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Résumé

Dans cette thése nous étudions l'existence et la stabilité orbitale de solutions ayant
une norme L? prescrite, pour deux types d’équations Schrodinger non linéaires dans RV, &
savoir, une classe de systémes non linéaires couplés de Schrodinger dans RY et une classe
d’équations nonlinéaires de Schrodinger du quatriéme ordre dans RY. Ces deux types
d’équations nonlinéaires de Schrédinger surviennent dans de nombreuses applications en
mathématiques et physique, et sont devenus une grande attention dans les années récentes.
D’un point de vue physique, de telles solutions sont souvent référées comme des solutions
normalisées, qui sont obtenues comme points critiques d’energie fonctionnelle associée
sous contrainte avec une norme L?. Les éléments clés de nos preuves sont les méthodes
variationnelles.

La these est divisée en 5 chapitres. Le chapitre 1 est une introduction de la these, qui
contient une breve présentation des problémes traités et résultats correspondants obtenus
dans cette these. Dans les chapitres 2 et 3, nous sommes intéressés par ’existence et la
stabilité orbitale de solutions normalisées pour une classe de systemes nonlinéaires couplés
de Schrodinger dans RY. Plus précisément, dans le chapitre 2, nous considérons solutions
normalisées dans un cas ou la fonctionnelle d’énergie associée est minorée sous contrainte.
Par conséquent nous présentons un probleme de minimisation de ’énergie fonctionnelle as-
sociée sous contrainte. Dans ce cas, les solutions normalisées sont en effet obtenues comme
minimiseurs globaux. Notre but est d’étre établir la compacité de toute suite minimisante
en utilisant la technique de réarrangement couplé, qui est une alternative du principe de
concentration-compacité de Lions, et n’exige pas la vérification de I'inégalité stricte de la
subadditivité associée. En corollaire de la compacité de toute suite minimisante, la stabi-
lité orbitale de minimiseurs globaux est prouvée. Au chapitre 3, nous nous concentrons sur
I’existence de solutions normalisées dans deux autres cas, dans lesquels 1’énergie fonction-
nelle associée n’est pas minorée sous contrainte. En conséquence le minimiseur global pour
I’énergie fonctionnelle associée sous contrainte n’existe plus. L’existence de deux solutions
normalisées strictement positives est établi par méthodes du minimax. La premiére solution
est un minimiseur local dont ’existence est assurée par ’étude de compacité de toute suite
minimisante a un probléme de minimisation localisée, et la deuxiéme, est respectivement
de type point col ou de type linking. En particulier nous relachons le hypothese sur la di-
mension induites par les résultats de type de Liouville. En outre, nous obtenons la stabilité
orbitale de minimiseurs locaux. Dans le chapitre 4, nous étudions des solutions normalisées
pour une classe d’équations non linéaires du quatrieéme ordre de Schrodinger dans le cas
de masse critique et dans le cas supercritique. Dans les deux cas, la fonctionnelle d’éner-
gie associée n’est pas minorée sous contrainte. En utilisant une approche par contrainte
naturelle, nous établissons I'existence de solutions d’états fondamentaux et la multiplicité
de solutions radiales. De plus, nous discutons l'instabilité orbitale par explosion en temps
fini d’états fondamentaux radiaux. Pour finir, dans le chapitre 5, nous mettons quelques
remarques relatives a cette these, et proposons également quelques problemes intéressants.



Mots-clefs

Equations de Schrédinger non linéaires, norme L? prescrite, solutions normalisées,
états fondamentaux, stabilité orbitale, minimiseurs, explosion, réarrangement, méthodes
variationnelles, principe de concentration-compacité, identité de type Pohozaev, variété.



Existence and orbital stability of normalized solutions for
nonlinear Schrodinger equations

Abstract

In this thesis, we are concerned with the existence and orbital stability of solutions
having prescribed L?-norm for two types of nonlinear Schrédinger equations in RY | namely
a class of coupled nonlinear Schrédinger systems in RV and a class of fourth-order nonlinear
Schrédinger equations in RY. These two types of nonlinear Schrodinger equations arise in
a variety of mathematical and physical models, and have drawn wide attention in recent
years. From a physical point of view, such solutions are often referred as normalized
solutions, which correspond to critical points of the underlying energy functional restricted
to the L?-norm constraint. The main ingredients of our proofs are variational methods.

The thesis is divided into five chapters. Chapter 1 is an introduction to this thesis,
which contains a brief presentation of issues treated and corresponding results attained in
the thesis. In Chapter 2 and Chapter 3, we are interested in the existence and orbital sta-
bility of normalized solutions for a class of coupled nonlinear Schrédinger systems in RY.
More precisely, Chapter 2 is devoted to investigating normalized solutions in a case where
the associated energy functional is bounded from below on constraint. Accordingly, we
introduce a global minimization problem as the energy functional subject to constraint.
In this situation, normalized solutions are indeed achieved as global minimizers to the
minimization problem. Our purpose consists in establishing the compactness of any min-
imizing sequence by means of the coupled rearrangement arguments, which is alternative
to the Lions’ concentration compactness principle and does not require the verification
of related strict subadditivity inequality. As a corollary of the compactness of any min-
imizing sequence, the orbital stability of global minimizers is proved. In Chapter 3, we
focus on the existence of normalized solutions in another two cases, in which the energy
functional becomes unbounded from below on constraint. Thus global minimizer to the
energy functional restricted to constraint does not exist. The existence of two normalized
solutions is established in each case with the aid of minimax methods. The first solution
is a local minimizer, whose existence is insured through the study of the compactness of
any minimizing sequence to a localized minimization problem, and the second one is a
mountain pass type and a linking type, respectively. In particular, we relax the limita-
tion on dimension induced by the Liouville’s type results. Furthermore, we obtain the
orbital stability of local minimizers. In Chapter 4, we study normalized solutions for a
class of fourth-order nonlinear Schrédinger equations in the mass critical and supercritical
regime. In both cases, the associated energy functional is unbounded from below on con-
straint. Using a natural constraint approach, we establish the existence of ground state
solutions and multiplicity of radial solutions. In addition, we discuss the orbital instability
by blowup in finite time of radial ground state solutions. Finally, in Chapter 5, we present
some remarks related to this thesis and also put forward some interesting issues.

Keywords

Nonlinear Schrédinger equations, prescribed L2-norm, normalized solutions, ground
states, orbital stability, minimizers, blowup, rearrangement, variational methods, concen-
tration compactness principle, Pohozaev type identity, manifold.
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Chapter 1

Introduction

The thesis which collects some works obtained during my Ph.D. in these two years is
devoted to the study of normalized solutions for a class of coupled nonlinear Schrédinger
systems in RY and a class of fourth-order nonlinear Schrédinger equations in RY. Chapter
2 and Chapter 3 correspond to works with L. Jeanjean. Chapter 4 is an collaboration with
D. Bonheure, J.-B. Casteras and L. Jeanjean.

1.1 Normalized solutions for coupled nonlinear Schrodinger
system

An important feature in quantum physics is played by the following time-dependent
coupled nonlinear Schrédinger system in R x RV,

{_iat\pl = AUy + pq [P35 + Br [0 717204 |y 72,

j 2 9 (1.1.1)
—i0,Wa = AWy + o[ Wo[P27* Wy + Bro| Wy [ W] 27 Ws.

This system governs various physical phenomena, such as the Bose-Einstein condensates
with multiple states, or propagation of mutually incoherent waves packets in nonlinear
optics, see for instance [2, 48, 50, 59, 80, 84, 109]. In the system (1.1.1), the functions
Wy, WU, are corresponding condensate amplitudes, u; and 5 are intraspecies and interspecies
scattering length, describing interaction of the same state and different states, respectively.
The positive sign of u; (and ) represents attractive interaction, the negative one represents
repulsive interaction.

One of the most fundamental research regarding (1.1.1) in mathematical and physical
field consists in standing waves, namely solutions with the form of

\Ill(tv .Z‘) = e_Mltul (.Z‘), \IJQ(ta l’) = e_i)\QtUQ (SL’)
for (A1, \2) € R?. This ansatz then gives rise to the following elliptic system satisfied by

w1 and usg,

{—Am = Avug + g fun [P 2y Brofun "2 a2, (1.1.2)

—Aug = Agug + pio|uz|P2 2us + Bro|us | [us|??us.

In order to study solutions to (1.1.2), two possible options arise. The first one is to consider
(1.1.2) with the given parameters (A1, \2) € R2. In this situation, a solution (ui,us) to
(1.1.2) corresponds to a critical point of energy functional F' : H'(RY) x H'(RV) — R
defined by

1 1
F(uy,ug):= = |Vu1|2+)\1\u1]2dx+f ]VuQ|2+)\2|u2\2da:
2 JrN 2 JrN
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2
—Zﬂ/ P dm—ﬁ/ | [ug|"? de.
i=1 Pi JRY RN

Recently, considerable literature has been devoted to this subject concerning the existence
and phase separation of solutions, see for instance [5, 6, 15, 37, 39, 41, 42, 43, 44, 46, 60,
71, 79, 81, 98, 102, 107, 108, 110, 112] and references therein.

The second one is motivated by the fact that the L2-norm of solution to the Cauchy
problem of (1.1.1) is conserved along time, i.e. for any t > 0,

/ |\Ili(t,x)|2dx:/ (0, 2)[2 de for i=1,2.
RN RN

Thus it is of particular interest to search for solutions to (1.1.2) having prescribed L2-
norm, namely, for given a1, as > 0, to find (Ar, A2) € R? and (uq,u2) € HY(RY) x HY(RY)
satisfying (1.1.2), together with normalized condition

/]RN |ui|? dz = ay, /]RN lug|? dz = as. (1.1.3)

Physically, such solutions are often referred as normalized solutions. In this case, we
emphasize that (A1, A2) are unknown and appear as Lagrange multipliers. For convenience
of terminology, we shall identify a solution (A1, A2, u1,u2) to (1.1.2)-(1.1.3) with (u1,ua),
where (u1,us) is obtained as a critical point of energy functional J : H'(RY) x H'(RY) —
R defined by

1 2 i .
J = _ 2 2 de — J/ P dx — / r 2 4
(w1, us) 2/RN Vur]? + [Vug|? dz ;pi [ ulde =5 [l el do
on the constraint S(ai,az) := S(a1) x S(az), here
S(a) = {u e H'(RV): /N lul? dz = a > 0}.
R

The purpose of Chapter 2 and Chapter 3 is to investigate the existence and orbital
stability of solutions to (1.1.2)-(1.1.3). In Chapter 2, we deal with the existence and orbital
stability of normalized solutions in a case where the energy functional J is bounded from
below on S(a1,ag). In Chapter 3, we consider the multiple existence of normalized solutions
in another two cases, in which the energy functional J becomes unbounded from below on
S(a1,az).

1.1.1 Compactness of any minimizing sequence

In Chapter 2, we study the existence and orbital stability of solutions to (1.1.2)-(1.1.3)
under the assumption

(Ho) pir,p2, 8> 0,2 <p1,p2 <24 3,711,172 > Lri +713 <2+ 4.
Note that under the assumption (Hj) the energy functional J is bounded from below on
S(a1,az). Thus it is natural to introduce the following minimization problem

M(ay,az2) := inf J(u1,u2) <O0. (1.1.4)
(u1,u2)€S(a1,a2)

Clearly, minimizers to (1.1.4) correspond to critical points of energy functional J restricted

to S(aq,az), then solutions to (1.1.2)-(1.1.3). Hence our aim is to look for minimizers to
(1.1.4), whose existence is a straightforward consequence of the following statement.
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Theorem 1.1.1. Let N > 1. Assume that (Hp) holds. Then any minimizing sequence to
(1.1.4) is compact, up to translation, in H*(RN) x HY(RN). In particular, there exists a
solution to (1.1.2)-(1.1.3) as a minimizer to (1.1.4).

Remark 1.1.2. When N =1, py,pe, 8 > 0, p1 = p2 = 4,71 = ro = 2, the authors [91]
studied the compactness of any minimizing sequence to (1.1.4), which is indeed based on
the Lions’ concentration compactness principle [73, 74]. When N > 1, we mention the
paper [100], where the compactness of any minimizing sequence was discussed by taking
advantage of the coupled rearrangement arguments, which is alterantive to the Lions’ con-
centration compactness principle. However, embedding the minimization problem (1.1.4)
into the one as presented in [100], the compactness result is only valid under condition
(Ho) with r1,r9 > 2. Our Theorem 1.1.1 provides a fairly complete result concerning the
compactness of any minimizing sequence to (1.1.4) under more general assumption (Hp)
i any dimension.

Let {(uf,u%)} C S(a1,a2) be an arbitrary minimizing sequence to (1.1.4). To see
the compactness of {(u},u})} in H'(RY) x H'(RY), if employing the Lions’ concentra-
tion compactness principle [73, 74], one has to rule out the possibilities of vanishing and
dichotomy. Notice that M(aq,a2) < 0 and the energy functional J is invariant under
translations, then vanishing can be excluded easily as a result of the Lions’ concentration
compactness Lemma [74, Lemma I.1]. Next in order to prevent dichotomy from occurring,
the heuristic argument is to establish the following strict subadditivity inequality

M(al,ag) <M(bl,b2)+M(a1—b1,a2—b2), (1.1.5)

where 0 < b; < a; for i = 1,2, (by,b2) # (0,0) and (b1, b2) # (a1,a2).

To deal with only one constraint problem, several techniques have been developed
to establish strict subadditivity inequality. Most are based on some homogeneity type
properties, such as in autonomous case, one can make use of scaling technique to check
related strict subadditivity inequality, we refer the readers to [19, 40, 101]. However, when
it comes to multiple constraints problem, this technique is generally not applicable, thus
how to achieve strict subadditivity inequality in this situation is much less understood in
addition to some special cases, where constraints cannot be chosen independently, see for
instance [89, 90, 93]. In addition, when N = 1, we mention the papers [23, 24, 91], where
the authors established strict subadditivity inequality by means of crucially applying [3,
Lemma 2.10], which depends on the original idea as introduced in [33]. The readers can
also refer to [51] for an application of [3, Lemma 2.10] to a minimization problem in the
case of dimension N > 1. This result is however available under the condition that one can
identify a radially symmetric minimizing sequence to associated minimization problem.

Coming back to the minimization problem (1.1.4), it seems hard to check (1.1.5). For
this reason, as inspired by Ikoma [61], we propose the coupled rearrangement arguments to
discuss the compactness of minimizing sequence {(uf,u5)}, whose original spirit however
comes from Shibata [100].

We now sketch the virtue to prove Theorem 1.1.1. Firstly, observe that under the
assumption (Hp), the minimizing sequence {(u},u%)} is bounded in H'(RY) x H'(RM).
By using the Lions’ concentration compactness Lemma [74, Lemma I.1], we then denote by
(u1,u2) # (0,0) the weak limit of {(u}, u%)}, up to translation, in H1(R™V)x H'(RM). Next
in light of the coupled rearrangement arguments, we are able to prove that (uf,uy) —
(u1,u2), up to translation, in LP(RV) x LP(RN) for 2 < p < 2*. This joints with the
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weakly lower semicontinuous of norm, we see that J(ui,u2) < M(aj,az). At this point,
to obtain the compactness of minimizing sequence {(u},u%)}, it remains to prove that
(uy,uz) € S(a,az). This is guaranteed by the property that if 0 < a; < a; for i = 1,2
and (ay,az2) # (a1, az), then

Al(al,ag)«< Af(dl,dz). (1J“6)

Remark 1.1.3. When N > 2, if one is only interested in the existence of minimizers
to (1.1.4), the paper [8] should be mentioned. It was assumed that (Hy) holds, in ad-
dition p1,p2 < 2 + ﬁ if N > 5, the authors [8] successfully proved the ezistence of
minimizers to (1.1.4) by essentially making use of the Liouville’s type results. We now ex-
tend this result under (Hy). Indeed, this can be done by considering a radially symmetric
minimizing sequence {(uf,uy)} C S(ai,az2) to (1.1.4). Such minimizing sequence is ob-
tained by the Schwarz’s rearrangement of a minimizing sequence. Recall that the embedding
H! (RYN) < LP(RY) is compact for N > 2,2 < p < 2*, where H! ,(RY) stands for a sub-
space of HY(R™N), which consists of radially symmetric functions in H'(RY). Noticing first
the assumption (Hy) and the Lions’ concentration compactness Lemma, we then denote by
(u1,u2) # (0,0) the weak limit of {(u},u})}, up to translation, in H' (RN) x H' (RN).

rad rad
Thus by using the compact embedding and the weakly lower semicontinuous of norm, it then
readily follows that J(ui,u2) < M(ay,az). At this point, the fact that (ui,u2) € S(ay,as2)

comes from the property (1.1.6). Hence the claim follows.

Alternatively, it is possible to establish the existence of minimizers to (1.1.4) by working
directly in HY ,(RN) x HL (RY). For more details, see Remark 2.5./.

Defining the set
Gu(ar, az) = {(u1,u2) € S(a,a2) : J(u1,u2) = M(ay,az2)},
we now show the orbital stability of minimizers to (1.1.4) in the following sense.

Definition 1.1.4. We say the set G(a1,a2) is orbitally stable, i.e. for any e > 0, there
exists § > 0 so that if (U1, ¥ao) € HY(RYN) x HY(RYN) satisfies

inf W10, Pa0) — (ug,us)l|| <9,
i) gy 17100 P20) = (w1, 0o

then

sup inf (T (), Wa(t)) — (u1,ue)|| <e,

te[0,T) (u1,u2)€G(a1,a2)
where (V1(t), Ua(t)) is a solution to the Cauchy problem of (1.1.1) with initial datum
(W1,0,U20), T denotes the maximum existence time of the solution, and || - || stands for
the standard norm in the Sobolev space H*(RY) x H(RN).

Based upon Theorem 1.1.1, making use of the elements in Cazenave and Lions [36], we
are able to prove the following result.

Theorem 1.1.5. Let N > 1. Assume that (Hy) and the local existence and uniqueness of
the Cauchy problem to (1.1.1) hold. Then the set Gpr(a1,az2) is orbitally stable.

Remark 1.1.6. Note that under the assumption (Hy), the local existence and uniqueness
to the Cauchy problem of (1.1.1) are unknown. The point being that when 1 < ri,19 < 2,
the interaction parts are not Lipschitz continuous. Thus the orbital stability of minimizers
to (1.1.4) is under the condition. However, let us point out that when N = 1,2 < r; =
ro < 3, the local existence to the Cauchy problem of (1.1.1) holds, see [88].
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1.1.2 Existence of multiple normalized solutions

In Chapter 3, we consider the existence of multiple solutions to (1.1.2)-(1.1.3) in the
following two cases,

(Hl) /~L17H275>072<pl)p2<2+%7 T17T2>1,2+%<T‘1+7"2<2*;
(H3) pa,pio, B>0,24 % <p1,p2 <25, 11,19 > 1,11 + 712 < 2+ 7.

Recall that under the assumption (Hg) the energy functional J is bounded from below
on S(ai,az), then one can obtain a solution to (1.1.2)-(1.1.3) as a global minimizer to
(1.1.4) through studying the compactness of any minimizing sequence to (1.1.4), see [58].
In contrast, under the assumption (H;) or (Hz), the energy functional J is not bounded
from below on S(aj,az) anymore. Indeed, to see this, for any ¢ > 0 let us introduce the
scaling of u € S(a) as

NG

ul(z) := t2 u(tx).

Clearly, |[u'l]2 = |jul]2 = a. For any (u1,u2) € S(a1,az), a straightforward calculation
leads to,

t2 2. .
Yy ‘VU1‘2+ ‘VUQ’zdx—Zt(%*l)N&/ ’uz‘pz dr
2 JrN i=1 bi JRN

B Bt(m;rmfl)N /RN ‘u1’r1’u2‘r2 dz.

J(“i?“é) =
(1.1.7)

By consequence, if p1, pa, 5 > 0, when either p; > 2+% for somei =1,20r ri+ry > 2+%,
it then follows from (1.1.7) that J becomes unbounded from below on S(aj,az). As a
result, under the assumption (Hj) or (Hsg), it is no more possible to look for a solution to
(1.1.2)-(1.1.3) as a global minimizer to (1.1.4).

When global minimizer to (1.1.4) fails to exist, finding a solution to (1.1.2)-(1.1.3) is
more delicate and involved. In this situation, minimax methods come into play. We now
point out some literature in this direction. When 2 < N < 4, py,po, 8 > 0, if either
2<p < 2+% < po < 2%, 2—1—% <ri4re <2 re>2or 2—}—% < p1,p2,r1+1re < 2%, the
authors [8] studied the existence of solution to (1.1.2)-(1.1.3) with the aid of the mountain
pass arguments, see also [12]. When N =3, puj,pe > 0,8 <0, p1 =p2 =4,11 =19 = 2,
by using a natural constraint approach, the existence of solution to (1.1.2)-(1.1.3) was
established in [13]. In addition, concerning a multiplicity result to (1.1.2)-(1.1.3), we refer
the reader to [14]. Let us also mention the papers [86, 87, 94], where the authors considered
the existence of normalized solutions to problems confined on a bounded domain in RY or
with a trapping potential. While a periodic potential is included to problem, the existence
of normalized solutions was discussed in [1].

As mainly motivated by [8, 12], we investigate the existence of multiple solutions to
(1.1.2)-(1.1.3) under two new assumptions (H;) and (Hz). Our aim is to prove that
(1.1.2)-(1.1.3) admits two positive solutions when N > 1 and (H;) or (Hz) holds. Up to
our knowledge, it is the first time that a multiplicity result to (1.1.2)-(1.1.3) is obtained
when N > 1 and 8 > 0.

In order to address our results, for any p > 0 let us introduce the notation,

B(p) i= {(u1,us) € H'(RN) x H'(RV) : /RN Vur|? + [Vus[2 dz < p).
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Firstly, on account of (1.1.7), under (H;) or (Hz) there holds
inf J(up,u2) <0 for (ur,uz) € S(ai,a2)NB(p), (1.1.8)

see Lemma 3.2.4. Furthermore, there exist Sy = Bo(a1,a2) > 0 and py = po(a,az) > 0
such that
inf J(ul,UQ) >0 for (U1,UQ) € S(a17a2) N aB(po) (1.1.9)

holds for any 0 < 8 < f3y, see Lemma 3.3.1. Together (1.1.8) with (1.1.9), then there may
exist a local minimizer for the energy functional J restricted to S(a1,a2) N B(po). Hence,
for 0 < B < By we introduce the following localized minimization problem

inf J(ul,UQ). (1.1.10)

m(ai,as) := i
(1 2) (u1,u2)€S(a1,a2)NB(po)

Obviously, minimizers to (1.1.10) are critical points for the energy functional J restricted
to S(a1,a2), i.e. solutions to (1.1.2)-(1.1.3). Thus our first solution to (1.1.2)-(1.1.3) is
obtained as a local minimizer to (1.1.10), whose existence is insured by the study the
compactness of any minimizing sequence to (1.1.10) in H*(RY) x HY(R").

In addition, for any (uy,us) € S(ai,as), it follows from (1.1.7) that J(ul,ub) — —o0
as t — oo when (Hj) or (Hs) holds, and note also that (u},ub) ¢ B(pg) for t > 0 large
enough. This property along with (1.1.9) reveal that there may exist other critical points
for the energy functional J restricted to S(aj,az2). In fact, under the assumption (Hi),
the second critical point is obtained through the mountain pass arguments, while under
the assumption (Hs), the second one is achieved by means of a linking type procedure.
Let us now state our main results.

Theorem 1.1.7. Let a1,a2 > 0 be given and assume that (Hy) holds. Then there exist
Bo = Polar,az) >0 and py = po(ai,az) > 0 such that for any 0 < S < Po,

(i) if N > 1, any minimizing sequence to (1.1.10) is compact, up to translation, in
HY(RN) x HYRN). In particular, there exists a positive solution (vi,vs) to (1.1.2)-
(1.1.3) with (v1,v2) € B(po) and J(vi,v2) < 0;

(ii) If either 2 < N < 4 or N > 5 with p1,ps <11 + 12 — % or |p1 — p2| < %, there
exists a second positive solution (ui,uz2) to (1.1.2)-(1.1.3) with J(uy,usz) > 0.

Theorem 1.1.8. Let a1,az > 0 be given and assume that (Hz) holds. Then there exist
Bo = Polai,az) >0 and py = po(ai,az) > 0 such that for any 0 < f < Po,

(i) if either 1 < N <4 or N > 5, r; > (22 — 1)N for i = 1,2, any minimizing
sequence to (1.1.10) is compact, up to translation, in H'(RN) x HY(RN). In partic-
ular, there exists a positive solution (v1,va) to (1.1.2)-(1.1.3) with (v1,v2) € B(po)
and J(v1,v2) < 0;

(ii) If 2 < N < 4, there exists a second positive solution (ui,ug) to (1.1.2)-(1.1.3) with
J(uy,uz) > 0.

Remark 1.1.9. i) The value of By in Theorem 1.1.7 and Theorem 1.1.8 can be explicitly
computed in terms of N,p;,a;,r; for i = 1,2, instead of being obtained through a limit
process. Additionally, for any given 8 > 0, we can assume that 8 < By at the expense
of taking ay,as > 0 sufficiently small, because Bo(ai,az) — oo as aj,az — 0, to see this
property, we refer Lemma 3.3.1. This indeed implies that for any given 5 > 0, there
are two positive solutions to (1.1.2)-(1.1.3) under the assumptions of Theorem 1.1.7 or
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Theorem 1.1.8 for a1, a2 > 0 sufficient small. Finally, let us also point out that our results
are not a consequence of perturbation arguments.

it) Notice that the existence of the second solution to (1.1.2)-(1.1.3) in Theorem 1.1.7
(ii) and Theorem 1.1.8 (ii) is under the condition N > 2, this is because the second one is

established in the framework of radially symmetric functions space H! ;(RN) x H! (RN),
and the compact embedding H' (RN) < LP(RYN) for 2 < p < 2* holds for N > 2.

rad

iti) When N > 2, we conjecture that the existence of the second solution to (1.1.2)-
(1.1.3) remains valid by only assuming (Hy), we refer to Remark 3.4.5 for a discussion
concerning this subject.

To establish the compactness of any minimizing sequence to (1.1.10) under the assump-
tion (Hp) or (Haz), we essentially make use of the coupled rearrangement arguments due to
Shibata [100] as developed by Ikoma [61]. Assume {(v},v5)} be an arbitrary minimizing
sequence to (1.1.10). Note that m(a1, a2) < 0, from the Lions’ concentration compactness
Lemma [74, Lemma I.1], we then denote by (vi,v2) # (0,0) the weak limit of { (v}, v%)},
up to translation, in H'(R™) x H'(RY). In the following, using the coupled rearrangement
arguments,one can show that (v, v5) — (v1,v2), up to translation, in LP(RY) x LP(RY)
for 2 < p < 2*. Nevertheless, unlike the global minimization problem (1.1.4), to prove
this, one faces a difficulty arising from the fact that the sum of two elements in B(py) may
not belong to B(pg). This causes more technique to discuss the possibility of dichotomy.
To overcome this difficulty, one needs to analyze carefully some properties of the energy
functional J restricted to S(ai,as) NB(po). Finally, to see the compactness of minimizing
sequence { (v}, v4)}, it remains to assert that (vi,v2) € S(a1,az2). Reasoning as the proof
of Theorem 1.1.1, under the assumption (H), this is insured by the fact that m(ay, az) sat-
isfies the property (1.1.6). However, under the assumption (Hs), it is unknown if m(a, az)
satisfies (1.1.6), thus, in this situation we apply the Liouville’s type results, see Lemma
3.2.2, which is however available when N < 4, and in order to deal with the case N > 5,
a restriction is eventually imposed on the range of rq, rs.

The proofs of Theorem 1.1.7 (ii) and Theorem 1.1.8 (ii) depend on the virtue as pre-
sented in [8, 12]. Roughly speaking, the proofs can be divided into three steps. Firstly,
one requires to identify a suspected critical level. This can be done by introducing a
minimax structure of mountain pass type under the assumption (Hj), and linking one
under the assumption (Hz). Secondly, one needs to find a bounded Palais-Smale sequence
{(uf,uy)} C S(a1,az) for the energy functional J restricted to S(a1, az) at the energy level.
To this end, the classical methods developed to derive the boundedness of any Palais-Smale
sequence for unconstrained problem collapse. Actually, this step benefits from the presence
of a Pohozaev type constraint, on which the energy functional J is coercive. Thus taking
advantage of this constraint and adapting the approach introduced in [63] which consists
in adding an artificial variable within the variational procedure, one can end this step.
Having obtained a bounded Palais-Smale sequence {(u7,u%)} for the energy functional J
restricted to S(a1,az), we denote by (u1,uz) its weak limit in H'(RY) x H*(RY), and we
immediately find that (u,u2) solves (1.1.2) with some (A1, \s) € R?, see Lemma 3.2.7.
At this point, the last step is to show that (u,u2) € S(a1,az2). It is this step where the
limitation on dimension was imposed in [8, 12, 13]. Because in this step the authors of the
literature took into account the Liouville’s type results and also used the property that
the scalar problem

—Aw — M = plwP" 2w, w € S(a) for pu>0 (1.1.11)
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has a unique positive radial solution for 2 < p < 2*. We now relax these two restrictions
under the assumption (Hp), thus Theorem 1.1.7 (ii) allows to consider the case N > 5.
This is essentially based on the fact that when 2 < p < 2+ %, w >0,

—oo < inf I(u) <0, (1.1.12)
ueS(a)

where I(u) == 3 [pn [Vul>dz — 2 e (ulP da.

We now continue the proof of the last step. Under the assumption (H;), when 2 <
N < 4, the fact that (uj,us) € S(a1,a2) is a direct consequence of the Liouville’s type
results. When N > 5, assuming by contradiction that (uy,us) € S(ai,az) for 0 < a; < a;
for i = 1,2 and (ai,a2) # (a1,a2). Thus one can crucially apply the property (1.1.12) and
Lemma 3.4.4 to construct a path, on which the maximum of J is strictly below mountain
pass level. We then reach a contradiction. Here the path is constructed by “adding some
masses' technique somehow in the spirit of [62], but using the coupled rearrangement
arguments.

On the contrary, when p > 2 + %, w > 0, the property (1.1.12) is violated, hence
to prove that (u1,u2) € S(ai,az) under the assumption (Hs), it indeed depends on the
Liouville’s type results, which induces a restriction on dimension N < 4.

We now define the set
Gm(ai,a2) == {(u1,u2) € S(ai,a2) N B(po) : J(u1,uz) = m(ai,az)}.

In view of Remark 2.1.5, as a counterpart one to Theorem 1.1.1, we have the orbital
stability of minimizers to (1.1.10).

Theorem 1.1.10. Let N > 1. Assume that (Hy) or (Hz2) with either 1 < N < 4 or
N >5 r > (% — 1)N for i = 1,2, and the local existence and uniqueness of the
Cauchy problem to (1.1.1) hold. Then the set Gy,(a1,az2) is orbitally stable.

1.2 Normalized solutions for fourth-order nonlinear Schrodinger
equation

In Chapter 4, we deal with a class of fourth-order nonlinear Schrédinger equations in
R x RV,
i0p) — YA + Adp + [>T = 0, (1.2.1)

where v > 0.

The classical nonlinear Schrédinger equation with pure power nonlinearity in R x RY
is given by
i0pp + A + |97y = 0.

It is well known that when 0 < 0N < 2, any solution to the Cauchy problem of (1.2) with
initial datum in H'(R") exists globally in time, and standing waves are orbitally stable.
While ¢ N > 2, blowup in finite time may occur, then standing waves become singular,
see for instance [35].

In order to regularize and stabilize solution to the Cauchy problem of (1.2), Karpman
and Shagalov [70] introduced a small fourth-order dispersion term to (1.2), i.e. they
considered the fourth-order nonlinear Schrodinger equation (1.2.1), see also [64]. Using
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a combination of stability analysis and numerical simulations, they showed that standing
waves are orbitally stable for any v > 0, when 0 < o/N < 2, and for v > 0 small,
when 2 < oN < 4. Whereas oN > 4, they observed an unstable phenomenon. This
result indicates that adding a small fourth-order dispersion term to (1.2) helps to stabilize
standing waves.

In nonlinear optics, the classical nonlinear Schrodinger equation (for example (1.2))
is traditionally derived from the scalar nonlinear Helmhotz equation through so-called
paraxial approximation. The fact that the solution to the Cauchy problem of (1.2) with
initial datum in H'(R™) may blow up in finite time suggests that some small terms
neglected by the paraxial approximation which play an important role to prevent this
phenomenon. Therefore a small fourth-order dispersion term was proposed in [49] as a
nonparaxial correction, see also [9, 10, 11], which eventually gives rise to the fourth-order
nonlinear Schrédinger equations (1.2.1). Applying the arguments as developed in [111],
when 0 < 0N < 4 the authors [49] proved that any solution to the Cauchy problem of
(1.2.1) with initial datum in H?(R") exists globally in time.

Nevertheless, despite of these physical relevance, the dispersion equation (1.2.1) is far
from being well understood. There are only few papers studying (1.2.1), for instance
[20, 27, 28, 30, 85, 95, 96, 97].

From a physical and mathematical point of view, a center issue to study (1.2.1) consists
in standing waves, namely solutions with the form of ¢ (t,z) = e"*u(x) for a € R. Then
u satisfies the following elliptic equation

YA%u — Au+ ou = |u*u. (1.2.2)

In order to study solutions to (1.2.2), two possible options have been developed. The first
one is to investigate solutions to (1.2.2) with the given parameter a@ € R. In this case, a
solution to (1.2.2) is obtained as a critical point of energy functional F : H*(RY) — R
given by

=7 2 1 2 o 2 _ 1 / 2042
Fu) ._Q/RN\AM dx+2/RN|vu\ dx+2/RN|u\ do— oty |l s,

and of particular interest is to investigate least energy solutions, i.e. solutions to (1.2.2)
minimize the energy functional F' among all solutions. Concerning this subject, we refer
to [31].

Note that the L?-norm of the solution to the Cauchy problem of (1.2.1) is conserved
along time, i.e. for any ¢ > 0,

2 = T 2 xZ.
Lot = [ juo.z)2a

As motivated by this physical fact, the second one is to research solutions to (1.2.2) having
prescribed L2-norm, namely, for given ¢ > 0, to find o € R and u € H?(RY) satisfying
(1.2.2), together with normalized condition

/N Jul* dz = c. (1.2.3)
R

Conventionally, the solutions are referred as normalized solutions, In this situation, the
parameter « is unknown and determined as Lagrange multiplier. For the sake of simplicity,
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we identify a solution («, u) to (1.2.2)-(1.2.3) with u, where u is obtained as a critical point
of energy functional E : H2(RY) — R defined by

Y 2 1 / 2 1 / 2042
E = A + = —
(u) > /N |Au| dx 5 |ox |Vul® dx 5 5 [ox lu| dx

on the constraint

S(c) = {u e H* RN : /RN luf? de = e}.

From now on, we are concerned with normalized solutions to (1.2.2), i.e. solutions to
(1.2.2)-(1.2.3). Observe that when 0 < 0N < 4, the energy functional E is bounded from
below on S(c), the authors [28] then studied the following minimization problem

m(c) := uégigc) E(u). (1.2.4)

In this case, it is possible to find a solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). We
mention the following result as obtained in [28].

Theorem 1.2.1. If 0 < oN < 2, then m(c) is achieved for any ¢ > 0. If 2 < oN < 4,
then there exists a critical mass ¢ = é(o, N) such that
(i) m(c) is not achieved if ¢ < ¢&;
(ii) m(c) is achieved if ¢ > ¢ and 0 = 2/N;
(iii) m(c) is achieved if ¢ > ¢ and o # 2/N.
Moreover, if o € Nt and m(c) is achieved, then there exists at least one radially symmetric

minimizer to (1.2.4).

Remark 1.2.2. The appearance of a critical mass when 2 < oN < 4 is linked to the fact
that every term of the energy functional E behaves differently with respect to dilations.

In Chapter 4, as inspired by [28], our aim is to study solutions to (1.2.2)-(1.2.3) under
the mass critical case o N = 4 and the mass supercritical case 4 < oN < 4*, where
4* .= ﬁ. Firstly, we note that, in these two cases it is no more possible to look for a
solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4). Indeed, to see this, for any u € S(c),
A > 0, let us define the scaling of v as

up(zx) := )\%u(ﬁx)

By direct calculations, one can check that ||uy||2 = ||ul/2 and

A2 2 )\/ 2 AN/ 2042
E =— A — — v . 1.2.
(up) > o |Au|* dx + 3 Jan |Vul|* dx % 2 Jux |ul dx (1.2.5)
Thus, when 4 < o N < 4%, we find that E(uy) — —oo as A — oo, then m(c) = —oo for

any ¢ > 0.

We now turn to the case o N = 4. To prove the claim, we first recall the Gagliardo-
Nirenberg’s inequality (see [92]) for u € H?(RY)

N 2+20—2N
lull3533 < By (o)[[Aully? flull; ?, (1.2.6)
where
{ 0<o, ifN <4,
4
< T if N >
0<o< N1 i > 5,

and By (o) is a constant depending on o and N. We thus obtain the following result.
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Theorem 1.2.3. Let N > 1,0N = 4. There exists ¢y > 0 such that

0, 0 <c<cy,
m(c) = inf E(u):{ =

ueS(c) — 00, c> C}(V.

For c € (0,cy), (1.2.2)-(1.2.3) has no solution, and in particular m(c) is not achieved. In
addition, ¢ = (wC(N))% where

C(N) - N +4

= VB T} (1.2.7)

and By (o) is the constant in (1.2.6).

In view of Theorem 1.2.3, when o /N = 4, and ¢ > cy*, it is also unlikely to find a
solution to (1.2.2)-(1.2.3) as a minimizer to (1.2.4).

From previous observations, since minimizer to (1.2.4) fails to exist under the mass
critical and supercritical case, one will see that it is more delicate to seek for solutions
to (1.2.2)-(1.2.3) in these two cases. In comparison with unconstrained problem, when
facing similar issue, one can search for a solution as a minimizer to associated energy
functional restricted to the Nehari manifold. However, in our situation, no Nehari manifold
is available because « is unknown. Thus to overcome this difficulty, we introduce a natural
constraint M(c) given by

M(c) == {u € 5(¢) : Qu) = 0},

where
oN

1
. AQd 7/ 2d _7/ 20+2d.
Quys=r [ 1auPdrtg [V de - 57T |l e

Using (1.2.5), we immediately see that

OE(uy) |
ox  =b

thus, heuristically, M(c) contains all critical points for E restricted to S(c), i.e. all solu-
tions to (1.2.2)-(1.2.3). This fact is to be rigourously proved in Lemma 4.10.1. Actually,
the condition Q(u) = 0 corresponds to a Pohozaev type identity related to (1.2.2)-(1.2.3),
and M(c) is regarded as the Pohozaev manifold. Furthermore, borrowing the key spirit
from Bartsch and Soave [13], we are able to prove that a critical point for E restricted
to M(c) is a critical point for E restricted to S(c), then a solution to (1.2.2)-(1.2.3), see
Lemma 4.3.5. In addition, there holds that E(u) > 0 for u € M(c). For these reasons, we
now introduce the following minimization problem

Qu) = (1.2.8)

~v(c) := uei/r\l/tf(C)E(u). (1.2.9)

We shall look for a minimizer to (1.2.9). Note that, if it exists, it then corresponds to a
ground state solution to (1.2.2)-(1.2.3) in the sense that it minimizes the energy functional
E among all solutions to (1.2.2)-(1.2.3) with same L%-norm.

For convenience, we define ¢y € R as

0, ifd<oN <4,
O e, if oN = 4,

where ¢}y is given in Theorem 1.2.3.
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Theorem 1.2.4. Let N > 1,4 < oN < 4*. Then there exists c; N > co such that for any
¢ € (co,¢onN), (1.2.2)-(1.2.3) has a ground state solution u. satisfying E(u.) = v(c), and
the associated Lagrange parameter a. is strictly positive. Moreover

(1) coq1 = Cop =00, and co3 =00 if 4/3 < 0 < 2;
N
(i1) When oN =4, then cy4 = 00, and cy N > (%) * cy if N >5.

The proof of Theorem 1.2.4 crucially relies on a key element Lemma 4.3.5. Using this
result and the Ekeland variational principle [47], we then obtain a Palais-Smale sequence
{un} € M(c) for E restricted to S(c) at level v(c) as a minimizing sequence to (1.2.9).
Our aim is to prove that {u,} is compact, up to translation, in H?(R"). Firstly, notice
that E is coercive on M(c), see Lemma 4.3.1, thus {u,} is bounded in H*(R"), and it
readily follows that there is u. € H?(R") such that u, — u., up to a subsequence and
translation, in H2(RY ). Furthermore, there exists a. € R such that u. satisfies

A% up — Aue + e = |uc|2‘7uc. (1.2.10)

At this point, proving the compactness of {u,} then reduces to show that the strong
convergence of {u,} in L?**2(R") and the Lagrange parameter a. > 0, see Lemma 4.3.6.
The strong convergence of {u,} in L2 +2(R¥) is indeed beneficial from the fact that the
function ¢ — ~v(c) is nonincreasing on (cp, ), see Lemma 4.4.1. The restriction on the
size of ¢ is to insure that a. > 0, see Lemma 4.2.1.

Taking advantage of the genus theory, we obtain the existence of multiple radial solu-
tions to (1.2.2)-(1.2.3).

Theorem 1.2.5. Assume N > 2.

(1) If 4 < oN < 4%, then for any ¢ € (0,¢co,N), where co N is defined in Theorem 1.2.4,
(1.2.2)-(1.2.3) admits infinitely many radial solutions;

(ii) If 2 < N < 4, oN = 4, then for any k € N, there exists a ¢, > ¢ such that, for
any ¢ > ¢, (1.2.2)-(1.2.3) admits at least k radial solutions.

To establish Theorem 1.2.5, we work in the subspace H2 ;(RY) of H?(RY), which
consists of radially symmetric functions in H2(RY). Accordingly, we define M,qq(c) :=
M(c) N H?  (RN).

rad

The proof of Theorem 1.2.5 is based on the Kranosel’skii genus theory. The key step
is to prove that F restricted to M, .q(c) satisfies the Palais-Smale condition. To this
end, let us consider an arbitrary Palais-Smale sequence {u,} C M,qq(c) for E restricted
to Myqq(c). Our purpose is to prove that {u,} is compact in H?(RY). Noting the
coerciveness of £ on M,q(c), we then denote by u, its weak limit in H2(RY). Moreover,
there exists a a,. € R such that u, satisfies (1.2.10). The fact that the strong convergence of
{un} in L2+2(RYN) is given here for free, because the embedding H2, ,(RY) — L29F2(RY)
is compact for N > 2. Thus reasoning as Theorem 1.2.4, to show the compactness it
remains to check that the Lagrange parameter a. is strictly positive, which is indeed
guaranteed by Lemma 4.2.1. The second step is to show that the set M(c) is sufficiently
large. This is always the case when 4 < ¢ N < 4* for any ¢ > 0. However, when o N = 4,
the set M, qq(c) may be too small. In particular, it shrinks to the empty set as ¢ — cjy.
To obtain a given number of solutions, we require that ¢ > cj; is sufficiently large.

The monotonicity of the function ¢ +— ~y(c¢) on (cg, 00) is crucially used in the proof
of Theorem 1.2.4. We now present additional properties of this function, its behaviors
depend in an essential way on the couple (o, N).
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Theorem 1.2.6. Assume N > 1. Let 4 < oN < 4*. The function c — v(c) is continuous
for any ¢ > co, is decreasing on (co,0), and limcﬁcg ~(¢) = oo. In addition,

(i) if N =1,2, N = 3 with % <o <2orN=4witho =1, then ¢ — ~(c) is strictly
decreasing and lim.—,o y(c) = 0;

(i) If N = 3 with 0 > 2 or N = 4 with 0 > 1, then lim,, v(c) := y(c0) > 0 and
~v(¢) > v(00) for all ¢ > cp;

(ii) If N > 5, then lim.o v(c) := vy(oc0) > 0, and there exists a coo > co Such that
~v(c) = v(00) for all ¢ > coo.

Note that Theorem 1.2.6, the difference of behavior of v(c) as ¢ — oo between N < 4
and N > 5 arises from the fact that the equation

YA — Au = |u*u (1.2.11)

does not admit least energy solution in H?(R") when N < 4, but it does when N > 5,
see Proposition 4.6.5 for more details.

Next when o N = 4, we show a concentration behavior of ground state solutions to
(1.2.2)-(1.2.3) as ¢ approaches to c¢j; from above.

Theorem 1.2.7. Let N > 1,0N = 4, and {c,} C R be a sequence satisfying for any
n €N, ¢, > ¢y with ¢, = ¢ as n — 00, and uy, be a ground state solution to (1.2.2)-
(1.2.3) for c = ¢, at level y(cy,). Then there exist a sequence {y,} C RY and a least energy
solution u to the equation

YA+ u = \u\%u,

such that up to a subsequence,

N 1
4 x N B 4 x N 1
<6"CN> Un ((6"61\7 ) x—i—enyn) — u in LYRY) as n — oo

4 4

f0r2§q<%, where €, — 0 as n — 0.

Proposition 1.2.7 gives a description of ground state solution to (1.2.2)-(1.2.3) as ¢y
approaches to ¢ from above. Roughly speaking, it shows for n € N large enough,

N 1
4 8 4 4
Un(x) ~ (E%C%N) u ((E%CRN) (1: - enyn)) :

In the following we consider the sign and radially symmetric property of solutions to
(1.2.2)-(1.2.3). Concerning this subject, we first mention the case that o € R* is given in
(4.1.2). In this case, it is known that when « € RT is sufficiently small, all least energy
solutions have a sign and are radial. On the contrary, when o € R™ is large, radial solutions
are necessarily sign-changing. In addition, when o € NT, at least one least energy solution
is radial. For more details, see [31, Theorem 4]. When 0 < o N < 4, regarding the sign
and radially symmetric property of minimizers to (1.2.4), we refer to [28]. However, when
4 < oN < 4%, it seems more complex to derive these information for ground state solutions
to (1.2.2)-(1.2.3). In this direction, we only present the following result.
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Theorem 1.2.8. Let N > 1,4 < oN < 4*, and o0 € NT. Then there exists a ¢, > co such
that, for any ¢ € (co,cr), (1.2.2)-(1.2.3) admits a ground state solution, which is radial
and sign-changing.

In our next result, we prove that positive radial solutions to (1.2.2)-(1.2.3) do exist.

Theorem 1.2.9. Let 1 < N < 4,4 < oN < 4*. Then there exists a co Ny > co such that
(1.2.2)-(1.2.3) admits a positive and radial solution for any c > ¢, N.

We now turn our attention to investigate dynamical behaviors of solution to the Cauchy
problem of the dispersion equation (1.2.1). From [95], when 0 < o N < 4* the local well-
posedness to the Cauchy problem of (1.2.1) is known. Moreover, in the mass subcritical
case 0 < 0N < 4, any solution to the Cauchy problem of (1.2.1) with initial datum in
H?(RY) exists globally in time, see [49, 95]. While in the mass critical and supercritical
case 4 < oN < 4%, blowup in finite time may happen, but it is also likely to show that
the solution to the Cauchy problem of (1.2.1) with some initial datums exists globally in
time.

Theorem 1.2.10. Let N > 1, 4 < oN < 4*. For any ¢ > c¢p, the solution ¢ €
C([0,T); H*(RN)) to (1.2.1) with initial datum )y € O, with

O.:={ue S(c): E(u) <~v(c),Q(u) > 0}.
exists globally in time.

When 0 < oN < 4, it was proved in [28] that minimizers to (1.2.4) are orbitally
stable, see also [85]. While 4 < ¢ N < 4*, we show that radial ground state solutions to
(1.2.2)-(1.2.3) are unstable by blowup in finite time.

Definition 1.2.11. We say that u € H?(RYN) is unstable by blowup in finite time, if for
any € > 0, there exists v € H?(RN) such that |[v — ul|g2 < € and the solution ¥(t) €
C([0,7); H*(RN)) to (1.2.1) with initial datum 1(0) = v blows up in finite time in H?-
norm.

Making use of a key element in Boulenger and Lenzmann [30], we have

Theorem 1.2.12. Let 4 < oN < 4", N > 2 and 0 < 4. Then the standing waves
associated to radial ground state solutions to (1.2.2)-(1.2.3) are unstable by blowup in
finite time.

In the case where o € R™ is given in (1.2.2), the fact that radial least energy solutions
are unstable by blowup in finite time was recently established, see our paper [27]. It should
be noted that the results of [27] are also strongly based on the arguments from Boulenger
and Lenzmann [30]



Chapter 2

Existence and orbital stability of
normalized solutions for coupled
nonlinear Schrodinger system

2.1 Introduction

In this chapter, we consider the existence of solutions having prescribed L?-norm to a
class of coupled nonlinear Schrodinger systems in RY. More precisely, for given a;,as > 0,
we look for (A1, A2) € R? and (ug,u2) € HY(RN) x HY(RY) satisfying

—Auy = Mug + p|ug [P 2y + o Blug | 2 us| "2, 2.11)
—Aug = Agug + pialua P2 2ug + roBur | Juag|? 2ug, o
and
/ w|* dz = as, / |ua|® dz = as. (2.1.2)
RN RN

Physically, such solutions are often referred as normalized solutions.

The problem under consideration is associated to the research of standing waves to the
following nonlinear Schrodinger system in R x RY,

{—iat‘lﬁ = AUy + pq [P 720 + B0 11720 [Wy72, (2.1.3)

—i0; U2 = AWy + 1| Wo[P2 2 Wy + 5|01 [Ta|"272Ws.
Here by standing waves, we mean solutions to (2.1.3) with the form of
Uy (t,x) = e MNbyy(z), Uo(t,z) = e~ P2luy(z),
for (A1, A2) € R2. Thus (u1,us) satisfies the elliptic system (2.1.1).

Note that the L?-norm of solution to the Cauchy problem of (2.1.3) is conserved along
time, i.e.

/ |\IJi(t,x)|2dx:/ 0,0, 2)[2dz for i=1,2,
RN RN

which leads to the study of normalized solutions quite interesting. For simplicity, in the
following we shall regard a solution (A1, Ag,ui,u2) to (2.1.1)-(2.1.2) as (uj,ug), where
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(u1,us2) is obtained as a critical point of energy functional J : H'(RY) x HY(RY) — R
defined by

1 2 2 2 Mz’/ ; /
== dr — Y 1 P da — " ug|™? d
J(u1,u2) 2/[RN |Vui|* + |Vug|* dz izzlpi o |u; [Pt dz — 3 o lug " ug|"™ dz
on the constraint S(ai,az) := S(a1) x S(az) with
S(a) :={uc H'RY): /N lul? dz = a > 0},
R

and (A1, A2) is determined as Lagrange multipliers.

In this chapter, we are interested in the existence of solutions to (2.1.1)-(2.1.2) under
the following assumption

(Ho) pa,p2,B3>0,2<p1,ps <2+ 3, 11,72 > 1, 11 + 712 <2+ 3.

Note that under the assumption (Hy), the energy functional J is bounded from below on
S(ai,a2), we then consider the following minimization problem

M(ay,as) = inf J(u, ug). 9.1.4
(a1,az) R T (u1,u2) (2.1.4)

It is standard that minimizers to (2.1.4) are critical points for the energy functional J
restricted to S(ay, az), then solutions to (2.1.1)-(2.1.2). Hence, we look for minimizers to
(2.1.4), and whose existence is a consequence of the following statement.

Theorem 2.1.1. Let N > 1. Assume that (Hp) holds. Then any minimizing sequence to
(2.1.4) is compact, up to translations, in H*(RY) x H'(RN).

Remark 2.1.2. If one only concerns the existence of minimizers to (2.1.4), we mention
paper [8]. When N > 2, assume that (Hy) holds, in addition 2 < p1,ps < 2 + ﬁ if
N > 5, the authors [8] obtained the existence of minimizers to (2.1.4). In this related
direction, we also refer to [34, 100].

Following some initial works [105, 106], from the last thirty years, the Lions’ concentra-
tion compactness principle [73, 74] had a deep influence on solving minimization problem
under constraint. Regarding our problem (2.1.4), if employing the concentration compact-
ness principle, then the heuristic arguments readily convince that the compactness of any
minimizing sequence holds if the following strict subadditivity inequality are satisfied,

M(al,ag) <M(b1,b2)+M(a1 —bl,ag—bg), (2.1.5)
where 0 < b; < a; for i = 1,2, and (b1, b2) # (0,0) and (b1, b2) # (a1, az2).

To deal with only one constraint problem, several techniques have been developed to
prove strict subadditivity inequality. Most are based on some homogeneity type properties.
In autonomous case, then it is possible to use scaling techniques, see for example [19, 40,
101]. In the case of multiple constraints problem, how to establish strict subadditivity
inequality is much less understood. As a matter of fact, in this situation few papers
addressed the issue of compactness of any minimizing sequence. Moreover, among most
of them, constraints cannot be chosen independently, for instance [89, 90, 93]. Concerning
minimization problem (2.1.4), when N = 1, a more complete result seems to be due to
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[91], where the compactness of any minimizing sequence was obtained by checking (2.1.5).
To estblish (2.1.5), the authors [91] crucially applied [3, Lemma 2.10], which depends in
turn on original idea introduced in [33], see also [51]. We also refer to [75] for similar
arguments on related problem.

As inspired by Ikoma [61], we propose an alternative approach to verify the com-
pactness of any minimizing sequences to (2.1.4). Let {(u},u%)} C S(ai,az) be a min-
imizing sequence to (2.1.4). Firstly, under (Hp), we see that {(u},u%)} is bounded in
HY(RN) x HY(RY), we then denote by (u1,us) the weak limit of {(u},u})}. At this point,
to demonstrate the compactness, we first prove that (u},u3) — (u1,u2), up to transla-
tions, in LP(RN) x LP(RY) for 2 < p < 2*. To prove this, we make use of a nice result of
Shibata [100] as developed in [61, Lemma A.1]. This result can somehow be considered as
an extension of [3, Lemma 2.10] to any dimension.

With this strong convergence in hand, then using weakly lower semicontinuous of
norm, we find that J(u1,u2) < M(ay,az). Namely the energy functional .J is weakly lower
semicontinuous on minimizing sequence. If |[u1]|3 = a1 and ||uz||3 = a2, the compactness
immediately follows. Suppose not and assume that |ju;]|3 := a1 < a1 or ||ug|3 := a2 < as.
Since J(u1,u2) < M(aq,az), it follows that M(ay,a2) < M(ai,az). We then reach a
contradiction via observing the weak version (2.1.5) where an equality is allowed, which
implies that the function (aj,as) — M (a1, a2) is strictly decreasing in both variables.

Remark 2.1.3. Note that when N > 2 and (Hy) holds, if one is interested in the exis-
tence of minimizers to (2.1.4), a shorter proof can be given. Choosing a radially symmetric
minimizing sequence {(ul,uy)} C S(a1,a2) to (2.1.4). Such minimizing sequence can be
obtained as the Schwartz’s reaarangement of a minimizing sequence. Recall that the embed-
ding H' ;(RYN) < LP(RYN) is compact for N > 2, and 2 < p < 2*, where H} ,(RY) stands
for a subspace of H'(RN), which consists of radially symmetric functions in H'(R™). By
means of the assumption (Hp) and the Lions’ concentration Lemma, we then denote by
(u1,us) the weak limit of {(u},ud)}, up to transaltion, in H' ,(RN) x HL (RYN). By us-
ing the fact that the energy functional J is weakly lower semicontinuous on minimizing
sequence, it readily follows that J(uy,us) < M(ay,az2). At this point, the remaining proof
1s identical to the one of Theorem 2.1.1.

Alternatively, it is possible to obtain the existence of minimizers to (2.1.4) by working
directly in HY ;(RN) x HL (RN). In this direction, we refer to Remark 2.3.4.

rad
Defining the set

GM(al, CLQ) = {(ul,ug) S S(al, ag) : J(ul,uQ) = M(al, ag)},
we show the orbital stability of minimizers to (2.1.4) in the following sense.

Definition 2.1.4. We say a set G(a1,az) is orbitally stable, i.e. for any ¢ > 0, there
exists § > 0 so that if (U1, Wag) € HY(RY) x HY(RYN) satisfies

) ql \p <— I
(ul u2)€G(a CLZ) ||( 2’0) ( 1 2)“ é

wwp it [(Wa(8), Walt) — (ur )] <
te[0,T) (u1,u2)€G(a1,a2)
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where (W1(t), Wa(t)) is solution to the Cauchy problem of (2.1.3) with initial datum (V1 , ¥a2),
T denotes the maximum existence time of solution, and || -|| stands for the standard norm
in the Sobolev space H'(RY) x HY(RY).

Remark 2.1.5. Note that under assumption (Hyp), the local well-posedness to the Cauchy
problem of (2.1.3) is unknown. The point being that when 1 < r1,ry < 2, the interaction
parts are not Lipchitz continuous, in particular the uniqueness might fail. For this reason,
the orbital stability of minimizers is under condition. However, let us point out that when
N =1,2 < ry =19 <3, the local existence and uniqueness to the Cauchy problem of
(2.1.3) holds, see for instance [88].

Based upon Theorem 2.1.1, as a dierct consequence of the elements in Cazenave and
Lions [36] we are able to prove the following result.

Theorem 2.1.6. Let N > 1. Assume that (Hy) and the local existence and uniqueness to
the Cauchy problem of (1.1.1) hold. Then the set Gpr(a1,az2) is orbitally stable.

This chapter is organized as follows. In Section 2.2, we display some preliminary
results. Theorem 2.1.1 and Theorem 2.1.6 will be established in Section 2.3.

Notation 2.1.7. In this chapter, we write LP(RN) the usual Lebesgue space endowed with
the norm
p._ p
Jullp = [ | lul? do,

and HY(RN) the usual Sobolev space endowed with the norm
Julls= [ 1Vul* + [uf* da.
RN

We denote by ' —' and ' —' strong convergence and weak convergence in corresponding
space, respectively, and denote by B(x, R) a ball in RN of center x and radius R > 0.

2.2 Preliminary results

Firstly, let us observe that the energy functional .J is well-defined in H*(RY)x H1(RY).

Indeed, for 71,79 > 1,71 + ro < 2%, there is ¢ > 1 satisfying 2 < r1¢,r2¢' < 2%, ¢’ = qqu.
Hence
L bl el de < 72, < oc.
The Gagliardo-Nirenberg’s inequality for v € H'(RV) and 2 < p < 2%,
_ N(p-—2
Jully < NP Tulgull e, wherea i= T 82,
this implies for (u1,u2) € S(ay,az2):
N(p1—2)
L lal de < €V pran) [Vuslly
RN
(2.2.1)

N(p2—2)

[ lual do < CNopa,a)[Fually *
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and

N(rig—2) N(rgq'—2)

/RN ur| ua| ™ dz < flualliglluzlli2, < ClIVurlly ™ [[Vually * (2.2.2)

r2q’

with C = C(N,ry,79,a1,a2,q).

Now recall the rearrangement results of Shibata [100] as presented in [61]. Let u be a
Borel measurable function on RY. It is said to vanish at infinity if [{z € RN : |u(z)| >
t}| < oo for every t > 0. Here |A| stands for the N-dimensional Lebesgue measure of a
Lebesgue mesurable set A ¢ RY. Considering two Borel mesurable functions u,v which
vanish at infinity in RY, we define for t > 0, A*(u,v;t) := {x € R : |z| < r} where r > 0
is chosen so that

1B(0,r)] = {z € RY : Ju(z)| >t} + {z € RY : |v(2)] > t}],

and {u,v}* by
fuoF @ = [ X @),

where x () is a characteristic function of the set A C RV.

Lemma 2.2.1. [61, Lemma A.1]

(i) The function {u,v}* is radially symmetric, non-increasing and lower semi-continuous.
Moreover, for each t > 0, there holds {x € RN : {u,v}* >t} = A*(u,v;t).

(ii) Let ® : [0,00) — [0,00) be increasing, lower semicontinuous, continuous at 0 and
®(0) =0. Then {®(u), ®(v)}* = ®({u,v}*).

(iii) |[{u, v}*[[ = [lullg + vl for 1 <p < oo.

(iv) If u,v € HY(RY), then {u,v}* € HYRYN) and |[|V{u,v}*||% < |Vul3 + ||Vv|3. In
addition, if u,v € (H*(RY) N CYRM))\ {0} are radially symmetric, positive and
decreasing, then

/ |V{u,v}*|2d;1:</ \Vu|2+/ Vol de.
RN RN RN

(v) Let uy,us,v1,v9 > 0 be Borel measurable functions which vanish at infinity, then

/ (ugug + v1v9) dr < / {u1,v1} {ug, v2}* dx.
RN RN

2.3 Proofs of the main results

In this scetion, we are aim at proving Theorem 2.1.1 - 2.1.6. Hereafter, we use the
same notation M (ay,az) for a1,as > 0, namely, one component of (aj, az) may be zero.

In what follows, we collect some basic properties of M (a1, az).

Lemma 2.3.1. (i) If a1,a9 > 0 with either a; > 0 orag > 0, then —oo < M(a1,az) <
0.

(ii) M(ay,a2) is continuous with respect to ai,as > 0.

(ZZZ) Ifa1 Z bl 2 O,ag Z b2 Z 0, then M(al,ag) S M(bl,bg) + M(a1 - bl,ag — b2).
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Proof. (i) Observe that w <2 by p; <2+ % for i = 1,2 and that
N -2 N -2
(ng—2)  N(rd —-2) _ 2
2q 2q’

owing to 71 +r2 < 24 4. Thus, it follows from (2.2.1)-(2.2.2) that .J is coercive and in
particular, M (ay,as) > —oo. Now taking into account that 5 > 0, one has

M(al,ag) < M(al, 0) + M(O, az).

Since 2 < p1,p2 < 2 + %, it is standard to show that M(a;,0) < 0 if a3 > 0 and
M(O,az) < 01if ag > 0. Thus M(al,ag) < 0.

(ii) We assume (af,ay) = (a1,a2) + on(1), where 0,(1) — 0 as n — 0. From the
definition of M (a},ay), for any € > 0, there exists (uf,u5) € S(a},ay) such that

J(uf,uy) < M(at,ay) + €. (2.3.1)
Setting
umn 1
’Un = 2 2
el

for i = 1,2, we have that (v}, v%) € S(a1,a2) and
M(ai,az) < J(vl,vy) = J(ul,uy) + on(1). (2.3.2)
Combining (2.3.1) and (2.3.2) we obtain
M(ay,a2) < M(al,a%) + e+ o,(1).
Reversing the arguments, we obtain similarly that
M(a%,ay) < M(aq,a2) + €+ o(1).

Therefore, since € > 0 is arbitrary, we deduce that M (aT,a5) = M (a1, a2) + on(1)

(iii) By density of C§°(RY) in H*(RY), for any € > 0, there exist (@1, p2), (P1,P2) €
C(RN) x C5°(RN) with ||@;]13 = by, ||@ill3 = a; — b; for i = 1,2 such that

o €
J(p1,92) < M(by,b2) + 3

A €
J(¢1,92) < M(ar —br,ag — b)) + .

2

Since J is invariant by translations, without loss of generality, we may assume that
supp @; N supp $; = O, and then ||@; + @ill3 = ||@ill3 + |4ill3 = a; for i = 1,2, as well
as

M(ay,a2) < J(@1 + @1, P2 + $2) < M(b1,ba) + M(ay — b1, a2 — bz) +e.

Thus
M(a1,a2) < M(b1,b2) + M(a1 — b1, a2 — ba).

O]

Lemma 2.3.2. Assume r1,73 > 1,71 + 712 < 2+ +. If (uf,ud) = (u1,uz) in H'(RV) x
HY(RN), then

L P e = [l el e+ 00(1),
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Proof. Since this lemma can be proved following closely the approach of [38, Lemma 2.3],
we only provide the outline of the proof. For any b1, b2, c1,co € Rand € > 0, set r := ri+7rs.
The mean value theorem and Young’s inequality lead to

|1b1 4 b2| " |er + 2] — [br]™e1|™]
< Ce(|ba]" + Jex]™ + [b2|" + |ea]”) + Ce([b2]” + |cal").

Denote by := u} —u1,c1 = uf — ug, ba :=uy, ca := ug. Then

o= TR 3™ = = a7 = ™ = o™

— Ce(|uf —wi|" + |u5 — ua|” + [un|” + Juz|")] "
< Jua | ua[™ + Cc (Jur]" + fuz]")

where v (x) := max{u(z),0}, so the dominated convergence theorem implies that
/ frdx —0 asn— oo. (2.3.3)
RN

Since

[l ™ |ug

< S+ Ce(lul —ua|" + Jug —ua|” + |ua|” + |ua|"),

™ = Jul = | |ug — ug|™ = fua|™ fug| |

by the boundedness of {(u},u3)} in H'(RY) x HY(RY) and (2.3.3), it follows that
S 17 1 = o = 7 = ol = [ o 4 0,(1),
RN RN

O]

Lemma 2.3.3. Any minimizing sequence to (2.1.4) is, up to translations, strongly con-
vergent in LP(RV) x LP(RYN) for 2 < p < 2*.

Proof. Assume that {(u},u4)} C S(ai,az2) is a minimizing sequence to (2.1.4). By the
coerciveness of the energy functional J on S(a1,az), {(u},u%)} is bounded in H'(RM) x
HY(RN). I

sup / i + Juy|? dz = 0, (1),
yeRN JB(y,R)

for some R > 0, then u; — 0 in LP(RY) for 2 < p < 2*,i = 1,2, see [74, Lemma I.1]. This
is incompatible with the fact that M (ai,a2) < 0, see Lemma 2.3.1 (i). Thus, there exist
a Bo > 0 and a sequence {y,} C RY such that

Lo Pl do > b,
B(yn,R)

and we deduce from the weak convergence in H'(R") x H'(RY) and the local compact-
ness in LZ(RY) x L2(RN) that (u}(z — yn), ub(x — yn)) — (u1,us) # (0,0) in HY(RN) x
HY(RY). Our aim is to prove that w?(z) = u?(z) — ui(z + y,) — 0 in LP(RY) for
2 < p<2*1=1,2. To do this, we suppose by contradiction that there exists a 2 < g < 2*
such that (wf,w}) - (0,0) in LI(RY) x LI(RYN). Note that under this assumption there

exists a sequence {z,} C RV such that

(Wi (2 = 2n), w3 (x = 2n)) = (w1, w2) # (0,0)
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in H'(R") x H'(RY). Indeed, otherwise

sup [ Jup P+ g do = 0a(1)
yeRN JB(y,R)

which leads to (w},w#) — (0,0) in LP(RY) x LP(RYN) for 2 < p < 2*.

Now, combining the Brezis-Lieb Lemma, Lemma 2.3.2 and the translational invariance
we conclude

J(uf, uy) = J(ui (€ = yn), uz (€ = yn))

= (u?(x - yn) —u1 + U17U§(33 - yn) —ug + UQ)
= J(u(z — yn) — ur,uy (x — yn) — uz) + J(u1,u2) + on(1)
= J(wi(x — yn), w3 (x — yn)) + J(u1,u2) + 0, (1) (2.3.4)
= J(wi(z — 2p), wy (7 — 25)) + J(u1,u2) + on(1)
= J(wl(x — zp) — w1 +wy,wy (x — 2,) — we + wa) + J(ug,u2) + o,(1)
= J(wi(x — zp) — wi,wy (x — z,) — wa) + J (w1, w2) + J(u1,u2) + o, (1),
and
uf (2 = yn) 13 = lluf(z — yn) — ui + uill3
= |luf(x = yn) — will3 + [Juill3 + on(1)
= [[wf(z — 2n) — w; + will5 + [luall3 + on(1)
= [ wf(z — 2n) — will3 + willz + [|uill3 + on(1).
Thus
[wi(z — 2) — will3 = [[uf'(x — ya) |5 — llwill3 — [Juill3 + on(1)
= a; — |Jwill3 — [luil3 + on(1) (2.3.5)
= bz‘ + On(l);

where b; == a; — |w; |3 — ||ui]|3. Noting that
sl < timinf 7 (@ — z0) 13 = lim inf [u? (o — yn) — w3
= a; — |lui3,

then b; > 0 for i = 1,2. Recording that J(u,usy) — M(a1,a2), in view of (2.3.5), Lemma
2.3.1 (i7) and (2.3.4), we get

M(al, ag) > M(bl, bg) + J(wl,wg) + J(ul, Ug). (2.3.6)

If J(wy,ws) > M(||wi]|3, ||w2l3) or J(u1,u) > M(||u1l|3, ||uzl3), then, from (2.3.6) and
Lemma 2.3.1 (i), it follows

M (a1, az) > M (b1, ba) + M([[wi|3, [[wa3) + M ([[ur|13, [luz]3) > M (a1, az),
which is impossible. Hence
J(wi,wz) = M([wi[f3, [w2]13), T (ur,uz) = M([[ua 3, [luz]l3).
We denote by u;,w; the classical Schwartz’s rearrangement of w;, w; for ¢ = 1,2,. Since

i 13 = luill3, w13 = llwill3,
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J(u, u3) < J(ur,ug),  J(wi,wy) < J(wi, we)
see for example [68], we deduce that
J(ui,uz) = M(|urll3, [luall3),  J(wi, w3) = M (w3, [wall3)-

Therefore, (u],u3), (wi,ws) are solutions of the system (2.1.1) and from standard regular-
ity results we have that u},w} € C?(RY) for i = 1,2.

At this point, Lemma 2.2.1 comes into play. Without restriction, we may assume
u1 # 0. We divide into two cases.

Case 1: u1 # 0 and wy # 0.
By virtue of Lemma 2.2.1 (4i), (iv), (v),

/ yV{u;,w;‘}*ydx</ yvuf|2+|Vw1‘|2d:cg/ |V |2 + |V | de,
RN RN RN

/RN [{ul, wi "™ {ag, w3} do = /RN{IU’{I”,IwII”}*{IUSIT%Iwél”’}*dﬂc,
> [ sl o ol do
RN
- /RN (lual™) (lua]™)™ + (Jwa ™) (jwe|™)" de,

> [l el + | o™ da
RN

and thus
J(ur,uz) + J(wi,w2) > J({uy, wi}”, {us, w3}"). (2.3.7)
Also from Lemma 2.2.1 (4i7), for i = 1,2,
[ Waiwiy e = [ puiPde = [+ il do, (235)
RN RN RN

and taking (2.3.6)-(2.3.8) and Lemma 2.3.1 (¢4i) into consideration, one obtains the con-
tradiction
M((Il, (12) > M(bl, 52) + M(a1 — bl, as — bz) > M(al,ag).

Case 2: u1 # 0, w1 =0 and wo # 0.
If us # 0, we can reverse the role of ui,w; and us,wo in Case 1 to get a contradiction.
Thus, we suppose that us = 0. Due to Lemma 2.2.1 (ii)-(v),

1 0
J{ui, 01, {ws, 01" <f/ Vuil? + Vw*Qdac——/ wl|Pt dx
(w1, 01 w3, 00) < 5 [ 19aiP o+ [FupP o2 [ g

fi2 .
22 [ wsprde =5 [ gl (2.3.9)

< J(ul,0) + J(0,ws)
< J(ul,()) + J(O,wz),

and

* %2 _ *|2 _ 2
/RN|{u1,0} | dx_/RN\u1| dx_/RN fuy |2 d,

2.3.10
Hws, 0| do = lwy|? de = lws|* d ( )
RN 2 B RN 2 B RN 2 x'
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Thus using (2.3.6), (2.3.9), (2.3.10) and Lemma 2.3.1, we also have that
M(al, CLQ) > M(bl, bg) + M(a1 —bi,a0 — bg) > M((Il,ag).

The contradictions obtained in Cases 1-2 indicate that w'(z) = ul(x) — ui(x + yn) — 0

in LP(RY) for 2 < p < 2*,i = 1,2. O

Proof of Theorem 2.1.1. Let {(ul,u%)} C S(ai,a2) be a minimizing sequence to (2.1.4).
In light of Lemma 2.3.3, (u},u}) — (u1,us2), up to translations, in LP(R™) x LP(RY) for
2 < p < 2*. Hence by the weakly lower semicontinuous of norm,

J(ul,uQ) S M(al,ag). (2.3.11)

Note that if |[u1||3 = a1 and ||us||3 = a2, we have done. Indeed, the compactness of
{(u},u3)} then directly follows. To show that |[u1||3 = a1 and ||uz||3 = ag, we assume
by contradiction that |lu1||3 := @1 < a; or ||ugl|3 := a2 < as. By definition, J(uj,us) >
M (ay,az) and thus it results from (2.3.11) that

M(ay, @) < M(ay, as). (2.3.12)

At this point, from Lemma 2.3.1 (iii), M (a1,a2) < M(ai,a2) + M(ay — a1, a2 — a2) and
Lemma 2.3.1 (i), M (a1 — a1, a2 — a2) < 0, we have reached a contradiction from (2.3.12),
then Theorem 2.1.1 follows. O

Remark 2.3.4. As indicated in Remark 2.1.3, a proof for the existence of minimizers to
(2.1.4) can be given by working directly in H ;(RN) x HL (RN). In such space, the strong

rad

convergence in LP(RN) x LP(RN) for 2 < p < 2*, and N > 2, is given for free. Now define

M, (ay,a2) := inf J(ui,ug), (2.3.13)

(u1,u2)€Sr(a1,a2)
where
Sr(a1,a2) = {(u1,u2) € Hygq(RY) x Hyq(RY) 1 [lua])3 = a1, [luz3 = a2}.
We observe that
M, (a1,a2) < M,(b1,b2) + M, (a1 — b1, as — ba), (2.3.14)

where 0 < b; < a; for i =1,2. Indeed, since for any minimizing sequence to (2.1.4), one
can find a radially symmetric minimizing sequence by the Schwartz’s rearrangement, thus
it results that M,(a1,a2) = M(a1,a2) for any a1 > 0,a2 > 0, and (2.3.14) then follows
from Lemma 2.5.1 (iii). Thus we can end the proof as previously.

We now turn to the proof of Theorem 2.1.6, whose proof relies on the classical argu-
ments of Cazenave and Lions [36], hence we only give a sketch.

Proof of Theorem 2.1.6. By contradiction, we assume that there is a ¢y > 0, (U7(0), U5(0)) C
H'(RN) x HY(RY), and {t,,} ¢ R* such that

inf T (0 ,\Iln 0)) — ’ N
(Ul,uz)lenc(al7a2)||( 1(0),5(0)) — (u1, u2)||
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and

inf (7 (tn), W5 (tn)) — (u1,u2)|| > €o, (2.3.15)
(ul,uz)GG(al,ag)

where (U7 (t), ¥4 (t)) is solution to the Cauchy problem of (2.1.3) with initial datum
(¥7(0), ¥5(0)). By the conservation laws,

17 ()13 = [P (0)]13, fori=1,2,

also
J(VT (tn), V5 (tn)) = J(¥7(0), ¥5(0)).
Define W) 2
A? = #af, fori=1,2,
17 (tn)113
we get that

H‘il?H%:al? J(A?a@g) :M(a17a2)+0n(1)-

Namely, {(U7, ¥%)} is a minimizing sequence to (2.1.1). From Theorem 2.1.1, it follows
that it is compact up to translation in H*(R) x H'(RY), thus (2.3.15) fails. We reach a
contradiciton. O






Chapter 3

Multiple normalized solutions for
coupled nonlinear Schrodinger
system

3.1 Introduction

In this chapter, we are concerned with standing waves to the following coupled nonlin-
ear Schrodinger system in R x R,

{—iat‘lﬁ = AUy + pg |12 + B0 11720 Wy 72, (3.1.1)

—i0; Uy = AUy + 1|V [P> 72Ty + S| Wy | |[Wg |22 Wy,
Here by standing waves to (3.1.1), we mean solutions with the form of
\Ill(tv .Z‘) = e_Mltul (.Z‘), \IJQ(ta l’) = e_i)\QtUQ (l’)

for (A1, A2) € R%. This then gives rise to the following elliptic system satisfied by u; and
uz,

—Auy = Mg + pr|ur|P2ug + Breua | 2 Jus |7,
{ p| el 51n

—Aug = Agug + pio|ua|P22us + Bro|ur | [us|??us.

Notice that the L?-norm of solution to the Cauchy problem of (3.1.1) is conserved
along time, i.e. for any ¢t > 0,

/ |\IJi(t,x)|2d:1::/ 0,0, 2)[2 de for i =1,2.
RN RN

Thus it is of particular interest to study solutions to (3.1.2) having prescribed L?-norm.
More precisely, for given a1, as > 0, to search for (A, Aa) € R? and (u1,us) € HY(RN) x
H'(RYN) satisfying (3.1.2), together with normalized condition

/]RN |ui|? dz = ay, /RN lus|? da = as. (3.1.3)

Such solutions are often referred as normalized solutions. In what follows, for the sake of
convenience, we identify a solution (A1, A2, u1,u2) to (3.1.2)-(3.1.3) with (u1,uz2), where
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(u1,us2) is obtained as a critical point of energy functional J : H'(RY) x HY(RY) — R
defined by

J(ug,ug) : =3 / (Vg |2 + |Vug|? de — Z Hi / |ui|P* dz — 6/ |ur]™ Jug|™ dx
on the constraint S(ai,as) := S(a1) x S(az) with
S(a) :={uec H'R"Y): /N lu*dz = a > 0},
R

and (A1, A2) is determined as Lagrange multipliers.

When 2 < p1,p2 < 2+ %, r,re > 1,rp +1re < 24 %, the energy functional J
is bounded from below on S(ai,as). Then one may search for a critical point for J
restricted to S(aj,az) as a global minimizer for J subject to S(aj,as) through studying
the compactness of any minimizing sequence. In this direction, a more complete result
was recently obtained in [58]. On the contrary, if u;, p2, 8 > 0, when either p; > 2+ % for
some i =1,20rr; +7r9 > 2+ %, then the energy functional J becomes unbounded from
below on S(ay,as). To see this, for t > 0, let us introduce the scaling of u € H*(RY) as

N
2

ul(z) =t

u(tz).

Clearly, |lu|l2 = |Jull2. A direct calculation then shows that for any (uy,us) € S(a1,as),

t2 i .
Thou) = 5 [ IV + Vol de - Zt (§-nN b /RN i P de

2 ’L 1 pZ
_ g / |7 ug | d,
RN

(3.1.4)

ritry

from which the claim immediately follows.

When global minimizer fail to exist, finding a critical point for J restricted to S(aq, as)
is more delicate and involved. In such situation, minimax methods come into play. When
2 <N <4, puy,po, B >0, if either 2 < py <2—|—% < pg < 2%, 2—}—% <Tr14re < 2% 19 > 2
or 2+ % < p1,p2, 71+ 12 < 2% the authors [8] studied the existence of positive solution to
(3.1.2)-(3.1.3), see also [12]. When N =3, p1,pu2 > 0,8 <0, py = pe = 4,171 = ro = 2, the
existence of positive solution to (3.1.2)-(3.1.3) was also established in [13], concerning a
multiplicity result, we refer to [14]. Let us also mention the papers [86, 87, 94], where the
authors considered the existence of normalized solutions to problem confined on a bounded
domain in RY or with a trapping potential. Although more compactness is available in
these cases, but it is unlikely to take advantage of the dilations, which play an essential
role in [7, 8, 12, 13, 17, 18, 63]. When a periodic potential is included in equation, the
existence of normalized solutions was discussed in [1].

In this chapter, as mainly inspired by [8, 12|, we consider the existence of multiple
solutions to (3.1.2)-(3.1.3) under the following two new assumptions,

(H1) pa,p2,8>0,2<p1,pa <2+ x, ri,r2 > 1, 24 1 <11 +71p < 2%
(H) pa,pio, B>0,24 % <p1,p2 < 2%, r1,m9 > 1,11 + 12 < 2+ 7.
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From above observations, the energy functional J is not bounded from below on S(aj, as)
under (Hy) or (Hz). Thus in order to find a critical point for J restricted to S(ay,as2), we
are indeed based on the minimax methods. Our aim is to prove that(3.1.2)-(3.1.3) admits
two positive solutions when N > 1 and (H;) or (Hz) holds. Up to our knowledge, it is the
first time that a multiplicity result to (3.1.2)-(3.1.3) is obtained when N > 1,3 > 0.

In order to address our results, for p > 0, let us introduce
B(p) = {(un,ua) € H'(RY) x HUEY): [ Vi + [Vual da < p).
R

On account of (3.1.4), under either (Hj) or (Hz), for any p > 0 there holds
inf J(uy,u2) <0 for (ur,us) € S(ay,az)NB(p), (3.1.5)

see Lemma 3.2.4. Furthermore, we will prove that there exist Sy = Sp(ar,a2) > 0 and
po = polai,az) > 0 such that

inf J(uy,uz2) >0 for (ur,u2) € S(ai,a2) N IB(po), (3.1.6)

for any 0 < 8 < By, see Lemma 3.3.1.

Together (3.1.5) with (3.1.6), then there may admit a local minimizer for J restricted to
S(ay,a2)NB(p). Thus for 0 < § < Py, it is natural to introduce the following minimization
problem

m(ay,a9) := inf J(u1, u). 3.1.7

( ! 2) (u1,u2)€S(a1,a2)NB(po) ( ! 2) ( )

Obviously, minimizers to (3.1.7) are critical points for J restricted to S(a1,a2), i.e. solu-

tions to (3.1.2)-(3.1.3). We shall prove that any minimizing sequence to (3.1.7) is compact,

up to translations, in H*(R) x H'(RY), and in particular this implies the existence of a
critical point for J restricted to S(ay, az) as a minimizer to (3.1.7).

As observed from (3.1.4), for any (uy,us) € S(a1,az), we have that J(u},ub) — —o0
as t — oo when (Hj) or (Hj) holds, and note also that (u},u}) ¢ B(pg) for t > 0 large
enough. This property along with (3.1.6) suggest that there may exist other critical points
for the energy functional J restricted to S(aj, as). Actually, under (Hy), the second critical
ponit is obtained by mountain pass arguments. Under (Hz), inspired by [12], the second
one is achieved by a linking type procedure. Let us now state our main results.

Theorem 3.1.1. Let ay,as > 0 be given and assume that (Hy) holds. Then there exist
Bo = Polai,az) >0 and py = po(ai,az) > 0 such that for any 0 < B < Po,

(i) if N > 1, any minimizing sequence to (3.1.7) is compact, up to translation, in
HY(RN) x HY(RN). In particular, there exists a positive solution (vy,vs) to (3.1.2)-
(3.1.3) with (vi,v2) € B(po) and J(vi,v2) < 0;

(ii) If either 2 < N <4 or N > 5, p1,ps <11+ 19— % or |p1 — pa| < %, there exists
a second positive solution (u1,uz2) to (3.1.2)-(3.1.3) with J(ui,u2) > 0.

Theorem 3.1.2. Let a1,a2 > 0 be given and assume that (Hz2) holds. Then there exist
Bo = Polai,az) >0 and py = po(ai,az) > 0 such that for any 0 < B < Po,

(i) if either 1 < N <4 or N > 5, r > (% —1)N for i = 1,2, any minimizing
sequence to (3.1.7) is compact, up to translation, in H'(RN) x HY(RN). In partic-
ular, there exists a positive solution (vi,v2) to (3.1.2)-(3.1.3) with (v1,v2) € B(pg)
and J(v1,v2) < 0;
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(ii) If 2 < N < 4, there exists a second positive solution (ui,u2) to (3.1.2)-(3.1.3) with
J(ui,u2) > 0.

Remark 3.1.3. i) The value of 5y in Theorem 3.1.1 and Theorem 3.1.2 can be explicitly
computed in terms of N,p;,a;,r; for i = 1,2, instead of being obtained through a limit
process. In addition, for any given 8 > 0, we can assume that B < By at the expense of
taking a1 > 0 and ag > 0 sufficiently small, because By(ay,az) — oo as a,az — 0, for this
property, see Lemma 3.3.1. Finally we point out that our results are not perturbative.

it) The ezistence of second solution in Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) is un-
der the condition N > 2. This is because we search for solutions in the radially symmetric
functions space H ;(RN) x H! (RN), and the compact embedding H}, ,(RY) — LP(RY)

T

for 2 < p < 2* holds when N > 2.

iti) When N > 2, we conjecture that Theorem 3.1.1 (ii) is true by only assuming (H),
we refer to Remark 3.4.5 for a discussion in this direction.

Proving the compactness of any minimizing sequence to (3.1.7) under the assumption
(Hy) or (Hj), we make use of the coupled rearrangement arguments due to Shibata [100]
as developed by Ikoma [61], instead of directly employing the Lions’ compactness concen-
tration principle [73, 74]. This is already the approach as presented in [58], but here we
need to adapt it to a local minimization problem (3.1.7). In this case, a new difficulty
arises from the fact that in general the sum of two elements in B(py) does not belong
to B(po), and this makes more technical to discuss dichotomy. To overcome this diffi-
culty, we need to analyze carefully some properties of the energy functional J restricted
to S(a1,a2) N B(po).

The proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii) follow the virtue in the papers
[8, 12]. Our proofs can be divided into three steps. Firstly, one needs to identify a
possible critical level. This is done by introducing a minimax structure of mountain pass
type when (Hp) holds, and of linking one when (Hz) holds. Secondly, one has to show
that there exists a bounded Palais-Smale sequence {(uf,u%)} C S(a1,a2) for the energy
functional J restricted to S(ai, az) at this energy level. This step relies on the presence of a
natural constraint of Pohozaev type, on which the energy functional J is coercive. Taking
advantage of this constraint and making use of the approach introduced in [63] which
consists in adding an artificial variable within the variational procedure, one can end this
step. Having obtained a bounded Palais-Smale sequence {(uf',u%)} for J restricted to
S(a1,az), we denote by (u1,us) its weak limit in H*(RY) x H'(RY), then (u1,us) solves
(1.1.2) with some (A1, \2) € R2, see Lemma 3.2.7. At this point, the last step is to show
that (u1,u2) € S(ai,az). It is this step where the limitation on dimension was imposed
in [8, 12, 13]. Because the authors applied the Liouville’s type results, see Lemma 3.2.2,
which is only available when N < 4, and also used the property that the scalar problem

—Aw - w = plwP?w, u € S(a). (3.1.8)
has a unique positive radial solution for 4 > 0, and 2 < p < 2*.
We start to relax these two restrictions. Thus Theorem 3.1.1 (ii) allows to consider the

case N > 5. Indeed, under the assumption (H;), the second critical point for J restricted
to S(ay,az) is found through the mountain pass arguments. More precisely, we first prove
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tha there exist 50 — BO(alaaQ) > 07 po = po(al,ag) >0and 0 < ﬁ = ﬁ(alaa2) < po such
that for any 0 < 3 < Sy,

(@, a2) = inf mase J(g(t)) > max{ J(9(0)). J(9(1)}

where

I':={g € C([0,1],5(a1,a2)) : g(0) € B(p),9(1) ¢ B(po) with J(g(1)) < 0}.
Having obtained a bounded Palais-Smale sequence for J restricted to S(a1, az) at the level

v(a1,az), we denote by (u1,uz) its weak limit. Furthermore, (ui,u2) solves (3.1.2) with
some (A1, A\2) € R2. An appropriate choice of the Palais-Smale sequence insures that

J(u1,u2) < v(ai,a9). (3.1.9)

When 2 < N < 4, the fact that (uj,u2) € S(a1,a2) is obtained directly by the Liouville’s
type results. When N > 5, we argue by contradiction. If a; = |ju1]|3 < a1 or ag :=
||ua]|3 < a2, we manage to construct a path g € ', on which the maximum of J is strictly
below J(u1,u2). By the characterization of v(a1,as), we thus get
< J(g(t J
’Y(alaa@) = orgfgxl (g( )) < (u17u2)7

in contradiction with (3.1.9). The construction of this path g € T relies on the property
thatwhen2<p<2+%,,u>0,

—oo < inf I(u) <0, (3.1.10)
u€eS(a)
where I(u) = 1 [pn [Vul? dz — E Jgn [uP dz, and using "adding some masses" technique

somehow in the spirit of [62], but here again the coupled rearrangement arguments come
into play.

In Theorem 3.1.2 (ii), to look for the second critical point, we establish a linking
structure for J restricted to S(ar,as). Since p > 2+ 4, u > 0, (3.1.10) does not hold,
then our proof benefits from the Liouville’s type results, which eventually induces the
restriction on dimension N < 4.

We now set

Gm(ay,a2) .= {(ui,u2) € S(ar,a2) N B(po) : J(ui,ue) = m(ay,az)}.

Note that under assumption (H;) or (Hz), the local well-posedness to the Cauchy problem
of (3.1.1) is unknown. The point being that when 1 < r1,79 < 2, the interaction parts are
not Lipschitz continuous, and in particular the uniqueness might fail. As a consequence,
our result which states the orbital stability of the set G, (a1, a2) is valid under condition.
Having the compactness of any minimizing sequence to (3.1.7) in hand, the proof is a direct
adaption of the classical arguments in Cazenave and Lions [36], thus we do not provide it.

Theorem 3.1.4. Assume that (Hy) or (Hg2) with either 1 < N < 4 or N > 5, r; >
(% — 1)N for i = 1,2, and the local existence and uniqueness of the Cauchy problem
to (3.1.1) hold. Then the set Gy,(a1,az2) is orbitally stable, i.e. for any e > 0, there exists
§ >0 so that if (V19,Wa0) € HY(RN) x HY(RY) satisfies

inf (1,0, P2,0) — (u1,u2)|| <6,

(u1,u2)€Gm(a1,a2)
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then
sup inf [(W1(), Wa(t)) — (ur,u2)|| <,
£>10,T) (w1,u2)€Gm(a1,a2)

where (W1(t), Wa(t)) is solution to the Cauchy problem of (3.1.1) with initial datum (V1 9, W2 ),
T denotes the mazimum ezistence time of solution, and || - || stands for the standard norm
in the Sobolev space H'(RN) x HY(RN).

This chapter is organized as follows. In Section 3.2, we establish some preliminary
results. Section 3.3 is devoted to the proofs of Theorem 3.1.1 (i) and Theorem 3.1.2 (i).
In Section 3.4, we give the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). Finally, in
Appendix we establish a key technical result, Lemma 3.4.4.

Notation 3.1.5. In this chapter, for any 1 < p < oo, we write LP(R™) the usual Lebesque
space endowed with the norm

fulfy = [ b da,

and H'(RYN) the usual Sobolev space endowed with the norm
]2 ::/ Vul? + [uf? dz.
RN

We denote by ' —' and ' —' strong convergence and weak convergence in corresponding
space, respectively, and denote by B(x, R) a ball in RN of center x and radius R > 0.

3.2 Preliminary results

First of all, observe that the energy functional .J is well-defined in H*(RY) x H'(R"),
thanks to the Holder inequality,

L bl el de < 7 a2, < oc.

for some 1 < ¢ < 2*,¢ = q,% with 2 < riq,r2¢' < 2*. Recalling the Gagliardo-Nirenberg’s

inequality, for v € H'(RV), 2 < p < 2%,

N(p—2)

1—
lullp < CONp) IVl ully™ ", where a(p) = ==, (32.1)
then we get for (u1,u2) € S(a1) x S(az),
T
/RN ur | ug|™ da < lua |l glluzllzyq
, (3.2.2)
(I—a(rig)r;  (1—a(roq))ro N(r%q*% N(’”gq,*)
<Cap 2 ag 7 |Vl ™ [[Vugly ™

with C' = C(N,r1,72,q).

We now introduce the coupled rearrangement results of Shibata [100] as developed
in [61]. Let u be a Borel measurable function on RY. Tt is said to vanish at infinity
if the level set [{x € RY : |u(z)| > t}| < oo for every t > 0. Here |A| stands for the
N-dimensional Lebesgue measure of a Lebesgue measurable set A € RY. Considering
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two Borel mesurable functions u,v which vanish at infinity in RY, we define for ¢t > 0,
A*(u,v;t) := {x € RN : |z| < r} where 7 > 0 is chosen so that

1B(0,r)] = {z € RV : Ju(z)| >t} + {a € RY : |v(x)| > t}],
and {u,v}* by
{0} @) i= [ Xastun@) dt (323)
where x4 (z) is a characteristic function of the set A C RY.

Lemma 3.2.1. [61, Lemma A.1]

(i) The function {u,v}* is radially symmetric, decreasing and lower semicontinuous.
Moreover, for each t > 0 there holds {x € RV : {u,v}* >t} = A*(u,v;t).

(7i) Let ® : [0,00) — [0,00) be increasing, lower semicontinuous, continuous at 0 and
®(0) =0. Then {®(u), ®(v)}* = ®({u,v}*).

(iii) |[{u, v}*[[ = [lully + vl for 1 <p < oo.

(iv) If u,v € HY(RY), then {u,v}* € H'RY) and |V{u,v}*||3 < ||Vul3 + | Vv|3. In
addition, if u,v € (H*(RY) N CYRM)) \ {0} are radially symmetric, positive and
non-increasing, then

/ \V{u,v}*]de</ \Vu|2+/ Vol de.
RN RN RN

(v) Let ui,ug,v1,vy > 0 be Borel measurable functions which vanish at infinity, then

/ (uug + vivg) dx < / {uy,v1}{ug, va}* dx.
RN RN

Lemma 3.2.2. [61, Lemma A.2] Suppose p € (1, %] when N >3, and p € (1,00) when
N =1,2. Let u € LP(RN) be a smooth nonnegative function satisfying —Au > 0 in RV,

Thenu =0 .
Lemma 3.2.3. Assume ri,79 > 1,71 + 7o < 25 If (uf,u}) — (ur,u2) in HY(RY) x

HY(RYN), then

S W = = =l = [ o] 4 o(1),
RN RN

Proof. In [58], see also [38, Lemma 2.3], this result was proved under the assumption
ri,re > Lri+re < 2—1—%, but the proof can extend to the case r1,r9 > 1,71 +1ry < 2%. [

Lemma 3.2.4. Assume that (Hi) or (Hz) holds. Then for any by,ba > 0 with (b1, b2) #
(0,0) if (Hy) holds, and by # 0, by # 0 if (H2) holds,

inf J(uy,u2) <0, forany p > 0.
(ul,UQ)GS(bLbQ)ﬁB(p) ( ! 2) f yp

Proof. Observing that (8 —1)N < 2, i = 1,2 if (H;) holds, and (%% —1)N < 2 if (Hy)
holds. In light of (3.1.4), the lemma follows directly by taking ¢ > 0 small enough. O

Our next result, which is borrowed from [61, Lemma 2.2], shows that when considering
a minimizing sequence to (3.1.7), it is not restrictive to assume that two components are
nonnegative.
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Lemma 3.2.5. Assume that {(v],v5)} is a minimizing sequence to (3.1.7). If {(|v}|, [v§])}
is compact in H'(RN) x HY(RYN), so is {(v},v})}.

Proof. First note that there exists (wy,wz) € H(RYN) x H'(RY) such that, up to a subse-
quence, ([}, [v8]) = (w1, w2) in HY(RYN)x H'(RY), and (Jof ()], [v5 ()]) — (w1(2), wa(x))
for a.e. x € RY. Since {(v},v})} is a bounded sequence, theen there exists (vi,v2) €
HY(RN) x HY(RY) such that, up to a subsequence, (v}, v%) — (v, v2) in HY(RY) x H(RY)
and (v(x),v5(z)) — (vi(x),va(w)) for a.e. x € RY. By the uniqueness of the limit,
w; = |v;|, then (v, v%) — (vi,v9) in L2(RY) x L2(RYN). Now since (v}, v5) — (v1,v2) in
LP(RN) x LP(RN) for 2 < p < 2%, it follows that

m(a1,az) = J (v, v5) +on(1) = J(v1,v2) = m(a1, az),
and thus (v, v%) — (v1,ve) in HY(RY) x HY(RY). O

Next recalling (3.1.4), we define for (u1,uz) € HY(RN) x HY(RY) |

d
Q(ur,ug) : = —J(ul, ub)|i=1 = / |V |2 + [Vug|* da (3.2.4)
dt RN
2 i Di T+
—ZM(Z—QN/ |u7;pidx—ﬂ< LI —1>N/ lup|™ | ua|™ de.
= pi \2 RN 2 RN

It is standard that any solution (uj,us2) to (3.1.2) for some (A1, A2) € R? must satisfy
Q(ul, UQ) = 0

Lemma 3.2.6. Assume 2 < p1,p2,r1+re < 2*. If (u1,uz2) # (0,0) solves (3.1.2) for some
()\1, )\2) S Rz, then A1 < 0 or Ay < 0.

Proof. Testing (3.1.2) by (u1,uz) and integrating in RY, one has

2
Arai + Agaz :/ |Vur |[* + |Vus|? dx—Zui/ |ui|P dx—l—ﬂ(rﬁ—rg)/ || Jug|™ dx.
RN = Jrwy RN

Since (uy,ug) satisfies (1.1.2), then Q(uy,u2) = 0, which implies

2 . .
A1a1 + Agag = Z ('UJZ <Z;Z — 1) N—,ul'> /RN |uz|p’ dx

i=1 \Pi
1+ 1o - o
+0(———1)N—(r1+719) |up|™ Jug|™ dz < 0.
2 RN
Then the lemma follows. O

We recall that a sequence {(uf,u5)} C S(a1,a2) is a Palais-Smale sequence for J
restricted to S(a1,az) at the level ¢, if J(uf,uy) — c and (Jig(a,,a0)) (uf,u3) — 0 in
HYRN)x H=Y(RY) as n — 0o. The proof of our next lemma can be found in [8, Lemma
3.2].

Lemma 3.2.7. Assume 2 < p1,p2, 71 + 12 < 2*. For any bounded Palais-Smale sequence
{(u},uB)} for J restricted to S(a1,az), there exist (uy,uz) € HY(RN)x HY(RYN), (A1, A2) €
R? and a sequence {(A}, \})} C R? such that, up to a subsequence,
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(i) (uf,uf) = (u1,ug) in HY(RY) x HY(RN);
(ii) (AT, A8) = (A1, A2) in R?;
(iti) J'(uft,uf) — AP (uf,0) — A5(0,uf) — 0 in H-H(RY) x H-1(RY);

(iv) (u1,us) is solution to the system (3.1.2) where (A1, A2) is given in (ii).
In addition, if (u},ul) — (u1,uz) in LP(RY) x LP(RN) for 2 < p < 2%, then u} — uy in
HYRN) if Ay < 0. Similarly, u¥ — ug in HY(RYN) if Ay < 0.

3.3 Existence of local minimizers

In this section, we establish Theorem 3.1.1 (i) and Theorem 3.1.2 (i).

Lemma 3.3.1. Assume that (Hy) or (H2) holds. There exist a By = Po(ai,az2) >0 and a
po = polai,az) >0, such that

J(ui,u2) >0 on S(ai,az)N[B(2p0)\B(po)] (3.3.1)
for any 0 < 8 < By. Moreover, if 0 < dy < aj, 0 < ds < ay with (d1,d2) # (0,0), then
J(’U,l,’LLQ) >0 on S(dl, d2) N [B(on)\[)’(po)] (3.3.2)

for any 0 < B < By. In addition, Pfy(a1,az) — o0 as aj,az — 0.

Proof. For any (u1,u2) € S(ai,az), let p:= [pn |Vui|? + |Vug|*dz. Using (3.2.1)-(3.2.2),
we have

1 2 )25 )
— _ .|Pi _ T1 T2
J(u1,uz) = 5p ;:1 P /RN |uilP" da B/RN [ua | ua|™ da

1 2 N(p;=2)
2
> §p—;Ki </]RN |Vl d,a:)

N(r19-2) N(rogq’ —2)

— BK3 </ |Vu1|2d:c) " (/ |Vu1|2da:) b
RN RN

1 9 N(p;—2)
>, Sk, / Va2 + [Vusl? d )
250- % (L vl + Vs do
N(riq—2) N(roq'—2)
4 4q7
— BK5 (/N|Vu1‘2+\Vu22dgj> a </N|Vu1‘2+\Vu2’2dx> P ’
R R
1 N(p1—2) N(p2—2) N(rj+ro—2)
2 op— KTt —Kpp T = KT T
where
i (1—a(py))p; (—a(rig)ry  (A—alrad))ry
Ki = —C’l(N,pZ)az 2 Kg = C(N, 7“1,’!”2)(11 2 ay 2 . (333)

)

Now if (Hp) holds, then W < 1 fori = 1,2, and W > 1. We fix a
p = po > 0 sufficiently large so that

N(m—?)_l N(p2—2)_1

1
Kipy * + Kapy * Sév (3.3.4)
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and then we fix a Sy > 0 small enough, satisfying

N(ri+79—2) 1

BoK3(2p0) 1 <. (3.3.5)

| =

Observe that the left hand side of (3.3.4) and of (3.3.5) is decreasing and increasing with
respect to pg, respectively. Thus we deduce that

J(uy,ug) > ipo for (uy,u2) € B(2p0)\B(po). (3.3.6)

If we assume that (Hz) holds, then W >1fori=1,2, and W < 1. Thus we
fix a p = pp > 0 sufficiently small so that

N(pp—2) N(pa—2) 1
Ki(200) & L4 Ky(2p0) & i< < (3.3.7)
and then we fix a 8y > 0 small enough, satisfying
N(ritro=2) 4 1
BoKspy * < g (3.3.8)

Here again one can readily check that (3.3.6) holds. Now to establish (3.3.2) it suffices to
observe that the choices of 5y > 0 and py > 0 done with (a1, ag) in (3.3.1) can be retain for
(d1,dg). This follows directly from the observation that the K, j = 1,2,3 are increasing
functions with respect to a; and ag. Finally, we prove that Sy(ay,az2) — oo as aj,aa — 0.
Indeed, when (Hp) holds, since K; — 0, j = 1,2,3 as a; — 0, i = 1,2, then pp > 0 in
(3.3.4) can be taken arbitrarily small, thus in (3.3.5), Sp > 0 can be taken large if pp > 0
is small. When (H;) holds we reach the same conclusion by similar arguments. O

From now on, for aj,as > 0 given, we fix a pg > 0 and a 5y > 0 as determined in
Lemma 3.3.1. For any 0 < dj < a1, 0 < dy < as we define

b, h) = inf J(uy, up). 3.3.9
m( 1 2) (u17u2)65%317d2)03(p0) (Ul UQ) ( )

Lemma 3.3.2. Assume that (Hy) or (Hi) holds. Then for 0 < g < fy,

(1) if (di,dz2) # (0,0) when (Hy) holds or di # 0 and da # 0 when (Hz) holds, we have
m(dy,ds) < 0.

(i) If (d},dy) is such that (d},d3) — (di,d2) asn — oo with 0 < d' < a; fori=1,2,
we have m(d},dy) — m(dy,d2) as n — co.

(iii) For any 0 < d; < a;, i = 1,2 if m(dy,d2) < 0 and m(a; — dy,a2 —d2) < 0, we
have m(a1,as) < m(di,ds) + m(a; — di,as — da).

Proof. (i) It follows directly from Lemma 3.2.4. (ii) By definition of m(dY},d3), for any
€ > 0, there exists (uf,uy) € S(dy,d5) N B(po) such that

T(u ) < m(dy, d5) + e

n 1
Setting w;' := ||U7;H2ai2
T

for i = 1,2, we have (w},wy) € S(a1,a2) and

IVwi I3 + 1Vwg |3 = [IVutll3 + [Vuz]l3 + on(1) < 2p0.
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Consequently from the definition (3.3.9) and using (3.3.2), we get

m(di,dg) < J(wi,wy) = J(uf,uy) +o(1) <m(dy,dy) + € + o, (1),
and thus m(dy,d2) < m(d},dy) + o,(1). Similarly, reversing the argument, it follows
that m(d},dy) < m(di,da) 4+ on(1). Now we deal with (i7i). For any € > 0, there exist
((,01, 902) S S(dl, dz) N B(pg) and (wl, 1/)2) € S(a1 —di,ay — dz) N B(pg) such that

€
J(p1,02) <m(d,da) + 3 J(1,2) < m(ar —dy,az — d2) +

Setting w; = {p;, ¥ }* for i = 1,2, it follows from, Lemma 3.2.1 (iii)-(iv
S(ay,az) and

(3.3.10)

N

, that (wy,ws) €

2
IVwill + [Vwall3 < D 1IVesll3 + [V9ill3.
i=1

If | Vw13 + [|[Vwz||2 < po, using Lemma 3.2.1 and (3.3.10), we have

m(ai,az) < J(wi,w) < J(p1,p2) + J(¥1,12)
< m(dy,ds) + m(a; — dy,as — da) + e,

from which it follows that m(a1,a2) < m(di,ds) + m(a; — dy, a2 — da). Otherwise, py <
Vw3 + [|[Vws||3 < 2po and in view of (3.3.2), we get

0 < J(wi,w2) < J(p1,p2) + J(¥1,92) <m(dy,d2) +m(ar —di, a2 —da) + ¢,
which is impossible since m(dy,ds) < 0 and m(a; — dy, a2 — d2) < 0. O

Lemma 3.3.3. Assume that (Hy) or (Ha) holds. Any minimizing sequence to (3.1.7)
is, up to translations, strongly convergent in LP(RYN) x LP(RN) for any 2 < p < 2* as
0<B< Po-

Proof. The proof follows closely the one of [58, Lemma 3.3]. Let {(v], v%)} be a minimizing
sequence to (3.1.7). If

sup / |v?|2 + 103\2 dx = o, (1),
yeRN JB(y,R)

for some R > 0, then v; — 0 in LP(RY) for 2 < p < 2%,i = 1,2, see [74, Lemma I.1]. This
contradicts the property m(ai,as) < 0, obtained in Lemma 3.3.2 (i). Thus, there exist a
70 > 0 and a sequence {y,} C R such that

Lo P+ g do 2 v,
B ynaR)

and we deduce that (v (z — y,), V5 (z — yn)) — (v1,v2) # (0,0) in H'(RY)x HY(RN). Our
aim is to prove that w?(z) := vP*(z) —v;(x +yn) — 0in LP(RY) for 2 < p < 2*,i = 1,2 and
so we suppose by contradiction that there exists a 2 < ¢ < 2* such that (w},wh) - (0,0)
in L9(RN) x L4(RYN). Still using [74, Lemma 1.1] it follows that there exists a sequence
{z,} € RN such that (w}(z — z,), wH(x — 2,)) — (w1, w2) # (0,0) in H'(R") x HY(RV).

Now, combining Lemma 3.2.3, the Brezis-Lieb Lemma and the translational invariance,
we see that

(3.3.11)
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and

a; = [0 (= = yn) 13 = [V} (& = yn) — will3 + 0ill3 + 0n (1)
= [[w]! (= 2n) — wi + wil3 + v 13 + 0n(1)
= [[w]! (& = 2n) — will3 + [lwill3 + ill3 + 0n(1)-
Setting for i = 1,2, b; := a; — ||w;||3 — ||vi||3 we then have ||w?(z — 2,) — w;||3 = b; + o(1).
Thus recording that J(v},vy) — m(ai,as), in view of (3.3.11) and Lemma 3.3.2 (i7) we
get
m(ay,az) > J(wy,we) + J(v1,v2) + m(by, ba). (3.3.12)

If J(wi,w2) > m(|lwi3, ||w23) or J(vi,ve) > m(||vi]3, [[v1]|3), then, from (3.3.12) and
Lemma 3.3.2 (iii) , it follows

m(a1,a2) > m(|lwi |3, lwal[3) + m(llo1]13, [[v2]13) + m(br, b2) > m(ay, az)

which is impossible. Hence J (w1, ws) = m(|lw1 |3, |w2||3) and J(vi,va) = m(|lv1]|3, [|lv2]|3).
We denote by v}, w; the classical Schwartz’s rearrangement of v;, w; for i = 1,2,. Since

17113 = llill3,  lwilI3 = lwill3,

J(Ufavik) < J(UlaUQ)a J(UJT,’LU;) < J(wwa)v

see for example [68], we deduce that
* k) 2 2 * k) 2 2
J(v1,03) = m([lualla, [luall2),  J(wy,wz) = m([lwilz, [we]]2)-

Therefore, (v},v3), (w},w}) are solutions to (3.1.2) for some (A1, A2) € R? and from the
standard regularity results we have that v}, wf € C?(RY) for i = 1,2.

We distinguish two cases to preceed the proof. Without loss of generality, we may
assume vy # 0.

Case 1: vi # 0 and wy # 0.
By virtue of Lemma 3.2.1 (i7), (iv), (v),

/ ]V{vi‘,wi‘}*]dm</ ]Vvi‘\QHVwﬂ?dxg/ Vo 2 + |V |? de,
RN RN RN

Jo Mot sy e = [ A (g )
RN RN
2/ T oa]"™ + |wi|™ [wa ] da
RN
- /RN (lor ™) (lv2]™)" + (Jwn ™) (Jw2]™)" da,

= / [o1 | 2| + |wy [ [wa|™ dz,
RN

(3.3.13)

and thus

J(v1,v2) + J(wi,we) > J({o], wi}*, {v3, w5}"). (3.3.14)
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Also from Lemma 3.2.1 (4i7), for i = 1,2,

Lty Pde = [ i+ wiPde = [ ol + o de, (33.15)

and hence taking (3.3.12)-(3.3.15) and Lemma 3.3.2 (7i¢) into consideration, one obtains
the contradiction

m(al, ag) > m(bl, bg) + m(a1 —by,as — bg) > m(al, ag).

Case 2: v1 #0, w1 =0 and wo # 0.
If v # 0, we can reverse the role of vy, w; and vy, ws in Case 1 to get a contradiction.
Thus, we suppose that vy = 0. Due to Lemma 3.2.1 (ii)-(v),

1 M1
J({v], 0, {ws, 01* <f/ Voil? + Vw*de——/ viPt dz
(01,08 {ws,00) < 5 [ 190+ [VusPdo = 22 [

o Tl I (3:3.16)
p2 JRN RN

< J(v1,0) + J(0,w3) < J(v1,0) 4 J(0,w2),

with |[{v}, 0}*[7 = [[vi[|Z = ||[v1]3 and [[{w3, 0}*[13 = [Jw3][Z = |lwz|[3. Thus using (3.3.12),
(3.3.16) and Lemma 3.3.2, we also have

m(ay,az) > m(by,by) +m(a; — by,as — by) > m(ay,az).

The contradictions obtained in Cases 1 - 2 indicate that w]'(x) = v]'(z) — vi(x + yn) = 0

in LP(RN) for 2 < p < 2*,i = 1,2. O

Proof of Theorem 3.1.1 (i). Let {(v},v5)} be an arbitrary minimizing sequence to (3.1.7).
In view of Lemma 4.3.14, there exists (v1,v2) € H'(RY) x HY(RY) such that, up to a
subsequence and translations, (v}, v}) — (vi,v2) in HY(RY) x HY(RY) and (v, v%) —
(v1,v9) in LP(RN) x LP(RYN) for 2 < p < 2*. Hence, by the weak lower semi-continuity of
the norm, ||V |3+ || V2|3 < po, namely, (v1,v2) € B(pg), and J(v1,v2) < m(ay,az) <0,
from which we deduce that (vy,v2) # (0,0). To show the compactness of {(v},v5)} in
HY(RN) x HY(RY), it suffices to prove that (vi,ve) € S(a1,az). Assume by contradiction
that |lv1]|3 := @1 < a1 or ||v2||3 := @2 < az. Then by the definition (3.3.9), m(ay,as) <
J(v1,v2). At this point, in light of Lemma 3.3.2 (i) and (iii), we get

J(Ul,vg) S m(al,ag) S m(al,aQ) + m(a1 — 561,(12 — C_lQ) < m((_ll,(_lg) S J(Ul,vg).

This contradiction proves that (vi,v2) € S(a1,a2). To end the proof, we note that without
restriction we can choose a minimizer (vq,v2) of m(ay,as) with v;1 > 0 and v > 0. From
the classical regularity theory, and using the strong maximum principle we then deduce
that vy, ve > 0. O

Proof of Theorem 3.1.2 (i). Let {(v]’,v%)} be a minimizing sequence to (3.1.7) whose two
components are nonnegative. We know by Lemma 3.2.5 that it is not a restriction. Now it
is classical, see for example [55], that there exists another minimizing sequence { (07, 9%)} C
S(ai,az) which is a Palais-Smale sequence for J restricted to S(aj,az2), and such that
(@7, 9%) — (v, v3)]| — 0 in HY(RN) x HY(RY). Because of this convergence, we have in
particular that (7)™ — 0 and (05)~ — 0 as n — oo and we obtain that (o7, 05) — (v1,v2)
in HY(RY) x HY(RYN) with v; > 0 and v > 0. Furthermore, it results from Lemma 3.2.7
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that (v1,ve) satisfies (3.1.2)-(3.1.3) with some (A1, \2) € R?, from which we infer that
Q(v1,v2) = 0. From Lemma 4.3.14, we also get that J(v1,v2) < m(ai,as) < 0. It remains
to show that (vi,v2) € S(a1,a2). By Lemma 3.2.6, we can assume without restriction that
A1 < 0 and then Lemma 3.2.7 gives v; € S(a1). If A2 < 0 we also have that vy € S(az).
Let us thus assume by contradiction that Ao > 0. In the case 1 < N < 4, since

—Avy = Mgva + ppvh? T+ Brovitup T > 0,

by the Liouville’s results recalled in Lemma 3.2.2, we obtain that vo = 0. It then follows
that J(vi,v2) = J(v1,0) with v1 € S(a1) and satisfying —Av; = \jv; + ,ulvflfl. Since
p1 > 2+ %, we necessarily have J(v1,0) > 0, and this provides the contradiction. If we
now assume that N > 5, testing the second equation of (3.1.2) with v, and integrating in
RN because Ay > 0, we get that

/ Vos|? dir — uz/ o dr — 57»2/ (1|7 w272 dz > 0. (3.3.17)
RN RN RN

Now jointing (3.3.17) with Q(v1,v2) = 0, we obtain that

/\Vv1]2—m(pl—1>]\7/ \vﬂp?dx—i-(,uz—m(m—l)]\f)/ v |P? dx
RN p1 \ 2 RN P2 \ 2 RN

+ 3 <7°2 - (7’1;—7”2 - 1) N> /RN |o1|™|ve|™ dz < 0.

Note that the coefficient of [pn |v2|P? dz is positive. From the Gagliardo-Nirenberg’s in-
equality (3.2.1), we can assume without restriction that

/ \Vvl\g—&(ﬂ—l)]\f/ |v1|Pt dz >0
RN P12 RN

by taking, if necessary, po > 0 (and thus 5y > 0) smaller in Lemma 3.3.1. Thus we also
obtain a contradiction, since we have assumed that ro > (% — 1) N. Knowing that
A2 < 0, we deduce that vo € S(az) and then we conclude as before that v; > 0 and
vy > 0. J

3.4 Existence of minimax solutions

This section is devoted to the proofs of Theorem 3.1.1 (ii) and Theorem 3.1.2 (ii). To
obtain our second solution and in order to benefit from additional compactness, we replace
HYRY)x HY(RY) by H! ,(RY)x H! (RM). Tt is well-known that the subspace H' ,(RY)
of H'(R™) consisting of radially symmetric functions is compactly embedded into L?(R%)
for 2 < g < 2* and N > 2. Also it is classical that a constrained critical point of J defined
on H! (RV)x H! ,(RY) is a constrained critical point of J defined on H*(RM) x H'(RY).
Accordingly, we define S,.q4(a1,a2) := S(a1,as) N HY ,(RY) x H (RY).

We first deal with the case where (Hp) holds. By Lemma 3.2.4 and 3.3.1, we know
that there exists a 0 < p = p(a1,a2) < po such that, for any 0 < 8 < fy,

(@, a2) = inf mase J(g(t)) > max{ J(9(0). T (9(1)}

where

I':={g € C([0,1], S(a1,a2)) : g(0) € B(p),g(1) ¢ B(po) with J(g(1)) < 0}.
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Lemma 3.4.1. Assume that (Hy) holds. Then, for any 0 < 8 < f3y, there exists a Palais-
Smale sequence {(u},uy)} C S(a1,az) for J restricted to Syqa(a1,az) at the level y(a1,az),
which satisfies (u})~ — 0, (u§)~ — 0 in HY(RYN) and the property Q(uf},uy) — 0 as
n — 0.

Proof. The proof of such result is now standard, similar statements appear in [63, 8,
12]. O

Lemma 3.4.2. Assume that (Hy) holds and that 0 < 8 < By. Then there exists (u1,us) €
H! (RY) x H! (RN) solving to (3.1.2) for some (A, A2) € R? such that J(ui,us) =
v(a1,az). Moreover uy > 0 and ug > 0.

Proof. The couple (u1,ug) will be obtained as a weak limit of the Palais-Smale sequence
whose existence is provided by Lemma 3.4.1. To this aim, we first show that {(u],u%)} is
bounded in H'(R™) x H'(RN). As we shall see this property follows from the fact that
the functional J restricted to the set where () = 0 is coercive. Indeed, we can write, for
any € > 0,

9 9
J(ur,uz) = SVl + S lIVuslz + ax(e)[[uf [} + as(e)]fual I3

n|r n|r l1—e¢ n o,n
+0(e) [ de =S QR )

2
where
1-— N 1-— N
al(e):(e)”l(pl—l) _m a2(5):(5)/‘2<p2_1)_“2
2p1 2 p1 2p2 2 D2
and

2 2

The coefficients a;(g), i = 1,2 are strictly negative, but the corresponding terms can be
controlled by e||Vu?||3, using the Gagliardo-Nirenberg’s inequality (3.2.1) because p1, p2 <
2+ %. Now since 71 + 12 > 2 + %, we also have that b(e) > 0 for ¢ > 0 small enough.
Recalling that Q(uf,uy) — 0, the boundedness of our Palais-Smale sequence follows.

be) = (1—-¢e)N (rl—i—rg _1) 1

At this point, using Lemma 3.2.7, we can assume that u? — u;, i = 1,2 in HY(RY)
and that u? — u;, i = 1,2 in LY(RY) with 2 < ¢ < 2*. Lemma 3.2.7 also insures that
(u1,us) is a solution to (3.1.2) for some (A1, A2) € R?, and thus Q(uy,u2) = 0. Clearly, the
property u; > 0 and ug > 0 follows from (u})~ — 0, (u})™ — 0 in HY(RY). It remains to
show that J(u1,u2) = v(a1,az2). Since Q(u},us) — 0 we have,

2 .
/RN Va2 + |Vl |2 de — Z’if (pl - 1) N/ Wl |Pi da

5 (’"1 SN [l da.

From the strong convergence in L(RY), the right hand side converges to

2

o b < —1>N/ s |pzdx+5<””2 —1>N/N ™ un " d
R

— i

Thanks to Q(u1,uz) = 0, this gives that [pn |Vul? +|Vub|? dz — [pn [Vur|? +|Vus|? da.
As a consequence, we deduce that J(ul', uy) — J(uy,u2). Thus recalling that J(uf,ul) —
(a1, az), we get J(ui,u2) = y(ar,az). O
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Proof of Theorem 3.1.1 (ii). First we consider the case 2 < N < 4. In view of Lemma
3.4.2, it remains to prove that (uj,u2) € S(a1,a2). Recall that here we work in the
radially symmetric space H! (RN) x H! (RYM), thus in view of Lemma 3.2.7, we only
need to prove that A\;, Ao < 0. At this point, as in the proof of Theorem 3.1.2 (i), reasoning
by contradiction if necessary, we assume that A2 > 0, we obtain that J(u;,us2) = J(u1,0)
with uy € S(aq) satisfying —Auy = Aug + uluﬁ“_l. Since p; < 2 + %, we necessarily
have that J(u,0) < 0, this provides the contradiction J(uj,0) = y(a1,a2) > 0. We then
conclude as before. O

Let us now consider the case N > 5, where the Liouville’s type results cannot be
applied.

Lemma 3.4.3. Assume that (Hy) holds and that either p; < ri + ro — %, i =1,2 or
Ip1 — po| < % If Q(u1,u2) =0, and J(uy,uz) >0, then up # 0, ug # 0 and

J(ui,ug) = max J(ub ub). (3.4.1)

The proof of Lemma 3.4.3 relies on the following technical result whose proof will be
postponed until the Appendix.

Lemma 3.4.4. Assume that (Hy) holds and that either pi, pa < T‘1+T’2—% or |p1—pa| < %
Let (vi,v2) € HY(RN) x HY(RN) be arbitrary. Then the function t — J(vi,vh) admits at
most two stationary points for t > 0.

Remark 3.4.5. It is only in the proof of Lemma 3.4.4 that we need the assumption p1,p2 <
ri+1re— %, or alternatively |pa — p1| < % These conditions are used to establish the key
property, on which our proof of Theorem 3.1.1(%i) relies, namely that if (vy, vo) € H'(RN)x
HY(RYN) ids such that Q(vy,v2) = 0 and J(vi,ve) > 0, then J(vi,ve) = max;~g J (v}, v}).

Proof of Lemma 3.4.53. We first assert that u; % 0 and us # 0. If we assume that u; = 0,
then by using Q(0,u2) =0 and 2 < py < 2+ %,

1 1
J(O,UQ):*/ \VuQIQda:—&/ |uQ|p2da;:’u2<—(p2—l> N)/ |ug|P? dx <0,
2 Jrw p2 JrN P2 \2 2 RN

this is impossible, which proves that u; # 0. Similarly we get that ug # 0. Next we are

going to prove that max;~0(t) := max;soJ(ul,ub) = J(ur,us). Since Q(uy,uz) = 0,
it follows from that ¢ = 1 is a stationary point of . Note that lim, o+ 6(t) = 07,
lim¢ o0 6(t) = —oo. Due to 6(1) > 0, we then deduce from Lemma 3.4.4 that (3.4.1)
necessarily holds. O

End of the proof of Theorem 3.1.1 (ii). We now deal with the case N > 5. In view of
Lemma 3.4.2, it remains to prove that (ui,us) € S(ai,az2). Let a; := |lui|3 < a1 and
s := ||uz||3 < ap. Assuming by contradiction that either a; < aj or az < ag, we shall
obtain a contradiction by constructing a path g € I" such that

J(g(t)) < ,a2).
max T(g(0) < (ar,a2)
Let 0 < t; < 1 < t3 be such that (u!',ub') € B(p/2) and J(ul2,u) < m(ay,az) < 0.
The existence of 0 < t; < 1 is insured by Lemma 3.2.4 and the one of to > 1 by the
property that J(uf,ub) — —o0o as t — oo. Now because of (3.1.10), if a; < aj, there
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exists a wy € S(a; — ap) such that w!' € B(p/2), and J(w},0) < 0 for t € [t1,t2]. Here
' N : o N .
w'(x) := t2w(tr) and without restriction we can assume that wy € S(a; — ay) is radially
symmetric. Similarly, if as < a2, we can choose a radially symmetric wy € S(as — a2)
such that wi € B(p/2), and J(0,wh) < 0 for t € [t1,t5]. Note that we just take w; = 0 if
&1 = ai, and wo = 0 if C_LQ = as.
We now set
v = {ug, wi}*, for i=1,2,

where {u,v}* is the coupled rearrangement of u,v defined by (3.2.3). Then we consider
a path [t1,ts] — (v,0%). From Lemma 3.2.1 (iii)-(iv), for all t € [t1,t2], we see that
(v, v) € S(a1,az), and

2
Vo113 + 190113 =22 (IIVoull3 + [[Verl3) < 8[|Vl 3 + || Vsl 3
=1

2
=D _IIVuilf + [IVuwilf3.
i=1

Thus (vi',v5?) € B(p), due to (uf, u2), (wi', wi) € B(p/2). Also

t? 1L .
g =5 [ [90P VQd—E:Z )N/ [Pid
(v, v5) 5 \ v1|* 4 |Vue|“dz 2 RN’UZ’ x

Ll el do
RN
t2

_Z’u’ (%-1) / | [P dx—zﬁt(%_l)]v/ lw; [P da
RN = i RN

!VU1|2 + |Vug|?da + — / \Vwr |? + |[Vws|? dz

=1 p’L
+
_ ﬁt r12r2_1)N /RN |U1‘T1‘U2’r2dl‘

where we have used the property, see (3.3.13), that

[t de = [ jual ol + ol do
RN RN
As a consequence, for t € [tq, 2],

J(v1,v5) < J(uf,ub) + J(wi,0) + J(0,w)).

(3.4.2)

In particular, since J(w®,0) < 0 and J(0,w%) < 0, we get from (3.4.2) that J(v1 L ub?) <
J(u'?, u?) < m(ay,az). Thus we both have that (vi2,v%2) ¢ B(py) and J(v!2,vl?) < 0.
Now from (3.4.2) and using Lemma 3.4.2, we also have that

e J(v],08) < e [J(eh,ub) + T (wd,0) 4T (0, w)

< J , + J ,0) + J(0,
e J(u, ) + xmax J(wi,0) + rmax J(0, w)

= J(u1,u) + max J(w},0)+ max J(0,wh) < y(ai,as),
te[tl,tQ} te[tl,tz}
because max;efy, ¢ J(wh,0) < 0 if wy # 0 and maxyep, 4, J(0,wh) < 0 if wy # 0.
Thus, after a renormalization [¢1,t2] — [0,1], we obtain a path g lying in I' such that
maxyeo,1] J(9(t)) < v(a1,a2) and this ends the proof. O
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We now turn to the existence of the second solution of Theorem 3.1.2 (ii). Our proof
borrows several key ingredients from [12]. First we recall some properties of the scalar
nonlinear Schrodinger equation. Let wq p > 0,wqup € S(a) be radially symmetric and
satisfy

—Awg,pup — Mg,pp = M|wa,u,p’p_2wa,u,pv (3.4.3)

for 2 + % <p<2fand A <0. It is well known that w, ., is unique and is given by

Wa,pup(T) = <—2>p12 wo((—A)

N

x), (3.4.4)

where wy is the unique positive radial solution of the equation —Aw + w = |w[P~2w. In
what follows, we set

Co(N, p) = / Vo2 dz, Cy(N,p) = / lwolP da. (3.4.5)
RN RN
Let us now introduce a Pohozaev type manifold
P(N,a,p,p):={ue S(a) :/ |Vu|? dz = L <p - 1) N/ |ulP dx}
) b ) RN p 2 RN
and the functional I, , : H*(R") — R defined by

1 %
Lp(w) = 5 /RN v - £ /RN [ul? da.

Lemma 3.4.6. The solution wq,, to (3.4.3) belongs to P(N,a, p,p), and it minimizes
the functional 1,,;, on the manifold P(N,a, u,p).

Proof. The proof of such results can be directly deduced from [63, Lemma 2.7 and 2.10].

O
From (3.4.4)-(4.2.15), it is not difficult to check that
N
[V twauplls = (Cg(Np)) pENE=2 Co(N, p),
2p—N(p—2) (3.4.6)
Hwa,ﬂqup - OO(N,p) 1% 1 yP),
and then the least energy level of I,,,, on P(N,a, u1,p) is given by
Z(N7 a‘) u?p) = uGP(i]{flfz,y,p) I)u'ap(u) = I#J)(wa,#:p)
N
_ % ((g _ 1> S - 1> /RN |t ppl? d (3.4.7)
2p—N(p—2)
1 N a I—N(p-2) 4
()5 ) v

Ns

We now define, for s € R and w € H'(RY), the dilation (s * w)(x) := e2 w(e’z).
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Lemma 3.4.7. For any w € H'(RY), there holds

2s
Iip(sxw) = % /RN |Vwl|? dx — %es(%*l)N /]RN |w|? dx,

8851”’1)(8 *w) = e /RN \Vw|? dz — % (12) - 1) Nes(z—DN /]RN |wP dx.
In particular, if w = wq ,p, then

%IM)(S * Wapup) =0 if s =0,
0

%Iuvp(s * Wa,pp) > 0(<0) if s < 0(>0).

Proof. We refer to [12, Lemma 3.1] for a very similar proof. O

Now define, for i =1, 2,

r1+ro—2
pi — (r1+12) [(pi(r1 +172) Pi—(1tr2)
¢i = ci(r1+re,p) = [l ) ( il 5 ))
Di bi — (3.4.8)
= max [t”M?_Q — ltpi_ﬂ.
t20 Di

In view of (3.4.7), since p1,p2 > 2 + %, then there exists a $1 = f1(a1,az) > 0 such that
U(N, a1, py + B, p1) + 1N, ag, p2 + B1,p2) — Brcrar — Picaaz
= max{l(N, a1, pu1,p1), l(N, az, pi2, p2) } > 0

and

I(N,a1,p1+ B1,p1) + LN, a2, p2 + B1,p2) — Biciar — Prcaas
> max{l(N, a17:u17p1))l(N7 (127/~L27p2)} >0

for any 0 < 8 < p1. Note that 51(a1,a2) — oo as a1, a2 — 0. Choosing if necessary 5y > 0
smaller in Lemma 3.3.1, we can assume that 5, = fy.

Lemma 3.4.8. For any 0 < 3 < By,

inf{J(u1,u2) : (u1,u2) € P(N,a1,p1 + B,p1) x P(N,az, 2 + 5,p2)}
> maX{l(N7al7/JJ17p1)’ Z(N7 a27#27p2)}-

PTOOf- For any (Ul,UQ) S P(N7 ai, i1 + /val) S P(N7 az, 2 + 57])2)7 we have

T(ur2) = Ly () + g 0) = 3 [ fr] o
2

> Ly (12) + D ga2) = B [ ™47 da
i=1

2
1 .
> Ly 1)+ Duaa(02) = B3 [ exfuf?+ "
i=1 ’

= L+, (U1) + Ly 5 po (u2) — Berar — Beaz
> U(N,a1,p1 + B,p1) + (N, az, p2 + B,p2) — Berar — Peaa,

where ¢; for i = 1,2 are defined by (3.4.8). O
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Now for any given 3 € (0, fy), according to Lemma 4.3.2, we can fix a € > 0 such that

inf{J(ur,uz) : (u1,u2) € P(N,a1, 1 + B,p1) X P(N,az, pu2 + 8,p2)}

3.4.9
> max{l(N, a1, p1,p1), (N, az, p2,p2)} + €. ( )

We set
W1 = Way,pu1+,p10 W2 °= Wag pua+-B,p2>
and 9
Gi(8) := Ly, p (s x wi), i(s) == %Im,pi(s * W;).
From these definitions and as in [12, Lemma 3.3|, one obtains the following result.
Lemma 3.4.9. For i = 1,2, there exists p; < 0 and R; > 0 such that
(i) 0 < ¢i(pi) < € and ¢;(R;) <0, where e > 0 is determined in (3.4.9);

(7i) ¥;i(s) > 0 for s <0 and ;(s) < 0 for s > 0. In particular ;(p;) > 0,1;(R;) < 0.
Let M := [p1, R1] X [p2, R2], and for (t1,t2) € M,
go(t1,t2) := (t1 * wy, ty x wy) € S(ay,az).
We now introduce the min-max class
I:={geC(M,S(a1,a2)) : gorr = go}-

Lemma 3.4.10. If g € I', then there holds

881;5) J(g) < max{l(N, ai, 1 + ﬁapl)ul(N) az, 12 + ﬁ)pZ)} + €.

Proof. In view of Lemma 3.4.9 and (3.4.6),

J(t xwi, p2xwa) < Ly py (T * wi) 4 Ly po (P2 * w2)

< Ly (B wr) + € <sup Iy, p (s xwy) + €
seR

_ (uayertes
M1
<IU(N,a1,p1,p1) +e,

SUD Ly (3% War gy ) + €
because p1 > 2 + %. Consequently, for t1 € [p1, R1],
J(t1 x wi, p2 x w2) <IN, a1, p1,p1) + €,
and in a similar way, for to € [pa, Ra],
J(p1 * w1, ta x w2) <IN, az, p2,p2) + €.
On the other hand, using Lemma 3.4.9, one can show that for t; € [p1, R1],
J(t1 * wi, Ry x wa) < Iy py (81 % w1) + Ly py (Ro % w2)

< Sulg IM17P1 (8 * wl) < Z(N, ai, Ml?pl)'
se

Analogously, for to € [p2, Ra], J(R1 * wi,te * we) < I(N,aga,u2,p2). Then the lemma
follows. ]
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Lemma 3.4.11. For every g € T, there exists (t1,t2) € M such that g(t1,t2) € P(N, a1, u1+
ﬂ7p1) X P(N7 ag, w2 + 57p2>'

Proof. Let g € T be arbitrary, we write g(t1,t2) := (g1(t1,t2), g2(t1,t2)), and we introduce
the map F, : M — R? as,

0 0
Fy(t1,t2) := (as[uwﬁ,pl(s * g1(t1,t2))|s=0, %I/ﬁfrﬁ,pz(s * ga(t1, t2))\s:0> :

Since

0

%IMH-/D’% (5% gi(t1,t2))]s=0

= [ Vot )P do = (pi - 1) N[ it ) de,
RN i \ 2 RN
we deduce that Fy(t1,t2) = (0,0) ifand only if g(t1,t2) € P(N, a1, p1+5,p1) xP(N, az, po+
B,p2). To show that Fy(ti,t2) = 0 has a solution we can follow the proof given in [12,
Lemma 3.5]. O

At this point, we know from Lemma 4.3.2, 3.4.10 and 3.4.11, that there exists a Palais-
Smale sequence for J restricted to S(a1,az2) at the level

c(ay,az) == inf max J(g(t1,t2)) > max{l(N,a1,p1,p1),l(N,az, p2,p2)}.  (3.4.10)
g€l (t1,t2)EM

In addition, arguing as in the proof of Theorem 3.1.1 (ii), we obtain the following result.

Lemma 3.4.12. For any 0 < 3 < fy, there exists a Palais-Smale sequence {(u},us)} C
Srad(a1, a2) for J restricted to Syqq(a1,a2) at the level c(ay, az), which satisfies (u})™ — 0,
(ud)~ — 0 in HY(RYN) and the property Q(u},ul) — 0 as n — oc.

Proof of Theorem 3.1.2 (ii). Let {(u},uy)} C Srad(ai,a2) be given by Lemma 3.4.12.
Then there exists uj,up > 0 such that, up to a subsequence, (uf,uy) — (ui,u2) in
HYRM)x HYRY) and (u}, ud) — (u1,uz) in LP(RNV)x LP(RY) for 2 < p < 2*. Tt follows as
before that (u1,uz) is a weak solution to (1.1.2) for some (A1, A2) € R?, thus Q(uy,us) = 0.
Since Q(ul,uy) = 0,(1), we deduce that [pn |[Vul|?+|Vub|? dz — [pn [Vui|? +|Vus|* da.
This results that J(ui,u2) = c(a1,a2) > 0, and in particular (u1,u2) # (0,0). It remains
to prove that (ui,u2) € S(ai,as). From Lemma 3.2.6, we may suppose A; < 0, and thus
ui € S(ay). If Ay < 0 we also have that us € S(az). If we assume Ay > 0, then

—Aug = gy + poub? ' 4 Brouftulz ™! > 0,

and applying Lemma 3.2.2, it follows that us = 0. Therefore @Q(u1,0) = 0, namely,
uy; € P(N,a1,p1, 1), and this implies that

1
c(ar,az2) = J(u1,0) = 5 /RN Vg |* dz — /;/RN lu1|P* dz = (N, ax, p1,p1),

in contradiction with (3.4.10). Knowing that (ui,u2) € S(a1,as2), we conclude as previ-
ously. O
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3.5 Appendix
Proof of Lemma 3.4.4. To begin with, we set for ¢ = 1, 2,

a;:/ Vi |2 + |Vuo 2 de, b ::ﬁ/ Jui|P* d, c::5/ || fuz|™ di.
RN Di JRN RN

Thus defining, for ¢ > 0, () := J(u},u}), we then have
2 s
(1) =ag —; bitPi — ct”, (3.5.1)

where we have set, for i = 1, 2,

pi = (% - 1)N, = (L;r”’ - 1)N.

Note that, under (Hy), p1,p2 € (0,1) if 2 < p; <2+ %, p1,02 € (1,2) if p; > 2+ %, and
r> 2.

To prove the lemma, it suffices to show that ¢ admits at most two zeros on (0, c0).
This is clearly equivalent to show that g(t) := etﬁf) has at most two zeros for ¢ > 0, and
for a a € R to be chosen later, . Note that it is not restrictive to assume that p; < ps.

We have

g(t) = at! ™ — by o P I7Y — by P P2 et
Thus

g/(t) =a (1 — O[)t_a _ bl ﬁl (p*l 1= a)tﬁ1—2—a
bl — 1 — ) o (r— 1 ) 1

and

g//(t) =a (1 - a)(—a)t_a_l — bl ﬁl (ﬁl — 1 — a)(ﬁl — 2 — a)tﬁl_S—Oé
bl — 1 )~ 2 P —erlr 1~ a)(r — 2 @)™

For convenience, we write

g'(t) = apt @ — P TR g P23 i (3.5.2)
where we have set ap :=a (1 —a)(—a), a; :=b;pi(pi — 1 — a)(p; —2 — «) for i = 1,2, and
ag :=cr(r—1—a)(r —2— «). We now consider the following two cases.

Case 1: 2 <p; <pa <711 +712— % If we assume that ps < 1, namely, po < 2 + %, then
setting o = 0, we get that ap = 0, a3 < 0, ag <0, and ag > 0. Thus ¢"(¢) < 0 for any
t > 0, we then deduce that ¢’ is strictly decreasing on (0,00). It follows that g cannot
have more than two zeros. Now if we assume that po > 1, we choose a = p2 — 1 € (0,1).
Then ¢”(t) becomes

g”(t) = ay t*ﬁé — o tﬁl*ﬁ2*2 — g t¢“*ﬁ2*2

with g < 0 and a7 > 0. Also under our assumption we have r > po + 1 and we obtain
that ag > 0. Thus ¢”(¢) < 0 for any ¢ > 0, and we conclude as in the first case.
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Case 2: |p1 — p2| < % In view of the first case we can assume that po > 1. We now write
(3.5.2) as

g'(t) =t~ {ozo a2 gt gy t“ﬂ — o).

Let us prove that, for a convenient choice of @ < 0 we can insure that £ is a strictly
decreasing on (0, 00). Recall that we assume that p; < py. Since |p1 — p2| < %, it implies
that ps < p1 + 1, thus we can choose a a < 0 satisfying po — 2 < a < p; — 1. With this
choice a1 <0, <0, and ag > 0 because of r > 2. It follows that £ is strictly decreasing
on (0, 00).

Now having proved that ¢ is strictly decreasing and since lim;_,o+ £(¢) > 0 and lim;_,~, £(t) =
—o00, there exists exactly one t; > 0 satisfying £(¢1) = 0. Thus ¢'(¢) is strictly increasing
on (0,t1), and strictly decreasing on [t1,00). Also we can check that lim;_,o+ ¢/(t) < 0 and
lim;_, o ¢'(t) = —00. At this point, we can assume without restriction that

/
max g (t) > 0. (3.5.3)

Otherwise, since lim;_,o+ g(t) < 0, then g(t) < 0 for ¢ > 0, and ¢ has no zero on (0, c0).

From (3.5.3) and the limits of ¢/(¢), we deduce that there are exactly two values ty < t3
such that ¢'(t2) = ¢'(t3) = 0. In addition, 0 < to < t; < t3. Clearly, g is strictly decreasing
on (0,t2) U (t3,00), and strictly increasing on [ta,?3). Recording that lim, o+ g(t) = 07,
it implies that g may have at most two zeros. O






Chapter 4

Normalized solutions for
fourth-order nonlinear
Schrodinger equation in the mass
critical and supercritical regime

4.1 Introduction

In this chapter, we deal with a class of time-dependent fourth-order nonlinear Schrédinger
equations in R x RY,

i0p) — yA%) + AY + [9]*7¢ = 0, (4.1.1)

where 7 > 0. A fundamental step to study solutions of (4.1.1) consists in standing waves,
namely solutions with the form of ¥ (t,z) = e!®u(x) for « € R. This then leads to the
following elliptic equation satisfied by w,

YA?u — Au+ au = |[ul*7u. (4.1.2)

Observe that the L2-norm of solution to the Cauchy problem of (4.1.1) is conserved
along time, i.e. for any ¢t > 0,

[P de= [ 10,2 d
RN RN

Thus it is of great interest to research solutions to (4.1.2) having prescribed L2-norm,
namely, for given ¢ > 0, we find a € R and v € H?(R") satisfying (4.1.2), together with
normalized condition

/N uf? de = c. (4.1.3)
R

Such solutions are so-called normalized solutions. For the simplicity of terminology, in the
following we shall refer a solution («,u) to (4.1.2)-(4.1.3) as u, where u is obtained as a
critical point of energy functional E : H2(RY) — R defined by

. 2 1 2 _ 1 / 20+2
E(u) = 2/RN|Au] dw+2/RN]Vu| do— g [P da




Chapter 4. Normalized solutions for fourth-order nonlinear Schrédinger equation in the
64 mass critical and supercritical regime

on the constraint

S(c) == {uec H*RY): /N lu|? dz = ¢},
R
and « is then determined as Lagrange multiplier.

From now on, we are concerned with normalized solutions, i.e. solutions to (4.1.2)-
(4.1.3). When 0 < 0N < 4, the energy functional E is bounded from below on S(c), then
the authors [28] studied the following minimizing problem

m(c):= inf FE(u). (4.1.4)
ueS(c)
In this case, it is possible to find a solution to (4.1.2)-(4.1.3) as a minimizer to (4.1.4). We
mention the following result obtained in [28].

Theorem 4.1.1. Assume that 0 < oN < 2, then m(c) is achieved for every ¢ > 0. If
2 < oN < 4 then there exists a critical mass ¢ = ¢(o, N) such that

(i) m(c) is not achieved if ¢ < é;
(i) m(c) is achieved if ¢ > ¢ and 0 = 2/N;
(iii) m(c) is achieved if ¢ > ¢ and o # 2/N.

Moreover, if o € Nt and m(c) is achieved, then there exists at least one radially symmetric
minimizer.

Remark 4.1.2. The appearance of a critical mass when 2 < oN < 4 is linked to the fact
that every term of the energy functional E behaves differently with respect to dilations.

In this chapter, as inspired by [28], we study solutions to (4.1.2)-(4.1.3) under the mass
critical case N = 4 and the mass supercritical case 4 < o N < 4%, where 4* := ﬁ. In

this subject, our first result concerns the mass critical case c N = 4. To show the statement,
we recall the well known Gagliardo-Nirenberg’s inequality (see [92]) for u € H?(RY),

N 2+20-2N
lull3533 < By (o) Aully? flull; ’, (4.1.5)
where
{ 0<o, ifN <4,
< if N >
0<o< N1 i > 5,

and By(o) is a constant depending on o and N.

Theorem 4.1.3. Let N > 1,0N = 4. There exists a ¢y > 0 such that

0, 0<c<cy,

m(c) = inf E(u)= {

ueS(c) — 0, ¢ >y

For c € (0,cy), (4.1.2)-(4.1.3) has no solution, and in particular m(c) is not achieved. In
addition, ¢y = ('yC(N))% where

oy i N4

= NEn (T} (4.1.6)

and By (o) is the constant in (4.1.5).
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Theorem 4.1.3 shows that m(c) = —oco when ¢ > ¢}. Actually, when 4 < o N < 4*, we
will obtain that m(c) = —oo when ¢ > 0. To see this, for any u € S(c), A > 0, we define

up(z) = )\%u(\f)\x)

By direct calculations one can check that ||uyl|e = [Jull2 and
- L)‘Q 2 i / 2 7. AN/ / 20+2
E(uy) = 5 Jon |Aul|* dx + 3 Jon |Vul|*dx % 13 Jun |ul dx. (4.1.7)
Thus E(uy) — —oo as A — oo when 4 < o N < 4%, then we deduce that m(c) = —oo

for any ¢ > 0. By consequence, in both cases, it is no more possible to obtain a solution
to (4.1.2)-(4.1.3) as a minimizer to (4.1.4). To overcome this difficulty, we introduce a
natural constraint M(c) given by

M(c) == {u € 5(¢) : Qu) = 0},

where
oN

1
— 2 - 2 _ 2042
Q(u) ._fy/RN |Aul dx+2/RN|Vu| dx 320 1 2) /RN |ul dx.

Using (4.1.7), we immediately see that

OE(uy) |
ox At

Qu) = (4.1.8)

and thus, heuristically, M(c) contains all critical points for E restricted to S(c), then
solutions to (4.1.2)-(4.1.3). This fact will be rigourously proved in Lemma 4.10.1. Actually,
the condition Q(u) = 0 corresponds to a Pohozaev type identity, and M(c) is called as the
Pohozaev manifold elated to (4.1.2)-(4.1.3). Borrowing the key spirit from [13], we shall
prove that a critical point of E restricted to M(c) is a critical point of E restricted to
S(c), see Lemma 4.3.5. For these reasons, we define the following minimization problem

v(e) == uei/I\l/f(c) E(u). (4.1.9)

We now search for a minimizer to (4.1.9). Note that, if it exists, it then corresponds to a
ground state solution to (4.1.2)-(4.1.3) in the sense that it minimizes the energy functional
E among all solutions having the same L?-norm.

For convenience, we define ¢y € R as

0, ifd4<oN <4*,
co = (4.1.10)

Ny if oN =4,
where ¢}y is given in Theorem 4.1.3.

Theorem 4.1.4. Let N > 1, 4 < oN < 4*. Then there exists a c, Ny > co such that for
any c € (co,coN), (4.1.2)-(4.1.3) has a ground state solution u. satisfying E(u.) = v(c),
and the associated Lagrange parameter o s strictly positive. Moreover

(i) co1 = Cop =00, and co3 =00 if 4/3 <0 < 2;

N
(ii) If oN =4, then cs4 = 00, and co N > (%) * cy if N >5.
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The proof of Theorem 4.1.4 crucially relies on a key ingredient Lemma 4.3.5. Using this
result and the Ekeland variational principle [47], we then obtain a Palais-Smale sequence
{un} € M(c) for E restricted to S(c) at level v(c) as a minimizing sequence to (4.1.9).
Our aim is to prove that {u,} is compact, up to translations, in H?(RY). Firstly, since
E is coercive on M(c), see Lemma 4.3.1, thus {u,} is bounded in H2(R"), and it then
follows that there exists u. € H*(R™) such that wu, — u., up to translation, in H?(RM).
Furthermore, there is a. € R such that u. satisfies

A% up — Aue + e = |uc|2‘7uc. (4.1.11)

At this point, proving the compactness of {u,} then reduces to show that the strong
convergence of {u,} in L?°*2(RY) and the Lagrange parameter o, > 0, see Lemma 4.3.6.
The strong convergence of {u,} in L?*T2(RY) benefits from the fact that ¢ ~— y(c) is
nonincreasing on (cp, 00), see Lemma 4.4.1. The restriction on the size of ¢ is to insure
that a. > 0, see Lemma 4.2.1.

Taking advantage of the genus theory, we obtain the existence of multiple radial solu-
tions to (4.1.2)-(4.1.3).

Theorem 4.1.5. Assume N > 2.

(i) If 4 < oN < 4*, then for any c € (0,¢,N), where ¢, N is defined in Theorem 4.1.4,
(4.1.2)-(4.1.3) admits infinitely many radial solutions.

(ii) If 2 < N < 4, oN = 4, then for any k € NT, there exists a c;, > ¢ such that, for
any ¢ > cg, (4.1.2)-(4.1.3) admits at least k radial solutions.

To establish Theorem 4.1.5, we shall work in the subspace H2, ,(RY) of H?(RY), which
consists of radially symmetric functions in H?(RY). Accordingly, we define M, qq(c) :=
M(e) N H2,4(RY).

The proof of Theorem 4.1.5 is based on the Kranosel’skii genus theory. The key step
is to prove that E restricted to M,qq(c) satisfies the Palais-Smale condition. To this
end, we consider an arbitrary Palais-Smale sequence {u,} C M,44(c) for E restricted to
M,q4(c). Applying the coerciveness of E on M,44(c), we then denote by u, its weak limit
in H2,,(RY). Moreover, there exists o, € R such that u,. satisfies (4.1.11). Note that the
strong convergence of {u,} in L?2°F2(R¥Y) is given here for free, because the embedding
H? (RN) — L292(RYN) is compact for N > 2. Reasoning as the proof of Theorem 4.1.4,
to show the compactness it remains to check that the Lagrange parameter a. is strictly
positive, which is insured by Lemma 4.2.1. The second step is to show that the set M(c)
is sufficiently large. This is always the case when 4 < ¢ N < 4* for any ¢ > 0. However,
when o N = 4, the set M,4q4(c) may be too small. In particular, it shrinks to the empty set
as ¢ — cy. To obtain a given number of solutions, we require that ¢ > ¢} is sufficiently
large.

The monotonicity of the function ¢ +— ~y(c¢) on (cg,00) is crucially used in the proof
of Theorem 4.1.4. We now present additional properties of this function, its behaviors
depend in an essential way on the couple (o, N).

Theorem 4.1.6. Let 4 < oN < 4*. The function ¢ — ~y(c) is continuous for any ¢ > co,
is decreasing on (co,00) and limcﬁcg v(c) = oo. In addition,

(i) if N =1,2, N = 3 with % <o <2orN=4witho =1, then ¢c — v(c) is strictly
decreasing and lim.—,o y(c) = 0.
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(i) If N = 3 with 0 > 2 or N = 4 with 0 > 1, then lim. , Y(c) := y(c0) > 0 and
v(e) > y(o0) for all ¢ > cp.

(iii) If N > 5, then lim. o Y(c) := y(00) > 0 and there exists a coo > co such that,
() = v(00) for all ¢ > coo.

Note that Theorem 4.1.6, the difference of behavior of v(c) as ¢ — oo between N < 4
and N > 5 arises from the fact that the equation

YA — Au = |u*u (4.1.12)

does not admit a least energy solution in H? (RN ) when N < 4, but it does when N > 5,
see Proposition 4.6.5 for more details.

Next, when o N = 4 we show a concentration behavior of ground state solutions to
(4.1.2)-(4.1.3) as ¢ approaches to ¢} from above.

Theorem 4.1.7. Let N > 1,0N = 4, and {c,} C R be a sequence satisfying for any
n €N, ¢, > ¢y with ¢, = ¢ as n — 00, and u, be a ground state solution to (4.1.2)-
(4.1.3) for c = ¢, at level y(cy,). Then there exist a sequence {y,} C RY and a least energy
solution u to the equation

VA% U = \u|%u, (4.1.13)

such that up to a subsequence,

N 1
4 % N\ ® 4 x N4
<%leV> up, ((W) l‘+6nyn) — uin LY(RY) as n — oo

for2§q<%, where €, — 0 as n — 0.

Proposition 4.1.7 gives a description of ground state solution to (4.1.2)-(4.1.3) as ¢,
approaches to ¢} from above. Roughly speaking, it shows for n € N large enough,

N 1
4 8 4 4
Un(x) ~ (E%C%N) u ((E%C%N) (J: - enyn)) :

In the folowing we consider the sign and radially symmetric property of solutions to
(4.1.2)-(4.1.3). Concerning this subject, we first mention the case that a € R is given in
(4.1.2). In this case, it is known that when « € RT is sufficiently small, all least energy
solutions have a sign and are radial. On the contrary, when o € R is large, radial solutions
are necessarily sign-changing. In addition, when o € N, at least one least energy solution
is radial. For more details, see [31, Theorem 4]. When 0 < o N < 4, regarding the sign
and radially symmetric property of minimizers to (4.1.4), we refer to [28]. However, when
4 < oN < 4%, it seems more complex to derive these information for ground state solutions
to (1.2.2)-(1.2.3). In this direction, we only present the following result.

Theorem 4.1.8. Let N < 1,4 < oN < 4* and 0 € NT. Then there exists a ¢, > cy such
that, for any ¢ € (co,¢p), (4.1.2)-(4.1.3) admits a ground state solution, which is radial
and sign-changing.
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In our next result, we prove that positive radial solutions to (4.1.2)-(4.1.3) do exist.

Theorem 4.1.9. Let 1 < N < 4, 4 < oN < 4*. There exists a ¢,y > co such that
(4.1.2)-(4.1.3) admits a positive and radial solution for any c > ¢, N.

In the last section of this chapter, we investigate dynamical behaviors of solution to the
Cauchy problem of (4.1.1). From [95], when 0 < o N < 4%, the local well-posedness to the
Cauchy problem of (4.1.1) holds. Futhermore, in the mass subcritical case 0 < o N < 4,
any solution to the Cauchy problem of (4.1.1) with initial datum in H?(R") exists globally
in time, see [49, 95]. While in the mass critical and supercritical case 4 < o N < 4*, blowup
in finite time may happen, but it is also possible to prove that the solution to the Cauchy
problem of (4.1.1) with some initial datums exists globally in time.

Theorem 4.1.10. Let 4 < oN < 4*. For any ¢ > ¢y, the solution u € C([0,T); H*(RN))
to (4.1.1) with initial datum ug € H*(RN) in

O, :={u e S(c): E(u) <~v(c), and Q(u) > 0}.
exists globally in time.

When 0 < 0N < 4, it was prove in [28] that minimizers to (4.1.4) are orbitally stable.
When 4 < oN < 4%, we now prove that radial ground state solutions are unstable by
blowup in finite time.

Definition 4.1.11. We say that u € H*(RY) is unstable by blowup in finite time, if for
any € > 0, there exists v € H*(RN) such that |[v — ul|g2 < € and the solution (t) to
(4.1.1) with initial datum % (0) = v blows up in finite time in the H*-norm.

Making use of a key element in Boulenger and Lenzmann [30], we have

Theorem 4.1.12. Let 4 < oN < 4*, N > 2 and 0 < 4. Then standing waves associated
to radial ground states to (4.1.2)-(4.1.3) are unstable by blowup in finite time.

In the case where a € R is fixed in (4.1.2), the fact that radial least energy solutions
are unstable by blowup in finite time was recently established, see our paper [27]. It should
be noted that the results of [27] are also strongly based on arguments due to Boulenger
and Lenzmann [30].

This chapter is organized as follows. In Section 4.2, we establish some preliminary
results and give the proof of Theorem 4.1.3. In Section 4.3, we reveal some properties
of the constraint M(c), in particular we show that in order to find a critical point for F
restricted to S(c), we can work directly with a minimizing sequence to (4.1.9), see Lemma
4.3.5. The following Section 4.4 is devoted to the proof of Theorem 4.1.4, and Section 4.5
is devoted to the proof of the multiplicity result Theorem 4.1.5. The subject of Section
4.6 is to establish the properties of ¢ — 7(c) as presented in Theorem 4.1.6. In Section
4.7, we show the proof of the concentration result Theorem 4.1.7. In Section 4.8, Theorem
4.1.8 and Theorem 4.1.9 are established. Afterwards, in Section 4.9, we deal with the
unstable issue and prove Theorem 4.1.10 and Theorem 4.1.12. Finally, in Appendix we
prove that any solution u € H?(RY) to (4.1.2) satisfies Q(u) = 0, and all solutions to
equation (4.1.12) belong to H2(R™) when N > 5.
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Notation 4.1.13. For 1 < p < oo, LP(R") is the usual Lebesgue space with norm

ull? = /RN lul? dz.
The Sobolev space H*(RN) is endowed with its standard norm
Julls= [ 1Al + [ Vuf? + Jul? da.
RN
We denote by ' —' reps. ' —' strong convergence reps. weak convergence in corresponding
space, and denote by Br(z) a ball in RN of center x and radius R > 0. In the rest of

this chapter, the constant cy is defined by (4.1.10), and we will assume that N > 1 unless
stated the contrary.

4.2 Preliminary results

To begin with, we recall the following well known Gagliardo-Nirenberg’s inequality for
u € HY(RY),

[ul|222 < Cn (o) || Vullg™ |fulls @™, (4.2.1)
where
{ 0<o, ifN<2,
2
< if N > 3.
0<o< N2’ i >3

Using the Sobolev inequalities and interpolation inequalities in Lebesgue space, we obtain
for u € H*(RY),

12552 < On (o) |Vl ~ D) Ay N2+ (4.2.2)
where
N2 <o ifiv:3,4,
— < if N > 5.
N 2" N_g¢ "N

Let us also recall the Cauchy-Schwarz’s inequality for v € H?(RY),

/RN |Vul?da < (/]RN \Aulzdx)g(/ﬂw ]u\Qda:) ) (4.2.3)

Lemma 4.2.1. Let 4 < oN < 4*. If u. € S(c) is a solution to

S

YA%u — Au + aqu = |u|*u (4.2.4)

then there exists a ¢y > 0 such that a. > 0 for any ¢ € (0,cn,5). Moreover, we have

(i) c10 =C2.0 =00, and c3, =00 if4/3 < o < 2.
N

(ii) If oN =4, then c45 = 00, and cy s > (%) * ¢y for N > 5.
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Proof. Since any solution to (4.2.4) satisfies Q(u) = 0, see Lemma 4.10.1, we have

1 oN
Aucl*d 7/ *d :7/ o)t da. 4.2.
3 [ sl g [ e = T [ et (425)

Also multiplying (4.2.4) by u. and integrating in RY, we get

7/ |Auc|2dx+/ |Vuc]2da:+ac/ \uCde:/ |2 +2 da. (4.2.6)
RN RN RN RN

Combining (4.2.5) and (4.2.6) gives

do +4 20 + 2
_ 2 — _ 2 . 2
O‘C/RN |uc|” da 7(1 N )/RN\Auc\ da + (1 —~ >/RN\VUC\ dz. (4.2.7)

Since u. is nontrivial, (4.2.7) implies that a. > 0 for any ¢ > 0 provided that either
N =1,2o0or N =3 with 4/3 <o <2or N =4 with oN = 4. Next we consider the
remaining cases. Using the Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.2.5)
that

oN
fy/ |Au|? dx < Cctto=r (/ ]Auc]2da;> ! ,
RN RN

which implies that

(/N \Auc\Qdm‘) ! < Cctto=T (4.2.8)
R
Thus, when 4 < o N < 4%, one obtains
/N |Auc? dz — oo as ¢ — 0. (4.2.9)
R

On the other hand, using (4.2.3) we get from (4.2.7) that

1

—a /RN lue|? do < ~ (1 _ 4;4\;4) /RN |Auc* dz + C(N, o) </RN | Auel? d:n) fer
(4.2.10)
and taking (4.2.9) into account, it follows that a,. > 0 provided that ¢ > 0 is small enough.
It remains to treat the case o N = 4 with N > 5. Observe that from (4.2.5) and (4.2.6),
we can obtain

N -4 8
e /RN |uc|2d:C = /RN ’AuCPdw + N +4 Jpn ’uc’2+N dx. (4.2.11)

Now applying the Gagliardo-Nirenberg’s inequality (4.1.5) to (4.2.11), it then gives

4
N—4(c¢\V
2 2
—a, /RN [ue|* dx < (N (C}kv> - 1) fy/]RN |Auc|” dx, (4.2.12)
N
=~ N 4 %
and we deduce that a, > 0 for ¢ < ¢y := (m) iy —

The last two results of this section concern the mass critical case cN = 4. We start
by proving the nonexistence result Theorem 4.1.3.
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Proof of Theorem 4.1.3. First observe from (4.1.7) that, for any v € S(c), E(uy) — 0 as
A — 07, Thus m(c) <0 for ¢ > 0. Now using the Gagliardo-Nirenberg’s inequality (4.1.5),
we have for any u € S(c),

_ 7 2 1 2, N / 24+
B) = [ 1AuPdesg [ Vulde - oo [t e
4
24 2 1 2, C¥ 2
Q/RN\Au] dw+2/RN Vultde — 5o /RN |Aul? da (4.2.13)

4
1 cN 9
> — J
= (7 C(N)) /RN|AU| dz,

where C'(N) is defined by (4.1.6). Hence (4.2.13) implies that m(c) > 0 for ¢ < ¢}y =
N

(vyC(N))+. Therefore we deduce that m(c) = 0 for ¢ < ¢}. Next we prove that there
is no solution to (4.1.2)-(4.1.3) when ¢ < ¢},. Indeed, if u is a solution to (4.1.2)-(4.1.3),
then Q(u) = 0 and applying (4.1.5), we get

fy/ |Aul? dx + = / |Vu|2dx—N+4/ |u‘2+Nd$<<c*> 'y/ |Aul? d,

which implies that © = 0 because ¢ < cj;. Finally, let us prove that m(c) = —oo for ¢ > cjy.
It follows from [30] that the constant By(%) in (4.1.5) is achieved, then there exists a
U € H?(RY) satisfying

v

24 4 TIE A2
1Ull,, ¥ = B (GpIUNS AT (4.2.14)
Setting
1 U
wi=c2 € 5(c), (4.2.15)
U1z

and using (4.2.14), we obtain

C C
Blun) = 5o ¥y [ AUPdo+ 3ol [ VU da
2|U13" " Jrw 2(U13" Jen
1 24+ 2
N c2 N 8
_ _ )\2/ U2t~ d 4.2.1
ON 18 (HUHQ) o (017 A (4.2.16)
i
¢ cN 2 2 2
N - A / AU dz + )\/ VU d,
~ 2|U]3 < C(N )) 2HUH2
which implies that E(wy) — —oo as A = oo for ¢ > cjy. O

We now show that the two quadratic terms in E behave somehow in a similar manner.
This observation will be only used to treat the case ¢ [N = 4 but we state here under more
general assumptions.

Lemma 4.2.2. Assume that cN > 4 if N = 1,2 and 4 < oN < % if N > 3. Let
{un} C S(cn) for every n € N, where {¢,} C (0,a] for some 0 < a < oo, be such that

{E(upn)} C R is bounded. Then

{/N |Vun|2da:} C R is bounded if and only if {/N |Aun|2da}} C R is bounded.
R R
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Proof. By the Cauchy-Schwarz’s inequality (4.2.3), the reverse implication obviously holds.
To prove the direct implication, we assume by contradiction that

/N | Ay |? dz — 0o as n — oo. (4.2.17)
R

Using the definition of E and the fact that {E(u,)} remains bounded, one obtains
1
Ay [* dz < 7/ 2024y 4+ C 4.2.18
o Bunfdr < s [P (1.2.18)
for some C' > 0. Thus if N = 1,2 with oN >4 or 4 < oN < 2% if N > 3, we obtain a

contradiction with (4.2.1). If N = 3,4 with ]\2,—]172 < oN or N > 5 with % < oN < 4*,
using (4.2.2) we obtain from (4.2.18) that

E_LH(N_4) M(U—H)—ﬂ
/ |Au,|?dx < C(/ |V, |2 dx) S (/ |Au,|? dac) : :
RN RN RN
and since, under our assumptions, %(0 +1) — % < 1 we also reach a contradiction in
this case. 0

4.3 Some properties of the constraint M (c)

We say that E restricted to M(c) is coercive if for any a € R the subset {u € M(c) :
E(u) < a} is bounded.
Lemma 4.3.1. Let 4 < oN < 4* and ¢ > ¢y, then E restricted to M(c) is coercive and
bounded from below by a positive constant.

Proof. For any u € M(c), we can write

oN —4
20N

oN — 2
20N

2
E(u) = E(u) — WQ(U) = . |Aul® dx + . |Vul|* d. (4.3.1)
In view of (4.3.1), when o N > 4 the coerciveness trivially holds. When o N = 4, we obtain
this from Lemma 4.2.2. Let us now prove that F is bounded from below by a positive
constant. First we assume that o N > 4. Then, from the Gagliardo-Nirenberg’s inequality

(4.1.5), for any u € M(c),

1 oN
2 2 L 2.5 _ 20+2
fy/RN\Au] dmgfy/RNMu\ da:—|—2/RN\Vu| dx 2(20+2)/RN’u’ dx
olN
< UNBN(U)01+U—JN/4 (/ ‘AU|2dx> 4 ’
2(20’ + 2) RN
and thus \
4o +4 N
/ Auf? dz > ( 7T UN) . (4.3.2)
RN oNBy(o)c! o=

From (4.3.2), we see that there exists a § > 0 such that [pn |[Aul?dz > § and then by
(4.3.1) we obtain the lower bound. When o N = 4, we first consider the case 1 < N < 4.
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Then 2—}—% < 2* and using the Gagliardo-Nirenberg’s inequality (4.2.1), for any u € M(c),

we get
1 2 N 2+ 8 2 40 )
5/RN\Vu| dw§N+4/RN|u] NdeC(/RN\VM dac),

which gives the existence of a § > 0 such that [px |[Vu|?dz > § and we conclude as before.
In the case N > 5, we have 2* < 2 + % < 4* and using the Sobolev inequalities and
interpolation inequalities in Lebesgue space, it follows that

A 1-A
/ |u|2+% dzx < </ |u|% dZL'> (/ |u|% dac>
RN RN RN

N N(1-) (4.3.3)
N-2 N—4
<C (/ |Vu]2da:> (/ \Au|2dx> ,
RN RN

where 0 < A < 1 with 24+ £ = A2% 4+ (1 — \)2Y,. Thus for any u € M(c),

N(1—X\)

2 1 2 2 Ee 2 N-4
fy/ |Aul|* dx + f/ [Vu|*de < C </ |Vul dac) (/ |Aul dx)
RN 2 JrN RN RN

+N
gc(/ ]Au|2—|—|Vu2d:U> ,
RN

and there exists a 6 > 0 such that
1
7/ \Auf? dz + 7/ Vul2dz > 6. (4.3.4)
]RN 2 ]RN

At this point, in view of (4.3.1), we assume by contradiction that there exists a sequence
{un} C M(c) such that [pn |Vuy|?>dz — 0. Since, by Lemma 4.2.2, { g~ |Auy,|?dz}

then remains bounded, it follows from (4.3.3) that [pn \un]2+% dx — 0. Recording that
un, € M(c), we then obtain

1
fy/ | Ay, |* d + —/ |V, |? dz — 0,
RN 2 JRN
which contradicts (4.3.4), and thus we end the proof of the lemma. O

Lemma 4.3.2. Let 4 < oN < 4*. Foru € S(c) if 4 < oN < 4%, and for u € S(c)
such that supys E(uy) < 0o if oN = 4, there is a unique Ay > 0 such that uy, € M(c).
Moreover, E(uy,) = maxyso E(uy) and the function X\ — E(uy) is concave on [\, 00).

Proof. For any u € S(c), differentiating (4.1.7) with respect to A > 0, we obtain

d 1 o N oN/2-1
_ 2 7/ 2 . / 2042
Y E(uy) =~ /RN |Aul|* dx + 3 Jun |Vul|*dx 500 £2) Jav |ul dx

= 1Qm).

When o N > 4, it is easily seen that there exists a unique A, > 0 such that Q(uy~) = 0
and also that

d d
ﬁE(uA) >0 if Ae (0,\s) and aE(uA) <0 if A€ (A, 00) (4.3.5)
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from which we deduce that E(uy) < E(uy,), for any A > 0, A # A\.. When o N = 4, since
we assume that supyo F(uy) < oo, then
oN

Aul?d 7/ 20424 4.3.
3 [ Nduldr < 5T |l e, (43.6)

and thus there also exists a unique A, > 0 such that Q(uy,) = 0 and (4.3.5) holds. Now
writing A = t\,, we have

d? ON(oN —2) on_, eN_o

—FE = AuPde — ———— 245 72)\,2 / 2ot2 4

B =7 [ 18ufde - TP 5 [+ da

_1 2 2 oN(oN —=2) on 5, ¥ 20+2
Thus using that
1 olN oN
= = )\2/ Aul*d f)\*/ 2dr — A / 2042 g
d2

it follows that %E(uA) < 0 for any ¢ > 1. This proves the lemma. O

Lemma 4.3.3. Let 4 < oN < 4*, then M(c) is a C* manifold of codimension 2 in
H2(RN), hence a C' manifold of codimension 1 in S(c).

Proof. By definition, u € M(c) if and only if G(u) := ||ul|3—c = 0 and Q(u) = 0. It is easy
to check that G, Q are of C! class. Hence we only have to prove that for any u € M(c),
(dG(u),dQ(u)) : H*(RN) — R? is surjective.

If this failed, we would have that dG(u) and dQ(u) are linearly dependent, which implies
that there exists a v € R such that for any ¢ € H?(RY),

ZV/RN AulAypdr + /RN Vu-Vedr — U;V/RN lu|?7up dr = ZV/RN up dx,
namely, u solves
29A%u — Au = 2vu + %M%u.
At this point from Lemma 4.10.1, we deduce

N)?
4 Aul?d / Tul? do — (o / 2042 4
7/sz| ul et fo Wl de 2(20 +2) Jrv 4 o

and since Q(u) = 0 we then obtain
2 2 2 oN 2
47/ | Al dx—l—/ |Vul dm:aNy/ |Aul dx+—/ |Vul| de,
RN RN RN 2 RN
which is impossible since ¢ N > 4 and u € S(c). O

Lemma 4.3.4. Let 4 < oN < 4%, then for any u € C°(RN) N M(c), there holds

T.S(c) = TuM(c) PR (dd)\w’\)”\:l) , (4.3.7)
and

4B (u) LZCI)\(UA)|>\1] ~0. (4.3.8)
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Proof. By Lemma 4.3.3, we know that M (c) has codimension 1 in S(c), thus in order to
prove (4.3.7), it suffices to show that

() € TS(O\TLM(e).
For u € C$°(RY), one has
Q%W)hﬂ(gg) = gu(a:) + Vu(z) -z € C(RY) (4.3.9)

It directly follows from the divergence theorem that

N 2
/RN(Vu cr)udr = 5 Jon |u|® dz,
from which we deduce
d
—(ux)|x=1 € TuS(c). (4.3.10)

dX

Now, using the divergence theorem again, we obtain

d N , N ,
4O (u) {d)\(ukﬂ,\l} _ 27/RN|AU| dm+7/RN AuA(Vu- ) dr + 5 /RN|vu| do
1 oN? 20+2 oN 20
—f—i/RNVu-V(Vu‘x)da:—T RN!U\ dx—T RN|u! u(Vu - z)dx

:27/ Au|2dx+1/ |Vu2d$—(UN)2/ |u|?7+2 da.
RN 2 JrN 4(20+2) RN

Since Q(u) =0 and o N > 4, we deduce

d0(u) [ddx(“”’“} _ (2 - f’g) V/RN Aul? de + (; - "f) /RN IVl dz < 0.

This implies

d%(“*)“:l ¢ T, M(c). (4.3.11)

At this point, the proof of (4.3.7) follows directly from (4.3.10) and (4.3.11). Finally,
recalling (4.1.8) and in view of (4.3.9), we can write

0B (uy)

0= Q) = 2y = aw) [ b =0,

then (4.3.8) holds. O

Our next result is directly inspired from [13], see also [14].

Lemma 4.3.5. Let 4 < oN < 4*. If {v,} C M(c) is a Palais-Smale sequence for E
restricted to M(c), then there exists a possible different Palais-Smale sequence {u,} C
M(c) for E restricted to S(c) such that ||u, — vy|| = 0 as n — oo. In particular, if

{vn} € M(c) is converging to a v € M(c), then this limit is a critical point for E restricted
to S(c).
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Proof. Let us first prove that if {v,} C M(c) is a Palais-Smale sequence for E restricted to
M(c), then there exists a Palais-Smale sequence {u,} C C§°(RY) N M(c) for E restricted
to M(c) satisfying ||u, — vn|| — 0 as n — oo. For this we just need to show that
CS°(RN) N M(c) is dense in M(c). Since C§°(RY) is dense in H2(RY), for any w € M(c)
there exists a sequence {w,} C C§°(RY) such that w, — w in H?(RY). From Lemma
4.3.2 without restriction we can assume that for any n € N, there exists a unique A\, € R
such that (wp)x: € M(c) N C5(RY). Since w € M(c), one can easily check that A; — 1,
which gives that (wy)x: — w in H2(RY).

Now let us prove that if {u,} C C§°(RY) N M(c) is a Palais-Smale sequence for E
restricted to M(c), then {u,} is a Palais-Smale sequence for FE restricted to S(c). We
denote by (T,S(c))* resp. (TyM(c))* the dual space to T, S(c) resp. Ty M(c). In view of
Lemma 4.3.4, we have

4B ) rs(ey = sup{dE(un) [¢]: ¢ € TuS (o), ol < 1}
d
—sup {dB(un) e o = 1+ e lell < Logr € TME) 2 € R (- (ulaa ) |

= sup{dE(un)[e1] : 1]l <1}
= [|[dE (un) | (1, M(c))*

from which it follows that {u,} is a Palais-Smale sequence for E restricted to S(c). O

Lemma 4.3.6. Let 4 < oN < 4%, and {u,} C M(c) be a Palais-Smale sequence for E
restricted to M(c). Then there exist a u. € H>(R™) and a sequence {a,,} C R such that,
up to a subsequence and translations,

(i) wp — ue # 0 in H2(RY) as n — oo;

(ii) an — a. in R as n — oo;
(i3i) yA*uy — Ay, + aptiy — |un|* U, — 0 in H-2(RY) as n — oo;

(iv) YA%u. — Aug + oty = |ue|* u,.

In addition, if ||un — uc|l2042 — 0 and ae > 0, then |un, — uc]| = 0 as n — oco. Here
H=2(RY) denotes the dual space to H>(RY).

Proof. First observe that, because of Lemma 4.3.1 and Lemma 4.3.5, we can assume
without restriction that {u,} C M(c) is a bounded Palais-Smale sequence for E re-
stricted to S(c). After a suitable translation in R, passing to a subsequence, we can
assume that u, — u. # 0. Indeed, if not this readily implies, see [74, Lemma I.1],
that [pn |un|?**t2dz = 0,(1), where 0,(1) — 0 as n — oo. Thus, since {u,} C M(c),
it follows that [pn [Aup|*dz = o0,(1) and [zn |[Vun|*dz = o0,(1), which is turn im-
plies that E(u,) = o,(1). However, this contradicts the fact that E is bounded be-
low by a positive constant on M(c) and thus (i) holds. Now since {u,} is bounded in
H2(RYN), we know from [22, Lemma 3] that HdE‘S(C) (un)||g-2 = on(1) is equivalent to

|dE (un) — dE(un)[un]un| g—2 = on(1). Therefore for any ¢ € H?(RY), we have

fy/ Au,Ap dx +/ Vu,Vodr + an/ Upp dr — / |un|2"ung0 dz = o, (1),
RN RN RN RN
(4.3.12)

where

1
%m:@/ Bundet [ |V do— [ wfﬁwﬁ. (4.3.13)
c RN RN RN
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From (4.3.12)-(4.3.13), we deduce that (i7)-(ii7) hold and using that u, — u. in H?(RY)
we obtain in a standard way from (i7)-(7i¢) that (iv) holds.

Finally, let us show that under our additional assumptions {u,} strongly converges
to u. in H?(RY). Recalling that {u,} is bounded in H?(R"™) and using that u, — u in
L2 T2(RN) as n — oo, it follows from (ii)-(iv) that

7/ |Aun|2dx+/ |Vun|2d$—|—ozn/ | |* da
RN RN RN

(4.3.14)
:'y/ |Auc|2d:v+/ | V|2 dx+ac/ ue|? da 4 0,(1).
RN RN RN

But since u,, — u. in H2(RY) as n — oo, by weak convergence
7/ |Auc|2dm—|—/ Vue|* dz < liminf*y/ |Aun|2d:v—|—/ \Vu,|? dz,
RN RN n—o00 RN RN

/ ]ucl2d:c§lilginf/ | |? dez.
RN n—00 RN

At this point, using that a,, = a. > 0 as n — oo and the previous inequalities we get
from (4.3.14) that u, — u in H*(RY) as n — oo. Thus the proof is complete. O

4.4 Existence of ground state solutions

In this section, we give the proof of Theorem 4.1.4.

Lemma 4.4.1. Let 4 < oN < 4% and ¢ > ¢o. Let {un} C M(c) be a Palais-Smale
sequence for E restricted to M(c) at the level y(c), such that u, — u. # 0 in H*(RN). If

v(c) < (1) for any ¢ € (0,¢], (4.4.1)

then ||un — ue||2042 — 0 as n — oo. In particular E(u.) = ~y(c).

Proof. By Lemma 4.3.6, we know that there exists a o € R such that u, satisfies (4.1.2),
and thus Q(u.) = 0 by Lemma 4.10.1. Now we set 0 < ||uc||3 =: ¢1 < ¢, observing that in
the case o /N = 4, we know from Theorem 4.1.3 that ¢; > ¢j;. Since u, — u. in H?(RN)
as n — oo, we have from the Brezis-Lieb’s Lemma,

1A — ue)l + | Auc]l3 = | Aun 13 + 0n (1),
IV (un = uc) |3 + Vel = V3 + 0n(1) (4.4.2)

lun — well 343 + lluclzgts = llunll3513 + on(1)-

Since Q(u.) = 0, and Q(u,) = 0, it follows from (4.4.2) that Q(u, — u.) = o,(1), as well
as

E(up —ue) + E(ue) = vy(c) + on(1). (4.4.3)
Since u. € M(c1), then (4.4.3) implies that

E(un —uc) +7(c1) < 7v(¢) +on(1)
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and because of (4.4.1) it follows that E(u, — u.) < o,(1). We also have

E(u, —ue) — %Q(un — Ue)

oN —4 oN —2
= Alu, — ue)|*d
v 20N JrN |Aun —uc)|"dz + 20N JgrN

(4.4.4)

’v(un - uC)’2 dxa

and since Q(un, — u.) = op(1), this implies that F(u, — u.) > o,(1). Consequently
E(up — uc) = 0p(1). When o N > 4, we directly deduce from (4.4.4)

[A(un = ue)llz = 0n(1), [V(un —uc)llz = on(1),

and using again that Q(u, — u.) = op(1), it follows that ||u, — uc|2042 = 0n(1). When
oN = 4, then (4.4.4) only gives that ||V (u, — uc)|l2 = on(1). Since, by Lemma 4.2.2,
{[|A(un — uc)||2} remains bounded we conclude using (4.2.1) if N < 4 and using (4.3.3) if
N > 5 that ||uy, — ucl|l2042 = 0n(1). Now from (4.4.3) and using that E(u, — u.) = on(1),
it follows that E(u.) = v(c). O

Lemma 4.4.2. Let 4 < oN < 4%, then the function ¢ — 7(c) is decreasing on (co, 00).

Proof. First we show that «(c) enjoys the variational characterization

inf FE(u)= inf supFE(u)). 4.4.5
ueM(c) ( ) ueS(c))\>IS (/\) ( )

Indeed, on one hand, we observe that for any u € S(c) either supy- o E(uy) = 400 or there
exists a A, > 0 such that uy, € M(c) and E(uy,) < maxy>o F(uy). It implies that

inf supE(uy) > inf FE(u).
ueS(c) >\>I(; ( )\> — ueM(e) ( )

On the other hand, for any u € M(c), E(u) > maxyso E(uy) and then

inf FE(u)> inf supFE(u)).
ueM(c) ( )_u€S(c) )\>I(; ( A)

Thus (4.4.5) holds. To prove the lemma we have to demonstrate that if 0 < ¢; < ¢,
then y(c2) < y(c1). Noting the definition of v(c) and (4.4.5), for any € > 0 there exists a
uy € M(c1) such that

E(uy) <~(c1) + g and max E((u1)x) = E(u1) (4.4.6)

where we recall that (uj)y(z) := )\%ul(ﬁx). For 6 > 0, one can find u{ € H*(RY) such
that supp uf C B% (0) and |Ju; — ug|| = 05(1). Thus, as § — 0

/N |Aud? dz — /N |Auq|? da, /N Vil |? do — /N |Vuq|? da,
R R R R

and
/ |u(15|2cr+2d$_>/ |ul|2a+2 dr.
RN RN

Let v9 € C°(RY) be such that supp v° C B%_H(O) \ B% (0), and set

9

5 511244
v = (c2 — H%H%)QW-
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We now define for A € (0,1), w$ := uf + (v3)x. Since

172
dist (supp (v])x, supp ud) > 5 ()\ - 1) > 0,

we have that ||w$||3 = c2. Also by standard scaling arguments we see that as A, § — 0,

/N |AwS |? dz — /N |Auq|? da, /N (Vs |? dz — /N |V |* de,
R R R R

and
/ |w§\|20+2 dx—>/ |U1’20+2 dr.
RN RN

In [18, Lemma 5.2], it has been proved that the function f: RT x (RT U{0}) x RT — R
defined by f(a,b,c) = maxt>0(t2a—|—tb—ct%) is continuous. Setting (w3); := t%wi(\/fx).
If oN > 4, using the above convergences and (4.4.5), we deduce that for A,d > 0 small
enough,

€ €
< 9, < - = e
7(e2) < max E((w))y) < max E(u1)e) + 5 = B(ur) + 5 <(er) +e,
then this concludes the proof when o N > 4. If o N = 4, note that for A\,§ > 0 small

enough
N

8
V/RN |Aw} |2 dx < N+4/RN [wl|*F ¥ da,

thus sup,~ E((w3):) < co. Under this condition, [18, Lemma 5.2] can be easily extended
and we conclude as in the case o N > 4. O

We can now prove our result Theorem 4.1.4 concerning the existence of ground state
solutions.

Proof of Theorem 4.1.4. For any ¢ > ¢g fixed, by the Ekeland variational principle, there
exists a Palais-Smale sequence {u,} C M(c) for E restricted to M(c) at level v(c). By
Lemma 4.3.6 we know that u, — u., where u,. is solution to

2 2
YA U — Aue + acte = |ue|“ue

for some a, € R. We also know from Lemma 4.3.6 that this convergence is strong whenever
||un, — te||2042 — 0 and . > 0. The first property is guaranteed by Lemma 4.4.1 and
Lemma 4.4.2, and the second one comes from Lemma 4.2.1. O

4.5 Multiplicity of radial solutions

Next we turn to the proof of Theorem 4.1.5. First we recall the definition of genus of
a set due to M.A. Krasnosel’skii.

Definition 4.5.1. Let A be a family of sets A C F such that A is closed and symmetric
(u € A if and only if —u € A). For every A € A, the genus of A is defined by

v(A) :=min{n e N:3 ¢ : A — R"\{0}, ¢ is continuous and odd}.

When there is no ¢ as described above, we set v(A) = oo.
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Now let F := M, qq(c) :== M(c) N H?

rad

(RN). For any k € N*, define
'y :={A e A: Ais compact,v(A) > k},

and
= inf E(u).
O )

Lemma 4.5.2.
(i) Let 4 < oN < 4%, then for any k € N, T'y, # ().

(ii) Let oN = 4, then for any k € N* there exists a ¢ > ¢} such that T'y, # 0 for all
c > cC.

Proof. First we consider the case 4 < oN < 4*. Let V C H2 ;(RY) be such that dimV =
k. We set SV(c) :== V N S(c). By the basic property of the genus, see [4, Theorem
10.5], we have that v(SV(c)) = dimV = k. In view of Lemma 4.3.2, for any u € SV (c¢)
there exists unique \j > 0 such that uy: € M(c). It is easy to check that the mapping
¢ : SV (c) = M(c) defined by p(u) = uy: is continuous and odd. Then [4, Lemma 10.4]
leads to v(p(SV (c))) > v(SV(c)) = k and this shows that T'y # (). In the case cN = 4, we
shall prove that, for k € NT given, taking ¢ > ¢} large enough I'y, # 0. Let V C H2 ,(RY)
satisfies dim V' = k, and set SV (¢) := VNS(c). Using the fact that all norms are equivalent
in a finite dimensional subspace, we get, for ¢ > ¢} large enough and for any u € SV (¢),

N 8
2 2+
'y/RN|Au] da:<N+4/RN]u| N dz.

This shows that supy.q E(uy) < oo and thus from Lemma 4.3.2 for any u € SV (c) that
there exists unique \;, > 0 such that Q(uyx) = 0. At this point, we pursue as in the case
4 < oN < 4* to conclude the proof. O

Lemma 4.5.3. Let N > 2 if4d <oN <4* or2 < N <4 if oN = 4. Then E restricted
to Myqq(c) satisfies the Palais-Smale condition.

Proof. Let {un} C M,qq(c) be a Palais-Smale sequence for F restricted to M,qq(c). By
Lemma 4.3.6 we know that, up to a subsequence, {u,} converges strongly in H?(RY) if
{u,} converges strongly in L2°T2(R") and if the associated parameter o, € R is strictly
positive. The first property holds because the embedding H2, ;(RY) < LP(RY) is compact
for N>2,2<p< %, and the second one is guaranteed by Lemma 4.2.1. ]

Proof of Theorem 4.1.5. In view of Lemma 4.5.2 and Lemma 4.5.3, Theorem 4.1.5 then
follows directly from [4, Proposition 10.8]. O

4.6 Properties of the function ¢ — ~(c)

In this section, we investigate further properties of the function ¢ — v(c) and prove
Theorem 4.1.6. We begin by showing its continuity.

Lemma 4.6.1. Let 4 < oN < 4%, then the function ¢ — 7(c) is continuous on (cg, 00).
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Proof. Let us prove that, for any ¢ > ¢, if {¢,} C (¢, 00) is such that ¢, — ¢, then
limy, 00 Y(cn) = 7(c). From the definition of v(c), for any € > 0, there exists a v € M(c)

such that E(v) < v(c) + §. Now defining v, := ,/%n v € S(cy), then as n — oo we clearly

have
/ |Avn|2daz—>/ |AU|2d33,/ |an|2d:1;—>/ \Vo|? du,
RN RN RN RN

/ |’Un|2g+2d$—>/ ‘U’20+2dI.
RN RN

In particular, for n € N large enough

and

N 8
2 2+ 8
'y/RN|Avn| dx<N+4/RN|Un\ Y da

when o N = 4. Now using [18, Lemma 5.2] and the above convergences, we deduce

7(en) < ma B((v,)y)

—1m )‘2/ A ]2d _|_)‘/ v |2d _)‘GN/2/ | |20+2d
TS0\ 27 Ja TR T e Y T o0 1) Jen I v

< ma % / |Av|? da + )\/ \Vo|? da A7 / [v|7 2 da | + c
(A A _ A €
SRS\ 27 Jen 2 Jan 220 + 2) Jrn 2

= max B((v))) + 5 = B@) + 5 < 7(c) +=.

This shows that
lim supy(¢,) < v(c). (4.6.1)

n—oo

Now let {u,} C M(cy,) be such that
Blun) < y(ea) + - (4.6.2)

Since Q(uy,) = 0, using (4.6.1) and (4.6.2), we obtain that, for n € N large enough

oN — 4
TN Jr

oN — 2
20N

N ]AunPdw—i— N\Vun\2 dx = E(uy) S'y(cn)—i—% S’y(c)—i—E

2 9
thus when o N > 4, we immediately get that {u,} € H?(R") is bounded. The same holds
when o N = 4 by Lemma 4.2.2. Thus we can assume without restriction that

/N |Auy,|? de — A, /N |Vuy,|* dx — B, /N lu, |22 dx — C.
R R R

We claim that A and C' are strictly positive constants. Indeed, when 4 < o [N < 4%, since
Q(un) = 0, using the Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.3.2) that
A > 0. Using again that Q(u,) = 0, we then obtain that C' > 0. When o N = 4, we can
reach the same assertions by the virtue in Lemma 4.3.1.

Now we define @, := /£ un, € S(c). Using [18, Lemma 5.2], we obtain
Cn

v(c) < Imax E((@n)x)
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2 oN/2 o
—wax S (S [ BuPdot 5[ VP e go (S) [ unr s
A>0 ¢y \ 20 JRN 2 Jry 220 +2) \¢cn/) Jrw

A2 A \oN/2 £
< CNA+ZB - o -
—1?38(<27 T3 2(20+2)C>+3

22 A ATN/2 2
< A~ Au,|? 7/ e _7/ j20+2 €
r§\1§8{<27/RN| u|dx+2RN|Vu|d:C 320 +2) RN]u| dx +3

2e 2e
= max E((un)y) + 5 = E(un) + 5 <v(en) +e,

from which we conclude that

~(c) < limsupy(cy). (4.6.3)
n—oo
From (4.6.1) and (4.6.3), we deduce that lim,, . v(¢,) = v(c). O

Lemma 4.6.2. Let 4 < oN < 4%, then limc_wg v(c) = +oo.

Proof. When 4 < oN < 4* jointing (4.3.1) with (4.3.2), we immediately deduce that
lime,0v(c) = co. When o N = 4, to show that lim,_, .« + v(c) = oo, we first observe that

for u € M(c),

Y 2 1/ 2 N / 248
<Ew=21[ |a v de -
v(c) < E(u) 2/RN| ul d:c—|—2 IRN| ul|*dx IN 18 Jun |u|*TN dx

N
N + 8 JrN

4
c\V 9
— ] -1 ’y/ |Aul| dx.

Thus combining the fact that F is bounded from below on M (c) by a positive constant,
see Lemma 4.3.1, and the property obtained in Lemma 4.4.2, that ¢ — v(c) is decreasing,
we deduce for any sequence {c,} with ¢, — ¢ and {u.,} C M(c,) that

2+8 . 7 2
|u|“"N dx 5 /RN |Au|* dx (4.6.4)

~ 9

1
< Z
=9

/N |Auy, |* dz — 0o as n — oo. (4.6.5)
R

If E(uc,) — o0 as n — oo, we have readily finished the proof. Otherwise, by Lemma 4.2.2,
it then follows that [pn |V, |* dz — 0o as n — oo, and we conclude by using (4.3.1). [

Lemma 4.6.3. Let 4 < oN < 4* and u. € S(c) be a solution to
YA*u — Au+ aeu = [u)*u

with E(uc) = v(c). Then a. > 0, if ac > 0 the function ¢ — ~(c) is strictly decreasing in

a right neighborhood of c.

Proof. In view of Lemma 4.4.2, to prove the lemma it suffices to show that if a, > 0 (. <
0) the function ¢ — 7(c) is strictly decreasing (increasing) in a right (left) neighbourhood
of ¢. The strict monotonicity of the function ¢ — ~(c) when o, # 0 is obtained as a
consequence of the Implicit Function Theorem. Let (uc)z(x) := AT Vitue(VAz) for t,\ >
0. We define g(t, ) := E((uc)en), and Bg(t, A) := Q((uc),x). By direct calculations, we

obtain
9BE 1 e 0*BE

TE(1,1) = —=ae,
or (LD =—50 5y N2

(1,1) =0, (1,1) <0,
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which yields for sufficiently small |d)[, and &; > 0,
Be(l+ 0,14 0\) < Br(1,1) if ac >0 (4.6.6)

Be(l—0d,1—165) < Be(L,1) if ae < 0. (4.6.7)

9Bq

Observe that fg(1,1) = 0, and 3 (1,1) < 0. Using Implicit Function Theorem, we

obtain the existence of a ¢ > 0 small and of a continuous function g : [1 —¢,1+¢] - R
satisfying ¢g(1) = 1 such that Sg(t,g(t)) = 0 for t € [1 —¢,1 + ¢]. Therefore we have from
(4.6.6),

1 = inf E(u) < E((uc E(ue) = .
WA+ = il )< B((ue)riegiisn) < Blue) = ()
Similarly by (4.6.7), v((1 —€)c) < v(c) when a, < 0. O

We now investigate the behaviors of the function ¢ — 7(c) as ¢ — oo.

Proposition 4.6.4. If N = 1,2, N = 3 with § < 0 < 2 or N = 4 with o = 1, then
¢ — 7y(c) is strictly decreasing and lim._,~ v(c) = 0.

Proof. The fact that ¢ — ~(c) is strictly decreasing follows directly from Lemma 4.2.1
and Lemma 4.6.3. To show that lim._, 7y(c) = 0, we first treat the case cN = 4. Using
(4.2.16) and (4.4.5) we obtain that
||Uc||2 (Jr~ ‘VUde)z
7(e) < max E(wy) = T ,

8 ((N) N 1) o fon |AU2 da

where w is defined by (4.2.15). This shows that v(¢) — 0 as ¢ — oo when 1 < N < 4. For
the remaining cases we fix an arbitrary u € H2(R") satisfying |lu|2 = 1. For any ¢ > 0,
Veu € S(c), and from Lemma 4.3.2 we know that there exists a unique A, > 0 such that

Q((vcu)r,) =0, i.e.
1 oN oN oN
2 L 2 5. -1 _o+1-2 2042
ACV/RN]Au\ d:c+2/RNWu] da:—2(20+2) (che) 2 ¢ 2 RN]u\ dx.

Since o N > 1, we deduce that (c\.) — 0 as ¢ — oco. Now using again (4.4.5), it follows
that

N —14 N —2
<E — a2~ 2 / 2
v(e) < E(Veu)y,) = e’y 5o N %N Jun |Vul* de,

and thus y(c) — 0 as ¢ — oo. O

g

- |Au)? dx + ).

To treat the remaining cases, namely, c > 2if N =3, 0 >1if N=4or4 <oN < 4*
if N > 5, we need to consider the following equation

YA%u — Au = |u*u. (4.6.8)
Let X := {u € DY2(RY) : [ |Au?dz < oo} be equipped with the norm

2 2 2
fulk = [ I8udo+ [ (Vuf?do.

Under our assumptions, we see from (4.2.2) that X < L2°T2(R") and in particular F, Q
are well-defined in X. Now let

v(00) := inf{E(u) : u € X\{0}, E'(u) = 0}.
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Proposition 4.6.5. Assume that 0 > 2 if N =3, 0 > 14 N =4 and 4 < oN < 4* if
N > 5. Then () is reached and

1. When N = 3,4, (4.6.8) does not admit nonnegative solution. In particular, v(co) is
not reached by an element in H*(RN).

2. When N > 5, all minimizers of y(co) belongs to H?(RY).

Remark 4.6.6. If one considers the equation (4.6.8) assuming that N = 1,2 or N =3
with o <2 or N =4 and 0 = 1, we see directly from Lemma 4.2.1 that it has no solutions
in H*(RN) nor in X.

Proof of Proposition 4.6.5. Tt is classical to show that (00) is reached if and only if the
problem
:= inf 4.6.
m:= inf J(u), (4.6.9)

where

J(u) = /N y|Auf 4 |Vul*dz and M :={u € X : ||u||aos2 = 1}
R

admit a minimizer. To prove that m is reached we proceed as in [31, Remark 3.2]. Let
{u,} C X be a minimizing sequence for m. Without restriction, since H2(R") is dense in

X, we can assume that {u,} C H?(R"). Then we set f,, := —/yAu,+ ﬁunQ and define
v, € H*(RY) to be the strong solution of —,/7Av, + ﬁvn = |ful* in RN, where |f,|*
denotes the Schwarz rearrangement of | f,|. Thus for each n € N we have v, € H2 ,(RY)
and a particular case of [29, Lemma 3.4] implies that

(o) - TR s = i

[vnll20+2 [[vnl135 2
_ Jrv (=7 Auy, + ﬁunf dx — % Jpn U2 dx B J( U, )
B [unl 3ot |[unll2o+2/

Thus {0,} = {7‘|vnﬁzﬁ+2
the subset of radially symmetric functions in X, is compactly embedded into L2 +2(R¥Y).
Indeed, applying [21, Radial Lemma AIII}, if u € DY2(RY) is radially symmetric, we have

} is a minimizing sequence for m. Now we claim that X,.q4,

lu(@)| < Cla|~ V22| Vulo.

Using this decay we get

/ |2+ 2da < / | 20F 22N/ (N=2) 3 2N/ (N=2) g
RN\ BR(0) RN\Bgr

< CR—¥(2U+2—%)||VUH§+(N72)/2N7
from which the claim follows. Using this embedding, we get that {o,} weakly converges
to some v € X with [|v]|ao42 = 1 and the remaining arguments are standard. We thus
obtain a minimizer for J on M and ~y(oco) is reached.

Let us now prove that v(co) does not have a minimizer in H2(RY) when N = 3,4.
Assuming by contradiction that u is such a minimizer we deduce from [31, Lemma 4.1]
that v must have a sign and without restriction we can assume that v« > 0. To conclude
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it suffices to show that (4.6.8) has no nonnegative solutions in H?(R). For this aim, we
decompose (4.6.8) into the elliptic system

—~yAu = v,

1 4.6.10
—Av+ —p = |u‘20+2u' ( )
Y

If u is a solution to (4.6.8), then by the standard elliptic regularity theory, u € C*(RM).
Hence applying the maximum principle to the second equation in (4.6.10), we deduce that
v > 0 and thus any nontrivial nonnegative solution u to (4.6.8) has to satisfy —Au > 0.
Using the Liouville’s type result [61, Lemma A.2], we conclude that v ¢ L?(RY). Finally,
when N = 5 one can show that any solution to (4.6.8) in X belongs to H2(RY). This is
proved in Proposition 4.10.2 that can be found in Appendix. O

Since m is reached where m is defined by (4.6.9), then clearly v(co) > 0 and by
standard arguments, it can also be defined as

v(00) := inf{E(u) : v € X\{0}, Q(u) = 0}. (4.6.11)

Proposition 4.6.7. If N = 3 and 0 > 2 or N = 4 and 0 > 1, then lim. ,» y(c) =
v(c0) > 0.

Proof. Using the definition (4.6.11), we directly obtain that v(c) > v(oc0) for all ¢ > cp.
Now still from (4.6.11) and taking Proposition 4.6.5 into account, we know that there exists
a u € X such that E(u) = v(c0) and Q(u) = 0. For R > 0 we define ur(z) := n(%)u(z),
where n(z) =1 for |z| <1, n(z) =0 for |z| > 2, and 0 <n < 1. Thus, as R — oo,

[urllzor2 = l[ull2or2, [[Vurlle = [Vullz, and [|Aug]z = || Aulls.

Now let Aj; > 0 be such that Q((ugr)x;) = 0. By continuity we obtain that A\ — 1 as
R — o0. Thereby

Y(lurl3) < E((ur)ag) < B(u) + or(1) = v(c0) + or(1),
where or(1) — 0 as R — oo, then y(¢) — vy(c0) as ¢ — oc. O

Proposition 4.6.8. Let N =3 and o0 > 2 or N =4 and 0 > 1. Then v(c) > ~(o0) for
all ¢ > cp.

Proof. When N = 3,0 > 2, it is a direct consequence of Lemma 4.2.1 and Lemma 4.6.3.
In the other cases let us assume by contradiction that there exists ¢ > 0 such that v(c) =
y(00). From Lemma 4.3.6 and Lemma 4.4.1, we obtain the existence of a u, € H?(RY)
satisfying 0 < ||ue||3 < ¢ and y(||uc||3) = v(c) = v(c0). At this point, we have obtained
that u. € H2(RY) is a solution of (4.6.8) at the energy level y(00), it is a ground state. But
we know from Proposition 4.6.5 that such ground state does not exist. This contradiction

ends the proof. 0

Proposition 4.6.9. If N > 5 there exists a cx > 0 such that y(c) = y(oc0) for all ¢ > coo.

Proof. By Proposition 4.6.5 and using (4.6.11), we know that there exists a u € H2(RY)
such that E(u) = v(co0) and Q(u) = 0. Setting coo := ||u||3, we obtain that v(cs) < (00).
Now recording that v(¢) > «v(oc0) for any ¢ > ¢g and that, by Lemma 4.4.2, ¢ — ~(c) is
decreasing we conclude. O
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Proof of Theorem 4.1.6. The proof follows directly from Proposition 4.6.4-Proposition4.6.9.
O

4.7 A concentration phenomenon

In this section, when o N = 4, we establish the concentration of solutions to (4.1.2)-
(4.1.3) as ¢ approaches to ¢} from above, described in Theorem 4.1.7. As a preliminary
result, we derive

Lemma 4.7.1. Let oN = 4 and u € H*(RY) be a nontrivial solution to the equation
A%y + U = |u| V. (4.7.1)
Then ||ul|3 > ¢, furthermore, u is a least energy solution if ||ul|3 = ci,.

Proof. We define the energy functional associated to (4.7.1)in H2(RY) as

0% 1 N 8
F(u) ::§/RN \Au|2dx+§/RN |u|2d:v— 2N+8/RN |u|2+N dx.

If w is a solution to (4.7.1), then by Lemma 4.10.1, we get

N 8
2 2+
,Y/N ]Au| der = /N |u| N, (4.7.2)

. . ; .:;

If u is a nontrivial solution to (4.7.1), then there holds |[ul|} > c&. Indeed, using the
Gagliardo-Nirenberg’s inequality (4.1.5), we get from (4.7.2) that

2\ ¥
’y/ |Aul? dz < (HU*H2> ’y/ |Aul|? dz.
RN Cn RN

Thus necessarily ||ul3 > ¢ and taking into account (4.7.3), this ends the proof. O

Proof of Theorem 4.1.7. By Theorem 4.1.4, there exist a sequence {c,} with ¢, — c}
with ¢, > ¢j and {u,} C M(cy,) such that E(u,) = y(¢y). From (4.6.5) in the proof of
Lemma 4.6.2, we deduce that

/N |Auy|? dz — 0o as n — oo, (4.7.4)
R

and using Cauchy-Schwarz’ inequality (4.2.3), it follows from (4.7.4) that

Ju |Vun ? da

2 — () as — OQ. 4. ; .ei
SlIlC(f (;)(un) — (], we ‘11(511 ()b‘aln

e 2N da Nt
Y Jrn [Aug|? da N

as n — oo. (4.7.6)
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N
At this point, we introduce () := €37 up(epx), where

—4

€n

::'y/ |Au, |* dz — oo as n — oo. (4.7.7)
RN
It is easy to check that ||, [|3 = ||un|3 = cn, |Atin||3 = 1, and

N44
/]an\2+%dx—> +
RN

Then, as in the proof of Lemma 4.3.1, necessarily there exist a § > 0 and a sequence
{yn} € R such that for some R > 0,

as n — oo, (4.7.8)

/ |t |? dzz > 6. (4.7.9)
Br(yn)
Thus defining
N
Un () := Up(z + yn) = 62 Un(nT + €nyn), (4.7.10)

we get from (4.7.9) that there is a nontrivial v so that v, — v in H2(RY). Since u,,
satisfies the following equation

2 8
YA Uy, — Aty + aptiy, = |Un| N Uy,

where the Lagrange multiplier is given by

1
ap = — (—’y/ |Auy, |? dx —/ |V, |? dx +/ |un|2+% dac)
Cn RN RN RN

therefore v, satisfies
2 2 4 A
YA v, — € Avy = €Uy + |vp| N vp.

Combining (4.7.4) and (4.7.5)-(4.7.7), we get

4
ey, — AN as n — oo. (4.7.11)

Since v, — v in H*(R") as n — oo, then v solves

yA%y 4 v = |v|%v. (4.7.12)

*
cyN

Now setting

() = <C}“V4N>Isvvn ((C}ZN>}1$>, () = (CZN>%]U<<C}ZN)156>,

it is easily seen that w, — u in H?(R™) as n — 0o, and ||w,||3 = ||va||3 = ¢,. Moreover,
it follows from (4.7.12) that w is solution to (4.7.1), and thus by Lemma 4.7.1, we have
that ||ul|3 > ¢j. On the other hand, since w, — u in H*(RY) as n — oo, we see that
lull3 < liminf, o0 [[wn||3 = ¢ and thus we obtain that ||ul|3 = ¢§. By Lemma 4.7.1 u
is a least energy solution to (4.7.1). Since ||ul|3 = ¢k, [|wn |3 = ¢n — ¢k as n — oo, and
wy, — u in H*(RY) as n — oo, it follows that w, — u in L?(RY) as n — co. Now from

the definition (4.7.10), and by interpolation inequalities in Lebesgue space, there holds for

2§Q<%7

N 1
4 % N s 4 N 4
<€ncN> Uy ((67101\/) z+ enyn) — uin LYRY) as n — oo.

4 4

This completes the proof. ]
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4.8 Positive and sign-changing solutions

In this section, we study the sign and radial symmetry property of ground states to
(4.1.2)-(4.1.3).

Proof of Theorem 4.1.8. For any c € (co, ¢s,n), the existence of a ground state is guaran-
teed by Theorem 4.1.4. To show that, when o € N, one of them is radial we make use of
the Fourier rearrangement arguments as presented in [30]. For u € L*(RN), let u® be the
Fourier rearrangement to u defined by

uti= FH(Fu)),

where F reps. F~! denotes the Fourier transform reps. the Fourier inverse transform,
and f* stands for the Schwarz rearrangement of a measurable function f. Notice that u
is radial, and ||u®||2 = ||ul|2. Moreover, in view of [30, Lemma A.1],

1AW |2 < [[Aullz,  ([Vubllz < Va2, [[ufla042 > [lull2o+2- (4.8.1)

Let u. be a ground state associated to ~y(c), then Q(u.) = 0. From (4.8.1), we obtain
that Q(uf) < Q(u.) = 0. Hence by Lemma 4.3.2, there exists a 0 < A < 1 such that
Q((uf)y) = 0. Observe that

9
v(e) < B((ul))) = E((ul)y) — UWQ((UE)A)
N—4 oN —2
— 2 Aut? dz + A / 812 4
el AR e I\

< E(u.) — %Q(UC) =(¢),

and thus necessarily A = 1, and E(uf) = v(c). Therefore, uf is a ground state solution to
(4.1.2)-(4.1.3). Tt remains to prove that u? is sign-changing. Associated to uf there exists
a Lagrange multiplier a. € R so that

YAZUE — Aub + aut = [uf 27Ul
Now, when 4 < o N < 4%, we deduce from (4.2.8) and (4.2.10) that o, — 400 as ¢ — 0.
When o N = 4, the same result can be established as ¢ — ¢} by combining (4.6.5) with
(4.2.7) and (4.2.12). At this point, using [28, Theorem 3.2] we deduce that uf is sign-
changing. O

Proof of Theorem 4.1.9. We borrow here an idea from [28]. We consider the following
modified minimization problem

Y(c):= inf E(u), (4.8.2)
ueM(c)
where
E(u): = z/ |Aul? dx + 1/ |Vu|? do — ! / lut 22 dx
2 JrN 2 Jrr 20 + 2 JrN ’

_ 1 oN
Qu) : = Aul? dx + 7/ 2 de — / +|20+2
(u) W/RN| u|* dz 3 Jon |Vu|® dx 3520 12) Jan lu™| dz,
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and

M(c) :={u € S(e) : Q(u) = 0}.
It is straightforward to check that the analysis done with E, @, and M(c) remains un-
changed if we now work with F, @ and M(c). Thus, in particular, for any ¢ > c, if
{un} C€ M(c) is a minimizing Palais-Smale sequence to (4.8.2), by the modified version
of Lemma 4.3.6, there exists a i, € H*(R")\{0}, and a Lagrange multiplier @, € R such
that

A%, — At + act, = |l [*u;. (4.8.3)

Also by the corresponding versions of Lemma 4.4.1, Lemma 4.4.2, and Lemma 4.6.3, we
deduce that 0 < ||i||3 < ¢, @, — @, in L2 T2(RY), E(u.) = 7(c) > 0, and a, > 0.

Next we show that #. > 0. To this aim, we first observe that a. > 0 can be assumed
arbitrarily small by taking ¢ > 0 large enough. Indeed, &, satisfies

1 _ o o
P ~ ~+12042 < —+|20+2
ae c( 2B (i) + — /RN | d:):) < 5T /RN a2t de. (4.8.4)

Recording the fact that 7(c) remains bounded as ¢ — co. When 4 < o N < 4*, then from
(4.3.1) and Q(u.) = 0, we see that [pn |uf > T2 dz < C for some C > 0 as ¢ — oco. Thus,
in view of (4.8.4) we deduce that &, > 0 can be arbitrarily small by taking ¢ > 0 large
enough. When oN = 4, it follows from (4.3.1) and (4.2.1) that [pn [aS|?? T2 dz < C for
some C' > 0 as ¢ — oo. Then we can reach the same argument from (4.8.4).

Since @, > 0 is small when ¢ > ¢ is sufficiently large, then we are able to write (4.8.3)
into the following system

_’YAac + Alac = Vg,

— AT + 0. = |uf [P u],

where A1, Ao > 0 satisfying Ao = ~a., and A1 + Ao = 1. It is then standard, by the
strong maximum principle, to deduce that u. > 0 and in particular . satisfies (4.1.2). By
Proposition 4.6.5 and Remark 4.6.6, then &, > 0, thus Lemma 4.6.3 indicates that 7(c)

is achieved by .. Finally, let us show that u. is radially symmetric around some point.

Setting
1 1 1
flu,v) = (47 - c_vc) u— ﬂv + [u*u,  g(u,v) =v— U

we see that (4.1.2) is equivalent to the elliptic system

FYA/L_LC + g(ﬁw 1_}0) = 0;
AV, + f(ﬂc,@c) =0.

We are now in the setting of Busca and Sirakov [32] and from [32, Theorem 2], we readily
deduce that u. is radially symmetric. O

4.9 Dynamical behaviors

This section is devoted to the study of dynamic behaviors of the solution to the Cauchy
problem of the dispersive equation (4.1.1). First we give a class of initial datums such that
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the solutions to (4.1.1) exist globally in time. Next we discuss the instability of the standing
waves associated to radial ground states to (4.1.2)-(4.1.3) in the sense of Definition 4.1.11.

We start by recalling the local well-posedness of the solutions to the Cauchy problem
of (4.1.1) and a blow-up alternative due to [95].

Lemma 4.9.1. (/95, Proposition 4.1]) Let cN < 4*. For any ug € H*(RY), there exist a
T > 0 and a unique solution u(t) € C([0,T); H2(RN)) to (4.1.1) with initial datum ug so
that the mass and the energy are conserved along time, that is for any t € [0,T),

[u(t)ll2 = [luoll2, and E(u(t)) = E(uo).

Moreover, either T = oo, or lim;_,p— ||Au(t)|]2 = oo.

Proof of Theorem 4.1.10. Let ¢ > ¢y be arbitrary. First observe that O. # (). Indeed, for
any u € M(c) we know from Lemma 4.3.2 that uy € O, for A > 0 small enough. Now let
ug € O, and denote by u € C([0,T); H*(RY)) the solution to (1.2.1) with initial datum .
We shall prove that u exists globally in time, i.e. T'= oco. If we suppose by contradiction
that T' < oo, it follows from Lemma 4.9.1 that,

li Au(t)]? dz = oo. 4.9.1
Jim [ Au(t)]de = oo (4.9.1)

Now we observe that F(u(t)) = E(ug) for 0 <t < T, and

oN —4
20N

g

B(u(t) — Q) =75~ [ |Aufds+

N-2 )
. /RN Vul?de.  (49.2)
Since E(u(t)) = E(up), thus when 4 < o N < 4*, we deduce from (4.9.1) that

lim Q(u(t)) = —oc. (4.9.3)
t—=T—
When o N = 4, using that the energy and the mass are conserved, then Lemma 4.2.2
applies to give that

lim |Vu(t)|? de = oc.
t—T— JRN

and we also deduce from (4.9.2) that (4.9.3) holds.

By continuity, there exists a ¢y € (0,7") such that Q(u(to)) = 0. Since ||u(to)|2 =
|luoll2 = ¢, by the definition of y(c) it follows that E(u(to)) > v(c). This contradicts the
fact that E(u(to)) = E(uo) < v(c). Then Theorem 4.1.10 follows. O

Let us now prove Theorem 4.1.12. For this aim we first recall the localized virial
identity introduced in [30],

Myplu] == QIm/ uVerVu dx,
RN

where u € H'(RY), ¢ : RV — R is a radial function such that Vip € L*(RN), 1 <j <6

satisfying
r forr<1
p(r) =4 2 =) <1 forr >0,

const. for r > 10
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and pr(r) = R%o(%) for R > 0.

In [30, Lemma 3.1], it is proved that for N > 2, if u(t) € C([0,T); H>(RY)) is the
radial solution to (1.2.1) with initial datum ug € H2 4(RY), it holds

%Mm [u(t)] < ANoE(uo) — (2No — 8)y[|Au(t) |3 — (2No — 4)[|Vu(®)|3

Lo (nwt)u% JIvums 1 )

R2 RoN-1) T R2 T R4 (4.9.4)

Vu®)|3  [Vu(@®)|§ 1 1
=8Q(u(t)) +0 (H 1;%(;)”2 + ”R;M; + 5+ R4> :

Proof of Theorem 4.1.12. Suppose that u. is a radial ground state, and define
0 = {v € Hpy(RVI\{0} : E(v) < E(ue), [[v]l2 = llucll2, Qv) < 0}.

The set © contains elements arbitrarily close to u. in H2(RY). Indeed, letting vg := (),
we see from Lemma 4.3.2 that vg € © if A > 1 and that vy — u. in Hfad(RN) as A — 1.
Let v € C([0,T); H2,,(RY)) be the solution to (1.2.1) with radial initial datum vg, and
T € (0,00] be the maximal existence time. To prove the theorem, we just need to show

that v(¢) blows up in finite time. We divide the rest of the proof into three steps.

First step : We claim that there exists a § > 0 such that Q(v(t)) < —f for any ¢t € [0,T).
Indeed, reasoning as the proof of Theorem 4.1.10, we easily check that v(¢t) € © and in
particular Q(v(t)) < 0 for any t € [0,T). Now setting v := v(t), in view of Lemma 4.3.2,
since Q(v) < 0 there exists a A* < 1 such that Q(vy«) = 0. Moreover, the function
A — E(vy) is concave for A € [A*, 1], thus

OE(uy)
o\

Using that Q(v) < 0, E(v) = E(vg) and vy« € M,q4(c), we have

E(vy) — E(v) < (A" =1) =1 = (A" = 1)Q(v).

QW) < (1= \)Q(v) < B(v) - E(vx:) < B(wo) — Blu) = —B.  (4.9.5)
Second step : We claim that there exists a constant & > 0 such that

%M% [v(t)] < —6||Vu(t)|3 for t € [0,T), (4.9.6)

and a t; > 0 such that
Mg, [v(t)] <0 fort >t;. (4.9.7)

To prove (4.9.6) we need to distinguish two cases.

Case 1: Let
Ty :={t €[0,00) : (6N —2)||Vo(t)||3 < 4N E(vp)}.

In view of (4.9.4) and the First Step, taking R > 0 sufficiently large, we obtain

d
Mo [v(t)] < =76 < =6||Vu(t)||3 for t € T}, (4.9.8)

with some § > 0 sufficiently small.
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Case 2: Set
Ty := [0,00)\T1 = {t € [0,00) : (¢N — 2)||Vo(t)||3 > 4N E(v)}.

Using (4.2.3), we get from (4.9.4)

d 2No — 8)y
DM [o(0)] < —(No —2) Vo3 — EXT—21 D ues
dt [lvol[3
L IVe®l3 | [IVe@llf | w
o <R4+ R Reen PRI

Taking R large enough and noticing that under our assumptions, ¢ < 2 if No = 4 and
o <4if oN > 4, we deduce

d (No —2)
%MWR[,U(t)] < I
Now combining (4.9.8) and (4.9.9), we see that there exists a > 0 such that (4.9.6) holds.

Finally since

IVu(®)]13. (4.9.9)

M‘PR [U(tl)] = MGDR [UO] + /0751 %MQOR [v(s)]ds,

the inequality (4.9.7) follows from the estimate

& o) 2 min {78, X7 =D o).

Third step : We now conclude that the solution v(¢) to (1.2.1) with initial datum wg
blows up. Here we adapt another argument from [30]. Suppose by contradiction that
T = oo, then integrating (4.9.6) on [t1, ], and taking (4.9.7) into account, we have that

Maalott) < =5 [ [70(s)Ras.

Now using the Cauchy-Schwarz’s inequality (4.2.3), we get from the definition of M, [v(t)]
that
[Myp [v(®)]] < 2[IVerlloollv(@) |2l Vo(b)]2 < Cl[Vo(t)]l2.

Thus for some 7 > 0,
t
Mono(t)) < =7 [ My lufs))ds. (4.9.10)
1
Setting z(t) := fttl | My, [v(s)]|?ds, we obtain from (4.9.10) that z’(t) > 722(¢)%. Integrating
this equation, we deduce that M, [v(t)] = —oo, when ¢ tends to some finite time t*.

Therefore the solution v(t) cannot exist for all ¢ > 0. By the blow-up alternative recalled
in Lemma 4.9.1, this ends the proof of the theorem. O

4.10 Appendix

Lemma 4.10.1. Let 0 < oN < 4*. If v € H?>(RY) is a weak solution to

YA%v — pAv + wu = dv[*7v (4.10.1)
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with v, p,w, d are constants, then v satisfies I(v) = P(v) = Q(v) = 0, where
I(u) = || Aull3 + pl Vull3 + wlluld - dlull355.

(N —4)y (N —2)u Nuw dN -
N0 g+ 20 gy Mgz - gz

P(u) = BN 50 4 22042

and
doN 20+2

2, M 2
Qu) = A Aul + SVl — g5l 3

Proof. Since u € H?(RY) is a solution to (4.10.1), multiplying (4.10.1) by u and integrating
in RV, we get that I(u) = 0. Next, we notice that Q(u) = %I(u) — 2 P(u). Therefore to
prove that Q(u) = 0, we only need to show that P(u) = 0. This last identity is usually
referred to as a Derrick-Pohozaev identity. To establish it we closely follow the proof of
[21, Proposition 1]. First multiplying (4.10.1) by - Vu and integrating on Br(0) for some
R > 1, we have

/ y(z - Vu)A%u — p(z - Vu)Au + w(z - Vu)udr = d (z - Vu)|u|*7u da.
Br(0) Br(0)
(4.10.2)

In a first time, we focus on the first left-hand side term of (4.10.2). Integration by parts,
we find

’y/ (z - Vu)A?udr = —’y/ V(z-Vu) - V(Au) dx
Bgr(0) Bgr(0)
t9 [ (VAW n)e Vu)ds
0BR(0)

= Az - Vu)Audzx
Br(0)

—7/‘ (V(z - Vu) - n)Au — (V(Au) - n)(z - V) dS
0BRr(0)

where n :=n, = % denotes the unit outward normal at x € Bg(0). Integrating by parts
one more time, we have

7/ Az - Vu)Audr = 2’y/
Br(0) Br
:27/ |Au|2dm+1/ z - V(|Aul?) dx
BR(0) 2 JBr(0)

= (4_]\])7/ \Au|2dx+l/ (z - n)|Aul? dS.
2 Br(0) 2 JoBr(0)

Combining the previous two equalities, we obtain

|Au]2da:+’y/ (x - V(Au))Audz
) Br(0)

R

7/ (z - Vu)A?uds = (4_]\7)7/ \Au|2d1:—|—z/ (z-n)|Au*dS
BR(0) 2 JBrO 2 JoBg(0)
—7/ (V(z-Vu) -n)Au — (V(Au) -n)(z - Vu) dS.
0BR(0)
Next, we deal with the second left-hand side term of (4.10.2). We have

— i (x - Vu)Audz = p V(z - Vu) -Vud:v—u/ (Vu-n)(z - Vu)dS
Br(0) Br(0) 9BRr(0)
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2—N
= 2=N)n |Vu\2dm—|—ﬁ/ (z-n)|Vu*dS
2 Br(0) 2 JoBr(0)
— 1 (Vu -n)(x - Vu)dS.
9BRr(0)

Finally, for the last two terms of (4.10.2), we get

N
w/ (x - Vu)udr = Earhd |u|2dm—|—£/ (z - n)|u|* dSs,
B(0) 2 JBr(O 2 JoBr(0)
and
N
d (z - Vu)|u|* ude = — d / |u|?7F2 da + / (z - n)|u>T2ds.
Br(0) 20 + 2 JBg(0) 20 + 2 JaBg(0)

Taking into account the above calculations, it follows from (4.10.2) that

M/ |Au|? dx + N_Q'u/ \Vul|? da + —/ lul? dz
2 BR(O) 2 BR(O) (4 10 3)
_ Nd 20+2 o
=% 12 ls0 | dx + Ir(u),
where
R |u|2o+2
Ip(u) = = Aul® + pVul? + wlul* — d ds
w = [ (v st -
1
= (’y(V(Au) -z)(x - Vu) —y(V(z - Vu) - 2)Au — plx - Vu|2) as
R JaBg(0)

We now show that Ig, (u) — 0 for a suitable sequence (Ry,), C R with R, — oo as n — oc.
First, using the Cauchy-Schwarz’s inequality, we have, for any x € 9Br(0),

(V(Au) - 2)(@ - w)| < B2 (|V(Aw)P + [uf?)

N (4.10.4)
|(V(z - Vu) - z)Au| < CyR? [ |Aul? + > i |2+ [Vul* |,
ij=1
where u; j == %{%j. In view of the elliptic regularity theory, we have that v € H*(RY),

in particular u € H3(R"™). This yields to

N
/]RN VAW + [AuP + D7 fui P+ [Val® + [uf® + u*7* d
ij=1
N
— / / ( ) (AU)P + ’Au|2 + Z ’um‘Q + ‘Vu|2 + |u‘2 + ‘u|20+2 dS) dR < .

i,j=1
(4.10.5)

As a consequence, there exists a sequence (Ry,), C RY satisfying R, — 00 as n — 00 so
that

N
R, V(AW + [Auf + > Juij|* 4+ [Vul® + Jul® + [u]** T2 dS — 0.
9Br,, (0) ij=1

This implies that Ir, (u) — 0 as n — oco. Now substituting R by R, in (4.10.3), we then
obtain that P(u) = 0. This completes the proof. O
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Proposition 4.10.2. Let N > 5 and ﬁ <o < ﬁ. Then any solution u € X to

(4.6.8) belongs to L2(RN).

Proof. We can assume without loss of generality that v = 1. The main idea of the proof
consists in testing (4.6.8) with a function p?u where, roughly, o(z) = 1 + |z|.

Let ¢ € C®(RY) with supp ¢ C RV\Bg(0) be such that ¢(x) = 1 for |z| > 2R. Here
R > 0 is a constant to be determined later. For Ry > 2R, we define ¢ := ¢hp,, where
hg, € C*(RY) satisfies

|z| 2R < |z| < Ry,
hgp,(x) = —
m (@) R (1 +th (m R1>> , 2| > Ry.
Ry
Let
|z[|V(z)| |z[|Ap(z)|
AM(Rp) := sup ——————, A3(Rp):= sup ————. 4.10.6
(1) |z|>2R o(r) (1) |z|>2R o(x) ( )

From the definition of ¢ it readily follow that A\ (R;) = 1, for all Ry > 0 and that
)\2 = )\Q(Rl) — 0 as R1 — OQ.

As a preliminary step we derive some pointwise identities. By simple calculations
A(Q*u) = * Au + 4pVuVp + u(20Ap + 2|Ve|?),
and

(A(pu))? = ©?(Au)? + 4|VpVul> + u?(Ap)? + 4pAuVeVu
+ 2puAulAp + AuApVpVu.

Using the two previous lines, we obtain

(A(pu))? = Aul(pu?) + 4 VoVul* + u*(Ap)?

, (4.10.7)
+ AVeVuulAp — 2ulu|Vel|~.
We also need that

IV (pu)|? = VuV(p?u) + |Vl ?u?. (4.10.8)

Now testing (4.6.8) with p?u and using (4.10.7)-(4.10.8), there holds

L 18P +19ulde = [ lpaPlu + [ Vel do

RN RN RN
+ 4/ \VoVu|? dz —i—/ lulAp|? da (4.10.9)
RN RN

+4/ uAng@Vud:U—Z/ uAu|V|? dz.
RN RN

Recalling Holder inequality and taking into account (4.2.2), we obtain

# -
/ ’(pu‘2’u‘20 dr < </ |u’20+2 dl’) (/ ‘¢u’20+2 dl‘) +1
RN x| >R RN

EEaY
<c ( / \u|20+2> | 186 +9(pu)? da.
|z|>R RN
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Setting §(R) := C (flx\ZR |u|2"+2>"Tl where we note that §(R) — 0 as R — oo, it then
follows from (4.10.9) that,

(1 -3R) [ 1R+ VewPde < [ VePlulPde+a [ [VevuPde
RN RN RN
2
—i—/RN luAy| dx—|—4/RN uApVepVudr (4.10.10)
5
—2/ uAu|V|? de =: I;.
| WUVl ;
From now on, we estimate I; for 1 <14 < 5. In view of (4.10.6), then

h= [ VePlulde= [ [VePluldr [ VPl do
RN |z|<2R |z|>2R

2
<C \u]de—i-/ |('OUL dx
le|<2R e|>2R | 7]

Noting that VoV (pu) = |Ve|?u + (VeVu)ep, it follows for |x| > 2R, that

VeVieu)l | Vel
© ?
Combines this inequality and the Young’s inequality, we obtain for any € > 0,

I
2= / |VoVu|?de < / |VoVul?dr + IVoVu|? de
4 RN |z|<2R |z|>2R

2 1 4
<C IVul?dz + (1+e)|WV(fU>|+< +) |W4|
|z[<2R |z[>2R || o]

2 2
<C |Vu]2d:n—|—(1+e)/ \V(WN+(1+1>/ pul®

le|<2R w>2r  |z[? ¢) Jry x|t

[VeVu| <

lpul.

\cpu|2d$

Also using (4.10.6), we have

I3:/ ]quPdacS/ \u|2\A<p]2da:+/ lu?| Ap|? da
RN |z|<2R |x|>2R

2
<C uf? do + Ag/ WL da
2| <2R w|>2R |Z]

Next we deal with I;. Using the Young’s inequality for € > 0 again, leads to

Iy = 4/ uApVepVudr < 4/ |ulp||VeVu|dx
RN |z[>2R

2 I 2I
<2 VeVaPdoo A dr = 2 4 28
|z|>2R € J|z|>2R 2
\V4 2
<o WP ruParaesa [ VEE,
lel<2R el>2r 2|
§ 2)3 2
+2(1+¢) loul 2% Ll
e|>2R || € Jiz>2r |7

Finally we estimate I5. We have for |z| > 2R,

Aup) 2Vqu0 n uAgpl
¥ ¥ ¥

Au =
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This implies that

I
> < / |uAuHch\2 dx + \uAu|]Vg0|2d:c
2 |z|<2R |z|>2R

2
<c uAu| dz + 1A ug) VL 5
jo|<2R [ >2R ]

Vol|? Vo|?|A
je|>2R ] jo|>2R [

3
=C |luAu| da;+ZJi.
|x|<2R =1

We now treat J; for i = 1,2,3. By the Young’s inequality for 7 > 0,

T 1 Vel
J < - Alu 2dx+—/ ul? dx
1= |x|z2R‘ ()l 2T |m|z2R’ | o]
T 1 lpul?
< — Aup)|? de + — dzx
- 2/lcc|>2R (we)l 27 Jja>2r |7
We also get
2 4 T 2
T g/ |VuV<,o|2dx+/ [l Vel 4, < —2+/ el gy
|z|>2R lz|>2R  |¢] 4 lz|>2R |Z]
1 2
<cC Vul? dz + <2+ )/ eul” g,
|z|<2R €/ Jiz|>2r ||
V(ou)|?
+(1+e) Vpw)l” (‘02” d
w/>2r  |Z]
and

Ap||V|? 2
J3:/ |u|2\ ||Vl deAQ/ \sou:!)) i
|z[>2R 4 e[>2R |2

Thus combining the estimates to J; for ¢ = 1,2, 3, we obtain

2
L=C IU\2+|Vul2dx+(2+2e>/ de
|z|<2R |z|>2R |:1:\

2 2
1 2
+2>\2/ ol et <4++>/ oul” g,
w|>2R | 7] 7€) Ja>2r |7]

+T/ |A(up)|? da.
lo[>2R

Now taking into account above estimates to I; for 1 < ¢ < 5, there holds

° IV (ou)|? |oul?
ZIZ-SC(R)+(6+86+262)/ PP g 4 22, " da
= @|>2r |7 z|>2R |7

1 6 2 2)\2 2
+(10+++2e>/ Ul e (14034 22 / el g,
T € le[>2R 2] € ) Ja>2r |7

—i-T/ ]A(ugp)\Q dx.
o[ >2R
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Recalling the Hardy’s inequalities

N —2)\? 2
/ Vol do > () / ﬂdx,
RN 2 RN |z]?

N2 2
/ AoPde> N [ VY
RN 4 Jryv o |z

(4.10.11)

)

from (4.10.10) and (4.10.11), we arrive at

(1=3(R) [ 18P + [V (eu)P do < C(R) + (]32 (6+8c+28) 1) [ 1Al do

2 V(1 6 223 Ao 9

(4.10.12)

Since N > 5, taking ¢,7 > 0 small enough, R > 0 large enough and recording that
0(R) — 0 as R — oo, we can insure that

(;2 (6+8€—|—26)+7’> <1-34,

2 \?[ 1 1 6 2 223 A2
— 2 1 Zl<1-4
(N_2> <4R2<0+ + - +6>+<+/\ >+R <1-§

Thereby there exists a constant C' > 0 just depending on R > 0 such that

and

/ IV (pu)|? dz < C.
RN

2
/ ’SOUL de < C
lz|>2R ||

uniformly with respect to Ry. Finally, letting R — oo, we observe that

It follow from (4.10.11) that

|pul?

— ’Ll,2 uad a.e for z| > 2R
q -
’x‘Q

and using the Fatou’s Lemma, it follows that u € L?(R™\Byg(0)). Thus obviously u €
L2(RN). O



Chapter 5

Remarks and Perspectives

To begin with, we shall present some remarks related to the problems treated in the
thesis.

5.1 Remarks

In Chapter 2, we consider the existence and orbital stability of normalized solutions
in a case where the energy functional J restricted to S(a1,as2) is bounded from below.
The main goal in this chapter consists in detecting the compactness of any minimizing
sequence to (2.1.4), up to translation. To this aim, borrowing the spirit from the Lions’
concentration compactness principle, one requires to exclude the possiblities of vanishing
and dichotomy. Recall that the energy functional J is invariant under translations in
RY, thus vanishing can be avoided as a simple consequence of the Lions’ concentration
compactness Lemma. Next to see the compactness, it remains to rule out dichotomy. In
general, this can be done by checking the strict subadditivity inequality (2.1.5). However,
we alternatively propose the coupled rearrangement arguments to remove dichotomy. More
precisely, we crucially make use of the coupled rearrangement arguments to guarantee the
strong convergence of any minimizing sequence in LP(R™) x LP(RY), up to translation,
for 2 < p < 2%,

A natural question is that whether we are able to prevent dichotomy from happening by
means of directly establishing the strict subadditivity inequality (2.1.5). At this moment,
the answer is positive. In fact, in order to establish the strict subadditivity inequality
(2.1.5), one can adopt the approach as introduced in [51, Proposition 4], which is based
on [51, Lemma 2]. However, we remark that this lemma is applicable to establish related
strict subadditivity inequality provided one can identify a radially symmtric minimizing
sequence to corresponding minimization problem. From this point of view, the coupled
rearrangement arguments are more flexible to deal with the compactness of any minimizing
sequence, regarding this subject, we refer the readers to [57].

Furthermore, let us also point out a method to discuss the compactness of any minimiz-
ing sequence as proposed by Lopes [69], which is also alternative to the Lions’ concentration
compactness principle and does not need the verification of related strict subadditivity in-
equality. But this method is available under a stronger requirement that associated energy
functional is of class C?.
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In contrast, Chapter 3 is devoted to looking for normalized solutions in another two
cases where the energy functional J is unbounded from below on S(aj,az). Despite we
manage to relax limitation on dimension inducing by the Liouville’s type results, but we
still fail to find two solutions to (3.1.2)-(3.1.3) under only assuming (H;) or (Hz). This
is because so far we are unable to prove the conjecture that if two nonnegative functions
ut,ug € HY(RY) solve (3.1.2) with some Aj, Ao € R satisfying \; > 0 for some i = 1,2,
then u; = 0.

In Chapter 4, we focus on the study of normalized solutions to a class of fourth-order
nonlinear Schrodinger equations in the mass critical and supercritical regime, in which
the energy functional F is unbounded from below on S(c) for ¢ > ¢y, where ¢ is defined
by (4.1.10). Using a natural constraint approach, we then introduce the minimization
problem (4.1.9). In order to seek for ground state solutions to (4.1.2)-(4.1.3), our aim is to
prove the existence of minimizers to (4.1.9). To this end, one of key steps is to show that
the weak limit of a Palais-Smale sequence for the energy funcional E restricted to S(c)
stays in S(c). This essentially relies on the fact that the associated Lagrange multiplier a.
is strictly positive. Actually, from Lemma 4.4.1 and Lemma 4.6.3, we know that o, > 0 is
always the case for any ¢ > ¢o. Hence it is open that if minimizers to (4.1.9) exist when
a.=0and N > 5.

Additionally, as we know that the Lions’ concentration compactness principle is a
useful means to handle various minimization problems under constraint, then we question
whether it is possible to adapt directly the spirit of the Lions’ concentration compactness
principle to solve the minimization problem (4.1.9).

In Theorem 4.1.7, we obtain a concentration behavior of ground state solutions to
(4.1.2)-(4.1.3) as ¢ approaches to ¢} from above in the mass critical case cN =4 . Since
the uniqueness of least energy solution to (4.1.13) is unknown, hence we cannot describe
precisely the ground state solutions. At this point, a challenging question is that whether
the uniqueness of least energy solution to (4.1.13) holds.

When o € N, using the Fourier rearrangement technique we can prove that at least
one of ground state solutions to (4.1.2)-(4.1.3) is radial, see Theorem 4.1.8. However, when
4 < oN < 4%, radial symmetry of the ground state solutions is still open.

Finally, let us mention an issue concerning the orbital instability by blowup in finite
time of radial ground state solutions to (4.1.2)-(4.1.3), see Theorem 4.1.12. As we have
already seen, this result is valid under the restriction that ¢ < 4. This is because its
proof strongly depends on an essential element coming from Boulenger and Lenzmann
[30], which is only applicable when ¢ < 4. Thereby we would like to know if Theorem
4.1.12 remains true when o > 4.

5.2 Perspectives

In the following, as a possible extension of this thesis we put forward some interesting
issues to be exploited in forthcoming works.
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5.2.1 Fractional minimization problem

We consider the existence of solutions to the following fractional nonlinear Schrédinger
system in RV,

{(—A)sul = Ayug + g |un [P g + Broug |2 ugl™?, (5.2.1)
(—A)ug = Agug + pa|ua|P2 2ug + Brofus|™ lug|™ *us, o
under the constraint
/ lur|* dx = a1 > 0, / lug|? dz = ag > 0, (5.2.2)
RN RN

where 0 < s < 17#1)“275 > 07 2< Dp1,p2,71 + 712 < (Nggls)-F

We denote by H*(R™) the fractional Sobolev space of order s with the norm

s
el = [lull3 + (= 2) 2 ull3,

where up to a multiplicative constant

u(y)”
oy [ [ O S0 ey

Clearly, a solution (u1,u2) to (5.2.1)-(5.2.2) corresponds to a critical points of energy
functional J : H¥(RY) x H*(RY) — R defined by

l\)\n

1

J(ul,u2) 3

s s > i .
[P ) b a3 /RN g P d:c—ﬂ/RN g |7 a2 iz,
on the constraint g(al,ag) := S(a1) x S(az), where

$(a) = {u e H®RY): /RN lul? da = a > 0},
and the parameters Ai, Ao are determined as Lagrange multipliers.
We are concerned with the existence of solutions to (5.2.1)-(5.2.2) under the assumption

- 4 4
(Ho) N>1,0<s<1,pu1,p2,8>0,2<pi,ps < NSJ’M“Q >1,r1+re < NS

Observe that under the assumption (Hp) the energy functional .J is bounded from below
on S(ay,az). We then define the following minimization problem

M(ay,az) == inf J(uy,u2) < 0. (5.2.3)

(u1,u2)€S(a1,a2)

Indeed, minimizers to (5.2.7) are solutions to (5.2.1)-(5.2.2). Our aim is to prove that
when (Hp) holds, any minimizing sequence to (5.2.3) is compact, up to translation, in
H3(RN) x H3(RV).

In this direction, we mention a related paper [25], where the author took advantage of
the Lions’ concentration compactness principle to obtain the compactness of any minimiz-
ing sequence where scaling technique is available. However, under the assumption (I:IO),
it seems hard to establish the compactness of any minimizing sequence to (5.2.3) through
the Lions’ concentration compactness principle. For this reason, we employ the coupled
rearrangement spirit. Thus the heuristic ingredient consists in showing assertion that

[N b Pae < [ -8+ [ (oo (524
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5.2.2 Fourth-order minimization problem

We study the existence of solutions to the following fourth-order nonlinear Schrédinger
system in RV,

A%up = Aug + paur [P 2 + Brfu | 2 us ™2, (5.2.5)
A%uy = Aus + polusl?? us + Brafur [ ua|™ " us. o
under the constraint
/ lui|? dz = ay > 0, / lug|? dz = ag > 0, (5.2.6)
RN RN

where p1, p2, 8 >0, 2 < p1,p2, 71 + 712 < ﬁ‘

Apparently, a solution (uj,ug) to (5.2.1)-(5.2.2) is obtained as a critical point of energy
functional J : H2(RY) x H?(RY) — R defined by

A

1 2
J(uy,ug) := 7/ |Au1|2 + ]Au2|2dx — E &/ |u; PP dz — B/ lug " |ug|™ de,
2 JrN = Di JRN RN

on the constraint S(ay,az) := S(a1) x S(az), where
S(a) := {u e H*R"): /N lul? dz = a > 0},
R
and the parameters Aj, Ay are determined as Lagrange multipliers.

We are interested in the existence of solutions to (5.2.5)-(5.2.6) under the assumption

A 8 8
(HO) N > 17:“’17#275 > 072 <p1,p2 < N,rlaTQ > 17T1 + 12 < N
On account of the fact that the energy functional .J is bounded from below on S(a1, az),
we then introduce the following minimization problem

M (a1, az) := inf J(uy,ug) < 0. (5.2.7)
(u1,u2)€S(a1,a2)

Indeed, any minimizer to (5.2.7) is a solution to (5.2.5)-(5.2.6). Our purpose is to detect the
compactness of any minimizing sequence to (5.2.7), up to translation, in H?(RY)x H?(RY)
under the assumption (Hg). Although (5.2.5) can be viewed as a replacement of —A by
A? in (2.1.1), which however brings new challenges to discuss the compactness of any
minimizing sequence to (5.2.7).
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