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Résumé

Dans cette thèse nous étudions l'existence et la stabilité orbitale de solutions ayant une norme L 2 prescrite, pour deux types d'équations Schrödinger non linéaires dans R N , à savoir, une classe de systèmes non linéaires couplés de Schrödinger dans R N et une classe d'équations nonlinéaires de Schrödinger du quatrième ordre dans R N . Ces deux types d'équations nonlinéaires de Schrödinger surviennent dans de nombreuses applications en mathématiques et physique, et sont devenus une grande attention dans les années récentes. D'un point de vue physique, de telles solutions sont souvent référées comme des solutions normalisées, qui sont obtenues comme points critiques d'energie fonctionnelle associée sous contrainte avec une norme L 2 . Les éléments clés de nos preuves sont les méthodes variationnelles.

La thèse est divisée en 5 chapitres. Le chapitre 1 est une introduction de la thèse, qui contient une brève présentation des problèmes traités et résultats correspondants obtenus dans cette thèse. Dans les chapitres 2 et 3, nous sommes intéressés par l'existence et la stabilité orbitale de solutions normalisées pour une classe de systèmes nonlinéaires couplés de Schrödinger dans R N . Plus précisément, dans le chapitre 2, nous considérons solutions normalisées dans un cas où la fonctionnelle d'énergie associée est minorée sous contrainte. Par conséquent nous présentons un problème de minimisation de l'énergie fonctionnelle associée sous contrainte. Dans ce cas, les solutions normalisées sont en effet obtenues comme minimiseurs globaux. Notre but est d'être établir la compacité de toute suite minimisante en utilisant la technique de réarrangement couplé, qui est une alternative du principe de concentration-compacité de Lions, et n'exige pas la vérification de l'inégalité stricte de la subadditivité associée. En corollaire de la compacité de toute suite minimisante, la stabilité orbitale de minimiseurs globaux est prouvée. Au chapitre 3, nous nous concentrons sur l'existence de solutions normalisées dans deux autres cas, dans lesquels l'énergie fonctionnelle associée n'est pas minorée sous contrainte. En conséquence le minimiseur global pour l'énergie fonctionnelle associée sous contrainte n'existe plus. L'existence de deux solutions normalisées strictement positives est établi par méthodes du minimax. La première solution est un minimiseur local dont l'existence est assurée par l'étude de compacité de toute suite minimisante à un problème de minimisation localisée, et la deuxième, est respectivement de type point col ou de type linking. En particulier nous relâchons le hypothèse sur la dimension induites par les résultats de type de Liouville. En outre, nous obtenons la stabilité orbitale de minimiseurs locaux. Dans le chapitre 4, nous étudions des solutions normalisées pour une classe d'équations non linéaires du quatrième ordre de Schrödinger dans le cas de masse critique et dans le cas supercritique. Dans les deux cas, la fonctionnelle d'énergie associée n'est pas minorée sous contrainte. En utilisant une approche par contrainte naturelle, nous établissons l'existence de solutions d'états fondamentaux et la multiplicité de solutions radiales. De plus, nous discutons l'instabilité orbitale par explosion en temps fini d'états fondamentaux radiaux. Pour finir, dans le chapitre 5, nous mettons quelques remarques relatives à cette thèse, et proposons également quelques problèmes intéressants.
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Équations de Schrödinger non linéaires, norme L 2 prescrite, solutions normalisées, états fondamentaux, stabilité orbitale, minimiseurs, explosion, réarrangement, méthodes variationnelles, principe de concentration-compacité, identité de type Pohozaev, variété.

Existence and orbital stability of normalized solutions for nonlinear Schrödinger equations

Abstract

In this thesis, we are concerned with the existence and orbital stability of solutions having prescribed L 2 -norm for two types of nonlinear Schrödinger equations in R N , namely a class of coupled nonlinear Schrödinger systems in R N and a class of fourth-order nonlinear Schrödinger equations in R N . These two types of nonlinear Schrödinger equations arise in a variety of mathematical and physical models, and have drawn wide attention in recent years. From a physical point of view, such solutions are often referred as normalized solutions, which correspond to critical points of the underlying energy functional restricted to the L 2 -norm constraint. The main ingredients of our proofs are variational methods.

The thesis is divided into five chapters. Chapter 1 is an introduction to this thesis, which contains a brief presentation of issues treated and corresponding results attained in the thesis. In Chapter 2 and Chapter 3, we are interested in the existence and orbital stability of normalized solutions for a class of coupled nonlinear Schrödinger systems in R N . More precisely, Chapter 2 is devoted to investigating normalized solutions in a case where the associated energy functional is bounded from below on constraint. Accordingly, we introduce a global minimization problem as the energy functional subject to constraint. In this situation, normalized solutions are indeed achieved as global minimizers to the minimization problem. Our purpose consists in establishing the compactness of any minimizing sequence by means of the coupled rearrangement arguments, which is alternative to the Lions' concentration compactness principle and does not require the verification of related strict subadditivity inequality. As a corollary of the compactness of any minimizing sequence, the orbital stability of global minimizers is proved. In Chapter 3, we focus on the existence of normalized solutions in another two cases, in which the energy functional becomes unbounded from below on constraint. Thus global minimizer to the energy functional restricted to constraint does not exist. The existence of two normalized solutions is established in each case with the aid of minimax methods. The first solution is a local minimizer, whose existence is insured through the study of the compactness of any minimizing sequence to a localized minimization problem, and the second one is a mountain pass type and a linking type, respectively. In particular, we relax the limitation on dimension induced by the Liouville's type results. Furthermore, we obtain the orbital stability of local minimizers. In Chapter 4, we study normalized solutions for a class of fourth-order nonlinear Schrödinger equations in the mass critical and supercritical regime. In both cases, the associated energy functional is unbounded from below on constraint. Using a natural constraint approach, we establish the existence of ground state solutions and multiplicity of radial solutions. In addition, we discuss the orbital instability by blowup in finite time of radial ground state solutions. Finally, in Chapter 5, we present some remarks related to this thesis and also put forward some interesting issues.

Chapter 1 Introduction

The thesis which collects some works obtained during my Ph.D. in these two years is devoted to the study of normalized solutions for a class of coupled nonlinear Schrödinger systems in R N and a class of fourth-order nonlinear Schrödinger equations in R N . Chapter 2 and Chapter 3 correspond to works with L. Jeanjean. Chapter 4 is an collaboration with D. Bonheure, J.-B. Casteras and L. Jeanjean.

Normalized solutions for coupled nonlinear Schrödinger system

An important feature in quantum physics is played by the following time-dependent coupled nonlinear Schrödinger system in R × R N ,

-i∂ t Ψ 1 = ∆Ψ 1 + µ 1 |Ψ 1 | p 1 -2 Ψ 1 + βr 1 |Ψ 1 | r 1 -2 Ψ 1 |Ψ 2 | r 2 , -i∂ t Ψ 2 = ∆Ψ 2 + µ 2 |Ψ 2 | p 2 -2 Ψ 2 + βr 2 |Ψ 1 | r 1 |Ψ 2 | r 2 -2 Ψ 2 .
(1.1.1)

This system governs various physical phenomena, such as the Bose-Einstein condensates with multiple states, or propagation of mutually incoherent waves packets in nonlinear optics, see for instance [START_REF] Akhmediev | Partially coherent solitons on a finite background[END_REF][START_REF] Esry | Hartree-Fock theory for double condensates[END_REF][START_REF] Frantzeskakis | Dark solitons in atomic Bose-Einstein condensates from theory to experiments[END_REF][START_REF] Hall | Dynamics of component separation in a binary mixture of Bose-Einstein condensates[END_REF][START_REF] Malomed | Multi-component Bose-Einstein condensates, Theory[END_REF][START_REF] Myatt | Production of two overlapping Bose-Einstein condensates by sympathetic cooling[END_REF][START_REF] Timmermans | Phase separation of Bose-Einstein condensates[END_REF]]. In the system (1.1.1), the functions Ψ 1 , Ψ 2 are corresponding condensate amplitudes, µ i and β are intraspecies and interspecies scattering length, describing interaction of the same state and different states, respectively. The positive sign of µ i (and β) represents attractive interaction, the negative one represents repulsive interaction.

One of the most fundamental research regarding (1.1.1) in mathematical and physical field consists in standing waves, namely solutions with the form of Ψ 1 (t, x) = e -iλ 1 t u 1 (x), Ψ 2 (t, x) = e -iλ 2 t u 2 (x) for (λ 1 , λ 2 ) ∈ R 2 . This ansatz then gives rise to the following elliptic system satisfied by u 1 and u 2 ,

-∆u

1 = λ 1 u 1 + µ 1 |u 1 | p 1 -2 u 1 + βr 1 |u 1 | r 1 -2 u 1 |u 2 | r 2 , -∆u 2 = λ 2 u 2 + µ 2 |u 2 | p 2 -2 u 2 + βr 2 |u 1 | r 1 |u 2 | r 2 -2 u 2 . (1.1.2)
In order to study solutions to (1.1.2), two possible options arise. The first one is to consider (1.1.2) with the given parameters (λ 1 , λ 2 ) ∈ R 2 . In this situation, a solution (u 1 , u 2 ) to (1.1.2) corresponds to a critical point of energy functional F :

H 1 (R N ) × H 1 (R N ) → R defined by F (u 1 , u 2 ) : = 1 2 R N |∇u 1 | 2 + λ 1 |u 1 | 2 dx + 1 2 R N |∇u 2 | 2 + λ 2 |u 2 | 2 dx
Theorem 1.1.1. Let N ≥ 1. Assume that (H 0 ) holds. Then any minimizing sequence to (1.1.4) is compact, up to translation, in H 1 (R N ) × H 1 (R N ). In particular, there exists a solution to (1.1.2)-(1.1.3) as a minimizer to (1.1.4).

Remark 1.1.2. When N = 1, µ 1 , µ 2 , β > 0, p 1 = p 2 = 4, r 1 = r 2 = 2, the authors [START_REF] Nguyen | Existence and stability of a two-parameter family of solitary waves for a 2-couple nonlinear schrödinger system[END_REF] studied the compactness of any minimizing sequence to (1.1.4), which is indeed based on the Lions' concentration compactness principle [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part I[END_REF][START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF]. When N ≥ 1, we mention the paper [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF], where the compactness of any minimizing sequence was discussed by taking advantage of the coupled rearrangement arguments, which is alterantive to the Lions' concentration compactness principle. However, embedding the minimization problem (1.1.4) into the one as presented in [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF], the compactness result is only valid under condition (H 0 ) with r 1 , r 2 ≥ 2. Our Theorem 1.1.1 provides a fairly complete result concerning the compactness of any minimizing sequence to (1.1.4) under more general assumption (H 0 ) in any dimension.

Let {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) be an arbitrary minimizing sequence to (1.1.4). To see the compactness of {(u n 1 , u n 2 )} in H 1 (R N ) × H 1 (R N ), if employing the Lions' concentration compactness principle [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part I[END_REF][START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF], one has to rule out the possibilities of vanishing and dichotomy. Notice that M (a 1 , a 2 ) < 0 and the energy functional J is invariant under translations, then vanishing can be excluded easily as a result of the Lions' concentration compactness Lemma [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF]Lemma I.1]. Next in order to prevent dichotomy from occurring, the heuristic argument is to establish the following strict subadditivity inequality

M (a 1 , a 2 ) < M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ), (1.1.5) 
where 0 ≤ b i < a i for i = 1, 2, (b 1 , b 2 ) = (0, 0) and (b 1 , b 2 ) = (a 1 , a 2 ).

To deal with only one constraint problem, several techniques have been developed to establish strict subadditivity inequality. Most are based on some homogeneity type properties, such as in autonomous case, one can make use of scaling technique to check related strict subadditivity inequality, we refer the readers to [START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF][START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF][START_REF] Shibata | Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term[END_REF]. However, when it comes to multiple constraints problem, this technique is generally not applicable, thus how to achieve strict subadditivity inequality in this situation is much less understood in addition to some special cases, where constraints cannot be chosen independently, see for instance [START_REF] Nguyen | Orbital stability of solitary waves for a nonlinear Schröinger system[END_REF][START_REF] Nguyen | Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system[END_REF][START_REF] Ohta | Stability of solitary waves for coupled nonlinear Schrödinger equations[END_REF]. In addition, when N = 1, we mention the papers [START_REF] Bhattarai | Stability of solitary-wave solutions of coupled NLS equations with powertype nonlinearities[END_REF][START_REF] Bhattarai | Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations[END_REF][START_REF] Nguyen | Existence and stability of a two-parameter family of solitary waves for a 2-couple nonlinear schrödinger system[END_REF], where the authors established strict subadditivity inequality by means of crucially applying [3, Lemma 2.10], which depends on the original idea as introduced in [START_REF] Byeon | Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems[END_REF]. The readers can also refer to [START_REF] Garrisi | On the orbital stability of standing-wave solutions to a coupled non-linear Klein-Gordon equation[END_REF] for an application of [START_REF] Albert | Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system[END_REF]Lemma 2.10] to a minimization problem in the case of dimension N ≥ 1. This result is however available under the condition that one can identify a radially symmetric minimizing sequence to associated minimization problem.

Coming back to the minimization problem (1.1.4), it seems hard to check (1.1.5). For this reason, as inspired by Ikoma [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF], we propose the coupled rearrangement arguments to discuss the compactness of minimizing sequence {(u n 1 , u n 2 )}, whose original spirit however comes from Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF].

We now sketch the virtue to prove Theorem 1.1.1. Firstly, observe that under the assumption (H 0 ), the minimizing sequence {(u n 1 , u n 2 )} is bounded in H 1 (R N ) × H 1 (R N ). By using the Lions' concentration compactness Lemma [74, Lemma I.1], we then denote by (u 1 , u 2 ) = (0, 0) the weak limit of {(u n 1 , u n 2 )}, up to translation, in H 1 (R N )×H 1 (R N ). Next in light of the coupled rearrangement arguments, we are able to prove that (u n 1 , u n 2 ) → (u 1 , u 2 ), up to translation, in L p (R N ) × L p (R N ) for 2 < p < 2 * . This joints with the Chapter 1. Introduction weakly lower semicontinuous of norm, we see that J(u 1 , u 2 ) ≤ M (a 1 , a 2 ). At this point, to obtain the compactness of minimizing sequence {(u n 1 , u n 2 )}, it remains to prove that (u 1 , u 2 ) ∈ S(a 1 , a 2 ). This is guaranteed by the property that if 0 ≤ āi < a i for i = 1, 2 and (ā 1 , ā2 ) = (a 1 , a 2 ), then M (a 1 , a 2 ) < M (ā 1 , ā2 ).

(1.1.6)

Alternatively, it is possible to establish the existence of minimizers to (1.1.4) by working directly in H 1 rad (R N ) × H 1 rad (R N ). For more details, see Remark 2.3.4. Defining the set G M (a 1 , a 2 ) := {(u 1 , u 2 ) ∈ S(a 1 , a 2 ) : J(u 1 , u 2 ) = M (a 1 , a 2 )}, we now show the orbital stability of minimizers to (1.1.4) in the following sense. Definition 1.1.4. We say the set G(a 1 , a 2 ) is orbitally stable, i.e. for any > 0, there exists δ > 0 so that if (Ψ 1,0 , Ψ 2,0 ) ∈ H 1 

(R N ) × H 1 (R N ) satisfies inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ 1,0 , Ψ 2,0 ) -(u 1 , u 2 ) ≤ δ, then sup t∈[0,T ) inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ 1 (t), Ψ 2 (t)) -(u 1 , u 2 ) ≤ ,
where (Ψ 1 (t), Ψ 2 (t)) is a solution to the Cauchy problem of (1.1.1) with initial datum (Ψ 1,0 , Ψ 2,0 ), T denotes the maximum existence time of the solution, and • stands for the standard norm in the Sobolev space H 1 (R N ) × H 1 (R N ).

Based upon Theorem 1.1.1, making use of the elements in Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], we are able to prove the following result. Remark 1.1.6. Note that under the assumption (H 0 ), the local existence and uniqueness to the Cauchy problem of (1.1.1) are unknown. The point being that when 1 < r 1 , r 2 < 2, the interaction parts are not Lipschitz continuous. Thus the orbital stability of minimizers to (1.1.4) is under the condition. However, let us point out that when N = 1, 2 ≤ r 1 = r 2 < 3, the local existence to the Cauchy problem of (1.1.1) holds, see [START_REF] Nguyen | Global existence of a coupled system of Schrödinger equations with power-type nonlinearities[END_REF].

Existence of multiple normalized solutions

In Chapter 3, we consider the existence of multiple solutions to (1.1.2)-(1.1.3) in the following two cases,

(H 1 ) µ 1 , µ 2 , β > 0, 2 < p 1 , p 2 < 2 + 4 N , r 1 , r 2 > 1, 2 + 4 N < r 1 + r 2 < 2 * ; (H 2 ) µ 1 , µ 2 , β > 0, 2 + 4 N < p 1 , p 2 < 2 * , r 1 , r 2 > 1, r 1 + r 2 < 2 + 4 N .
Recall that under the assumption (H 0 ) the energy functional J is bounded from below on S(a 1 , a 2 ), then one can obtain a solution to (1.1.2)-(1.1.3) as a global minimizer to (1.1.4) through studying the compactness of any minimizing sequence to (1.1.4), see [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF]. In contrast, under the assumption (H 1 ) or (H 2 ), the energy functional J is not bounded from below on S(a 1 , a 2 ) anymore. Indeed, to see this, for any t > 0 let us introduce the scaling of u ∈ S(a) as

u t (x) := t N 2 u(tx).
Clearly, u t 2 = u 2 = a. For any (u 1 , u 2 ) ∈ S(a 1 , a 2 ), a straightforward calculation leads to,

J(u t 1 , u t 2 ) = t 2 2 R N |∇u 1 | 2 + |∇u 2 | 2 dx - 2 i=1 t ( p i 2 -1)N µ i p i R N |u i | p i dx -βt ( r 1 +r 2 2 -1)N R N |u 1 | r 1 |u 2 | r 2 dx. (1.1.7)
By consequence, if µ 1 , µ 2 , β > 0, when either p i > 2+ 4 N for some i = 1, 2 or r 1 +r 2 > 2+ 4 N , it then follows from (1.1.7) that J becomes unbounded from below on S(a 1 , a 2 ). As a result, under the assumption (H 1 ) or (H 2 ), it is no more possible to look for a solution to (1.1.2)-(1.1.3) as a global minimizer to (1.1.4).

When global minimizer to (1.1.4) fails to exist, finding a solution to (1.1.2)-(1.1.3) is more delicate and involved. In this situation, minimax methods come into play. We now point out some literature in this direction. When 2

≤ N ≤ 4, µ 1 , µ 2 , β > 0, if either 2 < p 1 < 2 + 4 N < p 2 < 2 * , 2 + 4 N < r 1 + r 2 < 2 * , r 2 > 2 or 2 + 4 N < p 1 , p 2 , r 1 + r 2 < 2 *
, the authors [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF] studied the existence of solution to (1.1.2)-(1.1.3) with the aid of the mountain pass arguments, see also [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]. When N = 3, µ 1 , µ 2 > 0, β < 0, p 1 = p 2 = 4, r 1 = r 2 = 2, by using a natural constraint approach, the existence of solution to (1.1.2)-(1.1.3) was established in [START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF]. In addition, concerning a multiplicity result to (1.1.2)-(1.1.3), we refer the reader to [START_REF] Bartsch | Multiple normalized solutions for a competing system of Schrödinger equations[END_REF]. Let us also mention the papers [START_REF] Noris | Existence and orbital stability of the ground states with prescribed mass for the L 2 critical and supercritical NLS on bounded domains[END_REF][START_REF] Noris | Stable solitary waves with prescribed L 2 -mass for the cubic Schrödinger system with trapping potentials[END_REF][START_REF] Pierotti | Normalized bound states for the nonlinear Schrödinger equation in bounded domains[END_REF], where the authors considered the existence of normalized solutions to problems confined on a bounded domain in R N or with a trapping potential. While a periodic potential is included to problem, the existence of normalized solutions was discussed in [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF].

As mainly motivated by [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF], we investigate the existence of multiple solutions to (1.1.2)-(1.1.3) under two new assumptions (H 1 ) and (H 2 ). Our aim is to prove that (1.1.2)-(1.1.3) admits two positive solutions when N ≥ 1 and (H 1 ) or (H 2 ) holds. Up to our knowledge, it is the first time that a multiplicity result to (1.1.2)-(1.1.3) is obtained when N ≥ 1 and β > 0.

In order to address our results, for any ρ > 0 let us introduce the notation,

B(ρ) := {(u 1 , u 2 ) ∈ H 1 (R N ) × H 1 (R N ) : R N |∇u 1 | 2 + |∇u 2 | 2 dx < ρ}.
Firstly, on account of (1.1.7), under (H 1 ) or (H 2 ) there holds

inf J(u 1 , u 2 ) < 0 f or (u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ B(ρ), (1.1.8)
see Lemma 3.2.4. Furthermore, there exist

β 0 = β 0 (a 1 , a 2 ) > 0 and ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that inf J(u 1 , u 2 ) > 0 f or (u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ ∂B(ρ 0 ) (1.1.9)
holds for any 0 < β ≤ β 0 , see Lemma 3.3.1. Together (1.1.8) with (1.1.9), then there may exist a local minimizer for the energy functional J restricted to S(a 1 , a 2 ) ∩ B(ρ 0 ). Hence, for 0 < β ≤ β 0 we introduce the following localized minimization problem 

m(a 1 , a 2 ) := inf (u 1 ,u 2 )∈S(a 1 ,a 2 )∩B(ρ 0 ) J(u 1 , u 2 ). ( 1 
(R N ) × H 1 (R N ).
In addition, for any (u 1 , u 2 ) ∈ S(a 1 , a 2 ), it follows from (1.1.7) that J(u t 1 , u t 2 ) → -∞ as t → ∞ when (H 1 ) or (H 2 ) holds, and note also that (u t 1 , u t 2 ) / ∈ B(ρ 0 ) for t > 0 large enough. This property along with (1.1.9) reveal that there may exist other critical points for the energy functional J restricted to S(a 1 , a 2 ). In fact, under the assumption (H 1 ), the second critical point is obtained through the mountain pass arguments, while under the assumption (H 2 ), the second one is achieved by means of a linking type procedure. Let us now state our main results. Theorem 1.1.7. Let a 1 , a 2 > 0 be given and assume that (H 1 ) holds. Then there exist β 0 = β 0 (a 1 , a 2 ) > 0 and ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that for any 0 < β ≤ β 0 , (i) if N ≥ 1, any minimizing sequence to (1.1.10) is compact, up to translation, in

H 1 (R N ) × H 1 (R N ).
In particular, there exists a positive solution

(v 1 , v 2 ) to (1.1.2)- (1.1.3) with (v 1 , v 2 ) ∈ B(ρ 0 ) and J(v 1 , v 2 ) < 0; (ii) If either 2 ≤ N ≤ 4 or N ≥ 5 with p 1 , p 2 ≤ r 1 + r 2 -2 N or |p 1 -p 2 | ≤ 2 N , there exists a second positive solution (u 1 , u 2 ) to (1.1.2)-(1.1.3) with J(u 1 , u 2 ) > 0.
Theorem 1.1.8. Let a 1 , a 2 > 0 be given and assume that (H 2 ) holds. Then there exist

β 0 = β 0 (a 1 , a 2 ) > 0 and ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that for any 0 < β ≤ β 0 , (i) if either 1 ≤ N ≤ 4 or N ≥ 5, r i > r 1 +r 2 2 -1 N for i = 1, 2, any minimizing sequence to (1.1.10) is compact, up to translation, in H 1 (R N ) × H 1 (R N ). In partic- ular, there exists a positive solution (v 1 , v 2 ) to (1.1.2)-(1.1.3) with (v 1 , v 2 ) ∈ B(ρ 0 ) and J(v 1 , v 2 ) < 0; (ii) If 2 ≤ N ≤ 4, there exists a second positive solution (u 1 , u 2 ) to (1.1.2)-(1.1.3) with J(u 1 , u 2 ) > 0.
Remark 1.1.9. i) The value of β 0 in Theorem 1.1.7 and Theorem 1.1.8 can be explicitly computed in terms of N, p i , a i , r i for i = 1, 2, instead of being obtained through a limit process. Additionally, for any given β > 0, we can assume that β ≤ β 0 at the expense of taking a 1 , a 2 > 0 sufficiently small, because β 0 (a To establish the compactness of any minimizing sequence to (1.1.10) under the assumption (H 1 ) or (H 2 ), we essentially make use of the coupled rearrangement arguments due to Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF] as developed by Ikoma [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF]. Assume {(v n 1 , v n 2 )} be an arbitrary minimizing sequence to (1.1.10). Note that m(a 1 , a 2 ) < 0, from the Lions' concentration compactness Lemma [74, Lemma I.1], we then denote by (v 1 , v 2 ) = (0, 0) the weak limit of

(R N ) → L p (R N ) for 2 < p < 2 * holds for N ≥ 2. iii) When N ≥ 2,
{(v n 1 , v n 2 )}, up to translation, in H 1 (R N )×H 1 (R N ).
In the following, using the coupled rearrangement arguments,one can show that

(v n 1 , v n 2 ) → (v 1 , v 2 ), up to translation, in L p (R N ) × L p (R N ) for 2 < p < 2 * .
Nevertheless, unlike the global minimization problem (1.1.4), to prove this, one faces a difficulty arising from the fact that the sum of two elements in B(ρ 0 ) may not belong to B(ρ 0 ). This causes more technique to discuss the possibility of dichotomy. To overcome this difficulty, one needs to analyze carefully some properties of the energy functional J restricted to S(a 1 , a 2 ) ∩ B(ρ 0 ). Finally, to see the compactness of minimizing sequence

{(v n 1 , v n 2 )}, it remains to assert that (v 1 , v 2 ) ∈ S(a 1 , a 2 ).
Reasoning as the proof of Theorem 1.1.1, under the assumption (H 1 ), this is insured by the fact that m(a 1 , a 2 ) satisfies the property (1.1.6). However, under the assumption (H 2 ), it is unknown if m(a 1 , a 2 ) satisfies (1.1.6), thus, in this situation we apply the Liouville's type results, see Lemma 3.2.2, which is however available when N ≤ 4, and in order to deal with the case N ≥ 5, a restriction is eventually imposed on the range of r 1 , r 2 .

The proofs of Theorem 1.1.7 (ii) and Theorem 1.1.8 (ii) depend on the virtue as presented in [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]. Roughly speaking, the proofs can be divided into three steps. Firstly, one requires to identify a suspected critical level. This can be done by introducing a minimax structure of mountain pass type under the assumption (H 1 ), and linking one under the assumption (H 2 ). Secondly, one needs to find a bounded Palais-Smale sequence

{(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 )
for the energy functional J restricted to S(a 1 , a 2 ) at the energy level. To this end, the classical methods developed to derive the boundedness of any Palais-Smale sequence for unconstrained problem collapse. Actually, this step benefits from the presence of a Pohozaev type constraint, on which the energy functional J is coercive. Thus taking advantage of this constraint and adapting the approach introduced in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] which consists in adding an artificial variable within the variational procedure, one can end this step. Having obtained a bounded Palais-Smale sequence {(u n 1 , u n 2 )} for the energy functional J restricted to S(a 1 , a 2 ), we denote by (u 1 , u 2 ) its weak limit in H 1 (R N ) × H 1 (R N ), and we immediately find that (u 1 , u 2 ) solves (1.1.2) with some (λ 1 , λ 2 ) ∈ R 2 , see Lemma 3.2.7. At this point, the last step is to show that (u 1 , u 2 ) ∈ S(a 1 , a 2 ). It is this step where the limitation on dimension was imposed in [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF][START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF]. Because in this step the authors of the literature took into account the Liouville's type results and also used the property that the scalar problem -∆w -λw = µ|w| p-2 w, w ∈ S(a) for µ > 0 (1.1.11) has a unique positive radial solution for 2 < p < 2 * . We now relax these two restrictions under the assumption (H 1 ), thus Theorem 1.1.7 (ii) allows to consider the case N ≥ 5. This is essentially based on the fact that when 2

< p < 2 + 4 N , µ > 0, -∞ < inf u∈S(a)
I(u) < 0, (1.1.12) where

I(u) := 1 2 R N |∇u| 2 dx -µ p R N |u| p dx.
We now continue the proof of the last step. Under the assumption (H 1 ), when 2 ≤ N ≤ 4, the fact that (u 1 , u 2 ) ∈ S(a 1 , a 2 ) is a direct consequence of the Liouville's type results. When N ≥ 5, assuming by contradiction that (u 1 , u 2 ) ∈ S(ā 1 , ā2 ) for 0 ≤ āi ≤ a i for i = 1, 2 and (ā 1 , ā2 ) = (a 1 , a 2 ). Thus one can crucially apply the property (1.1.12) and Lemma 3.4.4 to construct a path, on which the maximum of J is strictly below mountain pass level. We then reach a contradiction. Here the path is constructed by "adding some masses" technique somehow in the spirit of [START_REF] Jeanjean | An approach to minimization under a constraint, The added mass technique[END_REF], but using the coupled rearrangement arguments.

On the contrary, when p > 2 + 4 N , µ > 0, the property (1.1.12) is violated, hence to prove that (u 1 , u 2 ) ∈ S(a 1 , a 2 ) under the assumption (H 2 ), it indeed depends on the Liouville's type results, which induces a restriction on dimension N ≤ 4.

We now define the set

G m (a 1 , a 2 ) := {(u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ B(ρ 0 ) : J(u 1 , u 2 ) = m(a 1 , a 2 )}.
In view of Remark 2.1.5, as a counterpart one to Theorem 1.1.1, we have the orbital stability of minimizers to (1.1.10). 

Normalized solutions for fourth-order nonlinear Schrödinger equation

In Chapter 4, we deal with a class of fourth-order nonlinear Schrödinger equations in

R × R N , i∂ t ψ -γ∆ 2 ψ + ∆ψ + |ψ| 2σ ψ = 0, (1.2.1)
where γ > 0.

The classical nonlinear Schrödinger equation with pure power nonlinearity in R × R N is given by

i∂ t ψ + ∆ψ + |ψ| 2σ ψ = 0.
It is well known that when 0 < σN < 2, any solution to the Cauchy problem of (1.2) with initial datum in H 1 (R N ) exists globally in time, and standing waves are orbitally stable. While σN ≥ 2, blowup in finite time may occur, then standing waves become singular, see for instance [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF].

In order to regularize and stabilize solution to the Cauchy problem of (1.2), Karpman and Shagalov [START_REF] Karpman | Stability of solitons described by nonlinear Schröingertype equations with higher-order dispersion[END_REF] introduced a small fourth-order dispersion term to (1.2), i.e. they considered the fourth-order nonlinear Schrödinger equation (1.2.1), see also [START_REF] Karpman | Stabilization of soliton instabilities by higher-order dispersion fourth order nonlinear Schröinger-type equations[END_REF]. Using 1.2. Normalized solutions for fourth-order nonlinear Schrödinger equation 21 a combination of stability analysis and numerical simulations, they showed that standing waves are orbitally stable for any γ > 0, when 0 < σN < 2, and for γ > 0 small, when 2 ≤ σN < 4. Whereas σN ≥ 4, they observed an unstable phenomenon. This result indicates that adding a small fourth-order dispersion term to (1.2) helps to stabilize standing waves.

In nonlinear optics, the classical nonlinear Schrödinger equation (for example (1.2)) is traditionally derived from the scalar nonlinear Helmhotz equation through so-called paraxial approximation. The fact that the solution to the Cauchy problem of (1.2) with initial datum in H 1 (R N ) may blow up in finite time suggests that some small terms neglected by the paraxial approximation which play an important role to prevent this phenomenon. Therefore a small fourth-order dispersion term was proposed in [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] as a nonparaxial correction, see also [START_REF] Baruch | Singular solutions of the L 2 -supercritical biharmonic nonlinear Schrödinger equation[END_REF][START_REF] Baruch | Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF][START_REF] Baruch | Singular solutions of the biharmonic nonlinear Schrödinger equation[END_REF], which eventually gives rise to the fourth-order nonlinear Schrödinger equations (1.2.1). Applying the arguments as developed in [START_REF] Weinstein | Nonlinear Schrödinger Equations and Sharp Interpolation Estimates[END_REF], when 0 < σN < 4 the authors [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] proved that any solution to the Cauchy problem of (1.2.1) with initial datum in H 2 (R N ) exists globally in time.

Nevertheless, despite of these physical relevance, the dispersion equation (1.2.1) is far from being well understood. There are only few papers studying (1.2.1), for instance [START_REF] Ben-Artzi | Dispersion estimates for fourth order Schrödinger equations[END_REF][START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF][START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF][START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF][START_REF] Natali | The fourth-order dispersive nonlinear Schrödinger equation, orbital stability of a standing wave[END_REF][START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF][START_REF] Pausader | The mass-critical fourth-order Schrödinger equation in high dimensions[END_REF][START_REF] Pausader | Scattering theory for the fourth-order Schrödinger equation in low dimensions[END_REF].

From a physical and mathematical point of view, a center issue to study (1.2.1) consists in standing waves, namely solutions with the form of ψ(t, x) = e iαt u(x) for α ∈ R. Then u satisfies the following elliptic equation

γ∆ 2 u -∆u + αu = |u| 2σ u.
(

In order to study solutions to (1.2.2), two possible options have been developed. The first one is to investigate solutions to (1.2.2) with the given parameter α ∈ R. In this case, a solution to (1.2.2) is obtained as a critical point of energy functional F : H 2 (R N ) → R given by

F (u) := γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx + α 2 R N |u| 2 dx - 1 2σ + 2 R N |u| 2σ+2 dx,
and of particular interest is to investigate least energy solutions, i.e. solutions to (1.2.2) minimize the energy functional F among all solutions. Concerning this subject, we refer to [START_REF] Bonheure | Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion[END_REF].

Note that the L 2 -norm of the solution to the Cauchy problem of (1.2.1) is conserved along time, i.e. for any t > 0,

R N |ψ(t, x)| 2 dx = R N |ψ(0, x)| 2 dx.
As motivated by this physical fact, the second one is to research solutions to (1.2.2) having prescribed L 2 -norm, namely, for given c > 0, to find α ∈ R and u ∈ H 2 (R N ) satisfying (1.2.2), together with normalized condition 

R N |u| 2 dx = c. ( 1 
E(u) := γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - 1 2σ + 2 R N |u| 2σ+2 dx on the constraint S(c) := {u ∈ H 2 (R N ) : R N |u| 2 dx = c}.
From now on, we are concerned with normalized solutions to (1.2.2), i.e. solutions to (1.2.2)-(1.2.3). Observe that when 0 < σN < 4, the energy functional E is bounded from below on S(c), the authors [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF] then studied the following minimization problem

m(c) := inf u∈S(c) E(u).
(1.2.4)

In this case, it is possible to find a solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). We mention the following result as obtained in [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF]. In Chapter 4, as inspired by [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF], our aim is to study solutions to (1.2.2)-(1.2.3) under the mass critical case σN = 4 and the mass supercritical case 4 < σN < 4 * , where 4 * := 4N (N -4) + . Firstly, we note that, in these two cases it is no more possible to look for a solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). Indeed, to see this, for any u ∈ S(c), λ > 0, let us define the scaling of u as

Theorem 1.2.1. If 0 < σN < 2, then m(c) is achieved for any c > 0. If 2 ≤ σN < 4, then there exists a critical mass c = c(σ, N ) such that (i) m(c) is not achieved if c < c; (ii) m(c) is achieved if c > c and σ = 2/N ; (iii) m(c) is achieved if c ≥ c
u λ (x) := λ N 4 u( √ λx).
By direct calculations, one can check that u λ 2 = u 2 and

E(u λ ) = γλ 2 2 R N |∆u| 2 dx + λ 2 R N |∇u| 2 dx - λ σN/2 2σ + 2 R N |u| 2σ+2 dx. (1.2.5)
Thus, when 4 < σN < 4 * , we find that

E(u λ ) → -∞ as λ → ∞, then m(c) = -∞ for any c > 0.
We now turn to the case σN = 4. To prove the claim, we first recall the Gagliardo-Nirenberg's inequality (see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]) for u ∈ H 2 (R N )

u 2σ+2 2σ+2 ≤ B N (σ) ∆u σN 2 2 u 2+2σ-σN 2 2 , (1.2.6)
where

   0 ≤ σ, if N ≤ 4, 0 ≤ σ < 4 N -4 , if N ≥ 5,
and B N (σ) is a constant depending on σ and N . We thus obtain the following result. 

m(c) = inf u∈S(c) E(u) = 0, 0 < c ≤ c * N , -∞, c > c * N .
For c ∈ (0, c * N ), (1.2.2)-(1.2.3) has no solution, and in particular m(c) is not achieved. In addition, c * N = (γC(N ))

N 4 where From previous observations, since minimizer to (1.2.4) fails to exist under the mass critical and supercritical case, one will see that it is more delicate to seek for solutions to (1.2.2)-(1.2.3) in these two cases. In comparison with unconstrained problem, when facing similar issue, one can search for a solution as a minimizer to associated energy functional restricted to the Nehari manifold. However, in our situation, no Nehari manifold is available because α is unknown. Thus to overcome this difficulty, we introduce a natural constraint M(c) given by

C(N ) := N + 4 N B N ( 4 N ) , ( 1 
M(c) := {u ∈ S(c) : Q(u) = 0}, where Q(u) := γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - σN 2(2σ + 2) R N |u| 2σ+2 dx.
Using (1.2.5), we immediately see that (ii) When σN = 4, then c σ,4 = ∞, and c σ,N ≥ N N -4

Q(u) = ∂E(u λ ) ∂λ | λ=1 . ( 1 
N 4 c * N if N ≥ 5.
The proof of Theorem 1.2.4 crucially relies on a key element Lemma 4.3.5. Using this result and the Ekeland variational principle [START_REF] Ekeland | On the variational principle[END_REF], we then obtain a Palais-Smale sequence {u n } ⊂ M(c) for E restricted to S(c) at level γ(c) as a minimizing sequence to (1.2.9). Our aim is to prove that {u n } is compact, up to translation, in H 2 (R N ). Firstly, notice that E is coercive on M(c), see Lemma 4.3.1, thus {u n } is bounded in H 2 (R N ), and it readily follows that there is u c ∈ H 2 (R N ) such that u n u c , up to a subsequence and translation, in H 2 (R N ). Furthermore, there exists α c ∈ R such that u c satisfies To establish Theorem 1.2.5, we work in the subspace H 2 rad (R N ) of H 2 (R N ), which consists of radially symmetric functions in H 2 (R N ). Accordingly, we define M rad (c) := M(c) ∩ H 2 rad (R N ). The proof of Theorem 1.2.5 is based on the Kranosel'skii genus theory. The key step is to prove that E restricted to M rad (c) satisfies the Palais-Smale condition. To this end, let us consider an arbitrary Palais-Smale sequence {u n } ⊂ M rad (c) for E restricted to M rad (c). Our purpose is to prove that {u n } is compact in H 2 (R N ). Noting the coerciveness of E on M rad (c), we then denote by u c its weak limit in H 2 (R N ). Moreover, there exists a α c ∈ R such that u c satisfies (1.2.10). The fact that the strong convergence of {u n } in L 2σ+2 (R N ) is given here for free, because the embedding

γ∆ 2 u c -∆u c + α c u c = |u c | 2σ u c . ( 1 
H 2 rad (R N ) → L 2σ+2 (R N ) is compact for N ≥ 2.
Thus reasoning as Theorem 1.2.4, to show the compactness it remains to check that the Lagrange parameter α c is strictly positive, which is indeed guaranteed by Lemma 4.2.1. The second step is to show that the set M(c) is sufficiently large. This is always the case when 4 < σN < 4 * for any c > 0. However, when σN = 4, the set M rad (c) may be too small. In particular, it shrinks to the empty set as c → c * N . To obtain a given number of solutions, we require that c > c * N is sufficiently large. The monotonicity of the function c → γ(c) on (c 0 , ∞) is crucially used in the proof of Theorem 1.2.4. We now present additional properties of this function, its behaviors depend in an essential way on the couple (σ, N ). Note that Theorem 1.2.6, the difference of behavior of γ(c) as c → ∞ between N ≤ 4 and N ≥ 5 arises from the fact that the equation 

γ∆ 2 u -∆u = |u| 2σ u (1.
γ∆ 2 u + u = |u| 8 N u,
such that up to a subsequence, 

4 n c * N N 4 N 8 u n   4 n c * N N 4 1 4 x + n y n   → u in L q (R N ) as n → ∞ for 2 ≤ q < 2N (N -4) + ,
u n (x) ≈ 4 4 n c * N N N 8 u   4 4 n c * N N 1 4 (x -n y n )   .
In the following we consider the sign and radially symmetric property of solutions to (1.2.2)-(1.2.3). Concerning this subject, we first mention the case that α ∈ R + is given in (4.1.2). In this case, it is known that when α ∈ R + is sufficiently small, all least energy solutions have a sign and are radial. On the contrary, when α ∈ R + is large, radial solutions are necessarily sign-changing. In addition, when σ ∈ N + , at least one least energy solution is radial. For more details, see [START_REF] Bonheure | Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion[END_REF]Theorem 4]. When 0 < σN < 4, regarding the sign and radially symmetric property of minimizers to (1.2.4), we refer to [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF]. However, when 4 ≤ σN < 4 * , it seems more complex to derive these information for ground state solutions to (1.2.2)-(1.2.3). In this direction, we only present the following result. We now turn our attention to investigate dynamical behaviors of solution to the Cauchy problem of the dispersion equation (1.2.1). From [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF], when 0 < σN < 4 * the local wellposedness to the Cauchy problem of (1.2.1) is known. Moreover, in the mass subcritical case 0 < σN < 4, any solution to the Cauchy problem of (1.2.1) with initial datum in H 2 (R N ) exists globally in time, see [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF][START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF]. While in the mass critical and supercritical case 4 ≤ σN < 4 * , blowup in finite time may happen, but it is also likely to show that the solution to the Cauchy problem of (1.2.1) with some initial datums exists globally in time.

Theorem 1.2.10.

Let N ≥ 1, 4 ≤ σN < 4 * . For any c > c 0 , the solution ψ ∈ C([0, T ); H 2 (R N )) to (1.2.1) with initial datum ψ 0 ∈ O c with O c := {u ∈ S(c) : E(u) < γ(c), Q(u) > 0}.
exists globally in time.

When 0 < σN < 4, it was proved in [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF] that minimizers to (1.2.4) are orbitally stable, see also [START_REF] Natali | The fourth-order dispersive nonlinear Schrödinger equation, orbital stability of a standing wave[END_REF]. While 4 ≤ σN < 4 * , we show that radial ground state solutions to (1.2.2)-(1.2.3) are unstable by blowup in finite time.

Definition 1.2.11. We say that

u ∈ H 2 (R N ) is unstable by blowup in finite time, if for any ε > 0, there exists v ∈ H 2 (R N ) such that v -u H 2 < ε and the solution ψ(t) ∈ C([0, T ); H 2 (R N )) to (1.2.1) with initial datum ψ(0) = v blows up in finite time in H 2 - norm.
Making use of a key element in Boulenger and Lenzmann [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF], we have Theorem 1.2.12. Let 4 ≤ σN < 4 * , N ≥ 2 and σ ≤ 4. Then the standing waves associated to radial ground state solutions to (1.2.2)-(1.2.3) are unstable by blowup in finite time.

In the case where α ∈ R + is given in (1.2.2), the fact that radial least energy solutions are unstable by blowup in finite time was recently established, see our paper [START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF]. It should be noted that the results of [START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF] are also strongly based on the arguments from Boulenger and Lenzmann [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF] Chapter 2

Existence and orbital stability of normalized solutions for coupled nonlinear Schrödinger system

Introduction

In this chapter, we consider the existence of solutions having prescribed L 2 -norm to a class of coupled nonlinear Schrödinger systems in R N . More precisely, for given a 1 , a 2 > 0, we look for (λ

1 , λ 2 ) ∈ R 2 and (u 1 , u 2 ) ∈ H 1 (R N ) × H 1 (R N ) satisfying -∆u 1 = λ 1 u 1 + µ 1 |u 1 | p 1 -2 u 1 + r 1 β|u 1 | r 1 -2 u 1 |u 2 | r 2 , -∆u 2 = λ 2 u 2 + µ 2 |u 2 | p 2 -2 u 2 + r 2 β|u 1 | r 1 |u 2 | r 2 -2 u 2 , (2.1.1)
and

R N |u 1 | 2 dx = a 1 , R N |u 2 | 2 dx = a 2 . (2.1.2)
Physically, such solutions are often referred as normalized solutions.

The problem under consideration is associated to the research of standing waves to the following nonlinear Schrödinger system in R × R N ,

-i∂ t Ψ 1 = ∆Ψ 1 + µ 1 |Ψ 1 | p 1 -2 Ψ 1 + β|Ψ 1 | r 1 -2 Ψ 1 |Ψ 2 | r 2 , -i∂ t Ψ 2 = ∆Ψ 2 + µ 2 |Ψ 2 | p 2 -2 Ψ 2 + β|Ψ 1 | r 1 |Ψ 2 | r 2 -2 Ψ 2 .
(2.1.3)

Here by standing waves, we mean solutions to (2.1.3) with the form of

Ψ 1 (t, x) = e -iλ 1 t u 1 (x), Ψ 2 (t, x) = e -iλ 2 t u 2 (x), for (λ 1 , λ 2 ) ∈ R 2 . Thus (u 1 , u 2 ) satisfies the elliptic system (2.1.1).
Note that the L 2 -norm of solution to the Cauchy problem of (2.1.3) is conserved along time, i.e.

R N |Ψ i (t, x)| 2 dx = R N |Ψ i (0, x)| 2 dx for i = 1, 2,
which leads to the study of normalized solutions quite interesting. For simplicity, in the following we shall regard a solution (λ 1 , λ 2 , u 1 , u 2 ) to (2.1.1)-(2.1.2) as (u 1 , u 2 ), where Chapter 2. Existence and orbital stability of normalized solutions for coupled nonlinear Schrödinger system (u 1 , u 2 ) is obtained as a critical point of energy functional J :

H 1 (R N ) × H 1 (R N ) → R defined by J(u 1 , u 2 ) := 1 2 R N |∇u 1 | 2 + |∇u 2 | 2 dx - 2 i=1 µ i p i R N |u i | p i dx -β R N |u 1 | r 1 |u 2 | r 2 dx on the constraint S(a 1 , a 2 ) := S(a 1 ) × S(a 2 ) with S(a) := {u ∈ H 1 (R N ) : R N |u| 2 dx = a > 0},
and (λ 1 , λ 2 ) is determined as Lagrange multipliers.

In this chapter, we are interested in the existence of solutions to (2.1.1)-(2.1.2) under the following assumption

(H 0 ) µ 1 , µ 2 , β > 0, 2 < p 1 , p 2 < 2 + 4 N , r 1 , r 2 > 1, r 1 + r 2 < 2 + 4 N .
Note that under the assumption (H 0 ), the energy functional J is bounded from below on S(a 1 , a 2 ), we then consider the following minimization problem

M (a 1 , a 2 ) := inf (u 1 ,u 2 )∈S(a 1 ,a 2 ) J(u 1 , u 2 ). (2.1.4)
It is standard that minimizers to (2.1.4) are critical points for the energy functional J restricted to S(a 1 , a 2 ), then solutions to (2.1.1)-(2.1.2). Hence, we look for minimizers to (2.1.4), and whose existence is a consequence of the following statement.

Theorem 2.1.1. Let N ≥ 1. Assume that (H 0 ) holds. Then any minimizing sequence to

(2.1.4) is compact, up to translations, in H 1 (R N ) × H 1 (R N ).
Remark 2.1.2. If one only concerns the existence of minimizers to (2.1.4), we mention paper [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF]. When N ≥ 2, assume that (H 0 ) holds, in addition 2 < p 1 , p 2 < 2 + 2 N -2 if N ≥ 5, the authors [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF] obtained the existence of minimizers to (2.1.4). In this related direction, we also refer to [START_REF] Cao | On ground state of spinor Bose-Einstein condensates[END_REF][START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF].

Following some initial works [START_REF] Stuart | Bifurcation from the continuous spectrum in L 2 -theory of elliptic equations on R N[END_REF][START_REF] Stuart | Bifurcation for Dirichlet problems without eigenvalues[END_REF], from the last thirty years, the Lions' concentration compactness principle [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part I[END_REF][START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF] had a deep influence on solving minimization problem under constraint. Regarding our problem (2.1.4), if employing the concentration compactness principle, then the heuristic arguments readily convince that the compactness of any minimizing sequence holds if the following strict subadditivity inequality are satisfied,

M (a 1 , a 2 ) < M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ), (2.1.5) where 0 ≤ b i < a i for i = 1, 2, and (b 1 , b 2 ) = (0, 0) and (b 1 , b 2 ) = (a 1 , a 2 ).
To deal with only one constraint problem, several techniques have been developed to prove strict subadditivity inequality. Most are based on some homogeneity type properties. In autonomous case, then it is possible to use scaling techniques, see for example [START_REF] Bellazzini | Stable standing waves for a class of nonlinear Schrödinger-Poisson equations[END_REF][START_REF] Colin | Stability and instability results for standing waves of quasi-linear Schrödinger equations[END_REF][START_REF] Shibata | Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term[END_REF]. In the case of multiple constraints problem, how to establish strict subadditivity inequality is much less understood. As a matter of fact, in this situation few papers addressed the issue of compactness of any minimizing sequence. Moreover, among most of them, constraints cannot be chosen independently, for instance [START_REF] Nguyen | Orbital stability of solitary waves for a nonlinear Schröinger system[END_REF][START_REF] Nguyen | Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system[END_REF][START_REF] Ohta | Stability of solitary waves for coupled nonlinear Schrödinger equations[END_REF]. Concerning minimization problem (2.1.4), when N = 1, a more complete result seems to be due to [START_REF] Nguyen | Existence and stability of a two-parameter family of solitary waves for a 2-couple nonlinear schrödinger system[END_REF], where the compactness of any minimizing sequence was obtained by checking (2.1.5). To estblish (2.1.5), the authors [START_REF] Nguyen | Existence and stability of a two-parameter family of solitary waves for a 2-couple nonlinear schrödinger system[END_REF] crucially applied [3, Lemma 2.10], which depends in turn on original idea introduced in [START_REF] Byeon | Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems[END_REF], see also [START_REF] Garrisi | On the orbital stability of standing-wave solutions to a coupled non-linear Klein-Gordon equation[END_REF]. We also refer to [START_REF] Liu | Existence and stability of solitary waves of an M-coupled nonlinear Schrödinger system[END_REF] for similar arguments on related problem.

As inspired by Ikoma [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF], we propose an alternative approach to verify the compactness of any minimizing sequences to (2.1.4). Let {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) be a minimizing sequence to (2.1.4). Firstly, under (H 0 ), we see that

{(u n 1 , u n 2 )} is bounded in H 1 (R N ) × H 1 (R N ), we then denote by (u 1 , u 2 ) the weak limit of {(u n 1 , u n 2 )}. At this point, to demonstrate the compactness, we first prove that (u n 1 , u n 2 ) → (u 1 , u 2 ), up to transla- tions, in L p (R N ) × L p (R N ) for 2 < p < 2 * .
To prove this, we make use of a nice result of Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF] as developed in [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF]Lemma A.1]. This result can somehow be considered as an extension of [3, Lemma 2.10] to any dimension.

With this strong convergence in hand, then using weakly lower semicontinuous of norm, we find that J(u 1 , u 2 ) ≤ M (a 1 , a 2 ). Namely the energy functional J is weakly lower semicontinuous on minimizing sequence. If u 1 2 2 = a 1 and u 2 2 2 = a 2 , the compactness immediately follows. Suppose not and assume that u

1 2 2 := ā1 < a 1 or u 2 2 2 := ā2 < a 2 . Since J(u 1 , u 2 ) ≤ M (a 1 , a 2 ), it follows that M (ā 1 , ā2 ) ≤ M (a 1 , a 2 ).
We then reach a contradiction via observing the weak version (2.1.5) where an equality is allowed, which implies that the function (a 1 , a 2 ) → M (a 1 , a 2 ) is strictly decreasing in both variables.

Remark 2.1.3. Note that when N ≥ 2 and (H 0 ) holds, if one is interested in the existence of minimizers to (2.1.4), a shorter proof can be given. Choosing a radially symmetric minimizing sequence {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) to (2.1.4). Such minimizing sequence can be obtained as the Schwartz's reaarangement of a minimizing sequence. Recall that the embedding

H 1 rad (R N ) → L p (R N ) is compact for N ≥ 2, and 2 < p < 2 *
, where H 1 rad (R N ) stands for a subspace of H 1 (R N ), which consists of radially symmetric functions in H 1 (R N ). By means of the assumption (H 0 ) and the Lions' concentration Lemma, we then denote by (u 1 , u 2 ) the weak limit of

{(u n 1 , u n 2 )}, up to transaltion, in H 1 rad (R N ) × H 1 rad (R N )
. By using the fact that the energy functional J is weakly lower semicontinuous on minimizing sequence, it readily follows that J(u 1 , u 2 ) ≤ M (a 1 , a 2 ). At this point, the remaining proof is identical to the one of Theorem 2.1.1.

Alternatively, it is possible to obtain the existence of minimizers to (2.1.4) by working directly in

H 1 rad (R N ) × H 1 rad (R N ).
In this direction, we refer to Remark 2.3.4.

Defining the set

G M (a 1 , a 2 ) := {(u 1 , u 2 ) ∈ S(a 1 , a 2 ) : J(u 1 , u 2 ) = M (a 1 , a 2 )},
we show the orbital stability of minimizers to (2.1.4) in the following sense.

Definition 2.1.4. We say a set G(a 1 , a 2 ) is orbitally stable, i.e. for any > 0, there exists δ > 0 so that if

(Ψ 1,0 , Ψ 2,0 ) ∈ H 1 (R N ) × H 1 (R N ) satisfies inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ 1,0 , Ψ 2,0 ) -(u 1 , u 2 ) ≤ δ, then sup t∈[0,T ) inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ 1 (t), Ψ 2 (t)) -(u 1 , u 2 ) ≤ ,
Chapter 2. Existence and orbital stability of normalized solutions for coupled nonlinear Schrödinger system where (Ψ 1 (t), Ψ 2 (t)) is solution to the Cauchy problem of (2.1.3) with initial datum (Ψ 1,0 , Ψ 2,0 ), T denotes the maximum existence time of solution, and • stands for the standard norm in the Sobolev space

H 1 (R N ) × H 1 (R N ).
Remark 2.1.5. Note that under assumption (H 0 ), the local well-posedness to the Cauchy problem of (2.1.3) is unknown. The point being that when 1 < r 1 , r 2 < 2, the interaction parts are not Lipchitz continuous, in particular the uniqueness might fail. For this reason, the orbital stability of minimizers is under condition. However, let us point out that when N = 1, 2 ≤ r 1 = r 2 < 3, the local existence and uniqueness to the Cauchy problem of (2.1.3) holds, see for instance [START_REF] Nguyen | Global existence of a coupled system of Schrödinger equations with power-type nonlinearities[END_REF].

Based upon Theorem 2.1.1, as a dierct consequence of the elements in Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] we are able to prove the following result. This chapter is organized as follows. In Section 2.2, we display some preliminary results. Theorem 2.1.1 and Theorem 2.1.6 will be established in Section 2.3. Notation 2.1.7. In this chapter, we write L p (R N ) the usual Lebesgue space endowed with the norm

u p p := R N |u| p dx,
and H 1 (R N ) the usual Sobolev space endowed with the norm

u 2 := R N |∇u| 2 + |u| 2 dx.
We denote by → and strong convergence and weak convergence in corresponding space, respectively, and denote by B(x, R) a ball in R N of center x and radius R > 0.

Preliminary results

Firstly, let us observe that the energy functional J is well-defined in

H 1 (R N )×H 1 (R N ). Indeed, for r 1 , r 2 > 1, r 1 + r 2 < 2 * , there is q > 1 satisfying 2 < r 1 q, r 2 q ≤ 2 * , q := q q-1 . Hence R N |u 1 | r 1 |u 2 | r 2 dx ≤ u 1 r 1 r 1 q u 2 r 2 r 2 q < ∞. The Gagliardo-Nirenberg's inequality for u ∈ H 1 (R N ) and 2 ≤ p ≤ 2 * , u p ≤ C(N, p) ∇u α 2 u 1-α 2 , whereα := N (p -2) 2p , this implies for (u 1 , u 2 ) ∈ S(a 1 , a 2 ): R N |u 1 | p 1 dx ≤ C(N, p 1 , a 1 ) ∇u 1 N (p 1 -2) 2 2 , R N |u 2 | p 2 dx ≤ C(N, p 2 , a 2 ) ∇u 2 N (p 2 -2) 2 2 , (2.2.1)
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and

R N |u 1 | r 1 |u 2 | r 2 dx ≤ u 1 r 1 r 1 q u 2 r 2 r 2 q ≤ C ∇u 1 N (r 1 q-2) 2q 2 ∇u 2 N (r 2 q -2) 2q 2 (2.2.2) with C = C(N, r 1 , r 2 , a 1 , a 2 , q).
Now recall the rearrangement results of Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF] as presented in [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF]. Let u be a Borel measurable function on R N . It is said to vanish at infinity if |{x ∈ R N : |u(x)| > t}| < ∞ for every t > 0. Here |A| stands for the N -dimensional Lebesgue measure of a Lebesgue mesurable set A ⊂ R N . Considering two Borel mesurable functions u, v which vanish at infinity in R N , we define for t > 0, A (u, v; t) := {x ∈ R N : |x| < r} where r > 0 is chosen so that

|B(0, r)| = |{x ∈ R N : |u(x)| > t}| + |{x ∈ R N : |v(x)| > t}|,
and {u, v} by

{u, v} (x) := ∞ 0 χ A (u,v;t) (x) dt, where χ A (x) is a characteristic function of the set A ⊂ R N .

Lemma 2.2.1. [61, Lemma A.1] (i) The function {u, v} is radially symmetric, non-increasing and lower semi-continuous.

Moreover, for each t > 0, there holds {x ∈ R N : {u, v} > t} = A (u, v; t).

(ii) Let Φ : [0, ∞) → [0, ∞) be increasing, lower semicontinuous, continuous at 0 and Φ(0) = 0. Then {Φ(u), Φ(v)} = Φ({u, v} ). (iii) {u, v} p p = u p p + v p p for 1 ≤ p < ∞. (iv) If u, v ∈ H 1 (R N ), then {u, v} ∈ H 1 (R N ) and ∇{u, v} 2 2 ≤ ∇u 2 2 + ∇v 2 2 . In addition, if u, v ∈ (H 1 (R N ) ∩ C 1 (R N )) \ {0} are

radially symmetric, positive and decreasing, then

R N |∇{u, v} | 2 dx < R N |∇u| 2 + R N |∇v| 2 dx. (v) Let u 1 , u 2 , v 1 , v 2 ≥ 0 be Borel measurable functions which vanish at infinity, then R N (u 1 u 2 + v 1 v 2 ) dx ≤ R N {u 1 , v 1 } {u 2 , v 2 } dx.

Proofs of the main results

In this scetion, we are aim at proving Theorem 2.1.1 -2.1.6. Hereafter, we use the same notation M (a 1 , a 2 ) for a 1 , a 2 ≥ 0, namely, one component of (a 1 , a 2 ) may be zero.

In what follows, we collect some basic properties of M (a 1 , a 2 ).

Lemma 2.3.1. (i) If a 1 , a 2 ≥ 0 with either a 1 > 0 or a 2 > 0, then -∞ < M (a 1 , a 2 ) < 0. (ii) M (a 1 , a 2 ) is continuous with respect to a 1 , a 2 ≥ 0. (iii) If a 1 ≥ b 1 ≥ 0, a 2 ≥ b 2 ≥ 0, then M (a 1 , a 2 ) ≤ M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ).
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Proof. (i) Observe that N (p i -2) 2 < 2 by p i < 2 + 4 N for i = 1, 2 and that N (r 1 q -2) 2q + N (r 2 q -2) 2q < 2, owing to r 1 + r 2 < 2 + 4 N . Thus, it follows from (2.2.1)-(2.2.
2) that J is coercive and in particular, M (a 1 , a 2 ) > -∞. Now taking into account that β > 0, one has

M (a 1 , a 2 ) ≤ M (a 1 , 0) + M (0, a 2 ). Since 2 < p 1 , p 2 < 2 + 4 N , it is standard to show that M (a 1 , 0) < 0 if a 1 > 0 and M (0, a 2 ) < 0 if a 2 > 0. Thus M (a 1 , a 2 ) < 0. (ii) We assume (a n 1 , a n 2 ) = (a 1 , a 2 ) + o n (1), where o n (1) → 0 as n → 0. From the definition of M (a n 1 , a n 2 ), for any > 0, there exists (u n 1 , u n 2 ) ∈ S(a n 1 , a n 2 ) such that J(u n 1 , u n 2 ) ≤ M (a n 1 , a n 2 ) + . (2.3.1)
Setting

v n i := u n i u n i 2 a 1 2 i for i = 1, 2, we have that (v n 1 , v n 2 ) ∈ S(a 1 , a 2 ) and M (a 1 , a 2 ) ≤ J(v n 1 , v n 2 ) = J(u n 1 , u n 2 ) + o n (1). (2.3.2)
Combining (2.3.1) and (2.3.2) we obtain

M (a 1 , a 2 ) ≤ M (a n 1 , a n 2 ) + + o n (1).
Reversing the arguments, we obtain similarly that

M (a n 1 , a n 2 ) ≤ M (a 1 , a 2 ) + + o(1).
Therefore, since > 0 is arbitrary, we deduce that

M (a n 1 , a n 2 ) = M (a 1 , a 2 ) + o n (1). (iii) By density of C ∞ 0 (R N ) in H 1 (R N ), for any > 0, there exist ( φ1 , φ2 ), ( φ1 , φ2 ) ∈ C ∞ 0 (R N ) × C ∞ 0 (R N ) with φi 2 2 = b i , φi 2 2 = a i -b i for i = 1, 2 such that J( φ1 , φ2 ) ≤ M (b 1 , b 2 ) + 2 , J( φ1 , φ2 ) ≤ M (a 1 -b 1 , a 2 -b 2 ) + 2 .
Since J is invariant by translations, without loss of generality, we may assume that supp φi ∩ supp φi = ∅, and then φi + φi

2 2 = φi 2 2 + φi 2 2 = a i for i = 1, 2, as well as M (a 1 , a 2 ) ≤ J( φ1 + φ1 , φ2 + φ2 ) ≤ M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ) + . Thus M (a 1 , a 2 ) ≤ M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ). Lemma 2.3.2. Assume r 1 , r 2 > 1, r 1 + r 2 < 2 + 4 N . If (u n 1 , u n 2 ) (u 1 , u 2 ) in H 1 (R N ) × H 1 (R N ), then R N |u n 1 | r 1 |u n 2 | r 2 -|u n 1 -u 1 | r 1 |u n 2 -u 2 | r 2 dx = R N |u 1 | r 1 |u 2 | r 2 dx + o n (1).
Proof. Since this lemma can be proved following closely the approach of [38, Lemma 2.3], we only provide the outline of the proof. For any b 1 , b 2 , c 1 , c 2 ∈ R and > 0, set r := r 1 +r 2 .

The mean value theorem and Young's inequality lead to

|b 1 + b 2 | r 1 |c 1 + c 2 | r 2 -|b 1 | r 1 |c 1 | r 2 ≤ C |b 1 | r + |c 1 | r + |b 2 | r + |c 2 | r + C |b 2 | r + |c 2 | r . Denote b 1 := u n 1 -u 1 , c 1 := u n 2 -u 2 , b 2 := u 1 , c 2 := u 2 .
Then

f n := |u n 1 | r 1 |u n 2 | r 2 -|u n 1 -u 1 | r 1 |u n 2 -u 2 | r 2 -|u 1 | r 1 |u 2 | r 2 -C (|u n 1 -u 1 | r + |u n 2 -u 2 | r + |u 1 | r + |u 2 | r ) + ≤ |u 1 | r 1 |u 2 | r 2 + C (|u 1 | r + |u 2 | r ) ,
where u + (x) := max{u(x), 0}, so the dominated convergence theorem implies that 

R N f n dx → 0 as n → ∞. (2.3.3) Since |u n 1 | r 1 |u n 2 | r 2 -|u n 1 -u 1 | r 1 |u n 2 -u 2 | r 2 -|u 1 | r 1 |u 2 | r 2 ≤ f n + C |u n 1 -u 1 | r + |u n 2 -u 2 | r + |u 1 | r + |u 2 | r , by the boundedness of {(u n 1 , u n 2 )} in H 1 (R N ) × H 1 (R N ) and (2.3.3), it follows that R N |u n 1 | r 1 |u n 2 | r 2 -|u n 1 -u 1 | r 1 |u n 2 -u 2 | r 2 dx = R N |u 1 | r 1 |u 2 | r 2 dx + o n (1
(R N ) × L p (R N ) for 2 < p < 2 * . Proof. Assume that {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2
) is a minimizing sequence to (2.1.4). By the coerciveness of the energy functional

J on S(a 1 , a 2 ), {(u n 1 , u n 2 )} is bounded in H 1 (R N ) × H 1 (R N ). If sup y∈R N B(y,R) |u n 1 | 2 + |u n 2 | 2 dx = o n (1), for some R > 0, then u i → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2, see [74, Lemma I.1]
. This is incompatible with the fact that M (a 1 , a 2 ) < 0, see Lemma 2.3.1 (i). Thus, there exist a β 0 > 0 and a sequence

{y n } ⊂ R N such that B(yn,R) |u n 1 | 2 + |u n 2 | 2 dx ≥ β 0 ,
and we deduce from the weak convergence in

H 1 (R N ) × H 1 (R N ) and the local compact- ness in L 2 (R N ) × L 2 (R N ) that (u n 1 (x -y n ), u n 2 (x -y n )) (u 1 , u 2 ) = (0, 0) in H 1 (R N ) × H 1 (R N ). Our aim is to prove that w n i (x) := u n i (x) -u i (x + y n ) → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2.
To do this, we suppose by contradiction that there exists a 2 < q < 2 * such that (w n 1 , w n 2 ) (0, 0) in L q (R N ) × L q (R N ). Note that under this assumption there exists a sequence

{z n } ⊂ R N such that (w n 1 (x -z n ), w n 2 (x -z n )) (w 1 , w 2 ) = (0, 0)
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in H 1 (R n ) × H 1 (R N ). Indeed, otherwise sup y∈R N B(y,R) |w n 1 | 2 + |w n 2 | 2 dx = o n (1), which leads to (w n 1 , w n 2 ) → (0, 0) in L p (R N ) × L p (R N ) for 2 < p < 2 *
. Now, combining the Brezis-Lieb Lemma, Lemma 2.3.2 and the translational invariance we conclude

J(u n 1 , u n 2 ) = J(u n 1 (x -y n ), u n 2 (x -y n )) = J(u n 1 (x -y n ) -u 1 + u 1 , u n 2 (x -y n ) -u 2 + u 2 ) = J(u n 1 (x -y n ) -u 1 , u n 2 (x -y n ) -u 2 ) + J(u 1 , u 2 ) + o n (1) = J(w n 1 (x -y n ), w n 2 (x -y n )) + J(u 1 , u 2 ) + o n (1) = J(w n 1 (x -z n ), w n 2 (x -z n )) + J(u 1 , u 2 ) + o n (1) = J(w n 1 (x -z n ) -w 1 + w 1 , w n 2 (x -z n ) -w 2 + w 2 ) + J(u 1 , u 2 ) + o n (1) = J(w n 1 (x -z n ) -w 1 , w n 2 (x -z n ) -w 2 ) + J(w 1 , w 2 ) + J(u 1 , u 2 ) + o n (1), (2.3.4) 
and

u n i (x -y n ) 2 2 = u n i (x -y n ) -u i + u i 2 2 = u n i (x -y n ) -u i 2 2 + u i 2 2 + o n (1) = w n i (x -z n ) -w i + w i 2 2 + u i 2 2 + o n (1) = w n i (x -z n ) -w i 2 2 + w i 2 2 + u i 2 2 + o n (1).
Thus

w n i (x -z n ) -w i 2 2 = u n i (x -y n ) 2 2 -w i 2 2 -u i 2 2 + o n (1) = a i -w i 2 2 -u i 2 2 + o n (1) = b i + o n (1), (2.3.5) where b i := a i -w i 2 2 -u i 2 2 . Noting that w i 2 2 ≤ lim inf n→∞ w n i (x -z n ) 2 2 = lim inf n→∞ u n i (x -y n ) -u i 2 2 = a i -u i 2 2 , then b i ≥ 0 for i = 1, 2. Recording that J(u n 1 , u n 2 ) → M (a 1 , a 2 ), in view of (2.3.5), Lemma 2.3.1 (ii) and (2.3.4), we get M (a 1 , a 2 ) ≥ M (b 1 , b 2 ) + J(w 1 , w 2 ) + J(u 1 , u 2 ). (2.3.6) If J(w 1 , w 2 ) > M ( w 1 2 2 , w 2 2 2 ) or J(u 1 , u 2 ) > M ( u 1 2 2 , u 2 2 
2 ), then, from (2.3.6) and Lemma 2.3.1 (iii), it follows

M (a 1 , a 2 ) > M (b 1 , b 2 ) + M ( w 1 2 2 , w 2 2 2 ) + M ( u 1 2 2 , u 2 2 2 ) ≥ M (a 1 , a 2 ), which is impossible. Hence J(w 1 , w 2 ) = M ( w 1 2 2 , w 2 2 2 ), J(u 1 , u 2 ) = M ( u 1 2 2 , u 2 2 2 ).
We denote by u * i , w * i the classical Schwartz's rearrangement of u i , w i for i = 1, 2,. Since [START_REF] Lieb | Analysis[END_REF], we deduce that

u * i 2 2 = u i 2 2 , w * i 2 2 = w i 2 2 , J(u * 1 , u * 2 ) ≤ J(u 1 , u 2 ), J(w * 1 , w * 2 ) ≤ J(w 1 , w 2 ) see for example
J(u * 1 , u * 2 ) = M ( u 1 2 2 , u 2 2 2 ), J(w * 1 , w * 2 ) = M ( w 1 2 2 , w 2 2 
2 ). Therefore, (u * 1 , u * 2 ), (w * 1 , w * 2 ) are solutions of the system (2.1.1) and from standard regularity results we have that u * i , w * i ∈ C 2 (R N ) for i = 1, 2. At this point, Lemma 2.2.1 comes into play. Without restriction, we may assume u 1 = 0. We divide into two cases.

Case 1: u 1 = 0 and w 1 = 0. By virtue of Lemma 2.2.1 (ii), (iv), (v),

R N |∇{u * 1 , w * 1 } | dx < R N |∇u * 1 | 2 + |∇w * 1 | 2 dx ≤ R N |∇u 1 | 2 + |∇w 1 | 2 dx, R N |{u * 1 , w * 1 } | r 1 |{ũ 2 , w * 2 } | r 2 dx = R N {|u * 1 | r 1 , |w * 1 | r 1 } {|u * 2 | r 2 , |w * 2 | r 2 } dx, ≥ R N |u * 1 | r 1 |u * 2 | r 2 + | w1 | r 1 |w * 2 | r 2 dx = R N (|u 1 | r 1 ) * (|u 2 | r 2 ) * + (|w 1 | r 1 ) * (|w 2 | r 2 ) * dx, ≥ R N |u 1 | r 1 |u 2 | r 2 + |w 1 | r 1 |w 2 | r 2 dx,
and thus 

J(u 1 , u 2 ) + J(w 1 , w 2 ) > J({u * 1 , w * 1 } , {u * 2 , w * 2 } ). (2.3.7) Also from Lemma 2.2.1 (iii), for i = 1, 2, R N |{u * i , w * i } | 2 dx = R N |u * i | 2 + |w * i | 2 dx = R N |u i | 2 + |w i | 2 dx, ( 2 
M (a 1 , a 2 ) > M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ) ≥ M (a 1 , a 2 ).
Case 2: u 1 = 0, w 1 = 0 and w 2 = 0. If u 2 = 0, we can reverse the role of u 1 , w 1 and u 2 , w 2 in Case 1 to get a contradiction. Thus, we suppose that u 2 = 0. Due to Lemma 2.2.1 (ii)-(v), 

J({u * 1 , 0} , {w * 2 , 0} ) ≤ 1 2 R N |∇u * 1 | 2 + |∇w * 2 | 2 dx - µ 1 p 1 R N |u * 1 | p 1 dx - µ 2 p 2 R N |w * 2 | p 2 dx -β R N |u * 1 | r 1 |w * 2 | r 2 < J(u * 1 , 0) + J(0, w * 2 ) ≤ J(u 1 , 0) + J(0, w 2 ), (2.3.9) and R N |{u * 1 , 0} | 2 dx = R N |u * 1 | 2 dx = R N |u 1 | 2 dx, R N |{w * 2 , 0} | 2 dx = R N |w * 2 | 2 dx = R N |w 2 | 2 dx. ( 2 
M (a 1 , a 2 ) > M (b 1 , b 2 ) + M (a 1 -b 1 , a 2 -b 2 ) ≥ M (a 1 , a 2 ). The contradictions obtained in Cases 1-2 indicate that w n i (x) = u n i (x) -u i (x + y n ) → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2. Proof of Theorem 2.1.1. Let {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) be a minimizing sequence to (2.1.4). In light of Lemma 2.3.3, (u n 1 , u n 2 ) → (u 1 , u 2 ), up to translations, in L p (R N ) × L p (R N ) for 2 < p < 2 * .
Hence by the weakly lower semicontinuous of norm, 

J(u 1 , u 2 ) ≤ M (a 1 , a 2 ). ( 2 
M (ā 1 , ā2 ) ≤ M (a 1 , a 2 ).
(2.3.12) 

At this point, from Lemma 2.3.1 (iii), M (a 1 , a 2 ) ≤ M (ā 1 , ā2 ) + M (a 1 -ā1 , a 2 -ā2 ) and Lemma 2.3.1 (i), M (a 1 -ā1 , a 2 -ā2 ) < 0,
(R N )×H 1 rad (R N ).
In such space, the strong convergence in L p (R N ) × L p (R N ) for 2 < p < 2 * , and N ≥ 2, is given for free. Now define

M r (a 1 , a 2 ) := inf (u 1 ,u 2 )∈Sr(a 1 ,a 2 ) J(u 1 , u 2 ), (2.3.13)
where

S r (a 1 , a 2 ) := {(u 1 , u 2 ) ∈ H 1 rad (R N ) × H 1 rad (R N ) : u 1 2 2 = a 1 , u 2 2 2 = a 2 }.
We observe that

M r (a 1 , a 2 ) ≤ M r (b 1 , b 2 ) + M r (a 1 -b 1 , a 2 -b 2 ), (2.3.14)
where 0 ≤ b i ≤ a i for i = 1, 2. Indeed, since for any minimizing sequence to (2.1.4), one can find a radially symmetric minimizing sequence by the Schwartz's rearrangement, thus it results that M r (a 1 , a 2 ) = M (a 1 , a 2 ) for any a 1 ≥ 0, a 2 ≥ 0, and (2.3.14) then follows from Lemma 2.3.1 (iii). Thus we can end the proof as previously.

We now turn to the proof of Theorem 2.1.6, whose proof relies on the classical arguments of Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], hence we only give a sketch.

Proof of Theorem 2.1.6. By contradiction, we assume that there is a 0 > 0, (Ψ n

1 (0), Ψ n 2 (0)) ⊂ H 1 (R N ) × H 1 (R N ), and {t n } ⊂ R + such that inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ n 1 (0), Ψ n 2 (0)) -(u 1 , u 2 ) → 0, and inf (u 1 ,u 2 )∈G(a 1 ,a 2 ) (Ψ n 1 (t n ), Ψ n 2 (t n )) -(u 1 , u 2 ) ≥ 0 , (2.3.15)
where (Ψ n 1 (t), Ψ n 2 (t)) is solution to the Cauchy problem of (2.1.3) with initial datum (Ψ n 1 (0), Ψ n 2 (0)). By the conservation laws,

Ψ n i (t n ) 2 2 = Ψ n i (0) 2 2 , for i = 1, 2, also J(Ψ n 1 (t n ), Ψ n 2 (t n )) = J(Ψ n 1 (0), Ψ n 2 (0)). Define Ψn i = Ψ n i (t n ) Ψ n i (t n ) 2 2 a 1 2 i , for i = 1, 2,
we get that Ψn (2.3.15) fails. We reach a contradiciton.

i 2 2 = a i , J( Ψn 1 , Ψn 2 ) = M (a 1 , a 2 ) + o n (1). Namely, {( Ψn 1 , Ψn 2 )} is a minimizing sequence to (2.1.1). From Theorem 2.1.1, it follows that it is compact up to translation in H 1 (R N ) × H 1 (R N ), thus

Chapter 3

Multiple normalized solutions for coupled nonlinear Schrödinger system

Introduction

In this chapter, we are concerned with standing waves to the following coupled nonlinear Schrödinger system in R × R N ,

-i∂ t Ψ 1 = ∆Ψ 1 + µ 1 |Ψ 1 | p 1 -2 Ψ 1 + β|Ψ 1 | r 1 -2 Ψ 1 |Ψ 2 | r 2 , -i∂ t Ψ 2 = ∆Ψ 2 + µ 2 |Ψ 2 | p 2 -2 Ψ 2 + β|Ψ 1 | r 1 |Ψ 2 | r 2 -2 Ψ 2 . (3.1.1)
Here by standing waves to (3.1.1), we mean solutions with the form of

Ψ 1 (t, x) = e -iλ 1 t u 1 (x), Ψ 2 (t, x) = e -iλ 2 t u 2 (x) for (λ 1 , λ 2 ) ∈ R 2 .
This then gives rise to the following elliptic system satisfied by u 1 and

u 2 , -∆u 1 = λ 1 u 1 + µ 1 |u 1 | p 1 -2 u 1 + βr 1 |u 1 | r 1 -2 u 1 |u 2 | r 2 , -∆u 2 = λ 2 u 2 + µ 2 |u 2 | p 2 -2 u 2 + βr 2 |u 1 | r 1 |u 2 | r 2 -2 u 2 . (3.1.2)
Notice that the L 2 -norm of solution to the Cauchy problem of (3.1.1) is conserved along time, i.e. for any t > 0,

R N |Ψ i (t, x)| 2 dx = R N |Ψ i (0, x)| 2 dx for i = 1, 2.
Thus it is of particular interest to study solutions to (3.1.2) having prescribed L 2 -norm. More precisely, for given a 1 , a 2 > 0, to search for (λ 

1 , λ 2 ) ∈ R 2 and (u 1 , u 2 ) ∈ H 1 (R N ) × H 1 (R N ) satisfying (3.1.2), together with normalized condition R N |u 1 | 2 dx = a 1 , R N |u 2 | 2 dx = a 2 . ( 3 
(R N ) × H 1 (R N ) → R defined by J(u 1 , u 2 ) := 1 2 R N |∇u 1 | 2 + |∇u 2 | 2 dx - 2 i=1 µ i p i R N |u i | p i dx -β R N |u 1 | r 1 |u 2 | r 2 dx on the constraint S(a 1 , a 2 ) := S(a 1 ) × S(a 2 ) with S(a) := {u ∈ H 1 (R N ) : R N |u| 2 dx = a > 0},
and (λ 1 , λ 2 ) is determined as Lagrange multipliers.

When 2 < p 1 , p 2 < 2 + 4 N , r 1 , r 2 > 1, r 1 + r 2 < 2 + 4
N , the energy functional J is bounded from below on S(a 1 , a 2 ). Then one may search for a critical point for J restricted to S(a 1 , a 2 ) as a global minimizer for J subject to S(a 1 , a 2 ) through studying the compactness of any minimizing sequence. In this direction, a more complete result was recently obtained in [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF]. On the contrary, if µ 1 , µ 2 , β > 0, when either

p i > 2 + 4 N for some i = 1, 2 or r 1 + r 2 > 2 + 4
N , then the energy functional J becomes unbounded from below on S(a 1 , a 2 ). To see this, for t > 0, let us introduce the scaling of u ∈ H 1 (R N ) as

u t (x) := t N 2 u(tx).
Clearly, u t 2 = u 2 . A direct calculation then shows that for any (u 1 , u 2 ) ∈ S(a 1 , a 2 ),

J(u t 1 , u t 2 ) = t 2 2 R N |∇u 1 | 2 + |∇u 2 | 2 dx - 2 i=1 t ( p i 2 -1)N µ i p i R N |u i | p i dx -βt ( r 1 +r 2 2 -1)N R N |u 1 | r 1 |u 2 | r 2 dx, (3.1.4)
from which the claim immediately follows.

When global minimizer fail to exist, finding a critical point for J restricted to S(a 1 , a 2 ) is more delicate and involved. In such situation, minimax methods come into play. When 2

≤ N ≤ 4, µ 1 , µ 2 , β > 0, if either 2 < p 1 < 2 + 4 N < p 2 < 2 * , 2 + 4 N < r 1 + r 2 < 2 * , r 2 > 2 or 2 + 4 N < p 1 , p 2 , r 1 + r 2 < 2 *
, the authors [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF] studied the existence of positive solution to (3.1.2)-(3.1.3), see also [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF].

When N = 3, µ 1 , µ 2 > 0, β < 0, p 1 = p 2 = 4, r 1 = r 2 = 2, the existence of positive solution to (3.1.2)-(3.1.
3) was also established in [START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF], concerning a multiplicity result, we refer to [START_REF] Bartsch | Multiple normalized solutions for a competing system of Schrödinger equations[END_REF]. Let us also mention the papers [START_REF] Noris | Existence and orbital stability of the ground states with prescribed mass for the L 2 critical and supercritical NLS on bounded domains[END_REF][START_REF] Noris | Stable solitary waves with prescribed L 2 -mass for the cubic Schrödinger system with trapping potentials[END_REF][START_REF] Pierotti | Normalized bound states for the nonlinear Schrödinger equation in bounded domains[END_REF], where the authors considered the existence of normalized solutions to problem confined on a bounded domain in R N or with a trapping potential. Although more compactness is available in these cases, but it is unlikely to take advantage of the dilations, which play an essential role in [START_REF] Bartsch | Normalized solutions of nonlinear Schrödinger equations[END_REF][START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF][START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF][START_REF] Bellazzini | On dipolar quantum gases in the unstable regime[END_REF][START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF][START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF]. When a periodic potential is included in equation, the existence of normalized solutions was discussed in [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF].

In this chapter, as mainly inspired by [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF], we consider the existence of multiple solutions to (3.1.2)-(3.1.3) under the following two new assumptions,

(H 1 ) µ 1 , µ 2 , β > 0, 2 < p 1 , p 2 < 2 + 4 N , r 1 , r 2 > 1, 2 + 4 N < r 1 + r 2 < 2 * ; (H 2 ) µ 1 , µ 2 , β > 0, 2 + 4 N < p 1 , p 2 < 2 * , r 1 , r 2 > 1, r 1 + r 2 < 2 + 4 N .
From above observations, the energy functional J is not bounded from below on S(a 1 , a 2 ) under (H 1 ) or (H 2 ). Thus in order to find a critical point for J restricted to S(a 1 , a 2 ), we are indeed based on the minimax methods. Our aim is to prove that(3. In order to address our results, for ρ > 0, let us introduce

B(ρ) := {(u 1 , u 2 ) ∈ H 1 (R N ) × H 1 (R N ) : R N |∇u 1 | 2 + |∇u 2 | 2 dx < ρ}.
On account of (3.1.4), under either (H 1 ) or (H 2 ), for any ρ > 0 there holds

inf J(u 1 , u 2 ) < 0 f or (u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ B(ρ), (3.1.5) 
see Lemma 3.2.4. Furthermore, we will prove that there exist β 0 = β 0 (a 1 , a 2 ) > 0 and

ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that inf J(u 1 , u 2 ) > 0 f or (u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ ∂B(ρ 0 ), (3.1.6) 
for any 0 < β ≤ β 0 , see Lemma 3.3.1.

Together (3.1.5) with (3.1.6), then there may admit a local minimizer for J restricted to S(a 1 , a 2 )∩B(ρ). Thus for 0 < β ≤ β 0 , it is natural to introduce the following minimization problem m(a 1 , a 2 ) := inf

(u 1 ,u 2 )∈S(a 1 ,a 2 )∩B(ρ 0 ) J(u 1 , u 2 ). (3.1.7) 
Obviously, minimizers to (3.1.7) are critical points for J restricted to S(a 1 , a 2 ), i.e. solutions to (3.1.2)-(3.1.3). We shall prove that any minimizing sequence to (3.1.7) is compact, up to translations, in H 1 (R N ) × H 1 (R N ), and in particular this implies the existence of a critical point for J restricted to S(a 1 , a 2 ) as a minimizer to (3.1.7).

As observed from (3.1.4), for any (u 1 , u 2 ) ∈ S(a 1 , a 2 ), we have that J(u t 1 , u t 2 ) → -∞ as t → ∞ when (H 1 ) or (H 2 ) holds, and note also that (u t 1 , u t 2 ) / ∈ B(ρ 0 ) for t > 0 large enough. This property along with (3.1.6) suggest that there may exist other critical points for the energy functional J restricted to S(a 1 , a 2 ). Actually, under (H 1 ), the second critical ponit is obtained by mountain pass arguments. Under (H 2 ), inspired by [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF], the second one is achieved by a linking type procedure. Let us now state our main results. Theorem 3.1.1. Let a 1 , a 2 > 0 be given and assume that (H 1 ) holds. Then there exist

β 0 = β 0 (a 1 , a 2 ) > 0 and ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that for any 0 < β ≤ β 0 , (i) if N ≥ 1, any minimizing sequence to (3.1.7) is compact, up to translation, in H 1 (R N ) × H 1 (R N ).
In particular, there exists a positive solution

(v 1 , v 2 ) to (3.1.2)- (3.1.3) with (v 1 , v 2 ) ∈ B(ρ 0 ) and J(v 1 , v 2 ) < 0; (ii) If either 2 ≤ N ≤ 4 or N ≥ 5, p 1 , p 2 ≤ r 1 + r 2 -2 N or |p 1 -p 2 | ≤ 2 N , there exists a second positive solution (u 1 , u 2 ) to (3.1.2)-(3.1.3) with J(u 1 , u 2 ) > 0.
Theorem 3.1.2. Let a 1 , a 2 > 0 be given and assume that (H 2 ) holds. Then there exist

β 0 = β 0 (a 1 , a 2 ) > 0 and ρ 0 = ρ 0 (a 1 , a 2 ) > 0 such that for any 0 < β ≤ β 0 , (i) if either 1 ≤ N ≤ 4 or N ≥ 5, r i > r 1 +r 2 2 -1 N for i = 1, 2, any minimizing sequence to (3.1.7) is compact, up to translation, in H 1 (R N ) × H 1 (R N ). In partic- ular, there exists a positive solution (v 1 , v 2 ) to (3.1.2)-(3.1.3) with (v 1 , v 2 ) ∈ B(ρ 0 ) and J(v 1 , v 2 ) < 0; (ii) If 2 ≤ N ≤ 4, there exists a second positive solution (u 1 , u 2 ) to (3.1.2)-(3.1.3) with J(u 1 , u 2 ) > 0.
Remark 3.1.3. i) The value of β 0 in Theorem 3.1.1 and Theorem 3.1.2 can be explicitly computed in terms of N, p i , a i , r i for i = 1, 2, instead of being obtained through a limit process. In addition, for any given β > 0, we can assume that β ≤ β 0 at the expense of taking a 1 > 0 and a 2 > 0 sufficiently small, because β 0 (a 1 , a 2 ) → ∞ as a 1 , a 2 → 0, for this property, see Lemma 3.3.1. Finally we point out that our results are not perturbative.

ii) The existence of second solution in Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) is under the condition N ≥ 2. This is because we search for solutions in the radially symmetric functions space

H 1 rad (R N ) × H 1 rad (R N )
, and the compact embedding

H 1 rad (R N ) → L p (R N ) for 2 < p < 2 * holds when N ≥ 2.
iii) When N ≥ 2, we conjecture that Theorem 3.1.1 (ii) is true by only assuming (H 1 ), we refer to Remark 3.4.5 for a discussion in this direction.

Proving the compactness of any minimizing sequence to (3.1.7) under the assumption (H 1 ) or (H 2 ), we make use of the coupled rearrangement arguments due to Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF] as developed by Ikoma [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF], instead of directly employing the Lions' compactness concentration principle [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part I[END_REF][START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF]. This is already the approach as presented in [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF], but here we need to adapt it to a local minimization problem (3.1.7). In this case, a new difficulty arises from the fact that in general the sum of two elements in B(ρ 0 ) does not belong to B(ρ 0 ), and this makes more technical to discuss dichotomy. To overcome this difficulty, we need to analyze carefully some properties of the energy functional J restricted to S(a 1 , a 2 ) ∩ B(ρ 0 ). The proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) follow the virtue in the papers [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]. Our proofs can be divided into three steps. Firstly, one needs to identify a possible critical level. This is done by introducing a minimax structure of mountain pass type when (H 1 ) holds, and of linking one when (H 2 ) holds. Secondly, one has to show that there exists a bounded Palais-Smale sequence {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) for the energy functional J restricted to S(a 1 , a 2 ) at this energy level. This step relies on the presence of a natural constraint of Pohozaev type, on which the energy functional J is coercive. Taking advantage of this constraint and making use of the approach introduced in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF] which consists in adding an artificial variable within the variational procedure, one can end this step. Having obtained a bounded Palais-Smale sequence {(u n 1 , u n 2 )} for J restricted to S(a 1 , a 2 ), we denote by (u 1 , u 2 ) its weak limit in

H 1 (R N ) × H 1 (R N ), then (u 1 , u 2 ) solves (1.1.2) with some (λ 1 , λ 2 ) ∈ R 2 , see Lemma 3.2.7. At this point, the last step is to show that (u 1 , u 2 ) ∈ S(a 1 , a 2 ).
It is this step where the limitation on dimension was imposed in [START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF][START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF]. Because the authors applied the Liouville's type results, see Lemma 3.2.2, which is only available when N ≤ 4, and also used the property that the scalar problem -∆w -λw = µ|w| p-2 w, u ∈ S(a).

(3.1.8) has a unique positive radial solution for µ > 0, and 2 < p < 2 * .

We start to relax these two restrictions. Thus Theorem 3.1.1 (ii) allows to consider the case N ≥ 5. Indeed, under the assumption (H 1 ), the second critical point for J restricted to S(a 1 , a 2 ) is found through the mountain pass arguments. More precisely, we first prove tha there exist β 0 = β 0 (a 1 , a 2 ) > 0, ρ 0 = ρ 0 (a 1 , a 2 ) > 0 and 0 < ρ = ρ(a 1 , a 2 ) < ρ 0 such that for any 0 < β ≤ β 0 ,

γ(a 1 , a 2 ) := inf g∈Γ max t∈[0,1] J(g(t)) > max{J(g(0)), J(g(1))}, where Γ := {g ∈ C([0, 1], S(a 1 , a 2 )) : g(0) ∈ B(ρ), g(1) / ∈ B(ρ 0 ) with J(g(1)) < 0}.
Having obtained a bounded Palais-Smale sequence for J restricted to S(a 1 , a 2 ) at the level γ(a 1 , a 2 ), we denote by (u 1 , u 2 ) its weak limit. Furthermore, (u 1 , u 2 ) solves (3.1.2) with some (λ 1 , λ 2 ) ∈ R 2 . An appropriate choice of the Palais-Smale sequence insures that 2 < a 2 , we manage to construct a path g ∈ Γ, on which the maximum of J is strictly below J(u 1 , u 2 ). By the characterization of γ(a 1 , a 2 ), we thus get

J(u 1 , u 2 ) ≤ γ(a 1 , a 2 ). ( 3 
γ(a 1 , a 2 ) ≤ max 0≤t≤1 J(g(t)) < J(u 1 , u 2 ),
in contradiction with (3.1.9). The construction of this path g ∈ Γ relies on the property that when 2

< p < 2 + 4 N , µ > 0, -∞ < inf u∈S(a) I(u) < 0, (3.1.10) 
where I(u) := 1 2 R N |∇u| 2 dx -µ p R N |u| p dx, and using "adding some masses" technique somehow in the spirit of [START_REF] Jeanjean | An approach to minimization under a constraint, The added mass technique[END_REF], but here again the coupled rearrangement arguments come into play.

In Theorem 3.1.2 (ii), to look for the second critical point, we establish a linking structure for J restricted to S(a 1 , a 2 ). Since p > 2 + 4 N , µ > 0, (3.1.10) does not hold, then our proof benefits from the Liouville's type results, which eventually induces the restriction on dimension N ≤ 4.

We now set

G m (a 1 , a 2 ) := {(u 1 , u 2 ) ∈ S(a 1 , a 2 ) ∩ B(ρ 0 ) : J(u 1 , u 2 ) = m(a 1 , a 2 )}.
Note that under assumption (H 1 ) or (H 2 ), the local well-posedness to the Cauchy problem of (3.1.1) is unknown. The point being that when 1 < r 1 , r 2 < 2, the interaction parts are not Lipschitz continuous, and in particular the uniqueness might fail. As a consequence, our result which states the orbital stability of the set G m (a 1 , a 2 ) is valid under condition. Having the compactness of any minimizing sequence to (3.1.7) in hand, the proof is a direct adaption of the classical arguments in Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF], thus we do not provide it. 

> 0 so that if (Ψ 1,0 , Ψ 2,0 ) ∈ H 1 (R N ) × H 1 (R N ) satisfies inf (u 1 ,u 2 )∈Gm(a 1 ,a 2 ) (Ψ 1,0 , Ψ 2,0 ) -(u 1 , u 2 ) ≤ δ,
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then sup t≥[0,T ) inf (u 1 ,u 2 )∈Gm(a 1 ,a 2 ) (Ψ 1 (t), Ψ 2 (t)) -(u 1 , u 2 ) ≤ ,
where (Ψ 1 (t), Ψ 2 (t)) is solution to the Cauchy problem of (3.1.1) with initial datum (Ψ 1,0 , Ψ 2,0 ), T denotes the maximum existence time of solution, and • stands for the standard norm in the Sobolev space

H 1 (R N ) × H 1 (R N ).
This chapter is organized as follows. In Section 3.2, we establish some preliminary results. Section 3.3 is devoted to the proofs of Theorem 3.1.1 (i) and Theorem 3.1.2 (i). In Section 3.4, we give the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). Finally, in Appendix we establish a key technical result, Lemma 3.4.4. Notation 3.1.5. In this chapter, for any 1 ≤ p < ∞, we write L p (R N ) the usual Lebesgue space endowed with the norm

u p p := R N |u| p dx,
and H 1 (R N ) the usual Sobolev space endowed with the norm

u 2 := R N |∇u| 2 + |u| 2 dx.
We denote by → and strong convergence and weak convergence in corresponding space, respectively, and denote by B(x, R) a ball in R N of center x and radius R > 0.

Preliminary results

First of all, observe that the energy functional J is well-defined in H 1 (R N ) × H 1 (R N ), thanks to the Hölder inequality,

R N |u 1 | r 1 |u 2 | r 2 dx ≤ u 1 r 1 r 1 q u 2 r 2 r 2 q < ∞,
for some 1 < q < 2 * , q = q q-1 with 2 ≤ r 1 q, r 2 q ≤ 2 * . Recalling the Gagliardo-Nirenberg's inequality, for u ∈ H

1 (R N ), 2 ≤ p ≤ 2 * , u p ≤ C(N, p) ∇u α(p) 2 u 1-α(p) 2 , where α(p) = N (p -2) 2p , (3.2.1)
then we get for (u 1 , u 2 ) ∈ S(a 1 ) × S(a 2 ),

R N |u 1 | r 1 |u 2 | r 2 dx ≤ u 1 r 1 r 1 q u 2 r 2 r 2 q ≤ Ca (1-α(r 1 q))r 1 2 1 a (1-α(r 2 q))r 2 2 2 ∇u 1 N (r 1 q-2) 2q 2 ∇u 2 N (r 2 q -2) 2q 2 (3.2.2) with C = C(N, r 1 , r 2 , q).
We now introduce the coupled rearrangement results of Shibata [START_REF] Shibata | A new rearrangement inequality and its application for L 2 -constraint minimizing problems[END_REF] as developed in [START_REF] Ikoma | Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions[END_REF]. Let u be a Borel measurable function on R N . It is said to vanish at infinity if the level set |{x ∈ R N : |u(x)| > t}| < ∞ for every t > 0. Here |A| stands for the N -dimensional Lebesgue measure of a Lebesgue measurable set A ⊂ R N . Considering two Borel mesurable functions u, v which vanish at infinity in R N , we define for t > 0, A (u, v; t) := {x ∈ R N : |x| < r} where r > 0 is chosen so that (ii) Let Φ : [0, ∞) → [0, ∞) be increasing, lower semicontinuous, continuous at 0 and

|B(0, r)| = |{x ∈ R N : |u(x)| > t}| + |{x ∈ R N : |v(x)| > t}|,
Φ(0) = 0. Then {Φ(u), Φ(v)} = Φ({u, v} ). (iii) {u, v} p p = u p p + v p p for 1 ≤ p < ∞. (iv) If u, v ∈ H 1 (R N ), then {u, v} ∈ H 1 (R N ) and ∇{u, v} 2 2 ≤ ∇u 2 2 + ∇v 2 2 . In addition, if u, v ∈ (H 1 (R N ) ∩ C 1 (R N )) \ {0} are radially symmetric, positive and non-increasing, then R N |∇{u, v} | 2 dx < R N |∇u| 2 + R N |∇v| 2 dx. (v) Let u 1 , u 2 , v 1 , v 2 ≥ 0 be Borel measurable functions which vanish at infinity, then R N (u 1 u 2 + v 1 v 2 ) dx ≤ R N {u 1 , v 1 } {u 2 , v 2 } dx. Lemma 3.2.2. [61, Lemma A.2] Suppose p ∈ (1, N N -2 ] when N ≥ 3, and p ∈ (1, ∞) when N = 1, 2. Let u ∈ L p (R N ) be a smooth nonnegative function satisfying -∆u ≥ 0 in R N . Then u ≡ 0 . Lemma 3.2.3. Assume r 1 , r 2 > 1, r 1 + r 2 ≤ 2 * . If (u n 1 , u n 2 ) (u 1 , u 2 ) in H 1 (R N ) × H 1 (R N ), then R N |u n 1 | r 1 |u n 2 | r 2 -|u n 1 -u 1 | r 1 |u n 2 -u 2 | r 2 dx = R N |u 1 | r 1 |u 2 | r 2 dx + o(1).
Proof. In [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF], see also [START_REF] Chen | Existence and symmetry of positive ground states for a doubly critical Schrödinger system[END_REF]Lemma 2.3], this result was proved under the assumption

r 1 , r 2 > 1, r 1 + r 2 < 2 + 4 N , but the proof can extend to the case r 1 , r 2 > 1, r 1 + r 2 ≤ 2 * . Lemma 3.2.4. Assume that (H 1 ) or (H 2 ) holds. Then for any b 1 , b 2 ≥ 0 with (b 1 , b 2 ) = (0, 0) if (H 1 ) holds, and b 1 = 0, b 2 = 0 if (H 2 ) holds, inf (u 1 ,u 2 )∈S(b 1 ,b 2 )∩B(ρ)
J(u 1 , u 2 ) < 0, for any ρ > 0.

Proof. Observing that ( p i 2 -1)N < 2, i = 1, 2 if (H 1 ) holds, and ( r 1 +r 2

2

-1)N < 2 if (H 2 ) holds. In light of (3.1.4), the lemma follows directly by taking t > 0 small enough.

Our next result, which is borrowed from [61, Lemma 2.2], shows that when considering a minimizing sequence to (3.1.7), it is not restrictive to assume that two components are nonnegative.

Lemma 3.2.5. Assume that

{(v n 1 , v n 2 )} is a minimizing sequence to (3.1.7). If {(|v n 1 |, |v n 2 |)} is compact in H 1 (R N ) × H 1 (R N ), so is {(v n 1 , v n 2 )}.
Proof. First note that there exists (w

1 , w 2 ) ∈ H 1 (R N ) × H 1 (R N ) such that, up to a subse- quence, (|v n 1 |, |v n 2 |) → (w 1 , w 2 ) in H 1 (R N )×H 1 (R N ), and (|v n 1 (x)|, |v n 2 (x)|) → (w 1 (x), w 2 (x)) for a.e. x ∈ R N . Since {(v n 1 , v n 2 )} is a bounded sequence, theen there exists (v 1 , v 2 ) ∈ H 1 (R N )×H 1 (R N ) such that, up to a subsequence, (v n 1 , v n 2 ) (v 1 , v 2 ) in H 1 (R N )×H 1 (R N ) and (v n 1 (x), v n 2 (x)) → (v 1 (x), v 2 (x)
) for a.e. x ∈ R N . By the uniqueness of the limit,

w i = |v i |, then (v n 1 , v n 2 ) → (v 1 , v 2 ) in L 2 (R N ) × L 2 (R N ). Now since (v n 1 , v n 2 ) → (v 1 , v 2 ) in L p (R N ) × L p (R N ) for 2 < p < 2 * , it follows that m(a 1 , a 2 ) = J(v n 1 , v n 2 ) + o n (1) ≥ J(v 1 , v 2 ) ≥ m(a 1 , a 2 ),
and thus

(v n 1 , v n 2 ) → (v 1 , v 2 ) in H 1 (R N ) × H 1 (R N ).
Next recalling (3.1.4), we define for (u

1 , u 2 ) ∈ H 1 (R N ) × H 1 (R N ) , Q(u 1 , u 2 ) : = d dt J(u t 1 , u t 2 )| t=1 = R N |∇u 1 | 2 + |∇u 2 | 2 dx (3.2.4) - 2 i=1 µ i p i p i 2 -1 N R N |u i | p i dx -β r 1 + r 2 2 -1 N R N |u 1 | r 1 |u 2 | r 2 dx.
It is standard that any solution (u 1 , u 2 ) to (3.1.2) for some (λ

1 , λ 2 ) ∈ R 2 must satisfy Q(u 1 , u 2 ) = 0. Lemma 3.2.6. Assume 2 < p 1 , p 2 , r 1 + r 2 < 2 * . If (u 1 , u 2 ) = (0, 0) solves (3.1.2) for some (λ 1 , λ 2 ) ∈ R 2 , then λ 1 < 0 or λ 2 < 0.
Proof. Testing (3.1.2) by (u 1 , u 2 ) and integrating in R N , one has

λ 1 a 1 + λ 2 a 2 = R N |∇u 1 | 2 + |∇u 2 | 2 dx - 2 i=1 µ i R N |u i | p i dx + β(r 1 + r 2 ) R N |u 1 | r 1 |u 2 | r 2 dx. Since (u 1 , u 2 ) satisfies (1.1.2), then Q(u 1 , u 2 ) = 0, which implies λ 1 a 1 + λ 2 a 2 = 2 i=1 µ i p i p i 2 -1 N -µ i R N |u i | p i dx + β r 1 + r 2 2 -1 N -(r 1 + r 2 ) R N |u 1 | r 1 |u 2 | r 2 dx < 0.
Then the lemma follows.

We recall that a sequence 

{(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) is a Palais-Smale sequence for J restricted to S(a 1 , a 2 ) at the level c, if J(u n 1 , u n 2 ) → c and (J |S(a 1 ,a 2 ) ) (u n 1 , u n 2 ) → 0 in H -1 (R N ) × H -1 (R N ) as n → ∞.
) ∈ H 1 (R N )×H 1 (R N ), (λ 1 , λ 2 ) ∈ R 2 and a sequence {(λ n 1 , λ n 2 )} ⊂ R 2 such that, up to a subsequence, (i) (u n 1 , u n 2 ) (u 1 , u 2 ) in H 1 (R N ) × H 1 (R N ); (ii) (λ n 1 , λ n 2 ) → (λ 1 , λ 2 ) in R 2 ; (iii) J (u n 1 , u n 2 ) -λ n 1 (u n 1 , 0) -λ n 2 (0, u n 2 ) → 0 in H -1 (R N ) × H -1 (R N ); (iv) (u 1 , u 2 ) is solution to the system (3.1.2) where (λ 1 , λ 2 ) is given in (ii). In addition, if (u n 1 , u n 2 ) → (u 1 , u 2 ) in L p (R N ) × L p (R N ) for 2 < p < 2 * , then u n 1 → u 1 in H 1 (R N ) if λ 1 < 0. Similarly, u n 2 → u 2 in H 1 (R N ) if λ 2 < 0.

Existence of local minimizers

In this section, we establish Theorem 3.1.1 (i) and Theorem 3.1.2 (i).

Lemma 3.3.1. Assume that (H 1 ) or (H 2 ) holds. There exist a β 0 = β 0 (a 1 , a 2 ) > 0 and a ρ 0 = ρ 0 (a 1 , a 2 ) > 0, such that

J(u 1 , u 2 ) ≥ 0 on S(a 1 , a 2 ) ∩ [B(2ρ 0 )\B(ρ 0 )] (3.3.1)
for any 0 < β ≤ β 0 . Moreover, if 0 ≤ d 1 ≤ a 1 , 0 ≤ d 2 ≤ a 2 with (d 1 , d 2 ) = (0, 0), then J(u 1 , u 2 ) ≥ 0 on S(d 1 , d 2 ) ∩ [B(2ρ 0 )\B(ρ 0 )] (3.3.2) for any 0 < β ≤ β 0 . In addition, β 0 (a 1 , a 2 ) → ∞ as a 1 , a 2 → 0. Proof. For any (u 1 , u 2 ) ∈ S(a 1 , a 2 ), let ρ := R N |∇u 1 | 2 + |∇u 2 | 2 dx. Using (3.2.1)-(3.2.
2), we have

J(u 1 , u 2 ) = 1 2 ρ - 2 i=1 µ i p i R N |u i | p i dx -β R N |u 1 | r 1 |u 2 | r 2 dx ≥ 1 2 ρ - 2 i=1 K i R N |∇u i | 2 dx N (p i -2) 4 -βK 3 R N |∇u 1 | 2 dx N (r 1 q-2) 4q R N |∇u 1 | 2 dx N (r 2 q -2) 4q ≥ 1 2 ρ - 2 i=1 K i R N |∇u 1 | 2 + |∇u 2 | 2 dx N (p i -2) 4 -βK 3 R N |∇u 1 | 2 + |∇u 2 | 2 dx N (r 1 q-2) 4q R N |∇u 1 | 2 + |∇u 2 | 2 dx N (r 2 q -2) 4q , ≥ 1 2 ρ -K 1 ρ N (p 1 -2) 4 -K 2 ρ N (p 2 -2) 4 -βK 3 ρ N (r 1 +r 2 -2) 4
, where

K i := µ i p i C i (N, p i )a (1-α(p i ))p i 2 i K 3 := C(N, r 1 , r 2 )a (1-α(r 1 q))r 1 2 1 a (1-α(r 2 q ))r 2 2 2 . (3.3.3) Now if (H 1 ) holds, then N (p i -2)

4

< 1 for i = 1, 2, and N (r 1 +r 2 -2)

4

> 1. We fix a ρ = ρ 0 > 0 sufficiently large so that

K 1 ρ N (p 1 -2) 4 -1 0 + K 2 ρ N (p 2 -2) 4 -1 0 ≤ 1 8 , (3.3.4)
48 Chapter 3. Multiple normalized solutions for coupled nonlinear Schrödinger system and then we fix a β 0 > 0 small enough, satisfying

β 0 K 3 (2ρ 0 ) N (r 1 +r 2 -2) 4 -1 ≤ 1 8 . (3.3.5)
Observe that the left hand side of (3.3.4) and of (3.3.5) is decreasing and increasing with respect to ρ 0 , respectively. Thus we deduce that

J(u 1 , u 2 ) ≥ 1 4 ρ 0 for (u 1 , u 2 ) ∈ B(2ρ 0 )\B(ρ 0 ). (3.3.6)
If we assume that (H 2 ) holds, then N (p i -2)

4

> 1 for i = 1, 2, and N (r 1 +r 2 -2)

4

< 1. Thus we fix a ρ = ρ 0 > 0 sufficiently small so that

K 1 (2ρ 0 ) N (p 1 -2) 4 -1 + K 2 (2ρ 0 ) N (p 2 -2) 4 -1 ≤ 1 8 , ( 3.3.7) 
and then we fix a β 0 > 0 small enough, satisfying

β 0 K 3 ρ N (r 1 +r 2 -2) 4 -1 0 ≤ 1 8 . (3.3.8)
Here again one can readily check that (3.3.6) holds. Now to establish (3.3.2) it suffices to observe that the choices of β 0 > 0 and ρ 0 > 0 done with (a 1 , a 2 ) in (3.3.1) can be retain for (d 1 , d 2 ). This follows directly from the observation that the K j , j = 1, 2, 3 are increasing functions with respect to a 1 and a 2 . Finally, we prove that β 0 (a 1 , a 2 ) → ∞ as a 1 , a 2 → 0. Indeed, when (H 0 ) holds, since K j → 0, j = 1, 2, 3 as a i → 0, i = 1, 2, then ρ 0 > 0 in (3.3.4) can be taken arbitrarily small, thus in (3.3.5), β 0 > 0 can be taken large if ρ 0 > 0 is small. When (H 1 ) holds we reach the same conclusion by similar arguments.

From now on, for a 1 , a 2 ≥ 0 given, we fix a ρ 0 > 0 and a β 0 > 0 as determined in Lemma 3.3.1. For any 0 

≤ d 1 ≤ a 1 , 0 ≤ d 2 ≤ a 2 we define m(d 1 , d 2 ) := inf (u 1 ,u 2 )∈S(d 1 ,d 2 )∩B(ρ 0 ) J(u 1 , u 2 ). ( 3 
(ii) If (d n 1 , d n 2 ) is such that (d n 1 , d n 2 ) → (d 1 , d 2 ) as n → ∞ with 0 ≤ d n i ≤ a i for i = 1, 2, we have m(d n 1 , d n 2 ) → m(d 1 , d 2 ) as n → ∞. (iii) For any 0 ≤ d i ≤ a i , i = 1, 2 if m(d 1 , d 2 ) < 0 and m(a 1 -d 1 , a 2 -d 2 ) < 0, we have m(a 1 , a 2 ) ≤ m(d 1 , d 2 ) + m(a 1 -d 1 , a 2 -d 2 ).
(u n 1 , u n 2 ) ∈ S(d n 1 , d n 2 ) ∩ B(ρ 0 ) such that J(u n 1 , u n 2 ) ≤ m(d n 1 , d n 2 ) + .
Setting w n i :=

u n i u n i 2 a 1 2
i for i = 1, 2, we have (w n 1 , w n 2 ) ∈ S(a 1 , a 2 ) and

∇w n 1 2 2 + ∇w n 2 2 2 = ∇u n 1 2 2 + ∇u n 2 2 2 + o n (1) < 2ρ 0 .
and

a i = v n i (x -y n ) 2 2 = v n i (x -y n ) -v i 2 2 + v i 2 2 + o n (1) = w n i (x -z n ) -w i + w i 2 2 + v i 2 2 + o n (1) = w n i (x -z n ) -w i 2 2 + w i 2 2 + v i 2 2 + o n (1)
.

Setting for i = 1, 2, b i := a i -w i 2 2 -v i 2 2 we then have w n i (x -z n ) -w i 2 2 = b i + o(1). Thus recording that J(v n 1 , v n 2 ) → m(a 1 , a 2 )
, in view of (3.3.11) and Lemma 3.3.2 (ii) we get

m(a 1 , a 2 ) ≥ J(w 1 , w 2 ) + J(v 1 , v 2 ) + m(b 1 , b 2 ).
(3.3.12)

If J(w 1 , w 2 ) > m( w 1 2 2 , w 2 2 2 ) or J(v 1 , v 2 ) > m( v 1 2 2 , v 1 2 
2 ), then, from (3.3.12) and Lemma 3.3.2 (iii) , it follows

m(a 1 , a 2 ) > m( w 1 2 2 , w 2 2 2 ) + m( v 1 2 2 , v 2 2 2 ) + m(b 1 , b 2 ) ≥ m(a 1 , a 2 ) which is impossible. Hence J(w 1 , w 2 ) = m( w 1 2 2 , w 2 2 2 ) and J(v 1 , v 2 ) = m( v 1 2 2 , v 2 2 
2 ). We denote by v * i , w * i the classical Schwartz's rearrangement of v i , w i for i = 1, 2,. Since

v * i 2 2 = v i 2 2 , w * i 2 2 = w i 2 2 , J(v * 1 , v * 2 ) ≤ J(v 1 , v 2 ), J(w * 1 , w * 2 ) ≤ J(w 1 , w 2 )
, see for example [START_REF] Lieb | Analysis[END_REF], we deduce that

J(v * 1 , v * 2 ) = m( u 1 2 2 , u 2 2 2 ), J(w * 1 , w * 2 ) = m( w 1 2 2 , w 2 2 
2 ).

Therefore, (v * 1 , v * 2 ), (w * 1 , w * 2 ) are solutions to (3.1.2) for some (λ 1 , λ 2 ) ∈ R 2 and from the standard regularity results we have that v * i , w * i ∈ C 2 (R N ) for i = 1, 2. We distinguish two cases to preceed the proof. Without loss of generality, we may assume v 1 = 0.

Case 1: v 1 = 0 and w 1 = 0. By virtue of Lemma 3.2.1 (ii), (iv), (v),

R N |∇{v * 1 , w * 1 } | dx < R N |∇v * 1 | 2 + |∇w * 1 | 2 dx ≤ R N |∇v 1 | 2 + |∇w 1 | 2 dx, R N |{v * 1 , w * 1 } | r 1 |{v * 2 , w * 2 } | r 2 dx = R N {|v * 1 | r 1 , |w * 1 | r 1 } {|v * 2 | r 2 , |w * 2 | r 2 } dx, ≥ R N |v * 1 | r 1 |v * 2 | r 2 + |w * 1 | r 1 |w * 2 | r 2 dx = R N (|v 1 | r 1 ) * (|v 2 | r 2 ) * + (|w 1 | r 1 ) * (|w 2 | r 2 ) * dx, ≥ R N |v 1 | r 1 |v 2 | r 2 + |w 1 | r 1 |w 2 | r 2 dx, (3.3.13)
and thus 

J(v 1 , v 2 ) + J(w 1 , w 2 ) > J({v * 1 , w * 1 } , {v * 2 , w * 2 } ). ( 3 
R N |{v * i , w * i } | 2 dx = R N |v * i | 2 + |w * i | 2 dx = R N |v i | 2 + |w i | 2 dx, ( 3 
m(a 1 , a 2 ) > m(b 1 , b 2 ) + m(a 1 -b 1 , a 2 -b 2 ) ≥ m(a 1 , a 2 ).
Case 2: v 1 = 0, w 1 = 0 and w 2 = 0.

If v 2 = 0, we can reverse the role of v 1 , w 1 and v 2 , w 2 in Case 1 to get a contradiction. Thus, we suppose that v 2 = 0. Due to Lemma 3.2.1 (ii)-(v),

J({v * 1 , 0} , {w * 2 , 0} ) ≤ 1 2 R N |∇v * 1 | 2 + |∇w * 2 | 2 dx - µ 1 p 1 R N |v * 1 | p 1 dx - µ 2 p 2 R N |w * 2 | p 2 dx -β R N |v * 1 | r 1 |w * 2 | r 2 < J(v * 1 , 0) + J(0, w * 2 ) ≤ J(v 1 , 0) + J(0, w 2 ), (3.3.16) with ||{v * 1 , 0} || 2 2 = ||v * 1 || 2 2 = ||v 1 || 2 2 and ||{w * 2 , 0} || 2 2 = ||w * 2 || 2 2 = ||w 2 || 2 2 .
Thus using (3.3.12), (3.3.16) and Lemma 3.3.2, we also have

m(a 1 , a 2 ) > m(b 1 , b 2 ) + m(a 1 -b 1 , a 2 -b 2 ) ≥ m(a 1 , a 2 ). The contradictions obtained in Cases 1 -2 indicate that w n i (x) = v n i (x) -v i (x + y n ) → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2.

Proof of Theorem 3.1.1 (i). Let {(v n

1 , v n 2 )} be an arbitrary minimizing sequence to (3.1.7). In view of Lemma 4.3.14, there exists (v 1 , v 2 ) ∈ H 1 (R N ) × H 1 (R N ) such that, up to a subsequence and translations, (

v n 1 , v n 2 ) (v 1 , v 2 ) in H 1 (R N ) × H 1 (R N ) and (v n 1 , v n 2 ) → (v 1 , v 2 ) in L p (R N ) × L p (R N ) for 2 < p < 2 * .
Hence, by the weak lower semi-continuity of the norm, ∇v 1 2 2 + ∇v 2 2 2 < ρ 0 , namely, (v 1 , v 2 ) ∈ B(ρ 0 ), and J(v 1 , v 2 ) ≤ m(a 1 , a 2 ) < 0, from which we deduce that (v 1 , v 2 ) = (0, 0). To show the compactness of

{(v n 1 , v n 2 )} in H 1 (R N ) × H 1 (R N ), it suffices to prove that (v 1 , v 2 ) ∈ S(a 1 , a 2 ). Assume by contradiction that v 1 2 2 := ā1 < a 1 or v 2 2 2 := ā2 < a 2 .
Then by the definition (3.3.9), m(ā 1 , ā2 ) ≤ J(v 1 , v 2 ). At this point, in light of Lemma 3.3.2 (i) and (iii), we get

J(v 1 , v 2 ) ≤ m(a 1 , a 2 ) ≤ m(ā 1 , ā2 ) + m(a 1 -ā1 , a 2 -ā2 ) < m(ā 1 , ā2 ) ≤ J(v 1 , v 2 ).
This contradiction proves that (v 1 , v 2 ) ∈ S(a 1 , a 2 ). To end the proof, we note that without restriction we can choose a minimizer (v 1 , v 2 ) of m(a 1 , a 2 ) with v 1 ≥ 0 and v 2 ≥ 0. From the classical regularity theory, and using the strong maximum principle we then deduce that v 1 , v 2 > 0.

Proof of Theorem 3.1.2 (i). Let {(v n

1 , v n 2 )} be a minimizing sequence to (3.1.7) whose two components are nonnegative. We know by Lemma 3.2.5 that it is not a restriction. Now it is classical, see for example [START_REF] Ghoussoub | Duality and perturbation methods in critical point theorey[END_REF], that there exists another minimizing sequence {(ṽ n 1 , ṽn 2 )} ⊂ S(a 1 , a 2 ) which is a Palais-Smale sequence for J restricted to S(a 1 , a 2 ), and such that

||(ṽ n 1 , ṽn 2 ) -(v n 1 , v n 2 )|| → 0 in H 1 (R N ) × H 1 (R N ).
Because of this convergence, we have in particular that (ṽ n 1 ) -→ 0 and (ṽ n 2 ) -→ 0 as n → ∞ and we obtain that (ṽ

n 1 , ṽn 2 ) (v 1 , v 2 ) in H 1 (R N ) × H 1 (R N ) with v 1 ≥
0 and v 2 ≥ 0. Furthermore, it results from Lemma 3.2.7 52 Chapter 3. Multiple normalized solutions for coupled nonlinear Schrödinger system that (v 1 , v 2 ) satisfies (3.1.2)-(3.1.3) with some (λ 1 , λ 2 ) ∈ R 2 , from which we infer that Q(v 1 , v 2 ) = 0. From Lemma 4.3.14, we also get that J(v 1 , v 2 ) ≤ m(a 1 , a 2 ) < 0. It remains to show that (v 1 , v 2 ) ∈ S(a 1 , a 2 ). By Lemma 3.2.6, we can assume without restriction that λ 1 < 0 and then Lemma 3.2.7 gives v 1 ∈ S(a 1 ). If λ 2 < 0 we also have that v 2 ∈ S(a 2 ). Let us thus assume by contradiction that λ 2 ≥ 0. In the case 1 ≤ N ≤ 4, since

-∆v 2 = λ 2 v 2 + µ 2 v p 2 -1 2 + βr 2 v r 1 1 v r 2 -1 2 ≥ 0,
by the Liouville's results recalled in Lemma 3.2.2, we obtain that v 2 = 0. It then follows that

J(v 1 , v 2 ) = J(v 1 , 0) with v 1 ∈ S(a 1 ) and satisfying -∆v 1 = λ 1 v 1 + µ 1 v p 1 -1 1 . Since p 1 > 2 + 4
N , we necessarily have J(v 1 , 0) > 0, and this provides the contradiction. If we now assume that N ≥ 5, testing the second equation of (3.1.2) with v 2 , and integrating in R N , because λ 2 ≥ 0, we get that

R N |∇v 2 | 2 dx -µ 2 R N |v 2 | p 2 dx -βr 2 R N |v 1 | r 1 |v 2 | r 2 dx ≥ 0.
(3.3.17)

Now jointing (3.3.17) with Q(v 1 , v 2 ) = 0, we obtain that

R N |∇v 1 | 2 - µ 1 p 1 p 1 2 -1 N R N |v 1 | p 2 dx + µ 2 - µ 2 p 2 p 2 2 -1 N R N |v 2 | p 2 dx + β r 2 - r 1 + r 2 2 -1 N R N |v 1 | r 1 |v 2 | r 2 dx ≤ 0.
Note that the coefficient of R N |v 2 | p 2 dx is positive. From the Gagliardo-Nirenberg's inequality (3.2.1), we can assume without restriction that

R N |∇v 1 | 2 - µ 1 p 1 p 1 2 -1 N R N |v 1 | p 1 dx ≥ 0
by taking, if necessary, ρ 0 > 0 (and thus β 0 > 0) smaller in Lemma 3.3.1. Thus we also obtain a contradiction, since we have assumed that r 2 > r 1 +r 2 2 -1 N . Knowing that λ 2 < 0, we deduce that v 2 ∈ S(a 2 ) and then we conclude as before that v 1 > 0 and v 2 > 0.

Existence of minimax solutions

This section is devoted to the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). To obtain our second solution and in order to benefit from additional compactness, we replace

H 1 (R N )×H 1 (R N ) by H 1 rad (R N )×H 1 rad (R N ). It is well-known that the subspace H 1 rad (R N ) of H 1 (R N ) consisting of radially symmetric functions is compactly embedded into L q (R N ) for 2 < q < 2 * and N ≥ 2. Also it is classical that a constrained critical point of J defined on H 1 rad (R N )×H 1 rad (R N ) is a constrained critical point of J defined on H 1 (R N )×H 1 (R N ). Accordingly, we define S rad (a 1 , a 2 ) := S(a 1 , a 2 ) ∩ H 1 rad (R N ) × H 1 rad (R N
). We first deal with the case where (H 1 ) holds. By Lemma 3.2.4 and 3.3.1, we know that there exists a 0 < ρ = ρ(a 1 , a 2 ) < ρ 0 such that, for any 0

< β ≤ β 0 , γ(a 1 , a 2 ) := inf g∈Γ max t∈[0,1] J(g(t)) > max{J(g(0)), J(g(1))}, where Γ := {g ∈ C([0, 1], S(a 1 , a 2 )) : g(0) ∈ B(ρ), g(1) / ∈ B(ρ 0 ) with J(g(1)) < 0}.
Lemma 3.4.1. Assume that (H 1 ) holds. Then, for any 0 < β ≤ β 0 , there exists a Palais-Smale sequence {(u n 1 , u n 2 )} ⊂ S(a 1 , a 2 ) for J restricted to S rad (a 1 , a 2 ) at the level γ(a 1 , a 2 ), which satisfies

(u n 1 ) -→ 0, (u n 2 ) -→ 0 in H 1 (R N ) and the property Q(u n 1 , u n 2 ) → 0 as n → ∞.
Proof. The proof of such result is now standard, similar statements appear in [START_REF] Jeanjean | Existence of solutions with prescribed norm for semilinear elliptic equations[END_REF][START_REF] Bartsch | Normalized solutions for nonlinear Schrödinger systems[END_REF][START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]. Lemma 3.4.2. Assume that (H 1 ) holds and that 0 < β ≤ β 0 . Then there exists

(u 1 , u 2 ) ∈ H 1 rad (R N ) × H 1 rad (R N ) solving to (3.1.2) for some (λ 1 , λ 2 ) ∈ R 2 such that J(u 1 , u 2 ) = γ(a 1 , a 2 ). Moreover u 1 ≥ 0 and u 2 ≥ 0.
Proof. The couple (u 1 , u 2 ) will be obtained as a weak limit of the Palais-Smale sequence whose existence is provided by Lemma 3.4.1. To this aim, we first show that

{(u n 1 , u n 2 )} is bounded in H 1 (R N ) × H 1 (R N ).
As we shall see this property follows from the fact that the functional J restricted to the set where Q = 0 is coercive. Indeed, we can write, for any ε > 0,

J(u 1 , u 2 ) = ε 2 ||∇u n 1 || 2 2 + ε 2 ||∇u n 2 || 2 2 + a 1 (ε)||u n 1 || p 1 p 1 + a 2 (ε)||u 2 || p 2 p 2 + βb(ε) R N |u n 1 | r 1 |u n 2 | r 2 dx + 1 -ε 2 Q(u n 1 , u n 2 ).
where

a 1 (ε) = (1 -ε)µ 1 N 2p 1 p 1 2 -1 - µ 1 p 1 , a 2 (ε) = (1 -ε)µ 2 N 2p 2 p 2 2 -1 - µ 2 p 2 and b(ε) = (1 -ε)N 2 r 1 + r 2 2 -1 -1.
The coefficients a i (ε), i = 1, 2 are strictly negative, but the corresponding terms can be controlled by ε||∇u n i || 2 2 , using the Gagliardo-Nirenberg's inequality (3.2.1) because p 1 , p 2 < 2 + 4 N . Now since r 1 + r 2 > 2 + 4 N , we also have that b(ε) > 0 for ε > 0 small enough. Recalling that Q(u n 1 , u n 2 ) → 0, the boundedness of our Palais-Smale sequence follows. At this point, using Lemma 3.2.7, we can assume that

u n i u i , i = 1, 2 in H 1 (R N ) and that u n i → u i , i = 1, 2 in L q (R N ) with 2 < q < 2 * . Lemma 3.2.7 also insures that (u 1 , u 2 ) is a solution to (3.1.2) for some (λ 1 , λ 2 ) ∈ R 2 , and thus Q(u 1 , u 2 ) = 0. Clearly, the property u 1 ≥ 0 and u 2 ≥ 0 follows from (u n 1 ) -→ 0, (u n 2 ) -→ 0 in H 1 (R N ). It remains to show that J(u 1 , u 2 ) = γ(a 1 , a 2 ). Since Q(u n 1 , u n 2 ) → 0 we have, R N |∇u n 1 | 2 + |∇u n 2 | 2 dx → 2 i=1 µ i p i p i 2 -1 N R N |u n i | p i dx + β r 1 + r 2 2 -1 N R N |u n 1 | r 1 |u n 2 | r 2 dx.
From the strong convergence in L q (R N ), the right hand side converges to

2 i=1 µ i p i p i 2 -1 N R N |u i | p i dx + β r 1 + r 2 2 -1 N R N |u 1 | r 1 |u 2 | r 2 dx. Thanks to Q(u 1 , u 2 ) = 0, this gives that R N |∇u n 1 | 2 + |∇u n 2 | 2 dx → R N |∇u 1 | 2 + |∇u 2 | 2 dx. As a consequence, we deduce that J(u n 1 , u n 2 ) → J(u 1 , u 2 ). Thus recalling that J(u n 1 , u n 2 ) → γ(a 1 , a 2 ), we get J(u 1 , u 2 ) = γ(a 1 , a 2 ).
54 Chapter 3. Multiple normalized solutions for coupled nonlinear Schrödinger system Proof of Theorem 3.1.1 (ii). First we consider the case 2 ≤ N ≤ 4. In view of Lemma 3.4.2, it remains to prove that (u 1 , u 2 ) ∈ S(a 1 , a 2 ). Recall that here we work in the radially symmetric space H 1 rad (R N ) × H 1 rad (R N ), thus in view of Lemma 3.2.7, we only need to prove that λ 1 , λ 2 < 0. At this point, as in the proof of Theorem 3.1.2 (i), reasoning by contradiction if necessary, we assume that λ 2 ≥ 0, we obtain that

J(u 1 , u 2 ) = J(u 1 , 0) with u 1 ∈ S(a 1 ) satisfying -∆u 1 = λ 1 u 1 + µ 1 u p 1 -1 1 . Since p 1 < 2 + 4
N , we necessarily have that J(u 1 , 0) < 0, this provides the contradiction J(u 1 , 0) = γ(a 1 , a 2 ) > 0. We then conclude as before.

Let us now consider the case N ≥ 5, where the Liouville's type results cannot be applied.

Lemma 3.4.3. Assume that (H 1 ) holds and that either p

i ≤ r 1 + r 2 -2 N , i = 1, 2 or |p 1 -p 2 | ≤ 2 N . If Q(u 1 , u 2 ) = 0, and J(u 1 , u 2 ) > 0, then u 1 = 0, u 2 = 0 and J(u 1 , u 2 ) = max t>0 J(u t 1 , u t 2 ). (3.4.1)
The proof of Lemma 3.4.3 relies on the following technical result whose proof will be postponed until the Appendix.

Lemma 3.4.4. Assume that (H 1 ) holds and that either

p 1 , p 2 ≤ r 1 +r 2 -2 N or |p 1 -p 2 | ≤ 2 N . Let (v 1 , v 2 ) ∈ H 1 (R N ) × H 1 (R N ) be arbitrary. Then the function t → J(v t 1 , v t
2 ) admits at most two stationary points for t > 0. 

1(ii) relies, namely that if

(v 1 , v 2 ) ∈ H 1 (R N )× H 1 (R N ) is such that Q(v 1 , v 2 ) = 0 and J(v 1 , v 2 ) ≥ 0, then J(v 1 , v 2 ) = max t>0 J(v t 1 , v t 2 ).
Proof of Lemma 3.4.3. We first assert that u 1 = 0 and u 2 = 0. If we assume that u 1 = 0, then by using Q(0, u 2 ) = 0 and 2

< p 2 < 2 + 4 N , J(0, u 2 ) = 1 2 R N |∇u 2 | 2 dx - µ 2 p 2 R N |u 2 | p 2 dx = µ 2 p 2 1 2 - p 2 2 -1 N R N |u 2 | p 2 dx ≤ 0,
this is impossible, which proves that u 1 = 0. Similarly we get that u 2 = 0. Next we are going to prove that max t>0 θ(t) 1) > 0, we then deduce from Lemma 3.4.4 that (3.4.1) necessarily holds.

:= max t>0 J(u t 1 , u t 2 ) = J(u 1 , u 2 ). Since Q(u 1 , u 2 ) = 0, it follows from that t = 1 is a stationary point of θ. Note that lim t→0 + θ(t) = 0 -, lim t→∞ θ(t) = -∞. Due to θ(
End of the proof of Theorem 3. 1.1 (ii). We now deal with the case N ≥ 5. In view of Lemma 3.4.2, it remains to prove that (u 1 , u 2 ) ∈ S(a 1 , a 2 ). Let ā1 := u 1 2 2 ≤ a 1 and ā2 := u 2 2 2 ≤ a 2 . Assuming by contradiction that either ā1 < a 1 or ā2 < a 2 , we shall obtain a contradiction by constructing a path g ∈ Γ such that max 

t∈[0,1] J(g(t)) < γ(a 1 , a 2 ). Let 0 < t 1 < 1 < t 2 be such that (u t 1 1 , u t 1 2 ) ∈ B(ρ/2) and J(u t 2 1 , u t 2 2 ) < m(a 1 , a 2 ) < 0. The existence of 0 < t 1 <
||∇v t 1 || 2 2 + ||∇v t 1 || 2 2 = t 2 ||∇v 1 || 2 2 + ||∇v 1 || 2 2 ≤ t 2 2 i=1 ||∇u i || 2 2 + ||∇w i || 2 2 = 2 i=1 ||∇u t i || 2 2 + ||∇w t i || 2 2 . Thus (v t 1 1 , v t 2 2 ) ∈ B(ρ), due to (u t 1 1 , u t 2 2 ), (w t 1 1 , w t 1 2 ) ∈ B(ρ/2). Also J(v t 1 , v t 2 ) = t 2 2 R N |∇v 1 | 2 + |∇v 2 | 2 dx - 2 i=1 µ i p i t ( p i 2 -1)N R N |v i | p i dx -βt ( r 1 +r 2 2 -1)N R N |v 1 | r 1 |v 2 | r 2 dx ≤ t 2 2 R N |∇u 1 | 2 + |∇u 2 | 2 dx + t 2 2 R N |∇w 1 | 2 + |∇w 2 | 2 dx - 2 i=1 µ i p i t ( p i 2 -1)N R N |u i | p i dx - 2 i=1 µ i p i t ( p i
We now turn to the existence of the second solution of Theorem 3.1.2 (ii). Our proof borrows several key ingredients from [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]. First we recall some properties of the scalar nonlinear Schrödinger equation. Let w a,µ,p > 0, w a,µ,p ∈ S(a) be radially symmetric and satisfy -∆w a,µ,p -λw a,µ,p = µ|w a,µ,p | p-2 w a,µ,p , (3.4.3) for 2 + 4 N < p < 2 * and λ < 0. It is well known that w a,µ,p is unique and is given by

w a,µ,p (x) = - λ µ 1 p-2 w 0 ((-λ) 1 2 x), (3.4.4)
where w 0 is the unique positive radial solution of the equation -∆w

+ w = |w| p-2 w.
In what follows, we set

C 0 (N, p) = R N |∇w 0 | 2 dx, C 1 (N, p) = R N |w 0 | p dx. (3.4.5)
Let us now introduce a Pohozaev type manifold

P(N, a, µ, p) := {u ∈ S(a) : R N |∇u| 2 dx = µ p p 2 -1 N R N |u| p dx}
and the functional I µ,p : H 1 (R N ) → R defined by (3.4.6) and then the least energy level of I µ,p on P(N, a, µ, p) is given by l(N, a, µ, p) := inf u∈P(N,a,µ,p)

I µ,p (u) = 1 2 R N |∇u| 2 - µ p R N |u| p dx
2 2 = a C 0 (N, p) 2p-N (p-2) 4-N (p-2) µ 4 4-N (p-2) C 0 (N, p), w a,µ,p p p = a C 0 (N, p) 2p-N (p-2) 4-N (p-2) µ N (p-2) 4-N (p-2) C 1 (N, p),
I µ,p (u) = I µ,p (w a,µ,p ) = µ p p 2 -1 N 2 -1 R N |w a,µ,p | p dx (3.4.7) = 1 p p 2 -1 N 2 -1 a C 0 (N, p) 2p-N (p-2) 4-N (p-2) µ 4 4-N (p-2) C 1 (N, p).
We now define, for s ∈ R and w ∈ H 1 (R N ), the dilation (s * w)(x) := e N s 2 w(e s x). Lemma 3.4.7. For any w ∈ H 1 (R N ), there holds

I µ,p (s * w) = e 2s 2 R N |∇w| 2 dx - µ p e s( p 2 -1)N R N |w| p dx, ∂ ∂s I µ,p (s * w) = e 2s R N |∇w| 2 dx - µ p p 2 -1 N e s( p 2 -1)N R N |w| p dx.
In particular, if w = w a,µ,p , then

∂ ∂s I µ,p (s * w a,µ,p ) = 0 if s = 0, ∂ ∂s I µ,p (s * w a,µ,p ) > 0(< 0) if s < 0(> 0).
Proof. We refer to [12, Lemma 3.1] for a very similar proof. Now define, for i = 1, 2,

c i := c i (r 1 + r 2 , p i ) := p i -(r 1 + r 2 ) p i p i (r 1 + r 2 ) p i -2 r 1 +r 2 -2 p i -(r 1 +r 2 ) = max t≥0 t r 1 +r 2 -2 - 1 p i t p i -2 . (3.4.8)
In view of (3.4.7), since p 1 , p 2 > 2 + 4 N , then there exists a

β 1 = β 1 (a 1 , a 2 ) > 0 such that l(N, a 1 , µ 1 + β 1 , p 1 ) + l(N, a 2 , µ 2 + β 1 , p 2 ) -β 1 c 1 a 1 -β 1 c 2 a 2 = max{l(N, a 1 , µ 1 , p 1 ), l(N, a 2 , µ 2 , p 2 )} > 0 and l(N, a 1 , µ 1 + β 1 , p 1 ) + l(N, a 2 , µ 2 + β 1 , p 2 ) -β 1 c 1 a 1 -β 1 c 2 a 2 > max{l(N, a 1 , µ 1 , p 1 ), l(N, a 2 , µ 2 , p 2 )} > 0 for any 0 < β < β 1 . Note that β 1 (a 1 , a 2 ) → ∞ as a 1 , a 2 → 0. Choosing if necessary β 0 > 0 smaller in Lemma 3.3.1, we can assume that β 1 = β 0 . Lemma 3.4.8. For any 0 < β < β 0 , inf{J(u 1 , u 2 ) : (u 1 , u 2 ) ∈ P(N, a 1 , µ 1 + β, p 1 ) × P(N, a 2 , µ 2 + β, p 2 )} > max{l(N, a 1 , µ 1 , p 1 ), l(N, a 2 , µ 2 , p 2 )}.
Proof. For any (u 1 , u 2 ) ∈ P(N, a 1 , µ 1 + β, p 1 ) × P(N, a 2 , µ 2 + β, p 2 ), we have

J(u 1 , u 2 ) = I µ 1 ,p 1 (u 1 ) + I µ 2 ,p 2 (u 2 ) -β R N |u 1 | r 1 |u 2 | r 2 dx ≥ I µ 1 ,p 1 (u 1 ) + I µ 2 ,p 2 (u 2 ) -β 2 i=1 R N |u i | r 1 +r 2 dx ≥ I µ 1 ,p 1 (u 1 ) + I µ 2 ,p 2 (u 2 ) -β 2 i=1 R N c i |u i | 2 + 1 p i |u i | p i dx = I µ 1 +β,p 1 (u 1 ) + I µ 2 +β,p 2 (u 2 ) -βc 1 a 1 -βc 2 a 2 ≥ l(N, a 1 , µ 1 + β, p 1 ) + l(N, a 2 , µ 2 + β, p 2 ) -βc 1 a 1 -βc 2 a ,
where c i for i = 1, 2 are defined by (3.4.8).

Lemma 3.4.11. For every g ∈ Γ, there exists (t 1 , t 2 ) ∈ M such that g(t 1 , t 2 ) ∈ P(N, a 1 , µ 1 + β, p 1 ) × P(N, a 2 , µ 2 + β, p 2 ).

Proof. Let g ∈ Γ be arbitrary, we write g(t 1 , t 2 ) := (g 1 (t 1 , t 2 ), g 2 (t 1 , t 2 )), and we introduce the map F g : M → R 2 as,

F g (t 1 , t 2 ) := ∂ ∂s I µ 1 +β,p 1 (s * g 1 (t 1 , t 2 ))| s=0 , ∂ ∂s I µ 2 +β,p 2 (s * g 2 (t 1 , t 2 ))| s=0 . Since ∂ ∂s I µ i +β,p i (s * g i (t 1 , t 2 ))| s=0 = R N |∇g i (t 1 , t 2 )| 2 dx - µ i p i p i 2 -1 N R N |g i (t 1 , t 2 )| p i dx,
we deduce that F g (t 1 , t 2 ) = (0, 0) if and only if g(t 1 , t 2 ) ∈ P(N, a 1 , µ 1 +β, p 1 )×P(N, a 2 , µ 2 + β, p 2 ). To show that F g (t 1 , t 2 ) = 0 has a solution we can follow the proof given in [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]Lemma 3.5].

At this point, we know from Lemma 4.3.2, 3.4.10 and 3.4.11, that there exists a Palais-Smale sequence for J restricted to S(a 1 , a 2 ) at the level

c(a 1 , a 2 ) := inf g∈Γ max (t 1 ,t 2 )∈M J(g(t 1 , t 2 )) > max{l(N, a 1 , µ 1 , p 1 ), l(N, a 2 , µ 2 , p 2 )}. (3.4.10) 
In addition, arguing as in the proof of Theorem 3.1.1 (ii), we obtain the following result.

Lemma 3.4.12. For any 0 < β < β 0 , there exists a Palais-Smale sequence {(u n 1 , u n 2 )} ⊂ S rad (a 1 , a 2 ) for J restricted to S rad (a 1 , a 2 ) at the level c(a 1 , a 2 ), which satisfies

(u n 1 ) -→ 0, (u n 2 ) -→ 0 in H 1 (R N ) and the property Q(u n 1 , u n 2 ) → 0 as n → ∞. Proof of Theorem 3.1.2 (ii). Let {(u n 1 , u n 2 )} ⊂ S rad (a 1 , a 2
) be given by Lemma 3.4.12. Then there exists u 1 , u 2 ≥ 0 such that, up to a subsequence, (

u n 1 , u n 2 ) (u 1 , u 2 ) in H 1 (R N )×H 1 (R N ) and (u n 1 , u n 2 ) → (u 1 , u 2 ) in L p (R N )×L p (R N ) for 2 < p < 2 * . It follows as before that (u 1 , u 2 ) is a weak solution to (1.1.2) for some (λ 1 , λ 2 ) ∈ R 2 , thus Q(u 1 , u 2 ) = 0. Since Q(u n 1 , u n 2 ) = o n (1), we deduce that R N |∇u n 1 | 2 +|∇u n 2 | 2 dx → R N |∇u 1 | 2 +|∇u 2 | 2 dx. This results that J(u 1 , u 2 ) = c(a 1 , a 2 ) > 0,
and in particular (u 1 , u 2 ) = (0, 0). It remains to prove that (u 1 , u 2 ) ∈ S(a 1 , a 2 ). From Lemma 3.2.6, we may suppose λ 1 < 0, and thus u 1 ∈ S(a 1 ). If λ 2 < 0 we also have that u 2 ∈ S(a 2 ). If we assume λ 2 ≥ 0, then

-∆u 2 = λ 2 u 2 + µ 2 u p 2 -1 2 + βr 2 u r 1 1 u r 2 -1 2 ≥ 0,
and applying Lemma 3.2.2, it follows that u 2 = 0. Therefore Q(u 1 , 0) = 0, namely, u 1 ∈ P(N, a 1 , p 1 , µ 1 ), and this implies that

c(a 1 , a 2 ) = J(u 1 , 0) = 1 2 R N |∇u 1 | 2 dx - µ 1 p 1 R N |u 1 | p 1 dx = l(N, a 1 , µ 1 , p 1 ),
in contradiction with (3.4.10). Knowing that (u 1 , u 2 ) ∈ S(a 1 , a 2 ), we conclude as previously.

Appendix

Proof of Lemma 3.4.4. To begin with, we set for i = 1, 2,

a := R N |∇u 1 | 2 + |∇u 2 | 2 dx, b i := µ i p i R N |u i | p i dx, c := β R N |u 1 | r 1 |u 2 | r 2 dx.
Thus defining, for t > 0, θ(t) := J(u t 1 , u t 2 ), we then have

θ(t) := a t 2 2 - 2 i=1 b i t pi -c t r , ( 3.5.1) 
where we have set, for i = 1, 2, pi :=

p i 2 -1 N, r := r 1 + r 2 2 -1 N. Note that, under (H 1 ), p1 , p2 ∈ (0, 1) if 2 < p i < 2 + 2 N , p1 , p2 ∈ (1, 2) if p i > 2 + 2 N , and r > 2.
To prove the lemma, it suffices to show that θ admits at most two zeros on (0, ∞). This is clearly equivalent to show that g(t) := θ (t) t α has at most two zeros for t > 0, and for a α ∈ R to be chosen later, . Note that it is not restrictive to assume that p 1 ≤ p 2 . We have

g(t) = at 1-α -b 1 p1 t p1 -1-α -b 2 p2 t p2 -1-α -c r t r-1-α .
Thus

g (t) = a 1 -α t -α -b 1 p1 p1 -1 -α t p1 -2-α -b 2 p2 p2 -1 -α t p2 -2-α -c r r -1 -α t r-2-α ,
and

g (t) = a (1 -α)(-α)t -α-1 -b 1 p1 (p 1 -1 -α)(p 1 -2 -α)t p1 -3-α -b 2 p2 (p 2 -1 -α)(p 2 -2 -α)t p2 -3-α -c r(r -1 -α)(r -2 -α)t r-3-α .
For convenience, we write

g (t) = α 0 t -α-1 -α 1 t p1 -3-α -α 2 t p2 -3-α -α 3 t r-3-α , ( 3.5.2) 
where we have set

α 0 := a (1 -α)(-α), α i := b i pi (p i -1 -α)(p i -2 -α) for i = 1, 2,

and

α 3 := c r(r -1 -α)(r -2 -α).
We now consider the following two cases.

Case 1: 2 < p 1 ≤ p 2 ≤ r 1 + r 2 -2 N .
If we assume that p2 ≤ 1, namely, p 2 ≤ 2 + 2 N , then setting α = 0, we get that α 0 = 0, α 1 ≤ 0, α 2 ≤ 0, and α 3 > 0. Thus g (t) < 0 for any t > 0, we then deduce that g is strictly decreasing on (0, ∞). It follows that g cannot have more than two zeros. Now if we assume that p2 > 1, we choose α = p2 -1 ∈ (0, 1). Then g (t) becomes

g (t) = α 0 t -p 2 -α 1 t p1 -p 2 -2 -α 3 t r-p 2 -2
with α 0 < 0 and α 1 > 0. Also under our assumption we have r ≥ p2 + 1 and we obtain that α 3 ≥ 0. Thus g (t) < 0 for any t > 0, and we conclude as in the first case. N . In view of the first case we can assume that p2 > 1. We now write (3.5.2) as

g (t) = t -α-1 α 0 -α 1 t p1 -2 -α 2 t p2 -2 -α 3 t r-2 := t -α-1 ξ(t).
Let us prove that, for a convenient choice of α ≤ 0 we can insure that ξ is a strictly decreasing on (0, ∞). Recall that we assume that

p 1 ≤ p 2 . Since |p 1 -p 2 | ≤ 2
N , it implies that p2 ≤ p1 + 1, thus we can choose a α ≤ 0 satisfying p2 -2 ≤ α ≤ p1 -1. With this choice α 1 ≤ 0, α 2 ≤ 0, and α 3 > 0 because of r > 2. It follows that ξ is strictly decreasing on (0, ∞). Now having proved that ξ is strictly decreasing and since lim t→0 + ξ(t) > 0 and lim t→∞ ξ(t) = -∞, there exists exactly one t 1 > 0 satisfying ξ(t 1 ) = 0. Thus g (t) is strictly increasing on (0, t 1 ), and strictly decreasing on [t 1 , ∞). Also we can check that lim t→0 + g (t) < 0 and lim t→∞ g (t) = -∞. At this point, we can assume without restriction that max t>0 g (t) > 0.

(

Otherwise, since lim t→0 + g(t) < 0, then g(t) < 0 for t > 0, and g has no zero on (0, ∞).

From (3.5.3) and the limits of g (t), we deduce that there are exactly two values t 2 < t 3 such that g (t 2 ) = g (t 3 ) = 0. In addition, 0 < t 2 < t 1 < t 3 . Clearly, g is strictly decreasing on (0, t 2 ) ∪ (t 3 , ∞), and strictly increasing on [t 2 , t 3 ). Recording that lim t→0 + g(t) = 0 -, it implies that g may have at most two zeros. Theorem 4.1.3 shows that m(c) = -∞ when c > c * N . Actually, when 4 < σN < 4 * , we will obtain that m(c) = -∞ when c > 0. To see this, for any u ∈ S(c), λ > 0, we define

u λ (x) := λ N 4 u( √ λx).
By direct calculations one can check that u λ 2 = u 2 and

E(u λ ) = γλ 2 2 R N |∆u| 2 dx + λ 2 R N |∇u| 2 dx - λ σN/2 2σ + 2 R N |u| 2σ+2 dx. ( 4.1.7) 
Thus E(u λ ) → -∞ as λ → ∞ when 4 < σN < 4 * , then we deduce that m(c) = -∞ for any c > 0. By consequence, in both cases, it is no more possible to obtain a solution to (4.1.2)-(4.1.3) as a minimizer to (4.1.4). To overcome this difficulty, we introduce a natural constraint M(c) given by

M(c) := {u ∈ S(c) : Q(u) = 0},
where

Q(u) := γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - σN 2(2σ + 2) R N |u| 2σ+2 dx.
Using (4.1.7), we immediately see that

Q(u) = ∂E(u λ ) ∂λ | λ=1 . ( 4.1.8) 
and thus, heuristically, M(c) contains all critical points for E restricted to S(c), then solutions to (4.1.2)-(4.1.3). This fact will be rigourously proved in Lemma 4.10.1. Actually, the condition Q(u) = 0 corresponds to a Pohozaev type identity, and M(c) is called as the Pohozaev manifold elated to (4.1.2)-(4.1.3). Borrowing the key spirit from [START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF], we shall prove that a critical point of E restricted to M(c) is a critical point of E restricted to S(c), see Lemma 4.3.5. For these reasons, we define the following minimization problem

γ(c) := inf u∈M(c) E(u). ( 4.1.9) 
We now search for a minimizer to (4.1.9). Note that, if it exists, it then corresponds to a ground state solution to (4.1.2)-(4.1.3) in the sense that it minimizes the energy functional E among all solutions having the same L 2 -norm.

For convenience, we define c 0 ∈ R as In the last section of this chapter, we investigate dynamical behaviors of solution to the Cauchy problem of (4.1.1). From [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF], when 0 < σN < 4 * , the local well-posedness to the Cauchy problem of (4.1.1) holds. Futhermore, in the mass subcritical case 0 < σN < 4, any solution to the Cauchy problem of (4.1.1) with initial datum in H 2 (R N ) exists globally in time, see [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF][START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF]. While in the mass critical and supercritical case 4 ≤ σN < 4 * , blowup in finite time may happen, but it is also possible to prove that the solution to the Cauchy problem of (4.1.1) with some initial datums exists globally in time. 

c 0 := 0, if 4 < σN < 4 * , c * N , if σN = 4, ( 4 
∈ C([0, T ); H 2 (R N )) to (4.1.1) with initial datum u 0 ∈ H 2 (R N ) in O c := {u ∈ S(c) : E(u) < γ(c), and Q(u) > 0}.
exists globally in time.

When 0 < σN < 4, it was prove in [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF] that minimizers to (4.1.4) are orbitally stable. When 4 ≤ σN < 4 * , we now prove that radial ground state solutions are unstable by blowup in finite time. Definition 4.1.11. We say that u ∈ H 2 (R N ) is unstable by blowup in finite time, if for any ε > 0, there exists v ∈ H 2 (R N ) such that v -u H 2 < ε and the solution ψ(t) to (4.1.1) with initial datum ψ(0) = v blows up in finite time in the H 2 -norm.

Making use of a key element in Boulenger and Lenzmann [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF], we have In the case where α ∈ R is fixed in (4.1.2), the fact that radial least energy solutions are unstable by blowup in finite time was recently established, see our paper [START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF]. It should be noted that the results of [START_REF] Bonheure | Strong instability of ground states to a fourth order Schrödinger equation[END_REF] are also strongly based on arguments due to Boulenger and Lenzmann [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF]. This chapter is organized as follows. In Section 4.2, we establish some preliminary results and give the proof of Theorem 4.1.3. In Section 4.3, we reveal some properties of the constraint M(c), in particular we show that in order to find a critical point for E restricted to S(c), we can work directly with a minimizing sequence to (4.1.9), see Lemma 4.3.5. The following Section 4.4 is devoted to the proof of Theorem 4.1.4, and Section 4.5 is devoted to the proof of the multiplicity result Theorem 4.1.5. The subject of Section 4.6 is to establish the properties of c → γ(c) as presented in Theorem 4.1.6. In Section 4.7, we show the proof of the concentration result Theorem 4.1.7. In Section 4.8, Theorem 4.1.8 and Theorem 4.1.9 are established. Afterwards, in Section 4.9, we deal with the unstable issue and prove Theorem 4.1.10 and Theorem 4.1.12. Finally, in Appendix we prove that any solution u ∈ H 2 (R N ) to (4.1.2) satisfies Q(u) = 0, and all solutions to equation (4.1.12) belong to H 2 (R N ) when N ≥ 5. 

u p p := R N |u| p dx.
The Sobolev space H 2 (R N ) is endowed with its standard norm

u 2 := R N |∆u| 2 + |∇u| 2 + |u| 2 dx.
We denote by → reps. strong convergence reps. weak convergence in corresponding space, and denote by B R (x) a ball in R N of center x and radius R > 0. In the rest of this chapter, the constant c 0 is defined by (4.1.10), and we will assume that N ≥ 1 unless stated the contrary.

Preliminary results

To begin with, we recall the following well known Gagliardo-Nirenberg's inequality for

u ∈ H 1 (R N ), u 2σ+2 2σ+2 ≤ C N (σ) ∇u σN 2 u 2+σ (2-N ) 2 , (4.2.1) 
where

   0 ≤ σ, if N ≤ 2, 0 ≤ σ < 2 N -2 , if N ≥ 3.
Using the Sobolev inequalities and interpolation inequalities in Lebesgue space, we obtain for u ∈ H 2 (R N ),

u 2σ+2 2σ+2 ≤ C N (σ) ∇u N -(σ+1)(N -4) 2 ∆u (N -2)(σ+1)-N 2 , ( 4.2.2) 
where

     2 N -2 ≤ σ, if N = 3, 4, 2 N -2 ≤ σ < 4 N -4 , if N ≥ 5.
Let us also recall the Cauchy-Schwarz's inequality for u ∈ H 2 (R N ),

R N |∇u| 2 dx ≤ R N |∆u| 2 dx 1 2 R N |u| 2 dx 1 2 . (4.2.3) Lemma 4.2.1. Let 4 ≤ σN < 4 * . If u c ∈ S(c) is a solution to γ∆ 2 u -∆u + α c u = |u| 2σ u (4.2.4)
then there exists a c N,σ > 0 such that α c > 0 for any c ∈ (0, c N,σ ). Moreover, we have

(i) c 1,σ = c 2,σ = ∞, and c 3,σ = ∞ if 4/3 ≤ σ ≤ 2. (ii) If σN = 4, then c 4,σ = ∞, and c N,σ ≥ N N -4 N 4 c * N for N ≥ 5.

mass critical and supercritical regime

Proof. Since any solution to (4.2.4) satisfies Q(u) = 0, see Lemma 4.10.1, we have γ

R N |∆u c | 2 dx + 1 2 R N |∇u c | 2 dx = σN 2(2σ + 2) R N |u c | 2σ+2 dx. (4.2.5)
Also multiplying (4.2.4) by u c and integrating in R N , we get

γ R N |∆u c | 2 dx + R N |∇u c | 2 dx + α c R N |u c | 2 dx = R N |u c | 2σ+2 dx. ( 4.2.6) 
Combining (4.2.5) and (4.2.6) gives

-α c R N |u c | 2 dx = γ 1 - 4σ + 4 σN R N |∆u c | 2 dx + 1 - 2σ + 2 σN R N |∇u c | 2 dx. (4.2.7)
Since u c is nontrivial, (4.2.7) implies that α c > 0 for any c > 0 provided that either N = 1, 2 or N = 3 with 4/3 ≤ σ ≤ 2 or N = 4 with σN = 4. Next we consider the remaining cases. Using the Gagliardo-Nirenberg's inequality (4.1.5), we get from (4.2.5)

that γ R N |∆u c | 2 dx ≤ Cc 1+σ-σN 4 R N |∆u c | 2 dx σN 4 , which implies that R N |∆u c | 2 dx 1-σN 4 ≤ Cc 1+σ-σN 4 . ( 4.2.8) 
Thus, when 4 < σN < 4 * , one obtains

R N |∆u c | 2 dx → ∞ as c → 0. (4.2.9)
On the other hand, using (4.2.3) we get from (4.2.7) that

-α c R N |u c | 2 dx ≤ γ 1 - 4σ + 4 σN R N |∆u c | 2 dx + C(N, σ) R N |∆u c | 2 dx 1 2 c 1 2 , ( 4.2.10 
) and taking (4.2.9) into account, it follows that α c > 0 provided that c > 0 is small enough. It remains to treat the case σN = 4 with N ≥ 5. Observe that from (4.2.5) and (4.2.6), we can obtain

-α c R N |u c | 2 dx = -γ R N |∆u c | 2 dx + N -4 N + 4 R N |u c | 2+ 8 N dx. (4.2.11)
Now applying the Gagliardo-Nirenberg's inequality (4.1.5) to (4.2.11), it then gives

-α c R N |u c | 2 dx ≤   N -4 N c c * N 4 N -1   γ R N |∆u c | 2 dx, (4.2.12)
and we deduce that α c > 0 for c < cN := N N -4

N 4 c * N .
The last two results of this section concern the mass critical case σN = 4. We start by proving the nonexistence result Theorem 4.1.3.

Proof of Theorem 4.1.3. First observe from (4.1.7) that, for any u ∈ S(c), E(u λ ) → 0 as λ → 0 + . Thus m(c) ≤ 0 for c > 0. Now using the Gagliardo-Nirenberg's inequality (4.1.5), we have for any u ∈ S(c), 

E(u) = γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - N 2N + 8 R N |u| 2+ 8 N dx ≥ γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - c 4 N 2C(N ) R N |∆u| 2 dx ≥ 1 2 γ - c 4 N C(N ) R N |∆u| 2 dx,
γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx = N N + 4 R N |u| 2+ 8 N dx ≤ c c * N 4 N γ R N |∆u| 2 dx,
which implies that u = 0 because c ≤ c * N . Finally, let us prove that m(c) = -∞ for c > c * N . It follows from [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF] that the constant B N ( 4 N ) in (4.1.5) is achieved, then there exists a 

U ∈ H 2 (R N ) satisfying U 2+ 8 N 2+ 8 N = B N ( 4 N ) U 8 N 2 ∆U 2 2 . ( 4 
E(w λ ) = c 2 U 2 2 λ 2 γ R N |∆U | 2 dx + c 2 U 2 2 λ R N |∇U | 2 dx - N 2N + 8 c 1 2 U 2 2+ 8 N λ 2 R N |U | 2+ 8 N dx = c 2 U 2 2 γ - c 4 N C(N ) λ 2 R N |∆U | 2 dx + c 2 U 2 2 λ R N |∇U | 2 dx, (4.2.16) which implies that E(w λ ) → -∞ as λ → ∞ for c > c * N .
We now show that the two quadratic terms in E behave somehow in a similar manner. This observation will be only used to treat the case σN = 4 but we state here under more general assumptions.

Lemma 4.2.2. Assume that σN

≥ 4 if N = 1, 2 and 4 ≤ σN < 2N N -2 if N ≥ 3. Let {u n } ⊂ S(c n ) for every n ∈ N, where {c n } ⊂ (0, a] for some 0 < a < ∞, be such that {E(u n )} ⊂ R is bounded. Then R N |∇u n | 2 dx ⊂ R is bounded if and only if R N |∆u n | 2 dx ⊂ R is bounded.

mass critical and supercritical regime

Proof. By the Cauchy-Schwarz's inequality (4.2.3), the reverse implication obviously holds. To prove the direct implication, we assume by contradiction that 

R N |∆u n | 2 dx → ∞ as n → ∞. ( 4 
R N |∆u n | 2 dx ≤ C R N |∇u n | 2 dx N 2 -σ+1 2 (N -4) R N |∆u n | 2 dx N -2 2 (σ+1)-N 2
and since, under our assumptions, N -2 2 (σ + 1) -N 2 < 1 we also reach a contradiction in this case.

Some properties of the constraint M(c)

We say that E restricted to M(c) is coercive if for any a ∈ R the subset {u ∈ M(c) : E(u) ≤ a} is bounded. Proof. For any u ∈ M(c), we can write

E(u) = E(u) - 2 σN Q(u) = γ σN -4 2σN R N |∆u| 2 dx + σN -2 2σN R N |∇u| 2 dx. (4.3.1)
In view of (4.3.1), when σN > 4 the coerciveness trivially holds. When σN = 4, we obtain this from Lemma 4.2.2. Let us now prove that E is bounded from below by a positive constant. First we assume that σN > 4. Then, from the Gagliardo-Nirenberg's inequality (4.1.5), for any u ∈ M(c), 

γ R N |∆u| 2 dx ≤ γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx = σN 2(2σ + 2) R N |u| 2σ+2 dx ≤ σN B N (σ) 2(2σ + 2) c 1+σ-σN/4
2 R N |∇u| 2 dx ≤ N N + 4 R N |u| 2+ 8 N dx ≤ C R N |∇u| 2 dx 2 ,
which gives the existence of a δ > 0 such that R N |∇u| 2 dx ≥ δ and we conclude as before.

In the case N ≥ 5, we have 2 * < 2 + 8 N < 4 * and using the Sobolev inequalities and interpolation inequalities in Lebesgue space, it follows that

R N |u| 2+ 8 N dx ≤ R N |u| 2N N -2 dx λ R N |u| 2N N -4 dx 1-λ ≤ C R N |∇u| 2 dx N λ N -2 R N |∆u| 2 dx N (1-λ) N -4 , ( 4.3.3) 
where 0 < λ < 1 with 2

+ 8 N = λ 2N N -2 + (1 -λ) 2N N -4 . Thus for any u ∈ M(c), γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx ≤ C R N |∇u| 2 dx N λ N -2 R N |∆u| 2 dx N (1-λ) N -4 ≤ C R N |∆u| 2 + |∇u| 2 dx 1+ 4 N ,
and there exists a δ > 0 such that γ 

R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx ≥ δ. ( 4 
such that sup λ>0 E(u λ ) < ∞ if σN = 4, there is a unique λ * > 0 such that u λ * ∈ M(c). Moreover, E(u λ * ) = max λ>0 E(u λ ) and the function λ → E(u λ ) is concave on [λ * , ∞).
Proof. For any u ∈ S(c), differentiating (4.1.7) with respect to λ > 0, we obtain

d dλ E(u λ ) = γλ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - σN λ σN/2-1 2(2σ + 2) R N |u| 2σ+2 dx = 1 λ Q(u λ ).
When σN > 4, it is easily seen that there exists a unique λ * > 0 such that Q(u λ * ) = 0 and also that and thus there also exists a unique λ * > 0 such that Q(u λ * ) = 0 and (4.3.5) holds. Now writing λ = tλ * , we have

d dλ E(u λ ) > 0 if λ ∈ (0, λ * ) and d dλ E(u λ ) < 0 if λ ∈ (λ * , ∞) (4 
d 2 d 2 λ E(u λ ) = γ R N |∆u| 2 dx - σN (σN -2) 4(2σ + 2) t σN 2 -2 λ σN 2 -2 * R N |u| 2σ+2 dx = 1 λ 2 * γλ 2 * R N |∆u| 2 dx - σN (σN -2) 4(2σ + 2) t σN 2 -2 λ σN 2 * R N |u| 2σ+2 dx .
Thus using that

0 = Q(u λ * ) = γλ 2 * R N |∆u| 2 dx + 1 2 λ * R N |∇u| 2 dx - σN 2(2σ + 2) λ σN 2 * R N |u| 2σ+2 dx it follows that d 2 d 2 λ E(u λ ) < 0 for any t ≥ 1.
This proves the lemma.

Lemma 4.3.3. Let 4 ≤ σN < 4 * , then M(c) is a C 1 manifold of codimension 2 in H 2 (R N ), hence a C 1 manifold of codimension 1 in S(c).
Proof. By definition, u ∈ M(c) if and only if G(u) := u 2 2 -c = 0 and Q(u) = 0. It is easy to check that G, Q are of C 1 class. Hence we only have to prove that for any u ∈ M(c),

(dG(u), dQ(u)) : H 2 (R N ) → R 2 is surjective.
If this failed, we would have that dG(u) and dQ(u) are linearly dependent, which implies that there exists a ν ∈ R such that for any ϕ ∈ H 2 (R N ), 2γ

R N ∆u∆ϕ dx + R N ∇u • ∇ϕ dx - σN 2 R N |u| 2σ uϕ dx = 2ν R N uϕ dx, namely, u solves 2γ∆ 2 u -∆u = 2νu + σN 2 |u| 2σ u.
At this point from Lemma 4.10.1, we deduce 4γ

R N |∆u| 2 dx + R N |∇u| 2 dx = (σN ) 2 2(2σ + 2) R N |u| 2σ+2 dx,
and since Q(u) = 0 we then obtain 4γ

R N |∆u| 2 dx + R N |∇u| 2 dx = σN γ R N |∆u| 2 dx + σN 2 R N |∇u| 2 dx,
which is impossible since σN ≥ 4 and u ∈ S(c). 

T u S(c) = T u M(c) R d dλ (u λ )| λ=1 , ( 4 
d dλ (u λ )| λ=1 ∈ T u S(c)\T u M(c). For u ∈ C ∞ 0 (R N ), one has 2 d dλ (u λ )| λ=1 (x) = N 2 u(x) + ∇u(x) • x ∈ C ∞ 0 (R N ) (4.3.9)
It directly follows from the divergence theorem that

R N (∇u • x)u dx = - N 2 R N |u| 2 dx,
from which we deduce

d dλ (u λ )| λ=1 ∈ T u S(c). (4.3.10)
Now, using the divergence theorem again, we obtain

dQ(u) d dλ (u λ )| λ=1 = N 2 γ R N |∆u| 2 dx + γ R N ∆u∆(∇u • x) dx + N 4 R N |∇u| 2 dx + 1 2 R N ∇u • ∇(∇u • x) dx - σN 2 8 R N |u| 2σ+2 dx - σN 4 R N |u| 2σ u(∇u • x) dx = 2γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - (σN ) 2 4(2σ + 2) R N |u| 2σ+2 dx.
Since Q(u) = 0 and σN ≥ 4, we deduce

dQ(u) d dλ (u λ )| λ=1 = 2 - σN 2 γ R N |∆u| 2 dx + 1 2 - σN 4 R N |∇u| 2 dx < 0.
This implies 

d dλ (u λ )| λ=1 ∈ T u M(c). ( 4 
0 = Q(u) = ∂E(u λ ) ∂λ | λ=1 = dE(u) d dλ (u λ )| λ=1 = 0, then (4.3.8) holds.
Our next result is directly inspired from [START_REF] Bartsch | A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems[END_REF], see also [START_REF] Bartsch | Multiple normalized solutions for a competing system of Schrödinger equations[END_REF]. 

n } ⊂ C ∞ 0 (R N ) ∩ M(c) for E restricted to M(c) satisfying u n -v n → 0 as n → ∞. For this we just need to show that C ∞ 0 (R N ) ∩ M(c) is dense in M(c). Since C ∞ 0 (R N ) is dense in H 2 (R N
), for any w ∈ M(c) there exists a sequence {w n } ⊂ C ∞ 0 (R N ) such that w n → w in H 2 (R N ). From Lemma 4.3.2 without restriction we can assume that for any n ∈ N, there exists a unique λ 

* n ∈ R such that (w n ) λ * n ∈ M(c) ∩ C ∞ 0 (R N ). Since w ∈ M(c), one can easily check that λ * n → 1, which gives that (w n ) λ * n → w in H 2 (R N ). Now let us prove that if {u n } ⊂ C ∞ 0 (R N ) ∩ M(c)
dE(u n ) (TuS(c)) * = sup{dE(u n ) [ϕ] : ϕ ∈ T u S(c), ϕ ≤ 1} = sup dE(u n ) [ϕ] : ϕ = ϕ 1 + ϕ 2 , ϕ ≤ 1, ϕ 1 ∈ T u M(c), ϕ 2 ∈ R d dλ (u λ )| λ=1 = sup{dE(u n )[ϕ 1 ] : ϕ 1 ≤ 1} = dE(u n ) (TuM(c)) * ,
from which it follows that {u n } is a Palais-Smale sequence for E restricted to S(c). 

u n u c = 0 in H 2 (R N ) as n → ∞; (ii) α n → α c in R as n → ∞; (iii) γ∆ 2 u n -∆u n + α n u n -|u n | 2σ u n → 0 in H -2 (R N ) as n → ∞; (iv) γ∆ 2 u c -∆u c + α c u c = |u c | 2σ u c .
In addition, if u n -u c 2σ+2 → 0 and α c > 0, then u n -u c → 0 as n → ∞. Here H -2 (R N ) denotes the dual space to H 2 (R N ).

Proof. First observe that, because of Lemma 4.3.1 and Lemma 4.3.5, we can assume without restriction that {u n } ⊂ M(c) is a bounded Palais-Smale sequence for E restricted to S(c). After a suitable translation in R N , passing to a subsequence, we can assume that u n u c = 0. Indeed, if not this readily implies, see [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF] [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF]. However, this contradicts the fact that E is bounded below by a positive constant on M(c) and thus (i) holds. Now since {u n } is bounded in H 2 (R N ), we know from [START_REF] Berestycki | Nonlinear scalar field equations. II. Existence of a ground state[END_REF]Lemma 3] (4.3.12) where

, Lemma I.1], that R N |u n | 2σ+2 dx = o n (1), where o n (1) → 0 as n → ∞. Thus, since {u n } ⊂ M(c), it follows that R N |∆u n | 2 dx = o n (1) and R N |∇u n | 2 dx = o n (1), which is turn im- plies that E(u n ) = o n
that dE | S(c) (u n ) H -2 = o n (1) is equivalent to dE(u n ) -dE(u n )[u n ]u n H -2 = o n (1). Therefore for any ϕ ∈ H 2 (R N ), we have γ R N ∆u n ∆ϕ dx + R N ∇u n ∇ϕ dx + α n R N u n ϕ dx - R N |u n | 2σ u n ϕ dx = o n (1),
-α n = 1 c γ R N |∆u n | 2 dx + R N |∇u n | 2 dx - R N |u n | 2σ+2 dx . (4.3.13)
From (4.3.12)-(4.3.13), we deduce that (ii)-(iii) hold and using that u n u c in H 2 (R N ) we obtain in a standard way from (ii)-(iii) that (iv) holds.

Finally, let us show that under our additional assumptions {u n } strongly converges to u c in H 2 (R N ). Recalling that {u n } is bounded in H 2 (R N ) and using that

u n → u in L 2σ+2 (R N ) as n → ∞, it follows from (ii)-(iv) that γ R N |∆u n | 2 dx + R N |∇u n | 2 dx + α n R N |u n | 2 dx = γ R N |∆u c | 2 dx + R N |∇u c | 2 dx + α c R N |u c | 2 dx + o n (1). (4.3.14) But since u n u c in H 2 (R N ) as n → ∞, by weak convergence γ R N |∆u c | 2 dx + R N |∇u c | 2 dx ≤ lim inf n→∞ γ R N |∆u n | 2 dx + R N |∇u n | 2 dx, R N |u c | 2 dx ≤ lim inf n→∞ R N |u n | 2 dx.
At this point, using that α n → α c > 0 as n → ∞ and the previous inequalities we get from (4.3.14) that u n → u in H 2 (R N ) as n → ∞. Thus the proof is complete.

Existence of ground state solutions

In this section, we give the proof of Theorem 4.1.4. [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF]. We also have [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF]. When σN > 4, we directly deduce from (4.4.4)

.3 that c 1 > c * N . Since u n u c in H 2 (R N ) as n → ∞, we have from the Brezis-Lieb's Lemma, ∆(u n -u c ) 2 2 + ∆u c 2 2 = ∆u n 2 2 + o n (1), ∇(u n -u c ) 2 2 + ∇u c 2 2 = ∇u n 2 2 + o n (1), u n -u c 2σ+2 2σ+2 + u c 2σ+2 2σ+2 = u n 2σ+2 2σ+2 + o n (1). (4.4.2) Since Q(u c ) = 0, and Q(u n ) = 0, it follows from (4.4.2) that Q(u n -u c ) = o n (1), as well as E(u n -u c ) + E(u c ) = γ(c) + o n (1). ( 4 
E(u n -u c ) - 2 σN Q(u n -u c ) = γ σN -4 2σN R N |∆(u n -u c )| 2 dx + σN -2 2σN R N |∇(u n -u c )| 2 dx, (4.4.4) and since Q(u n -u c ) = o n (1), this implies that E(u n -u c ) ≥ o n (1). Consequently E(u n -u c ) = o n
∆(u n -u c ) 2 = o n (1), ∇(u n -u c ) 2 = o n (1),
and using again that 

Q(u n -u c ) = o n (1), it follows that u n -u c 2σ+2 = o n (1
E(u) = inf u∈S(c) sup λ>0 E(u λ ). ( 4 
E(u 1 ) ≤ γ(c 1 ) + ε 2 and max λ>0 E((u 1 ) λ ) = E(u 1 ) (4.4.6)
where we recall that (u 1 ) λ (x) := λ

N 4 u 1 ( √ λx). For δ > 0, one can find u δ 1 ∈ H 2 (R N ) such that supp u δ 1 ⊂ B 1 δ (0) and ||u 1 -u δ 1 || = o δ (1). Thus, as δ → 0 R N |∆u δ 1 | 2 dx → R N |∆u 1 | 2 dx, R N |∇u δ 1 | 2 dx → R N |∇u 1 | 2 dx,
and

R N |u δ 1 | 2σ+2 dx → R N |u 1 | 2σ+2 dx. Let v δ ∈ C ∞ 0 (R N ) be such that supp v δ ⊂ B 2 δ +1 (0) \ B 2 δ ( 0 
), and set

v δ 0 := (c 2 -u δ 1 2 2 ) 1 2 v δ v δ 2 .
We now define for λ ∈ (0, 1),

w δ λ := u δ 1 + (v δ 0 ) λ . Since dist(supp (v δ 0 ) λ , supp u δ 1 ) ≥ 1 δ 2 λ -1 > 0,
we have that w δ λ 2 2 = c 2 . Also by standard scaling arguments we see that as λ, δ → 0,

R N |∆w δ λ | 2 dx → R N |∆u 1 | 2 dx, R N |∇w δ λ | 2 dx → R N |∇u 1 | 2 dx,
and

R N |w δ λ | 2σ+2 dx → R N |u 1 | 2σ+2 dx.
In [START_REF] Bellazzini | Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[END_REF]Lemma 5.2], it has been proved that the function f :

R + × (R + ∪ {0}) × R + → R defined by f (a, b, c) = max t>0 (t 2 a + tb -ct σN 2 ) is continuous. Setting (w δ λ ) t := t N 4 w δ λ ( √ tx).
If σN > 4, using the above convergences and (4.4.5), we deduce that for λ, δ > 0 small enough,

γ(c 2 ) ≤ max t>0 E((w δ λ ) t ) ≤ max t>0 E((u 1 ) t ) + ε 2 = E(u 1 ) + ε 2 ≤ γ(c 1 ) + ε, then this concludes the proof when σN > 4. If σN = 4, note that for λ, δ > 0 small enough γ R N |∆w δ λ | 2 dx < N N + 4 R N |w δ λ | 2+ 8 N dx, thus sup t>0 E((w δ λ ) t ) < ∞.
Under this condition, [18, Lemma 5.2] can be easily extended and we conclude as in the case σN > 4.

We can now prove our result Theorem 4.1.4 concerning the existence of ground state solutions.

Proof of Theorem 4.1.4. For any c > c 0 fixed, by the Ekeland variational principle, there exists a Palais-Smale sequence {u n } ⊂ M(c) for E restricted to M(c) at level γ(c). By Lemma 4.3.6 we know that u n u c , where u c is solution to

γ∆ 2 u c -∆u c + α c u c = |u c | 2σ u c
for some α c ∈ R. We also know from Lemma 4. 

Multiplicity of radial solutions

Next we turn to the proof of Theorem 4.1.5. First we recall the definition of genus of a set due to M.A. Krasnosel'skii.

Definition 4.5.1. Let A be a family of sets A ⊂ F such that A is closed and symmetric (u ∈ A if and only if -u ∈ A). For every A ∈ A, the genus of A is defined by

γ(A) := min{n ∈ N : ∃ ϕ : A → R n \{0}, ϕ is continuous and odd}.
When there is no ϕ as described above, we set γ(A) = ∞.

Proof. Let us prove that, for any

c > c 0 , if {c n } ⊂ (c 0 , ∞) is such that c n → c, then lim n→∞ γ(c n ) = γ(c).
From the definition of γ(c), for any > 0, there exists a v ∈ M(c)

such that E(v) ≤ γ(c) + ε 2 . Now defining v n := c n c v ∈ S(c n ), then as n → ∞ we clearly have R N |∆v n | 2 dx → R N |∆v| 2 dx, R N |∇v n | 2 dx → R N |∇v| 2 dx,
and

R N |v n | 2σ+2 dx → R N |v| 2σ+2 dx.
In particular, for n ∈ N large enough

γ R N |∆v n | 2 dx < N N + 4 R N |v n | 2+ 8 N dx
when σN = 4. Now using [18, Lemma 5.2] and the above convergences, we deduce

γ(c n ) ≤ max λ>0 E((v n ) λ ) = max λ>0 λ 2 2 γ R N |∆v n | 2 dx + λ 2 R N |∇v n | 2 dx - λ σN/2 2(2σ + 2) R N |v n | 2σ+2 dx ≤ max λ>0 λ 2 2 γ R N |∆v| 2 dx + λ 2 R N |∇v| 2 dx - λ σN/2 2(2σ + 2) R N |v| 2σ+2 dx + ε 2 = max λ>0 E((v) λ ) + ε 2 = E(v) + ε 2 ≤ γ(c) + ε.
This shows that lim sup n→∞ γ(c n ) ≤ γ(c). (4.6.1)

Now let {u n } ⊂ M(c n ) be such that

E(u n ) ≤ γ(c n ) + ε 3 . (4.6.2)
Since Q(u n ) = 0, using (4.6.1) and (4.6.2), we obtain that, for n ∈ N large enough

γ σN -4 2σN R N |∆u n | 2 dx + σN -2 2σN R N |∇u n | 2 dx = E(u n ) ≤ γ(c n ) + ε 3 ≤ γ(c) + ε 2 ,
thus when σN > 4, we immediately get that {u n } ⊂ H 2 (R N ) is bounded. The same holds when σN = 4 by Lemma 4.2.2. Thus we can assume without restriction that

R N |∆u n | 2 dx → A, R N |∇u n | 2 dx → B, R N |u n | 2σ+2 dx → C.
We claim that A and C are strictly positive constants. Indeed, when 4 < σN < 4 * , since Q(u n ) = 0, using the Gagliardo-Nirenberg's inequality (4.1.5), we get from (4.3.2) that A > 0. Using again that Q(u n ) = 0, we then obtain that C > 0. When σN = 4, we can reach the same assertions by the virtue in Lemma 4. √ tu c ( √ λx) for t, λ > 0. We define β E (t, λ) := E((u c ) t,λ ), and 

c c n λ 2 2 γ R N |∆u n | 2 dx + λ 2 R N |∇u n | 2 dx - λ σN/2 2(2σ + 2) c c n σ R N |u n | 2σ+2 dx ≤ max λ>0 λ 2 2 γA + λ 2 B - λ σN/2 2(2σ + 2) C + ε 3 ≤ max λ>0 λ 2 2 γ R N |∆u n | 2 dx + λ 2 R N |∇u n | 2 dx - λ σN/2 2(2σ + 2) R N |u n | 2σ+2 dx + 2ε 3 = max λ>0 E((u n ) λ ) + 2ε 3 = E(u n ) + 2ε 3 ≤ γ(c n ) + ε, from which we conclude that γ(c) ≤ lim sup n→∞ γ(c n ). ( 4 
+ γ(c) = ∞, we first observe that for u ∈ M(c), γ(c) ≤ E(u) = γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx - N 2N + 8 R N |u| 2+ 8 N dx = N 2N + 8 R N |u| 2+ 8 N dx - γ 2 R N |∆u| 2 dx ≤ 1 2   c c * N 4 N -1   γ R N |∆u| 2 dx. ( 4 
γ∆ 2 u -∆u + α c u = |u| 2σ u with E(u c ) = γ(c). Then α c ≥ 0, if α c > 0 the function c → γ(c) is
β Q (t, λ) := Q((u c ) t,λ ). By direct calculations, we obtain ∂β E ∂t (1, 1) = - 1 2 α c c, ∂β E ∂λ (1, 1) = 0, ∂ 2 β E ∂λ 2 (1, 1) < 0,
β E (1 + δ t , 1 + δ λ ) < β E (1, 1) if α c > 0 (4.6.6) β E (1 -δ t , 1 -δ λ ) < β E (1, 1) if α c < 0. (4.6.7)
Observe that β Q (1, 1) = 0, and ∂β Q ∂λ (1, 1) < 0. Using Implicit Function Theorem, we obtain the existence of a ε > 0 small and of a continuous function g :

[1 -ε, 1 + ε] → R satisfying g(1) = 1 such that β Q (t, g(t)) = 0 for t ∈ [1 -ε, 1 + ε]. Therefore we have from (4.6.6), γ((1 + ε)c) = inf u∈M((1+ε)c) E(u) ≤ E((u c ) 1+ε,g(1+ε) ) < E(u c ) = γ(c).
Similarly by (4.6.7), γ((1 -ε)c) < γ(c) when α c < 0.

We now investigate the behaviors of the function c → γ(c) as c → ∞. 

(c) ≤ max λ>0 E(w λ ) = c U 2 2 R N |∇U | 2 dx 2 8 c c * N 4 N -1 γ R N |∆U | 2 dx
, where w is defined by (4.2.15). This shows that γ(c) → 0 as c → ∞ when 1 ≤ N ≤ 4. For the remaining cases we fix an arbitrary u ∈ H 2 (R N ) satisfying u 2 = 1. For any c > 0, √ cu ∈ S(c), and from Lemma 4.3.2 we know that there exists a unique λ c > 0 such that Q(( √ cu) λc ) = 0, i.e.

λ c γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx = σN 2(2σ + 2) (cλ c ) σN 2 -1 c σ+1-σN 2 R N |u| 2σ+2 dx.
Since σN > 1, we deduce that (cλ c ) → 0 as c → ∞. Now using again (4.4.5), it follows that

γ(c) ≤ E( √ cu) λc ) = cλ c 2 γ σN -4 2σN R N |∆u| 2 dx + cλ c σN -2 2σN R N |∇u| 2 dx,
and thus γ(c) → 0 as c → ∞.

To treat the remaining cases, namely, σ 

≥ 2 if N = 3, σ > 1 if N = 4 or 4 ≤ σN < 4 * if N ≥ 5,
2 (R N ) is dense in X, we can assume that {u n } ⊂ H 2 (R N ). Then we set f n := - √ γ∆u n + 1 2 √ γ u n 2 and define v n ∈ H 2 (R N ) to be the strong solution of - √ γ∆v n + 1 2 √ γ v n = |f n | * in R N , where |f n | * denotes the Schwarz rearrangement of |f n |. Thus for each n ∈ N we have v n ∈ H 2 rad (R N
) and a particular case of [START_REF] Bonheure | Ground state and non ground state solutions of some strongly coupled elliptic systems[END_REF]Lemma 3.4] implies that

J v n ||v n || 2σ+2 = R N (- √ γ∆v n + 1 2 √ γ v n ) 2 dx -1 4γ R N v 2 n dx ||v n || 2 2σ+2 ≤ R N (- √ γ∆u n + 1 2 √ γ u n ) 2 dx -1 4γ R N u 2 n dx ||u n || 2 2σ+2 = J u n ||u n || 2σ+2 .
Thus {ṽ n } := vn ||vn|| 2σ+2 is a minimizing sequence for m. Now we claim that X rad , the subset of radially symmetric functions in X, is compactly embedded into L 2σ+2 (R N ). Indeed, applying [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF]Radial Lemma 

AIII], if u ∈ D 1,2 (R N ) is radially symmetric, we have |u(x)| ≤ C|x| -(N -2)/2 ∇u 2 .
Using this decay we get

R N \B R (0) |u| 2σ+2 dx ≤ R N \B R |u| 2σ+2-2N/(N -2) |u| 2N/(N -2) dx ≤ CR -N -2 2 (2σ+2-2N N -2 ) ∇u 1+(N -2)/2N 2
, from which the claim follows. Using this embedding, we get that {ṽ n } weakly converges to some v ∈ X with ||v|| 2σ+2 = 1 and the remaining arguments are standard. We thus obtain a minimizer for J on M and γ(∞) is reached.

Let us now prove that γ(∞) does not have a minimizer in H 2 (R N ) when N = 3, 4. Assuming by contradiction that u is such a minimizer we deduce from [31, Lemma 4.1] that u must have a sign and without restriction we can assume that u ≥ 0. To conclude

Positive and sign-changing solutions

In this section, we study the sign and radial symmetry property of ground states to (4.1.2)-(4.1.3).

Proof of Theorem 4.1.8. For any c ∈ (c 0 , c σ,N ), the existence of a ground state is guaranteed by Theorem 4.1.4. To show that, when σ ∈ N, one of them is radial we make use of the Fourier rearrangement arguments as presented in [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF]. For u ∈ L 2 (R N ), let u be the Fourier rearrangement to u defined by u := F -1 ((Fu) * ), where F reps. F -1 denotes the Fourier transform reps. the Fourier inverse transform, and f * stands for the Schwarz rearrangement of a measurable function f . Notice that u is radial, and u 2 = u 2 . Moreover, in view of [30, When σN = 4, the same result can be established as c → c * N by combining (4.6.5) with (4.2.7) and (4.2.12). At this point, using [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF]Theorem 3.2] we deduce that u c is signchanging.

Proof of Theorem 4.1.9. We borrow here an idea from [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF]. We consider the following modified minimization problem We are now in the setting of Busca and Sirakov [START_REF] Busca | Symmetry results for semilinear elliptic systems in the whole space[END_REF] and from [32, Theorem 2], we readily deduce that ūc is radially symmetric.

Dynamical behaviors

This section is devoted to the study of dynamic behaviors of the solution to the Cauchy problem of the dispersive equation ( 4 where

I R (u) = R 2 ∂B R (0) γ|∆u| 2 + µ|∇u| 2 + ω|u| 2 -d |u| 2σ+2 σ + 1 dS + 1 R ∂B R (0) γ(∇(∆u) • x)(x • ∇u) -γ(∇(x • ∇u) • x)∆u -µ|x • ∇u| 2 dS.
We now show that I Rn (u) → 0 for a suitable sequence (R n ) n ⊂ R with R n → ∞ as n → ∞. where u i,j := ∂ 2 u ∂x i ∂x j . In view of the elliptic regularity theory, we have that u ∈ H 4 (R N ), in particular u ∈ H 3 (R N ). This yields to This implies that I Rn (u) → 0 as n → ∞. Now substituting R by R n in (4.10.3), we then obtain that P (u) = 0. This completes the proof. Proof. We can assume without loss of generality that γ = 1. The main idea of the proof consists in testing (4.6.8) with a function ϕ 2 u where, roughly, ϕ(x) = 1 + |x|.

Let ψ ∈ C ∞ (R N ) with supp ψ ⊂ R N \B R (0) be such that ψ(x) = 1 for |x| ≥ 2R. Here R > 0 is a constant to be determined later. For R 1 > 2R, we define ϕ := ψh R 1 , where

h R 1 ∈ C 2 (R N ) satisfies h R 1 (x) =      |x| 2R ≤ |x| < R 1 , R 1 1 + th |x| -R 1 R 1 , |x| ≥ R 1 .
Let λ 1 (R 1 ) := sup From the definition of ϕ it readily follow that λ 1 (R 1 ) = 1, for all R 1 > 0 and that λ 2 := λ 2 (R 1 ) → 0 as R 1 → ∞.

As a preliminary step we derive some pointwise identities. By simple calculations ∆(ϕ 2 u) = ϕ 2 ∆u + 4ϕ∇u∇ϕ + u(2ϕ∆ϕ + 2|∇ϕ| From now on, we estimate I i for 1 ≤ i ≤ 5. In view of (4.10.6), then and using the Fatou's Lemma, it follows that u ∈ L 2 (R N \B 2R (0)). Thus obviously u ∈ L 2 (R N ).

I 1 = R N |∇ϕ|

Chapter 5

Remarks and Perspectives

To begin with, we shall present some remarks related to the problems treated in the thesis.

Remarks

In Chapter 2, we consider the existence and orbital stability of normalized solutions in a case where the energy functional J restricted to S(a 1 , a 2 ) is bounded from below. The main goal in this chapter consists in detecting the compactness of any minimizing sequence to (2.1.4), up to translation. To this aim, borrowing the spirit from the Lions' concentration compactness principle, one requires to exclude the possiblities of vanishing and dichotomy. Recall that the energy functional J is invariant under translations in R N , thus vanishing can be avoided as a simple consequence of the Lions' concentration compactness Lemma. Next to see the compactness, it remains to rule out dichotomy. In general, this can be done by checking the strict subadditivity inequality (2.1.5). However, we alternatively propose the coupled rearrangement arguments to remove dichotomy. More precisely, we crucially make use of the coupled rearrangement arguments to guarantee the strong convergence of any minimizing sequence in L p (R N ) × L p (R N ), up to translation, for 2 < p < 2 * .

A natural question is that whether we are able to prevent dichotomy from happening by means of directly establishing the strict subadditivity inequality (2.1.5). At this moment, the answer is positive. In fact, in order to establish the strict subadditivity inequality (2.1.5), one can adopt the approach as introduced in [51, Proposition 4], which is based on [51, Lemma 2]. However, we remark that this lemma is applicable to establish related strict subadditivity inequality provided one can identify a radially symmtric minimizing sequence to corresponding minimization problem. From this point of view, the coupled rearrangement arguments are more flexible to deal with the compactness of any minimizing sequence, regarding this subject, we refer the readers to [START_REF] Gou | Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement[END_REF].

Furthermore, let us also point out a method to discuss the compactness of any minimizing sequence as proposed by Lopes [START_REF] Lopes | A constrained minimization problem with integrals on the entire space[END_REF], which is also alternative to the Lions' concentration compactness principle and does not need the verification of related strict subadditivity inequality. But this method is available under a stronger requirement that associated energy functional is of class C 2 .

Theorem 1 . 1 . 5 .

 115 Let N ≥ 1. Assume that (H 0 ) and the local existence and uniqueness of the Cauchy problem to (1.1.1) hold. Then the set G M (a 1 , a 2 ) is orbitally stable.

  we conjecture that the existence of the second solution to (1.1.2)-(1.1.3) remains valid by only assuming (H 1 ), we refer to Remark 3.4.5 for a discussion concerning this subject.

Theorem 1 . 1 . 10 . 2 - 1 N

 111021 Let N ≥ 1. Assume that (H 1 ) or (H 2 ) with either 1 ≤ N ≤ 4 or N ≥ 5, r i > r 1 +r 2 for i = 1, 2, and the local existence and uniqueness of the Cauchy problem to (1.1.1) hold. Then the set G m (a 1 , a 2 ) is orbitally stable.

Theorem 1 . 2 . 6 .

 126 Assume N ≥ 1. Let 4 ≤ σN < 4 * . The function c → γ(c) is continuous for any c > c 0 , is decreasing on (c 0 , ∞), and lim c→c + 0 γ(c) = ∞. In addition, (i) if N = 1, 2, N = 3 with 4 3 ≤ σ < 2 or N = 4 with σ = 1, then c → γ(c) is strictly decreasing and lim c→∞ γ(c) = 0; (ii) If N = 3 with σ ≥ 2 or N = 4 with σ > 1, then lim c→∞ γ(c) := γ(∞) > 0 and γ(c) > γ(∞) for all c > c 0 ; (iii) If N ≥ 5, then lim c→∞ γ(c) := γ(∞) > 0, and there exists a c ∞ > c 0 such that γ(c) = γ(∞) for all c ≥ c ∞ .

Theorem 2 . 1 . 6 .

 216 Let N ≥ 1. Assume that (H 0 ) and the local existence and uniqueness to the Cauchy problem of (1.1.1) hold. Then the set G M (a 1 , a 2 ) is orbitally stable.

  1.2)-(3.1.3) admits two positive solutions when N ≥ 1 and (H 1 ) or (H 2 ) holds. Up to our knowledge, it is the first time that a multiplicity result to (3.1.2)-(3.1.3) is obtained when N ≥ 1, β > 0.

Theorem 3 . 1 . 4 . 2 - 1 N

 31421 Assume that (H 1 ) or (H 2 ) with either 1 ≤ N ≤ 4 or N ≥ 5, r i > r 1 +r 2 for i = 1, 2, and the local existence and uniqueness of the Cauchy problem to (3.1.1) hold. Then the set G m (a 1 , a 2 ) is orbitally stable, i.e. for any > 0, there exists δ

Lemma 3 . 2 . 1 .

 321 and {u, v} by {u, v} (x) := ∞ 0 χ A (u,v;t) (x) dt, (3.2.3) where χ A (x) is a characteristic function of the set A ⊂ R N . [61, Lemma A.1] (i) The function {u, v} is radially symmetric, decreasing and lower semicontinuous. Moreover, for each t > 0 there holds {x ∈ R N : {u, v} > t} = A (u, v; t).

  Proof. (i) It follows directly from Lemma 3.2.4. (ii) By definition of m(d n 1 , d n 2 ), for any > 0, there exists

Remark 3 . 4 . 5 .

 345 It is only in the proof of Lemma 3.4.4 that we need the assumption p 1 , p 2 ≤ r 1 + r 2 -2 N , or alternatively |p 2 -p 1 | ≤ 2 N . These conditions are used to establish the key property, on which our proof of Theorem 3.1.

3. 5 . Appendix 61 Case 2 :

 5612 |p 1 -p 2 | ≤ 2

3 . 4 . 1 . 4 . 4 N 4 Theorem 4 . 1 . 9 .

 341444419 .1.10) where c * N is given in Theorem 4.1.Theorem Let N ≥ 1, 4 ≤ σN < 4 * . Then there exists a c σ,N > c 0 such that for any c ∈ (c 0 , c σ,N ), (4.1.2)-(4.1.3) has a ground state solution u c satisfying E(u c ) = γ(c), and the associated Lagrange parameter α c is strictly positive. Moreover (i) c σ,1 = c σ,2 = ∞, and c σ,3 = ∞ if 4/3 ≤ σ < 2; (ii) If σN = 4, then c σ,4 = ∞, and c σ,N ≥ N N -c * N if N ≥ 5. mass critical and supercritical regime In our next result, we prove that positive radial solutions to (4.1.2)-(4.1.3) do exist. Let 1 ≤ N ≤ 4, 4 ≤ σN < 4 * . There exists a cσ,N > c 0 such that (4.1.2)-(4.1.3) admits a positive and radial solution for any c ≥ cσ,N .

Theorem 4 . 1 . 10 .

 4110 Let 4 ≤ σN < 4 * . For any c > c 0 , the solution u

Theorem 4 . 1 . 12 .

 4112 Let 4 ≤ σN < 4 * , N ≥ 2 and σ ≤ 4. Then standing waves associated to radial ground states to (4.1.2)-(4.1.3) are unstable by blowup in finite time.

4. 2 . Preliminary results 69 Notation 4 . 1 . 13 .

 2694113 For 1 ≤ p < ∞, L p (R N ) is the usual Lebesgue space with norm

( 4 .N 4 .

 44 2.13) where C(N ) is defined by (4.1.6). Hence (4.2.13) implies that m(c) ≥ 0 for c ≤ c * N := (γC(N )) Therefore we deduce that m(c) = 0 for c ≤ c * N . Next we prove that there is no solution to (4.1.2)-(4.1.3) when c ≤ c * N . Indeed, if u is a solution to (4.1.2)-(4.1.3), then Q(u) = 0 and applying (4.1.5), we get

Lemma 4 . 3 . 1 .

 431 Let 4 ≤ σN < 4 * and c > c 0 , then E restricted to M(c) is coercive and bounded from below by a positive constant.

Lemma 4 . 3 . 4 .

 434 Let 4 ≤ σN < 4 * , then for any u ∈ C ∞ 0 (R N ) ∩ M(c), there holds

Lemma 4 . 3 . 5 .

 435 Let 4 ≤ σN < 4 * . If {v n } ⊂ M(c) is a Palais-Smale sequence for E restricted to M(c), then there exists a possible different Palais-Smale sequence {un } ⊂ M(c) for E restricted to S(c) such that u n -v n → 0 as n → ∞. In particular, if {v n } ⊂ M(c) is converging to a v ∈ M(c), then this limit is a critical point for E restricted to S(c). mass critical and supercritical regimeProof. Let us first prove that if {v n } ⊂ M(c) is a Palais-Smale sequence for E restricted to M(c), then there exists a Palais-Smale sequence {u

  is a Palais-Smale sequence for E restricted to M(c), then {u n } is a Palais-Smale sequence for E restricted to S(c). We denote by (T u S(c)) * resp. (T u M(c)) * the dual space to T u S(c) resp. T u M(c). In view of Lemma 4.3.4, we have

Lemma 4 . 3 . 6 .

 436 Let 4 ≤ σN < 4 * , and {u n } ⊂ M(c) be a Palais-Smale sequence for E restricted to M(c). Then there exist a u c ∈ H 2 (R N ) and a sequence {α n } ⊂ R such that, up to a subsequence and translations,(i) 

Lemma 4 . 4 . 1 . 2 2

 4412 Let 4 ≤ σN < 4 * and c > c 0 . Let {u n } ⊂ M(c) be a Palais-Smale sequence for E restricted to M(c) at the level γ(c), such that u n u c = 0 in H 2 (R N ). If γ(c) ≤ γ(c 1 ) f or any c 1 ∈ (0, c], (4.4.1) then u n -u c 2σ+2 → 0 as n → ∞. In particular E(u c ) = γ(c). Proof. By Lemma 4.3.6, we know that there exists a α c ∈ R such that u c satisfies (4.1.2), and thus Q(u c ) = 0 by Lemma 4.10.1. Now we set 0 < u c =: c 1 ≤ c, observing that in the case σN = 4, we know from Theorem 4.1

.4. 3 )

 3 Since u c ∈ M(c 1 ), then(4.4.3) implies thatE(u n -u c ) + γ(c 1 ) ≤ γ(c) + o n (1)mass critical and supercritical regime and because of (4.4.1) it follows that E(u n -u c ) ≤ o n

.4. 5 )

 5 Indeed, on one hand, we observe that for any u ∈ S(c) either sup λ>0 E(u λ ) = +∞ or there exists a λ * > 0 such that u λ * ∈ M(c) andE(u λ * ) ≤ max λ>0 E(u λ ). It implies that inf u∈S(c) sup λ>0 E(u λ ) ≥ inf u∈M(c)E(u).On the other hand, for any u ∈ M(c), E(u) ≥ max λ>0 E(u λ ) and then inf u∈M(c)E(u) ≥ inf u∈S(c) sup λ>0 E(u λ ).Thus (4.4.5) holds. To prove the lemma we have to demonstrate that if 0 < c 1 < c 2 , then γ(c 2 ) ≤ γ(c 1 ). Noting the definition of γ(c) and (4.4.5), for any ε > 0 there exists a u 1 ∈ M(c 1 ) such that

  strictly decreasing in a right neighborhood of c. Proof. In view of Lemma 4.4.2, to prove the lemma it suffices to show that if α c > 0 (α c < 0) the function c → γ(c) is strictly decreasing (increasing) in a right (left) neighbourhood of c. The strict monotonicity of the function c → γ(c) when α c = 0 is obtained as a consequence of the Implicit Function Theorem. Let (u c ) t,λ (x) := λ N 4

4. 6 .

 6 Properties of the function c → γ(c) 83 which yields for sufficiently small |δ λ |, and δ t > 0,

Proposition 4 . 6 . 4 .

 464 If N = 1, 2, N = 3 with 4 3 ≤ σ < 2 or N = 4 with σ = 1, then c → γ(c) is strictly decreasing and lim c→∞ γ(c) = 0. Proof. The fact that c → γ(c) is strictly decreasing follows directly from Lemma 4.2.1 and Lemma 4.6.3. To show that lim c→∞ γ(c) = 0, we first treat the case σN = 4. Using (4.2.16) and (4.4.5) we obtain that γ

( 4 . 8 . 1 )

 481 Let u c be a ground state associated to γ(c), then Q(u c ) = 0. From (4.8.1), we obtain thatQ(u c ) ≤ Q(u c ) = 0. Hence by Lemma 4.3.2, there exists a 0 < λ ≤ 1 such that Q((u c ) λ ) = 0. Observe that γ(c) ≤ E((u c ) λ ) = E((u c ) λ ) -2 σN Q((u c ) λ ) = λ 2 σN -4 2σN γ R N |∆u c | 2 dx + λ σN -2 2σN R N |∇u c | 2 dx ≤ E(u c ) -2 σN Q(u c ) = γ(c),and thus necessarily λ = 1, and E(u c ) = γ(c). Therefore, u c is a ground state solution to (4.1.2)-(4.1.3). It remains to prove that u c is sign-changing. Associated to u c there exists a Lagrange multiplier α c ∈ R so thatγ∆ 2 u c -∆u c + α c u c = |u c | 2σ u c .Now, when 4 < σN < 4 * , we deduce from (4.2.8) and (4.2.10) that α c → +∞ as c → 0.

2 2- 2 u

 22 ) : = γ 2 R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx -1 2σ + 2 R N |u + | 2σ+2 dx, Q(u) : = γ R N |∆u| 2 dx + 1 2 R N |∇u| 2 dx -σN 2(2σ + 2) R N |u + | 2σ+2 dx, ) := {u ∈ S(c) : Q(u) = 0}.It is straightforward to check that the analysis done with E, Q, and M(c) remains unchanged if we now work with Ē, Q and M(c). Thus, in particular, for any c > c 0 , if{ū n } ⊂ M(c)is a minimizing Palais-Smale sequence to (4.8.2), by the modified version of Lemma 4.3.6, there exists a ūc ∈ H 2 (R N )\{0}, and a Lagrange multiplier ᾱc ∈ R such that γ∆ 2 ūc -∆ū c + ᾱc ūc = |ū + c | 2σ ū+ c . (4.8.3) Also by the corresponding versions of Lemma 4.4.1, Lemma 4.4.2, and Lemma 4.6.3, we deduce that 0< ūc ≤ c, ūn → ūc in L 2σ+2 (R N ), Ē(ū c ) = γ(c) > 0, and ᾱc ≥ 0.Next we show that ūc > 0. To this aim, we first observe that ᾱc ≥ 0 can be assumed arbitrarily small by taking c > 0 large enough. Indeed, ᾱc satisfiesᾱc = 1 c -2 Ē(ū c ) + σ σ + 1 R N |ū + c | 2σ+2 dx ≤ σ c(σ + 1) R N |ū + c | 2σ+2 dx. (4.8.4)Recording the fact that γ(c) remains bounded as c → ∞. When 4 < σN < 4 * , then from (4.3.1) and Q(ū c ) = 0, we see thatR N |ū + c | 2σ+2 dx ≤ C for some C > 0 as c → ∞.Thus, in view of (4.8.4) we deduce that ᾱc ≥ 0 can be arbitrarily small by taking c > 0 large enough. When σN = 4, it follows from (4.3.1) and (4.2.1) that R N |ū + c | 2σ+2 dx ≤ C for some C > 0 as c → ∞.Then we can reach the same argument from (4.8.4).Since ᾱc ≥ 0 is small when c > c 0 is sufficiently large, then we are able to write (4.8.3) into the following system γ∆ū c + λ 1 ūc = vc ,-∆v c + λ 2 γ vc = |ū + c | 2σ ū+ c ,where λ 1 , λ 2 ≥ 0 satisfying λ 1 λ 2 = γ ᾱc , and λ 1 + λ 2 = 1. It is then standard, by the strong maximum principle, to deduce that ūc > 0 and in particular ūc satisfies (4.1.2). By Proposition 4.6.5 and Remark 4.6.6, then ᾱc > 0, thus Lemma 4.6.3 indicates that γ(c) is achieved by ūc . Finally, let us show that ūc is radially symmetric around some point. Settingf (u, v) := 1 4γ -ᾱc u -1 2γ v + |u| 2σ u, g(u, v) := v -1we see that (4.1.2) is equivalent to the elliptic system γ∆ū c + g(ū c , vc ) = 0, ∆v c + f (ū c , vc ) = 0.

2 -N )µ 2 B

 22 .1.1). First we give a class of initial datums such that Chapter 4. Normalized solutions for fourth-order nonlinear Schrödinger equation in the mass critical and supercritical regime = (R (0)|∇u| 2 dx + µ 2 ∂B R (0) (x • n)|∇u| 2 dS -µ ∂B R (0) (∇u • n)(x • ∇u) dS.Finally, for the last two terms of (4.10.2), we getω B R (0) (x • ∇u)u dx = -ωN 2 B R (0) |u| 2 dx + ω 2 ∂B R (0) (x • n)|u| 2 dS,andd B R (0) (x • ∇u)|u| 2σ u dx = -dN 2σ + 2 B R (0) |u| 2σ+2 dx + d 2σ + 2 ∂B R (0) (x • n)|u| 2σ+2 dS.Taking into account the above calculations, it follows from (4.10.2) that(N -4)γ 2 B R (0) |∆u| 2 dx + (N -2)µ 2 B R (0) |∇u| 2 dx + N ω 2 B R (0) |u| 2 dx = N d 2σ + 2 B R (0)|u| 2σ+2 dx + I R (u),(4.10.3) 

2 

 2 First, using the Cauchy-Schwarz's inequality, we have, for any x ∈ ∂B R (0),|(∇(∆u) • x)(x • u)| ≤ R 2 |∇(∆u)| 2 + |u| 2 |(∇(x • ∇u) • x)∆u| ≤ C N R

  |u i,j | 2 + |∇u| 2 + |u| 2 + |u| 2σ+2 dx = ∞ 0 ∂B R (0) |∇(∆u)| 2 + |∆u| 2 + N i,j=1 |u i,j | 2 + |∇u| 2 + |u| 2 + |u| 2σ+2 dS dR < ∞.

( 4 . 10 . 5 )

 4105 As a consequence, there exists a sequence(R n ) n ⊂ R N satisfying R n → ∞ as n → ∞ so that R n ∂B Rn (0) |∇(∆u)| 2 + |∆u| 2 + N i,j=1 |u i,j | 2 + |∇u| 2 + |u| 2 + |u| 2σ+2 dS → 0.

Proposition 4 . 10 . 2 .

 4102 Let N ≥ 5 and 2 N -2 < σ < 4 N -4 . Then any solution u ∈ X to (4.6.8) belongs to L 2 (R N ).

  |x|≥2R |x||∇ϕ(x)| ϕ(x) , λ 2 (R 1 ) := sup |x|≥2R |x||∆ϕ(x)| ϕ(x) . (4.10.6)

( 4 . 10 . 9 ) 96 Chapter 4 .

 4109964 Recalling Hölder inequality and taking into account (4.2.2), we obtainR N |ϕu| 2 |u| 2σ dx ≤ |x|≥R |u| 2σ+2 dx σ σ+1 R N |ϕu| 2σ+2 dx 1 σ+1 ≤ C |x|≥R |u| 2σ+2 σ σ+1 R N |∆(ϕu)| 2 + |∇(ϕu)| 2 dx.Normalized solutions for fourth-order nonlinear Schrödinger equation in the mass critical and supercritical regime Setting δ(R) := C |x|≥R |u| 2σ+2 σ σ+1 where we note that δ(R) → 0 as R → ∞, it then follows from (4.10.9) that, (1 -δ(R)) R N |∆(ϕu)| 2 + |∇(ϕu)| 2 dx ≤ R N |∇ϕ| 2 |u| 2 dx + 4

  Notice that the existence of the second solution to (1.1.2)-(1.1.3) in Theorem 1.1.7 (ii) and Theorem 1.1.8 (ii) is under the condition N ≥ 2, this is because the second one is established in the framework of radially symmetric functions space H 1 rad (R N ) × H 1 rad (R N ), and the compact embedding H 1 rad

1 , a 2 ) → ∞ as a 1 , a 2 → 0, to see this property, we refer Lemma 3.3.1. This indeed implies that for any given β > 0, there are two positive solutions to (1.1.2)-(1.1.3) under the assumptions of Theorem 1.1.7 or Theorem 1.1.8 for a 1 , a 2 > 0 sufficient small. Finally, let us also point out that our results are not a consequence of perturbation arguments.

ii)

  .2.10) At this point, proving the compactness of {u n } then reduces to show that the strong convergence of {u n } in L 2σ+2 (R N ) and the Lagrange parameter α c > 0, see Lemma 4.3.6. The strong convergence of {u n } in L 2σ+2 (R N ) is indeed beneficial from the fact that the function c → γ(c) is nonincreasing on (c 0 , ∞), see Lemma 4.4.1. The restriction on the size of c is to insure that α c > 0, see Lemma 4.2.1.

	Taking advantage of the genus theory, we obtain the existence of multiple radial solu-
	tions to (1.2.2)-(1.2.3).
	Theorem 1.2.5. Assume N ≥ 2.
	(i) If 4 < σN < 4 * , then for any c ∈ (0, c σ,N ), where c σ,N is defined in Theorem 1.2.4,
	(1.2.2)-(1.2.3) admits infinitely many radial solutions;
	(ii) If 2 ≤ N ≤ 4, σN = 4, then for any k ∈ N + , there exists a c k > c * N such that, for
	any c ≥ c k , (1.2.2)-(1.2.3) admits at least k radial solutions.

Theorem 1.2.7. Let

  N ≥ 1, σN = 4, and {c n } ⊂ R be a sequence satisfying for any n ∈ N, c n > c * N with c n → c * N as n → ∞, and u n be a ground state solution to (1.2.2)-(1.2.3) for c = c n at level γ(c n ). Then there exist a sequence {y n } ⊂ R N and a least energy solution u to the equation

	2.11)
	does not admit least energy solution in H 2 (R N ) when N ≤ 4, but it does when N ≥ 5,
	see Proposition 4.6.5 for more details.
	Next when σN = 4, we show a concentration behavior of ground state solutions to
	(1.2.2)-(1.2.3) as c approaches to c * N from above.

  where n → 0 as n → ∞.

	Proposition 1.2.7 gives a description of ground state solution to (1.2.2)-(1.2.3) as c n
	approaches to c * N from above. Roughly speaking, it shows for n ∈ N large enough,

Theorem 1.2.8. Let

  N ≥ 1, 4 ≤ σN < 4 * , and σ ∈ N + . Then there exists a c r > c 0 such that, for any c ∈ (c 0 , c r ), (1.2.2)-(1.2.3) admits a ground state solution, which is radial and sign-changing.

	In our next result, we prove that positive radial solutions to (1.2.2)-(1.2.3) do exist.
	Theorem 1.2.9. Let 1 ≤ N ≤ 4, 4 ≤ σN < 4 * . Then there exists a cσ,N > c 0 such that
	(1.2.2)-(1.2.3) admits a positive and radial solution for any c ≥ cσ,N .

  .3.11) Note that if ||u 1 || 2 2 = a 1 and ||u 2 || 2 2 = a 2 , we have done. Indeed, the compactness of {(u n 1 , u n 2 )} then directly follows. To show that ||u 1 || 2 2 = a 1 and ||u 2 || 2 2 = a 2 , we assume by contradiction that u 1 By definition, J(u 1 , u 2 ) ≥ M (ā 1 , ā2 ) and thus it results from (2.3.11) that

	2 2 := ā1 < a 1 or u 2	2 2 := ā2 < a 2 .

  .1.9) When 2 ≤ N ≤ 4, the fact that (u 1 , u 2 ) ∈ S(a 1 , a 2 ) is obtained directly by the Liouville's type results. When N ≥ 5, we argue by contradiction. If ā1 := ||u 1 || 2 2 < a 1 or ā2 := ||u 2 || 2

  The proof of our next lemma can be found in [8, Lemma 3.2].

Lemma 3.2.7. Assume 2 < p 1 , p 2 , r 1 + r 2 < 2 * . For any bounded Palais-Smale sequence {(u n 1 , u n 2 )} for J restricted to S(a 1 , a 2 ), there exist (u 1 , u 2

  1 is insured by Lemma 3.2.4 and the one of t 2 > 1 by the property that J(u t S(a 1 -ā1 ) such that w t 1 1 ∈ B(ρ/2), and J(w t 1 , 0) < 0 for t ∈ [t 1 , t 2 ]. Here w t (x) := t N 2 w(tx) and without restriction we can assume that w 1 ∈ S(a 1 -ā1 ) is radially symmetric. Similarly, if ā2 < a 2 , we can choose a radially symmetric w 2 ∈ S(a 2 -ā2 ) such that w t 1 2 ∈ B(ρ/2), and J(0, w t 2 ) < 0 for t ∈ [t 1 , t 2 ]. Note that we just take w 1 = 0 if ā1 = a 1 , and w 2 = 0 if ā2 = a 2 . is the coupled rearrangement of u, v defined by (3.2.3). Then we consider a path [t 1 , t 2 ] → (v t 1 , v t 2 ). From Lemma 3.2.1 (iii)-(iv), for all t ∈ [t 1 , t 2 ], we see that (v t 1 , v t 2 ) ∈ S(a 1 , a 2 ), and

	We now set
	v

1 , u t 2 ) → -∞ as t → ∞. Now because of (3.1.10), if ā1 < a 1 , there exists a w 1 ∈ i := {u i , w i } * , for i = 1, 2,

where {u, v} *

  .2.17) Using the definition of E and the fact that {E(u n )} remains bounded, one obtains

	R N	|∆u n | 2 dx ≤	1 γ(σ + 1) R N	|u n | 2σ+2 dx + C	(4.2.18)
	for some C > 0. Thus if N = 1, 2 with σN ≥ 4 or 4 ≤ σN < 2N N -2 if N ≥ 3, we obtain a
	contradiction with (4.2.1). If N = 3, 4 with 2N N -2 ≤ σN or N ≥ 5 with 2N N -2 ≤ σN < 4 * ,
	using (4.2.2) we obtain from (4.2.18) that		

  , we see that there exists a δ > 0 such that R N |∆u| 2 dx ≥ δ and then by (4.3.1) we obtain the lower bound. When σN = 4, we first consider the case 1 ≤ N ≤ 4.

	R N 4σ + 4 |∆u| 2 dx σN B N (σ)c 1+σ-σN 4 N ≤ 2 * and using the Gagliardo-Nirenberg's inequality (4.2.1), for any u ∈ M(c), σN 4 , R N |∆u| 2 dx ≥ 4 σN -4 . (4.3.2) From (4.3.2)Then 2+ 8 and thus we get 1

  .3.4) At this point, in view of (4.3.1), we assume by contradiction that there exists a sequence{u n } ⊂ M(c) such that R N |∇u n | 2 dx → 0. Since,by Lemma 4.2.2, { R N |∆u n | 2 dx} then remains bounded, it follows from (4.3.3) that R N |u n | 2+ 8 Let 4 ≤ σN < 4 * . For u ∈ S(c) if 4 < σN < 4 * , and for u ∈ S(c)

					N dx → 0. Recording that
	u n ∈ M(c), we then obtain				
	γ	R N	|∆u n | 2 dx +	1 2 R N	|∇u n | 2 dx → 0,
	which contradicts (4.3.4), and thus we end the proof of the lemma.
	Lemma 4.3.2.				

  .3.5) mass critical and supercritical regime from which we deduce that E(u λ ) < E(u λ * ), for any λ > 0, λ = λ * . When σN = 4, since we assume that sup λ>0 E(u λ ) < ∞, then

	γ	R N	|∆u| 2 dx <	σN 2(2σ + 2) R N	|u| 2σ+2 dx,	(4.3.6)

  Proof. By Lemma 4.3.3, we know that M(c) has codimension 1 in S(c), thus in order to prove (4.3.7), it suffices to show that

				.3.7)
	and			
	dE(u)	d dλ	(u λ )| λ=1 = 0.	(4.3.8)

  ). When σN = 4, then (4.4.4) only gives that ∇(u n -u c ) 2 = o n (1). Since, by Lemma 4.2.2, { ∆(u n -u c ) 2 } remains bounded we conclude using (4.2.1) if N ≤ 4 and using (4.3.3) if N ≥ 5 that u n -u c 2σ+2 = o n (1). Now from (4.4.3) and using that E(u

n -u c ) = o n (1), it follows that E(u c ) = γ(c). Lemma 4.4.2. Let 4 ≤ σN < 4 * , then the function c → γ(c) is decreasing on (c 0 , ∞).

Proof. First we show that γ(c) enjoys the variational characterization inf u∈M(c)

  3.6 that this convergence is strong whenever ||u n -u c || 2σ+2 → 0 and α c > 0. The first property is guaranteed by Lemma 4.4.1 and Lemma 4.4.2, and the second one comes from Lemma 4.2.1.

  3.1. 

	Chapter 4. Normalized solutions for fourth-order nonlinear Schrödinger equation in the
	Now we define ũn := u 82 c c n = max λ>0	mass critical and supercritical regime

n ∈ S(c). Using [18, Lemma 5.2], we obtain

γ(c) ≤ max λ>0 E((ũ n ) λ )

  we have readily finished the proof. Otherwise, by Lemma 4.2.2, it then follows that R N |∇u cn | 2 dx → ∞ as n → ∞, and we conclude by using (4.3.1).

	Lemma 4.6.3. Let 4 ≤ σN < 4

.6.4) Thus combining the fact that E is bounded from below on M (c) by a positive constant, see Lemma 4.3.1, and the property obtained in Lemma 4.4.2, that c → γ(c) is decreasing, we deduce for any sequence {c n } with c n → c * N + and {u cn

} ⊂ M(c n ) that R N |∆u cn | 2 dx → ∞ as n → ∞.

(4.6.5)

If E(u cn ) → ∞ as n → ∞, * and u c ∈ S(c) be a solution to

  we need to consider the following equationγ∆ 2 u -∆u = |u| 2σ u. Assume that σ ≥ 2 if N = 3, σ > 1 if N = 4 and 4 ≤ σN < 4 * if N ≥ 5. Then γ(∞) isreached and 1. When N = 3, 4, (4.6.8) does not admit nonnegative solution. In particular, γ(∞) is not reached by an element in H 2 (R N ). 2. When N ≥ 5, all minimizers of γ(∞) belongs to H 2 (R N ). If one considers the equation (4.6.8) assuming that N = 1, 2 or N = 3 with σ ≤ 2 or N = 4 and σ = 1, we see directly from Lemma 4.2.1 that it has no solutions in H 2 (R N ) nor in X.
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	84	mass critical and supercritical regime
	Proposition 4.6.5. Remark 4.6.6. Proof of Proposition 4.6.5. It is classical to show that γ(∞) is reached if and only if the
	problem		
	m := inf u∈M	J(u),	(4.6.9)
	where		
	J(u) =		
			(4.6.8)
	Let X := {u ∈ D 1,2 (R N ) : R N |∆u| 2 dx < ∞} be equipped with the norm	
	u 2 X :=		

R N |∆u| 2 dx + R N |∇u| 2 dx.

Under our assumptions, we see from (4.2.2) that X → L 2σ+2 (R N ) and in particular E, Q are well-defined in X. Now let

γ(∞) := inf{E(u) : u ∈ X\{0}, E (u) = 0}. R N γ|∆u| 2 + |∇u| 2 dx and M := {u ∈ X : ||u|| 2σ+2 = 1}

admit a minimizer. To prove that m is reached we proceed as in

[START_REF] Bonheure | Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion[END_REF] Remark 3.2]

. Let {u n } ⊂ X be a minimizing sequence for m. Without restriction, since H

  Lemma A.1], ∆u 2 ≤ ∆u 2 , ∇u 2 ≤ ∇u 2 , u 2σ+2 ≥ u 2σ+2 .

  2 ), and (∆(ϕu)) 2 = ϕ 2 (∆u) 2 + 4|∇ϕ∇u| 2 + u 2 (∆ϕ) 2 + 4ϕ∆u∇ϕ∇u + 2ϕu∆u∆ϕ + 4u∆ϕ∇ϕ∇u.Using the two previous lines, we obtain(∆(ϕu)) 2 = ∆u∆(ϕu 2 ) + 4|∇ϕ∇u| 2 + u 2 (∆ϕ) 2 + 4∇ϕ∇uu∆ϕ -2u∆u|∇ϕ| 2 . (4.10.7) We also need that |∇(ϕu)| 2 = ∇u∇(ϕ 2 u) + |∇ϕ| 2 u 2 . (4.10.8) Now testing (4.6.8) with ϕ 2 u and using (4.10.7)-(4.10.8), there holds R N |∆(ϕu)| 2 + |∇(ϕu)| 2 dx =

	|ϕu| 2 |u| 2σ +	|∇ϕ| 2 |u| 2 dx
	R N	R N	
	+ 4	|∇ϕ∇u| 2 dx +	|u∆ϕ| 2 dx
	R N		R N
	+ 4	u∆ϕ∇ϕ∇u dx -2	u∆u|∇ϕ| 2 dx.
	R N		R N

  2 |u| 2 dx = Noting that ∇ϕ∇(ϕu) = |∇ϕ| 2 u + (∇ϕ∇u)ϕ, it follows for |x| ≥ 2R, that Combines this inequality and the Young's inequality, we obtain for any > 0, Next we deal with I 4 . Using the Young's inequality for > 0 again, leads toI 4 = 4Finally we estimate I 5 . We have for |x| ≥ 2R, We now treat J i for i = 1, 2, 3. By the Young's inequality for τ > 0, Thus combining the estimates to J i for i = 1, 2, 3, we obtainI 5 ≤ C |x|<2R |u| 2 + |∇u| 2 dx + (2 + 2 )Now taking into account above estimates to I i for 1 ≤ i ≤ 5, there holds|∆(ϕu)| 2 + |∇(ϕu)| 2 dx ≤ C(R) + 4 N 2 6 + 8 + 2 2 + τSince N ≥ 5, taking , τ > 0 small enough, R > 0 large enough and recording that δ(R) → 0 as R → ∞, we can insure that 4 N 2 6 + 8 + 2 2 + τ < 1 -δ, uniformly with respect to R 1 . Finally, letting R 1 → ∞, we observe that |ϕu| 2 |x| 2 → u 2 quad a.e for |x| ≥ 2R
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	This implies that Recalling the Hardy's inequalities
						I 5 2	≤ ≤ C |x|<2R |x|<2R |u∆u||∇ϕ| 2 dx + |u∆u| dx + |x|≥2R |x|≥2R |∆(uϕ)| |u∆u||∇ϕ| 2 dx |u||∇ϕ| 2 |ϕ| dx R N |∇v| 2 dx ≥ N -2 2 2 R N |v| 2 |x| 2 dx, R N |∆v| 2 dx ≥ N 2 4 R N |x| 2 dx, |∇v| 2	(4.10.11)
	+ 2 from (4.10.10) and (4.10.11), we arrive at |x|≥2R |∇u∇ϕ|	|u||∇ϕ| 2 |ϕ|	dx +	|x|≥2R	|u| 2 |∇ϕ| 2 |∆ϕ| |ϕ|	dx
	(1 -δ(R)) + 2 N -2	R N 2	:= C 4R 2 10 + 1 1 τ	|∇ϕ| 2 |u| 2 dx + |u∆u| dx + 3 J i . i=1 6 + 2 + 1 + λ 2 |x|<2R + 2 + 2λ 2 2	+	λ 2 R	|∇ϕ| 2 |u| 2 dx R N R N |∇(ϕu)| 2 dx. |∆(ϕu)| 2 dx
							≤ J 1 ≤	|x|<2R ≤ C |x|<2R 2 |x|≥2R τ |∆(uϕ)| 2 dx + |u| 2 dx + 2τ |x|≥2R |x|≥2R |x|≥2R |ϕu| 2 1 |x| 4 dx. |ϕu| 2 |x| 2 dx. τ 2 |x|≥2R |∆(uϕ)| 2 dx + 1 2τ |x|≥2R |ϕ| 2 dx |u| 2 |∇ϕ| 4	(4.10.12)
		We also get				|∇ϕ∇u| ≤	|∇ϕ∇(ϕu)| ϕ	+	|∇ϕ| 2 ϕ 2 |ϕu|.
	and	I 2 4 ≤ C = ≤ C N -2 R N |∇ϕ∇u| 2 dx ≤ |x|<2R |∇u| 2 dx + |x|<2R |∇u| 2 dx + (1 + ) |x|<2R |x|≥2R (1 + ) |∇ϕ∇u| 2 dx + |∇ϕ∇(ϕu)| 2 |x|≥2R |ϕ| 2 + 1 + |∇ϕ∇u| 2 dx |ϕ| 4 |ϕu| 2 dx |x|≥2R |∇(ϕu)| 2 |x| 2 + 1 + 1 R N |x| 4 dx. |ϕu| 2 + (1 + ) |x|≥2R |x| 2 dx |∇(ϕu)| 2 1 |∇ϕ| 4 J 2 ≤ |x|≥2R |∇u∇ϕ| 2 dx + |x|≥2R |u| 2 |∇ϕ| 4 |ϕ| 2 dx ≤ I 2 4 + |x|≥2R |ϕu| 2 |x| 4 dx ≤ C |x|<2R |∇u| 2 dx + 2 + 1 |x|≥2R |ϕu| 2 |x| 4 dx 2 2 1 4R 2 10 + 1 τ + 6 + 2 + 1 + λ 2 2 + 2λ 2 2 + λ 2 R < 1 -δ.
	Also using (4.10.6), we have R N I 3 = |u∆ϕ| 2 dx ≤ and J 3 = |x|≥2R It follow from (4.10.11) that |x|≥2R |u| 2 |∆ϕ||∇ϕ| 2 |ϕ| |ϕu| 2 |x| 2 dx ≤ C dx ≤ λ 2	|x|≥2R	|ϕu| 2 |x| 3 dx.
									≤ C	|x|<2R	|u| 2 dx + λ 2 2	|x|≥2R |x|≥2R |ϕu| 2 |x| 2 dx. |∇(ϕu)| 2 |x| 2 dx
							u∆ϕ∇ϕ∇u dx ≤ 4 + 2λ 2 |x|≥2R |ϕu| 2 |x| 3 dx + 4 + |u∆ϕ||∇ϕ∇u| dx 1 τ + 2 |x|≥2R	|ϕu| 2 |x| 4 dx
				≤ 2	R N |x|≥2R + τ	|x|≥2R |x|≥2R |∆(uϕ)| 2 dx. |∇ϕ∇u| 2 dx + 2 |x|≥2R	|u∆ϕ| 2 dx =	I 2 2	+	2I 3
				≤ C + 2 (1 + ) |x|<2R |x|≥2R |∇u| 2 + |u| 2 dx + 2( + 2 ) |ϕu| 2 |x| 4 dx + 2λ 2 2 |x|≥2R |x|≥2R |ϕu| 2 i=1 5 I i ≤ C(R) + 6 + 8 + 2 2 |x|≥2R |∇(ϕu)| 2 |x| 2 dx + 2λ 2 |∇(ϕu)| 2 |x| 2 dx |x|≥2R |x| 2 dx. + 10 + 1 τ + 6 + 2 |x|≥2R |ϕu| 2 |x| 4 dx + 1 + λ 2 2 + 2λ 2 2 |x|≥2R	|ϕu| 2 |x| dx |ϕu| |x| dx
				+ τ	|x|≥2R	∆u = |∆(uϕ)| 2 dx. ∆(uϕ) ϕ	-2	∇u∇ϕ ϕ	+	u∆ϕ ϕ	.

|x|<2R |u| 2 |∆ϕ| 2 dx + |x|≥2R |u| 2 |∆ϕ| 2 dx Thereby there exists a constant C > 0 just depending on R > 0 such that R N |∇(ϕu)| 2 dx ≤ C.

-1)N R N
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Consequently from the definition (3.3.9) and using ( [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF]. Now we deal with (iii). For any > 0, there exist (ϕ 1 , ϕ 2 ) ∈ S(d 1 , d 2 ) ∩ B(ρ 0 ) and (ψ 1 , ψ 2 ) ∈ S(a 1 -d 1 , a 2 -d 2 ) ∩ B(ρ 0 ) such that 

Lemma 3.3.3. Assume that (H 1 ) or (H 2 ) holds. Any minimizing sequence to (3.1.7) is, up to translations, strongly convergent in L p (R N ) × L p (R N ) for any 2 < p < 2 * as 0 < β ≤ β 0 .

Proof. The proof follows closely the one of [START_REF] Gou | Existence and orbital stability of standing waves for nonlinear Schrödinger systems[END_REF]Lemma 3.3]. Let {(v n 1 , v n 2 )} be a minimizing sequence to (3.1.7). If sup y∈R N B(y,R)

for some R > 0, then v i → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2, see [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF]Lemma I.1]. This contradicts the property m(a 1 , a 2 ) < 0, obtained in Lemma 3.3.2 (i). Thus, there exist a γ 0 > 0 and a sequence {y n } ⊂ R N such that B(yn,R)

and we deduce that

Our aim is to prove that w n i (x) := v n i (x) -v i (x + y n ) → 0 in L p (R N ) for 2 < p < 2 * , i = 1, 2 and so we suppose by contradiction that there exists a 2 < q < 2 * such that (w n 1 , w n 2 ) (0, 0) in L q (R N ) × L q (R N ). Still using [START_REF] Lions | The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part II[END_REF]Lemma I.1] it follows that there exists a sequence

Now, combining Lemma 3.2.3, the Brezis-Lieb Lemma and the translational invariance, we see that [START_REF] Ackermann | Existence and orbital instability of normalized multibump standing waves for nonlinear Schrödinger equations[END_REF], (3.3.11)

where we have used the property, see (3.3.13), that

As a consequence, for t ∈ [t 1 , t 2 ],

In particular, since J(w t 2 1 , 0) ≤ 0 and J(0, w t 2 2 ) ≤ 0, we get from (3.4.2) that J(v

2 ) < 0. Now from (3.4.2) and using Lemma 3.4.2, we also have that max

, we obtain a path g lying in Γ such that max t∈[0,1] J(g(t)) < γ(a 1 , a 2 ) and this ends the proof. Now for any given β ∈ (0, β 0 ), according to Lemma 4.3.2, we can fix a > 0 such that

(3.4.9)

We set

and

From these definitions and as in [START_REF] Bartsch | Normalized solutions for a system of coupled cubic Schrödinger equations on R 3[END_REF]Lemma 3.3], one obtains the following result.

Lemma 3.4.9. For i = 1, 2, there exists

, where > 0 is determined in (3.4.9);

(ii) ψ i (s) > 0 for s < 0 and ψ i (s) < 0 for s > 0. In particular

, and for (t

We now introduce the min-max class

Lemma 3.4.10. If g ∈ Γ, then there holds

Proof. In view of Lemma 3.4.9 and (3.4.6),

and in a similar way, for

On the other hand, using Lemma 3.4.9, one can show that for

Then the lemma follows.

Chapter 4

Normalized solutions for fourth-order nonlinear Schrödinger equation in the mass critical and supercritical regime

Introduction

In this chapter, we deal with a class of time-dependent fourth-order nonlinear Schrödinger

where γ > 0. A fundamental step to study solutions of (4.1.1) consists in standing waves, namely solutions with the form of ψ(t, x) = e iαt u(x) for α ∈ R. This then leads to the following elliptic equation satisfied by u,

Observe that the L 2 -norm of solution to the Cauchy problem of (4.1.1) is conserved along time, i.e. for any t > 0,

Thus it is of great interest to research solutions to (4.1.2) having prescribed L 2 -norm, namely, for given c > 0, we find α ∈ R and u ∈ H 2 (R N ) satisfying (4.1.2), together with normalized condition In this chapter, as inspired by [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF], we study solutions to (4.1.2)-(4.1.3) under the mass critical case σN = 4 and the mass supercritical case 4 < σN < 4 * , where 4 * := 4N (N -4) + . In this subject, our first result concerns the mass critical case σN = 4. To show the statement, we recall the well known Gagliardo-Nirenberg's inequality (see [START_REF] Nirenberg | On elliptic partial differential equations[END_REF]) for u ∈ H 2 (R N ),

where

and B N (σ) is a constant depending on σ and N . [START_REF] Ekeland | On the variational principle[END_REF], we then obtain a Palais-Smale sequence {u n } ⊂ M(c) for E restricted to S(c) at level γ(c) as a minimizing sequence to (4.1.9). Our aim is to prove that {u n } is compact, up to translations, in H 2 (R N ). Firstly, since E is coercive on M(c), see Lemma 4.3.1, thus {u n } is bounded in H 2 (R N ), and it then follows that there exists To establish Theorem 4.1.5, we shall work in the subspace

The proof of Theorem 4.1.5 is based on the Kranosel'skii genus theory. The key step is to prove that E restricted to M rad (c) satisfies the Palais-Smale condition. To this end, we consider an arbitrary Palais-Smale sequence {u n } ⊂ M rad (c) for E restricted to M rad (c). Applying the coerciveness of E on M rad (c), we then denote by u c its weak limit in H 2 rad (R N ). Moreover, there exists α c ∈ R such that u c satisfies (4. 1.11). Note that the strong convergence of {u n } in L 2σ+2 (R N ) is given here for free, because the embedding

Reasoning as the proof of Theorem 4.1.4, to show the compactness it remains to check that the Lagrange parameter α c is strictly positive, which is insured by Lemma 4.2.1. The second step is to show that the set M(c) is sufficiently large. This is always the case when 4 < σN < 4 * for any c > 0. However, when σN = 4, the set M rad (c) may be too small. In particular, it shrinks to the empty set as c → c * N . To obtain a given number of solutions, we require that c > c * N is sufficiently large.

The monotonicity of the function c → γ(c) on (c 0 , ∞) is crucially used in the proof of Theorem 4.1.4. We now present additional properties of this function, its behaviors depend in an essential way on the couple (σ, N ).

Note that Theorem 4.1.6, the difference of behavior of γ(c) as c → ∞ between N ≤ 4 and N ≥ 5 arises from the fact that the equation

does not admit a least energy solution in 

such that up to a subsequence, 

In the folowing we consider the sign and radially symmetric property of solutions to (4.1.2)-(4.1.3). Concerning this subject, we first mention the case that α ∈ R + is given in (4.1.2). In this case, it is known that when α ∈ R + is sufficiently small, all least energy solutions have a sign and are radial. On the contrary, when α ∈ R + is large, radial solutions are necessarily sign-changing. In addition, when σ ∈ N + , at least one least energy solution is radial. For more details, see [START_REF] Bonheure | Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion[END_REF]Theorem 4]. When 0 < σN < 4, regarding the sign and radially symmetric property of minimizers to (4.1.4), we refer to [START_REF] Bonheure | Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[END_REF]. However, when 4 ≤ σN < 4 * , it seems more complex to derive these information for ground state solutions to (1.2.2)-(1.2.3). In this direction, we only present the following result. 

and

Lemma 4.5.2.

Proof. First we consider the case 4 

Using the fact that all norms are equivalent in a finite dimensional subspace, we get, for c > c * N large enough and for any u ∈ SV (c),

This shows that sup λ>0 E(u λ ) < ∞ and thus from Lemma 4.3.2 for any u ∈ SV (c) that there exists unique λ * u > 0 such that Q(u λ * u ) = 0. At this point, we pursue as in the case 4 < σN < 4 * to conclude the proof. Proof. Let {u n } ⊂ M rad (c) be a Palais-Smale sequence for E restricted to M rad (c). By Lemma 4.3.6 we know that, up to a subsequence, {u n } converges strongly in H 2 (R N ) if {u n } converges strongly in L 2σ+2 (R N ) and if the associated parameter α c ∈ R is strictly positive. The first property holds because the embedding 

Properties of the function c → γ(c)

In this section, we investigate further properties of the function c → γ(c) and prove Theorem 4.1.6. We begin by showing its continuity. it suffices to show that (4.6.8) has no nonnegative solutions in H 2 (R N ). For this aim, we decompose (4.6.8) into the elliptic system

If u is a solution to (4.6.8), then by the standard elliptic regularity theory, u ∈ C 4 (R N ).

Hence applying the maximum principle to the second equation in (4.6.10), we deduce that v ≥ 0 and thus any nontrivial nonnegative solution u to (4.6.8) has to satisfy -∆u ≥ 0.

Using the Liouville's type result [61, Lemma A.2], we conclude that u / ∈ L 2 (R N ). Finally, when N = 5 one can show that any solution to (4.6.8) in X belongs to H 2 (R N ). This is proved in Proposition 4.10.2 that can be found in Appendix.

Since m is reached where m is defined by (4.6.9), then clearly γ(∞) > 0 and by standard arguments, it can also be defined as Proof. Using the definition (4.6.11), we directly obtain that γ(c) ≥ γ(∞) for all c > c 0 . Now still from (4.6.11) and taking Proposition 4.6.5 into account, we know that there exists a u ∈ X such that

, where η(x) = 1 for |x| ≤ 1, η(x) = 0 for |x| ≥ 2, and 0 ≤ η ≤ 1. Thus, as R → ∞, 

At this point, we have obtained that u c ∈ H 2 (R N ) is a solution of (4.6.8) at the energy level γ(∞), it is a ground state. But we know from Proposition 4.6.5 that such ground state does not exist. This contradiction ends the proof. 

A concentration phenomenon

In this section, when σN = 4, we establish the concentration of solutions to (4.1.2)-(4.1.3) as c approaches to c * N from above, described in Theorem 4.1.7. As a preliminary result, we derive Lemma 4.7.1. Let σN = 4 and u ∈ H 2 (R N ) be a nontrivial solution to the equation

(4.7.1)

Proof. We define the energy functional associated to (4.7.1)in H 2 (R N ) as

If u is a solution to (4.7.1), then by Lemma 4.10.1, we get

which implies that

If u is a nontrivial solution to (4.7.1), then there holds u 2 2 ≥ c * N . Indeed, using the Gagliardo-Nirenberg's inequality (4.1.5), we get from (4.7.2) that γ

Thus necessarily u 2 2 ≥ c * N and taking into account (4.7.3), this ends the proof.

Proof of Theorem 4.1.7. By Theorem 4.1.4, there exist a sequence

From (4.6.5) in the proof of Lemma 4.6.2, we deduce that

and using Cauchy-Schwarz' inequality (4.2.3), it follows from (4.7.4) that

Since Q(u n ) = 0, we then obtain 

It is easy to check that ũn 

Then, as in the proof of Lemma 4.3.1, necessarily there exist a δ > 0 and a sequence {y n } ⊂ R N such that for some R > 0,

Thus defining

we get from (4.7.9) that there is a nontrivial v so that v n v in H 2 (R N ). Since u n satisfies the following equation

where the Lagrange multiplier is given by 

(4.7.12)

Now setting

x , 

as n → ∞. Now from the definition (4.7.10), and by interpolation inequalities in Lebesgue space, there holds for 2 ≤ q < 2N (N -4) + ,

This completes the proof. We start by recalling the local well-posedness of the solutions to the Cauchy problem of (4.1.1) and a blow-up alternative due to [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF]. We shall prove that u exists globally in time, i.e. T = ∞. If we suppose by contradiction that T < ∞, it follows from Lemma 4.9.1 that, lim

(4.9.1)

Now we observe that E(u(t)) = E(u 0 ) for 0 ≤ t < T , and

Since E(u(t)) = E(u 0 ), thus when 4 < σN < 4 * , we deduce from (4.9.1) that lim

When σN = 4, using that the energy and the mass are conserved, then Lemma 4.2.2 applies to give that lim

and we also deduce from (4.9.2) that (4.9.3) holds.

By continuity, there exists a t 0 ∈ (0, T ) such that Q(u(t 0 )) = 0. Since u(t 0 ) 2 = u 0 2 = c, by the definition of γ(c) it follows that E(u(t 0 )) ≥ γ(c). This contradicts the fact that E(u(t 0 )) = E(u 0 ) < γ(c). Then Theorem 4.1.10 follows.

Let us now prove Theorem 4.1.12. For this aim we first recall the localized virial identity introduced in [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF],

(4.9.4)

Proof of Theorem 4.1.12. Suppose that u c is a radial ground state, and define

The set Θ contains elements arbitrarily close to

)) be the solution to (1.2.1) with radial initial datum v 0 , and T ∈ (0, ∞] be the maximal existence time. To prove the theorem, we just need to show that v(t) blows up in finite time. We divide the rest of the proof into three steps.

First step :

We claim that there exists a β > 0 such that Q(v(t)) ≤ -β for any t ∈ [0, T ). Indeed, reasoning as the proof of Theorem 4.1.10, we easily check that v(t) ∈ Θ and in particular Q(v(t)) < 0 for any t ∈ [0, T ). Now setting v := v(t), in view of Lemma 4.3.2, since Q(v) < 0 there exists a λ * < 1 such that Q(v λ * ) = 0. Moreover, the function

Second step : We claim that there exists a constant δ > 0 such that

and a t 1 ≥ 0 such that

To prove (4.9.6) we need to distinguish two cases.

In view of (4.9.4) and the First Step, taking R > 0 sufficiently large, we obtain

with some δ > 0 sufficiently small. Chapter 4. Normalized solutions for fourth-order nonlinear Schrödinger equation in the mass critical and supercritical regime Case 2: Set

Using (4.2.3), we get from (4.9.4)

Taking R large enough and noticing that under our assumptions, σ ≤ 2 if N σ = 4 and σ ≤ 4 if σN > 4, we deduce

(4.9.9)

Now combining (4.9.8) and (4.9.9), we see that there exists a δ > 0 such that (4.9.6) holds. Finally since

the inequality (4.9.7) follows from the estimate

Third step : We now conclude that the solution v(t) to (1.2.1) with initial datum v 0 blows up. Here we adapt another argument from [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF]. Suppose by contradiction that T = ∞, then integrating (4.9.6) on [t 1 , t], and taking (4.9.7) into account, we have that

Now using the Cauchy-Schwarz's inequality (4.2.3), we get from the definition of

Thus for some τ > 0,

ds, we obtain from (4.9.10) that z (t) ≥ τ 2 z(t) 2 . Integrating this equation, we deduce that M ϕ R [v(t)] → -∞, when t tends to some finite time t * . Therefore the solution v(t) cannot exist for all t > 0. By the blow-up alternative recalled in Lemma 4.9.1, this ends the proof of the theorem. 

Appendix

and

Proof. Since u ∈ H 2 (R N ) is a solution to (4.10.1), multiplying (4.10.1) by u and integrating in R N , we get that I(u) = 0. Next, we notice that Q(u) = N 4 I(u) -1 2 P (u). Therefore to prove that Q(u) = 0, we only need to show that P (u) = 0. This last identity is usually referred to as a Derrick-Pohozaev identity. To establish it we closely follow the proof of [21, Proposition 1]. First multiplying (4.10.1) by x • ∇u and integrating on B R (0) for some R > 1, we have

In a first time, we focus on the first left-hand side term of (4.10.2). Integration by parts, we find

where n := n x = x R denotes the unit outward normal at x ∈ ∂B R (0). Integrating by parts one more time, we have

Combining the previous two equalities, we obtain

Next, we deal with the second left-hand side term of (4.10.2). We have

Chapter 5. Remarks and Perspectives

In contrast, Chapter 3 is devoted to looking for normalized solutions in another two cases where the energy functional J is unbounded from below on S(a 1 , a 2 ). Despite we manage to relax limitation on dimension inducing by the Liouville's type results, but we still fail to find two solutions to (3.1.2)-(3.1.3) under only assuming (H 1 ) or (H 2 ). This is because so far we are unable to prove the conjecture that if two nonnegative functions u 1 , u 2 ∈ H 1 (R N ) solve (3.1.2) with some λ 1 , λ 2 ∈ R satisfying λ i ≥ 0 for some i = 1, 2, then u i = 0.

In Chapter 4, we focus on the study of normalized solutions to a class of fourth-order nonlinear Schrödinger equations in the mass critical and supercritical regime, in which the energy functional E is unbounded from below on S(c) for c > c 0 , where c 0 is defined by (4.1.10). Using a natural constraint approach, we then introduce the minimization problem (4.1.9). In order to seek for ground state solutions to (4.1.2)-(4.1.3), our aim is to prove the existence of minimizers to (4.1.9). To this end, one of key steps is to show that the weak limit of a Palais-Smale sequence for the energy funcional E restricted to S(c) stays in S(c). This essentially relies on the fact that the associated Lagrange multiplier α c is strictly positive. Actually, from Lemma 4.4.1 and Lemma 4.6.3, we know that α c ≥ 0 is always the case for any c > c 0 . Hence it is open that if minimizers to (4.1.9) exist when α c = 0 and N ≥ 5.

Additionally, as we know that the Lions' concentration compactness principle is a useful means to handle various minimization problems under constraint, then we question whether it is possible to adapt directly the spirit of the Lions' concentration compactness principle to solve the minimization problem (4.1.9). In Theorem 4.1.7, we obtain a concentration behavior of ground state solutions to (4.1.2)-(4.1.3) as c approaches to c * N from above in the mass critical case σN = 4 . Since the uniqueness of least energy solution to (4.1.13) is unknown, hence we cannot describe precisely the ground state solutions. At this point, a challenging question is that whether the uniqueness of least energy solution to (4.1.13) holds.

When σ ∈ N + , using the Fourier rearrangement technique we can prove that at least one of ground state solutions to (4.1.2)-(4.1.3) is radial, see Theorem 4.1.8. However, when 4 ≤ σN < 4 * , radial symmetry of the ground state solutions is still open.

Finally, let us mention an issue concerning the orbital instability by blowup in finite time of radial ground state solutions to (4.1.2)-(4.1.3), see Theorem 4.1.12. As we have already seen, this result is valid under the restriction that σ ≤ 4. This is because its proof strongly depends on an essential element coming from Boulenger and Lenzmann [START_REF] Boulenger | Blowup for Biharmonic NLS[END_REF], which is only applicable when σ ≤ 4. Thereby we would like to know if Theorem 4.1.12 remains true when σ > 4.

Perspectives

In the following, as a possible extension of this thesis we put forward some interesting issues to be exploited in forthcoming works. 

Fractional minimization problem

We consider the existence of solutions to the following fractional nonlinear Schrödinger system in R N ,

under the constraint

We denote by H s (R N ) the fractional Sobolev space of order s with the norm

, where up to a multiplicative constant

Clearly, a solution (u 1 , u 2 ) to (5.2.1)-(5.2.2) corresponds to a critical points of energy functional J : We are concerned with the existence of solutions to (5.2.1)-(5.2.2) under the assumption ( H0 ) N ≥ 1, 0 < s < 1, µ 1 , µ 2 , β > 0, 2 < p 1 , p 2 < 4s N , r 1 , r 2 > 1, r 1 + r 2 < 4s N .

Observe that under the assumption ( H0 ) the energy functional J is bounded from below on S(a 1 , a 2 ). We then define the following minimization problem M (a 1 , a 2 ) := inf (u 1 ,u 2 )∈ S(a 1 ,a 2 ) J(u 1 , u 2 ) < 0.

(5.2.3) Indeed, minimizers to (5.2.7) are solutions to (5.2.1)-(5.2.2). Our aim is to prove that when ( H0 ) holds, any minimizing sequence to (5.2.3) is compact, up to translation, in H s (R N ) × H s (R N ).

In this direction, we mention a related paper [START_REF] Bhattarai | On fractional Schrödinger systems of Choquard type[END_REF], where the author took advantage of the Lions' concentration compactness principle to obtain the compactness of any minimizing sequence where scaling technique is available. However, under the assumption ( H0 ), it seems hard to establish the compactness of any minimizing sequence to (5.2.3) through the Lions' concentration compactness principle. For this reason, we employ the coupled rearrangement spirit. Thus the heuristic ingredient consists in showing assertion that (5.2.4)

Fourth-order minimization problem

We study the existence of solutions to the following fourth-order nonlinear Schrödinger system in R N ,

(5.2.5)

under the constraint

where µ 1 , µ 2 , β > 0, 2 < p 1 , p 2 , r 1 + r 2 < 2N (N -4) + .

Apparently, a solution (u 1 , u 2 ) to (5.2.1)-(5.2.2) is obtained as a critical point of energy functional Ĵ : On account of the fact that the energy functional Ĵ is bounded from below on Ŝ(a 1 , a 2 ), we then introduce the following minimization problem M (a 1 , a 2 ) := inf

Ĵ(u 1 , u 2 ) < 0.

(5.2.7) Indeed, any minimizer to (5.2.7) is a solution to (5.2.5)-(5.2.6). Our purpose is to detect the compactness of any minimizing sequence to (5.2.7), up to translation, in H 2 (R N )×H 2 (R N ) under the assumption ( Ĥ0 ). Although (5.2.5) can be viewed as a replacement of -∆ by ∆ 2 in (2.1.1), which however brings new challenges to discuss the compactness of any minimizing sequence to (5.2.7).