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Abstract

Ceramics are one of the most important archaeological materials to help in the re-
construction of past civilizations. Information about complex ceramic objects is com-
posed of textual, numerical and multimedia data, which induce several research chal-
lenges addressed in this thesis. From a technical perspective, ceramic databases have
different file formats, access protocols and query languages. From a data perspective,
ceramic data are heterogeneous and experts have different ways of representing and
storing data. There is no standardized content and terminology, especially in terms
of description of ceramics. Moreover, data navigation and observation are difficult.
Data integration is also difficult due to the presence of various dimensions from distant
databases, which describe the same categories of objects in different ways.

Therefore, the research project presented in this thesis aims to provide archaeolo-
gists and archaeological scientists with tools for enriching their knowledge by combin-
ing different information on ceramics. We divide our work into two complementary
parts: (1) Modeling of Complex Archaeological Data and (2) Clustering Analysis of
Complex Archaeological Data. The first part of this thesis is dedicated to the design
of a complex archaeological database model for the storage of ceramic data. This
database is also used to source a data warehouse for doing on-line analytical pro-
cessing (OLAP). The second part of the thesis is dedicated to an in-depth clustering
(categorization) analysis of ceramic objects. To do this, we propose a fuzzy approach,
where ceramic objects may belong to more than one cluster (category). Such a fuzzy
approach is well suited for collaborating with experts, by opening new discussions
based on clustering results.

We contribute to fuzzy clustering in three sub-tasks: (i) a novel fuzzy clustering
initialization method that keeps the fuzzy approach linear; (ii) an innovative qual-
ity index that allows finding the optimal number of clusters; and (iii) the Multiple
Clustering Analysis approach that builds smart links between visual, textual and nu-
merical data, which assists in combining all types of ceramic information. Moreover,
the methods we propose could also be adapted to other application domains such as
economy or medicine.

Keywords: Complex Objects, Archaeology, Archaeometry, Ceramics, Databases,
Data Warehouses, OLAP, Clustering, MaxMin Linear Initialization, Cluster Validity,
Visual TSFD, Cluster Ensemble, Combined Partition Clustering.
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Résumé

La céramique est l’un des matériaux archéologiques les plus importants pour aider
à la reconstruction des civilisations passées. Les informations à propos des objets
céramiques complexes incluent des données textuelles, numériques et multimédias
qui posent plusieurs défis de recherche abordés dans cette thèse. D’un point de vue
technique, les bases de données de céramiques présentent différents formats de fichiers,
protocoles d’accès et langages d’interrogation. Du point de vue des données, il existe
une grande hétérogénéité et les experts ont différentes façons de représenter et de
stocker les données. Il n’existe pas de contenu et de terminologie standard, surtout en
ce qui concerne la description des céramiques. De plus, la navigation et l’observation
des données sont difficiles. L’intégration des données est également complexe en raison
de la présence de différentes dimensions provenant de bases de données distantes, qui
décrivent les mêmes catégories d’objets de manières différentes.

En conséquence, ce projet de thèse vise à apporter aux archéologues et aux
archéomètres des outils qui leur permettent d’enrichir leurs connaissances en com-
binant différentes informations sur les céramiques. Nous divisons notre travail en
deux parties complémentaires : (1) Modélisation de données archéologiques com-
plexes, et (2) Partitionnement de données (clustering) archéologiques complexes. La
première partie de cette thèse est consacrée à la conception d’un modèle de données
archéologiques complexes pour le stockage des données céramiques. Cette base de
données alimente également un entrepôt de données permettant des analyses en ligne
(OLAP). La deuxième partie de la thèse est consacrée au clustering (catégorisation)
des objets céramiques. Pour ce faire, nous proposons une approche floue, dans laque-
lle un objet céramique peut appartenir à plus d’un cluster (d’une catégorie). Ce type
d’approche convient bien à la collaboration avec des experts, en ouvrant de nouvelles
discussions basées sur les résultats du clustering.

Nous contribuons au clustering flou (fuzzy clustering) au sein de trois sous-tâches :
(i) une nouvelle méthode d’initialisation des clusters flous qui maintient linéaire la
complexité de l’approche ; (ii) un indice de qualité innovant qui permet de trouver
le nombre optimal de clusters ; et (iii) l’approche Multiple Clustering Analysis qui
établit des liens intelligents entre les données visuelles, textuelles et numériques, ce qui
permet de combiner tous les types d’informations sur les céramiques. Par ailleurs, les
méthodes que nous proposons pourraient également être adaptées à d’autres domaines
d’application tels que l’économie ou la médecine.

Mots clés: Objets complexes, Archéologie, Archéométrie, Céramique, Bases de
données, Entrepôts de données, OLAP, Clustering, Initialisation linéaire MaxMin,
Validité des clusters, Visual TSFD, Clustering ensembliste, Clustering de partitions
combinées.
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Archaeology is the study of the human past through material remains. One com-
mon archaeological material is pottery, which provides information on many aspects
of human activity, including chronology, trade and technology. Potteries and their
production change through time. These changes make pottery a tool for chronology,
and at the same time, they give clues regarding exchange and trade. Moreover, once
a pottery was broken, it could not be recycled, unlike iron or glass, for instance.
Therefore, potteries have remained to exist until today. Thence, it is one of the most
important archaeological material to help reconstruct past civilizations.

1.1 Context

In recent times, there has been on one hand a high growth rate and availability of
various archaeological data and networks. On the other hand, digital systems and
tools made possible an increased usage of data by a wide potential number of users
ranging from students to researchers, and from museum curators to tourists.

Furthermore, the developments in scientific and statistical techniques have also
contributed in gaining deeper insight in the analysis of archaeological materials, e.g.,
ceramic objects, geographical coordinates and digital photography. However, there
are currently not many comprehensive digital systems, tools and databases that can
be easily used by archaeologists to study a variety of archaeological information and
share their findings easily and consistently.

17
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Moreover, archaeological ceramics1 can be described in different ways, by archae-
ologists, museum curators or archaeological scientists, e.g., through criteria related
to archaeological contexts, the history of art or the properties of the ceramic mate-
rial, as may be investigated by chemical, mineralogical and petrographic analyses.
In addition, ceramics can be used to determine contextual relationships, which help
to highlight archaeologically meaningful data from the mass of individual data. In
other words, exploiting ceramic data allows discovering patterns that are only visi-
ble in large and distributed ceramic samples. In archaeology, core data are highly
contextual. Thence, ceramics and their properties can help obtain comprehensive
knowledge about technological, cultural and geographical issues, through information
on context period and provenance of ceramics. Furthermore, the information stored in
databases typically focus on a limited range of ceramic descriptors and is not interop-
erable. Thus, research involving archaeological ceramics cannot easily take advantage
of combining all these types of information by building smart links between visual,
textual and numerical data.

1.2 Nature of Archaeological Data

During the process of documenting and dating an excavation site, archaeologists try
to integrate all the data in a coherent way to interpret the archaeological record for a
better understanding of human cultures. In this process, the construction of reusable
resources for the study of ceramics is important. From this point on, some funda-
mental questions are asked to better understand the properties that give evidence of
the ceramics past, such as where and when they were made, how they were made and
what their function was. Therefore, raw and constructed data about ceramics can be
categorized into three levels [1].

First level: Data are accessible directly from the ceramic object and its context,
e.g., decoration of ceramic object and the location where ceramic samples were found.
Such data are mainly stored without any changes later on in databases.

Second level: Data necessitate a first level of interpretation, especially in the
form of hypotheses, e.g., the expected origin of an object found at a given site and
the scientific analyses carried out to test these hypotheses. For instance, the form of
a ceramic object is first level-data and can be used to suppose an origin (before any
analysis), that is a location data.

Third level: Data are the result, e.g., the attribution of the object to an origin
according to scientific analyses and possibly other criteria. For instance, attributing
(after analysis) a location can be obtained as a result of petrographic and chemical
analysis.

1In this thesis, we use both “pottery” and “ceramic” to designate all the range of categories of

these archaeological objects.
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1.3 Research Challenges and Motivations

According to the needs of current research, there are some challenges in dealing with
highly contextual data. Finding useful information in huge amounts of highly con-
textual data is difficult for researchers and students. Data are globally very heteroge-
neous. Databases have different file formats, access protocols and use various query
languages. There is no common classification systems, nor standardized terminology,
which are required for understanding relationships from interconnections.

Moreover, databases generally have a specific description. For instance, in Lyon,
the archaeometric studies carried out on ceramics [2, 3] led to the development of
the Ceramo database [4], which began in the late 1970’s. In Ceramo, until recently,
ceramics were described by their chemical composition together with an archaeological
textual summary. Interoperability is also limited, with databases only providing a web
interface, but no API (Application Programming Interface). Thus, combining various
information about archaeological objects, such as textual, numerical and graphical
documents, which would allow powerful computer analyses, is at best an intricate
task as of today. The research challenge is to integrate various dimensions from
distant databases that describe the same categories of objects in a complementary
way.

Figure 1.1 presents a schematic representation of our thesis project. Available
data lie on the left-hand side of the schema, while our analysis objectives lie on the
right-hand side. In between, we mention the methods we aim to use for analyzing
complex data, the research challenges and the tasks this process induces.

Figure 1.1: Overview of the thesis project

The global objective of this thesis is expanding information access by using all the
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information provided by complex data, in order to take benefit from each and every
piece of information. Applied on the Ceramo database, we aim at designing data
warehousing and data mining methods that help better analyzing and categorizing
complex objects.

More precisely, our motivation is to address the following research issues:

• model and store complex data;

• find analysis methods having linear time-complexity;

• deal with problems related to clustering, such as finding an efficient cluster-
ing initialization technique to build homogeneous clusters, evaluating clustering
quality to obtain accurate analysis results for helping experts;

• find analysis methods to deal with mixed types of data.

1.4 Contributions

This thesis is divided into two complementary parts. Our contributions in each part
are summarized below.

1. Modeling of Complex Archaeological Data

2. Clustering Analysis of Complex Archaeological Data

1.4.1 Part 1: Modeling of Complex Archaeological Data

Database model for Archaeology and Archaeometry: We introduce a new
database model called Ceramo 3.0. It models previously little-exploited textual de-
scriptions of ceramic samples, which include rich locational data, graphical descrip-
tions (technical drawings, photos) and results of different kind of laboratory analyses
(such as petrographical and chemical ones). The aim of this new database model is to
store information about each and every piece of ceramic sample in a more systematic
manner.

Multidimensional model for OLAP analysis: Online analytical processing
(OLAP) helps interactively navigate a data warehouse to discover outliers or hidden
patterns. We use Ceramo 3.0 to source a data warehouse, which is original in its
storage of data that are not only numerical. Thanks to OLAP, we integrate various
points of view on ceramic objects, e.g., text descriptors, chemical analysis results, to
be able to learn deep contextual information and to make an observation from these
different viewpoints. This new multidimensional model can be a base model for other
archaeological and archaeometric data warehouses.
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1.4.2 Part 2: Clustering Analysis of Complex Archaeological Data

Data mining techniques and tools are essential to analyze the information available
in big amounts of data. The main challenge is to find a method that is well suited for
performing clustering on archaeological data. For this purpose, we aim at improving
the clustering results by using textual, numerical and graphical data possibly coming
from different databases. To achieve this goal, we propose a fuzzy approach that is
well suited to collaborate with experts by allowing to open new discussions during
clustering analysis. More precisely, our contributions to fuzzy clustering follow.

Initialization method for fuzzy clustering: We propose a new, fast and easy
to implement linear initialization method for fuzzy clustering called MaxMin Linear,
which outperforms existing methods on a variety of numerical real-world and artificial
datasets. One noteworthy characteristic of MaxMin Linear is that it can be applied
on both numerical and textual data.

Quality index for fuzzy clustering: The performance of a clustering algorithm
critically depends on the number of clusters. The optimal number of clusters can be
estimated using quality indices. However, the existing quality indices that are well-
suited to fuzzy clustering are limited when different kinds of datasets come into play.
Thus, we propose the Visual Transformed Standardized Fuzzy Difference (TSFD), an
innovative, visual quality index for the well-known Fuzzy C-Means (FCM) method.
Visual TSFD outperforms state-of-the-art quality indices on several numerical real-
world and artificial datasets. Furthermore, Visual TSFD can be also applied on both
numerical and textual data.

Multiple clustering analysis approach: This approach consists of two alter-
native solutions to deal with heterogeneous data. Our first solution introduces a new
ensemble clustering scheme that uses both the Fuzzy C-Means and Fuzzy K-Medoids
methods. This includes starting clustering initialization with MaxMin Linear and ap-
plying the Visual TSFD quality index to determine the optimal number of clusters.
Then, the main fuzzy centers obtained during ensemble clustering allow understanding
the structure of data. Our second solution introduces a combined partition clustering
method that hardens clustering results before they are cross-tabulated. This method
helps differentiate the groups obtained by clustering.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 discusses the state-of-the-art for the first part of the thesis. It no-
tably presents a selection of ceramic database projects, as well as of archaeological
data warehouses.

Chapter 3 presents the design and implementation of the Ceramo 3.0 database



22 Introduction

model.

Chapter 4 details the multidimensional remodeling of the Ceramo 3.0 database.
It also includes a sample OLAP scenario that exploits the obtained archaeological
and archaeometric data warehouse.

Chapter 5 notably surveys various clustering methods. This chapter presents sev-
eral data mining methods applied in archaeology and archaeometry. It also presents
characteristics of iterative fuzzy clustering methods, clustering ensemble methods and
how to deal with mixed types of data.

Chapter 6 presents the approaches we apply for detecting image features from
ceramic data, using techniques such as segmentation and color detection.

Chapter 7 surveys various clustering initialization methods. It details the MaxMin
Linear initialization method, along with its implementation and experimental valida-
tion achieved on both real-life and artificial datasets.

Chapter 8 presents quality indices. It also presents the Visual TSFD validation
method, along with its implementation and experimental validation achieved on both
real-life and artificial datasets.

Chapter 9 presents the expert-defined groups, which are groups of ceramic sam-
ples having similar characteristics. These groups are defined by the experts from the
Laboratory “Archaeology and Archaeometry” (ArAr) in Lyon, which serve as ground
truth for our work. This chapter also presents the disjoint cluster analysis steps for
each kind of data, i.e., chemical data, description data and image data. Lastly, the
disjoint cluster analysis results are interpreted with the support of the expert-defined
groups.

Chapter 10 presents our multiple cluster analysis for both numerical and cat-
egorical data, using two different techniques. First, fuzzy clustering ensemble deals
with mixed types of data. Second, combined partition clustering allows visualizing
multiple clustering results in a synthetic way.

Finally, Chapter 11 concludes this thesis and provides insights for future re-
search.
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Chapter 2

Ceramic Databases and
Archaeological Data Warehouses
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In recent years, several databases were created to highlight different perspectives
in pottery research. These databases have different types of contents, depending
on the aspects of ceramics studies they focus on. Moreover, specific formats may
be implied based on different contents, e.g., numbers for chemical analyses or text
and/or images for petrographic analyses.

Ceramic databases usually have a main type of content and may focus on specific
categories of ceramics, time periods or regions. These databases can be either publicly
available on-line or not. Additionally, some interface features may also be available,
such as interactive maps, interactive 2D or 3D views or statistical tools, the latter
being of particular interest in the context of our research.

In addition, most archaeological applications feature operational databases, i.e.,
they allow updating and querying the data. However, a new trend in archaeology is
to build data warehouses [5], which are analytical databases. Data warehouses bear a
specific, multidimensional model that allows On-Line Analytical Processing (OLAP).
OLAP helps navigate and observe data in order to find hidden patterns.

Thus, in this chapter, we first review a selection of archaeological ceramic databases
that we consider representative of the diversity of contents, formats, statuses and fea-
tures. Further, we present existing archaeological data warehouses.

2.1 Ceramic Database Projects

The Levantine Ceramics Project (LCP), directed by Boston University, is an archaeo-
logical database focusing on ceramic wares produced in the Levant, from the Neolithic
to the Ottoman periods. It mainly includes archaeological (typological, chronological
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and geographical) data, but also provides fabric and petrographic data. The format
of LCP data is in text and image. The LCP is an open, interactive internet resource1.

Roman Amphorae: a digital resource2, proposed by the University of Southamp-
ton, provides an online introductory resource for the study of Roman amphorae, based
on a rich corpus of archaeological information together with petrographic and fabric
data.

POTSHERD3 is a collection of pottery from the Roman period (1st cent. BC –
5th cent. AD) in Britain and Western Europe, including distribution maps and links
to complementary resources.

The Worcestershire Online Ceramic Database4 is designed to make available pot-
tery fabric and form type series for Worcestershire, from the Neolithic to the early
post-medieval period.

The Information sur la Céramique Médiévale et Moderne (ICERAMM)5 proposes
a database that focuses on medieval and modern ceramics in western and northern
France, Belgium and Switzerland.

The Prototype d’Encyclopédie Céramologique en Ligne (PECL)6 is a project of
encyclopedia for ceramics of the Mediterranean and sub-Saharian region of all periods,
including detailed archaeological contexts information.

ASCSA Digital Collections (ASCSA)7 presents archaeological objects and con-
texts from the excavations of the American School of Classical Studies at Athens, in
the Athenian Agora and in Corinth.

Other types of databases particularly focus on petrographic and fabric data. The
National Roman Fabric Reference Collection (NRFRC)8 is the online version of a ref-
erence book providing detailed and standardized fabric descriptions of Roman wares
found in Britain [6].

Fabrics of the Central Mediterranean (FACEM), directed by the University of
Vienna, focuses on fabric data of Greek, Punic and Roman pottery in the Southern
Central Mediterranean area. FACEM includes interactive maps and allows download-
ing detailed information9.

Petrodatabase is a petrographic relational database featuring interactive maps [7].
There are also several image databases that are designed for a larger audience, using
digital representations of ceramics. One of them, Sgraffito in 3D10, proposes 3D
reconstructions of late medieval pottery collection from the Museum Boijmans Van

1https://www.levantineceramics.org/
2http://archaeologydataservice.ac.uk/archives/view/amphora_ahrb_2005/
3http://potsherd.net/atlas/potsherd
4https://www.worcestershireceramics.org/
5http://iceramm.univ-tours.fr/bdceramm.php
6http://pecl.fr/
7http://ascsa.net/research?v=default
8http://romanpotterystudy.org/nrfrc/base/index.php
9http://facem.at/

10http://www.sgraffito-in-3d.com/

http://archaeologydataservice.ac.uk/archives/view/amphora_ahrb_2005/
http://ascsa.net/research?v=default
http://potsherd.net/atlas/potsherd
http://pecl.fr/
http://romanpotterystudy.org/nrfrc/base/index.php
https://www.worcestershireceramics.org/
http://iceramm.univ-tours.fr/bdceramm.php
http://www.sgraffito-in-3d.com/
https://www.levantineceramics.org/
http://facem.at/
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Beuningen in Rotterdam.

Yet other databases focus on chemical data. The CeraDAT project11, developed
by the Demokritos National Centre for Scientific Research in Athens, is a prototype
relational database including interactive maps and focusing on the Aegean and the
wider Eastern Mediterranean Region [8].

The MURR Archaeometry Laboratory Database12 built at the University of Mis-
souri features chemical analyses of ceramic artifacts from many regions, including
Northern, Central and Southern America and the Mediterranean. It also gives access
to “historical” chemical databases, such as the Berkeley laboratory’s. Archaeological
information is actually presented as a bibliography [9].

The Archaeometry Research group at the University of Fribourg has also estab-
lished a bibliography of several reference groups of ancient ceramics from Switzerland,
Italy, France and Germany, with their chemical composition.

Covering a large range of periods and regions, the Ceramo database from the
Laboratory of ArAr in Lyon initially used to be mainly a chemical database [3, 10],
including only limited archaeological information. As presented in Chapter 3, the
new Ceramo 3.0 database has been re-centered on ceramic objects and enriched with
archaeological and multimedia contents.

Table 2.1 summarizes the features of the ceramic databases mentioned above. In
Table 2.1, the primary contents of databases are indicated by X, secondary contents
by x and occasional contents by (x).

2.2 Archaeological Data Warehouses

In the literature, research works related to data warehousing and OLAP on archae-
ological data may be divided into two main groups: (1) OLAP on the features of
archaeological materials and (2) OLAP on top of Geographical Information Systems
(GISs), i.e., Spatial OLAP (SOLAP).

In the first group of approaches, to analyze the huge amount of antiquity-related
data from the ancient Chinese civilization, the North China University works on build-
ing a distributed data warehouse, which helps manage, share and analyze antiquity
information [11]. This data warehouse composes of (1) an architecture of local data
warehouses that process data and (2) a global data warehouse that integrates all data
and supports OLAP.

The Soprintendenza Speciale Archeologia Belle Arti e Paesaggio di Roma (SS-
BAR), an Italian public institute, does research to better understand the stone re-
sources present in the Roman area, especially tuff from the quarries of Lazio [12].
SSBAR’s data warehouse and OLAP analyses helped obtain detailed information
and plan a new view of natural archaeological parks in Italy.

11http://www.ims.demokritos.gr/ceradat/
12http://archaeometry.missouri.edu/datasets/datasets.html

http://www.ims.demokritos.gr/ceradat/
http://archaeometry.missouri.edu/datasets/datasets.html
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Table 2.1: Ceramic database features

Ceramic databases Database typeData type Features
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LCP X x x x x x x
Roman Amphorae X X X x x x x
POTSHERD X x x x x
Worcestershire Ceramics X (x) X x x x x
NRFRC (x) X X x x (x)
FACEM x X x x x x
Petrodatabase (x) X x x x (x) x
ICERAMM X x x x x x
PECL X (x) (x) x x x x
ASCSA X x x x x
Sgraffito in 3D x x x x
CeraDAT (x)X x x x x x
MURR (x)X x x x downloadable
Fribourg (x)X x x x
Ceramo x X(x) x x x x

To create accurate models for historical and archaeological sites, various tools are
used, such as three-dimensional (3-D) scanner technology. However, the scanning
process creates a large number of virtual collections, which take a very long time to
index and are very costly. Thus, the Canadian National Research Council (NRC) and
the University of Ottawa worked on a project involving data warehouses to preserve
old and current 3D visual information of historical sites. Using a data warehouse
helped enforce scalability [13].

Data cubes are structures that precompute data aggregations to speed up OLAP.
However, computing and storing of data cubes can consume lots of computing power
and disk space in the first place. Thus, researchers from Aix-Marseilles University
works on a partitioned cube that aims to provide storage reduction and perform
experiments using archaeological excavation data [14].

In the second group of approaches, researchers from the Department of History
and the Centre de Recherche en Géomatique at Université Laval (Québec) worked
towards solving the problem involved in data recording and analysis of archaeological
excavation results by using a GIS-based system. In general, GISs help record, analyze
and visualize spatial data. Here, the GIS helped build an Integrated System for
Archaeological Excavation (ISAE) that supports multicriteria analyses [15].

Finally,Moving megaliths in the Neolithic (MEGAGEO) [16] is a multi-disciplinary
project conducted by the universities of Évora, Aveiro and Lisbon in Portugal. This
project aims at developing a large spatial data warehouse that stores geochemical and
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petrographic information. Using SOLAP allows to find the source of slabs used in
the construction of dolmens from archaeological sites.

All the above-stated data warehouse project are designed specifically based on
concrete project requirements such as to deal with the features of the archaeological
materials or to work with the geometrical information. However, none of them can
be considered as a comprehensive data warehouse project that can be used for doing
OLAP analysis on the complex ceramic data. This creates a room to introduce a new
model for experts to do OLAP analysis on the ceramic data.

2.3 Summary

Cultural Heritage Information Systems (CHISs) are increasingly being used by several
potential users from different backgrounds and domains. Such systems are complex
to use, as they focus on specific contents, have different formats and are reachable via
different access protocols. This makes it hard to have a comprehensive tool that would
collect information from these systems. Moreover, in addition to the aforementioned
complexity, it is difficult to observe hidden patterns from huge amounts of data.

Thus, in this chapter, we survey the tools that allow analyzing data from CHISs.
We first present a selection of ceramic databases and compare their features. Then,
we introduce some archaeological and archaeometric data warehouses, which allow
OLAP and SOLAP analyses based on different features of the data, such as the
characteristics of materials, geolocation and 3D features.
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The Ceramo database was initially designed to meet the needs of archaeological
scientists working in Lyon laboratory. It was mainly used for recording chemical data,
to which multivariate statistical treatments where applied.

3.1 Data Modeling

The design of the new Ceramo 3.0 database model involves all types of analytical
data. All these data are combined with extended definitions of the analyzed ceramic
samples, along with rich location data. In addition to these data, various graphical
documents such as drawings and images of ceramic samples are added in the new
model. This information is necessary to complement ceramic information. This new
database thus stores complex data. Data may indeed be qualified as complex if they
are [17]:

• multiformat, i.e., represented in various formats (databases, texts, images, sounds,
videos...);

• and/or multistructure, i.e., diversely structured (relational databases, XML doc-
uments repository...);

• and/or multisource, i.e., originating from several different sources (distributed
databases, the Web...);
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• and/or multimodal, i.e., described through several channels or points of view
(radiographies and audio diagnosis of a physician, data expressed in different
scales or languages...);

• and/or multiversion, i.e., changing in terms of definition or value (temporal
databases, periodical surveys...).

Ceramo 3.0 is a complex database, now centered on pottery samples that are
defined by various descriptions, geographical features and results of different types of
analyses (Figure 3.1). Each package (Geography, Status and Description, Analysis)
from Figure 3.1 is further detailed in the following subsections. All conceptual models
are depicted as UML class diagrams 1.

Figure 3.1: Ceramo 3.0 conceptual schema: global simplified view

3.1.1 Geography Package

Figure 3.2 displays the Geography package of the data model. The LOCATION
class connects geolocation data to PROVENANCE, SUPPOSED ORIGIN, ATTRI-
BUTION and STORAGE OUTSIDE LABORATORY classes.

The PROVENANCE class bears information regarding the location data where
the object was found. The SUPPOSED ORIGIN class provides a supposed origin
before analysis. The ATTRIBUTION class indicates where the object was demon-
strated to come from after analysis. The SITE, TOWN/MUNICIPALITY, REGION
and COUNTRY classes represent a hierarchy of information within LOCATIONS.
These three classes regard objects as historical objects, while the STORAGE OUT-
SIDE LABORATORY class represents where objects are physically stored. Even
though they do not encompass the same level of information, all these classes are
connected by the structure of geographical information.

1http://www.uml.org

http://www.uml.org
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Figure 3.2: Geography package

3.1.2 Status and Description Package

The Status and Description package of the data model is depicted in Figure 3.3. The
DESCRIPTION class bears textual descriptors of an object. It includes most of the
information that helps identify the object archaeologically. The CATEGORY class
helps categorize ceramics, e.g., “COMM.” (common ware) or “CARREAU” (tile).
The DATING class stores all the periods of samples both at a general level, e.g.,
“Médiéval” (Medieval) and at a precise level, e.g., “13e siècle” (13th century). It
also includes the methods used for dating. The BIBLIOGRAPHY and LINKS classes
contain the bibliographical data related to each sample, with the links referring to
public resources. The LOCAL REFERENCE class specifies whether an object is
a local reference or not. The FIRING MODE class contains data about the firing
mode, which is coded as mode A, mode B, mode C, etc. [18,19]. The STORAGE IN
LABORATORY class bears location data if the object is stored in the laboratory. The
LEGAL STATUS OF OBJECT class contains data about ownership of the object.
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Figure 3.3: Status and Description package

3.1.3 Analysis Package

Figure 3.4 depicts the Analysis package of the data model. Analysis results of a
sample are represented in class ANALYSIS RESULT. Each analysis corresponds to
a series of separate records, each of which contains an individual measure. This
is due to the fact that samples may be analyzed using several methods, such as
chemistry or petrography. A given sample may also be analyzed several times using
the same technique, but with different parameters. For example, as a growing number
of chemical elements have been analyzed since the 1970’s, when a given sample is
analyzed again, some chemical elements (e.g., aluminum or calcium) are assigned
several concentration values.

The DIFFRACTION, DILATO, PETRO, CHEMISTRY, BINO, SEM and OTHER
ANALYSIS classes bear data regarding diffraction, dilatometry, petrography, chem-
istry, binocular microscopy, scanning electron microscopy and additional, miscella-
neous analyses, respectively. These data are of different nature: numerical (e.g.,
chemical data), text (e.g., descriptions of fabrics), images (e.g., photos under the
binocular or under the petrographic microscope, diffractograms). The results of anal-
yses are used by the experts of the ArAr laboratory to cluster samples into groups
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Figure 3.4: Analysis package
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sharing the same characteristics, according to analyses results. These correspond to
the class GROUPS, they will be refered to as the “expert-defined groups” in the
following parts of this research.

As shown in the Table 3.1, Ceramo 3.0 database is a comprehensive database
model compared to other archaeological ceramic databases.

Table 3.1: Ceramic database features compared to Ceramo 3.0

Ceramic databases Database typeData type Features
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LCP X x x x x x x
Roman Amphorae X X X x x x x
POTSHERD X x x x x
Worcestershire Ceramics X (x) X x x x x
NRFRC (x) X X x x (x)
FACEM x X x x x x
Petrodatabase (x) X x x x (x) x
ICERAMM X x x x x x
PECL X (x) (x) x x x x
ASCSA X x x x x
Sgraffito in 3D x x x x
CeraDAT (x) X x x x x x
MURR (x) X x x x downloadable
Fribourg (x) X x x x
Ceramo x X (x) x x x x
Ceramo 3.0 X X x x x x x x x x

3.2 Summary

The ongoing developments in scientific research and analysis techniques have led to
an increase in the quantity of archaeological and archaeometric data. At this point,
designing comprehensive databases or tools that can store all complex data is needed
to combine various point of views and parameters together.

In this chapter, we focus on the needs of ceramic specialists to store and analyze
complex archaeological and archaeometric data. We introduce the new Ceramo 3.0
database and detail its design, which satisfies the requirements of ceramic specialists.
Ceramo 3.0 is divided into three main packages, whose classes and attributes include
several graphical documents, rich locational data, extensive definitions of ceramic
samples and different analysis results.
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The Ceramo 3.0 database is designed to provide solutions to existing issues related
to the analysis of complex archaeological and archaeometric data. It is also motivated
toward improving the usability of these complex data. In this chapter, we show how
ceramic data can source a data warehouse to perform OLAP. Such analyses help
navigate and observe data from different perspectives, thus providing researchers with
better insight into their data. The main advantage of this approach is to identify
hidden patterns of ceramic samples. Moreover, this chapter introduces a sample
OLAP scenario.

4.1 Exploring Data

Data warehouses are actually databases with a specific model tailored for efficient
OLAP analyses. In a data warehouse, the observed data are called facts, e.g., sales in a
business context. They are characterized by measures that are usually numerical, e.g.,
quantities sold and amounts of money. Facts are observed with respect to different
analysis axes called dimensions, e.g., sold products, store location and sale date. Thus,
data warehouse schemas are called multidimensional schemas or more casually star
schemas, for facts are usually represented in the center of the model, with dimensions
gravitating around. Star schemas help answer queries such as “total sales revenue of
each product in Lyon in 2014”, to go on with our business example.

Moreover, dimensions may be organized in hierarchies, e.g., a time dimension could
be subdivided into day, month, quarter and year. Such a structure helps observe facts
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at different granularity levels, e.g., “dezooming” from one quarter of a year to said
year to have a more global (aggregate) view of sales or “zooming” from one month to
one day in this month to have a more detailed view of sale events. These operations
actually correspond to OLAP’s rollup and drill-down operators, respectively.

Thus, to allow OLAP navigation in Ceramo’s data, we must select facts to observe,
axes of analysis (dimensions) and import data into the data warehouse. The result is
called a cube (hypercube when the number of dimensions is greater than 3), where
dimension values are coordinates that define a fact cell.

4.2 Multidimensional Model

In this sample scenario, we choose to observe results of chemical analyses with respect
to ceramic sample provenance, dating, description and groups. Our data warehouse’s
star schema is provided in Figure 4.1, again as a UML class diagram. Facts are
modeled as a quaternary association-class connected to dimension classes. To make
use of numerical values for analyses, the SAMPLE class from Figure 3.1 is combined
with the Analysis package (Figure 3.4) into the SAMPLE ANALYSES class in Fig-
ure 4.1, which models our analysis facts. In our case, aggregates (summaries) are
the number of samples, the average number of sample and the number of analyses,
etc. Dimension classes are PROVENANCE, GROUPS, DESCRIPTION and DAT-
ING, which are the same as in the Ceramo database (Figures 3.2, 3.3 and 3.4).
Moreover, the LOCATION class individually connects to all classes in the SITE,
TOWN/MUNICIPALITY, REGION and COUNTRY hierarchy to still allow a con-
nection in case of missing value at one hierarchy level (Section 4.4).

4.3 Example of OLAPing Archaeological Ceramic Data

Once part of Ceramo’s data is multidimensionally remodeled, OLAP analyses can be
performed. OLAP actually helps interactively navigate the data warehouse, e.g., to
discover outliers or hidden patterns. We use Pentaho Business Analytics 1, a suite
of open source business intelligence, as our OLAP engine. Pentaho features a user
console that is a web-based design environment. The console helps visualize and
navigate hypercubes, which are created from the data warehouse with the help of the
schema-workbench tool.

As an example of OLAP analysis, let us examine the content of a specific chem-
ical group coming from the GROUP class and compare it to the initial typological
classification from the DESCRIPTION class. Samples within a given chemical group
belong to the same pottery production, i.e., they share the same origin. They usually
come from several excavations (PROVENANCE class) and their circulation and cor-
responding fluxes provide insight into past contacts between populations and trade

1http://www.pentaho.com

http://www.pentaho.com
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Figure 4.1: Chemical data warehouse multidimensional schema

networks. When different workshops manufacture similar wares, classified under the
same typology, chemical analysis “sorts out” the different productions and enables
archaeologists and historians to better understand economic trends and cultural in-
fluences.

In a first analysis, successive rollups help aggregate PROVENANCE data at the
country level to achieve a coarser view of data. We take interest in ceramics of
the Byzantine period (the Medieval period in the DATING class) called “Zeuxip-
pus Ware”; we select the DATING, DESCRIPTION (typology) and PROVENANCE
(country) dimensions; and eventually count “Zeuxippus Ware” occurrences (OLAP
slice and dice operators, respectively). “Zeuxippus Ware” corresponds to a typologi-
cal class that has 163 occurrences in the database. “Zeuxippus Ware” was found all
over the Mediterranean and beyond, but was also largely imitated.

In a second analysis, we slice on PROVENANCE, GROUPS and DESCRIPTION
and dice on “Zeuxippus Ware stricto sensu”. A research program enabled to define
several distinct chemical groups, including one corresponding to the “Zeuxippus Ware
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stricto sensu” (87 samples), which is the “prototype” of this ware. We identify the
features of each production, including information on its geographic distribution,
related to trade networks [20].

Figure 4.2 compares data with the number of samples whose description includes
the term “Zeuxippus”, i.e., including both “Zeuxippus Ware stricto sensu” and wares
imitating it or related to it typologically. In all countries, examples of both prototype
and imitations were found. It is nonetheless noticeable that a larger proportion of
imitations comes from Greece, a new insight that may be significant. In the histogram,
“chemical classification”(in blue) is based on the actual diffusion of ceramic products;
it is related to economic factors. It confirms the large distribution of this ware in
countries of the Mediterranean and Black sea areas. Although the bias introduced by
the initial sampling needs to be taken into account, the number of samples from each
country gives an idea of the abundance of this ware, e.g., only very few examples were
found in France. “Typological classification” (in red) refers to the diffusion of models
and fashions and is thus more related to cultural factors. This example somehow
simulates the comparison of data obtained on the same categories of objects from two
databases, focusing each on another aspect of these wares. It shows the discrepancies,
but also the added value that may be obtained when connecting information. It
also shows how OLAP can contribute to the understanding of economic and cultural
relationships at the Byzantine period, thanks to its ability to look at information
from a different viewpoint.

Figure 4.2: Distribution of Samples by Country, for descriptions including the term
“Zeuxippus Ware” (in red) and in chemical group “Zeuxippus Ware stricto sensu” (in
blue)
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4.4 Issues in Archaeological Ceramic Data Analysis

We have been confronted with a couple of major challenges before OLAP analyses
and when performing OLAP onto Ceramo’s data. First, we encountered a classical
problem in databases, i.e., missing values. In our example scenario, there is location
information for provenance studies, but in practice, some information, i.e., site, town,
region or country might be missing in the database. For example, some samples
relate to Sudak (Ukraine) and Acre (Israel), with no archaeological site reference.
This is why we complement the geographical hierarchy with direct associations from
provenance to site, town, region and country. Some of this missing information (town
to region to country relationships) shall be found in external sources, though.

Moreover, data about archaeological ceramics mostly consists of textual and nu-
merical data. On one hand, textual data include information about the characteristics
of ceramics, such as form, chronological information, etc. On the other hand, numer-
ical data include information produced by various analyses performed on the ceramic
material. Both can be warehoused. However, while classical OLAP provides a good
tool for analyzing numerical data (through aggregation functions such as sum, av-
erage, minimum, maximum, etc.), it is not very convenient for textual data, whose
individual values can only be counted. Thus, in order to gain in-depth knowledge
about ceramics, there is a crucial need to better take textual data into account in
OLAP.

4.5 Summary

In this chapter, we introduce how ceramic data can source a data warehouse. This
data warehouse can be used to perform OLAP analyses. First, we implement a
multidimensional model. Then, OLAP is performed to navigate and observe ceramic
data from different perspectives. The issues during this analysis are presented to open
new discussions.
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Clustering is a field of research that belongs to both the domains of data mining
and machine learning. Clustering is a useful technique for grouping a set of unlabeled
data points (instances) described by attributes (variables) such that points in the
same cluster (group) have similar characteristics, while points in different clusters have
dissimilar characteristics. During the last 60 years, several clustering methods have
been created to solve various problems involving continuous and/or categorical data.
To perform a cluster analysis, Halkidi et al. [21] propose to consider five necessary
steps to follow.

The first step is feature selection. Each feature should be non-redundant and
relevant regarding user interest. The second step is that each variable should be
preprocessed. The third step is to select a clustering method. Two fundamental parts
play a role in this step: (1) a proximity measure that evaluates pairwise dissimilarities
or similarities between the objects being considered; and (2) a clustering criterion
that consists of rules and a function to be optimized. The forth step is to validate
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clustering result. Evaluation is needed for achieving the final partition of data, e.g.,
by using quality indices. The last step is an interpretation of clustering results that
is performed by help of application area experts.

5.1 Clustering Methods

One of the classification criteria for cluster analysis is to handle cluster overlapping.
In crisp (or hard) clustering, a data point belongs to one and only one cluster, while in
fuzzy clustering [22], a data point belongs to several clusters. Fuzzy clustering is very
useful in many applications, e.g., the text categorization of various news into different
clusters: an economy, an energy and a politics cluster; where an article containing the
keyword “petrol” could belong to all three clusters. Furthermore, it is also possible
to open discussions with domain experts when using fuzzy clustering.

5.1.1 Crisp Clustering Methods

According to Halkidi et al. [21], there are four different categories in which clustering
algorithms can be summarized: hierarchical clustering, density-based clustering, grid-
based clustering and partitional clustering.

Hierarchical clustering [23] proceeds by either merging small clusters into larger
clusters (ascendant hierarchical method) or by splitting larger clusters to small clus-
ters (descendant hierarchical method). In the first case, the ascendant hierarchical
method produces a sequence of clustering schemes of decreasing number of clusters at
each step according to a chosen criterion. At each step of the algorithm, the pair of
clusters with the shortest distance are combined into a single cluster. The algorithm
stops when all samples are merged into a single cluster. The result of the algorithm is
a tree diagram called dendrogram, which shows how clusters are related. On the con-
trary, the descendant hierarchical method produces a sequence of clustering schemes
increasing the number of clusters at each step. That is, at each step of the algorithm,
one cluster is chosen, and this cluster is partitioned into a pair of clusters having
the maximum distance between each other. The algorithm stops when each cluster
contains only one sample.

Density-based clustering [24] groups neighboring objects of a dataset into clusters
based on density conditions. Density-based clustering is suitable to handle arbitrarily-
shaped collections of points and cluster of different sizes. It is also an effective method
to handle the separation of outliers (extreme values). An example of density-based
clustering algorithm is DBSCAN, where it is required to specify the neighborhood
radius of a point and the minimum number of points in the neighborhood. Thence,
DBSCAN is sensitive to the parameters that are required to start clustering. Such
parameter needs to be known in advance or needs to be tested with a range of pa-
rameters to find appropriate settings, which is a time consuming process.
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Grid-based clustering [25] is mainly aimed at spatial data mining. Instead of data
points, the neighborhood surrounding data points, which are represented by cells, are
clustered in a grid data structure. The number of cells can be significantly smaller
than the number of data points. In such cases, grid-based clustering can obtain
better clustering performance than other clustering methods. STING [26] is a much-
cited grid-based algorithm. It divides the spatial area into rectangular cells to store
the statistical parameters of object numerical features. The grid structure facilitates
parallel processing and incremental updating. However, STING results depend on the
granularity of the lowest level of the grid because a parent cell is constructed without
consideration of the spatial relationship between the children and their neighboring
cells. In this approach, the cluster boundaries are horizontal or vertical for a cell and
no diagonal boundary is detected. This result decreases quality and accuracy of the
clusters.

Eventually, Partitional clustering [27] works with pre-defined (supposed known)
number of clusters and it determines the partitions by optimizing some criterion
function, which is an iterative procedure. The most significant examples of partitional
clustering are K-Means [28], K-Medoids [29] and K-Mode [30]. K-Mode is based on
the concepts of K-Means.

5.1.2 Fuzzy Clustering Methods

The aim of the K-Means algorithm is to minimize the distance within each clusters.
It starts by choosing K data points as initial centroids (seeds) of the clusters. Then,
each data point of the dataset is assigned to the cluster of the closest centroid. Cluster
centroids are updated as the average of all points in each cluster until a termination
criterion is reached. In K-Means, this criterion can be a fixed number of iterations t,
e.g., t = 100. Alternatively, another termination criterion is that until the modifica-
tion of centers are negligible.

Fuzzy inertia is a core measure in fuzzy clustering. Fuzzy inertia FI (Equation 5.1)
is composed of fuzzy within-inertia FW (Equation 5.2) and fuzzy between-inertia FB
(Equation 5.3). Membership coefficients uik of data point i to cluster k are usually
stored in a membership matrix U that is used to calculate FW , FB, and FI. Note
that FI = FW + FB. Moreover, contrary to case of crisp case, FI is not constant
because it depends on uik. When FW changes, the values of FI and FB also change.

FI =

n∑

i=1

K∑

k=1

umikd
2(xi, x) (5.1)

FW =

n∑

i=1

K∑

k=1

umikd
2(xi, ck) (5.2)



48 Data Clustering Methods

FB =
n∑

i=1

K∑

k=1

umikd
2(ck, x) (5.3)

where n is the number of instances, K is the number of clusters, m is the fuzziness
coefficient (by default, m = 2), ck is the center of the kth cluster ∀ 1 ≤ k ≤ K, x is
the grand mean (the arithmetic mean of all data – Equation 5.4), and function d2()
computes the squared Euclidean distance.

x =
1

n

n∑

i=1

xi (5.4)

In our work, we use two fuzzy iterative methods, Fuzzy C-Means (FCM) [31] and
Fuzzy K-Medoids (FKM) [32]. These methods keep the clustering process linear, are
easy to implement and are easily understood by the experts.

5.1.2.1 Fuzzy C-Means

FCM is a common method for fuzzy clustering that adapts the principle of the K-
Means algorithm. FCM, proposed by Dunn [33] and extended by Bezdek et al. [31],
applies on numerical data. Since numerical data are the most common case, we choose
to experiment our proposals with FCM.

The aim of the FCM algorithm is to minimize FW . It starts by choosing K
data points as initial centroids of the clusters. Then, membership matrix values uik
(Equation 5.5) are assigned to each data point in the dataset. Centroids of clusters ck
are updated based on Equation 5.6 until a termination criterion is reached. In FCM,
this criterion can be a fixed number of iterations t, e.g., t = 100. Alternatively, a
threshold ǫ can be used, e.g., ǫ = 0.0001. Then, the algorithm stops when FWK+1 ÷
|FWK+1 − FWK | < ǫ.

uik =
1

∑K
j=1

(‖xi−ck‖2

‖xi−cj‖2
)

1

m−1

(5.5)

ck =

∑n
i=1

umikxi∑n
i=1

umik
(5.6)

5.1.2.2 Fuzzy K-Medoids

The Fuzzy K-Medoids (FKM) algorithm was proposed by Krishnapuram et al. [32]. In
contrast to FCM, FKM chooses data points as centers (prototypes). The principle of
FKM is also based on minimizing FW (Equation 5.2). The method starts by choosing
K random data points as initial medoids (centroids of FKM). Then, membership
matrix values uik (Equation 5.5) are assigned to each data point in the dataset (as in
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FCM). Medoids of clusters ck are updated based on Equation 5.7 until a termination
criterion (the same as in FCM) is reached.

ck = xq

q = argmin
︸ ︷︷ ︸

1≤i≤n

n∑

i=1

umik‖xi − ck‖
2 (5.7)

5.2 Data Mining Methods Applied in Archaeology and
Archaeometry

Many archaeologists use methods from computer science and statistics, to study data
that are generated during various research phases, before, during and after the ex-
cavations (see for instance the activities of the international association “Computer
Applications and Quantitative Methods in Archaeology”). These data may range
from individual objects to archaeological regions or analysis results. Different meth-
ods can be applied to these data, depending on the nature of the problem, e.g., the
description, comparison or classification of datasets [34].

Hug et al. [35] and Orton [36] have reviewed the main statistical methods in the
literature that are used in archeology. Multivariate statistical methods, which are a
subdivision of statistics for studying more than one variable, have notably been used.

Discriminant Analysis (DA) [37] is a supervised learning technique. DA is used
when two or more groups are known a priori and one or more new observations are
to be attributed to one of the known groups based on measured characteristics.

By contrast, Principal Component Analysis (PCA) [38] is an unsupervised learning
technique. It is mainly used for the data reduction of continuous variables, when data
are collected on a large number of variables from a single group. The variables can be
standardised by centering them and dividing by the standard deviation (Equations 5.8
and 5.9). This helps to avoid any particular distribution of the data since there are
features on different ranges. During the transformation, the first principal component
(first new variable) has the largest possible variance. The second principal component
has the second largest and so on. The result is presented as a scatter plot.

xNew =
x− x

s
(5.8)

where x is the value of the ith object’s jth variable (1 < i < n, 1 < j < K),
n being the number of objects and K the number of clusters. The normalized x is
xNew, x being the mean of the values in variable j (Equation 5.4) and s the standard
deviation of the values in variable j (Equation 5.9).

s =

√
∑n

i=1
(xi − x)2

n− 1
(5.9)
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Another technique is Correspondence Analysis (CA) [39], which is used for under-
standing the link between two categorical variables (rather than continuous variables).
In this analysis, Euclidean distance is replaced with a Chi-square distance (χ̃2) [40].

To deal with a large set of categorical variables, Benzécri et al. [39] propose Mul-
tiple Correspondence Analysis (MCA), an extension of CA algorithm. The CA al-
gorithm is applied to the complete disjunctive table constructed from the categori-
cal variables. For instance, the laboratory Trajectoires at the Université de Paris 1
Panthéon-Sorbonne, France, works on an interesting case study referring to Neolithic
sites. In their work, the χ2 test and correspondence analysis are applied to analyze
the data matrix of artifacts made out of different material, e.g., flint and sandstone.
The results highlight a strong relationship between the types of flint artifacts and
their features [41].

In the ArAr laboratory (Lyon), archaeological scientists usually define groups
of ceramic objects based on their chemical composition. They perform hierarchical
clustering (ascendant method) and discriminant analysis onto chemical data as tools
in provenance studies (see Section 9.1) [10].

5.3 Characteristics of Iterative Fuzzy Clustering Meth-
ods

For both iterative fuzzy methods FCM and FKM, primordial work is to understand
characteristics of methods such as selection of membership coefficient (m) as fuzzi-
ness value and a number of clusters (K) as initial centroids (for FKM, it indicates
initial medoids). These selections may effect clustering algorithm. For example, the
algorithm stays fuzzy if m > 1. If a K value is chosen less than required number,
clusters are merged while they could be more separated.

5.3.1 Fuzzy Clustering Initialization

Initialization is a very important step in a clustering analysis. Initialization methods
for the continuous and Boolean data should be selected carefully to keep the selected
algorithm linear (see Chapter 7).

5.3.2 Fuzzy Clustering Quality Indices

Parameter selection affects the quality of clustering. A quality criterion is needed to
evaluate the choice of parameters. Since we desire to use FCM and FKM as our basis
algorithms without any changes, we focus on dealing with the determination of an
appropriate number of clusters (see Chapter 8) to obtain accurate clustering results.
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5.4 Dealing with Mixed Types of Data

In clustering, variable (or feature) selection plays a key role. The goal is to select
variables that together help to obtain the maximum possible information. There are
two types of data (Figure 5.1):

• qualitative data that do not allow to measure the information about modality,
e.g., ceramics’ color such as red and gray;

• quantitative data that allow to measure the information about modality with
numbers, e.g., the number of ceramics in an archaeological context.

Figure 5.1: Data types and corresponding preprocessing steps before cluster analysis

Within the class of qualitative variables, variables are categorized as nominal
or ordinal. Nominal variables are unordered qualitative variables such as ceramic
types, e.g., Aegean ware and Miletus ware. Ordinal variables are ordered qualitative
variables such as the hardness of pottery, e.g., soft, hard and very hard. However,
the range difference between categories is inconsistent. For instance, the difference
between soft and hard is probably much harder than the difference between hard and
very hard.

Within the class of quantitative variables, variables are usually categorized as dis-
crete or continuous (interval). On the one hand, if we can count a set of items, then
it is a discrete variable, e.g., in the ArAr laboratory, the total number of chemical ele-
ments analyzed in ceramics is 24. That is, any number of chemical elements (between
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1 and 24) can be used in analyses. Thus, the number of chemical elements can be
considered a discrete variable. On the other hand, if a variable’s values lie an interval
of R, then it is a continuous variable, e.g., the concentration of chromium (Cr) in a
ceramic piece.

A specific case of categorical data is binary data (Booleans), which have only two
modalities, i.e., presence or absence. Therefore, they can be considered as numerical
data with two values: 0 and 1. In this case, the mean is the proportion of 1s.

Statistical pieces of software usually distinguish categorical data from continuous
data. From a practical point of view, one can consider that all data that are repre-
sented by a frequency distribution can be treated as categorical data, e.g., nominal
or ordered qualitative data, discrete quantitative data or regrouped continuous quan-
titative data. However, non-regrouped continuous quantitative data must be treated
as continuous data [42].

In data mining, the two following strategies can be used to cluster mixed types of
data.

• Converting all variables into the poorest data type, e.g., Boolean. For each
type of data, a preprocessing step can be applied, such as binarization [43] and
discretization [44, 45] (Figure 5.1). After the conversion, a single algorithm is
applied to the whole dataset.

• Retaining the original data and applying adequate algorithms with respect to
data types. For instance, He et al. propose that the original mixed dataset
is divided into two sub-datasets [46]: a pure categorical dataset and a pure
numeric dataset. Then, adequate mining algorithms are applied to the datasets
separately.

5.4.1 Binarization

Binarization is a procedure for converting categorical attributes into a binary form.
For instance, k different binary attributes can be created if a categorical attribute
has k distinct values. Each binary attribute fits in one logical value of the categorical
attribute. Thus, in binarization, only one k attribute takes the value 1 and remaining
attributes take the value 0 [47].

5.4.2 Discretization

Discretization is an essential data preprocessing task that can help handle missing
values, asymmetry and outliers; obtain more compact and harmonious datasets; and
simplify data so as to reduce computation complexity and memory space. More details
about discretization may be found in [48].

Discretization transforms continuous data into categorical data. This process
starts by partitioning the range of continuous data into k segments. For instance, the
dating of ceramics can be transformed into discrete values, each representing a slice
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of 100 years, e.g., 0 to 100 as 1, 100 to 200 as 2, 200 to 300 as 3, etc. Then, any value
(e.g., 362) can be represented as both a Boolean vector (e.g., 00010) and a symbolic
value (e.g., 4) representing an interval. However, intra-slice variations are lost.

5.4.3 Variable Transformation

Milligan et al. propose a method that starts with transforming continuous values to
standard score form [49]. Then, they determine the minimum and maximum values
of each variables of the dataset and apply Equation 5.10.

x∗i,j =
xi,j −Min(xj)

(Max(xj)−Min(xj))
(5.10)

where xi,j is the value of the i
th object’s jth variable, x∗i,j is the transformed value

of xi,j , Min(xj) being the minimum of the jth variable and Max(xj) the maximum
of the jth variable.

To deal with variable asymmetry, one solution is to do logarithmic or square root
transformation of the considered variables. Thus, in practice, it is essential to select
proper methods depending on the datasets and the learning context.

5.5 Clustering Ensemble Methods

In clustering analyses, we need to manage different types of data for achieving sta-
ble clusters, since mixed types of datasets are common in real-life data mining and
social science applications, including archaeology and archaeometry. However, exist-
ing, well-established clustering algorithms address different types of attributes sepa-
rately. There is currently no appropriate clustering method to deal with mixed type
of attributes. Thence, clustering ensemble is used to combine by aggregating several
clustering results achieved by different methods.

Clustering ensemble methods aim to find better clustering solutions by fusing
information from several data clusterings. All clustering ensemble method follow
two steps: partition generation and partition integration (using a consensus function
process). In the partition generation process, one can apply either the same clustering
algorithm with different parameters or different clustering algorithms, e.g., K-Means
and hierarchical methods. For instance, data resampling is a partition generation
method [50]. In the consensus function process, multiple partitions generated by
different clustering algorithms are combined into a single clustering solution. This
process is quite challenging. For instance, let C1 and C2 be the results of a first
clustering, and C∗

1 and C∗
2 the results of a second clustering. It is a complicated task

to combine them accurately, since clusterings do not have any direct associations.

Yet, there are a number of advantages in using clustering ensemble instead of
single clustering [51]:
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• Robustness and stability: clustering is less sensitive to noise and outliers.

• Novelty: a committee solution ensures a better exploration the space of solu-
tions.

• Parallelization and scalability: data subsets can be clustered in parallel with a
subsequent combination of results which allows to reduce the size of the data
that we apply with the algorithm. By the same way, ensemble methods can
integrate solutions from multiple data sources.

Both supervised and unsupervised ensemble methods exist. In supervised learning,
training data include both exogenous variables and labels. Supervised methods are
usually fast and accurate. They give correct results with good accuracy when new
unlabeled data are given as input. A good supervised ensemble uses a diversity of
classifiers having each one a good accuracy.

In unsupervised learning, clustering is one of the technique that is used to cluster
input data in groups by their statistical properties only. There is no label. Therefore,
there is no ground truth nor golden standard. As in supervised ensembles, classi-
fiers (clusteres) must be diverse. This can be achieved by setting a variety of initial
conditions, doing data resampling, using different algorithms, distance and grouping
criteria.

Finally, in many situations, fuzzy clustering is more natural than crisp clustering.
Since our main aim is to give suggestions and open new discussions with archaeol-
ogists, it motivates us to use fuzzy clustering, which can capture the uncertainty of
real-life archaeological ceramic data analysis.

5.6 Summary

Clustering is a field of research that belongs to both data mining and machine learning.
It groups together a set of data points described by attributes. To perform a good
clustering analysis, there are several criteria to be taken into consideration, which
include the selection of the clustering method, appropriate initialization and effective
quality analysis.

In this chapter, we review several clustering methods, as well as data mining
methods that have been applied in archaeological and archaeometric studies. Then,
we discuss the importance of clustering initialization and quality indices that are used
in fuzzy clustering. Moreover, we survey several methods that deal with mixed types
of attributes, i.e., clustering ensemble.
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Graphical documents stored in the Ceramo 3.0 database include, e.g., pictures of
objects, technical drawings and pictures taken under a binocular microscope, which
are called fabric images. Such graphical documents, especially ceramic fragment
images and technical drawings, have been used to determine ceramic features [52–54].
Thus graphical documents constitute an interesting material for improving clustering.
Due to time constraints in this thesis project and for the sake of simplicity, we only
consider the features of fabric images as a first step.

In this chapter, we present ceramic fabric images, and then methods used in
literature for image feature detection. Later, we consider what features are important
in fabric images, how to design and implement a feature detection process, and what
the limitations and issues faced during image feature analysis are.

6.1 Fabric Images

Fabrics correspond to the characteristics of ceramic materials as may be observed
with the naked eye or using a binocular microscope (magnification is usually 10 to 20
times) [55].

A fabric image consists of two main basic components: the matrix and inclusions.
The matrix is composed of clay minerals, which cannot be distinguished at this scale.
It contains different kinds of inclusions, e.g., rock fragments and minerals (Figure 6.1).
The nature of the matrix and inclusions is mainly governed by the choice of raw
materials used to manufacture ceramics, and by the manufacturing process. Both the
matrix and inclusions are modified to some extent by firing conditions [1].
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Figure 6.1: Sample fabric image with inclusions in different colors (a), matrix (b)
and image scale (c)

6.2 Methods for Image Features Detection

One of the main approaches in image processing is segmentation. It helps divide
an image into several regions and distinguish (separate) objects. Surveys from the
literature, such as Pal and Pal’s [56], Hedberg’s [57], Khan’s [58] and Zaitoun and
Aqel’s [59] identify the main techniques, i.e., threshold, edge, region and clustering-
based segmentation.

Threshold-based segmentation is a simple and ancient technique, typically used for
images having light objects on a dark background. There are two types of threshold-
based segmentation methods: local and global. In the global method, a single thresh-
old value is set to the background to distinguish from the remaining region. In
contrast, the local method uses multiple segmentation thresholds to divide an image
into several regions. The advantage of threshold-based segmentation is that its com-
putation cost is much lower than other segmentation techniques. On the other hand,
its disadvantage is that it is quite sensitive to noise.

Edge-based segmentation aims at finding a discontinuity in an image that is called
an edge or a boundary. Thanks to features of the image, e.g., color and texture
changes, and different gray values, it is possible to find discontinuities in images.
There are two types of edge-based segmentation methods: search and zero-crossing. In
the search-based method, a measure of edge strength, which is a first-order derivative
expression, is computed to detect edges by using various operators such as Sobel
operator is used to find the approximate gradient magnitude at each point in an input



Methods for Image Features Detection 57

grayscale image [60]. In the zero-crossing based method, a second-order derivative
expression is computed to detect edges. The edge method is advantageous as it is
similar to how humans segment images. Yet, in mainly works well with images having
a good contrast between an object and the background.

Region-based segmentation is based on grouping pixels with similar character-
istics by comparing neighboring pixels. There are three region-based segmentation
approaches: region growing, splitting and merging. The region growing method starts
with selecting a seed pixel. Then, it merges similar pixels around the seed pixel into
a region until there is no pixel left in the neighborhood. Region splitting starts with
the entire image as a seed. Then, it splits the image into a predetermined number
of sub-regions and uses each sub-region as a seed until all sub-regions are homoge-
neous. Finally, the region merging method merges any similar-enough neighborhoods
based on a chosen threshold value. The disadvantage of region-based segmentation is
that results generally depend on the initialization and the order in which regions are
processed.

Eventually, clustering-based segmentation exploits various attributes in an image,
e.g, size, color and texture. One of the most commonly used clustering methods is
K-Means, since it is simple, fast and scalable. However, the disadvantage of this
method is that it needs knowing in advance the number of clusters. It is suitable for
convex clusters since it is a distance based partitioning method.

These days, various image analysis tools are available to both academia and the
industry. These tools support image segmentation, which can be done automatically
or manually. For instance, the MathWorks Image processing Toolbox1 includes the
Crop function 2, which supports both automatic and manual segmentation methods.
In the automatic version, it crops only a small region from the middle of the image. On
the other hand, using the manual method helps choose an area of interest. Further, a
mask can be created using the Roipoly function3 to select the region of interest (ROI)
manually. As an alternative, Adobe Photoshop4 can also be used to freely choose the
ROI and avoid some image acquisition problems such as blurry areas.

Furthermore, images can be segmented based on color. Color is perceived by
humans as a combination of three primary colors: Red (R), Green (G) and Blue (B).
From the RGB representation, other kinds of color representations can be derived
by using either linear or nonlinear transformations. To do color detection, color
image segmentation techniques can be applied using different color representations.
There are several color models (also called color spaces) such as RGB, hue saturation
intensity (HSI), International Commission on Illumination (ICI), L*u*v* and L*a*b*.
When doing color image segmentation, none of the color space gives a better result
than the other spaces, for any kind of images [61]. However, the L*a*b* color model

1https://www.mathworks.com/products/image.html
2https://fr.mathworks.com/help/images/ref/imcrop.html
3https://fr.mathworks.com/help/images/ref/roipoly.html
4https://www.adobe.com/fr/products/photoshop.html

https://fr.mathworks.com/help/images/ref/imcrop.html
https://www.mathworks.com/products/image.html
https://fr.mathworks.com/help/images/ref/roipoly.html
https://www.adobe.com/fr/products/photoshop.html
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represents some colors that can be seen by the human eye easily [62]. The L*a*b*
space consists of a luminosity layer (L*) that contains the brightness value of each
color, a chromaticity layer (a*) indicating where the color falls along the red-green
axis, and another chromaticity layer (b*) indicating where the color falls along the
blue-yellow axis.

6.3 Feature Selection from Fabric Images

Fabric images may be described in terms of matrix color and inclusions shape, size,
frequency and color, as illustrated by several fabric image samples in Figure 6.2. Yet,
observations are subjective and also time-consuming. Moreover, they require some
expertise. To exploit fabric images in clustering analysis, color information could be
used as a feature. It can be obtained more precisely by using color detection methods
than by the naked eye. For this sake, we chose the determination of inclusion colors.
This feature can help to define similarity between ceramics, by constructing coherent
groups of objects.

Figure 6.2: Sample fabric images
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6.4 Image Segmentation of Fabric Images

Fabric image samples from Figure 6.2 are quite diverse. The region of interest usually
does not cover the whole field, and there are some sample objects with a background
(objects a, b, c, d and f). Moreover, the surfaces of ceramic samples are not flat, since
these are observations on fresh cuts. It means that some parts of the fabric images
may be blurry. Therefore, in most cases, images have to be preprocessed to detect a
region of interest (ROI) before any other analysis can take place.

First, we apply the image segmentation method from the MathWorks Image Pro-
cessing Toolbox5 to detect a whole object. The method starts with reading fabric
images in JPEG format. Then, the Sobel operator (Section 6.2), which calculates the
gradient of an image, helps detect the background and the object’s boundary and out-
puts a binary mask containing the segmented cells. The binary gradient mask shows
lines that have some interior gaps on segmented cells (the object). The gaps are filled
by using the Imfull function6. Next, the segmented object’s border is removed with
the Imclearborder function7, and the Strel function8 makes it look natural.

However, only few objects are detected correctly, because the object and the
background colors are too similar. Thus, to achieve a more reliable result, we add
another mask that is manually created with the Roipoly function from the MATLAB
Image Processing Toolbox. The function helps select the ROI manually (Figure 6.3).

Figure 6.3: Sample fabric image with background and blurry areas (a) and seg-
mented image (b)

5https://fr.mathworks.com/help/images/examples/detecting-a-cell-using-image-

segmentation.html
6https://fr.mathworks.com/help/images/ref/imfill.html
7https://fr.mathworks.com/help/images/ref/imclearborder.html
8https://fr.mathworks.com/help/images/ref/strel.html

https://fr.mathworks.com/help/images/ref/imfill.html
https://fr.mathworks.com/help/images/examples/detecting-a-cell-using-image-segmentation.html
https://fr.mathworks.com/help/images/ref/imclearborder.html
https://fr.mathworks.com/help/images/examples/detecting-a-cell-using-image-segmentation.html
https://fr.mathworks.com/help/images/ref/strel.html
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6.5 Color Detection of Fabric Images

To detect color, we apply the Color-Based Segmentation Using K-Means Clustering
method9 initially designed for medical images [62] onto segmented fabric images. The
approach is subdivided into three steps.

The first step starts with reading fabric images in JPEG format. Then, images
are converted from the RGB color space to the L*a*b* color space to soften variations
in brightness and easily visually distinguish one color from another.

The second step aims at classifing colors from the a*b* space using K-Means
clustering. Let us recall that K-means clustering treats each object as having a
location in space, and requires a number of desired clusters and a distance metric to
quantify how close two objects are to one another. Since color information exists in
the a*b* space, objects are pixels with a* and b* coordinates. Using the Euclidean
distance, we cluster pixels into four clusters (the number of clusters is determined
empirically through experiments). For every input pixel, K-Means returns an index
corresponding to a cluster. Every pixel in the image is labeled with its cluster index.

In the third step, for each clustering result, the L* layer helps extract the brightest
and darkest color of each cluster. Thence, 8 different images (clustering results) are
obtained from every fabric image. Figure 6.4 shows an example of original image and
representative clustering results that are manually selected to distinguish inclusion
colors. In this example, the five colors that are the most representative of inclusions
are labeled manually: white, light gray, dark brown, light red and dark red. These
clustering results give an opportunity to notice how easily detected colors can be
visually distinguished from one another, whereas this task was much more difficult
from the original image.

We apply this methodology to classify the inclusions from each sample with respect
to their color. Two other features are added manually: the size of inclusions, i.e.,
small, medium and big; and the abundance of inclusions, i.e., no, rare, frequent,
common and abundant. These features come from the description sheet of fabrics
used in the ArAr laboratory (Appendix A.1). For example, in Figure 6.4(b), there
are rare medium, rare big and no small white inclusions.

6.6 Limitations and Issues in Feature Detection

Several fabric images may be used to show different details in the same object. For
instance, in the Ceramo database, some samples are associated with more than one
fabric image. One of the limitations of our current work is that we use only one of
them.

Moreover, image acquisition is far from ideal, because we had no control on the
image acquisition process. Images were indeed obtained from various sources and in

9https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-

means-clustering.html

https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html
https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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Figure 6.4: Sample segmented fabric image (a); white and light gray (b), dark
brown (c), light red (d) and dark red (e) color clusters

different conditions of lightning, background and camera settings. Thence, accurate
comparison of such images even with a human eye is difficult.

Another limitation is that the manual selection of representative clustering results
is subjective, though it definitely helps visually distinguish different inclusions and
matrix colors.

6.7 Summary

Graphical representations of ceramics are useful material to extract new features
that can be used in clustering analysis. In this chapter, to detect color, size and
frequency of inclusions from fabric images, we use image segmentation and color
detection methods. These features are used in Chapter 9.
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One requirement in our thesis project is to avoid the use of highly complex clus-
tering methods. Thus, one solution is to use iterative fuzzy methods such as Fuzzy
C-Means (FCM) in case of continuous data and Fuzzy K-Medoids (FKM) in case of
Boolean data. To apply these two iterative methods, a primordial issue is the way of
choosing K data points as initial centroids (seeds). An efficient initialization method
should be linear, so that the two considered algorithm stay linear, too.

In the following, the case of continuous data (Section 7.1) is first presented and
then the case of Boolean data (Section 7.2). The Section 7.3 is devoted to the new
initialization method we propose. In Section 7.4, validity indices that are well suited
to the fuzzy case are used to compare our proposal with several other initialization
methods.

7.1 Initialization Methods for Continuous Data

In the case of continuous data, most initialization methods are studied in terms of
K-Means clustering concepts [28], but these methods can also be used with Fuzzy
C-Means. We have reviewed various works from the literature, including much-cited
papers by Steinley and Michael [63], Maitra et al. [64] and Celebi et al. [65]. In our
study, we make use of commonly mentioned linear methods from these three papers.
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The first one by MacQueen (who introduced K-Means) [28] uses the first K data
points as centroids. It is used by default in SPSS [66], but is sensitive to the order
of data. Thus, a second method by MacQueen, which we label MacQueen2, takes K
random data points as centroids.

Moreover, Faber proposes to perform multiple relaunches of MacQueen2 [67].
Among the different relaunches, the one that optimizes FW (Equation 5.2) is consid-
ered as the best candidate. This method is the standard way for initializing clusters.
Its disadvantage is that outliers can be chosen. On the other hand, multiple runs
ensure that the chosen sample’s quality improves.

Hand et al. propose an extension of Faber’s method that starts with a random set
of seeds [68]. They iteratively modify the partition by randomly moving some points
to other clusters. The partition minimizing FW is chosen as the best candidate. To
move each data point to another random cluster, a probability α, e.g., α = 0.3, must
be set. This method is actually only interesting if the parameter α is fixed for different
datasets.

Bradley and Fayyad’s method starts by randomly partitioning the dataset into
J subsets [69]. Then, each subset is clustered with the K-Means algorithm using
MacQueen2 initialization. MacQueen2 produces J sets of centers, each containing K
points. Cluster centers are combined into a superset. Then, the superset is clustered
by K-Means J times. Each time, K-Means is initialized with a different center set,
and members of the center set that give the lowest FW are selected as final centers.

The PCA-Part method [70] uses a divisive hierarchical approach based on PCA
[38]. The method starts with a single cluster containing the whole dataset. Then, it
iteratively divides clusters with respect to FW . Clusters are divided into two sub-
clusters by using a hyperplane that is orthogonal to the principal eigenvector of the
cluster covariance matrix. The division process ends after K clusters are obtained.

The K-Means++ method selects centroids based on a random sampling with un-
equal probabilities [71]. First, it chooses at pure random an initial center c1 = x from
the data point set X. Then, it selects the next center among the remaining points of
X by random sampling with unequal probabilities. The probability of each point is
proportional to its distance to the nearest center.

Finally, there are in the literature other methods bearing quadratic complexity
[64, 65]. Among these methods, MaxMin (also called Maximin) [72] is particularly
interesting. MaxMin first calculates all the paired distances between data points.
Then, it chooses two centroids from the data points, which have the greatest distance
to each other. Finally, the next centroid is the data point that is the farthest from
its centroid. This approach helps decrease FW , which improves the homogeneity of
clusters.

The choice of the two first centers makes MaxMin quadratic. Thus, two linear
versions of MaxMin have been proposed. Gonzalez suggests to pick the first center
c1 randomly, and to choose the farthest point from c1 as the second center c2 [73].
Unfortunately, this version depends entirely on the random choice of c1. Its disad-
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vantage is that outliers can be chosen. In contrast, Katsavounidis et al. propose to
consider the global mean of data as the first center c1 [74]. Thus, only the distance
of each point to the global mean has to be calculated to determine the second center
c2, which makes the method linear. Unfortunately, the appeal to a global center is
not appropriate to Boolean data.

To summarize, Hand and Krzanowski rely on user-defined parameters [68] that
may not be easy to set. MacQueen2, though easy to understand and implement,
uses only one random sample. Faber improves MacQueen2’s random sample through
relaunches. In K-Means++, the random choice is replaced by a probabilistic choice.
Moreover, cluster homogeneity is taken into account. However, since probabilistic
selection does not always select a large-enough distance, several probabilistic samples
are required and the set of best centers is selected from all relaunches.

In contrast, MaxMin constructs only one sample by decreasing FW , and is thus
deterministic. Thus, we can be sure that the chosen center is the best. Yet, MaxMin
can be less effective than K-Means++ in the presence of outliers.

7.2 Initialization Methods for Boolean Data

In the case of Boolean data, instead of summarizing each cluster by its gravity center,
each cluster is summarized by its most central object, which is called a prototype.
Then, instead of using the K-Means or Fuzzy C-Means iterative clustering algorithms
that operate on continuous data, K-Medoids and Fuzzy K-Medoids must be employed.
These methods only require to take the pairwise dissimilarities between objects into
account, and not the original data.

Among previously presented initialization methods, only the ones that require the
calculation of a gravity center must be avoided like Katsavounidis’ variant of MaxMin,
which chooses the global gravity center as the first center. In K-Medoids and Fuzzy
K-Medoids calculation, the gravity center is replaced with prototype.

There are few articles specifically dedicated to the initialization of Fuzzy K-
Medoids. Yet, Krishnapuram et al. discuss three possible methods [75].

• Initialization 1 is similar to MacQueen2 and chooses the first set of K-Medoids
at random. It can be applied repeatedly so that the best result is output.
However, Its disadvantage is that outliers can be chosen.

• Initialization 2 chooses the first medoid as the object that is the most central
point in the dataset. The sums of the dissimilarities between each point and all
other points are first calculated. The point having the smallest sum is considered
the most central point. Then, medoids are added one by one by successively
selecting the object that is the most dissimilar from previously selected ones.

• Initialization 3 picks the first medoid randomly, to add a random component
to the procedure. Other medoids are selected as in Initialization 2. According
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to Krishnapuram, apart from the Initialization 1, the other two initialization
methods work well in practice.

Eventually, Park and Jun propose a method that selects initial medoids as the K
points whose sum of distance-ratio to all other points is minimum [76]. The distance-
ratio between two points i and j is not a simple distance, but it is the profile-line
coefficient vij = dij/di+ (where di+ denotes the sum of dij for all j = 1, 2, ...n) issued
from the pairwise distance matrix D (whose the general term is dij , i = 1, 2, ..., n,
j = 1, 2, ..., n). Park and Jun consider that the K initial medoids are the K points
having the smallest value of vj = v+j (v+j is the sum of vij for all i = 1, 2, ..., n that
corresponds to the vj of Park). Park’s strategy ensures that each chosen seed is on
the whole near of the different objects taking into account the more or less eccentric
character of the objects. Unfortunately, this strategy does not consider the inter-seeds
distances and it cannot ensure that seeds are sufficiently distant from each other to
make an efficient initialization.

7.3 MaxMin Linear Specification

Among these methods, MaxMin’s simplicity and ability to build homogeneous clusters
is very appealing. Yet, considering all paired distance between data points makes the
method quadratic with respect to the number of data points. Thus, we present in
this section an enhancement of MaxMin that makes it linear. Before introducing our
changes, we first detail how MaxMin works (Algorithm 1).

Algorithm 1 MaxMin

Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K
{Select the first two centroids c1 and c2}
c1, c2 ← argmax(d2(xi, xj)) i, j = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi 6= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi)← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k

∗ = 1, ...,K∗

In our variant MaxMin Linear, we first calculate grand mean x (Equation 5.4).
Then, we choose as first centroid the data point that is nearest to x. The second
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centroid is the data point that has the greatest distance to the first centroid. Thus,
complexity remains linear with respect to the number of data points. Afterwards, the
choice of the remaining centroids remains the same as in MaxMin. MaxMin Linear is
formalized in Algorithm 2.

Algorithm 2 MaxMin Linear

Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K
{Select the first two centroids c1 and c2}
x← 1

n

∑n
i=1

xi
for i← 1 to n do

d2m(xi)← min(d2(x, xi))
end for
c1 ← argmin(d2m(xi)) i = 1, ..., n
for i← 1 to n do

d2m(xi)← max(d2(c1, xi))
end for
c2 ← argmax(d2m(xi)) i = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi 6= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi)← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k

∗ = 1, ...,K∗

As a final note, the use of MaxMin Linear is not limited to FCM on numerical
data. It can also be used with Fuzzy K-Medoids for categorical data clustering. Thus,
MaxMin Linear can serve in fuzzy clustering ensemble on heterogeneous data. This
makes of MaxMin Linear a simple but noteworthy contribution.

7.4 Experimental Validation

In this section, we aim to compare MaxMin Linear to state-of-the-art initialization
methods for FCM-like clustering algorithms, i.e., MacQueen2, Faber, K-Means++
and repeated K-Means++ (retaining the best result). These methods are indeed
the most common linear methods and are good representatives for random, proba-
bility and distance-based methods (Section 7.1). Moreover, they do not require any
parameterization.
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7.4.1 Datasets

Initialization methods are compared on 15 commonly used real-life datasets (Ta-
ble 7.1; IDs 1-15) from the UCI Machine Learning Repository1 and seven artificial
datasets (Table 7.1; IDs 16-22). Their characteristics are featured in Table 7.1.

Table 7.1: Dataset features

ID Datasets # of
data points

# of
variables

# of
clustersSources

1 Wine 178 13 3 UCI
2 Iris 150 4 3 UCI
3 Seeds 210 7 3 UCI

4
Original Wisconsin

Breast Cancer (WBCD) 683 9 2 UCI

5
Wisconsin Diagnostic

Breast Cancer (WDBC) 569 30 2 UCI

6
BUPA Liver

Disorder (BUPA) 345 6 2 UCI

7 Pima 768 8 2 UCI
8 Glass 214 9 6 UCI
9 Vehicle 846 18 4 UCI
10 Segmentation 2310 19 7 UCI
11 Parkinson 150 22 2 UCI
12 Movement Libras 360 90 15 UCI
13 Ecoli 336 7 8 UCI
14 Yeast 1484 8 10 UCI
15 WineQuality-Red 1599 11 6 UCI
16 Bensaid 49 2 3 [77]
17 E1071-3 150 3 3 [78]
18 Ruspini 75 2 4 [22]
19 E1071-5 250 3 5 [78]
20 E1071-3-overlapped 150 3 3 [78]
21 Ruspini noised 95 2 4 [22]
22 E1071-5-overlapped 250 3 5 [78]

In real-life datasets, the true number of clusters is assimilated to the number of
labels. Although using the number of labels as the number of clusters is debatable,
it is acceptable if the set of descriptive variables explains the labels well. In artificial
datasets, the number of clusters is known by construction. Moreover, we created
new artificial datasets by introducing overlapping and noise into some of the existing
datasets, such as E1071-3 [78], Ruspini [22] and E1071-5 [78] (Table 7.1; IDs 17-19).

To create a new dataset, new data points are introduced and each must be la-
beled. To obtain a dataset with overlapping, we modify the construction of the E1071
artificial datasets. In the original datasets, there are three or five clusters of equal
size (50). Cluster i is generated according to a Gaussian distribution N(i; 0.3). To
increase overlapping in the three clusters while retaining the same cluster size, we only
change the standard deviation from 0.3 to 0.4. Then, there is no labeling problem.

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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To introduce noise in a dataset, we add in each cluster noisy points generated by
a Gaussian variable around each label gravity center. Noisy data are often generated
by distributions with positive skewness. For example, in a two-dimensional dataset,
for each label, we add points that are far away from the corresponding gravity center,
especially on the right-hand side, which generally contains the most points. Then,
we draw a random number r between 0 and 1. If r ≤ 0.25, the point is attributed
to the left-hand side. Otherwise, the point is attributed to the right-hand side. This
method helps obtain noisy data that are 1/4 times smaller and 3/4 times greater,
respectively, than the expected value for the considered label. This process is applied
to the Ruspini dataset [22].

7.4.2 Experimental Settings

In our experiments, we parameterize the FCM algorithm as follows: default termi-
nation criterion ǫ = 0.0001 and default fuzziness coefficient m = 2. We use these
default settings as we are only interested in improving the initialization of FCM. All
compared methods are written in Python version 2.7.4. Repeated K-Means++ runs
are performed ten times.

7.4.3 Experimental Results

In our experiments, all compared initialization methods are run with all datasets.
We account for the following comparison criteria: number of iterations and quality
indices the Partition Coefficient Index VPC , Chen and Linkens’ index VCL, FB, FW ,
FI, the fuzzy Ratio Index VFRatio, Fukuyama and Sugeno’s index VFS and Xie and
Beni’s index VXB (Section 8.1). In addition to these common indices, we also use
Transformed Standardized Fuzzy Difference VTSFD that is a new validity index we
propose (Section 8.2). This index is defined by TSFD = FB/FI. Further, we rank
the initialization methods with respect to all criteria.

Since presenting all results would take too much space, we only present three real-
life datasets, i.e., WineQuality-Red (Tables 7.2, 7.3 and 7.4), Glass (Tables 7.5,
7.6 and 7.7) and Segmentation (Tables 7.8, 7.9 and 7.10), as well as three artificial
datasets, i.e., Bensaid (Tables 7.11, 7.12 and 7.13), Ruspini noised (Tables 7.14,
7.15 and 7.16) and E1071-5-overlapped (Tables 7.17, 7.18 and 7.19), respectively.
Finally, the average ranking of initialization methods on all datasets is presented in
Table 7.20.

From these experimental results, several observations can be drawn. In regard
to the number of iterations, recall that Faber and K-Means++ ×10 are relaunches
of two stochastic initialization methods: MacQueen2 and K-Means++, respectively.
With an average ranking of 1.68 (Table 7.20), MaxMin Linear outperforms all other
methods, including single-run methods MacQueen2 (average ranking: 1.95) and K-
Means++ (average ranking: 1.95).
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Table 7.2: Experiment results on WineQuality-Red (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 45 0.664 0.7455 110972.7 1224079.7
Faber 430 0.664 0.7455 101440.4 1224079.7
Kmeans++ 37 0.616 0.7029 101440.5 1089058.1
K-Means++ ×10 393 0.664 0.7455 101440.4 1224073.7
MaxMin Linear 34 0.6650.7458 110972.7 1224384.8

Table 7.3: Experiment results on WineQuality-Red (2/2)

Initialization Method FI VFRatio VTSFD VFS VXB
MacQueen2 1335052.363 11.0305 0.9169 -1113107.01 0.1621
Faber 1335052.363 11.0305 0.9148 -1113107.01 0.1621
K-Means++ 1190498.537 10.7359 0.9148 -987617.57 0.2388
K-Means++ ×10 1335046.425 11.0304 0.9148 -1113101.04 0.1621
MaxMin Linear 1335357.55411.03320.9169-1113412.130.1611

Table 7.4: Ranking of initialization methods on WineQuality-Red

Initialization Method # of
iterationVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 3 2 2 4 2 2 2 2 2 2
Faber 5 2 2 2 2 2 2 5 2 2
K-Means++ 2 5 5 3 5 5 5 3 5 5
K-Means++ ×10 4 4 4 1 4 4 4 4 4 4
MaxMin Linear 1 1 1 5 1 1 1 1 1 1

Table 7.5: Experiment results on Glass (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 44 0.493 0.570 452.6 154.1
Faber 456 0.493 0.570 452.6 154.1
Kmeans++ 56 0.493 0.570 452.6 154.1
K-Means++ ×10 366 0.493 0.570 452.6 154.1
MaxMin Linear 68 0.5550.645508.3 162.9

Table 7.6: Experiment results on Glass (2/2)

Initialization Method FI VFRatio VTSFD VFS VXB
MacQueen2 606.8 2.94 0.74596 -298.5 2.358
Faber 606.8 2.94 0.74597 -298.5 2.358
Kmeans++ 606.7 2.94 0.74593 -298.4 2.358
K-Means++ ×10 606.7 2.94 0.74604 -298.4 2.358
MaxMin Linear 671.2 3.12 0.75725-345.40.453

Regarding clustering result quality, MaxMin Linear obtains the best average rank-
ing for seven of the eight experimented quality indices (Table 7.20). Only the FB
index yields a better result for the two multiple-runs methods, while the result of
MaxMin Linear is similar to those of MacQueen2 and K-Means++. However, MaxMin
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Table 7.7: Ranking of initialization methods on Glass

Initialization method # of
iterationVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 1 2 2 2 1 2 2 4 2 5
Faber 5 3 3 3 2 3 3 3 3 2
Kmeans++ 2 5 5 5 4 5 5 5 5 4
K-Means++ ×10 4 4 4 4 3 4 4 2 4 3
MaxMin Linear 3 1 1 1 5 1 1 1 1 1

Table 7.8: Experiment results on Segmentation (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 103 0.381 0.476 12384361.4 5781042.6
Faber 731 0.398 0.488 14157566.6 5680259.6
Kmeans++ 146 0.381 0.476 12388277.9 5781061.6
K-Means++ ×10 930 0.399 0.490 14254025.9 5666840.5
MaxMin Linear 54 0.4300.52619234921.0 6344612.7

Table 7.9: Experiment results on Segmentation (2/2)

Initialization Method FI VFRatio VTSFD VFS VXB
MacQueen2 18165404.0 2.14 0.6818 -6603318.7 0.363
Faber 19837826.2 2.49 0.7137 -8477307.1 0.464
Kmeans++ 18169339.6 2.14 0.6818 -6607216.3 0.361
K-Means++ ×10 19920866.4 2.52 0.7136 -8587185.5 0.341
MaxMin Linear 25579533.7 3.03 0.7520-12890308.3 0.656

Table 7.10: Ranking of initialization methods on Segmentation

Initialization method # of
iterationVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 2 4 5 5 3 5 5 5 5 3
Faber 4 3 3 3 2 3 3 2 3 4
Kmeans++ 3 5 4 4 4 4 4 3 4 2
K-Means++ ×10 5 2 2 2 1 2 2 4 2 1
MaxMin Linear 1 1 1 1 5 1 1 1 1 5

Table 7.11: Experiment results on Bensaid (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 25 0.682 0.690 19222.0 7574.9
Faber 229 0.682 0.690 19222.7 7574.9
Kmeans++ 25 0.7560.78123421.0 7913.4
K-Means++ 218 0.682 0.690 19224.2 7574.9
MaxMin Linear 10 0.755 0.781 23398.0 7913.4

Linear achieves the best trade-off between FB and FW , and thus maximizes the in-
dices that take both FB and FW into account (VFRatio, VFS and VXB). The best
result for MaxMin Linear is obtained with VTSFD (average ranking of 1.86; Ta-
ble 7.20), the new index specially tailored for fuzzy clustering that we propose in
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Table 7.12: Experiment results on Bensaid (2/2)

Initialization method FI VFRatio VTSFD VFS VXB
MacQueen2 26796.9 2.54 0.7173 -11647.1 0.276
Faber 26797.6 2.54 0.7173 -11647.8 0.276
Kmeans++ 31334.4 2.96 0.7475-15507.60.068
K-Means++ 26799.1 2.54 0.7173 -11649.3 0.275
MaxMin Linear 31311.4 2.96 0.7473 -15484.6 0.069

Table 7.13: Ranking of initialization methods on Bensaid

Initialization method # of
iterationsVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 2 3 3 5 3 5 5 5 5 5
Faber 5 5 5 4 2 4 4 4 4 4
Kmeans++ 2 1 1 1 4 1 1 1 1 1
K-Means++ 4 4 4 3 1 3 3 3 3 3
MaxMin Linear 1 2 2 2 5 2 2 2 2 2

Table 7.14: Experiment results on Ruspini noised (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 9 0.775121 0.806518 219099.6 23421.0260
Faber 130 0.775125 0.806517 219100.8 23421.0258
Kmeans++ 13 0.775122 0.806521 219101.1 23421.0258
K-Means++ ×10 105 0.775128 0.806518 219102.3 23421.0256
MaxMin Linear 7 0.775128 0.806523219105.4 23421.0268

Table 7.15: Experiment results on Ruspini noised (2/2)

Initialization Method FI VFRatio VTSFD VFS VXB
MacQueen2 242520.7 9.3548 0.903427 -195678.6 0.063680
Faber 242521.9 9.3549 0.903427 -195679.8 0.063681
Kmeans++ 242522.1 9.3549 0.903427 -195680.0 0.063676
K-Means++ ×10 242523.3 9.3549 0.903426 -195681.3 0.063681
MaxMin Linear 242526.49.35510.903429-195684.40.063672

Table 7.16: Ranking of initialization methods on Ruspini noised

Initialization Method # of
iterationVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 2 5 3 5 4 5 5 4 5 3
Faber 5 3 5 4 2 4 4 3 4 5
Kmeans++ 3 4 2 3 3 3 3 2 3 2
K-Means++ ×10 4 1 4 2 1 2 2 5 2 4
MaxMin Linear 1 2 1 1 5 1 1 1 1 1

Section 8.2.

In conclusion, the results obtained with MaxMin Linear are a little better than
those obtained with multiple-runs methods, but they require ten times fewer itera-
tions. Moreover, MaxMin Linear is deterministic, whereas multiple-runs methods are
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Table 7.17: Experiment results on E1071-5-overlapped (1/2)

Initialization method # of
iterations VPC VCL FB FW

MacQueen2 8 0.735646 0.762681 219.7337 48.715631
Faber 103 0.735645 0.762683 219.7358 48.715630
Kmeans++ 12 0.735651 0.762685 219.7408 48.715632
K-Means++ ×10 113 0.735645 0.762683 219.7363 48.715629
MaxMin Linear 7 0.7356520.762688219.744548.715629

Table 7.18: Experiment results on E1071-5-overlapped (2/2)

Initialization Method FI VFRatio VTSFD VFS VXB
MacQueen2 268.4494 4.5105 0.818530 -171.0181 0.11574
Faber 268.4514 4.5106 0.818535 -171.0202 0.11569
Kmeans++ 268.4565 4.5107 0.818534 -171.0252 0.11575
K-Means++ ×10 268.4519 4.5106 0.818530 -171.0207 0.11569
MaxMin Linear 268.46014.51080.818537-171.0288 0.11572

Table 7.19: Ranking of initialization methods on E1071-5-overlapped

Initialization method # of
iterationVPC VCLFBFW FI VFRatio VTSFD VFS VXB

MacQueen2 2 3 5 5 4 5 5 5 5 4
Faber 4 5 4 4 3 4 4 2 4 1
Kmeans++ 3 2 2 2 5 2 2 3 2 5
K-Means++ ×10 5 4 3 3 1 3 3 4 3 2
MaxMin Linear 1 1 1 1 2 1 1 1 1 3

Table 7.20: Average ranking of initialization methods on all datasets

Initialization method # of
iteration VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 1.95 3.36 3.55 3.86 3.41 3.41 3.41 3.04 3.41 3.55
Faber 4.45 2.73 2.82 1.73 2.73 2.73 2.73 3.27 2.73 2.91
K-Means++ 1.95 3.86 3.68 3.86 3.86 3.86 3.86 3.54 3.86 3.36
K-Means++ ×10 4.41 2.68 2.55 1.64 2.86 2.86 2.86 3.22 2.86 2.82
MaxMin Linear 1.68 2.272.32 3.82 2.052.05 2.05 1.86 2.052.27

stochastic.

7.5 Summary

In this chapter, we propose a new, fast and easy to implement initialization method for
FCM called MaxMin Linear. We experimentally compare MaxMin Linear to several
initialization methods from the literature and shown that it outperforms existing
methods on 22 synthetic and real-life datasets.

In addition, MaxMin Linear can be applied to algorithms other than FCM, such
as Fuzzy K-Modes and Fuzzy K-Medoids, which apply on categorical data. In par-
ticular, MaxMin Linear allows decreasing the complexity of Park and Jun’s FKM
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implementation [76].
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Clustering algorithms behave differently for different reasons. The first reason
relates to dataset features such as geometry and the density distribution of clusters.
The second reason is the choice of input parameters such as fuzziness coefficient m
(m = 1 indicating that clustering is crisp and m > 1 that clustering becomes fuzzy),
the number of clusters K and initialization method.

These parameters all affect the quality of clustering. To study how the choice
of parameters impacts clustering quality, we need a quality criterion. For instance,
when the dataset is well separated and has only two variables, a scatter plot can help
determine the number of clusters. However, when the dataset has more than two
variables, a good quality index is needed to compare various cluster configurations
and choose the appropriate number of clusters.

Achieving a good clustering involves both minimizing intra-cluster distance (com-
pactness) and maximizing inter-cluster distance (separability). A common issue in
this process is that clusters are split up while they could be more compact. Many
cluster quality indices have been proposed to address this problem for hard and fuzzy
clustering, but none of them is always highly efficient [79].

Moreover, there is no real-life golden standard for clustering analysis, since various
experts may have different points of views about the same data and express different
constraints on the number and size of clusters. Thanks to a visual index (for example,
the graph which considers the variations of the quality index according the number of
clusters), different solutions can be presented with respect to the data. Thus, experts

75
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can make a trade-off between their opinion and the best local solutions proposed by
the visual index. Hence, in this chapter, we propose an innovative, visual quality
index for FCM.

8.1 Fuzzy Clustering Quality Indices

According to Wang et al., there are two groups of quality indices [80]:

1. quality indices based only on membership values;

2. quality indices that associate membership values to cluster centers and data.

Quality indices in the first group notably include the Partition Coefficient Index
VPC [81] (Equation 8.1; 1

K ≤ VPC ≤ 1; to be maximized) and Chen and Linkens’ index
VCL [82] (Equation 8.2; 0 ≤ VCL ≤ 1; to be maximized) takes both compactness (first
term of VCL) and separability (second term of VCL) into consideration.

VPC =
1

n

n∑

i=1

K∑

k=1

u2ik (8.1)

VCL =
1

n
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i=1

maxk(uik)−
1

c

K−1∑

k=1

K∑

j=k+1




1

n

n∑

i=1

min(uik, uij)



 (8.2)

where c =
∑K−1

k=1
k.

The disadvantage of these indices is that they do not take x value into considera-
tion.

Quality indices in the second group include an adaptation of the Ratio Index
VFRatio to fuzzy clustering [83] (Equation 8.3; 0 ≤ VFRatio ≤ +∞; to be maximized),
Fukuyama and Sugeno’s index VFS [84] (Equation 8.4; −FI ≤ VFS ≤ FI; to be
minimized), and Xie and Beni’s index VXB [85,86] (Equation 8.5; 0 ≤ VXB ≤ FI/n ∗
min‖xj − vk‖

2; to be minimized).

VFRatio = FB/FW (8.3)

VFS = FW − FB (8.4)

VXB =

∑K
k=1

∑n
i=1

umik‖xi − vk‖
2

n ∗minj,k‖vj − vk‖2
(8.5)

These indices are built on the associated notions of fuzzy within and fuzzy between
inertia. Their advantage is that they take fuzzy coefficient uij and x value into
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consideration. These indices are well suited to hard clustering (m > 1) because in
this case, FI = FW + FB has a constant value. Unfortunately, in case of fuzzy
clustering, FI is varying. For example, considering VFS , FS = FW − FB, it would
be logical to express FW − FB in function of FI.

When the number of clusters increases, the value of quality indices mechanically
increases, too. Then, the important question is: how useful is the addition of a new
cluster? To answer this question, the most common solutions are penalization and
the Elbow Rule [87].

The first way to penalize a quality index is to multiply it by a quantity that
diminishes the index’ value when the number of clusters increases. In this case, the
main difficulty is to choose the penalty. For instance, the penalized version of VFRatio

is Calinski’s index VFCH [83] (Equation 8.6; 0 ≤ VFCH ≤ +∞; to be maximized),
where the penalty is based on both the number of clusters and data points.

VFCH =
FB/(K − 1)

FW/(n−K)
=

n−K

K − 1

FB

FW
(8.6)

The second way to penalize a quality index is to evaluate index evolution relatively
to the number of clusters, by considering the curve of the index’ successive values.
The most appropriate value of K can be determined visually with the help of either
the Elbow Rule or an algebraic calculation [88].

To construct a visual determination of the Elbow Rule, K is represented on the
horizontal axis and the considered quality index on the vertical axis. Then, we look
for the value of K where there is a change in the curve’s concavity. This change
corresponds to the optimal number of clusters K.

To construct an algebraic determination, let iK be the index value for K clusters.
The variation of iK before K and after K are compared. In case of a positive Elbow,
the second difference minK((iK+1− iK)− (iK − iK−1)) is minimized. Moreover, since
the values before K and after K are used for calculation, the Elbow Rule can be
applied to more than two clusters.

Among all above-described quality indices, there is no single quality index that
gives the best result for any dataset. Thus, there is room for a new quality index that
is specifically tailored for fuzzy validation and helps the user choose the value of K.

8.2 An Index Associated with a Visual Solution

The optimal number of clusters can be determined by considering the variation of a
clustering validity index. There are two possible cases:

1. if the index is not monotonic with the number of clusters, we choose the number
of clusters that optimizes the index;

2. if the index is monotonic, we may use a penalized version of the index.



78 A Visual Quality Index for Fuzzy C-Means

Building a new quality index, we first consider FW to evaluate compactness and
FB to evaluate separability. We can choose to calculate either FB − FW , which
is similar to VFS except for the sign, or FB ÷ FW , which is similar to VFRatio.
Unfortunately, FI = FB + FW is not constant and FB − FW ∈ [−FI,+FI].
To take this particularity of fuzzy clustering into account, we propose to standardize
FB−FW by considering the Standardized Fuzzy Difference SFD = (FB−FW )÷FI
instead. Then, SFD ∈ [−1,+1].

Moreover, adding a new cluster often improves clustering quality mechanically.
Thus, many authors penalize the quality index with respect to K (the smaller n is,
the greater the penalty), e.g., VFCH (Section 8.1). To obtain a penalized index, we
first linearly transform SFD so that its values belong to [0, 1], thus obtaining the
Transformed Standardized Fuzzy Difference TSFD (Equation 8.7; TSFD ∈ [0, 1]; to
be maximized).

TSFD =
1 + SFD

2
=

FB

FI
(8.7)

Finally, by penalizing TSFD as VFCH , we obtain the Penalized Standardized
Fuzzy Difference PSFD (Equation 8.8; PSFD ∈ [0, (n − K) ÷ (K − 1)]; to be
maximized).

PSFD = TSFD ×
n−K

K − 1
=

FB − FW

FI
×

n−K

K − 1
(8.8)

Instead of penalizing the quality index, another approach is to visualize the search
for the best number of clusters K. The first solution is to apply the Elbow Rule to
TSFD. TSFD is plotted with respect to K in Figure 8.1(a). The drawback of this
method is that the horizontal axis corresponds to an arithmetic scale of K values,
which is not satisfying.

To fix this problem, we suggest to plot FB with respect to FI for considering
each value of K, which we call Visual TSFD. Our aim is not to give an automatic
solution, but to help the user visually choose the most appropriate value for K. The
visualization we propose is shown in Figure 8.1(b), where the blue line plots TSFD
with respect to K, the full red line is the diagonal that corresponds to the best
solutions (FB = FI) such that TSFD = 1, and the dashed red line connects the
origin to each point associated with K values.

The smaller the angle between the full red line and the dashed red line, the better
is the solution. As the value of K increases, the angle between the dashed red line and
the diagonal decreases. Then, we choose the value of K beyond which the decrease
becomes negligible. This value is considered as the optimal number of clusters. For
example, in Figure 8.1(b), a first solution could be K = 4, a better solution K = 6
and it is not very interesting to consider K > 6.

In case of Boolean data, because gravity centers are replaced by prototypes, FB+
FW is not necessary equal to FI. Thus, in this case, TSFD is defined by TSFD =
FB/(FW + FB).
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Figure 8.1: Comparison of Elbow Rule (a) and Visual TSFD (b) on the
WineQuality-Red dataset (see Table 8.1)

8.3 Experimental Validation

In this section, we compare our proposals TSFD, PSFD, Visual TSFD and the
use of the Elbow Rule to state-of-the-art quality indices for FCM-like clustering al-
gorithms, i.e., VPC , VCL, VFCH , VFS and VXB (Section 8.1) that are indeed the most
common quality indices applied on several numerical real-world and artificial datasets.

8.3.1 Datasets

Quality indices are compared on ten real-life datasets (Table 8.1; IDs 1-10) from the
UCI Machine Learning Repository1 and seven artificial datasets (Table 8.1; IDs 11-
17). These datasets are those already used in Section 7.4.1, except the datasets having
an optimal number of clusters K = 2, because computing the Elbow rule necessitates
that K ≥ 3.

8.3.2 Experimental Settings

In our experiments, the FCM algorithm is parameterized with its default settings:
termination criterion ǫ = 0.0001 and default fuzziness coefficient m = 2. We use
these default settings because we are only interested in improving quality indices. All
clustering quality indices are coded in Python version 2.7.4.

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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8.3.3 Experimental Results

In these experiments, we test all quality indices against all datasets. Our comparison
criterion is the number of clusters achieved by each quality index. We also rank the
indices with respect to real-life and artificial datasets wins criteria.

Our experimental results are shown in Table 8.1, where the first four columns
recall the datasets’ features and the next columns the number of clusters computed
with the tested indices. Moreover, since presenting all the results would take too
much space, we retain only the indices which have the best result.

Table 8.1: Quality index experiment results

ID Datasets
# of
data
points

# of
clusters VPC VCLFBVFCH VFS VXB

Elbow
VTSFD

Visual
VTSFD

1 Wine 178 3 2 2 8 12 8 2 3 5
2 Iris 150 3 2 2 3 3 3 2 3 3
3 Seeds 210 3 2 3 3 3 3 2 3 3
4 Glass 214 6 2 2 12 12 12 2 4 5, 7
5 Vehicle 846 4 2 2 2 2 5 2 3 4, 5
6 Segmentation 2310 7 2 4 4 4 12 12 3 7, 8
7 Movement Libras 360 15 2 18 16 16 18 2 14 14, 16
8 Ecoli 336 8 2 3 3 3 12 3 3 3, 7
9 Yeast 1484 10 2 2 5 2 12 2 4 7, 8
10WineQuality-Red 1599 6 2 2 6 7 6 2 3 6
11 Bensaid [77] 49 3 3 3 9 11 11 3 3 5
12 E1071-3 [78] 150 3 3 3 3 3 3 3 3 3
13 Ruspini [22] 75 4 4 4 4 4 4 4 3 4
14 E1071-5 [78] 250 5 2 5 4 5 5 2 3 5

15 E1071-3-
overlapped 150 3 2 3 3 2 3 2 3 3

16 Ruspini noised 95 4 4 12 4 4 4 4 4 4

17 E1071-5-
overlapped 250 5 2 2 4 5 4 2 3 5

# of wins for real-life datasets 0 1 3 2 3 0 3 5
# of wins for artificial datasets 4 5 4 5 5 4 4 6

Total # of wins 4 6 7 7 8 4 7 11

As shown in Table 8.1, it is more difficult to predict an appropriate number of
clusters for real-life datasets than for artificial datasets. Considering all indices, the
average rate of success is indeed 21% in the case of real data, against 66% in the case
of artificial data. Whatever the type of data, Visual TSFD outperforms the other
indices, with 5 wins out of 10 in the case of real datasets and 6 wins out of 7 in the
case of artificial datasets. The worst results are obtained with VPC and VXB (0/10
and 4/7 wins each). The other indices achieve intermediary results.

In addition, when the value given by Visual TSFD is erroneous, it is quite close
to the expected K, in contrast to VFS , our closest competitor (Table 8.1; datasets
Wine, Glass, Segmentation, Ecoli and Bensaid). For example, the optimal number of
clusters should be 6 for the Glass dataset. VFS = 12 and Visual TSFD’s results are
5 and 7.



Experimental Validation 81

Furthermore, we compare in Figures 8.2 and 8.3 Visual TSFD and the plot
obtained with the Elbow Rule (which is labeled Elbow TSFD) with respect to K, on
a sample of both real-life and artificial datasets bearing different characteristics, i.e.,
Glass, Vehicle, Ecoli, Ruspini, Ruspini noised and E1071-5-overlapped (Table 8.1).

Figure 8.2: Comparison of Elbow TSFD and Visual TSFD (1/2)
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Figure 8.3: Comparison of Elbow TSFD and Visual TSFD (2/2)

As is clearly visible from Figures 8.2 and 8.3, Visual TSFD provides a better
visual idea than Elbow TSFD to determine K. Elbow TSFD indeed highlights K
values of 3 or 4, while the TFSD blue plot systematically indicates larger and more
relevant K values.
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Eventually, since our work aims at real-life datasets, there is no ground truth nor
golden standard for clustering analysis. In such a context, Visual TSFD has the
advantage of providing options to experts, instead of outputting a single K value.
This makes our method more flexible than the existing ones in real-life scenarios.

8.4 Summary

In this chapter, we propose a novel quality index for FCM called Visual TSFD, which
helps determine the number of clusters visually. We experimentally compare Visual
TSFD to state-of-the-art clustering quality indices and show that it outperforms
existing indices on various datasets.

Furthermore, Visual TSFD can also be used in the case of categorical data
with Fuzzy K-Medoids [76]. Thus, Visual TSFD allows dealing with heterogeneous
datasets, which is particularly interesting in our applicative context.

As a result, our next step is to design a fuzzy clustering method based on Visual
TSFD that can deal with both numerical and categorical data.
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As stated in Chapter 3, the archaeological and archaeometric data we are dealing
with are of three types: chemical (numerical), descriptive (textual) and graphical
(images). There has been a tremendous growth in the availability of archaeological
and archaeometric data through the creation of ceramic databases. In the near future,
such data will be considered as large (great number of objects) high-dimensional
(great number of variables) data. In this chapter, our aim is to propose data mining
techniques that are well-suited to deal with real-life, large, high-dimensional and
heterogeneous data, while considering the specificities of data related to archaeological
ceramic samples.

First, we present the hard clustering method used by archaeometry experts from
the ArAr laboratory to construct groups of ceramic objects, which we will use as
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reference. Then, we apply fuzzy clustering on chemical, description and image data
separately (Figure 9.1), and compare the results with the expert-defined groups to
examine their coherence.

Our experiment steps are shown in Table 9.1. The first step is data preprocessing
such as for continuous data standardization or for Boolean data reduction. The second
step is to determine the optimal number of clusters to use in FCM. The third step
is to apply FCM algorithm to obtain results that are used to do interpretations by
comparing with expert-defined groups at the end of the experiment.

Figure 9.1: Disjoint clustering analysis scheme

9.1 Dataset and Expert-Defined Groups

Within the ArAr laboratory, archeometry experts define ceramic objects with respect
to their chemical composition and other information, including descriptive and image
data. To define groups of ceramic objects, experts first apply a hierarchical clustering
algorithm (HCA; Section 5.1) to chemical data. They use the dendrogram output
by HCA as a help to identify the structure of raw chemical data, which they further
examine to define different groups of ceramics, also taking various factors into con-
sideration, such as geological contexts, geochemical properties, analytical biases, as
well as descriptive and image data [3].

The options chosen for HCA are to use standardized variables (Equation 5.8)
and to calculate the dissimilarity between objects with the Euclidean distance. Two
objects are clustered together when they minimize a given agglomeration criterion
obtained by the centroid linkage method [10]. In this method, the distance between
two clusters is calculated as the distance between the two mean vectors of the clusters.
At each stage, the two clusters that have the smallest centroid distance are combined.
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The overall time complexity of centroid linkage HCA is O(n2 log n).

A dendrogram initially represents each object as a point on a horizontal baseline.
Similar objects and groupings of objects are connected by a horizontal line whose in-
tersection with the vertical axis gives the level of dissimilarity. Thus, HCA results are
in the form of hierarchies. To identify clusters in a dendrogram, the usual procedure
is to draw a horizontal line at a chosen threshold and to retain only the connections
whose level is lower than the threshold. However, due to varying homogeneity in each
group, ArAr experts do not use a single threshold for the whole dendrogram. They do
not rely on the structure of the dendrogram only, but also use their knowledge (about
the raw data, their properties and descriptive features) to choose the thresholds that
are appropriate for each group.

Table 9.1 summarizes the features of our initial experimental dataset, which con-
sists of 3300 ceramic objects. However, only 301 objects include all three types of
descriptors (chemical, description and image data). Expert-defined groups are known
for all these 301 objects.

Table 9.1: Archaeological ceramic dataset features

Data #objects#variables
#variables

after
binarization

#variables
standardized ⋆
or reduced ‡

Chemical 3141 24 17 ⋆
Description 3300 6 63 58 ‡

Image 415 30 150 119 ‡

Figure 9.2 displays the dendrogram obtained using HCA on the 301-object corpus.
It is divided into three pieces to fit in the page. Expert-defined groups are underlined
and their names indicated. It must be stressed that the initial expert-groups as defined
in the ArAr laboratory contain more objects (a minimum of 15 to 20 in general). The
expert-groups appear reduced in size in our corpus due to the fact that not all the
objects had images data attached to them, and only those which had some were
considered.

The dendrogram shows that most samples are well grouped. It is clearly visible
that objects in the same group are consecutive, while only a few samples lie out of
the expert-defined groups. Only five objects that are in a marginal position do not
integrate the expert-defined groups: one object labeled 1 (Lapithos group) and four
objects labeled 2 (Plaka LRA1 group). Group Plaka LRA1 is split, with four samples
in one group, while the other samples appear as marginal to other groups.

We can also notice that not all groups bear the same homogeneity. Some groups
are connected at a higher level, while other groups are connected at a lower level
according to expert choice. If clusters are determined automatically from the den-
drogram, a global threshold is chosen and the resulting clusters are different than
expert-defined groups. The experts may propose different levels that are better suited
to the nature of the studied objects.
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Figure 9.2: Dendrogram obtained by HCA clustering (S.Y. Waksman)

9.2 Chemical Data

9.2.1 Fuzzy C-Means Parameters

This experiment consists of several steps (Figure 9.1) that are detailed below.
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Data Preprocessing To give each variable an equivalent weight, chemical vari-
ables are standardized using Equation 5.8.

Determination of the Optimal Number of Clusters Before FCM is applied
to standardized chemical data, the optimal number of clusters is determined by our
Visual TSFD method (Chapter 8). The resulting plot (Figure 9.3) shows that the
best K value for chemical data is clearly 20, since the following K values do not
change the angle between the dashed line and the full line.

Figure 9.3: Cluster number determination (chemical data)

9.2.2 Fuzzy C-Means Results

We apply FCM to standardized chemical data with K = 20 to obtain the fuzzy
coefficient matrix. Then, we identify for each object its first three largest fuzzy
coefficients and sort the objects according to the identifiers of the three closest centers
(Table 9.2). Analyzing this table reveals the limited diversity of centers of order two
and three associated with each first center.

Considering only the main center associated with each object, a new table is
constructed which gives for each main center the list of groups having at least one
object associated with the considered center (Table 9.3). Analyzing this table allows
to evaluate the greater or lesser homogeneity of each center in terms of expert-defined
groups.

Lastly, we present the main fuzzy clustering centers that are associated with
expert-defined groups and their frequency (Table 9.4). Analyzing this table reveals
the different main centers associated with each group.
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Table 9.2: Centers of order 1–3 in chemical dataset

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

c1 c8 c18 Plaka LRA1 3 c13 c17 c7 Istanbul S3 1
c2 c13 c17 GWWII 8 c13 c17 c12 Istanbul S3 2
c2 c13 c19 GWWII 1 c13 c17 c16 Istanbul S3 3
c3 c9 c20 Dhiorios 3 c13 c17 c19 Istanbul S3 4
c4 c19 c12 Beirut red 8 c14 c6 c8 Beirut buff 1
c5 c10 c8 Thebes 1 c14 c6 c18 Beirut buff 4
c5 c10 c15 Thebes 16 c15 c10 c8 Milet 9
c6 c14 c8 Beirut buff 8 c15 c10 c11 Milet 1
c6 c14 c18 Beirut buff 2 c15 c10 c16 Milet 2
c7 c11 c16 Chalcis 4 c15 c10 c20 Milet 8
c7 c11 c20 Chalcis 5 c16 c7 c17 NSW 1
c7 c11 c20 Chersonese 1 c16 c7 c17 Paphos 7
c7 c16 c11 Chalcis 8 c16 c7 c18 NSW 4
c7 c16 c17 Chalcis 14 c16 c7 c18 Paphos 1
c7 c16 c20 Chersonèse 5 c16 c7 c20 NSW 2
c7 c16 c20 Chalcis 8 c16 c17 c7 Paphos 1
c7 c17 c16 Chalcis 4 c16 c18 c7 NSW 3
c7 c20 c11 Lapithos 1 c16 c18 c10 Paphos 2
c7 c20 c16 Chalcis 3 c17 c7 c13 Istanbul S2 2
c7 c20 c16 Chersonese 1 c17 c7 c16 Istanbul S2 3
c8 c5 c1 Plaka LRA1 1 c17 c7 c18 Istanbul S2 2
c8 c10 c5 Plaka LRA1 1 c17 c13 c7 Istanbul S2 2
c8 c18 c1 Plaka LRA1 2 c17 c13 c16 Istanbul S2 5
c8 c18 c10 Horum 2 c17 c16 c7 Istanbul S2 1
c8 c18 c10 Plaka LRA1 1 c18 c8 c10 Plaka carrot 3
c8 c18 c10 PSSW 4 c18 c8 c16 Plaka carrot 4
c8 c18 c15 Horum 5 c18 c8 c17 Plaka carrot 1
c9 c3 c17 Dhiorios 1 c18 c16 c8 Plaka carrot 1
c9 c3 c20 Dhiorios 4 c19 c12 c4 Beirut red 1
c9 c16 c3 Dhiorios 1 c19 c12 c4 workshopX 10
c9 c16 c17 Dhiorios 3 c20 c7 c11 Lapithos 1
c9 c17 c16 Dhiorios 1 c20 c11 c7 Anaia 5
c9 c20 c3 Dhiorios 2 c20 c11 c7 Lapithos 1
c9 c20 c16 Dhiorios 3 c20 c11 c15 Anaia 5
c9 c20 c17 Dhiorios 1 c20 c15 c7 Anaia 2
c10 c15 c5 Milet 10 c20 c15 c7 Lapithos 1
c10 c15 c8 Milet 5 c20 c15 c7 Lapithos 1
c10 c15 c16 Milet 2 c20 c15 c10 Anaia 1
c10 c15 c18 Milet 2 c20 c15 c10 Anaia 1
c11 c7 c20 Ephesos b2 3 c20 c15 c10 Anaia 1
c11 c20 c7 Ephesos b2 7 c20 c15 c10 Anaia 1
c11 c20 c15 Ephesos b2 1 c20 c15 c16 Anaia 1
c12 c19 c4 workshopX 19 c20 c16 c7 Lapithos 2
c12 c19 c13 workshopX 1 c20 c16 c15 Lapithos 1

Total 301

9.2.3 Comparison with expert-defined groups

Results from Section 9.2.2 show that there is a strong link between chemical data
clustering and the ceramic groups defined by experts. We can consider different types
of experts-defined groups depending on the number of main centers associated with
each given expert-defined group (see Table 9.4) and on the number of heterogeneous
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Table 9.3: Centers of order 1 in chemical dataset

CenterExpert-groupFrequency
c1 Plaka LRA1 3 3
c2 GWWII 9 9
c3 Dhiorios 3 3
c4 Beirut red 8 8
c5 Thebes 17 17
c6 Beirut buff 10 10

c7 Chalcis 46
Chersonese 7
Lapithos 1 54

c8 Horum 7
Plaka LRA1 5

PSSW 4 16

c9 Dhiorios 16 16
c10 Milet 19 19
c11 Ephesos b2 11 11
c12 workshopX 20 20
c13 Istanbul S3 10 10
c14 Beirut buff 5 5
c15 Milet 20 20

c16 Paphos 11
NSW 10 21

c17 Istanbul S2 15 15
c18 Plaka carrot 9 9

c19 Beirut red 1
workshopX 10 11

c20 Anaia 17
Lapithos 7 24

Total 301

centers among them (see Table 9.3), as summarized in Table 9.5. For example,
let us consider Plaka LRA1. There are 2 main centers, c1 and c8, associated with
Plaka LRA1 (see Table 9.4), while only 1 of these 2 centers, i.e., c8 is heterogeneous.
Thus, Plaka LRA1 belongs to the type 2.1. Considering different types of groups
helps to better organize the experts-defined groups.

Based on the group types from Table 9.5, Ephesos b2, GWWII, Istanbul S2, Is-
tanbul S3, Plaka carrot and Thebes are expert-defined groups of type 1.0 for chemical
data (Table 9.4). Thus, if we know the main center of any object, we can use this
information to find the expert-defined group and vice versa.

Group type 2.0 corresponds to expert-defined groups Beirut buff, Dhiorios and
Milet. This type of group is similar to type group 1.0, because both centers are
exclusive.

Group type 1.1 corresponds to expert-defined groups Anaia, Chalcis, Chersonese,
Horum, NSW, Paphos and PSSW. Here, it is not possible to guess the expert-defined
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Table 9.4: Main centers in chemical dataset

Expert-group# of objects Center Group type
Anaia 17 c20(17/24) 1.1

Beirut buff 15 c6(10/10), c14(5/5) 2.0
Beirut red 9 c4(8/8), c19(1/11) 2.1
Chalcis 46 c7(46/54) 1.1

Chersonese 7 c7(7/54) 1.1
Dhiorios 19 c9(16/16), c3(3/3) 2.0

Ephesos b2 11 c11(11/11) 1.0
GWWII 9 c2(9/9) 1.0
Horum 7 c8(7/16) 1.1

Istanbul S2 15 c17(15/15) 1.0
Istanbul S3 10 c13(10/10) 1.0
Lapithos 8 c7(1/54), c20(7/24) 2.2
Milet 39 c10(19/19), c15(20/20) 2.0
NSW 10 c16(10/21) 1.1
Paphos 11 c16(11/21) 1.1

Plaka carrot 9 c18(9/9) 1.0
Plaka LRA1 8 c1(3/3), c8(5/16) 2.1

PSSW 4 c8(4/16) 1.1
Thebes 17 c5(17/17) 1.0

workshopX 30 c12(20/20), c19(10/11) 2.1
Total 301

Table 9.5: Types of expert-defined groups

# of
centers

# of
non-exclusive

centers
Description

1 0 One main center.
This center is exclusive

1 1 One main center.
This center is non-exclusive

2 0 Two main centers.
These two centers are exclusive

2 1 Two main centers.
One of these two centers is non-exclusive

2 2 Two main centers.
These two centers are non-exclusive

3 0 Three main centers.
These three centers are exclusive

3 1 Three main centers.
One of these three centers is non-exclusive

3 2 Three main centers.
Two of these three centers are non-exclusive

3 3 Three main centers.
These three centers are non-exclusive

group of an object from the center, which is heterogeneous. For example, let us
consider expert-defined groups Paphos and NSW. All 11 objects of Paphos and all
10 objects of NSW are connected with the same main center c16. Although it is
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not possible to identify the group by knowing the center, since all the objects of
Paphos and NSW lie in the same center, we expect that these two expert-defined
groups are close from a chemical point of view. Their association is well explained by
the structure of the dendrogram resulting from HCA, where these two expert-defined
groups are consecutive (Figure 9.2). The same case appears for the expert-defined
groups Chalcis and Chersonese: all the objects of Chalcis and Chersonese are related
to the same main center, c7.

Group type 2.1 includes the Beirut red, Plaka LRA1 and workshopX expert-
defined groups. One of the centers is clearly related to one expert-defined groups (c6
Beirut red and c1 for workshopX), while the other center is more ambiguously con-
nected. Among these three groups, with the exception of only one sample, Beirut red
can be assimilated to group type 1.0 and workshopX to group type 2.0. Only
Plaka LRA1 really corresponds to a group of type 2.1, since Plaka LRA1 is split
into two different centers. Three objects of Plaka LRA1 are sufficiently different from
five other objects of Plaka LRA1, which are close to the expert-defined group Horum.

There is only one group of type 2.2, Lapithos. This group is also more difficult
to analyze, i.e., one out of eight Lapithos objects is marginal, while the remaining
objects lie in the same center (c20), where they are associated with the expert-defined
group Anaia (Figure 9.2). Lapithos and Anaia are actually close to each other from
the chemical point of view.

In conclusion, we note that it is not so interesting to take the second and third
centers into account. If we add the second main center, analyzing the result is more
complicated, while these additional centers do not bring enough information to en-
hance the outcome. Thus, we consider only the first main center. However, this
is presumably the particular case of this dataset. Other real-life datasets may not
behave the same.

Secondly, it seems that some of the chemical clusters obtained (by considering
only the largest membership value) are too small in size to be reliable (Table 9.3).
Thus, there is a need for more information to achieve results better connected to
expert-defined groups.

9.3 Description Data

9.3.1 Fuzzy C-Means Parameters

Figure 9.1 presents the steps involved in description data analysis, which are detailed
below.

Data Preprocessing Description data are in Boolean format, which induces a
sparse high-dimensional matrix. Thus, we reduce the matrix using the MCFA method
implemented in the XLSTAT data analysis application (version 2017.4)1. MCFA finds

1https://www.xlstat.com/en/

https://www.xlstat.com/en/
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the axes with the greatest projected variance. In our case, description data give 11
axes (Table 9.6) that represent about 75% of the variance.

Table 9.6: Description data reduction results

Results F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Eigenvalue 0.112 0.101 0.076 0.076 0.061 0.054 0.052 0.047 0.044 0.044 0.037
Inertia (%) 11.18310.067 7.621 7.561 6.125 5.379 5.218 4.680 4.439 4.370 3.712
Cumulative
% 11.18321.25028.87136.43242.55747.93653.15457.83462.27366.64270.354

Adjusted
inertia 0.009 0.007 0.004 0.004 0.002 0.001 0.001 0.001 0.001 0.001 0.000

Adjusted
inertia (%) 22.51 17.51 8.75 8.57 4.87 3.36 3.07 2.20 1.85 1.76 0.99

Cumulative
% 22.51 40.02 48.77 57.34 62.21 65.57 68.64 70.84 72.69 74.45 75.45

Determination of the Optimal Number of Clusters Before FCM is applied
to reduced description data, we find the optimal number of clusters with Visual
TSFD. The resulting plot (Figure 9.4) shows that the best K value for description
data is clearly 12.

Figure 9.4: Cluster number determination (description data)

9.3.2 Fuzzy C-Means Results

We apply FCM to the reduced description data with K = 12 to obtain the fuzzy
coefficient matrix. Then, we identify for each object its first three greatest fuzzy
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coefficients and sort the objects according to the identifiers of the three closest centers
(Table 9.7) as we did for chemical data.

Table 9.7: Centers of order 1–3 in description dataset

Cnrt
1.

Cnrt
2

Cnrt
3

Expert-
groups

# of
objects

Cnrt
1

Cnrt
2

Cnrt
2

Expert-
groups

# of
objects

c1 c4 c12 Chersonese 3 c7 c11 c12 Thebes 2
c1 c12 c11 Chersonese 4 c7 c12 c9 Chalcis 3
c2 c11 c12 Ephesos b2 2 c7 c12 c11 Chalcis 6
c2 c12 c11 Ephesos b2 5 c8 c6 c12 Dhiorios 19
c3 c10 c11 Horum 1 c9 c6 c7 Beirut buff 5
c3 c11 c10 Horum 4 c9 c6 c7 Beirut red 5
c3 c11 c12 Horum 1 c9 c6 c11 Beirut buff 10
c3 c12 c10 Horum 1 c9 c6 c11 Beirut red 4
c4 c12 c11 Plaka carrot 9 c10 c11 c7 Istanbul S2 8
c4 c12 c11 Plaka LRA1 8 c10 c11 c12 GWWII 8
c5 c8 c11 Lapithos 4 c10 c11 c12 Istanbul S2 4
c5 c11 c7 Paphos 3 c10 c11 c12 Istanbul S3 10
c5 c11 c7 Lapithos 3 c10 c11 c12 NSW 2
c5 c11 c8 Paphos 7 c10 c12 c11 GWWII 1
c5 c11 c8 Lapithos 1 c10 c12 c11 Istanbul S2 3
c5 c11 c12 Paphos 1 c11 c7 c6 NSW 8
c6 c9 c11 workshopX 24 c11 c9 c6 PSSW 3
c6 c11 c10 PSSW 1 c11 c10 c12 Anaia 4
c6 c11 c12 workshopX 6 c11 c12 c10 Anaia 13
c7 c11 c9 Chalcis 7 c11 c12 c10 Milet 14
c7 c11 c10 Chalcis 21 c12 c7 c11 Chalcis 6
c7 c11 c10 Thebes 15 c12 c11 c10 Ephesos b2 4
c7 c11 c12 Chalcis 3 c12 c11 c10 Milet 25

Total 301

Thus, we also construct a new table by considering only the first main center
(order one) associated with each object (see Table 9.8). The analysis of this table
shows how each main center is diverse in terms of experts-defined groups (between 1
and 4 groups for each center).

Lastly, we present the different main fuzzy clustering centers which are associated
with each experts-groups and its frequency for description data (Table 9.9). This
table illustrates the diversity of main centers associated with each group (1 or 2
centers for each group).

9.3.3 Comparison with Expert-Defined Groups

Our first remark is that the number of clusters for description data (K = 12) is
different from that of expert-defined groups, which is 20. However, there is a strong
link between these expert-defined groups (Table 9.5) and our clustering results.

For instance, Chersonese, Dhiorios and Horum expert-defined groups correspond
to type 1.0 (Table 9.9). As for chemical data, if we know the main clustering center
of any object (c1, c3 and c8), we can use this information to find the expert-defined
groups and vice versa.



96 Disjoint Clustering on Archaeological and Archaeometric Data

Table 9.8: Centers of order 1 in description dataset

CenterExpert-groupFrequency
c1 Chersonese 7 7
c2 Ephesos b2 7 7
c3 Horum 7 7

c4 Plaka carrot 9
Plaka LRA1 8 17

c5 Paphos 11
Lapithos 8 19

c6 PSSW 1
workshopX 30 31

c7 Chalcis 40
Thebes 17 57

c8 Dhiorios 19 19

c9 Beirut buff 15
Beirut red 9 24

c10 GWWII 9
Istanbul S2 15
Istanbul S3 10

NSW 2 36

c11 Anaia 17
Milet 14
NSW 8
PSSW 3 42

c12 Ephesos b2 4
Milet 25
Chalcis 6 35

Total 301

Groups of type 1.1 are Anaia, Beirut buff, Beirut red, GWWII, Istanbul S2, Is-
tanbul S3, Lapithos, Paphos, Plaka carrot, Plaka LRA1, Thebes and workshopX.
Here, it is not possible to know to what group an object belongs, as centers are het-
erogeneous. For example, all objects in the expert-defined groups Beirut buff and
Beirut red correspond to the same fuzzy center. These two expert-defined groups are
very close to each other from the description point of view. However, we can distin-
guish them through chemical clustering results (Table 9.4). Expert-defined groups
Istanbul S2, Istanbul S3 and GWWII, on one hand, and Plaka carrot, Plaka LRA1,
Paphos and Lapithos, on the other hand, are similar cases.

In most of these cases, the similarity between clusters is due to similar description
data related to geographical features: same provenance (site, town, country) and, in
some cases, same origin. Expert-defined groups Istanbul S2, Istanbul S3 and GWWII
correspond to objects found in the same town (Istanbul) and the first two groups also
originate from Istanbul. Objects of the Plaka carrot and Plaka LRA1 expert-defined
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Table 9.9: Main centers in description dataset

Expert-groups# of objects Center Group type
Anaia 17 c11(17/42) 1.1

Beirut buff 15 c9(15/24) 1.1
Beirut red 9 c9(9/24) 1.1
Chalcis 46 c7(40/57), c12(6/35) 2.2

Chersonese 7 c1(7/7) 1.0
Dhiorios 19 c8(19/19) 1.0

Ephesos b2 11 c2(7/7), c12(4/35) 2.1
GWWII 9 c10(9/36) 1.1
Horum 7 c3(7/7) 1.0

Istanbul S2 15 c10(15/36) 1.1
Istanbul S3 10 c10(10/36) 1.1
Lapithos 8 c5(8/19) 1.1
Milet 39 c12(25/35), c11(14/42) 2.2
NSW 10 c11(8/42), c10(2/36) 2.2
Paphos 11 c5(11/19) 1.1

Plaka carrot 9 c4(9/17) 1.1
Plaka LRA1 8 c4(8/17) 1.1

PSSW 4 c11(3/42), c6(1/31) 2.2
Thebes 17 c7(17/57) 1.1

workshopX 30 c6(30/31) 1.1
Total 301

groups have the same provenance (the site of Plaka), but differ in origin. Finally,
expert-defined groups Paphos and Lapithos correspond to objects with provenance
and origin in the same country, Cyprus, but in different sites.

Among the other expert-defined groups, workshopX is of type 1.1, but can be
assimilated to type 1.0 with only one exception. Thebes is a true type 1.1 because
all its objects lie in a single center that is shared with expert-defined groups Chalcis.
This shows that these two groups are close to each other from the description point
of view.

There is only one group of type 2.1, Ephesos b2. 7 out of 11 Ephesos b2 objects
are associated with the main center c2, which is an exclusive center, while the 4
remaining objects are associated with c12, together with 6 objects of Chalcis and 25
objects of Milet.

Expert-defined groups of type 2.2 are Chalcis, Milet, NSW and PSSW. This type
is also difficult to analyze because each group splits into two main centers and each
of them is heterogeneous. The most heterogeneous case is Milet’s, which splits in
two large parts, 25 objects with c12 and 14 objects with c11, these two centers being
non-exclusive.

As in the case of chemical data, we note that the second and third centers do not
bring much additional information. Thus, we only consider the first main center.

Finally, the proximity between expert-defined groups can vary according to the
point of view, i.e., chemical or description data. It is particularly interesting to
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examine whether expert-defined groups that cannot be distinguished using chemical
data only can be distinguished using description data. For instance, expert-defined
groups of type 1.1, Paphos and NSW (associated with chemical center c16), Chalcis
and Chersonese (associated with chemical center c7), Horum and PSSW (associated
with chemical center c8), Lapithos and Anaia (associated with chemical center c20)
can be distinguished with description analysis results.

9.4 Image Data

9.4.1 Fuzzy C-Means Parameters

Figure 9.1 presents the steps we follow for image data analysis.

Data Preprocessing As chemical data, image data are in a Boolean format.
Thus, we also use MCFA to reduce them. Here, 6 axes (Table 9.10) represent around
70% of the variance.

Table 9.10: Image data reduction results

Result F1 F2 F3 F4 F5 F6
Eigenvalue 0.091 0.071 0.060 0.055 0.041 0.037
Inertia (%) 9.067 7.109 5.982 5.467 4.053 3.731
Cumulative % 9.06716.17622.15927.62631.67935.411
Adjusted inertia 0.007 0.004 0.003 0.002 0.001 0.001
Adjusted inertia (%)27.67 16.06 10.81 8.75 4.22 3.41
Cumulative % 27.67 43.73 54.54 63.30 67.52 70.93

Determination of the Optimal Number of Clusters Searching for the opti-
mal number of clusters with Visual TSFD outputs the plot from Figure 9.5, which
shows that the best K value for image data is 16.

9.4.2 Fuzzy C-Means Results

We apply the FCM algorithm to reduced image data, which helps identify, for each
object, its first three greatest fuzzy coefficients, and sort the objects according to the
identifiers of the three closest centers (Tables 9.11 and 9.12). We may notice that
the maximum fuzzy coefficient membership value is very small and very similar to
the second and third fuzzy coefficient membership values. Thus, interpretation is not
easy.

9.4.3 Comparison with Expert-Defined Groups

Clustering results from image data clustering are not correlated with the experts-
defined groups. Most groups are split into many main centers. There may be several
reasons, such as pictures not taken under the same conditions, colors not calibrated,
unsatisfactory image treatment and selected features badly connected with chemical
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Figure 9.5: Cluster number determination (image data)

and description data. For example, Figure 9.6 shows the similarity between fabric
images of samples from different groups. It clearly shows that samples belonging to
different expert-defined groups may have similar features such as color and size of
inclusions. It creates difficulty to separate them by clustering methods.

Figure 9.6: Fabric images of samples belonging to different expert-defined groups:
LIS87-workshopX (a), LEV81-Beirut red (b), BZY340-Anaia (c), BZY497-Thebes (d)
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Table 9.11: Centers of order 1–3 in image dataset (1/2)

Cntr
1

Cntr
2

Cntr
3

Expert-
groups

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
groups

# of
objects

c1 c9 c4 Dhiorios 2 c6 c10 c12 Chalcis 1
c2 c11 c7 Beirut red 1 c6 c10 c12 NSW 1
c2 c11 c7 Istanbul S2 1 c6 c10 c13 Chalcis 1
c2 c11 c7 workshopX 4 c6 c10 c13 Istanbul S2 1
c2 c11 c8 workshopX 3 c6 c10 c13 Milet 1
c3 c6 c10 Chalcis 1 c6 c10 c13 NSW 1
c3 c6 c10 Plaka carrot 1 c6 c10 c13 Plaka LRA1 1
c3 c6 c12 Plaka carrot 1 c6 c10 c13 Thebes 1
c3 c10 c6 Chalcis 2 c6 c10 c14 Chalcis 1
c3 c10 c6 Milet 1 c6 c10 c14 GWWII 1
c3 c10 c6 Thebes 1 c6 c10 c14 Thebes 2
c3 c10 c13 Istanbul S2 1 c6 c12 c10 Chalcis 1
c3 c10 c15 Istanbul S2 2 c6 c12 c10 GWWII 1
c3 c12 c13 Anaia 1 c6 c14 c7 Chalcis 1
c3 c13 c15 Dhiorios 1 c6 c14 c10 Chalcis 1
c3 c14 c6 Chalcis 3 c6 c14 c10 GWWII 3
c3 c14 c6 Istanbul S2 1 c6 c14 c10 Istanbul S2 1
c3 c14 c7 Istanbul S3 1 c7 c2 c11 GWWII 1
c3 c15 c5 Dhiorios 1 c7 c6 c12 Chalcis 1
c3 c15 c10 Beirut buff 1 c7 c6 c14 Beirut red 1
c3 c15 c10 Dhiorios 1 c7 c6 c14 Dhiorios 1
c3 c15 c10 Istanbul S2 1 c7 c8 c14 Chersonese 1
c3 c15 c10 Istanbul S3 1 c7 c8 c16 Anaia 1
c3 c15 c10 Thebes 1 c7 c8 c16 Chalcis 1
c3 c15 c12 Dhiorios 1 c7 c8 c16 Chersonese 3
c3 c15 c12 workshopX 1 c7 c8 c16 Dhiorios 1
c4 c9 c1 Plaka carrot 1 c7 c14 c6 Anaia 3
c5 c8 c7 Dhiorios 1 c7 c14 c6 Chalcis 1
c5 c8 c7 workshopX 1 c7 c14 c16 Chalcis 1
c5 c8 c12 Anaia 1 c7 c14 c16 NSW 1
c5 c8 c12 Dhiorios 1 c7 c14 c16 Thebes 1
c5 c8 c12 Ephesos b2 2 c7 c16 c8 Paphos 1
c5 c8 c12 Istanbul S3 3 c8 c12 c6 NSW 1
c5 c8 c12 Milet 1 c8 c12 c13 Paphos 1
c5 c8 c12 Paphos 1 c8 c16 c5 Milet 1
c5 c8 c12 workshopX 3 c8 c16 c7 Anaia 1
c5 c8 c16 Istanbul S3 1 c8 c16 c7 Ephesos b2 1
c5 c8 c16 Plaka LRA1 1 c8 c16 c12 Anaia 2
c5 c12 c7 workshopX 1 c8 c16 c12 Chersonese 1
c5 c12 c8 Ephesos b2 4 c8 c16 c12 Ephesos b2 1
c5 c12 c8 Milet 2 c8 c16 c12 Horum 1
c5 c12 c8 NSW 2 c8 c16 c12 Istanbul S3 2
c5 c12 c8 Plaka carrot 1 c8 c16 c12 NSW 1
c5 c12 c8 Plaka LRA1 2 c9 c1 c4 Milet 1
c5 c12 c8 Thebes 1 c9 c1 c4 NSW 1
c5 c12 c8 workshopX 8 c9 c1 c4 Plaka LRA1 2

9.5 Summary

In this chapter, we cluster a dataset from the ArAr laboratory, which consists of
chemical, description and image data characterizing ceramics. We apply FCM (Sec-
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Table 9.12: Centers of order 1–3 in image dataset (2/2)

Cntr
1

Cntr
2

Cntr
3

Expert-
groups

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
groups

# of
objects

c10 c6 c9 Paphos 1 c13 c16 c8 Anaia 1
c10 c6 c13 Beirut buff 1 c13 c16 c8 Beirut buff 1
c10 c6 c13 Chalcis 4 c13 c16 c12 Milet 1
c10 c6 c13 Istanbul S2 1 c14 c6 c7 Beirut red 3
c10 c6 c13 Istanbul S3 1 c14 c6 c7 Chalcis 15
c10 c6 c13 Thebes 5 c14 c6 c7 GWWII 1
c10 c13 c6 Anaia 1 c14 c6 c10 Chalcis 1
c10 c13 c6 Beirut buff 6 c14 c6 c10 Istanbul S2 1
c10 c13 c6 Chalcis 3 c14 c7 c6 Beirut buff 1
c10 c13 c6 GWWII 1 c14 c7 c6 Beirut red 2
c10 c13 c6 Horum 2 c14 c7 c6 Beirut red 3
c10 c13 c6 Istanbul S3 1 c14 c7 c6 Istanbul S2 1
c10 c13 c6 Milet 6 c15 c3 c7 Chalcis 1
c10 c13 c6 PSSW 1 c15 c3 c8 Chersonese 1
c10 c13 c6 Thebes 2 c15 c3 c8 Dhiorios 1
c10 c13 c12 Dhiorios 1 c15 c3 c8 Istanbul S2 1
c10 c13 c12 Istanbul S2 1 c15 c3 c8 Lapithos 4
c10 c13 c16 Beirut buff 1 c15 c3 c8 PSSW 1
c11 c2 c5 workshopX 1 c15 c3 c13 Dhiorios 1
c11 c2 c6 Istanbul S2 1 c15 c3 c16 Paphos 1
c11 c2 c7 Plaka carrot 1 c15 c5 c3 Dhiorios 1
c11 c2 c7 workshopX 3 c15 c8 c3 Dhiorios 3
c11 c2 c12 Plaka carrot 1 c15 c8 c16 Ephesos b2 1
c11 c2 c12 workshopX 2 c16 c7 c6 Beirut buff 1
c11 c2 c14 workshopX 1 c16 c7 c6 Beirut red 1
c12 c5 c6 Plaka carrot 1 c16 c7 c6 Horum 1
c12 c5 c6 Plaka LRA1 1 c16 c7 c6 Thebes 1
c12 c6 c13 Chalcis 1 c16 c7 c8 Milet 1
c12 c6 c13 Plaka carrot 1 c16 c8 c7 Dhiorios 1
c12 c6 c13 workshopX 2 c16 c8 c7 Lapithos 1
c12 c6 c13 Chersonese 1 c16 c8 c7 PSSW 1
c12 c6 c13 Milet 1 c16 c8 c13 Anaia 3
c12 c13 c6 Chalcis 1 c16 c8 c13 Beirut buff 1
c12 c13 c6 Paphos 1 c16 c8 c13 Dhiorios 1
c12 c13 c6 Plaka LRA1 1 c16 c8 c13 Ephesos b2 1
c12 c13 c8 GWWII 1 c16 c8 c13 Lapithos 2
c12 c13 c8 Milet 1 c16 c8 c13 Milet 8
c12 c13 c8 Plaka carrot 1 c16 c8 c13 NSW 2
c12 c13 c10 Paphos 1 c16 c8 c13 Paphos 2
c13 c10 c8 Paphos 1 c16 c13 c6 Paphos Lemba 1
c13 c10 c12 Beirut buff 1 c16 c13 c6 Anaia 1
c13 c10 c12 Milet 9 c16 c13 c6 Ephesos b2 1
c13 c10 c16 Anaia 2 c16 c13 c6 Lapithos 1
c13 c10 c16 Milet 1 c16 c13 c10 Beirut buff 1
c13 c12 c10 Milet 3 c16 c13 c10 Chalcis 1
c13 c12 c10 Thebes 2 c16 c13 c10 Horum 2
c13 c12 c10 Beirut red 1 c16 c13 c10 Istanbul S2 1
c13 c12 c10 Horum 1 c16 c13 c10 PSSW 1
c13 c12 c10 Milet 1 Total 301

tion 5.1.2.1) to each type of data separately and compare the results with ceramic
groups defined by archaeometry experts. The results obtained with chemical and
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description data show that the method we propose is feasible and the link of each
dataset with the opinions of experts is good, particularly in the case of chemical data,
as could be expected.

In our experiments, we notice that the results obtained with either chemical or
description data, the second and third centers obtained through clustering do not
bring much additional information. The analysis is thus based on the first main fuzzy
center, although clustering results would have been different with crisp clustering.
Yet, fuzzy clustering provides clusters that are more compatible with the expert-
defined groups. However, in chemical data results, some of the clusters have a very
small size, while this is not the case with the description data results.

Eventually, an important point is that we compare our method, which is automatic
and whose complexity is O(n), to the experts’ grouping method, which is partially
manual and whose complexity is O(n2 log n).
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In Chapter 9, we separately cluster the different types of data regarding 301
ceramic objects. The results obtained from chemical and description data, although
different, are relatively easy to interpret. However, clustering results on image data
is much less understandable.

Thus, in this chapter, we aim to combine chemical and description data to obtain a
better match with expert-defined groups. Moreover, multiple clustering also simulates
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the collaboration between researchers or laboratories using different criteria to cluster
objects, e.g., one laboratory clustering chemical data (archaeometry laboratory) and
another one clustering descriptive data (archaeology laboratory).

We first discuss several possible strategies to carry out multiple clustering analysis,
and then detail the most relevant, i.e., ensemble clustering and combined partition
clustering. Finally, we compare multiple clustering results to expert-defined groups.

10.1 Multiple Clustering Strategies

10.1.1 Mixing All Variables

To mix all variables, we can only consider variables that are all of the same type. At
first glance, chemical variables are numerical, while description variables are Boolean,
but the description data matrix is actually a sparse high-dimensional Boolean matrix
that we reduce to a numerical matrix with MCFA. However, it is not appropriate
to mix chemical variables with variables corresponding to the first factors of the
correspondence analysis on description data.

10.1.2 Mixing All Centers

It would be interesting to mix all fuzzy centers by considering the two fuzzy clustering
matrices as a single (whole) data matrix. Then, rows would correspond to objects and
columns to variables. In our case, the fuzzy coefficient matrix for chemical variables
(Section 9.2.1) corresponds to the first 20 variables (K = 20). Likewise, the fuzzy
coefficient matrix for description variables (Section 9.3.1) corresponds to the following
12 variables (K = 12). Overall, we have 32 variables. Unfortunately, this matrix
presentation does not give the same weight to chemical data and description data,
which introduces a bias for the distance calculation.

10.1.3 Creating a Committee of Fuzzy Clusterers (Ensemble Ap-
proach)

Knowing that each separate analysis gives a fuzzy clustering, we create a committee
of fuzzy clusterers. In our case, we have two clusterers, one for chemical data and
one for description data. The advantage of this method is twofold. First, we do not
have any problem with data type, since each is processed according to its properties.
Second, the synthesis of clusterings preserves the fuzzy property.

10.1.4 Combined Partition Clustering

Knowing that the second and third centers do not add much information in the
experiments from Chapter 9, an option is to “defuzzify” the partition obtained with
each type of data (chemical and descriptive), and then to cross-tabulate the partitions.
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In case of hard clustering, each clusterer gives a partition. With only 2 or 3
clusterers, an option is to cross tabulate the obtained partitions. To apply this option
to fuzzy-clustering, it is enough to defuzzify each fuzzy clustering result (Section 10.8).

We will apply the last two presented multiple clustering strategies: creating a
committee of fuzzy clusterers (Section 10.2 to 10.7) and combined partition clustering
(Section 10.8).

10.2 Fuzzy Clustering Ensemble Schemes

We focus in this section on fuzzy clustering ensemble schemes that assemble both nu-
merical and categorical real-life data. Avogadri and Valentini’s scheme indicates how
to deal with ensemble clustering problems by advising crisp and fuzzy approaches [89].
It can be divided into six steps, for which we review the solutions proposed in the
literature.

Step 1 Reduce the Dimension of Data High dimensional data raise various
issues: difficult calculations, risk of redundant variables, noisy features and risk of
non-pertinent variables. Possible solutions depend on the nature of variables. To
reduce the dimension of continuous data, a straightforward solution is to apply PCA
(Section 5.2).

To reduce the dimension of Boolean data, feature selection and feature transfor-
mation by finding subspaces of data are two suitable solutions. Moreover, to deal
with sparse data, Boolean data variables can be reduced with MCFA (Section 5.2).

Step 2: Generation of Multiple Fuzzy Clusterings There are different
means of obtaining multiple fuzzy clustering. The first solution is to generate differ-
ent views on the data by using resampling or random projections, and then applying
the same fuzzy clustering algorithm to each view. The second solution is to apply
different clustering algorithms on the same dataset, either by varying the parameters
of a given algorithm or by using different algorithms. The objects being described
by different types of variables, the third solution is to construct a dataset for each
type of variables. Then, a fuzzy clustering algorithm is applied to each dataset. Each
fuzzy clustering gives a membership coefficient matrix whose rows indicate the list of
fuzzy coefficients of each object associated with each center. For instance, FCM can
be used to generate multiple fuzzy clusterers [89, 90].

Step 3: Crispization of Base Clusterings Crispization (hardening) is an
option before moving to Step 4 [89]. “Defuzzifying techniques”, i.e., hard clustering
or α-cut, are applied to the fuzzy clusterings obtained in the generation of multiple
clusterings. Hard clustering and α-cut are formalized in Equations 10.1 and 10.2,
respectively.
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XH
ik =







1 ⇔ argmaxsUis = k

0 otherwise
(10.1)

Xα
ik =







1 ⇔ Uik ≥ α

0 otherwise
(10.2)

where U is the fuzzy membership matrix. Xik is a function related to cluster k.
For hard clustering, Xik = 1 if the ith example belongs to the kth cluster. Otherwise,
Xki = 0.

For α-cut, Xik = 1 if the ith example membership value to the kth cluster is
greater than a given threshold α for the kth cluster. Otherwise, Xik = 0, 1 ≤ k ≤ K,
1 ≤ i ≤ n and 0 ≤ α ≤ 1.

Step 4: Aggregation Fuzzy aggregation may be achieved by combining member-
ship coefficients matrices to obtain a n×n similarity matrix. This matrix is generated
by applying different fuzzy t-norms to the membership function of each pair of exam-
ples (e.g., minimum [91], algebraic product [92], Lukasewicz’s t-norms [93] and drastic
product [92]) [89]. In case of crispization, it is possible to build a similarity matrix
based on Boolean values using each pair of examples. Then, the algebraic product
form of t− norms is used.

Step 5: Clustering in the Embedded Similarity Space Once the global
similarity matrix is obtained, fuzzy C-Means may be applied to the rows of this ma-
trix [89, 94].

Step 6: Consensus Clustering Eventually, the consensus clustering is repre-
sented by a consensus membership matrix in the fuzzy case [89]. If crispization was
used (Step 3), final results are crisp.

10.3 Proposed Ensemble Fuzzy Clustering Method

In Chapter 9, we conduct two fuzzy clustering analyses carried out separately on
chemical and description data, respectively. These are our two clusterers, which each
output a membership matrix. Each matrix is used to construct pair-wise dissimilarity
matrix by using the Manhattan distance d1(i, i

′) between the rows of the considered
membership matrix U [95]. If points i and i′ are considered, the Manhattan distance
between i and i′, denoted by d1(i, i

′), is calculated as given in Equation 10.3.

d1(i, i
′) =

K∑

j=1

|uij − ui′j | (10.3)
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There are several ways to associate these pairwise matrices. The simplest is to
calculate the average pairwise dissimilarity matrix. Considering n observations, ti,
i = 1, 2, ..., n, the general formula for the mean of order h is given in Equation 10.4.

th =
1

n
(

n∑

i=1

ti
h)1/h (10.4)

Particular cases are h → −∞ (minimum), h = −1 (harmonic mean), h → 0
(geometric mean) , h = 1 (arithmetic mean), h = 2 (quadratic mean) and h → +∞
(maximum). It is known that th is increasing with h from h−∞ (minimum) to h+∞
(maximum).

We prefer to give more weight to the clustering that gives the lowest dissimilarity
between two points, we calculate not only the average dissimilarity matrix, but also
the harmonic and minimum pairwise dissimilarity matrices (Figure 10.1).

Lastly, we construct the fuzzy clustering from the global dissimilarity matrix, and
we have to use the Fuzzy K-Medoids method (FKM; Section 5.1.2.2) because we work
only with dissimilarity matrix. We can not calculate centroids. Thus, we are using
prototypes instead of centroids.

10.4 Average Pairwise Dissimilarity-Based Clustering

10.4.1 Fuzzy K-Medoids Parameters

In this subsection, we precise the construction of the average pairwise dissimilarity
matrix and the way to determine the optimal number of clusters.

Average Pairwise Dissimilarity Matrix Construction The global pairwise
dissimilarity matrix is calculated as the arithmetic average of both the chemical and
the description pairwise dissimilarity matrices.

Determination of the Optimal Number of Clusters The average pairwise
dissimilarity matrix only stores distances between objects. Data values being un-
known, the calculation of centers is impossible. Thus, the FKM must be used. By
using Visual TSFD in conjunction with FKM, we obtain the plot from Figure 10.2,
which shows that the best K value is 20.

10.4.2 Fuzzy K-Medoids Results

The FKM algorithm is applied to the average pairwise dissimilarity matrix with K =
20 in order to obtain the fuzzy coefficient matrix. We use our MaxMin Linear method
(Section 7.3) for all initializations.

From the fuzzy coefficients matrix, we can identify for each object the three cen-
ters having the largest fuzzy coefficients value and sort the objects according to the
identifiers of these centers (Table 10.1).
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Table 10.1: Centers of order 1–3 in average pairwise dissimilarity matrix

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

c1 workshopX 1 c13 GWWII 1
c1 c19 c9 workshopX 4 c13 c10 c5 GWWII 1
c1 c19 c16 workshopX 19 c13 c10 c20 GWWII 3
c2 Chalcis 1 c13 c20 c10 GWWII 2
c2 c12 c9 Thebes 6 c14 Paphos 1
c2 c12 c18 Chalcis 7 c14 c8 c15 Paphos 6
c2 c18 c12 Chalcis 11 c14 c8 c20 Paphos 1
c3 Dhiorios 1 c14 c15 c8 Paphos 3
c3 c8 c15 Dhiorios 5 c15 Chersonese 1
c3 c9 c6 Dhiorios 9 c15 c8 c14 Chersonese 5
c3 c9 c8 Dhiorios 3 c15 c8 c20 Chersonese 1
c4 Beirut buff 1 c16 Beirut red 1
c4 c9 c16 Beirut buff 3 c16 c4 c8 Beirut buff 1
c4 c16 c9 Beirut buff 6 c16 c4 c8 Beirut red 1
c5 Istanbul S3 1 c16 c4 c14 Beirut buff 2
c5 c13 c9 Istanbul S3 5 c16 c8 c14 Beirut red 2
c5 c13 c20 Istanbul S3 3 c16 c14 c4 Beirut buff 1
c6 Plaka carrot 1 c16 c14 c8 Beirut buff 1
c6 c9 c8 Plaka carrot 3 c16 c14 c8 Beirut red 1
c6 c9 c14 Plaka carrot 3 c16 c19 c8 Beirut red 2
c6 c9 c14 Plaka LRA1 2 c16 c19 c10 Beirut red 2
c6 c14 c8 Plaka carrot 2 c17 Milet 1
c6 c14 c8 Plaka LRA1 4 c17 c7 c11 Milet 12
c6 c14 c9 Plaka LRA1 2 c17 c10 c7 Milet 2
c7 Milet 1 c17 c10 c11 Anaia 3
c7 c17 c11 Milet 15 c17 c10 c16 PSSW 2
c8 Ephesos b2 1 c17 c10 c20 Anaia 1
c8 c14 c15 Dhiorios 1 c17 c10 c20 Ephesos b2 3
c8 c15 c14 Ephesos b2 6 c17 c11 c7 Milet 4
c9 Horum 1 c17 c11 c10 Anaia 4
c9 c6 c11 Horum 1 c17 c20 c10 Ephesos b2 1
c9 c8 c11 Horum 1 c18 Chalcis 1
c9 c8 c14 Horum 2 c18 c2 c12 Chalcis 4
c9 c14 c8 Horum 1 c18 c10 c12 Chalcis 6
c10 NSW 1 c18 c10 c17 Chalcis 13
c10 c17 c9 Horum 1 c18 c10 c19 Chalcis 1
c10 c17 c11 Anaia 2 c18 c10 c20 Chalcis 1
c10 c17 c16 PSSW 1 c18 c12 c10 Chalcis 1
c10 c17 c18 NSW 2 c19 workshopX 1
c10 c17 c19 PSSW 1 c19 c1 c16 workshopX 4
c10 c17 c20 Lapithos 3 c19 c16 c10 workshopX 1
c10 c17 c20 NSW 1 c20 Istanbul S2 1
c10 c18 c17 NSW 3 c20 c5 c13 Istanbul S3 1
c10 c18 c19 NSW 1 c20 c8 c15 Istanbul S2 1
c10 c20 c17 Lapithos 5 c20 c10 c17 Istanbul S2 2
c11 Anaia 1 c20 c13 c5 NSW 2
c11 c7 c17 Milet 1 c20 c13 c8 Istanbul S2 1
c11 c17 c7 Milet 3 c20 c13 c10 GWWII 2
c11 c17 c8 Anaia 3 c20 c13 c15 Istanbul S2 1
c11 c17 c10 Anaia 3 c20 c13 c16 Istanbul S2 1
c12 Thebes 1 c20 c15 c8 Istanbul S2 4
c12 c2 c9 Thebes 3 c20 c15 c13 Istanbul S2 1
c12 c2 c10 Thebes 1 c20 c16 c8 Istanbul S2 1
c12 c2 c15 Thebes 3 c20 c16 c13 Istanbul S2 1
c12 c2 c18 Thebes 2 c20 c17 c10 Istanbul S2 1
c12 c10 c18 Thebes 1 Total 301
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Figure 10.1: Ensemble clustering scheme

The analysis of Table 10.1 shows the low diversity of the centers of order 2 and 3
associated with each first center. Thus, we construct a new table by considering only
the first main fuzzy cluster center (order 1) associated with each object (Table 10.2).
It is important to notice that, since we use FKM, centers are prototypes, not cen-
ters of gravity. Thus, for each center, there is only one main center and maximum
membership coefficient value is 1. Other coefficient values are 0. Hence, for each
prototype, only one center has to be considered.

Lastly, we present different main fuzzy clustering centers that are associated with
each expert-defined groups, as well as their frequency (Table 10.3).
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Table 10.2: Centers of order 1 in average pairwise dissimilarity matrix

CenterExpert-groupFrequency
c1 workshopX 24 24
c2 Chalcis 19

Thebes 6 25

c3 Dhiorios 18 18
c4 Beirut buff 10 10
c5 Istanbul S3 9 9

c6 Plaka carrot 9
Plaka LRA1 8 17

c7 Milet 16 16

c8 Ephesos b2 7
Dhiorios 1 8

c9 Horum 6 6

c10 NSW 8
Anaia 2
PSSW 2
Lapithos 8
Horum 1 21

c11 Anaia 7
Milet 4 11

c12 Thebes 11 11
c13 GWWII 7 7
c14 Paphos 11 11
c15 Chersonese 7 7

c16 Beirut red 9
Beirut buff 5 14

c17 Milet 19
Anaia 8
PSSW 2

Ephesos b2 4 33

c18 Chalcis 27 27
c19 workshopX 6 6

c20 Istanbul S2 15
Istanbul S3 1

NSW 2
GWWII 2 20

Total 301
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Figure 10.2: Cluster number determination (average pairwise dissimilarity matrix)

10.5 Harmonic Pairwise Dissimilarity-Based Clustering

10.5.1 Fuzzy K-Medoids Parameters

In this subsection, we precise the construction of the harmonic pairwise dissimilarity
matrix and the way to determine the optimal number of clusters.

Harmonic Pairwise Dissimilarity Matrix Construction The pairwise dis-
similarity matrices are used to calculate the harmonic pairwise dissimilarity matrix
as given in the Equation 10.4 with the case h = 1.

Determination of the Optimal Number of Clusters As the average, the
harmonic pairwise dissimilarity matrix only stores distances between objects. Thus,
we use again Visual TSFD combined with FKM to find the optimal number of clus-
ters. The resulting plot (Figure 10.3) shows that the best K value for the harmonic
pairwise dissimilarity matrix is 20.

10.5.2 Fuzzy K-Medoids Results

The FKM algorithm is applied to the harmonic pairwise dissimilarity matrix with
K = 20 in order to obtain the fuzzy coefficients matrix. Then, we identify each
object’s first three largest fuzzy coefficients and sort the objects according to the
identifiers of the three centers having the largest fuzzy coefficients (Table 10.4).

Next, only the first main center (order 1) is considered for each object and the
corresponding table is constructed (Table 10.5).

Lastly, we present different main fuzzy clustering centers that are associated with
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Table 10.3: Main centers in average pairwise dissimilarity matrix

Expert-group # of
objects Center Group type

Anaia 17 c10 (2/21), c11(7/11), c17(8/33) 3.3
Beirut buff 15 c4(10/10), c16(5/14) 2.1
Beirut red 9 c16(9/14) 1.1
Chalcis 46 c2(19/25), c18(27/27) 2.1

Chersonese 7 c15(7/7) 1.0
Dhiorios 19 c3(18/18), c8(1/8) 2.1

Ephesos b2 11 c8(7/8), c17(4/33) 2.2
GWWII 9 c13(7/7), c20(2/20) 2.1
Horum 7 c9(6/6), c10(1/21) 2.1

Istanbul S2 15 c20(15/20) 1.1
Istanbul S3 10 c5(9/9), c20(1/20) 2.1
Lapithos 8 c10(8/21) 1.1
Milet 39 c7(16/16), c11(4/11), c17(19/33) 3.2
NSW 10 c10(8/21), c20(2/20) 2.2
Paphos 11 c14(11/11) 1.0

Plaka carrot 9 c6(9/17), 1.1
Plaka LRA1 8 c6(8/17) 1.1

PSSW 4 c10(2/21), c17(2/33) 2.2
Thebes 17 c2(6/25), c12(11/11) 2.1

workshopX 30 c1(24/24), c19(6/6) 2.0
Total 301

Figure 10.3: Cluster number determination (harmonic pairwise dissimilarity matrix)

each expert-defined group, as well as their frequency for the harmonic pairwise dis-
similarity matrix (Table 10.6).
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Table 10.4: Centers of order 1–3 in harmonic pairwise dissimilarity matrix

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

c1 workshopX 1 c13 c16 c20 GWWII 1
c1 c20 c2 workshopX 1 c13 c18 c16 Istanbul S2 9
c1 c20 c14 workshopX 22 c13 c18 c20 GWWII 6
c2 Plaka LRA1 1 c13 c20 c18 GWWII 1
c3 Dhiorios 1 c14 Beirut red 1
c3 c15 c2 Dhiorios 1 c14 c5 c2 Beirut red 1
c4 Ephesos b2 1 c14 c16 c18 Beirut red 1
c4 c2 c3 Ephesos b2 4 c14 c16 c20 Beirut red 2
c4 c16 c14 Ephesos b2 2 c14 c20 c16 Beirut red 1
c5 Beirut buff 1 c15 Dhiorios 1
c5 c14 c2 Beirut buff 9 c15 c3 c2 Dhiorios 16
c5 c14 c16 Beirut buff 5 c16 Ephesos b2 1
c6 Chalcis 1 c16 c19 c18 Ephesos b2 3
c6 c12 c16 Chalcis 3 c17 Plaka carrot 1
c6 c12 c18 Chalcis 5 c17 c2 c3 Plaka carrot 8
c6 c16 c12 Chalcis 1 c17 c2 c3 Plaka LRA1 7
c6 c16 c18 Chalcis 6 c18 NSW 1
c6 c18 c16 Chalcis 8 c18 c9 c16 Paphos 1
c6 c18 c20 Chalcis 2 c18 c6 c20 Chalcis 3
c7 Horum 1 c18 c13 c20 Istanbul S2 1
c7 c2 c14 Horum 2 c18 c16 c6 Chalcis 1
c7 c14 c16 Horum 1 c18 c16 c10 Chersonese 1
c7 c16 c14 Horum 1 c18 c16 c19 Horum 1
c7 c16 c18 Horum 1 c18 c16 c20 Chalcis 3
c8 Istanbul S3 1 c18 c16 c20 NSW 1
c8 c13 c14 Istanbul S3 4 c18 c19 c20 Anaia 1
c8 c13 c16 Istanbul S3 3 c18 c19 c20 Lapithos 3
c8 c14 c13 Istanbul S3 2 c18 c20 c6 Chalcis 1
c9 Paphos 1 c18 c20 c13 Istanbul S2 2
c9 c14 c16 Paphos 6 c18 c20 c16 Chalcis 7
c9 c18 c16 Paphos 3 c18 c20 c16 NSW 3
c10 Chersonese 1 c18 c20 c16 Thebes 1
c10 c14 c2 Chersonese 3 c18 c20 c19 Chalcis 5
c10 c16 c14 Chersonese 2 c18 c20 c19 Lapithos 5
c11 Milet 1 c18 c20 c19 NSW 3
c11 c19 c16 Milet 26 c18 c20 c19 PSSW 4
c11 c19 c18 Milet 7 c19 Anaia 1
c12 Thebes 1 c19 c11 c16 Milet 5
c12 c6 c16 Thebes 8 c19 c16 c11 Anaia 1
c12 c14 c16 Thebes 5 c19 c16 c18 Anaia 3
c12 c16 c18 Thebes 1 c19 c18 c16 Anaia 11
c12 c18 c16 Thebes 1 c20 workshopX 1
c13 GWWII 1 c20 c1 c18 workshopX 4
c13 c8 c16 Istanbul S2 1 c20 c14 c18 Beirut red 1
c13 c16 c8 Istanbul S2 1 c20 c18 c13 Beirut red 1
c13 c16 c18 Istanbul S2 1 c20 c18 c13 workshopX 1
c13 c16 c18 NSW 2 c20 c18 c14 Beirut red 1

Total 301
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Table 10.5: Centers of order 1 in harmonic pairwise dissimilarity matrix

CenterExpert-groupFrequency
c1 workshopX 24 24
c2 Plaka LRA1 1 1
c3 Dhiorios 2 2
c4 Ephesos b2 7 7
c5 Beirut buff 15 15
c6 Chalcis 26 26
c7 Horum 6 6
c8 Istanbul S3 10 10
c9 Paphos 10 10
c10 Chersonese 6 6
c11 Milet 34 34
c12 Thebes 16 16

c13 GWWII 9
Istanbul S2 12

NSW 2 23

c14 Beirut red 6 6
c15 Dhiorios 17 17
c16 Ephesos b2 4 4

c17 Plaka carrot 9
Plaka LRA1 7 16

c18 NSW 8
Paphos 1
Chalcis 20

Istanbul S2 3
Chersonese 1
Horum 1
Anaia 1

Lapithos 8
Thebes 1
PSSW 4 48

c19 Anaia 16
Milet 5 21

c20 workshopX 6
Beirut red 3 9

Total 301
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Table 10.6: Main centers in harmonic pairwise dissimilarity matrix

Expert-group# of objects Center Group type
Anaia 17 c18(1/48), c19(16/21) 2.2

Beirut buff 15 c5(15/15) 1.0
Beirut red 9 c14(6/6), c20(3/9) 2.1
Chalcis 46 c6(26/26), c18(20/48) 2.1

Chersonese 7 c10(6/6), c18(1/48) 2.1
Dhiorios 19 c3(2/2), c15(17/17) 2.0

Ephesos b2 11 c4(7/7), c16(4/4) 2.0
GWWII 9 c13(9/23) 1.1
Horum 7 c7(6/6), c18(1/48) 2.1

Istanbul S2 15 c13(12/23), c18(3/48) 2.2
Istanbul S3 10 c8(10/10) 1.0
Lapithos 8 c18(8/48) 1.1
Milet 39 c11(34/34), c19(5/21) 2.1
NSW 10 c13(2/23), c18(8/48) 2.2
Paphos 11 c9(10/10), c18(1/48) 2.1

Plaka carrot 9 c17(9/16) 1.1
Plaka LRA1 8 c2(1/1), c17(7/16) 2.1

PSSW 4 c18(4/48) 1.1
Thebes 17 c12(16/16), c18(1/48) 2.1

workshopX 30 c1(24/24), c20(6/9) 2.1
Total 301

10.6 Minimum Pairwise Dissimilarity-Based Clustering

10.6.1 Fuzzy K-Medoids Parameters

In this subsection, we precise the construction of the minimum pairwise dissimilarity
matrix and the way to determine the optimal number of clusters.

Minimum Pairwise Dissimilarity Matrix Construction The pairwise dis-
similarity matrices are used to calculate the minimum pairwise dissimilarity matrix
as given in the Equation 10.4 with the case h→ −∞.

Determination of the Optimal Number of Clusters Again, Visual TSFD
and FKM are combined to find the optimal number of clusters. The resulting plot
(Figure 10.4) shows that the best K value for the minimum pairwise dissimilarity
matrix is 20.

10.6.2 Fuzzy K-Medoids Results

The FKM algorithm is applied to the minimum pairwise dissimilarity matrix with
K = 20 in order to obtain the fuzzy coefficients matrix. Then, each object’s first
three largest fuzzy coefficients are identified and are sorted the objects according to
the identifiers of the three centers having the largest fuzzy coefficients (Table 10.7).

Next, a new table is constructed by considering only the first main fuzzy cluster
center (order 1) associated with each object (Table 10.8).
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Table 10.7: Centers of order 1–3 in minimum pairwise dissimilarity matrix

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

Cntr
1

Cntr
2

Cntr
3

Expert-
group

# of
objects

c1 Plaka LRA1 1 c11 c14 c18 Thebes 5
c1 c15 c14 Plaka LRA1 6 c11 c18 c14 Thebes 7
c1 c15 c14 Plaka carrot 9 c11 c18 c8 Thebes 1
c2 Dhiorios 1 c11 c19 c18 Thebes 2
c2 c15 c14 Dhiorios 15 c12 Istanbul S3 1
c3 workshopX 1 c12 c13 c14 Istanbul S3 6
c3 c14 c15 workshopX 21 c12 c13 c16 Istanbul S3 1
c3 c15 c14 workshopX 2 c12 c14 c13 Istanbul S3 1
c3 c19 c18 workshopX 4 c13 NSW 1
c4 Ephesos b2 1 c13 c10 c19 Istanbul S2 2
c4 c15 c14 Ephesos b2 4 c13 c12 c16 Istanbul S3 1
c4 c18 c14 Ephesos b2 2 c13 c16 c18 NSW 1
c5 Beirut buff 1 c13 c16 c18 Istanbul S2 3
c5 c14 c15 Beirut buff 9 c13 c16 c19 Istanbul S2 4
c5 c14 c18 Beirut buff 5 c13 c19 c16 Istanbul S2 6
c6 Paphos 1 c14 Beirut red 1
c6 c14 c15 Paphos 6 c14 c5 c15 Beirut red 1
c6 c18 c14 Paphos 2 c14 c18 c19 Beirut red 4
c6 c18 c19 Paphos 1 c14 c19 c10 Beirut red 1
c6 c19 c18 Paphos 1 c14 c19 c18 Beirut red 1
c7 Horum 1 c15 Dhiorios 1
c7 c14 c18 Horum 2 c15 c2 c14 Dhiorios 2
c7 c15 c14 Horum 2 c15 c14 c1 Plaka LRA1 1
c7 c18 c19 Horum 1 c16 GWWII 1
c8 Chalcis 1 c16 c13 c10 GWWII 5
c8 c18 c14 Chalcis 3 c16 c13 c14 GWWII 1
c8 c18 c20 Chalcis 10 c16 c13 c18 GWWII 1
c8 c20 c18 Chalcis 2 c16 c13 c19 GWWII 1
c8 c20 c19 Chalcis 7 c17 Milet 1
c9 Chersonese 1 c17 c10 c18 Milet 10
c9 c14 c15 Chersonese 3 c17 c10 c19 Milet 24
c9 c14 c18 Chersonese 2 c18 Ephesos b2 1
c9 c18 c19 Chersonese 1 c18 c10 c19 Ephesos b2 2
c10 Anaia 1 c18 c14 c19 workshopX 1
c10 c17 c18 Anaia 2 c19 NSW 1
c10 c17 c18 Milet 4 c19 c10 c11 Thebes 1
c10 c17 c19 Anaia 3 c19 c10 c16 Beirut red 1
c10 c17 c20 Anaia 1 c19 c10 c18 NSW 2
c10 c18 c19 Anaia 1 c19 c10 c20 NSW 5
c10 c18 c20 Ephesos b2 1 c19 c16 c18 workshopX 1
c10 c19 c17 PSSW 2 c20 Chalcis 1
c10 c19 c18 Anaia 1 c20 c8 c19 Chalcis 6
c10 c19 c18 Horum 1 c20 c10 c19 Chalcis 4
c10 c19 c20 Anaia 3 c20 c10 c19 Lapithos 8
c10 c19 c20 PSSW 2 c20 c19 c8 Chalcis 1
c10 c20 c19 Anaia 5 c20 c19 c10 Chalcis 10
c11 Thebes 1 c20 c19 c18 Chalcis 1

Total 301
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Table 10.8: Centers of order 1 in minimum pairwise dissimilarity matrix

CenterExpert-groupFrequency
c1 Plaka carrot 9

Plaka LRA1 7 16

c2 Dhiorios 16 16
c3 workshopX 28 28
c4 Ephesos b2 7 7
c5 Beirut buff 15 15
c6 Paphos 11 11
c7 Horum 6 6
c8 Chalcis 23 23
c9 Chersonese 7 7

c10 Anaia 17
Milet 4
PSSW 4
Horum 1

Ephesos b2 1 27

c11 Thebes 16 16
c12 Istanbul S3 9 9

c13 Istanbul S2 15
NSW 2

Istanbul S3 1 18

c14 Beirut red 8 8

c15 Dhiorios 3
Plaka LRA1 1 4

c16 GWWII 9 9
c17 Milet 35 35

c18 Ephesos b2 3
workshopX 1 4

c19 NSW 8
Thebes 1

Beirut red 1
workshopX 1 11

c20 Chalcis 23
Lapithos 8 31

Total 301
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Figure 10.4: Cluster number determination (minimum pairwise dissimilarity ma-
trix)

Lastly, we present different main fuzzy clustering centers that are associated with
each expert-defined groups and its frequency for the minimum pairwise dissimilarity
matrix (see Table 10.9).

10.7 Comparison with Expert-Defined Groups

To construct the pairwise dissimilarity matrix associated with the clustering ensem-
ble, we use different ways to average the two initial pairwise dissimilarity matrices
computed from chemical and description data: arithmetic mean, harmonic mean and
minimum. While the average calculation gives an equal weight to both initial dis-
similarity matrices, the harmonic mean gives an advantage to small values of the
two distances we consider. This advantage increases in case of calculations using the
minimum value. We use the majority rule to guess the expert-defined group of an
object based on its main centers. It appears that the most coherent results with
respect to expert-defined groups are achieved with the minimum dissimilarity matrix
(Table 10.10).

Based on the results achieved with the minimum dissimilarity matrix, if only the
first main centers are considered (Table 10.8), there are 13 first centers out of 20
(about 2 out of 3), which correspond to clusters including only one expert-defined
group. For instance, if the first center is c2, we can be sure that it is expert-defined
group Dhiorios, and if the first center is c9, the expert-defined group is Chersonese.

In addition, Table 9.5 indicates the types of expert-defined groups (as introduced
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Table 10.9: Main centers in minimum pairwise dissimilarity matrix

Expert-group# of objects Center Group type
Anaia 17 c10(17/27) 1.1

Beirut buff 15 c5(15/15) 1.0
Beirut red 9 c14(8/8), c19(1/11) 2.1
Chalcis 46 c8(23/23), c20(23/31) 2.1

Chersonese 7 c9(7/7) 1.0
Dhiorios 19 c2(16/16), c15(3/4) 2.1

Ephesos b2 11 c4(7/7), c18(3/4), c10(1/27) 3.2
GWWII 9 c16(9/9) 1.0
Horum 7 c7(6/6), c10(1/27) 2.1

Istanbul S2 15 c13(15/18) 1.1
Istanbul S3 10 c12(9/9), c13(1/18) 2.1
Lapithos 8 c20(8/31) 1.1
Milet 39 c17(35/35), c10(4/27) 2.1
NSW 10 c19(8/11), c13(2/18) 2.2
Paphos 11 c6(11/11) 1.0

Plaka carrot 9 c1(9/16) 1.1
Plaka LRA1 8 c1(8/16), c15(1/4) 2.2

PSSW 4 c10(4/27) 1.1
Thebes 17 c11(16/16), c19(1/11) 2.1

workshopX 30 c3(28/28), c18(1/4), c19(1/11) 3.2
Total 301

Table 10.10: Prediction results for arithmetic, harmonic and minimum pairwise
dissimilarity matrix-based clustering

Method # of good predictionsRate of good predictions
Average 245 0.813
Harmonic 247 0.820
Minimum 265 0.880



120 Multiple Clustering on Archaeological and Archaeometric Data

in Section 9.2.3). Based on the results obtained with the minimum pair-wise dissimi-
larity matrix, expert-defined groups Beirut buff, Chersonese, GWWII and Paphos are
of type 1.0. With this type of groups, if we know the main clustering center of any
object, we can use this information to find the expert-defined group and vice versa.

Type 1.1 groups are Anaia, Istanbul S2, Lapithos, Plaka carrot and PSSW. Unlike
groups of type 1.0, it is not possible to know what group an object belongs to, as
centers are heterogeneous, e.g., 17 objects of expert-defined group Anaia and 4 objects
of expert-defined group PSSW belong to cluster center c10. Also, all objects of
Plaka carrot and eight out of nine objects of Plaka LRA1 are related to each other,
since both lie in the same cluster center c1.

Type 2.1 groups are Beirut red, Chalcis, Dhiorios, Horum, Istanbul S3, Milet and
Thebes. One of the two centers is exclusive, whereas the other is heterogeneous.
Among these groups, with the exception of only one object, Beirut red, Horum, Is-
tanbul S3 and Thebes can be assimilated to groups of type 2.0.

Only expert-defined groups Chalcis, Dhiorios and Milet really are of type 2.1,
since each group is split into two different fuzzy centers. Chalcis is evenly split in
two, with 23 objects associated with c8, which is exclusive, and 23 objects associated
with c20, which also incorporates 8 objects from group Lapithos. For Dhiorios, 16 out
of 19 objects are associated with c2, which is exclusive, while the remaining 3 objects
are associated with another center. As for Milet, 35 objects out of 39 are associated
with center c17, which is exclusive, while the 4 remaining objects are with c10, which
gathers all the 17 Anaia objects.

Type 2.2 groups are Plaka LRA1 and NSW. This type is not easy to analyze.
In the case of NSW, 8 objects out of 10 are associated with center c19, and the
remaining two objects take place in another center, c13, which gathers all the 15
objects of Istanbul S2.

Type 3.2 groups are Ephesos b2 and workshopX. WorkshopX can actually be
assimilated to a group of type 1.0, with the exception of 2 objects. Ephesos b2 is
truly a group of type 3.2. Seven objects out of eleven are associated with one center,
c4, while four objects are associated with c18, and the remaining objects with c10.

At this point, we need to focus on heterogeneous groups. For instance, clusters
c10 and c20 include objects of different expert-defined groups (Table 10.8). By
considering the membership coefficient of each expert-defined group, Chalcis and
Lapithos can be distinguished, e.g., all the membership coefficients of Lapithos are
lower than 0.08. At the same time, membership coefficients of Chalcis are often larger
than Lapithos’.

Furthermore, we may consider the example of expert-defined groups Plaka carrot
and Plaka LRA1, which are associated with the same center, c1. Since we know that
Plaka carrot and Plaka LRA1 are coming from the same location, it is no surprise
that these two expert-defined group lie in the same cluster. This similarity, based
on the description data, is emphasized by using the minimum calculation. To better
distinguish these two groups, we should have selected a larger number of axes in
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the factorial analysis. It is indeed only the 15th factorial axis that can distinguish
Plaka carrot and Plaka LRA1.

In conclusion, the clustering ensemble method gives interesting results. It asso-
ciates description and chemical information and it outputs more homogeneous cluster
sizes than disjoint clusterings. However, clustering ensemble has two drawbacks: (1)
the rate of good predictions achieved by clustering ensemble is similar to that of clus-
tering chemical data only; (2) the overall time complexity of the method is O(n2) due
to the generation of the pairwise dissimilarity matrices.

10.8 Combined Partition Clustering

One advantage of fuzzy clustering is that it can be “defuzzified”. To fall back to a hard
clustering, the first main centers can simply be taken into account, e.g., clusters are
considered by using only the maximum coefficient membership values, or alternatively
by using the two or three largest coefficients.

In our case, the second and third centers do not bring much information, so
that we only take into consideration the maximum coefficient membership values
and Table 10.11 [89]. The 301 studied objects being described according to their
first chemical center and their first description center, Table 10.11 gives the number
of objects in each cell. In addition, it provides the names of expert-defined groups
appearing in each cell. For instance, considering the intersection of chemical row
c3 and description column c8, Table 10.11 indicates Dhrs:3, which is the number
of objects corresponding to this association of chemical and description centers in
expert-defined group Dhiorios. At the end of the same line (c3), the total number
of objects in chemical group c3 (3) is indicated. Moreover, we reordered rows and
columns to keep close one to another different parts of each expert-defined groups.
Ultimately, the combined partition distinguishes 33 combined clusters (cells of the
Table 10.11) which are all pure in terms of groups defined by experts.

The advantage of this cross-tabulation is that chemical and description-based
clusterings can be presented in the same table in a synthetic and efficient way. The
main outcome is that we never get two expert-defined groups in the same cell. This
means that if we know the main chemical and description centers of a new object,
then we know the expert-defined group of the object. For example, for an object
belonging to chemical center c3 and description center c8, the expert-defined group is
Dhiorios. The rate of good predictions of expert-defined groups using the combination
of chemical and description fuzzy clustering is 100%. Can this error rate be considered
as a generalized error rate? From one side, we do not use the labels of objects during
the construction of the combined clustering. Thus, the error rate we obtained thanks
to the combined clustering can be considered as a generalized error rate. On the
other side, in supervised learning, neither the labels nor the exogenous variables
concerning the objects of the test set are used to construct the classifier. To use the
same procedure in our case, it would be necessary to distinguish among the objects
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Table 10.11: Combined Partition for chemical and description clusters. Experts-
groups with their corresponding abbreviations are: Anaia (Ana), Beirut buff (BeiB),
Beirut red (BeiR), Chalcis (Chls), Chersonese (Chsn), Dhiorios (Dhrs), Ephesos b2
(Ephs), GWWII (Gww), Horum (Hrm), Istanbul S2 (IstS2), Istanbul S3 (IstS3),
Lapithos (Lpth), Milet (Mlt), NSW (Nsw), Paphos (Pphs), Plaka carrot (PlkC),
Plaka LRA1 (PlkL), PSSW (Pssw), Thebes (Thbs), workshopX (Wrks)

Chem./
Descr. c8 c4 c3 c5 c7 c2 c11 c12 c10 c6 c1 c9

c3 Dhrs:
3 3

c9 Dhrs:
16 16

c8 PlkL:
5

Hrm:
7

Pssw:
3

Pssw:
1 16

c1 PlkL:
3 3

c18 PlkC:
9 9

c11 Ephs:
7

Ephs:
4 11

c5 Thbs:
17 17

c20 Lpth:
7

Ana:
17 24

c2 Gww:
9 9

c7 Lpth:
1

Chls:
40

Chls:
6

Chsn:
7 54

c10 Mlt:
5

Mlt:
14 19

c15 Mlt:
9

Mlt:
11 20

c13 IstS3:
10 10

c17 IstS2:
15 15

c16 Pphs:
11

Nsw:
8

Nsw:
2 21

c12 Wrks:
20 20

c19 Wrks:
10

BeiR:
1 11

c14 BeiB:
5 5

c6 BeiB:
10 10

c4 BeiR:
8 8

19 17 7 19 57 7 42 35 36 31 7 24 301
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a learning set which allows to construct the combined partition and a test set to
evaluate the obtained combined partition.

Conversely, it is interesting to search the combined clusters which correspond to
the groups defined by experts. There are 9 groups defined by experts which correspond
exclusively to one chemical center and one description center (see Table 10.12), i.e,
only one combined cluster (one cell of the cross tabulation). It means that for each
of these groups, all the objects are at once in same chemical cluster and in the same
description cluster.

Table 10.12: Doubly homogeneous groups

Expert-groupChem. centerDescr. centerFrequency
Anaia c20 c11 17

Chersonese c7 c1 7
GWWII c2 c10 9
Horum c8 c3 7

Istanbul S2 c17 c10 15
Istanbul S3 c13 c10 10
Paphos c16 c5 11

Plaka carrot c18 c4 9
Thebes c5 c7 17

Considering other groups, 4 of them are homogeneous with respect to chemical
data clustering only, while 6 of them are homogeneous with respect to description
data clustering only. Groups homogeneous with respect to chemical data clustering
only (see Table 10.13) are Chalcis, Ephesos b2, NSW and PSSW. Each of these
groups is split into two description clusters.

Table 10.13: Groups homogeneous with respect to chemical data clustering only

Expert-groupChem. centerDescr. centerFrequency
Chalcis c7 c7, c12 46

Ephesos b2 c11 c2, c12 11
NSW c16 c11, c10 10
PSSW c8 c11, c6 4

Groups homogeneous with respect to description data clustering only (see Table
10.14) are Beirut buff, Beirut red, Dhiorios, Lapithos, Plaka LRA1, WorkshopX.
Each of these 6 groups is split into two chemical clusters.

Table 10.14: Groups homogeneous with respect to description data clustering only

Expert-groupChem. centerDescr. centerFrequency
Beirut buff c6, c14 c9 15
Beirut red c4, c19 c9 9
Dhiorios c3, c9 c8 19
Lapithos c7, c20 c5 8

Plaka LRA1 c1, c8 c4 8
WorkshopX c12, c19 c6 30
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It remains 1 group, Milet, which is doubly heterogeneous (see Table 10.15). This
group is heterogeneous with respect to both chemical clustering (split into 2 different
chemical clusters) and description clustering (split into 2 description clusters), which
gives 4 combined clusters for Milet.

Table 10.15: Doubly heterogeneous groups

Expert-groupChem. centerDescr. centerFrequency
Milet c10, c15 c11, c12 39

In conclusion, the combined partition method gives very good results, while bear-
ing a complexity of O(n). With our corpus of data, it was sufficient to consider the
first main center only, but in other cases it would be possible to consider the second
center as well. However, this would have the drawback of increasing the complexity
of the combined clustering model.

10.9 Summary

When designing our ensemble clustering method, we propose different ways to calcu-
late the average dissimilarity distance in order to give more or less weight to the low
values of the dissimilarity when calculating the average. The best results are obtained
with the minimum dissimilarity. Even if it does not improve prediction results com-
pared to clustering chemical data only, it gives a more satisfying clustering in terms
of clusters size.

Thus, we propose the construction of a combined partition clustering, which has
three advantages: (1) its complexity is linear; (2) it is entirely coherent with expert-
defined groups; and (3) the results can be presented in a synthetic way using a cross-
tabulation which reports on the homogeneity of each group in terms of associated
chemical and description clustering centers. In our case study, each cell in the cross-
table corresponds to a single expert-defined group. Thus, this knowledge can be used
to determine the expert-defined group a sample belongs to, provided its chemical and
description clustering results are known.



Chapter 11

Conclusion and Perspectives
11.1 Conclusion

The first part of this thesis introduces a selection of existing ceramic databases as
well as some archaeological and archaeometric data warehouses. Then, we propose
a new ceramic database model called Ceramo 3.0. This database stores complex
archaeological and archaeometric data related to the ceramics studied in the ArAr
laboratory. It is further used to source a data warehouse to allow on-line analytical
processing (OLAP).

Thus, this part of the thesis contributes to complex ceramic data modeling, stor-
ing, navigation and observation. Moreover, the models we propose can easily be
adapted to other application domains, e.g., economics and medicine, which share
similar data modeling and analysis problems. These contributions were published in
the proceedings of the 9th International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT 2015) [96].

In the second part of the thesis, which focuses on clustering complex archaeological
data, we first survey clustering methods, including data mining methods applied to
archaeological and archaeometric studies. We evaluate several elements that help
achieve good clustering, i.e., clustering initialization and the discovery of an optimal
number of clusters. Next, we propose a fuzzy approach that opens new discussions
with experts in archaeology and archaeometry. We start by using image segmentation
and color detection methods to capture the color, size and frequency of inclusions from
fabric images, in order to enrich cluster analysis.

Then, we propose a new linear initialization method called MaxMin Linear, which
increases the performance of fuzzy clustering and outperforms state-of-the-art initial-
ization techniques. This contribution was published in the proceedings of the 14th

International Conference on Machine Learning and Data Mining (MLDM 2018) [97].
We also propose a new visual quality index called Visual TSFD that provides

the optimal number of clusters, still for enhancing clustering quality. We compare
Visual TSFD with existing quality indices on several real-life and artificial datasets.
Considering experiment results, whatever the type of data, Visual TSFD outper-
forms all other indices. This contribution was published in the proceedings of the
14th International Conference on Artificial Intelligence Applications and Innovations
(AIAI 2018) [98].

125



126 Conclusion and Perspectives

Further, we perform two kinds of experiments, first by clustering the different
types of data from Ceramo 3.0 separately, and then by performing multiple cluster-
ing. We compare these new analyses to the hard clustering combined with human
expertise that is currently used to construct expert-defined groups of ceramics in the
ArAr laboratory. These groups are composed of ceramic samples that have similar
characteristics, which we consider as references (ground truth) in our experiments.

In the disjoint clustering experiment, we apply fuzzy clustering onto chemical,
description and image data separately, to examine the coherence of our results with
respect to expert-defined groups. The results we obtained, especially with chemical
and description data, show that our method is feasible and that the link of each
dataset with the opinions of experts is good.

Then, we introduce two multiple clustering strategies, i.e, a fuzzy clustering ensem-
ble and combined partition clustering. We propose a novel fuzzy clustering ensemble
scheme that calculates different ways of finding the average distance between ceramic
objects with quadratic complexity. Even though this scheme does not enhance pre-
diction results with respect to chemical data clustering, it outputs more homogeneous
cluster sizes, as in expert-defined groups. Yet, it is computationally costly.

In contrast, combined partition clustering has a linear complexity. It also presents
results in a synthetic way in a cross-tabulation table that helps determine the expert-
defined group a sample belongs to.

11.2 Perspectives

Although there is already a long tradition in the fields of archaeology and archaeom-
etry of developing IT and statistical tools, this thesis was challenging in its inter-
disciplinary character. In this work, we somehow simulate processes involved in in-
terdisciplinary research, when crossing viewpoints on the same objects or categories
of objects characterized and defined according to different disciplines. We also dealt
with data having a heterogeneous character - numerical, text, images. Improvements
could certainly be obtained in the way the last two categories were dealt with, espe-
cially for images data. For example, commercial software programs such as Olympus
Stream Essentials 1 could be used for fabric images.

Still, the point is that the methodology we developed in this thesis can potentially
be applied to a large variety of heterogeneous data. This perspective is important
in a context of growing availability of various kind of data, especially through the
Internet.

Our work however firstly stresses the importance of working on well balanced cor-
puses, in order to obtain larger clusters of more even size. We would also need to
better evaluate the performance our method of combined partitioning when generaliz-
ing it. To do so, we could organize a k-fold cross-validation. For example, for a 2-fold

1https://www.olympus-ims.com/en/microscope/stream2/

https://www.olympus-ims.com/en/microscope/stream2/
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cross-validation, we first need to randomly split the dataset into two equal-sized sets.
The first set is used as a training set, and the second to validate the first set. Then,
the dataset is used by training on the second set and validating on the first. Finally,
the generalized error rate is calculated by averaging the two error rates obtained. We
can use the error rate of all datasets to evaluate the method. The value of k could
also be 3 or 5 depending on the decision of experts.

To apply cross-validation, we need to be able to insert a new object. In the case
of hard clustering, the basic procedure is to insert a new object in the cluster whose
center is the nearest to the object considered. It would be interesting to propose a
new insertion procedure, which would be well suited to the case of fuzzy clustering.

Moreover, we need to improve the method of choosing the main centers associated
with a given object, by taking into account not only the order, but also the value of
each fuzzy coefficient.

Finally, when navigating data with OLAP, we analyze data with classical, numeri-
cal aggregation functions such as sum, average, maximum, etc. It would be interesting
to take textual data into account as well, as there are challenges ahead to efficiently
aggregate textual data. An interesting lead might be to require the help of human
experts [99].
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Appendix A

Figure A.1: Fabric description sheet used in the ArAr laboratory (C. Brun)
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Appendix C
Résumé long de la thèse

L’archéologie est l’étude du passé des hommes à travers les vestiges matériels.
Les céramiques sont parmi les artéfacts archéologiques les plus abondants, et four-
nissent des informations sur de nombreux aspects de l’activité humaine, notamment
la chronologie, les échanges commerciaux et la technologie. Ces dernières années, on
a pu assister à une forte croissance et une plus grande disponibilité de divers données
et réseaux archéologiques. Dans le même temps, les systèmes et outils numériques
ont permis une utilisation accrue des données par un grand nombre d’utilisateurs
potentiels allant des étudiants aux chercheurs et des conservateurs de musées aux
touristes.

En outre, l’évolution des techniques scientifiques et statistiques a également con-
tribué à mieux comprendre les matériaux archéologiques, par exemple les objets
céramiques, les coordonnées géographiques et la photographie numérique. Cepen-
dant, il n’existe actuellement pas beaucoup de systèmes numériques polyvalents, ni
d’outils et de bases de données qui peuvent être facilement utilisés par les archéologues
pour étudier des informations variées et les partager. De plus, les céramiques peu-
vent être utilisées pour déterminer des relations contextuelles, ce qui aide à mettre
en évidence les données significatives sur le plan archéologique à partir d’une masse
de données individuelles.

En d’autres termes, l’exploitation des données céramologiques permet de découvrir
des motifs qui ne sont visibles que sur de larges corpus. En archéologie, les données
sont très contextualisées. Ainsi, les céramiques et leurs propriétés peuvent-elles aider
à acquérir des connaissances approfondies sur des questions technologiques, culturelles
et géographiques, à travers des informations sur l’époque et la provenance de la
céramique. En outre, les informations stockées dans les bases de données se con-
centrent généralement sur une gamme limitée de descripteurs céramologiques et ne
sont pas interopérables.

Au cours du processus de documentation d’un site de fouilles, les archéologues
tendent à intégrer toutes les données de façon cohérente pour interpréter les matériaux
archéologiques afin de mieux comprendre les cultures humaines. Dans ce processus, la
construction de ressources réutilisables pour l’étude de la céramique est importante.
À partir de là, quelques questions fondamentales sont posées, telles que le lieu et le
moment où elles ont été produites, comment elles ont été fabriquées et quelle était
leur fonction.

C’est ainsi que les données céramologiques brutes et induites peuvent être classées
en trois niveaux. Dans le premier niveau, les données sont directement accessibles à
partir de l’objet céramique et de son contexte, par exemple la décoration de l’objet
et l’emplacement où celui-ci a été trouvé. Ces données sont le plus souvent stockées
sans aucune modification ultérieure dans les bases de données. Au second niveau,
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les données nécessitent un premier degré d’interprétation, notamment sous forme
d’hypothèses, comme l’origine supposée d’un objet trouvé sur un site donné, et les
analyses scientifiques réalisées pour tester ces hypothèses. Par exemple, le type d’un
objet en céramique est un premier niveau de données et peut être utilisé pour supposer
une origine (avant toute analyse), c’est-à-dire une donnée de localisation.

Au troisième niveau, les données sont un résultat, comme l’attribution d’un objet
à une origine en fonction d’analyses scientifiques et éventuellement d’autres critères.
Par exemple, l’attribution (après analyse) d’une céramique à son origine peut être
déduite suite à des analyses pétrographiques ou chimiques.

En raison des besoins de la recherche actuelle, la gestion de données présente
certains défis. Trouver des informations utiles dans d’énormes quantités de données
très contextualisées est difficile pour les chercheurs et les étudiants. Les données
sont globalement très hétérogènes. Les bases de données ont différents formats de
fichiers, protocoles d’accès et utilisent différents langages de requête. Il n’y a pas de
système de classification commun, ni de terminologie normalisée, qui sont nécessaires
pour comprendre les relations à partir des interconnexions. L’interopérabilité est
également limitée, avec des bases de données fournissant uniquement une interface
web, mais pas d’API (Application Programming Interface).

Ainsi, combiner diverses informations sur des objets archéologiques, tels que des
documents textuels, numériques et graphiques, qui permettraient de puissantes anal-
yses informatiques, est au mieux une tâche complexe à ce jour. Le défi de la recherche
est d’intégrer différentes dimensions à partir de bases de données distantes qui décrivent
les mêmes catégories d’objets de manière complémentaire. Ainsi, nous visons à con-
cevoir des méthodes d’entreposage et d’exploration de données qui aident à mieux
analyser et catégoriser les objets complexes. Cette thèse est divisée en deux parties
complémentaires. La première partie a trait à la modélisation de données archéologiques
complexes, alors que la seconde partie porte sur la classification non supervisée de
données archéologiques complexes.

Dans la première partie de la thèse, nous examinons d’abord une sélection de
bases de données archéologiques et archéométriques relatives aux céramiques que
nous considérons comme représentatives de la diversité des contenus, des formats, des
statuts et des caractéristiques. En outre, nous présentons les entrepôts de données
archéologiques existants (Chapitre 2).

Par exemple, le projet Levantine Ceramics Project (LCP), dirigé par l’Université
de Boston, est une base de données archéologiques centrée sur les céramiques produites
au Levant, du Néolithique à l’époque ottomane. Il comprend principalement des
données archéologiques (typologiques, chronologiques et géographiques), mais fournit
également des données d’analyse pétrographique. Les données LCP sont en format
texte et image. Le LCP est une ressource Internet interactive et ouverte2.

La base de données du MURR Archaeometry Laboratory3 construite à l’Université

2https://www.levantineceramics.org/
3http://archaeometry.missouri.edu/datasets/datasets.html

https://www.levantineceramics.org/
http://archaeometry.missouri.edu/datasets/datasets.html
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du Missouri présente des analyses chimiques d’artefacts en céramique de nombreuses
régions, comprenant l’Amérique du Nord, l’Amérique Centrale et l’Amérique du Sud
ainsi que la Méditerranée.

Couvrant un large éventail de périodes et de régions, la base de données Ceramo du
Laboratoire d’Archéologie et d’Archéométrie (ArAr) de Lyon4 était à l’origine prin-
cipalement une base de données chimiques qui ne contenait que peu d’informations
archéologiques. Elle est actuellement développée pour inclure davantage d’informations,
notamment sous forme d’images 2D et 3D. Nous présentons la nouvelle base de
données Ceramo 3.0 et détaillons sa conception, qui répond aux exigences des spécialistes
(Chapitre 3).

Ceramo 3.0 est divisé en trois paquetages principaux, dont les classes et les at-
tributs comprennent plusieurs documents graphiques, des données de localisation,
des définitions précises des échantillons céramiques et différents résultats d’analyse.
Dans le premier paquetage, nous affichons des informations géographiques telles que
PROVENANCE, ORIGINE SUPPOSÉE et ATTRIBUTION. La classe PROVE-
NANCE apporte des informations relatives au lieu où l’objet a été trouvé. La classe
ORIGINE SUPPOSÉE fournit une origine supposée avant l’analyse. La classe AT-
TRIBUTION indique l’origine de l’objet après l’analyse.

Dans le deuxième paquetage, nous affichons des informations d’état et de descrip-
tion telles que la classe DESCRIPTION qui présente les descripteurs textuels d’un
objet. La classe DATATION stocke les données de datation des objets, à la fois au
niveau général et à un niveau précis. Le troisième paquetage contient les résultats de
différents types d’analyse en laboratoire. Par exemple, la classe CHIMIE rassemble les
résultats d’analyse chimique d’un objet. Cette nouvelle base de données stocke ainsi
des données complexes. En outre, des applications ont été conçues pour fonctionner
avec Ceramo permettant la mise à jour, l’interrogation des données et l’utilisation
de traitements statistiques. Cependant, une nouvelle tendance en archéologie est de
construire des entrepôts de données [5], qui sont des bases de données analytiques.

Les entrepôts de données comportent un modèle multidimensionnel spécifique
qui permet l’analyse en ligne (OnLine Analytical Processing ou OLAP). Par ex-
emple, pour analyser l’énorme quantité de données liées à la civilisation chinoise
ancienne, l’Université de Chine du Nord travaille à la construction d’un entrepôt de
données distribué, qui aide à gérer, partager et analyser les informations relatives à
l’antiquité [11]. Des chercheurs du Département d’histoire et du Centre de Recherche
en Géomatique de l’Université Laval (Québec) ont travaillé à résoudre le problème
de l’enregistrement et de l’analyse des données de fouilles archéologiques en utilisant
un système basé sur les systèmes d’information géographiques (SIG). En général, les
SIG aident à enregistrer, analyser et visualiser les données spatiales. Ici, le SIG a
contribué à la construction d’un système intégré d’exploration archéologique (ISAE)
qui prend en charge les analyses multicritères [15].

4http://www.arar.mom.fr/qui-sommes-nous/laboratoire-de-ceramologie/les-bases-de-

donnees

http://www.arar.mom.fr/qui-sommes-nous/laboratoire-de-ceramologie/les-bases-de-donnees
http://www.arar.mom.fr/qui-sommes-nous/laboratoire-de-ceramologie/les-bases-de-donnees
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Nous avons également travaillé sur la façon dont les données céramologiques peu-
vent être entreposées pour permettre l’OLAP (Chapitre 4). De telles analyses aident
à naviguer et à observer les données selon différentes perspectives, fournissant ainsi
aux chercheurs un meilleur aperçu de leurs données. Le principal avantage de cette
approche est d’identifier les motifs cachés. Dans un entrepôt de données, les données
observées sont appelées faits, par exemple les ventes dans un contexte commercial.
Ils sont caractérisés par des mesures qui sont généralement numériques, par exem-
ple les quantités vendues et les montants correspondants. Les faits sont observés
suivant différents axes d’analyse appelés dimensions, par exemple les produits ven-
dus, l’emplacement du magasin et la date de vente. Ainsi, les schémas d’entrepôt
de données sont appelés schémas multidimensionnels. Pour permettre la navigation
OLAP dans les données de Ceramo, nous devons sélectionner les faits à observer, les
axes d’analyse (dimensions) et importer les données dans l’entrepôt de données.

Le résultat est appelé un cube (un hypercube lorsque le nombre de dimensions
est supérieur à 3), où les valeurs des dimensions sont des coordonnées qui définissent
une cellule de fait. Dans un scénario type, nous choisissons d’observer les groupes de
céramiques résultant d’analyses chimiques par rapport à la provenance, la datation,
la description. Dans l’analyse, nous utilisons des fonctions d’agrégation pour analyser
en profondeur les données relatives aux céramiques. Les résultats montrent comment
OLAP peut contribuer à la compréhension des relations économiques et culturelles
à une période spécifique, grâce à sa capacité à analyser l’information selon différents
points de vue. De plus, les modèles que nous proposons peuvent facilement être
adaptés à d’autres domaines d’application, par exemple l’économie ou la médecine,
qui partagent des problèmes similaires de modélisation et d’analyse de données. Ces
contributions ont été publiées dans les actes de la 9e conférence internationale inter-
disciplinaire Modeling and Using Context (CONTEXT 2015) [96].

Dans la deuxième partie de la thèse, nous nous concentrons sur le clustering (clas-
sification non supervisée). Le clustering est un domaine de recherche qui appartient
aux domaines de la fouille de données (data mining) et de l’apprentissage automatique
(machine learning) (Chapitre 5). Le clustering permet de regrouper un ensemble de
points de données (occurrences) non étiquetés décrits par des attributs (variables),
de sorte que les points d’un même cluster (groupe) ont des caractéristiques similaires,
tandis que les points de différents clusters ont des caractéristiques différentes. Il ex-
iste différentes catégories de clustering. L’un des critères de classification pour le
clustering est la gestion du chevauchement des clusters. En clustering dur, un point
appartient à un groupe et un seul, alors que dans un clustering flou [22], un point
peut appartenir avec plus ou moins d’intensité à plusieurs clusters. Le clustering
flou est très utile dans de nombreuses applications, notamment dans la catégorisation
textuelle de diverses informations en différents groupes. Par exemple, si l’on considère
trois groupes ayant trait respectivement à l’économie, l’énergie et la politique, le mot
clé “pétrole” est susceptible de renvoyer à chacun des trois groupes. En outre, il est
également possible d’ouvrir des discussions avec les experts du domaine lorsque l’on
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analyse les résultats d’un clustering flou. Il existe plusieurs méthodes de clustering
flou, comme les C-Means flous (FCM) ou les Fuzzy K-Medoids (FKM).

De nombreux archéologues utilisent des méthodes issues de l’informatique et de la
statistique pour étudier les données générées au cours des différentes phases de leur
recherche, avant, pendant et après les fouilles archéologiques. Par exemple, l’analyse
discriminante (AD) [37] est une technique d’apprentissage supervisé utilisée lorsque
deux groupes ou plus sont connus a priori et qu’une ou plusieurs nouvelles observa-
tions doivent être attribuées à l’un des groupes connus en fonction des caractéristiques
mesurées. Une autre technique est l’analyse des correspondance (AFC) [39], qui
est utilisée pour comprendre le lien entre variables catégorielles (plutôt que contin-
ues). Dans le laboratoire ArAr de Lyon, les archéomètres définissent des groupes
d’objets céramiques en se basant en premier lieu sur leur composition chimique.
Pour déterminer l’origine des objets, ils s’appuient sur des classifications hiérarchiques
(méthode ascendante) et sur des analyses discriminantes appliquées aux données chim-
iques [10] [3].

Pour effectuer un bon clustering, plusieurs critères doivent être pris en compte,
parmi lesquels le choix de la méthode de clustering, la procédure d’initialisation, le
choix du nombre de clusters et la recherche d’outils efficaces pour évaluer la qualité
des résultats obtenus. De plus, pour obtenir des clusters stables, on doit souvent gérer
des données de types différents (hétérogènes). Cette hétérogénéité est communément
rencontrée dans les applications de fouille de données en sciences humaines et sociales,
notamment en archéologie et en archéométrie.

Pour ces raisons, nous présentons d’abord des images de matériaux céramiques
(fabrics), puis les méthodes utilisées dans la littérature pour la détection des car-
actéristiques des images (Chapitre 6). Les “fabrics” correspondent aux caractéristiques
des matériaux céramiques telles qu’elles peuvent être observées à l’œil nu ou à l’aide
d’une loupe binoculaire. Elles comportent deux composantes principales : la ma-
trice et les inclusions. Pour exploiter les images correspondantes lors d’un clustering,
nous avons choisi d’utiliser la couleur des inclusions comme caractéristique. Ceci
peut être obtenu plus précisément en utilisant des méthodes de détection de couleur
plutôt qu’à l’œil nu. Cette caractéristique peut aider à définir la similarité entre les
céramiques, en construisant des groupes d’objets cohérents. La plupart de ces images
ont une couleur de fond. Pour cette raison, nous appliquons d’abord la méthode de
segmentation d’image de MathWorks Image Processing Toolbox5 pour détecter un
objet entier. Cependant, seuls quelques objets sont correctement détectés, car l’objet
et les couleurs d’arrière-plan sont trop similaires. Ainsi, nous ajoutons un masque
créé manuellement avec la fonction Roipoly à partir de MathWorks Image Processing
Toolbox. Cette fonction permet de sélectionner la région d’intérêt manuellement. En-
suite, pour détecter la couleur, nous appliquons une méthode de segmentation fondée
sur les couleurs, initialement conçue pour les images médicales [62], qui repose sur un
clustering obtenu à l’aide des K-Means.

5https://www.mathworks.com/products/image.html

https://www.mathworks.com/products/image.html
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L’approche est subdivisée en trois étapes. La première étape commence par la
lecture des images au format JPEG. Ensuite, les images sont converties de l’espace
colorimétrique RGB vers l’espace colorimétrique L*a*b* pour adoucir les variations
de luminosité et facilement distinguer visuellement une couleur d’une autre. L’espace
L*a*b* est constitué d’une couche de luminosité (L*) contenant la valeur de luminosité
de chaque couleur6, d’une couche de chromaticité (a*) indiquant la couleur de l’axe
rouge-vert et d’une autre couche de chromaticité (b*) indiquant où se situe la couleur
le long de l’axe bleu-jaune.

La deuxième étape vise à classifier les couleurs de l’espace a*b* en ayant recours à
un clustering par les K-Means. En utilisant la distance euclidienne, nous regroupons
les pixels en quatre clusters (le nombre de clusters est déterminé de manière em-
pirique). K-Means renvoie pour chaque pixel d’entrée un index correspondant à un
cluster. On peut alors étiqueter chaque pixel de l’image par son index de cluster.

Dans la troisième étape, pour chaque résultat de regroupement, la couche L*
permet d’extraire la couleur la plus claire et la plus sombre de chaque cluster. De là,
8 images différentes (résultats du clustering) sont obtenues à partir de chaque image.
Parmi ces résultats, nous sélectionnons manuellement certains d’entre eux qui sont
les plus représentatifs des inclusions.

Ensuite, deux autres caractéristiques sont ajoutées manuellement : la taille des
inclusions (petite, moyenne et grande) et l’abondance des inclusions (absente, rare,
fréquente, commune et abondante). Il y a plusieurs limitations à ce travail. Par
exemple, les images ont été obtenues à partir de diverses sources et dans différentes
conditions d’éclairage, de fond et de réglages de caméra. De là, une comparaison
précise des images, même avec un œil humain, est difficile. En outre, la sélection
manuelle des résultats de clustering représentatifs est subjective, bien qu’elle aide à
distinguer visuellement les différentes inclusions et les couleurs de la matrice.

Une exigence dans notre projet de thèse est d’éviter l’utilisation de méthodes de
clustering trop complexes. À cet effet, une solution consiste à utiliser des méthodes
itératives. Pour le cas du clustering dur, nous retenons les K-Means pour traiter
les données continues et les K-Medoids pour traiter les données catégorielles ou
booléennes. S’agissant du clustering flou, nous utilisons les C-Means floues (FCM)
dans le cas de données continues et les K-Medoids flous (FKM) dans le cas de
données catégorielles ou booléennes. Pour appliquer ces méthodes itératives, une
question primordiale est la manière de choisir K points de données (où K est le nom-
bre de clusters) comme centröıdes initiaux (ou graines) pour enclencher la méthode
itérative retenue. Une méthode d’initialisation efficace doit être linéaire, de sorte que
l’algorithme itératif qui l’utilise reste également linéaire.

Nous avons d’abord procédé à une revue de la littérature consacrée aux méthodes
d’initialisation (Chapitre 7). La plupart des méthodes d’initialisation y sont présentées
dans le cadre des K-Means et des K-Medoids, mais ces méthodes peuvent aussi être

6https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-

means-clustering.html

https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html
https://fr.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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utilisées pour les versions floues de ces algorithmes.

La méthode la plus simple est celle proposée par MacQueen [28], qui propose
d’utiliser les K premiers points de données comme centröıdes. Mais une telle procédure
est sensible à l’ordre des données. MacQueen propose aussi de choisir les K graines de
départ totalement au hasard parmi les points de données (méthode que nous appelons
MacQueen2).

Faber propose d’effectuer de multiples relances de la méthode MacQueen2. Son
inconvénient est que des valeurs aberrantes peuvent être choisies. D’un autre côté,
plusieurs relances garantissent que la qualité de l’échantillon choisi s’améliore. Parmi
les différentes méthodes proposées, la méthode MaxMin (aussi appelée Maximin) [72]
est particulièrement intéressante. MaxMin calcule d’abord toutes les distances en-
tre les points pris deux à deux. Ensuite, à chaque étape, on ajoute comme nouvelle
graine le point qui est le plus éloigné de la graine dont il est le plus proche parmi
les graines déjà choisie, ce qui a le grand intérêt d’améliorer l’homogénéité des clus-
ters en construction. Cependant, le choix des deux premiers centres rend MaxMin
quadratique.

Deux versions linéaires de MaxMin ont été proposées dans la littérature. Gon-
zalez suggère de choisir aléatoirement le premier centre et de choisir comme second
centre l’objet le plus éloigné du premier centre [73]. Malheureusement, cette version
dépend entièrement du choix aléatoire du premier centre. Son inconvénient est que des
valeurs aberrantes peuvent être choisies. En revanche, Katsavounidis et al. proposent
de considérer la moyenne globale des données comme premier centre [74]. Ainsi, seule
la distance de chaque point à la moyenne globale doit être calculée pour déterminer
le second centre, ce qui rend la méthode linéaire. Malheureusement, le recours à
la moyenne globale n’est pas approprié aux données booléennes. Pour remédier à
ce problème nous proposons MaxMin Linear, une variante de MaxMin qui applique
son principe tout en restant de complexité linéaire et en étant adaptée aussi bien aux
données booléennes qu’aux données continues. La moyenne générale de tous les points
est d’abord calculée. Ensuite, nous choisissons comme premier centröıde le point le
plus proche de la moyenne globale. Le deuxième centröıde est le point qui a la plus
grande distance au premier centröıde. Ainsi, la complexité de la variante proposée
reste linéaire par rapport au nombre de points de données. Ensuite, le choix des cen-
tröıdes suivants reste le même que dans MaxMin. Ainsi, MaxMin Linear peut servir
dans un ensemble de clustering flou sur des données hétérogènes. Cela fait de MaxMin
Linear une contribution simple mais très efficace. Nous comparons expérimentalement
MaxMin Linear à plusieurs méthodes d’initialisation de la littérature. Notre méthode
surpasse les méthodes existantes sur 22 ensembles de données synthétiques et réels.
En outre, MaxMin Linear peut être utilisé avec des algorithmes autres que FCM, tels
que Fuzzy K-Modes et FKM, qui s’appliquent aux données catégorielles et booléennes.
Cette contribution a été publiée dans les actes de la 14e conférence internationale Ma-
chine Learning and Data Mining (MLDM 2018) [97].

Pour étudier l’impact du choix des paramètres sur la qualité d’un clustering, nous
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avons besoin d’un critère de qualité (Chapitre 8). Par exemple, lorsque l’ensemble
de données est bien séparé et n’a que deux variables, un diagramme de dispersion
peut aider à déterminer le nombre de clusters. Cependant, lorsque le jeu de données
comporte plus de deux variables, un bon index de qualité est nécessaire pour comparer
différentes configurations de clusters et choisir le nombre approprié de clusters (K). En
clustering, il n’y a pas de norme de référence liée aux données, permettant de statuer
sur le nombre de clusters et la qualité du clustering obtenu, car en non supervisé
les notions d’erreur et de taux d’erreur n’ont pas de sens, contrairement au cas de
l’apprentissage supervisé. En outre, différents experts peuvent avoir des points de vue
différents sur les mêmes données et exprimer des contraintes différentes sur le nombre,
la taille et la forme des clusters. Ceci implique la nécessité de disposer d’indices de
qualité.

Grâce à une approche visuelle (par exemple, le graphique qui considère les vari-
ations de l’indice de qualité en fonction du nombre de clusters), différentes solutions
peuvent être présentées par rapport aux données. Ainsi, les experts peuvent-ils faire
un compromis entre leur opinion et les meilleures solutions locales proposées par
l’indice visuel. Selon Wang et al., Il existe deux types d’indices de qualité [80]. Les
premiers sont fondés uniquement sur les valeurs d’appartenance aux centröıdes, alors
que les seconds associent les valeurs d’appartenance aux centröıdes et les données.

Les indices fondés sur la décomposition de l’inertie (I) en inertie intra (W) et
inertie inter (B), avec I = W + B, sont bien adaptés au clustering dur, car dans ce
cas I garde sa valeur initiale tout au long du processus itératif. Ce n’est pas le cas en
clustering flou, car l’inertie floue FI = FB + FW (où FW est l’inertie floue intra, alors
que FB est l’inertie floue inter) dépend des coefficients d’appartenance aux clusters
de chaque objet, ce qui fait que FI change de valeur au fil des itérations.

Lorsque le nombre de clusters augmente, la valeur des indices de qualité augmente
mécaniquement aussi. Il faut donc arbitrer entre la complexité du modèle de clus-
tering et sa qualité, en se demandant à chaque étape du processus itératif si l’ajout
d’un nouveau cluster est utile. Pour répondre à cette question, les solutions les plus
courantes sont la pénalisation et la règle du coude (Elbow rule). Parmi tous les in-
dices de qualité, il n’en existe pas qui donne le meilleur résultat pour n’importe quel
ensemble de données. Ainsi est-il intéressant de proposer un nouvel index de qualité
spécialement conçu pour le clustering flou qui puisse aider l’utilisateur à choisir la
valeur de K. Nous proposons donc un nouvel indice de qualité pour FCM appelé
Visual TSFD, qui permet de déterminer visuellement le nombre de clusters. Nous
comparons expérimentalement les résultats de Visual TSFD à ceux des indices de
qualité issus de l’état de l’art et nous montrons que Visual TSFD les surclasse sur
divers ensembles de données. De plus, Visual TSFD peut également être utilisé dans
le cas de données catégorielles avec les Fuzzy K-Medoids [76]. Visual TSFD permet
donc de traiter des ensembles de données hétérogènes, ce qui est particulièrement
intéressant dans notre contexte applicatif. Cette contribution a été publiée dans les
actes de la 14e conférence internationale Artificial Intelligence Applications and In-
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novations (AIAI 2018) [98].

Nous avons appliqué ces nouvelles méthodes aux données de la base Ceramo
(Chapitre 9). Nous avons effectué deux types d’expériences, d’abord en opérant
séparément un clustering flou des objets céramiques à partir de différents types de
données de Ceramo, puis en construisant un comité de classifieurs flous (ensemble
clustering) issu des clusterings séparés. Nous comparons les résultats obtenus aux
groupes définis par les experts en archéométrie du laboratoire ArAr. Ceux-ci reposent
sur l’interprétation raisonnée de classifications ascendantes hiérarchiques portant sur
les données chimiques relatives à ces objets. Dans nos expériences, nous considérerons
ces groupes comme les groupes de référence (vérité terrain).

Dans le cas des clusterings séparés, nous appliquons successivement le clustering
flou sur les données chimiques, les données de description et les données d’images,
pour examiner la cohérence de nos résultats par rapport aux groupes définis par
des experts. Les résultats obtenus avec les données chimiques et avec les données
de description montrent tout à la fois la faisabilité de notre méthode et la bonne
cohérence de ses résultats avec les opinions des experts.

Les résultats issus du clustering sur les données d’images ne sont pas corrélés
avec les groupes définis par les experts, car les échantillons appartenant à différents
groupes définis par des experts peuvent avoir des caractéristiques similaires, telles
que la couleur et la taille des inclusions. Cela crée des difficultés pour les séparer à
partir des méthodes de clustering. Dans les résultats des données chimiques, certains
des groupes ont une très petite taille, alors que ce n’est pas le cas avec les résultats
des données de description. Finalement, un point important est que nous comparons
notre méthode, qui est automatique et dont la complexité est en O(n), à la méthode
de regroupement des experts, qui est partiellement manuelle et dont la complexité est
O(n2 log n).

Ensuite, nous cherchons à combiner les données chimiques et descriptives pour
obtenir une meilleure correspondance avec les groupes définis par les experts (Chapitre
10). Un comité de regroupeurs (classifieurs non supervisés) simule en quelque sorte la
collaboration entre chercheurs ou laboratoires utilisant des critères différents pour re-
grouper des objets. On citera comme exemple un laboratoire d’archéométrie opérant
par clustering des données chimiques et un laboratoire d’archéologie opérant par re-
groupement de données descriptives. Nous discutons d’abord de plusieurs stratégies
possibles pour effectuer un clustering ensembliste, puis nous détaillons la construction
des solutions les plus pertinentes, c’est-à-dire un comité de regroupeurs et le comité de
partitions combinées. Enfin, nous comparons les résultats des méthodes par comités
aux groupes définis par les experts du domaine.

Lors de la conception de notre méthode de comité de regroupeurs, nous pro-
posons différentes façons d’évaluer la dissimilarité globale entre deux objets en fonc-
tion des dissimilarités issues des clusterings flous opérés sur chaque type de données, à
l’aide d’une moyenne généralisée (minimum, harmonique, géométrique, arithmétique,
quadratique ou maximum), ce qui permet d’accorder plus ou moins de poids aux
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valeurs moyennées. Les meilleurs résultats sont obtenus avec la dissimilarité mini-
male qui attache plus d’importance à la ressemblance qu’à la dissemblance. Même si
les résultats de prédiction du comité ne sont pas meilleurs que la classification portant
uniquement sur les données chimiques, cela donne un regroupement plus satisfaisant
en termes de taille des clusters.

Nous proposons ensuite une nouvelle méthode pour combiner les clusterings issus
de chaque type de données : la méthode des partitions combinées, qui consiste à
durcir les partitions floues obtenues pour chaque type de données, pour en opérer en-
suite la combinaison par tableau croisé (ou hyper-tableau croisé s’il y a plus de deux
regroupeurs), dont on ne conserve que les croisements non vides. Cette méthode
présente trois avantages : (1) sa complexité est linéaire ; (2) elle donne dans notre
cas des résultats totalement cohérents avec les groupes définis par les experts, perme-
ttant de prédire sans erreur le groupe d’appartenance d’un objet ; et (3) les résultats
peuvent être présentés de manière synthétique en utilisant un tableau croisé qui rend
compte de l’homogénéité de chaque groupe en termes de centres de classification as-
sociés. Dans notre étude de cas, chaque cellule du tableau croisé correspond à un seul
groupe défini par un expert, mais un groupe peut correspondre à plusieurs cellules,
ce qui est un complément d’information intéressant. À partir de là, il est possible de
déterminer sans erreur (au moins dans notre échantillon) le groupe défini par l’expert
auquel appartient un objet céramique, en fonction de son cluster résultant des données
chimiques et de son cluster résultant des données de description.

Bien qu’il existe déjà une longue tradition dans les domaines de l’archéologie et
de l’archéométrie de développement des outils informatiques et statistiques, cette
thèse a été stimulante de par son caractère interdisciplinaire. Dans ce travail, nous
simulons en quelque sorte des processus impliqués dans la recherche interdisciplinaire,
en croisant des points de vue sur les mêmes objets ou catégories d’objets caractérisés
et définis selon différents critères. Nous avons également traité des données ayant
un caractère hétérogène : numériques, textes, images. Des améliorations pourraient
certainement être obtenues dans la façon dont les deux dernières catégories ont été
traitées, en particulier pour les données d’images. Par ailleurs, le fait est que la
méthodologie que nous avons développée dans cette thèse pourrait potentiellement
être appliquée à une grande variété de données hétérogènes. Cette perspective est
importante dans un contexte de disponibilité croissante de différents types de données,
notamment via Internet.

Notre travail souligne tout d’abord l’importance de travailler sur des corpus rela-
tivement équilibrés, afin d’obtenir des clusters de taille plus grande et plus régulière.
Nous aurions aussi besoin d’approfondir l’analyse de la performance de notre méthode
de partitionnement combiné en distinguant apprentissage et généralisation. Pour ce
faire, comme l’analyse est supervisée par les groupes définis par les experts, nous
pourrions organiser une validation croisée. Par exemple, pour une validation croisée
de type 2-fold, nous devons d’abord diviser de façon aléatoire l’ensemble de données
en deux ensembles de taille égale. Le premier ensemble est utilisé comme un ensemble



145

d’apprentissage et le second pour évaluer la qualité du modèle issu de l’apprentissage.
Ensuite, le jeu de données est utilisé en s’entrâınant sur le second ensemble et en
évaluant sur le premier. Enfin, le taux d’erreur en généralisation est calculé en faisant
la moyenne des deux taux d’erreur obtenus.

Pour appliquer la validation croisée dans le cas où le modèle est la partition
combinée, nous devons être en mesure d’insérer un nouvel objet dans cette partition.
Dans le cas du clustering dur, la procédure de base consiste à insérer un nouvel
objet dans le cluster dont le centre est le plus proche de l’objet considéré. Il serait
intéressant de proposer une nouvelle procédure d’insertion, qui serait bien adaptée au
cas du clustering flou. De plus, nous devons améliorer la méthode de choix des centres
principaux associés à un objet donné, en tenant compte non seulement de l’ordre,
mais aussi de la valeur de chaque coefficient flou. Enfin, lorsque nous naviguons avec
OLAP, nous analysons les données avec des fonctions d’agrégation classiques, telles
que somme, moyenne, maximum, etc. Il serait également intéressant de prendre en
compte aussi les données textuelles, car il existe des défis pour agréger efficacement
les données textuelles.
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[4] UMR 5138. CNRS - Université de Lyon, Ceramo, forthcoming at
http://www.arar.mom.fr/ceramomdatabase/, 2018.

[5] Manuella Kadar. Data modeling and relational database design in archaeology.
Acta Universitatis Apulensis, 3:73–80, 2002.

[6] Roberta Tomber and John Dore. The national Roman fabric reference collection:
a handbook. Museum of London, Archaeology Service, 1998.

[7] Patrick Quinn, Dominic Rout, Luke Stringer, Timothy Alexander, Alasdair Arm-
strong, and Sam Olmstead. Petrodatabase: an on-line database for thin section
ceramic petrography. Journal of Archaeological Science, 38(9):2491–2496, 2011.

[8] A. Hein and V. Kilikoglou. ceradat—prototype of a web-based relational database
for archaeological ceramics. Archaeometry, 54(2):230–243, 2012.

[9] Michael D. Glascock, Robert J. Speakman, and Hector Neff. Archaeometry at the
University of Missouri research reactor and the provenance of obsidian artefacts
in North America. Archaeometry, 49(2):343–357, 2007.

[10] Maurice Picon. Le traitement des données d’analyse. PACT 10(379–499), 1984.

[11] Quanhong Sun, Qi Xu, and Qiaoqiao Li. Multidimensional analysis of distributed
data warehouse of antiquity information. The Open Cybernetics & Systemics
Journal, 9(1), 2015.

[12] S. Musco, A. Salvatori, M. Mazzei, and C. D’Agostini. Lapis Pallens: Inte-
grated Research on Ancient Roman Quarries of red tuff of Aniene river known
as Latomie di Salone (Rome). 5th International Congress on Science and Tech-
nology for the Safeguard of Cultural Heritage in the Mediterranean Basin, (49),
2011.

[13] Eric Paquet and H.L. Viktor. Long-term preservation of 3-d cultural heritage
data related to architectural sites. the ISPRS Working Group, 4, 2005.

147



148 Bibliography
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spatial data warehouse to predict megaliths slabs sources: mixing geochemistry,
petrology, cartography and archaeology for spatial analysis. pages 310–313, 2015.
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