
HAL Id: tel-01898536
https://theses.hal.science/tel-01898536

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding constancy in linear routines
Steven de Oliveira

To cite this version:
Steven de Oliveira. Finding constancy in linear routines. Logic in Computer Science [cs.LO]. Université
Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS207�. �tel-01898536�

https://theses.hal.science/tel-01898536
https://hal.archives-ouvertes.fr

préparée à l'Université Paris-Sud 11

i

Synthèse
La criticité des programmes dépasse constamment de nouvelles frontières car
ils sont de plus en plus utilisés dans la prise de décision (voitures autonomes,
robots chirurgiens, etc.). Le besoin de développer des programmes sûrs et de
vérif er les programmes existants émerge donc naturellement.

Pour prouver formellement la correction d’un programme, il faut faire
face aux déf s de la mise à l’échelle et de la décidabilité. Programmes com-
posés de millions de lignes de code, complexité de l’algorithme, concur-
rence, et même de simples expressions polynomiales font partis des prob-
lèmes que la vérif cation formelle doit savoir gérer. Pour y arriver, les méth-
odes formelles travaillent sur des abstractions des programmes étudiés af n
d’analyser des approximations de leur comportement. L’analyse des boucles
est un axe entier de la vérif cation formelle car elles sont encore aujourd’hui
peu comprises. Certaines d’entre elles peuvent facilement être traitées, pour-
tant il existe des exemples apparemment très simples mais dont le comporte-
ment n’a encore aujourd’hui pas été résolu (par exemple, on ne sait toujours
pas pourquoi la suite de Syracuse, simple boucle linéaire, converge toujours
vers 1). L’approche la plus commune pour gérer les boucles est l’utilisation
d’invariants de boucle, c’est à dire de relations sur les variables manipulées
par une boucle qui sont vraies à chaque fois que la boucle recommence. En
général, les invariants utilisent les mêmes expressions que celles utilisées
dans la boucle : si elle manipule explicitement la mémoire par exemple, on
s’attend à utiliser des invariants portant sur la mémoire. Cependant, il existe
des boucles contenant uniquement des affectations linéaires qui n’admettent
pas d’invariants linéaires, mais polynomiaux.

Cette thèse présente de nouvelles propriétés sur les boucles linéaires et
polynomiales. Il est déjà connu que les boucles linéaires sont polynomi-
alement expressives, au sens ou si plusieurs variables évoluent linéairement
dans une boucle, alors n’importe quelmonôme de ces variables évolue linéaire-
ment. La première contribution de cette thèse est la caractérisation d’une
sous classe de boucles polynomiales exactement aussi expressives que des
boucles linéaires, au sens où il existe une boucle linéaire avec le même com-
portement. Ensuite, deux nouvelles méthodes de génération d’invariants
sont présentées. La première méthode est basée sur l’interprétation abstraite
et s’intéresse aux f ltres linéaires convergents. Ces f ltres jouent un rôle im-
portant dans de nombreux systèmes embarqués (dans l’avionique par ex-
emple) et requièrent l’utilisation de f ottants, un type de valeurs qui peut
mener à des erreurs d’imprécision s’ils sont mal utilisés. Aussi, la présence
d’affectations aléatoires dans ces f ltres rend leur analyse encore plus com-
plexe. La seconde méthode traite d’une approche différente basée sur la
génération d’invariants pour n’importe quel type de boucles linéaires. Elle
part d’un nouveau théorème présenté dans cette thèse qui caractérise les
invariants comme étant les vecteurs propres de la transformation linéaire
traitée. Cette méthode est généralisée pour prendre en compte les conditions,
les boucles imbriquées et le non déterminisme dans les affectations.

La génération d’invariants n’est pas un but en soi, mais un moyen. Cette

i

i

l

i

ii

thèse s’intéresse au genre de problèmes que peut résoudre les invariants
générés par la seconde méthode. Le premier problème traité est problème de
l’orbite (Kannan-Lipton Orbit problem), dont il est possible de générer des
certif cats de non accessibilité en utilisant les vecteurs propres de la trans-
formation considerée. En outre, les vecteurs propres sont mis à l’épreuve en
pratique par leur utilisation dans le model-checker CaFE basé sur la verif ca-
tion de propriétés temporelles sur des programmes C.
Les résultats expérimentaux des outils en comparaison de l'état de l'art
existant démontrent une efficacité notable. En outre, leur développement dans
le langage de programmation OCaml garantit leur fiabilité et leur mise en
open-source contribue à l'écosystème des programmes libres.

iii

Abstract

The criticality of programs constantly reaches new boundaries as they are re-
lied on to take life-or-death decisions in place of the user (autonomous cars,
robot surgeon, etc.). This raised the need to develop safe programs and to
verify the already existing ones. Anyone willing to formally prove the sound-
ness of a program faces the two challenges of scalability and undecidability.
Million of lines of code, complexity of the algorithm, concurrency, and even
simple polynomial expressions are part of the issues formal verification have
to deal with. In order to succeed, formal methods rely on state abstraction to
analyze approximations of the behavior of the analyzed program. The anal-
ysis of loops is a full axis of formal verification, as this construction is still
today not well managed. Though some of them can be easily handled when
they perform simple operations, there still exist some seemingly basic loops
whose behavior has not been solved yet (the Syracuse sequence for example
is suspected to be undecidable [Con13]). The most common approach for the
treatment of loops is the use of loop invariants, i.e. relations on variables
that are true at the beginning of the loop and after every step. Intuitively,
invariants are expected to use the same set of expressions used in the loop:
if a loop manipulates the memory on a structure for example, invariants will
naturally use expressions involving memory operations. However, there ex-
ist loops containing only linear instructions that admit only polynomial in-

variants (for example, the sum on integers
n∑
i=0

i can be computed by a linear

loop and is a degree 2 polynomial in n), hence using expressions that are syn-
tactically absent of the loop. The intuition stated above is thus a bit naive and
we should seek for more relations between invariants and loop instructions.
This thesis presents new insights on loops containing linear and polynomial
instructions. It is already known that linear loops are polynomially expres-
sive, in the sense that if a variable evolves linearly, then any monomial of this
variable evolves linearly. The first contribution of this thesis is the extraction
of a class of polynomial loops that is exactly as expressive as linear loops, in
the sense that there exists a linear loop with the exact same behavior. Then,
two new methods for generating invariants are presented.

• The first method is based on abstract interpretation [CH78] and is fo-
cused on a specific kind of linear loops called linear filters. Linear filters
play a role in many embedded systems (plane sensors for example) and
require the use of floating point operations, that may be imprecise and
lead to errors if they are badly handled. Also, the presence of non de-
terministic assignments makes their analysis even more complex.

• The second method [OBP16] treats of a more generic subject by find-
ing a complete set of linear invariants of linear loops that is easily com-
putable. This technique is based on the linear algebra concept of eigenspace.
It is extended to deal with conditions, nested loops and non determin-
ism in assignments [OBP17].

iv

Generating invariants is an interesting topic, but it is not an end in itself,
it must serve a purpose. This thesis investigates the expressivity of invari-
ants generated by the second method by generating counter examples for
the Kannan-Lipton Orbit problem [KL80]. It also presents the tool PILAT im-
plementing this technique and compares its efficiency technique with other
state-of-the-art invariant synthesizers. The effective usefulness of the invari-
ants generated by PILAT is demonstrated by using the tool in concert with
CaFE [OPB], a model-checker for C programs based on temporal logics.

v

Remerciements

Durant ces quatre ans passés au CEA, j’ai fait beaucoup de rencontres. J’en ai
tellement fait qu’il est difficile de quantifier la valeur de chacun d’entre eux
et d’en faire un classement. Non pas qu’il faille forcément en faire un, mais je
n’arrive pas à me faire à l’idée qu’il faille mettre un nom en premier. Dois-je
mettre le nom de la personne qui m’a le plus aidé, de la première personne
avec qui j’ai travaillé, qui m’a le plus motivé ou qui a le plus contribué à cette
thèse ? A vrai dire cette personne est la même, et sans lui cette thèse n’aurait
jamais vu le jour. Merci Virgile. Je remercie tout autant mon directeur de
thèse, Saddek Bensalem, qui m’a soutenu tout le long de cette expérience. Je
tiens également à remercier la présidente du Jury Professeur Nicole Bidoit,
les Professeurs Ahmed Bouajjani et Andreas Podelski pour la pertinence de
leur rapport, ainsi que le Professeur Antoine Miné et le Professeur Sylvie
Putot.

Avant de commencer cette thèse, j’avais certains à-prioris sur le déroule-
ment d’une thèse, notamment sur sa difficulté et la quantité de stress qu’elle
génère. J’ai passé trois années pleines de rires et de bons moments qui ont
éclipsé la grande majorité des difficultés, notamment grâce au soutien du
Laboratoire de Sûreté et Sécurité du Logiciel et du Département tout entier,
avec une mention spéciale à Hugo qui a dû supporter son insupportable co-
bureau. En vrac, je remercie Alexandre, André, Benjamin, Boris, David, Di-
ane, Florent, François, Frank, Jacques-Charles, Jean-Christophe, Jean-Yves,
Julien, Lionel, Mathieu, Nikolaï, Quentin, Sébastien, Tristan, Valentin, Vin-
cent, Zak, ainsi que l’ensemble des acteurs en herbe (et Frédérique l’actrice
professionnelle), les permanents, doctorants et post-doctorants dont j’oublie
le nom mais que je n’oublierai jamais.

Contrairement à ce que l’on peut penser, un thésard à une vie à coté de
la thèse. Cette vie a forgée par des bons et des mauvais moments, mais je
n’aurais jamais pu arriver là où j’en suis sans l’amour de mes parents, José
et Patricia (et de toute ma famille bien evidemment, mais là il y a vraiment
beaucoup de monde), sans le soutien d’Adeline, ni sans l’amitié de Guil-
laume et de Pierrot. Je vous suis éternellement redevable.

Oh, et un conseil aux doctorants et futurs doctorants qui ont eu le courage
de lire jusqu’ici : ecrire une page de remerciements, c’est plus difficile qu’il
n’y parait. Ne vous y prenez pas comme moi, à la dernière minute.

vii

Contents

I Formal verification 1

1 Introduction 3
1.1 Context . 3

1.1.1 The electronic boat . 3
1.1.2 Origins of bugs . 4
1.1.3 Get rid of bugs . 6
1.1.4 Formal methods . 6
1.1.5 Loops . 8

1.2 Overview and contributions . 9

2 Mathematical definitions of program verification 11
2.1 Linear algebra . 12

2.1.1 Vector spaces . 12
2.1.2 Linear transformations and matrices 13
2.1.3 Duals and orthogonal space 15
2.1.4 Eigenvalues and eigenvectors 15
2.1.5 Properties of the determinant 15
2.1.6 Jordan normal form . 16

2.2 Programming model . 17
2.2.1 State machines . 17
2.2.2 Computer systems . 19

2.3 Model checking . 20
2.3.1 Models . 20
2.3.2 Temporal logics . 21
2.3.3 Model-checking . 22
2.3.4 Limitations . 22
2.3.5 The temporal logic CaRet 23

Recursive state machines. 23
Nested words. 25
The CaRet Temporal Logic 26

2.4 Invariance and inductivity . 27
2.4.1 Floyd-Hoare axiomatic semantics 27
2.4.2 Contracts . 27
2.4.3 Inductivity . 28
2.4.4 The field of invariant generation 28

Dynamic analysis . 29
Acceleration . 29

viii Contents

Direct techniques . 30
2.5 Abstract interpretation . 30

2.5.1 Intuition of abstract interpretation 30
2.5.2 Abstract domains . 31
2.5.3 A semantics on abstract values 31
2.5.4 Loops and widening operators 33
2.5.5 A widely used framework 34

II Polynomial invariants for polynomial loops 37

3 Polynomial loops don’t exist 39
3.1 Elevation of linear transformations 40

3.1.1 Principle of the linearization 40
3.1.2 Linearization . 42
3.1.3 Linearizable and exponential 42

3.2 Linearization . 43
3.2.1 Intuition . 43
3.2.2 Linearization theorem 43

Solvable mappings are linearizable 43
Non-solvable mappings are not linearizable. 44

3.3 Algorithm . 47
3.3.1 Solvability test . 48
3.3.2 Linearization . 51

3.4 Properties of elevated matrices 52
3.4.1 Elevation matrix . 52
3.4.2 Eigenvector decomposition of Ψd(A) 52

3.5 Application to formal verification 55

4 A widening operator for the zonotope abstract domain 57
4.1 Approximation of convergent linear filters 58
4.2 Context . 62

4.2.1 The family of the numerical linear filters 62
4.2.2 The zonotope abstract domain 63

4.3 Synthesis by parametrized variation 65
4.3.1 Description of the method 65
4.3.2 Inclusion of meta-zonotopes 68

4.4 Completness on linear filters . 70
4.5 Experiments and conclusion . 72

5 Eigenvectors as linear invariants of linear loops 75
5.1 Overview . 76
5.2 Simple loops . 77

5.2.1 Semi-invariants . 77
5.2.2 Eigenvectors are invariants 78

5.3 Conditions . 79
5.4 Nested loops . 81
5.5 The case λ = 1 . 83

Contents ix

5.5.1 The variable 1 . 83
5.5.2 Quantified expression of invariants as eigenvectors. . . 84
5.5.3 Elevation degree. 85

5.6 Inequalities . 87
5.6.1 Convergence and divergence 87
5.6.2 Convergent invariants and eigenvectors 87

5.7 Non determinism . 89
5.7.1 Non deterministic transformations 89
5.7.2 Generation of a candidate invariant 90
5.7.3 Optimizing expressions 91
5.7.4 Convergence . 91
5.7.5 Initial state . 93

6 How precise can invariants be ? 95
6.1 The Orbit Problem . 95

6.1.1 The Kannan-Lipton Orbit problem 95
6.1.2 Eigenvectors as certificates 96

6.2 Certificate sets of the rational Orbit Problem 97
Case 1: there exist null eigenvalues 98

6.2.1 Case 2: there exist eigenvalues λ and |λ| 6= 1. 99
Real eigenvalues. 99
Certificate index. 101
Complex eigenvalues. 101

6.2.2 Case 3: all eigenvalues have a modulus equal to 1 and
the matrix is not diagonalisable 102
Real eigenvalues. 102
Complex eigenvalues. 103

6.2.3 Case 4: eigenvalues all have a modulus equal to 1 and
the transformation is diagonalizable 104

6.3 General existence of a certificate for the integer Orbit Problem 106
6.4 Perspectives . 107

III Implementation and experimentations 109

7 Pilat: A polynomial invariant synthesizer 113
7.1 Pilat tool . 113

7.1.1 Architecture overview 113
7.1.2 Layers . 114

7.2 Experimentations and comparison with existing tools 117

8 CaFE: model checking 121
8.1 Motivation . 121
8.2 CaFE : a model checker of CaRet formulas 122

Soundness. 122
Comparison of similar automatons 124

8.3 Overview of CaFE . 124
8.4 Application to concurrency . 126

x Contents

IV Perspectives 131

9 Conclusion 133
9.1 Solvability . 133

9.1.1 Polynomial similarity 133
9.1.2 Infinite systems . 134

9.2 Invariant generation . 134
9.2.1 Generalization of the parametrized widening operator 134
9.2.2 Spectral theory . 135

9.3 Usefulness of eigenvectors . 135
9.3.1 Complete characterization of certificates 135
9.3.2 Pilat extensions . 135
9.3.3 Temporal logic . 135

Bibliography 137

A Pilat architecture 145
A.1 The Ring signature . 145
A.2 The Matrix signature . 145
A.3 The Polynomial signature . 146

B Pilat results on deterministic and non deterministic loops 149
B.1 Example 1 . 149
B.2 Dampened oscillator . 149
B.3 Harmonic oscillator . 149
B.4 Symplectic SEU Oscillator . 150
B.5 [AGG12] filter . 150
B.6 Simple filter . 150
B.7 Example 3 . 150
B.8 Linear filter . 151
B.9 Lead lag controller . 151
B.10 Gaussian regulator . 152
B.11 Controller . 152
B.12 Low pass filter . 153

1

Part I

Formal verification

3

Chapter 1

Introduction

Contents
1.1 Context . 3

1.1.1 The electronic boat . 3

1.1.2 Origins of bugs . 4

1.1.3 Get rid of bugs . 6

1.1.4 Formal methods . 6

1.1.5 Loops . 8

1.2 Overview and contributions 9

Everyday, a ship sails in the binary sea.

The captain shouts its instructions to the deck hands, giving to each of them
specific instructions.
Clear the deck of every single useless resource.
Reach the maximum speed.
And avoid all the reefs.

Storms are coming, and care is the burden of chiefs.
What if one of the men fails to achieve its deed?
Will the tides crash the boat with tremendous forces?
Will their journey end with Neptune’s introductions?

Dangerous is sailing in the binary sea.

1.1 Context

1.1.1 The electronic boat

Ensuring a boat will reach its destination is a difficult task. Every single
person on the ship must be of use and know precisely what to do, when to
do it and what to expect from the others. The whole system is functionning
thanks to the collaboration of all the local actors. In this analogy, computer
systems are electronic boats.

4 Chapter 1. Introduction

Since Turing’s formalization of computer systems in 1936, the field of
computer science has been and is still exponentially growing. Where me-
chanical machines require bolts, gears and mechanical inputs, computers re-
quire memory, instructions and numerical inputs. Computers have been set
up in order to perform simple calculations extremely fast. Modern proces-
sors are able to process more than 2 billion operations per second.

1.1.2 Origins of bugs

Many users face bugs at a non critical scale that can be relatively easily solved,
often requiring them at most to reboot their machine. In the mean time,
computer systems influence our lives at a wider scale as embedded systems
(computer systems as part of a larger device) are used in traffic controlling,
avionics, energy management, economy or autonomous driving to give a
few. Such critical fields require an extremely high level of trust as their fail-
ure can cause huge damages in terms of human lives, ecological environ-
ment and economical resources. The issue of bugs is even harder considering
that even the smallest bug can have terrible effects on the short and the long
term. One of the bug with that could have had the most terrible consequence
has happened during the cold war, in the USSR. In 1983, a nuclear early-
warning system detected multiple ballistic missiles launched from bases in
the US, even though no missile had been. While the worst has been avoided
thanks to the discernment of the person in charge, this bug could literally
have wiped out mankind as we know it. More recently the Meltdown and
Spectre bugs [Koc+18], discovered in 2018, affected Intel cores so hard the
only patch solving the issue induces a loss of performance of 5-30%. Even
the said patch contained bugs that forced Intel to ask users to stop down-
loading it. Computer systems tend nowadays to become autonomous and
make their own decisions, based on algorithms. It is vital to certify that these
systems are functioning correctly.

Computers are extremely complex machines, sending information as bi-
nary signals (sequences of 1s and 0s). Instead of working directly in binary,
multiple layers of abstractions have been created to help computer scientists
to express their computations. As Figure 1.1 shows, it is necessary to go
through multiple steps to get an idea understood by a computer. Each of these
steps can be flawed, causing different kind of bugs.

• An algorithm is a sequence of understandable instructions that require
an input and produces an output1. Programmers can make mistakes
writing an algorithm by not thinking everything through. For exam-
ple, let us consider the Euclidean division algorithm for calculating the
quotient q of two integers x and y. Starting with q = 0, it consists in de-
creasing x of y and add 1 to q until x < y. At the end, q should contain
the quotient of x and y.

1A cooking recipe is an algorithm for example, its input being ingredients and its output
being a cake.

1.1. Context 5

FIGURE 1.1: From the thinking of a programmer to the compre-
hension of the computer.

This simple algorithm contains a bug. In the case where y 6 0 this
algorithm will never stop.

• Assume now we have an algorithm that we know contains no mis-
take. There exist plethora of different languages (C, OCaml , C++, Java,
Python, ...) that we can choose to write out algorithm with. The rep-
resentation by a programming language of an algorithm is called its
implementation. An implementation may require to use data structures
that are out of the scope of the algorithm, but that enhances its effi-
ciency. For example, if our algorithm has to save the value of multiple
elements, it can use a structure of set to save them and access them. The
implementation of sets is irrelevant to the functioning of the algorithm
in itself, but its functioning must be understood by the programmer.
Otherwise, the programmer may use them wrong which could cause
issues. Among others, the Java implementation of sets require a total
order2 on the elements of the set. If the programmer cannot provide
such an order, the implementation will not be valid. This shows that
bugs can take their roots in the most unexpected parts of a program.

• Assume now we manage to write a program that is correct. We need
to translate it into assembly to be understood by the computer. This
translation is performed by an independent program, the compiler. As
a program, it can contain bugs and therefore insert bugs in the original
program.

• Once the program is written in assembler, there is one last step to cross.
Computers are able to read assembler instructions as binary signals
made out of electricity. Physical interferences can however alter these
signals and provoke undesired behaviors on the system. This kind of
bugs is particularly hard to solve as the programmer has very few ways
to physically protect a system.

This thesis will focus on the correctness of the transition between the al-
gorithm state to the program state.

2A total order ≤ on a set of elements S must verify ∀x, y ∈ S, x ≤ y or y ≤ x

6 Chapter 1. Introduction

1.1.3 Get rid of bugs

While it is possible for simple algorithms to be proven correct by hand, in-
dustry requires safety on millions lines of code (LoC) algorithms. The PDF
viewer you may be using right now to read this document has been devel-
oped with more than 100000 LoC3. It is necessary for provers to rely on com-
puters to automatize the verification task, which is humanely impossible to
handle. And yet, the problem of proving the correct behavior of a program
is undecidable in general. The most famous undecidable problem in com-
puter science is the halting problem, stating : does there exist a program A able
to decide that a program P with an input I ends in finite time ? If such a program
existed, then it would be possible to create a program B (cf Figure 1.2) such
that:

1. if B ends, then B doesn’t end;

2. if B does not end, then B ends.

As this is clearly absurd, the halting problem is undecidable. There exist mul-
tiple similar problems that can be reduced to the halting problem, in the sense
that if they admit a solution, an algorithm solving the halting problem can be
built. The Rice Theorem [Ric53] generalizes this principle and states that the
verification of any non trivial semantic property (i.e. non syntactical prop-
erties that are not true nor false) on a Turing-complete machine/language is
undecidable in general. This is applicable on properties like “the program
never fails” or “this program is a virus”.

1.1.4 Formal methods

As we saw, anyone willing to formally prove a large program faces the two
challenges of scalability and undecidability. They can be overcome by giv-
ing up completeness (i.e. giving up the ability of disproving a property) or
correctness (i.e. giving up the ability of proving a property). To lighten the
burden of proving large programs, the field of formal methods provide tech-
niques and tools to ease and automatize proofs (or automatize the search of
counter examples).

When programmers try to find bugs in its program without formal meth-
ods, they can either launch their code and check if the output is consistent
with their expectations or read their code to check if there is something miss-
ing. Formal methods are basically the automation of these two intuitions,
respectively called dynamic analysis and static analysis.

Dynamic analysis is based on the analysis of execution paths of a program
by executing them with different inputs. If a tested execution is not conform-
ing to the program specifications, then dynamic can provide it as a counter
example to the verifier. On the other hand, if every tested execution satisfies
the specifications, it is impossible to conclude on the correctness of the pro-
gram as the set of every possible input is too large to be exhaustively tested.

3The size of MuPDF, a lightweight PDF viewer, has approximatively 140000LoC

1.1. Context 7

FIGURE 1.2: Construction of an impossible program.

8 Chapter 1. Introduction

Static analysis is complementary to dynamic analysis. The semantic of
each instruction, defined as the most precise mathematical characterization
of program behaviors, is abstracted to a simpler one. This simplification al-
lows different kind of techniques to infer information on these simplified
programs, that are also correct on the original programs. Static analysis tech-
niques tend to over approximate the program behavior. As a consequence,
the main issue of static analysis is to miss some important properties that
have not been kept by the program abstraction.

Static analysis itself can be divided in many different fields, whose most
used today are abstract interpretation, model checking and deductive verification.

Abstract interpretation aims at inferring logical properties on a pro-
gram by propagating abstractions of states. For example, values of integer
variables can be abstracted by intervals modified by the program instruc-
tions. Such a method requires to define a new semantic of instructions and
expressions so that they are consistent with abstract values.

Model checking consists in comparing the possible program executions
to a model-based specification. The program as well as the negation of the
specification must admit an automaton representation4 that are explored si-
multaneously and exhaustively to check if there exists an execution of the
program model that matches an execution of the specification model.

Deductive verification is the closest approach to mathematical reason-
ing. The program is specified with contracts that it must satisfy. Preconditions
give constraints on the input of the program, postconditions give constraints
on its output, and assertions are properties that are always verified at a given
point of a program. Deductive verification reasons with these constraints to
prove the correctness of a program.

1.1.5 Loops

As computer systems are expected to repeat the same task for an indefinite
amount of time, loops are at the core of programming. Almost every interest-
ing algorithm contains at least one. Though some of them can be easily han-
dled when they perform simple operations, there still exist some very simple
loops whose behavior has not been solved yet. The Syracuse sequence for
example (Sn)n∈N is defined as follows:

1. if Sn is even, then Sn+1 = Sn
2

;

2. otherwise, Sn+1 = 3.Sn + 1.

For every tested initial value so far, this sequence eventually reaches 1. As
simple as it may seem, proving that for every S0 the sequence reaches 1 has

4An automaton, as defined in the next Chapter, is an oriented graph with extra properties
on edges and nodes.

1.2. Overview and contributions 9

still not been proven and is today suspected to be undecidable [Con13]. Lin-
ear loops, like the Syracuse sequence, are of high interest in the field of formal
verification as they lie at the border of undecidability. In general, the easiest
way (and seemingly the most efficient way) to handle loops in proofs is to
delete them. With an over-approximation of the number of times the loop is
taken, this can be done by unrolling loop. When there is no information about
the number of necessary unrollings, it is still possible to over-approximate the
loop behavior, in the sense of finding relations on variables that are true when
the loop ends. Those over approximations are commonly called invariants.

This thesis will give new insights on the undecidability border of linear
loops (i.e. loops in which expressions are linear combinations), especially
by proving that a subclass of polynomial loops (i.e. loops with polynomial
expressions) are as expressive as linear loops. It also extracts a complete
characterization of linear invariants of linear loops, which can be applied
for solving the Kannan-Lipton Orbit problem [KL80] and help formal tools
to conclude their proofs.

1.2 Overview and contributions

This first part introduces the context of this thesis along with Chapter 2, pre-
senting the standard notations of static analysis and linear algebra that are
used in the next chapters. The fundamental content of this thesis is devel-
oped in Part II.

• Chapter 3 presents the concept of linearization. This study of polyno-
mial loops (loops with polynomial assignments) formally prove they
can be divided into 2 different types: those that can be represented by
linear applications and those that admit an exponential behavior.

• The next two Chapters study the problem of generating invariants for
linear loops. Chapter 4 presents a method for detecting good candidate
invariants found by an abstract interpretation analysis with the zonotope
domain on linear filters (linear loops with specific hypotheses). Chap-
ter 5 presents a general characterization of linear invariants for linear
loops. Combined with the results of the previous chapter, this char-
acterization is generalizable to polynomial invariants for multi-path,
nested and non deterministic loops.

The following Chapter 6 is devoted to the use of the previous characteri-
zation to synthesize proofs of different instances the Kannan-Lipton Orbit
problem [KL80].

The last part of this thesis introduces two tools. The first, Pilat , imple-
ments in Chapter 7 the algorithm described in Chapter 5 with all its exten-
sions for generating invariants for C programs. The practical use of invari-
ants is shown in Chapter 8 by a presentation of CaFE , a model-checker using
the informations provided by Pilat to prove temporal properties expressed
in the temporal logic CaRet .

11

Chapter 2

Mathematical definitions of
program verification

Contents
2.1 Linear algebra . 12

2.1.1 Vector spaces . 12

2.1.2 Linear transformations and matrices 13

2.1.3 Duals and orthogonal space 15

2.1.4 Eigenvalues and eigenvectors 15

2.1.5 Properties of the determinant 15

2.1.6 Jordan normal form 16

2.2 Programming model . 17

2.2.1 State machines . 17

2.2.2 Computer systems . 19

2.3 Model checking . 20

2.3.1 Models . 20

2.3.2 Temporal logics . 21

2.3.3 Model-checking . 22

2.3.4 Limitations . 22

2.3.5 The temporal logic CaRet 23

2.4 Invariance and inductivity 27

2.4.1 Floyd-Hoare axiomatic semantics 27

2.4.2 Contracts . 27

2.4.3 Inductivity . 28

2.4.4 The field of invariant generation 28

2.5 Abstract interpretation . 30

2.5.1 Intuition of abstract interpretation 30

2.5.2 Abstract domains . 31

2.5.3 A semantics on abstract values 31

2.5.4 Loops and widening operators 33

2.5.5 A widely used framework 34

12 Chapter 2. Mathematical definitions of program verification

2.1 Linear algebra

Linear algebra is the branch of mathematics studying vectorial spaces and
linear transformations. It plays an important role in the next chapters. The
principal definitions and notations used in linear algebra are developed in
this section. A more in-depth presentation can be found in [WBR13]

2.1.1 Vector spaces

A field K is a set of elements, called scalars, associated with two operators +
and ∗. Both operators are associative (a+ (b+ c) = (a+ b) + c and a ∗ (b ∗ c) =
(a ∗ b) ∗ c) and commutative (v+w = w+ v and v ∗w = w ∗ v). Multiplication
is distributive over addition (a ∗ (b + c) = a ∗ b + a ∗ c). Both these operators
admit a neutral element, respectively 0K (or 0) and 1K (or 1), such that for all
v ∈ K, v+0K = v and v∗1K = v. Every element of K admits an inverse for the
+ operator, in the sense that for any v there exists w such that v+w = 0K. The
inverse of v by the + operator is denoted −v. Also, every element except 0K
admits an inverse for the ∗ operator, in the sense that for any v, there exists w
such that v ∗ w = 1K and w is denoted v−1.

Vectors are n-tuples of elements of K; the set of every vector of size n will
be denoted Kn (Cartesian product). Let v = (v1, ..., vn) and w = (w1, ..., wn)
two vectors of Kn. The addition operator is extended to vectors by adding
each coordinates (v + w = (v1 + w1, ..., vn + wn)) and vectors can be multi-
plied by scalars (k ∗ v = (k ∗ v1, ..., k ∗ vn)). Scalar or vectorial expressions
involving only those operators are called linear combinations. v and w are
collinear if there exists k such that k ∗ v = w. Otherwise, v and w are said
independent. Independence can be generalized to sets of vectors. A set B
of m vectors is said independent if for all non-trivial linear combination (i.e.
linear combinations involving at least one non null vector) f : (Kn)m 7→ Kn

we have f(B) 6= (0, ..., 0)
K-vector spaces are subsets of Kn stable by addition and scalar multiplication.

Here are some example of vector spaces:

• Kn

• {(0, ..., 0)}

• {v : ∃k, k′.v = k ∗ (0, ..., 0, 1) + k′ ∗ (1, 0, ..., 0)}

In the last example, two vectors are used to construct every element of the
vector space. These vectors form a generator family F of this vector space,
and V ectK(F) denotes the vector space generated by F with scalar coeffi-
cients in K. A base of vector space is an independent generator family, and
its size is called the dimension of the vector space. The third example admits
B = {(0, ..., 0, 1); (1, 0, ..., 0)} as a minimal base, thus its dimension is 2. The
dimension of Kn is n, and the dimension of {(0, ..., 0)} is 0. For our purposes,
we will only study properties on vector spaces of finite dimension, but there
exists vector spaces of infinite dimension (for example, polynomials with one
variable X are linear combinations of 1, X,X2, ...).

2.1. Linear algebra 13

A family of vectors B is associated with a determinant det(B), which is
defined as follows:

∑
σ∈Σn

ε(σ)
n∏
j=1

Bj,σ(j)

where Σn represents the set of permutations of n elements, ε the signature
of a permutation (ε(σ) = (−1)N(σ) with N(σ) the number of inversions of σ)
and Bi,j the jth component of the ith vector of B. The determinant is non null
if and only if the family B is independent.

2.1.2 Linear transformations and matrices

Linear transformations are applications mapping a vectorial space to another.
They are only allowed to use scalar multiplications of variables and addi-
tions. Hence, a linear transformation f follows two canonical properties:

• f(v) + f(w) = f(v + w)

• k ∗ f(v) = f(k ∗ v)

Vectors themselves describe linear transformations thanks to the scalar
product operator.

Definition 1 Let v = (v1, ..., vn) and w = (w1, ..., wn) two vectors. The scalar
product of v and w is denoted 〈v, w〉 and is defined as follows:

〈v, w〉 =
n∑
i=1

vi ∗ wi

By fixing v, fv(w) = 〈v, w〉 is a linear combination on the coordinates of w,
thus fv is a linear transformation. Similarly, fw(v) = 〈v, w〉 is also a linear
transformation. On the other hand, let f(w1, w2, w3) = 2 ∗w1 + 3 ∗w2 + 5 ∗w3

a linear combination. The application f can be seen as the scalar product of
(2, 3, 5) and (w1, w2, w3). Therefore, f can be assimilated to the vector (2, 3, 5).
From now on, vectors will be written as a line (v1, ..., vn) when they represent

linear transformations, while they will be written as a column

 w1

. . .
wn

, or

(w1, ..., wn)t, when they denote elements of Kn.
Linear transformations are not restricted to transform a vector into a scalar.

For example, g(x, y, z) = (x+y, y+z, z+x) is a valid linear transformation as
it verifies the canonical properties of linear transformations with the vector
addition and scalar multiplication. To extend the vectorial notation of linear
transformations for multi-dimensional images, the concept of matrices is nec-
essary. Matrices are vector arrays generalizing the notation of linear transfor-
mations defined by scalar product. Let us study the example of g. The line
vector associating (x, y, z) to x+y is (1, 1, 0), as 〈(1, 1, 0), (x, y, z)〉 = x+y. Sim-
ilarly, (0, 1, 1) and (1, 0, 1) represent the two next coordinates of g. Therefore,

14 Chapter 2. Mathematical definitions of program verification

the matrix associated to g is  1 1 0
0 1 1
1 0 1


Every linear transformation f : Km 7→ Kn admits a matrix representation
M ∈ Mm,n(K), where Mm,n(K) is the set of matrices of m columns and
n lines. The notation of the set Mn,n of square matrices is simplified into
Mn. By extension, linear transformations f : Kn 7→ Kn will be refered to as
square transformations as they admit a square matrix. In general, every no-
tation defined for matrices is valid for linear transformations. For a matrix
M , Mi,j represents the jth coefficient of Mi the ith line of M . Every matrix
M ∈Mm,n(K) admits a transpose M t ∈Mn,m defined as a substitution of its
coefficients: M t

i,j = Mj,i. The addition operator + of K is extended to matrices
of same size, as it was extended to vectors, by applying it coordinatewise. In
other words for two matrices M and N of same size, (M +N)i,j = Mi,j +Ni,j .
Matrix multiplication extends the scalar multiplication ∗ for M ∈ Ml,m and
N ∈Mm,n, which returnsM ∗N ∈Ml,n. It is defined using the scalar product
of Definition 1 as follows:

(M ∗N)i,j =
〈
Mi, N

t
j

〉
As vectors can be seen as matrices with one line and n columns or one column
and n lines, they also can be multiplied by matrices with respectively n lines
or n columns. We denote ◦ the usual composition operator. The main interest
of vector/matrix multiplication is to easily apply input vectors and compose
linear applications, as the result of matrix multiplication is the matrix repre-
senting the composition of the two linear transformations associated to the
initial matrices. In other words, if a linear transformation f is represented by
the matrix Mf , g by Mg and v is a vector, then Mf ∗ v = f(v) and Mf ∗Mg

represents f ◦ g the composition of f and g.
The kernel of a linear transformation f , denoted ker(f), is the vector space

defined as ker(f) = {x|x ∈ Kn, f(x) = 0}. The same notation is used for ma-
trices representing a linear transformation.

A square transformation f is said to be invertible if there exists a linear
transformation g such that f ◦ g = g ◦ f = Id the identity transformation,
and g will be denoted f−1. The successive application of f n times will be
denoted fn and its associated matrix is Mn

f where Mf is associated to f . If
there exists n such that fn = 0, then f will be said nilpotent.

As matrices are vector arrays, the concept of determinant is extendable to
linear transformations. Particularily, we have that a linear transformation is
invertible iff it has a non null determinant. Also, the determinant of f equals
the determinant of f ∗. It is also equal to the inverse of the determinant of f−1

if f is invertible.

2.1. Linear algebra 15

2.1.3 Duals and orthogonal space

Let f a linear transformation associated to a matrixMf . f admits a dual trans-
formation f ∗ : (K→ K)→ (K→ K) defined as:

∀ϕ, f ∗(ϕ) = ϕt ◦ f

where ϕ is a column vector. The dual of the dual of f is f , or in other words
(f ∗)∗ = f . The matrix associated to f ∗ is M t

f .
LetE be a K vector space, F ⊂ E a sub vector space ofE and x an element

of F . A vector y is orthogonal to x if 〈x, y〉 = 0. We denote F⊥ the set of vectors
orthogonal to every element of F . The orthogonal of the orthogonal of a
vectorial space V is V , or (V ⊥)⊥ = V . The concept of dual and orthogonal
spaces are deeply connected. In particular, they verify the following lemma:

Lemma 1 Let K be a field, E be a K vectorial space, F a sub-K vectorial space of E
and f : E → E a linear application.
f(F) ⊂ F ⇔ f ∗(F⊥) ⊂ F⊥

Proof. By definition we have 〈f(x), x′〉 = 〈x, f ∗(x′)〉. Let x ∈ F, x′ ∈ F⊥. If
f(F) ⊂ F , then 〈f(x), x′〉 = 0, thus 〈x, f ∗(x′)〉. As we have f ∗(F⊥) ⊂ F⊥, we
conclude by using the fact that (F⊥)⊥ = F and (f ∗)∗ = f . �

2.1.4 Eigenvalues and eigenvectors

The ring of polynomials K[X] is the set of all polynomials with coefficients
in K. In other words, K[X] = V ectK({1, X,X2, ...}). We note K the algebraic
closure of K, K = {x : ∃P ∈ K[X], P (x) = 0}. Every square matrixA is associ-
ated to a characteristic polynomial P ∈ K[X] such that P (X) = det(A−X.Id).
Roots λ ∈ K of this polynomial are called eigenvalues. Their associated
eigenspace Eλ, defined as Eλ = ker(A− λId), where Id is the identity matrix
and Eλ 6= {0}. The multiplicity of an eigenvalue is its multiplicity as a root of
the characteristic polynomial (i.e. λ has a multiplicitym if P (X)

(X−λ)m
∈ K[X] and

P
(X−λ)m+1 /∈ K[X]). An eigenvector of f ∗ is denoted a left-eigenvector of f . The
left adjective is similarly generalized to eigenspaces (but not to eigenvalues,
as f and f ∗ have the same eigenvalues). Generalized (left-)eigenspaces ex-
tend the previous concept and are defined as En

λ = ker((A− λId)n). A vector
ϕ is a generalized eigenvector of order n if ϕ ∈ En

λ and ϕ /∈ En−1
λ .

2.1.5 Properties of the determinant

The determinant has useful properties that will be used through this thesis.

• If all the coefficients of a matrix belong to a ring R, then its determinant
belongs to R. This comes from the determinant formula that involves
only multiplication and additions of coefficients of the matrix.

16 Chapter 2. Mathematical definitions of program verification

• The product of all eigenvalues to their multiplicity equals the determi-
nant. This comes from the fact that eigenvalues are root of the charac-
teristic polynomial. If λ1, ..., λn are roots of P , then we can write P as
(λ1 −X)...(λn −X). Hence,

det(A) = P (0) = λ1...λn

Therefore, the product of all eigenvalues of a linear transformation belong
to the ring in which its coefficients belong. This is also true when eigenvalues
do not belong to this ring: for example the transformation f(x, y) = (y,−x)
admits the complex eigenvalues i and −i, while its determinant is 1.

2.1.6 Jordan normal form

The matrix of a linear transformation is expressed in a certain base of a vec-
tor space. So far, every example was implicitly expressed in the canonical
base B of Kn defined as B = {e1 = (1, 0, ..., 0)t, e2 = (0, 1, 0, ..., 0)t, ..., en =
(0, ..., 0, 1)t}. For example, let f(x, y, z) = (x + y + z, 2 ∗ y + z, 5 ∗ z) a linear
transformation. In the canonical base B = {e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, e3 =
(0, 0, 1)t}, this transformation has the following matrix representation:

M =

 1 1 1
0 2 1
0 0 5


As we can see, f(e1) = e1, therefore the first column correspond to one

time e1, or (1, 0, 0)t. We also have f(e2) = e1 +2∗e2 and f(e3) = e1 +e2 +5∗e3.
Columns of the matrix are images of the elements of the base in which the
linear transformation is expressed.

It is possible to express linear transformations in a different base than the
canonical base. For example, in the base B′ = {e′1 = (1, 0, 0), e′2 = (1, 1, 0), e′3 =
(1, 1, 3)}, we have that f(e′1) = e′1, f(e′2) = 2 ∗ e′2 and f(e′3) = 5 ∗ e′3. Hence, in
the base B′, f is defined as fB′(x, y, z) = (x, 2∗y, 5∗z) and admits the matricial
representation

MB′ =

 1 0 0
0 2 0
0 0 5


Changing the base is a linear operation on vectors, therefore it can be

performed by an invertible linear transformation p. It is sufficient to apply
p−1 for returning to the original base.

Definition 2 Two linear mappings f, g are said similar if and only if there exists
an invertible linear transformation p such that f = p−1 ◦ g ◦ p.

Similarity between transformations has the interesting property to be pre-
served when calculating fn. Indeed, fn = p−1 ◦ gn ◦ p is true for any positive
n by Definition 2.

2.2. Programming model 17

In the case of f and fB′ , they are similar with p(x, y, z) = (x, x + y, x +
y + 3 ∗ z). The careful reader will notice that the vectors of B′ are actually
eigenvectors of f , and the values on the diagonal are exactly eigenvalues of
f . Expressed in this base, f admits a diagonal matrix representation, in the
sense that for all i, j such that i 6= j we have that MB′ i,j = 0. More generally,
when a linear transformation is similar to a diagonal transformation, we will
say it is diagonalizable. In any case, every linear transformation is similar
to an upper triangular transformation (i.e. admits a matrix where all the
coefficients below the diagonal are null).

For any linear transformation f , there always exists a base J such that fJ
is associated to a matrix J defined as follows:

J =


J1 0 ... 0

0
.

... 0
0 ... 0 Jk


and

Ji =


λi 1 ... 0

0
.

... 1
0 ... 0 λi


for 1 6 i 6 k where λi is an eigenvalue of f . This base is called the Jordan
base of the transformation f , and its expression in this base is called the Jordan
normal form of f .

When a matrix A is diagonalizable, its Jordan normal form J is its diag-
onal form and the columns of the matrix P of the base changing application
(A = P−1JP) are exactly eigenvectors. Otherwise, the columns are composed
of specific generalized eigenvectors ϕ of order n that satisfy J.ϕ = λϕ + ψ,
where ψ is a generalized eigenvector of order n− 1.

2.2 Programming model

2.2.1 State machines

Computer systems are implementations of much simpler machines, called
transition systems [Wag+06].

Definition 3 Let A a set of symbols called an alphabet. A word of size n on A is a
sequence (finite or infinite) of n elements ofA. A transition system S onA is a tuple
(L, I, T, F) such that:

• L is a set of locations, or states;

• I ⊂ L is a set of initial states;

• F ⊂ L is a set of final states

18 Chapter 2. Mathematical definitions of program verification

FIGURE 2.1: Finite transition system regulating a traffic light.

• T ∈ L× L is a set of transitions, or edges.

An execution of a transition system is a sequence (finite or infinite) of n states where
for all i < n, (li, li+1) ∈ T .

Two different structures are derivable from transition systems.

• Automatons are transition systems where edges are labeled with el-
ements of the alphabet. In other words, T = L × A × L. A word
ω = ω1ω2...ωn of size n belong to the language of the automaton iff
there exists an execution π = π1π2...πn of A of same size such that for
all i, (πiωiπi+1) ∈ T and πn ∈ F .

• Kripke structures are transition systems where locations are labeled
with elements of the alphabet. In other words, they are extended with
a labeling function η : L 7→ P(A) associating to each state a symbol or a
set of symbols. A word ω = ω1ω2...ωn of size n belong to the language
of the Kripke structure iff there exists an execution π = π1π2...πn of A of
same size such that for all i, ωi ∈ η(πi) and πn ∈ F .

The language of a transition system S is denoted L(S). As words and ex-
ecutions are closely related, they can be assimilated to each other. Transition
systems are structural representations of a system composed of a given num-
ber of states (potentially infinite) and transitions linking those states. For
example, Figure 2.1 depicts a transition system regulating a traffic light. It
has an initial state, green, from which it starts. After 30 seconds the light
turns yellow, 5 seconds later it turns to red, and finally after 40 seconds it
goes back to green. Seen as an automaton on the alphabet A = {wait 30s −
wait 5s − wait 40s}, its language would be concatenations of the word wait
30s - wait 5s - wait 40s. Seen as a Kripke structure on the alphabet A =
{green, yellow, red}, its language would be concatenations of the word green
- yellow - red When L is finite (respectively infinite), we will say that the tran-
sition system is finite (infinite). Multiple transitions going out of a single

2.2. Programming model 19

state with non-excluding transitions labels (i.e. multiple transitions can be
chosen) implies a non deterministic choice between the different reachable
states. When such construction occurs in a transition system, we say that it is
non-determinisitc.

Turing machines are a specific class of transition systems. They are de-
fined as an infinite set of states L = {li : i ∈ Z}, called a tape where there
exists bi-directional transitions between li and li+1 for all i ∈ Z. Each state is
associated to a memory cell, empty at the beginning, in which it can read and
write data. Transitions are provided with conditional rules and rewriting in-
structions. For example, a Turing machine writing the value 101010... can be
defined as follows:

1. If the current state is ln and ln−1 is empty or contains 0, then write 1 and
go to ln+1.

2. If the current state is ln and ln−1 contains 1, then write 0 and go to ln+1.

Turing machines allows computing any algorithmic computation, which makes
them a convenient formalism for studying actual computer systems.

2.2.2 Computer systems

Computer systems are basically machines manipulating a memory composed
of different chunks of data. Some chunks can be reserved to receive a specific
value and associated to a name. We refer to these associations as program
variables, or simply variables. A program is based on a set of instructions
that alters variables. These instructions compose a programming language.
Most of the languages used in today’s programs (C, Java, HTML 5 + CSS 3,
...) are Turing-complete, i.e. are as expressive as Turing-machines. The Rice
Theorem [Ric53] states that the class of non-trivial properties are undecid-
able in general for Turing-complete systems. Instead of working on real-life
languages, we will mainly work on a toy language that is Turing-complete so
that the studies of the Part II on this simple language have a meaning for real-
life programs. Part III will then apply these methods on programs written in
the C language.

Let V ar the set of variables used by a program. Variables take their value
in a set defined by their type, but to simplify our analysis, we will use R for
all variables. A program state is then a partial mapping V ar ⇀ R. Any given
program only uses a finite number n of variables, thus program states can
be represented as vectors X = (x1, ..., xn)t. Finally, we assume that for all
programs, there exists xn+1 = 1 a constant variable always equal to 1. This
allows representing any affine assignment by a matrix.

Conditional instructions (loops and conditional paths) are considered non-
deterministic. The expression non_det(exp1, exp2) returns a random value be-
tween the valuation of exp1 and exp2 when the program reaches this location.
Multiple variables assignments occur simultaneously within a single instruc-
tion. We say an assignment X = exp is affine when exp is an affine combi-
nation of the variables. Also, we say that an instruction is non-deterministic

20 Chapter 2. Mathematical definitions of program verification

i ::= skip
| i; i
| (x1, .., xn) := (exp1, ..., expn)
| {i} OR {i}
| while ∗ do i done

exp ::= cst ∈ K
| x ∈ V ar
| exp+ exp
| exp ∗ exp
| non_det(exp, exp)

FIGURE 2.2: Code syntax

when it is an assignment in which the right value contains the expression
non_det.

For any variable v and any assignment, we denote v′ the new value of v
after the application of the assignment. This notation is extended to vectors
instead of variables and applications instead of instructions in general.

Property 1 This toy language is Turing-complete.

Proof. By [Min67], a finite state machine with at least two counters, in-
structions on transitions manipulating them and one initial state is Turing-
complete. Instructions on these counters are of the form x = α ∗ x+ β ∗ y+ γ,
where x and y are variables and α, β and γ are coefficients in Z. y also can be
modified by such instructions.

Let F a finite state machine manipulating counters. We will build a pro-
gram with our toy language that simulates F For each state s of F , we define
a variable vs ∈ {0, 1}. The variable vi associated to the unique initial state i
is set to 1, the others to 0. We also add a variable for each counter. Then, we
add a loop in which there will be multiple assignments. If there exist a tran-
sition from s to s′, then we add the instruction (vs, vs′) = (0, vs). If there are
multiple transitions going out of s, then their corresponding instructions are
put is an OR instruction. The counter instruction x = α ∗x+β ∗ y+ γ follows
the previous instruction and is written: x = (1−vs′)∗x+vs′ ∗(α∗x+β ∗y+γ).

Hence, we built a program that computes F . �

2.3 Model checking

2.3.1 Models

Program representation as a transition system is part of a larger conception
of formal verification called model-based verification. Let us recall the traffic
light example, a transition system with three states. A program that imple-
ments such a controller must take care of many parameters, like captors or
possible physical breakdowns of the system. The robustness of the system
must be guaranteed in every case. An implementation of a traffic light con-
troller doesn’t need to match precisely the corresponding automaton, but its
states must follow a certain pattern : initially, the program is in a green state,

2.3. Model checking 21

then in a yellow and a red state, and finally goes back to a green state. In
other words, it must accept a specific language (here, the language is the rep-
etition of green, yellow and red). Hence, it is possible to specify the behavior
of programs with automata. Model based specification is widely used in the
context of verifying programs containing infinite loops. Such programs are
indeed hard to specify with contracts as relations between the input and the
output are irrelevant for non terminating programs.

In concurrent programming, safety, and liveness constrants are expected
to be met, especially in embedded systems. When multiple processes work
on a same ressource, locks can be used to enforce the coherence of modifica-
tions performed by each process. Then, the following examples of require-
ments may need to be met:

• during a given event, the lock must not be taken (safety requirement);

• if an event occurs in the function f , then when f has been called, the
lock was not taken (contextual requirement);

• every function must free the lock before it returns (liveness require-
ment).

While these properties can be represented by automata, it is clearer to ex-
press them as readable sentences. In fact, they can be expressed via temporal
logics.

2.3.2 Temporal logics

Instead of using automata, temporal logics [Pnu77] can be used.

Definition 4 Let AP an alphabet. Operators of Temporal Logics are defined as:

ϕ ::= > | p ∈ AP | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

Given a successor function succ : N→ N, the satisfaction relation � of a Tempo-
ral Logic formula ϕ by a sequence π = (πi)i∈N where:

πi � >
πi � p ⇔ p ∈ πi
πi � ¬ϕ ⇔ πi 2 ϕ
πi � ϕ ∧ ψ ⇔ πi � ϕ and πi � ψ
πi � Xϕ ⇔ πsucc(i) � ϕ
πi � ϕUψ ⇔ πi � ψ ∨ (πi � φ ∧ πsucc(i) � ϕUψ)

Operators ∨,⇒ and⇔ are defined as usually from the operators ¬ and ∧.
Temporal logics have been developped as a specification language read-

able intuitively. If the elements of the alphabet are events, the property
(¬t) U t′ is read as “event t must not occur until event t′ occurs”. Hence, a
temporal property defines a language on an alphabet of events.

One of the very first Temporal Logic is the Linear Temporal Logic (or LTL).
It is defined as a Temporal Logic of Definition 4 with succ(i) = i + 1, and its

22 Chapter 2. Mathematical definitions of program verification

language is equivalent to the language accepted by a generic kind of automa-
ton, called Büchi transition system.

Definition 5 A Büchi transition system is a finite automaton (L, I, δ, F) where
F ⊂ L a set of accepting states. The language of such a structure is composed
of words for which there exists a finite accepting execution of the automaton or an
infinite execution passing infinitely many times through an accepting state.

2.3.3 Model-checking

Specifying a program with an automaton give a temporality to the property
that we want to check. In other words, it is not a static property that we want
to prove, but a property that evolves over time. Therefore, when the program
performs a step, the automaton must check that this step is consistent with
its own behavior. For example, a traffic light controller program must not go
directly from green state to red state.

In order to prove the correctness of the program with respect to an au-
tomaton, the model-checking algorithm relies on transition system product.

Definition 6 Let A and B two transition systems. C = A × B is the product of
A and B such that every execution of C corresponds to an execution of A and B.
States of C are pairs of states of A and states of B, and initial states (respectively
final states) of C are pairs (a, b) such that a is an initial state (resp. a final state) of
A and b an initial state (resp. a final state) of B. There exists a transition from (a, b)
to (c, d) if A defines a transition from a to c and B defines a transition from b to d.

For example, Figure 2.3 depicts the product between the traffic light con-
troller and a morning-afternoon controller, keeping track of when it is the
morning and when it is the afternoon. The resulting transition system con-
tains every possible state reachable by a traffic light controller that keeps
track of mornings and afternoons.

Instead of checking if the program P verify the specification, a model-
checking procedure tries to find an execution of P that doesn’t verify it. To
do so, two transition systems are necessary:

• a Kripke structure R representing the program, i.e. accepting execu-
tions are effective executions of the program;

• an automaton L that accept every word that doesn’t verify the specifica-
tion.

The product of A and L will be an automaton accepting every effective
execution of the program that doesn’t verify L.

2.3.4 Limitations

This intuition of the model-checking algorithm faces multiple limitations.
Model-checking is in general undecidable for actual programs as many au-
tomata allow specifying the halting problem. Also, a program is often too

2.3. Model checking 23

FIGURE 2.3: A traffic light controller coupled with a morning-
afternoon controller.

complex to be represented as a finite automaton on a given language. Hence,
a computable model-checking procedure requires to strongly abstract the au-
tomaton representing a program so that it becomes less expressive than a Tur-
ing machine (otherwise it would contradict the Rice theorem) or reduce the
expressivity of the specification languages. In general, the choice is made of
preserving the soundness of the analysis, i.e. if the procedure does not find a
counter-example, then the program is valid (i.e. it verifies the specification).
On the other hand, if a counter-example is found, it does not necessarily indi-
cate that the program is invalid: the counter-example might be spurious. In
that case, techniques like CEGAR [Cla+00] infers information from spurious
counter examples to simplify the product automaton.

Another issue of model-checking of temporal properties comes from the
exponential size of the automaton accepting the same language than a tem-
poral formula. A Büchi automaton has an exponential number of states in
the size of the automaton it is associated to. The transition systems product
and the search of counter examples doesn’t scale in practice

2.3.5 The temporal logic CaRet

Recursive state machines.

Recursive state machines, or RSM , are Kripke structures equivalent to push-
down automata. Intuitively, they are sets of standard transition systems with
multiple initial and final states. Each transition system is granted the right
to call another system of the set. Their shape fits well the inter-procedural

24 Chapter 2. Mathematical definitions of program verification

FIGURE 2.4: Example of an ARSM and one of its possible exe-
cution (or word).

control flow graph of a program. Figure 2.4 represents an example of RSM .
The nodes c and k are able to call the Module 2 and the nodes j, g, l and m are
return sites.

Definition 7 Let AP a set of atomic propositions and Γ an alphabet. A recursive
state machine R over AP is a tuple (M, {Rm}m∈M , η, init), where M is a finite set
of labels.
For each m ∈M , exist a module

Rm = (Nm, Bm, Ym, Enm, Exm, Callm, Retm, δm)

such that:

• Nm is a finite set of nodes, each associated to a letter γ ∈ Γ.

• Bm is a finite set of boxes.

• Ym : Bm →M associates each box to a module.

• Enm and Exm are two non-empty subsets of Nm respectively representing
entry and exit nodes of a module.

• Callm = {(b, e)|b ∈ Bm, e ∈ EnYm(b)} and Retm = {(b, x)|b ∈ Bm, x ∈
ExYm(b)}

• δm : Nm ∪Retm → 2Nm∪Callm defines transitions between nodes.

When considering the whole automaton, the same notations are kept without
the m index (the set of nodes for the whole RSM is denoted N).

2.3. Model checking 25

• η : (N∪Call∪Ret)×AP → {>,⊥, ?} is a labeling application associating to
each couple (node,atomic proposition) a truth value> if the property is correct,
⊥ if it is not.

• init ⊆ N are the initial states of R.

Remark.

Nested words.

The execution path of Figure 2.4 is linear, in the sense that it always goes step
by step toward the same direction. The presence of call and return sites al-
lows to consider executions not as simple words, but as nested words [AM09].

Definition 8 Let Γ an alphabet, Γ∗ = Γ× {call, ret, int} the extended alphabet
of Γ. A nested word is a well parenthesized word with respect to call and ret.

Executions of an RSM (and of an ARSM) can be seen as a nested word (Fig-
ure 2.5) The whole sequence of events is represented as the general path of

Abstract
successor

General
successor

Past
successor

{a,int} {b,int} {c,call} {g,ret}

{d,int}

{h,int}

{e,int} {f,int}

FIGURE 2.5: Execution of the ARSM in Figure 2.4 seen as a
nested word.

the execution, while the sequence of events in a single module is called the ab-
stract path, linking every call to the corresponding ret). Contextual proper-
ties require to have visibility of what happened at the call site of the current
module: this is provided by the past path, linking every step to its associated
call site.

Definition 9 The partial successor applications succgγ, succaγ and succ−γ are defined
such that:

• succgγ : the linear successor, succgγ(i) = i+ 1.

• succaγ : the abstract successor, pointing to the next local successor, i.e. succaγ(i) =
the index of the associated ret if γi is a call, i+ 1 otherwise.

• succ−γ : the past successor, associating γi to the call site of the current module.

When there is no ambiguity on γ, succbγ will be denoted as succb with b ∈ {a, g,−}.

26 Chapter 2. Mathematical definitions of program verification

node a b c d e f g h
succg b c d e f g h ⊥
succa b c g e f ⊥ h ⊥
succ− ⊥ ⊥ ⊥ c c c ⊥ ⊥

FIGURE 2.6: Results of the application of the successor applica-
tion on each node of the execution example of Figure 2.4

int x=0 ;

void lock(void) { x = 1; }

void unlock(void) { x = 0 ; }

int canAccess(void){ return x == 0; }

FIGURE 2.7: Simple C representation of a lock.

For example, let the word

γ = (a, int), (b, int), (c, call), (d, int), (e, int), (f, int), (g, ret), (h, int)

depicted in Figure 2.5. The module 2 is called from the module 1 from c, and
returns in g. The successors applications succbγ are presented in Figure 2.6.

The CaRet Temporal Logic

Similarly to defining a Temporal Logic for standard words, nested word can
be extended with their own temporal logic using the new successor func-
tions.

Definition 10 Let AP a set of atomic propositions. The Temporal Logic CaRet is
defined by the following operators:

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xgϕ | Xaϕ | X−ϕ | ϕU gϕ | ϕUaϕ | ϕU−ϕ

where Xb and U b for b ∈ {g, a,−} are defined as Temporal Logic operations of
Definition 4 with the successor function succb.

Specification examples. In Section 2.3.1 were presented three possible re-
quirements that would be useful to express with temporal logics. Figure 2.7
depicts a naive implementation of a lock, represented by x. If x is equal to 0
the resource is free, otherwise the resource has been locked.

1. Gb (p⇒ x == 0), or when an event p occurs, then the lock must not be
taken. p could be the call of the function lock for example.

2. Gg (p ⇒ X−(x == 0), or when p occurs, the lock was not taken when
the current function was called.

2.4. Invariance and inductivity 27

3. Gg (F ax == 0), or anytime, the lock must have beed freed before ter-
mination of the current function.

2.4 Invariance and inductivity

2.4.1 Floyd-Hoare axiomatic semantics

In order to prove that an imperative program satisfies a given specification,
the main approach remains the Floyd-Hoare style of axiomatic semantics.
The Floyd-Hoare logic allows to express elegantly the relation between pred-
icates Pre and Post respectivelely before and after the application of a state-
ment S as follows:

{Pre} S {Post}

For example, the Floyd-Hoare triplet {x + y = 0} x = x + 1 {x + y = 1) is
valid.

2.4.2 Contracts

Symbolic computation is the branch of formal methods that analyses the be-
havior of a program by symbolizing program states by predicates, and prop-
agates these predicates through the control flow graph of the program (i.e. the
transition system with program instructions on its transitions). Reasonning
about the program requires to perform different steps on the programs and
verifying properties along the control flow graph. This is called deductive
verification. In this approach, programs must be annotated with contracts
on their behaviors (relations between input and output) and assertions giv-
ing, once proven, informations on the program at a given point. Even in
model-checking, assertions plays a fundamental role in the construction of
the Kripke structure and more precisely, the definition of the labelling func-
tion η supposed to link a program state to the set of properties that are veri-
fied at this state. In particular, loops have to be annotated with loop invariants.

Example of deductive verification with loop invariants The use of invari-
ants is introduced by Floyd [Flo67] and Hoare [Hoa69]. Let us consider the
Euclid’s algorithm of Figure 2.8.

Let us assume this algorithm satisfy the precondition x > 0 and y > 0.
This algorithm must satisfy the post-condition :

Result = gcd(x, y)

where x, y are natural integers and gcd is the greatest common divisor of a
and b. We can notice that this loop admits multiple invariants:

• a > 0

• b > 0

• gcd(a, b) = gcd(x, y).

28 Chapter 2. Mathematical definitions of program verification

a = x;
b = y;
while (a != b) do
if (a > b)
a = a-b;

else
b = b - a;

done
Result = a;

FIGURE 2.8: An implementation of the Euclid’s algorithm. The
if and the while conditions appear to match the actual algo-

rithm.

Proving the two first invariants is easy, as a and b are compared before
getting assigned. The third can be proven by induction. It is true at the
first iteration of the loop as a = x and b = y. Assume now that for a given
iteration, the invariant holds. Two cases are possible, either a > b or b > a.
The two possibilities leads to the respective Hoare triplets (gcd(a, b)) a =
a − b (gcd(a − b, b)) and (gcd(a, b)) b = b − a (gcd(a, b − a)) It is easy to prove
that gcd(a − b, b) = gcd(a, b) when a > b, as well as gcd(a, b − a) when b > a.
Also, a = b is not possible at the beginning of the loop as it would contradict
the loop condition. Therefore, the invariant gcd(a, b) = gcd(x, y) holds. When
the loop ends, gcd(a, b) = gcd(a, a) = a, it naturally comes that a = gcd(x, y)
by the last invariant.

2.4.3 Inductivity

Invariants that are preserved by a loop iteration are called inductive invari-
ants. This denomination is significant as not every loop invariant is pre-
served by a loop iteration. Indeed, take for example the loop in Figure 2.9.
In Chapter 5, we will prove that this loop admits the inductive invariant
x2 + y2 6 2. This invariant directly implies that x ∈ [−

√
2,
√

2] and y ∈
[−
√

2,
√

2] are also invariants of the loop. These invariants are however not
inductive as if x =

√
2 and y =

√
2, then after one loop step we have y =

1.32
√

2 /∈ [−
√

2,
√

2].

2.4.4 The field of invariant generation

The large size of industrial programs make the manual writing of invariants
burdensome, if not humanely impossible. That is why formal tools often rely
on invariant synthesizers to automatically generate loop invariants. Different
approaches have been developed in this direction1.

1Abstract interpretation is not mentioned in this list though it plays a major role in the
invariant generation field. It is treated in the next section.

2.4. Invariance and inductivity 29

(x,y) = (non_det(-1,1),non_det(-1,1));
while(*) do

(x,y) = (0.68 * (x-y), 0.68 * (x+y));
done

FIGURE 2.9: Affine loop admitting x2 + y2 6 2 as an inductive
invariant (in blue). The yellow square is also an invariant, but

it is not inductive.

Dynamic analysis

The most intuitive manner to check if a program behaves well or not is to
manually check the output of a random execution. Dynamic analysis is the
automation of the analysis of execution paths. LLVM [LA04] (for Low Level
Virtual Machine) has its own dynamic tester, AddressSanitizer [Ser+12] that
detects memory errors. E-ACSL [SKV17], part of the Frama-C [Kir+15] suite,
is based on symbolic and dynamic execution of C programs annotated with
ACSL [Bau+16] predicates. While it guarantees the presence of a bug if the
execution doesn’t validate its expected behavior, dynamic analysis is un-
sound as it can miss a undesired behavior or generate a false invariant due
to the large size of the input set. Proofs of reliability cannot be inferred from
dynamic analysis alone: it has to rely on static analyzers.

Invariant synthesizers also have their dynamic equivalents. The most
widely used is Daikon [Ern+01] that tries to infer likely invariants, i.e. valid
invariants for a large amount of loop iterations and therefore, good invariant
candidates. These candidates must be proven valid afterwards as they may
be valid for every execution tested, but without a full coverage of all possible
executions, there may exists an execution that doesn’t verify the invariant.

Acceleration

Dynamic analysis may be prohibitive due to its general imprecision. It gen-
erates invariants procedurally, in the sense that it is not the loop in itself that

30 Chapter 2. Mathematical definitions of program verification

is analyzed but its behavior with respect to an input. When verification re-
quires a precise study, it may be tempting to guess the exact set of reachable
states, or at least give a controlled over-approximation. In the field of linear
loop invariant generation, acceleration [Bar+05] has shown to provide excel-
lent results in terms of precision. Accelerating techniques are based on linear
algebra properties, taking advantage of finite monoïd transformations [GS14]
simple behavior. Finite monoid transformations are affine transformations
on a vector of variables x such that x = Ax+ b, where b is a vector and A is a
matrix such that there exists m and n such that Am = Am+n. The simple form
of the matrix A allows to get a linear relation between the initial state and the
loop counter. When linear transformations are not in this class, alternatives
involving matrix parametrization [JSS14] are used to over-approximate the
behavior of the transformation.

Direct techniques

Sometimes, a loop has a particular shape that allows mathematical theo-
rems to be directly applied to find an invariant. For example, solvable loops
of [RK07] can be handled with Gröbner bases to generate an ideal of polyno-
mial that contains all the invariants of the loop. Other techniques, like Karr’s
algorithm [Kar76] find invariants in simple linear programs given any form
of initial equality relation between variables. This algorithm can be extended
with polynomial invariants with the elevation technique of [MS04].

2.5 Abstract interpretation

Floyd-Hoare triplets are nice formalisms for reasoning on programs, as they
keep track of every possible behavior. In practice, not every piece of infor-
mation is relevant, which leads to bad computation time in generating the
predicates and proving the property. Abstracting predicates is often a good
trade-off between precision and computation time.

2.5.1 Intuition of abstract interpretation

As we saw in the Introduction of this thesis, keeping track of every possible
behavior of a program is necessary to prove its correctness. In static analy-
sis, behaviors are represented as contracts and hints provided by the user to
direct the proof of preconditions and postconditions. Very often, these con-
tracts manipulates relations between variables (in our example, inputs are
positive integers and the output is the gcd of the input). Keeping track of
every relation between variables can be difficult, especially when conditions
occurs as it is then necessary to keep track of each possibility. This would
result in an exponential number of relations in the number of conditions to
keep track of.

2.5. Abstract interpretation 31

It is often sufficient to focus on specific properties of variables. For exam-
ple, arithmetic overflows2 can be detected by analyzing only the intervals in
which the variables evolve.

Abstract interpretation [CC77] is a framework based on the analysis of
specific kind of properties. Instead of computing every possible information,
an abstract interpeter transfers abstract values through the program. These
abstract values represent an abstraction of the concrete program state, or in
other words, a predicate on the state that is verified at a given program point.
An abstract semantic is defined for each instruction so that they also can alter
abstract states (as the concrete semantics of an instruction alters the memory).

2.5.2 Abstract domains

Let P a set of atomic predicates associated to a partial ordering � such that:

• > ∈ P represents a predicate that is always true, and for all v ∈ P we
have that v � >;

• ⊥ ∈ P represents a predicate that is never true, and for all v ∈ P we
have that ⊥ � v.

We add to P a join operator, i.e. an operator t associating to two values
v and w a value z such that z is the smallest value such that v � z and w �
z. (�,t) defines a lattice. Abstract interpretation is based on two lattices:
the concrete set and the abstract set. These two sets are related by two total
applications that maps one element of a set to an element of the other. The
concretization application γ maps an element v] of the abstract set to an element
v of the concrete set, that is v = γ(v]) is a concretization of v]. Similarily, the
abstraction application α maps v to v], and v] is an abstraction of v. The couple
(α, γ) forms a Galois connection of the two lattices, i.e. the following relation
is satisfied:

α(v) � v′ ⇔ v � γ(v′)

2.5.3 A semantics on abstract values

The concrete semantics is a function fi mapping an instruction i and a con-
crete value v to the image of v after the application of the instruction i. A
semantics f ′i is a valid abstraction of fi if for every abstract value v, the con-
cretization of fi(v) is lower or equal (with respect to �) than the concretiza-
tion of f ′i(v). In other words:

(fi ◦ γ)(v) � (γ ◦ f ′i)(v)

Example. Let us consider the program in Figure 2.11 manipulating three
integers x, y and z. Our goal will be to prove that z ∈ [0, 1] at the end. The

2Values of variables are encoded in a finite number of bytes depending on its type. Over-
flows occur when the result of an operation gets higher than the maximal encodable value
for the type.

32 Chapter 2. Mathematical definitions of program verification

⊥

∅

>

]−∞,+∞[

...
...

...
...

... ...[0, 1] [1, 2] [2, 3] [3, 4]

...
...

...
...

FIGURE 2.10: A lattice for the inverval abstract domain. The
partial order can be defined with the inclusion: p � q ⇔ p ⊆ q.
We find in this lattice intervals and union of disjoint intervals.

y = [-1,1];
1. x = y
2. OR
3. x = y + 1;
4. z = x - y;

FIGURE 2.11: Example of a very simple program starting with
the initial state y ∈ [−1, 1].

2.5. Abstract interpretation 33

concrete set V is defined as P(Z), the concrete semantics is the application of
an assignment on the left term. The semantics for the condition instruction is
defined as the union of the two sets (this is the join operator).

First, let us analyze this program with the interval abstract domain I as
defined in Figure 2.10. The abstract semantics of intervals is defined as the
concrete semantics applied to the bounds of the interval. The classical inter-
val operations are defined as follows:

• [a, b] + [c, d] = [a+ c, b+ d]

• k ∗ [a, b] = [k ∗ a, k ∗ b] if k > 0, [k ∗ b, k ∗ a] otherwise

• [a, b] ∗ [c, d] = [min(a ∗ c, a ∗ d, b ∗ c, b ∗ d),max(a ∗ c, a ∗ d, b ∗ c, b ∗ d)].

The abstract semantics on the intervals is easier to compute than the concrete
semantics on sets, as the concrete semantics requires to apply an instruction
on every element of the set where the abstract semantics is only interested in
maximums and minimums.

The program starts with y ∈ {−1, 0, 1} as a concrete state, which is ab-
stracted by y] = α({−1, 0, 1}) = [−1, 1]. The first instruction is a condi-
tion, which respectively adds the information that x] = [−1, 1] and x] =
[−1, 1] + [1, 1] = [0, 2]. Therefore at the end of the condition, the union of the
two intervals is performed, which returns x] = [−1, 2]. By the last instruction,
we have that z] = [−1, 2]− [−1, 1] = [−2, 3]. The concretization γ(z]) of z] re-
turns that z ∈ {−2,−1, 0, 1, 2, 3}. This result is not very precise considering
that z can only be equal to 0 or 1. Note however that [0, 1] ⊂ [−2, 3], hence
the analysis remains sound.

The interval abstract domain is a non-relational domain as it doesn’t keep
track of relations between variables, which was the precision issue on the
example of Figure 2.11. Relational abstract domains like the octagon ab-
stract domain [Min06] allow to keep track of this information, but is generally
slower and harder to implement. In general, properties inferred by abstract
interpretations are over approximations of the set of possible states reachable
at a given program point.

2.5.4 Loops and widening operators

When an abstract interpreter reaches a loop, it tries to guess an overapprox-
imation of the reachable set of states at the beginning of the loop. In other
words, it will try to compute an invariant of the loop. Loops can be seen as
an undefinite number of conditions. Hence, their treatment require an un-
definite number of applications of the join operator, which is not possible in
general. For example, let us consider the loop starting at x = 0 and applying
x = x+ 1 until x 6= N , with N an integer. The interval abstract domain as we
defined it will start with x]0 = [0, 0], then after one loop iteration x]1 = [0, 1],
then x]2 = [0, 2], etc.. If the value of N is positive, then it is possible to find
after some applications of the join operator to find an inductive abstract value
overapproximating as well as possible the program state. This abstract value
is called the smallest fixed point. However, if N is negative, the smallest fixed

34 Chapter 2. Mathematical definitions of program verification

point would here be x]∞ = [0,+∞[. There exists an infinite number of ab-
stract value between [0, 1] and x]∞, therefore the analysis will not stop. One
possibility to solve this issue is to use a widening operator.

Widening operators ∇ are similar to the join operator t for a lattice L,
except that they work on a different lattice L′ with the order �L′ . There must
be in this new lattice no strictly growing infinite chain with respect to �L′ . In
other words, the widening operator will always be called a finite number of
time as there exists a finite number of elements before reaching >. For the
interval abstract domain, �L′ can be defined as follows:

• ⊥ �L′ ∅

•]−∞,+∞[�L′ >

• ∀a, b : [a, b] �L′ [a,+∞[�L′]−∞,+∞[

• ∀a, b : [a, b] �L′]−∞, b] �L′]−∞,+∞[

With this new lattice, increasing an upper bound automatically sets it to +∞
and decreasing a lower bound sets it to−∞. Applying the widening operator
on x]1 = [0, 1] and x]2 = [0, 2] results in x]∇ = x]1∇x

]
2 = [0,+∞[, which is here

the smallest fixed point.
The widening operator doesn’t always3 return the smallest fixed point.

If N had been calculated by the program in Figure 2.11, as z, the abstract
interpretor would also conclude with x]∇ = [0,+∞[as it would consider N
to be possibly negative. The smallest fixed point would be in this case [0, 1],
which is included in x]∇.

2.5.5 A widely used framework

Since [CC77], abstract interpretation became a more and more influent ac-
tor of the formal verification field. Its genericity allows to define one’s own
abstract domain dedicated to the proof of very specific properties.

Abstract domains. The following list is a non-exhaustive list of different
abstract domains that are used in modern abstract interpreters.

• The octagon abstract domain [Min06] keeps track of relations of the form
±x ± y 6 k, where x and y are variables of the program. This ab-
stract domain have shown to be faster than the polyhedra abstract do-
main [CH78] that expresses general linear inequalities over the vari-
ables of a program.

• The ellipsoid abstract domain [Rou+12] propagates constraints as polyno-
mials of degree 2. It has shown to efficiently approximate the behavior
of convergent linear filters4. However, they sometimes fail to catch pre-
cise properties while domains approximating ellipsoids tend to be faster
and more precise.

3In practice, almost never.
4We will study convergent lienar filters in details in Chapter 4.

2.5. Abstract interpretation 35

• The zonotope abstract domain [GGP09] is based on a quantified represen-
tation of the possible values of variables. Each variable is associated

to a sum of the form α0 +
n∑
i=1

αiεi where αi are coefficients defining the

zonotope and εi are parameters that belong to [−1, 1]. Zonotopes are
convex symetric polyheadra, hence they approximate elliposids quite
well.

• The gauge abstract domain [Ven12] is based on the discovering of linear
inequalities on linear programs. The representation of variables is simi-
lar to the zonotope representation, except the parameters do not belong
to a fixed interval but are counters evolving in N.

• The relational shape abstract domain [ILR17] is based on the discovery of
relational properties over the memory manipulation of a program.

• Some approaches are directly inspired from abstract interpretation. For
example in [MBR16], the initial state is divided in multiple subsets ab-
stracted in a given domain. The inductivity of each subset is tested: if it
is inductive, it is conserved in the final invariant; otherwise it is divided
again, etc.

Abstract interpreters. The Frama-C framework [Kir+15] implements a plug-
in, EVA [BBY17], that uses different domains provided by APRON abstract
domain library [JM09] for the analysis of C programs. Polyspace [Deu03] is
an abstract interpretation tool that have been initially developped as a pro-
totype automatically detecting the Ariane 5 bug [Lan97] and which is now
designed to analyze C and C++ source code. Fluctuat [Gou13] uses the zono-
tope abstract domain [GPV12] that handles floating point operations and ap-
proximations. Java also has its own abstract interpreter, the Julia Static Ana-
lyzer for Java [Spo82].

37

Part II

Polynomial invariants for
polynomial loops

39

Chapter 3

Polynomial loops don’t exist

Contents
3.1 Elevation of linear transformations 40

3.1.1 Principle of the linearization 40

3.1.2 Linearization . 42

3.1.3 Linearizable and exponential 42

3.2 Linearization . 43

3.2.1 Intuition . 43

3.2.2 Linearization theorem 43

3.3 Algorithm . 47

3.3.1 Solvability test . 48

3.3.2 Linearization . 51

3.4 Properties of elevated matrices 52

3.4.1 Elevation matrix . 52

3.4.2 Eigenvector decomposition of Ψd(A) 52

3.5 Application to formal verification 55

Requirements: Linear algebra (Section 2.1)

The role of a loop statement is to compute a certain amount of time, pos-
sibly infinite, the same transformation. Expressing the exact transformation
performed by the whole loop is as hard as determining the number of itera-
tions n, in the sense that knowing n allows to unfold the loop and determin-
ing the exact operation described by the loop statement. When n is infinite,
verification problems are to guessing whether if a given state is reachable
in a finite but arbitrary number of steps [KL80] or not. Determining either
n is undecidable in general, that is why the study of loops is a challenge in
program analysis.

Consider a polynomial transformation f of degree d. As such, f belong
to one of the following categories:

• fn is exponential in n, for example if f(x) = x2 we have fn(x) = x2n.

• fn is polynomial in n, for example if f(x, y) = (x + y2, y + 1) we have
fn(x, y) = (x+ (y+n−1)(y+n)(2(y+n)−1)

6
, y + n).

40 Chapter 3. Polynomial loops don’t exist

one = 1;
y2 = y * y;

while(...){ while(...){
x = x + y * y; x = x + y2;

y2 = y2 + 2*y + one;
y = y + 1; y = y + one;

} }

FIGURE 3.1: Example of polynomial loop and its linear equiva-
lent

Let’s focus on the second example f(x, y) = (x + y2, y + 1) in Figure 3.1.
This transformation contains a polynomial expression, y2. The value of y2

after one iteration of f is (y+ 1)2 = y2 + 2y+ 1, which is a linear combination
of y2, y and 1. If we add variables y2 and 1 respectively initialized to y2 and
1, then g(x, y, y2,1) = (x + y2, y + 1, y2 + 2y + 1,1) is a linear transformation
that computes the same result than f .

The purpose of this chapter is to correlate the property of fn to be a poly-
nomial in n and the existence of a linear transformation g computing the exact
same image given some preconditions over the initialization on the variables
used by g. Section 3.1 formalizes elevation, a technique used for representing
the evolution of monomials of variables transformed by an affine transfor-
mation without using polynomial expressions. Elevation can be applied to
a certain class of polynomial transformations, known as solvable transforma-
tions. Section 3.2 defines the concept of linearization, allowing the representa-
tion of solvable transformations as linear transformations, like in Figure 3.1.
It also proves the equivalence between the solvable transformation and the
linearizable transformation classes. Section 3.3 introduces two algorithms.
The first presents a quadratic test of the linearizability of a given polynomial
transformation f . The second computes the linear transformation g that has
the same image as f . Finally, Section 3.4 studies the eigenvector and eigen-
vector decomposition of an elevated transformation. This chapter is partially
based on work that has been presented in [OBP16].

3.1 Elevation of linear transformations

3.1.1 Principle of the linearization

Linearization relies on the following observation: if some variables evolves
affinely, any monomial composed of those variables also evolves affinely. For
example, let g(x, y) = (x+2, y+x). The value of x2, denoted (x2)′, after one ap-
plication of g is (x+2)2 = x2+4x+4, which is an affine combination of x2 and x
Also, (y2)′ = (y+x)2 = y2+2xy+x2 and (xy)′ = xy+x2+2y+2x are affine com-
binations of x2, y2, xy, x and y. Finally, it is possible to replace the affine con-
stants by a variable 1, which remains constant. As a result, the linear mapping
f(x, y, x2, xy, y2,1) = (x+2.1, y+x, x2+4x+4xy+x2+2y+2x, y2+2xy+x2,1)

3.1. Elevation of linear transformations 41

FIGURE 3.2: The elevation principle is closely related to the lin-
ear algebra notion of similarity. Changing the baseX to the base
Y is reversible before and after any number of application of the
similar linear transformations f and g, i.e. for which there exists
a linear invertible transformation P such that g = P−1 ◦ f ◦ P .

computes the same image as g, extended by the initial monomials value (Fig-
ure 3.2) where x2, y2 and xy respectively encode the monomials x2, y2 and xy.
This technique is commonly used to generate polynomial invariants with a
linear invariant inference algorithm, as for example in [MS04] using Karr’s
invariant inference algorithm [Kar76] for affine programs. We claim that ev-
ery linear transformation g manipulating a vector of variables X can be el-
evated to express the behavior of any monomial of variables of X . In other
words:

Property 2 For every linear transformation g : Qn → Qn and every polynomial
P ∈ (Q[X]n), there exists a polynomial Q and a linear transformation f such that

(f ◦Q)(X) = (P ◦ g)(X)

Proof. Let X = (x1, ..., xn) a vector of variables and m =
n∏
i=1

xpii any mono-

mial of degree d of those variables. The value of m′, according to g, is

n∏
i=1

(g(X)|xi)
pi

which is a polynomial of degree d. It can then be expressed as a linear com-
bination of monomials of degree d or lower. As this is true for any monomial
of any degree, they all are linear combinations of monomials of degree d or
lower. As such, the image of a monomials sum, i.e. a polynomial, is a poly-
nomial of lower or equal degree. By setting Q the polynomial computing the
required monomials to expressm′, P ◦g can be expressed as a linear combina-
tion of monomials, whose new values are linear combinations of monomials.

42 Chapter 3. Polynomial loops don’t exist

3.1.2 Linearization

The elevation principle can be extended to polynomial transformations. As-
sume a monomial appears in a transformation, and that every variable of this
monomial evolves affinely. By Property 2, it is possible to replace this mono-
mial by a new variable evolving linearly. By extension, it is then possible to
replace a polynomial mapping by a linear mapping.

Definition 11 g is linearizable if there exists two polynomials P and Q such that
Q ◦ P = Id and a linear mapping f such that for all X

g(X) = (Q ◦ f ◦ P)(X) (3.1)

Linearizability, just like elevation, is similar to changing the base of a
given linear transformation, with the difference that the new base extends
the old one by polynomial expressions on new dimensions (Figure 3.2). Note
that we also have that gn(X) = (Q ◦ fn ◦ P)(X) for any n ∈ N as Q ◦ P = Id.
In order to have this identity, it is possible to define P as a transformation
performing, among other, the identity on each variables, and as Q the pro-
jection on the initial variables. For example, P (x, y) = (x, y, x2, x.y, y2) and
Q(x, y, x2, xy, y2) = (x, y) verify Q ◦ P = Id.

Example 1. Let g1(x, y, z) = (x + 2, y + x2, z + y2) a polynomial mapping.
The only monomials appearing in g1 are x2 and y2. As x evolves linearly,
it is possible to express the value of (x2)′ = x2 + 4x + 4. Given the right
initial value of x2, the mapping f(x, y, x2) = (x + 2, y + x2, x2 + 4x + 4) is an
affine transformation that computes the value of y′ with respect to g1. In this
case it is also possible to linearize (y2)′ = y2 + 2x2y + x4, as x4 and x2y also
are linearizable by expressing x3 and xy. To precisely match Definition 11,
P (x, y) = (x, y, x2, x3, x4, xy, x2y, y2) and Q(x, y, x2, x3, x4, xy, x2y, y2) = (x, y).

Example 2. Let g2(x) = x2. There is only one monomial, x2, whose next
value according to g2 is (x2)2 = x4. This new monomial has a higher degree
and is directly dependent on x. This transformation is actually not lineariz-
able, which could have been guessed from the beginning. Indeed, for any
initial value of x > 1, its evolution through multiple executions of g2 is expo-
nential in the variable x (2, 4, 16, 256, ...). There exists no affine transforma-
tion that can perform such a calculation.

3.1.3 Linearizable and exponential

There exist two different types of polynomial transformations. First, lineariz-
able transformations like g1 admit a polynomial behavior that can be simu-
lated by an affine mapping. Next, non-linearizable transformations like g2

allow an exponential growth that linear algebra cannot handle. The first class
admits multiple types of transformations as we saw in Example 1:

• affine transformations (in the Example 1, x);

3.2. Linearization 43

• polynomial transformations depending on affine variables (y depends
on x);

• polynomial transformations depending on linearizable variables (z de-
pends on y).

There exists a class of polynomial transformations introduced in [RK07]
that are known to be linearizable, namely solvable mappings.

Definition 12 Let g ∈ K[X]m be a polynomial mapping. g is solvable if there exists
a partition of X into sub-vectors of variables w1, ..., wk such that ∀j, 1 6 j 6 k we
have

gwj(X) = Mjw
t
j + Pj(w1, ..., wj−1)

with (Mi)16i6k a matrix family and (Pi)16i6k a family of polynomial mappings.

Section 3.2 will detail the link between solvable mappings and lineariz-
ability.

3.2 Linearization

3.2.1 Intuition

Linearization is inspired from Carleman linearization [KS91] that is used in
the field of differential equations. Linearizing transformations requires to
linearize successively each subset of the partition. w1 is already affine, each
variable of w2 have in their expressions linear combinations of variables of
w2 and monomials of w1. Thus they can be linearized, and so does w3 for the
same reason, etc.

3.2.2 Linearization theorem

This section is dedicated to the proof of the following theorem:

Theorem 1 Let g be a polynomial transformation. g is solvable⇔ g is linearizable

Solvable mappings are linearizable

Let g ∈ Q[X]m be a solvable polynomial mapping. There exists a partition of
variables X = w1 ∪ ... ∪ wk such that

gwj(X) = Mjw
T
j + Pj(w1, ..., wj−1)

We will prove that g is linearizable, i.e. there exists f , P and Q such that
Q◦f ◦P = g with Q◦P = Id. Let us take P the polynomial computing every
monomial of variables of X and Q the projection on the initial variables (i.e.
the monomials of degree 1). The idea is to prove that the image of every
monomial described by P evolves linearly. We proceed by induction on the
size k of the partition of the variables of g. We can state that :

44 Chapter 3. Polynomial loops don’t exist

• If k = 1, X = w1, then gw1(X) = M1w
T
1 + P1, where P1 is a constant.

Then it is clear that gw1 is an affine transformation.

• Assume we can compute a linear application f from g such that g(X) =
Q ◦ f ◦ P (X) if there exists a partition of k sets of variables satisfying
the solvable hypothesis. Let h be a solvable polynomial mapping for
which there exists a partition of X into k + 1 subvectors of variables
X = w1] ...] wk+1, wi ∩ wj = ∅ if i 6= j. By induction hypothesis, we
can linearize hwi for 1 6 i 6 k. Now, the key point is to find a way to
linearize

hwk+1
(x) = Mk+1w

T
k+1 + Pk+1(w1, ..., wk)

First, let’s note that no variable of wk+1 have been used in any other hi.

Let v =
n∏
i=0

vλii a product of variables in (w1 ∪ ... ∪ wk). It can appear in

P as vd, where d in an integer. We know, by induction hypothesis, that
the evolution of vi following the h transformation can be expressed as
a linear application f with the help of extra variables.

We can then use Property 2, stating that there exists Q and f such that
(f ◦ Q)(X) = g(X) (here, g is a polynomial). Let Q the polynomial
computing all the monomials of variables of w1 up to the maximal de-
gree of a monomial appearing in the expression of w2. Expressions of
variables of w2 are now linear as all monomials are now replaced by
new variables introduced by Q. By induction, let g can similarly be lin-
earized up to wn−1. The same argument as for w2 can be used by using
the partitionning w′1 = w1] ...] wn−1 (linearized variables) and w′2 = wn
(polynomials of newly linear variables).

�

Non-solvable mappings are not linearizable.

Example 2 presented the non-linearizable transformation g2(x) = x2. Let us
take a similar example g3(x, y) = (y, x2). g3 is not solvable, but no variable
directly polynomially depend on itself. However the next value of the mono-
mial xy is x.xy, a polynomial of xy.

There exists a link between the polynomial self dependency of variables
(or monomials) and the non-linearizability, which was not the case in Exam-
ple 1. Let us formally define dependency as follows:

Definition 13 Let g ∈ (K[X])m m polynomial mappings. Let x, y two variables
(possibly equal). We define the dependency operators ^ and ·̂ such that:
• x^y ⇔ y appears in the expression of x′ (depends on)
• x ·̂ y ⇔ y is multiplied by at least one

variable in the expression of x′ (polynomially depends on)
By extension, a monomial of variables m =

∏
vpv linearly or polynomially de-

pend on variables or monomial of variables, by considering m′ =
∏
g|v(X)pv

Note that x ·̂ y ⇒ x^y

3.2. Linearization 45

Remark. Consider that x^y when y appears in the expression of f(X)|x and
x ·̂ y when y appears in a monomial of degree d > 1 in the expression of
f(X)|x . In the case of the Example 1, the dependencies of y can be expressed
as (y^y) and (y ·̂ x), while dependencies of x is x^x and dependencies of z
are (z^z) and (z ·̂ y).

For the Example 2, it is clear that x ·̂ x.

Property 3 Let g a polynomial transformation. If there exists a monomial of vari-
ables m such that m ·̂ m, then g is not linearizable.

Proof. Let m a monomial of variables. If m ·̂ m, then m appears in a mono-
mial m ∗ n with n a monomial of degree at least 1 in the expression of m′

of the new value of m after one application of g. The new value of m.n
will depend on m.n2, that will depend on m.n3, etc. Assume that g is lin-
earizable, i.e. there exist two polynomials P,Q and a linear application f
such that g(X) = (Q ◦ f ◦ P)(X). P is a finite polynomial. By definition,
m depend on m.n, thus f is necessarily able to compute the image of m.n
(m′ = m.n + ... ⇒ m.n = m′ − ...). Similarly, it necessarily must be able to
compute the image of m.nk for any k ∈ N. With the finite information given
by P , can the finite linear application f express every monomial m.nk ? If
so, there would exist then an expression of c ∗m.nk for all c ∈ K and k ∈ N.
Then, we would be able to express x.(

∑
i∈N

mi

i!
) = x.em as a linear transforma-

tion. As em is not linear inm, this is clearly absurd. Thus, there exist no linear
application capable of representing g if m ·̂ m.

This property immediately allows concluding on the non-linearizability
of g2 in Example 2. The key of the proof is to extract a monomial that neces-
sarily will depend on itself

Definition 14 A set of variables v1, ..., vn is a dependency chain if ∀1 6 i <
n, vi^vi+1. It is said polynomial if there exists a polynomial dependency in the
chain, otherwise it is said linear. In any case, we say that v1 eventually depends
on vn. A dependency cycle is a chain verifying vn^v1. If the cycle contains a poly-
nomial dependency, we speak of a polynomial dependency cycle. Note that in that
case, if we have vi ·̂ vi+1, then vi+1, ..., vn, v1, vi is also a polynomial dependency cy-
cle, with a polynomial dependency between the last and first element: by convention,
we will assume in the following that all such cycles are written that way.

A difference between g1 in Example 1 and g2 in Example 2 is the existence
of a dependency cycle with one polynomial dependency in the second case,
while the first one only has linear dependency cycles. This observation can
be generalized for solvable transformations:

Property 4 g is solvable⇔ there exists no polynomial dependency cycle

Proof.

46 Chapter 3. Polynomial loops don’t exist

• If g is solvable, then by definition there exists a partition w1, ..., wn of
variables such that

gwj(x) = Mjw
t
j + Pj(w1, ..., wj−1)

Assume there exists a polynomial dependency cycle v1, ..., vm with vm ∈
wm′ . As vm ·̂ v1, we have v1 ∈ wk with k < m′ by definition of solvable
transformations. Also, as ∀i, vi−1^vi, we have that vm−1 ∈ wk′ with
k′ 6 k < m′. Variables of wk′ cannot depend on variables of wm′ , so
vm−1 cannot depend on vm, which is a contradiction. Thus, there exists
no polynomial dependency cycle.

• If there exists no polynomial dependency cycles for a given transforma-
tion g, we will build by recurrence a partition of variables showing that
g is solvable. First, we need the following lemma to simplify the proof.

Lemma 2 Let V a finite variable set. If for any variable v ∈ V there exists
a chain C = v1, ..., vc with v1 = v containing a polynomial dependency, then
there exists a polynomial dependency cycle in V .

Proof. Because there is a finite number of variables, it is possible to
show the existence of a cycle. Starting with v = v1, we build the chain C0

up to vi such that vi−1 ·̂ vi. Then, we build C1 from vi which eventually
polynomially depends on another variable vj . If by building C = C0 →
C1 → we get to a variable z ∈ C, then there would exist a polynomial
dependency cycle. As there is a finite number of variables and C grows,
C eventually reaches a visited variable.

The initial set w1 is characterized by two properties: variables evolve
linearly and only depend on themselves.

1. First, there necessarily exist variables that evolve linearly. Oth-
erwise, every variable v would polynomially depend on another
variable. In other words, any variable v would start a polynomial
dependency chain, which by lemma 2 implies the existence of a
polynomial dependency cycle.

2. Let L the set of variables evolving linearly. To build w1, we also
need to show that there exists a subset of L that only depends on
itself, i.e. any variable ` ∈ L linearly depends on variables of L.
Assume that any variable x ∈ L belongs to an affine dependency
chain C ending with y and such that y /∈ L. In other words, x even-
tually depends on y, which polynomially depends on another vari-
able. Thus elements of L all start a polynomial dependency chain,
inducing by lemma 2 the existence of a polynomial dependency
cycle which is absurd. There exists thus a set of variables w1 ⊆ L
depending only on themselves.

3.3. Algorithm 47

Assume now g is solvable from w1 to wj (i.e. satisfies the properties of
a solvable mapping up to j) and that there are still variables not in wi
with 1 6 i 6 j. We will show that the set of variables polynomially
depending on w1, ..., wj and that linearly depends on themselves is not
empty. Let W = (w1 ∪ ... ∪ wj), W̄ = X\W the variables not in W
(W̄ 6= ∅) and let v ∈ W̄ .

1. Assume now any variable v ∈ W̄ polynomially depend on a vari-
able of W̄ or start a polynomial dependency chain in W̄ . Then by
lemma 2 there would exist a cycle, which is absurd. Thus, there ex-
ists variables of W̄ that that do not polynomially depend on vari-
ables of W̄ .

2. Let P ⊂ W̄ the set of variables that do not polynomially depends
on variables of W̄ . We have to show that there exists a non empty
P ′ ⊆ P such that for any p ∈ P ′, p linearly depend only on vari-
ables of P ′∪W and polynomially on variables ofW . Assume there
exists no cycles and that for any variable p ∈ P , p belongs to a lin-
ear dependency chain C ending with q /∈ P ∪W . By construction
of P , q polynomially depends on at least one variable of W̄ (other-
wise q would be in P). Any variable v of W̄\P polynomially de-
pends on variables of W̄ by definition. Thus, for any variable of W̄
there exists a polynomial dependency chain of variables, which by
lemma 2 implies the existence of a polynomial dependency cycle.
This is absurd, thus there exists at least one variable p that admit
no dependency chain ending with a variable out of P ∪W . Let P ′

the set of such variables. Every variable v of this set polynomially
depends on variables of W , and linearly depends on variables of
P that admits no dependency chain out of P ∪W . In other words,
v depends on variables of P ′ ∪W only. We conclude this proof by
setting wj+1 = P ′.

As there exist only a finite number of variables, eventually we will have
W̄ = ∅
�

Completeness theorem. We can now prove Theorem 1, stating that any
non-solvable transformation cannot be linearized. Let g be a non solvable
transformation. By Property 4, there exists then a polynomial dependency
cycle C = (v1, ..., vn). Let m = v1 ∗ v2 ∗ ... ∗ vn the monomial of all the variables
of C. With respect to g, the new value of m = v1 ∗ v2 ∗ ... ∗ vn would then
polynomially depend on v2 ∗ ... ∗ vn ∗ v1 = m. By Property 3, g is then not
linearizable.

3.3 Algorithm

There are two aspects of the problem : detecting whether a transformation f
is solvable or not and linearize f if possible.

48 Chapter 3. Polynomial loops don’t exist

f(x1, x2, x3, x4) = (x′1, x
′
2, x
′
3, x
′
4),

x′1 = x1 − 2x2 + 3x3 − 4x4

x′2 = x1 + x2 + x3x4

x′3 = 2x3 − x4

x′4 = 2x3 + x4

FIGURE 3.3: Dependency graph of the transformation

3.3.1 Solvability test

This first aspect can be reduced to finding cycles in a directed graph, with the
slight variation of constraining the type of transition that must be taken along
the way. This graph will contain a node for each variable of the transfor-
mation and transitions representing the dependency type between variables.
There exist thus two types of transitions : linear dependency transitions and
polynomial dependency transitions.

Definition 15 Let g be a polynomial transformation. Its dependency graph G =
(V,E) is a directed graph defined as follows.

• V is the set of vertices labeled by each variable of g

• E = El ∪ Ep the set of edges such that

• (x, y) ∈ El ⇔ x^y

• (x, y) ∈ Ep ⇔ x ·̂ y

Figure 6.1 illustrates such a graph for the transformation f . Transitions
(x2, x3) and (x2, x4) represent polynomial dependency transitions. There is
no cycle in this graph going through a polynomial dependency transition,
thus this mapping is solvable.

Detecting such cycles can be checked by a linear time algorithm (cf. Fig-
ure 3.4) and in the same time generate the variable partitioning. The function
color_dfs searches for non trivial cycles in the graph. If the cycle contains
polynomial edges, it returns ⊥. If there is no cycle, it changes the color of the
visited nodes and returns ∅. Later, if dfs enters a colored node it can guess
whether it is a cycle or an already visited branch, making each node visited
only once. The function merge merges nodes of a linear dependency cycle in a

3.3. Algorithm 49

Require:g: a polynomial mapping
Ensure:a partitioning of variables if g is solvable or⊥ if it is not solvable

(V,E) = dep_graph(g)
for all v ∈ V do
w = color_dfs(v, (V,E))
if w 6= ⊥ then

merge(w)
else

return ⊥
end if

end for

FIGURE 3.4: Solvability checking and partitioning.

Require:v a node, (V,E) a graph, path the current path
Ensure:a linear cycle of variables w or ⊥ if there exists a polynomial
cycle
v′ = v
path = ∅
if v′ is colored then
cycle = get_cycle(path)
if path has a polynomial edge then

return ⊥
else

return cycle
end if

else
color(v′)
for all n ∈ next(v′) do
cycle = color_dfs(n, (V,E), path ∪ {v′})
if cycle = ⊥ then

return ⊥
else

if cycle 6= ∅ then
return cycle

end if
end if

end for
return ∅

end if

FIGURE 3.5: Recursive version of the color_dfs algorithm.

50 Chapter 3. Polynomial loops don’t exist

single node. Transitions going in and out of any of the node merged are given
to the new node. Finally, it deletes nodes of the cycle. When the loop ends,

Require:w a node set
Ensure:a merged node nw
nw = new_node()
for all v ∈ w do

add_succs_and_preds(v, nw)
delete(v)

end for

FIGURE 3.6: Algorithm of merge.

there is no more cycle on the loop unless the mapping is not solvable. In the
first case, variables of the leaves evolve linearly and only depend on them-
selves : they form the first partitioning set. Their fathers may polynomially
depend on them, but linearly depend on themselves and on no other vari-
ables, they form the second partitioning set. The function partitions applies
this principle by going through the tree and registering each node merged .

Example. On the previous example, applying the algorithm returns the
graph in Figure 3.7. By starting on x1, the dfs detects the linear cycle (x1, x2, x1).
It merges the two nodes and continues from the new node x1, x2. From there,
it detects the other linear cycle (x3, x4, x3), and merges the two nodes. Par-
titionning is now complete, and it is easy to check this new graph has no
polynomial cycles.

Complexity. Each node and each transition of the dependency graph is
reached at most once during the deep-first search if, when a merge is per-
formed, the dfs starts from the merged node. The complexity of the solvabil-
ity test is O(n+ |D|), where n is the number of variables and |D| the number
of dependencies of the tested transformation. At most, every variable is in
relation with every other variable, thus |D| = n2.

FIGURE 3.7: Result of the partitioning algorithm.

3.3. Algorithm 51

Property 5 The solvability test has a complexity O(n2), where n is the number of
variables.

3.3.2 Linearization

For each monomialm in the transformation, compute the next value ofm as a
linear transformation of monomials M , which must be recursively linearized
too. If the mapping is solvable, the set of variables composing monomials

Require:g a solvable mapping
Ensure:f the linearized mapping
f = g
for all monomial m ∈ f do
m′ = 1
for all monomial vd ∈ m do
m′ = m′ ∗ f(v)d

end for
f.add(m 7→ m′)

end for
for all monomial m ∈ f do
v = new_var(m)
substitute(m,v)

end for

FIGURE 3.8: Linearization algorithm.

of M eventually decreases as polynomial expressions occurring in the trans-
formation uses variables of a smaller set. Thus, linearization always ends.
Once the first loop is over, it is necessary to replace monomials by the new
variables representing monomials. This is the purpose of the second loop,
creating fresh variables for each monomials and substituting them in f to
their corresponding monomials.

Complexity. Only linearizing monomials appearing in the initial transfor-
mation is not sufficient. During the nested loop of the algorithm in Figure 3.8,
new monomials can appear during the computation of m′. For example,
when linearizing f(x, y, z) = (x + y3, y + z3, z + 1), z9 needs to be linearized
though it does not appear in f . If we express all monomials of maximal de-
gree d, we need

(
d+n
n

)
new variables. For solvable mappings, this degree is in

the worst case a O(d′) where d′ is the product of all degrees. In other words,
the worst case complexity of linearization is O(

(
d′+n
n

)
)

Note that this is a strict over-approximation that is never reached in prac-
tice. For the previous example, not all monomials of degree 9 (or less) need
to be linearized (for example, x2 will not appear in the linearized transfor-
mation of f). In the worst case, all variables of wi must be elevated up to di,

where di =
k−1∏
j=i

dwj , and dwj the degree of g(X)|wj .

52 Chapter 3. Polynomial loops don’t exist

Remark about elevation. Elevation is very similar to linearization. It starts
with a linear transformation g and a degree d, then generates the linear trans-
formation f transforming of all monomials of degree d. It is sufficient to
express the monomials new value with respect to g as polynomial transfor-
mations (i.e. Pd ◦ g), then replacing each monomial by a brand new variable.
This elevated transformation f requires

(
n+d
n

)
variables.

3.4 Properties of elevated matrices

After linearization, the matrix representation of a solvable transformation
has specific properties.

3.4.1 Elevation matrix

Let us define the elevation matrix, i.e. the linear transformation expressing the
new monomials values.

Definition 16 Let X be a vector of variables. We denote Ψd(X) the vector of mono-
mials of variables ofX of degree d or less. By extension, we define Ψd(A) the elevated
linear transformation of A such that Ψd(A).Ψd(X) = Ψd(A.X)

For example, if we have A =

(
a b
c d

)
as a transformation for X = (x, y),

we have Ψ2(X) = (x2, xy, y2, x, y) and

Ψ2(A) =


a2 2ab b2 0 0
ac ad+ bc bd 0 0
c2 2cd d2 0 0
0 0 0 a b
0 0 0 c d


3.4.2 Eigenvector decomposition of Ψd(A)

Ψd conserves a lot of very interesting properties of matrices:

Lemma 3

1. Ψk(A.B) = Ψk(A).Ψk(B)

2. Ψk(A
−1) = Ψk(A)−1

Proof.

1. Ψd(A).Ψd(B)Ψd(X) = Ψd(A).Ψd(B.X) = Ψd(A.B.X) = Ψd(A.B)Ψd(X)

2. Ψd(A
−1).Ψd(A).Ψd(X) = Ψd(A.A

−1X) = Ψd(X) so Ψd(A
−1).Ψd(A) = Id.

�
The multiplication and inversion of the elevation matrix allows to add the

following property:

Property 6 LetA,B two similar matrices. For any d, Ψd(A) and Ψd(B) are similar.

3.4. Properties of elevated matrices 53

Proof. If A and B are similar, there exists a matrix P such that A = P−1BP .
By Lemma 3, Ψk(A) = Ψk(P)−1.Ψk(B)Ψk(P), therefore Ψk(A) is similar to

Ψk(B). �
Also, elevation preserves the triangularity of the matrix:

Property 7 If J is upper (or lower) triangular, then Ψd(J) is upper (or lower) tri-
angular for any d.

Proof. To understand the proof, let’s see what happens for d = 2 and n = 2.

If λ and λ′ are eigenvalues of A, then J =

(
λ b
0 λ′

)
with b = 0 or 1 . then:

Ψ2(J) =


λ2 2λb b2 0 0
0 λλ′ bλ′ 0 0
0 0 λ′2 0 0
0 0 0 λ b
0 0 0 0 λ′


As the second variable only depends on itself, its monomials also only

depend on themselves. This is the key of the general proof.

Definition 17 Let f a linear application. We define a dependency order ≺f on
V ar a total order such that for all x ∈ V ar, f(X) restricted to x depends only on
a linear combination of variables V for which ∀y ∈ V, y �f x. We also say that f
respects ≺f .

The idea behind this is that an upper-triangular matrix J induces such an
order: the last element xn only depend on himself, the previous element xn−1

depends on himself and xn, so xn ≺A xn−1, etc..
We define≺J as an order that J respects. Let us show that Ψk(J) is upper-

triangular by choosing the lexicographic order≺gJ with respect to≺J , defined
as:

• If x ≺J y two variables, then x ≺gJ y.

• If m1 ≺gJ m2, then for any monomial m3, m1.m3 ≺gJ m2.m3.

If x ≺gJ y then by definition x ≺J y. Moreover, m1 ≺gJ m2 ⇒ (m1 does
not appear in the expression of m2), then let m3 any monomial. As m1.m3 ≺gJ
m2.m3, we can clearly see that m1.m3 does not appear in the expression of
m2.m3. Therefore :

Lemma 4 Let J an upper triangular matrix,≺J be a dependency order respected by
J . Then for any k ∈ N, ≺gJ can be a dependency order for Ψk(J).

By definition of the lexicographic order, we can state that for all x, y, z ∈
V ar, if x ≺J y �J z, then yizj ≺gJ xi+j is impossible for all i, j as x does not
depend on y or z, but the contrary is false. Thus :

Lemma 5 Let f a linear application, ≺f a dependency order on f , x, y ∈ V ar. Let
Mond(x, y) the set of variables representing monomials of degree lower or equal to d
depending on x and y. Then z ≺f x ≺f y ⇒ ∀v ∈Mond(x, y), zd �gf v.

54 Chapter 3. Polynomial loops don’t exist

In other words, in a triangular matrixM representing x, y, z and its mono-
mials, if x and y are over z and M respects≺gM , then xi.yj will always be over
zk, for every i, j, k with k 6 i+ j.

Let x, y two variables and ϕx, ϕy the vector of coefficients of J on the line
of respectively x and y, except the coefficient of x and y. In other words, for

X the vector of variables, we have: x′ = λx.x+ ϕx.X
y′ = λy.y + ϕy.X

When one develop xi.yj , there is :

• 0 for monomial variables of strictly higher degree ;

• for any variable t ≺ x ≺ y, 0 for monomial variables containing t by
lemma 5 ;

• 0 for monomials xi′ .yj′ with i′ + j′ = d and i′ > i ;

• a coefficient λix.λjy for the variable xi.yj , which will be on the diagonal
of Ψk(J).

The third point is true because if x ≺J y, then xiyj ≺gJ xi−1yj+1 and ≺gJ is
a dependency order for Ψk(J) by Lemma 4.

Ψk(J) will be upper-triangular itself by respecting ≺gJ .
�
Eigenvectors behave simply by the transformation Ψd:

Property 8 Let A ∈ Md(Q),Λ(M) the eigenvalue set of a matrix M and d an
integer. Then for any product p of d or less elements of Λ(A), p ∈ Λ(Ψd(A)).

Proof. Let us consider J the Jordan normal form of A. As we are working
with C, which is an algebraically closed field, A is similar to J (ie. ∃P.A =
P−1JP), with

J =


J1 0 ... 0

0
.

... 0
0 ... 0 Jk

, and Ji =


λi 1 ... 0

0
.

... 1
0 ... 0 λi

 for 1 6 i 6 k.

By Property 6, Ψd(A) and Ψd(J) are similar, hence have the same set of
eigenvalues. The transformation of a variable x by J can be either of the
form λ.x, or λ.x+ y, with λ an eigenvalue of J and y another variable.

Let x1 and x2 two variables in the base of J . As x′1 = λ1x1 + y1 and
x′2 = λ2x2 + y2, then (x1x2)′ = λ1λ2x1x2 + ... As Ψd(J) is upper triangular
by Property 7, then the coefficient of x1x2 in the expression of (x1x2)′ is an
eigenvalue. The generalization for more than 2 variables is straightforward
by induction.
�
There is also an interesting property about eigenspaces of Ψd(A):

Property 9 If A admits a generalized eigenvector ϕ associated to λ of order n (i.e.
(A− λ.Id)n−1.ϕ 6= 0 and (A− λ.Id)n.ϕ = 0) and an eigenvector associated to λ′,
then Ψd(A) admits a generalized eigenvector associated to λ.λ′ of order n.

3.5. Application to formal verification 55

Proof. Let us first prove this theorem for d = 2. Let λ, λ′ two eigenvalues.
If A admit a generalized eigenvector vλ of order n for the eigenvalue λ, then
there exist v1, v2, ..., vn ∈ Qn such that

v′1 = λ.v1

v′2 = λ.v2 + v1

...
Also we have that vλ′ = λ′.vλ′
For all i, vi(X).vλ′(X) is a polynomial of degree 2, or in other words

a linear combination of monomials of degree 2. Let us prove that wi the
vector such that wi(Ψ2(X)) = vi(X).vλ′(X) is a generalized eigenvector as-
sociated to λ.λ′ of order n by recurrence. If n = 1, then it is clear that
(Ψ2(A).w1)(Ψ2(X)) = λλ′.v1(X).vλ′(X) = λλ′.w1(Ψ2(X)) for all X . Therefore,
w1 is an eigenvector of Ψ2(A) associated to λ.λ′.

Assume now wi−1 for i < n is a generalized eigenvector of order i associ-
ated to λ.λ′. Therefore, we have (Ψ2(A) − λ.λ′.Id)i−1.wi−1 = 0 For all X , the
following equalities hold:

(Ψ2(A).wi)(Ψ2(X)) = λ′.vλ′(X).(λ.vi(X) + vi−1(X))
(Ψ2(A).wi)(Ψ2(X)) = λλ′.vλ′(X).vi(X)

+λ′.vλ′(X).vi−1(X))
(Ψ2(A)− λλ′.Id).wi = λ′.vλ′(X).vi−1(X))
(Ψ2(A)− λλ′.Id).wi = λ′.wi−1

(Ψ2(A)− λλ′.Id)iwi = (Ψ2(A)− λλ′.Id)i−1.λ′.wi−1

(Ψ2(A)− λλ′.Id)iwi = 0
Thus, wi is an eigenvector of order i. This proof is also valid for d > 2 as

Ψd represents monomials of degree d and lower. �.

3.5 Application to formal verification

When a polynomial expression occurs in an arithmetic expression, static an-
alyzers have multiple ways to deal with it:

1. consider it belongs to an undecidable class of program and fail, as it
is out of the decidable Presburger arithmetic (for example, acceleration
techniques are restricted to linear transformations [GS14; Bar+05]);

2. precisely analyse it, with no guarantee to eventually end (for example,
SMT-solvers [MB08; Bar+11] cannot fully handle polynomial expres-
sions);

3. approximate it and try to maintain the smallest gap possible between
reality and abstraction (for example, in abstract interpretation, affine
arithmetic abstract domains such as the zonotope domain [GGP09] and
the octagon domain [Min06] perform approximations when treating
polynomial expressions).

In the two first cases, linearization seems to be a straightforward manner to
enhance their set of applications (though the loop initialization still require

56 Chapter 3. Polynomial loops don’t exist

polynomial expressions, which may limit the enhancement of linearization
for SMT solvers).

Abstract interpretation [CC77] aims at inferring invariant properties on
different program point by propagating an abstract value representing an ab-
straction of the set of possible states through each instruction of a given pro-
gram. Each possible expression is endowed with transformation rules that
are used to transform the abstract value along the analysis. Usually when
a loop is encountered, the abstract interpreter performs approximations that
guarantees to converge to an abstract value in a finite number of steps: this
is called widening. For example, the octagon abstract domain [Min06] uses
linear inequalities as abstract values. Starting from an initial state x 6 a, the
abstract execution of x = x + 1 returns x 6 a + 1. When a polynomial ex-
pression is encountered, the problem becomes harder. If x 6 5 and y > −3,
we cannot conclude anything about x ∗ y because this expression can be ar-
bitrarily large. Intuitively, polynomial expressions will have a very negative
impact on the the precision of the computed abstract values. This is partic-
ularly true when a polynomial expression occurs in a loop. If the loop can
be linearized, there will still be some polynomial expressions before the loop,
to compute the initial state of the additional variables, but they will be com-
puted only once and will not be subject to widening.

Experimentations. Consider the example of Figure 3.1 with the initial state
x ∈ [−5, 5] and y ∈ [−5, 5]. This loop is supposed to have very few iterations
as x increases quadratically and y affinely. Using Frama-C’s abstract inter-
preter EVA [Kir+15; BBY17] (Phosphorus version) that propagates different
domains simultaneously, we compared the use of linearization by analyzing
both loops with the interval domain and the octagon domain. By setting EVA
to unroll 11 times each loop, it concludes in the polynomial example to the
state x ∈ [−5, 239] ∧ y ∈ [−5, 16], while in the linearized example we get
x ∈ [−5, 146] ∧ y ∈ [−5, 18]. Though the second example admits a small loss
of precision over y 1, we gain a lot of precision over x.

1The loss of precision is suspected to come from a precision error from the polynomial
expression that is somehow propagated to y and to the halting condition of the loop.

57

Chapter 4

A widening operator for the
zonotope abstract domain

Contents
4.1 Approximation of convergent linear filters 58

4.2 Context . 62

4.2.1 The family of the numerical linear filters 62

4.2.2 The zonotope abstract domain 63

4.3 Synthesis by parametrized variation 65

4.3.1 Description of the method 65

4.3.2 Inclusion of meta-zonotopes 68

4.4 Completness on linear filters 70

4.5 Experiments and conclusion 72

Requirements: Linear algebra (Section 2.1), Programming model (Section 2.2), Ab-
stract interpretation (Section 2.5)

The analysis of loop invariants is usually performed through a propaga-
tion analysis (the analysis of the behavior of the analyzed code, performed by
Abstract Interpretation [CC77]. This framework has the advantage to be cus-
tomizable enough to adapt its analysis to the analyzed problem by the free
choice of abstract domains. Thanks to the previous chapter, we also know
that polynomials and linear loops are strongly linked. From this, we will be
interested in generating linear and polynomial relations on variables of linear
loops.

This Chapter focuses convergent linear filters, that are linear loops con-
taining non-determinism. It presents an abstract interpretation widening
operator for the zonotope abstract domain [GPV12] that is based on the
parametrization of the abstract values.

58 Chapter 4. A widening operator for the zonotope abstract domain

4.1 Approximation of convergent linear filters

In a abstract interpreter, the widening operator plays a crucial role in the
precision of the analysis. As defined in Section 2.5, a widening operator gen-
eralizes the abstract memory state by extrapolating its behavior through one
or multiple iterations. In practice, it chooses one of the highest common val-
ues inductively preserved by an iteration. In simple domains like intervals,
a common value between two iterations can easily be found, but finding an
inductive value for a whole loop require the use of a widening operator.

In some cases the abstract interpreter may rely on loop acceleration (cf
Section 2.4) returning exactly its set of reachable states. Though it then re-
turns a more precise representation of the loop, it is only applicable under
strong hypotheses like finite monoid [GS14]. To illustrate such an approxi-

LISTING 4.1:
geometric

series

x = 0;
while(*)

x = 0.8*x + [-1,1];

LISTING 4.2:
simple linear filter

S = S0 = S1 = 0.0;
while(*)
S1 = S0;
S0 = S;
S = [-1,1] + 1.4*S0 - 0.7*S1;

FIGURE 4.1: Simple non deterministic linear loops

mation, we perform abstract iterations with the interval domain on the ge-
ometric series of Figure 4.1. The analysis starts with x ∈ [−1, 1], then finds
x ∈ [−1.8, 1.8], and x ∈ [−2.44, 2.44]. This process could loop forever if we
didn’t use a widening operator. One of the simplest widening operators
(but one of the most efficient in term of computation time and used in ab-
stract interpetors) consists in generalizing an upper bound increase by +∞
and a lower bound decrease one by −∞. In other words, it return in this
example [−∞,+∞] as both bounds increase and decrease. Any widening
operator finds stable iterations with bounds greater or equal than the mini-
mal bound, which is 5 for this simple example. But how to find a solution
near the minimal bound within a limited number of iterations? Moreover,
on the second example, bounds for each variable independently grow (inde-
pendently because intervals do not catch relations between variables), and
the simple widening operator for intervals would return S ∈ [−∞,+∞],
which is clearly not precise enough considering that an invariant of this loop
is S ∈ [−7.589424,+7.589424]. In general, inductive invariants of such nu-
merical program are difficult to approximate efficiently. Synthesis of strong
inductive invariants is however critical in order to perform a successful ver-
ification.

Convergent linear filters. Convergent linear filters are linear transforma-
tions receiving multiple inputs over time. From a computer system point of

4.1. Approximation of convergent linear filters 59

view, those inputs are generally randomly picked in a known interval. The
purpose of such filters is to keep track of all the information received through
its execution while reducing the impact of the past inputs. The examples in
Figure 4.1 are convergent linear filters. At first, on the Listing 4.1 filter, the
value of x belongs to [−1, 1]. It can be written as ∃ε0 ∈ [−1, 1] such that x = ε0.
Then, x admits the following expressions:

2nditeration x = ∃ε0, ε1 ∈ [−1, 1] : ε1 + 0.8 ∗ ε0

3rditeration x = ∃ε0, ε1, ε2 ∈ [−1, 1] : ε2 + 0.8 ∗ ε1 + 0.64 ∗ ε2

4thiteration x = ∃ε0, ε1, ε2, ε3 ∈ [−1, 1] : ε3 + 0.8 ∗ ε2 + 0.64 ∗ ε1

+0.512ε0

...
with εi ∈ [−1, 1]. As we can see, the coefficient associated to the most

recent εi is higher, hence it has more impact on the loop state than the older
ones. On the previous examples, while the bounds were growing, the differ-
ence between two successive abstract values gets smaller after every iteration
because of the same reason.

Linear filters also have the advantage to reduce occasional precision er-
rors over time, as they would slowly be erased as time goes by.

Zonotopes and linear filters. In [Rou+12], authors study numerical filters
in an abstract domain expressing polynomial inequalities on its variables.
Ellipsoids have shown to be very efficient to approximate invariants of lin-
ear filters, but they are often not inductive and therefore, hard to generate.
This issue can be avoided by approximating ellipsoids. For example, an ap-
proach like [MBR16] is able to prove invariants by overapproximating it by
constructing an invariant by chunks. Another possibility, which will be stud-
ied in this Chapter, is the use of zonotopes [GGP09; GPV12; GP15].

Zonotopes are convex symmetric polyedra where every face has a sym-
metric point. They can be described in two equivalent manners:

• by a collection of edges and nodes, as a geometric figure;

• by a vector of sums of the form
n∑
i=0

αiεi where αi ∈ R define the zono-

tope and εi ∈ [−1, 1] are parameters.

Figure 4.2 presents the link between the two representations. The prop-
erty “(x, y) is inside the parallelogram ABCD” is equivalent to ∃ε1, ε2 ∈
[−1, 1].(x, y) = (ε1, ε1 + ε2)

The zonotope abstract domain [GGP09; GP15] is based on this second
representation and is particularily well suited for the analysis of linear fil-
ters given the similarity between the zonotope expression and the variables
reachable state.

This Chapter adresses the problem of generating invariants for conver-
gent linear filters in the context of abstract interpretation on the zonotope
abstract domain. Instead of applying the usual widening methodology (i.e.
finding a common higher value on a different lattice, cf Section 2.5), this
chapter exploits parametrization techniques to find a higher common value.

60 Chapter 4. A widening operator for the zonotope abstract domain

FIGURE 4.2: A zonotope can be defined as a geometric figure
with different nodes and edges, or as a vector of Minkowski

sums.

Though this has the drawback of not converging in the general case, we will
prove that it always converges when applied on convergent linear filters.
This heuristic allows a greater precision than abstract interpretation at a cost
of genericity, and is comparable to acceleration techniques (cf Table 4.1).

Widening Acceleration Testing This technique
Termination X X × X
Genericity X × X ×
Precision × X X X
Soundness X X × X

TABLE 4.1: Comparison of this technique with other state of the
art methods

4.1. Approximation of convergent linear filters 61

FIGURE 4.3: Perturbation of the zonotope candidate invariant
(in beige) in comparison to the actual ellipsoid invariant (in

blue).

Outline of the algorithm. The heuristic proceed in two phases. It starts
after an abstract iteration over the zonotope abstract domain. As we saw,
zonotopes can be defined as vectors of sums parametrized by noise symbols ε
that are free to evolve in [−1,+1]. The value of every program variable v is
expressed as a sequence vk = α0 +

∑n
i=1 αi ∗ εi where vk is the value of v at

the kth iteration, (αi)1≤i≤n are real constants and (εi)1≤i≤n are noises, i.e. non
deterministic values.

Let X be the variables of the loop and ε ∈ [−1,+1] a non-deterministic
value. Let’s denote tf(X, ε) the forward transfer function of the loop body.
The abstract interpreter iterates the loop and infers a zonotope for each vari-
able. In parallel of this iteration, the method will try to guess a good can-
didate invariant by confronting two similar successive iterations. When two
zonotopes z1 and z2 are close enough, z1 will serve as a base for finding an
inductive invariant. Our key heuristic consists in stretching and expanding z1.

This process is described in Figure 4.3. The zonotope on the first figure
represents an under approximation of the actual ellipsoid invariant of a loop
manipulating two variables x and y. Hence, it is in two dimensions: hor-
izontal for x and vertical for y. Intuitively, a very small weakening of the
zonotope would be a good candidate invariant as it is already close to the ac-
tual invariant. A first method to weaken it is to add to each variable a small
value σ so that it encompasses the invariant. Geometrically speaking, with
two variables, it would stretch the zonotope vertically and horizontally as in
the second part of Figure 4.3. By choosing large enough parameters, the re-
sulting candidate is weaker than the searched invariant but it might still not
be inductive. A second way to weaken it is to multiply the value of x and y
by (1 + δ) where δ > 0 is a small real 1. The zonotope would then be expanded
proportionally in every direction as presented in the third picture. Finally,
the candidate invariant in the last picture verify (1 + δ)z+σ, where z was the
initial zonotope of the first picture. With those two parameters, we can find
an inductive zonotope approximating the aimed ellipsoid.

1In practice, we will see that a different δ can be choosen for each variable.

62 Chapter 4. A widening operator for the zonotope abstract domain

The inductiveness of this parameterized candidate is expressed as con-
straints, then sent to a solver which will search for a valuation of the pa-
rameters. If such a valuation is found, the inductiveness of the relation is
proven and the method outputs a correct inductive invariant. Otherwise, the
abstract interpreter iterates once more and tries again to find an invariant by
the same technique over different abstract values.

Let us apply the previous method for the geometric sequence of Fig-
ure 4.1, the transfer function is tf(x, ε) = 0.8 ∗ x+ ε and x0 starts at 0. First, by
applying abstract iterations on the zonotope domain, we find:

1st iteration: ∃ε1 ∈ [−1,+1]. x1 = ε1

2nd iteration: ∃ε1, ε2 ∈ [−1,+1]2. x2 = ε2 +0.8ε1

common residue
The zonotope of x2 can be decomposed into two parts: the common part

in both equations (ε1 in x1 and ε2 in x2) that we denote εδ and the difference
(0.8ε1), which we will call the residue and denote 0.8εσ. The common part
has, by definition, a good chance to appear in the real inductive invariant.
The technique first expands the common part εδ by multiplying it by a pa-
rameter (1 + δ) Then, it stretches the zonotope, i.e. it adds to the expanded
component a parametrization of the residue for each variable (which widens
the zonotope horizontally and vertically). We end up with the following can-
didate zonotope invariant zδ,σ(εδ, εσ) = (1 + δ)εδ + 0.8σεσ.

We need to find δ, σ such that ∃εδ, εσ ∈ [−1, 1]2. x = zδ,σ(εδ, εσ) is inductive,
i.e. that this relation is preserved by a loop iteration. If it is inductive and as it
is true at the first iteration, then it is an invariant. By performing one iteration
over zδ,σ, we end up with z′δ,σ(ε, εσ, εδ) = tf(zδ,σ(εδ, εσ)) = ε + 0.8(1 + δ)εδ +
0.64σεσ. Proving the inductiveness of the relation is equivalent to proving
the inclusion of the two zonotopes z′δ,σ(ε, εσ, εδ) and zδ,σ(ε′δ, ε

′
σ), as it would

mean that after one step the program state still belong to the initial zonotope
(which is the definition of inductivity). This chapter proposes a simplified
version of the inclusion of two zonotopes based on the following mapping
between the ε symbols: ε′δ

def
= 1

1+δ
ε and ε′σ

def
= 0.8(1+δ)

0.8σ
ε+ 0.64σ

0.8σ
εσ. This inclusion

is valid with δ ≥ 0 and 0.8σ ≥ 0.8(1 + δ) + 0.64σ, satisfied with δ = 0 and
σ = 5. Hence,

(1 + 0)ε+ (0.8 ∗ 5)εσ = ε+ 4εσ

is a real inductive invariant for δ = 0 and σ = 5. Its projection on the interval
domain is [−1, 1] + 4 ∗ [−1, 1] = [−5, 5] which is the minimal invariant of this
loop on the intervals.

4.2 Context

4.2.1 The family of the numerical linear filters

In this programming model, we consider the family of the numerical linear
filters.

Definition 18 A linear filter is a sequence (Sn)n∈N such that :

4.2. Context 63

• (S0) =

 [a0, b0]
. . .

[an, bn]

, (Vn) =

 [u0, v0]
. . .

[un, vn]

 are non deterministic vectors

with constant bounds

• (M) =

 m1,1 . . . m1,k

.
mk,1 . . . mk,k

 is the transformation matrix

• (Sn+1) = (M).(Sn) + (Vn)

A linear filter is convergent if and only if all the eigenvalues (the real and
the complex ones) of the matrix (M) have a norm strictly lower than 1. In
this case, all the values of (Sn) remain bounded, i.e. there exists a closed
interval I independent of n such that for any vector (Vn) and ∀n, Sn ∈ I . The
program syntax defined in Figure 2.2 includes the necessary instruction for
describing convergent linear filters, as linear filters don’t use conditions nor
nested loops.

4.2.2 The zonotope abstract domain

Every variable vectorX = (x1, ..., xn) is abstracted by a zonotope zε of dimen-
sion n, i.e. a vector of Minkowski sums [Min10] x]j = αj0 +

∑n′

i=1 α
j
i ∗ εi where

the αji are real constants and ε = (ε1, ...εn′) a vector of non deterministic ex-
pressions taking value in [−1, 1]. Every coefficient of the vector representing
the zonotope share the same εi. When ε is clear in the context, we simply
refer to z. Let us define Aff as the set of such affine forms or linear equations,
and their norm is defined as ‖x]‖ = |α0|+

∑n
i=1 |αi| the maximal valuation of

|x]|. An affine form x]1 = α0 +
∑n

i=1 αi×εi is included in x]2 = β0 +
∑m

i=1 βi×ε′i
when ∀ε1, ..., εn,∃ε′1, ..., ε′m such that α0 +

∑n
i=1 αi × εi = β0 +

∑m
i=1 βi × ε′i.

The inclusion between two zonotopes zε1 and zε
′

2 is defined equivalently, i.e.
∀ε,∃ε′.zε1 = zε

′
2 . It is stronger than the inclusion of each individual component

as εi are shared between each component. For example, let z1 = (ε1, ε2) and
z2 = (ε′1,

1
2
ε′1 + 1

2
ε′2) While each component of z1 is included in z2, the point

(1,−1) belong to z1 while it doesn’t belong to z2.
We denote Meta-Aff the set of meta-affine equations, i.e. parametrized

affine equations : Rk → Aff. Meta-zonotopes are defined as vectors of meta-
affine equations. Zonotopes and meta-zonotopes can also be denoted zε,
where ε represent the non deterministic elements of the equation. Zono-
topes and intervals catch different properties. The abstract interpreter Fluc-
tuat [Gou13] infers the intersection of intervals and zonotopes as depicted
on Figure 4.4. Zonotopes can also express floating point approximations by
assimilating them to new variables ε. As an example, a variable x in the in-
terval [0, λ] is abstracted by the meta-equation x] = λ(0.5 + 0.5ε0). For λ = 1,
x] = 0.5 + 0.5ε0 defines an affine equation. A non-linear computation intro-
ducing c×εi×εi is linearized by c

2
+ c

2
εk, where εk is a fresh non deterministic

variable. For example, x] − x]2 is treated as follows:

64 Chapter 4. A widening operator for the zonotope abstract domain

interval & zonotope partition in two parts reduced product &
partition

FIGURE 4.4: Abstraction of f(x) = x2 with intervals, zono-
topes, and their intersection. The first figure depicts the inde-
pendent analysis of f on I = [0, 1] with intervals (in yellow) and
zonotopes (in orange). Partitioning I into two intervals on the
second figure makes the analysis more precise, and intersect-
ing both abstract values in the last figure returs an even more

precise approximation.

x]
2

= (0.5 + 0.5ε0)× (0.5 + 0.5ε0) = 0.25 + 0.5ε0 + 0.125 + 0.125ε1

= 0.375 + 0.5ε0 + 0.125ε1

x] − x]2 = (0.5 + 0.5ε0)− (0.375 + 0.5ε0 + 0.125ε1) = 0.125− 0.125ε1

Hence zonotopes prove that x − x2 ∈ [0, 0.25], while intervals are only
able to prove that x − x2 ∈ [−1,+1], or in [0,+1] if x − x2 is rewritten into
x(1 − x). Nevertheless, the linearization step (Taylor approximation around
the center of the zonotope [GGP09]) might miss some important information:
here zonotopes guarantee that x2 ∈ [−0.25,+1] whereas intervals guarantee
a better interval result: x2 ∈ [0,+1] (see Figure 4.4).

Applying a transformation to a zonotope correspond to the application
of the given transformation on the Minkowski sums vector representing the
zonotope. In other words, a linear application ϕ mapping a vector to a scalar
also maps a zonotope to a Minkowski sum. Hence, the matrix-vector multi-
plication is also defined for matrices and zonotopes.

Geometric representation of zonotopes. Zonotopes also admit a geometric
representation defined by a set of vertices V and sides S = V × V . For a
zonotope zε, v ∈ V iff for an extreme valuation of ε (i.e. εi are only 1 and
−1), zε = v. For two valuations ε and ε′, there exists a side between v1 = zε

and v2 = zε
′ for the zonotope z if and only if there is only one coefficient of

difference between ε and ε′.
The geometric representation of a zonotope with n noise symbols is de-

fined with 2n different vertices, which makes this representation hardly us-
able in practice. That is why we will only focus on Minkowski sums when
performing calculations.

4.3. Synthesis by parametrized variation 65

4.3 Synthesis by parametrized variation

4.3.1 Description of the method

The algorithm of Figure 4.5 presents the different steps to generate the invari-
ant candidate. When the interpreter encounters a loop, the algorithm starts.

Data: tf : stat; z : zonotope; τ : float;
Result: A zonotope zinv invariant of tf ;

zinv = ⊥;
while zinv = ⊥ do

z′ := tf(z);
if z BCτ z′ then

zcand := generalize(z,z′);
zinv := tf(zcand) B=C zcand;
z := z′;

else
z := z′;

end
end

FIGURE 4.5: Abstract iterator shortcut algorithm. The generalize
function represents the parametrization of the zonotope z by

the stretch factor and the expansion factor.

Its role is simply to keep iterating the loop to keep track of two successive
iterations z and z′ and confront them (z BCτ z′), i.e. checks if the two itera-
tions are relatively similar. If the confrontation fails, the algorithm starts on
the next abstract iteration of the loop. Otherwise, it builds a candidate invari-
ant zc by generalizing the shape of z, i.e. adding parameters to its expression.
If there exists a valuation of those parameters such that zc is inductive, then
an invariant has been found. Each abstract interpretation step is illustrated
by the simple-filter of Figure 4.2 whose loop body is:

S1 ← S0; S0 ← S; S ← [-1,1] + 1.4*S0 - 0.7*S1;

First step: loop iteration. As long as a candidate is not generated, the al-
gorithm iterates on the loop. This is the standard abstract iteration on zono-
topes, computing the abstract value of S1, S0 and S after each step. For ex-
ample, here are the equations stored for each variable after 1, 2 and 3 steps:

S1 7→ 0 S0 7→ 0 S 7→ ε0 after 1 iter.
S1 7→ 0 S0 7→ ε0 S 7→ ε1 + 1.4ε0 after 2 iter.
S1 7→ ε0 S0 7→ ε1 + 1.4ε0 S 7→ ε2 + 1.4ε1 + 1.26ε0 + 2−122µ0 after 3 iter.

During the abstract iteration, we will take into account rounding errors per-
formed by our internal floating point calculations. The last iteration shows

66 Chapter 4. A widening operator for the zonotope abstract domain

that even if the analysis follows real semantics, the abstract interpreter can-
not exactly compute 1.4 * 1.4 - 0.7 = 1.26. It can only conclude that
this value is in the interval [1.26 - 2 ∗ 2−123, 1.26 + 2 ∗ 2−123] which is
represented in the zonotopic domain by 1.26 + 2−122µ′0. 2 Then µ0 is an ab-
straction with a new fresh variable for ε0 × µ′0 that lays in the interval [−1, 1].
As it is an internal rounding error, it is assigned to a different type of fresh
variable with different properties to not interfere with the ε variables. After
4 iterations, the memory abstraction would have the following content:

S1 7→ ε1 + 1.4ε0 S0 7→ ε2 + 1.4ε1 + 1.26ε0 + 2−122µ0

S 7→ ε3 + 1.4ε2 + 1.26ε1 + 0.784ε0 + 3.9× 2−122µ1

In order to simplify the running example in this Chapter, we will stop
considering internal accuracy errors.

Second step: confronting iterations and building a candidate. When lin-
early transforming a zonotope, many similitudes are observable in their ex-
pression. The 3rd and the 4th iteration of the example are very similar. Let us
compare the value of S at the third and fourth iteration:

Third iteration S 7→ ε2 + 1.4ε1 + 1.26ε0 +2−122µ0

Fourth iteration S 7→ ε3 + 1.4ε2 + 1.26ε1 +0.784ε0 + 3.9× 2−122µ1

By changing εi in the 3rd by εi+1, the only difference is 0.784ε0 plus the
precision error. The objective of the confrontation is to capture this difference
to find a good candidate invariant. During this step, the abstract interpreter
extends the affine forms equ ∈ Aff with meta affine forms m-equ ∈ Meta-Aff.

Let equpre =
n∑
i=1

αiεi and equcurr =
m∑
i=1

βiε
′
i the equation respectively associ-

ated to a given variable at the previous iteration and at the current iteration.
The confrontation operator BCτ will first apply a global loop renaming ren on
equpre so that the ε introduced in equcurr matches the one in equpre. In practice,
it performs a shift of s on the indexes of equpre where s is the number of new
noise symbols added by the current step of the loop. After the renaming, the
equation’s projection on intervals remains the same.

In order to check if two zonotopes are close, we need to define a metric on
zonotopes and a bound τ .

Definition 19 The confrontation constraint BCτ is defined as

equpre BC
τ equcurr = (||equcurr − ren(equpre)|| 6 τ ||equpre||) (4.1)

2Our internal representation of reals uses 123 bits for the mantissa, catched by the extra
non deterministic noise µ′0.

4.3. Synthesis by parametrized variation 67

Third step: confronting iterations and building a candidate. The success
of the confrontation is a good clue that the current zonotope is close to an
inductive invariant as the two iterations are close. More precisely, transform-
ing each equpre by tf does not change it a lot. That is why a small perturbation
of equpre is a good invariant candidate. A candidate invariant is built from
equpre by following two heuristics.

• Adding a generalization of the previous equation equpre as a meta equa-
tion m-equ ∈ Meta-Aff. By confronting equpre with the next abstract
value, we know that the difference is small (τ is expected to be small
for the method to find a candidate invariant). To catch an upper bound
of this difference in the general case, the generalization will be

σpre.τ.||equpre||.εσ

with σpre the stretch factor a parameter left to find and εσ a fresh noise
symbol.

• Adding a perturbation of the initial equation ren(equpre) represented
by the meta equation

δpre.equpre
where δpre is called the expansion factor.

The final candidate invariant is m-equinv defined by

generalize(equpre)
def
= (1 + δpre)equpre + σpre.τ.||equpre||.εσ (4.2)

Both paramerers are greater than 0. This generalization is performed for ev-
ery component of the vector describing the zonotope with different parame-
ters δ and σ.
On the simple filter example of Figure 4.1, we choosed τ = 1

4
. The confronta-

tion succeds for all affine forms and the following candidates are generated:

S1 := (1 + δ0)(ε3 + 1.4ε2 + 1.26ε1) + 3.66σ0εσ0
S0 := (1 + δ1)(ε4 + 1.4ε3 + 1.26ε2 + 0.784ε1) + 4.444σ1εσ1
S := (1 + δ2)(ε5 + 1.4ε4 + 1.26ε3 + 0.784ε2 + 0.2156ε1) + 4.6596σ2εσ2

Fourth step : finding a valuation of the parameters If all confrontations
have been accepted by the previous step, then the invariant synthesizer pro-
vide an invariant candidate that involves all the variables modified by the
loop. The job of this step is to take the invariant candidate and infer a valua-
tion of the parameters, making it inductive. It first applies the loop transfor-
mation to the candidate invariant m-zinv, which returns a new meta zonotope
m-znext.

Definition 20 The confrontation for inclusion operator B=C
returns a valuation Val = (δi, σi)0≤i<n of the 2n parameters such that for two

meta zonotopes m-z1,m-z2, we have :

68 Chapter 4. A widening operator for the zonotope abstract domain

• Val def
= m-z1 B=C m-z2

• m-z1[Val] ⊆ m-z2[Val] for the zonotope inclusion.

If no such Val is found, it returns ⊥.

When this confrontation is applied to m-znext and m-zpre (m-znext B=C m-zpre)
verifies that the inferred conclusion can match the induction hypotheses. If
Val exists and is found, then m-zinv[Val] is inductive.

Quantification of the error rate. The success of the B=C operator guaran-
tees to return an inductive invariant w.r.t. the analyzed transfer function.
Still without the constraints enforced by the BCτ operator between two suc-
cessive iterations and a small bound on parameters δ and σ, an inductive
invariant may be found. However, there would consequently be no guar-
antee on how overapproximated it would be. Those bounds allow having a
precise estimation of the invariant preciseness.

Theorem 2 Let zn the zonotope at the nth iteration of the transfer function tf . If
zn BCτ zn+1 is satisfied, (δ, σ) = tf(zc) B=C zc and the resulting candidate invari-
ant zc verifies zc(tf(zc) B=C zc) = zinv 6= ⊥, then zinv is an inductive invariant of
the loop and

zn ⊆ invopt ⊆ zinv ⊆ (1 + δ + σ.τ)zn

where invopt is the optimal inductive invariant of the loop verifying zn ⊆ invopt.

Proof. The candidate invariant zc = (z1, z2, ..., zd) is defined in equation
(4.2):

zi(σ, δ) = (1 + δi)ren(zk,i) + σi.τ.||zk,i||.εσ
The norm of an affine form is the sum of the absolute value of its coeffi-

cients. As zk,i and σi.τ.||zk,i||.εσ have disjoint noise symbols, the sum of their
norm is the norm of their sum. Thus, ||zi(σ, δ)|| = ||(1 + δi)zk,i|| + σi.τ.||zk,i||.
As ||zk,i|| = ||ren(zk,i)||, it is clear that ||zk,i|| 6 ||zi(σ, δ)|| 6 (1+δi+σiτ)||zk,i||
�
This theorem guarantees that if the method successfully generates an in-

variant, the interval projection of the zonotope on the intervals for each vari-
able is strongly bounded by τ, δi and σi.

4.3.2 Inclusion of meta-zonotopes

Let zk a zonotope and zk+1 = tf(zk), such that zk BCτ zk+1. The candi-
date invariant zε1 is defined by 0 ≤ i < n a vector of meta affine forms
(1 + δ)equk + σ.τ.||equk||.εσ. Finding suitable parameters (δi, σi) for two meta
zonotopes zε′1 and zε2 = tf(zε

′
1) to satisfy zε2 B=C zε

′
1 requires to solve quantified

constraints on ε and ε′. More precisely, theB=C operator attempts to find (δ, σ)
a vector of parameters such that ∀ε,∃ε′.zε2(δ0, σ0, ...) = zε

′
1 (δ, σ). The presence

4.3. Synthesis by parametrized variation 69

of quantifiers makes it impossible to send the constraints generated byB=C to
an implementation of the simplex algorithm for resolution. Also, noise sym-
bols are shared between meta-equations of the zonotope, which complexify
the search of parameters. That is why we propose some heuristics to reduce
the number of ε that are quantified in the hope to ease the task of the solver.

1. renaming between ε′ and ε;

2. heuristical and temporary definitions of ε′ for simplification issues;

3. application of the Fourier-Motzkin algorithm [Mon10] for relation elim-
ination issues.

The first technique is based on the renaming between the non determin-
istic ε′ symbols of z1 to match those ε of z2 such that zε2(δ, σ) = zε

′
1 (δ, σ) gets

easier to solve. Let us denote Λi (resp. Λ′i) the coefficient of εi (resp. ε′i) in
m-equnext (resp. m-equpre and m-equinv). They are linear combinations of δi, σi.
Let us assume that the transfer function tf adds s new non deterministic
symbols to the zonotope. To check the confrontation in the previous section,
we applied a shift on the indexes of the noise symbols of tf(zpre) of s so that
their coefficients match. We will apply the same idea here, in other words,

m-equpre = Λ′0 +
n∑
i=1

Λ′iε
′
i and m-equnext = Λ0 +

n∑
i=1

Λi+sεi+s +
s∑
i=1

Λiεi where

(εi)s+1≤i≤n+s are fresh non deterministic symbols. Three different cases are
possible:
If |Λi+s| 6 |Λ′i| for all valuations of δ, σ, then ε′i is redefined as εi+s.
If |Λi+s| > |Λ′i| for all valuations of δ, σ, then ε′i is redefined as ε′i = Λi+s

Λ′
i
linεi+s+

(1 − Λi+s
Λ′
i
lin)ε′′i where ε′′i is a new fresh non deterministic noise and the lin-

earized divisions (a
b
)lin are the first order Taylor approximations of a

b
. The

linearization is important because the ε′i intervene in other affine forms and
at the end we send linear constraints in δ, σ to a linear solver. This renaming
eases the search of δ, σ satisfying the induction criterion. Indeed, we first no-
tice that ε′i ≡

Λi+s
Λ′
i
linεi+s + (1 − Λi+s

Λ′
i
lin)ε′′i for any valuation of Λi+s and Λ′i, so

we do not lose information through this renaming. Then, we get rid of εi+s
as the following equalities hold:

m-equnext − ren(m-equpre) = Λ0 − Λ′0 +
s∑
i=1

Λiεi +
n∑
i=1

(Λ′i − Λ′i
Λi+s
Λ′
i
lin)ε′′i

+
n∑
i=1

(
Λi+s − Λ′i

(
Λi+s
Λ′
i
lin

))
εi+s

Parameters δ, σ such that ∀ε,∃ε′.ren(m-equpre) = m-equnext can be found by
finding δ, σ satisfying ∃ε′′.
|Λ0 − Λ′0| +

s∑
i=1

|Λi| +
n∑
i=1

∣∣∣Λi+s − Λ′i

(
Λi+s
Λ′
i
lin

)∣∣∣ =
n∑
i=1

(Λ′i − Λ′i
Λi+s
Λ′
i
lin)ε′′i which is

much simpler as we removed a universal quantifier.
If |Λi+s| 6 |Λ′i| is not decided , it is still possible to generate two constraint
systems. One with the additional constraint |Λi| > |Λ′i+s| and one with the
additional constraint |Λi| 6 |Λ′i+s|.

70 Chapter 4. A widening operator for the zonotope abstract domain

Remaining shared symbols. One difficulty of inclusion comes from the
shared noise symbols. Particularily, the ε′′i introduced by the second strat-
egy can be common to every affine form of the zonotope. When the solver
is still unable to solve these constraints, we can try to remove them from
the equation. A possibility to reduce the number of shared symbols is the
Fourier-Motzkin algorithm used in [Mon10].

Incomplete. These heuristics are used in the current implementation of the
algorithm as they have shown to increase the efficiency of the analysis. How-
ever, they are incomplete in the general case, in the sense that it is possible
the renaming does deletes some possible solutions.

4.4 Completness on linear filters

The method described in the previous section relies on the automatic dis-
covery of a precise pattern in the values describing the variables domain. In
addition, it must find suitable parameters for the candidate invariant to be in-
ductive, but there is no guarantee such values exists. If the domain diverges,
i.e. it keeps growing, the method will not converge as the abstract interpreter
will keep iterating. Besides, if we can guarantee that the variables domain
converges then both the expansion factor and the stretch factor would actu-
ally converge to 0.

Theorem 3 Let (Sn)n∈N a linear filter. If S is convergent, the algorithm in Fig-
ure 4.5 will find an inductive invariant for S.

Proof. We will first see in this proof that two successive iterations are get-
ting closer and closer after each iteration. Let Sn a linear filter defined by a
matrixM and a sequence of non determinsitic noises Vn. Let Zn = (Z1

n, ..., Z
k
n)

the sequence of zonotopes defined as Z0 = V0 and Zn+1 = S.Zn + Vn+1. Let
us denote tf(Zn) = S.Zn + Vn+1. Each component Zi

n of Zn is a Minkowski

sum
n2∑
j=0

αijεj where αij are real constants, possibly null. This sum has indeed

n2 terms at the nth element of the sequence as each step adds at most n new
noise symbols (one by variable).

Let ren(Zk
n) =

n2∑
j=0

αkj εj+n the shift of n on the indexes of εj . The shift

function is linear, in the sense that ren(z+z′) = ren(z)+ren(z′). Let us extend
the ren notation to Zn by applying it to each component of the vector. As Vn
adds n new noise symbols, we will say that ren(Vn) = Vn+1. Also, as ren only
changes the indexes of εj , we have that for any zonotope Z, ren(Z) ⊆ Z and
Z ⊆ ren(Z). Let us first prove the following lemma.

Lemma 6 There exist s such that (Zi
n+1 − ren(Zn)i = o(e−nns).

4.4. Completness on linear filters 71

Proof. We first notice that

Zn =
n∑
i=0

M iVn−i

There comes that

Zn+1 =
n∑
i=0

M i+1Vn−i + Vn+1

This expression is equivalent to

Zn+1 =
n∑
i=0

M iVn−i+1 +Mn+1V0

hence we have that
Zn+1 = ren(Zn) +Mn+1V0

As S is a convergent lienar filter, all the eigenvalues of M are lower than 1.
Its Jordan Normal form J (cf Section 2.1.6) is a upper triangular matrix with
eigenvalues on its diagonal. As there exist P such that M = P−1.J.P , we
have that Mn = P−1.Jn.P . J is composed of blocks Ji of size s such that

Ji =


λi 1 ... 0

0
.

... 1
0 ... 0 λi


We know then that

Jni =


λni λn−1 ∗ n ... λn−s ∗ P (n)

0
.

... 1
0 ... 0 λni


where P (n) is a polynomial in n of degree s − 1. As every λi is defined

such that |λi| 6 1, the modulus of each coefficients of this block is asymptoti-
cally equivalent to e−nns−1 near infinity. We recall that there exist P such that
Mn = P−1.Jn.P . Finite linear combinations of elements that are asymptoti-
cally equivalent to e−nns−1 are also asymptotically equivalent to e−nns−1.
�
This lemma has two interesting corolaries:

• lim
n→+∞

(Zn+1 − ren(Zn)) = 0;

• Zn converges.

Let us denote Z l = lim
n→+∞

Zn. For any δ, there exist n such that Zn ⊂ Zl ⊆
(1 + δ)Zn.

72 Chapter 4. A widening operator for the zonotope abstract domain

Program Var Steps Time
(in ms)

Example 1.1 2 14(2) 7
Example 1.2 3 18(5) 37
Simple filter 3 22(2) 9

[MBR16] filter 3 22(2) 20

TABLE 4.2: Performance results with the method’s implemen-
tation in Fluctuat [Gou13]. The first two columns are the input
program and the corresponding number of variables. The num-
ber of iterations needed to reach a solvable candidate invariant
is in the third column, with the number of solving attempts by
B=C before finding parameters making the invariant inductive.
The 4th column represents the total time taken for inferring the

invariant.

Also, tf is continue as it is an affine application on zonotopes (by consid-
ering Vn as a sequence of zonotope). As Zl is a limit of a serie described by
tf , then Zl is a fix point of tf and therefore, an invariant for tf .
�

4.5 Experiments and conclusion

A prototype of the technique described in this Chapter has been implemeted
in Fluctuat [Gou13], an abstract intepreter based on the zonotope abstract
domain. The first implementation only uses the stretch factor on every equa-
tion of the linear filter, which was not sufficient to find an inductive invari-
ant. On the other hand, the expansion factor is sufficient for the algorithm to
converge (which echoes the argument in the proof of Theorem 3 of choos-
ing σ = 0) though the composition of the two makes the algorithm con-
verge faster on the tested examples. We have applied the method on sev-
eral linear filters (see Table 4.2). Choosen parameters for the BCτ operation
τ = 1

64
, for the stretch factor µ the interval [−‖equpre‖

64
,
‖equpre‖

64
] and for δ the

interval[− 1
64
, 1

64
]. In other words, we will study the candidate invariant

64 + λ0

64

(
β0 +

n∑
i=k+1

βiεi

)
+
λ1

64

(
n∑
i=0

|αi|

)
εp

if and only if
n∑
i=1

|βi − αi| 6 1
64

n∑
i=1

|αi|. After 23 iterations, the method suc-

cessfully generates an inductive invariant that is by construction very close
to the optimal invariant (by Theorem 2, at most 1

64
+
‖equpre‖

642
bigger than the

optimal zonotope solution). The low number of tested programs is due to

4.5. Experiments and conclusion 73

the difficulty of the inplace solver to find convenient parameters for candi-
date invariants. While this method generates many candidates passing the
confrontation, the constraint solver finds parameters only for a few of them.
The zonotope abstract domain is able to catch very precise relations for every
variable on a non-deterministic loops. One of the main issue for finding such
relations is to make abstract iterations converge. This widening operator al-
lows getting rid of this problem by bypassing all the difficulty thanks to a
dedicated solver. Though this solver theoretically solves any confrontation
constraint, the optimization choice of reducing as much as possible the value
of the meta-zonotopes parameters sometimes lead to bad computation time.
The recent development of SMT-solving over non linear constraints over the
reals [GKC13] is a promising solution to this issue.

75

Chapter 5

Eigenvectors as linear invariants of
linear loops

Contents
5.1 Overview . 76

5.2 Simple loops . 77

5.2.1 Semi-invariants . 77

5.2.2 Eigenvectors are invariants 78

5.3 Conditions . 79

5.4 Nested loops . 81

5.5 The case λ = 1 . 83

5.5.1 The variable 1 . 83

5.5.2 Quantified expression of invariants as eigenvectors. . 84

5.5.3 Elevation degree. 85

5.6 Inequalities . 87

5.6.1 Convergence and divergence 87

5.6.2 Convergent invariants and eigenvectors 87

5.7 Non determinism . 89

5.7.1 Non deterministic transformations 89

5.7.2 Generation of a candidate invariant 90

5.7.3 Optimizing expressions 91

5.7.4 Convergence . 91

5.7.5 Initial state . 93

Requirements: Linear algebra (Section 2.1), Programming model (Section 2.2)

The previous Chapter presented a method for determining zonotope in-
variants for a specific kind of linear loops (convergent linear filters). Abstract
iteration is the most commonly used technique when generating invariants
for such loops [Mau04; Del+09; Gou13; RG13], as its genericity allows giving
a formal semantic to non-determinism (the interval domain, the octagon do-
main, the zonotope domain, etc.). The issue of such an approach is the lack
of control of the analysis. Once the user launches an abstract interpreter, it

76 Chapter 5. Eigenvectors as linear invariants of linear loops

has very few control on the operations performed and the computation in
general (though semantic rules are consistently defined).

Instead of abstract intepretation, multiple works attempted to generate
invariants [Kov08; RK07] by analyzing a loop without value propagation nor
predicate abstraction, but as a whole transformation with inherent proper-
ties. For example, [RK07] generates polynomial invariants by working on
the Gröbner base of the polynomial ring and using the ideal properties of in-
variants. The loop is analyzed once and invariants are directly synthesized.
The principal drawback of such techniques compared to abstract intepreta-
tion is their over-specialization: they can only work on very specific kind of
loops. However, this issue already arise in the previous Chapter as the al-
gorithm only converges on convergent linear filters, a sub class of the linear
transformations (cf Theorem 3).

This Chapter will treat of a straightforward generation of invariants for
linear loops in general, including linear filters and their non determinism.
More precisely, it syntactically extracts a complete characterization of linear in-
variants of linear loops.

This chapter is based on work that has been presented in [OBP16; OBP17]

5.1 Overview

Informally, an invariant for a loop is a formula that

1. is valid at the beginning of the loop (initialized invariants);

2. stays valid after every loop step (semi-invariants).

We are interested in finding polynomial numerical relations on variables
complying only with the second criterion such that they can be expressed
as a linear equation over X , a vector containing the assignment’s original
variables and the monomial variables generated by the linearization procedure
described in Chapter 3. In this setting, a formula satisfying the second cri-
terion can be represented as a vector of coefficients ϕ such that for a loop
transformation f we have

〈ϕ,X〉 = 0⇒ 〈ϕ, f(X)〉 = 0 (5.1)

By linear algebra, the following is always true

〈ϕ, f(X)〉 = 〈f ∗(ϕ), X〉 (5.2)

where f ∗ is the dual of f . If ϕ happens to be an eigenvector of f ∗ (i.e. there
exists λ such that f ∗(ϕ) = λϕ), the equation (5.1) becomes

〈ϕ,X〉 = 0 ⇒ 〈f ∗(ϕ), X〉 = 0 by (5.2)

〈ϕ,X〉 = 0 ⇒ 〈λ.ϕ,X〉 = 0

〈ϕ,X〉 = 0 ⇒ λ. 〈ϕ,X〉 = 0

5.2. Simple loops 77

which is always true. Therefore, the relation 〈ϕ,X〉 = 0 is inductive for every
valuation of X .

Example. The deterministic polynomial loop in Figure 3.1, implements suc-
cessive applications of the transformation f(x, y) = (x + y2, y + 1). In Chap-
ter 3, we have proven that this polynomial loop can be replaced by a linear
one by replacing its body transformation f by g(x, y, y2,1) = (x+y2, y+1, y2+
2y + 1,1). The problem of finding polynomial invariants is reduced to find-
ing linear invariants. However g does not admit any useful linear invariant,
while f admits−6.x+y−3.y2+2.y3 = 0 as an invariant relation between vari-
ables (if x and y starts at 0). To solve this issue, the elevation principle intro-
duced in Section 3.1 allows expressing the value of y3 after multiple iterations
of f by a new variable y3, as we did for y2 with y2. The loop transformation f
can be replaced by h(x, y, y2, y3,1) = (x+y2, y+1, y2+2y+1, y3+3y2+3y+1,1)

We just need to transpose the matrix representing h to compute h∗ . It
returns h∗(x, y, y2, y3,1) = (x, y + y2 + y3, x+ y2 + 3.y3, y3, y + y2 + y3 + 1, y +
y2 + y3 +1). h∗ only admits the eigenvalue 1. The eigenspace of h∗ associated
to 1 is generated by two independants vectors, e1 = (−6, 1,−3, 2, 0)t and
e2 = (0, 0, 0, 0, 1)t. Eventually, we get the formula Fk1,k2 = (k1.(−6.x + y −
3.y2 + 2.y3) + k2.1 = 0) as invariant, with k1, k2 ∈ Q. By writing k = −k2

k1
and replacing 1 with 1, we can rewrite it with only one parameter, Fk =
(−6.x+ y− 3.y2 + 2y3 = k). In this case, information on the initial state of the
loop allows to fix the value of the parameter k. For example if the loop starts
with (x = 0, y = 0), then −6.x+ y − 3.y2 + 2.y3 = 0, and F0 is an invariant.

Contribution of this Chapter. This overview presented a shade of the link
between the eigenvector decomposition of a linear transformation and its
family of inductive invariants. Chapter 5 goes further by:

• proving that left-eigenvectors of a transformation f (i.e. eigenvectors
of the dual f ∗) are exactly the set of semi-invariants of a loop;

• studying the effects of the eigenvalues on those invariants;

• extending this characterization to conditional loops, nested loops and,
at last, non deterministic loops.

5.2 Simple loops

5.2.1 Semi-invariants

As said before, loop invariants can be characterized by two criteria : they
have to hold at the beginning of the loop (initialization criterion) and if they
hold at one step, then they hold at the next step (inductivity criterion). The
technique described here is based on the discovery of linear combinations
of variables that are equal to 0 and satisfying the inductivity criterion. For
example, the loop of section 3.1 admits the formula −6.x+ y− 3.y2 + 2y3 = k

78 Chapter 5. Eigenvectors as linear invariants of linear loops

as a good invariant candidate. Indeed, if we set k in accordance with the
values of the variables at the beginning of the loop, then this formula will be
true for any step of the loop. We call such formulas semi-invariants.

Definition 21 Let ϕ : Kn 7→ K and f : Kn 7→ Kn two linear mappings. ϕ is a
semi-invariant for f iff ∀X , 〈ϕ,X〉 = 0⇒ 〈ϕ, f(X)〉 = 0.

Definition 22 Let ϕ : Kn 7→ K, f : Kn 7→ Kn and X ∈ Kn. ϕ is an invariant for
f with initial state X iff 〈ϕ,X〉 = 0 and ϕ is a semi-invariant for f .

5.2.2 Eigenvectors are invariants

The key point of this technique relies on the fact that if there exists λ, f ∗(ϕ) =
λϕ, then we know that ϕ is a semi-invariant. Indeed, we can rewrite defini-
tion 21 by 〈ϕ, x〉 = 0 ⇒ 〈ϕ, f(x)〉 = 0. By linear algebra, we have 〈ϕ, f(x)〉 =
〈f ∗(ϕ), x〉, with f ∗ the dual of f . If ∃λ, f ∗(ϕ) = λϕ, then we can deduce that
〈ϕ, x〉 = 0⇒ λ 〈ϕ, x〉 = 0. This formula is always true, thus we know that ϕ is
a semi-invariant. Such ϕ are commonly called eigenvectors of f ∗. We will not
adress the problem of computing the eigenvectors of an application as this
problem has been widely studied (in [PC99] for example).

Recall the running example g(x, y) = (x+y2, y+1), linearized by the appli-
cation f(x, y, y2, xy, y3,1) = (x+y2, y+1, y2+2y+1, xy+x+y2+y3, y3+3y2+3y+
1,1). f ∗ admits e1 = (−6, 1,−3, 0, 2, 0)t and e2 = (0, 0, 0, 0, 0, 1)t as eigenvec-
tors associated to the eigenvalue λ = 1. It means that if 〈k1.e1 + k2e2, x〉 = 0,
then

〈k1.e1 + k2e2, f(X)〉 = 〈f ∗(k1.e1 + k2e2), X〉
= 〈λ(k1.e1 + k2e2), X〉
= 0

In other words, 〈k1.e1 + k2e2, X〉 = 0 is a semi-invariant. Then, by expanding
it, we can find that−6.x+y−3.y2 +2y3 = k, with k = −k2

k1
is a semi-invariant.

In terms of the original variables, we have thus −6.x+ y − 3.y2 + 2y3 = k.
Being an eigenvector of f ∗ does not just guarantee a formula to be a semi-

invariant of a loop transformed by f . This is also a necessary condition.

Theorem 4 ϕ is a semi-invariant of f if and only if ϕ is a left-eigenvector of f .

Proof. Let ϕ a semi-invariant. By definition, (〈ϕ, x〉 = 0 ⇒ 〈ϕ, f(x)〉 =
0). This means that V ect(ϕ)⊥ is stable by f , so by Lemma 1, (V ect(ϕ)⊥)⊥ =
V ect(ϕ) is stable by f ∗. As ϕ ∈ V ect(ϕ), we have f ∗(ϕ) = k.ϕ.
�

Remark. Vectors that do not belong to an eigenspace are not semi-invariants.
This is especially true for vectors such as ϕ = ψ + σ where ψ and σ are not
colinear to ϕ and belong to two different eigenspaces. In this case, we have
that:

5.3. Conditions 79

while * do
x = e1;

{x = e21} OR {x = e22};

x = e3

done

while * do
{x = e1;
x = e21;
x = e3}

OR

{x = e1;
x = e22;
x = e3}

done

FIGURE 5.1: The non deterministic choice in the middle of the
first loop can be made at the beginning of the loop.

f ∗(ϕ) = λψ.ψ + λσ.σ
= λψ.(ψ + σ) + λσ

λψ
.σ

= λψ.ϕ+ λσ
λψ
.σ

ϕ is then clearly not an eigenvector, thus by Theorem 4 not a semi-invariant.
Semi-invariants of f don’t belong to, the direct sum of the eigenspaces, but
to their union.

An element ϕ of Eλ of basis {e1, ...en} is a linear combination of e1, ..., en:

ϕ =
n∑

k=1

kiei

The parameters ki can be chosen with respect to the initial state of the loop.

Algorithm. As we are restricting this study to solvable loops, that we know
can be replaced without loss of generality by linear loops, we assume the in-
put of this algorithm is a finite sequence of linear mappings. Their composi-
tion A is also linear, and computed by multiplying each matrix. Computing
the dual of A is computing the matrix AT . Then, eigenvectors of AT can be
computed by many algorithms in the linear algebra literature [PC99]. As
the eigenvalue problem is known to be polynomial, this invariant generation
algorithm is also polynomial.

5.3 Conditions

The construction i OR i of the semantics in Definition 2.2 defines a non de-
terministic choice between two possible instructions. If such a construction
occurs in the middle of a loop, this choice can be lifted to the beginning of
the loop 1 (cf Figure 5.1).

1This could also be done if the condition was not deterministic. Indeed, testing if x > 0
after the assignment x = x+ 1 is equivalent to test is x+ 1 > 0 before the assignment.

80 Chapter 5. Eigenvectors as linear invariants of linear loops

Definition 23 Let F = {Ai}16i6n a family of matrices and Inv(F) the set of in-
variants of a loop whose different bodies can be encoded by elements of F .

Inv(F) = {ϕ|∀X,ϕ.X = 0⇒
n∧
i=1

ϕ.Ai.X = 0}

Definition 23 define semi-invariants of conditional loops as relations pre-
served by each body loops. This definition is consistent with the definition of
semi-invariants in general as, if there were a semi-invariant ϕ of such a loop,
ϕ has to be an invariant for each loop body. The problem to compute Inv(F)
can then be reduced to the computation of the intersection of the invariants
sets of every loop body.

Property 10 Let F = {Ai}16i6n a family of matrices.

Inv(F) =
n⋂
i=1

Inv(Ai)

Proof.

Lemma 7
Let F = {Ai}16i6m, G = {Bi}16i6n two matrix families. Then Inv(F ∪ G) =

Inv(F) ∩ Inv(G)

Proof. As we have ((p⇒ q) ∧ (p⇒ r))⇔ (p⇒ (q ∧ r)),

Inv(F) ∩ Inv(G) =

ϕ|∀X,
(ϕ.X = 0 ⇒

m∧
i=1

ϕ.Ai.X = 0)

∧ (ϕ.X = 0 ⇒
n∧
i=1

ϕ.Bi.X = 0)


= {ϕ|∀X,ϕ.X = 0⇒ (

m∧
i=1

ϕ.Ai.X = 0 ∧
n∧
i=1

ϕ.Bi.X = 0)}

= Inv(F ∪G)

�
We can now prove Property 5.3 by induction over the size n of a family F .

If n equals 1, it is clearly true. If it is true for a certain n, then Inv(F ∪ {A}) =
Inv(F) ∩ Inv({A}) by the previous lemma.
�
As the set of invariants of a single-body loop are a vector spaces union,

its intersection with another set of invariants is also a vector space union.
Although we do not consider the condition used by the program to choose
the correct body, we still can discover useful invariants. Let us consider the
following example, taken from [RK07], that computes the product of x and y
in a variable z :

5.4. Nested loops 81

while (*) do
(x,y,z) := (2x, (y-1)/2, x + z)
OR
(x,y,z) := (2x, y/2, z)

done

We have to deal with two applications : f1(x, y, z) = (2x, (y − 1)/2, x +
z) and f2(x, y, z) = (2x, y/2, z). The elevation to the degree 2 of f1 and f2

returns applications having both 10 eigenvectors. For simplicity, we focus on
invariants associated to the eigenvalue 1.

f ∗1 has 4 eigenvectors {ei}i∈[1,4] as-
sociated to 1 such that

• 〈e1, X〉 = −x+ xy

• 〈e2, X〉 = x+ z

• 〈e3, X〉 = xz + x2 + z2

• 〈e4, X〉 = 1

f ∗2 also has 4 eigenvectors
{e′i}i∈[1,4] associated to 1 such that

• 〈e′1, X〉 = xy

• 〈e′2, X〉 = z

• 〈e′3, X〉 = z2

• 〈e′4, X〉 = 1

First, we notice that e4 = e′4. Then, we can see that 〈e1 + e2, X〉 = xy+ z =
〈e′1 + e′2, X〉. Thus, e1 + e2 = e′1 + e′2. Eventually, we find that e1 + e2 + k.e4 ∈
(V ect({ei}i∈[1,4]) ∩ V ect({e′i}i∈[1,4])). That’s why (〈e1 + e2 + k.e4, X〉 = 0) is
a semi-invariant for both f1 and f2, hence for the whole loop. Replacing
〈k.e4, X〉 by k = −k′ and 〈e1 + e2, X〉 by xy + z gives us xy + z = k′.

Algorithm. The intersection of two vector spaces corresponds to the vectors
that both vector spaces have in common. It means that such elements can
be expressed by elements of the base of each vector space. Let B1 and B2

bases of the two vector spaces. If e ∈ Vect{B1} and e ∈ Vect{B2}, then
e ∈ ker{(B1B2)}, where B1B2 is the concatenation of both bases in a single
matrix. To compute the intersection of a vector space union, we just have to
compute the kernels of each combination of vector space in the union.

5.4 Nested loops

When a loop is a linear application, it can be represented by the matrix prod-
uct of each instruction which composes every instruction into a single one.
Finding the matrix of a loop is thus only possible when there is no nested
loops. When a condition occurs, we simply enumerate all the possible paths,
to which we associate their matrices. For example, with the first program of
5.2, we can see that the matrix C.A represents the loop, as applying it to X at
the beginning computes one whole step of the loop. Moreover there is only
one matrix as there is only one possible path.

In Section 5.3, we have shown that every invariant of this loop is exactly
the intersection of the eigenspaces union of the transposed matrices of each

82 Chapter 5. Eigenvectors as linear invariants of linear loops

while * do
X = A.X;
X = C.X

done

while * do
X = A.X;
while * do
X = B.X

done;
X = C.X

done

FIGURE 5.2: Invariants of the first loops are left-eigenvectors
of C.A, but the second loop cannot be represented as a single

matrix.

path, which is here the eigenspaces union of ((C.A)T). However, the sec-
ond program of Figure 5.2 cannot be treated as easily as the first one as,
considering non-deterministic conditions, we cannot determine how many
times B will be applied. The sequence of matrices associated to this loop is
({C.Bn.A})n∈N, i.e. each element of this sequence is a possible path the loop
can take. Thus the set of invariants for such loop is :

Inv(Prog) =
⋂
i∈N

Inv(C.Bi.A)

This infinite intersection is naively impossible to compute, but the following
theorema allows us to simplify the computation.

Theorem 5 Let d the degree of the minimal polynomial of B. Then

Inv(Prog) =
d−1⋂
i=0

Inv(C.Bi.A)

Proof.

• The idea is to consider the minimal polynomial to stop iterating as soon

as we can. Let P (X) =
d∑
i=0

piX
i the minimal polynomial of B. Without

losing generality, we will assume that pd = 1

〈ϕ,X〉 = 0 ⇒ 〈ϕ,CA.X〉 = 0 (5.3)

is the definition of the invariant of CA. As another path possible is
CBA, we also need to check for

〈ϕ,X〉 = 0 ⇒ 〈ϕ,CBA.X〉 = 0

and so on. Let P(n) = P(n− 1) ∧ (〈ϕ,X〉 = 0⇒ 〈ϕ,CBnA.X〉 = 0).

The case P(0) is directly solved by Equation (5.3).

5.5. The case λ = 1 83

P(d− 1) = (〈ϕ,X〉 = 0 ⇒
d−1∧
i=0

〈
ϕ,CBiA.X

〉
= 0)

The goal is to prove that P(d− 1)⇒ P(d). Let ϕ ∈ {v : P(d− 1)}.
Then

〈ϕ,X〉 = 0 ⇒ 〈ϕ,CA.X〉 = 0

〈ϕ,X〉 = 0 ⇒ 〈ϕ,CBA.X〉 = 0

...

〈ϕ,X〉 = 0 ⇒
〈
ϕ,CBd−1A.X

〉
= 0

P (B) = 0 by definition, so Bd =
d−1∑
i=0

−piBi. Thus,
〈
ϕ,CBdA.X

〉
=

〈ϕ,CQ(B)A.X〉 because 〈., .〉 is bilinear (〈a, b+ c〉 = 〈a, b〉+〈a, c〉) By hy-
pothesis we know that if 〈ϕ,X〉 = 0 then for every i < d 〈ϕ,CBiA.X〉 =
0, thus by bilinearity we also have

〈ϕ,CQ(B)A.X〉 =
d−1∑
i=0

−pi
〈
ϕ,CBiA.X

〉
〈ϕ,CQ(B)A.X〉 = 0

�
This theorem allows us to minimize the number of needed iterations of

the nested loop that are necessary for generating all invariants of the main
one. It relies on the knowledge of the minimal polynomial degree associated
to a matrix M ∈Mn(K), which always divides the characteristic polynomial
of M whose degree is exactly n. In term of complexity, we know the inter-
section of the union of k vectorial spaces of dimension n costs O(k.n3). Thus,
the worst-case complexity of dealing with nested loops is O(k.n4).

5.5 The case λ = 1

5.5.1 The variable 1

We recall from Chapter 3 that affine transformations are linearizable. Every
affine constant α is replaced by the expression α∗1, where 1 is a new variable
always equal to 1. More than a syntactic sugar, the variable 1 brings inter-
esting properties over the kind of invariants we generate for an application
f . The vector e1 such that 〈e1, X〉 = 1 is always an eigenvector associated
to the eigenvalue 1. Indeed, by definition f(1) = 1, hence f ∗(e1) = e1. For
example, let’s take the mapping f(x, y, xy,1) = (2x, 1

2
y + 1, xy + 2x,1). This

84 Chapter 5. Eigenvectors as linear invariants of linear loops

mapping admits 3 eigenvalues : 2, 1
2

and 1. There exist two eigenvectors for
the eigenvalue 1 : (−2, 0, 1, 0) and (0, 0, 0, 1) = e1. We have then the semi-
invariant k1.(−2x + xy) + k2 = 0, or −2x + xy = −k2

k1
. This implies that the

two parameters k1 and k2 can be reduced to only one parameter k = −k2
k1

,
which simplifies a lot the equation by providing a way to compute the pa-
rameter at the initial state if we know it. For our example, −k2

k1
would be

−2xinit + xinit .yinit , where xinit and yinit are the initial values of x and y. More
generally, each eigenvector associated to 1 gives us an invariant ϕ that can be
rewritten as ϕ(X) = k, where k is inferred from the initial value of the loop
variables.

5.5.2 Quantified expression of invariants as eigenvectors.

We can generalize this observation to eigenvectors associated to any eigen-
value. To illustrate this category, let us take as example f(x, y, z) = (2x, 2y, 2z).
Eigenvectors associated to 2 are e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1),
thus k1x + k2y + k3z = 0 is a semi invariant, for any k1, k2 and k3 satisfying
the formula for the initial condition of the loop. However, if we try to set e.g.
k1 = k2 = 1, using x + y + kz = 0 as semi invariant, we won’t be able to find
a proper invariant when yinit or xinit 6= 0 and zinit = 0. Thus, in order to keep
the genericity of our formulas, we cannot afford to simplify the invariant as
easily as we can do for invariants associated to the eigenvalue 1. Namely
for every ei, we have to test whether 〈ei, Xinit〉 = 0. For each ei for which
this is the case, 〈ei, X〉 = 0 is itself an invariant if 〈ei, Xinit〉 = 0. However,
if there exists an i such that 〈ei, Xinit〉 6= 0, then we can simplify the prob-
lem. For example, we assume that zinit 6= 0. Then k1xinit + k2yinit + k3zinit =
0 ⇔ k1xinit+k2yinit

zinit
= −k3. We know then that k1x + k2y = k1xinit+k2yinit

zinit
z is a

semi-invariant. By writing g(k1, k2) = k1xinit+k2yinit
zinit

, we have{
x = g(1, 0)z
y = g(0, 1)z

As g is a linear application, these two invariants implies that ∀k1, k2, k1x+
k2y = g(k1, k2)z is a semi-invariant.

Property 11 Let F a semi-invariant expressed as F =
n∑
i=0

kiei.

If 〈e0, Xinit〉 6= 0, then we have that

n∧
i=1

(〈ei, X〉 = −〈ei, Xinit〉
〈e0, Xinit〉

〈e0, X〉) is an invariant⇔ 〈F , Xinit〉 = 0

Proof.
〈F , Xinit〉 = 0 ⇔

〈
n∑
i=1

kiei, Xinit

〉
= −k0 〈e0, Xinit〉

⇔
n∑
i=1

ki 〈ei, Xinit〉 = −k0 〈e0, Xinit〉

⇔
n∑
i=1

ki〈ei,Xinit〉

〈e0,Xinit〉 = −k0

5.5. The case λ = 1 85

Let g(c1, ..., cn) = −
n∑
i=1

ci.〈ei,Xinit〉

〈e0,Xinit〉 . We have g(ui) = − 〈ei,Xinit〉〈e0,Xinit〉 We note that g
is linear, thus :

〈F , Xinit〉 = 0 ⇔ g(k1, ..., kn) 〈e0, Xinit〉 =
n∑
i=1

ki 〈ei, Xinit〉

⇒
n∧
i=1

(〈ei, X〉 = − 〈ei,Xinit〉〈e0,Xinit〉 〈e0, X〉)

by setting ki = 1 and kj = 0 for all j 6= i.
Now to prove that this transformation does not make us lose precision,

we will construct F with the n equations.

If
n∧
i=1

(〈ei, X〉 = g(ui) 〈e0, X〉), then as g is a linear application we have that

n∑
i=1

ki 〈ei, X〉 = g(k1, ..., kn) 〈e0, X〉

We conclude by setting k0 to −g(k1, ..., kn)
�
We are now able to use pairs of eigenvectors to express invariants by

knowing the initial condition.

5.5.3 Elevation degree.

To complete the technique, we will find a minimal degree for which we are
sure to find invariants when there exist at least 2 variables associated to the
eigenvalue 1 (not counting 1). Let A be a linear transformation matrix. First,
let us simplify the context by changing the base of the transformation:

Property 12 Let A and B two similar transformations, ΦA and ΦB the sets of their
linear invariants. ΦA is isomorphic to ΦB.

Proof. By property 4, we know that the union of any base of the eigenspaces
is sufficient to express all linear invariants of A. We will prove that each
eigenspace is isomorphic. If A and B are similar, there exists a P such that
A = P−1BP . Let λ an eigenvalue of A.

A− λId = P−1.B.P − λ.Id
= P−1.B.P − P−1.(P.λId.P−1).P
= P−1.B.P − P−1.(λId).P

A− λId = P−1.(B − λId).P
Let ϕ ∈ ker(A) a non null vector such that (A − λId)ϕ = 0. In other

words, ϕ is an eigenvector of A associated to λ. As P is invertible, its kernel
is reduced to the null vector (as well as the kernel of P−1). By hypothesis, we
have that (P−1.(B − λId).P)ϕ = 0, therefore P.ϕ ∈ ker(B − λId).

Elements of ΦA are in bijection with elements of ΦB through P . �

Corollary. Working on the original base or on any base is equivalent when
searching for invariants. More specifically, let us focus on the Jordan normal
base of A. A is similar to J (ie. ∃P.A = P−1JP), with

86 Chapter 5. Eigenvectors as linear invariants of linear loops

J =


J1 0 ... 0

0
.

... 0
0 ... 0 Jk

, and Jk =


λk 1 ... 0

0
.

... 1
0 ... 0 λk


Assume there exists i such that λi = 1. The associated Jordan block, work-

ing on variables xJi = (xJi1 , ..., x
Ji
j) is then

Ji =


1 1 ... 0

0
.

... 1
0 ... 0 1


It is easy to compute the nth power of Ji = Id+N , where N is nilpotent.

Jni =


1 n ... Pj(n)

0
.

... . . . 1 n
0 ... 0 1

 (5.4)

where Pj(n) is a polynomial of degree j. Let’s assume without loss of
generality that xJij = 1. Then, xJij−1 acts like a loop counter : it is incremented
by 1 after every step of the loop. Hence for every step, n = xJij−1−xinit, where
xinit is the initial value of xJij−1. We can thus replace it in Jni : every variable
is directly in relation with xJij−1, which implies that every variable of xJi are
polynomials of other variables, thus admit equivalent invariants.

To sum up, every variable associated to the eigenvalue 1 in a Jordan block
is directly in relation with the loop counter (cf equation (5.4)). This counter
appears in the loop when there exists a Jordan block of size 2. Therefore:

Property 13 LetA a linear transformation, J its Jordan normal form. Let Jk denote
the kth Jordan block associated to the eigenvalue 1, Jki its ith line (starting from the
bottom). Let xki the ith variable of the Jordan block Jk (also starting from the bottom).

• For every k, k′, c, xki − xk′ i = c is a semi-invariant of J

• If there exists a Jordan block Jk of size 3 or more, then there exists a semi-
invariant of degree m+ 1 where m is the size of the largest Jordan block.

Proof.

• We proceed by induction on the position on the Jordan block. From
equation (5.4), we know that xk1 = 1 for all k. Therefore for all k,
xk1 = x11 is a semi-invariant of J .

• Let us take a Jordan block Jk. After n iterations, the variable {xk}i will
be associated to a polynomial of degree at most i+ 1 (cf equation (5.4)).
Indeed, the ith line contains a polynomial of degree at most i in n (the
loop counter), and each coefficient is multiplied by a variable the matrix
is applied to a variable vector, which returns a polynomial of degree

5.6. Inequalities 87

(x,y) = (non_det(-1,1),non_det(-1,1));
while(*) do

(x,y) = (0.68 * (x-y), 0.68 * (x+y));
done

FIGURE 5.3: Simple affine loop

i + 1. If the Jordan block has a size of 3 or more, this loop counter
automatically appears as the variable {xk}2. Therefore, it is possible to
replace every occurence of the loop counters in the polynomial relations
by {xk}2.

�
Variables in the Jordan normal form of a linear transformation represent

linear combinations of variables in the original form of the matrix. Therefore,
this property proves the existence of polynomial invariants up to a calculable
bound, i.e. the maximal size of the Jordan blocks. In the base of Jordan, this
property also explicits invariant relations between and beside blocks.

5.6 Inequalities

5.6.1 Convergence and divergence

Being an inductive invariant requires for a formula F to be true after an it-
eration of the loop under the hypothesis that F holds before the iteration.
The left eigenspace of a linear transformation (i.e. the eigenspace of the dual
transformation) is exactly its set of exact invariants (cf Definition 21). So far,
we only studied equality relations between variables. Let us introduce now
the concept of convergent and divergent invariants:

Definition 24 Convergence
ϕ ∈ Kn is a convergent inductive invariant for a linear mapping f iff

∀X ∈ Kn, ∀k ∈ K, | 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k (5.5)

Definition 25 Divergence
ϕ ∈ Kn is a divergent inductive invariant for a linear mapping f iff

∀X ∈ Kn,∀k ∈ K| 〈ϕ,X〉 | > k ⇒ | 〈ϕ, f(X)〉 | > k (5.6)

5.6.2 Convergent invariants and eigenvectors

By linear algebra

| 〈ϕ,X〉 | 6 k ⇒ | 〈f ∗(ϕ), X〉 | 6 k (5.7)

88 Chapter 5. Eigenvectors as linear invariants of linear loops

is strictly equivalent to the Definition 24 of convergent semi-invariants. The
set of X such that | 〈ϕ,X〉 | 6 k represent what we call a domain described by
ϕ, i.e. a polynomial relation. The previous constraint specify that the domain
described by ϕ is stable by f .

The loop in figure 5.3 admits the invariant x2+y2 6 2, a domain described
by ϕ = (0, 0, 0, 1, 0, 1)t in the base (1, x, xy, x2, y, y2)2 where x2 represents x2,
xy represents x ∗ y and y2 represents y2. As ϕ is a left-eigenvector of f , it is
an exact semi-invariant of the loop. Therefore, it generates a vectorial space
of exact semi-invariants I = {k.(x2 + y2) = 0 |, k ∈ K}, which is a very poor
result as x2 + y2 is constant only if it starts at 0 (otherwise k = 0 and we don’t
know anything about x2 +y2). Let us focus now on the eigenvalue associated
to ϕ on f ∗, which is 0.9248. We can replace | 〈f ∗(ϕ), X〉 | by |λ|.| 〈ϕ,X〉 | in
(5.7), which returns :

| 〈ϕ,X〉 | 6 k ⇒ |λ|.| 〈ϕ,X〉 | 6 k

As |λ| < 1, the vector ϕ satisfies the equation, thus ϕ is a convergent semi-
invariant. Knowing the maximal initial value of x2 + y2 allows to determine
the value of k, which is 2. More generally, we have :

Property 14 ϕ is a convergent semi-invariant⇔ ∃λ, |λ| 6 1, f ∗(ϕ) = λ.ϕ

Proof. If |λ| 6 1, then ϕ is a convergent semi-invariant (see introduction of
section 5.6). We will prove the following Lemma:

Lemma 8 (∀k, | 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k)⇒ ϕ is a left-eigenvector of f .

Proof. With k = 0, we end up with the exact semi-invariant of Definition
21, whose solutions are eigenvectors of f ∗ by Theorem 4. �

As the exact semi-invariants set of f is the union of the eigenspaces of f ∗,
we can deduce that this set is a superset of all the relations satisfying (5.5).
Moreover by Lemma 8, we have

(| 〈ϕ,X〉 | 6 k ⇒ | 〈ϕ, f(X)〉 | 6 k)⇒ (| < ϕ,X > | 6 k ⇒ |λ|.| < ϕ,X > | 6 k)

For k = | < ϕ,X > | it is true if and only if |λ| 6 1. �

Divergent invariants and eigenvectors The same reasoning applies for the
generation of divergent invariants. For example, an eigenvalue λ such that
|λ| > 1 associated to a semi-invariant ϕ implies that | 〈ϕ,X〉 | > k is an induc-
tive invariant. Thus, we also have

Property 15 ∃λ, |λ| > 1, f ∗(ϕ) = λ.ϕ⇒ ϕ is a divergent semi-invariant
2The representation of monomials of variables in a linear transformation refers to the

elevation process introduced in Chapter 3, Section 3.1.

5.7. Non determinism 89

while (*) do
N = non_det(-0.1,0.1);
(x,y) = (0.68 * (x-y) + N, \
0.68(x+y) + N);

done

FIGURE 5.4: Non deterministic variant of the Figure 5.3

Proof. If there exists λ such that f ∗(ϕ) = λ.ϕ, then we have that

| < ϕ,X > | > k ⇒ | < ϕ, f(X) > | > k

is equivalent to

| < ϕ,X > | > k ⇒ |λ|.| < ϕ,X > | > k

If we also have that |λ| > 1, then the previous equation is true. �
Note that this is only an implication this time. For example, the trans-

formation f(x,1) = (x + 1,1) admits x > xinit as a divergent invariant but
the only left eigenvector of f is (0, 1), which correspond to the invariant "1 is
constant". Moreover, not all invariants of the form P (X) 6 k are generated
: the loop with the only assignment x = x − 1 admits the (non-convergent)
invariant x 6 xinit. This invariant does not enter the scope of our setting as
|x| 6 xinit is false for 2xinit + 1 iterations of x = x− 1.

5.7 Non determinism

5.7.1 Non deterministic transformations

Some programs depend on inputs given all along their execution, for ex-
ample linear filters. More generally, an important part of program analysis
consists in studying non-deterministic assignments. As an example let us
consider the program in figure 5.4, a slightly modified version of the pro-
gram in figure 5.3. Our previous reasoning is not applicable now because,
due to the non-determinism of N , the loop is no longer a linear mapping.

Idea. Intuitively, we will represent this loop by a matrix parametrized by
N . For that purpose we use the concept of abstract mapping introduced
in [JSS14].

Definition 26 An abstract linear mapping f : Kq 7→ Mn(K) is a mapping asso-
ciating a vector N ∈ Kq to a matrix. We call f ∗ the dual mapping of f (i.e. the
mapping such that f ∗(N) = (f(N))t). The expression of the parametrized matrix
with respect to an abstract linear mapping will be called the abstract matrix.

90 Chapter 5. Eigenvectors as linear invariants of linear loops

In our setting, the parameters are the non-deterministic values. For ex-
ample, the previous loop can be represented by the abstract matrix MN :

1 0 0 0 0 0
N 0.68 0 0 −0.68 0
N2 1.36N 0 0.462 0 −0.462
N2 1.36N 0.925 0.462 −1.36N 0.462
N 0.68 0 0 0.68 0
N2 1.36N 0.925 0.462 1.36N 0.462


Remark. Similarly to deterministic solvable mappings defined in Chap-
ter 3, non deterministic solvable mappings can be linearized to an abstract
matrix. By considering non deterministic parameters as constants, the prob-
lem is reduced to the linearization of deterministic solvable mappings.

5.7.2 Generation of a candidate invariant

We have shown in section 5.6 thatM0 admits the invariant e0 = (0, 0, 0, 1, 0, 1)
associated to the eigenvalue λ0 = 0.9248. By decomposing MN as the sum of
M0 and (MN−M0), we also have e0.MN = e0.M0 +e0.(MN−M0) = λ0.e0 +δN0 ,
where δN0 = e0.(MN −M0) = (2N2, 2.72N, 0, 0, 0, 0). As the eigenvalue λ0 is
smaller than 1, we are looking for relations ϕ such that ∀X, | 〈ϕ,X〉 | 6 k ⇒
|
〈
MT

N .ϕ,X
〉
| 6 k. We will call e0 a candidate invariant for MN . For e0 to be a

proper invariant for this transformation, the following property must hold:

∀X, | 〈e0, X〉 | 6 k ⇒ |λ0 〈e0, X〉+
〈
δN0 , X

〉
| 6 k (5.8)

Intuitively, multiplying 〈e0, X〉 by λ0 reduces its norm strictly under k. We
need to make sure that adding

〈
δN0 , X

〉
does not contradict the induction cri-

terion by increasing the result over k. The variables of the program depend
on k, as does

〈
δN0 , X

〉
. If it increases faster than |λ0 〈e0, X〉 | when k is in-

creased, then no value of k will make the candidate invariant inductive. In
particular, if 〈e0, X〉 is a polynomial P of degree d, we need to be able to give
an upper bound to

〈
δN0 , X

〉
knowing that |P (X)| < k. If the degree of

〈
δN0 , X

〉
is strictly smaller than d, then it will grow asymptotically slower than |P (X)|,
thus for a big enough k the induction criterion will be respected.

Property 16 (
∀X, | 〈e0, X〉 | 6 k ⇒ |

〈
δN0 , X

〉
| 6 (1− |λ0|).k

)
⇒ (5.9)

| 〈e0, X〉 | 6 k is an invariant of the loop.

Proof. We work with the hypothesis ∀X, | 〈e0, X〉 | 6 k.

5.7. Non determinism 91

|
〈
δN0 , X

〉
| 6 (1− |λ0|)k ⇒ |

〈
δN0 , X

〉
|+ |λ0.k| 6 k

⇒ |
〈
δN0 , X

〉
|+ |λ0. 〈e0, X〉 | 6 k

⇒ |
〈
δN0 , X

〉
+ λ0. 〈e0, X〉 | 6 k

�
In our example,

〈
δN0 , X

〉
= 2.72 ∗ N ∗ x + 2 ∗ N2. The polynomial x is of

degree 1 while < e0, X >= x2 + y2 is of degree 2. We need to find a k such
that

−0.0752 ∗ k 6 2.72 ∗N ∗ x+ 2 ∗N2 6 0.0752 ∗ k (5.10)

5.7.3 Optimizing expressions

We will now maximize and minimize 2.72 ∗ N ∗ x + 2 ∗ N2, knowing that
x2 + y2 6 k and−0.1 6 N 6 0.1. Solving this problem is very close to solving
a constrained polynomial optimization (CPO) problem [Ber14]. CPO tech-
niques provide ways to find values minimizing and maximizing expressions
under a set of inequalities constraints. The main issue is related to the param-
eter k that must be known in order to use CPO directly. This Chapter will not
investigate how CPO works in detail, but how we can reduce the problem of
finding an optimal k to the CPO problem.

Assuming we have a function min computing the minimum, if it exists,
of an expression under polynomial constraints, the algorithm in Figure 5.5
finds a value of k and refines it to get as small as possible. The idea is to find
k by dichotomy.

• If k doesn’t satisfy the constraints, we try a bigger one.

• If we find a k satisfying the two conditions, then it is a potential candi-
date. We can still try to refine it by searching for a smaller k.

We can improve this algorithm by guessing an upper value of k instead of
taking an arbitrary maximal value MAX_INT. For our example, we started at
k = 50 and found that k = 14.9 respects all the constraints.

• x2 + y2 6 14.9⇒ |x| 6 3.9

• |N | 6 0.1

• |2.72 ∗ x ∗N + 2 ∗N2| 6 1.08, and k ∗ (1− |λ|) = 1.12.

5.7.4 Convergence

Note however that the existence of a k satisfying (5.10) is not guaranteed.
For example, the set S = {(x, y,N)|x2 + y2 6 k ∧ −0.1 6 N 6 0.1} is a
compact set for any value of k, which means that x, y and N have maximum
and minimum values. This implies the existence of a lower and an upper

92 Chapter 5. Eigenvectors as linear invariants of linear loops

Data:
λ : float
Q : objective function
P : polynomial constraint
non_det_c : non deterministic constraints
N : int
Result: k such that ∀X,P (X) 6 k ⇒ f(X) 6 (1− |λ|).k
low_k = 0;
up_k = MAX_INT;
k = MAX_INT / 2;
i = 0;
while i<N ∧ up_k 6= MAX_INT do

i = i+1;
Pk = function (x→ P(x) + k);
min = min(Q,[Pk] ∪ non_det_c);
max = min(-1*Q,[Pk] ∪ non_det_c);
if min > (-1+|λ|) * k and max < (1-|λ|)*k then

up_k = k;
else

low_k = k;
end
/* Check the overflow for the next statement ! */
k = (low_k + up_k) / 2;

end

FIGURE 5.5: Dichotomy search of a k satisfying the condition
of Property 16

5.7. Non determinism 93

bound for every expression composed with x, y andN , but the value of those
expressions may be always higher than k such as for x2 + y2 + 1 bounded by
k + 1.

Property 17 Let P and Q two polynomials and M > 0 ∈ R.
If lim
‖X‖→+∞

|Q(X)
P (X)
| < M , then there exists k ∈ R+ such that for all k′ > k

|P (X)| 6 k′ ⇒ |Q(X)| 6M.k′

Proof. If lim
‖X‖→+∞

|Q(X)
P (X)
| < M , then there exists X ′ such that for all X with

‖X ′‖ 6 ‖X‖, we have |Q(X)
P (X)
| 6M We will first prove this property for ‖X‖ 6

‖X ′‖, then for ‖X‖ > ‖X‖.

• For X such that ‖X‖ 6 ‖X ′‖, both P and Q are bounded. Therefore,
there exists a positive k such that |P (X)| 6 k and |Q(X)| 6M.k.

• Now for X such that ‖X‖ 6 ‖X ′‖, let us assume that |P (X)| 6 k. Then
we have that for all k

|Q(X)

P (X)
| 6M ⇒ |Q(X)|

k
6M

�
By taking M = (1 − |λ0|), this theorem gives us a sufficient condition to

guarantee the convergence of the algorithm in figure 5.5.

Corollary. If the objective has a lower degree in the deterministic variables than
the candidate invariant, then the algorithm converges. If it has the same degree, then
it depends on the main coefficients.

As we are dealing with two polynomials P and Q, then if P (the candi-
date invariant) has a higher degree than Q (the objective function) in all its
variables, the limit of Q(X)

P (X)
will be 0, which is enough to ensure the conver-

gence of the method. If we come back to the objective function for the loop
of figure 5.3, Q(X) = 2.72.x.N + 2.N2 is a polynomial of degree 1 in x and 0

in y, thus lim
‖X‖→+∞

|Q(X,N)
P (X)

| = 0 and we can be sure that the optimization will
converge.

On the other hand, if we have X = (x, y), P (X) = x2 + y2 and Q(X,N) =
10.N(x2+y2+1), with |N | 6 0.1, the optimization procedure may not produce
a result by theorem 17 because lim

‖X‖→+∞
|Q(X,N)
P (X)

| = 10N is higher than 1 − |λ|

for N = 0.1.

5.7.5 Initial state

The knowledge of the initial state is not one of our hypotheses yet, but the
previous theorem provides the necessary information we need to treat the
case where the initial state is strictly higher than the minimal k we found.
The previous theorem tells us that there exists a k such that for all k′ > k,

94 Chapter 5. Eigenvectors as linear invariants of linear loops

k′ is a solution to the optimization problem. Our optimization algorithm is
searching for a value of k for which the set is inductive, though, and this
solution may be only local : there may be a k′ > k which is not a solution of
the optimization procedure. If the value of P (Xinit) is strictly higher than k,
there are two possibilities :

• it satisfies the objective (5.10), optimization is then not necessary as k =
P (Xinit) is correct, and we directly have a solution.

• it doesn’t satisfy the objective, we have to find a k > P (Xinit) satisfying
it.

In both cases, we can enhance the optimization algorithm by first testing
the objective (5.10) with k = P (Xinit). If it does not respect the objective,
then starting the dichotomy with low_k = P (Xinit) will return a solution
(guaranteed by the property 17) strictly higher than P (Xinit).

95

Chapter 6

How precise can invariants be ?

Contents
6.1 The Orbit Problem . 95

6.1.1 The Kannan-Lipton Orbit problem 95

6.1.2 Eigenvectors as certificates 96

6.2 Certificate sets of the rational Orbit Problem 97

6.2.1 Case 2: there exist eigenvalues λ and |λ| 6= 1. 99

6.2.2 Case 3: all eigenvalues have a modulus equal to 1
and the matrix is not diagonalisable 102

6.2.3 Case 4: eigenvalues all have a modulus equal to 1
and the transformation is diagonalizable 104

6.3 General existence of a certificate for the integer Orbit Prob-
lem . 106

6.4 Perspectives . 107

Requirements: Linear algebra (Section 2.1)

Generating invariants is not a goal in itself, but a mean to prove the cor-
rectness of a program. Chapter 5 gave a new characterization of linear loop
invariants, and a simple algorithm to generate them. But these invariants are
generated out of any proof context, and they are sometimes insufficient to
prove the correctness of a program. Though Theorem 4 states that eigenvec-
tors are exactly invariants of linear loops, it is not clear what is achievable or
not with them. We will show in this Chapter a possible application of eigen-
vectors as invariants for the Kannan-Lipton Orbit problem [KL80; KL86]. This
chapter is based on work presented on [Oli+18].

6.1 The Orbit Problem

6.1.1 The Kannan-Lipton Orbit problem

The Kannan-Lipton Orbit problem can be stated as follows :

Given a square matrix A ∈Md(Q) of size d and
two vectors X, Y ∈ Qd, determine if there exists n such that AnX = Y .

96 Chapter 6. How precise can invariants be ?

This problem is decidable in polynomial time [KL86]. In case an instance
of the problem has no solution (in other words, Y is not reachable from X),
[Fij+17] studies the existence of non-reachability semialgebraic certificates
for a given instance of the Orbit Problem where Y is not reachable. Semi-
algebraic certificates are sets described by conjunctions and disjunctions of
polynomial inequalities with integer coefficients that include the reachable
set of states but not the objective Y . Those certificates allow to quickly prove
the non-reachability of the given vector Y and all vectors outside of the cer-
tificate.

[Fij+17] concludes on the existence of such certificates under simple hy-
potheses on the eigenvalue decomposition of A. To sum up, if there exist
eigenvalues with modulus different than 1 or if the transformation is not
diagonalizable, there exists certificates of non reachability that involves in-
equalities of polynomials. Otherwise, it depends if the objective belong to a
certain set described by equalities of polynomials.

These hypotheses are surprisingly similar to the hypotheses of PILA as,
when |λ| 6= 1, left-eigenvectors represent polynomial inequality invariants
while [Fij+17] uses certificates defined by polynomial inequalities. Eigenvec-
tors were sometimes unable to infer invariants, especially when the studied
matrix was non-diagonalizable with all its eigenvalues λ such that |λ| = 1,
while [Fij+17] was able to infer certificates.

Interests of eigenvectors. In terms of complexity, eigenvectors and the ar-
gument of [Fij+17] using the Jordan Normal form of the matrix are equiva-
lent, as the Jordan Normal form of a matrix can be calculated in polynomial
time given eigenvectors and generalized eigenvectors. It is however neces-
sary to compute all eigenvectors and generalized eigenvectors of a transformation
to get the Jordan Normal form, which slows the analysis (this is especially
true for generalized eigenvector that are harder to calculate).

6.1.2 Eigenvectors as certificates

In this Chapter, we investigate the connections between the construction of
certificates for the Orbit Problem and the invariants characterization of Chap-
ter 5. We show that for an instance of the Orbit Problem for the transforma-
tion A of dimension n, the problem of generating a certificate can be reduced
to the search of eigenvectors. Particularly,

• in the first hypothesis, there exists a linear transformation of dimension
O(n2) (resp. O(2n)) computing an equivalent image of A such that its
eigenvectors can be used as real certificates (resp. semialgebraic certifi-
cates) for the non reachability of the given instance;

• in the second hypothesis, there exists a linear transformation of dimen-
sion O(n2) (resp. O(2n)) computing an equivalent image of A such that
its generalized eigenvectors can be used as real certificates (resp. semial-
gebraic certificates) for the non reachability of the given instance;

6.2. Certificate sets of the rational Orbit Problem 97

• in a more general case, a semialgebraic certificate for the Orbit Problem
in Z always exists.

Remark. It is worth noting that there exists no proof about the decidability
of the existence of linear certificates directly on the transformation A.

6.2 Certificate sets of the rational Orbit Problem

This chapter focuses on A ⊂ C, the field of algebraic numbers. Elements
of A are roots of polynomials with integer coefficients. Indeed, the linear
transformations we consider are in Qd → Qd, thus their eigenvalues (as
roots of the characteristic polynomial) are in A. Let f : Qd → Qd be a
linear transformation. We refer to the Orbit Problem of Af with an initial
state X ∈ Qd and an objective state Y ∈ Qd as O(A,X, Y). In other words,
O(A,X, Y) = (∃n ∈ N.Y = AnX). As we are studying non-reachability, every
instance of the problem is assumed to be false unless stated otherwise.

Definition 27 A non-reachability certificate or just certificate is a pair (N,P) ∈
N× P(Qd) of an instance O(A,X, Y) such that :

• ∀n ∈ N, n < N ⇒ AnX 6= Y

• ∀n ∈ N, n > N ⇒ AnX ∈ P

• Y /∈ P

N is called the certificate index and P the certificate set.

When the certificate set is described by a combination of linear (resp. polyno-
mial) relations between variables, the certificate is called linear (resp. poly-
nomial). Irrational, semialgebraic and rational certificates are linear or poly-
nomial certificates whose coefficients are respectively irrationals, algebraic
integers or rationals.

Semi-algebraic certificates, are always equivalent to rational certificates.
Indeed, every coefficient ϕi ∈ A is nullified by a polynomial Q with integer
coefficients. It is then possible to replace ϕi by a free variable that is con-
strained to be a root of Q. For example, P = {x|

√
2x 6 2} = {x|∃y.y2 =

2 ∧ y > 0 ∧ yx 6 2}.

Remarks. This definition of certificates is slightly different than the notion
of certificates of [Fij+17] as it does not require an inductivity criterion. We
have choosen this notation so as to simplify the notations.

The certificate sets we generate are future invariants of the transformation,
in the sense that fn(X) eventually reaches the set for some n and always
remains in it, whereas Y is outside the invariant. Different choices of X and
Y may delay the number of iterations needed to reach it. The certificate index
solves this issue by expressing the number of iterations necessary for fn(X)

98 Chapter 6. How precise can invariants be ?

to reach the certificate set. This information is crucial for the practical use of
certificates, as a solver can use it to shorten its analysis.

The existence of such a pair implies the non reachability of Y as AnX is
either different from Y or belongs to a set to which Y does not. For exam-
ple, if Y does not belong to the reachable set of states R = {AnX | n > 0},
the pair (0, R) is a certificate. However, typically, R can not be described
in a non-enumerative way. We are interested in simple certificates, i.e. where
proving that the objective Y does not belong to the reachable set of states is
straightforward. That means that membership in P should be easy to solve.
For example, let R′ = {(v1, ..., vn)|v1 + v2 > 0} and assume R ⊂ R′. Testing
whether Y is in R′ or not is easy as this set is described by a linear combina-
tion of variables. If Y /∈ R′, then R′ is generally a better (simpler) certificate
set thanR. On the other hand, finding a good certificate index may be harder.

Generation of certificates. The decidability of the existence or the non-
existence of semialgebraic certificates for the Orbit Problem for rational linear
transformations is proven in [Fij+17]. It classifies four categories of rational
linear transformations f : Qd → Qd:

• f admits null eigenvalues;

• f has at least an eigenvalue of modulus strictly greater or less than 1;

• f has all its eigenvalues of modulus 1, but it is not diagonalisable;

• f has all its eigenvalue of modulus 1 and is diagonalisable.

In the second and third case, linear transformations always admit a non
reachability certificate if the Orbit problem has no solution. The intuition
behind this result is to consider the Jordan normal form fJ of the transfor-
mation f . Let V be a vector of variables and VJ the vector of variables in the
base of J . In this form, there exists a variable vJ (representing a linear combi-
nation of variables of V) such that fJ(VJ)|vJ = λvJ . Applied k times, the new
value of vJ is λkvJ , which diverges towards infinity or converges towards 0
when |λ| 6= 1. Checking if a value y is reachable or not can then be done by
checking if there exists k ∈ N such that λkvJ = y. We are now left to compute
those certificates.

Case 1: there exist null eigenvalues

This particular case leads to degenerate instances of the orbit problem. When
a linear transformation admits a null eigenvalue, there exists a linear combi-
nation of variables that is always null. In other words, there exists a variable
v that can be expressed as a linear combination of the other variables. There-
fore, this variable doesn’t provide any useful information on the transforma-
tion other than an easily checkable constraint on v. If the linear constraint
is satisfied, we get rid of this case by using Lemma 4 of [Fij+17], stating the
following:

6.2. Certificate sets of the rational Orbit Problem 99

The problem of generating non-reachability certificates for an orbit in-
stance O(A,X, Y) can be reduced to the problem of generating reachability
certificates for an orbit instance O(A′, X ′, Y ′) where A′ is invertible.

6.2.1 Case 2: there exist eigenvalues λ and |λ| 6= 1.

Real eigenvalues.

The key of the following property lies in [pilat_nd_long], stating that λ-left
eigenvectors ϕ of a linear transformation f are its invariants. More precisely,
we can see that if ϕ is a left-eigenvector of a linear transformation A, then by
definition the following holds:

∀v ∈ Kd, 〈ϕ,Av〉 = λ 〈ϕ, v〉 (6.1)

If |λ| > 1 (resp. |λ| < 1), then the sequence (| 〈ϕ,Anv〉 |) (for n ∈ N) is strictly
increasing (resp. strictly decreasing),

Property 18 Let A ∈ Md(Q) a linear transformation and O(A,X, Y) an instance
of the Orbit problem with no solution. Searching for a non-reachability certificate of
an instance of the Orbit problem when A admits real eigenvalues λ such that |λ| 6= 0
and |λ| 6= 1 can be reduced to computing the eigenvector decomposition of A.

More precisely, if there exists ϕ a λ-left-eigenvector of A with |λ| 6= 0 and |λ| 6= 1,
then there necessarily exists N such that the couple (N,P) defined as follows is a
non-reachability certificate of O(A,X, Y).

1. If | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 | = 0, then N = 0 and P = {v : 〈ϕ, v〉 6= 0}

2. If | 〈ϕ,X〉 | = 0 and | 〈ϕ, Y 〉 | 6= 0, then N = 0 and P = {v : 〈ϕ, v〉 = 0}.

3. If | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 | 6= 0, N = max(1, b ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)
ln(|λ|) c + 1)

and

• If |λ| > 1, then P = {v : | 〈ϕ, v〉 | > |λ. 〈ϕ, Y 〉 |}.
• If |λ| < 1, then P = {v : | 〈ϕ, v〉 | 6 |λ. 〈ϕ, Y 〉 |}.

4. Otherwise, if d > 1 there exist a transformation B ∈ Md−1(Q) such that the
problem of finding a certificate for O(A,X, Y) can be reduced to the problem
of finding a certificate for O(B,X, Y).

If d = 1, then O(A,X, Y) has a solution.

The certificate is semi-linear iff λ ∈ Q.

Proof. Let ϕ be a left-eigenvector of A associated to the eigenvalue λ. We
know that for all v, 〈ϕ, v〉 = k ⇒ 〈ϕ,Av〉 = λ.k. Let Un = | 〈ϕ,AnX〉 | be the
module of the n-th reachable state from X . If |λ| < 1 (resp. |λ| > 1), then (Un)
is strictly decreasing (resp. strictly increasing).

100 Chapter 6. How precise can invariants be ?

1. Let kv = | 〈ϕ, v〉 |. If kX 6= 0 and kY = 0, then the sequence (Un) never
reaches kY , as for all n, Un 6= 0. In other words, |Un| > 0 for all n ∈ N.
Then it is clear that P = {X : | 〈ϕ,X〉 | 6= 0} is a valid certificate set of
index N = 0.

2. Similarly, if kX = 0 and kY 6= 0, then P = {X : | 〈ϕ,X〉 | = 0} andN = 0.

3. Assume now that kX 6= 0 and kY 6= 0. If kX < kY and |λ| < 1 (re-
spectively kX > kY and |λ| > 1), then (1, {v : | 〈ϕ, v〉 | 6 |λ|.kY }) is
a valid certificate set (respectively (1, {v : | 〈ϕ, v〉 | > |λ|.kY })). Other-
wise, let us assume |λ| < 1 and kX ≥ kY . Un is strictly decreasing,
so there exist a N such that UN > kY and UN+1 < kY . This implies
that Y can only be reachable after a finite number of iterations N . We
also have that UN+1 > |λ|.kY and UN+2 < |λ|.kY . If for all n < N + 1,
Y 6= AnX , we can define P = {v : | 〈ϕ, v〉 | < |λ|.kY }, and obtain Y /∈ P
and {AN+1+nX|n ∈ N} ⊂ P . Therefore, the couple (N + 1, P) is a
non-reachability certificate of O(A,X, Y). A similar proof for |λ| > 1
is valid as the sequence Un is now strictly increasing and the couple
(N, {| 〈ϕ,X〉 | > |λ|.kY }) is the corresponding certificate.

We will now study the exact value of N . If Y is reachable, then there
exists a unique value of N such that |λ|N | 〈ϕ,X〉 | = kY . This value
is precisely ln(|〈ϕ,Y 〉|)−ln(|〈ϕ,X〉|)

ln(|λ|) . If for every value of n 6 N , Y is not
reached and as Y noes not belong to the certificate set P , the couple
(max(0, bNc), P) is a non-reachability certificate.

4. Assume kX = kY = 0. In this case for every n, 〈ϕ,AnX〉 = 0, thus the
linear combination of variables ϕ.X is always equal to 0. There exists
a base B of the transformation in which there exists a variable v which
remains null for every iteration of the transformation. In other words,
there exist A′, Q such that A′ = Q.A.Q−1.

Assume d > 1 and let B′ = A′|V \v
and Q′ = Q|V \v the transformations re-

stricted to all variables but v (by removing both the associated line and
column). Finding a certificate for A is reduced to finding a certificate
for B = Q′−1B′Q′.

If d = 1 and there exist a linear combination ϕ ofX such that 〈ϕ,X〉 = 0,
then X = 0. Similarly, Y = 0.

Concerning the linearity of the certificate, if λ ∈ Q, then every coefficient
of ϕ also belongs to Q. Indeed A has rational coefficients, so does ϕA = λ.ϕ.
Similarly, if ϕ has rational coefficients, ϕ.A = λ.ϕ also does.

In the case of kX 6= 0 and kY 6= 0, we also have to get rid of the absolute
value around 〈ϕ, v〉 in the definition of the certificate set. If |λ| > 1, the cer-
tificate set {v : (〈ϕ, v〉 > |λ 〈ϕ, Y 〉 |) ∧ (〈ϕ, v〉 6 −| 〈ϕ, Y 〉 |)} is semilinear. A
similar set can be found for |λ| < 1.
�

6.2. Certificate sets of the rational Orbit Problem 101

Certificate index.

Being able to minimize the number of necessary unrollings to prove the non
reachability is useful. In this regard, notice that the certificate index value N
of Property ?? is such that for every n < N , 〈ϕ,AnX〉 /∈ P . In other words, it
is minimal for its associated certificate set.

Example. Consider the Orbit Problem O(A,X, Y) with

subsubsection A =


0 3 0 0
−3 3 1 0
0 0 2 1
1 1 0 1


A admits two real eigenvalues λ1 ≈ 0.642 and λ2 ≈ 2.48 respectively as-
sociated to the left-eigenvectors ϕ1 = (−0.522, 0.355,−0.261, 0.73) and ϕ2 =
(0.231,−0.36,−0.749,−0.506). This is enough to build two preliminary cer-
tificate sets that only depend on Y : P1 = {v.| 〈ϕ1, v〉 | 6 λ1.| 〈ϕ1, Y 〉 |} and
P2 = {v.| 〈ϕ2, v〉 | > λ2.| 〈ϕ2, Y 〉 |}. Those can be used for any initial valuation
of X .

Let’s now set X = (1, 1, 1, 1) and Y = (−9,−7, 28, 7). We have then

• 〈ϕ1, X〉 = 0.302 and 〈ϕ1, Y 〉 = 0.015, so N = 7.

• 〈ϕ2, X〉 = −1.384 and 〈ϕ2, Y 〉 = −24.073, so N = 4.

We can easily verify that for any n 6 7, AnX 6= Y , so the certificates (7, P1)
and (4, P2) are sufficient to prove the non reachability of Y .

Complex eigenvalues.

The treatment of complex eigenvalues can be reduced to the Case 1 by the
elevation method described in Chapter 3. Let us recall the idea of elevation. If
variables evolves linearly (or affinely) then any monomial of those variables
also evolves linearly (or affinely). For example, given f(x) = x + 1, then
the new value of x2 after application of f is (x + 1)2 = x2 + 2x + 1, which
is an affine combination of x2, x and 1. f can be elevated to the degree 2 by
expressing this new monomial : f2(x2, x) = (x2 + 2x + 1, x + 1). We denote
Ψk(A) a transformation A elevated to the degree k and, by extension, Ψk(v) a
vector v elevated to the degree k.

A and Ψd(A) represents the same application, except that Ψd(A) also cal-
culates monomial values of variables manipulated by A. Hence, certificates
of O(Ψd(A),Ψd(X),Ψd(Y)) are also certificates for O(A,X, Y),

The product of all eigenvalues is the determinant of the transformation,
which is by construction a rational. By Property 8, the elevation to the degree
nwhere n is the size of the matrix admits at least one rational eigenvalue. We
can deduce from this the following theorem.

Theorem 6 Let O(A,X, Y) be an unsatisfiable instance of the Orbit problem with
A ∈Mn(Q) admitting at least one eigenvalue λ ∈ C such that |λ| 6= 0 and |λ| 6= 1.
Then left eigenvectors of Ψd(A) provide :

102 Chapter 6. How precise can invariants be ?

• real linear semialgebraic certificates for d = 1 (Ψ1(A) = A) if there exist real
eigenvalues;

• real semialgebraic certificates of degree 2 for d = 2 if there exist complex eigen-
values;

• at least one rational certificate of degree n for d = n if |det(A)| 6= 1.

Proof. We treat each case separately:

• The case where A admits real eigenvalues is treated by Property 18;

• If A admits a complex eigenvalue λ, A also admits its conjugate λ̄ as
eigenvalue. By Property 8, Ψ2(A) admits λ.λ̄ as a real eigenvalue, which
is treated by Property 18;

• The product of all eigenvalues of a rational matrix is rational. As such,
Ψn necessarily admit a rational eigenvalue which implies the existence
of an associated rational eigenvector that can be used, according to
Property 18, as a certificate.

�

Remark. The image of A ∈ Md(K) is a projection of the image of Ψk(A)
for any k, and semialgebraic certificates of A are, by extension, semilinear
certificates of Ψn(A). The size of Ψk(A) is

(
d+k
k

)
, which is O(d2) when k = 2

and O(dd) when d = k. An eigenvector computation has a polynomial time
complexity (slightly better than O(d3)). The two first cases of Theorem 6 are
thus computable in polynomial time in the number of variables.

Example. The matrix from the previous example admits two complex eigen-
value λ ≈ 1.439 + 2.712i and λ̄. As λλ̄ ≈ 9.425, it also admits a polynomial
invariant ϕ. As we know that 〈ϕ,X〉 = 0.220 and 〈ϕ, Y 〉 = 195.738, the asso-
ciated index is 4.

6.2.2 Case 3: all eigenvalues have a modulus equal to 1 and
the matrix is not diagonalisable

Real eigenvalues.

This case is trickier as eigenvectors do not give information about the conver-
gence or the divergence of the linear combination of variables they represent.
For example, let us study the orbit problem O(A,X, Y) where A is the ma-
trix associated with the mapping f(x,1) = (x + 2 ∗ 1,1), X = (0, 1) and
Y = (5, 1). xY is odd, thus Y is not reachable. f admits only ϕ = (0, 1) as left-
eigenvector associated to the eigenvalue λ = 1, meaning that 〈(0, 1), (x,1)〉 =
〈(0, 1), f(x,1)〉 for any x. As 〈(0, 1), (x,1)〉 = 1, we are left with the invariant
1 = 1. This invariant is clearly insufficient to prove that Y is not reachable.

6.2. Certificate sets of the rational Orbit Problem 103

f thankfully admits a generalized left-eigenvector µ = (1
2
, 1) associated to

1. More precisely, µA = µ + ϕ, which implies that µAnX = (µ + nϕ).X . In
other words, we have 1

2
x+ 1 = 1

2
xX + 1 +n which simplifies into 1

2
x = n. The

couple (3, {(x, y) : ∃n > 3, 1
2
x = n}) is a non reachability certificate.

Property 19 LetA a non-diagonalisable linear transformation and {ei}i<N N linked
1-left eigenvectors1 (i.e. e0A = e0 and for 0 < i < N , eiA = ei + ei−1).

Then for all i < N ,
〈
eiA

k, X
〉

= Pi(k,X), where Pi(k,X) is a polynomial of
degree i in the variable k and 1 in each variable of X .

Proof. Let {ei}i<N a family ofN linked 1-left eigenvectors. We can compute
Pi(k,X) by induction on i. For i = 0, e0 verifies e0A

k = e0 =
(
k
i

)
eN−i−1.

Assume now eiA
k = Pi(k) are vectors of polynomials of degree at most i.

Then, we have ei+1.A
k+1 = (ei+1 + ei).A

k = ei+1A
k + Pi(k) Now, let Un+1 =

Uk + Pi(n). Then for anu U0, Uk = U0 +
k∑
l=0

Pi(l) is a vector of polynomials of

degree at most i+ 1.
�
As every polynomial eventually diverges, there exists a linear combina-

tion of variables of X that diverges. This is enough to certify the non reach-
ability of the Orbit Problem for non diagonalizable matrices with the eigenvalue
λ = 1.

Remark. Even if the first eigenvector is enough to represent a non-reachability
certificate, every generalized eigenvector also can. By Property 19, the value
of the linear combination described by a generalized eigenvector ϕ evolves
polynomially, thus it eventually always decrease or increase (after the high-
est root of its derivate). That is why for a given objective Y there exist a finite
number of n such that |ϕY | 6 |ϕAnX|, thus after this n, {v : |ϕv| > |ϕY |} is a
certificate.

Complex eigenvalues.

If λ ∈ C, we will use the same trick we used for complex eigenvalues of
Case 2. As for every complex eigenvalue λ of A, λ̄ is also an eigenvalue, then
λ.λ̄ = 1 is an eigenvalue of Ψ2(A) by Property 8. Thus :

Theorem 7 Let O(A,X, Y) be a non satisfiable instance of the Orbit Problem such
that for all eigenvalue λ of A, |λ| = 1 and A is not diagonalisable. Then there
exist a family of linked 1-left-eigenvectors F = {e0, ..., en} of Ψ2(A) such that for
all 1 6 i 6 n, Qi(n) = 〈ei,Ψ2(A)nΨ2(X)〉 is a polynomial and (N,P) is a non
reachability certificate with:

• N = bmax({0} ∪ {x ∈ R.Qi(x) = 〈ei,Ψ2(Ax)Ψ2(Y)〉})c

• P = {v : | 〈ei,Ψ2(A)nΨ2(v)〉 | > |Qi(N)|}
1The existence of such a family with N > 1 is guaranteed by the non diagonalisability of

A.

104 Chapter 6. How precise can invariants be ?

1 2 3 4 5 6

−4
−3
−2
−10

1
2

k

x

FIGURE 6.1: Graph of the polynomial y = 1
2k

2 − 5
2k − 1

Proof. Let O(A,X, Y) be an instance of the Orbit Problem. We will re-
duce the problem to the case where A has positive rational eigenvalues, i.e.
λ = 1 and A admits a family F of linked left-eigenvectors of size |F| > 1
. In this case, by Property 19 we know that there exists a linear combina-
tion of variables v following a polynomial evolution described by Q such
that deg(Q) > 0. As Q eventually diverges, there exists a N such that for
all N ′ > N , |v(AN

′
X)| > |v(Y)|. This N is the maximum between 0 and

the highest value of x such that Q(x) = v(Y) as, for any higher value of x,
|Q(x)| > |v(Y)|. Also, the set {v.| 〈ei,Ψ2(A)nΨ2(v)〉 | > |Q(N)|} contains all
reachable configurations but does not contain Y , thus (N,P) is a valid certifi-
cate.

In the general case where λ ∈ C, Property 9 guarantees the existence of
generalized eigenvector on Ψ2(A) if A is not diagonalizable (i.e. also admits
generalized eigenvectors)

Example. We consider the Orbit problemO(A,X, Y) withA =

 1 1 0
0 1 1
0 0 1

,

X = (−2,−1, 1)t and Y = (2, 6, 1)t. A admits as 1-generalized-left-eigenvectors:
{e0 = (0, 0, 1); e1 = (0, 1, 0); e2 = (1, 0, 0)}. By the previous property, we know
that e2A

k = e2 + k.e1 + k(k−1)
2

.e0, thus〈
e2A

k, (xX , yX ,1)
〉

= yX + kxX + k(k−1)
2

= 1
2
k2 − 5

2
k − 1

As we can see in Figure 6.1, from k = 3, the value of x is strictly increasing
and after k = 7, the value of x is strictly superior to 2. Thus we have to check
a finite number of iterations before reaching x > 2, which is the certificate set
constraint of the non-reachability of Y . For k ∈ [0, 6], Y is not reached. The
couple (7, {(x, y,1).x > 2}) is thus a certificate of non reachability of Y .

6.2.3 Case 4: eigenvalues all have a modulus equal to 1 and
the transformation is diagonalizable

Some transformations do not admit generalized eigenvectors, namely diag-
onalizable transformations. The previous theorem is then irrelevant if for
every eigenvalue λ, |λ| = 1. Such transformations are rotations : they remain
in the same set around the origin. Take as example the transformation A of
Figure 6.2, taken from [Fij+17].

6.2. Certificate sets of the rational Orbit Problem 105

It defines a counterclockwise rotation around the origin by angle θ =arctan(3
5
),

and θ
π

is not rational. The reachable set of states fromX , i.e. {X,AX,A2X, ...}
is strictly included in its closure, i.e. the set of reachable states and their
neighbourhood. As Y is not on the closure of the set, then we can easily
provide a non-reachability semi-algebraic invariant certificate of Y , that is
the equation of the circle. However, we cannot give such a certificate for Z
though it is not reachable. If it were reachable, there would exist a n such
that AnX = Z, thus A2nX = X . n would also satisfy θ ∗ n = 0[2π], which is
impossible as θ

π
is not rational. More generally, the closure of the reachable

set of states of diagonalisable transformations with eigenvalues of modulus
1 is a semialgebraic set [Fij+17]. Semialgebraic certificates for such transfor-
mations exist if and only if Y does not belong to this closure [Fij+17].

Theorem 8 For a given instance O(A,X, Y) such that A is diagonalizable and
all its eigenvalues have a modulus of 1, eigenvectors can be used as semialgebraic
certificates iff Y is not in the closure.

Proof. Let O(A,X, Y) be an instance of the Orbit Problem with A a diag-
onalizable matrix only admitting eigenvalues λ such that |λ| = 1 Let ϕ an
eigenvector of A, we denote R = {v|∃k.AkX = v} the reachable set.

Lemma 9 Let (λi, ϕi) be d couples of eigenvalue / left-eigenvector of a diagonaliz-
able matrix A of size d. Then R = {v|∃k,∀1 > i > d, 〈ϕi, v〉 = λki . 〈ϕi, X〉}

Proof. Let R′ = {v|∃k, ∀1 > i > d, 〈ϕi, v〉 = λki 〈ϕi, X〉}. By the definitions
of R and ϕi, the inclusion R ⊂ R′ is trivially true. Now take v ∈ R′. As
there exist d different and independent eigenvectors, v is a solution of the
following relation: ∃k.Φv = (λk1x1, ...λ

k
dxd)

t, where Φ is an invertible matrix
whose lines are directly defined by eigenvectors. As Φ is invertible, there
exists only one solution for each k. As v is one of those solutions, then v ∈ R.

By lemma 9, for any i between 1 and d, every element v of R verifies
| 〈ϕi, v〉 | = | 〈ϕi, X〉 |, thus R ⊂ Rϕ = {v : | 〈ϕi, v〉 | = | 〈ϕi, X〉 |}. Note that
this inclusion is strict, as X ′ = A−1X ∈ Rϕ but X ′ /∈ R. If Y does not belong
to Rϕ, then (0, Rϕ) is a non reachability certificate.
�

A = 1
5

(
4 −3
3 4

)
X = (1, 0)
Y = (1.5, 0.7)
Z = (−1, 0)

−2 −1 0 1 2

• X

• Y

• Z

x

f
(x

)

FIGURE 6.2: Clo-
sure of the reach-
able set ofA starting

with X .

106 Chapter 6. How precise can invariants be ?

6.3 General existence of a certificate for the integer
Orbit Problem

The Orbit Problem is originally defined on Q, but most programs only work
on integers. Though Z is not a field, it is still possible to define linear transfor-
mations on Z. Basic matrix operations involving divisions (such as inversion)
are forbidden, but the only relevant operation in our case is multiplication
(does there exist a n such that AnX = Y ?) which is consistent for integer
matrices.

When dealing with linear transformations manipulating integers, things
are quite different. Indeed, the following property holds for integer matrices.

Property 20 Let A ∈ Mn(Z). If all its eigenvalue λ have a modulus inferior or
equal to 1, then there exists n > 1 such that λn = λ.

Proof. |λ| 6 1.
If λ = 0, then we can conclude right away (02 = 0).
The characteristic polynomial P ∈ Z[X] of A is monic, i.e. its leading co-

efficient is 1. Thus by definition, every eigenvalue is an algebraic integer. We
will use the Kronecker theorem [SZ+65], stating that if a non null algebraic
integer α has all its rational conjugates (i.e. roots of its rational minimal poly-
nomial) admitting a modulus lower or equal to 1, then α is a root of unity.

Each eigenvalue λ admits a minimal rational polynomial Q. We can show
that Q necessarily divides P by performing an euclidian division : there exist
D,R ∈ Q[X] such that P (X) = Q(X)D(X) + R(X), with the degree of R
strictly inferior to Q. We know that P (λ) = 0 and Q(λ) = 0, thus R(λ) = 0.
If R 6= 0, then R is the minimal polynomial of λ as its degree is inferior to
the degree of Q, which is absurd by hypothesis. Thus, the set of rational
conjuguates of λ are roots of P , by hypothesis of modulus inferior or equal
to 1. By the Kronecker theorem, λ is a root of unity, i.e. ∃n > 1.λn = λ.
�
This result is fundamental in the proof of the following theorem.

Theorem 9 Any non-reachable instance of the Orbit problem O(A,X, Y) where
A ∈Mn(Z) admit a closed semi-algebraic invariant.

Proof. We already treated the case where the matrix has an eigenvalue whose
modulus is different from 1 (Property 18) and the case where the matrix is
not diagonalizable (Property 19). We are left with the hypothesis of the Prop-
erty 20.

Let A be a transformation such that all its eigenvalue are either 0 or roots
of unity. A represents a finite-monoïd transformation, i.e. its reachable set of
space is finite. More precisely, there exist N, p such that ∀n > N,An+p = An

Let P = {ANX,AN+1X, ..., AN+p−1X}. If Y is not reachable, then the couple
(P,N) is a non-reachability certificate.

The closure of such a certificate comes from the same eigenvalue argu-
ment. The only case we had a non-closed certificate comes from Property 18

6.4. Perspectives 107

when |λ| 6= 0, |λ| 6= 1, | 〈ϕ,X〉 | 6= 0 and | 〈ϕ, Y 〉 6= 1. As we also have |λ| > 1
for integer matrices, the certificate set {v : | 〈ϕ, v〉 | > | 〈ϕ,X〉 |} is a valid
closed certificate set.
�

6.4 Perspectives

The generation of certificates is a useful tool for automatic provers that at-
tempts to prove the non reachability of certain invalid states. Still, provers
often try to prove the non reachability of set of states described by one or mul-
tiple predicates instead of the non reachability of specific states. Certificate
sets of transformations of the two first cases treated in Section 6.2 (|λ| 6= 1) are
totally independent of the initial state X , which widens the possible uses of
certificates. It is possible to use the same certificate set for differents values of
X and Y , allowing to treat specific kind of vector sets (coefficients of X and
Y as closed intervals for example, which are encountered more often in pro-
gram verification than precise values). Interesting axis of development are to
find certificates independent of X and Y in the general case and to study in
detail which kind of vector sets can the certificate search be of use.

As this Chapter explores the Orbit Problem for rationals, it is worth not-
ing that certificates may not necessarily be relevant for real-life programs
manipulating floats. For example, the Orbit problem (x 7→ x

2
, 1, 0) has a so-

lution for some floating point implementations due to limited precision. The
question of synthesizing certificates for such problems is also an interesting
challenge.

109

Part III

Implementation and
experimentations

110

Introduction to Frama-C

So far, we studied methods for helping the challenge of verification as gener-
ating invariants and certificates are possible on the programming model de-
fined in Figure 2.2. This semantic is not expressive enough for real-life needs.
Functions, memory and type system are examples of issues we did not focus
on Chapter 6 as working on exact rationals is simpler than working on floats
for example. Also, synthesizing invariants (Chapter 4 and Chapter 5) is a
mean, not a goal in itself. It must serve the user’s motives for formally ver-
ifying a program, and invariants are generally not sufficient. Usually, they
are provided (either by the user or by a synthesier) so that other tools can
narrow their results.

To this end, the Frama-C framework [Kir+15] provide means to allow
collaboration between differents techniques.

Frama-C Frama-C (FRAmework for Modular Analysis of C programs) is a
collaborative and extensive open-source framework dedicated to the analysis
of C programs. It contains different plug-ins that easies program verification,
such as EVA [BBY17] for abstract interpretation or E-ACSL [SKV17] for dy-
namic analysis. Its kernel and all its plug-ins are developped in OCaml .

FIGURE 6.3: An overview of Frama-C

Its set of plugins share their results through two mechanisms.

• A flexible kernel allows any plug-in to communicate through a docu-
mented API. Every plugin results can be reached simultaneously by an
OCaml script for achieving a strong proof obligation that couldn’t be
treated without collaboration.

111

• The ACSL specification language formalizes proof obligations. The
proof of each specification can be performed independently by each
plug-in and saved for later analyses.

The next chapters will introduce two new plus-ins of Frama-C . First,
Chapter 7 the Pilat tool implements the PILA technique described in Chap-
ter 5 with all its extensions. The invariants generated are used by the sec-
ond plug-in, called CaFE (Chapter 8). This plug-in is a model-checker using
abstract interpretation and loop invariants to build an automaton which is
matched to a CaRet [AEM04] specification.

113

Chapter 7

Pilat: A polynomial invariant
synthesizer

Contents
7.1 Pilat tool . 113

7.1.1 Architecture overview 113

7.1.2 Layers . 114

7.2 Experimentations and comparison with existing tools . . . 117

Requirements: PILA method (Chapter 5)

Chapters 4 and 5 introduced two linear invariant synthesis methods. The
algorithm described in Chapter 4 is implemented as a part of the Fluctuat
suite [Gou13]. This chapter will focus on the tool Pilat , a plug-in of the
Frama-C [Kir+15] framework, implementing the eigenvector method of Chap-
ter 5. It will present the architecture of Pilat and how it interacts with other
plug-ins of the framework.

7.1 Pilat tool

7.1.1 Architecture overview

The Pilat initial algorithm described in Chapter 5 is based on three indepen-
dent steps.

• Linearization: Chapter 3 presents a loop semantic transformation that
replaces solvable loops (a sub class of polynomial loops, Definition 12)
by linear loops. Algorithms to test the solvability of a loop and the lin-
earization process are studied in Section 3.3. After this step, the studied
loop is composed of conditions, nested loops and linear assignments.

• Invariant computation: Theorem 4 of Chapter 5 describe sets of linear
loop invariants as the eigenvectors of the dual of the studied transforma-
tion. Inequality invariants can also be deduced from eigenvectors as
described in Section 5.6. When conditions or nested loops occurs, inter-
sections of vectorial spaces are performed.

114 Chapter 7. Pilat: A polynomial invariant synthesizer

FIGURE 7.1: Pilat plug-in architecture

• Non deterministic optimization: The non deterministic optimization
corresponds to the extension described Section 5.7. After generation of
all constraints, a Sage script is called for the resolution of the polyno-
mial constraints.

Remark. Sage [Ste+08] is an open-source mathematical library devel-
oped in Python . It proposes multiple functions for solving the poly-
nomial optimization problem required for the treatment of non deter-
ministic loops. However, it doesn’t propose a function to find directly
a bound of the invariant (called k in Section 5.7), but can only minimize
certain values given polynomial constraints. Therefore, the dichotomy
algorithm of Figure 5.5 is necessary to find bounds.

7.1.2 Layers

Frama-C expresses C programs with an exhaustive AST expressing much
information about types, memory, locations in the source code, etc.. Pilat
is only interested in specific information of this AST, namely assignments,
coefficients and polynomial expressions. It is divided into three layers.

Third layer: mathematical libraries. Pilat relies on multiple mathematical
libraries to express coefficients of the loop. These libraries have the same

7.1. Pilat tool 115

signature1, called Ring (cf Appendix A.1) The Pilat tool implements two dif-
ferent Ring modules. When dealing with integer loops, i.e. that do not in-
volve floating point operations nor integer divisions, Pilat will always use
the Zarith library, allowing to represent unbounded size rationals. Other-
wise, when dealing with float loops or non deterministic loops, Pilat will
use the OCaml representation of floats for polynomials with an in-place float
library.

Second layer: internal libraries. Polynomial representation of assignments
and matrix representation of linear transformation are respectively at the
core of the linearization and the invariant generation procedures. Similarly
to the Ring signature, a Matrix and a Polynomial signature are implemented.
Both the Matrix signature (Appendix A.2) and the Polynomial signature (Ap-
pendix A.3) are consistent with the Ring module, in the sense that matrices
as well as polynomials are usable as rings.

In practice, those modules are instantiated as functors2. The functor cre-
ating modules of signature Matrix depends on a module of signature Ring,
which allows creating matrices with polynomial coefficients (as Polynomial
is compatible with the Ring signature). Similarly, the functor creating mod-
ules of signature Polynomial depends on two modules: a Ring module and a
Variable module, containing printing utilities only.

Those functors are used in concert with the libraries of the previous layer
to implement the necessary matrix and polynomial utilities. When dealing
with float loops, Pilat privileges the use of Lacaml , a Matrix module which
is an OCaml binding of the FORTRAN Lapack library.

First layer: Algorithm. Pilat algorithm requires three main components:
a linearizer that transforms a polynomial loop into a linear loop; a invariant
synthesizer; a polynomial optimizer for non deterministic assignments. Loop
bodies are represented by a couple (variable,polynomial) while conditions
are represented as a list of loop bodies.

The linearization algorithms of Figure 3.4 and Figure 3.8 respectively check
the solvability of a polynomial transformation and linearize the loop if and
only if it is solvable. Pilat merges those two algorithms by linearizing the
loop while checking for its solvability. The idea is to attempt to linearize a
transformation, and verify that no monomial ever depend on itself, which
implies by Property 3 that the loop is not solvable.

Algorithms for computing eigenvectors of a matrix abound in the liter-
ature [PC99]. Many different types of matrices possess algorithms to solve
this problem. A generic one is the following: for a loop body f , this step
computes the roots λ of the characteristic polynomial P (x) of f (which is de-
fined as the determinant of f − xId). These roots are exactly the eigenvalues
of f , it is now sufficient to compute the nullspace Kλ = ker(f − λ.Id). This

1An OCaml signature is a contract over a set of function, called module. This contract
must specify the type of elements defined in the implementation of the module that will be
available by other modules.

2In OCaml , functors define modules parametrized by other modules.

116 Chapter 7. Pilat: A polynomial invariant synthesizer

algorithm is used in Pilat when using the Zarith library. As Zarith manip-
ulates only rationals, it only searches for rational roots of P (x), which is a
polynomial with rational coefficients if the matrix has rational coefficients.
The Rational Root Theorem allows catching rational roots easily:

Property 21 Rational roots of P (x) =
n∑
i=0

aix
i are of the form p

q
with:

• p divides a0;

• q divides an.

Proof. Assume there exists a rational root p
q

for P , with p and q coprimes. It
is clear that

an(
p

q
)n + an−1(

p

q
)n−1 + ...a1

p

q
= −a0

We multiply everything by qn:

anp
n + an−1pq + ...+ a1pq

n−1 = −a0q
n

As p and q are coprimes, then p divides a0. Also, we have

an−1pq + ...+ a1pq
n−1 + a0q

n = −anpn

hence q divides an. �
In other words, it is enough to get all divisors of the extremity of the poly-

nomial and test all possible combinations. Though this test is exponential in
practice, integer loops admit in general a simple characteristic polynomial.
If the characteristic polynomial is too complex, Pilat only checks roots with
small numerators and denominators (bounded by a tool option).
This technique doesn’t work when working on float loops, as they admit real
eigenvalues. In this case, Lacaml has a primitive for generating eigenvalues.
However, experimentations have shown eigenvalues generated this way can
be imprecise when generated by Lacaml , especially when they are not ra-
tional. Generating useful invariants associated to irrational eigenvalues is
quite complex as it implies that the invariant have irrational coefficients as
well. Hence, they have no representation in C. Property 8 gives a partial
answer to this issue, as it allows introducing product of eigenvalues in the
matrix. As the product of every eigenvalue is rational for a rational matrix,
the existence of a rational eigenvalue is guaranteed in the matrix expressing
all monomials of degree n, where n is the size of the matrix. The complexity
of generating these monomials is O(nn), which makes the algorithm unus-
able when n = 4. The search of geometric relations between eigenvalues
(finding rational products of algebraic values) is a possible solution for this
problem. Searching for eigenvalues with Lacaml is only made to check if
an eigenvalue is higher or lower than 1. This check has shown to be valid
on all experimentations presented in Section 7.2, at the end of this Chapter.
Each vector of Kλ is a λ-eigenvector, hence an invariant of f . Computing the
nullspace of a linear transformation is a well known algorithm [Fos86] that

7.2. Experimentations and comparison with existing tools 117

will not be detailed here. When an irrational eigenvalue is used to search for
invariants, Pilat fails to generate a basis for Kλ because of precision issues.
Hence, it doesn’t generate invariants with irrational, which is exactly what is
expected.

When dealing with non deterministic loops (such as linear filters), a can-
didate invariant is generated and has the form P (X) 6 k. When dealing with
deterministic loops, such invariants are inductive for all k, but for non deter-
ministic cases, it is only inductive for certain values of k (cf Property 16).
The last component for the treatment of non deterministic loops is a small
script implementing the algorithm of Figure 5.5 to find a value of k for which
P (X) 6 k is inductive. In practice, the min implemented in Sage is unsound,
in the sense that k can be underapproximated or overapproximated. This
function takes as argument a starting value for k and tries to refine it. The
unsoundness is then solved by repeating the process until the difference be-
tween two iterations is small enough to guarantee correctness. This differ-
ence can be set as an option of the tool (to a minimum of 0 which represents
finding the exact value of k).

7.2 Experimentations and comparison with exist-
ing tools

In order to test our method, we implemented an invariant generator as a
plugin of Frama-C [Kir+15], a framework for the verification of C programs
written in OCaml. Tests have been made on a Dell Precision M4800 with
16GB RAM and 8 cores. Time does not include parsing time of the code, but
only the invariant computation from the Frama-C representation of the pro-
gram to the formulas. Two different benchmarks have been used for testing
the method. A first one is specialized with integer programs (available at
[Car08]), while the second manipulates floating point transformation (more
details on Appendix B). Results are respectively in Table 7.1 and Table 7.2.

All the tested functions are examples for which the presence of a polyno-
mial invariant is compulsory for their verification. The choice of high degree
for some functions is motivated by our will to show the efficiency of our
tool to find high degree invariants as choosing a higher degree induces com-
puting a bigger set of relations. In the other cases, degree is choosen for its
usefulness.

For example in figure 7.2 we were interested in finding the invariant x +
qy = k for eucli_div. That’s why we set the degree to 2. Let X be the vector of
variables (x, y, q, xq, xy, qy, y2, x2, q2,1). The matrix A representing the loop
in figure 7.2 has only one eigenvalue : 1. There exist 4 eigenvectors {ei}i∈[1;4]

associated to 1 in A, so
〈

4∑
i=1

kiei, X

〉
= 0 is a semi-invariant. One of these

eigenvectors, let’s say e1, correspond to the constant variable, i.e. e1.X = 1 =

1, thus we have
〈

4∑
i=2

kiei, X

〉
= −k1 as invariant. In our case, 〈e2, X〉 = y,

〈e3, X〉 = x + yq and 〈e4, X〉 = y2. We can remove (y = k) and (y2 = k)

118 Chapter 7. Pilat: A polynomial invariant synthesizer

Program Time (in ms)

Name Var Degree Aligator Fastind Pilat
[Kov08] [Cac+14]

divbin 5 2 80 6 2.5
hard 6 2 89 13 2

mannadiv 5 2 27 6 2
sqrt 4 2 33 5 1.5

djikstra 5 2 279 31 4
euclidex2 8 2 1759 10 6

lcm2 6 2 175 6 3
prodbin 5 2 100 6 2.5
prod4 6 2 13900 – 8

fermat2 5 2 30 9 2
knuth 9 3 O.O.T. 347 192

eucli_div 3 2 13 6 2
cohencu 5 2 90 5 2

read_writ 6 2 82 – 12
illinois 4 2 O.O.T. – 8
mesi 4 2 620 – 4

moesi 5 2 O.O.T. – 8
petter_4 2 10 19000 37 3
petter_5 2 10 O.O.T. 37 2
petter_6 2 10 O.O.T. 37 2

TABLE 7.1: Performance results with our implementation Pilat
for deterministic integer loops. The second column of the table
represents the number of variables used in the program. The
third column represents the invariant degree used for Pilat and
Fastind . The last three columns are the computation time of the
tools in ms. O.O.T. represents an aborted ten minutes computa-

tion and – indicates that no invariant is found.

7.2. Experimentations and comparison with existing tools 119

PILAT Input Results Abs. Int.

Program Var Degree # invariants Generation Optimization Proof
(in s) (in s) (in s)

Deterministic
Example 1 2 2 1 0.003 – 1.6

Dampened oscillator 2 2 1 0.007 – 0.036
Harmonic oscillator 2 2 1 0.004 – 0.035
Sympletic oscillator 2 2 1 0.002 – 0.008

[AGG12] filter 2 1 1 0.0035 – 0.0017
Non deterministic
Simple linear filter 2 2 1 0.0015 1.3 6.5

Example 3 2 2 1 0.003 1.7 4.3
Linear filter 2 2 1 0.0019 1 1

Lead-lag controller 2 1 2 0.002 2.5 6
Gaussian regulator 3 2 1 0.007 2.5 –

Controller 4 2 5 0.066 14 –
Low-pass filter 5 2 2 0.06 7 –

TABLE 7.2: Performance results with our implementation Pi-
lat for deterministic and non deterministic linear filters. The
first part represents deterministic loops (thus, no optimization
is necessary). The second part of the benchmark are non de-
terministic loops. Tests with abstract interpretation have been
performed with the fixpoint solver described in [MBR16] by at-
tempting to prove goals implied by the invariants our tool syn-

thesizes when they were compatible.

that are evident because y does not change inside the loop. The remaining
invariant is x+ yq = k.

120 Chapter 7. Pilat: A polynomial invariant synthesizer

Input : degree = 2

int eucli_div(int x, int y){
int q = 0;
while (x > y) {

x = x-y;
q ++;

}
return q;

}

Frama-C output :

int eucli_div(int x, int y){
int q = 0;
int k = x + y*q;
// invariant x + y*q = k;
while (x > y) {

x = x-y;
q ++;

}
return q;

}

FIGURE 7.2: Euclidean division C loop and generation of its
associated invariants.

121

Chapter 8

CaFE: model checking

Contents
8.1 Motivation . 121

8.2 CaFE : a model checker of CaRet formulas 122

8.3 Overview of CaFE . 124

8.4 Application to concurrency 126

8.1 Motivation

Requirements: Model-checking (Section 2.3)

The right sequencing of events along time is a widely studied topic of
program analysis, for example when studying distributed systems or infor-
mation exchange protocols. In particular, temporal logics [Pnu77] allows de-
scribing formally the expected behavior of a system as a succession of distinct
actions. In Frama-C , the specification language ACSL is used by many plug-
ins as a proof-sharing system. In general, LTL properties are difficult to ex-
press using only ACSL , particularily when studying multiple function calls.
On the other hand, temporal logics [Pri57] are apropriate tools for such prop-
erties. Besides, they allow the study of infinite execution paths that ACSL is
not designed to specify. The Linear Temporal Logic [Pnu77], or LTL, inter-
prets time as a linear sequence of actions and modelizes properties for such
a sequence. Those properties are translated into automatons that are matched
against the program behavior.

Aoraï [SP11] is a Frama-C plug-in allowing the verification of LTL for-
mulas over a finite C program. The tool generates ACSL predicates at every
call and return site of each function such that the verification of such predicates
is equivalent to the verification of the initial LTL formula [Gio+08]. These ACSL
specifications are independent of the initial program as they involve newly
created variables stating the position on the automaton. In order to solve
them, other tools must infer the relations between the program variables and
the new variables, which may not be solved easily.

Also, let us recall the three temporal properties of interest introduced in
Section 2.3.1:

122 Chapter 8. CaFE: model checking

• during a given event, the lock must not be taken (safety requirement);

• if an event occurs in the function f , then when f has been called, the
lock was not taken (contextual requirement);

• every function must free the lock before it returns (liveness require-
ment).

While Aoraï/LTL is unable to catch such properties, the tool CaFE has been
developped. CaFE (for CaRet Frama-c’s extension) is a model-checker based
on the CaRet temporal logic [AEM04]. The CaRet temporal logic has tuned
operators allowing to express properties on specific program points and on
the call stack. The original algorithm of [AEM04] can decide in finite time
(complexity 2-EXP) the validity of a CaRet formula over a Recursive State
Machine (or RSM). This is not the case for programs, as the CaRet language
can express the halting problem which is known to be undecidable. The idea
of CaFE is to generate informations on the program for guiding the analysis
and apply generalized model-checking [BG00]. Generalized model-checking is a
method to adapt model-checking algorithms to work on partial information
models. This chapter will introduce the Abstract Recursive State Automata, or
ARSM , and the CaRet temporal logic for partial information models in Sec-
tion 2.3.5. Then, Section 8.2 adresses the problem of adapting the original
algorithm to work on ARSM and remain correct, in the sense that a posi-
tive answer of an algorithm can be trusted (but not a negative answer). At
last, the architecture of CaFE working with different plug-ins of Frama-C is
presented in Section 8.3.

A full description of this work can be found in [OPB].

8.2 CaFE : a model checker of CaRet formulas

Soundness.

The model-checking algorithm of CaRet properties over RSM is already well
known [AEM04]. For a RSM R on a proposition set AP and a formula ϕ,
it is possible to compute the product automaton S¬ϕ = R × ¬ϕ that accept
every word that correspond to an execution of R and that verifies ¬ϕ. Each
node of this automaton holds the set of properties that must be required at a
given program point. Any accepting path of this new automaton is a counter
example of the checked property. If L(S¬ϕ) is empty, then every execution
of R verifies ϕ (or R � ϕ). The general idea is to execute both automatons
at the same time, create a new state including the location on the RSM and
which properties are verified, and check whether the state is consistent or
not with respect to η. If it is, the state is preserved, otherwise it is deleted.
Being able to decide at any node n ∈ N ofR which property is consistent and
which is not is crucial to this construction. For a RSM R, a state of R × ¬ϕ
representing the node n ∈ N is valid when all the properties p ∈ AP it holds
verify η(n, p) = > [AEM04].

8.2. CaFE : a model checker of CaRet formulas 123

Abstract recursive state machine. It is not possible to exactly represent a
program by a RSM , mostly because it is not possible, for a given proposition
set AP , to have a complete function η.

Definition 28 An abstract recursive state machine (or ARSM) is exactly a RSM,
except its labeling function η is allowed to return ? when the validity of a property
is unknown.

In the case of an ARSM A, the incompleteness of the labeling function
forbids to have a straight forward interpretation of consistency. The general
idea of generalized model checking [BG00] is to give an interpretation of the
unknown answer ?.

• Considering ? as incoherent is similar to not taking any risk. As soon
as the labelling function cannot decide, the state is invalid and hence,
not added to the product automaton. We are left only with states that
are decided.

• Considering ? as possible allows preserving states of the product au-
tomaton that contradicts themselves by stating that, on a given n ∈ N
of A, both p and ¬p are possible.

S = A× ϕ A× ¬ϕ
No-risk no unsatisfying exe-

cutions of A
no satisfying execu-
tions of A

Sound at least all satisfying
executions of A

at least all unsatisfy-
ing executions of A

TABLE 8.1: Interpretation of the product automaton paths in
the no-risk and the sound strategies.

One important guarantee to provide in model-checking is soundness, or
in other words the guarantee of the validity of positive results. Table 8.1 in-
terprets the set of paths of the product automatons A×ϕ and A×¬ϕ. Choos-
ing an automaton that contains all satisfying executions or no unsatisfying
execution is irrelevant for soundness. An automaton S with no satisfying
execution doesn’t bond an effective unsatisfying execution to belong to S.
That is why the choice of A×¬ϕ with the sound strategy is the more efficient
choice in this case.

Property 22 Let A an ARSM and ϕ a CaRet formula. If L(R × ¬ϕ) = ∅ with the
sound strategy, then A � ϕ

Proof. If A 2 ϕ, there exist a path π satisfying ¬ϕ. As S¬ϕ = A × ¬ϕ repre-
sents at least all the unsatisfying executions of A, L(S¬ϕ) will at least admit
π. �

124 Chapter 8. CaFE: model checking

Comparison of similar automatons

Definition 29 LetA = (M, {Rm}m∈M , η, init) andA′ = (M ′, {R′m}m∈M ′ , η′, init′)
two ARSM. A and A′ are equivalent if M = M ′, ∀m ∈ M,Rm = R′m and
init = init′.

Definition 30 Let A1 and R2 two ARSM. Let Fiba(A) = {(s, p)|η(s, p) = a} the
fiber of a by η. A1 approximates A2, or A1 > A2 if and only if:

• A1 and A2 are equivalent

• Fib>(A1) ⊆ Fib>(A2) and Fib⊥(A1) ⊆ Fib⊥(A2)

Remark. If A1 > A2, then Fib?(A2) ⊆ Fib?(A1). If A2 is a classic RSM , then
Fib?(A2) = ∅ by definition. Every approximation of A2 is an ARSM whose
decided properties have the same truth value than A2 according to η.

Property 23 Let A1, A2 two ARSM such that A1 > A2 and ϕ CaRet formula. Let
S1 = A1 × ¬ϕ and S2 = A2 × ¬ϕ. Then L(S2) ⊆ L(S1).

If A1 > A2, then Fiba(A1) ⊆ Fiba(A2) for a ∈ {>,⊥}. Let π ∈ L(S2).
π can be seen as a sequence of nodes of S2 that have been accepted during
the product of A2 and ¬ϕ. This means that the properties that each node
holds have been either validated by η (>) or that it can’t conclude (?) as the
sound strategy considers coherent what is unknown. As A1 > A2, then let n
an element of π. η cannot refute n to belong to S1 as Fib⊥(R1) ⊆ Fib⊥(A2).
Therefore, every node of π belong to S1. �

8.3 Overview of CaFE

CaFE (CaRet Frama-C’s extension) is a model-checker based on the previ-
ous properties. interactions with different plug-ins of the framework and an
external prover, Z3 .

CaFE . The transformation of a C program to a RSM is made in-place by
Frama-C, that parses the source code to a CFG described in C Intermediate
Language [Nec+02] (or CIL). A CIL control flow graph is structurally more
expressive than a ARSM . Predecessors, successors, functions entry and exit
points are expressed in CIL, which is enough to represent the main frame of
an ARSM . There only misses the labelling function η. So as to solve this issue
and the characteristic combinatory explosion of model checking, CaFE work
along with some other plug-ins of Frama-C .

• EVA [BBY17]: an abstract interpreter able to combine multiple numeri-
cal domains. Its results are saved as numerical invariants for each pro-
gram points. It is possible to check the possible abstract value of an
expression on any program point. This is the main source of informa-
tion for the η function.

8.3. Overview of CaFE 125

FIGURE 8.1: Functionning of CaFE

• Pilat : the invariant synthesizer described in Chapter 7. It adds ACSL
annotations to linear loops that can be used to refine the η function for
loops that EVA often overapproximate too widely.

• The Dataflow module: a generic tool for iterating over a CIL control
flow graph (forwards and backwards)

The product of the program seen as a RSM and the negation of the CaRet
specification uses the results of the two first tools to delete states that are
inconsistent with respect to an effective execution of the program. When both
EVA and Pilat cannot conclude on the consistency of a state, the SMT solver
Z3 [MB08] is used in addition. The case where Z3 also cannot conclude is
the case where η responds ?.

The new automaton S is then simplified by deleting non-accepting paths
and unreachable nodes. If there is still accepting states, a weakest precon-
dition calculusis launched by the Dataflow module from the accepting final
states that reuses the results of EVA and Pilat . The validity of each path is
tested by Z3 . Inconsistent paths with respect to this calculus are removed,
while others are output as counter-examples.

Limitations. The tool CaFE still presents some limitations. First, non solv-
able loops are not treated by Pilat , therefore they are not given additional
loop invariants. Even if EVA overapproximates the loop state, this state is
often imprecise. When such situation occurs, CaFE returns many false posi-
tives. The user may solve this issue by changing EVA options to get a satis-
fying level of precision.

Also, the complexity of model-checking limits the size of case studies. In
general, the problem is linked to the size of the CaRet property to verify. It
is necessary to manually divide the formula into multiple smaller formulas.

126 Chapter 8. CaFE: model checking

For example, it is in general more efficient to prove a and b separately than
verifying a ∧ b.

8.4 Application to concurrency

With the current arrival of multi core processors, the shared memory princi-
ple raised many issues, especially the access by a core of a data in the cache
that is being processed by another core. The MOESI is a cache coherence pro-
cotol solving this issue. Each line of the cache is attributed a state: modified,
owned, exclusive, shared or invalid. When a core needs to access a cache line, it
performs a request to ensure the exclusivity of the line. If the status of each
line can be modified, the protocol must ensure there are always the same
total number of lines.

For this experimentation, a sequential representation of the protocol in
Figure 8.2 inspired from [Car08] has been used. This is simply an infinite
loop simulating after every step the call to a function manipulating the con-
tent of a cached data. The goal of this experimentation is to compare two
different specifications testing if the initial ressources are conserved during
the program execution under two hypotheses:

• each instruction is observed sequentially: Gg(m+ o+ e+ s+ i = c);

• function calls are considered atomic: Ga(m+ o+ e+ s+ i = c).

In ACSL, those specifications can be represented by a set of assertions over
the main function, where each assertion must be proven separately. This pro-
cess is inefficient for the automatic treatment of large programs. In CaFE ,
the program is directly assimiled to a RSM as represented in Figure 8.2. The
use of the full Frama-C framework is vital for the treatment of the temporal
specifications.

1. Pilat starts by generating the unique linear inductive invariant of the
loop: m+ o+ e+ s+ i = k, where k is a unknown constant.

2. EVA analyses the full program, proving in particular that the main does
not ends (the exit of main is unreachable) and adds to each instruction
a numerical invariant in a choosen domain (here, only the interval do-
main is used).

3. Thanks to this data, CaFE applies the model-checking technique de-
scribed in Section 8.2. Unreachable and inconsistent states are deleted
from the generated product automaton with respect to the results of
Pilat and EVA It also uses Z3 in order to refine the simplification.

4. There still exist accepting final states. A backward analysis of the pro-
gram by the Dataflow module with the use of Z3 quickly proves those
states cannot be reached. The corresponding states are deleted as well
as the possible paths leading to them.

8.4. Application to concurrency 127

FIGURE 8.2: Recursive state machine representing the MOESI
protocol.

128 Chapter 8. CaFE: model checking

Initialstate
:

m
=

[0,15],
o

=
[0,15],

e
=

[0,15],
s

=
[0,15],

i
=

[0,15],
c

=
m

+
o

+
e

+
s

+
i;

m
ain_rm

od

;540

init();1996

B
ox_box_init_rm

od_inf14

init();1998
init();2002

N
 = 0;2030

N
 = 0;2046

/*@
 ghost __PILA

T__2 = (float)(- 1. * (double)1); */2062
/*@

 ghost __PILA
T__2 = (float)(- 1. * (double)1); */2078

/*@
 loop invariant

 Pilat_em
itter

 (((-1. * m
odified + -1. * shared) + -1. * exclusive) + -1. * invalid)

 + -1. * ow
ned ≡

 __PILA
T__1;

 loop invariant Pilat_em
itter -1. * 1 ≡

 __PILA
T__2;

*/
w

hile (N
 < 100)

 if (invalid) f1();
 else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2094

/*@
 loop invariant

 Pilat_em
itter

 (((-1. * m
odified + -1. * shared) + -1. * exclusive) + -1. * invalid)

 + -1. * ow
ned ≡

 __PILA
T__1;

 loop invariant Pilat_em
itter -1. * 1 ≡

 __PILA
T__2;

*/
w

hile (N
 < 100)

 if (invalid) f1();
 else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2110

/*@
 loop invariant

 Pilat_em
itter

 (((-1. * m
odified + -1. * shared) + -1. * exclusive) + -1. * invalid)

 + -1. * ow
ned ≡

 __PILA
T__1;

 loop invariant Pilat_em
itter -1. * 1 ≡

 __PILA
T__2;

*/
w

hile (N
 < 100)

 if (invalid) f1();
 else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2083

if (! (N
 < 100)) goto w

hile_0_break_0;2115
if (! (N

 < 100)) goto w
hile_0_break_0;2126

if (! (N
 < 100)) goto w

hile_0_break_0;2142

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2147

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2157

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2158

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2173

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2174

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2179

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2191

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2190

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2207

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2205

if (invalid) f1();
else

 if (exclusive) f2();
 else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2206

f1();2215

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2371

f1();2268

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2382

f1();2255

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2399

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2400

f1();2348

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2397

if (exclusive) f2();
else

 if (shared) f3();
 else

 if (ow
ned) f4(); else f5();2398

f1();2295
f1();2335

B
ox_box_f1_rm

od_inf19

f1();2216

B
ox_box_f1_rm

od_inf27

f1();2256

B
ox_box_f1_rm

od_inf30

f1();2270
f1();2274

B
ox_box_f1_rm

od_inf35

f1();2296

B
ox_box_f1_rm

od_inf43

f1();2336

B
ox_box_f1_rm

od_inf46

f1();2350
f1();2354

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2451

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2461

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2462

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2479

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2480

f2();2434
if (shared) f3();

else
 if (ow

ned) f4(); else f5();2477

if (shared) f3();
else

 if (ow
ned) f4(); else f5();2478

f2();2427
f2();2428

f2();2425
f2();2426

B
ox_box_f2_rm

od_inf57
B

ox_box_f2_rm
od_inf58

B
ox_box_f2_rm

od_inf59
B

ox_box_f2_rm
od_inf60

B
ox_box_f2_rm

od_inf62

f2();2438

if (ow
ned) f4(); else f5();2531

if (ow
ned) f4(); else f5();2543

if (ow
ned) f4(); else f5();2542

if (ow
ned) f4(); else f5();2559

if (ow
ned) f4(); else f5();2560

f3();2514
if (ow

ned) f4(); else f5();2558
f3();2507

f3();2508
f3();2505

f3();2506

B
ox_box_f3_rm

od_inf73
B

ox_box_f3_rm
od_inf74

B
ox_box_f3_rm

od_inf75
B

ox_box_f3_rm
od_inf76

B
ox_box_f3_rm

od_inf78

f3();2518

f5();2615
f5();2668

f5();2655
f4();2594

f5();2748
f4();2587

f4();2588
f5();2695

f5();2735
f4();2585

f4();2586

B
ox_box_f4_rm

od_inf89
B

ox_box_f4_rm
od_inf90

B
ox_box_f4_rm

od_inf91
B

ox_box_f4_rm
od_inf92

B
ox_box_f4_rm

od_inf94

f4();2598

B
ox_box_f5_rm

od_inf99

f5();2616

B
ox_box_f5_rm

od_inf107

f5();2656

B
ox_box_f5_rm

od_inf110

f5();2670
f5();2674

B
ox_box_f5_rm

od_inf115

f5();2696

B
ox_box_f5_rm

od_inf123

f5();2736

B
ox_box_f5_rm

od_inf126

f5();2750
f5();2754

F
IG

U
R

E
8.3:

C
aFE

result:
the

setof
program

executions
notsatisfying

the
form

ula
G
g(m

+
o

+
e

+
s

+
i

=
c).

Itcontains
m

ultiple
accepting

states,therefore
the

form
ula

is
considered

false
by

C
aFE

.In
the

case
of
G
a(m

+
o

+
e

+
s

+
i

=
c),there

existno
counterexam

ple
left,so

the
form

ula
is

indeed
true.donc

vérifiée.

8.4. Application to concurrency 129

Observations. The result of the proof of the two specifications is available
on Figure 8.3. The specification Gg(m + o + e + s + i = c) is clearly incorrect
as the function, not being considered atomic, modify sequentially the state
of the cache during an update. CaFE is able to generale real (but unproven)
counterexamples to this specification under the form of a RSM containing
multiple accepting states. As each of those states corresponds to an instruc-
tion, it is possible to extract a set of possible executions leading to a final state
where the property have been violated. Conversely, the invariant generated
by Pilat proves the set of ressources is preserved between two loop steps. The
formula Ga(m+ o+ e+ s+ i = c) specifying the invariance of the quantity of
ressources between the beginning and the end of each step of the protocol is
then verified.

131

Part IV

Perspectives

133

Chapter 9

Conclusion

This thesis developped new insights on linear invariants by investigating
three problematics.

9.1 Solvability

The first contribution of this thesis is the explicitation of the solvable polyno-
mial class as the only polynomials that are expressible by finite linear trans-
formations. Linear arithmetic in the integers is known to be a decidable the-
ory in SMT solving, while polynomial arithmetic is not. As there exists a
technique generating all invariants of solvable loops [RK07], it was difficult
to tell which problem is decidable and which is not. This new result brings
more insights on the class of solvable transformations and it is a nice step in
the classification of decidable problems for loops.

9.1.1 Polynomial similarity

The elevation principle is a very simple concept. So simple that it feels strange
that it has never been formalized before. Similarity is a key concept in lin-
ear algebra, that allows to associate different linear transformations that per-
form the same operation, but on different bases. Linear algebra restricts itself
(rightfully) to linear transformation, hence changing the base is also a linear
transformation. In this thesis, similarity has been generalized to polynomial
base changing applications in the context of linear invariant generation. Fun-
damental properties of these transformations has also been investigated, but
some questions remain unanswered:

• what is the nature of the operator Ψd ?

• equivalence1 generalizes similarity in linear algebra, is there an equiv-
alent relation for polynomial similarity ?

• what are the properties of Ψd(A) that are deducible from A ?

This last question has been partly solved by the study of properties of the
eigenvalues of Ψd(A), but there is few information on its rank, its character-
istic polynomial or its determinant for example.

1A and B are equivalent if there exist P and Q invertible such that A = QBP−1

134 Chapter 9. Conclusion

9.1.2 Infinite systems

The Carleman linearization procedure [KS91] inspiring this work is initially
developped for linearizing any finite system of polynomial differential equa-
tion to an infinite system of linear differential equations by the exact same
procedure. Each monomial of variable is seen as an independent function as-
sociated to a new linear differential equation, just as we associated to mono-
mials new variables evolving linearly. In the non-solvable case, the proce-
dure doesn’t end as we restricted our study to finite linear transformations.
The relevance of linearizing non-solvable transformations to infinite linear
transformations is still open, and it has been shown to be unsound in the
case of Carleman [Ste89] (there exists solutions of the infinite linear system
that are not solutions of the finite polynomial system).

9.2 Invariant generation

The second contribution of this thesis are the new invariant synthesis meth-
ods. Two very different approaches have been studied in this thesis. The
first approach is based on abstract intepretation and constraint solving. It has
shown to be precise and adapted to the analysis of linear filters by generating
approximations of ellipsoids, which are in general good invariants for such
programs. The second approach was based on the eigenvector decomposi-
tion of linear loops. This technique is more generic, as all linear loops can be
studied, including loops with contitions, nested loops and non deterministic
assignments.

9.2.1 Generalization of the parametrized widening operator

Abstract interpretation generally lacks precision when it comes to handling
loops, while acceleration lacks genericity. The parametrized widening oper-
ator described in Chapter 4 is a good trade off between the two techniques
and gives good results in term of precision. In general, techniques based on
parametrization rely on SMT solvers to be fully functional (in our case, to
find a valuation of the parameters). We developped this technique under the
scope of the zonotope abstract domain, but it is not clear whether this is the
only abstract domain in which this technique could be applied. We can imag-
ine generalizing this technique to more classical domains. The challenge is
not really to be able to apply this technique to other domains, but to apply
it to different kind of loops. In the case of linear filters and zonotopes, we
assumed the nice property of slowly converging toward an invariant, which
may not be the case for other loops. Determining what conditions are nec-
essary for this kind of approach to succeed in synthesizing an invariant is a
possible axis of development for widening operators.

9.3. Usefulness of eigenvectors 135

9.2.2 Spectral theory

The eigenvector characterization of linear invariants of Chapter 5 in based
on vector space with finite dimenson. It has the advantage to provide a sim-
ple way to generate and prove linear loop invariants. As we said above,
linearization could be generalized to handle any kind of polynomial loops
by using an infinite number of variables. Spectral theory [EE87] generalizes
the eigenvalue/eigenvector decomposition problem to vector spaces of in-
finite dimension. Invariant properties of eigenvectors are suspected to be
preserved on any vector space.

9.3 Usefulness of eigenvectors

The last contribution of this thesis relies on the practical use of invariants.
Along with the generation of certificates, invariants are necessary in program
proofs. In the context of C programs, the tool Pilat generates them as ACSL
loop invariants that can be used by the different plug-ins of Frama-C.

9.3.1 Complete characterization of certificates

Eigenvectors have not only shown to be invariants easy to generate, but also
expressive enough to solve the Kannan-Lipton Orbit problem. The study of
the eigenvalues role in the generation and the degree of those certificates is a
key in understanding their shape. The generation of linear certificates with
algebraic coefficients is still an open problem. The complete characterization
of invariants coupled with this certificate study gives us necessary clues in
solving it.

9.3.2 Pilat extensions

Some extensions of the method have not been implemented, such as the gen-
eration of inequality invariants when the linear transformation admits gen-
eralized eigenvectors of order at least 2. When their associated eigenvalue
is 1, then we saw that it is possible to generate invariants in Chapter 6 by
considering their polynomial behavior. The question of how to generate in-
variants from generalized eigenvector associated to different eigenvalues has
not been raised neither.

9.3.3 Temporal logic

The usefulness of these invariants have been proven by the generation of cer-
tificates and by the model-checker CaFE . This model-checker, based on the
abstract interpreter EVA , uses the results of Pilat to precise its results. How-
ever, it is not efficient as the model-checking algorithm is 2-EXP in the size of
the CaRet specification. CaRet is a powerful language that allows to express
a large number of behavor. A lot of them are nonetheless practically never
used, hence the question of the relevancy of the choice of CaRet remains.

136 Chapter 9. Conclusion

The model-checking algorithm is basically the same for every tool (based on
the automaton product). An interesting axis of developmenty of CaFE is its
potential ability to handle different temporal logics with different operators.
For example, as Pilat uses different libraries of temporal logic, CaFE could
use different instanciations of temporal logics or automatons to perform a
model-checking procedure. It could also be enhanced by counter-example
verification, which is not the case in the current implementation.

137

Bibliography

[AEM04] Rajeev Alur, Kousha Etessami, and P. Madhusudan. “A Tempo-
ral Logic of Nested Calls and Returns”. In: Tools and Algorithms
for the Construction and Analysis of Systems, 10th International Con-
ference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings. 2004, pp. 467–481. DOI: 10.
1007/978-3-540-24730-2_35. URL: https://doi.org/
10.1007/978-3-540-24730-2_35.

[AGG12] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. “Coupling
policy iteration with semi-definite relaxation to compute accu-
rate numerical invariants in static analysis”. In: Logical Methods in
Computer Science 8.1 (2012). DOI: 10.2168/LMCS-8(1:1)2012.
URL: https://doi.org/10.2168/LMCS-8(1:1)2012.

[AM09] Rajeev Alur and Parthasarathy Madhusudan. “Adding nesting
structure to words”. In: Journal of the ACM (JACM) 56.3 (2009),
p. 16.

[Bar+05] Sébastien Bardin et al. “Flat Acceleration in Symbolic Model Check-
ing”. In: Automated Technology for Verification and Analysis, Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7,
2005, Proceedings. 2005, pp. 474–488. DOI: 10.1007/11562948_
35. URL: https://doi.org/10.1007/11562948_35.

[Bar+11] Clark Barrett et al. “CVC4”. In: Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings. 2011, pp. 171–177. DOI: 10.1007/978- 3-
642-22110-1_14. URL: https://doi.org/10.1007/978-
3-642-22110-1_14.

[Bau+16] Patrick Baudin et al. ACSL: ANSI C Specification Language, version
1.12. 2016.

[BBY17] Sandrine Blazy, David Bühler, and Boris Yakobowski. “Structur-
ing Abstract Interpreters Through State and Value Abstractions”.
In: Verification, Model Checking, and Abstract Interpretation - 18th
International Conference, VMCAI 2017, Paris, France, January 15-17,
2017, Proceedings. 2017, pp. 112–130. DOI: 10.1007/978- 3-
319-52234-0_7. URL: https://doi.org/10.1007/978-
3-319-52234-0_7.

[Ber14] Dimitri P Bertsekas. Constrained optimization and Lagrange multi-
plier methods. Academic press, 2014.

http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.2168/LMCS-8(1:1)2012
https://doi.org/10.2168/LMCS-8(1:1)2012
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/11562948_35
https://doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-52234-0_7
http://dx.doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1007/978-3-319-52234-0_7

138 BIBLIOGRAPHY

[BG00] Glenn Bruns and Patrice Godefroid. “Generalized Model Check-
ing: Reasoning about Partial State Spaces”. In: CONCUR 2000 -
Concurrency Theory, 11th International Conference, University Park,
PA, USA, August 22-25, 2000, Proceedings. 2000, pp. 168–182. DOI:
10.1007/3-540-44618-4_14. URL: https://doi.org/
10.1007/3-540-44618-4_14.

[Cac+14] David Cachera et al. “Inference of polynomial invariants for im-
perative programs: A farewell to Gröbner bases”. In: Sci. Comput.
Program. 93 (2014), pp. 89–109. DOI: 10.1016/j.scico.2014.
02.028. URL: https://doi.org/10.1016/j.scico.
2014.02.028.

[Car08] E.R. Carbonell. “Polynomial invariant generation”. http : / /
www.cs.upc.edu/~erodri/webpage/polynomial_invariants/
list.html. 2008.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints”. In: Conference Record
of the Fourth ACM Symposium on Principles of Programming Lan-
guages, Los Angeles, California, USA, January 1977. 1977, pp. 238–
252. DOI: 10.1145/512950.512973. URL: http://doi.acm.
org/10.1145/512950.512973.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of
linear restraints among variables of a program”. In: Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. ACM. 1978, pp. 84–96.

[Cla+00] Edmund M. Clarke et al. “Counterexample-Guided Abstraction
Refinement”. In: Computer Aided Verification, 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings.
2000, pp. 154–169. DOI: 10.1007/10722167_15. URL: https:
//doi.org/10.1007/10722167_15.

[Con13] John H Conway. “On unsettleable arithmetical problems”. In: The
American Mathematical Monthly 120.3 (2013), pp. 192–198.

[Del+09] David Delmas et al. “Towards an Industrial Use of FLUCTUAT
on Safety-Critical Avionics Software”. In: Formal Methods for In-
dustrial Critical Systems, 14th International Workshop, FMICS 2009,
Eindhoven, The Netherlands, November 2-3, 2009. Proceedings. 2009,
pp. 53–69. DOI: 10.1007/978- 3- 642- 04570- 7_6. URL:
https://doi.org/10.1007/978-3-642-04570-7_6.

[Deu03] Alain Deutsch. “Static verification of dynamic properties”. In:
Polyspace white paper (2003), p. 45.

[EE87] David Eric Edmunds and W Desmond Evans. Spectral theory and
differential operators. Vol. 15. Clarendon Press Oxford, 1987.

http://dx.doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-44618-4_14
http://dx.doi.org/10.1016/j.scico.2014.02.028
http://dx.doi.org/10.1016/j.scico.2014.02.028
https://doi.org/10.1016/j.scico.2014.02.028
https://doi.org/10.1016/j.scico.2014.02.028
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/list.html
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-642-04570-7_6
https://doi.org/10.1007/978-3-642-04570-7_6

BIBLIOGRAPHY 139

[Ern+01] Michael D. Ernst et al. “Dynamically Discovering Likely Program
Invariants to Support Program Evolution”. In: IEEE Trans. Soft-
ware Eng. 27.2 (2001), pp. 99–123. DOI: 10.1109/32.908957.
URL: https://doi.org/10.1109/32.908957.

[Fij+17] Nathanaël Fijalkow et al. “Semialgebraic Invariant Synthesis for
the Kannan-Lipton Orbit Problem”. In: 34th Symposium on Theo-
retical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany. 2017, 29:1–29:13. DOI: 10.4230/LIPIcs.
STACS . 2017 . 29. URL: https : / / doi . org / 10 . 4230 /
LIPIcs.STACS.2017.29.

[Flo67] Robert W Floyd. “Assigning meanings to programs”. In: Mathe-
matical aspects of computer science 19.19-32 (1967), p. 1.

[Fos86] Leslie V Foster. “Rank and null space calculations using matrix
decomposition without column interchanges”. In: Linear Algebra
and its Applications 74 (1986), pp. 47–71.

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope
Abstract Domain Taylor1+”. In: Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July
2, 2009. Proceedings. 2009, pp. 627–633. DOI: 10.1007/978-3-
642-02658-4_47. URL: https://doi.org/10.1007/978-
3-642-02658-4_47.

[Gio+08] Alain Giorgetti et al. “Verification of class liveness properties with
Java modeling language”. In: IET Software 2.6 (Dec. 2008), pp. 500–
514. DOI: 10.1049/iet-sen:20080008. URL: http://dx.
doi.org/10.1049/iet-sen:20080008.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal: An
SMT Solver for Nonlinear Theories over the Reals”. In: Automated
Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. 2013,
pp. 208–214. DOI: 10.1007/978-3-642-38574-2_14. URL:
https://doi.org/10.1007/978-3-642-38574-2_14.

[Gou13] Eric Goubault. “Static Analysis by Abstract Interpretation of Nu-
merical Programs and Systems, and FLUCTUAT”. In: Static Anal-
ysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings. 2013, pp. 1–3. DOI: 10.1007/978-
3-642-38856-9_1. URL: https://doi.org/10.1007/
978-3-642-38856-9_1.

[GP15] Eric Goubault and Sylvie Putot. “A zonotopic framework for func-
tional abstractions”. In: Formal Methods in System Design 47.3 (2015),
pp. 302–360. DOI: 10.1007/s10703-015-0238-z. URL: https:
//doi.org/10.1007/s10703-015-0238-z.

http://dx.doi.org/10.1109/32.908957
https://doi.org/10.1109/32.908957
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.29
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.29
https://doi.org/10.4230/LIPIcs.STACS.2017.29
https://doi.org/10.4230/LIPIcs.STACS.2017.29
http://dx.doi.org/10.1007/978-3-642-02658-4_47
http://dx.doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1049/iet-sen:20080008
http://dx.doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/s10703-015-0238-z

140 BIBLIOGRAPHY

[GPV12] Eric Goubault, Sylvie Putot, and Franck Védrine. “Modular Static
Analysis with Zonotopes”. In: Static Analysis - 19th International
Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Pro-
ceedings. 2012, pp. 24–40. DOI: 10.1007/978-3-642-33125-
1_5. URL: https://doi.org/10.1007/978- 3- 642-
33125-1_5.

[GS14] Laure Gonnord and Peter Schrammel. “Abstract acceleration in
linear relation analysis”. In: Sci. Comput. Program. 93 (2014), pp. 125–
153. DOI: 10.1016/j.scico.2013.09.016. URL: https:
//doi.org/10.1016/j.scico.2013.09.016.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming”. In: Commun. ACM 12.10 (1969), pp. 576–580. DOI: 10.
1145/363235.363259. URL: http://doi.acm.org/10.
1145/363235.363259.

[ILR17] Hugo Illous, Matthieu Lemerre, and Xavier Rival. “A Relational
Shape Abstract Domain”. In: NASA Formal Methods - 9th Interna-
tional Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18,
2017, Proceedings. 2017, pp. 212–229. DOI: 10.1007/978- 3-
319-57288-8_15. URL: https://doi.org/10.1007/978-
3-319-57288-8_15.

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Nu-
merical Abstract Domains for Static Analysis”. In: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. 2009, pp. 661–667. DOI: 10.
1007/978-3-642-02658-4_52. URL: https://doi.org/
10.1007/978-3-642-02658-4_52.

[JSS14] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan.
“Abstract acceleration of general linear loops”. In: The 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014. 2014, pp. 529–540. DOI: 10.1145/2535838.2535843.
URL: http://doi.acm.org/10.1145/2535838.2535843.

[Kar76] Michael Karr. “Affine Relationships Among Variables of a Pro-
gram”. In: Acta Inf. 6 (1976), pp. 133–151. DOI: 10.1007/BF00268497.
URL: https://doi.org/10.1007/BF00268497.

[Kir+15] Florent Kirchner et al. “Frama-C: A software analysis perspec-
tive”. In: Formal Asp. Comput. 27.3 (2015), pp. 573–609. DOI: 10.
1007/s00165-014-0326-7. URL: https://doi.org/10.
1007/s00165-014-0326-7.

[KL80] Ravindran Kannan and Richard J. Lipton. “The Orbit Problem
is Decidable”. In: Proceedings of the 12th Annual ACM Symposium
on Theory of Computing, April 28-30, 1980, Los Angeles, California,
USA. 1980, pp. 252–261. DOI: 10.1145/800141.804673. URL:
http://doi.acm.org/10.1145/800141.804673.

http://dx.doi.org/10.1007/978-3-642-33125-1_5
http://dx.doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
https://doi.org/10.1007/978-3-642-33125-1_5
http://dx.doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1016/j.scico.2013.09.016
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-319-57288-8_15
http://dx.doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1145/2535838.2535843
http://doi.acm.org/10.1145/2535838.2535843
http://dx.doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1145/800141.804673
http://doi.acm.org/10.1145/800141.804673

BIBLIOGRAPHY 141

[KL86] Ravindran Kannan and Richard J. Lipton. “Polynomial-time al-
gorithm for the orbit problem”. In: J. ACM 33.4 (1986), pp. 808–
821. DOI: 10.1145/6490.6496. URL: http://doi.acm.org/
10.1145/6490.6496.

[Koc+18] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Exe-
cution”. In: arXiv preprint arXiv:1801.01203 (2018).

[Kov08] Laura Kovács. “Aligator: A Mathematica Package for Invariant
Generation (System Description)”. In: Automated Reasoning, 4th
International Joint Conference, IJCAR 2008, Sydney, Australia, Au-
gust 12-15, 2008, Proceedings. 2008, pp. 275–282. DOI: 10.1007/
978-3-540-71070-7_22. URL: https://doi.org/10.
1007/978-3-540-71070-7_22.

[KS91] Krzysztof Kowalski and W-H Steeb. Nonlinear dynamical systems
and Carleman linearization. World Scientific, 1991.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: 2nd
IEEE / ACM International Symposium on Code Generation and Opti-
mization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. 2004,
pp. 75–88. DOI: 10.1109/CGO.2004.1281665. URL: https:
//doi.org/10.1109/CGO.2004.1281665.

[Lan97] Gérard Le Lann. “An analysis of the Ariane 5 flight 501 failure-a
system engineering perspective”. In: 1997 Workshop on Engineer-
ing of Computer-Based Systems (ECBS ’97), March 24-28, 1997, Mon-
terey, CA, USA. 1997, pp. 339–246. DOI: 10.1109/ECBS.1997.
581900. URL: https://doi.org/10.1109/ECBS.1997.
581900.

[Mau04] Laurent Mauborgne. “AstrÉe: Verification of Absence of Run-
time Error”. In: Building the Information Society. Springer, 2004,
pp. 385–392.

[MB08] Leonardo MendonCca de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings. 2008, pp. 337–340. DOI: 10.1007/978- 3-
540-78800-3_24. URL: https://doi.org/10.1007/978-
3-540-78800-3_24.

[MBR16] Antoine Miné, Jason Breck, and Thomas W. Reps. “An Algorithm
Inspired by Constraint Solvers to Infer Inductive Invariants in
Numeric Programs”. In: Programming Languages and Systems - 25th
European Symposium on Programming, ESOP 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceed-
ings. 2016, pp. 560–588. DOI: 10.1007/978-3-662-49498-

http://dx.doi.org/10.1145/6490.6496
http://doi.acm.org/10.1145/6490.6496
http://doi.acm.org/10.1145/6490.6496
http://dx.doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/ECBS.1997.581900
http://dx.doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ECBS.1997.581900
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/978-3-662-49498-1_22

142 BIBLIOGRAPHY

1_22. URL: https://doi.org/10.1007/978-3-662-
49498-1_22.

[Min06] Antoine Miné. “The octagon abstract domain”. In: Higher-Order
and Symbolic Computation 19.1 (2006), pp. 31–100. DOI: 10.1007/
s10990-006-8609-1. URL: https://doi.org/10.1007/
s10990-006-8609-1.

[Min10] Hermann Minkowski. Geometrie der zahlen. Vol. 40. 1910.

[Min67] Marvin L Minsky. Computation: finite and infinite machines. Prentice-
Hall, Inc., 1967.

[Mon10] David Monniaux. “Quantifier Elimination by Lazy Model Enu-
meration”. In: Computer Aided Verification, 22nd International Con-
ference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings.
2010, pp. 585–599. DOI: 10.1007/978-3-642-14295-6_51.
URL: https://doi.org/10.1007/978-3-642-14295-
6_51.

[MS04] Markus Müller-Olm and Helmut Seidl. “A Note on Karr’s Al-
gorithm”. In: Automata, Languages and Programming: 31st Inter-
national Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings. 2004, pp. 1016–1028. DOI: 10.1007/978-3-540-
27836-8_85. URL: https://doi.org/10.1007/978-3-
540-27836-8_85.

[Nec+02] George C. Necula et al. “CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs”. In: Compiler
Construction, 11th International Conference, CC 2002, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings. 2002,
pp. 213–228. DOI: 10.1007/3-540-45937-5_16. URL: https:
//doi.org/10.1007/3-540-45937-5_16.

[OBP16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. “Poly-
nomial Invariants by Linear Algebra”. In: Automated Technology
for Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings. 2016, pp. 479–
494. DOI: 10.1007/978-3-319-46520-3_30. URL: https:
//doi.org/10.1007/978-3-319-46520-3_30.

[OBP17] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. “Syn-
thesizing Invariants by Solving Solvable Loops”. In: Automated
Technology for Verification and Analysis - 15th International Sympo-
sium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings. 2017,
pp. 327–343. DOI: 10.1007/978-3-319-68167-2_22. URL:
https://doi.org/10.1007/978-3-319-68167-2_22.

[Oli+18] Steven de Oliveira et al. “Left-eigenvectors are certificates of the
Orbit Problem (to be submitted)”. In: CoRR abs/1803.09511 (2018).
arXiv: 1803.09511. URL: http://arxiv.org/abs/1803.
09511.

http://dx.doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/978-3-662-49498-1_22
https://doi.org/10.1007/978-3-662-49498-1_22
https://doi.org/10.1007/978-3-662-49498-1_22
http://dx.doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
http://dx.doi.org/10.1007/978-3-540-27836-8_85
http://dx.doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/978-3-540-27836-8_85
http://dx.doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-46520-3_30
http://dx.doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
http://arxiv.org/abs/1803.09511
http://arxiv.org/abs/1803.09511
http://arxiv.org/abs/1803.09511

BIBLIOGRAPHY 143

[OPB] Steven de Oliveira, Virgile Prevosto, and Saddek Bensalem. “CaFE:
un model-checker collaboratif”. In: Approches Formelles dans l’Assistance
au Développement de Logiciels 2017, Proceedings ().

[PC99] Victor Y. Pan and Zhao Q. Chen. “The Complexity of the Ma-
trix Eigenproblem”. In: Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia,
USA. 1999, pp. 507–516.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977. 1977, pp. 46–57. DOI:
10.1109/SFCS.1977.32. URL: http://dx.doi.org/10.
1109/SFCS.1977.32.

[Pri57] A. N. Prior. “Time and Modality”. In: Clarendon Press (1957).

[RG13] Pierre Roux and Pierre-Loïc Garoche. “Integrating Policy Itera-
tions in Abstract Interpreters”. In: Automated Technology for Ver-
ification and Analysis - 11th International Symposium, ATVA 2013,
Hanoi, Vietnam, October 15-18, 2013. Proceedings. 2013, pp. 240–
254. DOI: 10.1007/978-3-319-02444-8_18. URL: https:
//doi.org/10.1007/978-3-319-02444-8_18.

[Ric53] Henry Gordon Rice. “Classes of recursively enumerable sets and
their decision problems”. In: Transactions of the American Mathe-
matical Society 74.2 (1953), pp. 358–366.

[RK07] Enric Rodríguez-Carbonell and Deepak Kapur. “Generating all
polynomial invariants in simple loops”. In: J. Symb. Comput. 42.4
(2007), pp. 443–476. DOI: 10.1016/j.jsc.2007.01.002. URL:
https://doi.org/10.1016/j.jsc.2007.01.002.

[Rou+12] Pierre Roux et al. “A generic ellipsoid abstract domain for lin-
ear time invariant systems”. In: Hybrid Systems: Computation and
Control (part of CPS Week 2012), HSCC’12, Beijing, China, April 17-
19, 2012. 2012, pp. 105–114. DOI: 10.1145/2185632.2185651.
URL: http://doi.acm.org/10.1145/2185632.2185651.

[Ser+12] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address
Sanity Checker”. In: 2012 USENIX Annual Technical Conference,
Boston, MA, USA, June 13-15, 2012. 2012, pp. 309–318. URL: https:
//www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany.

[SKV17] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov.
“E-ACSL, a Runtime Verification Tool for Safety and Security of
C Programs (tool paper)”. In: RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools, September 15, 2017,
Seattle, WA, USA. 2017, pp. 164–173. URL: http://www.easychair.
org/publications/paper/t6tV.

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-319-02444-8_18
https://doi.org/10.1007/978-3-319-02444-8_18
https://doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1016/j.jsc.2007.01.002
http://dx.doi.org/10.1145/2185632.2185651
http://doi.acm.org/10.1145/2185632.2185651
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://www.easychair.org/publications/paper/t6tV
http://www.easychair.org/publications/paper/t6tV

144 BIBLIOGRAPHY

[SP11] N. Stouls and V. Prevosto. Aoraï plug-in tutorial, version Nitrogen-
20111001. http://frama- c.com/download/frama- c-
aorai-manual.pdf. Oct. 2011.

[Spo82] Fausto Spoto. “Julia: A generic static analyser for the java byte-
code”. In: Part XXX. Citeseer. 1982.

[Ste+08] William Stein et al. “Sage: Open source mathematical software”.
In: 7 December 2009 (2008).

[Ste89] W-H Steeb. “A note on Carleman linearization”. In: Physics Let-
ters A 140.6 (1989), pp. 336–338.

[SZ+65] Andrzej Schinzel, Hans Zassenhaus, et al. “A refinement of two
theorems of Kronecker”. In: Michigan Math. J 12 (1965), pp. 81–85.

[Ven12] Arnaud Venet. “The Gauge Domain: Scalable Analysis of Linear
Inequality Invariants”. In: Computer Aided Verification - 24th Inter-
national Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings. 2012, pp. 139–154. DOI: 10.1007/978-3-642-
31424-7_15. URL: https://doi.org/10.1007/978-3-
642-31424-7_15.

[Wag+06] Ferdinand Wagner et al. Modeling software with finite state machines:
a practical approach. CRC Press, 2006.

[WBR13] John Henry Wilkinson, Friedrich Ludwig Bauer, and C Reinsch.
Linear algebra. Vol. 2. Springer, 2013.

http://frama-c.com/download/frama-c-aorai-manual.pdf
http://frama-c.com/download/frama-c-aorai-manual.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://dx.doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15
https://doi.org/10.1007/978-3-642-31424-7_15

145

Appendix A

Pilat architecture

A.1 The Ring signature

module type Ring = sig

(* type of elements of the ring *)
type t

(* neutral elements for the addition and the
multiplication *)

val zero : t
val one : t

(* Basic operations *)
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t

(* Comparison of elements *)
val equal : t -> t -> bool
val leq : t -> t -> bool
val geq: t -> t -> bool
val lt : t -> t -> bool
val gt : t -> t -> bool
val compare : t -> t -> int

(* Printers *)
val pp_print : Format.formatter -> t -> unit
val to_str : t -> string
val of_str : string -> t

end

A.2 The Matrix signature

module type Ring = sig

(* type of elements of the ring *)
type t

146 Appendix A. Pilat architecture

(* neutral elements for the addition and the
multiplication *)

val zero : t
val one : t

(* Basic operations *)
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t

(* Comparison of elements *)
val equal : t -> t -> bool
val leq : t -> t -> bool
val geq: t -> t -> bool
val lt : t -> t -> bool
val gt : t -> t -> bool
val compare : t -> t -> int

(* Printers *)
val pp_print : Format.formatter -> t -> unit
val to_str : t -> string
val of_str : string -> t

end

A.3 The Polynomial signature

module type Ring = sig

(* type of elements of the ring *)
type t

(* neutral elements for the addition and the
multiplication *)

val zero : t
val one : t

(* Basic operations *)
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t

(* Comparison of elements *)
val equal : t -> t -> bool
val leq : t -> t -> bool
val geq: t -> t -> bool
val lt : t -> t -> bool
val gt : t -> t -> bool
val compare : t -> t -> int

(* Printers *)
val pp_print : Format.formatter -> t -> unit
val to_str : t -> string

A.3. The Polynomial signature 147

val of_str : string -> t

end

149

Appendix B

Pilat results on deterministic and
non deterministic loops

B.1 Example 1

int main(){
float x,y;
while(x < 4){

x = 0.68 * (x-y);
y = 2*0.68*y + x;

}

return 1;

}

Invariant generated : −cst 6 1. ∗ (x ∗ x) + 1. ∗ (y ∗ y) 6 cst

B.2 Dampened oscillator

int main(){
float x0,x1,tx0,tx1;
while(1){

tx0 = x0 + 0.01 * x1;
tx1 = -0.1 * x0 + 0.99*x1;

x0 = tx0;
x1 = tx1;

}

return 1;

}

Invariant generated :
−cst 6 (1. ∗ (x1 ∗ x0) + 10. ∗ (x0 ∗ x0)) + 1. ∗ (x1 ∗ x1) 6 cst

B.3 Harmonic oscillator

int main(){
float x0,x1,tx0,tx1;
while(1){

tx0 = 0.95 * x0 + 0.09975 * x1;

150 Appendix B. Pilat results on deterministic and non deterministic loops

tx1 = -0.1 * x0 + 0.95*x1;

x0 = tx0;
x1 = tx1;

}

Invariant generated :
−cst 6 1.00250626566 ∗ (x0 ∗ x0) + 1. ∗ (x1 ∗ x1) 6 cst

B.4 Symplectic SEU Oscillator

int main(){
float v,x;
while (v >= 1/2) {

x = (1 - 0.05) * x + (0.1 - 0.00025) * v;
v = -0.1 *x+(1-0.05)* v ;

}
}

Invariant generated : −cst 6 0.105∗ (x∗v)+1.05∗ (v ∗v)+1.∗ (x∗x) 6 cst

B.5 [AGG12] filter

float float_interval(float, float);

int main(){
float x,y;
while(1){

x = (0.75) * x - (0.125)* y;
y = x;

}
return 0;

}

Invariants generated : −cst 6 −6. ∗ x+ 1. ∗ y 6 cst

B.6 Simple filter

int main(){
float x,y;
float k;
while(x < 4){

k=float_interval(-0.1,0.1); /* 0 */
x = 0.68 * (x-y) + k;
y = 2*0.68*y + x;

}

return 1;

}

Invariant generated : |1. ∗ (x ∗ x) + 1. ∗ (y ∗ y)| 6 14.892578125

B.7 Example 3

B.8. Linear filter 151

int main(){
float s0 = 0,s1 = 0,r;
while(1){

r = 1.5*s0 - 0.7*s1 + float_interval(-0.1,0.1);
s1 = s0;
s0 = r;

}
return 0;

}

Invariant generated : |(−2.14285714286 ∗ (s1 ∗ s0) + 1.42857142857 ∗ (s0 ∗
s0)) + 1. ∗ (s1 ∗ s1)| 6 0.830078125;

B.8 Linear filter

int main(){
float s0 = 0,s1 = 0,r;
int N = 50;
while(N > 0){

r = 1.5*s0 - 0.7*s1 + float_interval(-1.6,1.6);
s1 = s0;
s0 = r;
N--;

}

return 0;

}

Invariant generated : |(−2.14285714286∗(s0∗s1)+1.42857142857∗(s1∗s1))+
1. ∗ (s0 ∗ s0)| 6 137.451171875

B.9 Lead lag controller

int main(){
float x0p,x1p,x0,x1;
while(1){/*

x1 = 0.01*x0 + x1;
x0 = 0.499*x0 - 0.05*x1 + 0.0005*x0 + float_interval(-1,1);

*/
x0p = x0; x1p = x1;

x0 = 0.499*x0p - 0.05*x1p + float_interval(-1,1);
x1 = 0.010*x0p + x1p;

}

return 1;

}

Invariants generated :

152 Appendix B. Pilat results on deterministic and non deterministic loops

0.02 ∗ x0 + 1. ∗ x1 <= 70.1172
10. ∗ x0 + 1. ∗ x1 <= 20.1172

B.10 Gaussian regulator

int main(){
float x0,x1,x2,tx0,tx1,tx2,in;
while(1){

in = float_interval(-1,1);
tx0 = 0.9379 * x0 - 0.0381 * x1 - 0.0414 * x2 + 0.0237 * in;
tx1 = -0.0404 * x0 + 0.968 * x1 - 0.0179 * x2 + 0.0143 * in;
tx2 = 0.0142 * x0 - 0.0197 * x1 + 0.9823 * x2 + 0.0077 * in;
x0 = tx0;
x1 = tx1;
x2 = tx2;

}

return 0;

}

Invariants generated :
|(1.2187798948 ∗ x0 + 1.16137161588 ∗ x1) + 1. ∗ x2| 6 1.171875

|− 2.45498840354 ∗x1 ∗x0 +−0.788574527791 ∗x2 ∗x0 + 0.868152061813 ∗x0 ∗
x0 + 1.12295787049 ∗ x2 ∗ x1 + 1.73559323995 ∗ x1 ∗ x1 + 1. ∗ x2 ∗ x2| 6 10.7422

B.11 Controller

int main(){
float x0,x1,x2,x3,tx0,tx1,tx2,tx3,in0,in1;
while(1){

in0 = float_interval(-1,1);
in1 = float_interval(-1,1);
tx0 = 0.6227 * x0 + 0.3871 * x1 - 0.113 * x2 + 0.0102 * x3

+ 0.3064 * in0 + 0.1826 * in1;
tx1 = -0.3407 * x0 + 0.9103 * x1 - 0.3388 * x2 + 0.0649 * x3

- 0.0054 * in0 + 0.6731 * in1;
tx2 = 0.0918 * x0 - 0.0265 * x1 - 0.7319 * x2 + 0.2669 * x3

+ 0.0494 * in0 + 1.6138 * in1;
tx3 = 0.2643 * x0 - 0.1298 * x1 - 0.9903 * x2 + 0.3331 * x3

- 0.0531 * in0 + 0.4012 * in1;

x0 = tx0;
x1 = tx1;
x2 = tx2;
x3 = tx3;

}

return 1;

}

|−0.00203592622443∗x1∗x0+0.0881698609486∗x2∗x0+−0.0355121282196∗
x3∗x0+0.000315277812672∗x0∗x0+−0.284681200032∗x2∗x1+0.114660896235∗

B.12. Low pass filter 153

x3∗x1+0.00328678028134∗x1∗x1+−4.96561965553∗x3∗x2+6.16434464085∗
x2 ∗ x2 + 1. ∗ x3 ∗ x3| 6 20.166015625;
|−0.00861093083991∗x1∗x0+0.298520354653∗x2∗x0+−0.126853461757∗x3∗
x0+0.00193714038684∗x0∗x0+−0.418765740617∗x2∗x1+0.190035991969∗
x3∗x1+0.00760806829668∗x1∗x1+−4.0401517826∗x3∗x2+3.86658391065∗
x2 ∗ x2 + 1. ∗ x3 ∗ x3| 6 18.212890625;
|−0.0289556589751∗x1∗x0+0.339803909038∗x2∗x0+−0.218194795294∗x3∗
x0 + 0.0119022421734 ∗x0 ∗x0 +−0.413335822158 ∗x2 ∗x1 + 0.265411087703 ∗
x3∗x1 + 0.017610761369∗x1∗x1 +−3.11468390967∗x3∗x2 + 2.42531396428∗
x2 ∗ x2 + 1. ∗ x3 ∗ x3| 6 5.17578125;
|−0.0177560641098∗x0+0.0573304481174∗x1+−2.48280982777∗x2+1.∗x3| 6
5005.46875;
|−0.109097397647∗x0+0.132705543852∗x1+−1.55734195483∗x2+1.∗x3| 6
582.03125;

B.12 Low pass filter

int main(){

float x0,x1,x2,x3,x4,tx0,tx1,tx2,tx3,tx4,in0;

while(1){
in0 = float_interval(-1,1);
x0 = 0.4250 * tx0 + 0.8131 * in0;
x1 = 0.3167 * tx0 + 0.1016 * tx1 - 0.4444* tx2

+ 0.1807 * in0;
x2 = 0.1278 * tx0 + 0.4444 * tx1 +0.8207 * tx2

+ 0.0729 * in0;
x3 = 0.0365 * tx0 + 0.1270 * tx1 + 0.5202 * tx2

+ 0.4163 * tx3 - 0.5714 * tx4 + 0.0208 * in0;
x4 = 0.0147 * tx0 + 0.0512 * tx1 + 0.2099 * tx2
+ 0.57104 * tx3 + 0.7694 * tx4 + 0.0084 * in0;

tx0 = x0;
tx1 = x1;
tx2 = x2;
tx3 = x3;
tx4 = x4;

}

}

Invariants generated : |1.00164325052∗tx1∗tx0+0.000140144389337∗tx2∗
tx0+−1.6191550573∗tx3∗tx0+−1.00126210564∗tx4∗tx0+0.72511353991∗tx0∗
tx0+2.62046247703∗tx2∗tx1+−0.618060865742∗tx3∗tx1+−2.00110233268∗
tx4∗tx1+1.00110265182∗tx1∗tx1+1.00020053093∗tx3∗tx2+−2.61878326237∗
tx4∗tx2+2.61995131748∗tx2∗tx2+0.617955897795∗tx4∗tx3+0.999369968498∗
tx3 ∗ tx3 + 1. ∗ tx4 ∗ tx4| <= 17.724609375;
|1.00123175519∗ tx1∗ tx0 +−0.999123490687∗ tx2∗ tx0 + 2.61966963703∗ tx0∗
tx0 + 1.61813681368 ∗ tx2 ∗ tx1 + 1. ∗ tx1 ∗ tx1 + 1. ∗ tx2 ∗ tx2| <= 8.642578125;

154 Appendix B. Pilat results on deterministic and non deterministic loops

Titre : Recherche de constance dans les routines linéaires

Vérification de programmes, génération d'invariants, model-checking, propriétés
temporelles

Résumé : La criticité des programmes dépasse
constamment de nouvelles frontières car
l'informatique est de plus en plus utilisée dans la
prise de décision (voitures autonomes, robots
chirurgiens, etc.). Développer des programmes
sûrs et vérifier les programmes existants est
devenu indispensable.
Afin de vérifier formellement le bon
fonctionnement d'un programme donné, il faut
faire face aux défis de la mise à l'échelle et de la
décidabilité. Programmes composés de millions
de lignes de code, complexité de l'algorithme,
concurrence, et même de simples expressions
polynomiales font partis des problèmes que la
vérification formelle doit savoir gérer. Pour y
arriver, les méthodes formelles travaillent sur
des abstractions des programmes étudiés afin
d'analyser des approximations de leur
comportement.
L'analyse des boucles est un axe entier de la
vérification formelle car elles sont encore
aujourd'hui peu comprises. Certaines d'entre
elles peuvent facilement être traitées, pourtant il
existe des exemples apparemment très simples
mais dont le comportement n'a encore
aujourd'hui pas été résolu (on ne sait toujours
pas pourquoi la suite de Syracuse, simple
boucle linéaire, converge toujours vers 1).
L'approche la plus commune afin de gérer les
boucles de manière approchée est l'utilisation
d'invariants de boucles, c'est à dire de relations
sur les variables manipulées par une boucle qui
sont vraies à chaque fois que la boucle
recommence.
En général, les invariants utilisent des
expressions similaires à celles utilisées dans la
boucle : si elle manipule explicitement la
mémoire par exemple, on s'attend à utiliser des
invariants portant sur la mémoire. Cependant, il
existe des boucles contenant uniquement des
affectations linéaires qui n'admettent pas
d'invariants linéaires, mais polynomiaux.

Cette thèse présente de nouvelles propriétés sur
les boucles linéaires et polynomiales. Il est déjà
connu que les boucles linéaires sont
polynomialement expressives, au sens ou si
plusieurs variables évoluent linéairement dans
une boucle, alors n'importe quel monôme de ces
variables évolue linéairement. La première
contribution de cette thèse est la caractérisation
d'une classe de boucles polynomiales
équivalentes aux boucles linéaires, au sens où il
existe une boucle linéaire avec le même
comportement.
Ensuite, deux nouvelles méthodes de génération
d'invariants sont présentées. La première
méthode est basée sur l'interprétation abstraite
et s'intéresse aux filtres linéaires convergents.
Ces filtres jouent un rôle important dans de
nombreux systèmes embarqués (par exemple
dans l'avionique) et requièrent l'utilisation de
flottants, un type de valeurs qui peut mener à
des erreurs d'imprécision. Aussi, la présence
d'affectations aléatoires dans ces filtres rend
leur analyse encore plus complexe.
La seconde méthode traite d'une approche basée
sur la génération d'invariants pour n'importe
quel type de boucles linéaires. Elle part d'un
nouveau théorème présenté dans cette thèse qui
caractérise les invariants de boucles comme
étant les vecteurs propres du dual de la
transformation linéaire traitée. Cette méthode
est généralisée pour prendre en compte les
conditions, les boucles imbriquées et le non
déterminisme dans les affectations.
La génération d'invariants n'est pas un but en
soi, mais un moyen. Cette thèse s'intéresse au
genre de problèmes que peut résoudre les
invariants générés par la seconde méthode. Le
premier problème traité est problème de l'orbite
(Kannan-Lipton Orbit problem), dont il est
possible de générer des certificats de non
accessibilité en utilisant les vecteurs propres de
la transformation considérée. En outre, les
vecteurs propres sont mis à l'épreuve en
pratique par leur utilisation dans le model-
checker CaFE basé sur la vérification de
propriétés temporelles sur des programmes C.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Mots-clefs :

Title : Finding constancy in linear routines

Keywords : Program verification, invariant generation, model-checking, temporal properties

Abstract : The criticality of programs
constantly reaches new boundaries as they are
relied on to take life-or-death decisions in place
of the user (autonomous cars, robot surgeon,
etc.). This raised the need to develop safe
programs and to verify the already existing
ones. Anyone willing to formally prove the
soundness of a program faces the two
challenges of scalability and undecidability.
Million of lines of code, complexity of the
algorithm, concurrency, and even simple
polynomial expressions are part of the issues
formal verification have to deal with. In order
to succeed, formal methods rely on state
abstraction to analyze approximations of the
behavior of the analyzed program.
The analysis of loops is a full axis of formal
verification, as this construction is still today
not well managed. Though some of them can
be easily handled when they perform simple
operations, there still exist some seemingly
basic loops whose behavior has not been solved
yet (the Syracuse sequence for example is
suspected to be undecidable). The most
common approach for the treatment of loops is
the use of loop invariants, i.e. relations on
variables that are true at the beginning of the
loop and after every step.
Intuitively, invariants are expected to use the
same set of expressions used in the loop: if a
loop manipulates the memory on a structure for
example, invariants will naturally use
expressions involving memory operations.
However, there exist loops containing only
linear instructions that admit only polynomial
invariants (for example, the sum on integers
can be computed by a linear loop and is a
degree 2 polynomial in n), hence using
expressions that are syntactically absent of the
loop. The intuition stated above is thus a bit
naive and we should seek for more relations
between invariants and loop instructions.

This thesis presents new insights on loops
containing linear and polynomial instructions.
It is already known that linear loops are
polynomially expressive, in the sense that if a
variable evolves linearly, then any monomial of
this variable evolves linearly. The first
contribution of this thesis is the extraction of a
class of polynomial loops that is exactly as
expressive as linear loops, in the sense that
there exists a linear loop with the exact same
behavior.
Then, two new methods for generating
invariants are presented.
The first method is based on abstract
interpretation and is focused on a specific kind
of linear loops called linear filters. Linear
filters play a role in many embedded systems
(plane sensors for example) and require the use
of floating point operations, that may be
imprecise and lead to errors if they are badly
handled. Also, the presence of non
deterministic assignments makes their analysis
even more complex.
The second method treats of a more generic
subject by finding a complete set of linear
invariants of linear loops that is easily
computable. This technique is based on the
linear algebra concept of eigenspace. It is
extended to deal with conditions, nested loops
and non determinism in assignments.
Generating invariants is an interesting topic,
but it is not an end in itself, it must serve a
purpose. This thesis investigates the
expressivity of invariants generated by the
second method by generating counter examples
for the Kannan-Lipton Orbit problem. It also
presents the tool PILAT implementing this
technique and compares its efficiency
technique with other state-of-the-art invariant
synthesizers. The effective usefulness of the
invariants generated by PILAT is demonstrated
by using the tool in concert with CaFE, a
model-checker for C programs based on
temporal logics.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

