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Résumé court

Cette thése présente, au chapitre 2] le modéle compositionel de Darcy et des méthodes de
discrétisation par Volume Finis utilisées par 'IFP Energies nouvelles (IFPEn). Ce probléme
couple des équations aux dérivées partielles, correspondant aux bilans de quantité de matiére
et d’énergie, avec des contraintes algébriques assurant la conservation du volume poreux, la
partition de I'unité pour les fractions molaires et I’équilibre chimique pour chaque composant.
Dans le but d’assurer la cohérence avec les applications IFPEn, nous nous sommes basés sur
une formulation reposant sur les bilans de quantité de matiére pour chaque composant. La
difficulté principale de ce modéle est liée au fait que le jeu d’inconnues varie en chaque point
du domaine. La discrétisation du probléme s’effectue par des méthodes de volumes finis avec
décentrage amont des flux et discrétisation implicite en temps. Le chapitre [3| traite un cas plus
simple, celui d’'un écoulement diphasique immiscible. La performance du calcul numérique
est fortement dépendante des méthodes de discrétisation et des algorithmes de résolution des
systemes linéaires et non linéaires. On trouve alors dans cette partie la mise en ceuvre de
stratégies de résolution basées sur des indicateurs d’erreur a posteriori. Le but principal ici
est d’optimiser les critéres d’arrét des solveurs linéaires et non linéaires, tout en conservant la
qualité des résultats numériques, en particuler la précision du déplacement de 'interface entre
les deux fluides et de la quantité de mouvement a travers le domaine. Le chapitre [4] de cette

thése est consacrée a la mise en ceuvre d’un prototype de résolution du modéle de Darcy.
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Short summay

In Chapter [2] this thesis presents Darcy’s compositional model and some discrete Finite Vol-
ume methods used by IFPEn. This problem couples partial differential equations, stating the
balance of mass, momentum, and energy, with algebraic constraints enforcing conservation of
volume in the pores, partition of unity of molar fractions, and chemical equilibrium of each
component. In order to respect the approach of IFPEn’s applications, we base this formu-
lation on the balance of mass and momentum for each component. The main difficulty of
this model arises from the fact that the set of unknowns varies at each point of the domain.
The problem is discretized by FV methods with flux upwinding in space and backward FEuler
implicit discretization in time. Chapter [3|is devoted to the simpler case of immiscible two-
phase flow. The performance of the numerical computation depends strongly on the choice
of discretizations and of algorithms for solving the nonlinear and linear systems. This part
describes the implementation of resolution strategies based on a posteriori error indicators.
Its main object is the optimization of stopping criteria of the nonlinear and linear solvers that
preserve the quality of the numerical output, in particular the accuracy of the displacement
of the interface between the two phases and the accuracy of the momentum in the domain.
Chapter []is devoted to the elaboration of a prototype that solves the main features of Darcy’s

compositional model.
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Résumé étendu

Cette thése est consacrée a la présentation et discrétisation du probléme de Darcy multi-
phasique, ainsi qu’a la mise en ceuvre de stratégies de résolution du probléme de Darcy
diphasique basées sur des indicateurs d’erreur a posteriori. Les applications ciblées sont le
procédé avancé de récupération d’huile Steam Assisted Gravity Drainage (SAGD) et la séques-
tration géologique du COq, puisque ces problémes sont modélisés de la méme maniére.

L’amélioration des procédés de récupération des huiles lourdes, c’est-a-dire, & densité et
viscosité trés élevées, est aujourd’hui un enjeu crucial de I’extension des réserves existantes. La
mobilité des huiles lourdes étant insuffisante pour ’exploitation, il est nécessaire de mettre en
place des systémes actifs d’extraction. Le plus souvent, ces systémes se basent sur l'injection
d’un fluide chaud qui améliore la mobilité de I’huile favorisant ainsi sa migration vers les
puits. Plus précisément, dans le cas du procédé SAGD, on injecte de la vapeur d’eau. Le but
des simulations faites & 'IFPEn est, dans ce cas, d’estimer la quantité d’huile récupérée et
d’optimiser Iinjection de la vapeur d’eau. Afin d’améliorer la qualité des résultats numeériques,
il est important de suivre avec précision le déplacement de l'interface entre le fluide chaud et
I’huile. La performance est, en outre, fortement dépendante des méthodes d’intégration en
temps et de résolution des systémes linéaires et non linéaires.

La résolution du front de phase qui pénétre dans le sol est importante pour la fiabilité de
la simulation. De plus, les problémes liés au cofit de calcul sont des enjeux majeurs des simu-
lations, d’oui la nécessité d’envisager des stratégies pour optimiser l'utilisation des ressources

de calcul. Enfin, on demande de certifier la solution numérique pour la gestion des risques, ce
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qui demande de disposer d’une borne supérieure précise de l’erreur.

Cette these est composée de trois parties. Dans une premiére partie, nous décrivons d’abord
les équations du probléme compositionnel de Darcy, et ensuite, nous lui appliquons des méth-
odes de discrétisation par Volumes Finis (VF). Dans une seconde partie, nous étudions le cas
plus simple des écoulements diphasiques, leurs discrétisations et leurs algorithmes de calculs
gérés par des indicateurs d’erreur a posteriori. Des calculs numériques illustrent les résultats
théoriques. Enfin, la troisiéme partie est consacrée a I'implémentation d’un prototype de calcul

complet pour le diphasique, et tenant compte de ’aspect générique du modele compositionnel.

Le chapitre 2 de cette thése contient la formulation d’un modéle unifié pour les applications
industrielles citées ci-dessus. Afin de disposer d’un large spectre de cas, nous avons choisi de
travailler dans le cas le plus général, c’est-a-dire, celui ou on fixe uniquement le nombre de
composants, tandis que les phases et leur composition dépendent des conditions thermody-
namiques ainsi que des fractions molaires globales. Le probléme correspondant mélange des
équations aux dérivées partielles (EDPs), correspondant aux bilans de quantité de matiére
et d’énergie, avec des contraintes algébriques assurant la conservation du volume poreux, la
partition de I'unité pour les fractions molaires et I’équilibre chimique pour chaque composant.
Dans le but d’assurer la cohérence avec les applications IFP Energies nouvelles déja existantes,
nous nous sommes basés sur une formulation reposant sur les bilans de quantité de matiére
pour chaque composant ; une approche alternative basée sur les bilans de masse est proposée
dans Chen, Huan et Ma [33, Chapitre 9|. La difficulté principale de ce modéle est lice au
fait que le jeu d’inconnues varie en chaque point du domaine. La discrétisation du probléme
s’effectue par des méthodes de volumes finis (VF) avec décentrage amont des flux par phase
et intégration implicite en temps. Une caractéristique importante de ce modéle est qu’il est
possible de réduire le nombre d’inconnues du systéme global en exploitant les contraintes

algébriques locales de chaque maille.

Afin de garantir la consistance de la discrétisation VF sur des maillages topologiquement
Cartésien et en présence de tenseurs de permeéabilité pleins, nous utilisons des méthodes multi-
points (MPVF) selon les idées de Agélas, Di Pietro et Masson [§]. Les méthodes multi-points
ont ét¢ introduites indépendemment par Aavatsmark, Barkve, Bge et Mannseth [2], 3, 4, [5] et
Edwards et Rogers [44], 45] dans le contexte de la simulation de réservoirs pétroliers. L’idée de
base consiste a remplacer le flux numérique & deux points par une version pouvant dépendre

des valeurs de la solution discréte dans d’autres mailles que celles qui partagent la face. La
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dépendance est typiquement obtenue par des constructions locales garantissant la consistance
pour des fonctions affines par morceaux, et dont le flux diffusif est continu & travers les
interfaces du maillage. Plus précisément, la discrétisation ici proposée est basée sur la méthode
récemment introduite et analysée par Agélas, Di Pietro et Droniou [7].

Le chapitre [3| est consacré au cas plus simple d’écoulements diphasiques immiscible, donc
a deux phases et deux composants. Bien que plus simple, les équations de ce modéles sont
cependant fortement non linéaires. Dans une premiére partie, et sous des hypothéses conven-
ables sur les données et les choix d’espaces des inconnues, nous construisons une formulation
variationnelle de ce probléme, dont nous démontrons 1’équivalence. Dans une seconde partie,
nous discrétisons les équations de la formulation variationnelle par une méthode de VF & deux
points avec décentrage des flux en amont et nous décrivons les équations de l'algorithme de
Newton pour linéariser le systéme. A chaque boucle de Newton, nous prenons en compte un
algorithme utilisé pour résoudre le systéme linéarisé, mais le choix de I'algorithme est libre.
La troisiéme partie contient les résultats d’analyse a posteriori proprement dits. Le but des
estimations d’erreur a posteriori est de donner des bornes de 'erreur entre ’approximation
numérique et la solution exacte inconnue qui puissent étre calculées en pratique a partir de
la solution approchée. Ceci permet, en particulier, d’estimer la grandeur de l'erreur et de la
localiser. La localisation de I’erreur est 'ingrédient clé des stratégies d’adaptation de maillage
et de pas de temps, qui visent a réduire le coiit de calcul en adaptant localement la taille des
mailles en espace ou en temps a ’échelle du probléme. Egalement, les indicateurs d’erreur a
posteriori peuvent étre utilisés dans le but de contréler 'erreur et d’optimiser efficacité des
algorithmes de résolution.

Dans notre cas, nous avons affaire & un probléme non linéaire instationnaire discrétisé par
une boucle sur les pas de temps et & chaque pas de temps, par des itérations de linéarisation
de Newton, et & chaque itération de Newton, par des itérations d’un solveur algébrique pour
résoudre les systémes linéarisés. Le but des estimations d’erreurs proposées dans le chapitre

est de
1. Estimer séparément les différentes composantes de lerreur.

2. Distinguer entre les composantes de U'erreur substantielles, c’est-a-dire les erreurs qui
vont toujours étre présentes (par exemple, les erreurs de discrétisation en espace et en

temps), et les erreurs subsidiaires, qui peuvent étre rendues trés petites (erreurs des
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solveurs non linéaires et linéaire).

3. Arréter les différents algorithmes itératifs au moment ou les erreurs subsidiaires corre-

spondantes n’affectent plus U'erreur totale de fagon significative (critéres d’arrét).

La technique de dérivation d’estimateurs d’erreur a posteriori est ici mise au point sur un
probléme diphasique, mais la méme approche s’applique dans le cas plus général du modéle
compositionnel. I’idée de base consiste & introduire une norme de résidu que 1’on peut borner
par des indicateurs calculables tout au long de I'algorithme, methode développée par exemple
par Verfiirth [70], dans le contexte des modeéles considérés par Cances, Pop et Vohralik [22] et
par Vohralik et Wheeler [73]. Ceci demande, en particulier, d’introduire des reconstructions
opportunes des champs issus de la discrétisation VF. Les différentes composantes d’erreur
sont ensuite identifiées en écrivant le probléme discret sous une forme algorithmique qui met
en évidence les différentes boucles évoquées ci-dessus. Une telle approche a été récemment
développées par El Alaoui, Ern et Vohralik [46], Ern et Vohralik [47), 48], Vohralik |71, [72] et
Jiranek, Strakos§ et Vohralik [53]. Ce travail a d’ores et déja été initié par Di Pietro, Vohralik
et Widmer [41].

Les indicateurs de ’erreur servent aussi a ajuster les parameétres du calcul, par raffinemen-
t/déraffinement du maillage et du pas de temps, de telle sorte que les erreur substantielles
soient distribuées de fagon équilibrée (équilibrage des composantes d’erreur). L’adaptation en
espace ou en temps est décrit dans le chapitre [4] n’est pas l'objet principal de ce travail de
these.

Dans le chapitre ] nous présentons les outils développés pour la mise en ceuvre du simu-
lateur de Darcy compositionnel et des estimateurs d’erreur du chapitre 3| La discussion porte
sur trois aspects qui ont présenté une certaine difficulté. Dans un premier temps, on se con-
centre sur un point important : les outils pour la gestion des inconnues. Du fait d’avoir un
jeu d’inconnues différent dans chaque maille, ces outils sont au coeur du simulateur, et les
inconnues doivent répondre & des impératifs de souplesse et d’efficacité. Le dernier point ici
traité est relatif & la configuration d’un jeu de données pour le modéle. Ce travail vise, a terme,
des applications dans deux contextes différents, d’otl la nécessité de disposer d’outils souples
pour la description du modeéle. On se concentre, dans un deuxiéme temps, sur la gestion des
lois physiques qui bénéficie d’'une mise en ceuvre permettant, dans une certaine mesure, de

disposer d’outils de différentiation automatique. Ceci permet & la fois de réduire le cott de
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maintenance et de modification du code, ainsi que de gérer de maniére simple la croissance
de la complexité. On développe ensuite le travail d’implémentation fait pour exécuter les esti-
mateurs d’erreur a posteriori et leur mise en ceuvre au sein du code. Finalement, on explique
les outils de gestion du raffinement de maillage. Afin de simplifier la mise en ceuvre, on a
choisi de se concentrer sur des maillages raffinés de maniére non conforme & partir d’une grille
topologiquement Cartésienne. Des domaines non rectangulaires peuvent étre gérés car la mise

en ceuvre distingue topologie et métrique, cette derniére pouvant étre non affine.
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CHAPITRE 1

Introduction

1.1 Contexte et motivations

Grace aux techniques actuelles, I’exploitation d’un réservoir de pétrole est de 'ordre de 35%
en moyenne. Il existe des procédés qui tentent d’augmenter la récupération des hydrocarbures
fortement visqueux, dits « huiles lourdes ». Ces huiles lourdes sont les plus difficiles a extraire.
Le réservoir, afin d’étre exploité, est perforé a divers endroits, des puits y sont alors installés.

Ces procédés emploient trois techniques :

e la méthode thermique, qui utilise 'injection de vapeur d’eau pour chauffer le pétrole, ce

qui le fluidifie et facilite sa production;
e la méthode chimique, qui utilise des viscosifiants et/ou des tensio-actifs ;

e l'injection de CO2, qui apparait comme une voie permettant & la fois d’augmenter le
rendement du gisement et de stocker le dioxyde de carbone dans le cadre de la lutte

contre le changement climatique.
Ces trois méthodes comportent deux types de puits horizontaux :

e Les puits injecteurs (en amont), dans lesquels on injecte en continu un fluide sélectionné

pour ses caractéristiques chimiques et physiques. Ce fluide aura pour but de pousser les

17



18 CHAPITRE 1. INTRODUCTION

hydrocarbures ;

e Les puits producteurs (en aval), dans lesquels les hydrocarbures (en particulier les huiles

lourdes), que 'on a fluidifiées, sont pompées jusqu’en surface.

La figure présente un de ces procédés de maniére schématique.

FIGURE 1.1 — Procedé de récupération assistée de pétrole ou Enhanced Oil Recovery (EOR).

Pour augmenter la récupération dans les gisements, il est essentiel d’améliorer la carac-
térisation des réservoirs. Une bonne connaissance des hétérogénéités sédimentaires et de leur
distribution spatiale ainsi que des propriétés du réservoir permet d’optimiser le schéma d’im-
plantation des puits producteurs et injecteurs, et la sélection des additifs chimiques & mettre
en ceuvre. Pour cela, des logiciels de simulation de réservoirs sont développés et la précision
et la fiabilité de leurs résultats sont alors des facteurs clés pour augmenter la récupération.
Cependant, les modélisations & I'échelle des réservoirs engendrent des cotits diis a 'usage des

super-calculateurs et, en particulier, aux temps (conséquent) de calcul.

Les industriels du pétrole cherchent donc a utiliser des logiciels de calcul & la fois fiables

et optimisés.
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1.2 Etat de l’art

La modélisation de réservoirs nécessite de prédire 1’évolution, en milieu poreux, d’écoulements
de plusieurs phases, chacune étant elle-méme composée de plusieurs composants. On nomme
ces écoulements : multi-phasiques et compositionnels (ou multi-composants). La conception de
logiciels pour leur simulation requiert une discrétisation du domaine espace-temps et la mise
en place de schémas numériques qui traitent des lois physiques de mécanique des fluides, de
thermodynamique et qui gérent les caractéristiques d’un milieu poreux. L.e modéle de Darcy

répond & ces attentes.

L’industrie pétroliere a recours a différentes méthodes de discrétisation en temps (com-
plétement implicites ou implicites en temps et explicites en saturation). En espace, elle utilise
des méthodes de volumes finis. Au début, les schémas étaient & deux points, mais maintenant,
ce sont souvent des schémas multi-points. Ces méthodes tiennent leur noms de 'approche de
discretisation des flux diffusifs qui se servent de deux, ou plusieurs pour les multi-points, valeurs
discrétes aux centres des éléments voisins. Les méthodes multi-points ont été introduites dans
les années 90 par Aavatsmark, Barkve, Bpe et Mannseth [4] [5], et par Edwards et Rogers [45].
Citons aussi le livre de Eymard, Gallouét et Herbin [50] qui présente un large éventail de ces
méthodes. De plus, on peut citer les travaux sur grilles hexaédriques de Aavatsmark [I] et
Aavatsmark, Eigestad, Klausen, Wheeler et Yotov [6]. Les travaux de thése de Cao 23], mais
aussi le livre de Chen, Huan et Ma [33], décrivent de maniére approfondie I’état de I’art pour
les formulations des écoulements polyphasiques et pour les méthodes de discrétisation de ces
problémes. Ces travaux tiennent compte aussi de I'impact des puits dans le domaine. Notons

que les premiers travaux sur le sujet des puits ont été élaborés par Peaceman [61] en 1978.

A de trés rares exceptions prés, les méthodes numériques pour la résolution des systémes
approchés ne donnent évidemment pas la solution exacte, puisque celle-ci n’est pas discréte.
Il est alors intéressant de se demander si la différence entre ces deux solutions (exactes et
approchées) est quantifiable. Historiquement, les numériciens ont introduit des méthodes d’es-
timation d’erreur a priori. Ces méthodes permettent d’évaluer une borne de l'erreur avant la
réalisation des calculs et cette borne de ’erreur fournit des grandeurs liées 4 la taille des mailles.
Autrement dit, elles donnent un ordre de convergence assymptotique. Mais malheureusement,
dans la plupart des cas, par exemple dés que le probléme & résoudre est non linéaire, leurs

constantes font intervenir des normes de la solution exacte, qui ne sont pas connues, et donc
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en pratique incalculables.

Pour contrer cela, des méthodes d’estimation d’erreur a posteriori ont été développées; ces
méthodes bornent la différence entre la solution exacte et une solution approchée, grace a des
quantités relatives a la solution approchée. Elles sont donc évaluées une fois que la solution
approchée est calculée. Ces méthodes d’analyse de ’erreur a posteriori ont été initiées, entre
autres par Babugka et Rheinboldt [16], Ladevéze [55], Verfiirth [69], Pousin et Rappaz [62], par
Ainsworth et Babugka [9], Verfiirth [70], Carstensen et Hu [24], Carstensen, Hu et Orlando [25]
et Chaillou et Suri |27, 26].

Le développement de ces estimateurs d’erreur a posteriori permet donc d’évaluer la dif-
férence entre la solution approchée calculée et la solution exacte. Une application intéressante
de I’analyse a posteriori de ’erreur est de permettre d’identifier différentes sources de l’erreur.
Cette technique sert & mettre en place des méthodes de résolution adaptative. En premier lieu,
on pense alors 4 des méthodes d’adaptation de maillage. En effet, on raffine les mailles 14 ol
Perreur est la plus grande, et au contraire on déraffine les mailles 14 ot 'erreur est faible. Ces
idées sont développées, par exemple, par Braack et Ern dans [I8] et dans les travaux de thése
de Mamaghani [56]. Dans un deuxiéme temps, en remarquant que tous les algorithmes de réso-
lution d’un systéme discret ont recours a des méthodes itératives, ces estimateurs d’erreur vont
permettre d’optimiser les critéres d’arrét utilisés. Ainsi, on peut espérer économiser un nombre
conséquent d’itérations et a fortiori du temps de calcul. Ces méthodes ont été développées par
exemple par Becker, Johnson et Rannacher [17], Arioli, Loghin et Wathen [14], Chaillou et
Suri |27, 26] et Jiranek, Strako§ et Vohralik dans [53].

1.3 Objectif de la thése

1.3.1 Chapitre [2|: Le modéle compositionnel de Darcy

Ce chapitre présente une formulation mathématique des écoulements multi-phasiques multi-
compositionnels en milieu poreux. Les fluides considérés sont donc composés de plusieurs
phases, chacune étant elle-méme composée d’éléments chimiques appelés composants. Ces
écoulements sont régits par le modéle de Darcy. L’un des enjeux de ces simulations réside dans
I'influence du mouvement des phases qui permet & celles-ci d’apparaitre ou de disparaitre a
tout instant et en tout point du domaine. On introduit donc la notion de contexte, qui permet

d’associer & chaque point du domaine un indice, cet indice correspondant alors a I’ensemble
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des phases présentent en ce point. Ainsi, la modélisation des phénomeénes évoluent en chaque
point du domaine en fonction de ce contexte. Le nombre d’équations et d’inconnues varient
en fonction des phases présentes ou absentes. La gestion des inconnues en chaque point du
domaine est difficile. Elle est traditionellement gérée par un algorithme Flash. Un exemple de
cet algorithme est décrit dans I’Annexe [A] Le modéle de Darcy est alors composé d’équations
de conservation de la masse et de moment pour chaque composant, de conservation de volume
pour chaque phase, de conservation de la quantité de matiére dans chaque phase présente et
d’équations d’équilibre des composants appartenant & plusieurs phases présentes. Ce modéle
permet de modéliser les échanges thermiques. Dans ce cas, une équation supplémentaire est
ajoutée : ’équation de conservation de I’énergie. Habituellement dans I'industrie petroliére, on
utilise une formulation du type Coats [35], qui permet d’évaluer une pression de référence, les
saturations de chaque phase, les fractions molaires pour chaque composant de chaque phase et
le nombre de moles pour chaque composant absent du context. Le modéle continu est détaillé
en section on trouve la description des inconnues en [2.1.1] les propriétés du fluide et
du milieux en [2.1.2] les équations en 2.1.3] et on y introduit la notion de contexte en
Afin de discrétiser ce modéle, on utilise des méthodes Volumes Finies (VF) multi-point, avec
décentrage en amont des flux diffusifs. Ces méthodes de discrétisation sont décrites dans la
section[2.2] On y détaille en particulier les méme sujets que précédement mais dans des espaces
discrets : la notion de contexte discret et les inconnues discrétes en[2.2.1] les équations discrétes
en et la mise en place du systéme a résoudre en Le systéme ainsi assemblé est trés
complexe, non linéaire et de grande taille. La section présente des stratégies mises en place

pour résoudre ce probléme approché.

1.3.2 Chapitre [3| : Estimateurs a posteriori pour des

écoulements diphasiques

Le cas multiphasique étant trés complexe, le chapitre [3| est consacré & un modéle restreint. En
effet, on étudira dans ce chapitre, un écoulement diphasique immiscible (une phase aqueuse
et une non-aqueuse), sans échange thermique. Le systéme d’équations et d’inconnues, bien
que non linéaire, est alors considérablement simplifié. Les équations du modéle sont données
a la section Dans la section on définit les espaces mathématiques nécessaires a une
bonne formulation du probléme. Ensuite dans les sous-sections et on construit deux

formulations faibles du probléme et on démontre leur équivalence avec le probléme d’origine
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moyennant des hypothéses de régularité sur les données et les espaces choisis pour les incon-
nues. La premiére formulation est plus naturelle, la seconde nous permettra d’établir notre
analyse de 'erreur. Les sous-sections et décrivent les espaces discrets et les incon-
nues du probléme qui serviront dans le reste du travail. Les équations discrétes obtenues grace
a des méthodes de discrétisation volume finie deux points avec décentrage en amont des flux
diffusifs sont données en Finalement, on présente dans la sous-section des straté-
gies de résolutions du systéme discret. Dans le but de développer notre analyse de 'erreur a
posteriori, il est nécessaire de post-traiter des quantités issues des simulations, voir section
Une fois ces reconstructions effectuées, on peut alors introduire une norme résiduelle de ’er-
reur. Cette quantité n’est pas calculable, car en général la solution exacte est inconnue. On
introduit alors dans la sous-section des estimateurs d’erreur calculables, qui majorent la
norme résiduelle introduite plus haut. Historiquement, les estimations d’erreur a posteriori
sont majoritairement utilisés pour améliorer 'adaptivité en temps ou en espace. Cependant,
on a toujours besoin de solveur itératifs pour résoudre les problémes issus de la discrétisation
car ils sont de trés grande taille et trés souvent non linéaires. Actuellement, les méthodes
permettant de définir les critéres d’arrét de ces solvers sont a choisir au mieux. La finalité de
cette thése est d’utiliser ces indicateurs a posteriori de I’erreur pour déterminer avec efficacités
les critéres d’arrét. L’approche développée dans ce travail de thése est basée sur l'utilisation

de ces indicateurs a posteriori de I’erreur.

1.3.3 Chapitre 4] : Mise en ceuvre informatique

Le travail fourni dans cette thése a débuté par la mise en place d’'un prototype de simula-
tion, appelé Cogito, programmé en C+-+ orienté objet. Il a fallut créer un code capable de
simuler des écoulements en milieu poreux, puis intégrer les outils nécessaire au développement
de 'analyse a posteriori. Ce chapitre présente donc quelques contributions que j’ai mise en
ceuvre, leur structure et leur utilisation. Tout au long de ce chapitre des morceaux de codes
sont présentés, notons que ce sont des morceaux simplifiés permettant seulement d’offrir une
vision plus pratique des éléments implémentés. Les chapitres précédents ont relevé que 'une
des difficultés pour la résolution du systéme discret de Darcy est 'influence de ’apparition
ou disparition des phases sur ce systéme d’inconnues et d’équations. La section présente
comment le probléme a été traité via un manager d’inconnues qui gére en fonction d’un fluide

considéré les différents contextes en [4.2.1) qui génére les ensembles propres au modeéle (e.g.
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ensemble de composants dépendant d’un contexte, ensemble de phases contenant un com-
posant présent dans le contexte, ...), ces ensembles sont traités en . Les sections
et traitent quandt a elles de la génération des ensembles d’inconnues et de la selection
des inconnues primaires et secondaires. La section présente 'outil de gestion des propriétés
physiques du fluide et du milieu, détaillées en section [2.1.2] Cet outil permet de considérer
ces fonctions, comme des fonctions analytiques, les lois et leurs dérivées sont en effet calculées
analytiquement. Grace & tous ces développement présentés ci-dessus, il est alors possible d’in-
tégrer les outils nécessaires & ’analyse d’erreur a posteriori; cela est expliqué en section
On détaille 'implémentation des post-traitements nécessaires en f.4.1]et en Finalement,
la section .4.3] a pour but de recenser les avantages que présente I'implémentation des esti-

mateurs d’erreur a posteriori.



24

CHAPITRE 1. INTRODUCTION



CHAPTER 2

The compositional Darcy model

In this chapter, we propose first to define a mathematical formulation of the compositional flow.
Different types of formulations are possible, and we choose to follow the Coats formulation
introduced by Coats in [35] and by Coats, Thomas, and Pierson in [36]. Its particularity is to
consider the system in two types of equations, the conservative equations and the local closure
equations. A complete state of the art can be found in the thesis of Cao [23]. We then discuss
the numerical discretization of the model, following in particular the ideas of Chen, Huan, and
Ma [33].

The compositional Darcy model states the basic principles of conservation of mass, mo-
mentum, and energy for a fluid flowing through a porous medium. We assume here that the
fluid is composed of different components present in different phases. The term phase stands
for a matter that has a homogeneous physical state, whereas a component is typically a chem-
ical species. Here, we focus mostly on presenting the model in an abstract form. Particular
situations of interest are presented as special cases. The material is organized as follows. In
Section [2.T] we describe the continuous model, state the equations, and present the unknowns
of the model. In Section[2.2] we present the discretization of the model based on a multi-point
finite volume scheme with upwinding. The Section presents the solution strategy. Finally,

Section [2.4] shows the results of several numerical experiments.

25
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2.1 The continuous setting

A mathematical model consists of a set of equations that describe a given physical phenomena.
In petroleum industry we need to describe the flow of fluids in underground petroleum reser-
voirs, which are large geological domains containing hydrocarbons. They are porous media,
but they are not vacuum bags filled with oil. Rather, they are comparable to a solid sponge:
A rock full of pores filled with oil.

Let © Cc R%, d > 2, be a bounded connected polygonal domain and let tp > 0. Here
Q) represents the reservoir, while tp is the simulation time. Our goal is to model the flow
of the reservoir fluid through Q in the time interval (0,¢p). For this, we need to describe
a fluid composed of Np phases, phases being composed of Ng components (Np < +00
and N¢ < 400). We denote by P = {p} and C = {c¢} respectively the set of phases and
components. In a general setting, a phase can contain only a subset of the components. For
positive integers m and n, let R™" denote the set of real matrices with m lines and n columns.

A synthetic description of the fluid system can be obtained using the component-phase matriz
M = [meplcec, pep € RNe:NP - where all entries belongs to {0,1},
such that, for all ¢ € C and all p € P,
1 if the component c is contained in the phase p,

Mep = (2.1.1)
0 otherwise,

Cp
1 0 1
M= 7P| 0 1 1
1 B 0

This matrix gives different sets:
e The set of components constituting the phase p:
Cp={ceC|mey =1}

The non-zero elements of column p represent the set of components composing the phase

p-
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e The set of phases containing the component c:
PC:{p€P|mC,p: 1}.
The non-zero elements of line ¢ represent the set of phases containing the component c.

Examples and in Section below, illustrate the component-phase matrix two
different particular situations. The description of the system is completed by a boolean thermal

index Iy:

e [y = 0 in the isothermal case. This means that we do not consider the temperature in

the model;

e [y = 1in the thermal case, in order to describe the temperature evolution in the domain.

Therefore an additional partial differential equation (PDE) is present in the model.

The formulation used throughout this work relies on a system of equations which depends
on the phases that are present in a space location at a given time. Indeed, if two phases flow
side by side, one pushes the other and the fluid moves and evolves in time through the domain.
Thus, if one phase pushes the other one, the second phase can disappear in one place and

appear in another. The notion of contezt is introduced to describe this phenomenon.

Definition 2.1. A context represents a set of phases that are present at a given time and

position.

Note that a context can only take a finite number of configurations. More specifically,
since phases can either be present or not independently of each other, we have Ny = 27

possible contexts collected in the set K = {k}.

Definition 2.2. The context in which all phases are present is called the reference context

and denoted by the symbol kycf.

2.1.1 Unknowns

Let ¥ := Q x (0,tr) denote the space-time domain. The appearance or disappearance of
phases in different points of time or space causes the main difficulty of the model. To account

for this difficulty, we introduce the field 8. Then at a given point of ¥, the field K:

R:Y =K (2.1.2)
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gives the local context k € IC; note that £(X) C K. This mapping is itself an unknown of the
problem and its determination requires a special computation. The flash algorithm described
in Appendix [A]is devoted to the computation of the local context.

In what follows we describe a systematic way for stating the equations of mass, momentum

and energy conservation.

Definition 2.3. For a given context k € IC, we let Py denote the set of phases present in the

context k. Similarly, Ci denotes the set of components present in the context k.

Remark 2.4 (Indices of subsets). To avoid the multiplicity of indices, we use in the same
position the letter p, ¢, and k in the notation of the subsets of P and C, but their meanings

are clear and there can be no confusion.
Counsider the following unknowns:

Uy, = {R (0), {Sp}pepm c 7c}p€7’kyc€Cp> {”c}cea} ) (2.1.3)

where:

e P denotes the reference pressure;

0 is the temperature, only present when Iy = 1;

{Sp}pep, is the set of saturations for the phases p present in the context k;

Ch.ctpep, cec, 18 the set of molar fractions for the components of each present phase;
,CIpEPE,celp p p p )

{n.} ccg, contains the numbers of moles for the components absent from the context,
which are collected in the set

Cr :=C\ Cy.
These unknowns are considered separately and are described later.

For p € P, the phase pressures P, are expressed in terms of the unknowns U}, as follows:
P,(P,Sp) := P+ P, (Sp), (2.1.4)

where P, (Sp) is the capillary pressure function whose dependency is made precise in Sec-

tion 2.1.2.2
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The unknowns P, 0 if Iy = 1, {Sp}pep,, and {Cp c}pep, cec, are associated to non-trivial
PDEs and they are collectively referred to as P(6)CS unknowns. For the sake of conciseness,
we introduce the following notation for the vectors of saturations and phase compositions: For
all k € KC,

S* := (Sp)pep, and Ck := (Cpe)eec, for all p € Py

When k = ke, Uy, only contains P(6)CS unknowns. In this case we drop the index and

ref
simply write

U = {P, (9), {Sp}pep, {C ,c}pEP,cECP} .

Similarly, we let S := Skref and C,:= C’;ref for all p € P.
For each point X in X, the local context £(X) is a subset of K. We denote by a subscript
R all quantities related to the mapping 8 defined in (2.1.2)), such as

Cq = {C S Ck’k = ﬁ(X), X € 2},

and

P = {p € Pk|/€ = f{(X), X e Z}.

Remark 2.5 (Empty context). The empty context () € K may be relevant in the thermal
case Iy = 1. In this case the set of unknowns only contains the temperature, i.e., U = {6},

and we solve the problem for the temperature field only.

We conclude this section on the unknowns by pinpointing that other choices are possible
for the unknowns. These are not detailed herein; see, e.g., the work of Chen, Huan, and

Ma [33 Chapter 9.

2.1.2 Fluid and rock properties

Before introducing the model, we need to present the different fluid and rock properties used to
describe the present process. They are simply defined as fields over ¥ and only the dependence
on the unknowns is highlighted. For a property ¢, let us denote by [¢] its dimension in the
international system (IS) units. For example, if L is a length, its unit is the meter and we
denote it by [L] = m. The temperature unknown 6, which is only present in the thermal
cases, is written without parentheses in quantities that are intrinsic to the thermal cases and

between parentheses in quantities that are common to both cases.
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2.1.2.1 Medium properties

For the porous medium (the rock), we consider the following properties:

e The porosity ¢ of the porous medium is a dimensionless function satisfying 0 < ¢ < 1.
It is the fraction of the volume of void over the total volume; It also gives the fraction
of the volume available for the fluid. In this work, it is treated as a constant in space

and in time.

e The rock internal energy e.(P,0,C,) is a state function of the system. The units are

[er] = kg - m? - 572,

e The rock molar density (; represents the number of moles per unit volume and [(;] =

mol - m~3.

e The thermal conductivity X is the property of a material describing its ability to conduct

heat, and [\] = kg -m-s™3 K1
For all phases p € P we introduce the following fields:

e The absolute permeability tensor K measures the permeability, or ability of the rock to

transmit fluids. The usual unit is the Darcy (D) and the IS units give [K] = m2.

o The relative permeability k.,(Sp) is a dimensionless number. It is the ratio of the effec-
tive permeability of the phase to the absolute permeability. The effective permeability
represents the ability of a fluid to flow through a rock when another fluid is present in
the pore space. The relative permeability k., indicates the tendency of phase p to wet

the porous medium.

2.1.2.2 The capillary pressure

For all phases p € P, the capillary pressure P, (S,) is specific to multiphase flows. It represents
the difference in pressure between two fluids on either side of an interface. Indeed, the pressure
in a wetting fluid is smaller than that in a non-wetting fluid. This difference in pressure, given
by the capillary pressure, accounts for the curvature on the interface and the surface tension
of the fluids at the interface between the two phases. Pressures are traditionally expressed in

Pa. In IS units we have [P,,] =kg-m™!-s72
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2.1.2.3 Thermodynamic properties

For all phases p € P we introduce the following fields, where 6 is in absolute degrees:

e The molar density (,(P,(6),C,) represents the number of moles per unit volume and

[¢p] = mol - m~3.

o The mass density p,(P,(6),C,) represents the mass per unit volume and is expressed

by [pp] = kg - m~3.

o The wiscosity p,(P,(0),Cp) measures the resistance of a fluid to flow and

[y =kg -m~t-s7L.

e The fugacity fep(P,(0),C,) depends on a component ¢ and on the set of components
C,. It expresses a chemical equilibrium and represents the tendency of a component to

escape. The fugacity is often expressed in Pa, the IS gives [f.,] = kg -m™!-s72

e The enthalpy h,(P,0,C,) is a thermodynamic potential; it is a measure of the total
energy of a thermodynamic system and is expressed by

[hy] =kg -m=2.572. mol .

e The phase internal energy e,(P,0,C,) is a state function of the system. This function
is only present in the thermal context. We express it by

[e)] =kg -m™2.572.mol .

2.1.3 Equations

We have seen that the set of unknowns depends on the context and the context depends on the
position and on time. We recall that the field R is itself an implicit function of the unknowns
at a given location in ¥; hence it is a variable of the problem.

In order to have a physical model of the flow in the reservoir we must consider different

types of equations expressing
e the mass conservation of the components,
e the momentum conservation of the components,

e the volume conservation,
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e the conservation of the quantity of the matter in each phase,

e the equilibria of the components for those components that are present in more than

one phase.

For all ¢ € C, we let ¢, : X — R denote a source field. Let us recall
Veel, P.i={peP|mcy=1}.

In the non-thermal case Iy = 0, we consider the following problem:

2.1.3.1 The partial differential equations

e Conservation of mass and momentum:

P, (0), Cp)k, (5
omet+ Y div<<p< (0), )k, ( p>cp,67p<p,<e>,sp,cp>>:qc, ve e C,
pEPaNPe #p(P; (), Cp)

(2.1.5a)
One = qc, Ve e @

(2.1.5b)

2.1.3.2 The closure equations

e The volume conservation:

> S, =1 (2.1.6a)

PEPg

e The conservation of the quantity of the matter in each phase:

Y Cpe=1, VpePs (2.1.6b)

ceCp

e The equilibria of the components present in different phases:

fC,pl(Pv (0)7 Cpl) = fC,pz(P7 (‘9)7 Cp2)7 Ve € Cg, Vp1 € PaNPe,p2 € Pg, p1 7é D2.
(2.1.6C)

The definitions of n. and 7p are in order.
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2.1.3.3 Mole number

Equations f are N¢ PDEs linking the variation in time of the number of moles
of a component ¢ € C at a given point in ¥ with the flow of the phases containing the
component ¢ and the source term ¢.. In particular, for all k£ € IC, the number of moles n. is
an unknown for all ¢ € C;, whereas, for all ¢ € C, it can be inferred from the definition

ne=¢ Y (P (0),Cp)SpChe. (2.1.7)

PEPLNPe
2.1.3.4 Darcy velocity

In most formulations of Darcy’s law, the phase mobility %‘J’ is included in the definition of
the Darcy velocity. However, here we prefer to dissociate the mobility from the velocity and
write it explicitly as a factor in the balance of mass and momentum. Therefore, for all p € P,

we choose to define the average phase velocity by:
7P(P7 (9>a Spa CP) =-K (VPP(Pv Sp) - pp(P7 (9)7 Cp)g) ’ (218)

where g denotes the downward-oriented gravity acceleration and the phase pressure P, is given
by (2.1.4). In the physical situation considered here, the permeability tensor K is a diagonal

matrix:

If K11 = Koo = Ks3, i.e. K = k1d, the porous medium is called isotropic, otherwise, it is
anisotropic. If K is constant over all €2 it is called homogeneous, otherwise, it is heterogeneous.
To simplify the compositional model, we shall consider isotropic media. In contrast, we will

study two-phase flows in anisotropic media, see Chapter 3| below.

Remark 2.6 (Absent components). Observe that (2.1.5a)—(2.1.5b)) could be alternatively

written as

- (G(P.6). Gk, (5))
O d z
et 2 (e

since PgNP,. = @ for all ¢ € Cgz. The formulation (2.1.5b)) makes it clear that the only variation

CP707P<P7 (9)7 Spa Cp)) = (e, Ve € C,

in the number of moles of components absent from the local context is due to source terms or

a change in the local context.
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2.1.3.5 Thermal case
In the thermal case Iy = 1, the system (2.1.5) is complemented by the energy conservation

equation,

. (2,0, Cp)ky, (Sp)
Ore +div [ Y 2E Mp(R; C:) 2 hy(P,6,Cp) V(P 6,S,,Cp) —AVO | =Q,  (2.1.10)

PEPg

where @) represents a thermal source term and the molar energy is given by

e=¢ Y G(P,0,Cyey(P,0,Cp)S, + (1 - ¢)Ger(P, 6, Cp).
PEPq

2.1.3.6 Boundary conditions

To close problem (2.1.5)—(2.1.8), we have to prescribe boundary conditions on 99 x (0, tp).

No-flow boundary conditions are prescribed for all phases, i.e. we choose:
VpeP, V,-n=0  ondQx(0,tp), (2.1.11)

where n is a unit exterior normal of €.
Moreover, for thermal problems, we assume fixed temperature boundary conditions such
that
=0  on 00 x (0,tp), (2.1.12)

with 6 a given prescribed temperature.

2.1.3.7 Well model

Let us recall that the compositional formulation is established to model oil extraction processes
used in the petroleum industry, such as the Steam Assisted Gravity Drainage (SAGD) process,
and introduced in the 90th by Butler in [19], described in Section 1.1} see Example below.
This process contains a set of wells W = {WW}, some wells produce oil and belong to the class
of production wells. In other wells, fluids (steam, water) are injected into the domain, and
they belong to the class of injection wells.

It is assumed that the characterization of a given well is fixed, i.e., it cannot change during
a simulation. Exchanges between a well and the domain are carried through several interior

perforations of the well. The perforations allow the fluid to flow in or out of the domain
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Figure 2.1: Schematic picture of production and injection wells

depending on whether the well is a production or an injection well, see Figure Let us
formulate fluxes flowing through the wells.

The effects of wells are expressed by adding the mass production or injection at the wells

to the source terms {¢.}cec and @, in equations (2.1.5a)—(2.1.5b)) and (2.1.10) respectively.

The derivation of well flow equations relies on the basic assumption that the flow is radial in

a neighborhood of the well. This leads to, for all ¢ € Cg,

A G(P,(0),Cp)k (S
Omet Y div ( s <(12 (9;,)0,,)( e, P 0,5,.6)) =0t 3 Y owal
PEPRNPe Hpl 580, Sop WEW pePyy,, NPe

(2.1.13)

where for a well W € W,

e Oy is the characteristic function of W
1 ifxeW,

ow (x) = (2.1.14)

0 otherwise;

° C]K/c is the mass production or injection at this well;

e ky is the local context of W,
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e Py, is the set of phases in kyy.

We express qg’/c as follows

1 i (S Colt 5
' ,up(P, (9), Cp)

where the phase velocity W;fv in the well W is given by

Gy (P, (0).5,.C, >)

WY (P, (0),S,,Cp) =7V (VP,(P,S) — py(P,(),Cp)g) .

p

W is given by the Peaceman Formula, see [61].

The well index, also called production indez, T
Its discrete version is written in (2.2.26)) below.
If Iy = 1, the source term of the energy conservation equation (2.1.10) is also complemented

by a sum over the wells:

. (P, 0,Cp)ky, (Sp)
ate—l—dlv( 3o ﬂp(Pé’ ) P hp(P,e,Cp)?p(P,e,Sp,Cp)—Ava)

pEPR (2.1.15)
=Q+ Y swQw,

wew

where Qw represents the energy produced by the wells; Details are presented in [33]. The
above fluxes are discretized in Section 2.2.2.41

2.1.3.8 Number of equations vs. number of unknowns

The mathematical analysis of the above problem is outside of the scope of this work. But
at least, we can check that it is a square system of equations: For a given context k € IC,
the number of equations in f and in matches the number of unknowns
Uy (with Uy, defined by (2.1.3))). Indeed, equations (2.1.5a)—([2.1.5b) and (2.1.10) are N¢ + Iy
PDEs; equations and add respectively 1 and Np, constraints; finally, the

fugacity equilibria equations (2.1.6c]) consist of

ZNPL—I ZNR Ne, = ZNCP—ch

ceCy, c€eCy, PEP

equations.

As a consequence, for a given context k € K, the number of equations is

Ne+1Ip+1+Np, + Y Ne,—Ne, =1+1Iy+Np, + Y Ne, + No— = card(Uy,).
PEPy PEP



2.1. THE CONTINUOUS SETTING 37

2.1.4 The context

As we have already mentioned, the field R is itself a function of the local unknowns. More

specifically, we introduce the total molar fraction for all ¢ € C:

ZpE’PﬁﬂP.: Cp(Pv (6), Cp)SpCp,c + ZC'E@Q{C} e
ZC/EC ZpePngd CP(P’ (9)’ CP)SPCP’C + EC/ECT? et ’

collected in the vector Z = {Z,}ccc, with the condition ) .- Z. = 1. Then there holds:

7. = (2.1.16)

A& =Flash(P,Z) inQ, (2.1.17)

where Flash is an algorithm used in multiphase flow simulations to determine the local con-

texts; see Appendix [A] to find more details on the algorithm.

2.1.5 Examples

Example 2.7 (Immiscible isothermal two-phase flow). A first example considered in this
work is the isothermal (I = 0) immiscible two-phase flow corresponding to the following

component-phase matrix:

M =
0 1

We use the common notation C = P = {w,0} (where w and o correspond to the wetting and
non-wetting phase respectively, both mono-components). As a component is present only in

one phase we have:

Cw = {W}v Co = {0}7
{C ,c}pEP,cEC = {Cw,waco,o} and C’vv,w = Uo,0 = 17

(2.1.18)

so that {Cp c}pepcec is known. Thus, the conservation of quantity of the matter equa-

tions (2.1.6b)) disappear from the model. For the same reason, the fugacity equality ([2.1.6c])

is not useful here. The set of unknowns in the reference context reduces to:
U= {PaSOaSW})

and the contexts are:

K = {{o},{w}, {o,w}}.
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System (2.1.5)—(2.1.6) becomes:

O (¢lw(P)Sw) + div (WVW(P, (), Sw)> = Qw in 3,
Ot (pCo(P)S,) + div (WVO(R 9), So)> = ¢ in %, (2.1.19)

So+ Sy =1 in X,

where, V, and V', are again given by . Boundary and initial conditions close the
model.

A classical practical example of an isothermal, immiscible two-phase flow is provided by
the five-spot case, described by, e.g. Trangenstein and Bell [67]. We have a square domain with
an injection well in each corner and a production well in the center. We refer to Section
for a brief description of the well model. At initial time, the domain is full of oil (S, = 1) and
we inject water through the injection wells. The oil is pushed out of the domain through the

production well.

Example 2.8 (SAGD thermal flow). A second example is provided by the Steam-Assisted
Gravity Drainage (SAGD) model. The principle of the SAGD procedure is to inject water
steam to heat the oil phase, thereby reducing its viscosity. The component-phase matrix

associated to the problem is as follows:

1 10
0 01

M =

Here we have two components, say C = {e,h} corresponding to water and a heavy oil, and
three phases, say P = {w,s, o} corresponding to liquid water, steam, and oil, respectively. We
have:
Cw = {e}, Cs ={e}, Co = {h},
{Cpetpep.ccc = {Cwe,Cse; Con} and Cy e = Cse = Cop =1,

(2.1.20)

so that {C) ¢}pep cec is known. Then the set of unknowns in the reference context is
U= {P7 (9)5 Sw, Ss, So} )

and the contexts are:

K =A{0,{w},{s},{o},{w,s},{w, 0}, {s, 0}, {w,s,0}}.
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In this case, system (2.1.5)(2.1.6)—(2.1.10) becomes (for simplicity, when there is no ambigu-

ity, we omit the arguments in the functions)

87& (¢CW(P7 (9))Sw+ (sz(Pﬂ (0>)Ss) +

G POk (5) G(P,(0))k, () I
i (APOWB) 9 (1 9,5+ SEOMEIT (1 0).5)) =0 s
00 (0GP, 0)50) + aiv (2O T (2 0).5)) =,
ove-+aiv ( SELNEDn (1 091 0). 500+
G, (0))ks ()
A hs(P,0)Vs(P, (0), Ss)+

ho(P,0)V o(P, (0), S,) — AVH) =Q inX,

Sw+Ss+S5,=1 in X,
fe,w(P7 (9)) - fe,s(P, (0)) =0 in X.

A complete description of a SAGD test case can be found, e.g., in the book of Aziz and
Settari [I5] or in the work of Mamaghani, Enchéry, and Chainais [57].

2.2 The discrete setting

Although the two-phase flow in the next chapter will be discretized in rectangular meshes, we
present here a more general setting.

By definition a mesh T = {T'} of the space domain Q € R%, d = 2 or 3, is a partition of (,
into open nonempty disjoint triangles or quadrilaterals if d = 2, and tetrahedra or hexahedra
if d = 3, such that

o-UT
TeT
i.e., T covers  exactly. We assume that the mesh is conforming and we let Ny := card(7).
The elements of T are sometimes referred to as cells since the latter term is more common in
Finite Volume (FV) methods. For every element 7" € T, we denote by |T'| its d-dimensional

measure and by hr its diameter. The mesh size is defined by

hy = sup hrp.
TeT
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Let F = {0} be the set of hyperplanar mesh faces and, for all T € T, set
Fr:={ceF|ocCoT}. (2.2.1)

The set of faces is additionally partitioned into F = F! U FP where F! collects all internal
faces o ¢ OQ while FP collects all boundary faces o C 9.
We denote by 7, the set of cells that share the face o

To={T €T |ocCoT}. (2.2.2)

We assume that an internal face o € F' is shared by exactly two cells Ty, T» € T such that
o = 0T1 N 0Ty. The ordering of these two cells is arbitrary but fixed. By convention, fluxes
across o as well as the normal vector n, are taken outward from 7;. The (d — 1)-dimensional
measure of a face o € F is denoted by |o|. The barycenter of a face o € F is denoted by x,-.
For all T € T we identify a cell-center, i.e., the barycenter xp € T. The component of x in
the (oriented) opposite direction to gravity is denoted by zp. For all T € T and o € Fr, we
denote by dr, the Euclidean distance between the cell-center x7 and the face o, and by nr,
the unit vector normal to o outward to 7.

For the time discretization, we use here a fully implicit time stepping scheme.
Let {t"}o<n<np be a strictly increasing sequence of discrete times such that Y = 0 and
tNF = tp. For 1 < n < Np, we define the time interval I, :=]t""!,¢"] and the time step
T =t — L

For a function of time ¢ with sufficient regularity we set ¢™ := ¢(t"), 0 < n < N, and

define the backward differencing operator:

1 _
B = = (" — "), (2.2.3)

If, in addition, ¢ is affine inside each time interval I,,, 1 < n < Ny, there holds
(St(pn = 815@‘]”.

Remark 2.9 (Adaptive mesh). In the context of Adaptive Mesh Refinement (AMR), se-
quences of meshes {T"}o<n<np are considered. On each time step, the mesh is updated
according to a posteriori error estimates; Cells are conserved, coarsened, or refined. The fol-

lowing work could be done with such meshes but for a sake of simplicity, we only consider a

fixed mesh 7.
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2.2.1 Unknowns

In the spirit of FV methods, the unknowns appearing in the continuous problem are discretized
using only one value per cell, which can be alternatively interpreted as an average over the
cell or as the value at the cell-center. We introduce the piecewise constant discrete contexts
{kl}}reT such that, for all 1 <n < Np and all T € T, kIl € K represents the context in the
cell T, at time t"™. The set of phases present in the cell T is denoted by Piz.. It is updated
during the computation at each time step. The discrete counterpart of the unknowns
is, for all T'€ T and 0 < n < Np,

tp = { PR O, Sprhoerig (G boepig cccys Ol )eap o (220
where we recall that, at time ¢", in the cell T'

e P7 denotes the reference pressure;

07 is the temperature, only present when Iy = 1;

{S) r}pep,y is the set of saturations for the phases present in the context k7
’ T

{Cg e TYpEPn ceC, 15 the set of molar fractions for the components of each phase present
bt T

in the cell T

{n.} ccCrm contains the numbers of moles for the components absent from the context
T

k., which are collected in the set @ i=C\ Cyz..

Once the unknowns of the set U7 are ordered for all T'€ 7, 0 < n < N, and this order
is fixed, these unknowns are stored in a local vector u, which concurs in forming the global

vector u” := (ul})ret.

2.2.2 Discrete equations

We consider in this section a discretization of problem ([2.1.5)—(2.1.6)—(2.1.10]) based on Multi-

Point FV (MPFV) scheme and phase-upwinding. Recall that throughout this work we restrict
ourselves to fully implicit time discretizations. Thus we need to integrate the conservation

equations over a control volume T € T and over a time interval I,,. We have, for each
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component ¢ € C:

[ (atnc S (SEO.CIE 3 <)Sp,cp)>>dxdt

pEPkﬁPL

:/ /qC dx dt.
I, JT

Next, using the Gauss theorem, we express the divergence integral over T', present in equa-

tion (2.2.5)), in terms of fluxes on the boundary 0T of T. As the summation on the phases

(2.2.5)

does not depend on space or time, we obtain:
/ (n —ny” ) dx+

> (/In/8T<<p pe’()> p)(S)cpCV( <>sp,cp)>.ndpdt> 225

:/ /qc dx dt.
I, JT

Recall that Fr is the set of faces of T. Let us divide both sides of this equation by 7. The

second term in (2.2.6) has the expression:

Ly (/I/<4p i ))C)( e 9P )sp,cp)> -ndth). (227)

O'G.FTPGPRQP
Therefore,
in (ngfnc’?_l) dx+
™ Jr
1 Cp ‘9 Cp)kr, (Sp)
Ly ([ T P.9).5,Cp) ) - marar)

o€ Fr pEPaNPe n
1
= n/ /qc dx dt.
I, JT

Considering that the approximating unknowns are piecewise constant in each control volume,

(2.2.8)

the first term in (2.2.8]), has the straightforward approximation:

| T | 1
— (nr —n27"). (2.2.9)
More precisely, for a component ¢ in the control volume T" at time ¢", if ¢ € Cyn, we define

the discrete accumulation term by discretizing the mole number equation (2.1.7):

ngr =0 Y. G(PE O Crr)SprCre (2.2.10)

pGPkn QPC
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As stated in Section when ¢ € Cy,., i.e. when the component c is absent from the present

context, then n. 7 is an independent unknown.

The approximation of the term (2.2.7) is more delicate because of the fluxes 7p ‘n|,. This
is the object of the next section. To improve readability, in what follows, the superscript n is

systematically omitted from all time-dependent quantities.

2.2.2.1 Multi-point flux discretization

Here we concentrate on multi-point flux discretization. The two-point F'V method for the
two-phase flow will be described in the next chapter. We turn to the discretization of the
fluxes 71, - n|, over the faces o of the mesh. A key ingredient of the method discussed in
this section is the discretization of second-order elliptic terms on general meshes. It is a
well-known fact that the classical two-point F'V method fails to be consistent on meshes that
do not satisfy the K-orthogonality condition, for example for refined meshes, which are not
conforming; see, e.g., Di Pietro [38, §5.1]. While several remedies have been suggested over
the last years by Droniou and Eymard in [43], by Eymard, Gallouét and Herbin in [50], and
by Di Pietro [37, B9, 40], we describe here for the compositional model the MPFV methods,
which have been independently introduced in the late 90s by Aavatsmark, Barkve, Bge, and
Mannseth [4, 5] and Edwards and Rogers [45]. More specifically, the actual implementation
relies on the MPFV method introduced and analyzed by Agélas, Di Pietro, and Droniou [7],
following the idea of Agélas, Di Pietro, and Masson [§].

In finite volume methods, the fluxes are computed at the faces and can be written as a
linear combination of the discrete unknowns presented before. Let us stress that we impose

conservative fluxes on the faces, i.e., “What flows out corresponds to what flows in”.

The following notation will be used in the sequel. The mean value of a function f in a

region O is denoted by

1
o= /@ £ (x)dx.
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Fluxes discretization The fluxes that are relevant for the discretization of system ([2.1.5])

are those associated with the following auxiliary scalar problem:
—div(KV¢) = f in Q,
KV¢E-n=0 on 012,
()a =0,
(fla=0.

(2.2.11)

Observe that the homogeneous Neumann boundary condition is consistent with the no-flow
boundary condition (2.1.11)). The key idea of MPFV methods is to express fluxes as a linear
combination of cell unknowns. The MPFV discretization of problem (2.2.11)) reads

Find £ € R7 such that »  Op.(&) = (f)rforall T €T,
o€FpNFi
where, for all T' € T, Fr is defined by and for all o € Fr N F', &1 (&) denotes an
approximation of the normal flow of —KV¢ leaving T' through o expressed in terms of the
values of & = (&é7)7er. In particular, for all faces o € F, we introduce a fluz stencil S5™ C T,
associated with the mass and momentum conservation system discretization (2.1.5). The
stencil depends on the method. For example, for the two-point FV method, if o = 017 N 0T5
then the stencil S™™ = {Ty,T»}. Thus for all T € T, all 0 € FiN Fr, and all £ € R7,

ro(8) = > Thép,
T’ eSpm

where for all T' € SF™, 77 € R are called transmissibility coefficients of the face 0. These

coefficients satisfy

Z 77 = 0.

T’ ES;DID

The following flux conservation property is verified:

©T1,0(€) = 7(I)T2,0'(£)7
for all ¢ € F', 0 = 0Ty N 075, and all £ € R7.
In what follows it is assumed that, for all o € F!, 7, is contained in S™™.

Remark 2.10 (Upwinding stencil). In fluid dynamics computations, upwind numerical fluxes

are often chosen for the discretization of the advective terms, see, e.g., the book of Eymard,
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Gallouét, and Herbin [49]. Their advantage is that they simulate the direction of propagation
of information in a fluid field and stabilize the scheme, but then the stencil used to compute

the fluxes can vary in time and space.
Consider the case where the permeability tensor has the form

K = xId, (2.2.12)

where k is constant in time and is a positive piecewise constant function in space, uniformly
bounded above and uniformly bounded away from 0.

We are now ready to define the phase fluxes for our model in this case. Recall that,
for the sake of brevity, we focus on the generic time step n and omit the superscript n from all
the time-dependent quantities. For all o € F' and all T € T, the diffusive flux of the phase
p € Upet, Pry is discretized by:

Fpro(w) = Fyre ({ur}ress=) = Y 10 (Porr + ppoger) (2.2.13)
T/ eSmm
where g denotes the acceleration due to the standard gravity, defined as 9.80665 m/s?. Recall
that Py, is the set of phases of the context kr present in the cell 7. The transmissibility
coefficients 77 depend on the discretization grid, the permeability tensor K and on the chosen
scheme. These coefficients can be preprocessed and stored, so that they can be used as an
entry for solving the fluid dynamics system.

Let us compute 77, , for a two-point FV scheme, for o = 71 N 15, where 71 and T3 are
two neighboring cells. We assume that in each cell the medium is homogeneous, that is, in
each cell k := kr a constant. Let x, and x7 denote the barycenter of the face ¢ and the cell
T respectively. Moreover let T and T3 be ordered in such a way that the normal vector n,

points into 7. Then the coefficient 77, is defined by:

KTy KTy
o _ [xo—%xm[l2 Xo—%xmy[l2 lo|kT, KTy,
7 = |o] RT, KTy Tk || Xe — X1y |2 61 || Xo — X1y |2 (2.2.14)
[Xo—x7ll2 " [Ixo—%1, |2 1 2 2 1
and
Th = —Th (2.2.15)

where the negative sign of 77, enforces the conservativity of fluxes.
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Remark 2.11. If the medium in addition is everywhere homogeneous and isotropic, i.e.
VT €T, kr =K,

then the coefficient 77 reduces to:

TCT _ |O'|I€ HxU*xT1”2”x07xT2”2 _ |O-|K/ (2 9 16)
T — 1 1 - _ _ il
o=l T =l | xo — %13, |2 + || X6 — %1y [|2
and
T, = —TT, - (2.2.17)
The approximation of the mass density, p,», of the phase p at x, is given by
pp(uT1) ifpe Ple \ PkT27
Ppo = % pplur,) if p € Pro, \ Pho, (2.2.18)

(pp(ury) + pp(ur,)) /2 otherwise.

Other choices are possible for p,, but are not detailed herein.

Fourier fluxes discretization In the compositional model, if we want to study the ther-
mal case, we have Iy = 1, and the Fourier heat fluxes relevant to the discretization of equa-
tion (2.1.10]) are those associated with the following auxiliary scalar problem:
—div(AVE) =¢ in Q,
B (2.2.19)
E=¢ on 0f).
Observe that the Dirichlet boundary condition is consistent with the fixed temperature con-
dition (2.1.12)). We use a MPFV method to express the fluxes as a linear combination of cell
unknowns, and the discretization of problem (2.2.19)) reads

Find £ € R7 such that » Uy (§) = (g)r forall T € T,
ocEFT

where, for all ' € 7 and all 0 € Fr, ¥r,(§) denotes an approximation of the normal flow
of —AV¢ leaving T' through o expressed in terms of the values of € = ({7)7re7. In particular,
for all faces o € F, we introduce the stencil S§* C T associated with the energy conservation

equation (2.1.10) discretization. It depends on the method and is different from SF™ if the
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equation is discretized by another method. In what follows, it is assumed that, for all o € F,
7T, is contained in S*. Then, for all T € T, all 0 € Fr, and all £ € R7,
Vro(€) = ) Hér,
T/eSen
where 77 € R, for all T' € §;". Finally the following flux conservation property needs to be

verified:

\I’Tl,o(é') = _\I’Tg,a(f)a

for all o € F', 0 = 911 N IT>, and all € € RT.

We can now define the Fourier fluxes, under the same assumptions as for the phase fluxes.
Thus, for o € F!, and all T € T, the Fourier flux is given by:

Gro(w) = Gro({up}rese) = Y 7907 (2.2.20)
T’eSen

2.2.2.2 Upwinding the advective fluxes

As we saw in the previous part, we want to control the propagation of information in the flow
and stabilize the scheme. To this end, for all phases p € P and a given law £ € {(p, Kz, fip}, We
introduce the notation £x := ¢(uy), where the control volume X is a cell T, a perforated cell
W, or an upwind cell for the phase p defined as follows. The symbol TpT denotes the upwind
cell for the phase p defined for a face o € F* by:

Ty if Fp 7 o(a) >0,
Vo =Ty N ATy, Vp € P, UPp, T = P (2.2.21)

P
T5 otherwise.

If the face is located on the boundary o € FP, in view of the homogeneous Neumann conditiomn,

F,1,(u) =0 and we do not need to evaluate the transport term.

In Figure 2.2] the upwind cell for the phase p flowing through the face o is T} because the

phase p flows from 77 to T5. Thus to compute the new flux we need the information coming

from 77 and the laws are evaluated with the variable ug, .

2.2.2.3 The boundary conditions

Summing up, no-flow boundary conditions are enforced for all phases (see the paragraph on

boundary conditions in Section [2.1.3.6)), i.e. fluxes flowing across the boundaries are equal to
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~ 0T o

T = TI;T TQ
F?L

p.T1.0

Figure 2.2: Example of an internal upwind cell configuration.

0. Then for p € P, T € T such that 9T contains a face ¢ on the boundary:

FnT’Ub(uT) = 0. (2.2.22)

For thermal problems, the diffusive Fourier fluxes are evaluated using the two-point FV scheme.

Thus, for o € FP, we have T, = TP, with T® the boundary cell such that o € 97", and

GY, (1) = G, (ug) = 750 (07 — 0). (2.2.23)

2.2.2.4 Wells

Now, let us sketch the discretization of the contribution of wells, introduced in Section
Recall that the wells are collected in the set W, composed of injection and production wells.
Injection wells are collected in the set W', production wells are collected in the set WP. Note
that

WUWP =W and W NWP =,

Recall that the injected fluid will push the hydrocarbons, whereas the production wells permit
the fluid to flow out of the reservoir.

For all W € W, we denote by Ty C T the set of cells which contain the perforations of
W. For all W € W and all perforated cells T € Ty, we denote by zw,r the height of the
perforation opposite to the direction along which gravity acts. For 0 < n < Np, for every
injection well W € W!, and for all perforations T' € Ty, we additionally introduce the set

Py of phases present in the injected fluid flowing throughout this perforation. Then

uﬁ/,T = {PI;LV,Tv (HIT}V,T)? {Sn,W/,T}pEPW,T7 {CZ”)Z,C,W/,T}pGPW,TvcECp} >

denotes the set of variables corresponding to the physical state of the injected fluid, they are

supposed known.
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For 0 < n < Ny, for every production well W € WP and for all perforations 7' € Tyy. We

similarly introduce the set of unknowns:

Uy 7 = { Py, (05.7), S wr tvePw.rr {Ch cwr b pePwrecc, } -

As before, ordering the elements of Uy, 0 < n < Np, according to the choice of Sec-
tion yields the vector ugy, p.

We are now ready to define phase fluxes across the perforations of wells. The discretization
of a well contribution in the formulation , using a two-point method, is obtained by
introducing fluxes flowing through the faces of each perforated cell. Thus, for all injection
wells W € W', all perforated cells T € Ty, and all phases p € Py .7, the flux of the phase p

entering from the perforation in 7" at time t" is approximated by:

Fywr(uf) =71 [PYr — Py + pp(uiyr)g(zr — 2wir)] (2.2.24)

where T}/V is the so-called production index of the well. The production index is a data

determined by the characteristics of the well.  Observe that this flux only depends on the
unknowns associated with the perforated cell T.
Similarly, for all production wells W € WP, all perforated cells T' € Ty, and all phases
D € P, the flux of the phase p leaving the system from the perforation in 7' is approximated
by:
Fpwr(up) =71 (Br — Plrp + pp(ul)g(zr — 2wr)) | (2.2.25)

where T%V is the so-called production index of the well given by the data.

In our model, TJW is given by the Peaceman formula:

W 2mkh,
T In(0.14(h2 + B2)) + si

(2.2.26)

where h, (respectively hy) denotes the cell width in the = (respectively y) direction, and h. is
the depth of the cell T. Recall that x represents the value of the permeability tensor. The skin
factor, sp, is a dimensionless number that accounts for the effects resulting from the formation
damage caused by drilling.
Moreover, we can define the Fourier fluxes for all wells W € W' and all perforated cells
T € Tw by:
G () = 7 (0 — Oy 1)- (2.2.27)

Finally, there is no need to define the Fourier fluxes across the perforation of production

wells, because they are assumed to be zero.
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2.2.2.5 Closure equations

At each time step, the algebraic closure equations (2.1.6a)—(2.1.6¢)) are discretized in each cell

T € T. Thus, for k := k7., we have:

> Spr-1=0,

PEPk

> Cpor—1=0, Vpe P,
ceCyp

(2.2.28a)

(2.2.28b)

Jep (PF,(07), Cpr) — feps (Pr, (07),Cpr) =0, Ve € Cy, ¥p1, p2 € Py N Pe, p1 # p2-

2.2.3 Assembling the discrete equations

(2.2.28¢)

In this paragraph, we describe some tools for computing the discrete model and then we

present the strategy to solve the system. We discuss in this section the computation at each

generic time step from "~ ! to ", 1 < n < Np.

For a real x € R, we introduce the following notation for the positive and negative part of

o=zl +w), 2=

(|2 = 2).

X

N | —
N | —

Observe that both 2% and x® are non-negative.

2.2.3.1 Vector form of the discrete system

Recall that u™ := (u}.)re7 is the global vector of unknowns. We have:

Py
(07)
uT = {SgT }pEPk%

{Cpertrery, cec,

{nZT}065;:
T

Then, at each time step n and for each cell T' € T, we impose

(2.2.29)
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e The N, conservation of mass and momentum equations:

er (u") =0, Ve € C. (2.2.30a)

e The energy conservation equations:

RS (u) = 0, if Iy = 1. (2.2.30b)

e The closure equations:

Dy(up) =0. (2.2.30¢)

This discrete equations are specified below. To account for the presence of possible wells,

we introduce a Kronecker symbol for any pair of cells T and T":

1 ifT =1,
or, 1 =
0 otherwise.

The dependence on n is omitted in some places because it leads to very heavy notation. For

example, the upwind cell T]I also depends on n, and thus, p € PkTT depends on n.
P

To simplify the notation, we introduce the phase mobility, defined as follows, for all phases

pEP,
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2.2.3.2 Mass and momentum equations discretization

For all 0 < nmn < Ny, all T € T, and for all ¢ € C, we define the quantity Rf:n%l(u”) =
(RZF)™(u™) associated with the PDEs (2.1.5a)—(2.1.5b) as follows:
er (") :=|T[6ne,r

+ > > wp)Cl e Fre(u”)

cEFINFr pE?kTT NPe

P
> Y o (RO, rEy () (2.2.31)

WEWP TV €Ty pEPpy, MPe

= > D> S () Cl w Fy o (ul)

Wewi T'eTw pEPkW NPe
n
- qc,T?
where

1. For all components ¢ € C and all cells T" € T, the discretization of the source term is

1
Qe = T”/In /ch dx dt; (2.2.32)

2. Forall T € T and all 0 € 9T \ 09, F, 7»(u) is given by (12.2.13));
3. For all W € W' and all T € Ty, Fpw,r is given by (2.2.24);
4. For all W € WP and all T' € Tw, Fpw,r is given by (2.2.25);

5. For all p € P, T} is the upwind cell.

Note that in a production well, the information comes from the cells that are exterior to
the well in the neighborhood of the perforated cell. In contrast, in an injection well, the
information comes from well data.

Observe that the residual RoT depends, in general, on the unknowns associated with
cells other than T owing, in particular, to the diffusive Darcy fluxes across internal faces;

cf. Section 2.2.2.1] This dependence is precisely, for all T € T and all ¢ € C,
et (0) = REF ({ures, ),

where we have set

spma= | s

oceFrNFi
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Observe also that the no-flow condition across boundary faces has been accounted for in the
definition of the residual by implicitly setting Iy, 7, = 0 for all 0 € F b with o € 9T and all

p € P. We introduce the following notation for the vector of residuals:

R™ (u) = ((R(1))eec) por -

As we have already mentioned, the field {7} <7 is itself a function of the local unknowns
and considering (2.1.17)), we assume that for all T € T, the Flash algorithm (described in
Appendix [A)) gives:

kr = Flash(PT, ZT), with Zp = {ZT’c}cec, (2.2.33)
where Zr . represents the discrete counterpart of the molar fraction for the component c
defined by (2.1.16)).
2.2.3.3 Energy equation discretization

In the thermal case Iy = 1; for all 0 < n < Ny and T' € T, we define the residual R (u) =
(R$)™(u") associated with the energy conservation equation (2.1.10) by the following formula:

R (") :=[T|écer

oceFiNFr

D DRED DA Tt

oc€FiINFr pEPk 4
T

p
(2.2.34)

+ Z Z o7 v Z V’p(uZ,T)hp(uz,T)Fﬁ?M/,T(u%)

Wewr T'eTy PEPky, NPe
= > > dmr Y wp(upw)h(apw) By (uf)

Wewi T"eTw PE Py, MPe
+ Y Gh M+ > Y srrGwr(wp) — QF,

cEFPNFr wWewi T'eTw

where

1. Forall T € T and all o € 0T \ 09, F), 7,(u) is given by (2.2.13));
2. For all W € W' and all T € Tw, F,w.r is given by (2.2.24);

3. Forall W € WP and all T' € Ty, F, w,r is given by (2.2.25);
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4. For all T € T and all 0 € 0T\ 022, Gr(u) is given by (2.2.20);
5. Forall T € T and all o € 9T N 9N, G}, ,(u) is given by ([2.2.23);

6. For all W € W' and all T € Tw, Gw,r is given by (2.2.27);

7. For all phases p € P and a given law ¢ € {(p, ks, fip, hp}, we have introduced the
notation £x = f(ux) for X € {7, T;, W}, where T; is defined as in (2.2.21));

1
Q%:n/ /dedt.
T JI, JT

As previously, we introduce the following notation for the vector of residuals:

8. For all cells T € T, we set

R (u) := (R7'(0))per -

Below, we will also use

en .__ en
sp=|J s
oeFrNFi

and we have

Sri=|J {spmussy.

oceFpNFi

For all T € T and letting k := kp, the algebraic closure equations (2.1.6a)—(2.1.6c) are
discretized in Section [2.2.2.5( and give the system of equations (2.2.28]). Let us recall that we

denote these closure equations in a synthetic form by the equations Dy (ur) = 0, see (2.2.30d]).
2.2.3.4 Global discrete problem

Finally, the discrete problem to be solved at every time step 1 < n < Np can be synthetically

expressed as

R™(u") = 0 € RNeXNT, (2.2.35a)
R (u") = 0 € RV7, if Iy =1, (2.2.35D)
Dr(u}) = 0 € RNl VT €T, (2.2.35¢)

where N, 7 is the number of algebraic closure equations for the cell T € T given by (setting
)

Nagr i=1+ Np, + Z Ne, — Ne,.
PEPk
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Problem is a nonlinear system of algebraic equations that can be solved using
standard techniques as described in the next section. An important remark is that, for all
T € T, the closure equations express constraints involving only the unknowns ur. This allows,
in particular, to eliminate some of the unknowns by solving local systems. In contrast, the

equation linked to the PDEs, depend on the unknowns {u’, }7/cs, defined in other cells.

Remark 2.12 (Time discretization). Of course, the implicit time stepping that we have used
here is not the only possible strategy. For instance, we can use the IMPES method: Implicit

pressure, explicit saturations and compositions.

2.3 Solution strategy

The system ([2.2.35)) is nonlinear and a standard procedure consists in linearizing it by Newton’s
method. However, (2.2.35) is a large system and it is important to reduce its size. This

can be achieved by pre-eliminating some of the unknowns. The idea is to use the closure

equations ([2.2.28)) in order to:

e Select primary and secondary unknowns;

e By means of Newton’s algorithm, compute the secondary unknowns in terms of the

primary unknowns, thereby reducing the set of unknowns.

This procedure also improves the condition number of the global system.

Beforehand, we must determine the local context. Let 1 < n < Np. During the computa-
tion, for all cells T' € T, we evaluate the local context k7. according to . To do that we
have to evaluate all the present phases, appearing or disappearing. Once the discrete contexts

{k}reT are known, we define the set of unknowns for all cells T € T as in (2.2.4)).

2.3.1 Reduction of the number of unknowns

Now we describe the reduction strategy. For a fixed n, 1 < n < Np, let u™" be given
(typically u™" = u"~!) and let u™* denote the approximation of u” computed at the i-th step

of Newton’s method. We introduce the increment:

5 ng _ ng  ni—l
ur =ur —up ,
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for all cells T € 7. The separation into primary and secondary unknowns is inspired by

Newton’s formula applied to (2.2.35¢]):

oD} n,t— n,t n(,.n,i—
[8u; (uT’ 1)]5% — DR (ux ), (2.3.1)

To simplify, let Ny 7 denote the dimension of u}, and recall that D7 has Ny 7 equations,

with Nagr < Nu7. Therefore, % (ug’i_l) is an Nag 7 X Ny matrix. Assume for the
T

moment that the set of unknowns U;" are separated into Nyy 7 primary unknowns L{;? ™" and

N

67n7i .
us 7 secondary unknowns Uy such that:

u;ﬂ — u;ﬂ?ﬂ%i U u$7n7i, uqq},n,i N u]@,n,i — q)’

and
Num,T + NuG,T = Nu,T-
Sn,i

We order the unknowns in each set and form the vectors uj"™" and uy.

Then we have the equality:

]2 2

where:

aD’?“ n,i—1 Sn,i
P (1w )] JuS™ (2.3.2)

oD™ nyi—1\ - o
° Wﬁ‘?’” (uT ) is an Ny 7 X Nqu’T matrix;

oD?. i—1Y - .
&IT,Tn (u?Z ) is an Nujg 1 X Nye p matrix.
T

When substituted into (2.3.1]), this equality gives:

oD% n,i— n,% oD} n,i— n,i n (. ni—
[6 GC,Fn (uT’ 1>] oup" = - [ ‘43?;1 (uT’ 1)] oup™ — D (wp ). (2.3.3)
u, dug

. 67 b )
There remains to select the secondary unknowns uy;"™"

. The choice depends on the partic-
ular problem under consideration, and is not unique, but it is always dictated by the following

considerations:

1. We have:
Nag, = NuG,T- (2.34)
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. . oD% i—
2. The square matrix Nye 7 X Nye 7 (1.e. Naygr X Naig 1) extracted from =5 (ug’z 1),
T

e

. ; . . . . oD% i—
acting on 5u?’n’l, must be invertible. We denote this matrix by =5 (ug’l 1).
u,’

Taking this into account, we write:

-1
S,n,i 8D% n,i—1 n,i—1 aDyjl“ n,i—1 N0
duy ™ = — <8u6’" (uT ) D’ (uT ) - o (uT ) dur™" |, (2.3.5)
T T
and we substitute (2.3.5)) into system (22.2.35|) to eliminate all the secondary unknowns. Con-
sequently we have a reduced system to solve because we can express equations in terms of
primary unknowns. The system we have to solve becomes:
R™™ (u¥) = 0 ¢ RNeXNT,

(2.3.6)
R (u¥) =0 ¢ RV7, if Iy = 1.

The system ([2.3.6) is always nonlinear and we apply the Newton method to solve it. For

all cells T € T, let us denote R™ or R™ by R. The incremental method consists in solving

the following equation:

Z ORp (u"”;l) 5u7TL’,i = —RA(u™ ). (2.3.7)

u”
T'eSt T’

Note that there is no cell index to u™~! because R is not local to a single cell. By applying

the decomposition into primary and secondary unknowns, we write:

OR,

IR} ic1y « ni_ ORT i—1Y 51 B i &,n,i
u™ ouy = uv Y suh™t + —L (u L) su™. 2.3.8
o s = AL ) o g @a
The expression (2.3.5) for 6u$}”’i in (2.3.8) gives:
IR} i1y somi_ ORT i—1 ‘
s 5 Vo= n, 5 ;n,z
our, (u ) duz au?’" (u ) duy
-1
IRt 1y [ 9D ji—1 i1
ey (S0 () ) [ () @239
T/ T/

3D", . .
L)

,n

ouy;
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Thus, becomes:
Z ( 8RTn (un,ifl) 5uT;n,i

Tresy \Oup
—1
OR7} n,i— 8Dn/ n,i—1 aDn/ n,t—1 KR n n,i—1
—78 6,:,[;1 (u ’ l) <a Gfljn <uT/ )) |:a n (uT/ >5u2§/ + DT/ (uT/ >
U Ur Ur
= —RA(u™ ).
(2.3.10)

In this expression, the term with factor D7, (ugﬂ’f}l) only involves known quantities and

therefore can be passed to the right-hand side. The equation becomes:

‘B7
T'eSr auT’n
-1
OR% » oD?, - oD%, i ;
_(9 GTn (unﬂ_l) (3 GTn (u%/l 1)) o ‘I?Tn (ug”l 1) 5uT”nﬂ> (2.3.11)
Up, Ur, U,
—1
; OR% , oD%, - o
= —R(u™ ) + Z G,Tn (u™ 1) GTm up o (u ).
Tres, Ouri duy;

Summarizing, we proceed along the following steps:
o Assume uP™0 is given;

e At the beginning of Newton’s iteration: For each cell T', precompute and store the matrix

A7 and the vector By defined by:
“oDn. oy
e n,i—1 D7 n,i—1 N & +,N .
° A= <au6’T" <uT )> Jul (uT ) € RWETTETS
T T

— -1
oDZ i—1 i—1 N
opro= (e (7)) pr (s e

e For k > 1, compute a new algebraic solution u¥™? from the previous known quantities

u™~! by solving a system of algebraic equations whose lines, for each cell T, are:

Z <8RT (un,ifl) - 8]R’T (un,ifl) AT/>6uT;n,i

Y’B7 67
Ties, \oup” Ouy” (2.3.12)
- ORY -
- Ry ) Y P ey,
Tresy Ui
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2.3.2 Greedy algorithm

In the general case, we need to determine at each time step and in each cell the sets of primary
and secondary unknowns. To compute these sets, we propose here an algebraic procedure for
separating the unknowns by means of a Greedy algorithm. The method is based on the fact
that the closure equations are local in each cell.

For 1 <n < Ny and T € T, let u}. be the vector of unknowns.

i) First, we impose that the pressure P is always a primary unknown.
ii) In the thermal case, we also impose that the temperature 6 is always a primary unknown.

iii) Next, we select a secondary saturation; then the other saturations become primary un-
knowns. We use the volume conservation equation (2.2.28af) to relate this secondary

saturation to those primary saturations.

iv) For constructing the Jacobian matrix ODE  see (2.3.3), we extract, from the full matrix

S,n
dur,

%, a set of Ny 7 linearly independent columns that we orthonormalize according to

the Greedy algorithm, briefly described in Algorithm

Below, V; denote the columns of ZIE,T,TT,L before applying the algorithm, whereas U; denote the
columns of ai]?j" after applying the algorithm.
T

2.4 Numerical experiments

2.4.1 Immiscible isothermal two-phase flow case

We consider here, as in Example the immiscible isothermal two-phase flow five-spot case,
and we use the cell-centered finite volume scheme presented in Section The domain is a
200km x 200km square and the mesh is conforming and uniform 20 x 20 (i.e. 400 cells). In this
numerical experiment, we do not use space or time adaptation. We consider a homogeneous
isotropic media, where the permeability constant is equal to k7 = 1.0 - 10713, for all T € T
and the permeability tensor is diagonal. The time step 7 is equal to 2.16 - 105s and the final
time is 4.32 - 105s. We prescribe the following initial conditions on the saturation. At the
beginning of the simulation, the reservoir is full of oil, therefore SgT =1foral T e T and

hence ngT =0 for all T € T. Since we propose to inject water through the injection wells,



60 CHAPTER 2. THE COMPOSITIONAL DARCY MODEL

Algorithm 2.1 Coarse view of a Greedy algorithm

Set i:=1
for j=1,---, Nyr do
d(j) = IV;ll;
end for
[(1) := smallest J, such that d(J) < d(j),V1 < j < Nyur; //Choose the maximum norm
U, = HX%;”; // Normalization

fori=2,--,Nyr do

Set W :=V,;_;; // Permutation
Vio1:= V1), Vig-1) = W;
for j =4,--- Ny do

aG) = IV,ll = (i1 (U V,)?)
end for
[(7) := smallest, J such that d(J) <d(j),Vi < j < Nur;
U; = Vi) — 021 (U, Vi) Uy

U, = %, // Normalization

1/2

end for
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we also impose that ng wr = 1. Moreover, we have to enforce boundary conditions as in
Equation (2.1.11):
Vp € P, 7p-n:0 on Jf.

The porosity in the domain is constant and equal to ¢ = 0.1. To respect physical data, we
have to define the laws governing the test case, described in Section First, the viscosity
of the oil yo(P) = 5-10~* and the molar density (,(P) = 1. Then for the wetting phase,
the viscosity is equal to piy(P) = 1-107* and the molar density (w(P) = 1. Finally, for
both phases, the relative permeability k;, = Sg. To simplify the resolution of the model, we
consider no capillary pressure.

Following the idea presented in Section the selection of primary and secondary un-
knowns is immediate and requires no computation. For each time step n, Newton iteration k,

and cell T', we set:

u?’n’i = {S?VZT} and then uT’”’i = {P}L’i, Sg%} (2.4.1)
Note that this splitting is independent of T" and n. The closure equations reduce to:
D (') = S + Sty — 1. (2.4.2)

We suppress the index T and the superscript n, because in this case, the mapping D%(ugl)

is independent of T" and n. Thus

oD n,i oD n,t

and Ar € M2 and By € R are given by:
Ar =101 and By = S"5 4+ S™0. — 1. (2.4.4)

In Figures 2.6 we present numerical results obtained by using the method described
above. The figures represent the water saturation and the global pressure in each cell of the

mesh T at different time steps n. The results were validated by an existing code at IFPEn.

2.4.2 TImmiscible isothermal two-phase flow case in a heterogeneous isotropic

media

As in the previous numerical experiment we consider the same settings for the physical

laws, the initial and boundary conditions and the locations of wells. We also use the same
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Figure 2.4: Water saturation (left) and global pressure (right) at time 2.16 - 10%.
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Figure 2.5: Water saturation (left) and global pressure (right) at time 4.32 - 100s.
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Figure 2.6: Water saturation (left) and global pressure (right) at time 6.48 - 10%.

discretization and the same numerical resolution of the discrete model. But now, the per-

meability is randomly distributed in the domain. More precisely, it is defined cell by cell as

follows:

K =vr*1.0-10713,

forall T €T,

where v # 0 and 1.0-1072 < vp < 1.0 - 102. Figure 2.7 depicts the permeability distribution

Figure 2.7: Random permeability in the do-

main.

in the domain. In Figures[2.:842.11] we present numerical results obtained by using the method

described above. The figures represent the water saturation and the global pressure in the

mesh 7 at different time steps n.
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Figure 2.9: Water saturation (left) and global pressure (right) at time 2.16 - 10%s.
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Figure 2.11: Water saturation (left) and global pressure (right) at time 6.48 - 10%s.
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CHAPTER 3

Variational formulation, discretization of a posteriori estimates for two-phase

flows

This chapter is devoted to the simpler case of a two-phase Darcy flow: with two phases and two
components, see Example Albeit simpler than a general compositional model, it is still
highly nonlinear, and its analysis, both theoretical and numerical is outside of the scope of this
thesis. Here we propose to set the problem in a suitable equivalent variational formulation,
and discretize it with a Two-Point Finite Volume scheme. The ideas are the same for the
MPFV. Then we derive a posteriori error estimates for this scheme. The proposed estimators
yield a fully computable upper bound for the norm of the residual error. The indicators allow
to estimate separately and compare the Newton linearization and algebraic errors and the
time and space discretization errors. This enables, in particular, to design a discretization
algorithm so that all sources of error are suitably balanced. Namely, the linear and nonlinear
solvers can be stopped as soon as the algebraic and linearization errors drop to a level at
which they do not affect the overall error. This can lead to significant computational savings,
since performing an excessive number of unnecessary iterations can be avoided. Similarly, the
errors in space and in time can be balanced with the time steps and the mesh. The mesh
adaptivity is presented in Chapter @] but is not treated theoretically or in the context of a

posteriori error analysis in the present work.

67
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3.1 Introduction

3.1.1 Two-phase model

As in Section Q) C R?, where the dimension d > 2, denotes a bounded connected polygonal
domain, with unit exterior normal ng, and tp > 0 represents the final time of the modelization.
Let ¥ := Q x (0,tr) denote the space-time domain. The two-phase flow involves two phases:

The non-wetting phase o and the wetting phase w, so that
P = {o,w}.

Each phase has one component and the phases are non-miscible with respect to each other.
Therefore, the set of components corresponds here to the set of phases. Usually, the non-
wetting phase represents the oil and the wetting phase the water. Thus, we can suppress some
unknowns (molar fractions, contexts) and we do not need to express the components in the
formulation: We can identify them with their phases, as it was detailed in Example

We also neglect the gravity term and we only consider the isothermal case. Therefore, the

unknowns are

U={P,S,, Sw}

To simplify the mathematical analysis we assume that the molar density ¢, is constant. This
allows to divide both sides of the governing equations by (,; for simplicity we do not change
the notation of the source term. We denote by
ky, (S,
Vp(Pa Sp) = rp( p)
tip(P)

the phase mobility. The equations of the model can then be written as follows; cf. Example

01($S0) + V- (Vo(P, So) Vo(P, %)) =0 in %,
O (dSw) + V- (rw(P,Sw) Vw(P, Sw)) = qw  in %, (3.1.1)
So+Sw=1 in ¥,
where for p € P,
e The phase pressures satisfy , ie.

P,(P,Sp) = P+ P, (Sp),

where P is the reference pressure
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e The velocities satisfy Darcy’s law (2.1.8))
V(P Sp) = K (V[P + P, (Sp)]). (3.1.2)
Remark 3.1 (Reference pressure). In the practical situations considered here, for one of the
phases (say p), the capillary pressure is set to zero, so that the reference pressure is equal to

the phase pressure

Py(P,S,) = P.

The choice of the phase p is arbitrary, in the numerical experiments below, we consider the

non-wetting phase.
Problem is complemented by the initial conditions:

So(-,0) =52 inQ, (3.1.3)
and by no-flow homogeneous Neumann boundary conditions:

V,(P,S,) ng =0, indQx (0,tp), for peP. (3.1.4)

3.1.2 Regularity assumptions

In order to present some elements of mathematical analysis, we make the following assump-

tions:

i) The permeability tensor K is diagonal, piecewise constant, uniformly bounded and el-

liptic, see (2.1.9): There exists constants ck > 0 and Ck > 0, such that
VXGQ,0<CK S/m(x) SCK, 1<i<d, (3.1.5)
where k;; are the diagonal terms of K.

ii) For p € {o,w}, the relative permeability k., is uniformly bounded above, and the sum
of the relative permeabilities is bounded away from zero on R: There exists a constant
¢k, > 0, such that

Vo € R, ek, < ke(z) 4 ke(x). (3.1.6)

iii) For p € {o,w}, the viscosity pu, is uniformly bounded above and away from zero on R:

There exists constants c,, > 0 and C,, > 0, such that

Vz € R,0 < ¢y, < pp(x) <Oy (3.1.7)



T0CHAPTER 3. VARIATIONAL FORMULATION, DISCRETIZATION OF A POSTERIORI ESTIMATES FO

iv) The porosity ¢ > 0 is constant in space and in time.
Note that the assumptions (i) and (éi7) imply that
v) For each p € {0, w}, the phase mobility v, is uniformly bounded above, and the sum of
the mobilities is bounded away from zero on R:

V(z1,29) € R?, max (CkT) < Vo1, 22) + vy (1, T2). (3.1.8)
pe{ow} \ Cpu

3.1.3 Outline and some bibliographical notes

We discretize system f by cell-centered FV methods in space and the backward
Euler scheme in time, see Chapter 2 The book of Eymard, Gallouét, and Herbin [49] details
a lot of F'V methods presented in this chapter.

The two-phase problem is historical in petroleum research and many relevant results are
already known and established. Results such as existence of a solution, uniqueness and
welled-posedness are established by, e.g., Kroner and Luckhaus in [54], by Chavent and Jaf-
fré in [28], by Antontsev, Kazhikhov, and Monakhov in [12], by Arbogast in [13], by Chen
in [29] B0l B3], by Cances, Gallouét, and Porretta in [21], and by Amaziane, Jurak, and Keko
in [I0]. Discretization methods were studied by Douglas, Ewing, and Wheeler [42], by Russel
and Wheeler [63], by Michel [58], and by Cances [20]. Ideas for mesh adaptation were also
developed by Saad and Zhang in [64] or by Chen and Ewing in [32]. The linearization method
and linear solver techniques are discussed, e.g., by Vassilevski in [68] and by Wallis, Kendall,
Little, and Nolen in [74].

There is a very extensive literature on a posteriori error estimates, starting with the work of
Pousin and Rappaz [62], Verfiirth [70], Chaillou and Suri [27, 26], Carstensen and Hu [24], and
Carstensen, Hu, and Orlando [25]. Following the ideas of Jiranek, Strakos, and Vohralik, [53],
El Alaoui, Ern, and Vohralik [46], Ern and Vohralik [47, 48], Vohralik |71 [72], and Vohralik and
Wheeler [73], we separate the estimates into contributions representing the space discretization
error, time discretization error, linearization error, and algebraic error. One advantage of this
approach is that it enables to save computing time, because at each time step, the linearization
algorithm and the iterative algebraic solver can be stopped as soon as the corresponding errors
no longer affect significantly the total error, and space and time errors can be balanced. This
process permits to implement an adaptive algorithm for solving the problem. We develop

here, in particular, the ideas of Di Pietro, Vohralik, and Widmer, [41].
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The rest of this chapter is organized as follows. In Section [B.2], we present a weak formu-
lation of the two-phase flow model. Then, we develop in Section [3.3] the discretization of the
model and the solving strategy. In Section and [3.5] we introduce the post-processing steps
and some elements of the error analysis we make. We introduce different error indicators and

we bound the residual error norm by these indicators. Numerical experiments are the content

of Section B.61

3.2 The continuous setting

3.2.1 Function spaces

Let us first define some function spaces in a domain Q C RY, d > 2. We denote by D(f)
the space of C* functions with compact support in Q. Tts dual space D'(€) is the space of
distributions in Q. All derivatives below are taken in the sense of distributions, see [65].

We use the classical Sobolev space
HY(Q) = {0 € L2(9)| V0 € [L2(Q))),

which is a Hilbert space for the graph norm:

1/2
sy = (uen%m) T |!V9||%2(9)> |

Here, || - || 12(q) denotes the norm of L*(£2):

1/2
1]l 2 = ( /Q |9(X)\2dxdx> |

We recall that the functions of H!(2) have a well-defined trace on the boundary 92 of 2, as
well as on Lipschitz-continuous curves S contained in 2. Loosely speaking, the functions of
H'(Q) are continuous in the sense of traces.

The trace space of H'(2) on the boundary 9Q is H'/?(9Q), which is a Hilbert space
equipped with the norm:

_ 2 1/2
£ |12 00y = <||f||iz(am+/6Q /m dedy) . (3.2.1)

This norm is equivalent to

inf 0 .
GGHl(g}r)lﬂbQ:fH ”HI(Q)
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In a domain Q C R?, the quantity defined by (3.2.1) is a particular case of
1/2
_ 2 f(x) = f(y)?
1l 1720y = (Hf||L2(Q) +/Q/QX_y’deXdy

HY2(Q) = {f € Q)| |f | 200y < +50}.

and

The factor d in instead of d+ 1 arises from the fact that in R?, 99 is of dimension d —1.
The definition of Hl/z((?Q) can be extended to any part, say I', of 9Q (or to any Lipschitz
curve in Q). Strictly speaking, the functions of H'/?(T') have no trace on dI', the boundary

of I". Nevertheless, a weak form of zero trace on OI" can be prescribed by defining the space

Hop(T) = {feHl/z r/dar dx <oo},

1/2
ey = (1T + [ L8

where dar(x) is the distance of x to 9I'. When I' coincides with 0f2, then

normed by

HY(T) = Hy)(T),

but if [0Q\ T'| > 0, then Hé(/)Q(F) is a proper subspace of H'/2(I'). The space Hééz(F) can
also be defined as the trace space of functions § € H*() that vanish on 9\ T.

The distinction between Hé[/)Q(F) and H'/2(') is made clear by the fact that when the
functions of HgéQ(F) are extended by zero on 95, the extended function belongs to H'/2(9),
whereas this is not true in general for functions of HY/?(T).

For functions of H!(Q) with zero trace, we use H}(€):
Hg(Q) = {0 € H'(Q)] ]on = 0}.

By virtue of the Poincaré inequality, valid in a bounded, Lipschitz domain: There exists a

constant C such that
Vo € HO( ), ||9||L2 ) < CHV@HLQ (3.2.2)

we use the semi-norm

1011y = [IVO| 22
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as an equivalent norm in H{(Q). Similarly, by virtue of the generalized Poincaré inequality,

valid in a bounded, connected, Lipschitz domain: There exists another constant C' such that
Vo € H'(Q)/R, (6]l 2(0) < CIVO| 120, (3.2.3)

we use the semi-norm
1011y = [IVO 22

as an equivalent norm in H'(Q2)/R. It is sometimes convenient to represent the classes of
H'(Q)/R by choosing the representative with zero mean-value, i.e. to replace H'(Q)/R by
HY(Q) N L3(Q), where

L§(©) = {f € LX(Q) | {f)a = 0}.

We shall also use the dual space H1(2) of H}(Q). Tt has the following interesting char-
acterization: ¢ € H~1(Q) if and only if there exist functions f; € L*(Q), 0 < i < d, such
that

L of;

= )
fo+ - D,

(3.2.4)

We use H'(Q) to represent scalar quantities. For some vector-valued functions, such as

velocities, it will be convenient to use the space H(div,2):
H(div,Q) := {0 € [L*()]?| V-0 € L*(Q)},

a Hilbert space for the graph norm:

1/2
16l nctivy = (1010 + 17Ol )

It can be shown (cf. Girault and Raviart [51]) that the smooth functions are dense in H (div, ),
that the normal trace u-n is well-defined from H (div,Q) onto H~1/2(9Q) (where H=/2(9Q)
is the dual space of H'/2(99)), and the following Green formula holds:

vu € H(div,Q), V0 € H (), (u-n,0)sq :/(V-u)QdX—F/ u- Vo dx, (3.2.5)
Q Q

where (-, -)gq denotes the duality pairing between H~'/2(9Q) and H/2(0Q). This permits to
define the subspace

Hy(div, Q) = {0 € H(div,Q)|0 -n =0 on 00}.
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For functions depending on time and on space, it is convenient to separate the time from
the space variable by considering functions of time with values in a Banach space, say H.

More precisely, if (a,b) is an interval of time and || - ||z is the norm of H,

b
L*(a,b;H) = {f measurable in (a,b)| f(t) € H, a.e. in (a,b), / £ ()||3dt < +oo},

equipped with the norm

b 1/2
£l 22(ap; ) = (/ ||f(t)ﬁ{dt) i

It is a Banach space if H is a Banach space and a Hilbert space if H is a Hilbert space.

Similarly, we define

¢ ([a,b]; H) = {f € C¥((a,b])| (1) € H, Vi € [a, b]},

normed by
| flleo(tapsmy = sup [1f ()|l a,
t€(a,b]
and
1 2 of _ .o
H'(a,b;H) = ¢ f € L™(a,b;H) | 5 € L(a, b H)
normed by
of 2 1/2
1 asin = (11 + | )
( ) LA(abiH) ot L2(a,b;H)
It can be shown that, up to a set of zero measure,
H'(a,b; H) C C°([a,b]; H), (3.2.6)

with continuous embedding. This is a consequence of a more general result established for
instance by Temam [66] or Girault and Raviart [51] [Theorem 1.1, Chapter V|. Therefore the

functions of H'(a,b; H) have well-defined point values in time and we can define
H(a,b; H) = {f € H'(a,b; H) | f(a) = f(b) = O}.

More generally, D(a,b; H) denotes the space of C* functions of time with compact support
in (a,b), and with values in H. As far as negative spaces in time are concerned, we shall use

the space H!(a,b; H) of all distributions of the form

fo+ aatfl, where fy and f; are functions of L*(a, b; H).
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This definition is motivated by (3.2.4)).
In this work we shall use the spaces L?(0,tg; L%(Q)), L?(0,tp; H(Q)), L*(0,tr; H}(Q)),
HY(0,tp; L?(R)), H'(Q x (0,tp)). It is easy to check that
L2(Q x (0, tr)) = L2(0, tr; L),

@ x 0.0) = {1 € PO ' @)| F € PO 22@) ]

Owing to (3.2.6), we have the continuous embedding, up to a set of zero measure,

HY(Q x (0,tp)) € H(0,tp; L*(Q)) € C°([0, tr]; L*(Q)). (3.2.7)

3.2.2 A basic weak variational formulation

Let us set problem (3.1.1)—(3.1.4) into a weak variational form. We assume that all variables

involved are distributions. For the phase p € {0, w}, consider the equation
¢34 (Sp) + V- (Up(P, Sp) V p(P, Sp)) = ap. (3.2.8)

The idea is to write its left-hand side in full divergence form. For this it is convenient to work

in the space-time cylinder of R%+!
X=Qx (0, tF),
and define the vector U, € R¥*! by

Up,i = vp(P, Sp)u (P, Sp), for 1 <i<d,

Up,d-‘rl = (Z)S[M

(3.2.9)

where u; is the i-th component of ?p. Then, the divergence of U, in X is:

U, Oy Ui
o, T om, T ot

=V - (11p(P,S,)V (P, S,)) + gt(qssp),

Vs - U, =

and the first two lines of (3.1.1)) read
Vy. - U, = ¢, for p € {o,w}. (3.2.10)
Let us search for the unknowns P and S, such that:

up(P,S,)V (P, S,y) € [LAH())¢ and ¢S, € LA(%). (3.2.11)
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It follows from assumption (iv) that (3.2.11]) is equivalent to
v 2 y\1d 2
vp(P,Sp) Vp(P,Sp) € [L7(X)]* and S, € L*(X), (3.2.12)

whence U, € L?(X)4+L.

Now we consider Darcy’s law (3.1.2). As P and P, (Sp) are distributions and K is not
smooth, the right-hand side of is not defined. However, by assumption (i), K is
invertible and therefore we interpret by

VIP+ P (Sp)] = K 'V, (P, 5y). (3.2.13)

Since we look for ¥ ,(P,S,) in [L2(X)]¢ and K~ belongs to L=(%), implies that
V(P + P.,(Sp)) € L*(X)% According to Ne€as [59] or to Amrouche and Girault in [I1], this
implies that the distribution P + P, (Sp,) belongs to L*(0,tr; H'(£2)). This gives a meaning
to the Darcy law and it stems for the above considerations that the natural space for
P+ P, (Sp) is L*(0,tp; H(Q)), p € {0, w}.

Now let us assume that

qp € L*(2). (3.2.14)

Then (3.2.10) implies that
Vs -U, € L*(%), (3.2.15)

and with (3.2.11)) this gives U, € H(divy, X), where divy; refers to the full divergence operator

Vs- in ¥. Therefore U, - ny € H~1/2(9%), where ny, denotes the exterior normal to 6%, and

the Green formula (3.2.5)) gives
Yu, € HY(%), / (Vs - Up)vpdxdt + / U, - Vyv,dxdt = (U, - ny, vp) oy, (3.2.16)
b )

where Vyv, denotes the full gradient of v, in 3. Let us expand the terms of (3.2.16). First,
by (3.2.10) and (3.2.14)),

tp
/(VE-UP)Udedt—/ /qpvpdxdt. (3.2.17)
) o Jo

Next, by definition of U,, we have

tp tp
/Up-VZUdedtZ/ /Vp(P,Sp)?p(P,Sp)-vapdxdt+/ /(bSpavpdxdt, (3.2.18)
> o Ja o Jo Ot
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where Vyx denotes the gradient with respect to x. Finally to treat the boundary term, we

must clarify the normal vector ny, and the product U, - nyx:

On Q x {t =0}, ny = (0,—1) and Uy, - ny = —¢S,(-,0) = —¢S},
on {2 x {t = tF}, ny, = (6, 1), and Up Ny, = ngp(-,tF), (3.2.19)
on 9 x (0,tr), ny = (ng,0) and U, - ny = v,(P, S,) ¥V ,(P, S,) - ng = 0,

using (3.1.3) and (3.1.4). The only unknown quantity in the right-hand side of (3.2.19) is

Sp(+,tr). In order to eliminate it, we prescribe on the test function v, the additional condition:
vp(-,tp) =0, a.e. in Q.

This condition makes sense, in view of (3.2.7). Thus, assuming that the initial data has the
regularity

0 2
S, € L*(Q), (3.2.20)
the boundary term reduces to
(U, - nx,vp)ox = —/ PSyup(x, 0)dx. (3.2.21)
Q

Hence, substituting (3.1.2)) into (3.1.1), we deduce the weak variational formulation: Find
P, S,, Sy satisfying

Sy, € L*(Z), P+ P, (Sp) € L*(0,tp; H'(Q)), p € {o,w}, (3.2.22)

such that for all v, € H*(X)and v,(-, tp) = 0,

tr te vy
Vp(P, Sp)KV [P + P, (Sp)] - Vxvpdx dt — dSp—-dxdt
0 Q 0 Q ot

33
= / / qpvpdxdtJr/ nggvp(-,O) dx, for p=o,w,
0 Q Q
(3.2.23a)
So+ Sy =1. (3.2.23D)

This formulation is weakly equivalent to the original problem ({3.1.1)—(3.1.4) in the following

sense.

Proposition 3.2 (Equivalence). Let g, belong to L*(X) and S belong to L*(2). Then,
every solution P, Sy, and Sy of problem (B.1.I)-(B3.14), with S, € L*(X), P + P.,(Sp) €
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L2(0,tp; HY (), for p € {o,w} satisfies (3.2.23)). Conversely every solution P, S,, and Sy,
of (38:2:23), with S, € L*(X), P+ P, (Sp) € L*(0,tp; HY(Q)), for p € {o,w} solves (3.1.1)-
(B.1.4), by setting

V(P Sp) = —K(V[P+ Pe,(Sp)]), forp=o,w. (3.2.24)

Proof. If the system (3.1.1)—(3.1.4) admits a solution satisfying (3.2.22)), then (3.2.23b)) is
given by the problem and the above argument gives immediately ((3.2.23al).

Conversely, let P, S,, and Sy be a solution of (3.2.23), with the regularity (3.2.22). By
setting

Vo(P,S5p) = —K(V[P + Py, (Sy)]), for p=o,w,
the assumption (iv) and property (v) (that stems from assumptions (i¢) and (éi7)), imply
that 1,(P,S,)V (P, S,) € [LA(X)]4, and ¢S, € L2(X). If we choose v, € D(X), the equal-
ity (3.2.23a)) with the notation (3.2.9) reduces in the sense of distributions to
tp
—(Up, Vavp)s = / / prpdxdt < (Vy-Up,vp)s = (gp, Up)x,
0 Q
where (-, -}y, denotes the duality pairing between D'(X) and D(X). This is equivalent to
VE . Up = {p,

and this equality holds a.e. in ¥ since g, € L?(X).Therefore, the first two equalities of (3.1.1)
are satisfied, and the regularity of g, implies that Vy - U, € L?*(X); thus

U, € H(divy,%).

Then, Green’s formula (3.2.5) gives for all v, € H'(X) with v,(-,tp) = 0 in Q:

tp tp
—/ / U,Vyv,dxdt + (U, - nx,vp)a5 = / / gpvp dx dt.
0 Q 0 Q

To recover the initial condition, let us choose v, € H'(0,tp; D(Q)) with v,(-,tr) = 0in Q. On
the one hand,

UP‘QX{t:O} = vp(+,0)

belongs to D(£2) and on the other hand, as U, -ny is in H~/2(9%), its restriction to Qx {t = 0}

is a distribution on §2. With this choice of test function v,, the boundary term reduces to

(Up - nx,vp)os = —prq)(95p(+5 0), vp(+, 0)) p(ey-
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Comparing with , this yields
VO ED@), 8(5,0,0.0) =0 [ Sudx
i.e. in the sense of the distributions
Sp('a 0) = 5,9,

and since the right-hand side belongs to L?(f2), this equality holds a.e. in Q and ¢S,(-,0)
belongs to L?(£2), whence (3.1.3).

Similarly, to recover the boundary condition on 99, we choose v, € H}(0,tr; H(Q)) and
observe that the restriction of U, ny to 9Q x (0, tr) belongs to H~1(0, tp; H~'/2(6Q)). With

this choice of v, the boundary term reduces to
(vp(P, Sp) V (P, Sp) - o, vp).

where (-, -) denotes the duality pairing between the spaces H (0, tp; H~Y/2(02)) and H} (0, tp; HY/?(09)).
Comparing with (3.2.23)), we obtain in the sense of distributions, v,(P, Sp)VP(P, Sp) -ng =0,
whence ([3.1.4]). 0

3.2.3 A second variational formulation

The previous variational formulation is adequate when the solution is rough, but is not con-
venient for proposing a numerical discretization, because it involves the derivative in time of
the test function.

Assume that the data are such that and hold. When the solution of
Problem is smoother, more precisely, if in addition to it is such that

0

a(sp) € L2(2)7

i.e., ¢S, € H(0,tp; L*(Q)), then by integrating by parts the term involving % and using

the initial condition (3.1.3), the variational formulation (3.2.23) yields

tF tF tF
/ / O (pSp) vp dxdt —|—/ / Vp(P, Sp) KV [P+ P, (Sp)] - Vxvp dxdt = / / qp vp dxdt,
0 Q 0 Q 0 Q
(3.2.25)
for all v, € HY(X), with v,(-,tp) = 0. In particular, this is also true for all v, € H(0,tp; H(12))
with v, (-, tp) = 0. But HZ (0, tp; HY(Q)) is dense in L2(0, tp; H'(2)) because H}(a,b) is dense
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in L?(a,b). Thus, as all three terms in (3.2.25) are scalar products of L2(0,tr), (3.2.25) also
holds for all v, in L2(0,tp; H*(Q)). Therefore the dependence of v, on t and the integration

with respect to ¢ in (3.2.25)) are unnecessary and ([3.2.25) reduces to (for simplicity we revert

to the notation of gradient without index x):

Find P, S,,Sw, such that P + P, (S,) € L*(0,tp; H(2)), for p € {o,w}, and S, €
H'(0,tp; L?(£2)) such that

Yo, € HY(), / 9 (4S,) vy dx + / up(P, Sp)KVI[P + P, (Sp)] - Vv, dx
Q Q
(3.2.26)
= / ¢p vpdx, a.e. in (0,tr), for p € {o,w},
Q
with the initial condition ((3.1.3))

Sp<'70) = 527 pE {07W}7

and the pore volume conservation condition (|3.2.23b)

So+ Sw = 1.

It is easy to prove that this problem is equivalent to (3.1.1))—(3.1.4]).

Proposition 3.3 (Equivalence). Let g, belong to L?(X) and S,g to L*(Q). Ewvery solution P,

So, and Sy of problem (3.1.1)—(3.1.4) with

Sp € H'(0,tp; L*(Q)) and P + P, (S,) € L*(0,tp; H'(Q)), p € {o,w}, (3.2.27)

solves (3.2.26)), (3.1.3), and (3.2.23b)).
Conversely, each solution of (3.2.26)), (3.1.3), and (3.2.23b)) satisfying (3.2.27) solves (3.1.1])—
(B3-1.4), setting (3.1.2).

Remark 3.4 (Pressure regularity). As mentioned in Remark in practical situations,
Fe, (Sp,) = 0 for one of the phases p;. This implies that the reference pressure P belongs to
L?(0,tp; H'(2)) and next that P, (Sp,) belongs to L2(0,tp; H'(2)) for the other phase po. If
this is not done, then the above mathematical assumptions are not sufficient to conclude that

P € L?(0,tp; HY(9)). We then need additional hypothesis on the capillary pressure Pe,, (Spy)-
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3.3 The discrete setting for two-phase flow

In this section, we briefly recall the discretization methods adapted to the present two-phase
flow model. As in Section , we discretize problem f with a two-point FV
method and phase-by-phase upwind. We introduce some notation used in this section and
we present mathematical tools useful for estimating the error made during the computation.

Furthermore, we give some ideas for constructing these tools during a computation.

3.3.1 Discrete spaces

Here we describe the discrete spaces in dimensions d = 2 or 3. Because we use a TPFV
method, we are restricted to rectangular cells. Thus, we introduce a mesh 7 of  made of
rectangular cells, when d = 2 or rectangular parallelepipeds, when d = 3. Let T denote a
generic cell, with diameter A7 bounded by the mesh size hy. We assume that the mesh is
shape regular (see Ciarlet [34]), more precisely there exists a constant C independent of A,
such that

h
VT e T,—L <y,
pr

where pr is the diameter of the largest ball contained in T'. For simplicity, the mesh is supposed
to be fixed during the computation, not evolving in time. Moreover we suppose that the mesh
follows the discontinuities of K (recall that K is piecewise constant), so that K is constant in
each cell.

We define the broken Sobolev space on T
HNT) = {ue L*(Q)|VT € T,uy, € H(T)}.
On each rectangular parallelepiped T, we define the discrete space
RTN(T) := [Po(T))* + Mo(T)x,
where My(7T') is a diagonal matrix, constant in 7T":

C1
Mo (T) = )
Cd
whith ¢1, ---, ¢g in R. The normal components of functions in these spaces are constant on

each face and consequently have one degree of freedom per face. It is well-known that by
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choosing these degrees of freedom on all faces of the mesh, we can represent discrete functions
in H(div, Q). If, in addition, these degrees of freedom vanish on all boundary faces of the
mesh, then the discrete functions belong to Hy(div,2). These two properties motivate the

definition of the Raviart—-Thomas—Nédélec spaces:
RTN(T) := {vy, € H(div, Q) [ vy € RTN(T), VT € T},
and
RTN(7) := RTN(T) NnHy(div, ).

Remark 3.5 (Triangular mesh). On simplices the discrete space are defined by

RTN(T) := [Po(T)] 4 Po(T)x.

3.3.2 Unknowns

From now on, we restrict the discussion to d = 2. As specified in Section the discrete
unknowns take one value per cell. Let 0 < n < Ny be the index of the discrete times ¢" and
T the cells of the mesh 7. For each n and each T', k7. € K is the context in the cell T', at time
¢", and Pyr is the set of phases present in T" at time ¢". For the two-phase flow considered

here,
K = {{o},{w},{o,w}},

and

P ={o,w}.

Forall T € T and 0 < n < Ny, we have seen in Section that the set of unknowns ([2.2.4))

reduces to:
Uy = { PR ASprYoepey | (3:3.1)

where we recall that at time ¢", in the cell T"
e P7 denotes the reference pressure;

° {SﬁT}pepk% is the set of saturations for the phases present in the context k7.
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Once a fixed ordering is chosen, for all 0 <n < Np and T' € T, the unknowns in the set ¢} can
be ordered in a local vector ul, which when assembled forms the global vector u” := (u’)rer-

For p € P, let P/, respectively S”

b be the piecewise constant functions such that

VI €T, Pilp=Pf, respectively Sy, |y = Spr.

3.3.3 Equations

Throughout this work we restrict ourselves to fully implicit time discretizations. As stated in
Section , we consider a discretization of problem f based on two-point FV
fluxes and phase-upwind. Phase-upwind is developed in Section [2.2.2.2l We describe below
the two-point F'V method for the flux discretization.
The discrete conservation equations are obtained by first integrating the first two lines
of on a control volume 7" € T and on a time interval I,,. For each phase p € {o,w},
this gives:
/T (604(S,) + ¥ - (vp(P, S)) ¥ (P, S,))) dx = /T 0y dx. (3.3.2)
Using the Gauss theorem and the same notation as in the discretization of the compositional
model, after division by 7", the second term in has the expression:
Tin J; </[n /a (p(P, Sp) V (P, Sp)) -ndl dt) : (3.3.3)
T

where for p € P, the velocities satisfy Darcy’s law
7P(P7 Sp) = _K(V[P + PCp(Sp)])'

Considering that the discrete saturations are constant in each cell, the first term is then
discretized by:
| T 1
o (ng -5 ) . (3.3.4)

To discretize the flux 7p -n, we proceed as in Section For all 0 € F' and all

T € T, (the set of elements sharing the face o) we approximate the diffusive flux of any phase

P € Urer, Py by

Fro (") = By ({Whdrespm) = Y 18Py, (3.3.5)

T'eSmm
where 77 is the transmissibility coefficient. Its definition is an extension of (|2.2.14) that takes
into account that K is not proportional to the identity. More precisely, let ¢ = 17 N 15,
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where T7 and T, are two neighboring cells, ordered as T and 75, with the normal vector to o
oriented from T3 to T5. Let x, and x7 denote the barycenter of the face o and of the cell T
respectively, and let t, denote a unit tangent vector to o. Then the coefficient 77 is defined
by replacing 7 by the scalar product (Krt,,t,) in (2.2.14):

(Kthr 7t0') (KT/ to 7t0)

o Ixo—xT|l2 [[x0—%7/]|2 o o
7 =|o and 7% = —7 3.3.6
T | | (KTto,to) (KT/to,ta) T T ( )
Ixo—xTll2 " [[xoc—%7]2

where we recall that the negative sign of 77, enforces the conservativity of fluxes.
Furthermore, due to the no-flow boundary condition, for p € P and T € T such that Fr

b

contains a face ¢” on the boundary, we impose:

Fy (W) = 0. (3.3.7)

Finally, let us present the fluxes on the (injection or production) wells. As gravity is
neglected, the definition of the fluxes is the same regardless of production or injection. For
all wells W € W, all perforated cells T € Ty, and all phases p € Py, the flux of the phase p

between the system and the perforation in T is approximated by:

Fywr(up) =7 (Por — Plr) (3.3.8)

where TIW is the so-called production indez of the well and is known from the data.

In order to discretize the factor v, appearing in (3.3.3)), we use the values at the previous

time t"~! of the pressure and saturation, P"~! and Sg_l, taken in the upwind cell for the
phase p, denoted by TpT . The upwind cell, defined in (2.2.21)), is determined by the flux Fg‘;la

that has been computed at the previous time step. The discretization of the source term is:

L1
Gy = Tn/] /qu dx dt. (3.3.9)

Collecting these discretizations, the discrete version of (3.3.2) reads:

| T | ~1 -1 ¢n—1

o (Spr—Spr) + 2 (wlBpr ST DB ) = dr (3.3.10)
oEFr

Remark 3.6 (An initial pressure). When n = 1, Formula (3.3.10) requires an initial pressure

PY that is not part of the data, since only the saturation is given (and required) at initial

time. This numerical difficulty that occurs frequently is usually by-passed by defining an

artificial initial pressure using the hydrostatic pressure formula. For an incompressible fluid,
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a reasonably good estimate can be made by assuming a constant density p throughout the
liquid (the same assumption cannot be made for a gaseous fluid). Also, since the height of the
fluid column is often reasonably small compared to the radius of the Earth, one can neglect
the variation of the gravity g. Under these circumstances, the initial hydrostatic pressure P°

is a constant given by the simple formula
PY = pgz, (3.3.11)

where in two dimensions z is the depth of the position of the domain. This is the formula

used to complement (3.3.10)).

As mentioned previously, in a two-phase flow, the separation into primary and secondary
unknowns is trivial. Indeed the secondary unknown is the wetting phase saturation, S";,T. It

is eliminated from (3.3.10)) by means of the local volume conservation equation:
The reduced set of unknowns is
a" .= {P",Sl},

where P" = {P}}rer and S? = {SgL’T}TET- This simplifies the set of equations (3.3.10) and
we can write the following discrete model for the equation (3.1.1)—(3.1.4): for all 1 < n < Np,
all T € T, and all p € {0, w}:

- | T | _ _ _
(T)LyT(un) = (b n (SQT - S(?,Tl) + Z}— VO(P,;]I 17 SZ;T})F(QT,O' - qg,T = 07
oS
3.3.12
n ~n ’ T ’ n—1 n n—1 n—1 n n ( )
W7T(u ) = ¢ T” (So7T - O7T) + z]; VW(PT; ,1 - So7T;)FW7T7O— - qW,T - 0,
ocSr
where the discretization of the initial condition is given by
(Sov 1)T
Sor = TR (3.3.13)
and .
(P 71)T
PY = T (3.3.14)

where PY is given by (8.3.11)). Henceforth, for a function ¢ we express £(Sy) by {A(SO) =

£(1—S,). As a consequence,

—

e (So) = ki, (1= 85), Po(So) = P (1= 5,), and Vy = Vo (P, 1= S,).
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Then (3.3.12)) becomes:

- | T | _ _ _
or(0") == ¢ p (Sor — SZTl) + Z VO(P;J Y S:Tj)thT,o‘ —qor =0,
P oerT o (3.3.15)
L) = o (ST = S+ 3 BB ST E i = 0.
oeFr v wr
The problem is thus to find the unknowns @™ such that:
R} (0") =0,
? (3.3.16)
Ry (a") =0,

where for each p € {0, w}, the symbol R stands for the vector equations for all cells T' € T

Summing up, on each mesh element, we have to solve two nonlinear systems in two unknowns.

3.3.4 Solving strategy

Problem (3.3.16) is a system of nonlinear algebraic equations that we linearize at each time
step by Newton’s algorithm; The linear algebraic system at each Newton’s step is solved by
an algebraic solver. In the numerical experiments, we use a GMRES solver, but the method
described here applies to an arbitrary iterative algebraic solver. The algorithm consists of two
loops at each time step: An outer Newton’s loop and an inner algebraic loop that is executed
at each Newton’s iteration. At a fixed time t", 1 < n < Np, let @™° be given (typically,
a0 = ~”_1).

For all cells T' € T and all phases p € {o, w}, the linear system of the i-th Newton iteration
is:

Yo e @hay = —Rpp@m ) + Y @ g (3.3.17)

where ﬁg’i = {P}L’i, Sg}} denotes the approximate solution in 7. The system (3.3.17) is solved

approximately by means of an iterative algebraic solver. Its residual vector components at a

given step j > 1, for all T € T and p € {0, w}, are defined by:

n,0,J . __
RespﬁT = E

TeT

OR? ;.
oz,

(@) <ﬁ%¢,j _ ﬁ;,;fl) + RE (@), (3.3.18)

where ﬁrTL’i’j = {P}L’i’j , Sg}] } denotes the approximate solution at time ", i-th Newton itera-

tion, and j-th algebraic solver iteration, in the cell T'..
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The following Algorithm presents the solving strategy for 1 < n < Np. The time step
parameter 7; gives some simple automatic adaptivity in time. When the time step becomes
too large, it may happen that the Newton algorithm fails to satisfy the stopping criterion after
a preassigned maximum number of iterations. This is what we call “time step crash”. In this
case, we halve the time step and repeat the current computation.

In the numerical experiments, the matrix of system is preconditioned by ILUO

(incomplete LU factorization, with zero level fill-In).

Remark 3.7 (Usual stopping criteria). The stopping criteria are usually defined at the be-
ginning of the algorithm, they compare the residuals with a well-chosen small quantity (e.g.

HResg”"jH < 10712 for the algebraic solver).

Remark 3.8 (Initialization). At each first iteration of the nonlinear and linear solvers, we
traditionally prescribe Sp¥ := 871 and P™0 := P! and SI"0 .= S»'"! and P70 .=

Pn,ifl
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Algorithm 3.1 Basic solution algorithm without adaptation

Create the mesh 7, an initial time step 70, set t° = 0 and n = 0;
Choose the initial saturation SY by ;
Compute the artificial pressure P? according to .
Time Loop
while t" < tg do
Set n:=n+1;
if Time step crash then
Set n:=n—1, 7" := %, t =t
else
Set 77 1=yt =t 7
end if
Set i := 0; Choose initial saturations S™Y and pressures P9,
Newton’s Loop
while Linearization criterion is not reached do
1 =14 1;
Evaluate the laws and their derivatives;
Evaluate the fluxes and update the upwind cells;
Assemble the Jacobian matrix, set up the linear system ;
Set 7 := 0; Choose initial saturation S™40 and pressure P40,
Algebraic Loop
while Algebraic criterion is not reached. do
J=7+1

Precondition the matrix system;

Knowing Sg’i’j_l and P51 compute Sg”i’j and P™% by a step of the algebraic
solver;
Compute the algebraic residual vectors Resg’i’j defined by (3.3.18]).

end while

Set SI' ;= 810 and P := P,
end while
Set S” := SM and P™ := P,

end while




3.4. POST-PROCESSINGS AND ELEMENTS OF ERROR ANALYSIS 89
3.4 Post-processings and elements of error analysis

Developing a mathematical theory for adaptive computation with finite volumes in two or
three dimensions is not easy because the usual adaptation analysis relies on variational for-
mulations satisfied by the exact solution, and the approximate solution is supposed to be
reasonably smooth to insert it therein. But the solution @™ of the system (3.3.12)), or ™%/
solving , is a set of step functions that are constant in each cell and time interval,
and are not usefully substituted into the variational formulation. The purpose of this section
is to introduce convenient reconstructions that transform the computed cell-wise values into

suitable more regular functions that will be used in the definitions of the error indicators.

3.4.1 Pressure and capillary pressure post-treatments
3.4.1.1 Flux post-prossessing

Since the Finite Volume method yields approximations of the normal components of the
velocity on element faces, it is convenient, for theoretical reasons, to transform them into
H(div, Q) functions, more precisely, to interpolate them in RTN(7). Furthermore, it is
convenient to split them as the sum of the contribution of the reference pressure and the
contribution of the capillary pressure. Thus at each time t", linearization step ¢, and algebraic

solver iteration j, for all T' € T, all p € P and all o € Fr, we define the fluxes:

F;QJ _ Z T%P;/’i’j, (3.4.1)
T'eTs
and
7TL’I/7] o K
Fo = Z %P, 5%7)7 (3.4.2)
T'eTs

Jj . .
- is only non-zero for the wetting phase.

==n,?,
with 75 the stencil for the face o. But in fact, F, p

This gives

nﬂz] ’I’L,Z,j

Fld =Fp? +F .

o To = (3.4.3)

Then we define the approximate phase velocity ng’i’j € RTN(T) corresponding to the total
flux by

(VI 1), = (3.4.4)
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the approximate velocity corresponding to VZ’M € RTN(T), corresponding to the reference
pressure:

n7z7j

(i ng, 1), = Fpry, (3.4.5)

and the approximate velocity v, v ’] € RTN(T) corresponding to the non-zero capillary pres-
sure:
pu— 7‘7 j :/rl/)i’j
<;’\:/,Zhj ‘g, 1><T = IwTo: (346)
As the functions of RTN(7) have one degree of freedom per face, these formulas define
uniquely the degrees of freedom, for instance (recall that x, is the barycenter of the face o)
g 1 —n,ij
Vi ng(xg) = EFT’U : (3.4.7)
and Vv, " are uniquely defined in RTN(T) by ($.4.4) and
by (8.4.6). Moreover, v’ ’J vy “J and vw’zj "’Z’] —i—*n b

Therefore, the functions Vh’ &

3.4.1.2 Pressure post-processing

In order to give a meaning to the gradient operator appearing in the phase velocity for-
mula, in the discrete setting, we need to regularize the approximate reference pressures
{Pn’w}TeT and capillary pressures {Po }rer (note that P} = P, (S:LV’T])) As in the
work done in |71l 53] [47) [73], these quantities are post-processed element wise yielding piece-
wise quadratic functions of H'(7): ]5,7” and ]3:;,5, at each time ¢", 1 < n < N,, Newton’s
iteration ¢, and linear solver iteration j.

Consider the reference pressure. We construct P,""’, a piecewise quadratic function, such

that
p]?’iﬂ (:L. y) nﬂv] 2 + bn’/l’v.] 2 _|_ Cnﬂvj T + dnvlmj y _|_ envz>]
with a"’” bn’l’j c;’i’j , d%’l’] and ey’ "I real coefficients, defined by the following formula:
vp”ﬂ:] =K~ 7n 7’a.7
(PZL,Z,]7 1) (348)

T n,1,j

=P

| T | g
A schematic visualization is given in Figure

The capillary pressure is post-processed in a similar fashion. We construct P ’ ’,f, a piece-

wise quadratic function, such that

HN,L,J n,t, 2 n,t, 2 n,z, n,1, n,t,
P (z,y) = af™ 2 0 o b i a4 dE y el

Cw,



3.4. POST-PROCESSINGS AND ELEMENTS OF ERROR ANALYSIS 91

: : : n
Q i
T p 1 p
1 T T 1 ~1n
1 I A
| Py

Figure 3.1: Schematic visualization of pressure reconstruction: calculated pressure (blue) and

quadratic interpolated pressure (green).

with a7, b7 e dp'? and e™ real coefficients, chosen by the following formula:

cw,h w,h
P 1) N (3.4.9)
( CT,,jf:’ ) o PCW(SVY\L/:ZZLJ)

In both cases, (3.4.8) and (3.4.9)) are linear systems of five equations in five unknowns that are

easily and explicitly solved. For our use below, we define the phase pressure post-processings
as:

~n7i7j J— ~n7i7.j Nn7i7j J— ~n7i7j ~n7i7j

Pyt =B, and Py’ = PB4+ P

Finally, at time ¢°, the initial constant reference pressure PY needs no post-processing.

3.4.1.3 Post-processing in time

In order to give a good meaning to the time derivative, we also introduce a post-processing
in time. This is straightforward. Let v} belong to L?(7), 0 < n < Np. We associate with v}
the function vy, defined by

t — tn—l
Vhrlr, = v;f_l + T(vﬁ — vg_l), tel,, (3.4.10)

on each interval I,. The resulting function vy, is globally continuous in time, piecewise affine

(hence it belongs to H'(0,tr) with respect to time), and satisfies

vp(t") = vy, 0<n<Np.
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This post—treatment is used for the two phase pressures, both are post-processed in time,
giving function P oy and P™, defined by (3.4.10). Since the capillary pressure is a given

w,hT?

function of saturations, we introduce the following notation:
vp(Fp) = vp(P, Sp),
given in each cell T by:

(P;’fw) —KV(P;’%T) for p € {o, w}.

The same piecewise affine-in-time post-processing functions S;’JhT are also used for the phase

saturations.

3.4.2 A total residual norm

For each n, 1 <n < Np, let
X, = L*(I,; H(Q)),

equipped with the norm:

l011%, = /I (Zﬂzh 10O 72y + IVO@I T))d

TeT

Similarly, let
X = L*0,tp; HY(Q)),

equipped with the norm:

tp
sy (Zw% 20(8) 22 + IV008) 227 ) Zneuxn

TeT
Let LHS denote the left-hand side of (3.2.26)), summed over the phases, with test function

0 in X, integrated over (0,tp):

LHS = Y /t< /at 9dx+/ﬂup(PS)KV[P+P (sp)}-vedx> dt. (3.4.11)

pe{o,w}
Similarly, let LHSj be the expression obtained by replacing in LHS S, P, and P, by the

post-processed functions S, .-, ﬁhT, and Pcp,im with integrals localized in each T to take into

account the discontinuity of the functions:

LHSy,= Y. / ( /at hr) 0dx + Z/u,, PhT,SphT)KV[PhT+PCp7hT].Vé?dx> dt.

pe{o,w} TeT
(3.4.12)
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The difference LHS — LHS}, is the residual. Specific terms must be added to it to take
into account the discontinuity of the post-processed pressures. This suggests the following
formulation for the error in the non-wetting saturation and reference pressure that expresses

the residual and the nonconformity of the pressures:

11(So — Sors P — Ban) :—{ ) [ sup /0 { /Q (¢<at<sp>—at<sp,m>>e

pefom} LOEX: [0]x=1

(NI

2
—~ (yp(P, Sp)V p(P, Sp) — vp(Phr, Sp,,”)vp(ﬁp,hf)) - ve) dx}dt] }

N

tp B _ _ 2
"‘{ Z 511}5(/0 Vp(Phr, Spvr ) Vp(Pphr) — vp(Phr, Sp,hT)Vp(‘Sp)‘ 12(@) dt} -
pe{o,w}
(3.4.13)

Note that if S}, 5, coincides with S,, for p € {0, w}, and Py, with P, then
11(Sp = Sp.prs P = Pir)|l| = 0.

We can also define for each n, 1 < n < N, the norm of the local residual in time

IS0 — Soprs P — Ba)ll, ::{ > [ s [ { i <¢(6t<sp>—at<sp,h7>>e

pefo,w} LIEXn, [16llx, =1

2y 2
- (Vp(Pv Sp)vp(Pv Sp) — Vp(phr; Sp,hT)Vp(Pp,hT)) ~V9) dx}dt] }

2
dt} |
L2()

(3.4.14)

NI

dp€EX,
pE{o,w} P

+{ Z inf /I Hyp(f)th Sp,hT)Vp(PpyhT) - VP(PhTu Sp,hT)Vp(ép)‘

3.5 A posteriori error estimates

We have presented in Section [3.3.4] the way we choose to solve the problem. Our resolution has
a linearization loop (using a Newton method), and each linearization step in the loop requires
an algebraic solver. The non-adaptive method stipulates that the Newton and the iterative
solver converge until a chosen stopping criterion is reached. We propose an a posteriori error
analysis that provides an efficient choice for this stopping criterion. We will see that this

a posteriori error analysis permits to identify different sources of the error. This requires
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beforehand some velocity reconstructions in Section and some pressure reconstruction in
Section We then show how we obtain the error estimators in Section Then, using
these estimators and evaluating the different error components, see Sections and
we can use them to adapt the resolution method (the stopping criteria or the time and space

discretizations). The resulting algorithm is given in Section m

3.5.1 Velocity reconstructions

To estimate the terms in the right-hand side of , it is convenient that the product of
the mobility and the discrete velocity be also locally conservative. Indeed, this property is
not necessarily satisfied at the discrete level. Following [46] [47) [73], we introduce for T' € T,
1 < n < Ny, the i-th linearization step, j-th algebraic solver iteration, and p € P the flux
reconstructions X;’;’j € RTN(T).

We suppose that they satisfy the following local conservation property:

(a5 = 0(6S,7,) = Voxp” D = 0. (3:5.1)

3.5.2 Pressure reconstruction

We have reconstructed in Section piecewise quadratic phase pressure functions 15]: }fJT,
for p € {0, w}, which are quadratic on each control volume 7. Now we would like to evaluate
the error due to the nonconformity of these discrete phase pressures. For this purpose, we
construct by interpolation two phase pressure functions 527’2’j that are continuous in space.
Since our triangulation is made of rectangles, the interpolated functions are constructed as
continuous and bilinear (note that this would also hold on quadrilaterals). They are obtained

by means of a regularization at the nodes of the form

I(pnvlmj 1

o)D) = Card 75 Z P;}f7j\T(D), (3.5.2)

TeTp

where D denotes nodes of the triangulation and 7p denotes the stencil of D, i.e., the set
of elements of T that share D; see Figure . The nodal interpolation is a classical
averaging formula. Once the nodal degrees of freedom are defined by , the interpolant
Z(P7) is the unique bilinear function in each cell T’ that takes the values Z(P;""/)(D) at
the four verticies D of T'. It has the form

V(z,y) €T, Z(x,y) = ag’i’j Ty + bg’i’j T+ c?’i’j Y+ dg’i’j7 (3.5.3)
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with a;’i’j , b;’i’j , c;’i’j , and d%’i’j real coefficients on each cell T.
We set
o’ =T(P'), (3.5.4)

and denote by 5

oohr 1US piecewise affine-in-time interpolant defined in (3.4.10)). Note that by

construction 5;7,%7 belongs to X, more precisely, it belongs to W1°(0, tp; H(Q)).

T T T
Figure 3.2: Schematic visualization of pressure reconstruction: calculated pressure Pg b

(blue), quadratic interpolated pressure ]5;; o4 (green), and bilinear phase pressure 5;1’2’j (red).

3.5.3 A basic a posteriori error estimate

Consider 1 < n < Ny, the i-th linearization step, the j-th linear solver step, T € T, and

p € P. We define the residual estimators ng’éfjp as:

nij Ty g iy iy
nRZ’I’”],p::7HQp - at(gbsp:]]—”—) - V'Xp:hd ‘Ta (355)

where the constant 7 comes from the Poincaré inequality. Let us recall this inequality for

convex element 7', see the work of Payne and Weinberger in [60]:
hr 1
le —erllr < —IIVelr, Yo € HA(T), (3.5.6)

where @7 is the mean value of the function ¢ on the element 7'
Let us define the fluz estimators ngzé’{p, evaluating the error due to the possible H(div, 2)-
nonconformity of the fluxes:

Vt € L, mpd ()= ng;,gﬂ — vy (P, S;”]hT)vp(f’;:{w)(t)HT. (3.5.7)
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Finally, for the phase p, the nonconformity estimators nNC T.ps relative to the error caused by

the H'(Q)-nonconformity of the phase pressures, are defined as:
V€ L, i ()= Hyp (P, 559 V(P )(8)—vp(Pi, S0 v (5p,h7)(t)HT. (3.5.8)
With the above material,we are ready to prove.

Theorem 3.9 (Residual error estimate at time step n, linearization step 4, and algebraic
solver step j). Let P = {o,w}, 1 < n < N, and I, the time interval. Let P and S, be the
exact reference pressure and non-wetting saturation given by (3.2.26)) and set Sy, = 1 — S,.

Consider the i-th linearization step and the j-th algebraic solver step. Then

N|=

.. 2
80 = Sid P = Bl <4 30 [ 3 (i, +iity(0) " a

pe{o,w} In et

# [S (i) ar

pe{o,w} In peT

(3.5.9)

=

Proof. The proof is straightforward considering the definition of the residual norm (3.4.14]).
Let 1 <n < Np,1 <4, and 1 < j be given. The second term in clearly stems from
the second term in the right hand-side of . We thus only have to prove that the first
term is an upper bound on the first term in the right hand-side of (3.4.14).

Let 0 € X, |0|lx, = 1, and p € P. Set w, := vp(P,S,)vy(P,S,) and thr =
v( hﬁ, S o hT) (P; hT) Then using the characterization of the weak solution (3.2.26]),

/fn {/Q <¢(at5 OuSyhe)0 = (Wp = w,3,.) W) dx}dt
- /In { /Q ((qp — 0i(6S}5,))0 + Wi, VG)dx}d

Adding and subtracting
- Vodx,
/Q p hT
TL,’L,]

where X;]h is piecewise constant in time, given on each time interval I, by Xy using

the Green theorem, the local conservation property -, the Poincaré inequality, and the
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Cauchy—Schwarz inequality
/ gpfdx — / (¢S, )0dx + / w9, Vodx
Q 9) ’ Q 7
= | (6= auosi) - vxgitie)ax+ [ (wii = xgi? - vo)ax
= /Q (a0 — 0(6S},) = Txk?)(6 — o) )x + /Q ((wis, —x47) - v0)ax
<Y R + i, ) VO],
TeT

where Iy denotes the L2-orthogonal projection onto piecewise constants on 7.

Finally, the assertion follows by the Cauchy—Schwarz inequality and the fact that the
suppremum in (3.4.13) is with [|0]|x, = 1. O

Remark 3.10. The terms in (3.5.8)) represent the nonconformity of the two phase pressures.
If we have continuous approximate phase pressures, these terms disappear. In a cell-centered
FV method, these pressures are not continuous, so we need to evaluate and to manage these

nonconformities.

3.5.4 Identification of different components of the error

We have, in the previous section, introduced the a posteriori error estimators. Our aim is now

to distinguish the origins of the errors:
e Space errors;
e Temporal errors;
e Linearization errors;

e Algebraic error.

In Section we define the nonlinear system (3.3.15) and we solve it in Section [3.3.4]
using an iterative solver for the Newton algorithm. Let 1 < n < Ny, T € T, and p € P.
Then, we fix a linearization step ¢ and an iterative algebraic solver step j, the flux recon-

structions XZ’}Z;J € RTN(T7), already introduced in Section m satisfy the conservativity

property (3.5.1)

(¢ — O(6S5,) — Vx? )r =0, VT eT. (3.5.10)
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Let us now define a flux associated to the discretization XZ’ZL’j € RTN(T), a linearized

solver flux IZ’;Z’j € RTN(T), and an algebraic solver flux rZ’}iL’j € RTN(T) such that

i Mg 1,4,J n,i,j
Xph~ = Xp,h "Hp,h +]['p,h'

We define them as follows. For T} € T and 15 € Tp, with a face 0 = T1 N1y C 917, the

degree of freedom of YZ’z’j is defined by:

Xy 0o D)o 1= vy (P, ST F (3.5.11)

Introduce the following notation:

n,g,J . n,i—1 n,i—1 M,%,7
By, = vy (P ST E (3.5.12)

The linear system ((3.3.18)) is then equivalent to the following sum of diagonal terms and face

fluxes: B
n7l7]
|T‘ ( n,1,J n,i—1 0B To (~n.ij ~ni—1
2l (gmbi _ g™ )+Z Z 1, (un,z,]_un,z )
p,T p,T s
™ ocFrT'es, OOT (3.5.13)
+ R;"T(ﬁ"’i*l) = Resz%j,
where Res;l’;lj is the algebraic residual.
We then set
n7i7j
(¢ +1709)on, 1), = Z <0Bp,T,a (ﬁn,i,j_ﬁn,ifl)>_’_y (Pt grislypni=l 351y
Xph iph ) B So D R T
TeSs
and
(V37 1) = —Reshy. (3.5.15)

Note that YZ’;’j and IZ’;Z’j are fully specified; rZ’;L’j , satisfying (3.5.15)) can be constructed as in
Section 7.3 of [53]. This gives:

(@) — (6Sy) = V- (o + 1), D)p = (V-xl? 1)y, forpeP (3.5.16)

which is the requested local conservation property (3.5.1)).
We are now ready to distinguish the different parts of the error using (3.5.5)(3.5.8).

Indeed we want to have:

T + 7 (8 + NG (1) < 0 (1) 01 (D) + Wi+ Tt T

where the error estimators are separated in two parts and are defined as follows:
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1. The substantial errors, which have an important impact on the final precision of the

discrete solution. We have:

(a)

The spatial estimator 77;,’1"72},1

U:I;ffﬂ,p(t)iz H,jp( P;Z,w’ S;’;L’j)vp( PZ}Z,J) _ YZ:;;J

\T IR Fp + N1, (3.5.17)

which quantifies the error due to the space discretization; that is to say the coarser

is the mesh, the larger is the error;

n7/l7-]

The temporal estimator n, Tp:

Mo (8= 1 v (B 8,3, Vi (P ) (8 —vp (B Sy )vp(Byy ) Ml (3.5.18)

which is linked to the time discretization; if the error is too large we have to reduce

the time step.

2. The subsidiary errors, which can be made arbitrarily small when the iterative lineariza-

tion and algebraic solvers converge. The associated estimators are:

(a)

The linearization estimator nﬁ;f’%p:
LAY I X
mid = 0] (3.5.19)

whose values depend on the number of linearization steps; The more we make

iterations, the smaller is the error;

n7l7‘7

The algebraic estimator Nalg T p°

TL77:7j

nalg,T,p::HrZ:}ZLJ ”Ta (3520)

associated to the error caused by the algebraic solver, similarly to the linearization

error estimator; The more we make iterations, the smaller is the error.

With these estimators, we can now evaluate the error distributions in time and in space, and

the error dependent of the linearization and algebraic resolution.

3.5.5 A posteriori error estimate distinguishing the error components

In order to use the a posteriori error estimators and to design an adaptive algorithm, let us

define the global version of the estimators (3.5.17)—(3.5.20)) as follows:
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e The global spatial error estimator:

[NIE

gl =420 ) /1 PORUAEHONT A (3.5.21)

pefow) /In TeTn

e The global temporal error estimator:

[

M = Z/I (M ()7 dE 5 (3.5.22)

pefo,w} " TET™

e The global linearization error estimator:

N|=

M = Z/ (mad (D) dE o (3.5.23)
pef{o,w} Inpen

e The global algebraic solver error estimator:

N

=[S g, ary (3.524)

pe{o,w} " " TET™

Finally we can introduce the following corollary using Theorem [3.9] the triangle inequality,

and the Cauchy—Schwarz inequality:

Corollary 3.11 (An a posteriori error estimate distinguishing the space, temporal, lineariza-
tion, and algebraic errors). Let the assumptions of Theorem be verified. Then

1,%,]
alg -

(o — 553

o,h1’

P — Bp)In, <nistd 4+ ni? 4+ nint? 4

To have an idea of each part of error, we should evaluate these estimators at each time

step. Then, they permit us to adapt
1. Our time or space step;

2. The stopping criteria for the linear solver and for the algebraic solver.
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3.5.6 Adaptive algorithm

To solve the nonlinear system (3.3.16), let us introduce the following adaptive algorithm using
the tools we have detailed previously, issued from the non-adaptive Algorithm [3.1]

Remark 3.12 (Space and time adaptation). Let us precise that space or time adaptivity are

not described in the following algorithm, but the idea is to refine (respectively coarsen) cells

n71’7j

when 737 is large (respectively small), or to increase (respectively decrease) time step, using

¢, when nzlnfj is large (respectively small).
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Algorithm 3.2 Adaptive algorithm
Create the mesh 7, an initial time step 7° , set t° = 0 and n = 1.

Choose initial saturation SY and artificial pressure P according to (3.3.13)) and (3.3.14).
while Z?:l Ti S tp do

Set t" :=t""L 471" set 7 :=7""!: Set i = 0.

Choose initial saturations S7° and pressures P™Y according to ([3.1.3).
(Typically, Si° = 871 and P™0 = pn—1),

while

n,.

i > (™ + i) (3.5.25)

do
i:=141; Set j =0.
Set up the linear system (3.3.17).

Choose initial saturation S7*% = S and pressure P70 = pri-1,
while
Mot > Yatg (15577 + 1g” + i) (3.5.26)
do
ji=3+1

Perform a step of a chosen iterative algebraic method for the solution

of (3.3.17), starting from SP~! and Pmé-1. This gives ST and P,
g g

\\ A posteriori error estimators part

See Algorithm

end while

Set S = S0 and P = P
end while
Set S" := S and P" := P,

end while
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Algorithm 3.3 A posteriori part

\\ A posteriori error estimators part

Post-process locally the pressures P™%J and the capillary pressures
[P (3" )y e

Construct the fluxes YZV’,’;]’ € RTN(T), p € P, according to ;
Construct the fluxes 127’2’j € RTN(T), p € P, according to ;

n,.
p

n,Z,]

From the algebraic residual vectors Res™" construct the fluxes ), €

RTN(T), p € P, according to (3.5.15));
Evaluate all the indicators (3.5.17)—(3.5.20));

Define their global versions by their Hilbertian sums described

in (3.5.21)(3.5.24);

\\ End a posteriori error estimators part

Remark 3.13 (The criteria and the constants 7). Let us give some remarks on the constants

present in the stopping criteria formulas:

e In the stopping criterion for the algebraic solver, 0 < vy, < 1 is a user-given weight,

typically of order 0.001;
e The same observation is made for 0 < v, < 1.

Let us now give the meaning of the criteria:

e Criterion (3.5.25)) expresses that there is no need to continue with the linearization

iterations if the overall error is dominated by the other components.

e Criterion (|3.5.26]) expresses that there is no need to continue with the algebraic solver

iterations if the overall error is dominated by the other components.

Remark 3.14 (A posteriori error analysis implementation). If we observe the structure of
the adaptive Algorithm we see that an interest of the a posteriori error analysis is that it
can be implemented in an “independent block”. We will see this implementation point of view

in Chapter [4
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3.6 Numerical results

In this section, we test the computational performances of the adaptive algorithm introduced
in this chapter. We take the same five spot case as in Section to study the efficiency of the
method, in a square domain 200km x 200km. We compare the numerical results produced by

two algorithms:
e A non-adaptive algorithm described in Algorithm [3.1}
e The adaptive Algorithm

The mesh is uniform 20 x 20, independent of time. The initial time step is equal to 7 =
2.16 - 10%s and the final time is 4.32 - 105s.

The Section presents the same two-phase flow five-spot case as in Section 2.4.1} we
compare the results and we present the efficiency of the adaptive algorithm in terms of solver
iterations. In Section [3.6.2] as in Section we consider the same settingsbut the media
is heterogeneous. The heterogeneity is given by the permeability tensor which is randomly

distributed in the domain.

In order to compute the adaptive Algorithm we need to define the parameters in the
stopping criteria and ; These parameters are fixed at the beginning of the
simulation. On the one hand, the parameter v, is equal to 1073, On the other hand, the
parameter v, is equal to 1073,

Both cases give results which reveal that if we perform the algorithm using the a posteriori
analysis, the overall error is not affected significantly. This means that even if we save on
linearization or algebraic iterations, we can be confident in the accuracy of the results we

calculate.

3.6.1 Homogeneous porous media

The settings used for this test case are exactly the same as in Section [2.4.1] We also use
the same mesh settings, same time discretization setting, and same physical settings. Let

us consider a homogeneous isotropic medium, where the permeability constant is equal to

kp=1.0-10713 forall T € T.
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3.6.1.1 Identification of the different sources of the error

First, we present the quantities we evaluate and the values of the unknowns (pressure, phase
saturations), the values of the a posteriori error estimators. Figures and represent
the water saturation, and respectively the global pressure, computed at different simulation
times with the non-adaptive method and with the adaptive one. There are no observable
differences between both results.In particular, Figure shows two curves of the pressure on
a diagonal line of the domain obtained with the non-adaptive and the adaptive algorithm.
These curves are also similar and such results permit to be confident in the use of a posteriori
error estimators to adapt the stopping criteria.

In Figures and we present some a posteriori error estimators and their evolutions
through the simulation of the adaptive method. We observe easily that they follow the water-
oil front. We can also use those error estimates for spatial or temporal adaptation, as done in

the work of [56]. But we recall this is not the purpose of the present work.
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0.00

861
0.800

Figure 3.3: Wetting phase saturation obtained by the non-adaptive algorithm (left) and
adaptive algorithm (right) at time 2.16 - 10%s (top), at time 2.16 - 105 (middle) and at time
4.32 - 10%s (bottom).
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Figure 3.4: Reference pressure obtained by the non-adaptive algorithm (left) and the adaptive
algorithm (right) at time 2.16 - 10%s (top), at time 2.16 - 10% (middle) and at time 4.32 - 10%s
(bottom).
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Figure 3.5: Reference pressure curves (left) obtained by the non-adaptive algorithm (top) and

the adaptive algorithm (bottom) at time 4.32 - 10%s (left), on a line in the domain (right).
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Figure 3.6: Spatial a posteriori error estimator n:I;i’ij(t) at time 2.16 - 10%s (top), at time

2.16 - 105s (middle) and at time 4.32 - 10%s (bottom) .
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Figure 3.7: Residual a posteriori error estimator ng’iT’jp(t) (left), diffusive flux a posteriori error

estimator n?%ﬂp(t) (right) at time 2.16 - 10%s (top), at time 2.16 - 10% (middle) and at time
4.32 - 105s (bottom) .
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3.6.1.2 Computational performances

We present in this section graphs that show the computational savings of the adaptive method,
in the sense that it performs less iterations without loss of accuracy.

We observe in Figure[3.8that the estimator linked to the linearization evolves as a function
of the number of Newton’s iterations and the algebraic error estimator evolves as function of
the number of algebraic iterations. We then observe that the quantity corresponding to the
algebraic error is the smallest one, compared to the other errors. Since it is the smallest one,
this quantity does not affect much the global error. Moreover, it is remarkable that the other
errors do not diminish during the algebraic iterations. This suggests to stop the solver when
the algebraic error has the same order as the linearization error. Figure [3.9|presents the impact
of the adaptive stopping criteria on the errors and on the number of Newton’s and algebraic
iterations. We immediatly observe that we reduce the number of algebraic solver iterations
if we use the adaptive algorithm. All these results confirm the theoretical a posteriori error
analysis, it confirms the interest of adaptive stopping criteria.

Let us also remark that for a numerical experiment which requires more linearization steps

per time step, the iterations savings would be much greater.

—— Linearizat'ion error —e— Linearization error
—-— Algeb.ralc error . Time error
-~ Sp'atlzﬂ Crror —e—  Spatial error
—— Time error
10-! 1071
—0 90 90 9 90 9o 9o 9o —9© &e—— o —————— & ——©
ek ———h———h———k———%
10-% | 10~
8 z
3 3
=107° £10-5 |
< 10
£ £
=107 @
1077 |
107°
1079
1011 | | | | | | ‘ : : : | | |
5 10 15 20 25 30 0 05 1 15 2 25 3
Algebraic iterations Newton iterations

Figure 3.8: Evolution of the error estimators nis™ , "7 nﬁnz 7 and ngl’é’j evaluated as function
of the algebraic iterations on the first Newton’s iteration (left) and as function of Newton’s

iterations (right) at time 4.32 - 10%s.
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Figure 3.9: Number of Newton’s iterations (left) and accumulated number of algebraic itera-
tions (right) per time step for the non-adaptive algorithm (blue curve) and for the adaptive

algorithm (red curve).

3.6.2 Heterogeneous porous media

In this section, the results presented for the adaptive algorithm are obtained using the same
settings (initialization, discretization, physical laws) as in previous section; The differences
is given by the medium. Let us consider a heterogeneous medium, where the permeability

constants are initialized randomly by
Kr=vpx1.0-1071, forall T e T,

where vp # 0 and 1.0- 1072 < vy < 1.0 - 102, as in Section . The permeability generated
for this numerical experiment is shown in Figure [3.10]

Let us precise that due to the random generation of the permeability tensor, we do not
compare the precision of the results between the non-adaptive and the adaptive resolution
algorithm. But we observe that the solutions for the pressure and the saturations are similar, of
the same order. Figure shows the evolution of the water saturation during the simulation
and Figure shows the reference pressure. We can easily observe the water—oil front and

Figure [3.13] shows that the spatial error estimator also detects this front.
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Figure 3.10: Random permeability in the domain.
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Figure 3.11: Wetting phase saturation at time 2.16 - 10%s (left), at time 2.16 - 10%s (middle)
and at time 4.32 - 105s (right).
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Figure 3.12: Reference pressure at time 2.16 - 10%s (left), at time 2.16 - 1055 (middle) and at
time 4.32 - 105s (right).
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Figure 3.13: Spatial estimator at time 2.16 - 10%s (left), at time 2.16 - 10%s (middle) and at
time 4.32 - 10% (right).

3.6.2.1 Computational performances

Let us present in the following figures the comparisons, in terms of the number of iterations,
between two simulations for heterogeneous media.

Therefore, we compare the efficiency of the algorithm, more precisely, the number of alge-
braic and Newton’s iterations done during a computation.

Figure presents the total sum number of Newton’s and algebraic iterations at each
time step. First, we easily observe that due to small number of Newton’s iterations executed
to solve the discrete problem, we do not save a lot in this direction. But for other cases,
needing more linearization steps, it would be also interesting. However, the picture on the
right, showing the total number of algebraic solver iteration per time step, shows that a real
win is made. The Figure[3.16]shows the number of algebraic and Newton’s iterations executed

during one time step. We focus on the first and the second time steps.
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Figure 3.14: Number of Newton’s iterations (left) and accumulated number of algebraic iter-
ations (right) per time step for the non-adaptive algorithm (red curve) and for the adaptive

algorithm (blue curve).
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Figure 3.15: Evolution of the error estimators ni"”, n7, n"7  and 7 evaluated as
function of algebraic iterations on the first Newton’s iteration (left) and as function of Newton’s

iterations (right) at time 4.32 - 10%s.
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Figure 3.16: Number of algebraic iterations per Newton’s iterations at time 4.32 - 10%s (left)

and at time 6.48 - 10s (right).
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CHAPTER 4

Implementation

The ultimate goal of this work is to fully benefit from an a posteriori analysis, in order to
adapt the solution algorithm and the mesh. We present in this Chapter how we choose to
perform the computational resolution of the SAGD problem. We provide an overview of the
facilities that have been implemented for handling the stopping criteria and adaptively refined
meshes. The program is a 2D prototype, with a quadrilateral mesh, and is written in C++-.
We give here a simplified version of the main instructions. The complete code is the property

of [FPEn.

4.1 Introduction

An important feature of the formulation of the multiphase compositional flow proposed in
Chapter [2| is that we possibly have a different set of unknowns in each cell and at each time
step. We present in Section the management of unknowns during the evolution of the
computation. Here the focus is on the tools that allow to deal with this situation efficiently.
To do this, we develope the implementation view of the contexts, see Section {.2.1]
Furthermore an inherent difficulty in this complex model is the description of the under-
lying physical system. In Section we discuss how physical laws have been implemented to

ensure efficiency of the code. In particular, we create tools to evaluate analytical functions or

117
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operations on those functions (derivation, addition, ...).

One of our mean goals is to reduce the waste of time during simulations while optimizing
the algorithm used in solving the problem. The idea developed in Chapter [3]is to stop the
iterations of the linear and nonlinear solvers as soon as the algebraic and linearization errors
drop to a level at which they do not affect significantly the overall error. We present how to
implement the a posteriori error analysis in a resolution code in Section

Finally, in Section we present the particular tools implemented in processing the mesh
and time adaptation. Here the key idea is to use nonconforming quadrilateral meshes derived
from a topologically cartesian coarse grid. Mesh topology and metric are dealt with separately,

allowing to represent non-rectangular domains.

4.1.1 General variables of the implementation

We introduce in this Section the main important variables used in the implementation; they

are declared in Listing They will be used throughout this chapter.

Listing 4.1: Declaration of general unknwowns

BooleanMatrix M; // Component-phase matriz
UnknownsManager UM(M) ; // Unknowns manager
LawType zeta, kr, mu, pc; // Laws

// Mesh

MetricType Mh(data.mesh.hx, data.mesh.hy);

MeshType Th(data.mesh.nx, data.mesh.ny, data.mesh.l, Mh);

// Absolute permeability tensor

CellDiagonalTensorVariable perm;

// Global unknowns

RealMatrix X(Th.numActiveCells()+data.injectionWell.size (),
UM. numberOfUnknowns () ) ;

IntegerVector K(Th.numActiveCells ()); // Context per cells

// Molar accumulations

RealMatrix N=ZeroRealMatrix (Th.numActiveCells () ,N GHUM.isThermal ());

// Primary-secondary unknowns selector

UnknownsSelectorImmiscibleTwoPhase US(UM,K,X);

// Wells

std:: list <InjectionWell> injection wells;

std :: list <ProductionWell> production wells;
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// Jacobian matriz

MatrixType J((N_CHUM.isThermal ())*Th.numActiveCells(), 5«N_C);

RealVector x(N_C+«Th.numActiveCells()); // Solution vector

RealVector R(N_C+«Th.numActiveCells ()); // residual for PDEs

// Model initialization

ModelType model(Th,laws,injection wells ,production wells ,UM,US,
K,X, face flux lc);

// Residual estimators per cells and phases

RealMatrix ResidualEstimatorMat (Th.numActiveCells () ,N_P);

// Quadratic pressure

QuadraticMap<MetricType> QuadraticPressure(Th);

// Quadratic capillary pressure

QuadraticMap<MetricType> QuadraticCapillaryPressure (Th);

BilinearMap<MetricType> bilinearForm (Th); // Bilinear pressure map
RTNSpace<MetricType> theta(Th); // Fluz in RTN space
RTNSpace<MetricType> theta bar(Th); // Fluz in RTN space

4.1.2 General functions of the implementation

Listing [£.2] presents some functions implemented for computing the multiphase flow, or the
a posteriori error indicators in two phase flow computation. The salient features of these

functions will be described subsequently in this chapter.

Listing 4.2: General functions

// Initialize and manage the unknowns

UM. prepare (UnknownsManagerProperty :: EAIl);

UM. compute ();

// Compute mesh connectivity

Th.update (MeshTopologyTraits : : ACTIVE_NODES |
MeshTopologyTraits : : ACTIVE_FACES |
MeshTopologyTraits : :NODE_2 ACTIVE FACES);

// Initialize wells

initializeWells <TwoPhase ,RHO>(Th,UM, data ,injection wells ,

production wells ,X);
// Loop in time
// Loop on the mesh
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// Solve the problem
model.computeMolarAccumulations (N);

model . residual (N,N_nwt_old,R, flux ,source);
model. Jacobian (J,RHS, flux );

// End Loop on the mesh
// End loop in Time

Listing doest not display all functions; we have only selected a few. Let us describe them
briefly. Lines 2-3 prepare and compute the unknowns manager, more details are presented
in Section Then in Line 5, we initialize the mesh and the connectivity of its elements.
The wells are treated in Line 9, they are initialized using the mesh, the unknowns and the
data. Finally, during the resolution, at each step, the molar accumulation is computed (Line
15), the residual is evaluated (Line 16), the Jacobian matrix and the right-hand side term are

assembled (Line 17). The laws management is developed in a separate section, see Section

4.2 Unknowns management

We recall that the main difficulty of the Darcy model is the evolution (in time and in space)
of the phases in the domain. We have seen that C and P denote, respectively, the sets
of components and phases present in the fluid. In practice, the presence or absence of a
phase p in a region causes differences in the sets of unknowns. As a phase p moves, it can
appear or disappear from any region. The aim of the UnknownsManager (UM) is to provide
representations of a minimal set of data uniquely defining the problem: the global unknowns,
the contexts, the local unknowns or the components depending on the context, ...

To initialize the UM, we consider as unique entry point the boolean component-phase
matrix M = [mepleec, per € RYeNP | where all entries belongs to {0,1}. The entries are

defined by (2.1.1), see an example of initialization in Listing Lines 2-3.

4.2.1 Contexts

During the implementation, a context is associated to a unique identifier integer. The family

of contexts K is deduced from the component-phase matrix M in a pre-processing stage. All
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combinations of phases are stored in this set of sets. Furthermore, the context ke, in which all
phases are present, is called the reference context. The reference context provides the largest
possible set of unknowns. To handle purely thermal models in the same framework, we also
define the empty context (i € K in the spirit of Remark 2.5 The context is initialized as in
Listing [£.1] Line 12. From a computational point of view, we use the Standard Library (std),
and the type of the context is given by std:: vector<Integer>. Note that we store one context
per cell.

In practice, the set of contexts is computed during the updating stage, by means of a Flash

algorithm:
Flash::apply (UM, Z, K(iT), X_T);

where the parameters are:

The unknowns manager object, UM,

The molar fraction, Z,

The context K(iT) in the cell iT,

The values of the unknowns X T.

The Flash algorithm is mentioned in Section and is described briefly in Appendix [A]
Summarizing, we define an index in each cell, representing its context. It is associated to
the set of present phases and produces the set of local unknowns. The contexts are updated

at each time step, this yields unknowns that are local in space and in time.

4.2.2 Indexed families of subsets

The Jacobian matrix for Newton’s method is constructed in Section 2.2.3 Its residual vector
is the right-hand side of equation (2.3.1). Both Jacobian matrix and residual vectors are
assembled by summation over sets of components, phases, or contexts. The assembling process
also requires indexed families of subsets of components C, phases P and contexts K. In this
paragraph, we address this issue in a systematic way.

Let Z := {C, P, K} collect the three sets C, P, and K. We require that the subsets of any
element [ of 7 satisfy the following properties:
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(i) Its elements are ordered. The order is arbitrary but it is fixed throughout the computa-

tion;

(ii) The standard set operations between subsets of the same set I or between subsets of

different sets I, I’ and I"” should be available and efficient.

In view of the latter point, by analogy with the characteristic function of a set, a convenient
representation of a subset S C I is obtained by means of the vector v° = (v);c; € (0,1)!
such that
. 1 ifies,
v = (4.2.1)
0 otherwise.

Then, the set operations between any two subsets can be implemented using the bitwise logical
operators. Starting from the representation , fulfilling requirement (i) simply amounts
to the construction of an iterator over the non-zero elements of the set. This can be achieved,
e.g., using the library boost: :multi_index.

The UM allows to access families of subsets of a set I € 7 indexed by the elements of

I; € 7, that is to say,
Snr, =ASi C Ir}ier, N, €T (4.2.2)

The set I defines the support type, whereas I» provides the element type. Relevant examples
of families of the form (4.2.2)) include

{Cp}pep, the set of components present in a given phase (I} = P, I = C);

{P.}cec, the set of phases in which a given component is present (I1 =C, Iy = P);

{Ck}kek, the set of components present in a given context (I1 = K, Iy = C);

{Pr}rei, the set of phases present in a given context (I3 = K, Iy = P). This family of
subsets formally coincides with the definition of the contexts. In the implementation,
however, it may be useful to distinguish between the identifier of the context (in our

case, the symbol k) and its set representation;

{Ck}kex := {C\Ck}rex, i-e., the set of components absent from a given context (I; = K,
I, =0C).
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All of the above families of subsets can be computed and stored in a pre-processing stage.
From the implementation standpoint, a family of the form (4.2.2) can be represented by a
matrix Sy, 7, = [mMii,] € RI2) where all entries belongs to {0, 1} such that

1 ifip €8Sy,
Miyiy = " (4.2.3)

0 otherwise.

The assembly of the local Jacobian matrix % is a good illustration of the use we make of

the families of indexed sets introduced in this section. We briefly describe it in Algorithm

Algorithm 4.1 Assembly of the local Jacobian % in (2.3.1))

1: for p € Py do {Phases present in the context k}

2:  Assemble the derivatives of the first line of eq.

3:  for c € C, do {Components present in the phase p}

4: Assemble the derivatives of the second line of eq.

5. end for

6: end for

7. for c € C;, do

8:  Per < P.N P {Phases present in the context k7 in which c is present}
9:  for py, p2 € Peg, p1 # p2 do

10: Assemble the derivatives of the third line of eq.

11:  end for

12: end for

In lines 1, 3, and 7 of Algorithm we have used the indexed sets { P }reic, {Cplpepr, and
{Cr}rek, whereas the intersection of subsets is employed in line 8 to compute P, . The binary

sets {(p1, p2) € Pr X Pk, p1 # p2} can be efficiently computed using the representation (4.2.1)).

4.2.3 Unknowns

A second important purpose of the UM is the selection of the unknowns of the model in a
given context k € K. We stress that the aim of the UM is to provide a complete description
of the problem based on the minimal data set synthetically represented by the matrix M. As
a consequence, unknowns partitioning related to the primary/secondary or explicit/implicit

classification is out of the scope of the UM.
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We assume an arbitrary but fixed ordering for the set of unknowns: pressure, temperature,
saturations and molar fraction unknowns. Let us recall the form of the unknowns presented

in Section for a context k € K:

ug = (P, (9), (Sp)pG'Pka (Cp,C)pGPmCECP) ’

The vector of unknowns in the reference context, uy,_,, is maximal, and can be used to establish
the global numbering of the unknowns. For brevity of notation, when k = ke, we drop the

index k and let u = u; Moreover, we denote by Ny the number of unknowns in the

ref *
context k € K (the index k is again omitted whenever k = ko). From the point of view
of implementation, an unknown in a given context k # k.ot can be referenced via its unique
identifier in the reference context kyof. To complete the set of unknowns of the compositional
model, we introduce the vector of moles of the components that are only present in phases,

which are absent from a given context, i.e.

Vi € K\ {kret }, ny = (Ne) .cop-

Remark 4.1. There is no need to define nj_, because all phases are present in the reference

context Kyef.

For the pressure P (Unknowns::Pressure), unknowns can be accessed by type, as follows:

e localUnknown<Unknowns::Pressure>(k) returns the index of the local unknown pressure

in the context k;
e globalUnknown<Unknowns::Pressure>() returns the global index of the pressure.

In all cases, -1 is returned whenever an inappropriate request is made. The following means

to access the unknowns are provided:

e Forallk € IC, k # kyer, welet Do, :=(0,1,2,...,Nyr—1),and € := (0,1,2,..., Ny—1).
We introduce the mapping
(I)k : @@k — ¢

that associates an index j € g, of the vector of unknowns uy to the corresponding

index ®x(j) € € of the vector u.
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e The map @ is a one-to-one mapping from Dg, onto its image Qiibk = ¢, (Dg, ), and
therefore its inverse map <I>,;1 is available. Moreover, in practice, whenever the inverse

map is evaluated at an element j ¢ € ,» an error code is returned.

e In addition to the mapping between the local numbering in the context k € KC, k # kyef,
unknowns can be identified by type.

e Vector representation is available for the saturation and molar fraction unknowns, i.e.

Vk € K, Sk = (Sp)pep, and Cp = (Cp.c)pepy cec,-

e Given any subset S C U, it is possible to iterate over the unknowns of a given type

(pressure, temperature, saturation or molar fraction) present in S.
In Listing {.3] we present an example of use of the UM.

Listing 4.3: UnknownsManager

// Initialize the unknowns manager with the phase-component matriz

UnknownsManager UM(M ) ;

// Retrieve phases by components
const ISet % Pc =
UM. subSet (UnknownsManagerProperty : : EPhasesByComponent ) ;
// Retrieve phases by context
const ISet x Pk =
UM. subSet (UnknownsManagerProperty : : EPhasesByContext ) ;

// Compute the intersection P. NPy, for given c € C and k € K and store it in P,y
SetOperations :: Result Pck;
SetOperations:: Intersection (Pc—asMatrixRow (¢),
Pk—asMatrixRow (k) ,
Pck);

// Compute the union Py, U Py, for given k1, ko € K

SetOperations :: Result Pklk2;

SetOperations :: Union (Pk—asMatrixRow (k) ,
Pk—asMatrixRow (k3) ,
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Pk1k2);

// Infer context index from a list of present phases
unsigned P[2] = {0, 1};
UM. context (P, P+1);

// return the ranges of unknowns for a given context k € K

Range P _range = UM.range<Unknowns:: Pressure >(k);
Range 6 range = UM.range<Unknowns:: Temperature >(k);
Range S range = UM.range<Unknowns:: Saturation >(k);
Range C range = UM.range<Unknowns:: Composition >(k);

4.2.4 Selection of primary and secondary unknowns

The number of unknowns in the global system can be reduced using a local elimination pro-
cedure, based on the Jacobian matrix % of the closure relations evaluated locally;
see Section We consider here a given time step n, 0 < n < Ny, and a Newton iteration
k, and drop both indices to simplify the notation.

The first step consists in establishing, for all T' € T, a suitable partition {Z/{;p ,Z/qu’} for the
set of unknowns Up. The cardinalities of the sets U;J} and Z/I}5 only depend on the context k7,
but the contents of these sets may depend on other parameters. Recall that the unknowns
collected in L[? are termed primary unknowns, whereas those contained in LI}5 are termed
secondary unknowns. Introducing an ordering in the sets Z/{;{} and Z/lg, we obtain the vectors
of primary and secondary unknowns, respectively denoted by u? and u?. Furthermore, we
recall that the selection of the primary and secondary unknowns is not generic and is closely
linked to the test case.

In order to separate the unknowns, we create a class named UnknownsSelector (US). This
class has a template argument, that permits to consider the different test case types (two or
three phase flow, immiscible or miscible fluid). Each case requires a separation method.

In practice, we compute the selections in a pre-processing stage, considering all contexts
and all criteria (see Section . The inputs for the US class are an object of type UM and
the vector of contexts. From the standpoint of implementation, Z/{;P and Z/{g are std:: list of

global unknowns index. Moreover, ugf and u? are std :: vector.
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We also construct in each cell, the two matrices A7 and By described in Section [2.3] linked
to the unknowns separation process. Recall that they permit to express the approximate

conservation equations exclusively in terms of the primary unknowns. Some functions are

briefly presented in Listing

Listing 4.4: UnknownsSelector

// Primary or secondary unknowns selector
UnknownsSelectorImmiscibleTwoPhase US(UM,K,X);

US. compute () ;

// iT a cell number

// lists of primary and secondary unknowns

const IntegerList & Up T=US.primary (iT);

const IntegerList & Us T=US.secondary (iT);

// Ar and Br are pre-computed and used in the Jacobian construction.
const RealMatrix & AT=US.LHSDXsOverDXp (iT);

const RealVector & BT=US.RHSDXsOverDXp (iT );

// Check if the pressure ip is a primary unknown

Integer ip=UM.globalUnknown (Unknowns:: Pressure ());
if (US.variableAsPrimaryUnknown (iT , ip)>=0)

std :: cout << "Pressure_is_a_primary_unknown_" << std::endl;

4.3 Physical laws management

The multi-phase flow model requires operations on laws describing the physics (the media, the
fluids), see Section We also need to build functions (molar density, capillary pressure,
...) and their derivatives. Each function and its derivatives are evaluated at each time step,
in each cell. Since performing these operations represents an important work, the aim of our
implementation is to compute all functions only once per time step, in each cell. Then we
store the results.

We first need to define the concept of function and of differentiable function. Both concepts
involve some different types: valueType, variableType, gradientType. Finally, each concept needs
a routine, called eval, that computes the value of the function.

We also create a template interface to evaluate a function and its differentiable functions,
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with all their arguments. This interface uses also template arguments; therefore it allows to

consider different types of functions. Listing [4.5] gives some examples.

Listing 4.5: Differentiable function evaluator

template<typename F, typename DF, typename X>
struct IDifferentiableFunctionEvaluator{
typedef F valueType;
typedef DF gradientType;
typedef X variableType;

virtual void eval(valueType& f,
gradientType& df,
variableType& x) const =0;

One of the causes of the model difficulties is that it involves multiple laws that, moreover,
depend on different sets of arguments (e.g. (,(P, 6, Cp) and P, (Sp)). Therefore, it is difficult to
write a general program that differentiates these functions. Nevertheless, this can be achieved
by the creation of a template interface that manages the laws using a Boost tool. This allows
to treat the laws and their derivative functions considering their types as template argument
for the interface.

For example, for T' € T, let £ be a law, uy, the set of variables for the context kr in

T €T, and ur € ug,. We easily access the values:

U ug) = Ly, and %(ukT) =/

ou Wer

We also create a three-dimensional table using boost::multy array<Real,3>. The first
dimension is devoted to the laws, the second is devoted to their evaluations (function values
and the values of its first derivatives) and the third dimension is devoted to the cells (for each
cell, we have the set of laws, their evaluations and the evaluation of their first derivatives).
This tabular dimension i8: Njgws X (1 + Nyariables) X Neeils-

When we initialize a set of laws (e.g. {(, P;,v}), we evaluate all laws and their partial
derivatives for each cell with the function eval. This three-dimensional table containing the
laws and their evaluations is stored.

To access the evaluated results, we can identify the laws by their names (string type) or by
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their own index (integer type), see Listing 4.6l From a computational point of view, searching

the laws by their indices is substantially less time-consuming than searching by their names.

Listing 4.6: LawSet initialization and use for a phase p

// initialization of the law set for the phase p, X is the vector of unknowns
LawSet<Real> laws_p;
laws p << std::make pair("molarDensity", zeta p)
<< std::make pair("capillaryPressure”, pc_p)
<< std::make pair("mobilityKr",
calculator (zeta _pxkr_p/{mu p}));
laws p.eval<MetricType, MetricType ::rho,
UnknownsSelectorImmiscibleTwoPhase >(Th,US,X);
// iT a cell number
Real PcT=laws p.f("capillaryPressure"  iT);
Integer molarDensity index=laws[iP].index ("molarDensity");

Real DMolarDensityTDX=laws p.dfDx(molarDensity index ,iT);

In practice, to construct the Jacobian matrix, we consider the laws by phases. For this,
we create a vector of set of laws using std::wector<LawSet<Real> >. Before assembling the

Jacobian matrix, we evaluate the functions and their derivatives. Then, we store all quantities.

Listing 4.7: LawSet Vector initialization and use for 2 phase

// initialization of the vector with 2 lawSet

ModelType :: LawSetVector laws (2);

laws[0]=laws_0;

laws[1]=laws_1;

//evaluation of the laws and their derivatives for the phase ip={0,1}

for (Integer ip=0;ip!=2;ip++)

laws[ip |. eval<MetricType,

MetricType::rho,
UnknownsSelectorImmiscibleTwoPhase >(Th,US,X);

//values of the mobility evaluated in the cell T

Real ZetaT=laws|[0].f("mobility", iT);

Integer mobility index=laws[iP].index("mobility");

ZetaT=laws [1]. f (mobility index, iT);
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4.4 A posteriori estimators for adaptive algorithm

The aim of a posteriori error estimators is to identify the origin of the error in the simulation.
The error indicators represent the distribution of errors due to the discretization (in space or
in time) or due to the algorithm solving the problem (linearization algorithms or algebraic
resolution of linear systems). We use an a posteriori error analysis to optimize the computa-
tion. QOur theoretical and numerical results are presented in Chapter In this section, we
describe how we implement the estimators.

To store all estimators, at each (time, linear or algebraic) iteration, in each cell, we use a
boost :: vector<Real>. Furthermore, to implement the a posteriori error estimators, for example
global estimators defined in Section [3.5.5] we define in Section [.4.1] a method to approximate
the integration. Furthermore, to build the a posteriori error estimators, we need tools to
reconstruct different quantities. We also need different maps which handle the different items
(affine functions, quadratic and bilinear forms or the RTN Space). In Section we describe
how we deal with these issues. Finally, in Section [£.4.3] we explain the facilities implemented

for the user.

4.4.1 Quadrature method

We need to discretize integrals in order to evaluate the local and the global estimators. To this
end, we use the Gauss quadrature method. In practice, a std:: map is created, which permits to
choose the desired accuracy. For this, the number n of quadrature nodes is given by the user.
Then, the corresponding quadrature coefficients are computed. These are called the weights

w;, with 0 < ¢ < n. In 1D, the Gauss quadrature has the form:

b n
I= / n(z) dx ~ Zwin(xi), (4.4.1)
a i=1

where the nodes z; are distinct, and strictly contained in ]a,b[. This method is exact for

polynomials of degree 2n — 1.

4.4.2 Reconstructions

The reconstructions, defined in Section [3.4] are operations that transform point values into

functions. They can be viewed as a regularization or an interpolation. They are necessary
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because the indicators are defined on functions (mostly in RTN spaces) and not on point

values.

Affine functions We need piecewise affine functions in time for example to interpolate the
pressure (recall that P, (t") = P;'). To this end, we define two eval functions, one for affine

functions and the other one for their derivatives.

Piecewise constant and constant functions Asin Section in order to approximate
the pressure, we use piecewise quadratic pressure in each cell and globally continuous bilinear

functions in each cells. We create two maps to achieve this reconstruction:

e The QuadraticMap<typename MetricType>(const MeshType & Mesh);

e The BilinearMap<typename MetricType>(const MeshType & Mesh);

both with the mesh as sole argument. We then compute in each cell the coefficients a7, b7, ¢,
d7., and e of the quadratic form with the approximate values of the pressure P, the fluxes

F’I’L

T and the permeability tensor kp (see Section [3.4.1.2|for more details on the construction

method). Listing presents how we compute the value of the function and its derivatives
at a point.

The same work is done for the continuous pressure interpolation, presented in Section
We implement a bilinear map, and we compute for each cell its coefficients a7, b7, ¢, and d7,
that determine the polynomial function and its derivatives at every point in the domain. These
coefficients are obtained by nodal averages. Summing up, we build a class that computes and
stores these nodal averages, the NodeAveragingInterpolation<MetricType> class. The arguments
are the mesh and the discontinuous quadratic pressure, computed previously. Listing[£.8shows
this object in Line 8-9, then in Line 10, we give an abridged version of a continuous bilinear

pressure reconstruction. Lines 16-17 presents examples of the eval functions.

Flux reconstruction In order to reconstruct fluxes, we need to create continuous velocities,
as described in Section For this we implement a map that manipulates Raviart Thomas
Nédélec spaces. It evaluates in particular, for all cells, the values of the coefficients a7, b7,
cp, and d7, such that the functions have the form:

1)

a? T c
n - T T
XpplT = m | +
T ) T
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These continuous velocities are construct in each cell using the values of the fluxes on the
faces. The Listing [4.§] shows in Lines 12-13, how to initialize a
RTNSpace<MetricType>(const MeshType & mesh), and in Line 18, how the function is evalu-

ated at a point.

Listing 4.8: Reconstruction functions

// Quadratic pressure and bilinear pressure creation

QuadraticMap<MetricType> QuadraticPressure(Th);

BilinearMap<MetricType> bilinearForm (Th);

// Pressure global index

Integer iPressure=UM.globalUnknown (Unknowns:: Pressure ());

QuadraticPressure.compute (X(iPressure) ,flux F  perm);

// Pressure interpolation

NodeAveragingInterpolation <MetricType>
NodePressurelnterpolation (Th, QuadraticPressure;

bilinearForm .compute ( NodePressurelnterpolation );

// Fluz construction in RTN space

RTNSpace<MetricType> theta(Th);

theta.compute (flux F);

// P is a point in the 2D cell T

Real Pressure=QuadraticPressure.eval (P,T);
Point DbilinearDX=bilinearForm . gradient (P,T);
Point u=theta.eval(P,T);

4.4.3 Implementation facilities of the method

The a posteriori error estimators have been implemented as a user-friendly module that is

presented as an “independent bloc” in the resolution algorithm. In this block we:
e (Create all reconstructions used to evaluate the estimators.
e Store all quantities evaluated in the basic algorithm (fluxes, unknowns, source terms).
e Perform all operations required by the a posteriori error analysis.

e Compute the a posteriori error estimators.
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The estimators are ultimately used to stop the iterations.

In Algorithm we present a coarse view of the a posteriori error analysis and all steps
added to the basic algorithm. It shows that the a posteriori error evaluation is inserted as an
overlay, which does not affect the remaining part of the method. More details are presented

in Section B.5.61

Algorithm 4.2 Overview of the adaptive algorithm
Initialization of the quantities, the stopping criteria

\\ Time loop

while Evaluation time is smaller than the final time do

Update the settings
\\ Newton linearization loop
while Newton linearization stopping criterium not reached do
Initialize the quantities, set up the system
\\ Algebraic iterations
while Algebraic stopping criterium not reached do
Set up the iterative solver

W\

\\ 4 posteriori error estimators part

Reconstruct the functions

Evaluate the local indicators and their global version
Update the algebraic and linear stopping criteria

\\ End of the a posteriori error estimator part

\\

end while

Update the unknowns
end while
Update the unknowns for the current time step

end while
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4.5 Mesh adaptation

The simulations of the SAGD process are extremely sensitive to the grid size. Indeed, this
process creates flow interfaces, between oil and water for example. One of the issues of the
simulations is to follow those interfaces, named fronts. Those fronts are thin in comparison
with the reservoir size (of the order of a meter for the front versus a kilometer for the reservoir).
Thus, one of the difficulties of this numerical simulation is to deal with this constraint. The
common strategy is to perform a dynamic mesh adaptation, which evolves in function of the
front. A posteriori error estimators can help locating the cells that need to be refined or
coarsened, see for example [57].To this end, we create some tools to locally refine or coarsen
cells. Then we need to update all the data at each change.

The initial mesh is a conforming rectangular mesh. The mesh is composed of cells, nodes
and faces. To initialize a mesh, we use the class Mesh, from which the class MeshTopology
(MT) inherits. We also need to input the number of coarse cells in all directions for the first
level (level 0), the number of refinement levels we want, and the type of metric we choose.
Finally, we can define an integer parameter RHO which defines the division factor for the
refinement order. For example, if RHO is an integer, to refine a cell, we divide it into RHO
cells in each direction.

MT then creates ordered indices for cells, nodes, and faces. Finally, at initialization, all
elements of the mesh at level zero become active using the boolean value true, whereas all
other elements are initialized with an inactive statut thanks to the boolean values false.

To summarize, all elements have general mesh properties as:

e The global index which permits to distinguish or to compare two elements which are not

necessarily at the same stage.

e The refinement level, the different levels correspond to the different stages of refined
mesh. At the beginning, the mesh is composed of coarse cells, whose levels are 0. Then,

each refinement step corresponds to a higher level.

e The state index is a boolean value expressing if they are active or not. Due to operations
applied on the mesh, all cells can be active or not. This means that if a “parent” cell
is refined, into several “children” cells, the “parent” cell becomes inactive, whereas the

“children” cells become active. On the contrary, if a group of “children” cells are coarsened
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into a “parent” cell, all the “children” cells become inactive while the “parent” cell becomes

active.

Listing 4.9: Mesh initialization

integer RHO; // factor of cell division for the refinement step
Integer N, M; // number of cells in x-direction, and y-direction
ConstantMetric<RHO> Mh(1./N, 1./M); // unit square domain
Mesh<ConstantMetric<Rho> > Th(N, M, L, Mh); // initial mesh

We consider a mesh with two coarse cells in the z-direction and two coarse cells in the
y-direction. We define RHO = 2. See in Figure[d.1] the mesh at initial level, only composed by
coarse cells (level 0, colored in yellow). In figure , the mesh has been refined and is composed
of three different levels of cells (level 0; level 1, in orange; level 2, in red). Figures 4.1

present the different active cells and their different levels.

Figure 4.1: Trivial example Figure 4.2: Trivial example Figure 4.3: The different

of a coarse mesh. of a refined mesh. level of the refined mesh.

The multi-phase flow model imposes to manage sets and subsets of cells or faces, for

example for the loop over the faces in the Jacobian construction, e.g. (2.2.31) or (2.2.34).

Thus, the MT class permits to obtain some mesh characteristics, e.g. the number of (active)
cells, nodes or faces, or the boundary faces. We also have access to list of elements which
are linked to each other, for example, the set of neighboring cells for a given cell, or the set
of nodes belonging to a face, or the set of faces touching a node. Finally the code returns
iterator couples to browse the different lists of elements we get; It is useful to build loops. We
also use Boost loop: BOOST FOREACH (element, elementList){...}, and we easily loop on each
type of list, see Listing [£.10] to have examples.
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Listing 4.10: Subset access using MT

// Let T be the mesh
// Loop over the active cells
BOOST_FOREACH(const Cell & T, Th.getActiveCellList ()) {
Real mT=Th.getMeasure(T);
const Cell T active=Th.findCellActiveParent (T);
BOOST _FOREACH(const Face & F, Th.getCellFaceList (T)){
Integer iF=Th.getFacelndex(F);

With MT, a mesh can be refined or coarsened, depending on the criterion we choose. We
also use the parameter RHO to define how a cell can be refined or coarsened. Furthermore,
we impose that two neighboring cells, cannot have more than two level difference. So using a
specific criterion, each cell can be refined in RHO x RHQO “children” cells or considering RHO
neighboring cells in all directions, they can be coarsened into a “parent” cell, see Figure [£.4H4.5|

to have a schematic representation.

Figure 4.4: Refining process with RHO = Figure 4.5:  coarsening process with
3. RHO = 3.

Example 4.2 (Refined mesh). We consider a coarse mesh with 4 cells in the z-direction and
4 cells in the y-direction. We have RHO = 2. Listing [£.T1] presents briefly a function to test
the refinement tools. Then Figure [.6]show the mesh at initial level and Figure [.7] the refined

mesh at level 2 with three different levels of refined cells.

Listing 4.11: Refined functionalities

// v is an eval function

MyFunction v;

//vp, is the vector of results for all cells
CellRealVariable vh;
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// Cell set initialization

MeshTopologyTraits :: CellSet refine , coarsen;

// tag the cells to refine and to coarsen

Th.tagCells (refine , coarsen);

// update the mesh

Th.update (MeshTopologyTraits : : ACTIVE_FACES |
MeshTopologyTraits : :NODE_2 NONCONFORMING FACES) ;
// evaluation of the function v on all cells

// results are stored in the vector vy

BarycentricInterpolator T ::eval(Th, vh, v);

Figure 4.6: Coarse mesh (level= 0). Figure 4.7: Refined mesh (level= 2)

Finally the tools created to manage the different mesh elements, such as cells, faces, or

nodes, are easily available and optimize as much as possible the storage of all the relevant

data.
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CHAPITRE D

Conclusion et perspectives

5.1 Conclusion du manuscrit

Dans cette thése, nous avons d’une part présenté I’ensemble des équations d’un modéle compo-
sitionnel de Darcy, ot nous avons présenté une méthode de réduction des nombres d’inconnues.

Nous avons aussi :

e proposé un schéma discret par des volumes finis en espace et un schéma de Euler implicite

retrograde en temps,
e proposé un algorithme de linéarisation de Newton,
e présenté les principaux aspects de leur implémentation.

D’autre part, nous avons étudié de plus prés le cas simplifié d’un modéle de Darcy diphasique
immiscible et isotherme. Nous avons choisi les espaces des inconnues, mis le probléme sous
forme variationnelle et démontré ’équivalence avec le probléme d’origine, sous des hypothéses
convenables. Nous I’avons discrétisé en espace sur une grille rectangulaire par un schéma de
volumes finis & deux points avec décentrage en amont des flux diffusifs.

Nous avons ensuite défini une norme faible du résidu, établi des indicateurs d’erreur et

majoré cette norme faible par ces indicateurs. Enfin, nous avons utilisé ces indicateurs pour
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controler le nombre d’itérations de l'algorithme de Newton et du solveur linéaire. Ces algo-
rithmes et des outils de gestions du raffinement de maillage ont été implémentés dans un

prototype et nous avons validé ’é¢tude théorique par des essais numériques.

5.2 Perspectives futures

Etant donné la difficulté mathématiques du probléme étudié et l'intérét que présentent 'usage
des estimateurs d’erreur a posteriori pour optimiser les choix des critéres d’arrét des solveurs

non linéaire et linéaire, il serait intéréssant de

e considérer des schémas multipoints avec des grilles déformées (quadrilatéres ou hexae-

dres),

e simplifier la formulation des indicateur d’erreur, pour éviter les reconstructions dans les

bases de Raviart-Thomas-Nédélec,

e procéder & des comparaisons entre différents estimateurs de 'erreur.
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APPENDIX A

Thermodynamic Flash

A.1 Introduction

Let us recall that in the Darcy model, the context is a number that represents the set of phases
present at a given place and a given time. The context is denoted by k& € K and is discretized
for the computation. Furthermore, as the context evolves during the computation, it is treated
as an unknown. We have to determine it at the beginning and then we compute at each time
step n, in each cell T, the context k7. The thermodynamic Flash algorithm gives, for a given
pressure, temperature, and fluid composition, the phases that are present and their respective
compositions. The algorithm is briefly described in this section, more details can be found in
the work of Cao [23] and the thesis Guichard [52].

First we recall the expression of the total molar fraction Z. defined by forallc e C

> pepgnp. (P (0), Cp)SpChe + Zc'e@m{c} Ne!

> cec ZpePﬁmPC/ (P, (0), Cp)SpCh,c + ey Ner ,

Z.=1.

Z, = (A.1.1)

collected in the vector Z = {Z,}ccc and such that ) .

The entries of the algorithm are,
e the pressure P,
e the temperature (for thermal cases) 0,
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e the total molar fraction Z..

The purpose of the algorithm is to find IC the context, (C,),cp the compositions of the

component ¢ in the phase p, and (9,),cp the molar fractions of the phase p in the fluid:

Flash(P, (0),Z) = K, (Cp)pep, (Vp)pep- (A.1.2)

Let us restrict the description to isothermal cases and disregard the temperature unknown.
The definition of a Flash algorithm depends on the properties of the fluid under consideration:
phases, components, miscibility. In petroleum industry, setting up a Flash algorithm is a
substantial part of the programming load. Here we present a Flash algorithm for an immiscible

two-phase flow.

A.2 Two-phase flash algorithm

In two-phase flows, kyef = {p1,p2}, the two phases composing the fluid, and the number of
components Ne = 2. We suppose Z. known by formula , such that 0 < Z. < 1 and
YoeccZe=1.

The algorithm requires equilibrium constants of each component ¢ € C denoted by K..
These non negative constants depend on the reference pressure P and on the characteristics of
the model. They are part of the data, obtained from field experiments, provided by reservoir
engineers.

We search for 1 and ¥2, and the molar compositions Cp,, = (Cp, c)eec and C,, =

(Cpa,c)cec, by solving the following system of equations:

Cpye — KCp e =0, ceC, thermodynamic equilibrium,
Z Cpre=1, concentration balance of py,
C
< (A.2.1)
Z Cpye =1, concentration balance of po,
ceC
Ze = 1V1Cp, ¢ + 920, c, material equilibrium,

where C), . > 0 and Cp, . > 0, for ¢ € C. Since N¢ = 2, this system consists of 6 independent

equations in 6 unknowns.
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Remark A.1. We observe that 1 + 99 = 1. Indeed,

1 :Z Lo = Zﬁlcpl,c + ZﬁQsz,c

ceC ceC ceC
:191 Z Cpl,c + 792 Z Cpg,c (A22)
ceC ceC
=91 + ¥9.

Thus we write ¥ = 91 to simplify the notation:
Ze =09Cp, c + (1 —0)Ch, . (A.2.3)

Remark A.2. When the component c¢ is missing from the phase py, we set K. = 0. Then
K .Cp, =0 and the first line of (A.2.1) gives

Cpy,e = 0.

On the other hand, when the component c is missing from the phase p;, we divide the first

line of (A.2.1) by K. and we set K. = +00. Then

1
ECPQ,C =0,
and the first line of ((A.2.1)) gives
Cpl,c = 0.

From (A.2.3) and from the first line of (A.2.1)), we deduce for each component ¢ € C

Z.
Cre = A oK. 10K, (A.2.4)
and
K.Z
c = —C ¢ . A.2.
Cra, 9+ (1 —9)K. (4.2.5)

Therfore, the second and third lines of (A.2.1)) imply

> Z, . K.Z
CeCﬁ+(1—z9)Kc cECﬁ+(1—z9)KC

Hence

Z ZC(KC - 1) _ 0
= v+ (1 —-9)K,
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This motivates the definition of the Rachford-Rice function:

Z(K.—1)
RR c c
Y) = g _— A2.
JH) + (1 =YK, ( 6)
ceC
We want to solve for the roots ¥ of
fRRW) =0, (A.2.7)

provided that the product Z.(K. — 1) does not vanish for all ¢ € C. To this end, we introduce
the set

C={ceC|K.#1and Z. #0}.
If C = ) then for all ¢ € C, the product Z.(K, — 1) vanishes and (A.2.7) does not determine
¥ since it is satisfied for all ¥. On the other hand, if C # @ then we have the following

proposition.

Proposition A.3 (Flash resolution). If C # (), then solving the system (A.2.1)) is equivalent
to finding the roots ¥ of fER(19).

Proof. We have seen that (A.2.1)) leads to (A.2.7). Conversely, let ¥ be a root of fRFE(49).
Then, (A.2.4) and (A.2.5)) define Cp,, and C,,, and the first and the fourth lines of (A.2.1)

are satisfied. Moreover, the relation ) ., Z. = 1 implies that

ﬁZCPLC + (1 - 19) ZKcCpl,c =1 (A.2.8)

ceC ceC

On the other hand, by substituting (A.2.6) into (A.2.7)), and using the expressions (|A.2.4)
and (A.2.5)) for Cp,, and C,,, we deduce that

Y Coe=> Cpe (A.2.9)

ceC ceC

Finally, the second and third lines of (A.2.1) follow from (A.2.8)) and (A.2.9). O

If Z.(K.— 1) does not vanish for any ¢, the Rachford-Rice function (A.2.6) has N¢ poles,

and each pole has the expression:

Yo=1-— , for c € C.

1-K,

We then use the extended Flash method, which looks for ¢ € R (not only on [0,1]). We
define:

Kmax = sup,s K

K

min —

(A.2.10)

inf s K.
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and the poles of ¥ belongs to [, ¥1] where

1 _ 1
Yo =1 TR (A.2.11)
V1 =1— ——.
! =Kmin

We also determine ¥, such that f#7(9) = 0. Using this method, the continuity of the
different quantities are conserved, even if the context changes, and the thermodynamic con-

servation equality is respected:
Cpre — Kc.Cp, e =0, forall c e C. (A.2.12)

Finally, the results are treated depending on three configurations:

1. If 99 <0 (i.e. Kmax < 1) then the extend flash gives no positive solutions C, . and

Cp,,c unless when 9 — —oo . The Flash gives a single phase state po.

Y = —00,

(A.2.13)
Cpye = Ze, for ceC.

2. If 91 > 1 (i.e. K5, > 1) then the extend flash gives no positive solutions Cp, . and

Cp,,c unless when 9 — +oo . The Flash gives a single phase state p;.

v, = +o00,
(A.2.14)

Cpie =2 forceC.

3. For the other cases, the Rachford-Rice function admits an unique solution ¢ € [0, 1],

and gives C), . and C), ., both positive numbers. We have

v €[0,1], s.t.fRE(W) =0,
Cpre = W, for c € C, (A.2.15)

Cpye = K.Cp ¢, for c€C.
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Table of notation

Symbol Definition Section Page
tp The simulation time 2.1 26
Np Number of phases 2.1 26
Ne¢ Number of components 2.1 26
P Set of phases p 2.1 26
C Set of components c 2.1 26
M Boolean component-phase matrix 2.1 26
Iy Thermal index 2.1 27
K Set of contexts k 2.1 27
kref Reference context 2.1 27
U The unknowns for the model with a context k 2.1 28
P The reference pressure 2.1 28
0 The temperature, present only in thermal context 2.1 28
Sp The saturation for the phase p € P 2.1 28
Chp,c The molar fraction for the component ¢ € C of the 2.1 28
phase p € P
ner The number of moles for the component ¢ € C 2.1 28
Ck The set of absent components for the context k 2.1 28
P, The phase pressure 2.1 28
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Symbol Definition Section Page
P, The capillary pressure for the phase p € P 2.1 28
10} The porosity 2.1 30
& The rock molar density 2.1 30
ey The rock internal energy 2.1 30
K The absolute permeability 2.1 30
kr,, The relative permeability for the phase p € P 2.1 30
Cp The molar density for the phase p € P 2.1 31
Pp The mass density for the phase p € P 2.1 31
p The viscosity for the phase p € P 2.1 31
fe The fugacity of a component ¢ 2.1 31
hyp The enthalpy for the phase p € P 2.1 31
ep The internal energy for the phase p € P 2.1 31
T The computational mesh 2.2 39
T A cell in the mesh T 2.2 39
F The set of mesh faces o 2.2 40
Fi The set of internal faces 2.2 40
FP The set of boundary faces 2.2 40
Np The number of time steps 2.2 40
kr The context for the cell T 2.2 41
Prn. The set of phases present in the cell T 2.2 41
Pr The discrete reference pressure in the cell T at time t" 2.2 41
07 The discrete temperature in the cell T" at time t" 2.2 41
Spr The discrete saturation for the phase p € Pgn in the 2.2 41
cell T' at the time t"
C’g T The discrete molar fraction for c € C of p € Ppr T at 2.2 41
time t"
Ne The discrete number of moles for the component ¢ € C 2.2 41
@ The set of absent components for the context k7. 2.2 41
uy Vector of P, 0, S, and C' unknowns in the cell T at 2.2 41

time step n
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Symbol Definition Section Page

77W The production index for well W 2.2 49

Vp The phase mobility term 2.2 ol

Nur The dimension of the vector of unknowns uf in the 2.3 56
cell

nﬁ’é’ﬁ;p The residual estimator for the phase p, in the cell T', at 3.5 95
the time step n, i-th nonlinear step, j-th linear step.

n;Zij The flux estimator for the phase p, in the cell T, at 3.5 95
the time step n, i-th nonlinear step, j-th linear step.

n;é]T,p The nonconformity estimator for the phase p, in the 3.5 96

cell T', at the time step n, i-th nonlinear step, j-th
linear step.

(Up)pep  the molar fractions of the phase p in the fluid A2 144
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