terms of bandwidth it can actually convey for the required latency. What is striking, the
study of fronthaul-constrained C-RANs is steadily coupled with admission control problems, due
to the induced fronthaul links capacity limit to support all UEs data throughputs. Therefore, the de-
sign of C-RAN wireless communications schemes should account for the fronthaul links capacity
constraints.

• In view of this, Abdelnasser et al. [66] proposed a joint multi-channel allocation and admis-
sion control optimization framework for a two-tier cellular C-RAN under fronthaul limita-
tions. In their work, the authors considered the DL of a cellular two-tier network composed
by a single macrocell overlaying a number of RRHs, as illustrated in Figure 2.1. The resource
allocation problems for each tier of the macrocell and RRHs are formulated as optimization
problems described in the following:

1. Macrocell tier: Being conscient of the C-RAN RRHs presence, the macrocell maxi-
mizes the sum of interference levels that it can tolerate from the lower tier, subject to
macrocell maximum power and QoS constraints of the Macrocell UEs (MUEs), which
are the users served by it.

2. C-RAN RRHs tier: The RRHs try to maximize the number of its supported users,
called Small cell UEs (SUEs), while minimizing the total DL transmission power sub-
ject to RRHs power budget, SUEs’ QoS requirements, interference thresholds for MUEs,
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Figure 2.1 – Two-tier network with small cells deployed in a C-RAN architecture within the cover-
age area of a macrocell [66].

and fronthaul constraints.

Both tiers problems are shown to be MINLPs and NP-hard. To address the issue, the authors
first present a matrix reformulation of the original macrocell tier problem and propose to
drop the induced rank-one constraint that hinders the convexity of the reformulation. The
resulting problem is a Semi-Definite Program (SDP), which is efficiently solved by interior
point method [67]. They then present, for the second C-RAN tier, a low complexity algorithm
based on allocating the remaining resources to SUEs that have high channel gains and that
will cause low interference to MUEs first. The pseudo-code of the Sub-Channel Allocation
and Admission Control (SCAAC) algorithm is detailed in Algorithm 3.

The authors further improved their proposition in [68] by working on the relaxation of the
SDP problem and presenting a successive convex approximation algorithm. Even though
their proposals in [66] and [68] both provided low complexity solutions for the addressed
problems in DL transmission, their experimental results revealed their algorithms’ limitation
to only low QoS threshold regime and users data-rate requirements. In fact, the percentage
of total admitted users showcased in [66] is less than 50% for a maximum QoS threshold of
11 dB and resource request of 3 sub-channels. This is quite underwhelming for current LTE
cellular systems, where the QoS requirements are expectedly higher (not to speak of future
5G data rates). A similar observation can be made in [68], where the target user data-rate
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2.3. OVERVIEW OF RESOURCE ALLOCATION AND ADMISSION CONTROL

APPROACHES IN C-RAN

Algorithm 3: SCAAC algorithm [66]

1: Given the sets N and N ′ of total sub-channels and sub-channels to that are not allocated to
MUEs, respectively.

2: for each SUE f do
3: Initialize Nf = ∅, A = N ′
4: repeat
5: Find best sub-channel with highest gain n
6: Nf = Nf + {n}, A = A− {n}
7: until All sub-channels in the set A are allocated or the QoS requirement for SUE f is

satisfied
8: if All SUEs have their QoS requirement satisfied then
9: Terminate

10: else
11: given the set N ′′ = n : n ∈ N −N ′
12: for all SUEs f do
13: Initialize A = N ′′
14: repeat
15: Find best sub-channel with highest gain and lowest interference on MUEs ṅ
16: Nf = Nf + {ṅ}, A = A− {ṅ}
17: until The QoS requirement for SUE f is satisfied
18: end for
19: end if
20: end for

requirements remain fairly low for next-generation wireless standards.

• In [69], the authors considered the problem of joint rate and fronthaul resource allocation
for UL C-RAN transmission. Their goal is to determine the best UEs transmission rates that
have to be conveyed, over a capacity-limited fronthaul network, from the RRHs to the BBU
pool. Specifically, the authors presented a Fronthaul-and-Computation-Constrained Sum
Rate Maximization (FCCRM) design, aiming at maximizing the system sum-rate through
optimal allocation of baseband resources and fronthaul capacity to RRHs. To this end, they
have proposed a two-stage approach to optimize the integer variables related to the rate-
fronthaul allocation:

– In the first stage, a relaxation of the integer variables was done to attain a relaxed version
of the problem, which is then solved efficiently via a pricing-based method.

– The second stage consists of developing an iterative algorithm in which the pricing
parameter is updated and a then a new version of the problem is solved at each iteration.

A comparison of the achieved sum-rate gains was done with respect to a standard greedy al-
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Algorithm 4: Fast Greedy Algorithm (FGA) [70]

1: Initialization: Set removal set S = ∅
2: Solve the admission control problem for all UEs without the fronthaul constraint.
3: If it is infeasible to maintain all SINR constraints, remove the UE having the weakest channel

gain to its nearest RRH, update S, and go back to step 2.
4: Otherwise, if all SINR constraints are verified, then

a) Calculate δ for all RRHs.

b) Drop the weakest links from the RRH to its active UEs that achieves the smallest δ.

c) Solve the problem with the current allocation of RRHs for active UEs

d) If the new solution can maintain SINR constraints for all active UEs then terminate.

e) Otherwise, remove the UE requiring the highest transmission power, update set S, and go
back to step 2.

gorithm. However, the performance gains for the achieved data rates were not really sizable:
only 9% of marginal gap is between FCCRM and the greedy approach.

• On the other hand, authors in [70] considered the DL C-RAN admission control by proposing
a DL coordinated beamforming scheme for fronthaul-constrained network. Their proposition
aims at minimizing the total transmission power subject to user QoS and maximum RRH
power constraints. They introduced a convex relaxation of the admission control problem into
a SDP that is solved iteratively until convergence. Moreover, since solving SDP problems
generally takes a fair amount of time, they presented a Fast Greedy Algorithm (FGA), which
is based on calculating the relative contribution δ of a channel link between a RRH and UE to
the SINR of this UE, and then gradually removing users from the system until all constraints
can be satisfied. The pseudo-code of the FGA scheme is detailed in Algorithm 4.

• FGA schemes have been commonly used in literature to address the problem of admission
control in C-RAN with fronthaul constraint, due to the computation effort required to find
quick solutions for these types of problem. This approach has not only been used in [70], but
also in works such as [71] and [72] who presented similar approaches for C-RAN admission
control and total DL power minimization over a capacity-limited fronthaul network. Recently
in [73], authors addressed the sum-rate maximization problem in C-RAN, with joint QoS and
fronthaul constraints. Under 5G data-rate practical assumptions and by ignoring some con-
straints, they proposed a fast algorithm based on Quasi-Geometric-Programming (QGP) that
can solve the problem with low complexity compared to conventional convex optimization
solvers. However, their solution can hardly be applied in resource allocation problems, where
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the number of variables is fairly high, and thus increase the computation time. Besides, works
such as [66], [59], [68] and [70] are based on snapshots models of wireless cellular networks
and do not measure the network’s traffic time arrivals. Their physical layer designs must
include stochastic and time-varying constraints to consider the fluctuating traffic variation of
mobile users and to be applicable in a real-time context.

2.4 Overview of BBU-RRH assignment approaches in C-RAN

In the detailed survey presented by [20], the authors stressed out C-RAN’s agility benefits for
operators compared to Distributed RAN BSs. What is striking, while more BSs are needed in
D-RAN to increase mobile traffic coverage and handling, some of them are under-utilized during
certain hours in the day that correspond to low traffic load (day time for residential areas and night
time for office ones), resulting in ineffective use of baseband resources.

• C-RAN can address this issue, as motivated by the authors in [38], by maximizing the so-
called Statistical Multiplexing Gain (SMG), that is the ratio of sum of single BBU capacity
to the capacity required in the BBU pool. In [38]’s C-RAN scenario with 200 RRHs - 100
covering office areas and 100 residential ones, - the authors presented the BBUs savings that
can be achieved through SMG maximization compared to D-RAN. In fact, by dynamically
setting the BBU-RRH connections and allocating resources to RRHs according to users’
traffic profiles and volumes, cost reduction and energy savings can be realized due to the
reduction in the number of BBUs and effective utilization of the baseband resources. This
is highlighted in Figure 2.2, where only 71 BBUs are needed to handle both types of areas’
RRHs during the day; saving up in total 129 BBUs than the D-RAN setup.

• There have been other approaches tackling the BBU-RRH assignment problem in respect to
traffic demand:

– Based on the traffic analysis of Tokyo’s metropolitan area, the authors in [74] proposed
a new “Colony” RAN design that can dynamically change the BBUs-RRHs connections
with respect to traffic demand. Their proposal showed that, by setting up dynamic BBU-
RRH mappings, the number of BBUs can be lessened by maximum 75% compared to
the traditional RAN architecture. This, nevertheless, remains a rough estimation by the
authors themselves.

– In [75], the same authors as in [74] further enhanced their proposal by introducing two
BBU-RRH switching schemes for C-RAN: Semi-Static (SS) and Adaptive. The SS al-
gorithm, which pseudo-code is described in Algorithm 5, determines the combinations
of BBUs and RRHs to accommodate peak hour traffic load for all RRHs within a large
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Figure 2.2 – Number of BBUs allocated during a day, for 100 office and 100 residential RRHs in
C-RAN compared to D-RAN. Source: Checko et .al [38].

time interval. In contrast, their adaptive scheme maps RRHs to BBUs based on the SS
algorithm as well as neighboring RRHs loads and BBUs resource usage limits within
a short time interval (one hour). The authors demonstrated that under a traffic distri-
bution in an office area, the number of BBUs can be reduced by 26% and 47% for the
semi-static and adaptive schemes, respectively.

Although solutions for resource BBU-RRH assignment procedures in C-RAN have received
some notable attention, the number of contributions for this problematic remains nonetheless very
limited. Besides, it is unequivocal that very few research works have addressed the problem of
cost-resilience BBU selection in C-RAN, or more generally the problem of resiliency in C-RAN
(not to speak of the cost of instantiating the BBU pool). Some related work have adumbrated these
issues by far, for instance:

• In [76], the authors studied the problem of cloud resilient BBU-RRH assignment with virtu-
alized BBU placement in metropolitan infrastructures. To solve the problem, they presented
three approaches for resilient assignments:

– one-to-one BBU-RRH protection;

– one-to-one BBU-RRH protection and virtualized BBU protection;

– partial BBU-RRH protection.
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Algorithm 5: Semi-Static (SS) BBU-RRH switching algorithm [75]

1: Initialization:

• i: ith RRH (1 ≤ i ≤ I)

• j: jth BBU (1 ≤ j ≤ J)

• R(i)/R(j): Used resources in RRH i or assigned resources to BBU j

• j = 0

2: for each RRH i do
3: if no BBU is assigned to RRH i then
4: Insert RRH i in queue.
5: while queue is not empty do
6: Search RRH t that used resources is the most in the queue.
7: if R(j) +R(t) ≤ UpperLimit of the queue then
8: RRH t is assigned to BBU j.
9: Update resources of BBU j: R(j)← R(j) +R(t).

10: Insert neighboring RRHs to RRH t that have not been inserted yet in the queue.
11: end if
12: end while
13: Remove RRH t from queue.
14: end if
15: j ← j + 1
16: end for

They formulated all three propositions through ILP formalisation and compared them with
non-resilient BBU-RRH mapping. The results showed that the one-to-one BBU-RRH and
virtualized BBU protection scheme provides the highest resiliency for processing and net-
work failures, followed by the low-cost partial BBU-RRH protection approach.

• Meanwhile, authors in [77] presented a BBU virtualization scheme that aims at minimizing
the total BBU pool power consumption subject to processing capacity constraint and with a
linear computational complexity order. They tackled the problem via a simulated annealing-
based heuristic to find near-optimal results in minimum time. However, the resiliency and
processing cost aspects were not considered, and, if taken into account, the simulated anneal-
ing heuristic may find limitations for such scenario.

• In [78], Bouet et al. proposed a novel scheme for virtualized BBUs placement in a cloud
infrastructure to meet the operational cost constraints such as licence fees and/or power con-
sumption. In fact, the placement of virtualized BBUs in cloud hotels realizes a tradeoff
between possibly conflicting goals and a careful optimization design is needed. To address
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the issue, the authors proposed first to cast the problem as a multi-commodity flow ILP prob-
lem. They then devised a centrality-based greedy heuristic that proved to run in polynomial
time, and assessed its validity by comparing its performance gains in terms of processing
time and cost with respect to the ILP optimal solution.

• In [79], authors proposed a similar scheme to model the problem of BBUs placement in COs
as an ILP optimization problem, subject to traffic demand and a Multi-Stage WDM-Passive
Optical Network (PON) backhauling, which architecture is described in [80]. Their goal is
to decide what are the best COs to place within BBUs, with respect to the routing latencies
and baseband assignment of traffic demands, so as the number of COs can be minimized.
The authors mentioned a random multi-stage tree topologies generation algorithm to solve
the underlying ILP problem, however, the algorithm’s details were skipped in their paper.
Besides, both [78] and [79] proposals consist only of early work studies, which have not
fully exploited the flexibility of centralized C-RAN architecture regarding efficient baseband
resource pooling and its ability to benefit from cost-efficient optimization.

2.5 Summary

Table 2.1 presents a comprehensive survey of the aforementioned C-RAN resource allocation al-
gorithms found in literature. A taxonomy of these strategies in terms of: i) objective functions ii)
constraints, iii) used algorithm, iv) application, iv) achieved UE throughput and v) computational
complexity are highlighted.
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Table 2.1 – Comparison of C-RAN resource allocation strategies

Ref. Objective Constraints Solution Application Achieved UEs Computational
data rates complexity

[59] [60] Total DL power - Max power GSB Static Low High
minimization - SINR

[62] DL Sum rate - Max power CRS Dynamic High Low
maximization - Computing res.

[63] Spectrum - Traffic demand Graph- Dynamic High -
allocation - SINR coloring

[64] Total DL power - MCC UE Decision Static Low -
minimization response latency theoritic

[36] [34] Total DL power - Max power Game Static High -
minimization - SINR theory

[66] [68] - Admission Control - Fronthaul -SDP Static Low High
- Maximizing RRHs - UE QoS -SCAAC Static Low Low

interf. levels - Max Power
[69] UL Sum rate - Fronthaul FCCRM Static Low Low

maximization - BBU capacity
[70] [71] - Admission Control Fronthaul - SDP Static Low High

[72] -Total DL power - UE QoS - FGA Static Low Low
minimization - Max Power

[73] DL Sum rate - Max power QGP Static High Low
maximization - Fronthaul

[38] BBU-RRH - BBU capacity SMG Dynamic - -
assignment

[74] BBU-RRH - BBU capacity Colony- Dynamic - -
assignment RAN

[75] BBU-RRH - BBU capacity - SS Dynamic - -
assignment - Adaptive

[76] Resilient BBU- - links protection Simplex Dynamic - Low
RRH mapping & survivability algorithm

[77] -BBU processing - Single BBU Simulated Dynamic - Linear
power minimization capacity annealing

-BBU-RRH - BBU pool
assignment total capacity

[79] Virtualized BBUs - Traffic demand - Static - -
hoteling - backhaul latency

[78] Virtualized BBUs - processing cost Greedy Static - Polynomial
hoteling - Max power heuristic
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2.6 Conclusion

This Chapter provided an overview of C-RAN resource allocation strategies in literature. First,
we described the C-RAN transmission power minimization schemes. Next, we outlined the re-
source allocation and admission control approaches for fronthaul-constrained C-RANs. Then, we
presented the different existing solutions for BBU-RRH mappings. Afterwards, we summarized
all the discussed related C-RAN strategies, while outlining the main metrics for evaluating the per-
formance of the proposed solutions in terms of algorithm application, achieved UEs data rates and
computational complexity.

Considering all the above criteria clearly makes the problem of dynamic resource allocation
in C-RAN atypical and challenging. Unfortunately, a majority of the surveyed works consist of
offline optimization algorithms. In fact, no dynamic resource allocation strategy has been pro-
posed including stochastic and time-varying constraints to consider the fluctuating traffic variation
of UEs and their high resource demands, inherent to 4G/5G networks. Consequently, to the best of
our knowledge, our study is the first attempt to present a centralized approach combining dynamic
resource allocation, transmission power minimization and BBU-RRH assignment into one frame-
work, which does not only support 5G higher rates, but is also dynamic, has low-complexity and is
applicable for large-scale networks optimization.
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3.1 Introduction

In this Chapter, we present a novel two-stage framework to address the issues of dynamic resource
allocation, transmission power minimization and BBU-RRH assignment in DL C-RAN. Specifi-
cally, we investigate how to dynamically optimize the set of active RRHs and allocated resources to

43



44 3.2. SYSTEM MODEL

serve dynamic traffic flows of incoming UEs with varying resource demands. To do so, we propose
in the first stage a Dynamic Resource Allocation in C-RAN algorithm based on Simulated An-
nealing (DRAC-SA), that aims at dynamically associating the best spectrum set of frequency/time
resources to incoming UEs, with proper UE-RRH attachment. Based on the results of this first
stage, the second one consists in computing the optimal number of BBUs required to manage the
system, and appropriately assigning them to RRHs in order to handle the whole traffic load. We
model this second problem using a Multiple Knapsack Problem (MKP) formulation, that can effi-
ciently be solved using commercial standard solvers such as IBM CPLEX [42].

To gauge the effectiveness of our proposal, we compare our resource allocation design with
two main existing strategies in centralized resource allocation and power control: QP-FCRA [36]
and GSB [59] schemes. We also include comparisons to a greedy approach, as well as to the
optimal solution returned from an offline optimization run. Additionally, we compare our second-
stage solutions in terms of BBU-RRH attachment to the Semi-Static (SS) and Adaptive schemes
proposed in [75].

The remainder of this Chapter is organized as follows. In section 3.2, we present the mathe-
matical characterization of our two-stage system model. In section 3.3, we describe the DRAC-SA
algorithm used to solve the resource allocation problem. Numerical results are presented in sec-
tion 3.4 to illustrate the performance of DRAC-SA. Finally, section 3.5 concludes this Chapter.

3.2 System model

We describe in this section our two “Centralized-Resource Allocation & Power Minimization” (C-
RAPM) and MKP optimization models. We consider a C-RAN system composed by a number of
S RRHs within the set S = {i|1 6 i 6 S}. The BBU pool jointly assigns to each RRH in S a
number of K Physical Resource Blocks (PRBs) from the set K = {k|1 ≤ k ≤ K}. We assume
that the fronthaul network has sufficient links capacity.

3.2.1 Centralized resource allocation and power minimization problem formulation

In our first optimization model, we considerN (N ≥ 1) number of User Equipments (UEs) entering
the system at a given epoch and connecting to a certain RRH i from S. Each UE u ∈ {1, .., N}
requests from its serving RRH a number of PRBs Nu to run its applications [81]. We suppose that
each RRH i handles one cell in a delimited area, and that a UE u can only be served by the RRH
covering the area it is positioned within. We consider a static transmission power from RRH i to
UE u on each allocated PRB k. We suppose that the transmission power is quantized into L ≥ 2

discrete power levels: pmin = p1 < p2 < ... < pL = pmax, where pmin is the minimum power
that can be transmitted to a UE u and pmax is the maximum transmitted power for each RRH. An
increase in the number of power levels L pushes the discrete domain to be closer to a continuous



CHAPTER 3. DYNAMIC RESOURCE ALLOCATION AND POWER MINIMIZATION IN
LTE DL FOR C-RAN 45

one, but undoubtedly increases the problem’s computational complexity [33]. Each resolution can
lead to different transmission powers. We define our UE-RRH attachment, PRB allocation and
transmit power variables:

xui =

{
1, if UE u is attached to RRH i,
0, otherwise.

(3.2.1)

yuik =

{
1, if PRB k is allocated to UE u on RRH i,
0, otherwise.

(3.2.2)

puik =

{
p ∈ {p1, ..., pL}, if yuik = 1,
0, otherwise.

(3.2.3)

The SINR achieved by UE u, attached to RRH i and on a given PRB k can be formulated as:

γuik =
puikg

u
ik∑

j 6=i
∑

v 6=u p
v
jkg

u
jk + σ2

(3.2.4)

where guik is the path gain between RRH i and UE u, and σ2 is the noise power. The SINR is
expressed per PRB, as both channel/fading and interference vary over PRBs due to multipath,
frequency selectivity and domain scheduling [34]. Our objective is to find the optimal resource
allocation strategy (i.e., to find the serving RRHs and PRBs allocation in downlink), to serve in a
best effort way the existing UEs, while minimizing the total RRHs transmitted power and attaining
the UEs requested SINRs level at each used PRB. Our C-RAPM optimization problem can be
written as follows:

minimize
xu,yu,pu

N∑
u=1

∑
i∈S

∑
k∈K

(ε
puik
Pmax

− (1− ε)
xui y

u
ik

K
) (3.2.5)

subject to
∑
i∈S

∑
k∈K

xui y
u
ik 6 Nu, ∀u (3.2.6)

N∑
u=1

∑
k∈K

puik 6 pmax, i ∈ S (3.2.7)

γuik > yuikΓ
u
k , i ∈ S, k ∈ K,∀u (3.2.8)

puik > yuikpmin, i ∈ S, k ∈ K,∀u (3.2.9)
N∑
u=1

yuik 6 1, i ∈ S, k ∈ K (3.2.10)

yuik 6 xui , i ∈ S, k ∈ K, ∀u (3.2.11)

xui , y
u
ik ∈ {0, 1}, i ∈ S, k ∈ K, ∀u (3.2.12)

We outline in the objective function (3.2.5) that we target to minimize the total transmission
power while maximizing all possible UEs-PRBs assignments. The objective function is standard-
ized so as to return values in the same order of magnitude. ε is a constant optimization weight
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between 0 and 1. Constraint (3.2.6) stresses out the fact that the total allocated resources for each
UE cannot exceed its requested demand Nu. Conditions (3.2.7) and (3.2.9) are the power con-
straints on RRH and UE, respectively. Condition (3.2.8) ensures that the received SINR is equal
to the required one Γuk when the PRB k is in use (i.e., yuik = 1) [36]. Constraint (3.2.10) ensures
that two UEs attached to the same RRH cannot use the same PRB, (3.2.11) imposes all yuik = 0 if
xui = 0 (i.e., the RRH i is not transmitting any PRBs), and finally (3.2.12) refers that yuik and xui
are binary variables.

It is worth noting that the optimization problem (3.2.5 − 3.2.12) is an Integer Non-Linear
Program (INLP), which is NP-hard due to the quadratic objective function and the non-convex
SINR constraint (3.2.8) [41]. To simplify the resolution of this problem, we reformulate it as an
ILP thanks to the well-known big-M method [82]. In fact, we can replace the product of the two
binary variables yuik and xui by a new binary variable zuik and add the new following constraints:

zuik 6 xui , (3.2.13)

zuik 6 yuik, (3.2.14)

zuik > xui + yuik − 1. (3.2.15)

regarding the SINR constraint (3.2.8), we find it convenient to reformulate it as follows:

(1 +
1

Γuk
)puikg

u
ik > yuikΥ

u
k + yuikσ

2 (3.2.16)

where Υu
k is equal to

∑
j

∑
v p

v
jkg

u
jk. The non-convex product between binary variable yuik and

continuous variable Υu
k can also be linearized using the big-M modeling, as long as Υu

k has explicit
lower and upper bounds. From the variable definition in (3.2.3) and the constraint (3.2.9), we can
easily deduce Lwr and Uppr, the lower and upper bounds of Υu

k , respectively. Thus, the product
yuikΥ

u
k can be replaced by a new continuous variable wuik and the corresponding constraints can be

rewritten as:

yuikLwr 6 wuik 6 yuikUppr (3.2.17)

(1− yuik)Lwr 6 Υu
k − wuik 6 (1− yuik)Uppr (3.2.18)

Hence, the ILP formulation of our C-RAPM problem can be expressed as follows:

minimize
xu,yu,pu

N∑
u=1

∑
i∈S

∑
k∈K

α
puik
Pmax

− (1− α)
zuik
K

(3.2.19)

subject to
∑
i∈S

∑
k∈K

zuik 6 Nu, ∀u (3.2.20)

(3.2.7), (3.2.9− 3.2.15), (3.2.17− 3.2.18) (3.2.21)

(1 +
1

Γuk
)puikg

u
ik > wuik + yuikσ

2 (3.2.22)
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3.2.2 Multiple knapsack problem formulation for BBU-RRH assignment

In a Distributed RAN system, one BBU is entirely assigned to a single RRH to handle the total
traffic load. Thanks to C-RAN’s centralization, the resources of one BBU can be shared between
different connected RRHs that have few traffic load [38]. For instance, if a remote site is covered
by 4 RRHs and each has 25% of traffic load, one BBU is enough to manage all four RRHs. In our
study, we can compute the optimal number of needed BBUs NBBU to manage the S loaded RRHs
as follows:

NBBU = dSum of all RRHs traffic charges
K

e (3.2.23)

where d.e is the ceiling function and K is the number of PRBs. The total charge of active RRHs
corresponds to the total number of assigned PRBs from transmitting RRHs to all users, that are
returned after solving the C-RAPM problem. Our goal in this second stage is to properly assign
RRHs to the NBBU BBUs using a MKP formulation [83], where the objects and the knapsacks
are represented by the RRHs and the BBUs, respectively. We introduce a new binary variable rij ,
which is equal to one if RRH i is attached to BBU j and zero otherwise. After solving the first
problem, we can compute the weight of RRH i ci as follows:

ci =
∑
k∈K

y?ik/K (3.2.24)

where y? is the returned solution from the C-RAPM problem. The value of ci represents the per-
centage of traffic load RRH i handles. We suppose that each BBU j can handle 100% of a fully
loaded RRH (i.e., all K PRBs are used). Our BBU-RRH MKP problem can be formulated as
follows:

maximize
r

NBBU∑
j=1

S∑
i=1

rij (3.2.25)

subject to
S∑
i=1

cirij 6 1, j ∈ {1, ..., NBBU}, (3.2.26)

NBBU∑
j=1

rij 6 1, i ∈ {1, ..., S}, (3.2.27)

rij ∈ {0, 1}, i ∈ {1, ..., S}, j ∈ {1, ..., NBBU} (3.2.28)

where constraint (3.2.27) denotes that one RRH cannot be managed by more than one BBU. This
formulated problem is a linear program, which can be efficiently solved by commercial standard
solvers such as IBM’s ILOG CPLEX.
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3.3 Proposal: DRAC-SA Algorithm

We have previously attempted to address the C-RAPM problem formalized in (3.2.19)− (3.2.22),
by proposing an optimal DRAC approach based on the branch-and-cut algorithm in [43]. However,
due to the combinatorial complexity of the problem, finding optimal solutions for a large-scale
network may take a fair amount of time and will not be suitable for online optimization.

In this section, we will present our Dynamic Resource Allocation in C-RAN based on Simulated
Annealing (DRAC-SA) algorithm with defined neighborhood search program to find near-optimal
solutions to the C-RAPM in minimum time.

3.3.1 Algorithm overview

The Simulated Annealing (SA) algorithm [84] is a powerful stochastic algorithm used to solve
many combinatorial optimization problems in a fixed amount of time. It has already been applied
in several works in LTE wireless networks context, such as for downlink multiuser scheduling [85]
and for joint transmitter and receiver optimization in multiuser MIMO-OFDM environment [86].
The framework is based on exploring the different states of the cooling process of a solid from an
initial hot temperature to a fixed frozen one. Each state of the process corresponds to a solution of
the optimization problem. The global optimal solution is found when the maximum temperature
is sufficiently high and the cooling is done sufficiently low to explore many system states. From
a given state, a subsequent one can be generated by performing a small perturbation mechanism.
This corresponds to generating neighbors of the initial solution via some particular neighborhood
structures. The acceptance rule of a new solution (or new state) to the initial one is defined by the
Metropolis rule [87], which imposes a probabilistic decision based on the varying temperature and
the energy of both states. The energy refers to the cost function of the optimization problem. If the
generated state has lesser energy, it is accepted as the current state. Otherwise, it is accepted with
a probability given by: exp(−∆E

T ), where ∆E is the energy difference of the two states and T is
the time varying temperature. It is worth noting that at high temperature exp(−∆E

T ) is close to 1,
therefore the majority of moves can be accepted. Whereas at low temperature, exp(−∆E

T ) is close
to 0, which severely limits the search process to only solutions that decrease the energy.

3.3.1.1 Initial solution

We first start by employing a greedy search method to generate the initial solution of the C-RAPM
problem. It is based on performing linear relaxation of the integer variables and limiting the local
search at the first nodes containing feasible integer solutions. What is more, the local search can
be further lessened by focusing our resolution on a smaller optimization space, generated by the
“core” variable zuik. In fact, variables xui and yuik can be derived from the big-M reformulation
constraints (3.2.13), (3.2.14), (3.2.15), and puik comes as a “sub-core” optimization variable, which
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can be deduced from (3.2.7) and (3.2.9). We denote E0 the cost function (or energy) of this initial
solution and Tmax the maximum annealing temperature. We also define TSRu, the throughput
satisfaction rate of UE u, which represents the ratio of the number of its allocated PRBs on its
initial demand Nu.

3.3.1.2 Neighborhood search structure

Here, we define our specific neighborhood search program to generate the states. We initiate the
neighborhood generation by selecting a uniformly random UE u from the outputs of the initial
solution and by computing its TSRu. We define x̂u, ŷu and p̂u, the solution neighbors of xu, yu

and pu for UE u, as follows:

• Step 1: UE u changes its RRH attachment following a discrete Bernoulli distribution with
parameter (1− TSRu). A new RRH attachment vector x̂u is generated from this probability
and by selecting the available RRHs to whom u can be linked to based on its geographical
position.

• Step 2: We keep the existing PRB allocation in the new RRH x̂ui to other UEs untouched.
For the available PRBs (yuik = 0), we select the eligible ones that can be allocated to UE u

based on the SINR constraint γuik ≥ Γuk , while determining for each one the minimal power
that satisfies that constraint.

• Step 3: For the eligible PRBs that satisfy γuik ≥ Γuk , they are allocated to UE u following a
Bernoulli distribution with parameter TSRu×

γuik
SNRmax

, where SNRmax = pmaxg
u
ik/σ

2 rep-
resents the maximum Signal-to-Noise Ratio (SNR) achieved on UE u. This helps allocating
PRBs to UE u, with respect to other users existing allocation and possible interference. After
this, we set all allocated PRBs power levels to a unique one, corresponding to the highest
level of the allocated PRBs (i.e., the maximum of all minimal powers that satisfy the SINR
constraint or each PRB).

3.3.1.3 Equilibrium state

After generating the new solution neighbors, a new cost function En is calculated. We increase the
neighborhood search structure to other UEs if and only if the current solution does not improve the
objective function and satisfies the following equation:

exp(−En − E0

Tn
) ≥ δ (3.3.29)

where δ is a random number in [0, 1], which refers to the random value of the equation to increase
the neighborhood states in the SA meta-heuristic to see whether exp(−∆E

T ) in equation (31) is close
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Figure 3.1 – DRAC-SA Flow Chart
.

to 0 or 1, and thus accept increasing the neighborhood tree. Additionally, in each iteration n we use
the following cooling equation to decrease the temperature:

Tn ←
Tn

ln(n)
(3.3.30)

3.3.1.4 Stopping condition

Figure 3.1 illustrates our DRAC-SA algorithm flow-chart. The algorithm converges as soon as the
maximum number of iteration nmax is elapsed, which corresponds to the maximum CPU time.
Therefore, its value should be scalable based on the processing machine so as to not exceed the
delays of mobile users resources requests during their stay time in the system.
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3.3.2 MKP resolution

Once the C-RAPM problem is solved and the resources are allocated to UEs, the next step consists
in calculating the number of required BBUsNBBU to handle the total traffic load (3.2.23). Since the
MKP problem (3.2.25)-(3.2.28) is a linear program, we used CPLEX to compute its solution. The
latter was able to find optimal results with very low computation time nMKP very small compared
to nmax (nMKP � nmax). Hence, by summing the two computation times, solutions for the
C-RAPM and BBU-RRH associations can be dynamically found while respecting mobile users
requests delays.

3.4 Performance evaluation

Table 3.1 – Simulation Parameters

Parameters Values
Number of RRHs 100

Bandwidth 20 MHz
Total number of PRBs 100

Power levels L 6
p1(pmin)/p2/p3/p4/p5/p6(pmax) 0.1/1/5/10/15/20 mW

Constant α 0.5
Path loss model 148.1 + 37.6log10(d), d in Km

Shadowing standard deviation 5 dB
Fading model Normal distribution N (0, I)
Thermal noise −174 dBm/Hz

Transmit antenna power gain 8 dBi
Poisson Parameter λ ∈ [1, 10] (default 5)

Departure rate µ = 0.1
UE’s PRB demand Uniform distribution U(1, 25)
BBU capacity W 1 (100%)

Initial hot temperature Tmax = 1000
Max. number of iterations 1000

In this section, we evaluate the performance of our proposed DRAC-SA algorithm and compare
the benefits of our solution with respect to state-of-the-art schemes: QP-FCRA [36] and Itera-
tive GSB [59] algorithms for solving the C-RAPM problem. We also include comparisons to the
greedy approach, which consists of the generated initial solutions of the DRAC-SA algorithm. Fur-
thermore, we also compare to the optimal solution returned from previous DRAC approach in [43].
The latter was run in offline mode due to its high computation time for the chosen system parame-
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ters. On another hand, we also compare the Semi-Static and Adaptive switching algorithms in [75]
to the returned solutions of our MKP regarding the BBU-RRH assignment problem.

3.4.1 Simulation environment

For our experimental environment, we simulated a wireless LTE environment consisting of 100
RRHs deployed in a 450 m × 450 m square grid. Each RRH has a coverage radius of 35 m and
the distance between two nearest RRHs is 50 m. We considered the following channel model [43]:
hui = 10−L(dui )/20

√
φui s

u
i g
u
i , where L(dui ) is the path-loss at distance dui between RRH i and UE

u, φui is the antenna gain, sui is the shadowing coefficient, and gui is the fading coefficient. We
generate a fixed poisson arrival rate of mobile users of λ = 5 arrivals per time, and vary at each
simulation run the users’ stay time and service demand following an exponential and uniform laws,
respectively. Note that UEs’ positions are randomly generated at each run and remain fixed during
their whole stay time in the network. The service demand of each user is expressed in terms of
number of PRBs from a downlink LTE frame of 100 PRBs and follows a uniform distribution from
1 to 25 PRBs. We run 30 simulations for each scenario of SINR threshold Γ: 10 and 25 dB, to
reach a confidence level of 97%. Table 3.1 reports the simulation parameters.

3.4.2 Performance metrics

In the next sections, we present the simulation results derived from our approach in terms of the
following performance metrics:

• Throughput Satisfaction Rate (TSR): As defined earlier, it denotes the satisfaction degree of a
UE with respect to the initial demand Nu. For a UE u attached to RRH i, it can be expressed
as follows:

TSRiu =
∑
k∈K

yuik/Nu (3.4.31)

• Spectrum Spatial Reuse (SSR): Denotes the average portion of RRHs using the same PRB
and can be expressed as follows:

SSR =
1

S ×K

N∑
u=1

∑
i∈S

∑
k∈K

yuik (3.4.32)

• Transmitted power per RRH: We compute the discrete transmission power allocated to UEs
on each PRB. This latter parameter is computed to help emphasize the number of active
RRHs transmitting on each power level, the porting of inactive RRHs, and the total system
transmission power.
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Figure 3.2 – Throughput Cumulative Density Function

• Number of BBUs (NBBU ) calculated through (3.2.23), and the corresponding number of
assigned RRHs.

3.4.3 Simulation results

a) Throughput Satisfaction Rate (TSR)

Figure 3.2 shows the Cumulative Distributed Function (CDF) of the TSR. The CDFs of DRAC,
GSB and QP-FCRA correspond to CDFs generated from offline resolutions, where we left the
algorithms methods running until the end results. We emphasize the fact that they are not applicable
in real-time context due to their high computational time, and we only added them for the sake of
comparison. We can observe, by comparing the CDF of the offline methods and the online Greedy
and DRAC-SA’s ones, that for the latter, more than 50% of UEs have their TSR greater than 80%

and 70% in SINR threshold equal to 10dB and 25dB, respectively. The TSR is lessened to 60%

and 48% for QP-FCRA and GSB, respectively - as shown in Figure 3.2(a) - at low SINR threshold,
and to 47% and 35%, respectively, in Figure 3.2(b), when the SINR threshold is high. Hence, our
proposed DRAC-SA approach outperforms both QP-FCRA and GSB schemes, and approaches as
well the highest throughput satisfaction rate given by DRAC, when the latter reaches the end of the
resolution. However, we notice that the greedy online approach achieves better satisfaction rate at
high SINR regime than the offline GSB scheme. In fact, the latter emphasizes on turning off as
many as RRHs as possible to achieve maximum power savings, whereas the greedy approach turns
a large number of RRHs on to find quick solutions for the C-RAPM problem.
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Table 3.2 – Mean Spectrum Spatial Reuse

SINR DRAC-SA DRAC Greedy QP-FCRA GSB
10 dB 4.29 ± 0.12 4.55 2.45 ± 0.5 4.05 2.25
25 dB 4.23 ± 0.15 4.55 2.45 ± 0.5 4.10 2.01

b) CPU time vs network density

As can be seen in Figure 3.3, the complexity evolution of DRAC-SA is polynomial in terms of
network density, and is visibly lower than that of DRAC. The time computation results indicate
that the proposed DRAC-SA can solve the C-RAPM problem in less than 120 ms for a network
with 100 mobile users. Besides, it can return solutions in a few milliseconds when the number
of active users is low (less than 20 mobile users). Overall, DRAC-SA achieves significantly high
CPU time savings than DRAC, where the latter returns the optimum solutions after at least 1000 s
for the highest dense network (150 users). This makes the DRAC approach unpractical for online
optimization as it severely impacts the rate of served users and the global TSR, which will be
described later on.
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c) Spectrum Spatial Reuse (SSR)

Table 3.2 reports the SSR of all aforementioned approaches. The more a PRB is reused, the better is
the performance. Table 3.2 clearly shows that our proposal DRAC-SA fosters more PRBs reuse, by
a factor of 1.06 and 1.91 compared to QP-FCRA and GSB approaches, respectively, at low SINR
threshold. When the SINR threshold is high, the reuse factor is enhanced by 1.03 and 2.13, respec-
tively. We also notice that the gap between DRAC-SA’s SSR and DRAC’s is only of 5.71%, which
exhibits the good performance of our algorithm. We further extend the analysis by investigating
how each PRB is reused in the network compared to the greedy and the optimal solutions. Figure
3.4 shows that DRAC-SA improves the reuse factor up to 32% for PRBs that are less re-used with
the greedy method. In fact, DRAC-SA achieves globally 43.36% better performance in PRB reuse
than the greedy approach. The confidence intervals also indicate that the DRAC-SA reuse factor
can reach the optimal for most PRBs.

d) Normalized throughput vs UEs demand

In order to illustrate how the allocated resources are affected by UEs’ demand volume, Figure 3.5
presents the normalized throughput evolution as a function of UEs demands Nu, for both SINR
regimes. Globally, QP-FCRA and GSB show a roughly constant behavior for SINR = 10 dB in
Figure 3.5(a), with an emphasis on low PRB and high PRB demand, respectively, which may imply
that their resource allocation is done independently of UEs’ PRBs demand. On the other hand,
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(a) SINR = 10 dB (b) SINR = 25 dB

Figure 3.5 – Throughput distribution as a function of user demands

DRAC-SA favors resource allocation of UEs with the highest demand Nu in order to increase their
total satisfaction rate. This is more clearly shown in the high SINR regime (Figure 3.5(b)), where
DRAC-SA favors high demands significantly more than DRAC and the other schemes. This may
be interpreted as unfair to users with low PRB demands. However, from a network management
perspective, it is a positive behavior as DRAC-SA can dismiss resource allocation to low user
demands that would cause interference to high-demanding users with greedy resource applications,
and eventually increase their total transmitted power.

e) Transmitted Power per RRH

Figure 3.6 illustrates the percentage of RRHs transmitting on each transmission power. We remark
that at low SINR regime (see Figure 3.6(a)), the majority of RRHs are transmitting on the lowest
power levels: pmin = 0.1mW and p2 = 1mW , whereas for most RRHs the greedy method favors
the highest power level pmax = 20 mW , which results in a high total transmission power. What is
more, DRAC-SA focuses mostly on the second power level p1 = 1mW . At high SINR regime (see
Figure 3.6(b)), most approaches emphasize on higher transmission powers such as p4 = 15 mW

and pmax = 20 mW . By scattering the transmission powers on the lowest levels, our approach
can achieve less energy consumption compared to the greedy resolution method and QP-FCRA, as
shown in Figure 3.7, which presents the total C-RAN transmitted power. We can remark that the
GSB scheme realizes minimum power consumption, after DRAC, by switching off RRHs based
on their successive RRH selection algorithm. However, this is negatively reflected on the TSR of
mobile users, as seen in Figure 3.2, since they are less satisfied by their allocated PRBs. In fact,
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(a) SINR = 10 dB (b) SINR = 25 dB

Figure 3.6 – Percentage of RRHs vs transmission power levels

while the iterative GSB method fosters more RRHs switching off, it results in less transmission
power consumption in the system, but severely impacts the throughput satisfaction for mobile users
due to the dynamic scaling between power puik and PRB allocation yuik variables. The QP-FCRA
approach, on the other hand, supposes all RRHs are turned on, which leads to a higher power
consumption but to a good TSR. As observed in Figure 3.2 and Figure 3.7, our proposed DRAC-
SA scheme performs a good tradeoff between satisfaction rate and overall power consumption for
both SINR threshold levels.

f) Number of BBUs and on RRHs

Figure 3.8 illustrates the number of BBUs needed per time as well as the needed number of on
RRHs to manage the traffic load at each instant, when the SINR threshold is equal to 25 dB. The
one-one mapping in conventional RAN imposes as many BBUs as deployed RRHs to handle the
radio site coverage and the fluctuating traffic load. This imposes heavy investments from operators
to manage their network and increase their total BBU equipment costs. As shown in the curve, the
number of BBUs calculated from the output of DRAC-SA can achieve up to 86% and 92% BBUs
savings compared to a RRH-based RAN scenario and a traditional D-RAN one.

For the BBU-RRH assignment problem, we solve the MKP in (26) using CPLEX, which was
able to find optimal results with very low computation time (at average 3 ms at each instant). Table
3.3 presents the average number of BBUs and on RRHs as well as the minimum and maximum
number of handled active RRHs per BBU. Clearly, DRAC-SA realizes more BBUs savings to
handle the same volume of traffic load with reduced number of RRHs. This not only improves the
network capacity, since many RRHs can be handled by the same BBU, but also helps maximizing
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Figure 3.7 – Total RRHs transmitted power
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the efficiency of BBUs within the virtual pool.
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Table 3.3 – Number of BBUs and RRHs

Scheme Mean NBBU Mean on RRHs Max RRHs/BBU
MKP 7.97 ± 0.06 55.4 ± 2.2 39

Semi-static 15.1 59.7 27
Adaptive 13.5 62.4 28

g) Global TSR vs arrival rates

We vary next the arrival rates of mobile users in the system, where λ takes values in [1, 10]. Figure
3.9 illustrates the evolution of the global TSR in both SINR regimes for each of DRAC-SA, DRAC
and the greedy approaches. As λ increases, more users penetrate the system, which leads to less
time intervals between each user arrival. As stated before, a large proportion of new arrived users
are discarded by DRAC, since it is still solving the C-RAPM problem of the previous existing
users. What is more, starting from λ = 4, the global TSR returned by DRAC is severely impacted
and results in more than 70% of UEs not served by the system. This is depicted in Figure 3.10,
which illustrates the evolution of rejected users’ rate with different arrival rates. DRAC-SA, on
the other hand, clearly outperforms DRAC thanks to its reduced complexity and possible online
optimization, which provides a very global TSR at high arrival rate (74% and 61% for low and high
SINR threshold, respectively) as well as a low rate of rejected UEs (14% and 19% for low and high
SINR threshold, respectively).

h) Number of BBUs vs arrival rates

In the following, we present the variation of the number of BBUs as a function of the network
density for each arrival rate. Figure 3.11 presents the evolution of BBUs and the number of on
RRHs in the system with the variation of the poisson arrival rate λ for SINR threshold equal to 25
dB. The plot illustrates the evolution for the DRAC-SA and Greedy methods as well as the number
of BBUs required in case of the conventional RAN. The latter represents the number of on RRHs,
which imposes the same number of BBUs due to the one-one mapping in D-RAN deployment. As
we can observe, the number of instantiated BBUs for the DRAC-SA solutions achieves important
savings in BBUs compared to the conventional scenario. On another hand, we can remark that
for the highest arrival rate, λ = 10, the number of on BBUs is at its maximum capacity for the
conventional case, whereas DRAC-SA and the greedy methods are still at 55% and 40% of the
total system’s capacity, respectively. Therefore, it is up to the operator to manage his C-RAN
deployment: wether is increasing the number of RRHs to satisfy maximum users, or turning them
off to achieve energy efficiency is the better choice.
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3.5 Conclusion

In this Chapter, we have presented a novel approach based on simulated annealing to address the
problem of dynamic resource allocation and power minimization in C-RAN for a dynamic flow
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of mobile UEs. Specifically, our newly improved DRAC-SA framework can quickly find the best
PRB allocation and transmission power strategy to cater to traffic demand, while satisfying indi-
vidual SINR constraints and maximum power limitations. Besides, our approach can dynamically
determine the optimal number of RRHs to be turned on and the number of needed BBUs to han-
dle the whole traffic load. Through our extensive event-based simulations, we have demonstrated
that our method finds several good balances regarding, firstly, throughput satisfaction rate and total
transmitted power and, secondly, resolution time and global user satisfaction. In fact, DRAC-SA
achieves 43.36% better performance in PRB distribution than a greedy approach, and only 5.71%

of difference is between the global optimum offline approach and DRAC-SA in terms of throughput
satisfaction. Besides, the number of BBUs calculated from DRAC-SA can help increase the BBUs
savings to 85.6% compared to D-RAN scenarios.

In the next Chapter, we will build on the work carried out in this first stage by integrating two
user profiles in our problem: Gold and Best Effort, and considering a capacity-limited fronthaul
network between BBUs and RRHs. We will present a joint resource allocation and admission
control scheme that can maximize the number of accepted users in the system subject to multi-user
QoS requirements, transmission power and fronthaul links capacity constraints.
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4.1 Introduction

In this Chapter, we address the problem of DL resource allocation and admission control for a
fronthaul-constrained C-RAN. Specifically, we consider the Resource Allocation and Admission
Control (RAAC) of two sets of mobile users profiles: Gold (Guaranteed-service) and Best Effort.
We define our optimization problem subject to constraints on mobile users resource demands, max-
imum transmission power and fronthaul links capacity. By dropping the non-linear logarithmic

63
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constraint induced by the data-rate constraint on the fronthaul links, we propose a two-stage frame-
work to efficiently solve the problem. We have previously attempted to solve this problem in [45]
with Best effort mobile users, however the power minimization aspect was not taken into account.
In this Chapter, we enhance the problem solutions by including the transmission power minimiza-
tion in our design, without further increasing complexity. Numerical results from event-based
simulation demonstrate the superior performance of our RAAC proposal in terms of computation
time, number of accepted users and total transmission power, when compared with state-of-the-art
methods used for the admission control task in C-RAN.

This Chapter is organized as follows: Section 4.2 presents the physical layer assumptions and
the mathematical formulation of our system model. In section 4.3, we describe our framework and
proposed algorithms to solve the optimization problem. Performance evaluation of our proposed
algorithms is discussed in section 4.4, followed by section 4.5 that concludes the Chapter.

4.2 System Model

In this section, we firstly discuss the physical layer assumptions and constraints of our considered
downlink OFDMA fronthaul-constrained C-RAN system model. Then, we formally describe the
problem under consideration and present two formulations of it.

4.2.1 Problem formulation

A C-RAN architecture similar to Figure 4.1 with UE-cell split is deployed in an area consisting of
S RRHs. Each RRH i, from the set S = {i|1 ≤ i ≤ S}, is responsible for the radio coverage of
one hexagonal-sized cell. We denote by K the number of available baseband resources, known as
PRBs, assigned by the BBU pool to all S RRHs. The cloud jointly assigns to all RRHs the same
pool of resources, which means that each RRH in the system has the same capacity in terms of
PRBs that can be delivered to its attached UEs. We suppose that each RRH i handles one cell in
a delimited area, and that a UE u can only be served by one RRH that covers the area the UE is
positioned within. We denote by U the set of UEs in the whole system and U i the set of UEs in the
coverage area of RRH i. We have |U| =

∑S
i=1 |U i|, where |U i| is the cardinality of the set U i.

All UEs are categorized into two different sets of user profiles: Gold users, denoted by the set
UG, and Best Effort user, denoted by the set UBE . Each UE u ∈ U (i.e., UG ∪ UBE) requests from
its serving RRH a number of resources nGu or nBEu , for a Gold or Best-effort user, respectively. As
a rule of thumb, Gold users must be served exactly the same number of requested PRBs, nGu , in
order to run their mobile applications. Meanwhile, Best-effort users are served the best the system
can regarding the other transmission constraints imposed on the C-RAN. We assume that each user
device, be it Gold or Best Effort, can only be connected and served by at most one RRH based on
its geographical position. Let yuk be the binary decision variable, which is equal to 1 if PRB k is
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Figure 4.1 – Considered C-RAN Architecture

allocated to UE u ∈ U , or 0 otherwise. We define another new binary variable zu, which is equal
to 1 if Gold user u is accepted, (i.e., it received all of the requested PRBs

∑K
k=1 y

u
k = nGu ), or

0 otherwise. The transmitted power regarding the resource allocation, independently of the user’s
profile, is defined as follows:

puk =

{
p ∈ [pmin, p

i
max], if yuk = 1,

0, otherwise.
(4.2.1)

where pmin is the minimum power that UE u can receive, and pimax is the maximum power allowed
to be transmitted from a RRH i. We define the received Signal-to-Interference-plus-Noise Ratio
(SINR) for UE u on PRB k as follows:

γuk =
pukg

u
k∑

u′ 6=u
pu

′
k g

u
k + σ2

(4.2.2)

where guk is the path gain coefficient of UE u and PRB k, and σ2 is the noise power.
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We formulate our optimization problem for resource allocation in C-RAN under fronthaul con-
straint as the following weighted objective function problem (Pε):

max
z,y,p

ε
∑
u∈UG

zu + (1− ε)
∑

u∈UBE

K∑
k=1

yuk
nBEu

(4.2.3)

subject to :
∑
u∈U i

K∑
k=1

puk ≤ pimax,∀i ∈ S (4.2.4)

yukpmin ≤ puk ≤ yukpimax, ∀u, i, k (4.2.5)
K∑
k=1

yuk = zun
G
u ,∀u ∈ UG (4.2.6)

K∑
k=1

yuk ≤ nBEu ,∀u ∈ UBE (4.2.7)

γuk ≥ yukΓuk ,∀u ∈ U (4.2.8)∑
u∈U i

yuk 6 1,∀i, k (4.2.9)

∑
u∈U i

K∑
k=1

B log2(1 + γuk) 6 cimax,∀i ∈ S (4.2.10)

puk ∈ R+, yuk , zu ∈ {0, 1},∀u, k (4.2.11)

where ε is a constant optimization weight that allows to combine the utility function of the two
sets of user profiles into one utility function. The utility function of the set of Gold users UG
is to maximize the number of accepted users who have their resource requests entirely fulfilled.
On the other hand, the utility function of the set of Best Effort users UBE is to maximize the
overall throughput satisfaction rate, which is the ratio of allocated resources on the whole PRB
demand. The value of the weight ε can be chosen arbitrarily to determine whether the operator
should direct its admission control strategy to increase the number of gold users on behalf of the
Best effort throughput satisfaction, or the opposite, or to possibly achieve fairness between the
two sets in terms of QoS. Regarding problem (Pε)’s constraints, constraint (4.2.4) refers to the
maximum power constraint on each RRH i; constraint (4.2.6) means that a Gold user must receive
the exact number of requested PRBs, meanwhile constraint (4.2.7) stresses the fact that the number
of allocated PRBs to a Best-effort user cannot exceed its requested number. Constraint (4.2.8)
ensures that the received SINR is at least equal to the required one Γuk for UE u when PRB k is in
use (i.e., yuk = 1). The constraint (4.2.9) is the OFDMA constraint, which imposes that one PRB
cannot be shared by multiple users served by the same RRH i. Finally, constraint (4.2.10) is the
fronthaul constraint for each RRH i, characterized by a limited capacity cimax in terms of data-rate
that can be conveyed through it. The total data-rate observed on RRH i is expressed using the
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Shanon formula:
∑

u∈U i

∑K
k=1B log2(1 + γuk), where B is the downlink channel bandwidth. On

another note, with the total accumulated traffic load observed at each RRH, we can also estimate
here the number of needed BBUs in the BBU pool to manage the whole C-RAN traffic, using the
same formula in (3.2.23).

4.2.2 MILP formulation

For simplification purpose, it will be helpful to rewrite the SINR constraint (4.2.8) as follows:

(1 +
1

Γuk
)pukg

u
k ≥ yuk (

∑
v∈U

pvkg
u
k + σ2), ∀u ∈ U (4.2.12)

Since variable p is explicitly bounded, the product between binary and continuous variables
in (4.2.12) can be linearized using the big-M modelling, as performed in the previous Chapter.
With this reworking, everything in problem (Pε) is linear, except the fronthaul constraint (4.2.10).
Besides, problem (Pε) is a MINLP, whose solution is intractable due to its combinatorial nature.
What is more, problem (Pε) is NP-hard [41]. We propose next, to drop constraint (4.2.10), which
will be taken into account later in the fronthaul admission control algorithm, and to formulate the
following MILP problem (Pε′):

max
z,y,p

ε
∑
u∈UG

zu + (1− ε)
∑

u∈UBE

K∑
k=1

yuk
nBEu

(4.2.13)

subject to : (4.2.4)− (4.2.7), (4.2.9), (4.2.11), (4.2.12) (4.2.14)

We detail in the next section, the proposed methodology to solve our MILP problem.

4.3 RAAC Proposal

In this section, we present our two-stage framework to solve problem (Pε′). We present in subsec-
tion 4.3.1 the first stage of our Resource Allocation and Admission Control (RAAC) proposal. The
latter is based on two combined algorithms to solve the MILP problem (Pε′) while minimizing the
transmission power. Afterwards, we detail in subsection 4.3.2 the second stage of our proposal,
where a fast greedy heuristic is used to solve the fronthaul admission control problem.

4.3.1 RAAC algorithm

To find solutions to the MILP problem formalized in (Pε′), we design an algorithm based on the
Branch-and-Cut (B&C) framework to solve the relaxed MILP, which includes the objective func-
tion (4.2.14) and the constraints (4.2.4)-(4.2.7), (4.2.9),(4.2.11),(4.2.12). The proposed modified
B&C method, whose pseudo-code is presented in Algorithm 6, is considered as a powerful algo-
rithm that merges the advantages of both the Gomory Cutting Planes and the Branch-and-Bound
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Algorithm 6: Modified B&C algorithm

1: Inputs: RRHs S, PRBs K, channel gain g, power Pmax, pmin, SINR threshold Γ, noise σ2,
PRB demands nBE , nBE , ε.

2: Outputs: incumbent (y∗,p∗, z∗).
3: I. Initialization:
4: Denote the initial problem P0 and the set of active problem nodes to be L = {P0}.
5: Let the initial value set of variables y∗ = ∅, p∗ = ∅ and the initial lower bound LB = −∞.

Set f∗ = −∞ the initial value of objective function.
6: II. Iteration: do
7: while Number of iterations ≤ Imax do
8: Select and delete a problem P l from L.
9: Solve P lR, relaxed version of P l, where y takes continuous values between 0 and 1.

10: if P lR is infeasible, go back to step 3. else denote the optimal solution ylR and plR with
objective function value f .

11: if f ≤ f∗ go back to step 3.
12: if ylR is integer, set f∗ ← f and y∗ ← y. Go back to step 3.
13: If desired, search for cutting planes from previous dropped constraints that are violated by

ylR; if any are found, add them to the relaxation and return to step 3.
14: Branch to partition the problem into new problems with restricted feasible regions. Add

these problem to L and go back to step 3.
15: Go to the next iteration.
16: end while

schemes into one design [88]. This leads to an algorithm that is not only more reliable, but also
much faster than the conventional Branch-and-Bound alone. As detailed, in Algorithm 6, the B&C
algorithm is based on a linear relaxation of the integer variables y into continuous ones, while
adding Cutting Planes to enhance the problem’s relaxation. This is essential to come closer to ap-
proximate integer solutions and speed up the convergence time. We also add an upper bound limit
Imax for the algorithm’s maximum number of iterations. In fact, according to [89], UEs connected
to a RRH wait in maximum 10 s to receive their requested resources before disconnecting. If no
resource transmission has been fulfilled within this time window, the BBU, and consequently the
RRH handling the user, will release the connection and disconnect from the user. Therefore, the
number of iterations Imax should be scalable based on the processing machine so as to not exceed
the 10 s waiting period [89].

If found, we call the best solution (i.e., (y∗,p∗, z∗)), returned by the B&C algorithm, the
incumbent. This solution is however not optimal with respect to the minimization of the total C-
RAN transmission power. In order to improve the solution and without adding further complexity
to the problem, we propose to attempt to solve, after each resolution of the MILP problem (Pε′),
the following Linear Program (LP) problem:
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Algorithm 7: RAAC algorithm

1: Inputs: RRHs S, PRBs K, channel gain g, power pmax, pmin, SINR threshold Γ, noise σ2,
PRB demands nBE , nBE , ε, tolerance δ.

2: Outputs: near optimal solution (y∗,p
′
, z∗).

3: Initialization:
4: Set L← 0 and construct MILP (Pε′);
5: repeat
6: solve MILP problem (Pε′) with B&C (see Alg. 6);
7: if MILP is infeasible then
8: output: ”Problem is infeasible” and quit;
9: end if

10: let (y∗,p∗, z∗) be the optimal solution to the MILP and U the associated upper bound;
11: solve the LP problem (15) using ILOG CPLEX to find the best p for given y∗;
12: if LP is feasible then
13: let p

′
be the optimal LP solution;

14: L
′

the associated lower bound;
15: end if
16: if L′ ≥ L then
17: L← L

′
;

18: save new incumbent (y∗,p
′
, z∗);

19: end if
20: until L ≥ 0 and (U − L)/L ≤ δ;

min
p

∑
u∈U

∑
k∈Ku

puk (4.3.15)

subject to :
∑
u∈U i

∑
k∈Ku

puk ≤ pimax,∀i ∈ S (4.3.16)

(1 +
1

Γuk
)pukg

u
k ≥

∑
v∈U

pvkg
u
k + σ2,∀u,∀k ∈ Ku (4.3.17)

puk ∈ R+ (4.3.18)

whereKu = {k ∈ K|yuk = 1} is the set of PRBs that have been allocated to UE u in the initial MILP
solution. Since it is a LP problem with finite number of variables, it can be solved very rapidly using
modern LP solvers such as ILOG CPLEX. Solving this LP problem, given the resource allocation
solution y∗ of the MILP, helps to ensure that the power minimization is also achieved, while re-
specting the SINR requirements of all users. Furthermore, we define in our RAAC algorithm a
tolerance parameter δ as the acceptable gap between U and L, respectively the upper and lower
bounds of the objective function of problem (Pε′). The overall RAAC algorithm for solving both
problem (Pε′) and the power minimization problem is summarized in Algorithm 7. Besides, as
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Algorithm 8: FFAC
1: Inputs: S, data-rates c, RRHs fronthaul constraint cmax
2: Outputs: number of admitted Gold and Best Effort users; fronthaul links supported data-rate

of each RRH.
3: for each RRH i ∈ S do
4: sort in an increasing order elements of cG and cBE , achieved data-rates of Gold and Best

Effort users, respectively;
5: l← 0; u← 1; v ← 1;
6: while l ≤ cimax and u < |cG|+ 1 do
7: if l + cG(u) ≤ cimax then
8: l← l + cG(u);
9: u← u+ 1;

10: if u = |cG|+ 1 or l + cG(u) > cimax then
11: while l ≤ cimax and v < |cBE |+ 1 do
12: if l + cBE(v) ≤ cimax then
13: l← l + cBE(v);
14: v ← v + 1;
15: else
16: break;
17: end if
18: end while
19: end if
20: end if
21: end while
22: end for
23: Return u− 1 number of admitted Gold and v − 1 number of admitted Best effort users.

will be detailed next section in the simulation results, it turns out to be an exact algorithm, which is
capable of solving realistic size instances of the MILP problem to proven optimality in reasonable
time for different network sizes.

4.3.2 Fast greedy heuristic for fronthaul admission control

The following phase of our proposal is to find a feasible solution to the initial problem (Pε),
including the dropped fronthaul constraint (4.2.10). Towards this end, we propose a Fast greedy
heuristic for Fronthaul Admission Control (FFAC) of each RRH, based on the achieved data-rate
of the accepted UEs. The FFAC heuristic’s pseudo-code is described in Algorithm 8. It is based
on taking the returned values of (y∗,p

′
) from Algorithm 7 to compute the achieved data-rate cu of

UE u over its allocated set of baseband resources Ku = {k ∈ K|yuk = 1} and received SINR γuk .
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The achieved data-rate can be expressed by the Shanon formula as follows:

cu =
∑
k∈Ku

B log2(1 + γuk), u ∈ U (4.3.19)

The algorithm starts by sorting separately the data-rates of Gold (cG) and Best effort users (cBE).
The algorithm works similarly to a greedy knapsack algorithm [90] where it admits, firstly, as many
Gold users as possible until it reaches the fronthaul capacity cimax of RRH i on the uth ordered user
cG(u). If the capacity is still not achieved, the algorithm moves to accept, in an increasing order
of data-rate cBE , the remaining Best Effort users linked to the same RRH. We remarked that,
with a realistic network size and a relatively loose fronthaul constraint, instance of the problem
can be solved in a fraction of a second, which is 10 times lesser than the maximum computation
period [89]. Complexity analysis will be presented with more details in the next section.

4.4 Performance evaluation

In this section, we evaluate the performance of our proposed RAAC and FFAC algorithms, and
compare the benefits of our solution with respect to the Semi-Definite Positive Relaxation based
Algorithm (SDPRA) and Fast Greedy Algorithm (FGA), which have been presented in [70] for
admission control in C-RAN. We also compare our approach with the optimal solution returned by
CPLEX, when the software is used to solve the MILP problem (Pε′).

4.4.1 Simulation environment

Table 4.1 reports the simulation parameters that have been used for our event-base simulations. We
simulate a wireless LTE C-RAN environment similar to Figure 4.1, consisting of 19 hexagonal-
sized RRHs. Each RRH has the same radius Rradius and the distance between two nearest RRHs
is 2d, where Rradius = 2d/

√
3, for all RRHs in S. We simulated two poissonian flows of mobile

users; λG and λBE the arrival rates of Gold and Best Effort users, respectively. We vary at each
simulation instance, the users stay time and service demand following an exponential and uniform
laws, respectively. Note that UEs positions are randomly generated at each simulation instance,
and remain fixed during their whole stay time in the network. We suppose that the required SINR
threshold for all UEs is the same, denoted by γth.

For each simulation instance, we run our algorithms at each user arrival until either the problem
is solved, or the gap between U and L, measured by a percentage of L is below δ, or the problem
was proved to be infeasible, or we exceeded the maximum limit of number of iterations Imax. The
results are obtained over 30 simulation instances for each scenario of SINR threshold γth andCmax,
with a confidence interval of 95%. Repeated simulations helped us to fix the maximum number of
iterations Imax to 500 for Algorithm 6, which allowed us to find close to optimal solutions while
respecting the maximum time budget.
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Table 4.1 – Simulation Parameters

Parameters Values
Number of hexagonal cells R = 19

Arrival rates of Gold UEs λG 1 arrivals per second
Arrival rates of Best Effort UEs λBE 2 arrivals per second

Departure rate (for both profiles) Exponential distribution µ = 0.1

Time window 3000 seconds
Bandwidth B = 5 MHz

Total number of PRBs K = 24

Gold UE PRB demand Uniform distribution in [1, 15]

Best Effort UE PRB demand Uniform distribution in [1, 10]

Path loss between RRH i and UE u 43.8 + 36.8log10(di,u)

Carrier frequency 2.5 GHz
Thermal noise −174 dBm/Hz

pimax 10 W , ∀i ∈ S
pmin 1 mW

Distance d 250 m
Weight constant ε 0.5

Tolerance parameter δ 0.1%

4.4.2 Performance metrics

In what follows, we present the corresponding numerical results in terms of:

• Convergence time t to solve problem (Pε′).

• Number of accepted Gold UEs NaGUE : This metric denotes the percentage of Gold users
admitted in the network during the resolution period. Recall that, All Gold users will have
their resource demand 100% satisfied.

• Throughput Satisfaction Rate of Best Effort UEs TSRBE (note that the TSRGUE of Gold
UEs is equal to 1): This metric is similar to the one seen previously in Chapter 3 and repre-
sents the ratio of allocated PRBs to Best Effort users on their requests.

• Total transmission power in the C-RAN Tpower: It represents the sum of all RRHs transmis-
sion powers.

Tpower =
∑
u∈U

∑
k∈Ku

puk (4.4.20)

• Number of BBUsNBBU in the cloud: Calculated through the formula in (3.2.23) in previous
Chapter.
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Figure 4.2 – CPU time vs. network density

Table 4.2 – Average CPU time comparison

RAAC CPLEX t2/t1
Average computation time t1 = 37.9 ms t2 = 1703.5 ms 44.9

4.4.3 Simulation results

a) Convergence time

First of all, we find it is interesting to start presenting the convergence time of the different studied
schemes as well as IBM’s ILOG CPLEX. Considering our event-based simulation, we start the
problem resolution each time a new user enters the network. Each algorithm is thus executed to
solve the problem while considering all the existing users at that time instant a new UE enters the
system. In Figure 4.2, the evolution of convergence time as a function of the network density is
depicted in a logarithmic scale for all approaches. The overall results indicate that the proposed
RAAC method (along with the FFAC, which has very small computation time) can solve the re-
source allocation and admission control problem much faster than any other scheme. In fact, for
the highest network density of 150 UEs, it can return the problem’s solutions in less than 100 ms.
Besides, our approach achieves 44.9 more CPU time savings compared to CPLEX, as presented in
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Figure 4.3 – Percentage of admitted UEs versus target QoS with fixed fronthaul capacity Cmax =
500 Mbps.

Table 4.2. Besides, IBM’s ILOG CPLEX appears to be unpractical for being used, since it takes
significantly high time to return the optimum solution (up to 1.6× 104 ms for the highest network
density), which severely impacts the rate of served users and the global TSR as will be described
later on.

b) Number of admitted Gold users

Figure 4.3 shows the evolution of the percentage of NaGUE versus the QoS target for the three
studied schemes, when the fronthaul capacity is fixed at Cmax = 500 Mbps for each RRH. For the
sake of comparison, we also add the curve for the perfect fronthaul links capacity scenario (i.e.,
Cmax =∞). As we can observe, the number of admitted Gold UEs decreases with the increase of
the target QoS level. Our proposed RAAC scheme with fixed fronthaul capacity results in increased
number of supported users; up to 44% and 36.4% more admitted UEs compared to the SDPRA
and FGA schemes, respectively. The gap of NaGUE between RAAC’s fixed and perfect fronthaul
links capacity is at maximum 23.4%. We can remark that [70]’s FGA results surprisingly in more
accepted UEs than the superior SDPRA scheme. This is due to the latter’s higher convergence
time, as highlighted in Figure 4.2, which resulted in discarded users during the problem resolution.
We vary next the fronthaul capacity Cmax (which can be equivalent to different functional splits),
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Figure 4.4 – Percentage of admitted UEs versus target QoS.

and study its impact on the percentage of accepted UEs. Figure 4.4 illustrates the percentage of
NaGUE versus γth for low (Cmax = 100 Mbps) and high (Cmax = 1 Gbps) fronthaul capacities.
We remark that the number of supported UEs increases when the fronthaul network allows more
data-rate to be conveyed from the BBU cloud to the RRHs. As a result, this enables the C-RAN to
allocate more PRBs to mobile users and fully satisfy their QoS requirement. Moreover, we notice
that RAAC outperforms both SDPRA and FGA, as it achieves relatively, when Cmax = 100 Mbps,
the same results as the Cmax = 1 Gbps SDPRA and FGA outputs. Besides, we can remark that
RAAC accepts approximately the same number of users for Cmax = 1 Gbps as the perfect capacity
scenario. This assesses the scalability of our proposal regarding increasing network traffic and
fronthaul capacity.

c) Throughput satisfaction rate of Best Effort users

Figure 4.5 shows the Cumulative Distributed Function (CDF) of the average TSRBE , which is the
ratio of the average number of allocated PRBs to the total initial demands of Best Effort UEs. In
this case, we fixed the fronthaul capacity at Cmax = 500 Mbps and considered one QoS threshold
γth = 15 dB for all Best effort users. We can observe by comparing the CDF of the three methods,
that RAAC yields more UEs satisfaction compared to SDPRA and FGA. In fact, we can observe
that more than 50% of UEs have their TSR greater than 55% with RAAC combined with FFAC.
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Figure 4.5 – Throughput Cumulative Density Function for Best Effort UEs.

This throughput is lessened to 46% and 34% with FGA and SDPRA, respectively. It is no surprise
to see again FGA outperforming SDPRA due the difference in their computation time. On another
note, we can remark that the TSR returned by RAAC alone (corresponding to perfect fronthaul
links capacity) is greater than any other scheme. In fact, there is a gap of 27% between the two
fronthaul capacity scenarios, since some users have been discarded due to the admission control
mechanism, which fosters on Gold users admission.

d) Sensibility analysis of TSR

In Figure 4.6, we study the evolution of TSRBE while variating the optimization weight ε. The
value of ε allows us to combine the utility function of the two sets of user profiles into one utility
function instead of two. As can be seen, setting ε to 1 forces the average TSRBE to zero, since
the problem has focused on only maximizing the number of accepted Gold users NaGUE , and vice-
versa. A decrease of ε will lessen the average NaGUE to the profit of TSRBE . However, as can be
observed, the latter can hardly reach 100% even for the highest fronthaul capacity (i.e., Cmax = 1

Gbps) due to power and interference limitations. A tradeoff between TSRBE and NaGUE can be
met by setting ε in the set [0.4; 0.5].
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Figure 4.6 – Average TSR vs. weight constant.

e) Total transmission power

We study next the variations of the total transmission power Tpower for all RRHs versus the QoS
target γth. As shown in Figure 4.7, our method generates less transmission power than the SDPRA
and FGA schemes for the same performance in terms of NaGUE and TSRBE . Furthermore, we
notice that the total transmission power in both SDPRA and FGA present an unscaled behavior to
the threshold regime γth, which implies that the power allocation is done irrespectively to UEs’ QoS
target. Our RAAC algorithm, on the other hand, shows that the total transmission power increases
along with the growing QoS demand γth. We can also remark that the average transmission power
is lessened for RAAC combined with FFAC, since some UEs will be removed from the system
after the fronthaul admission control procedure. We fix next the QoS target γth to 15 dB for
all users and study the total transmission power evolution versus the fronthaul capacity Cmax.
Figure 4.8 illustrates this evolution, where we observe that the total transmission power decreases
as the fronthaul network capacity increases and allows more baseband resources to be transmitted.
Besides, RAAC achieves more than 54.1% and 64% in power savings for large fronthaul capacity
(Cmax ≥ 500 Mbps) compared to SDPRA and FGA, respectively. This, once again, assesses the
stability and good performance and scalability of our approach.
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Figure 4.7 – Total transmission power versus target QoS with fixed fronthaul capacity Cmax = 500
Mbps.

f) BBUs average utilization

Figure 4.9 illustrates the number of BBUs needed per time unit as well as the needed number of
on RRHs to manage the traffic load at each UE’s arrival, when the SINR threshold is equal to 15
dB and the fronthaul links capacity to Cmax = 500 Mbps for all RRHs. We can remark that the
number of RRHs is set dynamically at each instant to serve the overall traffic load. What is more,
only a small number of BBU (lesser than one) is needed to handle it. For further investigation,
we present in Figure 4.10 the variation of number of needed BBUs for (RAAC+FFAC) and D-
RAN scenario versus the QoS target, for fixed fronthaul capacity Cmax = 500 Mbps. Provided
the fronthaul links have sufficient capacity, one BBU can handle the traffic load of different RRHs,
while meeting the existing users’ data rate requirements. We see in Figure 4.10 that, at maximum,
only 80% of a full BBU usage is needed to handle the traffic load of all RRHs. After the fronthaul
limit is reached for γth = 12 dB, the percentage of BBU usage is lessened since more users will
be rejected from the system because of their high QoS demand and/or their interference to other
UEs. NBBU stabilizes then to 58%-60% of a single BBU usage, which represents 76% savings
compared to D-RAN scenario.
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g) BBUs usage versus fronthaul capacity

We present next the evolution of NBBU when the fronthaul capacity Cmax varies for a fixed QoS
target γth = 15 dB. Figure 4.11 depicts this evolution for RAAC+FFAC, RAAC alone and the
two state-of-the-art schemes. We can remark that RAAC+FFAC realizes the minimum number of
instantiated BBUs usage in the cloud compared the other schemes. When the fronthaul capacity
limit grows, it is shown that RAAC+FFAC, SDPRA and FFAC all converge to approximately the
same value of 75% of BBU usage. On another hand, if we consider an unconstrained fronthaul
network (i.e., CPRI), the RAAC scheme alone can exhibit the optimal percentage of needed BBU
usage in the cloud, up to 1 and 25% of a second BBU, that can accept all mobile users and guarantee
their QoS.

4.5 Conclusion

This Chapter has presented a novel framework for jointly addressing the resource allocation, ad-
mission control and power minimization problems in C-RAN, considering multi-users QoS require-
ments, power and fronthaul network limitations constraints. We presented a dynamic algorithm to
solve the problem in real-time. Numerical results have confirmed the superior performances of our
proposed RAAC approach, which increases users’ admission by 44% and 36%, and saves 54% and
64% more C-RAN transmission power compared to the SDPRA and FGA schemes, respectively.
We also highlighted the benefits of our proposal regarding the number of BBUs’ reduction in the
cloud, when compared to the previous approaches and the Distributed RAN scenario.

In the next Chapter, we will investigate the BBU selection problem from different CSPs while
jointly considering several important challenges such as BBU processing power to handle time-
varying traffic loads, BBU pool resiliency, processing and cost budgets.
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5.1 Introduction

In this Chapter, we consider a C-RAN architecture where the Mobile Network Operator (MNO)
has to select BBU equipments to instantiate from different Cloud Service providers (CSPs) in order
to run its virtualized baseband pool. We assume that each CSP’s BBU is characterized by a failure
probability [47] and a capacity cost, that can be equivalent to content delivery network prices [48]
for the services required from CSPs. We propose in this context, a novel framework addressing the
problem of optimal BBUs selection from several CSPs. The instantiated BBU pool should meet
the MNO’s expectations in terms of reliability, cost efficiency, processing power optimization and

83
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traffic load catering. To the best of our knowledge, this work is the first attempt to present an
optimization design for C-RAN BBU selection based on resiliency and virtualization price.

We formulate our selection problem, named Cost-Resilience BBU Selection (CRBS), as an ILP
problem, designed with a weighted objective function focusing on three optimization goals: i) min-
imizing the BBU pool processing power, ii) maximizing its resiliency and iii) increasing the RRHs
traffic load handling, subject to the virtualization’s capacity and budget constraints. Additionally,
we consider that each RRH is characterized by its hourly traffic, depending on the type of area it
covers (e.g., business or residential area). It is worth noting that the third optimization goal fo-
cuses on maximizing the overall percentage of traffic that can be handled from the lowest traffic
load RRHs at a given hour, subject to ensuring the management of the high-load ones. In fact, we
consider that the traffic from the highest traffic load RRHs will not only generate a highest average
traffic volume, but also highest peaks. Therefore, since there are more RRHs distributed throughout
the radio site, such RRHs will be closer to the end user, and thus, will be able to cater best to the
user’s capacity demand. We assume that an overlaying macro cell will handle the remaining traffic
from lowest traffic load RRHs if the BBU pool’s capacity is reached at that specific hour.

To solve the ILP CRBS problem, we propose to employ the Branch-and-Price (B&P) algo-
rithm [49], which is a combination of the Branch-and-Bound and Column Generation methods for
efficiently solving large-scale ILP problems. Our analysis evaluates several BBU selection policies
and provides general guidelines that can be used by operators to decide the best optimization strat-
egy according to their needs: BBU processing power minimization, resiliency, traffic handling or
all. Simulation results demonstrate the good performance of the B&P algorithm to solve the BBU
selection problem for different scenarios, while also emphasizing the advantages of a particular one
that can realize more than 48% in virtualization cost savings.

The remainder of this Chapter is organized as follows: section 5.2 presents the mathematical
formulation of our system model. In section 5.3, we present our B&P algorithm design to solve the
CRBS problem. Performance evaluation of our proposal is discussed in section 5.4, followed by
section 5.5, which concludes the Chapter.

5.2 System model and problem formulation

We consider a two-tier C-RAN architecture with a cell-layout composed of a macrocell, overlaying
a number of S RRHs [68]. We denote by N the number of BBU candidates that the MNO is
inclined to instantiate in its BBU pool B = {j|1 ≤ j ≤ N} to handle the traffic load of all S
RRHs. The number N of needed BBUs can be deduced from the overall existent traffic load on all
RRHs and the downlink capacity of the operator, as has been highlighted in previous chapters. Each
CSP’s BBU candidate j is characterized by its per Mbps pricing mj and its failure probability pj .
We denote by rji the binary variable, which is equal to 1 if BBU j handles RRH i, and 0 otherwise.
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Without loss of generality, we assume that each BBU is limited by a fixed capacity C in terms of
traffic it can handle [77]. We define the average utilization bj of a BBU j as follows:

bj =
S∑
i=1

rjilj/C (5.2.1)

where li is the current traffic in RRH i. The BBU-RRH dependent traffic is realized by a func-
tional split separating user and cell related functions [21]. Besides, we consider that the baseband
processing power consumption in a single BBU is linear with its average utilization thanks to the
UE-Cell split. Thus, the processing power Pj consumed at BBU j can be expressed as:

Pj = P0 + ∆Pmaxbj (5.2.2)

In particular, P0 represents the power in the BBU when the latter is in idle mode, and Pmax when in
full usage mode. ∆ is a constant between 0 and 1, which represents the slope of the equivalent linear
power model. On the other hand, we suppose that the failure probability of the BBU pool p(B) is
equal to 1 if B = ∅, and

∏
j pj , otherwise. In order to optimize this term as one of the MNO’s

intended goals for enhancing the cloud’s resiliency, we transform the product of probabilities into
linear summation by defining the following function Ij , which is equal to the negative value of the
logarithmic function on the failure probability of BBU j, i.e. Ij = −log(pj). Consequently, we
can write:

IB = −log(p(B)) = −
∑
j

log(pj) =
∑
j

Ij (5.2.3)

Furthermore, we consider two sets of RRHs in the deployed architecture denoted as SH and SL,
which represent the sets of RRHs with high (maximum) traffic load and low (minimum) traffic load,
respectively. We formulate in the following our mathematical CRBS optimization problem (P),
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expressed as a generic weighted optimization problem with three homogenised objective terms:

minimize
r

α

N∑
j=1

xjP0 + ∆.Pmaxbj
Pmax

− β
N∑
j=1

xj
Ij

max(I)
(P) (5.2.4)

− γ
∑N

j=1

∑
i∈SL rjili∑

i∈SL li

subject to :
S∑
i=1

rjili ≤ C,∀j (5.2.5)

N∑
j=1

rji ≤ 1,∀i (5.2.6)

N∑
j=1

mj

S∑
i=1

rjili ≤M (5.2.7)

N∑
j=1

∑
i∈SH

rjili =
∑
i∈SH

li (5.2.8)

rji ∈ {0, 1},∀j, i (5.2.9)

The proposed objective function consists to minimize the total BBU pool processing power, while
maximizing the resiliency (or minimizing the failure probability) of the pool as well as the traffic
load that can be handled from the low-traffic RRHs by the instantiated BBUs. max(I) represents
the maximum value of {I1, ..., IN}. We define α, β and γ as constant weights between 0 and
1, and whose total sum is equal to 1 (i.e., α + β + γ = 1). We consider that these constants
are set in advance by the MNO in order to fix the optimization strategy depending on its most
prevailing focuses. We define a binary indicator xj , which represents the statue of BBU j, (xj = 0,
if
∑S

i=1 rji = 0, i.e., BBU j is inactive, and 1 otherwise). (5.2.5) is the total BBU resource usage
limitation constraint, and constraint (5.2.6) implies that a RRH cannot be shared by more than one
BBU. Meanwhile, constraint (5.2.7) denotes that the capacity costs of all instantiated BBUs should
be less than or equal to the MNO’s virtualization budget M . Also, constraint (5.2.8) ensures that
the traffic of high-load RRHs is 100% handled and, finally, (5.2.9) indicates that variable rji is
binary.

5.3 Proposed B&P algorithm for solving the CRBS problem

The CRBS problem formalized in (P) is ILP and, contrarily to Linear Programs (LPs), cannot
be solved directly using convex optimization techniques. Besides, problem (P) is NP-hard [77]
and can only be solved by exhaustively figuring out all NS possible combinations of the BBU-
RRH assignment variable, which is impracticable for large-scale networks. To find solutions to our
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problem, we propose to make use of the B&P framework, which combines the branch-and-bound
and column generation approaches to compute the optimal solution of ILP problems [49].

The algorithm is based on solving by column generation the linear relaxation in each node of a
branch-and-bound tree. In the B&P algorithm, a sets of columns are left out of the LP relaxation in
order to handle the problem more efficiently by decreasing the computational difficulty. Columns
are then “priced” and added back to the LP relaxation as needed. To decide which column will
be added, a sub-problem called the “pricing problem” is created to identify which columns should
enter the basis so as to increase the objective function (in case of maximization problem). If such
columns are found, the LP is then re-optimized. We detail next, the steps of designing each of the
Master and Pricing problems for our B&P algorithm.

The first step consists in reformulating the original problem by applying the well-known Dantzig-
Wolfe’s reformulation [49], that sub-divides the problem into a Master (MP) and a Pricing Prob-
lem (PP). However, before applying the problem reformulation, we found that it is convenient to
transform problem (P) by considering two binary variables v and w instead of single variable r,
which represent low and high-traffic load RRHs assignment variables to BBUs, respectively. The
new CRBS problem (P ′) can be expressed as follows:

maximize
v,w

N∑
j=1

Φjxj + Ψ

N∑
j=1

∑
i∈SH

wjil
H
i (P ′)

+ Ω
N∑
j=1

∑
i∈SL

vjil
L
i

subject to :
∑
i∈SH

wjil
H
i +

∑
i∈SL

vjil
L
i ≤ C,∀j (5.3.10)

N∑
j=1

vji ≤ 1,∀i ∈ SL (5.3.11)

N∑
j=1

wji ≤ 1,∀i ∈ SH (5.3.12)

N∑
j=1

mj(
∑
i∈SH

wjil
H
i +

∑
i∈SL

vjil
L
i ) ≤M (5.3.13)

N∑
j=1

∑
i∈SH

wjil
H
i =

∑
i∈SH

lHj (5.3.14)

vji, wji ∈ {0, 1},∀j, i (5.3.15)

where: Φj = βIj/max(I) − αP0/Pmax; Ψ = −α∆/C; Ω = γ/
∑

i∈SL l
L
i − α∆/C. We

denote by lLi and lHi the traffic in low and high-traffic load RRH i, respectively. Also, xj = 0, if
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∑
i∈SH wji +

∑
i∈SL vji = 0, and 1 otherwise. We apply next Dantzig-Wolfe’s reformulation. Let

KLj = {vj1, v
j
2, ..., v

j
kj
} and KHj = {wj1, w

j
2, ..., w

i
kj
} be the sets of possible feasible assignments of

low and high-traffic load RRHs to BBU j, respectively. In this case, vjk = {vj1k, v
j
2k, ..., v

j
Sk} and

wjk = {wj1k, w
j
2k, ..., w

j
Sk} constitute a feasible solution to problem (P ′). Let tjk = (ṫjk, ẗ

j
k) be a

new variable, which is equal to (1, 1) if feasible solution (vjk, w
j
k) is selected, and (0, 0) otherwise.

We express in the following the Master Problem:

maximize
t

N∑
j=1

kj∑
k=1

(Φjxj + Ψ
∑
i∈SH

(wjikl
H
j )ẗjk (MP)

+ Ω
∑
i∈SL

(vjikl
L
i )ṫjk)

subject to :
N∑
j=1

kj∑
k=1

vjik ṫ
j
k ≤ 1,∀i ∈ SL (5.3.16)

N∑
j=1

kj∑
k=1

wjik ẗ
j
k ≤ 1, ∀i ∈ SH (5.3.17)

kj∑
k=1

ṫjk ≤ 1,

kj∑
k=1

ẗjk ≤ 1,∀j (5.3.18)

N∑
j=1

mj

kj∑
k=1

(
∑
i∈SH

wjik ẗ
j
kl
H
i +

∑
i∈SL

vjik ṫ
j
kl
L
i ) ≤M (5.3.19)

N∑
j=1

kj∑
k=1

∑
i∈SH

wjik ẗ
j
kl
H
i =

∑
i∈SH

lHi (5.3.20)

ṫjk, ẗ
j
k ∈ {0, 1}, ∀j, k (5.3.21)

In the Master Problem (MP), tjk represents a feasible assignment of RRHs to BBU j. Note that
(MP) cannot be solved directly due to its exponential number of columns, this is why we consider
only a subset of columns that constitutes the Restricted Master Problem (RMP), where the values
of the variables that do not appear are padded to zero. The observation is, for large-scale ILPs, most
columns will have their associated variables equal to zero in any optimal solution anyway. Let t? be
the corresponding dual solution of the RMP. The next step consists in adding a number of columns
with positive reduced cost that are found by solving the two following sub-problems:

maximize
1≤j≤N

{uj − t?j} (5.3.22)
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where uj = (u̇j , üj) is the optimal solution of the following Pricing Problem (PP):

maximize
vj ,wj

Φjxj + Ψ
∑
i∈SH

(lHi − w?i )w
j
i (PP)

+ Ω
∑
i∈SL

(lLi − v?i )v
j
i

subject to :
∑
i∈SH

wji l
H
i +

∑
i∈SL

vji l
L
i ≤ C (5.3.23)

vji, wji ∈ {0, 1},∀i (5.3.24)

where v?i and w?i correspond to the optimal dual price from the solution of the RMP associated with
the partitioning constraints of low and high-traffic load RRH i, respectively. In the Pricing Problem
(PP), we generate the best feasible low and high-traffic load RRH assignments from all the feasible
ones for each BBU j. After that, we look for the best BBU-RRH assignments over all BBUs, which
is precisely done by problem (5.3.22). Figure 5.1 summarizes the B&P algorithm’s flow-chart. It is
worth noting that branching in the B&P occurs when no columns have been “priced out” to enter
the basis and the LP solution does not satisfy constraints. Furthermore, it is not required to solve
(PP) to optimality; in fact, any column with a positive reduced cost can be accepted. Hence, if the
value of the objective function to the column generation sub-problem is less or equal to zero, then
the current optimal solution for the RMP is also optimal for (MP).

5.4 Performance Evaluation

In this section, we evaluate the benefits of the B&P algorithm to solve the CRBS problem, while
comparing the results for different scenarios of the optimization weights (α, β, γ). We have tested
different combinations and outline, in the following, the most representative of the other weights
values:

• (α, β, γ) = (1, 0, 0): Total Power Minimization Scheme (TPMiS), where the MNO intends
to exclusively minimize the BBU processing power;

• (α, β, γ) = (0, 1, 0): Resilience Maximization Scheme (RMaS), where the MNO intends to
exclusively maximize the system resiliency;

• (α, β, γ) = (0, 0, 1): Low Traffic Maximization Scheme (LTMaS), where the MNO intends
to exclusively maximize the number of handled low-traffic RRHs;

• (α, β, γ) = (1/3, 1/3, 1/3): Equal-Weighted Optimization Scheme (EWOS), a tradeoff op-
tion where all weights are a priori equal;
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Figure 5.1 – B&P algorithm Flow Chart

• (α, β, γ) = (0.4, 0.2, 0.4): 424-Scheme, which was chosen in consideration that reliability
may be twice less important for a MNO than to serve the whole traffic and minimize the total
C-RAN BBU power (numerical results will latter exhibit the benefits of this latter’s weights
choice).

5.4.1 Simulation environment

In all our simulation scenarios, we consider four CSPs, with their corresponding failure probabili-
ties, I-function values and price per Mbps that are detailed in Table 5.1 (data of existent commercial
content delivery network that can be closely equivalent to CSPs can be found in [48]). The rest of
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Table 5.1 – CSP inputs from [47] [48]

CSP-i Failure probab. pi Ij pricing mj

CSP-1 0.01 2 0.8$/Mbps

CSP-2 0.05 1.30103 0.9$/Mbps

CSP-3 0.1 1 1$/Mbps

CSP-4 0.01 2 1.1$/Mbps
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Figure 5.2 – Daily traffic load observed on business and residential area RRHs during a workday [5]

the default simulation parameters are described in Table 5.2. We consider a total of S = 19 RRHs,
with 15 business and 4 residential RRHs, differentiated by an hourly traffic load given by [5] and il-
lustrated in Figure 5.2. The observation is the number of RRHs that can be within the low traffic set
SL or the highest one SH varies depending on the hour. We use the solver IBM ILOG CPLEX [42]
to solve both the LP relaxation of the RMP and the Pricing Problem.
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Table 5.2 – Simulation parameters

Parameters Values
Number of RRHs S 19

Number of business RRHs 15
Number of residential RRHs ∈ [1; 19] (default 4)

P0(W )/∆/Pmax(W ) 1.25 / 1 / 3.75
Number of BBUs N 8 (2 from each CSP)

BBU capacity C(Mbps) [21] 200
Bandwidth 10 MHz

Physical Resource Blocks 50
Virtualization budget M [48] 230$/hour (2M$/year)

5.4.2 Performance metrics

In what follows, we present the evaluation of our approach through the means of the following
performance metrics:

• Time complexity, which represents the global computation time to solve the ILP problem.

• BBU pool processing power: Denotes the sum of all processing powers of each active BBU
in B (i.e.,

∑
j xjPj).

• Resiliency: It is measured by the failure probability
∏
j xjpj of the active BBUs in B.

• Number of handled RRHs by each BBU j, calculated by
∑S

i=1 rji.

• Virtualization cost: it represents the hourly OPEX to instantiate the BBU pool with the BBUs
to handle the traffic load. It is computed by

∑N
j=1 xjmj

∑S
i=1 rjili.

• The handled C-RAN traffic load: We emphasize on the evolution of handled traffic load’s
percentage while varying the number of residential RRHs in the network.

For the sake of comparison to a static benchmark, we compare the results to a Static Selection
Scheme (SSS) where the MNO targets to satisfy the maximum achieved network load at all hours,
so as to ensure maximum users quality of service, while contracting with only one CSP (CSP-4)
and with no budget constraint.
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Table 5.3 – Time complexity analysis

B&P Exhaustive Search
# (BBU,RRH) # nodes CPU # nodes CPU

(8,19) 7 5.9 14 59.3
(10,35) 7 6.4 72 174.1
(12,50) 8 7.6 145 849.3
(15,75) 8 8.2 509 2668.9
(18,100) 7 10.6 836 7055.9
(35,200) 15 62.9 NA NA

5.4.3 Simulation results

a) Time complexity analysis

Before comparing the performances of the different weights scenarios, we find it interesting to start
studying the time complexity of our developed B&P algorithm to solve the CRBS problem, with
respect to the exhaustive search method. The optimal solution in the latter is obtained by searching
all possible NS BBU-RRH assignment combinations. Table 5.3 shows the time complexity of
the B&P and exhaustive search methods for different network sizes of BBUs and RRHs. We can
remark that the average overall computation time of the B&P algorithm is less than 6 ms for the
default network size, and less than 10 ms for a 100-RRHs based network. On another note, we can
clearly see that the computation complexity of the exhaustive method is very big as the network size
increases. Besides, it finds limitations for a large network consisting of 200 RRHs and 35 BBUs,
whereas the B&P returned the optimal solution in less than 63 ms. Therefore, we can assess the
scalability of our approach to efficiently solve large-scale versions of the CRBS problem. In what
follows, we consider the default system parameters of Table 5.2 and the study the evaluation of all
five weights scenarios.

b) BBU pool processing power

We compare in Figure 5.3 the hourly BBU pool processing power returned from the six approaches.
We can remark an adaptive behaviour to the fluctuating traffic load for all weights scenarios schemes,
with TPMiS having the minimum power consumption. In fact, the latter instantiates the least num-
ber of BBUs compared to the others, which lessens the total BBU pool processing power. LTMaS
comes second in power minimization, since it has to handle more traffic coming from low traffic
load RRHs. Besides, we can remark that 424-S consumes less processing power than LTMaS at
certain peak traffic hours, such as at h = 12 : 00, h = 14 : 00 and h = 15 : 00. On the other hand,
RMaS has the second highest power consumption, since it tends to maximize the number of in-
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Figure 5.3 – BBU pool processing power vs time

Table 5.4 – Average BBU pool failure probability and number of BBUs

Scheme TPMiS RMaS LTMaS EWOS 424-S
p(B) ≤ 10−2 ≤ 5.10−6 ≤ 10−2 ≤ 5.10−6 ≤ 10−4

Min. 1 3 1 3 2
Max. 2 8 5 7 4

voked BBUs to increase the resiliency. Furthermore, we measured that EWOS and 424-S consume
at maximum 30% and 37.5% less processing power than SSS, respectively.

c) Resiliency

Table 5.4 presents the different values of the BBU pool’s highest failure probability p(B) during the
day, as well as the minimum and maximum number of instantiated BBUs. Since p(B) is the product
of all invoked BBUs failure probabilities, the more BBUs are instantiated, the smaller is the failure
probability and the more resilient is the BBU pool. This can be seen in both the RMaS and EWOS
schemes as they achieve the maximum resiliency throughout the day by invoking at least more than
three BBUs from CSP-2 and CSP-1 and/or CSP-3. On the other hand, TPMiS and LTMaS usually
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Figure 5.4 – Number of active RRHs vs time

start with few number of BBUs, then instantiate as many as possible to accommodate to peak traffic
at high-traffic load hours, and the extra coming from low traffic load RRHs for LTMaS. Regarding
424-S, it invokes fewer number of BBUs than EWOS but, as will be seen next, can handle more
RRH traffic.

d) Number of handled RRHs

The evolution of the number of active RRHs is depicted in Figure 5.4, where it is shown that
EWOS, 424-S and LTMaS maximize the total number of handled RRHs. As for TPMiS and RMaS,
they cater exclusively to the load of high-traffic cells, since they tend to minimize and maximize,
respectively, the number of BBUs (γ = 0). However, we remark that at peak traffic hours such as at
h = 12 : 00, h = 16 : 00, h = 17 : 00, and h = 19 : 00, not all RRHs could be handled by EWOS,
424-S and LTMaS, unlike SSS, due to restricted BBU capacity and budget (as will be detailled in
the next figure). Meaning that, all (or a major part) of the traffic from residential areas during office
hours will be handled by the macro base station. We can also note how 424-S performs better than
EWOS at h = 16 : 00 and h = 19 : 00 as it handles more RRHs traffic.
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Figure 5.5 – Virtualization cost vs time

Table 5.5 – MNO annual OPEX and cost savings

Scheme TPMiS RMaS LTMaS EWOS 424-S
Total cost (K$) 907 943 1,048 991 1,042
Annual savings 54.65% 52.85% 47.6% 50.45% 47.9%

Savings to SSS 80.85% 80.09% 77.87% 79.08% 78%

e) Virtualization cost

The study of the virtualization cost is presented in Figure 5.5. We can remark that at peak traffic
hours, the MNO’s budget limitation B of 230$ per hour is reached for most schemes, with TPMiS
realizing minimum cost from h = 20 : 00 to h = 09 : 00. This can be explained as TPMiS
serves less cells during those times compared to schemes like LTMaS and 424-S. The latter on
the other hand achieves the lowest virtualization cost at peak traffic hours from h = 10 : 00 to
h = 13 : 00 and from h = 17 : 00 to h = 19 : 00. In Table V, we detail the annual expenditure
and cost savings to both the annual budget and SSS for all five schemes. We can remark that all
methods achieve great reductions compared to SSS, from 77% up to almost 81% of cost savings.
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Figure 5.6 – Average percentage of handled low traffic RRH vs number of residential cells

LTMaS on the other hand, realizes the least cost reduction with 47.6% of savings of the total annual
budget, since it handles more cells and thus uses more budget to cater to their traffic. Consequently,
to allow more traffic handling, the MNO should either boost its budget limit to reach the SSS
benchmark; or extend its contractual budget with more CSPs; or increase the BBU capacity C,
with the repercussion of decreasing its total cost savings. A special mention goes to the 424-S
approach, which achieves almost 48% of annual savings and 78% to the static approach.

f) Percentage of handled low traffic load

In Figure 5.6, we study the evolution of the average percentage of handled low-traffic RRHs, while
varying the number of residential RRHs in the network. The average is taken from the 24 values of
the day. With the increase of the number of residential RRHs, the load of the business ones become
less important in the network and then switches to become the set SL. This allows the BBU pool to
handle 100% of all the RRHs load by EWOS, LTMaS and 424-S. Besides, since RMaS tends only
to maximize the number of BBUs while satisfying constraint (C4), it consequently increases the
capacity of the BBU pool to handle extra traffic from the residential cells, but still not achieving
100%. We can note the absence of TPMiS since γ = 0. On the other hand, it is shown in Figure 5.7
that the number of instantiated BBUs generally increases with the increase of residential cells. For
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Figure 5.7 – Average number of instantiated BBUs vs number of residential cells

TPMiS and LTMaS however, the number of BBUs decreases at a certain point due the residential
cells outnumbering the business ones, which causes less total generated traffic, less processing
power and, consequently, less BBUs. We can also remark how 424-S invokes 50% less BBUs than
EWOS for handling the same amount of traffic.

g) Most used CSPs

In Figure 5.8, we present the percentage share of the four commercial CSPs from Table I that
have been used for each scheme. As we can observe, RMaS and EWOS have the same share of
CSPs, with an equal distribution between CSP-1, 2 and 4 of 29%. BBUs from CSP-3 however, are
the least solicited ones for these two schemes; this can be explained due to having a higher failure
probability (p3 = 0.1) than the other suppliers. Meanwhile, we can remark that TPMiS and LTMaS
both solicit CSP-4 as a main provider with a share of 71% and 49%, respectively. Although they
are the ones that instantiate the minimum number of BBUs, TPMiS and LTMaS mainly contract
with CSP-4, which is the most expensive supplier, to reach the budget constraint B. On the other
hand, 424-S contracts with only two CSPs (1 and 4) with an equal share of 50%. Surprisingly,
despite having lesser resiliency weight (β = 0.2), 424-S uses the CSPs that provide the lowest
failure probability (p1 = p4 = 0.01). These results can give an insight to MNOs in order to help
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Figure 5.8 – Most used CSPs for each scheme

them better direct their CSPs budget and find the ones that suit them the most.

Final remarks

From our analysis of all the performance metrics, we can deduce that forgoing a part of resiliency
weight for selecting BBUs in favor of the processing power and traffic handling can yield the best
results. This was assessed in the 424-S case which outperformed the tradeoff scheme EWOS in
practically all aspects. In fact, 424-S proved to be a good strategy choice for MNOs to satisfy 100%

of traffic with the minimum number of BBUs, provided they can tolerate its failure probability of
10−4 (which is faultless) and meet the total expenditure of the scheme. Besides, we have seen that
424-S realizes 48% savings of the annual budget M , and 78% when compared to a static approach.

5.5 Conclusion

In this Chapter, we have evaluated several BBU selection policies and provided general guidelines
for MNOs to decide the best optimization strategy according to their needs: BBU processing power
minimization, resiliency, traffic handling or all. More precisely, the presented EWOS and 424-S
approaches have shown their ability to adapt to most traffic load scenarios and answer MNOs’
major constraints. Especially, the 424-S may be the best option if a MNO targets to instantiate 50%

less BBUs, and realize 37.5% of BBU power savings and 48% of OPEX economy.
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In this Chapter, we conclude the thesis and present some perspectives of the future work to be
carried out. In section 6.1, we summarize our proposals outlined in this thesis. Then, in section 6.2,
we discuss the future research directions that we are planning to consider as extension to our works,
from short and long term views. Finally, section 6.3 gives an overview of the list of publications
that have been achieved during this thesis.

6.1 Summary of contributions

In this thesis, we have addressed the problematic of real-time resource allocation and power mini-
mization in DL communications for C-RAN. Our research has mainly focused on how to dynami-
cally allocate baseband resources to time-varying flows of mobile users, while properly assigning
UEs to RRHs and RRHs to BBUs in order to accommodate the traffic demands. We have stud-
ied the cases where the fronthaul capacity is both constrained and unconstrained, and when the
MNO’s BBU pool processing budget is limited to handle all traffic loads. The exposed optimization
problems are non-linear and NP-hard, encompassing many constraints on mobile users’ resources
demands, QoS requirements, interference management, BBU pool capacity, transmission power

101



102 6.1. SUMMARY OF CONTRIBUTIONS

limitations, fronthaul links capacity and resiliency. To cope with the problem intractability, we
have presented three algorithms for real-time resource allocation in C-RAN, while making use of
different theoretical approaches. Hereafter, we will summarize our main contributions.

The first contribution provided a detailed overview of C-RAN resource allocation strategies
in literature. First, we described the C-RAN transmission power minimization schemes. Next,
we outlined the resource allocation and admission control approaches for fronthaul-constrained C-
RANs. Then, we presented the different existing solutions for BBU-RRH mappings. Afterwards,
we summarized all the discussed related C-RAN strategies, while exposing different metrics for
evaluating the performance of the proposed solutions: i) algorithm application, ii) achieved UEs
data rates and iii) computational complexity.

In the second contribution, we have jointly studied the problems of resource allocation and
power minimization in C-RAN subject to transmission power and SINR constraints, as well as the
underlying BBU-RRH assignment problem. Our two-stage framework can determine at each UE’s
arrival the best: i) PRBs allocation to efficiently satisfy UEs resource requests, ii) the number of
RRHs to turned on and iii) the number of needed BBUs to handle the whole traffic load. Through
extensive event-based simulations, we outlined the performance gains achieved by our DRAC-SA
method in terms of transmit power minimization, TSR for mobile users and BBU savings compared
to state-of-the-art schemes. We hence believe that our approach represents a promising solution for
centralized resource allocation in future C-RAN deployments.

In the third contribution, our focus was on addressing jointly the resource allocation and admis-
sion control tasks in a fronhaul-constrained C-RAN, considering mobile users QoS requirements,
interference and fronthaul network limitation constraints. We presented a three-level algorithm
design to solve the resource allocation problem and the admission control task. Numerical re-
sults have confirmed the performance of our proposed RAAC approach, which increases users’
admission and saves more C-RAN transmission power compared to related strategies. We also
highlighted the benefits of our proposal regarding the number of BBUs’ reduction in the cloud.
We believe that our proposal can be readily used by operators for network dimensioning and for
leveraging the C-RAN’s benefits for dynamic multi-user resource allocation.

In the final contribution, we have provided a novel C-RAN BBU selection framework with dif-
ferent optimization schemes to help operators choose, from a variety of CSPs, the best BBUs to
instantiate in their virtual pool. We have presented a powerful algorithm based on the Branch-and-
Price scheme to optimally solve the problem in minimum time for different network sizes. The
different introduced schemes in part of this framework have shown adaptiveness and flexibility to
MNOs strategies, based on their prevailing requirements in terms of processing power minimiza-
tion, resiliency, virtualization budget and adjustment to cells traffic profiles. More precisely, the
presented EWOS and 424-S approaches have shown their ability to adapt to most traffic load sce-
narios and answer MNOs’ major strategies and constraints. Especially, the 424-S may be the best
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option if a MNO targets to instantiate 50% less BBUs, and realize 37.5% of BBU power savings
and 48% of virtualization expenditure economy.

6.2 Future work

Hereafter, we expose the future work related to our thesis. In fact, we categorize the work perspec-
tives into three groups: i) short-term, ii) medium-term and iii) long-term views.

6.2.1 Short-term perspectives

As a short-term planned work, we aim to consolidate our proposals by considering the problem
of BBUs placement in centralized virtual pools, subject to MNOs functional splittings. In fact, as
different functional splits can yield to different BBU-RRH distances, latencies and fronthaul links
rates [21], they impose on the downside a cost/availability versus performance tradeoff, because
the split limits the ability of the RAN to manage interference. MNOs with specific RAN splittings
must then decide the best placement strategies of BBUs in their geographical-fixed BBU hotels,
that can meet the fronthaul and latency requirements of their RAN splittings while handling RRHs
traffic loads. A work in this direction would be to find the minimum number of BBUs to instantiate
in each BBU hotel so as to maximize the RRHs traffic loads catering, for both central and edge
traffic, subject to cell site fronthaul distance and latency constraints.

6.2.2 Medium-term perspectives

In this thesis, all performance evaluations have been performed through simulations. However, de-
spite the quality of obtained results depicting the efficiency of our algorithms, testbed experiments
are required to validate these algorithms and to evaluate their performance in real LTE environment.
C-RAN can benefit from Software-Defined Radio (SDR) implementations [37], that deport most
signal processing functions on software packages for emulating PHY/MAC functions without the
need of using dedicated hardware [91] [92]. Currently, we have started building a SDR testbed [93]
based on OpenAirInterface package softwares [39] and Ettus Research’s Universal Software Radio
Platform (USRP) devices [94]. The goal is to emulate a real-time LTE resource scheduler by lever-
aging the openness brought by SDR platforms using General Purpose Platforms (GPP) PC. The
drawback however of using GPP is the latency requirement that can lead to occasional loss of base-
band processing packets. Hence, as future medium-term works, we envisage to build a SDR-based
C-RAN that can implement and validate our propositions with proper timing requirements, while
also working on other algorithms for emulating LTE UL resource allocation, centralized handover
management and BBUs collaborative radio processing.



104 6.3. PUBLICATIONS

6.2.3 Long-term perspectives

One vision of 5G is to create a cell-less environnement, where a user is not only connected to a sin-
gle cell, but to a cloud of cells. In this regard, C-RAN is sure to be a cornerstone of 5G deployments
to address its performance needs and optimize deployment costs. However, the centralized model
may not be the best solution due to the current fronthaul design not meeting the delay requirement
in retransmission, thereby lowering application data throughput. Meanwhile, the decentralized ap-
proach, using site-by-site computing, may have some merit in 5G to enable reality-time, IoT and
Smart Vehicles [95] applications that will come with ultra-high capacity and incredibly low latency
requirements. Therefore, as long-term perspective work, we aim to study the balance between
the centralized and distributed architectures in 5G, with respect to resource allocation. In fact,
our proposed resource allocation algorithms do not cover uplink scenarios, whose traffics may be
exceeding the downlink ones in 5G. A more generalized uplink-downlink algorithm for resource
allocation, with multiple BBU pools, and possibly other services present in the network, will be an
exciting future research topic for 5G C-RAN.

Moreover, as we have studied BBU virtualization and baseband resource allocation, methods
for allocating other resource elements, like fronthaul or cell site equipments, will be of great impor-
tance in 5G too. What is striking, the topic of network sharing is connected with hybrid fronthaul
and backhaul optimization. Future mobile networks will most likely consist of standalone 5G de-
ployments as well as LTE/LTE-A C-RANs. Joint capacity and control plane optimization for both
fronthaul networks will enable more efficient usage of resources, thereby lowering network deploy-
ment and operation costs.

6.3 Publications

This section summarizes the publications that have resulted from the work undertaken in this thesis.

• Journals

– M. Y. Lyazidi, L. Giupponi, J. Mangues, N. Aitsaadi and R. Langar, “An Optimization
Scheme for Cost-Resilience BBU Selection in Cloud-Radio Access Network”, submit-
ted in IEEE Transactions on Wireless Communications 2017.

– M. Y. Lyazidi, N. Aitsaadi, R. Langar, P. Rubin, and R. Boutaba, “Dynamic Resource
Allocation and Admission Control in Downlink Cloud Radio Access Network with
Fixed Fronthaul Capacity”, submitted in IEEE Transactions on Mobile Computing
2017.

– M. Y. Lyazidi, N. Aitsaadi, and R. Langar, “A Dynamic Resource Allocation Frame-
work in LTE Downlink for Cloud-Radio Access Network”, submitted in IEEE Trans-
actions on Vehicular Technology 2017.
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• Conferences

– M. Y. Lyazidi, L. Giupponi, J. Mangues, N. Aitsaadi and R. Langar, “A Novel Opti-
mization Framework for C-RAN BBU Selection based on Resiliency and Price”, IEEE
Vehicular Technology Conference (VTC-Fall’17), Toronto, Canada, September 2017.

– M. Y. Lyazidi, N. Aitsaadi, and R. Langar, “Resource Allocation and Admission Con-
trol in OFDMA-based Cloud-RAN”, IEEE Global Communication Conference (GLOBE-
COM’16), Washington D.C., U.S., December 2016.

– M. Y. Lyazidi, N. Aitsaadi, and R. Langar, “Dynamic Resource Allocation in Cloud-
RAN with Real-Time BBU/RRH Assignment”, IEEE International Conference on Com-
munications (ICC’16), Kuala Lumpur, May 2016.
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