Résumé court

Cette thèse présente, au chapitre 2, le modèle compositionel de Darcy et des méthodes de discrétisation par Volume Finis utilisées par l'IFP Énergies nouvelles (IFPEn). Ce problème couple des équations aux dérivées partielles, correspondant aux bilans de quantité de matière et d'énergie, avec des contraintes algébriques assurant la conservation du volume poreux, la partition de l'unité pour les fractions molaires et l'équilibre chimique pour chaque composant.

Dans le but d'assurer la cohérence avec les applications IFPEn, nous nous sommes basés sur une formulation reposant sur les bilans de quantité de matière pour chaque composant. La diculté principale de ce modèle est liée au fait que le jeu d'inconnues varie en chaque point du domaine. La discrétisation du problème s'eectue par des méthodes de volumes nis avec décentrage amont des ux et discrétisation implicite en temps. Le chapitre 3 traite un cas plus simple, celui d'un écoulement diphasique immiscible. La performance du calcul numérique est fortement dépendante des méthodes de discrétisation et des algorithmes de résolution des systèmes linéaires et non linéaires. On trouve alors dans cette partie la mise en ÷uvre de stratégies de résolution basées sur des indicateurs d'erreur a posteriori. Le but principal ici est d'optimiser les critères d'arrêt des solveurs linéaires et non linéaires, tout en conservant la qualité des résultats numériques, en particuler la précision du déplacement de l'interface entre les deux uides et de la quantité de mouvement à travers le domaine. Le chapitre 4 de cette thèse est consacrée à la mise en ÷uvre d'un prototype de résolution du modèle de Darcy.
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Short summay

In Chapter 2, this thesis presents Darcy's compositional model and some discrete Finite Volume methods used by IFPEn. This problem couples partial dierential equations, stating the balance of mass, momentum, and energy, with algebraic constraints enforcing conservation of volume in the pores, partition of unity of molar fractions, and chemical equilibrium of each component. In order to respect the approach of IFPEn's applications, we base this formulation on the balance of mass and momentum for each component. The main diculty of this model arises from the fact that the set of unknowns varies at each point of the domain.

The problem is discretized by FV methods with ux upwinding in space and backward Euler implicit discretization in time. Chapter 3 is devoted to the simpler case of immiscible twophase ow. The performance of the numerical computation depends strongly on the choice of discretizations and of algorithms for solving the nonlinear and linear systems. This part describes the implementation of resolution strategies based on a posteriori error indicators.

Its main object is the optimization of stopping criteria of the nonlinear and linear solvers that preserve the quality of the numerical output, in particular the accuracy of the displacement of the interface between the two phases and the accuracy of the momentum in the domain.

Chapter 4 is devoted to the elaboration of a prototype that solves the main features of Darcy's compositional model. 9

Résumé étendu

Cette thèse est consacrée à la présentation et discrétisation du problème de Darcy multiphasique, ainsi qu'à la mise en ÷uvre de stratégies de résolution du problème de Darcy diphasique basées sur des indicateurs d'erreur a posteriori. Les applications ciblées sont le procédé avancé de récupération d'huile Steam Assisted Gravity Drainage (SAGD) et la séquestration géologique du CO 2 , puisque ces problèmes sont modélisés de la même manière. L'amélioration des procédés de récupération des huiles lourdes, c'est-à-dire, à densité et viscosité très élevées, est aujourd'hui un enjeu crucial de l'extension des réserves existantes. La mobilité des huiles lourdes étant insusante pour l'exploitation, il est nécessaire de mettre en place des systèmes actifs d'extraction. Le plus souvent, ces systèmes se basent sur l'injection d'un uide chaud qui améliore la mobilité de l'huile favorisant ainsi sa migration vers les puits. Plus précisément, dans le cas du procédé SAGD, on injecte de la vapeur d'eau. Le but des simulations faites à l'IFPEn est, dans ce cas, d'estimer la quantité d'huile récupérée et d'optimiser l'injection de la vapeur d'eau. An d'améliorer la qualité des résultats numériques, il est important de suivre avec précision le déplacement de l'interface entre le uide chaud et l'huile. La performance est, en outre, fortement dépendante des méthodes d'intégration en temps et de résolution des systèmes linéaires et non linéaires.

La résolution du front de phase qui pénètre dans le sol est importante pour la abilité de la simulation. De plus, les problèmes liés au coût de calcul sont des enjeux majeurs des simulations, d'où la nécessité d'envisager des stratégies pour optimiser l'utilisation des ressources de calcul. Enn, on demande de certier la solution numérique pour la gestion des risques, ce 11 qui demande de disposer d'une borne supérieure précise de l'erreur.

Cette thèse est composée de trois parties. Dans une première partie, nous décrivons d'abord les équations du problème compositionnel de Darcy, et ensuite, nous lui appliquons des méthodes de discrétisation par Volumes Finis (VF). Dans une seconde partie, nous étudions le cas plus simple des écoulements diphasiques, leurs discrétisations et leurs algorithmes de calculs gérés par des indicateurs d'erreur a posteriori. Des calculs numériques illustrent les résultats théoriques. Enn, la troisième partie est consacrée à l'implémentation d'un prototype de calcul complet pour le diphasique, et tenant compte de l'aspect générique du modèle compositionnel.

Le chapitre 2 de cette thèse contient la formulation d'un modèle unié pour les applications industrielles citées ci-dessus. An de disposer d'un large spectre de cas, nous avons choisi de travailler dans le cas le plus général, c'est-à-dire, celui où on xe uniquement le nombre de composants, tandis que les phases et leur composition dépendent des conditions thermodynamiques ainsi que des fractions molaires globales. Le problème correspondant mélange des équations aux dérivées partielles (EDPs), correspondant aux bilans de quantité de matière et d'énergie, avec des contraintes algébriques assurant la conservation du volume poreux, la partition de l'unité pour les fractions molaires et l'équilibre chimique pour chaque composant.

Dans le but d'assurer la cohérence avec les applications IFP Énergies nouvelles déjà existantes, nous nous sommes basés sur une formulation reposant sur les bilans de quantité de matière pour chaque composant ; une approche alternative basée sur les bilans de masse est proposée dans Chen, Huan et Ma [START_REF] Chen | Computational methods for multiphase ows in porous media[END_REF]Chapitre 9]. La diculté principale de ce modèle est liée au fait que le jeu d'inconnues varie en chaque point du domaine. La discrétisation du problème s'eectue par des méthodes de volumes nis (VF) avec décentrage amont des ux par phase et intégration implicite en temps. Une caractéristique importante de ce modèle est qu'il est possible de réduire le nombre d'inconnues du système global en exploitant les contraintes algébriques locales de chaque maille.

An de garantir la consistance de la discrétisation VF sur des maillages topologiquement Cartésien et en présence de tenseurs de perméabilité pleins, nous utilisons des méthodes multipoints (MPVF) selon les idées de Agélas, Di Pietro et Masson [START_REF] Agélas | A symmetric and coercive nite volume scheme for multiphase porous media ow problems with applications in the oil industry[END_REF]. Les méthodes multi-points ont été introduites indépendemment par Aavatsmark, Barkve, Bøe et Mannseth [2,3,4,[START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results[END_REF] et Edwards et Rogers [START_REF] Edwards | A ux continuous scheme for the full tensor pressure equation[END_REF][START_REF]Finite volume discretization with imposed ux continuity for the general tensor pressure equation[END_REF] dans le contexte de la simulation de réservoirs pétroliers. L'idée de base consiste à remplacer le ux numérique à deux points par une version pouvant dépendre des valeurs de la solution discrète dans d'autres mailles que celles qui partagent la face. La dépendance est typiquement obtenue par des constructions locales garantissant la consistance pour des fonctions anes par morceaux, et dont le ux diusif est continu à travers les interfaces du maillage. Plus précisément, la discrétisation ici proposée est basée sur la méthode récemment introduite et analysée par Agélas, Di Pietro et Droniou [START_REF] Agélas | The G method for heterogeneous anisotropic diusion on general meshes[END_REF].

Le chapitre 3 est consacré au cas plus simple d'écoulements diphasiques immiscible, donc à deux phases et deux composants. Bien que plus simple, les équations de ce modèles sont cependant fortement non linéaires. Dans une première partie, et sous des hypothèses convenables sur les données et les choix d'espaces des inconnues, nous construisons une formulation variationnelle de ce problème, dont nous démontrons l'équivalence. Dans une seconde partie, nous discrétisons les équations de la formulation variationnelle par une méthode de VF à deux points avec décentrage des ux en amont et nous décrivons les équations de l'algorithme de Newton pour linéariser le système. A chaque boucle de Newton, nous prenons en compte un algorithme utilisé pour résoudre le système linéarisé, mais le choix de l'algorithme est libre.

La troisième partie contient les résultats d'analyse a posteriori proprement dits. Le but des estimations d'erreur a posteriori est de donner des bornes de l'erreur entre l'approximation numérique et la solution exacte inconnue qui puissent être calculées en pratique à partir de la solution approchée. Ceci permet, en particulier, d'estimer la grandeur de l'erreur et de la localiser. La localisation de l'erreur est l'ingrédient clé des stratégies d'adaptation de maillage et de pas de temps, qui visent à réduire le coût de calcul en adaptant localement la taille des mailles en espace ou en temps à l'échelle du problème. Egalement, les indicateurs d'erreur a posteriori peuvent être utilisés dans le but de contrôler l'erreur et d'optimiser l'ecacité des algorithmes de résolution.

Dans notre cas, nous avons aaire à un problème non linéaire instationnaire discrétisé par une boucle sur les pas de temps et à chaque pas de temps, par des itérations de linéarisation de Newton, et à chaque itération de Newton, par des itérations d'un solveur algébrique pour résoudre les systèmes linéarisés. Le but des estimations d'erreurs proposées dans le chapitre 3 est de 1. Estimer séparément les diérentes composantes de l'erreur.

2. Distinguer entre les composantes de l'erreur substantielles, c'est-à-dire les erreurs qui vont toujours être présentes (par exemple, les erreurs de discrétisation en espace et en temps), et les erreurs subsidiaires, qui peuvent être rendues très petites (erreurs des CONTENTS solveurs non linéaires et linéaire).

3. Arrêter les diérents algorithmes itératifs au moment où les erreurs subsidiaires correspondantes n'aectent plus l'erreur totale de façon signicative (critères d'arrêt).

La technique de dérivation d'estimateurs d'erreur a posteriori est ici mise au point sur un problème diphasique, mais la même approche s'applique dans le cas plus général du modèle compositionnel. L'idée de base consiste à introduire une norme de résidu que l'on peut borner par des indicateurs calculables tout au long de l'algorithme, methode développée par exemple par Verfürth [START_REF]Robust a posteriori error estimates for nonstationary convection-diusion equations[END_REF], dans le contexte des modèles considérés par Cancès, Pop et Vohralík [START_REF] Cancès | An a posteriori error estimate for vertexcentered nite volume discretizations of immiscible incompressible two-phase ow[END_REF] et par Vohralík et Wheeler [START_REF] Vohralík | A posteriori error estimates, stopping criteria, and adaptivity for two-phase ows[END_REF]. Ceci demande, en particulier, d'introduire des reconstructions opportunes des champs issus de la discrétisation VF. Les diérentes composantes d'erreur sont ensuite identiées en écrivant le problème discret sous une forme algorithmique qui met en évidence les diérentes boucles évoquées ci-dessus. Une telle approche a été récemment développées par El Alaoui, Ern et Vohralík [START_REF] Alaoui | Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems[END_REF], Ern et Vohralík [START_REF] Ern | A posteriori error estimation based on potential and ux reconstruction for the heat equation[END_REF][START_REF]Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diusion PDEs[END_REF], Vohralík [START_REF] Vohralík | Residual ux-based a posteriori error estimates for nite volume and related locally conservative methods[END_REF][START_REF]Estimations d'erreur a posteriori, critères d'arrêt et implémentations peu couteuses[END_REF] et Jiránek, Strako² et Vohralík [START_REF] Jiránek | A posteriori error estimates including algebraic error and stopping criteria for iterative solvers[END_REF]. Ce travail a d'ores et déjà été initié par Di Pietro, Vohralík et Widmer [START_REF] Di Pietro | An a posteriori error estimator for a nite volume discretization of the two-phase ow, Finite volumes for complex applications[END_REF].

Les indicateurs de l'erreur servent aussi à ajuster les paramètres du calcul, par ranement/déranement du maillage et du pas de temps, de telle sorte que les erreur substantielles soient distribuées de façon équilibrée (équilibrage des composantes d'erreur ). L'adaptation en espace ou en temps est décrit dans le chapitre 4 n'est pas l'objet principal de ce travail de thèse.

Dans le chapitre 4, nous présentons les outils développés pour la mise en ÷uvre du simulateur de Darcy compositionnel et des estimateurs d'erreur du chapitre 3. La discussion porte sur trois aspects qui ont présenté une certaine diculté. Dans un premier temps, on se concentre sur un point important : les outils pour la gestion des inconnues. Du fait d'avoir un jeu d'inconnues diérent dans chaque maille, ces outils sont au c÷ur du simulateur, et les inconnues doivent répondre à des impératifs de souplesse et d'ecacité. Le dernier point ici traité est relatif à la conguration d'un jeu de données pour le modèle. Ce travail vise, à terme, des applications dans deux contextes diérents, d'où la nécessité de disposer d'outils souples pour la description du modèle. On se concentre, dans un deuxième temps, sur la gestion des lois physiques qui bénécie d'une mise en ÷uvre permettant, dans une certaine mesure, de disposer d'outils de diérentiation automatique. Ceci permet à la fois de réduire le coût de maintenance et de modication du code, ainsi que de gérer de manière simple la croissance de la complexité. On développe ensuite le travail d'implémentation fait pour exécuter les estimateurs d'erreur a posteriori et leur mise en ÷uvre au sein du code. Finalement, on explique les outils de gestion du ranement de maillage. An de simplier la mise en ÷uvre, on a choisi de se concentrer sur des maillages ranés de manière non conforme à partir d'une grille topologiquement Cartésienne. Des domaines non rectangulaires peuvent être gérés car la mise en ÷uvre distingue topologie et métrique, cette dernière pouvant être non ane. Le réservoir, an d'être exploité, est perforé à divers endroits, des puits y sont alors installés.

Ces procédés emploient trois techniques :

• la méthode thermique, qui utilise l'injection de vapeur d'eau pour chauer le pétrole, ce qui le uidie et facilite sa production ;

• la méthode chimique, qui utilise des viscosiants et/ou des tensio-actifs ;

• l'injection de CO2, qui apparaît comme une voie permettant à la fois d'augmenter le rendement du gisement et de stocker le dioxyde de carbone dans le cadre de la lutte contre le changement climatique.

Ces trois méthodes comportent deux types de puits horizontaux :

• Les puits injecteurs (en amont), dans lesquels on injecte en continu un uide sélectionné pour ses caractéristiques chimiques et physiques. Ce uide aura pour but de pousser les hydrocarbures ;

• Les puits producteurs (en aval), dans lesquels les hydrocarbures (en particulier les huiles lourdes), que l'on a uidiées, sont pompées jusqu'en surface.

La gure 1.1 présente un de ces procédés de manière schématique. Cependant, les modélisations à l'échelle des réservoirs engendrent des coûts dûs à l'usage des super-calculateurs et, en particulier, aux temps (conséquent) de calcul.

Les industriels du pétrole cherchent donc à utiliser des logiciels de calcul à la fois ables et optimisés.

État de l'art

La modélisation de réservoirs nécessite de prédire l'évolution, en milieu poreux, d'écoulements de plusieurs phases, chacune étant elle-même composée de plusieurs composants. On nomme ces écoulements : multi-phasiques et compositionnels (ou multi-composants). La conception de logiciels pour leur simulation requiert une discrétisation du domaine espace-temps et la mise en place de schémas numériques qui traitent des lois physiques de mécanique des uides, de thermodynamique et qui gèrent les caractéristiques d'un milieu poreux. Le modèle de Darcy répond à ces attentes.

L'industrie pétrolière a recours à diérentes méthodes de discrétisation en temps (complètement implicites ou implicites en temps et explicites en saturation). En espace, elle utilise des méthodes de volumes nis. Au début, les schémas étaient à deux points, mais maintenant, ce sont souvent des schémas multi-points. Ces méthodes tiennent leur noms de l'approche de discretisation des ux diusifs qui se servent de deux, ou plusieurs pour les multi-points, valeurs discrètes aux centres des éléments voisins. Les méthodes multi-points ont été introduites dans les années 90 par Aavatsmark, Barkve, Bøe et Mannseth [4,[START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results[END_REF], et par Edwards et Rogers [START_REF]Finite volume discretization with imposed ux continuity for the general tensor pressure equation[END_REF].

Citons aussi le livre de Eymard, Gallouët et Herbin [START_REF]Discretization of heterogeneous and anisotropic diusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[END_REF] qui présente un large éventail de ces méthodes. De plus, on peut citer les travaux sur grilles hexaédriques de Aavatsmark [1] et Aavatsmark, Eigestad, Klausen, Wheeler et Yotov [6]. Les travaux de thèse de Cao [START_REF] Cao | Developement of techniques for general purpose simulators[END_REF], mais aussi le livre de Chen, Huan et Ma [START_REF] Chen | Computational methods for multiphase ows in porous media[END_REF], décrivent de manière approfondie l'état de l'art pour les formulations des écoulements polyphasiques et pour les méthodes de discrétisation de ces problèmes. Ces travaux tiennent compte aussi de l'impact des puits dans le domaine. Notons que les premiers travaux sur le sujet des puits ont été élaborés par Peaceman [START_REF] Peaceman | Interpretation of well-block pressures in numerical reservoir simulation[END_REF] en 1978.

A de très rares exceptions près, les méthodes numériques pour la résolution des systèmes approchés ne donnent évidemment pas la solution exacte, puisque celle-ci n'est pas discrète.

Il est alors intéressant de se demander si la diérence entre ces deux solutions (exactes et approchées) est quantiable. Historiquement, les numériciens ont introduit des méthodes d'estimation d'erreur a priori. Ces méthodes permettent d'évaluer une borne de l'erreur avant la réalisation des calculs et cette borne de l'erreur fournit des grandeurs liées à la taille des mailles.

Autrement dit, elles donnent un ordre de convergence assymptotique. Mais malheureusement, dans la plupart des cas, par exemple dès que le problème à résoudre est non linéaire, leurs constantes font intervenir des normes de la solution exacte, qui ne sont pas connues, et donc en pratique incalculables.

Pour contrer cela, des méthodes d'estimation d'erreur a posteriori ont été développées ; ces méthodes bornent la diérence entre la solution exacte et une solution approchée, grâce à des quantités relatives à la solution approchée. Elles sont donc évaluées une fois que la solution approchée est calculée. Ces méthodes d'analyse de l'erreur a posteriori ont été initiées, entre autres par Babu²ka et Rheinboldt [START_REF] Babu²ka | Error estimates for adaptive nite element computations[END_REF], Ladevèze [START_REF] Ladevèze | Comparaison de modèles de milieux continus[END_REF], Verfürth [START_REF] Verfürth | A posteriori error estimators for the Stokes equations[END_REF], Pousin et Rappaz [START_REF] Pousin | Consistency, stability, a priori and a posteriori errors for petrov-galerkin methods applied to nonlinear problems[END_REF], par Ainsworth et Babu²ka [START_REF] Ainsworth | Reliable and robust a posteriori error estimating for singularly perturbed reaction-diusion problems[END_REF], Verfürth [START_REF]Robust a posteriori error estimates for nonstationary convection-diusion equations[END_REF], Carstensen et Hu [START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming nite element methods[END_REF], Carstensen, Hu et Orlando [START_REF] Carstensen | Framework for the a posteriori error analysis of nonconforming nite elements[END_REF] et Chaillou et Suri [START_REF] Chaillou | Computable error estimators for the approximation of nonlinear problems by linearized models[END_REF][START_REF] Chaillou | A posteriori estimation of the linearization error for strongly monotone nonlinear operators[END_REF].

Le développement de ces estimateurs d'erreur a posteriori permet donc d'évaluer la différence entre la solution approchée calculée et la solution exacte. Une application intéressante de l'analyse a posteriori de l'erreur est de permettre d'identier diérentes sources de l'erreur.

Cette technique sert à mettre en place des méthodes de résolution adaptative. En premier lieu, on pense alors à des méthodes d'adaptation de maillage. En eet, on rane les mailles là où l'erreur est la plus grande, et au contraire on dérane les mailles là où l'erreur est faible. Ces idées sont développées, par exemple, par Braack et Ern dans [START_REF] Braack | A posteriori control of modeling errors and discretization errors[END_REF] et dans les travaux de thèse de Mamaghani [START_REF] Mamaghani | Suivi de fronts par des méthodes de ranement de maillage adaptatif et application à la simulation du procédé de récupération Steam Assisted Gravity Drainage[END_REF]. Dans un deuxième temps, en remarquant que tous les algorithmes de réso- An de discrétiser ce modèle, on utilise des méthodes Volumes Finies (VF) multi-point, avec décentrage en amont des ux diusifs. Ces méthodes de discrétisation sont décrites dans la section 2.2. On y détaille en particulier les même sujets que précédement mais dans des espaces discrets : la notion de contexte discret et les inconnues discrètes en 2.2. 

CHAPTER 2

The compositional Darcy model

In this chapter, we propose rst to dene a mathematical formulation of the compositional ow.

Dierent types of formulations are possible, and we choose to follow the Coats formulation introduced by Coats in [START_REF] Coats | Implicit compositional simulation of single-porosity and dual-porosity reservoirs[END_REF] and by Coats, Thomas, and Pierson in [START_REF] Coats | Implicit compositional simulation of single-porosity and dual-porosity reservoirs[END_REF]. Its particularity is to consider the system in two types of equations, the conservative equations and the local closure equations. A complete state of the art can be found in the thesis of Cao [START_REF] Cao | Developement of techniques for general purpose simulators[END_REF]. We then discuss the numerical discretization of the model, following in particular the ideas of Chen, Huan, and Ma [START_REF] Chen | Computational methods for multiphase ows in porous media[END_REF].

The compositional Darcy model states the basic principles of conservation of mass, momentum, and energy for a uid owing through a porous medium. We assume here that the uid is composed of dierent components present in dierent phases. 

The continuous setting

A mathematical model consists of a set of equations that describe a given physical phenomena.

In petroleum industry we need to describe the ow of uids in underground petroleum reservoirs, which are large geological domains containing hydrocarbons. They are porous media, but they are not vacuum bags lled with oil. Rather, they are comparable to a solid sponge:

A rock full of pores lled with oil.

Let Ω ⊂ R d , d ≥ 2, be a bounded connected polygonal domain and let t F > 0.

Here Ω represents the reservoir, while t F is the simulation time. Our goal is to model the ow of the reservoir uid through Ω in the time interval (0, t F ). For this, we need to describe a uid composed of N P phases, phases being composed of N C components (N P < +∞ and N C < +∞). We denote by P = {p} and C = {c} respectively the set of phases and components. In a general setting, a phase can contain only a subset of the components. For positive integers m and n, let R m,n denote the set of real matrices with m lines and n columns.

A synthetic description of the uid system can be obtained using the component-phase matrix This matrix gives dierent sets:

M = [m c,p ] c∈C, p∈P ∈ R N C ,N P ,
• The set of components constituting the phase p:

C p = {c ∈ C | m c,p = 1}.
The non-zero elements of column p represent the set of components composing the phase p.

• The set of phases containing the component c:

P c = {p ∈ P | m c,p = 1}.
The non-zero elements of line c represent the set of phases containing the component c.

Examples 2.7 and 2.8, in Section 2.1.5 below, illustrate the component-phase matrix two dierent particular situations. The description of the system is completed by a boolean thermal index I θ :

• I θ = 0 in the isothermal case. This means that we do not consider the temperature in the model;

• I θ = 1 in the thermal case, in order to describe the temperature evolution in the domain.

Therefore an additional partial dierential equation (PDE) is present in the model.

The formulation used throughout this work relies on a system of equations which depends on the phases that are present in a space location at a given time. Indeed, if two phases ow side by side, one pushes the other and the uid moves and evolves in time through the domain.

Thus, if one phase pushes the other one, the second phase can disappear in one place and appear in another. The notion of context is introduced to describe this phenomenon.

Denition 2.1. A context represents a set of phases that are present at a given time and position.

Note that a context can only take a nite number of congurations. More specically, since phases can either be present or not independently of each other, we have N K = 2 N P possible contexts collected in the set K = {k}.

Denition 2.2. The context in which all phases are present is called the reference context and denoted by the symbol k ref .

Unknowns

Let Σ := Ω × (0, t F ) denote the space-time domain. The appearance or disappearance of phases in dierent points of time or space causes the main diculty of the model. To account for this diculty, we introduce the eld K. Then at a given point of Σ, the eld K:

K : Σ → K (2.1.2)
gives the local context k ∈ K; note that K(Σ) ⊂ K. This mapping is itself an unknown of the problem and its determination requires a special computation. The ash algorithm described in Appendix A is devoted to the computation of the local context.

In what follows we describe a systematic way for stating the equations of mass, momentum and energy conservation. Remark 2.4 (Indices of subsets). To avoid the multiplicity of indices, we use in the same position the letter p, c, and k in the notation of the subsets of P and C, but their meanings are clear and there can be no confusion.

Consider the following unknowns:

U k := P, (θ), {S p } p∈P k , {C p,c } p∈P k ,c∈Cp , {n c } c∈C k , (2.1.3) 
where:

• P denotes the reference pressure;

• θ is the temperature, only present when I θ = 1;

• {S p } p∈P k is the set of saturations for the phases p present in the context k;

• {C p,c } p∈P k ,c∈Cp is the set of molar fractions for the components of each present phase;

• {n c } c∈C k contains the numbers of moles for the components absent from the context, which are collected in the set

C k := C \ C k .
These unknowns are considered separately and are described later.

For p ∈ P, the phase pressures P p are expressed in terms of the unknowns U k as follows:

P p (P, S p ) := P + P cp (S p ), For each point X in Σ, the local context K(X) is a subset of K. We denote by a subscript K all quantities related to the mapping K dened in (2.1.2), such as

(
C K = {c ∈ C k |k = K(X), X ∈ Σ},
and

P K = {p ∈ P k |k = K(X), X ∈ Σ}.
Remark 2.5 (Empty context). The empty context ∅ ∈ K may be relevant in the thermal case I θ = 1. In this case the set of unknowns only contains the temperature, i.e., U = {θ}, and we solve the problem for the temperature eld only.

We conclude this section on the unknowns by pinpointing that other choices are possible for the unknowns. These are not detailed herein; see, e.g., the work of Chen, Huan, and Ma [33, Chapter 9].

Fluid and rock properties

Before introducing the model, we need to present the dierent uid and rock properties used to describe the present process. They are simply dened as elds over Σ and only the dependence on the unknowns is highlighted. For a property , let us denote by [ ] its dimension in the international system (IS) units. For example, if L is a length, its unit is the meter and we denote it by [L] = m. The temperature unknown θ, which is only present in the thermal cases, is written without parentheses in quantities that are intrinsic to the thermal cases and between parentheses in quantities that are common to both cases.

Medium properties

For the porous medium (the rock), we consider the following properties:

• The porosity φ of the porous medium is a dimensionless function satisfying 0 ≤ φ ≤ 1.

It is the fraction of the volume of void over the total volume; It also gives the fraction of the volume available for the uid. In this work, it is treated as a constant in space and in time.

• The rock internal energy e r (P, θ, C p ) is a state function of the system. The units are

[e r ] = kg • m 2 • s -2 .
• The rock molar density ζ r represents the number of moles per unit volume and

[ζ r ] = mol • m -3 .
• The thermal conductivity λ is the property of a material describing its ability to conduct heat, and

[λ] = kg • m • s -3 • K -1 .
For all phases p ∈ P we introduce the following elds:

• The absolute permeability tensor K measures the permeability, or ability of the rock to transmit uids. The usual unit is the Darcy (D) and the IS units give [K] = m 2 .

• The relative permeability k rp (S p ) is a dimensionless number. It is the ratio of the eective permeability of the phase to the absolute permeability. The eective permeability represents the ability of a uid to ow through a rock when another uid is present in the pore space. The relative permeability k rp indicates the tendency of phase p to wet the porous medium.

The capillary pressure

For all phases p ∈ P, the capillary pressure P cp (S p ) is specic to multiphase ows. It represents the dierence in pressure between two uids on either side of an interface. Indeed, the pressure in a wetting uid is smaller than that in a non-wetting uid. This dierence in pressure, given by the capillary pressure, accounts for the curvature on the interface and the surface tension of the uids at the interface between the two phases. Pressures are traditionally expressed in

Pa.

In IS units we have

[P cp ] = kg • m -1 • s -2 .

Thermodynamic properties

For all phases p ∈ P we introduce the following elds, where θ is in absolute degrees:

• The molar density ζ p (P, (θ), C p ) represents the number of moles per unit volume and

[ζ p ] = mol • m -3 .
• The mass density ρ p (P, (θ), C p ) represents the mass per unit volume and is expressed by

[ρ p ] = kg • m -3 .
• The viscosity µ p (P, (θ), C p ) measures the resistance of a uid to ow and

[µ p ] = kg • m -1 • s -1 .
• 

[f c,p ] = kg • m -1 • s -2 .
• The enthalpy h p (P, θ, C p ) is a thermodynamic potential; it is a measure of the total energy of a thermodynamic system and is expressed by

[h p ] = kg • m -2 • s -2 • mol -1 .
• The phase internal energy e p (P, θ, C p ) is a state function of the system. This function is only present in the thermal context. We express it by

[e p ] = kg • m -2 • s -2 • mol -1 .

Equations

We have seen that the set of unknowns depends on the context and the context depends on the position and on time. We recall that the eld K is itself an implicit function of the unknowns at a given location in Σ; hence it is a variable of the problem.

In order to have a physical model of the ow in the reservoir we must consider dierent types of equations expressing

• the mass conservation of the components,

• the momentum conservation of the components,

• the volume conservation,

• the conservation of the quantity of the matter in each phase,

• the equilibria of the components for those components that are present in more than one phase.

For all c ∈ C, we let q c : Σ → R denote a source eld. Let us recall ∀c ∈ C, P c := {p ∈ P | m c,p = 1}.

In the non-thermal case I θ = 0, we consider the following problem:

2.1.3.1 The partial dierential equations

• Conservation of mass and momentum:

∂ t n c + p∈P K ∩Pc div ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) = q c , ∀c ∈ C K , (2.1.5a) 
∂ t n c = q c , ∀c ∈ C K .
(2.1.5b)

The closure equations

• The volume conservation:

p∈P K S p = 1.
(2.1.6a)

• The conservation of the quantity of the matter in each phase:

c∈Cp C p,c = 1, ∀p ∈ P K .
(2.1.6b)

• The equilibria of the components present in dierent phases:

f c,p 1 (P, (θ), C p 1 ) = f c,p 2 (P, (θ), C p 2 ), ∀c ∈ C K , ∀p 1 ∈ P K ∩ P c , p 2 ∈ P K , p 1 = p 2 .
(2.1.6c)

The denitions of n c and -→ v p are in order. (2.1.7)

Darcy velocity

In most formulations of Darcy's law, the phase mobility kr p µp is included in the denition of the Darcy velocity. However, here we prefer to dissociate the mobility from the velocity and write it explicitly as a factor in the balance of mass and momentum. Therefore, for all p ∈ P, we choose to dene the average phase velocity by:

- → v p (P, (θ), S p , C p ) = -K (∇P p (P, S p ) -ρ p (P, (θ), C p )g) , (2.1.8) 
where g denotes the downward-oriented gravity acceleration and the phase pressure P p is given by (2.1.4). In the physical situation considered here, the permeability tensor K is a diagonal matrix:

K =     κ 11 κ 22 κ 33     .
(2.1.9)

If κ 11 = κ 22 = κ 33 , i.e. K = κ Id, the porous medium is called isotropic, otherwise, it is anisotropic. If K is constant over all Ω it is called homogeneous, otherwise, it is heterogeneous.

To simplify the compositional model, we shall consider isotropic media. In contrast, we will study two-phase ows in anisotropic media, see Chapter No-ow boundary conditions are prescribed for all phases, i.e. we choose:

∀p ∈ P, - → v p • n = 0 on ∂Ω × (0, t F ), (2.1.11) 
where n is a unit exterior normal of Ω. The eects of wells are expressed by adding the mass production or injection at the wells to the source terms {q c } c∈C and Q, in equations (2.1.5a)(2.1.5b) and (2.1.10) respectively.

The derivation of well ow equations relies on the basic assumption that the ow is radial in a neighborhood of the well. This leads to, for all c ∈ C K ,

∂ t n c + p∈P K ∩Pc div ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) = q c + W ∈W p∈P k W ∩Pc δ W q W p,c , (2.1.13) 
where for a well W ∈ W,

• δ W is the characteristic function of W δ W (x) =      1 if x ∈ W, 0 otherwise; 
(2.1.14)

• q W p,c is the mass production or injection at this well;

• k W is the local context of W ;

• P k W is the set of phases in k W .

We express q W p,c as follows q W p,c := div

ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → w W p (P, (θ), S p , C p ) ,
where the phase velocity -→ w W p in the well W is given by -→ w W p (P, (θ), S p , C p ) := τ W (∇P p (P, S) -ρ p (P, (θ), C p )g) .

The well index, also called production index, τ W , is given by the Peaceman Formula, see [START_REF] Peaceman | Interpretation of well-block pressures in numerical reservoir simulation[END_REF].

Its discrete version is written in (2.2.26) below.

If I θ = 1, the source term of the energy conservation equation (2.1.10) is also complemented by a sum over the wells:

∂ t e + div p∈P K ζ p (P, θ, C p )k rp (S p ) µ p (P, θ, C p ) h p (P, θ, C p ) - → v p (P, θ, S p , C p ) -λ∇θ =Q + W ∈W δ W Q W , (2.1.15) 
where Q W represents the energy produced by the wells; Details are presented in [START_REF] Chen | Computational methods for multiphase ows in porous media[END_REF]. The above uxes are discretized in Section 2.2.2.4.

Number of equations vs. number of unknowns

The mathematical analysis of the above problem is outside of the scope of this work. But at least, we can check that it is a square system of equations: For a given context k ∈ K, 

(N Pc -1) = c∈C k N Pc -N C k = p∈P k N Cp -N C k equations.
As a consequence, for a given context k ∈ K, the number of equations is

N C + I θ + 1 + N P k + p∈P k N Cp -N C k = 1 + I θ + N P k + p∈P k N Cp + N C k = card(U k ).

The context

As we have already mentioned, the eld K is itself a function of the local unknowns. More specically, we introduce the total molar fraction for all c ∈ C: .16) collected in the vector Z = {Z c } c∈C , with the condition c∈C Z c = 1. Then there holds:

Z c = p∈P K ∩Pc ζ p (P, (θ), C p )S p C p,c + c ∈C K ∩{c} n c c ∈C p∈P K ∩P c ζ p (P, (θ), C p )S p C p,c + c ∈C K n c , (2.1 
K = Flash(P, Z) in Ω, (2.1.17)
where Flash is an algorithm used in multiphase ow simulations to determine the local contexts; see Appendix A to nd more details on the algorithm.

Examples

Example 2.7 (Immiscible isothermal two-phase ow). A rst example considered in this work is the isothermal (I θ = 0) immiscible two-phase ow corresponding to the following component-phase matrix:

M =   1 0 0 1   .
We use the common notation C = P = {w, o} (where w and o correspond to the wetting and non-wetting phase respectively, both mono-components). As a component is present only in one phase we have:

C w = {w}, C o = {o}, {C p,c } p∈P,c∈C = {C w,w ,C o,o } and C w,w = C o,o = 1, (2.1.18)
so that {C p,c } p∈P,c∈C is known. Thus, the conservation of quantity of the matter equations (2.1.6b) disappear from the model. For the same reason, the fugacity equality (2.1.6c)

is not useful here. The set of unknowns in the reference context reduces to:

U = {P, S o , S w } ,
and the contexts are:

K = {{o}, {w}, {o, w}}. System (2.1.5)(2.1.6) becomes: ∂ t (φζ w (P )S w ) + div ζ w (P )k rw (S w ) µ w (P ) - → v w (P, (θ), S w ) = q w in Σ, ∂ t (φζ o (P )S o ) + div ζ o (P )k ro (S o ) µ o (P ) - → v o (P, (θ), S o ) = q o in Σ, S o + S w = 1 in Σ, (2.1.19) 
where, -→ v o and -→ v w are again given by (2.1.8). Boundary and initial conditions close the model.

A classical practical example of an isothermal, immiscible two-phase ow is provided by the ve-spot case, described by, e.g. Trangenstein and Bell [START_REF] Trangenstein | Mathematical structure of the black-oil model for petroleum reservoir simulation[END_REF]. We have a square domain with an injection well in each corner and a production well in the center. We refer to Section 2.1.3.7

for a brief description of the well model. At initial time, the domain is full of oil (S o = 1) and we inject water through the injection wells. The oil is pushed out of the domain through the production well.

Example 2.8 (SAGD thermal ow). A second example is provided by the Steam-Assisted

Gravity Drainage (SAGD) model. The principle of the SAGD procedure is to inject water steam to heat the oil phase, thereby reducing its viscosity. The component-phase matrix associated to the problem is as follows:

M =   1 1 0 0 0 1   .
Here we have two components, say C = {e, h} corresponding to water and a heavy oil, and three phases, say P = {w, s, o} corresponding to liquid water, steam, and oil, respectively. We have:

C w = {e}, C s ={e}, C o = {h}, {C p,c } p∈P,c∈C = {C w,e , C s,e , C o,h } and C w,e = C s,e = C o,h = 1, (2.1.20)
so that {C p,c } p∈P,c∈C is known. Then the set of unknowns in the reference context is

U = {P, (θ), S w , S s , S o } ,
and the contexts are: K = {∅, {w}, {s}, {o}, {w, s}, {w, o}, {s, o}, {w, s, o}}.

In this case, system (2.1.5)(2.1.6)(2.1.10) becomes (for simplicity, when there is no ambiguity, we omit the arguments in the functions)

∂ t (φζ w (P, (θ))S w + φζ s (P, (θ))S s ) + div ( ζ w (P, (θ))k rw (S w ) µ w (P, (θ))

- → v w (P, (θ), S w ) + ζ s (P, (θ))k rs (S s ) µ s (P, (θ)) - → v s (P, (θ), S s ) = q e in Σ, ∂ t (φζ o (P, (θ))S o ) + div ζ o (P, (θ))k ro (S o ) µ o (P, (θ)) - → v o (P, (θ), S o ) = q h in Σ, ∂ t e + div ζ w (P, (θ))k rw (S w ) µ w (P, (θ)) h w (P, (θ)) - → v w (P, (θ), S w )+ ζ s (P, (θ))k rs (S s ) µ s (P, (θ)) h s (P, θ) - → v s (P, (θ), S s )+ ζ o (P, (θ))k ro (S o ) µ o (P, (θ)) h o (P, θ) - → v o (P, (θ), S o ) -λ∇θ = Q in Σ, S w + S s + S o = 1 in Σ, f e,w (P, (θ)) -f e,s (P, (θ)) = 0 in Σ.
A complete description of a SAGD test case can be found, e.g., in the book of Aziz and

Settari [START_REF] Aziz | Petroleum reservoir simulation[END_REF] or in the work of Mamaghani, Enchéry, and Chainais [START_REF] Mamaghani | Development of a renement criterion for adaptive mesh renement in steam-assisted gravity drainage simulation[END_REF].

The discrete setting

Although the two-phase ow in the next chapter will be discretized in rectangular meshes, we present here a more general setting.

By denition a mesh T = {T } of the space domain

Ω ∈ R d , d = 2 or 3, is a partition of Ω,
into open nonempty disjoint triangles or quadrilaterals if d = 2, and tetrahedra or hexahedra

if d = 3, such that Ω = T ∈T

T ,

i.e., T covers Ω exactly. We assume that the mesh is conforming and we let N T := card(T ).

The elements of T are sometimes referred to as cells since the latter term is more common in Finite Volume (FV) methods. For every element T ∈ T , we denote by |T | its d-dimensional measure and by h T its diameter. The mesh size is dened by

h T := sup T ∈T h T .
Let F = {σ} be the set of hyperplanar mesh faces and, for all T ∈ T , set

F T := {σ ∈ F | σ ⊂ ∂T }. (2.2.1)
The set of faces is additionally partitioned into F = F i ∪ F b where F i collects all internal faces σ ⊂ ∂Ω while F b collects all boundary faces σ ⊂ ∂Ω.

We denote by T σ the set of cells that share the face σ

T σ = {T ∈ T | σ ⊂ ∂T }. (2.2.2)
We assume that an internal face σ ∈ F i is shared by exactly two cells T 1 , T 2 ∈ T such that σ = ∂T 1 ∩ ∂T 2 . The ordering of these two cells is arbitrary but xed. By convention, uxes across σ as well as the normal vector n σ are taken outward from T 1 . The (d -1)-dimensional measure of a face σ ∈ F is denoted by |σ|. The barycenter of a face σ ∈ F is denoted by x σ .

For all T ∈ T we identify a cell-center, i.e., the barycenter x T ∈ T . The component of x T in the (oriented) opposite direction to gravity is denoted by z T . For all T ∈ T and σ ∈ F T , we denote by d T,σ the Euclidean distance between the cell-center x T and the face σ, and by n T,σ the unit vector normal to σ outward to T .

For the time discretization, we use here a fully implicit time stepping scheme.

Let {t n } 0≤n≤N F be a strictly increasing sequence of discrete times such that t 0 = 0 and t N F = t F . For 1 ≤ n ≤ N F , we dene the time interval I n :=]t n-1 , t n ] and the time step

τ n := t n -t n-1 .
For a function of time ϕ with sucient regularity we set ϕ n := ϕ(t n ), 0 ≤ n ≤ N F , and dene the backward dierencing operator:

δ t ϕ n := 1 τ n (ϕ n -ϕ n-1 ). (2.2.3) If, in addition, ϕ is ane inside each time interval I n , 1 ≤ n ≤ N F , there holds δ t ϕ n = ∂ t ϕ |In .
Remark 2.9 (Adaptive mesh). In the context of Adaptive Mesh Renement (AMR), sequences of meshes {T n } 0≤n≤N F are considered. On each time step, the mesh is updated according to a posteriori error estimates; Cells are conserved, coarsened, or rened. The following work could be done with such meshes but for a sake of simplicity, we only consider a xed mesh T .

Unknowns

In the spirit of FV methods, the unknowns appearing in the continuous problem are discretized using only one value per cell, which can be alternatively interpreted as an average over the cell or as the value at the cell-center. We introduce the piecewise constant discrete contexts is, for all T ∈ T and 0 ≤ n ≤ N F ,

U n T := P n T , (θ n T ), {S n p,T } p∈P k n T , {C n p,c,T } p∈P k n T , c∈Cp , {n n c,T } c∈C k n T , (2.2.4) 
where we recall that, at time t n , in the cell T

• P n T denotes the reference pressure;

• θ n T is the temperature, only present when I θ = 1;

• {S n p,T } p∈P k n T
is the set of saturations for the phases present in the context k n T ;

• {C n p,c,T } p∈P k n T ,c∈Cp is the set of molar fractions for the components of each phase present in the cell T ;

• {n c } c∈C k n T contains the numbers of moles for the components absent from the context

k n T , which are collected in the set C k n T := C \ C k n T .
Once the unknowns of the set U n T are ordered for all T ∈ T , 0 ≤ n ≤ N F , and this order is xed, these unknowns are stored in a local vector u n T , which concurs in forming the global vector u n := (u n T ) T ∈T .

Discrete equations

We consider in this section a discretization of problem (2. 

In T ∂ t n c + p∈P K ∩Pc div ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) dx dt = In T
q c dx dt.

(2.2.5)

Next, using the Gauss theorem, we express the divergence integral over T , present in equation (2.2.5), in terms of uxes on the boundary ∂T of T . As the summation on the phases does not depend on space or time, we obtain:

T n n c -n n-1 c dx+ p∈P K ∩Pc In ∂T ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) • n dΓ dt = In T q c dx dt. (2.2.6)
Recall that F T is the set of faces of T . Let us divide both sides of this equation by τ n . The second term in (2.2.6) has the expression:

1 τ n σ∈F T p∈P K ∩Pc In σ ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) • n dΓ dt . (2.2.7)
Therefore,

1 τ n T n n c -n n-1 c dx+ 1 τ n σ∈F T p∈P K ∩Pc In σ ( ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) C p,c - → v p (P, (θ), S p , C p ) ) • n dΓ dt = 1 τ n In T q c dx dt. (2.2.8)
Considering that the approximating unknowns are piecewise constant in each control volume, the rst term in (2.2.8), has the straightforward approximation: 

| T | τ n n n c,T -n n-1 c,T . ( 2 
n n c,T = φ p∈P k n T ∩Pc ζ p (P n T , (θ) n T , C n p,T )S n p,T C n p,c,T .
(2.2.10)

As stated in Section 2.1.1, when c ∈ C k T , i.e. when the component c is absent from the present context, then n c,T is an independent unknown.

The approximation of the term (2.2.7) is more delicate because of the uxes -→ v p • n| σ . This is the object of the next section. To improve readability, in what follows, the superscript n is systematically omitted from all time-dependent quantities.

Multi-point ux discretization

Here we concentrate on multi-point ux discretization. The two-point FV method for the two-phase ow will be described in the next chapter. We turn to the discretization of the uxes -→ v p • n| σ over the faces σ of the mesh. A key ingredient of the method discussed in this section is the discretization of second-order elliptic terms on general meshes. It is a well-known fact that the classical two-point FV method fails to be consistent on meshes that do not satisfy the K-orthogonality condition, for example for rened meshes, which are not conforming; see, e.g., Di Pietro [38, 5.1]. While several remedies have been suggested over the last years by Droniou and Eymard in [START_REF] Droniou | A mixed nite volume scheme for anisotropic diusion problems on any grid[END_REF], by Eymard, Gallouët and Herbin in [START_REF]Discretization of heterogeneous and anisotropic diusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[END_REF], and by Di Pietro [START_REF] Di | Cell centered Galerkin methods[END_REF][START_REF] Di | A compact cell-centered Galerkin method with subgrid stabilization[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF], we describe here for the compositional model the MPFV methods, which have been independently introduced in the late 90s by Aavatsmark, Barkve, Bøe, and Mannseth [4,[START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results[END_REF] and Edwards and Rogers [START_REF]Finite volume discretization with imposed ux continuity for the general tensor pressure equation[END_REF]. More specically, the actual implementation relies on the MPFV method introduced and analyzed by Agélas, Di Pietro, and Droniou [START_REF] Agélas | The G method for heterogeneous anisotropic diusion on general meshes[END_REF],

following the idea of Agélas, Di Pietro, and Masson [START_REF] Agélas | A symmetric and coercive nite volume scheme for multiphase porous media ow problems with applications in the oil industry[END_REF].

In nite volume methods, the uxes are computed at the faces and can be written as a linear combination of the discrete unknowns presented before. Let us stress that we impose conservative uxes on the faces, i.e., What ows out corresponds to what ows in.

The following notation will be used in the sequel. The mean value of a function f in a region O is denoted by

f O = 1 |O| O f (x)dx.
Fluxes discretization The uxes that are relevant for the discretization of system (2.1.5) are those associated with the following auxiliary scalar problem:

-div(K∇ξ) = f in Ω, K∇ξ • n = 0 on ∂Ω, ξ Ω = 0, f Ω = 0.
( 

ξ ∈ R T such that σ∈F T ∩F i Φ T,σ (ξ) = f T for all T ∈ T ,
where, for all T ∈ T , F T is dened by (2.2.1) and for all σ ∈ F T ∩ F i , Φ T,σ (ξ) denotes an approximation of the normal ow of -K∇ξ leaving T through σ expressed in terms of the values of ξ = (ξ T ) T ∈T . In particular, for all faces σ ∈ F, we introduce a ux stencil S mm σ ⊂ T , associated with the mass and momentum conservation system discretization (2.1.5). The stencil depends on the method. For example, for the two-point FV method, if σ = ∂T 1 ∩ ∂T 2 then the stencil S mm σ = {T 1 , T 2 }. Thus for all T ∈ T , all σ ∈ F i ∩ F T , and all ξ ∈ R T ,

Φ T,σ (ξ) := T ∈S mm σ τ σ T ξ T ,
where for all T ∈ S mm σ , τ σ T ∈ R are called transmissibility coecients of the face σ. These coecients satisfy

T ∈S mm σ τ σ T = 0.
The following ux conservation property is veried:

Φ T 1 ,σ (ξ) = -Φ T 2 ,σ (ξ), for all σ ∈ F i , σ = ∂T 1 ∩ ∂T 2 , and all ξ ∈ R T .
In what follows it is assumed that, for all σ ∈ F i , T σ is contained in S mm σ .

Remark 2.10 (Upwinding stencil). In uid dynamics computations, upwind numerical uxes are often chosen for the discretization of the advective terms, see, e.g., the book of Eymard, Gallouët, and Herbin [START_REF] Eymard | Finite volume methods[END_REF]. Their advantage is that they simulate the direction of propagation of information in a uid eld and stabilize the scheme, but then the stencil used to compute the uxes can vary in time and space.

Consider the case where the permeability tensor has the form

K = κId, (2.2.12)
where κ is constant in time and is a positive piecewise constant function in space, uniformly bounded above and uniformly bounded away from 0.

We are now ready to dene the phase uxes for our model (2.1.5) in this case. Recall that, for the sake of brevity, we focus on the generic time step n and omit the superscript n from all the time-dependent quantities. For all σ ∈ F i and all T ∈ T σ , the diusive ux of the phase

p ∈ T ∈Tσ P k T is discretized by: F p,T,σ (u) = F p,T,σ {u T } T ∈S mm σ = T ∈S mm σ τ σ T P p,T + ρ p,σ gz T , (2.2.13) 
where g denotes the acceleration due to the standard gravity, dened as 9.80665 m/s 2 . Recall that P k T is the set of phases of the context k T present in the cell T . The transmissibility coecients τ σ T depend on the discretization grid, the permeability tensor K and on the chosen scheme. These coecients can be preprocessed and stored, so that they can be used as an entry for solving the uid dynamics system.

Let us compute τ σ T 1

, for a two-point FV scheme, for σ = T 1 ∩ T 2 , where T 1 and T 2 are two neighboring cells. We assume that in each cell the medium is homogeneous, that is, in each cell κ := κ T a constant. Let x σ and x T denote the barycenter of the face σ and the cell T respectively. Moreover let T 1 and T 2 be ordered in such a way that the normal vector n σ points into T 2 . Then the coecient τ σ T 1 is dened by:

τ σ T 1 = |σ| κ T 1 xσ-x T 1 2 κ T 2 xσ-x T 2 2 κ T 1 xσ-x T 1 2 + κ T 2 xσ-x T 2 2 = |σ|κ T 1 κ T 2 κ T 1 x σ -x T 2 2 +κ T 2 x σ -x T 1 2 (2.2.14) and τ σ T 2 = -τ σ T 1 , (2.2.15)
where the negative sign of τ σ T 2 enforces the conservativity of uxes.

Remark 2.11. If the medium in addition is everywhere homogeneous and isotropic, i.e.

∀T ∈ T , κ T = κ, then the coecient τ σ T reduces to:

τ σ T 1 = |σ|κ 1 xσ-x T 1 2 xσ-x T 2 2 1 xσ-x T 1 2 + 1 xσ-x T 2 2 = |σ|κ x σ -x T 2 2 + x σ -x T 1 2 (2.2.16) and τ σ T 2 = -τ σ T 1 .
(2.2.17)

The approximation of the mass density, ρ p,σ , of the phase p at x σ is given by

ρ p,σ :=            ρ p (u T 1 ) if p ∈ P k T 1 \ P k T 2 , ρ p (u T 2 ) if p ∈ P k T 2 \ P k T 1 , (ρ p (u T 1 ) + ρ p (u T 2 )) /2 otherwise. (2.2.18) 
Other choices are possible for ρ p,σ but are not detailed herein.

Fourier uxes discretization In the compositional model, if we want to study the thermal case, we have I θ = 1, and the Fourier heat uxes relevant to the discretization of equation (2.1.10) are those associated with the following auxiliary scalar problem:

-div(λ∇ξ) = q in Ω,

ξ = ξ on ∂Ω. (2.2.19)
Observe that the Dirichlet boundary condition is consistent with the xed temperature condition (2.1.12). We use a MPFV method to express the uxes as a linear combination of cell unknowns, and the discretization of problem (2.2.19) reads

Find ξ ∈ R T such that σ∈F T Ψ T,σ (ξ) = q T for all T ∈ T ,
where, for all T ∈ T and all σ ∈ F T , Ψ T,σ (ξ) denotes an approximation of the normal ow of -λ∇ξ leaving T through σ expressed in terms of the values of ξ = (ξ T ) T ∈T . In particular, for all faces σ ∈ F, we introduce the stencil S en σ ⊂ T associated with the energy conservation equation (2.1.10) discretization. It depends on the method and is dierent from S mm σ if the equation is discretized by another method. In what follows, it is assumed that, for all σ ∈ F i , T σ is contained in S en σ . Then, for all T ∈ T , all σ ∈ F T , and all ξ ∈ R T ,

Ψ T,σ (ξ) := T ∈S en σ τ σ T ξ T ,
where τ σ T ∈ R, for all T ∈ S en σ . Finally the following ux conservation property needs to be veried:

Ψ T 1 ,σ (ξ) = -Ψ T 2 ,σ (ξ), for all σ ∈ F i , σ = ∂T 1 ∩ ∂T 2 ,
and all ξ ∈ R T .

We can now dene the Fourier uxes, under the same assumptions as for the phase uxes.

Thus, for σ ∈ F i , and all T ∈ T σ , the Fourier ux is given by:

G T,σ (u) = G T,σ ({u T } T ∈S en σ ) = T ∈S en σ τ σ T θ T .
(2.2.20)

Upwinding the advective uxes

As we saw in the previous part, we want to control the propagation of information in the ow and stabilize the scheme. To this end, for all phases p ∈ P and a given law ∈ {ζ p , k rp , µ p }, we introduce the notation X := (u X ), where the control volume X is a cell T , a perforated cell W , or an upwind cell for the phase p dened as follows. The symbol T ↑ p denotes the upwind cell for the phase p dened for a face σ ∈ F i by:

∀σ = ∂T 1 ∩ ∂T 2 , ∀p ∈ P T 1 ∪ P T 2 , T ↑ p :=      T 1 if F p,T 1 ,σ (u) > 0, T 2 otherwise. 
(2.2.21)

If the face is located on the boundary σ ∈ F b , in view of the homogeneous Neumann condition, F p,T,σ (u) = 0 and we do not need to evaluate the transport term.

In Figure 2.2, the upwind cell for the phase p owing through the face σ is T 1 because the phase p ows from T 1 to T 2 . Thus to compute the new ux we need the information coming from T 1 and the laws are evaluated with the variable u T 1 .

The boundary conditions

Summing up, no-ow boundary conditions are enforced for all phases (see the paragraph on boundary conditions in Section 2.1.3.6), i.e. uxes owing across the boundaries are equal to 

F p,T,σ b (u T ) = 0.
(2.2.22)

For thermal problems, the diusive Fourier uxes are evaluated using the two-point FV scheme.

Thus, for σ ∈ F b , we have T σ = T b , with T b the boundary cell such that σ ∈ ∂T b , and

G b T,σ (u) = G b T,σ (u T b ) = τ σ T b (θ T b -θ).
(2.2.23)

Wells

Now, let us sketch the discretization of the contribution of wells, introduced in Section 2.1.3.7.

Recall that the wells are collected in the set W, composed of injection and production wells.

Injection wells are collected in the set W i , production wells are collected in the set W p . Note that

W i ∪ W p = W and W i ∩ W p = ∅.
Recall that the injected uid will push the hydrocarbons, whereas the production wells permit the uid to ow out of the reservoir.

For all W ∈ W, we denote by T W ⊂ T the set of cells which contain the perforations of W . For all W ∈ W and all perforated cells T ∈ T W , we denote by z W,T the height of the perforation opposite to the direction along which gravity acts. For 0 ≤ n ≤ N F , for every injection well W ∈ W i , and for all perforations T ∈ T W , we additionally introduce the set P n W,T of phases present in the injected uid owing throughout this perforation. Then

U n W,T := P n W,T , (θ n W,T ), {S n p,W,T } p∈P W,T , {C n p,c,W,T } p∈P W,T ,c∈Cp ,
denotes the set of variables corresponding to the physical state of the injected uid, they are supposed known.

For 0 ≤ n ≤ N F , for every production well W ∈ W p , and for all perforations T ∈ T W . We similarly introduce the set of unknowns:

U n W,T := P n W,T , (θ n W,T ), {S n p,W,T } p∈P W,T , {C n p,c,W,T } p∈P W,T ,c∈Cp .
As before, ordering the elements of U n W,T , 0 ≤ n ≤ N F , according to the choice of Section 2.2.1 yields the vector u n W,T .

We are now ready to dene phase uxes across the perforations of wells. The discretization of a well contribution in the formulation (2.1.13), using a two-point method, is obtained by introducing uxes owing through the faces of each perforated cell. Thus, for all injection wells W ∈ W i , all perforated cells T ∈ T W , and all phases p ∈ P W,T , the ux of the phase p entering from the perforation in T at time t n is approximated by:

F p,W,T (u n T ) = τ W T P n p,T -P n W,T + ρ p (u n W,T )g(z T -z W,T ) , (2.2.24)
where τ W T is the so-called production index of the well. The production index is a data determined by the characteristics of the well.

Observe that this ux only depends on the unknowns associated with the perforated cell T .

Similarly, for all production wells W ∈ W p , all perforated cells T ∈ T W , and all phases p ∈ P k T , the ux of the phase p leaving the system from the perforation in T is approximated by:

F p,W,T (u n T ) = τ W T P n p,T -P n W,T + ρ p (u n T )g(z T -z W,T ) , (2.2.25)
where τ W T is the so-called production index of the well given by the data. In our model, τ W T is given by the Peaceman formula:

τ W T := 2πκh z ln(0.14(h 2 x + h 2 y )) + s k , (2.2.26) 
where h x (respectively h y ) denotes the cell width in the x (respectively y) direction, and h z is the depth of the cell T . Recall that κ represents the value of the permeability tensor. The skin factor, s k , is a dimensionless number that accounts for the eects resulting from the formation damage caused by drilling.

Moreover, we can dene the Fourier uxes for all wells W ∈ W i and all perforated cells T ∈ T W by:

G W,T (u n T ) = τ W T (θ n T -θ n W,T ). (2.2.27)
Finally, there is no need to dene the Fourier uxes across the perforation of production wells, because they are assumed to be zero.

Closure equations

At each time step, the algebraic closure equations (2.1.6a)(2.1.6c) are discretized in each cell T ∈ T . Thus, for k := k n T , we have:

p∈P k S n p,T -1 = 0, (2.2.28a) c∈Cp C n p,c,T -1 = 0, ∀p ∈ P k , (2.2.28b) f c,p 1 (P n T , (θ n T ), C n p,T ) -f c,p 2 (P n T , (θ n T ), C n p,T ) = 0, ∀c ∈ C k , ∀p 1 , p 2 ∈ P k ∩ P c , p 1 = p 2 .
(2.2.28c)

Assembling the discrete equations

In this paragraph, we describe some tools for computing the discrete model and then we present the strategy to solve the system. We discuss in this section the computation at each

generic time step from t n-1 to t n , 1 ≤ n ≤ N F .
For a real x ∈ R, we introduce the following notation for the positive and negative part of

x:

x

⊕ := 1 2 (|x| + x) , x := 1 2 (|x| -x) .
Observe that both x ⊕ and x are non-negative.

Vector form of the discrete system

Recall that u n := (u n T ) T ∈T is the global vector of unknowns. We have:

u n T :=            P n T (θ n T ) {S n p,T } p∈P k n T {C n p,c,T } p∈P k n T , c∈Cp {n n c,T } c∈C k n T            . (2.2.29)
Then, at each time step n and for each cell T ∈ T , we impose

• The N c conservation of mass and momentum equations:

R mm c,T (u n ) = 0, ∀c ∈ C.
(2.2.30a)

• The energy conservation equations:

R en T (u n ) = 0, if I θ = 1.
(2.2.30b)

• The closure equations:

D T (u n T ) = 0.
(2.2.30c)

This discrete equations are specied below. To account for the presence of possible wells, we introduce a Kronecker symbol for any pair of cells T and T :

δ T,T =      1 if T = T , 0 otherwise.
The dependence on n is omitted in some places because it leads to very heavy notation. For example, the upwind cell T ↑ p also depends on n, and thus, p ∈ P k

T ↑ p
depends on n.

To simplify the notation, we introduce the phase mobility, dened as follows, for all phases p ∈ P,

ν p (u) := ζ p (P, (θ), C p )k rp (S p ) µ p (P, (θ), C p ) .

Mass and momentum equations discretization

For all 0 ≤ n ≤ N F , all T ∈ T , and for all c ∈ C, we dene the quantity R mm c,T (u n ) := (R mm c,T ) n (u n ) associated with the PDEs (2.1.5a)(2.1.5b) as follows:

R mm c,T (u n ) :=|T |δ t n c,T + σ∈F i ∩F T p∈P k T ↑ p ∩Pc ν p (u n T ↑ p )C n c,p,T ↑ p F p,T,σ (u n ) + W ∈W p T ∈T W p∈P k W ∩Pc δ T,T ν p (u n T )C n c,p,T F ⊕ p,W,T (u n T ) - W ∈W i T ∈T W p∈P k W ∩Pc δ T,T ν p (u n W )C n c,p,W F p,W,T (u n T ) -q n c,T , (2.2.31) 
where 1. For all components c ∈ C and all cells T ∈ T , the discretization of the source term is

q n c,T = 1 τ n
In T q c dx dt;

(2.2.32)

2. For all T ∈ T and all σ ∈ ∂T \ ∂Ω, F p,T,σ (u) is given by (2.2.13);

3. For all W ∈ W i and all T ∈ T W , F p,W,T is given by (2.2.24);

4. For all W ∈ W p and all T ∈ T W , F p,W,T is given by (2.2.25);

5. For all p ∈ P, T ↑ p is the upwind cell.

Note that in a production well, the information comes from the cells that are exterior to the well in the neighborhood of the perforated cell. In contrast, in an injection well, the information comes from well data.

Observe that the residual R mm c,T depends, in general, on the unknowns associated with cells other than T owing, in particular, to the diusive Darcy uxes across internal faces; cf. Section 2.2.2.1. This dependence is precisely, for all T ∈ T and all c ∈ C,

R mm c,T (u) = R mm c,T ({u} T ∈S T ),
where we have set

S mm T := σ∈F T ∩F i S mm σ .
Observe also that the no-ow condition across boundary faces has been accounted for in the denition of the residual by implicitly setting F p,T,σ = 0 for all σ ∈ F b with σ ⊂ ∂T and all p ∈ P. We introduce the following notation for the vector of residuals:

R mm (u) := (R mm c,T (u)) c∈C T ∈T .

As we have already mentioned, the eld {k n T } T ∈T is itself a function of the local unknowns and considering (2.1.17), we assume that for all T ∈ T , the Flash algorithm (described in Appendix A) gives:

k T = Flash(P T , Z T ), with Z T = {Z T,c } c∈C , (2.2.33) 
where Z T,c represents the discrete counterpart of the molar fraction for the component c dened by (2.1.16).

Energy equation discretization

In the thermal case I θ = 1; for all 0 ≤ n ≤ N F and T ∈ T , we dene the residual R en T (u) = (R en T ) n (u n ) associated with the energy conservation equation (2.1.10) by the following formula:

R en T (u n ) :=|T |δ t e n T + σ∈F i ∩F T G T,σ (u n ) + σ∈F i ∩F T p∈P k T ↑ p ν p (u n p,T ↑ p )h p (u n p,T ↑ p )F p,T,σ (u n ) + W ∈W p T ∈T W δ T,T p∈P k W ∩Pc ν p (u n p,T )h p (u n p,T )F ⊕ p,W,T (u n T ) - W ∈W i T ∈T W δ T,T p∈P k W ∩Pc ν p (u n p,W )h p (u n p,W )F p,W,T (u n T ) + σ∈F b ∩F T G b T,σ (u n ) + W ∈W i T ∈T W δ T,T G W,T (u n T ) -Q n T , (2.2.34) 
where 1. For all T ∈ T and all σ ∈ ∂T \ ∂Ω, F p,T,σ (u) is given by (2.2.13);

2. For all W ∈ W i and all T ∈ T W , F p,W,T is given by (2.2.24);

3. For all W ∈ W p and all T ∈ T W , F p,W,T is given by (2.2.25);

4. For all T ∈ T and all σ ∈ ∂T \ ∂Ω, G T,σ (u) is given by (2.2.20);

5. For all T ∈ T and all σ ∈ ∂T ∩ ∂Ω, G b T,σ (u) is given by (2.2.23);

6. For all W ∈ W i and all T ∈ T W , G W,T is given by (2.2.27);

7. For all phases p ∈ P and a given law ∈ {ζ p , k rp , µ p , h p }, we have introduced the notation X := (u X ) for X ∈ {T, T ↑ p , W }, where T ↑ p is dened as in (2.2.21);

8. For all cells T ∈ T , we set

Q n T = 1 τ n In T Q dx dt.
As previously, we introduce the following notation for the vector of residuals:

R en (u) := (R en T (u)) T ∈T .

Below, we will also use

S en T := σ∈F T ∩F i S en σ ,
and we have

S T := σ∈F T ∩F i {S mm σ ∪ S en σ }.
For all T ∈ T and letting k := k T , the algebraic closure equations (2.1.6a)(2.1.6c) are discretized in Section 2.2.2.5 and give the system of equations (2.2.28). Let us recall that we denote these closure equations in a synthetic form by the equations D T (u T ) = 0, see (2.2.30c).

Global discrete problem

Finally, the discrete problem to be solved at every time step 1 ≤ n ≤ N F can be synthetically expressed as

R mm (u n ) = 0 ∈ R N C ×N T , (2.2.35a) R en (u n ) = 0 ∈ R N T , if I θ = 1, (2.2.35b) D T (u n T ) = 0 ∈ R N alg,T , ∀T ∈ T , (2.2.35c)
where N alg,T is the number of algebraic closure equations for the cell T ∈ T given by (setting

k := k n T ), N alg,T := 1 + N P k + p∈P k N Cp -N C k . Problem (2.2.35
) is a nonlinear system of algebraic equations that can be solved using standard techniques as described in the next section. An important remark is that, for all T ∈ T , the closure equations express constraints involving only the unknowns u T . This allows, in particular, to eliminate some of the unknowns by solving local systems. In contrast, the equation linked to the PDEs, depend on the unknowns {u n T } T ∈S T dened in other cells.

Remark 2.12 (Time discretization). Of course, the implicit time stepping that we have used here is not the only possible strategy. For instance, we can use the IMPES method: Implicit pressure, explicit saturations and compositions.

Solution strategy

The system (2.2.35) is nonlinear and a standard procedure consists in linearizing it by Newton's method. However, (2.2.35) is a large system and it is important to reduce its size. This can be achieved by pre-eliminating some of the unknowns. The idea is to use the closure equations (2.2.28) in order to:

• Select primary and secondary unknowns;

• By means of Newton's algorithm, compute the secondary unknowns in terms of the primary unknowns, thereby reducing the set of unknowns.

This procedure also improves the condition number of the global system.

Beforehand, we must determine the local context. Let 1 ≤ n ≤ N F . During the computation, for all cells T ∈ T , we evaluate the local context k n T according to (2.2.33). To do that we have to evaluate all the present phases, appearing or disappearing. Once the discrete contexts {k n T } T ∈T are known, we dene the set of unknowns for all cells T ∈ T as in (2.2.4).

Reduction of the number of unknowns

Now we describe the reduction strategy. For a xed n, 1 ≤ n ≤ N F , let u n,0 be given (typically u n,0 = u n-1 ) and let u n,i denote the approximation of u n computed at the i-th step of Newton's method. We introduce the increment:

δu n,i T = u n,i T -u n,i-1 T ,
for all cells T ∈ T . The separation into primary and secondary unknowns is inspired by Newton's formula applied to (2.2.35c):

∂D n T ∂u n T u n,i-1 T δu n,i T = -D n T (u n,i-1 T
).

(2.3.1)

To simplify, let N u,T denote the dimension of u n T , and recall that D n T has N alg,T equations, with N alg,T < N u,T . Therefore,

∂D n T ∂u n T u n,i-1
T is an N alg,T × N u,T matrix. Assume for the moment that the set of unknowns U n,i T are separated into N u P ,T primary unknowns U P,n,i T and N u S ,T secondary unknowns U S,n,i T such that:

U n,i T = U P,n,i T ∪ U S,n,i T , U P,n,i T ∩ U S,n,i T = ∅,
and

N u P ,T + N u S ,T = N u,T .
We order the unknowns in each set and form the vectors u P,n,i T and u S,n,i T .

Then we have the equality:

∂D n T ∂u n T u n,i-1 T δu n,i T = ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T + ∂D n T ∂u S,n T u n,i-1 T δu S,n,i T , (2.3.2) 
where:

• ∂D n T ∂u P,n T u n,i-1 T is an N alg,T × N u P ,T matrix; • ∂D n T ∂u S,n T u n,i-1 T is an N alg,T × N u S ,T matrix.
When substituted into (2.3.1), this equality gives:

∂D n T ∂u S,n T u n,i-1 T δu S,n,i T = - ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T -D n T (u n,i-1 T
).

(

.3.3)

There remains to select the secondary unknowns u S,n,i T . The choice depends on the particular problem under consideration, and is not unique, but it is always dictated by the following considerations:

1. We have:

N alg,T = N u S ,T .

(2.3.4)

2. The square matrix N u S ,T × N u S ,T (i.e. N alg,T × N alg,T ) extracted from

∂D n T ∂u S,n T u n,i-1 T ,
acting on δu S,n,i T , must be invertible. We denote this matrix by

∂D n T ∂u S,n T u n,i-1 T .
Taking this into account, we write:

δu S,n,i T = - ∂D n T ∂u S,n T u n,i-1 T -1 D n T u n,i-1 T + ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T , (2.3.5) 
and we substitute (2.3.5) into system (2.2.35) to eliminate all the secondary unknowns. Consequently we have a reduced system to solve because we can express equations in terms of primary unknowns. The system we have to solve becomes:

R mm (u P ) = 0 ∈ R N C ×N T , R en (u P ) = 0 ∈ R N T , if I θ = 1. (2.3.6) 
The system (2.3.6) is always nonlinear and we apply the Newton method to solve it. For all cells T ∈ T , let us denote R mm or R en by R. The incremental method consists in solving the following equation:

T ∈S T ∂R n T ∂u n T u n,i-1 δu n,i T = -R n T (u n,i-1
).

(2.3.7)

Note that there is no cell index to u n,i-1 because R n T is not local to a single cell. By applying the decomposition into primary and secondary unknowns, we write:

∂R n T ∂u n T u n,i-1 δu n,i T = ∂R n T ∂u P,n T u n,i-1 δu P,n,i T + ∂R n T ∂u S,n T u n,i-1 δu S,n,i T . (2.3.8)
The expression (2.3.5) for δu S,n,i T in (2.3.8) gives:

∂R n T ∂u n T u n,i-1 δu n,i T = ∂R n T ∂u P,n T u n,i-1 δu P,n,i T - ∂R n T ∂u S,n T u n,i-1 ∂D n T ∂u S,n T u n,i-1 T -1 D n T u n,i-1 T + ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T .
(2.3.9)

Thus, (2.3.7) becomes:

T ∈S T ∂R n T ∂u P,n T u n,i-1 δu P,n,i T - ∂R n T ∂u S,n T u n,i-1 ∂D n T ∂u S,n T u n,i-1 T -1 ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T + D n T u n,i-1 T = -R n T (u n,i-1
).

(2.3.10)

In this expression, the term with factor D n T u n,i-1 T only involves known quantities and therefore can be passed to the right-hand side. The equation becomes:

T ∈S T ∂R n T ∂u P,n T u n,i-1 δu P,n,i T - ∂R n T ∂u S,n T u n,i-1 ∂D n T ∂u S,n T u n,i-1 T -1 ∂D n T ∂u P,n T u n,i-1 T δu P,n,i T = -R n T (u n,i-1 ) + T ∈S T ∂R n T ∂u S,n T u n,i-1 ∂D n T ∂u S,n T u n,i-1 T -1 D n T u n,i-1 T . (2.3.11) 
Summarizing, we proceed along the following steps:

• Assume u P,n,0 is given;

• At the beginning of Newton's iteration: For each cell T , precompute and store the matrix A T and the vector B T dened by:

• A T := ∂D n T ∂u S,n T u n,i-1 T -1 ∂D n T ∂u P,n T u n,i-1 T ∈ R N u S ,T ,N u P ,T ; • B T := ∂D n T ∂u S,n T u n,i-1 T -1 D n T u n,i-1 T ∈ R N u S ,T ;
• For k ≥ 1, compute a new algebraic solution u P,n,i from the previous known quantities u n,i-1 by solving a system of algebraic equations whose lines, for each cell T , are:

T ∈S T ∂R n T ∂u P,n T u n,i-1 - ∂R n T ∂u S,n T u n,i-1 A T δu P,n,i T = -R n T u n,i-1 + T ∈S T ∂R n T ∂u S,n T u n,i-1 B T .
(2.3.12)

Greedy algorithm

In the general case, we need to determine at each time step and in each cell the sets of primary and secondary unknowns. To compute these sets, we propose here an algebraic procedure for separating the unknowns by means of a Greedy algorithm. The method is based on the fact that the closure equations are local in each cell.

For 1 ≤ n ≤ N F and T ∈ T , let u n T be the vector of unknowns.

i) First, we impose that the pressure P is always a primary unknown.

ii) In the thermal case, we also impose that the temperature θ is always a primary unknown.

iii) Next, we select a secondary saturation; then the other saturations become primary unknowns. We use the volume conservation equation (2.2.28a) to relate this secondary saturation to those primary saturations. iv) For constructing the Jacobian matrix Following the idea presented in Section 2.3, the selection of primary and secondary unknowns is immediate and requires no computation. For each time step n, Newton iteration k, and cell T , we set:

∂D n T ∂u S,n T , see (2.3.3) 
for j = 1, • • • , N u,T do d(j) := V j ; end for l(1) := smallest J, such that d(J) ≤ d(j), ∀1 ≤ j ≤ N u,T ; //Choose the maximum norm U 1 := V l(1) ||V l(1) || ; // Normalization for i = 2, • • • , N u,T do Set W := V i-1 ; // Permutation V i-1 := V l(i-1) , V l(i-1) := W; for j = i, • • • , N u,T do d(j) := ||V j || - i-1 l=1 (U l , V j ) 2 1/2 end for l(i) := smallest, J such that d(J) ≤ d(j), ∀i ≤ j ≤ N u,T ; U i = V l(i) -i-1 l=1 U l , V l(i) U l ; U i = U i ||U i || ; // Normalization
u S,n,i T = {S n,i w,T } and then u P,n,i T = {P n,i T , S n,i o,T }. (2.4.1) 
Note that this splitting is independent of T and n. The closure equations reduce to:

D n T (u n,i T ) = S n,i o,T + S n,i w,T -1. 
(2.4.2)

We suppress the index T and the superscript n, because in this case, the mapping D n T (u n,i T ) is independent of T and n.

Thus ∂D ∂u S T (u n,i T ) = 1 and ∂D ∂u P T (u n,i T ) = [0 1], (2.4.3) 
and A T ∈ M 1,2 and B T ∈ R are given by:

A T = [0 1] and B T = S n,i o,T + S n,i w,T -1. 
(2.4.4)

In Figures 2.32.6, we present numerical results obtained by using the method described above. The gures represent the water saturation and the global pressure in each cell of the mesh T at dierent time steps n. The results were validated by an existing code at IFPEn.

Immiscible isothermal two-phase ow case in a heterogeneous isotropic media

As in the previous numerical experiment 2.4.1, we consider the same settings for the physical laws, the initial and boundary conditions and the locations of wells. We also use the same Let Σ := Ω × (0, t F ) denote the space-time domain. The two-phase ow involves two phases:

The non-wetting phase o and the wetting phase w, so that P = {o, w}.

Each phase has one component and the phases are non-miscible with respect to each other.

Therefore, the set of components corresponds here to the set of phases. Usually, the nonwetting phase represents the oil and the wetting phase the water. Thus, we can suppress some unknowns (molar fractions, contexts) and we do not need to express the components in the formulation: We can identify them with their phases, as it was detailed in Example 2.7.

We also neglect the gravity term and we only consider the isothermal case. Therefore, the unknowns are U = {P, S o , S w }.

To simplify the mathematical analysis we assume that the molar density ζ p is constant. This allows to divide both sides of the governing equations by ζ p ; for simplicity we do not change the notation of the source term. We denote by ν p (P, S p ) = k rp (S p ) µ p (P )

the phase mobility. The equations of the model can then be written as follows; cf. Example 2.7:

         ∂ t (φS o ) + ∇ • ν o (P, S o ) - → v o (P, S o ) = q o in Σ, ∂ t (φS w ) + ∇ • ν w (P, S w ) - → v w (P, S w ) = q w in Σ, S o + S w = 1 in Σ, (3.1.1) 
where for p ∈ P,

• The phase pressures satisfy (2.1.4), i.e.

P p (P, S p ) = P + P cp (S p ),

where P is the reference pressure Remark 3.1 (Reference pressure). In the practical situations considered here, for one of the phases (say p), the capillary pressure is set to zero, so that the reference pressure is equal to the phase pressure P p (P, S p ) = P.

The choice of the phase p is arbitrary, in the numerical experiments below, we consider the non-wetting phase.

Problem (3.1.1) is complemented by the initial conditions:

S o (•, 0) = S 0 o in Ω, (3.1.3) 
and by no-ow homogeneous Neumann boundary conditions:

- → v p (P, S p ) • n Ω = 0, in ∂Ω × (0, t F ), for p ∈ P. (3.1.4) 

Regularity assumptions

In order to present some elements of mathematical analysis, we make the following assumptions:

i) The permeability tensor K is diagonal, piecewise constant, uniformly bounded and elliptic, see (2.1.9): There exists constants c K > 0 and

C K > 0, such that ∀x ∈ Ω, 0 < c K ≤ κ ii (x) ≤ C K , 1 ≤ i ≤ d, (3.1.5) 
where κ ii are the diagonal terms of K.

ii) For p ∈ {o, w}, the relative permeability k rp is uniformly bounded above, and the sum of the relative permeabilities is bounded away from zero on R: There exists a constant

c kr > 0, such that ∀x ∈ R, c kr ≤ k r (x) + k r (x). (3.1.6)
iii) For p ∈ {o, w}, the viscosity µ p is uniformly bounded above and away from zero on R:

There exists constants c µp > 0 and C µp > 0, such that ∀x ∈ R, 0 < c µp ≤ µ p (x) ≤ C µp . iv) The porosity φ > 0 is constant in space and in time.

Note that the assumptions (ii) and (iii) imply that v) For each p ∈ {o, w}, the phase mobility ν p is uniformly bounded above, and the sum of the mobilities is bounded away from zero on R: [START_REF] Kröner | Flow of oil and water in a porous medium[END_REF], by Chavent and Jaffré in [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF], by Antontsev, Kazhikhov, and Monakhov in [START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous uids[END_REF], by Arbogast in [START_REF] Arbogast | The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible ow[END_REF], by Chen in [START_REF] Chen | Degenerate two-phase incompressible ow. I. Existence, uniqueness and regularity of a weak solution[END_REF][START_REF]Degenerate two-phase incompressible ow. II. Regularity, stability and stabilization[END_REF][START_REF]Numerical analysis for two-phase ow in porous media[END_REF], by Cancès, Gallouët, and Porretta in [START_REF] Cancès | Two-phase ows involving capillary barriers in heterogeneous porous media[END_REF], and by Amaziane, Jurak, and Keko in [START_REF] Amaziane | An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase ow in porous media[END_REF]. Discretization methods were studied by Douglas, Ewing, and Wheeler [START_REF] Douglas | The approximation of the pressure by a mixed method in the simulation of miscible displacement[END_REF], by Russel and Wheeler [START_REF] Russell | Finite element and nite dierence methods for continuous ows in porous media[END_REF], by Michel [START_REF] Michel | A nite volume scheme for two-phase immiscible ow in porous media[END_REF], and by Cancès [START_REF] Cancès | Finite volume scheme for two-phase ows in heterogeneous porous media involving capillary pressure discontinuities[END_REF]. Ideas for mesh adaptation were also developed by Saad and Zhang in [START_REF] Saad | Front tracking for two-phase ow in reservoir simulation by adaptive mesh[END_REF] or by Chen and Ewing in [START_REF] Chen | Degenerate two-phase incompressible ow. IV. Local renement and domain decomposition[END_REF]. The linearization method and linear solver techniques are discussed, e.g., by Vassilevski in [START_REF] Vassilevski | Multilevel Block Factorization Preconditioners[END_REF] and by Wallis, Kendall, Little, and Nolen in [START_REF] Wallis | Constrained residual acceleration of conjugate residual methods[END_REF].

∀(x 1 , x 2 ) ∈ R 2 , max p∈{o,w} c kr c µ ≤ ν o (x 1 , x 2 ) + ν w (x 1 , x 2 ). ( 3 
There is a very extensive literature on a posteriori error estimates, starting with the work of Pousin and Rappaz [START_REF] Pousin | Consistency, stability, a priori and a posteriori errors for petrov-galerkin methods applied to nonlinear problems[END_REF], Verfürth [START_REF]Robust a posteriori error estimates for nonstationary convection-diusion equations[END_REF], Chaillou and Suri [START_REF] Chaillou | Computable error estimators for the approximation of nonlinear problems by linearized models[END_REF][START_REF] Chaillou | A posteriori estimation of the linearization error for strongly monotone nonlinear operators[END_REF], Carstensen and Hu [START_REF] Carstensen | A unifying theory of a posteriori error control for nonconforming nite element methods[END_REF], and Carstensen, Hu, and Orlando [START_REF] Carstensen | Framework for the a posteriori error analysis of nonconforming nite elements[END_REF]. Following the ideas of Jiránek, Strako², and Vohralík, [START_REF] Jiránek | A posteriori error estimates including algebraic error and stopping criteria for iterative solvers[END_REF],

El Alaoui, Ern, and Vohralík [START_REF] Alaoui | Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems[END_REF], Ern and Vohralík [START_REF] Ern | A posteriori error estimation based on potential and ux reconstruction for the heat equation[END_REF][START_REF]Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diusion PDEs[END_REF], Vohralík [START_REF] Vohralík | Residual ux-based a posteriori error estimates for nite volume and related locally conservative methods[END_REF][START_REF]Estimations d'erreur a posteriori, critères d'arrêt et implémentations peu couteuses[END_REF], and Vohralík and Wheeler [START_REF] Vohralík | A posteriori error estimates, stopping criteria, and adaptivity for two-phase ows[END_REF], we separate the estimates into contributions representing the space discretization error, time discretization error, linearization error, and algebraic error. One advantage of this approach is that it enables to save computing time, because at each time step, the linearization algorithm and the iterative algebraic solver can be stopped as soon as the corresponding errors no longer aect signicantly the total error, and space and time errors can be balanced. This process permits to implement an adaptive algorithm for solving the problem. We develop here, in particular, the ideas of Di Pietro, Vohralík, and Widmer, [START_REF] Di Pietro | An a posteriori error estimator for a nite volume discretization of the two-phase ow, Finite volumes for complex applications[END_REF].

The rest of this chapter is organized as follows. In Section 3.2, we present a weak formulation of the two-phase ow model. Then, we develop in Section 3.3, the discretization of the model and the solving strategy. In Section 3.4 and 3.5, we introduce the post-processing steps and some elements of the error analysis we make. We introduce dierent error indicators and we bound the residual error norm by these indicators. Numerical experiments are the content of Section 3.6.

The continuous setting 3.2.1 Function spaces

Let us rst dene some function spaces in a domain Ω ⊂ R d , d ≥ 2. We denote by D(Ω)

the space of C ∞ functions with compact support in Ω. Its dual space D (Ω) is the space of distributions in Ω. All derivatives below are taken in the sense of distributions, see [START_REF] Schwartz | Méthodes Mathématiques pour les Sciences Physiques[END_REF].

We use the classical Sobolev space

H 1 (Ω) := {θ ∈ L 2 (Ω) | ∇θ ∈ [L 2 (Ω)] d },
which is a Hilbert space for the graph norm:

θ H 1 (Ω) := θ 2 L 2 (Ω) + ∇θ 2 L 2 (Ω) 1/2 .
Here,

• L 2 (Ω) denotes the norm of L 2 (Ω):

θ L 2 (Ω) := Ω |θ(x)| 2 dxdx 1/2
.

We recall that the functions of H 1 (Ω) have a well-dened trace on the boundary ∂Ω of Ω, as well as on Lipschitz-continuous curves S contained in Ω. Loosely speaking, the functions of H 1 (Ω) are continuous in the sense of traces.

The trace space of H 1 (Ω) on the boundary ∂Ω is H 1/2 (∂Ω), which is a Hilbert space equipped with the norm:

f H 1/2 (∂Ω) = f 2 L 2 (∂Ω) + ∂Ω ∂Ω |f (x) -f (y)| 2 |x -y| d dxdy 1/2 . (3.2.1)
This norm is equivalent to inf θ∈H 1 (Ω);θ| ∂Ω =f θ H 1 (Ω) .
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In a domain Ω ⊂ R d , the quantity dened by (3.2.1) is a particular case of

f H 1/2 (Ω) = f 2 L 2 (Ω) + Ω Ω |f (x) -f (y)| 2 |x -y| d+1 dxdy 1/2 and H 1/2 (Ω) = {f ∈ L 2 (Ω) | f H 1/2 (Ω) < +∞}.
The factor d in (3.2.1) instead of d + 1 arises from the fact that in R d , ∂Ω is of dimension d -1.

The denition of H 

H 1/2 0 0 (Γ) = f ∈ H 1/2 (Γ) | Γ |f (x)| 2 d ∂Γ (x) dx < ∞ , normed by f H 1/2 0 0 (Γ) = f 2 H 1/2 (Γ) + Γ |f (x)| 2 d ∂Γ (x) dx 1/2
, where d ∂Γ (x) is the distance of x to ∂Γ. When Γ coincides with ∂Ω, then

H 1/2 (Γ) = H 1/2 0 0 (Γ), but if |∂Ω \ Γ| > 0, then H 1/2 0 0 (Γ) is a proper subspace of H 1/2 (Γ).
The space H 1/2 0 0 (Γ) can also be dened as the trace space of functions θ ∈ H 1 (Ω) that vanish on ∂Ω \ Γ.

The distinction between H 1/2 0 0 (Γ) and H 1/2 (Γ) is made clear by the fact that when the functions of H 1/2 0 0 (Γ) are extended by zero on ∂Ω, the extended function belongs to H 1/2 (∂Ω), whereas this is not true in general for functions of H 1/2 (Γ).

For functions of H 1 (Ω) with zero trace, we use H 1 0 (Ω):

H 1 0 (Ω) = {θ ∈ H 1 (Ω) | θ| ∂Ω = 0}.
By virtue of the Poincaré inequality, valid in a bounded, Lipschitz domain: There exists a constant C such that

∀θ ∈ H 1 0 (Ω), θ L 2 (Ω) ≤ C ∇θ L 2 (Ω) , (3.2.2)
we use the semi-norm

|θ| H 1 (Ω) = ∇θ L 2 (Ω)
as an equivalent norm in H 1 0 (Ω). Similarly, by virtue of the generalized Poincaré inequality, valid in a bounded, connected, Lipschitz domain: There exists another constant C such that

∀θ ∈ H 1 (Ω)/R, θ L 2 (Ω) ≤ C ∇θ L 2 (Ω) , (3.2.3) we use the semi-norm |θ| H 1 (Ω) = ∇θ L 2 (Ω)
as an equivalent norm in H 1 (Ω)/R. It is sometimes convenient to represent the classes of H 1 (Ω)/R by choosing the representative with zero mean-value, i.e. to replace H 1 (Ω)/R by

H 1 (Ω) ∩ L 2 0 (Ω), where L 2 0 (Ω) = {f ∈ L 2 (Ω) | f Ω = 0}.
We shall also use the dual space H -1 (Ω) of H 1 0 (Ω). It has the following interesting characterization:

∈ H -1 (Ω) if and only if there exist functions

f i ∈ L 2 (Ω), 0 ≤ i ≤ d, such that = f 0 + d i=1 ∂f i ∂x i . (3.2.4) 
We use H 1 (Ω) to represent scalar quantities. For some vector-valued functions, such as velocities, it will be convenient to use the space H(div, Ω):

H(div, Ω) := {θ ∈ [L 2 (Ω)] d | ∇ • θ ∈ L 2 (Ω)},
a Hilbert space for the graph norm:

θ H(div,Ω) := θ 2 L 2 (Ω) + ∇ • θ 2 L 2 (Ω) 1/2 .
It can be shown (cf. Girault and Raviart [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]) that the smooth functions are dense in H(div, Ω),

that the normal trace u • n is well-dened from H(div, Ω) onto H -1/2 (∂Ω) (where H -1/2 (∂Ω)
is the dual space of H 1/2 (∂Ω)), and the following Green formula holds: 

∀u ∈ H(div, Ω), ∀θ ∈ H 1 (Ω), u • n, θ ∂Ω = Ω (∇ • u)θ dx + Ω u • ∇θ dx, ( 3 
f L 2 (a,b;H) = b a f (t) 2 H dt 1/2
.

It is a Banach space if H is a Banach space and a Hilbert space if H is a Hilbert space.

Similarly, we dene

C 0 ([a, b]; H) = f ∈ C 0 ([a, b]) | f (t) ∈ H, ∀t ∈ [a, b] ,
normed by

f C 0 ([a,b];H) = sup t∈[a,b] f (t) H ,
and In this work we shall use the spaces L 2 (0,

H 1 (a, b; H) = f ∈ L 2 (a, b; H) | ∂f ∂t ∈ L 2 (
H 1 0 (a, b; H) = {f ∈ H 1 (a, b; H) | f (a) = f (b) = 0}.
t F ; L 2 (Ω)), L 2 (0, t F ; H 1 (Ω)), L 2 (0, t F ; H 1 0 (Ω)), H 1 (0, t F ; L 2 (Ω)), H 1 (Ω × (0, t F )). It is easy to check that L 2 (Ω × (0, t F )) = L 2 (0, t F ; L 2 (Ω)), H 1 (Ω × (0, t F )) = f ∈ L 2 (0, t F ; H 1 (Ω)) | ∂f ∂t ∈ L 2 (0, t F ; L 2 (Ω)) .
Owing to (3.2.6), we have the continuous embedding, up to a set of zero measure,

H 1 (Ω × (0, t F )) ⊂ H 1 (0, t F ; L 2 (Ω)) ⊂ C 0 ([0, t F ]; L 2 (Ω)).
(3.2.7)

A basic weak variational formulation

Let us set problem (3.1.1)(3.1.4) into a weak variational form. We assume that all variables involved are distributions. For the phase p ∈ {o, w}, consider the equation

φ∂ t (S p ) + ∇ • ν p (P, S p ) - → v p (P, S p ) = q p . (3.2.8) 
The idea is to write its left-hand side in full divergence form. For this it is convenient to work in the space-time cylinder of R d+1 Σ = Ω × (0, t F ),

and dene the vector U p ∈ R d+1 by U p,i = ν p (P, S p )u i p (P, S p ), for 1

≤ i ≤ d, U p,d+1 = φS p , (3.2.9) 
where u i p is the i-th component of -→ v p . Then, the divergence of U p in Σ is:

∇ Σ • U p = ∂U p,1 ∂x 1 + • • • + ∂U p,d ∂x d + ∂U p,d+1 ∂t = ∇ • (ν p (P, S p ) - → v p (P, S p )) + ∂ ∂t (φS p ),
and the rst two lines of (3.1.1) read ∇ Σ • U p = q p , for p ∈ {o, w}. 

∇ Σ • in Σ. Therefore U p • n Σ ∈ H -1/2 (∂Σ)
, where n Σ denotes the exterior normal to ∂Σ, and the Green formula (3.2.5) gives where ∇ x denotes the gradient with respect to x. Finally to treat the boundary term, we must clarify the normal vector n Σ and the product U p • n Σ : 

∀v p ∈ H 1 (Σ), Σ (∇ Σ • U p )v p dx dt + Σ U p • ∇ Σ v p dx dt = U p • n Σ , v p ∂Σ , (3.2 
On Ω × {t = 0}, n Σ = ( 0, -1) and U p • n Σ = -φS p (•, 0) = -φS 0 p , on Ω × {t = t F }, n Σ = ( 0, 1), and U p • n Σ = φS p (•, t F ), on ∂Ω × (0, t F ), n Σ = (n Ω , 0) and U p • n Σ = ν p (P, S p ) - → v p (P, S p ) • n Ω = 0, (3.2 
v p (•, t F ) = 0, a.e. in Ω.
This condition makes sense, in view of (3.2.7). Thus, assuming that the initial data has the regularity

S 0 p ∈ L 2 (Ω), (3.2.20) 
the boundary term reduces to 

U p • n Σ , v p ∂Σ = - Ω φS 0 p v p (x , 0)dx. 
S p ∈ L 2 (Σ), P + P cp (S p ) ∈ L 2 (0, t F ; H 1 (Ω)), p ∈ {o, w}, (3.2.22) 
such that for all v p ∈ H 1 (Σ)and v p (•, t F ) = 0,

t F 0 Ω ν p (P, S p )K∇ x [P + P cp (S p )] • ∇ x v p dx dt - t F 0 Ω φS p ∂v p ∂t dx dt = t F 0 Ω q p v p dx dt + Ω φS 0 p v p (•, 0) dx, for p = o, w, (3.2.23a) 
S o + S w = 1. Proposition 3.2 (Equivalence). Let q p belong to L 2 (Σ) and S 0 p belong to L 2 (Ω). Then, every solution P , S o , and S w of problem (3.1.1)(3.1.4), with S p ∈ L 2 (Σ), P + P cp (S p ) ∈ L 2 (0, t F ; H 1 (Ω)), for p ∈ {o, w} satises (3.2.23). Conversely every solution P , S o , and S w of (3.2.23), with S p ∈ L 2 (Σ), P + P cp (S p ) ∈ L 2 (0, t F ; H 1 (Ω)), for p ∈ {o, w} solves (3. Proof. If 

-U p , ∇ Σ v p Σ = t F 0 Ω q p v p dx dt ⇔ ∇ Σ • U p , v p Σ = q p , v p Σ ,
where •, • Σ denotes the duality pairing between D (Σ) and D(Σ). This is equivalent to

∇ Σ • U p = q p ,
and this equality holds a.e. in Σ since q p ∈ L 2 (Σ).Therefore, the rst two equalities of (3.1.1) are satised, and the regularity of q p implies that

∇ Σ • U p ∈ L 2 (Σ); thus U p ∈ H(div Σ , Σ).
Then, Green's formula (3.2.5) gives for all v p ∈ H 1 (Σ) with v p (•, t F ) = 0 in Ω:

- t F 0 Ω U p ∇ Σ v p dx dt + U p • n Σ , v p ∂Σ = t F 0 Ω
q p v p dx dt.

To recover the initial condition, let us choose v p ∈ H 1 (0, t F ; D(Ω)) with v p (•, t F ) = 0 in Ω. On the one hand,

v p | Ω×{t=0} = v p (•, 0)
belongs to D(Ω) and on the other hand, as U p •n Σ is in H -1/2 (∂Σ), its restriction to Ω×{t = 0} is a distribution on Ω. With this choice of test function v p , the boundary term reduces to Similarly, to recover the boundary condition on ∂Ω, we choose v p ∈ H 1 0 (0, t F ; H 1 (Ω)) and observe that the restriction of U p • n Σ to ∂Ω × (0, t F ) belongs to H -1 (0, t F ; H -1/2 (∂Ω)). With this choice of v p , the boundary term reduces to

U p • n Σ , v p ∂Σ = -D (Ω) φS p (•, 0), v p (•, 0) D(Ω) .
ν p (P, S p ) - → v p (P, S p ) • n Ω , v p ,
where •, • denotes the duality pairing between the spaces H -1 (0, t F ; H -1/2 (∂Ω)) and H 1 0 (0, t F ; H 1/2 (∂Ω)). Comparing with (3.2.23), we obtain in the sense of distributions, ν p (P, S p ) -→ v p (P, S p ) • n Ω = 0, whence (3.1.4).

A second variational formulation

The previous variational formulation is adequate when the solution is rough, but is not convenient for proposing a numerical discretization, because it involves the derivative in time of the test function.

Assume that the data are such that (3.2. 

(S p )] • ∇ x v p dxdt = t F 0 Ω q p v p dxdt, (3.2.25) 
for all v p ∈ H 1 (Σ), with v p (•, t F ) = 0. In particular, this is also true for all v p ∈ H 1 (0, t F ; H 1 (Ω)) Remark 3.4 (Pressure regularity). As mentioned in Remark 3.1, in practical situations, P cp 1 (S p 1 ) = 0 for one of the phases p 1 . This implies that the reference pressure P belongs to L 2 (0, t F ; H 1 (Ω)) and next that P cp 2 (S p 2 ) belongs to L 2 (0, t F ; H 1 (Ω)) for the other phase p 2 . If this is not done, then the above mathematical assumptions are not sucient to conclude that P ∈ L 2 (0, t F ; H 1 (Ω)). We then need additional hypothesis on the capillary pressure P cp 2 (S p 2 ).

with v p (•, t F ) = 0. But H 1 0 (0, t F ; H 1 (Ω)) is dense in L 2 (0, t F ; H 1 (Ω)) because H 1 0 (a,

The discrete setting for two-phase ow

In this section, we briey recall the discretization methods adapted to the present two-phase ow model. As in Section 2.2.2, we discretize problem (3.1.1)(3.1.4) with a two-point FV method and phase-by-phase upwind. We introduce some notation used in this section and we present mathematical tools useful for estimating the error made during the computation. Furthermore, we give some ideas for constructing these tools during a computation.

Discrete spaces

Here we describe the discrete spaces in dimensions d = 2 or 3. Because we use a TPFV method, we are restricted to rectangular cells. Thus, we introduce a mesh T of Ω made of rectangular cells, when d = 2 or rectangular parallelepipeds, when d = 3. Let T denote a generic cell, with diameter h T bounded by the mesh size h T . We assume that the mesh is shape regular (see Ciarlet [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]), more precisely there exists a constant C 1 independent of h,

such that ∀T ∈ T , h T ρ T ≤ C 1 ,
where ρ T is the diameter of the largest ball contained in T . For simplicity, the mesh is supposed to be xed during the computation, not evolving in time. Moreover we suppose that the mesh follows the discontinuities of K (recall that K is piecewise constant), so that K is constant in each cell.

We dene the broken Sobolev space on T

H 1 (T ) := {u ∈ L 2 (Ω) | ∀T ∈ T , u | T ∈ H 1 (T )}.
On each rectangular parallelepiped T , we dene the discrete space

RTN(T ) := [P 0 (T )] d + M 0 (T )x,
where M 0 (T ) is a diagonal matrix, constant in T : 

M 0 (T ) =      c 1 . . . c d      , whith c 1 , • • • , c d in R.

Unknowns

From now on, we restrict the discussion to d = 2. As specied in Section 2.2.1, the discrete unknowns take one value per cell. Let 0 ≤ n ≤ N F be the index of the discrete times t n and T the cells of the mesh T . For each n and each T , k n T ∈ K is the context in the cell T , at time t n , and P k n T is the set of phases present in T at time t n . For the two-phase ow considered here, K = {{o}, {w}, {o, w}}, and P = {o, w}.

For all T ∈ T and 0 ≤ n ≤ N F , we have seen in Section 2.4.1 that the set of unknowns (2.2.4) reduces to:

U n T := P n T , {S n p,T } p∈P k n T , (3.3.1)
where we recall that at time t n , in the cell T :

• P n T denotes the reference pressure;

• {S n p,T } p∈P k n T
is the set of saturations for the phases present in the context k n T .

Once a xed ordering is chosen, for all 0 ≤ n ≤ N F and T ∈ T , the unknowns in the set U n T can be ordered in a local vector u n T , which when assembled forms the global vector u n := (u n T ) T ∈T . For p ∈ P, let P n h , respectively S n p,h , be the piecewise constant functions such that ∀T ∈ T , P n h | T = P n T , respectively S n p,h | T = S n p,T . where for p ∈ P, the velocities satisfy Darcy's law -→ v p (P, S p ) = -K(∇[P + P cp (S p )]).

Equations

Considering that the discrete saturations are constant in each cell, the rst term is then discretized by:

φ | T | τ n S n p,T -S n-1 p,T . (3.3.4)
To discretize the ux -→ v p • n, we proceed as in Section 2.2.2. For all σ ∈ F i and all T ∈ T σ (the set of elements sharing the face σ) we approximate the diusive ux of any phase p ∈ T ∈Tσ P k T by:

F n p,T,σ (u n ) = F n p,T,σ {u n T } T ∈S mm σ = T ∈S mm σ τ σ T P n p,T , (3.3.5)
where τ σ T is the transmissibility coecient. Its denition is an extension of (2.2.14) that takes into account that K is not proportional to the identity. More precisely, let σ = T 1 ∩ T 

τ σ T = |σ| (K T tσ,tσ) xσ-x T 2 (K T tσ,tσ) xσ-x T 2 (K T tσ,tσ) xσ-x T 2 + (K T tσ,tσ) xσ-x T 2 and τ σ T = -τ σ T , (3.3.6)
where we recall that the negative sign of τ σ T enforces the conservativity of uxes.

Furthermore, due to the no-ow boundary condition, for p ∈ P and T ∈ T such that F T contains a face σ b on the boundary, we impose:

F n p,T,σ b (u n T ) = 0. (3.3.7)
Finally, let us present the uxes on the (injection or production) wells. As gravity is neglected, the denition of the uxes is the same regardless of production or injection. For all wells W ∈ W, all perforated cells T ∈ T W , and all phases p ∈ P k T , the ux of the phase p between the system and the perforation in T is approximated by:

F n p,W,T (u n T ) = τ W T P n p,T -P n W,T , (3.3.8)
where τ W T is the so-called production index of the well and is known from the data. In order to discretize the factor ν p appearing in (3.3.3), we use the values at the previous time t n-1 of the pressure and saturation, P n-1 and S n-1 p , taken in the upwind cell for the phase p, denoted by T ↑ p . The upwind cell, dened in (2.2.21), is determined by the ux F n-1 p,T,σ that has been computed at the previous time step. The discretization of the source term is:

q n p,T = 1 τ n
In T q p dx dt.

(3.3.9)

Collecting these discretizations, the discrete version of (3.3.2) reads:

φ | T | τ n S n p,T -S n-1 p,T + σ∈F T ν p (P n-1 T ↑ p , S n-1 p,T ↑ p )F n p,T,σ = q n p,T .
(3.3.10) Remark 3.6 (An initial pressure). When n = 1, Formula (3.3.10) requires an initial pressure P 0 that is not part of the data, since only the saturation is given (and required) at initial time. This numerical diculty that occurs frequently is usually by-passed by dening an articial initial pressure using the hydrostatic pressure formula. For an incompressible uid, a reasonably good estimate can be made by assuming a constant density ρ throughout the liquid (the same assumption cannot be made for a gaseous uid). Also, since the height of the uid column is often reasonably small compared to the radius of the Earth, one can neglect the variation of the gravity g. Under these circumstances, the initial hydrostatic pressure P 0 is a constant given by the simple formula

P 0 = ρgz, (3.3.11)
where in two dimensions z is the depth of the position of the domain. This is the formula used to complement (3.3.10).

As mentioned previously, in a two-phase ow, the separation into primary and secondary unknowns is trivial. Indeed the secondary unknown is the wetting phase saturation, S n 

           R n o,T (ũ n ) := φ | T | τ n (S n o,T -S n-1 o,T ) + σ∈F T ν o (P n-1 T ↑ p , S n-1 o,T ↑ p )F n o,T,σ -q n o,T = 0, R n w,T (ũ n ) := φ | T | τ n (S n-1 o,T -S n o,T ) + σ∈F T ν w (P n-1 T ↑ p , 1 -S n-1 o,T ↑ p )F n w,T,σ -q n w,T = 0, (3.3.12)
where the discretization of the initial condition is given by 

S 0 o,T := (S 0 o , 1) T |T | , ( 3 
           R n o,T (ũ n ) := φ | T | τ n (S n o,T -S n-1 o,T ) + σ∈F T ν o (P n-1 T ↑ p , S n-1 o,T ↑ p )F n o,T,σ -q n o,T = 0, R n w,T (ũ n ) := φ | T | τ n (S n-1 o,T -S n o,T ) + σ∈F T ν w (P n-1 T ↑ p , S n-1 o,T ↑ p )F n w,T,σ -q n w,T = 0. (3.3.15)
The problem is thus to nd the unknowns ũn such that:

   R n o (ũ n ) = 0, R n w (ũ n ) = 0, (3.3.16)
where for each p ∈ {o, w}, the symbol R n p stands for the vector equations for all cells T ∈ T .

Summing up, on each mesh element, we have to solve two nonlinear systems in two unknowns.

Solving strategy

Problem (3.3.16) is a system of nonlinear algebraic equations that we linearize at each time step by Newton's algorithm; The linear algebraic system at each Newton's step is solved by an algebraic solver. In the numerical experiments, we use a GMRES solver, but the method described here applies to an arbitrary iterative algebraic solver. The algorithm consists of two loops at each time step: An outer Newton's loop and an inner algebraic loop that is executed at each Newton's iteration. At a xed time t n , 1 ≤ n ≤ N F , let ũn,0 be given (typically, ũn,0 := ũn-1 ).

For all cells T ∈ T and all phases p ∈ {o, w}, the linear system of the i-th Newton iteration is:

T ∈T ∂R n p,T ∂ũ n T (ũ n,i-1 )ũ n,i T = -R n p,T (ũ n,i-1 ) + T ∈T ∂R n p,T ∂ũ n T (ũ n,i-1 )ũ n,i-1 T , (3.3.17)
where ũn,i T = {P n,i T , S n,i o,T } denotes the approximate solution in T . The system (3.3.17) is solved approximately by means of an iterative algebraic solver. Its residual vector components at a given step j ≥ 1, for all T ∈ T and p ∈ {o, w}, are dened by:

Res n,i,j p,T :=

T ∈T ∂R n p,T ∂ũ n T (ũ n,i-1 ) ũn,i,j T -ũn,i-1 T + R n p,T (ũ n,i-1 ), (3.3.18)
where ũn,i,j T = {P n,i,j T , S n,i,j o,T } denotes the approximate solution at time t n , i-th Newton iteration, and j-th algebraic solver iteration, in the cell T .. The following Algorithm 3.1 presents the solving strategy for 1 ≤ n ≤ N F . The time step parameter γ t gives some simple automatic adaptivity in time. When the time step becomes too large, it may happen that the Newton algorithm fails to satisfy the stopping criterion after a preassigned maximum number of iterations. This is what we call time step crash. In this case, we halve the time step and repeat the current computation.

In the numerical experiments, the matrix of system (3.3.17) is preconditioned by ILU0 (incomplete LU factorization, with zero level llIn). Remark 3.7 (Usual stopping criteria). The stopping criteria are usually dened at the beginning of the algorithm, they compare the residuals with a well-chosen small quantity (e.g.

Res n,i,j p < 10 -12 for the algebraic solver). Compute the articial pressure P 0 according to (3.3.14).

Time Loop while

t n ≤ t F do Set n := n + 1; if Time step crash then Set n := n -1, τ n := τ n 2 , t n := t n-1 + τ n else Set τ n := γ t τ n-1 , t n := t n-1 + τ n ;
end if

Set i := 0; Choose initial saturations S n,0 o and pressures P n,0 .

Newton's Loop while Linearization criterion is not reached do

i := i + 1;
Evaluate the laws and their derivatives;

Evaluate the uxes and update the upwind cells;

Assemble the Jacobian matrix, set up the linear system (3.3.17);

Set j := 0; Choose initial saturation S n,i,0 o and pressure P n,i,0 ; Algebraic Loop while Algebraic criterion is not reached. do j := j + 1; Precondition the matrix system; Knowing S n,i,j-1 o and P n,i,j-1 , compute S n,i,j o and P n,i,j by a step of the algebraic solver;

Compute the algebraic residual vectors Res n,i,j p dened by (3.3.18). 

Post-processings and elements of error analysis

Developing a mathematical theory for adaptive computation with nite volumes in two or three dimensions is not easy because the usual adaptation analysis relies on variational formulations satised by the exact solution, and the approximate solution is supposed to be reasonably smooth to insert it therein. But the solution ũn of the system (3.3.12), or ũn,i,j solving (3.3.18), is a set of step functions that are constant in each cell and time interval, and are not usefully substituted into the variational formulation. The purpose of this section is to introduce convenient reconstructions that transform the computed cell-wise values into suitable more regular functions that will be used in the denitions of the error indicators.

3.4.1 Pressure and capillary pressure post-treatments

Flux post-prossessing

Since the Finite Volume method yields approximations of the normal components of the velocity on element faces, it is convenient, for theoretical reasons, to transform them into H(div, Ω) functions, more precisely, to interpolate them in RTN(T ). Furthermore, it is convenient to split them as the sum of the contribution of the reference pressure and the contribution of the capillary pressure. Thus at each time t n , linearization step i, and algebraic solver iteration j, for all T ∈ T , all p ∈ P and all σ ∈ F T , we dene the uxes:

F n,i,j T,σ = T ∈Tσ τ σ T P n,i,j T , (3.4.1) 
and

F n,i,j p,T,σ = T ∈Tσ τ σ T P cp (S n,i,j p,T ), (3.4.2) 
with T σ the stencil for the face σ. But in fact, F n,i,j p,T,σ is only non-zero for the wetting phase. This gives

F n,i,j p,T,σ = F n,i,j T,σ + F n,i,j p,T,σ . (3.4.3) 
Then we dene the approximate phase velocity v n,i,j p,h ∈ RTN(T ) corresponding to the total ux by

v n,i,j p,h • n σ , 1 σ = F n,i,j p,T,σ , (3.4.4) 

90CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO

the approximate velocity corresponding to v n,i,j h ∈ RTN(T ), corresponding to the reference pressure:

v n,i,j h • n σ , 1 σ = F n,i,j T,σ , (3.4.5) 
and the approximate velocity v n,i,j w,h ∈ RTN(T ) corresponding to the non-zero capillary pressure:

v n,i,j w,h • n σ , 1 σ = F n,i,j w,T,σ . (3.4.6) 
As the functions of RTN(T ) have one degree of freedom per face, these formulas dene uniquely the degrees of freedom, for instance (recall that x σ is the barycenter of the face σ)

v n,i,j h • n σ (x σ ) = 1 |σ| F n,i,j T,σ . (3.4.7) 
Therefore, the functions v n,i,j h and v n,i,j w,h are uniquely dened in RTN(T ) by (3.4.4) and by (3.4.6). Moreover, v n,i,j o,h = v n,i,j h and v n,i,j w,h = v n,i,j h + v n,i,j w,h .

Pressure post-processing

In order to give a meaning to the gradient operator appearing in the phase velocity formula (3.1.2) in the discrete setting, we need to regularize the approximate reference pressures {P n,i,j T } T ∈T and capillary pressures {P n,i,j c w,T } T ∈T (note that P n,i,j c w,T := P cw (S n,i,j w,T )). As in the work done in [START_REF] Vohralík | Residual ux-based a posteriori error estimates for nite volume and related locally conservative methods[END_REF][START_REF] Jiránek | A posteriori error estimates including algebraic error and stopping criteria for iterative solvers[END_REF][START_REF] Ern | A posteriori error estimation based on potential and ux reconstruction for the heat equation[END_REF][START_REF] Vohralík | A posteriori error estimates, stopping criteria, and adaptivity for two-phase ows[END_REF], these quantities are post-processed element wise yielding piecewise quadratic functions of H 1 (T ): P n,i,j h and P n,i,j cw,h , at each time t n , 1 ≤ n ≤ N p , Newton's iteration i, and linear solver iteration j.

Consider the reference pressure. We construct P n,i,j h , a piecewise quadratic function, such that

P n,i,j h (x, y) = a n,i,j T x 2 + b n,i,j T y 2 + c n,i,j T x + d n,i,j T y + e n,i,j T , with a n,i,j T , b n,i,j T , c n,i,j T , d n,i,j
T , and e n,i,j T real coecients, dened by the following formula:

       ∇ P n,i,j h = -K -1 v n,i,j h , ( P n,i,j h , 1) T | T | = P n,i,j T . (3.4.8) 
A schematic visualization is given in Figure 3.1.

The capillary pressure is post-processed in a similar fashion. We construct P n,i,j cw,h , a piece- wise quadratic function, such that 

P n,i,j cw,h (x, y) = a n,i,j T x 2 + b n,i,j T y 2 + c n,i,j T x + d n,i,j T y + e n,i
       ∇ P n,i,j cw,h = -K -1 v n,i,j w,h , ( P n,i,j cw,h , 1) T | T | = P cw (S n,i,j w,T ). (3.4.9) 
In both cases, (3.4.8) and (3.4.9) are linear systems of ve equations in ve unknowns that are easily and explicitly solved. For our use below, we dene the phase pressure post-processings as:

P n,i,j o,h = P n,i,j h and P n,i,j w,h = P n,i,j h + P n,i,j cw,h .

Finally, at time t 0 , the initial constant reference pressure P 0 needs no post-processing.

Post-processing in time

In order to give a good meaning to the time derivative, we also introduce a post-processing in time. This is straightforward. Let v n h belong to L 2 (T ), 0 ≤ n ≤ N F . We associate with v n h the function v hτ dened by

v hτ | In = v n-1 h + t -t n-1 τ n (v n h -v n-1 h ), t ∈ I n , (3.4.10) 
on each interval I n . The resulting function v hτ is globally continuous in time, piecewise ane (hence it belongs to H 1 (0, t F ) with respect to time), and satises

v hτ (t n ) = v n h , 0 ≤ n ≤ N F . 92CHAPTER 3.
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This post-treatment is used for the two phase pressures, both are post-processed in time, giving function P i,j o,hτ and P i,j w,hτ , dened by (3.4.10). Since the capillary pressure is a given function of saturations, we introduce the following notation:

v p (P p ) := v p (P, S p ),

given in each cell T by: v p ( P i,j p,hτ ) = -K∇( P i,j p,hτ ), for p ∈ {o, w}.

The same piecewise ane-in-time post-processing functions S i,j p,hτ are also used for the phase saturations.

A total residual norm

For each n,

1 ≤ n ≤ N F , let X n := L 2 (I n ; H 1 (Ω)),
equipped with the norm:

θ 2 Xn := In T ∈T π 2 h -2 T θ(t) 2 L 2 (T ) + ∇θ(t) 2 L 2 (T ) dt.
Similarly, let

X := L 2 (0, t F ; H 1 (Ω)),
equipped with the norm:

θ 2 X := t F 0 T ∈T π 2 h -2 T θ(t) 2 L 2 (T ) + ∇θ(t) 2 L 2 (T ) dt = N F n=1 θ 2 Xn .
Let LHS denote the left-hand side of (3.2.26), summed over the phases, with test function θ in X, integrated over (0, t F ):

LHS = p∈{o,w} t F 0 φ Ω ∂ t (S p ) θ dx + Ω ν p (P, S p )K∇[P + P cp (S p )] • ∇θ dx dt. (3.4.11)
Similarly, let LHS h be the expression obtained by replacing in LHS S p , P , and P cp by the post-processed functions S p,hτ , Phτ , and Pcp,hτ , with integrals localized in each T to take into account the discontinuity of the functions:

LHS h = p∈{o,w} t F 0 φ Ω ∂ t (S p,hτ ) θ dx + T ∈T T ν p ( Phτ , S p,hτ )K∇[ Phτ + Pcp,hτ ] • ∇θ dx dt. (3.4.12) 
The dierence LHS -LHS h is the residual. Specic terms must be added to it to take into account the discontinuity of the post-processed pressures. This suggests the following formulation for the error in the non-wetting saturation and reference pressure that expresses the residual and the nonconformity of the pressures:

|||(S o -S o,hτ , P -Phτ )||| := p∈{o,w} sup θ∈X, θ X =1 t F 0 Ω φ(∂ t (S p ) -∂ t (S p,hτ ))θ -ν p (P, S p ) - → v p (P, S p ) -ν p ( Phτ , S p,hτ )v p ( Pp,hτ ) • ∇θ dx dt 2 1 2 + p∈{o,w} inf δp∈X t F 0 ν p ( Phτ , S p,hτ )v p ( Pp,hτ ) -ν p ( Phτ , S p,hτ )v p (δ p ) 2 L 2 (Ω) dt 1 2 . (3.4.13) 
Note that if S p,hτ coincides with S p , for p ∈ {o, w}, and Phτ with P , then |||(S p -S p,hτ , P -Phτ )||| = 0.

We can also dene for each n, 1 ≤ n ≤ N F , the norm of the local residual in time

|||(S o -S o,hτ , P -Phτ )||| In := p∈{o,w} sup θ∈Xn, θ Xn =1 In Ω φ ∂ t (S p -∂ t (S p,hτ ))θ -ν p (P, S p ) - → v p (P, S p ) -ν p ( Phτ , S p,hτ )v p ( Pp,hτ ) • ∇θ dx dt 2 1 2 + p∈{o,w} inf δp∈Xn In ν p ( Phτ , S p,hτ )v p ( Pp,hτ ) -ν p ( Phτ , S p,hτ )v p (δ p ) 2 L 2 (Ω) dt 1 2 
.

(3.4.14)

A posteriori error estimates

We have presented in Section 3.3.4 the way we choose to solve the problem. Our resolution has a linearization loop (using a Newton method), and each linearization step in the loop requires an algebraic solver. The non-adaptive method stipulates that the Newton and the iterative solver converge until a chosen stopping criterion is reached. We propose an a posteriori error analysis that provides an ecient choice for this stopping criterion. We will see that this a posteriori error analysis permits to identify dierent sources of the error. This requires 94CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO beforehand some velocity reconstructions in Section 3.5.1 and some pressure reconstruction in Section 3.5.2. We then show how we obtain the error estimators in Section 3.5.3. Then, using these estimators and evaluating the dierent error components, see Sections 3.5.4 and 3.5.5, we can use them to adapt the resolution method (the stopping criteria or the time and space discretizations). The resulting algorithm is given in Section 3.5.6.

Velocity reconstructions

To estimate the terms in the right-hand side of (3.4.13), it is convenient that the product of the mobility and the discrete velocity be also locally conservative. Indeed, this property is not necessarily satised at the discrete level. Following [START_REF] Alaoui | Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems[END_REF][START_REF] Ern | A posteriori error estimation based on potential and ux reconstruction for the heat equation[END_REF][START_REF] Vohralík | A posteriori error estimates, stopping criteria, and adaptivity for two-phase ows[END_REF], we introduce for T ∈ T , 1 ≤ n ≤ N F , the i-th linearization step, j-th algebraic solver iteration, and p ∈ P the ux reconstructions χ n,i,j p,h ∈ RTN 0 (T ).

We suppose that they satisfy the following local conservation property:

(q n p -∂ t (φS i,j p,hτ ) -∇•χ n,i,j p,h , 1) T = 0. (3.5.1) 

Pressure reconstruction

We have reconstructed in Section 3.4.1 piecewise quadratic phase pressure functions P n,i,j p,h,T , for p ∈ {o, w}, which are quadratic on each control volume T . Now we would like to evaluate the error due to the nonconformity of these discrete phase pressures. For this purpose, we construct by interpolation two phase pressure functions δ n,i,j p,h that are continuous in space.

Since our triangulation is made of rectangles, the interpolated functions are constructed as continuous and bilinear (note that this would also hold on quadrilaterals). They are obtained by means of a regularization at the nodes of the form

I( P n,i,j p,h )(D) = 1 Card T D T ∈T D P n,i,j p,h | T (D), (3.5.2) 
where D denotes nodes of the triangulation and T D denotes the stencil of D, i.e., the set of elements of T that share D; see and denote by δ i,j p,hτ its piecewise ane-in-time interpolant dened in (3.4.10). Note that by construction δ i,j p,hτ belongs to X, more precisely, it belongs to W 1,∞ (0, t F ; H 1 (Ω)). 

A basic a posteriori error estimate

Consider 1 ≤ n ≤ N F , the i-th linearization step, the j-th linear solver step, T ∈ T , and p ∈ P. We dene the residual estimators η n,i,j R,T,p as:

η n,i,j R,T,p := h T π q n p -∂ t (φS i,j p,hτ ) -∇•χ n,i,j p,h T , (3.5.5) 
where the constant π comes from the Poincaré inequality. Let us recall this inequality for convex element T , see the work of Payne and Weinberger in [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]:

ϕ -ϕ T T ≤ h T π ∇ϕ T , ∀ϕ ∈ H 1 (T ), (3.5.6) 
where ϕ T is the mean value of the function ϕ on the element T .

Let us dene the ux estimators η n,i,j F,T,p , evaluating the error due to the possible H(div, Ω)nonconformity of the uxes:

∀t ∈ I n , η n,i,j F,T,p (t):= χ n,i,j p,h -ν p ( P i,j hτ , S i,j p,hτ )v p ( P i,j p,hτ )(t)

T .

(3.5.7)
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Finally, for the phase p, the nonconformity estimators η n,i,j NC,T,p , relative to the error caused by the H 1 (Ω)-nonconformity of the phase pressures, are dened as:

∀t ∈ I n , η n,i,j NC,T,p (t):= ν p ( P i,j hτ , S i,j p,hτ )v p ( P i,j p,hτ )(t)-ν p ( P i,j hτ , S i,j p,hτ )v p (δ p,hτ )(t)

T .

(3.5.8)

With the above material,we are ready to prove.

Theorem 3.9 (Residual error estimate at time step n, linearization step i, and algebraic solver step j). Let P = {o, w}, 1 ≤ n ≤ N F , and I n the time interval. Let P and S o be the exact reference pressure and non-wetting saturation given by (3.2.26) and set S w = 1 -S o .

Consider the i-th linearization step and the j-th algebraic solver step. Then

|||(S o -S n,i,j o,hτ , P -P n,i,j hτ )||| In ≤    p∈{o,w} In T ∈T η n,i,j R,T,p + η n,i,j F,T,p (t) 2 dt  
  1 2 +    p∈{o,w} In T ∈T η n,i,j NC,T,p (t) 2 dt    1 2 . (3.5.9) 
Proof. The proof is straightforward considering the denition of the residual norm (3.4.14).

Let 1 ≤ n ≤ N F , 1 ≤ i, and 1 ≤ j be given. The second term in (3.5.9) clearly stems from the second term in the right hand-side of (3.4.14). We thus only have to prove that the rst term is an upper bound on the rst term in the right hand-side of (3.4.14).

Let θ ∈ X n , θ Xn = 1, and p ∈ P. Set w p := ν p (P, S o )v p (P, S o ) and w i,j p,hτ := ν( P i,j hτ , S i,j o,hτ )v p ( P i,j p,hτ ). Then using the characterization of the weak solution (3.2.26),

In Ω φ(∂ t S p -∂ t S i,j p,hτ )θ -w p -w i,j p,hτ • ∇θ dx dt = In Ω (q p -∂ t (φS i,j p,hτ ))θ + w i,j p,hτ • ∇θ dx dt.
Adding and subtracting

Ω χ i,j p,hτ • ∇θdx,
where χ i,j p,hτ is piecewise constant in time, given on each time interval I n by χ n,i,j p,h , using the Green theorem, the local conservation property (3.5.1), the Poincaré inequality, and the CauchySchwarz inequality

Ω q p θdx - Ω ∂ t (φS i,j p,hτ )θdx + Ω w i,j p,hτ • ∇θdx = Ω (q p -∂ t (φS i,j p,hτ ) -∇•χ n,i,j p,h )θ dx + Ω w i,j p,hτ -χ n,i,j p,h • ∇θ dx = Ω (q p -∂ t (φS i,j p,hτ ) -∇•χ n,i,j p,h )(θ -Π 0 θ) dx + Ω (w i,j p,hτ -χ n,i,j p,h ) • ∇θ dx ≤ T ∈T (η n,i,j R,T,p + η n,i,j F,T,p (t)) ∇θ T ,
where Π 0 denotes the L 2 -orthogonal projection onto piecewise constants on T .

Finally, the assertion follows by the CauchySchwarz inequality and the fact that the suppremum in (3.4.13) is with θ Xn = 1.

Remark 3.10. The terms in (3.5.8) represent the nonconformity of the two phase pressures.

If we have continuous approximate phase pressures, these terms disappear. In a cell-centered FV method, these pressures are not continuous, so we need to evaluate and to manage these nonconformities.

Identication of dierent components of the error

We have, in the previous section, introduced the a posteriori error estimators. Our aim is now to distinguish the origins of the errors:

• Space errors;

• Temporal errors;

• Linearization errors;

• Algebraic error.

In Section 3.3.3, we dene the nonlinear system (3.3.15) and we solve it in Section 3.3.4 using an iterative solver for the Newton algorithm. Let 1 ≤ n ≤ N F , T ∈ T , and p ∈ P.

Then, we x a linearization step i and an iterative algebraic solver step j, the ux reconstructions χ n,i,j p,h ∈ RTN(T ), already introduced in Section 3.5.1, satisfy the conservativity property (3.5.1) (q n p -∂ t (φS i,j p,hτ ) -∇•χ n,i,j p,h , 1) T = 0, ∀T ∈ T .

(3.5.10)
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Let us now dene a ux associated to the discretization χ n,i,j p,h ∈ RTN(T ), a linearized solver ux l n,i,j p,h ∈ RTN(T ), and an algebraic solver ux r n,i,j p,h ∈ RTN(T ) such that χ n,i,j p,h = χ n,i,j p,h + l n,i,j p,h + r n,i,j p,h .

We dene them as follows. For T 1 ∈ T and T 2 ∈ T T , with a face σ = T 1 ∩ T 2 ⊂ ∂T 1 , the degree of freedom of χ n,i,j p,h is dened by:

χ n,i,j p,h • n σ , 1 σ := ν p (P n-1 T ↑ p , S n-1 o,T ↑ o
)F n,i,j p,T 1 ,σ .

(3.5.11)

Introduce the following notation:

B n,i,j p,T,σ := ν p (P n,i-1

T ↑ p , S n,i-1 p,T ↑ p
)F n,i,j p,T,σ .

(3.5.12)

The linear system (3.3.18) is then equivalent to the following sum of diagonal terms and face uxes:

φ |T | τ n S n,i,j p,T -S n,i-1 p,T + σ∈F T T ∈Sσ ∂B n,i,j p,T,σ ∂ũ T ũn,i,j -ũn,i-1 + R n p,T (ũ n,i-1 ) = Res n,i,j p,T , (3.5.13) 
where Res n,i,j p,T is the algebraic residual.

We then set (χ n,i,j p,h +l n,i,j p,h )•n σ , 1 σ := T ∈Sσ ∂B n,i,j p,T,σ ∂ũ T (ũ n,i,jũn,i-1 ) +ν p (P n,i-1

T ↑ p , S n,i-1 p,T ↑ p )F n,i-1
p,T ,σ (3.5.14) and (∇ • r n,i,j p,h , 1) T = -Res n,i,j p,T .

(3.5.15) Note that χ n,i,j p,h and l n,i,j p,h are fully specied; r n,i,j p,h , satisfying (3.5.15) can be constructed as in Section 7.3 of [START_REF] Jiránek | A posteriori error estimates including algebraic error and stopping criteria for iterative solvers[END_REF]. This gives:

(q n p -∂ t (φS i,j p,hτ ) -∇ • (χ n,i,j p,h + l n,i,j p,h ), 1) T = (∇ • r n,i,j p,h , 1) T , for p ∈ P We are now ready to distinguish the dierent parts of the error using (3.5.5)(3.5.8).

Indeed we want to have:

η n,i,j R,T,p + η n,i,j F,T,p (t) + η n,i,j NC,T,p (t) ≤ η n,i,j sp,T,p (t) + η n,i,j tm,T,p (t) + η n,i,j lin,T,p + η n,i,j alg,T,p ,

where the error estimators are separated in two parts and are dened as follows:

1. The substantial errors, which have an important impact on the nal precision of the discrete solution. We have:

(a) The spatial estimator η n,i,j sp,T,p :

η n,i,j sp,T,p (t):= ν p ( P n,i,j h , S n,i,j p,h )v p ( P n,i,j p,h ) -χ n,i,j p,h T + η n,i,j R,T,p + η n,i,j NC,T,p (t), (3.5.17) which quanties the error due to the space discretization; that is to say the coarser is the mesh, the larger is the error;

(b) The temporal estimator η n,i,j tm,T,p :

η n,i,j tm,T,p (t):= ν p ( P i,j hτ , S i,j p,hτ )v p ( P i,j p,hτ )(t)-ν p ( P n,i,j h , S n,i,j p,h )v p ( P n,i,j p,h ) T , (3.5.18) which is linked to the time discretization; if the error is too large we have to reduce the time step.

2. The subsidiary errors, which can be made arbitrarily small when the iterative linearization and algebraic solvers converge. The associated estimators are:

(a) The linearization estimator η n,i,j lin,T,p :

η n,i,j lin,T,p := l n,i,j p,h T , (3.5.19) whose values depend on the number of linearization steps; The more we make iterations, the smaller is the error;

(b) The algebraic estimator η n,i,j alg,T,p :

η n,i,j alg,T,p := r n,i,j p,h T , (3.5.20) associated to the error caused by the algebraic solver, similarly to the linearization error estimator; The more we make iterations, the smaller is the error.

With these estimators, we can now evaluate the error distributions in time and in space, and the error dependent of the linearization and algebraic resolution. • The global temporal error estimator:

η n,i,j tm :=    p∈{o,w} In T ∈T n (η n,i,j tm,T,p (t)) 2 dt    1 2 
;

(3.5.22)

• The global linearization error estimator:

η n,i,j lin :=    p∈{o,w} In T ∈T n (η n,i,j lin,T,p (t)) 2 dt    1 2 ; (3.5.23) 
• The global algebraic solver error estimator: .

(3.5.24)

Finally we can introduce the following corollary using Theorem 3.9, the triangle inequality, and the CauchySchwarz inequality:

Corollary 3.11 (An a posteriori error estimate distinguishing the space, temporal, linearization, and algebraic errors). Let the assumptions of Theorem 3.9 be veried. Then |||(S o -S i,j o,hτ , P -P i,j hτ )||| In ≤η n,i,j sp + η n,i,j tm + η n,i,j lin + η n,i,j alg .

To have an idea of each part of error, we should evaluate these estimators at each time step. Then, they permit us to adapt 1. Our time or space step;

2. The stopping criteria for the linear solver and for the algebraic solver.

Adaptive algorithm

To solve the nonlinear system (3.3.16), let us introduce the following adaptive algorithm using the tools we have detailed previously, issued from the non-adaptive Algorithm 3.1.

Remark 3.12 (Space and time adaptation). Let us precise that space or time adaptivity are not described in the following algorithm, but the idea is to rene (respectively coarsen) cells when η n,i,j sp,T,p is large (respectively small), or to increase (respectively decrease) time step, using γ t , when η n,i,j tm is large (respectively small). while n i=1 τ i ≤ t F do Set t n := t n-1 + τ n , set τ n := τ n-1 ; Set i = 0.

Choose initial saturations S n,0 o and pressures P n,0 according to (3.1.3).

(Typically, S n,0 o = S n-1 o and P n,0 = P n-1 ). while η n,i,j lin > γ lin (η n,i,j sp + η n,i,j tm )

(3.5.25)

do i := i + 1; Set j = 0.
Set up the linear system (3.3.17).

Choose initial saturation S n,i,0 o = S n,i-1 o and pressure P n,i,0 = P n,i-1 . while η n,i,j alg > γ alg (η n,i,j sp + η n,i,j tm + η n,i,j lin )

(3.5.26) do j := j + 1;

Perform a step of a chosen iterative algebraic method for the solution of (3.3.17), starting from S n,i,j-1 o and P n,i,j-1 ; This gives S n,i,j o and P n,i,j . These curves are also similar and such results permit to be condent in the use of a posteriori error estimators to adapt the stopping criteria.

In Figures 3.6 and 3.7, we present some a posteriori error estimators and their evolutions through the simulation of the adaptive method. We observe easily that they follow the wateroil front. We can also use those error estimates for spatial or temporal adaptation, as done in the work of [START_REF] Mamaghani | Suivi de fronts par des méthodes de ranement de maillage adaptatif et application à la simulation du procédé de récupération Steam Assisted Gravity Drainage[END_REF]. But we recall this is not the purpose of the present work. 

Computational performances

We present in this section graphs that show the computational savings of the adaptive method, in the sense that it performs less iterations without loss of accuracy.

We observe in Figure 3.8 that the estimator linked to the linearization evolves as a function of the number of Newton's iterations and the algebraic error estimator evolves as function of the number of algebraic iterations. We then observe that the quantity corresponding to the algebraic error is the smallest one, compared to the other errors. Since it is the smallest one, this quantity does not aect much the global error. Moreover, it is remarkable that the other errors do not diminish during the algebraic iterations. This suggests to stop the solver when the algebraic error has the same order as the linearization error. Figure 3.9 presents the impact of the adaptive stopping criteria on the errors and on the number of Newton's and algebraic iterations. We immediatly observe that we reduce the number of algebraic solver iterations if we use the adaptive algorithm. All these results conrm the theoretical a posteriori error analysis, it conrms the interest of adaptive stopping criteria.

Let us also remark that for a numerical experiment which requires more linearization steps per time step, the iterations savings would be much greater. 

Computational performances

Let us present in the following gures the comparisons, in terms of the number of iterations, between two simulations for heterogeneous media.

Therefore, we compare the eciency of the algorithm, more precisely, the number of algebraic and Newton's iterations done during a computation.

Figure 3.14 presents the total sum number of Newton's and algebraic iterations at each time step. First, we easily observe that due to small number of Newton's iterations executed to solve the discrete problem, we do not save a lot in this direction. But for other cases, needing more linearization steps, it would be also interesting. However, the picture on the right, showing the total number of algebraic solver iteration per time step, shows that a real win is made. The Figure 3.16 shows the number of algebraic and Newton's iterations executed during one time step. We focus on the rst and the second time steps. operations on those functions (derivation, addition, ...).

One of our mean goals is to reduce the waste of time during simulations while optimizing the algorithm used in solving the problem. The idea developed in Chapter 3 is to stop the iterations of the linear and nonlinear solvers as soon as the algebraic and linearization errors drop to a level at which they do not aect signicantly the overall error. We present how to implement the a posteriori error analysis in a resolution code in Section 4.4.

Finally, in Section 4.5, we present the particular tools implemented in processing the mesh and time adaptation. Here the key idea is to use nonconforming quadrilateral meshes derived from a topologically cartesian coarse grid. Mesh topology and metric are dealt with separately, allowing to represent non-rectangular domains.

General variables of the implementation

We introduce in this Section the main important variables used in the implementation; they are declared in Listing 4.1. They will be used throughout this chapter. In practice, the set of contexts is computed during the updating stage, by means of a Flash algorithm:

Flash :: apply(UM, Z, K(iT), X_T);

where the parameters are:

• The unknowns manager object, UM,

• The molar fraction, Z,

• The context K(iT) in the cell iT,

• The values of the unknowns X_T.

The Flash algorithm is mentioned in Section 2.1.1 and is described briey in Appendix A.

Summarizing, we dene an index in each cell, representing its context. It is associated to the set of present phases and produces the set of local unknowns. The contexts are updated at each time step, this yields unknowns that are local in space and in time.

Indexed families of subsets

The Jacobian matrix for Newton's method is constructed in Section 2.2.3. Its residual vector is the right-hand side of equation (2.3.1). Both Jacobian matrix and residual vectors are assembled by summation over sets of components, phases, or contexts. The assembling process also requires indexed families of subsets of components C, phases P and contexts K. In this paragraph, we address this issue in a systematic way.

Let I := {C, P, K} collect the three sets C, P, and K. We require that the subsets of any element I of I satisfy the following properties:

(i) Its elements are ordered. The order is arbitrary but it is xed throughout the computation;

(ii) The standard set operations between subsets of the same set I or between subsets of dierent sets I, I and I should be available and ecient.

In view of the latter point, by analogy with the characteristic function of a set, a convenient representation of a subset S ⊂ I is obtained by means of the vector v S = (v S i ) i∈I ∈ (0, 1) Then, the set operations between any two subsets can be implemented using the bitwise logical operators. Starting from the representation (4.2.1), fullling requirement (i) simply amounts to the construction of an iterator over the non-zero elements of the set. This can be achieved, e.g., using the library boost::multi_index.

I such that v S i =      1 if i ∈ S, 0 otherwise. 
The UM allows to access families of subsets of a set I 2 ∈ I indexed by the elements of I 1 ∈ I, that is to say, • {C p } p∈P , the set of components present in a given phase (I 1 = P, I 2 = C);

S I 1 I 2 := {S i ⊂ I 2 } i∈I 1 I 1 , I 2 ∈ I.
• {P c } c∈C , the set of phases in which a given component is present (I 1 = C, I 2 = P);

• {C k } k∈K , the set of components present in a given context (I 1 = K, I 2 = C);

• {P k } k∈K , the set of phases present in a given context (I 1 = K, I 2 = P). This family of subsets formally coincides with the denition of the contexts. In the implementation, however, it may be useful to distinguish between the identier of the context (in our case, the symbol k) and its set representation;

• {C k } k∈K := {C \ C k } k∈K , i.e., the set of components absent from a given context (I 1 = K,

I 2 = C).
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All of the above families of subsets can be computed and stored in a pre-processing stage.

From the implementation standpoint, a family of the form (4.2.2) can be represented by a matrix S I

1 I 2 = [m i 1 i 2 ] ∈ R I 1 ,I 2
, where all entries belongs to {0, 1} such that 

m i 1 i 2 =      1 if i 2 ∈ S i 1 , 0 otherwise. ( 4 

Unknowns

A second important purpose of the UM is the selection of the unknowns of the model in a given context k ∈ K. We stress that the aim of the UM is to provide a complete description of the problem based on the minimal data set synthetically represented by the matrix M. As a consequence, unknowns partitioning related to the primary/secondary or explicit/implicit classication is out of the scope of the UM.

We assume an arbitrary but xed ordering for the set of unknowns: pressure, temperature, saturations and molar fraction unknowns. Let us recall the form of the unknowns presented in Section 2.1.1 for a context k ∈ K: For the pressure P (Unknowns::Pressure), unknowns can be accessed by type, as follows:

• localUnknown<Unknowns::Pressure>(k) returns the index of the local unknown pressure in the context k;

• globalUnknown<Unknowns::Pressure>() returns the global index of the pressure.

In all cases, -1 is returned whenever an inappropriate request is made. The following means to access the unknowns are provided:

• For all k ∈ K, k = k ref , we let D Φ k := (0, 1, 2, . . . , N u,k -1), and C := (0, 1, 2, . . . , N u -1).

We introduce the mapping

Φ k : D Φ k → C
that associates an index j ∈ D Φ k of the vector of unknowns u k to the corresponding index Φ k (j) ∈ C of the vector u.

• The map Φ k is a one-to-one mapping from D Φ k onto its image C Φ k := Φ k (D Φ k ), and therefore its inverse map Φ -1 k is available. Moreover, in practice, whenever the inverse map is evaluated at an element j / ∈ C Φ k , an error code is returned.

• In addition to the mapping between the local numbering in the context k ∈ K, k = k ref , unknowns can be identied by type.

• Vector representation is available for the saturation and molar fraction unknowns, i.e.

∀k ∈ K, S k = (S p ) p∈P k and C k = (C p,c ) p∈P k ,c∈Cp .

• Given any subset S ⊂ U, it is possible to iterate over the unknowns of a given type (pressure, temperature, saturation or molar fraction) present in S.

In Listing 4.3, we present an example of use of the UM. The rst step consists in establishing, for all T ∈ T , a suitable partition {U P T , U S T } for the set of unknowns U T . The cardinalities of the sets U P T and U S T only depend on the context k T , but the contents of these sets may depend on other parameters. Recall that the unknowns collected in U P T are termed primary unknowns, whereas those contained in U S T are termed secondary unknowns. Introducing an ordering in the sets U P T and U S T , we obtain the vectors of primary and secondary unknowns, respectively denoted by u P T and u S T . Furthermore, we recall that the selection of the primary and secondary unknowns is not generic and is closely linked to the test case.

In order to separate the unknowns, we create a class named UnknownsSelector (US). This class has a template argument, that permits to consider the dierent test case types (two or three phase ow, immiscible or miscible uid). Each case requires a separation method.

In practice, we compute the selections in a pre-processing stage, considering all contexts and all criteria (see Section 2. virtual void e v a l ( valueType& f , g r a d i e n t T y p e& df , v a r i a b l e T y p e& x ) const =0; } One of the causes of the model diculties is that it involves multiple laws that, moreover, depend on dierent sets of arguments (e.g. ζ p (P, θ, C p ) and P cp (S p )). Therefore, it is dicult to write a general program that dierentiates these functions. Nevertheless, this can be achieved by the creation of a template interface that manages the laws using a Boost tool. This allows to treat the laws and their derivative functions considering their types as template argument for the interface.

For example, for T ∈ T , let be a law, u k T the set of variables for the context k T in T ∈ T , and u T ∈ u k T . We easily access the values:

(u T ) = u T and ∂ ∂u (u k T ) = u k T .
We also create a three-dimensional table using boost :: multy_array< Real,3 >. The rst dimension is devoted to the laws, the second is devoted to their evaluations (function values and the values of its rst derivatives) and the third dimension is devoted to the cells (for each cell, we have the set of laws, their evaluations and the evaluation of their rst derivatives).

This tabular dimension is:

N laws × (1 + N variables ) × N cells .
When we initialize a set of laws (e.g. {ζ, P c , ν}), we evaluate all laws and their partial derivatives for each cell with the function eval. This three-dimensional table containing the laws and their evaluations is stored.

To access the evaluated results, we can identify the laws by their names (string type) or by

A posteriori estimators for adaptive algorithm

The aim of a posteriori error estimators is to identify the origin of the error in the simulation.

The error indicators represent the distribution of errors due to the discretization (in space or in time) or due to the algorithm solving the problem (linearization algorithms or algebraic resolution of linear systems). We use an a posteriori error analysis to optimize the computation. Our theoretical and numerical results are presented in Chapter 3. In this section, we describe how we implement the estimators.

To store all estimators, at each (time, linear or algebraic) iteration, in each cell, we use a boost :: vector<Real>. Furthermore, to implement the a posteriori error estimators, for example global estimators dened in Section 3.5.5, we dene in Section 4.4.1, a method to approximate the integration. Furthermore, to build the a posteriori error estimators, we need tools to reconstruct dierent quantities. We also need dierent maps which handle the dierent items (ane functions, quadratic and bilinear forms or the RTN Space). In Section 4.4.2 we describe how we deal with these issues. Finally, in Section 4.4.3, we explain the facilities implemented for the user.

Quadrature method

We need to discretize integrals in order to evaluate the local and the global estimators. To this end, we use the Gauss quadrature method. In practice, a std :: map is created, which permits to choose the desired accuracy. For this, the number n of quadrature nodes is given by the user.

Then, the corresponding quadrature coecients are computed. These are called the weights w i , with 0 ≤ i ≤ n. In 1D, the Gauss quadrature has the form:

I = b a η(x) dx ∼ n i=1 w i η(x i ), (4.4.1) 
where the nodes x i are distinct, and strictly contained in ]a, b[. This method is exact for polynomials of degree 2n -1.

Reconstructions

The reconstructions, dened in Section 3. Ane functions We need piecewise ane functions in time for example to interpolate the pressure (recall that P hτ (t n ) = P n h ). To this end, we dene two eval functions, one for ane functions and the other one for their derivatives.

Piecewise constant and constant functions As in Section 3.5.3, in order to approximate the pressure, we use piecewise quadratic pressure in each cell and globally continuous bilinear functions in each cells. We create two maps to achieve this reconstruction:

• The QuadraticMap<typename MetricType>(const MeshType & Mesh); // P is a point in the 2D cell T Real P r e s s u r e=Q u a d r a t i c P r e s s u r e . e v a l (P , T ) ; P oin t DbilinearDX=b i l i n e a r F o r m . g r a d i e n t (P , T ) ; P oin t u=t h e t a . e v a l (P , T ) ;

Implementation facilities of the method

The a posteriori error estimators have been implemented as a user-friendly module that is presented as an independent bloc in the resolution algorithm. In this block we:

• Create all reconstructions used to evaluate the estimators.

• Store all quantities evaluated in the basic algorithm (uxes, unknowns, source terms).

• Perform all operations required by the a posteriori error analysis.

• Compute the a posteriori error estimators.

Mesh adaptation

The simulations of the SAGD process are extremely sensitive to the grid size. Indeed, this process creates ow interfaces, between oil and water for example. One of the issues of the simulations is to follow those interfaces, named fronts. Those fronts are thin in comparison with the reservoir size (of the order of a meter for the front versus a kilometer for the reservoir).

Thus, one of the diculties of this numerical simulation is to deal with this constraint. The common strategy is to perform a dynamic mesh adaptation, which evolves in function of the front. A posteriori error estimators can help locating the cells that need to be rened or coarsened, see for example [START_REF] Mamaghani | Development of a renement criterion for adaptive mesh renement in steam-assisted gravity drainage simulation[END_REF].To this end, we create some tools to locally rene or coarsen cells. Then we need to update all the data at each change.

The initial mesh is a conforming rectangular mesh. The mesh is composed of cells, nodes and faces. To initialize a mesh, we use the class Mesh, from which the class MeshTopology (MT) inherits. We also need to input the number of coarse cells in all directions for the rst level (level 0), the number of renement levels we want, and the type of metric we choose.

Finally, we can dene an integer parameter RHO which denes the division factor for the renement order. For example, if RHO is an integer, to rene a cell, we divide it into RHO cells in each direction.

MT then creates ordered indices for cells, nodes, and faces. Finally, at initialization, all elements of the mesh at level zero become active using the boolean value true, whereas all other elements are initialized with an inactive statut thanks to the boolean values false.

To summarize, all elements have general mesh properties as:

• The global index which permits to distinguish or to compare two elements which are not necessarily at the same stage.

• The renement level, the dierent levels correspond to the dierent stages of rened mesh. At the beginning, the mesh is composed of coarse cells, whose levels are 0. Then, each renement step corresponds to a higher level.

• The state index is a boolean value expressing if they are active or not. Due to operations applied on the mesh, all cells can be active or not. This means that if a parent cell is rened, into several children cells, the parent cell becomes inactive, whereas the children cells become active. On the contrary, if a group of children cells are coarsened into a parent cell, all the children cells become inactive while the parent cell becomes active.

Listing 4.9: Mesh initialization i n t e g e r RHO; // factor of cell division for the renement step Thus, the MT class permits to obtain some mesh characteristics, e.g. the number of (active) cells, nodes or faces, or the boundary faces. We also have access to list of elements which are linked to each other, for example, the set of neighboring cells for a given cell, or the set of nodes belonging to a face, or the set of faces touching a node. Finally the code returns iterator couples to browse the dierent lists of elements we get; It is useful to build loops. We Nous avons aussi :

• proposé un schéma discret par des volumes nis en espace et un schéma de Euler implicite retrograde en temps,

• proposé un algorithme de linéarisation de Newton,

• présenté les principaux aspects de leur implémentation. • considérer des schémas multipoints avec des grilles déformées (quadrilatères ou hexaèdres),

• simplier la formulation des indicateur d'erreur, pour éviter les reconstructions dans les bases de Raviart-Thomas-Nédélec,

• procéder à des comparaisons entre diérents estimateurs de l'erreur.

Remark A.1. We observe that ϑ 1 + ϑ 2 = 1. Indeed, On the other hand, when the component c is missing from the phase p 1 , we divide the rst line of (A. We also determine ϑ, such that f RR (ϑ) = 0. Using this method, the continuity of the dierent quantities are conserved, even if the context changes, and the thermodynamic conservation equality is respected:

C p 1 ,c -K c C p 2 ,c = 0, for all c ∈ C. 
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The saturation for the phase p ∈ P The number of moles for the component c ∈ C η n,i,j

R,T,p

The residual estimator for the phase p, in the cell T , at the time step n, i-th nonlinear step, j-th linear step.
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η n,i,j

F,T,p

The ux estimator for the phase p, in the cell T , at the time step n, i-th nonlinear step, j-th linear step.
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η n,i,j

NC,T,p

The nonconformity estimator for the phase p, in the cell T , at the time step n, i-th nonlinear step, j-th linear step.
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CHAPITRE 1 Introduction 1 . 1

 111 Contexte et motivationsGrâce aux techniques actuelles, l'exploitation d'un réservoir de pétrole est de l'ordre de 35% en moyenne. Il existe des procédés qui tentent d'augmenter la récupération des hydrocarbures fortement visqueux, dits huiles lourdes . Ces huiles lourdes sont les plus diciles à extraire.

Figure 1 . 1

 11 Figure 1.1 Procédé de récupération assistée de pétrole ou Enhanced Oil Recovery (EOR).

  lution d'un système discret ont recours à des méthodes itératives, ces estimateurs d'erreur vont permettre d'optimiser les critères d'arrêt utilisés. Ainsi, on peut espérer économiser un nombre conséquent d'itérations et a fortiori du temps de calcul. Ces méthodes ont été développées par exemple par Becker, Johnson et Rannacher [17], Arioli, Loghin et Wathen [14], Chaillou et Suri [27, 26] et Jiránek, Strako² et Vohralík dans [53]. 1.3 Objectif de la thèse 1.3.1 Chapitre 2 : Le modèle compositionnel de Darcy Ce chapitre présente une formulation mathématique des écoulements multi-phasiques multicompositionnels en milieu poreux. Les uides considérés sont donc composés de plusieurs phases, chacune étant elle-même composée d'éléments chimiques appelés composants. Ces écoulements sont régits par le modèle de Darcy. L'un des enjeux de ces simulations réside dans l'inuence du mouvement des phases qui permet à celles-ci d'apparaitre ou de disparaitre à tout instant et en tout point du domaine. On introduit donc la notion de contexte, qui permet d'associer à chaque point du domaine un indice, cet indice correspondant alors à l'ensemble des phases présentent en ce point. Ainsi, la modélisation des phénomènes évoluent en chaque point du domaine en fonction de ce contexte. Le nombre d'équations et d'inconnues varient en fonction des phases présentes ou absentes. La gestion des inconnues en chaque point du domaine est dicile. Elle est traditionellement gérée par un algorithme Flash. Un exemple de cet algorithme est décrit dans l'Annexe A. Le modèle de Darcy est alors composé d'équations de conservation de la masse et de moment pour chaque composant, de conservation de volume pour chaque phase, de conservation de la quantité de matière dans chaque phase présente et d'équations d'équilibre des composants appartenant à plusieurs phases présentes. Ce modèle permet de modéliser les échanges thermiques. Dans ce cas, une équation supplémentaire est ajoutée : l'équation de conservation de l'énergie. Habituellement dans l'industrie petrolière, on utilise une formulation du type Coats [35], qui permet d'évaluer une pression de référence, les saturations de chaque phase, les fractions molaires pour chaque composant de chaque phase et le nombre de moles pour chaque composant absent du context. Le modèle continu est détaillé en section 2.1, on trouve la description des inconnues en 2.1.1, les propriétés du uide et du milieux en 2.1.2, les équations en 2.1.3 et on y introduit la notion de contexte en 2.1.4.

1

  where all entries belongs to {0, 1}, such that, for all c ∈ C and all p ∈ P, if the component c is contained in the phase p,

2. 1 . 3 . 3

 133 Mole number Equations (2.1.5a)(2.1.5b) are N C PDEs linking the variation in time of the number of moles of a component c ∈ C at a given point in Σ with the ow of the phases containing the component c and the source term q c . In particular, for all k ∈ K, the number of moles n c is an unknown for all c ∈ C k whereas, for all c ∈ C k it can be inferred from the denition n c = φ p∈P k ∩Pc ζ p (P, (θ), C p )S p C p,c .

Figure 2 . 1 :

 21 Figure 2.1: Schematic picture of production and injection wells

  {k n T } T ∈T such that, for all 1 ≤ n ≤ N F and all T ∈ T , k n T ∈ K represents the context in the cell T , at time t n . The set of phases present in the cell T is denoted by P k n T . It is updated during the computation at each time step. The discrete counterpart of the unknowns (2.1.3)

1 . 5 )

 15 (2.1.6)(2.1.10) based on Multi-Point FV (MPFV) scheme and phase-upwinding. Recall that throughout this work we restrict ourselves to fully implicit time discretizations. Thus we need to integrate the conservation equations over a control volume T ∈ T and over a time interval I n . We have, for each component c ∈ C:

Figure 2 . 2 : 0 .

 220 Figure 2.2: Example of an internal upwind cell conguration.

1

 1 , we extract, from the full matrix of N alg,T linearly independent columns that we orthonormalize according to the Greedy algorithm, briey described in Algorithm 2.1.Below, V i denote the columns of Immiscible isothermal two-phase ow caseWe consider here, as in Example 2.7, the immiscible isothermal two-phase ow ve-spot case, and we use the cell-centered nite volume scheme presented in Section 2.2. The domain is a 200km × 200km square and the mesh is conforming and uniform 20 × 20 (i.e. 400 cells). In this numerical experiment, we do not use space or time adaptation. We consider a homogeneous isotropic media, where the permeability constant is equal to κ T = 1.0 • 10 -13 , for all T ∈ T and the permeability tensor is diagonal. The time step τ is equal to 2.16 • 10 6 s and the nal time is 4.32 • 10 6 s. We prescribe the following initial conditions on the saturation. At the beginning of the simulation, the reservoir is full of oil, therefore S 0 o,T = 1 for all T ∈ T and hence S 0 w,T = 0 for all T ∈ T . Since we propose to inject water through the injection wells, Algorithm 2.1 Coarse view of a Greedy algorithm Set i := 1

  end for we also impose that S 0 w,W,T = 1. Moreover, we have to enforce boundary conditions as in Equation (2.1.11):∀p ∈ P, -→ v p • n = 0 on ∂Ω.The porosity in the domain is constant and equal to φ = 0.1. To respect physical data, we have to dene the laws governing the test case, described in Section 2.1.2. First, the viscosity of the oil µ o (P ) = 5 • 10 -4 and the molar density ζ o (P ) = 1. Then for the wetting phase, the viscosity is equal to µ w (P ) = 1 • 10 -4 and the molar density ζ w (P ) = 1. Finally, for both phases, the relative permeability k rp = S 2 p . To simplify the resolution of the model, we consider no capillary pressure.

Figure 2 . 3 :

 23 Figure 2.3: Water saturation (left) and global pressure (right) at the initial time.

Figure 2 . 4 :

 24 Figure 2.4: Water saturation (left) and global pressure (right) at time 2.16 • s.

Figure 2 . 5 :

 25 Figure 2.5: Water saturation (left) and global pressure (right) at time 4.32 • s.

Figure 2 . 6 :Figure 2 . 7 :

 2627 Figure 2.6: Water saturation (left) and global pressure (right) at time 6.48 • 10 6 s.

Figure 2 . 8 :

 28 Figure 2.8: Water saturation (left) and global pressure (right) at the initial time.

Figure 2 . 9 :

 29 Figure 2.9: Water saturation (left) and global pressure (right) at time 2.16 • 10 6 s.

Figure 2 . 10 :

 210 Figure 2.10: Water saturation (left) and global pressure (right) at time 4.32 • 10 6 s.

Figure 2 . 11 :

 211 Figure 2.11: Water saturation (left) and global pressure (right) at time 6.48 • 10 6 s.

3. 1

 1 Introduction 3.1.1 Two-phase model As in Section 2.1, Ω ⊂ R d , where the dimension d ≥ 2, denotes a bounded connected polygonal domain, with unit exterior normal n Ω , and t F > 0 represents the nal time of the modelization.

( 3 . 1 . 7 )70CHAPTER 3 .

 3173 VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO

  More generally, D(a, b; H) denotes the space of C ∞ functions of time with compact support in (a, b), and with values in H. As far as negative spaces in time are concerned, we shall use the space H -1 (a, b; H) of all distributions of the form f 0 + ∂ ∂t f 1 , where f 0 and f 1 are functions of L 2 (a, b; H).

  This denition is motivated by (3.2.4).

(

  

( 3 . 2 . 21 )

 3221 Hence, substituting (3.1.2) into (3.1.1), we deduce the weak variational formulation: Find P, S o , S w satisfying

( 3 .

 3 2.23b)This formulation is weakly equivalent to the original problem (3.1.1)(3.1.4) in the following sense.

1 . 1 )( 3 . 1 . 4 )

 11314 , by setting -→ v p (P, S p ) = -K(∇[P + P cp (S p )]), for p = o, w.

Comparing with ( 3 . 2 .

 32 23), this yields ∀ ψ ∈ D(Ω), φ S p (•, 0), ψ = φ Ω S 0 p ψ dx, i.e. in the sense of the distributions S p (•, 0) = S 0 p , and since the right-hand side belongs to L 2 (Ω), this equality holds a.e. in Ω and φS p (•, 0) belongs to L 2 (Ω), whence (3.1.3).

  The normal components of functions in these spaces are constant on each face and consequently have one degree of freedom per face. It is well-known that by 82CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO choosing these degrees of freedom on all faces of the mesh, we can represent discrete functions in H(div, Ω). If, in addition, these degrees of freedom vanish on all boundary faces of the mesh, then the discrete functions belong to H 0 (div, Ω). These two properties motivate the denition of the RaviartThomasNédélec spaces: RTN(T ) := {v h ∈ H(div, Ω) | v h|T ∈ RTN(T ), ∀T ∈ T }, and RTN 0 (T ) := RTN(T ) ∩ H 0 (div, Ω).

Remark 3 . 5 (

 35 Triangular mesh). On simplices the discrete space are dened by RTN(T ) := [P 0 (T )] d + P 0 (T )x.

( 3 . 3 . 2 )

 332 Using the Gauss theorem and the same notation as in the discretization of the compositional model, after division by τ n , the second term in (3.3.2) has the expression: p (P, S p ) -→ v p (P, S p ) • n dΓ dt ,(3.3.3) 

  w,T . It is eliminated from (3.3.10) by means of the local volume conservation equation: S n w,T = 1 -S n o,T . The reduced set of unknowns is ũn := {P n , S n o }, where P n = {P n T } T ∈T and S n o = {S n o,T } T ∈T . This simplies the set of equations (3.3.10) and we can write the following discrete model for the equation (3.1.1)(3.1.4): for all 1 ≤ n ≤ N F , all T ∈ T , and all p ∈ {o, w}:

P 0

 0 is given by(3.3.11). Henceforth, for a function ξ we express ξ(S w ) by ξ(S o ) :=ξ(1 -S o ). As a consequence, k rw (S o ) = k rw (1 -S o ), P cw (S o ) = P cw (1 -S o ), and -→ v w = -→ v w (P, 1 -S o ).

86CHAPTER 3 .

 3 VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FOThen (3.3.12) becomes:

Remark 3 . 8 ( 0 o:= S n- 1 o

 3801 Initialization). At each rst iteration of the nonlinear and linear solvers, we traditionally prescribe S n,and P n,0 := P n-1 , and S n,i,0 o := S n,i-1 o and P n,i,0 := P n,i-1 .88CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO Algorithm 3.1 Basic solution algorithm without adaptationCreate the mesh T , an initial time step τ 0 , set t 0 = 0 and n = 0;Choose the initial saturation S 0 o by(3.3.13);

  end whileSet S n,i o := S n,i,j o and P n,i := P n,i,j .end whileSet S n o := S n,i o and P n := P n,i . end while 3.4. POST-PROCESSINGS AND ELEMENTS OF ERROR ANALYSIS 89

Figure 3 . 1 :

 31 Figure 3.1: Schematic visualization of pressure reconstruction: calculated pressure (blue) and quadratic interpolated pressure (green).

Figure 3 . 2 .

 32 The nodal interpolation (3.5.2) is a classical averaging formula. Once the nodal degrees of freedom are dened by (3.5.2), the interpolant I( P n,i,j h ) is the unique bilinear function in each cell T that takes the values I( P n,i,j h )(D) at the four verticies D of T . It has the form ∀(x, y) ∈ T, I(x, y) = a n,i,j T xy + b n,i,j T x + c n,i,j T y + d n,i,j T , (3.5.3) with a n,i,j T , b n,i,j T , c n,i,j T , and d n,i,j T real coecients on each cell T . We set δ n,i,j p,h := I( P n,i,j p,h ), (3.5.4)

Figure 3 . 2 :

 32 Figure 3.2: Schematic visualization of pressure reconstruction: calculated pressure P n,i,j h

( 3 . 5 . 16 )

 3516 which is the requested local conservation property (3.5.1).

3. 5 . 5 A

 55 posteriori error estimate distinguishing the error components In order to use the a posteriori error estimators and to design an adaptive algorithm, let us dene the global version of the estimators (3.5.17)(3.5.20) as follows: 100CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO • The global spatial error estimator:

102CHAPTER 3 .

 3 VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO Algorithm 3.2 Adaptive algorithm Create the mesh T , an initial time step τ 0 , set t 0 = 0 and n = 1. Choose initial saturation S 0 o and articial pressure P 0 according to (3.3.13) and (3.3.14).

  S n,i o := S n,i,j o and P n,i := P n,i,j . end while Set S n o := S n,i o and P n := P n,i . end while 3.6.1.1 Identication of the dierent sources of the error First, we present the quantities we evaluate and the values of the unknowns (pressure, phase saturations), the values of the a posteriori error estimators. Figures 3.3 and 3.4 represent the water saturation, and respectively the global pressure, computed at dierent simulation times with the non-adaptive method and with the adaptive one. There are no observable dierences between both results.In particular, Figure 3.5 shows two curves of the pressure on a diagonal line of the domain obtained with the non-adaptive and the adaptive algorithm.

Figure 3 . 3 :

 33 Figure 3.3: Wetting phase saturation obtained by the non-adaptive algorithm (left) and adaptive algorithm (right) at time 2.16 • 10 4 s (top), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (bottom).

Figure 3 . 4 :

 34 Figure 3.4: Reference pressure obtained by the non-adaptive algorithm (left) and the adaptive algorithm (right) at time 2.16 • 10 4 s (top), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (bottom).

Figure 3 . 5 :

 35 Figure 3.5: Reference pressure curves (left) obtained by the non-adaptive algorithm (top) and the adaptive algorithm (bottom) at time 4.32 • 10 4 s (left), on a line in the domain (right).

Figure 3 . 6 :

 36 Figure 3.6: Spatial a posteriori error estimator η n,i,j sp,T,p (t) at time 2.16 • 10 4 s (top), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (bottom) .

Figure 3 . 7 :

 37 Figure 3.7: Residual a posteriori error estimator η n,i,j R,T,p (t) (left), diusive ux a posteriori error estimator η n,i,j F,T,p (t) (right) at time 2.16 • 10 4 s (top), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (bottom) .

110CHAPTER 3 .

 3 VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO 3.6.1.

Figure 3 . 8 :

 38 Figure 3.8: Evolution of the error estimators η n,i,j sp , η n,i,j tm , η n,i,j lin and η n,i,j alg evaluated as function of the algebraic iterations on the rst Newton's iteration (left) and as function of Newton's iterations (right) at time 4.32 • 10 4 s.

Figure 3 . 10 :

 310 Figure 3.10: Random permeability in the domain.

Figure 3 . 11 :

 311 Figure 3.11: Wetting phase saturation at time 2.16 • 10 4 s (left), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (right).

Figure 3 . 12 :

 312 Figure 3.12: Reference pressure at time 2.16 • 10 4 s (left), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (right).

Figure 3 . 13 :

 313 Figure 3.13: Spatial estimator at time 2.16 • 10 4 s (left), at time 2.16 • 10 6 s (middle) and at time 4.32 • 10 6 s (right).

Figure 3 . 14 :

 314 Figure 3.14: Number of Newton's iterations (left) and accumulated number of algebraic iterations (right) per time step for the non-adaptive algorithm (red curve) and for the adaptive algorithm (blue curve).

Figure 3 . 15 :

 315 Figure 3.15: Evolution of the error estimators η n,i,j sp , η n,i,j tm , η n,i,j lin , and η n,i,j alg evaluated as function of algebraic iterations on the rst Newton's iteration (left) and as function of Newton's iterations (right) at time 4.32 • 10 4 s.

Figure 3 . 16 :

 316 Figure 3.16: Number of algebraic iterations per Newton's iterations at time 4.32 • 10 4 s (left) and at time 6.48 • 10 4 s (right).

Listing 4 . 1 :

 41 DeclarationMetricType Mh( data . mesh . hx , data . mesh . hy ) ; MeshType Th( data . mesh . nx , data . mesh . ny , data . mesh . l , Mh) ; // Absolute permeability tensor C e l l D i a g o n a l T e n s o r V a r i a b l e perm ; // Global unknowns RealMatrix X(Th . n u m A c t i v e C e l l s ()+ data . i n j e c t i o n W e l l . s i z e ( ) , UM. numberOfUnknowns ( ) ) ; I n t e g e r V e c t o r K(Th . n u m A c t i v e C e l l s ( ) ) ; // Context per cells // Molar accumulations RealMatrix N=Ze ro Rea lM atr ix (Th . n u m A c t i v e C e l l s ( ) ,N_C+UM. i s T h e r m a l ( ) ) ; // Primary-secondary unknowns selector UnknownsSelectorImmiscibleTwoPhase US(UM, K,X ) ; // Wells s t d : : l i s t <I n j e c t i o n W e l l > i n j e c t i o n _ w e l l s ; s t d : : l i s t <ProductionWell > p r o d u c t i o n _ w e l l s ; combinations of phases are stored in this set of sets. Furthermore, the context k ref , in which all phases are present, is called the reference context. The reference context provides the largest possible set of unknowns. To handle purely thermal models in the same framework, we also dene the empty context ∅ K ∈ K in the spirit of Remark 2.5. The context is initialized as in Listing 4.1, Line 12. From a computational point of view, we use the Standard Library (std), and the type of the context is given by std :: vector<Integer>. Note that we store one context per cell.

( 4 .

 4 2.1)

( 4 . 2 . 2 )

 422 The set I 1 denes the support type, whereas I 2 provides the element type. Relevant examples of families of the form (4.2.2) include

u

  k := P, (θ), (S p ) p∈P k , (C p,c ) p∈P k , c∈Cp . The vector of unknowns in the reference context, u k ref , is maximal, and can be used to establish the global numbering of the unknowns. For brevity of notation, when k = k ref , we drop the index k and let u = u k ref . Moreover, we denote by N u,k the number of unknowns in the context k ∈ K (the index k is again omitted whenever k = k ref ). From the point of view of implementation, an unknown in a given context k = k ref can be referenced via its unique identier in the reference context k ref . To complete the set of unknowns of the compositional model, we introduce the vector of moles of the components that are only present in phases, which are absent from a given context, i.e. ∀k ∈ K \ {k ref }, n k := (n c ) c∈C k . Remark 4.1. There is no need to dene n k ref , because all phases are present in the reference context k ref .

Listing 4 . 3 :

 43 UnknownsManager // Initialize the unknowns manager with the phase-component matrix UnknownsManager UM( M ) ; // Retrieve phases by components const I S e t * Pc = UM. s u b S e t ( UnknownsManagerProperty : : EPhasesByComponent ) ; // Retrieve phases by context const I S e t * Pk = UM. s u b S e t ( UnknownsManagerProperty : : EPhasesByContext ) ; // Compute the intersection P c ∩ P k for given c ∈ C and k ∈ K and store it in P c,k S e t O p e r a t i o n s : : R e s u l t Pck ; S e t O p e r a t i o n s : : I n t e r s e c t i o n ( Pc->asMatrixRow ( c ) , Pk->asMatrixRow ( k ) , Pck ) ; // Compute the union P k1 ∪ P k2 for given k 1 , k 2 ∈ K S e t O p e r a t i o n s : : R e s u l t Pk1k2 ; S e t O p e r a t i o n s : : Union ( Pk->asMatrixRow ( k 1 ) , Pk->asMatrixRow ( k 2 ) , Pk1k2 ) ; // Infer context index from a list of present phases unsigned P [ 2 ] = { 0 , 1 } ; UM. c o n t e x t (P , P+1); // return the ranges of unknowns for a given context k ∈ K Range P _range = UM. range<Unknowns : : P r e s s u r e >(k ) ; Range θ_range = UM. range<Unknowns : : Temperature >(k ) ; Range S _range = UM. range<Unknowns : : S a t u r a t i o n >(k ) ; Range C _range = UM. range<Unknowns : : Composition >(k ) ;4.2.4 Selection of primary and secondary unknownsThe number of unknowns in the global system can be reduced using a local elimination procedure, based on the Jacobian matrix ∂D T ∂u T of the closure relations (2.2.35c) evaluated locally; see Section 2.3. We consider here a given time step n, 0 ≤ n ≤ N F , and a Newton iteration k, and drop both indices to simplify the notation.

Listing 4 . 5 :

 45 3). The inputs for the US class are an object of type UM and the vector of contexts. From the standpoint of implementation, U P T and U S T are std :: list of global unknowns index. Moreover, u P T and u S T are std :: vector. with all their arguments. This interface uses also template arguments; therefore it allows to consider dierent types of functions. Listing 4.5 gives some examples. Dierentiable function evaluator template<typename F , typename DF, typename X> struct I D i f f e r e n t i a b l e F u n c t i o n E v a l u a t o r { typedef F valueType ; typedef DF g r a d i e n t T y p e ; typedef X v a r i a b l e T y p e ;

•

  The BilinearMap<typename MetricType>(const MeshType & Mesh); both with the mesh as sole argument. We then compute in each cell the coecients a n T , b n T , c n T , d n T , and e n T of the quadratic form with the approximate values of the pressure P n T , the uxes F n p,T,σ , and the permeability tensor κ T (see Section 3.4.1.2 for more details on the construction method). Listing 4.8 presents how we compute the value of the function and its derivatives at a point. The same work is done for the continuous pressure interpolation, presented in Section 3.5.2: We implement a bilinear map, and we compute for each cell its coecients a n T , b n T , c n T , and d n T that determine the polynomial function and its derivatives at every point in the domain. These coecients are obtained by nodal averages. Summing up, we build a class that computes and stores these nodal averages, the NodeAveragingInterpolation<MetricType> class. The arguments are the mesh and the discontinuous quadratic pressure, computed previously. Listing 4.8 shows this object in Line 8-9, then in Line 10, we give an abridged version of a continuous bilinear pressure reconstruction. Lines 16-17 presents examples of the eval functions.

Flux

  reconstruction In order to reconstruct uxes, we need to create continuous velocities, as described in Section 3.5.1. For this we implement a map that manipulates Raviart Thomas Nédélec spaces. It evaluates in particular, for all cells, the values of the coecients a n T , b n T , c n T , and d n T , such that the functions have the form: χ n p,h | T = These continuous velocities are construct in each cell using the values of the uxes on the faces. The Listing 4.8 shows in Lines 12-13, how to initialize a RTNSpace<MetricType>(const MeshType & mesh), and in Line 18, how the function is evaluated at a point. Listing 4.8: Reconstruction functions // Quadratic pressure and bilinear pressure creation QuadraticMap<MetricType> Q u a d r a t i c P r e s s u r e (Th ) ; BilinearMap<MetricType> b i l i n e a r F o r m (Th ) ; // Pressure global index I n t e g e r i P r e s s u r e=UM. globalUnknown ( Unknowns : : P r e s s u r e ( ) ) ; Q u a d r a t i c P r e s s u r e . compute (X( i P r e s s u r e ) , flux_F , perm ) ; // Pressure interpolation N o d e A v e r a g i n g I n t e r p o l a t i o n <MetricType> N o d e P r e s s u r e I n t e r p o l a t i o n (Th , Q u a d r a t i c P r e s s u r e ; b i l i n e a r F o r m . compute ( N o d e P r e s s u r e I n t e r p o l a t i o n ) ; // Flux construction in RTN space RTNSpace<MetricType> t h e t a (Th ) ; t h e t a . compute ( flux_F ) ;

I n t e

  g e r N, M; // number of cells in x-direction, and y-direction ConstantMetric <RHO> Mh( 1 . /N, 1 . /M) ; // unit square domain Mesh<ConstantMetric <Rho> > Th(N, M, L , Mh) ; // initial mesh We consider a mesh with two coarse cells in the x-direction and two coarse cells in the y-direction. We dene RHO = 2. See in Figure4.1, the mesh at initial level, only composed by coarse cells (level 0, colored in yellow). In gure 4.2, the mesh has been rened and is composed of three dierent levels of cells (level 0; level 1, in orange; level 2, in red). Figures 4.14.3, present the dierent active cells and their dierent levels.

Figure 4 . 1 :

 41 Figure 4.1: Trivial example of a coarse mesh.

Figure 4 . 2 :

 42 Figure 4.2: Trivial example of a rened mesh.

Figure 4 . 3 :

 43 Figure 4.3:The dierent level of the rened mesh.

  also use Boost loop: BOOST_FOREACH(element, elementList){...}, and we easily loop on each type of list, see Listing 4.10 to have examples. Listing 4.10: Subset access using MT // Let T be the mesh // Loop over the active cells BOOST_FOREACH( const C e l l & T, Th . g e t A c t i v e C e l l L i s t ( ) ) { Real mT=Th . getMeasure (T ) ; const C e l l T_active=Th . f i n d C e l l A c t i v e P a r e n t (T ) ; BOOST_FOREACH( const Face & F , Th . g e t C e l l F a c e L i s t (T) ) { I n t e g e r iF=Th . g e t F a c e I n d e x (F ) ; } }With MT, a mesh can be rened or coarsened, depending on the criterion we choose. We also use the parameter RHO to dene how a cell can be rened or coarsened. Furthermore, we impose that two neighboring cells, cannot have more than two level dierence. So using a specic criterion, each cell can be rened in RHO × RHO children cells or considering RHO neighboring cells in all directions, they can be coarsened into a parent cell, see Figure4.44.5 to have a schematic representation.
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 44 Figure 4.4: Rening process with RHO = 3.

Figure 4

 4 Figure 4.5: coarsening process with RHO = 3.

Example 4 . 2 (

 42 Rened mesh). We consider a coarse mesh with 4 cells in the x-direction and 4 cells in the y-direction. We have RHO = 2. Listing 4.11 presents briey a function to test the renement tools. Then Figure 4.6 show the mesh at initial level and Figure 4.7 the rened mesh at level 2 with three dierent levels of rened cells. Listing 4.11: Rened functionalities // v is an eval function MyFunction v ; //v h is the vector of results for all cells C e l l R e a l V a r i a b l e vh ; // Cell set initialization MeshTopologyTraits : : C e l l S e t r e f i n e , c o a r s e n ; // tag the cells to rene and to coarsen Th . t a g C e l l s ( r e f i n e , c o a r s e n ) ; // update the mesh Th . update ( MeshTopologyTraits : : ACTIVE_FACES | MeshTopologyTraits : : NODE_2_NONCONFORMING_FACES) ; // evaluation of the function v on all cells // results are stored in the vector v h B a r y c e n t r i c I n t e r p o l a t o r _ T : : e v a l (Th , vh , v ) ;

Figure 4 . 6 :

 46 Figure 4.6: Coarse mesh (level= 0).Figure 4.7: Rened mesh (level= 2)

Figure 4 . 7 : 1

 471 Figure 4.6: Coarse mesh (level= 0).Figure 4.7: Rened mesh (level= 2)

D

  'autre part, nous avons étudié de plus près le cas simplié d'un modèle de Darcy diphasique immiscible et isotherme. Nous avons choisi les espaces des inconnues, mis le problème sous forme variationnelle et démontré l'équivalence avec le problème d'origine, sous des hypothèses convenables. Nous l'avons discrétisé en espace sur une grille rectangulaire par un schéma de volumes nis à deux points avec décentrage en amont des ux diusifs. Nous avons ensuite déni une norme faible du résidu, établi des indicateurs d'erreur et majoré cette norme faible par ces indicateurs. Enn, nous avons utilisé ces indicateurs pour 139 contrôler le nombre d'itérations de l'algorithme de Newton et du solveur linéaire. Ces algorithmes et des outils de gestions du ranement de maillage ont été implémentés dans un prototype et nous avons validé l'étude théorique par des essais numériques. 5.2 Perspectives futures Etant donné la diculté mathématiques du problème étudié et l'intérêt que présentent l'usage des estimateurs d'erreur a posteriori pour optimiser les choix des critères d'arrêt des solveurs non linéaire et linéaire, il serait intéréssant de

1 C p 1 ,c + c∈C ϑ 2 C p 2 ,c =ϑ 1 c∈CC p 1 ,c + ϑ 2 c∈CC p 2 ,c =ϑ 1 + ϑ 2 .(A. 2 . 2 )

 1211221222 Thus we write ϑ = ϑ 1 to simplify the notation:Z c = ϑC p 1 ,c + (1 -ϑ)C p 2 ,c . (A.2.3)Remark A.2. When the component c is missing from the phase p 2 , we set K c = 0. Then K c C p 1 ,c = 0 and the rst line of (A.2.1) gives C p 2 ,c = 0.

2 . 1 )

 21 by K c and we set K c = +∞. Then 1 K c C p 2 ,c = 0, and the rst line of (A.2.1) gives C p 1 ,c = 0.From (A.2.3) and from the rst line of (A.2.1), we deduce for each component c ∈ CC p 1 ,c = Z c ϑ + (1 -ϑ)K c (A.2.4) and C p 2 ,c = K c Z c ϑ + (1 -ϑ)K c . (A.2.5)Therfore, the second and third lines of (A.2.1) imply c∈CZ c ϑ + (1 -ϑ)K c = 1 = c∈C K c Z c ϑ + (1 -ϑ)K c . Hence c∈C Z c (K c -1) ϑ + (1 -ϑ)K c = 0.and the poles of ϑ belongs to [ϑ 0 , ϑ 1 ] where

(A. 2 C p 2

 22 .12) Finally, the results are treated depending on three congurations:1. If ϑ 0 ≤ 0 (i.e. K max ≤ 1) then the extend ash gives no positive solutions C p 1 ,c and C p 2 ,c unless when ϑ → -∞ . The Flash gives a single phase state p 2 . ,c = Z c , for c ∈ C.

(A. 2 . 13 ) 2 .C p 1

 21321 If ϑ 1 ≥ 1 (i.e. K min ≥ 1) then the extend ash gives no positive solutions C p 1 ,c and C p 2 ,c unless when ϑ → +∞ . The Flash gives a single phase state p 1 . ,c = Z c , for c ∈ C.(A.2.14) 3. For the other cases, the Rachford-Rice function admits an unique solution ϑ ∈ [0, 1], and gives C p 1 ,c and C p 2 ,c , both positive numbers. We have , s.t.f RR (ϑ) = 0, C p 1 ,c = Zc ϑ+(1-ϑ)Kc , for c ∈ C, C p 2 ,c = K c C p 1 ,c , for c ∈ C.

2 . 1 C

 21 p,cThe molar fraction for the component c ∈ C of the phase p ∈ P

T 2 P n TTt n 2 2 C k n TT

 2n22n The set of phases present in the cell T 2.The discrete reference pressure in the cell T at time t n The discrete temperature in the cell T at time t n The discrete molar fraction for c ∈ C of p ∈ P T T at time The discrete number of moles for the component c ∈ C 2.The set of absent components for the context k n T Vector of P , θ, S, and C unknowns in the cell T at time step n

  1, les équations discrètes en 2.2.2 et la mise en place du système à résoudre en 2.2.3. Le système ainsi assemblé est très complexe, non linéaire et de grande taille. La section 2.3 présente des stratégies mises en place pour résoudre ce problème approché. La première formulation est plus naturelle, la seconde nous permettra d'établir notre analyse de l'erreur. Les sous-sections 3.3.1 et 3.3.2 décrivent les espaces discrets et les inconnues du problème qui serviront dans le reste du travail. Les équations discrètes obtenues grâce à des méthodes de discrétisation volume nie deux points avec décentrage en amont des ux diusifs sont données en 3.3.3. Finalement, on présente dans la sous-section 3.3.4 des stratégies de résolutions du système discret. Dans le but de développer notre analyse de l'erreur a posteriori, il est nécessaire de post-traiter des quantités issues des simulations, voir section 3.4.Une fois ces reconstructions eectuées, on peut alors introduire une norme résiduelle de l'er-de composants dépendant d'un contexte, ensemble de phases contenant un composant présent dans le contexte, ...), ces ensembles sont traités en 4.2.2. Les sections 4.2.3

	et 4.2.4 traitent quandt à elles de la génération des ensembles d'inconnues et de la selection
	des inconnues primaires et secondaires. La section 4.3 présente l'outil de gestion des propriétés
	physiques du uide et du milieu, détaillées en section 2.1.2. Cet outil permet de considérer
	ces fonctions, comme des fonctions analytiques, les lois et leurs dérivées sont en eet calculées
	analytiquement. Grâce à tous ces développement présentés ci-dessus, il est alors possible d'in-
	tégrer les outils nécessaires à l'analyse d'erreur a posteriori ; cela est expliqué en section 4.4.
	On détaille l'implémentation des post-traitements nécessaires en 4.4.1 et en 4.4.2. Finalement,
	1.3.2 Chapitre 3 : Estimateurs a posteriori pour des
	écoulements diphasiques

Le cas multiphasique étant très complexe, le chapitre 3 est consacré à un modèle restreint. En eet, on étudira dans ce chapitre, un écoulement diphasique immiscible (une phase aqueuse et une non-aqueuse), sans échange thermique. Le système d'équations et d'inconnues, bien que non linéaire, est alors considérablement simplié. Les équations du modèle sont données à la section 3.1. Dans la section 3.2 on dénit les espaces mathématiques nécessaires à une bonne formulation du problème. Ensuite dans les sous-sections 3.2.2 et 3.2.3 on construit deux formulations faibles du problème et on démontre leur équivalence avec le problème d'origine moyennant des hypothèses de régularité sur les données et les espaces choisis pour les inconnues. reur. Cette quantité n'est pas calculable, car en général la solution exacte est inconnue. On introduit alors dans la sous-section 3.5 des estimateurs d'erreur calculables, qui majorent la norme résiduelle introduite plus haut. Historiquement, les estimations d'erreur a posteriori sont majoritairement utilisés pour améliorer l'adaptivité en temps ou en espace. Cependant, on a toujours besoin de solveur itératifs pour résoudre les problèmes issus de la discrétisation car ils sont de très grande taille et très souvent non linéaires. Actuellement, les méthodes permettant de dénir les critères d'arrêt de ces solvers sont à choisir au mieux. La nalité de cette thèse est d'utiliser ces indicateurs a posteriori de l'erreur pour déterminer avec ecacités les critères d'arrêt. L'approche développée dans ce travail de thèse est basée sur l'utilisation de ces indicateurs a posteriori de l'erreur. 1.3.3 Chapitre 4 : Mise en ÷uvre informatique Le travail fourni dans cette thèse a débuté par la mise en place d'un prototype de simulation, appelé Cogito, programmé en C++ orienté objet. Il a fallut créer un code capable de simuler des écoulements en milieu poreux, puis intégrer les outils nécessaire au développement de l'analyse a posteriori. Ce chapitre présente donc quelques contributions que j'ai mise en ÷uvre, leur structure et leur utilisation. Tout au long de ce chapitre des morceaux de codes sont présentés, notons que ce sont des morceaux simpliés permettant seulement d'orir une vision plus pratique des éléments implémentés. Les chapitres précédents ont relevé que l'une des dicultés pour la résolution du système discret de Darcy est l'inuence de l'apparition ou disparition des phases sur ce système d'inconnues et d'équations. La section 4.2 présente comment le problème a été traité via un manager d'inconnues qui gère en fonction d'un uide considéré les diérents contextes en 4.2.1, qui génère les ensembles propres au modèle (e.g. ensemble la section 4.4.3 a pour but de recenser les avantages que présente l'implémentation des estimateurs d'erreur a posteriori.

  Denition 2.3. For a given context k ∈ K, we let P k denote the set of phases present in the context k. Similarly, C k denotes the set of components present in the context k.

  The unknowns P , θ if I θ = 1, {S p } p∈P k , and {C p,c } p∈P k ,c∈Cp are associated to non-trivial {S p } p∈P , {C p,c } p∈P,c∈Cp .Similarly, we let S := S k ref and C p := C k ref

	PDEs and they are collectively referred to as P(θ)CS unknowns. For the sake of conciseness,
	we introduce the following notation for the vectors of saturations and phase compositions: For
	all k ∈ K,
	S k := (S p ) p∈P k and C k p := (C p,c ) c∈Cp for all p ∈ P k .
	When k = k ref , U k ref only contains P(θ)CS unknowns. In this case we drop the index and
	simply write
	U = P, (θ),
	2.1.4)
	where P cp (S p ) is the capillary pressure function whose dependency is made precise in Sec-
	tion 2.1.2.2.

p for all p ∈ P.

  The fugacity f c,p (P, (θ), C p ) depends on a component c and on the set of components C p . It expresses a chemical equilibrium and represents the tendency of a component to escape. The fugacity is often expressed in Pa, the IS gives

  .2.9) More precisely, for a component c in the control volume T at time t n , if c ∈ C k n

T

, we dene the discrete accumulation term by discretizing the mole number equation (2.1.7):

•

  The velocities satisfy Darcy's law(2.1.8) 

-→ v p (P, S p ) = -K(∇[P + P cp (S p )]).

  1/2 (∂Ω) can be extended to any part, say Γ, of ∂Ω (or to any Lipschitz curve in Ω). Strictly speaking, the functions of H 1/2 (Γ) have no trace on ∂Γ, the boundary of Γ. Nevertheless, a weak form of zero trace on ∂Γ can be prescribed by dening the space

  3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FOFor functions depending on time and on space, it is convenient to separate the time from the space variable by considering functions of time with values in a Banach space, say H.

	b
	f (t) 2 H dt < +∞ ,
	a
	equipped with the norm
	.2.5)
	where •, • ∂Ω denotes the duality pairing between H -1/2 (∂Ω) and H 1/2 (∂Ω). This permits to
	dene the subspace

H 0 (div, Ω) = {θ ∈ H(div, Ω)|θ • n = 0 on ∂Ω}. 74CHAPTER More precisely, if (a, b) is an interval of time and • H is the norm of H, L 2 (a, b; H) = f measurable in (a, b) | f (t) ∈ H, a.e. in (a, b),

  + P cp (S p )] = -K -1-→ v p (P, S p ).

	76CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO
	It follows from assumption (iv) that (3.2.11) is equivalent to	
	ν p (P, S p ) -→ v p (P, S p ) ∈ [L 2 (Σ)] d and S p ∈ L 2 (Σ),	(3.2.12)
	whence U p ∈ L 2 (Σ) d+1 .	
	Now we consider Darcy's law (3.1.2). As P and P cp (S p ) are distributions and K is not
	smooth, the right-hand side of (3.1.2) is not dened. However, by assumption (i), K is
	invertible and therefore we interpret (3.1.2) by	
	∇[P (3.2.13)
	Since we look for -→ v (3.2.14)
	Then (3.2.10) implies that	
		(3.2.11)

3.2.10)

Let us search for the unknowns P and S p such that:

ν p (P, S p ) -→ v p (P, S p ) ∈ [L 2 (Σ)]

d and φS p ∈ L 2 (Σ). p (P, S p ) in [L 2 (Σ)] d and K -1 belongs to L ∞ (Σ), (3.2.13) implies that

∇(P + P cp (S p )) ∈ L 2 (Σ) d .

According to Ne£as

[START_REF] Ne£as | Equations aux dérivées partielles[END_REF] 

or to Amrouche and Girault in

[START_REF] Amrouche | Decomposition of vector spaces and applications to the Stokes problem in arbitrary dimensions[END_REF]

, this implies that the distribution P + P cp (S p ) belongs to L 2 (0, t F ; H 1 (Ω)). This gives a meaning to the Darcy law (3.1.2) and it stems for the above considerations that the natural space for

P + P cp (S p ) is L 2 (0, t F ; H 1 (Ω)), p ∈ {o, w}.

Now let us assume that q p ∈ L 2 (Σ).

∇ Σ • U p ∈ L 2 (Σ),

(3.2

.15) and with (3.2.11) this gives U p ∈ H(div Σ , Σ), where div Σ refers to the full divergence operator

  .[START_REF] Babu²ka | Error estimates for adaptive nite element computations[END_REF] where ∇ Σ v p denotes the full gradient of v p in Σ. Let us expand the terms of (3.2.16).

							First,
	by (3.2.10) and (3.2.14),					
		t F				
	(∇ Σ • U p )v p dx dt =		q p v p dx dt.		
	Σ	0	Ω			
			0	t F	Ω	φS p	∂v p ∂t	dx dt, (3.2.18)

(3.2.17) 

Next, by denition of U p , we have

Σ U p •∇ Σ v p dx dt = t F 0 Ω ν p (P, S p ) -→ v p (P, S p )•∇ x v p dx dt+

  In order to eliminate it, we prescribe on the test function v p the additional condition:

	.19)
	using (3.1.3) and (3.1.4). The only unknown quantity in the right-hand side of (3.2.19) is
	S

p (•, t F ).

  the system (3.1.1)(3.1.4) admits a solution satisfying (3.2.22), then (3.2.23b) is given by the problem and the above argument gives immediately (3.2.23a). Conversely, let P , S o , and S w be a solution of (3.2.23), with the regularity (3.2.22). By setting -→ v p (P, S p ) = -K(∇[P + P cp (S p )]), for p = o, w,the assumption (iv) and property (v) (that stems from assumptions (ii) and (iii)), imply

that ν p (P, S p ) -→ v p (P, S p ) ∈ [L 2 (Σ)] d , and φS p ∈ L 2 (Σ). If we choose v p ∈ D(Σ), the equality (3.2.23a) with the notation (3.2.9) reduces in the sense of distributions to

  b) is dense 80CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO in L 2 (a, b). Thus, as all three terms in (3.2.25) are scalar products of L 2 (0, t F ), (3.2.25) also holds for all v p in L 2 (0, t F ; H 1 (Ω)). Therefore the dependence of v p on t and the integration with respect to t in (3.2.25) are unnecessary and (3.2.25) reduces to (for simplicity we revert to the notation of gradient without index x):Find P, S o , S w , such that P + P cp (S p ) ∈ L 2 (0, t F ; H 1 (Ω)), for p ∈ {o, w}, and S p ∈ H 1 (0, t F ; L 2 (Ω)) such that ∀v p ∈ H 1 (Ω), Every solution P , S o , and S w of problem (3.1.1)(3.1.4) with S p ∈ H 1 (0, t F ; L 2 (Ω)) and P + P cp (S p ) ∈ L 2 (0, t F ; H 1 (Ω)), p ∈ {o, w},

	(3.2.26)
	with the initial condition (3.1.3)
	(3.2.27)
	solves (3.2.26), (3.1.3), and (3.2.23b).
	Conversely, each solution of (3.2.26), (3.1.3), and (3.2.23b) satisfying (3.2.27) solves (3.1.1)
	(3.1.4), setting (3.1.2).

Ω ∂ t (φS p ) v p dx + Ω ν p (P, S p )K∇[P + P cp (S p )] • ∇v p dx = Ω q p v p dx, a.e. in (0, t F ), for p ∈ {o, w}, S p (•, 0) = S 0 p , p ∈ {o, w},

and the pore volume conservation condition (3.2.23b)

S o + S w = 1.

It is easy to prove that this problem is equivalent to (3.1.1)(3.1.4).

Proposition 3.3 (Equivalence). Let q p belong to L 2 (Σ) and S 0 p to L 2 (Ω).

  Throughout this work we restrict ourselves to fully implicit time discretizations. As stated in Section 2.2.2, we consider a discretization of problem (3.1.1)(3.1.4) based on two-point FV uxes and phase-upwind. Phase-upwind is developed in Section 2.2.2.2. We describe below the two-point FV method for the ux discretization.The discrete conservation equations are obtained by rst integrating the rst two lines of (3.1.1) on a control volume T ∈ T and on a time interval I n . For each phase p ∈ {o, w},

	this gives:

T φ∂ t (S p ) + ∇ • ν p (P, S p ) -→ v p (P, S p ) dx = T q p dx.

  2 , 84CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FOwhere T 1 and T 2 are two neighboring cells, ordered as T 1 and T 2 , with the normal vector to σ oriented from T 1 to T 2 . Let x σ and x T denote the barycenter of the face σ and of the cell T , respectively, and let t σ denote a unit tangent vector to σ. Then the coecient τ σ T is dened by replacing κ T by the scalar product (K T t σ , t σ ) in (2.2.14):

  In lines 1, 3, and 7 of Algorithm 4.1 we have used the indexed sets {P k } k∈K , {C p } p∈P , and {C k } k∈K , whereas the intersection of subsets is employed in line 8 to compute P c,k . The binary sets {(p 1 , p 2 ) ∈ P k ×P k , p 1 = p 2 } can be eciently computed using the representation (4.2.1).

				.2.3)
	The assembly of the local Jacobian matrix	∂D T ∂u T	is a good illustration of the use we make of
	the families of indexed sets introduced in this section. We briey describe it in Algorithm 4.1.
	Algorithm 4.1 Assembly of the local Jacobian ∂D T ∂u T	in (2.3.1)
	1: for p ∈ P k do {Phases present in the context k}
	2:	Assemble the derivatives of the rst line of eq. (2.2.28)
	3:	for c ∈ C p do {Components present in the phase p}
	4:	Assemble the derivatives of the second line of eq. (2.2.28)
	5:	end for	
	6: end for	
	7: for c ∈ C k do	
	8:		
	10:	Assemble the derivatives of the third line of eq. (2.2.28)
	11:	end for	
	12: end for	

P c,k ← P c ∩ P k {Phases present in the context k T in which c is present} 9: for p 1 , p 2 ∈ P c,k , p 1 = p 2 do

  4, are operations that transform point values into functions. They can be viewed as a regularization or an interpolation. They are necessary because the indicators are dened on functions (mostly in RTN spaces) and not on point values.

1.2. ÉTAT DE L'ART

1.3. OBJECTIF DE LA THÈSE

Algorithm 3.3 A posteriori part

\\ A posteriori error estimators part Post-process locally the pressures P n,i,j and the capillary pressures {P cp (S n,i,j T )} T ∈T .

Construct the uxes χ n,i,j p,h ∈ RTN(T ), p ∈ P, according to 3.5.11; Construct the uxes l n,i,j p,h ∈ RTN(T ), p ∈ P, according to 3.5.14; From the algebraic residual vectors Res n,i,j p construct the uxes r n,i,j p,h ∈ RTN(T ), p ∈ P, according to (3.5.15); Evaluate all the indicators (3.5.17 \\ End a posteriori error estimators part Remark 3.13 (The criteria and the constants γ). Let us give some remarks on the constants present in the stopping criteria formulas:

• In the stopping criterion for the algebraic solver, 0 < γ alg ≤ 1 is a user-given weight, typically of order 0.001;

• The same observation is made for 0 < γ lin ≤ 1.

Let us now give the meaning of the criteria:

• Criterion (3.5.25) expresses that there is no need to continue with the linearization iterations if the overall error is dominated by the other components.

• Criterion (3.5.26) expresses that there is no need to continue with the algebraic solver iterations if the overall error is dominated by the other components. Remark 3.14 (A posteriori error analysis implementation). If we observe the structure of the adaptive Algorithm 3.2, we see that an interest of the a posteriori error analysis is that it can be implemented in an independent block. We will see this implementation point of view in Chapter 4. 

Numerical results

In this section, we test the computational performances of the adaptive algorithm introduced in this chapter. We take the same ve spot case as in Section 2.4 to study the eciency of the method, in a square domain 200km × 200km. We compare the numerical results produced by two algorithms:

• A non-adaptive algorithm described in Algorithm 3.1;

The mesh is uniform 20 × 20, independent of time. The initial time step is equal to τ = 2.16 • 10 4 s and the nal time is 4.32 • 10 6 s.

The Section 3.6.1 presents the same two-phase ow ve-spot case as in Section 2.4.1: we compare the results and we present the eciency of the adaptive algorithm in terms of solver iterations. In Section 3.6.2, as in Section 2.4.2, we consider the same settingsbut the media is heterogeneous. The heterogeneity is given by the permeability tensor which is randomly distributed in the domain.

In order to compute the adaptive Algorithm 3.2 we need to dene the parameters in the stopping criteria (3.5.25) and (3.5.26); These parameters are xed at the beginning of the simulation. On the one hand, the parameter γ alg is equal to 10 -3 . On the other hand, the parameter γ lin is equal to 10 -3 . Both cases give results which reveal that if we perform the algorithm using the a posteriori analysis, the overall error is not aected signicantly. This means that even if we save on linearization or algebraic iterations, we can be condent in the accuracy of the results we calculate.

Homogeneous porous media

The settings used for this test case are exactly the same as in Section 2.4.1. We also use the same mesh settings, same time discretization setting, and same physical settings. Let us consider a homogeneous isotropic medium, where the permeability constant is equal to κ T = 1.0 • 10 -13 , for all T ∈ T . 

Heterogeneous porous media

In this section, the results presented for the adaptive algorithm are obtained using the same settings (initialization, discretization, physical laws) as in previous section; The dierences is given by the medium. Let us consider a heterogeneous medium, where the permeability constants are initialized randomly by

, for all T ∈ T , where v T = 0 and 1.0 • 10 -2 ≤ v T ≤ 1.0 • 10 2 , as in Section 2.4.2. The permeability generated for this numerical experiment is shown in Figure 3.10.

Let us precise that due to the random generation of the permeability tensor, we do not compare the precision of the results between the non-adaptive and the adaptive resolution algorithm. But we observe that the solutions for the pressure and the saturations are similar, of the same order. Figure 3.11 shows the evolution of the water saturation during the simulation and Figure 3.12 shows the reference pressure. We can easily observe the wateroil front and Figure 3.13 shows that the spatial error estimator also detects this front.

CHAPTER 4 Implementation

The ultimate goal of this work is to fully benet from an a posteriori analysis, in order to adapt the solution algorithm and the mesh. We present in this Chapter how we choose to perform the computational resolution of the SAGD problem. We provide an overview of the facilities that have been implemented for handling the stopping criteria and adaptively rened meshes. The program is a 2D prototype, with a quadrilateral mesh, and is written in C++.

We give here a simplied version of the main instructions. The complete code is the property of IFPEn.

Introduction

An important feature of the formulation of the multiphase compositional ow proposed in Chapter 2 is that we possibly have a dierent set of unknowns in each cell and at each time step. We present in Section 4.2 the management of unknowns during the evolution of the computation. Here the focus is on the tools that allow to deal with this situation eciently.

To do this, we develope the implementation view of the contexts, see Section 4.2.1.

Furthermore an inherent diculty in this complex model is the description of the underlying physical system. In Section 4.3, we discuss how physical laws have been implemented to ensure eciency of the code. In particular, we create tools to evaluate analytical functions or The wells are treated in Line 9, they are initialized using the mesh, the unknowns and the data. Finally, during the resolution, at each step, the molar accumulation is computed (Line 15), the residual is evaluated (Line 16), the Jacobian matrix and the right-hand side term are assembled (Line 17). The laws management is developed in a separate section, see Section 4.3.

Unknowns management

We recall that the main diculty of the Darcy model is the evolution (in time and in space) of the phases in the domain. We have seen that C and P denote, respectively, the sets of components and phases present in the uid. In practice, the presence or absence of a phase p in a region causes dierences in the sets of unknowns. As a phase p moves, it can appear or disappear from any region. The aim of the UnknownsManager (UM) is to provide representations of a minimal set of data uniquely dening the problem: the global unknowns, the contexts, the local unknowns or the components depending on the context, ... 

Contexts

During the implementation, a context is associated to a unique identier integer. The family of contexts K is deduced from the component-phase matrix M in a pre-processing stage. All

We also construct in each cell, the two matrices A T and B T described in Section 2. 

Physical laws management

The multi-phase ow model requires operations on laws describing the physics (the media, the uids), see Section 2.1.2. We also need to build functions (molar density, capillary pressure, ...) and their derivatives. Each function and its derivatives are evaluated at each time step, in each cell. Since performing these operations represents an important work, the aim of our implementation is to compute all functions only once per time step, in each cell. Then we store the results.

We rst need to dene the concept of function and of dierentiable function. Both concepts involve some dierent types: valueType, variableType, gradientType. Finally, each concept needs a routine, called eval, that computes the value of the function.

We also create a template interface to evaluate a function and its dierentiable functions,

The estimators are ultimately used to stop the iterations.

In Algorithm 4.2, we present a coarse view of the a posteriori error analysis and all steps added to the basic algorithm. It shows that the a posteriori error evaluation is inserted as an overlay, which does not aect the remaining part of the method. More details are presented in Section 3.5.6. for the computation. Furthermore, as the context evolves during the computation, it is treated as an unknown. We have to determine it at the beginning and then we compute at each time step n, in each cell T , the context k n T . The thermodynamic Flash algorithm gives, for a given pressure, temperature, and uid composition, the phases that are present and their respective compositions. The algorithm is briey described in this section, more details can be found in the work of Cao [START_REF] Cao | Developement of techniques for general purpose simulators[END_REF] and the thesis Guichard [START_REF] Guichard | Schémas volumes nis sur maillages généraux en milieux hétérogènes anisotropes pour les écoulements polyphasiques en milieux poreux[END_REF].

First we recall the expression of the total molar fraction Z c dened by (2.1.16) for all c ∈ C

collected in the vector Z = {Z c } c∈C and such that c∈C Z c = 1.

The entries of the algorithm are,

• the pressure P ,

• the temperature (for thermal cases) θ,

• the total molar fraction Z c .

The purpose of the algorithm is to nd K the context, (C p ) p∈P the compositions of the component c in the phase p, and (ϑ p ) p∈P the molar fractions of the phase p in the uid:

Let us restrict the description to isothermal cases and disregard the temperature unknown.

The denition of a Flash algorithm depends on the properties of the uid under consideration: phases, components, miscibility. In petroleum industry, setting up a Flash algorithm is a substantial part of the programming load. Here we present a Flash algorithm for an immiscible two-phase ow.

A.2 Two-phase ash algorithm We search for ϑ 1 and ϑ 2 , and the molar compositions

) c∈C , by solving the following system of equations:

where C p 1 ,c ≥ 0 and C p 2 ,c ≥ 0, for c ∈ C. Since N C = 2, this system consists of 6 independent equations in 6 unknowns.

This motivates the denition of the Rachford-Rice function:

We want to solve for the roots ϑ of f RR (ϑ) = 0, Proposition A.3 (Flash resolution). If C = ∅, then solving the system (A.2.1) is equivalent to nding the roots ϑ of f RR (ϑ).

Proof. We have seen that (A.2.1) leads to (A.2.7). Conversely, let ϑ be a root of f RR (ϑ).

Then, (A.2.4) and (A. (A.2.9)

Finally, the second and third lines of (A.2.1) follow from (A.2.8) and (A.2.9).

If Z c (K c -1) does not vanish for any c, the Rachford-Rice function (A.2.6) has N C poles, and each pole has the expression:

, for c ∈ C.

We then use the extended Flash method, which looks for ϑ ∈ R (not only on [START_REF]m o b i l i t y " ) ; ZetaT=l a w s[END_REF]1]). We dene:

(A.2.10)
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