
HAL Id: tel-01898867
https://theses.hal.science/tel-01898867

Submitted on 19 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyses multivariées de la génération de la diversité
des cytokines des cellules T CD4 et association de cette

diversité aux différents sous types de cancer du sein
Maximilien Grandclaudon

To cite this version:
Maximilien Grandclaudon. Analyses multivariées de la génération de la diversité des cytokines des cel-
lules T CD4 et association de cette diversité aux différents sous types de cancer du sein. Immunologie.
Université Paris Saclay (COmUE), 2017. Français. �NNT : 2017SACLS286�. �tel-01898867�

https://theses.hal.science/tel-01898867
https://hal.archives-ouvertes.fr


1 

NNT : 2017SACLS286 

Thèse de doctorat 

de 
L’Université Paris-Saclay 

préparée à 
l’Université Paris-Sud 

Ecole Doctorale n° 582 
CBMS Cancérologie : biologie - médecine - santé 

Spécialité de doctorat : Aspects moléculaires et cellulaires de la biologie 

Par 

Mr. Maximilien GRANDCLAUDON 

Multivariate study of human CD4 T cell cytokine diversity: generation and 

association with breast cancer subtypes 

Thèse présentée et soutenue à Paris, le 27/10/2017 

Composition du Jury : 
Mme BENDRISS-VERMARE Nathalie – Rapporteur 

Mr ROGGE Lars – Rapporteur 

Mr LATOUCHE Aurelien – Examinateur 

Mme CHAPUT-GRAS Nathalie – Examinateur et Présidente du Jury 

SOUMELIS Vassili – Directeur de Thèse 



2 
 

INDEX 

1 INTRODUCTION ............................................................................................................................... 5 

1.1 Complexity of signal integration in systems biology ............................................................... 5 

1.1.1 What is a complex system? ............................................................................................. 5 

1.1.2 Complex systems in biology ............................................................................................ 7 

1.1.3 Reductionism and Holism: how to study complex biological systems? .......................... 8 

1.1.4 Communication and signal integration in complex biological systems .......................... 9 

1.1.4.1 Requirements for information exchanges ................................................................... 9 

1.1.4.2 Complex features of the response to an information signal ..................................... 10 

1.1.4.3 Communication in cell biology .................................................................................. 11 

1.1.5 Signal integration in complex systems at the cell level ................................................. 12 

1.1.5.1 Signal integration in cell: levels of complexity .......................................................... 12 

1.1.5.2 Signal integration and context dependency .............................................................. 13 

1.1.5.3 Signal integration complexity: interaction between signals ..................................... 15 

1.2 Acquisition and diversity of T helper phenotypes in health and disease: a complex system of 

communication .................................................................................................................................. 18 

1.2.1 The immune system: basic concepts ............................................................................. 18 

1.2.2 Dendritic cell derived The T helper differentiation process: the three signals theory . 19 

1.2.3 The DC control of Th differentiation: a complex system of signal integration beyond 

the three signals theory ................................................................................................................ 21 

1.2.4 T helper Cytokines profiles defines an increasing number of Th subsets ..................... 26 

1.2.5 Diversity of T helper cytokines and their association to disease states ........................ 28 

1.2.5.1 Th1 and Th2 diseases: a historical dichotomy ........................................................... 28 

1.2.5.2 Multiple Th subsets associated to the same disease? .............................................. 29 

1.2.5.3 Cancer and Th states ................................................................................................. 31 

1.2.5.4 The different breast cancer subtypes ........................................................................ 33 

1.3 Mathematical modeling: an important tool to study complex systems ............................... 35 

1.3.1 What is mathematical modeling and how does it work? .............................................. 36 

1.3.2 The different steps of mathematical modeling ............................................................. 37 

1.3.3 Different types of model currently used in biology ...................................................... 38 

1.3.3.1 Modeling kinetics through ordinary differential equation (ODE) ............................. 38 

1.3.3.2 Boolean models ......................................................................................................... 39 

1.3.3.3 Statistical modeling ................................................................................................... 40 

2 OBJECTIVES OF THE THESIS ........................................................................................................... 42 



3 
 

2.1 First objective: the study of the integration of numerous signals to specify Th phenotypes 

during CD4 T cells differentiation process. ....................................................................................... 42 

2.2 Second objective: the study of the association of Th cytokine diversity with the different 

Breast Cancer subtypes ..................................................................................................................... 43 

3 RESULTS ......................................................................................................................................... 44 

3.1 Article 1: Combinatorial flexibility of cytokine function during human T helper cell 

differentiation ................................................................................................................................... 44 

3.2 Article 2: Multivariate modeling of human T helper cell differentiation reveals a context 

specific induction of Th17 by IL-12p70 .............................................................................................. 45 

3.3 Article 3: A Th17 multivariate signature for prognostic stratification in triple negative breast 

cancer 46 

4 DISCUSSION AND PERSPECTIVES ................................................................................................... 47 

4.1 Drive of the discussion .......................................................................................................... 47 

4.1.1 Study T helper as a complex system: importance of mathematical and global unbiased 

approach 48 

4.1.2 Advantages and originality of our statistical modeling strategies ................................ 50 

4.1.3 The limits or missing parameters of our T helper differentiation model ...................... 52 

4.2 Perspectives on clinical applications ..................................................................................... 56 

4.2.1 Multivariate model of Th differentiation: immune checkpoint therapy ....................... 56 

4.2.2 Th cytokine diversity in tumor microenvironment for personalized medicine ............. 57 

5 APPENDIX ...................................................................................................................................... 59 

5.1 Collaboration on Tfh differentiation induced by TSLP treated dendritic cells ...................... 59 

5.2 Collaboration with the group of Denis Thieffry on the development of a Boolean model of 

Th differentiation coupled to the use of model checking tools ........................................................ 60 

5.3 Collaboration on a new methodology to study and reconstruct inter-cellular 

communication network from large scale expression data .............................................................. 61 

Unpublished manuscript ................................................................................................................... 61 

5.4 Collaboration on the role of TSLP in the differentiation of Langerhans –like cells from BDCA-

1 blood dendritic cell ......................................................................................................................... 62 

6 REFERENCES .................................................................................................................................. 63 

7 ANALYSES MULTIVARIEES DE LA GENERATION DE LA DIVERSITE DES CYTOKINES DES CELLULES T 

CD4 ET ASSOCIATION DE CETTE DIVERSITE AUX DIFFERENTS SOUS-TYPES DE CANCER DU SEIN ........ 69 

8 ACKNOLEDGEMENTS ..................................................................................................................... 79 

 

 

 



4 
 

 

LIST OF ABBREVIATIONS  

  

DC Dendritic Cells 
CBA Cytometric Bead Array 
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor 
IFN Interferon 
IL Interleukin 
LPS Lipopolysaccharide 
MHC Major Histocompatibility Complex 
PBMCs Peripheral Blood Mononuclear Cells 
BC Breast Cancer 
TNBC Triple Negative Breast Cancer  
BC Breast Cancer 
EAE Experimental Allergic Encephalomyelitis 
MS Multiple sclerosis 
AD Atopic Dermatitis 
RA Rheumatoid Arthritis 
SLE Systemic Lupus Erythematosus 
EGF Epidermal Growth Factor 
  
  
  
  
  
  
  
 

 

 

 

 

 

 

 

 

 

 



5 
 

 

1 INTRODUCTION 

 

1.1 Complexity of signal integration in systems biology 

1.1.1 What is a complex system? 

The term complexity emerged from the Latin word “Complexus”, which means “bound 

together”. This notion is present in current definitions of complexity in different 

scientific fields, such as mathematics, computer science, physics and biology. The 

concept of complexity can be directly applied to the notion of system, which is 

defined by a set of different elements acting together to perform a function. 

In complexity theory, a complex system always refers to the interactions of high 

numbers of components possessing emergent functions or properties of a system as 

a whole that would not be seen at lower scales, or in subsystems. A complex system 

is made of several levels of hierarchies of very heterogeneous substructures that can 

evolve in time with different dynamic rates through information exchanges in order to 

adapt to different conditions notably through self-organization(1, 2).  
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Figure 1- Overview of the characteristics of complex systems figure adapted 

from: Julia Slingo et al. Phil. Trans. R. Soc. A (2009) 367, 815–831  

 

The different subparts of a complex system function with rules that can be either 

shared, or completely independent. These rules and the elements they act on can 

differ in natures and types. Sometimes different rules can even appear to be 

contradictory within different subparts of the system. The main consequence is that 

the study of the individual elements interacting at a lower scale does not allow a full 

comprehension of the global system at a higher scale. Therefore, complex systems 

are “non-fragmentable”, which means that reducing the global system to one of its 

subpart automatically implies losing major characteristics of the system. This goes 

with the fact that all the properties of a complex system cannot be explained by a 

single formalism, but rather by different models specific to different modules and 

scales of a complex system(3). In addition, another feature of complex systems is 

that small changes in the conditions of a complex system may have dramatic and 

unpredictable effects locally, or on the whole system, which is also known as the 

butterfly effect(4). 

 

Scientists from different fields needed to evaluate how much complex a system was 

and tried to find impartial criteria to compare complex systems with each other. 

These elements are important to complete the definition of complexity. In 

mathematics complexity was quantified by the number of operations needed to solve 

a problem. In computer science, the time required to run a program or the minimal 

space required to store all data were proposed to quantify complexity.  

 

In biology, the main criteria usually used to quantify complexity are the number of 

components or nodes, and the number of links/edges among the components of a 

network (5). However, these numbers are highly dependent on the state of our 

knowledge, which usually underestimates complexity, to the differences of “exact” 

sciences analyzing systems with a clearly defined composition and structure. For 

example the Nobel Prize laureate Niels Jerne in the 70’s, proposed a network view of 

immune system’s complexity included 4 nodes focused mainly on B and T cells. The 

current networks are usually comprised of a representation of a cytokine network 
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between different players of the immune system containing a hundreds of nodes in 

the current view (Figure 2).  

 

 

Figure 2- Two representative views of the immune system as a network.  

 

1.1.2 Complex systems in biology 

 

Following this definitions of complexity, all living organisms can be seen as complex 

systems. Indeed, living creatures are all self-organized through multi-level and 

hierarchical architectures of highly interactive components, which define emergent 

and unpredictable properties. 

 

In biology, each level of study can be seen as a complex system integrated within 

other scales interacting together or not, but allowing the emergence of functions that 

ultimately participate into making a live organism. For instance, a cell can be seen as 

a complex system composed of different sub-compartments all containing different 

sets of proteins, carbohydrates and lipids having different dynamics, life time and 

interaction partners, that will collectively achieve functions such as production of 

energy, DNA synthesis and repair, transcription and translation to obtain new 

proteins, which collectively allow the cell to perform its specific functions. At the 
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macroscopic levels the different organs are components of the human organism, and 

different human organisms define groups of people and large populations (3). In 

conclusion, complexity is therefore one of the main features of biology (4).  

 

1.1.3 Reductionism and Holism: how to study complex biological 

systems? 

 

The ultimate goal of biology is to understand how life functions. We have seen that all 

living systems are intrinsically complex systems. In order to reach a comprehension 

of living organism in science, a main and predominant approach was Reductionism. 

Reductionism was first defined by Sir Isaac Newton (1643–1727): “Truth is ever to be 

found in the simplicity and not in the multiplicity and confusion of things“. This 

philosophy impacted deeply science and biologists in the way they answered 

scientific questions, using simplified models in controlled environments with mainly 

loss or gain of function experiments as a way to study the role of a given element of 

the system, such as a protein or a gene. These approaches were intensively used in 

molecular biology and were successful in making important discovery on basic cell 

mechanisms, which led to derived applications such as drug design for medicine.  

 

However, the reductionist approach is unable to take into account many of the key 

aspects of complexity, such as interactions between components, emergent 

properties, multiple scales and hierarchical levels. Therefore, scientists developed a 

theory of complexity which tries to understand complex systems globally, without 

using reduced or simple models, therefore belonging to the holism philosophy (6). 

The holistic movement sees the truth has reachable only by the knowledge derived 

from the whole system. From this movement, and in opposition to the reductionist 

one, a specific field of biology emerged called systems biology.  

 

Systems biology aims at the description of complex biological systems at the large 

scale using mathematical and computational tools in order to study the elements of a 

system altogether and not taken one by one. Recently, systems biology took an even 

more important meaning in biology. In 2003, the successful end of the human 

genomic project definitely launched biology into the “OMICS” era (7, 8). OMICS 
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studies regrouped notably genomics, proteomics, transcriptomics, metabolomics and 

lipidomics. All these OMICS studies are based on technologies allowing the study of 

a system by measuring all its components at once. For instance, the human genomic 

project allowed the full characterization of more than 20 000 genes of a human 

individual (9).  

With the emergence of these new OMICS technologies more and more biologists 

started to ask systems level questions using tools from Systems Biology rather than 

the classical reductionist approaches. Systems Biology is dedicated to the study of 

biological systems at the large scale, and is therefore associated to the study of 

complexity. 

 

1.1.4 Communication and signal integration in complex biological 

systems 

1.1.4.1 Requirements for information exchanges 

 

As defined before, biological systems are complex systems involving many 

components able to dynamically evolve and to define several modules with self-

organization. These key features of complex system are supported by exchange of 

information or communication through emission and integration of information signals 

among the different components of the system.  

In the field of communication, an information signal or stimulus is a physical entity 

that encodes or conveys a message.  By definition, a signal is produced by a 

transmitter and will then circulate in a given communication channel that can be of 

different nature and composed of different noises. A signal must be able to be 

decoded or perceived by observers that possess the required machinery to receive 

and process it in order to retrieve the original information sent by the source signal 

(FIGURE 2). Exchanges of such signals define what is commonly called 

communication.  
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Figure 2: The basic features of a communication system 

 

1.1.4.2 Complex features of the response to an information signal 

 

If information exchanges are an important part of complex systems, the response of 

information signal itself contains several levels of complexity. Indeed, in 

communication an important notion is not only the transmission of information but 

also how the receiver will respond to the message. The response to a single signal 

possesses different features. One of the main feature is that the response to a signal 

can be unique or multiple. In a simple dialogue between two entities a signal triggers 

the production of a response signal that will be received by the original transmitter of 

the first emitted signal. In complex situations, a single signal can trigger multiple 

responses from the same receiver. The other key features of the response to a single 

signal are the dynamical range of the response, the different scales in which the 

response can be produced, but also the different nature of the multiple responses 

produced and the strength of the response(s). 

 

The communication channel in which the signal is transmitted also determines the 

nature and the number of receivers which can produce different responses that will 

ultimately generate one response at the population levels. This global population 

level response can change based on the different entities that constitute the 

considered population. 
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1.1.4.3 Communication in cell biology  

 

As described before, in communication theory, the signal physically encodes a 

message that is transmitted to a receiver that possesses the specific machinery to 

decode this signal. Among the different biological system, we will focus here on the 

different ways cells can communicate. 

 

Cells can communicate by direct contact, either through cell to cell junctions, which 

imply direct cytoplasm exchange between the two cells, or through membrane 

contacts. Cells can also communicate through short distances in absence of direct 

cell-cell contacts through paracrine communication. Paracrine communication 

remains local within a given tissue and neighboring cells constitute the targets. 

Paracrine communication is performed via the secretion of communication molecules 

outside the cell. Cells can also reach long distances through endocrine 

communication. It involves the secretion of molecules such as hormones within the 

whole body through the blood stream, in order to reach distant target cells. All these 

different communication types, through short or long distances, by direct contact or 

through secretion of communication molecules, involve the recognition by a receptor 

expressed by the receiver cell of a specific ligand produced by the transmitter cells. 

This is the first step of signal integration.  

 

 

FIGURE 3: The three different steps of signal integration by a cell: reception, 

transduction and response. This scheme was taken from the Chapter 11 of Cell Communication 
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PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero 2005 

Pearson Education, Inc. publishing as Benjamin Cummings. 

 

 

The signal is encoded physically by ligands that can be expressed at the cell surface 

or secreted outside the cell. After the recognition of the ligand by the receptor, the 

signal is usually transduced through the cytoplasm by relay molecules in specific 

signal transduction pathways that end into the nucleus of the cells where specific 

transcription factors are targeted and act on the regulation of the transcription of 

genes that can be activated or repressed in order to control the cellular response to 

the signal.  

1.1.5 Signal integration in complex systems at the cell level 

1.1.5.1 Signal integration in cell: levels of complexity 

 

All the cells of the human body possess different sensors that allow them to respond 

to signals from their microenvironments. Signal integration is the fact for a cell to 

sense, transduce and respond to different signals. This signal integration can be 

studied itself as a complex system.  

 

In cells integrating signals, three main levels can be seen as direct characteristics of 

complex systems: 1) the cell itself. For instance, a human cell is composed of more 

than 20 000 genes. In average, each gene can give rise to three different proteins 

and each protein can then be differentially regulated or interact with other proteins 

and/or be addressed with different dynamics to specific cellular compartments where 

they will perform different functions(10). As for all proteins, the proteins involved in 

the signaling pathways downstream of a receptor can be also multiple, and can be 

found in different states, with multiple binding sites for distinct partners. This defines 

an enormous combinatorial complexity of protein states, which can influence the way 

a cell, respond to a signal (11, 12). 2) The multiplicity of signals that can act on a 

given cell.  Indeed, one fundamental aspect of cells is that the information they 

receive is multivariate: the cell microenvironment can contain hundreds of thousands 

of concurrent molecular signals that can be sensed by a cell at a given time and 

influence the cell state(13).3) The multiplicity of responses that a cell can produce 
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to a given signal(14). Indeed, as described before in this manuscript, the response to 

a signal can be multiple. Since the cell itself, and more precisely the group of proteins 

that defines the signaling pathway, are complex systems based on its high number of 

components and the high combinatorial of possible protein states, the way this 

system respond to a signal is in consequence also of a complex nature. 

 

Signal integration in the context of systems biology and complex systems raised 

important questions that still remain largely unanswered. How the cell states 

influence the integration of a single signal? How the multiplicity of signals impacts the 

cell states and cell responses to the stimulation? How information is conserved within 

these different levels of complexity? Several efforts have been made in the field of 

signal integration to answer such questions, and some concepts are essential to be 

presented here to fully understand this field of research. 

 

1.1.5.2 Signal integration and context dependency 

 

In literature or text analysis, context dependency refers to a differential interpretation 

of a given sentence based on the other sentences from the same paragraph, chapter 

or book. In this example, a context could also be even more global, such as the 

author of the sentence or the time in which he wrote it. In cell biology and signal 

integration, context dependency refers to the exact same concept. Mechanistically 

the sensing, signaling and response of a cell to a signal can be different based on 

different contexts.  

 

In a cell-centered signal integration system, a context can be a signal or group of 

signals sensed by the cell. Indeed, one specific signal that a cell has to interpret can 

be integrated together with different groups of other signals. The context can also be 

the cell itself; one signal can act on different cell types or on different cell states of a 

given cell type. All variations in type, nature and intensities of these different contexts 

could potentially influence the response of a cell to a single signal (FIGURE 4). 

 

As an example of context dependent mechanisms we can cite the paper of Janes 

K.A et al, where they showed that Jun N-terminal kinase (JNK) activation can be 
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either anti- or pro-apoptotic depending on the state of the molecular network of cells 

that received growth factor cues(15). 

 

 

 

FIGURE 4: Context dependency in signal integration by cells 

 

More globally any condition or dimension of different types and scales, such as 

genetic variations, disease states, time or aging, organisms or tissue location can 

define theoretically a context for the cells. However, whether all putative contexts 

lead to relevant and differential signal integration by the cell is still largely unknown. 

The specificity and definitions of cell-intrinsic versus context-dependent responses of 

cells to a given signal are key challenges emerging in the field of signal integration in 

systems biology. It opens direct fundamental questions for which no answer can be 

formulated yet. Notably, in cell biology, if the message encoded by a single signal is 

defined by the response of a given cell to this signal, is this response highly context 

dependent? If yes, how essential information is conserved in complex systems? If no, 

which information is context-independent? 
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1.1.5.3 Signal integration complexity: interaction between signals 

 

Several levels of complexity emerge from the integration at the cell level of a 

multiplicity of signals.  

Considering the integration of two signals on a single output response, this response 

can be either additive or defines interactions (FIGURE 5). Additivity defines a 

situation where interactions between the two considered signals are completely 

absent. In this case, the response of one signal perfectly sums up to the response of 

the other signal. 

 

 

 

FIGURE5: Mathematical definition of signal interaction by cells 

This figure was taken from Cappuccio A. et al, Nature Communications 2015 

 

In opposition, interactions correspond to situations where the output response of the 

two signals combined is different from the sum of each signal taken individually.  

 

In these cases, theoretical combinatorial analysis reveals 82 possible interaction 

profiles, which were biologically and mathematically grouped into five positive and 

five negative interaction modes (16) (FIGURE 6).  
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FIGURE 6: Systematic mathematical description of all interaction modes 

defined by the integration of two distinct signals X and Y and driving a single 

output response. This figure was taken from Cappuccio A et al, Nature 

Communications 2015 

 

All these interaction profiles describe theoretically the behavior of one given cell 

response, for example a given gene, when two signals interact.  
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The number of theoretical response profiles increase exponentially with the number 

of signals considered, which leads to an important complexity.  

 

In cell biology it is likely that two different signals can be sensed at the same time by 

a cell. The complexity of the integration of two signals is increased if we consider all 

the different output responses triggered by the two signals. In their article, Cappuccio 

et al showed that up to 9 of the 10 defined modes coexisted in context-dependent 

proportions. Each interaction mode was preferentially used in specific biological 

pathways, suggesting a functional role in the adaptation to multiple signals in two 

different cellular systems (16).  

 

Other studies addressed the question of combinatorial complexity in signal 

integration. This is the case notably to answer questions regarding interactions in 

drug combinations (17, 18). But also to study at the large scale level the response of 

cells to different signals in terms of transcriptional activity or signaling network (19, 

20).  

 

Whether or not the number of different integration modes increases with the number 

of signals considered is still an open question in the field. It will be very complicated 

to answer this question because of the high number of theoretical profiles of cell 

response that can be described. However, intrinsic biological limitations in the way 

cells respond to multiple signals may exist. For instance, mechanisms like general 

dominance of a signal over the others or redundancy of the effect of different signals 

could drastically decrease the observed number of integration modes of a cell 

compared to its theoretical number. Such limitations would decrease the enormous 

number of putative profiles obtained theoretically and allow data-driven quantification 

of integration modes. These modes may then be categorized in biologically relevant 

categories such as synergy or inhibition.  

 

In the first part of this manuscript, we detailed how signal integration was a key 

element of communication in cell biology. We also showed that cells, as any 

biological system, can be seen as a complex system as defined by the complexity 

theory. We notably detailed how the signal integration process or the response to 

one or multiple signals can be by themselves very complex. Among the different 
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biological systems of an individual, the immune system is of particular interest 

because it is composed by numerous cells that act together to fight infections. 

Indeed, communication is central in immunity to coordinate the immune response. 

The entire immune response to a threat can be seen as a dynamical network of cells 

exchanging information to achieve a specific function, which is to eliminate a 

pathogen. In the second part of this manuscript, we will focus our attention on the 

transfer of information between two immune cell types: the dendritic cell (DC) and the 

CD4 T cell. We will see why, among this large network of communication, this 

specific transfer of information is crucial to the global immune response. Specifically, 

we will detail why CD4 T cell differentiation can be seen on its own as a complex 

system. To achieve this goal, we will focus first on the integration of multiple signals 

coming from DC by the CD4 T cells. Then we will see how this information leads to 

multiple responses of the CD4 T cells leading to the definition of different subsets. 

Finally, we will see how these multiple subsets can play a role in complex diseases 

such as allergy, auto-immune disorders or cancer.  

 

1.2 Acquisition and diversity of T helper phenotypes in health and 

disease: a complex system of communication 

1.2.1 The immune system: basic concepts 

 

The immune system involves many different cell types that communicate with each 

other, and act together to eliminate non-self-threats encountered by an organism. 

The human immune system is usually segregated in two different sub-systems: the 

innate and the adaptive immunity. Among different mechanisms, innate immune 

system includes cells such as macrophages that are resident into peripheral tissues 

and are able to sense and directly fight different classes of microbes. The principal 

categories of microbes are fungi, bacteria, virus and parasites. Innate immune cells 

are able to recognize these different classes of microbes and to reduce the microbial 

burden at infection sites; in that sense it functions as a first barrier against infections. 

However, this first line of defense is often not sufficient to completely clear the 

presence of pathogens. In such cases adaptive immunity comes into action. Adaptive 

immunity can both select cells specific for the general categories of microbe but also 

specific to the particular variants within each different species of microbes. For 
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instance, CD8 T cells which are specialized in killing infected cells will be recruited to 

the infection sites, and will recognize specifically the virus variant involved. For an 

extracellular threat, such as gram negative bacteria, an antibody response mediated 

by B cells will be generated. These different cells of the adaptive immune systems 

are selected for their direct receptor affinity against specific peptides of a given 

individual of microbial specie (21).  

 

1.2.2 Dendritic cell derived The T helper differentiation process: the 

three signals theory 

 

Among the different cells of the adaptive immune system, CD4 T helper (Th) cells are 

key players that organize and orchestrate the global immune responses (22). To 

perform this task, Th cells are specialized in communication with other cells through 

the production of specific communication molecules of the immune system called 

cytokines. The cytokine or sets of cytokines produced by Th cells will alert, activate 

and recruit other immune cells specific to the type of danger or pathogen 

encountered (FIGURE 7). At the initial state of an infection, CD4 T cells are present 

as naïve and resting in secondary lymphoid organs such as lymph nodes or the 

spleen and do not produce any cytokine. In order to become functional, naïve CD4 T 

cells need to enter into the process of cell differentiation to become effector T helper 

(Th) cells. This process ends up with the generation of different types of Th subsets 

characterized by the sets of cytokines they are able to secrete. In other words, 

different Th subsets will secrete different sets of cytokines that act on different types 

of immune cells in order to specifically coordinate innate and adaptive immune 

responses against a specific pathogen (22).   

 

The initiation of the differentiation process of naïve CD4 T cells requires an important 

step of interaction with antigen presenting cells such as Dendritic Cells (DC) (23). 

DCs are innate immune cells specialized in the activation and the communication 

with the adaptive immune cells.  

After the encounter of pathogens or danger signals at the periphery, DCs become 

activated and migrate to the secondary lymphoid organs to initiate Th cell 



20 
 

differentiation. Three types of signals are involved in this process called signal 1, 2 

and 3(24) (FIGURE 7).  

 

 

 

FIGURE 7: Dendritic cell derived T helper differentiation: the three signals 

theory 

 

Signal 1 corresponds to the specific engagement of a T cell Receptor (TCR) by the 

CMH-II – peptide complex expressed at the surface of DCs. This step is essential to 

select TCR highly specific to the foreign antigen. Signal 2 constitute the signal of co-

stimulation; it is performed through cell-cell contact between DCs and the naïve T 

cells. Activated DCs express co-stimulatory molecules such as CD80 or CD86, which 

will signal through the CD28 receptor expressed by the CD4 T cells. These co-

stimulation signals together with the TCR signaling allow the CD4 T cells to get 

activated and to enter into several cycles of clonal division. The Signal 3, is 

composed of cytokines secreted by DCs which are responsible for the polarization of 

the naive T cells towards distinct lineages, among which the canonical Th subsets 

Th1, Th2, Th17, Treg, Tfh, Th9 and Th22 (FIGURE 7) (22). Here the term 
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polarization defines the fact for a Th effector cells to acquire the ability to secrete 

specific sets of cytokines defining different subsets. Therefore, polarization is only a 

subpart of the global concept Th differentiation which also defines other features 

such as T cell proliferation and generation of memory. However, differentiation is 

often used in papers or reviews to specifically describe polarization.   

 

The different Th subsets are characterized by a set of cytokines they express under 

the control of a ’master regulator’ transcriptional factor. Each master regulator is 

critically involved in driving of the differentiation of a specific Th lineage. These 

subsets are associated to specific physio-pathological functions. For instance, Th1 

cells express IFN-γ as a hallmark cytokine under the control of the master regulator 

T-bet, which directs Th1 lineage commitment, and is involved in the clearance of 

intracellular pathogens (FIGURE 7). 

 

1.2.3 The DC control of Th differentiation: a complex system of signal 

integration beyond the three signals theory 

 

The three signals theory emerged from the basic characterization of the T helper 

differentiation process and constitutes one of the first useful models to understand 

and ask questions about Th polarization. It is still largely cited in scientific 

conferences and textbooks and general reviews (24-26), since it gives a rapid 

understanding of the Th differentiation process.  

 

However, its view of three main categories of signals corresponding to three different 

functions acting together to specify Th differentiation is partially wrong. Indeed, many 

different research teams independently studied different aspects of Th differentiation 

and showed results that contradict many views or derived concepts of the three 

signals theory. In fact, all these different results taken together describe a complex 

system of signal integration. 

 

The most important point that was demonstrated in various studies is that factors 

involved in Th polarization cannot be limited to cytokines, the original signal 3. 

Indeed, it has been shown that elements belonging to signal 1 or 2 were also 
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important in specifying Th phenotypes. Notably, in different mouse models strength of 

the TCR signaling, affinity of the TCR for the foreign antigen peptide or the dose of 

antigen, which are parameters related to signal 1, have been shown to play a role in 

the differential regulation of Th1 versus Th2 during differentiation (27, 28). Also, co-

stimulatory molecules, originally constitutive of signal 2, such as CD80 and CD86 

have been shown to preferentially induce Th2 phenotypes (27). In opposition, CD40 

another costimulatory molecule has been shown to induce preferentially a Th1 

response (28, 29). Further studies have shown that many costimulatory molecules 

have a role in specifying Th phenotype. In addition, parameters originally absent from 

the description of the three signals can also play a role in Th differentiation. For 

instance, the ratio between the number of DCs and naïve T cells (30) can influence 

Th polarization. At a low ratio (1 DC for 300 T cells) mature DCs induced naive T 

cells to become Th2, while a high ratio (1 DC for 4 T cells) allows the emergence of a 

Th1 response (30). The presence of chemokines, another parameter absent from the 

3 signals theory, also showed its importance in Th polarization (31). Collectively 

these studies demonstrate that cytokines are not the only players in Th polarization 

(32).It also demonstrates that Th polarization is controlled by a large number of 

different parameters delivered by the DCs to the naïve CD4 T cells during the 

differentiation process, which is another point ignored from the three signals theory 

and numerous reviews on Th differentiation. 

 

These numerous signals and their relationships to Th phenotypes were usually 

identified in different studies through classical deletion or addition types of 

experiments, such as gene knock-out or supplementation using recombinant 

proteins, focused through reductionist approaches on one main parameter.  

 

Since the historical discovery of the first signal inducing a Th1 phenotype through the 

induction of IFN-γ by IL-12 by antigen presenting cells (23, 33), at least 64 different 

DC parameters have been shown to be involved in Th polarization. These DC 

parameters, their nature, their receptors on T cells, but also important scientific 

articles demonstrating their role in Th polarization are detailed in TABLE 1. 

 

All these discoveries in terms of Th phenotype control, recapitulated in TABLE1, lead 

to a new conceptual view of the Th differentiation as a complex system of signal 
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integrations driven by dendritic cells as previously defined.  First, because many of 

these parameters can be expressed simultaneously by DCs in various combinations 

and at different levels and define altogether a signal for naïve T cells. This can be 

indirectly interpreted from several studies performed on DCs (34), however specific 

studies on the number of distinct matured DC states and their precise molecular 

characteristic are still lacking in the field. In addition, the co-expression of a large 

number of parameters acting on T helper cells induce the possibility of signal 

interactions or context dependent mechanisms which are two important features of 

signal integration in complex systems as previously detailed in section 1.1.3.  

 

Context dependent control of T helper differentiation and specific signal interactions 

have already been characterized in the field in different studies, underlying the 

importance of studying the complexity in the control of Th polarization. In the field of 

human Th17 differentiation it has been shown that IL-17A was induced through an 

emergent positive synergy interaction mode involving the co-signaling of IL-1b, IL-23, 

IL-6 and TGF-b (35, 36). A context dependent action has been shown for OX40L, 

which induces a Th1 profile in the presence of IL-12 but induces a Th2 response in 

the absence of IL-12 (37). More recently, it has been shown that TGF-b could be a 

major driver of Tfh differentiation when combined with IL-12 or IL-23 (38).These 

different studies constitute a proof of concept that two or more factors can collectively 

define an emergent phenotype in Th cells, that would be induced by the same 

signaling element independently of the others.  
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DC 

Molecule 
Other names Localization Category Receptor Articles PMID 

CD86 B7.2 Membrane B7 CTLA4 + CD28 
Arlene H. Sharpe et al. JI (1999) / 

Ranger AM, MP et al. IntImmunol (1996) 

10453003 / 

8921434 

CD80 B7.1 Membrane B7 CTLA4 + CD28 
Freeman GJ et al. Immunity, (1995) / Tao X et al. JI 

(1997) 

7538442 / 

9550393 

B7H4 B7X / VTCN1 Membrane B7 unknown I-Fang Lee (Cellular Immunology 2013) 23623902 

ICOSL B7-H2 / CD275 Membrane B7 ICOS Nurieva RI (PNAS 2003) / Ito T (J exp Med 2007) 
14615582 / 

17200410 

B7-H3 B7RP-2 /CD276 Membrane B7 unknown 
Nagashima O et al. JI (2008) /  Suh WK et al. Nat 

Immunol (2003) 

18768862 / 

12925852 

VISTA B7-H5 Membrane B7 unknown J. Louise Lines et al. Cancer Research (2014) 24691993 

PDL1 B7-H1 /CD274 Membrane B7 PD1 Loise M. Francisco et al (J Exp Med 2009) 20008522 

PDL2 B7-DC Membrane B7 PD1 
By Su-Yi Tseng (2001 J exp Med) / Tahiro Shin et al 

(J exp Med 2005) 

11283156 / 

15897272 

HHLA2 - Membrane B7 unknown Zhao R et al (PNAS 2013) 23716685 

CD30L 
CD153 / 

TNFSF8 
Membrane TNF CD30 Xun Sun et al (JI 2010) 20639486 

CD70 
CD27L / 

TNFSF7 
Membrane TNF CD27 

Coquet JM et al (Immunity 2013) / Libregts et al 

(ImmunolLetters 2011) 

23159439 / 

21277898 

4-1BBL 
CD137 / 

TNFSF9 
Membrane TNF 4-1BB Kim YH et al (JI 2011) 21715692 

CD40 TNFRSF5 Membrane TNF CD40L GiandomenicaIezzi (PNAS 2009) 19136631 

OX40-L CD252 Membrane TNF OX40 Ito T et al (JI 2004)/ Ito T et al (J exp Med 2005) 
15034038 / 

16275760 

HVEM TNFRSF14 Membrane TNF LIGHT Tamada K et al (JI 2000) 10754304 

LIGHT 
 

Membrane TNF HVEM Tamada K et al (JI 2000) 10754304 

SLAM CD150 Membrane SLAM SLAM (SLAMF1) Cannons et al (Immunity 2004) 15539155 

SLAMF3 Ly9 Membrane SLAM SLAMF3 Graham et al (J Immunol 2006) 16365421 

SLAMF5 CD84 Membrane SLAM SLAMF5 
Cannons et al (AnnuRevImmunol 2011) / Cannons 

et al (Immunity 2010) 

21219180 / 

20153220 

NTBA SLAMF6 Membrane SLAM SLAMF6 Howie et al (J Immunol 2005) 15879084 

CD48 SLAMF2 Membrane SLAM CD2 
R de Jong et al Immunology. 1991 October; 74(2): 

175–182 

PMC13845

90 

ICAM-1 CD54 Membrane Integrin LFA1 
Christiane Ruedl (Eur J Immunol 2000) / Smits HH 

(J immunol 2002) 

10940895 / 

11823501 

LFA1 CD18 + CD11a Membrane Integrin ICAM1 Singh K et al (JI 2013) 23418628 

αv Integrin 
 

Membrane Integrin 
 

MriduAcharya et al (JCI 2010) 21099114 

VLA-4 CD29 + CD49D Membrane Integrin VCAM1 Mittelbrunn M (PNAS 2004) 15263094 

ICAM-2 CD102 Membrane Integrin LFA1 Bleijis DA et al (EJI 1999) 10427988 

ICAM-3 CD50 Membrane Integrin LFA1 Bleijis DA et al (EJI 1999) 10427988 

LFA3 CD58 Membrane Integrin CD2 
Gollob JA (J exp Med 1995) / Semnani RT et al (J 

exp Med 1994) 

7544396 / 

7525848 

Jagged 2 SER2 Membrane Notch NOTCH1 
Elyaman et al (Immunity 2012); Sauma D et al 

(Scand J immunol) 

22503540/ 

21352254 

Jagged 1 CD339 Membrane Notch NOTCH1 
DerkAmsen et al (Cell 2004) / Asano et al (J 

Immunol 2008) 

15137944 

/18292500 

Delta 1 DLL1 Membrane Notch NOTCH1, 2 and 3 Keerthivasan S et al (2011) JI 21685328 

Delta 4 DLL4 Membrane Notch NOTCH1, 2 and 3 
DerkAmsen et al (Cell 2004) / Mukherjee et al (J 

Immunology 2009) 

15137944 / 

19494260 

Galectin 9 LGALS9 
Secreted / 

Membrane 
Galectins TIM3 Seki M (ClinImmunol 2008) 18282810 

Galectin 3 LGALS3 Membrane Galectins Gal 3 Breuilh et al et Oliveira et al (2007) 
 

Galectin 1 LGALS1 Membrane Galectins CD69 
Martin P et al (Mol Cell Biol 2010) / Martin P et al 

(Sci Signal 2011) 

20696842 / 

21427408 

TIM3 HAVCR2 Membrane TIM Galectin-9 Wang JM et al (Vaccine 2013) 23499521 
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Table 1: 64 dendritic cell-derived parameters known to act on T helper polarization. 

Literature review of all signals that can be express by dendritic cells and that can act on the T 

helper differentiation process to specify Th phenotypes. 

 

 

 

 

 

 

 

 

 

 

TIM4 TIMD4 Membrane TIM 
 

Tao Liu et al (Mol Immunol 2007) 17439824 

PVR CD155 Membrane Nectin 
CD226 +TIGIT+ 

CRTAM 
Lozano E et al ( JI 2013) / Seth S et al (EJI 2009) 

23980210 / 

19688744 

Nectin 2 CD112 Membrane Nectin CD226 Chan et al (CurOpinImmunol 2012) 22285893 

Nectin 3 CD113 Membrane Nectin TIGIT Chan et al (CurOpinImmunol 2012) 22285893 

CD39 ENTPD1 Membrane 
  

Ivan D Mascanfroni (Nat Immunol et al) 23995234 

SEMA4A SEMAB Membrane Semaphorin PLXNB Kumanogoh A et al (2005 immunity) 15780988 

IL-1b - Secreted Interleukin IL-1RA, IL-1RB Volpe E (Nat Immunol 2008) 18454150 

IL-1a - Secreted Interleukin IL-1RA, IL-1RB Madera RF. (Plos One 2011) 22206014 

IL-6 - Secreted Interleukin IL-6RA + gp130 Roza I. Nurieva ( Immunity 2008) 18599325 

TGF-b - Secreted Interleukin 
TGFbR1, TGFbR2, 

TGFbR3 
Volpe E (Nat Immunol 2008) 18454150 

IL-18 IL-1F4 Secreted Interleukin-1 IL18R1 + IL18RAP Lim HX (Cytokine 2013) 23697689 

IL-10 CSIF Secreted Interleukin IL10RI IL10RII McGuirk (J exp Med 2002) 11805149 

TNF-a - Secreted Interleukin TNFRI TNFRII Miller PG et al. Ji 2015 26268655 

IFN-alpha IFN-α Secreted Interleukin IFNAR Moschen AR 18926293 

IFN-beta IFN-β Secreted Interleukin IFNAR McRae BL et al (Eur JI 1994) 9368622 

IL-28A IFN-lambda 2 Secreted Interleukin IL28RA + IL-10Rb 
Javad ArastehIran et al  J Allergy Asthma Immunol 

2015 
25780882 

IL-28B IFN-lambda 3 Secreted Interleukin IL28RA + IL-10Rb I Matthew P. Morrow et al (Blood 2009) 19304955 

IL-29 IFN-lambda 1 Secreted Interleukin L28RA + IL-10Rb Dai J et al (Blood 2009) 19346497 

IL-27 (p28 + EBI3) Secreted Interleukin 
IL27R (IL27Ralpha + 

gp130) 
Awasthi, A. et al Nat Immunol (2007) 23995234 

IL23 (p19 + p40) Secreted Interleukin 
IL23R (IL12beta1 

+IL23R) 
McGeachy MJ ( Nat immunol 2009) 19182808 

IL-12p70 p35+p40 Secreted Interleukin 
IL12R (IL12β1 +  

IL12β2) 
Chyi-Song Hsieh (Science 1993) 8097338 

CXCL9 MIG Secreted Chemockine CXCR3 Joanna R Groom (immunity 2012) 23123063 

CXCL10 IP-10 Secreted Chemockine CXCR3 Joanna R Groom (immunity 2012) 23123063 

RANTES CCL5 Secreted Chemockine CCR1, CCR3, CCR5 Gerdes N (ThrombHaemost 2011) 21655676 

PF4 CXCL4 Secreted Chemockine CXCR3B Gerdes N (ThrombHaemost 2011) 21655676 

CXCL11 I-TAC Secreted Chemockine CXCR3 Liu Z (Clinical and Experimental Immunology 2011) 21438871 

Ratio of 

DC/T 
- other 

  
Tanaka H (J exp Med 2000) 10934228 

Antigen 

dose 
- Membrane - 

 
Ruedl C (EJI 2000) 10940895 
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1.2.4 T helper Cytokines profiles defines an increasing number of Th 

subsets 

 

The initial description of Th subsets involved the associations of the production of 

IFN-γ and IL-4 to two different T cell clones, that were respectively named Th1 and 

Th2(39). Further studies characterized these different Th subsets and showed that 

subset specific cytokines played major role in the functional specialization of these 

cells(40).Therefore, discovery and definition of new Th subsets were largely 

associated to discovery of new cytokines. 

 

In 2003, ten years after the original identification of Interleukin 17A (IL-17 or IL-17A) 

from a rodent T-cell hybridoma by Rouvier et al (41), a new Th subset producing IL-

17 was described (42). This discovery put an end to the concept of the general Th1 

and Th2 dichotomy in Th phenotypes. In the following years were reported the 

discovery of Th22 and Th9 cells expressing respectively IL-22 but no IL-17, or IL-9 

but no IL-4(43, 44). In fact, with the increasing number of Th cytokine described, 

another level of definition of Th subset has emerged: the potential combination or the 

co-expression pattern of diverse cytokines by the same Th cells.  

 

Tfh cells are a specific Th subset providing B cell help by producing IL-21. Together 

with IL-21, the co-expression of IFN-g or IL-4 or IL-17 defined three new subsets of 

Tfh cells, respectively Tfh1, Tfh2 and Tfh17 (45). In an equivalent way distinct 

populations of Treg were described: Treg1, Treg2, Treg17 and Treg22 described by 

their suppressive function and expression of distinct cytokines profiles generally 

associated to Th1, Th2, Th17 and Th22 respectively (46). Another example of this is 

the differential expression by the same type of Th cells of TNF-α, IFN-γ or IL-10 

defining pro-or anti-inflammatory Th subtypes. Notably, It has been shown that based 

on the original microbial stimulation, Th17 cells could secrete IL-10 or IFN-γ together 

with IL-17A (47). Expression of TNF-α together with Th2 cytokines was also 

described in allergy settings, defining pro-inflammatory Th2 cells (37). 

 

Recently, different research groups identified distinct Th2 cell subsets in the memory 

CD4 T cell compartment. These Th2 subsets produce large amounts of IL-5, IL-17, or 
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IFN-γ in addition to IL-4 and IL-13 (48, 49). Other studies showed that IL-9, usually 

associated to Th2 or Th9 cells, can also be expressed by Th17 cells, characterized 

by the production of IL-17A, IL-17F, IL-21 and IL-22 cytokines (50).  

 

As described above, several studies showed that the classical view of well definite 

and separated subsets of Th cells expressing specific combinations of effector 

molecules is in fact limited and probably partially untrue. Even if these concepts are 

still very useful to understand this field of research it seems that the reality of Th 

phenotype diversity is much more complex. These last years many studies brought 

knowledge about new subsets of Th cells expressing various combinations of 

cytokines. Taken altogether these findings describing different subset of Th subsets 

put an end to the Th1/Th2 paradigm and shed light on new important questions, still 

largely open in the field.  

 

How many relevant Th profiles exist? Do all putative combinations of output Th 

cytokines define independent Th subsets occurring in vivo? In this case, the Th 

phenotypes would be characterized by a continuum of phenotypes. Based on this 

hypothesis, all subsets described so far based on few output cytokine combinations 

would appear trivial. However, it triggers other questions regarding the combinations 

of Th output cytokines that can be co-expressed. Notably, are mutual exclusions of 

cytokine expression profiles main parameters regulating Th diversity? Are the 

limitations in Th phenotype diversity Th-intrinsic or regulated by the input received by 

naïve CD4 T cells?  

 

An interesting study tried to answer such questions. It systematically studied the 

expression 5 cytokines (IFN-g, IL-4, IL-10, IL-17A, and IL-22) on CD4+ T cell across 

tissues, identified 12 of the 32 possible combinations (51). These results suggest that 

all the combinations of Th cytokines are not retrieved in the CD4 memory 

compartment. So far, more than 20 cytokines have been shown to be secreted by Th 

cells each of them defining specific functions. Thus, further studies on the production 

of cytokines by T cells at the single cell level are required to gain knowledge about 

the real diversity of Th subsets based on the combination of these 20 cytokines.  
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To answer these fundamental questions, it will be required to study the Th cytokines 

as a whole and therefore to use systems biology approaches to decipher real Th 

secretion profiles. Large scale data using multi-protein measurement (such as 

luminex or large intracellular cell staining antibody panel) coupled to single cell RNA-

seq studies.  

 

1.2.5 Diversity of T helper cytokines and their association to disease 

states 

1.2.5.1 Th1 and Th2 diseases: a historical dichotomy 

 

5 years after the original discovery of Th1 and Th2 cells, the group of Modlin RG 

showed for the first time that these two types of Th cells were associated to two 

different disease states in human Leprosy (52). They showed that Th2 cytokines, IL-

4, IL-5 and IL-10, were associated to the multibacillary form of Leprosy, while the Th1 

cytokines, IL-2 and IFN-g were predominant in lesions of the resistant form of the 

disease. 

 

Encouraged by this seminal work, many groups tried to associate specific disease 

states to either Th1 or Th2 cytokines. Upon time, Th2 was largely associated to 

allergic disorders. Notably, the impact of the Th2 cytokines, IL-4, IL-5, and IL-13 has 

been revealed in human asthma, as well as in murine models of allergic 

inflammation(53, 54).In addition, the pathogenicity of Th2 cytokines has been further 

proven by the successful use of therapeutic monoclonal antibodies directed against 

IL-5 (mepolizumab), IL-13 (lebrikizumab) (55) and IL4Ralpha (dupilumab) (56). 

 

On the other side, IFN-γ and Th1 cells were more associated to auto-immune 

disorders such as multiple sclerosis. In different experimental work, the suppression 

of IFN-γ, a specific Th1 cytokine, in mouse model of experimental allergic 

encephalomyelitis (EAE), reduces the disease severity (57-59). The concept of 

Th1/Th2 balance emerged since it was observed in EAE that the diminution of IFN-γ 

was associated with the increase of IL-4, and itself associated with improved disease 

course (60). 
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In human, an approach to determine the Th subset associated to Multiple sclerosis 

(MS) was to study the cytokines present in the cerebral fluid of patients versus 

healthy donors. IFN-γ was significantly higher in MS patients compared to controls 

(61). 

 

These two examples of disease associated either to Th1 or Th2 profiles show how 

the original dichotomy found in Th clones by Mossman and Coffman in 1986, gave 

rise to a binary classification of diseases according to the nature of the Th pathogenic 

responses. However, with the discovery of other cytokines and Th subsets, such as 

Th17, Tfh, Th22 or Th9, new questions emerged: would a disease be associated to 

several types of Th subsets? Or will we see specific associations with only one Th 

subset being pathogenic? Which will be the consequence or the meaning of the 

infiltration of multiple Th subsets in disease lesions? How could the characterization 

of the multiplicity of Th phenotype occurring in a single disease help the 

understanding and cure of this peculiar pathology? 

 

1.2.5.2 Multiple Th subsets associated to the same disease? 

 

In 2003 and following years multiple papers described the discovery of the Th17 

subset and the related regulatory mechanisms involved in their differentiation (62).As 

for Th1 and Th2 subsets, studies also found that Th17 could be associated to bad 

prognosis or disease severity in several pathologies. Notably, IL17 was shown to be 

pathogenic in auto-immune disorders such as MS, Psoriasis, Crohn’s diseases or 

type I diabetes where Th1 were already described to be pathogenic (62-64). In 

addition, in some studies Th17 cytokines were associated to allergy, notably in 

asthma where Th cells able to co-produce IL-4 and IL-17 were found (65, 66), but 

also in atopic dermatitis (AD) (67). Therefore, the discovery of Th17 cells also 

disrupted the original dichotomy of disease originally classified in two classes either 

related to Th1 or to Th2.   

 

Th22 are characterized by the secretion of the cytokine IL-22, but also by the lack of 

IL-4, IL-17 and IFN-γ production. Since their discovery, Th22 and IL-22 were also 

associated to different pathogenic disorders. Evidences showed that this subset 
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could play a role in allergic disorders, notably AD (67), but also in inflammatory 

autoimmune disorders such as rheumatoid arthritis (RA) (68), type 1 and 2 diabetes 

(69, 70), psoriasis (71) and systemic lupus erythematosus (SLE) (72). 

 

Regulatory T cells (Treg), are suppressive Th cells that usually express the 

transcription factor FOXP3, the cytokines IL-10 and/or TGF-beta and high level of 

CD25, which is the specific receptor for IL-2. Treg dysfunction was also shown to be 

associated with various autoimmune pathologies, including multiple sclerosis, type I 

diabetes, psoriasis (73-75). 

 

In mouse model of allergy, it was demonstrated that important IL-9 production and 

Th9 differentiation were present (76). In addition, a pathogenic role of Th9 cells, 

through IL-9 production, has also been shown in inflammatory bowel disease (IBD) 

(77). Link between IL-9 and psoriasis was also proposed (78). 

 

T follicular helper cells (Tfh) are characterized by the co-expression of several 

markers that taken independently can belong to different Th subsets. Tfh cells 

secrete IL-21 and CXCL13; express the transcription factors Bcl-6 and Ascl2 in their 

nucleus and high level of ICOS, programmed cell death 1 (PD1) and CXCR5 at their 

cell surface. Tfh cells were found to have detrimental role in SLE, RA, MS and AD 

(79-81). In addition, we were able to find that Tfh2 cells were induced by the TSLP 

pathway, well known for its pathogenicity in various allergic disorders and that AD 

patients had higher percentage of Tfh2 cells, see Annex 1 for details. These findings 

are corroborated by other studies that associate Tfh with allergic disorders (82, 83). 

 

The global description of these various Th subsets or their derived cytokines provided 

important new insights into the understanding of the molecular mechanisms involved 

in the development of complex diseases such as allergic disorders and autoimmune 

diseases and thus led to revision of the classic Th1/Th2 paradigm and its association 

to disease. 

 

As a consequence, the classical paradigm evolved from a bipolar view to a complex 

multipolar one composed of several Th subsets involved in different ways in the 

pathogenesis of several autoimmune or allergic disorders. This view, of not one but 
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multiple Th subsets present at the same time, in the microenvironment of complex 

diseases brings another level of difficulty in the analysis of Th-related pathogenic 

diseases and asks important questions.  

 

Does distinct disease states that can be specific of each human individual, are 

related to the presence of absence of distinct Th subset in the microenvironment, or 

by the ratio or combinations of subsets?  Can the combination of Th subsets be used 

in clinics to define distinct classes of patients? How can it be useful in the way 

patients are treated?  

 

1.2.5.3 Cancer and Th states 

 

In the last decade, emerged the idea that a cancer was more than just cancer cells. 

Indeed, more and more studies showed that the microenvironment of cancer cells is 

an important part of the cancer biology itself (84). The microenvironment can be 

composed of different cells, such as fibroblast and epithelial cells or immune cells 

such as macrophages, DC and T cells. However, even if the concept of 

immunosurveillance of cancer implies a positive role of the immune system in 

preventing the emergence of the disease by suppressing cells at very early steps of 

carcinogenesis, the role played by the immune system, as part of the tumor 

microenvironment, once a tumor has developed at later stages of these chronic 

diseases is much less clear (85). 

In some cancer types the presence of an inflammation is correlated to bad prognosis 

of cancer or to higher susceptibility to cancer (85). In other cases, immune infiltrates 

have been associated to good prognosis (86). 
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FIGURE 8: Scheme representing the different actors of the tumor 

microenvironment. Adapted from Fridman WH et al. Nature Reviews Cancer 

(2012).  

 

As described before, the immune system is complex and can be polarized towards 

distinct responses involving distinct cellular actors and distinct sets of 

communications molecules. The major contributors to this immune polarization are 

Th cells that are specialized in communicating with other cells to shape the immune 

responses. Therefore, the study of Th phenotypes in cancer inflammation was largely 

performed to understand if these distinct associations with good or bad prognosis 

could be due to distinct inflammation.  

 

Across all cancer types it has been found that Th1 associated to the activation of the 

CD8 T cell response was of good prognosis. However, regarding other type of Th 

subsets, such as Th2, Th17 and Treg, the association to prognosis was largely 

dependent on the cancer type. For instance, Treg were found to be of poor prognosis 

in breast cancer (BC) and melanoma (87-90), while of good prognosis in head and 

neck cancer and colorectal cancer (91-93). These were perfectly illustrated and 
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recapitulated by Fridman W.H. et al in a review from which is extracted Figure 9 and 

9 (94).  

 

 

FIGURE 9: Histograms representing the percentage of article published 

associating a given Th subsets to their effect on prognosis. Taken from Fridman 

WH et al. Nature Reviews Cancer (2012).  

 

The fact to know if different Th subsets have different roles in one cancer type may 

reflect diversity of cancer diversity that could rely on tumor parameters not yet well 

understood or taken into account or on the combination of tumor-associated 

parameters with parameters from the microenvironment. Therefore, this observation 

raises questions about the diversity of cancers included in each class of cancers 

primarily defined by its location and tissue origin. One very good example of this 

complexity of subcategories of cancer within one given cancer type is BC.  

 

1.2.5.4 The different breast cancer subtypes 

 

Based on the expression of specific markers on the tumor cell, scientists and 

clinicians were able to subdivide BCs in three categories. These three receptors are: 
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the Estrogen Receptor (ER), the Progesterone receptor (PR) and the epidermal 

growth factor Receptor 2 (HER2). The expression of these three receptors defines 

three main categories of Breast cancers that have different clinical features and 

prognosis. First, the Luminal (LUM) Breast cancers are defined by the positivity for 

ER and/or PR. Then, the second category of breast cancer is defined by the positivity 

for HER2. And finally a third category is defined by the absence of expression of 

either ER/PR or HER2 and is called Triple Negative Breast Cancers (TNBC)(95). 

 

Studies have shown that HER2 BC were the most aggressive type of BC, prognosis 

of this group of patient has been really improved with the use of trastuzumab an IgG1 

humanized monoclonal antibody that targets HER2 and blocks the link with its natural 

ligand, the epidermal growth factor (EGF), and therefore diminishes cancer cell 

proliferation. Luminal tumors possess the best prognosis compared to other BC 

subtypes. LUM BC also have specific therapies that aim at blocking the effect of 

hormones signaling on the cancer cell. This can be done either through aromatase 

inhibitors that block the aromatase enzymes responsible for the production of 

estrogen or by blocking the effect of estrogens using estrogen receptor modulators 

such as tamoxifen that will bind the ER and block the binding of the natural hormone. 

These treatments greatly improved the overall survival of patients having LUM or 

HER2 BC. However, patients with TNBC have not any dedicated therapy and harbor 

today the worst prognosis among the different breast cancer subtypes. 

Transcriptional profiling of TNBC revealed that this category of BC was highly 

heterogeneous and could identify 6 subgroups within TNBC, with independent good 

or bad prognosis (96). Breast cancers illustrate the high diversity of disease types 

within one general category of cancer. 

 

Whether or not and how different Th subsets or Th derived cytokines are associated 

to each category of breast cancers is still largely unknown. Some efforts in the field 

suggest that it could be the case. For example, studies by the group of Dr Palucka 

showed that Th2 could have pro-tumoral functions in a mouse model of breast cancer 

(97). Other efforts showed that Tfh could be of good prognosis specifically in HER2 

BC (98). In addition the group of Rudensky recently showed that Treg were 

associated to poor prognosis in BC (99). 
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After describing complex system in general in the first part of the thesis, the second 

part was dedicated to a very specific point of the immune response, which is Th 

differentiation. In this second part, we showed why Th differentiation can be seen as 

a complex system as it was described in the first part of this thesis. 

 

Indeed, 30 years after the characterization of the Th1/Th2 phenotypes, numerous 

reductionist approaches brought independent pieces of knowledge, conceptual and 

mechanistic, on T helper differentiation. This revealed at least three levels of 

complexity; 1) High number of signals putatively integrated by naïve CD4 T cells; 2) 

High number of cytokines that can be expressed by T cells in multiple combinations 

defining subsets; 3) The associations of these different subsets to the pathogenicity 

of different complex diseases and notably in cancer. We also described how the 

complexity theory challenges the current concept in place in the field of Th 

differentiation. It notably questions the concept of Th subset but also the three 

signals theory and the classical association of diseases to Th subset.  To investigate 

these questions, we propose in the third part of this manuscript to see how 

mathematical modeling can help studying complexity of T helper differentiation 

process and the associations of different Th subsets to distinct disease states. After 

describing mathematical modeling in general, we will focus on different types of 

mathematical models, and illustrate how such models were used by others to study 

complex biological systems and in some cases to understand T helper differentiation. 

 

1.3 Mathematical modeling: an important tool to study complex systems 

 

Within the tools of systems biology, mathematical models are increasingly used to 

analyze high-throughput OMICs biomedical or experimental data that are now 

commonly generated in research laboratories. Notably, the use of dedicated 

computer interface, allow the simulation of complex biological processes, such as 

biological networks or multi-factorial diseases, in silico and to test hypotheses that 

will help and guide either the choice of new experiments or different clinical or 

therapeutic strategies. However, despite great advances in the field of systems 

biology and computational biology, having an accurate model of either a whole cell or 
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a whole organism is still a long term perspective. This is mainly due to the enormous 

size and complexity of intra and extra cellular networks. Therefore, computational 

biologists and bio-mathematicians mainly focused on specific networks or sub-

system, being mainly driven by specific questions related to the scientific expertise of 

each research groups. In order to answer different questions on different types of 

data and system features, different mathematical model are used. In the following 

part we will present what is a mathematical model and the common procedure to 

build working mathematical model. Then in a second part we will focus on the main 

types of mathematical models used in biology and explain their features and 

differences.  

 

1.3.1 What is mathematical modeling and how does it work? 

 

Mathematical models are used to define groups of relationships among different 

components of a system. Usually, they allow the description in mathematical 

language, such as equations, of the different rules acting on a system. It does not 

necessarily explicit all the rules of a whole system, but can rather be focus on specific 

characteristics. It can describe how these different components can interact together 

and influence each other’s (100). Once all the rules are specified in a mathematical 

language, it become easy using computers to use the model to perform simulations 

in order to better understand the system it describes. For instance, it can be used to 

increase the level of a component, and see how the other components would react to 

this change. Or it can also be used to mimic the absence of a component in a 

system. All the observations made based on the model are usually called “model 

predictions”. For instance, a model will predict what will happen to a given component 

if another one is absent or present. Using mathematical models allows exploring, new 

behavior of the system studied in silico, without having to generate new experimental 

data, which can be costly or in some cases practically impossible. 

 

Mathematical models are used in many different fields. In some cases, they are used 

to predict an event. For instance, in economics, mathematicians try to predict crises 

or the behavior of some market values over time, which influences directly the market 

behaviors. In Meteorology, mathematical models are used to predict the weather. In 
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other cases, mathematical models are used to study and understand a system. For 

instance, in climatology the first aim is not to accurately predict long term climate 

changes but rather to understand if a given parameter such as the CO2 

concentration in the atmosphere has an impact on the climate. In experimental 

sciences, such as physics, mathematical models are currently used to ask 

fundamental questions and build theory. For instance, Einstein with the use of 

mathematics built a completely new model of the way the space-time system works, 

which led him to propose his general relativity theory that completely transformed our 

understanding of the universe. This model led to a better description of some peculiar 

observations, such as a much more accurate description of the orbit of mercury 

around the sun. It also led to hypothesize the existence of black holes which were 

objects completely ignored from the cosmology at this time. It is only in the 90’s that 

Einstein’s with the creation of the Global Positioning System (GPS) that Einstein’s 

model found practical use in daily life. It allowed the accurate correction of the clock 

of satellites which was necessary to get a synchronous and thus accurate system. 

 

1.3.2 The different steps of mathematical modeling 

 

At first, based on the system someone wants to study it is required to select the 

appropriate mathematical framework (101). This is important since each different 

mathematical language or type of equations has some intrinsic constrains, 

advantages and limitations. A detailed description of the main types of mathematical 

models applied to biology will be further developed in the next part of this chapter.  

 

Then, once the correct type of model has been chosen, the rules explaining the 

relationships between the system components have to be set up. This can be done in 

different ways based on the goals and type of model. The goal can be to make 

accurate predictions, as for the weather forecast; in this case the accuracy of the 

model predictions will mainly be studied but not necessarily the meaning of the rules 

described by your model. On the contrary, the model can be used to understand the 

rules among different components of this model, or even to select among different 

components the one that better describes a system. In this case, there is less interest 

in the accuracy of prediction of the model, but more in the variables or components 
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selected by the models and the type of relationships the model infers among these 

components (102). 

 

Finally, the model needs to be validated. This is usually made in three steps. First, 

the model is usually validated on the same dataset used to set up the different rules 

described in step 2. This is achieved through cross validation: one part of the dataset 

is used to build the model and the other part to assess its performances. Then the 

model is validated on an independent dataset that was not used to create the model. 

This second step is important to make sure that the model is not biased toward the 

data used to build the model and that it is useful to other dataset from the same type. 

Once this validation step has been completed, the model can be used to make 

original predictions and test hypotheses that will be experimentally validated. The 

different original predictions are usually tested experimentally or simply confronted to 

reality. Then based on the results the model can be modified or improved. Indeed, 

modeling is usually an iterative process where each steps of validation bring new 

information to the original model and makes it more robust and accurate (102).  

 

1.3.3 Different types of model currently used in biology 

1.3.3.1 Modeling kinetics through ordinary differential equation 

(ODE) 

 

Ordinary differential equation (ODE) based models are mainly used to describe and 

reproduce the kinetic of a biological system. Their main goal is to describe different 

states of a dynamical system over time or space. These type of model have been 

used to model a large diversity of biological pathways (103) (104, 105) 

 

They are notably used to predict the evolution of a system in conditions where no 

experimental data are available. To reach these objectives, these models are 

quantitative and mainly fitted on time series in vitro or in vivo experimental data. The 

data types are continuous quantitative data, such as time, concentrations or space. 

These types of model usually account for less than ten parameters to estimate, they 

are usually largely data driven and applied to very specific and small biological 

systems.  
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1.3.3.2 Boolean models 

 

Contrary to ODE, Boolean models can integrate a lot of different components, which 

is useful to model large regulatory networks as it was first proposed by Kauffman, 

S.A who introduced Boolean network in 1969 (106). In Boolean models of a given 

complex biological system, each molecule can take a limited number of values, for 

instance “0” for inactive and “1” for active. Each component of the network can be 

linked to others by a given rule that will influence this value. For instance, a given 

signal can activate A, which will then activate B, which will regulate C, and so on. At 

each time step, the state of each gene is determined by a logic rule which is a 

function of the state of its regulators. Therefore, the results of this model are series of 

different stable states of the general system described by all the different states of its 

components. The resolution in terms of accuracy of prediction will often be lower. 

Indeed, this type of model is usually not data-driven and do not integrate continuous 

data. In fact they integrate discrete values and literature derived knowledge. Boolean 

modeling allows to model very large biological network. Therefore, they already have 

been successfully used in models of signaling pathways (107, 108). 

 

Regarding the field of Th differentiation, large regulatory maps coupled to Boolean 

models were published by different researchers (15, 109). Such models allowed up to 

integrate several hundreds of components and were able to mimic and to predict the 

existence of several stable states corresponding to certain new and interesting Th 

phenotypes. One of the limitations of these approaches is that it does not allow 

having continuous quantitative descriptions of the Th differentiation process. In 

addition, this type of model is not data-driven. The rules explaining the relationships 

among distinct nodes rely on knowledge extracted from literature and therefore 

derived from different experimental models and research practices. It implies having 

already an a priori idea on how the system to model is working, which can be a 

limitation depending on the scientific question.  
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1.3.3.3 Statistical modeling 

 

Another type of mathematical models is statistical model. In opposition to Boolean or 

ODE models, statistical models do not need to have a priori knowledge on the 

structure or the relationships between different elements of the biological systems. 

Therefore, they are usually called “black box” types of model, since the model will 

infer statistically significant link between two elements without information on the 

regulatory mechanisms that can associate these two elements. This type of model 

can be applied to a very large number of parameters if enough experimental 

replicates are available to accurately estimate the model parameters.  

 

In order to build a statistical model, it is required to have coupled measurements of 

the variable (Y) to be explained by your model, with the different variables (X) that 

can explain it. The simplest statistical model that one can apply is a linear regression 

(Figure 10A). Here the linear equation explains how the variations in Y (the output 

variable) can be associated to the variations in X (the input variable). In most cases, 

there are several input variables X that are confronted by the model to explain Y.  

The model uses the real values of the different replicates of X and Y from the 

experimental data to determine the model’s coefficients β and the residual error E. 

This step is performed by looking the β values minimizing the residual error (Figure 

10B). This step is called parameters estimation or “fitting”. At this step of the 

modeling process, the distinct X variables are selected or not by the model as 

significantly explaining the output Y. This step is called variable selection. It is really 

useful in the case of a system containing many variables and therefore can be really 

important to model signaling events or huge biological networks.  
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Figure 10: Mathematical equations related to statistical linear regression 

 

In order to perform efficient variable selection, model regressions are often penalized. 

The Least Absolute Shrinkage and Selection Operator (LASSO) penalty (Figure 10C) 

is a current penalization used to efficiently operate variable selection. This penalty 

allows the β values to be exactly equal to zero and therefore to exclude input X 

variables from the final equation (110).  
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2 OBJECTIVES OF THE THESIS 

 

In this introduction, I presented the main concepts defining complexity in 

communication systems and showed why Th cells and their differentiation emerged 

from the historical Th1/Th2 paradigm as a complex and key system of 

communication within immunity. It is a complex system, first because it can integrate 

highly different and numerous signals from Dendritic Cells during their differentiation 

process. Then, because it produces different sets of cytokines that can, based on 

their combination, theoretically define a high diversity of Th subsets. Finally, these 

numerous Th subsets can be present in the microenvironment of complex diseases 

such as cancer and participate to the development or reduction of the disease 

together with other parameters related to patients or clinical data. To conclude this 

introduction, I detailed the different mathematical models used in systems biology to 

study complex systems and that could be applied to the study of Th cytokine diversity 

generation and association to different diseases. 

 

In this context I decided to focus my PhD on the study of Th cell complexity using 

systems biology tools in two main objectives:  

2.1 First objective: the study of the integration of numerous signals to 

specify Th phenotypes during CD4 T cells differentiation process. 

In this first study we try to address the following questions: 

- Can we accurately quantify context specificity at a global scale? Is the response of 

a cell to a stimulus specific of the context or of the stimulus? 

- Are we able to capture and describe at the large scale the signaling complexity 

occurring at early steps of Th differentiation? Can we predict T helper differentiation 

outcome based on DC derived signals? Does mathematical modeling of such a DC 

driven Th differentiation system allow identifying context dependency? Does it 

accurately describe Th differentiation? 

 

This first study, gave two main results, presented here as two distinct papers. First an 

article published in Nature Communications, entitled “Combinatorial flexibility of 

cytokine function during human T helper cell differentiation”. Then a second 
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manuscript that will soon be submitted, entitled “Multivariate modeling of human T 

helper cell differentiation reveals a context specific induction of Th17 by IL-12p70”.  

 

2.2 Second objective: the study of the association of Th cytokine 

diversity with the different Breast Cancer subtypes 

In this second study we try to address the following questions: 

- What is the diversity of Th related cytokines found in breast cancer? Do we find 

unsuspected co-expression of different cytokines?  

-Can we define relevant groups of patients regarding clinical features based on the 

Th cytokine profile of each patient?  

- Are different Th profiles associated to different breast cancer subtypes? 

- To which extend can we propose a new classification of breast cancer patients 

based on their Th profiles? 

 

The study of this second main objective gave one main result, presented here as a 

manuscript entitled “A Th17 multivariate signature for prognostic stratification in triple 

negative breast cancer” 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

3 RESULTS 

 

3.1 Article 1: Combinatorial flexibility of cytokine function during human 

T helper cell differentiation 

This article reports the large scale response to the single signal IFN-a of Th cells 

differentiated in different contexts: Th0 (negative control), Th1 (presence of IL-12), 

Th2 (presence of IL-4), Th17 (presence of IL-1b, IL-6, TGF-b and IL-23). From this 

study we were able to quantify the context dependencies to a single stimulus, in 

terms of global transcriptional profile to a given signal in Th cells. Specifically, we 

demonstrated, that in the case of IFN-α, most of the cell response was context-

specific. This work constitutes a first original and conceptual approach in the 

understanding of the complexity of signal integration during Th differentiation.  

 

In this work, I was mainly involved in protein and functional validation of the context-

specific antiviral function of Th cells. Notably I was able to validate that Th17 cells 

had a weaker antiviral response triggered by IFN-α and in consequence were more 

susceptible to HIV-1 and HIV-2 infections than Th1 cells, which was predicted from 

the functional analysis of transcriptomic profiles. This work was performed in 

collaboration with M. Touzot at the very beginning of my PhD and influences directly 

the second main result I obtained in the study of signal integration during Th 

differentiation. Indeed, in addition to the molecular and functional knowledge derived 

from this first paper; this work represents a quantitative experimental validation of the 

concept of context-dependency in signal integration at the cellular level. This 

completely modified the way I saw signal integration in cell biology and justified the 

choice I made to focus on signal integration during Th differentiation in a second 

project. 
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C
ytokines are glycoproteins mediating intercellular com-
munication and affecting key cellular functions, such as
survival, proliferation and differentiation1,2. They act

through interaction with a cognate receptor expressed on target
cells. Because of their pleiotropy, individual cytokines can act on a
diversity of cell types, and conversely, one cell type can respond to
a diversity of cytokines1. This creates the possibility that a
cytokine may act on a cell type either alone, or in combination
with other cytokines.

Complex inflammatory tissue microenvironments are com-
posed of specific sets of cytokines characterizing the inflamma-
tory process. Most studies have focused on the effects of an
individual inflammatory cytokine on a given cell type, or have
studied combinations of cytokines on a limited number of output
responses. When considering the complexity of inflammatory
environments, together with the system-level cellular response
made of multiple molecular and functional outputs, two
important questions arise: (1) could extrinsic factors determine
the function of a given cytokine? (2) which part of the large-scale
cytokine response would be determined by combinatorial
interactions with other cytokines?

To address these questions, we used an experimental system
combining the following three components: (1) human CD4 T
helper (Th) cell differentiation as a system that can be affected by
a diversity of cytokines that drive or modulate the differentiation
process3,4, (2) interferon (IFN)-alpha as a cytokine of interest to
study its system-level effects using transcriptional profiling and
(3) Th cytokine contexts as representative of distinct types of
inflammation, that is, Th1, Th2 and Th17, in order to study the
effects of IFN in each of these contexts.

We selected IFN because it is one of the most pleiotropic
cytokines since the IFN receptor is ubiquitously expressed5–8.
IFN are widely produced in different types of infection, and
also in auto-immunity9–14. Hence, IFN act within a diversity
of inflammatory contexts characterizing each of these
physiopathological conditions.

By combining computational and experimental system-level
and focused analyses, we demonstrate that a single cytokine
can effectively drive a multiplicity of transcriptional signatures
in target cells when it functions within specific cytokine
environments.

Results
IFN-a induces a specific T helper transcriptional signature. To
address the system-level flexibility of IFN-a function in diverse
inflammatory environments, we used CD4þT helper cell differ-
entiation as a model. Naive CD4þT cells were cultured for 5 days
in the presence of polyclonal stimulation (anti-CD3/CD28) in
four distinct polarizing cytokine contexts (Th0, Th1, Th2 and
Th17) as previously described15, in the presence and absence of
IFN-a.

Transcriptional profiles were generated using Hugenes ST1.1
Affymetrix chips after 5 days of culture in distinct polarizing
conditions, and after 4 h of subsequent restimulation with anti-
CD3/CD28 (Fig. 1a). These time points mimic two physiological
steps in the Th response: (1) the ‘stable’ transcriptional
programme occurring during Th differentiation (day 5), (2) the
transcriptional programme induced after recognition of the
cognate antigen by Th cells (day 5þ 4h restimulation (restim)).
First, we focused on the neutral IFN-a signature based on
differential gene expression in order to characterize the effects of
IFN-a in the unpolarized Th0 condition (Fig. 1a). We identified
an IFN-a signature comprising 76 and 71 genes, at days 5 and day
5 þ 4h restim, respectively (Fig. 1b, Supplementary Table 1).
Most of the genes were upregulated (55 of 76, and 53 of 71,

respectively). Top-induced genes were conserved at both time
points, including well-known interferon-stimulated genes (ISGs)
such as MX1, IFI44, IFI44L, XAF-1 and IFI27, which mediate the
antiviral state in IFN-treated cells (Fig. 1c,d). In the IFN-a
signature at day 5 þ 4h restim, we found genes related to
chemotactism, such as CXCL-10 (upregulated) and the chemo-
kine receptor CCR4 (downregulated) (Fig. 1d). Functional
enrichment analysis revealed four modules that were differentially
regulated at both time points: immune system, IFN-a/b
signalling, antiviral mechanisms mediated by ISGs and IFN-g
signalling (Fig. 1e). The RIG-I/MDA-5 induction pathway was
statistically significant only at Day 5. These results suggest that
IFN confers a specific signature to CD4þT cells composed of
antiviral ISGs that persist even after polyclonal restimulation.

IFN-a signature is distinct from Th1, Th2 and Th17
signatures. We investigated whether this IFN-a signature was
distinct from the Th1, Th2 and Th17 signatures. The Th-specific
signatures were defined by differential gene expression between
Th0 versus Th1, Th2 and Th17, respectively (Supplementary
Fig. 1a). We identified 746 differentially expressed genes between
the five conditions Th0, Th1, Th2, Th17 and Th0þ IFN-a
(Methods). We used clustering analysis to evaluate similarities
among all the profiles for all donors (Supplementary Fig. 1b). Th2
and Th17 profiles were distinct from the Th0, Th1 and IFN-a.
Clustering analysis revealed that Th0 and Th1 profiles were more
similar to each other than to IFN-a, suggesting that IFN-a
induces more variation than IL-12 (used for Th1 differentiation)
at the transcriptional level.

We compared the IFN-a signature to the specific Th
signatures, defined as the differentially expressed genes between
the Th0 and each of the specific Th conditions (Th1, Th2 and
Th17) (Supplementary Fig. 1c). These signatures contained
known Th-specific genes, such as IFN-g in Th1, GATA-3 in
Th2, and IL-17F in Th17 (Supplementary Fig. 2), validating the
relevance of each signature. We found that the IFN-a signature at
day 5 contained a specific set of genes with little overlap with Th1
(12 of 72, 16.7%), Th2 (9 of 133, 6.7%) and Th17 (12 of 236, 5%)
signatures, respectively (Supplementary Fig. 1c). For example, we
found that SPATSL2 and the anti-apoptotic gene CHMP5 were
common to the Th2 and Th17 signatures respectively. Only one
gene, the integrin PECAM-1, was decreased by IFN-a as well as in
Th1 and Th17 conditions (Supplementary Fig. 2). Our data show
that IFN-a induces a unique signature on Th cells distinct from a
Th1, Th2 and Th17 signatures, indicating that it does not simply
duplicate known effects of standard Th-polarizing cytokines.

Flexibility of IFN-a signatures in various Th cytokine contexts.
Instead of acting alone, as a single agent, IFN is expected to act
within diverse cytokine environments, reflecting diverse patho-
physiological polarizing contexts. We investigated whether com-
binatorial stimulation might induce plasticity in the large-scale
response to IFN. We compared the neutral IFN-a signature with
each of the IFN-a signatures obtained in a Th1, Th2 and Th17
contexts (Fig. 2a). Surprisingly, we found that the majority of
IFN-modulated genes were dependent on the cytokine context.
We identified 65, 67 and 65 genes for the IFN-a signatures in
Th1, Th2 and Th17 contexts at day 5, respectively (Fig. 2a and
listed in Supplementary Table 2). The neutral IFN-a signature
had less than 30% genes in common with each of the IFN-a
signatures in the three Th contexts (Fig. 2b). We then quantified
the overlap between each of the IFN-a signatures in Th1, Th2 and
Th17 (Fig. 2c). Only 12 genes were common between the three
IFN-a signatures. Most of them (9 out of 12) were known to
have an antiviral action. We validated by RT-PCR a stable
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upregulation induced by IFN-a of four of these genes (MX1,
OAS1, IFI6 and RSAD2) (Fig. 2d). However, the level of induction
of these genes was flexible with a lower modulation in Th2 and
Th17 environments. We further validated by flow cytometry a
similar induction of MX1 by IFN-a at the protein level, in the 4
Th contexts (Supplementary Fig. 3 and Fig. 2e).

Strikingly, the majority of the IFN-a signature genes were
specific to a given Th context, suggesting that ISGs expression
that mediates IFN-a function may be driven by diverse cytokine
microenvironments. To get a deeper insight into the functions
underlying each of the IFN-a signatures in Th0, Th1, Th2 and
Th17, enrichment analysis was performed using the Reactome
and GO geneset (see Methods). The results confirmed a

previously unrecognized flexibility of IFN-a response in a
context-dependent manner (Fig. 2f).

Even if some well-described functions of IFN (for example,
antiviral mechanism induced by ISG or RIG-1/MDA5 induction
pathway) were conserved across each Th context, their level of
induction were dramatically reduced in Th2 and Th17 contexts
(Fig. 2f). Moreover, the antiviral state induced by IFN was
qualitatively and quantitatively reduced in Th17 cells (Fig. 2c,d),
suggesting that Th subsets may not be equally protected by
IFN during viral infection (Fig. 2d and Supplementary Table 2).
This flexibility observed in IFN response may be partially
explained by differential activation of IFN signalling in
Th contexts (Fig. 2f).
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Figure 1 | IFN-a induces a conserved signature during the differentiation of naive CD4 T cell. (a) Naive CD4 T cells were cultured for 5 days with

anti-CD3/CD28 beads in the presence or not of IFN-a. Microarrays chips were hybridized both at day 5 and after 4 h of restimulation with anti-CD3/CD28

beads (day 5 þ 4h restim). (b) Hierarchical clustering of the 76 and the 72 genes that represent the IFN-a signature at both time points. IFN-a signature

was defined as the IFN-modulated genes in Th0 according to two criteria: fold change (FC)42 and P valueso0.05 (paired T-test). Relative gene
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Finally, half of the enriched pathways (6 of 13) were induced
by IFN-a only in a single Th context. Among these, IFN-a
modulated specifically a biological function related to lipid
metabolism only in a Th1 context, and induced pathways related

to nucleotide metabolic process and HIV1 transcription process
only in a Th17 context, suggesting a different response of
IFN-stimulated Th17 cells to HIV-1 infection (Fig. 2f). Similar
results were obtained with the IFN-a signature at day 5 þ 4h
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restimulation (Supplementary Fig. 4). Overall, our analyses at the
individual gene and systems levels, revealed an important
plasticity of IFN when combined to Th-polarizing cytokines
representing diverse inflammatory environments.

Context-dependent regulation of the IFN-induced antiviral
state. Functional analysis of IFN response suggests that the
polarizing context influences the antiviral state induced by IFN
(Fig. 2f). Validation of antiviral ISGs at the RNA level showed
quantitative differences among each subset (Fig. 2d). Antiviral
state was mostly affected in Th2 and Th17 environments. In the
latter, we observed a 2–4-fold less induction of RSDA2 and MX1
by IFN-a. This lower Mx1 induction was further confirmed at the
protein level (Fig. 2e and Supplementary Fig. 5a). To ascertain
that the lower induction of MX1 in Th2 and Th17 was not due to
an inhibition of Th2 and Th17 cells by IFN-a, we analysed the
production of the prototypical Th cytokines IFN-g, IL-13 and
IL-17 in the supernatants in five new independent donors
(Supplementary Fig. 5b). In our system, IFN-a increased IL-17A
in the supernatant of Th17 cells, and inhibited IL-13 in Th2 cells
(Supplementary Fig. 5b). Thus, the lower Mx1 induction in Th17
cells was not related to an inhibition of Th17 by IFN-a. Finally,
the MX1 protein level did not correlate to the level of IFN-g,
IL-13 and IL-17, in Th1, Th2 and Th17 contexts, respectively
(Supplementary Fig. 5c). We next wondered whether these
changes of the antiviral state had a functional impact on Th cells
during viral infection. We differentiated distinct Th subsets in the
presence and absence of IFN, and infected them with two
different GFP-reporter viruses derived from HIV-1 and HIV-2
for 48 h (Supplementary Fig. 6). We observed that Th0, Th1 and
Th2 cells differentiated in the presence of IFN were less infected
by HIV-2, as compared with an absence of IFN. This IFN-
induced protection was dose-dependent (16 versus 32%; 14.8
versus 28.2% and 21.1 versus 37.2% respectively for an MOI of
40) (Fig. 3a). However, IFN-a had no significant impact on the
protection of Th17 cells (Fig. 3a). When Th cells were challenged
with our mutant HIV-1, only Th0 and Th1 cells were significantly
protected when previously cultured with IFN (17.4 versus 25.6%
and 27.2 versus 41.7% respectively) (Fig. 3b).

Collectively, these data show that the cytokine environment
modulated the antiviral response induced by IFN-a in a context-
specific manner. This provides a functional level of validation of
the combinatorial plasticity of IFN function during Th cell
polarization.

Environmental control of IFN-induced Th cell polarization.
Most of the context-dependent functions of IFN-a were related to
RNA and DNA metabolism, which controls transcription and
replication. However, we also found genes related to immune
functions that characterize Th cells. In order to get a deeper
insight, we defined four main ) modules * related to the top
biological functions that characterize Th cells: cytokine, tran-
scription factor, chemokine and receptor. We identified within all
four IFN signatures (Th0, Th1, Th2 and Th17), the ISGs that
were involved in these four modules in view of further functional
validation (Supplementary Table 3).

Analysis of the IFN-a signature in Th1, Th2 and Th17 revealed
that IFN regulated specific components of the chemokine and
receptor module in a context-dependent manner (CXCL10 in
Th1, CCL20 in Th17, CCR4 in Th0). Microarray data were
validated at the protein level for chemokine ligand/receptor pairs
including, CXCL10 in Th0 and Th1, as well as CCR4 in Th0 and
Th1 and finally CCL20 in Th17 (Fig. 4a,b). The results obtained
here confirm that IFN induced a specific chemokine secretion
pattern dictated by the Th cytokine environment.

We next focused on the cytokine module, which represents the
most characterized function of Th cells. Among Th-derived
cytokines, only IFN-g was upregulated in the IFN-a signature at
the mRNA level in a Th1 and Th17 environment (Supplementary
Table 3). However, considering the difference in kinetics of
transcription, post-transcriptional modifications and/or secretion
of different Th cytokines, we anticipated that other Th cytokines
might be modulated by IFN-a at the protein level. To better
clarify the role of IFN-a on Th cytokine secretion, we measured
the protein levels of 14 different Th-derived cytokines in the
supernatant 24 h after restimulation by ELISA and CBA, in the
same priming conditions as were used for the transcriptional
studies. The prototypical Th cytokines IFN-g, IL-4, IL-17 and
IL-10 were modulated by IFN-a in a context-dependent manner
(Fig. 5a). IFN-g was significantly and specifically increased in Th1
and Th17 conditions. IL-4 secretion was inhibited by IFN-a only
in Th0 and Th2 environments, without concomitant inhibition of
GATA-3 (Supplementary Fig. 7). Moreover, Th2 cells increased
specifically IL-10 secretion, without modification in FoxP3 nor
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Figure 3 | Antiviral state induced by IFN-a confers a specific

susceptibility to viral infection in a Th subset-dependent manner. Naive

T cells were differentiated with anti-CD3 plus anti-CD28 in Th0, Th1, Th2

and Th17 ±IFN-a for 5 days. The same cells were then infected with VSV-

G-pseudotyped HIV-1 or HIV-2 viruses expressing GFP (with increasing

dose of virus), in the presence of IL-2 for 48H. Infected cells, defined as

GFP-positive cells were evaluated by flow cytometry. (a) Infection of Th

cells with HIV-2. MOI: multiple of Infection. Data are the mean ±s.d. of five

independent experiments. (b) Infection of Th cells with HIV-1. Data are the

mean ±s.d. of five independent experiments. NS, non significant, *Po0.05;

**Po0.01 (paired t-test).
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c-MAF mRNA. Surprisingly, we found that IFN-a also increased
RORc expression and IL-17 production but only in a Th17
context (Fig. 5a and Supplementary Fig. 7).

It is known that Th cells produce a broad array of cytokines,
which contribute to the global Th responses15. Whether IFN-a is
able to modulate the global cytokine profile of each Th cells, and
to what extent such a function may be affected by combinatorial
plasticity is not known. To address this issue, we used principal
component analysis (PCA) as a dimensionality reduction method
to analyse the full data set of fourteen cytokines in eight culture
conditions addressing the effects of IFN in Th0, Th1, Th2 and
Th17 contexts (Fig. 5b). Each point of the PCA plane represents
the reduction in two dimensions of the 14-dimensional cytokine
profiles. IFN-a determined a shift of the cytokine profiles (as
defined by the direction and the length of the vectors) that
differed in Th0, Th1, Th2 or Th17 environments (Fig. 5b). PCA
confirmed the context-dependent effect of IFN-a on the cytokine
profile in each Th environment. Only the modulation of the Th0
and Th2 global profiles by IFN-a was statistically significant
according to a multivariate ANOVA (MANOVA) test
(Supplementary Fig. 8). However, this did not exclude
significant changes at the individual cytokine level. Next, we
investigated whether the change in the global cytokine profile was
due to modulation of a single or multiple cytokines. We found
that IFN-a modulated a specific set of cytokines in each
polarizing context (Fig. 5c). In a Th1 environment, IFN

increased IFN-g and to a lesser extent IL-10. In a Th2
environment, IFN inhibited IL-4, IL-9 and IL-13, while
increasing IL-10, IL-6, IL-3 and TGF-b. Finally, Th17
modulation was explained by an increase in IL-17, IL-21 and
IFN-g, and an inhibition of IL-22 (Fig. 5c).

Overall, the system-level context-dependent effects of IFN-a
were confirmed at the protein level within the chemokine and
cytokine modules. These results also validated the concept that
the immune-modulating functions of IFN are highly flexible,
including the most conserved antiviral functions, as evidenced by
the analysis of multiple IFN signatures.

Discussion
Our study reveals a previously unsuspected system-level flexibility
in IFN-induced transcriptional programs depending on the
Th-polarizing cytokine context, with a validated functional
impact. We propose the concept of combinatorial flexibility as
the ability of a given cytokine to induce a diversity of large-scale
responses, and associated functional states, when acting in
combination with other cytokines. By using a system-level
approach, we found that combinatorial flexibility leads to distinct
qualitative and quantitative IFN signatures, with the majority of
the gene sets being specific to a given Th context.

An important question was the functional consequences of the
combinatorial flexibility. Type I IFN are pleiotropic cytokines,
with highly conserved antiviral functions across evolution16,17.
Our study revealed a previously unrecognized flexibility of the
IFN-induced antiviral response. The antiviral ISGs expression
was similar in Th0 and Th1, but decreased in Th2 and mainly
Th17 contexts. This led to reduced protection of Th cells during
HIV infection in a Th17, as compared with Th0 or Th1 contexts.
Previous reports have shown that Th17 cells were reduced either
in blood or in the lamina propria of HIV-1-infected patients18,19.
Thus, the ‘lower’ antiviral state induced by IFN during HIV
infection may contribute to this phenomenon. A combination of
ISGs is required to obtain a strong and complete control of virus
replication20. In our system, the quantitative difference of
expression in many ISGs may explain the flexibility of the
antiviral response in different Th contexts.

Besides cell-intrinsic antiviral functions, IFNs have adjuvant
effects on immune cells5,7,8. We showed that functional flexibility
was also observed among Th-specific functions, such as cytokine
or chemokine module, which was validated at the protein level
(Fig. 4). In the latter, the most striking result was observed for
CCL20, which was greatly and only enhanced by IFN in a Th17
context. To our knowledge, this is the first report of secretion of
CCL20 in human Th17 cells, indicating that combinatorial
plasticity may lead to emerging functions. CCL20 is known to
attract CCR6þ cells, including Th17 cells and have a critical role
in Th17 cells homeostasis21. Thus, CCL20 and IL-17 upregulation
by IFN in a Th17 context may serve as a mechanism to amplify
pre-existing Th17 responses.

Large-scale combinatorial flexibility may also reconcile some
paradoxical or controversial results on a given cytokine. Context-
dependent effects may be overlooked when comparing results
from different studies. For example, IFN is often described as a
‘Th1 dominant’ cytokine even if not sufficient to induce a stable
Th1 phenotype22. Further studies emphasized this property as
IFN inhibited both human and mice Th2-driven polarization23 or
Th17-driven polarizaton24,25. However, recent studies raised the
question of a ‘unique’ effect of IFN on Th cells. IFN was able to
maintain human Th17 phenotype26, increase human Th9
differentiation27 and induced in the presence of IL-10 a
regulatory phenotype in mice28. Part of the ongoing
controversy may be due to the comparison of Type I IFN
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effects in different contexts. In our study, we performed a
systematic analysis in all major Th cytokine differentiation
conditions (Th1, Th2 and Th17), and analysed a diversity of
effector Th output cytokines, instead of restricting our study to a
given Th subset. In this manner, we could dissect the variability in
IFN responses, and associate it to specific sets of input and output
Th cytokines.

Our findings are also consistent with recent data emphasizing
the critical role of commensal bacteria in controlling systemic
antiviral immunity29–32. It has been shown that commensal-
derived signals are capable of limiting or exacerbating infection in
the intestinal microenvironment. The mechanisms involved are
diverse, either by contributing to DC maturation and subsequent
T-cell priming in the lung29, or increasing responsiveness to virus
by modulating their threshold of activation, as described with
macrophages32. Moreover, a tonic microbiota is mandatory for
optimal lymphotoxic function of CD8þ T cells and natural killer

cells during viral infection. Conversely, commensal infection can
increase chronic viral infectivity in the gastrointestinal
microenvironment through cytokine modulation30,31. Finally,
certain gut bacteria affect differentially Th cell polarization:
Segmented filamentous bacteria induce Th17 cells, whereas
Clostridium species induce regulatory T cells in the colon33–35.
Taken together, our results suggest an additional mechanism that
may contribute to the microbiota-regulated type I IFN response
in priming for different types of inflammatory and immune
responses.

A detailed understanding of the effects of a cytokine is
particularly important in cytokine therapy. Our results revealed a
new level of complexity in IFN responses, which may also explain
the diversity of IFN responses in therapeutics5. IFN are used to
treat a variety of auto-immune, infectious and neoplastic diseases,
most important of which are hepatitis C, multiple sclerosis and
malignant melanoma5,36–38. Our results suggest that each disease-
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specific inflammatory environment (extrinsic factors) may drive a
specific IFN response, which may underlie the diversity of effects
observed with therapeutic IFN.

Although established in human Th cells, the same conceptual
and methodological framework may be applied to dissect the
function of other cytokines and soluble factors in contexts
associated with a given physiopathological situation. We can
anticipate that a diversity of functional outputs may be observed,
which would change our interpretation of cytokine function by
attributing a large part to the context rather than to the nature of
the cytokine itself. Given the number of possible combinations
within an inflammatory microenvironment, and their expected
impact on cytokine function, our findings may have a broad
impact through the precise characterization of their large-scale
combinatorial flexibility.

Methods
Purification of naive CD4þ T lymphocytes from adult blood. Peripheral blood
mononuclear cells were separated by Ficoll–Hypaque centrifugation (Amersham
Biosciences) from buffy coats obtained from healthy donors (Saint Antoine-Cro-
zatier Blood bank, Paris). All cells were used with the approval of the Institutional
Review Board of Institut Curie, and blood donors gave their informed consent for
research use of buffy coats in accordance with the Declaration of Helsinki. CD4þ

T lymphocytes were then purified by immunomagnetic depletion with the human
CD4þ T cell Isolation Kit II (Miltenyi Biotec), followed by staining with allophyco-
cyanin-anti CD4 (clone VIT4 (1/80); Miltenyi Biotec), phycoerythrin-anti-
CD45RA (clone HI100 (1/20); BD Bioscience), fluorescein-isothiocyanate-anti-
CD45RO (clone UCHL1 (1/20); BD Bioscience) and phycoerythrin-7-anti-CD25
(clone MA-251 (1/20); BD Bioscience). Naive CD4þ T cell sorting of CD4þ

CD45RAþCD45RO�CD25� had a purity of over 99% with a FACSAria
(BD Bioscience).

T helper cell differentiation assay. Naive CD4þ T cells were cultured in 48-well
plates (Falcon) at a density of 8� 104 cells per well in X-VIVO 15 serum-free
medium (Lonza) in the presence of Dynabeads CD3/CD28 T cell expander
(Invitrogen) and polarized into Th0, Th1, Th2 and Th17 with the following
cytokines: none for Th0; IL-12 (10 ng ml� 1; R&D Systems) for Th1; IL-4
(25 ng ml� 1; R&D Systems) for Th2; IL-1b (10 ng ml� 1; Peprotech), IL-6
(20 ng ml� 1; Peprotech), IL-23 (100 ng ml� 1; R&D Systems) and TGF-b
(1 ng ml� 1; Peprotech) for Th17. IFN-a (Miltenyi) was added at 10 ng ml� 1. After
5–6 days, cells were collected and washed extensively. Cells were re-stimulated at a
density of 1� 106 cells per ml for 24 h (for ELISA, Cytometry Beads Array CBA
and RT-PCR).

Analysis of cytokine and chemokine production. The following cytokines and
chemokines were measured in culture supernatants by ELISA: IL-17 and IL-22
(R&D System), IL-21 (eBioscience), CCL20 (R&D System). IL-3, IL-4, IL-5, IL-6,
IL-9, IL-10, IL-13, IFN-g, TNF-a, LT-a, TFG-b and CXCL10 were measured by
CBA (BD Bioscience) according to the manufacturer’s instructions.

Intracellular and surface staining. For surface markers cells were stained by
incubation for 15 min on ice with the corresponding fluorescence-labelled anti-
bodies: phycoerythrin anti-CCR6 (clone 11A9 (1/40); BD Bioscience), Alexa-
Fluor647 anti-CCR4 (clone TG6/CCR4 (1/80); Biolegend) and AlexaFluor647 anti-
CXCR3 (clone G025H7 (1/40); Biolegend). For the detection of Mx1 protein, cells
were stained with the live/dead kit (Invitrogen) for 30 min at 4 �C, then fixed with
the IC fixation buffer (eBioscience), permeabilized for 45 min at 21 �C with the
permeabilization buffer (eBioscience). Cells were stained for 300 at 21 �C with a
primary Rabbit antibody against Mx1 (Clone ab95926, (1/250); Abcam), washed
and stained with a secondary antibody (donkey anti rabbit cy5, (1/100); Jackson
Immunoresearch).

Virus production and infection of CD4þT cells. Three different plasmids were
used: HIV-GFP (NL4-3 DvifDvprDvpuDenvDnef with the GFP open reading frame
in place of nef), HIV-2 ROD9 Denv GFP (ROD9 DenvDnef with the GFP open
reading frame in place of nef), and CMV-VSVG have been described previously39.
Viral particles were produced by transfection of 293FT cells with 3 mg DNA and
8 ml TransIT-293 (Mirus Bio); for HIV1-GFP, 0.4 mg CMV-VSVG and 2.6 mg HIV-
GFP; for HIV2-GFP, 0.4mg CMV-VSVG and 2.6 mg HIV-2 ROD9 Denv GFP. One
day after transfection, media was removed, cells were washed out once and fresh
media was added. Viral supernatants were harvested 1 day later and debris were
removed by using a 0.45-mm syringe filter. Virus titres were measured on GHOST
X4R5 cells titration as previously described39; briefly, 5� 103 GHOST cells were
infected with serial dilutions of HIV-GFP(G) in 200 ml. At 48 h after infection, the
proportion of infected GHOST cells was measured by flow cytometry. The viral

titration curve was determined on GHOST cells and used to calculate MOI for
infection of T cells. At day 5 of naive T cell differentiation, cells were harvested,
counted and resuspended in fresh media at the concentration of 1 million per ml
with 8 mg ml� 1 protamine and 100 ml was aliquoted in round-bottomed 96-well
plates. For infection, 100 ml of media or dilution of virus supernatants were added.
Forty-eight hours after infection, cells were fixed using 1% paraformaldehyde and
GFP-positive cells were evaluated by FACSVerse (BD).

Real-time quantitative RT-PCR. Total RNA was extracted by RNeasy Micro kit
(Qiagen) and processed as previously described15. The following probes (Applied
Biosystems) were used: FoxP3 (Hs00203958_m1), GATA-3 (Hs00231122_m1),
T-bet (Hs00203436_m1), RORc (Hs01076112_m1), AHR (Hs00169233_m1) and
c-Maf (Hs00193519_m1). For each sample, mRNA abundance was normalized to
the amounts of ribosomal protein L34 (Hs00241560_m1).

Affymetrix microarray hybridization. Microarray analyses were performed at
two time points: either before restimulation (day 5) or four hours after restimu-
lation (day 5 þ 4H restim). For each condition, 500 pg of RNA were used to
synthesize targets using the WT-Ovation Pico RNA amplification system (Nugen,
Bemmel, the Netherlands). Labelled DNA was hybridized on the Affymetrix
human Gene ST1.1, processed on an Affymetrix GeneTitan device. The data are
derived from three independent donors.

Statistical analysis and data mining. A nonparametric two-tailed Wilcoxon test
or a Student’s t-test was used for pair-wise comparisons of cytokines. MANOVA
test was used for comparison of the Th cytokine profile. P values of r0.05 were
considered statistically significant. We used the Pearson correlation coefficient to
assess the significance of correlation between MX1 and IFN-g, IL-13 and IL-17 The
microarray data derived from three independent experiments were normalized
using the RMA algorithm and bioinformatics analysis was performed using
GeneSpring GX 7.3 (Agilent, Palo Alto, CA, USA) or EMA (Bioinformatique,
Institut Curie) on R software40. Probes with a signal o20 were excluded. For
IFN-a signature, differential gene expression was defined according to the two
following criteria: fold change 42; P value o0.05 (paired t-test). Data for the
clustering and PCA were processed and analysed as previously described15. The
Euclidean correlation distance and the Ward’s criteria as an agglomerative method
were used for hierarchical clustering analysis. To analyse the genes differentially
expressed among Th0, Th0þ IFN-a, Th1, Th2 and Th17, we selected the genes
according to the following criteria: ANOVA Test with a Tukey HSD test Po0.05
and a false discovery rate (Benjamini–Hochberg) Po0.05. Functionnal analysis
were performed using the Molecular Signatures Database (MSigDB). Reactome and
GO genes set were used to compute overlap with each IFN signature with a FDR q
value below 0.3.
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3.2 Article 2: Multivariate modeling of human T helper cell differentiation 

reveals a context specific induction of Th17 by IL-12p70 

The second result will be presented here under the form of a manuscript that will be 

soon finalized for submission. It is entitled “Multivariate modeling of human T helper 

cell differentiation reveals a context-specific induction of Th17 by IL-12p70”. I was 

involved as the main investigator of this project and worked in close collaboration 

with a biostatistician, Marie Perrot-Dockes. Together, we derived the first statistical 

and data-driven global model of T helper differentiation. Indeed, based on an 

important literature screen, we realized that a high number of signals could act at the 

same time on Th phenotype either interacting together or defining specific molecular 

contexts for each other. We thought that given this high number of signals only 

mathematical modeling could help understanding the complexity of this signal 

integration process.  

 

After three years of intense work, we finally succeeded to derive a statistical model 

able to predict the behavior of 17 Th cytokines in response to 36 signals. This model 

has been validated through different ways experimentally and computationally. In 

addition, it has been extensively and quantitatively confronted to knowledge 

extracted from the literature. Using this model, we were able to predict and validate a 

novel and unsuspected role of IL-12p70, originally associated to Th1 responses, in 

the induction of Th17 differentiation. In addition, the model also predicted a specific 

induction of IL-17F independently of IL-17A when IL-12p70is combined with IL-1 

which was completely ignored from previous studies and that we were also able to 

accurately validate. This sheds light on the first mechanism based on cytokine 

signals able to differentially control IL-17A and IL-17F, which can be particularly 

relevant in auto-immune disease settings where IL-12p70 is present together with IL-

1b. In conclusion, this study validated our general strategy and approach based on 

global analysis of Th cytokine diversity generation as a complex system. This 

strategy, can be broadly applied to any communication system where signal 

integrations lead to multiple cellular responses. 

 



TITLE: Multivariate modeling of human T helper cell differentiation reveals a context 

specific induction of Th17 by IL-12p70 

AUTHORS: Grandclaudon M*, Perrot-Dockes M*, Trichot C, Mostafa-Abouzid O, 

Abou-Jaoudé W, Hupé P, Thieffry D, Chiquet J, Levy-Leduc C, Soumelis V. 

*These authors contributed equally to this work    

ABSTRACT: Today more than 70 independent signals have been shown to be able to 

act on T helper cell (Th) differentiation program. Many of these signals can be co-

expressed by dendritic cells (DC) and act collectively to specify Th phenotype. 

However, the precise nature and impact of the combinatorial complexity emerging from 

this co-expression of numerous signals on Th cell differentiation remain unstudied. 

From a human primary cell heterologous co-culture of DC –Th in vitro assay we 

developed the coupled measurement of 36 DC communication signals and 17 Th 

cytokines at the protein level. Systematic perturbation of Dendritic cells (DC) was 

performed using various doses and combinations of activators to create a high diversity 

of DC and T cell phenotypes. Taking advantage of this unique dataset, we derived a 

predictive and multivariate mathematical model explaining Th cytokine expression 

diversity, based on DC signals data. This data driven model was able to capture many 

well-described input-output associations, such as IL-12p70 inducing IFN-g and IL-21 

but inhibiting Th2 derived cytokines, IL-4, IL-5, IL-13 and IL-31. Using our strategy we 

had the unique opportunity to derive predictions of context-specific mechanisms and 

identified a new role of IL-12p70 as inducer of Th17 in a specific signaling context. In 

addition, our model revealed that IL-12p70 defined a new Th differentiation pathway 

leading to specific induction of IL-17F independently of IL-17A in the presence of IL-1 

cytokines that was extensively validated. This result shed light on the emergence of a 

Th17 response in IL-12p70 driven immune responses that was originally associated to 

Th1 and Tfh responses. This work allowed establishing the first quantitative and data 

driven model of Th differentiation able to predict from the DC signals complexity key 

features of Th fates at the systems level.  

KEY WORDS: Systems immunology, Statistical modeling, T helper differentiation, 

dendritic cells.  

 



INTRODUCTION:  

Th differentiation is a crucial process in the orchestration of the global immune 

response [1]. Distinct Th subsets and cytokines have been associated to pathological 

contexts, such as auto-immune disorders, allergies and cancers [2,3]. Manipulating Th 

phenotypes to promote or inhibit sets of cytokines has been proposed to be a central 

step in future vaccines or immune based treatments [4,5]. Among them, immune 

checkpoint therapy aims at blocking or restoring T cell functions by controlling their 

upstream signaling pathways. These strategies constitute major advances towards the 

cure of cancer [6]. Therefore, the design of successful therapeutic tools relies on the 

accurate description of mechanisms controlling Th fates.  

Since the identification of DCs as the main drivers of Th polarization in 1999 [7], a large 

number of independent studies revealed that Th cells integrate numerous signals of 

various nature to specify their phenotypes [8]. In parallel, the diversity of cytokines 

produced by Th cells in various combinations defines an increasing number of Th 

subsets [9], far beyond the initial Th1/Th2 paradigm [10]. Taken together these results 

reveal the intrinsic complexity of the Th differentiation process as a central 

communication system integrating high number of DC input signals and producing a 

large diversity of Th output responses.  

Few studies worked on the integration of several signals by Th cells taking in account 

a certain level of complexity. They revealed context-dependent control of Th 

phenotypes explained by signal interactions [11-13]. In human, high IL-17A responses 

emerge from the synergistic combinations of four individual cytokines IL-23, IL-6, IL-

1b and TGF-beta [14-16]. In addition, it has been also shown that the dose of signal 

can be of critical importance in Th differentiation. TGF-beta has opposite effects at high 

versus low doses in Th17 differentiation [17]. However, most of the studies on Th 

differentiation only looked at few input signals at one optimal dose and rarely address 

the question of their combinatorial effect. 

Specific efforts have been made in the field of Th differentiation to address the 

complexity of having a high number of input signals in regulatory network using 

Boolean models [18]. Such models can theoretically be used to predict any 

combinations of input cytokines, but they are lacking quantitative description of 

continuous data. In addition, these types of model are based on knowledge derived 



from multiple sources and experimental models, which result in difficulties to perform 

experimental validation.  

Statistical models are another mathematical framework having the advantage of being 

data-driven and quantitative. In addition, they allow performing unsupervised analysis 

and data-driven analysis through variable selection which has been shown to be an 

important tool in systems biology [19-21]. Globally, data-driven mathematical 

strategies have already been successfully employed to model different input-output 

biological systems describing complexity of signal integration [22-25].  

Here we derived the first multivariate statistical model of Th differentiation dedicated to 

the study the complexity of this biological process. We aimed at unrevealing context-

dependent mechanisms controlling Th differentiation through this unbiased systems 

level approach.  

RESULTS  

In order to reach this goal, we generated a dataset of coupled protein measurement 

constituted of 36 DC communication signals and 17 Th derived cytokines in a 

heterologous co-culture system as described in the material and methods section. This 

was performed for a total of 86 distinct stimulatory conditions in 44 donors of either 

MoDC or CD11c+ DC subsets, which gave rise to 418 independent data points (Figure 

1A). 

Generation of a diversity of DC communication states 

First, we speculated whether our systematic DC stimulation strategy could generate 

important variations on the expression of DC derived communication signals. Looking 

at the distribution of our 418 data points for each DC signal we concluded that our 

systematic stimulation strategy allowed us to generate a large spectrum of continuous 

expression values for each DC signal (Figure 1B). Then we speculated whether this 

variability in DC signal expression values was associated to a diversity of DC states. 

In order to answer this question we calculated the average expression value of each 

donor stimulated in the same conditions for each DC signal. Then, based on Pearson 

correlation we derived an unsupervised hierarchical clustering of these average 

expression values (Figure 1C).  



Based on the dendrogram, we could identify twenty distinct clusters of stimulatory 

conditions which were different from one another by the expression of at least one DC 

signal. For instance, clusters C1 and C2 had equivalent values of CD29, CD80, 4-

1BBL and IL-6 but were highly different for ICAM-3 and OX40L expressions (Figure 

1D). Such specific differences between two closely related clusters were observed for 

each of the twenty clusters (Figure S1). These phenotypical differences between 

clusters could be explained first by the subset of DC, since all CD11c+ conditions 

segregated from MoDCs. Then, it differs by the type of stimulations, for instance Flu 

and Poly-IC which both activate TLR-3 cluster together in C4 while all different doses 

of LPS + R848 combined treatments clustered together in C7 (Figure 1C). As quality 

control of our procedure, we used three stimulations across all the experiments. We 

could demonstrate by principal component analysis that neither the date of the 

experiment, nor the donor had major effects on the clustering (Figure S2). All these 

elements taken together showed that we successfully generated at least twenty distinct 

communication states in dendritic cells through systematic stimulations. 

Overall DC communication states derived information is conserved at the T 

helper cytokine level 

In the experimental procedure of our strategy, each DC condition constituted the 

source for naïve T cell stimulation. A total of 17 distinct Th cytokines were measured 

in parallel in each T cell condition at day 6 of the co-culture, together with Th cell 

expansion fold (Figure 2A). T helper cytokines also exhibit in the overall 418 data points 

an important variation in their expression values (Figure 2B). With the exception of IL-

31 the expression of each cytokine was defined by a continuum of values rather than 

discrete categories. In order to study the different profiles of cytokines obtained across 

our 86 stimulatory conditions we derived a hierarchical clustering based on Pearson 

correlation (Figure 2C). Based on this clustering method, we defined 20 distinct 

clusters ranked from D1 to D20 similarly as for the DC signals expression data. We 

wanted to know if the information present at the level of DC communication signals 

could be retrieved in T helper cytokine profiles. If this is the case the conditions 

belonging to a same cluster C would be retrieved in the same cluster D.  

To answer this question we performed a cluster homology analysis (Figure 2D). First 

we represented in a heatmap the percentage of conditions per DC clusters (C1 to C20) 

that are retrieved in Th clusters (D1 to D20). In the majority of cases, the conditions of 



one DC cluster were found in one to three T cell clusters. For instance, all conditions 

of C3 corresponding to Flu + PAM3 conditions were retrieved in cluster D17. We 

quantified the overall information conserved between the two clustering analyzes and 

found a high Rand Index (RI) = 0.91 and a low Normalized information distance (NID) 

= 0.36; RI close to 1 and NID close to 0 would indicate a perfect match between two 

clustering. Therefore we could determine that across our entire dataset the information 

captured from the DC communication signals was conserved in the Th cytokine 

profiles.  

A data-driven Lasso penalized regression- model predicts Th cytokine profiles 

from DC-communication signals  

By using a hierarchical clustering strategy and the creation of clusters we were able to 

determine that in our dataset an important amount of information was conserved 

between DC and T cell datasets. Then, we integrated data from both DC and Th into 

one single analysis using unsupervised multivariate statistical regression (Figure 3A). 

First, we generated a simulated dataset that mimics the features of our DC and T cell 

experimental data, but for which we artificially attributed a link between DC signals and 

Th cytokines. This allowed us to test different statistical modeling strategies and to 

compare those regarding false and true positive rates (Figure 3B). Detailed 

methodology is provided in supplementary methods section 1. Among all, the 

MultivarSel strategy gave us similar results than the internal positive control OR. We 

also determined that performing a step of stability selection during variable selection 

of the model greatly improved the results. Therefore we applied the MultivarSel 

strategy combined to a lasso penalization and stability selection to the modeling of our 

real data. All mathematical details about our multivariate modeling strategy are 

provided in the methods section and in supplementary methods section 2.  

Our multivariate model allowed associating specifically the 36 DC communication 

signals to the 17 Th derived cytokines. These results are provided under the form of a 

heatmap where colored squares represent a significant association between one DC 

signal and one T cell cytokine (Figure 3C). The white squares represent the absence 

of significant link detected between a given DC signal and a T cell signal. Color gradient 

reflects the coefficient model values. Blue colors reflect negative associations that can 

be interpreted as inhibitions, while red colors reflect positive associations. We 

performed hierarchical clustering for both DC and T cell derived variables based on 



the Pearson correlation of the model coefficient values. This allowed us to retrieve 

relevant cluster of Th cytokines belonging classically to the same Th subset. For 

instance Th2 prototypical cytokines IL-13, IL-31, IL-5, IL-4, IL-10 and GM-CSF were 

found in the same cluster. It indicates that overall they are associated to the same DC 

signals, which is in line with the idea that their induction is controlled by the same 

mechanism. We could also find that IL-17A and IL-17F were associated in the same 

cluster, meaning that the model finds them associated to the same DC signals which 

was also expected. Surprisingly our model associates IL-9 expression to regulators 

similar to the ones of IL-17A and IL-17F. It also found IL-22 as closer to the Th2 than 

to the Th17 cytokines. IL-21 was associated to the classical Th1 cytokines IL-2 and 

IFN-γ.  

In order to assess the validity of our model we performed a step of computational cross-

validation to evaluate the error of prediction of our model (Figure 3D). We could see 

that for all T helper cytokines our multivariate model was significantly better than the 

best univariate model, since the error of predictions was systematically lower. In 

addition, we could rank T helper cytokines based on their errors of prediction. This 

allowed us to determine that the best Th variables explained by our model were IL-6, 

the fold expansion, IL-17F and IL-2 (Figure 3D).  

In a second step, we wanted to systematically confront our model to existing literature 

knowledge. Therefore, we screened 14.748 pubmed results to retrieve 178 relevant 

articles to Th differentiation, detailed methodology and inclusion criteria are given in 

supplementary methods section 3. From these relevant articles we extracted data 

regarding specific control of a given Th cytokine by our DC derived signals of interest. 

Table recapitulating all extracted information is given in supplementary Table 1. From 

these information, we computed a validation score, based on the number of articles 

finding the same associations than our model. For a detailed description of the 

calculation of our validation score see supplementary methods section 3. This 

validation score ranked IL-12p70 as the top variable for which our model reproduces 

existing knowledge behavior. Indeed, on 13 Th cytokines that were studied in the 

literature for their association to IL-12p70, our model found 8 similar results. Indeed, 

similarly to literature knowledge, our model associates positively IL-12p70 to the 

production of IFN-γ, IL-21 but inhibits most Th2 cytokines, IL-13, IL-31, IL-5, IL-4 and 

IL-10. Interestingly, our model associates positively IL-12p70 to IL-17F which was 



totally unexpected and not described in the literature. IL-17F was one of the best 

cytokine explained by our modeling strategy (Figure 3D). Therefore, we decided to use 

our modeling strategy to address specific questions on the role of IL-12p70 in Th17 

differentiation.  

Context dependent model reveals a role for IL-12p70 in Th17 differentiation  

First we wanted to understand if distinct contexts involving IL-12p70 could exist and 

be relevant for Th17 differentiation. Therefore we created new input variables based 

on the co-occurrence of IL-12p70 with other DC signals. These new variables adopt 

the value of IL-12p70 when the other DC signal considered is expressed and when it’s 

not expressed it takes a zero value. At first we wanted to know if this new strategy 

could help us to get better predictions on IL-17A and IL-17F the two Th17 cytokines. 

Therefore after running our model, we performed as described before a step of cross-

validation. We found that adding context dependent variables for IL-12p70 in the model 

could improve our model predictions (Figure 4B). Then, we looked at which DC signals 

were kept significant by the modeling strategy and saw distinct associations of IL-

12p70 context dependent variables with IL-17A and IL-17F (Figure 4C). Interestingly 

we found many associations that show a differential regulation of IL-17A and IL-17F 

by IL-12p70 context dependent variables. Notably we could find that IL-12p70 in the 

context of expression of IL-1, ICAM2 or Jagged2 would preferentially induce IL-17F. 

While IL-12p70 in the context of CD70, IL-23 or LIGHT would preferentially induce IL-

17A. Interestingly, we also found opposite behaviors, for instance IL-12p70 in the 

presence of IL-28a would inhibit IL-17F and IL-17A, or IL-12p70 in the presence of 

TNF-α or CD30L would inhibit specifically IL-17F but not IL-17A. Since we found all 

these distinct associations, we wanted to know what role were associated to IL-12p70 

overall in a complex context where co-expression of many of these DC signals and 

productions of both IL-17A and IL-17F was observed.  

We went back to our study of DC and T signals in figure 1C and 2C, and selected the 

condition zymosan (10ug/ml) moDC belonging respectively to cluster C8 for DC 

molecules and D16 for T cell cytokines as able to induce high levels of IL-17F and IL-

17A but also as showing important expression of IL-12p70 together with many other 

DC derived communication signals. To study the effect of IL-12p70 in the zymosan 

(10ug/mL) condition on IL-17F and IL-17A production by Th cells, we used our Il-12p70 

context dependent model and performed in silico IL-12p70 knock out (KO). We 



compared predicted values for IL-17A and IL-17F when IL-12p70 was present or not 

in silico (Figure 4D). We found that the computational KO of IL-12p70 diminished the 

production of both IL-17A and IL-17F in the zymosan (10ug/mL) condition. We then 

aimed to experimentally validate this model prediction. In order to achieve this goal, 

we went back to our DC/T co-culture experiment using moDC treated with 10ug/mL of 

zymosan and blocked IL-12p70 using neutralizing antibodies. We then followed the 

amount of IL-17A and IL-17F produced by Th cells at day 6 of the co-culture (Figure 

4E). We could see that blocking IL-12p70 significantly decreased the production of IL-

17A and IL-17F, which validated the model predictions.  

Since our modeling strategy predicts distinct roles of IL-12p70 on IL-17A and IL-17F 

production given the DC signal context in which IL-12p70 is expressed, we decided to 

focus for the next steps on the differential regulation of IL-17A and IL-17F by IL-12p70. 

Therefore, using the same multivariate strategy of modeling, we asked the model to 

explain the mathematical difference between IL-17F and IL-17A. Surprisingly we found 

that IL-12p70, IL-1 and CD80 were the top variables almost systematically selected by 

the modeling strategy to explain the differences between IL-17F and IL-17A, while in 

the results presented in figure 4C we found that IL-12p70 in the presence of IL-1 would 

induce only IL-17F but not IL-17A. Therefore, we made the hypothesis based on these 

results, that the single combination of IL-12p70 with IL-1 would induce IL-17F 

independently of IL-17A.  

Synergistic interaction of IL-12p70 and IL-1 cytokines in the specific induction 

of IL-17F without production of IL-17A 

To validate our hypothesis, we worked with a DC free Th polarization assay, in order 

to be able to specifically study the interaction between IL-12p70 and IL-1 regardless of 

the molecular context. In these settings, naïve CD4 T cells were activated with agonist 

anti-CD3/CD28 beads and put in distinct cytokine treatments: as negative controls Th0 

and Th2 (IL-4), IL-12p70, IL-1β, IL-12p70 + IL-1β and Th17 (IL-1β + IL-23 + IL-6, + 

TGF-β), as a positive control. First we saw that IL-12p70 alone induces IFN-γ and IL-

21 as it is well described in the literature (Figure 5A).IL-12p70 also inhibited Th2 related 

cytokines (Figure S3A). IL-12p70 alone induced neither IL-17F nor IL-17A. However 

combining IL-12p70 to IL-1β dramatically increases IL-17F at levels comparable to the 

positive control, without inducing detectable amount of IL-17A, which validated the 

model predictions. We could also show that this effect was specific of IL-12p70 



combined to IL-1β. Since neither IL-6, nor IL-23, nor TGF-β, alone or combined to IL-

12p70 could induce IL-17F expression (Figure S3B). The exact same pattern of Th 

cytokine expression of was obtained by combining IL-1α to IL-12p70 (data not shown). 

Interestingly IL-12 treated naïve CD4 T cells in combination to IL-1β also induces high 

levels of IL-6, IFN-γ and IL-21 (Figure 5A).  

We further wanted to validate this finding using another detection technic and to 

establish the co-expression profiles of IL-12p70+IL-1β treated Th cells for all classical 

Th17 related cytokines. Therefore in the same culture settings we performed 

intracellular cytokine staining for single cell analysis by FACS (Figure 5B). Using this 

independent experimental strategy we confirmed that IL-12p70+IL-1β induce high level 

of IL-17F expressing cells without the production of IL-17A. To get more insights about 

the different populations defined by cytokine co-production, we systematically 

analyzed all the combinations of the cytokines analyzed: IFN-γ, IL-17A, IL-17F, IL-22 

and IL-21 among the IL-17F positive cells (Figure 5D) which represents 16 distinct 

populations. For this analysis we only considered the condition IL-1β, IL-12+IL-1β, and 

Th17 in which we saw a significant emergence of IL-17F (Figure 5A and C). First we 

compared the level of IL-17F single producers between our conditions. Surprisingly we 

found that Th cells from the Th17 and IL-1β conditions largely produced IL-17F alone 

without co-expression of IL-17A, IFN-γ, IL-21 and IL-22 (Figure S3C).  

In addition, we could see that under these conditions IL-17A was rarely coproduced 

with IL-17F. In fact, even though IL-17A and IL-17F emerged at high levels in the Th17 

conditions (Figure 5 A-C), in agreement with literature knowledge, this co-regulation of 

expression was not associated to co-expression. Therefore we could distinguish to 

new sub-populations of Th17 cells that we proposed to name Th17A and Th17F. We 

then focused on analyzing the pattern of cytokines co-produced by Th17F cells. We 

could see that, in the IL-1b and Th17 conditions around 25% of cells co-produced IL-

21 alone, 7.5% coproduced IFN-γ alone and 4% coproduced IL-21 and IFN-γ (Figure 

S3C). In contradiction, Th17F cells differentiated in the IL-12p70 + IL-1β context 

expressed much lower levels of single positive IL-17F+ cells. However, in these cells 

IL-17F was highly co-produced with IFN-γ alone or with IL-21, respectively 37% and 

25% (Figure 5E and S3C).  

 



Distinct subsets of memory CD4 T cells producing IL-17F without IL-17A are 

found in healthy donors 

Here we proposed a completely new view of Th17 cells by describing two 

subpopulations based on the absence of IL-17A and IL-17 co-expression in Th cells 

derived from Th17 contexts: Th17A and Th17F. We notably fully characterized Th17F 

cells in terms of cytokine co-production. We found that IL-17F could be coproduced 

with IL-21 and IFN-g and defined 4 distinct populations: IL-17F+IFNγ-IL-21-, IL-

17F+IFNγ+IL-21-, IL-17F+IFNγ-IL-21+ and IL-17F+IFNγ+IL-21+. Our study revealed that 

IL-12 combined to IL-1b promoted the differentiation of these 4 distinct subsets. Then, 

we speculated about the physiological relevance of these new Th17 subsets 

described. The CD4 T-cell memory compartment constitutes an historical trace of 

former immune responses generated by each human individual across his life time.  

Therefore, we looked for Th17F subsets in memory CD45RO+ CD4 T cells in healthy 

individual blood. As described before, we performed intracellular cytokine staining for 

IL-17A, IL-17F, IFN-γ, IL-21 and IL-22 (Figure 6A). Again we found our two Th17 

populations, Th17A and Th17F. In addition to these two populations, we also found a 

third Th17 population that co-expressed IL-17A and IL-17F. Then we systematically 

studied the co-expression pattern of IL-21, IL-22, IL-17A and IFN-g within IL-17F 

positive cells (Figure 6B). Among memory CD4 and IL-17F positive cells, we were able 

to retrieve three of the four Th17F populations generated in vitro from naïve CD4 T 

cells under the IL-12p70+IL-1β condition : IL-17F+IFNγ-IL-21-, IL-17F+IFNγ-IL-21+and 

IL-17F+IFNγ+IL-21+ (Figure 6C). Therefore, the cocktail IL-12p70+IL-1β of input 

cytokine for naïve CD4 T cells could reflect a valid differentiation pathway for these 

cells in in vivo physiopathological contexts.  

DISCUSSION 

In this work, we chose to study Th differentiation at the system level, using unbiased 

approaches and mathematical tools. We derived the first statistical model of human Th 

differentiation. This model could both recapitulate well described mechanisms and 

provide numerous descriptions of putative new mechanisms controlling Th cytokine 

profiles. Importantly, our modeling strategy offers the possibility to study context 

dependent effects of given DC signals and therefore to detect hidden mechanisms that 

would not be seen in mono-parametric experiments.  



In order to highlight this last point very clearly, we chose to study the role of IL-12p70 

in Th17 differentiation. Surprisingly through statistical modeling we uncovered an 

unsuspected positive role of IL-12p70 in Th17 differentiation, which we chose to fully 

characterize and to validate experimentally. This choice was made for four main 

reasons.  

1) Because we could not address technically a systematic validation of all the derived 

predictions of our model. If such large scale model validations were already performed 

notably using nanowires on T cells [26], such technologies based on RNA silencing 

still represent an important bottleneck in the field of DC. Thus it was necessary for us 

to focus on only few DC communication signals for full characterization and 

experimental validation; even if our strategy could potentially be applied to any protein 

considered in our dataset. For this reason our dataset and methodology constitute 

important resources for the scientific community.  

2) Because our modeling strategy was really good at describing the known regulatory 

behaviors of IL-12p70, IL-17A and IL-17F. Indeed, IL-12p70 is one of the most studied 

DC derived signal. It has been shown that IL-12p70 could inhibit Th2 cytokines and 

induce the differentiation of Th1 cells producing IFN-g [27], but also inducing the 

production of IL-21 and the development of Tfh cells [28]. Regarding the induction of 

IL-17A and IL-17F our model was also able to find many mechanisms described in the 

literature. Notably, IL-23 and IL-1 were found as important in Th17 differentiation 

[14,16]. PVR has been shown to be a positive inducer of Th17 cells [29]. These findings 

were recapitulated using our data and our unsupervised multivariate modeling strategy 

in one single analysis.  

3) Because no studies proposed a positive role for IL-12p70 in Th17 differentiation. In 

fact, some studies proposed that IL-12p70 would inhibit Th17 differentiation [30], by 

showing a regulatory mechanism of T-bet on the activation of ROR-γt. However, hybrid 

Th showing stable expression of both T-bet and ROR-γt were described by others [31-

33]. Therefore, finding that Il-12p70, the key Th1 inducer, could also positively 

contribute to Th17 differentiation is strikingly novel and could potentially explain the 

phenotype of Th cells co-expressing IL-17A and IFN-γ. 

 4) Because, finding a new role for IL-12p70 based on its molecular context, constitutes 

a proof of principle that our methodology is working. And this is even more important 



regarding the fact that IL-12p70 is one of the most studied input cytokine in Th 

differentiation and that its role in Th17 differentiation could not have been shown by 

mono-parametric or univariate studies. Thus our work, paves the way for future studies 

integrating context dependencies and combinatorial complexity as crucial concepts for 

the understanding of molecular mechanisms in Th differentiation and broadly to any 

input – output system.  

Addressing such questions through data-driven models has been highlighted by others 

as current key challenge of systems biology [19,20]. Our work provides a successful 

demonstration in the field of Th differentiation that unsupervised and systematic 

analysis through the use of mathematical modeling constitutes a complementary 

approach to classical molecular biology work. Indeed we were able to integrate in one 

single analysis 36 distinct signals and to address the question of their effect by studying 

them altogether. This type of strategy will be crucial to adapt to the study of signal 

integration in complex molecular systems. In this direction one key application of this 

work can be the understanding at the multivariate level of signal integration by T cells 

in cancer. Indeed it has been established that Th1 and CD8 T cells were of good 

prognosis in numerous types of studies for various types of cancer [34]. Checkpoint 

molecules have been found to be one key and successful target of new cancer therapy 

[6]. However, one bottleneck to their broad use in clinics is that only 20 to 30% of 

patients exhibit a long term response to the therapy. It has been shown that combining 

distinct anti-checkpoint treatments could improve the cancer cure [35,36]. However, 

cancers are constituted of various molecular signaling and complex signaling networks 

involving many communication molecules [6]. Therefore finding appropriate cures by 

manipulating T cell phenotypes relies on dissecting this complexity. Testing all putative 

pair of anti-checkpoint treatment would be an enormous task. Our strategy, could be 

applied to such question and help rationalize through in silico model predictions the 

design of combined anti-checkpoint treatments.  

The experimental validations of our model predictions led to the discovery of two 

distinct populations of Th17 cells that we named Th17A and Th17F. To our knowledge 

it is the first time that this observation was made. Interestingly, we discovered a novel 

differentiation pathway for Th17F cells through the combination of IL-12p70 and IL-1 

cytokines. This interesting discovery raises questions on the role of these two distinct 

Th17 subpopulations. IL-17A and IL-17F share the same receptor and fifty percent of 



homology in their amino acid sequence [37]. It could suggest that they have redundant 

functions, for example to recruit and activate neutrophils [38]. However, it has been 

shown that IL-17A has higher affinity than IL-17F for its receptor [39]. Whether or not 

IL-17F could bind another receptor of the IL-17R family remains unknown.  Mice 

lacking only the IL-17A gene showed a phenotype that was not compensated by the 

valid form of IL-17F, which could suggest distinct functions [40,41]. Going in this 

direction, it has been shown that mice lacking IL-17F but not IL-17A could harbor 

defective airway neutrophilia in response to allergen challenge [42]. In addition, IL-17A 

but not IL-17F was required for the initiation of experimental autoimmune 

encephalomyelitis [42]. In human, the role of Th17 cells was well studied in various 

types of auto-immune disorders, such as psoriasis, multiple sclerosis, Behçet disease 

or Crohn’s disease [43]. In these diseases, it is known that IL-12p70 can be part of the 

microenvironment [44]. Our work sheds light on the importance of considering IL-

12p70 as a potent inducer of IL-17A and/or IL-17F in these diseases based on the 

other signaling molecules from the molecular contexts. 

MATERIAL AND METHODS:  

PBMCs purification 

Blood samples from healthy adult donors were obtained from the EFS (Etablissement 

Français du Sang, Paris, France) in conformity with Institut Curie ethical guidelines. 

PBMCs were isolated by centrifugation on a density gradient (Lymphoprep, 

Proteogenix). 

Monocyte-derived dendritic cells generation and activation 

CD14+ cells were selected from PBMCs using magnetically labeled anti-CD14 

microbeads and MACS columns following manufacturer’s instructions (CD14 

Microbeads and LS columns, MiltenyiBiotec). CD14+ cells were then cultured with IL-

4 (50 ng/mL) and GM-CSF (10 ng/mL) (MiltenyiBiotec) for 5 days in RPMI 1640 

Medium, GlutaMAX (Life Technologies) with 10% FCS. Monocyte-derived DCs 

(MoDC) were activated for 24 hours using one or a combination of perturbators as 

described in legends of figure 1C. 

Blood dendritic cells purification 



A step of DC pre-enrichment was performed from PBMCs using the EasySep Human 

Pan-DC Pre-Enrichment kit (StemCell Technologies). Total DC were sorted on an 

MoFloAstrios (Beckman Coulter) as Lineage (CD3, CD14, CD16, and CD19)−CD4+ 

(Beckman Coulter), CD11c+ (BD). 

CD4+ T lymphocytes purification 

Naive CD4+ T lymphocytes were purified from PBMCs using the EasySep™ Human 

Naive CD4+ T Cell Isolation Kit (StemCell Technologies). Memory CD4+ T cells were 

purified from PBMCs using the Memory CD4+ T cell isolation Kit (MiltenyiBiotec). 

Paired protein measurement in DC/T co-culture  

After 24 hours DC or MoDC activation, culture supernatants were kept for cytokine 

analysis while cells were washed in PBS and either analyzed for surface markers 

expression, or put in coculture with allogeneic naive CD4 T cells, at a ratio of 1 DC for 

5 T cells, in X-VIVO 15 medium (Lonza). After 6 days of coculture cells were washed 

and reseeded at 1x106/ml and restimulated with anti-CD3/CD28 Dynabeads 

(LifeTechnologies). 24 hours later supernatants were collected to measure T cell 

cytokines. In each coculture experiment, one single DC donor was coupled to a 

different single CD4 T cell donor. For each DC/T cell pair, the measurement of DC 

derived signals and Th cytokines were performed in parallel, leading to the acquisition 

of paired data for the 36 DC derived signals and the 17 T cell cytokines measured. 

Blocking experiments  

For IL-12p70 blocking experiments, MoDC were incubated during one hour at 37°C in 

the presence of 20 µg/mL of the blocking antibody (eBioscience, clone B-T21) or its 

matched isotype control. Then, naive CD4 T cells were added to the culture. Antibodies 

were maintained for the duration of the co-culture. After 6 days of coculture cells were 

washed and reseeded at 1x106/ml and restimulated with anti-CD3/CD28 Dynabeads 

(LifeTechnologies). 24 hours later supernatants were collected to measure T cell 

cytokines.  

DC-free Th cell polarization 

Naive CD4 T cells were cultured for 5 days with only anti-CD3/CD28 Dynabeads (Life 

Technologies) to obtain Th0 or beads in combination with either IL-12 (Th1), IL-4 (Th2), 



IL-1β, IL-12 plus IL-1β or a mix of IL-1β, IL-23, TGF-β and IL-6 to obtain Th17 

(Peprotech) as already published [11]. At the end of the culture cells were used for 

intracellular staining or washed, reseeded at 1x106/ml and restimulated with anti-

CD3/CD28 Dynabeads (Life Technologies) for 24 hours before collecting 

supernatants. 

Flow cytometry analysis 

Antibodies and matched isotypes were titrated on the relevant human PBMC 

population. For surface FACS analysis on activated MoDCs and blood DCs the 

complete list of antibodies and important information such as brand, final dilutions, 

reference, clone and colors are given in supplementary materials table 1. Dead cells 

were excluded using DAPI (Miltenyi).  

For intracellular cytokine staining, naive or memory CD4 T cells were stimulated with 

100 ng/ml PMA, 500 ng/ml Ionomycin and 3 µg/ml Brefeldin A (ThermoFisher) for 5 

hours. To exclude dead cells, CD4 T cells were stained using the LIVE/DEAD Fixable 

yellow dead cell stain kit, following manufacturer’s instructions (Life Technologies). 

Cells were fixed and permeabilized using the IC Fix and Permeabilization buffers 

(ThermoFisher). Intracellular cytokines were revealed with fluorescently conjugated 

antibodies against IL-17A (Biolegend), IL-17F (ThermoFisher), IL-21 (Biolegend), IL-

22 (ThermoFisher), and IFN-γ (BD), or matched isotype controls and acquired on a 

Fortessa instrument (BD).  

All FACS data were analyzed using the FlowJo software (Treestar).  

Cytokine quantification 

Cytokines were quantified in dendritic cell supernatants using CBA flex set for IL-1α, 

IL-1β, IL-6, IL-10 and IL-12p70 and using Luminex for IL-23 and IL-28a. Cytokines from 

T cell supernatants were quantified using CBA flex set for, IL-2, IL-3, IL-4, IL-5, IL-6, 

IL-9, IL-10, IL-13, IL-17A, IL-17F, TNF-α, IFN-γ and GM-CSF (BD), following the 

manufacturer’s protocol  

Literature mining  

In order to survey the literature and confront model, two independent reviewers 

performed a systematic literature review using the Pubmed database to identify 



relevant studies examining the effects of inputs on naïve CD4+ cells. The electronic 

searches returned a total of 14,769 references that were brought down to 178 unique 

articles that contained relevant information and that underwent data extraction. 

Statistical analysis 

Statistical analysis was carried out using the Prism software v5 (GraphPad). Paired 

Wilcoxon or t test were applied as detailed in figure legends to compare two groups. 

Significance was retained for P values <0.05.  

All the statistical analyses were performed using the R software. Each variable were 

transformed using first the Box-Cox transformation and then a scaling step on both the 

mean and the variance. In order to cluster the inputs, outputs and the samples a 

hierarchical clustering approach was applied by using different criterions: Ward’s 

criterion and Pearson correlation metric were used to cluster the inputs and the 

outputs, while Ward’s criterion and the Euclidean metric were used to cluster the 

samples or DC conditions. The heatmaps were generated by using the heatmap.2 

package. The correlations between the continuous variables were computed by using 

the Pearson correlation. All statistical tests are called “significant” if their p-value is 

smaller than 0.05. 

Statistical modeling 

In order to select the most relevant inputs for modeling the outputs, we use the linear 

model methodology recently developed in [45] which has already been successfully 

applied to metabolomics data in [46]. The great advantage of such an approach is to 

propose a Lasso-based criterion [47] taking into account the dependence that may 

exist between the outputs. The parameters involved in the criterion are chosen thanks 

to 10 fold cross-validation and stability selection with 1000 resampling [48]. Further 

details on this lasso-based methodology are available in the supplementary materials 

’Modelling strategy’. The numerical experiments were performed using the real inputs 

data set. Then, in order to mimic the Th groups, a random error matrix having a 

blockwise constant covariance matrix is generated.  

The ROC curves display the True positive rate (TPR) as a function of the False positive 

rate (FPR) where the TPR is the number of variables that have been properly identified 

as being relevant for explaining the response divided by the total number of 



explanatory variables. The FPR is the number of variables that have been wrongly 

identified as being relevant for explaining the response divided by the total number of 

variables that do not explain the response. To look for a context dependent role of 

IL12p70 in the presence of another input we perform the same methodology but 

instead of modeling the outputs by using only the inputs, some new variables are 

added: they correspond to a combination of IL12p70 with the other inputs. More 

precisely, for instance, the variable “IL12P70 with IL1” is equal to the value of IL12p70 

for the samples having a positive concentration in IL1 and to zero for the samples for 

which the concentration in IL1 is equal to zero. 

For a detailed description of our statistical modeling strategy see supplementary 

methods section 2.  

FIGURE LEGENDS  

Figure 1: Diversity of dendritic cell states revealed through multi-parametric analysis of 36 

communication proteins. A) Diagram explaining the experimental and analysis approaches B) Dot 

plots of raw expression values of each of the 36 DC communication signals. Surface molecules were 

quantified by Flow cytometry analysis and data represent mean of fluorescence intensity. Secreted 

molecules were measured by Cytometric Beads Array or Luminex. (n=418 data points) C) Heatmap 

representing expression values of each 36 DC derived signals performed with hierarchical clustering on 

Pearson metrics for the DC signals and Euclidian distances for the DC conditions D) Average expression 

and standard deviation are represented for some selected DC signals across all C1 to C20 clusters.  

Figure 2: Systematic T helper cell cytokines profiling reveals an overall conservation of dendritic 

cells derived information. A) Diagram explaining the experimental and analysis approaches B) Dot 

plots of raw expression values of each of the 18 Th derived parameters. 17 cytokines were measured 

either by Cytometric Beads Array or Luminex. Expansion fold was calculated by counting live cells at 

the microscope at day 6 after co-culture. (n=418 data points) C) Heatmap representing expression 

values of each 18 Th derived parameter performed with hierarchical clustering on Pearson metrics for 

the DC signals and Euclidian distances for the T cell conditions. D) Homology analysis of DC and T 

clustering. Heatmap representing the percentage of DC conditions belonging to a given cluster (C1 to 

C20) and retrieved in a T cell cluster (D1 to D20). Rand Index and Normalized information distance were 

computed to assess similarities between the two hierarchical clustering.   

Figure 3: A data-driven Lasso penalized regression model predicts multiple Th differentiation 

outcomes from DC-derived communication signals expression. A) Diagram explaining the 

experimental and analysis approaches B) ROR curve analysis comparing four different types of 

modeling strategies (Raw, OR, MultivarSel and sPLS) and different variable selection methods (Lasso, 

Stability Selection and CV) C) Heatmap representing the model’s coefficient value of the multivariate 



model explaining the 18 derived T helper parameters based on the 36 DC derived communication 

molecules. Hierarchical clustering was performed on model’s coefficient values based on Pearson 

correlation. D) Error of prediction values obtained by 10 fold cross-validation for T helper derived 

parameters E) Literature based validation score, calculated on the number of articles finding a given 

association between a DC signal and a Th cell cytokine. Data represent a mean value of the validation 

score for each DC signal across all Th cytokines.  

Figure 4: Hidden context dependent role of IL-12p70 in the differential regulation of IL-17A and 

IL-17F revealed by multivariate modeling. A) Diagram explaining the experimental and analysis 

approaches B) Error of prediction values obtained by 10 fold cross-validation for IL-17A and IL-17F, 

comparing the best univariate model, the multivariate model obtained in figure 3C, and a multivariate 

model presented in figure 4C that takes into account IL-12p70 context dependencies. C) Heatmap 

representing the model’s coefficient value of the multivariate model explaining the IL-17A and IL-17F 

derived T helper D) Model predictions on IL-12p70 in silico KO in the condition MoDC zymosan (10ug/ml) 

for IL-17A and IL-17F values. Real values in the presence of IL-12p70 are compared to predicted values 

obtained in the absence of IL-12p70. E) Concentrations of IL-17A and IL-17F produced by Th cells after 

differentiation in the presence of MoDC treated with 10ug/mL zymosan, in the presence of neutralizing 

antibodies specific for IL-12p70 or matching isotype. N=6 donors. Paired t-test was performed to 

compare the means. F) Frequencies of selection of the different DC signals by a multivariate model 

explaining the differences between IL-17F and IL-17A. Frequencies were obtained through stability 

selection.  

Figure 5: Experimental validation of the context specific induction of IL-17F independently of IL-

17A by IL-12p70 in the presence of IL-1. A) Concentration of cytokines measured on restimulated Th 

supernatants. Naïve CD4 T cells were differentiated 5 days with anti-CD3/CD28 beads in different 

conditions: Th0 (medium), Th2 (IL-4), IL-12p70, IL-1b, IL-12+IL-1b, and Th17 (IL-1b, IL-23, IL-6 and 

TGFb). 6 donors were included in this experiment, student paired t-test was performed B) Intracellular 

FACS analysis of Th cells differentiated in the same way that in panel A, at day 5, T cells are stimulated 

with PMA and ionomycine in the presence of brefeldine A. Dot plots show a representative donor. C) 

Quantification of live total CD4 T cells producing either IL-17A or IL-17F. n=6 distinct donors. Paired t-

Test was used to address statistical significance. D) Venn Diagrams of IL-17F+ Th cells co-producing 

other cytokines. Remarkable populations are highlighted in Red. The mean percentages and confidence 

intervals were calculated on 6 donors E) Quantification of the percentage of the distinct IL-17F+ 

populations for each donor of the following populations: IL-17F+IFNγ-IL-21-, IL-17F+IFNγ+IL-21-, IL-

17F+IFNγ-IL-21+ and IL-17F+IFNγ+IL-21+. Paired t-test was used for statistical comparisons. 

Figure 6: IL-17F+ IL-17A- CD4+ populations are largely represented in the memory compartment. 

A) One representative donor of CD4 memory T cells, with intracellular staining for IFN-γ, IL-17A, IL-17F, 

IL-22 and IL-21. B) Venn Diagrams of IL-17F+ Th cells co-producing other cytokines. The mean 

percentage and confidence interval were calculated on 6 donors C) Quantification of the percentage of 

the distinct IL-17F+ subpopulations for each donor. 



SUPPLEMENTARY FIGURE LEGENDS  

Figure S1: Systematic description of the expression of the 36 DC communication molecules 

across all DC clusters. Average expression and standard deviation are represented for the 36 DC 

signals across all C1 to C20 clusters. 

Figure S2: Absence of date or donor effects in the dataset generated in comparison to the DC 

subsets or DC stimulation meaningful effects. Principal Component Analysis (PCA) representing the 

full dataset, colored for blood DC versus moDC. The 3 other PCA represent the 6 most frequent DC 

stimulations with color representing, donors, dates or DC stimulations.  

Figure S3: Systematic description of the cytokine profiles in Th cells treated with IL-12 + IL-1b 

A) Concentration of cytokines measured on restimulated Th supernatants that were not presented in 

main figure 5A. Measures were performed either by Cytometric Beads Array or Luminex. B) 

Combinatorial experiment performed as described in main figure 5A but with distinct input cytokines and 

combinations of cytokines. n=3 donors C) Another representations of data that were included in the 

venn diagrams of main figure 5D. Allows seeing the different co-production profiles of IL-17F+ cells 

across the 3 different culture conditions.  
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SUPPLEMENTARY METHODS 

SUPPLEMENTARY METHODS SECTION 1 

Model comparison and ROC Curves: The figure 3B aims to assess the performance of 

our modelling and strategy in terms of variable selection and to compare it with other 

variables selection methodology. To do this we perform numerical experiment: We use 

the real dataset of inputs let's call it X, simulate a random error matrix (E) with a block 

covariance matrix to mimic the Th subset and a matrix of coefficients (B) (to mimic the 

effect of the inputs on the outputs). Using this three matrix we created a new output 

matrix Y=XB+E. On this new matrix Y we perform different modelling strategy. The first 

on is the sPLS, the second one is the classical lasso applying to each column of Y 

(namely each output) independently (Raw). Then we perform our methodology 

describe in supplementary methods section 2, which consist to estimate the covariance 

matrix of E and use it to remove the dependence between the outputs before applying 

the Lasso methodology (MultivarSel). The last one is the same than our but with the 

real covariance matrix of E we call it Oracle (OR). For each of this methodology we 

vary the threshold to vary the number of variable that we keep and calculate for each 

threshold the True positive rate (TPR) and the False positive rate (FPR), where the 

TPR is the number of variables that have been properly identified as being relevant for 

explaining the response divided by the total number of explanatory variables. 

We also wanted to assess the effect of the Signal to noise ratio (SNR) and the sparsity: 

the percentage of none zeros in the matrix B. Namely the percentage of pairs of input-

output that actually interact together. To do this we made different scenarios with high 

or low SNR (0.5 and 1) and high and low sparsity (0.001 and 0.3). For all of this 

scenario we simulate 1000 different Y so we perform all this methodology 1000 times 

each and we calculate at each times for each methodology for each threshold the TPR 

and the FPR. We then took the mean of this TPR and FPR for each methodology for 

each threshold. We also wanted to assess the importance of the stability selection. 

The results are displayed in figure 2B. 

We can see that MultivarSel provides better results than sPLSDand than approaches 

that Raw. Moreover, we observe that the performance of MultiVarSel is on a par with 

OR That means that we greatly estimate the dependence among the outputs. We also 



note that the larger the sparsity level the smaller the difference of performance between 

MultiVarsel and Raw are lower but the difference between MultivarSel and sPLS are 

higher. However, the larger the signal to noise ratio the better the performance of the 

different methodologies. Eventually we can see that adding the stability selection step 

improve a lot the result. 

SUPPLEMENTARY METHODS SECTION 2:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction

We propose the following modeling for the outputs:

Y = XB + E, (1)

where Y denotes the n×q output matrix, X denotes the n×p design matrix containig the inputs, B
is an unknown p×q coefficient matrix and E is the n×q random error matrix. Here, n corresponds
to the number of samples, q is the number of outputs and p denotes the number of inputs. In
order to take into account the potential dependence that may exist between the outputs, we shall
assume that each row i of E satisfies:

(Ei,1, . . . , Ei,q) ∼ N (0,Σq), (2)

where Σq denotes the covariance matrix of the ith row of the random error matrix.
In order to select the most relevant inputs for explaining the outputs, the methodology that

we propose can be summarized in the following three steps:

• First step: Fitting a multiple regression model to each output to have an estimation of the
error matrix: Ê and computing its empirical covariance matrix.

• Second step: Using this empirical covariance matrix to remove the dependence in E, namely
between the outputs.

• Third step: Selecting among the inputs the most relevant for explaining the outputs by
applying a Lasso approach to the transformed data as explained in the second step.

2 First step : Residuals and covariance matrix

We obtain an ordinary least square (OLS) estimator of B by fitting a multiple regression model

which is not a variable selection method. More precisely, the corresponding estimator B̂OLS is
defined by

B̂OLS = ArgminB

{
‖Y −XB‖22

}
,

Using B̂OLS we get an estimation of E: Ê = Y − XB̂OLS. Then, we compute the empirical
covariance matrix Σ̂q of Ê.

3 Second step : Transformation

Let us recall that the standard Lasso criterion, proposed by Tibshirani (1996), estimates B in the
following univariate linear model:

Y = XB + E , (3)

by
B̂(λ) = ArgminB

{
‖Y − XB‖22 + λ‖B‖1

}
, (4)

where Y, B and E are vectors. Usually, the components of E are assumed to be independent.
Thus, we propose to transform Model (1) to be able to use the Lasso criterion as follows. First,

we remove the dependence among the ouputs:

Y Σ̂−1/2q = XB Σ̂−1/2q + E Σ̂−1/2q , (5)

where Σ̂
−1/2
q denotes the inverse of the square root of Σq.

Then, we apply the vec operator which consists in stacking the columns of a matrix into a
single column vector.

1



Y = vec(Y Σ̂−1/2q ) = vec(XBΣ̂−1/2q ) + vec(EΣ̂−1/2q )

= ((Σ̂−1/2q )′ ⊗X)vec(B) + vec(EΣ̂−1/2q )

= XB + E .

4 Third step: Variable selection

Thanks to the previous, the Lasso criterion can be applied to Y = vec(Y Σ̂
−1/2
q ). Since B = vec(B),

estimating the coefficient of B boils down to estimating the coefficients of B. The parameter λ in
(4) is chosen by 10-fold cross-validation followed by a stability selection step with 1000 resamplings,
as proposed by Meinshausen and Buhlmann (2010).
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SUPPLEMENTARY METHODS SECTION 3: 

Systematic literature review 

To assess the literature and evaluate the generated multivariate model of figure 3C, 

we conducted a systematic literature review to identify articles indexed on the Pubmed 

database by March 1st 2017, examining the effects of inputs on naïve CD4+ cells using 

the Pubmed database. 

One of three different search strategies was used to export references from the 

Pubmed database into the reference management software EndNote™. 

We started by performing the first search strategy which consisted of using free text to 

search English language articles for the input (or any of its aliases) and the output (or 

any of its aliases). If the search yielded 20 or less results, the references were exported 

into EndNote™.  

If not, then we performed the second search strategy, which consisted of searching 

English language articles for the input (or any of its aliases) and the output (or any of 

its aliases), both in the title or abstract, and at least one of the following medical subject 

heading terms: “cell differentiation” or “CD4-positive T-lymphocytes” or “lymphocyte 

activation”. If the search returned 50 or less results, the references were exported into 

EndNote™. If not, then we carried out the third search strategy which returned English 

language articles that had both the input (or any of its aliases) and the output (or any 

of its aliases) in the title or abstract, as well as indexes to both of the following medical 

subject heading terms: “cell differentiation” and “CD4-positive T-lymphocytes”. Results 

were exported into EndNote™. 

The electronic searches generated a total of 14,748 references that were managed 

through EndNote™. A manual search of references from review articles and other 

records identified 21 additional publications that were not included in the search 

results. Of these 14,769 articles, around 9,759 duplicates were removed, leaving 4,989 

records to be screened.  

Titles and abstracts were screened by 2 independent reviewers. Publications were 

selected for further in-depth consideration if they met all of the following inclusion 

criteria: 1) Journal Article, 2) Examining the effect of one input at a time, 3) Testing on 

naïve CD4+ T cells, which were defined as CD4+ and CD45RA+ and/or CD45RO- 



and/or CD25- cells. Studies were excluded from the analysis if: 1) Full-text article, Title 

and/or abstract were not available, 2) Methods and/or experiments and/or results were 

unclear or inconclusive or of low quality. Reasons for removing articles included not 

performing proper experimental controls, insufficient information, lack of replicates 

and/or statistical analysis. 

The reviewers excluded 4,589 articles because they did not meet the inclusion and 

exclusion criteria, leaving 400 articles of which, at least, the figures and materials and 

methods sections were examined. Finally, 178 publications met all the inclusion criteria 

and underwent data extraction.  

Extracted information included the Pubmed identifier, the input, the output, the input’s 

effect on naïve CD4+ T cells in regards of the output, the experimental context and 

setup (e.g., details about T cells stimulation context, input’s concentration, duration…) 

and the organism. Data were cross-checked by the 2 reviewers, and any ambiguities 

were discussed and resolved through a consensus.  

 

 

 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY METHODS TABLE 1: 

 

 

 

 

 

Target Color Isotype Brend Concentration Reference Lot number Clone Dilution

CD30L PE Mouse IgG2b R&D 25 ug/ml FAB1028P LQI03 116614 1/20

CD11a PerCP Mouse IgG2a R&D 25 ug/ml FAB35951C ABTZ01 CR38 1/40

SLAMF3 APC Mouse IgG2a R&D 10 ug/ml FAB1898A LUG02 249936 1/100

4-1BBL APC Mouse IgG2b R&D 50 ug/ml FAB2295A AAJS03 282220 1/20

CD40 PC7 Mouse IgG1k Biolegend 40 ug/ml 334321 B169746 5C3 1/80

SLAMF5 FITC Goat IgG R&D 25 ug/ml FAB1855F AANL01 Polyclonal Goat IgG 1/20

LFA3 PEcy5 Mouse IgG1k Biolegend 400 ug/ml 330909 B158053 TS2/9 1/80

ICAM-2 FITC Mouse IgG2a k Biolegend 400 ug/ml 328507 B154819 CBR-IC2/2 1/30

 ICAM-3 APC Mouse IgG1 k Biolegend 100 ug/ml 330011 B171685 CBR-IC3/1 1/40

CD18 PE Mouse IgG1 k Biolegend 200 ug/ml 302107 B171065 TS1/18 1/160

B7-H3 PE Mouse IgG1 k Biolegend 200 ug/ml 351003 B162616 MIH42 1/20

Nectin-2 PE Mouse IgG1k Biolegend 200 ug/ml 337410 B157947 TX31 1/20

PVR PE Mouse IgG1k Biolegend 50 ug/ml 337619 B165662 SKII.4 1/20

CD100 FITC Mouse IgG1k Biolegend 200 ug/ml 328406 B166052 A8 1/20

CD229 APC Mouse IgG2a R&D 10 ug/ml FAB1898A LUGO213101 249936 1/100

Galectin 3 AF488 Goat IgG R&D 20 ug/ml IC1154G ABWO01 Polyclonal Goat IgG 1/40

jagged 2 APC Mouse IgG1 Biolegend 50 ug/ml 346906 B131112 MHJ2-523 1/20

LIGHT PE Mouse IgG1 R&D 25 ug/ml FAB664P LPX03 115520 1/40

CD29 A700 Mouse IgG1 k Biolegend 500 ug/ml 303020 B169944 TS2/16 1/40

 B7H3 FITC Mouse IgG1 R&D 25 ug/ml FAB1027F AAPR0112111 185504 1/20

CD54 BV711 Mouse IgG1k BD Horizon 50 ug/ml 564078 4045614 HA58 1/40

PDL2 BV786 Mouse IgG1k BD Horizon 50 ug/ml 563843 3340501 MIH18 1/40

CD83 PerCP/cy5.5 Mouse IgG1K Biolegend 200 ug/ml 305320 B165130 HB15e 1/30

CD86 BV650 Mouse IgG2b Biolegend 100 ug/ml 305428 B186220 IT2,2 1/100

HLA-DR BV711 Mouse IgG2a,k Biolegend 50 ug/ml 307644 B177591 L243 1/150

CD70 FITC Mouse IgG3 BD 50 ug/ml 555834 3339797 Ki-24 1/40

CD80 BV786 Mouse IgG1k BD 25 ug/ml 564159 4085730 L307,4 1/40

VISTA A700 Mouse IgG2b R&D 50 ug/ml FAB71261N ADYI0114011 730804 1/40

OX40L R-PE Mouse IgG1k Ancell 500 ug/ml 400-050 163103 ANC10G1 1/20

PDL1 Percp710 Mouse IgG1 Ebio 200 µg/mL 46-598342 E15140-103 MIH18 1/80

ICOSL APC Mouse IgG2b R&D 25 µg/mL FAB165A AALD0114031 136726 1/20
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FIGURE 1 : Diversity of dendritic cell states revealed through multiparametric analysis of 36 communication proteins 

C

86 distinct 
stimulatory 
conditions

Dendritic cell (DC)

418 data points
 of

36 protein 
signals 

B

D

 

N
ec

tin
2

Ja
gg

ed
2

G
al

ec
tin

3

C
D

70

C
D

80

C
D

83

O
X4

0L

PD
L1

C
D

86

IC
O

SL

H
LA

D
R

IL
-2

3

IL
-2

8a

IL
-1

0

IL
-1

2p
70 IL
-6

TN
F-
α

B
7H

3

C
D

30
L

41
B

B
L

PD
L2

VI
ST

A

C
D

40

C
D

54

C
D

58

IC
A

M
2

IC
A

M
3

C
D

18

C
D

29

SL
A

M
F5

SL
A

M
F3

PV
R

C
D

11
a

C
D

10
0

LI
G

H
T

10

1000

100000

C20

C19

C18

C17

C16

C15

C14

C13

C12

C11

C10

C9

C8

C7

C6

C5

C4

C3

C2

C1
Flu (1X)+ HKSA (MOI 1)
Flu (1X)+ HKCA (MOI1)
Flu (1X)+ HKLM (MOI 1)
Alum (200ug/ml) + Flu (1X)
Flu (1X)+ PAM3 (1ug/ml)
Flu (0,1X) + PAM3 (0,1ug/ml)
Flu (0,5X) + PAM3 (1ug/ml)
Flu (1X)+ PAM3 (10ug/ml)
Flu (0,5X)
Flu (1X)
PolyIC (100ug/ml)
PolyIC (50ug/ml)
LPS (100ng/ml) + R848 (1ug/ml)
Zymosan (10ug/ml) + R848 (1ug/ml)
LPS(100ng/ml) + HKSA (MOI 20)
LPS(100ng/ml) + Zymosan (10ug/ml) 
Zymosan (10ug/ml)  + HKSA (MOI 20)
Zymosan (10ug/ml) + PAM3 (1ug/ml)
LPS (100ng/ml) + PAM3 (1ug/ml)
PAM3 (1ug/ml) + R848 (1ug/ml)
HKSA (MOI 20) + R848 (1ug/ml)
HKSA (MOI 20)
HKSA (MOI 20) + PAM3 (1ug/ml)
LPS (100ng/ml) +  R848 (100 ng/ml)
LPS (1000ng/ml) + R848 (1000ng/ml)
LPS (10ng/ml) + R848 (10ng/ml) 
Curdlan (10ug/ml)
Zymosan (20ug/ml)
Zymosan (10ug/ml)
LPS (1000ng/ml)
LPS (100ng/ml)
HKSA (MOI 1) + HKCA (MOI 1)
HKSA (MOI 20) + HKCA (MOI 10)
Zymosan (10ug/ml) + PGE2 (10ug/ml)
HKSA (MOI 1)
PAM3 (0,1ug/ml)
PAM3 (10ug/ml)
PAM3 (1ug/ml)
Zymosan (1ug/ml)
LPS (10ng/ml)
R848 (1ug/ml)
HKCA (MOI0,1)
HKSA (MOI 0,1) + HKCA (MOI 0,1)
HKCA (MOI1)
MEDIUM
HKLM (MOI 1)
HKSP (MOI1)
PGE2 (0,1 ug/ml)
PGE2 (1 ug/ml)
HKCA (MOI 10)
PGE2 (10 ug/ml)
R848 (100 ng/ml)
R848 (10ng/ml)
Zymosan (0,1ug/ml) + PGE2 (0,1ug/ml)
Zymosan (1ug/ml) + PGE2 (1 ug/ml)
Flu (0,1X)
HKSA (MOI 0,1)
LPS (1ng/ml)
Zymosan (0,1ug/ml)
IFNb (50ng/ml)
GMCSF (50ng/mL)
PolyIC (50 ug/ml)
Curdlan (20ug/ml)
HKLM (MOI 10)
Alum (200ug/ml)
GMCSF (100ng/ml)
HKCA (MOI100)
Curdlan (10ug/ml)
LPS (100ng/ml)
HKLM (MOI 1)
PAM3 (10ug/ml)
Flu (1X)
PAM3 (1ug/ml)
TSLP (50ng/mL)
HKCA (MOI1)
MEDIUM
HKCA (MOI 10)
GMCSF (50ng/mL)
HKLM (MOI 1)
Zymosan (10ug/ml)
HKLM (MOI 100) 
HKSA (MOI 10)
HKSA (MOI 1)
R848 (1ug/ml)
HKSA (MOI 20)
PolyIC (50ng/ml)

IL
-1

IC
A

M
2

V
IS

TA
C

D
11

a
41

B
B

L
Ja

gg
ed

2
IL

28
a

IC
O

S
L

C
D

10
0

S
LA

M
F3

C
D

18
IC

A
M

3
S

LA
M

F5
G

al
ec

tin
3

B
7H

3
C

D
29

C
D

70
LI

G
H

T
C

D
30

L
O

X
40

L
H

LA
D

R
C

D
83

P
D

L2
C

D
86

N
ec

tin
2

IL
12

p7
0

C
D

58
C

D
54

C
D

80
P

D
L1

C
D

40
TN

Fa IL
6

IL
10 IL
1

P
V

R
IL

23

4-1BBLOX40LCD29 CD80ICAM3 SLAMF3

MoDC or CD11c+ DC
44 donors total

CD
11

c+
 D

C
M

oD
C

Hierarchical 
clustering (C)

Overall dataset 
description (B)

Cluster specific 
expression of DC 
signal (D)

R
aw

 E
xp

re
ss

io
n 

Va
lu

es

10

1000

100000

R
aw

 E
xp

re
ss

io
n 

Va
lu

es

Unsupervised Hierarchical clustering on Peason correlation

−2 −1 0 1 2

Normalized 
Mean Expression

Values 

86
 d

is
tin

ct
 D

C
 S

tim
ul

at
or

y 
co

nd
iti

on
s 

(2
0 

cl
us

te
rs

)

36 DC communication proteins

Mean of Florescence Intensity (MFI)

 DC surface and secreted communication signals (n=418 data points) 

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0 1000 2000 3000 0 1000 20000 5000 10000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 5000 10000 15000
C20
C19
C18
C17
C16
C15
C14
C13
C12
C11
C10
C9
C8
C7
C6
C5
C4
C3
C2
C1

�
�

�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

0 1e+05 2e+05
Concentration 

(pg/mL)

IL-6



A

D

FIGURE 2 : Systematic T helper cell cytokines profiling reveals an overall conservation of Dendritic cells derived information 
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FIGURE 3: A data-driven Lasso penalized regression model predicts multiple Th differentiation outcomes 
from DC-derived communication signals expression 
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A

FIGURE 4 : Hidden context dependent role of IL-12 in the differential regulation of IL-17A and IL-17F revealed by multivariate modeling

C

B

IL17A

IL17F

C
D

58
B

7H
3

C
D

80
Ja

gg
ed

2
G

al
ec

tin
3

IL
12

_w
ith

_I
L1 IL

1
IL

12
_w

ith
_I

C
A

M
2

IL
12

_w
ith

_J
ag

ge
d2

IL
12

_w
ith

_O
X4

0L
41

B
B

L
TN

Fa
C

D
86

IL
23

IL
28

a
PD

L2
C

D
18

IL
12

_w
ith

_I
L2

8a
C

D
11

a
H

LA
D

R
SL

A
M

F3
C

D
70

C
D

83
PV

R
O

X4
0L

IL
12

_w
ith

_C
D

70
IL

12
_w

ith
_I

L2
3

IL
12

_w
ith

_L
IG

H
T

C
D

29 IL
6

IL
12

_w
ith

_T
N

Fa
IL

12
_w

ith
_C

D
30

L
VI

ST
A

C
D

30
L

IC
A

M
2

IC
O

SL
LI

G
H

T

−0.4

−0.2

0.0

0.2

Model’s 
Coefficients 

value

IL-17A

IL-17F

� � �

� � �

0.5 0.6 0.7 0.8

Square Error of predictions

� Best univariate
model

� MultivarSel
= Our multivariate 
model from Fig 3C

� MultivarSel_
IL12 context 
dependant 

D

�
�

�

�
�

�
��
�

�
�

�

�

�
�

�

��
�

��

�

�
�

�
�

�

�
�
�

�
�

�

� �

�

�
��
� �

***

�
�

�
�

�

���

�

��
�

�

�

�

�

�

�

��
�

� �

�

�

�
�

�
�
��

�
���

�

�

�

�

�

�

��
���

***

IL17A IL17F

0.1

1.0

0.1

1.0

E F

B7H3
CD58

ICAM3
Nectin2

Galectin3
PDL1

IL6
CD83
CD54
PDL2

SLAMF5
CD29

CD100
CD40
IL10

OX40L
HLADR
LIGHT

Jagged2
CD18

SLAMF3
TNFa
IL28a
PVR

CD86
CD30L
ICOSL
CD11a
VISTA

41BBL
IL23

ICAM2
CD70
CD80

IL1
IL12p70

0.00 0.25 0.50 0.75 1.00
Frequencies of 

selection 

Model predictions on IL-12 in silico KO 
in 10ug/mL zymosan treated moDC

Experimental validation of IL-12 in silico knock-out 
on zymosan treated moDC

0

5 00

1 00 0

1 50 0

0

5 00 0

1 00 00

1 50 00

iso iso iso isoa-IL-12 a-IL-12

Zymosan 
treated MoDC

Zymosan 
treated MoDC

Med 
MoDC

Med 
MoDC

* *

Frequencies of selection of 
explaining the difference 

between IL-17F and IL-17A 

Multivariate modeling including context dependant variables for IL-12
 

- +

 
CD4 

T cells 
17 T helper (Th) 

cytokines
(418 data points)

  

86 distinct 
stimulatory 
conditions

Dendritic cell (DC)

MoDC or CD11c+ DC
44 donors total

36 DC protein 
signals 

(418 data points)

INPUTS OUTPUTS

BLACK BOX

 
Analysis of IL-12 context dependant 

mechanism in Th17 outputs

- Model cross-validation (B)
- IL-12 context dependant model (C)
- Predictions of IL-12 in silico KO (D)

- Experimental validation of IL-12
in silico KO (E) 

 Modeling of the difference 
between IL-17A and IL-17F

Frequency of selected variables (F)
Multivariate model (G) 

Computational Validation 
assessed by cross-validation 

N
or

m
al

iz
ed

ex
pr

es
si

on
 v

al
ue

s

IL-12 IL-12
KO

IL-12 IL-12
KO

R
aw

 e
xp

re
ss

io
n 

va
lu

es
 (p

g/
m

L) IL-17A IL-17F



B C

D

A

Th0

IL-17F

IF
N

-γ

IL-12 IL-1b IL-12+IL-1bTh2 Th17

IL
-1

7A
IL

-2
1

IL
-2

2

0.0110.028

99.9 0.051
0.03713.5

86.5 0.046
0.0552.67

97.2 0.09
0.0121.51

98.4 0.083

0.09226.5

73.3 0.11

0.0170.051

99.8 0.11

0.228.8

70.8 0.16
9.41E-30.24

99.6 0.19

3.34E-30.19

99.7 0.068
6.67E-31.17

98.7 0.097
0.0932.47

97.0 0.41
0.010.31

99.6 0.11

0.0558.47

91.2 0.22

3.52E-30.072

99.7 0.25

0.0973.44

96.1 0.40
8.8E-30.74

99 0.23

1.0141.9

56.6 0.48

0.020.13

98.4 1.41

0.5522.7

75.5 1.19
0.0160.11

98.5 1.33

0.2112.1

87 0.7

0.0570.61

98.6 0.76

0.4718.4

80.2 0.91
0.0120.25

99 0.77

2.7
(±1.7) 0.6

(±0.4)2
(±1.8)

0.3
(±0.3)

7
(±2.2)

2.4
(±3)

0.1
(±0.1)

0.1
(±0.1)

0.7
(±0.7)

0.1
(±0.1)

0.1
(±0.1)

0.6
(±0.3)

28.5
(±5.1)

4.7
(±1.6)

0.9
(±0.8)

0.1
(±0.1) 0.1

(±0.1)0
(±0.1)

0.3
(±0.3)

37.3
(±4.5)

0.4
(±0.4)

0
(±0)

0.2
(±0.2)

0.1
(±0.1)

0
(±0)

0
(±0.1)

0.1
(±0.1)

10.4
(±3)

25.8
(±5.2)

1.5
(±0.9)

IL-12 + IL-1b Th17
IL-17A IFNg IL-17A IFNg

0.1
(±0.2) 0

(±0)0.7
(±0.6)

1.9
(±2.5)

8.2
(±4.2)

0.4
(±0.7)

0
(±0)

0.6
(±0.7)

0
(±0)

0.1
(±0.2)

0
(±0)

1
(±0.8)

23.3
(±4.3)

3.9
(±1.5)

1.4
(±1)

IL-1b
IL-17A IFNg

IL-21 IL-22 IL-21 IL-22 IL-21 IL-22

IL-17F+ simple pos. 58.4% (±7.5) IL-17F+ simple pos. 23.6% (±3.9) IL-17F+ simple pos. 49.5% (±6.6)

IL-22

0

200

400

600

800

pg
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17

IL-17A

0
50

100
150
200
250

pg
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17

IFNg

ng
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17
0

10

20

30 *** **
**

IL-17F

0
0.5

1
1.5

2
2.5

ng
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17

****

IL-21

0

5

10

15

ng
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17

*
*

IL-6

0

200

400

600

800

pg
/m

L

Th0
Th2

IL-12IL-1b

IL-12
+IL

-1bTh17

*
**

IL
-1

7F
+  (%

liv
e 

ce
lls

)
Th0

IL-12IL-1b

IL-12
+IL

-1bTh2
Th17

0.0

0.5

1.0

1.5

2.0 * *

IL
-1

7A
+  (%

liv
e 

ce
lls

)

0.0

0.5

1.0

1.5

2.0 *
ns

FIGURE 5 : Experimental validation of the context specific induction of Il-17F independantly of IL-17A by IL-12 in presence of IL-1 
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FIGURE S1 : Systematic description of the expression of the 36 DC communication molecules accross all DC clusters 
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FIGURE S2 :  Absence of date or the donor effects in the dataset generated in comparison to the DC subsets 
or DC stimulation meaningful effects.  
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FIGURE S3 : Systematic description of the cytokine profiles in Th cells treated with IL-12 + IL-1b



TABLE S1 

 bDC MoDC

Alum (200ug/ml) 0 3

Alum (200ug/ml) + Flu (1X) 0 3

Curdlan (10ug/ml) 7 7

Curdlan (20ug/ml) 0 2

Flu (0,1X) 0 4

Flu (0,1X) + PAM3 (0,1ug/ml) 0 2

Flu (0,5X) 0 4

Flu (0,5X) + PAM3 (1ug/ml) 0 2

Flu (1X) 13 17

Flu (1X)+ HKCA (MOI1) 0 3

Flu (1X)+ HKLM (MOI 1) 0 3

Flu (1X)+ HKSA (MOI 1) 0 3

Flu (1X)+ PAM3 (10ug/ml) 0 2

Flu (1X)+ PAM3 (1ug/ml) 0 3

GMCSF (100ng/ml) 0 2

GMCSF (50ng/mL) 6 3

HKCA (MOI0,1) 0 2

HKCA (MOI1) 4 9

HKCA (MOI 10) 0 4

HKCA (MOI100) 0 2

HKLM (MOI 1) 8 7

HKLM (MOI 10) 0 2

HKLM (MOI 100) 1 0

HKSA (MOI 0,1) 0 4

HKSA (MOI 0,1) + HKCA (MOI 0,1) 0 2

HKSA (MOI 1) 6 9

HKSA (MOI 10) 1 0

HKSA (MOI 1) + HKCA (MOI 1) 0 2

HKSA (MOI 20) 0 7

HKSA (MOI 20) + HKCA (MOI 10) 0 2

HKSA (MOI 20) + PAM3 (1ug/ml) 0 3

HKSA (MOI 20) + R848 (1ug/ml) 0 3

HKSP (MOI1) 0 3

IFNb (50ng/ml) 0 2

LPS (1000ng/ml) 0 4

LPS (1000ng/ml) + R848 (1000ng/ml) 0 2

LPS (100ng/ml) 8 21

LPS(100ng/ml) + HKSA (MOI 20) 0 3

LPS (100ng/ml) + PAM3 (1ug/ml) 0 3

LPS (100ng/ml) +  R848 (100 ng/ml) 0 2

LPS (100ng/ml) + R848 (1ug/ml) 0 3

LPS(100ng/ml) + Zymosan (10ug/ml) 0 3

LPS (10ng/ml) 0 4

LPS (10ng/ml) + R848 (10ng/ml) 0 2

LPS (1ng/ml) 0 4

Med 20 24

PAM3 (0,1ug/ml) 0 4

PAM3 (10ug/ml) 8 10

PAM3 (1ug/ml) 2 9

PAM3 (1ug/ml) + R848 (1ug/ml) 0 3

PGE2 (0,1 ug/ml) 0 2

PGE2 (10 ug/ml) 0 4

PGE2 (1 ug/ml) 0 4

PolyIC (100ug/ml) 0 2

PolyIC (50ng/ml) 0 5

PolyIC (50ug/ml) 4 0

R848 (100 ng/ml) 0 2

R848 (10ng/ml) 0 2

R848 (1ug/ml) 10 10

TSLP (50ng/mL) 12 0

Zymosan (0,1ug/ml) 0 4

Zymosan (0,1ug/ml) + PGE2 (0,1ug/ml) 0 2

Zymosan (10ug/ml) 8 23

Zymosan (10ug/ml)  + HKSA (MOI 20) 0 3

Zymosan (10ug/ml) + PAM3 (1ug/ml) 0 3

Zymosan (10ug/ml) + PGE2 (10ug/ml) 0 4

Zymosan (10ug/ml) + R848 (1ug/ml) 0 3

Zymosan (1ug/ml) 0 4

Zymosan (1ug/ml) + PGE2 (1 ug/ml) 0 2

Zymosan (20ug/ml) 0 4
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3.3 Article 3: A Th17 multivariate signature for prognostic stratification 

in triple negative breast cancer 

This second point gave one main result, presented here under the form of a 

manuscript that will be submitted to Nature Communications and entitled “A Th17 

multivariate signature for prognostic stratification in triple negative breast cancer”. In 

this work, we studied how T helper cytokine diversity can define important groups of 

patients with distinct clinical features within the different breast cancer subtypes. It is 

now well known that Th cells are key players of the microenvironment of cancers, 

therefore we asked the questions: could Th cytokine profiles help stratifying breast 

cancer patients in different categories linked to clinical features? Surprisingly, we 

found that Th17 cytokines were up-regulated in triple negative breast cancer 

specifically. We confirmed this result in an independent cohort of transcriptomic data 

on whole tumor.  

 

In addition to this finding, we were able to see that this Th17 signature was of good 

prognosis specifically in triple negative breast cancer patients independently of other 

classical clinical parameters. Finally, we could demonstrate that this signature 

combined to classical clinical score, such as the Nottingham prognosis index, 

enabled a better stratification of the patients into relevant prognosis groups. This 

work, took two different levels of complexity in account, one the multiplicity of Th 

cytokine in each patient and the other the disease subtypes to better characterize 

each patient, which goes into the direction of a personalized medicine of breast 

cancers, incorporating multiple data types into a single mathematical model.  
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ABSTRACT:  

Breast cancer (BC) includes distinct molecular subclasses, Luminal, HER2 and Triple Negative (TN). T 

helper (Th) cells infiltrate the tumor microenvironment, and also exhibit marked heterogeneity. How 

Th subset diversity relates to BC subclasses and prognosis is unknown. In primary BC samples, we 

analyzed 19 Th cytokines at the protein level. Eight were T cell-specific, and subsequently measured 

in 108 prospectively-collected untreated samples. Th17 cytokines (IL17A and IL17F) were specifically 

upregulated in TNBC. We derived Th1, Th2, and Th17 multivariate metagenes, and independently 

validated this finding using the METABRIC transcriptomic BC dataset. A high Th17 metagene was of 

good prognosis specifically in TNBC. Multivariate Cox modeling selected the Nottingham Prognostic 

Index (NPI) and Th17 metagene as independent predictors of BC-specific survival. Combining the two 

identified novel and highly distinct prognostic groups within TNBC. Hence, integrating immune cell 

and tumor molecular diversity is an efficient strategy for prognostic stratification of cancer patients. 

 

INTRODUCTION 

Breast cancer (BC) is a heterogeneous disease including three main molecular subclasses, 

respectively defined as expressing estrogen (ER) and/or progesterone (PR) receptors (Luminal), 

human epidermal growth factor (HER2) receptors (Her2+), or none of those receptors (TN, Triple 

Negative) [1]. It is now well established that immune cells are key players in cancer physiopathology 

[2]. The phenotypical characterization of the immune infiltrate in cancers revealed that immunity 

plays an important role as a prognostic factor among other hallmarks of cancer [3]. Among immune 

cells, T helper (Th) cells are central regulators of the immune response through the secretion of 

cytokines, and have been linked to either good or bad prognosis in various cancer types [4].  
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An increasing number of Th subsets were characterized based on specific cytokine patterns [5]. These 

include Th1, Th2, Th17, Th9, Th22 and T follicular helper cells (Tfh) [6]. Some efforts have been made 

in the field to understand the role of T cells in human BC pathology [7, 8]. Early studies showed that 

Th2 cells were present in BC, potentially promoting tumor metastases through IL-13 [7], and that a 

Tfh signature was positively associated to survival in HER2 BC [8]. However, other Th subsets have 

not been specifically studied in the context of BC. Additionally, diversity exists within each Th subset 

based on its global cytokine secretion pattern. For example, Th1 and Th2 cells have been subdivided 

into inflammatory and regulatory, depending on their co-expression of TNF versus IL-10, respectively 

[9]. Th17 cells can express a diversity of cytokines besides IL-17, defining mixed profiles [10-12]. 

Hence, only a global assessment of Th cytokine expression patterns can provide an unbiased 

characterization of the various human Th subsets. A main challenge is to decipher the role played by 

this important diversity of Th cell subsets and cytokines in cancer. 

Here, we conducted a systematic analysis aiming at describing Th cell effector cytokines in the 

primary BC microenvironment taking into account all different subtypes of BC. This enabled us to link 

BC and Th heterogeneity, identifying the Th17 pathway as a hallmark and prognostic signature in 

TNBC. 

 

 

RESULTS  

Unsupervised multiparametric analysis of T cell cytokines in breast cancer microenvironment  

In a cohort of 108 patients with untreated primary BC we have collected tumoral (T) and juxta-

tumoral (pathologically non-involved) (J) tissue (Supplementary Figure 1A). T and J were sliced in 

small pieces and enzymatically digested prior to analysis for secreted T cell cytokines (Figure 1A). 

First, we asked which cytokines were specifically produced by T cells in the breast tumor 

microenvironment. To answer this question, the first 21 patient samples included in our cohort were 

assayed for T cell cytokine profiling with or without anti-CD3/anti-CD28-coated beads during 24h 

culture of single cell suspensions. Among the 19 different cytokines that were measured in each 

sample, we could significantly detect 12 of them: IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, 

IL-17F, IFN-γ, and TNF-α (Figure 1B). IL-21, IL-31, IL-22, IL-15, IL-28A and IL-17E were below detection 

range (Figure 1B). Among detected cytokines, IL-2, IL-4, IL-5, IL-9, IL-13, IL-17A, IL-17F and IFN-γ were 

found to be T cell-specific, since they were only detected following agonistic anti-CD3/anti-CD28 T 

cell stimulation (Figure 1B and Supplementary Figure 1B). Conversely, IL-6, TNF-α, IL-33, IL-1β and IL-

10 were significantly detected after 24h of cell culture both with and without stimulation by anti-

CD3/28 beads, implying an innate, T cell receptor-independent production (Figure 1B). Following this 

initial set of experiment, the T cell-specific cytokine profiles were determined in 87 additional patient 
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samples. Hence, our final dataset comprised protein level measurement for IL-2, IL-4, IL-5, IL-9, IL-13, 

IL-17A, IL-17F and IFN-γ in a total of 108 patient samples with matched T and J (Supplementary 

Figure 1A).  

By comparing T and J from the same patients, we could show that all T cell-specific cytokines were 

significantly more expressed in T compared to J (Figure 1C). For this analysis and subsequent ones, 

the amount of cytokine was normalized to the % of CD4 and CD8 T cells present in each sample in 

order not to take into account the increase of CD4 and CD8 T cells that is seen in T versus J 

(Supplementary Figure 1C). Looking for co-expression patterns using hierarchical clustering of the T 

cell-specific cytokines on tumor samples, we identified 5 groups of samples with different 

composition in T cell cytokines (Figure 1D). We found that Groups 1 and 2 were associated with 

patients older than 60 years of age at the time of tumor resection, decreased production of IL-2 and 

IFN-γ, and an absence of other detectable cytokines in comparison to the other groups 

(Supplementary figure 1D).  No other significant associations between groups and clinical features 

could be found (Supplementary figure 1D).  

 

Diversity of Th subsets infiltrating breast cancer 

Hierarchical clustering suggested that some cytokines were strongly correlated (Figure 1D). We used 

unsupervised clustering based on Pearson correlation to specifically identify groups of co-regulated 

cytokines (Figure 1E). T cell-specific cytokines clustered into three highly inter-correlated groups 

(Pearson correlation coefficient equal or larger than 0.75), characterized as Th1 for IFN-γ and IL-2, 

Th17 for IL17F and IL17A, Th2 for IL-9, IL-5, IL-13 and IL-4 (Figure 1E). We then sought to determine if 

these clusters of highly inter-correlated cytokines corresponded to an actual infiltration of the BC 

microenvironment with Th1, Th2, and Th17 cells. We performed an intracellular cytokine staining of 

CD4 T cells infiltrating breast tumors for IFN-γ, IL-13, and IL-17, respectively associated to the Th1, 

Th2, and Th17 clusters. We observed that breast tumors were infiltrated by CD4 T cells producing 

exclusively IFN-γ, or IL-13, or IL-17, hence representing three distinct cell populations (Figure 1F). We 

also found that the majority of cells belonging to these three subsets produced only a single subset-

defining prototypical cytokine (Figure 1G), indicative of Th1, Th2 and Th17 cells, rather than 

polyfunctional T cells co-producing Th1, Th2, and Th17 cytokines. We conclude that Th1, Th2 and 

Th17 cells can be found within the same breast tumor microenvironment, each subset producing sets 

of highly inter-correlated subset-specific cytokines. 

 

Association between Th phenotypes and breast cancer subtypes  

We then asked whether these Th subsets were associated with a specific BC subtype. We derived 

quantitative scores for the Th1, Th2 and Th17 clusters described in figure 1E, representing the mean 
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of the scaled value of all cytokines belonging to that cluster. Based on these 3 different Th scores, we 

found that Th17 was significantly associated with TNBC in comparison to LUM (p-val=0.031) and to 

HER2 (p-val=0.047) (Figure 2A). Th1 and Th2 scores were not significantly associated to a specific 

breast cancer subtypes. Using additional clinical and pathological variables, we confirmed the known 

associations between a high EE and high Ki67 with TNBC and HER2 BC subtypes (Figure 2B). We also 

found that the Th17 score was higher in Elston Ellis Grade (EE)-high as compared to EE-low tumors, 

and lower in N+ compared to N- (supplementary figure 2). We then used multivariate modeling to 

assess the relative contribution of the Th17 score, Ki67 expression and EE status as explanatory 

variables for the BC subtype taken as model output. We found that the Th17 score and the EE grade 

were retained by the model as positively linked to TNBC (Figure 2C). We also found that Th17 was 

negatively associated to HER2+ BC. Using the multivariate model’s coefficient we found that the 

probability of having a TNBC almost linearly increased with the Th17 score, and this positive 

association was particularly strong for EE-high grade tumors (Figure 2D). Hence, Th17 cytokines were 

specifically associated to TNBC. 

 

A Th17 metagene associates to TN breast cancer  

Taking advantage of the public Metabric dataset [13], containing 1586 BC patients characterized by 

transcriptomic analysis of the whole tumor, we aimed at validating the positive association we 

identified between Th17 and TNBC (figure 3A). In agreement with our results obtained in figure 1B, T 

cell-specific cytokines, with the exception of IFN-γ, were not detected in the Metabric RNA dataset 

(data not shown). Therefore, to study Th phenotypes in BC subtypes from transcriptomics data, we 

derived three multivariate signatures composed of key genes representative of the Th1, Th2, and 

Th17 pathways (Supplementary table 1). Each signature contained Th subset-specific molecules, 

upstream regulators, and downstream targets specific for each Th pathway. Based on these 

signatures, we build three metagenes named Th1, Th2 and Th17 defined as the mean of highly 

correlated genes within each signature (Figure 3B and Supplementary Figure 3A and B). We then 

sorted the tumor samples based on their Th17 metagene values, and created 3 groups using k-means 

clustering. Interestingly, we found that the proportion of TNBC was increased in the high-Th17 group, 

as compared to the low- and intermediate-Th17 groups (Figure 3B).  

Subsequently, we used univariate analysis to identify clinical and immunological parameters 

associated to a given BC subtype, in addition to Th17. We found that the age, EE grade, and lymph 

node invasion (N) were significantly associated to TNBC (Supplementary Figure 3C). We also found 

that Th1 and Th2 metagenes were significantly higher in TNBC as compared to Lum and HER2+ 

(Supplementary Figure 3D). To further select the parameters that were independently associated to 

a given BC subtype, we used a multivariate modelling strategy. We found that among all parameters, 
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only Th17 and the EE grade were significantly associated to TNBC, when other Th signatures were not 

selected as independent variables (Figure 3C). Taken together, these results provided an 

independent validation of the specific and significant association between Th17 and TNBC, as initially 

established in our prospective dataset on ex vivo-stimulated T cells.  

Next, we asked whether TNBC was associated to genes with higher or lower specificity for the Th17 

pathway.  Using univariate modeling we assessed the association of the individual genes of the Th17 

metagene with the TNBC subtype. By ranking these genes based on their model coefficient, we found 

that IL17RA and IL23A, two genes very specific of the Th17 downstream and upstream pathways, 

were the top genes associated to TNBC (p-val<10-16 and p-val=2.63x10-12, respectively) (Figure 3D). 

This result confirms the association of Th17 with TNBC at the global and single gene levels.  

 

Th subset-defining signatures and breast cancer survival  

We asked whether Th17 could be a prognostic biomarker in the different BC subtypes. We stratified 

BC in three groups defined by Low-, Intermediate- and High-Th17 metagene values (figure 3B), and 

assessed BC-specific survival. We found a significant association of the Th17-high group with an 

improved BC-specific survival in TN tumors, but no association between Th17 and survival in LUM 

and HER2 BC (Figure 4A). As described above, we created 3 groups of patients, high-, intermediate- 

and low- for Th1 and Th2 metagenes. Using univariate analysis we found that Th1 was not associated 

to BC-specific survival, and that Th2-high group in TNBC had an improved survival however with a 

much lower significance (p-val=0.04) than for Th17 (p-val=0.0035) (supplementary figure 4). We also 

found that N, high Nottingham Prognostic Index (NPI) and the tumor-size were significantly 

associated to poor survival in TNBC (Supplementary table 2).  

We then conducted multivariate Cox regression to verify the independence of Th17 prognostic value.   

We could show that only high Th17 metagene (HR=0.43 95%CI [0.24; 0.76], p-val=0.004) and high NPI 

(HR=3.72 95%CI [2.4; 5.7], p-val<0.001) were strongly and significantly associated respectively to 

good and bad prognosis in TNBC patients, in an independent manner (Figure 4B). Thus, we choose to 

combine them in order to build the best possible prognostic stratification. We found that the group 

with a low NPI and a high Th17 metagene value was significantly (p-value=0.0006) associated to 

better survival, as compared to the group with high NPI and low Th17 values (figure 4C and 

supplementary Table 3). We also found that within NPI-low TNBC, Th17-high patients were 

significantly (p-value= 0,012) associated to better survival (figure 4C and supplementary Table 3). 

Since it was shown that global T cell infiltration was of good prognosis in BC [14, 15], we asked 

whether Th17 had a specific prognostic impact, or was just reflecting an increased T cell infiltration. 

First, we wanted to verify that the association between high T cell infiltrate and improved survival 

could be observed using our methodology. To assess this point, we selected eight different T cell-
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related signatures coming from 4 different studies [16-19] (Supplementary Table 4). Using univariate 

analysis, we found that each of the eight signatures was associated to improved survival 

(Supplementary Table 5). Therefore, it allowed us to ask whether our Th17 metagene was more 

specific and/or had a stronger prognostic impact than these global T cell signatures in TNBC. We 

included the Th17 metagene and the NPI in a multivariate analysis together with each of the eight T 

cell-related signatures, taken one-by-one. We found that in the eight different models, only the NPI 

and the Th17 metagenes were selected as significant (Supplementary Table 5).  

Taken together, these results demonstrated that the Th17 multivariate metagene was a novel 

prognostic stratifier, with a strong and independent prognostic impact in TNBC.  

 

DISCUSSION 

In this study, we uncovered the implication and prognostic impact of the Th17 pathway in human 

TNBC. Since the identification of Th subsets producing specific sets of cytokines [5, 20], a large 

number of diseases were associated to a unique Th type [21]. In cancer, it was generally shown that 

Th1 was associated to a good prognosis, but Th2 and Th17 associations with prognosis were study- 

and cancer type-dependent [4]. In BC, it was proposed that TSLP could promote a Th2 response with 

pro-tumoral effect in a mouse model [7, 22]. However, prognostic impact of Th2 was not addressed, 

and the expression of TSLP in BC microenvironment remains controversial [23]. Using transcriptomic 

signatures, Tfh cells were associated to survival in HER2 BC [8], although Tfh signatures were not 

confronted to other Th signatures in a multivariate testing. In our study, we first demonstrated that 

multiple Th cytokines and Th subsets co-occur within the same tumor microenvironment. In our 

analysis strategy, we integrated the diversity of Th profiles from each individual tumor sample to 

assess their relative contribution to a given BC subtype, which allowed us to uncover an association 

between TN and Th17 that we have further validated in a large independent cohort. Importantly, the 

prognostic impact of our multivariate Th17 signature was independent in multivariate analysis, even 

when integrating other T cell signatures. 

 

It was shown that TNBC was the most heterogeneous subtype among all BC in terms of clinical 

behavior, and large scale molecular profiling [24]. Transcriptomic studies identified 7 subgroups 

among TNBC, among which, one was associated to an immune signature [25, 26]. This general 

immune cluster was associated in survival analysis to a good prognosis. However, this group of 

tumors was not further analyzed in terms of T cell polarization. Our results suggest that sufficient 

resolution and sensitivity were lacking in order to identify the underlying cellular and molecular 

components. We identified three groups of TNBC patients based on different levels of the Th17 

pathway, and different clinical outcomes. These results further confirm heterogeneity in the TNBC 
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microenvironment, but shed light on a specific underlying immune pathway, with potential clinical 

implications.  

Clinical variables in cumulative scores such as the NPI are commonly used to guide therapeutic 

strategies in BC [27]. By combining our Th17 score with the NPI, we discriminated patients with 

distinct prognosis, with the group having a high NPI and low Th17 showing the lowest BC-specific 

survival. Hence, addition of a Th-associated score induced a prognostic evaluation improvement over 

currently used clinical and molecular parameters, which opens perspective for improved patient 

stratification.  

Specific targeted therapies are lacking in TNBC [28]. Whether Th17 has pro- or anti-tumoral functions 

remains controversial [4, 29, 30]. In BC, the role of Th17 differs across studies [31, 32]. In our study, 

we have reached definite conclusions linking Th17 and prognosis by assessing the Th17 pathway at 

the protein and transcriptional levels in each BC subtypes. Our results associate Th17 and improved 

survival specifically in TNBC patients. They pave the way for novel immune therapies aiming at 

enhancing this specific Th response, such as CD5/CD6 co-stimulation [33, 34], and the cytokines IL-23 

or IL-1β [35]. Improving BC stratification on the basis of specific immune signatures should promote a 

personalized prognostic assessment, and help decision-making in immunotherapy strategies. 
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MATERIAL AND METHODS:  

Human samples and patient characteristics  

Breast tumor and juxta-tumor (adjacent to the tumor and pathologically exempt of malignant tumor 

cell infiltration) tissues from the same patient were obtained within 2 hours after surgical resection. 
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Samples were collected based on the following inclusion criteria: age>18 years, pathological 

diagnosis of BC, treatment naïve tumors, absence of immune modulating factors within the past 

month. Exclusion criteria were any indication of neo-adjuvant therapy. 

All patients signed an informed consent after approval of the study and study was approved by the 

Internal Review Board and Clinical Research Committee of the Curie Institute. For clinical 

characteristics of the cohort, see Supplementary Figure 1A. 

 

Breast tissues collection and digestion 

Tissues were minced into small pieces and suspended in CO2 independent medium (Gibco) containing 

5% FBS (HyClone). Tissues were digested 45 minutes at 37°C with 2 mg/mL Collagenase I (Sigma), 

2mg/ml Hyaluronidase (Sigma) and 25 µg/ml DNAse (Roche). Then, cell suspension was filtered 

through a 40-μm nylon cell strainer (Fisher Scientific) and washed in 50 ml of PBS supplemented with 

1 % human serum (Biowest) and EDTA 2 mmol/L (Gibco).   

 

Flow Cytometry analysis 

Cell suspensions were stained with the following mouse anti-human antibodies and corresponding 

matched isotype controls: anti-CD45-APC-cy7, anti-CD3-Alexa-700 (BD Biosciences) anti-CD4-APC 

(Miltenyi); anti-CD8-PE-Texas-red (Life technologies) in phosphate-buffered saline (PBS) 

supplemented with 1% human serum (BioWest) and 2 mM EDTA (Gibco). For intracellular staining 

protocols, see supplementary materials.   

 

T cell restimulation and analysis of cytokines production 

Cell suspension were cultured in a 96 round bottom well plate (Costar) for 24 hours with anti-CD3 

and anti-CD28 bead (Invitrogen) at a ratio of 1 bead per living cell at concentration of 1.5 million 

cells/mL in RPMI 1640 Glutamax (Gibco) supplemented with 10% heat inactivated foetal calf serum 

(HyClone), 1% pyruvate (Gibco), and 1% penicillin-streptomycin (Gibco), 1% nonessential amino acids 

(Gibco). Culture supernatants were collected and stored at -80°C until processed.  

A single multiplex Luminex assay was used to measure the 19 following cytokines simultaneously in 

the supernatants: IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17F, IL-17A, IL-17E, IL-21, IL-22, 

IL-28A, IL-31, IL-33, IFN-γ, TNF-α, in accordance with manufacturer guidelines (Millipore). The 

detection limit was 16pg/ml for IL-33 and IL-21, and 4pg/ml for the 17 other measured cytokines.  

 

Intracellular staining  

For intracellular staining, cells were kept overnight at 4°C in RPMI supplemented as described above. 

Cells were cultured 5 hours at 37°C with PMA, ionomycine and 1X Brefeldine A (Ebioscience). Cells 
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were stained with the live/dead yellow kit (Invitrogen) for 30 min at 4 °C. Then surface staining was 

performed for 15 min at 4°C using the following antibodies: anti-CD3-A700 (BD Pharmingen), anti-

CD4-PercP (Beckman-Coulter), anti-CD8-PE-Texas-Red (Life technologies) and anti-CD45-APC-cy7 (BD 

Pharmingen). Finally, cells were fixed and permeabilized according to guidelines using 

manufacturer’s kit (eBioscience). Cells were then stained for 30′ at RT with the following antibodies 

and matching isotypes controls: anti-IL17A-FITC (Biolegend), anti-IL13 APC and anti-IFNγ PC7 

(ebioscience). Data acquisition was made on a Fortessa (BD) flow cytometer, and then analyzed with 

FlowJo software (Tree Star). 

 

Cytokine dataset normalization 

Each cytokine concentration was log-transformed and divided by the percentage of CD4 and CD8 

positive T cells. Then, each variable was scaled (mean = 0, standard deviation = 1). Th1, Th2 and Th17 

scores were defined as the mean of the normalized values of highly correlated cytokine clusters. 

 

Statistical analysis  

To compare continuous variable among different groups, student t test was used for groups including 

more than 30 patients, otherwise we used Mann-Whitney test. Association between categorical 

variables was assessed with the Fisher's exact test. Hierarchical clustering was performed using EMA 

package. Ward’s criterion and Pearson correlation metric were used to cluster cytokines data, while 

Ward’s criterion and Euclidean metric were used to cluster samples.  

In boxplots, lower and upper bars represent respectively the first and third quartile and the medium 

bar is the median, whiskers extend to 1.5 times the inter-quartile range. Multivariate multinomial 

logistic elastic net regression was performed to assess contributions of different variables in 

explaining BC subclasses using the glmnet package in R software. The lambda parameters were 

assessed by 10-fold cross validation. Only variables with a significant p value (p<0.05) in univariate 

test were included in the multivariate modeling. 

Prognosis analysis on public transcriptomic dataset 

The transcriptomic Metabric dataset was transformed as in [14]. Genes with a mean value less than 

5.4 and of variance less than 0.02 across all 1586 patients were filtered out since considered as not 

variant and not expressed and therefore could not bring any useful information in our subsequent 

analysis. For this purpose, the two cut-offs were determined as the first time the distribution slopes 

reach zero values. Disease-specific survival was defined as the time between diagnoses and the 

occurrence of the death (due to BC). Patients still alive at the time of the analysis were censored at 

their date of last follow-up. BC subtypes were determined using gene expression for HER2, RO and 
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RP in the transcriptomic data. K-means clustering method was used to discriminate 3 groups (low, 

intermediate, high) for the Th1, Th2 and Th17 metagenes. Disease-specific survival was estimated 

using the Kaplan-Meier method and survival curves were compared using a log-rank test. Univariate 

and multivariate Cox proportional hazard models were performed to determine the variables that 

impact disease-specific survival. Only variables with a significant p value (p<0.05) were included in a 

multivariate stepwise procedure using the Cox model. All the analyses were performed using R 

software. 

 

REFERENCES:  

1. Viale G. The current state of breast cancer classification. Ann Oncol 2012;23 Suppl 10:x207-
10. 
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. 
3. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the 'Immunoscore' in the 
classification of malignant tumours. J Pathol 2014;232(2):199-209. 
4. Fridman WH, Pages F, Sautes-Fridman C, et al. The immune contexture in human tumours: 
impact on clinical outcome. Nat Rev Cancer 2012;12(4):298-306. 
5. O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper 
CD4+ T cells. Science 2010;327(5969):1098-102. 
6. Sallusto F. Heterogeneity of Human CD4(+) T Cells Against Microbes. Annu Rev Immunol 
2016;34:317-34. 
7. Aspord C, Pedroza-Gonzalez A, Gallegos M, et al. Breast cancer instructs dendritic cells to 
prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 
2007;204(5):1037-47. 
8. Gu-Trantien C, Loi S, Garaud S, et al. CD4(+) follicular helper T cell infiltration predicts breast 
cancer survival. J Clin Invest 2013;123(7):2873-92. 
9. Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T 
helper type 2 cell response through OX40 ligand. J Exp Med 2005;202(9):1213-23. 
10. Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-beta, 
interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. 
Nat Immunol 2008;9(6):650-7. 
11. Volpe E, Touzot M, Servant N, et al. Multiparametric analysis of cytokine-driven human Th17 
differentiation reveals a differential regulation of IL-17 and IL-22 production. Blood 
2009;114(17):3610-4. 
12. Zielinski CE, Mele F, Aschenbrenner D, et al. Pathogen-induced human TH17 cells produce 
IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012;484(7395):514-8. 
13. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast 
tumours reveals novel subgroups. Nature 2012;486(7403):346-52. 
14. Matsumoto H, Thike AA, Li H, et al. Increased CD4 and CD8-positive T cell infiltrate signifies 
good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat 2016;156(2):237-
47. 
15. Smid M, Rodriguez-Gonzalez FG, Sieuwerts AM, et al. Breast cancer genome and 
transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat 
Commun 2016;7:12910. 
16. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within 
human colorectal tumors predict clinical outcome. Science 2006;313(5795):1960-4. 



11 
 

17. Palmer C, Diehn M, Alizadeh AA, et al. Cell-type specific gene expression profiles of 
leukocytes in human peripheral blood. BMC Genomics 2006;7:115. 
18. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue 
expression profiles. Nat Methods 2015;12(5):453-7. 
19. Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated 
with local immune cytolytic activity. Cell 2015;160(1-2):48-61. 
20. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. 
Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 
1986;136(7):2348-57. 
21. Luckheeram RV, Zhou R, Verma AD, et al. CD4(+)T cells: differentiation and functions. Clin 
Dev Immunol 2012;2012:925135. 
22. Pedroza-Gonzalez A, Xu K, Wu TC, et al. Thymic stromal lymphopoietin fosters human breast 
tumor growth by promoting type 2 inflammation. J Exp Med 2011;208(3):479-90. 
23. Ghirelli C, Sadacca B, Reyal F, et al. No evidence for TSLP pathway activity in human breast 
cancer. Oncoimmunology 2016;5(8):e1178438. 
24. Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and 
opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016;13(11):674-690. 
25. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer 
subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121(7):2750-
67. 
26. Masuda H, Baggerly KA, Wang Y, et al. Differential response to neoadjuvant chemotherapy 
among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 2013;19(19):5533-40. 
27. Galea MH, Blamey RW, Elston CE, et al. The Nottingham Prognostic Index in primary breast 
cancer. Breast Cancer Res Treat 1992;22(3):207-19. 
28. Palma G, Frasci G, Chirico A, et al. Triple negative breast cancer: looking for the missing link 
between biology and treatments. Oncotarget 2015;6(29):26560-74. 
29. Guery L, Hugues S. Th17 Cell Plasticity and Functions in Cancer Immunity. Biomed Res Int 
2015;2015:314620. 
30. Young MR. Th17 Cells in Protection from Tumor or Promotion of Tumor Progression. J Clin 
Cell Immunol 2016;7(3):431. 
31. Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature 
2006;442(7101):461-5. 
32. Yang L, Qi Y, Hu J, et al. Expression of Th17 cells in breast cancer tissue and its association 
with clinical parameters. Cell Biochem Biophys 2012;62(1):153-9. 
33. Ayyoub M, Raffin C, Valmori D. Generation of Th17 from human naive CD4+ T cells 
preferentially occurs from FOXP3+ Tregs upon costimulation via CD28 or CD5. Blood 
2012;119(20):4810-2; author reply 4812-3. 
34. de Wit J, Souwer Y, van Beelen AJ, et al. CD5 costimulation induces stable Th17 development 
by promoting IL-23R expression and sustained STAT3 activation. Blood 2011;118(23):6107-14. 
35. Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 
2008;38(10):2636-49. 

 

FIGURE LEGENDS: 

Figure 1: Th1, Th2 and Th17 cells infiltrate breast cancer microenvironment A) Overview of the experimental 

approach and data transformation performed in figure 1. B) Analysis of the supernatant for 19 different 

cytokines in 21 tumor and 19 juxta-tumoral tissues stimulated or not during 24 hours with agonist anti-

CD3/anti-CD28 coated beads. C) Paired comparison using a Wilcoxon test between T and J samples for all T cell 

specific cytokines. Concentrations for each cytokines were normalized by the % of CD4 and CD8 T cells 
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infiltrating T and J tissues. (n=108 patients) D) Heatmap of expression of T cell specific cytokines normalized (as 

above) in stimulated breast cancer tumor samples. T samples (n=108) are represented in columns while 

cytokines are presented in rows. Clustering was made using a metrics based on Pearson correlation 

coefficients. E) Heatmap showing the coefficient of Pearson correlation of the T cell cytokine expression levels 

(n=108).Cut-off of significance was set up as a follow: p-value>0.05 and a correlation coefficient superior or 

equal at 0.75. F) Dot plots of intracellular FACS staining showing IL-17A, IFN-γ and IL-13 expressions for a 

representative tumor. G) Quantification of % of single cells expressing IFN-γ, IL-17A and IL-13 alone compared 

to double and triple positive producers in 16 independent donors. Paired Student t test was used, statistical 

significance was annotated as follows: *P ≤ 0.05; **P ≤ 0.01 ***P≤0.001.  

Figure 2: Triple Negative Breast Cancers are positively associated to a Th17 phenotype A) Boxplots 

representing the levels of each Th score among the three molecular subclasses of breast cancers: Lum, TN and 

HER2+. The score values correspond to the mean of the normalized and scaled value of the cytokine belonging 

to the same cluster of high correlation defined in figure 1E. Comparisons were made using Wilcoxon test and 

significance was annotated as follows: *P ≤0.05; **P ≤0.01 ***P≤0.001. B) Univariate analysis: table of 

comparison of all clinical variables and the Th score with the Molecular classes. Comparisons were made with a 

fisher exact test C) Multivariate multinomial logistic elastic net regression was performed to explain the BC 

molecular subtypes; parameters were determined using cross-validation. All variables kept as significant (alpha 

=0.05) in the univariate analysis were included in this analysis. D) Probabilities of being of the molecular classes 

was assessed using the multivariate model defined in figure 2C, for each of the four groups created by the 

interaction of the two clinical variables EE and Ki 67(Ki67 high and EE III, Ki 67 low and EE III, Ki 67 high and EE I-

II, Ki 67 low and EE I-II) among all Th17 score values.  

Figure 3: Validation of the positive association between TNBC and Th17 in an independent cohort A) 

Overview of the experimental data features and of statistical analysis performed in figure 3  B) Heatmap of the 

genes expression in raw the genes are order by a hierarchical clustering with Pearson distance and ward 

method.  Each column represents one tumor sample with 1586 tumors included in total. The tumor samples 

were ordered by the values of their Th17 metagene. The Th17 metagene was calculated as the mean of the 21 

genes included in the highly correlated Th17 signature. C) Multivariate multinomial logistic elastic net 

regression was used to assess relative contributions of Th and clinical variables to the three different molecular 

subtypes. All explanatory variables included in the multivariate model were prior found significant by univariate 

analysis. D) Univariate multinomial logistic regression to assess which of the genes of the TH17 genes signature 

are the most associated to TN, Lum or HER2+. Genes from the Th17 metagene were ranked based on the value 

of their coefficient in the univariate test explaining TN.  

Figure 4: Th17 signature is of good prognosis in TNBCs A) for each of the molecular classes we have plotted 

survival curves of each Th17 subgroups. To assess if the different Th17 subgroups survive the same way a 

likelihood ratio test was performed. B) Multivariate cox modeling was used to assess relative contributions of 

Th and clinical variables to the survival of TNBC patients. All explanatory variables included in the multivariate 

model were prior found significant by univariate analysis. Variable selection was performed using a stepwise 

method, minimizing the Akaike Information Criterion. C) Survival curves of the interaction of the Th17 

subgroups and the NPI score (n=282). Comparisons were performed using a likelihood ratio test. Difference 

was considered as significant if (P<0.05). 
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FIGURE 4: Th17 signature and prognostic stratification in Triple Negative Breast Cancer 
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Supplementary table 1 : Th1, Th2 and Th17 literature based signatures

Th1 Category Reference PMID

TBX21 T cell Szabo SJ et al (Cell 2000) PMID 10761931

IFNG T cell touzot et al (2014) Nat Comm PMID : 24865484

CXCR3 T cell touzot et al (2014) Nat Comm PMID: 24865484

IL2 T cell Cher DJ et al (1987) JI PMID: 2953788

CXCL9 upstream Groom JR ET AL (immunity 2012) PMID: 23123063 

CXCL10 upstream Groom JR ET AL (immunity 2012) PMID: 23123063 

CXCL11 upstream Cole KE et al (1998) JEM PMID: 16783574

IL12A upstream touzot et al (2014) Nat Comm PMID: 24865484

IL12B upstream touzot et al (2014) Nat Comm PMID: 24865484

IL12RB1 T cell touzot et al (2014) Nat Comm PMID: 24865484

IL12RB2 T cell touzot et al (2014) Nat Comm PMID: 24865484

GZMA T cell Rooney MS et al (2015) Cell PMID: 25594174 

TNFSF10 Downstream Smyth MJ (2001) JEM PMID :11257133

TNF T cell and downstream Romagnani S et al (2000) Ann Allergy Asthma Immunol. PMID: 10923599

CD274 Downstream Sabatier R et al (2015) Oncotarget PMID: 25669979

PDCD1LG2 Downstream Rooney MS et al (2015) Cell PMID: 25594174 

PDCD1 Downstream Rooney MS et al (2015) Cell PMID: 25594174 

PRF1 Downstream Rooney MS et al (2015) Cell PMID: 25594174 

GZMB Downstream Heusel JW et al (1994) Cell PMID: 8137431

LTA T cell Gramaglia I et al (1999) JI PMID: 9973387

LTB T cell Gramaglia I et al (1999) JI PMID: 9973387

CD8A Downstream Hosoi A et al  (2008) Cancer Res PMID: 18483280

FASLG upstream Suzuki I et al (1998) J exp Med PMID: 9419218 

Th2 Category Reference PMID

IL3 T cell Wynn TA (2015) Nat Rev Immunol PMID: 25882242

IL4 T cell and upstream Paul WE et al (2010) Nat Rev Immunol PMID: 20336151

IL5 T cell Wynn TA (2015) Nat Rev Immunol PMID: 25882242

IL9 T cell Wynn TA (2015) Nat Rev Immunol PMID: 25882242

IL13 T cell Wynn TA (2015) Nat Rev Immunol PMID: 25882242

IL31 T cell Stott B et al (2013) JACI PMID: 23694808

CCR4 T cell Bonecchi R et al (1998) JEM PMID: 9419219

PTGDR2 T cell Nagata K et al (1999) J Immunol PMID: 9973380

GATA3 T cell Zheng W et al ( Cell 1997) PMID: 9160750

CCL17 upstream Federica Sallusto et al (1998) JEM PMID: 9500790

CCL22 upstream Andrew DP (1998) J Immunol PMID: 9794440

IL5RA downstream Ogata N (1998) Blood PMID: 9516124

CSF2RB downstream Tavernier J (1991) Cell PMID: 1833065

IL13RA1 downstream Murata T et al (1998) Int J Mol Med PMID: 9852261

IL13RA2 downstream Murata T et al (1998) Int J Mol Med PMID: 9852261

IL4R T cell and downstream Murata T et al (1998) Int J Mol Med PMID: 9852261

IL3RA T cell and downstream FC Stomski et al (1996) Mol Cell Biol PMID: 8649415

IL2RG T cell  Russell SM et al (1993) Science PMID 8266078



CCL5 downstream Ponath PD (1996) JEM PMID: 8676064

CCR3 T cell Federica Sallusto et al (1998) JEM PMID: 9500790

IL33 upstream Paul WE et al (2010) Nat Rev Immunol PMID: 20336151

IL9R downstream Knoops L (2004) Growth Factors PMID: 15621723

IL31RA downstream Edukulla R (2015) J Biol Chem PMID: 25847241

CSF2RA downstream Ghirelli C et al (2015) Cancer Res PMID: 25977333 

AREG T cell WE. Paul et al (2010) Nat Rev Immunol PMID: 20336151 

IL25 upstream WE. Paul et al (2010) Nat Rev Immunol PMID: 20336151 

MS4A2 downstream Inage E et al (2014) J immunol PMID: 24639354

FCER1A downstream Inage E et al (2014) J immunol PMID: 24639354

FCER2 downstream Chan MA et al (2014) Am J Respir Cell Mol Biol PMID: 24010859

SPI1 downstream Inage E et al (2014) J immunol PMID: 24639354

GATA1 downstream Inage E et al (2014) J immunol PMID: 24639354

GATA2 downstream Inage E et al (2014) J immunol PMID: 24639354

Th17 Category Reference PMID

IL21 T cell Manel et al (2008) Nat Immunol PMID: 18454151

IL26 T cell Meller S et al (2015) Nat Immunol PMID : 26168081

IL17A T cell Volpe et al (2008) Nat Immunol PMID: 18454150

IL17F T cell Volpe et al (2008) Nat Immunol PMID: 18454150

RORA T cell Volpe et al (2008) Nat Immunol PMID: 18454150

RORC T cell Volpe et al (2008) Nat Immunol PMID: 18454150

CCR6 T cell touzot et al (2014) Nat Comm PMID: 24865484

IL23A upstream Volpe et al (2008) Nat Immunol PMID: 18454150 

KLRB1 T cell Maggi L et al (2010) EJI PMID: 20486123

IL6 upstream Volpe et al (2008) Nat Immunol PMID: 18454150 

TNF T cell Volpe et al (2008) Nat Immunol PMID: 18454150

IL1B upstream Volpe et al (2008) Nat Immunol PMID: 18454150 

CD5 T cell S. Marieke van Ham blood 2011 PMID: 21926348

CD6 T cell S. Marieke  (2011) van Ham blood PMID: 21926348

CCL20 Upstream and T cell Hirota K (2007) J Exp Med PMID: 18025126 

CXCR3 T cell touzot et al (2014) Nat Comm PMID: 24865484

IL1R1 T cell Kuno K et al (1994) JLB PMID 7964161

IL1R2 T cell Kuno K et al (1994) JLB PMID 7964161

TNFRSF1A T cell Schall TJ (1990) Cell PMID 2158863

TNFRSF1B T cell Schall TJ (1990) Cell PMID 2158863

IL17RA downstream Lauren K. Ely (2009) Nat Immunol PMID: 19838198 

IL17RC downstream Lauren K. Ely (2009) Nat Immunol PMID: 19838198 

CCR2 T cell Pelletier M et al (2010) blood PMID: 19890092 

IL8 downstream Pelletier M et al (2010) blood PMID: 19890092 

LCN2 downstream Johansen C (2016) J Invest Dermatol PMID: 27117051

DEFB4A downstream Johansen C (2016) J Invest Dermatol PMID: 27117051

CXCL1 downstream Reiko M Onishi (2010) Immunology PMID: 20409152 

CXCL2 downstream Reiko M Onishi (2010) Immunology PMID: 20409152 

CCL2 downstream Pelletier M et al (2010) blood PMID: 19890092 

CCR1 downstream Yamamoto (2016) T Clin Cancer Res PMID: 27492974



CXCL5 downstream Girolomoni G et al (2012) Br J Dermatol PMID 22716185

CXCL6 downstream Girolomoni G et al (2012) Br J Dermatol PMID 22716185

https://www.ncbi.nlm.nih.gov/pubmed/?term=Girolomoni%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22716185
https://www.ncbi.nlm.nih.gov/pubmed/?term=Girolomoni%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22716185


Supplementary Table 2

 n HR IC95%(HR) pvalue 
Elston Ellis grade     
EE I-II 38 1   
EE III 227 1.63 [0.85 ; 3.13] 0.145 
Node invasion     
N- 122 1   
N+ 146 2.23 [1.46 ; 3.43] <0.001 
Tumor size     
<20 116 1   
>=20 156 1.94 [1.27 ; 2.96] 0.002 
Age      
<60 183 1   
>60 90 1.07 [0.71 ; 1.62] 0.756 
NPI      
<5.4 229 1   
>5.4 44 3.7 [2.42 ; 5.65] <0.001 
Cellularity     
high 152 1   
low 31 0.59 [0.28 ; 1.23] 0.157 
moderate 81 1.01 [0.66 ; 1.55] 0.971 

Th1  
    

Low Th1 58 1 
  

Int Th1 127 0.92 [0.57 ; 1.47] 0.717 
High Th1 88 0.59 [0.34 ; 1.03] 0.061 

Th2      
Low Th2 64 1   
Int Th2 133 0.87 [0.55 ; 1.37] 0.545 
High Th2 76 0.5 [0.28 ; 0.89] 0.019 
Th17      
Low Th17 32 1   
Int Th17 112 0.7 [0.41 ; 1.21] 0.204 
High Th17 129 0.4 [0.23 ; 0.71] 0.002 
 

Breast cancer specific surival : univariate analysis 



Supplementary Table 3: Survival comparisons of TNBCs subgroups defined by the NPI and the Th17 metagene:



Activated 

Memory CD4 T 

cells Cybersort 

Newman [21]

CD8  T cell 

Cybersort 

Newman [21]

Th 

adaptive 

immunity 

Galon [19]

T cell Palmer 

[20]

CD8 T cell 

Rooney 

[22]

Co-stimulation 

T cell Rooney 

[22]

Co-inhibition 

T cell Rooney 

[22]

Cytolytic 

activity 

Rooney [22]

CCL20 BCL11B CD247 AAK1 CD8A CD2 BTLA GZMA

CD2 CCL5 CD8A ACTN1 CD226 (F) C10orf54 PRF1

CD247 CD2 GLNY (F) ACVR2B CD27 CD160

CD28 CD247 GRZB (F) ADA CD28 CD244

CD3D CD27 IFNG ANXA1 CD40LG CD274

CD3G CD3D IRF1 APBA2 (F) ICOS CTLA4

CD40LG CD3E TBX21 SPEG SLAMF1 HAVCR2

CD6 CD3G APOE TNFRSF18 LAG3

CD7 CD6 AQP3 TNFRSF25 LAIR1

CDC25A CD69 ARL4C TNFRSF4 TIGIT

CSF2 (F) CD7 ATP1A1 TNFRSF8

CTLA4 CD8A BAG3 TNFRSF9

CXCL13 CD8B BCL11B TNFSF14

DPP4 CD96 BIN2 (F)

GPR171 (F) CRTAM (F) BUB1B

GPR19 CST7 RNF213

GZMB CTSW C20orf112 (F)

ICOS DPP4 CAMK4

IFNG DSC1 CCL5

IL12RB2 DUSP2 CCND2

IL17A (F) FAIM3 CD2

IL26 (F) FLT3LG CD28

IL2RA GNLY CD3D

IL3 (F) GPR171 (F) CD3E

IL4 (F) GRAP2 (F) CD3G

IL9 (F) GZMA CD247

LAG3 GZMB CD5

LCK GZMH CD6

LTA GZMK CDC14A

NKG7 GZMM CDC25B

ORC1 ICOS CDR2

PMCH IGKC (F) CISH

RRP9 IL7R CTSW

SH2D1A ITK NSG1

SKA1 KLRB1 NBPF14

TNFRSF4 KLRC3 DNAJB1

TNIP3 KLRC4 (F) DNASE1L3

TRAC (F) KLRD1 DOCK9

TRAT1 KLRF1 DPP4

UBASH3A KLRK1 (F) ARID3A

Supplementary table 4 : T-cell related signatures 



LAG3 NAP1L5

LCK DUSP16

LEF1 DUSP2

LIME1 LPAR2

LTB FAM102A

LY9 LIMA1

MAP4K1 TMC6

MAP9 FBLN5

NCR3 FHIT

NKG7 FLJ10350 (F)

PIK3IP1 FLJ10634 (F)

PRF1 FLJ20152 (F)

PTGDR FLJ35801 (F)

PTPRCAP FLT3LG

PVRIG AKTIP

RASA3 FYB

RPL3P7 (F) FYN

SH2D1A GABARAPL1

SIRPG GALT

TCF7 GATA3

TRAC (F) GBP1

TRAT1 GBP2

TRAV12-2 (F) GFI1

TRAV13-1 (F) GIMAP2

TRBC1 (F) GIMAP4

TRDC (F) GPSM3

UBASH3A GZMK

ZAP70 HOXB2

HSPA1L

ID2

IFITM1

IL18R1

IL6R

IL6ST

IL7R
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INPP4A

INPP4B

ITGA6

ITK

ITM2A

ITPKB

TESPA1 (F)

KLRB1

KLRG1

KLRK1 (F)

LAT

LCK

LCP2

LCP:7125 (F)

LDHA

LDHB

LEF1

LEPROTL1

LOC112868 (F)

LOC283666 (F)

LOC340061 (F)

LPIN2

LRIG1

LTBP4

LYAR

MAL

MAN1C1

MAPKAPK5

JAKMIP1 (F)

MAST4

MATN2



MEN1

MGC17330 (F)

MGC19764 (F)

MGC52110 (F)

MLLT3

MPP7

MYBL1 (F)

NELL2

NGFRAP1

IL32

NPDC1

NPTXR

NR4A2

OPTN

LPAR6

PAG1

PCSK5

PCYT2

PDE4D

PDE9A

PIK3R1

PIM1

PKM

RTKN2

PLXDC1

PRKCA

PRKCI

PRKCQ

PTGER2

PXN

RAB43

RARRES3

RASGRP1

RBMS1

RGS10

GIPC1

RNF144A

RORA

RUNX2

S100A10

S100A8

SATB1

SELPLG

SEMA4D

TSEN54

SH2D1A

SHFM1

SLCO3A1

SLC35D2

SLC39A8



SLCO3A1

SNPH

SOCS3

SORL1

SPOCK2

STAT4

SYNE2

SYT1

TACC3

TACTILE (F)

TARP

TCF7

TRAT1

OLAH

TIAM1

TSPAN14

TNFAIP3

TNFRSF25

TNFSF8

TNIK

TOB1

TRA (F)

TRB (F)

TRERF1

CEP41

TXK (F)

UPP1

VIPR1

LINS1 (F)

WNT10B (F)

WWP1

ZAP70



Supplementary Table 5: multivariate assessments of Th17 Metagene and NPI with control T cell 

signatures taken one-by-one 

 

   Univariate analysis  Kept or not in multivariate 

analysis with Th17 and NPI 

 n HR IC95%(HR) p-value  

Activated Memory CD4 T cells 

Cybersort Newman [21] 

     

Low  43 1    

Intermediate  132 0.8 [0.48 ; 1.31] 0.372 Not kept 

High  98 0.47 [0.26 ; 0.82] 0.008  

CD8 T cell Cybersort Newman [21]      

Low  73 1    

Intermediate 125 0.54 [0.35 ; 0.85] 0.007 Not kept 

High 75 0.47 [0.28 ; 0.79] 0.005  

Th adaptive immunity Galon [19]      

Low  62 1    

Intermediate  114 0.83 [0.52 ; 1.32] 0.422 Not kept 

High 97 0.47 [0.28 ; 0.8] 0.006  

T cell Palmer [20]      

Low 56 1    

Intermediate 134 0.73 [0.46 ; 1.16] 0.184 Not kept 

High 83 0.42 [0.23 ; 0.74] 0.003  

CD8 T cell Rooney [22]      

Low 56 1    

Intermediate 123 0.67 [0.42 ; 1.07] 0.094 Not kept 

High 94 0.41 [0.24 ; 0.71] 0.001  

Co-stimulation T cell Rooney [22]      

Low  79 1    

Intermediate 125 0.67 [0.43 ; 1.03] 0.07 Not kept 

High 69 0.48 [0.28 ; 0.84] 0.009  

Co-inhibition T cell Rooney [22]      

Low  64 1    

Intermediate 120 0.91 [0.58 ; 1.45] 0.704 Not kept 

High  89 0.49 [0.28 ; 0.86] 0.013  

Cytolytic activity Rooney [22]      

Low  65 1    

Intermediate 123 0.64 [0.41 ; 1.01] 0.056 Not kept 

High  85 0.5 [0.3 ; 0.86] 0.011  



SUPPLEMENTARY FIGURE LEGENDS:  

Supplementary figure 1: Association of groups of patients based on T cell cytokine profiles and clinical 

variables A) Table representing the clinical variables of our 108 patients including in the study. B) Statistical 

analysis using paired Wilcoxon testing to determine if the amount of cytokine is different from zero. The table 

presents p-values for each cytokine in each condition. Red values represent significant for p-value<0.05. C) 

Quantification of the percentage of CD4+, CD8+ and CD45+ cells in DAPI negative for each pair of T and J tissue 

in 108 patients. Wilcoxon test was applied and significance was annotated as follows: *P ≤0.05; **P ≤0.01 

***P≤0.001. D) Test of fisher was applied to look for an association between the 4 groups of patients defined 

by clustering in figure 1D with the different clinical variables of our cohort.  

Supplementary figure 2: Association of the different Th scores with clinical variables A) Boxplots showing the 

three different Th scores (defined in figure 2A) in comparison to the different clinical variables included the 

study. A Wilcoxon test was applied to determined significance described as follows: *P ≤0.05; **P ≤0.01 

***P≤0.001.   

Supplementary Figure 3: Univariate assay of the clinical and Th parameters association with breast cancer 

subtypes A) Heatmap of the genes expression in raw the genes are order by a hierarchical clustering with 

Pearson distance and ward method.  Each column represents one tumor sample with 1586 tumors included in 

total. The tumor samples were ordered by the values of their Th1 metagene. The Th1 metagene was calculated 

as the mean of the 16 genes included in the highly correlated Th1 signature (below the black line).  B) The same 

analysis was performed than in figure S3A for genes included in the Th2 signature list. The Th2 metagene was 

determined as the mean of 14 genes. C) Contingency table assessing the association between clinical variables 

and breast cancer subtypes. Fisher exact test were performed and significance was annotated with a P value 

verifying the following criteria: *P ≤0.05; **P ≤0.01 ***P≤0.001. D) Boxplots representing the levels of each Th 

metagene among the three molecular subclasses of breast cancers: Lum, TN and HER2+. Comparisons were 

made using Wilcoxon test (*P ≤0.05; **P ≤0.01 ***P≤0.001). 

Supplementary Figure 4: Study of Th1 and Th2 pathway on survival in Breast Cancer subtypes A) Survival 

curves plotted for each molecular class for three groups, high, intermediate, low defined using the Th1 

metagene B) Survival curves plotted for each molecular class for three groups, high, intermediate, low defined 

using the Th2 metagene values.  

Supplementary Table 1: Definition of Th1, Th2 and Th17 literature based signatures In order to assess the 

relative contribution of Th subsets to Breast cancer clinical features and survival we derived different 

signatures based on literature in order to get genes belonging to Th1, Th2 or Th17 pathways. We did not 

restrict our selection to T cell related parameters in order to better capture global effect at the pathway level. 

Therefore, upstream or downstream effectors of the different Th pathway were included in the lists.  

Supplementary Table 2: Univariate assessment of Th and clinical variables with Survival in BC Systematic 

univariate Cox modeling to evaluate the association of Th1, Th2 and Th17 metagenes with disease specific 

survival in the three different subtypes of breast cancers. The clinical variables, EE grade, Node invasion, Tumor 

size, Age, NPI and Cellularity were also assessed using Cox Modeling. P-Values under 0.05 were considered 

significant.  

Supplementary Table 3: Survival comparisons of TNBCs subgroups defined by NPI and the Th17 metagene: In 

order to assess statistical significance of survival differences observed in groups created in figure 4C based on 

the NPI and the Th17 metagene we systematically used the log rank test. Difference was considered as 

significant if (P<0.05).  



Supplementary Table 4: T-cell control signatures: Eight different general T cell signatures were extracted from 

the literature and are presented in this table. For each signature, genes that were not found as expressed in the 

Metabric data were annotated as filtered in parenthesis next to the gene name.  

Supplementary Table 5: multivariate assessments of Th17 Metagene and NPI with control T cell signatures 

taken one-by-one:  First for each of the 8 T cell signatures presented in table 3 we calculated a metagene. This 

metagene was then tested first in univariate analysis. If significant in univariate analysis, then each metagene 

was added to a multivariate Cox model together with the Th17 metagene and the NPI. For each of the 8 models 

tested, we indicate if the control T cell signature was kept or not by the multivariate model. This analysis was 

performed on the TNBC metabric dataset as described in Figure 4.  
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4 DISCUSSION AND PERSPECTIVES 

 

4.1 Drive of the discussion 

As largely described in the introduction a main objective of my studies on CD4 T cells 

was to integrate and to take into account in an exhaustive manner all Th input and 

output signals to better understand the differentiation and the phenotypes of this cell 

at the system’s level. Even if tools allowing the exhaustive parameters measurement 

exist, the idea of considering T helper cells as a complex system did not suddenly 

emerge as a consequence of recent technological advances. In fact, this idea really 

came from the accumulation during the last 20 years of independent evidences 

showing that a multiplicity of parameters could control or define Th phenotypes. In 

parallel, enormous amount of data reported the association of distinct Th phenotypes 

or Th cytokines as critical factors in human pathologies. In order to study this 

complexity, we thought we should couple very accurate measurement of key proteins 

to unsupervised multiparametric analysis and statistical modeling. In this discussion I 

would like to question different aspects of this strategy.  

First of all, I would like to discuss how mathematical modeling and a systematic view 

could help us to bring more understanding on T helper cell biology. What could we 

see and understand thanks to the use of mathematical modeling?  

Then, I would like to expose the limits or failures of our strategy and how further 

studies could improve it. In these aspects I will try to distinguish specific limitations of 

our experimental system and general limitations of the approach. Since our goal was 

to better understand Th related complexity, I will try to explain to which extend our 

approach was successful to integrate the different level of complexity detailed in the 

introduction of this manuscript.  

Finally, I will address the different perspectives of this work. Either regarding, 

following work in fundamental research or putative derived applications for 

therapeutic or clinical use. Since many of these aspects are common to the three 

articles provided in the result section, the discussion will not be divided in three parts 

corresponding to each article but references to each individual project will be clearly 

made within each topic discussed below. 
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4.1.1 Study T helper as a complex system: importance of mathematical 

and global unbiased approach 

 

Two main results presented in this thesis concerned the control of T helper 

polarization. The first result described at the large scale through unbiased analysis 

the transcriptomic response of type I interferon by Th cells in the presence of different 

cytokine contexts. In this study the systemic approach regarding the detailed Th 

output response was essential to quantify accurately the Th response to IFN-α. It 

allowed identifying that this response was in majority, in terms of number of 

transcripts, specific of the Th context and that the conserved response among the 

different Th contexts was limited. In this specific project the complexity resides in the 

multiplicity of gene taken into account, which allows defining the full transcriptional 

system of Th cells. The general level of conclusion reached by this study would not 

have been made by the characterization of only few Th outputs or through 

reductionist approaches. 

In addition to the conceptual novelty, this study revealed that Th17 cells had a 

weaker antiviral response induced by IFN-α compared to Th1 or Th2 cells. This was 

explained by the weak induction of many interferon stimulated genes specific for 

antiviral response. These results and level of conclusion were completely missed 

from studies in the field looking specifically at few antiviral genes or specific to one Th 

subset. Specifically, it showed that the T helper differentiation process can be largely 

influenced by the molecular context, here represented by different co-signaling 

cytokines, which is a concept largely absent from the T helper differentiation studies. 

Indeed, even If some studies report, context specific induction of specific Th cytokine 

(37, 38), a general characterization at the large scale of the Th output response was 

never reached in the field.  

In the second study we developed a new mathematical description of DC driven Th 

differentiation using multivariate statistical models. This model links DC derived 

signals, such as cytokines or co-stimulatory molecules to T helper derived cytokines. 

Our model predicts a very large number of novel putative interactions between DC 

signals and T helper cytokines. Accuracy of predictions was assessed through cross 
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validation and comparison to established knowledge coming from the literature. In 

addition our modeling strategy allowed describing accurately hidden context specific 

mechanism that were further experimentally validated through blocking and adding 

type of experiments. Indeed we could show that in specific DC stimulation IL-12p70 

was a positive inducer of the Th17 pathway.  

Previous studies based on mono-parametric assessment could not determine a 

specific role of IL-12 in the Th17 pathway. Digging in this direction our modeling 

strategy could also predict an unsuspected differential induction, by the DC derived 

cytokines, of IL-17F versus IL-17A controlled. Up to now the only mechanism able to 

differentially induce these two cytokines was found to be associated to TCR signaling 

(111). In this mouse study, it was shown that NFAT a downstream signaling molecule 

could bind the IL-17A promoter, inducing its expression. But no binding site for NFAT 

was found for NFAT on IL-17F promoter region. In our case, we showed for the first 

time specific input cytokine combinations able to induce IL-17F independently of IL-

17A.  

Other studies in the field of T helper differentiation tried to associate DC derived 

signals to T helper cytokines (109). However predictive power of this type of model 

could not be validated experimentally. In addition, since all the rules are set up based 

on established prior knowledge, this strategy does allow predicting accurately new 

links between key regulatory components through unsupervised data-driven analysis. 

Indeed such a strategy, is useful to see how predefine rules collectively acts to define 

Th phenotype but not to predict from a dataset which rules can be added. In my view, 

these two types of models are complementary. Statistical modeling being a powerful 

tool that allows determining relationships among sets of variables, while Boolean 

models was used to simulate high regulatory networks of already described 

mechanism. 

In the third and last result developed in this thesis, we used statistical modeling to 

understand the relative contribution of several variables to the different breast cancer 

subtypes. Among clinical variables we included different Th related signatures and 

found that overall The Th17 signature was strongly associated to triple negative 

breast cancer. In a context where high immune signatures had already been 

described (96, 112) in triple negative breast cancer, our methodology allowed to 
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found among several Th signatures the one the most associated to TNBC. Such 

analysis brings specific knowledge about the most informative Th related pathway to 

track in a given disease. This level of conclusion can be reached only by using 

multivariate analysis and were largely missing in other studies of Th and breast 

cancers (96, 97, 99, 113). The exact same conclusion applies to the association of a 

given Th pathway to survival in box cox models.  

Our strategy allowed showing that our Th17 metagene was an independent factor, 

not associated to any current clinical or cancer parameters and therefore could 

discriminate informative subgroups of patients. Other studies in the field concluding 

about survival prognosis did not show the actual importance of their Th variables in 

multivariate test (98, 99), therefore it is impossible to distinguish a real impact of the 

considered Th response, which could simply be associated to a parameter himself 

linked to bad prognosis. 

 

4.1.2 Advantages and originality of our statistical modeling strategies 

  

In order to present the importance and originality of our modeling strategies I will 

mainly illustrate our approach on the DC derived T helper differentiation model, 

presented in this thesis as result number 2, however many concepts discussed in this 

part can also be applied to the multivariate models used in result number 3, where 

different co-occurring Th signatures are analyzed for their association to distinct 

breast cancer subtypes.  

Our main objective on the T helper differentiation project was to study the complexity 

of signals that could act on T helper polarization. In result number 1 we used 

recombinant proteins to mimic the input cytokines in various combinations; for a total 

of 8 conditions per T cell donor. In such experiments, it is impossible to manipulate 

experimentally high numbers of input signals to study the effect of all their putative 

combinations in a systematic manner. The biggest experiments achieved in the field, 

addressing systematic input-output response had 48 distinct input conditions (38). 

These types of experiments are still very limited because it does not usually takes 

into account the dose effect of each individual cytokine and are performed at one 

single optimal dose. This can be a main issue, because many effects such as 
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antagonism, dominance or synergy are most probably largely dose dependent. For 

instance, TGF-β inhibits Th17 and promotes Treg differentiation at high dose but 

induces Th17 at low dose (36, 114).  

In our study we were interested to study the role of 36 different inputs signals which 

is impossible to manage in aforementioned type of experiments. Therefore, we 

derived an original methodology, based on statistical modeling, to study integration of 

these signals by measuring their expression at the surface of DC stimulated in 

various conditions (86 different conditions total) that were then co-cultured with naïve 

CD4 T cell. This new experimental approach allowed overcoming limitations of the 

former experimental model where recombinant proteins are simply added on 

activated naïve CD4 T cells.  

First this approach enabled the study of a high number of signals. Then it allowed 

taking into account real co-expression pattern and combinatorial potential of these 36 

signals, which is not the case when one or few signals are isolated for their study. 

Finally it allowed studying these signals in various doses and to derive quantitative 

predictions. Globally this system allowed to overcome many limitations of the 

previous system described.  

The use of DC as a source of signals for T cells in a co-culture system was largely 

developed by others, but again the studies were mainly limited to very few signals in 

blocking type of experiments, in few and well controlled DC activation conditions (37, 

115, 116). Therefore our strategy was developed to go beyond many intrinsic 

limitations of already well-established experimental system in the field. In fine it 

allowed having a data-driven understanding of the co-integration of 36 DC signals.  

Such an important and original effort was never performed in the field. Notably 

because it implied extensive experimental work to generate the dataset of complex 

co-culture experimental settings. But also, because analyzing such a dataset requires 

experts from very different areas such as fundamental immunology, systems biology 

and biostatistics. So far, modeling of signal integration by naïve T cells was mainly 

developed by Boolean models (109), which were neither quantitative nor data-driven 

models. The importance of developing unbiased data-driven models has been 

underlined (117). It allows notably the unsupervised identification of molecular or 



52 
 

cellular components of a system and their interactions from an experimental dataset. 

This is not feasible with theoretical and knowledge based type of models.  

These different aspects shed light on the importance and originality of our approach 

in the field of T helper cell differentiation and on the association of Th cells to 

diseases such as breast cancer. Notably, I tried to illustrate the advantages of our 

methodology and what it could bring more in terms of results in comparison to other 

strategies. In the following part, in order not to expose only a flawless view of our 

work, I would like to focus on the different limits of our models and the different 

aspects explaining these limits. 

  

4.1.3 The limits or missing parameters of our T helper differentiation 

model 

 

In immunology, the number of distinct activation profiles that DCs can harbor is totally 

unknown. In our study we saw that each DC condition was different from its closest 

neighbor for at least one of the 36 parameters considered (data not shown). We also 

showed that we were able to build similar clusters of conditions with our DC or our Th 

derived data. Taken altogether these results go in the direction of a conserved 

information at each step of this in vitro experiment. In other words our experimental 

model seems to indicate that a unique DC stimulation would give rise to a unique DC 

state of activation that would give rise to a unique Th cytokine profile. 

Even if the relevance of such an observation is questionable in regards to in vivo 

reality, it is certainly an important feature of our in vitro system. It indicates that 

expressions of the DC derived signals are largely dependent on the type of 

stimulation given to the DCs. Therefore the conclusions established by our model 

have to be seen as associated to the type of DC stimulations used in the study. As 

presented in the result section we mainly used TLR agonists in various doses and 

combinations.  

Therefore, the lack of accuracy in the prediction of some Th outputs such as IL-5, for 

instance, can be associated to the absence of DC stimulators known to induce a Th2 

response (producing IL-5), such as House Dust mites, pollens or bee venom (118-
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120). The same types of observation can be made in the opposite way. If many 

known behaviors of IL-12p70 were well captured by the model it is certainly because 

the initial choice of using mainly combinations of TLR agonists allowed having an 

important variability of IL-12p70 expression across different molecular contexts.  

Another reason why our model does not explain all the output variance is the number 

of DC signals considered in our model. From the literature mining we could determine 

that at least 64 DC signals could shape the Th phenotype. In our model we were 

finally able to include only 36 of them. Therefore the error of prediction, which allows 

us to judge before experimental validation of the quality of our model, could have 

been lower if we would had been able to measure all these 64 parameters. This 

could have been performed using transcriptomic measurement. However these 

techniques are costly and the quantity of transcripts cannot be directly translated to 

the amount of protein expressed, therefore the use of transcriptomic would have 

introduce a certain degree of uncertainty and false positive in our models. For these 

reasons we preferred to include less variables, but to develop for each one of them 

accurate and quantitative protein measurement. 

In addition, it is really likely that communication molecules not described yet in the 

literature could act on Th phenotypes. As an example, recently HHLA2 was shown as 

being a new member of the B7 family and able to signal through an unknown 

receptor in CD4 T cells (121). The precise role of HHLA2 on Th phenotype during 

differentiation is still missing. Our mature DCs could also express unknown 

molecules that would act on Th phenotypes: since these proteins were not measured, 

their action could not be captured by the model and it would therefore increase the 

error of prediction.  

In the same line, our experimental system was based on DC-T heterologous co-

culture. Therefore we did not control the signal received by T cells from their TCR. It 

has been shown that strength of TCR signaling, that can be influence by the affinity 

of the couple MHC-II–antigenic peptide, can influenced the polarization (28). 

However, the heterologous DC-T co-culture remains a gold standard system to 

assess the function of other parameters such as co-stimulatory molecule or cytokines 

on Th differentiation (115). In addition, molecules such as super antigens that are 



54 
 

usually used to control TCR signaling strength in DC-T co-cultures possess intrinsic 

capacities to polarize towards distinct Th subsets (122).  

We cannot exclude, that the strength of the TCR signaling was largely variable from 

donor to donor and that it could have added some noise to our data. However, even 

with such limitations we can see that we still very accurately predicted T cell 

expansion, which is one of the main T cell parameter that can be directly associated 

to the strength of TCR signaling (123). Still we cannot exclude, that including this 

parameter would enable to increase even more the accuracy predicted T cell 

expansion. Although it was shown in mono-parametric studies that TCR signaling 

was important (27), knowledge about its importance in Th differentiation when 

combined to strong polarizing signals such as cytokines or costimulatory molecules 

to determine the relative dominance of this signals is largely missing in the field.  

In our project, even if we did not integrate the strength of TCR signaling as a 

parameter we were still able to integrate parameters from really distinct natures, such 

as costimulatory or co-inhibitory molecules, but also integrin, SLAM or Nectins 

molecules in addition to cytokines, which goes already beyond the efforts made in the 

field and allow studying the integration of different nature of signals by Th cells all 

together.  

Another important point that we did not address in our experiments is the dynamic of 

the signal integration, indeed it is known that each DC derived signals will be 

produced at a certain rate during a given amount of time. This dynamic production 

may be specific for each DC signals, even for parameters that appears to be co-

regulated at a given time point. Regarding cytokines expressed by DCs we assumed 

that the amount of cytokines secreted during the first 24 hours in the cell supernatant 

could be proportional to the quantity naïve T cells will receive when co-cultured with 

mature DC. This could be an issue for experimental validation of our model prediction 

using our in vitro system. In addition, the naïve CD4 T cells could also upon 

activation produce signals, such as CD40L that will modify in a feedback loop the DC 

phenotypes (124). This could lead to the secretion of cytokines that were absent from 

the initial 24 hour supernatants. Very limited knowledge exists in the field about retro-

signaling of T cells to DCs and its effect on Th polarization.   
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Another important limitation of our approach was the size of the dataset. For our 

study, we generated 418 independent measurements of 36 DC signals coupled to 18 

Th parameters. If for the same number of variables we could have generated the 

double amount of data it is likely that our model would have been globally improved. 

Estimating a priori the size of the dataset that has to be generated for modeling is not 

an easy task. It really depends on the type of data you want to generate and the 

quality of your variable selection. For instance, important correlation among variables 

would imply generation of a larger dataset to overcome redundancy of information 

coming from several variables and thus to accurately discriminate the role of one 

given variable independently of the other (110). In our case, the choice of the final 

number of data points included for modeling was totally empirical.  

We first generated a small dataset of a hundred data points and built the first models, 

which failed to accurately predict the Th outputs and could not establish different 

roles for IL-23 and IL-12 based on literature knowledge controls. Therefore, as it is 

often performed in modeling studies we performed several round of data generation 

and modeling to reach a consensus with a final dataset of 418 data points. The 

criteria used to determine the final dataset size were: the lowest error of predictions 

obtained by cross validation, the highest number of literature controls retrieved by our 

strategy and the highest number of convincing testable novel predictions. It is 

important to understand that these three elements can be in contradictions and that 

we chose to consider them altogether and to give equivalent weight to each of them 

in the assessment of our models. It is important to detail this last point. The error of 

predictions obtained through our multivariate regression model is much lower than 

the one obtained with the best univariate model, showing that distinct variables really 

play a role in specifying Th phenotypes.  

However, it would be easy for a mathematician, using our dataset to find another 

statistical model able to predict Th output cytokines with an even lower prediction 

error. For example, we saw that introducing all putative DC signal interactions in the 

statistical regression under the mathematical form of a product could lower down the 

error of predictions. However, performing so we were losing very basic control 

coming from the literature such as IL-12p70 induces IFN-g and it became impossible 

for a human brain to interpret the role of a given DC signals since it was involved in 

so many combinations with distinct partners.  



56 
 

Even if the complexity of the results of such a strategy was attractive, we thought that 

the probability to get false positive results and an over-fitted model was too high and 

that the valuable information we would have been able to extract for experimental 

validation would have been limited. Globally, there is a balance to find between the 

number of variables which increases the complexity of a model and the relative gain 

in accuracy of prediction generated by this complexity. In biology many phenomenon 

are mathematically described as nonlinear (125), for the same reason we chose to 

rely entirely on linear models. This again was a choice to keep our model simple and 

to easily translate testable hypothesis 

 

4.2 Perspectives on clinical applications 

4.2.1 Multivariate model of Th differentiation: immune checkpoint 

therapy 

 

In the last decade emerged new treatments for cancer based on the blocking of 

immune checkpoints (126). Immune checkpoints are molecules that inactivate the 

immune response directed against cancer cell. PD1 or CTLA4 are immune 

checkpoint receptors that are expressed by different types of T cells and that function 

as co-inhibitory receptors. Ligands for these receptors can be expressed by various 

types of cells, such as dendritic cells, macrophages, T cells or cancer cells present in 

the microenvironment of cancer. So far, immune checkpoint therapy, and notably 

blocking of the PDL1 and PD1 axis has shown promising results in different types of 

cancers (127). However, one important limitation of this therapy is that only 20 to 

30% of the patients respond to therapy. One of the main solutions proposed to 

enlarge the number of responders to these therapies is to combine the inhibition of 

several immune checkpoints (128).  

Some studies showed in fact a dramatic effect in tumor suppression when two 

immune checkpoints are targeted in mouse models (129, 130). Putatively all the 

signals described as controlling the Th polarization in our study could act as 

checkpoint molecules in cancer. Many of them are currently under investigation 
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(126). However, testing all putative pairs of signals for their action in terms of 

synergistic effect would take an enormous amount of time.  

In addition, as largely explained along this thesis, finding the effect of the combined 

inhibition of two molecules without taking in account the global signaling context 

would have very few chances to be translated successfully in clinical trials. Therefore 

there is a need for a data driven multivariate model such as the ones we developed 

here to computationally explore and predict the pairs of signal to target. For this, one 

would have to develop accurate measurement of all the signals of interests. For 

example: measurement of all checkpoint molecules in a tumor associated to the 

response to a given treatment, for instance anti-PD1/PDL1 treatment. Therefore, 

integrating all parameters in a multivariate model would also determine in which 

context PDL1 is successful alone and predict which other checkpoint to combine in 

the treatment in the case of the absence of response.  

4.2.2 Th cytokine diversity in tumor microenvironment for personalized 

medicine 

 

In our study of breast cancer, we had the unique opportunity to measure the Th 

cytokine profile of 108 distinct patients having breast cancer. Surprisingly, through 

our systematic assessment of tumor microenvironment,  we found that Th1, Th2 and 

Th17 cells could be present at the same time in the tumor microenvironment, which 

was not found in former studies (97, 98, 113). We also found an important level of 

correlation between distinct Th signatures across all breast cancers. These elements 

could be linked to a global enrichment of the immune response in a subgroup of 

patients as it was proposed (96, 112).  

 

Therefore we used multivariate statistical model to find within distinct different Th 

signatures and general T cell signatures, which variable was the most strongly 

associated to a given breast cancer subtypes. We found that Th17 were strongly 

associated to TNBC. Then, we combined this Th17 signature with the Nottingham 

Prognosis Index to better stratify the breast cancer patients into distinct subgroups 

significantly different for their survival. This constitute an example of how the 

information taken from the tumor microenvironment can be coupled to information 

already in use in clinics by physician such as clinical data or tumor parameters to 
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create better groups of patient for relevant prognosis. Defining multiple relevant 

subgroups of cancer patients for relevant prognosis is an important first step toward 

personalized medicine (131).  

 

Our study allowed finding Th17 as relevant biomarker for prognosis assessment of 

TNBC patients. In the next step we hope to be able to create even more detailed 

immunological variable that would, through the measurement of few robust 

parameters, allow even more accurately describing patient’s prognosis. Such scores 

could be based on the integration of distinct cell types that have been found to be 

relevant for prognosis that we did not study in our work. In parallel of these efforts to 

discriminate relevant detailed groups of patients, the development of new therapeutic 

agents allowing targeting specifically distinct immune cells will ultimately provide a 

way to adapt the treatment to each specific cancer patients.  
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5 APPENDIX 

 

5.1 Collaboration on Tfh differentiation induced by TSLP treated 

dendritic cells 
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IntroductIon
Differentiation of naive CD4 T cells into specialized T helper 
(Th) lymphocyte subsets is crucial to immune responses 
(O’Shea and Paul, 2010). Among Th subsets, T follicular 
helper cells (Tfh) have been characterized for their role in  
B cell help (Tangye et al., 2013). Tfh cells express specific 
sets of secreted and surface molecules, comprising IL-21, 
CXCL13, ICOS, PD1, and CXCR5, which provide import-
ant signals for B cell survival and maturation in the germinal 
centers (GCs; Kim et al., 2004; Crotty, 2014).

The Th1-inducing cytokine IL-12 promotes human 
Tfh polarization (Trinchieri, 2003; Schmitt et al., 2009). Mu-
tations in the IL-12Rb downstream pathway affect IL-21 
production and Tfh generation in humans (Ma et al., 2012). 
IL-27, another Th1-inducing factor, can induce human Tfh 
polarization (Gringhuis et al., 2014). The cytokine cocktail 

used to polarize in vitro human Th17 cells, and in particular 
TGF-β, can promote Tfh development as well (Schmitt et 
al., 2014). Altogether, these data led to the hypothesis that in 
humans Tfh polarization is preferentially associated with Th1 
and Th17 polarizing environments (Ueno et al., 2015).

Tfh cells have been described in Th2-dominated en-
vironments, such as allergy (Kemeny, 2012), and in the ab-
sence of  Th1 and Th17 polarization (Glatman Zaretsky et 
al., 2009; Liang et al., 2011; Tangye et al., 2013). However, 
IL-4, the master Th2 cytokine, inhibits human Tfh differen-
tiation (Schmitt et al., 2014). This raises the important ques-
tion of how Tfh differentiation can occur in Th2-dominated 
environments in humans.

We hypothesized that the epithelial-derived cytokine 
thymic stromal lymphopoietin (TSLP) might play a role in 
Tfh cell polarization. Independent evidences make TSLP a 
strong candidate for Tfh polarization. First, TSLP is highly 
expressed in different Th2-dominated environments, such 
as airways of asthmatic patients, mucosal tissues in helminth 

t follicular helper cells (tfh) are important regulators of humoral responses. Human tfh polarization pathways have been thus 
far associated with th1 and th17 polarization pathways. How human tfh cells differentiate in th2-skewed environments is 
unknown. We show that thymic stromal lymphopoietin (tSLP)–activated dendritic cells (dcs) promote human tfh differentia-
tion from naive cd4 t cells. We identified a novel population, distinct from th2 cells, expressing IL-21 and tnF, suggestive of 
inflammatory cells. tSLP-induced t cells expressed cXcr5, cXcL13, IcoS, Pd1, BcL6, BtLA, and SAP, among other tfh mark-
ers. Functionally, tSLP-dc–polarized t cells induced IgE secretion by memory B cells, and this depended on IL-4rα. tSLP- 
activated dcs stimulated circulating memory tfh cells to produce IL-21 and cXcL13. Mechanistically, tSLP-induced tfh dif-
ferentiation depended on oX40-ligand, but not on IcoS-ligand. our results delineate a pathway of human tfh differentiation 
in th2 environments.
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infections, and AD lesional skin (Soumelis et al., 2002; Ying 
et al., 2005; Ziegler and Artis, 2010). Both AD and allergic 
patients present deregulated IgE production (Gould et al., 
2003). Second, TSLP is expressed in human tonsils, where 
GC reactions occur (Liu et al., 2007). Third, TSLP contrib-
utes to Th2 polarization through DC activation, and induces 
an inflammatory Th2 response (Soumelis et al., 2002). Fourth, 
TSLP-activated DCs express OX40 ligand (OX40L), which 
has been linked to Tfh polarization (Jacquemin et al., 2015).

In this work, we establish a novel Tfh differentiation 
pathway driven by TSLP. We dissect an axis linking TSLP, 
DCs, T cells, B cells, and IgE production.

rESuLtS
tSLP-activated dcs polarize naive cd4 t cells 
into IL-21–secreting cells
We used primary DCs from human blood activated with 
TSLP (TSLP-DC) to differentiate naive CD4 cells into 

Th cells in an allogeneic system. As expected, after 6 d of 
co-culture, TSLP-DC induced Th cells that secreted IL-4 and 
IL-13, but low levels of IFN-γ, which are features of Th2 
polarization (Fig. 1 A; Soumelis et al., 2002; Ziegler and Artis, 
2010). To separate the effect of TSLP-induced activation from 
an intrinsic property of human blood DCs, we used nonacti-
vated DCs as a negative control. As an additional control, we 
used LPS-activated DCs (LPS-DC), which induced IFN-γ 
but low IL-4 and IL-13 secretion from T cells (Fig. 1 A), in 
accordance with Th1 polarization.

Surprisingly, TSLP-DC polarized naive CD4 T cells to 
produce high amounts of IL-21 (Fig. 1 A). The amount of 
IL-21 induced by TSLP-DC polarization was similar to that 
of in vitro polarized Th17 cells. We recently showed that TSLP 
synergizes with CD40L in DCs to promote the expression 
of the Th17-polarizing cytokine IL-23 (Volpe et al., 2014). 
TSLP-DC induced low and inconsistent IL-17A secretion 
by CD4 T cells in comparison with in vitro–polarized Th17, 

Figure 1. tSLP-activated dcs polarize naive cd4 t cells into IL-21–secreting cells. Untreated DCs, treated with TSLP (TSLP-DC) or LPS (LPS-DC) were 
cultured with naive CD4 T cells for 6 d. (A) CBA (IL-4, IL-13, IFN-γ, and IL-17A) and ELI SA (IL-21) assays after 24 h of restimulation with anti CD3/CD28 beads. 
Th0, naive T cells cultured for 6 d with anti-CD3/CD28; Th17, Th0 plus Th17 polarizing cytokines (IL1β, IL-23, TGF-β, and IL-6). Data are mean ± SEM from 
nine independent experiments. (B) Intracellular FACS staining for IL-21, IFN-γ, TNF, and IL-4 for one representative donor. Gate is on activated DAPI− CD4 
T cells. (C) Quantification of data as in B. Data are mean ± SEM from six independent experiments. (D) Distribution of IL-21+ cells (red square) polarized by 
TSLP-DC coproducing IL-4, TNF, and IFN-γ. Filled histogram, isotype control; black line, IL-21 staining. Mean of six independent experiments. Single IL-21 
producers (16%) are not plotted. *, P < 0.05; **, P < 0.01; ***, P < 0.001, by Wilcoxon or Student’s t test.
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excluding a strong Th17 polarization by TSLP-DC. To check 
whether TSLP could act directly on CD4 T cell, in addition 
to DCs, we analyzed by FACS the expression of TSLP recep-
tor (R) chains (TSL PR and IL-7Rb) in naive CD4 T cells 
and DCs. DCs expressed high levels of both chains, whereas 
ex vivo or activated (5 d of anti CD3/CD28 beads, Th0 cells) 
naive CD4 T cells expressed IL7Rα but inconsistent levels 
of TSL PR (Fig. S1 A). We cultured sorted naive CD4 T cells 
with anti-CD3/CD28 beads and TSLP, in the absence of 
DCs. After 6 d of culture, we did not detect any induction of 
IL-21 by Th0 cells cultured either with or without TSLP. As 

a control, we detected IL-21 production by in vitro polarized 
Th17 (Fig. S1 B). Therefore, we concluded that TSLP was 
inducing IL-21 production by CD4 T cells through DCs.

Next, we investigated whether IL-21 was coproduced 
with other cytokines at the single T cell level. We performed 
intracellular staining for IL-21, in combination with IFN-γ, 
IL-4, and TNF as features of inflammatory Th2 differentiation 
induced by TSLP (Ito et al., 2005).  At day 6 of co-culture, 
∼30% of the CD4 T cells activated by TSLP-DC were pos-
itive for IL-21, indicating a strong IL-21 polarization. IL-21 
was mainly co-produced with TNF (20% of activated CD4 

Figure 2. IL-21 production by tSLP-dc–polarized cd4 t cells is stable. (A) DCs were activated with TSLP (50 ng/ml, TSLP-DC, filled triangles) or in 
control medium (DC, circles). After 24 h, DCs were co-cultured with naive CD4 T cells and stimulated for 24 h with anti-CD3/CD28 beads. IL-21 concen-
tration in the supernatants from seven independent experiments. (B) Quantification of IL-21 secretion by CD4 T cells polarized for 6 d with DCs, previously 
activated for 24 h with increasing doses of TSLP. SEM for four independent experiments; *, P < 0.05; **, P < 0.01; ***, P < 0.001, paired Student’s t test.  
(C) CD4 T cell fold expansion and IL-21 secretion from co-cultures with untreated CD1c+, TSLP-activated CD1c+ and TSLP-activated CD141+ DCs. SEM for 
12 independent experiments; *, P < 0.05; ***, P < 0.001, paired Student’s t test. (D) Intracellular FACS staining of IL-21, TNF, and IL-4 by TSLP-DC–activated 
CD4 T cells at the indicated days of primary and secondary culture from a representative CD4 T cell donor. In primary culture CD4 T cells were activated by 
TSLP-DC. In secondary culture, cells from day 5 of primary culture were cultured for 6 d in medium alone (No DC), with TSLP-DC or LPS-DC. (E) Percentage 
of IL-21+/TNF+ and IL-21+/IL-4+ cells (among activated cells) and fold expansion in primary and secondary culture as indicated, in three independent exper-
iments. NA, not applicable.
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cells). We identified IL-21+IL-4− (20%) and IL-21−IL-4+ 
(12%) populations, suggesting that distinct Th subsets arise in 
the presence of TSLP-DC (Fig. 1, B and C). To better char-
acterize the cytokine expression pattern of IL-21+ CD4 T 
cells after 6 d of co-culture with TSLP-DC, we calculated 
the percentage of cells coexpressing different combinations of 
cytokines. Among the IL-21+ cells, we detected a small pop-
ulation (5%) of Th cells coexpressing TNF, IL-4, and IFN-γ 
(Fig. 1 D). The majority (69%) of Th cells expressed IL-21 in 
combination with TNF (Fig. 1 D).

Next, we examined IL-21 induction by TSLP-DC in 
CD4 T cells. We detected IL-21 secretion after 3 d of DC/T 
cell co-culture (Fig. 2 A), using as low as 5 pg/ml TSLP to 
activate DCs (Fig. 2 B). We separately activated the CD1c+ 
and CD141+ DC subsets with TSLP. After co-culture with 

naive CD4 T cells, we observed that TSLP CD1c+ DCs in-
duced higher CD4 T cell expansion and IL-21 production, 
as compared with CD141+ DCs. We did not measure any 
significant difference between nontreated CD1c+ DCs and 
TSLP-CD141+ DCs with regards to IL-21 production and 
CD4 T cell expansion (Fig. 2 C).

Next, we investigated the stability of IL-21, TNF, and IL-4 
expression by TSLP-DC–activated CD4 T cells. We compared 
the intracellular expression of these cytokines by CD4 T cells 
cultured for 5 d in the presence of TSLP-DC (Fig. 2 D, pri-
mary culture), with the same CD4 T cells recultured for addi-
tional 6 d in medium without DCs (No DC), with TSLP-DC 
or LPS-DC (Fig. 2 D, secondary culture). The percentages of 
IL-21+TNF+ and IL-21+IL-4+ cells were comparable between 
the primary and secondary culture (Fig. 2 E), suggesting that the 

Figure 3. t cells polarized by tSLP-dc possess key features of human tfh cells. (A) ELI SA for CXCL13 production by CD4 T cells differentiated for 
6 d in co-culture with DCs, TSLP-DC, or LPS-DC. Cytokines secretion was measured after an additional 24 h of anti-CD3/CD28 bead stimulation. Data are 
mean ± SEM from 20 independent experiments. **, P < 0.01, paired Student’s t test. For the kinetic of CXCL13 expression, CD4 T cells were restimulated 
for 24 h with anti-CD3/CD28 beads after 3, 4, 5, or 6 d of co-culture with DCs (circles) or TSLP-DC (triangles). SEM for seven independent experiments.  
(B) FACS staining for ICOS, PD1, and CXCR5 in CD4 T cells after 4 d of co-culture with DCs. CXCR5hi/ICOShi and CXCR5hi/PD1hi cells within CD4 T DAPI− cells 
from a representative donor are shown. (C) Quantification of cell populations as indicated in B in naive CD4 T cells after 0, 2, 4, or 6 d of co-culture with 
DCs (circles), TSLP-DC (filled triangles), or LPS-DC (open triangles). SEM from six independent experiments. (D) CXCR5hi/PD1hi and CXCR5lo/PD1lo CD4 T cells 
polarized 4 d by TSLP-DC were sorted (top), and co-cultured with autologous memory B cells for 14 d. CD38 and CD27 were measured by FACS on B cells 
(DAPI−/CD3−/CD4−/CD19+). One representative plot is shown. (E) IgA, IgG, IgG4, and IgE were quantified in the supernatants of co-cultures, as in D, in the 
indicated conditions. Mean ± SEM for five donors. n.d., not detected. (F) Quantification of IgG and IgE in the supernatants of memory B cells co-cultured as 
in D, plus IL4R-α blocking or isotype control antibodies. SEM from five independent experiments are plotted. *, P < 0.05; **, P < 0.01, paired Student’s t test.
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expression of these cytokines was stable. Additionally, by count-
ing live cells we found that CD4 T cells activated by TSLP-DC 
expanded, even in the absence of further DC stimulation 
(Fig. 2 E, bottom). These two results suggested an overall ex-
pansion of the IL-21+TNF+ and IL-21+IL-4+ cell populations.

Thus, TSLP-DC promoted the generation of a stable, 
novel Th subset producing IL-21 and TNF, in combination or 
not with the Th2 cytokine IL-4.

th cells polarized by tSLP-dc possess 
features of human tfh cells
Because IL-21 is highly produced by Tfh cells (Schmitt et 
al., 2014), we asked whether TSLP-DC–polarized T helper 
cells had Tfh markers.

We measured the secretion of CXCL13, a chemokine 
produced by Tfh but not by other Th cell subsets (Kim et al., 

2004), after 6 d of co-culture followed by 24 h of anti-CD3/
CD28 stimulation. TSLP-DC, but not unstimulated DCs or 
LPS-DC, induced the secretion of CXCL13 by CD4 T cells 
(Fig. 3 A, top), suggesting Tfh polarization. CXCL13 secretion 
was detectable from day 5 of co-culture (Fig. 3 A, bottom).

A feature of human Tfh cells is the expression of high 
levels of the CXCL13 receptor CXCR5, in combination 
with high levels of ICOS and PD1 (Bryant et al., 2007; 
Crotty, 2014). We identified by FACS CXCR5high (hi)ICOShi 
and CXCR5hiPD1hi CD4 T cells after 4 d of co-culture with 
TSLP-DC (Fig. 3 B). TSLP-DC increased the percentage of 
CXCR5hiICOShi and CXCR5hiPD1hi populations at day 4 
as compared with day 2 and day 6 of co-culture, and in com-
parison to nonactivated DC and LPS-DC (Fig. 3 C). The use 
of naive T cells (CD4+CD25−CD45RA+CD45RO−) sorted 
to 99% purity, without detectable CXCR5+ cells (Fig. 3 C), 

Figure 4. t cells polarized by tSLP-dc 
show an expression pattern similar to ton-
sillar tfh cells. Heat map showing mRNA 
quantification of Tfh and Th markers in naive 
CD4 T cells, TSLP-DC–polarized CD4 T cells, 
and human tonsillar CD4 populations. CD4 T 
cells differentiated for 4 d with TSLP-DC were 
sorted as indicated (top left). Three popula-
tions of tonsillar CD4 cells were sorted (top 
right): CXCR5hi/PD1hi (GC Tfh), CXCR5int/PD1int 
(Tfh), and CXCR5−/PD1−. mRNA levels nor-
malized on the B2M and RPL34 housekeeping 
genes and center reduced are displayed on the 
heat map from five independent donors and 
two independent experiments.
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excluded that these cells originated from the rare blood 
memory Tfh population, characterized by CXCR5 expres-
sion (Morita et al., 2011).

One key function of Tfh cells is their ability to help B cells 
to secrete class-switched Igs (Crotty, 2014). To test whether the 
CXCR5hiPD1hi cells induced by TSLP-DC were able to help 
B cells, we sorted CXCR5hiPD1hi and CXCR5low(lo)PD1lo 
cells after 4 d of co-culture with TSLP-DC, and co-cultured 
them with autologous memory B cells (Fig. 3 D). We detected 
CD19+CD38hiCD27+ B cells after 14 d of co-culture with  
CXCR5hiPD1hi, but not with CXCR5loPD1lo T cells polar-
ized by TSLP-DC, similarly to the positive control of memory 
B cells activated by CD40-Ligand (CD40L) and CpG oligode-

oxynucletides type B (CpG-B; Fig. 3 D). At the same time point, 
we measured secretion of class switched Igs in the supernatants. 
Memory B cells activated with CD40L and CpG-B secreted 
IgA and IgG, as expected (Bernasconi et al., 2002). TSLP-DC 
polarized CXCR5hiPD1hi cells specifically induced IgG4 and 
IgE secretion by memory B cells. In comparison, IgA, IgG, and 
IgE secretion in the presence of CXCR5loPD1lo cells was low 
and inconsistent (Fig. 3 E). We measured lower amounts of IgA 
and IgG, induced by CXCR5hi/PD1hi cells as compared with 
memory B cells activated with CD40L and CpG-B (Fig. 3 E), 
in accordance with selective induction of IgE and IgG4.

Next, we investigated the mechanism by which 
TSLP-DC–induced CXCR5hiPD1hi cells promoted IgE se-

Figure 5. tSLP-induced cells express tfh 
markers. FACS analysis of BTLA (A), CD200 
(B), SAP (C), C-MAF (D), and CCR7 (E) in naive 
CD4 T cells and in TSLP-DC and LPS-DC acti-
vated cells at day 4 of co-culture with naive 
CD4 T cells. Isotype and specific staining for 
naive CD4 T cells and CXCR5hi/PD1hi and  
CXCR5lo/PD1lo population induced by TSLP-DC 
and LPS-DC is shown in histogram plot for one 
representative experiment. Quantification of 
MFI is plotted for three or four independent 
experiments. Naive CD4 T cells, filled diamond; 
TSLP-DC co-culture, filled triangles; LPS-DC 
co-culture, triangles. *, P < 0.05; **, P < 0.01; 
***, P < 0.001, paired Student’s t test.
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cretion by memory B cells. IL-4 mediates IgE production by 
human B cells (Pène et al., 1988). TSLP-DC–polarized T cells 
secreted IL-4 (Fig. 1 A). We functionally blocked IL-4 receptor 
α (IL-4Rb) in the co-culture of TSLP-DC–polarized T cells 
and memory B cells. After targeting of IL-4Rb by using a func-
tional blocking antibody, we were unable to detect IgE secre-
tion by memory B cells in the presence of TSLP-DC–polarized 
CXCR5hiPD1hi cells. In parallel, we detected an increase in IgG 
production (Fig. 3 F). As a control, we checked that IL-4Rb 
blocking antibody did not decrease B cell viability. Our data are 
in accordance with previous data showing that IL-4–reduced 
IgG production by human B cells (Nies et al., 2002).

Altogether, these results show that TSLP-DC induced the 
polarization of cells expressing Tfh markers such as CXCR5, 
PD1, and ICOS, and that these cells shared functional features 
of human Tfh2, comprising the ability to stimulate IgE secre-
tion by B cells. Mechanistically, we showed that IgE induction 
by TSLP-DC-polarized Tfh cells depended on IL-4Rb.

t cells polarized by tSLP-dc show molecular markers 
similar to tonsillar tfh
To confirm that TSLP-DC–polarized T cells presented fea-
tures of Tfh cells, we selected a set of Tfh markers on the 
basis of transcriptomic analysis of human Tfh cells (Kim et al., 
2004). We quantified the expression of these Tfh markers by 
qPCR on sorted CXCR5hiPD1hi and CXCR5loPD1lo CD4 
T cell populations identified among activated T cells after 4 d 
of co-culture with TSLP-DC (Fig. 4, top left). As a compar-
ison, we analyzed sorted naive CD4 T cells. CXCR5hiPD1hi 
cells expressed higher levels of Tfh markers at the mRNA 
level (BTLA, CXCR5, CXCL13, ICOS, PD1, SAP, CD200, 
and C-MAF) as compared with CXCR5loPD1lo cells (Fig. 4 
and Fig. S2). Additionally, CXCR5hi/PD1hi cells polarized by 
TSLP-DC expressed higher mRNA levels of the cytokines 
IL-21, IL-4, and TNF, as compared with CXCR5lo/PD1lo 
cells (Fig. 4). As expected, naive CD4 T cells did not express 
significant levels of Tfh markers.

Figure 6. cd4 t cells activated by tSLP-dc coexpress BcL6 and GAtA3. (A) FACS staining for BLC6, TBET, GATA3, and ROR GT in naive CD4 T cells 
co-cultured with TSLP-DC for 4 d. (B) Tonsillar CD4 cells analyzed as in A. Gates were set using fluorescence minus one plus isotype, and percentage of cells 
in each quadrant are shown for one representative donor. (C) Quantification of BCL6, TBET, GATA3, and ROR GT MFI in naive CD4 T cells and from data shown 
in A and B from three or five independent experiments. Empty squares, naive CD4 T cells; dots, TSLP-DC activated CD4; triangles, tonsillar CD4+ T cells. *, P < 
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, unpaired Student’s t test. (D) CD4 T cells sorted as CXCR5hiPD1hi at day 4 of co-culture with TSLP-DC were 
analyzed for intracellular expression of IL-4, IL-21, GATA3, and BCL6. One representative experiment is shown, and quantification of % of GATA3+/BCL6+ 
cells is plotted for four independent experiments. Mean ± SEM is plotted. *, P < 0.05; **, P < 0.01, paired Student’s t test.
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Notably, the expression pattern of Tfh markers paralleled 
the one of our positive controls, represented by sorted tonsillar 
GC Tfh (CD4+CD45RO+CXCR5hiPD1hi) and Tfh (CD4+ 
CD45RO+CXCR5loPD1lo), and differed from non-Tfh CD4 
(CD4+CD45RO+CXCR5−PD1−; Fig.  4). TSLP-induced 
CXCR5hi/PD1hi cells down-regulated the lymph node hom-
ing receptors CXCR4 and CCR7 at the mRNA level, sug-
gesting peripheral effector functions. As a control naive CD4 
T cells expressed CCR7 and CXCR4 mRNA.

Additionally, we measured the expression of BCL6, BLI 
MP, TBET, GATA3, ROR GT, and FOXP3, transcription 
factors orchestrating Th subset differentiation. The mRNA 
expression of BCL6, a transcriptional repressor import-
ant for Tfh polarization, was lower in CXCR5hiPD1hi than 

in CXCR5loPD1lo cells polarized by TSLP-DC (Fig.  4).  
CXCR5hiPD1hi cells induced by TSLP-DC expressed 
higher levels of TBET, GATA3, and ROR GT when com-
pared with CXCR5loPD1lo cells, similarly to tonsillar GC 
Tfh cells. Additionally, the CXCR5hiPD1hi cells induced by 
TSLP-DC did not express FOXP3, indicating that they were 
distinct from regulatory Tfh.

We measured by FACS analysis the expression of BTLA, 
CD200, SAP, and C-MAF proteins in naive CD4 T cells, as 
well as in CXCR5hiPD1hi and CXCR5loPD1lo cells, after 4 
d of co-culture in the presence of TSLP-DC and LPS-DC 
as a comparison (Fig. 5, A–D). CXCR5hiPD1hi cells induced 
by TSLP-DC expressed BTLA, CD200, SAP, and C-MAF at 
the protein level, thus validating our mRNA analysis. At the 

Figure 7. Memory cd4 t cells express tfh factors after activation by tSLP-dc. CD4 memory T cells were cultured with DCs, TSLP-DC, or LPS-DC, and 
cytokines were measured at the indicated days after 24 h of restimulation with anti-CD3/CD28 beads. ELI SA assay for IL-21 at day 6 of culture in A and at 
day 2, 4, and 6 in B. Mean ± SEM for 13 and 5 donors is shown, from four and two independent experiments, respectively. ELI SA assay for CXCL13 in C and 
CBA assay for Th cytokines in D in the same experimental settings as in B. (E and F) Memory CD4 T cells were separated into CXCR5+ and CXCR5− cells by 
FACS sorting, and cultured with DCs or TSLP-DC for 6 d. IL-21 and CXCL13 quantification after 24 h of anti-CD3/CD28 stimulation is shown as mean ± SEM 
from nine independent experiments. FACS staining for ICOS, PD1, and CXCR5 at day 6 of co-culture. BCL6 was quantified on the CXCR5hi/PD1hipopulation. 
The geometric MFI is plotted for three or two independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001, paired Student’s t test.
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protein level, we did not measure any significant difference in 
CCR7 protein levels between TSLP-induced CXCR5hiPD1hi 
and CXCR5loPD1lo. However, CCR7 protein expression 
was significantly higher in LPS-DC–induced CXCR5hiP-
D1hi cells as compared with TSLP-DC–induced (Fig. 5 E). 
As a negative control, naive CD4 T cells did not expressed 
BTLA, CD200, SAP, or C-MAF protein. As expected, naive 
CD4 T cells expressed surface CCR7 at similar levels that 
TSLP-induced CXCR5hiPD1hi and CXCR5loPD1lo cells.

Overall, CXCR5hiPD1hi cells polarized by TSLP-DC 
express markers characteristic of human tonsillar Tfh, sug-
gesting that TSLP-DC are able to induce Tfh polarization 
from naive CD4 T cells.

cXcr5hiPd1hi cells polarized by tSLP-dc 
coexpressed BcL6 and GAtA3
Our data showing the expression of BCL6, TBET, GATA3, 
and ROR GT by TSLP-DC activated CD4 T cells are rele-
vant to the coexistence of Th and Tfh polarization programs 
in a single cell. Therefore, we investigated their coexpression 
at the single-cell level.

We measured by intracellular FACS staining the expres-
sion of BCL6, TBET, GATA3, and ROR GT in CD4 T cells 
co-cultured for 4 d with TSLP-DC. We included, as a negative 
control, a CXCR5−PD1− population corresponding to cells 
that were co-cultured with TSLP-DC but did not display an 
activated profile (Fig.  6  A, bottom). We compared the ex-
pression of the same transcription factors in human tonsillar 
CD4 populations, identified by different expression levels of 
CXCR5 and PD1 (Fig. 6 B). TSLP-induced CXCR5hiPD1hi 
cells expressed significantly higher levels of BCL6, TBET, 
GATA3, and ROR GT protein when compared with CX-
CR5loPD1lo cells and naive CD4 T cells (Fig. 6, A and C). 
CXCR5hiPD1hi tonsillar cells expressed higher levels of BCL6, 
but lower levels of TBET, GATA3, and ROR GT, as com-
pared with TSLP-induced CXCR5hiPD1hi cells. These data 
validated that TSLP-DC–activated T cells expressed higher 
levels of lineage defining transcription factors, as suggested by 
our mRNA analysis of Fig. 4. CXCR5hiPD1hi cells, induced by 
TSLP-DC, expressed higher levels of BCL6 protein (Fig. 6 A) 
but lower levels of BCL6 mRNA (Fig. 4) as compared with 
CXCR5lo/PD1lo cells. One interpretation of this discrepancy 
is that there are some differences at the posttranscriptional 
level between CXCR5hi/PD1hi and CXCR5lo/PD1lo cells. 
Discrepancies between BCL6 mRNA and protein levels have 
been already reported (Kroenke et al., 2012).

Next, we investigated whether the IL-4+IL-21+ cells 
we characterized (Fig.  1) coexpressed BCL6 and GATA3. 
We FACS sorted CXCR5hiPD1hi cells and analyzed the ex-
pression of IL-4, IL-21, BCL6, and GATA3 by intracellular 
FACS staining. The majority (80%) of IL-4+IL-21+ cells co-
expressed BCL6 and GATA3 proteins, as shown by a repre-
sentative donor and quantification in Fig. 6 D. BCL6/GATA3 
double-positive population was significantly enriched in 
IL-4+IL-21+ cells compared with single cytokine producers 

or double-negative cells. This showed that TSLP-DC–ac-
tivated CXCR5hiPD1hiIL-21+IL-4+ cells preferentially co-
expressed BCL6 and GATA3.

Overall, these data showed that TSLP-DC–induced the 
expression of BCL6 in combination with Th lineage defining 
transcription factors, in particular GATA3, at the protein level.

IL-21 and cXcL13 secretion from memory cd4 t cells 
are increased by tSLP-dc
TSLP-DC are potent inducers of memory Th2 responses 
(Wang et al., 2006). To establish whether TSLP-DC stimu-
lated IL-21 and CXCL13 secretion by memory CD4 T cells, 
we cultured TSLP-DC with allogeneic memory CD4 pu-
rified by sorting (99% purity) from healthy donor periph-
eral blood (CD4+CD25−CD45RA−CD45RO+). Memory 
CD4 T cells secreted increased amounts of IL-21 after 6 d 
of co-culture in the presence of TSLP-DC, when compared 
with CD4 memory co-cultured with untreated DCs or 
LPS-activated DCs (Fig. 7 A).

To gain insight into the dynamic of cytokine secretion 
by memory T cells activated by TSLP-DC, we washed and 
restimulated cells after 2, 4 or 6 d of co-culture. IL-21 se-
cretion by memory CD4 T cells was detected after 2 d of 
co-culture with TSLP-DC, and was higher after 4 and 6 d 
(Fig. 7 B). CXCL13 was induced at day 6 of co-culture, but 
barely detectable before (Fig. 7 C). We compared the expres-
sion of IL-21 and CXCL13 with the expression of Th2 cy-
tokines (IL-3, IL-4, and IL-5) in the same experiment. IL-3 
was induced at day 2, whereas the secretion profiles of IL-4 
and IL-5 over time were comparable to the one of CXCL13 
(Fig. 7 D, left column). In the same settings, we were unable to 
detect any statistically significant difference in TNF secretion 
(Fig. 7 D, right column). The secretion profiles of IL-21 and 
CXCL13 were different from the ones of IL-17A and IFN-γ 
(Fig. 7 D, right column), characteristics of Th17 and Th1 cells, 
respectively. This indicated that TSLP-DC–activated memory 
CD4 T cells to express Tfh cytokines IL-21 and CXCL13 
with a kinetic of secretion similar to Th2 cytokines.

Detection of CXCL13 and IL-21 in the co-culture of 
memory CD4 T cells with TSLP-DC suggested that memory 
Tfh, which have been described as CXCR5+CD4+CD45RA− 
CD45RO+ cells in human peripheral blood (Morita et al., 
2011), might be activated by TSLP-DC. To test this hypothe-
sis, we sorted blood memory CD4 based on CXCR5 expres-
sion, and co-cultured the CXCR5− and CXCR5+ memory 
CD4 populations separately with either nonactivated DCs or 
TSLP-DC (Fig.  7  E, top). TSLP-DC significantly induced 
IL-21 and CXCL13 secretion by CXCR5+ memory Tfh in 
comparison to nonactivated DCs after 6 d of co-culture, fol-
lowed by 1 d of restimulation with anti-CD3/CD28 beads 
(Fig. 7 E). At day 6, we measured by FACS the expression 
of ICOS, PD1, CXCR5, and BCL6 in the same experimen-
tal conditions as in Fig. 7 E. TSLP-DC significantly induced 
ICOS, CXCR5, and BCL6 compared with unstimulated 
DCs (Fig. 7 F) in memory CXCR5− cells.
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Overall, we concluded that TSLP-DC preferentially stim-
ulated CXCR5+ CD4 T cells to secrete IL-21 and CXCL13. 
Additionally, TSLP-DC induced expression of ICOS, CXCR5, 
and BCL6 on CXCR5− memory CD4 T cells.

tSLP-dc induce IL-21 and cXcL13 
production through oX40L
To gain mechanistic insight into TSLP-DC induction of IL-21 
and CXCL13 expression, we focused on the Th-polarizing 
molecules induced by TSLP in DCs. Because TSLP-DC pro-
duce low levels of inflammatory cytokines, and no IL-12 
(Soumelis et al., 2002), we explored the contribution of sur-
face co-stimulatory molecules associated with Tfh differen-
tiation. We measured by flow cytometry the expression of 
CD86, PDL1, ICO SL, and OX40L on DCs cultured for 48 h 
with TSLP, LPS, or untreated.

We observed that TSLP-DC expressed high levels of 
ICO SL (Fig. 8, A and B), a molecule important in Tfh po-
larization (Choi et al., 2011). To assess the role of ICO SL, we 

cultured TSLP-DC with CD4 T cells in the presence of an 
anti-ICO SL blocking antibody and measured cytokines after 
6 d. ICO SL blocking did not affect IL-3 or IL-10 levels, and 
more importantly, did not inhibit polarization by TSLP-DC 
into Th cells secreting IL-21 and CXCL13 (Fig. 8 C). As a 
control of the functional blocking of the ICO SL antibody, 
we detected a decrease in IL-10 production by naive CD4 T 
cells cultured with plasmacytoid DCs activated with CpGB 
(pDCs; Fig. 9 A), as previously reported (Ito et al., 2007).

We confirmed OX40L as being induced by TSLP in 
comparison to DCs or LPS-DC (Fig.  8  A and quantifica-
tion in Fig.  8  B; Ito et al., 2005). Given the controversial 
role of OX40L in mouse Tfh development (Deenick et al., 
2011), and a recent study on the role of OX40L in human 
Tfh polarization (Jacquemin et al., 2015), we investigated 
its role in TSLP-DC–induced Tfh polarization. We used an 
anti-OX40L blocking antibody during the TSLP-DC CD4 
T cell co-culture. OX40L blocking inhibited IL-3 secretion, 
whereas enhancing IL-10 expression (Fig. 8 D), as previously 

Figure 8. tSLP-dc induce IL-21 and cXcL13 production through oX40L. (A) FACS analysis of surface expression of CD86, PDL1, ICO SL, and OX40L 
by DCs cultured without any stimulation (NT), TSLP, or LPS for 48 h. Filled gray histogram shows matched isotype control. Black histogram shows antibody 
staining. One representative donor is shown. (B) Quantification of MFI as in A. Mean ± SEM for seven experiments. (C) Quantification of cytokine by CBA 
(IL-3 and IL-10) or ELI SA (CXCL13 and IL-21) by CD4 T cells differentiated during 6 d with DCs or TSLP-DC. Anti-ICO SL blocking antibody or isotype control 
antibody (25 µg/ml) were kept all along the culture. Mean ± SEM for four experiments, is plotted. D) Cells were cultured as in C, and instead of ICO SL block-
ing antibody, an anti-OX40L antibody or isotype control (50 µg/ml) were used. Mean ± SEM for seven experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001, 
paired Student’s t test.
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reported (Ito et al., 2005). We found that OX40L inhibition 
significantly decreased both CXCL13 and IL-21 secretion by 
CD4 T cells polarized by TSLP-DC (Fig. 8 D). We investi-
gated the effect of ICO SL and OX40L functional blocking 
on the expression of CXCR5, PD1, and BCL6. We mea-
sured the percentage of CXCR5hiPD1hi and CXCR5loPD1lo 
cells, and their respective expression of BCL6 in the pres-
ence of blocking antibodies and isotype controls, after 4 d 
of co-culture with TSLP-DC. ICO SL functional blocking 
increased BCL6 expression by CXCR5hiPD1hi cells com-
pared with the isotype control (Fig. 9 B, and quantification in 
D). OX40L functional blocking decreased the percentage of  
CXCR5loPD1lo cells, paralleled by an increase in the percent-
age of CXCR5hiPD1hi cells (Fig. 9 C). In line with no signif-
icant changes in IL-21 and CXCL13 expression (Fig. 8 D), 
we could not observe any decrease of BCL6 expression in 
response to ICO SL functional blocking (Fig. 9 D). However, 
we observed that OX40L functional blocking induced a sig-
nificant decrease of BCL6 expression in both CXCR5loPD1lo 
and CXCR5hiPD1hi cells polarized by TSLP-DC (Fig. 9 D).

In summary, our data demonstrated that TSLP induced 
Tfh polarization through OX40L, and that OX40L con-
trolled BCL6 expression.

In vivo evaluation of tfh markers in atopic dermatitis (Ad) 
and netherton syndrome (nS) patients
We sought to assess the relevance of the TSLP-DC–polarized 
Tfh cells in human pathology. AD is a skin allergic pathology 
characterized by Th2 environments (Brandt and Sivaprasad, 
2011), and the role of TSLP in the pathogenesis of AD is well 
established (Ziegler and Artis, 2010).

We first asked whether Tfh were infiltrating the lesional 
skin of AD patients. By immunofluorescence, we could not detect 
CXCL13+ cells in frozen AD skin sections (Fig. S3 A). By FACS, we 
identified very low percentages (<0.5%) of CXCR5+ CD4+ cells 
in T cell emigrated from lesional skinbiopsies of 2 AD donors (Fig. 
S3 B). Lack of significant Tfh cell infiltration of AD skin prompted 
us to look for circulating Tfh within AD PBMCs. Circulating 
human Tfh cells comprise a population of IL-4– and IL-21–pro-
ducing cells that induce IgE switch in B cells (Morita et al., 2011).

We quantified by FACS the percentage of this Tfh subset 
cells, gated as CD4+CD45RO+CXCR5+CXCR3−CCR6−, 
in PBMCs obtained from age- and gender-matched AD 
and healthy donors. The percentage of Tfh2 was higher in 
AD donors as compared with healthy donors (64 vs. 30% of 
CXCR5+CD45RA+CD4+ cells). In parallel, we observed a 
dramatic decrease of CXCR3+CCR6−cells (Fig. 10 A).

Figure 9. oX40L blocking reduces BcL6 
induction by tSLP-dc. (A) Quantification 
of IL-10 production using CBA by CD4 T cells 
differentiated during 6 d with pDC activated 
with CpGB (15 µg/ml during 24 h). Anti-ICO SL 
blocking antibody or isotype control antibody 
(25 µg/ml) were added at the beginning of 
the culture. Mean ± SEM for six experiments 
is plotted. *, P < 0.05 Wilcoxon matched pair 
test. (B) Quantification by FACS analysis of 
the percentage of CXCR5hiPD1hi, CXCR5loPD1lo 
cells in TSLP-DC co-culture at day 4, treated 
with functional blocking antibodies or isotype 
controls as indicated. The percentage of each 
gate is shown. For BCL6 expression, gray histo-
grams represent the FMO signal, and red his-
tograms represent specific BCL6 staining. MFI 
of specific staining and percentage of BCL6+ 
cells are plotted for one representative exper-
iment. (C and D) Quantification as in B, from 
six independent experiments. SMFI for BCL6 
was calculated by subtracting the FMO from 
BCL6-specific staining in CXCR5hiPD1hi and 
CXCR5loPD1lo cells. *, P < 0.05; **, P < 0.01; ***, 
P < 0.001, paired Student’s t test.
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In addition to AD, which includes predominantly local 
inflammatory manifestations, we looked for a systemic dis-
ease in which TSLP is expressed. This is the case of NS, a 
rare genetic skin disease characterized by a severe skin barrier 
defect, atopic manifestations, and elevated IgE levels (Hovna-
nian, 2013). It has recently been shown that TSLP is highly 
expressed in a mouse model for NS and in the skin of NS 
patients (Briot et al., 2009). We analyzed the levels of TSLP in 
64 serum samples obtained from 13 NS patients by ELI SA. In 
parallel, we measured CXCL13 as a Tfh marker in the same 
samples. We found a significant positive correlation between 
TSLP and CXCL13 in the sera of NS patients (Fig. 10 B).

Collectively, AD and NS patient samples suggest that 
TSLP and Tfh might be linked in humans in vivo.

dIScuSSIon
In this study, we provide definitive evidence for a key role 
of TSLP-activated DCs in the differentiation of naive CD4 
T cells into cells possessing Tfh characteristics through the 
co-stimulatory molecule OX40L.

IL-12, the main driver of Th1 polarization, promotes Tfh 
differentiation in humans (Schmitt et al., 2009, 2013; Ma et 
al., 2012). It has been recently shown that the Th17-inducing 
cytokines IL-23 and TGF-β could trigger Tfh differentiation 
too (Schmitt et al., 2014). However, Tfh cells are also present 
in Th2-dominated environments (Glatman Zaretsky et al., 
2009; Yusuf et al., 2010; Liang et al., 2011; Kemeny, 2012), 
and may have an important physiopathological role in mouse 
models of airway hyperresponsiveness (Coquet et al., 2015; 

Ballesteros-Tato et al., 2016). However, how Tfh differentia-
tion can occur in such Th2 environments is not known. The 
cytokine TSLPwas until now associated with human Th2 po-
larization (Liu et al., 2007; Ziegler and Artis, 2010). Here, we 
show a novel function of TSLP as the driver of the differentia-
tion of Tfh cells expressing CXCR5, IL-21, CXCL13, BCL6, 
and helping memory B cells to produce IgG and IgE. How 
to reconcile the induction of Tfh cell differentiation in a Th2 
context, and the reported negative role of IL-4 on human Tfh 
development (Schmitt et al., 2014), must still be answered. In 
our data, we observed a co-occurrence of IL-21– and IL-4–
producing T cells in TSLP-DC–polarized cultures. However, 
TSLP-DC do not produce IL-4 (Soumelis et al., 2002), and 
TSLP-DC–activated T cells start secreting IL-4 around day 4  
(Leyva-Castillo et al., 2013), when we could already iden-
tify the CXCR5hiPD1hi population of cells expressing Tfh 
markers. Therefore, there is an IL-4–free window for Tfh 
differentiation during the first 48 h of culture, a time when 
the decision making about Tfh differentiation likely occurs 
(Choi et al., 2011). Importantly, IL-4 inhibits IL-21 secre-
tion in DC-free settings (Schmitt et al., 2014), different from 
our DC/T cell co-cultures. We cannot exclude the possibil-
ity that, in the context of TSLP-DC–driven Tfh polarization, 
IL-4 might not inhibit IL-21 production.

The relationship and plasticity between Tfh and Th 
subsets are still debated. Here, we show that TSLP-DC–in-
duced CXCR5hiPD1hiIL-21+IL-4+ cells coexpressed the Th2 
transcription factor GATA3 and the Tfh transcription factor 
BCL6. Our data suggest that, in TSLP-DC–activated cells, 

Figure 10. In nS patients, serum tSLP levels positively correlate with cXcL13. (A) FACS analysis showing the frequency of CCR6−CXCR3− (green), 
CCR6−CXCR3+, and CCR6+CXCR3− populations in the CD4+CD45RO+CXCR5+ gate. Representative plots are shown for a healthy donor and AD donor, respec-
tively. Frequency distribution in six AD donors, and four healthy donors are plotted. *, P < 0.05; **, P < 0.01; ***, P < 0.001, paired Student’s t test. (B) Linear 
correlation between serum TSLP and CXCL13, measured by ELI SA, is shown. Spearman r and P-values are plotted. 64 samples from 13 NS patients are plotted.
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GATA3 drives IL-4 expression in the presence of BCL6. In 
contrast, previous observations showed that BCL6 represses 
GATA3 in GC Tfh (Kusam et al., 2003; Hatzi et al., 2015). 
From our data, we could not elucidate the mechanisms un-
derlying GATA3 and BCL6 coexpression. However, our 
cellular system, based on human primary cells, represents a 
unique tool to understand the relationship and plasticity be-
tween Th2 and Tfh in humans.

Co-stimulatory molecules, in particular ICOS–ICO SL 
interactions, were shown to be important in Tfh cell devel-
opment (Choi et al., 2011; Crotty, 2014). The role of other 
co-stimulatory molecules, and in particular OX40L, is contro-
versial and seems to depend on the experimental mouse model 
used (Deenick et al., 2011). A recent work shows that OX40L 
promotes human Tfh responses, particularly in Lupus (Jacque-
min et al., 2015). In our work, by using functional blocking of 
co-stimulatory molecules, we established that OX40L, and not 
ICO SL, is the main driver of IL-21, CXCL13, and BCL6 ex-
pression in T cells by TSLP-DC. Nonetheless, as OX40L func-
tional blocking did not completely abolish IL-21 and CXCL13 
production, we cannot exclude that other factors may con-
tribute to the induction of Tfh differentiation by TSLP-DC.

We show that TSLP-DC not only stimulated naive 
CD4 T cells to acquire Tfh markers, but strongly induced 
IL-21 and CXCL13 secretion by memory circulating Tfh 
cells. Additionally, TSLP-DC induced the expression of Tfh 
markers ICOS, PD1, CXCR5 and BCL6 in memory non 
Tfh (CXCR5−) cells . This result is particularly relevant to 
Tfh biology because, to our knowledge, this is the first report 
of reprogramming of human memory non-Tfh CD4 T cells 
into Tfh-like cells. The frequency of memory circulating Tfh 
and their activation states have been linked to antibody re-
sponses in human subjects (He et al., 2013; Locci et al., 2013). 
Therefore, it has been proposed that boosting memory Tfh 
responses could improve vaccine efficacy (Ma and Deenick, 
2014). Our study, in combination with published data on the 
effect of TSLP on mouse antibody responses (Van Roey et 
al., 2012), provides the rationale to further explore TSLP as a 
vaccine adjuvant in humans. Additionally, our findings suggest 
that TSLP, which is produced by epithelial cells, could activate 
memory Tfh cells in inflamed peripheral tissues through DCs.

How CXCR5hiPD1hi CD4 cells induced by TSLP-DC 
relate to reported Tfh subsets is of major importance. We di-
rectly compared CXCR5hiPD1hi cells polarized by TSLP-DC 
to human tonsillar Tfh (Kim et al., 2004; Bryant et al., 2007; 
Weinstein et al., 2014). Our data show that the expression 
profile of key Tfh markers (PD1, CXCR5, ICOS, BTLA, 
SAP, CD200, CXCL13, IL-21, C-MAF, BCL6, and BLI MP1) 
by TSLP-DC–induced CXCR5hiPD1hi cells was similar to 
tonsillar Tfh and GC Tfh cells.

A characteristic of the IL-21+ cells we identified, dis-
tinguishing them from previously reported Tfh subsets, is the 
co-production of TNF. 20% of CD4 activated by TSLP-DC 
coexpressed IL-21 and TNF. We propose that IL-21+TNF+ 
cells may correspond to a distinct inflammatory Tfh cell 

subset. In addition, we also detected cells producing IL-21, 
but not IL-4, TNF, or IFN-γ (16% of IL-21 producers), 
IL-21+IL-4+ (3% of IL-21 producers), and IL-21+IL-4+TNF+ 
(11% of IL-21 producers). This reveals that TSLP induced a 
large diversity of Th cells, with potential diverse functions 
depending on the physiopathological contexts. We observed 
the co-induction of IFN-γ+ cells, a hallmark of Th1 cells, 
together with Th2 effector cells. This co-induction repro-
duces the coexistence of Th1 and Th2 cells in AD (Grewe 
et al., 1998), where TSLP plays a role in T cell polarization 
(Ziegler and Artis, 2010).

By co-culturing CXCR5hiPD1hi and CXCR5loPD1lo  
cells polarized by TSLP-DC with memory B cells, we 
showed that CXCR5hiPD1hi cells selectively induced IgE 
secretion. Therefore, in addition to Tfh markers, cells polar-
ized by TSLP-DC presented Tfh2 functional features (Ueno 
et al., 2015). We found that IgE secretion was accompanied 
by IgG4 production. Both IgE and IgG4 have been linked to 
allergic disorders in humans (Gould et al., 2003). Mechanis-
tically, using anti-IL-4Rb functional blocking antibody, we 
showed that IgE induction depended on IL-4 and/or IL-13. 
Therefore, we described a pathway linking TSLP to IgE pro-
duction, and involving interactions between epithelial cells, 
DCs, T cells and B cells.

TSLP is expressed in a broad spectrum of diseases. This 
is the case of AD (Soumelis et al., 2002), psoriasis (Volpe et al., 
2014), NS (Hovnanian, 2013; Furio and Hovnanian, 2014), 
keloid (Shin et al., 2016), and helminthic infections (Rama-
lingam et al., 2009; Ziegler and Artis, 2010; Giacomin et al., 
2012). In some of these diseases, Tfh cells have been reported 
(Glatman Zaretsky et al., 2009; Niu et al., 2015). Our analysis 
on AD clinical samples show that there is an enrichment of 
Tfh2 and a decrease of Tfh1 in the circulation. A decrease in 
Th1 cells in PMBC of chronic AD patients has been previ-
ously shown (Nakazawa et al., 1997; Lonati et al., 1999). In 
NS serum samples, we found a positive correlation between 
TSLP and the GC activity marker CXCL13.

Collectively, our study provides the rationale to exploit 
TSLP as a pharmacological target to manipulate Tfh polar-
ization in allergic and inflammatory disorders. Acting on an 
upstream inducer mechanism of Tfh and Tfh2 differentia-
tion may result in additional clinical benefit in the complex 
pathogenicity of allergy.

MAtErIALS And MEtHodS
cell purification
Buffy coats were obtained from healthy adult blood donors 
(Etablissement Français du Sang, Paris, France) in conformity 
with Institut Curie ethical guidelines. Human blood pri-
mary DCs were purified according to an established protocol  
(Alculumbre and Pattarini, 2016). In brief, after FIC OLL 
(GE Healthcare) gradient centrifugation, total PBMCs were 
enriched in DCs using the EasySep Human Pan-DC Pre- 
Enrichment kit (StemCell Technologies). Enriched DCs were 
sorted to obtain 98% purity on a FAC SVantage (Miltenyi 
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Biotec), as Lineage (CD3, CD14, CD16, and CD19)− CD4+ 
(Beckman Coulter), CD11c+ (BioLegend), whereas pDCs 
were sorted as Lineage− CD4+ CD11c−. When detailed, DCs 
were further separated into subsets by FACS sorting using 
anti CD1c (eBioscience) and CD141 (Miltenyi Biotec) stain-
ing. After enrichment from total PBMCs using the CD4+ T 
cell isolation kit (Miltenyi Biotec), naive and memory CD4 
T cells were sorted on a FAC SAR IA (BD) as CD4+, CD25−, 
and CD45RA+ and CD45RO+, respectively (BD). Blood Tfh 
were sorted as CD4+CD25−CD45RO+CXCR5+ (R&D Sys-
tems). Human tonsils were obtained from the Necker Hos-
pital (Paris, France) in conformity with Institut Curie ethical 
guidelines. Tonsillar CD4 T cells were purified from human 
tonsils by mechanical disruption (C tube and gentleMACS, 
Miltenyi), followed by a FIC OLL gradient centrifugation. 
For FACS analysis, total cells were analyzed. For PCR analy-
sis, tonsillar Tfh were enriched using a CD4+ T cell isolation 
kit (Miltenyi) and then sorted as CD4+, CD19−, CD45RO+,  
CXCR5hi/lo/-, and PD1hi/lo/- (BioLegend) on a FAC SAR IA (BD).

dc and pdc activation
DC and pDC were cultured in RPMI 1640 Medium Gluta-
MAX (Life Technologies) containing 10% Fetal Calf Serum 
(Hyclone), 100 U/ml Penicillin/Streptomycin (Gibco), 
MEM Non-Essential Amino Acids (Gibco), and 1 mM NA 
pyruvate (GIB CO). DCs were cultured at 106/ml in flat bot-
tom plates for 24 h in the presence of 50 ng/ml rhTSLP- 
where not differently specified (R&D Systems) or 100 ng/ml 
ultrapure LPS (InvivoGen).

pDCs were cultured at 106/ml in flat-bottom plates for 
24 h in the presence of 15 µg/ml CpGB ODN 2006 (InvivoGen).

dc/t co-culture
For co-culture, DCs were washed twice in PBS and put in 
culture with allogeneic either naive or memory CD4 (104 
DCs and 5 × 104 T cells) in X-VIVO 15 medium (LON ZA)  
for the indicated time. For co-culture, pDC were washed 
twice and put in culture with allogeneic naive CD4 cells 
(104 pDC and 5 × 104 T cells) in Yssel’s medium for 6 d. For 
co-culture, CD4 T cells were freshly purified from PBMC 
the day after DC purification. Each co-culture experiment 
was performed by coupling exclusively a single DC donor 
with a single CD4 T cell donor.

For blocking experiments, DCs or pDCs were incubated 
at 37°C with 50 µg/ml anti–human OX40L antibody (clone 
ik-5; provided by T. Hori, Ritsumeiken University, Japan), 25 
µg/ml anti–human ICO SL (clone MIH-12; eBioscience), or 
matched isotype controls (R&D Systems and eBioscience). 
After 60 min, CD4 naive T cells were added to the culture. 
Antibodies were maintained for the duration of the co-culture.

At indicated time points, cells were either FACS sorted 
or used for surface or intracellular staining, or washed and 
reseeded at 106/ml and treated with anti-CD3/CD28 beads 
(LifeTech) for 24 h, after which supernatants and cells were 
collected for analysis.

For primary and secondary co-cultures, CD4 naive T 
cells were co-cultured with DCs as described at the begin-
ning of this section. At day 5, cells were counted and divided. 
One part was analyzed for intracellular cytokine production; 
the other part was put in a secondary culture in the absence 
of any DCs, in the presence of TSLP-DC or LPS-DC (24 h 
activation), at the ratio 1:5 in X-VIVO 15 medium. DCs used 
in the secondary co-culture were purified from donors inde-
pendent from the DC donors of the primary co-culture and 
the CD4 T cell donors. Cells were kept in culture for 6 d, and 
half of the medium was replaced at day 5 with fresh medium.

dc-free th cell polarization
Sorted naive CD4 T cells were cultured with anti CD3/CD28 
beads to obtain Th0 or beads plus IL-1β, IL-23, TGF-β, and 
IL-6 (PeproTech) to obtain Th17 as already published (Volpe 
et al., 2008) for 5 d. When indicated, 50 ng/ml TSLP was 
added at the beginning of the culture, and cells were cultured 
for 6 d. At the end of the culture, cells were washed, reseeded 
at 106/ml, and treated with anti-CD3/CD28 beads; superna-
tants and cells were collected for analysis after 24 h.

t/B co-culture
After 4 d of co-culture with TSLP-DC, activated CD4 T cells 
were FACS sorted as CXCR5hi/PD1hi or CXCR5lo/PD1lo. 
The same day, autologous PBMC were thawed and, after a 
round of human memory B cell Enrichment (Miltenyi Bio-
tec), memory B cells were FACS sorted as CD3−CD19+C-
D27+IgD− cells. T and B cells were co-cultured in X-VIVO 
medium in round-bottom plates (2.5 × 105 T and 2.5 × 105 
memory B). Memory B cells alone were cultured with 1 µg/
ml rhCD40L (Alexis) and 2.5 µg/ml CpG B or left untreated. 
At day 14 of culture, cells were harvested for flow cytometry 
analysis and supernatants stored at −80°C to quantify Igs.

For IL4R-α functional blocking, sorted CXCR5hi/
PD1hi or CXCR5lo/PD1lo cells were incubated at 37°C 
with 20 µg/ml of anti–IL4R-α or IgG2a isotype control 
(R&D Systems). After 1  h, autologous-sorted memory B 
cells were added (2.5 × 105 T cells and 2.5 × 105 memory 
B cells). Supernatants were recovered after 14 d of co-cul-
ture, stored at –80°C for IgG and IgE measurement by cyto-
metric bead array (CBA).

Flow cytometry analysis
Antibodies and matched isotypes were titrated on the relevant 
human PBMC population. For surface FACS analysis, the an-
tibodies recognizing these proteins were used: PDL1 (BD), 
CD86 (BD), OX40L (Ancell), ICO SL (R&D Systems), ICOS 
(eBioscience), PD1 (BD), CXCR5 (R&D Systems or BD), 
BTLA (BioLegend), CD200 (eBioscience), CCR7 (BD), 
TSL PR (BioLegend), IL7Ra (eBioscience), CD27 (BD), and 
CD38 (Miltenyi Biotec). Dead cells were excluded using 
DAPI (Miltenyi Biotec).

For intracellular cytokine staining, CD4 T cells were 
stimulated with 100 ng/ml PMA plus 500 ng/ml Ionomy-
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cin. When cells were sorted before intracellular staining, 
they were cultured overnight in X-VIVO medium at 106 
cells/ml before PMA and Ionomycin stimulation. After 90 
min, 3 µg/ml Brefeldin A (eBioscience) was added and kept 
for 4  h. To exclude dead cells, CD4 T cells were stained 
using the LIVE/DEAD Fixable yellow dead cell stain kit, 
following manufacturer’s instructions (LifeTech). Cells 
were fixed and permeabilized using the IC Fix and Per-
meabilization buffers (eBioscience). Intracellular cytokines 
were revealed with fluorescently conjugated antibodies 
against IL-21 (BD), TNF (BioLegend), IL-4, and IFN-γ, or 
matched isotype controls (eBioscience) and acquired on a 
LSR Fortessa instrument (BD).

For transcription factor intracellular staining, dead 
cells were first stained with a Zombie-NIR dye (BioLeg-
end), followed by PD1 and CXCR5 (BD) staining. After 
fixation and permeabilization using the FOXP3 IC buffer 
kit (eBioscience), cells were stained with an anti-BCL6 
antibody (BD), TBET, GATA3, RORC, C-MAF, or SAP 
(eBioscience) and acquired on a LSR Fortessa instrument. 
As a control for intracellular staining of transcription factors, 
cells were stained using PD1, CXCR5, and CD4 (to define 
the populations) and matched isotype controls at the same 
concentration as the transcription factor antibodies. The flu-
orescence obtained in each channel and in each population 
in the presence of isotype control antibody (Fluorescence 
minus one [FMO]) was subtracted from the fluorescence 
obtained by the specific staining of transcription factors in 
each population. Sorted naive CD4 T cells were analyzed 
in parallel as a control.

Flow cytometry data processing
FACS data were analyzed using the FlowJo software (Tree Star).

cytokine quantification
Cytokines were quantified in the supernatants using ELI 
SA for IL-21 (BioLegend) and CXCL13 (R&D Systems) or 
CBA flex set for IL-3, IL-4, IL-5, IL-10, IL-13, IL-17A, TNF, 
and IFN-γ (BD), following the manufacturer’s protocol. Total 
human IgG, IgE, IgG4, and IgM were quantified using the 
Human IgGs Flex Sets (BD).

Pcr
Cells were sorted and lysed in RLT buffer. RNA extraction 
was performed using the RNAeasy micro kit (QIA GEN) 
according to manufacturer’s instructions. Total RNA was 
retrotranscribed using the superscript II polymerase (In-
vitrogen) in combination with random hexamers, oligo 
dT, and dNTPs (Promega).

Transcripts were quantified by real time PCR on a 
480 LightCycler instrument (Roche). Reactions were per-
formed in 10  µl, using a master mix (Eurogentec), with 
the following TaqMan Assays (all from Life Technologies): 
BCL6 (Hs00153368_m1), PRMD1 (Hs00153357_m1), 
BTLA (Hs00699198_m1), CXCR4 (Hs00607978_s1), 
CXCR5 (Hs00540548_s1), CXCL13 (Hs00757930_m1), 
ICOS (Hs00359999_m1), IL-21 (Hs00222327_m1), 
PDCD1 (Hs01550088_m1), SH2D1A (Hs00158978_m1), 
CCR7 (HS 00171054_m1), CD200 (Hs01033303_m1), 
IL-4 (Hs00174122_m1), TNF (Hs00174128_m1), MAF 
(Hs00193519_m1), GATA-3 (Hs00231122_m1), TBX-21 
(Hs00203436_m1), RORC (Hs01076112_m1), FOXP3 
(Hs00203958_m1), IL-5 (Hs00174200_m1), IL-13 
(Hs99999038_m1), IFNG (Hs00174143_m1), and IL-17A 
(Hs00174383_m1). Crossing points (Cp) from each analyte 
were obtained using the second derivative maximum method, 
and the transcripts were quantified as fold changes in com-
parison to the mean of the two housekeeping genes (B2M 
[Hs99999907_m1] and RPL34 [Hs00241560_m1]).

Analysis of Ad and Hd PBMcs
After obtaining informed consent from patients, whole blood 
was taken from AD patients (n = 6, Table 1). PBMCs were pu-
rified using CPT tubes (BD) and immediately frozen. Local 
ethics committees of the Heinrich-Heine University (Dus-
seldorf, Germany) approved the study. Healthy age- and gen-
der-matched controls were also included in the study, and were 
processed as AD samples at the Heinrich-Heine University.

Total PBMCs from healthy donors and from AD pa-
tients (5 × 106 each), where thawed and immediately stained 
for sorting. Cells were stained using CD4 (BD), CD45RO 
(BD), CXCR5 (R&D Systems), CXCR3 (BD), and CCR6 
(BioLegend) for 30 min at 37°C.

Table 1. clinical data

Patient no. Gender Year of birth Diseases SCO RAD

1 M 1975 AD 41
2 W 1957 AD 41
3 M 1962 AD 39
4 W 1997 AD 35.4
5 W 1998 AD 38.2
6 W 1989 AD 44.4
7 M 1980 HD
8 W 1970 HD
9 W 1987 HD
10 W 1969 HD

M, man; W, woman. SCO RAD (Scoring of AD) was assessed following the Consensus report of the European task force on AD. 
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Immunofluorescence
Frozen tissue slides (human tonsils and skin) were stained 
with rat anti-human TSLP (clone 12F3; gift from L. Bover, 
MD Anderson Cancer Center, Houston, Texas), goat anti–
human CXCL13 (R&D Systems), followed by incubation 
with fluorescence-conjugated secondary antibodies. Slides 
were stained with DAPI, mounted with Vectashield (Vector) 
and acquired using an Eclipse microscope (Nikon).

cell purification from human skin
Fresh AD lesional skin biopsies were washed in PBS, minced 
with a scalpel, and placed in culture at 37°C with 5% CO2 
in RPMI 1640 complemented with 2 mmol/liter glutamine, 
1 mmol/liter sodium pyruvate, 1% nonessential amino acids, 
0.05 mmol/liter 2-mercaptoethanol, 100 U/ml penicillin, and 
100 µg/ml streptomycin (Lonza) with 5% autologous plasma 
and 60 U/ml recombinant human IL-2 (Novartis) to obtain 
enriched skin T cells. Medium was replaced every third day, 
and after 8 to 10 d, T cells that emigrated from tissue samples 
were collected and placed in starvation with low IL-2 before 
phenotypic characterization.

Statistical analysis
Statistical analysis was performed using the Prism soft-
ware v7 (GraphPad). Paired Wilcoxon or t test were 
applied as detailed to compare two groups. Mann-Whit-
ney test was used for nonpaired analysis. Significance 
was retained for P < 0.05.

qPCR data were normalized and center reduced 
using Box-Cox transformation, and plotted using heat map 
package in the R software.

online supplemental material
Fig. S1 shows that human naive CD4 T cells do not express 
TSL PR and do not respond to TSLP stimulation by express-
ing IL-21. Fig. S2 details the expression of Tfh and Th markers 
shown in Fig. 4. Fig. S3 displays the expression of CXCL13 
and CXCR5 in AD and healthy donor skin samples, by IHC 
and FACS staining, respectively.
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Computational modeling constitutes a crucial step toward the functional understanding of
complex cellular networks. In particular, logical modeling has proven suitable for the dynam-
ical analysis of large signaling and transcriptional regulatory networks. In this context,
signaling input components are generally meant to convey external stimuli, or environ-
mental cues. In response to such external signals, cells acquire specific gene expression
patterns modeled in terms of attractors (e.g., stable states).The capacity for cells to alter or
reprogram their differentiated states upon changes in environmental conditions is referred
to as cell plasticity. In this article, we present a multivalued logical framework along with
computational methods recently developed to efficiently analyze large models. We mainly
focus on a symbolic model checking approach to investigate switches between attrac-
tors subsequent to changes of input conditions. As a case study, we consider the cellular
network regulating the differentiation of T-helper (Th) cells, which orchestrate many phys-
iological and pathological immune responses. To account for novel cellular subtypes, we
present an extended version of a published model of Th cell differentiation. We then use
symbolic model checking to analyze reachability properties between Th subtypes upon
changes of environmental cues. This allows for the construction of a synthetic view of Th
cell plasticity in terms of a graph connecting subtypes with arcs labeled by input condi-
tions. Finally, we explore novel strategies enabling specificTh cell polarizing or reprograming
events.

Keywords: logical modeling, signaling networks, T-helper lymphocyte, cell differentiation, cell plasticity, model
checking

1. INTRODUCTION
Cellular signaling pathways and regulatory circuits are progres-
sively deciphered, with a recent acceleration allowed by the devel-
opment of powerful high-throughput experimental approaches.
Computational modeling constitutes a crucial step toward the
functional understanding of the resulting intertwined networks.
Different formalisms have been commonly used to model complex
biological networks, with different levels of abstraction (de Jong,
2002; Karlebach and Shamir, 2008; Albert et al., 2013; Samaga
and Klamt, 2013). Among these formalisms, the discrete, logical
approach is particularly useful to model biological systems for
which detailed kinetic data are lacking, which is often the case
(Bornholdt, 2008; Wang et al., 2012; Naldi et al., 2014). More-
over, logical modeling allows the consideration and the dynamical
analysis of comprehensive signaling/regulatory networks. Here, we
rely on the multivalued formalism initially introduced by Thomas
and D’Ari (1990).

Following Thomas, we model networks in terms of a log-
ical regulatory graph (LRG), where nodes represent regulatory

components, while edges denote regulatory interactions (activa-
tions or inhibitions). Each component is associated with a discrete
variable denoting its (current) functional level of activity. In addi-
tion, a logical rule (or logical function) describes the evolution of
this level, depending on the values of the regulators of the compo-
nent. The regulatory graph together with the logical rules enable
the computation of the dynamical behavior of the model, which
is usually represented in terms of a State Transition Graph (STG),
where each node represents a state of the system (i.e., a vector list-
ing the values of all the variables), while arcs represent enabled
state transitions. The terminal strongly connected components
(SCC) of an STG denote the attractors of the underlying network,
i.e., capture its asymptotic behavior in terms of stable states or
(potentially complex) dynamical cycles. Consequently, the identi-
fication of these attractors and the evaluation of their reachability
from given initial condition(s) are paramount to understand net-
work behaviors. However, as the number of states may increase
exponentially with the number of components, advanced compu-
tational methods are needed to analyze the dynamics of discrete
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models. In this respect, several strategies have been developed to
efficiently assess dynamical properties of comprehensive logical
models.

Here, we focus on the analysis of networks encompassing input
components that embody external signals, instructing intertwined
signaling pathways with feedback regulations. Each (fixed) combi-
nation of input values (i.e., environmental cues) defines a specific
region of the state space where the dynamics and its associated
attractors are confined. In the case of models of networks con-
trolling cell differentiation, attractors correspond to differentiated
patterns of gene expression (or protein activity). We call these
attractors differentiated states, which are generally stable states
[see e.g., Naldi et al. (2010)], but can also be complex attractors
denoting homeostasis or oscillatory behavior [see e.g., Bonzanni
et al. (2013)]. It is of particular interest to assess how input
value changes affect differentiated states, sometimes resulting in
functional reprograming. The capacity of cells to change their
asymptotic behaviors depending on environmental cues is referred
to as cell plasticity [see e.g., O’Shea and Paul (2010)]. In this man-
uscript, we present a methodology to assess cell plasticity, relying
on the logical formalism assets and recent computational methods,
including model checking techniques.

Model checking is a computer science technique for the veri-
fication of large discrete dynamical systems (Clarke et al., 1999).
It has been recently applied to the analysis of biological networks
(Chabrier and Fages, 2003; Batt et al., 2005; Schwarick and Heiner,
2009; Arellano et al., 2011; Brim et al., 2013). Properties are for-
malized in terms of temporal logic statements, and the verification
process explores (restricted) regions of the state space, in order
to check the truthfulness of the properties. Here, we consider
a further improvement that consists in defining input values as
labels of the transitions in STGs, thereby reducing the number
of states. This allows to efficiently assess input conditions when
verifying, for example, reachability properties between differen-
tiated states. For this, we use a specific symbolic model checker
called NuSMV-ARCTL, along with a temporal logical semantics
enabling the specification of properties with restrictions on the
input valuations (Lomuscio et al., 2007).

We consider the case of T-helper (Th) cell differentiation to
demonstrate the assets of the logical framework and the power
of model checking to elucidate how cells respond to environ-
mental stimuli. More precisely, we model the cellular network
controlling the differentiation of Th cells, which regulate many
physiological and pathological immune responses. Upon activa-
tion by antigen presenting cells (APCs), naive Th cells polarize
into distinct Th subtypes expressing different sets of cytokines, tai-
loring appropriate immune responses to the invading pathogen.
Recent experimental data highlight the ability of Th subtypes to
alter and even reprogram their phenotypes, according to envi-
ronmental cues (Nakayamada et al., 2012). These observations
challenge the classical linear view of Th differentiation into distinct
lineages, raising fundamental questions regarding the mechanisms
underlying Th differentiation and plasticity.

In order to get insights into the dynamical behavior of Th cell
differentiation, several models describing the regulatory network
controlling Th commitment have been proposed, relying on quan-
titative modeling approaches (van den Ham and de Boer, 2008,

2012; Mendoza and Pardo, 2010) or using discrete qualitative
frameworks (Mendoza, 2006; Naldi et al., 2010; Martinez-Sosa
and Mendoza, 2013). Here, the logical model of Th cell dif-
ferentiation of Naldi et al. (2010) is extended to cover several
novel Th subtypes. Focusing on Th polarization and reprogram-
ing events, we show how biologically relevant properties can be
formalized and tested using model checking. More precisely, we
compute all reprograming events between Th subtypes under spe-
cific documented polarizing cytokine environments, providing a
global and synthetic representation of Th plasticity in response to
these environmental cues. This analysis leads to the prediction of
Th-subtypes conversions, which will need to be assessed exper-
imentally. Finally, we delineate several strategies for Th subtype
reprograming, as well as for naive Th cell polarization toward a
novel hybrid Th subtype (predicted by our model).

This manuscript is organized as follows. Section 2 briefly
reviews the basics of the logical modeling framework, including
model definition and an overview of computational methods to
analyze dynamical properties. We also introduce the use of model
checking to enhance the analysis of logical models, in particular
when these include input components. This methodology is then
applied to a logical model for Th differentiation in Section 3, which
includes a presentation of the resulting biological insights. Section
4 concludes the manuscript with a discussion and some prospects.

2. MATERIALS AND METHODS
In this section, we introduce the logical framework, present-
ing the rationale underlying the model definition. We further
describe model modifications accounting for genetic perturba-
tions (e.g., gene knock-out or knock-in) along with a model
reduction method. Next, we briefly present computational strate-
gies to efficiently analyze properties of logical models. Finally, we
focus on the assets of model checking to enhance the dynamical
analysis of large signaling/regulatory logical networks. Figure 1
illustrates the workflow for logical model definition and analysis,
on which we rely to address the question of Th cell plasticity. Most
methods presented in this section are implemented in GINsim
(Chaouiya et al., 2012)1.

2.1. LOGICAL MODEL CONSTRUCTION
This subsection shortly introduces the definition of multivalued
logical models [for more details and formal definitions, see e.g.,
(Thomas and D’Ari, 1990; Chaouiya et al., 2003)].

2.1.1. Logical formalism
A logical model of a regulatory and/or signaling network is defined
as an LRG, where:

• {s1, . . ., sn} is the set of nodes, which embody the components
of the network; these may correspond to proteins, genes, or phe-
nomenological signals (e.g., the node APC in Figure 2 denotes
an Antigen Presenting Cell, present or not).

• Each component si is associated with a discrete (positive integer)
variable, which takes its values in Si= {0, . . . , maxi}; for simplic-
ity, we denote both the component and its associated variable by

1http://ginsim.org
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FIGURE 1 |Typical workflow to tackle a central biological question using
logical model construction and analysis. A model is defined, relying on
literature and experimental data (box Model Definition). The model is then
analyzed (boxes Static analysis and Dynamical analysis). The identification of
the attractors is performed either by static methods (see Sections 2.2.1 and
2.2.2) or by inspecting the dynamics (see Sections 2.2.3 and 2.3). Dynamics are

represented at different levels of abstraction, from the comprehensive state
transition graphs to the reprograming graphs. Resulting properties are
confronted with biological observations, leading to predictions and/or to model
revision. Ellipsoid boxes relate to the different model versions and behavior
representations. Green boxes denote methods that are available in GINsim,
whereas gray boxes denote analyses performed with other software tools.

si, embodying the component level of activity or concentration.
In general, the maximum level of si, denoted maxi, is set to 1
(i.e., Boolean variable), but it can take higher values to convey
qualitatively distinct functional levels.

• Each interaction (si, sj, θ) is defined by its source si, its tar-
get sj and a threshold θ ; the interaction is said to be effective
when si≥ θ ; note that θ ≤maxi (the threshold cannot exceed
the maximal level of the source).

• The state space of the LRG is given by S=5i=1, . . . ,nSi; hence a
state of the model is a vector s= (si)i=1, . . . ,n.

• The model behavior is specified in terms of logical rules (or log-
ical functions): the evolution of si is defined by Ki: S→ Si with
Ki(s) specifying the target value of si when the system is in state s.

The software GINsim provides a graphical interface for the
LRG definition, including the components (nodes) and their
ranges (maximum values), the interactions (signed arcs) and their

thresholds, along with the logical rules [using Boolean expressions
or logical parameters (Thomas and D’Ari, 1990)].

The behavior of an LRG is classically represented in terms of a
STG, which encompasses the initial model state(s) together with
their direct and indirect successors. A transition between two states
corresponds to the update of specific components. These updates
are dictated by the logical rules. When several components are
called to change their values at a given state, these updates are per-
formed according to an updating scheme. The most used updating
schemes are the fully synchronous updating (all changes are per-
formed simultaneously, leading to a unique successor), and the
fully asynchronous updating (all changes are performed indepen-
dently, leading to as many successors as the number of updated
components). Further details on STG and updating schemes are
provided in Section 2.2.3.

In such dynamical models, the asymptotic behavior of the sys-
tem is captured by the attractors. These correspond to the terminal
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FIGURE 2 | Regulatory graph ofTh differentiation logical model.
The model encompasses 101 components (among which 21 input
nodes) and 221 interactions. The components denoting the inputs
are in blue, those denoting the secreted cytokines in olive. Green

edges correspond to activations, whereas red blunt ones denote
inhibitions. Ellipses denote Boolean components, whereas
rectangles denote ternary ones. Gray-out components are those
selected for reduction.
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SCC of the STG. An SCC is defined as a maximal set of mutually
reachable states. An SCC is denoted terminal when no transition
leaves this state set (i.e., once the system enters this set, it is trapped
there forever). An attractor is defined by either a single state, which
corresponds to a stable state denoting a stable pattern of expres-
sion often interpreted as a cell differentiation state, or by a larger
set of states involved in a dynamical terminal cycle, denoting an
oscillatory (or homeostatic) behavior. It is therefore important to
identify these attractors along with reachability properties (e.g., to
determine the attractors reachable from a specific initial state).

2.1.2. Logical modeling of network perturbations
In the logical framework, it is straightforward to define perturba-
tions such as gene knock-out, gene knock-in, or more subtle per-
turbations (e.g., rendering a component insensitive to the presence
of one of its regulators). Modeling such perturbations amounts to
specific modifications of the corresponding logical rules. Mod-
ifications affecting several components can be easily combined.
Given a logical model, one can thus define various perturbations
to account for experimental observations or to generate predic-
tions regarding the dynamical role of regulatory components or
interactions.

2.1.3. Reduction of logical models
It is often useful to simplify large models by abstracting compo-
nents, hence diminishing the size of the model state space. In this
respect, GINsim implements a reduction method automating the
reduction of any component, except those that are self-regulated
(Naldi et al., 2011). The computation of a reduced model is per-
formed iteratively: to remove a component, the logical rules of
its targets are modified to account for the (indirect) effects of
the regulators of this component. This is efficiently done in time
polynomial in the number of targets (components regulated by
the removed one) and regulators of the removed components. In
the case of a Boolean model, removing n components leads to a
reduction of the state space by a factor 2n.

Obviously, such a reduction may change the dynamics. In fact,
it conserves the nature (and number) of the stable states and of the
terminal elementary cycles [also called simple cycles, with neither
repeated states nor repeated transitions (Berge, 2001)]. However,
oscillatory components may be split or isolated, and reachabil-
ity properties only partly conserved. Depending on the type of
components that are removed upon reduction, specific dynam-
ical properties are preserved. In Saadatpour et al. (2013), the
authors showed that all the attractors of an asynchronous Boolean
model are conserved upon reduction of input and pseudo-input
components (i.e., components with no regulators or regulated by
only input and pseudo-input components). Additionally, Naldi
et al. (2012) proved that the reduction of output and pseudo-
output components not only preserves the attractors, but also their
reachability properties [output components regulate no other
components, and pseudo-output components are those regulat-
ing only (pseudo-) output components]. In all cases, a trajectory
in a reduced model has its counterpart in the original model [see
Naldi et al. (2011) for details]. Hereafter, we take advantage of this
reduction method to ease the analysis of our Th cell differentiation
model (see Section 3).

2.2. MODEL ANALYSIS
Means to investigate the dynamical properties of a model can be
subdivided into: (1) static analyses, which infer properties without
requiring the construction of the STG; and (2) dynamical analy-
ses, which explore proper representations of the dynamics (see
Figure 1).

2.2.1. Static analysis – interactions and circuit functionality
The delineation of logical rules for components targeted by sev-
eral regulators can be relatively tricky. These rules are encoded in
GINsim as Multivalued Decision Diagrams, which represent mul-
tivalued functions as directed acyclical graphs allowing efficient
manipulations (Kam et al., 1998; Naldi et al., 2007).

To help the modeler, GINsim provides a method to check the
coherence of the interactions (including their signs) encoded in a
regulatory graph with the logical rules associated with its compo-
nents. Basically, for each interaction (si, sj, θ), GINsim compares
the target level of sj given by its logical function, when (si, sj, θ) is
effective (si≥ θ) and when it is not (si<θ), for all combinations
of the remaining regulators of sj (if any). If both target levels are
always equal, we say that this interaction is not functional. Relying
on this comparison, it is also possible to derive the sign of the
interaction (activation or inhibition).

Regulatory circuits (i.e., elementary cycles in the LRG, also
called feedback loops) drive non-trivial behaviors such as multi-
stability (in the case of positive circuits, involving an even number
of negative regulations) or sustained oscillations (negative cir-
cuits, involving an odd number of negative regulations) (Thieffry,
2007). Based on the aforementioned method to assess interaction
functionality, GINsim enables the delineation of the functionality
context (if any) of each regulatory circuit (Naldi et al., 2007; Remy
and Ruet, 2008). This functionality context is defined as the lev-
els of external regulators that allow each circuit interaction to be
functional and thereby affect its target in the circuit. It can be inter-
preted as the region of the state space where the circuit generates
the corresponding dynamical property. This definition enables the
identification of the regulatory circuits playing the most important
regulatory roles within a complex LRG [see Comet et al. (2013)
for further discussion on circuit functionality].

2.2.2. Static analysis – identification of dynamical attractors
Attractors (stable states or terminal cycles) constitute crucial
dynamical properties of the model and have thus been the focus of
many computational studies. In particular, a SAT-based algorithm
was proposed in Dubrova and Teslenko (2011) to compute all the
attractors of synchronous Boolean models. However, the prob-
lem is harder for the asynchronous updating scheme (see Section
2.2.3). Recently, Zañudo and Albert (2013) introduced a novel
method to compute most asynchronous attractors.

Several methods have been proposed to specifically com-
pute the stable states, for example, using constraint programing
(Devloo et al., 2003) or polynomial algebra (Veliz-Cuba et al.,
2010). To identify all the stable states, GINsim implements an effi-
cient algorithm based on the manipulation of multivalued decision
diagrams [see Naldi et al. (2007) for details]. We will rely on this
algorithm to compute the stable states of the Th cell differentiation
model (see Section 3).
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2.2.3. Dynamical analysis – state transition graphs,
representation, and analysis

As mentioned above, the discrete dynamics of an LRG can be rep-
resented in terms of an STG, where the nodes denote states and
the arcs represent transitions between states. A first approach to
investigate dynamical properties consists in analyzing the STG in
terms of attractors (terminal SCC), or regarding the existence of
paths from an initial state toward specific attractors. The graph
of SCC of the STG often provides a convenient, compressed
view of the dynamics, in which attractors and reachability prop-
erties are easier to visualize. However, this representation may
still encompass numerous single state components, hindering the
interpretation of the dynamics. To further compress an STG and
emphasize its topology, we recently proposed a novel represen-
tation, named hierarchical transition graph [see Bérenguier et al.
(2013) for details].

Still, these representations do not address the identification of
the attractors in large STGs. In this respect, Garg et al. (2008)
proposed an efficient algorithm to identify all the attractors (syn-
chronous and asynchronous schemes) of Boolean models. Their
method relies on a binary decision diagram representation of the
STG and can cope with very large models (Xie and Beerel, 1998).
An implementation of this algorithm is available along with the
software genYsis2.

To further account for kinetic aspects, several strategies have
been proposed. One strategy defines priority classes according to
biologically founded time scale separations, e.g., fast versus slow
processes (Fauré et al., 2006). Alternatively, time delays and con-
straints on them can be defined and handled with existing methods
to analyze timed automata (Siebert and Bockmayr, 2006). Another
approach consists in applying continuous time Markov processes
on logical state spaces. Based on the delineation of a logical model
along with a limited number of kinetic parameters, the software
MaBoSS uses Monte-Carlo simulations to compute an estimate of
the temporal evolution of probability distributions and of the sta-
tionary distributions of the logical states (Stoll et al., 2012). Finally,
several authors proposed to consider differential models derived
from logical models (Mendoza and Xenarios, 2006; Abou-Jaoudé
et al., 2009; Wittmann et al., 2009).

2.3. MODEL CHECKING FOR REACHABILITY ANALYSIS
2.3.1. Model checking
The combinatorial explosion of the state spaces of discrete dynam-
ical systems has been addressed during the last 30 years through the
development of model checking, a computer science technique to
verify properties in very large state spaces. The dynamics of discrete
systems are directly mapped into a (graph-based) Kripke structure
(Clarke et al., 1999). Model checkers receive a Kripke structure,
either explicitly (representation equivalent to the STG), or implic-
itly in terms of a transition function specifying the successors
of any given state. The latter case corresponds to symbolic model
checking, which is handled by most model checkers nowadays. To
perform a verification, a model checker takes as an input a set of
properties denoting real-world observations, specified as tempo-
ral logic formulas, and verifies whether each of these properties

2http://www.vital-it.ch/software/genYsis/

is satisfied by the Kripke structure induced by the model under
study.

Temporal logic formulas specify an order of sequences of tran-
sitions between states, without explicit time quantification. Several
temporal logics have been defined with different expressive pow-
ers, using different types of operators. In the case of asynchronous
updating, one might be interested in the study of each alterna-
tive path separately. This suggests the use of a temporal logic
that provides path quantifiers where, at each step, a choice can
be made between multiple paths, i.e., a branching-time tempo-
ral logic. Within the family of branching-time temporal logics,
Computation Tree Logic (CTL) is the most used one. Basic CTL
operators are obtained by combining path quantifiers, Exists and
All, with temporal operators, neXt, Future, Globally, and Until
(Clarke et al., 1999).

Different model checkers are available, differing in character-
istics such as the underlying structure to represent the model
dynamics or the supported temporal logics. A few examples are:
CADP (Garavel et al., 2007), which uses labeled transition sys-
tems, supporting temporal logics with high expressive power like
Computation Tree Regular Logic (CTRL) (Mateescu et al., 2011) or
µ-calculus (Kozen, 1983); Antelope (Arellano et al., 2011), which
uses STGs, supporting Hybrid CTL, an extension of CTL with a
special operator capable of selecting partly characterized states;
and NuSMV (Cimatti et al., 2002), a symbolic model checker,
which uses multilevel decision diagrams, supporting the verifica-
tion of properties through CTL or Linear Temporal Logic (LTL)
(Clarke et al., 1999). As an open source project providing a generic
description language for the specification of discrete dynamical
systems, NuSMV is particularly prone to be extended by other
research groups with additional features (see next subsection).

2.3.2. Model checking applied to the analysis of logical models of
signaling networks

Systems biology is a recent, successful application field for model
checking techniques, covering a variety of modeling formalisms
and/or type of properties to be verified [for details see Brim et al.
(2013)]. Here, we use GINsim, our modeling tool, which automat-
ically exports logical models under the asynchronous scheme into
NuSMV specifications. Biological observations are then expressed
as sets of temporal logic formulas.

Computational models of signaling/regulatory networks aim
at unraveling how external stimuli are processed to determine cell
responses. In these networks, input nodes convey environmental
cues, which are often assumed to be constant. Each combination
of constant values of the inputs defines an STG, which is discon-
nected from the STGs defined by different combinations of input
values. In other words, each fixed environmental condition defines
a specific region of the state space in which the system is trapped.
Rather than having input variables being part of the state defini-
tions, we label each transition with the input values enabling this
transition. This yields a state space defined solely by non-input
variables and therefore a unique STG (Monteiro and Chaouiya,
2012). The extent of this reduction depends on the number of
input components and on their value ranges.

In order to take advantage of this reduction, we need to be able
to verify properties referring to both states and transition labels.
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NuSMV can only verify properties on state characterizations. We
thus use NuSMV-ARCTL, which verifies properties combining
both state and transition characterizations (Lomuscio et al., 2007).
For the verification of such properties, NuSMV-ARCTL considers
a CTL extension called Action-Restricted CTL (ARCTL). Table 1
describes the syntax and semantics of the main ARCTL opera-
tors. With ARCTL, reachability properties are specified not only
by characterizing the set of initial and target states, but also by
constraining the values of some input components (transition
labels), while the remaining input components are allowed to
freely vary.

Here, we take advantage of the expressiveness of ARCTL to
study the influence of specific environmental conditions on the
reprograming of chosen cell types (see Section 3). As presented
hereafter, the Th cell differentiation model specified in GINsim is
exported into a NuSMV specification, while properties of biologi-
cal interest are specified as ARCTL temporal formulas. This allows
us to define a novel, abstracted view of the dynamical behaviors
called reprograming graph, which reveals switches between attrac-
tors upon changes in the input component values: the nodes of
this graph represent the model attractors; and the arcs, labeled by
specific combinations of input values, denote paths between those
attractors.

3. APPLICATION: T-HELPER CELL DIFFERENTIATION
T-helper (CD4+) lymphocytes play a key role in the regulation of
the immune response. Upon activation by APC, naive CD4 T cells
(Th0) differentiate into specific Th subtypes producing different
cytokines, which affect the activity of immune effector cell types
(e.g., B lymphocytes, effector CD8 T cells, macrophages, etc.).

Three main types of signals are involved in this Th cell differ-
entiation process (Figure S1 in Supplementary Material): (i) the
presentation of antigenic peptide in conjunction with the major
histocompatibility complex class II molecules (MHC-II) stimu-
late specific T cell receptors (TCR); (ii) co-stimulatory molecules
further contribute to T cell activation and clonal proliferation;
(iii) cytokines secreted by APCs and other cells bind their spe-
cific receptor(s) on the surface of Th0 cells, thereby affecting Th
differentiation.

The cytokine environment instructs Th0 to enter a specific
differentiation program in order to match the type of pathogen
primarily stimulating the APCs. Over the last decade, a variety
of Th subtypes have been discovered (Nakayamada et al., 2012),
well beyond the initial identification of Th1 and Th2 dichotomy
(Mosmann et al., 1986; Mosmann and Coffman, 1989).

Currently, several Th subtypes (Th1, Th2, Th17, Treg, Tfh,
Th9, and Th22) have been well established. These canonical sub-
types are characterized by their ability to express specific sets of
cytokines under the control of a master regulator transcription
factor (Figure S1 in Supplementary Material). However, various
hybrid Th subtypes expressing several master regulators have been
recently identified (Ghoreschi et al., 2010; Duhen et al., 2012; Peine
et al., 2013). Evidences for substantial plasticity in Th differen-
tiation have also been reported, including reprograming events
between Th subtypes under specific cytokine environments (Yang
et al., 2008; Lee et al., 2009; Hegazy et al., 2010). These findings
challenge the classical linear view of Th differentiation and raise

Table 1 | Syntax and semantics of the main ARCTL temporal operators

[for a complete description see Lomuscio et al. (2007)].

Syntax Semantics

EAF (α) (φ) There is at least one path leading to a state that satisfies φ

and the input restriction α must be satisfied along that path

AAF (α) (φ) All the paths lead to a state that satisfies φ and the input

restriction α must be satisfied along all the paths

EAG (α) (φ) There is at least one path along which all the states satisfy

φ and the input restriction α is satisfied along that path

AAG (α) (φ) All the states of all the paths satisfy φ and the input

restriction α is satisfied along all the paths

EA (α)[φ ∪ ψ ] There is at least one path along which all the states satisfy

φ, leading to a state that satisfies ψ and the input

restriction α is satisfied along the path

AA (α)[φ ∪ ψ ] All the states of all the paths satisfy φ, leading to a state

that satisfies ψ and the input restriction α is satisfied along

all the paths

α denotes a restriction, defined only by the input variables, which must be sat-

isfied (true) along the path; φ and ψ denote the restrictions, defined only by

non-input variables, which must be satisfied at the target state or along the path.

the question of which mechanisms underlie the observed diversity
and plasticity of Th phenotypes.

Unraveling the complexity of Th differentiation and plastic-
ity requires the development of an integrative and systematic
approach articulating experimental analysis with computational
modeling. We are currently setting a multi-parametric in vitro
experimental approach to decipher how the microenvironment
globally controls Th cell differentiation. In parallel, we are develop-
ing a comprehensive logical model of Th differentiation covering
all parameters assessed in our experimental setup. Extending the
modeling study reported in Naldi et al. (2010), the model presented
here includes additional transcription factors and cytokine path-
ways and hence accounts for the differentiation of several novel Th
subtypes. On the basis of this model, we illustrate how the com-
putational methods described in Section 2, in particular model
checking, can be used to assess biologically relevant dynamical
properties. The model file as well as the steps to reproduce all the
results described below are available from the model repository of
the GINsim web site.

3.1. MODEL DESCRIPTION
Our Th differentiation model encompasses different layers (see
Figure 2), namely:

• the cytokine inputs along with the APCs;
• the cytokine receptors and their subchains, along with the TCR

and the co-stimulatory receptor CD28;
• the intracellular signaling factors, including “Stat” family pro-

teins (Stat1, Stat3, Stat4, Stat5, and Stat6), the TCR and co-
stimulatory signaling components (NFAT, IκB, and NFκB),
the master regulators (Tbet, Gata3, Rorγ t, Foxp3, and Bcl6),

www.frontiersin.org January 2015 | Volume 2 | Article 86 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abou-Jaoudé et al. Model checking revealing T-cell plasticity

along with additional transcription factors involved in Th
differentiation (cMaf, PU.1, Smad3, IRF1, and Runx3);

• the main cytokines secreted by Th cells;
• a component modeling the proliferation of the cell.

By and large, the model encompasses 21 signaling pathways
(comprising external cytokines, receptor chains, etc.), 17 tran-
scription factors, 17 cytokines expressed by Th cells, and 1 node
accounting for cell proliferation, amounting to 101 components
in total. In comparison with the model reported in Naldi et al.
(2010), this model integrates factors characterizing novel Th sub-
types (Tfh, Th9, and Th22) as well as additional signaling pathways
and secreted cytokines involved in the differentiation and the def-
inition of Th cellular types. A complete list of the components of
the model along with supporting evidence is provided in Table S1
in Supplementary Material. The logical rules associated with the
components are listed in the Table S2 in Supplementary Material.

As in Naldi et al. (2010), a gene expression pattern is associated
with each canonical Th subtype, based on experimental evidence
(Table 2). Each pattern represents a restriction of Th cell states
to a subset defined by the activation or the inactivation of critical
markers characterizing the corresponding canonical Th subtype.
In the following sections, we present the results obtained by the
application of the aforementioned computational methods to our
Th differentiation model.

3.2. STATIC ANALYSIS
We first checked the consistency of the rules inferred from experi-
mental data (Table S2 in Supplementary Material) with the inter-
actions composing the regulatory graph of Figure 2. An analysis of
interaction functionality led to the identification of a single non-
functional interaction (IL10R→ Stat3). Although the role of this
interaction is not yet clear, we kept it in the regulatory graph as it
is documented (see Table S1 in Supplementary Material).

Next, to ease the model analysis, we derived a reduced version
of this model using the reduction method described in Naldi et al.
(2011), keeping internal components characterizing the canoni-
cal Th patterns (cf. Figure 2, where the gray nodes denote the
components selected for reduction).

Using the method described in Naldi et al. (2007), we computed
all the stable states for all the input combinations and grouped
them according to phenotypic markers (see also Subsection 2.2.2
above). Since the reduction preserves the stable states, each sta-
ble state of the reduced model strictly corresponds to one stable
state of the original model (and vice versa). This analysis led to
the identification of 82 context-dependent stable states, includ-
ing sets of stable states matching the activity patterns associated
with each canonical Th subtype (see Table S3 in Supplementary
Material). This analysis further predicts the existence of stable
states representing hybrid cellular types, i.e., expressing several
master regulators, including four hybrids expressing two master
regulators, which have been recently reported in the literature,
and another one (Tbet+Gata3+Foxp3+) expressing three mas-
ter regulators, which has not yet been experimentally observed.
Each of the stable states found is associated with a subset of input
combinations. One can actually recover the input configurations
associated with each stable state, getting a first insight into the role

Table 2 | Logical expression patterns for the canonicalTh subtypes.

Transcription factors Secreted cytokines

T
B

E
T

G
A

TA
3

R
O

R
G

T

FO
X

P
3

B
C

L6

P
U

.1

S
TA

T
3

IF
N

G

IL
4

IL
1 7

IL
21

IL
22

IL
5

IL
13

IL
9

T
G

FB

Th0

Th1

Th2

Th17

Treg

Tfh

Th9

Th22

Red and green cells denote the activation and inactivation of the components

(column entries), with respect to the canonical Th subtype (row entries). Gray

cells represent components that can be either activated or inactivated for the cor-

responding canonicalTh subtype.The components not mentioned are considered

to be either activated or inactivated, except in the case ofTh0, where they are all

inactivated.

of environmental cues in controlling the asymptotic behaviors of
the system (see Section 3.3.2 for an illustration of this analysis).

3.3. REACHABILITY ANALYSIS
As mentioned above, static analysis of the logical model allows for
the identification of stable Th cellular types along with their asso-
ciated input configurations. Our next aim is to determine how
environmental cues control the differentiation and plasticity of
these Th cell types. This question amounts to check whether a cel-
lular type is reachable from a given initial state for specific input
conditions,under the asynchronous update. This kind of questions
can be efficiently addressed using model checking, by verifying
temporal properties under constant or varying input conditions.

We first carried out a systematic analysis of reachability proper-
ties between the canonical Th subtypes as defined in Table 2, under
specific constant polarizing cytokine environments. We consider
nine prototypic environmental conditions (listed in Table 3) for
this reachability analysis, including seven documented polariz-
ing cytokine environments known to commit Th cells into the
canonical subtypes.

We used the NuSMV-ARCTL model checker and instantiated
the following generic property with values from Tables 2 and 3:

INIT c1; EAF (e) (c2 ∧ AAG (e) (c2)) (1)

This property asserts the existence of a path from a canoni-
cal Th pattern c1, instantiated with values from Table 2, toward a
(stable) canonical Th pattern c2, also instantiated with values from
Table 2, under an input condition e, instantiated with values from
Table 3.

Checking this property for all the combinations of canonical Th
patterns and input conditions, one can represent the verified prop-
erties through a reprograming graph, which here abstracts paths
between Th patterns and recapitulates the polarizing and repro-
graming events predicted by our model (Figure 3). This graph
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Table 3 | Prototypic environmental conditions.

Environmental conditions

A
P

C

IL
12

_e

IL
4_

e

IL
6_

e

T
G

FB
_e

IL
1B

_e

IL
23

_e

IL
21

_e

IL
2_

e

No stimulation

APC only

proTh1

proTh2

proTh17

proTreg

proTfh

proTh9

proTh22

Each row corresponds to a prototypic environment defined as a combination of

APC and cytokine inputs (columns). These environments encompass seven doc-

umented polarizing environments (denoted “proThX”) known to polarize naiveTh

cells into the canonical subtypes (defined in Table 2). Red/green cells represent

present/absent inputs. Non-mentioned inputs are considered as absent.

provides a global and synthetic representation of Th plasticity
depending on environmental cues. Focusing on polarizing events
from naive Th0 cells to the other Th subtypes, our model is consis-
tent with experimental data, showing that each canonical subtype
can be reached from the naive state Th0 (blue arcs starting from
Th0 in Figure 3) in the presence of specific polarizing cytokine
combinations (denoted by the labels associated with the blue arcs
in Figure 3). The remaining Th subtype conversions present in the
reprograming graph would need to be assessed experimentally.

An extensive discussion of all these Th type conversions is
beyond the scope of this article. However, one interesting outcome
is the inherent dissymmetry of this graph, with some Th sub-
types apparently very stable under the environments considered
(e.g., Th1 node, with seven incoming arcs but only one outgoing
one), while others need very specific conditions for their main-
tenance (e.g., Th9 node, with six outgoing arcs and only one
incoming one).

Hereafter, we focus on specific biological questions regarding
Th differentiation and plasticity and show how model checkers
can be applied to address these questions. Two biological questions
will be considered: (i) the delineation of reprograming strategies
to convert Th1 into Th2, and vice versa; (ii) the identification of
relevant environmental conditions enabling the polarization to the
Tbet+Gata3+Foxp3+ hybrid Th subtype identified in the course
of the stable state analysis.

3.3.1. Reprograming between Th1 and Th2
Since the discovery of Th1 and Th2 subtypes, Th1 and Th2 com-
mitments have been for a long time considered as mutually exclu-
sive (Murphy and Reiner, 2002). However, recent experimental
observations challenged this Th1/Th2 dichotomy (Hegazy et al.,
2010; Antebi et al., 2013; Peine et al., 2013), raising the ques-
tion of which environmental conditions can instruct Th1 or Th2
interconversions.

We first address this question by investigating Th1–Th2 repro-
graming strategies for the prototypic input conditions (listed in
Table 3). From the reprograming graph (Figure 3), two strategies
emerge: (1) although there is no direct path from Th1 cells toward
Th2 cells, one could consider a two-step approach to reprogram
Th1 cells into Th2 cells by applying a proTh17 condition, followed
by a proTh2 condition; (2) as there is a direct path from Th2 to
Th1 labeled with proTfh conditions, the application of a proTfh
environment would potentially reprogram Th2 cells into Th1 cells.

We then ask whether other (constant or varying) input condi-
tion strategies could be identified for the reprograming between
Th1 and Th2, beyond the prototypic environmental conditions.
This question can be addressed using the following ARCTL
formulas:

INIT Th1; EAF (¬e) (Th2)

INIT Th2; EAF (¬e) (Th1)
(2)

where e denotes the set of all the prototypic inputs (and conse-
quently ¬e denotes the set of all the input combinations except
the prototypic ones). NuSMV-ARCTL evaluates both formulas as
true, implying that it must exist at least one non-prototypic (con-
stant or varying) input condition allowing for the reprograming
of Th1 into Th2, and vice versa.

To further illustrate the power of model checking to analyze
cell plasticity, we focus on Th2 reprograming into Th1. Our initial
analysis predicts that the prototypic proTh1 cytokine environment
does not enable this reprograming (see Figure 3). However, look-
ing more closely at the regulatory graph, we see that the TGFβ
signaling pathway inhibits Gata3, the master regulator of Th2 cells
(Figure 2). This suggests an alternative two-step strategy to repro-
gram Th2 into Th1, by applying first TGFβ in the cell environment
to inhibit Gata3, and thereby block its inhibitory effects on Th1
differentiation, followed by the application of a proTh1 environ-
ment to induce Th1 polarization. We can assess this strategy using
the following ARCTL formula:

INIT Th2;

EAF (e)
(
true ∧ EAF

(
proTh1

) (
Th1 ∧ AAG

(
proTh1

)
(Th1)

))
(3)

where e is an input condition restricting only TGFβ to ON (all
other inputs can freely vary). This property is evaluated as true.
We can thus conclude that this alternative strategy could also be
used to reprogram Th2 into Th1 cells.

Beyond this analysis, one can further investigate network per-
turbations (e.g., gene knock-in or knock-out) enabling Th1–Th2
reprograming. This type of questions can be assessed using model
checking of perturbed models. Here,we focus again on reprogram-
ing Th2 cells into Th1 cells under the prototypic proTh1 input
condition. Over-expression of a Gata3 (Th2 signature) inhibitor
(e.g., PU.1 or Bcl6) would be a relevant option. However, Bcl6
should be discarded because it also inhibits Tbet (Th1 signature)
(cf. the logical rule of Tbet in Table S2 in Supplementary Material).
Using the generic property (1), the analysis of a perturbed model
with ectopically expressed PU.1 suggests that this perturbation can
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FIGURE 3 | Reprograming graph, considering all canonicalTh
subtypes, generated with the model checker NuSMV-ARCTL. Nodes
represent sets of states characterizing the canonical Th subtypes defined
inTable 2. There is an arc labeled with e, going from node c1 to node c2,
whenever the following ARCTL temporal logic formula is verified: INIT c1;
EAF (e) (c2 ∧AAG (e)(c2)). It should be noted that the existence of a single
reprograming path from a Th subtype to another one does not necessarily

imply the stability of the target Th subtype, since NuSMV-ARCTL
considers that a property is true if and only if it is verified by the whole set
of states in the initial conditions. Hence, if at least one state associated
with a given subtype points to a state not associated with this subtype (for
given input conditions), then the stability of the Th subtype is not
represented (see for example, Th9 subtype, which is not considered stable
under proTh9 input condition).

indeed induce the reprograming of Th2 into Th1 in the presence
of the prototypic proTh1 input condition.

Finally, we can study the role of critical regulatory interactions
underlying such reprograming events through model checking
analyses of perturbed models. Turning back to the reprograming
strategies 1 and 2 presented above, we now focus on the inhibitory
interactions acting upon Tbet and Gata3, the master regulators of
Th1 and Th2 cell types, respectively. For example, in Figure 2, we
see that Rorγ t inhibits Tbet, which could be relevant for repro-
graming strategy 1, while Bcl6 inhibits Gata3, which might be
relevant for reprograming strategy 2. Analyses of perturbed mod-
els, using the ARCTL generic property (1), where either one or
the other interaction is suppressed, suggest that the inhibition of
Tbet by Rorγ t is indeed necessary for reprograming strategy 1,
whereas the inhibition of Gata3 by Bcl6 is indeed necessary for
reprograming strategy 2.

3.3.2. Reachability of the triple hybrid subtype
Tbet+Gata3+Foxp3+

The steady state analysis of our model in Section 3.2 predicts the
existence of a stable hybrid Th subtype co-expressing Tbet (char-
acteristic of the Th1 signature), Gata3 (Th2 signature), and Foxp3
(Treg signature), which has not been yet experimentally reported.

Using model checking, we can evaluate environmental condi-
tions that might enable the polarization of naive Th0 cells into
this hybrid subtype. First, the input combinations for which this
hybrid subtype is stable can be extracted directly from the steady
state analysis (not shown). In these combinations, some cytokines
appear to be either always ON, namely IL15, or always OFF,
TGFβ. Moreover, TGFβ signaling, via Smad3, is clearly needed
to activate Foxp3 (see logical rule of Foxp3 in Table S2 in Supple-
mentary Material), suggesting that a transient TGFβ environment
is necessary to polarize naive Th0 cells into the hybrid subtype
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Tbet+Gata3+Foxp3+. This last hypothesis can be verified using
the ARCTL formula:

INIT Th0; AAG (e)
(
¬

(
Tbet+Gata3+Foxp3+

))
(4)

where e denotes an input condition restricting only TGFβ to
OFF (all other inputs can freely vary). This formula states that
the hybrid pattern cannot be reached from whatever path leaving
the canonical Th0 pattern under the input restriction e. As the
property is evaluated as true, we conclude that a strategy without
(transient) TGFβ in the environment cannot polarize Th0 into the
hybrid subtype, confirming our hypothesis.

Therefore, a two-step approach to polarize naive Th0 cells
into the hybrid subtype Tbet+Gata3+Foxp3+ could be consid-
ered, applying TGFβ transiently, before applying an environment
containing IL15. This strategy can be evaluated using the ARCTL
formula:

INIT Th0; EAF (e1)
(
true ∧ EAF (e2)

(
Tbet+Gata3+Foxp3+

∧ AAG (e2)
(
Tbet+Gata3+Foxp3+

)))
(5)

where e1 denotes the first input combination (in which TGFβ and
APC are ON), and e2 denotes the second input combination (in
which IL15 and APC are ON and TGFβ is OFF). Two additional
input cytokines were also considered in these combinations: IFNγ
for Tbet activation and IL25 for Gata3 activation. We consider 18
strategies (input configurations), six of them are able to polarize
Th0 into the hybrid subtype (see Table S4 in Supplementary Mate-
rial). Interestingly, these six strategies have all IFNγ switched OFF
in the first input combination and turned ON in the second input
combination.

4. CONCLUSION AND PROSPECTS
Considering logical models of large cellular regulatory networks,
we have focused on model checking to explore induced dynam-
ical properties. Over the last decades, computer scientists have
made spectacular advances in the development of powerful model
checkers, regarding both performances and expressivity power.
Several model checkers are freely available and can be used to check
specific properties of dynamical models of biological systems. As
illustrated above, asynchronous dynamics of logical models inte-
grating signaling pathways with transcriptional networks can be
readily translated into explicit or implicit Kripke structures, and
thereby become amenable to standard or action-restricted model
checking.

We have applied this approach to the analysis of a logical
model for a comprehensive signaling/regulatory network control-
ling Th cell differentiation, which encompasses 101 components
(most but not all Boolean) and 221 regulatory interactions. As
the state space induced by this network is gigantic (encompassing
over 2100 states), scalable formal methods enabling the explo-
ration of interesting dynamical properties are paramount. In this
respect, we have combined three complementary approaches: (i)
a formal reduction method conserving the main dynamical prop-
erties, including the stable states (described in Section 2.1.3); (ii)
an algorithm enabling the identification of all the stable states
in large logical models (described in Section 2.2.2); (iii) the

use of model checking to verify the reachability of specific sta-
ble patterns (reprograming of specific Th cell subtypes) from
given initial conditions, in the presence or absence of network
perturbations.

We have illustrated the power of the model checking approach
by addressing key biological questions related to Th differentia-
tion and plasticity in response to environmental cues. To this end,
we have formulated two main types of queries: (i) is it possible
to reprogram a specific Th subtype into another one, using spe-
cific fixed (or any free) cytokine combinations, in a single (or a
multiple) step(s)? (ii) does such reprograming depend on specific
regulatory components or interactions (using perturbed models)?
We have shown that such biological questions can be efficiently
assessed using action-restricted model checking. Using the model
checker NuSMV-ARCTL, we could confirm that our model is con-
sistent with the polarization of naive Th cells into the canonical Th
subtypes under specific cytokine input environments, and delin-
eated several strategies allowing the reprograming between specific
Th subtypes (Th1 and Th2) as well as the polarization of naive Th
cells toward a novel Th hybrid subtype predicted by our analysis
(Tbet+Gata3+Foxp3+).

Although our logical model for Th cell differentiation should be
further refined using a comprehensive experimental data set (work
in progress), it could be already used as a framework to design
informative experiments regarding the identification of Th hybrid
subtypes, or yet to characterize Th cell plasticity. Some of the
resulting predictions (e.g., the existence of Tbet+Gata3+Foxp3+

Th hybrid) currently serve as a basis to design experiments
in vitro.

More generally, we wish to stress that formal modeling can be
used at various stages of the deciphering of complex regulatory
networks, provided that the formal framework and methods used,
as well as the modeling scope, are adapted to the data available. In
this respect, qualitative (Boolean or multivalued) logical model-
ing is well suited to model large biological regulatory networks, for
which reliable quantitative data are often lacking (Saez-Rodriguez
et al., 2007; Grieco et al., 2013).

Beyond the proof of concept, the development of user-friendly
tools is required for a wider use of model checking in systems
biology. In this respect, we are currently working on improving
the interaction between GINsim and NuSMV-ARCTL in two dis-
tinct ways, which will be made available in a forthcoming release
of GINsim: (1) implementing recurrent temporal logic patterns
into our software GINsim to ease the definition of temporal logic
formulas; (2) automating the interaction with the model checker
and the parsing of the results, as well as the generation of the
reprograming graph.
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Brim, L., Češka, M., and Šafránek, D. (2013). “Model checking of biological sys-
tems,” in Formal Methods for Dynamical Systems, Volume 7938 of Lecture Notes
in Computer Science, eds M. Bernardo, E. de Vink, A. Di Pierro, and H. Wiklicky
(Bertinoro: Springer), 63–112.

Chabrier, N., and Fages, F. (2003). “Symbolic model checking of biochemical net-
works,” in Computational Methods in Systems Biology, Volume 2602 of Lecture
Notes in Computer Science, ed. C. Priami (Rovereto: Springer), 149–162.

Chaouiya, C., Naldi, A., and Thieffry, D. (2012). “Logical modelling of gene regu-
latory networks with GINsim,” in Bacterial Molecular Networks, Volume 804 of
Methods in Molecular Biology, eds J. van Helden, A. Toussaint, and D. Thieffry
(Rome: Springer), 463–479.

Chaouiya, C., Remy, E., Mossé, B., and Thieffry, D. (2003). “Qualitative analysis of
regulatory graphs: a computational tool based on a discrete formal framework,”
in Positive Systems, Volume 294 of Lecture Notes in Control and Information Sci-
ence, eds L. Benvenuti, A. De Santis, and L. Farina (Rome: Springer), 119–126.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., et al.
(2002). “NuSMV2: an opensource tool for symbolic model checking,” in Com-
puter Aided Verification, Volume 2404 of Lecture Notes in Computer Science, eds E.
Brinksma and K. Larsen (Berlin: Springer), 359–364.

Clarke, E., Grumberg, O., and Peled, D. (1999). Model Checking. Cambridge: MIT
Press.

Comet, J.-P., Noual, M., Richard, A., Aracena, J., Calzone, L., Demongeot, J., et al.
(2013). On circuit functionality in Boolean networks. Bull. Math. Biol. 75,
906–919. doi:10.1007/s11538-013-9829-2

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a liter-
ature review. J. Comput. Biol. 9, 67–103. doi:10.1089/10665270252833208

Devloo, V., Hansen, P., and Labbé, M. (2003). Identification of all steady states in
large networks by logical analysis. Bull. Math. Biol. 65, 1025–1051. doi:10.1016/
S0092-8240(03)00061-2

Dubrova, E., and Teslenko, M. (2011). A SAT-based algorithm for finding attractors
in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform.
8, 1393–1399. doi:10.1109/TCBB.2010.20

Duhen, T., Duhen, R., Lanzavecchia,A., Sallusto, F., and Campbell, D. J. (2012). Func-
tionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror
effector Th cells. Blood 119, 4430–4440. doi:10.1182/blood-2011-11-392324

Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics 22, 124–131. doi:10.1093/bioinformatics/btl210

Garavel, H., Mateescu, R., Lang, F., and Serwe, W. (2007). “CADP 2006: a toolbox
for the construction and analysis of distributed processes,” in Computer Aided
Verification, Volume 4590 of Lecture Notes in Computer Science, eds W. Damm
and H. Hermanns (Berlin: Springer), 158–163.

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008). Synchro-
nous versus asynchronous modeling of gene regulatory networks. Bioinformatics
24, 1917–1925. doi:10.1093/bioinformatics/btn336

Ghoreschi, K., Laurence, A., Yang, X. P., Tato, C. M., McGeachy, M. J., Konkel, J.
E., et al. (2010). Generation of pathogenic TH17 cells in the absence of TGF-β
signalling. Nature 467, 967–971. doi:10.1038/nature09447

Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., and Thi-
effry, D. (2013). Integrative modelling of the influence of MAPK network on
cancer cell fate decision. PLoS Comput. Biol. 9:21003286. doi:10.1371/journal.
pcbi.1003286

Hegazy, A., Peine, M., Helmstetter, C., Panse, I., Fröhlich, A., Bergthaler, A., et al.
(2010). Interferons direct Th2 cell reprogramming to generate a stable GATA-
3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity
32, 116–128. doi:10.1016/j.immuni.2009.12.004

Kam, T., Villa, T., Brayton, R. K., and Sangiovanni-Vincentelli, A. L. (1998). Multi-
valued decision diagrams: theory and applications. Multiple-Valued Logic 4,
9–62.

Karlebach, G., and Shamir, R. (2008). Modelling and analysis of gene regulatory
networks. Nat. Rev. Mol. Cell Biol. 9, 770–780. doi:10.1038/nrm2503

Kozen, D. (1983). Results on the propositional µ-calculus. Theor. Comp. Sci. 27,
333–354. doi:10.1016/0304-3975(82)90125-6

Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., et al.
(2009). Late developmental plasticity in the T helper 17 lineage. Immunity 30,
92–107. doi:10.1016/j.immuni.2008.11.005

Lomuscio, A., Pecheur, C., and Raimondi, F. (2007). “Automatic verification of
knowledge and time with NuSMV,” in International Joint Conference on Arti-
ficial Intelligence, ed. M. M. Veloso (Hyderabad: Morgan Kaufmann Publishers
Inc), 1384–1389.

Martinez-Sosa, P., and Mendoza, L. (2013). The regulatory network that controls the
differentiation of t lymphocytes. Biosystems 2, 96–103. doi:10.1016/j.biosystems.
2013.05.007

Mateescu, R., Monteiro, P. T., Dumas, E., and de Jong, H. (2011). CTRL: extension of
CTL with regular expressions and fairness operators to verify genetic regulatory
networks. Theor. Comp. Sci. 412, 2854–2883. doi:10.1016/j.tcs.2010.05.009

Mendoza, L. (2006). A network model for the control of the differentiation process
in Th cells. Biosystems 84, 101–114. doi:10.1016/j.biosystems.2005.10.004

Mendoza, L., and Pardo, F. (2010). A robust model to describe the differentiation of
T-helper cells. Theory Biosci. 129, 283–293. doi:10.1007/s12064-010-0112-x

Mendoza, L., and Xenarios, I. (2006). A method for the generation of standardized
qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model.
3, 13. doi:10.1186/1742-4682-3-13

Monteiro, P. T., and Chaouiya, C. (2012). “Efficient verification for logical models
of regulatory networks,” in Practical Applications on Computational Biology &
Bioinformatics, Volume 154 of Advances in Intelligent and Soft Computing, eds M.
P. Rocha, N. Luscombe, F. Fdez-Riverola, and J. M. C. Rodríguez (Salamanca:
Springer), 259–267.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 2 | Article 86 | 12

http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00086/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00086/abstract
http://dx.doi.org/10.1016/j.jtbi.2009.02.005
http://dx.doi.org/10.1063/1.4810923
http://dx.doi.org/10.1371/journal.pbio.1001616
http://dx.doi.org/10.1186/1471-2105-12-490
http://dx.doi.org/10.1093/bioinformatics/bti1048
http://dx.doi.org/10.1063/1.4809783
http://dx.doi.org/10.1093/bioinformatics/btt243
http://dx.doi.org/10.1093/bioinformatics/btt243
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1098/rsif.2008.0132.focus
http://dx.doi.org/10.1007/s11538-013-9829-2
http://dx.doi.org/10.1089/10665270252833208
http://dx.doi.org/10.1016/S0092-8240(03)00061-2
http://dx.doi.org/10.1016/S0092-8240(03)00061-2
http://dx.doi.org/10.1109/TCBB.2010.20
http://dx.doi.org/10.1182/blood-2011-11-392324
http://dx.doi.org/10.1093/bioinformatics/btl210
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1038/nature09447
http://dx.doi.org/10.1371/journal.pcbi.1003286
http://dx.doi.org/10.1371/journal.pcbi.1003286
http://dx.doi.org/10.1016/j.immuni.2009.12.004
http://dx.doi.org/10.1038/nrm2503
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/j.immuni.2008.11.005
http://dx.doi.org/10.1016/j.biosystems.2013.05.007
http://dx.doi.org/10.1016/j.biosystems.2013.05.007
http://dx.doi.org/10.1016/j.tcs.2010.05.009
http://dx.doi.org/10.1016/j.biosystems.2005.10.004
http://dx.doi.org/10.1007/s12064-010-0112-x
http://dx.doi.org/10.1186/1742-4682-3-13
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abou-Jaoudé et al. Model checking revealing T-cell plasticity

Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R.
L. (1986). Two types of murine helper T cell clone. I. Definition according to
profiles of lymphokine activities and secreted proteins. J. Immunol. 136,
2348–2357.

Mosmann, T. R., and Coffman, R. L. (1989). TH1 and TH2 cells: different pat-
terns of lymphokine secretion lead to different functional properties. Annu. Rev.
Immunol. 7, 145–173. doi:10.1146/annurev.iy.07.040189.001045

Murphy, K. M., and Reiner, S. L. (2002). The lineage decisions of helper T cells. Nat.
Rev. Immunol. 2, 933–944. doi:10.1038/nri954

Nakayamada, S., Takahashi, H., Kanno, Y., and O’Shea, J. J. (2012). Helper T cell
diversity and plasticity. Curr. Opin. Immunol. 24, 297–302. doi:10.1016/j.coi.
2012.01.014

Naldi, A., Carneiro, J., Chaouiya, C., and Thieffry, D. (2010). Diversity and plasticity
of Th cell types predicted from regulatory network modelling. PLoS Comput.
Biol. 6:e1000912. doi:10.1371/journal.pcbi.1000912

Naldi, A., Monteiro, P. T., and Chaouiya, C. (2012). “Efficient handling of large
signalling-regulatory networks by focusing on their core control,” in Compu-
tational Methods in Systems Biology, Volume 7605 of Lecture Notes in Computer
Science, eds D. Gilbert and M. Heiner (London: Springer), 288–306.

Naldi, A., Monteiro, P. T., Mussel, C., Kestler, H. A., Thieffry, D., Xenarios, I.,
et al. (2014). Cooperative development of logical modelling standards and tools
with CoLoMoTo. bioRxiv. doi:10.1101/010504 Available at: http://biorxiv.org/
content/early/2014/10/19/010504

Naldi, A., Remy, E., Thieffry, D., and Chaouiya, C. (2011). Dynamically consis-
tent reduction of logical regulatory graphs. Theor. Comp. Sci. 412, 2207–2218.
doi:10.1016/j.tcs.2010.10.021

Naldi, A., Thieffry, D., and Chaouiya, C. (2007). “Decision diagrams for the repre-
sentation and analysis of logical models of genetic networks,” in Computational
Methods in Systems Biology, Volume 4695 of Lecture Notes in Computer Science,
eds M. Calder and S. Gilmore (Edinburgh: Springer), 233–247.

O’Shea, J., and Paul, W. (2010). Mechanisms underlying lineage commitment and
plasticity of helper CD4+ T cells. Science 327, 1098–1102. doi:10.1126/science.
1178334

Peine, M., Rausch, S., Helmstetter, C., Fröhlich, A., Hegazy, A., Kühl, A., et al. (2013).
Stable T-bet+GATA-3+ Th1/Th2 hybrid cells arise in vivo, can develop directly
from naive precursors, and limit immunopathologic inflammation. PLoS Biol.
11:e1001633. doi:10.1371/journal.pbio.1001633

Remy, E., and Ruet, P. (2008). From minimal signed circuits to the dynamics
of Boolean regulatory networks. Bioinformatics 24, i220–i226. doi:10.1093/
bioinformatics/btn287

Saadatpour, A., Albert, R., and Reluga, T. (2013). A reduction method for Boolean
network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12,
1997–2011. doi:10.1137/13090537X

Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U.,
Arndt, B., et al. (2007). A logical model provides insights into T cell receptor
signaling. PLoS Comput. Biol. 3:e163. doi:10.1371/journal.pcbi.0030163

Samaga, R., and Klamt, S. (2013). Modeling approaches for qualitative and semi-
quantitative analysis of cellular signaling networks. Cell Commun. Signal. 11, 43.
doi:10.1186/1478-811X-11-43

Schwarick, M., and Heiner, M. (2009). “CSL model checking of biochemical net-
works with interval decision diagrams,” in Computational Methods in Systems
Biology, Volume 5688 of Lecture Notes in Computer Science, eds P. Degano and R.
Gorrieri (Bologna: Springer), 296–312.

Siebert, H., and Bockmayr, A. (2006). “Incorporating time delays into the logi-
cal analysis of gene regulatory networks,” in Computational Methods in Systems
Biology, Volume 4210 of Lecture Notes in Computer Science, ed. C. Priami (Trento:
Springer), 169–183.

Stoll, G., Viara, E., Barillot, E., and Calzone, L. (2012). Continuous time Boolean
modeling for biological signaling: application of Gillespie algorithm. BMC Syst.
Biol. 6:116. doi:10.1186/1752-0509-6-116

Thieffry, D. (2007). Dynamical roles of biological regulatory circuits. Brief. Bioin-
formatics 8, 220–225. doi:10.1093/bib/bbm028

Thomas, R., and D’Ari, R. (1990). Biological Feedback. Boca Raton: CRC Press.
van den Ham, H. J., and de Boer, R. J. (2008). From the two-dimensional Th1 and

Th2 phenotypes to high-dimensional models for gene regulation. Int. Immunol.
20, 1269–1277. doi:10.1093/intimm/dxn093

van den Ham, H. J., and de Boer, R. J. (2012). Cell division curtails helper pheno-
type plasticity and expedites helper T-cell differentiation. Immunol. Cell Biol. 90,
860–868. doi:10.1038/icb.2012.23

Veliz-Cuba, A., Jarrah, A. S., and Laubenbacher, R. (2010). Polynomial algebra of
discrete models in systems biology. Bioinformatics 26, 1637–1643. doi:10.1093/
bioinformatics/btq240

Wang, R.-S., Saadatpour, A., and Albert, R. (2012). Boolean modeling in systems
biology: an overview of methodology and applications. Phys. Biol. 9, 055001.
doi:10.1088/1478-3975/9/5/055001

Wittmann, D. M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A., Klamt, S.,
and Theis, F. J. (2009). Transforming Boolean models to continuous models:
methodology and application to T-cell receptor signaling. BMC Syst. Biol. 3:98.
doi:10.1186/1752-0509-3-98

Xie, A., and Beerel, P. A. (1998). Efficient state classification of finite-state Markov
chains. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 17, 1334–1339.
doi:10.1109/43.736573

Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., et al.
(2008). Molecular antagonism and plasticity of regulatory and inflammatory T
cell programs. Immunity 29, 44–56. doi:10.1016/j.immuni.2008.05.007

Zañudo, J. G. T., and Albert, R. (2013). An effective network reduction approach to
find the dynamical repertoire of discrete dynamic networks. Chaos 23, 025111.
doi:10.1063/1.4809777

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 31 July 2014; accepted: 20 December 2014; published online: 28 January 2015.
Citation: Abou-Jaoudé W, Monteiro PT, Naldi A, Grandclaudon M, Soumelis V,
Chaouiya C and Thieffry D (2015) Model checking to assess T-helper cell plasticity.
Front. Bioeng. Biotechnol. 2:86. doi: 10.3389/fbioe.2014.00086
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Abou-Jaoudé, Monteiro, Naldi, Grandclaudon, Soumelis, Chaouiya
and Thieffry. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org January 2015 | Volume 2 | Article 86 | 13

http://dx.doi.org/10.1146/annurev.iy.07.040189.001045
http://dx.doi.org/10.1038/nri954
http://dx.doi.org/10.1016/j.coi.2012.01.014
http://dx.doi.org/10.1016/j.coi.2012.01.014
http://dx.doi.org/10.1371/journal.pcbi.1000912
http://dx.doi.org/10.1101/010504
http://biorxiv.org/content/early/2014/10/19/010504
http://biorxiv.org/content/early/2014/10/19/010504
http://dx.doi.org/10.1016/j.tcs.2010.10.021
http://dx.doi.org/10.1126/science.1178334
http://dx.doi.org/10.1126/science.1178334
http://dx.doi.org/10.1371/journal.pbio.1001633
http://dx.doi.org/10.1093/bioinformatics/btn287
http://dx.doi.org/10.1093/bioinformatics/btn287
http://dx.doi.org/10.1137/13090537X
http://dx.doi.org/10.1371/journal.pcbi.0030163
http://dx.doi.org/10.1186/1478-811X-11-43
http://dx.doi.org/10.1186/1752-0509-6-116
http://dx.doi.org/10.1093/bib/bbm028
http://dx.doi.org/10.1093/intimm/dxn093
http://dx.doi.org/10.1038/icb.2012.23
http://dx.doi.org/10.1093/bioinformatics/btq240
http://dx.doi.org/10.1093/bioinformatics/btq240
http://dx.doi.org/10.1088/1478-3975/9/5/055001
http://dx.doi.org/10.1186/1752-0509-3-98
http://dx.doi.org/10.1109/43.736573
http://dx.doi.org/10.1016/j.immuni.2008.05.007
http://dx.doi.org/10.1063/1.4809777
http://dx.doi.org/10.3389/fbioe.2014.00086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


61 
 

5.3 Collaboration on a new methodology to study and reconstruct inter-

cellular communication network from large scale expression data 

Unpublished manuscript  

Title: Cytokine control of immune intercellular connectivity 

Authors: Irit Carmi-Levy*, Antonio Cappuccio*, Maximilien Grandclaudon*, Coline 

Trichot, Fanny Coffin, Philippe Hupé and Vassili Soumelis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 
 

Title: Cytokine control of immune intercellular connectivity 

Short title: DC connectivity 

Author names: Irit Carmi-Levy
1,2,*

, Antonio Cappuccio
1,2*

, Maximilien Grandclaudon
1,2*

, 

Coline Trichot
1,2

, Fanny Coffin
1,3,4

, Philippe Hupé
1,3,4,5

 and Vassili Soumelis
1,2, †. 

Affiliations: 

1. Institut Curie, 26 rue d’Ulm, 75005 Paris, France; 2. Inserm U932, Department of 

Immunology, Paris, France; 3.Inserm U900, Paris, France; 4. Mines ParisTech, 

Fontainebleau, France; 5. CNRS, UMR144, Paris, France 

*These authors contributed equally to this work 

†Contact: correspondence and requests for materials should be addressed to VS 

(vassili.soumelis@curie.fr) 

Abstract word count: 136 

Introduction : 313 

Results : 1913 

Discussion : 983  

Methods : 1836 

Figures: 4. 

Supplementary Figures:8 

Tables: 1.  

Supplementary Tables: 8 

References: 41 

Scientific category: Immuno-biology, system’s biology 

 

mailto:vassili.soumelis@curie.fr


2 
 

2 
 

Key points 

 Systems level approach predicted that endogenous DC-derived IL-10 but not TNF 

DC communication with multiple target cells 

 We experimentally validated that IL-10 significantly affects DC communication 

outcome with keratinocytes, neutrophils, and pDC 

 

Abstract 

The molecular events shaping communication and connectivity within intercellular networks 

are not known. Here, we used human dendritic cells (DCs) as a cellular model to reconstruct 

communication networks under various perturbation conditions. Systems-level 

transcriptomics analysis of Lipopolysaccharide (LPS)-activated DCs revealed that an 

interleukin (IL)-10 auto-regulatory loop specifically controlled a cell-to-cell communication 

module including a diversity of cytokines, chemokines, growth factors, and costimulatory 

molecules.In contrast, TNF loop had only minor impact on communication-related genes.An 

original quantitative method integrating ligand-receptor interactions, and cell-type specific 

gene expression, predicted that IL-10 controls up to 12 communication channels connecting 

DCs to immune, epithelial, and stromal cells, four of which were experimentally validated. 

Our results reveal that a single factor canshape systems level cellular connectivity, which has 

important implications in the physiopathology and pharmacological manipulation of 

multicellular processes. 
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Introduction 

Cell-to-cell communication in the immune system is essential to transfer information between 

cells with different functions and sensing capabilities. This allows innate immune cells, such 

as dendritic cells (DCs), to alert neighbouring cells after having sensed a threat through 

specialized innate receptors [1,2]. Numerous studies have established important cross-talks 

between distinct types of immune cells. However, inflammatory networks involve numerous 

cell-cell communications, which collectively determine the nature and outcome of the 

response [3,4]. Few attempts were made to reconstruct systems level immune inter-cellular 

networks, using literature-based approaches to enumerate possible connections between 

different cell types [5,6]. In such networks, nodes are cell-types, and edges correspond to 

ligand/receptor interactionsforming a communication channel between two cell-types. This 

structure introduces three fundamental quantitative dimensions, which collectively shape the 

global functional output of a given cell network: 1) the number of different connections one 

cell type can form concurrently with other cell types, 2) the intensity of the communication 

between two cell types, 3) the efficiency of the communication reflected by information-

induced modifications in the state or function of a target cell. The molecular switches 

regulating these dimensions in a given microenvironment are not known. Systems biology 

approaches allow addressing this question through a global and quantitative assessment of 

network structure in different contexts. 

This study stemmed from an effort to characterize the role of positive and negative regulatory 

loops in the context of microbial innate immune activation. When DCs are activated by the 

bacterial component LPS, they respond with an increased secretion of TNF-alpha (TNF) and 

IL-10, generally considered as prototypical pro- and anti-inflammatory signals, respectively 

[7,8]. As DCs are equipped with the corresponding receptors, both TNF and IL-10 auto-

regulatory loops can occur. Through a systematic transcriptomics-based approach and 



4 
 

4 
 

network reconstruction, followed by experimental validation, we identified IL-10, but not 

TNF, as a major regulator of the systems level DC intercellular connectivity.  

 

Results 

IL-10 controls an intercellular communication module in LPS-activated dendritic cells 

To explore the role of autocrine loops, we cultured LPS-activated human monocyte-derived 

DCs in the presence or absence of blocking antibodies (Abs) to the TNF and IL-10 receptors 

(TNFR and IL10R). No effect on cell viability was observed (Fig. S1). The most 

prominent effect of LPS on DC hallmark maturation markers was observed at the mRNA 

level in the time frame of 4 to 8 hours following activation [9].We performed large-scale 

microarray analysis after 4 and 8 hours of culture of DC with LPS, with and without blocking 

Abs to TNF and IL-10 receptors (Fig. 1A). To identify expression patterns determined 

specifically by each loop, we scored every differentially expressed gene according to its 

ability to separate the experimental condition LPS+TNFR or LPS+IL10R, respectively, 

from all of the other conditions considered as a single statistical group. At 4 hours, we could 

detect relatively small numbers of genes with expression patterns specific for the condition 

LPS+TNFR or LPS+IL10R (Fig. 1B). At 8 hours, while only 77 genes exhibited 

significant separability when the TNF loop was blocked, blocking the IL-10 loop led to a 

transcriptional signature comprising 1432 genes (Fig. 1B and C). These quantitative 

differences led us to focus on the IL-10 loop signature at 8 hours. Some of the genes in this 

signature (ARHGAP22, CSF2, CD163L1 and MLXIP for example) showed a remarkably 

large separability score (Fig. 1B and C). By using various pathway analysis resources, we 

found that the TNF loop signature is enriched in functions involving the activation of different 

receptors (GPCR, rhodopsin-like and P2Y) (Fig. S2). Applying the same methods to the IL-10 

loop signature, a highly significant enrichment was found in annotation terms related to 
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cytokine-cytokine receptor interactions,and positive regulation of cell communication (Fig.1D 

and E). These results were robust to changes in the empirical threshold used to define the 

IL10 loop signature, consistent with a robust biological signal (table S3). 

We then screened the IL-10 and TNFloop signatures to systematically identify extracellular 

molecules mediating cell communication through ligand/receptor interactions. We were able 

to extract 47 ligands and 23 receptors from the IL-10 loop signature, while only 3 ligands and 

5 receptors from theTNFloop signature (Fig. 1F).  

To rule out the possibility that these quantitative differences arise from our choice of the 

relatively early time point of 8h, while a more evident effect of TNF loop may be observed 

only at later time points, we have conducted an independent set of qPCR experiment, this time 

including the late 24h time point. No effect of TNF loop was observed on key communication 

molecules of the IL-10 signature even at the later time point of 24h (Fig. S3). Only 1 gene out 

of 21 tested (5%), was significantly altered at the later time point only by blockade of the 

TNF loop. (Fig.S3). Given that the IL-10 signature outnumbers the TNF signature by nearly 

20 fold, a 5% increase in TNF-dependent molecules at late time points does not impact the 

dominance of autocrine IL-10 in controlling a specific gene signature after LPS stimulation. 

Despite extensive studies of both TNF and IL-10 in the context of innate immunity, their 

different contribution to DC intercellular communication could not be predicted a priori at this 

systems level. It was particularly striking that communication was controlled specifically by 

IL-10, although TNF has strong pro-inflammatory actions [7] which could have suggested a 

decreased cell communication in the absence of this cytokine. 

The IL-10 loop signature comprised a variety of cytokines, chemokines, growth factors, and 

membrane ligands (table 1). Although some of the communication molecules in the loop 

signature were known to depend on IL-10 (for example CD80, GM-CSF and GCSF [8,10]), 
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many of them had weak or no prior association to IL-10 function (e.g. CLCF1 and TNFSF15), 

and would not have been captured by a strategy exclusively based on prior knowledge. We 

selected four important immunoregulatory molecules from the IL-6- and IL-12-families, and 

further validated expression at the protein level in 24h culture DC supernatants using 

cytometric bead array (CBA) and ELISA (Fig. 1G). Interestingly, exogenous IL-10 

downregulated several targets that were instead up-regulated by blocking the IL-10 loop (Fig. 

S4). 

Systems level reconstruction of dendritic cell intercellular communication networks 

After establishing the possibility of increased DC communication in the absence of the IL-10 

loop, we set out to identify the putative cellular partners in the local inflammatory 

microenvironment. We developed a quantitative bioinformatics approach by integrating prior 

information on ligand/receptor interactions, and cell-specific expression data (Fig. 2A). This 

consisted of scoring the intensity of each ligand/receptor interaction between two cell types 

with known expression profiles. The score of an individual ligand/receptor interaction was 

computed as the product of their expression levels respectively by the source and by the target 

cell. These individual scores were then combined into a global metric assessing the overall 

exchange of information between the cell types of interest (Fig. 2A). We manually curated a 

database of ligand-receptor interactionscontaining 244 entries (table S5). Whenever needed, 

we took into account the requirements for multiple ligand units, or receptor chains, using 

logical rules. As putative cellular targets, we selected 12 cell types known to be present in an 

inflamed tissue microenvironment (Fig. 2B). Cell-specific gene expression data was obtained 

using a database from human primary cells [11,12]. Focusingonindividual ligand/receptor 

interactions connecting DCswith the putative target cells, we observed that certain ligands, 

such as TNF, could potentially act on many cellular partners (Fig. 2b), consistent with 

apleiotropic effect [13]. However, other interactions pointed to crosstalk between DCsand 
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specifictargets, for example IL19 and IL36G with keratinocytes; TNFSF18 with NK cells; 

CD70 with T and B cells (Fig.2B).  

By taking into account all the individual ligand/receptor interactions, we reconstructed the 

intercellular networks in which nodes represent cell types and the width of the edges 

connecting two cell types is proportional to a global measure of the intensity of the 

communication between them (see methods and Fig. S5A and B). Such connectivity maps, 

generated for every DC experimental condition, demonstrated an increase of the global 

communication score in all 12 channels, when comparing LPS-activated DC to resting 

(medium) DC (Fig.2C and S4B). Importantly, these maps revealed that blocking the IL-10 

loopdetermined the largest amplification of DC communication with all 12 cellular targets, 

while the blocking of TNF loop in LPS-activated DC had a minor effect on the global 

communication score (Fig.2C and S4B). Supplementary table 7 details the top contributing 

communication molecules in each DC-target cell channel. 

Quantification of in-flow communication, as obtained by reversing the directionality of cell-

to-cell interactions,showed that communication towards LPS-activated DC was also increased 

with respect to resting (Med) cells (Fig. S5C and D). However, we observed a trend of 

decreased in-flow communication for LPS+IL-10R-DC, relative to LPS-DC or 

LPS+TNFR-DC(Fig. S5C and D), indicating that IL-10 specifically controls out-flow 

communication of DCs. 

Experimental validation of multiple IL-10-dependent communication channels 

To assess communication efficiency, i.e how increased connectivity translates into functional 

changes in target cells, we turned to experimental validation of predicted communication 

channels using immunological assays adapted to output response of each cell type. Due to its 

physiopathological relevance, we first investigated the DC-T cell axis.We found that naive 
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CD4 T cells, when co-cultured with LPS-DC in the absence of the IL-10 loop, globally 

increased and shifted their pattern of cytokine secretion, as compared to LPS-DC, while 

blocking the TNF loop had almost no effect (Fig. 3A).Similar results were obtained with 

memory T cells (Fig. 3B). We verified that the observed T helper polarization was indeed due 

to the IL-10 loop blockade in the DCs, and not to direct effects on T cells (Fig. S6B). Among 

the factors best explaining the secretion profile of T cells determined by LPS+IL10R-DCs, 

we observed a remarkable emergence of Th17 cytokines (Fig. 3C),  in line with recent murine 

studies [14–16].Strikingly, IL-9 was also increased (Fig. 3C), and produced by a T cell 

population distinct from Th17 (Fig. 3D). This provides the first demonstration that LPS-

activated DCs, in the absence of an IL-10 loop, determine a Th17 and Th9 polarization in 

human, both of which participate in host defense and autoimmunity [17,18]. 

Through a paired DC/T dataset, we detected correlations between specific DCoutputs from 

the IL-10 loop signatureand specific T helper cytokines (Fig. 3E and Fig.S7). IL-9 secretion 

from T cells strongly correlated with pro-inflammatory cytokines produced by DCs such as 

IL-12p70, again illustrating the link between communication molecules made by DC, and 

modifications in T cell behavior. 

We then aimed at validatingthemodel-based hypothesis of an increased communication 

between DC and multiple cell types.We considered three additional types of target cells: 

keratinocytes, plasmacytoid DCs (pDC) and neutrophils. Similar to T cells, these cell 

typesplay key roles in the inflammatory microenvironment and had an increased global 

communicationscore. Target cells were cultured with DC-derived supernatants, and their 

activation assessed by qRT-PCR or FACS. LPS-DC supernatant induced marginal 

keratinocyte activation, as assessed by the expression of TNF, IL-1β, and CCL20, and this 

was not affected by TNFR (Fig. 4A). However, blocking the IL-10 loop 

dramaticallyincreased all three factors (Fig. 4A), validating a potent DC to keratinocyte 
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communication controlled by IL-10. This extends DC-induced keratinocyte activation [19,20] 

to the context of bacterial infection. Interestingly, our data suggestthat impaired IL-10 loop 

may lead to increased Th17 responses by two mechanisms, 1) direct DC-T cell priming, 

2)DC-keratinocyte activation inducing CCL20, involved in the recruitment of CCR6+ Th17 

cells [21]. 

The DC-pDC communication channel was also controlled by IL-10, since LPS+aIL10R-DC 

supernatants activatedpDCs (as assessed by CD86, HLA-DR, and ICOSL surface expression), 

in comparison to LPS-DCs (Fig 4B).DC-induced activation of pDC and keratinocytes was not 

due to the presence of residual IL10R (Fig. S6C and D). DC-pDC crosstalkwassuggested to 

be important in antiviral [22], antibacterial [23], and antitumor [24] immune responses. 

Through our systems approach, we now show that IL-10 controls DC-pDC connectivity. 

Neutrophils contribute to DC migration to infection sites and to their subsequent 

activation[25,26]. Reciprocally, it was proposed that DCs can promote neutrophil survival 

[27].  

LPS-DC supernatant induced only a mild activation of neutrophils (as evaluated by rapid 

upregulation of CD11b with concomitant downregulation of CD62L), while LPS+IL10R-

DC supernatants led to a strong activation of neutrophils (Fig. 4C), establishing an IL-10 loop 

control of DC-neutrophils communication.  

For all the above mentioned communication channel, we aimed at getting further mechanistic 

insight. First, we performed control experiments using exogenous LPS that formally excluded 

a direct effect of LPS at the concentrations found in the DC supernatants (Fig. S6A). We then 

considered ligand-receptor interactions showing high intensity, and thus more likely to 

mediate cellular crosstalk as observed with the LPS+IL10R-DC supernatants 

(supplementary table 7).  We blocked, in each DC communication channel, 4 of ligands, 
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known as potential activators of the target cell type:   GCSF, GM-CSF, IL-6 and TNF for 

neutrophils, IL-19, IL-36gamma, OSM and TNF for keratynocytes, and G-CSF, GM-CSF, 

TNF and IL-12 for pDCs. Importantly,blocking TNFalone in the LPS+IL10R-DC 

supernatant was sufficient to inhibit keratinocyte, pDC and neutrophil activation (Fig. 4A-C).  

By comparing the predicted communication intensitieswith a global score describing the 

activation level of keratinocytes, pDC and neutrophils, we observed a qualitative agreement 

(Fig. 4D), demonstrating increased communication efficiency. In all cases, the maximal 

activation of the target cells was determined by the conditionLPS+IL10R.   

Discussion 

In this study, we demonstrated that a single molecule, IL-10, was able to control intercellular 

communication between DC and multiple immune and non-immune cells. DC are central to 

immune responses in health and disease, and have the ability to orchestrate and/or modulate 

the function of many cell types, including CD4 and CD8 T cells [2,28], NK cells [29], gd T 

cells [30], neutrophils [27], as well as other  DC  subsets [22,24]. Our findings reveal that 

these multiple connections may be collectively regulated by one molecule, in a coordinated 

manner. This indicates a level of regulationthat could not be captured by conventional 

methods isolating pair-wise cell cross-talks, and calls for systems approaches. Previous 

research in this direction showed, for example, that systems approaches can be successfully 

applied to reconstruct the global cell cross-talk in the stem cell niche [31]. In our study, we 

add an essential component, in the form of perturbations on purified cell cultures, in order to 

address mechanisms regulating the connectivity of immune cells. 

One key element of systems approaches to intercellular communication is our a priori 

knowledge of the possible ligand-receptor interactions triggering a transduction process. Such 

information can be retrieved, for example, through automatic literature mining [31]. However, 
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this method makes it difficult to control the publication quality, and may fail to capture the 

requirements for complex interactions involving heterodimeric receptors. In our work, the 

information on the relevant ligand-receptor interactions was curated manually, which allowed 

taking into account the quality of publications, as well as up-to-date knowledge on the 

different chains of heterodimeric and heterotrimeric receptors.  

Once the molecular mediators of possible cell-to-cell interactions were identified, we turned 

to assessing their cell-specific expression. To this end, we identified BioGPS as a particularly 

suitable resource, because it integrates transcriptional profiles of over twenty human primary 

cell types generated with the same Affymetrix platform [11]. While previous applications of 

BioGPS allowed identifying specific tissue-related genes [32,33], we show as an originaluse 

of this resource the possibility to simulate cell cross-talks indiverse microenvironments. Our 

ability to provide functional validation of many of the predicted cellular cross-talks indicates 

the robustness of the method, and warrants application to other cellular types. 

After retrieving a set of ligand-receptor interactions and cell-specific transcriptomics 

expression, we faced the problem of quantifying the intensity of communication between any 

pair of cell types. To score individual ligand/receptor interactions, we used the product of 

their expression values consistent the law of mass action, commonly assumed in biochemical 

models[34]. Such individual scoresgive rise to a complex multigraph with potentially 

hundreds of edges connecting any two cell types. To reduce this complexity, we introduced a 

global score summing up the intensity of all the individual channels. This greatly simplifies 

the interpretation and visualization of intercellular networks, but also introduces some 

arbitrariness when choosing to combine the individual scores. Notwithstanding, all the 

predicted cellular targets could be experimentally verified, which led us to gain new insight 

on the role of TNF and IL-10 autoregulatory loops during bacterial activation of 

DC.Exogenous TNF functional effect on dendritic cells has been described by many. It was 
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found to induce maturation [35] and more specifically – induce and increase surface 

costimulatory molecules such as CD40, CD80, CD86, CD83 and HLA-DR[35–37]. 

Exogenous IL-10, however,  was found to have an opposite effect on the expression of these 

costimulatory molecules and led to their downregulation [8,10]. Contrasting effects on DC 

development were also described when comparing TNF to another anti-inflammatory 

cytokine, TGF beta [38]. Taken together, one might expect to find contradicting effects of the 

TNF and IL-10 endogenous loops on DC, with an opposite directionality of gene regulation, 

including communication molecules. Our data, however, uncover a very different scenario. 

Distinct and non-overlapping set of genes were controlled by either loop, and the intercellular 

communication function was regulated almost exclusively by the IL-10 loop. 

We identified IL-10 as a molecular switch able to regulate the connectivity of DC with 12 

other cell types, and thereby to modify their activation and functional states. IL-10 was 

already shown to regulate DC-derived inflammatory cytokines and chemokines, in particular 

IL-12 [8,39]. Through our systems approach, we identified a large number of communication 

molecules not previously associated to IL-10 function. Most importantly, we could 

demonstrate that endogenous DC-derived IL-10 governs the global connectivity of DC with 

multiple cell types, subsequently affecting their activation state, which brings new insight into 

how IL-10 regulates inflammation. We propose that the intensity and efficiency of 

communication may constitute a novel paradigm underlying the regulation of inflammatory 

processes, with increased intercellular connectivity being associated to enhanced 

inflammation. 

Interestingly, IL-10 functions as an auto-regulatory switch controlling the structure and 

intensity of communication within cell networks while it was not predicted to be a direct 

effector on other cell types (table S7). On the contrary, TNF was predicted and validated to be 

a direct effector in most communication channels, leading to activation of target cells, while 
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in the context of a feedforward loop it did not play a major role in determining the intensity of 

the global communication network. Thus, IL-10 and TNF act at different hierarchical levels to 

regulate cell-cell communication: IL-10 as an upstream molecular switch, TNF as a 

downstream effector communication molecule. This may have implications to understand the 

impact of IL-10 and TNF targeting in inflammation. 

Our study revealed that connectivity within cell networks could be controlled by a single 

molecule. This predicts that, within the inflammatory microenvironment, the impact of 

targeted therapies to soluble mediators or surface receptors may be much broader than 

anticipated, due to a global re-programming of intercellular communication. Our systems and 

quantitative approach to cell connectivity may provide a valuable tool to evaluate such 

impact. Future studies should prove useful in identifying other regulators of immune cell 

connectivity in various physiopathological contexts, leading to important biological insight 

and helping to direct pharmacological manipulation. 

 

Methods 

 

Purification of Peripheral blood mononuclear cells (PBMCs) from adult blood 

 

Fresh blood samples were collected from healthy donors and obtained from Hôpital Crozatier 

Établissement Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical 

guidelines. PBMCs were isolated by centrifugation on a Ficoll gradient (Ficoll-Paque PLUS, 

GE Healthcare Life Sciences). 

Monocyte-derived dendritic cells generation and activation 

Monocytes were selected from PBMCs using antibody-coated magnetic beads and magnetic 

columns according to manufacturer’s instructions (CD14 MicroBeads, MiltenyiBiotec). To 



14 
 

14 
 

generate immature DCs, CD14+ cells were cultured for 5 days with IL-4 (50 ng/mL) and GM-

CSF (10 ng/mL) in RPMI 1640 Medium, GlutaMAX (Life Technologies) with 10% FCS. 

Monocyte-derived DCs were pre-treated for one hour with mouse IgG1 (20 µg/mL, R&D 

Systems), mouse anti-IL10R blocking antibody (10 µg/mL, R&D Systems) or mouse anti-

TNFα Receptors 1 and 2 (10 µg/mL, R&D Systems) (see Fig. S8) and then cultured with 

medium or LPS (100 ng/mL, LPS-EB Ultrapure, activates TLR4 only, Invivogen) for 24 

hours. DCs from donors which responded to (a) LPS and (b) IL-10R blocking antibody, as 

evaluated by maturation markers, were included in this study. The following cytokines were 

measured in culture supernatants by CBA (BD Bioscience): IL-6, IL-12p70 and OSM. IL-23 

was measured using ELISA (eBioscience). 

 

Gene expression profiling  

Monocyte-derived DCs were pre- treated with blocking Abs as described above for one hour 

and then cultured with medium or LPS (100 ng/mL, Invivogen) for additional 4 or 8 hours. 

Total RNA was extracted using the RNeasy micro kit (Qiagen). Samples were then amplified 

and labelled according to the protocol recommended by Affymetrix for hybridization to 

Human Genome U133 Plus 2.0 arrays. 

The gene expression profiles generated for this publication have been deposited in NCBI's 

Gene Expression Omnibus and are accessible through GEO Series accession number 

GSE89342 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89342). 

 

Purification of naive CD4+ T lymphocytes. 

CD4
+ 

T lymphocytes were purified from PBMCs by immunomagnetic depletion with the 

human CD4
+ 

T cell Isolation KitII (MiltenyiBiotec), followed by staining with allophyco-

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89342
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cyanin-anti CD4 (VIT4 ; MiltenyiBiotec), phycoerythrin-anti-CD45RA (BD), fluorescein-

isothiocyanate-anti-CD45RO (BD Bioscience) and phycoerythrin-7-anti-CD25 (BD 

bioscience). Naive CD4
+
T cells sorting of CD4

+ 
CD45RA

+ 
CD45RO

- 
CD25

-
 had a purity of 

over 99% with a FACSAria (BD Bioscience). 

DC- T cells Coculture assays.  

To analyze T cell polarization, 24 hours activated DC and T cells were incubated in 96 well 

plates at a DC/T ratio 1:5 in Xvivo15 medium (Lonza). After 6 days, T cells were 

resuspended in fresh Xvivo15 medium at a concentration of 1 million cells per ml and 

restimulated with anti-CD3/CD28 beads (life Technologies) at a ratio bead/cell 1:1. 

Supernatants of T cells were collected after 24 hours of restimulation. The followingcytokines 

were measured in naive culture supernatants by CBA (BD Bioscience) according to the 

manufacturer’s instructions: IL-2, IL-3, IL-4, IL-9, IL-10, IL-17A, IL-17F and IFN-. 

Additional cytokines were measured in memory T cells supernatant: IL-5, IL-13 TNF and 

GM-CSF. 

Cytokines producing cells were analyzed by intracellular staining after addition of brefeldin A 

(10ug/mL) during the last 3 hours of the 5 hours restimulation in PMA and ionomycine 

respectively 100ng/mL and 500ng/ml. Cells were stained 30 minutes with the pacific orange 

live dead kit (Invitrogen). Finally, cells were fixed and permeabilized using the Staining 

Buffer Set (eBioscience) and stained with anti-IL9, anti-IFNg, and anti-IL17A (ebioscience), 

and analyzed by flow cytometry (BD Fortessa).   

Measurement of surface molecules expression by plasmacytoid dendritic cells 

In order to enrich plasmacytoid dendritic cells (pDCs), cells expressing CD3, CD9, CD14, 

CD16, CD19, CD34, CD56, CD66b and glycophorin A were depleted from PBMCs using 
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magnetic sorting (Human Pan-DC Pre-Enrichment Kit, StemCell Technologies), pDCs were 

then sorted on a FACS Vantage instrument (BD Biosciences). pDCs were cultured for 24 

hours at 37°C and 5% CO2 with medium RPMI 1640 Medium, GlutaMAX (Life 

Technologies) with 10% FCS, GM-CSF (10 ng/mL) used as a positive control or DC 

supernatants. Cells were stained for 15 min at 4°C using a FITC-anti-CD86 (BD), an APC-

anti-ICOSL (R&D Systems) and Alexa-Fluor-700-anti-HLA-DR (Biolegend) or with the 

corresponding isotypes. Cells were analyzed on a LSR II instrument (BD Biosciences). 

Measurement of adhesion molecules expression at the Neutrophil surface 

Whole-blood samples were obtained from healthy donors from Hôpital Crozatier 

Établissement Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical 

guidelines. Blood samples were stimulated for an hour at 37°C with medium, LPS (100 

ng/mL) used as a positive control or DC supernatants. Cells were stained at 4°C for 15 min 

with an APC-anti-Human-CD62L (clone DREG-56, BD Pharmingen), a BV650-anti-Human-

CD11b (BioLegend) and a PE-anti-Human-CD15 (MiltenyiBiotec) or with the corresponding 

isotypes. Erythrocytes were lysed with 1X BD Pharm Lyse Solution (BD Pharmingen), white 

cells were resuspended in PBS supplemented with 1% human serum and 2 mM EDTA and 

analyzed on a LSR Fortessa instrument (BD Biosciences). 

 

Real-time quantitative RT-PCR 

The keratinocyte cell line HaCaT was cultured in DMEM (Gibco) supplemented with 10% 

FBS and 1% penicillin/streptomycin. Cells were cultures with medium, LPS (100 ng/ml), or 

with DC supernatant diluted 1:10 for 4h. Total RNA was extracted by RNeasy Mini kit 

(Qiagen). RNA was then transcribed to cDNA using Superscript II reverse transcriptase based 

on the manufacture’s protocol (Invitrogen).The Taqman method was used for real-time PCR 
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with primers from Life technologies. The expression of mRNA was normalized to the 

geometrical mean of 3 house-keeping genes: β-actin, GAPDH and RPL34. 

Statistical analysis of gene expression data 

Expression data were normalized with Plier. Transcriptomics analysis was performed in a 

Matlab environment. For independent filtering, we used the function geneverfilter, which 

calculates the variance of each probe across the samples and identifies the ones with low 

variance. Probes with variance less the 40
th

 percentile were filtered out because poorly 

informative. Differential analysis was performed using an ANOVA test (function anova1) at 4 

hours and 8 hours. P-values were adjusted for multiple testing using the Benjamini-Hochberg 

correction using the function mafdr. Adjusted p-values <5% were considered significant (see 

supplementary table 1). To detect genes whose expression pattern was specific for the 

conditions LPS, LPS+αIL10R, or LPS+ αTNFR, we used the function rankfeature. This 

function returns a separability score based on binary classification, which measures how well 

each gene separates a given experimental condition from all the others based on its expression 

profile. By inspecting the distribution of the separability score over all differentially expressed 

genes, we determined an empirical cutoff of 4. Genes with separability score larger than this 

cutoff (supplementary table 2) were further analyzed for functional interpretation using the 

Molecular Signature Database [40] (supplementary table 3). The following databases were 

considered: KEGG, REACTOME and BIOCARTA.  To compute the enrichment of the TNF 

and IL10 loop signatures in genes annotated in the GO term “positive regulation of cell 

communication” (GO:0010647) (supplementary table 4), we performed a standard 

hypergeometric test. 
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Reconstruction of inter-cellular networks 

To reconstruct the inter-cellular communication networks, we systematically extracted a list 

of ligands and receptors contained in the genes whose expression pattern was specific for the 

condition LPS, LPS+αIL10R, or LPS+ αTNFR (see the section above). Surveying the 

literature for any potential interactions, we manually curated a ligand-receptor database using 

STRING (http://string-db.org/) and Ingenuity (http://www.ingenuity.com/) online tools to 

verify protein-protein interactions. Logical rules were applied to address requirement for 

multiple chains as well as multiple ligand subuints (http://www.genome.jp/kegg-

bin/show_pathway?hsa04060). 

The database of ligand-receptor interactions is contained in the supplementary table 5. To 

get the cell-specific expression level of the receptors of the ligands of interest, we used a 

database of transcriptional data from human primary cells [11,12]. All the cell-specific 

transcriptional profiles used in the analysis were generated with the U133 Plus 2.0 Array, 

which limits the platform-related bias. If multiple probes corresponded to the same receptor, 

we selected the optimal probe based on the Jetset optimality condition [41]. The results are 

contained in supplementary table 6.  To score the intensity of a particular ligand-receptor 

interaction between DC and a given target cell, we considered the product of the expression of 

the ligand in DC and of the cognate receptor in the target cells.  Formally, if 𝑙𝑗
𝑖 is the average 

expression level of ligand iby DC in the experimental condition j, and 𝑟𝑘
𝑖  is the average 

expression of the corresponding receptor by cell type k, the intensity 𝑠𝑗,𝑘
𝑖  of the corresponding 

interaction was quantified by  𝑠𝑗,𝑘
𝑖 = 𝑙𝑗

𝑖 ∙  𝑟𝑘
𝑖 . For interactions requiring multiple components of 

the ligand and/or of the receptor, we considered a geometric average of the receptor 

components. For example, if a given interaction corresponding to ligand i required two chains 

of the receptor, the score was computed as 𝑙𝑗
𝑖 ∙ √𝑟𝑘

𝑖,1. 𝑟𝑘
𝑖,2

, where 𝑟𝑘
𝑖,1

 and 𝑟𝑘
𝑖,2

 are the 

http://string-db.org/
http://www.ingenuity.com/
http://www.genome.jp/kegg-bin/show_pathway?hsa04060
http://www.genome.jp/kegg-bin/show_pathway?hsa04060
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expression levels of the two receptor chains in cell type k. To assign a global score 𝑆𝑗,𝑘to the 

communication between DC in the condition j and cell type k, a composite score was defined 

by summing up the intensity of all the possible ligand-receptor interactions, i.e.,  𝑆𝑗,𝑘 =

∑ 𝑠𝑗,𝑘
𝑖𝑁

𝑖=1 , N being the total number of interactions. Four DC experimental conditions were 

considered: Medium (j=0), LPS (j=1), blocking TNF loop (j=2), blocking IL10 loop.  To 

emphasize comparisons 𝑆𝑗,𝑘 across the four conditions, the global scores 𝑆𝑗,𝑘 were normalized 

to the Medium condition (j=0). Thus, the final scores 𝑆𝑗,𝑘
̅̅ ̅̅  used to measure the communication 

intensity between DC in the condition j and the target cell k were computed using the 

following formula 𝑆𝑗,𝑘
̅̅ ̅̅ = 𝑆𝑗,𝑘/𝑆0,𝑘.=

∑ 𝑠𝑗,𝑘
𝑖𝑁

𝑖=1

∑ 𝑠0,𝑘
𝑖𝑁

𝑖=1

. The scores corresponding to each interaction and 

each target cell in the experimental condition of IL10R blocking are provided in 

supplementary table 7. The generation of the inflow connectivity maps was done by 

reversing the role of DC and their cellular targets. See supplementary figure 5. Global 

communication scores for both inflow and outflow connectivity maps are contained in 

supplementary table 8. 

Statistical analysis of DC-T cell protein data  

All analyses have been generated with R 3.1. For principal component analysis (PCA) of the 

T cell secretion profile, a data matrix was formed whose rows corresponded to conditions and 

columns to the different cytokines (each column was scaled using zscore). PCA was done 

using the function princomp. When appropriate, a paired student t-test was performed. 

Significant differences were considered with p < 0.05.  The correlation heatmap based 

on Spearman was generated on the logged data. Correlations with p values<0.05 were 

considered as significant. 

Correlation matrix 
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Calculation of the activation score of target cells 

To compute a global activation score of keratinocytes, neutrophils and pDC, each activation 

marker output was first normalized in the range 0-1, 0 being to the untreated condition and 1 

being to the maximum value observed in all the conditions. An average of the normalized 

outputs corresponding to the same cell type was then considered. All of the measured factors, 

with the exception of CD62L in neutrophils, were positively correlated with cell activation. In 

order to make CD62L consistent with the other factors, we considered the reciprocal of its 

value. The numerical results are in the supplementary table 8.  
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Figure legends 

Fig. 1: IL-10R blocking activates a cell-to-cell communication module in LPS-stimulated 

DCs.(A)Depicted are the 4 experimental conditions for which transcriptomics was generated 

(n = 6). (B) Distribution of the separability score corresponding to the conditions 

LPS+TNFR and LPS+IL10R after 4 and 8 hours of cell culture. Genes with separability 

score  4 were included in each condition’s signature. Bottom: separability criterion used to 

define the signatures. (C) Expression pattern of 4 example genes with high separability score 

from the IL-10 loop signature (means± SEM, n=6). (D) Top 3 KEGG and REACTOME 

annotation terms over-represented in the IL-10 loop signature, together with the number of 

hits and the enrichment significance. (E) log-transformed enrichment significance of the 

overlap between the TNF and IL10 loop signatures, with the Gene Ontology term “positive 

regulation of cell communication”. (F) Gene products corresponding to ligands (white) and 

receptors (black) counted in each loop signature and plotted according to regulation 

directionality: upregulated (Up) or downregulated (Down). (G) Protein levels of IL-6, OSM, 

IL-23 and IL-12p70 (means ± SEM), demonstrating increased secretion in LPS+IL-10R DC 

supernatant. 

Fig. 2: IL-10 loop controls DC intercellular connectivity. (A) Flowchart illustrating the 

strategy used for intercellular networks reconstruction. (B) Expression values of 8 example 

ligands in DCs (means ± SEM) side-by-side with the expression of their cognate receptor in 

12 different cell types from four compartments: epithelium, stroma, innate and adaptive 

immune cells. Color code indicates different compartments. Box plots  show cell-specific 

expression of the receptors in control and stimulated conditions, as provided by the BioGPS 

database (supplementary table 6)  (C-F) Connectivity maps describing outgoing 

communication from  DCs to putative target cells in the conditions: Med (C), LPS (D), 
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LPS+TNFR(E) and LPS+IL-10R (F). The width of the edges corresponds to a global score 

combining the intensity of all the individual ligand/receptor interactions, normalized to the 

medium condition.  

Fig.3: IL-10 but not TNF loop dictates T helper polarization by LPS-DC. (A-B) 

Supernatants of CD4+ naive (A) and memory (B) T cells, co-cultured with the indicated DCs, 

were analyzed for the presence of T helper cytokines by CBA: IL-2, IL-3, IL-4, IL-9, IL-10, 

IL-17A, IL-17F and IFN- (A) and all the above in addition to IL-5, IL-13 TNF and GM-CSF 

(B). Results are shown in a 2D PCA. Dots represent mean of 9 (A) or 6 (B) independent co-

culture experiments. (C) Histogram representation (means ± SEM, n = 16) of 4 cytokines 

present in the supernatant of naive (white bars, left axis) or memory (black bars, right axis) 

supernatant. (D) CD4+ naive T cells were analyzed for IL-17A, IL-9 and IFNg production 

using intracellular staining FACS. Percentage of positive producers is given. Shown is one 

representative out of 3 independent experiments. (E)The matrix plot presents the significant 

(p value < 0.05) Spearman correlation values between DC soluble factors and T helper-

secreted cytokines ( 9 independent co-culture experiments).  

Fig. 4: IL-10 loop controls DC communication with keratinocytes, neutrophils and 

pDCs. (A) RT-PCR analysis of the expression of TNF andIL-1b mRNA in HaCat cells 

incubated with medium, LPS or with supernatant (diluted 1:10) of the indicated DCs for 4h. 

Blocking antibodies for the cytokines IL-19, IL-36g, OSM and TNF were added to LPS+IL-

10R-DC supernatant for 1h incubation before culturing with HaCat cells.Data represent mean 

± SEM, n=4, * p<0.05   . (B-C) Expression of maturation markers CD86, HLA-DR and 

ICOSL (B) or DC11b and CD62L (C)analyzed by flow cytometry with surface staining on 

pDCs (n=12) cultured with supernatant (diluted 1:10) of the indicated DC for 24h (b) and 

neutrophils (n=9) cultured with supernatant (diluted 1:100)  of the indicated DC for 1h . 
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Blocking antibodies for the cytokines GCSF, GM-CSF, TNF and IL-12 (for pDC) or IL-6 

(neutrophils) were added to LPS+IL-10R-DC supernatant for 1h incubation before culture. . 

Each biological replicate comprised independent DC donor paired to independent pDCs / 

neutrophils donor. Data represent mean ± SEM, * p<0.05; ** p<0.01; *** p<0.001 (paired t-

test). (D)   For each target cell, we reduced the different activation markers to a single 

parameter normalized between 0 (Ø) and 1 (max) in the rectangles. The value 0 corresponds 

to the activation level induced by supernatants from untreated DC, while 1 corresponds to the 

maximum activation level from all the observed conditions. These experimentally validated 

activation scores were in qualitative agreement with the model predictive intensity scores of 

communication between DC and the target cells, represented by the width of the edges.  

Supplemental Figure Legends: 

Figure S1: Viability is not affected by LPS activation or by receptor blocking antibodies. 

Cell viability of DC cultured 24 hours in the indicated blocking conditions were assessed by 

DAPI staining. Histograms represent the mean ± SEM of DAPI negative cell percentage. 

Figure S2: Additional expression data analysis revealed distinct functions for the TNF-

alpha and IL-10 loops. (A) Venn diagrams representing the overlap between the lists of 

differentially expressed genes from transcriptomics data. (B) Listed are the top 3 functional 

annotations predicted/ proposed for the TNF-alpha loop signature with the matching corrected 

p-value by MSigDB (Liberzon et al., 2011). 

Figure S3: Effect of loops blockade in a late time point of 24h. mRNA levels of responsive 

genes associated witheither IL-10 or TNF-alpha, were evaluated with or without blockade of 

the loops, at 8h time point as well as in the late 24h time point. 



29 
 

29 
 

Figure S4: Exogenous IL-10 inhibits LPS-induced secretion of factors for the IL-10 loop 

signature. Histogram representation (means ± SEM) demonstrating inhibited secretion of 

four factors by LPS-DC in the presence of exogenous IL-10 (10ng/ml).  

Figure S5: Quantification of global communication scores. (A) Numerical details related 

to the connectivity maps from DC to the selected target cells. Starting from 51 ligands present 

in one of the signatures corresponding to LPS, LPS+TNFR, LPS+IL10R, 96 possible 

ligand/receptor interactions were identified from our curated database. However, 4 

ligand/receptor interactions could not be assessed because one of the components necessary 

for the interactions had been filtered out during pre-processing of DC data, or because it was 

not annotated in Jetset. (B) The global communication score from DC to target cells (see 

methods or details). The numerical values are contained in the supplementary table 6. (C) 

Numerical details related to the connectivity maps from the selected target cells to DC. 

Criteria for excluding interactions were defined as for panel. (D) The global communication 

score from the target cells to DC (see methods or details). The numerical values are contained 

in the supplementary table 8. 

Figure S6: Observed effect on communication partner-cells is not due to the presence of 

residual IL10R antibody or a potent LPS dose. (A) Neutrophils cultured for 1h with 

1ng/ml LPS were not significantly activated compared to medium as assessed by surface 

expression of CD11b and CD62L by flow cytometry. (n=3). (B) CD4 Naive T cells were pre-

treated with blocking antibody for IL-10 receptor or a non-specific one and then put in culture 

with DC as indicated for 6d. After restimulation with anti-CD3/anti-CD28 for 24h, 

supernatants were analyzed for the presence of IL-17F.  Histogram represent means ± SEM 

(n= 4 donors). (C) HaCat cells were pre-treated with blocking antibody for IL-10 receptor or a 

non-specific one and then put in culture with DCs supernatant (diluted 1:10)  as indicated for 
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4h. RNA was then extracted from cells and the expression of TNF and IL-1b was assayed 

using qRT-PCR (n=4 replicates). (D) pDCs were pre-treated with blocking antibody for IL-10 

receptor or a non-specific one and then put in culture with DCs supernatant (diluted 1:10)  as 

indicated for 24h. Expression of maturation markers CD86 and ICOSL analyzed by flow 

cytometry. (n= 6 donors) 

Figure S7: T cells polarization is linked to ligands found in the IL-10 loop signature. 

Correlation circle of a scaled PCA performed on the mean of DC outputs (gray line). 7 T-

helper secreted cytokines were added to the graph (black dashed line) (n=10). 

Figure S8: TNF loop blockade set up. The ability of anti-TNF-alpha receptors antibodies to 

block TNF-alpha downstream effectwas tested in low (1 µg/mL) and high (10 µg/mL) 

concentrations with exogenous TNF-alpha (A). The effective concentration of 10 µg/mL was 

thentested for blocking of LPS-induced TNF loop (B) and subsequently wasused throughout 

this study.  

Tables 

Table 1: Communication factors in signatures by separability.  Communication factors 

(ligands and receptors) identified in the signatures corresponding to the DC conditions LPS, 

LPS+TNFR, LPS+IL10R. 
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PRLR,TNFRSF18, 

TNFRSF4,TNFRSF9 

Table  1 
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PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS

Human blood BDCA-1 dendritic cells differentiate into Langerhans-like
cells with thymic stromal lymphopoietin and TGF-b
Carolina Martı́nez-Cingolani,1,2,3,4 Maximilien Grandclaudon,1,2,3,4 Marine Jeanmougin,1,2,3 Mabel Jouve,1,2,3

Raphaël Zollinger,1,2,3 and Vassili Soumelis1,2,3,4

1Department of Biopathology, Institut Curie, Paris, France; 2Institut National de la Santé et de la Recherche Médicale U932, Paris, France; 3Research

Section, Institut Curie, Paris, France; and 4Centre d ’Investigations Cliniques Institut Gustave Roussy Curie 1428, Paris, France

Key Points

• Human blood BDCA-11 DCs
have precursor potential.

• TSLP can be implicated in
LC ontogenesis during
inflammation.

The ontogeny of human Langerhans cells (LCs) remains poorly characterized, in

particular the nature of LC precursors and the factors that may drive LC differ-

entiation. Here we report that thymic stromal lymphopoietin (TSLP), a keratinocyte-

derived cytokine involved in epithelial inflammation, cooperates with transforming

growth factor (TGF)-b for the generation of LCs. We show that primary human blood

BDCA-11, but not BDCA-31, dendritic cells (DCs) stimulated with TSLP and TGF-b

harbor a typical CD1a1Langerin1LCphenotype. Electronmicroscopy established the

presence of Birbeck granules, an intracellular organelle specific to LCs. LC differ-

entiation was not observed from tonsil BDCA-11 and BDCA-31 subsets. TSLP 1 TGF-b LCs had a mature phenotype with

high surface levels of CD80, CD86, and CD40. They induced a potent CD41 T-helper (Th) cell expansion and differentiation

into Th2 cells with increased production of tumor necrosis factor-a and interleukin-6 compared with CD34-derived

LCs. Our findings establish a novel LC differentiation pathway from BDCA-11 blood DCs with potential implications in

epithelial inflammation. Therapeutic targeting of TSLP may interfere with tissue LC repopulation from circulating precursors.

(Blood. 2014;124(15):2411-2420)

Introduction

Langerhans cells (LCs) of the epidermis are the main antigen-
presenting cells in stratified epithelia and play a major role in
maintaining homeostasis,1,2 inducing a protective immune response
to invading pathogens,3 and promoting and sustaining chronic
inflammation.4,5 Given the importance of epithelia as a natural
interface with the environment, it is critical to maintain a pool of LCs
in a regulated manner at steady state and allow for the recruitment
and/or de novo differentiation of LCs during inflammation. In the
mouse, it was shown that LCs homeostasis at steady state could be
achieved through the differentiation of local proliferating precur-
sors.6 During inflammation, LCs were shown both to proliferate in
situ7 and to differentiate from circulating monocytes8 in a process
depending on macrophage-colony-stimulating factor (M-CSF)9,10

and transforming growth factor (TGF)-b.11,12

In the human, LC ontogeny, as well as the link between LCs
and other dendritic cell (DC) subsets, has remained controversial.
Human LCs were shown to be of hematopoietic origin.13,14 In
vitro studies have shown that CD1a1 LC-like cells could be
differentiated from CD341 hematopoietic progenitors.15 Mono-
cytes, as well as blood CD1a1CD11c1 cells, were also described
as a possible source of LCs when cultured with granulocyte
macrophage–colony-stimulating factor (GM-CSF), interleukin
(IL)-4, and TGF-b.16,17 In particular, blood CD1a1CD11c1 cells
were shown to express high CD1c (BDCA-1) levels and to rapidly

acquire a LC phenotype.17 After transplantation, LCs of donor
origin have been observed in the skin of the host for up to
10 years,18 suggesting the presence of a local precursor that
remains to be identified. However, the pathways leading to LC
differentiation during inflammation are still poorly defined, both in
terms of differentiation factors and of possible LC precursor cells. In
particular, it is not known whether blood CD1a-negative DCs may
serve as LC precursors and acquire a bona fide LC phenotype. The
recent identification of the BDCA-11 and BDCA-31 subsets of
human DCs19 raises additional questions on their ability to further
differentiate into another DC subset.

Thymic stromal lymphopoietin (TSLP) is an epithelial cell-
derived cytokine playing a critical role in inflammation, in particular
allergy,20 by strongly activating blood and resident tissueDCs.21 The
TSLP receptor is expressed mainly by DCs and is constituted by
2 chains: TSLPR and IL-7a. The high affinity binding of TSLP to
its receptor activates the Janus kinase-signal transducer and activator
of transcription and the nuclear factor-kB pathways and directs
DCs to activate a T-helper (Th)2 response.22,23 Through a systematic
transcriptomic analysis of TSLP-activated DCs, we unexpectedly
identified markers that have been associated with a skin-homing
potential and with a LC phenotype. Addition of transforming
growth factor (TGF)-b synergized with TSLP, leading to the
differentiation of bona fide Birbeck granule-positive LCs.
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Material and methods

Samples and cell isolation

Buffy coats were obtained from healthy adult blood donors at the Saint Louis
hospital site of the Etablissement Français du Sang. Peripheral blood
mononuclear cells were isolated by Ficoll density gradient centrifugation
(Ficoll-Paque; GE Healthcare). Total DC fractions were enriched using
a Pan-DC Enrichment kit according to the manufacturer’s instructions
(EasySep; Stem Cell). Total DCs (Lineage2CD11c1CD41) and DC subsets
(Lineage2CD11c1CD41BDCA-11 or Lineage2CD11c1CD41BDCA-31)
were purified to 99% by fluorescence-activated cell sorter (FACS) sorting
(ARIA II BD). Blood CD341 cells and CD141 monocytes were isolated
from peripheral blood mononuclear cells by positive selection using anti–
CD34-coated and anti–CD14-coated magnetic beads and magnetic columns
according to the manufacturer’s instructions (Miltenyi). Tonsils from healthy
patients undergoing tonsillectomy were obtained from Hôpital Necker (Paris,
France) following the hospital ethical guidelines. Tonsils were cut into small
fragments and digested with 0.8 mg/mL collagenase IV (Worthington) and
25 mg/mL DNase (Roche) for 15 minutes at 37°C in CO2-independent
medium (Gibco). After incubation, the supernatant was recovered, and the
digestion was repeated 2 or 3 times. The remaining tissue was filtered on a
40-mm cell strainer (BD) and washed in phosphate-buffered saline. Follow-
ing Ficoll density gradient centrifugation, the DC fraction was enriched
by magnetic depletion of cells expressing CD3, CD15, CD19, CD56, CD14,
and CD235a (eBioscience) according to the manufacturer’s instructions
(Miltenyi Biotec). Tonsillar DC subsets (Lineage2CD11c1CD41BDCA-11

or Lineage2CD11c1CD41BDCA-31) were purified to 99% by FACS
sorting (ARIA II BD).

Flow cytometry

Cells were stained with fluorescein isothiocyanate (FITC) anti-CD3 (BD),
FITC anti-CD14 (BD) or Qdot605 anti-CD14 (Invitrogen), FITC anti-CD16
(BD), FITC anti-CD19 (Miltenyi), PECy5 anti-CD11c (BD), APC or VioGreen
anti-CD4 (Miltenyi), APC eFluor 780 anti-HLA-DR (eBioscience), PerCP eFluor
710 anti-BDCA-1 (eBioscience), APC, PE, or VioBlue anti-BDCA-3 (Miltenyi),
PE anti-CD207/Langerin (Immunotech) or FITC anti-CD207/Langerin
(Miltenyi), PECy5or FITC anti-CD1a (BD), FITC anti-IL7Ra (eBioscience),
APC anti-TSLPR (BioLegend), FITC anti-CD80 (BD) or AlexaFluor 700
anti-CD80 (ExBio), FITC anti-CD83, (BD), FITC anti-CD86 (BD), FITC
anti-CD40 (BD), PECy5 anti-CD206 (BioLegend), PECy7 anti-CD11b
(Biolegend), AlexaFluor 647 anti-CCR2 (BioLegend), APC anti-CCR6 (BD),
FITC anti-CCR7 (BD), PECy7 anti-CXCR4 (BioLegend), PE anti-FceRI
(eBioscience), FITC anti-CD64 (BD), APC anti-ECadherin (R&D), PECy7
anti-EPCAM (BioLegend), and biotinilated anti-CD209 (Miltenyi), followed
by PECy7 streptavidin (eBioscience) staining. All the stainings were cell
surface stainings.

Nonspecific binding and cell adhesion were blocked using phosphate-
buffered saline supplemented with 1% human serum (BioWest) and 2 mM
EDTA (Gibco). Cells were stained for 15 minutes at 4°C with different
combinations of specific antibodies or their isotype-matched control
antibodies. 49,6 Diamidino-2-phenylindole (Sigma-Aldrich) was added
before acquisition in a LSRII or Fortessa (BD) analyzer. Data were analyzed
with FlowJo software (Tree Star).

Cell culture

Myeloid DC subsets from human blood and tonsils were seeded at 13 106/mL
in flat-bottom 96-well plates cultured in RPMI containing 10% heat inactivated
fetal calf serum (BioWest), 1% pyruvate (Gibco), and 1% penicillin-streptomycin
(Gibco). Cells were cultured for the indicated time in the absence or
presence of 50 ng/mL (equivalent to 1000 U/mL) TSLP (R&D Systems) and
10 ng/mL (equivalent to 20 U/mL) of TGF-b (Prepotech). The CD1a1

CD2071 LCs were sorted on a FACS instrument (ARIA II BD).
lipopolysaccharide (LPS) at 100 ng/mL (Invivogen) or tumor necrosis factor
(TNF)-a at 10 ng/mL (Prepotech), IL-1b at 10 ng/mL (Prepotech), IL-6 at

1000 U/mL (Prepotech) and prostaglandin E2 at 1 mg/mL (Sigma-Aldrich), as
a Jonuleit cocktail,24 were used when indicated.

Peripheral blood CD341 cells were cultured for 9 to 10 days in Yssel
medium supplemented with 10% heat inactivated fetal calf serum, penicillin-
streptomycin, 50 ng/mL GM-CSF (Miltenyi), 100 ng/mL Fms-like
tyrosin kinase 3 (Flt3) ligand (R&D Systems), and 10 ng/mL TNF-a
(R&D Systems). Culture media and cytokines were refreshed on day 5 of
culture, and 10 ng/mL of TGF-b was added for the last 4 days of culture.
Blood CD141 monocytes were cultured for 6 days in RPMI supplemented
with 10% heat inactivated fetal calf serum, 1% pyruvate (Gibco), 1%
nonessential amino acids (Gibco), 1% penicillin-streptomycin (Gibco),
250 ng/mL GM-CSF (Miltenyi), 100 ng/mL IL-4 (Miltenyi), and 10 ng/mL
TGF-b (R&D Systems). Culture media and cytokines were refreshed
on days 2 and 4 of culture. CD141CD1a2, CD142CD1a1CD2072, and
CD142CD1a1CD2071 cells were isolated by cell sorting on a FACS
instrument (ARIA II BD).

Electron microscopy

After 1 and 3 days of culture with TSLP and TGF-b, the BDCA-11DCs that
differentiated into CD1a1CD2071 LCs were sorted and seeded in Acian
blue-coated coverslips (Sigma) for 1 hour. Cells were fixed in 2%
glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, for 1 hour, postfixed for
1 hour with 2% buffered osmium tetroxide, dehydrated in a graded series of
ethanol solution, and embedded in epoxy resin. Images were acquired with
a digital camera (Keen View; SIS) mounted on a Tecnai 12 transmission
electron microscope (FEI Company) operated at 80 kV.

CD4 Th cell differentiation

Naive CD4 T cells (CD41CD45RA1CD252CD45RO2) were isolated
from blood buffy coats after Ficoll density gradient centrifugation (Ficoll-
Paque GE Healthcare), enrichment (CD4 T cell Isolation kit; Miltenyi
Biotec), and further FACS sorting purification. Purity was .98%. Naive
CD4 T cells were cultured with allogeneic BDCA-11- or CD341-derived
antigen-presenting cells at a 5:1 ratio in XVIVO 15 medium (Lonza). After
6 days of coculture, T cells were counted, reseeded at 1 3 106/mL in flat-
bottom 96-well plates, and restimulated for 24 hours with anti-CD3/CD28
microbeads (Dynal). Cell culture supernatants were collected, and cytokine
measurement was performed by multiplex bead assay (Milliplex MAP
Human TH17 Magnetic Bead Panel; Millipore) on a Bio-Plex-200 reader
(Biorad).

Gene expression profiling

Total RNA was extracted from DCs, directly after sorting (ex vivo) or
after 6 hours culture with and without TSLP (50 ng/mL; R&D Systems)
and TNF-a (2.5 ng/mL; R&D Systems), using the RNeasy micro kit
(Qiagen). Samples were then double amplified and labeled according to
the protocol recommended by Affymetrix for hybridization to Human
Genome U133 Plus 2.0 arrays. The microarray data are available in the
Gene Expression Omnibus database under accession number GSE59237.
Data were normalized using the GC-Robust Multi-array Average algo-
rithm, and expression levels were centered and reduced. Probes with no
annotation were removed from analysis. Genes with small profile ranges (in
the low 50% of the global distribution) were filtered out using the MatLab
function generangefilter.

Statistical analysis

Wilcoxon paired test and paired Student t test were performed using
Prism (GraphPad Software) at a significance level of 5%. The principal
component analysis (PCA) of T-cell profiles was performed using the
FactoMineR package25 of the R software (version 2.15.0). The 2 first
components of the PCA resume;80% of the total inertia. The barycenters
were computed from the set of observations in each condition and projected
into the PCA plot. In addition, 95% confidence ellipses were drawn around
the barycenters.
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Results

TSLP induces a skin-like transcriptional signature in human

blood DCs

To get a detailed insight into molecular changes induced by TSLP
in human total blood DCs, we performed a transcriptomic analysis
of TSLP-activated blood DCs compared with freshly purified
and medium- and TNF-activated DCs after 6 hours of culture
(Figure 1).AffymetrixU133plus 2.0 chipswereused for transcriptomic
analysis of 5 independent donors. Among TSLP up-regulated
genes, we identifiedmolecules associatedwith skin homing (CCR6),
LC phenotype (CD1a and CD207 [Langerin]), and LC function
(MMP12 and CCL17), as determined by a literature-based survey
(Figure 1A). CD205 was also described on LCs26 and up-regulated
by TSLP (Figure 1A). Conversely, genes not expressed in LCs
were not found among TSLP-induced genes, for example, CD209
(DC-Sign) and CD14 (Figure 1B). Although the observed differ-
ences did not reach statistical significance, overall, they revealed
a LC-like signature suggesting that TSLP may be involved in LC
differentiation of blood DCs. This prompted us to address this
question at the protein level using purified blood DC subsets.

TSLP and TGF-b synergize for the differentiation of Langerhans

cells from blood BDCA-11 DCs

LCs are defined by their coexpression of CD1a and CD207. First, we
used flow cytometry to assess the expression of CD1a and CD207
on TSLP-activated blood DCs after sorting of the BDCA-11 and
BDCA-31 subsets. We found a strong and consistent induction of
CD1a by TSLP in the BDCA-11 subset, matching our microarray
data, but not in BDCA-31 DCs (data not shown). However, CD207
was induced inconsistently and at low levels (median, 6.2%; range,
2.1-33.5%; Figure 2A-B). Because of the importance of TFG-b in
skin homeostasis, and its established role in the differentiation of
LCs,12 we hypothesized that it may potentiate the effects of TSLP.
Although TGF-b alone induced significant amounts of CD207 after
24 hours on BDCA-11 DCs, it did not promote CD1a expression,
which indicates a partial LC phenotype (Figure 2A). Importantly,
the combination of TSLP and TGF-b resulted in a synergistic
effect on BDCA-11 DCs with differentiation of a large proportion
(25.9 6 10.5%) of CD1a1CD2071 cells (Figure 2B), a phenotype
typical of LCs. However, BDCA-31 DCs remained refractory
to LC differentiation even with the TSLP 1 TGF-b combination
(Figure 2A). DC viability in the presence of TSLPwas in the range of
90% after 24-hour culture and was not modified by the presence
of TGF-b (data not shown).

Human LCs can be differentiated in vitro by 2 standard methods.
They can be induced from CD341 hematopoietic progenitors
in the presence of Flt3 ligand, TNF-a, GM-CSF, and TGF-b
(CD34-LCs)2,27 or from CD141 monocytes in the presence of
IL-4, GM-CSF, and TGF-b (CD14-LCs).16 LC differentiation was
induced in 76.5% (13 of 17) of normal blood CD341 cell donors and
75% (6 of 8) of normal blood CD141monocyte donors. When using
TSLP and TGF-b on BDCA-11 DCs, LC differentiation effi-
ciency was 75% (47 of 63 blood donors). However, the proportions
of CD1a1CD2071 LCs obtained from CD341 and CD141 cells
were low, with averages of 3.9 6 5% and 9.2 6 3.5%, respec-
tively (Figure 2B), compared with blood BDCA-1–derived
CD1a1CD2071 LCs under TSLP and TGF-b (25.9 6 10.5%
Figure 2B). In parallel to TSLP and TGF-b treatment, we stimulated

blood BDCA-1 DCs for 24 hours with the CD14-LC differentiation
cocktail (IL-4, GM-CSF, and TGF-b), obtaining an average of
17.0 6 10.1% of CD1a1CD2071 LCs. These results show that
TSLP and TGF-b induce an effective LC differentiation from blood
BDCA-11 DCs and that BDCA-11 DCs were more potent LC
precursors compared with CD34 progenitors and CD14 monocytes.

Our data show that human blood BDCA-11 DCs retain a poten-
tial to differentiate into another DC subset. To address the differentia-
tion potential of secondary lymphoid tissue DCs, we repeated these
experiments using BDCA-11 and BDCA-31 subsets purified from
human tonsils. Neither of these subsets was able to differentiate into
LCs with TSLP and TGF-b (Figure 2A), suggesting that DCs from
blood and tonsils do not have the same differentiation potential.

Because tonsil DCs, as well as blood BDCA-31 DCs, did not
differentiate into LCs in response to TSLP, we questioned whether
they were able to respond to TSLP. By flow cytometry, BDCA-11

and BDCA-31 subsets from both blood and tonsil expressed the
2 chains of the TSLP receptor complex: IL-7R-a and TSLPR
(Figure 2C). Accordingly, all subsets responded to TSLP activation,
as assessed by surface CD80 expression (Figure 2C).

TSLP- and TGF-b–induced LCs express Birbeck granules

Although CD1a and CD207 are typical of a LC phenotype, Birbeck
granules are the most specific and distinctive feature of human
LCs.28 We assessed by electron microscopy the presence of Birbeck
granules on the CD1a1CD2071 population differentiated from
blood BDCA-11 DCs after 1 and 3 days of stimulation with TSLP
and TGF-b (Figure 3). On the sorted CD1a1CD2071 cells, at day
1, we could not observe any structure reminiscent of the double-
membrane rod-shaped cytoplasmic organelles typical of Birbeck
granules, even with a combination of TSLP and TGF-b (data not
shown), although we could not exclude a low number of these
structures that could have been missed by careful examination.
Nevertheless, typical Birbeck granules appeared by day 3 in the
sorted DCs cytoplasm (Figure 3; supplemental Figure 3, available
on the Blood Web site), suggesting a minimum amount of time
required for organelle formation. The mean width of the Birbeck
granules was 33 nm, which corresponds to what has been observed
on freshly isolated human LCs.29 The CD1a and CD207 single-
positive, as well as double-negative, cells were consistently negative
for Birbeck granules (data not shown).

TSLP- and TGF-b–induced LCs bear a mature phenotype and

skin-homing receptors

To determine the phenotype of TSLP- and TGF-b–induced LCs
(TSLP 1 TGF-b LCs), we assessed the expression of surface
markers characteristic of DC lineage, maturation state, and homing
receptors. TSLP1 TGF-b LCs expressed higher levels of CD1a and
CD207 compared with blood BDCA-11 DCs treated with optimal
doses of either TSLP or TGF-b alone, confirming the synergistic
effect of these cytokines on LC generation (Figure 4A). We found
low levels of FceRI expression as previously reported in skin-
isolated LCs26 and CD206 (mannose receptor 1) previously reported
to be expressed by DCs and macrophages from human inflam-
matory fluids.30 Other markers of inflammatory DCs such as CD14
and CD11b were absent in TSLP 1 TGF-b LCs (Figure 4A). In
comparison with TSLP 1 TGF b-induced LCs, CD341-derived
LCs expressed CD11b and higher levels of CD206 (supplemental
Figures 1 and 2).

It has been shown that TSLP strongly activates total human
blood DCs inducing the expression of HLA-DR, CD80, CD86, and
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CD40.20 Accordingly, TSLP 1 TGF-b LCs expressed high levels
of HLA-DR and CD80 (Figure 4B). Nevertheless they expressed
significantly lower amounts of CD86 and CD40 compared with

TSLP-treated BDCA-11 DCs, consistent with a down-regulation
of these markers by TGF-b. TSLP 1 TGF-b LCs were found to
express lower levels of CD83, CD86, and CD40 in comparison

Figure 1. Gene expression profile of TSLP-treated blood DCs. (A) Gene transcripts expression on purified total blood DCs directly after sorting (ex vivo) or after a 6-hour

treatment with medium alone or supplemented with TSLP or TNF-a. Genome-wide expression was determined by Affymetrix chips Human Genome U133 Plus 2.0 microarray

analysis. Signal intensity levels:2,#50; 1, 50 to 500;11, 500 to 5000; 111, $5000. (B) Data represent signal intensity levels for the corresponding gene transcripts under

the different conditions (ex vivo: n 5 5, medium; TNF-a, n 5 3; TSLP, n 5 4). Expression of LC-specific molecules CD1a, CD207, MMP12, and CCR6 showed a trend for

TSLP-induced up-regulation and specificity but did not reach statistical significance using a Mann-Whitney nonparametric test.
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with CD341 LCs but higher levels of HLA-DR and CD80
(supplemental Figures 1 and 2).

It has been suggested that, under inflammatory conditions, LC
precursors reach the dermis through the expression of the chemokine
receptor CCR2. In a second step, they up-regulate CCR6, which
allows them to reach the epidermis,6where E-cadherinmediates their
binding to keratinocytes.31 Activated LCs down-regulate E-cadherin
and reach the lymph nodes through the sequential involvement
of CXCR432 and CCR7.33 We found that TSLP 1 TGF-b LCs
expressed lower levels of CCR2 compared with medium or TGF-b–
or TSLP-treated BDCA-11 DCs, but higher levels of CCR6
(Figure 4C). Neither E-cadherin nor the epithelial cell adhesion
molecule Epcam, characterizing LCs, were found to be expressed
in any of the conditions. TSLP1TGF-bLCs expressed lower levels

of CCR7 and CXCR4 compared with medium and TGF-b–treated
BDCA-11 cells (Figure 4C). These results show that TSLP 1
TGF-b-LCs are activated and express a skin-homing phenotype.

Induction of Th differentiation by TSLP 1 TGF-b–induced LCs

A major function of LCs is to induce naive CD41 T-cell activation
and differentiation into Th effectors. TSLP 1 TGF-b LCs induced
a two- to threefold expansion of naive CD41 T cells after 6 days of
coculture, which was slightly higher than CD34 LCs (Figure 5A).

Primary and CD34-derived skin LCs were shown to induce Th2
differentiation.2 In our study, TSLP 1 TGF-b LCs also preferen-
tially induced CD41 Th cells to produce IL-4, IL-5, and IL-13, at
levels similar to, or higher than, CD34-derived LCs (Figure 5B).
However, TSLP 1 TGF-b LCs induced Th cells producing higher

Figure 2. TSLP and TGF-b induce the

differentiation of blood BDCA-11 DCs

into LCs. (A) Representative flow cytom-

etry density dot plots of CD207 and CD1a

surface expression by human blood and

tonsillar BDCA-11 and BDCA-31 DCs after

24-hour treatment with and without TSLP

and TGF-b. Blood CD141 monocyte-derived

LCs after treatment with GM-CSF, IL-4, and

TGF-b and CD341 hematopoietic progenitor-

derived LCs after treatment with Flt3-L,

TNF-a, GM-CSF, and TGF-b are shown as

positive controls of the staining. Quadrants

were adjusted to the matching correspon-

dent isotype controls. Numbers represent the

percentage of viable cells. (B) Quantification

of CD2071, CD1a1, and CD1a1CD2071

cells for all the conditions. Data are

presented as percentage of viable cells.

Blood CD141 monocytes were treated

with IL-4, GM-CSF (IL41GM), and TGF-b;

CD341 hematopoietic progenitors were

treated with Flt3-L, TNF-a, GM-CSF

(FL1TNF1GM), and TGF-b. Each dot

represents an independent experiment.

*P # .05; **P # .005; ***P # .0005,

Wilcoxon nonparametric paired test. Bars

represent medians. (C) (Upper) Represen-

tative flow cytometry density plots of

TSLP receptor and IL-7 receptor a chains

by human blood and tonsillar BDCA-11

and BDCA-31 DCs. Quadrants were

adjusted to the matching correspondent

isotype controls. Numbers represent the

percentage of viable cells. (Right) Per-

centage of viable cells expressing both

chains of TSLP receptor. Each symbol

corresponds to 1 donor. (Lower) Repre-

sentative histograms of CD80 expression

by human blood and tonsillar BDCA-11 and

BDCA-31 DCs after 24-hour culture with

and without TSLP. Plain histograms repre-

sent the matching correspondent isotype

controls and numbers represent specific

median fluorescence intensities (MFIs).

Below, quantification of MFIs for CD80

for 4 independent donors. Paired Student

t test was used: *P # .05; **P # .005.
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levels of TNF-a and IL-6 compared with CD34 LCs (Figure 5B).
Interestingly, we found that TSLP1 TGF-b LCs, similar to TSLP-
DCs that did not differentiate into LCs, induced high levels of IL-9
production by Th cells, whichwere not observedwith CD34-derived
LCs (Figure 5B).

To get a global integrated view of Th cytokine profiles generated
with different DCs, we used PCA, a multivariate approach that
reduces the dimensionality of the data by extracting the smallest
number of components that account for most of the variation in our
data. It appeared that the CD34 LC-induced Th profile was closer to
medium DCs and TGF-b DCs (Figure 5C). TSLP 1 TGF-b LCs
were more similar to TSLP DCs than to TGF-b DCs (Figure 5C).
Importantly, TSLP 1 TGF-b LCs were distinct from CD34 LCs at
the global Th cytokine profile level.

In a second set of experiments, TSLP 1 TGF-b LCs were
compared with LPS DCs and DCs activated with a cytokine cocktail
(TNF/IL-6/IL-1-b/prostaglandin E2; Jonuleit cocktail), as well as
cultured skin LCs. PCA revealed that all LC and LC-like conditions
were grouped together and were different from LPS- and Jonuleit
cocktail-activated DCs, confirming that TSLP 1 TGF-b LCs were
closer to primary LCs than to other mature DCs (supplemental
Figure 4). At the individual Thcytokine level, differencesweremostly
due to lower Th2 cytokines and lower IL-9 production by LPS- and
Jonuleit cocktail-activated DCs compared with LC and LC-like
DC populations (supplemental Figure 4).

Altogether, our results show that BDCA-11 DCs stimulated by
TSLP and TGF-b differentiate to exhibit classical LC phenotypic
and functional characteristics.

Discussion

It is commonly accepted that, at steady state, circulating blood DCs
maintain the pool of tissue dendritic cells.34 In mice, the tissue
dendritic cell subsets have been shown to derive from blood
circulating pre-DCs.35,36 In humans, the blood population equivalent

to murine pre-DCs has not been identified. Human blood CD341

cells and CD141 monocytes can give rise to LCs,15,16,37,38 but their
role in human inflammatory conditions remains unknown. Our
results demonstrate that blood BDCA-11 DCs retain a precursor
capacity and represent an LC progenitor with potential implication
in inflammatory conditions.

As opposed to blood BDCA-11 DCs, blood BDCA-31 DCs
and tonsillar DCs do not give rise to LCs in our culture conditions.
This might reflect a differential response of human DC subsets to
TSLP and TGF-b stimuli and/or the fact that human DC subsets
have different functional specializations as has been proposed by
others.36,39 Moreover, the fact that not all the blood BDCA-11 DC
population is able to differentiate into LCs suggests a higher degree
of functional heterogeneity within this subpopulation. Nevertheless,
an alternative explanation for the tonsillar DCs failure to develop
into LCs is that tissue DCs may be more terminally differentiated
than blood DCs. Indeed, it has been shown that, although in blood
a small proportion of DCs still proliferates, this is not the case in
lymph nodes and tonsils.40 Further experiments would be required
to investigate whether the tonsillar tissue environment regulates the
precursor capacity of DCs.

In steady-state conditions, LCs develop from a local precursor
that is independent from circulating progenitors.18,41 Under in-
flammatory conditions, different murine models show different
results and show that LCs can have a dual origin, both from local
proliferation and from blood progenitors.7,8,16,37,42 Although blood
CD341 progenitors have high proliferative capacity43 and CD141

monocytes are abundant in human blood, in our hands, blood
BDCA-11 DCs differentiated into LCs with better yields than the
former precursors, not only with TSLP and TGF-b but also with the
CD141LC cytokine cocktail. BloodBDCA-11DCs stimulated only
with TSLP already gave rise to low numbers of CD1a1CD2071

cells. Although this could suggest a role for an autocrine TGF-b
signal requirement for LC generation,11 these results were not
modified by blocking TGF-b (data not shown). In any case, extrinsic
TGF-b stimulation was required to get optimal LC yields. Blood
BDCA-11 DC differentiation into LCs was observed as early as

Figure 3. Birbeck granules on blood BDCA-11 DCs treated with TSLP and TGF-b. After 3 days of culture with TSLP and TGF-b, blood BDCA-11-derived LCs were

sorted according to the expression of CD1a and CD207. Electron microscopy pictures show the presence of LC characteristic Birbeck granules in the cytoplasm (arrows). The

Birbeck granules shown in the lower pictures correspond to different independent cells. The experiment was performed for 6 independent blood donors and found Birbeck

granules in the CD1a1CD2071 cell population for all tested donors.
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Figure 4. TSLP 1 TGF-b LC expression of macrophage and DC subset markers, maturation markers, and skin-homing receptors. Representative histograms of the

expression of (A) macrophage and DC subset molecules, (B) activation markers, and (C) skin-homing receptors by sorted human blood BDCA-11 cells after a 24-hour culture

with or without TSLP or TGF-b. Data on BDCA-11 DCs treated with both TSLP and TGF-b correspond to the CD1a1 CD2071 cells. Plain histograms represent the matching

corresponding isotype controls, and numbers represent specific MFIs; n 5 4 to 11.
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Figure 5. TSLP 1 TGF-b LCs induce a Th2 profile on naive CD41 T cells. BDCA-11 DCs subsets were stimulated with or without TSLP and TGF-b for 24 hours. CD341

cells were stimulated with Flt3-L, TNF-a, GM-CSF, and TGF-b. CD341- derived LCs and BDCA-11–derived LCs were sorted according to CD1a and CD207 expression and

cultured with allogeneic naive CD41 T cells for 6 days before T-cell restimulation. Symbols represent cells purified from the same donor. (A) T-cell expansion was assessed

by calculating the ratio of the number of T cells at the end of the culture divided by the number of T cells plated at the start of the culture. **P# .005, paired Student t test. Bars

represent medians. (B) Data represent cytokine concentration at the end of the culture measured by multiplex bead array. *P # .05; **P # .005, paired Student t test. Bars

represent medians. (C) PCA showing the resemblance of the naive T-cell profiles (secretion of 13 cytokines) induced under different conditions. Components 1 and 2 were

selected as the axes explaining most of the data variance. The crosses represent individual donors (n 5 4). The squares represent the barycenters. Confidence ellipses at

95% are depicted in each condition.
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24 hours, making this population a more direct precursor of LCs
than other blood progenitors. Under inflammatory conditions, blood
precursors might be differentially implicated in LC generation depend-
ing on time and cytokine availability as human blood unstimulated
CD341 and CD141 cells do not express the TSLP receptor complex
(data not shown).

We found that TSLP 1 TGF-b LCs had a mature phenotype
and expressed a pattern of molecules suggesting skin homing.
CCR2 was found to be expressed by blood BDCA-11 DCs and
CCR6 was highly up-regulated by TSLP treatment, which might
suggest a sequential involvement of these receptors in the recruitment
of TSLP 1 TGF-b LCs to the dermis and then the epidermis as
previously suggested in the case of other blood LC precursors.33,44

TSLP 1 TGF-b LCs induced a Th2 differentiation of naive T cells,
indicating that our system recapitulates important features of primary
LCs,2 TSLP-treated DCs,20 and TSLP-treated LCs.45,46 However, in
contrast to primary LCs, TSLP1TGF-bLCs did not express Epcam
or E-cadherin, and consistent with LCs generated under inflamma-
tory conditions, they induced Th cells producing higher levels of
TNF-a and IL-6 compared with CD34 LCs. TSLP 1 TGF-b LCs
were more similar to TSLP DCs than to TGF-b DCs, suggesting
a dominance of the inflammatory environment as represented by
TSLP. Importantly, TSLP 1 TGF-b LCs were distinct from
CD34 LCs at the global Th cytokine profile level, confirming that
these 2 subsets have different functional features and may be
involved in different types of physiopathological conditions.

Interestingly, TSLP 1 TGF-b LCs induced IL-9 production by
CD41 T cells. This cytokine has been attributed to a subset of Th2
cells that develops into Th9 cells under TGF-b influence47 and has
been associated to TSLP-linked allergic disorders.48 Intracellular
cytokine assessment would be required to evaluate the presence of
Th9 cells after TSLP-BDCA-11 DC and TSLP 1 TGF-b LCs
stimulation.

In conclusion, we provide definitive evidence that blood
BDCA-11 DCs differentiate into LCs in the presence of TSLP
and TGF-b. This defines a novel LC differentiation pathway in
the human. Our study provides a direct link between the epithelial
inflammatory microenvironment and LC differentiation, bringing

new insight into LC generation from blood precursors during
inflammation. Future studies may determine whether other inflam-
matory mediators may also harbor an LC differentiation capacity.
Dissecting DC subset diversity at steady state and inflammation
may facilitate the therapeutic manipulation of the immune response
and its tailoring to specific types of inflammation.
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7 ANALYSES MULTIVARIEES DE LA GENERATION DE LA DIVERSITE DES 

CYTOKINES DES CELLULES T CD4 ET ASSOCIATION DE CETTE 

DIVERSITE AUX DIFFERENTS SOUS-TYPES DE CANCER DU SEIN 

 

(Synthèse en français des travaux de thèses) 

 

INTRODUCTION 

Complexité de l’intégration de signaux en biologie des systèmes 

Un système complexe se définie par l’interaction de grand nombre de composant (du 

système) permettant l’émergence de fonctions difficiles à caractériser par l’étude des 

éléments simples indépendamment les uns des autres. Un système complexe est 

généralement constitué de plusieurs niveaux hiérarchiques pouvant être de nature 

hétérogène et pouvant évoluer de façons distinctes dans le temps et l’espace avec 

des propriétés spécifiques à chaque élément ou ensemble d’éléments. Une autre 

caractéristique importante de la complexité des systèmes est le l’organisation 

autonome des éléments du système.  

Les systèmes complexes sont dits « non fragmentables ». En effet, réduire système 

global à la fonction d’une de ses sous parties implique la perte de caractéristique 

majeure du système. La complexité des systèmes implique que l’étude du système 

ne peut être réalisée par l’utilisation de formalismes simples mais plutôt par la 

combinaison de modèles différents spécifiques de chaque module du système 

globale. Des critères quantifiables comme le nombre d’éléments d’un système, le 

nombre de connexions entre ces éléments ainsi que le nombre d’opérations 

mathématiques simples nécessaire à la description du système ont été utilisé par les 

scientifiques pour évaluer et classifier la complexité de différents systèmes.  

Les systèmes biologiques sont des systèmes complexes où la communication et 

l’échange de signaux jouent des rôles majeurs. Plusieurs niveaux de complexité 

peuvent être observés dans tous les systèmes de communication, 1) L’entité 

réceptrice et/ou émettrice, en biologie il s’agira souvent d’une cellule. Cette entité 

peut varier en nature et fonction, ce qui va conditionner l’interprétation du signal 

réceptionné et la nature du signal émis. 2) La multiplicité des signaux pouvant agir 

sur une cellule donnée. 3) la multiplicité des réponses qu’une cellule peut produire à 

un signal reçu. Cette réponse peut être multiple et multivariée dépendamment de 

l’état ou du type cellulaire réceptionnant un signal.  

Ces notions sont contenues dans les concepts généraux d’effet « contexte 

dépendant » et « d’interactions de signaux ». En biologie comme en littérature un 

effet dépendant du contexte est défini par le rôle du contexte dans l’interprétation 

d’un même message.  
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Par exemple, la réponse ou l’interprétation du mot « amour » dans un texte ne va 

pas être la même en fonction du siècle dans lequel il a été écrit, de son auteur ou 

bien même du reste de la phrase, du paragraphe ou du livre. Le contexte peut donc 

être plus ou moins large. En biologie le contexte « accompagnant » un signal, peut-

être par exemple le type cellulaire, le tissue, l’organe, mais aussi d’autres signaux co-

exprimés ou perçus en même temps par une cellule. Les différences dépendantes du 

contexte de réponse à un signal sont physiquement expliquées par ce que l’on 

appelle « l’interaction » entre signaux.  

Lors de la régulation d’une réponse cellulaire, par exemple une réponse 

transcriptionelle d’un gène donné, on part d’interaction lorsque l’effet du signal 1 et 

l’effet d’un signal 2 sur le gène X ne sont pas additives. Classiquement on parlera 

d’interactions positives si la réponse est au-delà de l’addition propre de l’effet du 

signal 1 et du signal 2 et d’interactions négatives si la réponse du gène X est 

inférieure à l’effet du signal 1 sommé au signal 2. En conséquence, connaître toutes 

les interactions entre les signaux présents dans différents environnements revient à 

expliquer complètement un effet context-dependant.  

Diversité phénotypiques des cellules T CD4 auxiliaires : un système complexe de 

communication  

Le processus de différentiation des cellules T CD4 naïves en cellules effectrices a 

lieu dans les organes lymphoïdes secondaires tels que la rate ou les ganglions 

lymphatiques. Lors d’une infection par un agent microbien exogène ou d’un danger 

endogène, les cellules dendritiques résidentes dans les tissus périphériques ont la 

capacité de détecter des signaux moléculaires en provenance de leur 

microenvironnement. La détection de ces signaux entraine la maturation et la 

migration des cellules dendritiques au sein des organes lymphoïdes secondaires. 

Les cellules dendritiques vont alors fournir un ensemble de signaux aux cellules T 

CD4 naïves pour entrainer leur activation et leur différentiation en sous-types 

cellulaires particuliers.  

Cette différentiation aboutie à la mise en place de programme de transcription précis 

et régulé par certains facteurs de transcription « maîtres » qui commandent 

l’expression de molécules effectrices spécifique du sous-types de cellules T CD4, 

comme les cytokines ou les chimiokines, qui sont des molécules de communication 

régulant des fonctions précises chez les cellules cibles. Par exemple le sous-type 

Th1, exprimant la cytokine IFN-g sous contrôle du facteur de transcription T-bet, va 

notamment cibler les macrophages porteurs du récepteur à l’IFN-g et activation leur 

capacité de phagocytose.  

Au contraire l’IL-21, secrétée par les cellules Tfh, va activer les cellules B et 

permettent leur différentiation en cellules secrétant des anticorps. Aujourd’hui plus de 

20 cytokines pouvant être exprimés par les cellules T CD4 sont décrites, pour la 

plupart ayant des fonctions spécifiques, mais pouvant être également 

complémentaires et/ou redondantes.  
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 3 signaux de natures différentes sont nécessaires à la différentiation des 

lymphocytes T CD4 en cellules effectrices. 1) l’engagement spécifique du Récepteur 

des Cellules T (TCR), 2) la co-stimulation via notamment le récepteur CD28, 3) la 

réception de cytokines secrétées par cellules dendritiques. En terme d’acquisition 

spécifique d’un profile particulier de molécules effectrices telles que les cytokines, il a 

été démontré que chacune de ces 3 catégories de signaux peuvent jouer un rôle. En 

totalité plus de 64 signaux moleculairement différents ont à ce jour démontré avoir un 

rôle dans la polarisation des cellules T CD4.  

Ces signaux pouvant être co-exprimés et co-régulé par les cellules dendritiques il 

apparait que ces signaux peuvent apparaitre dans un très grand nombre de 

combinaisons faisant varié leur présence ou leur niveau d’expression. La polarisation 

des cellules T CD4 auxiliaires constitue donc un système complexe d’intégration de 

signaux.  

Cancer et diversité phénotypique des cellules T CD4 auxiliaires 

Durant la dernière décennie, l’idée qu’une tumeur n’était pas constituée uniquement 

de cellules tumorales a émergé. En effet, il est aujourd’hui connu que le 

microenvironnement de cellules cancéreuses peut être important au regard du degré 

de prolifération des cellules cancéreuses. Le microenvironnement tumoral peut être 

composé de différentes cellules comme des fibroblastes, des cellules épithéliales ou 

endothéliales saines, mais également de cellules immunitaires comme les 

macrophages, les cellules dendritiques ou bien les cellules T CD4 ou T CD8. De 

façon intéressantes, les cellules T CD4 ont été associées en fonction de leurs 

diversités phénotypiques à différents pronostiques dans les pathologies 

cancéreuses.  

Modèles mathématiques pour l’étude des systèmes complexes  

En biologie les modèles mathématiques sont utilisés pour définir des groupes de 

relations entre différents composants d’un système. Plus particulièrement, ces 

modèles utilisent le langage mathématique pour définir les différentes règles 

gouvernant un système. Un modèle peut être réducteur et ne pas expliciter 

nécessairement toutes les règles ou relations entre composants du système et se 

concentrer spécifiquement sur certains aspects afin de l’étudier et de mieux le 

comprendre. Une fois les règles et le modèle établie, les modèles sont utilisés pour 

faire des simulations et donner des prédictions permettant de décrire l’état d’un 

système dans des conditions difficilement atteignables via l’expérience. Développer 

des modèles mathématiques afin d’étudier des systèmes complexes est un outil qui 

permet donc à l’expérimentateur de gagner beaucoup de temps et de tester un grand 

nombre d’hypothèses qui ne pourraient pas être réalisés au laboratoire. Ces 

simulations sont d’autant plus intéressantes que le modèle est fiable et reproduit au 

mieux les caractéristiques connues d’un système donné. 
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La construction d’un modèle mathématique passe par différentes étapes. Tout 

d’abord, il convient de choisir le formalisme mathématique approprié au système à 

modéliser. Différents types de langage mathématique peuvent être employés, 

chacun d’entre eux comporte des avantages et certaines limites. Trois grands types 

de formalismes sont utilisés en biologie. Les modèles à équations différentielles, qui 

permettent une description très précise de réactions biologiques et de leur évolution 

dans le temps, mais qui nécessite des données souvent compliquées à acquérir et 

qui sont souvent limités à un faible nombre de paramètres. Les modèles booléens 

sont généralement utilisés pour décrire un grand nombre d’éléments au sein d’un 

système, par contre ils ne permettent pas d’intégrer des règles mathématiques 

compliqués entre les différents composants du système et s’occupe souvent d’état 

discret des éléments. Enfin, les modèles statistiques permettent de prendre un 

compte un grand nombre de composant et plus particulièrement de trouver des 

relations inconnues entre ces éléments. Ils nécessitent également l’acquisition d’un 

grand nombre de données expérimentale afin d’être développé.  

Après avoir choisi le bon type de formalisme mathématique il convient de construire 

le modèle. Cette construction se fait généralement à parti de données 

expérimentales ou de connaissances préalablement établies sur le système étudié. 

Le but de cette étape est d’établir les différentes règles agissant sur les différents 

composants du système. 

Enfin le modèle a besoin d’être validé. Cette étape de validation s’effectue 

généralement en trois étapes distinctes. Premièrement en effectuant une étape de 

validation croisée, c’est-à-dire en utilisant les mêmes données que celles utiliser pour 

construire le modèle. Puis une étape de validation sur un jeu de données 

indépendant du jeu de donnée utiliser pour construire le modèle. Enfin, des 

prédictions originales dans des conditions jamais observées auparavant nécessitent 

d’être vérifiée expérimentalement. En fonction des résultats observés à chacune de 

ces étapes, le modèle pourra être modifié ou enrichie et amélioré. La modélisation 

est généralement un processus itératif ou chaque étape de validation permet une 

amélioration du modèle en apportant de nouvelles informations.  
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OBJECTIFS DU DOCTORAT  

Dans cette introduction nous avons vu que le processus biologique de différentiation 

des lymphocytes T CD4 pouvait être perçu comme un système complexe de 

communication faisant intervenir de nombreuses variables critiques. Ce processus 

abouti à l’acquisition d’un phénotype de cellules T qui se retrouve au sein de 

microenvironnement également complexe comme celui des tumeurs du sein. Afin de 

comprendre et d’étudier cette complexité, nous proposons d’utiliser des modèles 

statistiques multivariés qui permettent de décrire un large nombre d’éléments du 

système à partir de données expérimentales.  

Plus particulièrement plusieurs questions restent sans réponses et d’intérêt majeur 

en immunologie.  

Est-il possible de quantifier précisément les effets spécifiques du contexte dans des 

études à large échelle ? Est-ce que la réponse à un signal biologique est spécifique 

du signal ou propre au contexte moléculaire dans lequel il est perçu ou émis ? Peut-

on décrire à large échelle les événements précoces du control du processus de 

différentiation des lymphocytes T CD4 ? Est-il possible de prédire de façon fiable le 

phénotype T CD4 engendré à partir de l’observation des signaux émis par les 

cellules dendritiques ? Est-ce que les modèles mathématiques peuvent permettre de 

décrire et prédire des effets dépendants du contexte non connus à ce jour ? 

L’étude de ces premières questions a donné lieu à deux résultats principaux exposés 

ci-dessous sous la forme de résumé d’article. Premièrement un article publié dans la 

revue Nature Communications, intitulé « Flexibilité combinatoire des fonctions 

cytokiniques durant la différentiation des cellules T CD4 humaines » et un manuscrit 

en cours de publication intitulé « Modèle multivarié de la différenciation des cellules T 

CD4 humaines révèle une induction contexte dépendante de Th17 par l’IL12p70 » 

Enfin une deuxième série de questions concernant l’impact et l’association de la 

diversité des cytokiniques des lymphocytes T CD4 au sein des différents sous types 

de cancer du sein ont également été étudiées. Tout d’abord, qu’elle est la diversité 

de cytokines T CD4 retrouvée au sein des cancers du sein ? Peut-on retrouvé des 

motifs récurrents de co-expression de certaines cytokines ? Peut-on définir des sous-

groupes de patients important au regard de leurs caractéristiques cliniques basé sur 

les profils d’expressions de cytokines ? Peut-on proposer de nouvelles classifications 

des cancers du sein basé sur l’expression de certaines cytokines des cellules T 

CD4 ? 

L’étude de cette seconde série d’objectif ont donné un résultat principal exposé ci-

dessous sous la forme d’un résumé d’un article en cours de publication intitulé « une 

signature Th17 multivarié pour une stratification pronostique des cancers triple 

négatifs »  
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RESULTATS  

Projet 1 : Flexibilité combinatoire des fonctions cytokiniques durant la différentiation 

des cellules T CD4 humaines.  

Touzot, Grandclaudon, Cappuccio, Satoh, Martinez-Cingolani, Servant, Manel, 

Soumelis. 

Etat : Publié dans le journal Nature Communications 

Dans un environnement inflammatoire, plusieurs cytokines peuvent agir sur la même 

cellule cible créant la possibilité d’interactions issue de leur combinaison. Comme 

cela influence au niveau du système la fonction d’une cytokine donnée est inconnue. 

Dans cette étude nous montre qu’une cytokine seule, l’interferon-alpha, peut générer 

plusieurs signatures transcriptionelles, incluant des modules fonctionnels distincts de 

flexibilité variable, lorsqu’elle agit dans quatre environnements cytokiniques 

conduisant à diffèrent programme de différentiation des cellules T CD4 (Th0, Th1, 

Th2 et Th17). Nous fournissons des validations expérimentales de modules de 

chemockines, de cytokines et antiviraux tous différentiellement induit par l’IFN-alpha 

dans les environnements Th1, Th2 et Th17. L’impact fonctionnel concernant la 

réponse antivirale a pu être démontré, avec une protection induite par l’interféron 

alpha moins importante pour les virus VIH-1 et VIH-2 dans le contexte Th17.  

Nos résultats révèlent qu’une seule et même cytokine peut induire de multiples 

programmes transcriptionnels et fonctionnels dans différents microenvironnements. 

Cette flexibilité combinatoire créé une diversité de réponses auparavant non 

caractérisées avec un impact potentiel dans la physiopathologie de certaines 

maladies ou l’utilisation de thérapie à base de cytokine.  

 

Projet 2: Modèle multivarié de la différenciation des cellules T CD4 humaines révèle 

une induction contexte dépendante de Th17 par l’IL12p70 

Auteurs : Grandclaudon M*, Perrot-Dockes M*, Trichot C, Mostafa-Abouzid O, Abou-

Jaoudé W, Hupé P, Thieffry D, Chiquet J, Levy-Leduc C, Soumelis V 

Etat : Manuscrit en préparation 

Aujourd’hui plus de 70 signaux indépendants ont été montré comme capable d’agir 

sur les programmes de différentiation des lymphocytes T CD4. La plupart de ces 

signaux peuvent être co-exprimés par des cellules présentatrices d’antigène et 

agissent collectivement pour définir le phénotype Th. Pourtant, l’impact de la 

complexité du nombre de combinaisons potentielles émergeant de l’expression de ce 

nombre important de signaux sur la différentiation des cellules T CD4 n’est pas 

connu.  
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Utilisant un système de culture hétérologue de cellule dendritique et de cellule naïve 

T CD4 nous avons généré un jeu de donnée de plus de 400 observations 

indépendantes. Chaque observation correspondant à la mesure couplée de 36 

signaux entrant ou « input » et 18 cytokines exprimées par les cellules T CD4 ou 

« output », après leur différenciation en cellule effectrice.  

A partir de ce jeu de données, nous avons dérivé un model statistique capable de 

prédire les outputs du système en fonction des inputs avec une faible erreur de 

prédiction estimée par validation croisée. Nous avons ensuite établi une validation 

systématique des predictions de notre model en utilisant des données extraites de la 

littérature. Concernant l’IL12p70 notre modèle a été capable de retrouvé un grand 

nombre de mécanisme déjà décrit dans la littérature. Notamment le fait qu’IL-12p70 

induit la production d’IL-21 et d’IFN-g et inhibe les cytokines associées au phénotype 

Th2 (IL-4, IL-5, IL-13 et IL-31). De plus en utilisant notre stratégie nous avons pu 

dériver des prédictions de mécanismes dépendant du contexte moléculaire. Nous 

avons pu notamment identifier un nouveau rôle de l’IL12p70 en présence d’IL1b. 

Cette prédiction originale a ensuite pu être validée via des stratégies de blocage ou 

de supplémentation.  

Nous avons pu démontrer qu’IL-12p70 et IL-1b agissait de façon synergique dans 

l’induction d’IL17F. Ce résultat met en lumière l’importance de considérer l’IL-12p70 

dans l’induction de réponse Th17.  

De façon générale, ce travail a permis d’établir le premier modèle statistique de la 

différenciation des lymphocytes T CD4 incluant un grand nombre de signaux 

provenant des cellules dendritiques et permettant d’étudier le rôle du contexte 

moléculaire dans l’intégration de signaux capitaux dans l’acquisition de phénotype T 

CD4 donnés et la description de nouveaux mécanismes.  

 

Projet 3 : Une signature Th17 multivariée pour la stratification pronostique des 

cancers du sein triple négatif  

Etat : Manuscrit en préparation 

Le cancer du sein est une maladie hétérogène classiquement divisée en trois sous-

classes moléculaires, respectivement définies comme exprimant les récepteurs à 

l’œstrogène (ER) et à la progestérone (PR) pour les cancers luminaux, exprimant le 

récepteur au facteur de croissance épidermique (HER2), pour les cancers dits 

« HER2 », ou n’exprimant aucun de ces trois récepteurs concernant les cancers dits 

« triple négatifs » (TN). Une partie importante des cancers du sein est représenté par 

son microenvironnement immunitaire. Au sein de ce microenvironnement 

immunitaire, les cellules T dont la diversité phénotypique est importante joue un rôle 

important. Savoir si différentes classes de cancer du sein possède des réponses T 

également différentes reste une question sans réponses.  
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Dans cette étude nous avons analysé le pattern de sécrétion de 19 cytokines après 

stimulation ex vivo des lymphocytes T infiltrant les tumeurs dans une cohorte 

prospective de 108 patients ayant eu une tumeur du sein primaire sans traitement 

néo-adjuvant.  

A l’aide des statistiques multivariées, nous avons systématique analysé les relations 

entre les variables biologiques issues des cellules T et leur association avec les 

variables cliniques dont la classe de cancer du sein. Nous avons par la suite validé 

nos résultats dans la cohorte publique indépendante à large échelle METABRIC.  

En utilisant des statistiques multivariées, nous avons pu identifier des groupes de 

cytokines correspondant au sous types cellulaires T CD4 Th1, Th2 et Th17, lesquels 

pouvant tous être présent au sein du microenvironnement tumoral. Nous avons pu 

trouver que les cytokines Th17, étaient spécifiquement associées au cancer dits 

Triple négatifs en comparaison des cancers luminaux ou HER2. Utilisant la base de 

donnée METABRIC, nous avons pu valider cette association du pathway Th17 avec 

les tumeurs TN et démontrer en utilisant des modèles de Cox, que notre signature 

Th17 ainsi que l’index pronostique de Nottingham étaient significativement associée 

à la survie des patients TN et ceci de façon indépendante. En effet, une réponse 

Th17 importante était de bon pronostique au sein de ce sous type tumoral. 

Finalement, nous démontrons comment en combinant notre signature Th17 avec des 

outils pronostique classique comme le NPI, nous pouvons obtenir une meilleure 

stratification de la survie des patients TN et suggère la manipulation de ce sous type 

cellulaire Th17 dans des essaies d’immunothérapie spécifiquement dans le sous-

groupe TN des cancers du sein. 
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DISCUSSION ET PERSPECTIVES 

Grace à l’utilisation de modèles statistiques multivariés et l’étude systématique des 

profils de cytokines des lymphocytes T CD4, nous avons pu mettre en lumière deux 

conclusions importantes concernant les lymphocytes T CD4 de type 17 (Th17).  

Dans le premier projet, nous avons pu démontrer une induction spécifique des 

cytokines spécifiques du sous type Th17 au sein des cancers du sein de type triple 

négatifs. De plus en utilisant des données publiques de transcriptome de cancer du 

sein d’une cohorte rétrospective, nous avons pu démontrer qu’une signature Th17 

générale, incluant différents régulateurs positifs de cette voie de signalisation Th17, 

était associée à une meilleure survie des patients.  

De plus en combinant l’information de cette signature Th17 au score clinique 

pronostique de Nottingham, nous avons pu isoler de nouveaux sous-groupes de 

patients au pronostique très différents et inconnu à ce jour. Notre signature Th17 

était également meilleure que des signatures immunitaires générales pour prédire la 

survie dans cette cohorte de patient. Ceci témoigne de l’importance de notre 

stratégie pour l’identification de nouveaux biomarqueurs immunitaires potentiellement 

important pour le pronostique clinique.  

D’une façon générale, cette étude ouvre la voie à une manipulation de la réponse 

immunitaire Th17 dans les sous types de cancer du sein triple négatifs comme 

nouvelle immunothérapie. Ces cellules peuvent exprimées certains marqueurs 

spécifiques comme CD5 ou CD6 ou encore ICOS ou CD30 qui sont connus comme 

étant des récepteurs qui lorsqu’ils sont stimulés peuvent induire l’activation 

spécifique des cellules Th17. 

Dans le second projet, nous avons pu décrire une nouvelle fonction de la cytokine 

IL12p70 inconnue à ce jour dans la différentiation des lymphocytes producteurs 

d’IL17. Tout d’abord nous avons pu mettre en évidence que dans certains contextes 

moléculaires complexes, par exemple lorsque les cellules dendritiques issues de 

monocytes sont stimulées par du zymosan (ligand de TLR2), l’IL-12p70 produit par 

les cellules dendritiques va être à l’origine de l’induction d’une réponse classique 

d’IFN-g par les cellules T CD4 après différentiation, mais également d’IL17A et 

d’IL17F. Ce double rôle de l’IL-12p70 dans ce contexte particulier de stimulation 

TLR2 n’avait jusqu’à présent pas été mis en évidence.  

Par ailleurs, nous avons pu, avec l’aide de nos modèles statistiques définir 

précisément les interactions moléculaires responsables du contrôle de la production 

d’IL-17F par l’IL-12p70. Parmi ces interactions, nous avons pu valider 

expérimentalement que l’IL12p70 en présence d’IL-1b ou d’IL-1a était capable 

d’engendrer la production de grande quantité d’IL17F, similaires aux quantités 
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présentes dans le contrôle positif Th17. Ces observations étaient complément 

imprédictibles sans l’utilisation de notre stratégie de modélisation.  

Notre méthodologie et nos résultats fournissent ainsi une importante ressource pour 

la communauté scientifique pour analyser les mécanismes contextes dépendants et 

comprendre les interactions importantes entre signaux. D’un point de vue plus global, 

ce type de stratégie à large échelle couplée à la construction de modèle statistique 

poussé pourrait être très utile pour comprendre et prédire le rôle de combinaison de 

drogues ciblant les molécules « checkpoint » immunitaires.  

Ceci permettrait de prédire et de cibler plus efficacement des paires ou des triplets 

de molécules agissant ensemble et responsable de phénotype pro-tumorale. En 

effet, une stratégie répandue consiste à présent améliorer l’action des anti-

checkpoint en visant plusieurs cibles avec le même médicament, par exemple en 

utilisant des anticorps bi-spécifiques. Il existe aujourd’hui un grand nombre de 

checkpoint immunitaires définis, plus d’une vingtaine, par conséquent cibler toutes 

ces molécules en couple de 2 ou de 3 parait aux vues du nombre de combinaison 

possibles une tache infinie et constitue une ressource financière très importante. Par 

conséquent investir sur les outils statistiques permettant de prédire les cibles de ces 

molécules multi-spécifiques semble être très important pour les entreprises 

pharmaceutiques.  
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Titre : Etude multivariée de la génération de la diversité cytokinique des T CD4 et association 

de cette diversité avec les sous types de cancer du sein  

Mots clés : Différenciation T auxiliaire, Cancer du sein, modélisation multivariée  

Résumé : Aujourd’hui, plusieurs niveaux de 

complexité ont émergé dans l’étude des 

phénotypes T CD4 auxiliaires. 1) le nombre 

important de cytokines différentes pouvant être 

secrétées par les lymphocytes T CD4. 2) la 

multiplicité de signaux pouvant agir durant la 

différenciation des T CD4 pour spécifier leurs 

profils de sécrétion cytokiniques. 3) 

l’association de ces différents profils de 

cytokines à des pathologies complexes. Au 

cours de mon doctorat je me suis concentré sur 

ces trois niveaux de complexité en étudiant la 

génération de la diversité cytokinique T CD4 et 

ses associations aux différents sous types de 

cancer du sein en utilisant des analyses 

multivariées et des modèles statistiques. Tout 

d’abord, j’ai pu construire le premier modèle 

multivarié de la différentiation T CD4 reliant 

36 signaux venant de cellules dendritiques à 17 

cytokines T CD4. 

 

Utilisant ce modèle pour dériver des 

prédictions, j’ai pu trouver un nouveau rôle à 

l’IL-12p70 en tant qu’inducteur de 

différenciation Th17, mais également comme 

inducteur spécifique d’IL-17F mais pas d’IL-

17A lorsqu’il est combiné à l’IL-1. Ensuite, j’ai 

étudié l’association de ces cytokines T CD4 

avec les différents sous types de cancer du sein 

connus. J’ai pu trouver que les cytokines Th17 

étaient préférentiellement associées avec les 

cancers du sein dits triple négatifs (TNBC). J’ai 

pu mettre en évidence qu’une forte signature 

Th17 était associée à une meilleure survie. De 

plus, en combinant cette signature Th17 à des 

scores utilisés pour définir le pronostic 

clinique, tel que l’index pronostic de 

Nottingham, j’ai pu proposer une nouvelle et 

meilleure stratification de la survie de ces 

patients. 

 

 

Title : Multivariate study of human CD4 T cell cytokine diversity: generation and association 

with breast cancer subtypes 

Keywords : T helper differentiation, breast cancer, multivariate modeling 

Abstract: Today several levels of complexity 

have emerged in the field of T helper 

cytokines: 1) the important number of distinct 

cytokines that Th cell can secrete in various 

combinations; 2) The multiplicity of signals 

that can act during Th differentiation to define 

the Th cytokine secretion profiles 3) The 

associations of these T helper secretion profiles 

with complex diseases. During my PhD I 

focused on these three levels of complexity and 

studied the generation of T helper cytokine 

diversity and its association to breast cancer 

subtypes using multivariate analysis and 

statistical modeling. First, I was able to build 

the first statistical model linking 36 dendritic 

cell derived signals to 17 T helper cytokines. 

Using this model to derive in silico predictions, 

I was able to find a new role for IL-12p70 as a 

promoter of Th17 differentiation and as a main 

differential inducer of IL-17F independently of 

IL-17A in presence of IL-1. Then, studying the 

associations of the Th cytokine diversity with 

the different subtypes of human breast cancers, 

I found that Th17 cytokines were preferentially 

associated to Triple Negative Breast Cancer 

(TNBC). I found that TNBC patients with a 

high Th17 signature had a better survival. In 

addition, I showed that Th17 can be combined 

to clinical prognosis assessment scores, such as 

the Nottingham Prognosis Index, to better 

stratify TNBC patients in relevant subgroups 

for survival prognosis assessment. 
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