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Abstract in French 
 

Des milliards de «choses» connectées à l’internet constituent les réseaux symbiotiques 

de périphériques de communication (par exemple, les téléphones, les tablettes, les ordinateurs 

portables), les appareils intelligents, les objets (par exemple, la maison intelligente, le 

réfrigérateur, etc.) et des réseaux de personnes comme les réseaux sociaux. La notion de réseaux 

traditionnels se développe et, à l'avenir, elle ira au-delà, y compris plus d'entités et 

d'informations. Ces réseaux et ces dispositifs détectent, surveillent et génèrent constamment 

une grande quantité de données sur tous les aspects de la vie humaine. L'un des principaux défis 

dans ce domaine est que le réseau se compose de «choses» qui sont hétérogènes à bien des 

égards, les deux autres, c'est qu'ils changent au fil du temps, et il y a tellement d'entités dans le 

réseau qui sont essentielles pour identifier le lien entre eux. 

Dans cette recherche, nous abordons ces problèmes en combinant la théorie et les 

algorithmes du traitement des événements avec les domaines d'apprentissage par machine. 

Notre objectif est de proposer une solution possible pour mieux utiliser les informations 

générées par ces réseaux. Cela aidera à créer des systèmes qui détectent et répondent rapidement 

aux situations qui se produisent dans la vie urbaine afin qu'une décision intelligente puisse être 

prise pour les citoyens, les organisations, les entreprises et les administrations municipales. 

Les médias sociaux sont considérés comme une source d'information sur les situations 

et les faits liés aux utilisateurs et à leur environnement social. Au début, nous abordons le 

problème de l'identification de l'opinion publique pour une période donnée (année, mois) afin 

de mieux comprendre la dynamique de la ville. Pour résoudre ce problème, nous avons proposé 

un nouvel algorithme pour analyser des données textuelles complexes et bruyantes telles que 

Twitter-messages-tweets. Cet algorithme permet de catégoriser automatiquement et d'identifier 

la similarité entre les sujets d'événement en utilisant les techniques de regroupement. 

Le deuxième défi est de combiner les données du réseau avec diverses propriétés et 

caractéristiques en format commun qui faciliteront le partage des données entre les services. 

Pour le résoudre, nous avons créé un modèle d'événement commun qui réduit la complexité de 

la représentation tout en conservant la quantité maximale d'informations. Ce modèle comporte 

deux ajouts majeurs : la sémantiques et l’évolutivité. La partie sémantique signifie que notre 

modèle est souligné avec une ontologie de niveau supérieur qui ajoute des capacités 

d'interopérabilité. Bien que la partie d'évolutivité signifie que la structure du modèle proposé 

est flexible, ce qui ajoute des fonctionnalités d'extensibilité. Nous avons validé ce modèle en 

utilisant des modèles d'événements complexes et des techniques d'analyse prédictive. 

Pour faire face à l'environnement dynamique et aux changements inattendus, nous avons 

créé un modèle de réseau dynamique et résilient. Il choisit toujours le modèle optimal pour les 

analyses et s'adapte automatiquement aux modifications en sélectionnant le meilleur modèle. 

Nous avons utilisé une approche qualitative et quantitative pour une sélection évolutive de flux 

d'événements, qui réduit la solution pour l'analyse des liens, l’optimale et l’alternative du 

meilleur modèle. 

Par conséquent, nous avons mis en œuvre ces techniques dans FNEDAP (Framework 

for Network Event Detection Analysis and Prediction), un outil d'analyse développé au cours 

de cette thèse. Il est conçu pour être capable d'analyser les données complexes provenant de 

diverses sources et types afin de fournir une analyse proactive et prédictive. Il propose 

également une analyse efficace des relations entre les flux de données comme la corrélation, la 
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causalité, la similitude pour identifier les sources de données pertinentes qui peuvent servir de 

source de données alternative ou compléter le processus d'analyse. Les techniques de 

visualisation sont utilisées pour faciliter le processus décisionnel. 

Nous évaluons les avantages de l'outil proposé sur différents scénarios d'applications de 

villes intelligentes impliquant des réseaux complexes comme le trafic, la criminalité et les 

réseaux sociaux. Les données utilisées dans ces expériences sont basées sur des données du 

monde réel recueillies à partir de Montgomery Country-Maryland. En répondant aux exigences 

des scénarios réels, le prototype démontre la validité et la faisabilité de l'outil. 
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Abstract in English 
 

Billions of “things” connected to the Internet constitute the symbiotic networks of 

communication devices (e.g., phones, tablets, and laptops), smart appliances, objects (e.g., 

smart home, fridge and so forth) and networks of people (e.g., social networks). So, the concept 

of traditional networks (e.g., computer networks) is expanding and in future will go beyond it, 

including more entities and information. These networks and devices are constantly sensing, 

monitoring and generating a vast amount of data on all aspects of human life. One of the main 

challenges in this area is that the network consists of “things” which are heterogeneous in many 

ways, the other is that their state of the interconnected objects is changing over time, and there 

are so many entities in the network which is crucial to identify their interdependency in order 

to better monitor and predict the network behavior. 

 In this research, we address these problems by combining the theory and algorithms of 

event processing with machine learning domains. Our goal is to propose a possible solution to 

better use the information generated by these networks. It will help to create systems that detect 

and respond promptly to situations occurring in urban life so that smart decision can be made 

for citizens, organizations, companies and city administrations. 

Social media is treated as a source of information about situations and facts related to 

the users and their social environment. At first, we tackle the problem of identifying the public 

opinion for a given period (year, month) to get a better understanding of city dynamics. To 

solve this problem, we proposed a new algorithm to analyze complex and noisy textual data 

such as Twitter messages-tweets. This algorithm permits an automatic categorization and 

similarity identification between event topics by using clustering techniques. 

 The second challenge is combing network data with various properties and 

characteristics in common format that will facilitate data sharing among services. To solve it 

we created common event model that reduces the representation complexity while keeping the 

maximum amount of information. This model has two major additions: semantic and 

scalability. The semantic part means that our model is underlined with an upper-level ontology 

that adds interoperability capabilities. While the scalability part means that the structure of the 

proposed model is flexible in adding new entries and features. We validated this model by using 

complex event patterns and predictive analytics techniques. 

 To deal with the dynamic environment and unexpected changes we created dynamic, 

resilient network model. It always chooses the optimal model for analytics and automatically 

adapts to the changes by selecting the next best model. We used qualitative and quantitative 

approach for scalable event stream selection, that narrows down the solution for link analysis, 

optimal and alternative best model.  

 Therefore, we have designed a Framework for Network Event Detection Analysis and 

Prediction (FNEDAP), an analysis tool developed during this dissertation where we 

implemented these techniques. It is designed to analyze complex data from various sources and 

types and to provide proactive, predictive analysis. It also proposes afficient relationship 
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analysis between data strams such as correlation, causality, similarity to identify relevant data 

sources that can act as an alternative data source or complement the analytics process. 

Visualization techniques are used to help the decision-making process. 

  Different experimentations ware performed in order to evaluate the benefits of the 

proposed tool over different smart city application involving complex networks such as traffic, 

crime, and social media. Performance metrics for measuring the accuracy of the models are 

based on minimum prediction error and confusion matrix. The data used in these experiments 

is based on real-world data collected from the Montgomery County, Maryland. By addressing 

the requirements in real-world scenarios, the prototype demonstrates the validity and feasibility 

of the tool. 

 

Keywords 
Event Processing, Analysis, and mining of complex data, Knowledge extraction, and 

representation, Machine learning, Dynamic model, Smart City. 
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Chapter 1 
 

Introduction 

“Measuring science is about determining what data to capture and under what conditions so 

that we can make sense of it. “ 

– NIST 

 

 

1.1 Overview  
 

Today’s cities (and the vision of the future city) represent an environment of millions of 

connected and distributed devices that envision a complex network of interlinked people, 

processes, sensors, and data, created by social and sensor networks, or by process management. 

The real-world events are now being observed by multiple networked streams, where each is 

complementing the other with his or her characteristics, features, and perspectives. Many of 

these networked data streams are becoming digitized, and some are available in public formats 

and available for sense-making. Over time, the number of these distributed networks increase 

which produces by increasing the volume and variety of generated data, and this trend will 

continue. Because of the increased flow of data, information systems are frequently required to 

deal with vast amounts of data that can be in various structures from heterogeneous sources and 

type. In some cases, it contains raw and noisy data to build high-level abstractions to be later 

analyzed and organized for delivering useful functionalities to end consumers.  

The networked data streams provide an opportunity for their link identification, 

similarity, and time dynamics to recognize the evolving patterns in the inter-intra-city. The 

information delivered can help us to understand better how cities work and detect events and 

patterns that can help to remediate a broad range of issues affecting the everyday lives of 

citizens and the efficiency of the city. Providing the tools that can make this process easy and 

accessible to city stakeholders has the potential to improve traffic, event management, disaster 

management systems, health monitoring systems, air quality, and city planning. 

 

However, there has been progressing in the field of generating action and situation 

recognition from various data streams [7] [112] [119] [153], but there are still open issues. This 

dissertation addresses and tackles some of the critical challenges related to making sense of 

collected data resiliently. We focus on the issues related to detecting event types from 

unstructured data, especially Twitter. Finding similarity between topics, creating the semantic 

scalable event model structure that provides unification of complex data from various data 
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sources and types. Relationship analysis between data streams to identifying alternative data 

sources that can be used in case of data loss, creating a dynamic network model that adapts to 

environmental data stream changes like adding new data stream (source) or removing, as well 

as recognizing the right parameters for the optimal prediction model. 

 

We motivate this work based on the smart city applications and real-world types of 

problems that are becoming increasingly relevant. We have case studies for improving crime 

prediction, identifying safe zip zones for pedestrians and using social media knowledge to 

improve local city services.   

 

 

1.2 Motivating example  
 

Real-world Events and their Multimodal Appearances 

 

Real-world events are observed by multiple observers including machine sensors and 

citizens’ sensors. For example, there may be sensors monitoring a road for some vehicles 

passing over the road and people observing events in the city and reporting them on social 

media. As shown in Figure 1, the intelligent system connects and collects a variety of data 

streams related to multiple human functions like weather, video car speed, traffic lights, health 

symptoms, and social media networks. The real-time streams originate either from the 

traditional sensor device based sources, such as weather, traffic sensors, satellite images, or the 

increasingly common social reporting mechanisms, such as Twitter, Foursquare updates. The 

event recognition system accepts input streams and continually seeks to identify shared 

patterns. The output is a stream or multiple streams of recognized patterns, prediction and 

forecasting for future behavior. 

 

 
Figure 1: High-level view (in abstract form) of an event processing system 
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The nature of the physical world can be hard to understand by just observing it 

piecemeal. Social sensors can play multiple roles, they are the humanized interpretation and 

can describe different aspects of a situation, many of which are not yet measurable by any 

hardware sensors. Millions of users are already active on those social networks and are 

expressing their thoughts for different actions on a daily basis.  

Most real-world events exhibit close interactions between physical, cyber, and the social 

worlds as illustrated in Figure 1, by traffic analytics, health, wellbeing applications, and power 

grid maintenance. The models of data allow us to infer theories of the physical world through 

observations.  

In this dissertation, we try to infer the models of the physical world from observational 

data. We firmly believe that accurate models need to be complemented with data from the real-

world for a realistic understanding of the physical world. We describe a general use case as 

defined by the NIST template in Appendix C. The main content of the construction of smart 

and connected community applications is Smart Public Service and Construction of Social 

Management. This entails collecting and analyzing data in urban areas, providing more accurate 

service to the city’s decision-making processes. We experiment with a number of studies, each 

with a different focus. 

 Let us consider one typical use case scenario, illustrated in Figure 2, that of analyzing 

the places that people visit. We use police records of traffic incidents related to pedestrian 

safety, community events at specific areas and weather. We can find the relations between 

places characterized by shopping and restaurant events and increased number of traffic 

incidents involving pedestrians. However, we have not found significant change between these 

type of events in different seasons or weather changes. 

 These observations contain valuable nuggets of information for decision makers such 

as city authorities and planners, doctors, and patients. For example, if city authorities know the 

reason for slow-moving traffic, they can mobilize appropriate units to mitigate the problems 

and reduce the impact of people’s mobility. Alternatively, if they know crime trends at 

particular locations in future, they can allocate more resources to those areas. 
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Figure 2: Use case scenario for predicting future event traffic and crime events 

 

Atomistic approach to analytics that can help decision-makers to transform observations 

into actions is the one proposed by Etzion et al. [48], it is following the cycle of Detect, Predict, 

Decide, Do. Detect the events, event types or complex events of the physical environment. 

Predict future event occurrence, when is the likelihood of occurrence. Decide using a model of 

action for concrete event situation, and Do through recommendation engine or another form of 

proactive actions. Like, this approach is the one proposed by Boyd [80] called OODA (Observe, 

Orient, Decide, and Act) loop, he created this method to help an individual or an organization 

for making intelligent decisions. In this work, we made contributions to Detect and Predict 

steps, while in Decide step we provide a visualization that can help policymakers, and in Do 

step, we do not make any contribution that is for the future fork. 

 

Therefore, understanding real-world events in the physical world utilizing observational 

data is a challenging problem. We highlight some of the challenges in understanding real-world 

events utilizing observational data.   
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i) Heterogeneity: Presented scenario has heterogeneity in observations of a single event 

manifesting in multiple modalities requiring techniques to integrate and process 

different comments. 

ii) Qualitative vs. Quantitative: Sensor data is qualitative providing precise view of a 

quantity of interest, e.g., 50 F. Data from people are usually qualitative providing a high-

level description of an event, e.g., cold weather.  

iii) Incompleteness: Application processing events that have to arrive from sources such as 

sensors and social media that have inherent incompleteness and uncertainties associated 

with them. 

iv) Dynamic environmental changes: Datastream failures can occur for various reasons; 

also, the new data stream can be added at any time. 

This dissertation demonstrates the benefit of using event processing and predictive 

analysis in dealing with some of these challenges. We present techniques to integrate 

multimodal observations such as numerical sensor data and textual, social data to address the 

challenges of incompleteness and heterogeneity. We experiment with probabilistic and count 

model to deal with uncertainty and accurate event prediction. We used similarity metrics and 

graphical structure to model interactions and relationships between real-world incidents. We 

formulate time series based models to capture the dynamism of real-world events. We illustrate 

the characteristics of the observations related to smart city events by considering the examples 

in the real world. 

 

 

1.3 Research challenges and methodology  
 

Our goal is to fill the gaps derived in the related work and provide solutions in some of the 

problems arising from the application domain.  

 

Research challenges 
 

We determine the challenges listed below, separated in three categories:  scientific 

challenges, engineering challenges (R&D) and challenges related to standards. 

 

I. Scientific challenges 

1) How to extract knowledge from collected data from sensors (physical and social)?  

- How to efficiently preprocess the text data streams from social sensors? 

- How to extract the knowledge from text data streams? 

- How to identify trends based on extracted knowledge? 

- How to graphically present the event trends for decision makers from city 

representatives? 
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To solve this problem, we need to proceed with different steps, and each step is related to 

existing work in the literature. We begin each phase by making a survey of existing work, 

comparing them, and choosing the more appropriate in respect of precision and 

performance measures. We create a global approach to addressing this problem and 

develop a fully automated algorithm for extracting knowledge from social sensors. 

 

2) How to frame complex data streams from different data sources and types?  

- What is schema structure or event model is more appropriate for event streams? 

- What is the most suitable model to represent events? 

- What event model to propose to tackle this problem? 

- How to automatically identify relevant data streams? 

- How to integrate incomplete event streams? 

- How to consider event semantics analysis? 

- How to handle scalability in the event model regarding event attributes and event 

data streams? 

To solve this problem, we start with a literature survey and make a comparison between 

existing solutions for existing event models. We go on to create our own event model 

that supports scalability, uncertainty, semantics, and automatic event identification.  

 

3) How to create a predictive model based on knowledge?  

- How to efficiently identify relationship links between data streams? 

- What is an appropriate prediction model? 

- How to adapt the prediction model? 

- How to integrate scalability for the model to choose? 

- How to graphically present the network dynamics and relationship between data 

streams for decision makers from city representatives? 

 

To solve this problem we choose two empirical research approaches, one is quantitative 

using statistical methods, and the other is qualitative using multi-dimensional 

visualization method. We presented the advantages and disadvantages of using each of 

these.  

 

 

II. R & D challenges 

1) What are the challenges regarding Smart City applications/use cases? 

2) What is the appropriate use case within the Smart City application domain to validate 

our experimentation? 
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3) What framework to design and develop that integrates event detection and prediction 

models?  

 

III. Standards challenges 

1) How to assess the proposed systems regarding accuracy, performance and other 

metrics? 

2) Can we comply with ongoing NIST standard for Big Data Use Cases and Smart City 

use cases? 

 

 

Methodology 
 

The methodology we follow consists of the following steps:  

 

1) Review the literature and related work of the relevant research areas like event 

processing detection and event data models, prediction methods for multisensory 

learning, and Smart City applications. Understand their advantages, limitations, and 

applicability. Define a problem of multisensory event detection and data stream fusion. 

 

2) Analyze the challenges that need to be answered and formulate the main research 

questions of knowledge extraction, the efficient data format for multisensory data 

fusion, and predictive modeling based on knowledge. 

 

3) Create an abstract design for the problem formulation, proposed development solution 

steps for testing. In this phase for different problems as explained previously, we choose 

different research approaches like comparative, qualitative, and quantitative. 

 

4) Develop a prototype as a proof of concept implementation for the particular research 

question. 

 

5) Finally, evaluate the solutions using relevant performance metrics on real-world data 

sets with the regards to application specifics. 

 

6) Assess the disadvantages and advantages of the proposed approach.  

 

7) Define and design how specific solutions fit together in one framework.  
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1.4 Contributions 
 

Following the research methodology, the research presented in this dissertation results in 

contributions in event modeling and prediction, implementation and adaptation to provide an 

easy-to-use, on-demand event processing capability in application domains such as a Smart 

City. Per the research questions, we summarize in this section all input of this dissertation. They 

cover a research challenge and integration framework to give the big picture description of this 

dissertation. 

 

▪ Fully automated event processing system and event detection algorithm 

o Table that shows advantages and disadvantages of the most used event 

detection algorithms 

o Demonstrated social network sensing model that will feed in addition to 

sentiment context and provide visualization that helps decision making city 

representatives 

 

▪ Generic approach to incorporate different data streams 

o Reviewing the most used event definitions  

o Comparison between various models for data fusion 

o Generic approach integrating several ontologies for event semantic analysis  

o incompleteness 

 

▪ Multisensory predictive model adaptable to data stream changes 

o Capable of considering based on the data coming to choose the best model 

based on context and link analysis 

o Adaptable to data stream changes 

o Evaluate the theoretical prediction models based on performance metrics and 

data characteristics 

 

▪ Experimental evaluation and validation using real-world data sets (traffic, crime, 

weather, demographics, distance in miles, community events, microblogs) on 

several use cases analysis, applicability to network assessment, congestion 

o Identify, design, develop and demonstrate use cases for decision makers for 

city representatives 

 

▪ Identification of the key metrics and measurements dedicated to the event detection, 

multisensory analytical methods, and network assessment 

 

▪ Visualization method to show the effectiveness of designed methods and 

visualization of complex data promptly 
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▪ A formal approach implemented within a framework for experimentation  

 

▪ Formulating the use cases using existing NIST standards 

 

Nevertheless, note that each one of the contributions presented is valuable by themselves 

and can be utilized separately from the others. Therefore, either by considering these 

contributions in isolation or together, this research significantly advances the event processing 

state of the art and provides tools and methodologies that can be applied in the context of event 

processing research and development. 

 

 

1.5 Organization  
 

The design of a smart and sustainable city is faced with various challenging issues such as 

event management, reliable systems and efficient decision making. In this dissertation, we aim 

to study these issues using data analytics approaches. The rest of this dissertation is dedicated 

to the above issues, and organized as follows:  

 

Chapter 2 presents the theoretical concepts for the event processing and prediction methods 

deployed, and also the challenges related to data analytics in the domain of Smart Cities.  

 

Chapter 3 surveys state of the art in the fields of event detection, data event models and 

prediction methods with the focus on smart city application. We show the difficulties of old 

solutions compared with ours. 

 

Chapter 4 presents the proposed solutions for automatic event processing, semantic scalable 

event model, and dynamically adaptable network model.  

 

Chapter 5 presents and describe the data used to validate our solutions, and demonstrates 

the experiments and evaluation for each use case, with the discussion of the obtained results. 

 

Chapter 6 gives conclusions and discusses a variety of possible directions for future work. 

We envision how the models developed in this dissertation have potential to be used in 

critical applications such as federated cloud, and we discuss the role these models might 

play as the number of sensors become denser in the future. 

 

We also have Appendix section that presents selected event definitions (Appendix A), the 

comparison between event models based on different criteria (Appendix B), use case 

standard form based NIST Big Data Framework (Appendix C), and details about the 

development environment and packages.
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In conclusion, in this chapter, we present the idea and motivation for the work developed 

in the rest of the dissertation. In the following, we describe the theoretical concepts that were 

used and the latest research achievements in those areas. 
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Chapter 2 

Background 

“It is the theory that decides what can be observed.”   

- Albert Einstein 

 

 

Summary. This chapter introduces some of the theory that is fundamental to the work 

described in this dissertation. We discuss concepts relevant to Event Processing and Analytical 

Techniques for multisensory learning, as well as the context of Smart and Connected 

Communities applications which we used as a use case and for experimentation. The definition 

of an event will be explained first. Then, the theoretical concepts for event processing such as 

detection will be discussed. Finally, complex event patterns, analytical methods for 

multisensory event learning and requirements characteristics of smart city case studies are 

presented. 

 

 

2.1. Event processing 
 

 

2.1.1. Definition of Event 

 

The notion of “events” is broadly understood across different research fields 

(computational linguistics, artificial intelligence, information retrieval, information extraction, 

automatic summarization, natural language processing). There are many definitions for an event 

in various disciplines; some of the most commonly used definitions in literature are presented 

in Appendix A. For a concise explanation we selected a highly-cited definition of “event” by 

Etzion et al. [47]: 

 

“An event is an occurrence within a particular system or domain; it is something that has 

happened, or is contemplated as having occurred in that field. The word event is also used 

to mean a programming entity that represents such an occurrence in a computing system.” 

 

This definition presents two meanings of events, the first one refers to something that happens 

in the real world or some other defined system, while the other one refers to programming 

entity. 

Real world events are events that happen in our daily lives such as, phone call, ordering 

food, or a bus arriving at a bus stop. In addition, events can also be simulations occurring in a 
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defined system or virtual reality environment. In the context of a programming entity, events 

take the form of a database transaction, transmitting messages between systems or the structure 

of the programming language.  

This dissertation is the primary concern with computing the corresponding events 

generated and described from daily living. For example, a real world everyday life scenario 

computing to work in an electric car. One event is when the electric car detects that it needs to 

be charged. A second event is when it calculates its travel route. A third event could be when a 

security camera detects construction on the road, informing the car’s travel controls of a route 

change. Traffic sensors noting the car and changing their timing is another event. Figure 3 

shows a visual representation of this use case. 

 
Figure 3: Real word event generated in daily life 1 

 

Events are classified by devices, context, and categories. Low-level events (LLE) come 

from devices such as GPS, accelerometers, internal thermometers, microphones, and internal 

cameras. High-level events (HLE) are produced by context: for example, punctuality, passenger 

and driver safety, passenger and driver comfort, passenger satisfaction, traffic congestions, and 

so forth [47]. Categories can also be events as burglary incident detected on social media and a 

thievery incident reported by police officials. Also, the single event occurrence can be 

represented by other entities, and a given event object might capture only some of the facts of 

an event occurrence [47].  

High-level events are of most considerable interest for this dissertation. They can appear 

in multiple formats originated by sensor networks, and test streams from social and web media. 

These events may be occurrences across the various layers of the system. Alternatively, they 

                                                 
1 https://www.ipi-singapore.org/technology-offers/street-lighting-management-system 
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may be news items, text messages, social media posts, stock market feeds, traffic reports, 

weather reports, or other kinds of data. 

 

 

2.1.2. Definition of Event Processing and Complex Event Processing 

 

The event is the key concept of event processing as we defined and explained 

previously. Luckham et al. [91] define event processing (EP) as :  

 

 “A method of tracking and analyzing the streams of information about the things that happen .“ 

 

EP is a research discipline with many antecedents, including active databases [57], 

temporal databases, data stream management systems, inference rules, discrete event simulation 

and distributed computing [48].  

A common characteristic of event processing applications is to continuously receive 

events from different event sources, such as sensors, social media, mobile devices, and so forth. 

Examples of application areas include social media monitoring [93], traffic control [149], [136] 

or environment monitoring using wireless sensor network [150]. Some earlier research projects 

on this topic include Rapide in Stanford [92], Infospheres in Cal Tech [8], Apama in Cambridge 

University [33] Amit in IBM Haifa Research Lab [18], and a few streaming projects such as 

Stanford Stream project [16] and Aurora [28]. 

Complex Event Processing (CEP) is event processing build out of lots of event instance 

from multiple sources to infer events or patterns that suggest more complicated circumstances. 

The goal of CEP [91] is to identify meaningful events or situational knowledge from massive 

amounts of events and respond to them as quickly as possible or as close to real-time as possible, 

see Figure 4. The primary role of a CEP is to detect the occurrence of an activity pattern on the 

incoming streams of data. CEP is used to deal with patterns among events and process large 

volumes of messages with little latency. CEP may detect the logical and statistical relationship 

contained in the event stream by matching the pattern.  

 

 
Figure 4: High-level overview of event processing 
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CEP technology provides new solutions to the field of multiple pattern identifications 

and real-time data processing, which can be used for improving the performances in smart and 

connected environments. The efficient processing of events is fundamental to the quality-of-

service requirements of event processing systems [35].  

 

 

2.1.3. Event detection 

 

Some events can be observed very quickly, for example, things we see and hear during 

our daily activities. Some require us to do something first, for example, subscribing to 

newsgroups, or reading a newspaper [24]. In other cases, we need to do some work to detect 

the event that happened, as all we can observe are its effects.  

The first scenario as presented in Figure 5 can be summarized as follows: When a 

Receiver detects a new event, it is sent to the CEP engine. The CEP engine can perform some 

preprocessing, send information to the next processing phase, and combine events from 

multiple sources. Per Cupola et al. [41], a CEP engine is divided into two components: Decider 

and Producer. They treat the events per predefined rules. Rules define the condition, and 

Decider checks it at the beginning of events. After the event is detected, it is sent to Producer 

which generated the corresponding action, such as notification, alarm or a new compound event.  

 

 
Figure 5: The functional requirement of a CEP system [41] 

 

The first challenge is to detect and apply the events that are relevant to the decisions for 

the problems that we are trying to solve. There are a few techniques for event detection: hand-

written rules, sequence models which are usually used in a text processing domain such as 

natural language processing and information retrieval, and machine learning classification 

methods like Naïve Bayes algorithm. 

CEP supports a few detection paradigms, like using deterministic finite automata (Ode), 

Petri-nets (SAMOS), logical rules (ETALIS) or graphs (Apache Storm, Apache Flink, Apache 

Samza). Ode and SAMOS support the semantics of event operators. ETALIS is a logic 

programming system that uses background knowledge for reasoning. There are also many 
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software vendors like Esper, Tibco, StreamBase, Coral8/Aleri, Progress Apama that provide a 

development environment, with the support of different event processing languages like SQL, 

XML or vendor specific languages. 

 

 

2.1.4. Event design patterns 

 

Detecting complex patterns of events, consist of events that are widely distributed in 

time and location of occurrence. Pattern detection is one of the essential functions of event 

processing; it is a combination of the role within the context. As an example, in transportation, 

CEP is used to track the individual events and trigger some actions when an exception is found. 

CEP systems usually use Event-Condition-Action (ECA) rules for event processing, and event 

algebra expression for its construction, parameters, and monitoring intervals. Composite events 

are defined using logic operators. 

Design patterns represent generic solutions for particular data streams problems. Alves 

et al. [9] presented ten basic design patterns: filtering, aggregation, correlation, joins, time-

based patterns of events across multiple streams, hierarchical events (processing, analyzing, 

composing), in-memory, database lookups, database writes, and dynamic queries. Furthermore, 

for efficient event processing, individual event patterns need to be applied, such as event 

filtering (based on type or context), partitioning, enrichment, aggregation, relationship, 

application time, missing event detection, modeling behavior, and hierarchical events [9], 

[104], [147]. Figure 6 represents sliding window pattern and relationship patterns, such as 

aggregation, correlation, and causality. 

 

 
 

Figure 6: Representation of relationships between event streams 

Events can be related because of the network topology or other factors which are not 

explicitly encoded in the event’s data. A key to understanding events is knowing what caused 

them and having that knowledge at the time the events happen [91]. The event is flowing from 

one location and creating events to another. For instance, when the weather changes the 
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consistency in traffic also changs. The causal relationship between events can be both horizontal 

and vertical as illustrated in figure 7. Horizontal causality emphasizes that the caused and 

causing events happen on the same conceptual level. For example, snowing created a slippery 

road, which then caused a car accident. On the other hand, vertical causality is discovering 

relationship across layers. Between low and high strata, for instance, broken network link can 

produce incomplete results and missed event detection on the application layer. It is essential 

to trace causal relationships between events in real-time, both horizontally within a level of 

system activity and vertically between high and low levels of network activity. 

 

 
Figure 7: Typical layers in information system 

 

Events occurring in distributed, heterogeneous sources and applications are linked 

together to form a so-called event cloud [151]. As we mentioned, an event can be related to 

other events by time, causality, and aggregation. By the use of CEP engines, low-level events 

can be aggregated in high-level events. CEP collects LLE metadata such as ID, location and 

time processing them to create new significant events called complex events and then 

forwarding them to the application layer. Complex events are the valuable new events arising 

after processing atomic events according to the specified rules [108][109]. A complex event 

can be achieved with known event patterns.  

Event processing must process events coming from various sources, for example, 

sensors, social media, or the Internet. The quality of design patterns depends on errors in 

measurements, noise in the environment, and granularity of the observations [27]. Depending 

on the domain and application specifics different requirements need to be respected and 
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satisfied, such as low bandwidth, energy restrictions, a large volume of data, a variety of data 

types, velocity and dynamicity. For instance, in-network fusion techniques or dimension 

reduction techniques are used to overcome the problem of the large volume of transmitted data. 

To increase the latency and accuracy combination of data from multiple resources can be 

utilized, and more trustworthy data sources. Events can arrive in unexpected orders and timing; 

those are some of the challenges that design pattern engine needs to consider. 

Event patterns are implemented using event pattern languages (EPL), like SQL, XML 

or a vendor-specific language. Paschke et al. [109] discuss in details the criteria for a successful 

event processing language design which allows an easier generation of new CEP applications. 

According to Luckham et al. [92], an EPL needs to meet the following properties:  

▪ Power of expression: it must provide relational operations to describe the 

relationships between events 

▪ Notational simplicity: It must have a simple notation to write patterns succinctly 

▪ Precise semantics: It must give a mathematically precise concept of matching 

▪ Scalable pattern matching: It must have an efficient pattern matcher in order to 

handle large amounts of events in real-time.  

Examples of EPL include Rapide, Borealis, RuleCore, SASE+, Cayuga and RAPIDE-EPL, 

STRAW-EPL, StreamSQL and there are still ongoing research efforts. 

 

CEP systems are usually evaluated for their performance regarding throughput, 

measured as how many events are processed per second and latency, the average time required 

to process an event. Less often, the memory footprint is reported. Standard benchmarks have 

not yet been established, although some work towards this direction has begun according to 

Mendes et al. [98] and Zámečníková et al. [158]. 

 

 

2.1.5. Uncertainty in event-based processing 

 

As mentioned in subsection 2.1.4, heterogeneous events that arrive from various sources 

like sensors and social media have inherent uncertainties associated with them. The data streams 

have inherent risks associated with them, for instance, incomplete data flows, unreliable data 

sources, and networks. Having a mechanism for handling uncertainties gives higher confidence 

level to event processing as a base for the quality of data streams. Uncertainty can be in the 

input data source, change in the definition of events and event patterns. Authors from [55] create 

the taxonomy of event uncertainty where they categorize them in two dimensions’: element and 

origin uncertainty. The first dimension refers to event occurrence and event attributes, while 

the second one refers to uncertainty associated with a feature or event source and uncertainty 

resulting from event inference. Another group of authors [14] defines the types of uncertainty 

that event processing systems have to handle, such as: 

▪ Incomplete event streams: Such as failure to detect an event due to a power outage 
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▪ Insufficient event dictionary: Detection of some types requires the detection of some 

other activities 

▪ Erroneous event recognition: The time of delivering the results, or in this case, a report, 

can produce mistaken event 

▪ Inconsistent event annotation: The pattern recognition algorithms, rules defined by an 

expert, or training data used by machine learning algorithm 

▪ Imprecise event pattern: In some case, it may not be possible to identify all conditions 

in which a particular event happens precisely.  

 

Alternatively, Artikis et al. [14] summarized them in three groups:  

▪ Uncertainty in the event input 

▪ Certainty in the event input and uncertainty in the composite event pattern 

▪ Uncertainty in both input and pattern. 

 

Some of the existing approaches are logic-based models, probabilistic graphical models, and 

fuzzy set theory. Logic-based models are very expressive with formal declarative semantics; 

they directly exploit background knowledge and have trouble with uncertainty. Probabilistic 

graphical models can handle uncertainty, have a lack of a formal representation language, and 

are difficult to model complex events and to integrate background knowledge. Fuzzy set theory 

handles uncertainty by assigning uncertainties to the rules where detection is a reported asset 

structure. There are efforts to combine logic-based approaches that incorporate statistical 

methods like Statistical Relational Learning, and probabilistic approaches that learn logic-based 

models like Probabilistic Inductive Logic Programming. For implementation, the program 

ProbLog with Markov Logic Networks (MLN) algorithm can be used, or a combination of 

MLN with Markov Chain Monte Carlo, and event calculus in MLN.  

Also, another approach is ontology-driven modeling to handle uncertainty [89] [72] 

[142]. Alternatively, per Skarlatidis et al. [135] event recognition techniques can handle 

uncertainty to some extent by using: automata-based, logic-based programs (MLNs, Bayesian 

networks, and Probabilistic logic), Petri-nets and context-free grammars. The same group of 

authors defines the operators that should be supported by a CEP engine. They are sequence, 

disjunction, iteration, negation, selection, production, and windowing. In addition, other 

functional characteristics such as support for background knowledge, probabilistic properties 

of each method (independence assumption, data uncertainty support, pattern uncertainty 

support, hard constraints), and inference capabilities can be used.  

Primary areas of interest are using background knowledge to reason and using statistical 

knowledge to match and detect the pattern of interest, to identify relationships between them 

and make a prediction for a future event occurrence.  

 

The next section gives a theoretical explanation about prediction algorithms that were 

used in this dissertation.
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2.2. Analytical methods for multisensory learning 
 

 

Event though there have been many studies on the processing of data streams [23], in 

recent years, with advancements in online technologies, data stream mining has attracted 

researchers’ attention with a focus on classification and predictive analytics. The aim of 

predictive analytics is to anticipate the outcome of future events by answering the following 

three questions: What happened? What is going on? What will happen? Predictive analytics is 

comprised of predictive modeling, which aims to address the who, when, and why questions 

regarding the current behaviors, and forecasting, which concerns their future behavioral 

patterns. Predictive analytics is used by corporations to foresee trends in customer behavior, 

product usage, and the likelihood of purchases. However, predictive analytics is also being used 

for unconventional purposes, such as predicting traffic congestion, manufacturing supply chain 

problems, and the spread of infections. The essential function of predictive analytics technology 

is to identify patterns among raw, historical data via complex event processing to forecast and 

assess potential risk. However, there are a variety of analytic prediction methods that are used. 

Predictive models can be classified as univariate and multivariate. Univariate models are the 

simplest, and operating with one variable, while multivariate models predict outcomes of 

situations affected by more than one variable.  

Predictive and forecasting modeling are classified as qualitative prediction and 

quantitative prediction. Qualitative is a subjective (human) judgment based on experience, 

expertise, and intuition. This approach is usually used when there is no available historical data, 

or for any reason, a mathematical model cannot be created. Some of these methods are Delphi 

method, Jury of Expert Opinion, Scenario Analysis, Sales Force Composite, and Market 

Survey. Quantitative methods are based on mathematical modeling. They can be classified as 

causal models which investigate how the forecasted variable is determined by factors, non-

causal models that make predictions by extracting patterns from the past, and a combination of 

both causal and non-causal models. We will focus on quantitative methods considering 

causation and the importance of historical data points.  

Predictive analytics is categorized as prediction and forecasting. The following sections 

(Bayesian network, Poisson process, and Time-series model) provide a detailed description for 

each of the algorithms. 

 

2.2.1. Bayesian network 

 

To model an event we would deal with a lot of random variables. Random variables are 

the variables whose value is not known until they are observed and whose domain is the set of 

core events. An event is an outcome or a union of results when the outcomes are the occurrences 

over which we can assign probabilities. Probabilistic Graphical Models (PGMs) provide a 
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framework for modeling a large number of random variables (X1, X2, …, Xn). PGM uses a graph-

theoretic representation G(V, E) where nodes correspond to random variables V and edges E 

correspond to relationships between them. When the edges are directed, they are known as 

Bayesian networks (BNs). PGMs with undirected edges are known as Markov networks (MNs) 

or Markov Random Fields (MRFs).  

BN provide modeling of probability distributions over several variables X and using a 

directed graph G called Directed Acyclic Graph (DAG). Random variables represent nodes on 

the chart, while edges typically account for the dependency between variables represented as 

nodes. More precisely, various combinations of events represented as the value of random 

variables that are assigned a probability. The joint probability distribution P (X1, X2, …, Xn) 

overall random variables (X1, X2, …, Xn) can be represented as follows: 

 

P(X1, X2, … , Xn) = ∑ 𝑃(𝑥1 | 𝑃𝑎 (𝑥𝑖))
𝑛
𝑖=1  

Equation 1: Joint probability distribution over random variables 

 

The formula presents the joint distribution represented as a product of conditional distributions. 

BN is characterized by local models, independencies, and causality [51]. 

Conditional Probability Distributions (CPD) represent the local conditional 

distributions P(Xi|Pa(Xi)), given the value of the parent node Pa. Also, the BN graph implicitly 

encodes a set of conditional independence assumptions.  

Each independence is of the form (𝑋1  ⊥  𝑋2), which lead to X1 is independent of X2. If 

P is a probability distribution with independencies I(P), then G is an I-map of P if I(G) ⊆ I(P). 

If P factorizes according to G then G is an I-map of P. This is the key property to allowing a 

compact representation, and crucial for understanding network behavior.  

While a BN captures conditional independences in distribution, the causal structure is 

not necessarily meaningful, e.g., the directionality can even be intertemporal. In a BN structure, 

an edge X → Y means that X causes Y, directly or indirectly. BNs with causal structure is 

considerate to be more natural and sparser. While two graphs X → Y and Y → X are equivalent 

probabilistic models, they represent different causal models. 

Take for example, if we need to observe various combinations of events represented as 

the value of random variables and assign a probability. Formally, it needs to specify the joint 

probability distribution defined by P (A, B, C, D, E, F). Each arrow indicates a dependency, in 

this case, D depends on A, D depends on B, E depends on C, F depends on E and D. A, B and 

C are independent, and D, E, and F have a conditional dependency. Also, A ⊥ 𝐵, B ⊥ 𝐶, A ⊥

𝐶, and D ⊥ 𝐸. 
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Figure 8: An example of a Bayesian network 

 

The joint conditional function is  

 

P (A, B, C, D, E, F) = P(A) * P(B) * P(C) * P(D | A, B) * P(E | C) * P(F | D, E) 

 

Equation 2. Example of joint conditional function 

 

Also, graphical models can make computation more straightforward and more intuitive. 

Computational properties of inference and learning can be determined by viewing the structure 

of the graph, (See Figure 8). For instance, to illustrate how the graphical model structure can 

be used to simplify inference, in Figure 9 the value of some of the variables are known, and the 

values of other variables are not known. Suppose we wish to compute the probability 

distribution of D given the evidence (i.e., P (D | A, B)). To calculate this directly from the joint 

distribution, we could use the law of total probability by summing over all the values of the 

remaining unobserved variables. Also, for a given reason, we can make a prediction using an 

appropriate combination of A, B, C, D, E, F. 

 

A directed graph G = (E, N) assigns a contemporaneous causal flow to a set of variables 

based on a correlation relationship [86]. The relationship between each pair of variables 

characterizes the causal relationship between them. No edge (E) means independence between 

two, whereas an undirected edge variables (X - Y) signifies a correlation with no causation. 

Direct Edge means (X -> Y) means X causes Y, but X does not cause Y. And bidirected edge 

indicates bidirectional causality (X <-> Y). 

 

 

 

 

 

A 

D 

F 

E 

C B 



2.2 Analytical methods for multisensory 

learning  Chapter 2- Background 

 

36 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Mixed graph, directional and unidirectional nodes 

 

Domain knowledge plays a significant role in specifying independence among various 

random variables resulting in a significant reduction in the number of parameters to be 

determined. Probabilistic graphical models utilize probability to deal with uncertainty, missing 

values, and structure to deal with complexity. 

BNs are used to answer queries of interest, such as the likelihood of an assignment of 

the values of all the variables. Other questions of concern are conditional probability of latent 

variables given values of observable variables, maximum a posteriori likelihood of variables of 

interest, the probability of an outcome (predictive modeling) when a causal variable is set to a 

value, and so forth. 

 

 

2.2.2. Poisson regression  

 

The Poisson process is a counter process represented as {𝑁(𝑡), 𝑡 ≥ 0}, where N(t) is the 

number of event observations prior to time t and where N (0) = 0. The counter tells the number 

of events that have occurred in the interval (0, t), figure 9, or more generally in the interval (t1, 

t2). 

 
 

Figure 10: Number of events in the interval (0, t) 
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If the counting process is a Poisson process, then the probability of observing d counts over a 

period of length m is 

𝑃{𝑁(𝑡 + 𝑚) − 𝑁(𝑡) = 𝑑} = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑑; 𝜆𝑚) =  𝑒−𝜆𝑚
(𝜆𝑚)𝑑

𝑑!
, 𝑑 = 0, 1, …  

 
Equation 3: Poisson process 

So, the probability of observing d counts over a period of length m for a homogeneous 

Poisson process was a function of the homogeneous rate parameter multiplied by the length, 

Poisson (d; λm). To find the probability of observing d counts between two points in time in a 

not homogenous Poisson process requires integrating over the rate parameter function λ(t). So, 

the probability of observing d counts between time a and time b in is 

𝑃(𝑁(𝑎) − 𝑁(𝑏) = 𝑑) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑑;∫𝜆(𝑑)𝑑𝑡)

𝑏

𝑎

 

 
Equation 4: Probability of observing between time a and time b 

 

For example, if the process is not homogeneous, we can take advantage of their 

periodicity. For example, although vehicle traffic flow may fluctuate throughout the day, the 

traffic flow patterns at the same day and time of the week, for instance, Mondays at 3 pm are 

typically similar. A simple method for implementing this non-homogeneous Poisson process 

that is characterized by periodic behavior is to segment the week into equal-sized time intervals 

and model each interval with a different Poisson rate parameter. The rate-setting function λ(t) 

then becomes a piecewise constant operate of time as illustrated in X, where at each discrete 

time interval there is a homogeneous Poisson process with constant rate λ(t). This method is 

appropriate for sensors that measure human activity commonly reported as an aggregate count 

measurement across a fixed time segment. 

 

 
Figure 11: Poisson distribution function, l = 17 
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Using this piecewise constant model, the total count measure reported at time t follows 

a Poisson distribution. The Poisson distribution, P(d; λ(t)) is a discrete probability distribution, 

where the probability of observing d counts during a fixed window of time is presented on the 

formula below, and the rate parameter λ(t) is the expected number during the particular period 

window at time t. 

𝑃(𝑑; 𝜆(𝑡)) =  𝑒−𝜆(𝑡)
𝜆(𝑡)𝑑

𝑑!
, 𝑑 = 0,1, … 

 
Equation 5: Poisson distribution 

Figure 10 shows the probability mass function (pmf) for a Poisson distribution with rate 

parameter λ = 1.5 (blue) and the pmf for a Poisson distribution with rate parameter λ = 17 (red).  

A history of count measurements at the same time and day shares some common 

characteristics with the Poisson distribution. The observed number cannot be negative, and the 

counting process is discrete. Another feature of the Poisson distribution is that the variance of 

the distribution is equal to the mean of the distribution.  

 

 

2.2.3. Time-series model 

 

A time series is a sequence of data points collected over time, and they are uniquely 

suited to capture the time dependence of these variables. Time series analysis techniques have 

been used for (i) forecasting, (ii) the determination of the temporal ordering of some variables 

through Granger causality tests, and (iii) the determination of the over-time impact of the 

variables or specific discrete events [70]. Here we use all of them, with the focus on continuing 

multivariate time series. Vector autoregression (VAR) describes the evolution of a set of 

variables over the same period as a linear function of their past values. 

Let 𝑋𝑡 = (𝑋1𝑡, 𝑋2𝑡 , 𝑋3𝑡) with n1, n2, n3 dimenasion respectively, the VAR model is: 

𝑋𝑡 = 𝐽(𝐵)𝑋𝑡−1 + 𝑢𝑡 = ∑𝐽𝑖𝑋𝑡−𝑖 + 𝑢𝑡

𝑙

𝑖=1

 

 

Equation 6: Vector autoregression model 

 

where ut is a noise process, Ji is a vector of intercept variables, and 𝑋𝑡𝜖𝑅
𝑑×𝑙 for t ϵ 1, …, 

T be d dimensional multivariate time series. The null hypothesis of X3 does not cause 

X1 can be formulated as:  

𝐻0: 𝐽1,13 = 𝐽2,13 = ⋯ = 𝐽𝑘,13 = 0 

 

Just replacing the vectors and matrices with scalars will produce the definition of an 

autoregression (AR). VAR is the mechanism that is used to link multiple stationary time-series 
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variables together.  It is characterized with stationarity, unit roots, and cointegration, for which 

a different type of analysis is needed.  

A stochastic process whose distribution does not change when shifted over time is 

considered a stationary process. For many statistical procedures in time series analysis 

stationarity is the underlying assumption, and often non-stationary data is transformed to 

become stationary. When the underlying processes Xt is stationary, possible causal structure 

grows as some variables increase. The pairwise causal structure might change when different 

conditioning variables are added. 

Time series yt defined as 𝐴𝑝(𝐵)𝑦𝑡 = 𝐶(𝐵)𝜖𝑡 has a unit root if 𝐴𝑝(1) = 0, 𝐶(1) ≠ 0. For 

yt, the existence of unit root implies that a shock in 𝜖𝑡 has permanent impacts on yt. If yt has a 

unit root, then the traditional asymptotic normality results usually no longer apply. We need 

different asymptotic theorems. When a linear combination of two I(1) processes become an I(0) 

process, then these two series are cointegrated. Cointegration implies the existence of long run 

equilibrium and, a common stochastic trend and restrictions on the parameters: proper 

accounting of these limitations could improve estimation efficiency. With integration, we can 

separate short and long run relationship among variables. It can be used to improve long-run 

forecast accuracy.  

  

Let Yt be k-dimensional VAR(p) series with r cointegration vector 𝛽( 𝑝 ×𝑟). 

  

𝐴𝑝(𝐵)𝑌𝑡 = 𝑈𝑡 

Δ𝑌𝑡 =  Π𝑌𝑡−1 + ∑ Γ𝑖Δ𝑌𝑡−1 +  Φ𝐷𝑡 + 𝑈𝑡

𝑝−1

𝑖=1

 

 

Equation 7: Cointegration 

 

Cointegration introduces additional causal channel (error correction term) used by one variable 

to affect the other variables. Ignoring this other channel will lead to invalid causal analysis. 

Forecasting is one of the primary objectives of multivariate time series analysis. 

Prediction from a VAR model is like a prediction from a univariate AR model. Consider first 

the problem of forecasting future values of Yt when the parameters J of the VAR process is 

assumed to be known 

 

�̂�𝑡 = 𝐽1�̂�𝑡−1 + 𝐽2�̂�𝑡−2 + + 𝐽𝑙�̂�𝑡−𝑙 + 𝜖𝑡 

 

VAR model provides information about forecasting abilities of a variable’s or a group 

of variables’. The following intuitive notion of a variable’s forecasting ability was developed 

by Granger 1969 [62]. If one variable (or group of variables) y1 is found to be helpful for 

predicting another variable (or group of variables) y2, then y1 is said that y1 Granger-cause y2; 

otherwise, it is said to fail to y1 Granger-cause y2.  
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Testing causality is one of the most important and challenging issues. Experiments can be 

performed where all other causes are kept fixed except for the factor that is under investigation. 

By repeating the process for each possible variable, we can determine the causal relationship 

among factors or variables. Time series analysis looks for forecasting from the unique 

unidirectional property of time arrow: cause precedes effect. Based upon this concept, Granger 

proposed the following working definition of causality. 

Xt is said not to Granger cause Yt if for all h > 0  

 

𝐹(𝑌𝑡+ℎ|Ω𝑡) = 𝐹(𝑦𝑡+ℎ − 𝑋𝑡) 
Equation 8: Granger causality 

 

where F denotes the condition distribution and Ω𝑡 − 𝑋𝑡 is all the information in the universe 

except series Xt. In plain words, Xt is said to not Granger cause Yt if X cannot help predict 

future Y. It is defined for all h > 0 and not only for h = 1. Causality at different h does not imply 

each other. Ω𝑡 Contains all the information in the universe up to time t that excludes the potential 

ignored common factors problem.  Formally, y1 fails to Granger-cause y2 if for all s > 0 the 

MSE of a forecast of y2, t+s based on (y2, t, y2, t−1, ...) is the same as the MSE of a forecast 

of y2,t+s based on (y2,t, y2,t−1,...) and (y1,t, y1,t−1,...). Clearly, the notion of Granger causality 

does not imply true causality, it only implies forecasting ability.   

When data points are autocorrelated with each other, then simple classifiers would not 

work well. For those use cases using time series classification techniques is more adequate. Use 

cases where time series prediction is used are power load forecasting, demand prediction for 

retail stores, revenue forecasts, and yield and crop forecasting. In our analysis, we applied VAR 

methodology on a crime dataset.  
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2.3. Context of Smart City: smart interconnected communities  
 

Cities are complex and dynamic systems that function and interact within multiple 

coincident spatiotemporal scales: from changing the traffic light to the seasonal hum of power 

stations, meeting increased energy demands [34]. The term ”city” constitute not only a 

geographical area characterized by physical and environmental features, but also includes a 

multi-layered construct containing multiple dimensions of social, technological and human-

related components and services [34] [125]. To better describe this evolving urban environment, 

a variety of terms have been used, including “network city,” “digital city,” ”cyber city,” and 

“global city” [145]. The different metrics of urban smartness are reviewed by various groups 

of researchers [1][12] [40] and show the necessity for a standard definition of what constitutes 

a smart city, including the features, and how it performs compared to traditional cities.  

Up to today, there is not an official definition of smart city accepted by academics, 

government, and business. The term was first used in the 1990s by the California Institute [40], 

whose focus was on creating modern infrastructures within cities, how communities could 

become smart and how a city could be designed to implement information technologies. 

Moreover, after 2010, research in this domain increased dramatically, and the usage of the 

terminology consequently changed [40]. One of the most-cited definitions of smart city is the 

following [67],  

 

“A city that monitors and integrates conditions of all of its critical infrastructures, 

including roads, bridges, tunnels, rails, subways, airports, seaports, communications, 

water, power, even major buildings, can better optimize its resources, plan its 

preventive maintenance activities, and monitor security aspects while maximizing 

services to its citizens.” 

 

In industry, the most commonly used definition is from IBM [70],  

 

“Smart city is connecting the physical infrastructure, the IT infrastructure, the social 

infrastructure, and the business infrastructure to leverage the collective intelligence of 

the city.” 

 

This initiative has an international context and has been supported by programs in many 

countries around the world, including the European Union’s Seventh Framework Program, the 

United States with Smart America Program (a $40 million grant to turn Columbus, Ohio into a 

smart city), Australia’s Csiro Program, and programs in China, India, and South America. 

Support has come from government institutions such as National Institute of Standards and 

Technologies (NIST) for developing Framework for Smart City Architectures and National 

Science Foundation (NSF) for leading the program Smart & Connected Communities. 

Furthermore, it has attracted significant vendors from the ICT industry including IBM (Smart 

Planet, 2008), Cisco (2011), Oracle, Intel, Siements, and Fujitsu (2014). 
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The Smart City nowadays is an essential strategy to improve the quality of life of billions 

of people all over the world [136]. It refers to the capability of a city to understand events that 

characterize its internal and external dynamics (e.g., demographic changes, road traffic, 

transportation issues, and so forth). Per Boyd Cohen, the critical components to making a city 

smart are smart {government, economy, people, living, mobility, and environment}. Concepts 

within the smart environment and a possible domain for applications spanning from government 

services, public transport, crisis management and smart grids, to health care, travel planning, 

smart home, and museum. Figure 12 illustrates some exemplifying applications in smart cities.  

 

 
 

Figure 12: Overview of smart city applications 

 

The heart of these smart environments is sensing from the various interconnected 

sensors that collect and send data to the information center where wise decisions can be made. 

Based on sensing characteristics the technical architecture of smart city applications includes 

three layers:  

▪ Perception layer - identifies the objects and collect information through 2D barcode, 

RFID reader, camera, GPS, and so forth 

▪ Communication layer - makes transmission and processing of information obtained 

in the perception layer through the integrated grid of communication, network 

management center, data center and intelligent processing unit 

▪ Application layer - analyzes and processes massive data and information through 

cloud computing, and other smart technologies [136] 

 

Sensors and devices from the perception layer depend on the requirements of the target 

application and are very tightly-related to the communication infrastructure.  

The communication infrastructure also depends on the requirements of the target 

application, as well as different types of networks. For instance, Home Area Networks, Wide 
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Are Networks, Field Area Networks [69], and Urban Automation Networks (UAN) [60] 

supported by some of the communication standards, like Dash7, ZigBee, WiFi, LTE, 3G, NFC 

[69]. Existing UAN’s are Low Rate Wireless Personal Area Network (LRWPAN), Wireless 

LAN, Mobile Network Operator, Simless Operator, and Delay Tolerant Networks (DTN). 

Moreover, only DTN cannot support event-based application [60], so their usage is not 

recommended in event-based types of applications. 

The application layer can be implemented with any of the existing software architectures 

that participate in Smart City (SC), including Architectural Layers (AL), Service Oriented 

Architectures (SOA), Event Driven (ED), Internet of Things (IoT) and Combined Architectures 

(CA) [83]. This current state-of-the-art results [83] shows that CA gives better results, and the 

most common combination is IoT with AL, which allows researchers to add additional 

technologies that enhance system capabilities. There are attempts to combine three and even all 

of these in order to empower SC with the advantages of each of them. However, the intention 

is to create a typical pattern based on IoT architecture. Although network architectures support 

software architectures, it also depends on application requirements and another constraint. For 

instance, a very flexible solution was proposed by Presser et al. [114] : a multi-tiered 

hierarchical structured mobile-cloud architecture for scalable collaboration. 

 

In general, sensing can be categorized as remote, in-situ sensing and collective sensing 

[34], mobile sensing, and social sensor sensing (social media as a sensor). Sensing data is 

characterized by external context associated with the environment and internal context 

associated with an individual level [125]. Spatiotemporal context involves more than just 

location, it incorporates scientific and human observations, and implications can be unique, 

personal, global and social. In general, contextual sensing allows context that has not been 

previously considered. Incoming sensed data can then be processed to detect relevant events 

like air pollution, humidity, wind speed, pollution, traffic congestion, and cultural events (such 

as concert, art exhibition, gallery presentation) and provide timely support.  

Building a smart city requires providing both hardware and software. For hardware that 

collects information for the events happening within the urban environment, and software that 

utilizes the gathered information and helps decision makings in urban life, see figure 13. 
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Figure 13: Sensing Architecture in Smart Cities applications 

 

 

2.3.1. Basic requirements 
 

The smart city application or service must be able to identify three main components of 

an event: (i) to analyze, (ii) to provide location and contextual sense of it and (iii) to react 

appropriately and on time. To achieve this, the cities must improve their spatial data 

infrastructure based on corporate, local, state/provincial, national, and global levels. Proposals 

for an innovative way of sensing public places use an aggregation of individual sensors 

(spatially enabled citizens, geosocial networks) and devices sensors (cameras as sensors) [119]. 

Because of this requirement, the initiative for open data was created in the U.S.A., and Europe 

(more details are provided in the next subchapter 2.3.2), and social networks were used for 

analyzing city pulse and support smart cities’ operations. Monitoring provides a large variety 

of data for detecting events and situations in the appropriate context that might signify a 

potential point of interest (safety issues, topic interest). 

 

The data processing procedure in smart city applications has three phases: (i) data 

gathering, (ii) data analysis and (iii) result delivery. Thus, raw urban data gathered for smart 

city applications may arrive in different formats, e.g., traffic information, parking spaces, bus 

timetables, and so forth, as well as from various interfaces, e.g., APIs, websites, and web 

services. Due to the data and interface heterogeneity, the data aggregation or abstraction from 

public data sources is typically carried out manually, resulting in static or outdated information. 

The analysis results should be context-aware and knowledge-based to provide insights into the 

current situations [112]. The vision of the data processing pipeline in smart city applications is 

illustrated in Figure 14. 
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Figure 14: General data processing architecture in Smart City applications [55] 

 

Figure 14 shows general computer architecture for a smart city application; sensors are 

at the lowest level of the architecture collecting data and transfer it to a gateway, which in turn 

sends the data to a processing system. The gateway chooses either to or not to summarize or 

preprocess the data. The Connection between sensors and gateway is via some of the previously 

mentioned communication protocols. The relationship from the gateway to analytic servers can 

be via the Internet, LAN, or Wi-Fi connection, and it can use a higher level protocol such as 

Message Queue Telemetry Transport or Constrained Application Protocol. Data is coming 

mostly from computer-based systems (e.g., transaction logs, system logs, social networks, and 

mobile phones) and sensors.  

A standard feature and significant problem that sensing data shares is that each involves: 

diversity of data formats and mobility, information analysis and integration, optimization of 

large amounts of data coming from various smart appliances in diverse formats, real-time 

responses to situations happening in the city, and adaptation to the environment. 

In the following work, Event Processing (EP), and Predictive Analytics (PA) techniques 

namely are discussed to fulfill these requirements. For our validation experiments, we address 

the needs of public safety information services and urban management. A description of the 

general use case is presented in Appendix C, while individual case studies are explained in 

Chapter 5. The output of the demonstrated solutions can help decision making authorities and 

policymakers manage city resources and future urban development better. 
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2.3.2. Open Data 

 

The diversity of data helps in creating better models that describe and identify cities 

needs. The benefit of integrating different data was a reason for launching the open-data 

initiative in April 2010 [144]. The goal of the program is to make some of the city data available 

online for everyone to use to build an application that will help citizens. This initiative was 

followed by the United States, Europe, and India, and web-based open data repositories were 

created. Experiments used safety data sets from the U.S. Government’s open data 2. 

In this work for the experimentation were used cases studies extracted from the Smart 

America initiative3 to improve urban management and public safety for people in the towns, for 

instance, by identifying safe zones and investigating where government resources need to be 

allocated. More focus is given to Mongomery County, Maryland, U.S. using global and real-

world event records obtained from the open data initiative. The datasets description and pattern 

characteristics used for experiments are explained in Section 5, while the experiments are 

explained and revisited in details later in Section 4 and 5. 

 

                                                 
22 www.data.gov 
3 Smart City Challenge is the challenge to prepare all American cities for the future 
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2.4. Conclusion 
 

Smart Cities brings technology together and provides an intracity assessment of 

everything. Their focus is on improving public infrastructure and services that improve urban 

living. Some of the high-level use cases are waste management, smart parking, smart buildings 

and bridges, traffic management, air and water quality, smart road tax, and urban planning. 

The research in creative environments like smart cities tackles the problem of 

developing the extensible and stable applications that satisfy some user’s needs. It incorporates 

works from several disciplines including analysis and inference, modeling, transforming, 

aggregating, validating, testing as well as service composition. This chapter describes the three 

most essential research categories: EP, PA, and sensing in smart cities: architecture and user 

requirements.  

EP and PA are the concepts needed for the remainder of this dissertation. First, an 

overview of event processing is presented; then multisensory predictive analysis methods are 

described to clarify how these two concepts are related, then, the concept of Smart City is 

introduced, and examples of Smart City use cases are elaborated. The features of these use cases 

are analyzed to justify the need for using event services in the application scenarios as an 

integration of Complex Event Processing (CEP) and PA technologies. In recent years, there are 

few research efforts which have explored the possibility of combining PA methods with CEP 

to provide proactive solutions. Initially, it was proposed by Fülöp et al. [54], who presented a 

conceptual framework that combines PA with CEP to get more value from the data. The 

necessity of providing event processing capability as event services for Smart City applications 

is explained by analyzing the requirements of smart city applications, emphasizing the need for 

semantic event integration model, automatic detection, and processing, as well as automatic 

and adaptive execution on environmental changes.  

 

The next chapter presents an extensive review of studies related to the contributions 

developed in this research, including event detection methods and models, multisensor 

analytical methods and their applicability in smart city scenarios. 
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Chapter 3 

Related work 

 

“The important thing is never to stop questioning.”  

- Albert Einstein 

 

 

Summary. This chapter presents the latest research in event processing with a focus on 

automatic event detection methods, event data models, and their practice in smart city domain. 

This chapter presents a comparison between existing approaches and explains the advantage of 

the presented solution. Multisensor analytical learning methods are discussed as well as their 

corresponding function in event processing with a focus on smart city case studies for 

improving city services using data from social sensors, identifying safe zip zones for pedestrians 

and improving the prediction of crime events. 

 

 

3.1. Event processing 

 

 In this subsection, we survey two aspects of the work related to this research. The first 

part presents existing approaches for event detection methods with the focus on the methods 

used in non-structured data like tweets and their combination with other methods in use case 

scenarios to improve city services. The second part is focused on characteristics of existing 

event models in complex event processing and city-based scenarios, and differences from our 

event model.  

 

 

3.1.1. Event detection  

 

When data comes from heterogeneous data sources and devices like textual, multimedia, 

and network, the data can be in a non-structured or semi-structured format; this does not 

conform to an explicit and well-defined event definition. To extract useful information in the 

form of events from time-evolving data that comes from various sources event detection 

methods are used.  

Event detection methods are based on the (i) type of event, if it is specified or 

unspecified (known or unknown), (ii) type of the detection method, supervised or unsupervised, 

and (iii) detection task like retrospective event detection or new event detection [17]. A set of 

rules defines specified events; they can be: hand-written rules, machine learning algorithms like 
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classification, or sequence models like named entity recognition (NER). Unspecified events are 

identified by the following approaches (Widder et al. [156]):  

- Deterministic: identifying casual events 

- Probabilistic: represents causality with probability index 

- Cluster operations: creating groups of objects based on specific criteria 

- Discriminant analysis: using classification methods 

- Fuzzy set theory introduces degrees of membership of an object to a set 

- Bayesian belief networks: using network graph that describes dependencies between 

states 

- Dempster-Shafer method: creates conclusion by combining information from different 

sources 

- Hidden Markov model: use probability distribution of known process the likelihood of 

the hidden process is determined. 

The appropriate method is chosen depending on the application domain, and if the event 

is known or not, for example, it is more suitable to choose some of the unsupervised algorithms 

for hidden or non-specified events. We are interested in detecting known event patterns, more 

precisely the focus is on known event type detection for the non-structured text data type. Non-

structured text data is coming from the sources like social media, blogs, web portals, and so 

forth. These data sources are widely used and present in daily life and provide useful 

information for public opinion, network and system usage. Because of its text format, it is 

considered more challenging to process and detect events.  

For the experiments, we chose to use a non-structured dataset from microblogs like 

Twitter as a data source, also called social sensor. Twitter is one of the first and most famous 

microblogging providers with millions of active users. Each user can create public posts to 

initiate discussions, participate in debates, and follow the communication of others. Many 

significant achievements are accomplished using social networks as a data source in different 

areas like newscasts, early warning systems for detection of earthquakes, and predicting the 

federal elections [4], [21], Error! Reference source not found.[120], [123], [136]. In this s

tudy, each user is considered as a sensor and tweets are sensor information with the time, 

location, and topic features. Identifying events from social media presents several challenges: 

▪ Heterogeneity and immense scale of the data  

▪ Messages are short, which means that limited content is available for analysis 

▪ Frequent use of irregular, informal, and abbreviated words, the large number of 

spelling and grammatical errors, and the use of unsuitable sentence structure and 

mixed language 

Event detection methods on tweets are classified into three categories by Zhao et al. [159]: (i) 

specific event detection, (ii) person related event detection, and (iii) general event detection. 

For our analysis, we are interested in specific and general event detection. We made a 

contribution to one of the challenges presented by Goswami et al. [61], that is to couple textual, 

spatial and temporal along with network structure, by creating a new tool for efficient event  
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detection. However, while most osf the event detection in micro-blog platforms happens with 

textual content, to have additional, more accurate detection to use along with temporal, spatial 

and word-network structure is considered.   

  

For fruitful and precise event detection and because of the noise characteristic of tweets 

it is necessary to have a pre-processing step. Studies show that pre-processing is an essential 

step in text analysis [66], it consists of (i) cleaning, (ii) transformation, and (iii) feature 

selection. The first phase (i) is cleaning the data of noise parts of the text that are uninformative 

and do not have any valuable impact on the general orientation. If we keep these parts, we will 

have high dimensionality, which will make the classification process more difficult and not 

precise since each word is treated equally as one dimension. The next step in pre-processing is 

transformation (ii) where each abbreviation, acronym, smiley, icon, contractions, and 

misspellings are replaced with full words, so we have a standard of only text words and 

sentences. Features (iii) in the context of text mining are the words, terms or phrases that 

characterize the document. This means they have a higher impact on the event detection or 

sentiment level than other words. There are several techniques used for preprocessing. They are 

N-grams [110], part of the speech [59],  user-based features [97], tokenization [13], and based 

on some entities in the text  (URL, emotions, words, character, punctuation and slang/offensive 

words) [21].  

There are several ways to assess the importance of each feature by attaching a specific 

weight to the text. The most popular ones are Bag of Words (BOWs) and Term Frequency-

Inverse Document Frequency (TF-IDF). In our analysis, we used context-based pre-processing, 

and we made a comparison between BOWs and TF-IDF features as two widely used techniques 

in natural language processing (NLP) and information retrieval. Each term in the vector is 

typically weighted using the standard term TF-IDF approach, which evaluates how important a 

word is to a document in a corpus. Most of the algorithms expect binary feature vectors with a 

fixed size rather than the raw text with variable length. To address this, we used techniques that 

provide utilities to extract numerical features from text content. We use the most frequently 

techniques for vector representations BOWs and TF-IDF to represent text messages regarding 

a feature vector. In the majority of the NLP applications, BOW’s and TF−IDF features are 

commonly used for text processing applications, sentimental analysis on Twitter data, blogs 

and classification of sentiments from micro-blogs [4], [30], [122].  

 

Existing supervised learning approaches were chosen for event detection analysis. They 

were successfully applied to several works and achieved excellent results for classification 

problems, such as earthquake, influence, e-cigarette usage detection, spam detection, sentiment 

classification, and traffic event detection [13], [123], [59], [97], [110]. Their results show that 

Support Vector Machines (SVM), Naive Bayes (NB), and Random Forest (RF) gives better 

results compared to the other algorithms. However, Aphinyanaphongs et al. [13] in their 

experiments, only used two input classes smoker and non-smoker. In our experiments, we used 

sixteen different classes. They represented the most discussed topics on Twitter; more  
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information is presented in Chapter 5.2. We compared existing and widely used algorithms [76] 

(NB, SVM, RF) for event classification of tweets. NB classifier is a probabilistic classifier, 

SVM is a discriminative classifier, and RF classifier is an ensemble method where more than 

one decision tree is used for classification purposes based on voting rule [32]. Table 1 illustrates 

advantages and disadvantages of these algorithms using the attributes that characterize social 

sensor data as criterions.  

 

Algorithm Advantages Disadvantages 

Naive Bayes 

Robust to missing data 

Can work well with small dataset 

Fast 

Sensitive to noise datasets 

Not capable of dealing with 

unbalanced dataset 

Does not consider dependency 

between parameters 

Support Vector 

Machines 

Efficient with small sample size 

Can process high-dimensional 

data 

High performance on complex 

classification tasks 

Sensitive to noise and missing 

datasets 

Not capable of dealing with 

unbalanced dataset 

Limited speed and high memory 

requirements 

Random Forest 

Robust to noise data  

Efficient with small and 

unbalanced dataset 

Sensitive to handle missing data 

Requires more processing time, and 

this increase in the number of 

features increases  

   

Table 1: Advantages and disadvantages of different types of classification algorithms 

 

NB can handle missing values better compared with the other two algorithms and has fast 

performance, but it is sensitive to noisy and unbalanced data. SVM is also efficient with small 

data sample and processing performances but is not tolerant to noisy and missing datasets. RF is 

a collection of trees, each independently grown using labeled data, it is tolerant to noisy values 

and efficient with the small and unbalanced dataset. However, it is sensitive to noisy data and 

requires more processing time as the number of features increase. We did experiments using 

these three algorithms with different features. Results showed that RF with any of BOW or TF-

IDF features performs better than the other two. More details are presented in Chapter 4 and 5. 

 

 

Case study context 

 

In a domain of urban context-aware application, we used a case study of improving local 

services by identifying a set of event types and sentiment measurement from social sensors per  

contextual information. We focused on tweets that allowed us to analyze the view of the public 
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on generally discussed topics and measure their perceptions regarding a variety of subjects. 

Timely understanding of the tweets reporting various concerns about the city is necessary for 

city authorities to manage city resources.  Our case study was inspired by future smart city 

challenges presented by Ahmed at al. [2].  

In the domain of smart cities, some authors [2], [6], [119], [128] are focused on 

improving city services by clustering the events by similarity. They measure sentiment level 

for a particular topic, or they combine the physical and social sensor data from an absolute geo-

location such as country, city, or neighborhood. Their output is intended to help city 

representatives, first responders or citizens. However, the existing methods do not consider the 

impact and similarity relation between event types and sentiment level. Alternatively, in this 

work, we applied these characteristics to improve city services, and due to its practicability and 

flexibility, we extended the model to combine temporal, spatial and network of words 

information. 

The similarity between events is typically measured using traditional metrics such as 

the Euclidean distance, Pearson’s correlation coefficient, and Cosine similarity. More recently, 

other similarity measures have been proposed such as the Hellinger distance [31] and the 

clustering index [78]. For our experiments, we chose to use one of the most used metrics, Cosine 

similarity metric between categories to measure how similar they were and how we can group 

them. The similarity between events was used in a variety of cases, e.g., to cluster real-world 

events with its associated tweets, for identifying most relevant posts, and for catering previously 

selected news [20]. Our work is different from these approaches because we added sentiment 

dimension to the similarity which enriched the understanding of the city topics. In the analysis 

process, we also considered temporal, spatial and word-network structure. 

Another group of authors enriched event detection methods with sentiment analysis to 

present more accurate results. Sentiment analysis (SA) is an excellent way to measure 

customers’ loyalty, keep track of sentiments towards brands and, products, or just measure their 

perceptions regarding a variety of topics. Having information about what topics interest people 

can help to improve service recommendations, such as traffic routes, air pollution zones, and 

so forth. This type of services can be enriched and made more accurate by measuring the 

sentiment level. SA involves classifying the text into categories such as ‘positive,' ‘negative,' 

‘neutral,' or even in more detailed levels.  

It has been used to measure sentiment during Hurricane Irene [97] using Maximum 

Entropy classifier and sentiment detection mechanism that determines the public reaction by 

matching them with previously selected keywords related to terrorism [39]. Salas-Zárate et al. 

[126] combine trend detection and sentiment analysis for decision-making purposes based on 

the Spanish language using Maximum Entropy Classifier and TF-IDF metric for similarity 

between event topic. These solutions are only focused on one topic and measure the sentiment 

on that topic for some period, they do not feel considerate similarity with other subjects and do  

not have automated way of topic detection. We also have more productive pre-processing step 

compared with [39], [97] and [126], and we use real-world datasets instead of synthetic [39]. 
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However, the existing methods did not directly consider the impacts of similarity 

relation between event types together with sentiment information. And, due to its practicability 

and flexibility, we extend the model to combine temporal and network information. 

 

In summary, we designed and developed an algorithm that automatically extracts event 

knowledge from collected data from a social sensor like Twitter with context-aware pre-

processing algorithm that handles text data and provides full word meaning to each character 

in tweets. We enriched the algorithm with sentiment identification per event type as well as a 

similarity measure between event types, to get a better understanding of the detected event 

knowledge. The end goal of this method is a tool for an automatic tool for event detection that 

integrates text event streams and use algorithms that complement each other to provide a better 

understanding of city events. Also, we provide a graphical representation of the event trends 

for decision makers, such as city representatives to (or “intending to”) increase visibility and 

awareness of city trends during different times of day, week and period of the year, and 

locations. More details for the proposed theoretical solution and experimentation are presented 

respectively in Chapters 4 and 5. 

 

 

3.1.2. Event models 

 

Event recognition techniques employ rich representation that can represent events with 

complex relational structure, e.g., events that are related to other events with spatiotemporal 

constraints. Every event instance is represented by the relevant information about the event. 

This information includes the time of occurrence, data relevance to the application domain, and 

some additional data. This confirms the explicit and well-defined formal data model with 

relations, attributes and so forth. 

In this work, the focus is on spatial-temporal events, so the core metadata fields have a 

temporal dimension such as start and end time of the event, spatial dimension, event description, 

and value, as well as other information related to the application domain. Event models specify 

metadata fields for the data streams that carry or pertain to events. This data modeling approach 

was first presented by [1] in 2000, where they organize the events using the following 

abstractions: classification, aggregation, generalization, and association. Some authors [127] 

assume that using more primitive is better. Their idea of modeling primitives is that the core 

data message is independent of any application. While other groups of researchers [112] use 

the approach of determining data fields during the process of setting up a system.  

Authors in [102] define event model as a tuple with the event name, set of preconditions 

and effects, where the event occurs when all their preconditions are met. The author of [22] 

used UML representation to design a data event model: this approach is close to our event 

model. Moreover, a logic-based event model was presented by [132] and [15]: they used logic  

programming convention with variables, constants, and predicates, and rules for handling noisy 

data streams. Other researchers have an approach for event models as the algorithm that detects 
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complicated situation, such as [152]. They define a traffic detection event model as the primitive 

event, complex probabilistic event, event type, and they applied adaptive Bayesian network that 

produces better accuracy. The authors in [49] define an event model as a process to model, 

develop, validate, maintain and implement event-driven applications, where the goal is to derive 

an event published by a customer that wants to react to it. The same group of authors from IBM 
4 explain the event model as a way to improve event processing with the model similar to a 

decision model with the following benefits: independent of technology, no program code 

required for understanding, a simple diagram designed to drive event logic correctly, and 

absence of technical terms. The approach to our EM is also to derive event the customer wants 

to react to, with the respect of the presented benefits.  

We evaluated the existing event models based on the requirements for event-based 

applications mentioned in Chapter 2. The requirements are classified as (i) processing 

characteristics support, such as mechanisms for handling missing and uncertainty data, support 

for any type of data and raw data, (ii) required data fields for the event model, and (iii) provision 

of other additional requirements. 

 

First, we reviewed the existing work using the first criterion: processing characteristics. 

We found that some event models are specific to data type or domain type, like VERL [53], 

SsVM [46], EventOntology [116], and Event E [155]. Table 2 shows the comparison between 

domain-specific event models. Their event model is applicable in the domains characterized by 

spatial and temporal dimensions as a necessary basic requirement. Other characteristics of the 

event data streams are support of a variety of data types (text, multimedia) and raw data, and a 

mechanism to handle missing and uncertainty data. The authors from LODE [134] and, Event 

E [155] created their model to provide support for missing data, while the authors from [127] 

provide support for uncertainty. Models LODE [134], REseT [148], EventOntology [116], and 

Inventory [151] support any type of data, as illustrated in Table 3. In our approach, we created 

the EM to support any detected events, with the parameter that points to the original raw data. 

Also, we created rules for handling uncertainty and missing data that are easily modifiable. 

 

 

 

 

 

 

                                                 
4 http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3036/Introducing-the-Next-Horizon-The-

Event-Model-TEM.aspx 
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SsVM (Ekin et 

al, 2004) [46] 
ns ns ns Video ns Y Y Y Y Y ns ns no SQL 

VERL (Francois 

et al, 2005) [53] 
ns ns ns 

Multi-

media 
ns Y Y Y Y Y ns ns 

VEML 

2.0/OWL 

VEML/OW

L-DL 

EventOntology 

(Raimond et al, 

2007) [116] 

Y ns ns 
Multi-

media 
ns Y Y Y Y Y ns ns 

Created by 

authors 
RDF/XML 

Event E 

(Westermann et 

al, 2007 ) [155] 

ns ns Y 
Multi-

media 
ns Y Y ns Y Y ns ns no no 

EM (Kotevska et 

al., 2016) 
Y 

Set by 

coder 
Y Any Y Y no no Y Y Y no Any Any 

*ns = not specified, Y = yes 

 

Table 2: Comparison chart for event models that support specific data types 

 

Uncertainty is unavoidable in daily life as so in events produced by the environment, to 

deal with it intelligently we need to represent and reason about it [68]. One way to quantify the 

uncertainties is by adding a probability distribution to the possible worlds. Challenges related 

to uncertainty in event processing are classified into three categories [55]: (i) namely model, 

(ii) usability, and (iii) implementation issues. Challenges for (i) namely model is to construct a 

flexible generalized model that can match the appropriate model for a specific implementation. 

Usability (ii) is defining the rules and probabilities (for the cases when the history is not good 

predictor). Implementation issues (iii) are related to scalability and performance requirements 

(developing general algorithmic improvements or developing domain and application specific 

efficient algorithms). According to [15], there are four approaches to deal with event 

uncertainty; they are the following: 

1) by ignoring when the damage is not substantial 

2) using sufficient definition to deterministic detection 

3) event detection with probability, like PGM, Markov Logic Networks, probabilistic logic 

programming 

4) fuzzy set and possibility theory using knowledge and data from multiple indicators 

 

Authors from [15] dealt with the noisy data stream problem by cross-validating the data 

from multiple sources and eliminating the ones that report noisy. What they consider types of 

noisy were known in advance, via machine learning or expert knowledge. Hassan et al.[71] 

developed a method based on event matching for handling uncertainty. Their method deals with 

inexact event type matching, by considering reusability based on similarity of event attributes 
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not event patterns. Our approach was to face these challenges by creating rules that handle 

known uncertainty at attribute level and using probabilistic methods for the usability challenge, 

with the focus on specific application.  

Regarding the second criterion, required fields, that should be filled; we classified them 

into few categories based on the definition of the fields. For example, participant and actor is 

the same entry, event, action, and verb are the same entry, object, time, location, and device 

associated or affected. Tables 2,3, and 4 illustrate these properties across domain specific and 

multi-domain event models. Most of the authors except [44] [134] have event entry. Some of 

them [52] [116] have a device associated with them. Event ontology [116], OpenCyc5, ABC 

supports sub-events, and Event F [127] offers a possibility for it, while LODE does not support 

sub-events. Another group of authors [19] compared event models by using the criteria of 

stretch in time, location, and the participation of objects, but however other factors should be 

considered as well. 

We created our EM to be scalable, as only some of the fields are required while the rest 

can be added when needed. Event sources can also be easily added and removed, which allows 

flexibility. Our EM supports fixed and relative location, for instance, geographical coordinates 

and city name, both supports modeling sub-events as a separate entity or parameter property. 

The relation between events is modeled as a distinct functionality that can model complex 

events, event type, event patterns, and relationships. Also, we separate the entities on static that 

contains the information that does not change over time and dynamic that contains the 

information that always changes over time.  
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OntoEvent (Ma 

et al, 2015) [94] 
 ns  ns  ns 

Common 

data types 
ns  Y Y ns Y   ns ns  

Created by 

authors 

OntoEvent 

lang. 

REseT (Uma et 

al, 2014) [148] 
Y  ns  ns 

Common 

data types 
ns  Y Y ns Y Y ns ns 

Created by 

authors 
DL 

Common Event 

Model (Fowler et 

al, 2009) [52] 

 ns  ns  ns 
Common 

data types 
ns Y Y Y Y Y Y ns 

Created by 

authors 
RDF/XML 

Event ontology 

(Zhong et al, 

2012) [159] 

 ns  ns  ns 
Common 

data types 
ns Y Y ns Y Y ns ns 

Created by 

authors 
RDF/XML 

SOUPA (Chen et 

al, 2005) [38] 
ns  ns  ns 

Common 

data types 
 ns Y Y ns Y Y Y ns 

COBRA-

ONT/OWL 
RDF/XML 

EM (Kotevska et 

al., 2016) 
Y 

Manu

ally  
Y Any Y Y no no Y Y  Y no  Any  Any 

*ns = not specified, Y = yes 

Table 3: Comparison chart for event models that support common data typ

                                                 
5 http://opencyc.org/ 
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The third criterion for event model is support for additional requirements such as 

semantics and language. Some of the authors [107] described the importance of semantic 

enrichment in event data modeling, called semantic because the meaning of the data field titles 

is essential to the model. Requiring an ontology on a topic for an event model can restrict the 

data types that can be used, as well as the domain. Ontologies are needed in event models such 

as Event F [127], OntoEvent [94], REseT [148], and LODE [134]. In some cases, the ontology 

was created specifically for the event model, such as for OntoEvent and REseT. The metadata 

fields in our EM, align with those in the DOLCE ontology [127]. That makes it easier when we 

have data from different streams to fit into the same event model, and it will help ensure 

interoperability.  

Authors in [71] created a thematic event model defined as a pair of two sets, theme tags, 

and tuples. Where the theme is defined as a set of terms that describe the same thing, for 

instance, the set {‘energy,' ‘appliances,'’building’} refers to an event which conveys power 

consumption of appliance of the building. Their proposed approach suggests associating events 

and subscriptions with tags to describe their semantic themes. The topics represent a lightweight 

way to communicate event semantics across systems. They used a method of semantic 

relatedness (using Cosine of Euclidian distance) between each pair of attributes or values from 

the subscription, event and distributional semantics. Our EM allows adding additional 

parameters which allows one of them to be considerate as a theme. 
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Event F (Scherp 

et al, 2009) [127] 
 ns Y  ns  Any ns Y Y ns Y Y ns ns 

DOLCE+D

nS 
 RDF/XML 

Eventory (Wang 

et al, 2007) [151] 
Y  ns ns  ns  ns Y Y ns Y Y ns ns  no  no 

Event ML 

(IPTC, release 

2014) 

 ns  ns  ns  ns  ns Y Y ns Y Y ns ns  no XML 

CIDOC CRM 

(Doerr et al, 

2007) [44] 

ns   ns  ns  ns ns  ns Y ns Y Y ns ns ISO 21127 XML 

LODE (Shaw et 

al, 2009) [134] 
Y  ns Y  ns ns ns Y ns Y Y ns ns 

Created by 

authors 
RDF/XML 

Event Calculus 

(Shanahan, 2001) 

[132] 

 ns ns ns ns ns  Y ns ns Y Y ns ns  no 
Some logic 

language 

EM (Kotevska et 

al., 2016) 
Y 

Set by 

coder 
Y Any Y Y no no Y Y  Y no  Any  Any 

*ns = not specified, Y = yes 

Table 4: Comparison chart for event models that support any data type or it is not specified 
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Another group of authors used specific processing languages (e.g. XML [44], Event ML 
6, RDF [127] [52] [159] [44] [38] [134] [116], SQL [46] or logical language [132]) when 

extracting data from the event model. This approach is an additional constraint and makes it 

dependable, while our approach is the model to have an absence of technical terms.   

 

 

Case study context 

 

In a domain of urban context-aware applications, we used a case study of improving 

local city services with the focus on improving pedestrian safety by identifying safe zip code 

zones for pedestrians. We addressed a real problem by using real-world data from multiple 

sources and properties like static, dynamic, semi-structured and structured format. 

 

In the domain of a smart city, multiple projects were created, such as EventShop [112], 

CityPulse framework7, INSIGHT8, SmartSantender [64], and OpenIoT [73]. EventShop [112] 

accepts data streams and includes modules functionalities that query the event instances 

relevant to the application. Their events are put into a location-based grid structure called 

Emage, that can integrate events from complex data streams. Their solution works as a 

standalone application and for now, can not be incorporated into existing solutions. Some 

solutions for integrating heterogeneous event information resources in smart city scenarios were 

proposed by [64], [82], [129], and [153]. Gutierrez et al. [64] focused on creating a platform 

closer to citizens by adding participatory sensing capabilities; their solution also works as a 

standalone application. However, authors from [82] concentrated on the problem to find an 

efficient way to handle real-time semantic annotation of sensor data in dynamic environments. 

Their work is part of the CityPulse framework, and for their experiment, they used publicly 

available data streams. They underlined the incoming data with Stream Annotation Ontology 

that links the segment description with time extent. Another group of authors [73], also 

addressed the same problem. They introduced a new approach to IoT data stream analytics for 

real-time data acquisition, annotation, and processing of sensor data, where the server deploys 

complex clustering algorithms to analyze data in real-time. They validated their results by 

understanding complex phenomena such as the impact of air pollution on human health. 

Authors from [129] developed a framework for heterogeneous data and validated in the scenario 

of disaster detection and alarming, their work is part of INSIGHT. On the other side [153] 

presented a framework that integrates the representation of XML and SQL event streams into 

unified event fusion format with the general specification for easier event processing. These 

solutions show the usefulness and effectiveness of their method, but they do not present how it 

can be used in existing platforms.  

 

                                                 
6 https://iptc.org/standards/eventsml-g2 
7 http://www.ict-citypulse.eu/page/ 
8 http://www.insight-ict.eu/ 
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The advantage of our approach compared with these solutions is that it can be easily 

integrated to any of the current event processing platforms ; it is not dependent on any query 

processing language, and the proposed event model is already sidelined with upper-level 

ontology which avoids additional semantic annotation for time-sensitive services. Also, the 

output data can be used by CEP engine or predictive analysis in any domain or application of 

interest, which corresponds to the event models that are defined as a specific problem solver 

(more detailed explanation is presented in Chapters 4 and 5).  

 

 

3.2. Analytical models for multisensory learning 
 

This subsection is organized into three parts; the first part presents the prediction models 

we used to improve city safety services and explains their characteristics, differences, the reason 

we choose them, and the domains they showed promising results. The second part gives an 

overview of how they were used in smart city case studies and the similarities between those 

solutions and ours, and what we additionally consider in our solution. The third part focuses on 

the problem of dealing with event stream changes, such as data loss, caused by various reasons, 

existing solutions in the smart city context, and how our solution is different from the others. 

 

The research area of event processing deals with processing data that are viewed as 

events, making sense of them, and sending the results to the end consumers (administrators, 

users, another system) about consistent behavior patterns based on the rules that are determined 

in advance. The rules or patterns describe the usual circumstances of the events which have 

been experienced and they improve over time. However, to improve the effectiveness of event 

processing, it is possible to apply the results from related research area like predictive analytics. 

Predictive analytics deals with the prediction of future events based on previously observed 

historical data by applying sophisticated methods like machine learning. The historical data is 

often collected and transformed by using techniques like the ones of event processing, e.g., 

filtering, correlating the data, and so on.  

To create functionality for proactive event processing, we used the following three types 

if prediction algorithms: probabilistic (Bayesian) graphical model (PGM), Poisson regression 

(PR), and time-series (autoregressive [AR] and vector autoregression model [VAR]). Each of 

them is used for specific purpose, PGM gives probabilistic value to the predicted event and 

probabilistic influence of each data stream to the result. PR provides a more precise number of 

anticipated events, not interval of values like PGM, while AR and VAR are used when we want 

to use time-dependent past values for determining the prediction results. Because of these 

unique characteristics and distinct advantages, we choose to use these three types of prediction 

models. Comparison between these methods based on spatiotemporal data characteristics and 

challenges facing complex data is illustrated in Table 5. 
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Table 5: Comparison table between three different types of prediction algorithms (PGM, PR, AR & VAR) 

 

PGM model is designed for modeling complex probabilistic systems, and it can deal 

well with complex information characterized by incompleteness and uncertainty. It provides a 

probabilistic description of the relation between events and context. Usually, is used in 

scenarios when is necessary to know the likelihood of event occurrence. PGM and it variation 

have shown satisfactory results in traffic domain [160], energy systems [45], and genetic 

analytics [138].  

Count models were used in cases when we needed to have a precise analysis of expected 

totals of events. We chose the most straightforward PR because it often provides an adequate 

representation of the variability observed in count data. This model showed promising results 

in medicine [96] for diabetes prediction. 

Time-series data models are used instead of the other methods because time-series 

analysis accounts for the fact that data points taken over time may have some internal structure 

such as trends, seasonal variation, or autocorrelation. VAR was chosen because it captures 

interdependence between multiple time-series data streams. This model has been used in 

financial markets [105] and energy consumption [131]. 

  

 Because of their unique characteristics switching between algorithms depends on the 

requirements and specific context. Also, PGM and PR are static models; they do not consider 

the time component for the event streams. But in real-world scenarios event streams change 

over time, so it is necessary to consider the changes over time when modeling.    

 The next part of this subchapter reviews the existing work for static and dynamic 

prediction models in the domain of smart city applications. 

 

 

 

 

 

Algorithm 

Advantages and Disadvantages 
Context of use in 

our framework 
Support of 

data fusion 
Incompleteness Uncertainty 

Relation between 

events 

PGM Yes  Yes Yes 

Yes, probabilistic 

dependency 

metric 

Likelihood of event 

occurrence 

PR Yes No No 
Yes, relationship 

index (p-value) 

Concrete number of 

events 

AR & 

VAR 
Yes No No 

Yes, causality 

index 

Number of events 

dependent on past 

period 
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Case study context  

 

In the domain of urban context-aware applications, event processing, and prediction 

models have been used for solving various types of problems. One of the critical aspects of 

smart cities is public safety [25], the focus of the case study we used was identifying safety 

areas especially pedestrian safety zones and improving safety by providing more accurate 

prediction and creating a model that can adapt in the event of data loss or another changing 

environment. The goal of the experiments was to build models that are beneficial for the city 

and citizens and use real-world open data. 

Successful work related to city safety was done by [29] they demonstrated a scenario 

where a network of sensors was installed in a neighborhood in Rockville, Montgomery County, 

Maryland (MD), U.S.A. This sensor network monitored environmental factors, such as 

explosive gas, smoke, and automatically alerted residents upon discovery of a possible 

emergency. Their work was more focused on designing the sensor network, implementing 

detection rules for unexpected and unwanted situations, and notification system. Conversely, 

our work is oriented to handle the issues with complex data streams, and identify patterns that 

can help prevent unwanted situations in future.  

 

Hierarchical Bayesian Network has been used for modeling traffic condition prediction 

system [160]. For their analysis, the authors used three types of datasets: weather, local events 

(e.g., significant sports events, musical concert, big parties and ceremonies that affect the 

traffic), and traffic information from E-ZPass system from Western Massachusetts Street at 

UMass, Amherst, Massachusetts, U.S.A. While weather and local events datasets are available 

online, traffic-related data does not have open access. They demonstrated successful prediction 

congestion with 93% accuracy overall and showed the impact of each data source on the 

congestion during different times of day and week.  

We propose a model with the similar goal, but in addition, we can handle data in open 

access from the perspective that we also used real-world data streams with open access, and we 

address a real problem of pedestrian safety that was identified by the local government. Also, 

in our solution, we combine CEP methods with predictive models. For instance, we use event 

detection mechanisms before data streams are accepted to the system after the data is formatted 

to the event model for interoperability and this model support the functionality of using event 

patterns and link identification for analysis. 

PGM that explains the conditional dependencies between traffic variables was 

demonstrated by [11]. They designed a graphical model structure enriched with declarative 

knowledge from ConceptNet9. The evaluation was done using real-world traffic open access 

dataset10 for a week from October 14 to October 20 from San Francisco Bay Area, California 

U.S.A. The results showed that combining the graphical model with declarative knowledge 

                                                 
9 http://conceptnet.io/ 
10 511.org 
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provides richer domain model for reasoning; it especially improves correlation and causal based 

knowledge. However, they did not explain how scalable their model is when the new data 

stream is added or removed.  

Zhu et al. [161] in their research combined CEP with predictive analysis using Bayesian 

Networks, and their results showed promising results for large-scale IoT applications. This 

group of authors created simulation system based on SUMO (Simulation of Urban Mobility) 

simulating virtual FRID and GPS readers and a series of rules that simulate real traffic. Also, 

routing rules are related to contexts such as weather, congestion state, and car accidents. Their 

method has better accuracy in comparison to traditional methods but does not use real-world 

datasets. 

Another group of authors focused more on creating models for predicting unwanted 

behaviors. For instance, predicting truck [100] and car accidents [50], crime rates [106], and 

highway fatalities [101] to understand and possibly prevent their future occurrence of this event 

to increase the safety level in cities. However, these solutions used only static datasets for their 

analysis, and are not scalable regarding adding new datasets. Chan et al. [36] used a dynamic 

dataset from video cameras and applied PR for crowd counting in open spaces such as streets. 

This solution is very helpful for safety aspects of cities, but also is not scalable for adding new 

data streams. These solutions do not provide an automated way of event detection and event 

model solution for data fusion in the case of using more than one datasets. These solutions are 

oriented to benefit city authorities. Our initial focus is also city representatives, and authorities 

but our models can be adjusted for individual users as well.  

In our experiment, we devised the case study to answer an on-going need by local 

government to improve pedestrian safety in Montgomery County, MD, U.S.A. In 2007, a 

Pedestrian Safety Initiative was introduced in Montgomery County that used rule enforcement 

(tickets for the drivers and pedestrians who violate traffic laws), education (campaign to raise 

awareness), and engineering (traffic light adjustments, improving lightening, sidewalks) 

approaches to reduce the number of accidents 11. Our solution complements the Pedestrian 

Safety Initiative by showing where the most accidents are predicted to occur; this information 

is intended for county representatives. Decision makers for the county can then consider 

deploying their resources better to change street signs or police traffic, for example, to heighten 

safety at the times and locations predicted to be unsafe. The proposed solution and demonstrated 

results predict which county region by zip-code is going to be safer based on the past number 

of pedestrian incidents per zone.   

We experimented with both PR and PGM, PR to predict event occurrence based on 

several predictor variables, while PGM can represent dependencies among events on a graph. 

The end goal of our approach was to present and evaluate the event model and not prediction. 

Instead, we incorporated prediction into the model, to show that the event model is compatible 

with applying prediction models; we also wanted to provide users a tool for safety awareness 

                                                 
11 http://www.montgomerycountymd.gov/DOTPedSafety/overview.html; 

https://volunteer.truist.com/mcvc/org/opp/10610402110.html 

http://www.montgomerycountymd.gov/DOTPedSafety/overview.html
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during different times of day, week and period of the year, as well as visibility of types of 

incidents. More details are presented in Chapters 4.3 and 5.3. 

 

However, the existing methods did not directly consider the impacts and changes of the 

event streams. In this work, we created a model to improve the resilience of the prediction 

results. We used VAR and created a dynamic method of data loss and environmental changes 

taking advantage of data source networks. We chose a case study on improving safety by 

providing more accurate prediction and creating a model that can adapt in the event of data loss 

or another changing environment. For case study experiments we chose crime dataset, 

explained in more detail in Chapters 4.4 and 5.4.  

Crime analytics is a rapidly growing field, taking advantage of the increase in data 

collection to identify spatiotemporal patterns in crimes incidents and develop crime prediction 

models [74] [103]. For example, clustering techniques are used to discover spatial patterns in 

crime incidents, and regression techniques are used to find relevant and meaningful temporal 

patterns. Spatiotemporal crime trend analysis, which studies the dynamic interplay of location-

dependent and time-dependent aspects of crime, utilizes a wide variety of techniques including 

pattern mining, association rule mining, and combinations of the previously mentioned methods 

[84]. For example, the authors of [63]Error! Reference source not found. demonstrated a m

ulti-agent model to predict areas in which future criminal incidents are likely to happen and use 

both physical and cyber-criminal activity. The authors of [85] utilized Bayesian inference to 

create a geographical map to show potential crime factors per area. This weighted geographical 

profile provided probability estimation for the next crime hot spots and likely locations for 

future crime incidents. Such results can be used to improve police resource deployment. Gerber 

et al. [58] applied Latent Dirichlet Allocation semantic analysis to identify crime-predictive 

Twitter discussion topics. Ranson et al. [117] applied linear regression to map weather factors 

to crime dynamic, identifying a strong relationship between climate change and crime incident 

number and type. However, the existing methods did not directly consider the impacts and 

relationships between cities. Alternatively, in this work, we apply the link analysis information 

to improve prediction results. Alternatively, due to its practicability and flexibility, we extended 

our model to combine geographical information. 

Some efforts in this direction have been made by Ballesteros et al. [26] they proposed a 

method for forecasting future safe values in cities based on user context and location safety 

values. The authors used three types of data sets: crime incidents, Yelp and census datasets 

from Dade County Miami, Florida, U.S.A. for identifying safe places and predict safety level 

in each place. They experimented with three time-series types of algorithms: such as ARIMA 

(Auto Regressive Integrated Moving Average), ANN (Artifical Neural Network) and LES 

(Linear Exponential Smoothing) models to predict the number of crimes to occur at a location 

during near future. Their input data was per month for the period of four years, using RMSE 

and MAPE accuracy metrics. Their results showed that ANN is slightly better than the other 

two algorithms. Their analysis was focused more on creating various prediction models, such 
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as daily, based on crime type and safety index. They do not show how the model will adapt 

when a new data source is added, or when the data stream is missing for various reasons. Their 

work is oriented to the user as an individual, not for city representatives. 

Other works that used open data reports in their analysis and time-series dataset are 

discussed below. Authors in [111] aimed to forecast traffic safety performance measures using 

crash data. The output can be used to determine targets for future safety improvement programs.  

They experimented with two datasets, one corresponding to the number of fatalities and other 

to injuries from 1994 to 2012, reported by Nevada Department of Transportation, U.S.A., to 

improve traffic safety across emphasis areas. They experimented with deterministic (Simple 

Deterministic, Holt, Brown, Damped-trend, Seasonal, Winter-additive, Winter-multiplicative) 

and stochastic (ARIMA, SARIMA) time-series models for reducing fatalities and serious 

injuries, and evaluate with RMSE and MAPE (mean absolute percentage error) accuracy 

metrics. They used only one type of dataset crash data, but no participatory sensing or 

demographics. Both methods do not consider the problem with missing data and do not adapt 

to the environmental changes.  

Anan et al. [10] deployed a temporal trend sensitive system using a combination of 

ARIMA time-series models to respond to the dynamics of energy demand. Similarly, [5] 

combines dynamics via a decision tree with time-series prediction to improve prediction of 

complex events. The algorithm identified current model prediction error and dynamically 

determined to increase or decrease the time-series training window accordingly. The VAR 

method showed good results for solving the problem of traffic flow forecasting [3] in the 

transport network of the major cities. Although their solutions can be applied to other cases, 

they do not consider relationship analysis and dynamic nature of changing the environment. 

Methods that additionally capitalize on shared temporal trend information across data 

streams to optimize resilience have been used in the application domains of weather and 

transportation. Tokumitsu et al. [143] combine support vector machine regression and a data 

network between neighboring weather sensors to interpolate missing spatiotemporal weather 

data from one sensor using neighboring sensors. However, this method assumes a static network 

based on sensor proximity in which all data streams are associated with same sensors. A 

network of weather data streams is also addressed by the authors of [43]. Network dynamics 

was allowed with potential changes in data sharing connections. A greedy algorithm selected 

data streams with the most recent data and rejected data streams identified to provide poor 

prediction performance. Pearson’s product moment correlation function was also used to detect 

and evaluate data streams for shared temporal trends dynamically, and these learned 

relationships were then utilized across a set of regression techniques to ensure system resilience 

to data faults. Pravilovic et al. [113] also utilized correlation in their geo-sensor data resilience 

networks. Temporal and spatial correlation between data streams was identified and used to 

establish a spatial-based cluster of data streams. A stationary correlation was assumed, and a 

static data sharing network was formed. However, while correlation analysis can provide useful 

information on shared temporal trends, ist does not give an indication of the statistical 
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significance of these relationships. Additionally, highly useful shared trends between data 

sources separated by significant distances may be missed in such spatial correlation based 

techniques. 

However, the existing methods did not directly consider the impacts and link relation 

between data streams. Additionally, we apply the missing data mechanism to improve the 

service. Due to its practicability and flexibility, we extended the model to combine geographical 

information and weather temperature. 

 

In summary, the dynamic model can deal with missing data by taking advantage of 

network nodes between data sources - in our case, cities, and weather. It is scalable in the sense 

of adding new information streams and selecting the right entities based on relationship analysis 

using qualitative and quantitative approaches. The output always provides optimal results by 

having a list of the best models and depending on the environmental changes the model adapts 

dynamically. More details are presented in Chapters 4 and 5.  
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3.3. Conclusion 
 

Several methods have been discussed in Section 3.1.1. to solve the problem of automatic 

event detection on non-structured data for improving local services by using social sensors as 

input data source. As discussed in Section 3.1.2, an essential prerequisite for efficient data 

sharing is to identify the event, event context, and structure in the standard format applicable 

for complex data. Finally, Section 3.2 discussed the prediction models as learning solutions for 

improving city safety services and dynamic model that adapts to the environmental changes 

and failures to maintain city services. 

 

The next chapter presents details of the theoretical explanation of the proposed 

solutions. It also describes the overall idea and the conceptual framework (FEDAP – 

Framework for Event Detection Analysis and Prediction) that processes complex data in smart 

environments. 
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Chapter 4 

Contributions: Proposed Theoretical Solutions 

“The question is not what you look at, but what you see. “  

- Henry David Thoreau 

 

 

Summary. This chapter presents the theoretical explanation of the proposed solutions 

in this research work. Section 4.1 discusses show the modules in this dissertation are combined 

into a framework called FNEDAP (Framework for Network Event Detection Analysis and 

Prediction). The chapter details the FNEDAP design and implementation. Section 4.2 describes 

the proposed solution for improving local services which include automated text network 

analysis, the similarity between network topics and sentiment analysis. Section 4.3 describes 

the semantic event model that format the heterogeneous data in common format to facilitate 

data sharing among services. Section 4.4 describes dynamic network model for event 

forecasting that adapts to environmental changes and disruptions. 

 

 

4.1. FNEDAP: Framework for Network Event Detection Analysis and 

Prediction 
 

This subchapter discusses how the individual modules developed in this dissertation are 

working together in the FNEDAP.  

This framework treats all data streams that come from various network sources, such as 

temperature sensors, police reports, and social sensors together in the same context and turn all 

the data into knowledge so that we can take advantage of it, and improve real-world situations. 

Therefore, data streams are heterogeneous and can be in both textual and non-textual formats. 

It combines textual information with non-textual data to bring additional knowledge that can 

be received if it was used only one type. Non-text data helps text-mining by mining text in the 

way it is defined by non-text data, while text data helps non-text mining by using text data to 

interpret patterns found in non-text data.  

It collects contextual information from the various interaction devices, methods, and 

sensors, and use these contexts to provide relevant information. The social sensor is considered 

a voice of the humans; they express their emotions (e.g., opinion about food), perceptions (e.g., 

political elections), or locations (e.g., restaurants). A social network represents the vast network 

of peoples’ voices around the world. While physical sensors measure environmental variables 

such as temperature, humidity, or air quality, and represent outside factors. Other sources of 

data streams that describe communities where we live are reports from police, health 
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organizations, and city and government representatives. They provide information about traffic, 

medical trends, demographics, policy, and laws. 

The main contributions to this dissertation are the three modules : (i) event network 

analysis in Chapters 4.2 and 5.3, (ii) scalable semantic event model in Chapters 4.3 and 5.4, and 

(iii) event prediction that follows the principle of proactive event processing and adaptation in 

Chapters 4.4 and 5.5. These modules are grouped together into a framework called FNEDAP. 

The high-level architecture is illustrated in Figure 15. Its components also correspond to the 

general event network processing architecture, present by [133]. 

 

 

Figure 15: High-level architecture for the FNEDAP  

 

The main parts are event detection, semantic event models, and dynamic prediction. The 

other layers and components are necessary from a perspective to enable events input and output, 

evaluation, and demonstration of the effect of the proposed approach. The framework is 

designed to be generic and facilitate other similar scenarios. It is also considered to work as a 

standalone application and to be integrated into existing event processing platforms.  

The components of the general architecture shown in figure 15 are detailed in the 

following. 

Various data streams (text and non-text) represents complex data; input adapters are 

responsible for receiving these data streams by connecting the FNEDAP with the outside world. 

It accommodates the necessary technology and syntax level for handling data stream messages. 

So far, the developer is responsible for handling input and output events and adapts them to the 

system.  

The event detection module is responsible for identifying the event streams of interest, 

including performing the necessary pre-processing steps such as cleaning, transforming, feature 

selection, execute rules for solving data incompleteness and other uncertainties.  

The next module is the semantic event model; it extracts the relevant properties of the 

data streams and converts it into their respective event model objects. 
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 Following module is analytics. It accommodates proactive event prediction and 

dynamic network adaptation approaches proposed in this dissertation. The analytics are 

performed using one or multiple event streams depending on the case study. The combination 

of event processing concepts with other concepts (e.g., sentiment analysis, event stream 

selection, a relationship between networked data streams, a prediction for the events of interest, 

similarity identification, adaptable methods) helps to understand better what is happening 

regarding distributed network events.  

The final module is output adapter. It is responsible for connecting the output results 

from FNEDAP to outside applications and services. The detailed view of the individual 

functional components inside each module is illustrated in Figure 16. 

 
 

Figure 16. Internal architecture of FNEDAP  

 

The final output of this context is intended to help decision makers for city 

representatives and policymakers to understand how the changes in the towns and communities, 

have an impact on well-being. Preferably, this knowledge will lead to the creation of safer cities, 

communities, and neighborhoods. 

 

 More detailed explanation for each module and submodules is presented in the 

following subchapters, while the details of the deployment of FNEDAP and how it works with 

real-world data set is provided in Chapter 5. 
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4.2. Automatic event network analysis 
 

The rapid growth of information has influenced the way people communicate, share and 

get information. They use various forms to express their thoughts or opinions, such as pictures, 

videos, and text. It has become more popular, for people to use Twitter, Facebook, Blogs, 

Forums and so forth for sharing events that are happening in their everyday lives. Specifically, 

microblogging messages have become a widely used tool for communication on the Internet. 

Twitter is one of the first and most famous microblogging providers with millions of active 

users. Each user can create public posts to initiate discussions, to participate in debates, and to 

follow the communication of others. People tend to comment on real-world events when a topic 

suddenly catches their attention, for example, a soccer game, adverse weather update, elections, 

breaking news and so forth. Based on this, in a city context, social sensing can be used to 

retrieve information about the environment, weather, well-being, traffic congestion, trends in 

the local economy, dangers or early warnings, and likewise any other sensory information that 

collectively becomes useful knowledge for the city’s improvement and smartness. 

In this study, each user is considered to be a sensor and tweets are sensor information 

with the time, location, and topic featured. Identifying events from social media presents several 

challenges: 

 

▪ Heterogeneity and immense scale of the data 

▪ Social media post are short, which means that only a limited content is available for 

analysis. 

▪ Frequent use of irregular, informal, and abbreviated words, the large number of spelling 

and grammatical errors, and the use of awkward sentence structure and mixed language.   

 

We are focused on tweets that will result in analyzing the view of the public on generally 

discussed topics and measure their perceptions regarding a variety of subjects. Timely 

understanding of the tweets reporting various concerns about the city is necessary for municipal 

authorities to manage city resources. This information complements sentiment and similarity 

level measurements.  

To do so, we suggest the fully automated event processing algorithm that can accept 

any text data from the network sources during the time interval, detect the event type, and find 

the level of similarity and sentiment characteristics for event type groups. Based on this, the 

following research questions are generated: 

 

- How do we extract knowledge from data collected from sensors (physical and social)?  

- How do we efficiently preprocess the text data streams from social sensors? 

- How do we extract the knowledge from text data streams? 

- How do we identify trends based on extracted knowledge? 

- How do we graphically present the event trends for city decision makers? 
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In this context event and event types are defined as follows: 

 

Definition 1: Events in social sensors are real-world happenings that discuss the 

associated topic at a specific place and time. Text stream T = (t1, …, tn) where ti is a 

tweet (Twitter message). Each tweet consists of a set of features F = (f1, ..., fk) at location 

La. The problem of automatic event detection is that it is difficult to identify the facts 

from a text stream T with the similar set of features F at location La, using rules. 

 

Definition 2: “ Event type is a specification for a set of event objects that have the same 

semantic intent and the same structure; every event object is considered to be an instance 

of an event type ” [14]. An event type can represent either rare events deriving from a 

producer or derived events produced by an event processing agent. An event can be 

either simple or composite. A composite event type is a particular kind of event, which 

is made up of a collection of other event types. For example, the following tweet “I am 

at Neil Simon Theatre for Gigi NY in New York,” belongs to the category ‘art’ in our use 

case scenario. 

 

The data stream processing unit receives the incoming data streams and applies a set of 

processing modules, like:  

(i) Preprocessing module includes: filtering the data by location and language, cleaning 

the tweets, transforming the tweets to the uniform format (where all the characters 

are translated into letters).  

(ii) Event type detection module uses a set of rules processes events; logically they are 

defined as condition and action. Rules can be handwritten rules, machine learning 

algorithms like classification, or sequence models like named entity recognition. 

Our approach is built on using supervised machine learning methods. Based on the 

premise each tweet ti belongs to a topic class C = (c1, …. cl), defined as a pair of 

components ti.-> cj.  

(iii) Sentiment analysis (SA), involves classifying the text into categories like ‘positive,' 

‘negative,' ‘neutral,' or on even in more detailed levels. SA tackles the problem of 

analyzing the tweets regarding the opinion they express. The sentiment orientation 

of the topic states whether the topic is positive, negative, or neutral. A set of 

sentiment S = (s1, ..., sm) are assigned to each pair ti.-> cj, (ti.-> cj) -> sl. For example, 

“I am at Neil Simon Theatre for Gigi NY in New York” has a positive sentiment 

score. 

(iv) Similarity analysis between event types provides a way to test the difference 

between event groups. We quantitatively identify which event types are related to 

each other. For example, “I am at Neil Simon Theatre for Gigi NY in New York” has 

high similarity with “New York City is a great place for artists and athletics.”  
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The output shows the relation between event types and sentiment level categories. By 

identifying the sentiment and similarity relationship between event types, the meaningful 

relations are highlighted so the decision makers (automatic or humans) and the services related 

to them can be assigned. Figure 17 shows the functional flow.  

 

 
 

Figure 17: Functional flow diagram for event type detection using Twitter as data source 

 

Therefore, in a domain of urban context-aware application, we use a case study of 

improving local services by identifying event types and adding a sentiment and similarity 

measurement from social sensors according to contextual information. 

The following, subchapters are presenting in details each of the modules in this fully 

automated event processing algorithm. 

 

 

Context-aware pre-processing and feature extraction 

 

Pre-processing is the process of preparing the text for classification, by considering the 

contextual capabilities of input text streams. For instance, online texts like tweets usually 

contain a lot of noise and uninformative parts such as HTML tags, scripts, and advertisements. 

Also, many words in the text do not have an impact on the general orientation of it. Reducing 

those words makes the dimensionality of the problem lower and hence, the classification less 

difficult since each word in the text is treated as one dimension. Proper data pre-processing can 

be summed up in the following hypothesis: to reduce the noise in the text should help improve 

the performance of the classifier and speed up the classification process, thus aiding in real time 

sentiment analysis. 



4.3 Scalable semantic event  

model                                              Chapter 4 – Contributions : Proposed Theoretical Solutions 

73 

 

Another component that influence accuracy measurement is the feature selection 

process. Features in the context of event network detection are words, terms or phrases that 

have a significant impact on the orientation of the text than the other words in the same text. 

There are several ways to assess the importance of each feature by attaching a specific weight 

in the text. The most popular ones are Bag of Words (BOWs) and Term Frequency-Inverse 

Document Frequency (TF-IDF). 

 

 

Pre-processing procedure cleaning and transformation 

 

As mentioned earlier, Twitter text data is unstructured and noisy in the sense that it 

contains slang, misspelled words, numbers, special characters, special symbols, shortcuts, 

URLs, and so forth. The text messages with these particular symbols and, images may be more 

natural for humans to read and analyze. When the text data is mixed with other types of symbols 

and pictures, processing is a challenging task compared to processing of standard text data. As 

a result, pre-processing of tweets plays a significant role in the sentimental analysis. The typical 

characteristics of tweets that make it a challenging are:  

▪ messages are very short and contain less text  

▪ the message may contain different language text  

▪ it contains special symbols with specific meaning  

▪ data contains many shortcuts  

▪ spelling mistakes 

This part of the work discusses the methodology together with Natural Language 

Processing (NLP) techniques for the efficient processing of Twitter messages for analysis 

purposes. The proposed algorithm combine cleaning and tokenization techniques together. 

Cleaning, in this case, means removing tweet messages that have less than five characters in 

length and removing URLs and other characters presented in the Algorithm 1 below. There are 

three tokenization types: Treebank-style, Whitespace, Sentiment-aware, as well as a 

combination of n-grams. This algorithm uses sentiment-aware tokenization 12 in the pre-

processing phase since it showed the best performance compared with the other two. The 

proposed algorithm is described as follows: 

 

 

 

 

 

 

 

                                                 
12 http://sentiment.christopherpotts.net/tokenizing.html 
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Algorithm 1 Context-aware pre-processing algorithm 

 

1: procedure Pre-processing of tweets  

2: for each tweet ti ∈ T  do  

3: Remove URLs, re-tweets, hashtags, repeated punctuation’s and letters 

4: if length (ti) < 10 do 

5: for each word w j  ∈ ti  do  

6: emotion icons, smilies, contractions  

7: abbreviations, acronyms 

8: misspelling words  

9: the end for transforming it into full, meaningful words  

10: Remove stop words, punctuation’s, non-English words  

11: Convert to lower case characters  

12: end if 

13: end for  

14: end procedure  

 

 

Following is an example of what the data looks like after some pre-processing steps.  

 

Original:  

“I'm at Neil Simon Theatre - @nederlanderbway for Gigi (NY) in New York, NY 

https://t.co/WIGeWlYggy 676 taaaatoooo :))))))))))) aka ILY after #nelisimontheatre” 

After removing retweets, URL, hashtags, repeated punctuation: “I am at Neil Simon 

Theatre for Gigi NY in New York NY 676 tato :) aka ILY after.” 

After conversion of smiley symbols, acronyms, abbreviation, contractors, emotion icons:  

“I am at Neil Simon Theatre for Gigi NY in New York NY 676 tato Smile also known 

as I love you after.” 

The final output, after removing stop words, numbers, punctuation characters:  

“Neil Simon Theatre Gigi NY New York NY tato Smile known love.” 

 

Emoticons are regularly used in many forms of social media; it is the same case for 

acronyms, abbreviations, and slang words. Because of these reasons, we used implementation 
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unctionality to convert smileys13, emoticons14, acronyms and abbreviations151617, contractions18  

and misspelled words19 to full, meaningful words. 

Tweets are processed by removing characters like repetitions, particular traits, stop 

words, and English stop words20. Even though collected tweets are in the English language, 

there were words in other languages, in such cases, tweets are ignored for analysis. Despite the 

advantages of reducing vocabulary, shrinking feature space and removing irrelevant 

distinctions and icons, pre-processing can collapse relevant distinctions, that are necessary for 

analytical purposes. Pre-processing text data improves the quality of text for analysis; whereas, 

coming to twitter data, because of short messages, pre-processing may end up with messages 

with no text data left for the Twitter message. In many cases, after pre-processing, some of the 

Twitter messages contain one or two words or less than ten characters. Some messages contain 

many punctuation marks, stop words, numbers, and non-English words that would not convey 

any information about the context, and are not used for analysis.  

 

 

Feature extraction 

 

Text data is a sequence of words, and these words cannot be fed directly to the machine 

learning algorithms for analysis purposes. Most of the algorithms expect binary feature vectors 

with a fixed size rather than the raw text with variable length. To address this, we need to use 

techniques that provide utilities to extract numerical features from text content. We use the most 

frequently used features called Bag of Words (BOWs) and Term Frequency-Inverse Document 

Frequency (TF-IDF) vector representations to represent text messages regarding a feature vector. 

In most of the NLP applications, BOW’s and TF−IDF features are frequently used for text 

processing applications, blogs, classification of micro-blogs as well as news and scientific 

articles.  

Even though these functions are extensively used for most of the text processing 

applications, a brief explanation is included: 

 

1)  Bag-of-Words (BOWs) 

                                                 
13 http://www.netlingo.com/smileys.php 
14 http://en.wikipedia.org/wiki/List of emoticons 
15 http://marketing.wtwhmedia.com/30-must-know-twitterabbreviations-and-acronyms/ 

16 https://digiphile.wordpress.com/2009/06/11/top-50-twitteracronyms-abbreviations-and-initialisms 
17 http://www.muller-godschalk.com/acronyms.html 
18 http://www.sjsu.edu/writingcenter/docs/Contractions.pdf 
19 https://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings 
20 http://xpo6.com/list-of-english-stop-words/ 
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This model represents text as an unordered collection of words, disregarding the word order. 

In the case of text classification, a word in a text message is assigned a weight per its frequency 

in the text messages. The BOW representation of Twitter text message ‘tn’ is a vector of weights  

‘W1n, ..., Wwn’ 

Where ‘Win’ represents the frequency of the ith term in the nth text message. The 

transformation of a text message ‘T’ into the BOWs representation enables the transformed set 

to be observed as a matrix, where rows represent Twitter text message vectors, and columns are 

terms in each Twitter text message [115].  

For example,  

Original sentence S1 = “Neil Simon theater gigi ny New York ny tato smile known love.” 

Dictionary {neli, simon, theatre, gigi, ny, new, york, tato, smile, known, love, trying, 

bike, miles, week, biking, work, friday, park, fun} 

S1 – [ 1 1 1 1 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ] 

 

2) Term Frequency and Inverse Document Frequency (TF-IDF) 

It is a feature vector representation method where shared and rare terms in the text messages 

are normalized so that rare terms are more emphasized along with successive terms in the text 

messages. Term frequency TF (ti, T) is the number of times the term ‘ti’ appears in a Twitter text 

message ‘tm’, while document frequency DF (ti, T) is the number of Twitter text messages that 

contain the term ‘ti. If we use term frequency to measure the importance, it is possible to 

exaggerate terms that appear frequently but carry little information about the Twitter text 

message. If a term often appears across all the Twitter text messages, it means it does not carry 

special information about a text message. Inverse document frequency is a numerical measure 

of how much information a term provides and it is defined as follows: 

 

TF−IDF (ti, tm, T ) = TF (ti, tm) × IDF (tm, T)            

IDF (ti, T) = log (
𝑇

1+ |𝑡𝑚 ∈𝑇∶ 𝑡𝑗 ∈𝑡𝑚|
)                         

 
Equation 9: TF-IDF numerical measure 

 

Where |T | is the total number of text messages in the corpus. Since logarithm is used, if a term 

appears in all text messages, its IDF value will become 0. Note that a smoothing term is applied 

to avoid dividing by zero for terms outside the corpus. 

For example,  

Original sentence S1 = “Neil Simon theater gigi ny New York ny tato smile known love.” 
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Sentence (tweet) 1 contains 12 words where words "ny" appears 2 times, so  

tf = 2/12 = 0.167.  

If there are 1000 sentences (tweets) and word "ny" appears 200 of them, then  

idf = log(1000/200) = 0.7, and tf-idf = 0.167 * 0.7 = 0.12. 

 

Categorization, sentiment and similarity score 

 

 After tweet messages are converted to vector space model format, they are ready to be 

processed. The first step is a categorization of event types. 

 

Categorization of event types 

For a given tweet ti ∈ T, the classification algorithm is used to label the tweet as event-

related or non-event related by approximating the function f: T → C mapping tweets to 

their respective classes C = {Event Type1, Event Type2, …, Other} 

 

Classification of online stream tweets helps to find valuable information up to date for 

each type of category. In this paper, tweets are analyzed and classified into predefined 

categories using supervised learning techniques: Naive Bayes, Support Vector Machine and 

Random Forest classifiers. These approaches are used for automatically classifying the tweets 

into predefined categories. Later, these classified tweets can be further analyzed to extract 

knowledge and sentiments for information providing purposes. The most challenging part of 

classification task is building the models that can be used to classify the online tweets 

automatically. The three different approaches used for classification of tweets are described as 

follows: 

 

▪ Naive Bayes’ Classifier 

It is a probabilistic classifier which interprets the function ci(tj) regarding P(ci/tj). It 

represents the probability that a vector tj accounts for a tweet tj =< w1, j,...,w|T| j > of 

terms, which belongs to category ci, and determine this probability by using the Bayes’ 

theorem, defined as: 

𝑃 (
𝑐𝑖

𝑡𝑗
) = 𝑃(𝑐𝑖)×𝑃(

𝑡𝑗

𝑐𝑖
) 

 

Equation 10. Definition of Bayes’ theorem 

 

Where P(tj) is the probability that a tweet was chosen at random, has the vector tj for its 

representation; and P(ci) is the likelihood that a tweet chosen at random, belongs to ci. The 

probability estimation P(ci/tj) is problematic since the vector number tj possible is too high. 
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For this reason, it is common to make the hypothesis that all vector coordinates are 

statistically independent. Therefore : 

𝑃 (
𝑡𝑗

𝑐𝑖
) =  ∏𝑃(

𝑤𝑘𝑗

𝑐𝑖
)

𝑇

𝑘=1

 

 
Equation 11. Definition of Bayes’ theorem, vector coordinates are statistically independent 

▪ Support Vector Machine (SVM) 

It is a discriminate model where it tries to find optimal separating hyperplane between 

two classes of examples. This method can be considered as an attempt to know between 

surfaces σ1,σ2,... of a dimension space |T|, what is separating examples of positive training 

from negative training examples. The set of training is defined by a set of vectors associated 

with the belonging category, where yj represents the belonging category. 

 

(𝑥1,𝑦1),… , (𝑥𝑛,…,𝑦𝑛) 𝑋𝑗 ∈  𝑅𝑛, 𝑦𝑗 ∈  +1,1 

 

In a problem with two types; the first one corresponds to a positive example (yj = +1) and 

the second one corresponding to a negative example, (yj = −1) Xj represents the vector of 

the text number ‘j’of the training set. The SVM method distinguishes vectors of positive 

category from those of adverse category by a hyperplane defined by the following equation: 

 

𝑊 ⨂𝑋 + 𝑏 = 0,𝑊 ∈  𝑅𝑛, 𝑏 ∈ 𝑅 
 

Equation 12. Definition of Support Vector Machine 

 

Such a hyperplane is not unique. The SVM method determines the optimal hyperplane by 

maximizing the margin. The margin is the distance between vectors labeled positively and 

those labeled negatively [130] [79]. 

 

▪ Random Forest   

The Random Forest has many individual trees, where each tree votes on an overall 

classification for the given set of tweets and the algorithm chooses the individual 

classification with the most votes. The model is based on a different random subset of 

training tweets, and a random subset of available variables is used for deciding how the best 

to partition the data set. Each decision tree is built to its maximum size, and the outcome 

decision tree models constitute the ensemble model where each decision tree votes for the 

result and the majority wins [32]. 
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Sentiment analysis 

 

Sentiment analysis (SA) on already determined classes of relevant information from 

online stream tweets helps determines public opinions. We chose a method that uses a 

representation of the whole sentence based on the sentence structure, the order of words is  

considerate, as provided by the library from Stanford CoreNLP 21. Also, this library supports 

five level of sentiment: Strong Negative, Negative, Neutral, Positive, and Strong Positive. We 

applied SA after event detection step, and now we have a more detailed view of the context of 

the trending topics. 

An SAs, in this case, is very helpful, it adds a new value in measuring public opinion as 

well as know how to best harness the potential benefits of public services. For instance, the 

knowledge based on the observations for the last period of weeks, months or years shows us 

how the trends per topics and sentiments have changed per location. So the decision makers 

can use this knowledge for allocating possible resources in the future or taking some actions 

for prevention. Another example is, if an event in central park is detected and the sentiment is 

negative or neutral, then this knowledge can be used by the services related to navigation for 

runners or walkers and will reroute their paths. The recommender systems, in this case, will 

adjust their algorithms to include sentiment analysis and weigh differently services that receive 

a lot of negative feedback or fewer instances. However, the importance and sensitivity of the 

topic (emergency, earthquake) are highly relevant, in this case, the frequency of the tweets for 

the negative context can be lower. In the case of real-time processing, as topics and sentiments 

are changing, service recommendation needs to change adequately, too. 

 

 

Similarity analysis 

 

We also gauge the similarity between generated categories to find which of them are 

more similar, to provide better service. We use it to determine the sentiment with similarity 

index. The Euclidian similarity metric was applied to categories to measure how similar they 

are and Ward [154] clustering method to group them in clusters. The results were presented 

using dendrogram representation. Ward’s method calculates the distance between two event 

clusters, A and B, as a sum of squares that increase when we merge them. In case of hierarchical 

clustering, the sum of squares starts out at zero (because every point is in its cluster) and then 

increases when the cluster merge. Ward’s method is keeping this increase as low as possible. 

This solution is right for cases when the sum of squares should be low. Ward’s method prefers 

to merge the smaller ones. Solving this trade-off enables us to show the behavioral 

heterogeneity of the entities that compose the analyzed system. 

                                                 
21 http://nlp.stanford.edu/sentiment/code.html 
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Evaluation measurement 

 

We evaluate the proposed solution using the evaluation metrics for event type 

classification, sentiment, and similarity score.  

For evaluating the event type methods, text network data is separated into a training data 

set which is 80% of the whole data set and test data set which represents 20% or the whole data 

set. The output results are presented in confusion matrix and the performance metrics used to 

evaluate the classification results are accuracy, precision, recall, and F-measure (F1). Those 

metrics are computed based on the values of true positive (TP), false positive (FP), true negative 

(TN) and false negative (FN) assigned classes.  

 

Accuracy =  
TP +  TN

TP + TN + FP + FN
 

 
Equation 13: Accuracy based on confusion matrix 

Precision represents the number of true positives out of all positively assigned 

documents, while recall represents a number of true positives out of the actual positive 

documents, and it is given by the equation 14. Finally, F-measure is a balanced method of 

precision and recall, where its value ranges from 0 to 1 and indicates better results the closer it 

is to 1. It is used to represent the results better in the case of unbalanced datasets. 

          

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 
Equation 14: Precision, Recall, F1 - metrics based on confusion matrix 

 

The results based on the metrics are presented on the table for visualization purposes 

for easier understanding. 

 

 

Sentiment measurement 

 We measure the number of sentiment scores per event type. There are five sentiment 

scores; they are strong negative, negative, neutral, positive, and strongly positive, represented 

as 𝑆𝑐𝑖=1
5 . For each event type class 𝐶𝑗=1

16 , we have the following formula : 
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𝑆𝑝𝑗
𝑖 = 

∑𝑆𝑐𝑖

∑𝑇𝑗
, 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, . .16; 𝑖 = 1, . . ,5 

 

Équation 1. Sentiment measure for class and type 

 

The results are represented an online figure that presents the rising trend per topic and sentiment. 

 

Similarity measurement 

A similarity measure for Ward algorithm says that the distance between two clusters, 

A and B, is the sum of squares between them added up over all the variables. The formula 

represents distance method: 

 

𝑑(𝐴, 𝐵) =  
𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵

‖�⃗⃗� 𝐴 − �⃗⃗� 𝐵‖ 

 

Équation 2 Ward distance method [154] 

 

Where 𝑚𝑗 is the center of cluster j, and 𝑛𝑗  is the number of points in it, d is called the merging 

cost of combining the custers A and B. 

 The results are represented using dendrogram figure that shows the group of clusters of 

similar topics. 

 

 

Discussion 

 

In this sub-chapter, we present an integrated fully automated event processing system 

for detecting high-level topics reported as network text data. We developed an efficient pre-

processing algorithm where every word is essential for analysis and supervised event 

identification was performed in several stages like feature selection and classification. Our 

experiments suggest that a Random Forest classifier combined with TF-IDF yields better 

performance than many leading classifiers. We also showed that combining classification 

methods with other algorithms like sentiment and similarity provides a deeper understanding 

of the detected event types in each location. We validate by using data from social networks 

like Twitter.  

 

The next sub-chapter explains the generic approach that integrates several complex data 

streams with an ontology for event semantic analysis. 
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4.3. Scalable semantic event model  
 

Processing practical problems require a combination of information from different 

sources. Heterogeneous events arrive from various sources, physical sensors (e.g., temperature, 

traffic accidents, video cameras) and social sensors (e.g., Twitter). They come in different 

formats such as for instance text, numerical, image, and video. This variety of data needs to be 

converted into a standard representation that is generic and does not need to be redefined for 

every new data source selected. Furthermore, the description needs to capture enough semantic 

and computational detail so that it can support a variety of situation recognition tasks.  

We need an event model that fits various data streams into a standard structure that 

allows various data streams to be used by multiple services, thus making data integration and 

processing easier. The fundamental question is related to sharing and the integration of data 

which are separated because of their type or different collection methods. Contextual access 

and use of these data types are fundamental, as well as location-based services for which the 

objective is to increase data and service utility, achieve contextual and location-based usability, 

and share a standard metadata specification. Based on this, the following research questions are 

generated: 

 

- How to frame complex data streams from different data sources and types?  

- When is schema structure (event model) more appropriate for event streams? 

- What is the most suitable event model to represent events? 

- What event model proposed to tackle this problem? 

- How to identify automatically relevant data streams? 

- How to integrate incomplete event streams? 

- How to consider event semantics analysis? 

- How to handle scalability in the event model regarding Event attributes and event 

data streams? 

 

As we mentioned in chapter 2.1, events can be categorized as low-level events coming 

from GPS, accelerometers, microphones, or cameras, and high-level events concerning 

punctuality, traffic congestion, and driver safety. In our use case context, where we consider 

that the event is something that is happening in the real world at a specific place, at a particular 

time, and which has a thematic dimension to be captured by a topic name. Every event belongs 

to the particular type; event types are pre-defined in the application domain of interest.  
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Overview and design of event model 

 

Event models match metadata fields for the data streams that carry or pertain to events. 

The most basic metadata fields for event models are time, location, and data type. The model 

primitives idea is that the core data message is independent of any application. What metadata 

fields go beyond the primitive? Pongpaichet et al. [112] use approach that data fields should be 

determined during the “thought process” of setting up a system. We follow this logic when we 

are specifying “parameters” for our model. Most devices would have the following fields: 

timestamp, location, several readings associated with the apparatus (e.g., temperature, voltage, 

acceleration, power). Also, the model needs to provide a mechanism to deal with data 

duplication, normalization, time-frame detection, geocoding, event encoding, classification, 

multilingual support, handling contextual features, temporal and geographic information. 

We survey the existing event models based on (i) content and (ii) deployment. By (i) 

content, they are categorized by domain type and data fields they support, while (ii) deployment 

provides information on how to use them into the existing event-based architectures and 

systems. 

 

Our model is represented in Unified Modeling Language (UML) and has three main classes 

(Figure 20): EventSource, EventProfile, and Event.  

 

 
 

Figure 18: UML representation of the data event model 

 

Each table 𝜏 = (𝑇,𝐻, 𝑝) is characterised with 𝑇 = 𝑡𝑎𝑏𝑙𝑒 𝑛𝑎𝑚𝑒, 𝐻 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑛𝑎𝑚𝑒, 𝑝 =

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. Where T = {EventSource, EventProfile, Event}, or 𝜏𝑖 = (𝑇𝑖, 𝐻𝑖, 𝑝𝑖), 𝑓𝑜𝑟 𝑖 = 1,2,3. 
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The EventSource class represents the data related to sensors and devices. It has the 

following characteristics: ”agent” that has information for the event source, such as the weather 

channel or county police. “address” is the address from where data was collected, “device type” 

is for the device type, such as temperature sensors, mobile devices, and so forth, “parameters” 

are for the additional information related to the sensor or device, such as serial number, model, 

and battery expiration date. 

The EventProfile class represents metadata about the data event stream. The 

“description” field provides information about the data that is being stored for services. The 

“data frequency” presents the expected data stream rate to be received, whereas the “type of 

data” provides information about the collected type of data. The “parameters” can characterize 

any additional information related to the data event stream that is important, like measurement 

type, or expected states. 

 

The Event class represents the data related to event occurrence, such as rain, high heart 

rate, pedestrian violation, or car incident. It has the following characteristics: “description” 

describe the events. “startTime” represents the date and time when the event started, “end time” 

represents the date and time when the event ended. Parameters for the Event represent 

additional information that is helpful for a particular service or contextual rule. For instance, 

the expected frequency of “startTime” and “endTime” can be set by adding a parameter to the 

EventProfile. The events could be in original form, or they could be previously aggregated and 

then sent at some predetermined frequency. 

 

Location metadata is essential, but it is not presented in the diagram because for some 

cases it can change depending upon the service. For example, in case of stationary devices, 

“location” is stored with the device information, whereas for mobile devices, it is required to 

correspond to events continually. Metadata fields within the three classes of our event model 

are defined below. Some services require only its specified metadata fields, whereas other 

services require a consideration of which parameters are relevant. EventSource and 

EventProfile send their data at model initialization, whereas the Event class sends data 

continually. Data from the Event class is filtered using rules or machine learning into instances 

relevant to the service. 

For example, Figure 21 presents event model for weather data stream, which is 

considered as semi-structured data input. We also tried other mentioned data sets like non-

structural data sets (e.g., police reports and community events). 
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Figure 19: Event model metadata for weather data stream 

 

Alternatively, represented by formal language: 

 

𝜏1 = (𝑇1 = 𝐸𝑣𝑒𝑛𝑡𝑆𝑜𝑢𝑟𝑐𝑒, 𝐻1 = 𝑎𝑔𝑒𝑛𝑡; 𝑈𝑅𝐿; 𝑟𝑎𝑑𝑖𝑢𝑠; 𝑢𝑛𝑖𝑡; 𝑐𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒 ; 𝑙𝑎𝑡. 𝑙𝑜𝑛𝑔; 𝑑𝑒𝑣𝑖𝑐𝑒𝑡𝑦𝑝𝑒,

𝑝1 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑔𝑙𝑒) 

𝜏2 = (𝑇2 = 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑓𝑖𝑙𝑒, 𝐻2 = 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛; 𝑑𝑎𝑡𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦; 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎, 𝑝2 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑔𝑙𝑒) 

𝜏3 = (𝑇3 = 𝐸𝑣𝑒𝑛𝑡, 𝐻3 = 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛; 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 , 𝑠𝑒𝑛𝑑𝑡𝑖𝑚𝑒 , ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑝3 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑔𝑙𝑒) 

 

If the information is created by combining multiple data, to keep track of the process of 

information and to be able to select the sources of information accurately, it is necessary for the 

information to be annotated [27]. Semantic annotation helps to describe better and use the 

related quality parameters of city data in this case. Semantic models provide interoperable 

descriptions of evidence, and of their quality and provenance attributes. To make semantics 

scenario independent and to be able to annotate fast and the process, we use upper-level and 

lightweight semantic models. Moreover, as the data parameters of the data sources update, the 

changes can be linked to their semantic descriptions. So the processing applications can assess 

the semantic descriptions to determine the quality parameters of the data descriptors. For 

complex data that are integrated from multiple sources, provenance parameters can help to trace 

the variety of information on each origin and quality aspects of the processing algorithms and 

methods that are applied to the data. 

 

The metadata fields in our model, align with those in the DOLCE ontology. Some 

alignments by entities are presented in the following table: 
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DOLCE EM 

Social Agent Agent 

Physical Quality Device type 

Physical Region EventSource-

Address 

Feature Event-Profile 

Description 

Temporal Region Data frequency 

Process / 

Achievement / State 

Event-Description 

Temporal Quality Time 

Physical Region Event-Location 

 
Table 6. Aligning Event model with DOLCE ontology 

 

Event description fields can be in alignment with Process, and Achievement and State it 

depends on the type of the events of interest. The relation between entities can be defined based 

on the functionality between two entities, for instance, the relation between EventSource and 

EventDevice is it ‘hasComponent,' and between EventDevice and Event is it ‘includesEvent.' 

 

 In this part, we defined and described the unified event data model. The next section 

explains how the data streams automatically fit into the model and how we can extract the 

outgoing event streams. 

 

 

Modeling rules for inbound and outbound data event streams 

 

The process of modeling complex data streams has five steps (see figure 22). Step 1 is 

getting the data into the data event model, Step 2 is structure events in generic data format, Step 

3 is extracted events of interest, and Step 4 is separated into two sub-steps, visualization, and 

prediction and visualization. Step 4 is divided into two phases because it depends on the 

application requirements, some of them require making future event predictions. 

The next part explains Step 1 and Step 3 in more details. 
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Figure 20: Event model data-flow diagram 

 

 

Modeling incoming data streams 

 

Getting data into the model includes event detection and matching metadata field names. 

Therefore, to identify the right events some of the data enrichment methods can be used, such 

as classification algorithms mentioned before in Chapter 4.2 or using some of the recent Named 

Entity Recognition (NER) tools that can extract people, organization, location, and other objects 

that are proper nouns. However, when the data flow does not include metadata, or when it is a 

natural language stream than Natural Language Processing (NLP) tools will employ data 

extraction and efficient preprocessing as the one explained in chapter 4.2. 

However, heterogeneous of events that arrive from various sources like sensors and 

social media have inherent uncertainties associated with them. This is one of the challenges of 

dynamic event modeling that we are trying to solve. For instance, very often we can face 

incomplete streams regarding time and location of the events. Our approach is to meet these 

challenges by creating rules that handle known uncertainty at the attribute level. We create rules 

for handling the common types of uncertainty, that may be found in event processing. For 

example, instead of a city name field, there is a location field with longitude and latitude value. 
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We choose rule-based method because it is fast, which makes it applicable to many types of 

systems. We focus on handling the uncertainty in cases of insufficient event dictionaries, 

erroneous event recognition or certainty in the event input and uncertainty in the composite 

event pattern [14], or according to [55], it is uncertainty regarding event attributes. Like the 

previous example with the location, if some of the attributes are missing we created a rule 

finding an alternative attribute that will give as the value. Alternatively, represented by 

conditional statements, such as 

 

𝑖𝑓 ( 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑐𝑖𝑡𝑦, 𝑠𝑡𝑎𝑡𝑒) 𝑓𝑟𝑜𝑚 𝑑𝑎𝑡𝑎 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙) 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔)  

𝑡ℎ𝑎𝑛 𝑢𝑠𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔) 

 

Also, we use probabilistic methods for the usability challenge, with the focus on specific 

application. 

 

 

Modeling outgoing data streams 

 

Outgoing data streams are results of applied event design patterns, like aggregation, join, 

correlation, filtering, pattern matching and so forth. Complex event processing applications 

correlate data streams as events occur, by using pre-defined rules to identify events of interest. 

Event stream processing deals with the task of processing streams of event data with the goal 

of identifying the exact pattern within those streams, employing techniques such as detection 

of relationships between multiple events, selection, projection, join, event correlation, event 

hierarchies, and other aspects such as causality, membership, and timing. 

 

For example, if we have two events of interest and we want to use join and selection 

design patterns, we can formally represent them as follows, 

Let 𝜏 = (𝑇,𝐻, 𝑝) be a table and C conditions on H, the output obtained by C-selection 

is the table 𝜏𝐶 = ((𝑇 𝑤ℎ𝑒𝑟𝑒 𝐶), 𝐻, (𝑝 𝑤ℎ𝑒𝑟𝑒 𝐶)) where the relation p consist of all tuples that 

satisfy the condition C. 

Let 𝜏1 = (𝑇1, 𝐻1, 𝑝1) and 𝜏2 = (𝑇2, 𝐻2, 𝑝2) that have attributes in common. The 

natural join of the tables 𝜏1 𝑎𝑛𝑑 𝜏2 is the table 𝜏 = 𝜏1 ⊠ 𝜏2 = ((𝑇1 ⊠ 𝑇2), 𝐻1, 𝐻2, 𝑝1 ⊠ 𝑝2).  

 

Concrete case is:  

𝑇1 = 𝐸𝑣𝑒𝑛𝑡, 𝑇2 = 𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑓𝑖𝑙𝑒,  

𝐻1 = {description, humidity, temperature}, 𝐻2 = {𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛},  

C =  {start_time =  3/11/2015, end_time =  4/11/2015} 

 

𝜏 = ((𝑇1 ⊠ 𝑇2), 𝐻1, 𝐻2, (𝑝1 ⊠ 𝑝2) 𝑤ℎ𝑒𝑟𝑒 𝐶)  
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𝜏 = (
(𝐸𝑣𝑒𝑛𝑡 ⊠  𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑜𝑓𝑖𝑙𝑒), 𝐻1, 𝐻2, (description, humidity, temperature),

 𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 =′ 𝑤𝑎𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠′ )  

 

Another very used design pattern is correlation coefficient. It is a number that quantifies 

the statistical relationship between two or more random variables or observed data values 22.  

The correlation function is a function that gives the statistical relationship between the variables 

considering the spatial and temporal distance between them. For instance, if X(s) and Y(t) are 

random vectors of events with n elements the correlation function is  

 

𝐶𝑖,𝑗(𝑠, 𝑡) = 𝑐𝑜𝑟𝑟(𝑋𝑖(𝑠), 𝑌𝑗(𝑡)) 

 

Equation 15: Correlation function between two random vectors 

Correlation functions are a useful indicator of dependencies between events and can be used as 

a basis for creating interpolation rules. There are several types of correlation coefficients: 

Pearson, Rank (Spearman’s, Kendall tau, Goodman and Kriskal’s gamma), Interclass 

correlation, and Chi-Square. For categorical data, Chi-Squared is used, while the rest of them 

are used for continuous data. The most common are Pearson correlations, and it is good when 

the variables have a linear relationship, while for non-linear there is another method like Rank. 

For the analysis, we applied spatial correlation which is defined per city and zip code.  

In the context of sensor data, the essential characteristics are that nearby sensor nodes 

probably register similar values. Distance correlation is a measure of the statistical 

dependencies between two events of vectors of events. It is calculated by dividing their distance 

covariance by the product of their distance standard deviations. The choice of correlation 

function and patterns depends on the requirements defined by the application scenario. 

 The output results of this phase can be visualized and presented to decision makers or 

multisensory prediction algorithms used for making future assumptions.  
 

 

Event model in event processing architecture 

 

In complex event processing applications or services, data streams are containing events 

produced by resources such as people, devices or sensors. They are filtered for event changes 

of interest, called instances. The diagram in Figure 23 shows event trace in typical Complex 

Event Processing (CEP) architecture. Data is received from multiple event sources, events are 

detected, and an appropriate response is triggered. The sequence diagram presented in Figure 

23 resembles the official event-driven architecture proposed by Fujitsu [55], Microsoft, IBM, 

and Oracle. 

                                                 
22 

http://www.ncme.org/ncme/NCME/Resource_Center/Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=

4bb87415-44dc-4088-9ed9-e8515326a061#anchorC 



4.3 Scalable semantic event  

model                                              Chapter 4 – Contributions : Proposed Theoretical Solutions 

90 

 

 

 
 

Figure 21: Event trace sequence diagram 

Complex event processing architecture, with arrows showing event-data sequence direction. An event model is a 

component. Arrows indicate event stream flow. 

 

On the left side are various sensors such as reports, temperature, cameras, traffic light, 

mobile phone, smart cars, social networks and so forth. All of them send information to the 

system for processing. The first step is using event detection methods like rules to filter the true 

events, as well as to detect any uncertainties. Previously in modeling rules for incoming data 

streams, we explain this part in more details.  

On the right side are data processing and visualization. Note that the vertical box in 

Figure 23, “Event instances in the model,” where the data is organized to be stored in a database 

server or event cloud, is central to the process. Data processing and visualization contain the 

methods we describe previously in modeling outgoing data event streams.   

The event model can be part of the CEP architecture. It can be used in a variety of 

technology platforms, like relational and non-relational management systems, and stream 

software. Therefore, it is not dependent on technology and language, since it only presents the 

design concepts and logic. 
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Evaluation metrics 

 We evaluate the proposed solution by splitting the input data on training 80% and testing 

20% for each weather season, like Winter (from January to March), Spring (from April to June), 

Summer (from July to September, and Fall (from October to December). The output results are 

presented in a confusion matrix and the performance metrics used to evaluate the classification 

results are accuracy and standard deviation. Accuracy is calculated using the Equation 13: 

Accuracy based on confusion matrix and Equation 14: Precision, Recall, F1 - metrics based on 

confusion matrix. While standard deviation is calculated using the following formula 

 

𝝈 =  √
𝟏

𝑵
∑(𝒙𝒊 − 𝝁)𝟐

𝑵

𝒊=𝟏

 

 

Equation 16. Standard deviation measure 

The choice of evaluation metrics depends on the algorithms used for making predictions or 

other calculations, plus from the precision of the event detection method. 

  

We better result interpretation we visualize the results using a geographical map. 

 

Discussion 

 

In this sub-chapter, we have presented event model that describes sensor information 

including location attribute, observation object, time and event, it fits different data types into 

the same schema, thus making data integration easier. The presented model requires a minimum 

of metadata fields, and it is efficient, minimizing the amount of network traffic by linking a 

continuous time-dependent data stream to non-time dependent meta-information stored on an 

event server or cloud. We also explained how the overlap among different types of evidence 

sources could be handled by an upper-level ontology like DOLCE. The data field types in our 

model are aligned with DOLCE categories to facilitate getting data from different streams into 

the same pattern. We also have discussed how the users can deploy the event model into the 

existing event processing tools, fill it with data and extract the data of interest from the model.  

The presented solution has functionality for event detection and uncertainty before data 

goes into the model. We demonstrated data modeling and show flexibles rules to guide the 

deployment of our event model in a city service. 

 

In the next subsection, the multi-model predictive algorithm adaptable to data stream 

changes such as network leakage, power down, sensor battery low and so forth is presented. 

This resilience characteristic enables continuity of service for proactive time prediction. 
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4.4. Dynamic network model 
 

Smart city design seeks to optimize city services, improving the resident experience and 

reducing waste, through intelligent use of citywide data. Smart city services are expected to 

respond appropriately to changing conditions, requiring regular data updates on the status of 

citywide properties, such as weather, road conditions, and infectious disease case numbers. 

Consequently, optimal deployment of critical resources will depend on data streams. For 

example, in the event of a disease epidemic, current medical statistics will be used to ensure 

that ambulances, drugs, and vaccine resources are intelligently distributed to the worst hit 

neighborhoods and those predicted to be at high risk. In the case of a powerful storm that 

disrupts traffic, traffic data will be used to distribute police resources for traffic guidance based 

on current and predicted traffic patterns. In the case of changing crime rates throughout the city, 

crime statistics and predictions will be used to ensure that police, medical, and emergency 

resources are intelligently distributed to reduce response time. As city services become more 

dependent on smart city data streams, the services also become more susceptible to disruptions 

in the data streams. Such disruptions can affect critical services, for instance, by increasing 

ambulance response time. Interruptions in data streams and the resulting loss of data can occur 

for any number of reasons, including anomalous signal to noise reduction, power loss during 

data collection, or data loss on a network level, either benign or malicious. Additionally, due to 

the spatial and temporal dependence of smart city data streams, with data collected periodically 

by distributed sensors or local human-based reporting, spatiotemporal events can impact data 

service. For example, a storm can knock out neighborhood-wide communications, interrupting 

data collection as the storm travels from one location to the next. For these reasons, smart city 

services require a level of resilience to data stream disruption.  

To improve smart city applications, resilience to data loss, such a scheme must be 

implemented. As data disruptions occur and data loss is identified, the lost data is estimated 

with minimal prediction error to reduce the impact of the data loss on dependent services. Based 

on this we identified these research questions: 

- How can a predictive model based on knowledge be created?  

- How do we efficiently identify relationship links between data streams? 

- What is an appropriate prediction model? 

- How can the prediction model be adapted? 

- How to integrate scalability for the model that you can choose? 

- How to graphically present the network dynamics and relationship between data 

streams for decision makers from city representatives? 

 

To find the answers, we propose an application-layer algorithm that can be used to 

ensure resilience across regions of different scale, from smart neighborhoods to smart countries, 

and establish both inter- and intra-smart city networks.  
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Design phases of dynamic network model 

 

Sets of multivariate, spatiotemporal smart city data streams such as the status of multiple 

traffic lights, the number of locally available vaccine units, and neighborhood air quality are 

represented by 𝒀 = [𝒚𝑘=1, 𝒚𝑘=2, … , 𝒚𝑘=𝑁], where the superscript 𝑘 ∈ {1,… ,𝑁} provides the 

data stream index for a set of N data streams.  For spatial data, each index 𝑘 corresponds to a 

location. Individual data streams are represented by a time-series vector 𝒚𝑙 =

[𝑦𝑡=0
𝑙 , 𝑦𝑡=−1

𝑙 , … , 𝑦𝑡=−𝑣
𝑙 ] with the subscript 𝑡 providing the time series sample index, beginning 

at the time of interest to be predicted 𝑡 = 0 and extending to v periods in the past 𝑡 = −𝑣. An 

individual data stream 𝒚𝑙 thus has dimensions ℝ𝑝 and the set of N data streams 𝒀 has 

dimensions ℝ𝑁×𝑝. A snapshot of the state across all streams at time t is given by 𝒚𝑡 =

[𝑦𝑡
1, 𝑦𝑡

2, … , 𝑦𝑡
𝑁]. For this work, we assume that all data streams are simultaneously sampled at 

regular time intervals. Data loss in a data stream is indicated by the absence of data at a time, 

𝑦𝑡
𝑙 = ∅. 

We created a dynamic network-based model that provides improved and reinforced 

resilience to data loss. The VAR-based mode uses past data from the data stream of interest as 

well as data from ‘related’ data streams – streams that share temporal trends, to achieve optimal 

estimation accuracy. The model dynamically identifies the optimal set of data sources to 

reinforce the resilience of each data stream with Granger causality and MDS analysis. Model 

dynamics is achieved through recurrent updates, which identify the optimal network for each 

data stream to maintain optimal estimation accuracy. 

 An example is shown in Figure 24. Three data streams are presented with their values 

indicated for times t-4 through t5. At time t0, the data stream of interest 𝒚1 experiences data loss. 

(Now the data for times t1 through t5 have yet to be collected.) Resilience in the data stream can 

be established by estimating the lost data using auto regression (AR) – extrapolating the value 

of 𝑦0
1 from past data. Alternatively, if either available data stream 𝒚2  or 𝒚3 shows similar trends 

to data stream 𝒚1, information from that stream can be used to improve the estimate of 𝑦0
1 using 

VAR. During the period of 𝑡 = {−4,… ,5}, there are four potential resilience models which can 

be evaluated for their utility in reinforcing estimation of 𝑦𝑡
1:  

1) AR using only data stream 𝒚1: �̂�0
1 = 𝑓(𝒚1) 

2) VAR using data streams 𝒚1 and 𝒚2: �̂�0
1 = 𝑓(𝒚1, 𝒚2) 

3) VAR using data streams 𝒚1 and 𝒚3: �̂�0
1 = 𝑓(𝒚1, 𝒚3) 

4) VAR using all three data streams: �̂�0
1 = 𝑓(𝒚1, 𝒚2, 𝒚3) 

 

Data streams 2 and 3 are first tested for shared trends with data stream 1 using the 

Granger causality test and MDS to determine the viability of models 2-4. If shared trends are 

identified, the models are gauged for their performance at each period, performance ranks the 

models, and the best performing model is selected for implementation. If instead a supporting 

data stream is found not to provide utility, that data stream can be removed from the prospective 

analysis, reducing the amount of data traffic required for the network. In this example, model 2 
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is determined to provide optimal performance for period 𝑡 = {−4,… ,0} and once data has been 

collected for 𝑡 = {1,… ,5}, model 3 is found to provide the best performance for this period. 

Models 2 and 3 are graphically represented by a directed graph, with edges connecting from 

the node representing 𝒚2 or 𝒚3 to the node representing 𝒚1 (See Figure 24). If an issue is 

identified with the optimal resilience model, e.g., the supporting data stream stops reporting, 

then the next best performing model is chosen, and so on. 

The set of all top performing, concurrent models for all data streams composes the 

resilience network. The network is represented by the resilience network graph – the collected 

graphical representation of all concurrent models. A user determined intervals; the system is 

iteratively updated, re-evaluating the performance of each model to update model rankings and 

identify and implement the optimal model. This provides dynamics to the resilience system, 

allowing it to run independently and self-adapt to issues in the data streams such as a reduction 

in data stream quality, the loss of an entire data stream, or the addition of a new data stream that 

may contribute to higher performing resilience models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22: An illustration of three event-based data sources y1, y2, y3 and dynamic model adaptation over time t-4,…, t5 

depending on data stream changes. 

 

 

The resilience network methodology is diagramed in Figure 25, with each step 

explained below. The system begins with preprocessing the data streams, followed by 

relationship analysis for sets of streams. Relationship analysis is performed to reduce the search 

space for optimal resilience models, as described below. Potential resilience models are then 

evaluated, the optimal models are selected, and the network is identified. These steps are 

iterated at user-determined intervals to maintain an updated, optimal resilience network. 

Qualitative analysis is also used to determine the correlations between the network and any 

pertinent data relating the data streams. Through this qualitative analysis, additional 
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information sources can be used to reduce the search space of potential resilience models and 

subsequently reduce computation time and cost.  

 

 
Figure 23: Overview of the proposed solution  

Data analytics framework with periodically based iterations. The right side represents the first two steps which constitute the data 

preprocessing (a) step: (a’) data wrangling and (a’’) data normalization. Next step is data stream relationship analysis (b), used to identify 
the streams that share temporal trends and narrow down the hypothesis space of potential data sharing models for the network. Step (c) is to 

determine the list of best models for analysis based on minimum prediction error, and step (d) is dynamic implementation of the set of best 

models and available resources 

 

 

a) Data Preprocessing 

Data preprocessing can involve many steps including data cleaning, unifying formats and 

metrics, feature extraction, and feature vector normalization. The choice of pre-processing 

methods is application and data dependent. A description of the particular techniques used for 

the case study can be found in chapter 5.4. 

 

 

b) Data Stream Relationship Analysis 

 

i. Quantitative Analysis 
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Once data preprocessing is complete, relationship analysis is performed on each pair of data 

streams to identify streams with shared temporal trends. For each data stream of interest, the 

reduced set of ‘related’ data streams can then be used to narrow in on potential resilience 

models. This approach can significantly reduce search time, and computation cost as the 

original resilience model hypothesis space for each data stream includes all models covering 

the range of possible dependencies on all other data streams. For this work, the Granger 

causality test [72] is used to identify whether one data stream can be used to improve prediction 

estimate accuracy of another data stream due to shared temporal trends. More specifically, the 

null hypothesis of no causal relationship is investigated with an F-test, and the resulting p-value 

is compared to a threshold to identify whether the null hypothesis can be rejected. Here, 

‘causality’ is a misnomer, as the method does not identify causality between data stream 

sources, and instead implies predictive causality. The method does not take into consideration 

the possibility that both data streams are consequences of the same cause, i.e., the existence of 

latent variables that Granger-cause both data streams of interest. 

The Granger test is used rather than a more common correlation metric such as Pearson’s 

product moment as it indicates the statistical significance of using past values of data stream 

𝒚𝑚 to assist in predicting 𝒚𝑙 rather than using past values of 𝒚𝑙 alone. Identifying these relations 

can assist in identifying possible underlying relationships between the data sources, which can 

also be used to improve resilience models. For this work, bidirectional causal relationships were 

tested between each pair of data streams. As a pre-processing step, each data stream was first 

confirmed to be stationary by use of the Augmented Dickey-Fuller (ADF) and Kwiatkowski 

Phillips Schmidt Shin (KPSS) unit root tests. In evaluating the Granger casual relationships, the 

lag parameter was programmatically selected using the Akaike information criterion (AIC), 

ensuring a dynamic response from the system. 

The Granger test provides information about the relationship between a dependent and 

independent data stream. For this work, models are also used which rely on two separate data 

streams. Identifying the predictive causal relationship between one dependent and two 

independent variables can be performed using the multivariate Granger causality test which is 

reliant on the results of VAR analysis. Thus, in the first iteration, the prediction accuracy of all 

relevant VAR models �̂�0
𝑙 = 𝑓(𝒚𝑙, 𝒚𝑚, 𝒚𝑛) can be computed and the field of potential models 

whittled down for future iterations by subsequent multivariate Granger analysis. Using this 

method can greatly reduce the hypothesis search space for resilience models, as a set of ten data 

streams results in a hypothesis space of 10 AR models, 90 VAR models with one independent 

data stream, and 720 VAR models with two independent data streams. 

 

ii. Qualitative analysis 

 

Qualitative analysis can be used to determine if underlying latent parameters dictate the 

relationship between data streams. If such parameters are found, they can be used to reduce the 

hypothesis space of possible resilient models, thus reducing computation cost and required data 
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sharing network traffic. For this work, the multi-dimensional data scaling (MDS) method was  

used to visualize the relationship between potential descriptive variables and resilience model 

performance. MDS operates by mapping points from a high dimensional Euclidian space to a 

lower dimensional space while attempting to preserve dissimilarity relationships between the 

points. For the case study, geospatial topological and demographic parameters are investigated 

for their utility in predicting resilience model accuracy. 

 

 

c) Model Selection and Evaluation 

 

The next step is identifying and ranking resilience models by prediction accuracy. For this 

work, the hypothesis space of resilience models is limited to linear AR and VAR models with 

one to three independent data stream variables. Linear AR and VAR models were chosen due 

to their ease of computation and interpretation for dynamic multivariate time series, as well as 

their availability on scalable big data platforms. For N data streams, the set of possible models 

include: 

 

1) N AR models using past data from the stream of interest  

2) (𝑁2 − 𝑁) VAR models using past data from the stream of interest and a supplemental 

data stream (‘two-city’) 

3) (𝑁3 − 3𝑁2 + 2𝑁)/2 VAR models using past data from the stream of interest and 

two supplemental data streams (‘three-city’)  

 

The three model types can be expressed by the time series p-th order VAR equation 

which uses p past data stream values: 

�̂�𝑡
𝑙 = 𝑐 + ∑ ∑ 𝛽𝑡−𝑛

𝑘 𝑦𝑡−𝑛
𝑘

𝑝

𝑛=1𝑘={𝑙,𝑆}

  

 
Equation 17: Three model types based on VAR equation 

 

where �̂�𝑡
𝑙 is the approximation for the missing data value 𝑦𝑡

𝑙, c is a constant, and 𝛽𝑡−𝑛
𝑘  is the 

auto-regression weight learned for data value 𝑦𝑡−𝑛
𝑘  for data stream k and time t-n. k is summed 

over the set of data streams to be used in the approximation analysis including the data stream 

of interest 𝑙 and the set of supplemental data streams 𝑆. For model type one, simple AR, S is 

the empty set and regression is performed over only the past values of 𝑦𝑙. For model types two 

and three, S is composed of the one or two supplemental data streams, respectively. The order 

of the VAR model used, p, is dynamically determined by AIC. 

Model evaluation is performed using time series cross-validation, and performance is 

measured using mean square error (MSE). Time series cross-validation is selected over 
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generalized cross-validation as it provides better estimates of model prediction performance. 

For each run of the cross-validation, testing is performed on the value 𝑦𝑡
𝑙, for each possible t,  

and training is performed on all possible sets with target 𝑦𝑡−𝑟
𝑘  and independent inputs 𝑦𝑡−𝑟−𝑞

𝑘 , 𝑞 ∈

{1, … , 𝑝}. MSE is computed over the set of �̂�𝑡
𝑙 estimated. Ranking model performance is achieved 

by comparing the MSE for each model to the AR model MSE for the same target data stream. 

This emphasizes the improvement in prediction performance provided by the model of interest 

relative to the baseline of AR. The formula used is : 

 

𝑅𝑒𝑙𝑀𝑆𝐸 = 100 ∗
𝑀𝑆𝐸(𝑓𝐴𝑅) − 𝑀𝑆𝐸(𝑓𝑖)

𝑀𝑆𝐸(𝑓𝐴𝑅)
  

 
Equation 18: Improvement of prediction performance using MSE 

 

d) Network Dynamics 

 

As trends change in the data streams, the network should respond dynamically, self-

adapting and reform the network connections to maintain optimal performance. For example, a 

weather sensor network should respond appropriately as a storm travels from one neighborhood 

to another. If a sensor experiences data loss, the supporting sensor data used to reinforce 

resilience should be from those currently experiencing similar weather patterns. Network 

dynamics are introduced by iterating network evaluation on a user-defined interval, ensuring 

that network connections reflect current data stream trends. Network re-evaluation is diagramed 

in Figure 2, starting with data pre-processing, followed by a performance of relationship 

analysis for data stream sets, a ranking of models by performance and the implementation of 

the optimal round of patterns in the current resilience network. Additionally, if an anomaly in 

the network is detected, such as the loss of a networked data stream or the addition of a data 

stream, the network can dynamically select the next best models to replace those affected, or a 

reevaluation of the network can be triggered. In implementing such a system, a delay may be 

necessary to improve system stability, reducing the likelihood of rapidly alternating between 

models due to small variations in data. Network reevaluation can also be triggered based on an 

external signal ensuring user control or interaction with a relevant event detection system. 

 

 

Discussion 

 

This approach suggests a solution to the following challenges, like merging dynamic 

with static information sources, continuous processing, scalability regarding narrow down the 

data source selection (data sampling), and distribution in a sense minimizing data transmission 

among the units and modularizing reasoning. Also, it provides dynamic selection of data 
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streams. We validate by using crime events data from police reports. The overall idea aims to 

improve the local services to maintain the service even when the data is in an unstructured 

format, uncertain and dynamic. It was shown that an event could be related to other events by 

time, causality, and geo-location. Most of the readings are autocorrelated, for instance, the 

temperature reading is softer profoundly affected by an earlier time step's reading. Some of the 

machine learning algorithms do not consider autocorrelation, and they will do well while 

predicting this type of data stream; therefore, we choose a time series analysis model. One of 

the main types of uncertainty that may be found in incoming event streams is incomplete or 

missing data streams, corrupt data and pattern uncertainty. Incomplete or missing information 

is when the sensor fails to report specific events due to some hardware malfunctions or network 

leakage. The event may have a noise component added, this corruption of the input stream can 

be caused by the limited accuracy of sensors or distortion along a communication channel. Lack 

of knowledge or due to   the inherent complexity of a domain, it is sometimes impossible to 

capture precisely all the conditions that the pattern should satisfy. 

 

 

4.5. Conclusion 
 

By taking advantage of the event processing and predictive technologies, we gather, 

filter, categorize and store the event related information from the desired location that will 

finally be presented to the user in the form of a list or on a map. We designed a framework that 

efficiently handles some of the challenges of complex data streams that comes from the 

dynamic environment. We describe each functionality in details and present the evaluation 

metrics. 

For instance, network text analysis triggered the rise of SA which brings new 

possibilities to city government in general and decision-making [2]. SA can contribute to a 

better understanding of and appropriate reactions to the public’s needs and concerns by city 

governments. Measuring the sentiment at specific areas and topics help to determine the 

relevant services for the users and promote relevant recommendations (content, collaborative, 

or hybrid filtering) based on that.  

We presented the event model that integrates complex data streams from various formats 

in standard format. At the same time, it is underlined with upper-level ontology which adds an 

additional interoperability component. An event model with its scalability and flexibility 

properties facilitates data sharing among city services. 

We presented dynamic network model that adds resiliency properties to city services so 

that they can run even in the cases of network leakage. It supports static and dynamic data 

streams from multiple data sources and various data types (as well as data source availability 

and frequency changes). Based on prediction error and relationship analysis, it provides a list 

of the best models that can be used in case of data loss. It also identifies a dynamic data sharing 

network between independent, smart cities or generalized smart communities to ensure minimal 
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data estimation error for each smart city. With each smart city, it is assumed to be associated 

with a single multivariate data stream. Inter-smart city networks are of interest for county-wide  

occurrences such as the spread of epidemics, while intra-smart city network can provide 

resilience for the scenarios as traffic management. 

The next chapter presents the implementation of the described solutions. We carried 

several experiments for each of the challenges to evaluate the accuracy of the framework.  
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Evaluation, Results, and Discussion 

 

“Discovery consists of seeing what everybody has seen and thinking what nobody has 

thought. “ 

- Albert Szent-Györgyi 

 

 

 

Summary. Several experiments evaluate the effectiveness of the proposed framework 

solutions with different settings. Section 5.1 is a summary of the data set that characterizes 

cities today; describing the process of data collection, period, metadata properties and pattern 

description. Section 5.2 outlines the steps to set up the experiments and presents the results of 

the proposed model for automatic event network analysis with the aim to show that event 

detection in combination with other algorithms can help with better understanding of cities. 

This chapter also lists the results of comparing existing event classification algorithms with the 

different feature selection. Section 5.3 describes the steps to set up the experiments and shows 

the evaluation results for the semantic event model. Thus showing that various complex data 

sets can be integrated into the event model. This chapter also demonstrates how the previously 

described methods for event detection are incorporated into the event model and overall 

framework. Section 5.4 also describes the steps to set up the experiments and explains the 

results when the dynamic network model was applied with the aim to deal with data loss and 

data stream changes over time. 

 

 

5.1 Data collection, description, and patterns 
 

For the experiments, different types of data sets are used that present various perspective 

for the cities, such as traffic incidents, weather, demographics and so forth. The data was 

available online as a part of an open data initiative; all experiments use the data from 

Montgomery County, Maryland, U.S.A. We collected structured, semi-structured and non-

structured data sets characterized by static and dynamic behavior, to deal with the challenges 

related to data complexity like their format, dynamics, and uncertainty. Following their 

characteristics are described, and it is intended to give a degree of familiarity with the data and 

how we collected it. 

 

Stationary datasets are demographics and commute time 
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Census dataset23: Census data was collected for cities in Montgomery County, 

Maryland, U.S.A. including demographics properties like population count, education degree 

bachelor or higher, and median household income, see Table 3. 

 

City name Population 
Bachelor's degree or 

higher 

Median household 

income 

Germantown 86395 47.8 86472 

Silver Spring 71452 53.4 72289 

Rockville 61209 62.3 98530 

Bethesda 60858 82.2 145288 

Gaithersburg 59933 51.6 78441 

Potomac 44965 80.4 181385 

Montgomery Village 32032 44.4 77537 

Chevy Chase  9545 81.4 159963 

 

Table 7: Demographic properties for Population, Bachelor’s degree or higher, and Median household income, 

measured in 2010 

Geospatial topological distance: The distances between cities were collected using the 

Google Maps24 service, which also includes the schedule from the Ride On public transportation 

service for Montgomery County, Maryland, U.S.A. see Table 4. 

 

City name 
Silver 

Spring 
Rockville Bethesda 

Chevy 

Chase  
Gaithersburg Germantown 

Montgomery 

Village 
Potomac 

Silver 

Spring 
0 10.2 4.6 4 18.1 22.1 19.7 13.5 

Rockville 10.2 0 9.2 9.1 5.1 11 8.6 6 

Bethesda 4.6 9.2 0 1.5 12.9 18.6 16.3 7.2 

Chevy 

Chase  
4 9.1 1.5 0 15.5 18.6 16.4 9.6 

Gaithersburg 18.1 5.1 12.9 15.5 0 6 2.5 11 

Germantown 22.1 11 18.6 18.6 6 0 6.2 14.5 

Montgomery 

Village 
19.7 8.6 16.3 16.4 2.5 6.2 0 12.7 

Potomac 13.5 6 7.2 9.6 11 14.5 12.7 0 

 

Table 8: Distance of miles between the cities in Montgomery County, Maryland, U.S.A. 

                                                 
23 http://www.census.gov/ 
24 The identification of any commercial product or trade name does not imply endorsement or recommendation by the NIST, nor is it 

intended to imply that the materials or equipment identified are necessarily the best available for the purpose. 
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Dynamic non-structured dataset is social network like Twitter  

 

 Twitter data set: Twitter data is collected using its Application Programming Interface 

(API). Received tweets using streaming API are anywhere from 1% of tweets to over 40% of 

tweets in near real-time. Twitter provides two types of location data; one uses the name of the 

city and other uses the exact Global Positioning System (GPS) coordinates. For the 

experiments, we choose to use the name of the location and nearby radius because we can 

consistently collect tweets for each category. We downloaded the data from Germantown, 

Maryland, U.S.A. within 5 miles radius for the 2015 year, with a total number of 10569 records, 

see example table 5.  

 

Date Time Message 

1/1/2015 16:22 

I'm at iPic Pike & Rose for Into the Woods in North Bethesda, MD 

https://www.swarmapp.com/c/fL1Lwd3ABca  

1/1/2015 15:39 

Started out the New Year with my favorite CU girls in MD @ Baltimore, Md 

http://instagram.com/p/xUzX3tgH1W/  

1/1/2015 20:32 

Recovery mode (@ Dona Bessy Pupuseria in Montgomery Village, MD) 

https://www.swarmapp.com/c/2eSJeZ3mSus  

 

Table 9: Example of Twiter messages 

 

Dynamic semi-structured data set are police reports like crime and traffic incidents 

 

Crime data set25: We collected 116375 records related to crime events reported 

throughout Montgomery County, Maryland, U.S.A. for the period from 1/1/2014 to 5/26/2016 

period. Each record has twenty-four attributes including date and time (start, end, police 

dispatch) of the incident, location (longitude, latitude, zip code, city, state, address), police 

district name and number, agency, uniform crime reporting number, and description. A plot of 

the number of crime events occurring in each city during the last month of data for the available 

dates of May 1st through May 26th (showing the last 26 out of 877 days) is shown in Figure 

26. From this figure, it is evident that Silver Spring dominates in several crime events while 

Chevy Chase, Potomac, and Montgomery Village typically fall near the bottom. This trend is 

shared throughout the period investigated. The eight cities with the highest number of crime 

events were chosen for analysis, they are (in descending order) Silver Spring, Bethesda, 

Gaithersburg, Rockville, Germantown, Montgomery Village, Potomac, and Chevy Chase. The 

rest of the cities were not considered for analysis as they exhibited a little number of events per 

day, e.g., between zero and two-day events. 

                                                 
25 https://data.montgomerycountymd.gov/ 
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Figure 24: Representation of some daily crime events produced during 01-26 May 2016 

 

Traffic incidents data set: We collected 235 264 records of traffic incidents reported 

throughout Montgomery County, Maryland, U.S.A. for the period of 1/1/2015 to 31/12/2015. 

From them, only 2874 were events related to pedestrian safety. Plot representation with the 

monthly amount of traffic incidents related to pedestrians is presented in Figure 27. Because 

the dynamic is different for the different period, we will perform periodic analysis (Spring, 

Summer, Fall, Winter). 

 

 
 

Figure 25: Representation of traffic incident events related to pedestrian safety for the year 2015 
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Dynamic structured data set is weather and community events 

 

Weather dataset26: Daily data were collected over the same period as the crime dataset, 

for the cities in Montgomery County, Maryland (MD), U.S.A. Each record has the attributes: 

Temperature, Humidity, Sea Level Pressure, Visibility Miles, Wind Speed Direction, Dew 

point, Precipitation, and Cloud Coverage. Each attribute is described with Min, Mean, and 

Max features. For this work, only the daily mean temperature and mean humidity is used. 

Also, Montgomery County is covered by three weather centers (College Park Airport, MD, 

Ronald Reagan Washington National Airport, VA and Montgomery County Airpark, MD). 

For this analysis, data from the College Park Airport, MD was selected because it covers most 

of the cities under investigation.  

 

Date KGAI KDCA KCGS 

 

Mean 

TemperatureF 

Mean 

Humidity 

Mean 

TemperatureF 

Mean 

Humidity 

Mean 

TemperatureF 

Mean 

Humidity 

1/1/2016 36 59 42 58 38 62 

1/2/2016 36 55 40 54 39 71 

1/3/2016 37 60 43 59 40 70 

 

Table 10 Example representation of the original weather data 

 

Community happenings data set: The data was collected for the period of 1/1/2015-

31/12/2015. Each record has the attributes: Event name, Date, Time (From-To), Address, Zip 

Code, and Category. Table 7 gives example representation of the dataset. 

 

Description Date, Time Address (Street name, number, City, Zip code) 

Volunteer 

Recognition 

Tuesday, November 

24, 2015, 1:30 – 3 

pm EST 

White Oak Senior Center1700 April LaneSilver Spring, 

MD 20904 

Wednesday 

Library Trip 

Wednesday, August 5, 

2015, 9:30 – 11 

am EDT 

Schweinhaut Senior Center1000 Forest Glen RoadSilver 

Spring, MD 20901 

Wesak or 

Buddha Day Monday, May 4, 2015 

Montgomery County, MDBethesda North Marriott Hotel 

& Conference Center, 5701 Marinelli Road, North 

Bethesda, MDSchweinhaut Senior Center 

 

Table 11 Example representation of original dataset for community events 

 

                                                 
26 www.wunderground.com 
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The crime, traffic, weather, and social network datasets are characterized with regular daily 

updates, while census, distance in miles, and community events have regular updates 

determined individually by their policy. 

The Twitter dataset, which is marked as a dynamic non-structured data set is used for 

evaluation the automatic event network analysis use case for improving the public city service 

case study. Traffic incidents, weather, and community events were used for evaluation of the 

event model, while crime, weather, demographics and distance in miles were used for the 

evaluation of dynamic network model use cases. 

Also, these data sets have been approved by the NIST IRB 27(Institutional Review 

Board) review process following the requirements by the NIST Human Subjects Research 

Determination Form. 

Experiments we performed were in an R statistical programming environment, using 

various packages for each of the functionalities. Details about the libraries and versions are 

described in Appendix E. 

 

The following sections 5.2, 5.3, and 5.4 explains experimentation done for each of the 

previously proposed theoretical solutions. 

 

 

5.2 Methodology: NIST Big Data Framework 
 

There is ongoing work at the National Institute of Standards and Technology (NIST) on 

defining and prioritizing Big Data requirements, including analytics, extensibility, data usage, 

interoperability, portability, reusability, and technology infrastructure. The NIST Big Data 

Public Working Group (NBD-PWG) created a standards roadmap that describes the adoption 

of the most effective Big Data techniques and technology. This group has a goal to provide 

standard consensus for some important fundamental questions, related to the essential 

characteristics of Big Data environments, integration with the existing architectures and 

difference between traditional data environments.  

 To describe our case studies, we used NIST Big Data Interoperability Framework V1.0 

with the focus on reference architecture and use case requirements. The formal description and 

details are presented in Appendix C - NIST Big Data Requirements Use Case. We follow this 

methodology to validate the proposed framework; we have the following experimentation and 

interpretation of the results. 

                                                 
27 https://www.nist.gov/content/institutional-review-board 
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5.3 Evaluation of automatic event network detection 
 

As we mentioned before, in a city context, social sensing can be used to retrieve 

information about the environment, weather, well-being, traffic congestion, trends in the local 

economy, dangers or early warnings, likewise any other sensory information that collectively 

become useful knowledge for the city improvement and smartness. In this case study, each user 

is considerate as a sensor and tweets are sensor data with the time, location, and topic features. 

The case study we used is focused on tweets that will result in analyzing the view of the public 

on generally discussed event topics and measure their perceptions regarding a variety of 

subjects. The output of this algorithms is intended for modern understanding of the tweets 

reporting various concerns about the city, which is necessary for municipal authorities to 

manage city resources.  

 

 

Experiment set up 

 

The effectiveness of the proposed automated event network detection model is evaluated 

by performing several experiments with different settings were carried out. We collect dynamic 

non-structured data set from a social sensor like Twitter from one city geo-location, 

Germantown, Montgomery County, Maryland, U.S.A. (more details about the process of 

collecting the data is explained in subchapter 5.1.). 

 

 

Results and discussion 

 

We followed the functional flow diagram for event type detection presented in Figure 

17 and explained in subchapter 4.2. The input adapter from FNEDAP collects the data, after 

the next step in processing the Twitter messages (tweets), is pre-processing which is part of 

event detection module. Since it is a text data with a lot of noise pre-processing is a necessary 

step. As mentioned in Chapter 4.1 for the experiment was chosen sentiment aware tokenization 

(explained in details in Chapter 4), which makes useful information from each punctuation and 

non-standards words to increase classifier effectiveness and model portability. We choose this 

approach because it was reported by Potts28, as the most efficient compared to the other existing 

methods like Whitespace and Treebank. The dictionary list that we used to convert the non-

standard words to relevant words is presented in Table 8. 

 

 

 

                                                 
28 http://sentiment.christopherpotts.net/tokenizing.html 
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Dictionary list name Number of lines 

Smiles and Emoticons 249 

ContractorsS 51 

Acronyms, Abbreviations, and Initials 736 

Misspelling 5921 

Stop words 319 

 

Table 12 Dictionary list used for context-aware pre-processing of tweets 

 

 

Table 8 presents the statistics for to the characteristics from the dictionary list for the data set 

we used for the experiment. 

 

Statistics/Database Name Dataset 

Tweets 10569 

Tokens 132022 

Tweet length < 10 32 

URLs 8837 

Re-tweets 2611 

Contractors 3832 

Misspell words 674 

Punctuation marks 47100 

Abbreviations 430 

Acronyms 1940 

Smiles 86 

Stop words 29613 

Numbers 3517 

 

Table 13 Data statistics for dictionary content found before pre-processing 

 

 

 Feature space refers to the n-dimensions where variables live represented as Rn. In ML 

we view all variables are features, or in the case of text analysis like this where each word can 

be considerate as a feature, we can have more than 1000. Therefore in the next step is feature 

selection, where each sample is represented as a point n-dimensional space or high dimensional 

vector. This dimension is determined by the number of features (numeric representation of raw 

data) used to describe the patterns. Similar patterns are grouped together, which allows the use 

of density estimation for funding models. Feature extraction transforms the data in the high-

dimensional space to a space of fewer dimensions. We experiment with Bag of Words (BOWs) 

and Term Frequency and Inverse Document Frequency (TF-IDF) techniques. While BOWs 

gives more value to the favorite words, TF-IDF is normalizing the word counts so that the 

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/Space_(mathematics)
https://en.wikipedia.org/wiki/Dimension
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favorite words are discounted, and for the experiments, we experiment with feature space of 

max 100, 150 and 1000 features. 

 After the input text data was transformed to vector space and feature space was selected, 

we train the data with predefined event type categories. As we defined earlier in chapter 4.2, 

“ event types is a set of event objects that have the same semantic intent, and every event object 

instance is considerate to be a case of the event type .” Based on the knowledge learned during 

the training step, the classification system will be able to infer to the some of the event type 

classes. Figure 28 presents the functional flow of event type classification. Set of predefined 

categories was used to create a training set of labeled text objects, the categorization module 

classifies the text object into one or more of the categories, in this case into one of the categories. 

For the experiment we label tweets to refer to named entities, in this case, named entities used 

for extraction of tweets are art, books, celebrities, fashion, film, food, health, holidays, music, 

news, religion, sport, shopping, travel, tech, weather. These entities are chosen from analysis 

based on the recent study by Klout about the most frequently used topics in social media29.   

 

 
 

Figure 26. Functionality flow of event type categorization 

 

Some tweets used for analysis are 10569; the data set was randomly split into a training 

size of 2115 records or 20% and testing size of 8454 or 80% of each category. Separation by 

each category is presented in Table 10. 

 

Label 

Name 

Tweets for 

Training 

Tweets for 

Testing 

Total Number 

of Tweets 

Art 224 56 280 

Music 128 32 160 

Film 257 64 321 

Books 20 5 25 

Fashion 87 22 109 

                                                 
29 http://www.marketingprofs.com/charts/2014/25346/the-most-popular-topics-on-facebook-and-twitter 
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Food 2322 580 2902 

Health 164 40 204 

Holiday 69 18 87 

News 522 130 652 

Other 3044 760 3802 

Shopping 298 74 372 

Sport 420 106 526 

Tech 38 10 48 

Traffic 596 150 746 

Travel 220 56 276 

Weather 45 12 57 

Total 8454 2115 10569 

 

Table 14 Tweets used for experimental analysis 

 

Event type categorization was performed using three types of classifiers Naive Bayes 

(NB), Support Vector Machines (SVM) and Random Forest (RF). Table 11 shows the results 

for two feature selections, using max features of 100 and 150 trees for RF classifier. Confusion 

matrix was used to describe the performance of a classification model. We measure the quality 

of categorization by using precision, recall, F1-score and accuracy metrics. 

 

Classifier 
BOWs  TF-IDF 

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy 

NB 0.63 0.64 0.62 0.644 0.70 0.68 0.63 0.677 

SVM 0.67 0.65 0.63 0.654 0.79 0.78 0.78 0.771 

RF 0.69 0.68 0.66 0.677 0.78 0.77 0.77 0.784 

 

Table 15 Evaluation metrics for classifying tweets into predefined categories 

 

From Table 11 we can observe that RF overfits the other two classifiers in BOWs feature 

selection, while SVM is slightly better when is used TF-IDF. This is because TF-IDF is 

normalizing the word counts so that the favorite words are discounted, and probably our data 

set even after rigorous pre-processing there are still many words that do not provide useful 

information for the classification task. To the best of our knowledge, this is the first time that 

RF was tested with more than two classes. It showed the best results for classification of tweets 

into two categories (smokers, non-smokers) [13]. 
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Class F1-score   Precision    Recall    Support  

Art 0.9 0.93 0.91 56 

Music 1 1 1 5 

Film 0.56 0.41 0.47 22 

Books 0.98 0.72 0.83 64 

Fashion 0.73 0.76 0.75 580 

Food 0.79 0.78 0.78 40 

Health 0.69 0.5 0.58 18 

Holiday 0.93 0.78 0.85 32 

News 0.89 0.72 0.8 130 

Other 0.75 0.82 0.79 760 

Shopping 0.77 0.81 0.79 74 

Sport 0.86 0.62 0.72 106 

Tech 0.71 0.5 0.59 10 

Traffic 0.99 0.98 0.98 150 

Travel 0.75 0.54 0.63 56 

Weather 0.79 0.92 0.85 12 

Average / Total 0.79 0.78 0.78 2115 

 

Table 16: Accuracy by category using TF-IDF feature with Rf classifier 

 

NB classifier can be utilized because of its simplicity, speed, and space efficiency. In our model 

classification parameters are independent. However, it has low accuracy rate. SVM cannot be 

used in our model because of its limited speed and significant memory requirements. RF can 

be utilized because of its space efficiency  

 When we visualize the output results like in Figure 29 we can observe the quality of 

the best event type categorization method, in this case, it is RF. 
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Figure 27: Word cloud illustration of tweets using RF with TF-IDF 

 

As we can observe from Figure 29, in both of these word clouds, the most dominant 

words are highlighted. It is interesting to see that the most dominant word in each of the 

categories is ” Accident ” and “ Maryland ” which associates as category labels. It is also worth 

noting that, in both the clouds, there are dominant words that are not related to the category of 

the tweets like “ Old ” in Traffic cloud, or “ Peg ” in Travel cloud. 
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The next step in event network analysis is combining the results that we got with other 

algorithms to enrich the output results. Sentiment analysis (SA) was applied after the 

categorization step, and now we have à more detailed view in which sentiment context people 

are talking, positively or negatively about the trending topics. For instance, topic category 

Weather “Rain perfect weather stay read Zenzoris Returns,” sentiment positive. For illustration 

Figure 30 show the line graph of topic categories with their sentiment measured level. 

 

 

 
 

Figure 28: Sentiment level measure for all categories 

 

Figure 30 shows that people were mostly talking about the weather but in a negative 

context, while when they speak of music was in high positive and few strong positive contexts. 

Moreover, the opinions of books and health are almost the same. Figure 5 shows that people 

were talking about fashion and religion in a positive context, while opinions for sport are mostly 

negative and neutral and are very close.  

An SA, in this case, is very helpful, it adds a new value in measuring public opinion as 

well as know how to best harness the potential benefits of public services. For instance, if an 

event in central park is detected and the sentiment is negative or neutral, then the services related 

to navigation for runners or walkers will reroute the paths. Collaborative and personal 

recommendation services can be activated depending on their settings. The recommender 

systems, in this case, will adjust their algorithms to include sentiment analysis, and weight 
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differently services that receive a lot of negative feedback or fewer instances. However, the 

importance and sensitivity of the topic (emergency, earthquake) are highly relevant, in this case, 

the frequency of the tweets for the negative context can be lower. In the case of real-time 

processing, as topics and sentiments are changing, service recommendation is changing 

adequately, too. 

 

 Another technique that enriches the event network detection is a similarity. We used 

similarity metric to identify links between tweets semantically. We consider the distance 

between two topic clusters to be equal to the shortest distance from any element of one cluster 

to any element of the other cluster. 

 

 
 

Figure 29: Similarity between categories 

 

These are analysis for the whole period of one the year 2015; the following illustration 32 shows 

how the social sensor topic patterns changed over time during this year and present mood 

analysis for the particular subject (mood measurement for travel). 
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Figure 30. Sentiment dynamics per month for topic Travel 

 

 
Figure 31. Sentiment dynamics per hour for topic Travel 

 

The monthly observations show that there are more negative opinions about traffic during the 

fall and winter months (from October to March), while during the summer months June and July 

the negative view drops. However, the reason for that can be the number of tweets during that 

period. The hourly observations for topic traffic show that it is profoundly negative during the 

rush hours in the morning and evening, while the positive sentiment is shallow during the whole 

day. These observations require more investigations in terms which locations or part of the city 

the traffic issues are more affected. So it is an indicator that shows to decision makers for city 

stakeholders that some topics require more attention to considering. Solving this trade-off 

enables the behavioral hetereneity of the entities that compose the analyzed system.  
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Figure 32. Network of words for topic Traffic 

 

Moreover, when we investigate the correlation relationship for some of the phrase from the ne

twork graph on figure 31, we can find that the closest one is: grill, bar, market, food, and matc

hbox. 

 

 

In conclusion 

 

These experiments demonstrate a fully automated algorithm for extracting knowledge 

from social sensors, based on previously created a global approach to addressing this problem. 

Therefore was explored the general patterns of social media usage and presented a model for 

automatically categorizing the analytics for a broad range of predefined event type identifiers 

over one concrete geo-location, in this case, Germantown, MD, U.S.A. The experiments showed 

that the context-aware pre-processing algorithm (where every word in a tweet is necessary for 

analysis) used to process the tweets helps to categorize the tweets efficiently. It is shown that RF 

classifier combined with TF-IDF feature gives better results compared to SVM and NB classifiers. 

Moreover, sentiment analysis measures together with topic similarity provide additional 

information layer for determining public opinion and service recommendation based on social 

sensor data streams.
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5.4 Evaluation of scalable semantic event model 
 

As mentioned earlier events come in various types, format, and sources. This variety of 

data needs to be converted into a standard representation that is generic and does not need to be 

redefined for every new data source selected. Furthermore, the description needs to capture 

enough semantic and computational detail so that it can support a variety of situation 

recognition tasks.  

We designed an event model (EM) that fits together these differences into the same 

framework, thus making data integration and processing easier. Moreover, the standard data 

structure that will allow different data streams to be used by multiple services. To build the 

combination between each kind of data and to raise the utilization of data. This model was 

described previously in Chapter 4.3. 

In following, we will demonstrate the development of the EM, and illustrate how to use 

event detection, pattern identification, and prediction methods together. The case study for the 

validation experiments supplements the Pedestrian Safety Initiative in Montgomery County, 

Maryland, U.S.A. for improving the safety level for pedestrians by offering an algorithm to 

predict unsafe event areas per zipping code. 

 

 

Experiment set up 

 

For this experiment we used three different real-world data sets, dynamic data set is 

semi-structured traffic violation data sets, and dynamic structured data sets are weather and 

community events from Montgomery County, Maryland, U.S.A., more details for the data sets 

are presented in subchapter 5.1. Each of them characterizes the city from a pedestrian safety 

perspective; we will investigate his or her factors of safety influence and make a prediction for 

each zip code zone.  

 

Results and discussion 

 

As was described in Chapter 4.2 event model has three design phases: (i) event pre-

processing and identification, (ii) event model formation, and (iii) event analytics. Also, this 

method follows the methodology of the new principle of proactive event-driven computing, and 

that is Detect – Predict – Decide -Act. The first is the event detect phase where events of interest 

are identified. Next is prediction period where the future number of events are predicted. The 

last step is decision-making stage where city authorities, representatives are making a decision 

what to do about the possible future situations. The next is acting, which represents the final 

actions product of the decision phase, can be ambulance allocation or police relocation 

depending on application domain of interest. For our case study since we are interested in 
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predicting a likely number of pedestrian events, the final action can be an allocation of more 

city resources, like the police. Let preview in details each of the design phases: 

 

(i) Step one, before the data goes to event model, there is a need for pre-processing. We 

experiment with structured, semi-structured and non-structured data sets, or weather, 

traffic incidents and community events respectfully. Since traffic incidents are in text 

format and have few types of events, event detection method is applied to classify the 

events of interest into the event model. Be used previously developed algorithm 

(Chapter 5.2) for event type detection including pre-processing and feature selection 

phases. For this experiment was used a data set of 235,264 records, of which 2874 

describe pedestrian incidents (but do not indicate incident severity). Evaluation results 

0.98, 0.92, and 9.5 respectively Precision, Recall, F1-score metrics are high due to the 

homogeneity of the data. For weather and community events we did not apply event 

detection techniques because the data streams were already classified.  

Since community events data streams were not in complete format, especially 

some of the attributes were missing or were not precise enough, we used uncertainty 

techniques to solve it. For instance, one approach was to find an alternative attribute 

that can fill in the missing one. An example of that is a longitude and latitude attribute, 

and in the cases where city, state, and zip fields are missing, for the goals of the use 

case, we need to have values for this fields. Another example is that location parameter 

has a broader diameter like the whole country, in this case, Montgomery County, 

Maryland, which means that event is affected by all cities inside the county.  

Uncertainty is complicated, and it is unlikely that one approach cannot handle all its 

complexities. 

 

(ii) Step two, after event of interest were identified they are formatted into the event model 

structure. Depending on the importance of the event attributes event model entities are 

adapting. For instance, since weather sensor is a static device and its location 

parameters like longitude, latitude, city, and state are fixed this parameter is listed in 

Event Source entity. While in the case of pedestrian incidents, those events are 

dynamic, so location parameters are listed in Event entity. Figure 32 shows how 

different event streams fits into the event model. 
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a) Weather event b) Pedestrian incident event 

 

 

c) Community event d) Twitter traffic event 

  

 

Figure 33. Event model metadata 

a) cloudy weather event, b) pedestrian related event, c) community music event, d) Twitter traffic event 

 

If some of the data sources are images or video cameras, the first step is event discovery 

and identify the semantics of that data stream. Recall that the event model is middleware (see 

Figure 23), and is transparent to the application service. The data would be stored in formats 

dictated by the model on a server that is either local or remote.  

 

(iii) Step three, event analytics phase is oriented to event extraction, pattern detection and 

trends between events as well as to provide predictive assumptions. We extract the events of 

interest using event patterns like aggregation, selection, grouping based on application 

requirements. For instance, possible case studies are, extract the number of pedestrian events 

per zipping code and weekdays during one year, find the location where usually most of the 

pedestrian incidents happen, and what is the likelihood of pedestrian incidents during the rain. 

To extract these queries we used SQL language since we save the data to the database.  

The output for the first case study, extract all events from pedestrian incidents for zipcodes 

20910, 20906, 20876, and 20814 per day for the 2015 year. Since the model supports a variety 

of spatial attributes like street name and number, city, state, zip code, longitude, and latitude. 
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select Event.description from Event, EventProfile where Event.zip in (20910, 20906, 

20876, 20814) and EventProfile.description = ‘Pedestrian incidents’ group by day 

 

 
Figure 34. Total number of pedestrian incidents per zipping code and weekdays for the 2015 year 

 

select Event.location  

from Event, EventProfile  

where EventProfile.description = “ Pedestrian incidents ”  

group by Event.location 

 

Results show that usually, events related to pedestrians happen around the shopping areas, 

downtown or restaurant area. For instance,’264 Odendhal Ave, Gaithersburg, MD 20877, USA, 

19899 Crystal Rock Dr, Germantown, MD 20874, and 8434 Colesville Rd, Silver Spring, MD 

20910, USA’, are the location with the highest number of incidents. If we look deeper in the 

understanding of the context of these events, we can find that usually, they did not obey the 

signals for pedestrians like ‘PEDESTRIAN FAIL TO OBEY UPRAISED HAND SIGNAL.' 

From entire 2874 events, only 63% of them are a pedestrian fault, while the rest of 37% is driver 

fault. This requires further investigation with a domain expert to find a reason why this is 

happening and what can be done to (or “intending to”) decrease the results. 

 We used predictive modeling to (or “intending to”) making assumptions for a future 

number of event related to pedestrians, and we investigate more the factors that potentially have 

an influence on pedestrian events. We model a case where we used time, location, weather and 

community events to detect the number of pedestrian’s incidents. The output results predict 

which zones will be safer regarding some incidents compared to the other zones based on the 

past number of pedestrian incidents per zone. 
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Figure 35.  Graphical representation for modeling pedestrian incidents 

 

We evaluate the model using Probabilistic graphical model (PGM) and Poisson 

regression (PR), we choose these two different types of statistical algorithms because they give 

different output, one is probabilistic, and the other gives the more precise number of predicted 

events. Accuracy is presented in Table 13, where PR give slightly better results compared to 

PGM.  

 

 
Probability of a (negative) pedestrian event in a location 

Probabilistic Graphical Model Poisson Regression 

Average accuracy 0.864 0.881 

Average standard 

deviation 
0.213 0.096 

 

Table 17: The accuracy of PGM and PR to predict hazardous locations 

 

Also, the probability of sunny weather to the prediction of pedestrian events is 60%, while city 

events contribute with 80%.  

If weather(rain) then there 20% chances of the pedestrian incident to happen 

 

Predicted results and real-world data are visualized on maps presented in Figures 33 and 34. 

 

Time 

Location Weather 

Community 
events 

Number of 

pedestrians 

incidents 
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Figure 36: Actual number of pedestrian events by zipping code for 2015 in Montgomery County, Maryland, 

U.S.A.  

Note, The diagram made in R (we have no data for the region in white) 
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Figure 37: Events predicted using a Probabilistic Graphical Model by zipping code for 2015 in Montgomery 

County, Maryland, U.S.A.  

Note, The diagram made in R (we have no data for the region in white) 

 

We believe that the presented event model and other methods can be applied in 

hierarchical architecture like the one presented in [114]. Also, the event model can be applied 

to a horizontal organization based on open and shared platforms and resources like sensor data 

and access to actuators shared by several actors, that helps the user to control and supervise the 

city. 

It can be implemented as a badge job or real-time service in a standalone application or 

can be integrated into the existing event platforms. 

 

 

In conclusion 

 

The presented event metadata model is unique among event models in being extensible 

as needed. We illustrate the model by showing it with different data types, and we validate it 

using real-world data in a case study for pedestrian safety. Broad adoption of our event metadata 

model has the potential to broaden the number and scope of smart city services. An event model 

with an ontology to control word descriptions will bridge smart cities services by reusing data 

streams across applications.  
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5.5 Evaluation of dynamic network model 
 

We assume that each data source collects information independently, but for various 

factors, the event model sometimes cannot receive the expected data streams. We design a 

model that adapts dynamically on network data streams changes where each data stream is a 

separate node, considering that source to source data sharing can improve resource deployment. 

This model resilient on failures allows an analyst to capitalize on underlying shared trends 

between data streams to mitigate the effects of data loss and day-to-day data rate variance to 

detect multi-day trends better and ensure improved service estimation. We evaluate the results 

by demonstrating the case study in cross-country crime for Montgomery County, Maryland, 

U.S.A. where each city is considerate as a separate node, considering city-to-city data sharing 

can improve county-wide resource deployment. 

 

Experiment set up 

 

For this experiment, the data describes the number of police-reported incidents, 

organized by city, throughout the Montgomery County, Maryland, U.S.A. area between 

01/01/2014 and 06/26/2016, constituting a spatiotemporal multivariate time series.  The process 

of getting the data is explained at the beginning of this chapter, or in subchapter 5.1. 

 

 

Results and discussion 

 

Relationship Analysis: Identifying Potential Network Connections 

 

i. Bivariate and Trivariate Granger causality test 

After data normalization, each city crime rate data stream and the weather data stream 

were programmatically confirmed to be stationary. The Granger test was then applied to each 

pair of data streams to quantify the bi-directionally predictive causal relationships, as described 

above, with the lag parameter automatically selected by the AIC method. Similarly, the 

multivariate Granger test was performed for each triple of data sources. For both types of 

models, the weather was removed from the set of target variables. The results of the Granger 

test analysis for two-city models are shown in Table 14.  

A Granger test p-value below or equal to the significance level of 0.05 is used to identify 

that the forecast data stream is a good predictor for the target data streamError! Reference s

ource not found.. The Granger test indicates that in 57% of two-city models and 37% of three-

city models the forecast data stream provides statistically meaningful information about future 

values of the target data stream, and can, therefore, be used to improve prediction of the target 

data stream. Using the Granger test narrows the hypothesis space from 289 potential models 

(90 two-city models and 199 three-city models) to 120 models or 42% of the original hypothesis 
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space. Each indicated Granger-causal data stream pair can now be investigated for prediction 

accuracy using the VAR-based resilience. It was also found that for all eight cities, weather 

Granger-causes the daily crime rates either individually or with an additional supplemental data 

stream, confirming the results from. 

 

The resilience performance for all models was computed and compared to the Granger 

test predictions to identify the efficacy of the Granger test. It was found that the Granger test 

accurately identifies a predictive causal relationship among 61% of the two-city models and 

61% of the three-city models. However, among the top three models for each city, only two 

models were misclassified, and these were both the third best models for their cities. This shows 

an excellent ability for the Granger test to restrict significantly the hypothesis search space 

while still retaining the best performing models for each city. It was also confirmed that the 

significance level of 0.05 is optimal in detecting Granger-causation over the range of 0.03 to 

0.08 with maximum performance at 0.05.  

 
  Forecaster 

 
Data Stream 

Silver 

Spring 
Rockville Bethesda 

Chevy 

Chase 
Gaithersburg Germantown 

Montgomery 

Village 
Potomac Weather 

T
ar

g
et

 

Silver Spring ----------- 0.00009 0.01685 0.03399 0.17606 0.10106 0.00925 0.06527 0.00796 

Rockville 0.02921 ----------- 0.09925 0.28008 0.00313 0.03449 0.00111 0.05617 0.01097 

Bethesda 0.11235 0.00658 ---------- 0.01854 0.00786 0.01437 0.00026 0.21347 0.02932 

Chevy Chase 0.01069 0.67876 0.01969 ----------- 0.55178 0.85620 0.04985 0.05769 0.03993 

Gaithersburg 0.01166 0.01822 0.00011 0.00072 ----------- 0.09518 0.06589 0.10123 0.00426 

Germantown 0.01208 0.35502 0.39609 0.04996 0.31938 ----------- 0.05555 0.77694 0.01047 

Montgomery 

Village 
0.00944 0.00173 0.04038 0.04164 0.00491 0.05677 ----------- 0.02273 0.00316 

Potomac 0.07615 0.170987 0.25884 0.24689 0.01017 0.06066 0.23479 ------------ 0.24719 

 

Table 18: Granger causality relation index between top eight cities by the number of crime events 

 

ii. Qualitative relationship identification (perspective) 

Once a set of resilience models have been selected and analyzed for their performance 

(described in the next section) in the first iteration, the space of possible two-city resilience 

models for future iterations can be whittled down by identifying underlying city parameters that 

may predict the performance of those resilience models. For instance, if it is found that cities 

separated by vast distances tend to be weak predictors for each other, a threshold on city-to-city 

distance can be used to reduce the model hypothesis space. The city parameters investigated 

include city-to-city distance as well as the city demographics of population, education bachelor 

or higher, and average household income. MDS is used for qualitative analysis of underlying 

city parameters. First, a two-dimensional mapping is performed of resilience model 

performance, with each pair of cities described by the maximum prediction error (Figure 38a). 



5.4 Evaluation of scalable semantic  

event model                                                      Chapter 5 – Evaluation, Results, and Discussion 

 

126 

 

Here Chevy Chase, Montgomery Village, and Potomac were removed as their crime rates are 

so low as to be poor comparisons with the rest of the cities. This does not affect the MDS plot 

as the three cities fall near the origin, and the five other cities retain their relative position. This 

mapping is compared to the geospatial map of city-to-city distances (Figure 38b). Additionally, 

each city is described by a vector of the city-based demographics data. The demographics data 

is normalized by subtracting the mean and dividing by the standard deviation of each 

demographic parameter. An MDS two-dimensional mapping is performed using the Euclidean 

distance (Figure 38c). 

 

 (a)                                                       (b)                                                         (c)  

 
 

Figure 38 :: Graph representation of cities in Montgomery County, Maryland by three dimensions.  

 

(a) mean square error from scenario two, (b) distance in miles between the cities and (c) demographics 

(population, education, and income). 

 

 

The mapping of prediction performance is highly like the geospatial mapping, with the 

towns occurring in similar relative locations except for Gaithersburg. All city pairs also occur 

at the same relative cardinalities, e.g., in both mappings, Bethesda appears to the left and above 

Silver Spring. The similarity between mappings indicates that geospatial positioning may be a 

good predictor for resilience model performance and may also be a good choice of city 

parameter to reduce the hypothesis space of possible resilience patterns, with cities that are 

geospatially far apart less likely to have high performing resilience models. By restricting the 

hypothesis space for two-city VAR to only the two nearest neighbor cities among the five cities 

of interest, the best or the second-best models for each city is captured. Thus, a search space of 

𝑁2 − 𝑁 models can potentially be reduced to 2𝑁 models. 

Investigation of the demographics mapping shows a lower agreement with the resilience 

performance mapping, indicating that two cities may be more likely to share crime rate trends 

if they are neighbors than if they share demographic trends30. However, these demographics 

results may be due to the demographics was chosen and the demographics normalization used, 

suggesting further investigation. 

                                                 
30 "Everything is related to everything else, but near things are more related than distant things", First Law of Geography. 
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Resilience Model Evaluation 

 

All possible resilience models were investigated for their prediction performance. The 

hypothesis space includes all possibilities of the three model types: 1) AR models, 2) two-city 

VAR models, and 3) three-city VAR models.  

Table 15 shows the MSE prediction errors computed for the first two model types, over 

the full-time range, with forecast data streams listed as columns and target data streams listed 

as rows. AR models fall along the table diagonal with the rest describing two-city VAR models. 

Table 16 provides the percent improvement in prediction for the two-city VAR models over the 

AR models for each data stream. The best model is indicated with the color coding.  

 
  Forecaster 

T
ar

g
et

 

MSE  
Silver 

Spring 

Rockvill

e 
Bethesda 

Chevy 

Chase 

Gaithersbur

g 

Germantow

n 

Montgome

ry Village 
Potomac Weather 

Silver Spring 1.11729 1.05356 1.13045 1.09662 1.09721 1.10938 1.09081 1.12080 1.08126 

Rockville 0.95685 0.97789 0.98851 0.96154 0.95159 0.94610 0.99172 0.98421 0.96799 

Bethesda 0.97911 0.97003 0.99561 0.99549 0.96035 1.01674 0.93352 1.00682 1.00749 

Chevy Chase 0.75906 0.75919 0.77145 0.76441 0.77892 0.76088 0.75464 0.75101 0.76816 

Gaithersburg 1.00187 0.94575 0.97302 0.98055 0.97684 0.96209 0.98702 0.96385 0.96160 

Germantown 1.01198 0.99755 1.01942 0.98335 1.00427 1.01820 1.02760 1.03902 1.001856 

Montgomery 

Village 
0.92669 0.90070 0.93184 0.93170 0.89326 0.94129 0.92424 0.93403 0.92309 

Potomac 0.68546 0.67539 0.67157 0.65870 0.64944 0.71280 0.67835 0.66590 0.670914 

 

Table 19: Validation metrics, mean squared error (MSE) for scenario one and two 

 

 

  Forecaster 

T
ar

g
et

 

MSE  
Silver 

Spring 

Rockvill

e 
Bethesda 

Chevy 

Chase 

Gaithersbur

g 

Germantow

n 

Montgome

ry Village 
Potomac Weather 

Silver Spring ------------ 5.70353 -1.17856 1.84972 1.79683 0.70770 2.36989 -0.31464 2.43592 

Rockville 2.15196 ----------- -1.08537 1.67231 2.68973 3.25112 -1.41444 -0.64589 0.73619 

Bethesda 1.65704 2.56950 ----------- 0.01200 3.54149 -2.12269 6.23599 -1.12574 -1.00834 

Chevy Chase 0.69909 0.68260 -0.92130 ----------- -1.89847 0.46142 1.27733 1.75175 -0.76476 

Gaithersburg -2.56224 3.18280 0.39153 -0.37934 ------------- 1.51011 -1.04254 1.32985 1.42131 

Germantown 0.61066 2.02838 -0.11969 3.42264 1.36901 ------------- -0.92275 -2.04451 1.60526 

Montgomery 

Village 
-0.26557 2.54621 -0.82285 -0.80734 3.35167 -1.84473 ------------- -1.05966 -0.22616 

Potomac -2.93622 -1.42485 -0.85108 1.08158 2.47264 -7.04199 -1.86857 ------------ -0.75244 

 

 

Table 20: Percentage improvement of model two using model one as a base model 

 

For the third model type, three-city VAR, all the approximately one thousand models 

were evaluated. For simplicity, the top three performing three-city VAR models for each city 
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is listed in Table 17 along with the models’ MSE and their percent improvement over the AR 

model. It was found that three-city VAR models are among the top performing or second best-

performing models for each city. 
 

Y1                                                     Y2                                      Y3 MSE Improvements % 

Silver Spring Rockville Chevy Chase 1.038511 7.050432 

Rockville Silver Spring Germantown 0.9253039 5.377611 

Bethesda Rockville Montgomery Village 0.9177663 7.818525 

Chevy Chase Silver Spring Germantown 0.7378122 3.478879 

Gaithersburg Rockville Montgomery Village 0.9369844 4.080038 

Germantown Weather Rockville 0.9930925 2.465970 

Montgomery Village Rockville Gaithersburg 0.8883964 3.877734 

Potomac Weather Gaithersburg 0.6579727 1.191014 

 

Table 21: Validation metrics, mean squared error (MSE) for scenario three and percentage of improvements 

compared with the MSE of scenario one as a baseline 

 

Table 18 provides a ranking of the top three models for each city across all three model 

types along with each model’s percent performance improvement over AR. As can be seen, for 

all city data streams the use of additional data sources provides improved prediction and thus 

improved resilience in the case of data loss. For each city data stream, at least one other source 

can be used to improve prediction accuracy over simple AR with a maximum improvement of 

7.8%, an average improvement of 4.7% for all cities, and an average improvement of 5.6% 

when excluding the cities with few crime events per day.  

 

The top model for each city is chosen for implementation in the resilience network, see 

Figure 4. In dynamic operation (discussed in the next section), if an event results in the inability 

to use the top model, that model is then replaced by the next best model, and so forth.  

 

City M1 M2 M3 

Silver Spring 
Silver Spring + Rockville + Chevy Chase (

1.038511; 7.050432%) 

Silver Spring + Rockville + Montgo

mery Village (1.044873; 6.481486%

) 

Silver Spring + Rockville + We

ather (1.046729; 6.315370%) 

Rockville 
Rockville + Silver Spring + Germantown 

(0.9253039; 5.377611%) 

Rockville + Germantown (0.94610; 

3.25112%) 

Rockville + Silver Spring + We

ather (0.9482259; 3.03348%) 

Bethesda 
Bethesda + Rockville + Montgomery 

Village (0.9177663; 7.818525%) 

Bethesda + Silver Spring + 

Montgomery Village (0.9289618; 

6.69420757%)  

Bethesda + Montgomery Villag

e (0.93352; 6.23599%) 

Chevy Chase 
Chevy Chase + Silver Spring + 

Germantown (0.7378122; 3.478879%) 

Chevy Chase + Bethesda + Silver Sp

ring (0.7388459; 3.34429167%) 

Chevy Chase + Potomac + Silv

er Spring (0.7402985; 3.15426

276%) 

Gaithersburg 
Gaithersburg + Montgomery Village + 

Rockville (0.9369844; 4.080038%) 

Gaithersburg + Rockville + Bethesda 

(0.9417804; 3.589083166%) 

Gaithersburg + Rockville 

(0.94575; 3.18280%) 

Germantown 
Germantown + Chevy Chase (0.98335; 

3.42264%) 

Germantown + Rockville + Weather 

(0.9930925; 2.465970%) 

Germantown + Rockville 

(0.99755; 2.02838%) 

Montgomery 

Village 

Montgomery Village + Rockville 

Gaithersburg (0.8883964; 3.877734%) 

Montgomery Village + Gaithersburg 

(0.89326; 3.35167%) 

Montgomery Village + 

Rockville (0.90070; 2.54621%) 

Potomac 
Potomac + Gaithersburg (0.64944; 

2.47264%)  

Potomac + Weather + Gaithersburg 

(0.6579727; 1.191014%) 

Potomac + Chevy Chase 

(0.65870; 1.08158%) 
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Table 22: The best three results from all scenarios for each data stream, and the percentage of improvement 

compared with scenario one as a baseline 

 

 

 
 

 

Figure 39. Network graph representing data sharing directionality between the cities 

 

 
 

Figure 40. Real data (M0) and predicted values for Silver Spring using the best models (M1, M2, M3) presented in 

Table 4 

Resilience Network Dynamics 
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Resilience network dynamics allow the model to self-adapt to changes in the data 

streams, so that it always provides optimal performance. Dynamics is achieved by iterating 

network determination at user-determined intervals or from a user provided a trigger signal. 

Figure 40 shows a dynamic implementation for Silver Spring with only models of type one and 

two investigated. For this implementation, at each date, the network is provided data from the 

previous four weeks, ensuring that trends learned by the models are local in time. The model 

which provides the best performance is chosen dynamically for network implementation. Here 

it can be seen that for the first four weeks, use of Montgomery Village data provides the best 

prediction performance. The network graph for Silver Spring is diagramed above these dates, 

with a directed edge from Montgomery Village to Silver Spring. On day 28, the optimal 

resilience model changes, with Montgomery Village being replaced with the weather data 

stream. On day 83, the network updates again to depend on the Rockville data stream. As 

discussed above, in implementing such a system decrease the delay between model analysis 

and model selection may be necessary to improve system stability. Selecting the best model 

over a user-specified period will reduce the likelihood of rapidly alternating between models 

due to small variations in data.  

 

 

Figure 41: Dynamic Network model for Silver Spring, using model two 

Legend : Silver Spring (SS), Bethesda (B), Chevy Chase (CC), Gaithersburg (Ga), Germantown (Ge), 

Montgomery Village (MV), Potomac (P), Rockville (R), Weather (W). 

 

 

In conclusion 
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We present a dynamic network model for improving smart city resilience to data loss. The 

system utilizes the Granger causality test to identify statistically significant shared temporal 

trends across multivariate data streams and utilizes VAR to capitalize on those trends to ensure 

improved data prediction in the case of data loss. Each data stream is provided a ranking of 

potential resilience models with the top performing model selected for implementation. If the 

top model can no longer be executed, the next best model is selected. Iterative evaluation of the 

the model provides a dynamic, self-adaptability to changes in data quality, loss of data streams, 

and the addition of new information flows.  

The network model is demonstrated on City-based daily crime rates reported in eight 

cities across Montgomery County, Maryland, U.S.A. as well as a daily weather data stream. 

The optimal resilience network is identified and successfully demonstrated. It is shown that 

utilizing shared temporal trends between cities provides improved crime rate prediction and 

resilience to data loss, compared to the use of city-based AR. Additionally, the weather is shown 

to be a top choice for a supporting data stream by both the Granger causality test and VAR 

performance. This reinforces the finding that weather is a good predictor of crime rates. It was 

also qualitatively found that small city-to-city distances are a good indicator that temporal 

trends between city pairs will provide useful utility in VAR models. 

 

5.6 Conclusion 
 

This chapter has focused on evaluating the research challenges mentioned in 

Introduction chapter: (i) extract and validate knowledge from text data stream to improve 

context understanding in city-based services, (ii) examine, design and develop uniform format 

for complex data streams, (iii) and examine, design, develop a robust mechanism that makes 

service decisions more efficient. Research questions (i) and (ii) are validated in Chapters 5.2 

and 5.3, while research question (iii) was validated in Chapter 5.4. 

 

At first, with the help of Open Data, we set as a goal to provide clear, reliable and easy 

open event related information from multiple sources to offer a broader view of the activities 

in a specific geographical area of interest. All experiments contain details of the experiments 

like dataset description, processing steps, as well as experiment environment and used software 

packages explained in 5.1, which makes it reproducible. 

 

The next chapter presents the conclusion of the proposed work, it discusses the open 

questions and gives criticism for the proposed solutions, in the end, it presents possible future 

directions, challenges, and applicability. 
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Chapter 6 

Conclusion and future work 

 

“Science never solves a problem without creating ten more.”  

— George Bernard Shaw 

 

Living in a new era of smart and connected communities various devices are continually 

collecting information with the goal of helping communities in the environment by collecting 

data about air pollution, infrastructure by analyzing traffic, and socially by sharing this 

information. Understanding real-world event interactions and their dynamics from observed 

data is a challenging problem. Among the challenges are detection, heterogeneity, 

incompleteness, and adaptation of real-world events and their manifestations in observational 

data. The objective is to design, create, and evaluate a framework that will provide the tools 

that can be used by cities to justify the allocation of city and government resources that will 

make the city more productive, livable, equitable, safer. Citizens are rewarded in the sense of 

improved service delivery, by empowerment through increased information about their 

lifestyles, vielding greater productivity. 

 

Our work has drawn from diverse areas such as data mining, natural language 

processing, algorithms, geospatial analysis, visualization, network science, predictive models, 

and statistical learning. Our approach is inspired by compact, common sense approaches. We 

summarize the main contributions of this dissertation below, together with limitations of the 

solutions presented and future perspectives. 

 

 

6.1. Conclusion  
 

Integrating multi-modal data streams from diverse domains can have different qualities, 

modalities, importance, and trust, which need to be identified and associated with a set of 

criteria that represent the application service. Given that cities are dynamic and evolving 

ecosystems, there is also need to continuously link, interpret and share dynamic knowledge 

across city stakeholders and citizens to make use of information before it is out of date.  

 

Data analytics is a bottleneck within the proposed framework. We analyze 

spatiotemporal datasets collected from different data sources, times, formats, semantics, and 

context. We design a framework and develop solutions that solve the following challenges:  
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▪ Extracting knowledge from complex data format like text. We design and develop 

an algorithm for automatic context-aware preprocessing that takes into 

consideration the meanings of symbols and signs. We also develop functionality for 

event type detection and identify similarities between them enriched with sentiment 

levels. We graphically visualize the results so that the city representatives can 

understand them easily. 

▪ Structuring incomplete data:  Transforming unstructured and semistructured data to 

a unified format for later analytics. Typically text data has lots of acronyms, 

abbreviations, dates and location values; we develop an algorithm that will 

automatically detect the events and event attributes. While also handling uncertainty 

and incompleteness at the attribute level. 

▪ Generic data event model: Making the spatiotemporal data capable of use in 

knowledge discovery. However, different data have different formats, context, 

semantics, and complexity. We develop functionality that provides a unified 

understanding of data semantics and extract new knowledge and the construction of 

a multi-dimensional spatiotemporal data model describing sensor information, 

including location attribution, observation object, time and status with a flexible 

structure. 

▪ Knowledge discovery to understand the nature (e.g., correlations, context, and 

meaning) of data. We implement functionality for identifying relationships between 

events and identify causative correlations among events. 

▪ Prediction analytics as an important technology in supporting proactive complex 

event processing. We add different types of prediction models that present another 

perspective for future event predictions. 

▪ Dynamic network adaptation increase resilience capabilities of the proposed 

framework for event analysis and prediction. Because data loss may happen for 

various reasons, we created the dynamic network model that is fault-tolerant to 

environmental changes and adaptive as needed to support service continuity. 

▪ We also used efficient multidimensional visualization of spatio-temporal data. 

▪ We recognize the challenges for Smart City use cases/applications, and we identify 

appropriate real-world case studies for experimentation. 

▪ We comply with NIST ongoing standard for Big Data Use Cases. 

 

This results of this dissertation are of interest to both researchers and practitioners. As a 

theoretical contribution, we contribute to filling the gap in the existing literature that 

deficiencies techniques to deal with unified structuring, and resilient event processing. As for 

the contribution to decision-making practice, we provide a tool that supports the decision 

makers for city stakeholders in defining strategic and multisectoral action plans for city resource 

management. This tool can efficiently process the data and correspondingly visualize the 

results. Also, it can work standalone or can be implemented over existing event platforms.   
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We conducted different experiments and validation actions using real-world data in the context 

of the smart city. We need to make improvements to the proposed solutions by investigating 

more in the domains of intelligent event processing, handling uncertainty and incomplete events 

and smart adaptation to the environment. Details are presented in the following section 6.2. 

 

 

6.2. Open questions and future improvements 
 

The work discussed in this dissertation opens numerous avenues for further 

investigations. In this chapter, we outline several promising directions. 

 

Rather than an event detection algorithm based on a predefined group of event types of 

interest, which is a costly and time-consuming process especially when we have a high-velocity 

rate, we want to enrich our algorithms with topic modeling techniques which provide a more 

appropriate solution to the detection algorithm adaptable to change. We want to create a 

dynamic classification engine which classifies the data into clusters and sub-clusters recursively 

and assigns documents to predefined thematic groups that share some common traits. Also, we 

want to relate the detected events with real-world events on the news and provide more realistic 

analysis. These events can be utilized for better situational awareness by city authorities and 

people, by also taking advantage of investigating more features, such as network features and 

ranking them.  

Trust systems are usually based on qualitative and/or qualitative user’s experiences, 

interacting with the services and resources. Identifying relationships among Twitter user and 

topics of interest can be used for creating possible trust relations. While social media is an 

excellent source of real-world events as demonstrated in this dissertation, there are several 

challenges in utilizing them. Some of the problems include data quality, trustworthiness, and 

redundant and biased event reports. It would be interesting to explore data quality issues while 

also making use of people’s observations. One possible research direction is to study the 

trustworthiness issues associated with various real-world events. Trustworthiness of the 

reported events is crucial for decision making in crisis or the presence of an adversary. Some 

events may get reported more often compared to other activities resulting in the propagation of 

“popular” events. Understanding such biases would provide ways to calibrate how we 

synthesize information from reported events. Data privacy algorithms (such as K-

anonymization, Randomized Response, and Differential Privacy) and data/knowledge access 

authorization [88] [90] are necessary for data owners. 

 

In future work, we want to test the event model with various velocity levels, and 

scalability with the data streams with many attributes, up to 100 or more. Also, we want to test 

for city services that follow multidimensional classification standard for services which are 

becoming more and more diverse and complicated, as per the kind of services, be the public or 

private, global or local, permanent or instantaneous [65].  
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Integration of remote sensing and sensor webs within the event model can expedite this 

urban reality. It is impractical to obtain digital measurements for every point across an entire 

city community: the available information will always be incomplete; a decision maker scan is 

better informed through such technology integration even if loosely coupled. For this reason, 

we want to introduce more efficient methods for handling incompleteness and uncertainties, 

like fuzzy rules and these rules. Additionally, we want to implement functionality for composite 

event patterns by using inductive logic programming and weight learning [14]. 

Available information also carries uncertainties in different levels. Future research will, 

therefore, be devoted to modeling uncertainties that affect the estimation of optimization model 

parameters. We will address the integration of the decision-making model of other urban-based 

subsystems. Also, we want to add the functionality for detecting compromised data streams. 

 

Practice shows that there is a need for standardized event data format, for instance, the 

same data sets such as traffic incidents do not have the same schema in the open data 

repositories in New York City and Chicago. Also, developing more testbeds like the one 

prepared by DARPA (Defense Advanced Research Projects Agency) and TREC (Text Retrieval 

Conference) that produces the best-automated coding for event data, this would allow scholars 

to test tools already developed. 

 

In terms of adaptive event processing, we want to investigate time difference 

coefficients of VAR and mixed frequency data. We also want to consider more different data 

types categories (e.g., various crime types, traffic types and so forth), and to explore data stream 

trust weight to increase the impact of more trusted data sources and reduce those of less trusted 

sources.  

While demonstrated with an inter-city network, the system can be implemented on other 

data stream networks such as distributed local clouds, where each local cloud (or cloudlet) is 

considerate as a separate network node. To implement such an exchange, we are considering 

techniques for efficiently distributing and replicating data among a network of data sources, 

considering scalability and traffic spikes. As communications and data exchange are closely 

related, this will allow us to consider information related to location and network topologies to 

improve resilient data exchange between devices. We plan to explore such problems as the 

placement of broker replicas, aggregating sensor data at local peers to alleviate congestion, and 

caching information on nearby peers and local servers both to improve the chances of 

recovering that data in the event disaster and to enable local event-detection on the nodes 

holding these caches. 

 The other approach to enable resilient deployment and execution of Smart City 

applications, is with network architecture, instead of the traditional centralized approach to use 

a distributed execution environment for logic and analytics. Such an architecture can potentially 

mitigate the effects of component failures on an overall system by providing redundant channels 

to accomplish business logic. We plan to investigate a mobile intelligent agent-based approach 

in which application logic is modularized and distributed across multiple devices and data 
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centers. Considering those nodes as mobile agents that consume some data and forward the 

answer to the next node in line : we can realize a framework for developing application 

workflows that naturally maps to a dynamically adaptive distributed execution environment. 

These agents can then migrate between devices for scalability, replicate for reliability, or stay 

within system boundaries for policy compliance. This platform could leverage the resilient data 

exchange by relocating nodes, removing or integrating data streams together to utilize locality 

and improve the efficiency of the system. 

 

In addition to the context of the Smart City application domain, we want to extend the 

work and contribute more to solving the problem of data sharing and knowledge transfer. In 

future work, we want to experiment with transfer learning, and use the knowledge from the data 

sources with more data points to the smaller cities with not enough data, since there are many 

cases like that in Maryland, U.S.A. Therefore this is a potential for small, more rural areas to 

become ” smarter ” and promising for the future of the connected world. Collaborative sensing 

[37] improves service performances by providing better awareness and control of the dynamic 

environment and correlated data streams, with integrating and analyzing spatial-temporal data. 

Collaborative knowledge discovery algorithms to enable collaboration between static and 

dynamic sensors, as well as between crowd and city sensors. However, due to the problem of 

data integration, the study of collaborative knowledge discovery is still limited. 

 

6.3. Future perspective and challenges 
 

The ideas and algorithms presented in this dissertation raise challenges in different 

domains such as event management, cloud computing, power grid management, healthcare, 

system health monitoring, and the smart city. However, in this dissertation, we choose to focus 

on the smart city, due to its contemporary interest and importance in many countries around the 

world. 

We identify the following research areas that can be investigated in the future; they are 

organized into subsections for clarity. 

 

Summarization of things 

 Discovering similarities and sentiment links of events can be used in the field of 

summarization of things to support advanced summarization, especially in summarization 

through interactions in cyber-physical space and network of things. 

The solution we proposed is tested only on Twitter data streams, but it should be flexible 

enough to be applied to any text data like participatory sensing for Facebook, or Myspace, or 

Foursquare or another form of text data sources like articles and documents. We want to do 

additional testing in that direction. It was shown that high-level topics could be useful for a 

variety of upstream tasks such as summarization. In this direction, we believe that the output of 

this work can be used in event management application such as creating large-scale festivals, 
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conferences, concerts and so forth, by creating organization calendars and grouping similar 

events together.  

For decision-making visualization can be utilized, or some of the pairwise comparison 

functions can be applied. 

 

 

Self-* capabilities 

Self-aware technologies/service frameworks were studied by Nakamura, M., and Du 

Bousquet, L. [93], they proposed two kinds of the model that provide a standard view of smart 

city services, execution, and life-cycle models. They identified the self-* capabilities31 that will 

make city services highly manageable by limited human error.   

The resilient processing algorithm we develop can be used in situations that require the 

ability to reduce the magnitude and duration of disruptive events. Relationship identification 

between countries [149] improve when there are significant upticks in event counts. The 

effectiveness of resilient characteristics depends on its capacity to anticipate, absorb, adapt to, 

and recover rapidly from a potentially disruptive event. Also in non-deterministic scenarios 

where methods for discovering useful and correlative information from data and utilizing them 

for a better lifestyle, in real-time mode, are the absolute requirements.  

In future, we want to design and develop a set of adaptive learning methods that uncover 

complex and hidden patterns in extensive time series data. 

 

 

Cloud and network performances 

Identifying the volume of traffic on Twitter and identifying the topics users are 

interested can help in better allocating cloud resources and network demand. Using social 

networks as a source of data we can detect the users’ events of interest and provide better service 

recommendations. For instance, if we detect that during the tennis championship the request for 

services if higher we allocate more resource on the cloud and make an adjustment on the 

network demand. 

Event model and dynamic relationship identification can be applied to distributed cloud 

architectures. This functionality can be structured in event processing networks with intelligent 

agents responsible for each function adding modularity to the system. 

The models presented can be used in predicting performance over time, spatiotemporal 

network traffic dynamics and interactions of networks, as well as detecting persistent and 

transient performance “anomalies.” Identifying major factors that influence the overall network 

performance across the network and over time is important for on-time instance of system 

performance degradation. Characterizing and analyzing network performance captures crucial 

static and dynamic inter-dependencies and models their common effects on network 

                                                 
31 e.g. self-adaptation, self-organization, self-optimization, self-configuration, self-protection, 

self-healing, self-description, self-discovery, and self-energy-supplying 
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performance and robustness. Detect persistent and transient performance “anomalies” helps in 

problem diagnosis by guiding detailed analysis with additional (e.g., low-level) data sources. 

For instance, detailed analysis of factors such as dynamics over time, spatial and 

temporal correlation, describing the behavior of the event can be used in monitoring overall 

network performance and give a better forensic view. 

 

 

Security 

The event detection techniques can be used in understanding network log files. 

Understanding these log files provides the potential impact of events on the network like 

malicious attacks; detection processes are maintained to ensure timely and adequate awareness 

of unusual events. 

The use of predictive analytics can assist in providing homeland security stakeholders 

with information to better prevent, prepare for, and recover from an all-hazards event. 

Integrating or partnering with the homeland security community can help develop processes 

and procedures to use predictive analytics to safeguard the safety-related threats better. Once 

this information is collected and time-stamped, homeland security agencies can actively 

monitor dangerous areas through the analysis of semantic patterning, to potentially mitigate an 

unwanted situation. Townsend A.M. [144] lists the cloud, low-cost broadband, open-data, and 

open-source technologies as the prominent enablers for smart cities. 
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Appendix 
 

A. Selected Event definitions 

 

a. The Oxford English Dictionary defines an event as “Something that happens or is 

thought of as happening.” 

 

b. An event is an occurrence within a system or domain; it is something that occurred or is 

contemplated as having happened in that domain. The word event meaning refers to an 

actual occurrence (the something that has happened) in the real world or some other 

system [47].  

 

c. An event is an object that is a record of activity in a system. The event signifies the 

activity. An event may be related to other events. An event has three aspects: form, 

significance, and relativity [91]. 

 

d. Primitive event: A primitive event is a data tuple with a unique id, a list of the attribute, 

and a timestamp, denoted as E = E (id, {a1, a2, …, an}, t}. id uniquely identifies the 

event and the source of the event stream. The primitive event is atomic which occurs at 

a specific time point t. 

 

Complex event: A complex event, denoted as E = E (id, p, tb, ts), is composed of the 

primitive event, where p is the pattern function or expression to describe how the 

complex event is composed. Tb and te are the starting and ending times of the event, 

satisfying tb < te. 

 

Event Stream: An event stream is an ordered sequence of event occurrences in a 

timeline, denoted as S = S (e1, e2, …, en), in which ei is the instance of the primitive or 

complex event. [95] 

 

e. Representation of events allows connecting facts into a coherent representation of 

history. Linking of items, places and time thought events. Split up the evolution in 

discrete events in time and space. [44] 

 

f. An event is a record of activity in a system and may be related to other events. It has the 

following aspects: (form) – These are the formal attributes of an event, such as timestamp, place 

or originator; (significance) – It is the activity, which signifies the event; (relativity) – This 

describes the relationship to with other events. An event can be related to other events by time, 

causality, and aggregation. It has the same relations as the signified activity of the event [156]. 
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B. NIST Big Data Requirements Use Case 
 

Use Case Title Urban context-aware event management for Smart Cities – Public safety 

Vertical (area) Complex networks; Smart City 

Author/Company/Email Olivera Kotevska, Ahmed Lbath, Abdella Battou 

Actors/Stakeholders 

and their roles and 

responsibilities  

Spatial-Temporal Analysts 

Complex Social Systems Analysis 

Decision Makers 

Policy Makers 

Goals To use advanced methods to analyze complex data streams from socio-technical 

networks to improve the quality of urban applications.  

 

- Detect events from various network streams 

- Ability of intelligent data integration and structuring in the common format 

for diverse data streams 

- Relationship analysis between entities in the network 

- Reasoning from varied and complex data streams 

- Trends in sentiment for text data streams 

- Understanding how communication spreads over networks 

- Support for visualization 

 

Use Case Description The real-world events are now being observed by multiple networked streams, 

where each is complementing the other with his or her characteristics, features, and 

perspectives. Many of these networked data streams are becoming digitalized, and 

some are available in public (open data initiative) and available for sense-making. 

The networked data streams provide an opportunity for their link identification, 

similarity, and time dynamics to recognize the evolving patterns in the inter-intra-

city/community. The delivered information can help to understand better how 

cities/communities work (some situations, behavior or influence) and detect events 

and patterns that can be remedied a broad range of issues affecting the everyday 

lives of citizens and efficiency of cities. Providing the tools that can make this 

process easy and accessible to the city/community representatives will potentially 

impact traffic, event management, disaster management systems, health 

monitoring systems, air quality, and city/community planning. 

Current  

Solutions 

Computer(System) Fixed and deployed computing clusters ranging 

from 10s of nodes to 100s of nodes. 

Storage Traditional servers 

Networking Gigabit wired connections, Wireless including 

WiFi (802.11), Cellular (3g/4g), or Radio Relay. 

 

Software 

 

 

Currently, baseline leverages: 

1. NLP (several variants) 

2. R/Python/Java 

3. Spark/Kafka 

4. Custom applications and visualization 

tools 

 

Big Data  

Characteristics 

 

 

Data Source 

(distributed/centralized) 

 

Police reports for various city situations. 

 

Web scrapped data, wireless data, e-transaction 

data, individual contributors via web pages. Social 
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 media data and positioning data from different 

sources. 

 

Distributed IoT sensors (Physical devices that 

contain electronics, sensors, actuators and 

software, and that can collect and exchange data 

about and in some cases, interact with the physical 

environment.) 

 

Volume (size) 

 

Depending on the sensor type and data type, some 

sensors can produce over a gigabyte of data in the 

space of hours. Other data is as small as infrequent 

sensor activations or text messages. 

 

Velocity  

(e.g., real time) 

 

Depends on the use case, can be from hundreds to 

thousands of new information records per day. 

Some data streams are in real time (social media) 

other are less real time more daily. 

 

Data should be analyzed periodically. 

Variety  

(multiple datasets, 

mashup) 

 

Everything from text files, raw media, imagery, 

electronic data, human-generated data all in 

various formats. Heterogeneous Datasets are 

fused together for analytical use.  

Variability (rate of change) 

 

Continuous data streams are coming from each 

source. Sensor interface formats tend to be stable, 

while the human-based data may be in any format. 

Much of the data is unstructured. There is no 

critical variation of data producing speed or 

runtime characteristics variations. 

Big Data Science 

(collection, curation,  

analysis, action) 

 

 

Veracity (Robustness 

Issues) 

Identification and pre-selection of appropriate 

data, uncertain and noisy data are possible. 

The semantic integrity of conceptual metadata 

concerning what exactly is measured and the 

resulting limits of inference remain a challenge. 

Data must have high veracity and systems must be 

very robust. 

Visualization 

 

Displaying in a meaningful way complex data sets 

using tables, clustering, geospatial maps, time-

based network graph model, and visualization 

techniques.  

Data Quality Data Quality for sensor-generated data is known.   

Unstructured data quality varies and cannot be 

controlled. 

Data Types 

 

Semi-structured datasets like numeric data 

(various sensors) 

Unstructured datasets like text (e.g., social 

networks, police reports, digital documents), 

multimedia (pictures, digital signal data); 

Data Analytics - Pattern recognition of all kind (e.g., event 

behavior automatic analysis, cultural 

patterns). 

- Classification: event type, classification, 

using multivariate time series to generate 

network, content, geographical features and 

so forth. 
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Table 23: NIST Big Data Use Case 

- Clustering: per topic, similarity, spatial-

temporal, and additional features. 

- Text Analytics (sentiment, entity similarity) 

- Link Analysis: using similarity and statistical 

techniques 

- Online learning: real-time information 

analysis. 

- Multiview learning: data fusion feature 

learning 

- Anomaly detection: unexpected event 

behavior  

- Visualizations based on patterns, spatial-

temporal changes. 

Big Data Specific 

Challenges (Gaps) 

 

 

 

Data that currently exists must be accessible through a semantically integrated data 

space. 

Some data are unstructured which requires significant processing to extract entities 

and information. 

Improving analytic and modeling systems that provide reliable and robust 

statistical estimated using data from multiple sources. 

 

Big Data Specific 

Challenges in Mobility  

The outputs of this analysis and intelligence can be transmitted onto or accessed 

by the city representatives. 

Security & Privacy 

Requirements 

Open data web portals and social networks like Twitter publicly release their data. 

Although, data‐sources incorporate IoT meta‐data, therefore, some policy for 

security and privacy protection must be implemented as required by various legal 

statutes. 

Highlight issues for 

generalizing this use 

case (e.g., for ref. 

architecture)  

Definition of high‐level data schema to incorporate multiple data sources and types 

providing structured data format. Therefore, it requires integrated complex event 

processing and event-based methods that will span domains.  

More Information 

(URLs) 

 

Note: 
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C. Application framework – City assessment tool 
 

List of requirements for the following kind of Smart City applications 

Category: Public safety, policy & Em.Res.   

Sub-

Category: City surveillance and crime prevention   

ICT Levels:       

Geo-

Domanis:       

        

Aspect Concern Abstract requirements Specific implementation 

requirements 

Functional Actuation  - to get data from 

surveillance systems 

 

 - to elaborate data 

received surveillance 

systems 

 - sensors 

 

 - security devices 

 

 - actuation capabilities  

  Communication     

  Controllability  - to remotely 

control/access to the 

systems 

 - Internet connection 

 

 - remote control software 

 

 - security/privacy protocols 

  Physical context  - to precisely identify the 

location of people 

 - placement sensors 

 

 - motion sensors 
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  Sensing  - to precisely identify the 

location of people 

 

 - persistent 

communications  

 

 - capacity to analyze and 

elaborate received data and 

make decisions 

 - security devices 

 

 - sensors 

 

 - persistent communications 

technology 

 

 - decision maker systems 

  Monitorability     

Business Quality  - to provide feedback in 

time to act 

 - fast and reliable network 

 

 -  real-time systems 

  Utility  - to provide useful 

information to reduce costs 

 

 - to improve the quality of 

life of residents 

 - fast and reliable network 

 

 -  real-time systems 

Human Usability  - to provide human 

readable, unambiguous 

and harmonized data 

  

Trustworthiness  Safety  - persistent monitoring 

 

 - to provide data in time to 

act 

 - fast and reliable network 

 

 -  real-time systems 

  Privacy     
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  Security  - to preserve authorized 

restrictions on access and 

disclosure  

 

 -  to prevent modification 

or destruction of the 

system 

 

 - to ensure non-

repudiation and 

authenticity  

 

 - to ensure timely and 

reliable access to and use 

of a system  

 - firewall 

 

 - antispyware 

 

 - antivirus 

Timing Logical time  - to take into account the 

sequence of the events 

  

  Time awareness     

  Managing 

timing and 

latency 

 - to send data in a timely 

manner  

  

  Synchronization  - to send data with a 

common time scale  

  

Data Data semantics  - to correctly understand 

the meaning of the data 

  

  Operations on 

data 

 - to harmonize data from 

different sources 

  

  Relationship 

between data 

 - to connect data from 

different sources 

 

 - public, shared and 

standard data models 
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Boundaries  Behavioral     

 
Table 24. City assessment tool 
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D. Experiments environment 
 

All work was performed on Dell Latitude E7440 with Intel Core i7-4600U CPU 2.10 

GHz, and 16GB RAM under Windows 7 Service Pack 1 package.  

Experiments were conducted in the R statistical computing language using R studio 

environment (version 1.0.136). For the evaluation of the event model, including preprocessing, 

analytics which includes implementation of PGM and PR, and visualization are used the 

following packages and functions: Rgraphviz, gRim, gRbase, gRain, caret/sandwich, and plyr 

and gml. For the evaluation of dynamic network, the model has used the vars package, it was 

used for implementing AIC, Granger test, AR models, and VAR models, while graphics were 

generated using the ggplot package.  
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List of Publications 
 

" A scientific publication is considered scholarly if it is authored by academic or professional 

researchers and targeting at an academic or related audience. "   

- Muktikesh Dash 

 

 

Journals : 

(In progress) Survey : Analytical methods for Smart Cities/Using statistical prediction 

models with social media. 

 

Kotevska, O., Kusne, G.A., Samarov, V. D., Lbath, A., Battou, A. (2017). Dynamic 

Network Model for Smart City Data-loss Resilience. IEEE Access - Advanced Data 

Analytics for Large-scale Complex Data Environments, 2, 1-12. 
 

Kotevska, O., Lbath, A., (2017). Sentiment analysis of Social Sensors for Local Service 

Improvements. International Journal of Computing and Digital Systems, 6(4). 

 

Kotevska, O., Lbath, A., & Bouzefrane, S. (2016). Toward a Real-Time Framework in 

Cloudlet-Based Architecture. Tsinghua Science and Technology Journal, 21, 80-88. 

 

Conferences and workshops: 

(In progress) Multi-view regression for detecting safe areas in cities.  

 

Kotevska, O., Lbath, A., & & Gelernter, J. (2016). Event Model to Facilitate Data 

Sharing Among Services. In IEEE 3rd World Forum Internet of Things (WF-IoT) (pp. 

577-584).  

 

Kotevska, O., Padi, S., & Lbath, A. (2016). Automatic Categorization of Social Sensor 

Data. Procedia Computer Science, 98, 596-603. 

 

Kotevska, O., Lbath, A., & Bouzefrane, S. (2015). Toward a Framework for Cloudlet-

Based Architecture for a Real-Time Predictional Model. In IEEE International 

Conference on Cloud and Big Data Computing. 

 

Posters : 

“Machine Leraning for IoT and Smart City Data Sharing”, ITL Science Day, NIST, 

November 2, 2017. 
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“Framework for Network Event Detection and Analysis,” ACM Women in Computing, 

Barcelona, Spain, September 6-8, 2017. 

 

“Mobile Cloud Computing project toward a Cloudlet based Architecture framework for 

the assessment of services, exchanges, security, and metrics,” ITL Science Day, NIST, 

October 27, 2015. 
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