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Résumé

Dans cette thèse nous étudions l’existence et la stabilité orbitale de solutions ayant
une norme L2 prescrite, pour deux types d’équations Schrödinger non linéaires dans RN , à
savoir, une classe de systèmes non linéaires couplés de Schrödinger dans RN et une classe
d’équations nonlinéaires de Schrödinger du quatrième ordre dans RN . Ces deux types
d’équations nonlinéaires de Schrödinger surviennent dans de nombreuses applications en
mathématiques et physique, et sont devenus une grande attention dans les années récentes.
D’un point de vue physique, de telles solutions sont souvent référées comme des solutions
normalisées, qui sont obtenues comme points critiques d’energie fonctionnelle associée
sous contrainte avec une norme L2. Les éléments clés de nos preuves sont les méthodes
variationnelles.

La thèse est divisée en 5 chapitres. Le chapitre 1 est une introduction de la thèse, qui
contient une brève présentation des problèmes traités et résultats correspondants obtenus
dans cette thèse. Dans les chapitres 2 et 3, nous sommes intéressés par l’existence et la
stabilité orbitale de solutions normalisées pour une classe de systèmes nonlinéaires couplés
de Schrödinger dans RN . Plus précisément, dans le chapitre 2, nous considérons solutions
normalisées dans un cas où la fonctionnelle d’énergie associée est minorée sous contrainte.
Par conséquent nous présentons un problème de minimisation de l’énergie fonctionnelle as-
sociée sous contrainte. Dans ce cas, les solutions normalisées sont en effet obtenues comme
minimiseurs globaux. Notre but est d’être établir la compacité de toute suite minimisante
en utilisant la technique de réarrangement couplé, qui est une alternative du principe de
concentration-compacité de Lions, et n’exige pas la vérification de l’inégalité stricte de la
subadditivité associée. En corollaire de la compacité de toute suite minimisante, la stabi-
lité orbitale de minimiseurs globaux est prouvée. Au chapitre 3, nous nous concentrons sur
l’existence de solutions normalisées dans deux autres cas, dans lesquels l’énergie fonction-
nelle associée n’est pas minorée sous contrainte. En conséquence le minimiseur global pour
l’énergie fonctionnelle associée sous contrainte n’existe plus. L’existence de deux solutions
normalisées strictement positives est établi par méthodes du minimax. La première solution
est un minimiseur local dont l’existence est assurée par l’étude de compacité de toute suite
minimisante à un problème de minimisation localisée, et la deuxième, est respectivement
de type point col ou de type linking. En particulier nous relâchons le hypothèse sur la di-
mension induites par les résultats de type de Liouville. En outre, nous obtenons la stabilité
orbitale de minimiseurs locaux. Dans le chapitre 4, nous étudions des solutions normalisées
pour une classe d’équations non linéaires du quatrième ordre de Schrödinger dans le cas
de masse critique et dans le cas supercritique. Dans les deux cas, la fonctionnelle d’éner-
gie associée n’est pas minorée sous contrainte. En utilisant une approche par contrainte
naturelle, nous établissons l’existence de solutions d’états fondamentaux et la multiplicité
de solutions radiales. De plus, nous discutons l’instabilité orbitale par explosion en temps
fini d’états fondamentaux radiaux. Pour finir, dans le chapitre 5, nous mettons quelques
remarques relatives à cette thèse, et proposons également quelques problèmes intéressants.
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Mots-clefs

Équations de Schrödinger non linéaires, norme L2 prescrite, solutions normalisées,
états fondamentaux, stabilité orbitale, minimiseurs, explosion, réarrangement, méthodes
variationnelles, principe de concentration-compacité, identité de type Pohozaev, variété.
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Existence and orbital stability of normalized solutions for
nonlinear Schrödinger equations

Abstract
In this thesis, we are concerned with the existence and orbital stability of solutions

having prescribed L2-norm for two types of nonlinear Schrödinger equations in RN , namely
a class of coupled nonlinear Schrödinger systems in RN and a class of fourth-order nonlinear
Schrödinger equations in RN . These two types of nonlinear Schrödinger equations arise in
a variety of mathematical and physical models, and have drawn wide attention in recent
years. From a physical point of view, such solutions are often referred as normalized
solutions, which correspond to critical points of the underlying energy functional restricted
to the L2-norm constraint. The main ingredients of our proofs are variational methods.

The thesis is divided into five chapters. Chapter 1 is an introduction to this thesis,
which contains a brief presentation of issues treated and corresponding results attained in
the thesis. In Chapter 2 and Chapter 3, we are interested in the existence and orbital sta-
bility of normalized solutions for a class of coupled nonlinear Schrödinger systems in RN .
More precisely, Chapter 2 is devoted to investigating normalized solutions in a case where
the associated energy functional is bounded from below on constraint. Accordingly, we
introduce a global minimization problem as the energy functional subject to constraint.
In this situation, normalized solutions are indeed achieved as global minimizers to the
minimization problem. Our purpose consists in establishing the compactness of any min-
imizing sequence by means of the coupled rearrangement arguments, which is alternative
to the Lions’ concentration compactness principle and does not require the verification
of related strict subadditivity inequality. As a corollary of the compactness of any min-
imizing sequence, the orbital stability of global minimizers is proved. In Chapter 3, we
focus on the existence of normalized solutions in another two cases, in which the energy
functional becomes unbounded from below on constraint. Thus global minimizer to the
energy functional restricted to constraint does not exist. The existence of two normalized
solutions is established in each case with the aid of minimax methods. The first solution
is a local minimizer, whose existence is insured through the study of the compactness of
any minimizing sequence to a localized minimization problem, and the second one is a
mountain pass type and a linking type, respectively. In particular, we relax the limita-
tion on dimension induced by the Liouville’s type results. Furthermore, we obtain the
orbital stability of local minimizers. In Chapter 4, we study normalized solutions for a
class of fourth-order nonlinear Schrödinger equations in the mass critical and supercritical
regime. In both cases, the associated energy functional is unbounded from below on con-
straint. Using a natural constraint approach, we establish the existence of ground state
solutions and multiplicity of radial solutions. In addition, we discuss the orbital instability
by blowup in finite time of radial ground state solutions. Finally, in Chapter 5, we present
some remarks related to this thesis and also put forward some interesting issues.

Keywords

Nonlinear Schrödinger equations, prescribed L2-norm, normalized solutions, ground
states, orbital stability, minimizers, blowup, rearrangement, variational methods, concen-
tration compactness principle, Pohozaev type identity, manifold.
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Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D. in these two years is
devoted to the study of normalized solutions for a class of coupled nonlinear Schrödinger
systems in RN and a class of fourth-order nonlinear Schrödinger equations in RN . Chapter
2 and Chapter 3 correspond to works with L. Jeanjean. Chapter 4 is an collaboration with
D. Bonheure, J.-B. Casteras and L. Jeanjean.

1.1 Normalized solutions for coupled nonlinear Schrödinger
system

An important feature in quantum physics is played by the following time-dependent
coupled nonlinear Schrödinger system in R× RN ,{

−i∂tΨ1 = ∆Ψ1 + µ1|Ψ1|p1−2Ψ1 + βr1|Ψ1|r1−2Ψ1|Ψ2|r2 ,

−i∂tΨ2 = ∆Ψ2 + µ2|Ψ2|p2−2Ψ2 + βr2|Ψ1|r1 |Ψ2|r2−2Ψ2.
(1.1.1)

This system governs various physical phenomena, such as the Bose-Einstein condensates
with multiple states, or propagation of mutually incoherent waves packets in nonlinear
optics, see for instance [2, 48, 50, 59, 80, 84, 109]. In the system (1.1.1), the functions
Ψ1,Ψ2 are corresponding condensate amplitudes, µi and β are intraspecies and interspecies
scattering length, describing interaction of the same state and different states, respectively.
The positive sign of µi (and β) represents attractive interaction, the negative one represents
repulsive interaction.

One of the most fundamental research regarding (1.1.1) in mathematical and physical
field consists in standing waves, namely solutions with the form of

Ψ1(t, x) = e−iλ1tu1(x), Ψ2(t, x) = e−iλ2tu2(x)

for (λ1, λ2) ∈ R2. This ansatz then gives rise to the following elliptic system satisfied by
u1 and u2, {

−∆u1 = λ1u1 + µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 ,

−∆u2 = λ2u2 + µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2.
(1.1.2)

In order to study solutions to (1.1.2), two possible options arise. The first one is to consider
(1.1.2) with the given parameters (λ1, λ2) ∈ R2. In this situation, a solution (u1, u2) to
(1.1.2) corresponds to a critical point of energy functional F : H1(RN ) × H1(RN ) → R
defined by

F (u1, u2) : = 1
2

∫
RN
|∇u1|2 + λ1|u1|2 dx+ 1

2

∫
RN
|∇u2|2 + λ2|u2|2 dx
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−
2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx.

Recently, considerable literature has been devoted to this subject concerning the existence
and phase separation of solutions, see for instance [5, 6, 15, 37, 39, 41, 42, 43, 44, 46, 60,
71, 79, 81, 98, 102, 107, 108, 110, 112] and references therein.

The second one is motivated by the fact that the L2-norm of solution to the Cauchy
problem of (1.1.1) is conserved along time, i.e. for any t > 0,∫

RN
|Ψi(t, x)|2 dx =

∫
RN
|Ψi(0, x)|2 dx for i = 1, 2.

Thus it is of particular interest to search for solutions to (1.1.2) having prescribed L2-
norm, namely, for given a1, a2 > 0, to find (λ1, λ2) ∈ R2 and (u1, u2) ∈ H1(RN )×H1(RN )
satisfying (1.1.2), together with normalized condition∫

RN
|u1|2 dx = a1,

∫
RN
|u2|2 dx = a2. (1.1.3)

Physically, such solutions are often referred as normalized solutions. In this case, we
emphasize that (λ1, λ2) are unknown and appear as Lagrange multipliers. For convenience
of terminology, we shall identify a solution (λ1, λ2, u1, u2) to (1.1.2)-(1.1.3) with (u1, u2),
where (u1, u2) is obtained as a critical point of energy functional J : H1(RN )×H1(RN )→
R defined by

J(u1, u2) := 1
2

∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx

on the constraint S(a1, a2) := S(a1)× S(a2), here

S(a) := {u ∈ H1(RN ) :
∫
RN
|u|2 dx = a > 0}.

The purpose of Chapter 2 and Chapter 3 is to investigate the existence and orbital
stability of solutions to (1.1.2)-(1.1.3). In Chapter 2, we deal with the existence and orbital
stability of normalized solutions in a case where the energy functional J is bounded from
below on S(a1, a2). In Chapter 3, we consider the multiple existence of normalized solutions
in another two cases, in which the energy functional J becomes unbounded from below on
S(a1, a2).

1.1.1 Compactness of any minimizing sequence

In Chapter 2, we study the existence and orbital stability of solutions to (1.1.2)-(1.1.3)
under the assumption

(H0) µ1, µ2, β > 0, 2 < p1, p2 < 2 + 4
N , r1, r2 > 1, r1 + r2 < 2 + 4

N .
Note that under the assumption (H0) the energy functional J is bounded from below on
S(a1, a2). Thus it is natural to introduce the following minimization problem

M(a1, a2) := inf
(u1,u2)∈S(a1,a2)

J(u1, u2) < 0. (1.1.4)

Clearly, minimizers to (1.1.4) correspond to critical points of energy functional J restricted
to S(a1, a2), then solutions to (1.1.2)-(1.1.3). Hence our aim is to look for minimizers to
(1.1.4), whose existence is a straightforward consequence of the following statement.
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Theorem 1.1.1. Let N ≥ 1. Assume that (H0) holds. Then any minimizing sequence to
(1.1.4) is compact, up to translation, in H1(RN ) ×H1(RN ). In particular, there exists a
solution to (1.1.2)-(1.1.3) as a minimizer to (1.1.4).

Remark 1.1.2. When N = 1, µ1, µ2, β > 0, p1 = p2 = 4, r1 = r2 = 2, the authors [91]
studied the compactness of any minimizing sequence to (1.1.4), which is indeed based on
the Lions’ concentration compactness principle [73, 74]. When N ≥ 1, we mention the
paper [100], where the compactness of any minimizing sequence was discussed by taking
advantage of the coupled rearrangement arguments, which is alterantive to the Lions’ con-
centration compactness principle. However, embedding the minimization problem (1.1.4)
into the one as presented in [100], the compactness result is only valid under condition
(H0) with r1, r2 ≥ 2. Our Theorem 1.1.1 provides a fairly complete result concerning the
compactness of any minimizing sequence to (1.1.4) under more general assumption (H0)
in any dimension.

Let {(un1 , un2 )} ⊂ S(a1, a2) be an arbitrary minimizing sequence to (1.1.4). To see
the compactness of {(un1 , un2 )} in H1(RN ) × H1(RN ), if employing the Lions’ concentra-
tion compactness principle [73, 74], one has to rule out the possibilities of vanishing and
dichotomy. Notice that M(a1, a2) < 0 and the energy functional J is invariant under
translations, then vanishing can be excluded easily as a result of the Lions’ concentration
compactness Lemma [74, Lemma I.1]. Next in order to prevent dichotomy from occurring,
the heuristic argument is to establish the following strict subadditivity inequality

M(a1, a2) < M(b1, b2) +M(a1 − b1, a2 − b2), (1.1.5)

where 0 ≤ bi < ai for i = 1, 2, (b1, b2) 6= (0, 0) and (b1, b2) 6= (a1, a2).

To deal with only one constraint problem, several techniques have been developed
to establish strict subadditivity inequality. Most are based on some homogeneity type
properties, such as in autonomous case, one can make use of scaling technique to check
related strict subadditivity inequality, we refer the readers to [19, 40, 101]. However, when
it comes to multiple constraints problem, this technique is generally not applicable, thus
how to achieve strict subadditivity inequality in this situation is much less understood in
addition to some special cases, where constraints cannot be chosen independently, see for
instance [89, 90, 93]. In addition, when N = 1, we mention the papers [23, 24, 91], where
the authors established strict subadditivity inequality by means of crucially applying [3,
Lemma 2.10], which depends on the original idea as introduced in [33]. The readers can
also refer to [51] for an application of [3, Lemma 2.10] to a minimization problem in the
case of dimension N ≥ 1. This result is however available under the condition that one can
identify a radially symmetric minimizing sequence to associated minimization problem.

Coming back to the minimization problem (1.1.4), it seems hard to check (1.1.5). For
this reason, as inspired by Ikoma [61], we propose the coupled rearrangement arguments to
discuss the compactness of minimizing sequence {(un1 , un2 )}, whose original spirit however
comes from Shibata [100].

We now sketch the virtue to prove Theorem 1.1.1. Firstly, observe that under the
assumption (H0), the minimizing sequence {(un1 , un2 )} is bounded in H1(RN ) ×H1(RN ).
By using the Lions’ concentration compactness Lemma [74, Lemma I.1], we then denote by
(u1, u2) 6= (0, 0) the weak limit of {(un1 , un2 )}, up to translation, inH1(RN )×H1(RN ). Next
in light of the coupled rearrangement arguments, we are able to prove that (un1 , un2 ) →
(u1, u2), up to translation, in Lp(RN ) × Lp(RN ) for 2 < p < 2∗. This joints with the
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weakly lower semicontinuous of norm, we see that J(u1, u2) ≤ M(a1, a2). At this point,
to obtain the compactness of minimizing sequence {(un1 , un2 )}, it remains to prove that
(u1, u2) ∈ S(a1, a2). This is guaranteed by the property that if 0 ≤ āi < ai for i = 1, 2
and (ā1, ā2) 6= (a1, a2), then

M(a1, a2) < M(ā1, ā2). (1.1.6)

Remark 1.1.3. When N ≥ 2, if one is only interested in the existence of minimizers
to (1.1.4), the paper [8] should be mentioned. It was assumed that (H0) holds, in ad-
dition p1, p2 < 2 + 2

N−2 if N ≥ 5, the authors [8] successfully proved the existence of
minimizers to (1.1.4) by essentially making use of the Liouville’s type results. We now ex-
tend this result under (H0). Indeed, this can be done by considering a radially symmetric
minimizing sequence {(un1 , un2 )} ⊂ S(a1, a2) to (1.1.4). Such minimizing sequence is ob-
tained by the Schwarz’s rearrangement of a minimizing sequence. Recall that the embedding
H1
rad(RN ) ↪→ Lp(RN ) is compact for N ≥ 2, 2 < p < 2∗, where H1

rad(RN ) stands for a sub-
space of H1(RN ), which consists of radially symmetric functions in H1(RN ). Noticing first
the assumption (H0) and the Lions’ concentration compactness Lemma, we then denote by
(u1, u2) 6= (0, 0) the weak limit of {(un1 , un2 )}, up to translation, in H1

rad(RN )×H1
rad(RN ).

Thus by using the compact embedding and the weakly lower semicontinuous of norm, it then
readily follows that J(u1, u2) ≤M(a1, a2). At this point, the fact that (u1, u2) ∈ S(a1, a2)
comes from the property (1.1.6). Hence the claim follows.

Alternatively, it is possible to establish the existence of minimizers to (1.1.4) by working
directly in H1

rad(RN )×H1
rad(RN ). For more details, see Remark 2.3.4.

Defining the set

GM (a1, a2) := {(u1, u2) ∈ S(a1, a2) : J(u1, u2) = M(a1, a2)},

we now show the orbital stability of minimizers to (1.1.4) in the following sense.

Definition 1.1.4. We say the set G(a1, a2) is orbitally stable, i.e. for any ε > 0, there
exists δ > 0 so that if (Ψ1,0,Ψ2,0) ∈ H1(RN )×H1(RN ) satisfies

inf
(u1,u2)∈G(a1,a2)

‖(Ψ1,0,Ψ2,0)− (u1, u2)‖ ≤ δ,

then
sup
t∈[0,T )

inf
(u1,u2)∈G(a1,a2)

‖(Ψ1(t),Ψ2(t))− (u1, u2)‖ ≤ ε,

where (Ψ1(t),Ψ2(t)) is a solution to the Cauchy problem of (1.1.1) with initial datum
(Ψ1,0,Ψ2,0), T denotes the maximum existence time of the solution, and ‖ · ‖ stands for
the standard norm in the Sobolev space H1(RN )×H1(RN ).

Based upon Theorem 1.1.1, making use of the elements in Cazenave and Lions [36], we
are able to prove the following result.

Theorem 1.1.5. Let N ≥ 1. Assume that (H0) and the local existence and uniqueness of
the Cauchy problem to (1.1.1) hold. Then the set GM (a1, a2) is orbitally stable.

Remark 1.1.6. Note that under the assumption (H0), the local existence and uniqueness
to the Cauchy problem of (1.1.1) are unknown. The point being that when 1 < r1, r2 < 2,
the interaction parts are not Lipschitz continuous. Thus the orbital stability of minimizers
to (1.1.4) is under the condition. However, let us point out that when N = 1, 2 ≤ r1 =
r2 < 3, the local existence to the Cauchy problem of (1.1.1) holds, see [88].
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1.1.2 Existence of multiple normalized solutions

In Chapter 3, we consider the existence of multiple solutions to (1.1.2)-(1.1.3) in the
following two cases,

(H1) µ1, µ2, β > 0, 2 < p1, p2 < 2 + 4
N , r1, r2 > 1, 2 + 4

N < r1 + r2 < 2∗ ;

(H2) µ1, µ2, β > 0, 2 + 4
N < p1, p2 < 2∗, r1, r2 > 1, r1 + r2 < 2 + 4

N .

Recall that under the assumption (H0) the energy functional J is bounded from below
on S(a1, a2), then one can obtain a solution to (1.1.2)-(1.1.3) as a global minimizer to
(1.1.4) through studying the compactness of any minimizing sequence to (1.1.4), see [58].
In contrast, under the assumption (H1) or (H2), the energy functional J is not bounded
from below on S(a1, a2) anymore. Indeed, to see this, for any t > 0 let us introduce the
scaling of u ∈ S(a) as

ut(x) := t
N
2 u(tx).

Clearly, ‖ut‖2 = ‖u‖2 = a. For any (u1, u2) ∈ S(a1, a2), a straightforward calculation
leads to,

J(ut1, ut2) = t2

2

∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

t(
pi
2 −1)N µi

pi

∫
RN
|ui|pi dx

− βt(
r1+r2

2 −1)N
∫
RN
|u1|r1 |u2|r2 dx.

(1.1.7)

By consequence, if µ1, µ2, β > 0, when either pi > 2+ 4
N for some i = 1, 2 or r1+r2 > 2+ 4

N ,
it then follows from (1.1.7) that J becomes unbounded from below on S(a1, a2). As a
result, under the assumption (H1) or (H2), it is no more possible to look for a solution to
(1.1.2)-(1.1.3) as a global minimizer to (1.1.4).

When global minimizer to (1.1.4) fails to exist, finding a solution to (1.1.2)-(1.1.3) is
more delicate and involved. In this situation, minimax methods come into play. We now
point out some literature in this direction. When 2 ≤ N ≤ 4, µ1, µ2, β > 0, if either
2 < p1 < 2 + 4

N < p2 < 2∗, 2 + 4
N < r1 + r2 < 2∗, r2 > 2 or 2 + 4

N < p1, p2, r1 + r2 < 2∗, the
authors [8] studied the existence of solution to (1.1.2)-(1.1.3) with the aid of the mountain
pass arguments, see also [12]. When N = 3, µ1, µ2 > 0, β < 0, p1 = p2 = 4, r1 = r2 = 2,
by using a natural constraint approach, the existence of solution to (1.1.2)-(1.1.3) was
established in [13]. In addition, concerning a multiplicity result to (1.1.2)-(1.1.3), we refer
the reader to [14]. Let us also mention the papers [86, 87, 94], where the authors considered
the existence of normalized solutions to problems confined on a bounded domain in RN or
with a trapping potential. While a periodic potential is included to problem, the existence
of normalized solutions was discussed in [1].

As mainly motivated by [8, 12], we investigate the existence of multiple solutions to
(1.1.2)-(1.1.3) under two new assumptions (H1) and (H2). Our aim is to prove that
(1.1.2)-(1.1.3) admits two positive solutions when N ≥ 1 and (H1) or (H2) holds. Up to
our knowledge, it is the first time that a multiplicity result to (1.1.2)-(1.1.3) is obtained
when N ≥ 1 and β > 0.

In order to address our results, for any ρ > 0 let us introduce the notation,

B(ρ) := {(u1, u2) ∈ H1(RN )×H1(RN ) :
∫
RN
|∇u1|2 + |∇u2|2 dx < ρ}.
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Firstly, on account of (1.1.7), under (H1) or (H2) there holds

inf J(u1, u2) < 0 for (u1, u2) ∈ S(a1, a2) ∩ B(ρ), (1.1.8)

see Lemma 3.2.4. Furthermore, there exist β0 = β0(a1, a2) > 0 and ρ0 = ρ0(a1, a2) > 0
such that

inf J(u1, u2) > 0 for (u1, u2) ∈ S(a1, a2) ∩ ∂B(ρ0) (1.1.9)

holds for any 0 < β ≤ β0, see Lemma 3.3.1. Together (1.1.8) with (1.1.9), then there may
exist a local minimizer for the energy functional J restricted to S(a1, a2) ∩ B(ρ0). Hence,
for 0 < β ≤ β0 we introduce the following localized minimization problem

m(a1, a2) := inf
(u1,u2)∈S(a1,a2)∩B(ρ0)

J(u1, u2). (1.1.10)

Obviously, minimizers to (1.1.10) are critical points for the energy functional J restricted
to S(a1, a2), i.e. solutions to (1.1.2)-(1.1.3). Thus our first solution to (1.1.2)-(1.1.3) is
obtained as a local minimizer to (1.1.10), whose existence is insured by the study the
compactness of any minimizing sequence to (1.1.10) in H1(RN )×H1(RN ).

In addition, for any (u1, u2) ∈ S(a1, a2), it follows from (1.1.7) that J(ut1, ut2) → −∞
as t → ∞ when (H1) or (H2) holds, and note also that (ut1, ut2) /∈ B(ρ0) for t > 0 large
enough. This property along with (1.1.9) reveal that there may exist other critical points
for the energy functional J restricted to S(a1, a2). In fact, under the assumption (H1),
the second critical point is obtained through the mountain pass arguments, while under
the assumption (H2), the second one is achieved by means of a linking type procedure.
Let us now state our main results.

Theorem 1.1.7. Let a1, a2 > 0 be given and assume that (H1) holds. Then there exist
β0 = β0(a1, a2) > 0 and ρ0 = ρ0(a1, a2) > 0 such that for any 0 < β ≤ β0,

(i) if N ≥ 1, any minimizing sequence to (1.1.10) is compact, up to translation, in
H1(RN )×H1(RN ). In particular, there exists a positive solution (v1, v2) to (1.1.2)-
(1.1.3) with (v1, v2) ∈ B(ρ0) and J(v1, v2) < 0;

(ii) If either 2 ≤ N ≤ 4 or N ≥ 5 with p1, p2 ≤ r1 + r2 − 2
N or |p1 − p2| ≤ 2

N , there
exists a second positive solution (u1, u2) to (1.1.2)-(1.1.3) with J(u1, u2) > 0.

Theorem 1.1.8. Let a1, a2 > 0 be given and assume that (H2) holds. Then there exist
β0 = β0(a1, a2) > 0 and ρ0 = ρ0(a1, a2) > 0 such that for any 0 < β ≤ β0,

(i) if either 1 ≤ N ≤ 4 or N ≥ 5, ri >
( r1+r2

2 − 1
)
N for i = 1, 2, any minimizing

sequence to (1.1.10) is compact, up to translation, in H1(RN )×H1(RN ). In partic-
ular, there exists a positive solution (v1, v2) to (1.1.2)-(1.1.3) with (v1, v2) ∈ B(ρ0)
and J(v1, v2) < 0;

(ii) If 2 ≤ N ≤ 4, there exists a second positive solution (u1, u2) to (1.1.2)-(1.1.3) with
J(u1, u2) > 0.

Remark 1.1.9. i) The value of β0 in Theorem 1.1.7 and Theorem 1.1.8 can be explicitly
computed in terms of N, pi, ai, ri for i = 1, 2, instead of being obtained through a limit
process. Additionally, for any given β > 0, we can assume that β ≤ β0 at the expense
of taking a1, a2 > 0 sufficiently small, because β0(a1, a2) → ∞ as a1, a2 → 0, to see this
property, we refer Lemma 3.3.1. This indeed implies that for any given β > 0, there
are two positive solutions to (1.1.2)-(1.1.3) under the assumptions of Theorem 1.1.7 or
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Theorem 1.1.8 for a1, a2 > 0 sufficient small. Finally, let us also point out that our results
are not a consequence of perturbation arguments.

ii) Notice that the existence of the second solution to (1.1.2)-(1.1.3) in Theorem 1.1.7
(ii) and Theorem 1.1.8 (ii) is under the condition N ≥ 2, this is because the second one is
established in the framework of radially symmetric functions space H1

rad(RN )×H1
rad(RN ),

and the compact embedding H1
rad(RN ) ↪→ Lp(RN ) for 2 < p < 2∗ holds for N ≥ 2.

iii) When N ≥ 2, we conjecture that the existence of the second solution to (1.1.2)-
(1.1.3) remains valid by only assuming (H1), we refer to Remark 3.4.5 for a discussion
concerning this subject.

To establish the compactness of any minimizing sequence to (1.1.10) under the assump-
tion (H1) or (H2), we essentially make use of the coupled rearrangement arguments due to
Shibata [100] as developed by Ikoma [61]. Assume {(vn1 , vn2 )} be an arbitrary minimizing
sequence to (1.1.10). Note that m(a1, a2) < 0, from the Lions’ concentration compactness
Lemma [74, Lemma I.1], we then denote by (v1, v2) 6= (0, 0) the weak limit of {(vn1 , vn2 )},
up to translation, in H1(RN )×H1(RN ). In the following, using the coupled rearrangement
arguments,one can show that (vn1 , vn2 ) → (v1, v2), up to translation, in Lp(RN ) × Lp(RN )
for 2 < p < 2∗. Nevertheless, unlike the global minimization problem (1.1.4), to prove
this, one faces a difficulty arising from the fact that the sum of two elements in B(ρ0) may
not belong to B(ρ0). This causes more technique to discuss the possibility of dichotomy.
To overcome this difficulty, one needs to analyze carefully some properties of the energy
functional J restricted to S(a1, a2)∩B(ρ0). Finally, to see the compactness of minimizing
sequence {(vn1 , vn2 )}, it remains to assert that (v1, v2) ∈ S(a1, a2). Reasoning as the proof
of Theorem 1.1.1, under the assumption (H1), this is insured by the fact thatm(a1, a2) sat-
isfies the property (1.1.6). However, under the assumption (H2), it is unknown if m(a1, a2)
satisfies (1.1.6), thus, in this situation we apply the Liouville’s type results, see Lemma
3.2.2, which is however available when N ≤ 4, and in order to deal with the case N ≥ 5,
a restriction is eventually imposed on the range of r1, r2.

The proofs of Theorem 1.1.7 (ii) and Theorem 1.1.8 (ii) depend on the virtue as pre-
sented in [8, 12]. Roughly speaking, the proofs can be divided into three steps. Firstly,
one requires to identify a suspected critical level. This can be done by introducing a
minimax structure of mountain pass type under the assumption (H1), and linking one
under the assumption (H2). Secondly, one needs to find a bounded Palais-Smale sequence
{(un1 , un2 )} ⊂ S(a1, a2) for the energy functional J restricted to S(a1, a2) at the energy level.
To this end, the classical methods developed to derive the boundedness of any Palais-Smale
sequence for unconstrained problem collapse. Actually, this step benefits from the presence
of a Pohozaev type constraint, on which the energy functional J is coercive. Thus taking
advantage of this constraint and adapting the approach introduced in [63] which consists
in adding an artificial variable within the variational procedure, one can end this step.
Having obtained a bounded Palais-Smale sequence {(un1 , un2 )} for the energy functional J
restricted to S(a1, a2), we denote by (u1, u2) its weak limit in H1(RN )×H1(RN ), and we
immediately find that (u1, u2) solves (1.1.2) with some (λ1, λ2) ∈ R2, see Lemma 3.2.7.
At this point, the last step is to show that (u1, u2) ∈ S(a1, a2). It is this step where the
limitation on dimension was imposed in [8, 12, 13]. Because in this step the authors of the
literature took into account the Liouville’s type results and also used the property that
the scalar problem

−∆w − λw = µ|w|p−2w, w ∈ S(a) for µ > 0 (1.1.11)
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has a unique positive radial solution for 2 < p < 2∗. We now relax these two restrictions
under the assumption (H1), thus Theorem 1.1.7 (ii) allows to consider the case N ≥ 5.
This is essentially based on the fact that when 2 < p < 2 + 4

N , µ > 0,

−∞ < inf
u∈S(a)

I(u) < 0, (1.1.12)

where I(u) := 1
2
∫
RN |∇u|2 dx−

µ
p

∫
RN |u|p dx.

We now continue the proof of the last step. Under the assumption (H1), when 2 ≤
N ≤ 4, the fact that (u1, u2) ∈ S(a1, a2) is a direct consequence of the Liouville’s type
results. When N ≥ 5, assuming by contradiction that (u1, u2) ∈ S(ā1, ā2) for 0 ≤ āi ≤ ai
for i = 1, 2 and (ā1, ā2) 6= (a1, a2). Thus one can crucially apply the property (1.1.12) and
Lemma 3.4.4 to construct a path, on which the maximum of J is strictly below mountain
pass level. We then reach a contradiction. Here the path is constructed by “adding some
masses" technique somehow in the spirit of [62], but using the coupled rearrangement
arguments.

On the contrary, when p > 2 + 4
N , µ > 0, the property (1.1.12) is violated, hence

to prove that (u1, u2) ∈ S(a1, a2) under the assumption (H2), it indeed depends on the
Liouville’s type results, which induces a restriction on dimension N ≤ 4.

We now define the set

Gm(a1, a2) := {(u1, u2) ∈ S(a1, a2) ∩ B(ρ0) : J(u1, u2) = m(a1, a2)}.

In view of Remark 2.1.5, as a counterpart one to Theorem 1.1.1, we have the orbital
stability of minimizers to (1.1.10).

Theorem 1.1.10. Let N ≥ 1. Assume that (H1) or (H2) with either 1 ≤ N ≤ 4 or
N ≥ 5, ri >

( r1+r2
2 − 1

)
N for i = 1, 2, and the local existence and uniqueness of the

Cauchy problem to (1.1.1) hold. Then the set Gm(a1, a2) is orbitally stable.

1.2 Normalized solutions for fourth-order nonlinear Schrödinger
equation

In Chapter 4, we deal with a class of fourth-order nonlinear Schrödinger equations in
R× RN ,

i∂tψ − γ∆2ψ + ∆ψ + |ψ|2σψ = 0, (1.2.1)

where γ > 0.

The classical nonlinear Schrödinger equation with pure power nonlinearity in R× RN
is given by

i∂tψ + ∆ψ + |ψ|2σψ = 0.

It is well known that when 0 < σN < 2, any solution to the Cauchy problem of (1.2) with
initial datum in H1(RN ) exists globally in time, and standing waves are orbitally stable.
While σN ≥ 2, blowup in finite time may occur, then standing waves become singular,
see for instance [35].

In order to regularize and stabilize solution to the Cauchy problem of (1.2), Karpman
and Shagalov [70] introduced a small fourth-order dispersion term to (1.2), i.e. they
considered the fourth-order nonlinear Schrödinger equation (1.2.1), see also [64]. Using
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a combination of stability analysis and numerical simulations, they showed that standing
waves are orbitally stable for any γ > 0, when 0 < σN < 2, and for γ > 0 small,
when 2 ≤ σN < 4. Whereas σN ≥ 4, they observed an unstable phenomenon. This
result indicates that adding a small fourth-order dispersion term to (1.2) helps to stabilize
standing waves.

In nonlinear optics, the classical nonlinear Schrödinger equation (for example (1.2))
is traditionally derived from the scalar nonlinear Helmhotz equation through so-called
paraxial approximation. The fact that the solution to the Cauchy problem of (1.2) with
initial datum in H1(RN ) may blow up in finite time suggests that some small terms
neglected by the paraxial approximation which play an important role to prevent this
phenomenon. Therefore a small fourth-order dispersion term was proposed in [49] as a
nonparaxial correction, see also [9, 10, 11], which eventually gives rise to the fourth-order
nonlinear Schrödinger equations (1.2.1). Applying the arguments as developed in [111],
when 0 < σN < 4 the authors [49] proved that any solution to the Cauchy problem of
(1.2.1) with initial datum in H2(RN ) exists globally in time.

Nevertheless, despite of these physical relevance, the dispersion equation (1.2.1) is far
from being well understood. There are only few papers studying (1.2.1), for instance
[20, 27, 28, 30, 85, 95, 96, 97].

From a physical and mathematical point of view, a center issue to study (1.2.1) consists
in standing waves, namely solutions with the form of ψ(t, x) = eiαtu(x) for α ∈ R. Then
u satisfies the following elliptic equation

γ∆2u−∆u+ αu = |u|2σu. (1.2.2)

In order to study solutions to (1.2.2), two possible options have been developed. The first
one is to investigate solutions to (1.2.2) with the given parameter α ∈ R. In this case, a
solution to (1.2.2) is obtained as a critical point of energy functional F : H2(RN ) → R
given by

F (u) := γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx+ α

2

∫
RN
|u|2 dx− 1

2σ + 2

∫
RN
|u|2σ+2 dx,

and of particular interest is to investigate least energy solutions, i.e. solutions to (1.2.2)
minimize the energy functional F among all solutions. Concerning this subject, we refer
to [31].

Note that the L2-norm of the solution to the Cauchy problem of (1.2.1) is conserved
along time, i.e. for any t > 0,∫

RN
|ψ(t, x)|2 dx =

∫
RN
|ψ(0, x)|2 dx.

As motivated by this physical fact, the second one is to research solutions to (1.2.2) having
prescribed L2-norm, namely, for given c > 0, to find α ∈ R and u ∈ H2(RN ) satisfying
(1.2.2), together with normalized condition∫

RN
|u|2 dx = c. (1.2.3)

Conventionally, the solutions are referred as normalized solutions, In this situation, the
parameter α is unknown and determined as Lagrange multiplier. For the sake of simplicity,
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we identify a solution (α, u) to (1.2.2)-(1.2.3) with u, where u is obtained as a critical point
of energy functional E : H2(RN )→ R defined by

E(u) := γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− 1

2σ + 2

∫
RN
|u|2σ+2 dx

on the constraint
S(c) := {u ∈ H2(RN ) :

∫
RN
|u|2 dx = c}.

From now on, we are concerned with normalized solutions to (1.2.2), i.e. solutions to
(1.2.2)-(1.2.3). Observe that when 0 < σN < 4, the energy functional E is bounded from
below on S(c), the authors [28] then studied the following minimization problem

m(c) := inf
u∈S(c)

E(u). (1.2.4)

In this case, it is possible to find a solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). We
mention the following result as obtained in [28].

Theorem 1.2.1. If 0 < σN < 2, then m(c) is achieved for any c > 0. If 2 ≤ σN < 4,
then there exists a critical mass c̃ = c̃(σ,N) such that
(i) m(c) is not achieved if c < c̃;
(ii) m(c) is achieved if c > c̃ and σ = 2/N ;
(iii) m(c) is achieved if c ≥ c̃ and σ 6= 2/N .
Moreover, if σ ∈ N+ and m(c) is achieved, then there exists at least one radially symmetric
minimizer to (1.2.4).

Remark 1.2.2. The appearance of a critical mass when 2 ≤ σN < 4 is linked to the fact
that every term of the energy functional E behaves differently with respect to dilations.

In Chapter 4, as inspired by [28], our aim is to study solutions to (1.2.2)-(1.2.3) under
the mass critical case σN = 4 and the mass supercritical case 4 < σN < 4∗, where
4∗ := 4N

(N−4)+ . Firstly, we note that, in these two cases it is no more possible to look for a
solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). Indeed, to see this, for any u ∈ S(c),
λ > 0, let us define the scaling of u as

uλ(x) := λ
N
4 u(
√
λx).

By direct calculations, one can check that ‖uλ‖2 = ‖u‖2 and

E(uλ) = γλ2

2

∫
RN
|∆u|2 dx+ λ

2

∫
RN
|∇u|2 dx− λσN/2

2σ + 2

∫
RN
|u|2σ+2 dx. (1.2.5)

Thus, when 4 < σN < 4∗, we find that E(uλ) → −∞ as λ → ∞, then m(c) = −∞ for
any c > 0.

We now turn to the case σN = 4. To prove the claim, we first recall the Gagliardo-
Nirenberg’s inequality (see [92]) for u ∈ H2(RN )

‖u‖2σ+2
2σ+2 ≤ BN (σ)‖∆u‖

σN
2

2 ‖u‖
2+2σ−σN2
2 , (1.2.6)

where  0 ≤ σ, if N ≤ 4,

0 ≤ σ < 4
N − 4 , if N ≥ 5,

and BN (σ) is a constant depending on σ and N . We thus obtain the following result.
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Theorem 1.2.3. Let N ≥ 1, σN = 4. There exists c∗N > 0 such that

m(c) = inf
u∈S(c)

E(u) =
{

0, 0 < c ≤ c∗N ,
−∞, c > c∗N .

For c ∈ (0, c∗N ), (1.2.2)-(1.2.3) has no solution, and in particular m(c) is not achieved. In
addition, c∗N = (γC(N))

N
4 where

C(N) := N + 4
NBN ( 4

N )
, (1.2.7)

and BN (σ) is the constant in (1.2.6).

In view of Theorem 1.2.3, when σN = 4, and c > cN∗, it is also unlikely to find a
solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4).

From previous observations, since minimizer to (1.2.4) fails to exist under the mass
critical and supercritical case, one will see that it is more delicate to seek for solutions
to (1.2.2)-(1.2.3) in these two cases. In comparison with unconstrained problem, when
facing similar issue, one can search for a solution as a minimizer to associated energy
functional restricted to the Nehari manifold. However, in our situation, no Nehari manifold
is available because α is unknown. Thus to overcome this difficulty, we introduce a natural
constraintM(c) given by

M(c) := {u ∈ S(c) : Q(u) = 0},

where
Q(u) := γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− σN

2(2σ + 2)

∫
RN
|u|2σ+2 dx.

Using (1.2.5), we immediately see that

Q(u) = ∂E(uλ)
∂λ

|λ=1. (1.2.8)

thus, heuristically,M(c) contains all critical points for E restricted to S(c), i.e. all solu-
tions to (1.2.2)-(1.2.3). This fact is to be rigourously proved in Lemma 4.10.1. Actually,
the condition Q(u) = 0 corresponds to a Pohozaev type identity related to (1.2.2)-(1.2.3),
and M(c) is regarded as the Pohozaev manifold. Furthermore, borrowing the key spirit
from Bartsch and Soave [13], we are able to prove that a critical point for E restricted
toM(c) is a critical point for E restricted to S(c), then a solution to (1.2.2)-(1.2.3), see
Lemma 4.3.5. In addition, there holds that E(u) ≥ 0 for u ∈M(c). For these reasons, we
now introduce the following minimization problem

γ(c) := inf
u∈M(c)

E(u). (1.2.9)

We shall look for a minimizer to (1.2.9). Note that, if it exists, it then corresponds to a
ground state solution to (1.2.2)-(1.2.3) in the sense that it minimizes the energy functional
E among all solutions to (1.2.2)-(1.2.3) with same L2-norm.

For convenience, we define c0 ∈ R as

c0 :=
{

0, if 4 < σN < 4∗,
c∗N , if σN = 4,

where c∗N is given in Theorem 1.2.3.
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Theorem 1.2.4. Let N ≥ 1, 4 ≤ σN < 4∗. Then there exists cσ,N > c0 such that for any
c ∈ (c0, cσ,N ), (1.2.2)-(1.2.3) has a ground state solution uc satisfying E(uc) = γ(c), and
the associated Lagrange parameter αc is strictly positive. Moreover
(i) cσ,1 = cσ,2 =∞, and cσ,3 =∞ if 4/3 ≤ σ < 2;

(ii) When σN = 4, then cσ,4 =∞, and cσ,N ≥
(

N
N−4

)N
4 c∗N if N ≥ 5.

The proof of Theorem 1.2.4 crucially relies on a key element Lemma 4.3.5. Using this
result and the Ekeland variational principle [47], we then obtain a Palais-Smale sequence
{un} ⊂ M(c) for E restricted to S(c) at level γ(c) as a minimizing sequence to (1.2.9).
Our aim is to prove that {un} is compact, up to translation, in H2(RN ). Firstly, notice
that E is coercive on M(c), see Lemma 4.3.1, thus {un} is bounded in H2(RN ), and it
readily follows that there is uc ∈ H2(RN ) such that un ⇀ uc, up to a subsequence and
translation, in H2(RN ). Furthermore, there exists αc ∈ R such that uc satisfies

γ∆2uc −∆uc + αcuc = |uc|2σuc. (1.2.10)

At this point, proving the compactness of {un} then reduces to show that the strong
convergence of {un} in L2σ+2(RN ) and the Lagrange parameter αc > 0, see Lemma 4.3.6.
The strong convergence of {un} in L2σ+2(RN ) is indeed beneficial from the fact that the
function c 7→ γ(c) is nonincreasing on (c0,∞), see Lemma 4.4.1. The restriction on the
size of c is to insure that αc > 0, see Lemma 4.2.1.

Taking advantage of the genus theory, we obtain the existence of multiple radial solu-
tions to (1.2.2)-(1.2.3).

Theorem 1.2.5. Assume N ≥ 2.
(i) If 4 < σN < 4∗, then for any c ∈ (0, cσ,N ), where cσ,N is defined in Theorem 1.2.4,

(1.2.2)-(1.2.3) admits infinitely many radial solutions;
(ii) If 2 ≤ N ≤ 4, σN = 4, then for any k ∈ N+, there exists a ck > c∗N such that, for

any c ≥ ck, (1.2.2)-(1.2.3) admits at least k radial solutions.

To establish Theorem 1.2.5, we work in the subspace H2
rad(RN ) of H2(RN ), which

consists of radially symmetric functions in H2(RN ). Accordingly, we define Mrad(c) :=
M(c) ∩H2

rad(RN ).

The proof of Theorem 1.2.5 is based on the Kranosel’skii genus theory. The key step
is to prove that E restricted to Mrad(c) satisfies the Palais-Smale condition. To this
end, let us consider an arbitrary Palais-Smale sequence {un} ⊂ Mrad(c) for E restricted
to Mrad(c). Our purpose is to prove that {un} is compact in H2(RN ). Noting the
coerciveness of E onMrad(c), we then denote by uc its weak limit in H2(RN ). Moreover,
there exists a αc ∈ R such that uc satisfies (1.2.10). The fact that the strong convergence of
{un} in L2σ+2(RN ) is given here for free, because the embedding H2

rad(RN ) ↪→ L2σ+2(RN )
is compact for N ≥ 2. Thus reasoning as Theorem 1.2.4, to show the compactness it
remains to check that the Lagrange parameter αc is strictly positive, which is indeed
guaranteed by Lemma 4.2.1. The second step is to show that the setM(c) is sufficiently
large. This is always the case when 4 < σN < 4∗ for any c > 0. However, when σN = 4,
the set Mrad(c) may be too small. In particular, it shrinks to the empty set as c → c∗N .
To obtain a given number of solutions, we require that c > c∗N is sufficiently large.

The monotonicity of the function c 7→ γ(c) on (c0,∞) is crucially used in the proof
of Theorem 1.2.4. We now present additional properties of this function, its behaviors
depend in an essential way on the couple (σ,N).
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Theorem 1.2.6. Assume N ≥ 1. Let 4 ≤ σN < 4∗. The function c 7→ γ(c) is continuous
for any c > c0, is decreasing on (c0,∞), and limc→c+

0
γ(c) =∞. In addition,

(i) if N = 1, 2, N = 3 with 4
3 ≤ σ < 2 or N = 4 with σ = 1, then c 7→ γ(c) is strictly

decreasing and limc→∞ γ(c) = 0;
(ii) If N = 3 with σ ≥ 2 or N = 4 with σ > 1, then limc→∞ γ(c) := γ(∞) > 0 and

γ(c) > γ(∞) for all c > c0;
(iii) If N ≥ 5, then limc→∞ γ(c) := γ(∞) > 0, and there exists a c∞ > c0 such that

γ(c) = γ(∞) for all c ≥ c∞.

Note that Theorem 1.2.6, the difference of behavior of γ(c) as c→∞ between N ≤ 4
and N ≥ 5 arises from the fact that the equation

γ∆2u−∆u = |u|2σu (1.2.11)

does not admit least energy solution in H2(RN ) when N ≤ 4, but it does when N ≥ 5,
see Proposition 4.6.5 for more details.

Next when σN = 4, we show a concentration behavior of ground state solutions to
(1.2.2)-(1.2.3) as c approaches to c∗N from above.

Theorem 1.2.7. Let N ≥ 1, σN = 4, and {cn} ⊂ R be a sequence satisfying for any
n ∈ N, cn > c∗N with cn → c∗N as n → ∞, and un be a ground state solution to (1.2.2)-
(1.2.3) for c = cn at level γ(cn). Then there exist a sequence {yn} ⊂ RN and a least energy
solution u to the equation

γ∆2u+ u = |u|
8
N u,

such that up to a subsequence,

(
ε4nc
∗
NN

4

)N
8

un

(ε4nc∗NN
4

) 1
4

x+ εnyn

→ u in Lq(RN ) as n→∞

for 2 ≤ q < 2N
(N−4)+ , where εn → 0 as n→∞.

Proposition 1.2.7 gives a description of ground state solution to (1.2.2)-(1.2.3) as cn
approaches to c∗N from above. Roughly speaking, it shows for n ∈ N large enough,

un(x) ≈
(

4
ε4nc
∗
NN

)N
8

u

( 4
ε4nc
∗
NN

) 1
4

(x− εnyn)

 .
In the following we consider the sign and radially symmetric property of solutions to

(1.2.2)-(1.2.3). Concerning this subject, we first mention the case that α ∈ R+ is given in
(4.1.2). In this case, it is known that when α ∈ R+ is sufficiently small, all least energy
solutions have a sign and are radial. On the contrary, when α ∈ R+ is large, radial solutions
are necessarily sign-changing. In addition, when σ ∈ N+, at least one least energy solution
is radial. For more details, see [31, Theorem 4]. When 0 < σN < 4, regarding the sign
and radially symmetric property of minimizers to (1.2.4), we refer to [28]. However, when
4 ≤ σN < 4∗, it seems more complex to derive these information for ground state solutions
to (1.2.2)-(1.2.3). In this direction, we only present the following result.
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Theorem 1.2.8. Let N ≥ 1, 4 ≤ σN < 4∗, and σ ∈ N+. Then there exists a cr > c0 such
that, for any c ∈ (c0, cr), (1.2.2)-(1.2.3) admits a ground state solution, which is radial
and sign-changing.

In our next result, we prove that positive radial solutions to (1.2.2)-(1.2.3) do exist.

Theorem 1.2.9. Let 1 ≤ N ≤ 4, 4 ≤ σN < 4∗. Then there exists a c̄σ,N > c0 such that
(1.2.2)-(1.2.3) admits a positive and radial solution for any c ≥ c̄σ,N .

We now turn our attention to investigate dynamical behaviors of solution to the Cauchy
problem of the dispersion equation (1.2.1). From [95], when 0 < σN < 4∗ the local well-
posedness to the Cauchy problem of (1.2.1) is known. Moreover, in the mass subcritical
case 0 < σN < 4, any solution to the Cauchy problem of (1.2.1) with initial datum in
H2(RN ) exists globally in time, see [49, 95]. While in the mass critical and supercritical
case 4 ≤ σN < 4∗, blowup in finite time may happen, but it is also likely to show that
the solution to the Cauchy problem of (1.2.1) with some initial datums exists globally in
time.

Theorem 1.2.10. Let N ≥ 1, 4 ≤ σN < 4∗. For any c > c0, the solution ψ ∈
C([0, T );H2(RN )) to (1.2.1) with initial datum ψ0 ∈ Oc with

Oc := {u ∈ S(c) : E(u) < γ(c), Q(u) > 0}.

exists globally in time.

When 0 < σN < 4, it was proved in [28] that minimizers to (1.2.4) are orbitally
stable, see also [85]. While 4 ≤ σN < 4∗, we show that radial ground state solutions to
(1.2.2)-(1.2.3) are unstable by blowup in finite time.

Definition 1.2.11. We say that u ∈ H2(RN ) is unstable by blowup in finite time, if for
any ε > 0, there exists v ∈ H2(RN ) such that ‖v − u‖H2 < ε and the solution ψ(t) ∈
C([0, T );H2(RN )) to (1.2.1) with initial datum ψ(0) = v blows up in finite time in H2-
norm.

Making use of a key element in Boulenger and Lenzmann [30], we have

Theorem 1.2.12. Let 4 ≤ σN < 4∗, N ≥ 2 and σ ≤ 4. Then the standing waves
associated to radial ground state solutions to (1.2.2)-(1.2.3) are unstable by blowup in
finite time.

In the case where α ∈ R+ is given in (1.2.2), the fact that radial least energy solutions
are unstable by blowup in finite time was recently established, see our paper [27]. It should
be noted that the results of [27] are also strongly based on the arguments from Boulenger
and Lenzmann [30]



Chapter 2

Existence and orbital stability of
normalized solutions for coupled
nonlinear Schrödinger system

2.1 Introduction

In this chapter, we consider the existence of solutions having prescribed L2-norm to a
class of coupled nonlinear Schrödinger systems in RN . More precisely, for given a1, a2 > 0,
we look for (λ1, λ2) ∈ R2 and (u1, u2) ∈ H1(RN )×H1(RN ) satisfying{

−∆u1 = λ1u1 + µ1|u1|p1−2u1 + r1β|u1|r1−2u1|u2|r2 ,

−∆u2 = λ2u2 + µ2|u2|p2−2u2 + r2β|u1|r1 |u2|r2−2u2,
(2.1.1)

and ∫
RN
|u1|2 dx = a1,

∫
RN
|u2|2 dx = a2. (2.1.2)

Physically, such solutions are often referred as normalized solutions.

The problem under consideration is associated to the research of standing waves to the
following nonlinear Schrödinger system in R× RN ,{

−i∂tΨ1 = ∆Ψ1 + µ1|Ψ1|p1−2Ψ1 + β|Ψ1|r1−2Ψ1|Ψ2|r2 ,

−i∂tΨ2 = ∆Ψ2 + µ2|Ψ2|p2−2Ψ2 + β|Ψ1|r1 |Ψ2|r2−2Ψ2.
(2.1.3)

Here by standing waves, we mean solutions to (2.1.3) with the form of

Ψ1(t, x) = e−iλ1tu1(x), Ψ2(t, x) = e−iλ2tu2(x),

for (λ1, λ2) ∈ R2. Thus (u1, u2) satisfies the elliptic system (2.1.1).

Note that the L2-norm of solution to the Cauchy problem of (2.1.3) is conserved along
time, i.e. ∫

RN
|Ψi(t, x)|2 dx =

∫
RN
|Ψi(0, x)|2 dx for i = 1, 2,

which leads to the study of normalized solutions quite interesting. For simplicity, in the
following we shall regard a solution (λ1, λ2, u1, u2) to (2.1.1)-(2.1.2) as (u1, u2), where
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(u1, u2) is obtained as a critical point of energy functional J : H1(RN ) × H1(RN ) → R
defined by

J(u1, u2) := 1
2

∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx

on the constraint S(a1, a2) := S(a1)× S(a2) with

S(a) := {u ∈ H1(RN ) :
∫
RN
|u|2 dx = a > 0},

and (λ1, λ2) is determined as Lagrange multipliers.

In this chapter, we are interested in the existence of solutions to (2.1.1)-(2.1.2) under
the following assumption

(H0) µ1, µ2, β > 0, 2 < p1, p2 < 2 + 4
N , r1, r2 > 1, r1 + r2 < 2 + 4

N .

Note that under the assumption (H0), the energy functional J is bounded from below on
S(a1, a2), we then consider the following minimization problem

M(a1, a2) := inf
(u1,u2)∈S(a1,a2)

J(u1, u2). (2.1.4)

It is standard that minimizers to (2.1.4) are critical points for the energy functional J
restricted to S(a1, a2), then solutions to (2.1.1)-(2.1.2). Hence, we look for minimizers to
(2.1.4), and whose existence is a consequence of the following statement.

Theorem 2.1.1. Let N ≥ 1. Assume that (H0) holds. Then any minimizing sequence to
(2.1.4) is compact, up to translations, in H1(RN )×H1(RN ).

Remark 2.1.2. If one only concerns the existence of minimizers to (2.1.4), we mention
paper [8]. When N ≥ 2, assume that (H0) holds, in addition 2 < p1, p2 < 2 + 2

N−2 if
N ≥ 5, the authors [8] obtained the existence of minimizers to (2.1.4). In this related
direction, we also refer to [34, 100].

Following some initial works [105, 106], from the last thirty years, the Lions’ concentra-
tion compactness principle [73, 74] had a deep influence on solving minimization problem
under constraint. Regarding our problem (2.1.4), if employing the concentration compact-
ness principle, then the heuristic arguments readily convince that the compactness of any
minimizing sequence holds if the following strict subadditivity inequality are satisfied,

M(a1, a2) < M(b1, b2) +M(a1 − b1, a2 − b2), (2.1.5)

where 0 ≤ bi < ai for i = 1, 2, and (b1, b2) 6= (0, 0) and (b1, b2) 6= (a1, a2).

To deal with only one constraint problem, several techniques have been developed to
prove strict subadditivity inequality. Most are based on some homogeneity type properties.
In autonomous case, then it is possible to use scaling techniques, see for example [19, 40,
101]. In the case of multiple constraints problem, how to establish strict subadditivity
inequality is much less understood. As a matter of fact, in this situation few papers
addressed the issue of compactness of any minimizing sequence. Moreover, among most
of them, constraints cannot be chosen independently, for instance [89, 90, 93]. Concerning
minimization problem (2.1.4), when N = 1, a more complete result seems to be due to
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[91], where the compactness of any minimizing sequence was obtained by checking (2.1.5).
To estblish (2.1.5), the authors [91] crucially applied [3, Lemma 2.10], which depends in
turn on original idea introduced in [33], see also [51]. We also refer to [75] for similar
arguments on related problem.

As inspired by Ikoma [61], we propose an alternative approach to verify the com-
pactness of any minimizing sequences to (2.1.4). Let {(un1 , un2 )} ⊂ S(a1, a2) be a min-
imizing sequence to (2.1.4). Firstly, under (H0), we see that {(un1 , un2 )} is bounded in
H1(RN )×H1(RN ), we then denote by (u1, u2) the weak limit of {(un1 , un2 )}. At this point,
to demonstrate the compactness, we first prove that (un1 , un2 ) → (u1, u2), up to transla-
tions, in Lp(RN )× Lp(RN ) for 2 < p < 2∗. To prove this, we make use of a nice result of
Shibata [100] as developed in [61, Lemma A.1]. This result can somehow be considered as
an extension of [3, Lemma 2.10] to any dimension.

With this strong convergence in hand, then using weakly lower semicontinuous of
norm, we find that J(u1, u2) ≤M(a1, a2). Namely the energy functional J is weakly lower
semicontinuous on minimizing sequence. If ‖u1‖22 = a1 and ‖u2‖22 = a2, the compactness
immediately follows. Suppose not and assume that ‖u1‖22 := ā1 < a1 or ‖u2‖22 := ā2 < a2.
Since J(u1, u2) ≤ M(a1, a2), it follows that M(ā1, ā2) ≤ M(a1, a2). We then reach a
contradiction via observing the weak version (2.1.5) where an equality is allowed, which
implies that the function (a1, a2) 7→M(a1, a2) is strictly decreasing in both variables.

Remark 2.1.3. Note that when N ≥ 2 and (H0) holds, if one is interested in the exis-
tence of minimizers to (2.1.4), a shorter proof can be given. Choosing a radially symmetric
minimizing sequence {(un1 , un2 )} ⊂ S(a1, a2) to (2.1.4). Such minimizing sequence can be
obtained as the Schwartz’s reaarangement of a minimizing sequence. Recall that the embed-
ding H1

rad(RN ) ↪→ Lp(RN ) is compact for N ≥ 2, and 2 < p < 2∗, where H1
rad(RN ) stands

for a subspace of H1(RN ), which consists of radially symmetric functions in H1(RN ). By
means of the assumption (H0) and the Lions’ concentration Lemma, we then denote by
(u1, u2) the weak limit of {(un1 , un2 )}, up to transaltion, in H1

rad(RN )×H1
rad(RN ). By us-

ing the fact that the energy functional J is weakly lower semicontinuous on minimizing
sequence, it readily follows that J(u1, u2) ≤ M(a1, a2). At this point, the remaining proof
is identical to the one of Theorem 2.1.1.

Alternatively, it is possible to obtain the existence of minimizers to (2.1.4) by working
directly in H1

rad(RN )×H1
rad(RN ). In this direction, we refer to Remark 2.3.4.

Defining the set

GM (a1, a2) := {(u1, u2) ∈ S(a1, a2) : J(u1, u2) = M(a1, a2)},

we show the orbital stability of minimizers to (2.1.4) in the following sense.

Definition 2.1.4. We say a set G(a1, a2) is orbitally stable, i.e. for any ε > 0, there
exists δ > 0 so that if (Ψ1,0,Ψ2,0) ∈ H1(RN )×H1(RN ) satisfies

inf
(u1,u2)∈G(a1,a2)

‖(Ψ1,0,Ψ2,0)− (u1, u2)‖ ≤ δ,

then
sup
t∈[0,T )

inf
(u1,u2)∈G(a1,a2)

‖(Ψ1(t),Ψ2(t))− (u1, u2)‖ ≤ ε,
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where (Ψ1(t),Ψ2(t)) is solution to the Cauchy problem of (2.1.3) with initial datum (Ψ1,0,Ψ2,0),
T denotes the maximum existence time of solution, and ‖ · ‖ stands for the standard norm
in the Sobolev space H1(RN )×H1(RN ).

Remark 2.1.5. Note that under assumption (H0), the local well-posedness to the Cauchy
problem of (2.1.3) is unknown. The point being that when 1 < r1, r2 < 2, the interaction
parts are not Lipchitz continuous, in particular the uniqueness might fail. For this reason,
the orbital stability of minimizers is under condition. However, let us point out that when
N = 1, 2 ≤ r1 = r2 < 3, the local existence and uniqueness to the Cauchy problem of
(2.1.3) holds, see for instance [88].

Based upon Theorem 2.1.1, as a dierct consequence of the elements in Cazenave and
Lions [36] we are able to prove the following result.

Theorem 2.1.6. Let N ≥ 1. Assume that (H0) and the local existence and uniqueness to
the Cauchy problem of (1.1.1) hold. Then the set GM (a1, a2) is orbitally stable.

This chapter is organized as follows. In Section 2.2, we display some preliminary
results. Theorem 2.1.1 and Theorem 2.1.6 will be established in Section 2.3.

Notation 2.1.7. In this chapter, we write Lp(RN ) the usual Lebesgue space endowed with
the norm

‖u‖pp :=
∫
RN
|u|p dx,

and H1(RN ) the usual Sobolev space endowed with the norm

‖u‖2 :=
∫
RN
|∇u|2 + |u|2 dx.

We denote by ′ →′ and ′ ⇀′ strong convergence and weak convergence in corresponding
space, respectively, and denote by B(x,R) a ball in RN of center x and radius R > 0.

2.2 Preliminary results

Firstly, let us observe that the energy functional J is well-defined inH1(RN )×H1(RN ).
Indeed, for r1, r2 > 1, r1 + r2 < 2∗, there is q > 1 satisfying 2 < r1q, r2q

′ ≤ 2∗, q′ := q
q−1 .

Hence ∫
RN
|u1|r1 |u2|r2 dx ≤ ‖u1‖r1

r1q‖u2‖r2
r2q′

<∞.

The Gagliardo-Nirenberg’s inequality for u ∈ H1(RN ) and 2 ≤ p ≤ 2∗,

‖u‖p ≤ C(N, p)‖∇u‖α2 ‖u‖1−α2 , whereα := N(p− 2)
2p ,

this implies for (u1, u2) ∈ S(a1, a2):∫
RN
|u1|p1 dx ≤ C(N, p1, a1)‖∇u1‖

N(p1−2)
2

2 ,∫
RN
|u2|p2 dx ≤ C(N, p2, a2)‖∇u2‖

N(p2−2)
2

2 ,

(2.2.1)
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and ∫
RN
|u1|r1 |u2|r2 dx ≤ ‖u1‖r1

r1q‖u2‖r2
r2q′
≤ C‖∇u1‖

N(r1q−2)
2q

2 ‖∇u2‖
N(r2q

′−2)
2q′

2 (2.2.2)

with C = C(N, r1, r2, a1, a2, q).

Now recall the rearrangement results of Shibata [100] as presented in [61]. Let u be a
Borel measurable function on RN . It is said to vanish at infinity if |{x ∈ RN : |u(x)| >
t}| < ∞ for every t > 0. Here |A| stands for the N -dimensional Lebesgue measure of a
Lebesgue mesurable set A ⊂ RN . Considering two Borel mesurable functions u, v which
vanish at infinity in RN , we define for t > 0, A?(u, v; t) := {x ∈ RN : |x| < r} where r > 0
is chosen so that

|B(0, r)| = |{x ∈ RN : |u(x)| > t}|+ |{x ∈ RN : |v(x)| > t}|,

and {u, v}? by
{u, v}?(x) :=

∫ ∞
0

χA?(u,v;t)(x) dt,

where χA(x) is a characteristic function of the set A ⊂ RN .

Lemma 2.2.1. [61, Lemma A.1]

(i) The function {u, v}? is radially symmetric, non-increasing and lower semi-continuous.
Moreover, for each t > 0, there holds {x ∈ RN : {u, v}? > t} = A?(u, v; t).

(ii) Let Φ : [0,∞) → [0,∞) be increasing, lower semicontinuous, continuous at 0 and
Φ(0) = 0. Then {Φ(u),Φ(v)}? = Φ({u, v}?).

(iii) ‖{u, v}?‖pp = ‖u‖pp + ‖v‖pp for 1 ≤ p <∞.

(iv) If u, v ∈ H1(RN ), then {u, v}? ∈ H1(RN ) and ‖∇{u, v}?‖22 ≤ ‖∇u‖22 + ‖∇v‖22. In
addition, if u, v ∈ (H1(RN ) ∩ C1(RN )) \ {0} are radially symmetric, positive and
decreasing, then ∫

RN
|∇{u, v}?|2 dx <

∫
RN
|∇u|2 +

∫
RN
|∇v|2 dx.

(v) Let u1, u2, v1, v2 ≥ 0 be Borel measurable functions which vanish at infinity, then∫
RN

(u1u2 + v1v2) dx ≤
∫
RN
{u1, v1}?{u2, v2}? dx.

2.3 Proofs of the main results

In this scetion, we are aim at proving Theorem 2.1.1 - 2.1.6. Hereafter, we use the
same notation M(a1, a2) for a1, a2 ≥ 0, namely, one component of (a1, a2) may be zero.

In what follows, we collect some basic properties of M(a1, a2).

Lemma 2.3.1. (i) If a1, a2 ≥ 0 with either a1 > 0 or a2 > 0, then −∞ < M(a1, a2) <
0.

(ii) M(a1, a2) is continuous with respect to a1, a2 ≥ 0.

(iii) If a1 ≥ b1 ≥ 0, a2 ≥ b2 ≥ 0, then M(a1, a2) ≤M(b1, b2) +M(a1 − b1, a2 − b2).
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Proof. (i) Observe that N(pi−2)
2 < 2 by pi < 2 + 4

N for i = 1, 2 and that

N(r1q − 2)
2q + N(r2q

′ − 2)
2q′ < 2,

owing to r1 + r2 < 2 + 4
N . Thus, it follows from (2.2.1)-(2.2.2) that J is coercive and in

particular, M(a1, a2) > −∞. Now taking into account that β > 0, one has

M(a1, a2) ≤M(a1, 0) +M(0, a2).

Since 2 < p1, p2 < 2 + 4
N , it is standard to show that M(a1, 0) < 0 if a1 > 0 and

M(0, a2) < 0 if a2 > 0. Thus M(a1, a2) < 0.

(ii) We assume (an1 , an2 ) = (a1, a2) + on(1), where on(1) → 0 as n → 0. From the
definition of M(an1 , an2 ), for any ε > 0, there exists (un1 , un2 ) ∈ S(an1 , an2 ) such that

J(un1 , un2 ) ≤M(an1 , an2 ) + ε. (2.3.1)

Setting
vni := uni

‖uni ‖2
a

1
2
i

for i = 1, 2, we have that (vn1 , vn2 ) ∈ S(a1, a2) and

M(a1, a2) ≤ J(vn1 , vn2 ) = J(un1 , un2 ) + on(1). (2.3.2)

Combining (2.3.1) and (2.3.2) we obtain

M(a1, a2) ≤M(an1 , an2 ) + ε+ on(1).

Reversing the arguments, we obtain similarly that

M(an1 , an2 ) ≤M(a1, a2) + ε+ o(1).

Therefore, since ε > 0 is arbitrary, we deduce that M(an1 , an2 ) = M(a1, a2) + on(1).

(iii) By density of C∞0 (RN ) in H1(RN ), for any ε > 0, there exist (ϕ̄1, ϕ̄2), (ϕ̂1, ϕ̂2) ∈
C∞0 (RN )× C∞0 (RN ) with ‖ϕ̄i‖22 = bi, ‖ϕ̂i‖22 = ai − bi for i = 1, 2 such that

J(ϕ̄1, ϕ̄2) ≤M(b1, b2) + ε

2 ,

J(ϕ̂1, ϕ̂2) ≤M(a1 − b1, a2 − b2) + ε

2 .

Since J is invariant by translations, without loss of generality, we may assume that
supp ϕ̄i ∩ supp ϕ̂i = ∅, and then ‖ϕ̄i + ϕ̂i‖22 = ‖ϕ̄i‖22 + ‖ϕ̂i‖22 = ai for i = 1, 2, as well
as

M(a1, a2) ≤ J(ϕ̄1 + ϕ̂1, ϕ̄2 + ϕ̂2) ≤M(b1, b2) +M(a1 − b1, a2 − b2) + ε.

Thus
M(a1, a2) ≤M(b1, b2) +M(a1 − b1, a2 − b2).

Lemma 2.3.2. Assume r1, r2 > 1, r1 + r2 < 2 + 4
N . If (un1 , un2 ) ⇀ (u1, u2) in H1(RN ) ×

H1(RN ), then∫
RN
|un1 |r1 |un2 |r2 − |un1 − u1|r1 |un2 − u2|r2 dx =

∫
RN
|u1|r1 |u2|r2 dx+ on(1).
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Proof. Since this lemma can be proved following closely the approach of [38, Lemma 2.3],
we only provide the outline of the proof. For any b1, b2, c1, c2 ∈ R and ε > 0, set r := r1+r2.
The mean value theorem and Young’s inequality lead to∣∣|b1 + b2|r1 |c1 + c2|r2 − |b1|r1 |c1|r2

∣∣
≤ Cε

(
|b1|r + |c1|r + |b2|r + |c2|r

)
+ Cε

(
|b2|r + |c2|r

)
.

Denote b1 := un1 − u1, c1 := un2 − u2, b2 := u1, c2 := u2. Then

f εn :=
[∣∣|un1 |r1 |un2 |r2 − |un1 − u1|r1 |un2 − u2|r2 − |u1|r1 |u2|r2

∣∣
− Cε(|un1 − u1|r + |un2 − u2|r + |u1|r + |u2|r)

]+
≤ |u1|r1 |u2|r2 + Cε (|u1|r + |u2|r) ,

where u+(x) := max{u(x), 0}, so the dominated convergence theorem implies that∫
RN

f εn dx→ 0 as n→∞. (2.3.3)

Since ∣∣|un1 |r1 |un2 |r2 − |un1 − u1|r1 |un2 − u2|r2 − |u1|r1 |u2|r2
∣∣

≤ f εn + Cε
(
|un1 − u1|r + |un2 − u2|r + |u1|r + |u2|r

)
,

by the boundedness of {(un1 , un2 )} in H1(RN )×H1(RN ) and (2.3.3), it follows that∫
RN
|un1 |r1 |un2 |r2 − |un1 − u1|r1 |un2 − u2|r2 dx =

∫
RN
|u1|r1 |u2|r2 dx+ on(1).

Lemma 2.3.3. Any minimizing sequence to (2.1.4) is, up to translations, strongly con-
vergent in Lp(RN )× Lp(RN ) for 2 < p < 2∗.

Proof. Assume that {(un1 , un2 )} ⊂ S(a1, a2) is a minimizing sequence to (2.1.4). By the
coerciveness of the energy functional J on S(a1, a2), {(un1 , un2 )} is bounded in H1(RN ) ×
H1(RN ). If

sup
y∈RN

∫
B(y,R)

|un1 |2 + |un2 |2 dx = on(1),

for some R > 0, then ui → 0 in Lp(RN ) for 2 < p < 2∗, i = 1, 2, see [74, Lemma I.1]. This
is incompatible with the fact that M(a1, a2) < 0, see Lemma 2.3.1 (i). Thus, there exist
a β0 > 0 and a sequence {yn} ⊂ RN such that∫

B(yn,R)
|un1 |2 + |un2 |2 dx ≥ β0,

and we deduce from the weak convergence in H1(RN ) ×H1(RN ) and the local compact-
ness in L2(RN ) × L2(RN ) that (un1 (x− yn), un2 (x− yn)) ⇀ (u1, u2) 6= (0, 0) in H1(RN ) ×
H1(RN ). Our aim is to prove that wni (x) := uni (x) − ui(x + yn) → 0 in Lp(RN ) for
2 < p < 2∗, i = 1, 2. To do this, we suppose by contradiction that there exists a 2 < q < 2∗
such that (wn1 , wn2 ) 9 (0, 0) in Lq(RN )× Lq(RN ). Note that under this assumption there
exists a sequence {zn} ⊂ RN such that

(wn1 (x− zn), wn2 (x− zn)) ⇀ (w1, w2) 6= (0, 0)
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in H1(Rn)×H1(RN ). Indeed, otherwise

sup
y∈RN

∫
B(y,R)

|wn1 |2 + |wn2 |2 dx = on(1),

which leads to (wn1 , wn2 )→ (0, 0) in Lp(RN )× Lp(RN ) for 2 < p < 2∗.

Now, combining the Brezis-Lieb Lemma, Lemma 2.3.2 and the translational invariance
we conclude

J(un1 , un2 ) = J(un1 (x− yn), un2 (x− yn))
= J(un1 (x− yn)− u1 + u1, u

n
2 (x− yn)− u2 + u2)

= J(un1 (x− yn)− u1, u
n
2 (x− yn)− u2) + J(u1, u2) + on(1)

= J(wn1 (x− yn), wn2 (x− yn)) + J(u1, u2) + on(1)
= J(wn1 (x− zn), wn2 (x− zn)) + J(u1, u2) + on(1)
= J(wn1 (x− zn)− w1 + w1, w

n
2 (x− zn)− w2 + w2) + J(u1, u2) + on(1)

= J(wn1 (x− zn)− w1, w
n
2 (x− zn)− w2) + J(w1, w2) + J(u1, u2) + on(1),

(2.3.4)

and

‖uni (x− yn)‖22 = ‖uni (x− yn)− ui + ui‖22
= ‖uni (x− yn)− ui‖22 + ‖ui‖22 + on(1)
= ‖wni (x− zn)− wi + wi‖22 + ‖ui‖22 + on(1)
= ‖wni (x− zn)− wi‖22 + ‖wi‖22 + ‖ui‖22 + on(1).

Thus

‖wni (x− zn)− wi‖22 = ‖uni (x− yn)‖22 − ‖wi‖22 − ‖ui‖22 + on(1)
= ai − ‖wi‖22 − ‖ui‖22 + on(1)
= bi + on(1),

(2.3.5)

where bi := ai − ‖wi‖22 − ‖ui‖22. Noting that

‖wi‖22 ≤ lim inf
n→∞

‖wni (x− zn)‖22 = lim inf
n→∞

‖uni (x− yn)− ui‖22
= ai − ‖ui‖22,

then bi ≥ 0 for i = 1, 2. Recording that J(un1 , un2 )→M(a1, a2), in view of (2.3.5), Lemma
2.3.1 (ii) and (2.3.4), we get

M(a1, a2) ≥M(b1, b2) + J(w1, w2) + J(u1, u2). (2.3.6)

If J(w1, w2) > M(‖w1‖22, ‖w2‖22) or J(u1, u2) > M(‖u1‖22, ‖u2‖22), then, from (2.3.6) and
Lemma 2.3.1 (iii), it follows

M(a1, a2) > M(b1, b2) +M(‖w1‖22, ‖w2‖22) +M(‖u1‖22, ‖u2‖22) ≥M(a1, a2),

which is impossible. Hence

J(w1, w2) = M(‖w1‖22, ‖w2‖22), J(u1, u2) = M(‖u1‖22, ‖u2‖22).

We denote by u∗i , w∗i the classical Schwartz’s rearrangement of ui, wi for i = 1, 2,. Since

‖u∗i ‖22 = ‖ui‖22, ‖w∗i ‖22 = ‖wi‖22,
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J(u∗1, u∗2) ≤ J(u1, u2), J(w∗1, w∗2) ≤ J(w1, w2)
see for example [68], we deduce that

J(u∗1, u∗2) = M(‖u1‖22, ‖u2‖22), J(w∗1, w∗2) = M(‖w1‖22, ‖w2‖22).

Therefore, (u∗1, u∗2), (w∗1, w∗2) are solutions of the system (2.1.1) and from standard regular-
ity results we have that u∗i , w∗i ∈ C2(RN ) for i = 1, 2.

At this point, Lemma 2.2.1 comes into play. Without restriction, we may assume
u1 6= 0. We divide into two cases.

Case 1: u1 6= 0 and w1 6= 0.
By virtue of Lemma 2.2.1 (ii), (iv), (v),∫

RN
|∇{u∗1, w∗1}

?| dx <
∫
RN
|∇u∗1|2 + |∇w∗1|2 dx ≤

∫
RN
|∇u1|2 + |∇w1|2 dx,

∫
RN
|{u∗1, w∗1}?|r1 |{ũ2, w

∗
2}?|r2 dx =

∫
RN
{|u∗1|r1 , |w∗1|r1}?{|u∗2|r2 , |w∗2|r2}? dx,

≥
∫
RN
|u∗1|r1 |u∗2|r2 + |w̃1|r1 |w∗2|r2 dx

=
∫
RN

(|u1|r1)∗(|u2|r2)∗ + (|w1|r1)∗(|w2|r2)∗ dx,

≥
∫
RN
|u1|r1 |u2|r2 + |w1|r1 |w2|r2 dx,

and thus

J(u1, u2) + J(w1, w2) > J({u∗1, w∗1}?, {u∗2, w∗2}?). (2.3.7)

Also from Lemma 2.2.1 (iii), for i = 1, 2,∫
RN
|{u∗i , w∗i }?|2 dx =

∫
RN
|u∗i |2 + |w∗i |2 dx =

∫
RN
|ui|2 + |wi|2 dx, (2.3.8)

and taking (2.3.6)-(2.3.8) and Lemma 2.3.1 (iii) into consideration, one obtains the con-
tradiction

M(a1, a2) > M(b1, b2) +M(a1 − b1, a2 − b2) ≥M(a1, a2).

Case 2: u1 6= 0, w1 = 0 and w2 6= 0.
If u2 6= 0, we can reverse the role of u1, w1 and u2, w2 in Case 1 to get a contradiction.
Thus, we suppose that u2 = 0. Due to Lemma 2.2.1 (ii)-(v),

J({u∗1, 0}?, {w∗2, 0}?) ≤
1
2

∫
RN
|∇u∗1|2 + |∇w∗2|2 dx−

µ1
p1

∫
RN
|u∗1|p1 dx

− µ2
p2

∫
RN
|w∗2|p2 dx− β

∫
RN
|u∗1|r1 |w∗2|r2

< J(u∗1, 0) + J(0, w∗2)
≤ J(u1, 0) + J(0, w2),

(2.3.9)

and ∫
RN
|{u∗1, 0}?|2 dx =

∫
RN
|u∗1|2 dx =

∫
RN
|u1|2 dx,∫

RN
|{w∗2, 0}?|2 dx =

∫
RN
|w∗2|2 dx =

∫
RN
|w2|2 dx.

(2.3.10)
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Thus using (2.3.6), (2.3.9), (2.3.10) and Lemma 2.3.1, we also have that

M(a1, a2) > M(b1, b2) +M(a1 − b1, a2 − b2) ≥M(a1, a2).

The contradictions obtained in Cases 1-2 indicate that wni (x) = uni (x) − ui(x + yn) → 0
in Lp(RN ) for 2 < p < 2∗, i = 1, 2.

Proof of Theorem 2.1.1. Let {(un1 , un2 )} ⊂ S(a1, a2) be a minimizing sequence to (2.1.4).
In light of Lemma 2.3.3, (un1 , un2 ) → (u1, u2), up to translations, in Lp(RN )× Lp(RN ) for
2 < p < 2∗. Hence by the weakly lower semicontinuous of norm,

J(u1, u2) ≤M(a1, a2). (2.3.11)

Note that if ||u1||22 = a1 and ||u2||22 = a2, we have done. Indeed, the compactness of
{(un1 , un2 )} then directly follows. To show that ||u1||22 = a1 and ||u2||22 = a2, we assume
by contradiction that ‖u1‖22 := ā1 < a1 or ‖u2‖22 := ā2 < a2. By definition, J(u1, u2) ≥
M(ā1, ā2) and thus it results from (2.3.11) that

M(ā1, ā2) ≤M(a1, a2). (2.3.12)

At this point, from Lemma 2.3.1 (iii), M(a1, a2) ≤ M(ā1, ā2) + M(a1 − ā1, a2 − ā2) and
Lemma 2.3.1 (i), M(a1 − ā1, a2 − ā2) < 0, we have reached a contradiction from (2.3.12),
then Theorem 2.1.1 follows.

Remark 2.3.4. As indicated in Remark 2.1.3, a proof for the existence of minimizers to
(2.1.4) can be given by working directly in H1

rad(RN )×H1
rad(RN ). In such space, the strong

convergence in Lp(RN )×Lp(RN ) for 2 < p < 2∗, and N ≥ 2, is given for free. Now define

Mr(a1, a2) := inf
(u1,u2)∈Sr(a1,a2)

J(u1, u2), (2.3.13)

where

Sr(a1, a2) := {(u1, u2) ∈ H1
rad(RN )×H1

rad(RN ) : ‖u1‖22 = a1, ‖u2‖22 = a2}.

We observe that

Mr(a1, a2) ≤Mr(b1, b2) +Mr(a1 − b1, a2 − b2), (2.3.14)

where 0 ≤ bi ≤ ai for i = 1, 2. Indeed, since for any minimizing sequence to (2.1.4), one
can find a radially symmetric minimizing sequence by the Schwartz’s rearrangement, thus
it results that Mr(a1, a2) = M(a1, a2) for any a1 ≥ 0, a2 ≥ 0, and (2.3.14) then follows
from Lemma 2.3.1 (iii). Thus we can end the proof as previously.

We now turn to the proof of Theorem 2.1.6, whose proof relies on the classical argu-
ments of Cazenave and Lions [36], hence we only give a sketch.

Proof of Theorem 2.1.6. By contradiction, we assume that there is a ε0 > 0, (Ψn
1 (0),Ψn

2 (0)) ⊂
H1(RN )×H1(RN ), and {tn} ⊂ R+ such that

inf
(u1,u2)∈G(a1,a2)

‖(Ψn
1 (0),Ψn

2 (0))− (u1, u2)‖ → 0,
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and

inf
(u1,u2)∈G(a1,a2)

‖(Ψn
1 (tn),Ψn

2 (tn))− (u1, u2)‖ ≥ ε0, (2.3.15)

where (Ψn
1 (t),Ψn

2 (t)) is solution to the Cauchy problem of (2.1.3) with initial datum
(Ψn

1 (0),Ψn
2 (0)). By the conservation laws,

‖Ψn
i (tn)‖22 = ‖Ψn

i (0)‖22, for i = 1, 2,

also
J(Ψn

1 (tn),Ψn
2 (tn)) = J(Ψn

1 (0),Ψn
2 (0)).

Define
Ψ̂n
i = Ψn

i (tn)
‖Ψn

i (tn)‖22
a

1
2
i , for i = 1, 2,

we get that
‖Ψ̂n

i ‖22 = ai, J(Ψ̂n
1 , Ψ̂n

2 ) = M(a1, a2) + on(1).

Namely, {(Ψ̂n
1 , Ψ̂n

2 )} is a minimizing sequence to (2.1.1). From Theorem 2.1.1, it follows
that it is compact up to translation in H1(RN )×H1(RN ), thus (2.3.15) fails. We reach a
contradiciton.





Chapter 3

Multiple normalized solutions for
coupled nonlinear Schrödinger
system

3.1 Introduction

In this chapter, we are concerned with standing waves to the following coupled nonlin-
ear Schrödinger system in R× RN ,{

−i∂tΨ1 = ∆Ψ1 + µ1|Ψ1|p1−2Ψ1 + β|Ψ1|r1−2Ψ1|Ψ2|r2 ,

−i∂tΨ2 = ∆Ψ2 + µ2|Ψ2|p2−2Ψ2 + β|Ψ1|r1 |Ψ2|r2−2Ψ2.
(3.1.1)

Here by standing waves to (3.1.1), we mean solutions with the form of

Ψ1(t, x) = e−iλ1tu1(x), Ψ2(t, x) = e−iλ2tu2(x)

for (λ1, λ2) ∈ R2. This then gives rise to the following elliptic system satisfied by u1 and
u2, {

−∆u1 = λ1u1 + µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 ,

−∆u2 = λ2u2 + µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2.
(3.1.2)

Notice that the L2-norm of solution to the Cauchy problem of (3.1.1) is conserved
along time, i.e. for any t > 0,∫

RN
|Ψi(t, x)|2 dx =

∫
RN
|Ψi(0, x)|2 dx for i = 1, 2.

Thus it is of particular interest to study solutions to (3.1.2) having prescribed L2-norm.
More precisely, for given a1, a2 > 0, to search for (λ1, λ2) ∈ R2 and (u1, u2) ∈ H1(RN ) ×
H1(RN ) satisfying (3.1.2), together with normalized condition∫

RN
|u1|2 dx = a1,

∫
RN
|u2|2 dx = a2. (3.1.3)

Such solutions are often referred as normalized solutions. In what follows, for the sake of
convenience, we identify a solution (λ1, λ2, u1, u2) to (3.1.2)-(3.1.3) with (u1, u2), where
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(u1, u2) is obtained as a critical point of energy functional J : H1(RN ) × H1(RN ) → R
defined by

J(u1, u2) := 1
2

∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx

on the constraint S(a1, a2) := S(a1)× S(a2) with

S(a) := {u ∈ H1(RN ) :
∫
RN
|u|2 dx = a > 0},

and (λ1, λ2) is determined as Lagrange multipliers.

When 2 < p1, p2 < 2 + 4
N , r1, r2 > 1, r1 + r2 < 2 + 4

N , the energy functional J
is bounded from below on S(a1, a2). Then one may search for a critical point for J
restricted to S(a1, a2) as a global minimizer for J subject to S(a1, a2) through studying
the compactness of any minimizing sequence. In this direction, a more complete result
was recently obtained in [58]. On the contrary, if µ1, µ2, β > 0, when either pi > 2 + 4

N for
some i = 1, 2 or r1 + r2 > 2 + 4

N , then the energy functional J becomes unbounded from
below on S(a1, a2). To see this, for t > 0, let us introduce the scaling of u ∈ H1(RN ) as

ut(x) := t
N
2 u(tx).

Clearly, ‖ut‖2 = ‖u‖2. A direct calculation then shows that for any (u1, u2) ∈ S(a1, a2),

J(ut1, ut2) = t2

2

∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

t(
pi
2 −1)N µi

pi

∫
RN
|ui|pi dx

− βt(
r1+r2

2 −1)N
∫
RN
|u1|r1 |u2|r2 dx,

(3.1.4)

from which the claim immediately follows.

When global minimizer fail to exist, finding a critical point for J restricted to S(a1, a2)
is more delicate and involved. In such situation, minimax methods come into play. When
2 ≤ N ≤ 4, µ1, µ2, β > 0, if either 2 < p1 < 2 + 4

N < p2 < 2∗, 2 + 4
N < r1 + r2 < 2∗, r2 > 2

or 2 + 4
N < p1, p2, r1 + r2 < 2∗, the authors [8] studied the existence of positive solution to

(3.1.2)-(3.1.3), see also [12]. When N = 3, µ1, µ2 > 0, β < 0, p1 = p2 = 4, r1 = r2 = 2, the
existence of positive solution to (3.1.2)-(3.1.3) was also established in [13], concerning a
multiplicity result, we refer to [14]. Let us also mention the papers [86, 87, 94], where the
authors considered the existence of normalized solutions to problem confined on a bounded
domain in RN or with a trapping potential. Although more compactness is available in
these cases, but it is unlikely to take advantage of the dilations, which play an essential
role in [7, 8, 12, 13, 17, 18, 63]. When a periodic potential is included in equation, the
existence of normalized solutions was discussed in [1].

In this chapter, as mainly inspired by [8, 12], we consider the existence of multiple
solutions to (3.1.2)-(3.1.3) under the following two new assumptions,

(H1) µ1, µ2, β > 0, 2 < p1, p2 < 2 + 4
N , r1, r2 > 1, 2 + 4

N < r1 + r2 < 2∗;

(H2) µ1, µ2, β > 0, 2 + 4
N < p1, p2 < 2∗, r1, r2 > 1, r1 + r2 < 2 + 4

N .
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From above observations, the energy functional J is not bounded from below on S(a1, a2)
under (H1) or (H2). Thus in order to find a critical point for J restricted to S(a1, a2), we
are indeed based on the minimax methods. Our aim is to prove that(3.1.2)-(3.1.3) admits
two positive solutions when N ≥ 1 and (H1) or (H2) holds. Up to our knowledge, it is the
first time that a multiplicity result to (3.1.2)-(3.1.3) is obtained when N ≥ 1, β > 0.

In order to address our results, for ρ > 0, let us introduce

B(ρ) := {(u1, u2) ∈ H1(RN )×H1(RN ) :
∫
RN
|∇u1|2 + |∇u2|2 dx < ρ}.

On account of (3.1.4), under either (H1) or (H2), for any ρ > 0 there holds

inf J(u1, u2) < 0 for (u1, u2) ∈ S(a1, a2) ∩ B(ρ), (3.1.5)

see Lemma 3.2.4. Furthermore, we will prove that there exist β0 = β0(a1, a2) > 0 and
ρ0 = ρ0(a1, a2) > 0 such that

inf J(u1, u2) > 0 for (u1, u2) ∈ S(a1, a2) ∩ ∂B(ρ0), (3.1.6)

for any 0 < β ≤ β0, see Lemma 3.3.1.

Together (3.1.5) with (3.1.6), then there may admit a local minimizer for J restricted to
S(a1, a2)∩B(ρ). Thus for 0 < β ≤ β0, it is natural to introduce the following minimization
problem

m(a1, a2) := inf
(u1,u2)∈S(a1,a2)∩B(ρ0)

J(u1, u2). (3.1.7)

Obviously, minimizers to (3.1.7) are critical points for J restricted to S(a1, a2), i.e. solu-
tions to (3.1.2)-(3.1.3). We shall prove that any minimizing sequence to (3.1.7) is compact,
up to translations, in H1(RN )×H1(RN ), and in particular this implies the existence of a
critical point for J restricted to S(a1, a2) as a minimizer to (3.1.7).

As observed from (3.1.4), for any (u1, u2) ∈ S(a1, a2), we have that J(ut1, ut2) → −∞
as t → ∞ when (H1) or (H2) holds, and note also that (ut1, ut2) /∈ B(ρ0) for t > 0 large
enough. This property along with (3.1.6) suggest that there may exist other critical points
for the energy functional J restricted to S(a1, a2). Actually, under (H1), the second critical
ponit is obtained by mountain pass arguments. Under (H2), inspired by [12], the second
one is achieved by a linking type procedure. Let us now state our main results.

Theorem 3.1.1. Let a1, a2 > 0 be given and assume that (H1) holds. Then there exist
β0 = β0(a1, a2) > 0 and ρ0 = ρ0(a1, a2) > 0 such that for any 0 < β ≤ β0,

(i) if N ≥ 1, any minimizing sequence to (3.1.7) is compact, up to translation, in
H1(RN )×H1(RN ). In particular, there exists a positive solution (v1, v2) to (3.1.2)-
(3.1.3) with (v1, v2) ∈ B(ρ0) and J(v1, v2) < 0;

(ii) If either 2 ≤ N ≤ 4 or N ≥ 5, p1, p2 ≤ r1 + r2 − 2
N or |p1 − p2| ≤ 2

N , there exists
a second positive solution (u1, u2) to (3.1.2)-(3.1.3) with J(u1, u2) > 0.

Theorem 3.1.2. Let a1, a2 > 0 be given and assume that (H2) holds. Then there exist
β0 = β0(a1, a2) > 0 and ρ0 = ρ0(a1, a2) > 0 such that for any 0 < β ≤ β0,

(i) if either 1 ≤ N ≤ 4 or N ≥ 5, ri >
( r1+r2

2 − 1
)
N for i = 1, 2, any minimizing

sequence to (3.1.7) is compact, up to translation, in H1(RN )×H1(RN ). In partic-
ular, there exists a positive solution (v1, v2) to (3.1.2)-(3.1.3) with (v1, v2) ∈ B(ρ0)
and J(v1, v2) < 0;
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(ii) If 2 ≤ N ≤ 4, there exists a second positive solution (u1, u2) to (3.1.2)-(3.1.3) with
J(u1, u2) > 0.

Remark 3.1.3. i) The value of β0 in Theorem 3.1.1 and Theorem 3.1.2 can be explicitly
computed in terms of N, pi, ai, ri for i = 1, 2, instead of being obtained through a limit
process. In addition, for any given β > 0, we can assume that β ≤ β0 at the expense of
taking a1 > 0 and a2 > 0 sufficiently small, because β0(a1, a2)→∞ as a1, a2 → 0, for this
property, see Lemma 3.3.1. Finally we point out that our results are not perturbative.

ii) The existence of second solution in Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) is un-
der the condition N ≥ 2. This is because we search for solutions in the radially symmetric
functions space H1

rad(RN )×H1
rad(RN ), and the compact embedding H1

rad(RN ) ↪→ Lp(RN )
for 2 < p < 2∗ holds when N ≥ 2.

iii) When N ≥ 2, we conjecture that Theorem 3.1.1 (ii) is true by only assuming (H1),
we refer to Remark 3.4.5 for a discussion in this direction.

Proving the compactness of any minimizing sequence to (3.1.7) under the assumption
(H1) or (H2), we make use of the coupled rearrangement arguments due to Shibata [100]
as developed by Ikoma [61], instead of directly employing the Lions’ compactness concen-
tration principle [73, 74]. This is already the approach as presented in [58], but here we
need to adapt it to a local minimization problem (3.1.7). In this case, a new difficulty
arises from the fact that in general the sum of two elements in B(ρ0) does not belong
to B(ρ0), and this makes more technical to discuss dichotomy. To overcome this diffi-
culty, we need to analyze carefully some properties of the energy functional J restricted
to S(a1, a2) ∩ B(ρ0).

The proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) follow the virtue in the papers
[8, 12]. Our proofs can be divided into three steps. Firstly, one needs to identify a
possible critical level. This is done by introducing a minimax structure of mountain pass
type when (H1) holds, and of linking one when (H2) holds. Secondly, one has to show
that there exists a bounded Palais-Smale sequence {(un1 , un2 )} ⊂ S(a1, a2) for the energy
functional J restricted to S(a1, a2) at this energy level. This step relies on the presence of a
natural constraint of Pohozaev type, on which the energy functional J is coercive. Taking
advantage of this constraint and making use of the approach introduced in [63] which
consists in adding an artificial variable within the variational procedure, one can end this
step. Having obtained a bounded Palais-Smale sequence {(un1 , un2 )} for J restricted to
S(a1, a2), we denote by (u1, u2) its weak limit in H1(RN )×H1(RN ), then (u1, u2) solves
(1.1.2) with some (λ1, λ2) ∈ R2, see Lemma 3.2.7. At this point, the last step is to show
that (u1, u2) ∈ S(a1, a2). It is this step where the limitation on dimension was imposed
in [8, 12, 13]. Because the authors applied the Liouville’s type results, see Lemma 3.2.2,
which is only available when N ≤ 4, and also used the property that the scalar problem

−∆w − λw = µ|w|p−2w, u ∈ S(a). (3.1.8)

has a unique positive radial solution for µ > 0, and 2 < p < 2∗.

We start to relax these two restrictions. Thus Theorem 3.1.1 (ii) allows to consider the
case N ≥ 5. Indeed, under the assumption (H1), the second critical point for J restricted
to S(a1, a2) is found through the mountain pass arguments. More precisely, we first prove
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tha there exist β0 = β0(a1, a2) > 0, ρ0 = ρ0(a1, a2) > 0 and 0 < ρ̄ = ρ̄(a1, a2) < ρ0 such
that for any 0 < β ≤ β0,

γ(a1, a2) := inf
g∈Γ

max
t∈[0,1]

J(g(t)) > max{J(g(0)), J(g(1))},

where

Γ := {g ∈ C([0, 1], S(a1, a2)) : g(0) ∈ B(ρ̄), g(1) /∈ B(ρ0) with J(g(1)) < 0}.

Having obtained a bounded Palais-Smale sequence for J restricted to S(a1, a2) at the level
γ(a1, a2), we denote by (u1, u2) its weak limit. Furthermore, (u1, u2) solves (3.1.2) with
some (λ1, λ2) ∈ R2. An appropriate choice of the Palais-Smale sequence insures that

J(u1, u2) ≤ γ(a1, a2). (3.1.9)

When 2 ≤ N ≤ 4, the fact that (u1, u2) ∈ S(a1, a2) is obtained directly by the Liouville’s
type results. When N ≥ 5, we argue by contradiction. If ā1 := ||u1||22 < a1 or ā2 :=
||u2||22 < a2, we manage to construct a path g ∈ Γ, on which the maximum of J is strictly
below J(u1, u2). By the characterization of γ(a1, a2), we thus get

γ(a1, a2) ≤ max
0≤t≤1

J(g(t)) < J(u1, u2),

in contradiction with (3.1.9). The construction of this path g ∈ Γ relies on the property
that when 2 < p < 2 + 4

N , µ > 0,

−∞ < inf
u∈S(a)

I(u) < 0, (3.1.10)

where I(u) := 1
2
∫
RN |∇u|2 dx −

µ
p

∫
RN |u|p dx, and using ”adding some masses" technique

somehow in the spirit of [62], but here again the coupled rearrangement arguments come
into play.

In Theorem 3.1.2 (ii), to look for the second critical point, we establish a linking
structure for J restricted to S(a1, a2). Since p > 2 + 4

N , µ > 0, (3.1.10) does not hold,
then our proof benefits from the Liouville’s type results, which eventually induces the
restriction on dimension N ≤ 4.

We now set

Gm(a1, a2) := {(u1, u2) ∈ S(a1, a2) ∩ B(ρ0) : J(u1, u2) = m(a1, a2)}.

Note that under assumption (H1) or (H2), the local well-posedness to the Cauchy problem
of (3.1.1) is unknown. The point being that when 1 < r1, r2 < 2, the interaction parts are
not Lipschitz continuous, and in particular the uniqueness might fail. As a consequence,
our result which states the orbital stability of the set Gm(a1, a2) is valid under condition.
Having the compactness of any minimizing sequence to (3.1.7) in hand, the proof is a direct
adaption of the classical arguments in Cazenave and Lions [36], thus we do not provide it.

Theorem 3.1.4. Assume that (H1) or (H2) with either 1 ≤ N ≤ 4 or N ≥ 5, ri >( r1+r2
2 − 1

)
N for i = 1, 2, and the local existence and uniqueness of the Cauchy problem

to (3.1.1) hold. Then the set Gm(a1, a2) is orbitally stable, i.e. for any ε > 0, there exists
δ > 0 so that if (Ψ1,0,Ψ2,0) ∈ H1(RN )×H1(RN ) satisfies

inf
(u1,u2)∈Gm(a1,a2)

‖(Ψ1,0,Ψ2,0)− (u1, u2)‖ ≤ δ,
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then
sup

t≥[0,T )
inf

(u1,u2)∈Gm(a1,a2)
‖(Ψ1(t),Ψ2(t))− (u1, u2)‖ ≤ ε,

where (Ψ1(t),Ψ2(t)) is solution to the Cauchy problem of (3.1.1) with initial datum (Ψ1,0,Ψ2,0),
T denotes the maximum existence time of solution, and ‖ · ‖ stands for the standard norm
in the Sobolev space H1(RN )×H1(RN ).

This chapter is organized as follows. In Section 3.2, we establish some preliminary
results. Section 3.3 is devoted to the proofs of Theorem 3.1.1 (i) and Theorem 3.1.2 (i).
In Section 3.4, we give the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). Finally, in
Appendix we establish a key technical result, Lemma 3.4.4.

Notation 3.1.5. In this chapter, for any 1 ≤ p <∞, we write Lp(RN ) the usual Lebesgue
space endowed with the norm

‖u‖pp :=
∫
RN
|u|p dx,

and H1(RN ) the usual Sobolev space endowed with the norm

‖u‖2 :=
∫
RN
|∇u|2 + |u|2 dx.

We denote by ′ →′ and ′ ⇀′ strong convergence and weak convergence in corresponding
space, respectively, and denote by B(x,R) a ball in RN of center x and radius R > 0.

3.2 Preliminary results

First of all, observe that the energy functional J is well-defined in H1(RN )×H1(RN ),
thanks to the Hölder inequality,∫

RN
|u1|r1 |u2|r2 dx ≤ ‖u1‖r1

r1q‖u2‖r2
r2q′

<∞,

for some 1 < q < 2∗, q′ = q
q−1 with 2 ≤ r1q, r2q

′ ≤ 2∗. Recalling the Gagliardo-Nirenberg’s
inequality, for u ∈ H1(RN ), 2 ≤ p ≤ 2∗,

‖u‖p ≤ C(N, p)‖∇u‖α(p)
2 ‖u‖1−α(p)

2 , where α(p) = N(p− 2)
2p , (3.2.1)

then we get for (u1, u2) ∈ S(a1)× S(a2),∫
RN
|u1|r1 |u2|r2 dx ≤ ‖u1‖r1

r1q‖u2‖r2
r2q′

≤ Ca
(1−α(r1q))r1

2
1 a

(1−α(r2q))r2
2

2 ‖∇u1‖
N(r1q−2)

2q
2 ‖∇u2‖

N(r2q
′−2)

2q′
2

(3.2.2)

with C = C(N, r1, r2, q).

We now introduce the coupled rearrangement results of Shibata [100] as developed
in [61]. Let u be a Borel measurable function on RN . It is said to vanish at infinity
if the level set |{x ∈ RN : |u(x)| > t}| < ∞ for every t > 0. Here |A| stands for the
N -dimensional Lebesgue measure of a Lebesgue measurable set A ⊂ RN . Considering
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two Borel mesurable functions u, v which vanish at infinity in RN , we define for t > 0,
A?(u, v; t) := {x ∈ RN : |x| < r} where r > 0 is chosen so that

|B(0, r)| = |{x ∈ RN : |u(x)| > t}|+ |{x ∈ RN : |v(x)| > t}|,

and {u, v}? by
{u, v}?(x) :=

∫ ∞
0

χA?(u,v;t)(x) dt, (3.2.3)

where χA(x) is a characteristic function of the set A ⊂ RN .

Lemma 3.2.1. [61, Lemma A.1]

(i) The function {u, v}? is radially symmetric, decreasing and lower semicontinuous.
Moreover, for each t > 0 there holds {x ∈ RN : {u, v}? > t} = A?(u, v; t).

(ii) Let Φ : [0,∞) → [0,∞) be increasing, lower semicontinuous, continuous at 0 and
Φ(0) = 0. Then {Φ(u),Φ(v)}? = Φ({u, v}?).

(iii) ‖{u, v}?‖pp = ‖u‖pp + ‖v‖pp for 1 ≤ p <∞.

(iv) If u, v ∈ H1(RN ), then {u, v}? ∈ H1(RN ) and ‖∇{u, v}?‖22 ≤ ‖∇u‖22 + ‖∇v‖22. In
addition, if u, v ∈ (H1(RN ) ∩ C1(RN )) \ {0} are radially symmetric, positive and
non-increasing, then∫

RN
|∇{u, v}?|2 dx <

∫
RN
|∇u|2 +

∫
RN
|∇v|2 dx.

(v) Let u1, u2, v1, v2 ≥ 0 be Borel measurable functions which vanish at infinity, then∫
RN

(u1u2 + v1v2) dx ≤
∫
RN
{u1, v1}?{u2, v2}? dx.

Lemma 3.2.2. [61, Lemma A.2] Suppose p ∈ (1, N
N−2 ] when N ≥ 3, and p ∈ (1,∞) when

N = 1, 2. Let u ∈ Lp(RN ) be a smooth nonnegative function satisfying −∆u ≥ 0 in RN .
Then u ≡ 0 .

Lemma 3.2.3. Assume r1, r2 > 1, r1 + r2 ≤ 2∗. If (un1 , un2 ) ⇀ (u1, u2) in H1(RN ) ×
H1(RN ), then∫

RN
|un1 |r1 |un2 |r2 − |un1 − u1|r1 |un2 − u2|r2 dx =

∫
RN
|u1|r1 |u2|r2 dx+ o(1).

Proof. In [58], see also [38, Lemma 2.3], this result was proved under the assumption
r1, r2 > 1, r1 +r2 < 2+ 4

N , but the proof can extend to the case r1, r2 > 1, r1 +r2 ≤ 2∗.

Lemma 3.2.4. Assume that (H1) or (H2) holds. Then for any b1, b2 ≥ 0 with (b1, b2) 6=
(0, 0) if (H1) holds, and b1 6= 0, b2 6= 0 if (H2) holds,

inf
(u1,u2)∈S(b1,b2)∩B(ρ)

J(u1, u2) < 0, for any ρ > 0.

Proof. Observing that (pi2 − 1)N < 2, i = 1, 2 if (H1) holds, and ( r1+r2
2 − 1)N < 2 if (H2)

holds. In light of (3.1.4), the lemma follows directly by taking t > 0 small enough.

Our next result, which is borrowed from [61, Lemma 2.2], shows that when considering
a minimizing sequence to (3.1.7), it is not restrictive to assume that two components are
nonnegative.



46 Chapter 3. Multiple normalized solutions for coupled nonlinear Schrödinger system

Lemma 3.2.5. Assume that {(vn1 , vn2 )} is a minimizing sequence to (3.1.7). If {(|vn1 |, |vn2 |)}
is compact in H1(RN )×H1(RN ), so is {(vn1 , vn2 )}.

Proof. First note that there exists (w1, w2) ∈ H1(RN )×H1(RN ) such that, up to a subse-
quence, (|vn1 |, |vn2 |)→ (w1, w2) inH1(RN )×H1(RN ), and (|vn1 (x)|, |vn2 (x)|)→ (w1(x), w2(x))
for a.e. x ∈ RN . Since {(vn1 , vn2 )} is a bounded sequence, theen there exists (v1, v2) ∈
H1(RN )×H1(RN ) such that, up to a subsequence, (vn1 , vn2 ) ⇀ (v1, v2) inH1(RN )×H1(RN )
and (vn1 (x), vn2 (x)) → (v1(x), v2(x)) for a.e. x ∈ RN . By the uniqueness of the limit,
wi = |vi|, then (vn1 , vn2 ) → (v1, v2) in L2(RN ) × L2(RN ). Now since (vn1 , vn2 ) → (v1, v2) in
Lp(RN )× Lp(RN ) for 2 < p < 2∗, it follows that

m(a1, a2) = J(vn1 , vn2 ) + on(1) ≥ J(v1, v2) ≥ m(a1, a2),

and thus (vn1 , vn2 )→ (v1, v2) in H1(RN )×H1(RN ).

Next recalling (3.1.4), we define for (u1, u2) ∈ H1(RN )×H1(RN ) ,

Q(u1, u2) : = d

dt
J(ut1, ut2)|t=1 =

∫
RN
|∇u1|2 + |∇u2|2 dx (3.2.4)

−
2∑
i=1

µi
pi

(
pi
2 − 1

)
N

∫
RN
|ui|pi dx− β

(
r1 + r2

2 − 1
)
N

∫
RN
|u1|r1 |u2|r2 dx.

It is standard that any solution (u1, u2) to (3.1.2) for some (λ1, λ2) ∈ R2 must satisfy
Q(u1, u2) = 0.

Lemma 3.2.6. Assume 2 < p1, p2, r1 +r2 < 2∗. If (u1, u2) 6= (0, 0) solves (3.1.2) for some
(λ1, λ2) ∈ R2, then λ1 < 0 or λ2 < 0.

Proof. Testing (3.1.2) by (u1, u2) and integrating in RN , one has

λ1a1 + λ2a2 =
∫
RN
|∇u1|2 + |∇u2|2 dx−

2∑
i=1

µi

∫
RN
|ui|pi dx+ β(r1 + r2)

∫
RN
|u1|r1 |u2|r2 dx.

Since (u1, u2) satisfies (1.1.2), then Q(u1, u2) = 0, which implies

λ1a1 + λ2a2 =
2∑
i=1

(
µi
pi

(
pi
2 − 1

)
N − µi

)∫
RN
|ui|pi dx

+ β

((
r1 + r2

2 − 1
)
N − (r1 + r2)

)∫
RN
|u1|r1 |u2|r2 dx < 0.

Then the lemma follows.

We recall that a sequence {(un1 , un2 )} ⊂ S(a1, a2) is a Palais-Smale sequence for J
restricted to S(a1, a2) at the level c, if J(un1 , un2 ) → c and (J|S(a1,a2))′(un1 , un2 ) → 0 in
H−1(RN )×H−1(RN ) as n→∞. The proof of our next lemma can be found in [8, Lemma
3.2].

Lemma 3.2.7. Assume 2 < p1, p2, r1 + r2 < 2∗. For any bounded Palais-Smale sequence
{(un1 , un2 )} for J restricted to S(a1, a2), there exist (u1, u2) ∈ H1(RN )×H1(RN ), (λ1, λ2) ∈
R2 and a sequence {(λn1 , λn2 )} ⊂ R2 such that, up to a subsequence,
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(i) (un1 , un2 ) ⇀ (u1, u2) in H1(RN )×H1(RN );

(ii) (λn1 , λn2 )→ (λ1, λ2) in R2;

(iii) J ′(un1 , un2 )− λn1 (un1 , 0)− λn2 (0, un2 )→ 0 in H−1(RN )×H−1(RN );

(iv) (u1, u2) is solution to the system (3.1.2) where (λ1, λ2) is given in (ii).
In addition, if (un1 , un2 ) → (u1, u2) in Lp(RN ) × Lp(RN ) for 2 < p < 2∗, then un1 → u1 in
H1(RN ) if λ1 < 0. Similarly, un2 → u2 in H1(RN ) if λ2 < 0.

3.3 Existence of local minimizers

In this section, we establish Theorem 3.1.1 (i) and Theorem 3.1.2 (i).

Lemma 3.3.1. Assume that (H1) or (H2) holds. There exist a β0 = β0(a1, a2) > 0 and a
ρ0 = ρ0(a1, a2) > 0, such that

J(u1, u2) ≥ 0 on S(a1, a2) ∩ [B(2ρ0)\B(ρ0)] (3.3.1)

for any 0 < β ≤ β0. Moreover, if 0 ≤ d1 ≤ a1, 0 ≤ d2 ≤ a2 with (d1, d2) 6= (0, 0), then

J(u1, u2) ≥ 0 on S(d1, d2) ∩ [B(2ρ0)\B(ρ0)] (3.3.2)

for any 0 < β ≤ β0. In addition, β0(a1, a2)→∞ as a1, a2 → 0.

Proof. For any (u1, u2) ∈ S(a1, a2), let ρ :=
∫
RN |∇u1|2 + |∇u2|2dx. Using (3.2.1)-(3.2.2),

we have

J(u1, u2) = 1
2ρ−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx

≥ 1
2ρ−

2∑
i=1

Ki

(∫
RN
|∇ui|2 dx

)N(pi−2)
4

− βK3

(∫
RN
|∇u1|2 dx

)N(r1q−2)
4q

(∫
RN
|∇u1|2 dx

)N(r2q
′−2)

4q′

≥ 1
2ρ−

2∑
i=1

Ki

(∫
RN
|∇u1|2 + |∇u2|2 dx

)N(pi−2)
4

− βK3

(∫
RN
|∇u1|2 + |∇u2|2 dx

)N(r1q−2)
4q

(∫
RN
|∇u1|2 + |∇u2|2 dx

)N(r2q
′−2)

4q′
,

≥ 1
2ρ−K1ρ

N(p1−2)
4 −K2ρ

N(p2−2)
4 − βK3ρ

N(r1+r2−2)
4 ,

where

Ki := µi
pi
Ci(N, pi)a

(1−α(pi))pi
2

i K3 := C(N, r1, r2)a
(1−α(r1q))r1

2
1 a

(1−α(r2q
′))r2

2
2 . (3.3.3)

Now if (H1) holds, then N(pi−2)
4 < 1 for i = 1, 2, and N(r1+r2−2)

4 > 1. We fix a
ρ = ρ0 > 0 sufficiently large so that

K1ρ
N(p1−2)

4 −1
0 +K2ρ

N(p2−2)
4 −1

0 ≤ 1
8 , (3.3.4)
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and then we fix a β0 > 0 small enough, satisfying

β0K3(2ρ0)
N(r1+r2−2)

4 −1 ≤ 1
8 . (3.3.5)

Observe that the left hand side of (3.3.4) and of (3.3.5) is decreasing and increasing with
respect to ρ0, respectively. Thus we deduce that

J(u1, u2) ≥ 1
4ρ0 for (u1, u2) ∈ B(2ρ0)\B(ρ0). (3.3.6)

If we assume that (H2) holds, then N(pi−2)
4 > 1 for i = 1, 2, and N(r1+r2−2)

4 < 1. Thus we
fix a ρ = ρ0 > 0 sufficiently small so that

K1(2ρ0)
N(p1−2)

4 −1 +K2(2ρ0)
N(p2−2)

4 −1 ≤ 1
8 , (3.3.7)

and then we fix a β0 > 0 small enough, satisfying

β0K3ρ
N(r1+r2−2)

4 −1
0 ≤ 1

8 . (3.3.8)

Here again one can readily check that (3.3.6) holds. Now to establish (3.3.2) it suffices to
observe that the choices of β0 > 0 and ρ0 > 0 done with (a1, a2) in (3.3.1) can be retain for
(d1, d2). This follows directly from the observation that the Kj , j = 1, 2, 3 are increasing
functions with respect to a1 and a2. Finally, we prove that β0(a1, a2)→∞ as a1, a2 → 0.
Indeed, when (H0) holds, since Kj → 0, j = 1, 2, 3 as ai → 0, i = 1, 2, then ρ0 > 0 in
(3.3.4) can be taken arbitrarily small, thus in (3.3.5), β0 > 0 can be taken large if ρ0 > 0
is small. When (H1) holds we reach the same conclusion by similar arguments.

From now on, for a1, a2 ≥ 0 given, we fix a ρ0 > 0 and a β0 > 0 as determined in
Lemma 3.3.1. For any 0 ≤ d1 ≤ a1, 0 ≤ d2 ≤ a2 we define

m(d1, d2) := inf
(u1,u2)∈S(d1,d2)∩B(ρ0)

J(u1, u2). (3.3.9)

Lemma 3.3.2. Assume that (H0) or (H1) holds. Then for 0 < β ≤ β0,

(i) if (d1, d2) 6= (0, 0) when (H1) holds or d1 6= 0 and d2 6= 0 when (H2) holds, we have
m(d1, d2) < 0.

(ii) If (dn1 , dn2 ) is such that (dn1 , dn2 )→ (d1, d2) as n→∞ with 0 ≤ dni ≤ ai for i = 1, 2,
we have m(dn1 , dn2 )→ m(d1, d2) as n→∞.

(iii) For any 0 ≤ di ≤ ai, i = 1, 2 if m(d1, d2) < 0 and m(a1 − d1, a2 − d2) < 0, we
have m(a1, a2) ≤ m(d1, d2) +m(a1 − d1, a2 − d2).

Proof. (i) It follows directly from Lemma 3.2.4. (ii) By definition of m(dn1 , dn2 ), for any
ε > 0, there exists (un1 , un2 ) ∈ S(dn1 , dn2 ) ∩ B(ρ0) such that

J(un1 , un2 ) ≤ m(dn1 , dn2 ) + ε.

Setting wni := uni
‖uni ‖2

a
1
2
i for i = 1, 2, we have (wn1 , wn2 ) ∈ S(a1, a2) and

‖∇wn1 ‖22 + ‖∇wn2 ‖22 = ‖∇un1‖22 + ‖∇un2‖22 + on(1) < 2ρ0.
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Consequently from the definition (3.3.9) and using (3.3.2), we get

m(d1, d2) ≤ J(wn1 , wn2 ) = J(un1 , un2 ) + o(1) ≤ m(dn1 , dn2 ) + ε+ on(1),

and thus m(d1, d2) ≤ m(dn1 , dn2 ) + on(1). Similarly, reversing the argument, it follows
that m(dn1 , dn2 ) ≤ m(d1, d2) + on(1). Now we deal with (iii). For any ε > 0, there exist
(ϕ1, ϕ2) ∈ S(d1, d2) ∩ B(ρ0) and (ψ1, ψ2) ∈ S(a1 − d1, a2 − d2) ∩ B(ρ0) such that

J(ϕ1, ϕ2) ≤ m(d1, d2) + ε

2 J(ψ1, ψ2) ≤ m(a1 − d1, a2 − d2) + ε

2 . (3.3.10)

Setting wi = {ϕi, ψi}? for i = 1, 2, it follows from, Lemma 3.2.1 (iii)-(iv), that (w1, w2) ∈
S(a1, a2) and

‖∇w1‖22 + ‖∇w2‖22 ≤
2∑
i=1
‖∇ϕi‖22 + ‖∇ψi‖22.

If ‖∇w1‖22 + ‖∇w2‖22 < ρ0, using Lemma 3.2.1 and (3.3.10), we have

m(a1, a2) ≤ J(w1, w2) ≤ J(ϕ1, ϕ2) + J(ψ1, ψ2)
≤ m(d1, d2) +m(a1 − d1, a2 − d2) + ε,

from which it follows that m(a1, a2) ≤ m(d1, d2) + m(a1 − d1, a2 − d2). Otherwise, ρ0 ≤
‖∇w1‖22 + ‖∇w2‖22 < 2ρ0 and in view of (3.3.2), we get

0 ≤ J(w1, w2) ≤ J(ϕ1, ϕ2) + J(ψ1, ψ2) ≤ m(d1, d2) +m(a1 − d1, a2 − d2) + ε,

which is impossible since m(d1, d2) < 0 and m(a1 − d1, a2 − d2) < 0.

Lemma 3.3.3. Assume that (H1) or (H2) holds. Any minimizing sequence to (3.1.7)
is, up to translations, strongly convergent in Lp(RN ) × Lp(RN ) for any 2 < p < 2∗ as
0 < β ≤ β0.

Proof. The proof follows closely the one of [58, Lemma 3.3]. Let {(vn1 , vn2 )} be a minimizing
sequence to (3.1.7). If

sup
y∈RN

∫
B(y,R)

|vn1 |2 + |vn2 |2 dx = on(1),

for some R > 0, then vi → 0 in Lp(RN ) for 2 < p < 2∗, i = 1, 2, see [74, Lemma I.1]. This
contradicts the property m(a1, a2) < 0, obtained in Lemma 3.3.2 (i). Thus, there exist a
γ0 > 0 and a sequence {yn} ⊂ RN such that∫

B(yn,R)
|vn1 |2 + |vn2 |2 dx ≥ γ0,

and we deduce that (vn1 (x− yn), vn2 (x− yn)) ⇀ (v1, v2) 6= (0, 0) in H1(RN )×H1(RN ). Our
aim is to prove that wni (x) := vni (x)−vi(x+yn)→ 0 in Lp(RN ) for 2 < p < 2∗, i = 1, 2 and
so we suppose by contradiction that there exists a 2 < q < 2∗ such that (wn1 , wn2 ) 9 (0, 0)
in Lq(RN ) × Lq(RN ). Still using [74, Lemma I.1] it follows that there exists a sequence
{zn} ⊂ RN such that (wn1 (x− zn), wn2 (x− zn)) ⇀ (w1, w2) 6= (0, 0) in H1(Rn)×H1(RN ).

Now, combining Lemma 3.2.3, the Brezis-Lieb Lemma and the translational invariance,
we see that

J(vn1 , vn2 ) = J(vn1 (x− yn), vn2 (x− yn))
= J(vn1 (x− yn)− v1, v

n
2 (x− yn)− v2) + J(v1, v2) + on(1)

= J(wn1 (x− yn), wn2 (x+−yn)) + J(v1, v2) + o(1)
= J(wn1 (x− zn)− w1, w

n
2 (x− zn)− w2) + J(w1, w2) + J(v1, v2) + on(1),

(3.3.11)
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and

ai = ‖vni (x− yn)‖22 = ‖vni (x− yn)− vi‖22 + ‖vi‖22 + on(1)
= ‖wni (x− zn)− wi + wi‖22 + ‖vi‖22 + on(1)
= ‖wni (x− zn)− wi‖22 + ‖wi‖22 + ‖vi‖22 + on(1).

Setting for i = 1, 2, bi := ai − ‖wi‖22 − ‖vi‖22 we then have ‖wni (x− zn)−wi‖22 = bi + o(1).
Thus recording that J(vn1 , vn2 ) → m(a1, a2), in view of (3.3.11) and Lemma 3.3.2 (ii) we
get

m(a1, a2) ≥ J(w1, w2) + J(v1, v2) +m(b1, b2). (3.3.12)

If J(w1, w2) > m(‖w1‖22, ‖w2‖22) or J(v1, v2) > m(‖v1‖22, ‖v1‖22), then, from (3.3.12) and
Lemma 3.3.2 (iii) , it follows

m(a1, a2) > m(‖w1‖22, ‖w2‖22) +m(‖v1‖22, ‖v2‖22) +m(b1, b2) ≥ m(a1, a2)

which is impossible. Hence J(w1, w2) = m(‖w1‖22, ‖w2‖22) and J(v1, v2) = m(‖v1‖22, ‖v2‖22).
We denote by v∗i , w∗i the classical Schwartz’s rearrangement of vi, wi for i = 1, 2,. Since

‖v∗i ‖22 = ‖vi‖22, ‖w∗i ‖22 = ‖wi‖22,

J(v∗1, v∗2) ≤ J(v1, v2), J(w∗1, w∗2) ≤ J(w1, w2),

see for example [68], we deduce that

J(v∗1, v∗2) = m(‖u1‖22, ‖u2‖22), J(w∗1, w∗2) = m(‖w1‖22, ‖w2‖22).

Therefore, (v∗1, v∗2), (w∗1, w∗2) are solutions to (3.1.2) for some (λ1, λ2) ∈ R2 and from the
standard regularity results we have that v∗i , w∗i ∈ C2(RN ) for i = 1, 2.

We distinguish two cases to preceed the proof. Without loss of generality, we may
assume v1 6= 0.

Case 1: v1 6= 0 and w1 6= 0.
By virtue of Lemma 3.2.1 (ii), (iv), (v),∫

RN
|∇{v∗1, w∗1}

?| dx <
∫
RN
|∇v∗1|2 + |∇w∗1|2 dx ≤

∫
RN
|∇v1|2 + |∇w1|2 dx,

∫
RN
|{v∗1, w∗1}?|r1 |{v∗2, w∗2}?|r2 dx =

∫
RN
{|v∗1|r1 , |w∗1|r1}?{|v∗2|r2 , |w∗2|r2}? dx,

≥
∫
RN
|v∗1|r1 |v∗2|r2 + |w∗1|r1 |w∗2|r2 dx

=
∫
RN

(|v1|r1)∗(|v2|r2)∗ + (|w1|r1)∗(|w2|r2)∗ dx,

≥
∫
RN
|v1|r1 |v2|r2 + |w1|r1 |w2|r2 dx,

(3.3.13)

and thus

J(v1, v2) + J(w1, w2) > J({v∗1, w∗1}?, {v∗2, w∗2}?). (3.3.14)



3.3. Existence of local minimizers 51

Also from Lemma 3.2.1 (iii), for i = 1, 2,∫
RN
|{v∗i , w∗i }?|2 dx =

∫
RN
|v∗i |2 + |w∗i |2 dx =

∫
RN
|vi|2 + |wi|2 dx, (3.3.15)

and hence taking (3.3.12)-(3.3.15) and Lemma 3.3.2 (iii) into consideration, one obtains
the contradiction

m(a1, a2) > m(b1, b2) +m(a1 − b1, a2 − b2) ≥ m(a1, a2).

Case 2: v1 6= 0, w1 = 0 and w2 6= 0.
If v2 6= 0, we can reverse the role of v1, w1 and v2, w2 in Case 1 to get a contradiction.
Thus, we suppose that v2 = 0. Due to Lemma 3.2.1 (ii)-(v),

J({v∗1, 0}?, {w∗2, 0}?) ≤
1
2

∫
RN
|∇v∗1|2 + |∇w∗2|2 dx−

µ1
p1

∫
RN
|v∗1|p1 dx

− µ2
p2

∫
RN
|w∗2|p2 dx− β

∫
RN
|v∗1|r1 |w∗2|r2

< J(v∗1, 0) + J(0, w∗2) ≤ J(v1, 0) + J(0, w2),

(3.3.16)

with ||{v∗1, 0}?||22 = ||v∗1||22 = ||v1||22 and ||{w∗2, 0}?||22 = ||w∗2||22 = ||w2||22. Thus using (3.3.12),
(3.3.16) and Lemma 3.3.2, we also have

m(a1, a2) > m(b1, b2) +m(a1 − b1, a2 − b2) ≥ m(a1, a2).

The contradictions obtained in Cases 1 - 2 indicate that wni (x) = vni (x)− vi(x+ yn)→ 0
in Lp(RN ) for 2 < p < 2∗, i = 1, 2.

Proof of Theorem 3.1.1 (i). Let {(vn1 , vn2 )} be an arbitrary minimizing sequence to (3.1.7).
In view of Lemma 4.3.14, there exists (v1, v2) ∈ H1(RN ) × H1(RN ) such that, up to a
subsequence and translations, (vn1 , vn2 ) ⇀ (v1, v2) in H1(RN ) × H1(RN ) and (vn1 , vn2 ) →
(v1, v2) in Lp(RN )× Lp(RN ) for 2 < p < 2∗. Hence, by the weak lower semi-continuity of
the norm, ‖∇v1‖22 + ‖∇v2‖22 < ρ0, namely, (v1, v2) ∈ B(ρ0), and J(v1, v2) ≤ m(a1, a2) < 0,
from which we deduce that (v1, v2) 6= (0, 0). To show the compactness of {(vn1 , vn2 )} in
H1(RN )×H1(RN ), it suffices to prove that (v1, v2) ∈ S(a1, a2). Assume by contradiction
that ‖v1‖22 := ā1 < a1 or ‖v2‖22 := ā2 < a2. Then by the definition (3.3.9), m(ā1, ā2) ≤
J(v1, v2). At this point, in light of Lemma 3.3.2 (i) and (iii), we get

J(v1, v2) ≤ m(a1, a2) ≤ m(ā1, ā2) +m(a1 − ā1, a2 − ā2) < m(ā1, ā2) ≤ J(v1, v2).

This contradiction proves that (v1, v2) ∈ S(a1, a2). To end the proof, we note that without
restriction we can choose a minimizer (v1, v2) of m(a1, a2) with v1 ≥ 0 and v2 ≥ 0. From
the classical regularity theory, and using the strong maximum principle we then deduce
that v1, v2 > 0.

Proof of Theorem 3.1.2 (i). Let {(vn1 , vn2 )} be a minimizing sequence to (3.1.7) whose two
components are nonnegative. We know by Lemma 3.2.5 that it is not a restriction. Now it
is classical, see for example [55], that there exists another minimizing sequence {(ṽn1 , ṽn2 )} ⊂
S(a1, a2) which is a Palais-Smale sequence for J restricted to S(a1, a2), and such that
||(ṽn1 , ṽn2 )− (vn1 , vn2 )|| → 0 in H1(RN )×H1(RN ). Because of this convergence, we have in
particular that (ṽn1 )− → 0 and (ṽn2 )− → 0 as n→∞ and we obtain that (ṽn1 , ṽn2 ) ⇀ (v1, v2)
in H1(RN )×H1(RN ) with v1 ≥ 0 and v2 ≥ 0. Furthermore, it results from Lemma 3.2.7
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that (v1, v2) satisfies (3.1.2)-(3.1.3) with some (λ1, λ2) ∈ R2, from which we infer that
Q(v1, v2) = 0. From Lemma 4.3.14, we also get that J(v1, v2) ≤ m(a1, a2) < 0. It remains
to show that (v1, v2) ∈ S(a1, a2). By Lemma 3.2.6, we can assume without restriction that
λ1 < 0 and then Lemma 3.2.7 gives v1 ∈ S(a1). If λ2 < 0 we also have that v2 ∈ S(a2).
Let us thus assume by contradiction that λ2 ≥ 0. In the case 1 ≤ N ≤ 4, since

−∆v2 = λ2v2 + µ2v
p2−1
2 + βr2v

r1
1 v

r2−1
2 ≥ 0,

by the Liouville’s results recalled in Lemma 3.2.2, we obtain that v2 = 0. It then follows
that J(v1, v2) = J(v1, 0) with v1 ∈ S(a1) and satisfying −∆v1 = λ1v1 + µ1v

p1−1
1 . Since

p1 > 2 + 4
N , we necessarily have J(v1, 0) > 0, and this provides the contradiction. If we

now assume that N ≥ 5, testing the second equation of (3.1.2) with v2, and integrating in
RN , because λ2 ≥ 0, we get that∫

RN
|∇v2|2 dx− µ2

∫
RN
|v2|p2 dx− βr2

∫
RN
|v1|r1 |v2|r2 dx ≥ 0. (3.3.17)

Now jointing (3.3.17) with Q(v1, v2) = 0, we obtain that∫
RN
|∇v1|2 −

µ1
p1

(
p1
2 − 1

)
N

∫
RN
|v1|p2 dx+

(
µ2 −

µ2
p2

(
p2
2 − 1

)
N

)∫
RN
|v2|p2 dx

+ β

(
r2 −

(
r1 + r2

2 − 1
)
N

)∫
RN
|v1|r1 |v2|r2 dx ≤ 0.

Note that the coefficient of
∫
RN |v2|p2 dx is positive. From the Gagliardo-Nirenberg’s in-

equality (3.2.1), we can assume without restriction that∫
RN
|∇v1|2 −

µ1
p1

(p1
2 − 1

)
N

∫
RN
|v1|p1 dx ≥ 0

by taking, if necessary, ρ0 > 0 (and thus β0 > 0) smaller in Lemma 3.3.1. Thus we also
obtain a contradiction, since we have assumed that r2 >

( r1+r2
2 − 1

)
N . Knowing that

λ2 < 0, we deduce that v2 ∈ S(a2) and then we conclude as before that v1 > 0 and
v2 > 0.

3.4 Existence of minimax solutions

This section is devoted to the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). To
obtain our second solution and in order to benefit from additional compactness, we replace
H1(RN )×H1(RN ) by H1

rad(RN )×H1
rad(RN ). It is well-known that the subspace H1

rad(RN )
of H1(RN ) consisting of radially symmetric functions is compactly embedded into Lq(RN )
for 2 < q < 2∗ and N ≥ 2. Also it is classical that a constrained critical point of J defined
on H1

rad(RN )×H1
rad(RN ) is a constrained critical point of J defined on H1(RN )×H1(RN ).

Accordingly, we define Srad(a1, a2) := S(a1, a2) ∩H1
rad(RN )×H1

rad(RN ).

We first deal with the case where (H1) holds. By Lemma 3.2.4 and 3.3.1, we know
that there exists a 0 < ρ̄ = ρ̄(a1, a2) < ρ0 such that, for any 0 < β ≤ β0,

γ(a1, a2) := inf
g∈Γ

max
t∈[0,1]

J(g(t)) > max{J(g(0)), J(g(1))},

where

Γ := {g ∈ C([0, 1], S(a1, a2)) : g(0) ∈ B(ρ̄), g(1) /∈ B(ρ0) with J(g(1)) < 0}.



3.4. Existence of minimax solutions 53

Lemma 3.4.1. Assume that (H1) holds. Then, for any 0 < β ≤ β0, there exists a Palais-
Smale sequence {(un1 , un2 )} ⊂ S(a1, a2) for J restricted to Srad(a1, a2) at the level γ(a1, a2),
which satisfies (un1 )− → 0, (un2 )− → 0 in H1(RN ) and the property Q(un1 , un2 ) → 0 as
n→∞.

Proof. The proof of such result is now standard, similar statements appear in [63, 8,
12].

Lemma 3.4.2. Assume that (H1) holds and that 0 < β ≤ β0. Then there exists (u1, u2) ∈
H1
rad(RN ) × H1

rad(RN ) solving to (3.1.2) for some (λ1, λ2) ∈ R2 such that J(u1, u2) =
γ(a1, a2). Moreover u1 ≥ 0 and u2 ≥ 0.

Proof. The couple (u1, u2) will be obtained as a weak limit of the Palais-Smale sequence
whose existence is provided by Lemma 3.4.1. To this aim, we first show that {(un1 , un2 )} is
bounded in H1(RN ) ×H1(RN ). As we shall see this property follows from the fact that
the functional J restricted to the set where Q = 0 is coercive. Indeed, we can write, for
any ε > 0,

J(u1, u2) = ε

2 ||∇u
n
1 ||22 + ε

2 ||∇u
n
2 ||22 + a1(ε)||un1 ||p1

p1 + a2(ε)||u2||p2
p2

+ βb(ε)
∫
RN
|un1 |r1 |un2 |r2 dx+ 1− ε

2 Q(un1 , un2 ).

where

a1(ε) = (1− ε)µ1N

2p1

(
p1
2 − 1

)
− µ1
p1
, a2(ε) = (1− ε)µ2N

2p2

(
p2
2 − 1

)
− µ2
p2

and
b(ε) = (1− ε)N

2

(
r1 + r2

2 − 1
)
− 1.

The coefficients ai(ε), i = 1, 2 are strictly negative, but the corresponding terms can be
controlled by ε||∇uni ||22, using the Gagliardo-Nirenberg’s inequality (3.2.1) because p1, p2 <
2 + 4

N . Now since r1 + r2 > 2 + 4
N , we also have that b(ε) > 0 for ε > 0 small enough.

Recalling that Q(un1 , un2 )→ 0, the boundedness of our Palais-Smale sequence follows.

At this point, using Lemma 3.2.7, we can assume that uni ⇀ ui, i = 1, 2 in H1(RN )
and that uni → ui, i = 1, 2 in Lq(RN ) with 2 < q < 2∗. Lemma 3.2.7 also insures that
(u1, u2) is a solution to (3.1.2) for some (λ1, λ2) ∈ R2, and thus Q(u1, u2) = 0. Clearly, the
property u1 ≥ 0 and u2 ≥ 0 follows from (un1 )− → 0, (un2 )− → 0 in H1(RN ). It remains to
show that J(u1, u2) = γ(a1, a2). Since Q(un1 , un2 )→ 0 we have,∫

RN
|∇un1 |2 + |∇un2 |2 dx→

2∑
i=1

µi
pi

(
pi
2 − 1

)
N

∫
RN
|uni |pi dx

+ β

(
r1 + r2

2 − 1
)
N

∫
RN
|un1 |r1 |un2 |r2 dx.

From the strong convergence in Lq(RN ), the right hand side converges to
2∑
i=1

µi
pi

(
pi
2 − 1

)
N

∫
RN
|ui|pi dx+ β

(
r1 + r2

2 − 1
)
N

∫
RN
|u1|r1 |u2|r2 dx.

Thanks to Q(u1, u2) = 0, this gives that
∫
RN |∇un1 |2 + |∇un2 |2 dx→

∫
RN |∇u1|2 + |∇u2|2 dx.

As a consequence, we deduce that J(un1 , un2 )→ J(u1, u2). Thus recalling that J(un1 , un2 )→
γ(a1, a2), we get J(u1, u2) = γ(a1, a2).
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Proof of Theorem 3.1.1 (ii). First we consider the case 2 ≤ N ≤ 4. In view of Lemma
3.4.2, it remains to prove that (u1, u2) ∈ S(a1, a2). Recall that here we work in the
radially symmetric space H1

rad(RN ) × H1
rad(RN ), thus in view of Lemma 3.2.7, we only

need to prove that λ1, λ2 < 0. At this point, as in the proof of Theorem 3.1.2 (i), reasoning
by contradiction if necessary, we assume that λ2 ≥ 0, we obtain that J(u1, u2) = J(u1, 0)
with u1 ∈ S(a1) satisfying −∆u1 = λ1u1 + µ1u

p1−1
1 . Since p1 < 2 + 4

N , we necessarily
have that J(u1, 0) < 0, this provides the contradiction J(u1, 0) = γ(a1, a2) > 0. We then
conclude as before.

Let us now consider the case N ≥ 5, where the Liouville’s type results cannot be
applied.

Lemma 3.4.3. Assume that (H1) holds and that either pi ≤ r1 + r2 − 2
N , i = 1, 2 or

|p1 − p2| ≤ 2
N . If Q(u1, u2) = 0, and J(u1, u2) > 0, then u1 6= 0, u2 6= 0 and

J(u1, u2) = max
t>0

J(ut1, ut2). (3.4.1)

The proof of Lemma 3.4.3 relies on the following technical result whose proof will be
postponed until the Appendix.

Lemma 3.4.4. Assume that (H1) holds and that either p1, p2 ≤ r1+r2− 2
N or |p1−p2| ≤ 2

N .
Let (v1, v2) ∈ H1(RN )×H1(RN ) be arbitrary. Then the function t 7→ J(vt1, vt2) admits at
most two stationary points for t > 0.

Remark 3.4.5. It is only in the proof of Lemma 3.4.4 that we need the assumption p1, p2 ≤
r1 + r2 − 2

N , or alternatively |p2 − p1| ≤ 2
N . These conditions are used to establish the key

property, on which our proof of Theorem 3.1.1(ii) relies, namely that if (v1, v2) ∈ H1(RN )×
H1(RN ) is such that Q(v1, v2) = 0 and J(v1, v2) ≥ 0, then J(v1, v2) = maxt>0 J(vt1, vt2).

Proof of Lemma 3.4.3. We first assert that u1 6= 0 and u2 6= 0. If we assume that u1 = 0,
then by using Q(0, u2) = 0 and 2 < p2 < 2 + 4

N ,

J(0, u2) = 1
2

∫
RN
|∇u2|2 dx−

µ2
p2

∫
RN
|u2|p2 dx = µ2

p2

(1
2 −

(
p2
2 − 1

)
N

)∫
RN
|u2|p2 dx ≤ 0,

this is impossible, which proves that u1 6= 0. Similarly we get that u2 6= 0. Next we are
going to prove that maxt>0 θ(t) := maxt>0 J(ut1, ut2) = J(u1, u2). Since Q(u1, u2) = 0,
it follows from that t = 1 is a stationary point of θ. Note that limt→0+ θ(t) = 0−,
limt→∞ θ(t) = −∞. Due to θ(1) > 0, we then deduce from Lemma 3.4.4 that (3.4.1)
necessarily holds.

End of the proof of Theorem 3.1.1 (ii). We now deal with the case N ≥ 5. In view of
Lemma 3.4.2, it remains to prove that (u1, u2) ∈ S(a1, a2). Let ā1 := ‖u1‖22 ≤ a1 and
ā2 := ‖u2‖22 ≤ a2. Assuming by contradiction that either ā1 < a1 or ā2 < a2, we shall
obtain a contradiction by constructing a path g ∈ Γ such that

max
t∈[0,1]

J(g(t)) < γ(a1, a2).

Let 0 < t1 < 1 < t2 be such that (ut11 , u
t1
2 ) ∈ B(ρ̄/2) and J(ut21 , u

t2
2 ) < m(a1, a2) < 0.

The existence of 0 < t1 < 1 is insured by Lemma 3.2.4 and the one of t2 > 1 by the
property that J(ut1, ut2) → −∞ as t → ∞. Now because of (3.1.10), if ā1 < a1, there
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exists a w1 ∈ S(a1 − ā1) such that wt11 ∈ B(ρ̄/2), and J(wt1, 0) < 0 for t ∈ [t1, t2]. Here
wt(x) := t

N
2 w(tx) and without restriction we can assume that w1 ∈ S(a1 − ā1) is radially

symmetric. Similarly, if ā2 < a2, we can choose a radially symmetric w2 ∈ S(a2 − ā2)
such that wt12 ∈ B(ρ̄/2), and J(0, wt2) < 0 for t ∈ [t1, t2]. Note that we just take w1 = 0 if
ā1 = a1, and w2 = 0 if ā2 = a2.

We now set
vi := {ui, wi}∗, for i = 1, 2,

where {u, v}∗ is the coupled rearrangement of u, v defined by (3.2.3). Then we consider
a path [t1, t2] 7→ (vt1, vt2). From Lemma 3.2.1 (iii)-(iv), for all t ∈ [t1, t2], we see that
(vt1, vt2) ∈ S(a1, a2), and

||∇vt1||22 + ||∇vt1||22 = t2
(
||∇v1||22 + ||∇v1||22

)
≤ t2

2∑
i=1
||∇ui||22 + ||∇wi||22

=
2∑
i=1
||∇uti||22 + ||∇wti ||22.

Thus (vt11 , v
t2
2 ) ∈ B(ρ̄), due to (ut11 , u

t2
2 ), (wt11 , w

t1
2 ) ∈ B(ρ̄/2). Also

J(vt1, vt2) = t2

2

∫
RN
|∇v1|2 + |∇v2|2dx−

2∑
i=1

µi
pi
t(
pi
2 −1)N

∫
RN
|vi|pidx

− βt(
r1+r2

2 −1)N
∫
RN
|v1|r1 |v2|r2 dx

≤ t2

2

∫
RN
|∇u1|2 + |∇u2|2dx+ t2

2

∫
RN
|∇w1|2 + |∇w2|2 dx

−
2∑
i=1

µi
pi
t(
pi
2 −1)N

∫
RN
|ui|pi dx−

2∑
i=1

µi
pi
t(
pi
2 −1)N

∫
RN
|wi|pi dx

− βt(
r1+r2

2 −1)N
∫
RN
|u1|r1 |u2|r2dx

where we have used the property, see (3.3.13), that∫
RN
|v1|r1 |v2|r2 dx ≥

∫
RN
|u1|r1 |u2|r2 + |w1|r1 |w2|r2 dx.

As a consequence, for t ∈ [t1, t2],

J(vt1, vt2) ≤ J(ut1, ut2) + J(wt1, 0) + J(0, wt2). (3.4.2)

In particular, since J(wt21 , 0) ≤ 0 and J(0, wt22 ) ≤ 0, we get from (3.4.2) that J(vt21 , v
t2
2 ) ≤

J(ut21 , u
t2
2 ) < m(a1, a2). Thus we both have that (vt21 , v

t2
2 ) /∈ B(ρ0) and J(vt21 , v

t2
2 ) < 0.

Now from (3.4.2) and using Lemma 3.4.2, we also have that

max
t∈[t1,t2]

J(vt1, vt2) ≤ max
t∈[t1,t2]

[
J(ut1, ut2) + J(wt1, 0) + J(0, wt2)

]
≤ max

t∈[t1,t2]
J(ut1, ut2) + max

t∈[t1,t2]
J(wt1, 0) + max

t∈[t1,t2]
J(0, wt2)

= J(u1, u2) + max
t∈[t1,t2]

J(wt1, 0) + max
t∈[t1,t2]

J(0, wt2) < γ(a1, a2),

because maxt∈[t1,t2] J(wt1, 0) < 0 if w1 6= 0 and maxt∈[t1,t2] J(0, wt2) < 0 if w2 6= 0.
Thus, after a renormalization [t1, t2] → [0, 1], we obtain a path g lying in Γ such that
maxt∈[0,1] J(g(t)) < γ(a1, a2) and this ends the proof.
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We now turn to the existence of the second solution of Theorem 3.1.2 (ii). Our proof
borrows several key ingredients from [12]. First we recall some properties of the scalar
nonlinear Schrödinger equation. Let wa,µ,p > 0, wa,µ,p ∈ S(a) be radially symmetric and
satisfy

−∆wa,µ,p − λwa,µ,p = µ|wa,µ,p|p−2wa,µ,p, (3.4.3)

for 2 + 4
N < p < 2∗ and λ < 0. It is well known that wa,µ,p is unique and is given by

wa,µ,p(x) =
(
−λ
µ

) 1
p−2

w0((−λ)
1
2x), (3.4.4)

where w0 is the unique positive radial solution of the equation −∆w + w = |w|p−2w. In
what follows, we set

C0(N, p) =
∫
RN
|∇w0|2 dx, C1(N, p) =

∫
RN
|w0|p dx. (3.4.5)

Let us now introduce a Pohozaev type manifold

P(N, a, µ, p) := {u ∈ S(a) :
∫
RN
|∇u|2 dx = µ

p

(
p

2 − 1
)
N

∫
RN
|u|p dx}

and the functional Iµ,p : H1(RN )→ R defined by

Iµ,p(u) = 1
2

∫
RN
|∇u|2 − µ

p

∫
RN
|u|p dx.

Lemma 3.4.6. The solution wa,µ,p to (3.4.3) belongs to P(N, a, µ, p), and it minimizes
the functional Iµ,p on the manifold P(N, a, µ, p).

Proof. The proof of such results can be directly deduced from [63, Lemma 2.7 and 2.10].

From (3.4.4)-(4.2.15), it is not difficult to check that

‖∇wa,µ,p‖22 =
(

a

C0(N, p)

) 2p−N(p−2)
4−N(p−2)

µ
4

4−N(p−2)C0(N, p),

‖wa,µ,p‖pp =
(

a

C0(N, p)

) 2p−N(p−2)
4−N(p−2)

µ
N(p−2)

4−N(p−2)C1(N, p),

(3.4.6)

and then the least energy level of Iµ,p on P(N, a, µ, p) is given by

l(N, a, µ, p) := inf
u∈P(N,a,µ,p)

Iµ,p(u) = Iµ,p(wa,µ,p)

= µ

p

((
p

2 − 1
)
N

2 − 1
)∫

RN
|wa,µ,p|p dx (3.4.7)

= 1
p

((
p

2 − 1
)
N

2 − 1
)(

a

C0(N, p)

) 2p−N(p−2)
4−N(p−2)

µ
4

4−N(p−2)C1(N, p).

We now define, for s ∈ R and w ∈ H1(RN ), the dilation (s ∗ w)(x) := e
Ns
2 w(esx).
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Lemma 3.4.7. For any w ∈ H1(RN ), there holds

Iµ,p(s ∗ w) = e2s

2

∫
RN
|∇w|2 dx− µ

p
es(

p
2−1)N

∫
RN
|w|p dx,

∂

∂s
Iµ,p(s ∗ w) = e2s

∫
RN
|∇w|2 dx− µ

p

(
p

2 − 1
)
Nes(

p
2−1)N

∫
RN
|w|p dx.

In particular, if w = wa,µ,p, then

∂

∂s
Iµ,p(s ∗ wa,µ,p) = 0 if s = 0,

∂

∂s
Iµ,p(s ∗ wa,µ,p) > 0(< 0) if s < 0(> 0).

Proof. We refer to [12, Lemma 3.1] for a very similar proof.

Now define, for i = 1, 2,

ci := ci(r1 + r2, pi) := pi − (r1 + r2)
pi

(
pi(r1 + r2)
pi − 2

) r1+r2−2
pi−(r1+r2)

= max
t≥0

[
tr1+r2−2 − 1

pi
tpi−2

]
.

(3.4.8)

In view of (3.4.7), since p1, p2 > 2 + 4
N , then there exists a β1 = β1(a1, a2) > 0 such that

l(N, a1, µ1 + β1, p1) + l(N, a2, µ2 + β1, p2)− β1c1a1 − β1c2a2

= max{l(N, a1, µ1, p1), l(N, a2, µ2, p2)} > 0

and
l(N, a1, µ1 + β1, p1) + l(N, a2, µ2 + β1, p2)− β1c1a1 − β1c2a2

> max{l(N, a1, µ1, p1), l(N, a2, µ2, p2)} > 0

for any 0 < β < β1. Note that β1(a1, a2)→∞ as a1, a2 → 0. Choosing if necessary β0 > 0
smaller in Lemma 3.3.1, we can assume that β1 = β0.

Lemma 3.4.8. For any 0 < β < β0,

inf{J(u1, u2) : (u1, u2) ∈ P(N, a1, µ1 + β, p1)× P(N, a2, µ2 + β, p2)}
> max{l(N, a1, µ1, p1), l(N, a2, µ2, p2)}.

Proof. For any (u1, u2) ∈ P(N, a1, µ1 + β, p1)× P(N, a2, µ2 + β, p2), we have

J(u1, u2) = Iµ1,p1(u1) + Iµ2,p2(u2)− β
∫
RN
|u1|r1 |u2|r2 dx

≥ Iµ1,p1(u1) + Iµ2,p2(u2)− β
2∑
i=1

∫
RN
|ui|r1+r2 dx

≥ Iµ1,p1(u1) + Iµ2,p2(u2)− β
2∑
i=1

∫
RN

ci|ui|2 + 1
pi
|ui|pi dx

= Iµ1+β,p1(u1) + Iµ2+β,p2(u2)− βc1a1 − βc2a2

≥ l(N, a1, µ1 + β, p1) + l(N, a2, µ2 + β, p2)− βc1a1 − βc2a,

where ci for i = 1, 2 are defined by (3.4.8).
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Now for any given β ∈ (0, β0), according to Lemma 4.3.2, we can fix a ε > 0 such that

inf{J(u1, u2) : (u1, u2) ∈ P(N, a1, µ1 + β, p1)× P(N, a2, µ2 + β, p2)}
> max{l(N, a1, µ1, p1), l(N, a2, µ2, p2)}+ ε.

(3.4.9)

We set
w1 := wa1,µ1+β,p1 , w2 := wa2,µ2+β,p2 ,

and
φi(s) := Iµi,pi(s ∗ wi), ψi(s) := ∂

∂s
Iµi,pi(s ∗ wi).

From these definitions and as in [12, Lemma 3.3], one obtains the following result.

Lemma 3.4.9. For i = 1, 2, there exists ρi < 0 and Ri > 0 such that

(i) 0 < φi(ρi) < ε and φi(Ri) ≤ 0, where ε > 0 is determined in (3.4.9);

(ii) ψi(s) > 0 for s < 0 and ψi(s) < 0 for s > 0. In particular ψi(ρi) > 0, ψi(Ri) < 0.

Let M := [ρ1, R1]× [ρ2, R2], and for (t1, t2) ∈M ,

g0(t1, t2) := (t1 ∗ w1, t2 ∗ w2) ∈ S(a1, a2).

We now introduce the min-max class

Γ := {g ∈ C(M,S(a1, a2)) : g|∂M = g0}.

Lemma 3.4.10. If g ∈ Γ, then there holds

sup
∂M

J(g) < max{l(N, a1, µ1 + β, p1), l(N, a2, µ2 + β, p2)}+ ε.

Proof. In view of Lemma 3.4.9 and (3.4.6),

J(t1 ∗ w1, ρ2 ∗ w2) ≤ Iµ1,p1(t1 ∗ w1) + Iµ2,p2(ρ2 ∗ w2)
≤ Iµ1,p1(t1 ∗ w1) + ε ≤ sup

s∈R
Iµ1,p1(s ∗ w1) + ε

=
(
µ1 + β

µ1

) 4
4−N(p1−2)

sup
s∈R

Iµ1,p1(s ∗ wa1,µ1,p1) + ε

≤ l(N, a1, µ1, p1) + ε,

because p1 > 2 + 4
N . Consequently, for t1 ∈ [ρ1, R1],

J(t1 ∗ w1, ρ2 ∗ w2) ≤ l(N, a1, µ1, p1) + ε,

and in a similar way, for t2 ∈ [ρ2, R2],

J(ρ1 ∗ w1, t2 ∗ w2) ≤ l(N, a2, µ2, p2) + ε.

On the other hand, using Lemma 3.4.9, one can show that for t1 ∈ [ρ1, R1],

J(t1 ∗ w1, R2 ∗ w2) ≤ Iµ1,p1(t1 ∗ w1) + Iµ2,p2(R2 ∗ w2)
≤ sup

s∈R
Iµ1,p1(s ∗ w1) ≤ l(N, a1, µ1, p1).

Analogously, for t2 ∈ [ρ2, R2], J(R1 ∗ w1, t2 ∗ w2) ≤ l(N, a2, µ2, p2). Then the lemma
follows.
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Lemma 3.4.11. For every g ∈ Γ, there exists (t1, t2) ∈M such that g(t1, t2) ∈ P(N, a1, µ1+
β, p1)× P(N, a2, µ2 + β, p2).

Proof. Let g ∈ Γ be arbitrary, we write g(t1, t2) := (g1(t1, t2), g2(t1, t2)), and we introduce
the map Fg : M → R2 as,

Fg(t1, t2) :=
(
∂

∂s
Iµ1+β,p1(s ∗ g1(t1, t2))|s=0,

∂

∂s
Iµ2+β,p2(s ∗ g2(t1, t2))|s=0

)
.

Since

∂

∂s
Iµi+β,pi(s ∗ gi(t1, t2))|s=0

=
∫
RN
|∇gi(t1, t2)|2 dx− µi

pi

(
pi
2 − 1

)
N

∫
RN
|gi(t1, t2)|pi dx,

we deduce that Fg(t1, t2) = (0, 0) if and only if g(t1, t2) ∈ P(N, a1, µ1+β, p1)×P(N, a2, µ2+
β, p2). To show that Fg(t1, t2) = 0 has a solution we can follow the proof given in [12,
Lemma 3.5].

At this point, we know from Lemma 4.3.2, 3.4.10 and 3.4.11, that there exists a Palais-
Smale sequence for J restricted to S(a1, a2) at the level

c(a1, a2) := inf
g∈Γ

max
(t1,t2)∈M

J(g(t1, t2)) > max{l(N, a1, µ1, p1), l(N, a2, µ2, p2)}. (3.4.10)

In addition, arguing as in the proof of Theorem 3.1.1 (ii), we obtain the following result.

Lemma 3.4.12. For any 0 < β < β0, there exists a Palais-Smale sequence {(un1 , un2 )} ⊂
Srad(a1, a2) for J restricted to Srad(a1, a2) at the level c(a1, a2), which satisfies (un1 )− → 0,
(un2 )− → 0 in H1(RN ) and the property Q(un1 , un2 )→ 0 as n→∞.

Proof of Theorem 3.1.2 (ii). Let {(un1 , un2 )} ⊂ Srad(a1, a2) be given by Lemma 3.4.12.
Then there exists u1, u2 ≥ 0 such that, up to a subsequence, (un1 , un2 ) ⇀ (u1, u2) in
H1(RN )×H1(RN ) and (un1 , un2 )→ (u1, u2) in Lp(RN )×Lp(RN ) for 2 < p < 2∗. It follows as
before that (u1, u2) is a weak solution to (1.1.2) for some (λ1, λ2) ∈ R2, thus Q(u1, u2) = 0.
Since Q(un1 , un2 ) = on(1), we deduce that

∫
RN |∇un1 |2 + |∇un2 |2 dx→

∫
RN |∇u1|2 + |∇u2|2 dx.

This results that J(u1, u2) = c(a1, a2) > 0, and in particular (u1, u2) 6= (0, 0). It remains
to prove that (u1, u2) ∈ S(a1, a2). From Lemma 3.2.6, we may suppose λ1 < 0, and thus
u1 ∈ S(a1). If λ2 < 0 we also have that u2 ∈ S(a2). If we assume λ2 ≥ 0, then

−∆u2 = λ2u2 + µ2u
p2−1
2 + βr2u

r1
1 u

r2−1
2 ≥ 0,

and applying Lemma 3.2.2, it follows that u2 = 0. Therefore Q(u1, 0) = 0, namely,
u1 ∈ P(N, a1, p1, µ1), and this implies that

c(a1, a2) = J(u1, 0) = 1
2

∫
RN
|∇u1|2 dx−

µ1
p1

∫
RN
|u1|p1 dx = l(N, a1, µ1, p1),

in contradiction with (3.4.10). Knowing that (u1, u2) ∈ S(a1, a2), we conclude as previ-
ously.
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3.5 Appendix

Proof of Lemma 3.4.4. To begin with, we set for i = 1, 2,

a :=
∫
RN
|∇u1|2 + |∇u2|2 dx, bi := µi

pi

∫
RN
|ui|pi dx, c := β

∫
RN
|u1|r1 |u2|r2 dx.

Thus defining, for t > 0, θ(t) := J(ut1, ut2), we then have

θ(t) := a
t2

2 −
2∑
i=1

bit
p̃i − c tr, (3.5.1)

where we have set, for i = 1, 2,

p̃i :=
(pi

2 − 1
)
N, r :=

(r1 + r2
2 − 1

)
N.

Note that, under (H1), p̃1, p̃2 ∈ (0, 1) if 2 < pi < 2 + 2
N , p̃1, p̃2 ∈ (1, 2) if pi > 2 + 2

N , and
r > 2.

To prove the lemma, it suffices to show that θ′ admits at most two zeros on (0,∞).
This is clearly equivalent to show that g(t) := θ′(t)

tα has at most two zeros for t > 0, and
for a α ∈ R to be chosen later, . Note that it is not restrictive to assume that p1 ≤ p2.
We have

g(t) = at1−α − b1 p̃1 t
p̃1−1−α − b2 p̃2 t

p̃2−1−α − c r tr−1−α.

Thus

g′(t) = a
(
1− α

)
t−α − b1 p̃1

(
p̃1 − 1− α

)
tp̃1−2−α

− b2 p̃2
(
p̃2 − 1− α

)
tp̃2−2−α − c r

(
r − 1− α

)
tr−2−α,

and

g′′(t) = a (1− α)(−α)t−α−1 − b1 p̃1(p̃1 − 1− α)(p̃1 − 2− α)tp̃1−3−α

− b2 p̃2(p̃2 − 1− α)(p̃2 − 2− α)tp̃2−3−α − c r(r − 1− α)(r − 2− α)tr−3−α.

For convenience, we write

g′′(t) = α0 t
−α−1 − α1 t

p̃1−3−α − α2 t
p̃2−3−α − α3 t

r−3−α, (3.5.2)

where we have set α0 := a (1− α)(−α), αi := bi p̃i(p̃i − 1− α)(p̃i − 2− α) for i = 1, 2, and
α3 := c r(r − 1− α)(r − 2− α). We now consider the following two cases.

Case 1: 2 < p1 ≤ p2 ≤ r1 + r2 − 2
N . If we assume that p̃2 ≤ 1, namely, p2 ≤ 2 + 2

N , then
setting α = 0, we get that α0 = 0, α1 ≤ 0, α2 ≤ 0, and α3 > 0. Thus g′′(t) < 0 for any
t > 0, we then deduce that g′ is strictly decreasing on (0,∞). It follows that g cannot
have more than two zeros. Now if we assume that p̃2 > 1, we choose α = p̃2 − 1 ∈ (0, 1).
Then g′′(t) becomes

g′′(t) = α0 t
−p̃2 − α1 t

p̃1−p̃2−2 − α3 t
r−p̃2−2

with α0 < 0 and α1 > 0. Also under our assumption we have r ≥ p̃2 + 1 and we obtain
that α3 ≥ 0. Thus g′′(t) < 0 for any t > 0, and we conclude as in the first case.
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Case 2: |p1− p2| ≤ 2
N . In view of the first case we can assume that p̃2 > 1. We now write

(3.5.2) as

g′′(t) = t−α−1
[
α0 − α1 t

p̃1−2 − α2 t
p̃2−2 − α3 t

r−2
]

:= t−α−1ξ(t).

Let us prove that, for a convenient choice of α ≤ 0 we can insure that ξ is a strictly
decreasing on (0,∞). Recall that we assume that p1 ≤ p2. Since |p1 − p2| ≤ 2

N , it implies
that p̃2 ≤ p̃1 + 1, thus we can choose a α ≤ 0 satisfying p̃2 − 2 ≤ α ≤ p̃1 − 1. With this
choice α1 ≤ 0, α2 ≤ 0, and α3 > 0 because of r > 2. It follows that ξ is strictly decreasing
on (0,∞).

Now having proved that ξ is strictly decreasing and since limt→0+ ξ(t) > 0 and limt→∞ ξ(t) =
−∞, there exists exactly one t1 > 0 satisfying ξ(t1) = 0. Thus g′(t) is strictly increasing
on (0, t1), and strictly decreasing on [t1,∞). Also we can check that limt→0+ g′(t) < 0 and
limt→∞ g

′(t) = −∞. At this point, we can assume without restriction that

max
t>0

g′(t) > 0. (3.5.3)

Otherwise, since limt→0+ g(t) < 0, then g(t) < 0 for t > 0, and g has no zero on (0,∞).

From (3.5.3) and the limits of g′(t), we deduce that there are exactly two values t2 < t3
such that g′(t2) = g′(t3) = 0. In addition, 0 < t2 < t1 < t3. Clearly, g is strictly decreasing
on (0, t2) ∪ (t3,∞), and strictly increasing on [t2, t3). Recording that limt→0+ g(t) = 0−,
it implies that g may have at most two zeros.





Chapter 4

Normalized solutions for
fourth-order nonlinear
Schrödinger equation in the mass
critical and supercritical regime

4.1 Introduction

In this chapter, we deal with a class of time-dependent fourth-order nonlinear Schrödinger
equations in R× RN ,

i∂tψ − γ∆2ψ + ∆ψ + |ψ|2σψ = 0, (4.1.1)

where γ > 0. A fundamental step to study solutions of (4.1.1) consists in standing waves,
namely solutions with the form of ψ(t, x) = eiαtu(x) for α ∈ R. This then leads to the
following elliptic equation satisfied by u,

γ∆2u−∆u+ αu = |u|2σu. (4.1.2)

Observe that the L2-norm of solution to the Cauchy problem of (4.1.1) is conserved
along time, i.e. for any t > 0,∫

RN
|ψ(t, x)|2 dx =

∫
RN
|ψ(0, x)|2 dx.

Thus it is of great interest to research solutions to (4.1.2) having prescribed L2-norm,
namely, for given c > 0, we find α ∈ R and u ∈ H2(RN ) satisfying (4.1.2), together with
normalized condition ∫

RN
|u|2 dx = c. (4.1.3)

Such solutions are so-called normalized solutions. For the simplicity of terminology, in the
following we shall refer a solution (α, u) to (4.1.2)-(4.1.3) as u, where u is obtained as a
critical point of energy functional E : H2(RN )→ R defined by

E(u) := γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− 1

2σ + 2

∫
RN
|u|2σ+2 dx
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on the constraint
S(c) := {u ∈ H2(RN ) :

∫
RN
|u|2 dx = c},

and α is then determined as Lagrange multiplier.

From now on, we are concerned with normalized solutions, i.e. solutions to (4.1.2)-
(4.1.3). When 0 < σN < 4, the energy functional E is bounded from below on S(c), then
the authors [28] studied the following minimizing problem

m(c) := inf
u∈S(c)

E(u). (4.1.4)

In this case, it is possible to find a solution to (4.1.2)-(4.1.3) as a minimizer to (4.1.4). We
mention the following result obtained in [28].

Theorem 4.1.1. Assume that 0 < σN < 2, then m(c) is achieved for every c > 0. If
2 ≤ σN < 4 then there exists a critical mass c̃ = c̃(σ,N) such that
(i) m(c) is not achieved if c < c̃;
(ii) m(c) is achieved if c > c̃ and σ = 2/N ;
(iii) m(c) is achieved if c ≥ c̃ and σ 6= 2/N .
Moreover, if σ ∈ N+ and m(c) is achieved, then there exists at least one radially symmetric
minimizer.

Remark 4.1.2. The appearance of a critical mass when 2 ≤ σN < 4 is linked to the fact
that every term of the energy functional E behaves differently with respect to dilations.

In this chapter, as inspired by [28], we study solutions to (4.1.2)-(4.1.3) under the mass
critical case σN = 4 and the mass supercritical case 4 < σN < 4∗, where 4∗ := 4N

(N−4)+ . In
this subject, our first result concerns the mass critical case σN = 4. To show the statement,
we recall the well known Gagliardo-Nirenberg’s inequality (see [92]) for u ∈ H2(RN ),

‖u‖2σ+2
2σ+2 ≤ BN (σ)‖∆u‖

σN
2

2 ‖u‖
2+2σ−σN2
2 , (4.1.5)

where  0 ≤ σ, if N ≤ 4,

0 ≤ σ < 4
N − 4 , if N ≥ 5,

and BN (σ) is a constant depending on σ and N .

Theorem 4.1.3. Let N ≥ 1, σN = 4. There exists a c∗N > 0 such that

m(c) = inf
u∈S(c)

E(u) =
{

0, 0 < c ≤ c∗N ,
−∞, c > c∗N ,

For c ∈ (0, c∗N ), (4.1.2)-(4.1.3) has no solution, and in particular m(c) is not achieved. In
addition, c∗N = (γC(N))

N
4 where

C(N) := N + 4
NBN ( 4

N )
, (4.1.6)

and BN (σ) is the constant in (4.1.5).
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Theorem 4.1.3 shows that m(c) = −∞ when c > c∗N . Actually, when 4 < σN < 4∗, we
will obtain that m(c) = −∞ when c > 0. To see this, for any u ∈ S(c), λ > 0, we define

uλ(x) := λ
N
4 u(
√
λx).

By direct calculations one can check that ‖uλ‖2 = ‖u‖2 and

E(uλ) = γλ2

2

∫
RN
|∆u|2 dx+ λ

2

∫
RN
|∇u|2 dx− λσN/2

2σ + 2

∫
RN
|u|2σ+2 dx. (4.1.7)

Thus E(uλ) → −∞ as λ → ∞ when 4 < σN < 4∗, then we deduce that m(c) = −∞
for any c > 0. By consequence, in both cases, it is no more possible to obtain a solution
to (4.1.2)-(4.1.3) as a minimizer to (4.1.4). To overcome this difficulty, we introduce a
natural constraintM(c) given by

M(c) := {u ∈ S(c) : Q(u) = 0},

where
Q(u) := γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− σN

2(2σ + 2)

∫
RN
|u|2σ+2 dx.

Using (4.1.7), we immediately see that

Q(u) = ∂E(uλ)
∂λ

|λ=1. (4.1.8)

and thus, heuristically, M(c) contains all critical points for E restricted to S(c), then
solutions to (4.1.2)-(4.1.3). This fact will be rigourously proved in Lemma 4.10.1. Actually,
the condition Q(u) = 0 corresponds to a Pohozaev type identity, andM(c) is called as the
Pohozaev manifold elated to (4.1.2)-(4.1.3). Borrowing the key spirit from [13], we shall
prove that a critical point of E restricted to M(c) is a critical point of E restricted to
S(c), see Lemma 4.3.5. For these reasons, we define the following minimization problem

γ(c) := inf
u∈M(c)

E(u). (4.1.9)

We now search for a minimizer to (4.1.9). Note that, if it exists, it then corresponds to a
ground state solution to (4.1.2)-(4.1.3) in the sense that it minimizes the energy functional
E among all solutions having the same L2-norm.

For convenience, we define c0 ∈ R as

c0 :=
{

0, if 4 < σN < 4∗,
c∗N , if σN = 4,

(4.1.10)

where c∗N is given in Theorem 4.1.3.

Theorem 4.1.4. Let N ≥ 1, 4 ≤ σN < 4∗. Then there exists a cσ,N > c0 such that for
any c ∈ (c0, cσ,N ), (4.1.2)-(4.1.3) has a ground state solution uc satisfying E(uc) = γ(c),
and the associated Lagrange parameter αc is strictly positive. Moreover
(i) cσ,1 = cσ,2 =∞, and cσ,3 =∞ if 4/3 ≤ σ < 2;

(ii) If σN = 4, then cσ,4 =∞, and cσ,N ≥
(

N
N−4

)N
4 c∗N if N ≥ 5.
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The proof of Theorem 4.1.4 crucially relies on a key ingredient Lemma 4.3.5. Using this
result and the Ekeland variational principle [47], we then obtain a Palais-Smale sequence
{un} ⊂ M(c) for E restricted to S(c) at level γ(c) as a minimizing sequence to (4.1.9).
Our aim is to prove that {un} is compact, up to translations, in H2(RN ). Firstly, since
E is coercive on M(c), see Lemma 4.3.1, thus {un} is bounded in H2(RN ), and it then
follows that there exists uc ∈ H2(RN ) such that un ⇀ uc, up to translation, in H2(RN ).
Furthermore, there is αc ∈ R such that uc satisfies

γ∆2uc −∆uc + αcuc = |uc|2σuc. (4.1.11)

At this point, proving the compactness of {un} then reduces to show that the strong
convergence of {un} in L2σ+2(RN ) and the Lagrange parameter αc > 0, see Lemma 4.3.6.
The strong convergence of {un} in L2σ+2(RN ) benefits from the fact that c 7→ γ(c) is
nonincreasing on (c0,∞), see Lemma 4.4.1. The restriction on the size of c is to insure
that αc > 0, see Lemma 4.2.1.

Taking advantage of the genus theory, we obtain the existence of multiple radial solu-
tions to (4.1.2)-(4.1.3).

Theorem 4.1.5. Assume N ≥ 2.
(i) If 4 < σN < 4∗, then for any c ∈ (0, cσ,N ), where cσ,N is defined in Theorem 4.1.4,

(4.1.2)-(4.1.3) admits infinitely many radial solutions.
(ii) If 2 ≤ N ≤ 4, σN = 4, then for any k ∈ N+, there exists a ck > c∗N such that, for

any c ≥ ck, (4.1.2)-(4.1.3) admits at least k radial solutions.

To establish Theorem 4.1.5, we shall work in the subspace H2
rad(RN ) of H2(RN ), which

consists of radially symmetric functions in H2(RN ). Accordingly, we define Mrad(c) :=
M(c) ∩H2

rad(RN ).

The proof of Theorem 4.1.5 is based on the Kranosel’skii genus theory. The key step
is to prove that E restricted to Mrad(c) satisfies the Palais-Smale condition. To this
end, we consider an arbitrary Palais-Smale sequence {un} ⊂ Mrad(c) for E restricted to
Mrad(c). Applying the coerciveness of E onMrad(c), we then denote by uc its weak limit
in H2

rad(RN ). Moreover, there exists αc ∈ R such that uc satisfies (4.1.11). Note that the
strong convergence of {un} in L2σ+2(RN ) is given here for free, because the embedding
H2
rad(RN ) ↪→ L2σ+2(RN ) is compact for N ≥ 2. Reasoning as the proof of Theorem 4.1.4,

to show the compactness it remains to check that the Lagrange parameter αc is strictly
positive, which is insured by Lemma 4.2.1. The second step is to show that the setM(c)
is sufficiently large. This is always the case when 4 < σN < 4∗ for any c > 0. However,
when σN = 4, the setMrad(c) may be too small. In particular, it shrinks to the empty set
as c → c∗N . To obtain a given number of solutions, we require that c > c∗N is sufficiently
large.

The monotonicity of the function c 7→ γ(c) on (c0,∞) is crucially used in the proof
of Theorem 4.1.4. We now present additional properties of this function, its behaviors
depend in an essential way on the couple (σ,N).

Theorem 4.1.6. Let 4 ≤ σN < 4∗. The function c 7→ γ(c) is continuous for any c > c0,
is decreasing on (c0,∞) and limc→c+

0
γ(c) =∞. In addition,

(i) if N = 1, 2, N = 3 with 4
3 ≤ σ < 2 or N = 4 with σ = 1, then c 7→ γ(c) is strictly

decreasing and limc→∞ γ(c) = 0.
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(ii) If N = 3 with σ ≥ 2 or N = 4 with σ > 1, then limc→∞ γ(c) := γ(∞) > 0 and
γ(c) > γ(∞) for all c > c0.

(iii) If N ≥ 5, then limc→∞ γ(c) := γ(∞) > 0 and there exists a c∞ > c0 such that,
γ(c) = γ(∞) for all c ≥ c∞.

Note that Theorem 4.1.6, the difference of behavior of γ(c) as c→∞ between N ≤ 4
and N ≥ 5 arises from the fact that the equation

γ∆2u−∆u = |u|2σu (4.1.12)

does not admit a least energy solution in H2(RN ) when N ≤ 4, but it does when N ≥ 5,
see Proposition 4.6.5 for more details.

Next, when σN = 4 we show a concentration behavior of ground state solutions to
(4.1.2)-(4.1.3) as c approaches to c∗N from above.

Theorem 4.1.7. Let N ≥ 1, σN = 4, and {cn} ⊂ R be a sequence satisfying for any
n ∈ N, cn > c∗N with cn → c∗N as n → ∞, and un be a ground state solution to (4.1.2)-
(4.1.3) for c = cn at level γ(cn). Then there exist a sequence {yn} ⊂ RN and a least energy
solution u to the equation

γ∆2u+ u = |u|
8
N u, (4.1.13)

such that up to a subsequence,

(
ε4nc
∗
NN

4

)N
8

un

(ε4nc∗NN
4

) 1
4

x+ εnyn

→ u in Lq(RN ) as n→∞

for 2 ≤ q < 2N
(N−4)+ , where εn → 0 as n→∞.

Proposition 4.1.7 gives a description of ground state solution to (4.1.2)-(4.1.3) as cn
approaches to c∗N from above. Roughly speaking, it shows for n ∈ N large enough,

un(x) ≈
(

4
ε4nc
∗
NN

)N
8

u

( 4
ε4nc
∗
NN

) 1
4

(x− εnyn)

 .
In the folowing we consider the sign and radially symmetric property of solutions to

(4.1.2)-(4.1.3). Concerning this subject, we first mention the case that α ∈ R+ is given in
(4.1.2). In this case, it is known that when α ∈ R+ is sufficiently small, all least energy
solutions have a sign and are radial. On the contrary, when α ∈ R+ is large, radial solutions
are necessarily sign-changing. In addition, when σ ∈ N+, at least one least energy solution
is radial. For more details, see [31, Theorem 4]. When 0 < σN < 4, regarding the sign
and radially symmetric property of minimizers to (4.1.4), we refer to [28]. However, when
4 ≤ σN < 4∗, it seems more complex to derive these information for ground state solutions
to (1.2.2)-(1.2.3). In this direction, we only present the following result.

Theorem 4.1.8. Let N ≤ 1, 4 ≤ σN < 4∗ and σ ∈ N+. Then there exists a cr > c0 such
that, for any c ∈ (c0, cr), (4.1.2)-(4.1.3) admits a ground state solution, which is radial
and sign-changing.
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In our next result, we prove that positive radial solutions to (4.1.2)-(4.1.3) do exist.

Theorem 4.1.9. Let 1 ≤ N ≤ 4, 4 ≤ σN < 4∗. There exists a c̄σ,N > c0 such that
(4.1.2)-(4.1.3) admits a positive and radial solution for any c ≥ c̄σ,N .

In the last section of this chapter, we investigate dynamical behaviors of solution to the
Cauchy problem of (4.1.1). From [95], when 0 < σN < 4∗, the local well-posedness to the
Cauchy problem of (4.1.1) holds. Futhermore, in the mass subcritical case 0 < σN < 4,
any solution to the Cauchy problem of (4.1.1) with initial datum in H2(RN ) exists globally
in time, see [49, 95]. While in the mass critical and supercritical case 4 ≤ σN < 4∗, blowup
in finite time may happen, but it is also possible to prove that the solution to the Cauchy
problem of (4.1.1) with some initial datums exists globally in time.

Theorem 4.1.10. Let 4 ≤ σN < 4∗. For any c > c0, the solution u ∈ C([0, T );H2(RN ))
to (4.1.1) with initial datum u0 ∈ H2(RN ) in

Oc := {u ∈ S(c) : E(u) < γ(c), and Q(u) > 0}.

exists globally in time.

When 0 < σN < 4, it was prove in [28] that minimizers to (4.1.4) are orbitally stable.
When 4 ≤ σN < 4∗, we now prove that radial ground state solutions are unstable by
blowup in finite time.

Definition 4.1.11. We say that u ∈ H2(RN ) is unstable by blowup in finite time, if for
any ε > 0, there exists v ∈ H2(RN ) such that ‖v − u‖H2 < ε and the solution ψ(t) to
(4.1.1) with initial datum ψ(0) = v blows up in finite time in the H2-norm.

Making use of a key element in Boulenger and Lenzmann [30], we have

Theorem 4.1.12. Let 4 ≤ σN < 4∗, N ≥ 2 and σ ≤ 4. Then standing waves associated
to radial ground states to (4.1.2)-(4.1.3) are unstable by blowup in finite time.

In the case where α ∈ R is fixed in (4.1.2), the fact that radial least energy solutions
are unstable by blowup in finite time was recently established, see our paper [27]. It should
be noted that the results of [27] are also strongly based on arguments due to Boulenger
and Lenzmann [30].

This chapter is organized as follows. In Section 4.2, we establish some preliminary
results and give the proof of Theorem 4.1.3. In Section 4.3, we reveal some properties
of the constraintM(c), in particular we show that in order to find a critical point for E
restricted to S(c), we can work directly with a minimizing sequence to (4.1.9), see Lemma
4.3.5. The following Section 4.4 is devoted to the proof of Theorem 4.1.4, and Section 4.5
is devoted to the proof of the multiplicity result Theorem 4.1.5. The subject of Section
4.6 is to establish the properties of c 7→ γ(c) as presented in Theorem 4.1.6. In Section
4.7, we show the proof of the concentration result Theorem 4.1.7. In Section 4.8, Theorem
4.1.8 and Theorem 4.1.9 are established. Afterwards, in Section 4.9, we deal with the
unstable issue and prove Theorem 4.1.10 and Theorem 4.1.12. Finally, in Appendix we
prove that any solution u ∈ H2(RN ) to (4.1.2) satisfies Q(u) = 0, and all solutions to
equation (4.1.12) belong to H2(RN ) when N ≥ 5.
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Notation 4.1.13. For 1 ≤ p <∞, Lp(RN ) is the usual Lebesgue space with norm

‖u‖pp :=
∫
RN
|u|p dx.

The Sobolev space H2(RN ) is endowed with its standard norm

‖u‖2 :=
∫
RN
|∆u|2 + |∇u|2 + |u|2 dx.

We denote by ′ →′ reps. ′ ⇀′ strong convergence reps. weak convergence in corresponding
space, and denote by BR(x) a ball in RN of center x and radius R > 0. In the rest of
this chapter, the constant c0 is defined by (4.1.10), and we will assume that N ≥ 1 unless
stated the contrary.

4.2 Preliminary results

To begin with, we recall the following well known Gagliardo-Nirenberg’s inequality for
u ∈ H1(RN ),

‖u‖2σ+2
2σ+2 ≤ CN (σ)‖∇u‖σN2 ‖u‖

2+σ(2−N)
2 , (4.2.1)

where  0 ≤ σ, if N ≤ 2,

0 ≤ σ < 2
N − 2 , if N ≥ 3.

Using the Sobolev inequalities and interpolation inequalities in Lebesgue space, we obtain
for u ∈ H2(RN ),

‖u‖2σ+2
2σ+2 ≤ CN (σ)‖∇u‖N−(σ+1)(N−4)

2 ‖∆u‖(N−2)(σ+1)−N
2 , (4.2.2)

where 
2

N − 2 ≤ σ, if N = 3, 4,
2

N − 2 ≤ σ <
4

N − 4 , if N ≥ 5.

Let us also recall the Cauchy-Schwarz’s inequality for u ∈ H2(RN ),∫
RN
|∇u|2dx ≤

( ∫
RN
|∆u|2dx

) 1
2
( ∫

RN
|u|2dx

) 1
2
. (4.2.3)

Lemma 4.2.1. Let 4 ≤ σN < 4∗. If uc ∈ S(c) is a solution to

γ∆2u−∆u+ αcu = |u|2σu (4.2.4)

then there exists a cN,σ > 0 such that αc > 0 for any c ∈ (0, cN,σ). Moreover, we have
(i) c1,σ = c2,σ =∞, and c3,σ =∞ if 4/3 ≤ σ ≤ 2.

(ii) If σN = 4, then c4,σ =∞, and cN,σ ≥
(

N
N−4

)N
4 c∗N for N ≥ 5.
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Proof. Since any solution to (4.2.4) satisfies Q(u) = 0, see Lemma 4.10.1, we have

γ

∫
RN
|∆uc|2 dx+ 1

2

∫
RN
|∇uc|2 dx = σN

2(2σ + 2)

∫
RN
|uc|2σ+2 dx. (4.2.5)

Also multiplying (4.2.4) by uc and integrating in RN , we get

γ

∫
RN
|∆uc|2 dx+

∫
RN
|∇uc|2 dx+ αc

∫
RN
|uc|2 dx =

∫
RN
|uc|2σ+2 dx. (4.2.6)

Combining (4.2.5) and (4.2.6) gives

−αc
∫
RN
|uc|2 dx = γ

(
1− 4σ + 4

σN

)∫
RN
|∆uc|2 dx+

(
1− 2σ + 2

σN

)∫
RN
|∇uc|2 dx. (4.2.7)

Since uc is nontrivial, (4.2.7) implies that αc > 0 for any c > 0 provided that either
N = 1, 2 or N = 3 with 4/3 ≤ σ ≤ 2 or N = 4 with σN = 4. Next we consider the
remaining cases. Using the Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.2.5)
that

γ

∫
RN
|∆uc|2 dx ≤ Cc1+σ−σN4

(∫
RN
|∆uc|2 dx

)σN
4
,

which implies that (∫
RN
|∆uc|2 dx

)1−σN4
≤ Cc1+σ−σN4 . (4.2.8)

Thus, when 4 < σN < 4∗, one obtains∫
RN
|∆uc|2 dx→∞ as c→ 0. (4.2.9)

On the other hand, using (4.2.3) we get from (4.2.7) that

−αc
∫
RN
|uc|2 dx ≤ γ

(
1− 4σ + 4

σN

)∫
RN
|∆uc|2 dx+ C(N, σ)

(∫
RN
|∆uc|2 dx

) 1
2
c

1
2 ,

(4.2.10)
and taking (4.2.9) into account, it follows that αc > 0 provided that c > 0 is small enough.
It remains to treat the case σN = 4 with N ≥ 5. Observe that from (4.2.5) and (4.2.6),
we can obtain

−αc
∫
RN
|uc|2 dx = −γ

∫
RN
|∆uc|2 dx+ N − 4

N + 4

∫
RN
|uc|2+ 8

N dx. (4.2.11)

Now applying the Gagliardo-Nirenberg’s inequality (4.1.5) to (4.2.11), it then gives

−αc
∫
RN
|uc|2 dx ≤

N − 4
N

(
c

c∗N

) 4
N

− 1

 γ ∫
RN
|∆uc|2 dx, (4.2.12)

and we deduce that αc > 0 for c < c̃N :=
(

N
N−4

)N
4 c∗N .

The last two results of this section concern the mass critical case σN = 4. We start
by proving the nonexistence result Theorem 4.1.3.
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Proof of Theorem 4.1.3. First observe from (4.1.7) that, for any u ∈ S(c), E(uλ) → 0 as
λ→ 0+. Thus m(c) ≤ 0 for c > 0. Now using the Gagliardo-Nirenberg’s inequality (4.1.5),
we have for any u ∈ S(c),

E(u) = γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− N

2N + 8

∫
RN
|u|2+ 8

N dx

≥ γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− c

4
N

2C(N)

∫
RN
|∆u|2 dx

≥ 1
2

(
γ − c

4
N

C(N)

)∫
RN
|∆u|2 dx,

(4.2.13)

where C(N) is defined by (4.1.6). Hence (4.2.13) implies that m(c) ≥ 0 for c ≤ c∗N :=
(γC(N))

N
4 . Therefore we deduce that m(c) = 0 for c ≤ c∗N . Next we prove that there

is no solution to (4.1.2)-(4.1.3) when c ≤ c∗N . Indeed, if u is a solution to (4.1.2)-(4.1.3),
then Q(u) = 0 and applying (4.1.5), we get

γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx = N

N + 4

∫
RN
|u|2+ 8

N dx ≤
(
c

c∗N

) 4
N

γ

∫
RN
|∆u|2 dx,

which implies that u = 0 because c ≤ c∗N . Finally, let us prove that m(c) = −∞ for c > c∗N .
It follows from [30] that the constant BN ( 4

N ) in (4.1.5) is achieved, then there exists a
U ∈ H2(RN ) satisfying

‖U‖2+ 8
N

2+ 8
N

= BN ( 4
N

)‖U‖
8
N
2 ‖∆U‖22. (4.2.14)

Setting

w := c
1
2

U

‖U‖2
∈ S(c), (4.2.15)

and using (4.2.14), we obtain

E(wλ) = c

2‖U‖22
λ2γ

∫
RN
|∆U |2 dx+ c

2‖U‖22
λ

∫
RN
|∇U |2 dx

− N

2N + 8

(
c

1
2

‖U‖2

)2+ 8
N

λ2
∫
RN
|U |2+ 8

N dx

= c

2‖U‖22

(
γ − c

4
N

C(N)

)
λ2
∫
RN
|∆U |2 dx+ c

2‖U‖22
λ

∫
RN
|∇U |2 dx,

(4.2.16)

which implies that E(wλ)→ −∞ as λ→∞ for c > c∗N .

We now show that the two quadratic terms in E behave somehow in a similar manner.
This observation will be only used to treat the case σN = 4 but we state here under more
general assumptions.

Lemma 4.2.2. Assume that σN ≥ 4 if N = 1, 2 and 4 ≤ σN < 2N
N−2 if N ≥ 3. Let

{un} ⊂ S(cn) for every n ∈ N, where {cn} ⊂ (0, a] for some 0 < a < ∞, be such that
{E(un)} ⊂ R is bounded. Then{∫

RN
|∇un|2dx

}
⊂ R is bounded if and only if

{∫
RN
|∆un|2dx

}
⊂ R is bounded.
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Proof. By the Cauchy-Schwarz’s inequality (4.2.3), the reverse implication obviously holds.
To prove the direct implication, we assume by contradiction that∫

RN
|∆un|2 dx→∞ as n→∞. (4.2.17)

Using the definition of E and the fact that {E(un)} remains bounded, one obtains∫
RN
|∆un|2 dx ≤

1
γ(σ + 1)

∫
RN
|un|2σ+2 dx+ C (4.2.18)

for some C > 0. Thus if N = 1, 2 with σN ≥ 4 or 4 ≤ σN < 2N
N−2 if N ≥ 3, we obtain a

contradiction with (4.2.1). If N = 3, 4 with 2N
N−2 ≤ σN or N ≥ 5 with 2N

N−2 ≤ σN < 4∗,
using (4.2.2) we obtain from (4.2.18) that

∫
RN
|∆un|2 dx ≤ C

( ∫
RN
|∇un|2 dx

)N
2 −

σ+1
2 (N−4)( ∫

RN
|∆un|2 dx

)N−2
2 (σ+1)−N2

and since, under our assumptions, N−2
2 (σ + 1) − N

2 < 1 we also reach a contradiction in
this case.

4.3 Some properties of the constraint M(c)

We say that E restricted toM(c) is coercive if for any a ∈ R the subset {u ∈ M(c) :
E(u) ≤ a} is bounded.

Lemma 4.3.1. Let 4 ≤ σN < 4∗ and c > c0, then E restricted to M(c) is coercive and
bounded from below by a positive constant.

Proof. For any u ∈M(c), we can write

E(u) = E(u)− 2
σN

Q(u) = γ
σN − 4

2σN

∫
RN
|∆u|2 dx+ σN − 2

2σN

∫
RN
|∇u|2 dx. (4.3.1)

In view of (4.3.1), when σN > 4 the coerciveness trivially holds. When σN = 4, we obtain
this from Lemma 4.2.2. Let us now prove that E is bounded from below by a positive
constant. First we assume that σN > 4. Then, from the Gagliardo-Nirenberg’s inequality
(4.1.5), for any u ∈M(c),

γ

∫
RN
|∆u|2 dx ≤ γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx = σN

2(2σ + 2)

∫
RN
|u|2σ+2 dx

≤ σNBN (σ)
2(2σ + 2) c

1+σ−σN/4
(∫

RN
|∆u|2 dx

)σN
4
,

and thus ∫
RN
|∆u|2 dx ≥

(
4σ + 4

σNBN (σ)c1+σ−σN4

) 4
σN−4

. (4.3.2)

From (4.3.2), we see that there exists a δ > 0 such that
∫
RN |∆u|2 dx ≥ δ and then by

(4.3.1) we obtain the lower bound. When σN = 4, we first consider the case 1 ≤ N ≤ 4.
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Then 2+ 8
N ≤ 2∗ and using the Gagliardo-Nirenberg’s inequality (4.2.1), for any u ∈M(c),

we get
1
2

∫
RN
|∇u|2 dx ≤ N

N + 4

∫
RN
|u|2+ 8

N dx ≤ C
(∫

RN
|∇u|2 dx

)2
,

which gives the existence of a δ > 0 such that
∫
RN |∇u|2 dx ≥ δ and we conclude as before.

In the case N ≥ 5, we have 2∗ < 2 + 8
N < 4∗ and using the Sobolev inequalities and

interpolation inequalities in Lebesgue space, it follows that∫
RN
|u|2+ 8

N dx ≤
(∫

RN
|u|

2N
N−2 dx

)λ (∫
RN
|u|

2N
N−4 dx

)1−λ

≤ C
(∫

RN
|∇u|2 dx

) Nλ
N−2

(∫
RN
|∆u|2 dx

)N(1−λ)
N−4

,

(4.3.3)

where 0 < λ < 1 with 2 + 8
N = λ 2N

N−2 + (1− λ) 2N
N−4 . Thus for any u ∈M(c),

γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx ≤ C

(∫
RN
|∇u|2 dx

) Nλ
N−2

(∫
RN
|∆u|2 dx

)N(1−λ)
N−4

≤ C
(∫

RN
|∆u|2 + |∇u|2 dx

)1+ 4
N

,

and there exists a δ > 0 such that

γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx ≥ δ. (4.3.4)

At this point, in view of (4.3.1), we assume by contradiction that there exists a sequence
{un} ⊂ M(c) such that

∫
RN |∇un|2 dx → 0. Since, by Lemma 4.2.2, {

∫
RN |∆un|2 dx}

then remains bounded, it follows from (4.3.3) that
∫
RN |un|

2+ 8
N dx → 0. Recording that

un ∈M(c), we then obtain

γ

∫
RN
|∆un|2 dx+ 1

2

∫
RN
|∇un|2 dx→ 0,

which contradicts (4.3.4), and thus we end the proof of the lemma.

Lemma 4.3.2. Let 4 ≤ σN < 4∗. For u ∈ S(c) if 4 < σN < 4∗, and for u ∈ S(c)
such that supλ>0E(uλ) < ∞ if σN = 4, there is a unique λ∗ > 0 such that uλ∗ ∈ M(c).
Moreover, E(uλ∗) = maxλ>0E(uλ) and the function λ 7→ E(uλ) is concave on [λ∗,∞).

Proof. For any u ∈ S(c), differentiating (4.1.7) with respect to λ > 0, we obtain

d

dλ
E(uλ) = γλ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− σNλσN/2−1

2(2σ + 2)

∫
RN
|u|2σ+2 dx

= 1
λ
Q(uλ).

When σN > 4, it is easily seen that there exists a unique λ∗ > 0 such that Q(uλ∗) = 0
and also that

d

dλ
E(uλ) > 0 if λ ∈ (0, λ∗) and d

dλ
E(uλ) < 0 if λ ∈ (λ∗,∞) (4.3.5)
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from which we deduce that E(uλ) < E(uλ∗), for any λ > 0, λ 6= λ∗. When σN = 4, since
we assume that supλ>0E(uλ) <∞, then

γ

∫
RN
|∆u|2 dx < σN

2(2σ + 2)

∫
RN
|u|2σ+2 dx, (4.3.6)

and thus there also exists a unique λ∗ > 0 such that Q(uλ∗) = 0 and (4.3.5) holds. Now
writing λ = tλ∗, we have

d2

d2λ
E(uλ) = γ

∫
RN
|∆u|2 dx− σN(σN − 2)

4(2σ + 2) t
σN

2 −2λ
σN

2 −2
∗

∫
RN
|u|2σ+2 dx

= 1
λ2
∗

[
γλ2
∗

∫
RN
|∆u|2 dx− σN(σN − 2)

4(2σ + 2) t
σN

2 −2λ
σN

2∗

∫
RN
|u|2σ+2 dx

]
.

Thus using that

0 = Q(uλ∗) = γλ2
∗

∫
RN
|∆u|2 dx+ 1

2λ∗
∫
RN
|∇u|2 dx− σN

2(2σ + 2)λ
σN

2∗

∫
RN
|u|2σ+2 dx

it follows that d2

d2λ
E(uλ) < 0 for any t ≥ 1. This proves the lemma.

Lemma 4.3.3. Let 4 ≤ σN < 4∗, then M(c) is a C1 manifold of codimension 2 in
H2(RN ), hence a C1 manifold of codimension 1 in S(c).

Proof. By definition, u ∈M(c) if and only if G(u) := ‖u‖22−c = 0 and Q(u) = 0. It is easy
to check that G,Q are of C1 class. Hence we only have to prove that for any u ∈M(c),

(dG(u), dQ(u)) : H2(RN )→ R2 is surjective.

If this failed, we would have that dG(u) and dQ(u) are linearly dependent, which implies
that there exists a ν ∈ R such that for any ϕ ∈ H2(RN ),

2γ
∫
RN

∆u∆ϕdx+
∫
RN
∇u · ∇ϕdx− σN

2

∫
RN
|u|2σuϕdx = 2ν

∫
RN

uϕdx,

namely, u solves
2γ∆2u−∆u = 2νu+ σN

2 |u|
2σu.

At this point from Lemma 4.10.1, we deduce

4γ
∫
RN
|∆u|2 dx+

∫
RN
|∇u|2 dx = (σN)2

2(2σ + 2)

∫
RN
|u|2σ+2 dx,

and since Q(u) = 0 we then obtain

4γ
∫
RN
|∆u|2 dx+

∫
RN
|∇u|2 dx = σNγ

∫
RN
|∆u|2 dx+ σN

2

∫
RN
|∇u|2 dx,

which is impossible since σN ≥ 4 and u ∈ S(c).

Lemma 4.3.4. Let 4 ≤ σN < 4∗, then for any u ∈ C∞0 (RN ) ∩M(c), there holds

TuS(c) = TuM(c)
⊕

R
(
d

dλ
(uλ)|λ=1

)
, (4.3.7)

and

dE(u)
[
d

dλ
(uλ)|λ=1

]
= 0. (4.3.8)
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Proof. By Lemma 4.3.3, we know thatM(c) has codimension 1 in S(c), thus in order to
prove (4.3.7), it suffices to show that

d

dλ
(uλ)|λ=1 ∈ TuS(c)\TuM(c).

For u ∈ C∞0 (RN ), one has

2 d

dλ
(uλ)|λ=1(x) = N

2 u(x) +∇u(x) · x ∈ C∞0 (RN ) (4.3.9)

It directly follows from the divergence theorem that∫
RN

(∇u · x)u dx = −N2

∫
RN
|u|2 dx,

from which we deduce

d

dλ
(uλ)|λ=1 ∈ TuS(c). (4.3.10)

Now, using the divergence theorem again, we obtain

dQ(u)
[
d

dλ
(uλ)|λ=1

]
= N

2 γ
∫
RN
|∆u|2 dx+ γ

∫
RN

∆u∆(∇u · x) dx+ N

4

∫
RN
|∇u|2 dx

+ 1
2

∫
RN
∇u · ∇(∇u · x) dx− σN2

8

∫
RN
|u|2σ+2 dx− σN

4

∫
RN
|u|2σu(∇u · x) dx

= 2γ
∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− (σN)2

4(2σ + 2)

∫
RN
|u|2σ+2 dx.

Since Q(u) = 0 and σN ≥ 4, we deduce

dQ(u)
[
d

dλ
(uλ)|λ=1

]
=
(

2− σN

2

)
γ

∫
RN
|∆u|2 dx+

(1
2 −

σN

4

)∫
RN
|∇u|2 dx < 0.

This implies

d

dλ
(uλ)|λ=1 6∈ TuM(c). (4.3.11)

At this point, the proof of (4.3.7) follows directly from (4.3.10) and (4.3.11). Finally,
recalling (4.1.8) and in view of (4.3.9), we can write

0 = Q(u) = ∂E(uλ)
∂λ

|λ=1 = dE(u)
[
d

dλ
(uλ)|λ=1

]
= 0,

then (4.3.8) holds.

Our next result is directly inspired from [13], see also [14].

Lemma 4.3.5. Let 4 ≤ σN < 4∗. If {vn} ⊂ M(c) is a Palais-Smale sequence for E
restricted to M(c), then there exists a possible different Palais-Smale sequence {un} ⊂
M(c) for E restricted to S(c) such that ‖un − vn‖ → 0 as n → ∞. In particular, if
{vn} ⊂ M(c) is converging to a v ∈M(c), then this limit is a critical point for E restricted
to S(c).
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Proof. Let us first prove that if {vn} ⊂ M(c) is a Palais-Smale sequence for E restricted to
M(c), then there exists a Palais-Smale sequence {un} ⊂ C∞0 (RN )∩M(c) for E restricted
to M(c) satisfying ‖un − vn‖ → 0 as n → ∞. For this we just need to show that
C∞0 (RN )∩M(c) is dense inM(c). Since C∞0 (RN ) is dense in H2(RN ), for any w ∈M(c)
there exists a sequence {wn} ⊂ C∞0 (RN ) such that wn → w in H2(RN ). From Lemma
4.3.2 without restriction we can assume that for any n ∈ N, there exists a unique λ∗n ∈ R
such that (wn)λ∗n ∈M(c) ∩ C∞0 (RN ). Since w ∈M(c), one can easily check that λ∗n → 1,
which gives that (wn)λ∗n → w in H2(RN ).

Now let us prove that if {un} ⊂ C∞0 (RN ) ∩M(c) is a Palais-Smale sequence for E
restricted to M(c), then {un} is a Palais-Smale sequence for E restricted to S(c). We
denote by (TuS(c))∗ resp. (TuM(c))∗ the dual space to TuS(c) resp. TuM(c). In view of
Lemma 4.3.4, we have

‖dE(un)‖(TuS(c))∗ = sup{dE(un) [ϕ] : ϕ ∈ TuS(c), ‖ϕ‖ ≤ 1}

= sup
{
dE(un) [ϕ] : ϕ = ϕ1 + ϕ2, ‖ϕ‖ ≤ 1, ϕ1 ∈ TuM(c), ϕ2 ∈ R

(
d

dλ
(uλ)|λ=1

)}
= sup{dE(un)[ϕ1] : ‖ϕ1‖ ≤ 1}
= ‖dE(un)‖(TuM(c))∗ ,

from which it follows that {un} is a Palais-Smale sequence for E restricted to S(c).

Lemma 4.3.6. Let 4 ≤ σN < 4∗, and {un} ⊂ M(c) be a Palais-Smale sequence for E
restricted to M(c). Then there exist a uc ∈ H2(RN ) and a sequence {αn} ⊂ R such that,
up to a subsequence and translations,
(i) un ⇀ uc 6= 0 in H2(RN ) as n→∞;
(ii) αn → αc in R as n→∞;
(iii) γ∆2un −∆un + αnun − |un|2σun → 0 in H−2(RN ) as n→∞;
(iv) γ∆2uc −∆uc + αcuc = |uc|2σuc.
In addition, if ‖un − uc‖2σ+2 → 0 and αc > 0, then ‖un − uc‖ → 0 as n → ∞. Here
H−2(RN ) denotes the dual space to H2(RN ).

Proof. First observe that, because of Lemma 4.3.1 and Lemma 4.3.5, we can assume
without restriction that {un} ⊂ M(c) is a bounded Palais-Smale sequence for E re-
stricted to S(c). After a suitable translation in RN , passing to a subsequence, we can
assume that un ⇀ uc 6= 0. Indeed, if not this readily implies, see [74, Lemma I.1],
that

∫
RN |un|2σ+2 dx = on(1), where on(1) → 0 as n → ∞. Thus, since {un} ⊂ M(c),

it follows that
∫
RN |∆un|2 dx = on(1) and

∫
RN |∇un|2 dx = on(1), which is turn im-

plies that E(un) = on(1). However, this contradicts the fact that E is bounded be-
low by a positive constant on M(c) and thus (i) holds. Now since {un} is bounded in
H2(RN ), we know from [22, Lemma 3] that ‖dE|S(c)(un)‖H−2 = on(1) is equivalent to
‖dE(un)− dE(un)[un]un‖H−2 = on(1). Therefore for any ϕ ∈ H2(RN ), we have

γ

∫
RN

∆un∆ϕdx+
∫
RN
∇un∇ϕdx+ αn

∫
RN

unϕdx−
∫
RN
|un|2σunϕdx = on(1),

(4.3.12)

where

−αn = 1
c

(
γ

∫
RN
|∆un|2 dx+

∫
RN
|∇un|2 dx−

∫
RN
|un|2σ+2 dx

)
. (4.3.13)



4.4. Existence of ground state solutions 77

From (4.3.12)-(4.3.13), we deduce that (ii)-(iii) hold and using that un ⇀ uc in H2(RN )
we obtain in a standard way from (ii)-(iii) that (iv) holds.

Finally, let us show that under our additional assumptions {un} strongly converges
to uc in H2(RN ). Recalling that {un} is bounded in H2(RN ) and using that un → u in
L2σ+2(RN ) as n→∞, it follows from (ii)-(iv) that

γ

∫
RN
|∆un|2 dx+

∫
RN
|∇un|2 dx+ αn

∫
RN
|un|2 dx

= γ

∫
RN
|∆uc|2 dx+

∫
RN
|∇uc|2 dx+ αc

∫
RN
|uc|2 dx+ on(1).

(4.3.14)

But since un ⇀ uc in H2(RN ) as n→∞, by weak convergence

γ

∫
RN
|∆uc|2 dx+

∫
RN
|∇uc|2 dx ≤ lim inf

n→∞
γ

∫
RN
|∆un|2 dx+

∫
RN
|∇un|2 dx,∫

RN
|uc|2 dx ≤ lim inf

n→∞

∫
RN
|un|2 dx.

At this point, using that αn → αc > 0 as n → ∞ and the previous inequalities we get
from (4.3.14) that un → u in H2(RN ) as n→∞. Thus the proof is complete.

4.4 Existence of ground state solutions

In this section, we give the proof of Theorem 4.1.4.

Lemma 4.4.1. Let 4 ≤ σN < 4∗ and c > c0. Let {un} ⊂ M(c) be a Palais-Smale
sequence for E restricted toM(c) at the level γ(c), such that un ⇀ uc 6= 0 in H2(RN ). If

γ(c) ≤ γ(c1) for any c1 ∈ (0, c], (4.4.1)

then ‖un − uc‖2σ+2 → 0 as n→∞. In particular E(uc) = γ(c).

Proof. By Lemma 4.3.6, we know that there exists a αc ∈ R such that uc satisfies (4.1.2),
and thus Q(uc) = 0 by Lemma 4.10.1. Now we set 0 < ‖uc‖22 =: c1 ≤ c, observing that in
the case σN = 4, we know from Theorem 4.1.3 that c1 > c∗N . Since un ⇀ uc in H2(RN )
as n→∞, we have from the Brezis-Lieb’s Lemma,

‖∆(un − uc)‖22 + ‖∆uc‖22 = ‖∆un‖22 + on(1),
‖∇(un − uc)‖22 + ‖∇uc‖22 = ‖∇un‖22 + on(1),
‖un − uc‖2σ+2

2σ+2 + ‖uc‖2σ+2
2σ+2 = ‖un‖2σ+2

2σ+2 + on(1).
(4.4.2)

Since Q(uc) = 0, and Q(un) = 0, it follows from (4.4.2) that Q(un − uc) = on(1), as well
as

E(un − uc) + E(uc) = γ(c) + on(1). (4.4.3)

Since uc ∈M(c1), then (4.4.3) implies that

E(un − uc) + γ(c1) ≤ γ(c) + on(1)
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and because of (4.4.1) it follows that E(un − uc) ≤ on(1). We also have

E(un − uc)−
2
σN

Q(un − uc)

= γ
σN − 4

2σN

∫
RN
|∆(un − uc)|2 dx+ σN − 2

2σN

∫
RN
|∇(un − uc)|2 dx,

(4.4.4)

and since Q(un − uc) = on(1), this implies that E(un − uc) ≥ on(1). Consequently
E(un − uc) = on(1). When σN > 4, we directly deduce from (4.4.4)

‖∆(un − uc)‖2 = on(1), ‖∇(un − uc)‖2 = on(1),

and using again that Q(un − uc) = on(1), it follows that ‖un − uc‖2σ+2 = on(1). When
σN = 4, then (4.4.4) only gives that ‖∇(un − uc)‖2 = on(1). Since, by Lemma 4.2.2,
{‖∆(un − uc)‖2} remains bounded we conclude using (4.2.1) if N ≤ 4 and using (4.3.3) if
N ≥ 5 that ‖un − uc‖2σ+2 = on(1). Now from (4.4.3) and using that E(un − uc) = on(1),
it follows that E(uc) = γ(c).

Lemma 4.4.2. Let 4 ≤ σN < 4∗, then the function c 7→ γ(c) is decreasing on (c0,∞).

Proof. First we show that γ(c) enjoys the variational characterization

inf
u∈M(c)

E(u) = inf
u∈S(c)

sup
λ>0

E(uλ). (4.4.5)

Indeed, on one hand, we observe that for any u ∈ S(c) either supλ>0E(uλ) = +∞ or there
exists a λ∗ > 0 such that uλ∗ ∈M(c) and E(uλ∗) ≤ maxλ>0E(uλ). It implies that

inf
u∈S(c)

sup
λ>0

E(uλ) ≥ inf
u∈M(c)

E(u).

On the other hand, for any u ∈M(c), E(u) ≥ maxλ>0E(uλ) and then

inf
u∈M(c)

E(u) ≥ inf
u∈S(c)

sup
λ>0

E(uλ).

Thus (4.4.5) holds. To prove the lemma we have to demonstrate that if 0 < c1 < c2,
then γ(c2) ≤ γ(c1). Noting the definition of γ(c) and (4.4.5), for any ε > 0 there exists a
u1 ∈M(c1) such that

E(u1) ≤ γ(c1) + ε

2 and max
λ>0

E((u1)λ) = E(u1) (4.4.6)

where we recall that (u1)λ(x) := λ
N
4 u1(

√
λx). For δ > 0, one can find uδ1 ∈ H2(RN ) such

that supp uδ1 ⊂ B 1
δ
(0) and ||u1 − uδ1|| = oδ(1). Thus, as δ → 0∫

RN
|∆uδ1|2 dx→

∫
RN
|∆u1|2 dx,

∫
RN
|∇uδ1|2 dx→

∫
RN
|∇u1|2 dx,

and ∫
RN
|uδ1|2σ+2 dx→

∫
RN
|u1|2σ+2 dx.

Let vδ ∈ C∞0 (RN ) be such that supp vδ ⊂ B 2
δ

+1(0) \B 2
δ
(0), and set

vδ0 := (c2 − ‖uδ1‖22)
1
2

vδ

‖vδ‖2
.
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We now define for λ ∈ (0, 1), wδλ := uδ1 + (vδ0)λ. Since

dist(supp (vδ0)λ, supp uδ1) ≥ 1
δ

( 2
λ
− 1

)
> 0,

we have that ‖wδλ‖22 = c2. Also by standard scaling arguments we see that as λ, δ → 0,∫
RN
|∆wδλ|2 dx→

∫
RN
|∆u1|2 dx,

∫
RN
|∇wδλ|2 dx→

∫
RN
|∇u1|2 dx,

and ∫
RN
|wδλ|2σ+2 dx→

∫
RN
|u1|2σ+2 dx.

In [18, Lemma 5.2], it has been proved that the function f : R+ × (R+ ∪ {0})× R+ 7→ R
defined by f(a, b, c) = maxt>0(t2a+ tb−ct

σN
2 ) is continuous. Setting (wδλ)t := t

N
4 wδλ(

√
tx).

If σN > 4, using the above convergences and (4.4.5), we deduce that for λ, δ > 0 small
enough,

γ(c2) ≤ max
t>0

E((wδλ)t) ≤ max
t>0

E((u1)t) + ε

2 = E(u1) + ε

2 ≤ γ(c1) + ε,

then this concludes the proof when σN > 4. If σN = 4, note that for λ, δ > 0 small
enough

γ

∫
RN
|∆wδλ|2 dx <

N

N + 4

∫
RN
|wδλ|2+ 8

N dx,

thus supt>0E((wδλ)t) <∞. Under this condition, [18, Lemma 5.2] can be easily extended
and we conclude as in the case σN > 4.

We can now prove our result Theorem 4.1.4 concerning the existence of ground state
solutions.

Proof of Theorem 4.1.4. For any c > c0 fixed, by the Ekeland variational principle, there
exists a Palais-Smale sequence {un} ⊂ M(c) for E restricted to M(c) at level γ(c). By
Lemma 4.3.6 we know that un ⇀ uc, where uc is solution to

γ∆2uc −∆uc + αcuc = |uc|2σuc

for some αc ∈ R. We also know from Lemma 4.3.6 that this convergence is strong whenever
||un − uc||2σ+2 → 0 and αc > 0. The first property is guaranteed by Lemma 4.4.1 and
Lemma 4.4.2, and the second one comes from Lemma 4.2.1.

4.5 Multiplicity of radial solutions

Next we turn to the proof of Theorem 4.1.5. First we recall the definition of genus of
a set due to M.A. Krasnosel’skii.

Definition 4.5.1. Let A be a family of sets A ⊂ F such that A is closed and symmetric
(u ∈ A if and only if −u ∈ A). For every A ∈ A, the genus of A is defined by

γ(A) := min{n ∈ N : ∃ ϕ : A→ Rn\{0}, ϕ is continuous and odd}.

When there is no ϕ as described above, we set γ(A) =∞.
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Now let F :=Mrad(c) :=M(c) ∩H2
rad(RN ). For any k ∈ N+, define

Γk := {A ∈ A : A is compact, γ(A) ≥ k},

and
βk := inf

A∈Γk
sup
u∈A

E(u).

Lemma 4.5.2.
(i) Let 4 < σN < 4∗, then for any k ∈ N+, Γk 6= ∅.
(ii) Let σN = 4, then for any k ∈ N∗ there exists a ck > c∗N such that Γk 6= ∅ for all

c ≥ ck.

Proof. First we consider the case 4 < σN < 4∗. Let V ⊂ H2
rad(RN ) be such that dimV =

k. We set SV (c) := V ∩ S(c). By the basic property of the genus, see [4, Theorem
10.5], we have that γ(SV (c)) = dimV = k. In view of Lemma 4.3.2, for any u ∈ SV (c)
there exists unique λ∗u > 0 such that uλ∗u ∈ M(c). It is easy to check that the mapping
ϕ : SV (c) →M(c) defined by ϕ(u) = uλ∗u is continuous and odd. Then [4, Lemma 10.4]
leads to γ(ϕ(SV (c))) ≥ γ(SV (c)) = k and this shows that Γk 6= ∅. In the case σN = 4, we
shall prove that, for k ∈ N+ given, taking c > c∗N large enough Γk 6= ∅. Let V ⊂ H2

rad(RN )
satisfies dimV = k, and set SV (c) := V ∩S(c). Using the fact that all norms are equivalent
in a finite dimensional subspace, we get, for c > c∗N large enough and for any u ∈ SV (c),

γ

∫
RN
|∆u|2 dx < N

N + 4

∫
RN
|u|2+ 8

N dx.

This shows that supλ>0E(uλ) < ∞ and thus from Lemma 4.3.2 for any u ∈ SV (c) that
there exists unique λ∗u > 0 such that Q(uλ∗u) = 0. At this point, we pursue as in the case
4 < σN < 4∗ to conclude the proof.

Lemma 4.5.3. Let N ≥ 2 if 4 < σN < 4∗ or 2 ≤ N ≤ 4 if σN = 4. Then E restricted
toMrad(c) satisfies the Palais-Smale condition.

Proof. Let {un} ⊂ Mrad(c) be a Palais-Smale sequence for E restricted to Mrad(c). By
Lemma 4.3.6 we know that, up to a subsequence, {un} converges strongly in H2(RN ) if
{un} converges strongly in L2σ+2(RN ) and if the associated parameter αc ∈ R is strictly
positive. The first property holds because the embedding H2

rad(RN ) ↪→ Lp(RN ) is compact
for N ≥ 2, 2 < p < 2N

(N−4)+ , and the second one is guaranteed by Lemma 4.2.1.

Proof of Theorem 4.1.5. In view of Lemma 4.5.2 and Lemma 4.5.3, Theorem 4.1.5 then
follows directly from [4, Proposition 10.8].

4.6 Properties of the function c 7→ γ(c)

In this section, we investigate further properties of the function c 7→ γ(c) and prove
Theorem 4.1.6. We begin by showing its continuity.

Lemma 4.6.1. Let 4 ≤ σN < 4∗, then the function c 7→ γ(c) is continuous on (c0,∞).
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Proof. Let us prove that, for any c > c0, if {cn} ⊂ (c0,∞) is such that cn → c, then
limn→∞ γ(cn) = γ(c). From the definition of γ(c), for any ε > 0, there exists a v ∈ M(c)

such that E(v) ≤ γ(c) + ε
2 . Now defining vn :=

√
cn
c
v ∈ S(cn), then as n→∞ we clearly

have ∫
RN
|∆vn|2 dx→

∫
RN
|∆v|2 dx,

∫
RN
|∇vn|2 dx→

∫
RN
|∇v|2 dx,

and ∫
RN
|vn|2σ+2 dx→

∫
RN
|v|2σ+2 dx.

In particular, for n ∈ N large enough

γ

∫
RN
|∆vn|2 dx <

N

N + 4

∫
RN
|vn|2+ 8

N dx

when σN = 4. Now using [18, Lemma 5.2] and the above convergences, we deduce

γ(cn) ≤ max
λ>0

E((vn)λ)

= max
λ>0

(
λ2

2 γ
∫
RN
|∆vn|2 dx+ λ

2

∫
RN
|∇vn|2 dx−

λσN/2

2(2σ + 2)

∫
RN
|vn|2σ+2 dx

)

≤ max
λ>0

(
λ2

2 γ
∫
RN
|∆v|2 dx+ λ

2

∫
RN
|∇v|2 dx− λσN/2

2(2σ + 2)

∫
RN
|v|2σ+2 dx

)
+ ε

2

= max
λ>0

E((v)λ) + ε

2 = E(v) + ε

2 ≤ γ(c) + ε.

This shows that
lim sup
n→∞

γ(cn) ≤ γ(c). (4.6.1)

Now let {un} ⊂ M(cn) be such that

E(un) ≤ γ(cn) + ε

3 . (4.6.2)

Since Q(un) = 0, using (4.6.1) and (4.6.2), we obtain that, for n ∈ N large enough

γ
σN − 4

2σN

∫
RN
|∆un|2 dx+ σN − 2

2σN

∫
RN
|∇un|2 dx = E(un) ≤ γ(cn) + ε

3 ≤ γ(c) + ε

2 ,

thus when σN > 4, we immediately get that {un} ⊂ H2(RN ) is bounded. The same holds
when σN = 4 by Lemma 4.2.2. Thus we can assume without restriction that∫

RN
|∆un|2 dx→ A,

∫
RN
|∇un|2 dx→ B,

∫
RN
|un|2σ+2 dx→ C.

We claim that A and C are strictly positive constants. Indeed, when 4 < σN < 4∗, since
Q(un) = 0, using the Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.3.2) that
A > 0. Using again that Q(un) = 0, we then obtain that C > 0. When σN = 4, we can
reach the same assertions by the virtue in Lemma 4.3.1.

Now we define ũn :=
√
c

cn
un ∈ S(c). Using [18, Lemma 5.2], we obtain

γ(c) ≤ max
λ>0

E((ũn)λ)
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= max
λ>0

c

cn

(
λ2

2 γ
∫
RN
|∆un|2 dx+ λ

2

∫
RN
|∇un|2 dx−

λσN/2

2(2σ + 2)

(
c

cn

)σ ∫
RN
|un|2σ+2 dx

)

≤ max
λ>0

(
λ2

2 γA+ λ

2B −
λσN/2

2(2σ + 2)C
)

+ ε

3

≤ max
λ>0

(
λ2

2 γ
∫
RN
|∆un|2 dx+ λ

2

∫
RN
|∇un|2 dx−

λσN/2

2(2σ + 2)

∫
RN
|un|2σ+2 dx

)
+ 2ε

3

= max
λ>0

E((un)λ) + 2ε
3 = E(un) + 2ε

3 ≤ γ(cn) + ε,

from which we conclude that
γ(c) ≤ lim sup

n→∞
γ(cn). (4.6.3)

From (4.6.1) and (4.6.3), we deduce that limn→∞ γ(cn) = γ(c).

Lemma 4.6.2. Let 4 ≤ σN < 4∗, then limc→c+
0
γ(c) = +∞.

Proof. When 4 < σN < 4∗, jointing (4.3.1) with (4.3.2), we immediately deduce that
limc→0 γ(c) = ∞. When σN = 4, to show that limc→c∗N

+ γ(c) = ∞, we first observe that
for u ∈M(c),

γ(c) ≤ E(u) = γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− N

2N + 8

∫
RN
|u|2+ 8

N dx

= N

2N + 8

∫
RN
|u|2+ 8

N dx− γ

2

∫
RN
|∆u|2 dx

≤ 1
2

( c

c∗N

) 4
N

− 1

 γ ∫
RN
|∆u|2 dx.

(4.6.4)

Thus combining the fact that E is bounded from below on M(c) by a positive constant,
see Lemma 4.3.1, and the property obtained in Lemma 4.4.2, that c 7→ γ(c) is decreasing,
we deduce for any sequence {cn} with cn → c∗N

+ and {ucn} ⊂ M(cn) that∫
RN
|∆ucn |2 dx→∞ as n→∞. (4.6.5)

If E(ucn)→∞ as n→∞, we have readily finished the proof. Otherwise, by Lemma 4.2.2,
it then follows that

∫
RN |∇ucn |2 dx→∞ as n→∞, and we conclude by using (4.3.1).

Lemma 4.6.3. Let 4 ≤ σN < 4∗ and uc ∈ S(c) be a solution to

γ∆2u−∆u+ αcu = |u|2σu

with E(uc) = γ(c). Then αc ≥ 0, if αc > 0 the function c 7→ γ(c) is strictly decreasing in
a right neighborhood of c.

Proof. In view of Lemma 4.4.2, to prove the lemma it suffices to show that if αc > 0 (αc <
0) the function c→ γ(c) is strictly decreasing (increasing) in a right (left) neighbourhood
of c. The strict monotonicity of the function c → γ(c) when αc 6= 0 is obtained as a
consequence of the Implicit Function Theorem. Let (uc)t,λ(x) := λ

N
4
√
tuc(
√
λx) for t, λ >

0. We define βE(t, λ) := E((uc)t,λ), and βQ(t, λ) := Q((uc)t,λ). By direct calculations, we
obtain

∂βE
∂t

(1, 1) = −1
2αcc,

∂βE
∂λ

(1, 1) = 0, ∂2βE
∂λ2 (1, 1) < 0,
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which yields for sufficiently small |δλ|, and δt > 0,

βE(1 + δt, 1 + δλ) < βE(1, 1) if αc > 0 (4.6.6)

βE(1− δt, 1− δλ) < βE(1, 1) if αc < 0. (4.6.7)

Observe that βQ(1, 1) = 0, and ∂βQ
∂λ

(1, 1) < 0. Using Implicit Function Theorem, we
obtain the existence of a ε > 0 small and of a continuous function g : [1 − ε, 1 + ε] → R
satisfying g(1) = 1 such that βQ(t, g(t)) = 0 for t ∈ [1− ε, 1 + ε]. Therefore we have from
(4.6.6),

γ((1 + ε)c) = inf
u∈M((1+ε)c)

E(u) ≤ E((uc)1+ε,g(1+ε)) < E(uc) = γ(c).

Similarly by (4.6.7), γ((1− ε)c) < γ(c) when αc < 0.

We now investigate the behaviors of the function c 7→ γ(c) as c→∞.
Proposition 4.6.4. If N = 1, 2, N = 3 with 4

3 ≤ σ < 2 or N = 4 with σ = 1, then
c 7→ γ(c) is strictly decreasing and limc→∞ γ(c) = 0.

Proof. The fact that c 7→ γ(c) is strictly decreasing follows directly from Lemma 4.2.1
and Lemma 4.6.3. To show that limc→∞ γ(c) = 0, we first treat the case σN = 4. Using
(4.2.16) and (4.4.5) we obtain that

γ(c) ≤ max
λ>0

E(wλ) =
c
‖U‖2

2

(∫
RN |∇U |2 dx

)2
8
((

c
c∗N

) 4
N − 1

)
γ
∫
RN |∆U |2 dx

,

where w is defined by (4.2.15). This shows that γ(c)→ 0 as c→∞ when 1 ≤ N ≤ 4. For
the remaining cases we fix an arbitrary u ∈ H2(RN ) satisfying ‖u‖2 = 1. For any c > 0,√
cu ∈ S(c), and from Lemma 4.3.2 we know that there exists a unique λc > 0 such that

Q((
√
cu)λc) = 0, i.e.

λcγ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx = σN

2(2σ + 2) (cλc)
σN

2 −1 cσ+1−σN2
∫
RN
|u|2σ+2 dx.

Since σN > 1, we deduce that (cλc) → 0 as c → ∞. Now using again (4.4.5), it follows
that

γ(c) ≤ E(
√
cu)λc) = cλc

2γ
σN − 4

2σN

∫
RN
|∆u|2 dx+ cλc

σN − 2
2σN

∫
RN
|∇u|2 dx,

and thus γ(c)→ 0 as c→∞.

To treat the remaining cases, namely, σ ≥ 2 if N = 3, σ > 1 if N = 4 or 4 ≤ σN < 4∗
if N ≥ 5, we need to consider the following equation

γ∆2u−∆u = |u|2σu. (4.6.8)

Let X := {u ∈ D1,2(RN ) :
∫
RN |∆u|2 dx <∞} be equipped with the norm

‖u‖2X :=
∫
RN
|∆u|2 dx+

∫
RN
|∇u|2 dx.

Under our assumptions, we see from (4.2.2) that X ↪→ L2σ+2(RN ) and in particular E,Q
are well-defined in X. Now let

γ(∞) := inf{E(u) : u ∈ X\{0}, E′(u) = 0}.
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Proposition 4.6.5. Assume that σ ≥ 2 if N = 3, σ > 1 if N = 4 and 4 ≤ σN < 4∗ if
N ≥ 5. Then γ(∞) is reached and

1. When N = 3, 4, (4.6.8) does not admit nonnegative solution. In particular, γ(∞) is
not reached by an element in H2(RN ).

2. When N ≥ 5, all minimizers of γ(∞) belongs to H2(RN ).

Remark 4.6.6. If one considers the equation (4.6.8) assuming that N = 1, 2 or N = 3
with σ ≤ 2 or N = 4 and σ = 1, we see directly from Lemma 4.2.1 that it has no solutions
in H2(RN ) nor in X.

Proof of Proposition 4.6.5. It is classical to show that γ(∞) is reached if and only if the
problem

m := inf
u∈M

J(u), (4.6.9)

where
J(u) =

∫
RN

γ|∆u|2 + |∇u|2 dx and M := {u ∈ X : ||u||2σ+2 = 1}

admit a minimizer. To prove that m is reached we proceed as in [31, Remark 3.2]. Let
{un} ⊂ X be a minimizing sequence for m. Without restriction, since H2(RN ) is dense in
X, we can assume that {un} ⊂ H2(RN ). Then we set fn := −√γ∆un+ 1

2√γun2 and define
vn ∈ H2(RN ) to be the strong solution of −√γ∆vn + 1

2√γ vn = |fn|∗ in RN , where |fn|∗

denotes the Schwarz rearrangement of |fn|. Thus for each n ∈ N we have vn ∈ H2
rad(RN )

and a particular case of [29, Lemma 3.4] implies that

J
( vn
||vn||2σ+2

)
=
∫
RN (−√γ∆vn + 1

2√γ vn)2 dx− 1
4γ
∫
RN v

2
n dx

||vn||22σ+2

≤

∫
RN (−√γ∆un + 1

2√γun)2 dx− 1
4γ
∫
RN u

2
n dx

||un||22σ+2
= J

( un
||un||2σ+2

)
.

Thus {ṽn} :=
{

vn
||vn||2σ+2

}
is a minimizing sequence for m. Now we claim that Xrad,

the subset of radially symmetric functions in X, is compactly embedded into L2σ+2(RN ).
Indeed, applying [21, Radial Lemma AIII], if u ∈ D1,2(RN ) is radially symmetric, we have

|u(x)| ≤ C|x|−(N−2)/2‖∇u‖2.

Using this decay we get∫
RN\BR(0)

|u|2σ+2dx ≤
∫
RN\BR

|u|2σ+2−2N/(N−2)|u|2N/(N−2)dx

≤ CR−
N−2

2 (2σ+2− 2N
N−2 )‖∇u‖1+(N−2)/2N

2 ,

from which the claim follows. Using this embedding, we get that {ṽn} weakly converges
to some v ∈ X with ||v||2σ+2 = 1 and the remaining arguments are standard. We thus
obtain a minimizer for J on M and γ(∞) is reached.

Let us now prove that γ(∞) does not have a minimizer in H2(RN ) when N = 3, 4.
Assuming by contradiction that u is such a minimizer we deduce from [31, Lemma 4.1]
that u must have a sign and without restriction we can assume that u ≥ 0. To conclude
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it suffices to show that (4.6.8) has no nonnegative solutions in H2(RN ). For this aim, we
decompose (4.6.8) into the elliptic system

−γ∆u = v,

−∆v + 1
γ
v = |u|2σ+2u.

(4.6.10)

If u is a solution to (4.6.8), then by the standard elliptic regularity theory, u ∈ C4(RN ).
Hence applying the maximum principle to the second equation in (4.6.10), we deduce that
v ≥ 0 and thus any nontrivial nonnegative solution u to (4.6.8) has to satisfy −∆u ≥ 0.
Using the Liouville’s type result [61, Lemma A.2], we conclude that u /∈ L2(RN ). Finally,
when N = 5 one can show that any solution to (4.6.8) in X belongs to H2(RN ). This is
proved in Proposition 4.10.2 that can be found in Appendix.

Since m is reached where m is defined by (4.6.9), then clearly γ(∞) > 0 and by
standard arguments, it can also be defined as

γ(∞) := inf{E(u) : u ∈ X\{0}, Q(u) = 0}. (4.6.11)

Proposition 4.6.7. If N = 3 and σ ≥ 2 or N = 4 and σ > 1, then limc→∞ γ(c) =
γ(∞) > 0.

Proof. Using the definition (4.6.11), we directly obtain that γ(c) ≥ γ(∞) for all c > c0.
Now still from (4.6.11) and taking Proposition 4.6.5 into account, we know that there exists
a u ∈ X such that E(u) = γ(∞) and Q(u) = 0. For R > 0 we define uR(x) := η( xR)u(x),
where η(x) = 1 for |x| ≤ 1, η(x) = 0 for |x| ≥ 2, and 0 ≤ η ≤ 1. Thus, as R→∞,

‖uR‖2σ+2 → ‖u‖2σ+2, ‖∇uR‖2 → ‖∇u‖2, and ‖∆uR‖2 → ‖∆u‖2.

Now let λ∗R > 0 be such that Q((uR)λ∗R) = 0. By continuity we obtain that λ∗R → 1 as
R→∞. Thereby

γ(‖uR‖22) ≤ E((uR)λR) ≤ E(u) + oR(1) = γ(∞) + oR(1),

where oR(1)→ 0 as R→∞, then γ(c)→ γ(∞) as c→∞.

Proposition 4.6.8. Let N = 3 and σ ≥ 2 or N = 4 and σ > 1. Then γ(c) > γ(∞) for
all c > c0.

Proof. When N = 3, σ ≥ 2, it is a direct consequence of Lemma 4.2.1 and Lemma 4.6.3.
In the other cases let us assume by contradiction that there exists c > 0 such that γ(c) =
γ(∞). From Lemma 4.3.6 and Lemma 4.4.1, we obtain the existence of a uc ∈ H2(RN )
satisfying 0 < ||uc||22 ≤ c and γ(||uc||22) = γ(c) = γ(∞). At this point, we have obtained
that uc ∈ H2(RN ) is a solution of (4.6.8) at the energy level γ(∞), it is a ground state. But
we know from Proposition 4.6.5 that such ground state does not exist. This contradiction
ends the proof.

Proposition 4.6.9. If N ≥ 5 there exists a c∞ > 0 such that γ(c) = γ(∞) for all c ≥ c∞.

Proof. By Proposition 4.6.5 and using (4.6.11), we know that there exists a u ∈ H2(RN )
such that E(u) = γ(∞) and Q(u) = 0. Setting c∞ := ||u||22, we obtain that γ(c∞) ≤ γ(∞).
Now recording that γ(c) ≥ γ(∞) for any c > c0 and that, by Lemma 4.4.2, c 7→ γ(c) is
decreasing we conclude.
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Proof of Theorem 4.1.6. The proof follows directly from Proposition 4.6.4-Proposition4.6.9.

4.7 A concentration phenomenon

In this section, when σN = 4, we establish the concentration of solutions to (4.1.2)-
(4.1.3) as c approaches to c∗N from above, described in Theorem 4.1.7. As a preliminary
result, we derive

Lemma 4.7.1. Let σN = 4 and u ∈ H2(RN ) be a nontrivial solution to the equation

γ∆2u+ u = |u|
8
N u. (4.7.1)

Then ‖u‖22 ≥ c∗N , furthermore, u is a least energy solution if ‖u‖22 = c∗N ,.

Proof. We define the energy functional associated to (4.7.1)in H2(RN ) as

F (u) := γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|u|2 dx− N

2N + 8

∫
RN
|u|2+ 8

N dx.

If u is a solution to (4.7.1), then by Lemma 4.10.1, we get

γ

∫
RN
|∆u|2 dx = N

N + 4

∫
RN
|u|2+ 8

N , (4.7.2)

which implies that

F (u) = 1
2

∫
RN
|u|2 dx. (4.7.3)

If u is a nontrivial solution to (4.7.1), then there holds ‖u‖22 ≥ c∗N . Indeed, using the
Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.7.2) that

γ

∫
RN
|∆u|2 dx ≤

(
‖u‖22
c∗N

) 4
N

γ

∫
RN
|∆u|2 dx.

Thus necessarily ‖u‖22 ≥ c∗N and taking into account (4.7.3), this ends the proof.

Proof of Theorem 4.1.7. By Theorem 4.1.4, there exist a sequence {cn} with cn → c∗N
with cn > c∗N and {un} ⊂ M(cn) such that E(un) = γ(cn). From (4.6.5) in the proof of
Lemma 4.6.2, we deduce that∫

RN
|∆un|2 dx→∞ as n→∞, (4.7.4)

and using Cauchy-Schwarz’ inequality (4.2.3), it follows from (4.7.4) that∫
RN |∇un|2 dx∫
RN |∆un|2 dx

→ 0 asn→∞. (4.7.5)

Since Q(un) = 0, we then obtain∫
RN |un|

2+ 8
N dx

γ
∫
RN |∆un|2 dx

→ N + 4
N

as n→∞. (4.7.6)
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At this point, we introduce ũn(x) := ε
N
2
n un(εnx), where

ε−4
n := γ

∫
RN
|∆un|2 dx→∞ as n→∞. (4.7.7)

It is easy to check that ‖ũn‖22 = ‖un‖22 = cn, ‖∆ũn‖22 = 1, and∫
RN
|ũn|2+ 8

N dx→ N + 4
N

as n→∞, (4.7.8)

Then, as in the proof of Lemma 4.3.1, necessarily there exist a δ > 0 and a sequence
{yn} ⊂ RN such that for some R > 0,∫

BR(yn)
|ũn|2 dx ≥ δ. (4.7.9)

Thus defining

vn(x) := ũn(x+ yn) = ε
N
2
n un(εnx+ εnyn), (4.7.10)

we get from (4.7.9) that there is a nontrivial v so that vn ⇀ v in H2(RN ). Since un
satisfies the following equation

γ∆2un −∆un + αnun = |un|
8
N un,

where the Lagrange multiplier is given by

αn = 1
cn

(
−γ

∫
RN
|∆un|2 dx−

∫
RN
|∇un|2 dx+

∫
RN
|un|2+ 8

N dx

)
therefore vn satisfies

γ∆2vn − ε2n∆vn = ε4nαnvn + |vn|
8
N vn.

Combining (4.7.4) and (4.7.5)-(4.7.7), we get

ε4nαn →
4

c∗NN
as n→∞. (4.7.11)

Since vn ⇀ v in H2(RN ) as n→∞, then v solves

γ∆2v + 4
c∗NN

v = |v|
8
N v. (4.7.12)

Now setting

wn(x) :=
(
c∗NN

4

)N
8
vn

((
c∗NN

4

) 1
4
x

)
, u(x) :=

(
c∗NN

4

)N
8
v

((
c∗NN

4

) 1
4
x

)
,

it is easily seen that wn ⇀ u in H2(RN ) as n → ∞, and ‖wn‖22 = ‖vn‖22 = cn. Moreover,
it follows from (4.7.12) that u is solution to (4.7.1), and thus by Lemma 4.7.1, we have
that ‖u‖22 ≥ c∗N . On the other hand, since wn ⇀ u in H2(RN ) as n → ∞, we see that
‖u‖22 ≤ lim infn→∞ ‖wn‖22 = c∗N and thus we obtain that ‖u‖22 = c∗N . By Lemma 4.7.1 u
is a least energy solution to (4.7.1). Since ‖u‖22 = c∗N , ‖wn‖22 = cn → c∗N as n → ∞, and
wn ⇀ u in H2(RN ) as n → ∞, it follows that wn → u in L2(RN ) as n → ∞. Now from
the definition (4.7.10), and by interpolation inequalities in Lebesgue space, there holds for
2 ≤ q < 2N

(N−4)+ ,(
ε4nc
∗
NN

4

)N
8

un

(ε4nc∗NN
4

) 1
4

x+ εnyn

→ u in Lq(RN ) as n→∞.

This completes the proof.
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4.8 Positive and sign-changing solutions

In this section, we study the sign and radial symmetry property of ground states to
(4.1.2)-(4.1.3).

Proof of Theorem 4.1.8. For any c ∈ (c0, cσ,N ), the existence of a ground state is guaran-
teed by Theorem 4.1.4. To show that, when σ ∈ N, one of them is radial we make use of
the Fourier rearrangement arguments as presented in [30]. For u ∈ L2(RN ), let u] be the
Fourier rearrangement to u defined by

u] := F−1((Fu)∗),

where F reps. F−1 denotes the Fourier transform reps. the Fourier inverse transform,
and f∗ stands for the Schwarz rearrangement of a measurable function f . Notice that u]
is radial, and ‖u]‖2 = ‖u‖2. Moreover, in view of [30, Lemma A.1],

‖∆u]‖2 ≤ ‖∆u‖2, ‖∇u]‖2 ≤ ‖∇u‖2, ‖u]‖2σ+2 ≥ ‖u‖2σ+2. (4.8.1)

Let uc be a ground state associated to γ(c), then Q(uc) = 0. From (4.8.1), we obtain
that Q(u]c) ≤ Q(uc) = 0. Hence by Lemma 4.3.2, there exists a 0 < λ ≤ 1 such that
Q((u]c)λ) = 0. Observe that

γ(c) ≤ E((u]c)λ) = E((u]c)λ)− 2
σN

Q((u]c)λ)

= λ2σN − 4
2σN γ

∫
RN
|∆u]c|2 dx+ λ

σN − 2
2σN

∫
RN
|∇u]c|2 dx

≤ E(uc)−
2
σN

Q(uc) = γ(c),

and thus necessarily λ = 1, and E(u]c) = γ(c). Therefore, u]c is a ground state solution to
(4.1.2)-(4.1.3). It remains to prove that u]c is sign-changing. Associated to u]c there exists
a Lagrange multiplier αc ∈ R so that

γ∆2u]c −∆u]c + αcu
]
c = |u]c|2σu]c.

Now, when 4 < σN < 4∗, we deduce from (4.2.8) and (4.2.10) that αc → +∞ as c → 0.
When σN = 4, the same result can be established as c → c∗N by combining (4.6.5) with
(4.2.7) and (4.2.12). At this point, using [28, Theorem 3.2] we deduce that u]c is sign-
changing.

Proof of Theorem 4.1.9. We borrow here an idea from [28]. We consider the following
modified minimization problem

γ̄(c) := inf
u∈M̄(c)

Ē(u), (4.8.2)

where

Ē(u) : = γ

2

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− 1

2σ + 2

∫
RN
|u+|2σ+2 dx,

Q̄(u) : = γ

∫
RN
|∆u|2 dx+ 1

2

∫
RN
|∇u|2 dx− σN

2(2σ + 2)

∫
RN
|u+|2σ+2 dx,
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and
M̄(c) := {u ∈ S(c) : Q̄(u) = 0}.

It is straightforward to check that the analysis done with E, Q, and M(c) remains un-
changed if we now work with Ē, Q̄ and M̄(c). Thus, in particular, for any c > c0, if
{ūn} ⊂ M̄(c) is a minimizing Palais-Smale sequence to (4.8.2), by the modified version
of Lemma 4.3.6, there exists a ūc ∈ H2(RN )\{0}, and a Lagrange multiplier ᾱc ∈ R such
that

γ∆2ūc −∆ūc + ᾱcūc = |ū+
c |2σū+

c . (4.8.3)

Also by the corresponding versions of Lemma 4.4.1, Lemma 4.4.2, and Lemma 4.6.3, we
deduce that 0 < ‖ūc‖22 ≤ c, ūn → ūc in L2σ+2(RN ), Ē(ūc) = γ̄(c) > 0, and ᾱc ≥ 0.

Next we show that ūc > 0. To this aim, we first observe that ᾱc ≥ 0 can be assumed
arbitrarily small by taking c > 0 large enough. Indeed, ᾱc satisfies

ᾱc = 1
c

(
−2Ē(ūc) + σ

σ + 1

∫
RN
|ū+
c |2σ+2 dx

)
≤ σ

c(σ + 1)

∫
RN
|ū+
c |2σ+2 dx. (4.8.4)

Recording the fact that γ̄(c) remains bounded as c→∞. When 4 < σN < 4∗, then from
(4.3.1) and Q(ūc) = 0, we see that

∫
RN |ū+

c |2σ+2 dx ≤ C for some C > 0 as c→∞. Thus,
in view of (4.8.4) we deduce that ᾱc ≥ 0 can be arbitrarily small by taking c > 0 large
enough. When σN = 4, it follows from (4.3.1) and (4.2.1) that

∫
RN |ū+

c |2σ+2 dx ≤ C for
some C > 0 as c→∞. Then we can reach the same argument from (4.8.4).

Since ᾱc ≥ 0 is small when c > c0 is sufficiently large, then we are able to write (4.8.3)
into the following system 

−γ∆ūc + λ1ūc = v̄c,

−∆v̄c + λ2
γ
v̄c = |ū+

c |2σū+
c ,

where λ1, λ2 ≥ 0 satisfying λ1λ2 = γᾱc, and λ1 + λ2 = 1. It is then standard, by the
strong maximum principle, to deduce that ūc > 0 and in particular ūc satisfies (4.1.2). By
Proposition 4.6.5 and Remark 4.6.6, then ᾱc > 0, thus Lemma 4.6.3 indicates that γ̄(c)
is achieved by ūc. Finally, let us show that ūc is radially symmetric around some point.
Setting

f(u, v) :=
( 1

4γ − ᾱc
)
u− 1

2γ v + |u|2σu, g(u, v) := v − 1
2u

we see that (4.1.2) is equivalent to the elliptic system{
γ∆ūc + g(ūc, v̄c) = 0,
∆v̄c + f(ūc, v̄c) = 0.

We are now in the setting of Busca and Sirakov [32] and from [32, Theorem 2], we readily
deduce that ūc is radially symmetric.

4.9 Dynamical behaviors

This section is devoted to the study of dynamic behaviors of the solution to the Cauchy
problem of the dispersive equation (4.1.1). First we give a class of initial datums such that
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the solutions to (4.1.1) exist globally in time. Next we discuss the instability of the standing
waves associated to radial ground states to (4.1.2)-(4.1.3) in the sense of Definition 4.1.11.

We start by recalling the local well-posedness of the solutions to the Cauchy problem
of (4.1.1) and a blow-up alternative due to [95].

Lemma 4.9.1. ([95, Proposition 4.1]) Let σN < 4∗. For any u0 ∈ H2(RN ), there exist a
T > 0 and a unique solution u(t) ∈ C([0, T );H2(RN )) to (4.1.1) with initial datum u0 so
that the mass and the energy are conserved along time, that is for any t ∈ [0, T ),

‖u(t)‖2 = ‖u0‖2, and E(u(t)) = E(u0).

Moreover, either T =∞, or limt→T− ‖∆u(t)‖2 =∞.

Proof of Theorem 4.1.10. Let c > c0 be arbitrary. First observe that Oc 6= ∅. Indeed, for
any u ∈ M(c) we know from Lemma 4.3.2 that uλ ∈ Oc for λ > 0 small enough. Now let
u0 ∈ Oc and denote by u ∈ C([0, T );H2(RN )) the solution to (1.2.1) with initial datum u0.
We shall prove that u exists globally in time, i.e. T =∞. If we suppose by contradiction
that T <∞, it follows from Lemma 4.9.1 that,

lim
t→T−

∫
RN
|∆u(t)|2 dx =∞. (4.9.1)

Now we observe that E(u(t)) = E(u0) for 0 ≤ t < T , and

E(u(t))− 2
σN

Q(u(t)) = γ
σN − 4

2σN

∫
RN
|∆u|2 dx+ σN − 2

2σN

∫
RN
|∇u|2 dx. (4.9.2)

Since E(u(t)) = E(u0), thus when 4 < σN < 4∗, we deduce from (4.9.1) that

lim
t→T−

Q(u(t)) = −∞. (4.9.3)

When σN = 4, using that the energy and the mass are conserved, then Lemma 4.2.2
applies to give that

lim
t→T−

∫
RN
|∇u(t)|2 dx =∞.

and we also deduce from (4.9.2) that (4.9.3) holds.

By continuity, there exists a t0 ∈ (0, T ) such that Q(u(t0)) = 0. Since ‖u(t0)‖2 =
‖u0‖2 = c, by the definition of γ(c) it follows that E(u(t0)) ≥ γ(c). This contradicts the
fact that E(u(t0)) = E(u0) < γ(c). Then Theorem 4.1.10 follows.

Let us now prove Theorem 4.1.12. For this aim we first recall the localized virial
identity introduced in [30],

MϕR [u] := 2Im
∫
RN

ū∇ϕR∇u dx,

where u ∈ H1(RN ), ϕ : RN → R is a radial function such that ∇jϕ ∈ L∞(RN ), 1 ≤ j ≤ 6
satisfying

ϕ(r) :=


r2

2 for r ≤ 1

const. for r ≥ 10
, ϕ′′(r) ≤ 1 for r ≥ 0,
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and ϕR(r) := R2ϕ( r
R

) for R > 0.

In [30, Lemma 3.1], it is proved that for N ≥ 2, if u(t) ∈ C([0, T );H2(RN )) is the
radial solution to (1.2.1) with initial datum u0 ∈ H2

rad(RN ), it holds

d

dt
MϕR [u(t)] ≤ 4NσE(u0)− (2Nσ − 8)γ‖∆u(t)‖22 − (2Nσ − 4)‖∇u(t)‖22

+O

(
‖∇u(t)‖22

R2 + ‖∇u(t)‖σ2
Rσ(N−1) + 1

R2 + 1
R4

)

= 8Q(u(t)) +O

(
‖∇u(t)‖22

R2 + ‖∇u(t)‖σ2
Rσ(N−1) + 1

R2 + 1
R4

)
.

(4.9.4)

Proof of Theorem 4.1.12. Suppose that uc is a radial ground state, and define

Θ := {v ∈ H2
rad(RN )\{0} : E(v) < E(uc), ‖v‖2 = ‖uc‖2, Q(v) < 0}.

The set Θ contains elements arbitrarily close to uc in H2(RN ). Indeed, letting v0 := (uc)λ,
we see from Lemma 4.3.2 that v0 ∈ Θ if λ > 1 and that v0 → uc in H2

rad(RN ) as λ→ 1+.
Let v ∈ C([0, T );H2

rad(RN )) be the solution to (1.2.1) with radial initial datum v0, and
T ∈ (0,∞] be the maximal existence time. To prove the theorem, we just need to show
that v(t) blows up in finite time. We divide the rest of the proof into three steps.

First step : We claim that there exists a β > 0 such that Q(v(t)) ≤ −β for any t ∈ [0, T ).
Indeed, reasoning as the proof of Theorem 4.1.10, we easily check that v(t) ∈ Θ and in
particular Q(v(t)) < 0 for any t ∈ [0, T ). Now setting v := v(t), in view of Lemma 4.3.2,
since Q(v) < 0 there exists a λ∗ < 1 such that Q(vλ∗) = 0. Moreover, the function
λ 7→ E(vλ) is concave for λ ∈ [λ∗, 1], thus

E(vλ∗)− E(v) ≤ (λ∗ − 1)∂E(uλ)
∂λ

|λ=1 = (λ∗ − 1)Q(v).

Using that Q(v) < 0, E(v) = E(v0) and vλ∗ ∈Mrad(c), we have

Q(v) ≤ (1− λ∗)Q(v) ≤ E(v)− E(vλ∗) ≤ E(v0)− E(uc) =: −β. (4.9.5)

Second step : We claim that there exists a constant δ > 0 such that

d

dt
MϕR [v(t)] ≤ −δ‖∇v(t)‖22 for t ∈ [0, T ), (4.9.6)

and a t1 ≥ 0 such that
MϕR [v(t)] < 0 for t ≥ t1. (4.9.7)

To prove (4.9.6) we need to distinguish two cases.

Case 1: Let
T1 := {t ∈ [0,∞) : (σN − 2)‖∇v(t)‖22 ≤ 4NσE(v0)}.

In view of (4.9.4) and the First Step, taking R > 0 sufficiently large, we obtain

d

dt
MϕR [v(t)] ≤ −7β ≤ −δ||∇v(t)||22 for t ∈ T1, (4.9.8)

with some δ > 0 sufficiently small.
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Case 2: Set

T2 := [0,∞)\T1 = {t ∈ [0,∞) : (σN − 2)‖∇v(t)‖22 > 4NσE(v0)}.

Using (4.2.3), we get from (4.9.4)

d

dt
MϕR [v(t)] ≤ −(Nσ − 2)‖∇v(t)‖22 −

(2Nσ − 8)γ
||v0||22

‖∇v(t)‖42

+O

(
1
R4 + ‖∇v(t)‖22

R2 + ‖∇v(t)‖σ2
Rσ(N−1) + µ

R2

)
.

Taking R large enough and noticing that under our assumptions, σ ≤ 2 if Nσ = 4 and
σ ≤ 4 if σN > 4, we deduce

d

dt
MϕR [v(t)] ≤ −(Nσ − 2)

2 ‖∇v(t)‖22. (4.9.9)

Now combining (4.9.8) and (4.9.9), we see that there exists a δ > 0 such that (4.9.6) holds.
Finally since

MϕR [v(t1)] = MϕR [v0] +
∫ t1

0

d

ds
MϕR [v(s)]ds,

the inequality (4.9.7) follows from the estimate

∣∣ d
dt
MϕR [v(t)]

∣∣ ≥ min
{

7β, (Nσ − 2)
2 ||∇v(t)||22

}
.

Third step : We now conclude that the solution v(t) to (1.2.1) with initial datum v0
blows up. Here we adapt another argument from [30]. Suppose by contradiction that
T =∞, then integrating (4.9.6) on [t1, t], and taking (4.9.7) into account, we have that

MϕR [v(t)] ≤ −δ
∫ t

t1
‖∇v(s)‖22ds.

Now using the Cauchy-Schwarz’s inequality (4.2.3), we get from the definition ofMϕR [v(t)]
that

|MϕR [v(t)]| ≤ 2‖∇ϕR‖∞‖v(t)‖2‖∇v(t)‖2 ≤ C‖∇v(t)‖2.

Thus for some τ > 0,
MϕR [v(t)] ≤ −τ

∫ t

t1
|MϕR [v(s)]|2ds. (4.9.10)

Setting z(t) :=
∫ t
t1
|MϕR [v(s)]|2ds, we obtain from (4.9.10) that z′(t) ≥ τ2z(t)2. Integrating

this equation, we deduce that MϕR [v(t)] → −∞, when t tends to some finite time t∗.
Therefore the solution v(t) cannot exist for all t > 0. By the blow-up alternative recalled
in Lemma 4.9.1, this ends the proof of the theorem.

4.10 Appendix

Lemma 4.10.1. Let 0 < σN < 4∗. If v ∈ H2(RN ) is a weak solution to

γ∆2v − µ∆v + ωv = d|v|2σv (4.10.1)
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with γ, µ, ω, d are constants, then v satisfies I(v) = P (v) = Q(v) = 0, where

I(u) = γ‖∆u‖22 + µ‖∇u‖22 + ω‖u‖22 − d‖u‖2σ+2
2σ+2.

P (u) = (N − 4)γ
2 ‖∆u‖22 + (N − 2)µ

2 ‖∇u‖22 + Nω

2 ‖u‖
2
2 −

dN

2σ + 2‖u‖
2σ+2
2σ+2,

and
Q(u) = γ‖∆u‖22 + µ

2 ‖∇u‖
2
2 −

dσN

2(2σ + 2)‖u‖
2σ+2
2σ+2.

Proof. Since u ∈ H2(RN ) is a solution to (4.10.1), multiplying (4.10.1) by u and integrating
in RN , we get that I(u) = 0. Next, we notice that Q(u) = N

4 I(u)− 1
2P (u). Therefore to

prove that Q(u) = 0, we only need to show that P (u) = 0. This last identity is usually
referred to as a Derrick-Pohozaev identity. To establish it we closely follow the proof of
[21, Proposition 1]. First multiplying (4.10.1) by x ·∇u and integrating on BR(0) for some
R > 1, we have∫

BR(0)
γ(x · ∇u)∆2u− µ(x · ∇u)∆u+ ω(x · ∇u)u dx = d

∫
BR(0)

(x · ∇u)|u|2σu dx.

(4.10.2)

In a first time, we focus on the first left-hand side term of (4.10.2). Integration by parts,
we find

γ

∫
BR(0)

(x · ∇u)∆2u dx = −γ
∫
BR(0)

∇(x · ∇u) · ∇(∆u) dx

+ γ

∫
∂BR(0)

(∇(∆u) · n)(x · ∇u) dS

= γ

∫
BR(0)

∆(x · ∇u)∆u dx

− γ
∫
∂BR(0)

(∇(x · ∇u) · n)∆u− (∇(∆u) · n)(x · ∇u) dS,

where n := nx = x
R denotes the unit outward normal at x ∈ ∂BR(0). Integrating by parts

one more time, we have

γ

∫
BR(0)

∆(x · ∇u)∆u dx = 2γ
∫
BR(0)

|∆u|2 dx+ γ

∫
BR(0)

(x · ∇(∆u))∆u dx

= 2γ
∫
BR(0)

|∆u|2 dx+ γ

2

∫
BR(0)

x · ∇(|∆u|2) dx

= (4−N)γ
2

∫
BR(0)

|∆u|2 dx+ γ

2

∫
∂BR(0)

(x · n)|∆u|2 dS.

Combining the previous two equalities, we obtain

γ

∫
BR(0)

(x · ∇u)∆2u dx = (4−N)γ
2

∫
BR(0)

|∆u|2 dx+ γ

2

∫
∂BR(0)

(x · n)|∆u|2 dS

− γ
∫
∂BR(0)

(∇(x · ∇u) · n)∆u− (∇(∆u) · n)(x · ∇u) dS.

Next, we deal with the second left-hand side term of (4.10.2). We have

−µ
∫
BR(0)

(x · ∇u)∆u dx = µ

∫
BR(0)

∇(x · ∇u) · ∇u dx− µ
∫
∂BR(0)

(∇u · n)(x · ∇u) dS
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= (2−N)µ
2

∫
BR(0)

|∇u|2 dx+ µ

2

∫
∂BR(0)

(x · n)|∇u|2 dS

− µ
∫
∂BR(0)

(∇u · n)(x · ∇u) dS.

Finally, for the last two terms of (4.10.2), we get

ω

∫
BR(0)

(x · ∇u)u dx = −ωN2

∫
BR(0)

|u|2 dx+ ω

2

∫
∂BR(0)

(x · n)|u|2 dS,

and

d

∫
BR(0)

(x · ∇u)|u|2σu dx = − dN

2σ + 2

∫
BR(0)

|u|2σ+2 dx+ d

2σ + 2

∫
∂BR(0)

(x · n)|u|2σ+2 dS.

Taking into account the above calculations, it follows from (4.10.2) that

(N − 4)γ
2

∫
BR(0)

|∆u|2 dx+ (N − 2)µ
2

∫
BR(0)

|∇u|2 dx+ Nω

2

∫
BR(0)

|u|2 dx

= Nd

2σ + 2

∫
BR(0)

|u|2σ+2 dx+ IR(u),
(4.10.3)

where

IR(u) = R

2

∫
∂BR(0)

(
γ|∆u|2 + µ|∇u|2 + ω|u|2 − d |u|

2σ+2

σ + 1

)
dS

+ 1
R

∫
∂BR(0)

(
γ(∇(∆u) · x)(x · ∇u)− γ(∇(x · ∇u) · x)∆u− µ|x · ∇u|2

)
dS.

We now show that IRn(u)→ 0 for a suitable sequence (Rn)n ⊂ R with Rn →∞ as n→∞.
First, using the Cauchy-Schwarz’s inequality, we have, for any x ∈ ∂BR(0),

|(∇(∆u) · x)(x · u)| ≤ R2
(
|∇(∆u)|2 + |u|2

)
|(∇(x · ∇u) · x)∆u| ≤ CNR2

|∆u|2 +
N∑

i,j=1
|ui,j |2 + |∇u|2

 , (4.10.4)

where ui,j := ∂2u
∂xi∂xj

. In view of the elliptic regularity theory, we have that u ∈ H4(RN ),
in particular u ∈ H3(RN ). This yields to∫

RN
|∇(∆u)|2 + |∆u|2 +

N∑
i,j=1
|ui,j |2 + |∇u|2 + |u|2 + |u|2σ+2 dx

=
∫ ∞

0

( ∫
∂BR(0)

|∇(∆u)|2 + |∆u|2 +
N∑

i,j=1
|ui,j |2 + |∇u|2 + |u|2 + |u|2σ+2 dS

)
dR <∞.

(4.10.5)

As a consequence, there exists a sequence (Rn)n ⊂ RN satisfying Rn → ∞ as n → ∞ so
that

Rn

∫
∂BRn (0)

|∇(∆u)|2 + |∆u|2 +
N∑

i,j=1
|ui,j |2 + |∇u|2 + |u|2 + |u|2σ+2 dS → 0.

This implies that IRn(u) → 0 as n → ∞. Now substituting R by Rn in (4.10.3), we then
obtain that P (u) = 0. This completes the proof.
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Proposition 4.10.2. Let N ≥ 5 and 2
N−2 < σ < 4

N−4 . Then any solution u ∈ X to
(4.6.8) belongs to L2(RN ).

Proof. We can assume without loss of generality that γ = 1. The main idea of the proof
consists in testing (4.6.8) with a function ϕ2u where, roughly, ϕ(x) = 1 + |x|.

Let ψ ∈ C∞(RN ) with supp ψ ⊂ RN\BR(0) be such that ψ(x) = 1 for |x| ≥ 2R. Here
R > 0 is a constant to be determined later. For R1 > 2R, we define ϕ := ψhR1 , where
hR1 ∈ C2(RN ) satisfies

hR1(x) =


|x| 2R ≤ |x| < R1,

R1

(
1 + th

( |x| −R1
R1

))
, |x| ≥ R1.

Let

λ1(R1) := sup
|x|≥2R

|x||∇ϕ(x)|
ϕ(x) , λ2(R1) := sup

|x|≥2R

|x||∆ϕ(x)|
ϕ(x) . (4.10.6)

From the definition of ϕ it readily follow that λ1(R1) = 1, for all R1 > 0 and that
λ2 := λ2(R1)→ 0 as R1 →∞.

As a preliminary step we derive some pointwise identities. By simple calculations

∆(ϕ2u) = ϕ2∆u+ 4ϕ∇u∇ϕ+ u(2ϕ∆ϕ+ 2|∇ϕ|2),

and

(∆(ϕu))2 = ϕ2(∆u)2 + 4|∇ϕ∇u|2 + u2(∆ϕ)2 + 4ϕ∆u∇ϕ∇u
+ 2ϕu∆u∆ϕ+ 4u∆ϕ∇ϕ∇u.

Using the two previous lines, we obtain

(∆(ϕu))2 = ∆u∆(ϕu2) + 4|∇ϕ∇u|2 + u2(∆ϕ)2

+ 4∇ϕ∇uu∆ϕ− 2u∆u|∇ϕ|2.
(4.10.7)

We also need that
|∇(ϕu)|2 = ∇u∇(ϕ2u) + |∇ϕ|2u2. (4.10.8)

Now testing (4.6.8) with ϕ2u and using (4.10.7)-(4.10.8), there holds∫
RN
|∆(ϕu)|2 + |∇(ϕu)|2 dx =

∫
RN
|ϕu|2|u|2σ +

∫
RN
|∇ϕ|2|u|2 dx

+ 4
∫
RN
|∇ϕ∇u|2 dx+

∫
RN
|u∆ϕ|2 dx

+ 4
∫
RN

u∆ϕ∇ϕ∇u dx− 2
∫
RN

u∆u|∇ϕ|2 dx.

(4.10.9)

Recalling Hölder inequality and taking into account (4.2.2), we obtain

∫
RN
|ϕu|2|u|2σ dx ≤

(∫
|x|≥R

|u|2σ+2 dx

) σ
σ+1 (∫

RN
|ϕu|2σ+2 dx

) 1
σ+1

≤ C
(∫
|x|≥R

|u|2σ+2
) σ
σ+1 ∫

RN
|∆(ϕu)|2 + |∇(ϕu)|2 dx.
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Setting δ(R) := C
(∫
|x|≥R |u|2σ+2

) σ
σ+1 where we note that δ(R) → 0 as R → ∞, it then

follows from (4.10.9) that,

(1− δ(R))
∫
RN
|∆(ϕu)|2 + |∇(ϕu)|2 dx ≤

∫
RN
|∇ϕ|2|u|2 dx+ 4

∫
RN
|∇ϕ∇u|2 dx

+
∫
RN
|u∆ϕ|2 dx+ 4

∫
RN

u∆ϕ∇ϕ∇u dx

− 2
∫
RN

u∆u|∇ϕ|2 dx =:
5∑
i=1

Ii.

(4.10.10)

From now on, we estimate Ii for 1 ≤ i ≤ 5. In view of (4.10.6), then

I1 =
∫
RN
|∇ϕ|2|u|2 dx =

∫
|x|<2R

|∇ϕ|2|u|2 dx+
∫
|x|≥2R

|∇ϕ|2|u|2 dx

≤ C
∫
|x|<2R

|u|2 dx+
∫
|x|≥2R

|ϕu|2

|x|2
dx.

Noting that ∇ϕ∇(ϕu) = |∇ϕ|2u+ (∇ϕ∇u)ϕ, it follows for |x| ≥ 2R, that

|∇ϕ∇u| ≤ |∇ϕ∇(ϕu)|
ϕ

+ |∇ϕ|
2

ϕ2 |ϕu|.

Combines this inequality and the Young’s inequality, we obtain for any ε > 0,

I2
4 =

∫
RN
|∇ϕ∇u|2 dx ≤

∫
|x|<2R

|∇ϕ∇u|2 dx+
∫
|x|≥2R

|∇ϕ∇u|2 dx

≤ C
∫
|x|<2R

|∇u|2 dx+
∫
|x|≥2R

(1 + ε) |∇ϕ∇(ϕu)|2

|ϕ|2
+
(

1 + 1
ε

) |∇ϕ|4
|ϕ|4

|ϕu|2 dx

≤ C
∫
|x|<2R

|∇u|2 dx+ (1 + ε)
∫
|x|≥2R

|∇(ϕu)|2

|x|2
+
(

1 + 1
ε

)∫
RN

|ϕu|2

|x|4
dx.

Also using (4.10.6), we have

I3 =
∫
RN
|u∆ϕ|2 dx ≤

∫
|x|<2R

|u|2|∆ϕ|2 dx+
∫
|x|≥2R

|u|2|∆ϕ|2 dx

≤ C
∫
|x|<2R

|u|2 dx+ λ2
2

∫
|x|≥2R

|ϕu|2

|x|2
dx.

Next we deal with I4. Using the Young’s inequality for ε > 0 again, leads to

I4 = 4
∫
RN

u∆ϕ∇ϕ∇u dx ≤ 4
∫
|x|≥2R

|u∆ϕ||∇ϕ∇u| dx

≤ 2ε
∫
|x|≥2R

|∇ϕ∇u|2 dx+ 2
ε

∫
|x|≥2R

|u∆ϕ|2 dx = εI2
2 + 2I3

ε

≤ Cε
∫
|x|<2R

|∇u|2 + |u|2 dx+ 2(ε+ ε2)
∫
|x|≥2R

|∇(ϕu)|2

|x|2
dx

+ 2 (1 + ε)
∫
|x|≥2R

|ϕu|2

|x|4
dx+ 2λ2

2
ε

∫
|x|≥2R

|ϕu|2

|x|2
dx.

Finally we estimate I5. We have for |x| ≥ 2R,

∆u = ∆(uϕ)
ϕ

− 2∇u∇ϕ
ϕ

+ u∆ϕ
ϕ

.
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This implies that

I5
2 ≤

∫
|x|<2R

|u∆u||∇ϕ|2 dx+
∫
|x|≥2R

|u∆u||∇ϕ|2 dx

≤ C
∫
|x|<2R

|u∆u| dx+
∫
|x|≥2R

|∆(uϕ)| |u||∇ϕ|
2

|ϕ|
dx

+ 2
∫
|x|≥2R

|∇u∇ϕ| |u||∇ϕ|
2

|ϕ|
dx+

∫
|x|≥2R

|u|2 |∇ϕ|
2|∆ϕ|
|ϕ|

dx

:= C

∫
|x|<2R

|u∆u| dx+
3∑
i=1

Ji.

We now treat Ji for i = 1, 2, 3. By the Young’s inequality for τ > 0,

J1 ≤
τ

2

∫
|x|≥2R

|∆(uϕ)|2 dx+ 1
2τ

∫
|x|≥2R

|u|2 |∇ϕ|
4

|ϕ|2
dx

≤ τ

2

∫
|x|≥2R

|∆(uϕ)|2 dx+ 1
2τ

∫
|x|≥2R

|ϕu|2

|x|4
dx.

We also get

J2 ≤
∫
|x|≥2R

|∇u∇ϕ|2 dx+
∫
|x|≥2R

|u|2|∇ϕ|4

|ϕ|2
dx ≤ I2

4 +
∫
|x|≥2R

|ϕu|2

|x|4
dx

≤ C
∫
|x|<2R

|∇u|2 dx+
(

2 + 1
ε

)∫
|x|≥2R

|ϕu|2

|x|4
dx

+ (1 + ε)
∫
|x|≥2R

|∇(ϕu)|2

|x|2
dx

and
J3 =

∫
|x|≥2R

|u|2 |∆ϕ||∇ϕ|
2

|ϕ|
dx ≤ λ2

∫
|x|≥2R

|ϕu|2

|x|3
dx.

Thus combining the estimates to Ji for i = 1, 2, 3, we obtain

I5 ≤ C
∫
|x|<2R

|u|2 + |∇u|2 dx+ (2 + 2ε)
∫
|x|≥2R

|∇(ϕu)|2

|x|2
dx

+ 2λ2

∫
|x|≥2R

|ϕu|2

|x|3
dx+

(
4 + 1

τ
+ 2
ε

)∫
|x|≥2R

|ϕu|2

|x|4
dx

+ τ

∫
|x|≥2R

|∆(uϕ)|2 dx.

Now taking into account above estimates to Ii for 1 ≤ i ≤ 5, there holds

5∑
i=1

Ii ≤ C(R) +
(
6 + 8ε+ 2ε2

) ∫
|x|≥2R

|∇(ϕu)|2

|x|2
dx+ 2λ2

∫
|x|≥2R

|ϕu|2

|x|3
dx

+
(

10 + 1
τ

+ 6
ε

+ 2ε
)∫
|x|≥2R

|ϕu|2

|x|4
dx+

(
1 + λ2

2 + 2λ2
2
ε

)∫
|x|≥2R

|ϕu|2

|x|2
dx

+ τ

∫
|x|≥2R

|∆(uϕ)|2 dx.
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Recalling the Hardy’s inequalities∫
RN
|∇v|2 dx ≥

(
N − 2

2

)2 ∫
RN

|v|2

|x|2
dx,∫

RN
|∆v|2 dx ≥ N2

4

∫
RN

|∇v|2

|x|2
dx,

(4.10.11)

from (4.10.10) and (4.10.11), we arrive at

(1− δ(R))
∫
RN
|∆(ϕu)|2 + |∇(ϕu)|2 dx ≤ C(R) +

( 4
N2

(
6 + 8ε+ 2ε2

)
+ τ

)∫
RN
|∆(ϕu)|2 dx

+
( 2
N − 2

)2
(

1
4R2

(
10 + 1

τ
+ 6
ε

+ 2ε
)

+
(

1 + λ2
2 + 2λ2

2
ε

)
+ λ2
R

)∫
RN
|∇(ϕu)|2 dx.

(4.10.12)

Since N ≥ 5, taking ε, τ > 0 small enough, R > 0 large enough and recording that
δ(R)→ 0 as R→∞, we can insure that( 4

N2

(
6 + 8ε+ 2ε2

)
+ τ

)
< 1− δ,

and ( 2
N − 2

)2
(

1
4R2

(
10 + 1

τ
+ 6
ε

+ 2ε
)

+
(

1 + λ2
2 + 2λ2

2
ε

)
+ λ2
R

)
< 1− δ.

Thereby there exists a constant C > 0 just depending on R > 0 such that∫
RN
|∇(ϕu)|2 dx ≤ C.

It follow from (4.10.11) that ∫
|x|≥2R

|ϕu|2

|x|2
dx ≤ C

uniformly with respect to R1. Finally, letting R1 →∞, we observe that

|ϕu|2

|x|2
→ u2 quad a.e for |x| ≥ 2R

and using the Fatou’s Lemma, it follows that u ∈ L2(RN\B2R(0)). Thus obviously u ∈
L2(RN ).



Chapter 5

Remarks and Perspectives

To begin with, we shall present some remarks related to the problems treated in the
thesis.

5.1 Remarks

In Chapter 2, we consider the existence and orbital stability of normalized solutions
in a case where the energy functional J restricted to S(a1, a2) is bounded from below.
The main goal in this chapter consists in detecting the compactness of any minimizing
sequence to (2.1.4), up to translation. To this aim, borrowing the spirit from the Lions’
concentration compactness principle, one requires to exclude the possiblities of vanishing
and dichotomy. Recall that the energy functional J is invariant under translations in
RN , thus vanishing can be avoided as a simple consequence of the Lions’ concentration
compactness Lemma. Next to see the compactness, it remains to rule out dichotomy. In
general, this can be done by checking the strict subadditivity inequality (2.1.5). However,
we alternatively propose the coupled rearrangement arguments to remove dichotomy. More
precisely, we crucially make use of the coupled rearrangement arguments to guarantee the
strong convergence of any minimizing sequence in Lp(RN ) × Lp(RN ), up to translation,
for 2 < p < 2∗.

A natural question is that whether we are able to prevent dichotomy from happening by
means of directly establishing the strict subadditivity inequality (2.1.5). At this moment,
the answer is positive. In fact, in order to establish the strict subadditivity inequality
(2.1.5), one can adopt the approach as introduced in [51, Proposition 4], which is based
on [51, Lemma 2]. However, we remark that this lemma is applicable to establish related
strict subadditivity inequality provided one can identify a radially symmtric minimizing
sequence to corresponding minimization problem. From this point of view, the coupled
rearrangement arguments are more flexible to deal with the compactness of any minimizing
sequence, regarding this subject, we refer the readers to [57].

Furthermore, let us also point out a method to discuss the compactness of any minimiz-
ing sequence as proposed by Lopes [69], which is also alternative to the Lions’ concentration
compactness principle and does not need the verification of related strict subadditivity in-
equality. But this method is available under a stronger requirement that associated energy
functional is of class C2.
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In contrast, Chapter 3 is devoted to looking for normalized solutions in another two
cases where the energy functional J is unbounded from below on S(a1, a2). Despite we
manage to relax limitation on dimension inducing by the Liouville’s type results, but we
still fail to find two solutions to (3.1.2)-(3.1.3) under only assuming (H1) or (H2). This
is because so far we are unable to prove the conjecture that if two nonnegative functions
u1, u2 ∈ H1(RN ) solve (3.1.2) with some λ1, λ2 ∈ R satisfying λi ≥ 0 for some i = 1, 2,
then ui = 0.

In Chapter 4, we focus on the study of normalized solutions to a class of fourth-order
nonlinear Schrödinger equations in the mass critical and supercritical regime, in which
the energy functional E is unbounded from below on S(c) for c > c0, where c0 is defined
by (4.1.10). Using a natural constraint approach, we then introduce the minimization
problem (4.1.9). In order to seek for ground state solutions to (4.1.2)-(4.1.3), our aim is to
prove the existence of minimizers to (4.1.9). To this end, one of key steps is to show that
the weak limit of a Palais-Smale sequence for the energy funcional E restricted to S(c)
stays in S(c). This essentially relies on the fact that the associated Lagrange multiplier αc
is strictly positive. Actually, from Lemma 4.4.1 and Lemma 4.6.3, we know that αc ≥ 0 is
always the case for any c > c0. Hence it is open that if minimizers to (4.1.9) exist when
αc = 0 and N ≥ 5.

Additionally, as we know that the Lions’ concentration compactness principle is a
useful means to handle various minimization problems under constraint, then we question
whether it is possible to adapt directly the spirit of the Lions’ concentration compactness
principle to solve the minimization problem (4.1.9).

In Theorem 4.1.7, we obtain a concentration behavior of ground state solutions to
(4.1.2)-(4.1.3) as c approaches to c∗N from above in the mass critical case σN = 4 . Since
the uniqueness of least energy solution to (4.1.13) is unknown, hence we cannot describe
precisely the ground state solutions. At this point, a challenging question is that whether
the uniqueness of least energy solution to (4.1.13) holds.

When σ ∈ N+, using the Fourier rearrangement technique we can prove that at least
one of ground state solutions to (4.1.2)-(4.1.3) is radial, see Theorem 4.1.8. However, when
4 ≤ σN < 4∗, radial symmetry of the ground state solutions is still open.

Finally, let us mention an issue concerning the orbital instability by blowup in finite
time of radial ground state solutions to (4.1.2)-(4.1.3), see Theorem 4.1.12. As we have
already seen, this result is valid under the restriction that σ ≤ 4. This is because its
proof strongly depends on an essential element coming from Boulenger and Lenzmann
[30], which is only applicable when σ ≤ 4. Thereby we would like to know if Theorem
4.1.12 remains true when σ > 4.

5.2 Perspectives

In the following, as a possible extension of this thesis we put forward some interesting
issues to be exploited in forthcoming works.
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5.2.1 Fractional minimization problem

We consider the existence of solutions to the following fractional nonlinear Schrödinger
system in RN , {

(−∆)su1 = λ1u1 + µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 ,

(−∆)su2 = λ2u2 + µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2,
(5.2.1)

under the constraint ∫
RN
|u1|2 dx = a1 > 0,

∫
RN
|u2|2 dx = a2 > 0, (5.2.2)

where 0 < s < 1, µ1, µ2, β > 0, 2 < p1, p2, r1 + r2 <
2N

(N−2s)+ .

We denote by Hs(RN ) the fractional Sobolev space of order s with the norm

‖u‖2Hs := ‖u‖22 + ‖(−∆)
s
2u‖22,

where up to a multiplicative constant

‖(−∆)
s
2u‖22 :=

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s dxdy.

Clearly, a solution (u1, u2) to (5.2.1)-(5.2.2) corresponds to a critical points of energy
functional J̃ : Hs(RN )×Hs(RN )→ R defined by

J̃(u1, u2) := 1
2

∫
RN
|(−∆)

s
2u1|2+|(−∆)

s
2u2|2 dx−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx−β

∫
RN
|u1|r1 |u2|r2 dx,

on the constraint S̃(a1, a2) := S̃(a1)× S̃(a2), where

S̃(a) := {u ∈ Hs(RN ) :
∫
RN
|u|2 dx = a > 0},

and the parameters λ1, λ2 are determined as Lagrange multipliers.

We are concerned with the existence of solutions to (5.2.1)-(5.2.2) under the assumption

(H̃0) N ≥ 1, 0 < s < 1, µ1, µ2, β > 0, 2 < p1, p2 <
4s
N
, r1, r2 > 1, r1 + r2 <

4s
N
.

Observe that under the assumption (H̃0) the energy functional J̃ is bounded from below
on S̃(a1, a2). We then define the following minimization problem

M̃(a1, a2) := inf
(u1,u2)∈S̃(a1,a2)

J̃(u1, u2) < 0. (5.2.3)

Indeed, minimizers to (5.2.7) are solutions to (5.2.1)-(5.2.2). Our aim is to prove that
when (H̃0) holds, any minimizing sequence to (5.2.3) is compact, up to translation, in
Hs(RN )×Hs(RN ).

In this direction, we mention a related paper [25], where the author took advantage of
the Lions’ concentration compactness principle to obtain the compactness of any minimiz-
ing sequence where scaling technique is available. However, under the assumption (H̃0),
it seems hard to establish the compactness of any minimizing sequence to (5.2.3) through
the Lions’ concentration compactness principle. For this reason, we employ the coupled
rearrangement spirit. Thus the heuristic ingredient consists in showing assertion that∫

RN
|(−∆)

s
2 {u, v}?|2 dx <

∫
RN
|(−∆)

s
2u|2 +

∫
RN
|(−∆)

s
2 v|2 dx. (5.2.4)



102 Chapter 5. Remarks and Perspectives

5.2.2 Fourth-order minimization problem

We study the existence of solutions to the following fourth-order nonlinear Schrödinger
system in RN , {

∆2u1 = λ1u1 + µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 ,

∆2u2 = λ2u2 + µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2.
(5.2.5)

under the constraint ∫
RN
|u1|2 dx = a1 > 0,

∫
RN
|u2|2 dx = a2 > 0, (5.2.6)

where µ1, µ2, β > 0, 2 < p1, p2, r1 + r2 <
2N

(N−4)+ .

Apparently, a solution (u1, u2) to (5.2.1)-(5.2.2) is obtained as a critical point of energy
functional Ĵ : H2(RN )×H2(RN )→ R defined by

Ĵ(u1, u2) := 1
2

∫
RN
|∆u1|2 + |∆u2|2 dx−

2∑
i=1

µi
pi

∫
RN
|ui|pi dx− β

∫
RN
|u1|r1 |u2|r2 dx,

on the constraint Ŝ(a1, a2) := Ŝ(a1)× Ŝ(a2), where

Ŝ(a) := {u ∈ H2(RN ) :
∫
RN
|u|2 dx = a > 0},

and the parameters λ1, λ2 are determined as Lagrange multipliers.

We are interested in the existence of solutions to (5.2.5)-(5.2.6) under the assumption

(Ĥ0) N ≥ 1, µ1, µ2, β > 0, 2 < p1, p2 <
8
N
, r1, r2 > 1, r1 + r2 <

8
N
.

On account of the fact that the energy functional Ĵ is bounded from below on Ŝ(a1, a2),
we then introduce the following minimization problem

M̂(a1, a2) := inf
(u1,u2)∈Ŝ(a1,a2)

Ĵ(u1, u2) < 0. (5.2.7)

Indeed, any minimizer to (5.2.7) is a solution to (5.2.5)-(5.2.6). Our purpose is to detect the
compactness of any minimizing sequence to (5.2.7), up to translation, inH2(RN )×H2(RN )
under the assumption (Ĥ0). Although (5.2.5) can be viewed as a replacement of −∆ by
∆2 in (2.1.1), which however brings new challenges to discuss the compactness of any
minimizing sequence to (5.2.7).
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