
HAL Id: tel-01901576
https://theses.hal.science/tel-01901576

Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Matching with Time : Theory and Applications
Dogan Ulus

To cite this version:
Dogan Ulus. Pattern Matching with Time : Theory and Applications. Data Structures and Algorithms
[cs.DS]. Université Grenoble Alpes, 2018. English. �NNT : 2018GREAM003�. �tel-01901576�

https://theses.hal.science/tel-01901576
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA 
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Dogan ULUS

Thèse dirigée par Oded MALER 

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et 
technologies de l'information, Informatique

Filtrage par motif temporisé : Théorie et 
Applications

Pattern Matching with Time: Theory and 
Applications

Thèse soutenue publiquement le 15 janvier 2018,
devant le jury composé de :

Monsieur ODED MALER
DIRECTEUR DE RECHERCHE , CNRS DELEGATION ALPES, Directeur
de thèse
Madame PATRICIA BOUYER-DECITRE
DIRECTRICE DE RECHERCHE, CNRS DELEGATION PARIS-
VILLEJUIF, Examinateur
Monsieur AHMED BOUAJJANI
PROFESSEUR, UNIVERSITE PARIS 7, Président
Monsieur SADDEK BENSALEM
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Examinateur
Monsieur RADU GROSU
PROFESSEUR, UNIVERSITE TECHNIQUE DE VIENNE AUTRICHE, 
Rapporteur
Monsieur KIM GULDSTRAND LARSEN
PROFESSEUR, UNIVERSITE D'AALBORG - DANEMARK, Rapporteur
Monsieur RAJEEV ALUR
PROFESSEUR, UNIVERSITE ÉTAT DE PENNSYLVANIE - USA, 
Rapporteur



[ March 22, 2018 at 21:40 – classicthesis version 4.2 ]



A B S T R A C T

Dynamical systems exhibit temporal behaviors that can be expressed
in various sequential forms such as signals, waveforms, time series,
and event sequences. Detecting patterns over such temporal behav-
iors is a fundamental task for understanding and assessing these sys-
tems. Since many system behaviors involve certain timing charac-
teristics, the need to specify and detect patterns of behaviors that
involve quantitative timing requirements, called timed patterns, is evi-
dent. However, this is a non-trivial task due to a number of reasons
including the concurrency of subsystems and the density of time.

The key contribution of this thesis is in introducing and develop-
ing timed pattern matching, that is, the act of identifying segments
of a given behavior that satisfy a timed pattern. We propose timed
regular expressions (tres) and metric compass logic (mcl) as timed
pattern specification languages. We first develop a novel framework,
the algebra of timed relations, which abstracts the computation of
time-related aspects. Then we provide offline matching algorithms
for tre and mcl over discrete-valued dense-time behaviors using this
framework and study some practical extensions.

It is necessary for some application areas such as runtime verifica-
tion that pattern matching needs to be performed during the actual
execution of the system. For that, we provide an online matching
algorithm for tres based on the classical technique of derivatives of
regular expressions. We believe that the underlying technique which
combines derivatives and timed relations constitutes another major
conceptual contribution to timed systems research.

Furthermore, we present an open-source tool montre that imple-
ments our ideas and algorithms. We explore diverse applications of
timed pattern matching over several case studies using montre. Fi-
nally we discuss future directions and several open questions that
emerged as a result of this thesis.

iii
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R E S U M E

Les systèmes dynamiques présentent des comportements temporels
qui peuvent être exprimés sous diverses formes séquentielles telles
que des signaux, des ondes, des séries chronologiques et des suites
d’événements. Détecter des motifs sur de tels comportements tem-
porels est une tâche fondamentale pour comprendre et évaluer ces
systèmes. Étant donné que de nombreux comportements du système
impliquent certaines caractéristiques temporelles, le besoin de spéci-
fier et de détecter des motifs de comportements qui implique des exi-
gences de synchronisation, appelées motifs temporisés, est évidente.
Cependant, il s’agit d’une tâche non triviale due à un certain nombre
de raisons, notamment la concomitance des sous-systèmes et la den-
sité de temps.

La contribution principale de cette thèse est l’introduction et le
développement du filtrage par motif temporisé, c’est-à-dire l’identifica-
tion des segments d’un comportement donné qui satisfont un motif
temporisé. Nous proposons des expressions rationnelles temporisées
(tre) et la logique de la boussole métrique (mcl) comme langages
de spécification pour motifs temporisés. Nous développons d’abord
un nouveau cadre qui abstraite le calcul des aspects liés au temps
appelé l’algèbre des relations temporisées. Ensuite, nous fournissons
des algorithmes du filtrage hors ligne pour tres et mcl sur des com-
portements à temps dense à valeurs discrètes en utilisant ce cadre et
étudions quelques extensions pratiques.

Il est nécessaire pour certains domaines d’application tels que la vé-
rification dynamique que le filtrage par motif doit être effectué pen-
dant l’exécution réelle du système. Pour cela, nous fournissons un
algorithme du filtrage en ligne pour expressions rationnelles tempo-
risées basé sur la technique classique des dérivées d’expressions ra-
tionnelles. Nous croyons que la technique sous-jacente qui combine
les dérivées et les relations temporisées constitue une autre contribu-
tion conceptuelle majeure pour la recherche sur les systèmes tempo-
risés.

Nous présentons un logiciel libre montre qui implémente nos idées
et algorithmes. Nous explorons diverses applications du filtrage par
motif temporisé par l’intermédiaire de plusieurs études de cas. En-
fin, nous discutons des orientations futures et plusieurs questions ou-
vertes qui ont émergé à la suite de cette thèse.

v
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1
I N T R O D U C T I O N

There are only patterns,
patterns on top of patterns,

patterns that affect other patterns.
Patterns hidden by patterns.

Patterns within patterns.

— Survivor, Chuck Palahniuk

Time, it needs time.

— Still Loving You, Klaus Meine

This thesis concerns patterns and how to detect them in tempo-
ral behaviors generated by various systems. These can be known
patterns, good or bad patterns, correct or incorrect patterns, simple
or complex patterns, but, more precisely, these are timed patterns ex-
pressed in some intuitive and well-defined formalisms, namely timed
regular expressions and metric compass logic.

Let’s assume what good, bad, correct, and incorrect patterns mean
is known in the context. Then a few types of composition regulate
how to form complex patterns out of simpler patterns in general.
Particularly this process resembles how things formed in the nature
from atoms to very large complex systems; therefore, it should not
be surprising that a small set of composition rules over a set of ele-
mentary patterns can express many real-life phenomena. In order to
convince yourself that patterns are everywhere in our lives, you may
look at this page and count how many times the letter p is followed
by other fellow letters, a, t, t, e, r, n, and s in the sequential order
given. Indeed simple sequences constitute one of the most basic but
extremely useful class of patterns, and sequences of textual characters
(letters, punctuation marks, whitespaces, . . . ) are commonly known
as strings. You are lucky if you read this thesis on a computer so you
can use the word search functionality1 of your document reader to
find and count all instances of the string "patterns". Such a computa-
tion of searching and locating strings over long texts is the classical
example of string matching or —in more general— pattern matching.

Patterns in general would not be formed not only by sequential
composition but also other types of compositions. A remarkable fact
shown by Kleene in [60] is that an extremely important class of pat-
terns, called regular patterns, can be represented using finite num-
ber of composition operations of three types: sequential composition
(concatenation), alternative choice (union), and indefinite repetition
(Kleene star). In the same paper Kleene proved that all and only reg-
ular patterns are recognized by finite-state automata [27, 77, 78, 93].

1 Usually Ctrl+F or Cmd+F starts the program. Currently 26 instances of the string
"patterns" on this page (case insensitive) including this footnote.

1
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2 introduction

This was the birth of the formalism of regular expressions and led to
many theoretical and practical consequences. Two appraoches for au-
tomata construction from regular expressions [26, 76] emerged early
in the following and it is shown later in [18] that both approaches
are very closely related. In [107] Thompson presented a noteworthy
implementation of these automata-theoretic concepts to search pat-
terns expressed as regular expressions. Since then tools for regular
expression matching have become established in various domains of
computer science ranging from compilers to verification and biology.

Time, usually regarded as a sequence of temporal entities (time
instants or periods), can be very naturally modeled using finite-state
automata and regular expressions. Patterns on the time axis is similar
to patterns in text if we think of letters as events and their positions
in text as timestamps. Consider a sequence c

1
a
2
b
3
c
4
c
5
a
6
b
7
c
8

of events ob-

served at each second of time and a pattern ϕ � ab meaning that an
event a is followed by b after 1 second according to the time gran-
ularity given. Then, using pattern matching techniques, we can say
that the pattern ϕ occurred over time periods p2, 3q and p6, 7q. Thus
we have learned that the pattern ϕ occurred twice and when these
occurrences happened exactly in time. That’s already a useful tech-
nique to reason about time and temporal information. Yet, observe,
in general, that temporal events and patterns can occur simultane-
ously and many interesting patterns can be defined over such events
and patterns happening at the same time. Therefore, parallel compo-
sition (intersection) of patterns is far more ubiquitous and important
for patterns in time than texts. Particularly a specialized case of par-
allel composition can express constraints about durations of patterns,
and we’ll talk about duration constraints for patterns while explain-
ing quantitative aspects of time. But, before that, we move to another
important formalism for pattern specification involving time.

Temporal logic concerns reasoning about time and all kinds of
temporal information in a logical framework. In the narrow sense,
however, we denote by temporal logic the modal-logic approach in-
troduced by Prior [91, 92] over a simple linear time model. Prior’s
logic, then, is a way to formalize tense aspects of common sentences
such as "an event will be eventually followed by another event" or
"a situation has been always the case". In his seminal paper [89],
Pnueli imported the concept into computer science and proposed to
use temporal logic to express properties over execution traces of (re-
active, concurrent) programs (also see [65]). Afterwards, temporal
logic quickly was adopted by the community as a major specification
formalism in modern verification technology for model checking [31]
and runtime verification [51, 68, 71] (sometimes accompanied with
regular expressions [29, 40]). Model checking consists in exploring a
mathematical model of a system exhaustively and providing a formal
proof of correctness that all behaviors of the system satisfy (temporal
logic) specifications. The downside, however, is that we often do not
have a faithful model of large complex systems at the first place and,
even when we have such a model, the exhaustive exploration over the
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introduction 3

model is usually infeasible. Being a lighter approach, runtime veri-
fication checks behaviors individually against specifications. It does
not necessitate a model; therefore, it is applicable for a larger class
of systems (including black-box systems) in practice. Although the
formal proof of correctness cannot be provided in runtime verifica-
tion (unless exhaustive), it can be approximated by employing some
coverage-based and statistical metrics.

From the point of this thesis, temporal logics deliver yet another
means to express patterns in time. For example, Pnueli’s linear-time
temporal logic (ltl) is proved to be very convenient to specify infinite-
duration patterns of intentionally-never-terminating programs. The
most important classes of these patterns are safety (bad things will
never occur) and liveness (good things will always recur) properties.
Checking these properties over system behaviors, as in runtime veri-
fication, can be easily viewed as pattern matching using point-based
temporal logics. For example, notice that the satisfaction at a time
point t by an ltl formula means that there is an instance of the pat-
tern that occurs between t and the end of time. Therefore, existing
verification techniques using point-based temporal logics provide a
significant source of inspiration for design choices made and tech-
niques developed in this thesis.

However, point-based temporal logics are not naturally suitable to
express local patterns with durations (but aforementioned global pat-
terns of safety and liveness). Although we acknowledge that time
points are quite established in some disciplines of science such as
physics, time periods seem better fit for reasoning about time in gen-
eral. The topic can lead us to interesting debates (and see [17] for a
comparative study) but it is clear for us that a choice has to be made
when it comes to realizing these concepts elegantly and efficiently.
Therefore, a philosophical and practical position that favors time pe-
riods instead of time points is going to be prevalent in this thesis,
thus in accordance with Allen’s theory of action and time [2, 3].

Considering time periods as primitive entities, Allen introduced
thirteen basic relations between two time periods, and proposed a
first-order logic over time periods that employs a predicate for each
of the so-called Allen relations. However, first-order logic with all
its explicit variables and binding mechanisms is much more com-
plicated than modal logic systems. Besides its full expressiveness
is usually not needed since modal logics are extremely well to ex-
press real-life structures, which are composed of smaller structures.
Therefore, we consider modal logics over time periods as excellent
logical frameworks to express temporal patterns while providing a
good compromise between expressiveness and simplicity. We are
then interested in the modal logic, called hs-logic or Compass Logic,
introduced by Halpern and Shoham in [48]. Extending Prior’s modal
approach towards time periods and based on Allen’s relations, it pro-
vides simple constructs to express some complex patterns such as
a pattern that precedes, meets, starts, ends, overlaps, or occurs during
another pattern. We also note that extending hs-system with concate-
nation would be very useful for pattern matching purposes and such
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4 introduction

an extension leads to an increase in the expressiveness as shown by
Venema in [113].

One major contribution of this thesis is in introducing timed pattern
matching, that is, pattern matching under the notion of quantitative
time and timing constraints. For that we propose to use appropriate
timed variants of regular expressions and temporal logics as pattern
specification languages and we develop pattern matching techniques
for these formalisms. It is possible to trace timed formalisms back to
Prior’s writings. However, the most influential works in the literature
are about timed automata [4] that extend finite-state automata with
clock (timer) constraints and metric temporal logic (mtl) [62] that
extends ltl with bounds on temporal distances. Many variants of
both formalisms are extensively studied and several implementations
have appeared in last decades mostly for verification purposes.

These timed formalisms are generally motivated by the need to ver-
ify safety-critical real-time systems, which need to act correctly and
timely for all possible situations without exception. Surely air traffic
controllers, nuclear reactors, and autonomous vehicles are such sys-
tems and their correct operation may be deduced by an exhaustive
analysis of their behaviors that exhibit many instances of different
timed patterns, desirable or undesirable. On the other hand, we are
also interested in exploring possible applications beyond the safety-
critical domain. As sensors, monitors, and video cameras collect huge
amounts of temporal data nowadays, it is crucial to extract meaning-
ful information from temporal databases and streams. Clearly timing
information and constraints are also important for possible soft ap-
plications over temporal data such as monitoring customer behaviors
in stores and analyzing human and vehicle mobility in cities. As
seen, timed patterns are a part of many safety-critical and not-so-
critical systems and applications and we believe timed pattern match-
ing would be an important tool when reasoning about them.

Following the line of thought of previous paragraphs, the first for-
malism we propose for timed patterns is the formalism of timed reg-
ular expressions (tre) [10, 11] that extends regular expressions with
duration constraints and intersection. Similar to Kleene’s original
theorem, the equivalence can be shown between timed regular ex-
pressions and timed automata. On the other hand, the lack of a nice
algebraic characterization for timed automata has convinced us to
make our pattern matching procedures free of timed automata and
their clocks. Instead we favor the operation of duration restriction,
which is a specialized form of intersection, rather than explicit clock
variables. Therefore time periods are crucial in our system as they
implicitly express duration without any need of an additional time-
keeping mechanism. As a result, together with other composition
operations, notably concatenation, we obtain a very nicely behaving
algebraic system as we call the algebra of timed relations. Secondly,
we introduce metric compass logic (mcl), a metric extension of com-
pass logic with time bounds in a similar way that mtl extends ltl.
Although there are some works extending some fragments of com-
pass logic with timing, we consider full compass logic. For that,
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introduction 5

we extend the algebra of timed relations with quantitative versions
of modalities. Using such an algebra under the hood, we represent
quantitative temporal information and perform timed pattern match-
ing for both timed regular expressions, metric compass logic, and
even a free mix of their operators.

The introduction of derivatives of timed regular expressions is the other
major contribution of this thesis. In the classical theory, derivatives
of regular expressions, introduced by Brzozowski in [26], constitute a
very elegant technique to evaluate a regular expression with respect
to a word, thus simulate underlying finite-state automaton. We then
lift the notion of derivative to timed languages without disrupting the
simplicity and elegance of the technique. The use of timed derivatives
to match timed patterns online is an immediate application as the
ability to react as soon as a pattern is detected is an important feature.

Besides theoretical contributions mentioned above, we implemented
all the concepts, ideas, and algorithms to perform timed pattern match-
ing online and offline over timed behaviors of systems and the envi-
ronment. We provide the tool Montre that contains these implemen-
tations with an easy-to-use interface and open it for the general pub-
lic. Finally we demonstrate and evaluate our tool with examples and
case studies from diverse application areas of timed pattern match-
ing.

Contributions. We summarize the contributions of this thesis as
follows:

• We introduce the algebra of timed relations, which simplifies
the timed theory and implementations.

• We propose timed regular expressions as a concise, intuitive,
and highly-expressive timed pattern specification language.

• We introduce metric compass logic, and propose it as another
timed pattern specification language that can be used standalone
or together with timed regular expressions.

• We provide efficient offline matching algorithms for patterns ex-
pressed in timed regular expressions and metric compass logic.

• We introduce derivatives of timed regular expressions and pro-
vide an online timed pattern matching algorithm based on deriva-
tives.

• We implement timed pattern matching algorithms and package
them as the command-line tool Montre. We present some ex-
amples and case studies.
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6 introduction

Outline. The thesis is organized as follows. Chapter 2 gives the
necessary background in classical automata and language theory with-
out quantitative time as well as in temporal logics. Chapter 3 presents
the algebra of timed relations and its computational aspects. Chapter
4 defines timed pattern matching, presents syntax and semantics of
timed regular expressions and metric compass logic, and provides an
offline pattern matching algorithm. Chapter 5 is devoted for timed
derivatives and online computation. The tool Montre and case stud-
ies are described in Chapter 6 before concluding in Chapter 7.
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2
P R E L I M I N A R I E S

Surely a moment’s reflection,
and a single instance from common life,

must convince every one that
our social system is based upon Regularity.

— Flatland, Edwin A. Abbott

This chapter gives a brief background in classical formal languages,
automata theory, and temporal logics. We start by providing the
general terminology on the topic. Then we review parts of the the-
ory of regular languages, regular expressions, and automata related
to the thesis. In particular, we are mostly interested in Kleene’s
theorem [60] as well as Brzozowski’s derivatives of regular expres-
sions [26]. Thanks to many great subsequent work, the relation be-
tween languages, expressions, and automata is now very well-known
as they represent semantic, syntactic, and operational facets of se-
quential properties. For a much broader survey on the topic, readers
may consult monographs [54, 101, 102].

By temporal logic, we refer to the modal-logic approach introduced
by Prior under the name of tense logic [91, 92]. It allows reasoning
about temporal situations (states, events, processes) using (temporal)
operators in a formal framework. The approach and formalism im-
ported into the verification community by Pnueli to specify temporal
behaviors of programs in [89]. Since then, it is considerably devel-
oped, extended, and diversified by many logicians and computer sci-
entists. Here we will only review temporal logics over linear time
flows related to this thesis and we suggest [47] for a broader survey
and references therein.

2.1 words and languages

In this section, we briefly present standard definitions and notations
of letters, words, languages, and operations over them in computer
science. Shared terminology with linguistics shows the original close
connection between two disciplines and the subsequent success of
text processing using formal languages and automata nailed these
terms in every textbook. These connotations are nice as long as they
are not taken too literally. In particular, we emphasize that a letter just
means a basic building block that we’re interested in their sequences.
This can be truly a letter from the Latin alphabet but also a labeled
time period, a symbolic expression, a function, etc.. Then let’s start
by words, which are finite sequences of letters.

Words. An alphabet is a set of letters. A word over an alphabet
Σ is a finite (possibly empty) sequence of letters of Σ and the empty

7
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8 preliminaries

word is denoted by ε. The length |w| of the word w is the number
of letters in sequence and |ε| � 0. The set of all words (resp. all
nonempty words) over an alphabet Σ is denoted by Σ� (resp. Σ�).
Given two words u � a1, . . . ,am and v � b1, . . . ,bn over Σ, their
concatenation u � v is given as u � v � a1, . . . ,am,b1, . . . ,bn. Con-
catenation is an associative operation as x � py � zq � px � yq � z for all
x,y, z P Σ�. Also we often denote concatenation by juxtaposition. The
empty word ε is the identitiy element of concatenation as ε satisfies
the condition w � ε �w � w � ε for all w P Σ�. For some x, z P Σ�, a
word y is a prefix of a word w if y � z � w, a suffix if x � y � w, and a
factor if x � y � z � w.

Languages. A language L over an alphabet Σ is a subset of Σ�,
that is, any finite or infinite set of words over Σ. On languages, set-
theoretic operations of union L1 Y L2, intersection L1 X L2, and com-
plementation (L) are defined in the usual way.

L � tw P Σ� | w R Lu

L1 Y L2 � tw | w P L1 or w P L2u

L1 X L2 � tw | w P L1 and w P L2u

The concatenation L1 � L2 of two languages L1 and L2 is naturally
extended as follows.

L1 � L2 � tw1w2 | w1 P L1 and w2 P L2u.

Furthermore, the k-th power Lk of a language L is defined recursively
such that Lk � Lk�1 � L where L0 � tεu. The union of all nonnegative
powers (Kleene star) and the union of all positive powers (Kleene
plus) of a language L are respectively denoted by

L� �
¤
k¥0

Lk and L� �
¤
k¥1

Lk.

Another important operation on languages that we are interested
in is the left quotient of a language L1 by L2. Intuitively speaking,
the left quotient is an operation to obtain all words such that their
concatenation with some words in L2 would produce a word in L1.
The other way round, it is an operation to delete prefixes of words
in L1 if the prefix in L2 and get the word that remains after, which
may be empty as well. More precisely, the left quotient L2zL1 of a
languages L1 by L2 is defined as

L2zL1 � tv | Du P L2. uv P L1u

A specialization of the (left) quotient operation by a word u —in the
strict sense, by a singleton language tuu— is called the (left) deriva-
tive operation. The (left) derivative DupLq of a language L with re-
spect to u is defined as

tuuzL � DupLq � tv | uv P Lu

It is often the case that the derivative operation is given with respect
to single letters since a derivative operation with respect to a word
w � a1 . . . an can be decomposed into successive derivations by sin-
gle letters of w such that Da1...anpLq � Dan . . . Da1pLq.
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2.2 regular expressions and automata 9

2.2 regular expressions and automata

Given an alphabet Σ, the languages H, tεu and tau, where a P Σ, are
called basic languages. Then a language L � Σ� is said to be regular
if it can be obtained from basic languages by applying finitely many
times the operations of union, concatenation, and Kleene star as first
introduced in [60]. These three (regular) operations form an algebra
on languages called the regular algebra whose properties have exten-
sively studied in [32]. Subsequently it is shown that the class of regu-
lar languages is also closed under intersection and complementation,
sometimes called extended regular operations.

Kleene showed that the class of regular languages is precisely the
class of languages recognized by finite automata, which is usually
known as Kleene’s theorem, that makes regular languages an ex-
tremely important class of formal languages. Other early character-
izations of regular languages are given by Copi et al. in [33] from
an operational perspective, by Nerode [82] from an algebraic perspec-
tive, and by Büchi in [28] from a logical perspective. In the context
of this thesis, we do not delve into such algebraic and logical aspects
much and mostly employ a language-theoretic perspective.

Then, we start with the definition of regular expressions, which are
syntactic representations of regular languages. The syntax of regular
expressions over Σ is given by the following grammar:

ϕ :� H | ε | a | ϕ1 Yϕ2 | ϕ1 �ϕ2 | ϕ
�

where a P Σ. A regular expression ϕ specifies a regular language JϕK,
inductively defined as follows.

J∅K � H Jϕ1 Yϕ2K � Jϕ1KY Jϕ2K

JεK � tεu Jϕ1 �ϕ2K � Jϕ1K � Jϕ2K

JaK � tau Jϕ�K � JϕK�

Then two regular expressions are said to be equivalent if they rep-
resent the same language. Moreover, when there is no ambiguity,
we use languages and expressions interchangeably and usually use
some easy simplifications (e.g. properties of absorbing and identity
elements) without mentioning explicitly.

We know that the membership testw P L of a wordw in a language
L is equivalent to ε P DwpLq by definition. Hence, the problem of test-
ing whether a word w is contained in a language can be reduced to
a computation for the derivative Dw and a check for the empty word
containment. For this purpose, an empty word extraction function
ν (also known as the nullability predicate or output function) is first
defined as

νpϕq �

$&
%
ε if ε P JϕK

∅ otherwise
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The function ν, which extracts ε from ϕ if it is contained in JϕK,
can be computed inductively for regular expressions by the following
rules:

νp∅q � ∅ νpϕ1 �ϕ2q � νpϕ1q X νpϕ2q

νpεq � ε νpϕ1 Yϕ2q � νpϕ1q Y νpϕ2q

νpaq � ∅ νpϕ�q � ε

In his seminal paper [26], Brzozowski applied the notion of deriva-
tives to regular expressions and proved that the derivative Dapϕq of
an expression ϕwith respect to a letter a can be computed recursively
using the following syntactic rewrite rules:

Dap∅q � ∅ Dapϕ1 Yϕ2q � Dapϕ1q YDapϕ2q

Dapεq � ∅ Dapϕ1 �ϕ2q � Dapϕ1q �ϕ2 Y νpϕ1q �Dapϕ2q

Dapaq � ε Dapϕ
�q � Dapϕq �ϕ

�

Dapbq � ∅

These rules are extended for words by letting Da�wprq � DwpDaprqq.
Hence to check, for example, whether abc is in the language of the ex-
pression ϕ � a� � pb � cq� we compute Dabcpϕq � DcpDbpDapϕqqqq �
pb � cq� as follows.

a� � pb � cq� −Ñ
Da

a� � pb � cq� −Ñ
Db

c � pb � cq� −Ñ
Dc

pb � cq�

and then we know abc P JϕK since νppb � cq�q � ε. It is of course not a
coincidence that this procedure resembles the reading of the word by
an automaton where derivatives correspond to states and those that
contain ε correspond to accepting states. Let us look at automata
more closely.

In the most general sense, an automaton is an abstract computing
device or machine that operates according to a set of predefined rules
and external input symbols (letters). A state of the automaton is the
representation of a particular situation in which the automaton can
be at a specific time. An automaton processes a sequence of letters
and moves from one state to another at each step. An automaton
is called finite if it has a finite number of states and deterministic if
there exists one and only one state to which the automaton can move
from its current state upon processing a specific letter.

We denote the fact that a deterministic finite automaton (dfa) moves
from the current state q upon processing the next letter a to the next
state q 1 by qÑ

a
q 1. Alternatively, it can be said that the letter a trans-

forms the state q into q 1 and it is denoted by δapqq � q 1 and, in
this case, δ is called the transition function of the automaton. Some
states of the automaton can be designated as initial and final states.
Then, a sequence of letters, a word, that drive the automaton from
the initial state to a final state is said to be successful or accepted by
the automaton. The language L � Σ� recognized by an automaton A

is the set of all accepted words are denoted by JAK. More precisely,
a dfa A is defined as a 5-tuple A � pΣ,Q, δ,q0, Fq where Σ is a finite
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q0start q1

q∅

b

c
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a

c

a,b, c

Figure 1: An example deterministic finite automaton over Σ � ta,b, cu.

alphabet, Q is a finite set of states, δ : Σ�QÑ Q is the (deterministic)
transition function, q0 P Q is the initial state, and F � Q is the set of
final states. It is often convenient to depict a dfa as a directed graph
where edges are labeled with letters of the alphabet. For example,
we depict an automaton pta,b, cu, tq0,q1,q∅u, δ,q0, tq1uq in Figure 1

where the state q∅ is usually called the dead state.
Now we give a very brief review of language equations for dfas.

For a more detailed treatment, we suggest the monograph [67] that
also includes generalizations of automata — nondeterministic finite
automata (nfa) [93] and boolean (alternating) finite automata [27].
Since we can declare every state in the automaton as an initial state,
every state q P Q is associated with a unique language Lq, that is,
the set of all words leading to the acceptance from the state q. In
particular, the language Lq contains the empty word ε if the state q is
a final state. Moreover, the language Lq contains a � Lq 1 where Lq 1 is
the language of the next state q 1 by the letter a such that δapqq � q 1.
This is simply because the word a �w leads to the acceptance from
the state q if w does so from the next state q 1 by a.

Suppose that the states Q of a deterministic finite automaton A is
given as Q � tq0,q1, . . . ,qnu and q0 is the initial state, we can rep-
resent the automaton as a system Lq0 ,Lq1 , . . . ,Lqn of n� 1 language
equations obtained for each state. More precisely, the system of lan-
guage equations associated with the automaton A is given as follows.

Lq �
¤
qÑ
a
q 1

a � Lq 1 Y νpqq for all q P Q

where ν is the empty word extraction function previously defined.
For example, consider the automaton depicted in Figure 1 and we
then write the corresponding system of equations:

Lq0 � a � Lq0 Y b � Lq1

Lq1 � b � Lq0 Y c � Lq1 Y ε

Lq∅ � H

(1)

A system of equations can be solved for any state by using standard
elimination techniques and, in particular, the language of the automa-
ton is obtained by solving the system for the initial state q0. Recursive
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Table 1: Transition function of the automaton.

δ a b c

ϕ0 ϕ0 ϕ1 ∅
ϕ1 ∅ ϕ0 ϕ1

∅ ∅ ∅ ∅

language equations can be solved by using Arden’s lemma [9], which
states that

Lq � A � Lq YB � A
� �B

where A and B are arbitrary languages and the solution is unique if
ε R A. For example, we obtain the language Lq0 � paY bc�bq�bc�

by solving for q0 the system (1) of equations above. Similarly we ob-
tain the language Lq1 � c

�pεY bpaY bc�bq�bc�q. Solving the system
of equations shows that the language of every dfa can be obtained
in such a way from basic languages by applying finitely many times
the operations of union, concatenation, and Kleene star. Therefore,
the language of a dfa is regular. This result gives one direction of
Kleene’s theorem from automata to regular languages. For the other
direction, it would suffice to show that we can construct a determin-
istic finite automaton from any regular expression using derivatives
of regular expressions as reviewed in the following.

For every regular expression ϕ, a dfa that recognizes JϕK can be
constructed by the following procedure. Since every derivative char-
acterizes a state of the automaton, two regular expressions are equiv-
alent if they represent the same language. Then we compute deriva-
tives starting from the initial state for each letter in the alphabet and
keep track of new states (distinct derivatives) and continue with com-
puting the derivatives for new states. This process of computing the
derivatives will terminate after a finite number of steps since the num-
ber of distinct derivatives is finite as proved in [26]. For example,
consider a regular expression ϕ0 � paYbc�bq�bc� over a three-letter
alphabet Σ � ta,b, cu and the expression ϕ0 to be our initial state.

ϕ0 : paY bc�bq�bc� −Ñ
Da

paY bc�bq�bc� pϕ0q

−Ñ
Db

c�bpaY bc�bq�bc� Y c� pNew state: ϕ1q

−Ñ
Dc

H pNew state: ∅q

Since we discovered new states distinct from the previously known,
we need to repeat the process for each of them until no new state
found. Then we have

ϕ1 : c�bpaY bc�bq�bc� Y c� −Ñ
Da

H p∅q

−Ñ
Db

paY bc�bq�bc� pϕ0q

−Ñ
Dc

c�bpaY bc�bq�bc� Y c� pϕ1q
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2.3 temporal logics 13

and derivations of ∅ are simply ∅. Then we tabulate the transition
function δ of the automaton in Table 1, which is equivalent to the
automaton depicted in Figure 1. Finally, since detecting equivalence
between regular expressions is computationally expensive, a simpler
check can be employed by sacrificing the minimality of the automa-
ton. It is also shown in [26] that the number of distinct derivatives is
finite even when syntactic similarity (based on associativity, commu-
tativity, and idempotence properties) is considered.

2.3 temporal logics

In this section, we review temporal logics based on time points as
well as time periods. By temporal logic, we mean the modal approach
introduced by Prior in [91, 92] under the name of tense logic with two
temporal modalities, namely some time in the past and some time in the
future. These modalities are based on time points and easily seen that
they implicitly refer to time points less than the current time point
and time points greater than the current time point, respectively. An
important extension for Prior’s logic, the introduction of two binary
modalities since and until, is proposed by Kamp in [59]. Later Pnueli
imported the concept into the computer science and proposed the use
of temporal logic to specify infinite-duration temporal properties [89].
Afterwards, temporal logic was quickly adopted by the community
as a major specification formalism in modern verification technology.

Here we first give the syntax of semantics of Pnueli’s linear-time
temporal logic with past and future operators.

Linear-time Temporal Logic. Linear-time Temporal Logic (ltl)
extends propositional logic with future temporal modalities such as
next (M), eventually (♦), always ( ), and until (U) as well as past
temporal modalities previously (N), once (�), historically (�), and
since (S). These modalities have the following intuitive meanings
over a logical formula ϕ.

Mϕ [Nϕ] ϕ holds at the next [previous] time point.

♦ϕ [�ϕ] ϕ holds for some future [past] time point.

ϕ [�ϕ] ϕ holds for all future [past] time points.

ϕ1 U ϕ2 [ϕ1 S ϕ2] ϕ1 holds for all future [past] time points

until [since] ϕ2 holds for some future

[past] time point.

where we refer the past versions in brackets. In the following, we
present the (minimal) syntax and (strict) semantics of ltl formulas
over finite or infinite behavior [41, 46, 69, 73, 89].

Let N � r0,nq be an interval of integer time line. Given a set
P � tp1, . . . ,pmu of atomic propositions, a (discrete-time) behavior
w : N Ñ Bm is a function that assigns a Boolean value tfalse, trueu
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for each proposition p P P at each time step. The syntax of ltl with
future and past modalities is given over P by the following grammar.

ϕ � p |  ϕ | ϕ1 _ϕ2 | ϕ1 U ϕ2 | ϕ1 S ϕ2

where p P P. Then the satisfaction relation $ of an ltl formula ϕ over
a (finite or infinite) discrete-time behavior w is inductively defined as
follows.

pw, iq $ p Ø wppiq � true

pw, iq $  ϕ Ø pw, iq & ϕ

pw, iq $ ϕ1 _ϕ2 Ø pw, iq $ ϕ1 or pw, iq $ ϕ2
pw, iq $ ϕ1 U ϕ2 Ø Dj P pi, |w|q.pw, jq $ ϕ2 and

@k P pi, jq.pw,kq $ ϕ1
pw, iq $ ϕ1 S ϕ2 Ø Dj P r0, iq.pw, jq $ ϕ2 and

@k P pj, iq.pw,kq $ ϕ1

The other operators are derived by letting

Mϕ � false U ϕ Nϕ � false S ϕ

♦ϕ � true U ϕ �ϕ � true S ϕ

ϕ �  ♦ ϕ �ϕ �  � ϕ

Metric Temporal Logic. Metric temporal logic (mtl) extends ltl

with the notion of dense-time and timing constraints on the temporal
modalities. Let T be an interval of dense real time line. Given a
set P � tp1, . . . ,pmu of atomic propositions, a dense-time behavior
w : T Ñ Bm is a function that assigns a Boolean value tfalse, trueu

for each proposition p P P at each time point. The syntax of mtl with
future and past ltl modalities augmented with temporal bounds is
given over a set P of atomic propositions by the following grammar.

ϕ � p |  ϕ | ϕ1 _ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p P P and I is an interval of duration values. Then the sat-
isfaction relation $ of an mtl formula ϕ over a (finite or infinite)
dense-time behavior w : T Ñ Bm is inductively defined as follows.

pw, tq $ p Ø wpptq � true

pw, tq $  ϕ Ø pw, tq & ϕ

pw, tq $ ϕ1 _ϕ2 Ø pw, tq $ ϕ1 or pw, tq $ ϕ2
pw, tq $ ϕ1 UI ϕ2 Ø Dt 1 P T . pw, t 1q $ ϕ2,

@t2 P pt, t 1q.pw, t2q $ ϕ1, and

t 1 � t P I

pw, tq $ ϕ1 SI ϕ2 Ø Dt 1 P T . pw, t 1q $ ϕ2,

@t2 P pt 1, tq.pw, t2q $ ϕ1, and

t� t 1 P I

The modalities ♦I, I, �I, and �I can be derived in the same way as
in ltl. This is not the case for next and previously, which have no
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pLq
pAq
pOq
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pDq
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pA�1q
pL�1q

Figure 2: Allen’s relations between time periods.

meaning under dense time. Observe that their derivation formulas
false UI ϕ and false SI ϕ evaluate to false for all formulas ϕ and
bounds I due to the density.

Logics of time periods. Point-based temporal logics are not natu-
rally suitable to express local patterns with finite durations. For these
specifications, temporal logics based on time periods are argued to be
a better formalism. Then, considering time periods as primitive enti-
ties, Allen introduced 13 basic relations between two time periods to
represent high-level temporal knowledge in [2]. The set of so-called
Allen’s relations consists of relations met-by (A), begins (B), ends (E),
during (D), overlaps (O), and later (L) as well as their inverses and the
equality (�). In Figure 2 we illustrate these relations in a way that a
depicted time period (horizontal lines) and the time period pt, t 1q is in
the specified relation given at the right. In [48], Halpern and Shoham
applied Prior’s modal approach over time periods and proposed a
temporal logic that features a modality for each Allen’s relation.

It is shown that six certain temporal modalities of the hs logic
can express others under strict semantics. Here we use the com-
pass notation introduced by Venema in [112] (with our slight exten-
sion) since it has nice geometric connotations on the two-dimensional
plane. The basic set consists of six modalities (diamonds) denoted by

, , , , , , respectively corresponding to relations A,A�1,B,
B�1,E,E�1 between time periods. These (diamond) modalities have
the following intuitive meanings over a formula ϕ over time periods.

ϕ ϕ holds at a period met by the current one.

ϕ ϕ holds at a period that meets the current one.

ϕ ϕ holds at a period that begins the current one.

ϕ ϕ holds at a period begun by the current one.

ϕ ϕ holds at a period that ends the current one.

ϕ ϕ holds at a period ended by the current one.
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Figure 3: Accessibility regions for each Allen relation with respect to a time
period pt, t 1q.

As shown, using these basic set of modalities, we can derive more
modalities for the remaining relations. For example, ϕ � ϕ

corresponds to the relation L, ϕ � ϕ � ϕ to the rela-
tion D, and ϕ � ϕ to the relation O. Moreover, the dual
(box) modalities are defined as usual such that ϕ � ϕ where
P t , , , , , u and matches the decoration. From another

point of view, each modality accesses a different region on the two-
dimensional plane with respect to the current period and quantifies
ϕ over the accessed region. In Figure 3, we illustrate accessed regions
for each Allen’s relation with respect to a period pt, t 1q.

Finally, we mention the chop modality, which corresponds to the
concatenation operator of regular expressions and can be added on
the top of temporal logics [30, 79, 97, 113]. It is known that the ex-
pressiveness of hs logic can be increased further by the addition of
the chop modality [113].

2.4 monitoring and pattern matching

In this section, we overview regular expression matching and tempo-
ral logic monitoring. It is worth to note in the beginning that the pre-
cise meaning of the terms monitoring and matching is very fluid in
formal methods literature. Historically, the term monitoring is used
to check the satisfaction of a temporal behavior against point-based
temporal logics. In general, however, we use the term monitoring
to denote any act of observing and evaluating individual temporal
behaviors of systems. Pattern matching is then a monitoring task de-
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fined to be an act of identifying the segments of observed behaviors
that satisfy a pattern.

Given a pattern and a word, we can then ask several questions
in the context of pattern matching: (1) Does the whole word match
the pattern? (acceptance), (2) Does a prefix of word match the pat-
tern? (prefix matching), (3) Does a suffix of the word match the pat-
tern? (suffix matching), and (4) Which factors of the word match
the pattern? (two-sided matching). For example, consider a word
w � abcab and a (string) pattern ϕ � ab. Then we give the following
answers: (1) No, the whole word w does not match ϕ, (2) Yes, there
is a prefix ending at the position 2, (3) Yes, there is a suffix beginning
at the position 4, and (4) These are segments from the position 1 to 2

and from 4 to 5. Most of the work in pattern matching literature can
be viewed as techniques to answer some or all of these questions for
some formalism. Strings and regular expressions are the most com-
monly used formalisms for pattern specifications. Although string
patterns are not our focus in this thesis, we note that string match-
ing algorithms [35, 81] can be useful in optimizing regular expression
matching [116].

The pioneering work on regular expression matching was due to
Thompson [107] who constructed a non-deterministic finite automa-
ton, for a given regular expression, to be executed with respect to
the input word. This idea implemented in the archetypal tool grep,
which is still actively used program in unix systems to search pat-
terns over texts. Since searching and manipulating texts is such a
ubiquitous task, some programming languages such as awk and perl

has been designed to perform regular expression matching. Besides,
virtually any programming language provides a functionality to match
regular expressions via their standard libraries.

On the other hand, we do not see such a rich picture of algorithms
and implementations for regular expressions extended with intersec-
tion and complementation. It is known that the complexity of stan-
dard automata-based solutions significantly increases in the presence
of these operations. Alternative approaches proposed so far are based
on dynamic programming [54, 61], derivatives [100], and some vari-
ants of automata [55, 64, 98, 117].

Temporal logic monitoring over individual behaviors has been ini-
tially proposed as a lightweight approach for program and hardware
verification under the name of runtime verification. Complexities of
model checking and the practical need to check individual behaviors
using formal specifications motivated developments in the field. We
suggest [111] for a historical review on the rationale and development
of temporal logics for monitoring purposes, and [74] for a complex-
ity comparison between model checking and monitoring of several
temporal logics.

For ltl monitoring, a variety of algorithms has been proposed
based on formula rewriting systems [52, 99], sequential circuits [44,
53, 90], and finite automata [45]. Algorithms for mtl monitoring usu-
ally follows ltl monitoring. Among them we distinguish ones based
on dynamic programming [72] and formula rewriting [16, 106]. We
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also note the existence of an interesting branch of monitoring over
data traces using formal specifications [5, 15, 38, 42, 50], which essen-
tially replace the underlying Boolean algebra of classical formalisms
with various algebras (of some data domains). For a broader sur-
vey which contains other monitoring approaches such as (domain-
specific) programming languages, please refer to [49].
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A L G E B R A O F T I M E D R E L AT I O N S

Ne içindeyim zamanın, ne de büsbütün dışında.
Yekpare, geniş bir anın parçalanmaz akışında.

I am neither inside time, nor am I completely outside.
In the indivisible flow of a moment, atomic and wide.

— Poems, Ahmet Hamdi Tanpinar

This chapter introduces the algebra of timed relations. We define
timed relations to be finitely representable subsets of the set of all time
periods. We are interested in various algebraic (boolean, sequential,
and temporal) operations on timed relations represented by symbolic
and geometric means.

The study of the algebra of logic and relations began with Boole
and DeMorgan in the nineteenth century and continued by Peirce and
Schröder [103]. Geometric representations of relations can be traced
back to Tarski’s calculus of relations [105]. Other related classical
works include Blake’s canonical expressions in boolean algebras [21],
Stone’s representation theorem [104], and boolean algebras with oper-
ators [57]. The latter is closely related to modal (temporal) logics [19,
20], thus it completes a cycle of mathematical results.

We focus on concrete geometric representations specific to timed
relations in this chapter. We propose algorithms to compute boolean,
sequential, and temporal operations over such representations based
on techniques from computational geometry. In short, we establish
a computational framework here for the following chapters, which
relies on classical results of the algebra of logic and relations.

3.1 definitions and normal forms

We start by defining the underlying time domain we will use through-
out the thesis, which is a set of time points on a dense, linear, and
bounded time line.

Definition 3.1 (Time domain). A (dense, linear, bounded) time domain
T is a dense interval of time points with rational bounds admitting a strict
linear order  .

We consider T � p0,dq to be an interval of real or rational numbers
denoting time points on the time axis. Although we have just men-
tioned time points, we now abandon them in favor of time periods
defined as follows.

Definition 3.2 (Time period). A time period pt, t 1q is a pair of begin and
end boundaries on a time domain T such that t   t 1 with a non-zero dura-
tion of t 1 � t. We denote the set of all time periods over T by ΩpTq.

19
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Figure 4: Geometric representations of a time period pt, t 1q and the setΩpTq.

We say that a time period pt1, t 11qmeets another time period pt2, t 12q
if the end of the first equals to the beginning of the second such that
t 11 � t2. A sequence S � pt0, t1q, pt1, t2q, . . . , ptn�1, tnq of meeting
time periods is simply called a sequence of time periods. We say that
the sequence S begins at t0, ends at tn, and has a duration of tn � t0
and a length of n.

Geometrically speaking, a time period pt, t 1q can be viewed as a sin-
gle point on the standard two-dimensional xy-plane. On the left of
Figure 4, we illustrate attributes of a time period pt, t 1q, its begin-
ning t, its end t 1, and its duration t 1 � t. Then we are interested in
a very specific set of linear inequalities that correspond to constraints
on beginnings, endings, and durations of time periods, often called
vertical, horizontal, and diagonal half-planes. In particular, the set
of all time periods ΩpTq can be seen as a (triangular) set of points
tpt, t 1q | t ¥ 0, t 1 ¤ d, t 1 � t ¡ 0u on the plane as depicted on the
right of Figure 4.

In the following, we closely relate sets of time periods to Boolean
functions [24, 34]. Boolean (set-theoretic) operations of union (Y),
intersection (X), and complementation ( ) as well as the inclusion
relation (�) over sets of time periods are defined as usual with the
empty set H and the universal set ΩpTq. We call a set of time periods
a timed relation if and only if it can be expressed as a finite boolean
formula over vertical, horizontal, and diagonal half-planes.

Definition 3.3 (Timed Relation). A timed relation Z � ΩpTq is a (possi-
bly uncountable) set of time periods that can be represented on the xy-plane
by a boolean combination of finitely many half-planes having one of six forms
(1) x   c, (2) y   c , (3) y� x   c, (4) c   y� x , (5) c   y, and (6) c   x
with rational constants where   P t ,¤u.

Observe that the empty set, ΩpTq, and all finite sets of time periods
are timed relations. A timed relation that can be formed only by
intersections is called a convex timed relation. We denote by Z and ZX

the set of all timed relations and the set of all convex timed relations
overΩpTq, respectively. We differentiate the six types of half-planes in
the definition by annotating superscripted numbers p1�6q such as h1.
The complement of an open [closed] half-plane hk is a closed [open]
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half-plane h7�k with the same constant c. Intersections or unions
of any number of half-planes hk1 , . . . ,hkn of the same type would be
implied by one of the half-planes hki , i P 1, . . . ,n. Therefore, every
convex timed relation z P ZX can be formed by an intersection of six
half-planes h1,h2,h3,h4,h5,h6 of each type such that
£

k�1...6

hk � tpx,yq | c6   x   c1 ^ c5   y   c2 ^ c4   y�x   c3u

where c1, . . . , c6 P RY t�8,�8u. Consequently, we can represent
a convex timed relation as a six-tuple ph1,h2,h3,h4,h5,h6q of half-
planes. Notice that the inequalities defining these half-planes are not
totally independent of each other and the arithmetic addition of other
two certain inequalities may imply a tighter constraint than the one
in the representation. Every non-empty convex timed relation z P ZX

has a unique normal representation such that all constraints are tight.
More precisely, given a representation ph1,h2,h3,h4,h5,h6q of z that
the tight representation of z can be computed as follows:

tightenpzq �
�
h1 X ph2 � h4q,

h2 X ph1 � h3q,

h3 X ph2 � h6q,

h4 X ph1 � h5q,

h5 X ph4 � h6q,

h6 X ph3 � h5q
	

where � denotes arithmetic addition of inequalities. In Figure 5, we
illustrate the most general (hexagon) case for a convex timed relation
where one can see, for example, that two half-planes h1 : x   c1 and
h3 : y� x ¤ c3 imply a constraint h1 � h3 : y   c1 � c3, which can
imply or be implied by h2. Importantly, an inclusion test between
two convex timed relations z1 and z2 can be performed over their
tight representations such that

z1 � z2 ÐÑ
©

i�1,...,6

hi1 � h
i
2

From now on, we consider all representations of convex timed rela-
tions to be tightened according to the definition above and we use
the term zone both for a convex timed relation and its tight represen-
tation. We say that a zone z1 is implied by another zone z2 if z1 � z2.
Note that zones (possibly in higher dimensions) are commonly em-
ployed for timed systems research and admit efficient data structures
called difference bound matrices (dbms) [22, 37]. Here we use many
two-dimensional zones to represent time periods rather than one or
a few high-dimensional zones to represent clock valuations.

We represent a timed relation as a finite union of zones similar to
the disjunctive normal form of Boolean functions. By definition and
by DeMorgan’s laws, every timed relation Z can be represented by a
union over a finite set of non-empty zones RZ � tz1, z2, . . . , znu such
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pc2 � c4, c2q

Figure 5: Dependencies between constraints of a convex timed relation.

that Z � z1 Y z2 Y � � � Y zn. Colloquially, we say timed relation when
we want to emphasize semantic aspects whereas union of zones to em-
phasize syntactic aspects. Now we define some important properties
of representations for timed relations.

Definition 3.4 (Absorption). A union of zones RZ is absorptive if and
only if no zone in RZ is implied by any other zone in RZ.

For any union of zones RZ, we can obtain an equivalent absorptive
union of zones, denoted by absorbpRZq, by removing all absorbed
zones from the representation. Obviously, there may be different rep-
resentations of a timed relation Z but an absorptive representation
absorbpRZq for a given RZ is unique. Unless specified otherwise, we
consider all unions of zones to be absorptive throughout the thesis.
We then adapt Blake’s syllogistic theory of Boolean functions [21, 24]
to the case of timed relations in a direct fashion in the following.

Definition 3.5 (Syllogism). A union of zones RZ is syllogistic if and only
if every zone z � Z is included in some zone in RZ.

Let us now define a syntactic inclusion test between two unions of
zones RZ1 and RZ2 as follows:

RZ1 � RZ2 ÐÑ @z1 P RZ1 . Dz2 P RZ2 . z1 � z2

An important result for syllogistic sets of zones is that syntactic in-
clusion is implied by semantic inclusion. That is to say, an inclusion
test Z1 � Z2 between two timed relations Z1 and Z2 can be replaced
by a syntactic inclusion test between their representations if RZ2 is
syllogistic.

Lemma 3.1. Let RZ1 and RZ2 be two unions of zones. If RZ2 is syllogistic,
we have the equivalence Z1 � Z2 ÐÑ RZ1 � RZ2 .

Proof. Assume RZ2 is syllogistic. One direction pÐq of the equiva-
lence is trivial. In the other direction, assume a zone z of RZ1 is not
included in any zone of RZ2 and then it implies z � Z2 by definition.
Hence we have pÑq by contraposition.
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It is also easily seen that absorbpRZq is syllogistic if and only if
RZ is syllogistic. Below we denote by RZ1 X RZ2 a union of zones
developed by intersecting zones from both sets using the distributive
laws.

Lemma 3.2. Let RZ1 , . . . ,RZn be syllogistic unions of zones. Then we have
that RZ1 X � � � X RZn is syllogistic.

Proof. Let z be a zone of RZ1 X � � � X RZn . Then z � Zi for i � 1 . . . n.
Since RZi are syllogistic, there exists a zone z 1i P RZi such that z � z 1i
and then we have z � z 11X � � � X z

1
n. See that z 11X � � � X z

1
n is a zone of

RZ1 X � � � X RZn , hence RZ1 X � � � X RZn is syllogistic.

Next we define a canonical representation for timed relations, which
is the analogue of Blake’s canonical form for Boolean functions. The
maximal normal form of a timed relation Z is defined to be a union
of all maximal zones as follows.

Definition 3.6 (Maximal Zone). Let Z be a timed relation. We say that a
zone z � Z is a maximal zone of Z if there is no other zone z 1 that satisfies
z � z 1 � Z.

Definition 3.7 (Maximal Normal Form). A union of zones RZ is in the
maximal normal form if it is the union of all maximal zones of Z.

Lemma 3.3. A union of zones RZ is in the maximal normal form of Z if
and only if it is absorptive and syllogistic.

Proof. The maximal normal form of Z is absorptive and syllogistic
by definition. For the other direction, suppose RZ is syllogistic and
absorptive. Let z be a maximal zone of Z. Then z has to be in Rz since
there is no zone z 1 such that z � z 1 � Z. Since RZ is absorptive, it
does not contain any zone z2 such that z2 � z. Hence RZ contains all
maximal zones, and no other zones.

3.2 operations on timed relations

When describing operations on timed relations, we first give the se-
mantic definition. Then we demonstrate the operation over single
zones and extend it towards unions of zones. We overload operators
for both semantic and syntactic operations if there is no ambiguity.

Duration restriction. We consider that the operation of duration
restriction is a first-class operation for the algebra of timed relations.
A timed relation Zwhose elements restricted to have a duration value
within an interval ra,bs of non-negative reals is denoted by xZyra,bs
and defined as follows.

xZyra,bs � tpx,yq | px,yq P Z and y� x P ra,bsu

Over a zone, we directly apply duration restriction by letting

xzyra,bs � tightenph1,h2,h3Xpy�x ¤ bq,h4Xpa ¤ y�xq,h5,h6q
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Figure 6: Duration restriction.

and extend it towards unions of zones as

xRZyra,bs � txzyra,bs | z P RZu

In Figure 6, we depict a timed relation Z on the left and xZyra,bs on
the right, which can be viewed as a diagonal slice of Z on the plane.

Intersection. The operation of intersection between timed rela-
tions is defined as usual.

Z1 XZ2 � tpx,yq | px,yq P Z1 and px,yq P Z2u

Observe that duration restriction is a special case of intersection with
a (constant) timed relation C � xΩpTqyra,bs such that xZyra,bs � ZXC.
We intersect two zones by letting

z1Xz2 � tightenph11Xh
1
2,h21Xh

2
2,h31Xh

3
2,h41Xh

4
2,h51Xh

5
2,h61Xh

6
2q

and extend it towards union of zones as

RZ1 X RZ2 � tz1 X z2 | z1 P RZ1 and z2 P RZ2u

which indicates a quadratic complexity for the worst case.

Complementation. The complement Z of a timed relation Z with
respect to the universal set ΩpTq is given as follows:

Z � tpx,yq P ΩpTq | px,yq R Zu

See that the complement of a timed relation Z is unique and the
double complement of Z is equivalent to Z. The statements ZX Z �
H and Z Y Z � ΩpTq hold for every timed relation Z. Since both
DeMorgan laws hold for timed relations, we complement a zone z
and a union of zones RZ, respectively as follows.

Rz � th1z, h2z, h3z, h4z, h5z, h6zu (2) RZ �
£
zPRZ

Rz (3)

Observe that the complement of a single zone as in Equation 2 is
a syllogistic union of zones. Then, by Lemma 3.2, we also have that
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the complement of a timed relation as in Equation 3 are syllogistic.
Moreover we can obtain the maximal normal form of Z by removing
absorbed zones from RZ. It follows that double complementation can
be used to obtain the maximal normal form of any timed relation.

Finally we note that Equation 3 can be developed into a union of
zones in an incremental and more efficient manner such that

RiZ � absorb

�
Ri�1Z X Rzi

	

where RiZ is the complement of the subset tz1, z2, . . . , ziu of a union
of zones with n elements for 1 ¤ i ¤ n and R0Z � ΩpTq.

Union. Given two timed relations Z1 and Z2, the union of two
timed relations is defined as usual.

Z1 YZ2 � tpx,yq | px,yq P Z1 or px,yq P Z2u

The class of zones (convex timed relations) is not closed under union
and the operation RZ1 Y RZ2 simply corresponds to that the union
of member zones of both representations. We note, however, timed
relations of RZ1 Y RZ2 and RZ1 X RZ2 are equivalent but they may
have different representations. The latter would produce the maximal
normal form of Z1 YZ2 whereas the former does not necessarily.

Composition. Given two timed relations Z1 and Z2, their (sequen-
tial) composition, equivalently their concatenation, is defined by

Z1 �Z2 � tpx,yq | Dr. px, rq P Z1 and pr,yq P Z2u

In Figure 7 we illustrate the composition of two singleton timed rela-
tions tpt, t2qu � tpt2, t 1qu � tpt, t 1qu on the left side. Notice that a time
period pt1, t 11q can be sequentially composed (concatenated) with an-
other time period pt2, t 12q only if the end of the first meets the begin-
ning of the second such that t 11 � t2. Otherwise the composition
tpt1, t 11qu � tpt2, t 12qu � H for t 11 � t2. Next we have that the class of
zones (convex timed relations) is closed under composition.

Proposition 3.4. The composition of two zones is a zone.

Proof. Following the semantics of composition we have

pt, t 1q P z1 � z2 iff Dt2. t   t2   t 1, pt, t2q P z1, and pt2, t 1q P z2

which translates to Dt2 P pt, t 1q such that
$''&
''%

b1   t   b1

e1   t2   e1

d1   t2 � t   d1

,//.
//-

and

$''&
''%

b2   t2   b2

e2   t 1   e2

d2   t 1 � t2   d2

,//.
//-

By eliminating the quantifier, we obtain that z1 � z2 equals to a zone
$''&
''%

maxpb1, b2 � d1q   t   minpb1, b2 � d1q

maxpe2, e1 � d2q   t 1   minpe2, e1 � d2q

d1 � d2   t 1 � t   d1 � d2

,//.
//-

if e1   b2 and b2   e1, the empty set otherwise.
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Figure 7: Composition of timed relations.

Following the constructive proof above, we have an algorithm to
compute concatenation between two zones and extend it towards
unions of zones as

RZ1 � RZ2 � tz1 � z2 | z1 P RZ1 and z2 P RZ2u

In Figure 7, we illustrate the composition operation

z1 � z2 � tpx,yq | 1 ¤ x ¤ 3 X 6 ¤ y ¤ 8 X 4 ¤ y� x ¤ 6u

of two zones z1 � tpx,yq | 0 ¤ x ¤ 3 X 2 ¤ y ¤ 5 X 2 ¤ y� x ¤ 3u

and z2 � tpx,yq | 4 ¤ x ¤ 7 X 6 ¤ y ¤ 9 X 2 ¤ y� x ¤ 3u on the
right side.

Transitive Closure. The i-th power of a timed relation for i ¥ 1

and transitive closure Z� are defined, respectively as follows.

Zi � Z �Z � � � � �Zlooooooomooooooon
i times

Z� �
¤
i¥1

Zi

Now we show that the transitive closure of any timed relation is rep-
resentable by a finite number of composition operation, thus timed
relations are closed under transitive closure operation.

Proposition 3.5. Over a bounded time domain T � p0,dq, for all Z P Z,
there exists an integer k that satisfies the equality Z� �

�
1¤i¤k Z

i.

Proof. LetH be a finite partition ofΩpTqwith a form of right-triangular
grid generated by integer multiples (ti � ic for i � 0, . . . ,m � d{c)
of the greatest common divisor c and constant parts of inequalities
defining Z and ΩpTq. Each cell in H defines a set of equivalent time
segments with respect to Z� membership such that @px,yq, px 1,y 1q P
C. px,yq P Z� Ø px 1,y 1q P Z�. In particular we use the equivalence in
cells ti   x   y   ti�1 to show the original claim in the following.

Assume a segment pr0, rkq P Zk�1 and then there exists a sequence
of time segments pr0, r1q, pr1, r2q, . . . prk, rk�1q such that each segment
pri, ri�1q P Z. When k ¡ 3m� 2, by the pigeonhole principle, there
are two consecutive segments, denoted by pri�1, riq, pri, ri�1q, within
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the same cell ti   x   y   ti�1. By the equivalence inside a cell,
the sequence pri�1, riq, pri, ri�1q can be replaced by pri�1, ri�1q thus
pr0, rkq P Zk, and we conclude that the test Zk�1 � Zk holds and we
have that Z� �

�
1¤i¤k Z

i.

Temporal modalities. An important extension for the algebra of
timed relations is a set of temporal modalities based on Allen’s re-
lations [2] on time periods and introduced by Halpern and Shoham
in [48]. Here we use the compass notation introduced by Venema
in [112] with slight modifications since it has nice geometric conno-
tations on the two-dimensional plane. The basic set consists of six
existential modalities (diamonds) denoted by P t , , , , , u.
We talk in more detail about the meaning of these modalities in Chap-
ter 4.3. Now we introduce metric compass operators I on timed
relations obtained by constraining the range of quantification in an
amount specified by an interval I as follows:

I Z � tpx,yq P ΩpTq | Dr. x   r   y, y� r P I, and px, rq P Zu

I Z � tpx,yq P ΩpTq | Dr. x   y   r, r� y P I, and px, rq P Zu

I Z � tpx,yq P ΩpTq | Dr. x   r   y, r� x P I, and pr,yq P Zu

I Z � tpx,yq P ΩpTq | Dr. r   x   y, x� r P I, and pr,yq P Zu

I Z � tpx,yq P ΩpTq | Dr. x   y   r, r� y P I, and py, rq P Zu

I Z � tpx,yq P ΩpTq | Dr. r   x   y, x� r P I, and pr, xq P Zu

In Figure 8, we illustrate each diamond operator over a timed rela-
tion containing a single time period. Intuitively speaking, a diamond
operator shifts a time period in the specific direction on the plane
by an allowed amount. This operation, called back-shifting (of time
points) [72, 83], is used to evaluate the timed eventually modality
of metric temporal logic. Notice that the shift of time points can be
viewed as a degenerate case of that of timed periods and there are
surely more directions to move in two dimensions. Next we note that
metric compass operators possess two important algebraic properties
of normality and additivity such that

IH � H

IpZ1 YZ2q � I Z1 Y I Z2

Therefore, the algebra of timed relations with compass operators
forms a boolean algebra with operators in the sense of [57] that pro-
vides an alternative (algebraic) semantics for various modal logics in-
cluding temporal logics. The close connection between modal logics
and boolean algebras with operators is extensively studied in several
monographs [19, 20, 75].

In the following, we show the class of zones is also closed under
metric compass operators. Consequently, we have that applying a
metric compass operation on a zone results in another zone whose
bounds are shifted according to the direction given by the type
and the metric constraint I of the compass operation I.

[ March 22, 2018 at 21:40 – classicthesis version 4.2 ]



28 algebra of timed relations

1 2

1

2
Z

I Z I Z

I Z

x

y

1 2

1

2 Z

I Z

I Z I Z

x

y

Figure 8: Metric compass operations I on a timed relation Z � tp1, 2qu for
a temporal constraint I � r0.2, 0, 7s.

Proposition 3.6. Given a zone z, the timed relation I z is a zone.

Proof. We only show the case of rm,ns as other cases are symmetric
and we assume T � p0,dq without loss of generality. Following the
semantics of rm,ns,

px,yq P rm,ns iff Dr P px,yq. r� x P rm,ns, and pr,yq P z

which translates to Dr P px,yq such that
$''&
''%

b   r   b

e   y   e

d   y� r   d

,//.
//-

By eliminating the quantifier, we obtain that rm,ns equals to a zone
$''&
''%

b�n   x   b�m

e   y   e

d�m   y� x   d�n

,//.
//-

Following the proof above, we apply metric compass operations over
zones directly and extend it towards unions of zones as

I RZ � t I z | z P RZu

Finally, we illustrate the application of metric compass operations in
Figure 9. Consider the zone z � tpx,yq | 3 ¤ x ¤ 5 X 5 ¤ y ¤

7 X 3 ¤ y� x ¤ 5u on the left of the figure. Then we have r1,2s z �

tpx,yq | 1 ¤ x ¤ 4 X 5 ¤ y ¤ 7 X 4 ¤ y� x ¤ 7u on the right,
which is obtained by shifting z to the left accordingly. Equivalently,
this operation can be viewed as a Minkowski sum z` Sleft of the
zone z and a left-shifting set Sleft � tp�t, 0q | t P r1, 2su with respect
to ΩpTq.
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Figure 9: A zone z (left) and its left-shift r1,2s z (right).

3.3 algorithms and complexity

In this section, we present our algorithms to compute operations on
timed relations represented as unions of zones. Unary operations of
duration restriction and temporal modalities as well as union oper-
ation are implemented in a straightforward way followed by an ab-
sorption operation. Binary operations of intersection, concatenation,
and absorption (as it is an operation on two copies of the same set) on
unions of zones with n elements requires Opn2q in the worst case. Op-
erations of transitive closure and complementation are more expen-
sive; the worst case complexity of transitive closure can be bounded
from above by Opn3q and that of complementation by Opn4q using
simple arguments. Although tighter bounds can be shown for these
operations, our focus here is to develop algorithms that exploit in-
trinsic relations and achieve linear or quasi-linear (time and space)
complexity in practice. The key assumption we make is that time
periods of interest and zones representing them would be dispersed
on the time axis and their (maximum) durations are much smaller
than the entire time domain. Therefore, most operations between two
zones would be redundant since they are far away from each other
(e.g. their intersection/concatenation are trivially empty) and can be
avoided by sorting zones and applying the operations to zones that
are temporally closer to each other according to the sort order. Since
we already view time as a space and timed relations as geometric
objects, we propose the use of efficient computational geometry tech-
niques to perform operations between unions of zones in the follow-
ing. In particular, we employ the plane sweep technique [85] since it
performed better in our initial tests than other spatial join techniques
surveyed in [56] such as R-tree-based spatial queries.

Plane Sweep Technique. Given two sets of geometric objects in
an Euclidean space, the plane sweep is one of spatial join techniques
that finds all pairs of objects satisfying a given relation between their
spatial components. The rough idea behind the technique is to move
a virtual line across the plane, keep track of objects that are in relation
with this sweeping line, and perform an spatial operation on these
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Figure 10: Illustration of plane sweep technique.

objects. More precisely, assuming that objects are sorted according
to the sweep direction, a plane sweep algorithm sweeps the virtual
line through the sorted list from left to right, pauses at each object,
performs the actual operation between the current object and other
objects in relation (usually intersects) with the sweep line.

We illustrate the technique for the intersection of rectangles and
consider two sets of rectangles, H � tH1,H2,H3u and V � tV1,V2,V3,
V4u, of horizontal and vertical stripes in Figure 10. The plane sweep
algorithm first sorts all the rectangle according to their leftmost points
so that it processes the list pV1,H1,V2,H2,V3,H3,V4q in order and
moves a line from the leftmost point of one rectangle to that of the
next at each step. Rectangles from the other set that intersect the line
are considered active and we know that these are the only rectangle
that may intersect with the current rectangle and processed earlier.
Therefore the algorithm computes an intersection operation between
these rectangles and the current rectangle and proceeds. For example,
at the fourth step, the current rectangle is H2 and the sweep line
(depicted as a solid line) intersects rectangles V1 and V2 from the
other set, and the algorithm computes H2 X V1 and H2 X V2, which
are non-empty sets. Similarly the algorithm only computes V4 XH1
and V4 XH3 at the seventh and final step where the sweep line is
depicted as dotted.

Now we explain our algorithms for operations of absorption, inter-
section, and concatenation that use the plane sweep technique. For
the absorption operation, Algorithm 1 keeps an initially empty set A
of active zones and selects the next zone z from the union of zones of
R sorted by h6. Thus we sweep the plane starting from the zone with
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Algorithm 1 absorbpRq assume R sorted by h6

A :� R 1 :� H

foreach z P R and not
�
z 1PA z � z

1 loop
A :� Aztz 1 P A | z 1 � zu Y tzu

foreach z 1 P A loop
Move z 1 from A to R 1 if h6z � h6z 1

end loop
end loop
return R 1 YA

the earliest begin point. The algorithm skips to the next zone if z is
included in some zone in A, removes zones in A that are included
in z, and adds Z to A otherwise. Then it moves zones in the active
set A to the output set R 1 if their earliest begin value is less than the
earliest begin value of z (thus the sweep line) since upcoming zones
cannot include those. Once every zone in the original set has been
processed, the algorithm yields the remaining zones in A as output
zones in addition to previously yielded zones.

For the intersection operation, Algorithm 2 similarly sorts R and R 1

by h6 and keeps two active sets of zones A and A 1 for zones in R and
R 1, respectively. Zones are successively moved to their corresponding
active lists and are removed from them when it is clear they will not
participate in further non-empty intersections. Note that the function

Algorithm 2 intersectpR,R 1q assume R,R 1 sorted by h6

A :� A 1 :� Y :� H

while R � H or R 1 � H do
z :� firstpRq

c :� constph6zq

z 1 :� firstpR 1q

c 1 :� constph6z 1q

if c   c 1 then
Move z from R to A
A 1 :� ta 1 P A 1 | constph1a 1q ¥ c}
foreach a 1 P A 1 loop
z2 :� zX a 1

Y :� Y Y tz2u

end loop
else

Move z 1 from R 1 to A 1

A :� ta P A | constph1aq ¥ c
1u

foreach a P A loop
z2 :� aX z 1

Y :� Y Y tz2u

end loop
end if

end while
return absorbpYq
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Algorithm 3 concatenatepR,R 1q assume R sorted by h5

and assume R 1 sorted by h6

A :� A 1 :� Y :� H

while R � H or R 1 � H do
z :� firstpRq

c :� constph5zq

z 1 :� firstpR 1q

c 1 :� constph6z 1q

if c   c 1 then
Move z from R to A
A 1 :� ta 1 P A 1 | constph1a 1q ¥ c}
foreach a 1 P A 1 loop
z2 :� z � a 1

Y :� Y Y tz2u

end loop
else

Move z 1 from R 1 to A 1

A :� ta P A | constph2aq ¥ c
1u

foreach a P A loop
z2 :� a � z 1

Y :� Y Y tz2u

end loop
end if

end while
return absorbpYq

firstpRq denotes the the first element of R and constphq denotes the
constant part of the inequality that defines the half-plane h.

For the concatenation operation, Algorithm 3 is very similar to the
intersection except that the first set R is sorted by h5 (that is, the
earliest end) and the second set R 1 by h6 (that is, the earliest begin).
Therefore plane sweep technique finds all pairs of zones from two
sets such that the end interval of the first one intersects with the begin
interval of the second, which is a necessary condition for a non-empty
concatenation.

Our complementation procedure presented in Algorithm 4 follows
the definition given in the previous section. However, notice that we
perform an absorption operation for each step while developing the
complement. This reduces the number of zones yielded in the inter-
mediate stages; and therefore, it is more efficient than multiplying
out all complemented zones and then performing the absorption.

Algorithm 4 complementpRq

Y :� Ω

foreach z P R loop
Y := absorbpY X complementpzqq

end loop
return Y
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Algorithm 5 closurepRq

Y :� R

X :� concatenatepR,Rq
while X � Y do
Y :� absorbpXY Yq

X :� concatenatepX,Rq
end while
return Y

Algorithm 6 closure2pRq

Y :� R

X :� concatenatepR,Rq
while X � Y do
Y :� absorbpXY Y Y concatenatepX, Yqq
X :� concatenatepX,Xq

end while
return Y

Finally, we present two algorithms for the transitive closure, one in-
cremental and one based on so-called squaring, given in Algorithm 5

and Algorithm 6, respectively. Our tests did not show a clear win-
ner between two approaches, however, it seems that the squaring ap-
proach performs better for sets whose fixed point index is large and
the incremental approach is better when the index is small.
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4
T I M E D PAT T E R N M AT C H I N G

You are so young.
So many years left,

so many languages to acquire!

— Kató Lomb

In this chapter, we introduce timed pattern matching and propose
timed regular expressions (tre) and metric compass logic (mcl) as
pattern specification languages. These formalisms provide a strong
theoretical background and can express many real-life patterns intu-
itively and concisely. We work on timed (symbolic) behaviors that
are sequences of qualitative observations of systems and their envi-
ronment over continuous time. Timed behaviors are also known as
(discrete-valued, continuous-time) signals and observation sequences
in the literature [6, 10, 95] and are argued to be the most natural
model for timed formalisms. Timed regular expressions and metric
compass logic formulas are built over atomic propositions that cor-
respond to such observations using connectives defined in their re-
spective syntaxes. Patterns specified using tre and mcl denote sets
of timed behaviors, which are instances of the pattern. For a given
input behavior w, we say that a segment wpt, t 1q of w from t to t 1

matches or satisfies a pattern if wpt, t 1q is an instance thereof. Hence,
the satisfaction of timed regular expressions and metric compass logic
formulas is relative to an input behavior w and a time period pt, t 1q.
We denote such satisfaction relations by the relational semantics as
usual. Then we define the problem of timed pattern matching as
finding and reporting all segments of an input behavior that satisfy
a given timed pattern.

We solve timed pattern matching by evaluating a timed pattern ϕ
over an input behavior w to a timed relation Z such that each time pe-
riod pt, t 1q P Z stands for a matching segment wpt, t 1q. The evaluation
is done in the standard way. We consider every atomic expression
and logical formula to be evaluated to a timed relation and every
connective to be treated as an operation on timed relations. Given
an input behavior, this mechanism is captured by a valuation func-
tion. Using the valuation function and the algebra of timed relations,
we define the algebraic semantics of tre and mcl and show that the
algebraic semantics agrees with the relational semantics.

Finally we consider some practical extensions of our timed pattern
matching framework towards non-homogeneous atomic propositions,
timed event sequences, and a richer timed pattern language obtained
by a free mix of operators from tre and mcl at end of the chapter.

35

[ March 22, 2018 at 21:40 – classicthesis version 4.2 ]



36 timed pattern matching

4.1 definitions

Let P � tp1, . . . ,pmu be a finite set of (atomic) propositional variables
over a time domain T that correspond to some qualitative states and
activities of some real-time systems and the environment. Examples
include the proposition Alice is running denoting an activity of Alice
and the temperature is higher than 23 degrees, which denotes a quali-
tative state over a physical quantity. We consider such propositions
are observed continuously for a finite amount of time and model the
evolution of corresponding activities and states as timed behaviors.
To this end, we first define an alphabet Σ � Bm of observations ex-
pressed as Boolean vectors of dimension m where B � t0, 1u. Then
a timed behavior is a finite sequence of time periods such that each
period ptk�1, tkq is associated with a Boolean vector ak P Σ such that
akpiq � 1 if the proposition pi holds on the time period ptk�1, tkq
and akpiq � 0 if it does not.

Definition 4.1 (Timed Behavior). A timed behavior w over a set P of
atomic propositions on a time domain T � pt0, tnq is a finite sequence such
that

w � pt0, t1,a1q, pt1, t2,a2q, . . . , ptn�1, tn,anq

where ak P Σ and tk�1   tk for k P 1 . . . n. A timed behavior begins at t0,
ends at tn, has a duration of tn � t0 and a length of n.

We use wppt, t 1q to denote the restriction of w to an atomic proposi-
tion p and a time domain pt, t 1q. The concatenation w1 �w2 is defined
only if w1 meets w2, that is, w1 ends at the point where w2 begins.
Alternatively, a timed behavior can be given as a sequence of pairs of
duration values and symbols from the alphabet Σ such that

w � pt1 � t0,a1q, pt2 � t1,a2q, . . . , ptn � tn�1,anq

In this notation, we assume the beginning time t0 � 0 unless stated
otherwise. As an example, we depict in Figure 11 an evolution of
two atomic propositions P � tp1,p2u over time where the alphabet is
Σ � tp0,0q, p0,1q, p1,0q, p1,1qu. Then a timed behavior w can represent
this evolution such that

w � p0, 2, p1,1qq, p2, 4, p1,0qq, p4, 6, p0,0qq, p6, 7, p0,1qq, p7, 8, p1,1qq,

p8, 9, p0,1qq, p9, 10, p1,1qq, p10, 11, p1,0qq, p11, 12, p0,0qq

or, using duration-symbol notation,

w � p2, p1,1qq, p2, p1,0qq, p2, p0,0qq, p1, p0,1qq, p1, p1,1qq,

p1, p0,1qq, p1, p1,1qq, p1, p1,0qq, p1, p0,0qq

p1

0 2 4 6 8 10 12

Time

p2

Figure 11: An evolution of atomic propositions p1 and p2.
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Notice that such representations are not unique; any time period as-
sociated with a value can be divided into shorter periods of the same
value and the resulting behaviors would be equivalent. Sometimes
these successive periods of the same value are called stuttering peri-
ods [11, 65]. Stuttering periods are often avoidable and it is more
efficient to work with the stutter-free behaviors obtained by merging
them. For example, if we restrict w above to the proposition p2, we
can directly write wp2 as

wp2 � p0, 2, p1qq, p2, 4, p0qq, p4, 6, p0qq, p6, 7, p1qq, p7, 8, p1qq,

p8, 9, p1qq, p9, 10, p1qq, p10, 11, p0qq, p11, 12, p0qq

which, after elimination of stuttering, becomes

wp2 � p0, 2, p1qq, p2, 6, p0qq, p6, 10, p1qq, p10, 12, p0qq

However, there are some applications like online monitoring where
one does not know what will be observed in the next period but want
to react immediately. For such cases, stuttering in behaviors may arise
naturally. Therefore, we (have to) allow stuttering in our definitions
and procedures. The correctness of our results does not depend on
stutter-freeness. Next, notice that the length n of a timed behavior
is minimal when the timed behavior is stutter-free and we call this
minimal length the variability of the behavior. We use the notation
Σpnq to denote the set of all timed behaviors of variability n over an
alphabet Σ. In particular, Σp1q is the set of all uniform timed behaviors
and Σp�q the set of all timed behaviors. We call subsets of Σp�q timed
(behavior) languages in this thesis. We do not consider subsets of Σp�q

since the theory becomes asymmetric in the simultaneous presence of
the empty word and the complement operation. This is related to the
exclusion of singular time points in our theory for which we provide
additional motivation in the following remark.

Remark. We can equate timed behaviors to a (well-behaving) class of con-
tinuous time functions, however, we should emphasize time period nature
of behaviors. A time period pt, t 1q with a value a can be interpreted as a
constant continuous-time function that maps its domain D to the value a
where D is either pt, t 1q, rt, t 1q, pt, t 1s, or rt, t 1s. One can restrict oneself
to càdlàg (left-closed, right-open) or càglàd (left-open, right-closed) intervals
and obtain a notion of continuity for timed behaviors in the traditional sense,
however, this is not an essential consideration. Indeed we simply do not care
about the value of singular points and the existence of gaps. Attempts to
support such features would bring many complications and no practical ben-
efit as seen in the history of timed systems research; therefore, we insist on
leaving them out.

Next we define our period-based temporal structures that we use to
evaluate propositions over timed behaviors. Given a timed behavior
w on a time domain T � pt0, tnq, we define a temporal structure W �

pΩpTq,Vq induced by w such that ΩpTq is the set of all time periods
over T and V is a valuation function that assigns every proposition
to a set of time periods on which it holds with respect to w. It is an
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Figure 12: Valuations of atomic propositions.

important point that atomic propositions are homogeneous, that is to
say, an atomic proposition p P P holds on a time period if and only if
it holds on its all sub-periods, which is captured by the formula

pt, t 1q P Vppq ÐÑ @r, r 1. pt   r   r 1   t 1q Ñ pr, r 1q P Vppq (hom)

Since a timed behavior w is a finite sequence, a valuation Vppq of
an atomic proposition p in W is a finite union of triangle zones that
reside along the diagonal, thus a timed relation. We illustrate Vpp1q
and Vpp2q in Figure 12 for the timed behavior of Figure 11. Notice
that valuations of atomic propositions are closed under transitive clo-
sure such that Vppq � Vppq�.

4.2 timed regular expressions

In this section, we present the syntax and semantics of timed regular
expressions over a set of propositional variables P. The variant pre-
sented here admits standard regular connectives of union, concatena-
tion, and (one-or-more) iteration as well as intersection and duration
restriction in the syntax given by the following grammar:

ϕ :� p | ϕ1 Yϕ2 | ϕ1 Xϕ2 | ϕ1 �ϕ2 | ϕ
� | xϕyI

where p P P and I is an interval of duration values. The duration
restriction xϕyI of an expression ϕ is the characteristic feature of
tre [10, 11]. We use an exponent notation with ϕ1 � ϕ, ϕk �
ϕk�1 � ϕ for k ¥ 2 and sometimes juxtaposition for concatenation.
The Kleene plus connective ϕ� stands for an infinite sum

�
k¥1ϕ

k

as usual. We do not include the Kleene star as a unary connective but
it can be added as a binary one (as in Kleene’s original paper) such
that ϕ1�ϕ2 � ϕ�1ϕ2 Yϕ2. Given a timed behavior w, the satisfac-
tion of a timed regular expression at a time period pt, t 1q is defined
inductively in the following.
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Definition 4.2 (Relational Semantics). The satisfaction relation ( of a
timed regular expression ϕ in a temporal structureW � pΩpTq,Vq induced
by a timed behaviorwwith a time domain T , relative to a time period pt, t 1q P
ΩpTq is defined as follows:

pW, t, t 1q ( p Ø pt, t 1q P Vppq

pW, t, t 1q ( ϕ1 Xϕ2 Ø pW, t, t 1q ( ϕ1 and pW, t, t 1q ( ϕ2
pW, t, t 1q ( ϕ1 �ϕ2 Ø Dt2. pW, t, t2q ( ϕ and pW, t2, t 1q ( ψ

pW, t, t 1q ( ϕ1 Yϕ2 Ø pW, t, t 1q ( ϕ1 or pW, t, t 1q ( ϕ2
pW, t, t 1q ( ϕ� Ø Dk ¥ 1. pW, t, t 1q ( ϕk

pW, t, t 1q ( xϕyI Ø pW, t, t 1q ( ϕ and t 1 � t P I

We illustrate some matches on an example timed behavior in Fig-
ure 13 such that the time period p1, 4q satisfies an expression p1 X p2
since p1, 4q satisfies an expression p1 and p2. Similarly, the time pe-
riod p6, 11q satisfies the expression p1 � p2 since it is sufficient that
p6, 9q satisfies p1 and p9, 11q satisfies p2.

Notice that atomic expressions in tre are more symbolic than in
classical regular expressions in the sense that an atomic expression
pi P P stands for all observations a P Σ such that apiq � 1 and the du-
ration of the observation period can be of any value. For comparison,
atomic expressions of traditional regular expressions stand for single
letters from the alphabet and have the length of 1. Such approach
leads to more natural and concise specifications when propositions
are concurrent; and consequently, commonly used in concurrent sys-
tem specification languages.

Let us continue the comparison with a running example. Consider
a basic pattern ϕ over a set of two propositions P � tp1,p2u and
the alphabet Σ � tp0,0q, p0,1q, p1,0q, p1,1qu such that a period where p1
holds is followed by a period where p2 holds. Assuming a base time
unit for the classical case, we may express the pattern ϕ either as a
classical regular expression ϕre or a timed regular expression ϕtre as
given in the following.

p1

p2

0 2 4 6 8 10 12

( p1

( p2

( p1 X p2

( p1

( p2

( p1 � p2

Time

M
at

ch
es

Figure 13: Some matches for timed regular expressions over atomic propo-
sitions p1 and p2.
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ϕre �
�
p1,0q Y p1,1q

��
�
�
p0,1q Y p1,1q

��
ϕtre � p1 � p2

Moreover, a duration (or length) restriction by an interval I on the
pattern ϕ, denoted by ϕ 1, could be expressed by letting

ϕ 1
re
� ϕre X

�
kPI Σ

k ϕ 1
tre
� xp1 � p2yI

As illustrated, the specification ϕre gets cumbersome quickly espe-
cially in the presence of several propositions. On the other hand, the
specification ϕtre conveys the intended meaning of pattern concisely.
More importantly, notice how classical techniques to match ϕ 1

re
might

be very inefficient when numbers a and b are large. A minimal deter-
ministic automaton constructed from ϕ 1

re
if I � r100, 104s has around

200 states. For a little more complex pattern ϕ 1
re
�ϕ 1

re
, the number of

states1 surpasses 1200. It is clear that the essential problem here is
the naive enumeration of time. Therefore, timing aspects should be
represented in a quantitative and symbolic manner.

For this reason, we associate expressions with the algebra of timed
relations in the following. We use this algebra together with proposi-
tional valuations to evaluate timed regular expressions in a composi-
tional way. More precisely, we define the algebraic semantics of timed
regular expressions as follows.

Definition 4.3 (Algebraic Semantics). For a temporal structure W �

pΩpTq,Vq induced by a timed behavior w, the valuation function V is ex-
tended to timed regular expressions as follows:

Vppq � Vppq for p P P Vpϕ1 �ϕ2q � Vpϕ1q � Vpϕ2q

Vpϕ1 Yϕ2q � Vpϕ1q Y Vpϕ2q Vpϕ�q � Vpϕq�

Vpϕ1 Xϕ2q � Vpϕ1q X Vpϕ2q VpxϕyIq � xVpϕqyI

An important property is that the algebraic semantics of timed regu-
lar expressions agrees with the relational semantics.

Proposition 4.1 (Semantic Agreement). For every temporal structure
W � pΩpTq,Vq induced by a timed behavior w and every timed regular
expression ϕ, the statement pW, t, t 1q ( ϕØ pt, t 1q P Vpϕq holds.

Proof. By induction on the structure. The case of propositions holds
by definition. For the concatenation ϕ1 �ϕ2, we directly have

pW, t, t 1q ( ϕ1 �ϕ2 Ø pt, t 1q P Vpϕ1 �ϕ2q

Ø Dt2. pt, t2q P Vpϕ1q and pt2, t 1q P Vpϕ2q

Ø Dt2. pW, t, t2q ( ϕ1 and pW, t2, t 1q ( ϕ2

Cases for Boolean connectives and the plus are similar.

1 Some current industrial-level implementations such as Google’s re2 regex engine
(https://github.com/google/re2) limit by default the maximum number of dfa

states by 10000.
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4.3 metric compass logic

In this section, we present the syntax and semantics of metric com-
pass logic over a set of propositional variables P and follow a similar
path as we just did for timed regular expressions. We introduce met-
ric compass logic (mcl) to be a metric extension of the modal system
hs of time periods developed by Halpern and Shoham in [48]. The
hs system of six temporal modalities for relations A (adjacent/meets),
B (begins), E (ends), and their inverses, A�1, B�1, E�1 is shown to
be sufficient to have a full reasoning based on Allen’s algebra on
time periods [2]. We use the compass notation introduced by Venema
in [112] and augment it with temporal constraints similar to the way
that metric temporal logic (mtl) [62, 87] is extended from linear tem-
poral logic [46]. Note that we slightly differ from original definitions
by excluding degenerate time periods and employing irreflexive ver-
sions of modalities. It is known that the system hs is very expressive
and its validity problem is undecidable. Therefore, much of previ-
ous efforts were devoted to find decidable and sufficiently expressive
fragments; see the survey [36] for more details. Among such frag-
ments, propositional neighborhood logic (pnl), which only includes
modalities for meets and met-by relations of Allen, is extended with
metric constraints [23] but there is no more expressive metric exten-
sion to our knowledge. It may be the case that undecidability results
(of the validity problem) prevented any further investigation on met-
ric extensions. However, since we propose metric compass logic to be
yet another timed pattern specification language, we are only inter-
ested in evaluating an mcl formula for a given timed behavior. The
problem of evaluation is easier than the validity; therefore, we do not
have any reason to restrict ourselves to a fragment; thus, we extend
the hs system in its full generality.

The syntax of metric compass logic that admits usual Boolean con-
nectives and metric compass modalities is given by the following
grammar:

ϕ :� p | ϕ | ϕ1 Yϕ2 | ϕ1 Xϕ2 | Iϕ

where p P P, a compass modality is P t , , , , , u and I

is an interval of duration values. As usual we define dual operators
as �Iϕ � Iϕ and we omit the interval if I � r0,8q or I � p0,8q.
Given a timed behavior w, the satisfaction of a metric compass logic
formula for a time period pt, t 1q is defined inductively.
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Figure 14: One dimensional illustration of ra,bs.

Definition 4.4 (Relational Semantics). The satisfaction relation ( of a
metric compass logic formula ϕ in a temporal structure W � pΩpTq,Vq
induced by a timed behavior w with a time domain T , relative to a time
period pt, t 1q P ΩpTq is defined as follows:

pW, t, t 1q ( p Ø pt, t 1q P Vppq

pW, t, t 1q ( ϕ Ø pW, t, t 1q * ϕ

pW, t, t 1q ( ϕ1 Yϕ2 Ø pW, t, t 1q ( ϕ1 or pW, t, t 1q ( ϕ2
pW, t, t 1q ( Iϕ Ø Dt   t2   t 1. t 1 � t2 P I and pW, t, t2q ( ϕ

pW, t, t 1q ( Iϕ Ø Dt2 ¡ t 1. t2 � t 1 P I and pW, t, t2q ( ϕ

pW, t, t 1q ( Iϕ Ø Dt   t2   t 1. t2 � t P I and pW, t2, t 1q ( ϕ

pW, t, t 1q ( Iϕ Ø Dt2   t. t� t2 P I and pW, t2, t 1q ( ϕ

pW, t, t 1q ( Iϕ Ø Dt2 ¡ t 1. t2 � t 1 P I and pW, t 1, t2q ( ϕ

pW, t, t 1q ( Iϕ Ø Dt2   t. t� t2 P I and pW, t2, tq ( ϕ

Each mcl modality above fixes one dimension (either t or t 1) in
their semantics, and a metric constraint restricts the range of quan-
tification over the other (free) dimension. For example, the modality
ra,bs fixes the endpoint t 1 and quantifies over a restricted range

rt � a, t � bs as illustrated in Figure 14. Note that can be also
seen two-dimensional analog of Prior’s (and Pnueli’s) eventuality (F)
if you consider endpoints of periods to be fixed at the infinity and the
reasoning is essentially performed over (begin) points.

Then, for a temporal structure W � pΩpTq,Vq, we extend the valu-
ation function V for arbitrary mcl formulas and define the algebraic
semantics of mcl as follows.

Definition 4.5 (Algebraic Semantics). For a temporal structure W �

pΩpTq,Vq, we extend the valuation function V for arbitrary mcl formulas
as follows:

Vppq � Vppq for p P P Vpϕ1 Yϕ2q � Vpϕ1q Y Vpϕ2q

Vpϕq � ΩpTqzVpϕq Vpϕ1 Xϕ2q � Vpϕ1q X Vpϕ2q

Vp Iϕq � I Vpϕq
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In Proposition 4.2, we show that algebraic and relational semantics
of metric compass logic agree straightforwardly.

Proposition 4.2 (Semantic Agreement). For every temporal structure
W � pΩpTq,Vq and every mcl formula, the statement pW, t, t 1q ( ϕ Ø

pt, t 1q P Vpϕq holds.

Proof. By induction on the structure. Cases for propositions and
Boolean operations are straightforward. Then we only show the case

as cases for other compass operators are symmetric. We directly
show

pW, t, t 1q ( IϕØ pt, t 1q P Vp Iϕq

Ø Dt2. t   t2   t 1, t2 � t P I,

and pt2, t 1q P Vpϕq

Ø Dt2. t   t2   t 1, t2 � t P I,

and pW, t2, t 1q ( ϕ

4.4 offline matching

Pattern matching is usually considered to be a computation for find-
ing and reporting all satisfying segments, called matches, of an input
sequence that satisfy a predefined pattern. In this section, we intro-
duce timed pattern matching over timed behaviors where patterns
are specified by timed regular expressions and metric compass logic.
Then, we say the set of all satisfying segments is called the match set
of the pattern over a timed behavior.

Assuming the input behavior w (thus valuations of propositions)
is completely available before matching, computing the match set
is equivalent to evaluating ϕ inductively in the temporal structure
induced by w. In Algorithm 7, we present the offline evaluation al-
gorithm evalWpϕq, suggested by the algebraic semantics of timed
regular expressions and metric compass logic, for both formalisms in
a unified manner. Since every timed regular expression and metric
compass logic formula can be seen as a proposition in a temporal
structure, it is straightforward to mix connectives/operators of both
and have a richer pattern specification language for offline timed pat-
tern matching purposes.

We illustrate of offline timed pattern matching for a timed regular
expression ϕ � p1 � xp2 �p3yr2,4sXxp1 �p2yr3,5s �p3 and a timed behav-
ior w over propositions p1, p2, and p3 as given in Figure 15 at the top.
The middle row of the figure illustrates match sets or valuations of
subexpressions over the behavior w obtained in a bottom-up fashion
according to the Algorithm 7. Finally, we illustrate the match set for
the expression ϕ at the final row.
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Algorithm 7 evalWpϕq with respect to W � pΩpTq,Vq

select (ϕ)
case p:
Z :� Vppq

case ψ:
Z :� complementpevalWpψqq

case ψ1 Yψ2:
Z :� unionpevalWpψ2q, evalWpψ2qq

case ψ1 Xψ2:
Z :� intersectpevalWpψ2q, evalWpψ2qq

case ψ1 �ψ2:
Z :� concatenatepevalWpψ2q, evalWpψ2qq

case ψ�:
Z :� closurepevalWpψqq

case xψyI:
Z :� restrictpevalWpψq, Iq

case Iψ:
Z :� -shiftpevalWpψq, Iq

end select
return Z

4.5 some extra features

In this section, we present some additional features for timed pattern
matching to enhance its usefulness in practice. Since a valuation func-
tion in our system can be any function that returns a timed relation
over a temporal sequence, we indeed have a great deal of freedom for
atomic expressions and their valuations. In the following, we describe
several natural extensions in this direction.

Predicates over Real-Valued Behaviors. Atomic propositions can
be easily extended towards predicates over real-valued behaviors in
the usual sense. Although simple, it is a very useful extension in prac-
tice when reasoning about physical observations and hybrid systems
in general. The simplest and most common type of predicates are
threshold comparisons such as ppxq : x   c and ppxq : x ¡ c where
x is a real-valued variable and c is a constant [72]. Consequently
we can apply timed pattern matching over real-valued signals via
such a symbolic abstraction for the value domain, sometimes called
quantization or categorization. For example, a timed pattern ϕ over
a continuous-time temperature signal temp that specifies an alterna-
tion between qualitative states denoted by predicates ptemp   27q

and ptemp ¥ 27q can be expressed as follows:

ϕ �
�
xtemp   27yr10,20s � xtemp ¥ 27yr10,20s

��

For the rest of the thesis, we will use propositions and predicates
interchangeably.
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Figure 15: Illustration of offline timed pattern matching.
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Figure 16: Valuations of Boolean expressions over atomic propositions.

Boolean Layer. Given a set P � tp1, . . . ,pmu of propositions, we
extend atomic propositions towards Boolean expressions over propo-
sitions. The syntax of Boolean expressions over P, called the Boolean
layer, are defined as

φ :� p |  φ | φ1 ^φ2

where p P P and  , ^ are negation and conjunction operators. We
derive the disjunction φ1 _ φ2 �  p φ1 ^  φ2q as usual. Intu-
itively speaking, such a Boolean expression φ can be viewed as a
new proposition in the system and its truth value, denoted by φpaq,
for a P Σ at each time period are obtained by applying a substitution
tp1 ÞÑ apiq, . . . ,pm ÞÑ apmqu. More precisely, Boolean operations
on Vppq for p P P are characterized via the valuation function V as
follows. Provided that Vpφq, Vpφ1q, Vpφ2q satisfy the homogeneity
property, we define

Vp φq � tpt, t 1q P Ω | @r, r 1. t   r   r 1   t 1 Ñ pr, r 1q R Vpφqu

Vpφ1 ^φ2q � Vpφ1q X Vpφ2q

It is easily seen that Vp  φq = Vpφq and Vpφ^ φq � H. In Fig-
ure 16, we illustrate valuations of such Boolean expressions over two
example proposition p1 and p2.
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Figure 17: Valuations of anchored expressions.

Anchors. We introduce three anchor operations over atomic propo-
sitions, namely prefix rise (�), postfix fall (�), and outfix rise-fall(��)
operators. These operators are motivated by a practical need to fix
begin [end, begin-end] points of matches to rise [fall, rise-fall] points
of propositions in timed behaviors. Valuation of these operations on
an atomic proposition φ is defined as

Vp�φq � tpt, t 1q P Vpφq | @t2. pt2, tq R Vpφqu

Vpφ�q � tpt, t 1q P Vpφq | @t2. pt 1, t2q R Vpφqu

Vp�φ�q � Vp�φq X Vpφ�q

Note that anchor operations do not preserve the homogeneity prop-
erty, therefore; anchored expressions can be viewed as nonhomoge-
nous propositional atoms. In Figure 17, we illustrate valuations of
anchored expressions over a proposition p.

Instantaneous Events. We show how to cast instantaneous events
into our timed pattern matching system in a natural way. Let E be
a set of instantaneous events. A timed event is usually considered
to be a pair pt, eq such that t P T is a time point and e is an event
e P E. Without loss of generality, we define a timed event sequence
s � pt1, eq, pt2, eq, . . . , ptn, eq over an event e to be a sequence such
that t1   t2   � � �   tn. Although it seems that we need to introduce
time points back into our system, there are several ways to express in-
stantaneous events without time points. First, an instantaneous event
can be considered to occur at an arbitrarily small period pt� ε, t� εq
centered around the point t where for a positive ε. However, this so-
lution may require an increase in time granularity and cause practical
problems; therefore, we do not use arbitrary small time periods for
events. Our solution is as follows. Intuitively speaking, we consider
the valuation of a timed event e to be the set of all time periods such
that e occurs during all these time periods. In other words, an event
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Figure 18: Valuations of instantaneous events.

pt, eq is matched by all time periods tpr, r 1q | Dr, r 1. r ¤ t ¤ r 1u. Con-
sequently the valuation of an event e with respect to a timed event
sequence s is defined as

Vpeq � tpt, t 1q P ΩpTq | Dr, r 1. r ¤ t ¤ r 1 and ps, tq $ eu

where ps, tq $ e holds if and only if the event e occurs at t in s.
Besides we define two other event operators (�e) and (e�) that restrict
valuations to only include time periods starting with the event e and
time periods ending with the event e, respectively as follows.

Vp�eq � tpt, r 1q P ΩpTq | Dr 1. ps, tq ¤ r 1 and t $ eu

Vpe�q � tpr, tq P ΩpTq | Dr. r ¤ t and ps, tq $ eu

In Figure 18, we illustrate valuations of event expressions over
a timed sequence. Observe that a timed pattern ϕ such that an event
e1 is followed by another event e2 can be written as ϕ � e1 � e2 and
matching the expression ϕ would return all time periods on which
e1 is followed by the event e2.
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G O I N G O N L I N E F O R E X P R E S S I O N S

So the whole idea of science
is to introduce coordinates

that move sequentially in time.

— John Rhodes

Detecting patterns as soon as they occur in ongoing system behav-
iors has many important applications ranging from runtime verifica-
tion to supervisory control and autonomous agents. It requires that
matches are computed and reported in an incremental manner for
each incoming segment of the input behavior. For that we first sum-
marize our understanding on online computations formalized in the
form of sequential functions [94] and the direct use of derivatives of
regular expressions [26] to realize such functions for online pattern
matching. Recall that derivatives are given as a set of rewriting rules
for regular expressions with respect to a letter. Successive rewritings
of a regular expression ϕ for each letter of a word w read from left to
right can be easily viewed as an online procedure to check whether
w is in the language of ϕ. Furthermore this process indeed yields a
Boolean (acceptance) value for each prefix of the word w sequentially.
This fact constitutes the starting point of this chapter.

We then introduce derivatives of timed regular expressions, in short,
timed derivatives, by carefully adapting the concept to the timed set-
ting. The major challenge in the online setting is to represent and
manipulate all partial matches, that is to say, suffixes of the input
behavior that satisfy prefixes of the pattern at the current step. To
solve this problem, we first allow timed relations to appear as con-
stants and coefficients in regular expressions similar to the numbers
in arithmetic expressions. Then, our derivative operation essentially
captures a regulated substitution mechanism that substitutes propo-
sitional variables in regular expressions with timed relations1 with
respect to the incoming segment. Partial matches would appear in
derived expressions as (left) coefficients in derived expressions and
full matches as constants. Consequently, the state of the online proce-
dure is represented elegantly and transparently in the form of a single
expression that contains propositional variables, timed relations, and
operators.

Once we have developed such expressions and derivative rules, our
online timed pattern matching algorithm becomes immediate and it
is easy to show its correctness.

1 In the classical setting, the empty word is the only non-zero constant. From our point
of view, we can say that letters are substituted by the empty word, thus deleted, by
Brzozowski’s derivative operation.
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5.1 sequential functions

In this section, we briefly mention sequential functions and show how
to realize some of them using derivatives. This realization would
form the basis when extending timed pattern matching to an online
setting. Let us now give the precise definition of sequential functions.

Let f : X� Ñ Y be a mapping from sequences of elements of an
input domain X to an output value y P Y. Then a function F : X� Ñ

Y� thats transforms an input sequence into an output sequence such
that

Fpx1, . . . , xnq � y1,y2, . . . ,yn � fpx1q, fpx1x2q, . . . , fpx1, . . . , xnq

is called a (causal) sequential function [94]. In other words, a se-
quential function maps every prefix of the input sequence to an out-
put value in a sequential fashion. Note that a sequential function
is a more semantic notion than transducers or sequential machines
(e.g. Mealy [77] and Moore [78] machines) that implies an automa-
ton structure. Recall that the membership test of a word w P L for a
language L is equivalent to the empty word check ε P DwpLq for the
derived language of L with respect to w. Hence, to check whether
abc is in the language of the expression ϕ � a� � pb � cq�, we compute
Dabcpϕq � DcpDbpDapϕqqqq � pb � cq

� as follows:

a� � pb � cq� −Ñ
Da

a� � pb � cq� −Ñ
Db

c � pb � cq� −Ñ
Dc

pb � cq�,

and since νppb � cq�q � ε, abc P JϕK. Notice that such successive
rewriting of regular expressions and outputting true if the derived
expression contains the empty word ε realizes a sequential function
F such that f is the language membership function. The function F can
be viewed as an online prefix matcher exactly like a dfa that outputs
the acceptance of its current state.

Two-sided matching is more involved as we ask the membership
of all factors of w, starting at arbitrary positions. Thus, having read
j letters of w, the state of a matching algorithm should contain all
the derivatives by wri..js, i ¤ j. When letter j � 1 is read, these
derivatives are updated to become derivatives by wri..j � 1s, new
matches are extracted and a new process for matches that start at
j � 1 is spawned. Table 2 illustrates the systematic application of
derivatives to find segments of w � abcbcd that match ϕ � a� �

pb � cq�. The table is indexed by the start position (rows) and end
position (columns) of the segments with respect to which we derive.
Derivatives that contain ε correspond to matches and their time in-
dexes constitute the match set tp1, 1q, p1, 3q, p1, 5q, p2, 3q, p2, 5q, p4, 5qu.
Importantly matches are obtained incrementally according to their
end points. For example, we obtain tp1, 1qu at time 1, tp1, 3q, p2, 3qu at
time 3, and tp1, 3q, p2, 3q, p4, 5qu at time 5. For times 2 and 4, we do
not obtain any matches thus we have H as the output. In short, we
report a match immediately after it is matched.

In a discrete finite-state setting, there are finitely many such deriva-
tives but this is not the case for timed systems. In timed setting,
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Letters a b c

Positions 1 2 3

1 ϕ −Ñ
Da

a�pbcq� −Ñ
Db

cpbcq� −Ñ
Dc

pbcq� −Ñ
Db

2 ϕ −Ñ
Db

cpbcq� −Ñ
Dc

pbcq� −Ñ
Db

3 ϕ −Ñ
Dc

∅ −Ñ
Db

4 ϕ −Ñ
Db

Letters b c d

Positions 4 5 6

1 −Ñ
Db

cpbcq� −Ñ
Dc

pbcq� −Ñ
Dd

∅

2 −Ñ
Db

cpbcq� −Ñ
Dc

pbcq� −Ñ
Dd

∅

3 −Ñ
Db

∅ −Ñ
Dc

∅ −Ñ
Dd

∅

4 −Ñ
Db

cpbcq� −Ñ
Dc

pbcq� −Ñ
Dd

∅

5 ϕ −Ñ
Dc

∅ −Ñ
Dd

∅

6 ϕ −Ñ
Dd

∅

Table 2: Pattern matching using derivatives for w � abcbcd and ϕ �

a� � pb � cq�. Entry pi, jq represents the derivative with respect to
wri, js. Derivatives containing ε are shaded with gray. The state of
an online matching algorithm after reading j symbols is represented
in column j.

the analogue of the arrival of a new letter is the arrival of a seg-
ment pt1, t2,aq of the behavior w. When this occurs, the state of the
matching should be updated to capture all derivatives by segments
of the form pt, t2q for t   t2 and all matches ending in some t   t2
should be returned. In the following, we show our symbolic tech-
nique for representing and manipulating such an uncountable num-
ber of derivatives together with their corresponding time segments.

5.2 timed derivatives

In the classical discrete setting, the derivative Da is associated with
a rewrite rule a Ñ ε and a word w is accepted if it can be trans-
formed into the empty word ε by successive rewritings. For the
purpose of timed pattern matching, we need a similar but duration-
preserving view where reading a segment pt, t 1,aq corresponds to a
rule pt, t 1,aq Ñ pt, t 1q. Matching a pattern that contains a single be-
havior wpt, t 1q is then the rewriting (reduction) of wpt, t 1q into a time
period pt, t 1q from past to future (left to right). Since timed regular
expressions denote sets of timed behaviors in general, online timed
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pattern matching using derivatives corresponds to the rewriting of
timed regular expressions with respect to an input behavior. In this
section, we define timed behavior languages for timed regular expres-
sions extended with constants taken from the set Z of timed relations.
Then we define derivatives of timed regular expressions and solve the
problem of online timed pattern matching using the derivatives.

We first extend timed behaviors by allowing time periods as pre-
fixes in compliance with the concatenation between timed behaviors.
For example, a timed behavior w over an alphabet Σ having a time
period prefix pt0, t1q � � � � � pti�1, tiq can be written as

w � pt0, t1q � � � � � pti�1, tiq � pti, ti�1,ai�1q � � � � � ptn�1, tn,anq

where ai�1, . . . ,an P Σ. Throughout this chapter, we say a timed
behavior is pure if it does not have a time period prefix and reduced
if it only consist of time periods. In particular, we use initial Greek
letters, α, β, and γ to denote reduced timed behaviors and hence the
timed behavior w will be written as w � α � v where α and v are
reduced and pure timed behaviors, respectively. As usual, we use
the symbol ε for the identity element of the concatenation satisfying
that w � ε �w � w � ε. Since a sequence of time periods can be
compacted under stuttering rules, we mostly, if not all, consider such
prefixes to be single time periods. By slightly abusing the notation,
we then write the set of all reduced timed behaviors as Ω and the
set of all timed behaviors that a time period concatenated from left
as Σp�qΩ . Subsets of Σp�qΩ are called timed behavior languages as usual.
We also define the star versions Ω� � ΩY tεu and Σp�qΩ � Σ

p�q
Ω Y tεu

for the sake of conciseness.
We now start by defining a reduction operation over timed behav-

ior languages as follows.

Definition 5.1 (Left Reduction). The left reduction δ of a timed behavior
language L with respect to a timed behavior u on a time period β is given
such that

δupLq � t αβv | αuv P L, α P ΩpTq, and v P Σp�qu

We say that the pair pu,βq is the reduction rule Rpuq of u.

We use operation δupLq in a similar way DupLq is used in the clas-
sical setting but with one important difference. When v � Dupwq the
length of the word is reduced, that is, |v| � |w| � |u|, while when
v � δupwq the domains (and hence durations) of v and w are the
same. Consequently, unlike the classical case where membership of
w in L amounts to ε P DwpLq, here the membership is equivalent
to γ P δwpLq where γ is the time period on which the timed be-
havior w located. In other words, the reduced set contains the lo-
cation of u if u in the language L. For example, consider a timed
behavior language L � tw1,w2u such that w1 � p0, 3,aq � p3, 5,bq
and w1 � p0, 2,aq � p2, 5,bq. We illustrate a left reduction opera-
tion δu3pδu2pδu1pLqqq � tw31 u with respect to u � u1u2u3 with
u1 � p0, 1,aq, u2 � p1, 3,aq, and u3 � p3, 5,bq in Figure 19. Since
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Figure 19: A left reduction example.

w31 � p0, 5q is a reduced behavior, we have that u P L. Note that it is
easy to verify that δu3pδu2pδu1pLqqq � δu1�u2�u3pLq.

So far we showed the reduction with respect a single behavior; how-
ever, a more interesting case would be the extension of the reduction
operation for a set of timed behavior. We now introduce a derivative
operation for timed behavior languages based on the left reduction
operation. Since our goal is to solve the dense time matching problem,
we have to operate on sets of timed behaviors and define derivatives
more symbolically. Therefore, we define the derivative ∆v to corre-
spond to the left reduction with respect to all factors of v.

Definition 5.2 (Dense Derivation). The dense derivation ∆vpLq of a timed
behavior language L with respect to a uniform timed behavior v � pt, t 1,aq P
Σp1q is defined as follows:

∆vpLq :�
¤

uPsubpvq

δupLq

where subpvq � tpr, r 1,aq | t ¤ r   r 1 ¤ t 1u.

As mentioned previously, we consider reduced timed behaviors (time
periods) to be the output of our matching procedure. Their existence
in derived languages will be the witness of a match in the behavior;
therefore we define the extraction (output) function as follows.

Definition 5.3 (Extraction). The extraction xtpLq of a timed behavior lan-
guage L is defined as follows:

xtpLq :� t α | α P ΩpTq and α P Lu

We now introduce timed regular Z-expressions with constants taken
form the set Z of timed relations. Below we first give the general
syntax of timed regular Z-expressions, then we present a syntactic
class to precisely describe sets of timed behaviors (with time periods
concatenated from left).

Definition 5.4 (Z-Expression). Timed regular Z-expressions are defined
over a set of propositions P by the following grammar:

ϕ :� Z | p | ϕ1 �ϕ2 | ϕ1 Yϕ2 | ϕ1 Xϕ2 | ϕ
� | xϕyI

where p is a propositional variable in P, Z is a timed relation, and I is an
interval of duration values.
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We note that, although we do not consider the identity ε in timed
languages, we use ϕ� � ϕ� Y ε for the sake of conciseness. In this
chapter, all such cases can be rewritten in the syntax above using
identity and distributivity properties of the regular algebra.

Definition 5.5 (Z-Language). The language of a timed regular Z-expressions
is a set of timed behaviors defined by the following rules.

JZK � Z

JpK � tpt, t 1,aq | t   t 1 and appq � 1u

Jϕ �ψK � JϕK � JψK

JϕYψK � JϕKY JψK

JϕXψK � JϕKX JψK

Jϕ�K �
�8
i�1JϕK

i

JxϕyIK � tw | w P JϕK and |w| P Iu

The syntax in Definition 5.4 allows to define sets that contains
timed behaviors with arbitrary interleavings of pure behaviors and
time periods. Below we define three syntactic classes of expressions.
The first class, called pure (or original) timed regular expressions,
corresponds to the same syntax of expressions in Chapter 4 and pure
expressions are Z-free. The second class is reduced timed regular ex-
pressions which is formed by timed relations only. Lastly, we have
left-reduced timed regular expressions, obtained as compositions of
reduced and pure expressions satisfying some conditions.

Definition 5.6 (Syntactic Classes). A timed regular expression ϕ belongs
to the classes of reduced, pure or left-reduced timed regular expressions if
functions r?, p? or lr?, respectively, evaluate to true in the following table.

Reduced Pure Left-reduced

Case r?pϕq p?pϕq lr?pϕq

Z true false true

p false true true

ϕ1 �ϕ2 r?pϕ1q ^ r?pϕ2q p?pϕ1q ^ p?pϕ2q
lr?pϕ1q^p?pϕ2q Y
r?pϕ1q ^ lr?pϕ2q

ϕ1 Yϕ2 r?pϕ1q ^ r?pϕ2q p?pϕ1q ^ p?pϕ2q lr?pϕ1q ^ lr?pϕ2q

ϕ1 ^ϕ2 r?pϕ1q ^ r?pϕ2q p?pϕ1q ^ p?pϕ2q lr?pϕ1q ^ lr?pϕ2q

ϕ� r?pϕq p?pϕq r?pϕq Y p?pϕq

xϕyI r?pϕq p?pϕq lr?pϕq

Trivially any reduced expression ψ and any pure expression ϕ rep-
resent reduced and pure timed behavior languages such that JψK � Ω
and JϕK � Σp�q. For left-reduced expressions we do not allow con-
catenation and star operations on arbitrary left-reduced expressions
as in Definition 5.6. By doing that, we have the following result.
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Proposition 5.1. The language JϕK of a left-reduced timed regular expres-
sion ϕ is a timed behavior language such that JϕK � Σp�qΩ .

Proof. For the concatenation ϕ1 � ϕ2, we have two possibilities: (1)
Jϕ1K � Σ

p�q
Ω and Jϕ2K � Σp�q; (2) Jϕ1K � Ω and Jϕ2K � Σ

p�q
Ω . For

both possibilities, we have Jϕ1 �ϕ2K � Jϕ1K � Jϕ2K � Σ
p�q
Ω . Other cases

are straightforward by following the definitions.

We now introduce a syntactic derivative operation for left-reduced
timed regular expressions. First, we have that the extraction xt can be
computed syntactically for left-reduced timed regular expressions.

Theorem 5.2 (Extraction Computation). For a given left-reduced timed
regular expression ϕ, applying the following rules recursively yields a timed
relation Z � xtpJϕKq.

xtpZq � Z

xtppq � H

xtpxψyIq � xxtpψqyI
xtpψ�q � xtpψq�

xtpψ1 �ψ2q � xtpψ1q � xtpψ2q

xtpψ1 Yψ2q � xtpψ1q Y xtpψ2q

xtpψ1 Xψ2q � xtpψ1q X xtpψ2q

Proof. We proceed by induction and only look at the case of concate-
nation, other cases are similar. For any expressions ϕ1, ϕ2 it holds

Jxtpϕ1 �ϕ2qK � tα | α P Ω and α P Jϕ1 �ϕ2Ku

� tα1α2 | α1,α2 P Ω, α1 P Jϕ1K and α2 P Jϕ2Ku

� tα1 | α1 P Ω and α1 P Jϕ1Ku �

tα2 | α2 P Ω and α2 P Jϕ2Ku

� Jxtpϕ1qK � Jxtpϕ2qK

We state our main result in this section concerning derivatives of (left-
reduced) timed regular expressions.

Theorem 5.3 (Derivative Computation). Given a (left-reduced) timed reg-
ular expression ϕ and a uniform timed behavior v : pt, t 1,aq, applying the
following rules yields an expression ψ such that JψK � ∆vpJϕKq.

∆vpZq � H

∆vppq �

$'''&
'''%

ZYZ � p if appq � 1 where

Z � tpr, r 1q | t ¤ r   r 1 ¤ t 1u

H otherwise

∆vpψ1 �ψ2q � ∆vpψ1q �ψ2 Y xt
�
ψ1 Y∆vpψ1q

�
�∆vpψ2q

∆vpψ1 Yψ2q � ∆vpψ1q Y∆vpψ2q

∆vpψ1 Xψ2q � ∆vpψ1q X∆vpψ2q

∆vpxψyIq � x∆vpψqyI

∆vpψ
�q � xtp∆vpψqq� �∆vpψq �ψ�
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Proof. By semantic definition, ∆vpϕq � t αγw | αuw P JϕK and pu,γq P
rsubpvqu where rsubpvq :� t Rpuq | u P subpvqu. We proceed by induc-
tion on the structure of ϕ. In the following we tend to use languages
and expressions interchangeably, when in the interest of readability.
Consider the cases:

• For ϕ � Z, αuw R JϕK therefore ∆vpϕq � H.

• For ϕ � p : It needs that α � ε and u P JpK. Then, αuw P

JpK can be satisfied if either w � ε or w P JpK. By applying
definitions, we get

∆vppq � t γ | u P JpK and pu,γq P rsubpvqu Y

t γw | u P JpK, w P JpK and pu,γq P rsubpvqu

� ZYZ � tw | w P JpKu

� ZYZ � p

where the expression Z is tpr, r 1q | t ¤ r   r 1 ¤ t 1u. Hence, we
have ∆vppq � ZY Z � p if u P JpK, otherwise ∆vppq � H. The
condition u P JpK can be easily checked by testing appq � 1.

• For ϕ � ϕ1 �ϕ2 : αuw P Jϕ1 �ϕ2K should be satisfied. There
are three possibilities to split αuw in dense time:

– It can be split up into αuw1 P Jϕ1K and w2 P Jϕ2K.

∆vpϕq � tαγw1w2 | αuw1 P Jϕ1K, w2 P Jϕ2K

and pu,γq P rsubpvqu

� tαγw1 | αuw1 P Jϕ1K

and pu,γq P rsubpvqu � tw2 | w2 P Jϕ2Ku

� ∆vpϕ1q �ϕ2

– It can be split up into α1 P Jϕ1K and α2uw P Jϕ2K.

∆vpϕq � tα1α2γw | α1 P Jϕ1K, α2uw P Jϕ2K

and pu,γq P rsubpvqu

� tα1 | α1 P Jϕ1Ku � tα2γw | α2uw P Jϕ2K

and pu,γq P rsubpvqu

� xtpϕ1q �∆vpϕ2q

– It can be split up into αu1 P Jϕ1K and u2w P Jϕ2K. For this
case, it is required by definitions that ϕ1 is a left-reduced
expression and ϕ2 is a pure expression. This is the most
involved case requiring to split reducing signals.

∆vpϕq � tαγ1γ2w | αu1 P Jϕ1K, u2w P Jϕ2K

and pu1u2,γ1γ2q P rsubpvqu

� tαγ1γ2w | αu1 P Jϕ1K, u2w P Jϕ2K, pu1,γ1q P rsubpvq,

pu2,γ2q P rsubpvq and pu1,γ1q meets pu2,γ2qu

� tαγ1 | αu1 P Jϕ1K and pu1,γ1q P rsubpvqu�

tγ2w | u2w P Jϕ2K and pu2,γ2q P rsubpvqu

� xtp∆vpϕ1qq �∆vpϕ2q
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Thus ∆vpϕ1 �ϕ2q can be found by the disjunction of these three
cases. Then, by rearranging the last two cases, we obtain the
equality claimed in the theorem.

• For ϕ � ψ�, we directly have

∆vpψ
�q � ∆vpψq Y ∆vpψ �ψ

�q

� ∆vpψq Y ∆vpψq �ψ
� Y xtpψY∆vpψqq �∆vpψ�q

� ∆vpψq �ψ
� Y xtp∆vpψqq �∆vpψ�q psince xtpψq � Hq

� xtp∆vpψqq� �∆vpψq �ψ� pby Arden’s lemmaq

• Duration restriction and Boolean operations follow definitions
straightforwardly.

Corollary 5.4. The derivative ∆vpϕq of a left-reduced timed regular expres-
sion ϕ with respect to a segment v of a timed behavior is a left-reduced timed
regular expression.

Proof. Theorem 5.3 shows that only finite number of regular opera-
tions is required to find the derivative and these equations satisfy
requirements in Definition 5.6.

Lemma 5.5. The derivative ∆wpϕq of a left-reduced timed regular expres-
sionϕ with respect to a timed behaviorw � vi . . . vj with j� i�1 segments
is equivalent to the left reduction of ϕ with respect to the set of sub-behaviors
of w beginning in rti�1, tiq and ending in ptj�1, tjs.

∆wpϕq �
¤

uPsub
j
ipwq

δupJϕKq

where sub
j
ipwq � twpt, t

1q | t P rti�1, tiq, t 1 P ptj�1, tjs, and t   t 1u.

Proof. Using definitions we directly have

∆wpϕq � ∆vjp∆vj�1p. . . ∆vipϕq...qq

� δ
subpvjqpδsubpvj�1qp. . . δsubpviqpJϕKq...qq

� δ
subpviq�subpvi�1q�����subpvjqpJϕKq

� δ
sub

j
ipwq

pJϕKq

5.3 online matching using derivatives

In this section, we solve the problem of online timed pattern matching
for timed regular expressions by applying concepts and results intro-
duced in previous sections. Our online matching procedure assumes
the input signal w to be presented incrementally as follows. Let Σ
be alphabet and w � v1v2 . . . vn � pt0, t1,a1q, . . . , ptn�1, tn,anq be
an n-variability timed behavior and we read a new segment vk of w
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Figure 20: Partitioning the set ΩpTq of all time periods.

incrementally for k � 1, 2, . . . ,n. Before proceeding, let us allow to
partition the set of all timed periods with respect to the behavior w
with n segments for the sake of presentation as follows.

Ω
j
i � tpt, t

1q P Ω | ti�1 ¤ t   ti, tj�1   t 1 ¤ tj and t   t 1u

and we naturally define Ωj �
�
i¤jΩ

j
i where 1 ¤ i, j ¤ n. In Fig-

ure 20 we visualize these sets on the xy-plane over a behavior of
length 4. Note that equivalent timed behaviors with different repre-
sentations (due to stuttering) would lead different partitions. Now
recall that a valuation Vpϕq of an expression ϕ is a subset of Ω in a
temporal structure W � pΩ,Vq. Therefore, we extend the notation
to valuations such that Vjipϕq � Vpϕq XΩ

j
i and Vjpϕq � Vpϕq XΩj.

Notice that the valuation Vjpϕq depends only on the prefix v1 . . . vj
of the behavior for a timed regular expression ϕ.

Then an online matching function Λϕ for a timed regular expres-
sion ϕ is a sequential function that maps a timed behavior w to a
sequence of timed relations such that the output Zk � Vkpϕq at a
step k. In other words, the output Zk contains exactly all matches
whose endpoints in the interval ptk�1, tks with respect to a timed reg-
ular expression ϕ. Since Vkpϕq does not depend on future segments
of w, the function Λϕ is causal. We formally state it by a definition.

Definition 5.7 (Matching Function). Let Σ � B|P| be alphabet over a set
P of propositional variables. A matching function for a timed regular expres-
sion ϕ in a temporal structure W � pΩ,Vq induced by a timed behavior
w � v1, . . . , vn of length n is a causal sequential function Λϕ : Σp�q −Ñ
Z� such that

Λϕpv1 . . . vnq � V
1pϕq, . . . ,Vnpϕq � Z1, . . . ,Zn

Now we show how to realize matching functions for timed regular
expressions using derivatives of timed regular expressions similar to
the classical setting. For that, we first define the state of the online
timed pattern matching at the step j as a left-reduced timed regular
expression.
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Definition 5.8 (The State of Online Matching). Given a pure timed regu-
lar expressionϕ, the state ψj of the online timed pattern matching procedure
after reading a prefix v1 . . . vj of the input timed behavior is:

ψj :�
¤
1¤i¤j

∆vi...vjpϕq

Then, starting with ψ0 � ϕ, we update the state upon reading the
next segment vj�1 by letting

ψj�1 � ∆vj�1pψ
jq Y∆vj�1pϕq

which is called the update equation. Now we show that the extrac-
tion of reduced timed behaviors from the j� th state ψj provides the
valuation Vjpϕq at the step j.

Theorem 5.6. Given a state ψj of an online matching procedure for the
expression ϕ and a timed behavior w, the incremental valuation Vjpϕq is
found by the extraction of the state:

Vjpϕq � xtpψjq

Proof. Following Definition 5.8 and Lemma 5.5 we know the state ψj

represents a reduced language L � δ
sub

jpwqpϕq of ϕ. Hence we can
find the valuation Vj by extracting all reduced behaviors from the
state ψj of online matching.

Theorem 5.6 allows us to have a complete procedure for online timed
pattern matching for given ϕ and an input signal w � v1 . . . vn sum-
marized below.

For 1 ¤ j ¤ n repeat:

1. Update the state of the matching ψj by deriving the previous
stateψj�1 with respect to vj and adding a new derivation ∆vjpϕq
to the state for matches starting in the segment j.

2. Extract ψj to get matches ending in the segment j.

Note that, since there are applications such that all the match set is
not needed but only the matching of prefixes or the whole behavior,
computing matches starting from segments other than the initial can
be redundant. In this case, the algorithm can be easily modified to
only output matches Vj1 starting in the first segment and ending in
the segment j by simply letting the update equationψj�1 � ∆vj�1pψ

jq.
Clearly this would be more efficient for those applications.

We now present an example run of online pattern matching for
a timed regular expression ϕ :� xp � qyr4,7s and input timed behav-
ior w :� v1v2v3 � p0, 3, p1, 0qq, p3, 8, p1, 1qq, p8, 10, p0, 1qq over proposi-
tional variables p and q as illustrated in Figure 21 at the top. In Ta-
ble 3, we depict the step-by-step computation of the valuation Vpϕq
over the behavior w upon reading segments of w incrementally. For
Step 1 the state ψ1 is equal to the derivative of ϕ with respect to w1
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Letters p1, 0q p1, 1q

Segments 1 2

1 xp � qyI −Ñ
∆w1

xZ11 � qyI Y

xZ11 � p � qyI
−Ñ
∆w2

xZ11 �Z
2
2yI Y

xZ11 �Z
2
2 � qyI Y

xZ11 �Z
2
2 � p � qyI

2 xp � qyI −Ñ
∆w2

xZ22yI Y

xZ22 � qyI Y

xZ22 � p � qyI

−Ñ
∆w3

3 xp � qyI −Ñ
∆w3

Letters p0, 1q p0, 0q

Segments 3 4

1 −Ñ
∆v3

xZ11 �Z
2
2 �Z

3
3yI Y

xZ11 �Z
2
2 �Z

3
3 � qyI

−Ñ
∆v4

H

2 −Ñ
∆v3

xZ22 �Z
3
3yI Y

xZ22 �Z
3
3 � qyI

−Ñ
∆v4

H

3 −Ñ
∆v3

H −Ñ
∆v4

H

4 −Ñ
∆v3

xp � qyI −Ñ
∆v4

H

Table 3: Timed pattern matching using derivatives for w � v1v2v3 and
ϕ � xp � qyI. Entries pi, jq represent the derivative with respect
to vi . . . vj. Reduced expressions, indicating matched segments, are
shaded with gray. I � r4, 7s.

such that ψ1 � xZ11 � qyr4,7s Y xZ
1
1 � p � qyr4,7s where Z11 � tpt, t

1q | 0 ¤

t   3, 0   t ¤ 3, and t   t 1u. The extraction xtpψ1q returns the
empty set therefore we do not have any matches ending in the first
segment. Notice that time periods in Z11 are partial matches that may
be completed in the future. For Step 2 where Z22 � tpt, t

1q | 4 ¤ t  

7, 4   t ¤ 7, and t   t 1u the extraction of the state ψ2 is equal to
xtpψ2q � xZ11 � Z

2
2yr4,7s Y xZ

2
2yr4,7s � tpt, t 1q | 0 ¤ t   3, 4   t ¤

8, and 4 ¤ t 1 � t ¤ 7u Y tpt, t 1q | 4 ¤ t   5, 7   t ¤ 8, and 4 ¤
t 1 � t ¤ 5u. Similarly, for Step 3 where Z33 � tpt, t 1q | 8 ¤ t  

10, 8   t ¤ 10, and t   t 1u, the extraction of the state ψ3 is equal to
xtpψ3q � xZ11 � Z

2
2 � Z

3
3yr4,7s Y xZ

2
2 � Z

3
3yr4,7s � tpt, t 1q | 1 ¤ t   3, 8  

t ¤ 9, and 5 ¤ t 1 � t ¤ 7u Y tpt, t 1q | 4 ¤ t   6, 8   t ¤ 9, and 4 ¤
t 1 � t ¤ 5u. For the final step, both propositions do not hold and
the state ψ4 is computed to be the empty set; therefore, we do not
have any matches. In Figure 21 we illustrate corresponding segments
pt, t 1q extracted in Steps 2 and 3 where solid regions show the actual
outputs for the corresponding step.
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Figure 21: Illustration of online timed pattern matching presented in Table 3

with t and t 1 denoting, respectively, the beginning and end of the
match.
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6
M O N T R E & C A S E S T U D I E S

The designer of a new kind of system
must participate fully in the implementation.

— Donald E. Knuth

In this chapter, we describe our timed pattern matching tool Mon-
tre and present three case studies in order to explore the usefulness
of timed pattern matching in different application areas. We first
explain the tool [108], which is intended to encapsulate timed pat-
tern matching algorithms with a uniform easy-to-use interface. For
pattern specification, we provide a rich set of operators in the syn-
tax that can express many timed patterns. It is worth to note that
some operations such as complementation and iteration are computa-
tionally more expensive than others. However, there are many cases
that these operations are useful when used in a subtle manner and
perform well due to the characteristics of the input behavior such
as physical limitations or assumptions for the generator of the be-
havior. Indeed this is also true for all other operators; therefore, we
focus more on typical cases than the worst-case scenarios. Then, we
provide some performance results over the synthetic data generated
according to these considerations before case studies.

The first case study comes from our foremost domain of interest,
that is, runtime verification (monitoring) of real-time systems. We
present a task to measure some quantitative properties of communi-
cation (bus) protocol employed by the automotive industry. To this
end, timed regular expressions and metric compass logic are used to
specify time windows over which (external) measurement operations
are applied. Then we run timed pattern matching algorithms to find
all such time windows and apply the corresponding measurement
straightforwardly over them.

For the second case study, we present an example from the do-
main of sports analytics where we employ timed pattern matching
to find all sprints of a soccer player. For that we preprocess the raw
data of player positions tracked by other techniques, namely com-
puter vision, to compute timed speed and acceleration behavior. We
reduce noise, interpolate missing data points, differentiate, etc. us-
ing existing data analysis tools that implement algorithms for such
tasks. Timed pattern matching comes after these preprocessing tasks
and before post-processing tasks such as visualization. Therefore, the
main objective of this case study is to emphasize the need for col-
laboration between timed pattern matching and other techniques to
analyze sequential data and time series. For data scientists, timed
pattern matching would be a complementary technique to analyze
time series data that works in the pipeline with other techniques. For
our part, it means that we delegate a plethora of necessary things to

63
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do in order to have a complete application. It illustrates our choices
when designing our tool.

In the third case study, we explore opportunities to use timed
patterns to encode knowledge about high-level temporal activities
and extract information from temporal datasets using timed pattern
matching. As virtually all high-level activities can be decomposed
into more primitive activities, it is natural to specify timed patterns
over an alphabet that consists of such primitive activities. We use the
opportunity activity recognition dataset, which provides a rich set
of primitive human activities and interactions from an early morn-
ing scenario. First, we write more complex patterns using primitive
activities from the data set and match these patterns over tracked
behaviors. Second, we build a simple statistical model by matching
and counting temporal occurrences detected by timed pattern match-
ing. It is inspired by n-gram models, which are extensively used for
natural language processing tasks, and the concurrent nature of time
makes it different.

In all three case studies, we need to use a variety of other data
analysis techniques. Since complete applications require many sepa-
rate components from various domains of research, the collaboration
between tools and techniques always needs to be maintained. We
consider this fact in the design of our tool montre and we believe
timed pattern matching would be a valuable technique among all
other temporal data analysis techniques.

6.1 tool description

The tool Montre essentially incorporates online and offline timed
pattern matching algorithms extended with some practical features
such as anchors and the Boolean layer. It takes a timed behavior and
a timed pattern specified using timed regular and metric compass op-
erators as inputs, and produces a finite set of two dimensional zones
representing the (possibly uncountable) set of segments that match
the pattern. The syntax of all boolean, regular, and compass opera-
tions in Montre is given in Table 4. Montre provides a standard
text-based interface for easy integration with other tasks such as data
preparations and visualization as we consider them necessary but
outside the scope of Montre. Figure 22 illustrates the work flow and
extent of Montre, and we give details for each component in the
following.

Implementation. Montre is a command line program1 that uses
structured text files for input/output specification. When invoked,
Montre parses the timed pattern passed as an argument and starts
to read the input file. According to flags set by the user, Montre

would run in either online or offline mode. For online mode, it is
possible that the input can be given interactively using the command
line or directed from another process via a pipe. At its core, Mon-

1 Available at http://github.com/doganulus/montre
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Table 4: Montre timed pattern syntax.

Construct Description

p A propositional variable.

!P Boolean not operation on P.

P || Q Boolean or operation on P and Q.

P && Q Boolean and operator on P and Q.

P occurs on pt, t 1q if P holds from t to t 1 continu-
ously.

<:P occurs on a time period pt, t 1q if P occurs on pt, t 1q
and there exists a rising edge for P at t.

P:> occurs on a time period pt, t 1q if P occurs on pt, t 1q
and there exists a falling edge for P at t 1.

<:P:> occurs on a time period pt, t 1q if P occurs on pt, t 1q
and there exists a rising edge for P at t as well as
a falling edge for P at t 1.

~E occurs on a time period pt, t 1q if E occurs on pt, t2q
and F occurs on pt2, t 1q for t ¤ t2 ¤ t 1.

E|F occurs on a time period pt, t 1q if either E or F oc-
curs on pt, t 1q.

E&F occurs on a time period pt, t 1q if E and F occur on
pt, t 1q concurrently.

E;F occurs on a time period pt, t 1q if E occurs on pt, t2q
and F occurs on pt2, t 1q for t ¤ t2 ¤ t 1.

E* Zero-or-more repetition of E.

E+ One-or-more repetition of E.

E%(m,n) occurs on a time period pt, t 1q if E occurs on pt, t 1q
and the duration of the occurrence is in the speci-
fied range such that m ¤ t 1 � t ¤ n.

<X>%(m,n) E occurs on a time period pt, t 1q if E occurs on pt, t2q
and F occurs on pt2, t 1q for t ¤ t2 ¤ t 1.

[X]%(m,n) E occurs on a time period pt, t 1q if E occurs on pt, t2q
and F occurs on pt2, t 1q for t ¤ t2 ¤ t 1.
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Figure 22: The work flow and extent of the monitoring tool Montre

tre contains our efficient implementation of the algebra of timed re-
lations — written in c++ and compiled as a shared library named
libmontre. It is called dynamically by the top-level online and offline
timed pattern matching algorithms. In the implementation, we use
an integer-valued time model where all time values are represented
by integers for efficiency and accuracy reasons. For the majority of
applications, the integers give us sufficient precision and range; and
a proper scaling can be found.

We implement timed pattern matching algorithms in PureLang
2,

a functional programming language based on term rewriting with a
support for native code compilation and native calls to dynamic li-
braries. The offline algorithm [109] is a recursive computation over
the syntax tree of the expression; therefore, the role of Pure’s rewrit-
ing engine is minimal. Offline mode is invoked by the option -b or
-offline and requires a valid pattern (in single quotes) and a file as
arguments as follows.

montre -b '(p;q)%(3,4)' 'my_timed_beh.txt'

The input file should be structured such that each line contains a sym-
bolic interval formed by a duration value and a string of propositions
as below. For the empty symbol set the double-dash (-) can be used.

12 pq

22 p

31 pq

43 --

Listing 1: An input file for montre

After execution the output file includes a set of zones where 6 zone in-
equalities are defined by 6 numbers pb b 1 e e 1 d d 1q and a 6-bit vector
denotes the strictness of the corresponding inequality, respectively. It
is interpreted such that an inequality is strict if the corresponding bit
value is 0, and not strict otherwise. An example output file is given
in Listing 2.

2 Available at http://purelang.bitbucket.io
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1(0 1 3 4 3 4) 100111

2(5 6 8 9 3 4) 100111

Listing 2: An output file by the option --output-type=zone

Zones are the default output of montre that may be denoted explic-
itly by an option -output-type=zone. Besides, Montre provides an
option -output-type=end to project zones over the end-axis. Then
the output file contains a Boolean timed behavior that indicates the
existence of the end of a match. It is useful when you would like to
link timed regular expressions with point-based temporal logics sim-
ilar to the suffix implication of psl and sva. An example output file
for this option is given in Listing 3.

12 1

21 0

31 1

Listing 3: An output file by the option --output-type=end

For the online algorithm [110], built upon derivatives of regular ex-
pressions [88, 100], we extensively use the rewriting functionality
when deriving an expression with respect to a newly observed seg-
ment. The online mode is invoked by the option -i or -online.

montre -i '(p;q)%(3,4)' 'my_timed_beh.txt'

For the online mode, the filename is optional and Montre will expect
a duration value and a string of propositions from standard input if
no file is provided. Otherwise it will read the file line by line in one
pass.

The worst case complexity is polynomial in the size of input behav-
ior and expression for the offline approach. For the online approach
it is polynomial in the size of the behavior and exponential in the
expression. In practice, however, we realistically assume patterns to
be much shorter than behaviors and somewhat sparse in them. Then
we expect a linear-time performance in the size of input behavior
for both algorithms. Under these assumptions, Montre can process
timed behaviors with a size of 1M segments in a few seconds (offline)
and a few hundred seconds (online).

Synthetic Performance Tests. We perform our experiments on a
3.3GHz machine for a set of test patterns that are specified by timed
regular regular expressions and metric compass logic. Input behav-
iors are generated automatically by repetitions of instances of cor-
responding patterns; thus the number of instances (zones) matched
is linear to the size of the behavior. We expect (and have observed
from case studies) that this number in practice is much smaller than
in these synthetically generated examples. We depict performance
results of the online procedure in comparison with the offline proce-
dure in [109] in Table 5. We use the gnu time -v facility to measure
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Offline Algorithm

Input Size

Test Patterns 100K 500K 1M

p 0.06/17 0.27/24 0.51/33

p � q 0.08/21 0.42/46 0.74/77

xp � q � xp � q � pyI � q � pyJ 0.23/28 1.09/77 2.14/140

xp � qyI � r X p � xq � ryJ 0.13/23 0.50/51 1.00/86

p � pq � rq� 0.11/20 0.49/37 0.96/60

p 0.18/12 0.95/45 1.88/92

I p 0.07/16 0.29/65 0.66/163

I p 0.49/23 1.98/100 3.92/163

I J p 0.08/20 0.32/37 0.96/60

p p � qq 0.40/31 1.98/143 3.93/268

p p � qq X I q 0.43/38 2.17/179 4.30/304

Online Algorithm

Input Size

Test Patterns 100K 500K 1M

p 6.74/14 29.16/14 57.87/14

p � q 8.74/14 42.55/14 81.67/14

xp � q � xp � q � pyI � q � pyJ 28.07/14 130.96/14 270.45/14

xp � qyI � r X p � xq � ryJ 15.09/15 75.19/15 148.18/15

p � pq � rq� 11.53/15 52.87/15 110.58/15

Table 5: Execution times/Memory usage (in seconds/megabytes)

execution times (user cpu time) and memory usage (maximum res-
ident set size). For typical cases, experiments suggest a linear time
performance with respect to the number of segments in the input for
both algorithms. Although the online procedure runs slower than the
offline procedure, it requires less memory and the memory usage, as
expected, does not depend on the input size.

6.2 measuring a bus protocol

Distributed Systems Interface (dsi3) is a flexible and powerful bus
protocol developed for the automotive industry and, in particular,
targeting airbag systems. The protocol is designed for powering
and communicating with remotely located slave devices in a self-
contained automotive network operating over a 2-wire twisted pair.
The slave devices are typically acceleration sensors responding with
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Figure 23: DSI3 discovery mode.

raw-g data or pressure sensors responding with relative pressure
data. The controller interacts with the sensor devices over the wire via
analog signals where the information is represented by time-varying
voltage and current values. The correctness or performance of such
networks is often evaluated by measuring some quantitative proper-
ties over the specific segments (measurement windows) of their (ac-
tual or simulated) behaviors. In this case study, we consider two
modes of the dsi3 protocol (discovery and command & response
modes) that requires complex interactions with timing and perfor-
mance considerations [43]. We then define timed patterns for such
behaviors and perform pattern matching to find measurement win-
dows over which measurements are to be applied.

The discovery mode is the initialization phase initiated by the con-
troller to automatically determine the position of devices and assign
a unique physical address to them in the (serial daisy-chain) network.
Typically this is done at the time of network formation after power-up.
Therefore, following a voltage ramp, the controller transmit a prede-
termined number of (negative) voltage pulses over the wire. Devices
respond by transmitting current pulses and determine their position
in the network by sensing and counting such current pulses. In Fig-
ure 23, we illustrate the discovery mode in the dsi3 protocol and pro-
vides a high-level overview of its ordering and timing requirements
such as the minimal time between the power turned on and the first
discovery pulse, the maximal duration of the discovery mode, and
the expected time between two consecutive discovery pulses.

The power delivery functionality of the command and response
mode is illustrated in Figure 24. During this mode, the controller

Time

Command
0100. . . 01

Response
1212. . . 01

Power Delivery
Phase

vptq

iptq

Figure 24: DSI3 power delivery functionality.
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sends a command to the sensor as a series of pulses (a pulse train)
on the voltage line, which transmits its response by another pulse
train on the current line. For power-demanding applications, the
command and response pairs are followed by a power pulse, which
goes above Vhigh. Such power pulses enable the sensors to load their
capacitors used for powering the internal operations.

In the following, we study two specific measures for the dsi3 pro-
tocol: (1) the time between consecutive discovery pulses; and (2) the
amount of energy transmitted to the sensor through power pulses.

Time between consecutive discovery pulses. In order to measure
the time between consecutive discovery pulses, we start by describing
discovery pulses. For that, we first partition the continuous voltage
axis using three predicates such that (1) VHigh is true when the volt-
age is above 7.8 Volts, (2) VMiddle between 7.8 and 4.92 Volts, and (3)
VLow below 4.92 Volts as given in Table 6. We use these predicates to
specify a timed pattern ϕdp for discovery pulses such that

ϕdp � x�VMiddle � VLow � VMiddle�yr12,20s X ¥5 VHighX ¥5 VHigh

where time units are in microseconds. Then, a discovery pulse is
essentially expressed as a sequential composition of VMiddle, VLow,
and VMiddle periods. We use begin and end anchor operators over
the VMiddle predicates since a pulse is usually considered to be start-
ed/ended at the time when thresholds are crossed. Further, we spec-
ify the pulse width (duration) constraint according to the dsi3 stan-
dard and refine it by requiring VHigh holds at least for 5µs at preced-
ing and trailing time periods.

The measurement window for this property starts at the beginning
of a discovery pulse and ends at the beginning of the next one. It
consists of a discovery pulse ϕdp, followed by a period of VHigh,
and terminating when the voltage leaves vh. This description is not
sufficient to capture the property as we also need to ensure that this
segment is indeed followed by another discovery pulse. Hence, we
add an additional constraint ϕdp that specifies this requirement
using mcl. The final pattern is formalized as follows:

ϕdistpp � ϕdp � VHigh X ϕdp

For our experiment, we apply a scenario where the discovery mode
is activated on/off 100 times in sequence. We generate signals from
an abstract model using randomized timing parameters drawn from

Table 6: Voltage categories for discovery pulses.

Label Voltage thresholds (V)

VHigh > 7.8

VMiddle 4.92 - 7.8

VLow < 4.92
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Figure 25: Distribution of the time between consecutive discovery pulses.

a normal distribution. Then we match the pattern ϕdistpp and obtain
a finite number of matches and consequently their duration. Notice
that the deliberate use of anchors from both sides would guarantee
the finiteness of number of matches. In Figure 25, we depict the
measured duration values using a histogram. As expected, the distri-
bution of the times between two discovery pulses follows a normal
distribution according to the timing parameters used to generate it at
the first place.

Energy transfer from controller to sensor. In the dsi3 protocol,
the discovery mode can be followed by a stationary command and re-
spond mode. A command and response sequence is a pulse train that
consists of a command subsequence in the form of potential pulses
between Vhigh and Vlow, a response subsequence by means of cur-
rent pulses between 0 and Iresp, and a power pulse rising to potential
Vidle in which a large current can be drawn by the sensor. We first
characterize the power pulse. It occurs when the voltage goes from
below Vpwr to above Vidle, and then back below Vpwr. The three re-
gions of interest are specified with the following predicates. Hence,
the pattern ϕpwr specifying a power pulse is expressed as

ϕpwr � x�VPwr1090�yr1,8s �VHigh � x�VPwr1090�yr1,8sX VLowX VLow

Given the voltage and current signals, vptq and iptq on the wire, the
energy transfered to the device is given by the area under the signal
v� i between the start and end of power pulse. We then measure
energy by evaluating the integral

³t 1
t vptqiptqdt for each power pulse

Table 7: Voltage categories for power pulses.

Label Voltage thresholds (V)

VPwrHigh > 6.5

VPwr1090 4.4 - 8.1

VPwrLow < 6.5
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Figure 26: Distribution of the energy transmitted per power pulse.

identified at the time period pt, t 1q. In Figure 26, we depict measure-
ment results using histograms. We note that the final integral oper-
ations are performed by standard numerical integration routines (in
particular, we use the trapezoid method in this example over equally
sampled voltage and current signals). We consider such operations to
be the post-processing or analysis of the segments obtained by timed
pattern matching.

6.3 detecting sprints

We present a case study on a dataset obtained by tracking positions
of players in a real soccer match. In this example, we find all sprints
performed by a single player where a sprint is formally specified by a
timed regular expression over speed and acceleration behaviors. The
data are obtained by a computer vision algorithm with a frame rate
of 10 Hz so we have an xy-coordinate for each player on the field at
every 100 milliseconds. Therefore we use milliseconds as our base
time unit for behaviors and expressions.

In order to specify a pattern for sprints, we need to address two
issues in order: (1) how to categorize continuous speed and acceler-
ation axes, and (2) which composition of these categories defines a
sprinting effort best. Clearly, there are no universal answers for these
questions so we rely on the study [39] in the following. First, we
partition speed and acceleration axes into four categories (near-zero,
low, medium, and high) as shown in Table 8. For example, a period
of medium speed, denoted by SpeedMedium, means the speed value
resides between 3.7 and 6 m/s during the period.

Often a sprint effort is characterized by any movement above a cer-
tain speed threshold for a limited time. This gives us our first sprint
pattern such that a period of high speed between 1-10 seconds, for-
mally written as follows:

x�SpeedHigh�yr1000,10000s (P1)

Above we use anchor operators from both sides on the proposition
SpeedHigh to obtain only maximal periods that satisfy SpeedHigh; oth-
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Table 8: Speed and acceleration categories for sprinting [39].

Label Speed thresholds (m � s�1)

SpeedHigh > 6.0

SpeedMedium 3.7 - 6

SpeedLow 2 - 3.7

SpeedNearZero 0 - 2

Label Acceleration thresholds (m � s�2)

AccHigh >1.60

AccMedium 1.17 - 1.60

AccLow 0.57 - 1.17

AccNearZero -0.57 - 0.57

erwise, any sub-period satisfies the pattern as well. The duration re-
striction operator specifies that the duration is restricted to be in 1000

and 10000 milliseconds. Alternatively we may want to find other ef-
forts starting with high acceleration but not reaching top speeds nec-
essarily. This gives us our second sprint pattern such that a period
of high acceleration followed by a period of medium or high speed
between 1-10 seconds, formally written as follows:

�AccHigh � x�pSpeedMedium_ SpeedHighq�yr1000,10000s (P2)

Notice that we do not use the end anchor on the predicate AccHigh.
This allows a medium or high speed period to overlap with a high
acceleration period as it is usually the case that they are concurrent.
Writing an equivalent pattern using classical regular expressions over
a product alphabet would be a very tedious task partly due to a re-
quirement to handle such interleavings explicitly (and the lack of
timing constraints). For tres, all propositions are considered to be
concurrent by definition, which results in concise and intuitive ex-
pressions. Finally, we give a third pattern to find rather short but
intense sprints such that

 : pAccMediumHigh_ AccHighq � x�SpeedHigh�yr1000,2000s (P3)

Then, we visualize all sprints detected by Montre for patterns P1-P3
in Figure 27 over the behavior of a single player during one half of
the game (45 min.) containing 27K data points that reduces to timed
behaviors of 5K segments after pre-processing. Note that we used
Python to prepare data and visualize results.
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(a) Entire movement

(b) P1

(c) P2

(d) P3

Figure 27: The trajectory of a soccer player for 45 minutes on the field, and
his sprinting periods detected by Montre for patterns P1-P3.
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6.4 detecting daily activities

In this section, we present a case study that aims to specify and match
high level activity patterns composed out of lower level activity prim-
itives. To this end, we use a dataset that contains a rich set of activity
primitives to be explained in more detail in the following. Our main
goal is to explore the use of timed regular expressions and metric
compass logic to encode (domain-specific) temporal knowledge and
propose timed pattern matching as yet another method for extracting
information from temporal datasets.

Creating new entities from meaningful combinations of basic enti-
ties is a fundamental task for any kind of reasoning. This allows to
generalize situations, increase the level of abstraction, and reduce the
complexity by forgetting unimportant details for higher levels. The
process of lexical analysis in compilers [1] is perhaps the cleanest (and
most successful) example we can give to illustrate these rather vague
concepts. As for lexing, textual patterns (usually specified by regular
expressions) are used to associate segments of the source code with
meaningful labels (digit, integer, float, number etc.) called tokens.
For example, a digit is a textual character from 0 to 9, an integer is
a sequence of digits possibly preceded by a character of minus or
plus, a floating point number is an integer followed by a dot character
and a sequence of digits, a number is either an integer or a floating
point number, and so on. The upper level (of parsing) then does
not need to care about individual digits explicitly but only numbers
when recognizing an arithmetic expression, which is a high level tex-
tual pattern that consists of numbers, variables, arithmetic operators,
and parentheses.

Similar motivations and ideas can be found in the area of natu-
ral language processing (nlp) [58], in particular the topic of part-of-
speech tagging and named entity recognition. For those, parts of text or
speech are tagged by rule-based (or statistical) techniques with lin-
guistic concepts such as verb, noun, or adverb. Besides some nouns
may denote names of persons/organization/venues or some adverbs
may be associated with certain emotions in some contexts, which are
all indicates a increasing level of abstraction in reasoning. For all
these applications, pattern matching (and regular expressions) over
texts is considered a basic tool before more complex analyses [8, 80].
Since we have developed timed pattern matching in this thesis, we
see a promising direction in exploring the applicability of these ideas
for temporal datasets using timed pattern matching.

For this case study, we use the opportunity activity recognition
dataset3, which is a dataset devised to benchmark human activity
recognition algorithms [96]. We choose the topic of daily activities
partly because we (and everyone else) have a knowledge on the topic
and partly because the dataset provides a rich set of action and state
labels on the time axis and clearly separates the levels of abstrac-
tion. Thus we can write meaningful timed patterns by hand using

3 At https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
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Figure 28: Sipping periods from the dataset.

our knowledge about daily activities, related verbs, and household
objects.

The activity recognition environment and scenario is designed to
generate many activity primitives in a realistic manner. The (numer-
ical) data is obtained from sensors placed over objects as well as hu-
man subjects. In addition to sensory data, the dataset contains man-
ually annotated tracks of primitive actions and states. These behav-
iors are uniformly sampled and the sampling rate is approximately
33KHz. Accordingly we use milliseconds as the base time unit. Sub-
jects are told to follow the high-level scenario of ordinary morning
activities such as getting up, having breakfast, and cleaning but they
can freely interpret lower level activities such as holding cups or us-
ing different hands. This intends to provide complex, interleaved
and hierarchical natural activities, with a particularly large number
of primitive activities. Four subjects, called S1, S2, S3, and S4, repeat
this scenario 5 times and we then have 20 runs of activity tracking
where each run is completed in 20 minutes approximately. In the
following figures such as Figure 28, we illustrate matching periods
on parallel time axes from these total 20 runs for the corresponding
patterns. In those figures, the gap between different subjects is larger
than the vertical blank space between runs of the same subject.

In this case study, we do not use real-valued sensory data provided
by the dataset but work directly over tracks of primitive actions and
states. For example, the primitive action predicate sip_left_hand

holds at a time point t if the corresponding subject is performing a
sipping action with their left hand at t. Similarly we have the predi-
cates sip_right_hand and several others in the dataset. For the rest,
we abstract the distinction between left and right hands by simply
defining sip pattern:

sip � sip_left_hand_ sip_right_hand

Now let us look into the sipping periods depicted in Figure 28 of
each subject observed during their (five) runs in order to have an
idea about the nature of our data. At a first glance, we can see that
the subject S1 sips his/her beverage more regularly than other sub-
jects. Our intention is to define higher level actions using a drink

pattern telling that a drinking action is a repeated action of sipping
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Figure 29: Drinking periods that match the pattern drink.

one or more times. We also require the duration between two sips
(the duration of non-sipping) is two minutes at maximum. Therefore,
such duration constraints are necessary since we do not want a sip in
the morning and a sip in the evening to qualify for a drinking action
from the morning till the evening. And finally we acknowledge that
this particular duration bound comes from our personal experience
empirically but such values may of course be subject to further sta-
tistical analyses in general. Then the resulting pattern is given as a
timed regular expression as follows.

drink � sip � px sipyr0,2mins � sipq
�

We depict drinking periods matched over the dataset according to the
pattern drink in Figure 29.

We continue our experiment by defining a similar pattern for eating
action that consists of taking bites (from a sandwich). As the dataset
provides us the predicate sip_left_hand and sip_right_hand, we
define following patterns for eating action.

bite � bite_left_hand_ bite_right_hand

eat � bite � px biteyr0,5mins � biteq
�

We depict biting and eating periods matched over the dataset ac-
cording to the patterns bite and eat in Figure 30, respectively. Fur-
ther we can measure the duration of drinking and eating periods
similar to the case study in Section 6.2 and we depict the results in
Figure 31.

Now we switch our attention to some basic probabilistic models
called n-gram models, extensively used in natural language process-
ing [58]. An n-gram is a sequence of n words and these models are
used to assign a probability Ppw|hq for a word w given some history
h of length n� 1. In particular, we focus on the simplest case, bigram
models, where n � 2 and a bigram model tells us the probability
Ppwi|wi�1q of a word wi depending on the previous word wi�1. The
most basic method to estimate these probabilities is to count the num-
ber of occurrences in a textual dataset called corpus. More precisely,
the probability Ppwi|wi�1q can be estimated from a (large) dataset
by dividing the number #pwi,wi�1q of occurrences of the sequence
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Figure 30: Biting and eating periods that match the pattern bite and eat,
respectively.

pwi,wi�1q to the number #pwi�1q of occurrences of the word wi�1
in a corpus and this ratio is called relative frequency. Although sim-
ple, n-gram models (with some adjustments) are very effective for
nlp tasks. Since regular expression matching is used to count the
number of occurrences of words in nlp, we would like to experiment
with the idea –counting patterns and estimating probabilities– over
our temporal dataset using timed pattern matching in the following.

Now, as in bigrams, we would like to compute the probability
Pdpq | pq, that is the likelihood of the occurrence of q in d time
units given the occurrence of p where p,q P P are atomic proposi-
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Figure 31: Distribution of matching periods.
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tions. Notice that we here replace the concept of the next word with
the concept of the occurrence of the proposition in d time units for
this particular case. Then we estimate the probability Pdpq | pq from
the relative frequency as follows.

Pdpq | pq �
#p�p � x qyr0,ds � q�q

#p�p�q

where #pϕq is defined to be the total count of matches obtained from
the whole dataset. We say that the timed pattern �p � x qyr0,ds �

q� in the numerator is the base pattern for our bigram-like model.
We apply this model to six atomic propositions from opportunity

dataset. After abstracting left and right hand distinction similar to
sip and bite, these propositions are cut, spread, cheese, salami,
knife_cheese, and knife_salami that denote some actions of subjects
as well as their interaction with some objects during their breakfast.
Before applying timed pattern matching to estimate probabilities in
our model, we normally expect that subjects spread their cheese with
the cheese knife and cut their salami with the salami knife. We do
not have any prior information whether or not subjects are instructed
in this way. We tabulate our findings in Table 9 where d � 30s. In
the table, we give the likelihood of the proposition in a column in
30 seconds is given with respect to the proposition in a row in the
corresponding entry. For example, we observe that the probability
P30pspread | cheeseq is higher than P30pspread | salamiq. Similarly,
we have P30pknife_cheese | cheeseq ¡ P30pknife_salami | cheeseq

and P30pknife_salami | salamiq ¡ P30pknife_cheese | salamiq. In-
deed we see one cluster for spread-cheese-knife_cheese) and an-
other for cut-salami-knife_salami as expected. For these clusters,
the intra-cluster probabilities are consistently higher than the inter-
cluster probabilities. Also notice that the sum of probabilities for a
row sometimes exceeds 1 but it can be easily explained by the fact
that there might be many "next" propositions in d time units for a
proposition due to density and concurrency of time unlike sequential
text. Another interesting observation is that the probability of repeat-
ing primitives are usually high, which suggests an iteration pattern
as in the case of sip and bite can be considered as a template for
primitive actions.

Table 9: Bigram-like probabilities for opportunity dataset.

cut spread cheese salami knife
cheese

knife
salami

cut 6
33 � 0.18 1

33 � 0.03 5
33 � 0.15 12

33 � 0.36 9
33 � 0.27 16

33 � 0.48

spread 9
31 � 0.29 12

31 � 0.39 20
31 � 0.65 13

31 � 0.42 15
31 � 0.48 13

31 � 0.42

cheese 13
228 � 0.06 25

228 � 0.11 103
228 � 0.45 48

228 � 0.21 49
228 � 0.21 28

228 � 0.12

salami 23
244 � 0.09 8

244 � 0.03 36
244 � 0.15 75

244 � 0.31 25
244 � 0.10 43

244 � 0.18

knife
cheese

18
186 � 0.10 25

186 � 0.13 46
186 � 0.25 28

186 � 0.15 84
186 � 0.45 47

186 � 0.25

knife
salami

24
162 � 0.15 4

162 � 0.02 15
162 � 0.09 31

162 � 0.19 43
162 � 0.27 68

162 � 0.42
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To conclude, we are able to see meaningful statistical results us-
ing timed pattern matching as a counting tool over temporal datasets
although the dataset is small compared to usual corpus sizes of n-
gram applications. The structure of the dataset, in particular the high
level scenario, helps us obtain these results. Otherwise, it would be
much harder to observe something meaningful with a random activ-
ity dataset of a similar size.
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Epigraf kullanmayın, çünkü yazının içindeki esrarı öldürür!

Never use epigraphs; they kill the mystery in the work!

— Black Book, Orhan Pamuk

In this thesis, we introduced timed pattern matching and devel-
oped its theory. We then used these results to implement a timed
pattern matching tool and explored several application areas via case
studies. Our main motivation has been the extension of the beau-
tiful theory and useful applications of pattern matching, chiefly de-
veloped for text processing purposes in the past, toward the timed
domain and the analysis of complex dynamical systems. For that, we
have inspired by some classical works in automata, formal languages,
and algebraic logic as well as our previous experiences in (runtime)
verification and several practical issues we faced during the imple-
mentation and case studies. At the end, we can say concisely that
a timed behavior is surely different than a text but this thesis shows
that it is possible to handle these differences gracefully — at least in
the context of pattern matching.

Some results of this thesis has been extended for timed automata
patterns in [114, 115], for temporal logic patterns [13], for a measure-
ment specification language in [43], and for quantitative domains [7,
14]. In the following, we discuss key specific points of the thesis and
describe other possible future directions.

Timed Relations. In this thesis, we have defined finitely repre-
sentable sets of time periods to be timed relations. This formulation
is based on classical works of Boolean functions and the algebra of
(binary) relations. We think that our formulation is important at least
for three reasons. First, it provides a well-behaving and well-studied
structure for time-related data. Second, it allows us to directly trans-
fer some previous results such as canonical normal forms of Boolean
expressions into our framework. Third, it leads to a separation (of
concerns) between time-related data and higher-level formalisms (reg-
ular expressions and temporal logic). All in all, we believe the algebra
of timed relations is a conceptual advance for timed formalisms de-
spite its technical simplicity.

In this thesis, we represented timed relations as finite unions of
zones. Accumulated knowledge on zones in timed systems research
allowed us to get some results and a prototype implementation quickly.
Alternatively, some decision diagram based solutions can be consid-
ered in the future since we know that Binary Decision Diagrams
(bdds) [25] usually provide more efficient representations of Boolean
functions. In this case, one should expect that some operations might
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be easier (e.g. complementation) and some operations harder (e.g.
compass operations) than the zone-based solution. We note that this
direction explored by some works such as Numerical Decision Dia-
grams (ndds) [12] and Clock Difference Diagrams (cdds) [66] in the
context of timed automata. We think that these proposals can be a
starting point that can be improved by exploiting two-dimensional
nature of timed relations.

Timed Pattern Specification. We have considered timed regu-
lar expressions and metric compass logic as timed pattern specifica-
tion languages. These formalisms can express many compositions
of timed patterns in an intuitive and elegant way thanks to their
respective Boolean, regular, and temporal operators. Besides these
operations, we have a great deal of freedom for atomic expressions
when specifying timed pattern and we studied a few basic classes of
atomic expressions in Section 4.5. This can be extended with more
elaborate functions such as shape detectors that label specific shapes
(pulses, spikes, decay curves, etc.) over real-valued behaviors and
can be used as atomic propositions. For example, such an extension
is perhaps more efficient than specifying a shape by a regular expres-
sion using several simple (threshold) predicates as we did in the case
study in 6.2. Then, regular expressions and temporal logic would
specify temporal compositions of primitive shapes. We also demon-
strated in the case study in 6.4 that we can match composite (human)
activities where we considered atomic expressions to be primitive ac-
tivity detectors.

Next, although we believe that timed regular expressions and met-
ric compass logic are adequate for a majority of pattern specifica-
tion tasks, we mention some possible generalizations beyond these
formalisms. Since context-free grammars are predominantly used
to specify textual patterns for parsing purposes, a natural question
would be the applicability and feasibility of a timed extension thereof.
However, we argued in this thesis that intersection is a crucial opera-
tion for timed patterns. Therefore, we think that the generalization of
context-free grammars under intersection (resp. Boolean operations)
known as conjunctive (resp. Boolean) grammars [86] should be con-
sidered in this case. There are still many open questions regarding
conjunctive and Boolean grammars but we consider it to be an elegant
theory that can be useful in practice.

Timed Derivatives. We introduced derivatives of timed regular
expressions and employed them for online timed pattern matching
in Chapter 5. Derivatives are a very elegant algebraic tool in the
theory of formal languages. Using them, it is very easy to achieve
a sequential (also known as, online, streaming, or real-time) model
of computation where we process a sequence and compute the out-
put in an incremental manner. Therefore, we adapted Brzozowski’s
derivatives of regular expressions in a timed setting by considering el-
ements from the set of timed relations to be constant values in regular
expressions. A technical novelty in our timed derivatives is in han-
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dling dense sequences (over time), which do not naturally appear in
similar proposals such as [63, 70] that extend derivatives with values
(weights, multiplicities) over discrete sequences.

An interesting future work would be in studying and developing
automata over timed relations and devising an automata-based algo-
rithm for online timed pattern matching. An automata-based algo-
rithm would be more congenial to the use of computers and can be
implemented more efficiently than our rather naive rewriting algo-
rithm based on derivatives. On the theory side, however, this is a
topic that deserves a deeper and broader algebraic treatment outside
the pattern matching theme of this thesis.

Montre and other implementations. The wide range of applica-
tions of pattern matching have been the main motivation of this thesis.
We similarly believe that timed pattern matching would be a valu-
able tool in many application areas ranging from runtime verification
and temporal data analytics to temporal data mining and supervisory
control of robots. It is very hard, if not impossible, to reach all these
applications in a satisfactory manner with a single implementation
on a specific platform.

In this thesis, we implemented our algorithms as a generic com-
mand line program montre that offers a basic but flexible timed pat-
tern matching functionality. Given the goal of this thesis and avail-
able resources, we believe that this was the most rational choice. As
demonstrated in case studies, we were not limited by any means and
can use other tools that offer functions we needed in cooperation
with Montre. However, we also acknowledge that a tighter integra-
tion might be desired for some data analysis frameworks. To this end,
it would be useful to develop bindings and wrappers of Montre for
programming languages such as Python.

Targeted implementations of timed pattern matching would be also
important in order to reach certain communities. For example, during
this thesis, timed pattern matching has been integrated in an analog
and mixed signal circuit monitoring tool [84], which provides spe-
cific constructs and templates for that domain. Similarly, we think
that specific implementations for robotics in robot operating systems
and for temporal analytics in stream processing frameworks can be
considered in the future.
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