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veaux critères de birationalité en analysant les syzygies des équations de définition de l'application ; en particulier en examinant la dimension de certaines parties bigraduées du module de syzygies. Enfin, les applications de nos résultats au contexte de la modélisation géométrique sont discutées à la fin du chapitre.

Dans le dernier chapitre, nous étudions les intersections résiduelles. Nous montrons la propriété de Cohen-Macaulay et décrivons le module canonique d'une intersection résiduelle J = a : R I d'un idéal I qui satisfait des conditions de profondeur sur les homologies de Koszul de I, de type "sliding depth", dans un anneau local de Cohen-Macaulay R. Dans ce travail, nous construisons et étudions, en utilisant un article récent de Hassanzadeh et Naéliton [HN16], une famille de complexes qui contient des informations importantes sur une intersection résiduelle et son module canonique. Nous déterminons également plusieurs invariants d'une intersection résiduelle comme le module canonique gradué, la série de Hilbert, la régularité de Castelnuovo-Mumford et le type. Enfin, supposons que I soit fortement de Cohen-Macaulay, alors nous montrons des résultats de dualité pour les intersections résiduelles qui sont liés aux résultats de Eisenbud et Ulrich dans [EU16], et établissons ainsi des relations étroites entre les séries de Hilbert de quelques puissances symétriques de I/a. Nous proposons également des formules fermées pour les types et pour les nombres de Bass de certaines puissances symétriques de I/a.

Images et fibres des applications rationnelles et algèbres d'éclatement

Résumé

Les applications rationnelles sont des objets fondamentaux en géométrie algébrique. Elles sont utilisées pour décrire certains objets géométriques, tels que la représentation paramétrique d'une variété algébrique rationnelle. Plus récemment, les applications rationnelles sont apparues dans des contextes d'informatique pour l'ingénierie, dans le domaine de la modélisation de formes, en utilisant des méthodes de conception assistée par ordinateur pour les courbes et les surfaces. Des paramétrisations des courbes et des surfaces sont utilisées de manière intensive afin décrire des objets dans la modélisation géométrique, tel que structures des voitures, des avions. Par conséquent, l'étude des applications rationnelles est d'intérêt théorique dans la géométrie algébrique et l'algèbre commutative, et d'une importance pratique dans la modélisation géométrique. Ma thèse étudie les images et les fibres des applications rationnelles en relation avec les équations des algèbres de Rees et des algèbres symétriques.

Dans la modélisation géométrique, il est important d'avoir une connaissance détaillée des propriétés géométriques de l'objet et de la représentation paramétrique avec lesquels on travaille. La question de savoir combien de fois le même point est peint (c'est-à-dire, correspond à des valeurs distinctes du paramètre), ne concerne pas seulement la variété elle-même, mais également la paramétrisation. Il est utile pour les applications de déterminer les singularités des paramétrisations. Dans les chapitres 2 et 3, on étudie des fibres d'une application rationnelle φ : P m k P n k qui est génériquement finie sur son image. Une telle application φ est définie par un ensemble ordonné de polynômes homogènes f := f 0 , . . . , f n , de même degré d, dans l'anneau de coordonnées homogènes R = k[X 0 , . . . , X m ], tel que gcd(f 0 , . . . , f n ) = 1. Plus précisément, dans le chapitre 2, nous traiterons le cas des paramétrisations φ : P 2 k P 3 k de surfaces rationnelles, et y donnons une borne quadratique en d pour le nombre de fibres de dimension 1 de la projection canonique du graphe de φ sur son image. Nous déduisons ce résultat d'une étude de la différence du degré initial entre les puissances ordinaires et les puissances saturées. Dans le chapitre 3, on affine et généralise les résultats sur les fibres du chapitre précédent. Plus généralement, nous établissons une borne linéaire en d pour le nombre de fibres (m -1)-dimensionnelles de la projection canonique du graphe de φ : P m k P n k sur son image, en utilisant des idéaux de mineurs de la matrice jacobienne de f . Dans le chapitre 4, nous considérons des applications rationnelles F : X × k Y Z, où X ⊂ P n k , Y ⊂ P m k and Z ⊂ P s k sont des sous-variétés irréductibles. Notre principal objectif est d'étudier les critères de birationalité pour ces applications. Tout d'abord, un critère général est donné en termes du rang d'une couple de matrices connues sous le nom matrices jacobiennes duales. Ensuite, nous nous concentrons sur des applications rationnelles de P 1 k × P 1 k vers P 2 k en bidegré bas et fournissons de nou-

Images and fibers of rational maps and Blow-up algebras Abstract

Rational maps are fundamental objects in algebraic geometry. They are used to describe some geometric objects, such as parametric representation of rational algebraic varieties. Lately, rational maps appeared in computer-engineering contexts, mostly applied to shape modeling using computer-aided design methods for curves and surfaces. Parameterized algebraic curves and surfaces are used intensively to describe objects in geometric modeling, such as car bodies, airplanes.Therefore, the study of rational maps is of theoretical interest in algebraic geometry and commutative algebra, and of practical importance in geometric modeling. My thesis studies images and fibers of rational maps in relation with the equations of the symmetric and Rees algebras.

In geometric modeling, it is of vital importance to have a detailed knowledge of the geometry of the object and of the parametric representation with which one is working. The question of how many times is the same point being painted (i.e., corresponds to distinct values of parameter), depends not only on the variety itself, but also on the parameterization. It is of interest for applications to determine the singularities of the parameterizations. In the chapters 2 and 3, we study the fibers of a rational map φ : P m k P n k that is generically finite onto its image. Such a map φ is defined by an ordered set of homogeneous polynomials f := f 0 , . . . , f n , of the same degree d, in the homogeneous coordinate ring R = k[X 0 , . . . , X m ], such that gcd(f 0 , . . . , f n ) = 1. More precisely, in the second chapter, we will treat the case of parameterizations φ : P 2 k P 3 k of algebraic rational surfaces. In this case, we give a quadratic bound in d for the number of one-dimensional fibers of the canonical projection of the graph of φ onto its image, by studying of the difference between the initial degree of ordinary and saturated powers of the base ideal of φ. In the third chapter, we refine and generalize the results on fibers of the previous chapter. More generally, we establish a linear bound in d for the number of (m -1)-dimensional fibers of the canonical projection of the graph of φ : P m k P n k onto its image, by using ideals of minors of the Jacobian matrix of f .

In the fourth chapter, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that came to be known as Jacobian dual matrices. Then, we focus on rational maps from P 1 k × P 1 k to P 2 k in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the chapter.
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Introduction Introduction

Rational maps are fundamental objects in algebraic geometry. They are used to describe some geometric objects, such as parametric representation of rational algebraic varieties. More precisely, let k be a field and V ⊂ P n k be a rational algebraic subvariety of dimension m defined by a homogeneous ideal J = (F 1 , . . . , F k ) in the homogeneous coordinate ring B = k[T 0 , . . . , T n ] of P n k . Then there exist (n + 1) homogeneous polynomials f 0 , . . . , f n in R = k[X 0 , . . . , X m ] of the same degree d such that gcd(f 0 , . . . , f n ) = 1, F j (f 0 , . . . , f n ) = 0 for all j = 1, . . . , k and the kernel of the k-algebra homomorphism ϕ : B -→ k[f 0 , . . . , f n ], which sends T i to f i for all i = 0, . . . , n, is the prime ideal J sat := J : B (T 0 , . . . , T n ) ∞ . In other words, the closed image of rational map φ : P m k -P n k defined by f 0 , . . . , f n is the subvariety V of P n k . Such a rational map φ is called a parameterization of V .

Lately, rational maps appear in computer-engineering contexts. Mostly they are applied to shape modeling using computer-aided design methods for curves and surfaces. Parameterized algebraic curves and surfaces are used intensively to describe objects in geometric modeling, such as car bodies, airplanes. Therefore, the study of rational maps is of theoretical interest in algebraic geometry and commutative algebra, and of practical importance in geometric modeling. My thesis studies images and fibers of rational maps in relation with the equations of the symmetric and Rees algebras.

Let k be a field. We investigate rational maps φ : P m k P n k . Such a map φ is defined by homogeneous polynomials f 0 , . . . , f n , of the same degree d, in a standard graded polynomial ring R = k[X 0 , . . . , X m ], such that gcd(f 0 , . . . , f n ) = 1. The ideal of R generated by these polynomials is denoted by I and is called the base ideal of φ. The scheme B := Proj(R/I) ⊂ P m k is called the base locus of φ. Let B = k[T 0 , . . . , T n ] be the homogeneous coordinate ring of P n k with each T i is of degree one. The map φ corresponds to the k-algebra homomorphism ϕ : B -→ R, which sends T i to f i for all i = 0, . . . , n. The closed image X φ of φ is defined by the kernel of this homomorphism. In other words, after degree renormalization, k[f 0 , . . . , f n ] B/Ker(ϕ) is the homogeneous coordinate ring of X φ and the minimal set of generators of Ker(ϕ) is called its implicit equations. The implicitization problem is to find these implicit equations. There are several results in commutative algebra that describe implicit equations of parameterized algebraic varieties in special case, such as algebraic curves, surfaces or hypersurfaces. Nevertheless, the implicitization problem is known to be very hard in general.

The implicitization problem for curves or surfaces has been of increasing interest to commutative algebraists and algebraic geometers due to its applications in Com-puter Aided Geometric Design as explained by Cox [START_REF] Cox | What is the role of algebra in applied mathematics?[END_REF]. In this context, knowing the implicit equation of the curve or surface is important to perform elementary operations with these objects. For example describing the curve of intersection of two surfaces, or the points of intersection of a curve and a surface, or testing if a given point lies in the image of a parameterization,. . . . For this reason, the implicitization problem is a classical problem and there are numerous approaches to its solution. For a good historical overview on this subject we refer the reader to [START_REF] Sederberg | Implicitization using moving curves and surfaces[END_REF] and [START_REF] Cox | Equations of parametric curves and surfaces via syzygies[END_REF].

The implicitization problem amounts to eliminating variables in a system of polynomial equations. Therefore, standard tools such as Gröbner bases or resultants can be used to solve it. However, Gröbner bases algorithms provide a straightforward theoretical approach that in practice tends to be very slow, hence it is rarely used in geometric modeling (see, e.g., [START_REF] Hoffmann | Geometric and Solid Modeling: An Introduction[END_REF]). Resultants provide a more convenient representation of the implicit equation as a determinant of a matrix (see, e.g., [START_REF] Jouanolou | Anisotropic resultant. complements and applications. (résultant anisotrope. compléments et applications.)[END_REF][START_REF] Busé | Study of the resultant on an algebraic variety[END_REF]). But in many applications, the resultant vanishes identically due to the presence of base points, which are the source points where the parameterization is not well defined. The best current methods rely on Rees algebra techniques. The Rees algebra of I is the graded R-algebra

R I = R ⊕ I ⊕ I 2 ⊕ I 3 ⊕ • • • .
Let S = R[T 0 , . . . , T n ] be a polynomial ring over R with the standard bigrading where deg(X i ) = (1, 0) and deg(T j ) = (0, 1). Since I is generated in a fixed degree, the Rees algebra

R I R[It] ⊂ R[t]
is a standard bigraded k-algebra. Mapping T j -→ f j t yields a presentation S/P R I , with P a bihomogeneous ideal of S. It is known that P depends only on the rational map defined by f and not on this particular representative, see, for example, [START_REF] Simis | Cremona transformations and some related algebras[END_REF] or [START_REF] André | A characteristic-free criterion of birationality[END_REF]. The generators of P are the defining equations of the Rees algebra.

We now blow up the base locus of φ and obtain the following commutative diagram of algebraic varieties

Γ / / π 1 P m k × P n k π 2 P m k φ / / P n k .
The variety Γ is the blow-up of P m k at B and it is also the Zariski closure of the graph of φ in P m k × P n k . Moreover, Γ is the geometric version of the Rees algebra of I, i.e. Proj(R I ) = Γ (see [START_REF] Hartshorne | Algebraic geometry[END_REF] Chapter II, §7]). As R I is the graded domain defining Γ, the projection π 2 (Γ) = X φ is defined by the graded domain R I ∩ k[T 0 , . . . , T n ]. In other words, Ker(ϕ) = P ∩ k[T 0 , . . . , T n ] and we can thus obtain the implicit equations of X φ from the defining equations of R I . However, Rees algebras are hard to study and finding explicit descriptions of their defining equations is a difficult open problem. It has been studied by Huneke, Vasconcelos, Kustin, Polini, Ulrich among others, see for instance in [START_REF] Huneke | Linkage and the Koszul homology of ideals[END_REF][START_REF] Wolmer | Arithmetic of blowup algebras[END_REF][START_REF] Ulrich | The equations of Rees algebras of ideals with linear presentation[END_REF][START_REF] Kustin | The equations defining blowup algebras of height three Gorenstein ideals[END_REF]. Fortunately, the symmetric algebra of an ideal I over R

S I := Sym R (I) = R ⊕ I ⊕ Sym 2 R (I) ⊕ Sym 3 R (I) ⊕ • • •
is easier to understand than R I and is closely related to it via a canonical surjection δ : S I / / / / R I .

If P 1 is the graded piece of P in degree one with respect to the T i , then

P 1 = {a 0 T 0 + • • • + a n T n | a i ∈ R, a 0 f 0 + • • • + a n f n = 0} Syz(f 0 , . . . , f n ).
Using (P 1 ) ⊂ P, one easily obtains the commutative diagram S/(P 1 )

/ / / / S/P

S I δ / / / / R I .
The vertical map on the right is an isomorphism by definition, and the vertical map on the left is known to be an isomorphism (see [START_REF] Wolmer | Arithmetic of blowup algebras[END_REF]Page 2]). Thus the syzygies of the f i 's define the symmetric algebra and give the degree one relations of the Rees algebra. If the base locus B of φ is assumed to be locally a complete intersection, then Proj(S I ) = Proj(R I ) = Γ. Hence, under this assumption, we can extract the implicit equations of X φ from the defining equations of S I , i.e. the syzygies of I. The use of syzygies to find implicit equations for curves and surfaces was introduced by Chen and Sederberg [START_REF] Sederberg | Implicitization using moving curves and surfaces[END_REF] and Cox [START_REF] Cox | Equations of parametric curves and surfaces via syzygies[END_REF][START_REF] Cox | Curves, surfaces, and syzygies[END_REF]. It was precisely formulated in terms of Rees algebra by Jouanolou, Busé, Chardin, Botbol and others [START_REF] Busé | On the closed image of a rational map and the implicitization problem[END_REF][START_REF] Busé | Implicitizing rational hypersurfaces using approximation complexes[END_REF][START_REF] Chardin | Implicitization using approximation complexes[END_REF][START_REF] Busé | Torsion of the symmetric algebra and implicitization[END_REF][START_REF] Botbol | The implicit equation of a multigraded hypersurface[END_REF]. One of the key tools of this approach is the approximation complexes. These complexes were introduced by Herzog, Simis, and Vasconcelos [START_REF] Herzog | Approximation complexes of blowing-up rings[END_REF] to study the canonical surjection δ : S I -→ R I and in some cases they are free resolutions of S I .

Besides the computation of implicit representations of parameterized curves or surfaces, syzygies of parameterizations have been studied and analyzed because syzygies are related to many geometric properties, such as singularities. The importance of the first syzygy module of the coordinates of a parameterization goes back to the paper [START_REF] Cox | The moving line ideal basis of planar rational curves[END_REF] where the concept of a µ-basis was introduced. In the context of rational plane and space curves, µ-bases are deeply linked to their singularities [SCG07, BD12, WJG09, JG09, JG12]; in the case of surfaces, there also exist some results in the same direction [START_REF] Botbol | Fitting ideals and multiple points of surface parameterizations[END_REF][START_REF] Schenck | Syzygies and singularities of tensor product surfaces of bidegree (2, 1)[END_REF] but a lot of problems, including the extraction of singularities, are still open in this case.

In geometric modeling, it is of vital importance to have a detailed knowledge of the geometry of the object and of the parametric representation one is working with.

The question of how many times is the same point being painted (i.e. corresponds to distinct values of parameter), depends not only on the variety itself, but also on the parameterization. It is of interest for applications to determine the singularities of the parameterizations. In the chapters 2 and 3, we study the fibers of rational maps, in particular parameterizations of surfaces embedded in the projective space of dimension 3. More precisely, we set π := π 2|Γ : Γ -→ P n k .

For every closed point y ∈ P n k , we will denote by k(y) its residue field, that is, k(y) = (B p /pB p ) 0 , where p is the defining homogeneous prime ideal of y. If k is assumed to be algebraically closed, then k(y) k. The fiber of π at y ∈ P n k is the subscheme

π -1 (y) = Proj(R I ⊗ B k(y)) ⊂ P m k(y) P m k .
Let 0 ≤ ≤ m. We set

Y = {y ∈ P n k | dim π -1 (y) = } ⊂ P n k .
Chevalley's theorem shows that the subsets Y are constructible, that is, they can be written as

Y = s i=1 (U i ∩ Z i ),
where U i (respectively Z i ) are the open (respectively closed) subsets of P n k . We are interested in studying the structure of these subsets.

In the second chapter, the map φ is assumed to be generically finite onto its image and m ≥ 2, it follows that Y m-1 is a 0-dimensional subscheme of P n k , that is, π only has a finite number of (m -1)-dimensional fibers. For each y ∈ Y m-1 , π -1 (y) is a subcheme of P m k(y) P m k of dimension m-1, as k is algebraically closed. Thus the unmixed component of the fiber π -1 (y) is defined by a homogeneous polynomial h y ∈ R, as R is factorial. One of the purposes of my thesis is to bound y∈Y m-1 deg(h y ) in terms of the degree d.

As the fibers of π are defined by the specialization of the Rees algebra, which is closely related to the symmetric algebra of I via the canonical surjection δ, it would be natural to study the fibers of the canonical projection π := π 2|V : V -→ P n k , where V := Proj(S I ). Recall that for any closed point y ∈ P n k , the fiber of π at y is the subscheme

π -1 (y) = Proj(S I ⊗ B k(y)) ⊂ P m k(y) P m k .
As the symmetric algebra is defined by the syzygies of I, one can determine the unmixed components of (m -1)-dimensional fibers of π as in Lemma 2.2.3, is a trivial generalization of [START_REF] Botbol | Fitting ideals and multiple points of surface parameterizations[END_REF]Lemma 10]. Furthermore, the unmixed components of (m-1)-dimensional fibers of π and π are the same, whenever gcd(f 0 , . . . , f n ) = 1.

For simplicity, we summarize the following data.

Data 2.2.5. Let R = k[X] = k[X 0 , . . . , X m ] (m ≥ 2) be the standard polynomial ring over an algebraically closed field k and f := f 0 , . . . , f n be k-linearly independent forms of the same degree d ≥ 1, not all zero, such that gcd(f 0 , . . . , f n ) = 1. Suppose that φ : P m k P n k is a rational map defined by these forms and π is the canonical projection of the graph of φ onto its image. Let I = (f 0 , . . . , f n ) be the base ideal and B = Proj(R/I) the base locus of φ. Assume that φ is generically finite onto its image and put

Y m-1 = {y ∈ P n k | dim π -1 (y) = m -1} ⊂ P n k .
For each y ∈ Y m-1 , we denote by h y ∈ R a defining equation of the unmixed component of the fiber π -1 (y).

We recall that the initial degree of a graded R-module M is defined by indeg(M ) := inf{n ∈ Z : M n = 0}, with the convention that sup ∅ = +∞ and the saturation of an ideal J of R is defined by J sat := J : R (X) ∞ . The following theorem is a key tool for our purpose.

Theorem 2.2.6. Adopt Data 2.2.5. If there exists an integer s such that ν = indeg((I s ) sat ) < sd, then

y∈Y m-1 deg(h y ) ≤ ν < sd.
The important assumption in the above theorem is the existence of an integer s such that indeg((I s ) sat ) < sd. Observe that I s ⊂ (I s ) sat and in general we have a strict inclusion, that is, I s is not saturated. It is interesting to study the initial degree of saturated powers, namely, indeg((I s ) sat ). Note that if X is a zero-dimensional scheme in P m k defined by a saturated ideal J, then (J s ) sat = J (s) , where J (s) is the s-th symbolic power of J. More generally, the symbolic power of a homogeneous ideal gives the saturated ideal for the scheme which is the scheme defined by ordinary power, having subtracted the embedded components. Therefore, we wish to establish a bound for the minimal degrees of elements in symbolic powers. There are some results and also several conjectures on the initial degree of symbolic power, see for example [START_REF] Harbourne | Are symbolic powers highly evolved?[END_REF][START_REF] Chudnovsky | Singular points on complex hypersurfaces and multidimensional Schwarz lemma[END_REF][START_REF] Bocci | Containment results for ideals of various configurations of points in P N[END_REF][START_REF] Cooper | Symbolic powers of monomial ideals[END_REF]. In other words, saturated powers have been of increasing interest to commutative algebraists and algebraic geometers. It is shown that there are several results on the regularity of saturated powers, see, for example [START_REF] Dale | Positivity and complexity of ideal sheaves[END_REF][START_REF] Chardin | Powers of ideals and the cohomology of stalks and fibers of morphisms[END_REF][START_REF] Chardin | Powers of ideals: Betti numbers, cohomology and regularity[END_REF][START_REF] Niu | Some results on asymptotic regularity of ideal sheaves[END_REF]. In particular, in [START_REF] Chardin | Powers of ideals and the cohomology of stalks and fibers of morphisms[END_REF], Chardin proved that lim t→∞ (reg((I t ) sat ) -td) exists and this limit is a nonnegative integer (or equivalent, this limit is not -∞) if and only if the projection π admits a fiber of positive dimension.

The main section of this chapter studies the one-dimensional fibers of a parameterization of an algebraic surface φ : P 2 k P 3 k . More precisely, we give a bound for y∈Y 1 deg(h y ) in terms of the degree d. The idea is to show the existence an integer s as in Theorem 2.2.6. Indeed, we prove that indeg((I s ) sat ) < sd for all integer s ≥ d 2 under the assumption that indeg(I sat ) = indeg(I) = d and B is locally a complete intersection of dimension zero in Corollary 2.3.6. Our key tool in the proof is the Z-approximation complex associated to f := f 0 , f 1 , f 2 , f 3 , which is a resolution of S I under these assumptions. Theorem 2.2.6 implies that y∈Y 1 deg(h y ) < d if indeg(I sat ) < d, the delicate case is when the ideal I satisfies indeg(I sat ) = indeg(I) = d. Moreover, in this case, we deduce immediately that d ≥ 3. Theorem 2.3.7 prove that y∈Y 1 deg(h y ) ≤ 4 whenever d = 3. In the general case, our main result in this chapter is following.

Theorem 2.3.9. Adopt Data 2.2.5. Assume further that m = n -1 = 2, that indeg(I sat ) = d ≥ 4 and that B is locally a complete intersection. Then

y∈Y 1 deg(h y ) ≤ d 2 d -1,
where x := max{n ∈ Z | n ≤ x}.

In the third chapter, we refine and generalize the results on fibers of rational maps in the previous chapter, by using ideals of minors of the Jacobian matrix of a representative of φ. Recall that if f := f 0 , . . . , f n are polynomials in the polynomial ring R = k[X 0 , . . . , X m ] over a field k, then the Jacobian matrix of f is defined by

J(f ) =     ∂f 0 ∂X 0 • • • ∂f 0 ∂Xm . . . . . . ∂fn ∂X 0 • • • ∂fn ∂Xm     .
Denote by I s (J(f )) the ideal of R generated by the s-minors of J(f ), where 1 ≤ s ≤ min{m + 1, n + 1}. One of the main results in this chapter is following.

Theorem 3.2.2. Adopt Data 2.2.5. Assume further that I 3 (J(f )) = 0 and denote by F be the greatest common divisor of generators of I 3 (J(f )). Then where

h y = h e 1 1 • • • h er y
ry is an irreducible factorization of h y in R. If the field k is of characteristic zero, then the assumption I 3 (J(f )) = 0 is always satisfied due to the hypothesis that φ is generically finite onto its image. Therefore, Theorem 3.2.2 is a significant improvement and generalization of the theorems 2.3.7 and 2.3.9 in the previous chapter, at least in the case where k is of characteristic zero. Theorem 3.2.2 holds for any d ≥ 1, without any condition on the initial degree of I sat and the assumption locally a complete intersection of B. However, if indeg(I sat ) < d, then we have a good bound for y∈Y m-1 deg(h y ) < d as in Theorem 2.2.6.

For a parameterization of surfaces, we studied the syzygies of f i 's in relation with the degree of F, the greatest common divisor of generators of I 3 (J(f )). We have a good bound for y∈Y 1 deg(h y ) as follows.

Notice that the last two conditions in the above corollary are automatically satisfied if k is of characteristic zero.

Given a rational map φ : P m k P n k between projective spaces that is defined by an ordered set of homogeneous polynomials f := f 0 , . . . , f n , of the same degree d, in the homogeneous coordinate ring R = k[X 0 , . . . , X m ] of P m k . One of the important problems is to determine necessary and sufficient conditions for such a map φ to be birational onto its image. This problem has been studied extensively in the past and it is still an active area of research. For computational purposes, methods based on the nature of the syzygies of f are the most suitable in the sense of effective results in the usual implementation of the Gröbner basis algorithm. For n = m this syzygybased approach appears already in the work of Hulek, Katz, and Schreyer [START_REF] Hulek | Cremona transformations and syzygies[END_REF] where sufficient conditions for birationality were given, and for n ≥ m it has been further developed in [START_REF] Russo | On birational maps and Jacobian matrices[END_REF]. In [START_REF] Simis | Cremona transformations and some related algebras[END_REF][START_REF] André | A characteristic-free criterion of birationality[END_REF] the method has been advanced by emphasizing the role of the Rees algebra associated to the ideal I = (f 0 , . . . , f n ) of R. This method has been introduced in relation with the fibers of φ in [START_REF] Eisenbud | Row ideals and fibers of morphisms[END_REF][START_REF] Kustin | Blowups and fibers of morphisms[END_REF].

In the fourth chapter, we aim to extend some of these methods and techniques to the context of rational maps whose source is a product of two projective spaces P n k × P m k instead. These maps are defined by an ordered set of bihomogeneous polynomials in two sets of n + 1 and m + 1 variables, respectively. In order to emphasize, we call them bigraded rational maps. Important modern motivation for considering bigraded rational maps comes from the field of geometric modeling. Indeed, the geometric modeling community uses almost exclusively bigraded rational maps for parameterizing surfaces, dubbing such maps rational tensor-product Bézier parameterizations.

First, we provide a general effective criterion for birationality of bigraded rational maps. This criterion is given in terms of the rank of a couple of matrices that came to be known as Jacobian dual matrices. Let X ⊂ P n k , Y ⊂ P m k and Z ⊂ P s k denote nondegenerate irreducible projective varieties over an algebraically closed field k.

Let A = k[x] = k[x 0 , . . . , x n ]/a, B = k[y] = k[y 0 , . . . , y m ]/b and S = k[z] = k[z 0 , .
. . , z s ]/c stand for the respective homogeneous coordinate rings. We also denote R :

= A ⊗ k B k[x, y]/(a, b). A rational map F : X × Y -→ Z
is defined by bihomogeneous polynomials f 0 (x, y), . . . , f s (x, y) in R of fixed bidegree (a, b), not all zero. We say that F is birational with image Z if it is dominant and admits an inverse rational map with image X × k Y . Note that the inverse map is necessarily given by a pair of rational maps Z -→ X and Z -→ Y defined by homogeneous polynomials g := g 0 , . . . , g n and h := h 0 , . . . , h m of fixed degrees d 1 and d 2 , respectively. Let I := (f 0 (x, y), . . . , f s (x, y)) be the ideal of R and consider a polynomial presentation 

R[z] = k[x, y] (a, b) [z] R[It] = k[x, y] (a, b) [It] = R R (I), z k → f k t whose restriction to R = k[x, y]/(

Introduction

We will focus on the presentation ideal (a, b, J ) ⊂ k[x, y, z] of the Rees algebra R R (I). Consider the elements of degrees (1, 0, * ) and (0, 1, * ) in (a, b, J ), where * denotes an arbitrary degree in z. Since by assumption X and Y are nondegenerate, these elements belong to the graded pieces J (1,0, * ) and J (0,1, * ) , respectively. Now, a form of degree (1, 0, * ) can be thought as a form of bidegree (1, * ) in k[x, z]. Moreover, since X is nondegenerate, each such form has a unique expansion of the shape i Q i (z)x i , where Q i (z) ∈ k[z] is homogeneous of degree * . Considering these expansions for a minimal set of generating forms of the ideal (J (1,0, * ) ) and taking the corresponding matrix of x-derivatives, we obtain a weak Jacobian dual matrix Ψ x in the sense of [DHS12, Section 2.3] -here dubbed an x-partial Jacobian dual matrix. We similarly introduce an y-partial Jacobian dual matrix Ψ y . Finally, thinking of these matrices as maps over k[z], we denote by Ψ x ⊗ k[z] S and Ψ y ⊗ k[z] S the respective maps obtained modulo c.

We obtain one of the main results of this chapter.

Theorem 4.2.2. With the previous notations, the rational map

F : X × Y Z is birational with image Z if and only if rank S (Ψ x ⊗ k[z] S) = n and rank S (Ψ y ⊗ k[z] S) = m.
In addition, both halves of the expression of the inverse of F are given by (signed) ordered maximal minors of an n × (n + 1) submatrix of Ψ x and of an m × (m + 1) submatrix of Ψ y , respectively.

The above theorem yields an explicit criterion for deciding if a given bigraded rational is birational. In order to apply this criterion, we need to get the equations of a Rees algebra, which are usually done by using Gröbner basis computations. Therefore, it has certain disadvantages in practice. Moreover, in order to overcome these drawbacks, we investigate how birationality can be detected by means of syzygies of the ideal I generated by the coordinates of the rational maps, instead of the whole collection of equations of I. Syzygies are computable by using any computational algebraic geometry system, such as Macaulay2 or Singular. The following proposition gives an effective criterion related to the syzygies of the ideal I for deciding if a given bigraded rational is birational. Proposition 4.2.3. Let F : P n k × P m k P s k stand for a rational map defined by bihomogeneous polynomials f 0 (x, y), . . . , f s (x, y) in R := k[x, y] and set I := (f 0 (x, y), . . . , f s (x, y)). If the image of F has dimension n + m and the submatrix of the syzygy matrix of I consisting of columns of bidegrees (1, 0) and (0, 1) has rank s (maximal possible), then F is birational onto its image.

Then, in the main section of this chapter, we focus on the linear syzygies of bigraded rational maps from P 1 k × P 1 k to P 2 k . More precisely, let k be an infinite field and R := k[x, y; u, v] be the bigraded polynomial ring with weights defined by deg(x) = deg(y) = (1, 0) and deg(u) = deg(v) = (0, 1). Consider a rational map φ :

P 1 k × P 1 k P 2
k is defined by three bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R, of bidegree (a, b). We assume throughout that φ is a dominant rational map, namely it is a bihomogeneous parameterization of a surface. These parameterizations are very important in Computer Aided Geometric Design applications because they are useful to model intricate geometry (see, for example [START_REF] Botbol | The implicit equation of a multigraded hypersurface[END_REF][START_REF] Duarte | Tensor product surfaces and linear syzygies[END_REF][START_REF] Schenck | Syzygies and singularities of tensor product surfaces of bidegree (2, 1)[END_REF]).

Motivated from the fact that the plane Cremona maps P 2 k P 2 k defined by three homogeneous polynomials in degree 2 or 3 are automatically de Jonquières maps. In both cases the base ideal is an ideal of 2-minors of a 3 × 2 matrix, with two linear syzygies or a linear syzyzy and a quadratic one, respectively [START_REF] Hamid | Plane Cremona maps: saturation and regularity of the base ideal[END_REF]. We will generalize these results when bigraded rational maps φ : P 1 k × P 1 k P 2 k of bidegree (a, b) with a + b ≤ 3. More precisely, these bigraded rational maps of bidegree (1, 1) or (1, 2) are birational if and only if the polynomials f 0 , f 1 , f 2 have a nonzero syzygy of bidegree (0, 1), or equivalent to, the base ideals I are an ideal of 2-minors of a 3 × 2 matrix, with two syzygies in bidegree (1, 0) and (0, 1) or a syzyzy in bidegree (0, 1) and a syzyzy in bidegree (1, 1), respectively. We list these criteria as follows:

Proposition 4.3.3. Let φ : P 1 k × P 1 k P 2
k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 of bidegree (1, 1) without common factor in R \ k. The following three assertions are equivalent:

(i) φ is birational, (ii) the polynomials f 0 , f 1 , f 2 have a nonzero bidegree (1, 0) syzygy, (iii) the polynomials f 0 , f 1 , f 2 have a nonzero bidegree (0, 1) syzygy.

Theorem 4.3.5. Let φ :

P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (1, 2) without common factor in R \ k. Setting I = (f 0 , f 1 , f 2 ) ⊂ R, the following four assertions are equivalent: (i) φ is birational, (ii) deg(B) = 3, and hence I is generically a complete intersection, (iii) dim k Syz(I) (0,1) = 1, (iv) dim k Syz(I) (1,1) = 3.
Unlike the cases of rational maps of bidegree (1, 1) or (1, 2), the linear syzygies associated to a given parameterization are not enough to give birational criterion in higher bidegrees. However, in the case of bidegree (2, 2), by studying the multiplicity of the base locus of the parameterization, we are able to describe a complete list of possible birational maps.

Theorem 4.3.12. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (2, 2) without common factor in R\k. Assume that the point in B with the largest multiplicity is the point p := (x, u). Let J be the ideal generated by f 0 (x, 1, u, 1), f 1 (x, 1, u, 1), f 2 (x, 1, u, 1). Then φ is birational if and only if deg B = 6 and J = (x, u) 2 or

J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0.
Furthermore, by Lemma 4.3.9, if φ :

P 1 ×P 1 P 2 is a birational map defined by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (2, 2) without common factor in R \ k, then I = (f 0 , f 1 , f 2 )
is perfect ideal with exactly two minimal syzygies, of bidegree (1, 1), and the free resolution of I is of the form

0 / / R(-3, -3) 2 M / / R(-2, -2) 3 / / I / / 0.
By a suitable coordinate change, I is generated by 2-minors of the following matrices

   u(x + y) yu -x(u + v) -yu 0 xv    or    (ax + y)u (a -1)xv -x(αu + v) -(α -1)xv 0 yu -xv    or    xu 0 -xv yu λyu + µxv xv   
where a, α, λ, µ ∈ k with (a, α) = (1, 1), a = α and λ = 0.

Finally, in the last section of this chapter, we investigate applications of our results to the field of modeling. In particular, for bigraded plane rational maps of bidegree (1, 1) and (1, 2) we explain how some particular coefficients of the map, called the weights of the parameterization, can be tuned in order to obtain a birational map. It is important to notice that the inverse map is then given by explicit minors from the matrix characterizing the birationality of the map. In the bidegree (1, 2) case, our new birationality criterion allows to assign the control of this tuning to a structured low-rank matrices approximation algorithm, in the context of numerical computations.

The last chapter of this thesis is not motivated by the same question in terms of syzygies. However, our objects are still the Rees and symmetric algebras, and our tools in proofs are the approximation complexes and, specially, the spectral sequence.

In the fifth chapter, we study residual intersection theory. In [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], Artin and Nagata introduced the concept of a residual intersection of an ideal; they did not define explicitly this concept but roughly speaking if X is an algebraic variety and Y ⊂ Z ⊂ X is a closed embedding of schemes, then the residual intersection of Y in Z (with respect to X) is a closed subscheme W such that W ∪Y = Z. Later, Huneke and Ulrich [START_REF] Huneke | Residual intersections[END_REF] gave a precise definition of residual intersection as follows: if R is a Noetherian ring, I an ideal of height g and s ≥ g an integer, then:

• An s-residual intersection of I is a proper ideal J of R such that ht(J) ≥ s and J = (a : R I) for some ideal a ⊂ I generated by s elements.

• A geometric s-residual intersection of I is an algebraic s-residual intersection J of I such that ht(I + J) ≥ s + 1.

Based on a construction of Laksov for residual intersections, Fulton [Ful98, Definition 9.2.2] presents a formulation for residual intersection that, locally, can be expressed as follows: suppose that X = Spec(R) and that Y and Z are closed subschemes of X defined by the ideals I and a, respectively. Let X = Proj(R I ) be the blow-up of X along Y. Consider the natural map π : X -→ X. Let Y = π -1 (Y ) and Z = π -1 (Z). Then Y = Proj(R I /IR I ) and Z = Proj(R I /aR I ) are closed subschemes of X, with ideal sheaves I Y and I Z , where I Y is an invertible sheaf. Let W ⊂ X be the closed subscheme defined by the ideal sheaf

I W = I Z .I -1 Y . Then W is called the residual scheme to Y in Z, [Ful98, Definition 9.2.1]. Precisely, W = Proj(R I /γR I ) in which γ = a ⊂ (R I ) [1] . Finally, the residual intersection to Y in Z [Ful98, Definition 9.2.2] is the direct image of O W i.e., π * (O W ). Since O W is a coherent sheaf, by [Har77, Chapter III, Proposition 8.5],
closely related to the ideal

H 0 (R I ) + (R I /γR I ) [0] = (aI i : R I i+1 ).
In many situations, two ideals are the same. In the current works of Hassanzadeh and Naéliton [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF][START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF], they consider the symmetric algebra S I instead of the Rees algebra R I . This generalization has already proved its usefulness in studying multiple-point formulas by Kleiman; see [START_REF] Fulton | Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Example 17.6.2]. We then find a kind of arithmetical residual intersection to be

(γSym i R (I) : R Sym i+1 R (I)),
where

γ = a ⊂ Sym R (I) [1] .
Comparing the above three definitions for residual intersection, we have

J = (a : R I) ⊂ (γSym i R (I) : R Sym i+1 R (I)) ⊂ (aI i : R I i+1 ).
Interestingly, these ideals coincide if the residual intersection J does not share any associated primes with I, e.g., if J is unmixed and the residual is geometric. Determining the cases where the first inclusion above is an equality leads to define an arithmetic residual intersection. More precisely, an arithmetic s-residual intersection of I is an s-residual intersection J = (a : R I) such that µ((I/a) p ) ≤ 1 for all prime ideals p ⊃ (I + J) with ht(p) ≤ s, here µ denotes the minimum number of generators.

The theory of residual intersections is a center of interest since the 80's, after Huneke repaired in [START_REF] Huneke | Strongly Cohen-Macaulay schemes and residual intersections[END_REF] an argument of Artin and Nagata in [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], introducing the notion of strongly Cohen-Macaulay ideal: an ideal such that all its Koszul homlogy is Cohen-Macaulay. The notion of strong Cohen-Macaulayness is stable under even linkage, in particular ideals linked to a complete intersection satisfy this property.

In [START_REF] Huneke | Strongly Cohen-Macaulay schemes and residual intersections[END_REF] Huneke showed that if R is a Cohen-Macaulay local ring, J is a geometric s-residual intersection of a strongly Cohen-Macaulay ideal I of R satisfying G s , then R/J is Cohen-Macaulay of codimension s. Following [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], one says that I satisfies G s if the number of generators µ Rp (I p ) is at most dim(R p ) for all prime ideals p with I ⊂ p and dim(R p ) ≤ s -1 and that I satisfies G ∞ if I satisfies G s for all s. Later, Herzog, Vasconcelos, and Villarreal in [START_REF] Herzog | Ideals with sliding depth[END_REF] replaced the assumption strong Cohen-Macaulayness by the weaker sliding depth condition, for geometric residuals, but they also showed that this assumption cannot be weakened any further. On the other hand, Huneke and Ulrich proved in [START_REF] Huneke | Residual intersections[END_REF] that the condition G s is superfluous for ideals in the linkage class of a complete intersection, and more precisely:

Let us notice that, in the proof of this statement, it is important to keep track of the canonical module of the residual along the deformation argument that they are using. The reason why G ∞ comes into the proof stems from the original proof in [START_REF] Huneke | Strongly Cohen-Macaulay schemes and residual intersections[END_REF] or even the incorrect proof in [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF] which proves residual intersections are Cohen-Macaulay by an induction which necessitates the G ∞ hypothesis. However Huneke and Ulrich mentioned the following natural question.

Question. [HU88, Question 5.7] Suppose that R is a Cohen-Macaulay local ring and I is an ideal of R which is strongly Cohen-Macaulay (or even satisfies sliding depth). Let J be any residual intersection of I. Then is R/J Cohen-Macaulay?

Hassanzadeh [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF] answered affirmatively the above question for arithmetic residual intersections, thus in particular for geometric residuals, under the sliding depth condition. One of the main results in this chapter is to answer affirmatively this question. To state our results, one needs to recall the following definition: let R be a Noetherian local ring of dimension d and I = (f ) = (f 1 , . . . , f r ) an ideal of height g. For an integer k ≥ 0, we say that

I satisfies SD k if depth(H i (f ; R)) ≥ min{d -g, d -r + i + k} for all i such that H i (f ; R) = 0.
Notice that SD 0 is the sliding depth condition and that I satisfies SD r-g if and only if I is a strongly Cohen-Macaulay ideal. We obtain the following result. 

- isfying s ≥ g. Suppose that depth(ω/I j ω) ≥ dim R/I -j + 1 for 1 ≤ j ≤ s -g + 1 and Ext g+j R (R/I j , ω) = 0 for all 1 ≤ j ≤ s -g -1. If J = a : R I is an i-residual intersection of I for g ≤ i ≤ s, then (a) R/J is Cohen-Macaulay, (b) the canonical module of R/J is I i-g+1 ω/aI i-g ω.
The above theorem is a generalization of [Ulr94, Theorem 2.9] where Ulrich assumed that R was a local Gorenstein ring. Let us notice that, in the proof of these statements, it is important to prove the Cohen-Macaulayness of residual intersections by an induction which necessitates the G s hypothesis, hence the G s condition has become an important assumption which is not avoidable. In the recent article of Hassanzadeh and Naéliton [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF], they proved that Sym s-g+1 R (I/a) is the canonical module of R/J, provided any arithmetic s-residual intersection J = (a : R I) of a strongly Cohen-Macaulay ideal I of height g in a Gorenstein local ring R. Our second main result in this chapter is to generalize this result. More precisely, we obtain the following.

Theorem 5.4.9. Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that I satisfies SD 2 , Tor R 1 (R/I, ω) = 0 and J = (a : R I) is an s-residual intersection of I. Then the canonical module of

R/J is Sym s-g+1 R (I/a) ⊗ R ω.
Let us notice that, the hypothesis Tor R 1 (R/I, ω) = 0 is immediately satisfied if R is Gorenstein or I has finite projection dimension.

In the last section of chapter, and also to close this thesis, we prove a result on duality for residual intersections of strongly Cohen-Macaulay ideals. This could be compared to recent results of Eisenbud and Ulrich in [START_REF] Eisenbud | Duality and Socle Generators for Residual Intersections[END_REF] where similar dualities were obtained under slightly different hypotheses. In their work, conditions on the local number of generators are needed and depth conditions are asked for some of the first powers of the ideal I, along the lines of [START_REF] Ulrich | Artin-Nagata properties and reductions of ideals[END_REF], and the duality occurs between powers I t /aI t-1 in place of symmetric powers Sym t R (I/a). Although their results and ours coincide in an important range of situations, like for geometric residuals of strongly Cohen-Macaulay ideals satisfying G s , the domains of validity of the two results are quite distinct. We prove the following.

Theorem 5.6.7. Let (R, m) be a Gorenstein local ring and a ⊂ I two ideals of R, with ht(I) = g. Suppose that J = (a : R I) is an s-residual intersection of I. If I is strongly Cohen-Macaulay, then ω R/J Sym s-g+1 R/J (I/a) and for all 0 ≤ k ≤ s -g + 1 (i) the R/J-module Sym k R/J (I/a) is faithful and Cohen-Macaulay, (ii) the multiplication

Sym k R/J (I/a) ⊗ R/J Sym s-g+1-k R/J (I/a) -→ Sym s-g+1 R/J (I/a)
is a perfect pairing, (iii) setting A := Sym R/J (I/a), the graded R/J-algebra

A := A/A >s-g+1 = s-g+1 i=0 Sym i R/J (I/a)
is Gorenstein.

In this chapter, we also determine several invariants of a residual intersection as the graded canonical module, the stability of Hilbert function, the Hilbert series, the Castelnuovo-Mumford regularity and the type. Furthermore, whenever I is strongly Cohen-Macaulay, via the duality results for residual intersections, we establish some tight relations between the Hilbert series of some symmetric powers of I/a and provide closed formulas for the types and for the Bass numbers of some symmetric powers of I/a. In this chapter we collect the definitions, results and techniques that we require for the later chapters. As a consequence, most of the material in this chapter is well known. We refer to [START_REF] Bruns | Cohen-Macaulay rings[END_REF] as standard text book, in particular for the discussion of regular sequences and depth, Cohen-Macaulay modules, graded rings, graded modules, Koszul complexes and Hilbert functions. The reader can consult the notations and general facts about local cohomologies and canonical modules in [START_REF] Brodmann | Local cohomology[END_REF]. We refer to [START_REF] Herzog | Koszul homology and blowing-up rings[END_REF] for studying approximation complexes and [START_REF] Simis | Cremona transformations and some related algebras[END_REF] or [START_REF] André | A characteristic-free criterion of birationality[END_REF] for the notions introduced in the last section.

Throughout, all given rings are assumed to be commutative, associative, with identity, and all modules are assumed to be unital. By a Noetherian local ring (R, m, k) we mean a Noetherian ring R with unique maximal ideal m and residue field k = R/m.

Cohen-Macaulay modules

Regular sequences and depth

Let M be a module over a ring R. We say that x ∈ R is an M -regular element if xz = 0 for z ∈ M implies z = 0, in other words, if x is not a zero-divisor on M. Regular sequences are composed of successively regular elements: Definition 1.1.1. A sequence x = x 1 , . . . , x n of elements of R is called an M -regular sequence if the following conditions are satisfied: (i) x i is an M/(x 1 , . . . , x i-1 )Mregular element for i = 1, . . . , n, and (ii) M/xM = 0.

A regular sequence is an R-regular sequence. Very often used in present tense R is a Noetherian local ring with maximal ideal m, and M = 0 a finitely generated R-module. If x ⊂ m, then condition (ii) is automatically satisfied because of Nakayama's lemma.

The classical example of a regular sequence is the sequence

X 1 , . . . , X n of inde- terminates in a polynomial ring R = S[X 1 , . . . , X n ].
We use M to denote the m-adic completion of a module M over a Noetherian local ring (R, m). 

Hom R (N, M/xM ) Ext n R (N, M ). Let R be a Noetherian ring and M an R-module. If x = x 1 , . . . , x n is an M -regular sequence, then the sequence (x 1 ) ⊂ (x 1 , x 2 ) ⊂ • • • ⊂ (x 1 , . . . , x n ) ascends strictly.
Therefore an M -regular sequence can be extended to a maximal such sequence: an M -regular sequence x (contained in an ideal I) is maximal (in I), if x 1 , . . . , x n+1 is not an M -regular sequence for any x n+1 ∈ R (x n+1 ∈ I). depth

I (M ) = min{i : Ext i R (R/I, M ) = 0},
with the convention that depth

I (M ) = ∞ if IM = M.
If in addition R is a local ring with maximal ideal m and residue field k = R/m, then grade of m on M is called the depth of M, denoted by depth(M ).

Because of its importance we repeat the most often used special case of Rees's theorem.

Theorem 1.1.6. Let (R, m, k) be a Noetherian local ring, M a finitely generated nonzero R-module. Then

depth(M ) = min{i : Ext i R (k, M ) = 0}.
We now study the behaviour of depth I (M ) along exact sequences.

Proposition 1.1.7. [BH98, 1.2.9] Let R be a Noetherian ring, I ⊂ R an ideal, and

0 -→ M -→ N -→ P -→ 0
an exact sequence of finitely generated R-modules. Then If I is an ideal contained in ann R (M ), then it is irrelevant for the Cohen-Macaulay property whether we consider M as an R-module or an R/I-module. In particular, if R is local and M is a Cohen-Macaulay module, then M is a maximal Cohen-Macaulay module over R/ann R (M ).

The next theorem exhibits the fact that for a Cohen-Macaulay module, the grade of an arbitrary ideal is given by its codimension. An ideal generated by a regular sequence is said to be a complete intersection ideal. An important property of complete intersection ideals is following.

I (M ) = dim M -dim M/IM for all ideals I ⊂ m, (c) x = x 1 , . . . ,
Proposition 1.1.12. [ZS60, Appendix 6, Lemma 5] Let R be a Cohen-Macaulay local ring, and a a complete intersection ideal of R. For every exponent n, the ideal a n is unmixed, and admits, therefore, the same associated prime ideals as a. Now we recall an important numerical invariant of modules. Definition 1.1.13. Let R be a Noetherian ring, M a finitely generated nonzero Rmodule and p ∈ Spec(R). The number

µ i (p, M ) = dim k(p) Ext i Rp (k(p), M p ) is called the i-th Bass number of M with respect to p, where k(p) = R p /pR p .
These numbers have an interpretation in terms of the minimal injective resolution of M. Proposition 1.1.14. [BH98, 3.2.9] Let R be a Noetherian ring, M a finitely generated R-module, and E • (M ) the minimal injective resolution of M. Then

E i (M ) p∈Spec(R) E(R/p) µ i (p,M ) ,
where E(R/p) is the injective hull of R/p. Definition 1.1.15. Let R be a ring and M be an R-module. The injective dimension of M is the smallest integer n for which there exists an injective resolution E • (M ) of M with E m (M ) = 0 for m > n. If there is no such n, the injective dimension of M is infinite. A Noetherian local ring R is a Gorenstein ring if its injective dimension is finite. A Noetherian ring R is Gorenstein if its localisation at every maximal ideal is a Gorenstein local ring.

Theorem 1.1.16. [START_REF] Matsumura | Commutative ring theory[END_REF]Theorem 18.8] A necessary and sufficient condition for a ring R to be Gorenstein is that a minimal injective resolution

E • (R) : 0 -→ R -→ E 0 -→ E 1 -→ • • • of R satisfies E i = htp=i E(R/p),
or, in other words, µ i (p, R) = δ i,htp for every p ∈ Spec(R).

When (R, m) is a Noetherian local ring, and M is a finitely generated R-module of depth t, the Bass number µ t (m, M ) is of particular importance. Definition 1.1.17. Let (R, m, k) be a Noetherian local ring, and M a finitely generated non-zero R-module of depth t. The number r(M (i) I and J are said to be directly linked if there is a regular sequence x := x 1 , . . . , x g ∈ I ∩ J such that I = (x) : R J and J = (x) : R I. (ii) We say I and J are in the same linkage class (or liaison class) if there exists a sequence of ideals I = I 0 , . . . , I n = J such that I j is directly linked to I j+1 for 0 ≤ j ≤ n -1. 

) = dim k Ext t R (k, M ) is called the type of M. In particular, r(M ) = µ t (m, M ).
) ∈ N n , set X α = X α 1 1 • • • X αn n and |α| = α 1 + • • • + α n .
Then the polynomial ring S = R[X 1 , . . . , X n ] is a graded ring, graded by the total degree of polynomials. In this case the graded pieces can be write as

S d = { |α|=d a α X α | a α ∈ R}.
S is called the standard polynomial ring over R. Definition 1.1.24. A graded R-module is an ordinary R-module M together with a decomposition M = ⊕ k∈Z M k as abelian groups, such that R m .M n ⊆ M m+n for all m ∈ Z ≥0 and n ∈ Z. Elements in one of these pieces are called homogeneous. Any m ∈ M is thus uniquely a finite sum m n i where each m n i ∈ M n i is homogeneous of degree n i and n i = n j for i = j.

In the category of graded R-modules M 0 (R), the morphisms of R-modules are the ones that preserve the grading. In other words, morphisms of graded modules take homogeneous elements to homogeneous elements of the same degree. We say these morphisms are homogeneous homomorphisms or graded homomorphisms of degree zero. (b) If S is any ring, then S can be considered as a graded ring with S 0 = S and S i = 0 for i > 0. Then a graded S-module is just a Z-indexed collection of (ordinary) S-modules. (c) [The blow-up algebra, also called Rees algebra] Let R be any ring, and let I be an ideal of R. We can make R I = R ⊕ I ⊕ I 2 ⊕ • • • (the blow-up algebra) into a graded ring, by defining the multiplication from the one of R after noticing that I i I j ⊆ I i+j . Given any R-module M , there is a graded

R I - module M ⊕ IM ⊕ I 2 M ⊕ • • •
, where multiplication is defined in the obvious way. We thus get a functor from R-modules to graded R I -modules.

Definition 1.1.27. Suppose that R is graded, and let M = n∈Z M n be a graded R-module. We define the end degree of M by end(M ) := sup{n ∈ Z :

M n = 0}
with the convention that sup ∅ = -∞. We similarly define the initial degree of M by indeg(M ) := inf{n ∈ Z :

M n = 0}
with the convention that sup ∅ = +∞.

Definition 1.1.28. Let R be a graded ring, M be a graded R-module and N ⊆ M an R-submodule. N is called a graded submodule if the homogeneous components of elements in N are in N . Furthermore, M/N is a graded R-module where (M/N ) i = M i /N i for i ∈ Z. In particular, if M = R, an ideal I of R is also called a graded ideal if it is a graded R-submodule.

The most important graded rings arise in algebraic geometry as the coordinate rings of projective varieties. They have the form R = k[X 1 , . . . , X n ]/I where k is a field and I is an ideal generated by the homogeneous polynomials (in the usual sense). Then R is generated as k-algebra by elements of degree 1, namely the residue classes of the indeterminates. Graded rings R, which as R 0 -algebras, are generated by 1-forms will be called standard graded R 0 -algebras or homogeneous R 0 -algebras. More generally, if R is a graded R 0 -algebra generated by elements of positive degree, then we say that R is a positively graded R 0 -algebra. Proposition 1.1.29. [START_REF] Bruns | Cohen-Macaulay rings[END_REF]1.5.4] Let R be a positively graded R 0 -algebra, and x 1 , . . . , x n homogeneous elements of positive degree. Then the following are equivalent:

(a) x 1 , . . . , x n generate the ideal

R + = ⊕ i≥1 R i ; (b) x 1 , . . . , x n generate R as an R 0 -algebra. In particular R is Noetherian if and only if R 0 is Noetherian and R is a finitely generated R 0 -algebra.
Let I be an arbitrary ideal of R. Then the graded ideal I * is defined to be the ideal generated by all homogeneous elements a ∈ I. It is clear that I * is the largest graded ideal contained in I, and that R/I * inherits a natural structure as a graded ring. Very often we shall derive properties of a graded ring or module from its localization with respect to graded prime ideals. The following lemma is basic for such arguments. Let p be a prime ideal of R and S the set of homogeneous elements of R not belonging to p. Then S is a multiplicatively closed set and we put M (p) = S -1 M for any graded R-module M. For x/a ∈ M (p) , x homogeneous, we set deg(x/a) = deg(x) -deg(a). We further define a grading on M (p) by setting

(M (p) ) n = {x/a ∈ M (p) : x homogeneous, deg(x/a) = n}. Let M, N be graded R-modules. An R-module homomorphism ϕ : M -→ N is called homogeneous of degree i if ϕ(M n ) ⊂ N n+i
for all n. Denote by Hom i (M, N ) the group of homogeneous homomorphisms of degree i. The Z-submodules Hom i (M, N ) of Hom R (M, N ) form a direct sum, and it is obvious that

* Hom R (M, N ) = i∈Z Hom i (M, N ) is a graded R-submodule of Hom R (M, N ).
For any N ∈ M 0 (R) we define * Ext i R (M, N ) as the i-th right derived functor of * Hom R (-, N ) in M 0 (R).

Proposition 1.1.31. [START_REF] Bruns | Cohen-Macaulay rings[END_REF]1.5.11] Let R be a Noetherian graded ring and I an ideal in R generated by homogeneous elements of positive degree. Set h = ht(I) and g = depth I (M ) where M is a finitely generated R-module. Then there exist sequences x = x 1 , . . . , x h and y = y 1 , . . . , y g of homogeneous elements of I such that ht(x 1 , . . . , x i ) = I for i = 1, . . . , h and y is an M -regular sequence.

Often one needs a stronger version of Proposition 1.1.31. Proposition 1.1.32. [START_REF] Bruns | Cohen-Macaulay rings[END_REF]1.5.12] In addition to the hypotheses of Proposition 1.1.31 assume that R 0 is a local ring with an infinite residue class field and that I is generated by elements of degree 1. Then the sequences x = x 1 , . . . , x h and y = y 1 , . . . , y g can be composed of elements of degree 1. where k is a field and t is a homogeneous element of positive degree which is transcendental over k. In the first case m is a maximal ideal, and in the second m is a prime ideal with dim R/m = 1. Note that R 0 is a local ring with maximal ideal m 0 = m ∩ R 0 , and that all homogeneous elements a ∈ R \ m are units. We define * dimension of R as the height of m and denote it by * dim R. 

H i I (M ) lim → Ext i R (R/I n , M ),
where the limit is taken over the maps 

Ext i R (R/I n , M ) -→ Ext i R (R/I m ,
If i < depth(M ) or i > dim M then H i m (M ) = 0. (b) If i = depth(M ) or i = dim M then H i m (M ) =
M ) = 0 for all i = dim M. Another useful expression for the local cohomology is obtained from a Čech complex: Suppose that I is generated by elements (x 1 , . . . , x n ). We write [n] = 1, . . . , n for the set of integers from 1 to n, and for any subset J ⊂ [n] we set x J = j∈J x j . We denote by M x J the localization of M by inverting x J . If i / ∈ J we let σ J (i) denote the number of elements of J less than i. The modified Čech complex of I over M , denoted by C • I (M ), is defined by

C • I (M ) : 0 / / M d / / ⊕ n i=1 M x i d / / • • • d / / M x 1 •••xn / / 0 C 0 (M ) C 1 (M ) C n (M ) (1.1)
whose differential takes an element

m J ∈ M x J ⊂ ⊕ #J=s M x J = C s (M ) to the element d(m J ) = i / ∈J (-1) σ J (i) m J∪{i} ∈ C s+1 (M ),
where m J∪{i} denotes the image of m J in the further localization

M x J∪{i} = (M x J ) x i .
Theorem 1.2.5. [Eis05, 10.2] Suppose that R is a Noetherian ring and I = (x 1 , . . . , x n ).

For any R-module M the local cohomology H i I (M ) is the i-th cohomology of the Čech complex (1.1) Suppose that ϕ : R -→ R is a homomorphism of rings, I is an ideal of R, and M is an R -module. Using the map ϕ we can also regard M as an R-module. In general, the relation between Ext i R (R/I n , M ) and Ext i R (R /I n , M ), where I = IR , is mysterious. However, Theorem 1.2.5 gives the following easy consequence.

Corollary 1.2.6. Suppose that ϕ : R -→ R is a homomorphism of Noetherian rings. With notation as above, there is a canonical isomorphism 

H i I (M ) H i IR (M ).
H i m (M ) Ext n-i A (M, A) ∨
for all i ∈ Z.

Note that if the ring R is graded, M is a graded R-module and I is generated by the homogeneous elements x 1 , . . . , x n with deg(x i ) = d i , then the Čech complex is canonically graded by putting deg( m 

(x i 1 ,•••x ip ) α ) := deg(m) -α(d i 1 + • • • + d ip ),
i R + (M )) + i : i ∈ Z ≥0 } = sup{end(H i R + (M )) + i : depth(M ) ≤ i ≤ dim M }.
The last equality implies from Proposition 1.2.3. If M is any module over a Noetherian ring R and I = (x 1 , . . . , x n ) ⊂ R is an ideal, then M gives rise by restriction to a sheaf F M on the affine scheme SpecR \ V (I) whose i-th sheaf cohomology H i (F M ) may be defined as the i-th cohomology of the Čech complex:

Č• I (M ) : 0 / / ⊕ n i=1 M x i d ∨ / / ⊕ i<j M x i x j d ∨ / / • • • d ∨ / / M x 1 •••xn / / 0 Č0 (M ) Č1 (M ) Čn-1 (M ) (1.2)
whose differential is defined as in (1.1). Note that Či (M ) = C i+1 (M ) and

d ∨ i = d i+1 for all i ≥ 0.
The local cohomology is related to sheaf cohomology in a simple way:

Proposition 1.2.14. With notations as above, then (a) there is an exact sequence of R-modules

0 -→ H 0 I (M ) -→ M -→ H 0 (F M ) -→ H 1 I (M ) -→ 0; (b) for every i ≥ 2 H i I (M ) = H i-1 (F M ).
Proof. This follows from the identification Ker(d ∨ 0 ) = H 0 (F M ) and Theorem 1.2.5.

Henceforward we will restrict our attention to the case where R is the polynomial ring S = k[X 0 , . . . , X n ] over a field k with its standard grading deg(X i ) = 1 for all i = 0, . . . , n, the ideal I is the homogeneous maximal ideal m = (X 0 , . . . , X n ), and the module M is finitely generated and graded. It follows that all the cohomology is graded too. Following our usual convention we will write H i m (M ) d for the d-th graded component of H i m (M ), and similarly for the sheaf cohomology of F M . In this setting the sheaf cohomology has another interpretation: Any graded Smodule M gives rise to a quasicoherent sheaf M on the projective space P n k (for the definition and properties of this construction see for example [Har77, II.5].) The Čech complex for M is the degree 0 part of the complex (1.2). In particular, the i-th cohomology of the sheaf M is the degree 0 part of the cohomology of F M , that is, 

H i ( M ) = H i (F M ) 0 . If
0 -→ H 0 m (M ) -→ M -→ d∈Z H 0 ( M (d)) -→ H 1 m (M ) -→ 0. (b) For every i ≥ 2 H i m (M ) = d H i-1 ( M (d)). Corollary 1.2.16. If S = k[X 0 , . . . , X n ] with n ≥ 1 and m = (X 0 , . . . , X n ) then H i m (S) d =    0 if i ≤ n Hom k (S -n-1-d , k) if i = n + 1.
Proof. It is an immediate consequence of Proposition 1.2.15, given the cohomology of O P n k (d) = S(d).

Canonical module

In this section, we will define and collect some properties of canonical modules for a local (not necessarily Cohen-Macaulay) ring. Recall that for a Noetherian local ring (R, m, k), the m-adic completion lim It will be convenient to have a notation for the ideal that turns out to be the annihilator of the canonical module. Definition 1.2.23. For a local ring R, we denote by j(R) the largest ideal which is a submodule of R of dimension smaller than dim(R). Then j(R) is nonzero if and only if some prime p of Ass R is such that dim(R/p) < dim R, and then j(R) ⊇ ann R (p). Thus, j(R) = (0) if and only if R is equidimensional and unmixed (where unmixed means that (0) has no embedded primes). Moreover, j(R) consists of all elements r ∈ R such that dim(R/ann R (r)) < dim(R).

← -t R/m t of
Lemma 1.2.24. [BS13, 12.1.12] A canonical module for R must be killed by j(R), and is also a canonical module for R/j(R), while any canonical module for R/j(R) is a canonical module for R. Thus, R has a canonical module if and only if R/j(R) has a canonical module. (i) We have

Supp ω R = {p ∈ Spec(R) : ht(p) + dim R/p = dim R}; also the R-module ω R and Hom R (ω, ω) satisfy the condition S 2 . (ii) If R is a homomorphic image of a Gorenstein local ring, then, for each p ∈ Supp ω R , the localization (ω R ) p is a canonical module for R p .
Suppose that canonical module ω R of a local ring (R, m) exists. we shall use

h R : R -→ Hom R (ω R , ω R )
to denote the natural homomorphism for which h R (r) = rId ω R for all r ∈ R.

Note that h R is both an R-module homomorphism and a ring homomorphism, and that Im(h R ) is contained in the center of the ring Hom R (ω R , ω R ). Theorem 1.2.25 implies immediately the following.

Corollary 1.2.28. Let (R, m) be a local ring with canonical module ω R . The kernel of the map h R is j(R). Thus, ω R is faithful if and only if R is equidimensional and unmixed.

Proposition 1.2.29. [BS13, 12.2.7] Suppose that ω R exists. Then h R : R -→ Hom R (ω R , ω R ) has Supp(Coker(h R )) ⊂ {p ∈ Spec(R) : ht(p) ≥ 2}. Thus each element of Coker(h R ) has annihilator of height at least two. Proposition 1.2.30. [BS13, 12.2.9] Suppose R is a homomorphic image of a Goren- stein local ring, so that ω R exists. Then h R is an isomorphism if and only if R satisfies the condition S 2 .
The following variant of the Local Duality Theorem will be useful. 

H d-i m (M ) Ext i R (M, ω R ) ∨
for all i. 

(R, m) is a Cohen-Macaulay local ring of dimension d. A finitely generated R-module C is a canonical module of R if and only if dim k Ext i R (R/m, C) = δ id for all i ≥ 0. Thus, if R is a Cohen-Macaulay local ring, then the canonical module of R in our definition is a canonical module of R in the sense of [BH98, Definition 3.3.1], that is, a finitely generated R-module ω R is a canonical module of R if it is a maximal Cohen-Macaulay R-module of type 1 and of finite injective dimension.
The next proposition lists some useful and often applied change of ring formulas for the canonical module.

Proposition 1.2.34. [BH98, 3.3.5] Let (R, m) be a Cohen-Macaulay local ring of dimension d, with canonical module ω R . Let x = x 1 , . . . , x m ∈ m. Then (i) x is a regular sequence if and only if x is a ω R -regular sequence. Moreover, when is the case, R/(x) has a canonical module and ω R/xR ω R /xω R . (ii) (ω R ) p ω Rp , for all p ∈ Spec(R). (iii) ω R ω R . Proposition 1.2.35. [BH98, 3.3.3] Let (R, m) be a Cohen-Macaulay local ring. If ω R is a canonical module of R and x is a regular sequence, then Hom R (M, ω R ) ⊗ R R/xR Hom R/xR (M/xM, ω R /xω R )
for any maximal Cohen-Macaulay R-module M. In the next propositions, some useful characterizations of a canonical module will be given. 

(c) dim k Ext i R (k, C) = δ id . In particular, r R (C) = 1; (d) for all maximal Cohen-Macaulay R-module M one has (i) Hom R (M, C) is a maximal Cohen-Macaulay R-module, (ii) Ext i R (M, C) = 0 for i > 0, (iii) the natural homomorphism M -→ Hom R (Hom R (M, C), C) is an isomor- phism. Note that if C is the canonical module of R, then, by replacing M by R in the item (d)(iii), we have a natural isomorphism R -→ Hom R (C, C). Proposition 1.2.38. [BH98, 3.3.11] Let R be a Cohen-Macaulay local ring of dimen- sion d, with canonical module ω R , and M a Cohen-Macaulay R-module of dimension t. Then (a) µ(M ) = r(Ext d-t R (M, ω R )), (b) r(M ) = µ(Ext d-t R (M, ω R )), (c) ω R is a faithful R-module, and (i) r(ω R ) = 1, µ(ω R ) = r(R), (ii) End R (ω R ) R.

Graded canonical module and the graded local duality theorem

i R (R/m, C)    0 for i = d R/m for i = d.
Proposition 1.2.41. [BH98, 3.6.9] Let (R, m) be a Cohen-Macaulay * local ring, and

C be a * canonical module of R. Then (a) C is a canonical module of R, (b) C is uniquely determined up to homogeneous isomorphism, provided m is max- imal. Example 1.2.42. Let R = k[X 0 , . . . , X n ]
be a polynomial ring over a field, and assign to the indeterminates the degree deg(X i ) = a i > 0 for all i = 0, . . . , n. The * maximal ideal of R is m = (X 0 , . . . , X n ) and the Koszul complex of X 0 , . . . , X n yields a homogeneous free resolution of R/m whose last term is R(-n i=0 a i ). From this one concludes that *

Ext i R (R/m, R)    0 for i = n + 1 (R/m)( n i=0 a i ) for i = n + 1.
In other words, the * canonical module of R is R(-n i=0 a i ). Proposition 1.2.43. [START_REF] Bruns | Cohen-Macaulay rings[END_REF]3.6.11] Let (R, m) be a Cohen-Macaulay * local ring with * canonical module ω R . The following conditions are equivalent:

(a) R is a Gorenstein ring; (b) ω R R(a) for some integer a ∈ Z.
The number a occurring in Proposition 1.2.43 is a numerical invariant of the Gorenstein * local ring (R, m), provided m is maximal. In the case of a positively graded algebra over a field it will be given a special name. Definition 1.2.44. Let k be a field, and R a Cohen-Macaulay positively graded k-algebra. Then

a(R) = -min{i : (ω R ) i = 0}
is called the a-invariant of R. 

x i ) = a i for i = 1, . . . , n. Then ω R/xR ω R /xω R n i=1 a i .
In particular, if k is a field and R is a Cohen-Macaulay positively graded k-algebra, then

a(R/xR) = a(R) + n i=1 a i . Example 1.2.46. A graded polynomial ring R = k[X 0 , . . . , X n ] over a field k with deg(X i ) = a i > 0 has the a-invariant a(R) = -n i=0 a i .
We now state the graded version of the local duality theorem. This will concern the situation where (R, m) is a graded * local ring that can be expressed as a homomorphic image of a graded Gorenstein * local ring by means of a homogeneous homomorphism. Many of the graded rings that occur in applications are finitely generated algebras over a field, and so we are only imposing a mild restriction. 

H i m (M ) * Hom R ( * Ext n-i A (M, A(a)), * E R (R/m
)) for all finitely generated graded R-module M and for all i ≥ 0.

In the situation of the above theorem, the functor * D := * Hom R (-, * E R (R/m)) would seem to be an obvious graded analogue of the Matlis functor. However, there is another approach to * D which is particularly useful when the 0-th component R 0 of the * local ring R is a field. Let (R, m) be a Noetherian * local ring; then R 0 is local with maximal ideal m 0 . We consider R 0 as a graded ring by defining (R 0 ) i = 0 for i = 0. Similarly any R 0module may be consider a graded R 0 -module concentrated in degree 0. Moreover, if M is a graded R-module, it may be viewed as a graded R 0 -module as well. Put

E 0 := E R 0 (R 0 /m 0 ), we can define M * = * Hom R 0 (M, E 0 ).
A priori, M * is a graded R 0 -module whose grading is given by

(M * ) i = Hom R 0 (M -i , E 0 ))
for all i ∈ Z. But it is obvious that M * has a natural structure as a graded R-module, and we have the identity

M * = * Hom R (M, E 0 ),
as a graded R-module.

Proposition 1.2.48. [START_REF] Brodmann | Local cohomology[END_REF]14.4.2] There are the naturally homogeneous isomorphisms M * * D(M ), for all finitely generated graded R-module M.

Thus, it is reasonable for us to regard the functor - * = * Hom R 0 (-, * E 0 ) as the "graded Matlis duality functor". Theorem 1.2.49 (Graded Local Duality Theorem). [BS13, 14.5.10] Let (R, m) be a graded Cohen-Macauley * local ring of * dimension d. Assume that R admits a * canonical module ω R . For each finitely generated graded R-module M, there are homogeneous isomorphisms

H d-i m (M ) * Ext i R (M, ω R ) * := * Hom R 0 ( * Ext i R (M, ω R ), * E 0 )
for all i ∈ Z.

In the particular case in which R 0 is a field k, E R 0 (R 0 /m 0 ) = k, and, for a graded R-module M = i∈Z M i , the grading of the "graded Matlis duality" is given by the attractively simple formula

M * = * Hom k (M, k) = i∈Z Hom k (M -i , k)
as a graded k-vector space or

M * = * Hom R (M, k) as a graded R-module.
Let R = k[X 0 , . . . , X n ] be a standard graded polynomial ring over a field k. Then R is a Gorenstein * local ring with * canonical module R(-n -1). Therefore, we have the following.

Corollary 1.2.50. [START_REF] Brodmann | Local cohomology[END_REF]14.5.18] Let R = k[X 0 , . . . , X n ] be the standard graded polynomial ring over a field k and m = (X 0 , . . . , X n ) the homogeneous maximal ideal. For all finitely generated graded R-modules M and for all i ∈ Z, then there are naturally homogeneous homomorphisms

H i m (M ) * Hom R Ext n+1-i R (M, R(-n -1)), k and * Hom R (H i m (M ), k) Ext n+1-i R (M, R(-n -1)). Proposition 1.2.51. [MN01, Lemma 10] Let R = k[X 0 , . . . , X n ]
be the standard graded polynomial ring over a field k. Suppose that I is a homogeneous ideals of R of height g. Let x := x 1 , . . . , x g be a regular sequence contained in I and deg(x i ) = d i for all i = 1, . . . , g. Put J := (x) : R I. Then there are exact sequences (of graded R-modules)

0 -→ (x) -→ J -→ ω R/I (n + 1 - g j=1 d j ) -→ 0 and 0 -→ ω R/I (n + 1 - g j=1 d j ) -→ R/(x) -→ R/J -→ 0.
Proof. We have to show that J/(x) ω R/I (n + 1 -g j=1 d j ). There are the following isomorphisms

J/(x) ((x) : R I)/(x) Hom R (R/I, R/(x)) and ω R/I (n + 1 - g j=1 d j ) Ext g R (R/I, R)(- g j=1 d j ).
Thus, our claim follows from the isomorphism

Hom R (R/I, R/(x)) Ext g R (R/I, R)(- g j=1 d j ).

Hilbert functions and multiplicities

We will recall some definitions and notations of Hilbert function of graded modules over a graded ring and Hilbert-Samuel function of finitely generated modules over a local ring.

Hilbert functions for graded algebras

Our standard assumption in this section will be that R 0 is an Artinian local ring, and that R is finitely generated over R 0 . Notice that for each finitely generated graded R-module, the homogeneous components M n of M are finitely generated R 0 -module, and hence have finite length.

Definition 1.3.1. Let M be a graded R-module whose graded components M n have finite lenght for all n. The numerical function HF M (-) :

Z -→ Z with HF M (n) = length(M n ), for all n ∈ Z, is the Hilbert function of M, and HS M (t) := n∈Z HF M (n)t n is the Hilbert series of M.
In this section we consider positively graded algebras over an Artinian local ring R 0 , that is, graded algebras of the form R = i≥0 R i where R 0 is an Artinian local ring and R is finitely generated over R 0 . The generators of a positively graded algebra may be of arbitrarily high degree.

We first give a structure result about Hilbert series.

Proposition 1.3.2. [START_REF] Bruns | Cohen-Macaulay rings[END_REF]4.4.1] Let R be a positively graded algebra over an Artinian local ring R 0 , and M = 0 be a finitely generated graded R-module of dimension d. Then there exist positive integers a 1 , . . . , a d , and

Q(t) ∈ Z[t, t -1 ] such that HS M (t) = Q(t) d i=1 (1 -t a i ) with Q(1) > 0.
Let a be the least common multiple of degrees of the generators of the algebra R over R 0 , we may write the Hilbert series of M in the above proposition as

HS M (t) = Q(t) (1 -t a ) d with Q(1) > 0.
The next results show that the Hilbert series of the canonical module of a Cohen-Macaulay positively graded algebra may be deduced from its Hilbert series. The automorphism ϕ :

Z[t, t -1 ] -→ Z[t, t -1 ], ϕ(t) = t -1
, can be extended to all rational functions F (t), and we set F (t -1 ) = ϕ(F (t)).

Theorem 1.3.3 (Stanley). [START_REF] Bruns | Cohen-Macaulay rings[END_REF]4.4.6] Let R be a d-dimensional Cohen-Macaulay positively graded algebra over an Artinian local ring R 0 , with canonical module ω R . Suppose that R has the Hilbert series

HS R (t) = s i=0 h i t i d j=1 (1 -t a j ) . (a) Then HS ω R (t) = (-1) d HS R (t -1 ), equivalently, HS ω R (t) = t a j -s s i=0 h s-i t i d j=1 (1 -t a j ) . (b) If R is Gorenstein, then HS R (t) = (-1) d t a(R) HS R (t -1 ).
(c) Suppose R is a domain, and HS R (t) = (-1) d t q HS R (t -1 ) for some integer q.

Then R is Gorenstein.

Hilbert functions for standard graded algebras

In this subsection we will assume that R is generated over R 0 by elements of degree

1, that is, R = R 0 [R 1 ].
Recall that such a ring is said to be standard graded.

Theorem 1.3.4 (Hilbert). [BH98, 4.1.3] Let M be a finitely generated graded R- module of dimension d. Then there exists a polynomial HP M (X) ∈ Q[X] of degree d -1 such that HF M (n) = HP M (n) for all n 0. Definition 1.3.5. Let M be a finitely generated graded R-module of dimension d. The unique polynomial HP M (X) ∈ Q[X] of degree d -1 for which HF M (n) = HP M (n) for all n 0 is called the Hilbert polynomial of M. We write HP M (X) = d-1 i=0 (-1) d-1-i e d-1-i X + i i .
Then the multiplicity of M is defined to be

e(M ) =    e 0 if d > 0 length(M ) if d = 0. Corollary 1.3.6. Let M = 0 be a finitely generated graded R-module of dimension d. Then there exists a unique Q M (t) ∈ Z[t, t -1 ] with Q M (1) = 0 such that HS M (t) = Q M (t) (1 -t) d . Moreover, if Q M (t) = i h i t i , then min{i : h i = 0} is the least number such that M i = 0.
Proof. The first part of the assertion is a consequence of Proposition 1.3.2. In order to prove the second part, multiply both sides of

HS M (t) = Q M (t) (1-t) d by (1 -t) d and compare coefficients.
In the next proposition we show how one can recover the coefficients e i of the Hilbert polynomial of a module M from Q M . We will denote by

P (i) the i-th formal derivative of an element P ∈ Z[t, t -1 ].
Proposition 1.3.7. [BH98, 4.1.9] Under the assumptions of Corollary 1.3.6 the following formulas hold:

e i = Q (i) M (1) i! for i = 0, . . . , d -1. Moreover, e(M ) = Q M (1).
Remark 1.3.8. The multiplicity e(M ) of M is also often called the degree of M because of its geometric meaning. Indeed, let k be a field, and R = k[X 0 , . . . , X n ] with each X i is of degree one. Suppose that I is a graded ideal of R and consider the quotient ring A = R/I. If d denotes the dimension of A then the subscheme Proj(A) of P n k is of dimension d -1. The degree of Proj(A) over P n k is defined to be the number of points obtained by cutting out Proj(A) by d -1 general linear forms. To be more precise, if 1 , . . . , d-1 are general linear forms of R, then the scheme B = Proj(A/( 1 , . . . , d-1 )) is finite and we set

deg P n k (Proj(A)) := dim k Γ(B, O B ) = dim k A ν /( 1 , . . . , d-1
) ν for all sufficiently large ν. It turns out that this geometric degree equals the multiplicity of A, i.e. we have deg

P n k (Proj(A)) = e(A). Theorem 1.3.9 (Grothendieck-Serre). [BH98, 4.4.3] Let R be a positively standard graded algebra over a field R 0 = k, and M = 0 a finitely generated graded R-module of dimension d. Denote the homogenous maximal ideal of R by m = ⊕ i>0 R i . For every d ∈ Z HP M (d) = HF M (d) - i≥0 (-1) i dim k H i m (M ) d .
Theorem 1.3.10. [START_REF] Brodmann | Local cohomology[END_REF]17.1.11] Let R be a positively standard graded algebra such that R 0 is Artinian. Let M = 0 be a finitely generated graded R-module and i a nonnegative integer. Then there exists a polynomial HP i M ∈ Q[X] of degree less than i such that

HF H i R + (M ) (d) = HP i M (d) for all d 0.
Proposition 1.3.11. [MN01, Corollary 9] Let k be a field, and

R = k[X 0 , . . . , X n ]
with each X i is of degree one. Let I be a graded ideal of codimension g ≤ n and x := x 1 , . . . , x g a regular sequence contained in I. Put J = (x) : R I. Setting X = Proj(R/I), Y = Proj(R/J) and Z = Proj(R/(x)). Then we have

deg(X) + deg(Y ) = deg(Z).
Proof. Suppose that deg(x i ) = d i for all i = 1, . . . , g. By Theorem 1.3.10, the degree of the Hilbert polynomial of H i m (R/I) is at most i -1. Therefore, by Theorem 1.3.9, we obtain for all d 0

-HP R/I (d) = (-1) n+1-g dim k H n+1-g m (R/I) d + O(d n-1-g ) = (-1) n+1-g dim k (ω R/I ) -d + O(d n-1-g ).
Combined with the standard exact sequence in Proposition 1.2.51, this provides

HP R/J (d) = HP R/(x) (d) + (-1) n-g HP R/I ( g j=1 d j -n -1 -d) + O(d n-1-g ). Comparing coefficients we get if g ≤ n deg(X) = deg(Z) -deg(Y ).

Macaulay's theorem for Hilbert functions

In this subsection we recall a beautiful theorem of Macaulay describing exactly those numerical functions which occur as the Hilbert function HF R (n) of a standard graded k-algebra R, k is a field.

Let R = n≥0 R n be a standard graded k-algebra, where R 0 = k is a field. We will show that R has an k-basic consisting of monomials in basic x 1 , . . . , x m of R 1 . We are going to define this basic of monomials on the level of the polynomial ring. So let

π : k[X 1 , . . . , X m ] -→ R be the surjective k-algebra homomorphism with π(X i ) = x i .
Definition 1.3.12. A nonempty set M of monomials in the indeterminates X 1 , . . . , X m is called an order ideal of monomials if the following holds: whenever m ∈ M and a monomial m divides m, then m ∈ M. Equivalently, if

X a 1 1 • • • X am m ∈ M and 0 ≤ b i ≤ a i for i = 1, . . . , m, then X b 1 1 • • • X bm m ∈ M.
Remark 1.3.13. An order ideal of monomials M is not an k-basis of an ideal, let alone an ideal. Quite the contrary, if we let CM be the complement of M in the set of all monomials, then CM is an k-basis of the ideal generated by the monomials m ∈ CM.

Theorem 1.3.14 (Macaulay). [BH98, 4.2.3] Let R be a standard graded k-algebra, k is a field. Further let x 1 , . . . , x m be an k-basis of R 1 , and π : k[X 1 , . . . , X m ] -→ R be the surjective k-algebra homomorphism with π(X i ) = x i for i = 1, . . . , m. Then there exists an order ideal M of monomials such that π(M) is an k-basis of R.

Theorem 1.3.14 and Remark 1.3.13 immediately imply:

Corollary 1.3.15. Let J be the ideal which is generated by the monomials in CM.

Then the standard graded k-algebra R and k[X 1 , . . . , X m ]/J have the same Hilbert function. In particular, all Hilbert functions of standard graded rings arise as Hilbert function of standard graded rings whose defining ideal is generated by monomials.

The set of monomials CM associated with R can be described differently. First, we recall the following definition.

Definition 1.3.16. A monomial order < on k[X 1 , . . . , X m ] is a total ordering on the set of monomials of k[X 1 , . . . , X m ] having two additional properties:

(i) 1 < m for every monomial m = 1.

(ii) whenever m 1 < m 2 and c is a monomial, then cm 1 < cm 2 . Now let < be a monomial order on k[X 1 , . . . , X n ]. Let I = Ker(π), and set LT(I) = {LT(f ) : f ∈ I}, where LT(f ) denotes the leading monomial of f, that is, the monomial occurring in f which is maximal with respect to < . Then LT(I) = CM. Indeed, let v ∈ LT(I), and choose

f ∈ I, f = n i=1 λ i v i with monomials v i such that v = LT(f ) = v n . Assume v n / ∈ CM, then v n ∈ M, and so 0 = π(v n ) = - n-1 i=1 λ -1 n λ i π(v i ). Each π(v i ) is a linear combination a ij π(u j ), a ij ∈ k, u j ∈ M, u j ≤ v i < v n .
Replacing the π(v i ) in the above equation by their linear combinations gives a representation as a nontrivial combination of elements in π(M). This contradicts Theorem 1.3.14.

Conversely, suppose v ∈ CM. Then π(v) = λ i π(u i ) with u i ∈ M, u i < v. Hence, if we set f = v -λ i π(u i ), then π(f ) = 0 and LT(f ) = v.
Set in(I) is the ideal of k[X 1 , . . . , X m ] generated by LT(I). Then in(I) is finitely generated. Therefore there exist polynomials f 1 , . . . , f n ∈ I such that in(I) = (LT(f 1 ), . . . , LT(f n )). Any such subset of I is called a Gröbner or standard basis of I. Note that any Gröbner basis of I generates I.

Let n, d ≥ 0 be two integers. We write

n d =    (d+1)(d+2)•••n 1.2•••(n-d) if 0 ≤ d ≤ n 0 otherwise.
Lemma 1.3.17. [BH98, 4.2.6] Let d be a positive integer. Any a ∈ N can be written uniquely in the form

a = m d d + m d-1 d -1 + • • • + m 1 1 , (1.3) where m d > m d-1 > • • • > m 1 ≥ 0.
Skipping the summands which are zero in (1.3) we get the following definition.

Definition 1.3.18. Let a and d two positive integers.

(a) The d-binomial expansion of a is the unique expression

a = m d d + m d-1 d -1 + • • • + m j j , (1.4)
where

m d > m d-1 > • • • > m j ≥ j ≥ 1.
(b) If a has d-binomial expansion as in (1.4), then we set

a <d> = m d + 1 d + 1 + m d-1 + 1 d + • • • + m j + 1 j + 1 .
For example, the 5-binomial expansion of 76 is

76 = 8 5 + 6 4 + 4 3 + 2 2 , so 76 <5> = 9 6 + 7 5 + 5 4 + 3 3 = 111. Definition 1.3.19. A sequence of non-negative integers {c i : i ≥ 0} is called an O-sequence if c 0 = 1 and c i+1 ≤ c <i> i , for all i ≥ 1.
The importance of the binomial expansions described above becomes apparent from the following beautiful theorem of Macaulay:

Theorem 1.3.20 (Macaulay). [BH98, 4.2.10] Let k be a field and h : N -→ N a numerical function. The following conditions are equivalent:

(i) there exists a standard graded k-algebra R with Hilbert function HF R (n) = h(n) for all n ≥ 0;
(ii) there exists a standard graded k-algebra R with monomial relations and with Hilbert function

HF R (n) = h(n) for all n ≥ 0; (iii) {h(n) : n ≥ 0} is an O-sequence;
(iv) let m = h(1), and for each n ≥ 0 let M n be the first h(n) monomials in the variables X 1 , . . . , X m of degree n in the reverse degree-lexicographical order; set M = n≥0 M n ; then M is an order ideal of monomials.

Hilbert-Samuel functions and multiplicities

Let R be a ring and I an ideal of R. Set

gr I (R) = n≥0 I n /I n+1 .
An element I n /I n+1 can be expressed as a linear combination of products of n elements of I/I 2 , so that gr I (R) is generated over the subring gr I (R) 0 = R/I by elements of I/I 2 . If I = (x 1 , . . . , x r ) and ξ i denotes the image of x i in I/I 2 then gr

I (R) = (R/I)[ξ 1 , . . . , ξ r ],
and gr I (R) is a quotient of the polynomial (R/I)[X 1 , . . . , X r ] as graded algebras. Therefore gr I (R) is a standard graded algebra. As an immediate consequence of Theorem 1.3.4, there exists a polynomial

S I M (X) ∈ Q[X] of degree d = dim(M ) such that χ I M (n) = S I M (n) for n 0.
This polynomial is called the Hilbert-Samuel polynomial of M with respect to I and it can be written of form:

S I M (X) = e(I, M ) d! X d + terms of lower powers in X.
The multiplicity e(I, M ) of I in M is also called the algebraic multiplicity one can define the algebraic multiplicity of a zero-dimensional subscheme as follows: Let J be a graded ideal of a N-graded ring R such that B = Proj(R/J) is a finite subscheme of Proj(R). For each x ∈ B, we denote p by the defining ideal of x. 

Spectral sequences

In this section, we are going to collect some necessary notations and terminologies about spectral sequences.

Definition of spectral sequences

Definition 1.4.1. A spectral sequence (starting with 0 E ) in an abelian category C consists of the following data:

(i) A family { r E p,q } defined for all p, q ∈ Z and r ≥ 0.

(ii) Maps d p,q r : r E p,q -→ r E p+r,q-r+1 are differentials in the sense that d r d r = 0 for all r ≥ 0.

(iii) There is isomorphisms between r+1 E p,q and homology of r E * , * at the spot r E p,q : r+1 E p,q Ker(d p,q r ) Im(d p-r,q+r-1 r ) .

Note that r+1 E p,q is a subquotient of r E p,q . The total degree of the term r E p,q is n = p + q; the terms of total degree n lie on a line of slop 1, and each differential d p,q r increases the total degree by one.

Definition 1.4.2. (a) A spectral sequence is called bounded if for each n there are only finitely many nonzero terms of total degree degree n in 0 E * , * ; more precisely there is an r 0 such that r E p,q = r+1 E p,q for all p, q ∈ Z and r ≥ r 0 . We write ∞ E p,q for this stable value of r E p,q .

(b) A bounded spectral sequence is called converges to a given family {H n } of objects of an abelian category C, if we have a finite filtration for each

H n : 0 = F s H n ⊂ • • • ⊂ F p+1 H n ⊂ F p H n ⊂ F p-1 H n ⊂ • • • ⊂ F t H n = H n ,
and we are given isomorphisms

∞ E p,q = F p H p+q F p+1 H p+q
and write r E p,q ⇒ H p+q to represent this fact.

Definition 1.4.3. A spectral sequence collapses at r E (r ≥ 2) if there is exactly one nonzero row or column in the lattice { r E p,q }. If a collapsing spectral sequence converges to H * , we can read the H n off: H n is the unique nonzero r E p,q with p+q = n. The overwhelming majority of all applications of spectral sequence involve spectral sequence that collapses at 1 E or 2 E.

For a spectral sequence, each r+1 E p,q is a subquotient of the previous term r E p,q . By induction on r, we see that there is a nested family of subobjects of 0 E p,q :

0 = B p,q 0 ⊂ • • • ⊂ B p,q r ⊂ B p,q r+1 ⊂ • • • ⊂ Z p,q r+1 ⊂ Z p,q r ⊂ • • • ⊂ Z p,q 0 = 0 E p,
q such that r E p,q Z p,q r /B p,q r . We introduce the intermediate objects

B p,q ∞ = ∞ r=0 B p,q r and Z p,q ∞ = ∞ r=0 Z p,q r and define ∞ E p,q = Z p,q ∞ /B p,q ∞ .
In a bounded spectral sequence, both the union and intersection are finite, so B p,q ∞ = B p,q r and Z p,q ∞ = Z p,q r for large r. Thus we recover our earlier definition ∞ E p,q = r E p,q for large r.

Spectral sequences of a double complex

Where do interesting spectral sequences come from? Most of the applications in algebra have to do with a spectral sequence that arises from a double complex C. More precisely, there are two filtrations associated to every double complex, resulting in two spectral sequences related to homology of Tot(C).

Let C = C * , * be a double complex in an abelian category C . . . . . . . . .

• • • / / C p-1,q-1 / / C p,q-1 / / C p+1,q-1 / / • • • • • • / / C p-1,q / / C p,q / / C p+1,q / / • • • • • • / / C p-1,q+1 / / C p,q-1 / / C p+1,q+1 / / • • • . . . . . . . . . The total complex G = Tot(C) is defined by G n = ⊕ i+j=n C i,j .
There are two natural filtrations on the total complex -vertical filtration and horizontal filtration. The horizontal filtration is defined by subcomplex p F • hor (G), where p F • hor (G) comes from the rows of C where the second index ≥ p. Similarly, the vertical filtration p F • ver (G) is the subcomplex coming from the columns of C where the first index ≥ p. More fomally, we let

p F n hor (G) = m≥p C n-m,m p F n ver (G) = m≥p C m,n-m
with differential defined as the restrcition of the differential of G.

Theorem 1.4.4. [Eis95, Theorem A.3.24] Let C = C p,q be a double complex in an abelian category A. There are two spectral sequences r E hor and r E ver determined by the filtrations p F • hor (Tot(C)) and p F • ver (Tot(C)) with 0 E p,q hor = C p,q 1 E p,q hor = H q hor (C * ,p ) 2 E p,q hor = H p ver H q hor (C * , * ) 0 E p,q ver = C p,q 1 E p,q ver = H q ver (C p, * ) 2 E p,q ver = H p hor H q ver (C * , * ).

If C p,q = 0 for all p < 0 and q < 0 or p > 0 and q > 0, then both spectral sequences r E hor and r E ver converge to H p+q (T ot(C)).

Koszul complexes and approximation complexes

We give here a discussion on the most useful complexes in commutative algebra: Koszul complexes and approximation complexes, in particular, their applications on the implicitization problem.

Koszul complexes

Let R be a ring and x := x 1 , . . . , x n a sequence of elements in R. Suppose that {e 1 , . . . , e n } denotes the canonical basis of R n , then we define K 0 (x) = R and for all p ≥ 1

K p (x) = 1≤i 1 ≤•••≤ip≤n Re i 1 ∧ • • • ∧ e ip p R n ,
where p R n is the p-th exterior power of R n . Moreover, the differential

∂ x p : K p (x) -→ K p-1 (x) sends a basis element e i 1 ∧ • • • ∧ e ip to ∂ x p (e i 1 ∧ • • • ∧ e ip ) := p k=1 (-1) k+1 x i k e i 1 ∧ • • • ∧ e i k ∧ • • • ∧ e ip ,
where the symbol e i indicates that e i has been omitted from the exterior product.

The collection of the maps ∂ x p defines a graded R-homomorphism

∂ x : R n -→ R n
of degree -1. By a straightforward calculation one verifies the following identities:

∂ x • ∂ x = 0 and ∂ x (a ∧ b) = ∂ x (a) ∧ b + (-1) deg a a ∧ ∂ x (b) for all homogeneous a, b ∈ R n . To say that ∂ x • ∂ x = 0 is to say that K • (x) : 0 / / n R n ∂ x n / / n-1 R n ∂ x n-1 / / • • • / / 1 R n ∂ x 1 / / R / / 0.
is a complex. The second equation expresses that ∂ x is an antiderivation (of degree -1).

Definition 1.5.1.

The complex K • (x) is called the Koszul complex of x. More generally, if M is an R-module, then K • (x; M ) := K • (x) ⊗ R M, is called the Koszul complex of x with coefficients in M ; its differential is denoted by ∂ x M . Proposition 1.5.2. Let R be a ring, x a sequence of elements in R and M an R-module.
(a) The Koszul complex K • (x) carries the structure of an associative graded alternating algebra, namely that

R n . Its differential ∂ x is an antiderivation of degree -1. (b) The Koszul complex K • (x; M ) is a K • (x)-module in a natural way. (c) One has ∂ x M (a.b) = ∂ x (a).b + (-1) deg(a) a.∂ x M (b) for all homogeneous element a of K • (x) and all element b ∈ K • (x; M ).
Proof. Item (a) derives immediately from the construction of Koszul complex. Item (b) is obvious: if A is an R-algebra, then A⊗ R M is an A-module for every R-module M. For item (c), it is enough to verify the equation for elements

y = w ⊗ z with w ∈ K • (x), z ∈ M. Then ∂ x M (x.w ⊗ z) = ∂ x M ((x ∧ w) ⊗ z) = ∂ x (x ∧ w) ⊗ z,
and the rest follows from the fact that ∂ x is an antiderivation.

Set It is also useful to introduce the Koszul cohomology (with coeficients in M ): we set

Z • (x) := Ker ∂ x Z • (x; M ) := Ker ∂ x M B • (x) := Im ∂ x B • (x; M ) := Im ∂ x M H • (x) := Z • (x)/B • (x) H • (x; M ) := Z • (x; M )/B • (x; M ). Definition 1.5.3. Z • (x), B • (x)
K • (x) = Hom R (K • (x), R) K • (x; M ) = Hom R (K • (x; M ), R) H • (x) = H • (K • (x)) H • (x; M ) = H • (K • (x; M )).
Let I be an ideal of R generated by these elements x 1 , . . . , x n . Then, by construction, H 0 (x) = R/I and H 0 (x; M ) = M/IM. Proposition 1.5.4. [BH98, 1.6.5] Let R be a ring, x = x 1 , . . . , x n a sequence in R, and M an R-module. Set I = (x). (a) For every a ∈ I multiplication by a on K

• (x), K • (x; M ), K • (x), K • (x; M ) is null-homotopic. (b) In particular, I annihilates H • (x), H • (x; M ), H • (x), H • (x; M ). (c) If I = R, then the complexes K • (x), K • (x; M ), K • (x), K • (x; M ) are null- homotopic.
In particular their (co)homology vanishes.

Proposition 1.5.5. Let R be a ring and x = x 1 , . . . , x n a sequence R.

If I = (x) = R, then Z i (x) i R n-1 .
Proof. Since I = R, H i (x) = 0, for all i by Proposition 1.5.4(c). As K i (x) i R n , using induction on i and the sequence exact

0 / / Z i (x) / / K i (x) / / Z i-1 (x) / / 0 is split for all 1 ≤ i ≤ n.
Lemma 1.5.6 (Koszul-Hilbert's lemma). Let R be a commutative ring and n a positive integer. Let ρ stand for an (n + 1) × n matrix with arbitrary entries in R and ∆ = {∆ 0 , . . . , ∆ n } stand for its (ordered, signed) n-minors. Then the Koszul relations of ∆ belong to the submodule

Im(ρ) ⊂ R n+1 .
Proof. Let S = Z[X] be a polynomial ring in (n + 1) × n indeterminates and let χ denote the corresponding (n + 1) × n matrix whose entries are X. Then the ideal of Z[X] generate by the n-minors of χ has graded ≥ 2. Indeed, this is clear as, say, ∆ 1 ∈ Z[X] generate a prime ideal and, say, ∆ 2 is not a multiple of ∆ 1 . As a consequence, the Hilbert-Burch theorem [Eis95, Theorem 20.15] says that the sequence 0

/ / Z[X] n χ / / Z[X] n+1 ∆ / / Z[X]
is exact. Clearly, then the Koszul relations of ∆ belong to the image of the map χ as this is exactly the matrix of the first syzygies of ∆. Now specialize the variables X to the entries of ρ by means of the obvious homomorphism Z

[X] -→ R extending the inclusion Z -→ R (n → n • 1 R ).
Since the formation of determinants and the Koszul complex specialize, it is clear that the specialization preserves the above relation.

Proposition 1.5.7. [BH98, 1.6.10] Let x = x 1 , . . . , x n be a sequence in a ring R.

(a) The complexes K • (x) and K • (x) are isomorphic (we say that K

• (x) is self- dual). (b) More generally, for every R-module M the complexes K • (x; M ) and K • (x; M )
are isomorphic, and (c) H i (x; M ) H n-i (x; M ) for i = 0, . . . , n. Proposition 1.5.8. [BH98, 1.6.16] Let R be a ring, x = x 1 , . . . , x n a sequence in R, and M an R-module. If I = (x) contains a regular sequence y := y 1 , . . . , y m on M, then H n+1-i (x; M ) = 0 for i = 1, . . . , m, and

H n-m (x; M ) Hom R (R/I, M/yM ) Ext m R (R/I, M ).
Theorem 1.5.9. [BH98, 1.6.17] Let R be a Noetherian ring, and M a finitely generated R-module. Suppose that I is an ideal of R generated by x := x 1 , . . . , x n .

(i) All the modules H i (x; M ), i = 0, . . . , n, vanish if and only if M = IM.

(ii) Suppose that H i (x; M ) = 0 for some i, and let

h = max{i : H i (x; M ) = 0}.
Then every maximal M -regular sequence in I has length g = n -h; in other words, depth I (M ) = n -h.

Proposition 1.5.10. [START_REF] Wolmer | Integral closure[END_REF]5.4] Let R be a Noetherian ring and I an ideal of R generated by x := x 1 , . . . , x n . Suppose that M is a finitely generated R-module such that IM = M and depth I (M ) = g. If a = a 1 , . . . , a g is a maximal regular sequence on M contained in I, then

H n-g (x; M ) Ext g R (R/I, M ) Hom R (R/I, M/aM
) (aM : R I)/aM. In the case that R is a Cohen-Macaulay ring with a canonical module ω R , and I = (x) is an ideal of codimension g, the last non-vanishing homology module of The next theorem gives a criterion for a sequence being M -regular sequence.

K • (x; ω R ) is Ext g R (R/I, ω R ),
Theorem 1.5.12. [BH98, 1.6.19] Let (R, m) be a Noetherian local ring, M = 0 a finitely generated R-module, and I ⊂ m an ideal generated by x := x 1 , . . . , x n . Then the following are equivalent:

(i) depth I M = n; (ii) H i (x; M ) = 0 for all i > 0; (iii) H 1 (x; M ) = 0; (iv) x is an M -regular sequence.
To close this subsection, we recall a result of Busé and Chardin on the cycles of certain Koszul complexes.

Proposition 1.5.13. [BC05, Lemma 1] Let R = k[X 0 , . . . , X n-1 ] be the standard graded polynomial ring over a field k and f := f 0 , . . . , f n ∈ R be homogeneous polynomials of positive degrees d 0 , . . . , d n . Suppose that dim(R/I) ≤ 1, where I is the ideal of R generated by f 0 , . . . , f n . Denote m := (X 0 , . . . , X n-1 ), σ :

= d 0 +• • •+d n . Then (i) H i (f ) = 0 for i = 0, 1, H i (f ) = 0 for i > 2 and H 2 (f ) is zero if and only if dim(R/I) = 0. If dim(R/I) = 1, H 2 (f ) ω R/I [n -σ]. (ii) If n ≥ 3, then H i m (Z p (f ))              0 for i = 0, 1 H 0 m (H i-p (f )) * [n -σ] for i = 2 H i-p (f ) * [n -σ] for 2 < i < n Z n-p (f ) * [n -σ] for i = n
where - * := * Hom R (-, k).

Approximation complexes

Let R be a Noetherian ring, x = x 1 , . . . , x n a sequence in R, and M a finitely generated R-module. There is a double complex (L r,s , ∂, ∂

) : L r,s = M ⊗ R ∧ r (F ) ⊗ R Sym s R (F )
, with ∧ r (F ) the r-th exterior power of F and Sym s R (F ) the s-th symmetric power of F, where F is a free R-module with basis {e 1 , . . . , e n } -one generator for each element in the sequence x. We shall also denote

S = Sym R (F ) = R[T 1 , . . . , T n ]. The differential ∂ x
M and ∂ T M are, respectively, obtained by viewing L as either

K • (x; M ) ⊗ R S = K • (x; M ⊗ R S)
, the Koszul complex of the sequence x ⊂ S with coefficients in M ⊗ R S; or as K • (T; M ⊗ R S), the Koszul complex of T := T 1 , . . . , T n with coefficients in M ⊗ R S. Now we consider the following double complex

0 0 0 0 / / M ⊗ R S(-n) ∂ x M / / ∂ T M • • • ∂ x M / / M n ⊗ R S(-n) ∂ x M / / ∂ T M M ⊗ R S(-n) / / ∂ T M 0 0 / / M ⊗ R S n (1 -n) ∂ x M / / ∂ T M • • • ∂ x M / / M n ⊗ R S n (1 -n) ∂ x M / / ∂ T M M ⊗ R S n (1 -n) / / ∂ T M 0 . . . ∂ T M . . . ∂ T M . . . ∂ T M 0 / / M ⊗ R S n (-1) ∂ x M / / ∂ T M • • • ∂ x M / / M n ⊗ R S n (-1) ∂ x M / / ∂ T M M ⊗ R S n (-1) / / ∂ T M 0 0 / / M ⊗ R S ∂ x M / / • • • ∂ x M / / M n ⊗ R S ∂ x M / / M ⊗ R S / / 0 0 0 0 It is easy to verify that ∂ x M • ∂ T M + ∂ T M • ∂ x M = 0. If we denote by Z M • := Z • (x; M ) the cycles of K • (x; M ) and by H M • := H • (x; M ) its homologies, the (skew)-commutativity of ∂ x
M and ∂ T M yield several new complexes among which we single out those defined as follows.

Definition 1.5.14. Let I be an ideal generated by the sequence x = x 1 , . . . , x n in R. The approximation complexes of x are the following chain complexes of S = R[T 1 , . . . , T n ]-modules:

Z • (x; M ) = {Z M • ⊗ R S, ∂ T M } M • (x; M ) = {H M • ⊗ R S, ∂ T M },
called, respectively, the Z-complex and the M-complex of I with coefficients in M.

We consider S as a standard graded algebra over R. The Z-complex, as well the M-complex, are graded complexes over S. The t-th homogeneous part

Z t (x; M ) of Z • (x; M ) is a complex of finitely generated R-modules of the form 0 / / Z M n ⊗ R S t-n ∂ T M / / • • • ∂ T M / / Z M 1 ⊗ R S t-1 ∂ T M / / Z M 0 ⊗ R S t / / 0
In a similar manner M t (x; M ) is a complex of finitely generated R-modules. For certain uses, however, we must view Z • (x; M ) and M • (x; M ) as complexes over the polynomial ring S. Thus, for instance, the

Z-complex Z • (x; M ) is 0 / / Z M n ⊗ R S(-n) ∂ T M / / • • • ∂ T M / / Z M 1 ⊗ R S(-1) ∂ T M / / Z M 0 ⊗ R S / / 0
that can be written

0 / / Z M n [T](-n) ∂ T M / / • • • ∂ T M / / Z M 1 [T](-1) ∂ T M / / M [T] / / 0
where N (k) denotes the graded S-module with N k+m for its component in degree m.

Proposition 1.5.15. The homology modules of the complexes Z • (x; M ) and M • (x; M ) do not depend on the generating set x of the ideal I.

Proof. See Proposition 3.2.6 and Corollary 3.2.7 of [START_REF] Wolmer | Arithmetic of blowup algebras[END_REF] or [START_REF] Herzog | Koszul homology and blowing-up rings[END_REF]§3].

For this reason we shall often denote these complexes by Z • (I; M ) and M • (I; M ), or if I is fixed in a discussion, by Z • (M ) and M • (M ). If M is fixed as well, as above we shall denote the complexes simply by Z • and M • .

A major source of interest for introducing these complexes occur when one takes M = R. The Z • and M • are then differential graded algebras with H 0 (Z • ) = S I and H 0 (M • ) = Sym R (I/I 2 ) with I = (x). They permit comparisons of these rings to the more standard blowing-up algebras represented by the Rees algebra R I := ⊕ j≥0 I j and the associated graded ring gr I (R) := ⊕ j≥0 I j /I j+1 .

There are natural surjections Proof. We identify S I with S/L, where L = ∂ T (Z 1 (x; R)). The Koszul complex

K M • := K • ⊗ S M [T 1 , . . . , T n ] is a (homologically) graded S-module over the exterior algebra K • = S n . It is a multiplication, K i ⊗ S K M j -→ K M i+j sending x ⊗ (y ⊗ m) to (x ∧ y) ⊗ m, satisfying ∂ T M (p.q) = ∂ T (p).q + (-1) i p.∂ T M (q) and ∂ x M (p.q) = ∂ x (p).q + (-1) i p.∂ x M (q) by Proposition 1.5.2(c). This map restricts to a map Z i (x; S) ⊗ S Z j (x; M ) -→ Z i+j (x; M )
(and similarly for cycles with repect to ∂ T ).

Let α be a j-th cycle of Z • (x; M ). We have to show that for any syzygy b

= (b 1 , . . . , b n ) ∈ Z 1 (x; R) ⊂ R n , ∂ T (b).α = ( i b i T i ).α is a border.
By the above formula giving the action of ∂ T on a product (in the case i = 1),

∂ T M (b.α) = ∂ T (b).α -b.∂ T M (α) = ∂ T (b).α, as α is a cycle for ∂ T M . Hence ∂ T (b).α is the image of b.α ∈ Z j+1 (x; M
). We next study the acyclicity of these complexes. To do it, we need some definitions of the various regular sequences we shall be interested in. Definition 1.5.17. Let x = x 1 , . . . , x n be a sequence of elements of a ring R, I = (x 1 , . . . , x n ) an ideal of R and M a R-module. We say that x is a 1. d-sequence with respect to M, if a) x is a minimal generating set of the ideal I;

b) (x 1 , . . . , x i )M : M x i+1 x k = (x 1 , . . . , x i )M : M x k , for i = 0, . . . , n -1 and k ≥ i + 1. 2. proper sequence with respect to M, if x i+1 H j (x 1 , . . . , x i ; M ) = 0, for i = 0, . . . , n 1 , j > 0.
These conditions are related in the following way: Finally, we recall some results on implicitizing rational hypersurfaces using approximation complexes. Let f := f 0 , . . . , f n be n + 1 homogeneous polynomials in R = k[X 0 , . . . , X n-1 ] of the same degree d ≥ 1. Denoting by Z i the i-th cycles of the Koszul complex of the f on R, we set

Z i := Z i [id] ⊗ R R[T],
where T := T 0 , . . . , T n and [-] (respectively (-)) stands for the degree shift in the X i s (respectively in the T i 's). Note that Z n+1 = 0, the Z • (f )-complex is of form

Z • : 0 / / Z n (-n) ∂ T n / / • • • / / Z 2 (-2) ∂ T 2 / / Z 1 (-1) ∂ T 1 / / Z 0 = R[T].
It is a naturally a bigraded complex, and H 0 (Z • ) Sym R (I). We now give some acyclicity criterions in the case where I = (f 0 , . . . , f n ) define isolated points in Proj(R). Set m = (X 0 , . . . , X n-1 ).

Proposition 1.5.20. [BC05, Lemma 2] Suppose that I = (f 0 , . . . , f n ) is of codimension at least n -1, k is infinite, and set B := Proj(R/I). Then the following are equivalent:

(1) Z • is acyclic;

(2) Z • is acyclic outside V (m);

(3) I is generated by a proper sequence;

(4) B is locally defined by a proper sequence;

(5) B is locally defined by n equations. (2

) Let ν ≥ ν 0 := (n -1)(d -1) -indeg(I sat ). Then H 0 m (Sym R (I)) [ν] = 0. Moreover (Z • ) [ν] ⊗ k[T] k[T] is acyclic if and only if Z • acyclic.
(3) Let ν ≥ ν 0 and assume that B is locally defined by n equations. Then

D := det((Z • ) [ν] ) is a non zero homogeneous element of k[T], independent of ν (mod- ulo k × ), of degree d n-1 -p∈B d p .
Denoting by H the closed image of the rational map φ : 

P n-1 k -→ P n k , D = H deg(φ) G where H is an implicit equation of H. Moreover G ∈ k × if

Rational maps and Jacobian dual criterion of birationality

In this section, we recall some definitions and notations on rational maps. Let k be an algebraically closed field. We are given nondegenerate irreducible projective variety X ⊂ P m k , with homogeneous coordinate ring R :

= k[X] = k[X]/I(X) = k[X 0 , . . . , X m ]/I(V ). A rational map F : X P n
k is defined by homogeneous polynomial f 0 , . . . , f n ∈ R of the same degree d, the tuple f := f 0 , . . . , f n is called a representative of F and the f j 's are its coordinates.

There is nothing unique about the choice of f 0 , . . . , f n . However, any other choice of such a representative of F, say, f 0 , . . . , f n , necessarily satisfies the condition that the (2 × 2)-minors of the matrix

f 0 f 1 • • • f n f 0 f 1 • • • f n
vanish (as elements of the homogeneous coordinate ring R.)

If f and f are two representatives of F, then they induce a k-isomorphism of the respective representative algebras k[f ] and k[f ], such that f j ↔ f j . Although this isomorphism is graded, it is not homogeneous (of degree zero). Nevertheless, one can renormalize the gradings of all these algebras so that they become standard k-algebras. What this actually means is that one can take a common polynomial representative

S = k[Y]/J = k[Y 0 , . . . , Y n ]/J k[f ]
for all the representative of F, with S is standard. We call Y = Proj(S) ⊂ P n k the image of F.

Proposition 1.6.1. [Sim04, Proposition 1.1] Let F : X P n k be a rational map and f = f 0 , . . . , f n a representative of F. Set I = (f ) ⊂ R. Then the set of representatives of F correspond bijectively to the homogeneous vectors in the rank one graded R-module Hom R (I, R). In particular, F is uniquely represented up to proportionality if and only if I has grade at least two.

Proof. Given another representative f = f 0 , . . . , f n of F, then by definition

I 2 f 0 f 1 • • • f n f 0 f 1 • • • f n = 0,
i.e., the two sets f and f are proportional by a factor which is a homogeneous element of the field of fractions K of R. This establishes a bijection between the set of representatives of F and the set of homogeneous elements of K that drive I = (f ) into R. The last one generates the fractional ideal R : K I Hom R (I, R). Finally, it is known that the natural inclusion R ⊂ Hom R (I, R) is an equality if and only if I has grade at least two. Therefore, F is uniquely represented up to proportionality if and only if I has graded at least two.

The above proposition motivates the following notion.

Definition 1.6.2. The degree sequence of the rational map F : X

P n k is the sequence d 1 ≤ • • • ≤ d r of degrees of a minimal set of generators of Hom R ((f ), R),
where f is a representative of F.

The previous proposition shows that the degree sequence of F depends solely on F and not on the choice of representative. In particular, if for one representative f the corresponding ideal has grade at least two -for example, if X = P m k -then every representative of F is a multiple of f by a factor which is a homogeneous element of k[X]. Clearly, this is then the unique (up to a nonzero factor in the base field k) representative with this property. In this case, the degree sequence consists of an unique number, namely, the degree of f . This degree will then be said the degree of F and the corresponding representative will generate the (uniquely defined) base ideal of F. Consider the bigrading of the Rees algebra R R (f ) in more detail. Let F : X P n k be a rational map and f = f 0 , . . . , f n be a representative of

= dim Y ). Let R = k[X]/I(X)
F. Let R[Y] = R[Y 0 , . . . , Y n ]
be a polynomial ring over R with the standard bigrading where deg(X i ) = (1, 0) and deg(Y i ) = (0, 1). Since I = (f ) is generated in a fixed degree, the Rees algebra

R R (I) := R ⊕ I ⊕ I 2 ⊕ • • • R[It] ⊂ R[t] is a standard bigraded k-algebra. The map Y j -→ f j t yields a presentation R[Y]/J f R R (I), with J f a bihomogeneous defining ideal. Note that if f and f denote two representatives of F, then J f = J f so that R R ((f )) R R ((f ))
. Therefore, J f depends only on the rational map and not on any of its representative, we write J for the defining ideal of the Rees algebra R R (I). Write J = (p,q)∈N 2 J (p,q) , where J (p,q) denotes the k-vector space of forms of bidegree (p, q). First focus on J (0, * ) , which is spanned by the forms of bidegree (0, q) for all q ≥ 1. Since these forms have coefficients only in k, one can view as elements of k[Y]. As such they generate the ideal of all polynomial relations (over k) of f . Thus,

k[Y]/(J (0, * )k[Y] ) k[f ],
as standard graded k-algebras, after a degree renormalization in k[f ]. Thus, the ideal J (0, * )k[Y] recovers the ideal J of the image of F.

For birationality, the following bihomogeneous piece is no less important:

J (1, * ) := q∈N J (1,q)
with J (1,q) denoting the bigraded piece of J spanned by the forms of bidegree (1, q) for all q ≥ 0. Now, a form of bidegree (1, * ) can be written as

m i=0 Q i (Y)X i , for suitable homogeneous Q i (Y) ∈ k[Y] ⊂ R[Y]
of the same degree. Moreover, since X is nondegenerate, each such form has unique expansion.

Next, one can pick a minimal set of generators of the ideal (J (1, * ) ) consisting of a finite number of forms of bidegree (1, q) for various q's. Let {P 1 , . . . , P s } ⊂ k[X, Y] denote liftings of these biforms. Consider the Jacobian matrix Ψ X of the polynomial {P 1 , . . . , P s } with respect to X, hence Ψ X is a graded matrix since its rows are homogeneous vectors in k[Y] and we say that Ψ X will be a weak Jacobian dual matrix of associated to the given set of generators of (J (1, * ) ).

Remark 1.6.5. Though the definition of a weak Jacobian dual matrix depends only on F and not on a representative of F, it is not uniquely given. However, for a fixed bidegree (1, q) the number of (1, q)-biforms in any minimal set of generating biforms of J ⊂ R[Y] is invariant and equals the dimension of the correspondingly spanned k-vector subspace of the whole space (1, q)-biforms of J . This implies that any two weak Jacobian dual matrices of the same rational map F have the same sizes.

Finally, we will mainly consider Ψ X ⊗ k[Y] S as a matrix over the homogeneous coordinate ring

S = k[Y]/I(Y ) of the image Y ⊂ P n k . Note that Ψ X ⊗ k[Y]
S can be the zero matrix, as it happens in many cases.

Lemma 1.6.6. [DHS12, Lemma 2.13] If the weak Jacobian dual matrix of associated to a set of bihomogeneous minimal generators of (J (1, * ) ) has a rank over S, then the weak Jacobian dual matrix of associated to any other set of bihomogeneous minimal generators of (J (1, * ) ) has a rank over S and two ranks coincide.

Because of the previous lemma, we define the following. Definition 1.6.7. Let F : X P n k be a rational map. (i) We say that any weak Jacobian dual matrix of associated to a minimal set of generators of (J (1, * ) ) is a Jacobian dual matrix of F.

(ii) If the matrix Ψ X ⊗ k[Y] S has a rank over S, we will say that F has a Jacobian dual rank and write jdrank(

F) := rank S (Ψ X ⊗ k[Y] S).
The next result shows that the rank just introduced is sensitive to the dimension difference between the source and the target.

Proposition 1.6.8. [DHS12, Proposition 2.15] Let F : X P n k be a rational map defined by

f = f 0 , . . . , f n ∈ R. Set S = k[Y]/I(Y ) k[f ] ⊂ R. If F has a Jacobian dual rank then 0 ≤ dim R -dim S ≤ m -jdrank(F).
As a consequence, jdrank(F) ≤ m, and if equality holds then dim R = dim S.

Theorem 1.6.9. [DHS12, Theorem 2.18] With the previous notations, the rational map F :

X ⊂ P m k P n k is birational with image Y if and only if jdrank(F) = m.
Moreover, when F is birational onto its image, then the coordinates of the inverse to F are the (signed, ordered) m-minors of an arbitrary m × (m + 1) submatrix rank m of a weak Jacobian dual matrix of F.

The above theorem gives a criterion for deciding if a given rational map is birational. This criterion relies on Gröbner basis computations in order to get the equations of a Rees algebra which is very hard. For computational purposes, we investigate how birationality can be detected by means of syzygies of the ideal I generated by the coordinates of the rational maps, instead of the whole collection of equations of I. Abstract: Given a rational map φ : P 2 k P 3 k , which is a parameterization of an algebraic surface S ⊂ P 3 k , defined by four homogeneous polynomial f := f 0 , . . . , f 3 , of the same degree d, in the standard graded polynomial ring R = k[X 0 , X 1 , X 2 ], we give a quadratic bound in terms of d for the number of one-dimensional fibers of φ, by studying of the difference between the initial degree of ordinary and saturated powers of the base ideal of φ. The results in this chapter have been submitted [START_REF] Hoa | Bound for the number of one-dimensional fibers of a projective morphism[END_REF].

Introduction

Rational algebraic variety can be described in several ways, the most common being parametric and implicit representations. Parametric representations describe such variety as the closed image of a rational map, whereas implicit representations describe it as the zero locus of some algebraic equations, e.g. as the zeros of a system of polynomials. Both representations have a wide range of applications in Computer Aided Geometric Design, and depending on the problem one needs to solve, one or the other might be better suited. It is thus interesting to be able to pass from parametric representations to implicit representations. This is a classical problem and there are numerous approaches to its solution. For a good historical overview on this subject we refer the reader to [START_REF] Sederberg | Implicitization using moving curves and surfaces[END_REF] and [START_REF] Cox | Equations of parametric curves and surfaces via syzygies[END_REF].

Find the implicit equations for a rational algebraic variety, in particular for curve or surface, starting from a parameterization is a central problem in geometric modeling, it is called the implicitization problem. Computing the implicit equations can be solved by computing a suitable Gröbner basis. However, it is known to be quite slow in practice and hence is rarely used in geometric modeling [START_REF] Hoffmann | Geometric and Solid Modeling: An Introduction[END_REF]. An other method for finding the implicit equations is to eliminate by computing the resultant of the polynomials (see, e.g., [START_REF] Busé | Study of the resultant on an algebraic variety[END_REF][START_REF] Jouanolou | Anisotropic resultant. complements and applications. (résultant anisotrope. compléments et applications.)[END_REF]). But in many applications, the resultant vanishes identically due to the presence of base points, which are the source points where the parameterization is not well defined. Instead, the method of moving curves and surfaces was introduced by Sederberg and Chen [START_REF] Sederberg | Implicitization using moving curves and surfaces[END_REF] for the case of parameterized curves, and then was regularly extended for the case of surfaces, such as in [BCD03, CGZ00, LC16]. It was precisely formulated in terms of Rees algebra by Jouanolou, Busé, Chardin, Botbol and others [BJ03, BC05, Cha06, BCJ09, Bot11]. One of the key tools of this approach is the approximation complexes that were introduced by Herzog, Simis, and Vasconcelos [START_REF] Herzog | Approximation complexes of blowing-up rings[END_REF].

Besides the computation of implicit representations of parameterizations, in geometric modeling it is of vital importance to have a detailed knowledge of the geometry of the object and of the parametric representation one is working with. The question of how many times is the same point being painted (i.e., corresponds to distinct values of parameter), depends not only on the variety itself but also on the parameterization. It is of interest for applications to determine the singularities of the parameterizations. The main goal of this chapter is to study the fibers of parameterizations, in particular, parameterizations of surfaces.

The chapter is organized as follows. In Section 2.2, we study fibers of a rational map φ : P m k P n k defined by an ordered set of homogeneous polynomials f := f 0 , . . . , f n , of the same degree d, in the standard graded polynomial ring R = k[X 0 , . . . , X m ] over an algebraically closed field k, such that gcd(f 0 , . . . , f n ) = 1. Let Γ ⊂ P m k × P n k be the closure of the graph of φ and π be the canonical projection of Γ onto its image. Let R I be the Rees algebra of the ideal (f ) which is the homogeneous coordinate ring of Γ and B = k[T 0 , . . . , T n ] the homogeneous coordinate ring of P n k . For every y ∈ P n k , the fiber of π at y is the subscheme

π -1 (y) := Proj(R I ⊗ B k(y)) ⊂ P m k(y) P m k ,
where k(y) is its residue field. Assume that φ is generically finite onto its image. Then the subset Y m-1 := {y ∈ P n k | dim π -1 (y) = m -1} is finite. Therefore, in this chapter and the next one, we will propose some methods to estimate the cardinality of Y m-1 . More precisely, for any y ∈ Y m-1 , we denote by h y ∈ R the defining equation of the unmixed components of the fiber π -1 (y), then our purpose is to bound for y∈Y m-1 deg(h y ) in the terms of d.

In this section, we propose the following key tool -recall that the saturation of an ideal J of R is denoted by J sat := J : R (X 0 , . . . , X m ) ∞ . Theorem (Theorem 2.2.6). Adopt Data 2.2.5. If there exists an integer s such that ν = indeg((I s ) sat ) < sd, then

y∈Y m-1 deg(h y ) ≤ ν < sd.
In Section 2.3, we will restrict to the case where φ is a parameterization of a surface. More precisely, one studies the one-dimensional fibers of a parameterization of an algebraic surface φ : P 2 k P 3

k . The idea is to show the existence an integer s as in Theorem 2.2.6 and our key tool in the proof is to use the Z-approximation complex associated to f := f 0 , f 1 , f 2 , f 3 , which is a resolution of S I under the assumption that B is locally a complete intersection of dimension zero. The main results are the following.

Theorem (Theorems 2.3.7 and 2.3.9). Adopt Data 2.2.5. Assume further that m = n -1 = 2 and set µ = inf{ν

| I sat ν = 0}. (i) If µ < d, then y∈Y 1 deg(h y ) ≤ µ. (ii) If µ = d and B = Proj(R/I) is locally a complete intersection of dimension zero, then y∈Y 1 deg(h y ) ≤    4 if d = 3 d 2 d -1 if d ≥ 4 where x = max{n ∈ Z : n ≤ x}.

Fibers of rational maps

Let R := k[X 0 , . . . , X m ] (m ≥ 2) be the standard graded polynomial ring over an algebraically closed field k. Suppose we are given an integer d ≥ 1 and n+1 (n ≥ m) homogeneous polynomials f 0 , . . . , f n ∈ R d , not all zero. We may further assume that gcd(f 0 , . . . , f n ) = 1, replacing the f i s by their quotient by the greatest common divisor of f 0 , . . . , f n if needed, hence the ideal I of R generated by these polynomials is of codimension at least two. Set B := Proj(R/I) ⊆ P m k := Proj(R) and consider the rational map

φ : P m k - P n k x -→ (f 0 (x) : • • • : f n (x))
whose closed image is the subvariety S in P n k . Let Γ 0 ⊂ P m k × P n k be the graph of φ : P m k \ B -→ P n k and Γ the Zariski closure of Γ 0 . We have the following diagram

Γ π 1 / / P m k × P n k π 2 P m k φ / / P n k
where the maps π 1 , π 2 are the canonical projections. One has

S = π 2 (Γ 0 ) = π 2 (Γ),
where the bar denotes the Zariski closure. The first equality directly follows from the definition of S , and the second from the fact that π 2 is a projective morphism (so that the image of a closed variety is a closed variety). Furthermore, Γ is the irreducible subscheme of P m k × P n k defined by the Rees algebra R I := Rees R (I) (see [START_REF] Hartshorne | Algebraic geometry[END_REF] Chapter II, §7]). Let B := k[T 0 , . . . , T n ] be the homogeneous coordinate ring of P n k and S := R ⊗ k B = R[T 0 , . . . , T n ] with the standard bigraded structure by the canonical grading deg(X i ) = (1, 0) and deg(T j ) = (0, 1) for all i = 0, . . . , m and j = 0, . . . , n. The natural bigraded morphism of bigraded k-algebras

α : S -→ R I = ⊕ s≥0 I(d) s = ⊕ s≥0 I s (sd) T i -→ f i
is onto and corresponds to the embedding Γ ⊂ P m k × P n k . Let P be the kernel of α. Then it is a bihomogeneous ideal of S and the part of degree one of P in T i , denoted by P 1 = P ( * ,1) , is the module of syzygies of the f i

a 0 T 0 + • • • + a n T n ∈ P 1 ⇐⇒ a 0 f 0 + • • • + a n f n = 0.
Set S I := Sym R (I) for the symmetric algebra of I. The natural bigraded epimorphisms S -→ S/(P 1 ) S I and δ : S I S/(P 1 ) -→ S/P R I correspond to the embeddings of schemes Γ ⊂ V ⊂ P m k ×P n k , where V is the projective scheme defined by S I .

Let K be the kernel of δ, one has the following exact sequence

0 -→ K -→ S I -→ R I -→ 0.
Notice that the module K is supported in B because I is locally trivial outside B.

As the construction of symmetric and Rees algebras commute with localization, and both algebras are the quotient of a polynomial extension of the base ring by the Koszul syzygies on a minimal set of generators in the case of a complete intersection ideal, it follows that Γ and V coincide on (P m k \ X) × P n k , where X is the (possibly empty) set of points where B is not locally a complete intersection. Now we set π := π 2|Γ : Γ -→ P n k . For every closed point y ∈ P n k , we will denote by k(y) its residue field, that is, k(y) = (B p /pB p ) 0 , where p is the defining prime ideal of y. As k is algebraically closed, k(y) k. The fiber of π at y ∈ P n k is the subscheme

π -1 (y) = Proj(R I ⊗ B k(y)) ⊂ P m k(y) P m k .
Let 0 ≤ ≤ m, we define

Y = {y ∈ P n k | dim π -1 (y) = } ⊂ P n k .
One is interested in studying the structure of Y . First, Chevalley's theorem shows that the subsets Y are constructible, that is, they can be written as

Y = s i=1 (U i ∩ Z i ),
where U i (respectively Z i ) are the open (respectively closed) subsets of P n k .

Lemma 2.2.1. Let φ : P m k P n k be a rational map and Γ be the closure of the graph of φ. Consider the canonical projection π : Γ -

→ P n k . Then dim Y + ≤ m.
Furthermore, this inequality is strict for any > m -dim S , where S is the closed image of φ.

Proof. Set V := π -1 (Y ), a subvariety of Γ. For the first statement

dim Y + = dim V ≤ dim Γ = dim S ≤ m. Moreover, if dim Y + = m, then dim V = dim Γ = m. It implies that Y = S
and proves the second assertion.

From now on, we will always assume throughout that φ is generically finite onto its image, or equivalently that the closed image of φ is a subvariety S in P n k of dimension m. Therefore, by Lemma 2.2.1, dim Y m < 0, which shows that Y m = ∅. This was noticed in [START_REF] Botbol | Fitting ideals and multiple points of surface parameterizations[END_REF]Lemma 14]. Now if = m -1 ≥ 1, as m ≥ 2, then Y m-1 consists of only a finite number of points in P n k . In other words, π only has a finite number of (m -1)-dimensional fibers.

For any y ∈ Y m-1 , π -1 (y) is a subcheme of P m k(y)

P m k of dimension m -1, as k is algebraically closed. Thus the unmixed part of the fiber π -1 (y) is defined by a homogeneous polynomial h y ∈ R, as R is factorial. Our purpose is then to bound y∈Y m-1 deg(h y ) in the terms of the degree d.

The fibers of π are defined by the specialization of the Rees algebra. However, Rees algebras are hard to study. Fortunately, the symmetric algebra of I is easier to understand than R I and the fibers of π are closely related to the fibers of π := π 2|V : V -→ P n k . Recall that for any closed point y ∈ P n k , the fiber of π at y is the subscheme

π -1 (y) = Proj(S I ⊗ B k(y)) ⊂ P m k(y)
P m k . The next result gives a relation between fibers of π and π -recall that X is the (possible empty) set of points where B is not locally a complete intersection.

Lemma 2.2.2. The fibers of π and π agree outside X, hence they have the same (m -1)-dimensional components.

Proof. The first statement implies directly from the fact that Γ and V coincide on (P m k \ X) × P n k . Moreover, as I is assumed to be of codimension at least two, dim B ≤ m -2, showing that dim X ≤ m -2. The second statement follows.

As the symmetric algebra is defined by the syzygies of I. We have the following lemma that is a simple generalization of [BBC14, Lemma 10]. Let us denote by I sat the saturation of I, that is,

I sat := I : R m ∞ = n∈N I : R m n ,
where m := (X 0 , . . . , X m ) is the irrelevant maximal ideal of R.

Lemma 2.2.3. Assume that f := f 0 , . . . , f n are k-linearly independent such that gcd(f 0 , . . . , f n ) = 1. Suppose that the fiber of π over a closed point y with coordinates (p 0 : • • • : p n ) is of dimension m -1, and its unmixed component is defined by h y ∈ R. Let y be a linear form in T := T 0 , . . . , T n such that y (p 0 , . . . , p n ) = 1 and set i (T) := T i -p i y (T) (i = 0, . . . , n). Then, h y = gcd(l 0 (f ), . . . , l n (f )) and I = ( y (f )) + h y (g 0 , . . . , g n ) with i (f ) = h y g i and y (g 0 , . . . , g n ) = 0. In particular,

( y (f )) + h y (g 0 , . . . , g n ) sat ⊂ I sat ⊂ ( y (f ), h y ). Proof. A syzygy L = n i=0 a i T i = n i=0 a i (p i y (T) + i (T)
) provides an equation for the fiber: L = n i=0 a i p i . Recall that h y = gcd(L 1 , . . . , L t ) where the L j are generators of the syzygiez of I.

The particular syzygy

L (i) := i (f ) y (T) -y (f ) i (T) satisfies L (i) = i (f ).
It follows that h y divides h := gcd( 0 (f ), . . . , n (f )). Set i (f ) = hg i for some g i ∈ R. The i 's span the linear forms vanishing at y, and are related by the equation y ( 0 , . . . , n ) = 0. It follows that

I = ( y (f ), 0 (f ), . . . , n (f )) = ( y (f )) + h y (g 0 , . . . , g n ),
and y (g 0 , . . . , g n ) = 0. Now if one has a relation a y (f ) + i b i hg i = 0, then h divides a, as the f i 's have no common factor. This in turn shows that h divides h y and completes the proof.

Notice that if p i = 0, g i is a linear combination of the g j 's for j = i as y (g 0 , . . . , g n ) = 0. For instance if p 0 = 0, I = ( y (f )) + h y (g 1 , . . . , g n ).

Remark 2.2.4. The above lemma shows that fibers of dimension m -1 can only occur when V (I) = ∅ as V (I) ⊃ V (( y (f ), h y )). It also shows that

d deg(h y ) ≤ deg(I),
if there is a (m -1)-dimensional fiber with unmixed part given by h y .

For simplicity, we summarize the following data.

Data 2.2.5. Let R = k[X] = k[X 0 , . . . , X m ] (m ≥ 2)
be the standard polynomial ring over an algebraically closed field k and f := f 0 , . . . , f n be k-linearly independent forms of the same degree d ≥ 1, not all zero, such that gcd(f 0 , . . . , f n ) = 1. Suppose that φ : P m k P n k is a rational map defined by these forms and π is the canonical projection of the graph of φ onto its image. Let I = (f 0 , . . . , f n ) be the base ideal and B = Proj(R/I) the base locus of φ. Assume that φ is generically finite onto its image and put

Y m-1 = {y ∈ P n k | dim π -1 (y) = m -1} ⊂ P n k .
For each y ∈ Y m-1 , we denote by h y ∈ R a defining equation of the unmixed component of the fiber π -1 (y).

The following theorem gives an approach for our purpose.

Theorem 2.2.6. Adopt Data 2.2.5. If there exists an integer s such that ν = indeg((I s ) sat ) < sd, then

y∈Y m-1 deg(h y ) ≤ ν < sd.
Proof. By Lemma 2.2.2, the unmixed components of π -1 (p) and π -1 (p) are the same for every closed point p ∈ Y m-1 . By Lemma 2.2.3, there exists a homogeneous polynomial f ∈ I of degree d such that, for any y ∈ Y m-1 , I = (f ) + h y (g 1y , . . . , g ny ) and

I sat ⊆ (f, h y )
for some g 1y , . . . , g ny ∈ R. Since (f, h y ) is a complete intersection ideal, it follows from Proposition 1.1.12 that (f, h y ) s is unmixed, hence saturated. Therefore, for all y ∈ Y m-1 ,

(I s ) sat ⊆ ((I sat ) s ) sat ⊆ ((f, h y ) s ) sat = (f, h y ) s = (f s , f s-1 h y , . . . , h s y ). Now, let 0 = F ∈ (I s ) sat such that deg(F ) = ν < sd, then h y is a divisor of F . Moreover, if y = y in Y m-1 , then gcd(h y , h y ) = 1. We deduce that y∈Y m-1 h y | F which gives y∈Y m-1 deg(h y ) ≤ deg(F ) = ν < sd.
In particular, if indeg(I sat ) = δ < d, Theorem 2.2.6 shows that

y∈Y m-1 deg(h y ) ≤ δ < d.
Example 2.2.7. Let φ : P 2 k P 3 k be a parameterization of surface defined by

f 0 = X 2 1 X 2 2 (X 2 1 -X 2 2 ) f 2 = X 2 0 X 2 1 (X 2 1 -X 2 2 ) f 1 = X 2 2 (X 4 0 -X 4 2 ) f 3 = X 2 1 (X 4 0 -X 4 2 ).
Using Macaulay2 [GS], we see that I is a saturated ideal with B locally a complete intersection of dimension zero. Since indeg((I 2 ) sat ) = 8 < 2.6 = 12, Theorem 2.2.6 shows that

y∈Y 1 deg(h y ) ≤ 8.
Precisely, I admits a minimal free resolution of the form

0 / / R(-8) 3 M / / R(-6) 4 / / R / / R/I / / 0
where the matrix M is given by

     -X 2 2 0 X 2 0 0 X 2 1 0 X 2 0 0 -X 2 2 -X 2 1 + X 2 2 -X 2 2 0     
.

We thus get Y 1 = {p 1 , p 2 , p 3 , p 4 } with

y 1 = (1 : 0 : 1 : 0) h y 1 = X 2 0 -X 2 2 y 2 = (0 : 1 : 0 : 1) h y 2 = X 2 1 -X 2 2 y 3 = (1 : 0 : -1 : 0) h y 3 = X 2 0 + X 2 2 y 4 = (0 : 1 : 0 : 0) h y 4 = X 2 1 which gives y∈Y 1 deg(h y ) = 8.

Estimation of number of one-dimensional fibers of parameterization surfaces

In this section, we consider a rational map φ : P 2 k P 3 k given by four homogeneous polynomials f 0 , . . . , f 3 ∈ R = k[X 0 , X 1 , X 2 ] of the same degree d ≥ 1. We will always assume throughout that φ is generically finite onto its image, or equivalently that the closed image of φ is a surface S in P 3 k , and that the base locus B = Proj(R/I) ⊂ P 2 k of φ is supported on a finite set of points.

From now on we assume that the ideal I is locally a complete intersection outside V (m), that is, B is locally a complete intersection. Under this hypothesis, the module K is supported in mS, hence H i m (K) = 0 for any i ≥ 1. We deduce that

H i m (S I ) H i m (R I ), ∀i ≥ 1.
Our main purpose in this section is to give a bound for y∈Y 1 deg(h y ) in the terms of d. First, we recall a result of Botbol, Busé, and Chardin in [BBC14, Lemma 4].

Lemma 2.3.1. Let J be a graded ideal in R generated in degree d such that dim(R/J) ≤ 1 and µ(J p ) ≤ 3 for every prime ideal m p ⊃ J. Then,

reg(R/J sat ) ≤ 2d -3 and reg(R/J) ≤ 3d -3 -indeg(J sat )
unless µ(J) = 2, in which case J = J sat and reg(R/J) = 2d -2.

Let K • := K • (f ; R) be the Koszul complex associated to the sequence of poly-

nomials f := f 0 , f 1 , f 2 , f 3 in R. We denote by Z i := Z i (f ; R), B i := B i (f ; R), H i := H i (f ; R) = Z i /B i
the Koszul cycle, the Koszul boundary and the Koszul homology in degree i, respectively. Since the ideal I is homogeneous, these modules inherit a natural structure of graded R-modules.

Let Z • be the Z-complex associated to the ideal I = (f ). By definition

Z q = Z q [qd] ⊗ R R[T 0 , . . . , T 3 ](-q)
for all q = 0, . . . , 3. This complex is of the form

Z • : 0 / / Z 3 ∂ T 3 / / Z 2 ∂ T 2 / / Z 1 ∂ T 1 / / Z 0 = R[T 0 , . . . , T 3 ] / / 0, where ∂ T 1 (a 0 , a 1 , a 2 , a 3 ) = a 0 T 0 + • • • + a 3 T 3 .
As B is assumed to be locally a complete intersection, it follows from Theorem 1.5.21 that the complex Z • is acyclic, and it is thus a resolution of H 0 (Z • ) S I .

As we already noticed that y∈Y 1 deg(h y ) < d if indeg(I sat ) < d, the delicate case is when the ideal I satisfies indeg(I sat ) = indeg(I) = d. This condition implies d ≥ 3. Indeed, by Lemma 2.3.1,

d = indeg(I sat ) ≤ reg(I sat ) = reg(R/I sat ) + 1 ≤ 2d -2, hence d ≥ 2. Moreover, it is known that in [HW14, Proposition 3.5] that if d = 2, then indeg(I sat ) = 1 < 2 = indeg(I).
Theorem 2.3.2. Let B = k[T 0 , . . . , T 3 ] be the standard graded polynomial ring over a field k and I = (f 0 , . . . , f 3 ) be a homogeneous ideal of R. Suppose that B = Proj(R/I) is locally a complete intersection of dimension zero and indeg(I sat ) = indeg(I) = d. Then there exists a complex (C • ) of free B-modules

0 / / B(-3) l / / B(-2) m / / B(-1) n / / 0 C 3 C 2 C 1 where n = dim k H 3 m (Z 1 ) d-1 , m = dim k H 3 m (Z 2 ) 2d-1 , l = dim k H 3 m (Z 3 ) 3d-1 with ho- mologies H 1 (C • ) ⊕ s≥0 H 2 m (I s ) sd-1 , H 2 (C • ) ⊕ s≥0 (I s ) sat sd-1 , H 3 (C • ) = 0.
Proof. By Proposition 1.5.13, one has the following graded (degree zero) isomorphisms of R-modules:

H p m (Z q )        0 for p = 0, 1 H 0 m (H p-q ) * [3 -4d] for p = 2 Z * p-q [3 -4d] for p = 3 (2.1)
where - * := * Hom R (-, k).

Let C • m (M ) denote the Čech complex on M relatively to the ideal m. We consider the two spectral sequences associated to the double complex

C • m (Z • ) 0 0 0 0 0 / / C 0 m (Z 3 ) / / C 0 m (Z 2 ) / / C 0 m (Z 1 ) / / C 0 m (Z 0 ) / / 0 0 / / C 1 m (Z 3 ) / / C 1 m (Z 2 ) / / C 1 m (Z 1 ) / / C 1 m (Z 0 ) / / 0 0 / / C 2 m (Z 3 ) / / C 2 m (Z 2 ) / / C 2 m (Z 1 ) / / C 2 m (Z 0 ) / / 0 0 / / C 3 m (Z 3 ) / / C 3 m (Z 2 ) / / C 3 m (Z 1 ) / / C 3 m (Z 0 ) / / 0 0 0 0 0
Since Z • is acyclic, one of them abuts at step two with:

∞ E -p,-q hor = 2 E -p,-q hor =    H p m (S I ) for q = 0 0 for q = 0. (2.
2)

The other one gives at step one:

1 E -p,-q ver = H p m (Z q ) = H p m (Z q )[qd] ⊗ R R[T 0 , . . . , T 3 ](-q) = H p m (Z q )[qd] ⊗ k B(-q).
Notice that H p m (Z q ) = 0 for p = 0, 1; Z 3 R[-4d] and Z 0 = R. Therefore the first page of the vertical spectral sequence has only two nonzero lines

0 / / H 2 m (Z 2 )[2d] ⊗ k B(-2) / / H 2 m (Z 1 )[d] ⊗ k B(-1) / / 0 H 3 m (Z 3 )[3d] ⊗ k B(-3) / / H 3 m (Z 2 )[2d] ⊗ k B(-2) / / H 3 m (Z 1 )[d] ⊗ k B(-1) / / H 3 m (Z 0 ) ⊗ k B.
In bidegree (-1, * ), we have

H 3 m (Z 0 ) -1 ⊗ k B = H 3 m (R) -1 ⊗ k B = 0. Therefore, we obtain the complex (C • ) of free B-modules 0 / / B(-3) l / / B(-2) m / / B(-1) n / / 0. C 3 C 2 C 1
Let us compute the homology of (C • ). The exact sequence

0 -→ Z 1 -→ R[-d] 4 -→ I -→ 0 (2.3) gives H 2 m (Z 1 ) H 1 m (I) H 0 m (R/I) I sat /I.
Since indeg(I sat ) = indeg(I) = d, we have

H 2 m (Z 1 ) d-1 (I sat /I) d-1 = 0. (2.4) It follows from (2.1) that H 2 m (Z 2 ) 2d-1 H 0 m (H 0 ) * 2-2d
Hom R ((I sat /I) 2d-2 , k) as H 0 m (H 0 ) I sat /I. It implies from Lemma 2.3.1 that reg(R/I) ≤ 2d -3, therefore

I 2d-2 = (I sat ) 2d-2 , thus H 2 m (Z 2 ) 2d-1 = 0. (2.5)
It follows from (2.4) and (2.5) that

( 1 E -p,-q ver ) (-1, * ) = 0 unless p = 3 and q ∈ {1, 2, 3}.

Therefore, in bidegree (-1, * ),

∞ E -p,-q ver = 2 E -p,-q ver =    H q (C • ) if p = 3 and q = 1, 2, 3 0 else. (2.6)
By comparing the two spectral sequences (2.2) and (2.6), one has:

H 1 (C • ) = H 2 m (S I ) (-1, * ) = ⊕ s≥0 H 2 m (I s ) sd-1 , H 2 (C • ) = H 1 m (S I ) (-1, * ) = ⊕ s≥0 H 1 m (I s ) sd-1 = ⊕ s≥0 H 0 m (R/I s ) sd-1 = ⊕ s≥0 ((I s ) sat /I s ) sd-1 = ⊕ s≥0 (I s ) sat sd-1 since I s sd-1 = 0, H 3 (C • ) = H 0 m (S I ) (-1, * ) ⊆ (S I ) (-1, * ) ⊆ R -1 ⊗ k B = 0.
We now give an expression of m, n, l in terms of the degree d and deg(B). As a consequence, n -m + l = 0.

Proof. We first compute n = dim k H 3 m (Z 1 ) d-1 . From (2.3), we derive an exact se- quence 0 -→ H 2 m (I) -→ H 3 m (Z 1 ) -→ H 3 m (R)[-d] 4 -→ 0, hence H 3 m (Z 1 ) d-1 H 2 m (I) d-1 . We get n = dim k H 2 m (I) d-1 = dim k H 1 m (R/I) d-1 .
We now consider an exact sequence

0 -→ R/I sat -→ µ∈Z H 0 (P 2 k , O B (µ)) -→ H 1 m (R/I) -→ 0, hence dim k H 1 m (R/I) d-1 = dim k H 0 (P 2 k , O B (d-1))-dim k (R/I sat ) d-1 = deg(B)-dim k (R/I sat ) d-1 . Since indeg(I sat ) = d, dim k (R/I sat ) d-1 = dim k R d-1 = d+1 2 = 1 2 d(d + 1). It follows that n = deg(B) - 1 2 d(d + 1). We next compute m = dim k H 3 m (Z 2 ) 2d-1 . It follows from (2.1) that H 3 m (Z 2 ) 2d-1 (Z 1 ) * 2-2d
Hom R ((Z 1 ) 2d-2 , k).

Therefore, by (2.3),

m = dim k (Z 1 ) 2d-2 = dim k R 4 d-2 -dim k I 2d-2 = 4 d 2 -dim k I 2d-2 . Since dim k I 2d-2 = dim k R 2d-2 -dim k (R/I) 2d-2 = 2d 2 -deg(B), it follows that m = 4 d 2 - 2d 2 + deg(B) = deg(B) -d.
Finally, we have

l = dim k H 3 m (Z 3 ) 3d-1 = dim k H 3 m (R) -d-1 = d 2 = 1 2 d(d -1).
Now we will give a bound for the degree of the projective variety B ⊂ P 2 k in terms of the degree d.

Lemma 2.3.4. Under the assumptions of Theorem 2.3.2,

1 2 d(d + 1) ≤ deg(B) ≤ d 2 -2d + 3.
Proof. The Hilbert function of R/I sat is weakly increasing, hence for any µ

dim k (R/I sat ) µ ≤ deg(B). Since indeg(I sat ) = d, deg(B) ≥ dim k (R/I sat ) d-1 = dim k R d-1 = 1 2 d(d + 1).
We can assume that k is infinite. Since codim(I) = 2, there are homogeneous polynomials g 1 , g 2 ∈ I of degree d which form a regular sequence. Therefore b := (g 1 , g 2 ) is a complete intersection ideal. Setting J := b : R I, J is saturated and I sat = b : R J since R is Gorenstein, by Proposition 1.1.21.

We set Q = Proj(R/J) and X = Proj(R/b). By Proposition 1.3.11

deg(B) + deg(Q) = deg(X ), hence deg(B) = d 2 -deg(Q).
Proposition 1.1.3 and Corollary 1.2.50 show that

H 1 m (R/J) Ext 2 R (R/J, R[-3]) * Hom R (R/J, R/b)[2d -3] * (b : R J)/b * [3 -2d] (I sat /b) * [3 -2d].
We thus get

H 1 m (R/J) µ Hom R ((I sat /b) 2d-3-µ , k). Since indeg(I sat ) = indeg(b) = d, we obtain H 1 m (R/J) µ =    0 if µ > d -3 Hom R ((I sat /b) d , k) = 0 if µ = d -3.
Moreover, we have H 0 m (R/J) = J sat /J = 0. We therefore conclude that reg(R/J) = d -2, and hence dim k (R/J) d-2 = deg(Q), by Theorem 1.3.9.

On the other hand, the Hilbert function HF R/J (µ) of R/J strictly increases from 1 in degree 0 until deg(Q) in degree d -2. Therefore one has deg(Q

) ≥ d -1. By Theorem 1.3.9 HF R/J (µ) = deg(Q) -dim k H 1 m (R/J) µ , for any µ. Since dim k H 1 m (R/J) d-3 = dim k (I sat /b) d ≥ 2, we deduce deg(Q) ≥ d.
The proof will be completed by showing that deg(Q) ≥ 2d -3. Set c i = dim k (R/J) i for all i ≥ 0. The sequence c = {c i : i ≥ 0} satisfies the following properties:

(i) c 0 = 1 and c 1 = 3. Indeed, if c 1 < 3, then J 1 = 0, there is therefore a linear form ∈ J 1 . We assume that J = ( , w 1 , w 2 , . . . , w s ). Since reg(J) = d -1, we have deg(w i ) ≤ d -1 for all i = 1, . . . s. Fix i ∈ {1, . . . , s} such that gcd( ,

w i ) = 1. Since Q ⊆ V ( , w i ), hence deg(Q) ≤ d -1, a contradiction. (ii) c i = deg(Q) for any i ≥ d -2 and c d-2 -c d-3 = dim k H 1 m (R/J) d-3 ≥ 2.
Since J is saturated and k is infinite, there is a linear form in R such that J :

J(-1) as graded R-modules. It follows that induces an injection × :

(R/J)[-1] -→ R/J. Therefore the Hilbert function of R/(J + ) is b = {b i : i ≥ 0} with b 0 = 1 and b i = c i -c i-1 for every i ≥ 1.
By (ii), we have b d-2 ≥ 2. We will show that b i ≥ 2, for any i = 1, . . . , d -2. Indeed, suppose that there exists an integer i ≥ 1 such that b i = 1, and let

ν = sup i≥1 {i | b i = 1}. One has 2 ≤ ν ≤ d -3 and since R/(J + ) is a standard graded k-algebra, Theo- rem 1.3.20 shows that b = {b i : i ≥ 0} is a O-sequence. Therefore 2 ≤ b ν+1 ≤ b <ν> ν = 1 <ν> = 1.
This contradiction shows that b i ≥ 2, for any i = 1, . . . , d -2, which is equivalent to c i+1 ≥ c i + 2 for all i = 0, . . . , d -3, hence

deg(Q) ≥ 2(d -2) + 1 = 2d -3.
Proposition 2.3.5. Under the assumptions of Theorem 2.3.2, the following holds for any integer s:

dim k H 2 m (I s ) sd-1 = 1 2 s(s + 1) deg(B) - 1 2 sd(sd + 1) + dim k (I s ) sat sd-1 .
Proof. By Theorem 2.3.2, for any integer s, one has

dim k H 2 m (I s ) sd-1 = n. dim k B s-1 -m. dim k B s-2 + l. dim k B s-3 + dim k (I s ) sat sd-1 = n s + 2 3 -(n + l) s + 1 3 + l s 3 + dim k (I s ) sat sd-1 = n s + 1 2 -l s 2 + dim k (I s ) sat sd-1 . Using Lemma 2.3.3, we have dim k H 2 m (I s ) sd-1 = deg(B) - 1 2 d(d + 1) s + 1 2 - 1 2 d(d -1) s 2 + dim k (I s ) sat sd-1 , = 1 2 s(s + 1) deg(B) - 1 2 sd(sd + 1) + dim k (I s ) sat sd-1 .
Corollary 2.3.6. Under the assumptions of Theorem 2.3.2, indeg((I s ) sat ) < sd for all integer s ≥ d 2 . Proof. If there exist an integer s ≥ d 2 such that indeg((I s ) sat ) = sd. Then (I s ) sat sd-1 = 0. By Proposition 2.3.5,

dim k H 2 m (I s ) sd-1 = 1 2 s(s + 1) deg(B) - 1 2 sd(sd + 1) ≤ 1 2 s(s + 1)(d 2 -2d + 3) - 1 2 sd(sd + 1) by Lemma 2.3.4 ≤ 1 2 s(d 2 -2sd -3d + 3s + 3) ≤ 1 2 s[(d - 3 2 )(d -2s) - 3 2 (d -2)].
We already noticed at beginning of this section that d ≥ 3 and by hypothesis s ≥ d 2 , dim k H 2 m (I s ) sd-1 < 0, which is impossible. As we already noticed that the interested cases are that the locus ideal of φ satisfying indeg(I) = indeg(I sat ) = d ≥ 3. In the case d = 3, using Theorem 2.2.6 and Corollary 2.3.6, we have y∈Y 1 deg(h y ) < 6. However, the following result gives a sharp bound for y∈Y 1 deg(h y ) in this case.

Theorem 2.3.7. Adopt Data 2.2.5. Assume further that m = n -1 = 2, that indeg(I sat ) = d = 3 and that B is locally a complete intersection. Then

y∈Y 1 deg(h y ) ≤ 4.
Proof. We will prove first that I = I sat . In this case, deg(B) = 6 by Lemma 2.3.4. Moreover, with the notations in the proof of Lemma 2.3.4, we have

H 1 m (R/I sat ) (J/b) * [-3] and reg(R/J) = 1. Hence dim k (R/J) µ = deg(Q) = 3 for all µ ≥ 1. It follows that dim k H 1 m (R/I sat ) µ = 0, ∀µ ≥ 2, dim k H 1 m (R/I sat ) 1 = 3.
Therefore reg(R/I sat ) = 2, it follows that I sat is generated in degree at most 3. Since indeg(I sat ) = 3, it is immediate that I sat is exactly generated in degree 3. Furthemore,

dim k (I sat ) 3 = dim k R 3 -dim k (R/I sat ) 3 = 10 -6 = 4, which implies I sat = I.
By the Hilbert-Burch Theorem, I admits a free resolution of the form

0 / / R(-4) 3 M / / R(-3) 4 / / R / / R/I / / 0.
By changing the coordinates, there is no loss of generality in assuming the matrix M be of the form

M =      X 0 0 0 a 1 X 1 X 1 0 b 1 X 2 b 2 X 2 X 2 c 1 L c 2 L c 3 L     
where L = α 1 X 0 + α 2 X 1 + α 3 X 2 . One has c 3 = 0 since f i = 0 for all i = 0, 1, 2, 3. Since I is locally a complete intersection, V (I 2 (M )) = ∅, where I 2 (M ) is the ideal of 2-minors of M . It follows that α 1 α 2 α 3 = 0.

Let now a fiber over a closed point y of coordinates (λ 1 : λ 2 : λ 3 : λ 4 ) ∈ P 3 k be of dimension 1 and its unmixed component be defined by h y ∈ R. It follows from Lemma 2.2.3 that

h y = gcd( 1 , 2 , 3 ),
where

1 = (λ 1 + c 1 α 1 λ 4 )X 0 + (a 1 λ 2 + c 1 α 2 λ 4 )X 1 + (b 1 λ 3 + c 1 α 3 λ 4 )X 2 , 2 = c 2 α 1 λ 4 X 0 + (λ 2 + c 2 α 2 λ 4 )X 1 + (b 2 λ 3 + c 2 α 3 λ 4 )X 2 , 3 = c 3 α 1 λ 4 X 0 + c 3 α 2 λ 4 X 1 + (λ 3 + c 3 α 3 λ 4 )X 2 .
• If λ 4 = 0, then there are the following cases: Case 1: λ 3 = 0. In this case we have λ 1 = λ 2 = 0. Therefore y = (0 : 0 : 1 : 0) and h y = X 2 .

Case 2: λ 3 = 0 and λ 2 = 0. It follows that λ 1 = 0. Thus y = (0 : 1 : 0 : 0) and h y = X 1 .

Case 3: λ 3 = 0 and λ 2 = 0. We must have λ 1 = 0. Hence y = (1 : 0 : 0 : 0) and h y = X 0 .

• If λ 4 = 1, then from three polynomials 1 , 2 , 3 have a common divisor, we have

λ 1 + c 1 α 1 c 3 α 1 = a 1 λ 2 + c 1 α 2 c 3 α 2 = b 1 λ 3 + c 1 α 3 λ 3 + c 3 α 3 , c 2 c 3 = λ 2 + c 2 α 2 c 3 α 2 = b 2 λ 3 + c 2 α 3 λ 3 + c 3 α 3 .
These equalities imply that λ 1 = λ 2 = 0. Furthermore, we also have λ 3 = 0. Indeed, if λ 3 = 0, then c 1 = b 1 c 3 and c 2 = b 2 c 3 , contrary to f i = 0 for all i = 0, . . . , 3. Therefore y = (0 : 0 : 0 : 1) and h y = L.

Example 2.3.8. Let φ : P 2 k P 3 k be a parameterization of surface defined by

f 0 = X 1 X 2 (X 0 + X 1 + X 2 ) f 2 = X 0 X 1 (X 0 + X 1 + X 2 ) f 1 = X 0 X 2 (X 0 + X 1 + X 2 ) f 3 = X 0 X 1 X 2 .
Using Macaulay2 [GS], we see that B is locally a complete intersection of degree 6 and that I is a saturated ideal with free resolution

0 / / R(-4) 3 M / / R(-3) 4 / / R / / R/I / / 0,
where the matrix M is given by

     0 0 X 0 X 1 -X 1 0 -X 2 0 0 0 X 0 + X 1 + X 2 -(X 0 + X 1 + X 2 )     
.

Thus we obtain Y 1 = {y 1 , y 2 , y 3 , y 4 } with y 1 = (1 : 0 : 0 : 0) h y 1 = X 0 y 2 = (0 : 1 : 0 : 0) h y 2 = X 1 y 3 = (0 : 0 : 1 : 0) h y 3 = X 2 y 4 = (0 : 0 : 0 : 1)

h y 4 = X 0 + X 1 + X 2 .
Consequently, we have

y∈Y 1 deg(h y ) = 4.
Now, we prove the main result of this chapter.

Theorem 2.3.9. Adopt Data 2.2.5. Assume further that m = n -1 = 2, that indeg(I sat ) = d ≥ 4 and that B is locally a complete intersection. Then

y∈Y 1 deg(h y ) ≤ d 2 d -1, where x := max{n ∈ Z | n ≤ x}.
Proof. Set ν = d 2 . By Theorem 2.2.6, it suffies to show that (I ν ) sat νd-1 = 0. Suppose on the contrary that (I ν ) sat νd-1 = 0. By Proposition 2.3.5, one has

dim k H 2 m (I ν ) νd-1 = 1 2 ν(ν + 1) deg(B) - 1 2 νd(νd + 1).
We now show that this is not possible by using Lemma 2.3.4: deg(B) ≤ d 2 -2d + 3. Indeed, consider two cases:

(i) If d = 2s with s ≥ 2, then ν = d 2 = s. Therefore dim k H 2 m (I s ) sd-1 = 1 2 s (s + 1) deg(B) -2s(2s 2 + 1) ≤ 1 2 s (s + 1)(4s 2 -4s + 3) -2s(2s 2 + 1) ≤ - 3 2 s(s -1) < 0, which is impossible. (ii) Similarly, if d = 2s + 1 with s ≥ 2, then ν = d 2 = s. Thus dim k H 2 m (I s ) sd-1 ≤ -1 2 s(s -1) < 0, which is impossible.
Example 2.3.10. Let d ≥ 4 be an integer and φ : P 2 k P 3 k a parameterization of surface defined by

f 0 = X d-3 0 X 1 (X 2 0 -X 2 1 ) f 2 = X d-3 0 X 2 (X 2 1 -X 2 2 ) f 1 = X d-3 0 X 2 (X 2 0 -X 2 1 ) f 3 = X d-3 1 X 2 (X 2 1 -X 2 2 ).
Using Macaulay2 [GS], we see that B is locally a complete intersection of degree d 2 -3d + 7. Moreover, I is a saturated ideal with free resolution

0 / / R(-d -1) ⊕ R(-d -2) ⊕ R(-2d + 3) M / / R(-d) 4 / / R / / R/I / / 0,
where the matrix M is given by

     -X 2 0 0 X 1 X 2 1 -X 2 2 0 0 -X 2 0 + X 2 1 X d-3 1 0 0 -X d-3 0      .
We consider the following cases.

Case 1: if d -3 is odd, we obtain Y 1 = {y 1 , y 2 , y 3 , y 4 , y 5 , y 6 } with y 1 = (1 : 0 : 0 : 0) h y 1 = X 2 y 2 = (0 : 0 : 0 : 1) h y 2 = X d-3 0 y 3 = (1 : 1 : 0 : 0) h y 3 = X 1 -X 2 y 4 = (1 : -1 : 0 : 0) h y 4 = X 1 + X 2 y 5 = (0 : 0 : 1 : 1) h y 5 = X 0 -X 1 y 6 = (0 : 0 : 1 : -1) h y 6 = X 0 + X 1 .

Case 2: if d -3 is even, we have Y 1 = {y 1 , y 2 , y 3 , y 4 , y 5 } with y 1 = (1 : 0 : : 0) h y 1 = X 2 y 2 = (0 : 0 : 0 : 1)

h y 2 = X d-3 0 , y 3 = (1 : 1 : : 0) h y 3 = X 1 -X 2 y 4 = (1 : -1 : 0 : 0) h y 4 = X 1 + X 2 , y 5 = (0 : 0 : : 1) h y 5 = X 2 0 -X 2 1 .
Therefore P n k is defined by homogeneous polynomials of a common degree d. We establish a linear bound in terms of d for the number of (m -1)-dimensional fibers of φ, by using ideals of minors of the Jacobian matrix. In particular, we answer affirmatively the question in the end of the previous chapter. The results in this chapter are joint work with M. Chardin and S. D. Cutkosky and have been submitted [START_REF] Chardin | Fibers of rational maps and Jacobian matrices[END_REF].

y∈Y 1 deg(h y ) = d + 2.

Tangent space maps and Jacobian matrices

Suppose that X is a k-scheme where k is an algebraically closed field, and q ∈ X is a closed point. The tangent space T (X) q of X at q is the k-vector space T (X) q = Hom k (m q /m 2 q , k) where m q is the maximal ideal of O X,q . Suppose that Y is another k-scheme and φ : X → Y is a morphism of k-schemes. Then φ * : O Y,φ(q) → O X,q induces a homomorphism of k-vector spaces dφ q : T (X) q → T (Y ) φ(q) . If V is a subscheme of X and W is a subscheme of Y such that φ(V ) ⊂ W , then we have a natural commutative diagram of homomorphisms of k-vector spaces

T (V ) q ⊂ T (X) q ↓ ↓ T (W ) φ(q) ⊂ T (Y ) φ(q) . (3.1)
From now on, we will consider the following situation. Suppose that k is an algebraically closed field of characteristic p ≥ 0. Consider f 0 , . . . , f n homogeneous polynomials of a common degree d in the standard polynomial ring k[X 0 , . . . , X m ], such that gcd(f 0 , . . . , f n ) = 1. Let φ : P m k P n k be a rational map defined by f 0 , . . . , f n . The maximal open set on which φ is a morphism is Ω

φ = P m k \ Z(f 0 , . . . , f n ). Let J(f ) =     ∂f 0 ∂X 0 • • • ∂f 0 ∂Xm . . . . . . ∂fn ∂X 0 • • • ∂fn ∂Xm    
be the Jacobian matrix of f = f 0 , . . . , f n . For any closed point q = (q 0 : • • • : q m ) ∈ P m k , we denote by J(q) the matrix obtained from J(f ) by mapping X i to q i for all i = 0, . . . , m. The entries of this matrix are defined by q up to multiplication by a common non zero scalar. Proposition 3.1.1. Suppose that p does not divide d and q ∈ Ω φ is a closed point. Then rank J(q) = rank dφ q + 1 where dφ q : T (P m k ) q → T (P n k ) φ(q) is the tangent space map. Proof. After possibly making linear changes of homogeneous coordinates in P m k and P n k , we may assume that q = (1 : 0 : • • • : 0) and φ(q) = (1 : 0 :

• • • : 0). Let X i = X i X 0 for 1 ≤ i ≤ m. Let F i = f i X d 0 ∈ k[X 1 , . . . , X m ],
which is the affine coordinate ring of

P m k \ Z(X 0 ). As φ is a regular map near q, φ = (f 0 : f 1 : • • • : f n ) = (1 : g 1 : • • • : g n ),
where

g i = f i f 0 = F i F 0 . Let α = (1, 0, . . . , 0). We have that ∂f j ∂X 0 (α) = df j (α)
for all j, by Euler's formula. Thus

rank J(p) = rank        df 0 (α) ∂f 0 ∂X 1 (α) • • • ∂f 0 ∂Xm (α) df 1 (α) ∂f 1 ∂X 1 (α) • • • ∂f 1 ∂Xm (α) . . . . . . . . . df n (α) ∂fn ∂X 1 (α) • • • ∂fn ∂Xm (α)        = rank        df 0 (α) ∂f 0 ∂X 1 (α) • • • ∂f 0 ∂Xm (α) 0 ∂f 1 ∂X 1 (α) • • • ∂f 1 ∂Xm (α) . . . . . . . . . 0 ∂fn ∂X 1 (α) • • • ∂fn ∂Xm (α)        = rank     ∂f 1 ∂X 1 (α) • • • ∂f 1 ∂Xm (α) . . . . . . ∂fn ∂X 1 (α) • • • ∂fn ∂Xm (α)     + 1 Let α = (0, . . . , 0). As ∂f i ∂X j (α) = ∂F i ∂X j (α)
3.2. Bound for the number of (m -1)-dimensional fibers of a rational map φ : P m k P n k 75 for 1 ≤ i ≤ n and 1 ≤ j ≤ m (it suffices to check this on a monomial), so rank

    ∂f 1 ∂X 1 (α) • • • ∂f 1 ∂Xm (α) . . . . . . ∂fn ∂X 1 (α) • • • ∂fn ∂Xm (α)     = rank     ∂F 1 ∂X 1 (α) • • • ∂F 1 ∂Xm (α) . . . . . . ∂Fn ∂X 1 (α) • • • ∂Fn ∂Xm (α)     = rank      ∂g 1 ∂X 1 (α) • • • ∂g 1 ∂Xm (α) . . . . . . ∂gn ∂X 1 (α) • • • ∂gn ∂Xm (α)      since ∂ ∂X j F i F 0 = ∂F i ∂X j F -1 0 -F -2 0 ∂F 0 ∂X j F i , so ∂g i ∂X j (α) = 1 F 0 (α) ∂F i ∂X j (α)
for 1 ≤ i ≤ n and 1 ≤ j ≤ m, as F 0 (α) = 0 and F i (α) = 0 for 1 ≤ i ≤ n.

Remark 3.1.2. If p divides d the proof of Proposition 3.1.1 shows that we can either have rank J(q) = rank dφ q + 1 or rank J(q) = rank dφ q .

Both options are possible.

Proposition 3.1.3. Suppose that r ∈ N and V is a subvariety of P m k such that V ∩ Ω φ = ∅ and r = dim V -dim φ(V ). Then V ⊂ Z(I m-r+2 (J)), where I m-r+2 (J) is the ideal generated by the (m -r + 2)-minors of J.

Proof. There exists a dense open subset U of V such that for any q ∈ U , V is smooth at q and φ(V ) is smooth at φ(q) (take U to be the intersection of smooth locus of V with the preimage of the smooth locus of φ(V )). We have that dim T (φ(V )) φ(q) = dim V -r for q ∈ U , so by consideration of diagram (3.1), it follows that dim Ker dφ q ≥ r for q ∈ U , hence rank dφ q ≤ m -r for q ∈ U . By Proposition 3.1.1 and Remark 3.1.2, rank J(q) ≤ rank dφ q + 1 ≤ m -r + 1 for q ∈ U . Thus U is contained in the closed set Z(I m-r+2 (J)), so the closure V of U is contained in this set.

Bound for the number of (m -1)-dimensional

fibers of a rational map φ :

P m k P n k Let R := k[X 0 , . . . , X m ] (m ≥
2) be the standard graded polynomial ring over an algebraically closed field k. Suppose we are given an integer d ≥ 1 and n+1 (n ≥ m) homogeneous polynomials f 0 , . . . , f n ∈ R d , not all zero. We denote by I the ideal of R generated by these polynomials and set B := Proj(R/I) ⊆ P m k := Proj(R). Let B := k[T 0 , . . . , T n ] with its standard grading and consider the rational map

φ : P m k - P n k x -→ (f 0 (x) : • • • : f n (x)).
From now on we assume that φ is generically finite onto its image, or equivalently that the closed image of φ is a subvariety S in P n k := Proj(B), of dimension m. We may further assume that gcd(f 0 , . . . , f n ) = 1, replacing the f i s by their quotient by the greatest common divisor of f 0 , . . . , f n if needed, hence the ideal I is of codimension at least 2.

For f = f 0 , . . . , f n , set

J(f ) =     ∂f 0 ∂X 0 • • • ∂f 0 ∂Xm . . . . . . ∂fn ∂X 0 • • • ∂fn ∂Xm    
for the Jacobian matrix of f and I s (J(f )) for the ideal of R generated by the s-minors of J(f ), where 1 ≤ s ≤ m + 1.

Lemma 3.2.1. Suppose that dim k I d = n + 1 and let f = f 0 , . . . , f n and g = g 0 , . . . , g n be two bases of I d . Then I s (J(f )) = I s (J(g))), for any s.

Proof. Indeed, these are the Fitting ideals (with the same indices) of two matrices that are equal after change of basis over the base field. Now we state the main result in this section.

Theorem 3.2.2. Adopt Data 2.2.5. Assume further that I 3 (J(f )) = 0 and denote by F be the greatest common divisor of generators of I 3 (J(f )). Then

y∈Y m-1 deg(h y ) ≤ y∈Y m-1 ry i=1 (2e i -1) deg(h i ) ≤ deg(F ) ≤ 3(d -1),
where

h y = h e 1 1 • • • h er y
ry is an irreducible factorization of h y in R.

Proof. By Lemma 2.2.2, the unmixed components of π -1 (p) and π -1 (p) are the same for every closed point p ∈ Y m-1 . By Lemma 2.2.3, there exists a homogeneous polynomial f ∈ I of degree d such that, for any p ∈ Y m-1

I = (f ) + h y (g 1y , . . . , g ny ),
for some g 1y , . . . , g ny ∈ R.

The Jacobian matrix of f = (f, h y g 1y , . . . , h y g ny ) is , for all i = 2, . . . , n + 1. It follows that, for any subset I of {1, . . . , n + 1} with 3 elements and a subset J of {1, . . . , m + 1} with 3 elements,

J(f ) =        ∂f ∂X 0 • • •
[J(f )] I,J = h 2(e 1 -1) 1 • • • h 2(er y -1) ry [M ] I,J , (3.2)
where [Q] I,J denotes the 3-minor of a (n + 1) × (m + 1)-matrix Q that corresponds to the rows with index in I and the columns with index in J and M is the (n + 1) × (m + 1)-matrix

       ∂f ∂X 0 • • • ∂f ∂Xm h y ∂g 1y ∂X 0 + g 1y σ 0 • • • h y ∂g 1y ∂Xm + g 1y σ m . . . . . . h y ∂gny ∂X 0 + g ny σ 0 • • • h y ∂gny ∂Xm + g ny σ m        , here h y = h 1 • • • h ry and σ j = ry i=1 e i hy h i ∂h i
∂X j , (j = 0, . . . , m). Thus there is a homogeneous polynomial P such that [M ] I,J = h y P +[N ] I,J , where N is the (n+1)×(m+1)matrix

      ∂f ∂X 0 • • • ∂f ∂Xm g 1y σ 0 • • • g 1y σ m . . . . . . g ny σ 0 • • • g ny σ m      
which shows that [N ] I,J = 0, as rank N ≤ 2. By (3.2), we obtain

[J(f )] I,J = h 2(e 1 -1) 1 • • • h 2(er y -1) ry h y P = h 2e 1 -1 1 • • • h 2er y -1 ry P, (3.3)
for all I, J . Let G be the greatest common divisor of generators of I 3 (J(f )). Then

h 2e 1 -1 1 • • • h 2er y -1 ry is a divisor of G by (3.3). By Lemma 3.2.1, h 2e 1 -1 1 • • • h 2er y -1 ry is a divisor of F.
Moreover, if y = y in Y m-1 , then gcd(h y , h y ) = 1, hence gcd(h i , h j ) = 1, for every factor h i (res. h j ) of h y (res. h y ). We deduce that y∈Y m-1

h 2e 1 -1 1 • • • h 2er y -1 ry | F which gives y∈Y m-1 ry i=1 (2e i -1) deg(h i ) ≤ deg(F ) ≤ 3(d -1).
Remark 3.2.3. Let p = char(k) be the characteristic of the field k. Then there are two cases:

(i) Case 1: p does not divide d. Then I m+1 (J(f )) = 0 if and only if [k(f ) : k(X)] is
separable, where X := X 0 , . . . , X m . In particular, if p = 0, then the condition I m+1 (J(f )) = 0 always holds.

(ii) Case 2: p divides d.

Then I m+1 (J(f )) = 0 only if [k(f ) : k(X)] is separable.
Note that if I m+1 (J(f )) = 0, then I j (J(f )) = 0, for all 1 ≤ j ≤ m + 1. In particular, if the characteristic of k is 0, then the assumption I 3 (J(f )) = 0 is always satisfied.

Remark 3.2.4. (i) The inequality

y∈Y m-1 deg(h y ) ≤ y∈Y m-1 ry i=1 (2e i -1) deg(h i )
becomes an equality if and only if the defining equation of the unmixed component of the fiber π -1 (y) has no multiple factors, for every y ∈ Y m-1 .

(ii) The bound

y∈Y m-1 ry i=1 (2e i -1) deg(h i ) ≤ deg(F )
is optimal as the following example shows.

Example 3.2.5. Let d ≥ 4 be an integer. Consider the parameterization given by f = f 0 , . . . , f 3 , with

f 0 = X d-3 0 X 1 (X 2 0 -X 2 1 ), f 2 = X d-3 0 X 2 (X 2 1 -X 2 2 ), f 1 = X d-3 0 X 2 (X 2 0 -X 2 1 ), f 3 = X d-3 1 X 2 (X 2 1 -X 2 2 )
in Example 2.3.10. Using Macaulay2 [GS], the greatest common divisor of generators of

I 3 (J(f )) is F = X 2d-7 0 X 2 (X 2 0 -X 2 1 )(X 2 1 -X 2 2 ). It is known as in Example 2.3.10 that y∈Y 1 deg(h y ) = d + 2 and y∈Y 1 ry i=1 (2e i -1) deg(h i ) = 2(d -1) = deg(F ) < 3(d -1). Furthermore, if d = 4, then y∈Y 1 deg(h y ) = y∈Y 1 ry i=1 (2e i -1) deg(h i ) = deg(F ).

Bound for the number of one-dimensional fibers of a parameterization surface

In this section, we will treat the case of parameterizations φ : P 2 k P 3 k of algebraic rational surfaces. Such a map φ is defined by four homogeneous polynomials f 0 , . . . , f 3 , of a common degree d, in the standard graded polynomial ring R = k[X 0 , X 1 , X 2 ]. Our objective is to refine the bound y∈Y 1 deg(h y ) which gave in the previous chapter.

The following result is a direct consequence of Theorem 3.2.2.

Corollary 3.3.1. Adopt Data 2.2.5. Assume further that m = n -1 = 2, that I 3 (f ) = 0 and let F be the greatest common divisor of generators of I 3 (f ). Then

y∈Y 1 deg(h y ) ≤ y∈Y 1 ry i=1 (2e i -1) deg(h i ) ≤ deg(F ) ≤ 3(d -1),
where

h y = h e 1 1 • • • h er y
ry is an irreducible factorization of h y in R. Notice that the condition I 3 (J(f )) = 0 is always satisfied if the characteristic of k is zero. Thus, the above corollary gives an affirmative answer for Question 2.3.11, at least in the case where k is of characteristic zero. Note that we do not need the assumption locally a complete intersection of B.

Now we study the syzygies of f i 's in relation with the degree of the greatest common divisor of the generators of I 3 (J(f )).

Proposition 3.3.2. Let f := f 0 , . . . , f 3 be the homogeneous polynomials of the same degree d and F the greatest common divisor of generators of I 3 (J(f )). Suppose that p does not divide d. If deg(F ) = 3(d -1) -δ, then I = (f 0 , . . . , f 3 ) has a syzygy of degree δ : there exist the homogeneous polynomials a 0 , . . . , a 3 ∈ R, not all 0, of degree δ, such that

a 0 f 0 + • • • + a 3 f 3 = 0.
Proof. Suppose that deg(F ) = 3(d -1) -δ. Then there exist the homogeneous polynomials a 0 , . . . , a 3 ∈ R, not all 0, of the same degree δ such that F i = a i-1 F for all i = 1, . . . , 4. Without loss of the generatily, we assume that a 0 = 0. For simplicity, we set P ij = ∂f i ∂X j , for all i = 0, . . . , 3 and j = 0, 1, 2. Then ( a 1 a 0 , -a 2 a 0 , a 3 a 0 ) is a root of the system of equations

       P 10 Y 1 + P 20 Y 2 + P 30 Y 3 = P 00 P 11 Y 1 + P 21 Y 2 + P 31 Y 3 = P 01 P 12 Y 1 + P 22 Y 2 + P 32 Y 3 = P 02 which implies that P 0j = a 1 a 0 P 1j - a 2 a 0 P 2j + a 3 a 0 P 3j , for all j = 0, 1, 2.
It follows that Proof. Suppose that deg(F ) = 3(d-1). By Proposition 3.3.2, there exist a 0 , . . . , a 0 ∈ k, not all 0, such that

a 0 2 j=0 X j P 0j = a 1 2 j=0 X j P 1j -a 2 2 j=0 X j P 2j + a 3 2 j=0 X j P 3j gives da 0 f 0 = d(a 1 f 1 -a 2 f 2 + a 3 f 3 ),
a 0 f 0 + a 1 f 1 + a 2 f 2 + a 3 f 3 = 0.
Suppose that f 0 , . . . , f 3 are linearly dependent over k. Then there are λ 0 , . . . , λ 3 ∈ k, not all 0, such that λ 0 f 0 +• • •+λ 3 f 3 = 0. Without loss of the generality, we assume that

λ 0 = -1, hence f 0 = λ 1 f 1 + λ 2 f 2 + λ 3 f 3 . It follows that ∂f 0 ∂X j = λ 1 ∂f 1 ∂X j + λ 2 ∂f 2 ∂X j + λ 3 ∂f 3 ∂X j
, for all j = 0, 1, 2.

Thus, we obtain

I 3 (f ) = (F 1 , λ 1 F 1 , λ 2 F 1 , λ 3 F 1 ), which shows that F = F 1 .
We denote by Syz(I) ⊆ R 4 the module of syzygies of I. It is a graded module and in the structural graded exact sequence

0 -→ Z 1 -→ R 4 (-d) (f 0 ,f 1 ,f 2 ,f 3 ) -------→ I -→ 0,
we have the identification Syz(I) = Z 1 (d). Recall that for a finitely generated graded R-module M, its initial degree is defined by The last inequality implies from the fact that indeg(Syz(I)) = 0 if and only if f 0 , . . . , f 3 are linearly dependent over k.

indeg(M ) := inf{ν | M ν = 0},
Notice that the two last condition in the above corollary are automatically satisfied if k is of characteristic zero.

Example 3.3.5. Consider the parameterization given by

f = f 0 , f 1 , f 2 , f 3 , with f 0 = X 2 1 X 4 2 -X 4 1 X 2 2 , f 2 = X 2 0 X 2 1 X 2 2 -X 2 0 X 4 1 , f 1 = X 4 0 X 2 2 -X 6 2 , f 3 = X 4 0 X 2 1 -X 2 1 X 4 2 in Example 2.2.7. Using Macaulay2 [GS]
, the greatest common divisor of generators of 

I 3 (J(f )) is F = X 0 X 3 1 X 2 (X 4 0 -X 4 2 )(X 2 1 -X 2 2 ). It is known as in Example 2.2.7 that y∈Y 1 deg(h y ) = 8 ≤ deg(F ) = 11 ≤ 3.5 -indeg(Syz(f )) = 13.

Abstract:

In this chapter, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that came to be known as Jacobian dual matrices. Then, we focus on rational maps from P 1 k × P 1 k to P 2 k in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the chapter. The results in this chapter are joint work with N. Botbol 

Introduction

A rational map F : P m k P n k between projective spaces is defined by an ordered set of homogeneous polynomials f := f 0 , . . . , f n in m + 1 variables, of the same degree and not all zero. The problem of providing sufficient conditions for such a map F to be birational has attracted much interest in the past and it is still an active area of research. For computational purposes, methods based on the nature of the syzygies of f are the most suitable in the sense of effective results in the usual implementation of the Gröbner basis algorithm. This syzygy-based approach goes back to [START_REF] Hulek | Cremona transformations and syzygies[END_REF] where sufficient conditions for birationality were given in the case m = n. Then, several improvements have been introduced in relation with the equations of the symmetric and the Rees algebras of the ideal generated by f ( see, e.g., [START_REF] Russo | On birational maps and Jacobian matrices[END_REF][START_REF] Simis | Cremona transformations and some related algebras[END_REF]), including in arbitrary characteristic [START_REF] André | A characteristic-free criterion of birationality[END_REF], and also in relation with the fibers of F in [START_REF] Eisenbud | Row ideals and fibers of morphisms[END_REF][START_REF] Kustin | Blowups and fibers of morphisms[END_REF].

In this chapter, we aim to extend some of these methods and techniques to the context of rational maps whose source is a product of two projective spaces P n k × P m k instead of. These maps are defined by an ordered set of bihomogeneous polynomials in two sets of n + 1 and m + 1 variables, respectively. In order to of emphasize, we call them bigraded rational maps. Important modern motivation for considering bigraded rational maps comes from the field of geometric modeling. Indeed, the geometric modeling community uses almost exclusively bigraded rational maps for parameterizing surfaces, dubbing such maps rational tensor-product Bézier parameterizations. It turns out that an important property is to guarantee the birationality of these parameterizations onto their images. An even more important property is to preserve this birationality property during a design process, that is to say when the coefficients of the defining polynomials are continuously modified. As a first attempt to tackle these difficult problems, we will analyze in detail birational maps from P 1 k × P 1 k to P 2 k in low bidegrees by means of syzygies. Through its various sections, this chapter traverses topics from algebra to geometry and to modeling. In Section 4.2, a general criterion for characterizing bigraded birational maps is proved by means of algebraic tools. It is based on the rank of two matrices, called Jacobian dual matrices, that are built from some particular equations of the Rees algebra of the bihomogeneous equations defining the rational map. This criterion is actually an analogue of the existing Jacobian dual criterion of rational maps between varieties embedded in projective spaces [START_REF] Russo | On birational maps and Jacobian matrices[END_REF][START_REF] Simis | Cremona transformations and some related algebras[END_REF][START_REF] André | A characteristic-free criterion of birationality[END_REF].

In Section 4.3, we turn to a more geometric language since the bigraded rational maps are investigated through the properties of their base locus. By focussing on bigraded birational maps from P 1 k × P 1 k to P 2 k , we obtain very simple birationality criteria in bidegree (1, 1) and bidegree (1, 2) in terms of the dimension of some bigraded parts of the syzygies of the equations defining the rational map. Another important contribution of our work is a detailed study of the case of bidegree (2, 2) maps for which we provide a complete list of possible birational maps.

Finally, in Section 4.4 we investigate applications of our results to the field of modeling. In particular, for bigraded plane rational maps of bidegree (1, 1) and (1, 2) we explain how some particular coefficients of the map, called the weights of the parameterization, can be tuned in order to obtain a birational map. It is important to notice that the inverse map is then given by explicit minors from the matrix characterizing the birationality of the map. In the bidegree (1, 2) case, our new birationality criterion allows to assign the control of this tuning to a structured lowrank matrices approximation algorithm, in the context of numerical computations.

General birationality criterion

In this section, we provide a general effective criterion for birationality of a bigraded rational map with source a biprojective space P n k × k P m k . We will state the results under more general hypotheses, namely, when the source is a product X × k Y , where X ⊂ P n k , Y ⊂ P m k denote nondegenerate irreducible projective varieties over an algebraically closed field k. The criterion is an analogue of the so-called Jacobian dual criterion which has been studied so far in the context of a rational maps between varieties embedded in projective spaces [START_REF] Russo | On birational maps and Jacobian matrices[END_REF][START_REF] Simis | Cremona transformations and some related algebras[END_REF][START_REF] André | A characteristic-free criterion of birationality[END_REF]. For detail, see Section 1.6.

Birationality and bigraded Rees algebras

As in the case of a rational map between projectively embedded varieties, where the notion of the graph of the map is encoded in taking the Rees algebra of an equigenerated homogeneous base ideal, a rational map with source a multi-projectively embedded variety and target a projectively embedded variety has a graph encoded in taking the Rees algebra of an equigenerated multihomogeneous ideal.

As for a rational map with source a projectively embedded variety and target a multi-projectively embedded variety, the algebraic object that conveniently encodes the graph is a multi-Rees algebra -i.e., the Rees algebra of a module which is the direct sum of a finite set of equigenerated homogeneous ideals of various degrees.

Although valid in the arbitrary multigraded case, for simplicity, we state it in the biprojective case. Thus, let X ⊂ P n k , Y ⊂ P m k and Z ⊂ P s k denote nondegenerate irreducible projective varieties over an algebraically closed field k.

Let A = k[x] = k[x 0 , . . . , x n ]/a, B = k[y] = k[y 0 , . . . , y m ]/b and S = k[z] = k[z 0 , . . . , z s ]/c
stand for the respective homogeneous coordinate rings. We also denote R : y]/(a,b). A rational map F : X × Y -→ Z is defined by bihomogeneous polynomials f 0 (x, y), . . . , f s (x, y) in R of fixed bidegree (a, b), not all zero. We say that F is birational with image Z if it is dominant and admits an inverse rational map with image X × k Y . Note that the inverse map is necessarily given by a pair of rational maps Z -→ X and Z -→ Y defined by homogeneous polynomials g := {g 0 , . . . , g n } and h := {h 0 , . . . , h m } of fixed degrees d 1 and d 2 , respectively. Set I := (f 0 (x, y), . . . , f s (x, y)) ⊂ R and J 1 := (g) ⊂ S, J 2 := (h) ⊂ S.

= A ⊗ k B k[x,

Lemma 4.2.1. With the above notations. Then the identity map on k[x, y, z] induces a k-algebra isomorphism between the Rees algebra R R (I) and the multi-Rees

algebra R S (J 1 ⊕ J 2 ).
Proof. The proof is tailored on the one in [Sim04, Proposition 2.1] (see also [START_REF] André | A characteristic-free criterion of birationality[END_REF]Theorem 2.18]). Consider a polynomial presentation Note that c ⊂ J . Indeed, taking f as homogeneous polynomials for the total degree of their fixed bidegree, it is clear that the image Z is identified with Proj(k[f ]) up to degree normalization. Since the two algebras k[f ] and k[f t] are k-isomorphic as graded algebras and ker(k [z] k[f t]) ⊂ J , we are through. In particular, the y,z]/(a,b,c).

R[z] = k[x, y] (a, b) [z] R[f t] = k[x, y] (a, b) [f t] = R R (I), z k → f k t whose restriction to R = k[x, y]/(
Rees algebra R R (I) is a residue k-algebra of R[z]/c = k[x,
By the same token, one has

R S (J 1 ⊕ J 2 ) S[gu, hv] k[z][x, y]/(c, J ),
where J is generated by those x, y-bihomogeneous polynomials with homogenous coefficients in k[z] vanishing on both sets g and h modulo c. Similarly, both a and b are contained in J -for example, note for this, that a form of degree

d in k[x] is a bihomogeneous polynomial in k[x, y] of bidegree (d, 0) with homogeneous coefficients in k[z] of degree 0. Thus, R S (J 1 ⊕ J 2 ) is a residue k-algebra of S[x, y]/(a, b) = k[x, y, z]/(a, b, c) as well.
We now claim that the identity map of k[x, y, z]/(a, b, c) induces the required k-algebra isomorphism, for which it suffices now to show that J ⊂ (a, b, J ) and that J ⊂ (c, J ).

Let F (z, x, y) = i p i (z)x α i y β i ∈ J , where |α i | = p and |β i | = q for all i. By the definition of J , one has F (z, g, h) ∈ c. Therefore, thus F (f , g, h) = 0 ∈ R. On the other hand since the pair (g; h) defines the inverse map to F, there exist forms D and D in R \ 0, perhaps of different degrees, such that g(f ) = x D and h(f

) = y D . It follows that F (f , g, h) = ( i p i (f )x α i y β i )D a D b .
Since R is an integral domain, the vanishing of the latter shows that F (f , x, y) = 0 on R. In particular F ∈ (a, b, J ).

The other inclusion is obtained by a similar argument.

Bigraded Jacobian dual criterion

We are now ready to present a multiprojective version of the Jacobian dual criterion of birationality. For simplicity, we stick to the biprojective case, as the arbitrary multiprojective case requires only a small set of changes. We will focus on the presentation ideal (a, b, J ) ⊂ k[x, y, z] of the Rees algebra R R (I). Consider the elements of degrees (1, 0, * ) and (0, 1, * ) in (a, b, J ), where * denotes an arbitrary degree in z. Since by assumption X and Y are nondegenerate, these elements belong to the graded pieces J (1,0, * ) and J (0,1, * ) , respectively. Now, a form of degree (1, 0, * ) can be thought as a form of bidegree (1, * ) in k[x, z]. Moreover, since X is nondegenerate, each such form has a unique expansion of the shape i Q i (z)x i , where Q i (z) ∈ k[z] is homogeneous of degree * . Considering these expansions for a minimal set of generating forms of the ideal (J (1,0, * ) ) and taking the corresponding matrix of x-derivatives, we obtain a weak Jacobian dual matrix Ψ x as in Section 1.6 -here dubbed an x-partial Jacobian dual matrix. We similarly introduce an y-partial Jacobian dual matrix Ψ y . Finally, thinking of these matrices as maps over k[z], we denote by Ψ x ⊗ k[z] S and Ψ y ⊗ k[z] S the respective maps obtained modulo c. Theorem 4.2.2. With the previous notations, the rational map

F : X × Y Z is birational with image Z if and only if rank S (Ψ x ⊗ k[z] S) = n and rank S (Ψ y ⊗ k[z] S) = m.
In addition, both halves of the expression of the inverse of F are given by (signed) ordered maximal minors of an n × (n + 1) submatrix of Ψ x and of an m × (m + 1) submatrix of Ψ y , respectively.

Proof. Suppose that F is birational with image Z. By the proof of Lemma 4.2.1, in particular J (1,0, * ) = J ( * ,1,0) -notice that * , 1 and 0 are the respective degrees in z,x and y. This implies that Ψ x can also be written in terms of J ( * ,1,0) . But, as such and due to the definition of J , we get an equality

I 1 ([x 0 • • • x n ] • ( t Ψ x ⊗ S)) = I 1 ([x 0 • • • x n ] • Syz S (g)),
where Syz S (g) denotes the matrix of syzygies of (g) ⊂ S. Since neither t Ψ x ⊗ S nor Syz S (g) involves any variables other than z, it then follows that these matrices define the same column space and hence have the same rank. But, clearly rank S (Syz S (g)) = n. A similar argument applies to the y part.

The proof of the converse statement is the same as the proof for the projective varieties in [START_REF] André | A characteristic-free criterion of birationality[END_REF], with the obvious adaptation. Thus, let M denote an n × (n + 1) submatrix of Ψ x which is of rank n over S. Let ∆ 0 (z), • • • , ∆ n (z) be its ordered signed minors. By the Hilbert-Koszul's lemma 1.5.6, the vector ∆ i (z)e j -∆ j (z)e i belongs to the column space of M and hence to that of Ψ x . The fact that

I 1 ([x 0 • • • x n ] • Ψ x ) = (J (1,0, * ) ) ensures that x i ∆ j (z)-x j ∆ i (z) ∈ (J (1,0, * ) ). In particular x i ∆ j (f )-x j ∆ i (f ) = 0 in R. We claim that the n+1-tuple (∆ 0 (f ) • • • ∆ n (f ))
does not vanish on R. To see this, recall that the homogeneous coordinate ring of the image of

F is k[f 0 , • • • , f s ] S (up to degree normalization). Since S = k[z]/c, then ∆ i (f ) = 0 ∈ R if and only if ∆ i (z) ∈ c, i.e., if and only if ∆ i (z) = 0 ∈ S. But this cannot happen for all i because rank(M ⊗ k[z] S) = n. It now follows that the rational map Z X defined by (∆ 0 (z) : • • • : ∆ n (z))
gives the first half of the inverse to F.

The second half is treated entirely in the same way.

Linear syzygies and birationality

Theorem 4.2.2 yields an explicit criterion for deciding if a given bigraded rational is birational. In order to apply this criterion, we need to get the equations of a Rees algebra, which are usually done by using Gröbner basis computations. Therefore, it has certain disadvantages in practice. Moreover, in order to overcome these two drawbacks, we investigate how birationality can be detected by means of syzygies of the ideal I generated by the coordinates of the rational maps, instead of the whole collection of equations of I. Indeed, any criterion based on some syzygies of given bidegree of I will only rely on linear algebra computations.

We will need to consider not just Rees algebras of ideals or multi-Rees algebras, but the full notion of the Rees algebra of a module as discussed in [START_REF] Simis | Rees algebras of modules[END_REF].

The following proposition gives an analogue of [DHS12, Theorem 3.2].

Proposition 4.2.3. Let F : P n k × P m k P s k stand for a rational map defined by bihomogeneous polynomials f 0 (x, y), . . . , f s (x, y) in R := k[x, y] and set I := (f 0 (x, y), . . . , f s (x, y)). If the image of F has dimension n + m and the submatrix of the syzygy matrix of I consisting of columns of bidegrees (1, 0) and (0, 1) has rank s (maximal possible), then F is birational onto its image.

Proof. Note that the image of F is a projective subvariety of P s k . Let z be homogeneous coordinates on P s k and set S = k[z]/c for the homogeneous coordinate ring of the image of F. Since I is bihomogeneous, it admits a minimal syzygy matrix whose columns are bihomogeneous. Clearly, the independent syzygies of degrees either (1, 0) or (0, 1) will be columns of this matrix. Let M denote the submatrix with these columns. Then choose a matrix N with entries in k

[z] such that [z] • M = [x, y] • N . Let E = Coker(N ⊗ k[z] S).
We now introduce in the discussion the Rees algebras R R (Coker M ) and R S (E). Thus, one has

R R (Coker M ) = k[x, y, z] ([z]M, τ 1 ) and R S (E) = k[x, y, z] (c, [x, y]N, τ 2 ) where τ 1 is the R-torsion of Sym R (CokerM ) lifted to k[x, y, z] and, similarly, τ 2 is the S-torsion of Sym S (E) lifted to k[x, y, z].
Note that, by definition, the Rees algebra R S (E) of E and that of E modulo its torsion coincide. Since S is a domain, the latter module embeds into a free module over S. In particular, R S (E) is a domain, i.e., (c, [x, y]N, τ 2 ) is a prime ideal.

We claim that ([z]M, τ 1 ) ⊆ (c, [x, y]N, τ 2 ). Indeed, let G = G(x, y, z) ∈ τ 1 . Then there exists

F (x, y) ∈ k[x, y] \ {0} such that F (x, y)G ⊂ (I 1 (z • M )) ⊂ (c, [x, y]N, τ 2 ). If G ∈ (c, [x, y]N, τ 2 ) then F (x, y) ∈ (c, [x, y]N, τ 2 ). By the definition of τ 2 there exists H(z) ∈ k[z] \ c such that H(z)F (x, y) ∈ (c, [x, y]N ). Recall that [z] • M = [x, y] • N . Evaluating z → f would give H(f )F (x, y) = 0 whence F (x, y) = 0 since H(f ) = 0; this is a contra- diction.
As a consequence, one has a surjective R-

algebra map R R (Coker M ) R S (E) and hence dim(R S (E)) ≤ dim(R R (Coker M )). Now dim(R S (E)) = dim(S)+(n+1+m+1)-rank(N ⊗S) and dim(R R (Coker M )) = dim(R) + s + 1 -rank(M ). Since dim(R) = dim(P n k × P m k ) + 2 we have dim(R) - dim(S) = 1. Therefore the above inequality implies that n + m + (rank(M ) -s) ≤ rank(N ⊗ S).
Since rank(M ) = s by assumption, we obtain n + m ≤ rank(N ⊗ S). Notice that N ⊗ S is a submatrix of the "concatenated Jacobian dual matrix

ρ := Ψ x ⊗ S Ψ y ⊗ S
in the notation introduced in the previous subsection. Thus we have rank(ρ) ≥ n + m, whenever rank(M ) = s.

Claim: rank(Ψ x ⊗ S) ≤ n (and, similarly, rank(Ψ y ⊗ S) ≤ m).

Assuming the claim, it follows that rank(ρ) ≤ n + m and the equality happens if and only if rank(Ψ x ⊗ S) = n and rank(Ψ y ⊗ S) = m. Therefore, the result follows from Theorem 4.2.2.

We now show that rank(Ψ x ⊗ S) ≤ n. Indeed, consider the field K := k(y) (the generic point of P m k ) and the rational map

F : P n K P s K
which is defined by the polynomials f 0 , . . . , f s viewed as polynomials in K[x]. Let S := K[y]/(c) be the coordinate ring of the image of F and consider the Jacobian dual matrix of F over S : Ψ ⊗ S . Then, because of the field inclusion k → K the column space of Ψ x ⊗ S is contained in the column space of Ψ ⊗ S. Therefore, rank(Ψ x ⊗ S) ≤ rank(Ψ ⊗ S ) ≤ n where the last inequality follows from Proposition 1.6.8.

Remark 4.2.4. The mutual independence of the hypotheses in Proposition 4.2.3 has already been observed in [DHS12, bottom p. 409] in the case the source of F is a single projective space; likewise, in our setting. The most obvious situation where the number of linear syzygies of the required type is maximal and yet the image has smaller dimension is obtained as follows. We explain the projective version, the biprojective one being entirely similar. Let F : P r k P s k be a birational map onto the image such that the linear syzygies of the defining forms f have maximal rank. Let I ⊂ R denote the base ideal of F. Consider the coordinate projection π : P r+1 k P r k defined by the first r + 1 variables -thus, this corresponds to the ring extension

R = k[x 0 , . . . , x r ] ⊂ R[x r+1 ].
Since the latter is a faithfully flat extension, or directly, the module of syzygies of f on R[x r+1 ] is extended from the R-module of syzygies of f , in particular the linear parts have the same rank as R-module or R[x r+1 ]-module. At the other end the k-algebra k[f ] is the same whether considered as a subalgebra of R or of R[x r+1 ]. Therefore, the composite map F • π : P r+1 k P s k has the same linear rank and the same image as F. This shows that maximal linear rank does not imply maximal dimension of the image.

To get a biprojective analogue, it suffices to take a one-sided projection P n+1 k × P m k P n k × P m k to the source of a birational map P n k × P m k P s k having maximal linear rank in the sense of the statement of the above proposition (e.g., an arbitrary Segre map).

It is of course clear that the full converse of the statement in the proposition is false. In the projective case, one can take a birational parameterization P 1 k P 2 k of a plane curve with parameters of degree ≥ 4 (hence, with linear rank 0). For example, take the parameters x 4 , y 4 , x 3 y + xy 3 on k[x, y]. Since the image is a quartic curve, the map F defined by these parameters is automatically birational onto the curve. To extract a biprojective example, compose the induced map (id, F) :

P 1 k × P 1 k P 1 k × P 2 k with the Segre map P 1 k × P 2 k P 5 k .
The result is clearly birational onto a subvariety of dimension 2 of the Segre embedding. However, a calculation with Macaulay2 shows that the linear rank is only 3.

Syzygies of low degree of bigraded maps in the plane

In this section, we will focus on the linear syzygies of bigraded rational maps from P 1 k × P 1 k to P 2 k . Under consideration will be the cases where the total degree of the biforms is 2 or 3. Note that in the projective case, the plane Cremona maps of these degrees are automatically de Jonquières maps. In both cases the base ideal is an ideal of 2-minors of a 3 × 2 matrix, with two linear syzygies or a linear syzyzy and a quadratic one, respectively [START_REF] Hamid | Plane Cremona maps: saturation and regularity of the base ideal[END_REF].

In the case of a bigraded rational map defined by polynomials f := {f 0 , f 1 , f 2 } of bidegree (1, 1) it is very easy to see that, up to linear transformations in the source and target spaces, there are only two maps:

P 1 k × P 1 k → P 2 k , (x : y) × (u : v) → (xu : yu : yv), P 1 k × P 1 k → P 2 k , (x : y) × (u : v) → (xu : yu : xv + yu).
The first one is birational and f has two minimal syzygies of respective bidegrees (1, 0) and (0, 1), whereas the second one is not birational and f has exactly five linearly independant minimal syzygies. Therefore, birationality is here guaranteed by the existence of a linear syzygy. To understand to which extent such a result can be generalized to higher bidegree, some preliminary work is required. Our tools will be largely homologically oriented. Before going into the details, we first fix some notation.

We will switch from the previous notation F for a rational map to the symbol φ. Let k be an infinite field. Let R := k[x, y; u, v] be the bigraded polynomial ring with weights defined by deg(x) = deg(y) = (1, 0) and deg(u) = deg(v) = (0, 1). Let f 0 , f 1 , f 2 be three bihomogeneous polynomials of bidegree (a, b) and set I = (f 0 , f 1 , f 2 ) ⊂ R. Consider the rational map defined by

φ : P 1 k × P 1 k P 2 k ((α : β), (γ : δ)) → (f 0 (α, β, γ, δ) : f 1 (α, β, γ, δ) : f 2 (α, β, γ, δ)).
We assume throughout that φ is a dominant rational map and that the polynomials f 0 , f 1 , f 2 do not have a proper common factor in R, which, in a more geometric terminology, means that these polynomials define a zero-dimensional scheme in P 1 k × P 1 k ; let B denote this scheme -called the base scheme of φ. We note that the degree of B, denoted deg(B) is equal to the bigraded Hilbert function of R/I for sufficiently high bidegree (µ, ν).

In analogy to a well-known degree formula in the projective case, one has the following degree formula in the biprojective counterpart (see, e.g., [START_REF] Botbol | The implicit equation of a multigraded hypersurface[END_REF]Lemma 7

.4]): deg(φ) = 2ab - x∈B e x (I), (4.1) 
where deg(φ) stands for the field degree of the rational map φ and e x (I) stands for the Hilbert-Samuel multiplicity of I on the localization R p at the defining prime ideal p of the point x. An important property of this latter multiplicity is that it is equal to the length of the residue of R p modulo the ideal generated by two general k-linear combinations of the polynomials f 0 , f 1 , f 2 .

In particular, the degree formula (4.1) can be easily derived from this property as follows. Two linear forms in three variables define a point P in the target P 2 k and the corresponding linear combinations of f 0 , f 1 , f 2 define a subscheme Y P in P 1 k × P 1 k giving the inverse image of P by φ off B. On an open subset of P 2 k , or equivalently of the space of coefficients of the linear forms, the inverse image is a finite set. Hence, for a general point P , Y P is a complete intersection of degree 2ab and is the union of a component X P not meeting B, of degree equal to the degree of the map (notice that X P is reduced by Bertini's theorem) and a component with support B in which each point x has multiplicity equal to e x (I). Indeed, the multiplicity at a point x is constant and equal to its minimal value for two linear forms corresponding to a dense open subset of P 2 k ; this value is e x (I) by Proposition 1.3.24.

Counting linear syzygies

We denote by Syz(I) ⊆ R 3 the module of syzygies of I. It is a bigraded module and the linear syzygies correspond to the graded parts Syz(I) (1,0) and Syz(I) (0,1) . In other words, in the structural bigraded exact sequence

0 -→ Z 1 -→ R 3 (-a, -b) (f 0 ,f 1 ,f 2 ) -----→ I -→ 0,
we have the identification Syz(I) = Z 1 (a, b). In the sequel, we will use the notation K • , Z • , B • and H • to refer to the terms, cycles, boundaries and homology modules of the Koszul complex of the sequence f 0 , f 1 , f 2 . We set n := (x, y) ∩ (u, v) = (xu, xv, yu, yv) ⊂ R for the ideal generated by all monomials of bidegree (1, 1). Recall the following bigraded exact sequence in local cohomology

0 -→ H 0 n (R/I) -→ R/I -→ (µ,ν)∈Z 2 H 0 (P 1 k × P 1 k , O B (µ, ν)) -→ H 1 n (R/I) -→ 0. (4.2)
In the following, an upper right star * attached to an R-module will denote its Matlis dual.

Lemma 4.3.1. Set Ω := {(µ, ν) ∈ Z 2 | -2b < bµ -aν < 2a}. Then H 1 n (R/I) (µ,ν) (H 1 ) * (3a-µ-2,3b-ν-2) ,
for every (µ, ν) ∈ Ω Proof. Let K • be the Koszul complex of the sequence f 0 , f 1 , f 2 . The argument hinges on the two spectral sequences associated to the double complex

C p q = C p n (K q ) 0 0 0 0 0 / / C 0 n (K 3 ) / / C 0 n (K 2 ) / / C 0 n (K 1 ) / / C 0 n (K 0 ) / / 0 0 / / C 1 n (K 3 ) / / C 1 n (K 2 ) / / C 1 n (K 1 ) / / C 1 n (K 0 ) / / 0 0 / / C 2 n (K 3 ) / / C 2 n (K 2 ) / / C 2 n (K 1 ) / / C 2 n (K 0 ) / / 0 0 / / C 3 n (K 3 ) / / C 3 n (K 2 ) / / C 3 n (K 1 ) / / C 3 n (K 0 ) / / 0 0 0 0 0
One of them abuts at step two with:

H 0 n (H 3 ) H 0 n (H 2 ) H 0 n (H 1 ) H 0 n (H 0 ) H 1 n (H 3 ) H 1 n (H 2 ) H 1 n (H 1 ) H 1 n (H 0 ) 0 0 0 0 0 0 0 0
The other one gives at step one:

0 -→ 0 -→ 0 -→ 0 0 -→ 0 -→ 0 -→ 0 H 2 n (K 3 ) -→ H 2 n (K 2 ) -→ H 2 n (K 1 ) -→ H 2 n (K 0 ) H 3 n (K 3 ) -→ H 3 n (K 2 ) -→ H 3 n (K 1 ) -→ H 3 n (K 0 ) Notice that for every (µ, ν) ∈ Ω, H 2 n (R) (µ,ν) = 0, hence H 2 n (K j ) (µ,ν) = 0 for all j = 0, . . . , 3. Moreover H 3 n (K q ) K * 3-q [2 -3a, 2 -3b]
for every q = 0, . . . , 3. Therefore, this spectral sequence at step two in bidegree (µ, ν) ∈ Ω gives

0 0 0 0 0 0 0 0 0 0 0 0 H * 0 [2 -3a, 2 -3b] H * 1 [2 -3a, 2 -3b] H * 2 [2 -3a, 2 -3b] H * 3 [2 -3a, 2 -3b]
By comparing the two spectral sequences, one has H 2 = H 3 = 0 and for all (µ, ν) ∈ Ω, we have

H 1 n (R/I) (µ,ν) (H 1 ) * (3a-µ-2,3b-ν-2) = * Hom R ((H 1 ) (3a-µ-2,3b-ν-2) , k) as claimed.
Next, let throughout I sat := I : n ∞ denote the saturation of I with respect to n = (x, y) ∩ (u, v).

Proposition 4.3.2. With the above notation, one has

(i) If 0 < b < 2a then dim k Syz(I) (1,0) = deg(B) -dim k (R/I sat ) (2a-3,2b-2) . (ii) If 0 < a < 2b then dim k Syz(I) (0,1) = deg(B) -dim k (R/I sat ) (2a-2,2b-3) .
Proof. (i) Observe that since (B 1 ) (a+1,b) = 0, Lemma 4.3.1 and (4.2) imply that

dim k Syz(I) (1,0) = dim k (Z 1 ) (a+1,b) = dim k (H 1 ) (a+1,b) = dim k H 1 n (R/I) (2a-3,2b-2) = deg(B) -dim k (R/I sat ) (2a-3,2b-2) .
(ii) is proved similarly.

Birationality of bidegree (1, 1) maps

As noticed at the beginning of Section 4.3, the birationnality of bidegree (1, 1) maps can be easily characterized by means of linear syzygies. Below, we reprove this fact using Proposition 4.3.2.

Proposition 4.3.3. Let φ : P 1 k × P 1 k P 2
k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 of bidegree (1, 1) without common factor in R \ k. The following three assertions are equivalent:

(i) φ is birational, (ii) the polynomials f 0 , f 1 , f 2 have a nonzero bidegree (1, 0) syzygy, (iii) the polynomials f 0 , f 1 , f 2 have a nonzero bidegree (0, 1) syzygy.

Proof. The map φ is birational if and only if deg(φ) = 1 and by the degree formula (4.1) this is equivalent to having deg(B) = x∈B e x (I) = 1. Now, by Proposition 4.3.2 with a = b = 1, we have

dim k Syz(I) (1,0) = deg(B) -dim k (R/I sat ) (-1,0) = deg(B), dim k Syz(I) (0,1) = deg(B) -dim k (R/I sat ) (0,-1) = deg(B).
Therefore, φ is birational if and only if dim k Syz(I) (1,0) = 1, or equivalently if and only if dim k Syz(I) (0,1) = 1.

The above birationality criterion can be translated into a numerical effective test. For that purpose, set

f i (x, y; u, v) := c i,0 xu + c i,1 xv + c i,2 yu + c i,3 yv.
We seek a triple of polynomials g 0 , g 1 , g 2 that are linear forms in x, y (or equivalently u, v) and such that g i f i ≡ 0. Such a triple can be found as elements in the kernel of a matrix M whose columns are filled with the coefficients of the polynomials

xf 0 , yf 0 , xf 1 , yf 1 , xf 2 , yf 2
in a basis of bihomogeneous polynomials of bidegree (2, 1), typically

x 2 u, x 2 v, y 2 u, y 2 v, xyu, xyv.
The matrix M is hence the following 6 × 6-matrix

M =           c 0,0 0 c 1,0 0 c 2,0 0 c 0,1 0 c 1,1 0 c 2,1 0 0 c 0,2 0 c 1,2 0 c 2,2 0 c 0,3 0 c 1,3 0 c 2,3 c 0,2 c 0,0 c 1,2 c 1,0 c 2,2 c 2,0 c 0,3 c 0,1 c 1,3 c 1,1 c 2,3 c 2,1           .
As a consequence, in Proposition 4.3.3, we could add as a fourth item the statement that det(M ) = 0.

Birationality of bidegree (1, 2) maps

Before providing our birationality criteria in this case, we establish the following technical lemma.

Lemma 4.3.4. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map defined by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (1, 2) without common factor in R \ k. Set I = (f 0 , f 1 , f 2 ) ⊂ R. Then, we have (i) dim k Syz(I) (0,1) = deg(B) -2, (ii) dim k Syz(I) (1,1) = deg(B). Proof. (i) Since (a, b) = (1, 2), Proposition 4.3.2 shows that dim k Syz(I) (0,1) = deg B -dim k (R/I sat ) (0,1) .
If deg(B) = 1, then the base scheme of φ consists of a single simple point. Therefore I sat = (x, u) up to a coordinate change, hence dim k (R/I sat ) (0,1) = 1 and we deduce that there is no nonzero syzygy of bidegree (0, 1), as claimed. Now, we assume that deg(B) ≥ 2. Since dim k (R (0,1) ) = 2, it suffices to show that I sat (0,1) = 0. Thus, suppose that I sat (0,1) = 0; without loss of generality we may assume that u ∈ I sat . Now, since deg(B) ≥ 2, there exists a form q(x, y) of bidegree (2, 0) such that I sat ⊂ (q, u). But since f i ∈ I sat , we have

f i = a i q + b i u, i = 0, 1, 2.
As deg(f i ) = (1, 2), we deduce that a 0 = a 1 = a 2 = 0 and that u divides f i for all i = 0, 1, 2; this is a contradiction.

(ii) By inspecting the shifts of bidegrees in the Koszul complex of the sequence f 0 , f 1 , f 2 , and taking into account that the f i 's are of bidegree (1, 2), we observe that

dim k Syz(I) (1,1) = dim k (Z 1 ) (2,3) = dim k (H 1 ) (2,3) .
Applying Lemma 4.3.1 (we have (-1, 1) ∈ Ω), we get the equality

dim k (H 1 ) (2,3) = dim k H 1 n (R/I) (-1,1) .
Now, the exact sequence (4.2) restricted to bidegree (-1, 1) yields the equality

dim k H 1 n (R/I) (-1,1) = deg(B) -dim k (R/I sat ) (-1,1) = deg(B)
and the claimed equality is proved. Theorem 4.3.5. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (1, 2) without common factor in R \ k. Setting I = (f 0 , f 1 , f 2 ) ⊂ R, the following four assertions are equivalent:

(i) φ is birational, (ii) deg(B) = 3, and hence I is generically a complete intersection,

(iii) dim k Syz(I) (0,1) = 1, (iv) dim k Syz(I) (1,1) = 3.
Proof. Since (ii) is equivalent to both (iii) and (iv) by Lemma 4.3.4, it suffices to show that (i) and (ii) are equivalent. Now, by the degree formula (4.1), we have

x∈B e x (I) = 4 -deg(φ) ≤ 3. (4.3)
Moreover, by property of the Hilbert-Samuel multiplicity we also have deg(B) ≤ x∈B e x (I) with equality if and only if I is generically a complete intersection, by Proposition 1.3.24. Therefore, if deg(B) = 3 then x∈B e x (I) = 3, so that I is generically a complete intersection, and from (4.3) we deduce that deg(φ) = 1, i.e. φ is birational. Thus, we have just proved that (ii) implies (i). To prove the converse, suppose that deg(B) = 3. Then, necessarily, deg(B) ≤ 2 and this implies that I is generically a complete intersection. Therefore deg(B) = x∈B e x (I) ≤ 2 and hence φ cannot be birational by (4.3). It follows that (i) is equivalent to (ii).

Remark 4.3.6. Item (iii) provides us with a minimal syzygy of bidegree (0, 1) so that u( 2

i=0 a i f i ) = v( 2 i=0 b i f i )
for some a i 's and b i 's in k. It follows that there exist three polynomials p, q, r of bidegree (1, 1) such that I = (pu, pv, qu + rv). Therefore, I is a perfect ideal generated by the 2-minors of the matrix

M :=    v q -u r 0 -p    .
Thus, one could add yet another equivalent condition to Theorem 4.3.5, namely that the ideal I has a free R-resolution of the form

0 / / R(-1, -3) ⊕ R(-2, -3) M / / R(-1, -2) 3 / / R / / R/I / / 0.
Note that, in this format, three independent (1, 1)-syzygies of I are (xv, -xu, 0), (yv, -yu, 0), (q, r, -p), the first two being non-minimal. Hence, in contrast to the spirit of Proposition 4.3.3, in item (iv) of the above theorem Syz(I) (1,1) is not spanned by 3 minimal syzygies of bidegree (1, 1).

Corollary 4.3.7. If φ is birational, then dim k Syz(I) (1,0) = 0.
Proof. This is an immediate consequence of Remark 4.3.6, using the fact that p and qu + rv have no proper common factor as I has codimension 2.

Remark 4.3.8. Theorem 4.3.5 and Corollary 4.3.7 provide another illustration that the converse of Proposition 4.2.3 does not hold, here for some dominant rational maps from P 1 k × P 1 k to P 2 k .

Birationality of bidegree (2, 2) maps

Unlike the cases of rational maps of bidegree (1, 1) or (1, 2), the linear syzygies associated to a given parameterization are not enough to give birational criterion in higher bidegrees. Yet, in the case of bidegree (2, 2), we are able to describe a complete list of such birational maps. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (2, 2). We set I = (f 0 , f 1 , f 2 ) and we denote by B the base scheme of φ which is assumed to be zero-dimensional (i.e. supported on a finite set of points). The degree formula yields the equality

deg(φ) = 8 - x∈B e x (I). (4.4) 
And since deg(φ) ≥ 1, we deduce that

1 ≤ deg B ≤ x∈B e x (I) ≤ 7.
For a codimension 2 bihomogeneous prime ideal p ⊃ I, we will set d p := dim k (R p /I p ) ( point degree ) and let as before e p denote the Hilbert-Samuel multiplicity of I on p. As is well-known, e p ≥ d p , with equality if and only if I p is a complete intersection (a fact we have already used in the proof of Theorem 4.3.5). By abuse, one may think of p as belonging to B; as such it is the defining prime ideal of a point p ∈ P 1 k × P 1 k . First, we remark the following: Lemma 4.3.9. Assume the above notation. If φ is birational then deg B ≤ 6. Moreover, if deg B = 6 then I is perfect with a minimal resolution of the form :

0 / / R(-3, -3) 2 / / R(-2, -2) 3 / / I / / 0,
Proof. Two general k-linear combinations of the f i 's define a scheme on the support of B plus an additional simple point q that does not share any coordinate with the base points (the argument is similar to the one given in the last paragraph of the introduction of Section 4.3). If deg B = 7 then choose a point p in the support of B, and if deg B = 6 then take p as the point for which the Hilbert-Samuel multiplicity is not equal to its degree. After a linear change of coordinates on the source and target spaces, we may and will assume that q = (1, 0) × (1, 0), p = (0, 1) × (0, 1), i.e. q = (y, v), p = (x, u) and (f 0 , f 1 ) = (y, v) ∩ J ∩ K ∩ L where J ⊂ (x, u) is unmixed with associated primes corresponding to the support of B, while K (respectively L) is (x, y)-primary (respectively (u, v)-primary) of degree 4 and generically a complete intersection (i.e. the image of K (respectively L) in k(u, v)[x, y] (respectively k(x, y) [u, v]) is a complete intersection). Now, we observe that the defining ideal of B is either J if deg B = 7, or either J : R (x, u) if deg B = 6. The latter is a consequence of liaison, see Proposition 1.3.11. Furthermore, we have that K : R (x, y) = (x, y) 2 and L : R (u, v) = (u, v) 2 . Therefore (f 0 , f 1 ) : R (xv, yu) = (J : R (x, u)) ∩ (x, y) 2 ∩ (u, v) 2 and in particular ((f 0 , f 1 ) : R (xv, yu)) (2,2) = (J : R (x, u)) (2,2) . By rewriting f 0 = Axv + Byu and f 1 = Cxv + Dyu, we get

(f 0 , f 1 ) : R (xv, yu) = (f 1 , f 2 , AD -BC).
Now, f 2 ∈ I ⊆ (J : R (x, u))∩(x, y) 2 ∩(u, v) 2 . As the f i 's are linearly independent, f 2 is a nonzero multiple of AD -BC modulo f 0 and f 1 , hence we should have I = (f 0 , f 1 ) : R (xv, yu) which is unmixed of degree 6. This rules out the possibility of having deg B = 7 and concludes the proof.

Fix p ∈ B. By changing coordinates, there is no loss of generality in assuming p = (0, 1) × (0, 1), i.e., p = (x, u). We now discuss how the strict inequality e p > d p reflects in the form of the generators of I. For this, we resort to explicit computations on the affine piece y = v = 1. Now, one has I ⊂ (x, u) (2,2) and the latter is spanned by the monomials xyv 2 , y 2 uv, x 2 v 2 , xyuv, y 2 u 2 , x 2 uv, xyu 2 , x 2 u 2 . Therefore, for j = 0, 1, 2, g j := f j (x, 1, u, 1) is a k-linear combination of the monomials {x, u, x 2 , xu, u 2 , x 2 u, xu 2 , x 2 u 2 }. Set J := (g 0 , g 1 , g 2 ) ⊂ S := k[x, u].

Consider the total order > on the monomials of S by decreeing

1 > x > u > x 2 > xu > u 2 > x 3 > x 2 u > xu 2 > u 3 > x 4 > x 3 u > x 2 u 2 > • • • .
Let in(J) be the initial ideal J with respect to the order >. Therefore d p = dim(k[x, u]/in(J)).

Lemma 4.3.10. With the above notation, the equality d p = e p holds except in the following cases: (i) J = (x, u) 2 , in which case d p = 3, e p = 4, (ii) J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0, in which case d p = 5, e p = 6.

(iii) J = (xu + µu 2 + xu 2 , x 2 + αxu + βu 2 , x 2 u 2 ), µ = 0, in which case one has 4 ≤ deg B ≤ 5 and x∈B e x (I) ≤ 6.

Proof. Write d p = n, n ≥ 1. We will argue in terms of the initial ideal in(J). We first consider the easy case where x ∈ in(J) or u ∈ in(J). The argument will be totally symmetric in the two cases, so it suffices to consider one of them, say, x ∈ in(J). Then u n ∈ in(J) and u n-1 / ∈ in(J), hence in(J) = (x, u n ). Letting then h 1 , h 2 ∈ J be polynomials such that in(h 1 ) = x, in(h 2 ) = u n , {h 1 , h 2 } will be a Gröbner basis of J. Therefore, J is a complete intersection, hence d p = e p .

Next consider the case where neither x ∈ in(J) nor u ∈ in(J). Notice that x 2 ∈ in(J), as otherwise in(J) ⊂ (u). We now analyse all possibilities: both xu and u 2 belong to in(J); xu ∈ in(J) and u 2 / ∈ in(J); xu / ∈ in(J) and u 2 ∈ in(J); and neither xu nor u 2 belongs to in(J), respectively.

Case 1: xu, u 2 ∈ in(J). By the chosen order of the monomials, one must have {x 2 , xu, u 2 } ⊂ J. But certainly J ⊂ (x 2 , xu, u 2 ) since it does not contain either x or u and further {x 2 u, xu 2 , x 2 u 2 } ⊂ (x 2 , xu, u 2 ). This shows that that J = (x, u) 2 , in which case d p = 3 and e p = 4.

Case 2: xu ∈ in(J) and u 2 / ∈ in(J). Hence e p ≥ d p ≥ 4. Write

g 0 = x 2 + λu 2 + xul, g 1 = xu + µu 2 + xul , g 2 = xul
where (λ, µ) = (0, 0) and l, l , l belong to the k-vector space spanned by x, u, xu.

If µ = 0 (hence λ = 0) then xu ∈ J and x 2 + λu 2 ∈ J, thus showing that e p ≤ 4, and hence that d p = e p = 4.

If µ = 0, pick explicit coefficients for l, l , l :

g 0 = x 2 + λu 2 + a 1 x 2 u + b 1 xu 2 + c 1 x 2 u 2 , g 1 = xu + µu 2 + a 2 x 2 u + b 2 xu 2 + c 2 x 2 u 2 , g 2 = a 3 x 2 u + b 3 xu 2 + c 3 x 2 u 2 .
We are led to consider the following sub-cases: (a) If (a 3 , b 3 ) = (0, 1), then xu 2 ∈ J, hence x 2 u ∈ J. It follows that J ⊃ (x 2 + λu 2 , xu + µu 2 ) which show that e p = 4. (b) If (a 3 , b 3 ) = (1, ν), then we write:

g 0 = x 2 + λu 2 + axu 2 + bx 2 u 2 , g 1 = xu + µu 2 + cxu 2 + dx 2 u 2 , g 2 = x 2 u + νxu 2 + ex 2 u 2 . Therefore xg 1 -g 2 = (µ -ν)xu 2 + (c -e)x 2 u 2 + dx 3 u 2 . If µ = ν then xu 2 ∈ J.
Hence J ⊃ (x 2 + λu 2 , xu + µu 2 ) which shows that e p = 4. Conversely, if µ = ν = 1, then we write:

g 0 = x 2 -λxu + αxu 2 + βx 2 u 2 , g 1 = xu + u 2 + γxu 2 + δx 2 u 2 , g 2 = x 2 u + xu 2 + ξx 2 u 2 .
Taking g 2 -ug 0 ∈ J gives xu 2 ∈ J, therefore J ⊃ (x 2 + λu 2 , xu + u 2 ) which shows that e p = 4. (c) If (a 3 , b 3 ) = (0, 0), then we write:

g 0 = x 2 + λu 2 + ax 2 u + bxu 2 , g 1 = xu + µu 2 + cx 2 u + dxu 2 , g 2 = x 2 u 2 .
Since x 2 u 2 ∈ I, B has only one prime p, which shows that deg B = d p and x∈B e x (I) = e p . It is easy to see that x 4 ∈ J, hence 4 ≤ d p ≤ 5. Moreover (x, u) 4 ⊂ J, hence x 2 u + µxu 2 ∈ J. We can write

g 0 = x 2 + λu 2 + (b -aµ)xu 2 , g 1 = xu + µu 2 + (d -cµ)xu 2 , g 2 = x 2 u 2 . If b -aµ = d -cµ = 0 then J ⊃ (x 2 + λu 2 , xu + µu 2 ) which shows that d p = e p = 4. Conversely, if (b -aµ) 2 + (d -cµ) 2 = 0 then J ⊃ (xu + µu 2 + xu 2 , x 2 + αxu + βu 2 ),
therefore e p ≤ 6.

Case 3: xu /

∈ in(J) and u 2 ∈ in(J). Therefore d p ≥ 4. We write

g 0 = x 2 + λxu + xu(ax + bu + cxu), g 1 = u 2 + xu(a x + b u + c xu), g 2 = xu(a x + b u + c xu). Since g 1 -a ug 0 = u 2 (1 + αx + βx 2 + γxu + δx 2 u) ∈ J, hence u 2 ∈ J, therefore x 2 + λxu + ax 2 u ∈ J. It follows that (u 2 , x 2 + λxu + ax 2 u) ⊂ J.
Consider the codimension 2 homogeneous ideal G = (u 2 , x 2 z + λxuz + ax 2 u) ⊂ T := k[x, u, z] obtained by homogenizing the two generators of the leftmost ideal in the above inclusion. Then T /G is a complete intersection of degree 6 supported on two points in P 2 k , namely, q 1 = (0 : 0 : 1) and q 2 = (1 : 0 : 0). Letting q 1 , q 2 denote the respective defining prime ideals, one has d q 2 = e q 2 = 2, hence d q 1 = e q 1 = 4. Since e p ≤ e q 1 = 4, therefore e p = d p = 4.

Case 4: xu, u 2 / ∈ in(J). It is seen that d p ≥ 5. We can write

g 0 = x 2 + λu 2 + µxu + xu(ax + bu + cxu), g 1 = a 1 x 2 u + b 1 xu 2 + c 1 x 2 u 2 , g 2 = a 2 x 2 u + b 2 xu 2 + c 2 x 2 u 2 ,
where λ = 0. Again, consider the following sub-cases:

(a) If a 1 = a 2 = 0, then (b 1 , b 2 ) = (0, 0). Therefore, we obtain

g 0 = x 2 + λu 2 + µxu + ax 2 u, g 1 = xu 2 , g 2 = x 2 u 2 .
Since g 2 = xg 1 , hence J = (g 0 , g 1 ) is a complete intersection, therefore e p = d p .

(b) If a 1 = 1 and b 2 = 0. We obtain

g 0 = x 2 + λu 2 + µxu + αx 2 u + βxu 2 , g 1 = x 2 u + γxu 2 , g 2 = x 2 u 2 .
If γ = 0, then J = (g 0 , g 1 ) is a complete intersection, hence e p = d p . We deduce that γ = 0 and hence xu 3 = γ -1 (ug 1 -g 2 ) ∈ J. Write

g 0 = x 2 + λu 2 + µxu + αx 2 u, g 1 = x 2 u + γxu 2 , g 2 = x 2 u 2 .
It is easy to see that u 4 ∈ J. If u 3 / ∈ in(J), then d p = e p = 7. Conversely, if u 3 ∈ in(J), then 5 ≤ d p ≤ 6. Moreover, since xu 2 / ∈ in(J), we obtain in(J) = (x 2 , u 3 ). Therefore, there exists a Gröbner basis of J of two polynomials, hence J is a complete intersection. (c) If a 1 = 1 and b 2 = 1. We obtain

g 0 = x 2 + λu 2 + µxu + αx 2 u 2 , g 1 = x 2 u + βx 2 u 2 = x 2 u(1 + βu), g 2 = xu 2 + γx 2 u 2 = xu 2 (1 + γx).
It follows that x 2 u, xu 2 ∈ J. We write ug 0 = x 2 u + λu 3 + µxu 2 + ax 2 u 3 ∈ J, which shows that u 3 ∈ J. It follows that d p = 5 and e p = 6. In this case J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0. Now, we derive consequences of the above technical lemma and the degree formula (4.4).

Corollary 4.3.11. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials

f 0 , f 1 , f 2 ∈ R of bidegree (2, 2) without common factor in R \ k. If φ is birational then deg B = 6.
Theorem 4.3.12. Let φ : P 1 k × P 1 k P 2 k be a dominant rational map given by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (2, 2) without common factor in R\k. Assume that the point in B with the largest multiplicity is the point p := (x, u). Let J be the ideal generated by f 0 (x, 1, u, 1), f 1 (x, 1, u, 1), f 2 (x, 1, u, 1). Then φ is birational if and only if deg B = 6 and J = (x, u) 2 or J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0.

Proof. First, assume that φ is birational. Corollary 4.3.11 shows that deg(B) = 6. Moreover, by (4.4) we have x∈B e p = 7 and hence Lemma 4.3.10 implies that (d p , e p ) = (3, 4) or (d p , e p ) = (5, 6), that is to say J = (x, u) 2 or J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0, as claimed.

For the converse it suffices to prove that if deg B = 6 and J = (x, u) 2 or J = (x 2 + λu 2 + µxu, x 2 u, xu 2 ), λ = 0, then φ is birational, i.e. x∈B e x (I) = 7. We now analyse these two possibilities.

Case 1: Suppose that deg B = 6 and J = (x, u) 2 ∈ B. Let {p 1 , . . . , p r } denote the primes of B other than p = (x, u). Since d p = 3, then r i=1 d p i = 3. Thus, in order to have the total sum x∈B e x (I) = 7 is now tantamount to having J p i a complete intersection for every i = 1, . . . , r. But this is clear because Lemma 4.3.10 shows that otherwise d p i = 3 and e p i = 4, for every i = 1, . . . , r.

Case 2: Suppose that deg B = 6 and J = (x 2 +λu 2 +µxu, x 2 u, xu 2 ), λ = 0. Since deg B = 6, Lemma 4.3.10 implies that B has only one prime q other than p = (x, u), with d q = 1 and e q = 1. Therefore x∈B e x (I) = 7 as required.

By Lemma 4.3.9, if φ :

P 1 k × P 1 k P 2
k is a birational map defined by bihomogeneous polynomials f 0 , f 1 , f 2 ∈ R of bidegree (2, 2) without common factor in R \ k, then, I = (f 0 , f 1 , f 2 ) is perfect ideal with exactly two minimal syzygies, of bidegree (1, 1). Indeed, the free resolution of I is of the form

0 / / R(-3, -3) 2 M / / R(-2, -2) 3 / / I / / 0.
To understand the shape of the matrix M , we consider three cases.

Case 1: Suppose that B = {p 1 , p 2 , p 3 } ⊂ P 1 k × P 1 k with d p 1 = 3, d p 2 = 2 and d p 3 = 1. By a suitable coordinate change, one can assume without loss of generality that the three primes are p 1 = (x, u), p 2 = (y, v) and p 3 = (x + y, u + v). Accordingly

I ⊂ (x, u) 2 ∩ (y 2 , v) ∩ (x + y, u + v).
Now, I is generated by elements of bidegree (2, 2). A computation with Macaulay2 gives that {x 2 v(u + v), xuv(x + y), y 2 u 2 -xyuv} are the only forms of bidegree (2, 2) in the variables x, y, u, v. In particular, I must be contained in the ideal generated by these three forms, and hence coincides with it. These three forms are the 2-minors of the following 3 × 2 matrix

M =    u(x + y) yu -x(u + v) -yu 0 xv    .
Case 2: Suppose that B = {p 1 , p 2 , p 3 , p 4 } ⊂ P 1 k ×P 1 k with d p 1 = 3 and d p i = 1, i = 2, 3, 4. By the same token as in the first case, we may assume that p 1 = (x, u), p 2 = (y, v), p 3 = (x + y, u + v) and p 4 = (ax + y, αu + v), for suitable coefficients a, α ∈ k with (a, α) = (1, 1). Accordingly,

I ⊂ (x, u) 2 ∩ (y, v) ∩ (x + y, u + v) ∩ (ax + y, αu + v).
Repeating the same computational device as in the first case, one obtains that I is generated by the following forms

{(yu -xv)(αxu + xv), (axu + yu)(yu -xv), (α -a)x 2 uv + (α -1)xyuv -(a -1)x 2 v 2 }.
Once again, one can verify that these forms are the 2-minors of the 3 × 2 matrix

M =    (ax + y)u (a -1)xv -x(αu + v) -(α -1)xv 0 yu -xv    .
If α = a, the three minors have no factor in common and it follows that M provides the free resolution of I. If α = a, then all elements of bidegree (2, 2) in (x, u) 2 ∩ (y, v) ∩ (x + y, u + v) ∩ (ax + y, au + v) are multiple of yu -xv, contradicting the hypothesis that the f i 's have no common factor.

Case 3: Suppose that B = {p, q} ⊂ P 1 k × P 1 k with d p = 5 and d q = 1. Always by the same token, we may assume that p = (x, u) and q = (y, v). Accordingly, one has I ⊂ (x 2 + λu 2 + µxu, x 2 u, xu 2 ) ∩ (y, v), for suitable λ ∈ k \ 0. Since then

I ⊂ (x 2 v 2 + λy 2 u 2 + µxyuv, x 2 uv, xyu 2 ),
it must be generated by these three forms of bidegree (2, 2).

As before, direct inspection shows that I is perfect with syzygy matrix

M =    xu 0 -xv yu λyu + µxv xv    .

Modeling: tensor-product maps in the plane

In this section we will explore the consequences of our previous results to the field of geometric modeling. Indeed, in this field bigraded rational maps are intensively used to describe parameterizations of curves, surfaces and volumes, including plane parameterizations. For that purpose, the Bernstein basis is preferred to the usual power basis for representing polynomials. Recall that the homogeneous Bernstein polynomials are defined by the formula

B n i (x, y) = n i y i (x -y) n-i .
They are homogeneous of degree n and any homogeneous polynomial of degree n can be written as a linear combination of them. Consequently, a bihomogeneous polynomial of bidegree (a, b) can be written as a linear combination of all the products B a i (x, y)B b j (u, v), i = 0, . . . , a and j = 0, . . . , b. Rational maps written in this basis are dubbed tensor-product Bézier parameterizations.

It turns out that an important property of tensor-product Bézier parameterization is to guarantee their birationality. Moreover, an even more important property is to preserve this birationality property during a design process, that is to say when the coefficients of the defining polynomials are continuously modified (see e.g. Figure 4.1). In what follows, we will show how Proposition 4.3.3 and Theorem 4.3.5 allow to translate the detection of birationality as rank decision problems in the case of tensor-product parameterizations of bidegree (1, 1) and (1, 2).

Plane tensor-product parameterizations

For defining a bigraded rational map of bidegree (a, b) in Bernstein form we need to introduce a collection of control points P i,j = (x i,j , y i,j ) ∈ R 2 and their associated weights w i,j ∈ R. The map is then defined as

φ : P 1 R × P 1 R P 2 R (4.5) (x : y) × (u : v) →   i,j w i,j B a,b i,j : i,j w i,j x i,j B a,b i,j : i,j w i,j y i,j B a,b i,j   where B a,b i,j := B a i (x, y)B b j (u, v).
Observe that φ interpolates the control points, in the sense that φ ((1 : i) × (1 : j)) = (w i,j : w i,j x i,j : w i,j y i,j ), i = 0, 1, j = 0, 1.

In addition, if all the weights are equal to 1 then i,j w i,j B a,b i,j = 1, so that the control points P i,j fully control the map φ.

In general, the control points are the only coefficients of the map φ that are modified during a hand-design process because they really provide an intuitive way to reshape the parameterization φ. The weights are hidden behind and not used as an intuitive design tool. When the control points of a given birational parameterization are moved, then the new parameterization is in general no longer a birational parameterization. Below, we will illustrate how the weights of the map φ can be changed in order to retrieve a birational map without touching again to the control points modified by the designer.

Bilinear tensor-product parameterizations

Consider a bilinear rational map as defined in (4.5) with (a, b) = (1, 1). By Proposition 4.3.3, this rational map will be birational if and only if there exists a syzygy of bidegree (1, 0), or equivalently a syzygy of bidegree (0, 1). Writing this condition under a linear system in the Bernstein basis, we obtain the following matrix whose kernel yields those bidegree (1, 0) syzygies:

M :=          
x 0,0 w 0,0 0 y 0,0 w 0,0 0 w 0,0 0 x 0,1 w 0,1 0 y 0,1 w 0,1 0 w 0,1 0

1 2 x 1,0 w 1,0 1 2 x 0,0 w 0,0 1 2 y 1,0 w 1,0 1 2 y 0,0 w 0,0 1 2 w 1,0 1 2 w 0,0 1 2 x 1,1 w 1,1 1 2 x 0,1 w 0,1 1 2 y 1,1 w 1,1 1 2 y 0,1 w 0,1 1 2 w 1,1 1 2 w 0,1 0 x 1,0 w 1,0 0 y 1,0 w 1,0 0 w 1,0 0 x 1,1 w 1,1 0 y 1,1 w 1,1 0 w 1,1           .
As a consequence, the map is birational if and only if det(M ) = 0. Now, using the Laplace expansion formula of determinants by 3 × 3-blocks with respect to columns 1,3,5 and 2,4,6, we get the condition :

w 1,0 w 0,1 P0,0 P0,1 P1,0 • P0,1 P1,0 P1,1 -w 1,1 w 0,0 P0,0 P0,1 P1,1 • P0,0 P1,0 P1,1 × w 0,0 w 0,1 w 1,0 w 1,1 = 0

where Pi,j is the vector (x i,j , y i,j , 1) = (P i,j , 1). Weights are in general assumed to be nonzero; therefore, under this assumption we recover the following condition that already appeared in the recent paper [START_REF] Sederberg | Birational quadrilateral maps[END_REF]:

w 1,0 w 0,1 w 1,1 w 0,0 = P0,0 P0,1 P1,1 • P0,0 P1,0 P1,1 P0,0 P0,1 P1,0 • P0,1 P1,0 P1,1 . (4.6)
From here, it appears clearly that given the control points, a suitable modification of a single weight so that (4.6) holds, allow to obtain a birational map [START_REF] Sederberg | Birational quadrilateral maps[END_REF].

Bidegree (1, 2) tensor-product parameterizations

Now, consider a rational map as defined in (4.5) with (a, b) = (1, 2). By our previous results, this rational map will be birational if and only if there exists a syzygy of bidegree (0, 1). Proceeding as in the previous case of bilinear maps, we obtain the following multiplication matrix

M :=               
w 0,0 x 0,0 0 w 0,0 y 0,0 0 w 0,0 0 2 3 w 0,1 x 0,1 1 3 w 0,0 x 0,0 2 3 w 0,1 y 0,1 1 3 w 0,0 y 0,0 2 3 w 0,1 1 3 w 0,0 1 3 w 0,2 x 0,2 2 3 w 0,1 x 0,1 1 3 w 0,2 y 0,2 2 3 w 0,1 y 0,1 1 3 w 0,2 2 3 w 0,1 0 w 0,2 x 0,2 0 w 0,2 y 0,2 0 w 0,2 w 1,0 x 1,0 0 w 1,0 y 1,0 0 w 1,0 0

2 3 w 1,1 x 1,1 1 3 w 1,0 x 1,0 2 3 w 1,1 y 1,1 1 3 w 1,0 y 1,0 2 3 w 1,1 1 3 w 1,0 1 3 w 1,2 x 1,2 2 3 w 1,1 x 1,1 1 3 w 1,2 y 1,2 2 3 w 1,1 y 1,1 1 3 w 1,2 2 3 w 1,1 0 w 1,2 x 1,2 0 w 1,2 y 1,2 0 w 1,2                . (4.7)
It is 8×6-matrix and rank(M ) < 6 if and only if the corresponding map is birational.

Similarly, the analysis of bidegree (1, 1) syzygies leads to a square 12 × 12-matrix with the property that its rank drops by 3 if and only if the corresponding map is birational. Therefore, the decision of birationality is not given by a single polynomial condition as in the previous case of bilinear maps. Nevertheless, our syzygy-based formulation of birationality by means of the rank of the matrix M translates birationality decision to a rank decision problem. This opens a bridge to the field of numerical linear algebra where a huge amounts of works on this problem have been done during the last decades. In the following, we illustrate this link on an example with the help of a recent algorithm for structured low-rank approximation [START_REF] Schost | A quadratically convergent algorithm for structured low-rank approximation[END_REF].

We start with the canonical non-rational tensor-product parameterization of the plane, i.e. all the weights are set to 1 and the control points have a rectangular shape. More precisely, we set P i,j = (x i,j , y i,j ) = (i, j) for all i = 0, 1 and j = 0, 1, 2, which is illustrated on the left side of Figure 4.1. This initial parameterization is birational, which can be checked by observing that the matrix M specialized to this setting, that is to say the matrix

               0 0 0 0 1 0 0 0 2/3 0 2/3 1/3 0 0 2/3 2/3 1/3 2/3 0 0 0 2 0 1 1 0 0 0 1 0 2/3 1/3 2/3 0 2/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 0 1 0 2 0 1               
has rank 5. Now, as illustrated in Figure 4.1, suppose that these control points are "moved" in order to reach the following new coordinates : P 0,0 = (0, 0), P 0,1 = (-1/2, 1), P 0,2 = (0, 2), P 1,0 = (2, -1/2), P 1,1 = (5/2, 1), P 1,2 = (2, 5/2).

If the weights are left unchanged, i.e. all equal to 1, then this new parameterization is no longer birational. Indeed, it is straightforward to check that the matrix M specialized with these new control points and all weights equal to 1

               0 0 0 0 1 0 -1/3 0 2/3 0 2/3 1/3 0 -1/3 2/3 2/3 1/3 2/3 0 0 0 2 0 1 2 0 -1/2 0 1 0 5/3 2/3 2/3 -1/6 2/3 1/3 2/3 5/3 5/6 2/3 1/3 2/3 0 2 0 5/2 0 1               
has rank 6. So, we aim at changing the weights w i,j , without changing the control points, so that the parameterization becomes birational. For that purpose, we will apply the structured low-rank approximation algorithm developed in [START_REF] Schost | A quadratically convergent algorithm for structured low-rank approximation[END_REF].

Given a matrix M , the basic idea of structured low-rank approximation is to compute a matrix M of given rank r in a linear subspace E of matrices such that the distance, in the sense of the Frobenius norm, between M and M is small. Such an algorithm, based on Newton-like iterations, is given in [START_REF] Schost | A quadratically convergent algorithm for structured low-rank approximation[END_REF]. In our context, by (4.7) the matrix M can be written as

M = w 0,0 E 0,0 + w 0,1 E 0,1 + w 0,2 E 0,2 + w 1,0 E 1,0 + w 1,1 E 1,1 + w 1,2 E 1,2
where the E i,j 's are matrices of size 8 × 6 whose entries only depend on the control points. These latter define a linear subspace of matrices and we are looking for a matrix M such that M belongs to this linear subspace and its rank is lower or equal to 5. Thus, applying the algorithm in [START_REF] Schost | A quadratically convergent algorithm for structured low-rank approximation[END_REF], we find the following weights, up to numerical precision: w 0,0 ≈ 0.949726775368655, w 0,1 ≈ 1.0867765091791244, w 0,2 ≈ 0.9521336386754828, w 1,0 ≈ 1.0233828904581144, w 1,1 ≈ 0.9458573850234199, w 1,2 ≈ 1.0259764181881534, Therefore, by modifying the weights with the above values, the parameterization becomes birational up to numerical precision , which means in practice that its 5-minors yield inversion formulas for almost all points, up to numerical precision. 

Abstract:

We show the Cohen-Macaulayness and describe the canonical module of residual intersections J = a : R I in a Cohen-Macaulay local ring R, under sliding depth type hypotheses. For this purpose, we construct and study, using a recent article of Hassanzadeh and Naéliton [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF], a family of complexes that contains important informations on a residual intersection and its canonical module. We also determine several invariants of residual intersections as the graded canonical module, the Hilbert series, the Castelnuovo-Mumford regularity and the type. Finally, whenever I is strongly Cohen-Macaulay, we show duality results for residual intersections that are closely connected to results by Eisenbud and Ulrich [START_REF] Eisenbud | Duality and Socle Generators for Residual Intersections[END_REF]. It establishes some tight relations between the Hilbert series of some symmetric powers of I/a. We also provide closed formulas for the types and for the Bass numbers of some symmetric powers of I/a. The results in this chapter are joint work with M. Chardin and J. Naéliton and have been submitted [START_REF] Chardin | Cohen-Macaulayness and canonical module of residual intersections[END_REF].

Introduction

The concept of residual intersection was introduced by Artin and Nagata in [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], as a generalization of linkage; it is more ubiquitous, but also harder to understand. Geometrically, let X and Y be two irreducible closed subschemes of a scheme Z with codim Z (X) ≤ codim Z (Y ) = s and Y X, then Y is called a residual intersection of X if the number of equations needed to define X ∪ Y as a subscheme of Z is the smallest possible, i.e. s. For a ring R and a finitely generated R-module M , let µ R (M ) denotes the minimum number of generators of M .

The precise definition of a residual intersection is the following.

Definition 5.1.1. Let R be a Noetherian ring, I be an ideal of height g and s ≥ g be an integer.

1. An s-residual intersection of I is a proper ideal J of R such that ht(J) ≥ s and J = (a : R I) for some ideal a ⊂ I which is generated by s elements. 2. An arithmetic s-residual intersection of I is an s-residual intersection J of I such that µ Rp ((I/a) p ) ≤ 1 for all prime ideal p with ht(p) ≤ s. 3. A geometric s-residual intersection of I is an s-residual intersection J of I such that ht(I + J) ≥ s + 1.

Notice that an s-residual intersection is a direct link if I is unmixed and s = ht(I). Also any geometric s-residual intersection is arithmetic.

The theory of residual intersections is a center of interest since the 80's, after Huneke repaired in [START_REF] Huneke | Strongly Cohen-Macaulay schemes and residual intersections[END_REF] an argument of Artin and Nagata in [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], introducing the notion of strongly Cohen-Macaulay ideal: an ideal such that all its Koszul homlogy is Cohen-Macaulay. The notion of strong Cohen-Macaulayness is stable under even linkage, in particular ideals linked to a complete intersection satisfy this property.

In [START_REF] Huneke | Strongly Cohen-Macaulay schemes and residual intersections[END_REF] Huneke showed that if R is a Cohen-Macaulay local ring, J is a geometric s-residual intersection of a strongly Cohen-Macaulay ideal I of R satisfying G s , then R/J is Cohen-Macaulay of codimension s. Following [START_REF] Artin | Residual intersections in Cohen-Macaulay rings[END_REF], one says that I satisfies G s if the number of generators µ Rp (I p ) is at most dim(R p ) for all prime ideals p with I ⊂ p and dim(R p ) ≤ s -1 and that I satisfies G ∞ if I satisfies G s for all s. Later, Herzog, Vasconcelos, and Villarreal in [START_REF] Herzog | Ideals with sliding depth[END_REF] replaced the assumption strong Cohen-Macaulayness by the weaker sliding depth condition, for geometric residuals, but they also showed that this assumption cannot be weakened any further. On the other hand, Huneke and Ulrich proved in [START_REF] Huneke | Residual intersections[END_REF] that the condition G s is superfluous for ideals in the linkage class of a complete intersection, and more precisely:

Theorem. [START_REF] Huneke | Residual intersections[END_REF] Let R be a Gorenstein local ring and I be an ideal of height g that is evenly linked to a strongly Cohen-Macaulay ideal satisfying G ∞ . If J = a : R I is an s-residual intersection of I, then R/J is Cohen-Macaulay of codimension s and the canonical module of R/J is the (s -g + 1)-th symmetric power of I/a.

Let us notice that, in the proof of this statement, it is important to keep track of the canonical module of the residual along the deformation argument that they are using.

A natural question is then to know if the G s assumption is at all needed to assert that residuals of ideals that are strongly Cohen-Macaulay, or satisfy the weaker sliding depth condition, are always Cohen-Macaulay, and to describe the canonical module of the residual. In this direction, Hassanzadeh and Naéliton remarked in [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF] that the following long-standing assertions were, explicitely or implicitly, conjectured:

Conjectures. [HU88, Ulr92, CEU01] Let R be a Cohen-Macaulay local (or * local) ring. Suppose that I is strongly Cohen-Macaulay, or even just satisfies sliding depth. Then, for any s-residual intersection J = (a : R I) of I,

(1) R/J is Cohen-Macaulay.

(2) The canonical module of R/J is the (s -g + 1)-th symmetric power of I/a, if R is Gorenstein, with g = ht(I) ≤ s.

(3) a is minimally generated by s elements.

(4) J is unmixed.

(5) When R is positively graded over a field, the Hilbert series of R/J depends only upon I and the degrees of the generators of a.

The first conjecture was shown by Hassanzadeh [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF] for arithmetic residual intersections, thus in particular for geometric residual intersections, under the sliding depth condition. In the recent article [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF], Hassanzadeh and Naéliton proved that the second and fifth conjectures hold for the arithmetic residual intersections of strongly Cohen-Macaulay ideals and that the third and fourth conjectures are true if depth(R/I) ≥ dim(R) -s and I satisfies the sliding depth condition.

In this chapter we will complete the picture, by showing that the first and fifth conjectures hold whenever I satisfies SD 1 and that the second conjecture is true if I satisfies SD 2 -recall that an ideal I = (f ) = (f 1 , . . . , f r ) of height g in a Noetherian local ring R of dimension d satisfies SD k (k ≥ 0) if depth(H i (f ; R)) ≥ min{d -g, d -r + i + k} for all i ≥ 0; note that SD 0 is the sliding depth condition and I satisfies SD r-g if and only if I is strongly Cohen-Macaulay.

In particular all items in the conjecture holds for strongly Cohen-Macaulay ideals. The following puts together part of these results: Theorem (Theorems 5.4.6, 5.4.9 and 5.6.2). Let (R, m) be a Cohen-Macaulay local ring with canonical module ω. Assume that J = (a : R I) is an s-residual intersection of I with a ⊂ I and ht

(I) = g ≤ s = µ R (a). Then (i) R/J is Cohen-Macaulay of codimension s if I satisfies SD 1 . If furthermore Tor R 1 (R/I, ω) = 0, then (ii) ω R/J Sym s-g+1 R (I/a) ⊗ R ω, provided I satisfies SD 2 . (iii) ω Sym k R (I/a) Sym s-g+1-k R (I/a) ⊗ R ω for 1 ≤ k ≤ s -g, provided I is strongly Cohen-Macaulay. Notice that Tor R 1 (R/I, ω) = 0 if R is Gorenstein or I has finite projective dimen- sion.
A key ingredient of our proofs is a duality result between some of the first symmetric powers of I/a together with a description of the canonical module of the residual as in items (ii) and (iii) above. This could be compared to recent results of Eisenbud and Ulrich in [START_REF] Eisenbud | Duality and Socle Generators for Residual Intersections[END_REF] where similar dualities were obtained under slightly different hypotheses. In their work, conditions on the local number of generators are needed and depth conditions are asked for some of the first powers of the ideal I, along the lines of [START_REF] Ulrich | Artin-Nagata properties and reductions of ideals[END_REF], and the duality occurs between powers I t /aI t-1 in place of symmetric powers Sym t R (I/a). Although their results and ours coincide in an important range of situations, like for geometric residuals of strongly Cohen-Macaulay ideals satisfying G s , the domains of validity of the two results are quite distinct. We prove the following.

Theorem (Theorem 5.6.7). Let (R, m) be a Gorenstein local ring and let a ⊂ I be two ideals of R, with ht(I) = g. Suppose that J = (a : R I) is an s-residual intersection of I. If I is strongly Cohen-Macaulay, then ω R/J Sym s-g+1 R/J (I/a) and for all 0 ≤ k ≤ s -g + 1 (i) the R/J-module Sym k R/J (I/a) is faithful and Cohen-Macaulay, (ii) the multiplication

Sym k R/J (I/a) ⊗ R/J Sym s-g+1-k R/J (I/a) -→ Sym s-g+1 R/J (I/a)
is a perfect pairing, (iii) setting A := Sym R/J (I/a), the graded R/J-algebra

A := A/A >s-g+1 = s-g+1 i=0 Sym i R/J (I/a)
is Gorenstein.

The chapter is organized as follows.

In Section 5.2, we prove duality results for Koszul cycles in Propositions 5.2.1 and 5.2.2. We also describe the structure of the homology modules of the approximation complexes in Propositions 5.2.3 and 5.2.4.

In Section 5.3, we construct a family of residual approximation complex, all of same finite size, { M k Z + • } k∈Z . This family is a generalization of the family { k Z + • } k∈Z that is built in the recent article [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF] by Hassanzadeh and Naéliton. We study the properties of these complexes, of particular complexes ω k Z + • , where ω is the canonical module of R. The main results of this section are Propositions 5.3.2, 5.3.3 and 5.3.5.

In Section 5.4, we prove one of the main results of this chaper: the Cohen-Macaulayness and the description of the canonical module of residual intersections. Recall that in [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF], Hassanzadeh proved that, under the sliding depth condition,

H 0 ( 0 Z + • ) = R/K is Cohen-Macaulay of codimension s, with K ⊂ J, √ K = √
J, and further K = J whenever the residual is arithmetic. First, we consider the height two case and show that under the SD 1 condition, there exist an epimorphism ϕ : H 0 ( ω s-1 Z + • ) / / / / ω R/K which is an isomorphism if I satisfies SD 2 (Proposition 5.4.5). By exploring these complexes, we show that, under the SD 1 condition, K = J; and therefore, under the SD 2 condition, the canonical module of R/J is H 0 ( ω s-1 Z + • ). In a second step, we reduce the general case to the height two case. Our main results in this section are Theorems 5.4.6 and 5.4.9.

In Section 5.5, we study the stability of Hilbert functions and Castelnuovo-Mumford regularity of residual intersections. Using the acyclicity of 0 Z + • , Proposition 5.5.1 says that the Hilbert function of R/J only depends on the degrees of the generators of a and the Koszul homologies of I. The graded structure of the canonical module of R/J in Proposition 5.5.5 is the key to derive the Castelnuovo-Mumford regularity of residual intersection in Corollary 5.5.6. Finally, in Section 5.6, we consider the case where I is strongly Cohen-Macaulay. The main results of this section are Theorems 5.6.2 and 5.6.7. In particular, for 1

≤ k ≤ s -g, ω Sym k R (I/a) Sym s-g+1-k R (I/a) ⊗ R ω,
whenever Tor R 1 (R/I, ω) = 0. Consequently, we obtain some tight relations between the Hilbert series of the symmetric powers of I/a in Corollary 5.6.8. We also give the closed formulas for the types and for the Bass number of some symmetric powers of I/a in Corollaries 5.6.9 and 5.6.10, respectively.

Koszul cycles and approximation complexes

In this section, we give some results on the duality for Koszul cycles and describe the 0-th homology modules of approximation complexes with coefficients in a module.

Assume that R is a Noetherian ring, I = (f 1 , . . . , f r ) is an ideal of R. Let M be a finitely generated R-module. The symmetric algebra of M is denoted by Sym R (M ) and the k-th symmetric power of M is denoted by Sym k R (M ). We consider S = R[T 1 , . . . , T r ] as a standard graded algebra over S 0 = R. For a graded S-module N, the k-th graded component of N is denoted by N [k] . We make Sym R (I) an S-algebra via the graded ring homomorphism S -→ Sym R (I) sending T i to f i as an element of Sym R (I) [1] = I, and write Sym R (I) = S/L. For a sequence of elements x in R, we denote the Koszul complex by K • (x; M ), its Koszul cycles by Z i (x; M ), its Koszul boundaries by B i (x; M ) and its Koszul homologies by H i (x; M ). If M = R, then we denote, for simplicity, K i , Z i , B i , H i . To set more notation, when we draw the picture of a double complex obtained from a tensor product of two complexes (in the sense of [Wei94, 2.7.1]) which at least one of them is finite, say A ⊗ B where B is finite, we always put A in the vertical and B in the horizontal one. We also label the module which is in the up-right corner by (0, 0) and consider the labels for the rest, as the points in the third-quadrant.

Duality for Koszul cycles

Duality results for Koszul homology modules over Gorenstein rings have been obtained by several authors, for instance in [START_REF] Herzog | Komplexe auflösungen und dualität in der lokalen algebra[END_REF][START_REF] Chardin | Regularity of ideals and their powers[END_REF][START_REF] Miller | Duality for Koszul homology over Gorenstein rings[END_REF]. For Koszul cycles, the following holds. Proposition 5.2.2. Let (R, m) be a Noetherian local ring of dimension d which is a homomorphic image of a Gorenstein local ring. Suppose that I = (f 1 , . . . , f r ) is an ideal of R, with ht(I) ≥ 2. Then, for all 0 ≤ p ≤ r -1,

ω Zp Z ω R r-1-p . Moreover, if R satisfies S 2 , then ω Z ω R p Z r-1-p .
Proof. For simplicity, set ω := ω R . First we consider the truncated complexes

K >p • : 0 -→ K r -→ • • • -→ K p+1 -→ Z p -→ 0. The double complex C • m (K >p • ) 0 0 0 0 / / C 0 m (K r ) 0 . . . . . . . . . . . . 0 / / C d m (K r ) / / • • • / / C d m (K p+1 ) / / C d m (Z p ) / / 0 0 0 0
gives rise to two spectral sequences. The second terms of the horizonal spectral are

Since I annihilates H i , dim(H i ) ≤ dim(R/I) ≤ dim(R)-ht(I) ≤ d-2 if H i = 0. Therefore, 2 E -i,-j hor = H j m (H i+p ) = 0, for all j > d-2.
The comparison of two spectral sequences gives a short exact sequence

H d m (K p+2 ) / / H d m (K p+1 ) / / H d m (Z p ) / / 0. (5.1)
By local duality

H d m (K i ) Hom R (K i , ω) ∨ (Hom R (K i , R) ⊗ R ω) ∨ (K r-i ⊗ R ω) ∨ = K r-i (f ; ω) ∨ .
Thus the exact sequence (5.1) provides an exact sequence

K r-p-2 (f ; ω) ∨ / / K r-p-1 (f ; ω) ∨ / / H d m (Z p ) / / 0 that gives H d m (Z p ) Z ω r-1-p ∨ . Now one has ω Zp ω ∨∨ Zp H d m (Z p ) ∨ Z ω r-1-p ∨∨ Z ω r-1-p .
Therefore the first isomorphism follows from Proposition 1.2.19.

The second assertion is proved similarly, by considering the truncated complexes

K ω>p • : 0 -→ K r (f ; ω) -→ • • • -→ K p+1 (f ; ω) -→ Z ω p -→ 0 and the double complex C • m (K ω>p • ). Since I annihilates H i (f ; ω), dim(H i (f ; ω)) ≤ dim(R) -ht(I) ≤ d -2, for all 0 ≤ i ≤ r -2. Thus H j
m (H i (f ; ω)) = 0, for all j > d -2 and 0 ≤ i ≤ r -2. By comparing two spectral sequences, we also obtain a short exact sequence

H d m (K p+2 (f ; ω)) / / H d m (K p+1 (f ; ω)) / / H d m (Z ω p ) / / 0. (5.2)
By local duality

H d m (K i (f ; ω)) H d m (K i ⊗ R ω) Hom R (K i ⊗ R ω, ω) ∨ Hom R (K i , Hom R (ω, ω)) ∨ Hom R (K i , R) ∨ K ∨ r-i as Hom R (ω, ω) R since R satisfies S 2 by Proposition 1.2.30.
The exact sequence (5.2) provides an exact sequence

K ∨ r-p-2 / / K ∨ r-p-1 / / H d m (Z ω p ) / / 0 which shows that H d m (Z ω p ) Z ∨ r-1-p .
in the middle all are canonical

H r g (D M r+k ) [k] / / / / Coker(φ k ) / / / / Coker(φ k ) F 1k s s ∞ E -k,0 hor [k] / / H 0 g (H k (D M • )) [k] / / H k (D M • ) [k] / / (D M • ) [k] .
We denote the composition of the above chain of R-homomorphisms by τ k . Thus we may define a complex of lenght s, for any integer k,

M k Z + • : 0 / / M k Z + s / / • • • φ k / / M k Z + k+1 τ k / / M k Z + k / / • • • / / M k Z + 0 / / 0 wherein M k Z + i =    (D M i ) [k] i ≤ min{k, s} H r g (D M r-1+i ) [k] i > k.

It is a trivial generalization of the family of complexes

k Z + • in [HN16, Section 2.1]. Since H r g (M ⊗ R S) M ⊗ R H r g (S) for any R-module M, M k Z + • have, like graded strands of D M • , components that are direct sums of modules of Koszul cycles of K • (f ; M ).
The structure of M k Z + • is depending on the generating sets of I, on the expression of the generators of a in terms of the generators of I and on M. The complex R k Z +

• considered by Hassanzadeh and Naéliton in [START_REF] Hamid | Residual intersections and the annihilator of Koszul homologies[END_REF], will be denoted by

k Z + • instead of R k Z + • .
Definition 5.3.1. The complex M k Z + • is called the k-th residual approximation complex of J = a : R I with coefficients in M.

We consider the morphism

M [T 1 , . . . , T r ] s (-1) M ⊗ R S s (-1) 1 M ⊗∂ γ 1 / / M ⊗ R S M [T 1 , . . . , T r ],
where ∂ γ 1 is the first differential of K • (γ; S), and denote by γM the image of 1 M ⊗∂ γ 1 . It is the submodule of M [T 1 , . . . , T r ] generated by the linear forms γ 1 , . . . , γ s . Recall from Section 5.2.2 that we set L for the defining ideal of Sym R (I) in S and L for the module spanned by the linear forms correspond to generators of Tor R 1 (R/I, M ).

Proposition 5.3.2. Let R be a Noetherian ring and a ⊂ I two ideals of R. Suppose that M is a finitely generated R-module. Then

H 0 (D M • ) M [T 1 , . . . , T r ]/(LM + L + γM )
and for all k ≥ 1,

H 0 ( M k Z + • ) M [T 1 , . . . , T r ] [k] /(LM + L + γM ) [k] .
Then ϑ provides the epimorphisms of R-modules, for all k ≥ 1,

ϑ k : N r k / / / / N k+1 .
We will show that ann R (N k ) ⊂ ann R (N k+1 ), for all k ≥ 1. Let a ∈ ann R (N k ) and u ∈ N k+1 . We have to show that au = 0. Since ϑ k is surjective, there exist g 1 , . . . , g r ∈ N k such that u = ϑ k (g 1 , . . . , g r ). Therefore, au = a ϑ k (g 1 , . . . , g r ) = ϑ k (ag 1 , . . . , ag r ) = ϑ k (0, . . . , 0) = 0. Proposition 5.3.5. Let R be a Noetherian ring and a ⊂ I two ideals of R. Assume that M is a finitely generated R-module. Then J = a : R I annihilates 

H 0 ( M k Z + • ), for all k ≥ 1. Proof. Fix k ≥ 1. As in the proof of Lemma 5.3.4, the epimorphism ψ in Proposi- tion 5.3.3 implies that ann R (Sym k R (I/a) ⊗ R M ) ⊂ ann R (H 0 ( M k Z + • )). ( 5 
K such that H 0 ( 0 Z + • ) = R/K.
To make use of the acyclicity of the k Z +

• complexes, we recall the definition of classes of ideals that meet these requirements. 

(Z i (f ; R)) ≥ min{d -r + i + k, d -g + 2, d}, ∀i ≤ r -g; (iii) I is strongly Cohen-Macaulay if H i (f ; R) is Cohen-Macaulay, for all i.
Since the definition, we see that if I satisfies SD k , then it satisfies SD t for all k ≥ t. Clearly I is strongly Cohen-Macaulay if and only if I satisfies SD r-g . Some of the basic properties and relations between such conditions SD k and SDC k are given in [Has12, Remark 2.4, Proposition 2.5], [HN16, Proposition 2.4], also see [START_REF] Herzog | Koszul homology and blowing-up rings[END_REF][START_REF] Herzog | Ideals with sliding depth[END_REF][START_REF] Wolmer | Arithmetic of blowup algebras[END_REF]. It will be of importance to us the following proposition. Notice that the condition (iii) is stronger than (i) and (ii).

Theorem 5.3.11. [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF]Theorem 2.11] Let (R, m) be a Cohen-Macaulay local ring and a ⊂ I two ideals of R. Suppose J = (a : R I) is an s-residual intersection and K is the disguised s-residual intersection of I w.r.t. a. If I satisfies the sliding depth condition SD, then K ⊂ J and √ K = √ J. Furthermore K = J, whenever the residual intersection J is arithmetic.

Cohen-Macaulayness and canonical module of residual intersections

In this section we will prove two most important conjectures in the theory of residual intersections. They are the Cohen-Macaulayness and the canonical module of residual intersections.

In order to make reduction to lower height case and prove the Cohen-Macaulayness when s = g, we first state the following proposition, which is a trivial generalization of [HVV85, Lemma 3.5] that only treated the sliding depth condition SD. The proof goes along the same lines. Proposition 5.4.1. Let (R, m) be a Cohen-Macaulay local ring, I an ideal of height g and k ≥ 0 an integer. Let x 1 , . . . , x be a regular sequence in I. Let denote the canonical epimorphism R -→ R = R/(x 1 , . . . , x ). Then I satisfies SD k if and only if I satisfies SD k (in R ). In particular, I is strongly Cohen-Macaulay if and only if I is also strongly Cohen-Macaulay (in R ).

Proof. It is suffice to prove the assertion for = 1. Let I be an ideal generated by the sequence x = x 1 , . . . , x r . We have the exact sequence of Koszul complexes

0 / / K • (x; R) x 1 / / K • (x; R) / / K • (x; R ) / / 0.
The last complex is the same as K • (x ; R ) where x = {0, x 2 , . . . , x r }.

Taking the homology sequence, we obtain a long exact sequence

• • • / / H i (x; R) ±x 1 / / H i (x; R) / / H i (x ; R ) / / H i-1 (x; R) ±x 1 / / H i-1 (x; R) / / • • • .
Since I annihilates the Koszul homologies, we obtain an exact sequence, for all i

0 / / H i (x; R) / / H i (x ; R ) / / H i-1 (x; R) / / 0.
By Corollary 1.1.8, we have

(i) if depth(H i (x ; R ) < depth(H i-1 (x; R)), then depth(H i (x; R)) = depth(H i (x ; R )), or (ii) if depth(H i (x ; R ) > depth(H i-1 (x; R)), then depth(H i (x; R)) = depth(H i-1 (x; R))+ 1, or (iii) if depth(H i (x ; R ) = depth(H i-1 (x; R)), then depth(H i (x; R)) ≥ depth(H i-1 (x; R)).
Notice that dim(R ) = d -1 and ht(I ) = g -1, hence

I of R satisfies SD k if depth(H i (x ; R )) ≥ min{d -g, d -r + i + k -1}.
It is easy to prove the assertion by comparing (i), (ii) and (iii).

Proposition 5.4.2. Let (R, m) be a Cohen-Macaulay local ring of dimension d and I an ideal of height g. Let x = x 1 , . . . , x g be a regular sequence contained in I and J = ((x) : R I). Suppose that R/I is Cohen-Macaulay and I satisfies SD. Then R/J is Cohen-Macaulay of codimension g.

Proof. The proof goes along the same lines as in [START_REF] Herzog | Ideals with sliding depth[END_REF]. By Proposition 5.4.1, we may reduce modulo x = x 1 , . . . , x g and consider R = R/(x). Thus we can assume that ht(I) = g = 0 and J = (0 : R I). Suppose that I is an ideal generated by the sequence x 1 , . . . , x r . Then Z r = (0 : R I) = J and K r R. The exact sequence

0 -→ Z r -→ K r -→ B r-1 -→ 0 shows that B r-1 K r /Z r R/J.
Since I satisfies SD, I satisfies SDC 1 by Proposition 5.3.8. It follows that Z r-1 is Cohen-Macaulay of dimension d. Moreover, I satisfies SD, depth(H r-1 ) ≥ d -1. Therefore, the exact sequence

0 -→ B r-1 -→ Z r-1 -→ H r-1 -→ 0 implies that H i m (B r-1 ) = 0, for all i = d, hence B r-1 is Cohen-Macaulay of dimension d.
To study the Cohen-Macaulayness of residual intersections in the general case, we will use the following lemmas. 

λ : Hom R (M 1 , N 1 ) ⊗ R Hom R (M 2 , N 2 ) -→ Hom R (M 1 ⊗ R N 1 , M 2 ⊗ R N 2 )
is an isomorphism. Proof. (i) is the graded local duality theorem.

(ii) Since Z r-1 Z 0 = R, depth( k Z + 0 ) = depth( k Z + s ) = d. (iii) By Proposition 5.3.8, I satisfies SDC +1 , that is depth(Z j ) ≥ min{d -r + j + + 1, d}, for all 0 ≤ j ≤ r -2.

For any 1 ≤ i ≤ s -1,

0 Z + i = H r g (D r-1+i ) [0] = r-1 j=r-1+i-s Z j ⊗ R H r g (S)
( s r-1+i-j )

[-r+1-i] .

Thus 0 Z + i is a direct sum of copies of modules Z δ , . . . , Z r-1 , where δ = max{0, r -1 + i -s}. Notice that 0 ≤ δ ≤ r -2. It follows that depth( 0 Z + i ) = min (iv) We have the following commutative diagrams, for all 0 ≤ k ≤ s -2,

H d m ( k Z + s ) = H d m (H r g (D r+s-1 )) [k] / / H d m (H r g (D r+s-2 )) [k] = H d m ( k Z + s-1 ) H d m (Z r-1 ) ⊗ R H r g (S) [k-r-s+1] / / H d m (Z r-1 ) ⊗ R H r g (S) s [k-r-s+2] ⊕ H d m (Z r-2 ) ⊗ R H r g (S) [k-r-s+2] Z ω 0 ∨ ⊗ R S * [s-k-1] / / Z ω 0 ∨ ⊗ R (S s [s-k-2] ) * ⊕ Z ω 1 ∨ ⊗ R S * [s-k-2] (Z ω 0 ⊗ R S [s-k-1] ) ∨ / / (Z ω 0 ⊗ R S s [s-k-2] ⊕ Z ω 1 ⊗ R S [s-k-2] ) ∨ ( ω s-k-1 Z + 0 ) ∨ = ((D ω 0 ) [s-k-1] ) ∨ / / ((D ω 1 ) [s-k-1] ) ∨ = ( ω s-k-1 Z + 1 ) ∨
where the first diagram and the last diagram are commutative by the definitions, the second diagram is commutative by the natural isomorphisms in item (i) and Proposition 5.2.2, and the third diagram is commutative by the natural isomorphism

Z ω i ∨ ⊗ R S * [ ] (Z ω i ⊗ R S [ ] )
∨ , for all i, , by Lemma 5.4.3. 

0 0 0 • • • 0 0 0 0 0 0 • • • 0 0 0 0 0 0 • • • 0 H d-s+2 m ( 0 Z + 1 ) 0 • • • • • • • • • • • • • • • • • • • • • 0 0 H d-1 m ( 0 Z + s-2 ) / / • • • / / H d-1 m ( 0 Z + 2 ) / / H d-1 m ( 0 Z + 1 ) 0 
H d m ( 0 Z + s ) / / H d m ( 0 Z + s-1 ) / / H d m ( 0 Z + s-2 ) / / • • • / / H d m ( 0 Z + 2 ) / / H d m ( 0 Z + 1 ) / / H d m ( 0 Z + 0 )
since depth( 0 Z + 0 ) = depth( 0 Z + s ) = d and depth( 0 Z + i ) ≥ d -s + i + 1, for all 1 ≤ i ≤ s -1, by Lemma 5.4.4 (ii) and (iii), respectively. By the convergence of the spectral sequences, we obtain

H d-s m (R/K) ∞ E -s,-d ver
⊂ 2 E -s,-d ver .

(5.9) By Lemma 5.4.4(iv), we have the following commutative diagram

H d m ( 0 Z + s ) / / H d m ( 0 Z + s-1 ) ( ω s-1 Z + 0 ) ∨ / / ( ω s-1 Z + 1 ) ∨ .
Therefore 2 E -s,-d ver H 0 ( ω s-1 Z + • ) ∨ .

(5.10) By (5.8), (5.9) and (5.10), we can define a monomorphism of R-modules by the compositions

ω ∨ R/K / / H d-s m (R/K) / / ∞ E -s,-d ver / / 2 E -s,-d ver / / H 0 ( ω s-1 Z + • ) ∨
which provides an epimorphism

φ : H 0 ( ω s-1 Z + • ) -→ ω R/K .
If I satisfies SD 2 , then depth( 0 Z + i ) ≥ min{d, d -s + i + 2}, for all 1 ≤ i ≤ s -1, by Lemma 5.4.4(iii). It follows that We first consider the case where g = 2. By Proposition 5.4.5, there is the epimorphism φ : H 0 ( ω s-1 Z + • ) -→ ω R/K . As R/K is Cohen-Macaulay, ann R (ω R/K ) = ann R (R/K) = K. The epimorphism φ implies that ann R (H 0 ( ω s-1 Z + • )) ⊂ ann R (ω R/K ) = K.

By Proposition 5.3.5, J ⊂ ann R (H 0 ( ω s-1 Z + • )) ⊂ K. We may always reduce to the case g ≥ 2 by Remark 5.3.9. If g > 2, then we can choose a regular sequence a of length g -2 inside a which is a part of a minimal generating set of a. Since R is Cohen-Macaulay, by Theorem 1.1.11 (a), R/a is a Cohen-Macaulay local ring of dimension d -g + 2. Moreover, J/a = a/a : I/a and µ(a/a) = µ(a) -g + 2, therefore J/a is an (s -g + 2)-residual intersection of I/a which is of height 2. Furthermore, I/a satisfies SD 1 by Proposition 5. (ii) follows immediately from Theorem 5.3.10, Theorem 5.4.6 and the first item.

The following example shows that the above corollary does not hold for the (s -g + 2)-th symmetric power of I/a. Proof. We first consider the case where g = 2. By Proposition 5.4.5 and Theorem 5.4.6, ω R/J H 0 ( ω s-1 Z + • ) Sym s-1 R (I/a) ⊗ R ω. The last isomorphism by Proposition 5.3.3.

We may always reduce to the case g ≥ 2 by Remark 5.3.9. If g > 2, then we can choose a regular sequence a of length g -2 inside a which is a part of a minimal generating set of a as in the proof of Theorem 5.4.6. As a ⊂ I is regular on ω, Tor R 1 (R/I, ω) Tor R/a 1 (R/I, ω/aω) = 0.

Furthermore, observing that the canonical module of R/a is ω/aω by Proposition 1.2.34 (i), it follows from the height two case that ω R/J Sym (s-g+2)-1 R/a I/a a/a ⊗ R/a ω R/a Sym s-g+1 R (I/a) ⊗ R ω.

Notice that the hypothesis Tor R 1 (R/I, ω) = 0 is always satisfied for ideals of finite projective dimension. In particular, if R is Gorenstein, then ω R, hence Tor R 1 (R/I, ω) Tor R 1 (R/I, R) = 0, therefore the canonical module of R/J is (sg + 1)-th symmetric power of I/a. As a consequence, the second conjecture in the introduction is proved under the SD 2 condition. (ii) In the height two case, by using Propositon 5.4.5, we could omit the assumption Tor R 1 (R/I, ω) = 0 in Theorem 5.4.9. In this case, the canonical module of R/J is the (s -1)-th graded component of ω[T 1 , . . . , T r ]/(Lω + L + γω) by Proposition 5.3.2 and Theorem 5.4.6.

The following example shows that Theorem 5.4.9 does not hold if I only satisfies SD condition.

Example 5.4.11. [EU16, Example 2.9] Let R = k[[x 1 , . . . , x 5 ]] and let I be the ideal of 2 × 2 minors of the matrix x 1 x 2 x 3 x 4 x 2 x 3 x 4 x 5 .

Then I is of height 3. If we take a to be the ideal generated by 4 sufficiently general cubic forms in I, then J = a : R I is a 4-residual intersection. Using Macaulay2 [GS], it is easy to see that I satisfies SD. Moreover, we see that I 2 /aI requires 20 generators, whereas ω R/J requires only 16. Thus there is no surjection ω R/J / / / / I 2 /aI, therefore ω R/J is not isomorphic to Sym 2 R (I/a). Computation of the initial degree of Sym 2 R (I/a) and ω R/J shows that there can be no surjection Sym 2 R (I/a) / / / / ω R/J . This shows that SD 1 condition in Remark 5.4.10 (i) is necessary.

Recall that in a Noetherian local ring (R, m), the type of a finitely generated R-module M is the dimension of the R/m-vector space Ext depth(M ) R (R/m, M ) and it is denoted by r R (M ) or just r(M ). The minimal number of generators of the R-module M is the dimension of the R/m-vector space R/m ⊗ R M and it is denoted by µ(M ). Notice that if M, N are two finitely generated R-modules, then

µ(M ⊗ R N ) = dim R/m (M ⊗ R N ⊗ R R/m) = dim R/m (M ⊗ R R/m ⊗ R/m N ⊗ R R/m) = µ(M )µ(N ).
Corollary 5.4.12. Under the assumptions of Theorem 5.4.9, r(R/J) = µ(I/a) + s -g µ(I/a) -1 r(R).

Thus R/J is Gorenstein if and only if R is Goenstein and µ(I/a) = 1.

Proof. Since the canonical module of R/J is Sym 

Hilbert functions and Castelnuovo-Mumford regularity of residual intersections

One is based on the resolution of residual intersections 0 Z + • , from which we could provide many informations concerning R/J, like the stability of Hilbert functions and the Castelnuovo-Mumford regularity of residual intersections.

First we study the stability of Hilbert functions of residual intersections. In The next proposition, we will show that the above condition (A2) is satisfied for any residual intersection under SD 1 condition. Proposition 5.5.1. Let (R, m) be a graded Cohen-Macaulay local ring over an Artinian local ring R 0 and a ⊂ I two homogeneous ideals, with ht(I) = g. Suppose that I satisfies SD 1 and J = (a : R I) is an s-residual intersection of I. Then the Hilbert function of R/J satisfies the above condition (A2). Proof. By Theorem 5.3.10 and Theorem 5.4.6, the complex 0 Z +

• is a resolution of R/J. Hence, the Hilbert function of R/J can be written in terms of the Hilbert functions of the components of the complex 0 Z + • which, according to the definition of 0 Z + • , are just some direct sums of Koszul cycles of I shifted by the twists appearing in the Koszul complex K • (γ; S). Since the Hilbert functions of Koszul cycles are inductively calculated in terms of those of the Koszul homology modules, the Hilbert function of R/J only depends on the Koszul homology modules of I and on the degrees of the generators of a. Next, the important numerical invariant associated an algebraic or geometric object is the Castelnuovo-Mumford regularity. Assume that R = n≥0 R n is a positively graded Noetherian * local ring of dimension d over a Noetherian local ring (R 0 , m 0 ). Set m = m 0 + R + . Suppose that I and a are two homogeneous ideals of R generated by homogeneous elements f 1 , . . . , f r and a 1 , . . . , a s , respectively. For a homogeneous ideal b, the sum of the degrees of a minimal generating set of b is denoted by σ(b). For a finitely generated graded R-module M, the Castelnuovo-Mumford regularity of M is defined as reg(M ) := max{end(H i R + (M )) + i}. In [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF], Hassanzadeh defined the regularity with respect to the maximal ideal m as reg m (M ) := max{end(H i m (M )) + i}. The following lemma establishes a relation between reg(M ) and reg m (M ). Proof. The proof of this result goes along the same lines as in [START_REF] Hamid | Cohen-Macaulay residual intersections and their Castelnuovo-Mumford regularity[END_REF]Theorem 3.6]. Indeed, Theorem 5.4.6 implies that R/J is Cohen-Macaulay and is resolved by 0 Z + • .

We recall that in the case of linkage, that is when s = g, if in addition one has dim(R 0 ) = 0, then the inequality in Proposition 5.5.3 is in fact an equality. However, when dim(R 0 ) = 0, the next simple example shows that, in some cases, the regularity of residual intersections (or even linked ideals) may be strictly less than the proposed formula. The remaining part follows from reg(M ) ≤ reg m (M ) ≤ reg(M ) + dim(R 0 ) for any finitely generated graded R-module M, by Lemma 5.5.2.

Finally, we close this section by giving some tight relations between the Hilbert series of a residual intersection and the (s -g + 1)-th symmetric power of I/a. 

Q(t)

(1 -t a ) d-s , with a the least common multiple of the degrees of the generators of the algebra R over R 0 and P (t), Q(t) ∈ Z[t, t -1 ], with P (1), Q(1) > 0. If I satisfies SD 2 and Tor R 1 (R/I, ω) = 0, then P (t) = t σ(a)+a(d-s) Q(t -1 ).

In particular, if R is generated over R 0 by elements of degree 1, that is, The last isomorphism follows from Proposition 5.3.3. Now, we may suppose that g ≥ 2 by Remark 5.3.9. If g > 2, then we choose a regular sequence a of length g -2 inside a which is a part of a minimal generating set of a as in the proof of Theorem 5.4.9. As I/a is strongly Cohen-Macaulay by Proposition 5.4.1, it follows from the height two case that 

R = R 0 [R 1 ], then 

The conclusion follows from (i).

In particular, if the residual intersections are geometric, we obtain the following results that could be compared to one of [EU16, Theorem 2.2].

Corollary 5.6.3. Let (R, m) be a Gorenstein local ring and a ⊂ I two ideals of R. Assume that I is a strongly Cohen-Macaulay ideal of height g and J = (a : R I) is a geometric s-residual intersection of I. Then, for all 1 ≤ k ≤ s -g, (i) the canonical module of I k /aI k-1 is I s-g+1-k /aI s-g-k ;

(ii) there is a perfect pairing I k /aI k-1 ⊗ R I s-g+1-k /aI s-g-k -→ I s-g+1 /aI s-g .

Proof.

It is an immediate translation from Theorem 5.6.2 with the fact that Sym k R (I/a) I k /aI k-1 by [HN16, Corollary 2.11] and ω R R.

Notice that the pairings in this corollary and in the main theorem above need not be given by multiplication. However, Eisenbud and Ulrich proved that, in many situations where our results apply, the multiplication indeed produces a perfect pairing. In this regards, an example they provide is interesting. where k is an infinite field and I = (x, y) 2 . If a is generated by 3 sufficiently general elements of degree 3 in I, then J = a : R I is a 3-residual intersection. Using Macaulay2 [GS], they verified that I is strongly Cohen-Macaulay, hence ω R/J Sym 2 R (I/a). Moreover ω I/a I/a. Computation shows that there is a unique (up to scalars) nonzero homogeneous map I/a ⊗ R I/a -→ ω R/J of lowest degree, and this is a perfect pairing. But they notice that there can be no perfect pairing I/a ⊗ R I/a -→ I 2 /aI because the target is annihilated by (x, y, z) 2 while I/a is not. This implies that ω R/J = I 2 /aI and J is not geometric.

However, the multiplication with value in the symmetric square I/a ⊗ R I/a -→ Sym 2 R (I/a) is a perfect pairing. Proof. The first item is Corollary 5.4.7 (ii). The second and last items directly follow from Lemma 5.6.6 together with Theorem 5.6.2 (ii) and (i), respectively. The next corollary enables us to calculate the type of some symmetric powers of I/a. This is comparable with the results of Hassanzadeh and Naélitonr in [HN16, Theorem 2.12]. 

(

  2e i -1) deg(h i ) ≤ deg(F ) ≤ 3(d -1),

  a, b) is the identity. Let J = (a, b, J )/(a, b) denote the kernel, with J the ideal generated by the z-homogeneous polynomials, with bihomogeneous polynomial coefficients in k[x, y], vanishing on f 0 (x, y), . . . , f s (x, y) modulo (a, b).

  Theorem 5.4.6. Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that I satisfies SD 1 and J = (a : R I) is an s-residual intersection of I. Then R/J is Cohen-Macaulay of codimension s. The next question is if J is a residual intersection of I, what is the canonical module of R/J? This question was studied by Huneke and Ulrich [HU88, Ulr94] when R is Gorenstein and by Cumming [Cum07] when R is Cohen-Macaulay. More precisely, Cumming proved the following Theorem. [Cum07, Theorem 4.2] Let R be a local Cohen-Macaulay ring with canonical module ω and I an R-ideal of height g satisfying G s , where s is an integer sat

  Proposition 1.1.2. [BH98, 1.1.3] Let R be a Noetherian ring, M a finitely generated R-module, and x an M -regular sequence. (a) Suppose that a prime ideal p ∈ Supp M contains x. Then x (as a sequence in R p ) is an M p -regular sequence. (b) Suppose that R is local with maximal ideal m. Then x (as a sequence in R) is an M -regular sequence. Proposition 1.1.3. [BH98, 1.2.4] Let R be a ring, M, N be R-modules, and x = x 1 , . . . , x n an M -regular sequence in ann R (N ). Then

  Theorem 1.1.4 (Rees). [BH98, 1.2.5] Let R be a Noetherian ring, M a finitely generated R-module, and I an ideal such that IM = M. Then all maximal Mregular sequence in I have the same length n given by n = min{i : Ext i R (R/I, M ) = 0}. Definition 1.1.5. Let R be a Noetherian ring, M a finitely generated R-module, and I an ideal such that IM = M. Then the common length of the maximal Mregular sequence in I is called the grade of I on M, denoted by depth I (M ), hence

  depth I (N ) ≥ min{depth I (M ), depth I (P )}, depth I (M ) ≥ min{depth I (N ), depth I (P ) + 1}, depth I (P ) ≥ min{depth I (M ) -1, depth I (N )}. In the case where (R, m) is local, consider I = m in the above proposition, we obtain the following. Corollary 1.1.8. Let (R, m) be a Noetherian local ring, and 0 -→ M -→ N -→ P -→ 0 an exact sequence of finitely generated R-modules. Then, either (a) if depth(N ) < depth(P ), then depth(M ) = depth(N ) or (b) if depth(N ) > depth(P ), then depth(M ) = depth(P ) + 1, or (c) if depth(N ) = depth(P ), then depth(M ) ≥ depth(N ).

  Let R be a Noetherian local ring. A finitely generated R-module M = 0 is a Cohen-Macaulay module if depth(M ) = dim M. It R itself is a Cohen-Macaulay module, then it is called a Cohen-Macaulay ring. A maximal Cohen-Macaulay module is a Cohen-Macaulay module M such that depth(M ) = dim R.

  Theorem 1.1.10. [BH98, 2.1.2] Let (R, m) be a Noetherian local ring, and M = 0 a Cohen-Macaulay R-module. Then (a) dim R/p = depth(M ) for all p ∈ Ass M, (b) depth

  Theorem 1.1.18. [BH98, 3.2.10] Let (R, m) be a Noetherian local ring. The following conditions are equivalent: (a) R is a Gorenstein ring; (b) R is a Cohen-Macaulay ring of type 1. Example 1.1.19. The polynomial ring R = k[X 1 , . . . , X n ] over a field k is Gorenstein. Definition 1.1.20. Let (R, m) be a Cohen-Macaulay local ring and I, J two ideals of R.

  Definition 1.1.25. If M is a graded module, we set M (n) for the same R-module but with the grading M (n) k = M n+k . Example 1.1.26. (a) If R is a graded ring, then R is a graded module over itself.

  Lemma 1.1.30. [BH98, 1.5.6] Let R be a graded ring. (a) For every prime ideal p the ideal p * is a prime ideal. (b) Let M be a graded R-module. (i) If p ∈ Supp M, then p * ∈ Supp M. (ii) If p ∈ Ass M, then p is graded; furthermore p is the annihilator of a homogeneous element.

  Theorem 1.2.25.[START_REF] Brodmann | Local cohomology[END_REF] 12.1.15] Let (R, m) be a local ring of dimension d. Suppose that canonical module ω R exists. Then(0 : R ω R ) = (0 : R H d m (R)) = j(R). Definition 1.2.26. Let R be a Noetherian ring and n a nonnegative integer. A finitely generated R-module M satisfies Serre's condition S n if depth(M p ) ≥ min{n, dim M p } for every prime ideal p of R. Proposition 1.2.27. [BS13, 12.1.18] Let (R, m) be a local ring. Suppose that ω R exists.

  Theorem 1.2.31 (Local Duality Theorem). [BS13, 12.1.20] Let (R, m) be a Cohen-Macaulay local ring of dimension d which has the canonical module ω R . Then, for each finitely generated R-module M, there exist natural isomorphisms

  The next theorem clarify for which Cohen-Macaulay local rings the canonical module exists. Theorem 1.2.36. [BH98, 3.3.6] Let (R, m) be a Cohen-Macaulay local ring. The following conditions are equivalent: (a) R admits a canonical module; (b) R is the homomorphic image of a Gorenstein local ring.

  Proposition 1.2.37. [BH98, 3.3.10] Let (R, m, k) be a Cohen-Macaulay local ring of dimension d and C a finitely generated R-module. Then the following conditions are equivalent: (a) C is the canonical module of R; (b) µ i (p, C) = δ ih for all i ≥ 0 and all p ∈ Spec(R), where h = ht(p);

  Theorem 1.2.47.[START_REF] Brodmann | Local cohomology[END_REF] 14.4.1] Let (R, m) be a graded * local ring of * dimension d, i.e. ht(m) = d. Assume that there is a graded Gorenstein * local ring (A, m ) and a surjective homogeneous ring homomorphism ϕ : A -→ R. Let ht(m ) = n. Then (a) there exists a ∈ Z such that H n m (A) * E A (A/m )(-a); (b) for any such a, there are homogeneous isomorphisms

  Definition 1.3.21. Let R be a ring and I an ideal of R. The associated graded ring of R with respect to I is defined by gr I (R) = i≥0 I i /I i+1 . Let M be an R-module. If we set gr I (M ) = i≥0 I i M/I i+1 M then gr I (M ) is in a natural way a graded module over gr I (R). Let (R, m) be a Noetherian local ring. If I is a ideal of R such that for some ν > 0 we have m ν ⊂ I ⊂ m, we call I an ideal of definition. As R/I is Artinian local ring, the homogeneous components I n M/I n+1 M of gr I (M ) are finitely generated R/I-module, and hence have finite length. Definition 1.3.22. The first iterated Hilbert function χ I M (n) = n i=0 HF gr I (M ) (n) = n i=0 length(I i M/I i+1 M ) = length(M/I n+1 M ) is called the Hilbert-Samuel function of M, and e(I, M ) := e(gr I (M )) the multiplicity of I in M.

  and H • (x) are called the Koszul cycle of x, the Koszul boundary of x and the Koszul homology of x, respectively. We say that Z • (x; M ), B • (x; M ) and H • (x; M ) are the Koszul cycle of x with coefficients in M, the Koszul boundary of x with coefficients in M, and the Koszul homology of x with coefficients in M, respectively.

  the canonical module of R/I. Proposition 1.5.11. [Vas05, 5.17] Let R be a Cohen-Macaulay local ring. If I = (x) is an unmixed ideal then all nonzero homology modules of K • (x; R) have Krull dimension equal to dim R/I.

  α : H 0 (Z • (I; M )) -→ R I (M ) := ⊕ j≥0 I j M = associated Rees module, and β : H 0 (M • (I; M )) -→ gr I (M ) := ⊕ j≥0 I j M/I j+1 M = associated graded module.Proposition 1.5.16. Let R be a Noetherian ring and M a finitely generated Rmodule. Suppose that I = (x 1 , . . . , x n ) is an ideal of R. Then the homology modules of the Z-complex Z • (x; M ) are S I -modules.

  regular sequence =⇒ d-sequence =⇒ proper sequence. The acyclicity of the Z • (x; M )-complexes and M • (x; M )-complexes bears a striking resemblance to that of an ordinary Koszul complex K • (x; M ), with the role of regular sequences being played by the proper sequences and d-sequences. Theorem 1.5.18. [HSV83a, Theorem 4.1] Let (R, m) be a local ring with infinite residue field. Let I = (x) be an ideal of R and M a finitely generated R-module. Then the following conditions are equivalent: (a) M • (x; M ) is acyclic; (b) I is generated by a d-sequence with respect to M. Theorem 1.5.19. [HSV83b, Theorem 12.9] Let (R, m) be a local ring with infinite residue field. Let I = (x) be an ideal of R and M a finitely generated R-module. Then the following conditions are equivalent : (a) Z • (x; M ) is acyclic; (b) I is generated by a proper sequence with respect to M.

  Theorem 1.5.21.[START_REF] Busé | Implicitizing rational hypersurfaces using approximation complexes[END_REF] Theorem 4] Let n ≥ 3. Let I = (f 0 , . . . , f n ) be an ideal of R, B := Proj(R/I) and I sat the saturation of I with respect to m. Assume that k is infinite and that dim B ≤ 0, that is, B define a finite number of base points in Proj(R), possibly empty. Then we have (1) Z • is acyclic if and only if B is locally defined by n equations.

  and S = k[Y]/I(Y ) denote the respective homogeneous coordinate ring of X and Y. Fix sets of forms f = f 0 , . . . , f n ∈ k[X] and g = g 0 , . . . , g m ∈ k[Y] whose respective residues in R and S are representatives of F and G. The following are equivalent conditions: (i) F and G are inverse to each other; (ii) the identity map of k[X, T]/(I(X), I(Y )) induces a bigraded isomorphism R R (f , I(X)) I(X) R S (g, I(Y )) I(Y ) of Rees algebras.

  Theorem 1.6.10. [DHS12, Theorem 3.2] Let F : P m k P n k stand for a rational map defined by homogeneous polynomials f 0 , . . . , f n of a fixed degree in R = k[X] and set I = (f 0 , . . . , f n ). If the image of F has dimension m and the submatrix of the syzygy matrix of I consisting of columns of degree one (linear syzygies) has rank n (maximal possible), then F is birational onto its image. . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2 Fibers of rational maps . . . . . . . . . . . . . . . . . . . . 57 2.3 Estimation of number of one-dimensional fibers of parameterization surfaces . . . . . . . . . . . . . . . . . . . . 62

Lemma 2.3. 3 .

 3 Under the assumptions of Theorem 2.3.2, n = deg(B) -1 2 d(d + 1), m = deg(B) -d and l = 1 2 d(d -1).

Question 2.3. 11 .

 11 Adopt Data 2.2.5. Assume further that m = n -1 = 2, that indeg(I sat ) = d and that B is locally a complete intersection. Is y∈Y 1 deg(h y ) bounded linearly in the degree d? Tangent space maps and Jacobian matrices . . . . . . . . 73 3.2 Bound for the number of (m -1)-dimensional fibers of a rational map φ : P m k P n k . . . . . . . . . . . . . . . . . 75 3.3 Bound for the number of one-dimensional fibers of a parameterization surface . . . . . . . . . . . . . . . . . . . 79 Abstract: A rational map φ : P m k

  with the convention indeg(M ) = +∞ when M = 0. Corollary 3.3.4. Adopt Data 2.2.5. Assume further that m = n -1 = 2, that the characteristic of k does not divide d, and that [k(f ) : k(X)] is separable. Then y∈Y 1 deg(h y ) ≤ 3(d -1) -indeg(Syz(I)) < 3(d -1). Proof. By Proposition 3.3.2, deg(F ) ≤ 3(d -1) -indeg(Syz(I)).

  . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 General birationality criterion . . . . . . . . . . . . . . . . 4.2.1 Birationality and bigraded Rees algebras . . . . . . . . . . 4.2.2 Bigraded Jacobian dual criterion . . . . . . . . . . . . . . 4.2.3 Linear syzygies and birationality . . . . . . . . . . . . . . 4.3 Syzygies of low degree of bigraded maps in the plane . . 4.3.1 Counting linear syzygies . . . . . . . . . . . . . . . . . . . 4.3.2 Birationality of bidegree (1, 1) maps . . . . . . . . . . . . 4.3.3 Birationality of bidegree (1, 2) maps . . . . . . . . . . . . 4.3.4 Birationality of bidegree (2, 2) maps . . . . . . . . . . . . 4.4 Modeling: tensor-product maps in the plane . . . . . . . 4.4.1 Plane tensor-product parameterizations . . . . . . . . . . 4.4.2 Bilinear tensor-product parameterizations . . . . . . . . . 4.4.3 Bidegree (1, 2) tensor-product parameterizations . . . . .

  a, b) is the identity. Let J = (J , a, b)/(a, b) denote the kernel, with J the ideal generated by the z-homogeneous polynomials, with bihomogeneous polynomial coefficients in k[x, y], vanishing on f 0 (x, y), . . . , f s (x, y) modulo (a, b).

Figure 4

 4 Figure 4.1 -Change of control points in a tensor-product parameterization of bidegree (1, 2).
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  .5) On the other hand, one always has ann R (Sym k R (I/a)) ⊂ ann R (Sym k R (I/a) ⊗ R M ). (5.6) Notice that Sym R (I/a) Sym R (I)/(γ)Sym R (I) S/(L + (γ)). By Lemma 5.3.4, J = ann R (I/a) ⊂ ann R (Sym k R (I/a)). (5.7) By (5.5), (5.6) and (5.7), J ⊂ ann R (H 0 ( M k Z + • )). However, the structure of H 0 ( M 0 Z + • ) is difficult to determine. We recall a definition of Hassanzadeh and Naéliton in [HN16, Definition 2.1]. Definition 5.3.6. Let R be a Noetherian ring and a ⊂ I two ideals of R. The disguised s-residual intersection of I w.r.t. a is the unique ideal

Definition 5.3. 7 .

 7 Let (R, m) be a Noetherian local ring of dimension d and I = (f 1 , . . . , f r ) an ideal of height g. Let k ≥ 0 be an integer. Then (i) I satisfies the sliding depth condition, SD k , if depth(H i (f ; R)) ≥ min{d -g, d -r + i + k}, ∀i; also SD stands for SD 0 ; (ii) I satisfies the sliding depth condition on cycles, SDC k , if depth

  Proposition 5.3.8. [Has12, Proposition 2.5] Let R be a Cohen-Macaulay local ring and k ≥ 0 an integer. If I satisfies SD k , then I satisfies SDC k+1 .Remark 5.3.9. Notice that adding an indeterminate x to the ring and to ideals I and a. One has (a + (x)) : (I + (x)) = (a : I) + (x) in R[x] and in its localization at m + (x). Hence, for most statements, one may reduce to the case where the height of I is big enough, if needed.We will recall some important results that were proved by Hassanzadeh and Naéliton. The Cohen-Macaulay hypothesis in this theorem is needed to show that if for an R-module M, depth(M ) ≥ d-t then for any prime p, depth(M p ) ≥ ht(p)-t, see [Vas94, Section 3.3].Theorem 5.3.10. [HN16, Theorem 2.6] Let (R, m) be a Cohen-Macaulay local ring of dimension d and I = (f 1 , . . . , f r ) an ideal of height g. Let s ≥ g and fix 0 ≤ k ≤ min{s, s -g + 2}. Suppose that one of the following hypotheses holds:(i) r + k ≤ s and I satisfies SD, or (ii) r + k ≥ s + 1, I satisfies SD and depth(Z i ) ≥ d -s + k, for 0 ≤ i ≤ k, or (iii) I is strongly Cohen-Macaulay.Then for any s-residual intersection J = (a : R I), the complex k Z + • is acyclic. Furthermore, Sym k R (I/a), for 1 ≤ k ≤ s -g + 2, and the disguised residual intersection R/K are Cohen-Macaulay of codimension s.

  Lemma 5.4.3. [Bou70, II, §4, no 4, Proposition 4] Let R be a ring and M 1 , M 2 , N 1 , N 2 four finitely generated R-modules. If one of couples (M 1 , M 2 ), (M 1 , N 1 ), (M 2 , N 2 ) are formed by projective R-modules, then the canonical homomorphism

  Lemma 5.4.4. Let (R, m) be a Cohen-Macaulay local ring of dimension d, with canonical module ω. Suppose that S = R[T 1 , . . . , T r ] is the standard graded polynomial ring over R and g := S + . Let a ⊂ I = (f 1 , . . . , f r ) be two ideals of R, with ht(I) = g. If J = (a : R I) is an s-residual intersection of I, then (i) There is a natural graded isomorphism H r g (S) * Hom S (S(-r), R).In particular, for all µ ∈ Z,H r g (S) µ S * -µ-r = Hom R (S -µ-r , R). (ii) If g ≥ 2, then depth( k Z + 0 ) = depth( k Z + s ) = d, for all 0 ≤ k ≤ s -1. (iii) If g = 2 and I satisfies SD , then depth( 0 Z + i ) ≥ min{d, d -s + i + }, for all 1 ≤ i ≤ s -1.(iv) If g ≥ 2, then the following diagram, where the vertical isomorphisms are induced by the identificationsH d m (Z * ) Z ω r-1- * ∨ in Proposition 5.2.2, is commutative, for all 0 ≤ k ≤ s -2, H d m ( k Z + s ) -1 Z + 0 ) ∨ / / ( ω s-k-1 Z + 1 ) ∨ .

  j )} = min{ min δ≤j≤r-2 {depth(Z j )}, d} ≥ min{d, d -r + δ + + 1} ≥ min{d, d -s + i + }.

Proposition 5.4. 5 .

 5 Let (R, m) be a Cohen-Macaulay local ring of dimension d, with canonical module ω, and I = (f 1 , . . . , f r ) an ideal of height 2. Suppose that J = (a : R I) is an s-residual intersection of I and K is the disguised s-residual intersection of I w.r.t. a. If I satisfies SD 1 , then there exists an epimorphism of R-modulesφ : H 0 ( ω s-1 Z + • ) / / / / ω R/Kand φ is an isomorphism if I satisfies SD 2 . two spectral sequences. The second terms of the horizonal spectral are m (R/K) if j = d -s and i = 0 0 otherwise and the first terms of the vertical spectral are

H

  d-s m (R/K) ∞ E -s,-d ver = 2 E -s,-d ver and thus φ is an isomorphism. Now we state our main result that answers the question of Huneke and Ulrich in [HU88, Question 5.7] and also answers the conjecture of Hassanzadeh and Naéliton in [HN16, Conjecture 5.9]. Theorem 5.4.6. Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that I satisfies SD 1 and J = (a : R I) is an s-residual intersection of I. Then R/J is Cohen-Macaulay of codimension s. Proof. Let K be the disguised s-residual intersection of I w.r.t. a. Since I satisfies SD 1 , hence SD, R/K is Cohen-Macaulay of dimension d -s by Theorem 5.3.10 and K ⊂ J by Theorem 5.3.11. The proof will be completed by showing that J ⊂ K.

  4.1. Hence, it follows from the height two case that R/J (R/a)/(J/a) is Cohen-Macaulay of dimension d -s. It follows from the proof of Proposition 5.3.5 that J ⊂ ann R (Sym k R (I/a)), for all k ≥ 1. Then a natural question is: under what conditions one has ann R (Sym k R (I/a)) = J? It is known that ann R (Sym k R (I/a)) = J, for all k ≥ 1 whenever J is arithmetic in [HN16, Corollary 2.8(iv)]. The next result answers this question. Corollary 5.4.7. Let (R, m) be a Cohen-Macaulay local ring of dimension d, with canonical module ω, and a ⊂ I two ideals of R, with ht(I) = g. Suppose that J is an s-residual intersection of I and let 1 ≤ k ≤ s -g + 1. (i) If I satisfies SD 1 , then Sym k R (I/a) is a faithful R/J-module. (ii) If I satisfies strongly Cohen-Macaulay, then Sym k R (I/a) is a maximal Cohen-Macaulay faithful R/J-module. Proof. (i) The proof will be completed by showing that ann R (Sym s-g+1 R (I/a)) ⊂ J. As in the proof of Theorem 5.4.6, it suffices to prove that ann R (Sym s-g+1 R (I/a)) ⊂ J in the case g = 2. The inclusions ann R (Sym s-1 R (I/a)) ⊂ ann R (H 0 ( ω s-1 Z + • )) ⊂ K = J are demonstrated in the proofs of Proposition 5.3.5 and of Theorem 5.4.6.

  Example 5.4.8. [HN16, Example 2.10] Let R = Q[x, y], I = (x, y) and a = (x 2 , y 2 ). We set J = a : R I. Using Macaulay2[GS], we see that J = (x 2 , xy, y 2 ) is a 2-residual intersection (a link in this case) of I andSym R (I/a) R[T 1 , T 2 ]/ xT 1 , yT 2 , -yT 1 + xT 2 .Thus a free resolution of Sym2 R (I/a) is 0 / / R 3 N / / R 6 M / / R 3 / / Sym 2 R (I/a) / / 0, ann R (Sym 2 R (I/a)) = (x, y) J.We now give a description the canonical module of residual intersections.Theorem 5.4.9. Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that I satisfies SD 2 , Tor R 1 (R/I, ω) = 0 and J = (a : R I) is an s-residual intersection of I. Then the canonical module of R/J is Sym s-g+1 R (I/a) ⊗ R ω.

  Under assumptions of Theorem 5.4.9, but I only satisfies SD 1 instead of SD 2 . Then there exists an epimorphism of R-modulesSym s-g+1 R (I/a) ⊗ R ω / / / / ω R/J .

  a) ⊗ R ω by Theorem 5.4.9, it follows from Proposition 1.2.38 thatr(R/J) = µ(ω R/J ) = µ(Sym s-g+1 R (I/a) ⊗ R ω) = µ(Sym s-g+1 R (I/a))µ(ω) = dim R/m (Sym s-g+1 R (I/a) ⊗ R R/m)r(R) = dim R/m (Sym s-g+1 R/m (I/a ⊗ R R/m))r(R). Since I/a ⊗ R R/m is a R/m-vector space of dimension µ(I/a), Sym R/m (I/a ⊗ R R/m) (R/m)[Y 1 , . . . , Y µ(I/a) ].It follows that r(R/J) = µ(I/a) + s -g µ(I/a) -1 r(R).

  [START_REF] Chardin | Hilbert functions, residual intersections, and residually S 2 ideals[END_REF], Chardin, Eisenbud and Ulrich restated an old question of Stanley in[START_REF] Stanley | Weyl groups, the hard Lefschetz theorem, and the Sperner property[END_REF] asking for which open sets of ideals a the Hilbert function of R/a depends only on the degrees of the generators a. More precisely, they consider the following two conditions. (A1) Is the Hilbert function of R/a is constant on the open set of ideals a generated by s forms of the given degrees such that ht(a : R I) ≥ s; (A2) Is the Hilbert function of R/(a : R I) is constant on this set. It is shown in [CEU01, Theorem 2.1] that ideals with some sliding depth conditions in conjunction with G s-1 or G s satisfy these two conditions. In [HN16, Proposition 3.1], Hassanzadeh and Naéliton proved that if (R, m) is a Cohen-Macaulay graded local ring of dimension d over an Artinian local ring R 0 and if a ⊂ I are two homogeneous ideals, I satisfies SD, and depth(R/I) ≥ d -s, then the above condition (A1) is satisfied for any s-residual intersection J = (a : R I). It follows directly from [Has12, Theorem 2.11] and [HN16, Proposition 3.1] that if I satisfies SD, then, for any arithmetic s-residual intersection J = (a : R I), the above condition (A2) is satisfied.

  Lemma 5.5.2. [Has12, Proposition 3.4] Assume that (R, m) is a positively graded Cohen-Macaulay * local ring and let M be a finitely generated graded R-module. Then reg(M ) ≤ reg m (M ) ≤ reg(M ) + dim(R 0 ). The next proposition improves [Has12, Theorem 3.6] by removing the arithmetic hypothesis of residual intersections. Proposition 5.5.3. Let (R, m) be a positively graded Cohen-Macaulay * local ring over a Noetherian local ring (R 0 , m 0 ) and a ⊂ I two homogeneous ideals, with ht(I) = g. Suppose that I satisfies SD 1 . Then, for any s-residual intersection J = (a : R I), reg(R/J) ≤ reg(R) + dim(R 0 ) + σ(a) -(s -g + 1)indeg(I/a) -s.

Example 5.5. 4 .

 4 Let R 0 := k[x] (x) and R := R 0[y]. In this case let I = (y), a = (xy) and J = (x) be ideals of R. It is now easy to see that I is linked to J by a, whence the invariants mentioned in Proposition 5.5.3 are determined as follows: reg(R) = reg(R/I) = reg(R/J) = 0, dim(R 0 ) = 1, σ(a) = 1, s -g + 1 = 1, indeg(I/a) = 1, and indeg(J/a) = 0. Therefore the formula is the equality for R/J and a strict inequality for R/I. On the other hand, indeg(Sym s-g+1 R (I/a)) ≥ (s -g + 1)indeg(I/a). Thus indeg(Sym s-g+1 R (I/a)) = (s -g + 1)indeg(I/a).

  Corollary 5.5.7. Let (R, m) be a positively graded Cohen-Macaulay * local algebra of dimension d over an Artinian local ring R 0 , with canonical module ω. Suppose that a ⊂ I are two homogeneous ideals of R, with ht(I) = g, and J = (a : R I) is an s-residual intersection of I. WriteH R/J (t) = P (t) (1 -t a ) d-s , H Sym s-g+1 R (I/a)⊗ R ω (t) =

  e(R/J) = e(Sym s-g+1 R (I/a) ⊗ R ω). Proof. By Proposition 5.5.5, ω R/J Sym s-g+1 R (I/a) ⊗ R ω(σ(a)).It follows from Theorem 1.3.3 (a) thatH Sym s-g+1 R (I/a)⊗ R ω(σ(a)) (t) = (-1) d-s H R/J (t -1 ) is equivalent to H Sym s-g+1 R (I/a)⊗ R ω (t) = (-1) d-s t σ(a) H R/J (t -1 ). Thus Q(t) = t σ(a)+a(d-s) P (t -1 ) gives P (t) = t σ(a)+a(d-s) Q(t -1 ).In particular, e(R/J) = P (1) = Q(1) = e(Sym s-g+1 R (I/a) ⊗ R ω), by Proposition 1.3.7.

  a) ⊗ R ω.(ii) It suffices to prove that, for all 1 ≤ k ≤ s -g,Sym k R (I/a) ⊗ R ω Hom R Sym s-g+1-k R (I/a), Sym s-g+1 R (I/a) ⊗ R ω . As Sym s-g+1-k R (I/a) is a maximal Cohen-Macaulay R/J-module by Corollary 5.4.7(ii) and Sym s-g+1 R (I/a) ⊗ R ω is the canonical module of R/J by Theorem 5.4.9, ω Sym s-g+1-k R (I/a) Hom R Sym s-g+1-k R (I/a), Sym s-g+1 R (I/a) ⊗ R ω .

  Example 5.6.4. [EU16, Example 2.8] Let R = k[[x, y, z]],

(

  iii) setting A := Sym R/J (I/a), the graded R/J-algebra A := A/A >s-g+1 =

Corollary 5.6. 8 .

 8 Let (R, m) be a positively graded Cohen-Macaulay * local algebra of dimension d over an Artinian local ring R 0 , with canonical module ω. Suppose that a ⊂ I are two homogeneous ideals of R, with ht(I) = g, and J = (a : R I) is an s-residual intersection of I. WriteH Sym k R (I/a) (t) = P k (t) (1 -t a ) d-s , H Sym k R (I/a)⊗ R ω (t) = Q k (t) (1 -t a ) d-s ,with a the least common multiple of the degrees of the generators of the algebra R over R 0 andP k (t), Q k (t) ∈ Z[t, t -1 ], with P k (1), Q k (1) > 0, for each 1 ≤ k ≤ s -g. If I is strongly Cohen-Macaulay and Tor R 1 (R/I, ω) = 0, then P k (t) = t σ(a)+a(d-s) Q s-g+1-k (t -1 ).In particular, if R is generated over R 0 by elements of degree 1, thene(Sym k R (I/a)) = e(Sym s-g+1-k R (I/a) ⊗ R ω).Proof. The proof is analogous to one of Corollary 5.5.7. It follows from the fact that H Sym k R (I/a)⊗ R ω (t) = (-1) d-s t σ(a) H Sym s-g+1-k R (I/a) (t -1 ).

Corollary 5.6. 9 .

 9 Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that J = (a : R I) is an sresidual intersection of I. If I is strongly Cohen-Macaulay and Tor R 1(R/I, ω) = 0, then, for each 1 ≤ k ≤ s -g, r(Sym k R (I/a)) = µ(I/a) + s -g -k µ(I/a) -1 r(R).Proof. The proof is totally similar to one of Corollary 5.4.12. For all 1 ≤ k ≤ s -g,r(Sym k R (I/a)) = µ(Sym s-g+1-k R (I/a) ⊗ R ω),by Theorem 5.6.2 (i) and Proposition 1.2.38.
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.3 Graded Rings and Modules Definition 1.1.22. An

  N-graded ring R is a ring together with a decomposition (as abelian groups)R = R 0 ⊕ R 1 ⊕ . . . such that R m .R n ⊆ R m+n for all m, n ∈ Z ≥0 ,and where R 0 is a subring (i.e. 1 ∈ R 0 ). A Z-graded ring is one where the decomposition is into R = ⊕ n∈Z R n . In either case, the elements of the subgroup R n are called homogeneous of degree n.

	Proposition 1.1.21. [Vas94, 4.1.1] Let (R, m) be a Gorenstein local ring, I an
	unmixed ideal of height g, and x := x 1 , . . . , x g a regular sequence contained in I.
	Then the ideal J = (x) : R I is directly linked to I; more precisely, I = (x) : R J.
	Furthermore, R/I is Cohen-Macaulay if and only if R/J is Cohen-Macaulay.
	1.1

Example 1.1.23. Let

  R be a ring and X 1 , . . . , X n indeterminates over R. For α = (α 1 , . . . , α n

Definition 1.1.33. Let

  R be a graded ring. A graded ideal m of R is called * maximal, if every graded ideal that properly contains m equals R. The ring R is called * local, if it has a unique * maximal ideal m. A graded * local ring with * maximal ideal m will be denoted by (R, m).

	Let (R, m) be a * local ring. All nonzero homogeneous elements of the graded ring
	R/m are invertible, and so R/m is either a field, or else R/m	k[t, t -1 ],

Example 1.1.34. Let

  

	R be a graded ring.
	(a) Let p be a graded prime ideal. Then R (p) is a * local ring.
	(b) If R is a positively graded ring for which R 0 is a local ring with maximal ideal
	m 0 , then R is a

* local ring with * maximal ideal m = m

0 ⊕ n>0 R n . In particular a positively graded algebra over a field is * local. 1.2 Local cohomology and canonical module 1.2.1 Local cohomology Definition 1.2.1. If

  

	Proposition 1.2.2. [Eis05, 10.1] If R is a Noetherian ring, I is an ideal of R, and
	M is an R-module, then there is a canonical isomorphism
	R is a Noetherian ring, I is an ideal of R, and M is an R-
	module, then the 0-th local cohomology module of M is
	H 0 I (M ) := {m ∈ M | I n m = 0 for some n}.
	H 0 I (-) is a functor in an obvious way: if ϕ : M -→ N is a map, the induced
	map H 0 I (ϕ) is the restriction of ϕ to H 0 I (M ). It is immediate to see from this that
	the functor H 0 I (-) is left exact, so it is natural to study its derived functors, which
	we call the local cohomology functors, denoted by H i I (-), the right derived functors
	of H 0 I (-).

  0.The next result implies immediately from the above proposition.

	Corollary 1.2.4. Let (R, m) be a Noetherian local ring. A finitely generated R-
	module M is Cohen-Macaulay if and only if H i m

  The functor Hom R (-, E) is called the Matlis duality functor, to be denoted as -∨ , M ∨ = Hom R (M, E) is called the Matlis dual of R-module M and M ∨∨ stands for (M ∨ ) ∨ .

	Proposition 1.2.7. [Has12, Lemma 2.1] Let R be a Noetherian ring and M an
	R-module. Suppose that S = R[T 1 , . . . , T n ] is a standard graded polynomial ring over
	R. Then
	(i) H i S + (M ⊗ R S) = 0 for all i = n,
	(ii) there exists a functorial isomorphism θ M : H n S + (M ⊗ R S) -→ M ⊗ R H n S + (S).
	Proof. (i) follows from the fact that T 1 , . . . , T n is a regular sequence on M ⊗ R S and (ii) from the computation of H n S + (-) via the Čech complex on T 1 , . . . , T n .
	We now start our approach to the Local Duality Theorem. From now on for
	any (R, m) is a local ring, we denote by E(R/m) (or E for simplicity) the injective
	envelope of the simple R-module R/m.
	Lemma 1.2.8. [BS13, 11.2.3] Let (R, m) be a Gorenstein local ring of dimension d.
	Then H d m (R) E(R/m).
	Definition 1.2.9. Theorem 1.2.10 (Local duality for a Gorenstein local ring). [BS13, 11.2.5] Let
	(R, m) be a Gorenstein local ring of dimension d and M a finitely generated R-
	module. Then
	H d-i m (M ) Ext i R (M, R) ∨
	for all i ∈ Z.
	Theorem 1.2.11 (Local Duality Theorem). [BS13, 11.2.6] Suppose that (R, m) is a
	local ring which is a homomorphic image of a Gorenstein local ring A of dimension
	n. For each finitely generated R-module M,

Definition 1.2.13. Assume

  For all i ∈ Z ≥0 and all n, the R 0 -moduleH i R + (M ) n is finitely generated. (b) There exists r ∈ Z such that H i R + (M ) n = 0 for all i ∈ Z ≥0 and all n ≥ r. that R = ∞ n=0R n is positively graded and M is a finitely generated graded R-module. Set R + = n>0 R n .

	the differentials d p are thus all of degree zero. Therefore, by Theorem 1.2.5, the local cohomology H i I (M ) is isomorphic to the i-th cohomology of the Čech complex, in-herits a grading. Moreover, this grading is independent of the choice of homogeneous generators for I, see instance [BS13, Chapter 13] or [BH98, §3.6]. We use H i I (M ) n to denote the n-th component of the graded R-module H i I (M ). Proposition 1.2.12. [BS13, 16.1.5] Assume that R = ∞ n=0 R n is positively graded and M is a finitely generated graded R-module. Set R + = n>0 R n . regularity of M, denoted by reg(M ), is defined by (a) The Castelnuovo-Mumford reg(M ) : = sup{end(H

  we shift the grading of M by d to get M (d), then M (d) is the sheaf on P n k associated to M (d), so in general H i ( M (d)) = H i (F M ) d . Thus Proposition 1.2.14 takes on the following form:

	Proposition 1.2.15. Let M be a graded S-module and M the corresponding quasi-
	coherent sheaf on P n k .
	(a) There is an exact sequence of graded S-modules

  When R is Cohen-Macaulay, our definition is the same as the definition in [BH98, 3.6.8] Proposition 1.2.40. [BS13, 14.5.12] Let (R, m) be a graded Cohen-Macaulay * local ring of * dimension d. A finitely generated R-module C is a * canonical module of R if and only if there exists a homogeneous isomorphism *

	Ext

Definition 1.2.39.

[START_REF] Brodmann | Local cohomology[END_REF] 14.5

.1] Let (R, m) be a graded * local ring of * dimension d. A finitely generated R-module C is a * canonical module (or a graded canonical module) of R if there exists a homogeneous isomorphism * Hom R (C, * E R (R/m)) H d m (R).

  and only if B is locally of linear type, and if and only if B is locally a complete intersection.

  Definition 1.6.3. Given a rational map F : X P n k and let Y ⊂ P n k denote its image. One says that F is birational onto its image if there exists a rational map G : Y P m k whose image is X such that F and G are inverse to each other. image Y and X, respectively (so that, in particular, dim X

	Proposition 1.6.4. [Sim04, Proposition 2.1] Let X ⊂ P m k and Y ⊂ P n k denote
	subvarieties of positive dimension and let F : X	P n k and G : Y	P m k stand for
	rational maps with		

  by Euler's formula. Thus (a 0 , -a 1 , a 2 , -a 3 ) is a syzygy of f 0 , . . . , f 3 . Under the assumptions of Proposition 3.3.2. Then deg(F ) = 3(d-1) if and only if f 0 , . . . , f 3 are linearly dependent over k.

	Corollary 3.3.3.

  , L. Busé, M. Chardin, S. H. Hassanzadeh and A. Simis and have been published [BBC + 17].
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Remerciements

Proposition 5.2.1. Let (R, m) be a Noetherian local ring and I = (f 1 , . . . , f r ) an ideal of R. Suppose that R satisfies S 2 and ht(I) ≥ 2. Then, for all 0 ≤ i ≤ r -1,

where the last map is the multiplication of the Koszul complex, which is a differential graded algebra, and Im(ϕ i ) ⊂ Z r-1 K r R. It follows that ϕ i induces a map

We induct on the height to show that for every p ∈ Spec(R), (ψ i ) p is an isomorphism. If ht(p) < 2, then I p = R p , by Proposition 1.5.5

p and the self-duality of the Koszul complexes (see Proposition 1.5.7(a)) shows that (ψ i ) p is an isomorphism.

Suppose that ht(p) ≥ 2 and (ψ i ) q is an isomorphism for all prime contained properly in p. Replacing R by R p and m by pR p , we can suppose that ψ i is an isomorphism on the punctured spectrum : the kernel and the corkernel of ψ i are annihilated by a power of m. It follows that H j m (Ker(ψ i )) = H j m (Coker(ψ i )) = 0 for j > 0. Since R satisfies S 2 , depth(Z i ) ≥ min{2, depth(R)} = 2. The exact sequence 0 -→ Ker(ψ i ) -→ Z i -→ Im(ψ i ) -→ 0 implies that Ker(ψ i ) = H 0 m (Ker(ψ i )) = 0. Observing that depth(Hom R (Z r-1-i , R)) ≥ min{2, depth(R)} = 2, the exact sequence

, therefore, by Proposition 5.2.1, ω Zp Z r-1-p for all 0 ≤ p ≤ r -1. The next proposition will generalize this result.

We are particularly interested in the case that R admits the canonical module, hence in the sequel we assume that R is a homomorphic image of a Gorenstein ring and write ω R for the canonical module of R. We will denote by

Homology modules of approximation complexes

Now we describe the 0-th homology module of approximation complexes. These complexes was introduced in [SV81] and systematically developed in [START_REF] Herzog | Approximation complexes of blowing-up rings[END_REF] and [START_REF] Herzog | Approximation complexes of blowing-up rings[END_REF]. Recall that the approximation complex Z

that can be written

where T = T 1 , . . . , T r and

where L M is the submodule of M [T 1 , . . . , T r ] generated by the linear forms

where F 1 is the free R-module indexed by a generating set of Z 1 . By the definition,

where 1 M denote the identity morphism on M. Note that δ is induced by the inclusion

) and we obtain an exact sequence

Let L be the submodule of S = R[T 1 , . . . , T r ] generated by the linear forms

provides an exact sequence

Notice that LM is the submodule of M [T 1 , . . . , T r ] generated by the linear forms

Let L be the submodule of M [T 1 , . . . , T r ]/LM generated by the linear forms

It follows that

Thus we have already proved the following.

Proposition 5.2.3. Let R be a Noetherian ring and I = (f 1 , . . . , f r ) an ideal of R.

Assume that M is a finitely generated R-module. Then

where L ⊂ S is the defining ideal of Sym R (I) and L is spanned by generators of Tor R 1 (R/I, M ). Proposition 5.2.4. Let R be a Noetherian ring and I = (f 1 , . . . , f r ) an ideal of R. Assume that M is a finitely generated R-module. Then there exists a narural epimorphism

that equals H 0 (Z • (f ; R)) Sym R (I) when M = R. Furthermore, ϕ is an isomorphism if and only if Tor R 1 (R/I, M ) = 0. Proof. As LM ⊂ L M , we can define an epimorphism

by (5.3) and (5.4). Moreover, the kernel of ϕ is isomorphic to L M /LM. Thus Tor R 1 (R/I, M ) = 0 if and only if ϕ is an isomorphism.

Residual approximation complexes

Assume that R is a Noetherian ring of dimension d, I = (f ) = (f 1 , . . . , f r ) is an ideal of height g. Let a = (a 1 , . . . , a s ) be an ideal contained in I with s ≥ g. Set J = a : R I, S = R[T 1 , . . . , T r ] and g := (T 1 , . . . , T r ). We write a i = r j=1 c ji f j , and γ i = r j=1 c ji T j . Notice that the γ i 's depend on how one expresses the a i 's as a linear combination of the f i 's. Set γ = γ 1 , . . . , γ s . Finally, for a graded module N, we define end(N ) :

Let M be a finitely generated R-module and we consider the approximation complex Z

where

with Z M j = 0 for j < 0 or j > r, and for j = r unless depth M (I) = 0. In what follows, we assume that depth M (I) > 0, (hence Z M r = 0), in order that the complexes we will construct have length s.

For a graded S-module N, the k-th graded component of N is denoted by

and therefore

Now the Čech complex of S with respect to the ideal g = (T 1 , . . . , T r ) is denoted

Chapter 5. Cohen-Macaulayness and canonical module of residual intersections by C

that gives rise to two spectral sequence. The second terms of the horizonal spectral are

) and the first terms of the vertical spectral are

Since the vertical spectral collapses at the second step, the horizonal spectral converges to the homologies of H r g (D M • ). Since all of the homomorphisms are homogeneous of degree 0, the convergence will be case for any graded component. Therefore for any k ≥ 0 there exists a filtration

.

Notice that

) for all l ≥ 2. Hence we have the following chain of maps for which except the isomorphism Proof. The first isomorphism follows from the definition of D M

• and Proposition 5.2.3. The last isomorphism is a consequence of the fact that, for all k ≥ 1,

Proposition 5.3.3. Let R be a Noetherian ring and a ⊂ I two ideals of R. Assume that M is a finitely generated R-module. Then, for all k ≥ 1, there exists a natural epimorphism 

where β is the inclusion (γ) → S and hence Im(β

The natural onto map

provides an epimorphism, for all k ≥ 1,

by Proposition 5.3.2. Moreover, Tor R 1 (R/I, M ) = 0 is equivalent to L M = LM which gives the last assertion.

Lemma 5.3.4. Let M be a module over a ring R. Suppose that N is a quotient of M [T 1 , . . . , T r ], with T i 's indeterminates of degree 1, by a graded submodule. Then, for all k ≥ 1, ann R (N k ) ⊂ ann R (N k+1 ).

Proof. We consider a graded S-homomorphism of degree zero

Proof. Since I satisfies SD 1 , 0 Z + • is acyclic and R/K is Cohen-Macaulay of dimension d -s by Theorem 5.3.10. By local duality

The Let g 1 , . . . , g be a minimal set of generators of I/a. We have

where 

Duality for residual intersections of strongly Cohen-Macaulay ideals

The duality for residual intersetcions is a center of interest in during the development of the theory of residual. The first results of duality were proven by Peskine and Szpiro for the theory of liaison in [START_REF] Peskine | Liaison des variétés algébriques[END_REF]. Afterwards, around the works of Huneke and Ulrich in [START_REF] Huneke | Residual intersections[END_REF], generalizing the corresponding statement in the theory of linkage of Peskine and Szpiro. In particular, the recent works of Eisenbud and Ulrich in [START_REF] Eisenbud | Duality and Socle Generators for Residual Intersections[END_REF] give some results on the duality for residual intersections.

In this section, we provide the duality for residual intersections in the case where I is a strongly Cohen-Macaulay ideal. In this case, the structure of the canonical module of some symmetric powers of I/a is given. Therefore, we may establish some tight relations between the Hilbert series of the symmetric powers of I/a and we give the closed formulas for the type and for the Bass number of Sym k R (I/a). First we prove on the duality of residual approximation complexes in the height two case.

Proposition 5.6.1. Let (R, m) be a Cohen-Macaulay local ring of dimension d, with canonical module ω, and a ⊂ I two ideals of R. Suppose that I is a strongly Cohen-Macaulay ideal of height 2 and J = (a : R I) is an s-residual intersection of I. Then, for all 0 ≤ k ≤ s -2,

(5.11)

As I is strongly Cohen-Macaulay of height 2, we have that depth(Z i ) = d, for all 0 ≤ i ≤ r -1. By the definition of k Z +

• , for all 0

/ / 0 0 0 0 that gives rise to two sequences. The second terms of the horizonal spectral are

and the first terms of the vertical spectral are

By the convergence of the spectral sequences, we obtain

(5.12) By Lemma 5.4.4 (iv), we have a commutative diagram, for all 0 ≤ k ≤ s -2

(5.13) By (5.11), (5.12), (5.13) and Proposition 1.2.19,

We now state the main result of this section. Let recall us that if M, N, L be three R-modules, then a morphism ϕ :

Theorem 5.6.2. Let (R, m) be a Cohen-Macaulay local ring with canonical module ω and a ⊂ I two ideals of R, with ht(I) = g. Suppose that J = (a : R I) is an sresidual intersection of I. If I is strongly Cohen-Macaulay and Tor R 1 (R/I, ω) = 0, then, for all

(ii) there is a perfect pairing

Proof. (i) First we treat the case g = 2. By Proposition 5.6.1, for all 1 ≤ k ≤ s -2,

Next, we will show that the perfect paring in Theorem 5.6.2 and also in Corollary 5.6.3 could be chosen by multiplication. Fisrt, we need the following lemmas.

Lemma 5.6.5. Let (R, m, k) be a local Noetherian ring and S a Noetherian standard graded R-algebra. For any s ≥ t, we consider ψ : S t -→ Hom R (S s-t , S s ) the natural map given by the algebra structure of S. 

then the natural map given by the algebra structure of Sym R (M )

is an isomorphism.

Proof. The assertion of the lemma is equivalent to show that ϕ • ψ is onto, which in turn is equivalent to ψ ⊗ R k being into (or equivalently onto).

Choose τ 1 : R n -→ M onto with n minimal (equivalently such that The next corollary enables us to calculate the Bass numbers of some symmetric powers of I/a. Corollary 5.6.10. Under the assumptions of Corollary 5.6.9. If p is a prime ideal containing J of R, with ht(p) = i, then, for every 1

Proof. By Theorem 5.4.6, R/J is Cohen-Macaulay of codimension s and by Corollary 5.4.7(ii), Sym k R (I/a) is a maximal Cohen-Macaulay faithful R/J-module, for all 1 ≤ k ≤ s -g + 1. Furthermore, by Theorem 5.6. ) .

The last isomorphism follows from the fact that bR p is regular over (ω R/J ) p and annihilates k(p). Therefore