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Résumé Cette thèse est consacrée à la contrôlabilité et à l’observabilité de l’équation
d’évolution non autonome. Dans la première partie, nous donnons un aperçu de la
théorie du contrôle ainsi que quelques résultats classiques sur le contrôle des sys-
tèmes autonomes et non autonomes. En fait, nous rappellerons les techniques de
la théorie des semi-groupes, théorie de l’évolution familiale, théorie de la dualité
et de l’opérateur. Dans la deuxième partie, nous sommes intéressés à étudier le
problème de contrôle pour les systèmes EDP définis sur des domaines dépendant
du temps. Nous développons de nouvelles techniques pour obtenir les résultats sur
l’observabilité exacte des équations de l’onde et de Schrödinger 1D, puis par dualité
nous établissons la contrôlabilité exacte du système adjoint. Le dernier résultat est
une généralisation des tests de Hautus pour l’observabilité du système d’évolution
non autonome. Notre méthode peut s’appliquer aux équations de Schrödinger et à
l’équation d’onde avec des potentiels dépendant du temps.

Title

Abstract This thesis is devoted to the controllability and observability of non-
autonomous evolution equation. In the first part, we give an overview on control
theory as well as some classical results on control of both autonomous and non-
autonomous systems. In fact, we will recall the technique in semigroup theory,
evolution familys theory, duality theory and operator theory. In the second part, we
are interested to investigate the control problem for PDEs systems defined on time-
dependent domains. We develope some new techniques to obtain the results on exact
observability for one dimensional wave and Schrödinger equations, then by duality
we establish exact controllability of adjoint system. The last result is a generalization
of Hautus tests for observability of non- autonomous evolution system. Our method
can be applied for Schrödinger equations with time dependent potentials and to a
damped wave-equation with time-dependent damping.

Keywords Observability, controllability, non-autonomous evolution equation, Hau-
tus test, moving domain problem

Mots-clés Observabilité, contrôlabilité, équation d’évolution non autonome, test
de hautus, problème de domaine burgere
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Résumé

Cette thèse est consacrée à l’étude de la contrôlabilité et de l’observabilité du
système d’évolution non autonome suivant:

x′(t) = A(t)x(t) +B(t)u(t)
x(0) = x0

y(t) = C(t)x(t)
(0.0.1)

Plus précisément, nous considérons les systèmes abstraits avec les opérateurs A,B et
C en fonction du temps t. Des exemples intéressants d’opérateurs A(t) qui changent
avec le temps incluent, entre autres, des opérateurs de diffusion avec des coefficients
de conductivité dépendant du temps, ou des opérateurs sur des domaines variants
dans le temps ou l’équation de chaleur avec des conditions aux limites dynamiques.
Dans le cas dépendant du temps, de nouvelles difficultés apparaissent et la théorie du
contrôle en dimension infini est moins développée que dans le cas autonome. Nous
considérons la famille des opérateurs dépendant du temps {A(t)} génère la famille
d’évolution {U(t, s)}s≤t. Les familles d’évolution apparaissent comme une solution
aux équations d’évolution non autonomes, bien que toutes les familles d’évolution ne
résolvent pas un tel problème. Il a été noté que les systèmes d’équation aux dérivées
partielles (EDP) définis sur des domaines spatiaux dépendant du temps sont in-
trinsèquement non autonomes, même si les EDP ne contiennent pas de coeffcients
dépendant du temps. Quelques travaux récents ont été consacrés à l’étude des EDP
paraboliques sur des domaines spatiaux dépendant du temps [22, 5, 8]. Dans ces
études, diverses approches ont été utilisées pour établir les propriétés d’existence et
de régularité des solutions, y compris l’utilisation des transformations qui cartogra-
phient le système sur un nouveau domaine spatial fixe, tandis que d’autres décrivent
l’évolution temporelle du domaine spatial par difféomorphismes différentiables. Pour
les systèmes non autonomes sous forme variationnelle, il existe une approche bien
connue due à Lions [79]. Pour le système non autonome de type hyperbolique, il y a
des résultats par T.Kato, Pazy et autres.

Nous décrivons maintenant nos principales contributions. Ceux-ci sont donnés
aux chapitres 3, 4 et 5. Le premier chapitre de la thèse rappelle quelques techniques
de base et les théories classiques. En fait, nous présentons les approches générales du
système d’évolution autonome et non autonome par les semi-groups et les familles
d’évolutions. Nous passons également en revue les résultats sur l’existence et l’unicité
pour le système (0.0.1).
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Dans le chapitre 2, nous étudierons l’admissibilité, la contrôlabilité et l’observabilité
des systèmes de la forme (0.0.1) en dimension fini et inifini. Nous nous concentrons
principalement sur la dualité entre contrôlabilité et observabilité et la dualité sur
l’admissibilité entre opérateur de contrôle et opérateur d’observation. Le reste de la
thèse est divisé en trois chapitres qui présentent nos contributions. Nous considérons
deux types de problèmes: les domaines dépendant du temps et l’observabilité pour
les systèmes d’évolution non autonomes.

Le chapitre 3 est consacré à l’étude de l’équation des ondes en 1D sur un certain
domaine s(t) dépendant du temps. Nous discutons l’admissibilité et l’observabilité
exactes à l’intérieur et sur le bord avec les courbes s(t) suffisamment régulières.
Nous discutons également des observateurs mobiles dans le domaine non cylindrique
et des résultats d’observabilité simultanés. En fait, nous développons de nouvelles
techniques pour trouver la solution de série générale exacte de l’équation d’onde et
ensuite établir la limite et l’observabilité exacte interne. Le temps d’observabilité
minimum τ , en fonction de la courbe s(t), il est prouvé qu’il est assez grand est
due à la vitesse de propagation finie des solutions à l’équation des ondes. Fait in-
téressant, nous prouvons que l’inégalité d’observabilité tenir pour un sous-ensemble
arbitraire ω ⊂ (0, 1), même à chaque point interne où cette affirmation n’est pas
vraie pour l’équation d’onde autonome. Par dualité, nous pouvons obtenir le résul-
tat de la contrôlabilité en zéro pour le système dual dans le sens de "transposition".
Dans le cas autonome (borné), il existe plusieurs façons de prouver l’observabilité de
l’équation des ondes, comme la méthode du multiplicateur, l’analyse micro-locale ou
l’estimation de Carleman. Pour l’équation d’onde classique, il existe une bonne façon
de prouver l’inégalité d’observabilité des ondes en dimension un en utilisant les series
de Fourier des solutions et l’inégalité d’Ingham. Dans des dimensions supérieures,
C. Bardos, G. Lebean et J. Rauch [7] ont prouvé en utilisant l’analyse micro-locale
que dans la classe des domaines lisses Ω ⊂ Rn et pour chaque sous-ensemble ω ⊂ Ω,
l’inégalité d’observabilité est vérifiée si et seulement si (ω, τ) satisfait certaines con-
ditions de contrôle géométrique (CCG) dans Ω: chaque rayon d’optique géométrique
qui se propage en Ω et se reflète sur sa limite Γ entre ω dans le temps moins que
τ . Cette approche ne semble pas s’appliquer à l’équation d’onde sur le domaine mo-
bile. Il est bien connu que les équations des ondes servent à modéliser de nombreux
phénomènes physiques tels que la petite vibration des corps élastiques et la propa-
gation du son. De plus, l’équation d’onde est aussi un prototype pour la classe des
équations hyperboliques possédant des propriétés majeures comme l’absence d’effets
de régularisation, la vitesse de propagation finie qui a des conséquences très impor-
tantes dans la théorie du contrôle. Ce chapitre présente le résultat de [42] qui est
soumis pour publication.

Le chapitre 4 étudie l’équation de Schrödinger en dimension un dans des do-
maines non-fixe avec une condition aux limites de Dirichlet. En mécanique quan-
tique, cette équation décrit les changements dans le temps d’un système physique
dans lequel les effets quantiques sont significatifs. Comme au chapitre 3, nous dis-
cutons l’admissibilité et l’observabilité exacte de l’équation de Schrödinger sur un
certain domaine `(t) dépendant du temps. En transformant en domaine borné, nous
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Résumé

traitons le système avec des coefficients variant dans le temps et donnons l’existence
et l’unicité des solutions de Schrödinger dues à la stabilité de Kato. Dans le cas d’un
déplacement linéaire où `(t) = 1 + εt (ε > 0), Lp -admissibilité et l’observabilité des
observations ponctuelles sont établi. Dans le cas général où `(t) est une fonction C2

strictement positive avec `′

` ∈ L∞, la méthode pour trouver une solution analytique
exacte ne fonctionne pas bien comme dans le cas linéaire mobile. Sur la base de l’idée
de [84], nous développons une nouvelle version de la méthode du multiplicateur avec
un multiplicateur dépendant du temps pour gérer l’observabilité correspondante du
problème de transformation, puis nous revenons à l’observabilité de l’équation de
Schrödinger. L’opérateur C(t) est considéré comme une observation de Neumann
dans toutes les parties de la frontière. Par la théorie de la dualité, nous établissons
la contrôlabilité du système adjoint. Dans le cas autonome (borné), l’observabilité
exacte et sa propriété dual, la contrôlabilité exacte, des systèmes régis par les équa-
tions de Schrödinger ont été largement étudiées [11, 76, 84]. Un des résultats les plus
importants est probablement celui dû à G. Lebeau [76] qui garantit que la condition
de contrôle géométrique (CCG) pour la contrôlabilité exacte de l’équation des on-
des est suffisante pour la contrôlabilité exacte de l’équation de Schrödinger à tout
moment τ . Ce résultat nous implique que l’équation de Schrödinger peut, dans une
certaine mesure, être considérée comme une équation d’onde à vitesse de propaga-
tion infinie. En effet, le fait que la CCG soit satisfait pour un temps fini τ∗ suffit
pour que la contrôlabilité exacte de l’équation de Schrödinger soit valide pour tout
τ > 0. Du point de vue de la contrôlabilité, l’équation de Schrödinger est légèrement
meilleure qu’une équation des ondes puisqu’elle a une vitesse de propagation infinie.
Ce chapitre présente le résultat [56] qui est soumis pour publication.

Le chapitre 5 est consacré à l’étude du test d’observabilité des systèmes d’évolution
non autonomes. Pour l’équation d’évolution autonome, ce test est bien connu en tant
que condition de rang de Kalman pour la dimension finie et le test de Hautus pour la
dimension inifini. Pour la condition suffisante, Russell et Weiss [111] ont conjecturé
la généralisation suivante du test de Hautus à la situation de dimension infini: il
existe un δ > 0 tel que:

‖(λI −A)x‖2 + |Re(λ)|2‖Cx‖2 ≥ δ|Re(λ)|2‖x‖2 (0.0.2)

pour tout λ ∈ C avec une partie réelle négative et pour tout x ∈ D(A). Sous
l’hypothèse que le semigroupe T(.) est exponentiellement stable, ils ont montré que
(0.0.2) est nécessaire pour l’observabilité exacte à l’infini (t = ∞) des systèmes
d’évolution autonomes et qu’il est suffisant pour l’observabilité approximative à
l’infini (t =∞). La conjecture de Russell et Weiss n’est pas vraie en général. Jacob
et Zwart [51] ont construit un contre-exemple avec un semigroupe analytique. Un
autre contre-exemple de Jacob et Zwart [52] montre que (0.0.2) n’implique même pas
une observabilité approximative, si nous affaiblissons l’hypothèse de stabilité expo-
nentielle à une forte stabilité. Au système non-autonome (0.0.1) pour la dimension
finie où l’opérateur A(t) est une matrice dépendant du temps, nous rappelons le
résultat bien connu dans [115]. Pour le cas de dimension infinie, nous introduisons
une condition de Hautus moyennée pour les familles d’opérateurs anti-adjoints A(t).
En fait, nous supposons que pour t ∈ [0, τ ], l’opérateur A(t) génère un semi-groupe

3



de contraction fortement continu (e−sA(t))s≥0 et le domaine de A(t) est indépendant
de t. En utilisant une idée de [52], nous étendons ceci à une classe plus générale
d’opérateurs dans une condition de croissance de la famille d’évolution associée. Nos
résultats sont limités aux familles d’évolution inversibles sous certaines contraintes
de croissance. Dans les applications, nous prêtons attention au problème de pertur-
bation où le test de Hautus passe de l’opérateur indépendant du temps à celui qui
dépend du temps. Si le test de Hautus est satisfait par le problème non perturbé,
nous obtenons immédiatement l’observabilité du système perturbé. Dans l’exemple
concret des EDP, nous appliquons le test de Hautus généralisé aux équations des on-
des et de Schrödinger avec des potentiels dépendants du temps. Ce chapitre présente
le résultat [43] qui est soumis pour publication.
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Introduction

Mathematical control theory is an important field that was widely investigated
by scientists, researcheres or engineers. Some of the most important developments
in control theory for PDEs occurred in the periods 1960s-1970s. The purpose of
this theory is to determine the targets, so that one can drive the state of some
dynamical system, by means of a control parameter present in the given equation.
In terms of applications, the theory can be applied to various fields such as fluid
dynamics [80], quantum systems [10], networks of structures [72], wave propagation,
etc. These models are represented by an infinite number of degrees of freedom leaded
to an evolution equation followed by some partial differential equation. Moreover,
the problem on finding active controls in order to properly influence the dynamics of
these systems are highly involved. The controllability problem, among the control
theory for PDEs, is a mathematical description of such situations. As a result, any
dynamical system which is represented by a PDE can be the object of a study from
this point of view. We consider the general system:{

ẋ = F (x, t, u)

y = G(x, t)
(0.0.3)

where x be the description of the state system, ẋ be the derivative with respect to
the time t, y be some output function, and u denotes the control parameter, which
we can choose in a suitable range. For the finite dimensional problem, the state x
of the system can be described by a finite number of degrees of freedom if it belongs
to an Euclidean space or to a manifold. On the contrary, for the infinite dimen-
sional problem considered on Banach or Hilbert spaces, the systems would have an
infinite number of degree of freedom. In the infinite dimensional problem, the equa-
tion (0.0.3) typically has the form of some partial differential equations in which F
acts as a differential operator on the function x. Here, u can take multiple different
roles. For examples, u can be an additional force term in the right-hand side of the
equation, localized in a part of the domain, or it can also appear in the boundary
conditions.

The general problem of controllability is to study whether or not in a given sys-
tem, it is possible to bring any initial state to a given target in an fixed initially
time. In term of mathematical sense, the problem of controllability can be stated in
the following way:
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"Given a time τ > 0, an initial state x0 and a target x1. Is it possible to find
a control function u (depending on the time), such that the solution of the system,
starting from x0 provided with this function u reaches the state x1 at time τ ?"

The means used to act on a system to direct it to a target are called controls.
Moreover, the observability is to determine the initial data if we know the knowledge
of the output function y. Controllability and observability are basic concepts in sys-
tem theory and control theory. They are important structural properties which have
close relationships with the stability of state feedback controllers and state observers.
The controllability and observability theory for finite dimensional linear systems was
introduced by Kalman [57], which is now the basis of the control theory. In prac-
tice, the finite dimensional system is usually, to some extent, only an approximation
of the infinite dimensional system. For infinite dimension, the following abstract
formulation appears frequently:

x′(t) = Ax(t) +Bu(t)
x(0) = x0

y(t) = Cx(t)
(0.0.4)

where A,B and C are unbounded operators in general and A is the generator of
a semigroup etA. The control operator B is called admissible if the solution x(.)
depends continuously on the control function u(.). Many natural questions raise on
the admissibility, controllability and observability for autonomous evolution equa-
tion. Systems of the form (0.0.4) have been largely studied in the literature and
controllability and observability have been characterised in many ways. For exam-
ple, the contribution of J. Lions [79] and D. Russell [110] are primary works on
controllability/observability of PDEs. For nonlinear controllability and observability
problems for PDEs, we refer to Coron [21], Fursikov [36] and Li [81]. It is well-known
that the exact boundary controllability problems are studied by the Hilbert Unique-
ness Method (HUM). This approach, introduced by Lions [80] in 1986, is based on
uniqueness theorems leading to the construction of suitable Hilbert spaces of the
controllable spaces. The control given by HUM method is the best control in the
sense that it is the minimal L2 control. In the infinite dimensional problem, it is
more convenient to use an alternative method which consists in converting the con-
trol problem into a problem of observability for the dual system. There are many
various approaches to obtain observability estimates for evolution equations such as
micro-local analysis, multiplies methods, Fourier methods or Carleman estimates.
Systems governed by partial differential equations (PDEs for short) are typically in-
finite dimensional. It is well-known that the controllability/observability theory of
PDEs depends very strongly on its nature and, in particular, on its time-reversibility
properties, and therefore, the related problems are much more difficult than that for
the finite dimensional setting [77].

Concerning existence and uniqueness for evolution equations, there is a big dif-
ference between autonomous and non–autonomous linear evolution equations. For
autonomous equation, the theory is well understood and it is based on strongly con-
tinuous operator semigroups and their generalizations. By the Hille–Yosida theorem,
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Introduction

one can expand the question of well–posedness to a great extension, so that many
perturbation and approximation results were established. Moreover, the asymptotic
behaviour problem can be studied by using spectral theory and transform methods.
For non–autonomous problems, however, there is a little coherent and general the-
ory. We can rely on several sophisticated existence theorems due to T. Kato [61], J.
Lions [79], and Schnaubelt [113], but these facts cannot be combined into a unified
approach. Accordingly, some other interesting subjects such as perturbation or du-
ality problem can be treated only in some special cases and leaving many questions
open. The asymptotic properties could not work well for non-autonomous system
since spectral and transform theory cannot be applied directly. The available results
are usually restricted to some problems that close to equations with known behaviour
(in particular an autonomous one).

This thesis is devoted to study the controllability and observability of non-
autonomous evolution system. More precisely, we consider abstract systems with op-
erators A,B and C depending on time t. Interesting examples of operators A(t) that
change with time include, among others, diffusion operators with time-dependent
conductivity coefficients, or operators on time-varying domains or the heat equation
with dynamic boundary conditions. In the time-dependent case, new difficulties ap-
pear and infinite dimensional control theory is less developed than in the autonomous
case. We consider the system:

x′(t) = A(t)x(t) +B(t)u(t)
x(0) = x0

y(t) = C(t)x(t)
(0.0.5)

where the family of time dependent operators {A(t)} generates evolution family
{U(t, s)}s≤t. Evolution families arise as solution to non-autonomous evolution equa-
tions, although not every evolution family solves such a problem. It has been noted
that PDE systems defined on time-dependent spatial domains are inherently non-
autonomous even if the PDEs do not contain time-dependent coeffcients. There are
a few number of recent works which have been dedicated to the study of parabolic
PDEs on time-dependent spatial domains [22, 5, 8]. In these studies, a variety of ap-
proaches have been taken to establish existence and regularity properties of solutions
including the utilization of transformations which map the system onto a new fixed
spatial domain, while others have described the time evolution of the spatial do-
main via continuously differentiable diffeomorphisms. For non-autonomous systems
in variational form, there is the well-known approach due to Lions [79]. For non-
autonomous system of hyperbolic type, there are results by T.Kato, Pazy and others.

Now we describe our main contributions. These are given in Chapter 3,4 and 5.
The first chapter of the thesis recalls some basic techniques and classical theories. In
fact, we present the general approaches to autonomous and non-autonomous evolu-
tion system by semigroup and evolution families. We also review the results on the
existence and uniqueness for both system (0.0.4) and (0.0.5).

In Chapter 2, we will investigate admissibility, controllability and observability
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of systems of the form (0.0.5) on finite and inifinite dimensional system. We focus
mainly on the duality between controllability and observability and the duality on
admissibility between control operator and observation operator.

The rest of the thesis is divided into three chapters that present our contributions.
We consider two types of problems: time-dependent domains and observability for
non-autonomous evolution systems. The idea is whether controllability/observability
of non-autonomous system: 

x′(t) = A(t)x(t)
x(0) = x0

y(t) = C(t)x(t)
(0.0.6)

is related to controllability/observability of autonomous system:
x′(t) = A(s)x(t)
x(0) = x0

y(t) = C(t)x(t)
(0.0.7)

for each (or some) fixed s ≥ 0. We shall see that the answer is no in general.

Chapter 3 is devoted to study one-dimensional wave equation in non-cyclindral
domains. We discuss admissibility and exact observability estimates of boundary
observation and interior point observation of a one-dimensional wave equation on a
time dependent domain for sufficiently regular boundary functions. We also discuss
moving observers inside the noncylindrical domain and simultaneous observability
results. The system is given as:

utt − uxx = 0 (x, t) ∈ Ω
u(0, t) = u(s(t), t) = 0 t ≥ 0
u(x, 0) = g(x) x ∈ [0, 1]
ut(x, 0) = f(x) x ∈ [0, 1]

(0.0.8)

where Ω = [0, s(t)] × [0, τ ] and s : R+ → (0,∞) with s(0) = 1 satisfying certain
conditions. Let X = H1

0 (R+)× L2(R+). It is useful to formulate the wave equation
(0.0.8) as an abstract non-autonomous Cauchy problem z′(t) = a(t)z(t) where z =( u
ut

)
and

a(t) =
( 0 I
A(t) 0

)
A(t)u = uxx (0.0.9)

D(A(t)) = H1([0, s(t)]) ∩H1
0 ([0, s(t)]).

The initial condition is x(0) = x0 = (g, f). It is not important here that D(a(t)) =
H1

0 (R+)×D(A(t)) is not dense in X. The observation operator C(t) is taken as:

• C(t)
( u
ut

)
= ux(0, t) or ux(s(t), t) for boundary observation
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• C(t)
( u
ut

)
= ux(a, t) or ut(a, t) for internal point observation where a ∈ (0, 1)

The admissibility and exact observability for the wave equation (0.0.8) in the case of
homogeneous Dirichlet boundary conditions with Neumann boundary and internal
observation is equivalent to:

m(s, τ)‖(g, f)‖H1
0×L2

≤
∥∥∥C(t)

( u
ut

)∥∥∥
L2(0,τ)

≤M(s, τ)‖(g, f)‖H1
0×L2

(0.0.10)

where the constants m and M depend on the curve s and τ . In fact, we develope
new techniques to find the exact general series solution of (0.0.8) and then establish
the boundary and internal exact observability. The minimum observability time τ ,
depending on the curve s(t), is proved to be large enough since it is due to the finite
propagation speed of solutions to the wave equation. Interestingly, we prove that the
observability inequality hold for arbitrary subset ω ⊂ (0, 1), even at every internal
point where this statement is not true for autonomous wave equation. By duality, we
can get the null-controllability result for the dual system in the sense of ’transposi-
tion’. In the autonomous (bounded) case, there are many ways to prove observability
for the wave equation such as the multiplier method, the micro-local analysis, or the
Carleman estimate. For the classical wave equation, there is a nice way of proving
observability inequality in one dimension using Fourier expansion of solutions and
Ingham’s inequality. In higher dimensions, C. Bardos, G. Lebean and J. Rauch [7]
has proved using micro-local analysis that in the class of smooth domains Ω ⊂ Rn
and for every subset ω ⊂ Ω, the observability inequality holds if and only if (ω, τ)
satisfies certain geometric control condition (GCC) in Ω: every ray of geometric op-
tics that propagates in Ω and is reflected on its boundary Γ enters ω in time less than
τ . This approach does not seem to apply to the wave equation on moving domain.
It is well known that wave equations used to model many physical phenomena such
as small vibration of elastic bodies and propagation of sound. Moreover, the wave
equation is also a prototype for the class of hyperbolic equations possessing major
properties as the lack of regularizing effects, finite speed of propagation which have
very important consequences in control theory. This chapter present the result of
[42] which is submitted for publication.

Chapter 4 studies the one-dimension Schrödinger equation in non-cyclindral do-
mains with Dirichlet boundary condition. In quantum mechanics, this equation
describes the changes over time of a physical system in which quantum effects are
significant. As in Chapter 3, we discuss the admissiblity and exact observability of
Schrödinger equation on certain time dependent domain. The system is given as: i∂u∂t + ∂2u

∂x2
= 0 x ∈ [0, `(t)]

u(0, t) = u(`(t), t) = 0 τ ≥ t ≥ 0
u(x, 0) = u0 x ∈ [0, 1]

(0.0.11)

where `(0) = 1 and the boundary curve `(t) satisfies some certain conditions. Let
X = L2(0,R+), we reformulate the Schrödinger equation (0.0.11) as an abstract non-
autonomous Cauchy problem u′(t) = A(t)u(t) where A(t)u = iuxx with D(A(t)) =
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H1([0, `(t)]) is not dense in X. By transforming to the bounded domain, we treat
the system with time-variant coefficients and give the existence and uniqueness for
solutions of (0.0.11) due to the Kato’s stability. In linear moving case where `(t) =
1 + εt (ε > 0), we take the observed operator C(t) as:

• C(t)u = ux(0, t) or ux(`(t), t) (Neumann boundary observation).

• C(t)u = u(a, t) for internal point observation where a ∈ (0, 1).

Using the same idea for the wave equation, we find exact series solution of (0.0.11).
Then we prove that admissibility and exact L2 boundary and pointwise internal
observability hold for arbitrary time τ . That is:

k1(τ)‖u0‖H1
0
≤ ‖C(t)u‖L2(0,τ) ≤ K1(τ)‖u0‖H1

0
for boundary observation.

(0.0.12)
k2(τ)‖u0‖L2 ≤ ‖C(t)u‖L2(0,τ) ≤ K2(τ)‖u0‖L2 for internal observation. (0.0.13)

where k1,K1, k2 and K2 be the constants depending on τ and decay exponentially.
More generally, Lp-admissibility and observability of point observations are followed.
In general case where `(t) a strictly positive C2–function with `′

` ∈ L∞, the method
to find exact analytical solution does not work well as in the linear moving case.
Based on the idea on [84] we develop a new version of the multiplier method with
time-dependent multiplier to handle the corresponding observability of transforming
problem, then reverse back to observability of (0.0.11). The operator C(t) is taken
as Neumann observation in all parts of boundary. i.e: C(t)u = (ux(0, t), ux(`(t), t)).
By duality theory, we establish the controllability of adjoint system. In the au-
tonomous (bounded) case, the exact observability and its dual property, the exact
controllability, of systems governed by Schrödinger equations have been extensively
studied [11, 76, 84]. One of the most important result is probably that due to G.
Lebeau [76] which guarantees that the geometric control condition (GCC) for the
exact controllability of the wave equation is sufficient for the exact controllability
of the Schrödinger equation (0.0.11) in any time τ . This result implies us that the
Schrödinger equation, to some extent, can be viewed as a wave equation with infinite
speed of propagation. Indeed, the fact that the GCC is satisfied for some finite time
τ∗ suffices for the exact controllability of the Schrödinger equation (0.0.11) to hold
for all τ > 0. From the point of view of controllability, the Schrödinger equation
is slightly better than a wave equation since it has infinite velocity of propagation.
This chapter presents the result [56] which is submitted for publication.

Chapter 5 is devoted to study the observability test for non-autonomous evolution
systems. For autonomous evolution equation, this test is well-known as Kalman rank
condition for the finite dimension and the Hautus test for the inifinite dimension.
That is:

‖Cx‖2 + ‖(λI −A)x‖2 ≥ κ‖x‖2. (0.0.14)

for all λ ∈ C. For the sufficient condition, Russell and Weiss [111] conjectured
the following generalization of the Hautus test to the infinite-dimensional situation:
there exists a δ > 0 such that:

‖(λI −A)x‖2 + |Re(λ)|2‖Cx‖2 ≥ δ|Re(λ)|2‖x‖2 (0.0.15)
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for all λ ∈ C with negative real part and for all x ∈ D(A). Under the assumption
that the semigroup T(.) is exponentially stable, they showed that (0.0.15) is neces-
sary for the exact infinite-time observability of (0.0.4) and that it is sufficient for
the approximate infinite-time observability of (0.0.4). The conjecture of Russell and
Weiss is not true in general. Jacob and Zwart [51] constructed a counter-example
with an analytic semigroup. Another counter-examle in Jacob and Zwart [52] shows
that (0.0.15) does not even imply approximate observability, if we weaken the ex-
ponential stability assumption to strong stability. To the non-autonomous system
(0.0.5) for finite dimension where the operator A(t) be time-dependent matrices, we
recall the well-known result in [115]. For infinite dimension case, we introduce an
averaged Hautus condition for families of skew-adjoint operators A(t). In fact, we
assume that for t ∈ [0, τ ], the operator A(t) generates a strongly continuous contrac-
tion semigroup (e−sA(t))s≥0 and the domain of A(t) is independent of t. The test is
given as:

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)eλsx
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0
eReλ.s

∥∥(λ+A(s))x
∥∥ds

)2

for all λ ∈ C and all x ∈ D(A(t)). Using an idea from [52], we extend this to
more general class of operators under a growth condition on the associated evolution
family. Our results are restricted to invertible evolution families under certain growth
constraints. In applications, we pay attention to the perturbation problem where the
Hautus test carries over from the time independent operator to time dependent ones.
If the Hautus test is satisfied by the unperturbed problem we immediately obtain
observability of the perturbed system. In concrete PDEs example, we apply the
generalized Hautus test to Schrödinger equations with time dependent potentials:

z′(t, x) = i∆z(t, x) + iV (t)z(t, x) (t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H2(Ω) ∩H1

0 (Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

(0.0.16)

and to a damped wave-equation with time dependent damped term:
z′′(t, x) = ∆z(t, x) + b(t, x)z′(t, x) + V (t, x)z(t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H1

0 (Ω), z′(0, .) = z1 ∈ L2(Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

(0.0.17)

Here Ω be a bounded smooth domain of Rn and Γ be the boundary of Ω. This
chapter present the result of [43] which is submitted for publication.
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Chapter 1

Definitions and tools

1.1 Preliminaries

Let us represent by Ω a bounded open set of Rn with boundary Γ. By Q we
represent the cylinder Ω× [0, τ ], τ > 0 be real number. For 1 ≤ p < +∞, we denote
by Lp(Ω) the classical Lebesgue space. This is a Banach space with the norm:

‖v‖Lp(Ω) =
(∫

Ω
|v(x)|p dx

)1/p
.

When p =∞, L∞(Ω) means the space of all essentially bounded real functions in Ω,
with the norm:

‖v‖∞ = ess sup
x∈Ω
|v(x)|.

L∞(Ω) is also a Banach space. When p = 2 we have a Hilbert space L2(Ω) with the
inner product:

〈u, v〉 =

∫
Ω
u(x)v(x) dx

and induced norm
‖v‖22 =

∫
Ω
|v(x)|2 dx.

By C∞0 or D(Ω), we represent the space of real functions defined in Ω, infinitely
differentiable and with compact support in Ω. By Wm,p(Ω) we denote the Sobolev
spaces of order m, that is, the space of all real functions v ∈ Lp(Ω) such that the
distribution Dαv ∈ Lp(Ω) for all |α| ≤ m. On Wm,p(Ω) we define the norm:

‖v‖pm,p =
∑
|α|≤m

∫
Ω
|Dαv(x)|p dx.

It is known that Wm,p(Ω) with this norm is a Banach space. By Wm,p
0 (Ω) we

represent the closure of D(Ω) in Wm,p(Ω). When p = 2, the space Wm,2(Ω) is
represented by Hm(Ω), which is a Hilbert space with the inner product:

〈u, v〉 =
∑
|α|≤m

∫
Ω
Dαu(x).Dαv(x) dx.
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and norm:
‖v‖2m,2 =

∑
|α|≤m

∫
Ω
|Dαv(x)|2 dx.

In particular, we use, frequently, the spaces H1(Ω) and H1
0 (Ω). We have:

H1(Ω) = {v ∈ L2(Ω);
∂v

∂xi
∈ L2(Ω) i = 1, 2, .., n}

with the inner product

〈u, v〉 =

∫
Ω
u(x).v(x) dx+

∫
Ω
∇u(x).∇v(x) dx

and norm:
‖v‖2 =

∫
Ω
|v(x)|2 dx+

∫
Ω
|∇v(x)|2 dx.

Here ∇ denotes the gradient operator. When Ω is bounded or has finite measure,
we obtain an equivalent norm in H1

0 (Ω) given by

‖v‖2H1
0

=

∫
Ω
|∇v(x)|2 dx.

Let us consider the Dirichlet Laplacian operator ∆ defined by the triplet {H1
0 (Ω), L2(Ω); 〈., .〉}.

Its domain is, for smooth Γ:

D(∆) = H1
0 (Ω) ∩H2(Ω).

If Ω is bounded with C2 boundary, then by Poincare inequality the norm of H1
0 (Ω)∩

H2(Ω) is equivalent to ‖v‖2∆ =
∫

Ω |∆v|
2 dx.

Given a Banach space X and a real number τ > 0, we denote by Lp(0, τ ;X), for
1 ≤ p < ∞, the space of vector functions v :]0, τ [→ X, measurable and such that
‖v(t)‖pX is integrable in ]0, τ [. On Lp(0, τ ;X) we define the norm:

‖v‖Lp(0,τ ;X) =
(∫ τ

0
‖v‖pX dt

)1/p
.

For p = +∞, the norm is:

‖v‖L∞(0,τ ;X) = ess sup
0≤t≤τ

‖v(t)‖X .

Note that Lp(0, τ ;X), 1 ≤ p ≤ ∞ are Banach spaces.

1.2 Autonomous evolution equations

1.2.1 Semigroup theory

Let us take a quick view on the strongly continuous semigroups theory that play
a very important role in many areas of modern mathematical analysis. For detail
and sophisticated arguments, we refer to [29].
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Strongly continuous semigroup

Denote H be the Hilbert space.

Definition 1.2.1. The operator value function T(t) : R+ → L (H) is called a
strongly continuous semigroup (or C0-semigroup ) if it satisfies:

i) T(t+ s) = T(t)T(s) for t, s ≥ 0
ii) T(0) = I
iii) ‖T(t)x− x‖ → 0 as t→ 0 for all x ∈ H .

Example 1.2.2. Let A ∈ L (H) and let

etA =

+∞∑
k=0

(tA)k

k!

then etA defines a C0-semigroup on H.

Example 1.2.3. Let {φn} be an orthonormal basis in seperable Hilbert space H, and
{µn}n≥1 be the sequence of real number. For x ∈ H, we define:

T(t)x =
+∞∑
k=1

eµkt〈z, φk〉φk (1.2.1)

Then T(t) defines a C0-semigroup on H if supk≥1µk < +∞.

Theorem 1.2.4. Every C0-semigroup T(t) has the follwing properties:
i) T(t) is bounded on every finite sub-interval of [0,+∞)
ii) T(t) is strongly continuous for all t ∈ [0,+∞)
iii) 1

t

∫ t
0 T(s)x ds→ x as t→ 0.

iv) If ω0 = inft>0
log‖T(t)‖

t then ω0 = limt→+∞
log‖T(t)‖

t < +∞.
v) For all ω > ω0, there exist the constant νω such that: ‖T(t)‖ ≤ νωeωt.

The constant ω0 is call the growth bound of the semigroup.

Definition 1.2.5. Let A be the operator defined by:

D(A) = {x ∈ H
∣∣∣ lim
t→0+

T(t)x− x
t

exists in H}

Ax = lim
t→0+

T(t)x− x
t

∀x ∈ D(A)

then A is called the infinitesimal generator of C0-semigroup on H.

Theorem 1.2.6. Considering the strongly continuous semigroup T(t) on the Hilbert
space H with infinitesimal generator A. Then we have:

i) T(t)x ∈ D(A) for all x ∈ D(A), t ≥ 0
ii) dn

dt (T(t)x) = AnT(t)x = T(t)Anx for all x ∈ D(An), t ≥ 0 and n ≥ 1

iii)
⋂+∞
n=1 D(An) is dense in H.
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We now introduce some basis spectral properties for generators of strongly con-
tinuous semigroups. We denote σ(A) = {λ ∈ C : λ − A is not invertible} be the
spectrum, ρ(A) = C/σ(A), and R(λ,A) = (λI − A)−1 be the resolvent operator of
A.

Theorem 1.2.7. (Hille-Yosida’s theorem)
A closed and densely defined operator A on the Hilbert space H is the infinitesimal
generator of a C0-semigroup T(t) if and only if there exist real numbers M and ω
such that for all real number γ > ω, γ ∈ ρ(A) and

‖R(γ,A)n‖ ≤ M

(γ − ω)n
∀n ≥ 1. (1.2.2)

Moreover, we have the boundedness for the semigroup ‖T(t)‖ ≤Meωt

Contraction semigroup

Definition 1.2.8. A C0-semigroup T(t) is called a contraction semigroup if ‖T(t)‖L (H) ≤
1 for all t ≥ 0.

The following result derived by Hille-Yosida:

Theorem 1.2.9. For a closed, densely defined operator A with domain D(A) in the
Hilbert space H, the operator A−ωI is the infinitesimal generator of the contraction
semigroup T(t) on H if and only if

‖(γ −A)x‖ ≥ (γ − ω)‖x‖ ∀x ∈ D(A)

‖(γ −A∗)x‖ ≥ (γ − ω)‖x‖ ∀x ∈ D(A∗)

holds for all γ > ω where A∗ is the adjont operator of A.

Corollary 1.2.10. If a closed and densely defined operator A satisfies:

Re(〈Ax, x〉) ≤ ω‖x‖2 ∀x ∈ D(A)

Re(〈A∗x, x〉) ≤ ω‖x‖2 ∀x ∈ D(A∗)

then A is the infinitesimal generator of a C0-semigroup satisfying ‖T(t)‖ ≤ eωt.

Theorem 1.2.11. If A is the infinitesimal generator of a C0-semigroup T(t) on the
Hilbert space H, then A∗ is the infinitesimal generator of the C0-semigroup T(t)∗ on
H.

Definition 1.2.12. A linear operator A is called dissipative if for all λ > 0 and all
x ∈ D(A)

‖(λI −A)x‖ ≥ λ‖x‖.

Moreover, A is called maximally dissipative if it is dissipative and for all λ > 0, the
operator λI − A is surjective, meaning that the range when applied to the domain
D(A) is the whole of the space H.
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Theorem 1.2.13. (Lumer–Phillips theorem)[29, Chapter 2]
Let A be a linear operator and densely defined. Then the following assertions hold:

i) If A is dissipative and λ0I −A is surjective for some λ0 > 0, then A generates
a contraction semigroup.

ii) If A generates a contraction semigroup, then A is dissipative, C+ ⊂ ρ(A) and
‖R(λ,A)‖ ≤ 1

Reλ for all λ ∈ C+.

Diagonalizable operators

We introduce diagonalizable operators, which can be described entirely in terms
of their eigenvalues and eigenvectors. If a semigroup generator is diagonalizable then
so is the semigroup. Many examples of semigroups discussed in the PDEs literature
are diagonalizable.

Definition 1.2.14. A is called diagonalizable if ρ(A) 6= 0 and there exists a Riesz
basis {φk} in H consisting of eigenvectors of A.

Proposition 1.2.15. [123]
Let {φk} be a Riesz basis in H and let {φ̃k} be the biorthogonal sequence to {φk}. Let
λk be a sequence in C which is not dense in C. Define an operator Ã : D(Ã) → H
by:

D(Ã) =
{
x ∈ H s.t:

∑
k

(1 + |λk|2)|〈x, φ̃k〉|2 < +∞
}

Ãx =
∑
k

λk〈x, φ̃k〉φk, ∀x ∈ D(Ã).

Then Ã is diagonalizable, and for every s ∈ ρ(Ã) we have:

(sI − Ã)−1z =
∑
k∈N

1

s− λk
〈z, φ̃k〉φk ∀z ∈ H.

Proposition 1.2.16. [123]
Let A : D(A)→ H be a diagonalizable operator and {φk}, the set of eigenvectors of
A which form a Riesz base of H. Let {φ̃k} be the biorthogonal sequence to {φk} and
denote the eigenvalue corresponding to the eigenvector φk by λk. Then

D(A) =
{
x ∈ H s.t:

∑
k

(1 + |λk|2)|〈x, φ̃k〉|2 < +∞
}

Ax =
∑
k

λk〈x, φ̃k〉φk, ∀x ∈ D(A).

Proposition 1.2.17. [123]
A is the generator of a strongly continuous semigroup T(t) on H if and only if:

sup
k∈N

Reλk < +∞

If this is the case, then for every t ≥ 0:

T(t)x =
∑
k∈N

eλkt〈x, φ̃k〉φk ∀x ∈ H.

Here, {λk} and {φk} are defined as in Proposition 1.2.16.
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1.3. Non-autonomous evolution equation

1.2.2 Existence and uniqueness

We consider the abstract non-honogeneous Cauchy problem:{
x′(t) = Ax(t) + f(t)
x(0) = x0

(1.2.3)

where x0 ∈ H, f : [0, τ ]→ H is integrable and f ∈ C(0, τ ;H).

Definition 1.2.18. x(t) is called the classical solution of (1.2.3) on [0, τ ] if for all
t ∈ [0, τ ], x(t) ∈ D(A)

⋂
C1(0, τ ;H) and x(t) satisfies (1.2.3).

Lemma 1.2.19. If the operator A : D(A) → H is maximal dissipative and f ∈
C(0, τ ;H), then for all x0 ∈ H, the function x : [0, τ ]→ H defined by:

x(t) = T(t)x0 +

∫ t

0
T(t− s)f(s) ds t ∈ [0, τ ] (1.2.4)

is continuous from [0, τ ] to H. Here, T(t) is the semigroup generated by A.

Definition 1.2.20. If f ∈ L1(0, τ ;H), x(t) is a weak solution of (1.2.3) if x ∈
C([0, τ ];H) and given by (1.2.4).

Theorem 1.2.21. For all function f ∈ L1(0, τ ;H) and initial data x0 ∈ D(A), the
system (1.2.3) admits an unique solution x ∈ C([0, τ ]; D(A))

⋂
C1([0, τ ];H).

1.3 Non-autonomous evolution equation

1.3.1 Evolution family theory

Let us denote 3 = {(t, s) ∈ R2
+ : s ≤ t}. We recall that the Banach space

C0 = C0(R, H) = {f : R→ H : f is continuous and lim
|t|→+∞

f(t) = 0}

equipped with the norm ‖f‖ := supt∈R ‖f(t)‖ for f ∈ C0.
Let f be a locally integrable H-valued function on R and consider the following
homogeneous and non-homogeneous systems :{

x′(t) = A(t)x(t)
x(0) = x0

(1.3.1)

and {
x′(t) = A(t)x(t) + f(t)
x(0) = x0

(1.3.2)

on H. As in the autonomous case when the operators A does not depend on t and
generate a semigroup T(t) = e−tA, we are able to derive a representation formula for
the solution (for example, see [103], [73]) :

x(t) = T(t)x0 +

∫ t

0
T(t− s)f(s) ds.

From the point of view of semigroup theory, it is reasonable to develope a suitable
approach to non homogeneous initial boundary value problems based on the theory
of evolution families.
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1. Definitions and tools

Definition 1.3.1. (Evolution family)
A family {U(t, s)(t,s)∈3} of operators is called an evolution family on H if it satisfies
the following conditions :

1. U(t, t)x = x for all t ≥ 0 and x ∈ H;

2. U(t, s) = U(t, r)U(r, s) for all t ≥ r ≥ s ≥ 0

3. U(t, s)x is jointly continuous with respect to t, s for every x ∈ H.

Assume, for a moment, that (1.3.1) is well-posed. It means that there exists an
evolution family of operators {U(t, s)}(t,s)∈3 so that x(t) = U(t, 0)x0 is a solution to
(1.3.1).
If A is the infinitesimal generator of a strongly continuous semigroup on H, then
U(t, s) = e(t−s)A for t ≥ s is a strongly continuous, exponentially bounded evolution
family. Futhurmore, we have:

∂
∂tU(t, s)x = A(t)U(t, s)x ∂

∂sU(t, s)x = U(t, s)A(s)x (1.3.3)

Definition 1.3.2. Suppose that the linear equation (1.3.1) is well-posed. Then x(t)
defined by:

x(t) = U(t, 0)x0 +

∫ t

0
U(t, σ)f(σ) dσ (1.3.4)

is called a mild solution of non autonomous system (1.3.2). Futhurmore, the equation
(1.3.2) is said to generate an evolution family (U(t, s))(t,s)∈3 if for every x ∈ H and
s ∈ R+, the map t 7→ U(t, 0)x is the unique solution of equation (1.3.1).

We denote the growth bound:

ω(U) = inf{ω : there exist M = M(ω) such that : ‖U(t, s)‖L (H) ≤Me(t−s)ω}
(1.3.5)

Definition 1.3.3. The evolution family {U(t, s)}0≤s≤t is called uniformly exponen-
tially stable if the growth bound ω(U) is negative.

Example 1.3.4. We consider:

A0 =

[
−1 −5
0 −1

]
, W (t) =

[
cos t sin t
− sin t cos t

]
, A(t) = W (t)−1A0W (t)

We note that σ(A(t)) = σ(A0) = {−1} for t ∈ R. The time dependent change
of variables given by z(t) = W (t)x(t) transforms the non-autonomous differential
equation ẋ(t) = A(t)x(t) to the autonomous differential equation ż = Bz where

B = A0 + Ẇ (t)W (t)−1 =

[
−1 −4
−1 −1

]
since σ(B) = {−2, 2}, the semigroup generated by B for the differential equation
ż = Bz is unstable. Clearly, this also implies that the evolution family generated by
{A(t)} for the equation ẋ = A(t)x is unstable.
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1.3. Non-autonomous evolution equation

Example 1.3.5. Let us denote H = H1
0 [0, π]× L2[0, π] which is a Hilbert space with

the scalar product〈[f1

g1

]
,

[
f2

g2

]〉
=

∫ π

0

df1

dx
(x)

df2

dx
(x) dx+

∫ π

0
g1(x)g2(x) dx.

Let a : [0, τ ] → R− be a Hölder continous function with parameter 0 < δ < 1.
We consider the following non-autonomous wave equation with Dirichlet boundary
condition: 

∂2z
∂t2

= ∂2z
∂x2

+ a(t)z x ∈ [0, π], t ∈ [0, τ ]
z(0, t) = z(π, t) = 0 τ ≥ t ≥ 0
z(x, 0) = z0 x ∈ [0, π]

(P2)

The above system can be written in the abstract form:

˙[ z
zt

]
=

[
0 I

∆ + a(t) 0

] [
z
zt

]
= A(t)

[
z
zt

]
.

Where the time dependent operator A(t) : D(A(t))→ H is defined by

D(A(t)) = [H2(0, π) ∩H1
0 (0, π)]×H1

0 (0, π)

A(t)

[
f
g

]
=

[
g

d2f
dx2

+ a(t)f

]
for

[
f
g

]
∈ D(A(t)).

It is well known that ϕn(x) =
√

2
π sin(nx) is an orthonormal basis in L2[0, π], Hence,

the family (φn)n∈Z defined by

φn =

 1

i
√

2n2−a(t)
ϕn

√
n2−a(t)√
2n2−a(t)

ϕn

 for n ∈ Z

is an orthornormal basis in H. These φn, which is eigenvectors of A(t), corresponds

to the eigenvalues λn(t) = i
√
n2 − a(t) with n ∈ R. Thus for all

[
f
g

]
∈ D(A(t)), it

holds that

A(t)

[
f
g

]
=

+∞∑
n=1

λn(t)
〈[f
g

]
, φn

〉
φn.

{A(t)} generates an evolution semigroup U(t, s) of the form

U(t, s) = T (t− s) exp
(∫ t

s
a(r) dr

)
where T (t) is a compact analytic semigroup generated by the operator A satisfying

A

[
f
g

]
=

[
g
d2f
dx2

]
for

[
f
g

]
∈ D(A) = D(A(t)).
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1. Definitions and tools

Now for all
[
f
g

]
∈ H, we have

U(t, s)

[
f
g

]
=

+∞∑
n=1

eµn(t)−µn(s)
〈[f
g

]
, φn

〉
φn

where µn(t) ∈ C2([0, τ ]) satisfying d
dtµn(t) = λn(t). That implies

µn(t) = µn(0) +

∫ t

0
i
√
n2 − a(s)ds

It is easy to verify that the family of two parameter {U(t, s)} satisfy all the criterion
of evolution family. Now from the definititon we have

U(t, s)

[
f
g

]
=

+∞∑
n=1

eµn(t)−µn(s)
( i√

2n2 − a(t)

〈 df
dx
,
dϕn
dx

〉
L2[0,π]

+

√
n2 − a(t)√
2n2 − a(t)

〈g, ϕn〉L2[0,π]

)
φn.

Example 1.3.6. Let H = L2(0, π). We consider the one dimensional heat equation
on Ω = (0, π) satisfying Neuman boundary condition with distributed control

∂Ψ
∂t = α(t)∂

2Ψ
∂x2

+Bu(t) x ∈ [0, π]
∂Ψ
∂x (0, t) = ∂Ψ

∂x u(π, t) = 0 t ≥ 0
Ψ(x, 0) = Ψ0(x) x ∈ [0, 1].

(1.3.6)

Here α(t) describes processes in which the conductivity or diffusivity changes
over time. We rewrite (1.3.6) as the non-autonomous form Ψ̇ = A(t)Ψ(t) + Bu(t).
The homogeneous equation Ψ̇ = A(t)Ψ(t) has the solution Ψ(t) = U(t, 0)Ψ0 where
the evolution family {U(t, s)} is generated by A(t) and given by:

U(t, s)x =
+∞∑
k=0

e
∫ t
s λk(r) dr

〈
x, φk

〉
φk

where the eigenvalues λk(t) = −α(t)(kπ)2 and the eigenfunctions φk =
√

2 cos(kπ).
The system (1.3.6) has the solution of following form:

Ψ(x, t) = U(t, 0)Ψ0 +

∫ t

0
U(t, s)Bu(s) ds. (1.3.7)

Existence of evolution families

The representation the initial and boundary value problem (1.3.1) was widely
investigated in many works (e.g see [103], [78], [74]). Also, the existence problem
for solutions has been studied by many authors (e.g see [89], [102], [103] ). We now
survey the existences properties of evolution family for system (1.3.1) in some cases:
The parabolic case We assumes that each A(t) generates analytic C0–semigroup
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1.3. Non-autonomous evolution equation

of the same type and the map t 7→ A(t) is regular. Then there exists an evolution
family U(t, s)(s,t)∈3 on H solving (1.3.1) on D(A(t)) such that:

U(t, s)H ⊂ D(A(t)),
∂

∂t
U(t, s) = A(t)U(t, s) in L (H)

‖A(t)U(t, s)‖ ≤ C

t− s
0 ≤ s < t ≤ τ.

The operators U(t, s)(s,t)∈3 can be constructed as solutions to certain integral equa-
tions:

U(t, s) = e(t−s)A(s) +

∫ t

s
U(t, r)(A(r)−A(s))e(r−s)A(s) dr.

In the particular case where the domain of A(t) is independent of t, we use the as-
sumptions on the family of operators {A(t)} that was proposed by Pazy [103]:
(A1) The domain D(A) of the family {A(t) : 0 ≤ t ≤ τ} is dense in H and does not
depend on t. Moreover, A(t) is a closed linear operator.
(A2) For every t ∈ [0, τ ], the resolvent R(λ,A(t)) = (λ− A(t))−1 of A(t) exists for
all λ such that Re(λ) ≤ 0, and there also exists K > 0 such that ‖R(λ,A(t))‖ ≤ K

|λ|+1

(A3) There exists 0 < δ ≤ 1 and K > 0 such that ‖(A(t)−A(s))A−1(y)‖ ≤ K|t−s|δ
for all t, s, y ∈ [0, τ ]
(A4) For each t ∈ [0, τ ] and some λ ∈ ρ(A(t)), the resolvent set R(λ,A(t)) of linear
operator A(t) is a compact operator.
Under these assumptions, the family {A(t)} generates a unique linear evolution fam-
ily which satisfy U(t, s)(s,t)∈∆ satisfy the following conditions:
a) For every x ∈ H, the mapping (t, s)→ U(t, s)x is continuous
b) U(t, s)U(s, y) = U(t, y) for all 0 ≤ y ≤ s ≤ t ≤ τ
c) U(t, t) = I
d) U(t, s) is a compact operator for s < t, and there exist the constant M ≥ 1

such that ‖U(t, s)‖ ≤M
Due to [98], the condition for invertibility of the evolution family U(t, s) is following:

Lemma 1.3.7. [98, Lemma 4.3]
An evolution family (U(t, s))s≤t consists of invertible operators if and only if there
exists a family of invertible bounded operators Q(t)t∈R such that

U(t, s) = Q(t)Q(s)−1, t, s ∈ R

Moreover, by setting U(s, t) := U(t, s)−1 for s < t, the evolution family can be
extended to an evolution family (U(t, s))(t,s)∈R2. Precisely, we obtain U(t, 0) = Q(t)
and U(0, t) = Q−1(t)

Proposition 1.3.8. [98, Proposition 4.5]
The strongly continuous evolution family (U(t, s))t>s consists of invertible operators
on H satisfying:

1. lims→t U(t, s)−1x = x and
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2. limt→s U(t, s)−1x = x for every x ∈ H and t ≤ s if and only if there ex-
ists a strongly continuous family of invertible bounded operators (Q(t))t∈R with
strongly continuous inverse such that

U(t, s) = Q(t)Q(s)−1, t, s ∈ R.

Moreover, the evolution family can be extended to a strongly continuous evolution
family (U(t, s))(t,s)∈R2 by setting U(s, t) := U(t, s)−1 for s < t. The family Q can
then be given by Q(t) := U(t, 0).

The hyperbolic case We can extend the Hille-Yosida theorem for semigroups
to non autonomous situation. Following [113], we need to assume the family of
operators {A(t)} are densely defined and stable in the sense:

‖R(λ,A(tn))R(λ,A(tn−1))...R(λ,A(t1))‖ ≤M(λ− ω)−n (1.3.8)

for all 0 ≤ t1 ≤ ... ≤ tn ≤ τ , n ∈ N and λ > ω and some constants M ≥ 1 and
ω ∈ R. By Hille-Yosida theorem, the operator A(t) then generates a C0−semigroup.
Suppose in addition that there exists a Banach space Y such that Y ⊆ D(A(t)) for
all t, and Y is densely and continuously embedded into H. Kato [61] constructed an
evolution family U(t, s) satisfying ∂

∂tU(t, s)|t=s = A(s)x for t ≥ s and x ∈ Y due to
the assumption that A(.) ∈ C([0, τ ],L (Y,H)).
The general case also established by Kato in 1970 [60] where he introduced a time
discretization An(.) of A(.) solved the Cauchy problem by a finite product of dis-
cretization evolution family Un(t, s) of the given operator eτA(τ). He proved that
Un(t, s) strongly converges to an operator U(t, s) that have all propertied of evolu-
tion family.
Also in [60], kato imposed a regularity hypothesis on t 7→ A(t) and proved that
U(t, s)Y ⊆ Y , U(t, s) is strongly continuous on Y and ∂

∂tU(t, s)x = A(t)U(t, s)x for
t ≥ s and x ∈ Y . In particular, if D(A(t)) = Y and A(.)Y ∈ C1(J,H) for y ∈ Y
and J ⊂ R be a closed interval, the above extra assumption is also true.

Evolution semigroup

Next, we introduce the notion of the evolution semigroup, which is a very im-
protant definition and widely studied in the past 40 years (e.g see [99], [31], [46]).
For every exponentially bounded evolution family, we can associate a C0 semigroup
on H valued functional spaces. Furthermore, it is possible to characterize some
asymptotics behavior properties of evolution families by spectral theory due to the
corresponding evolution semigroup and generators.

Definition 1.3.9. An evolution family {U(t, s)}0≤s≤t is said to have an exponential
dichotomy (with constants M > 0 and β > 0) if there exists a projection-valued
function P : R → L (H) such that, for each x ∈ H, the function y 7→ P (y)x is
continuous and bounded, and, for all y ≥ r, the following conditions hold:

i) P (y)U(y, r) = U(y, r)P (r)
ii) UQ(y, r) is an invertible operator from Im(Q(r)) to Im(Q(y))
iii) ‖UP (y, r)‖ ≤Me−β(y−r)
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1.3. Non-autonomous evolution equation

iv) ‖U−1
Q (y, r)‖ ≤Me−β(y−r)

The existence of an exponential dichotomy gives an important insight into the
long term behaviour of an evolution family. It is also used to study the asymptotic
properties of mild solutions and the existence criterion for the solution of inhomoge-
neous problem (2.1.1).

Definition 1.3.10. (Evolution semigroup)
For every evolution family (U(t, s))(t,s)∈3, we define the corresponding evolution
semigroup (Υ(s))s≥0 on the space C0(R, H) by

(Υ(s)f)(r) := U(r, r − s)f(r − s), (1.3.9)

for f ∈ C0, r ∈ R and s ≥ 0. This semigroup is also called the Howland evolution
semigroup on the real line. We denote its generator by (Γ,D(Γ)).

Noting that each operator of the above evolution semigroup is a product of a
multiplication operator and a translation, we consider the following

C1 := {f ∈ C1(R, H) : f, f ′ ∈ C0}

the domain of the generator
(
− d
dx ,D(− d

dx)
)

of the right translation semigroup
(Υ1(s))s≥0 on the space C0 defined by

(Υ1(s)f)(r) := f(r − s), f ∈ C0, r ∈ R, s ≥ 0

Therefore, we can rewrite the evolution semigroup as

Υ(s)f = U(., .− s)Υ1(s)f.

Proposition 1.3.11. If {U(t, s)}0≤s≤t is an exponentially bounded evolution family
on a H, then the semigroup (Υ(t))t≥0, as defined in (1.3.9) is a strongly continuous
semigroup on Lp(R, H) for p ∈ (1,+∞) and on C0(R, H).

Proposition 1.3.12. [99, Proposition 1.3]
Let (Υ(s))s≥0 be a C0 semigroup with the generator (Γ,D(Γ)) on the Banach space
C0. Then the following assertions are equivalent:

i) The semigroup (Υ(s))s≥0 is an evolution semigroup, i.e: there exists an evolu-
tion family (U(t, s))s≤t on the H such that Υ(s) = U(., .− s)Υ1(s)

ii) For all η ∈ C0(R), f ∈ C0 we have

(Υ(t)ηf)(r) = η(r − s)(Υ(s)f)(r), r ∈ R, s ≥ 0

iii) There exists a core D for G such that for all η ∈ C1
c (R) and f ∈ D we have

ηf ∈ D(G) and Gηf = −η′f + ηGf .

Theorem 1.3.13. (Dichotomy Theorem)[17, Theorem 3.17]
Let {U(t, s)}0≤s≤t be a strongly continuous, exponentially bounded evolution family
on H, let Υ(s) be the corresponding evolution semigroup given by (Υ(s)f)(r) =
U(r, r − s)f(r − s) on Lp(R, H) for 1 < p < +∞ and let Γ denote its infinitesimal
generator. The following statements are equivalent:
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i) {U(t, s)}0≤s≤t has an exponential dichotomy on H.
ii) 0 ∈ ρ(Γ).

The Dichotomy Theorem also holds if the space Lp(R, H) is replaced by C0(R, H).
We see that a strongly continuous evolution family {U(t, s)}0≤s≤t has exponential
dichotomy on H if and only if the spectrum σ(Γ), t > 0, does not intersect the unit
circle or, equivalently, the operator Γ−1 is bounded on C0(R, H) or Lp(R, H).

1.3.2 Existence and uniqueness

Theorem 1.3.14. [75, Theorem 1.1]
Assume the evolution family {U(t, s)}(s,t)∈3 is an exponentially bounded evolution
family. Then {U(t, s)}(s,t)∈3 has exponential dichotomy if and only if for every
f ∈ Cb(R, H) there exists a unique solution u ∈ Cb(R, H) to (1.3.2).

The sufficiency for above theorem will use the spectral mapping theorem for
evolution semigroups. The proof is a series of three lemmas that can be found in
[75]. The necessity of existence for solution is proven in the following proposition
which involves the Green’s function for {U(t, s)}t≥s.

Proposition 1.3.15. [75, Proposition 1.2]
Let {U(t, s)}t≥s be an evolution family. If {U(t, s)}t≥s has exponential dichotomy,
then there exists a unique solution u ∈ Cb(R, H) to (1.3.2).

Noting that in this proposition, we do not assume exponential boundedness of
{U(t, s)}t≥s.

1.4 General concepts

There are several possibilities to introduce a control problem for partial differen-
tial equation. In fact, we are interested in learning some basic techniques connected
to the problem of infinite-dimensional controllability. As in the finite dimensional
setting, one can distinguish between the linear systems, where the partial differen-
tial equation under view is linear (as well as the action of the control), and the
non-linear one. Given an evolution system which one can excert a certain influence.
The question is that whether or not it is possible to use this influence to make the
system reach a certain state? Now we give some general definitions of the typical
controllability problems, associated to a control system.

Definition 1.4.1. A control system is said to be exactly controllable in time τ > 0
if and only if for all y0 and y1 in Y , there exists control function u : [0, τ ]→ U such
that the unique solution of the system satisfies{

ẏ = F (y, t, u) t ∈ [0, τ ]
y|t=0 = y0

(1.4.1)

satisfies
y|t=τ = y1 (1.4.2)
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Definition 1.4.2. We suppose that the space Y is endowed with a metric d. The
control system is said to be approximately controllable in time τ > 0 if and only if,
for all y0, y1 in Y and for any ε > 0, there exists a control function u : [0, τ ] → U
such that the unique solution of the system (1.4.1) satisfies

d(y|t=τ , y1) < ε (1.4.3)

Definition 1.4.3. We consider a particular element 0 ∈ Y . A control system is said
to be null-controllable (or zero-controllable) in time τ > 0 if and only if, for all y0 in
Y , there exists a control function u : [0, τ ]→ U such that the unique solution of the
system (1.4.1) satisfies:

y|t=τ = 0. (1.4.4)

Definition 1.4.4. A control system is said to be controllable to trajectories in time
τ > 0 if and only if, for all y0 in Y and any trajectory y of the system (typically
but not necessarily satisfying (1.4.1) with u = 0), there exists a control function
u : [0, τ ]→ U such that the unique solution of the system (1.4.1) satisfies

y|t=τ = y(τ) (1.4.5)

Remark 1.4.5. The problems of controllability should be distinguished from the prob-
lems of optimal control, which give another viewpoint on control theory. In gen-
eral, problems of optimal control look for a control u minimizing some functional
J(u, y(u)), where y(u) be the trajectory associated to the control u.

Remark 1.4.6. For the linear systems, there is no difference between controllability
to zero and controllability to trajectories. In that case, it is indeed equivalent to
bring y0 to y(τ) or to bring y0 − y(0) to zero. On the contrary, noting that even for
linear systems, approximate controllability and exact controllability are different.

Example 1.4.7. (The heat equation with distributed control)
Let Ω ⊂ Rn be a bounded open set and ω ⊆ Ω be the open subset. We consider the
following initial boundary problem:{

∂tv −∆v = χωu t ∈ [0, τ ]
v|∂Ω = 0

(1.4.6)

The state y of the system is given by the function v(., t) that belong to the space
L2(Ω). Here, we choose the control function u acting on the set ω and belong to
L2([0, τ ];L2(ω)).

Example 1.4.8. (The wave equation with boundary control)
Let Ω ⊂ Rn be a bounded open set and let the open non-empty subset Σ ⊆ ∂Ω . We
consider the following initial boundary problem:{

∂ttv −∆v = 0 t ∈ [0, τ ]
v|∂Ω = χΣu

(1.4.7)

The state y of the system is given by the function v(., t) belong to the space L2(Ω) as
in the previous example, but here the control u is imposed on a part of the boundary.
One can for instance consider the set of controls as L2([0, τ ];L2(Σ)).
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Chapter 2

Duality results

In this chapter, we will study the concepts of admissibility, controllability and the
observability for the non autonomous linear system. We also summarize the duality
of admissibility for control and observation and the duality between controllability
and observability. These properties were studied well for the autonomous system.

2.1 Definitions

Let H and H−1 be the Hilbert space where H is dense in H−1. Considering the
family of unbounded operators A(t) : D(A(t))→ H. Let U be another Hilbert space
and suppose B(t) : D(B(t)) ⊂ U → H−1 be also family of unbounded operators and
C : D(C(t)) ⊂ H → U be a linear operator. For simplicity, we denote the above
system as (A(t), B(t), C(t)). We consider the system :

x′(t) = A(t)x(t) +B(t)u(t)
x(0) = x0

y(t) = C(t)x(t).
(2.1.1)

The admissibility for control and observation operators as well as observability and
controllability about a certain "duality" to each other that will be detailed on the
following sections.

2.2 Duality of admissibility for control and observation

In the autonomous case, the duality of admissible control and observation opera-
tors has already been discussed earlier in many texts books ( for example see Dolecki
and Russell [27] or [123, chapter 4 ]). This duality allows us to translate most of the
results given in the autonomous linear system for observation operators into result
concerning control operators. We call B is an infinite-time admissible control oper-
ator for semigroup (T(t))t≥0, that is, B ∈ L (U,D(A∗)′) and there exists a constant
κ > 0 such that∥∥∥∫ t

0
T(t)Bu(t) dt

∥∥∥
H
≤ κ‖u‖L2(0,∞;U), u ∈ L2(0,∞;U).
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Definition 2.2.1. An operator C ∈ L (D(A), U) is called an (infinite-time) ad-
missible observation operator for (T(t))t≥0 if there exists a constant M > 0 such
that:

‖CT(.)x0‖L2(0,∞;U) ≤M‖x0‖H , x0 ∈ D(A).

The following well-known result comes from [123].

Theorem 2.2.2. [123, Theorem 4.4.3] Suppose that B ∈ L (U,H−1). The operator
B is an infinite-time admissible control operator for (T(t))t≥0 if and only if B∗ is an
infinite-time admissible observation operator for the dual semigroup (T(t)∗)t≥0.

For the non-autonomous case, let A(t) be such that the initial value problem{
x′(t) = A(t)x(t) +B(t)u(t)
x(0) = x0

(2.2.1)

admits a evolution (solution) family U(t, s). We observe that:
d
dtU(t, s)x = A(t)U(t, s)x, x ∈ D(A(t)).

Moreover, we have:

U(t, s+ h)x− U(t, s)x = U(t, s+ h)[I − U(s+ h, s)]x

and so, dividing by h > 0 and letting h→ 0+,
d
ds+U(t, s)x = −U(t, s)A(s)x x ∈ D(A(s)).

Our classical solution satisfies the following mild integral equation:

x(t) = U(t, 0)x0 +

∫ t

0
U(t, s)B(s)u(s) ds. (2.2.2)

Now we take adjoints:
d
ds+〈U(τ, s)∗zτ , x〉 = d

ds+〈zτ , U(τ, s)x〉 = 〈zτ ,−U(τ, s)A(s)x〉 = 〈−A(s)∗U(τ, s)∗zτ , x〉.

This holds for all x, so we may drop duality pairing and obtain that z(t) := U(τ, t)∗zτ
will solve the dual final time problem

z′(t)+A(t)∗z(t) = 0
z(τ) = zτ
y(t) = B(t)∗z(t).

(2.2.3)

We use the following definitions:

Definition 2.2.3 (Averaged admissible controls). Let (B(t))t∈[0,τ ] be a family of
bounded operators in L (U ;H−1). We say that (B(t))t are averaged admissible
controls for (A(t))t∈[0,τ ] if there exists a constant Mτ > 0 such that the solution x
to (A,B) satisfies x(t) ∈ H and for all s ∈ [0, τ)∥∥∥∫ τ

s
U(τ, r)B(r)u(r) dr

∥∥∥2
≤M2

τ

∥∥u∥∥2

L2(s,τ ;U)

for all u ∈ D(0, τ ;U) (one can also consider a weaker admissibility notions by re-
quiring the above inequality for s = 0, only).
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2. Duality results

Definition 2.2.4 (Averaged admissible observations). Let (C(t))t∈[0,τ ] be a family of
bounded operators in L (D , Y ), where Y is some Hilbert space. We say that (C(t))t
are averaged admissible observations for (A(t))t∈[0,τ ] if there exists a constantMτ > 0
such that ∫ τ

s

∥∥C(t)U(t, s)x
∥∥2

dt ≤M2
τ ‖x‖2 ∀x ∈ D , s ∈ [0, τ ]. (2.2.4)

(one can also consider a weaker admissibility notion by requiring the above inequality
for s = 0, only). For a single operator C(t0) is admissible if C(t) := C(t0) for all t
satisfies (2.2.4).

Lemma 2.2.5. The family (B(t))t∈[0,τ ] are averaged admissible controls for the sys-
tem (2.2.1) if and only if the family (C(t))t∈[0,τ ] = (B(t)∗)t∈[0,τ ] are averaged admis-
sible observations for the retrograde equation (2.2.3).

Proof. The following calculation is standard.

sup
‖u‖2≤1

∥∥∥∫ τ

s
U(τ, r)B(r)u(r) dr

∥∥∥ = sup
‖u‖2≤1

sup
‖x∗‖≤1

∣∣∣∫ τ

s
〈U(τ, r)B(r)u(r), x∗〉dr

∣∣∣
= sup
‖x∗‖≤1

sup
‖u‖2≤1

∣∣∣∫ τ

s
〈u(r), B(r)∗U(τ, r)∗x∗〉 dr

∣∣∣
= sup
‖x∗‖≤1

(∫ τ

s

∥∥B(r)∗U(τ, r)∗x∗
∥∥2

dr
)1/2

.

With the observation operators C(t) = B(t)∗, we get the duality of admissibility
between the system (2.2.1) and the retrograde final-value system (2.2.3) .

2.3 Duality of controllability and observability

The idea of controllability is the following: given two states x0 ∈ H and x1 ∈ H
of the system (2.1.1), does there exist a function u (called control function) allowing
to "pass" the state x0 in a fixed time τ > 0 ? There are many ways to interprete the
term "pass". For example, it may mean that the value at time t = τ of the solution
starting from the state x0 at time t = 0 is exactly equal to x1 , in which case we have
the definition of exact controllability. On the contrary, it can also mean that the
value of solution at time τ is sufficiently close to x1, without necessarily being equal
to, in which case we have the notion of approximate controllability. The notions of
controllability may also differ according to the form of the targets that one seeks to
attain. For example, one can seek to reach only the zero state x1 = 0, in which case
we have the notion of of null controllability (controllability at zero).

Definition 2.3.1. The system (2.1.1) is said to be exactly controllable at time τ > 0
if for every (x0, x1) in H, there exist u ∈ L2(0, τ ;U)) such that the solution satisfy
x1 = x(τ).

Definition 2.3.2. The system (2.1.1) is said to be approximately controllable at
time τ > 0 if for every (x0, x1) in H and for all ε > 0, there exist u ∈ L2(0, τ ;U)
such that the solution satisfy ‖xτ − x1‖ < ε.
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2.3. Duality of controllability and observability

Definition 2.3.3. The system (2.1.1) is said to be exactly null controllable at time
τ if for every x0 in H, there exist u ∈ L2(0, τ ;U) such that the solution satisfy
x(τ) = 0.

We associate with (2.1.1) the operator:

(Φτx)(t) =

{
C(t)U(t, 0)x t ∈ [0, τ ]
0 t > τ.

Definition 2.3.4. The system (2.1.1) is said to be exactly observable in [0, τ ] if the
map O : H → L2(0, τ ;U): x0 → y(.) is injective, i.e: the following inequality is true
for all solutions x:

C‖x0‖H ≤ ‖y‖L2(0,τ ;U)

where C > 0 be a constant.

Definition 2.3.5. The system (2.1.1) is said to be exactly observable at time τ if
and only if there exist the constant C > 0 such that the following inequality would
be true for all solutions x:

C‖x(τ)‖H ≤ ‖y‖L2(0,τ ;U).

Definition 2.3.6. The system (2.1.1) is said to be approximate observable at time
τ if ker Φτ = {0}.

2.3.1 The autonomous case

Finite dimensional systems

In the finite dimensional autonomous setting where A(t) = A ∈ L (Cn) and
B(t) = B ∈ L (Cm,Cn) are constant matrics, we consider the variable spaces H =
H−1 = Cn and the control space U = Rm where m,n ∈ N and m,n ≥ 1. We consider
the system: {

ẋ(t) = Ax(t) +Bu(t)

x(0) = x0 ∈ Cn
(2.3.1)

where u ∈ L2(0, τ ;Cm) is the control. We also consider the dual system:
ż(t) = −AT z(t)
z(τ) = z0 ∈ Cn

y(t) = BT z(t).

(2.3.2)

Definition 2.3.7. [103, Chapter 4]
Let x0 ∈ Cn and Bu ∈ L1(0, τ ;Cn). The function x ∈ C(0, τ ;Cn) given by

x(t) = etAx0 +

∫ t

0
e(t−s)ABu(s) ds, ∀t ∈ [0, τ ],

is the mild solution of the initial value problem (2.3.1) on (0, τ).
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We define the set of reachable states:

R(τ, x0) = {x(τ) ∈ Rn : x solution of 2.3.1 with u ∈ (L2(0, τ))m}.

Since etA is a group, then the exact controllability property is equivalent to the fact
that R(τ, 0) = Rn for any x0 ∈ Rn. The controllability Gramian is a n × n matrix
and defined as:

Wc(τ) =

∫ τ

0
e(t−s)ABBT e(t−s)AT ds. (2.3.3)

Theorem 2.3.8. The linear time varying control system x′(t) = Ax + Bu is con-
trollable if and only if its controllability Gramian is invertible.

The simplest and best known criterion for controllability is called "Kalman rank
condition" [59] that was proposed by Kalman, Ho and Narenda in 1963. In this
paper, they defined the controllability matrix as

[A|B] = (B,AB,A2B, ..., An−1B) ∈ L (Cnm;Cn).

Theorem 2.3.9. [21, Chapter 1, pages 10-11] The time invariant linear control
system x′ = Ax + Bu is exactly controllable at time τ > 0 if and only if rank
[A|B] = n.

Remark 2.3.10. Noting that the Kalman rank condition is indepent of τ , so it implies
that the system (2.3.1) is exact controllable in time τ if and only if it is exact
controllable at any time τ .

Theorem 2.3.11. The following statement are equivalent:
i) The system (2.3.1) is controllable
ii) The controllability Gramian Wc(t) is non-singular for all t ≥ 0
iii) The controllability matrix [A|B] = (B,AB,A2B, ..., An−1B)) has rank n
iv) The n× (n+m) matrix [A− λI,B] has the full row rank at every eigenvalue

λ of A
v) If all eigenvalues of A have negative real parts, then the unique solution of

AWc +WcA
T = −BBT

is definite positive. The solution can be expressed as

Wc =

∫ +∞

0
eτABBT eτA

T
ds.

vi) The system (2.3.2) is observable

From the above theorem, we concule that the pair (A,C) is observable if and
only if

Rank
[
A− λI
C

]
= n ∀λ ∈ σ(A).

It follows also that (A,C) is observable implies Cz 6= 0 for every eigenvector z of A,
and there exists k > 0 such that for every s ∈ C:

‖(sI −A)z‖2 + ‖Cz‖2 > k2‖z‖2.
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2.3. Duality of controllability and observability

Infinite dimensional systems

In the infinite dimensional linear system, the Kalman’s rank condition, in general,
does not a useful tool to characterize the controlability. As a result, it is reasonable
to find an alternative method that convert the control problem in to the problem
of observability for the dual system. The duality between the controllability of a
system and the observability of its adjoint system can be described in an abstract
form due to Dolecki and Russell [27]. Considering the system:{

ẋ(t) = Ax(t) +Bu(t)

x(0) = x0 ∈ H
(2.3.4)

where the operator A is closed in H, densely defined (i.e D(A) = H), and A generate
a strongly continuous semigroup T(t) = etA. Then the solution of (2.3.4) can be
represented by the variation of constant formula:

x(τ) = eτAx0 +

∫ τ

0
e(τ−s)ABu(s) ds. (2.3.5)

Put z(t) = eA
∗(τ−t)z0, so z is the solution of the dual system{

z′(t) = −A∗z, t ∈ (0, τ)
z(τ) = z0.

(2.3.6)

Here the operator −A∗ generates T(t)∗ on reflexive space (see [103, chapter I.10]),
and so e(τ−t)A∗ is well defined on [0, τ ] and satisfies (2.3.6). Let take y ∈ L2(0, τ ;U),
y(t) = B∗e(τ−t)A∗z0 as an observation output. We recall the following important
lemma:

Lemma 2.3.12. (see [123, Proposition 12.1.2])
Suppose that Z1, Z2, Z3 are Hilbert spaces, the operators F ∈ L (Z1, Z3) and G ∈
L (Z2, Z3). Then the following statements are equivalent:
a) Ran(F ) ⊂ Ran(G)
b) There exists a constant c > 0 such that ‖F ∗z‖Z1 ≤ c‖G∗z‖Z2 for all z ∈ Z3

c) There exist an operator U ∈ L (Z1, Z2) such that F = GU .

By mean of classical range comparision, we conclude that the system (2.3.4) is
exact controllable at some time τ if and only if there exist constant δ > 0 such that:∫ τ

0
‖B∗eA∗(τ−t)z0‖2 dt ≥ δ‖z0‖2 ∀z0 ∈ H. (2.3.7)

Theorem 2.3.13. (Duality)[123, chapter 11]

1. The exact controllability of system (2.3.4) is equivalent to the observability of
system (2.3.6).

32



2. Duality results

2. The null controllability of system (2.3.4) is equivalent to the observability at
time 0 of system (2.3.6).

3. The approximate controllability of system (2.3.4) in H is equivalent to unique
continuation property for system (2.3.6).

Remember that the controllability (or observability) time for the finite dimen-
sional case occur at any time τ > 0. On the contrary, the are some new phenomenona
in the infinite dimensinal case. For example, in the case of hyperpolic equation such
as the wave equation, the controllability (or observability) time when acting on the
boundary or internal open sets need to be large enough because of finite velocity of
propagation.

Examples

The observability inequality for the wave equation [123, chapter 7]. We consider
the following uncontrolled problem

∂2

∂t2
η(x, t) = ∆η(x, t) (x, t) ∈ Ω× (0, τ)
η(x, t) = 0 (x, t) ∈ Γ× (0, τ)

η(x, 0) = f(x) , ηt(x, 0) = g(x) x ∈ Ω

(2.3.8)

where Ω ⊂ Rn is a bounded domain with C2 boundary ∂Ω, and Γ be a subset of ∂Ω.
Now we consider the space H = L2(Ω). The operator A : H → H defined by D(A) =
H2(Ω)

⋂
H1

0 (Ω) and A = ∆ is strictly positive. Let us set H1 = H2(Ω)
⋂
H1

0 (Ω),
X = H1

0 (Ω)× L2(Ω), the operator a : D(a)→ X with D(a) = H1
0 (Ω)× L2(Ω)

a =
( 0 I

∆ 0

)
(2.3.9)

Since a be a skew adjoint operator, so by Stone’s theorem a generates an unitary
group T. This semigroup can be restricted to an operator semigroup on X1 =
H1

0 (Ω) × L2(Ω). The generator of this restriction is a|D(a2) where D(a2) = H1 ×
H1

0 (Ω). Let denote the output space Y = L2(Γ), we consider the observation operator
C ∈ L (H1 ×H1

0 (Ω), Y ) defined by

C
( ϕ
ψ

)
=
∂ϕ

∂ν

∣∣∣
Γ
∀ϕ ∈ H1 ×H1

0 (Ω)

where ν is the unit outward normal vector field on ∂Ω. As shown in [123, Theorem
7.1.3], we have that C is an admissible operator, i.e: there exist the constant Cτ > 0
such that for all f ∈ H2(Ω)

⋂
H1

0 (Ω) and g ∈ H1
0 (Ω) we have:∫ τ

0

∫
∂Ω

∣∣∂η
∂ν

∣∣2dσdt ≤ Cτ(‖∇f‖2 + ‖g‖2
)

(2.3.10)

where dσ be the surface measure on ∂Σ. Let us assume that there exist x0 ∈ Rn
such that

{x ∈ ∂Ω|(x− x0).ν(x) > 0} ⊂ Γ

and denote r(x0) = supx∈Ω |x− x0|. We have
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2.3. Duality of controllability and observability

Theorem 2.3.14. (see [123, Theorem pp 233]) For every f ∈ H2(Ω)
⋂
H1

0 (Ω) and
g ∈ H1

0 (Ω), the solution of (2.3.8) satisfies:∫ τ

0

∫
Γ

∣∣∂η
∂ν

∣∣2dσdt ≥ τ − 2r(x0)

r(x0)

(
‖∇f‖2 + ‖g‖2

)
(2.3.11)

The system (2.3.8) is exactly observable in any time τ > 2r(x0).

By duality theory, the following initial and boudary value problem
∂2

∂t2
u(x, t) = ∆u(x, t) (x, t) ∈ Ω× (0, τ)
u(x, t) = v(x, t) (x, t) ∈ Γ× (0, τ)
u(x, t) = 0 (x, t) ∈ (∂Ω/Γ)× (0, τ)

u(x, 0) = f(x) , ut(x, 0) = g(x) x ∈ Ω

(2.3.12)

has exactly controllable for any time τ > 2r(x0) with the initial data f ∈ L2(Ω) and
g ∈ H−1(Ω).

The Hautus test

The Hautus test is a powerful tool in control theory for checking the observability
of various linear systems, for example: approximate observability of exponentially
stable systems [49], polynomially stable system [49], exact observability of strongly
stable Riesz-spectral systems with finite dimensional output spaces [50], exponen-
tially stable C0−groups [52], etc.. Russell and Weiss [111] showed that a necessary
condition for exact observability is the following Hautus test :

Theorem 2.3.15. If the system (A,C) is exactly observable and C is admissible
observation operator in (0, τ), then there exits the positive constants m and M such
that for every λ ∈ C+ and every x ∈ D(A):

M‖(λI +A)x‖2 + |Reλ|‖Cx‖2 ≥ m|Reλ|2‖x‖2

where C+ denotes the open right half plane.

Proof. Observe that

d/ds
(
e−λsT(t− s)x

)
= −λe−λsT(t− s)x− e−λsAT(t− s)x

and so, integrating on [0, t],

e−λtx− T(t)x = −
∫ t

0
T(t− s)(λ+A)xe−λs ds

We apply C on both sides and get

CT(t)x = e−λtCx+

∫ t

0
CT(t− s)(λ+A)xe−λs ds
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2. Duality results

Suppose that C is exactly observable, i.e. m(τ)‖x‖ ≤ ‖CT(t)x‖L2(0,τ). We distin-
guish two cases: for Re(λ) 6= 0,

m(τ)‖x‖2 ≤ ‖Cx‖2 1−e−2τRe(λ)

Re(λ) + 2
∥∥∥t 7→ ∫ t

0
CT(t− s)(λ+A)xe−λs ds

∥∥∥2

L2(0,τ ;H)

whereas for λ = iξ and ξ ∈ R we have

m(τ)‖x‖2 ≤ ‖Cx‖
2

Re(λ)
+ 2
∥∥∥t 7→ ∫ t

0
CT(t− s)(λ+A)xe−λs ds

∥∥∥2

L2(0,τ ;H)

The second term can be treated in both cases simultaneously: let g ∈ L2 of norm
one. Then using admissibility of C∗ for T(t− s)∗,∥∥∥t 7→ ∫ t

0
CT(t− s)(λ+A)xe−λs ds

∥∥∥
L2(0,τ ;H)

= sup
‖g‖≤1

∣∣∣〈∫ t

0
CT(t− s)(λ+A)xe−λsds, g

〉
L2(0,τ ;H)

∣∣∣
= sup
‖g‖≤1

∣∣∣∣∫ τ

0

∫ t

0
〈CT(t− s)(λ+A)xe−λs, g(t)〉H ds dt

∣∣∣∣
= sup
‖g‖≤1

∣∣∣∣∫ τ

0
〈(λ+A)x e−λs,

∫ τ

s
T(t− s)∗C∗g(t)〉H dt ds

∣∣∣∣
≤M(τ) sup

‖g‖≤1

∫ τ

0
‖(λ+A)x e−λs‖H‖g‖L2(s,τ) ds

≤M(τ)

∫ τ

0
‖(λ+A)x‖H e−Re(λ)s ds

= M(τ)1−e−Re(λ)τ

Re(λ) ‖(λ+A)x‖H

we obtain the Hautus condition as a necessary condition for exact observability :
for all x ∈ D(A), and all Re(λ) 6= 0,

m(τ)2‖x‖2 ≤ 1−e−2τRe(λ)

Re(λ) ‖Cx‖2 + 2M2 (1−e−Re(λ)τ )2

Re(λ)2
‖(λ+A)x‖2H (Hautus)

Remark 2.3.16. In finite dimensional space, the Kalman condition is equivalent to
the Hautus test.

2.3.2 The non autonomous case

Finite dimensional system

We consider the system (2.1.1) where A, B and C are the time dependent matrices
withA ∈ Cn−2([0, τ ]),L (Rn)), B ∈ Cn−1([0, τ ]),L (Rm,Rn)), C ∈ Cn−1([0, τ ]),L (Rn,Rm))
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2.3. Duality of controllability and observability

and u ∈ L2(0, τ ;Rn) be the control. From [115], we know that the solution of (2.1.1)
can be represented as

x(t) = X(t)X−1(0)x0 +

∫ t

0
X(t)X−1(s)B(s)u(s) ds, (2.3.13)

where X(t) is the fundamental matrix of the homegeneous problem

Ẋ(t)−A(t)X(t) = 0 (2.3.14)

The output of system is then given by

y(t) = C(t)X(t)
(
X−1(0)x0 +

∫ t

0
X−1(s)B(s)u(s)ds

)
We define the sequence of matrices {Bi(t)}1≤i≤n and {Cj(t)}1≤j≤n as follow:

B0(t) = B(t), Bi(t) = −A(t)Bi−1(t) +
d

dt
Bi−1(t) ∀i ∈ [1, n− 1]

C0(t) = C(t), Cj(t) = A(t)Cj−1(t) +
d

dt
Cj−1(t) ∀j ∈ [1, n− 1]

Then we can define the controllability and observability matrics :

H(t) = (B0(t), B1(t), ..., Bn−1(t))

Q(t) = (C0(t), C1(t), ..., Cn−1(t))

Noting that H(t) and Q(t) ∈ C0([0, τ ]; L (Rmn;Rn)) and are types of Wronskian
matrix.

Definition 2.3.17. TheWronskian matrix: Considering the set of n−dimensional
row continuous vector functions f1(t), f2(t), ..., fn(t) together with their first n − 1
derivatives. We define the Wronskian matrix as

Wronskian(f1(t), f2(t), ..., fn(t)) = [F (t), F (1)(t), ..., F (n−1)(t)]

where

F (t) =



f1(t)
f2(t)
.
.
.

fn(t)


Due to [115], we take θ(t) = X−1B(t) and Ψ(t) = C(t)X(t) the Wronskian

matrix is defined as

[θ(t), θ(1)(t), ..., θ(n−1)(t)] = X−1(t)H(t)

[Ψ(t),Ψ(1)(t), ...,Ψ(n−1)(t)] = Q(t)X(t)

Since X(t) is non-singular for all t, the ranks of H(t) and Q(t) are equal to the rank
of Wronskian matrix.

Due to Silverman and Meadous, we have the following theorem:
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Theorem 2.3.18. [115]
i) If there exist t0 ∈ [0, τ ] such that Rank H(t0) = n, then the system (2.1.1) is

exactly controllable on (0, τ), i.e: for every x0, xd ∈ Rn, there exists a control
u ∈ L2(0, τ)m such that the solution x(t) of (2.1.1) corresponding to the initial
condition x(0) = x0 satisfies x(τ) = xd

ii) The autonomous system (2.1.1) is total exactly controllable on (0, τ) if and
only if there exist a dense subset E of (0, τ) such that: Rank H(t) = n for all
t ∈ E.

Theorem 2.3.19. [115]
i) If there exist t0 ∈ [0, τ ] such that Rank Q(t0) = n, then the system (2.1.1) is

exactly observable on (0, τ).
ii) The autonomous system (2.1.1) is totally exactly observable on (0, τ) if and

only if there exist a dense subset E of (0, τ) such that: Rank Q(t) = n for all
t ∈ E.

Remark 2.3.20. When A and B are the constant matrices, we have the Kalman
matrix H = [A|B] = (B,AB, .., ABn−1) with Rank H = n. The definition of
complete and total controllability are the same, so the exact controllability of system
(2.1.1) is equivalent to Kalman’s rank condition.

Example 2.3.21. We consider the case n = 3 and m = 1 and:

A(t) =

t 1 0
1 t3 0
0 0 t2

 B(t) =

1
1
2


We can compute that:

B0(t) =

1
1
2

 , B1(t) =

 t+ 1
t3 + 1

2t2

 , B2(t) =

 t3 + t2 + t
t6 + t3 − 3t2 + t+ 1

4t4 − 4t


The controllability matrix:

H(0) = (B0(0), B1(0), B2(0)) =

1 1 0
1 1 1
2 0 0


has rank 3. So, the system is controllable on every interval [0, τ ] due to the theorem
2.3.18.

Example 2.3.22. Considering the case n = 2 and m = 1 and

A(t) = A =

[
0 1
−1 0

]
B(t) =

[
cos t
−sin t

]
By calculation, we see that B0(t) = B(t) and

B1(t) = AB0(t)− d

dt
B0(t) =

[
0 1
−1 0

] [
cos t
−sin t

]
−
[
−sin t
−cos t

]
=

[
0
0

]
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2.3. Duality of controllability and observability

Hence, the controllability matrix

H(t) = (B0(t), B1(t)) =

[
cos t 0
−sin t 0

]
has the rank less than 2. Then by theorem 2.3.18, the system (2.1.1) is not control-
lable for any interval (0, τ). However, for fix α ∈ R, the matrix:

(B(α), AB(α)) =

[
cosα −sinα
−sinα −cosα

]
has the rank 2. Hence, the frozen system (A,B(α)) is controllable.
Example 2.3.23. For t ∈ (0, 1), we consider the matrics:

A(t) =

[
1 0
0 t

]
B(t) =

[
et

et
2/2

]
By calculation, we see that B0(t) = B(t) and

B1(t) = A(t)B0(t)− d

dt
B0(t) =

[
1 0
0 t

] [
et

et
2/2

]
−
[
et

tet
2/2

]
=

[
0
0

]
Hence, the controllability matrix

H(t) = (B0(t), B1(t)) =

[
et 0

et
2/2 0

]
has the rank less than 2. Then by theorem 2.3.18, the system (2.1.1) is not control-
lable on interval (0, 1). However, for fix β ∈ (0, 1), the matrix:

(B(β), A(β)B(β)) =

[
eβ eβ

eβ
2/2 βeβ

2/2

]
has the rank 2 since its determinant is different from 0. Hence, the frozen system
(A(β), B(β)) is controllable.
Remark 2.3.24. In the autonomous case when A and B are constant matrices, Rank
H = n if and only if Rank Q = n. It implies the duality between controllability and
observability in the autonomous case. In the non-autonomous case, we do not sure
that H(t) and Q(t) have the same ranks.

Example 2.3.25. (Final time observabiity for a system of couple integro-differential
equations). We consider a system as following{

ẋ(t) = a(t)x(t)

ẏ(t) = b(t)y(t)
(2.3.15)

where a and b : [0, τ ]→ R and the initial condition provide (x(t), y(t))
∣∣
t=0

= (x(0), y(0)).
We rewrite the system as

˙[
x(t)
y(t)

]
=

[
a(t) 0

0 b(t)

] [
x(t)
y(t)

]
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2. Duality results

We define the observability map C(t) = C = (a1a2) where a1, a2 ∈ R then C
[
x(t)
y(t)

]
=

a1x(t) + a2y(t).
We will check the condition for exact observability. In fact, the Wroskian matrix

is:

Q(t) = (C0(t), C1(t)) =

[
a1 a2

a1a(t) a2b(t)

]
Since a(0) 6= b(0), it is easy to see that Rank(Q(0)) = 2 then by theorem 2.3.19, the
system (2.3.15) is exactly observable in [0, τ ]. The equation ẋ(t) = a(t)x(t) gives
the solution x(t) = e−

∫ t
0 a(s)dsx0, and the equation ẏ(t) = b(t)y(t) gives the solution

y(t) = e−
∫ t
0 b(s)dsy0. For the condition for the final observability in the time τ of the

system (2.3.15), we will prove the following inequality:∫ τ

0

∥∥∥C [x(t)
y(t)

]∥∥∥2
dt ≥Mτ

∥∥∥[x(τ)
y(τ)

]∥∥∥2

In fact, it is equivalent to∫ τ

0
a2

1e
−2A(t)x2

0 dt+

∫ τ

0
a2

2e
−2B(t)y2

0 dt+

∫ τ

0
2a1a2e

−A(t)−B(t) dt

≥Mτ

(
e−2A(τ)|x0|2 + e−2B(τ)|y0|2

)
where A(t) =

∫ t
0 a(s) ds and B(t) =

∫ t
0 b(s) ds. Now we take the functions Ψ1 and

Ψ2 as:

Ψ1(x0, y0) =

∫ τ

0
a2

1e
−2A(t)x2

0 dt+

∫ τ

0
a2

2e
−2B(t)y2

0 dt+

∫ τ

0
2a1a2e

−A(t)−B(t) dt

and
Ψ2(x0, y0) = e−2A(τ)|x0|2 + e−2B(τ)|y0|2

The condition for Ψ1(x0, y0) ≥MτΨ2(x0, y0) holds is that there exist λ > 0 satisfying
the following system of equations{

∂
∂x0

Ψ1 = λ ∂
∂x0

Ψ2

∂
∂y0

Ψ1 = λ ∂
∂y0

Ψ2

(2.3.16)

It is equivalent to{
a2

1x0

∫ τ
0 e
−2A(t)dt+ a1a2y0

∫ τ
0 e
−A(t)−B(t)dt = λe−2A(τ)x0

a2
2y0

∫ τ
0 e
−2B(t)dt+ a1a2x0

∫ τ
0 e
−A(t)−B(t)dt = λe−2B(τ)y0

(2.3.17)

That means λ be the positive eigenvalue respected to the eigenvale (x0, y0)T of the
matrix

G =

[
a2

1

∫ τ
0 e

2A(τ)−2A(t) dt a1a2

∫ τ
0 e

2A(τ)−A(t)−B(t) dt

a1a2

∫ τ
0 e

2B(τ)−A(t)−B(t) dt a2
2

∫ τ
0 e

2B(τ)−2B(t) dt

]
Noting that Trace(G) > 0, then it should has det(G) > 0. Consequently, we need to
have: (∫ τ

0
e−2A(t) dt

)(∫ τ

0
e−2B(t) dt

)
≥
(∫ τ

0
e−A(t)−B(t)

)2
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2.3. Duality of controllability and observability

This is the form of Cauchy-Schwarz inequality. Hence, we always get the final time
observability for all τ .
Remark 2.3.26. A generalization of the Kalman rank condition was proposed by
F. Khodija, A. Benabdallah, C. Dupaix and M. Burgos (see [64]). In this paper,
the authors consider a system of n ≥ 2 coupled parabolic equations (posed in time
interval (0, τ) with τ > 0) where the coupling matrices A and B depend on t.{

ẋ(t) + L(t)x = Ax(t) +Bu(t)χω in Q = Ω× (0, τ)

x = 0 on Σ = ∂Ω× (0, τ)
(2.3.18)

They proved a sufficient condition (not necessary) that the consider parabolic
system is exactly controllable if Kalman rank condition provides [A|B](t0) = n with
t0 ∈ (0, τ).

Infinite dimensinal system

Exact controllability and exact observability

We assume that {B(t)}0≤t≤τ is an admissible family of control operators for the
evolution equation. The operator Ψτ : L2(0, τ ;U) → H that continuously map
u 7→ x(τ) and defined by

Ψτu =

∫ τ

0
U(τ, s)B(s)u(s) ds

Now for x ∈ H and y ∈ L2(0, τ ;U), by computation:

〈x,Ψτy〉H =
〈
x,

∫ τ

0
U(τ, s)B(s)y(s) ds

〉
H

=

∫ τ

0

〈
x, U(τ, s)B(s)y(s)

〉
H
ds

=

∫ τ

0

〈
B∗(s)U(τ, s)∗x, y

〉
U
ds =

〈∫ τ

0
B∗(s)U(τ, s)∗xds, y

〉
U

= 〈Ψ∗τx, y〉L2(0,τ ;U)

This shows that Ψ∗τx = B∗(s)U(τ, s)∗x.

Theorem 2.3.27. The system (2.2.1) is exactly controllable if and only if the system
(2.2.3) is exactly observable.

Proof. (i) We assume the exact controllability of the system (2.2.1), i.e. that for any
xτ ∈ X, we can find some u ∈ L2(0, τ ;U) such that the solution of the initial value
problem (2.2.1) satisfies x(τ) = xτ . Then Ψτ is bounded and surjective. According
to the lemma 2.3.12, Ψτ is surjective if and only if Ψ∗τ allows lower estimates, i.e:
there exist δ > 0 such that

δ‖x∗‖ ≤ ‖B(t)∗U(τ, t)∗x∗‖L2(0,τ) ∀x∗ ∈ H.

We can therefore simply let x∗ = zτ for the dual system (2.2.3) and obtain the
observability inequality:

δ‖zτ‖2H ≤
∫ τ

0
‖B(t)∗U(τ, t)∗zτ‖2H dt. (2.3.19)
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2. Duality results

(ii) For the converse direction we assume (2.3.19), i.e. "exact observability"
of the dual system (2.2.3). We aim to obtain surjectivity of Ψτ . We define the
controllability Gramian as

Wτ = ΨτΨ∗τ =

∫ τ

0
U(τ, s)B(s)B(s)∗U(τ, s)∗ ds.

We have
‖zτ‖H ≤ C

(∫ τ

0
‖B(s)∗U(τ, s)∗zτ‖2H ds

)
.

Or it is equivalent to

‖zτ‖2H ≤ C2‖Ψ∗τzτ‖2 = C2〈Ψ∗τzτ ,Ψ∗τzτ 〉 = C2〈ΨτΨ∗τzτ , zτ 〉 = C2〈Wτzτ , zτ 〉.

Hence, we conclude that Wτ is self-adjoint, injective and coercive operator. Then
Wτ is boundedly invertible. Hence, Im(Wτ ) = D(W−1

τ ) = H. This implies Im(Ψτ )
= H since H = Im(Wτ ) ⊂ Im(Ψτ ). This indicates the controllability of the initial
system.

The generlization of Riccati’s equation:

If we take G(t, s) = U(t, s)B(s)B(s)∗U(t, s)∗ be the function of two variables s, t
with 0 ≤ s ≤ t, then

d

dt
G(t, s) =

( d
dt
U(t, s)

)
B(s)B(s)∗U(t, s)∗ + U(t, s)B(s)B(s)∗

( d
dt
U(t, s)∗

)
= A(t)G(t, s) +G(t, s)A(t)∗.

Intergrating from 0 to t with respected to the variable s, we have:∫ t

0

( d
dt
G(t, s)

)
ds =

∫ t

0
(A(t)G(t, s) +G(t, s)A(t)∗)ds = A(t)W (t) +W (t)A(t)∗.

The left hand side can be written as: d
dt

(∫ t
0 G(t, s)ds

)
− G(t, t). As a result, the

controllability W (t) is the solution of the generlized Riccati’s equation

d

dt
W (t) = A(t)W (t) +W (t)A(t)∗ +B(s)B(s)∗. (2.3.20)

The minimum cost controls:

We take the specific control ũ as:

ũ = B(s)∗U(τ, s)∗W−1
τ (xτ − U(τ, 0)x0) (2.3.21)

whereWτ be the controllability Gramian. It is easy to check that this control satisfies
the equation:

xτ = U(τ, 0)x0 +

∫ τ

0
U(τ, s)B(s)ũ(s) ds

so that the initial value problem (2.2.1) is exact controllable by ũ.
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2.3. Duality of controllability and observability

Proposition 2.3.28. The function ũ minimize the L2(0, τ ;U)-norm among all the
controls that steer (2.2.1) to the final value xτ .

Proof. Supposing that we have both controls u and ũ and satisfy the equations:{
xτ = U(τ, 0)x0 +

∫ τ
0 U(τ, s)B(s)ũ(s) ds

xτ = U(τ, 0)x0 +
∫ τ

0 U(τ, s)B(s)u(s) ds
(2.3.22)

Subtracting both sides of (2.3.2), we get:∫ τ

0
U(τ, s)B(s)(u(s)− ũ(s)) ds = 0.

Therefore, for all elements η ∈ H:〈∫ τ

0
U(τ, s)B(s)(u(s)− ũ(s)) ds, η

〉
= 0

By choosing η = W−1
τ (xτ − U(τ, 0)x0), and using (2.3.21), we have:

0 =
〈∫ τ

0
U(τ, s)B(s)(u(s)− ũ(s)) ds,W−1

τ (xτ − U(τ, 0)x0)
〉

=

∫ τ

0

〈
U(τ, s)B(s)(u(s)− ũ(s)),W−1

τ (xτ − U(τ, 0)x0)
〉
ds

=

∫ τ

0

〈
(u(s)− ũ(s)), B(s)∗U(τ, s)∗W−1

τ (xτ − U(τ, 0)x0)
〉
ds

=

∫ τ

0

〈
u(s)− ũ(s), ũ(s)

〉
ds

By using orthogonality, we have

‖u‖2 = ‖u− ũ+ ũ‖2 = ‖u− ũ‖2 + ‖ũ‖2 ≥ ‖ũ‖2.

Futhurmore, the minimum norm can be computed explicitly:

‖ũ‖2L2 =

∫ τ

0

〈
ũ, ũ

〉
ds

=

∫ τ

0

〈
B(s)∗U(τ, s)∗W−1

τ (xτ − U(τ, 0)x0), B(s)∗U(τ, s)∗W−1
τ (xτ − U(τ, 0)x0)

〉
ds

=

∫ τ

0

〈
U(τ, s)B(s)B(s)∗U(τ, s)∗W−1

τ (xτ − U(τ, 0)x0),W−1
τ (xτ − U(τ, 0)x0)

〉
ds

=
〈∫ τ

0
U(τ, s)B(s)B(s)∗U(τ, s)∗ dsW−1

τ (xτ − U(τ, 0)x0),W−1
τ (xτ − U(τ, 0)x0

〉
=
〈

(xτ − U(τ, 0)x0),W−1
τ (xτ − U(τ, 0)x0

〉
= W−1

τ ‖(xτ − U(τ, 0)x0)‖2.
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Null controllability and final time observability

We assume that the evolution family {U(t, s)}s≤t is exponentially bounded, i.e:
there exists constant M ≥ 0 and v > 0 such that:

‖U(t, s)‖ ≤Me−v(t−s). (2.3.23)

We assume further that {B(t)} is a family of admissible control operator. Supposing
that the system (2.2.1) is exactly null controllable on [0, τ ]. By definition, for all
x0 ∈ H, we can find the control u ∈ L2(0, τ ;U) such that

0 = U(τ, 0)x0 +

∫ τ

0
U(τ, s)B(s)u(s) ds.

That implies the following:

Ran(U(τ, s)) ⊂ Ran(u→
∫ τ

0
U(τ, s)B(s)u(s) ds) = Ran(Ψτ ).

We define the operator Λ : x0 → U(τ, s)x0. Hence, Λ is a bounded operator from
H → H. Moreover, we have:

Ran(Λ) ⊂ Ran(Ψτ ). (2.3.24)

Lemma 2.3.29. Supposing that B ∈ L (U,H). The operator

Ψτ : u→
∫ τ

0
U(τ, s)B(s)u(s) ds

is bounded linear map from L2([0, τ ];U)→ H.

Proof. We know that the two parameter evolution semigroup U(t, s) is strongly con-
tinuous on 0 ≤ s ≤ t ≤ τ , and for the input function u ∈ L2([0, T ];U) the function
〈x, U(τ, s)B(s)u(s)〉 is measurable in s for every x ∈ H. We have:

Ψτu =

∫ τ

0
U(τ, s)B(s)u(s) ds ≤

∫ τ

0
‖U(τ, s)B(s)u(s)‖H ds.

Using (2.3.23) and noting that the operator B ∈ L (U,H), we have:

Ψτu ≤
∫ τ

0
Me−v(τ−s)‖B(s)‖L (U,H)‖u(s)‖H ds

≤Me−vτ‖B(t)‖L (U,H)

∫ τ

0
evs‖u(s)‖H ds

≤Me−vτ‖B(t)‖L (U,H)

(∫ τ

0
e2vs ds

∫ τ

0
‖u(s)‖2H

)1/2

≤Me−vτ‖B(t)‖L (U,H)
1

2

(e2vτ − 1

v

)1/2
‖u(s)‖L2([0,τ ];U)

Therefore, Ψτ ∈ L (L2([0, τ ];U), H).
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Using the property (2.3.24) and the lemma (2.3.12), there exists a constant c > 0
such that

‖Λ∗x‖ ≤ c‖Ψ∗τx‖.

It is also easy to see Λ∗x = U(τ, s)∗x. As a result, we obtain the inequality:

c‖B∗(s)U(τ, s)∗x‖ ≥ ‖U(τ, s)∗x‖.

The key seems to be valid if and only if the control u yields a solution x(·) satisfying
x(τ) = xτ . Therefore, we can steer the system (2.2.1) via the control u to the desired
endpoint if and only if∫ τ

0
〈u(s), B(s)∗z(s)〉 ds ≤ C2

∫ τ

0
‖B(s)∗z(s)‖2H ds

This, of course admits a trivial solution: just put u(s) = B(s)∗z(s).
Compare the choice of the control to the homogeeous situation: If A(t) = A,

z(s) = T (τ−s)∗zτ satisfies (2.2.3), and so u(s) = B(s)∗T (τ−s)∗zτ , whence

x(τ) =
(∫ τ

0
T (τ−s)B(s)B(s)∗T (τ−s)∗ ds

)
zτ .

Lemma 2.3.30. Suppose that the family of bounded operator {B(t)} is admissible
for (2.2.1), and {U(t, s)}s≤t is exponentially bounded evolution family. Then the
null controllability for (2.2.1) intime τ is equivalent to final observability of z(s),
0 ≤ s < τ where z is the solution of the retrograde final-value problem (2.2.3) with
the observation operators C(t) = B(t)∗.

Approximate controllability and approximate observability

It has been shown in [35] that under a suitable condition on the resolvent operator
and the Schauder fixed point theorem, we have the approximate controllability of
(2.1.1). We propose the following assumption:

λR(λ,−Wτ )→ 0 for λ→ 0+ in the strong operator topology. (2.3.25)

Theorem 2.3.31. [35, Theorem 1] The following statements are equivalent:
i) The system (2.1.1) is approximate controllable on [0, τ ]
ii) If B∗U(t, 0)y = 0 for all t ∈ [0, τ ] then y = 0
iii) The condition (2.3.25) holds

Example 2.3.32. [35] We consider the following non-autonomous heat equation
∂
∂tz(x, t) = ∂2

∂x2
z(x, t) + a(t)z(x, t) + u(t) (x, t) ∈ [0, π]× [0, τ ]

z(0, t) = u(π, t) = 0 τ ≥ t ≥ 0
z(x, 0) = z0 x ∈ [0, π].

(2.3.26)

The family of operator {A(t)} is defined as A(t)f = −f”−a(t)f with the domain
D(A) = {f(.) ∈ X

∣∣∣f, f ′are absolutely continuous, f” ∈ X, f(0) = f(π) = 0}. Then
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we can check that A(t) satisfies the assumptions from [103] and generates evolution
family {U(t, s)} of the form:

U(t, s) = e−(t−s)A exp
(∫ t

s
a(r) dr

)
(2.3.27)

where e−tA is a compact analytic semigroup generated by (−A) where Af = f” for
any f ∈ D(A. Noting that A is diagonal operator with the set of eigenvalues {n2}n∈N
and the normal eigenvector zn(x) =

√
2
π sin(nx). Then we have the representation:

A(t)f =
+∞∑
n=1

(n2 − a(t))〈f, zn〉zn (2.3.28)

Moreover, for any f ∈ X we have:

U(t, s)f =

+∞∑
n=1

e−n
2(t−s)+

∫ t
s a(r) dr〈f, zn〉zn. (2.3.29)

Since B = I, we have:

Wτ =

∫ τ

0
U(t, s)BB∗U(t, s)∗ =

∫ τ

0
W (τ, s)W ∗(τ, s) ds.

Indeed, if U∗(τ, 0)y = 0 then

+∞∑
n=1

∫ τ

0
e−2n2τ−2

∫ τ
0 a(r) dr ds〈y, zn〉2 = 0.

It implies immediately that 〈y, zn〉2 = 0 for every n ≥ 0, so y = 0. From theorem
2.3.31, we conclude that λ(λI + Wτ )−1 → 0 in the strong topology for λ → 0. The
system (2.3.26) is approximately controllable on the interval [0, τ ].

Lemma 2.3.33. Approximate controllability for (2.2.1) in time τ is equivalent to
approximate observability of the retrograde final-value problem (2.2.3) with the ob-
servation operators C(t) = B(t)∗.
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Chapter 3

Exact observability of a 1D wave
on a non-cylindrical domain

3.1 Introduction and main results

In this chapter we are concerned with exact observabil-
ity of the 1D wave equation on a domain with time-
dependent boundary. To be precise, let s : R+ →
(0,∞) and let

Ω =
{

(x, t) ∈ R2 : t ≥ 0 and 0 ≤ x ≤ s(t)
}
,

Where s(0) = 1 and ‖s′(t)‖L∞(R) < 1. The last con-
dition ensures amongst other things that the charac-
teristic emerging from the origin hits the boundary in
finite time. Let f ∈ L2([0, 1]) and g ∈ H1

0 ([0, 1]) be
initial values. We consider a wave equation on Ω with
Dirichlet boundary conditions

utt − uxx = 0 (x, t) ∈ Ω
u(0, t) = u(s(t), t) = 0 t ≥ 0
u(x, 0) = g(x) x ∈ [0, 1]
ut(x, 0) = f(x) x ∈ [0, 1]

(W.Eq)

x

t

1

Ω

x = s(t)

3.1.1 Existence of solutions

There are several natural approaches to (W.Eq). One may for example transform
the domain Ω to a cylindrical domain. Instead, seeking a natural and more simple
approach, we try to develop the solution u into a series of the form

u(x, t) :=
∑
n∈Z

An

(
e2πin ϕ(t+x) − e2πin ϕ(t−x)

)
(3.1.1)

where the coefficients An are given by the initial data (g, f). This approach has
almost a century of history, dating back to Nicolai [100] in the case of a linear
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moving boundary s(t) = 1+εt and Moore [92] for general boundary curves (however
only asymptotic developments for ϕ are given). We refer to Donodov [25] for a large
number of references. In order to satisfy the Dirichlet boundary condition, we need
a solution ϕ to the functional equation

ϕ(t+ s(t))− ϕ(t− s(t)) = 1. (3.1.2)

Because of the importance of this functional equation we fix the notation α(t) :=
t+ s(t) and β(t) := t− s(t) and mention that both are strictly increasing bijections
from R+ to [±s(0),∞), respectively. We will also consider γ = α◦β−1 : [−s(0),∞)→
[s(0),∞). Most solutions to (3.1.2) are useless for our purposes∗. On the other hand
side, under reasonable assumptions on the boundary function, differentiable solutions
to (3.1.2) are unique, at least up to an additive constant. This is of course what we
look for. In some easy cases a differentiable solution ϕ can be found by calculus,
see the following table for some examples. We refer to a detailed discussion on the
general situation in the last section 3.3.

Name Boundary function

linear moving boundary s(t) = 1 + εt ε ∈ (0, 1)
parabolic boundary s(t) =

√
1 + εt ε ∈ (0, 2)

hyperbolic boundary s(t) = 1
ε (−1 +

√
1+(1+εt)2) ε > 0

shrinking domain s(t) = 1
1+εt ε ∈ (0, 1).

Solution to (3.1.2)

ϕ(t) = ln(1+ε
1−ε)

−1 ln(1+εt)

ϕ(t) = 1
2ε

√
ε2 + 4εt+ 4

ϕ(t) = εt
1+εt

ϕ(t) = ε
4(t+ 1

ε )2 .

For simplicity of notation, we shall always assume s(0) = 1 ; in case of hyperbolic
boundaries some straight-forward modifications have to be made. The common
denominator of these examples is the following: ϕ ∈ C2([−1,∞)) and ϕ′(t) > 0 for
all t ≥ −1. We call s an admissible boundary function if (3.1.2) admits such a
solution ϕ.

Proposition 3.1.1. Let s be an admissible boundary function and assume the initial
data f, g ∈ D((0, 1)). Then (g, f) determine uniquely a sequence (An)n∈Z ∈ `2 such
that for t ≥ 0 and 0 ≤ x ≤ s(t), the function (3.1.1) is the solution of the moving
boundary wave equation (W.Eq).

We start the proof with the following trivial observation.

Lemma 3.1.2. For fixed t0 ≥ 0, the family {e2πinϕ(x) : n ∈ Z}, is a complete
orthonormal system in H := L2([t0−s(t0), t0+s(t0)], ϕ′(x) dx).

∗It is indeed easy to construct solutions depending on an arbitrary function by using the axiom
of choice
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3. Exact observability of a 1D wave on a non-cylindrical domain

For t0=0, we obtain as a particular case that the family (bn) with bn(x) =
e2πinϕ(x) is an orthonormal basis in H := L2([−1, 1], ϕ′(x) dx). Since there is C > 0
such that 1

C ≤ ϕ
′(x) ≤ C on [0, 1], we have L2([−1, 1], ϕ′(x) dx) = L2([−1, 1], dx) as

sets with equivalent respective norms†.

Proof of Proposition 3.1.1 . We let F (x) = −
∫ 1
x f(s) ds and

h(x) :=

{
1
2g(x) + 1

2ϕ′(0)F (x) for 0 ≤ x ≤ 1

−1
2g(−x) + 1

2ϕ′(0)F (−x) for −1 ≤ x < 0

By assumption, h ∈ H that we develop into the orthonormal basis: h =
∑

Z 〈h, bn〉 bn.
We shall always note

An = 〈h, bn〉 =

∫ 1

−1
h(x)e2πinϕ(x)ϕ′(x) dx (3.1.3)

Since g(0)=g(1)=0, we have h(1)=h(−1)=0. Hence the sequences (An) and (nAn)
are square-summable. Taking sum and difference, we find F (x) = ϕ′(0)(h(x) +
h(−x)) and g(x) = h(x)− h(−x), so

F (x) = ϕ′(0)
∑
n∈Z

An

(
e2πinϕ(x) + e2πinϕ(−x)

)
, x ∈ [0, 1]

and
g(x) =

∑
n∈Z

An

(
e2πinϕ(x) − e2πinϕ(−x)

)
, x ∈ [0, 1].

Since we suppose f, g ∈ D((0, 1)), h satisfies the periodicity condition h(α)(−1)=h(α)(1)
for all derivative orders α ≥ 0. As a consequence, the series of F , g and h above may
be differentiated term by term. We let

u(x, t) :=
∑
n∈Z

An

(
e2πin ϕ(t+x)) − e2πin ϕ(t−x))

)
Since ϕ ∈ C2([−1,∞)), u is twice differentiable and with respect to x and t. More-
over, partial derivatives can be calculated term by term. As an immediate conse-
quence, uxx − utt = 0 in the interior domain Ω◦. Moreover, u satisfies the Dirichlet
condition since for x = 0

u(0, t) =
∑
n∈Z

An

(
e2πin ϕ(t)) − e2πin ϕ(t))

)
= 0

whereas for x = s(t), thanks to the functional equation (3.1.2),

u(s(t), t) =
∑
n∈Z

An

(
e2πin ϕ(t+s(t)) − e2πin ϕ(t−s(t))

)
=
∑
n∈Z

Ane
2πin ϕ(t+s(t))

(
1− e−2πin

)
= 0.

Finally, u(x, 0) = g(t) and ut(x, 0) = f(t) by direct calculation.
†In particular, (bn) is a Riesz basis in L2([−1, 1]).
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3.1. Introduction and main results

The series representation of the solution is the key to obtain explicit and precise
constants for admissibility and exact observability in different situations, since they
can be played back to classical Fourier analysis.

Let us fix some often appearing constants:

m(t) = min{ϕ′(x) : x ∈ [t− s(t), t+ s(t)]} and
M(t) = max{ϕ′(x) : x ∈ [t− s(t), t+ s(t)]}.

(3.1.4)

Since on [0, 1],m(0) ≤ ϕ′(x) ≤M(0), we may use the unweighted Poincaré inequality
on [0, 1] to show that∥∥(g, f)

∥∥2

H1
0 ([0,1]; dx

ϕ′(x) )×L2([0,1]; dx
ϕ′(x) )

:=
∥∥∇g∥∥2

L2([0,1]; dx
ϕ′(x) )

+
∥∥f∥∥2

L2([0,1]; dx
ϕ′(x) )

. (3.1.5)

is an equivalent to ‖g‖2
L2([0,1]; dx

ϕ′(x) )
+‖g′‖2

L2([0,1]; dx
ϕ′(x) )

+‖f‖2
L2([0,1]; dx

ϕ′(x) )
. The notation

‖(g, f)‖2H1
0×L2

:= ‖g′‖2L2(0,1) + ‖f‖2L2(0,1)

(without specifying intervals or weights) always refers to the unweighted norms on
[0, s(0)] = [0, 1].

Proposition 3.1.3. We have the following estimate

8π2m(0)
∑
n∈Z

n2|An|2 ≤ ‖(g, f)‖2H1
0×L2

≤ 8π2M(0)
∑
n∈Z

n2|An|2,

where the constants are given by (3.1.4).

Proof. Recall that g(x) = h(x)−h(−x) and F (x) = h(x)+h(−x) on [0, 1]. Therefore∥∥(g, f)
∥∥2

H1
0×L2

=
∥∥g′∥∥2

L2([0,1])
+
∥∥F ′∥∥2

L2([0,1])

=
∥∥h′(·) + h′(−(·))

∥∥2

L2([0,1])
+
∥∥h′(·)− h′(−(·))

∥∥2

L2([0,1])

= 2
∥∥h′∥∥2

L2([0,1])
+ 2
∥∥h′(−·)∥∥2

L2([0,1])
= 2
∥∥h′∥∥2

L2([−1,1])

by parallelogram identity. Estimating the maximum of ϕ′ and 1
ϕ′ on [−1, 1] allows

to relate
∥∥h′∥∥2

L2([−1,1],ϕ′(x) dx)
and

∥∥h′∥∥2

L2([−1,1])
, and the result follows by Parseval’s

identity.

Observe that for the concrete examples we discuss later, the minimum respec-
tively maximum is easy to calculate; we obtain therefore explicit constants in Propo-
sition 3.1.3.

3.1.2 Energy estimates

Define the energy of the problem (W.Eq) as

Eu(t) = 1/2

∫ s(t)

0
|ux(x, t)|2 + |ut(x, t)|2 dx.

for all t ≥ 0. When t = 0, we see that Eu(0) = 1/2‖(g, f)‖2
H1

0×L2(0,1)
. In the case of a

1D-wave equation with time-invariant boundary (i.e. s ≡ 1) the energy is constant.
In time-dependent domains it decays when s′(t) > 0 and increases when s′(t) < 0.
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3. Exact observability of a 1D wave on a non-cylindrical domain

Lemma 3.1.4. The function t 7→ Eu(t) is decreasing for t ≥ 0 if s′(t) > 0 and
increasing when s′(t) < 0. More precisely,

d
dtEu(t) = s′(t)

2 (s′(t)2 − 1) |ux(s(t), t)|2. (3.1.6)

Proof. Differentiating the constant zero function u(s(t), t) with respect to t yields
ut(s(t), t) = −s′(t) ux(s(t), t). We use this twice in the following calculation.

d
dtEu(t) = 1

2s
′(t)(u2

t + u2
x)
∣∣
x=s(t)

+ 1
2

∫ s(t)

0

∂
∂t(u

2
t + u2

x) dx

= s′(t)
2 (1+s′(t)2) (u2

x)
∣∣
x=s(t)

+

∫ s(t)

0
(ututt + uxutx) dx

= s′(t)
2 (1+s′(t)2) (u2

x)
∣∣
x=s(t)

+

∫ s(t)

0
(utuxx + uxutx) dx

(integration by parts) = s′(t)
2 (1+s′(t)2) (u2

x)
∣∣
x=s(t)

+
[
utux

]x=s(t)

x=0

= s′(t)
2 (1+s′(t)2) (u2

x)
∣∣
x=s(t)

+utux
∣∣
x=s(t)

= s′(t)
2 (s′(t)2 − 1) |ux(s(t), t)|2.

Recall that ‖s′‖∞ < 1 to conclude that sign( ddtEu(t)) = −sign(s′(t)).

Proposition 3.1.5. For (W.Eq) the following energy estimate holds

m(t)
2M(0)

∥∥(g, f)
∥∥2

H1
0×L2

≤ Eu(t) ≤ M(t)
2m(0)

∥∥(g, f)
∥∥2

H1
0×L2

(3.1.7)

where the constants are given by (3.1.4).

Proof. Taking term by term derivatives in (3.1.1) gives

ux(x, t) = 2πi
∑
n∈Z

nAn
(
ϕ′(t+x)e2πinϕ(t+x) + ϕ′(t−x)e2πinϕ(t−x)

)
ut(x, t) = 2πi

∑
n∈Z

nAn
(
ϕ′(t+x)e2πinϕ(t+x) − ϕ′(t−x)e2πinϕ(t−x)

)
Therefore, using parallelogram identity as in the proof of Proposition 3.1.3,

2Eu(t) =

∫ s(t)

0

∣∣ux(x, t)
∣∣2 +

∣∣ut(x, t)∣∣2 dx

= 8π2
(∫ s(t)

0

∣∣∣∑
n∈Z

nAnϕ
′(t+x)e2πinϕ(t+x)

∣∣∣2 dx +

∫ s(t)

0

∣∣∣∑
n∈Z

nAnϕ
′(t−x)e2πinϕ(t−x)

∣∣∣2 dx
)

= 8π2

∫ t+s(t)

t−s(t)

∣∣∣∑
n∈Z

nAn
(
ϕ′(y)e2πinϕ(y)

)∣∣∣2 dy.

This yields the double inequality

4π2m(t) a(t) ≤ Eu(t) ≤ 4π2M(t) a(t)
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3.2. Point Observations

where

a(t) =

∫ t+s(t)

t−s(t)

∣∣∣∑
n∈Z

nAne
2πinϕ(y)

∣∣∣2ϕ′(y) dy.

By Lemma 3.1.2 and Proposition 3.1.3 we conclude.

3.2 Point Observations

3.2.1 Boundary Observation

Recall the notation α(t) = t+ s(t), β(t) = t− s(t) and γ = α ◦ β−1.

Theorem 3.2.1. For any admissible boundary curve s(t) and solution u to the mov-
ing boundary wave equation (W.Eq) given by (3.1.1) the following double inequality
holds:

2m(β−1(0))
M(0)

∥∥(g, f)
∥∥2

H1
0×L2

≤
∫ γ(0)

0

∣∣ux(0, t)
∣∣2 dt ≤ 2M(β−1(0))

m(0)

∥∥(g, f)
∥∥2

H1
0×L2

(3.2.1)
In particular, with the observations Cψ = ψx(0) the problem (W.Eq) is exactly ob-
servable in time τ if and only if τ ≥ γ(0).

Proof. Differentiating u term by term, and evaluating at x = 0 we have for all τ > 0

‖ux(0, t)‖L2(0,τ, 1
ϕ′(t) ) =

∫ τ

0

∣∣∣4πi∑
n∈Z

nAnϕ
′(t)e2πinϕ(t)

∣∣∣2 dt
ϕ′(t) .

Consider β(t) = t−s(t) with domain t ∈ [0,+∞). Clearly, β(t) is strictly increasing
and since β(0) = −1 < 0, there exist a unique t0 such that β(t0) = 0. Let τ0 :=
t0+s(t0) = γ(0). Then, by Lemma 3.1.2,

‖ux(0, t)‖2
L2(0,τ0,

1
ϕ′(t) )

= 16π2
∑
n∈Z

n2|An|2

Clearly,

1
M(t0)‖ux(0, t)‖2L2(0,τ0) ≤ ‖ux(0, t)‖2

L2(0,τ0,
1

ϕ′(t) )
≤ 1

m(t0)‖ux(0, t)‖2L2(0,τ0).

Combining this with Proposition 3.1.3, we find our double inequality. From this
is obvious that observation times τ ≥ τ0 suffice. On the other hand, if τ < τ0,
‖ux(0, t)‖2

L2(0,τ, 1
ϕ′(t) )

and
∑
n2|An|2 cannot be comparable, which is easy to see by

a change of variables bringing it back the the standard trigonometric orthonormal
basis of L2(0, 1). This shows, again by Proposition 3.1.3, that exact observation is
impossible.

Theorem 3.2.2. For the solution u given by (3.1.1) to the moving boundary wave
equation (W.Eq) the following double inequality holds:

C1

∥∥(g, f)
∥∥2

H1
0×L2

≤
∫ γ−1(0)

0

∣∣ux(s(t), t)
∣∣2 dt ≤ C2

∥∥(g, f)
∥∥2

H1
0×L2

(3.2.2)

52



3. Exact observability of a 1D wave on a non-cylindrical domain

where C1 = m(0)
2M(0)(1+‖s′‖∞)(1+m(t0)

M(t0))2 and C2 = M(0)
2m(0)(1−‖s′‖∞)(1+M(t0)

m(t0) )2.
In particular, with the observations M(t)ψ = ψx(s(t)) the problem (W.Eq) is

exactly observable in time τ if and only if τ ≥ γ−1(0).

Proof. Next we consider observation on the right boundary x = s(t). As in the proof
of Theorem 3.2.1, let t0 be such that β(t0) = t0−s(t0) = 0 and define τ0 := γ−1(0).
Taking the derivative of u(x, t) with respect to x term by term, substituting x = s(t)
and exploiting (3.1.2) yields

ux(s(t), t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+s(t))ϕ′(t+ s(t))) + e2πinϕ(t−s(t))ϕ′(t− s(t))

)
= 2πi

∑
n∈Z

ϕ′(t− s(t))e2πinϕ(t−s(t))nAn

(
1 +

ϕ′(t+ s(t))

ϕ′(t− s(t))

)
(3.2.3)

Then

(1 + m(t0)
M(t0)) ≤

(
1 +

ϕ′(t+ s(t))

ϕ′(t− s(t))

)
≤ (1 + M(t0)

m(t0) ) (3.2.4)

Let ω(t) = 1−s′(t)
ϕ′(t−s(t)) . Then

∥∥ux(s(t), t)
∥∥2

L2(0,τ0,ω(t) dt)
∼ 4π2

∫ τ0

0

∣∣∣∑
n∈Z

e2πinϕ(t−s(t))nAn

∣∣∣2ϕ′(t−s(t))(1−s′(t)) dt

where the equivalence comes from (3.2.4). We make the change of variables ξ =
ϕ(t−s(t)) and observe that (3.1.2) gives an upper bound of the integral to be
ϕ(β(τ0))) = 1 + ϕ(β(0)). So

∥∥ux(s(t), t)
∥∥2

L2(0,τ0,ω(t) dt)
∼ 4π2

∫ ϕ(β(0))+1

ϕ(β(0))

∣∣∣∑
n∈Z

e2πinξnAn

∣∣∣2 dξ = 4π2
∑
n∈Z

n2|An|2

We summarise:

4π2(1+m(t0)
M(t0))2

∑
n∈Z

n2|An|2 ≤
∥∥ux(s(t), t)

∥∥2

L2(0,τ0,ω(t) dt)
≤ 4π2(1+M(t0)

m(t0) )2
∑
n∈Z

n2|An|2

We conclude the proof observing that 1−‖s′‖∞
M(0) ≤ ω(t) ≤ 1+‖s′‖∞

m(0) which allows to
remove the weight function:

4π2m(0)
1+‖s′‖∞ (1+m(t0)

M(t0))2
∑
n∈Z

n2|An|2 ≤
∥∥ux(s(t), t)

∥∥2

L2(0,τ0)
≤ 4π2M(0)

1−‖s′‖∞ (1+M(t0)
m(t0) )2

∑
n∈Z

n2|An|2

We conclude using Proposition 3.1.3.
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3.2. Point Observations

Let us finish this paragraph with a little observa-
tion. The optimal times for boundary observations
given in Theorems 3.2.1 and 3.2.2 are precisely the
times where a characteristic emerging from the left
(resp. right) boundary point x = 0, resp. x = 1
hit again the boundary curve, see the picture on
the right.
A second remark is that since u(s(t), t) = 0, taking
derivative with respect to t gives s′(t)ux(s(t), t) =
−ut(s(t), t). We may hence replace ux by ut in the
inequality (3.2.2), at the only price to modify the
constants by a factor ‖s′‖∞ . x

t

1

x = s(t)γ(0)

γ−1(0)

Somehow a similar result to Theorem 3.2.2 in a dual setting in terms of controlla-
bility have been shown in [23] for the special case of a linear moving wall s(t) = 1+εt
by a transformation to a cylindrical domain proposed by Miranda [90]. The minimal
control time estimate was however far from optimal. Their result (again only for the
linear moving wall case) was subsequently improved in [117] who found the same
minimal control time as ourselves by a different method‡.

3.2.2 Internal Point observation

Next, we turn our attention to observation on an internal point. In the situation
where s(t) = 1 and hence ϕ(x) = x, the solution u to (W.Eq) is given by a sine-series
(due to Dirichlet boundary conditions),

u(x, t) =
∑
n∈Z

ane
iπnt sin

(
nπx

)
.

Consequently, internal point observation at x=a is not possible when a ∈ Q since
then infinitely many terms in the sum vanish, independently of the leading coefficient.
One way to counter this problem is to obtain observability results for the average
of |u|2 in a small neighbourhood of a fixed internal point a, see [32]. It is also well
known that another way to counter this problem is to consider a moving interior
point, see for example [14, 62, 63]. We follow in this chapter the idea that fixed
domain with moving observers should somehow behave similar to moving domains
with fixed observers. The following result confirms this intuition: for any fixed point
a ∈ (0, 1), consider a Neumann observer defined by Cu = ux(a, t) to the solution u
of the moving boundary wave equation (W.Eq).

Theorem 3.2.3. Let s be an monotonic admissible boundary curve and ϕ be a C2-
solution to (3.1.2). Assume additionally that ϕ′ is strictly decreasing if s(·) is in-
creasing or that ϕ′ is strictly increasing if s(·) is decreasing, respectively.

Then solution u to the wave equation (W.Eq) satisfies the following double in-

‡Caution: when writing out the parametrisation of the boundary integral in [117, formula (2.2)],
the authors forget a factor (1+ε)

1/2. This wrong factor then appears in many subsequent estimates
in their paper.
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3. Exact observability of a 1D wave on a non-cylindrical domain

equality:

C1(a)
∥∥(g, f)

∥∥2

H1
0×L2

≤
∫ a+γ(−a)

0

∣∣ux(a, t)
∣∣2 dt ≤ C2(a)

∥∥(g, f)
∥∥2

H1
0×L2

,

where the constants C1 and C2 depend only on s and a. We provide them explicitly
in the proof.

Proof. Let t1 = β−1(−a) and τa = a+γ(−a). Term by term differentiation of (3.1.1)
with respect to x gives

ux(a, t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+a)ϕ′(t+ a) + e2πinϕ(t−a)ϕ′(t− a)

)
First we suppose that ϕ′ is strictly decreasing. We first calculate a weighted L2-norm
with ωa(t) = 1

ϕ′(t−a) :

A−B ≤ ‖ux(a, t)‖L2(0,τa,ωa(t) dt) ≤ A+B

with

A := 2π
∥∥∥∑
n∈Z

nAne
2πinϕ(t−a)ϕ′(t− a)

∥∥∥
L2(0,τa,ωa(t) dt)

B := 2π
∥∥∥∑
n∈Z

nAne
2πinϕ(t+a)ϕ′(t+ a)

∥∥∥
L2(0,τa,ωa(t) dt)

.

To estimate A, the change of variables s = t−a together with Lemma 3.1.2 therefore
gives

A2 = 4π2
∑
n∈Z

n2|An|2.

For B, we have

B2 = 4π2

∫ τa

0

∣∣∣∑
n∈Z

nAn(e2πinϕ(t+a)ϕ′(t+ a))
∣∣∣2ωa(t) dt

Since ϕ′ is strictly decreasing, 0 < ϕ′(t+a)
ϕ′(t−a) < 1 for all t ∈ [0, τa] and so qa :=

max[0,τa]
ϕ′(t+a)
ϕ′(t−a) < 1. We then have

B2 ≤ 4π2qa

∫ τa

0

∣∣∣∑
n∈Z

nAne
2πinϕ(t+a)ϕ′(t+ a))

∣∣∣2 1
ϕ′(t+a) dt

= 4π2qa

∫ a+τa

a

∣∣∣∑
n∈Z

nAne
2πinϕ(s)

∣∣∣2ϕ′(s) ds

Recall that a+ τa = 2a+ γ(−a). Since s′ ≥ 0, we have γ′ ≥ 1 and so 2a+ γ(−a) ≤
γ(a). By Lemma 3.1.2 we infer

B2 ≤ 4π2qa

∫ γ(a)

a

∣∣∣∑
n∈Z

nAne
2πinϕ(s)

∣∣∣2ϕ′(s) ds = 4π2qa
∑
n∈Z

n2|An|2.
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3.2. Point Observations

Putting both on A and B estimates together, and using Proposition 3.1.3, we get
the lower estimate

‖ux(a, t)‖2L2(0,τa) ≥ m(t1)
∥∥ux(a, t)

∥∥2

L2(0,τa,ωa(t) dt)

≥ 4π2m(t1)(1−√qa)2
∑
n∈Z

n2|An|2

≥ C1(a)
∥∥(g, f)

∥∥2

H1
0×L2

with C1(a) = m(t1)
2M(0)(1−√qa)2. The upper estimate is similar; we find C2(a) =

M(t1)
2m(0) (1+

√
qa)

2.
In the case where ϕ′ is strictly increasing we use ω̃a(t) = 1

ϕ′(t+a) as a weight
function and change the rôles of A and B. The result follows the same lines then.

We observe that the same proof also gives the double inequality

C1(a)
∥∥(g, f)

∥∥2

H1
0×L2

≤
∫ a+γ(−a)

0

∣∣ut(a, t)∣∣2 dt ≤ C2(a)
∥∥(g, f)

∥∥2

H1
0×L2

.

Discussion

One may formulate (W.Eq) as an abstract non-autonomous Cauchy problem, for
example as follows: let Ht = L2([0, s(t)]) and define

D(A(t)) = H1
0 ([0, s(t)] ∩H2([0, s(t)]) and A(t)f = f ′′

Then A(t) is the generator of an analytic semigroup on Ht. For t ≥ 0, we let
Ht = H1

0 ([0, s(t)])× L2([0, s(t)]) and

D(a(t)) = D(A(t))×H1
0 ([0, s(t)]) and a(t) =

( 0 I
A(t) 0

)
.

With this notation (W.Eq) rewrites as{
x′(t) = a(t)x(t)

x(0) = x0 = (g, f) ∈ H0.
(3.2.5)

The observation of t 7→ ux(a, t) discussed in the theorem is then realised with obser-
vation operators C(t) : D(a(t))→ C defined by C(t)(v, w)t = vx(a). Theorem 3.2.3
states in particular exact observability on [0, τ ] if and only if τ ≥ a + γ(−a). It is
remarkable that this holds true, although, for a dense subset of values of t0 (precisely
if a/s(t0) ∈ Q) the “frozen” evolution equations

x′(t) + a(t0)x(t) = 0 y(t) = C(t)x(t)

are not exactly observable by the sine-series argument given above for the case s(t) =
1. This could now lead to the intuition that the non-observability on for all t > 0
such that a/s(t) ∈ Q is an “almost everywhere phenomenon”, and may be ignored.
This idea is partially contradicted by the following result, where the observation
position depends on time and may be such that the ratio a(t)/s(t) ∈ Q for all t > 0.
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3. Exact observability of a 1D wave on a non-cylindrical domain

Theorem 3.2.4. Let s(t) = 1 + εt and a(t) = as(t) for some a ∈ (0, 1). Then
the solution u to the wave equation (W.Eq) satisfies the following admissibility and
observation inequality:

C1(a, ε)
∥∥(g, f)

∥∥2

H1
0×L2

≤
∫ 2

1−ε

0

∣∣ut(a(t), t)
∣∣2 dt ≤ C2(a, ε)

∥∥(g, f)
∥∥2

H1
0×L2

The constants C1 and C2 depend only on a and ε. We provide them explicitly in the
proof.

Proof. Recall that the solution u of the equation (W.Eq) can be written in the form
(3.1.1) with ϕ(t) = Cε ln(1+εt), see the table on page 48. Taking the derivative
respected to t gives

ut(x, t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+x)ϕ′(t+x)− e2πinϕ(t−x)ϕ′(t−x)

)
Substituting x = a(t), we get

ut(a(t), t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+a(1+εt))ϕ′(t+a(1+εt))−e2πinϕ(t−a(1+εt))ϕ′(t−a(1+εt))

)
By calculation, we have the followings identities

ϕ(t± a(1+εt)) = ϕ(t) + ϕ(±a)

ϕt(t± a(1+εt)) = 1
εϕ
′(t)ϕ′(±a)

Plugging them into the preceding equation we get

ut(a(t), t) = 2πi
ε

∑
n∈Z

An

(
e2πin (ϕ(t)+ϕ(a))ϕ′(t)ϕ′(a)− e2πin (ϕ(t)+ϕ(−a))ϕ′(t)ϕ′(−a))

)
= 2πi

ε

∑
n∈Z

Ane
2πinϕ(t)ϕ′(t)

(
e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a)

)
Let t0 = 1

1−ε . Then [t0−s(t0), t0+s(t0) = [0, 2
1−ε ] and so, using Lemma 3.1.2,∥∥ut(a(t), t)

∥∥2

L2(0, 2
1−ε ,

1
ϕ′(t) )

= 4π2

ε2

∫ 2
1−ε

0

∣∣∣∣∑
n∈Z

e2πinϕ(t)ϕ′(t)nAn

(
e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a)

)∣∣∣∣2 1
ϕ′(t) dt

= 4π2

ε2

∑
n∈Z

n2|An|2
∣∣e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a))

∣∣2
Now we need to estimate the multiplicative term

M2
n =

∣∣e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a))
∣∣2

= ϕ′(a)2 + ϕ′(−a)2 − 2ϕ′(a)ϕ′(−a) cos
(

2πn(ϕ(a)− ϕ(−a))
)
.
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Clearly, (ϕ′(a)− ϕ′(−a))2 ≤M2
n ≤ (ϕ′(a) + ϕ′(−a))2 ; by direct calculation,

(ϕ′(a)− ϕ′(−a))2 = C2
ε

4ε4a2

(1−ε2a2)2
and (ϕ′(a) + ϕ′(−a))2 = C2

ε

4ε2

(1−ε2a2)2

Therefore, by Proposition 3.1.3,

16π2ε2a2

(1−ε2a2)2η2ε

∑
n∈Z

n2|An|2 ≤ ‖ut(a(t), t)‖2
L2(0, 2

1−ε ,
1

ϕ′(t) )
≤ 16π2

(1−ε2a2)2η2ε

∑
n∈Z

n2|An|2

Now we apply Proposition 3.1.3 to conclude. We find

C1(a, ε) = 1−ε
1+ε

2ε2a2

(1−ε2a2)2η2ε
and C2(a, ε) = 1+ε

1−ε
2

(1−ε2a2)2η2ε
.

3.2.3 Simultaneous exact observability

A last result in this section concerns simultaneous exact observability : consider
a system of two coupled 1D wave equations, one of which has a fixed boundary,
and the second has the moving domain 0 ≤ x ≤ s(t) as above. Assume that we
can observe only the combined force exerted by the strings at the common endpoint
ϕ(t) = u

(1)
x (0, t) + u

(2)
x (0, t), for t ∈ [0, T ]. The question is whether we can still

exactly observe all initial data. Our system is defined as
utt − uxx = 0 (x, t) ∈ Ω
vtt − vxx = 0 −1 ≤ x ≤ 0
u(0, t) = u(s(t), t) = v(−1, t) = v(0, t) = 0 t ≥ 0
u(x, 0) = g(x), ut(x, 0) = f(x) x ∈ [0, 1]

v(x, 0) = g̃(x), vt(x, 0) = f̃(x) x ∈ [−1, 0]

(W2)

Theorem 3.2.5. Let s(·) be an admissible boundary curve and assume additionally
that either

lim inf
t→∞

γ′(t) > 1 or γ′(t) = 1 + ax−δ + o(t−δ), 0 < δ < 1, a > 0.

Moreover assume that ϕ′ is bounded on R+. Let (u, v) be the solution to (W2). Then,
for all λ > 0 there exists τ0 > 2 such that for all τ ≥ τ0

λ
(∥∥(g, f)

∥∥2

H0
1×L1

+
∥∥(g̃, f̃)

∥∥2

H0
1×L2

)
≤

∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2dt (3.2.6)

Our assumptions include the cases of linear moving boundaries, parabolic bound-
aries and hyperbolic boundaries. However, for the shrinking domain they are not
satisfied.

Proof. By the triangle inequality we have(∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt

)1/2
≥ A(τ)−B(τ)
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3. Exact observability of a 1D wave on a non-cylindrical domain

where

A(τ) =
(∫ τ

0

∣∣vx(0, t)
∣∣2 dt

)1/2
and B(τ) =

(∫ τ

0

∣∣ux(0, t)
∣∣2 dt

)1/2

It is well known that the solution v of the wave equation with the fixed boundary
can be expressed as a pure sine series

v(x, t) =
∑
n∈Z

ane
πin t sin

(
nπx

)
, (3.2.7)

where (nan)n∈Z ∈ `2 and hence (an)n∈Z ∈ `2. Consequently, for all t ≥ 0, the energy
of v is constant: indeed, by direct computation,

Ev(t) = 1
2

∫ 1

0

∣∣∂v(x,t)
∂t

∣∣2 +
∣∣∂v(x,t)

∂x

∣∣2 dx = π2

2

∑
n∈Z

n2a2
n

We also have ∫ 2

0

∣∣vx(0, t)
∣∣2 dt =

∫ 2

0

∣∣∣∑
n∈Z

πnane
iπnt
∣∣∣2 dt = 4Ev(0).

Hence, using periodicity of v, we obtain (recall τ ≥ 2)

A(τ)2 =

∫ τ

0

∣∣vx(0, t)
∣∣2 dt ≥ 4b τ2c Ev(0)

Next we turn to an estimate for B(τ). Recall that

ux(0, t) = 4πi
∑
n∈Z

nAnϕ
′(t)e2πinϕ(t)

Let t0 = 0 and tn = γ(n)(t0). By construction of tn and (3.1.2),

ϕ(tn+1)− ϕ(tn) = ϕ(γ(tn))− ϕ(tn) = 1.

Hence, by Lemma 3.1.2, e2πinϕ(x) is an orthonormal system on L2([tn, tn+1], ϕ′(t) dt).
An inspection of the proof of Theorems 3.3.1 and 3.3.2 shows that if lim inft→∞ γ

′ >
1, tn → +∞ exponentially, whereas the asymptotics γ′(t) = 1 + at−δ + o(t−δ) en-
sures tn ∼ cn1/δ. Let N(τ) be the unique integer satisfying tn ≤ τ < tn+1. Let
C = sup{ϕ′(t) : t ≥ 0}. Then

B(τ) =

∫ τ

0

∣∣ux(0, t)
∣∣2 dt ≤

∫ τ

0

∣∣ux(0, t)
∣∣2 1
ϕ′(t) dt

≤ C
N(τ)∑
j=0

∫ tj+1

tj

∣∣ux(0, t)
∣∣2 1
ϕ′(t) dt

≤ 16π2C(N(τ)+1)
∑
n∈Z

n2|An|2

≤ 2C
m(0)(N(τ)+1)

(
‖g(1)(x)‖2H0

1 (0,1) + ‖f (1)(x)‖2L2(0,1)

)
.
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We obtained so far that∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt ≥ A(τ)2 −B(τ)2

≥ 4b τ2c Ev(0)− 2C
m(0)(N(τ)+1)

(
‖g(1)(x)‖2H0

1 (0,1) + ‖f (1)(x)‖2L2(0,1)

)
The first term grows linearly in τ . The second term is o(τ) since in case of exponential
growth of the sequence tn, N(τ) behaves logarithmically and in case that tn ∼ cn1/δ,
N(τ) ∼ τ δ with δ < 1. Hence, the difference tends to infinity with τ → +∞, which
means that for all λ > 0 there exists τ0 > 0 such that for τ ≥ τ0,∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt ≥ 2λ

(
E(u)(0) + Ev(0)

)
= λ

(∥∥(g, f)
∥∥2

H1
0×L2

+
∥∥(g̃, f̃)

∥∥2

H1
0×L2

)
.

3.2.4 Duality results

Without detailed proofs we state dual results to our results formulated as null-
controllability in the sense of ’transposition’.

Dirichlet control on boundary

Let s be an admissible boundary curve, v the solution to the wave equation on
Ω. Let (Gv)(t) = (v(0, t), v(s(t), t)) be the trace of v on the two boundary points.
Then for either choice, ζ(t) = (y(t), 0) or ζ(t) = (0, y(t)) the boundary controlled
wave equation 

vtt − vxx = 0 (x, t) ∈ Ω
(Gv)(t) = ζ(t) t ≥ 0
v(x, 0) = g ∈ L2([0, 1]) x ∈ [0, 1]
vt(x, 0) = f ∈ H−1([0, 1]) x ∈ [0, 1]

(3.2.8)

is null-controllable in times τ = γ(0) in case ζ(t) = (y(t), 0) and in time τ = γ−1(0)
in case ζ(t) = (0, y(t)). The null control can be achieved by the control function
y(t) = −ux(0, t), or y(t) = −ux(s(t), t), respectively where u(·) is the solution to
(W.Eq).

Simultaneous Null Control

Next we focus on the dual statement to Theorem 3.2.3 in terms of null-controllability.
Instead of one wave equation on Ω, we consider two wave equations with mixed
boundary conditions, one on the cylindrical domain [0, a]×R+ and one on the non-
cylindrical domain {(x, t) : a ≤ x ≤ s(t)}. Both equations are coupled via the
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3. Exact observability of a 1D wave on a non-cylindrical domain

control function ζ in the following way:

vtt − vxx = 0 0 ≤ x ≤ a
wtt − wxx = 0 a ≤ x ≤ s(t)
v(0, t) = w(s(t), t) = 0 t ≥ 0
v(a−, t) = w(a+, t) t ≥ 0
vx(a−, t)− wx(a+, t) = ζ(t) t ≥ 0
v(x, 0) = g(x), vt(x, 0) = f(x) x ∈ [0, a]
w(x, 0) = g(x), wt(x, 0) = f(x) x ∈ [a, 1]

(3.2.9)

Then Theorem 3.2.3 implies that (3.2.9) is null-controllable in time τ ≥ a+γ(−a).
The control can be achieved by letting ζ(t) = ux(a, t) where u(·) is the solution to
(W.Eq).

3.3 Differentiable solutions for general boundary func-
tions

In this section we discuss the solvability of (3.1.2) by a differentiable function ϕ.
Our hypotheses are that the boundary function s be of class C1 at least and that
limt→∞ s

′(t) = s exists. This last condition is of course only of interest if we seek
for solutions ϕ satisfying (3.1.2) for t ∈ R+, since it can easily be arranged if we
consider only t ∈ [0, τ ].

Let s(·) be of class C1 and ‖s′‖∞ < 1. Let α(t) = t + s(t) and β(t) = t − s(t).
Both functions, α and β are strictly increasing and continuous. Moreover, α(t) =
α(0) + tα′(ξt) > α(0) + t(1 − ‖s′‖∞) yields limt→+∞ α(t) = +∞. Hence α is a
bijection from [0,∞) to [1,∞); similarly β is a bijection from [0,∞) to [−1,∞). We
then consider the bijection

γ := α ◦ β−1 : [−1,∞)→ [+1,∞).

Observe that

γ′(t) =
α′ ◦ β−1

β′ ◦ β−1
=

1 + s′(β−1(t))

1− s′(β−1(t))
,

so that γ is strictly increasing by ‖s′‖∞ < 1. The sign of s′(β−1(t)) determines
whether γ is strictly contractive or strictly expansive. We also note for further
reference that if s ∈ C2,

γ′′(t) =
2s′′(β−1(t))

(1− s′(β−1(t)))3
.

The functional equation (3.1.2) can now be rephrased as

ϕ ◦ γ = ϕ+ 1. (A)

This equation is known as ’Abel’s equation’ and intensively studied, see for example
[70, 71] and references therein.

We will consider only the case where lim s(t) = s exists. Since s(t) > 0 for all t,
lim s′(t) = s < 0 is impossible. We may therefore either have s = 0 or s ∈ (0, 1). We
first discuss the situation of a non-zero limit, which means that γ′(t)→ ` = 1+s

1−s > 1.
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Theorem 3.3.1. Let ` > 1 and assume that γ′(x) = ` + O(x−δ) for δ > 0. Then
Abel’s equation (A) admits a strictly increasing solution ϕ ∈ C1([−1,∞)). If ad-
ditionally γ ∈ C2[0,∞), γ′′ = O(x−1−δ) and γ′ is decreasing, then ϕ is of class
C2([−1,∞)).

Proof of Theorem 3.3.1. Put ψ = `ϕ. Then ψ satisfies the Schröder equation ψ◦γ =
`ψ. Since γ(−1) = +1 and γ has no fixed points (otherwise s(t) = 0), γ(x) > x
for all x ≥ −1. Observe that by assumption, there exists some ξ > 0 such that
γ′(x) ≥ 1+`

2 > 1 for all x ≥ ξ. Let a0 = −1 and an = γ(n)(a0). If (an) were bounded,
we could extract a subsequence that converges to a fixed point of γ. So an → ∞.
Let k be such that ak > ξ. Hence

an+k+1 − ξ ≥ γ(an+k)− γ(ξ) > 1+`
2 (gn+k − ξ)

shows that an → +∞ exponentially. By monotonicity of γ we infer the same for
γ(n)(x) ≥ an for all x ≥ −1. This, together with γ′(x) = `+ O(x−δ) shows that

P (x) =

∞∏
n=0

γ′(γ(n)(x))

`

converges absolutely and uniformly on [−1,∞). P vanishes nowhere and satisfies
P ◦ γ = `

γ′P . We define

ψ(x) :=

∫ x

1
P (t) dt+ C

where the constant C is to be determined. By construction, ψ is strictly increasing
and satisfies

ψ ◦ γ(x) =

∫ γ(x)

γ(−1)
P (t) dt+ C = `

∫ x

−1
P (t) dt+ C = `

∫ 1

−1
P (t) dt+ `ψ + C(1− `)

So that, letting C = `
`−1

∫ 1
−1 P (t) dt > 0 ensures ψ ◦ γ = `ψ as required. Then

ϕ := lnψ
ln(`) is of class C1, strictly increasing.

If additionally γ′ decreases towards ` at infinity, a new lecture of the above growth
rate of (xn) shows that lim sup `n

xn
≤ 1 for any x0 ≥ −1. Therefore, the (termwise

differentiated product P ) yields a series

∑
n

γ′′(xn)
(n−1∏
j=0

γ′(xj)
)(∏

k 6=n

γ′(xn)

`

)
that normally on [−1,∞). We infer that P is of class C1, hence ψ and ϕ of class
C2.

In the situation that lim s′(t) = s = 0 and hence lim γ′(t) = 1 things are more
delicate. If γ is such that γ′(x) = 1 + o(x−δ) at infinity, for all x, y,

lim
n→∞

γ(n+1)(x)− γ(n)(x)

γ(n+1)(y)− γ(n)(y)
= 1.
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We leave the proof as exercise, as it is a modification of [70, Lemma 7.3]. Conse-
quently, whenever

ϕ(x) := lim
n→∞

γ(n)(x)− γ(n)(x0)

γ(n+1)(x0)− γ(n)(x0)

exists, ϕ is a solution to Abel’s equation (A). This is the P. Lévy’s algorithm, see e.g.
[70, Chapter VII]. In order to ensure existence of a solution we will in general have
to get a finer control of the asymptotics. The next result in this direction is based
on ideas of Szekeres [118, Theorem 1c], see also [70, Theorem 7.2]). The principal
idea is similar to Theorem 3.3.1, but we have to transform differently and to be more
careful how to construct an infinite product.

Theorem 3.3.2. If γ′(x) = 1 + a(1 − δ)x−δ + o(x−δ) at infinity, where a > 0 and
δ > 0, δ 6= 1, then Abel’s equation (A) has a strictly positive and strictly increasing
C1-solution ϕ.

Proof. First observe that γ(x)
x = 1+ax−δ+o(x−δ), by integrating γ′ on [0, x] or [x,∞)

according to δ < 1 or δ > 1. First we transform our problem into a multiplicative
version. To this end, let g : [−1,∞) → (0,∞) be a C1-function. Then, whenever ϕ
solves Abel’s equation (A), ψ(x) = g(x)ϕ′(x) satisfies

(ψ ◦ γ)(x) = g(γ(x))ϕ′(γ(x)) = g(γ(x))
ϕ′(x)

γ′(x)
=

g(γ(x))

g(x)γ′(x)
ψ(x) =: m(x)ψ(x)

Let xn = γ(n)(x). If (xn) were bounded, it would converge to a fixed point of γ —
but there is none. So xn → +∞. Assume that we chose the function g such that∑

n

∣∣∣∣g(xn)γ′(xn)

g(xn+1)
− 1

∣∣∣∣ (3.3.1)

converges uniformly on compact intervals. Then the infinite product

P (x) =

∞∏
n=0

1
m(γ(n)(x))

=
∞∏
n=0

g(xn)γ′(xn)

g(xn+1)
, (3.3.2)

defines a continuous function P that solves ψ ◦ γ = m · ψ. From P we then easily
regain ϕ. We chose g(x) = γ(x)1−δ. Then P (x) > 0 for all x. Moreover we have the
following asymptotics for x→∞:

1 − γ′(x)

(
x

γ(x)

)1−δ
= 1 − 1

(1+ax−δ+r1(x))
1−δ

(
1 + a(1−δ)x−δ + r̃1(x)

)
= 1 −

(
1− a(1−δ)x−δ + r2(x)

)(
1 + a(1−δ)x−δ + r̃2(x)

)
=a2(1−δ)2x−2δ + r(x).

where r1, r2, r̃1r̃2 = o(x−δ) and r = o(x−2δ) for x→∞. Next, we need a growth rate
for the orbits xn = γ(n)(x0): Observe that a = limn→∞

γ(xn)−xn
x1−δn

= limn→∞
xn+1−xn
x1−δn

.
Rewriting the right hand side we obtain

a = lim
n→∞

(xδn − xδn+1)
(
xn+1

xn

)−δ xn+1

xn
− 1(

xn+1

xn

)−δ
− 1

.
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Using xn+1

xn
= γ(xn)

xn
→ 1 as n→∞ the last fraction has limit −1/δ and we obtain

δa = lim
n→∞

(xδn+1 − xδn).

Taking Cesaro sums,

δa = lim
n→∞

1

n

n−1∑
j=0

(xδj+1 − xδj) = lim
n→∞

1

n
xδn.

We infer finally xn ∼ c n1/δ when n→∞. Putting both parts together,∣∣∣∣g(xn)γ′(xn)

g(xn+1)
− 1

∣∣∣∣ = a2(1−δ)2x−2δ
n + r(xn) = a2(1−δ)2n−2 + r(xn)

where r(xn) = o(n−2). Therefore (3.3.1) converges absolutely and uniformly on
compact intervals so that (3.3.2) converges to a strictly positive function P . For
C > 0 to be determined in a moment, we let

ϕ(x) := C

∫ x

1

P (t)

γ(t)1−δ dt.

P and γ being strictly positive, ϕ is positive, strictly increasing and of class C1.
Moreover,

ϕ(γ(x)) = C

∫ γ(x)

γ(−1)

P (t)

γ(t)1−δ dt = C

∫ x

−1

P (γ(s))

γ(γ(s))1−δ γ
′(s) ds

= C

∫ x

−1

P (s)m(s)

γ(γ(s))1−δ γ
′(s) ds = C

∫ x

−1

P (t)

γ(t)1−δ dt

= ϕ(x) + C

∫ 1

−1

P (t)

γ(t)1−δ dt,

so that adjusting C (the integral being strictly positive) we obtain a solution of
Abel’s equation (A).
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Chapter 4

Observability of a 1D Schrödinger
equation with time-varying
boundaries

We discuss the observability of a one-dimensional Schrödinger equation on cer-
tain time dependent domain. In linear moving case, we give the exact boundary and
pointwise internal observability for arbitrary time. For the general moving, we pro-
vide exact boundary observability when the curve satisfies some certains conditions
. By duality theory, we establish the controllability of adjoint system.

4.1 Introduction

Let τ > 0, and `(t) : [0, τ ] → R+ a strictly positive C2–function satisfying
`(0) = 1 and `′

` ∈ L∞. We consider the following system as a initial boundary value
problem in a time dependent domain. i∂u∂t + ∂2u

∂x2
= 0 x ∈ [0, `(t)]

u(0, t) = u(`(t), t) = 0 t ≥ 0
u(x, 0) = u0 x ∈ [0, 1]

(Smoving)

For Neumann boundary observations we obtain estimates like

c(τ) ‖u0‖2H1
0 (0,1) ≤

∫ τ

0
|ux(0, t)|2 + |ux(`(t), t)|2 dt ≤ C(τ) ‖u0‖2H1

0 (0,1),

see Theorems 4.2.1, 4.2.2 and 4.2.3. We refer to the first estimate as observability
estimate and to the second as admissibility estimate. The two first mentioned results
rely on a transformation of (Smoving) to a non-autonomous equation on the fixed
domain [0, 1]: the change of variables y = x

`(t) and new function w(y, t) := u(x, t)
gives an equivalent differential equation for w, namely

i∂w∂t = −1
`(t)2

∂2w
∂y2

+ i `
′(t)
`(t) y

∂w
∂y ,

w(0, t) = w(1, t) = 0
wy(0, t) = `(t)ux(0, t) and
wy(1, t) = `(t)ux(`(t), t)

(Sfixed)
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4.2. Main Results

which can easily obtained by the chain rule.
To obtain Theorems 4.2.1 and 4.2.2 we apply the ’multiplier technique’: This

powerful method has been developped by Morawetz [93] and was later extended by
Ho [44] and Lions [80]. We extend a version of Machtyngier [84] to time-dependend
multipliers. The observability estimate relies then on the “uniqueness-compacity”
lemma 4.3.5. The pitfall of this proof strategy is that it only proves existence of some
positive constant, without explicit estimates. This is in contrast with Theorem 4.2.3
which is as specific result for the boundary curve `(t) = 1+εt. In this linear moving
wall case, we mimic a successful approach for a one-dimensional wave-equation ob-
tained by Haak and the author in [42] and develop the solution of (Smoving) into a
series of eigenfunctions. This allows to use results from Fourier analysis; the obtained
admissibility estimates are sharper than those obtained in the previous results, and
the observation estimate is provided with explicit constants. Moreover, we obtain in
this case admissibility and exact observability of internal point observations:

k(τ)‖u0‖2L2(0,1) ≤
∫ τ

0
|u(a, t)|2 dt ≤ K(τ)‖u0‖2L2(0,1),

see Theorem 4.2.5. It is remakable that the lower estimte cannot be true when ε = 0
on any rational point a ; the fact that the considered domains extend however, seem
to ’middle out’ this obstacle. Closely related to this observation are works of Castro
and Khapalov [14, 62, 63] where on a fixed domain Ω a moving point observer is
considered, with similar conclusions. We also mention results from Moyano [95, 96]
where in a two-dimensional circle the radius `(t) is used as a control parameter.

An additional result on Lp-admissibility and observability of point observations
are presented as well, see Theorem 4.2.7.

It is well-known that exact observability for an (autonomous) wave equation
implies observability for the associates Schrödinger equation, see e.g. [123, Chapter
6.7 ff.]. An inspection of the proof gives several obstacles when one passes to non-
autonomous problems, and we were not able to use this approach to directly infer
our results from those for the wave equation in [42]. We mention that some results
on the so-called Hautus-test will be subject of an independent publication [43].

4.2 Main Results

Before giving precise formulations of the aforementioned results, let us start by
proving that the Schrödinger equation (Sfixed) admits a solution: to this end, we
reformulate it as an abstract non-autonomous Cauchy problem in the following way:
let X = L2(0, 1) and the family of operators {A(t)} be defined as

A(t)w =
i

`(t)2
wyy +

`′(t)

`(t)
ywy (4.2.1)

wich natural domain D(A(t)) = H2(0, 1)∩H1
0 (0, 1) =: D. Moreover, by assumption,

the map t 7→ A(t)u is continuously differentiable for all u ∈ D. Let ω > 0. Then
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

integration by parts gives

〈
(A(t) + ωI)w,w

〉
=

∫ 1

0

(
i

`(t)2
wyyw + `′(t)

`(t) ywyw + ω|w|2
)
dy

= −i
`(t)2

∫ 1

0
|wy|2 dy + `′(t)

`(t)

∫ 1

0
ywyw dy + ω

∫ 1

0
|w|2 dy

= −i
`(t)2

∫ 1

0
|wy|2 dy − `′(t)

`(t)

∫ 1

0

(
|w|2 + ywwy

)
dy + ω

∫ 1

0
|w|2 dy

(4.2.2)

Taking real parts and observing that

Re
(∫ 1

0
ywwy dy

)
= Re

(
`′(t)
`(t)

∫ 1

0
ywyw dy

)
= −Re

(
`′(t)
2`(t)

∫ 1

0
|w|2 dy

)
we obtain

Re
(〈

(A(t) + ωI)w,w
〉)

=
(
ω − `′(t)

2`(t)

)∫ 1

0
|w|2 dy (4.2.3)

For ω >
∥∥ `′

2`

∥∥
L∞

, the left hand side of (4.2.3) becomes positive, and the Lumer-
Philips theorem asserts that ω +A(t) generates a contraction semigroup, i.e.

∀t ≥ 0
∥∥e−sA(t)

∥∥ ≤ eωs
This ensures in particular that the family (A(t))t∈[0,τ ] satisfies the Kato stability
condition. We apply [103, Theorem V.4.8 pp.145] to conclude that (A(t)) generates
a unique evolution family {U(t, s)}0≤s≤t≤τ on X satisfying w(t) = U(t, 0)w0. From
this we infer a solution to (Smoving) as well, by transforming the fixed domain back
to the time-dependent domain.

Suppose that we are given observation operators C(t) : D → Y where Y is
another Hilbert space. Define the output function y(t) = C(t)w(t). The operator
C(t) is called (Y,Z)-admissible if there exist γ > 0 such that:∫ τ

0

∥∥C(t)w(t)
∥∥2

Y
dt ≤ γ ‖w0‖2Z .

We say that the system (Sfixed) is exactly (Y, Z)-observable in time τ > 0 if there
exist δ > 0 such that: ∫ τ

0

∥∥C(t)w(t)
∥∥2

Y
dt ≥ δ ‖w0‖2Z .

If the spaces Y,Z are fixed, we simply speak of admissibility and exact observability.
Exact observation in time τ > 0 means that the knowledge of y[0,τ ] allows to recover
the initial value w0. It is well known that exact observability is equivalent to exact
controllability of the retrograde adjoint system:

z′(t) = −A(t)∗z(t)− C(t)∗w(t) with z(τ) = 0

Moreover, it is easy to see that admissibility or observability of (Sfixed) is equivalent
to those of (Smoving).
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Results on Neumann observations

Theorem 4.2.1. Let τ > 0 and ` : [0, τ ] → R∗+ be a strictly positive, twice contin-
uously differentiable function satisfying `′

` ∈ L∞ and `(0) = 1. Then there exists a
constants C(τ) such that the following admissibility inequalities hold:∫ τ

0
|ux(0, t)|2 + |ux(`(t), t)|2 dt ≤ C(τ) ‖u0‖2H1

0 (0,1)

An explicit estimate of constant C(τ) is given in the proof, see (4.3.8).

Concerning observability, we will have the following result. Let τ > 0 and
` : [0, τ ] → R∗+ be a strictly positive, twice continuously differentiable function
satisfying:

`′(t) > 0, `(0) = 1 and `′(t)`(t) <
1

π
∀t ∈ (0, τ) (4.2.4)

Integrating for 0 to τ of the second condition, we have 2τ + π(1− `(τ)2) > 0. From
the condition (4.2.4), `(t) is an increasing function, and then `′(t) < 1

π . It follows
that `′(t)

`(t) <
1
π , and so the condition `′

` ∈ L∞ guaranteeing admissibility is satisfied.

Theorem 4.2.2. For all τ satisfying (4.2.4), the following observability inequality
holds:

c(τ) ‖u0‖2H1
0 (0,1) ≤

∫ τ

0

(
|ux(0, t)|2 + |ux(`(t), t)|2

)
dt.

Here c(τ) is some positive constant depending on τ .

A direct application of theorem 4.2.2 can be used for periodic moving boundary
`(t) = 1 + ε sin(ωt) where ε ∈ (0, 1) and ω ∈ (0, 1

πε(1+ε)). For all τ ∈
(

0, π2ω

)
, we

have

`′(t) = εω cos(ωt) > 0 since ωt ∈
(

0,
π

2

)
∀0 ≤ t ≤ τ

`(0) = 1 and `′(t)`(t) = εω cos(ωt)(1 + ε sin(ωt)) < εω(1 + ε) <
1

π
Hence, `(t) satisfies the condition (4.2.4), so the curve is admissible. The problem of
particles moving inside one dimensional square-well of oscillating width was proposed
by Fermi and Ulam [34] in order to explain the mechanism of particles containing
high energies. This model that plays an important role on theory of quantum chaos
and it seems difficult to give an exact solution formula. Glasser [39] investigated
the behavior of wave functions and energy in a given instantaneous eigenstate by
assumptions on the smoothness of boundary. As far as we know, there are no results
in the literature concerning observability and controllability with periodic boundary
functions.

In the case that `(t) = 1+εt, the condition (4.2.4) is ensured when ε ∈ (0, 2
π ) and

0 < t < 1
ε

(
2
επ − 1

)
. We have the following exact analytic solution for Smoving, due to

Doescher and Rice [26]

u(x, t) =
+∞∑
n=1

an

√
2
`(t) sin

(
nπx
`(t)

)
e
i( εx

2

4`(t)
−n2π2 t

`(t) )
(4.2.5)
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

where the coefficients (an) are defined by the sine-series development of the initial
value u0. A similar exact solution in the case of two-variable moving wall can be
found in [126] where the author uses the fundamental transformation to change the
moving boundary problem into a solvable one side fixed boundary problem.

Based on formula (4.2.5) we obtain a first result on Neumann observability at
the boundary {(x, t) : x ∈ {0, `(t)}}. Compared to Theorem 4.2.2 the admissibility
constant is sharper. In contrast with Theorem 4.2.2, where we can only prove ex-
istence of some positive constant c(τ), we obtain now an explicit estimate for the
observability constant. The proof is presented in section 4.3.

Theorem 4.2.3. For every τ > 0 there exist explicit constants c(τ, ε), C(τ, ε) such
that:

c(τ, ε)‖u0‖2H1
0 (0,1) ≤

∫ τ

0

∣∣ux(0, t)
∣∣2 +

∣∣ux(`(t), t)
∣∣2 dt ≤ C(τ, ε)‖u0‖2H1

0 (0,1) (4.2.6)

In particular, the Neumann observation at the boundary of the system (Smoving) is
exact observable in any time τ > 0. Moreover, the observability coefficient c(τ, ε)
decays ∼ exp

(
−2kπ2

ετ

)
where k > 3

2 .

Remark 4.2.4. By Dirichlet condition u(`(t), t) = 0 for all t. Differentiating yields
`′(t)ux(`(t), t)+ut(`(t), t) = 0, and so ux(`(t), t) = −1

ε ut(`(t), t). As a result, observ-
ing ut(`(t), t) or ux(`(t), t) is, up to a constant, the same.

Point observations

We now focus on point observations u 7→ u(a, t) in the case of a linearly moving
wall `(t) = 1+εt. Observe that in the “degenerate” case that is, ε = 0, the (then)
autonomous Schrödinger equation has the well-known solution

u(x, t) =
+∞∑
n=1

ane
−iπ2n2t sin(nπx).

Clearly, there is no reasonable observability possible at rationals points x since in-
finitely many terms in the sum vanish, independently of the leading coefficient an.
This changes when ε > 0 : from (4.2.5) we obtain

u(a, t) =
+∞∑
n=1

an
(

2
`(t)

)1
2 exp

(
iεa2

4`(t) − in
2π2 t

`(t)

)
sin
(
nπa
`(t)

)
and so ∫ τ

0

∣∣u(a, t)
∣∣2 dt =

∫ τ

0

2
`(t)

∣∣∣+∞∑
n=1

ane
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)∣∣∣2 dt. (4.2.7)

Based on a remarkable result of Tenenbaum and Tucsnak we obtain the following
result in section 4.3.
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Theorem 4.2.5. Assume `(t) = 1+εt. Then, for every τ > 0, we have:

K(τ)‖u0‖2L2(0,1) &
∫ τ

0
|u(a, t)|2 dt & k(τ)‖u0‖2L2(0,1) (4.2.8)

More precisely, k(τ) ≈ Me−
c
T where T = 1

`(0) −
1
`(τ) and M, c are some positive

constants that appear in to proof.

Corollary 4.2.6. For all a ∈ (0, 1) the point observation C = δa for the system
(Smoving) is exactly observable in arbitrary short time.

Lp-estimates of point observations

Finally we have to following Lp admissibility and observability estimates.

Theorem 4.2.7. Let `(t) = 1+εt. We assume that u0 ∈ H1
0 (0, 1). For 0 < p < 2

and a ∈ (0, 1), we have

kp(τ)‖u0‖
2/p
L2(0,1)‖u0‖1−

2/p

H1
0 (0,1)

≤
(∫ τ

0

∣∣u(a, t)
∣∣pdt)1/p

≤ Kp(τ)‖u0‖
2/p
L2(0,1)‖u0‖1−

2/p

H1
0 (0,1)

where kp(τ), are constants depending on τ and p.

The upper estimate is a direct consequence of (4.2.8). Indeed, by the continuity
of the embeddings H1

0 ↪→ L2 ↪→ Lp and the boundedness of `(t) to obtain:

‖u(a, t)‖Lp . ‖u(a, t)‖L2

from(4.2.8)

. ‖u0‖L2 . ‖u0‖
2/p
L2(0,1)‖u0‖1−

2/p

H1
0 (0,1)

Hence, it serves only to show that the lower estimate is of the right order.

4.3 Proof of the main results

4.3.1 The multiplier Lemma

We follow E. Machtyngier [84, Lemma 2.2] by using multiplier method for (Sfixed):
Let w be a solution to (Sfixed) and q ∈ C2([0, 1] × [0, τ ]) be a real valued function.
Then, due to the differential equation (Sfixed),

Re
(∫ τ

0

∫ 1

0
(qwy + 1

2wqy)
(
iwt +

1

`(t)2
wyy − i

`′(t)

`(t)
ywy

)
dy dt

)
= 0 (4.3.1)

We separate the left hand side of (4.3.1) into three parts and simplify each of them.
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

Lemma 4.3.1. The following identities hold.
Re
( τ∫

0

1∫
0

(qwy + 1
2wqy)iwt dy dt

)

= Re
( 1∫

0

[
1
2 iqwyw

]t=T
t=0

dy
)
− 1

2Re
( τ∫

0

1∫
0

iwqtwy dy dt
) (4.3.2)



Re
( τ∫

0

1∫
0

wyy
l(t)2

(qwy + 1
2wqy) dy dt

)

= Re
( τ∫

0

1

2`(t)2
(q(1, t)|wy(1, t)|2 − q(0, t)|wy(0, t)|2) dt

)

−Re
( τ∫

0

1∫
0

1

`(t)2
|wy|2qy dy dt

)
− Re

( τ∫
0

1∫
0

wyw

2`(t)2
qyy dy dt

)
(4.3.3)


−Re

( τ∫
0

1∫
0

iy`′(t)

`(t)
wy(qwy + 1

2wqy) dy dt
)

= −Re
( τ∫

0

1∫
0

iy`′(t)

`(t)
q|wy|2 dy dt

)
− Re

( τ∫
0

1∫
0

1
2

iy`′(t)

`(t)
wywqy dy dt

)
(4.3.4)

Proof. To prove (4.3.2), we use integration by parts. Using w(0, t) = w(1, t) = 0, we
have:

1
2Re

(
i

∫ τ

0

∫ 1

0
qy · wwt dy dt

)
= 1

2Re
(
i

∫ τ

0

([
wwtq

]y=1

y=0
−
∫ 1

0
q · (wywt + wwty) dy

)
dt
)

= − 1
2Re

(
i

∫ τ

0

∫ 1

0
q(wywt + wwty) dy dt

)
Therefore, the left hand side of (4.3.2) equals

Re
(∫ τ

0

∫ 1

0
(qwy + 1

2wqy)iwt dy dt
)

= 1
2Re

(
i

∫ 1

0

∫ τ

0
(wt · qwy − qwwty) dy dt

)
= 1

2Re
(
i

∫ 1

0
(
[
qwyw

]t=τ
t=0
−
∫ τ

0
w(qtwy + qwyt dt) dy

)
− 1

2Re
(∫ τ

0

∫ 1

0
qiwwty) dy dt

)
= 1

2Re
(
i

∫ 1

0
(
[
qwyw

]t=τ
t=0

dy
)
− 1

2Re
(∫ 1

0

∫ τ

0
iwqtwy dy dt

)
Here, we already use the fact that

−Re
(∫ 1

0

∫ τ

0
iqwwty

)
= Re

(∫ 1

0

∫ τ

0
iqwwty dt dy

)
.
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To prove (4.3.3) we have

Re
(∫ τ

0

∫ 1

0

wyy
`(t)2

qwy) dy dt
)

= Re
(∫ τ

0

∫ 1

0

d
dy (|wy|2) · 1

2`(t)2
q dy dt

)
= Re

(∫ τ

0

1

2`(t)2
(q(1, t)|wy(1, t)|2 − q(0, t)|wy(0, t)|2) dt

)
− Re

(∫ τ

0

∫ 1

0

1

2`(t)2
qy|wy|2 dy dt

)
since we use Re(wyywy) = Re(wyywy). Again, integration by parts shows

Re
(∫ τ

0

∫ 1

0

wyy
2`(t)2

wqy dy dt
)

= Re
(∫ τ

0

∫ 1

0

1

2`(t)2
wqyd(wy) dt

)
= Re

(∫ τ

0

([ 1

2`(t)2
wqywy

]y=1

y=0

)
dt
)
− Re

(∫ τ

0

∫ 1

0

1

2`(t)2
(wyqy + wqyy)wy dt

)
= − Re

(∫ τ

0

∫ 1

0

1

2`(t)2
(wyqy + wqyy)wydt

)
Therefore we have:

Re
(∫ τ

0

∫ 1

0

wyy
`(t)2

(qwy + 1
2wqy) dy dt

)
= Re

(∫ τ

0

1

2`(t)2
(q(1, t)w2

y(1, t)− q(0, t)w2
y(0, t)) dt

)
− Re

(∫ τ

0

∫ 1

0

1

`(t)2
|wy|2qy dy dt

)
− Re

(∫ τ

0

∫ 1

0

wyw

2`(t)2
qyy dy dt

)
Hence, part (4.3.3) is proved. The last part is obvious.

Now summing up the three parts and using (4.3.1) yields

Proposition 4.3.2. For any real valued function q ∈ C2([0, 1]×[0, τ ]) and a solution
w to (Sfixed) we have

0 = Re
(∫ 1

0

i
2

[
qwyw

]t=τ
t=0

dy
)
− 1

2Re
(∫ τ

0

∫ 1

0
iwqtwy dy dt

)
+ Re

(∫ τ

0

1

2`(t)2
(q(1, t)|wy(1, t)|2 − q(0, t)|wy(0, t)|2) dt

)
− Re

(∫ τ

0

∫ 1

0

1

`(t)2
|wy|2qy dy dt

)
− Re

(∫ τ

0

∫ 1

0

wyw

2`(t)2
qyy dy dt

)
− Re

(∫ τ

0

∫ 1

0

iy`′(t)

`(t)
q|wy|2 dy dt

)
− Re

(∫ τ

0

∫ 1

0

1
2

iy`′(t)

`(t)
wywqy dy dt

)
4.3.2 Energy estimates

For a solution w to (Sfixed) we define the first and second energy as

E(t) = 1
2

∫ 1

0
|w(y, t)|2dy and F (t) = 1

2

∫ 1

0
|wy(y, t)|2dy

respectively.
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Lemma 4.3.3. We have `(τ)E(τ) = E(0).

Proof. Taking the derivative respected to t and using Sfixed, we have

dE(t)

dt
=

d

dt
1
2

∫ 1

0
|w(y, t)|2dy = 1

2

∫ 1

0
(wtw + wwt)dy

= 1
2

∫ 1

0

(
i

`(t)2
wyy + `′(t)

`(t) ywy
)
w + w

(
i

`(t)2
wyy + `′(t)

`(t) ywy
)

= 1
2

∫ 1

0

(
i

`(t)2
(wyyw − wyyw) + `′(t)

`(t) y(wyw + wyw)
)
dy

Now integration by parts gives∫ 1

0

i
`(t)2

(wyyw − wyyw) dy =

∫ 1

0

i
`(t)2

wd(wy)−
∫ 1

0

i
`(t)2

wd(wy)

= i
`(t)2

([
wwy

]y=1

y=0
−
∫ 1

0
|wy|2

)
− i

`(t)2

([
wwy

]y=1

y=0
−
∫ 1

0
|wy|2

)
= 0

whereas∫ 1

0

`′(t)
`(t) y(wyw + wyw) dy =

∫ 1

0

`′(t)
`(t) ywd(w)−

∫ 1

0

`′(t)
`(t) ywd(w)

=
[
`′(t)
`(t) yww

]y=1

y=0
− `′(t)
`(t)

∫ 1

0
(w + ywy)w dy +

[
`′(t)
`(t) yww

]y=1

y=0
− `′(t)
`(t)

∫ 1

0
(w + ywy)w dy

= − 2`′(t)
`(t)

∫ 1

0
|w(y, t)|2dy −

∫ 1

0

`′(t)
`(t) y(wyw + wyw) dy.

Therefore, ∫ 1

0

`′(t)
`(t) y(wyw + wyw)dy = − `′(t)

`(t)

∫ 1

0
|w(y, t)|2dy,

so that
dE(t)
dt = −1

2

∫ 1

0

`′(t)
`(t) |w(y, t)|2dy = − `′(t)

`(t) E(t).

Using `(0) = 1, this implies easily E(τ) = E(0)
`(τ) .

Lemma 4.3.4. For all τ > 0 and τ ∈
(

0, π2ω

)
, we have:

π2

`(τ)E(0) ≤ F (τ) ≤ `(τ)F (0)

Proof. Concerning F we have

dF (t)

dt
=

d

dt
1
2

∫ 1

0
|wy(y, t)|2 = 1

2

∫ 1

0
(wytwy + wywyt) dt

= 1
2

∫ 1

0

(
i

`(t)2
wyy + `′(t)

`(t) ywy
)
y
wy + wy

(
i

`(t)2
wyy + `′(t)

`(t) ywy
)
y

= i
2`(t)2

∫ 1

0
(wyyywy − wyyywy) dy + `′(t)

2`(t)

∫ 1

0
((ywy)ywy + wy(ywy)y) dy.
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The first term on the right hand side simplifies as

i
2`(t)2

∫ 1

0
(wyyywy − wyyywy) dy

= i
2`(t)2

∫ 1

0
wy d(wyy)− i

2`(t)2

∫ 1

0
wy d(wyy)

= i
2`(t)2

[
wywyy

]y=1

y=0
− i

2`(t)2

∫ 1

0
|wyy|2 dy − i

2`(t)2

[
wyywy

]y=1

y=0
+ i

2`(t)2

∫ 1

0
|wyy|2 dy

=
[

1
2wy(wt −

`′(t)
`(t) ywy)

]y=1

y=0
+
[

1
2wy(wt −

l′(t)
l(t) ywy)

]y=1

y=0
= − `′(t)

`(t) |wy(1, t)|
2

whereas the second term simplifies as follows.

`′(t)
2`(t)

∫ 1

0
((ywy)ywy + wy(ywy)y) dy = `′(t)

2`(t)

∫ 1

0
(wy + ywyy)wy + wy(wy + ywyy) dy

= `′(t)
2`(t)

∫ 1

0
2|wy|2 + y(wyywy + wywyy) dy

= `′(t)
`(t)

∫ 1

0
|wy|2 dy + `′(t)

2`(t)

∫ 1

0
y d(|wy|2)

= `′(t)
2`(t)

∫ 1

0
|wy|2 dy + `′(t)

2`(t) |wy(1, t)|
2.

We add both parts to obtain

dF (t)

dt
= `′(t)

2`(t)

∫ 1

0
|wy(y, t)|2 dt− 1

2 |wy(1, t)|
2 `′(t)
`(t)

= `′(t)
`(t)

(
F (t)− 1

2 |wy(1, t)|
2
)
,

By Variation of constants, we get an explicit solution:

F (t) = `(t)F (0)− `(t)
∫ t

0

`′(s)
2`(s)2

|wy(1, s)|2 ds (4.3.5)

One easily obtains an upper bound, namely F (t) ≤ F (0)`(t). For the lower bound,
we use the Poincaré (or Wirtinger) inequality on [0, 1] to obtain,

F (t) = 1
2

∫ 1

0
|wy(y, t)|2 dy ≥ π2

2

∫ 1

0
|w(y, t)|2 dy = π2

`(t)E(0) (4.3.6)
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

4.3.3 Admissibility of Neumann observations at the boundary

Proof of Theorem 4.2.2. We take the function q(y, t) = q(y)`(t) on (0, 1) satisfying
q(1) = 0 and q(0) = 1. By Proposition 4.3.2, we have

Re
(∫ τ

0

1
2`(t)2

q(0, t)|wy(0, t)|2 dt
)

= Re
(∫ 1

0

[
1
2 iq`(t)wyw

]t=τ
t=0

dy
)

− Re
(∫ τ

0

∫ 1

0

1
`(t) |wy|

2qy dy dt
)
− Re

(∫ τ

0

∫ 1

0

wyw

2`(t)
qyy dy dt

)
− Re

(∫ τ

0

∫ 1

0
iy`′(t)q|wy|2 dy dt

)
− Re

(∫ τ

0

∫ 1

0

1
2 iy`

′(t)wywqy dy dt
)

− 1
2Re

(∫ τ

0

∫ 1

0
iwq`′(t)wy dy dt

)

Therefore, we have

∫ τ

0

1

2`(t)
|wy(0, t)|2 dt ≤ A+B + C +D + E + F,

where we estimate all five terms separately. Concerning A, we separate the products
in the real part by ab ≤ 1

2(a2 + b2), then use Lemmata 4.3.3 and 4.3.4 to obtain

A =
∣∣∣Re(∫ 1

0

[
1
2 iq`(t)wyw

]t=τ
t=0

dy
∣∣∣

≤ 1
4‖q‖L∞(0,1)

(∫ 1

0
`(τ)|w(y, τ)|2 + |w(y, 0)|2 + `(τ)|wy(y, τ)|2 + |wy(y, 0)|2 dy

)
= 1

4‖q‖L∞(0,1)

(∫ 1

0
2|w(y, 0)|2 + (1 + `(τ)2)|wy(y, 0)|2 dy

)
≤ 1

4‖q‖L∞(0,1)

(∫ 1

0

(
2π2 + 1 + `(τ)2

)
|wy(y, 0)|2 dy

)
.

The second term is easily estimated by Lemma 4.3.3:

B =
∣∣∣Re(∫ τ

0

∫ 1

0

1
`(t) |wy(y, t)|

2qy dy dt
)∣∣∣ ≤ ‖qy‖L∞(0,1)

∫ τ

0

∫ 1

0

1
`(t) |wy(y, t)|

2 dy dt

≤ ‖qy‖L∞(0,1)

∫ τ

0

∫ 1

0
|wy(y, 0)|2 dy dt

= ‖qy‖L∞(0,1)τ

∫ 1

0
|wy(y, 0)|2 dy
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4.3. Proof of the main results

Part C is decoupled by Cauchy-Schwarz and then estimated using Lemma 4.3.4 as
follows:

C =
∣∣∣Re(∫ τ

0

∫ 1

0

wyw

2`(t)
qyy dy dt

)∣∣∣ ≤ ‖qyy‖L∞(0,1)

(∫ τ

0

∫ 1

0

|wyw|
2`(t)

dy dt
)

≤ ‖qyy‖L∞(0,1)

(∫ τ

0

1
2`(t)

(∫ 1

0
|w(y, t)|2 dy

)1/2(∫ 1

0
|wy(y, t)|2 dy

)1/2
dt
)

≤ ‖qyy‖L∞(0,1)

(∫ τ

0

π
2`(t)

(∫ 1

0
|wy(y, t)|2 dy

)
dt
)

≤ ‖qyy‖L∞(0,1)

(∫ τ

0

π
2 dt

)(∫ 1

0
|wy(y, 0)|2 dy

)
= ‖qyy‖L∞(0,1)

πτ
2

(∫ 1

0
|wy(y, 0)|2 dy

)
.

For the forth part, we use Lemma 4.3.4 to obtain

D =
∣∣∣Re(∫ τ

0

∫ 1

0
iy`′(t)q|wy(y, t)|2 dy dt

)∣∣∣ ≤ ‖q‖L∞(0,1)

∫ τ

0

∫ 1

0
`′(t)|wy(y, t)|2 dy dt

≤ ‖q‖L∞(0,1)

(∫ τ

0
`′(t)`(t) dt

)(∫ 1

0
|wy(y, 0)|2 dy

)
= ‖q‖L∞(0,1)

`(τ)2 − 1

2

(∫ 1

0
|wy(y, 0)|2 dy

)
.

The estimate for fifth part E is similar to part C:

E =
∣∣∣Re(∫ τ

0

∫ 1

0

1
2 iy`

′(t)wywqy dy dt
)∣∣∣ ≤ ‖qy‖L∞(0,1)

(∫ τ

0

∫ 1

0

1
2`
′(t)|wy||w| dy dt

)
≤ ‖qy‖L∞(0,1)

(∫ τ

0

`′(t)
2

(∫ 1

0
|w(y, t)|2 dy

)1/2(∫ 1

0
|wy(y, t)|2 dy

)1/2
dt
)

≤ ‖qy‖L∞(0,1)

(∫ τ

0

π`′(t)
2

(∫ 1

0
|wy(y, t)|2 dy

)
dt
)

≤ ‖qy‖L∞(0,1)

(∫ τ

0

π`′(t)`(t)
2 dt

)(∫ 1

0
|wy(y, 0)|2 dy

)
= ‖qy‖L∞(0,1)

π
4 (`(τ)2 − 1)

(∫ 1

0
|wy(y, 0)|2 dy

)
.

Finally, the last part F is treated like part C and E:

F = 1
2

∣∣∣Re(∫ τ

0

∫ 1

0
iwq`′(t)wy dy dt

)∣∣∣ ≤ 1
2‖q‖L∞(0,1)

(∫ τ

0

∫ 1

0
`′(t)|wy||w| dy dt

)
≤ ‖q‖L∞(0,1)

π
4 (`(τ)2 − 1)

(∫ 1

0
|wy(y, 0)|2 dy

)
.

Summing up all five estimates, we obtain∫ τ

0

1

2`(t)

∣∣wy(0, t)∣∣2 dt ≤ C1(τ)‖w0‖2H1
0 (0,1) (4.3.7)
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

where the constant C1(τ) is given by

C1(τ) =
(3 + π2)`(τ)2 + π2 − 1

4
‖q‖L∞(0,1) +

(
τ +

π

4
(`(τ)2 − 1)

)
‖qy‖L∞(0,1)

+
πτ

2
‖qyy‖L∞(0,1)

(4.3.8)
Replacing wy(0, t) = `(t)ux(0, t) in (4.3.7) yields the admissibility inequality:∫ τ

0

∣∣ux(0, t)
∣∣2 dt ≤ ∫ τ

0
`(t)
∣∣ux(0, t)

∣∣2 dt ≤ 2C1(τ)‖u0‖2H1
0 (0,1)

The second admissibility estimate follows the same lines, using q(y, t) = q(y)`(t) on
(0, 1) with q(0) = 0 and q(1) = 1.

Neumann Observability at the Boundary

Recall the following lemma

Lemma 4.3.5. Let E1, E2 and E3 be the Hilbert spaces. We consider the continuous
linear operators T : E1 → E2, K : E1 → E3 and L : E1 → E1 such that K is
compact, L is bounded below and:

‖Lu‖E1 ≈ ‖Tu‖E2 + ‖Ku‖E3 (4.3.9)

Then the kernel of A has finite dimension and ‖Lu‖E1 ≈ ‖Tu‖E3

Proof. A similar proof can be found in [120, Lemma 1 pp.1] where we just replace u
by Lu.

Proof of Theorem 4.2.2. For all τ satisfying 2τ + π(1 − `(τ)2) > 0, we choose two
positive constants η(τ) and δ(τ) such that:

η(τ) + δ(τ) < 4
1+`(τ)3

(
τ − π

2 (`(τ)2 − 1)
)

(4.3.10)

We choose q(y) = (1 − y)`(t) where y ∈ (0, 1). Proposition 4.3.2 is then equivalent
to:∫ τ

0

1

2`(t)

∣∣wy(0, t)∣∣2 dt =

∫ τ

0

∫ 1

0

1

`(t)
|wy|2 dy dt− Re

(∫ τ

0

∫ 1

0

1
2 i(1− y)`′(t)wyw dy dt

)
+ Re

(∫ 1

0

[
1
2 i(1− y)`(t)wyw

]t=τ
t=0

dy
)

+ Re
(∫ τ

0

∫ 1

0

1
2 iy`

′(t)wyw dy dt
)

(4.3.11)
Taking the three last formula of the right hand side to the left, then taking the
absolute to get:∫ τ

0

∫ 1

0

1

`(t)
|wy|2 dy dt ≤

∫ τ

0

1

2`(t)

∣∣wy(0, t)∣∣2 dt+
∣∣∣Re(∫ 1

0

[
1
2 i(1− y)`(t)wyw

]t=τ
t=0

dy
)∣∣∣

+
∣∣∣Re(∫ τ

0

∫ 1

0

1
2 i(1− y)`′(t)wyw dy dt

)∣∣∣
+
∣∣∣Re(∫ τ

0

∫ 1

0

1
2 iy`

′(t)wyw dy dt
)∣∣∣
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4.3. Proof of the main results

The sum of third and fourth terms in the right hand side of above formula can be
estimated as:∣∣∣Re(∫ τ

0

∫ 1

0

1
2 i(1− y)`′(t)wyw dy dt

)∣∣∣+
∣∣∣Re(∫ τ

0

∫ 1

0

1
2 iy`

′(t)wyw dy dt
)∣∣∣

≤ 1
2

∫ τ

0

∫ 1

0
`′(t)|wyw| dy dt+ 1

2

∫ τ

0

∫ 1

0
`′(t)|wyw| dy dt

≤
∫ τ

0
`′(t)

(∫ 1

0
|w|2 dy

)1/2(∫ 1

0
|wy|2 dy

)1/2
dt

≤
∫ τ

0
π`′(t)

(∫ 1

0
|wy|2 dy

)
dt

Due to the energy estimate in lemma 4.3.3 and 4.3.4, we have the upper bound for
the second term:∣∣∣Re(∫ 1

0

[
1
2 i(1− y)`(t)wyw

]t=τ
t=0

dy
)∣∣∣

≤ 1
4

∫ 1

0

( |w(y, 0)|2

η(τ)
+
|w(y, τ)|2

η(τ)
+ η(τ)|wy(y, 0)|2 + η(τ)`(τ)2|wy(y, τ)|2

)
dy

≤ 1
4η(τ)

(
1
`(τ) + 1

)∫ 1

0
|w(y, 0)|2 dy + (1+`(τ)3)η(τ)

4

∫ 1

0
|wy(y, 0)|2 dy

As a result, we combine these estimation and use (4.3.5) to obtain:∫ τ

0

1
2`(t) |wy(0, t)|

2 dt+ 1
4η(τ)

(
1
`(τ) + 1

)∫ 1

0
|w(y, 0)|2 dy

≥
∫ τ

0

∫ 1

0

(
1
`(t) − π`

′(t)
)
|wy(y, t)|2 dy dt− (1+`(τ)3)η(τ)

4

∫ 1

0
|wy(y, 0)|2 dy

=
(∫ τ

0
(1− π`′(t)`(t)) dt− (1+`(τ)3)η(τ)

4

)(∫ 1

0
|wy(y, 0)|2 dy

)
−
∫ τ

0

(
1− π`′(t)`(t)

) ∫ t

0

`′(s)
`(s)2
|wy(1, s)|2 ds dt

=
(
τ + π

2 (1− `(τ)2)− (1+`(τ)3)η(τ)
4

)(∫ 1

0
|wy(y, 0)|2 dy

)
−
∫ τ

0

(
1− π`′(t)`(t)

) ∫ t

0

`′(s)
`(s)2
|wy(1, s)|2 ds dt

≥ (1+`(τ)3)δ(τ)
4

(∫ 1

0
|wy(y, 0)|2 dy

)
−
∫ τ

0

(
1− π`′(t)`(t)

) ∫ t

0

`′(s)
`(s)2
|wy(1, s)|2 ds dt

where the last inequality come from (4.3.10). Therefore, there exist the constants
Aτ and Bτ such that:∫ 1

0
|wy(y, 0)|2 dy ≤ Aτ

∫ τ

0

(
|wy(0, t)|2+|wy(1, t)|2

)
dt+Bτ

∫ 1

0
|w(y, 0)|2 dy (4.3.12)
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

It is sufficient to prove that there exist a constant K > 0 such that∫ 1

0
|w(y, 0)|2 dy ≤ K

(∫ τ

0
|wy(0, t)|2 dt+

∫ τ

0
|wy(1, t)|2 dt

)
(4.3.13)

Let us denote the operator T from H1
0 (0, τ) to L2(0, τ)× L2(0, τ) and the operator

K from H1
0 (0, 1) to L2(0, 1) that maps:

(Tw)(t) =
(
wy(0, t), wy(1, t)

)
(4.3.14)

(Kw)(y) = w(y, 0) (4.3.15)

From admissibility and (4.3.12), we have:

aτ‖Tw‖2L2
+ bτ‖Kw‖2L2

≤ ‖w0‖2H1
0
≤ Aτ‖Tw‖2L2

+Bτ‖Kw‖2L2
(4.3.16)

It is easy to see that K is compact operator due to Rellich’s embedding lemma. In
order to use the unique-compactness lemma 4.3.5 for L = K, we need to check that
T is injective. Observe that Tw = 0 means that w satisfies (Sfixed) with Dirichlet
conditions and zero Neumann derivative. It is well known that w vanishes in this
case, see for example [121, Theorem 3] or [47, Corollary 6.1]. As a consequence,

cτ‖Tw‖2L2
≤ ‖w0‖2H1

0
≤ Cτ‖Tw‖2L2

for some constants c(τ), C(τ) > 0.

4.3.4 Results for linear moving walls

Recall the Doescher-Rice representation formula (4.2.5) that yields for t = 0

u(x, 0) =
√

2
N∑
n=1

ane
iεx2

4 sin(nπx), (4.3.17)

and denote by

un(x, t) :=
√

2
`(t) sin

(
nπx
`(t)

)
.

For all fixed t > 0, the functions (un(·, t))n≥1 form an orthonormal basis in L2(0, `(t)),
since the change of variable y = x

`(t) reduces un(·, t) to the standard trigonometric
system on L2([0, 1]).

Lemma 4.3.6. For all finitely supported sequences (an) we have the following rela-
tion between (an) and the norms of the initial data u0.

‖u(x, 0)‖2L2(0,1) =
+∞∑
n=1

|an|2, ‖u(x, 0)‖2H1
0 (0,1) ∼

+∞∑
n=1

|an|2n2

79



4.3. Proof of the main results

Proof. Observe that

‖e−
iεx2

4 uN (x)‖2L2(0,1) = ‖uN (x)‖2L2(0,1) = 2

∫ 1

0

∣∣∣ N∑
n=1

an sin(nπx)
∣∣∣2 dx

= 2

∫ 1

0

∣∣∣ N∑
n=1

an sin(nπx)
∣∣∣2 dx =

∞∑
n=1

|an|2.

Since (an) is a finite sequence we may interchange differentiation and summation
and obtain

d
dxu(x) =

√
2

N∑
n=1

ane
iεx2

4 (ix ε2 sin(nπx) + nπ cos(nπx))

so that, squaring real and imaginary parts, we find

‖u(x)‖2H1
0 (0,1) = 2

∫ 1

0

∣∣∣ N∑
n=1

annπ cos(nπx)
∣∣∣2 dx+ 2

∫ 1

0

∣∣∣ N∑
n=1

anx
ε
2 sin(nπx)

∣∣∣2
= π2

N∑
n=1

|an|2n2 + 2

∫ 1

0

∣∣∣ N∑
n=1

anx
ε
2 sin(nπx)

∣∣∣2
≤ π2

N∑
n=1

|an|2n2 +
ε2

2

∫ 1

0

∣∣∣ N∑
n=1

an sin(nπx)
∣∣∣2

= π2
N∑
n=1

|an|2n2 +
ε2

2

N∑
n=1

|an|2 ≤ C(ε)
N∑
n=1

|an|2n2

Lemma 4.3.7. Let ε ∈ (0, π2 ) and τ = 2
π−2ε , then the functions bn(t) =

√
π√

2`(t)
e
−iπ2n2 t

`(t)

for n ≥ 1 form an orthonormal system in L2(0, τ).

Proof. Note that
(

t
`(t)

)′
= `(t)−t`′(t)

`(t)2
= 1

`(t)2
. Therefore, the obvious change of variable

x = t
`(t) reduces fn to a standard trigonometric function on [0, τ

`(τ) ]. Observe that
τ
`(τ) = 2

π−2ε(1 + 2ε
π−2ε)

−1 = 2
π . Now orthonormality easily follows.

Observe that the above sequence {bn(t)}n≥1 is not an orthonormal basis. Indeed,
with f(t) =

√
π√

2`(t)
e

3iπ2 t
`(t) , we have 〈f(t), bn(t)〉 = 0 for all n ∈ N.

Neumann observation at the Boundary

Proof of Theorem 4.2.3. We start considering only the first term at x = 0. As in
the proof of Lemma 4.3.6 we consider for a moment only initial data associated with
finitely supported sequences (an). Differentiating the representation formula (4.2.5)
u term by term yields

ux(0, t) =

+∞∑
n=1

an
(

2
`(t)

)1/2
e
−iπ2n2 t

`(t) nπ
`(t) ,
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

and therefore

‖ux(0, t)‖2L2(0,τ) =

∫ τ

0

2π2

`(t)3

∣∣∣∣∣
+∞∑
n=1

nane
−iπ2n2 t

`(t)

∣∣∣∣∣
2

dt.

Using the monotonicity of `(t) in [0, τ ], we have 2π2

`(τ)J ≤ ‖ux(0, ·)‖2L2(0,τ) ≤ 2π2J
where

J =

∫ τ

0

∣∣∣∣∣
+∞∑
n=1

nane
−iπ2n2 t

`(t)

∣∣∣∣∣
2

dt
`(t)2

.

This allows to focus only on the integral J , where we abbreviate bn = nane
−iπ2n2/ε

and make a change of variable ξ = −1
`(t) + 1

2( 1
`(0)+ 1

`(τ)). Letting T = 1
`(0) −

1
`(τ) , the

above double inequality rewrites as∫ +T/2

−T/2

∣∣∣∣∣
+∞∑
n=1

bne
−iπ

2n2

ε
ξ

∣∣∣∣∣
2

dξ ≈ ‖ux(0, t)‖2L2(0,τ)

The sequence λn = π2n2

ε satisfies the hypotheses of [122, Theorem 3.1 and Corollary
3.3] so that, for all k > 3

2π
2 and r = ε/π2

∫ +T/2

−T/2

∣∣∣∣∣
+∞∑
n=1

bne
−iπ

2n2

ε
ξ

∣∣∣∣∣
2

dξ � e−
2k
rτ

+∞∑
n=1

|bn|2 = e−
2k
rτ

+∞∑
n=1

|nan|2 .

On the other hand side, if T ∈ [m ε
π , (m+1) επ ), we have by periodicity and Parseval’s

identity∫ +T/2

−T/2

∣∣∣∣∣
+∞∑
n=1

bne
−in2 π2

ε
ξ

∣∣∣∣∣
2

dξ ≤
∫ (m+1) ε

π

−(m+1) ε
π

∣∣∣∣∣
+∞∑
n=1

bne
−in2 π2

ε
ξ

∣∣∣∣∣
2

dξ = (m+1)
+∞∑
n=1

|bn|2 .

We conclude by Lemma 4.3.6 that

c(ε)‖u0‖2H1
0 (0,1) ≤ ‖ux(0, t)‖2L2(0,τ) ≤ C(ε)‖u0‖2H1

0 (0,1).

This inequality being true for all u0 leading to finitely supported sequences (an), it
is true for any u0 ∈ H1

0 (0, 1) by density.

For second term at x = `(t), we see for finitely supported sequences (an) that

ux(`(t), t) =
+∞∑
n=1

(−1)nan
(

2
`(t)

)1/2
e
−iπ2n2 t

`(t) nπ
`(t)e

i
ε
4 `(t)

Taking the L2-norm, one get the equivalent between ‖ux(`(t), t)‖L2 and ‖ux(0, t)‖L2

‖ux(`(t), t)‖2L2(0,τ) =

∫ τ

0

∣∣∣∣∣
+∞∑
n=1

(−1)nan
(

2
`(t)

)1/2
e
−iπ2n2 t

`(t) nπ
`(t)e

i
ε
4 `(t)

∣∣∣∣∣
2

dt

=

∫ τ

0

2π2

`(t)

∣∣∣∣∣
+∞∑
n=1

(
(−1)nnan

)
e
−iπ2n2 t

`(t)

∣∣∣∣∣
2

dt
`(t)2

.

Clearly, the rest proof follows the lines above.
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Internal Point Observability

Proof of Theorem 4.2.5. Since `(t) ≥ 1 for all t,∫ τ

0

2

`(t)

∣∣∣∣∣
+∞∑
n=1

ane
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)∣∣∣∣∣
2

dt ≥
∫ τ

0

2

`(t)2

∣∣∣∣∣
+∞∑
n=1

ane
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)∣∣∣∣∣
2

dt.

By definition, sin
(
nπa
`(t)

)
= 1

2i

(
exp(inπa`(t) )− exp(−inπa`(t) )

)
. Therefore,

+∞∑
n=1

ane
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)
=

1

2i

+∞∑
n=1

ane
−iπ2n2 t

`(t)
(
e
inπa
`(t) − e−

inπa
`(t)
)

=
1

2i

+∞∑
n=1

ane
−iπ2n2 1

ε
(
e
− iπ

2n2

ε`(t)
+ inπa

`(t) − e−
iπ2n2

ε`(t)
− inπa

`(t)
)

For n ∈ Z, we extend the series by an = a−n, and λn = π2n2

ε + sign(n)nπa. The
sequence λn = π2n2

ε is regular and satisfies the hypotheses of [122, Theorem 3.1] with
r = ε

π2 and C = aπ. We follow the lines of the proof of Theorem 4.2.3: changing the
variable ξ = −1

`(t) gives with the notation T = 1
`(0) −

1
`(τ) ,∫ τ

0

1

`(t)2

∣∣∣∣∣
+∞∑
n=1

ane
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)∣∣∣∣∣
2

dt =
1

ε

∫ +T/2

−T/2

∣∣∣∣∣∑
n∈Z

e
−iπ2n2

ε ane
iλnξ

∣∣∣∣∣
2

dξ

we write bn = e
−iπ2n2

ε an and use [122, Corollary 3.3] with k > 3π2

2 :

1

ε

∫ T

−T

∣∣∣∣∣∑
n∈Z

ane
−iπ2n2

ε e−iλnξ

∣∣∣∣∣
2

dξ � e−
2k
rT

∑
n∈Z

∣∣∣∣ane−iπ2n2ε

∣∣∣∣2 ≥ e− 2k
rT

+∞∑
n=1

|an|2 .

For the upper estimate, we use similar method as in theorem (4.2.3). More precisely,

‖u(a, t)‖L2 ≤
∫ τ

0

2

`(t)

∣∣∣∣∣
+∞∑
n=1

ane
−iπ2n2 t

`(t)

∣∣∣∣∣
2

dt . (m+ 1)
+∞∑
n=1

|an|2

where m be the integer number such that πε
T ∈ [m,m+ 1] with T = 1

`(0) −
1
`(τ) .

Lp-admissibility and observability

Proof of Theorem 4.2.7. The upper estimate yieldingKp(τ) is obtained by interpola-
tion of the two upper estimates in Theorem 4.2.3. We are left with the lower estimate.
Since u ∈ H1

0 , (nan) ∈ `2, and so (an) ∈ `1 by the Cauchy-Schwarz inequality. Let
p ∈ (0, 2) and let θ = 2

4−p ∈ (0, 1) which is chosen to satisfy pθ + 4(1 − θ) = 2. By
Hölder’s inequality we then have∫ τ

0

∣∣u(a, t)
∣∣2 dt =

∫ τ

0

∣∣u(a, t)
∣∣pθ.∣∣u(a, t)

∣∣4(1−θ)
dt

≤
(∫ τ

0

∣∣u(a, t)
∣∣pdt)θ.(∫ τ

0

∣∣u(a, t)
∣∣4dt)1−θ (4.3.18)
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From trivial argument on boundedness of sin(nπa`(t) ) and e
iεa2

4`(t)−iπ
2n2 t

`(t) :

∣∣u(a, t)
∣∣2 =

∣∣∣+∞∑
n=1

ane
iεa2

4`(t)
−iπ2n2 t

`(t) sin
(
nπa
`(t)

)∣∣∣2 ≤ (+∞∑
n=1

|an|
)2

Combining with the estimate (4.3.18), one get:∫ τ

0

∣∣u(a, t)
∣∣4dt ≤ (+∞∑

n=1

|an|
)2(∫ τ

0

∣∣u(a, t)
∣∣2 dt) (4.3.19)

From inequalities (4.3.18) and (4.3.19) and Theorem (4.2.5) we deduce now∫ τ

0

∣∣u(a, t)
∣∣pdt ≥ (∫ τ

0
|u(a, t)|2 dt

)1/θ(∫ τ

0
|u(a, t)|4 dt

) θ−1
θ

≥
(∫ τ

0
|u(a, t)|2 dt

)1/θ(+∞∑
n=1

|an|
) 2(θ−1)

θ
(∫ τ

0

∣∣u(a, t)
∣∣2dt) θ−1

θ

≥ k
(+∞∑
n=1

|an|2
)(+∞∑

n=1

|nan|2
)2 θ−1

θ ≥ k
∥∥u0

∥∥2

L2(0,1)

∥∥u0

∥∥2 θ−1
θ

H1
0
.

Since θ−1
θ = p−2

2 , the result follows.

4.4 Boundary controllability of dual problem

Since we have already stated several theorems that can be interpreted as exact
observation we will briefly sketch the duality theory that allows to rephrase these
assertions in terms of exact control, then the solution z to adjoint problem

z′(t) = −A(t)∗z(t)− C(t)∗C(t)w(t) z(τ) = 0 (4.4.1)

satisfies 〈w0, z(0)〉 = −
∫ τ

0
d
dt〈w(t), z(t)〉 dt =

∫ τ
0 ‖C(t)w(t)‖2 dt by injection of the

respective differential equations of w and z. Hence exact observability implies that
the Gramian Q : w0 7→ z(0) satisfies ‖Qw0‖‖w0‖ ≥ 〈w0, Qw0〉 ≥ δ‖w0‖ to the
effect that Q has closed image. Moreover, if Q∗w0 = 0, taking scalar product with
w0 reveals w0 = 0, so Q∗ is injective and hence Q has dense range. By the open
mapping theorem, Q is therefore an isomorphism on X. This means that the adjoint
problem (4.4.1) can be steered to any state z(0) ∈ X by an appropriate choice of the
initial value w0. Indeed, for u, v ∈ D(A(t)) we have

〈A(t)u, v〉X =
〈

i
`(t)2

uyy + `′(t)
`(t) yuy, v

〉
X

=

∫ 1

0

i
`(t)2

uyyv dy +

∫ 1

0

`′(t)
`(t) yuyv dy

(int. by parts) = − i
`(t)2

∫ 1

0
uyvy dy − `′(t)

`(t)

∫ 1

0
(yuvy + uv) dy

(int. by parts) = i
`(t)2

∫ 1

0
uvyy dy − `′(t)

`(t)

∫ 1

0
(yuvy + uv) dy

= −
〈
u, i

`(t)2
vyy + `′(t)

`(t) yvy

〉
−
〈
u, `

′(t)
`(t) v

〉
=
〈
u,−

(
A(t) + `′(t)

`(t)

)
v
〉
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4.4. Boundary controllability of dual problem

It turns out that in our case A(t)∗ = −A(t) − `′(t)
`(t) . So exact observation of the

Schrödinger equation (Smoving) can be reformulated as exact control for the Schrödinger
equation with zero final time. We turn back to these ideas after stating our first the-
orem. In the case of linear moving `(t) = 1+εt, let C(t) : D(A(t))→ C be given by
C(t)(ϕ) := ϕy(b) where b ∈ {0, 1}. The (lower) estimate in theorems 4.2.3 and 4.2.2
then reformulates as exact observability of C(t) for the non-autonomous Cauchy
problem (4.2.1). Some care has to be taken since C(t) is unbounded on X. In-
deed, C(t)∗ : C → D(A(t))′ is given by C(t)∗α = −α d

dy δy=b, then we obtain exact
controllability of (4.4.1) in a distributional sense:

zt = i
`(t)2

zyy + `′(t)
`(t) yzy + `′(t)

`(t) z + wy(b, t)
d
dy δy=b and z(y, τ) = 0

Multiplying with a test function η ∈ D((0, 1)), and integrating on [0, 1] we obtain by
partial integration∫ 1

0
ztη(y) dy =

∫ 1

0

(
i

`(t)2
zyy + `′(t)

`(t) (yz)y

)
η(y) dy − wy(b, t)η′(b)

=

∫ 1

0

(
i

`(t)2
zη′′(y)− `′(t)

`(t) yzη
′(y)
)
dy +

(
i

`(t)2
z(b, t)− wy(b, t)

)
η′(b)

This is possible for any test function η only if the point evaluation vanishes. The
dual statement of the lower estimate in theorems 4.2.3 and 4.2.2 is thus exact con-
trollability of a Schrödinger equation with Dirichlet control on the right boundary,

zt = i
`(t)2

zyy + `′(t)
`(t) yzy + `′(t)

`(t) z (y, t) ∈ (0, 1)× (0, τ)

z(b, t) = 0 {b}
⋃
{b} = {0, 1}, t ≥ 0

z(b, t) = −i`(t)2wy(b, t) t ≥ 0
z(y, τ) = 0 y ∈ [0, 1]

(4.4.2)

We reverse back to the moving boundary problem by taking x = `(t)y and h(x, t) =
z(y, t). Then the problem can be written as:

iht + hxx − i `
′(t)
`(t) h = 0 (x, t) ∈ (0, `(t))× (0, τ)

h(`(t), t) = 0 t ≥ 0
h(0, t) = −i`(t)3ux(0, t) t ≥ 0
h(x, τ) = 0 x ∈ [0, `(t)]

(4.4.3)

or
iht + hxx − i `

′(t)
`(t) h = 0 (x, t) ∈ (0, `(t))× (0, τ)

h(0, t) = 0 t ≥ 0
h(`(t), t) = −i`(t)3ux(`(t), t) t ≥ 0
h(x, τ) = 0 x ∈ [0, `(t)]

(4.4.4)

In general situation of `(t) satisfying condition (4.2.4), one take C(t) : D(A(t)) →
C × C be given by C(t)(ϕ) := (ϕy(0), ϕy(1)). Therefore, the dual operator C(t)∗ :
C × C → D(A(t))′ is given by C(t)∗(α, β) = −α d

dy δy=0 − β d
dy δy=1. Using similar
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4. Observability of a 1D Schrödinger equation with time-varying boundaries

argument, we obtain exact controllability of a Schrödinger equation with Dirichlet
control applied on both of boundaries

iht + hxx − i `
′(t)
`(t) h = 0 (x, t) ∈ (0, `(t))× (0, τ)

h(0, t) = −i`(t)3ux(0, t) t ≥ 0
h(`(t), t) = −i`(t)3ux(`(t), t) t ≥ 0
h(x, τ) = 0 x ∈ [0, `(t)]

(4.4.5)
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Chapter 5

The averaged Hautus test for
non-autonomous linear evolution
equation

We consider the observability problem for non-autonomous evolution systems
(i.e., the operators governing the system depend on time). We introduce an av-
eraged Hautus condition and prove that for skew-adjoint operators it characterizes
exact observability. Next, we extend this to more general class of operators under a
growth condition on the associated evolution family. We give an application to the
Schrödinger equation with time dependent potential and the damped wave equation
with a time dependent damping coefficient.

5.1 Introduction

Observability is an important concept in system and control theory. It treats the
question to which extent an observation, i.e., partial knowledge of the solution of an
evolution equation, determines its initial or final state. The theory has been studied
for several decades for systems of the form:

x′(t) +Ax(t) = 0 t ∈ [0, T ]
x(0) = x0

y(t) = Cx(t)
(5.1.1)

in which the two operators A and C are independent of time t and satisfy appro-
priate conditions such as −A, with domain D(A), generates a strongly continuous
semigroup on a Hilbert space H and C is bounded from D(A) into another Hilbert
space Y .

Observability consists of unique determination or recovery of the initial (or final)
time state under the knowledge of the observed solution y(·). Recall that in the case
of matrices A and C (finite dimensional setting), all observation concepts coincide
and can be characterized in various manners. The Kalman rank condition is certainly
the most known version; it states that C is observable if and only if the matrix

[C |CA |CA2 | . . . |CAn−1]
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5.1. Introduction

has full rank. An equivalent statement is the Hautus lemma: it characterizes observ-
ability by the condition

∀λ ∈ C : rank[λI −A,C] = n

that clearly is equivalent to the condition

‖Cx‖2 + ‖(λI −A)x‖2 ≥ κ‖x‖2. (5.1.2)

In an infinite-dimensional setting with operators A,C, instead of matrices, rank con-
ditions are not appropriate. However, the Hautus test in the form (5.1.2) can be
generalized, and has actually been proposed in [111] as a criterion for observabil-
ity. Russell and Weiss conjectured in [111] that this inequality characterizes exact
observability. They proved in [111] that the conjecture is valid for bounded and
invertible operators A. Later, Jacob and Zwart [50] showed equivalence for diagonal
semigroup generator on a Riesz basis if the output space Y is finite dimensional. The
general conjecture was later proved to be wrong, see [51]. Note however, that if C is
admissible and A has a bounded H∞-calculus on a suitable sector (which is, in turn a
consequence of admissibility and exact observation, see Proposition 5.1 in [41]), then
it does not seem to be known whether the Hautus condition implies observability.
There exist other formulations of the Hautus condition (or spectral condition) and
there are several cases where it implies exact observability. This holds for example
if A generates a unitary group. We refer to [82, 127] for early results with bounded
observations, and [12, 88] for successive extensions. These have subsequently been
generalized (see [52]) to groups with certain growth bounds. See also [123] for more
information and references on this subject.

In this chapter we consider first order non-autonomous evolution equations of the
following form: 

x′(t) +A(t)x(t) = 0 t ∈ [0, τ ]
x(0) = x0

y(t) = C(t)x(t).
(A,C)

The difference with (5.1.1) is that we allow operators A and C to depend on time t.
To be precise, let τ > 0 and assume that for t ∈ [0, τ ], the operator A(t) generates
a strongly continuous contraction semigroup (e−sA(t))s≥0 on the Hilbert space H.
We suppose further that there exists a densely and continuously embedded subspace
D ↪→ H such that for all t ∈ [0, T ], D(A(t)) = D and that t 7→ A(t)v is continuously
differentiable in H for every v ∈ D . These assumptions are sufficient to guarantee
that the Cauchy problem x′(t) = A(t)x(t), x(0) = x0 admits a solution, see e.g.
[103, Sections 5.3 and 5.4]. For each t, C(t) : D → Y is a bounded operator. Then,
for initial data x0 ∈ D , the solution x to (A,C) satisfies x(t) ∈ D for each t ≥ 0
and hence y(t) is well defined. We define observability concepts (and controllability
concepts for the adjoint system) as in the autonomous case (5.1.1).

In the case of time-dependent matrices, a famous result of Silverman and Mead-
ows [115] characterizes exact observability and controllability. Their arguments have
been adapted to certain infinite dimensional settings, see for example [1, 64, 4]. Our
main objective is different. We seek to prove observability from a certain Hautus
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5. The averaged Hautus test for non-autonomous linear evolution equation

type condition. In order to do this, we introduce the following averaged Hautus
conditions:

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)eλsx
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0
eReλ.s

∥∥(λ+A(s))x
∥∥ds

)2

for all λ ∈ C and all x ∈ D , or

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)x
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

∥∥(iξ +A(s))x
∥∥2

ds
)

for all ξ ∈ R and x ∈ D . These inequalities do coincide with the usual Hautus
conditions if the operators A and C are independent of t. We prove that these aver-
aged Hautus conditions imply exact observability when the operators A(t) are skew-
adjoint. This result is refined to the case of invertible evolution families (not necessar-
ily unitary) under certain growth constraints. We apply these results to Schrödinger
equations with time dependent potentials and to a damped wave-equation with time-
dependent damping.
Finally, we mention the papers [28], [64] and the references therein on observability
(or controllability) of parabolic equations (with time dependent coefficients). The
approach in these papers is based on Carleman estimates and it differs from ours.

5.2 Preliminary results

Recall that we suppose A(t) : D → H to have a fixed domain, that t 7→ A(t)v
is continuously differentiable in H for every v ∈ D and each semigroup e−sA(t) is
a contraction on H. By [103, Sections 5.3 and 5.4] there exists a unique evolution
family (U(t, s))0≤s≤t≤τ on H generated by A(t)0≤t≤τ . This evolution family satisfies
the following properties.

1. ‖U(t, s)‖ ≤Me−ω(t−s) for some ω ∈ R

2. For all v ∈ D , ∂
+

∂t U(t, s)v|t=s = −A(s)v, ∂+

∂t U(t, s)v = −A(t)U(t, s)v.

3. For all v ∈ D , ∂
∂sU(t, s)v = U(t, s)A(s)v.

4. U(t, s)D ⊆ D

5. For all v ∈ D , (s, t) 7→ U(t, s)v is continuous in D for 0 ≤ s ≤ t ≤ T .

For every v ∈ D , the evolution equation{
d
dtη(t) +A(t)η(t) = 0 0 ≤ s ≤ t ≤ τ
η(s) = v

(CP)

has a unique solution. This solution is given by η(t) = U(t, s)v. For f ∈ L1(0, τ ;H),
the non homogeneous problem{

d
dtη(t) +A(t)η(t) = f(t) 0 ≤ s ≤ t ≤ τ
η(s) = v ∈ H. (NHCP)
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has then a mild solution given by

η(t) = U(t, s)v +

∫ t

s
U(t, r)f(r) dr, (5.2.1)

see e.g. [103, p.146]. If, in addition to the standing assumptions, f ∈ C1([s, τ ], H)
then (NHCP) has a unique classical solution which coincides with the mild solution,
see for example [103, Theorem 5.2, p.146].

We associate with (A,C) the operator

(Ψs,τx)(t) =

{
C(t)U(t, s)x t ∈ [s, τ ]
0 t > τ

and define the following notions:

Definition 5.2.1 (Averaged admissible observations). Let (C(t))t∈[0,τ ] be a family of
bounded operators in L (D , Y ), where Y is some Hilbert space. We say that (C(t))t
are averaged admissible observations for (A(t))t∈[0,τ ] if there exists a constantMτ > 0
such that ∫ τ

s

∥∥C(t)U(t, s)x
∥∥2

dt ≤M2
τ ‖x‖2 ∀x ∈ D , s ∈ [0, τ ].

(one can also consider a weaker admissibility notion by requiring the above inequality
for s = 0, only). For a single operator C(t0) such that∫ τ

0

∥∥C(t0)U(t, s)x
∥∥2

dt ≤Mτ‖x‖2 ∀x ∈ D

we say that C(t0) is admissible for (A(t))t∈[0,T ].

For averaged admissible observations, Ψs,τ extends to a bounded operator from
H to L2(s, τ ;Y ) which we denote again by Ψs,τ .

In this definition the norm inside the integral is taken in Y and the norm of x is
taken in H. We always use the same notation ‖ · ‖ for both, the difference will be
clear from the context.

Definition 5.2.2. Suppose that (C(t))t is an averaged admissible observation for
(A(t))t. We say that the system (A,C) is
a) exactly averaged observable in time τ if the map Ψs,τ is bounded from below

in the sense that there exists a constant κτ > 0 such that for all x ∈ D∫ τ

s

∥∥C(t)U(t, s)x
∥∥2

dt ≥ κτ‖x‖2.

For a given t0 ∈ [0, τ ], the system (A,C(t0)) is exactly observable at time τ if∫ τ

0

∥∥C(t0)U(t, 0)x
∥∥2

dt ≥ κτ‖x‖2.
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b) final-time averaged observable in time τ if there exists a constant κτ > 0 such
that ∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt ≥ κτ‖U(τ, 0)x‖2 ∀x ∈ D .

As above we define final observability for the simple operator C(t0) for some
t0 as ∫ τ

0

∥∥C(t0)U(t, 0)x
∥∥2

dt ≥ κτ‖U(τ, 0)x‖2.

c) approximately averaged-observable in time τ if ker Ψs,τ = {0} for all 0 ≤ s <
τ . Again we define approximate observability for a single operator C(t0) if
(A,C(t0)) is approximate observable in average as above.

In order to justify the use of the term "averaged" in the previous notions of
observability, we note that it might be possible that (A,C(t0)) is not exactly (or final
or approximately) observable for some C(t0) or even for all t0 ∈ J for some subset
J of [0, τ ] but (A,C) is exactly (or final or approximately) observable in average.
In order to see this, we consider the autonomous case A(t) = A and an observation
operator C such that the autonomous system is exactly (or null or approximately)
observable at time τ0. Define

C(t) =

{
C, t ∈ [0, τ0]
0, t ∈ (τ0, τ ].

Then ∫ τ

0

∥∥C(t)e−tAx
∥∥2

dt ≥
∫ τ0

0

∥∥C(t)e−tAx
∥∥2

dt ≥ κτ‖x‖2.

Hence the averaged observability property for (A,C(t)) at time τ holds but the
system (A,C(t0)) is not observable for t0 ∈ (τ0, τ ] at any time. The same observation
is valid for null and approximate average observability.

Along with (A,C) we consider a controlled evolution equation. First, we recall the
following: one can construct an extrapolation space H−1 and extrapolated operators
A−1(t) such that the following diagram commutes

H H−1(t)

D H

A−1(t)

A(t)

i i

One way to realize H−1(t) is to take the completion of H with respect to a resolvent
norm ‖(λ−A(t))−1x‖H or via its identification with D(A(t)∗)′. For all this we refer
to [65, Chapter II.5].

In order to keep the abstract setting simple we will suppose for the rest of this
section that D(A(t)∗) =: D∗ is independent of time as well and equivalent norms
with constants independent of t. Note that if for all t ∈ [0, τ ], A(t) = A(0) +Rt with
a bounded operator on H, then A(t)∗ = A(0)∗ + R∗t with domain D∗ := D(A(0)∗)
independent of t. In the setting of the averaged Hautus test we consider later, we
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5.2. Preliminary results

will make the assumption A(t) = A(0) + Rt with a family of uniformly bounded
operators Rt on H. In this case H−1(t) = H−1 and have equivalent norms with
constants independent of t.

Let U be another Hilbert space and let B(t) : U → H−1 is bounded for each
t ∈ [0, τ ]. We consider in H−1 the evolution equation{

x′(t) +A(t)x(t) = B(t)u(t) t ∈ [0, τ ]
x(s) = 0.

(A,B)

Since the mild solution is of the form (5.2.1), we have the naturally associated oper-
ator

Φs,τu =

∫ τ

s
U(τ, r)B(r)u(r) dr (τ ≤ τ) (5.2.2)

to (A,B).

Definition 5.2.3 (Averaged admissible controls). Let (B(t))t∈[0,τ ] be a family of
bounded operators in L (U ;H−1). We say that (B(t))t are averaged admissible
controls for (A(t))t∈[0,τ ] if there exists a constant Mτ > 0 such that the solution x
to (A,B) satisfies x(t) ∈ H and for all s ∈ [0, τ)∥∥∥∫ τ

s
U(τ, r)B(r)u(r) dr

∥∥∥2
≤M2

τ

∥∥u∥∥2

L2(s,τ ;U)

for all u ∈ D(0, τ ;U) (one can also consider a weaker admissibility notions by re-
quiring the above inequality for s = 0, only).

Let us consider the retrograde final-value problem{
z′(t)−A(t)∗z(t) = 0
z(τ) = zτ .

(5.2.3)

Observe that for x ∈ D and x∗ ∈ D∗,

d
dt〈x, U(τ, t)∗x∗〉 = d

dt〈U(τ, t)x, x∗〉 = −〈U(τ, t)A(t)x, x∗〉 = 〈x,−A(t)∗U(τ, t)∗x∗〉

so that z(t) = U(τ, t)∗zτ solves the retrograde equation (5.2.3) on [s, τ ] for all 0 ≤
s < τ .

Lemma 5.2.4. The family (B(t))t∈[0,τ ] are admissible controls for (A(t))t∈[0,τ ] if and
only if the family (B(t)∗)t∈[0,τ ] are admissible observations for the retrograde equation
(5.2.3).

Proof. The following calculation is standard.

sup
‖u‖2≤1

∥∥∥∫ τ

s
U(τ, r)B(r)u(r) dr

∥∥∥ = sup
‖u‖2≤1

sup
‖x∗‖≤1

∣∣∣∫ τ

s
〈U(τ, r)B(r)u(r), x∗〉dr

∣∣∣
= sup
‖x∗‖≤1

sup
‖u‖2≤1

∣∣∣∫ τ

s
〈u(r), B(r)∗U(τ, r)∗x∗〉 dr

∣∣∣
= sup
‖x∗‖≤1

(∫ τ

s

∥∥B(r)∗U(τ, r)∗x∗
∥∥2

dr
)1/2

.
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5. The averaged Hautus test for non-autonomous linear evolution equation

Definition 5.2.5. Let (B(t))t be averaged admissible controls for (A(t))t∈[0,τ ]. We
say that (A,B) is
a) Exactly averaged controllable in time τ if for any s ∈ [0, τ) and xs, xτ ∈ H,

there exist u ∈ L2(s, τ ;U) such that the mild solution x satisfies x(s) = xs
and x(τ) = xτ .
This definition coincides with the usual one in the autonomous case, that is,
given two states xs, xτ ∈ H we find a control u such that the solution takes
the value xs at the initial time t = s and the value xτ at time t = τ .

b) approximately averaged controllable in time τ if for any 0 ≤ s < τ and any
xs, xτ ∈ H and ε > 0, there exist u ∈ L2(0, τ ;U) such that x(s) = xs and
‖x(τ)− xτ‖ < ε.

c) averaged null controllable in time τ if for every 0 ≤ s < τ and every xs ∈ H,
there exist u ∈ L2(s, τ ;U) such that the mild solution x satisfies x(s) = xs
and x(τ) = 0.

Since the mild solution is given by

x(t) = U(t, s)xs +

∫ t

s
U(t, r)B(r)u(r) dr

it is clear that in order to obtain exact averaged controllability it suffices to consider
the case where x(s) = 0.

Proposition 5.2.6. Let B(t) ∈ L (U,H−1) be a family of averaged admissible con-
trols for (A(t))t∈[0,τ ]. Then
a) Exact averaged controllability for (A,B) in time τ is equivalent to exact aver-

aged observability of the retrograde final-value problem (5.2.3) with the obser-
vation operators C(t) = B(t)∗.

b) Approximate averaged controllability for (A,B) in time τ is equivalent to ap-
proximate averaged observability of the retrograde final-value problem (5.2.3)
with the observation operators C(t) = B(t)∗.

c) Averaged null controllability for (A,B) in time τ is equivalent to averaged ob-
servability of z(s), 0 ≤ s < τ where z is the solution of the retrograde final-value
problem (5.2.3) with the observation operators C(t) = B(t)∗.

Proof. First note that (Φ∗s,τzs)(t) = B(t)∗U∗(τ, t)zs for t ∈ [s, τ ]. For simplicity we
extend this function by zero for other values of t. Exact averaged controllability
for (A,B) at τ is equivalent to range(Φs,τ ) = H for all s. Since these operators
are bounded, the latter property is equivalent to the fact that their adjoints Φ∗s,τ is
bounded from below on L2(s, τ ;H), i.e., there exists κs,τ such that∫ τ

s
‖B(t)∗U(τ, t)∗zs‖2 dt ≥ κs,τ‖zs‖2

for all zs ∈ D∗. Approximate averaged controllability is equivalent to range(Φs,τ )
being dense for all s ∈ [0, τ), or, equivalently, the respective adjoints being injective.
Finally, averaged null controllability in time τ is equivalent to range(U(τ, s)) ⊂
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5.3. The averaged Hautus test: skew-adjoint operators

range(Φs,τ ) for all 0 ≤ s < τ . Applying [123, Proposition 12.1.2], averaged null
controllability is equivalent to

‖U(τ, s)∗zτ‖2 ≤ δ2‖Φ∗s,τzτ‖2 = δ2

∫ τ

s

∥∥B(t)∗U(τ, t)∗zτ
∥∥2

dt

for some constant δ > 0. But U(τ, s)∗zτ = z(s) where z(·) is the solution of the
retrograde equation (5.2.3).

5.3 The averaged Hautus test: skew-adjoint operators

Throughout this section, the family of operators {A(t)}0≤t≤τ is as before. Let
{C(t)}0≤t≤τ be a family of bounded operators from D to a Hilbert space Y . In the
autonomous case A(t) = A and C(t) = C for all t, it is well known that for admissible
C the exact observability of the system (A,C) implies the so-called Hautus test (or
spectral condition)

‖x‖2 ≤ m2‖Cx‖2 +M2‖(iξ +A)x‖2 (5.3.1)

for some positive constants m and M and all ξ ∈ R and x ∈ D(A). There is
also another condition with λ ∈ C in place of iξ, see below. In the general non-
autonomous situation we introduce an integrated (or averaged) version of this test.
We also study, as in the autonomous case, when the averaged Hautus test is necessary
and/or sufficient for averaged observability. We start with the "necessary" part.

Proposition 5.3.1. Suppose that (C(t)) is averaged admissible for (A(t)). If the
system (A,C) is exactly averaged observable at time τ > 0 then there exist positive
constants m and M such that:

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)eλsx
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0
eReλ.s‖(λ+A(s))x‖ds

)2
(AH.1)

for all λ ∈ C and all x ∈ D ,

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)x
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

∥∥(iξ +A(s))x
∥∥2

ds
)

(AH.2)

for all ξ ∈ R and x ∈ D .

Remark 5.3.2. If C(s) = C for all s then (AH.1) can be written as:

‖x‖2 ≤ e2τRe(λ)−1
2τRe(λ) m2‖Cx‖2 +M2

(
1
τ

∫ τ

0
eReλ.s

∥∥(λ+A(s))x
∥∥ds

)2 (AH.3)

If, in addition, A(s)=A then both assertions coincide with the classical Hautus (or
spectral) conditions. We call the conditions (AH.1) and (AH.2) averaged Hautus
tests.

Proof. The proof is similar to the autonomous case. We start from d
ds

(
eλsC(t)U(t, s)x

)
=

λeλsC(t)U(t, s)x+ eλsC(t)U(t, s)A(s)x for x ∈ D . Integrating on [0, τ ] yields

eλtC(t)x− C(t)U(t, 0)x =

∫ t

0
C(t)U(t, s)(A(s) + λ)xeλs ds.
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5. The averaged Hautus test for non-autonomous linear evolution equation

Hence,∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt ≤ 2

∫ τ

0

∥∥C(t)xeλt
∥∥2

dt+2

∫ τ

0

∥∥∥∫ t

0
C(t)U(t, s)(λ+A(s))xeλs ds

∥∥∥2
dt

Since (A,C) is exactly averaged observable on [0, τ ], the left hand side is bounded
below by m0‖x‖2 for some constant m0 > 0. We estimate the second term on the
right hand side

I :=

(∫ τ

0

∥∥∥∫ t

0
C(t)U(t, s)(λ+A(s))xeλs ds

∥∥∥2
dt

)1/2

= sup

{∣∣∣∫ τ

0

∫ t

0

〈
C(t)U(t, s)(λ+A(s))xeλs, g(t)

〉
H

ds dt
∣∣∣ : ‖g‖L2(0,τ ;H) ≤ 1

}
= sup
‖g‖L2

≤1

∣∣∣∣∫ τ

0

〈
(λ+A(s))x eλs,

∫ τ

s
U(t, s)∗C(t)∗g(t) dt

〉
H

ds

∣∣∣∣
≤ sup
‖g‖L2

≤1

(∫ τ

0

∥∥(λ+A(s))x eλs
∥∥
H

∥∥∥∫ τ

s
U(t, s)∗C(t)∗g(t) dt

∥∥∥
H

ds
)
.

By Lemma 5.2.4 and the admissibility assumption of (C(t)), there exists a constant
Kτ > 0 such that

I ≤ Kτ

∫ τ

0

∥∥(λ+A(s))xeλs
∥∥ds = Kτ

∫ τ

0

∥∥(λ+A(s))x
∥∥eReλ.s ds.

and (AH.1) follows. The second assertion is obtained from the first one by taking
λ = iξ and using the Cauchy-Schwarz inequality.

Now we study the converse. In the autonomous case i.e., A(s) = A and C(t) = C,
it is well known that condition (AH.2) implies the exact observability if the single
operator A is skew-adjoint. We extend this result to our more general situation.

Theorem 5.3.3. Suppose that A(t) ∈ L (D ;H) be a family of skew-adjoint operators
generating an evolution family U(t, s)0≤s≤t≤τ . Suppose that the differences of the
operators A(t) are bounded and satisfy the estimate∥∥A(t)−A(s)

∥∥
L (H)

≤ L ∀t, s ∈ [0, τ ]

for some constant L < 1√
2M

. Assume that C(t) ∈ L (D ;Y ) is a family of aver-
aged admissible observation operators and that the second averaged Hautus condition
(AH.2) holds with positive constants m and M . Then, for all τ > τ∗ := 2πM√

1−2L2M2

there exists κτ > 0 depending on M,L and τ such that, for all x ∈ D the exact
averaged observability estimate

1
τ

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2

dt ds ≥ κτ
m2 ‖x‖2 (5.3.2)

holds. In particular, if C(s) = C is constant, then the system (A,C) is exactly
averaged observable for τ > τ∗, i.e, for all x ∈ D ,∫ τ

0

∥∥CU(t, 0)x
∥∥2

dt ≥ κτ
m2 ‖x‖2.
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Proof. We proceed in a similar way as in the autonomous case. Let τ > 0, ϕ ∈
H1

0 (0, τ) and x ∈ D . For t, s ∈ [0, τ ], let h(t) := ϕ(t)U(t, 0)x and f(t, s) := h′(t) +
A(s)h(t). Note that h and f(., s) can be extended continuously by zero outside
(0, τ) since ϕ ∈ H1

0 (0, τ). We write f̂(ξ, s) for the partial Fourier transform of f with
respect to the first variable, and observe that

f̂(ξ, s) =

∫
R
e−itξf(t, s) dt =

∫
R
e−itξh′(t) dt+

∫
R
e−itξA(s)h(t) dt = iξĥ(ξ)+A(s)ĥ(ξ)

where we use the fact that each operator A(s) is closed in order to have Â(s)h(ξ) =
A(s)ĥ(ξ). We apply (AH.2) with z0 = ĥ(ξ) to obtain

‖ĥ(ξ)‖2 ≤ m2

τ

∫ τ

0

∥∥C(s)ĥ(ξ)
∥∥2

ds+ M2

τ

∫ τ

0

∥∥(iξ +A(s))ĥ(ξ)
∥∥2

ds

= m2

τ

∫ τ

0

∥∥C(s)ĥ(ξ)
∥∥2

ds+ M2

τ

∫ τ

0

∥∥f̂(ξ, s)
∥∥2

ds.

We integrate over all ξ ∈ R and use Plancherel’s theorem together with the fact that
C(s)ĥ(ξ) = ̂C(s)h(ξ) to deduce∫ τ

0

∥∥h(t)
∥∥2

dt ≤ m2

τ

∫ τ

0

∫ τ

0

∥∥C(s)h(t)
∥∥2

dt ds+ M2

τ

∫ τ

0

∫ τ

0

∥∥f(t, s)
∥∥2

dt ds. (5.3.3)

We estimate the last term on the right hand side as follows∫ τ

0

∫ τ

0

∥∥f(t, s)
∥∥2

dt ds

=

∫ τ

0

∫ τ

0

∥∥h′(t) +A(s)h(t)
∥∥2

dtds

=

∫ τ

0

∫ τ

0

∥∥ϕ′(t)U(t, 0)x− ϕ(t)A(t)U(t, 0)x+ ϕ(t)A(s)U(t, 0)x
∥∥2

dtds

≤ 2τ

∫ τ

0

∥∥U(t, 0)x
∥∥2|ϕ′(t)|2 dt+ 2

∫ τ

0

∫ τ

0

∥∥(A(t)−A(s))U(t, 0)x
∥∥2|ϕ(t)|2 dt ds.

(5.3.4)

By skew-adjointness,

d

dt

∥∥U(t, s)x
∥∥2

= −2Re〈A(t)U(t, s)x, U(t, s)x〉 = 0

for x ∈ D and so U(t, s) is unitary for 0 ≤ s ≤ t ≤ τ . Therefore (5.3.3) can be
rewritten as

‖x‖2
∫ τ

0

∣∣ϕ(t)
∣∣2 dt ≤ m2

τ

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2
ϕ(t)2 dt ds+ 2M2‖x‖2

∫ τ

0

∣∣ϕ′(t)∣∣2 dt

+ 2L2M2‖x‖2
∫ τ

0

∣∣ϕ(t)
∣∣2 dt.

Hence
κ(ϕ) ‖x‖2 ≤ m2

τ

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2∣∣ϕ(t)

∣∣2 dt ds
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where
κ(ϕ) =

(
(1− 2L2M2)

∫ τ

0

∣∣ϕ(t)
∣∣2 dt− 2M2

∫ τ

0

∣∣ϕ′(t)∣∣2 dt
)
.

We have to chose ϕ such that the constant κ(ϕ) is positive. Taking the first eigen-
function of the Dirichlet Laplacian on (0, τ), i.e., ϕ(t) := sin

(
tπ
τ

)
, we maximize κ(ϕ)

and obtain from ‖ϕ‖∞ = 1

κτ
m2 ‖x‖2 ≤

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2

dtds

where κ =
(
(1 − 2L2M2) τ2 −

π2M2

τ

)
. To ensure κ > 0 we need L2 < 1

2M2 and
τ > τ∗.

Remark 5.3.4. 1. In (5.3.4) we have used for simplicity the inequality (a+ b)2 ≤
2(a2 + b2) but we could instead use (a+ b)2 ≤ (1 + r)a2 + (1 + r−1)b2 for any
r > 0. In this case, we obtain the theorem (with the same proof) with the
conditions L < 1

M
√

1+r
and τ∗ = πM

√
1+r−1√

1−M2(1+r)L2
.

2. If A(t) = A and hence L = 0 we obtain (from the previous remark) as minimal
control time τ∗ = πM . This is the usual minimal time in the case of unitary
groups.

3. In the last assertion of theorem, if instead of C(s) = C, we assume that

‖C(s)− C(t)‖ ≤ L0|t− s|α

for some positive constants α and L0 we obtain that for L0 small enough, the
system (A,C) is exactly averaged observable. Indeed, we have from (5.3.2)

κ‖x‖2 ≤ 2

∫ τ

0

∫ τ

0

∥∥(C(t)− C(s))U(t, 0)x
∥∥2

ds dt+ 2

∫ τ

0

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dsdt

≤ 2L0

∫ τ

0

∫ τ

0
|t− s|2α ds dt‖x‖2 + 2τ

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt

=
2L0τ

2α+2

(2α+ 1)(α+ 1)
‖x‖2 + 2τ

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt.

4. If we define
C̃x := 1

τ

∫ τ

0
C(s)x ds

then we can apply Proposition 5.3.1 and Theorem 5.3.3 to the time independent
operator C̃. We obtain equivalence between

κτ
∥∥x∥∥2 ≤

∫ τ

0

∥∥∥∫ τ

0
C(s)U(t, 0)x ds

∥∥∥2
dt

and

‖x‖2 ≤ m2
∥∥∥( 1

τ

∫ τ

0
C(s) ds

)
x
∥∥∥2

+M2
(

1
τ

∫ τ

0

∥∥(iξ −A(s))x
∥∥2

ds
)
.
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5. We have assumed in the theorem that A(t) are skew-adjoint operators in order
to have U(t, s) is a unitary operator on H. The previous proof works under
the assumption that

K0‖x‖ ≤ ‖U(t, 0)x‖ ≤ K1‖x‖, x ∈ H

for some positive constants K0 and K1. The statement of the theorem holds
with different conditions L and τ∗ (depending on K0 and K1).

5.4 The averaged Hautus test: a more general class of
operators

In this section we extend Theorem 5.3.3 to a more general class of operators.
More precisely, we consider operators A(t) for which the corresponding evolution
family U(t, s) is not necessarily an isometry but satisfies an estimate of the form

keα(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖, x ∈ H (5.4.1)

for some constants k,K, α and β. This question was considered in the autonomous
case A(t) = A and C(t) = C by Jacob and Zwart [52]. We shall follow similar ideas
as in their paper. Note however, even in this autonomous case, the result is very
much less precise than in the case of unitary groups. In particular, the minimal time
for observability obtained in [52] is 1

β−α . This value becomes large as α and β are
close and this is not consistent with the result on unitary groups.

The main tool is the following optimal Hardy inequality.

Theorem 5.4.1 ( Gurka [40], Opic-Kufner [101] ). Let v, w ≥ 0 be weight functions
on [0, τ ]. Then the weighted Hardy inequality∥∥ϕ∥∥

L2(0,τ ;w(x)dx)
≤ CH

∥∥ϕ′∥∥
L2(0,τ ;v(x)dx)

(5.4.2)

holds for all ϕ ∈ H1
0 (0, τ) if and only if

B := sup

{(∫ y

x
w(t) dt

)
min

(∫ x

0

1
v(t) dt,

∫ τ

y

1
v(t) dt

)
: 0 < x, y < τ

}
is finite. In this case, the optimal constant CH in (5.4.2) satisfies B√

2
≤ CH ≤ 4B.

We make a basic remark on evolution families U(t, s)0≤s≤t. Given U(t, s) which
is exponentially bounded, i.e., ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖. If in addition each U(t, s)
is invertible then writing V (t) := U(t, 0) gives

V (t) = U(t, 0) = U(t, s)U(s, 0) = U(t, s)V (s) ⇐==⇒ U(t, s) = V (t)V (s)−1.

Then I = V (t)V (t)−1 gives ‖x‖ ≤ Keβt‖V (t)−1x‖ and so ‖V (t)−1x‖ ≥ 1
K e
−βt‖x‖

so that
keα(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖. (5.4.3)

holds for α = −β and k = 1
K . If A is ’shifted’, i.e., replaced by A+ω, this symmetry

α = −β will break, and we will therefore use only (5.4.3) for some constants k,K > 0
and α ≤ β.
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5. The averaged Hautus test for non-autonomous linear evolution equation

Theorem 5.4.2. Let A(t)0≤t≤τ ∈ L (D ;H) be a family of operators generating an
evolution family U(t, s) and let 0 < k ≤ K and α < β be such that (5.4.3) holds. We
suppose that the differences A(t)−A(s) are bounded operators with ‖A(t)−A(s)‖ ≤ L

for some L such that L <
k√

2KMe(β−α)τ
. Let C ∈ L (D ;Y ). Then the averaged

Hautus condition (AH.3) implies exact observability for all τ > τ∗∗, i.e.,∫ τ

0

∥∥CU(t, 0)x
∥∥2

dt ≥ κ
m2

∥∥x∥∥2 ∀x ∈ H

for some τ∗∗ > 0 provided that there exist 0 ≤ x ≤ y ≤ τ∗∗ such that

f(x, y) :=
(

k2

4K2M2(β−α)
(e−2(β−α)x − e−2(β−α)y) + L2(x− y)

)
min(x, τ − y) > 2.

Proof. Observe that exact (averaged) observability is invariant under spectral shifts
(replacing A by A+ω), which in turn allows to assume β = 0 and α = −ω for
ω = β−α > 0. We follow the lines of the proof of Theorem 5.3.3 until (5.3.4). Using
(5.4.3) instead of unitarity leads to consider a new function

κ(ϕ) :=

∫ τ

0
|ϕ(t)|2(k2e−2ωt − 2K2M2L2) dt − 2K2M2

∫ τ

0
|ϕ′(t)|2 dt.

Then κ(ϕ) > 0 is equivalent to∫ τ

0
|ϕ′(t)|2 dt <

∫ τ

0
|ϕ(t)|2( k2

2K2M2 e
−2ωt − L2) dt. (5.4.4)

This is an ’inverse Hardy inequality’, when compared to (5.4.2). To establish such
an estimate for at least one function ϕ ∈ H1

0 (0, τ), we consider on [0, τ ] the weight
function

w(t) = k2

2K2M2 e
−2ωt − L2.

Observe that w is positive if

0 ≤ L < k√
2KMe(β−α)τ

. (5.4.5)

In order to obtain (5.4.4) we use the optimality statement in Theorem 5.4.1 with
v(x) = 1: if

√
2 < B < ∞, the optimal constant guaranteeing (5.4.2) is larger than

one. Hence, for any C < 1 there exists a ϕ ∈ H1
0 ([0, τ ]) for which (5.4.2) fails.

This function will then satisfy (5.4.4), and provides a strictly positive constant κ(ϕ),
yielding exact averaged observability with κ := κ(ϕ), as in the proof of Theorem 5.3.3
(by rescaling we may suppose ‖ϕ‖∞ = 1). Clearly,

√
2 < B is equivalent to our

condition on f(x, y) to be larger than 2 for some 0 ≤ x ≤ y.

On the compact set T = {0 ≤ x ≤ y ≤ τ} ⊂ R2 we consider the function

f(x, y) :=

(∫ y

x
w(t) dt

)
min

(∫ x

0
dt,

∫ τ

y
dt

)
=
(

k2

4K2M2ω
(e−2ωx − e−2ωy) + L2(x− y)

)
min(x, τ − y).
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It is continuous and satisfies f |∂T = 0 so that the maximum is taken inside T .
However, due to the many parameters and the mixture of power-type functions with
exponentials it may be difficult to calculate explicitly the maximum of f in T . We
therefore concentrate on a sufficient condition that ensures f(x, y) > 2 for some x
and y. We consider for example the case where f(1

4τ,
3
4τ) > 2, i.e.,

τe−
ωτ
2

(
1−e−ωτ
ωτ

)
> 1

τ

(
32K2M2

k2

)
+ τ
(

2L2K2M2

k2

)
.

By numerical calculations∗, we see that if ωτ ≤ 1√
2
, then the left hand side is larger

than τ
2 , so that for 2L2K2M2

k2
< 1

4 , τ
2 = 128K2M2

k2
gives a concrete observation time.

We obtain the following corollary.

Corollary 5.4.3. Suppose that L < k
2
√

2KM
and 0 ≤ β − α ≤ k

16KM . Then we have

exact observability at time τ > τ∗∗ where τ∗∗ = 8
√

2KM
k . In particular, if k=K=1

and L,M are such that 8L2M2 < 1 and 0 ≤ β − α ≤ 1
16M , then we have exact

observability at time τ > τ∗∗ where τ∗∗ = 8
√

2M .

In the autonomous case A(t) = A with A is a generator of a group we have L = 0,
hence for 0 ≤ β−α ≤ k

16KM we obtain exact observability at time τ > τ∗∗ = 8
√

2KM
k .

This might be better than the observation time given in [52] which is 1
β−α .

5.5 Applications to the wave and Schrödinger equations
with time dependent potentials

In this section we give applications of our results to observability of the Schrödinger
and wave equations both with time dependent potentials. We also consider the
damped wave equation with time dependent damped term. Before going into these
examples we explain the general idea. It is based on a perturbation argument which
shows that the Hautus test carries over from the time independent operator to time
dependent ones. Once the Hautus test is satisfied by the perturbed operator we
appeal to the results of the previous sections and obtain observability of the system.

Let A be the generator of unitary group on H. We assume that C : D(A) → Y
is an admissible operator and such that the system (A,C) is exactly observable at
time τ0. Therefore the Hautus test is satisfied by the operators A and C. Now let
R(t)0≤t≤τ be a family of uniformly bounded operators on H. By classical bounded
perturbation argument (see, e.g., [65, Theorem 9.19]). the operators given by A(t) =
A+R(t), t ∈ [0, τ ], generate an evolution family U(t, s) on H. Note that for every
x ∈ H

e−β(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ eβ(t−s)‖x‖ (5.5.1)

with β = supt∈[0,τ ] ‖R(t)‖. Indeed, one has for every x ∈ D(A), Re〈(A+R(t))x, x〉 =
Re〈R(t)x, x〉 ans hence

−β‖x‖2 ≤ Re〈(A+R(t))x, x〉 ≤ β‖x‖2.
∗The function g(x) = e−

x/2( 1−e
−x

x
) is larger than 1/2 for x ≤ 0.7143 and 1√

2
≤ 0.70711.
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5. The averaged Hautus test for non-autonomous linear evolution equation

We apply this with U(t, s)x at the place of x and obtain

−β‖U(t, s)x‖2 ≤ 1
2
∂
∂t

∥∥U(t, s)x
∥∥2 ≤ β‖U(t, s)x‖2.

We integrate and obtain (5.5.1). Note that if Re〈R(t)x, x〉 = 0, then U(t, s) is
unitary.

Let now x ∈ D(A) and ξ ∈ R. The Hautus test for (A,C) gives

‖x‖2 ≤ m2‖Cx‖2 +M2‖(iξ +A)x‖2

≤ m2‖Cx‖2 + 2M2‖(iξ +A+R(s))x‖2 + 2M2‖R(s)‖2‖x‖2.

Integrating on [0, τ ] with respect to s gives

‖x‖2 ≤ m2‖Cx‖2+2M2
(

1
τ

∫ τ

0

∥∥(iξ+A+R(s))x
∥∥2

ds
)

+2M2
(

1
τ

∫ τ

0

∥∥R(s)
∥∥2

ds
)
‖x‖2.

Suppose in addition that there exists τ1 > 0 and µ < 1 such that for τ ≥ τ1

2M2
(

1
τ

∫ τ

0

∥∥R(s)
∥∥2

ds
)
≤ µ. (5.5.2)

Then we obtain

(1− µ)‖x‖2 ≤ m2‖Cx‖2 + 2M2
(

1
τ

∫ τ

0

∥∥(iξ +A+R(s))x
∥∥2

ds
)
. (5.5.3)

Note that we could also replace iξ by λ ∈ C and obtain the Hautus test (AH.3). Next
we assume that C is admissible for the unitary group etA generated by A. That is
there exists a constant Kτ > 0 such that∫ τ

0

∥∥CetAx∥∥2
dt ≤ Kτ‖x‖2, x ∈ D(A). (5.5.4)

We prove that C is admissible for (A + R(t)). In order to do so, we start from
Duhamel’s formula†

U(t, s)x− e(t−s)Ax =

∫ t

s
e(t−r)AR(r)U(r, s)x dr. (5.5.5)

We use (5.5.4) so that∫ τ

0

∥∥CU(t, s)x
∥∥2

dt ≤ 2

∫ τ

0

∥∥Ce(t−s)Ax
∥∥2

dt+ 2

∫ τ

0

∥∥∥∫ t

s
Ce(t−r)AR(r)U(r, s)x dr

∥∥∥2
dt

≤ 2Kτ‖x‖2 + 2τ

∫ τ

s

∫ τ

r

∥∥Ce(t−r)AR(r)U(r, s)x
∥∥2

dt dr

≤ 2Kτ‖x‖2 + 2Kτ

∫ τ

s
‖R(r)U(r, s)x‖2 dr ≤ K ′τ‖x‖2,

†in order to prove this formula one takes the derivative of f(r) := e(t−r)AU(r, s)x for s ≤ r ≤ t
and then integrate from s to t.
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where we use the fact that the operators R(r) are uniformly bounded and U(t, s) is
exponentially bounded.
We have admissibility of C and the averaged Hautus test (5.5.3). Now we conclude
either by Theorem 5.3.3 or Corollary 5.4.3 that, as soon as ‖R(t)−R(s)‖ are small
enough, we have exact observability of the system (A + R(.), C) at time τ > τ∗ for
some τ∗ > 0. Note that (5.5.2) holds if R(t) = 0 for t ≥ t0 for some t0 > 0.

The Schrödinger equation. Let Ω be a bounded domain of Rd with a C2-boundary
Γ. Let Γ0 be an open subset of Γ and Y = L2(Γ0). It is known that for appropriate
condition on Γ0, the Schrödinger equation

z′(t, x) = i∆z(t, x) (t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H2(Ω) ∩H1

0 (Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ

(5.5.6)

satisfies the observability inequality∫ τ

0

∫
Γ0

| ∂z∂ν (t, x)|2dσ dt ≥ κτ‖z0‖2H1
0 (Ω) (5.5.7)

for every τ > 0, see for example [123, Chapter 7]. Let C be the normal derivative ∂
∂ν

on Γ0, Y = L2(Γ0, dσ) and ∆D the Laplacian with Dirichlet boundary conditions.
The previous inequality means that the system (i∆D, C) is exactly observable at
time τ . Let now R(t)f = iV (t)f where V (t, .) ∈ W 1,∞(Ω) is a real-valued potential
which depends on time. Then under appropriate conditions on V we obtain from
the discussion above that the non-autonomous system (i(∆D + V (t)), C) is exactly
observable at time τ > τ∗ for some τ∗ > 0. This means that (5.5.7) is satisfied for
the solution of the Schrödinger equation with time dependent potential

z′(t, x) = i∆z(t, x) + iV (t)z(t, x) (t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H2(Ω) ∩H1

0 (Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

(5.5.8)

Note however that our method does not give observability at any time τ > 0. If
V (t) = V is independent of t then observability for the Schrödinger equation per-
turbed by the potential V holds at any time τ > 0, see [123, Chapter 7] and the
references there.

The wave equation. Let again Ω be a bounded smooth domain of Rd. We consider
the wave equation

z′′(t, x) = ∆z(t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H1

0 (Ω), z′(0, .) = z1 ∈ L2(Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

(5.5.9)

Let Γ0 be a part of the boundary Γ. Observability for the wave equation with the
observation operator C = ∂

∂ν |Γ0
have been intensively studied. Under appropriate
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5. The averaged Hautus test for non-autonomous linear evolution equation

geometric conditions on Γ0, there exists τ0 > 0 such that for τ > τ0 there exists a
positive constant κτ such that

κτ

(∫
Ω
|z1|2 +

∫
Ω
|∇z0|2

)
≤
∫ τ

0

∫
Γ0

| ∂z∂ν |
2dσ dt. (5.5.10)

We refer to [7, 79, 67] and the references therein. Let A0 =

(
0 I
−∆D 0

)
on H :=

H1
0 (Ω) × L2(Ω). It is a standard fact that A0 generates a unitary group U(t)t∈R

on H. Set C̃(f, g) := (∂f∂ν |Γ0
, 0). Then the energy estimate (5.5.10) is precisely the

observability inequality

κτ‖(z0, z1)‖2H ≤
∫ τ

0

∥∥C̃U(t)(z0, z1)
∥∥2

L2(Γ0)
dt. (5.5.11)

Now we consider the damped wave equation without a potential
z′′(t, x) = ∆z(t, x) + b(t, x)z′(t, x) + V (t, x)z(t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H1

0 (Ω), z′(0, .) = z1 ∈ L2(Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

(5.5.12)

Going to the first order system on H, the wave equation (5.5.12) can be rewritten as

Z ′ = A(t)Z with A(t) =

(
0 I

∆ + V (t) b(t)

)
= A0+R(t) where R(t) =

(
0 0

V (t) b(t)

)
.

As in the case of the Schrödinger equation we can apply the previous discussion to
see that the Hautus test for A0 implies our averaged Hautus test for (A(t))t. In order
to do so we need to verify (5.5.2). This property holds if

1

τ

∫ τ

0

(
‖V (t)‖2W 1,∞(Ω) + ‖b(t)‖2L∞(Ω)

)
dt

is small enough. The norms ‖R(t) − R(s)‖ are small if the quantities ‖V (t) −
V (s)‖W 1,∞(Ω) + ‖b(t) − b(s)‖L∞(Ω) are small. In this case, we obtain exact aver-
aged observability for (5.5.12). That is, we obtain the energy estimate (5.5.10) for τ
large enough for solution z to (5.5.12). If V and b are independent of t then observ-
ability results are known (see [123]). If b(t) = 0 and V depends on t, then a more
precise result can be found in [106] for a special class of Γ0. The proof in [106] is
different from ours and it is based on Carleman estimates.
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Conclusion

In this work, we consider the control problem for a general class of non-autonomous
evolution equations. In application, the non-autonomous PDEs are used as models of
various phenomena in a numerous different processes. The analysis of these models
provides a fundamental basis for both the understanding the process dynamics and
also the design of the control schemes. We also interested to the control problem
with a class of PDEs defined on a time-varying domain, where the change in the
spatial domain is due to the time-evolution of the boundary. The functional ana-
lytic description of the PDE with time-dependent coeffcients, which is defined on the
time-dependent domain with moving boundary, yields the associated representation
as an abstract linear nonautonomous parabolic evolution system on an appropriately
defined infinite-dimensional function space.

The modelling in terms of finite and infinite dimensional PDEs systems is very
important in practice since it has quite different properties from the point of view on
the control theory. In general, the solutions of non-autonomous systems are expressed
in terms of two-parameter semigroups which inherit many of the properties of the
standard one-parameter semigroups generated by time invariant parabolic operators,
so that the optimal control problem can be handled by using the tools of time-varying
infinite-dimensional systems theory. In fact, even the analysis varies according to the
class of PDE’s (parabolic or hyperbolic), its different characteristic properties play
an important role in the controllability results.

While a comprehensive approach for non-autonomous PDEs is not yet to be
developed fully, there are several ways which are applicable to a large number of
problems. One such problem is infinite-dimensional non-autonomous systems control
theory which provides a convenient method of control design for parabolic PDEs.
In fact, we develope new methods that required in considering the application to
particular classes of parabolic PDE systems of one dimensional wave and Schrödinger
eqbuation with moving boundary.

However, there are still some open questions. In chapter 3, we use a series so-
lution to establish the boundary exact controllability. It is well-known that the
moving boundary problem is equivalent to a variable coefficient one (depending on
the material variable x and on the time variable t together) with the fixed domain.
This means that the corresponding variable coefficient problems also have series solu-
tions. Unfortunately, this approach is limited to 1D problems. For two dimensional
problem, the series solution will not work if each coordinate is in time-dependent
domain. Let us formulate the problem. We consider the curve s1, s2 : [0, τ ] → R+

and s1(0) = s2(0) = 1. Let take the domain Ω = (0, s1(t)) × (0, s2(t)) × (0, τ). We
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consider the wave equation in non-cyclindral domain:
utt − uxx − uyy = 0 (x, y, t) ∈ Ω
u(0, y, t) = u(s1(t), y, t) = 0 t ≥ 0
u(x, 0, t) = u(x, s2(t), t) = 0 t ≥ 0
u(x, y, 0) = g(x) (x, y) ∈ [0, 1]× [0, 1]
ut(x, y, 0) = f(x) (x, y) ∈ [0, 1]× [0, 1]

(5.5.13)

where (g, f) are given initial conditions. If one of the coordinates is constant, for
instance s1(t) = 1∀t, we may use find again the series representation for the solution
of 5.5.13. However, the interesting case raises when both s1(t) and s2(t) are not
constant functions. We would like to investigate the relation of s1(t) and s2(t) such
that 5.5.13 is exactly observable.

We raise the similar question for Schrödinger equation in chapter 4. In fact,
we would like to generalize the moving boundary problem to n-dimension (n ≥ 2).
Considering the space variable x = (x1, ..., xn), let `i(t) : [0, τ ] → R+, `i(0) = 1 for
all i = 1, .., n. Let the time dependent domain Ωt =

⋃
(0, `i(t)). We consider the

Schrödinger equation: 
i∂u∂t + ∆u = 0 xi ∈ [0, `i(t)]
u
∣∣
∂Ωt

= 0 t ≥ 0

u(x, 0) = u0 x ∈ Ωt

(5.5.14)

where u0 be the initial data. In fact, the multiplying method seem to be much more
complicated when n ≥ 2. We would like to investigate what is the relation of `i(t)
such that 5.5.14 is exactly observable.
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