
HAL Id: tel-01901773
https://theses.hal.science/tel-01901773

Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hedging of options with market impact and Numerical
schemes of BSDEs using particle systems

Yiyi Zou

To cite this version:
Yiyi Zou. Hedging of options with market impact and Numerical schemes of BSDEs using particle
systems. Functional Analysis [math.FA]. Université Paris sciences et lettres, 2017. English. �NNT :
2017PSLED074�. �tel-01901773�

https://theses.hal.science/tel-01901773
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT 

de l’Université de recherche Paris Sciences et Lettres 

PSL Research University 

Préparée à l’Université Paris-Dauphine 

COMPOSITION DU JURY : 

Soutenue le 
par   

!cole Doctorale de Dauphine — ED 543 

Spécialité   

Dirigée par  

Couverture d’options dans un marché avec impact et
schémas numériques pour les EDSR basés sur des
systèmes de particules

09.10.2017
Yiyi ZOU

Bruno BOUCHARD

Université Paris-Dauphine

M. Bruno BOUCHARD

CentraleSupélec

M. Frédéric ABERGEL

M. Dirk BECHERER

Humboldt-Universität zu Berlin

M. Huyên PHAM

Université Paris-Diderot

M. Xiaolu TAN

Université Paris-Dauphine

M. Nizar TOUZI

Ecole Polytechnique

Sciences

Directeur de thèse

Président du jury

Rapporteur

Membre du jury

Membre du jury

Rapporteur



Acknowledgments

Firstly, I would like to express my profuse and sincere gratitude to my supervisor Prof.
Bruno Bouchard, for his continuous guidance during my PhD study and for his infinite
patience. The research reported in this dissertation would not have been possible without
his support and help. I could not have imagined having better and friendly advisor to
complete this three years journey.

I would also like to thank Prof. Nizar Touzi and Prof. Dirk Becherer for reviewing this
dissertation. I also extend my thanks to the rest of my PhD committee: Prof. Frédéric
Abergel, Prof. Huyên Pham and Dr. Xiaolu Tan, for accepting to be part of the jury. My
thanks also to my collaborator, Dr. Grégoire Loeper, for the inspiring research topic on
market impact and liquidity cost he has shared with us, as well as the many constructive
discussions he has brought.

I am extremely grateful to the École Doctoral de Dauphine and to CEREMADE,
for the financial support they have provided all through my PhD study and for their
friendliness. I am also grateful to the LFA team in CREST, to Prof. Jean-Michel Zokoian
without whom I would not have been able to spend the three years with lovely colleagues
and friends.

Last but not the least, I would like to thank my family: my parents and my husband
for supporting me spiritually throughout my PhD and my life in general.

i





Contents

Acknowledgments i

1 Présentation générale 1

1.1 Modèles avec impact 1
1.1.1 Motivation générale 1
1.1.2 Description des dynamiques 2
1.1.3 Un-covered options 3
1.1.4 Covered options 5

1.2 BDE Branching 7
1.2.1 Motivation et problème lié aux polynômes 7
1.2.2 Algorithme 8
1.2.3 Contribution 8

1.3 Publications 9

2 Introduction 11

2.1 Impact model 11
2.1.1 General motivation 11
2.1.2 Dynamics description 12
2.1.3 Un-covered options 13
2.1.4 Covered options 15

2.2 BDE Branching 17
2.2.1 Motivation and Problems related to polynomials 17
2.2.2 Algorithm 17
2.2.3 Contribution 18

2.3 Publications 19

3 Almost-sure hedging with permanent price impact 21

3.1 Portfolio and price dynamics 23
3.1.1 Impact rules 23
3.1.2 Discrete rebalancing from a continuous signal and continuous time

trading limit 24
3.1.3 Jumps and large orders splitting 28

3.2 Super-hedging of a European claim 31
3.2.1 Super-hedging price 32
3.2.2 Dynamic programming 33
3.2.3 Pricing equation 34
3.2.4 An example: the fixed impact case 37
3.2.5 Proof of the pde characterization 37

3.3 Appendix 45

4 Hedging of covered options with linear market impact and gamma

constraint 47

4.1 Model and hedging problem 48

iii



iv Contents

4.1.1 Continuous time trading dynamics 48
4.1.2 Hedging equation and gamma constraint 50

4.2 Viscosity solution characterization 52
4.2.1 A sequence of smooth supersolutions 53
4.2.2 Supersolution property for the weak formulation 63
4.2.3 Conclusion of the proof and construction of almost optimal strategies 67

4.3 Adding a resilience effect 68
4.4 Numerical approximation and examples 69

4.4.1 Finite difference scheme 69
4.4.2 Numerical examples: the fixed impact case 70

4.5 Appendix 72

5 Numerical approximation of BSDEs using local polynomial drivers and

branching processes 73

5.1 Introduction 73
5.2 Numerical method for a class of BSDE based on branching processes 74

5.2.1 Local polynomial approximation of the generator 75
5.2.2 Picard iteration with doubly reflected BSDEs 76
5.2.3 A branching diffusion representation for Ȳ m 78
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1.1 Modèles avec impact

1.1.1 Motivation générale

La théorie classique de la valorisation des produits dérivés se base sur trois hypothèses
principales: marché complet, absence de coût de transaction et liquidité parfaite. À partir
de ces hypothèses, la réplication dynamique fournit une façon intuitive de valoriser ces
produits dérivés dans un marché sans arbitrage. Empiriquement, ces hypothèses sont
rarement vérifiées dans le marché, en particulier pour les transactions dont le notionel est
important et pour les actifs peu liquides.

De nombreux travaux sont dédiés au relâchement de ces hypothèses. Certains traitent
le coût de liquidité sans prendre en compte l’impact permanent sur le sous-jacent, voir
par exemple [17]. Le prix du sous-jacent, fonction du volume de transaction instantané,
ne dépend pas de l’historique de la négociation. Comme la transaction peut (à la limite)
être exécutée au prix marginal, l’introduction du coût de liquidité n’affecte pas le prix de
couverture. Lorsqu’une contrainte de liquidité supplémentaire est imposée, par exemple
en imposant une borne sur le “gamma” de la stratégie, l’équation de valorisation présente
alors une forme quadratique supplémentaire, voir [18]. D’autres travaux se concentrent
sur la forme analytique de la dynamique des prix en établissant l’équilibre de l’offre et
de la demande, sans tenir compte du coût de liquidité: par exemple [25], [45] et [46]. Le
prix du sous-jacent est ainsi modifié par les activités de différents joueurs dans le marché.
Cet impact génère une non-linéarité dans l’équation de valorisation du dérivé, qui provient
toutefois d’un terme de volatilité modifié.
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2 Chapter 1. Présentation générale

Plus récemment, [1] et [37] ont introduit une nouvelle approche dans laquelle la dy-
namique des prix se compose d’un processus de diffusion classique et d’un terme à l’impact
linéaire. Ce modèle intègre à la fois le coût de liquidité et l’impact sur le prix du sous-jacent,
et ce de manière très naturel. Lorsque la solution d’une certaine équation non-linéaire est
régulière, ils montrent qu’une réplication parfaite est possible. Cependant, leur déduction
de l’équation de valorisation ainsi que de la stratégie de réplication s’appuit sur une ap-
proche par vérification, qui non seulement impose des conditions de régularité fortes, mais
qui en outre ne permet pas de montrer que prix de sur-réplication et prix de réplication
coïncident. Ainsi notre problématique est, sans présumer d’aucune condition de régularité
sur la fonction de prix du produit dérivé, d’établir l’équation de valorisation en suivant
l’approche par cible stochastique classique. Comme nous le verrons, ceci nécessite des
modifications importantes des approches par cible stochastique classiques.

1.1.2 Description des dynamiques

Nous modélisons l’impact permanent de la négociation sur le prix du sous-jacent par la
fonction d’impact f : la variation du prix du sous-jacent dûe à la négociation de δ ∈ R,
en nombre d’unités d’actif risqué, est δf(x), où x est le prix du sous-jacent avant la
transaction. Le coût pour acheter un tel nombre d’actifs est

δx+
1

2
δ2f(x) = δ

∫ δ

0

1

δ
(x+ f(x)ι)dι,

où la quantité
∫ δ

0

1

δ
(x+ f(x)ι)dι

est le coût moyen pour acheter chaque unité d’actif.
La dynamique du sous-jacent entre deux transactions consécutives est décrite par une

diffusion

dXt = µ(Xt)dt+ σ(Xt)dWt.

Nous appelons une stratégie de négociation le processus définit comme

Y = Y0− +

∫ ·

0
bsds+

∫ ·

0
asdWs +

∫ ·

0

∫

δν(dδ, ds),

où a et b sont des processus prévisibles à valeurs dans R satisfaisant

(a, b) ∈ A := ∪kAk,

Ak := {(a, b) prévisible à valeurs dans R : |(a, b)| ≤ k dt× dP− . .},

et ν ∈ U := ∪kUk, est un contrôle dans l’espace des mesures positives à valeurs dans
N. Ici, Uk est l’ensemble des mesures aléatoires à valeurs dans {0, · · · , k} avec support
[−k, k]× [0, T ].

Le processus Y doit être considéré comme un signal de négociation, l’objectif du trader
étant d’avoir en permanence Y unités d’actif risqué dans son portefeuille. Le composant
ν modélise les sauts du nombre d’actif risqué au moment d’établir un delta initial quand
on en a besoin, ou au moment de liquider le portefeuille à la maturité (on verra qu’entre
ces deux dates, la stratégie ne saute pas).

Nous déduisons les dynamiques du sous-jacent X et de la richesse totale V (la somme
du cash et de la valeur des actions) par la condition d’autofinancement. Ceci est d’abord
réalisé en considérant que l’on passe un ordre de taille Yti+1 − Yti aux dates ti, avant de
passer à la limite quand la fréquence de balancement tend vers l’infini, i.e. ti+1 − ti → 0.
De ce point de vue, notre modèle est issu d’une formulation à partir de stratégies simples.



1.1. Modèles avec impact 3

Proposition 1.1.1. Soient (a, b, ν) ∈ A × U , alors les dynamiques de X et de V corre-
spondant à des rebalancements en continu sont

X = X0− +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dY

c
s +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds

+

∫ ·

0

∫

∆ (Xs−, δ)ν(dδ, ds)

V = V0− +

∫ ·

0
YsdX

c
s +

1

2

∫ ·

0
a2sf(Xs)ds

+

∫ ·

0

∫

(Ys−∆ (Xs−, δ) + I(Xs−, δ)) ν(dδ, ds)

où

(x, y) := x+

∫ y

0
f( (x, s))ds, ∆ (x, y) = (x, y)− x

I(x, z) :=

∫ z

0
sf( (x, s))ds, pour x, y, z ∈ R.

Dans le processus X ci-dessus, en plus de sa dynamique endogène, les deux termes
fdY c et a(σf ′) proviennent de l’impact de la négociation et de la covariation quadratique
entre Y et X. La quantité ∆ (x, y) représente le saut du prix du sous-jacent dû à l’achat
immédiat du nombre y d’actifs. Quant à la richesse V , le terme 1

2a
2f est le résultat net

du coût de transaction et de l’appréciation de l’action grâce à l’achat de celle-ci. Un
rebalancement immédiat d’un nombre y d’actifs engendre non seulement un saut du type
Y−∆ par la variation du cours des actions détenues avant l’achat, mais aussi un terme
I dû à l’ajout de y nouvelles actions dans le portefeuille. À partir de ces dynamiques,
nous proposons de définir le problème de sur-réplication pour deux types d’options. Selon
que l’option est “covered” ou pas, les résultats sont différents, les techniques de preuve
également.

1.1.3 Un-covered options

1.1.3.1 Définition du problème

Cette section traite du problème de sur-réplication d’options “un-covered”. Le trader de
ces options, partant d’une position nulle sur le sous-jacent, construit son “delta” initial
pour commencer sa stratégie. Il délivre un certain montant g0(XT ) de cash et un nombre
g1(XT ) d’actions à maturité. Notons qu’à la date terminale, cela correspond à un montant
de cash égal à G(XT ) où

G(x) := {y (x, y) + g0( (x, y))− I(x, y) : t.q. y = g1( (x, y))}, x ∈ R.

Le terme (x, y) correspond à la valeur post-trade du sous-jacent s’il vaut x avant, et si y
est la quantité achetée. I(x, y) est l’impact de la négociation sur la valeur du portefeuille,
ce qui est le coût de liquidité.

1.1.3.2 Difficulté technique principale

La difficulté principale consiste à établir le principe de la programmation dynamique, qui
forme une relation entre la valeur du portefeuille optimal et le prix de sur-réplication à
travers les processus de contrôle, notamment X,Y , voir dans [48], [50] ou [41]. Cependant,
la formulation usuelle ne peut servir à montrer l’équation de valorisation dans notre modèle
d’impact. La raison étant que dans un modèle où X,Y, V ont tous un terme linéaire en
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la variable de contrôle b, l’optimization s’effectue sur une droite, un problème singulier!
Cette difficulté est surmontée par un changement de variable, ce qui permet d’énoncer le
principe de la programmation dynamique en fonction du processus de valeur liquidative,
i.e. le prix obtenu après que l’opérateur ait liquidé ses positions immédiatement:

X̂t,z,γ := (Xt,x,γ ,−Y t,z,γ)

où z = ( (x, y), y, v + I(x, y)) avec le prix initial du sous-jacent X0− = x, la position
initiale y et la richesse initiale du portefeuille v. Nous définissons le prix correspondant
de sur-réplication - w(t, X̂t), qui désigne le minimum de la richesse initiale afin de couvrir
la créance négociable à la maturité, quand on part d’une position nulle sur le sous-jacent.

Ces changements de variable nous évitent la singularité dans le problème d’optimiza-
tion, ils permettent aussi d’en déduire l’équation de valorisation d’une façon formelle.
Cependant, les sauts introduits par les processus X̂ et w exigent un peu plus de déli-
catesse quant à l’énonce du principe de la programmation dynamique. En fait, dans la
démonstration de la proprété de solution de viscosité, nous avons besoins que la variable
de contrôle (a, b, ν) soit bornée. Il faut par conséquent construire l’ensemble de variables
de contrôle d’une manière prudente telle que cet ensemble soit fermé et permette d’utiliser
un argument de sélection mesurable.

Soit Γ l’ensemble des variables de contrôle Γ := ∪k≥1Γk où

Γk := {(a, b, ν) ∈ Ak × Uk : |Y | ≤ k}.

Une stratégie γ ∈ Γ est appelée admissible si elle permet aux processus (Xt,z,γ
T , Y

t,z,γ
T , V

t,z,γ
T )

de sur-répliquer (g0, g1). Soit wk le minimum de la richesse initiale qui assure l’existence
des stratégies admissibles dans l’ensemble Γk. Remarquons que la valeur à T de la fonction
w := k≥1wk est égale au prix de sur-réplication G.

Notre principe de la programmation dynamique se décrit de la manière suivante:

Proposition 1.1.2. Fixons (t, x, v) ∈ [0, T ]× R× R.

1. Si v > w(t, x), alors il existe γ ∈ Γ et y ∈ R tel que

V
t,z,γ
θ ≥ w(θ, X̂t,z,γ

θ ) + I(X̂t,z,γ
θ , Y

t,z,γ
θ ),

pour tout temps d’arrêt θ ≥ t, où z := ( (x, y), y, v + I(x, y)).

2. Fixons k ≥ 1Si v < w2k+2(t, x), alors il n’existe pas γk ∈ Γk, y ∈ [−k, k] et un temps
d’arrêt θ ≥ t tel que

V
t,z,γ
θ > wk(θ, X̂

t,z,γ
θ ) + I(X̂t,z,γ

θ , Y
t,z,γ
θ )

avec z := ( (x, y), y, v + I(x, y)).

Une fois le principe de la programmation dynamique établi, il reste à suivre les étapes
classiques de l’approche de cible stochastique afin de déduire l’équation de valorisation.

1.1.3.3 Contribution

Nous avons démontré que l’équation de valorisation est quasi-linéaire.
Soient µ̂ et σ̂ les processus du dérive et de la volatilité décalés, définis par

µ̂(x′, y′) :=
1

2
[∂2xx σ2]( (x′, y′),−y′) and σ̂(x′, y′) := (σ∂x )( (x′, y′),−y′).
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Définissons également les opérateur qui agissent sur des fonctions régulières

F̂ϕ := −∂tϕ− µ̂∂x[ϕ+ I]− 1

2
σ̂2∂2xx[ϕ+ I]

ŷ[ϕ](t, x) := −1(x, x+ f(x)∂xϕ(t, x)) .

Alors le prix du dérivé est une solution de viscosité de

Fϕ [0,T [ + (ϕ−G) {T} = 0 on [0, T ]× R ,

où Fϕ(t, x) := F̂ϕ(t, x, ŷ[ϕ](t, x)). Nous avons ensuite établi le principe de comparaison,
d’où l’unicité de la solution. Sous des conditions appropriées, l’équation admet une solution
dans C1,2([0, T )×R)∩C0([0, T ]×R). Dans ce cas-là, la stratégie de couverture est donnée
par

Y = −1(X̂, X̂ + (f∂xϕ)(·, X̂))− YT−✶{T}

Cette stratégie, malgré son apparence compliquée, est actuellement une sorte de delta-
réplication décalée. Dans l’exemple de modèle Bachelier avec impact constant égale à
λ,

Y = ∂xϕ(·, X − λY ),

qui est le delta prise en X − λY (voir Section 3.2.4).

1.1.4 Covered options

1.1.4.1 Définition du problème

Une situation similaire à ce qui a été traité dans la section précédente est la valorisation
des options europénnes “covered”. Le terme “covered” implique que l’acheteur de l’option
délivre à la création du portefeuille de couverture le delta initial dont le trader a besoin,
et accepte un mélange d’actions et de liquide à la maturité (choisi par le trader). L’indif-
férence de l’acheteur entre les actions et le liquide au début et à la fin de la réplication
dynamique élimine le coût engendré par la couverture initiale et finale. Le problème de
sur-réplication des options “covered” est formellement défini comme

(t, x) := {v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

où G(t, x, v, y) est l’ensemble des variables de contrôle (a, b) tel que φ := (y, a, b) satisfait

V
t,x,v,φ
T ≥ g(Xt,x,φ

T ).

La définition ci-dessus ressemble significativement au problème précédent, à la différence
que le terme I n’apparait plus: il ne servait qu’à gérer le saut de la richesse lié au premier
achat du sous-jacent. Nous avons vu dans la section précédente que les seuls moments où
la stratégie de couverture saute sont respectivement le début et la fin de la réplication. La
possibilité d’acquérir ou de délivrer les actions aux clients en ces deux moments élimine I

dans notre problématique.

1.1.4.2 Difficulté technique principale

Malgré sa ressemblance à la première situation, nous ne pouvons toutefois démontrer le
principe de la programmation dynamique dans les deux directions en raison de l’intérac-
tion forte entre la stratégie de réplication et le processus du prix de sous-jacent. La
première partie du principe de la programmation dynamique peut encore être formulée
sous une forme faible comme dans [19, Section 5]. Nous établissons ensuite la propriété de
sur-solution en suivant essentiellement la même méthode, voir Section 4.2.2. Le problème
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est que, à une date intermédiaire θ, la quantité Yθ de titres détenue n’a aucune raison
de correspondre avec celle Ŷθ nécessaire pour pouvoir continuer la stratégie de couverture
jusqu’en T , même si la richesse est elle suffisante. Dans [51], les auteurs ont réussi à
contourner cette difficulté par un argument très habile de concaténation continue. Cette
démarche toutefois ne fonctionne plus dans notre modèle du fait de l’impact. En suivant
leur approche, on modifierait la trajectoire de prix et donc la cible Ŷ . Pour cette raison
là, nous utilisons la technique de régularisation dévelopée dans [13] afin de démontrer la
propriété de sous-solution, ce qui évite la nécessité d’utiliser le principe de la program-
mation dynamique. L’idée de cette technique est de construire tout d’abord une suite de
sur-solutions régulières qui, par un argument de vérification, fournit une borne supérieure
sur le prix de sur-réplication. Puisque cette suite de sur-solutions converge vers la solu-
tion de l’équation de valorisation souhaitée, un principe de comparaison implique que leur
limite n’est rien d’autre que le prix de sur-réplication (car nous savons déjà que celui-ci
est sur-solution).

La deuxième différence du cas de “un-covered” options est l’introduction de la con-
trainte de gamma dans ces options “covered”. Un calcul formel (voir [37] et [1]) montre
que l’équation de valorisation est non-linéaire du type

−∂tϕ− 1

2

σ2

1− f∂2xxϕ
∂2xxϕ = 0.

Pour que cette équation ne soit pas mal-posée à cause du terme 1− f∂2xxϕ dans le dénom-
inateur, nous devons imposer que 1− f∂2xxϕ ne change pas de signe, d’où la contrainte de
gamma

γ̄ ≥ ∂2xxϕ

dans laquelle γ̄ : R → R est une application bornée par

ι ≤ γ̄ ≤ 1/f − ι

pour ι > 0. Cette contrainte nous permet d’assurer que le dénominateur reste positif

1− f∂2xxϕ > 0.

Une interprétation intuitive est détailée dans Section 4.1.2. Remarquons que notre con-
trainte est légèrement différente de celle traitée dans les travaux de [19], [48] et [50], où
leur gamma est borné par des constantes.

1.1.4.3 Contribution

Nous avons démontré que l’équation de valorisation est non-linéaire du type parabolique.
Définissons l’opérateur de variation qui comprend la contrainte gamma:

F [ϕ] :=

{

−∂tϕ− 1

2

σ2

1− f∂2xxϕ
∂2xxϕ , γ̄ − ∂2xxϕ

}

(1.1.1)

Le prix du dérivé est une solution de viscosité de F [ϕ] = 0 sur [0, T ) × R. Quant à la
condition terminale, la contrainte dans ce domaine [0, T )× R se propage tout au long de
l’axe temporel jusqu’à la maturité T , ce qui modifie le pay-off g en la fonction ĝ, définie
par:

ĝ := (g − Γ̄)conc + Γ̄,

où Γ̄ ∈ C2 avec ∂2xxΓ̄ = γ̄. L’exposant “conc” désigne l’enveloppe concave de la fonction.
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Nous obtenons au finale la description de la valorisation du prix de dérivé sur le domaine
entier [0, T ]× R:

F [ϕ] [0,T ) + (ϕ− ĝ) {T} = 0 on [0, T ]× R.

Nous avons également obtenu la stratégie de couverture optimale à ǫ près en même temps.
En plus de proposer un schéma numérique pour cette équation, nous illustrons la façon
dont la fonction d’impact f a changé le prix du dérivé en appliquant notre résultat au
modèle Bachelier. À la fin de ce chapitre, nous avons montré qu’ajouter de la résilience
ne change pas l’équation de valorisation obtenue.

1.2 BDE Branching

1.2.1 Motivation et problème lié aux polynômes

Le deuxième objectif de cette thèse est d’étudier les schémas numériques pour les équa-
tions différentielles stochastiques rétrogrades (EDSR). El Karoui, Peng et Quenez [24]
soulignent que l’EDSR est étroitement liée au problème de la valorisation et de la répli-
cation. De nombreuses approches numériques ont été suggérées au sujet de la résolution
de ce système d’équations. Les travaux de [15], [53] et [2] par exemple, partis de la tech-
nique de discrétisation en temps, reposent sur l’estimation de l’espérance conditionelle,
une méthode rétrograde.

Un autre type d’algorithm numérique, proposé et étudié dans [27], [29] et [28], est
basé sur un procédé purement “forward”, qui permet déviter l’estimation de l’espérance
conditionelle. Le facteur clé de cet algorithme “forward” est la représentation proba-
biliste en termes de “processus de branchement”, une généralisation de la représentation
de Feynman-Kac. En fait, étant donnée une EDSR avec un générateur polynomial

X. = X0 +

∫ .

0
µ(Xs)ds+

∫ .

0
σ(Xs)dWs

Y. = g(XT ) +

∫ T

.

∑

k≥0

pk(Yt)
kdt−

∫ T

.

ZtdWt

où (pk)k≥0 dont des poids et W un mouvement brownien, la solution Y. coincide avec celle
de l’équation différentielle partielle de Kolmogorov-Petrovskii-Piskunov (KPP)

∂tu(t, x) + Lu(t, x) +
∑

k≥0

pku
k(t, x) = 0

u(T, x) = g(x)

où L est l’opérateur Dynkin associé au processus X. Chercher un algorithm numérique
pour Y. revient à résoudre l’équation de KPP numériquement. Cette dernière pourrait être
exprimée de façon “forward” et probabiliste par le processus de branchement, à l’instar
de [27], [29] et [28]. Soient Kn

t l’ensemble des particules de la génération n vivantes à
l’instant t, K̄n

t les particules de la génération n nées avant t. Ces particules sont indexées
par k et notées Xk. Par ailleurs, définissons

Kt := ∪n≥1Kn
t , K̄t := ∪n≥1K̄n

t ,

qui désignent respectivement les particules vivantes à et nées avant t. Soient ρ la densité
de la loi de survie de ces particules, F̄ est 1 moins la fonction de répartition. Alors la
solution u(., .) est égale à l’espérance de produits

u(t, x) = E

(

∏

k∈KT

g(Xk
T )

F (δk)

)(

∏

k∈K̄T \KT

1

ρ(δk)

)

.
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où δk est la longévité de la particule k. Alors que les travaux cités ci-dessus se concentrent
sur les générateurs de forme polynômiale, nous nous intéressons à la généralisation de cette
démarche au générateur arbitraire Lipschistzien.

1.2.2 Algorithme

À partir des travaux présentés dans la section précédente, nous aurions souhaité en premier
lieu approximer un générateur arbitraire Lipschitzien par une suite de polynômes. Cette
approximation est toutefois infaisable en général. La raison est que la solution d’une EDSR
avec un générateur polynomial, de degré supérieur ou égal à deux, explosera typiquement
en temps fini. Ce fait se complexifie à mesure que le degré du polynôme est plus grand.

Nous proposons ainsi une approximation par une suite de polynômes locaux. Soit
f̃ℓ◦(x, y) défini comme

f̃ℓ◦ : (x, y) ∈ Rd × R 7→
j◦
∑

j=1

ℓ◦
∑

ℓ=0

aj,ℓ(x)y
ℓϕj(y) .

où les fonctions (aj,l, ϕj)ℓ≤ℓ◦,j≤j◦ sont continues et bornées. Pour une partition de R donné
(Ai)i, les fonctions (ϕj)j≤j◦ peuvent être interprétées comme des noyaux permettant de
passer d’un ensemble à l’autre de façon Lipschitzienne. Nous établissons en premier lieu
la convergence de la suite de solutions correspondantes à ces générateurs approximés f̃
vers la solution de l’EDSR originaire.

L’argument y apparaît aux deux endroits différents dans la définition du polynôme
local f̃ℓ◦ ci-dessus. Le premier endroit est la partie de monôme, alors que le deuxième est
la partie de localization. Afin d’appliquer les résultats en polynôme global, nous allons
découpler ces deux rôles de l’argument y. Définissons maintenant fℓ◦(x, y, y

′) par

fℓ◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦
∑

j=1

ℓ◦
∑

ℓ=0

aj,ℓ(x)y
ℓϕj(y

′) .

Ce générateur est un polynôme global en y, avec fℓ◦(x, y, y) = f̃ℓ◦(x, y). Nous utilisons
ensuite l’itération de Picard afin d’obtenir la solution d’une telle EDSR. La solution de la
m-ème itération est donnée par

Y m
. = g(WT ) +

∫ T

.

fℓ◦(X,Y
m
t , Y m−1

t )dt−
∫ T

.

ZtdWt .

Pour présenter Y m de manière probabiliste comme dans la section précédente, nous al-
lons tout d’abord diviser l’intervalle de temps [0, T ] en n sous-intervalles délimités par
(tni )i≤n. La longueur de ces sous-intervalles est choisie de manière à ce que la solution Y m

reste bornée par une constante donnée. Ensuite un argument de récurrence nous permet
d’étendre cette réprésentation probabiliste sur l’intervalle entier [0, T ].

Contrairement aux schémas classiques de l’itérations de Picard en EDSR, avec par
exemple [6], l’estimation précise de l’ensemble des trajectoires de la solution Y à chaque
itération n’est plus nécessaire. En effet, si le polynôme local est réparti par une partition
(Ai)i de R, alors il suffit de savoir dans quel ensemble Ai la solution reste aux moments
de branchement.

1.2.3 Contribution

Nous définissons récursivement

v0 := y ,

vm(t, x) := E
[

V m
t,x

]

, m ≥ 1,
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où y : [0, T ] × R est une fonction déterministe bornée, et V m est définie en fonction de
vm−1, vm par

V m
t,x :=

(

∏

k∈Ktn
i+1

−t

Gm
t,x(k)

)(

∏

k∈K̄tn
i+1

−t\Ktn
i+1

−t

Am
t,x(k)

)

,

Gm
t,x(k) :=

vm
(

tni+1, X
x,(k)
tni+1−t

)

F (tni+1 − t− Tk−)
,

Am
t,x(k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(v
m−1(t+ Tk, X

x,(k)
Tk

))

pξk ρ(δk)
, ∀(t, x) ∈ [tni , t

n
i+1)× .

dans lesquelles la particule indexée par k est née en Tk− et meurt en Tk. Nous avons
démontré que la suite vm converge vers la solution de l’EDSR du générateur fℓ0 . Nous
appliquons à la fin cette méthode à un exemple concret afin d’illustrer la performance de
notre algorithme.

1.3 Publications

Tous les travaux dans cette thèse ont été publié ou font l’objet d’une révision dans des
journaux académiques.

Bruno Bouchard, Grégoire Loeper, and Yiyi Zou. Almost-sure hedging with perma-
nent price impact. Finance and Stochastics, 20(3):741–771, 2016

B Bouchard, G Loeper, and Y Zou. Hedging of covered options with linear market
impact and gamma constraint. arXiv preprint arXiv:1512.07087, 2015. (en révision
mineur pour SIAM SICON)

Bruno Bouchard, Xiaolu Tan, and Yiyi Zou. Numerical approximation of bsdes using
local polynomial drivers and branching processes. arXiv preprint arXiv:1612.06790,
2016. (soumis)
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2.1 Impact model

2.1.1 General motivation

The classical theory of derivatives valuation is based on three principle hypothesis: com-
plete market, absence of transaction cost and perfect liquidity. Based on these hypothesis,
the dynamic hedging provides an intuitive way of pricing the derivatives in an arbitrage-
free market. Empirically however, these hypothesis are rarely verified, in particular for
large transactions on illiquid assets.

Numerous work has been dedicated to the relaxation of these hypothesis. Some consid-
ers the liquidity cost without taking into consideration the permanent trading impact on
the underlying, see for example [17]. The underlying asset price, a function of the volume
of the instantaneous transaction, does not depend on the past trading activity. As the
transaction could be executed at the marginal price, the introduction of liquidity cost does
not affect the replication price. When a supplementary liquidity constraint is imposed,
for example the gamma of the strategy being bounded, the pricing equation presents a
supplementary quadratique term, see [18]. Some others are focusing on the analytic form
of the price dynamics by establishing the demand-offer equilibrium, without taking the
liquidity cost into account, for example [25], [45] et [46]. The underlying price is therefore
modified by the trading activity of different players in the market. This impact generates
a non-linearity in the pricing equation of the derivatives, which is resulted from a modified
volatility term.

More recently, [1] and [37] have conducted a novel approach in which the dynamics of
the underlying is composed of a classical diffusion process and linear impact term. This

11
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model integrates at the same time the liquidity cost and the trading impact on the un-
derlying price in a natural manner. When a regular solution of the non-linear equation is
available, they have shown that a perfect replication could be then deduced. However, the
deduction of such pricing equation as well as of the replication strategy rests on a verifi-
cation argument. This argument not only relies on some strong regularity conditions, but
also could not lead to the equality between the super-replication price and the replication
price. Our problematics then becomes, without presuming any regularity condition on the
derivatives price function, how to establish the pricing equation by following the classical
stochastic target approach. As we will see, this necessitates some important and distinct
modifications on the classical stochastic target approach.

2.1.2 Dynamics description

We model the permanent trading impact on the underlying price by the impact function
f : the price variation of the underlying due to trading δ ∈ R number of risky asset is
δf(x), where x is the underlying price before the transaction. The cost of buying such
number of asset is

δx+
1

2
δ2f(x) = δ

∫ δ

0

1

δ
(x+ f(x)ι)dι,

where the quantity
∫ δ

0

1

δ
(x+ f(x)ι)dι

is the average cost to purchase one unit of underlying asset.
The dynamics of the underlying between two consecutive transactions is described by

a diffusion

dXt = µ(Xt)dt+ σ(Xt)dWt.

We call a trading strategy the process defined as

Y = Y0− +

∫ ·

0
bsds+

∫ ·

0
asdWs +

∫ ·

0

∫

δν(dδ, ds),

where a et b are predictable processes with values in R satisfying

(a, b) ∈ A := ∪kAk,

Ak := {(a, b) predictable with values in R : |(a, b)| ≤ k dt× dP− . .},

and ν ∈ U := ∪kUk, is a control variable in the space of positive measures with values
in N. Here, Uk is the set of random measures with values in {0, · · · , k} with support
[−k, k]× [0, T ].

The process Y should be regarded as trading signal - the objective of traders is to
hold Y units of risky asset in their portfolio. The component ν models the jumps of the
number of risky asset at the time of building an initial delta when needed, or at the time
of liquidating the portfolio at the maturity (we will see that the strategy does not jump
between these two dates).

We deduce the dynamics of the underlying X and of the total wealth V (the sum of
the cash and the stock value) via the auto-financing argument. We start by considering
passing an order of the size Yti+1 − Yti at the discrete time grid ti, then we obtain the
continuous-time dynamics by tending the balancing frequency to infinity, i.e. ti+1−ti → 0.
From this point of view, our model is the result of a formulation from simple strategies.
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Proposition 2.1.1. Let (a, b, ν) ∈ A×U , then the dynamics of X and of V corresponding
to continuous trading strategies are given by

X = X0− +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dY

c
s +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds

+

∫ ·

0

∫

∆ (Xs−, δ)ν(dδ, ds)

V = V0− +

∫ ·

0
YsdX

c
s +

1

2

∫ ·

0
a2sf(Xs)ds

+

∫ ·

0

∫

(Ys−∆ (Xs−, δ) + I(Xs−, δ)) ν(dδ, ds)

where

(x, y) := x+

∫ y

0
f( (x, s))ds, ∆ (x, y) = (x, y)− x

I(x, z) :=

∫ z

0
sf( (x, s))ds, pour x, y, z ∈ R.

In the above process of X, in addition to its endogenous dynamics, the two terms
fdY c and a(σf ′) come from the trading impact and the quadratic covariance between
Y et X. The quantity ∆ (x, y) represents the jump of the underlying price due to the
immediate purchase of y numbers of asset. As for the wealth V , the term 1

2a
2f is the

net result of the transaction cost and the underlying appreciation due to the purchase.
An immediate trade of y numbers of asset not only generates a jump of the type Y−∆
by the value variation of the stocks held already before the purchase, but also a term I

due to the addition of y new stocks in the portfolio. From these dynamics, we propose to
define the super-replication problem for two different types of options. According to the
fact that the option is “covered” or not, the results are distinguishably different, as well
as the technique employed.

2.1.3 Un-covered options

2.1.3.1 Probleme Definition

This section treats the super-replication problem of “un-covered” options. The trader
of these options, starting from a naught position on the underlying, builds his initial
“delta” to launch his strategy. He then delivers certain amount of cash g0(XT ) and g1(XT )
numbers of stocks at the maturity. This payoff at the maturity actually corresponds to a
total cash amount equal to G(XT ) where

G(x) := {y (x, y) + g0( (x, y))− I(x, y) : t.q. y = g1( (x, y))}, x ∈ R.

The term (x, y) corresponds to the post-trade value of the underlying if its price was x
before, and if y is the purchased quantity. I(x, y) is the trading impact on the portfolio
value, which is nothing but the liquidity cost.

2.1.3.2 Principle technique difficulty

The principle difficulty resides in establishing the Dynamic Programming Principle, which
relates the value of the optimal portfolio to the super-replication price, through the control
processes, in particular X,Y , see in [48], [50] or [41]. However, the usual formulation could
no longer be applied to prove the pricing equation in our model with impact. The reason
being that in a model where X,Y, V all have a linear term on the control variable b,
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the optimization would be performed on a one-dimension line, a singular optimization
problem! This difficulty is overcome by a change of variable, which allows us to announce
the Dynamic Programming Principle on function of the process of liquidation value, i.e.
the underlying price after the trader has liquidated all his positions immediately:

X̂t,z,γ := (Xt,x,γ ,−Y t,z,γ)

where z = ( (x, y), y, v+I(x, y)) with the initial price of the underlyingX0− = x, the initial
position y and the initial portfolio wealth v. We define the corresponding super-replication
price- w(t, X̂t), which designates the minimum of the initial wealth to cover the pay-off at
the maturity, when starting from a position naught on the underlying.

This change of variable helps us avoid the singularity in the optimization problem.
It also allows us to deduce the pricing equation in a formal way. Meanwhile, the jumps
introduced by the processes X̂ and w require some more delicacy when announcing the
Dynamic Programming Principle. In fact, in the proof of the viscosity solution property,
we need that the control variables (a, b, ν) be bounded. One thus has to construct the
set of control variables prudently such that this set be closed and thus allow using the
argument of measurable selection.

Let Γ be the set of control variables Γ := ∪k≥1Γk where

Γk := {(a, b, ν) ∈ Ak × Uk : |Y | ≤ k}.

A strategy γ ∈ Γ is called admissible if it allows the processes (Xt,z,γ
T , Y

t,z,γ
T , V

t,z,γ
T ) to

super-replicate (g0, g1). Let wk be the minimum of the initial wealth that assures the
existence of admissible strategies in the set Γk. Notice that the T−value of the function
w := k≥1wk is equal to the super-replication price G.

Our Dynamic Programming Principle is expressed in the way below:

Proposition 2.1.2. Fix (t, x, v) ∈ [0, T ]× R× R.

1. If v > w(t, x), then there exists γ ∈ Γ and y ∈ R such that

V
t,z,γ
θ ≥ w(θ, X̂t,z,γ

θ ) + I(X̂t,z,γ
θ , Y

t,z,γ
θ ),

for any stopping time θ ≥ t, where z := ( (x, y), y, v + I(x, y)).

2. Fix k ≥ 1Si v < w2k+2(t, x), then there does not exist γk ∈ Γk, y ∈ [−k, k] and a
stopping time θ ≥ t such that

V
t,z,γ
θ > wk(θ, X̂

t,z,γ
θ ) + I(X̂t,z,γ

θ , Y
t,z,γ
θ )

with z := ( (x, y), y, v + I(x, y)).

Once the Dynamic Programming Principle established, it remains only following the
classical steps of stochastic target to deduce the pricing equation.

2.1.3.3 Contribution

We have shown the valuation equation is quasi-linear.
Let µ̂ et σ̂ be the processes of the shifted drift and volatility, defined as

µ̂(x′, y′) :=
1

2
[∂2xx σ2]( (x′, y′),−y′) and σ̂(x′, y′) := (σ∂x )( (x′, y′),−y′).

Define the following operator acting on the regular functions

F̂ϕ := −∂tϕ− µ̂∂x[ϕ+ I]− 1

2
σ̂2∂2xx[ϕ+ I]

ŷ[ϕ](t, x) := −1(x, x+ f(x)∂xϕ(t, x)) .
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Then the price of the derivatives is a viscosity solution of

Fϕ [0,T [ + (ϕ−G) {T} = 0 on [0, T ]× R ,

where Fϕ(t, x) := F̂ϕ(t, x, ŷ[ϕ](t, x)).
We have then established the comparison principle, based on which is proved the

uniqueness of the solution. Under appropriate conditions, the equation admits a solution
in C1,2([0, T )× R) ∩ C0([0, T ]× R). In this case, the replication strategy is given by

Y = −1(X̂, X̂ + (f∂xϕ)(·, X̂))− YT−✶{T}

This strategy, despite its complicated appearance, is actually a kind of shifted delta-
replication. In the example of Bachelier model with constant trading impact equal to
λ,

Y = ∂xϕ(·, X − λY ),

which is the delta taken at X − λY (see Section 3.2.4).

2.1.4 Covered options

2.1.4.1 Problem definition

A similar situation to what is dealt in the precedent section is the valuation of “covered”
European options. The term “covered” implies that the option buyer delivers the initial
delta at the creation of the hedging portfolio needed by the trader, and accepts a mixture
of stocks and cash (determined by the trader) at the maturity. The buyer’s indifference
between the stocks and the cash at the beginning and at the end of the dynamic hedg-
ing eliminates the cost generated by the initial and final trading. Thus the problem of
super-replication of the “covered” options is formally defined as

(t, x) := {v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

where G(t, x, v, y) is the set of control variables (a, b) such that φ := (y, a, b) satisfies

V
t,x,v,φ
T ≥ g(Xt,x,φ

T ).

The above definition resembles significantly to the precedent problem, at the difference
that the term I does no longer appear: it serves only to manage the jump of the wealth
related to the first purchase of the underlying. We have seen in the previous section that
the only moments where the hedging strategy jumps are respectively the beginning and
the end of the replication. The possibility of acquiring or of delivering the stocks to the
clients at these two moments eliminates I in our problematics.

2.1.4.2 Principle technique difficulty

Despite its resemblance to the “un-covered” situation, we are no longer able to prove the
Dynamic Programming Principle in the two directions, as a result of the strong interac-
tion between the trading strategy and the process of the underlying. The first part of
the Principle could still be formulated in the weak form as in [19, Section 5]. We then
prove the super-solution property by following essentially the same method, see Section
4.2.2. The problematics for the other direction is that, at any intermediate moment θ,
the quantity Yθ of held asset has no reason to correspond to the Ŷθ, the one necessary
to continue the hedging strategy until time T , even the wealth itself remains sufficient.
In [51], the authors succeeded in circumventing this difficulty by an astute argument of
continuous concatenation. This method however, no longer works in our model because of
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trading impact. By following their approach, one has to modify the path of the underlying
price and thus the target Y . For this reason, we are going to use the technique of regu-
larization developed in [13] in order to prove the sub-solution property. The idea of this
technique is to construct firstly a series of regular super-solutions which, by verification
argument, provides an upper bound on the super-replication price. Now that this series
of super-solutions converges towards the solution of the objective valuation equation, the
comparison principle implies that their limit is nothing but the super-replication price
(because we already know that the price is a super-solution).

The second difference from the case of “un-covered” options is the introduction of the
gamma constraint in these “covered” options. A formal calculation shows (see [37] and [1])
that the valuation equation is non-linear, of the type

−∂tϕ− 1

2

σ2

1− f∂2xxϕ
∂2xxϕ = 0.

In order that this equation is well-defined due to the term 1− f∂2xxϕ in the denominator,
we have to impose that 1− f∂2xxϕ does not change its sign, where comes from the gamma
constraint:

γ̄ ≥ ∂2xxϕ

in which γ̄ : R → R is a function bounded by

ι ≤ γ̄ ≤ 1/f − ι

where ι > 0. This constraint assures that the denominator remains positive

1− f∂2xxϕ > 0.

An intuitive interpretation is detailed in Section 4.1.2. Notice that our constraint is slightly
different from that is dealt in the works of [19], [48] and [50], where their gamma is bounded
by some constants.

2.1.4.3 Contribution

We have shown the valuation equation is parabolic non-linear equation.
Define the following variation operator incorporating the gamma constraint:

F [ϕ] :=

{

−∂tϕ− 1

2

σ2

1− f∂2xxϕ
∂2xxϕ , γ̄ − ∂2xxϕ

}

(2.1.1)

The price of the derivatives is a viscosity solution of F [ϕ] = 0 on [0, T ) × R. As for
the terminal condition, the constraint in the domain of [0, T ) × R propagates along the
temporal axe until the maturity T , which modifies the pay-off g to the the so-call face-lift
function ĝ, defined by:

ĝ := (g − Γ̄)conc + Γ̄,

where Γ̄ ∈ C2 with ∂2xxΓ̄ = γ̄. The super-script “conc” designates the concave envelope of
the function.

We have proved price function of the derivatives on the entire domain [0, T ]×R satisfies

F [ϕ] [0,T ) + (ϕ− ĝ) {T} = 0 on [0, T ]× R.

An ǫ− optimal hedging strategy is obtained at the same time. Not only have we proposed
a numerical scheme for this equation, we have also illustrated how the impact function f

has changed the price of the derivatives by applying our results to Bachelier model. At the
end of this chapter, we have shown that adding resilience to our model does not change
the obtained valuation equation.
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2.2 BDE Branching

2.2.1 Motivation and Problems related to polynomials

The second objective of this thesis is to study the numerical scheme for the BSDEs. El
Karoui, Peng et Quenez [24] has in their work emphasized that the BSDE is closed related
to the derivatives valuation and the hedging problems. Numerous numerical methods
have been proposed to solve this equation system. The work of [15], [53] and [2] for
example, based on the discretization technique, relies on the estimation of the conditional
expectation, thus a backward approach.

Another type of numerical algorithm, proposed and studied in [27], [29] and [28], is
based on a purely “forward” approach, which avoids the estimation on the conditional
expectation. The key factor in this “forward” algorithm is the probabilist representation
of the solution in terms of “branching process”, a generalization of the Feynman-Kac
representation. In fact, given a BSDE with a polynomial driver

X. = X0 +

∫ .

0
µ(Xs)ds+

∫ .

0
σ(Xs)dWs

Y. = g(XT ) +

∫ T

.

∑

k≥0

pk(Yt)
kdt−

∫ T

.

ZtdWt

where (pk)k≥0 forms a probability mass and W a Brownian motion, the solution Y. coin-
cides with that of the PDE of Kolmogorov-Petrovskii-Piskunov (KPP)

∂tu(t, x) + Lu(t, x) +
∑

k≥0

pku
k(t, x) = 0

u(T, x) = g(x)

where L is the Dynkin operator associated to the process X. Proposing a numerical
algorithm for Y. amounts to solving the KPP equation numerically. The latter could
be expressed in a “forward” and probabilist way via the branching process, as discussed
in [27], [29] and [28]. Let Kn

t be the set of living particles of n−th generation at time t,
K̄n

t be the set of particles of n−th generation that are born before t. These particles are
indexed by k and denoted by Xk. Moreover, define

Kt := ∪n≥1Kn
t , K̄t := ∪n≥1K̄n

t ,

which designates respectively the living particles at and born before t. Let ρ be the survival
probability density function of these particles, F̄ be 1 minus the cumulative probability
function. Then the solution u(., .) is equal to the expectation of the following product

u(t, x) = E

(

∏

k∈KT

g(Xk
T )

F (δk)

)(

∏

k∈K̄T \KT

1

ρ(δk)

)

.

where δk is the longevity of the particle indexed by k. While the afore-cited work is
focused on the driver of the form of polynomial, we are interested in the generalization of
this method to an arbitrary Lipschitze driver.

2.2.2 Algorithm

Based on the work presented in the previous section, we look forward to at the first place
approximating an arbitrary Lipschitze driver by a series of polynomials. This approxi-
mation is however infeasible in general. The reason being that the solution of a BSDE



18 Chapter 2. Introduction

with polynomial driver, of degree superior or equal to two, would typically explode in a
finite time horizon. The situation becomes even more complicated when the degree of the
polynomial is higher.

We thus propose an approximation by a series of local polynomials. Let f̃ℓ◦(x, y) be
defined as

f̃ℓ◦ : (x, y) ∈ Rd × R 7→
j◦
∑

j=1

ℓ◦
∑

ℓ=0

aj,ℓ(x)y
ℓϕj(y) .

where the functions (aj,l, ϕj)ℓ≤ℓ◦,j≤j◦ are continuous and bounded. Given a partition (Ai)i
of R, the functions (ϕj)j≤j◦ could be interpreted as the smooth kernel to move from one
subset to another in a Lipschitze way. We establish at the first place the convergence
of the series of the solutions corresponding to these approximative drivers f̃ towards the
solution of the original BSDE.

The argument y appears in two different places in the above definition of the local
polynomials f̃ℓ◦ . The first place is the monomial part, while the second is the localization
part. In order to apply the results on global polynomial, we are going to decouple these
two different roles of the argument y. Define fℓ◦(x, y, y

′) by

fℓ◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦
∑

j=1

ℓ◦
∑

ℓ=0

aj,ℓ(x)y
ℓϕj(y

′) .

This driver is a global polynomial on y, with fℓ◦(x, y, y) = f̃ℓ◦(x, y). We then use the
Picard iteration to obtain the solution of such a BSDE. The solution of the m-th iteration
is given by

Y m
. = g(WT ) +

∫ T

.

fℓ◦(X,Y
m
t , Y m−1

t )dt−
∫ T

.

ZtdWt .

To present Y m in a probabilist way as the in the precedent section, we are going to first
of all divide the time interval [0, T ] into n sub-intervals delimited by (tni )i≤n. The length
of these sub-intervals is chosen in a way such that the solution Y m remains bounded
by a given constant. Then a recurrence argument allows us to expand this probabilist
representation over the entire interval [0, T ].

On contrast to the classical schemes of Picard iteration applied to BSDEs, for example
[6], a precise estimation of the path set of the solution Y on each iteration is no longer
required. Actually, if the local polynomial is distributed by a partition (Ai)i of R, then it
suffices to know in which set Ai the solution remains at the branching moments.

2.2.3 Contribution

Define recursively

v0 := y ,

vm(t, x) := E
[

V m
t,x

]

, m ≥ 1,

where y : [0, T ] × R is a bounded determinist function, and V m is defined as function of
vm−1, vm by

V m
t,x :=

(

∏

k∈Ktn
i+1

−t

Gm
t,x(k)

)(

∏

k∈K̄tn
i+1

−t\Ktn
i+1

−t

Am
t,x(k)

)

,

Gm
t,x(k) :=

vm
(

tni+1, X
x,(k)
tni+1−t

)

F (tni+1 − t− Tk−)
,

Am
t,x(k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(v
m−1(t+ Tk, X

x,(k)
Tk

))

pξk ρ(δk)
, ∀(t, x) ∈ [tni , t

n
i+1)× .
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in which the particle indexed by k is born at Tk− and dies at Tk. We have shown that the
series of vm converges towards the solution of the BSDE with driver fℓ0 . We apply at the
end this method to a concrete example to illustrate the performance of our algorithm.

2.3 Publications

All work in this thesis has been published or the object of revision in the academic revues:

Bruno Bouchard, Grégoire Loeper, and Yiyi Zou. Almost-sure hedging with perma-
nent price impact. Finance and Stochastics, 20(3):741–771, 2016

B Bouchard, G Loeper, and Y Zou. Hedging of covered options with linear market
impact and gamma constraint. arXiv preprint arXiv:1512.07087, 2015. (en révision
mineur pour SIAM SICON)

Bruno Bouchard, Xiaolu Tan, and Yiyi Zou. Numerical approximation of bsdes using
local polynomial drivers and branching processes. arXiv preprint arXiv:1612.06790,
2016. (soumis)
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Introduction

Two fundamental assumptions in the Black and Scholes approach for option hedging are
that the price dynamics are unaffected by the hedger’s behavior, and that he can trade
unrestricted amounts of asset at the instantaneous value of the price process. In other
words, it relies on the absence of market impact and of liquidity costs or liquidity con-
straints. This work addresses the problem of option hedging under a price dynamics model
that incorporates directly the hedger’s trading activity, and hence that violates those two
assumptions.

In the literature, one finds numerous studies related to this topic. Some of them
incorporate liquidity costs but no price impact, the price curve is not affected by the
trading strategy. In the setting of [17], this does not affect the super-hedging price because
trading can essentially be done in a bounded variation manner at the marginal spot price
at the origine of the curve. However, if additional restrictions are imposed on admissible
strategies, this leads to a modified pricing equation, which exhibits a quadratic term
in the second order derivative of the solution, and renders the pricing equation fully
non-linear, and even not unconditionally parabolic, see [18] and [51]. Another branch
of literature focuses on the derivation of the price dynamics through clearing condition.
In the papers [25], [46], [45], the authors work on supply and demand curves that arise

21



22 Chapter 3. Almost-sure hedging with permanent price impact

from “reference” and “program” traders (i.e. option hedgers) to establish a modified price
dynamics, but do not take into account the liquidity costs, see also [36]. This approach also
leads to non-linear pde’s, but the non-linearity comes from a modified volatility process
rather than from a liquidity cost source term. Finally, the series of papers [48], [50], [41]
address the liquidity issue indirectly by imposing bounds on the “gamma” of admissible
trading strategies, no liquidity cost or price impact are modeled explicitly.

More recently, [37] and [1] have considered a novel approach in which the price dynamic
is driven by the sum of a classical Wiener process and a (locally) linear market impact
term. The linear market impact mechanism induces a modified volatility process, as well
as a non trivial average execution price. However, the trader starts his hedging with the
correct position in stocks and does not have to unwind his final position (this corresponds
to “covered” options with delivery). Those combined effects lead to a fully non-linear pde
giving the exact replication strategy, which is not always parabolic depending on the ratio
between the instantaneous market impact (liquidity costs) and permanent market impact.

In this chapter we build on the same framework as [37], in the case where the instan-
taneous market impact equals the permanent impact (no relaxation effect), and go one
step further by considering the effect of (possibly) unwinding the portfolio at maturity,
and of building the initial portfolio. Consequently the spot “jumps” at initial time when
building the hedge portfolio, and at maturity when unwinding it (depending on the nature
of the payoff - delivery can also be made in stocks). In this framework, we find that the
optimal super-replication strategy follows a modified quasi-linear Black and Scholes pde.
Although the underlying model is similar to the one proposed by the second author [37],
the pricing pde is therefore fundamentally different (quasi-linear vs fully non-linear).

Concerning the mathematical approach, while in [37] the author focused on exhibiting
an exact replication strategy by a verification approach, in this work we follow a stochastic
target approach and derive the pde from a dynamic programming principle. The difficulty
is that, because of the market impact mechanism, the state process must be described
by the asset price and the hedger’s portfolio (i.e. the amount of risky asset detained by
the hedger) and this leads to a highly singular control problem. It is overcome by a
suitable change of variable which allows one to reduce to a zero initial position in the
risky asset and state a version of the geometric dynamic programming principle in terms
of the post-portfolio liquidation asset price process: the price that would be obtained if
the trader was liquidating his position immediately.

This chapter is organized as follows. In Section 4.1, we present the impact rule and
derive continuous time trading dynamics as limits of discrete time rebalancing policies.
The super-hedging problem is set in Section 3.2 as a stochastic target problem. We
first prove a suitable version of the geometric dynamic programming and then derive
the corresponding pde in the viscosity solution sense. Uniqueness and regularity are
established under suitable assumptions. We finally further discuss the case of a constant
impact coefficients, to provide a better understanding of the “hedging strategy”.

General notations. In the rest of this dissertation, Ω is the canonical space of continuous
functions on R+ starting at 0, P is the Wiener measure, W is the canonical process, and
F = (Ft)t≥0 is the augmentation of its raw filtration F◦ = (F◦

t )t≥0. All random variables
are defined on (Ω,F∞,P). 0 (resp. 2) denotes the space of (resp. square integrable)
Rn-valued random variables, while λ

0 (resp. λ
2) stands for the collection of predictable

Rn-valued processes ϑ (resp. such that ‖ϑ‖ λ
2
:= E[

∫∞
0 |ϑs|2ds]

1
2 ). Given a stochastic

process ξ, ξc refers to its continuous part.
Given a function φ, we denote by φ′ and φ

′′

its first and second order derivatives if they
exist. When φ depends on several arguments, we use the notations ∂xφ, ∂2xxφ to denote
the first and second order partial derivatives with respect to its x-argument, and write
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∂2xyφ for the cross second order derivative in its (x, y)-argument. We also denote by |x|
the Euclidean norm of x ∈ Rn, the integer n ≥ 1 is given by the context. Unless otherwise
specified, inequalities involving random variables are taken in the P − a.s. sense. We use
the convention x/0 = (x)×∞ with (0) = +.

3.1 Portfolio and price dynamics

This section is devoted to the derivation of our model with continuous time trading. We
first consider the situation where a trading signal is given by a continuous Itô process
and the position in stock is rebalanced in discrete time. In this case, the dynamics of
the stock price and the portfolio wealth are given according to our impact rule. A first
continuous time trading dynamic is obtained by letting the time between two consecutive
trades vanish. Then we incorporate jumps as the limit of continuous trading on a short
time horizon.

We restrict ourselves here to single stock market for simplicity, the extension to a
multi-dimensional market is just a matter of notations.

3.1.1 Impact rules

We model the impact of a strategy on the price process through an impact function f :
the price variation due to buying a (infinitesimal) number δ ∈ R of shares is δf(x), if the
price of the asset is x before the trade. The cost of buying this additional δ units is given
by

δx+
1

2
δ2f(x) = δ

∫ δ

0

1

δ
(x+ f(x)ι)dι,

in which
∫ δ

0

1

δ
(x+ f(x)ι)dι

should be interpreted as the average cost for each additional unit. Between two times of
trading τ1 ≤ τ2, the dynamics of the stock is given by the strong solution of the stochastic
differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt. (3.1.1)

All over this paper, we assume that

f ∈ C2
b and is (strictly) positive,

(µ, σ, σ−1) is Lipschitz and bounded.
( )

Remark 3.1.1. a. We restrict here to an impact rule which is linear in the size of the
order. However, note that in the following it will only be applied to orders of infinitesimal
size (at the limit). One would therefore obtain the same final dynamics (3.1.23)-(3.1.24)
below by considering a more general impact rule δ 7→ F (x, δ) whenever it satisfies

F (x, 0)= ∂2δδF (x, 0) = 0 and ∂δF (x, 0) = f(x).

See Remark 3.1.2 below. Otherwise stated, we only need to consider the value and the
slope at δ = 0 of the impact function for our analysis.

b. A typical example of such a function is F = ∆ where

∆ (x, δ) := (x, δ)− x , (3.1.2)
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with (x, ·) defined as the solution of

(x, ·) = x+

∫ ·

0
f( (x, s))ds. (3.1.3)

The curve has a natural interpretation. For an order of small size ∆ι, the stock price
jumps from x to x+∆ιf(x) ≃ (x,∆ι). Passing another order of size ∆ι moves it again
to approximately ( (x,∆ι),∆ι) = (x, 2∆ι). Passing to the limit ∆ι → 0 while keeping
the total trade size δ provides asymptotically a price move equal to ∆ (x, δ).

This specific curve will play a central role in our analysis, see Section 3.1.3.

3.1.2 Discrete rebalancing from a continuous signal and continuous time

trading limit

We first consider the situation in which the number of shares the trader would like to hold
is given by a continuous Itô process Y of the form

Y = Y0 +

∫ ·

0
bsds+

∫ ·

0
asdWs, (3.1.4)

where

(a, b) ∈ A := ∪kAk,

Ak := {(a, b) ∈ λ
0 : |(a, b)| ≤ k dt× dP− . .} for k > 0.

In order to derive our continuous time trading dynamics, we consider the corresponding
discrete time rebalancing policy set on a time grid

tni := iT/n, i = 0, . . . , n, n ≥ 1,

and then pass to the limit n→ ∞.
If the trader only changes the composition of his portfolio at the discrete times tni ,

then he holds Ytni stocks on each time interval [tni , t
n
i+1). The number of shares actually

held at t ≤ T is

Y n
t :=

n−1
∑

i=0

Ytni {tni ≤t<tni+1}
+ YT {t=T} (3.1.5)

and the number of purchased shares is

δnt :=
n

∑

i=1

{t=tni }
(Ytni − Ytni−1

).

Given our impact rule, the corresponding dynamics for the stock price process is

Xn = X0 +

∫ ·

0
µ(Xn

s )ds+

∫ ·

0
σ(Xn

s )dWs +

n
∑

i=1

[tni ,T ]δ
n
tni
f(Xn

tni −
), (3.1.6)

in which X0 is a constant.1

To describe the portfolio process, we provide the dynamics of the sum V n of the amount
of cash held and the potential amount Y nXn associated to the position in stocks:

V n = cash position + Y nXn. (3.1.7)

1A resilience effect could be modeled by considering a process X◦ satisfying (3.1.1) on [0, T ] and by
replacing µ(X) in the dynamics of X by a drift of the form µ(X)−ψ(X −X◦) for some bounded function
ψ such that xψ(x) ≥ 0. We do not consider this possibility here, for sake of simplicity.
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Observe that this is not the liquidation value of the portfolio except when Y n = 0, as the
liquidation of Y n stocks will have an impact on the price and does not generate a gain
equal to Y nXn. However, if we keep Y n in mind, the couple (V n, Y n) gives the exact
composition in cash and stocks of the portfolio. By a slight abuse of language, we call V n

the portfolio value or wealth process.
Assuming zero risk free rate for ease of notations, the dynamics of V n is given by

V n = V0 +

∫ ·

0
Y n
s−dX

n
s +

n
∑

i=1

[tni ,T ]
1

2
(δntni )

2f(Xn
tni −

), (3.1.8)

or equivalently

V n = V0 +
n

∑

i=1

[tni−1,T ]Ytni−1
(Xn

·∧tni −
−Xn

tni−1
)

+

n
∑

i=1

[tni ,T ]

[

1

2
(δntni )

2f(Xn
tni −

) + Ytni−1
δntni
f(Xn

tni −
)

]

, (3.1.9)

in which V0 ∈ R. The first term on the right-hand side corresponds to the evolution of
the portfolio value strictly between two trades: it is given by the number of shares held
multiplied by the price increment. The second term comes from transaction cost taking
place at the time tni . When a trade of size δntni occurs at time tni , the cost of buying the

stocks is 2−1(δntni
)2f(Xn

tni −
) + δntni

Xn
tni −

. On the other hand, this trade not only adds δntni
more stocks on top of the existing Y n

tni −
= Ytni−1

units in the portfolio, it also moves the
price of the stock to Xn

tni
. The value increment due to the additional position and the

price’s move is therefore δntni X
n
tni

+ Y n
tni −

(Xn
tni
−Xn

tni −
). Since Xn

tni
−Xn

tni −
= δntni

f(Xn
tni −

), we
obtain (3.1.9), a compact version of which is given in (3.1.8).

Our continuous time trading dynamics are obtained by passing to the limit n → ∞,
i.e. by considering faster and faster rebalancing strategies.

Proposition 3.1.1. Let Z := (X,Y, V ) where Y is defined as in (3.1.4) for some (a, b) ∈
A, and (X,V ) solves

X = X0 +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dYs +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds (3.1.10)

and

V = V0 +

∫ ·

0
YsdXs +

1

2

∫ ·

0
a2sf(Xs)ds. (3.1.11)

Let Zn := (Xn, Y n, V n) be defined as in (3.1.6)-(3.1.5)-(3.1.8). Then, there exists a con-
stant C > 0 such that

[0,T ]
E
[

|Zn − Z|2
]

≤ Cn−1

for all n ≥ 1.

Proof. This follows standard arguments and we only provide the main ideas. In all proofs
of this chapter, we denote by C a generic positive constant which does not depend on n

nor i ≤ n, and may change from line to line. We shall use repeatedly (H1) and the fact
that a and b are bounded by some constant k, in the dt× dP-a.e. sense.

a. The convergence of the process Y n is obvious:

[0,T ]
E
[

|Y n − Y |2
]

≤ Cn−1. (3.1.12)
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For later use, set ∆Xn := X −Xn and also observe that the estimate

[tni−1,t
n
i )
E
[

|∆Xn|2
]

≤ E

[

|∆Xn
tni−1

|2
]

(1 + Cn−1) + Cn−1 (3.1.13)

is standard. We now set

X̃n
t := Xn

t +A
i,n
t +B

i,n
t , tni−1 ≤ t < tni ,

where

A
i,n
t :=

∫ t

tni−1

f(Xn
s )dYs +

∫ t

tni−1

as(σf
′)(Xn

s )ds

B
i,n
t :=

∫ t

tni−1

(Ys − Ytni−1
)(µf ′ +

1

2
σ2f

′′

)(Xn
s )ds+

∫ t

tni−1

(Ys − Ytni−1
)(σf ′)(Xn

s )dWs.

Since Ai,n
tni

+B
i,n
tni

= δntni
f(Xn

tni −
), we have

t→tni

X̃n
t = Xn

tni
.

Set ∆X̃n := X − X̃n, β1 := bf + aσf ′ and β2 := af , so that

d|∆X̃n
t |2 = 2∆X̃n

t [(µ+ β1t )(Xt)− (µ+ β1t )(X
n
t )]dt

+ [(σ + β2t )(Xt)− (σ + β2t )(X
n
t )− (Yt − Ytni−1

)(σf ′)(Xn
t )]

2dt

− 2∆X̃n
t (Yt − Ytni−1

)(µf ′ +
1

2
σ2f

′′

)(Xn
t )dt

+ 2∆X̃n
t [(σ + β2t )(Xt)− (σ + β2t )(X

n
t )]dWt

− 2∆X̃n
t (Yt − Ytni−1

)(σf ′)(Xn
t )dWt.

In view of (3.1.12)-(3.1.13), this implies

E

[

|∆X̃n
t |2

]

≤ E

[

|∆Xn
tni−1

|2
]

+ CE

[

∫ t

tni−1

(|∆X̃n
s |2 + |Xs −Xn

s |2 + |Ys − Ytni−1
|2)ds

]

≤ E

[

|∆Xn
tni−1

|2
]

(1 + Cn−1) + CE

[

∫ t

tni−1

|∆X̃n
s |2ds+ n−2

]

,

and therefore

[tni−1,t
n
i )
E

[

|∆X̃n|2
]

≤ E

[

|∆Xn
tni−1

|2
]

(1 + Cn−1) + Cn−2, (3.1.14)

by Gronwall’s Lemma. Since
t→tni

X̃n
t = Xn

tni
, this shows that

E

[

|∆Xn
tni
|2
]

≤
[tni−1,t

n
i )
E

[

|∆X̃n|2
]

≤ Cn−1 for all i ≤ n.

Plugging this inequality in (3.1.13), we then deduce

[tni−1,t
n
i ]
E
[

|∆Xn|2
]

≤ Cn−1 for all i ≤ n. (3.1.15)
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b. We now consider the difference V − V n. It follows from (3.1.9) that

V n
tni

= V n
tni−1

+

∫ tni

tni−1

Ytni−1
µ(Xn

s )ds+

∫ tni

tni−1

Ytni−1
σ(Xn

s )dWs

+

∫ tni

tni−1

(

1

2
a2sf(X

n
s ) + Ytni−1

as(f
′σ)(Xn

s )

)

ds+

∫ tni

tni−1

Ytni−1
f(Xn

s )dYs

+

∫ tni

tni−1

α1n
s ds+

∫ tni

tni−1

α2n
s dWs

where, by (3.1.12), α1n and α2n are adapted processes satisfying

[tni−1,t
n
i )
E[|α1n|2 + |α2n|2] ≤ Cn−1.

In view of (3.1.12)-(3.1.15), this leads to

V n
tni

= V n
tni−1

+ Vtni − Vtni−1
+

∫ tni

tni−1

γ1ns ds+

∫ tni

tni−1

γ2ns dWs (3.1.16)

where γ1n and γ2n are adapted processes satisfying

[tni−1,t
n
i )
E[|γ1n|2 + |γ2n|2] ≤ Cn−1. (3.1.17)

Set

Ṽ n
t := V n

tni−1
+ Vt − Vtni−1

+

∫ t

tni−1

γ1ns ds+

∫ t

tni−1

γ2ns dWs, tni−1 ≤ t < tni .

Then, by applying Itô’s Lemma to |Ṽ n
t − Vt|2, using (3.1.17) and Gronwall’s Lemma, we

obtain

[tni−1,t
n
i )
E

[

|Ṽ n − V |2
]

≤ E

[

|V n
tni−1

− Vtni−1
|2
]

(1 + Cn−1) + Cn−2,

so that, by the identity
t→tni

Ṽ n
t = V n

tni
, recall (3.1.16), and an induction,

E

[

|V n
tni

− Vtni |
2
]

≤ Cn−1, i ≤ n.

We conclude by observing that

E
[

|V n
t − Vt|2

]

≤ CE
[

|V n
tni−1

− Vtni−1
|2 + |V n

tni−1
− V n

t |2 + |Vtni−1
− Vt|2

]

≤ C
(

E

[

|V n
tni−1

− Vtni−1
|2
]

+ n−1
)

,

for tni−1 ≤ t < tni . �

Remark 3.1.2. If the impact function δf(x) was replaced by a more general C2
b one of

the form F (x, δ), with F (x, 0) = ∂2δδF (x, 0) = 0, the computations made in the above
proof would only lead to terms of the form ∂δF (X, 0)dY and aσ(X)∂2xδF (X, 0) in place
of f(X)dY and a(σf ′)(X) in the dynamics (4.1.2). Similarly, the term a2f(X) would be
replaced by a2∂δF (X, 0) in (4.1.3).
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3.1.3 Jumps and large orders splitting

We now explain how to incorporate jumps in our dynamics. Let Uk denote the set of
random {0, · · · , k}-valued measures ν supported by [−k, k]× [0, T ] that are adapted in the
sense that t 7→ ν(A× [0, t]) is adapted for all Borel subset A of [−k, k]. We set

U := ∪k≥0 Uk.

Note that an element ν of U can be written in the form

ν(A, [0, t]) =

k
∑

j=1

{(δj ,τj)∈A×[0,t]} (3.1.18)

in which 0 ≤ τ1 < · · · < τk ≤ T are stopping times and each δj is a real-valued Fτj -random
variable.

Then, given (a, b, ν) ∈ A× U , we define the trading signal as

Y = Y0− +

∫ ·

0
bsds+

∫ ·

0
asdWs +

∫ ·

0

∫

δν(dδ, ds), (3.1.19)

where Y0− ∈ R.
In view of the previous sections, we assume that the dynamics of the stock price and

portfolio value processes are given by (4.1.2)-(4.1.3) when Y has no jump. We incorporate
jumps by assuming that the trader splits a large order δj into small pieces on a short time
interval. This is a natural idea in practice which aims at avoiding generating a too large
impact, and thus paying too much liquidity cost. Given the asymptotic already derived in
the previous section, we can reduce the trader’s behavior to the case where the transaction
is done continuously at a constant rate δj/ε on [τj , τj + ε], for some ε > 0. Denote by
(X0−, V0−) the initial stock price and portfolio value, then the number of stocks in the
portfolio associated to a strategy (a, b, ν) ∈ Ak × Uk is given by

Y ε = Y +
k

∑

j=1

[τj ,T ]

[

−δj + ε−1δj(· ∧ (τj + ε)− τj)
]

, (3.1.20)

and the corresponding stock price and portfolio value dynamics are

Xε = X0− +

∫ ·

0
σ(Xε

s )dWs +

∫ ·

0
f(Xε

s )dY
ε
s +

∫ ·

0
(µ(Xε

s ) + as(σf
′)(Xε

s ))ds (3.1.21)

V ε = V0− +

∫ ·

0
Y ε
s dX

ε
s +

1

2

∫ ·

0
a2sf(X

ε
s )ds. (3.1.22)

When passing to the limit ε → 0, we obtain the convergence of Zε := (Xε, Y ε, V ε) to
Z = (X,Y, V ) with (X,V ) defined in (3.1.23)-(3.1.24) below. In the following, we only
state the convergence of the terminal values, see the proof for a more complete description.
It uses the curve defined in (3.1.3) above, recall also (3.1.2).

Proposition 3.1.2. Given (a, b, ν) ∈ A×U , let Z = (X,Y, V ) be defined by (3.1.19) and

X = X0− +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dY

c
s +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds

+

∫ ·

0

∫

∆ (Xs−, δ)ν(dδ, ds) (3.1.23)

V = V0− +

∫ ·

0
YsdX

c
s +

1

2

∫ ·

0
a2sf(Xs)ds

+

∫ ·

0

∫

(Ys−∆ (Xs−, δ) + I(Xs−, δ)) ν(dδ, ds) (3.1.24)
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where

I(x, z) :=

∫ z

0
sf( (x, s))ds, for x, z ∈ R. (3.1.25)

Set Zε := (Xε, V ε, Y ε). Then, there exists a constant C > 0 such that

E
[

|Zε
T+ε − ZT |2

]

≤ C(ε+ P[
t≤T

ν(R, [t, t+ ε]) ≥ 2]
1
2 ),

for all ε ∈ (0, 1). Moreover,

ε→0
P[

t≤T

ν(R, [t, t+ ε]) ≥ 2] = 0.

Proof. Let ν be of the form (3.1.18) for some k ≥ 0 and note that the last claim simply
follows from the fact that {τj+1 − τj ≥ ε} ↑ Ω up to a P-null set for all j ≤ k.
Step 1. We first consider the case where τj+1 ≥ τj + ε for all j ≥ 1. Again, the estimate
on |Zε

T+ε − ZT | follows from simple observations and standard estimates, and we only
highlight the main ideas. We will indeed prove that for 1 ≤ j ≤ k + 1

E

[

[τj−1+ε,τj)
|Z − Zε|2 +

0≤s≤ε
E[|Zτj+s − Zε

τj+ε|2
]

≤ Cε, (3.1.26)

where we use the convention τ0 = 0 and τk+1 = T . The result is trivial for (Y ε, Y ) since
they are equal on each interval [τj−1 + ε, τj) and (a, b) is bounded.

a. We first prove a stronger result for (Xε, X). Fix p ∈ {2, 4}. Let ε be the solution
of the ordinary differential equation

ε
t = Xτj− +

∫ t

0

δj

ε
f( ε

s)ds.

Set ∆Xε := Xε − ε
·−τj

. Itô’s Lemma leads to

d(∆Xε
t )

p = p(∆Xε
t )

p−1α
1,ε
t dt+

p(p− 1)

2
(∆Xε

t )
p−2(α2,ε

t )2dt

+ p(∆Xε
t )

p−1α
2,ε
t dWt

+ p
δj

ε
(∆Xε

t )
p−1(f(Xε

t )− f( ε
t−τj

))dt

on [τj , τj + ε], in which α1,ε and α2,ε are bounded processes. The inequality xp−1 ≤
xp−2 + xp, the Lipschitz continuity of f and Gronwall’s Lemma then imply

0≤t≤ε
E

[

|Xε
τj+t − ε

t |p
]

≤ CE

[

|Xε
τj− −Xτj−|p +

∫ ε

0
|Xε

τj+s − ε
s|p−2ds

]

.

We now use a simple change of variables to obtain

ε
ε = (Xτj−, δj) = Xτj ,

in which is defined in (3.1.3), while

0≤t≤ε
E
[

|Xτj+t −Xτj |p
]

≤ Cε
p

2 .
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Since X and Xε have the same dynamics on [τj + ε, τj+1), this shows that

E

[

[τj+ε,τj+1)
|Xt −Xε

t |p
]

≤ CE
[

|Xτj+ε −Xε
τj+ε|p

]

≤ CE
[

| ε
ε −Xε

τj+ε|p + |Xτj+ε −Xτj |p
]

≤ CE

[

|Xε
τj− −Xτj−|p +

∫ ε

0
|Xε

τj+s − ε
s|p−2ds+ ε

p

2

]

.

For p = 2, this provides

E

[

[τj−1+ε,τj)
|X −Xε|p +

0≤s≤ε
E[|Xτj+s −Xε

τj+ε|p
]

≤ Cε
p

2 ,

by induction over j, and the case p = 4 then follows from the above. For later use, note
that the estimate

0≤t≤ε
E

[

|Xε
τj+t − ε

t |4
]

≤ Cε2 (3.1.27)

is a by-product of our analysis.
b. The estimate on V − V ε is proved similarly. We introduce

ε
t := Vτj− +

∫ t

0

δ2j

ε2
sf( ε

s)ds+ Yτj−

∫ t

0

δj

ε
f( ε

s)ds = Vτj− +

∫ t

0
Y ε
s

δj

ε
f( ε

s)ds,

and obtain a first estimate by using (3.1.27):

E

[

|V ε
τj+t − ε

t |2
]

≤ CE

[

|V ε
τj− − Vτj−|2 + ε+

(∫ ε

0
ε−1Y ε

τj+sδj |Xε
τj+s − ε

s|ds
)2

]

≤ CE
[

|V ε
τj− − Vτj−|2 + ε

]

,

for 0 ≤ t ≤ ε. Then, we observe that

ε
ε = Vτj− + I(Xτj−, δj) + Yτj−∆ (Xτj−, δj) = Vτj ,

while

0≤t≤ε
E
[

|Vτj+t − Vτj |2
]

≤ Cε.

By using the estimate on X −Xε obtained in a., we then show that

E

[

[τj+ε,τj+1)
|Vt − V ε

t |2
]

≤ CE
[

|Vτj+ε − V ε
τj+ε|2 + ε

]

,

and conclude by using an induction over j.
Step 2. We now consider the general case. Define

τ εj+1 = (ε+ τ εj ) ∨ τj+1 , δ
ε
j+1 =

∫

(τεj ,τ
ε
j+1]

δν(dδ, dt) , j ≥ 1,

where (τ ε1 , δ
ε
1) = (τ1, δ1). On Eε := { j≤k−1(τj+1 − τj) ≥ ε}, (τ εj , δ

ε
j )j≥1 = (τj , δj)j≥1.

Hence, it follows from Step 1. that

E
[

|Zε
T+ε − ZT |2

]

≤ Cε+ CE
[

|Z̃ε
T+ε|4 + |ZT |4

] 1
2
P[Ec

ε]
1
2 ,
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in which Z̃ε stands for the dynamics associated to (τ εj , δ
ε
j )j≥1. It now follows from stan-

dard estimates that (Z̃ε
T+ε)0<ε≤1 and ZT are bounded in 4. �

We conclude this section with a proposition of some important properties of the func-
tions and I appeared in Proposition 3.1.1. They will be used in the subsequent section.

Proposition 3.1.3. For all x, y, ι ∈ R,

1. ( (x, ι),−y − ι) = (x,−y),

2. f(x)∂x (x, y) = ∂y (x, y) = f( (x, y)),

3. I( ( (x, ι),−y − ι), y + ι)− I( (x,−y), y) = y∆ (x, ι) + I(x, ι),

4. f(x)∂xI(x, y) + ∆ (x, y) = ∂yI(x, y) = yf( (x, y)).

Proof. (i) is an immediate consequence of the Lipschitz continuity of the function f ,
which ensures uniqueness of the ODE defining in (3.1.3). More generally, it has the flow
property, which we shall use in the following arguments. The assertion (ii) is an immediate
consequence of the definition of : ( (x, ι), y− ι) = (x, y) for ι > 0 and ∂y (x, 0) = f(x),
so that differentiating at ι = 0 provides (ii). The identity in (iii) follows from direct
computations. As for (iv), it suffices to write that I( (x, ι), y − ι) =

∫ y

ι
(t− ι)f( (x, t))dt

for ι > 0, and again to differentiate at ι = 0. �

Remark 3.1.3. It follows from Proposition 3.1.3 that our model allows round trips at
(exactly) zero cost. If x is the current stock price, v the wealth, and y the number of
shares in the portfolio, then performing an immediate jump of size δ makes (x, y, v) jump
to ( (x, δ), y+δ, v+y∆ (x, δ)+I(x, δ)). Passing immediately the opposite order, we come
back to the position ( ( (x, δ),−δ), y+δ−δ, v+y∆ (x, δ)+I(x, δ)+(y+δ)∆ ( (x, δ),−δ)+
I( (x, δ),−δ)) = (x, y, v), by Proposition 3.1.3(i)-(iii). This is a desirable property if
one wants to have a chance to hedge options perfectly, or more generally to obtain a
non-degenerated super-hedging price.

3.2 Super-hedging of a European claim

We now turn to the super-hedging problem. From now on, we define the admissible
strategies as the Itô processes of the form

Y = y +

∫ ·

0
bsds+

∫ ·

0
asdWs +

∫ ·

0

∫

δν(dδ, ds) (3.2.1)

in which y ∈ R, (a, b, ν) ∈ A × U and Y is essentially bounded. If |Y | ≤ k and (a, b, ν) ∈
Ak × Uk, then we say that (a, b, ν) ∈ Γk, k ≥ 1, and we let

Γ := ∪k≥1Γk.

We will comment in Remark 3.2.1 below the reason why we are restricted to bounded
controls.

Given (t, z) ∈ := [0, T ]× R× R× R, we define

Zt,z,γ := (Xt,z,γ , Y t,z,γ , V t,z,γ)

as the solution of (3.1.23)-(3.2.1)-(3.1.24) on [t, T ] associated to γ ∈ Γ and with initial
condition Z

t,z,γ
t− = z.
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3.2.1 Super-hedging price

A European contingent claim is defined by its payoff function, a measurable map g =
(g0, g1) : x ∈ R 7→ R2. The first component is the cash-settlement part, i.e. the amount
of cash paid at maturity, while g1 is the delivery part, i.e. the number of stocks to be
delivered.

An admissible strategy γ ∈ Γ allows to super-hedge the claim associated to the payoff
g, starting from the initial condition z at time t if

Z
t,z,γ
T ∈

where

:= {(x, y, v) ∈ R× R× R : v − yx ≥ g0(x) and y = g1(x)}. (3.2.2)

Recall that V stands for the frictionless liquidation value of the portfolio, it is the sum of
the cash component and the value Y X of the stocks held without taking the liquidation
impact into account.

Set
Gk(t, z) := {γ ∈ Γk : Zt,z,γ

T ∈ } , G(t, z) := ∪k≥1Gk(t, z),

and define the super-hedging price as

w(t, x) := k≥1wk(t, x) where wk(t, x) := {v : Gk(t, x, 0, v) 6= ∅}.

For later use, we precise what are the T -values of these functions.

Proposition 3.2.1. Define

Gk(x) := {y (x, y) + g0( (x, y))− I(x, y) : |y| ≤ k s.t. y = g1( (x, y))}, x ∈ R,

and G := k≥1Gk. Then,

wk(T, ·) = Gk and w(T, ·) = G. (3.2.3)

Proof. Set z = (x, 0, v) and fix γ = (a, b, ν) ∈ Γ. By (3.1.23)-(3.1.24), we have

Z
T,z,γ
T = ( (x, y), y, v + I(x, y)) with y :=

∫

δν(dδ, {T}).

In view of (3.2.2), ZT,z,γ
T ∈ is then equivalent to

v + I(x, y)− y (x, y) ≥ g0( (x, y)) and y = g1( (x, y)).

By definition of w (resp. wk), we have to compute the minimal v for which this holds for
some y ∈ R (resp. |y| ≤ k). �

Remark 3.2.1. Let us conclude this section with a comment on our choice of the set of
bounded controls Γ.

a. First, this ensures that the dynamics of X,Y and V are well-defined. This could
obviously be relaxed by imposing 2

λ bounds. However, note that the bound should anyway
be uniform. This is crucial to ensure that the dynamic programming principle stated in
Section 3.2.2 is valid, as it uses measurable selection arguments: ω 7→ ϑ[ω] ∈ λ

2 does not

imply E

[

‖ϑ[·]‖ λ
2

]

<∞. See Remark 3.2.2 below for a related discussion.

b. In the proof of Theorem 3.2.1, we will need to perform a change of measure asso-
ciated to a martingale of the form dM = −MχadW in which χa may explode at a speed
a2 if a is not bounded. See Step 1. of the proof of Theorem 3.2.1. In order to ensure that
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this local martingale is well-defined, and is actually a martingale, one should impose very
strong integrability conditions on a.

In order to simplify the presentation, we therefore stick to bounded controls. Many
other choices are possible. Note however that, in the case f ≡ 0, a large class of options
leads to hedging strategies in our set Γ, up to a slight payoff smoothing to avoid the explo-
sion of the delta or the gamma at maturity. This implies that, although the perfect hedging
strategy may not belong to Γ, at least it is a limit of elements of Γ and the super-hedging
prices coincide.

3.2.2 Dynamic programming

Our control problem is a stochastic target problem as that studied in [49]. The aim of
this section is to show that it satisfies a version of their geometric dynamic programming
principle.

It is important to notice that the value function w is not amenable to dynamic pro-
gramming per se. The reason being that it assumes a zero initial stock holding at time t,
while the position Yθ will in general not be zero at a later time θ. It is therefore a priori
not possible to compare the later wealth process Vθ with the corresponding super-hedging
price w(θ,Xθ). However, a version of the geometric dynamic programming principle can
still be obtained if we introduce the process

X̂t,z,γ := (Xt,z,γ ,−Y t,z,γ) (3.2.4)

which represents the value of the stock immediately after liquidating the stock position.
We refer to Remark 3.2.2 below for the reason why part (ii) of the following dynamic

programming principle is stated in terms of (wk)k≥1 instead of w.

Proposition 3.2.2 (GDP). Fix (t, x, v) ∈ [0, T ]× R× R.

1. If v > w(t, x) then there exists γ ∈ Γ and y ∈ R such that

V
t,z,γ
θ ≥ w(θ, X̂t,z,γ

θ ) + I(X̂t,z,γ
θ , Y

t,z,γ
θ ),

for all stopping time θ ≥ t, where z := ( (x, y), y, v + I(x, y)).

2. Fix k ≥ 1. If v < w2k+2(t, x) then we can not find γ ∈ Γk, y ∈ [−k, k] and a stopping
time θ ≥ t such that

V
t,z,γ
θ > wk(θ, X̂

t,z,γ
θ ) + I(X̂t,z,γ

θ , Y
t,z,γ
θ )

with z := ( (x, y), y, v + I(x, y)).

Proof. Step 1. In order to transform our stochastic target problem into a time consistent
one, we introduce the auxiliary value function corresponding to an initial holding y in
stocks:

ŵ(t, x, y) := k≥1 ŵk(t, x, y) where ŵk(t, x, y) := {v : Gk(t, x, y, v) 6= ∅}.

Note that wk+1(t, x) ≤ {v : ∃ y ∈ [−k, k] s.t. Gk(t, (x, y), y, v + I(x, y)) 6= ∅}, which
follows from (3.1.23)-(3.1.24). Since ( (x,−y), y) = x, see Proposition 3.1.3, this implies

ŵk(t, x, y) ≥ wk+1(t, (x,−y)) + I( (x,−y), y), (3.2.5)

for |y| ≤ k. Similarly, since I(x,−y)+y∆ (x,−y) = −I( (x,−y), y) by Proposition 3.1.3,
we have

ŵk+1(t, x, y) ≤ wk(t, (x,−y)) + I( (x,−y), y). (3.2.6)
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Step 2. a. Assume that v > w(t, x). The definition of w implies that we can find y ∈ R

and γ ∈ G(t, z) where z := ( (x, y), y, v + I(x, y)). By the arguments of [49, Step 1 proof
of Theorem 3.1], V t,z,γ

θ ≥ ŵ(θ,Xt,z,γ
θ , Y

t,z,γ
θ ), for all stopping times θ ≥ t. Then, (3.2.5)

applied for k → ∞ provides (i).

b. Assume now that we can find γ ∈ Γk, y ∈ [−k, k] and a stopping time θ ≥ t such that
V

t,z,γ
θ > (wk + I)(θ, X̂t,z,γ

θ , Y
t,z,γ
θ ), where z := ( (x, y), y, v + I(x, y)). By (3.2.4)-(3.2.6),

V
t,z,γ
θ > ŵk+1(θ,X

t,z,γ
θ , Y

t,z,γ
θ ), and it follows from [49, Step 2 proof of Theorem 3.1] and

Corollary 3.3.1 that v + I(x, y) ≥ ŵ2k+1(t, (x, y), y). We conclude that (ii) holds by ap-
pealing to (3.2.5) and the identities ( (x, y),−y) = x and I( ( (x, y), −y), y) = I(x, y),
see Proposition 3.1.3. �

We conclude this section with purely technical considerations that justify the form of
the above dynamic programming principle. They are of no use for the later developments
but may help to clarify our approach.

Remark 3.2.2. Part (ii) of Proposition 3.2.2 can not be stated in terms of w. The
reason is that the measurable selection techniques can not be used with the set Γ. Indeed,
if ω 7→ γ[ω] ∈ Γ, then the corresponding bounds depend on ω and are not uniform: a
measurable family of controls {γ[ω], ω ∈ Ω} does not permit to construct an element in Γ.
Part (i) of Proposition 3.2.2 only relies on a conditioning argument, which can be done
within Γ.

Remark 3.2.3. A version of the geometric dynamic programming principle also holds for
(ŵk)k≥1, this is a by-product of the above proof. It is therefore tempting to try to derive
a pde for the function ŵ. However, the fact that the control b appears linearly in the
dynamics of (X,Y, V ) makes this problem highly singular, and “standard approaches” do
not seem to work. We shall see in Lemma 3.2.1 that this singularity disappears in the
parameterization (X,−Y ) used in Proposition 3.2.2. Moreover, hedging implies a control
on the diffusion part of the dynamics which is translated into a strong relation between
Y and the space gradient Dŵ(·, X, Y ). This would lead to a pde set on a curve on the
coordinates (t, x, y) depending on Dŵ (the solution of the pde).

3.2.3 Pricing equation

In order to understand what would be the partial differential equation w should solve, we
state the following key lemma. Although the control b appears linearly in the dynamics of
(X,Y, V ), this lemma shows that the singularity that may be resulted in does indeed not
appear when applying Itô’s Lemma to V − (ϕ + I)(·, X̂, Y ), recall (3.2.4). The potential
singularity is absorbed by the functions and I (compare with Remark 3.2.3). The proof
of this Lemma is postponed to Section 3.2.5.

Lemma 3.2.1. Fix (t, x, y, v) ∈ , z := (x, y, v), γ = (a, b, ν) ∈ Γ. Then,

X̂t,z,γ = (x,−y)

+

∫ ·

t

[µ̂(X̂t,z,γ
s , Y t,z,γ

s ) + (∂x µ− 1

2
∂x a2sff

′)(Xt,z,γ
s ,−Y t,z,γ

s )]ds

+

∫ ·

t

σ̂(X̂t,z,γ
s , Y t,z,γ

s )dWs.
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Given ϕ ∈ C∞
b , set E t,z,γ := V t,z,γ − (ϕ+ I)(·, X̂t,z,γ , Y t,z,γ). Then,

E t,z,γ − E t,z,γ
t =

∫ ·

t

[Y t,z,γ
s − Y̌ t,z,γ

s ](µ− f ′fa2s/2)(X
t,z,γ
s )ds

+

∫ ·

t

[Y t,z,γ
s − Y̌ t,z,γ

s ]σ(Xt,z,γ
s )dWs

+

∫ ·

t

F̂ϕ(s, X̂t,z,γ
s , Y t,z,γ

s )ds

in which

Y̌ t,z,γ := Y t,z,γ +
X̂t,z,γ −Xt,z,γ

f(Xt,z,γ)
+ ∂xϕ(·, X̂t,z,γ)

f(X̂t,z,γ)

f(Xt,z,γ)

F̂ϕ := −∂tϕ− µ̂∂x[ϕ+ I]− 1

2
σ̂2∂2xx[ϕ+ I]

and µ̂(x′, y′) := 1
2 [∂

2
xx σ2]( (x′, y′),−y′), σ̂(x′, y′) := (σ∂x )( (x′, y′),−y′) for (x′, y′) ∈

R× R.

Let us now appeal to Proposition 3.2.2 and apply Lemma 3.2.1 to ϕ = w, assuming
that w is smooth and that Proposition 3.2.2(i) is valid even if we start from v = w(t, x),
i.e. assuming that the in the definition of w is a . With the notations of the above
lemma, applying Proposition 3.2.2(i) formally for θ = t+ leads to

0 ≤ dE t,z,γ
t

= (y − ŷ)
{

[µ− ff ′a2t /2)( (x, y))]dt+ σ( (x, y))dWt

}

+F̂w(t, x̂, y)dt

in which

ŷ = y +
x̂− (x, y)

f( (x, y))
+ ∂xw(t, x̂)

f(x̂)

f( (x, y))
and x̂ = ( (x, y),−y) = x.

Remaining at a formal level, this inequality cannot hold unless y = ŷ, because σ 6= 0 and
F̂w(t, x, ŷ) = F̂w(t, x̂, y) ≥ 0. This means that w should be a super-solution of

Fϕ(t, x) := F̂ϕ(t, x, ŷ[ϕ](t, x)) = 0 (3.2.7)

where, for a smooth function ϕ and −1 being the inverse of (x, ·)

ŷ[ϕ](t, x) := −1(x, x+ f(x)∂xϕ(t, x)).

From (ii) of Proposition 3.2.2, we can deduce formally that the above inequality should
actually be an equality, and therefore that w should solve (3.2.7).

In order to give a sense to the above, we assume that
{

(x, ·) is invertible for all x ∈ R

(x, z) ∈ R× R 7→ −1(x, z) is C2.
( )

In view of (3.2.3), we therefore expect w to be a solution of

Fϕ [0,T [ + (ϕ−G) {T} = 0 on [0, T ]× R. (3.2.8)

Since w may not be smooth and (ii) of Proposition 3.2.2 is stated in terms of wk instead
of w, we need to refer to the notion of viscosity solutions and the relaxed semi-limits of
(wk)k≥1. Define

w∗(t, x) :=
(t′,x′,k)→(t,x,∞)

wk(t
′, x′) and w∗(t, x) :=

(t′,x′,k)→(t,x,∞)
wk(t

′, x′),
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where the limits are taken over t′ < T as usual. Note that w∗ coincides with the lower-
semicontinuous enveloppe of w, as a result of w = k≥1wk = k→∞ ↓ wk by definition.

We are now in position to state the main result of this section. Assume additionally
{

G is continuous and Gk ↓ G uniformly on compact sets.
w∗ and w∗ are finite on [0, T ]× R.

( )

The first part of (H3) will be used to obtain the boundary condition. The second part is
natural to ensure our problem is not ill-posed.

Theorem 3.2.1 (Pricing equation). The functions w∗ and w∗ are respectively a viscosity
super- and a subsolution of (3.2.8). If they are bounded and f > 0, then w = w∗ = w∗

and w is the unique bounded viscosity solution of (3.2.8). If in addition G is bounded and
C2 with G,G′, G

′′

Hölder continuous, then w ∈ C1,2([0, T )× R) ∩ C0([0, T ]× R).

The proof is reported in Section 3.2.5. Let us now discuss the verification counterpart.

Remark 3.2.4 (Verification). Assume that ϕ is a smooth solution of (3.2.8) and that we
can find (a, b) ∈ A such that the following system holds on [t, T ):

X = x+∆ (x, ŷ[ϕ](t, x)) +

∫ ·

t

σ(Xs)dWs +

∫ ·

0
f(Xs)dY

c
s

+

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds+∆ (XT−,−YT−) {T}

Y = ŷ[ϕ](t, x) +

∫ ·

t

bsds+

∫ ·

t

asdWs − YT− {T}

= −1(X̂, X̂ + (f∂xϕ)(·, X̂))− YT− {T}

X̂ := (X,−Y )

V = ϕ(t, x) + I(x, ŷ[ϕ](t, x)) +

∫ ·

t

YsdX
c
s +

1

2

∫ ·

0
a2sf(Xs)ds

+ (YT−∆ (XT−,−YT−) + I(XT−,−YT−)) {T}.

a. Note that X̂t = (Xt,−Yt) = ( (x, ŷ[ϕ](t, x)),−ŷ[ϕ](t, x)) = x, recall Proposition
3.1.3(i), so that Yt = ŷ[ϕ](t, x) = −1(X̂t, X̂t + (f∂xϕ)(t, X̂t)). We therefore need to find
(a, b) such that X = (X̂, Y ) = X̂ + (f∂xϕ)(·, X̂). This amounts to solving:

σ(X) + f(X)a = σ̂(X̂, Y )∂xψ(·, X̂)

f(X)b+ (µ+ aσf ′)(X) = (µ̂(X̂, Y ) + (∂x µ− 1

2
∂x a2sff

′)(X,−Y ))∂xψ(·, X)

+
1

2
σ̂2(X̂, Y )∂2xxψ(·, X̂)

where ψ(t, x) := x + (f∂xϕ)(t, x). Since f > 0, this system has a solution. Moreover,
(a, b) ∈ A under additional smoothness and boundedness assumption.
b. Let Y̌ be as in Lemma 3.2.1 for the above dynamics. Since X = (X̂, Y ) = X̂ +
(f∂xϕ)(·, X̂) on [t, T ) by construction, we have Y̌ = Y on [t, T ). Then it follows from
Lemma 3.2.1 and (3.2.7)-(3.2.8) that

VT− = ϕ(T, X̂T−) + I(X̂T−, YT−) = G(X̂T−) + I(X̂T−, YT−).

Since XT = X̂T− and YT−∆ (XT−,−YT−) + I(XT−,−YT−) + I(X̂T−, YT−) = 0, see
Proposition 3.1.3, this implies VT = G(XT ). The hedging strategy thence consists in
taking an initial position Yt = ŷ[ϕ](t, x) and then applying the control (a, b) up to T . A
final trade is performed at T . In particular, the number of stocks Y is continuous on (t, T ).
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3.2.4 An example: the fixed impact case

In this section, we consider the simple case of a constant impact function f : f(x) = λ > 0
for all x ∈ R. This is certainly a too simple model, but this allows us to highlight the
structure of our result as the pde simplifies in this case. Indeed, for

(x, y) = x+ yλ and I(x, y) =
1

2
y2λ,

we have
µ̂(x, y) = 0 , σ̂(x, y) := σ(x+ yλ) , ŷ[ϕ] := ∂xϕ.

The pricing equation is given by a local volatility model in which the volatility depends
on the hedging price itself, and therefore on the claim (g0, g1) to be hedged:

0 = −∂tϕ(t, x)−
1

2
σ2(x+ ∂xϕλ)∂

2
xxϕ(t, x).

As for the process Y in the verification argument of Remark 3.2.4, it is given by

Y = ∂xϕ(·, X̂) = ∂xϕ(·, X − λY ).

This shows that the hedging strategy (if well-defined) consists in following the usual
∆-hedging strategy but for a ∆ = ∂xϕ computed at the liquidation price of the stock
X̂ defined in (3.2.4).

Note that the pricing equation is reduced to the usual heat equation when σ is constant.
This fact, showing the limitation of the fixed impact model, is expected. To explain
this degeneration, let us consider the simpler case g1 = 0, µ = 0 and use the notations
of Remark 3.2.4. Since σ is constant, the strategy Y does not affect the coefficients
in the dynamics of X, it just adds an extra shift λdY each time we buy or sell. The
imposition of YT = 0 (after the final jump) and Yt− = 0 leads to a null total impact:
XT = Xt− + σ(WT −Wt). As for the wealth process, we have

VT = ϕ(t, x) +
1

2
Y 2
t λ+

∫ T

t

YsdX
c
s +

1

2

∫ T

t

a2sλds− Y 2
T−λ+

1

2
Y 2
T−λ

= ϕ(t, x) +

∫ T

t

YsσdWs +
1

2
λ(Y 2

t − Y 2
T−) +

∫ T

t

λYsdY
c
s +

1

2

∫ T

t

a2sλds

= ϕ(t, x) +

∫ T

t

YsσdWs.

In other words, the liquidation costs are cancelled: when buying, the trader pays a cost
and increases the price; when selling back, he pays a cost again but sells at a higher price.
If there is no impact on the underlying dynamics X and f is constant, these two directions
perfectly offset. On contrast, the hedging strategy is affected: Y = ∂xϕ(·, X − λY ) on
[0, T ).

3.2.5 Proof of the pde characterization

3.2.5.1 The key lemma

We first provide the proof of our key result.
Proof of Lemma 3.2.1. To alleviate the notations, we omit the super-scripts.
a. We first observe from Proposition 3.1.3(i) that (X,−Y ) has continuous paths, while
Proposition 3.1.3(ii) implies that f∂x −∂y = 0 (and therefore f ′∂x +f∂2xx −∂2xy = 0).
Using Itô’s Lemma, this leads to

d (Xs,−Ys) = (µ− 1

2
a2sff

′)(Xs)∂x (Xs,−Ys)ds+ σ(Xs)∂x (Xs,−Ys)dWs

+
1

2

[

σ2∂2xx − a2sf∂
2
xy + a2s∂

2
yy

]

(Xs,−Ys)ds.
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We now use the identity f∂2xy − ∂2yy = 0, which also follows from Proposition 3.1.3(ii),
to simplify the above expression into

d (Xs,−Ys) = [∂x (µ− 1

2
a2sff

′) +
1

2
∂2xx σ2](Xs,−Ys)ds

+ (σ∂x )(Xs,−Ys)dWs.

b. Similarly, it follows from Proposition 3.1.3(iii) that V − I(X̂, Y ) has continuous paths,
and so does E by a. Before applying Itô’s lemma to derive the dynamics of E , observe that
∂yI( (x,−y), y) = yf( ( (x,−y), y)) = yf(x) and that ∂2yyI( (x,−y), y) = y(ff ′)(x) +

f(x). Also note that σ̂( (x,−y), y) = σ(x)∂x (x,−y). Then, using the dynamics of X̂
derived above, we obtain

dEs =(Ys − Y̌s)σ(Xs)dWs + (Ys − Y̌s)[µ− 1

2
a2s(ff

′)](Xs)ds+ F̂ϕ(s, X̂s, Ys)ds

+ asσ(Xs)[Ysf
′(Xs)− ∂x (Xs,−Ys)∂2xyI(X̂s, Ys)]ds,

where
Y̌ := ∂x(ϕ+ I)(·, X̂, Y )∂x (X,−Y ).

By Proposition 3.1.3(ii)(iv), f(x)∂2xyI(x, y) = ∂y[yf( (x, y))−∆ (x, y)] = y(f ′f)( (x, y)).
Since ∂x (x,−y) = f( (x,−y))/f(x), see Proposition 3.1.3(ii), it follows that

∂x (X,−Y )∂2xyI( (X,−Y ), Y ) = Y f ′(X),

which implies

dEs = (Ys − Y̌s)σ(Xs)dWs + (Ys − Y̌s)[µ− 1

2
a2s(ff

′)](Xs)ds+ F̂ϕ(s, X̂s, Ys)ds.

We now deduce from Proposition 3.1.3 that

∂xI(X̂, Y ) =
−∆ (X̂, Y ) + Y f( (X̂, Y ))

f(X̂)
=
X̂ −X + Y f(X)

f(X̂)

∂x (X,−Y ) = f(X̂)/f(X),

so that

Y̌ = ∂xϕ(·, X̂)
f(X̂)

f(X)
+
X̂ −X

f(X)
+ Y.

�

3.2.5.2 Super- and subsolution properties

We now prove the super- and subsolution properties of Theorem 3.2.1.
Supersolution property. We first prove the supersolution property. It follows from
similar arguments as in [10]. Let ϕ be a C∞

b function, and (to, xo) ∈ [0, T ]×R be a strict
(local) minimum point of w∗ − ϕ such that (w∗ − ϕ)(to, xo) = 0.

a. We first assume that to < T and Fϕ(to, xo) < 0, and work towards a contradiction.
In view of (3.2.7),

F̂ϕ(t, x, y) < 0 if (t, x) ∈ B and |y − ŷ[ϕ](t, x)| ≤ ε,

for some open ball B ⊂ [0, T [×R which contains (to, xo), and some ε > 0. Since −1 is
continuous, this implies that

F̂ϕ(t, x, y) < 0 if (t, x) ∈ B and |x+ ∂xϕ(t, x)f(x)− (x, y)| ≤ εf( (x, y)), (3.2.9)
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after possibly changing B and ε. Let (tn, xn)n be a sequence in B that converges to
(to, xo) and such that w(tn, xn) → w∗(to, xo) (recall that w∗ coïncides with the lower-
semicontinuous envelope of w). Set vn := w(tn, xn) + n−1. It follows from Proposition
3.2.2(i) that we can find (an, bn, νn) = γn ∈ Γ and yn ∈ R such that

V
tn,zn,γn
θn

≥ w(θn, X̂
tn,zn,γn
θn

) + I(X̂tn,zn,γn
θ , Y

tn,zn,γn
θn

), (3.2.10)

where zn := ( (xn, yn), yn, vn+I(xn, yn)) and θn is the first exit time after tn of (·, X̂tn,zn,γn)
from B (note that X̂tn,zn,γn

tn
= ( (xn, yn),−yn) = xn). In the following, we use the simpli-

fied notations Xn, X̂n, V n and Y n for the corresponding quantities indexed by (tn, zn, γn).
Since (to, xo) reaches a strict minimum w∗ − ϕ, this implies

V n
θn

≥ ϕ(θn, X̂
n
θn
) + I(X̂n

θ , Y
n
θn
) + ι, (3.2.11)

for some ι > 0. Let Y̌ n be as in Lemma 3.2.1 and observe that

Y̌ n − Y n =
X̂n + ∂xϕ(·, X̂n)f(X̂n)− (X̂n, Y n)

f( (X̂n, Y n))
. (3.2.12)

Set

χn :=
(µ− f ′f(ans )

2/2)(Xn)

σ(Xn)
+

F̂ϕ(·, X̂n, Y n)

(Y n − Y̌ n)σ(Xn) |Y n−Y̌ n|≥ε

and consider the measure Pn defined by

dPn

dP
=Mn

θn
where Mn = 1−

∫ ·∧θn

tn

Mn
s χ

n
s dWs.

Then, it follows from (3.2.11), Lemma 3.2.1, (3.2.9) and (3.2.12) that

ι ≤ EPn [V n
θn

− (ϕ+ I)(θn, X̂
n
θn
, Y n

θn
)]

≤ vn + I(xn, yn)− (ϕ+ I)(tn, ( (xn, yn),−yn), yn)
= vn − ϕ(tn, xn).

The right-hand side goes to 0, which is the required contradiction.
b. We now explain how to modify the above proof for the case to = T . After possibly

replacing (t, x) 7→ ϕ(t, x) by (t, x) 7→ ϕ(t, x)−
√
T − t, we can assume that ∂tϕ(t, x) → ∞

as t → T , uniformly in x on each compact set. Then (3.2.9) still holds for B of the form
[T − η, T ) × B(xo) in which B(xo) is an open ball around xo and η > 0 small. Assume
that ϕ(T, xo) < G(xo). Then, after possibly changing B(xo), we have ϕ(T, ·) ≤ G− ι1 on
B(xo), for some ι1 > 0. Then, with the notations of a., we deduce from (3.2.3)-(3.2.10)
that

V n
θn

≥ ϕ(θn, X̂
n
θn
) + I(X̂n

θ , Y
n
θn
) + ι1 ∧ ι2,

in which ι2 := {(w∗ − ϕ)(t, x) : (t, x) ∈ [to − η, T ) × ∂B(xo)} > 0 and θn is now
the minimum between T and the first time after tn at which X̂n exists B(xo). The
contradiction is then deduced from the same arguments as above. �

Subsolution property. We now turn to the subsolution property. Again the proof
is close to [10], except that we have to account for the specific form of the dynamic
programming principle stated in Proposition 3.2.2(ii). Let ϕ be a C∞

b function, and
(to, xo) ∈ [0, T ]×R be a strict (local) maximum point of w∗−ϕ such that (w∗−ϕ)(to, xo) =
0. By [4, Lemma 4.2], we can find a sequence (kn, tn, xn)n≥1 such that kn → ∞, (tn, xn)
is a local maximum point of w∗

kn
− ϕ and (tn, xn, wkn(tn, xn)) → (to, xo, w

∗(to, xo)).
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a. As above, we first assume that to < T . Set ϕn(t, x) := ϕ(t, x) + |t− tn|2 + |x− xn|4
and assume that Fϕ(to, xo) > 0. Then, Fϕn > 0 on a open neighborhood B of (to, xo)
which contains (tn, xn), for all n large enough. Since we are going to localize the dynamics,
we can modify ϕn, σ, µ and f in such a way that they are identically equal to 0 outside a
compact A ⊃ B. It then follows from Remark 3.2.4 a. that, after possibly changing n ≥ 1,
we can find (bn, an) ∈ Akn such that the following admits a strong solution:

Xn = xn +∆ (xn, ŷ[ϕn](tn, xn)) +

∫ ·

tn

σ(Xn
s )dWs +

∫ ·

tn

f(Xn
s )dY

n,c
s

+

∫ ·

tn

(µ(Xs) + ans (σf
′)(Xn

s ))ds

Y n = ŷ[ϕn](tn, xn) +

∫ ·

tn

bns ds+

∫ ·

tn

ans dWs

= −1(X̂n, X̂n + (f∂xϕn)(·, X̂n))

X̂n := (Xn,−Y n)

V n = vn + I(xn, ŷ[ϕn](tn, xn)) +

∫ ·

tn

Y n
s dX

n,c
s +

1

2

∫ ·

tn

(ans )
2f(Xn

s )ds.

In the above, we have set vn := wkn(tn, xn) − n−1. Observe that the construction of Y n

ensures that it coincides with the corresponding process Y̌ n of Lemma 3.2.1. Also note
that X̂n

tn = ( (xn, yn), −yn) = xn, and let θn be the first time after tn at which (·, X̂n)
exists B. By applying Itô’s Lemma, using Lemma 3.2.1 and the fact that Fϕn ≥ 0 on B,
we obtain

V n
θn

≥ (ϕn + I)(θn, X̂
n
θn
, Y n

θn
) + vn − ϕn(tn, xn).

Let 2ε := {|t− to|2 + |x− xo|4, (t, x) ∈ ∂B}. For n large enough, the above implies

V n
θn

≥ (wkn−1 + I)(θn, X̂
n
θn
, Y n

θn
) + ε+ ιn,

where ιn := (ϕn−wkn−1)(tn−1, xn−1)+ vn−ϕn(tn, xn) converges to 0. Hence, we can find
n such that

V n
θn
> (wkn−1 + I)(θn, X̂

n
θn
, Y n

θn
).

Now observe that we can change the subsequence (kn)n≥1 in such a way that kn ≥ 2kn−1+
2. Then, vn = wkn(tn, xn) − n−1 < w2kn−1+2(tn, xn), which leads to a contradiction to
Proposition 3.2.2(ii).

b. It remains to consider the case to = T . As in Step 1., we only explain how to
modify the argument used above. Let (vn, kn, tn, xn) be as in a. We now set ϕn(t, x) :=
ϕ(t, x)+

√
T − t+ |x−xn|4. Since ∂tϕn(t, x) → −∞ as t→ T , we can find n large enough

so that Fϕn ≥ 0 on [tn, T ) × B(xo) in which B(xo) is an open ball around xo. Assume
that ϕ(T, xo) > G(xo) + η for some η > 0. Then, after possibly changing B(xo), we can
assume that ϕn(T, ·) ≥ G + η on B(xo). We now use the same construction as in a. but
with θn defined as the minimum between T and the first time where X̂n exists B(xo). We
obtain

V n
θn

≥ (ϕn + I)(θn, X̂
n
θn
, Y n

θn
) + vn − ϕn(tn, xn).

Let 2ε := {|x− xo|4, x ∈ ∂B(xo)}. For n large enough, the above implies

V n
θn

≥ wkn−1(θn, X̂
n
θn
) θn<T +G(X̂n

θn
) θn=T + I(X̂n

θn
, Y n

θn
) + ε ∧ η + ιn,

where ιn converges to 0. By (3.2.3) and (H3),

V n
θn
> wkn−1(θn, X̂

n
θn
) + I(X̂n

θn
, Y n

θn
),

for n large enough. We conclude as in a. �
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3.2.5.3 Comparison

In all this section, we work under the additional condition

f > 0. (3.2.13)

Direct computations (use (3.2.7) and Proposition 3.1.3) show that F̂ϕ is of the form

F̂ϕ = −∂tϕ−B(·, f∂xϕ)∂xϕ− 1

2
A2(·, f∂xϕ)∂xxϕ− L(·, f∂xϕ) (3.2.14)

where A,B and L : (t, x, p) ∈ [0, T ]× R× R → R are Lipschitz continuous functions.
Let Φ be a solution of the ordinary differential equation

Φ′(t) = f(Φ(t)), t ∈ R. (3.2.15)

Then, Φ is a bijection on R (as f is Lipschitz and 1/f is bounded) and the following is an
immediate consequence of the definition of viscosity solutions.

Lemma 3.2.2. Let v be a supersolution (resp. subsolution) of (3.2.8). Fix ρ > 0. Then,

ṽ(t, x) = eρtv(t,Φ(x))

is a supersolution (resp. subsolution) of

0 = ρϕ− ∂tϕ−
[

B(Φ, e−ρt∂xϕ)/f(Φ)−
1

2
A2(Φ, e−ρt∂xϕ)f

′(Φ)/f(Φ)2
]

∂xϕ

−1

2
A2(Φ, e−ρt∂xϕ)∂xxϕ/f(Φ)

2 − eρtL(Φ, e−ρt∂xϕ) (3.2.16)

with the terminal condition

ϕ(T, ·) = eρTG(Φ). (3.2.17)

To prove that comparison holds for (3.2.8), it suffices to prove that it holds for
(3.2.16)-(3.2.17). The latter is a direct consequence of the following standard result. We
provide here the complete proof without further precise reference.

Theorem 3.2.2. Let O be an open subset of R, u (resp. v) be a upper-semicontinuous
subsolution (resp. lower-semicontinuous supersolution) on [0, T )×O of:

ρϕ− ∂tϕ− B̄(·, e−ρt∂xϕ)∂xϕ− 1

2
Ā2(·, e−ρt∂xϕ)∂xxϕ− eρtL̄(·, e−ρt∂xϕ) = 0 (3.2.18)

where ρ > 0 is constant, Ā, B̄ and L̄ : (t, x, p) ∈ [0, T ]×O×R → R are Lipschitz continuous
functions. Suppose that u and v are bounded and satisfy u ≤ v on the parabolic boundary
of [0, T )×O, then u ≤ v on the closure of [0, T ]×O.

Proof. Suppose to the contrary that

[0,T ]×O
(u− v) > 0.

Define, for n > 0,

Θn :=
(t,x,y)∈[0,T )×O2

(

u(t, x)− v(t, y)− n

2
|x− y|2 − 1

2n
|x|2

)

.
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Then there exists ι > 0, such that Θn ≥ ι for n large enough. Since u and v are bounded
and u ≤ v on the parabolic boundary of the domain, there exists (tn, xn, yn) ∈ [0, T )×O2

which achieves the above supremum.
As usual, apply Ishii’s Lemma combined with the sub- and super-solution properties

of u and v, and the Lipschitz continuity of Ā, B̄ and L̄ leads to, for some constant C which
does not depend on n and pn := n(xn − yn),

ρ(u(tn, xn)− v(tn, yn)) ≤ [B̄(xn, e
−ρtn(pn +

1

n
xn))− B̄(yn, e

−ρtnpn)]pn

+
1

n
xnB̄(xn, e

−ρtn(pn +
1

n
xn))

+
3n

2
[Ā(xn, e

−ρtn(pn +
1

n
xn))− Ā(yn, e

−ρtnpn)]
2

+
1

2n
Ā2(xn, e

−ρtn(pn +
1

n
xn))

+eρtn
(

L̄(xn, e
−ρtn(pn +

1

n
xn))− L̄(yn, e

−ρtnpn)

)

≤ C

(

n(xn − yn)
2 + |xn − yn|+

1

n
x2n +

1

n

)

In view of Lemma 3.2.3 below, and ρ > 0, u(tn, xn)− v(tn, yn) ≥ Θn ≥ ι, the above leads
to a contradiction for n large enough. �

We conclude with the proof of the technical lemma used in our arguments above.

Lemma 3.2.3. Let Ψ be a bounded upper-semicontinuous function on [0, T ]×R2, and Ψi,
i = 1, 2, be two non-negative lower-semicontinuous functions on R such that {Ψ1 = 0} =
{0}. For n > 0, set

Θn :=
(t,x,y)∈[0,T ]×R2

(

Ψ(t, x, y)− nΨ1(x− y)− 1

n
Ψ2(x)

)

and assume that there exists (t̂n, x̂n, ŷn) ∈ [0, T ]× R2 such that:

Θn = Ψ(t̂n, x̂n, ŷn)− nΨ1(x̂n − ŷn)−
1

n
Ψ2(x̂n).

Then, after possibly passing to a subsequence,

1.
n→∞

nΨ1(x̂n − ŷn) = 0 and
n→∞

1
n
Ψ2(x̂n) = 0.

2.
n→∞

Θn =
(t,x)∈[0,T ]×O

Ψ(t, x, x).

Proof. For later use, set R̄ := R ∪ {−∞} ∪ {∞} and note that we can extend Ψ as a
bounded upper-semicontinuous function on [0, T ] × R̄2. Set M :=

(t,x)∈[0,T ]×R

Ψ(t, x, x),

and select a sequence (tn, xn)n≥1 such that

n→∞
Ψ(tn, xn, xn) =M and

n→∞

1

n
Ψ2(xn) = 0.

Let C be a upper-bound for Ψ. Then,

C − nΨ1(x̂n − ŷn)−
1

n
Ψ2(x̂n) ≥ Ψ(t̂n, x̂n, ŷn)− nΨ1(x̂n − ŷn)−

1

n
Ψ2(x̂n)

≥ Ψ(tn, xn, xn)−
1

n
Ψ2(xn)

≥ M − εn
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where ǫn → 0. Since Ψ1 and Ψ2 are non-negative, letting n → ∞ in the above inequality
leads to

n→∞
Ψ1(x̂n − ŷn) = 0

which implies n→∞(x̂n − ŷn) = 0 by the assumption {Ψ1 = 0} = {0}.
After possibly passing to a subsequence, we can then assume that n→∞ x̂n =

n→∞ ŷn = x̂ ∈ R̄ and that n→∞ t̂n = t̂ ∈ [0, T ]. The upper semi-continuity ofΨ
along with the above leads to

M −
n→∞

(

nΨ1(x̂n − ŷn) +
1

n
Ψ2(x̂n)

)

≥ Ψ(t̂, x̂, x̂)−
n→∞

(

nΨ1(x̂n − ŷn)−
1

n
Ψ2(x̂n)

)

≥
n→∞

(

Ψ(t̂n, x̂n, ŷn)− nΨ1(x̂n − ŷn)−
1

n
Ψ2(x̂n)

)

≥ M,

and our claim follows. �

Remark 3.2.5. It follows from the above that, whenever they are bounded, e.g. if G is
bounded, then w∗ ≥ w∗. Since by construction w∗ ≤ w ≤ w∗, the three functions are equal
to the unique bounded viscosity solution of (3.2.8).

3.2.5.4 Smoothness

We conclude here the proof of Theorem 3.2.1 by showing that existence of a smooth
solution holds when

f > 0, G is bounded and C2 with G,G′, G
′′

Hölder continuous. (3.2.19)

Note that the assumptions f > 0 and (H1) imply that Φ−1 is C2, recall (3.2.15). Hence,
by the same arguments as in Section 3.2.5.3, existence of a C1,2([0, T )×R)∩C0([0, T ]×R)
solution to (3.2.16)-(3.2.17) implies the existence of a C1,2([0, T ) × R) ∩ C0([0, T ] × R)
solution to (3.2.8). As for (3.2.16)-(3.2.17), this is a consequence of [35, Thm 14.24],
under (H1) and (3.2.19).

It remains to show that the solution can be taken bounded, then the comparison
result of Section 3.2.5.3 will imply that w is this solution. Again, it suffices to work with
(3.2.16)-(3.2.17). Let ϕ be a C1,2([0, T )×R)∩C0([0, T ]×R) solution of (3.2.16)-(3.2.17).
Let St,x be defined by

St,x
s = x+

∫ s

t

µS(s, S
t,x
s )ds+

∫ s

t

σS(s, S
t,x
s )dWs, s ≥ t,

where

µS := B(Φ, e−ρt∂xϕ)/f(Φ)−
1

2
A2(Φ, e−ρt∂xϕ)f

′(Φ)/f(Φ)2

σS := A(Φ, e−ρt∂xϕ)/f(Φ).

Note that although the coefficients of the stochastic differential equation may only be
locally Lipschitz, they are bounded (recall (H1) and (3.2.19)), which suffices to define a
solution by the standard localization procedure. Since σS is bounded, Itô’s Lemma implies
that

ϕ(t, x)e−ρt = E

[

G(Φ(St,x
T )) +

∫ T

t

L(Φ(Xt,x
s ), e−ρs∂xϕ(s,X

t,x
s ))ds

]

.

Now G and L are bounded, by (H1) and (3.2.19), ϕ is bounded as well. �
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Remark 3.2.6. We refer to [34] for conditions under which additional smoothness of the
solution can be proven.
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3.3 Appendix

We report here the measurability property used in the course of Proposition 3.2.2.
In the following, Ak is viewed as a closed subset of the Polish space λ

2 endowed with
the usual strong norm topology ‖ · ‖ λ

2
.

We regard an element ν ∈ Uk as a measurable map ω ∈ Ω 7→ ν(ω) ∈ Mk where Mk

denotes the set of non-negative Borel measures on R× [0, T ] with total mass less than k,
endowed with the topology of weak convergence. This topology is generated by the norm

‖m‖M := {
∫

R×[0,T ]
ℓ(δ, s)m(dδ, ds) : ℓ ∈ 1},

in which 1 denotes the class of 1-Lipschitz continuous functions bounded by 1, see
e.g. [8, Proposition 7.2.2 and Theorem 8.3.2]. Then, Uk is a closed subset of the space

k,2 of Mk-valued random variables. k,2 is made complete and separable by the norm

‖ν‖ 2 := E
[

‖ν‖2M
]
1
2 .

See e.g. [22, Chap. 5]. We endow the set of controls Γk with the natural product topology

‖γ‖ λ
2× 2

:= ‖ϑ‖ λ
2
+ ‖ν‖ 2 , for γ = (ϑ, ν).

As a closed subset of the Polish space λ
2 × k,2, Γk is a Borel space, for each k ≥ 1. See

e.g. [7, Proposition 7.12].
The stability result stated below is proved by using standard estimates.

Proposition 3.3.1. For each k ≥ 1, there exists a real constant ck > 0 such that

‖Zt1,z1,γ1
T − Z

t2,z2,γ2
T ‖ 2 ≤ ck

(

|t1 − t2|
1
2 + |z1 − z2|+ ‖γ1 − γ2‖ λ

2× 2

)

,

for all (ti, zi, γi) ∈ × Γk, i = 1, 2.

A direct consequence is the continuity of (t, z, γ) ∈ × Γk 7→ Z
t,z,γ
T , therefore it is

measurable.

Corollary 3.3.1. For each k ≥ 1, the map (t, z, γ) ∈ × Γk 7→ Z
t,z,γ
T ∈ 2 is Borel-

measurable.
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Introduction

Inspired by [1, 39], we considered a financial market with permanent price impact in the
previous chapter, in which the impact function behaves as a linear function around the
origin in the number of traded stocks. This class of models is dedicated to the pricing and
hedging of derivatives under situations of non-negligible delta-hedging. In fact, the number
of stocks required for hedging purpose becomes comparable to the average daily volume
traded on the underlying asset. As a consequence, the delta-hedging strategy has an
impact on the price dynamics, and also incurs liquidity costs. These models, incorporating
both effects while maintaining the completeness of the market, lead to exact replication
strategies. As in perfect market models, this approach provides an approximation of the
real market conditions and hence can be used by practitioners to design a suitable hedge
in a systematic way. Thus eliminating the need to rely on any ad hoc risk criterion.

It is shown in Chapter 3 that the price function of the optimal super-replicating strat-
egy no longer solves a linear parabolic equation, as in the classical case, rather a quasi-
linear one. The hedging strategy in this case, essentially follows a modified delta-hedging

47
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rule where the delta is computed at the “unperturbed” value of the underlying, i.e., the
one the underlying would have been if the trader’s position were liquidated immediately.
The approach employed and the results obtained differ substantially from [1,39], in which
the control problem is applied to the hedging of covered options. The hedging of covered
options refers to situations where the buyer of the option delivers at inception the required
initial delta position, and accepts a mix of stocks (at their current market price) and cash
as payment of the final claim. The buyer’s indifference between stock and cash eliminates
the cost incurred by the initial and final hedge. Quite surprisingly, this is not a genuine
approximation of the problem studied in the previous chapter. The question of the initial
and final hedge is fundamental, to the point that the structure of the pricing question is
completely different: in Chapter 3 the equation is quasi-linear, whereas it is fully non-
linear in [1, 39]. In addition, as opposed to the previous chapter, authors in [1, 39] use a
verification argument to build an exact replication strategy. Due to the special form of the
non-linearity, the equation is ill-posed when the solution does not satisfy a gamma-type
constraint.

The aim of this chapter is to provide a direct characterization via stochastic target tech-
niques, and to incorporate right from the beginning a gamma constraint on the hedging
strategy. The super-solution property can be proved by essentially following the argu-
ments of [19]. The sub-solution characterization is much more difficult to obtain. This
is a second main difference from Chapter 3, in which classical geometric dynamic pro-
gramming and viscosity solutions techniques could be used, once an appropriate change
of variable was performed. In the current setting, however unlike in [19], we could not
prove the required geometric dynamic programming principle. The underlying reason be-
ing the strong interaction between the hedging strategy and the underlying price process
due to the market impact. Instead, we use the smoothing technique developed in [13].
We construct a sequence of smooth super-solutions which, by a verification argument,
provide upper-bounds on the super-hedging price. As they converge to a solution of the
targeted pricing equation, a comparison principle argument implies that their limit is the
super-hedging price. A by-product of this construction is the explicit ε-optimal hedging
strategies. We also provide the comparison principle and a numerical resolution scheme.
To begin with, our analysis takes a simplified approach by restricting the models to only
have permanent price impact. Later in Section 4.3, we show why adding a resilience effect
does not affect our analysis. Note that this is because the resilience effect considered here
has no quadratic variation. This is in contrast to [1], in which the resilience can break the
parabolicity of the equation, and renders the exact replication non optimal.

4.1 Model and hedging problem

This section is dedicated to the description of the gamma constraint. We also explain in
detail how the pricing equation can be obtained and state our main result.

4.1.1 Continuous time trading dynamics

We adopt the same model setting as in Chapter 3, however with slight modification on
the conditions satisfied by the coefficient σ and on the definition of admissible strategy.

Instead of basing our following work on the hypothesis (H1) set previously, we assume
throughout this chapter

f ∈ C2
b and f > 0,

(µ, σ) is Lipschitz and bounded, σ > 0.
(4.1.1)

The above regularity assumptions are used in Chapter 3 to derive the continuous time
trading dynamics. The lower bound on σ is used later on, in particular to express the
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hedging policy in terms of a gamma, which is crucial for our analysis, see (4.1.4) and the
equation just before. Relaxing these assumptions in the form of local conditions or by only
assuming that f is C1 with Lipschitz derivative should be feasible. This however would
significantly increase the complexity of our proofs and we leave this to future researches.

Recall the number of shares the trader would like to hold is described by a continuous
Itô process Y of the form

Y = Y0 +

∫ ·

0
bsds+

∫ ·

0
asdWs.

In addition to the conditions imposed on (a, b) in Chapter 3, that is (a, b) being progres-
sively measurable and essentially bounded, we require here (a, b) to be an element of A◦

k

consisting of continuous, F-adapted processes which satisfy

a = a0 +

∫ ·

0
βsds+

∫ ·

0
αsdWs

where (α, β) is continuous, F-adapted, and ζ := (a, b, α, β) is essentially bounded by k and
such that

E
[ {

|ζs′ − ζs|, t ≤ s ≤ s′ ≤ s+ δ ≤ T
}

|F◦
t

]

≤ kδ

for all 0 ≤ δ ≤ 1 and t ∈ [0, T − δ].
We then define

A◦ := ∪kA◦
k.

The above additional restriction on (a, b) will be necessary for our results in Section 4.2.2.
For readers’ convenience, we recall here the continuous time trading dynamics derived

in the previous chapter, see Proposition 3.1.1.

Proposition 1. Let Z := (X,Y, V ) where Y is defined as in (3.1.4) for some (a, b) ∈ A◦,
and (X,V ) solves

X = X0 +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dYs +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds

= X0 +

∫ ·

0
σasX (Xs)dWs +

∫ ·

0
µ
as,bs
X (Xs)ds (4.1.2)

with

σasX := (σ + asf) , µ
as,bs
X := (µ+bsf + asσf

′),

and

V = V0 +

∫ ·

0
YsdXs +

1

2

∫ ·

0
a2sf(Xs)ds. (4.1.3)

Let Zn := (Xn, Y n, V n) be defined as in (3.1.6)-(3.1.5)-(3.1.8). Then, there exists a con-
stant C > 0 such that

[0,T ]
E
[

|Zn − Z|2
]

≤ Cn−1

for all n ≥ 1.

Remark 1. Note that in this work we restrict ourselves to a permanent price impact, no
resilience effect is modeled. We shall explain in Section 4.3 below why taking resilience
into account does not affect our analysis. See in particular Proposition 10.
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4.1.2 Hedging equation and gamma constraint

Given φ = (y, a, b) ∈ R×A◦ and (t, x, v) ∈ [0, T ]×R×R, we write (Xt,x,φ, Y t,φ , V t,x,v,φ)
for the solution of (4.1.2)-(3.1.4)-(4.1.3) associated to the control (a, b) with time-t initial
condition (x, y, v).

In this chapter, we consider covered options, in the sense that the trader is given at
the initial time t the number of shares Yt = y required to launch his hedging strategy
and can pay the option’s payoff at T in cash and stocks (evaluated at their time-T value).
Therefore, he does not exert any immediate impact at time t nor T due to the initial
building or final liquidation of his position in stocks. Recalling that V stands for the
sum of the position in cash and the number of held shares multiplied by their price, the
super-hedging price at time t of the option with payoff g(Xt,x,φ

T ) is defined as

(t, x) := {v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

in which G(t, x, v, y) is the set of elements (a, b) ∈ A◦ such that φ := (y, a, b) satisfies

V
t,x,v,φ
T ≥ g(Xt,x,φ

T ).

In order to understand what the associated partial differential equation is, let us first
rewrite the dynamics of Y in terms of X:

dY
t,φ
t = γatY (Xt,x,φ

t )dXt,x,φ
t + µ

at,bt
Y (Xt,x,φ

t )dt

with

γaY :=
a

σ + fa
and µ

a,b
Y := b− γaY µ

a,b
X . (4.1.4)

Assuming that the hedging strategy is to track the super-hedging price, as in classical
complete market models, then one should have V t,x,v,φ = (·, Xt,x,φ). If is smooth,
recalling (4.1.2)-(4.1.3) and applying Itô’s lemma twice implies

Y t,φ = ∂x (·, Xt,x,φ) , γaY (X
t,x,φ) = ∂2xx (·, Xt,x,φ), (4.1.5)

and
1

2
a2f(Xt,x,φ) = ∂t (·, Xt,x,φ) +

1

2
(σaX)2(Xt,x,φ)∂2xx (·, Xt,x,φ). (4.1.6)

Then, the right-hand side of (4.1.5) combined with the definition of γaY leads to

a =
σ∂2xx (·, Xt,x,φ)

1− f∂2xx (·, Xt,x,φ)
, σaX =

σ

1− f∂2xx (·, Xt,x,φ)
,

and (4.1.6) simplifies to
[

−∂t − 1

2

σ2

(1− f∂2xx )
∂2xx

]

(·, Xt,x,φ) = 0 on [t, T ). (4.1.7)

This is precisely the pricing equation obtained in [1, 39].
Equation (4.1.7) needs to be considered with some precautions due to the singularity

at f∂2xx = 1. One needs to enforce that 1 − f∂2xx does not change sign. We choose to
restrict the solutions to satisfy 1−f∂2xx > 0. Having the opposite inequality would imply
that a does not have the same sign as ∂2xx , so that having sold a convex payoff, one would
sell when the stock goes up and buy when it goes down, a very counter-intuitive fact.

In the following, we impose that the constraint

−k ≤γaY (Xt,x,φ) ≤ γ̄(Xt,x,φ) , on [t, T ] P− . ., (4.1.8)
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should hold for some k ≥ 0, in which γ̄ is a bounded continuous map satisfying

ι ≤ γ̄ ≤ 1/f − ι, for some ι > 0. (4.1.9)

We now denote by Ak,γ̄(t, x) the collection of elements (a, b) ∈ A◦
k such that (4.1.8) holds.

Define

Aγ̄(t, x) := ∪k≥0Ak,γ̄(t, x),

and let γ̄ be defined as but with

Gγ̄(t, x, v, y) := G(t, x, v, y) ∩ Aγ̄(t, x)

in place of G(t, x, v, y). More precisely,

γ̄(t, x) := {v = c+ yx : (c, y) ∈ R2 s.t. Gγ̄(t, x, v, y) 6= ∅}. (4.1.10)

Then, the equation (4.1.7) has to be modified to take the gamma constraint into account.
This equation needs to impose that the second derivative is lower that the bound γ̄. On
the other hand, the above informal analysis shows that the pricing function γ̄ needs at
least to be a super-solution of (4.1.7) to guarantee that a hedging strategy can be found.
Then, the equation associated to the gamma constraint should read

F [ γ̄ ] :=

{

−∂t γ̄ −
1

2

σ2

1− f∂2xx γ̄
∂2xx γ̄ , γ̄ − ∂2xx γ̄

}

= 0 on [0, T )× R. (4.1.11)

As for the T -boundary condition, we know that γ̄(T, ·) = g by definition. However, as
usual, the constraint on the gamma in (4.1.11) should propagate up to the boundary and g
has to be replaced by its face-lifted version ĝ, defined as the smallest function above g that
is a viscosity super-solution of the equation γ̄ − ∂2xxϕ ≥ 0. It is obtained by considering
any twice continuously differentiable function Γ̄ such that ∂2xxΓ̄ = γ̄, and then setting

ĝ := (g − Γ̄)conc + Γ̄,

in which the superscript conc stands for concave envelope, cf. [48, Lemma 3.1].1 We expect

γ̄(T−, ·) = ĝ on R.

From now on, assume that

ĝ is uniformly continuous,
g is lower-semicontinuous, g− is bounded and g+ has linear growth.

(4.1.12)

We are now in a position to state our main result. In the sequel,

γ̄(T, x) stands for
(t′, x′) → (T, x)

t′ < T

γ̄(t
′, x′)

whenever it is well defined.

Theorem 1. The value function γ̄ is continuous with linear growth. Moreover, γ̄ is the
unique viscosity solution with linear growth of

F [ϕ] [0,T ) + (ϕ− ĝ) {T} = 0 on [0, T ]× R. (4.1.13)

We conclude this section with additional remarks.
1Obviously, adding an affine map to Γ̄ does not change the definition of ĝ.
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Remark 2. Note that ĝ can be uniformly continuous without g being continuous. Take
for instance g(x) = {x≥K} with K ∈ R, and consider the case where γ̄ > 0 is a constant.

Then, ĝ(x) = [ {x≥xo}
γ̄
2 (x− xo)

2] ∧ 1 with xo := K − (2/γ̄)
1
2 .

Remark 3. The map ĝ inherits the linear growth of g. Indeed, let c0, c1 ≥ 0 be constants
such that |g(x)| ≤ w(x) := c0 + c1|x|. Since ĝ ≥ g by construction, we have ĝ− ≤ w. On
the other hand, since γ̄ ≥ ι > 0 by (4.1.9), it follows from the arguments in [48, Lemma
3.1] that ĝ ≤ (w− Γ̃) + Γ̃, in which Γ̃(x) = ιx2/2. Now, one can easily check by direct
computations that

(w − Γ̃) = (w − Γ̃)(xo) [−xo,xo] + (w − Γ̃) [−xo,xo]c

with xo := c1/ι. Hence, (w − Γ̃) + Γ̃ has the same linear growth as w.

Remark 4. As will appear in the rest of our analysis, one could very well introduce a
time dependence in the impact function f and in γ̄. Another interesting question studied
in [39] and [38] concerns the smoothness of the solution and how the constraint on ∂2xx
gets naturally enforced by the fast diffusion arising when 1− f∂2xx is close to 0.

Remark 5 (Existence of a smooth solution to the original partial differential equation).
When the pricing equation (4.1.13) admits smooth solutions (cf. [39] and [38]) that allow
to use the verification theorem, then one can construct exact replication strategies from
the classical solution. By the comparison principle of Theorem 3 below, this shows that
the value function is the classical solution of the pricing equation, and that the optimal
strategy exists and is an exact replication strategy of the option with payoff function ĝ.
We will explain in Remark 12 below how almost optimal super-hedging strategies can be
constructed explicitly even when no smooth solution exists.

Remark 6 (Monotonicity in the impact function). Note that the map λ ∈ R 7→ σ2(x)M
1−λM

is
non-decreasing on {λ : λM < 1}, for all (t, x,M) ∈ [0, T ]×R×R. Let us now write γ̄ as
f
γ̄ to emphasize its dependence on f , and consider another impact function f̃ satisfying the

same requirements as f . We denote by f̃
γ̄ the corresponding super-hedging price. Then, the

above considerations combined with Theorem 6 and the comparison principle of Theorem

3 below imply that f̃
γ̄ ≥ f

γ̄ whenever f̃ ≥ f on R. The same implies that f
γ̄ ≥ in which

solves the heat-type equation

−∂tϕ− 1

2
σ2∂2xxϕ = 0 on [0, T )× R,

with terminal condition ϕ(T, ·) = g (recall that ĝ ≥ g). See Section 4.4.2 for a numerical
illustration of this fact.

4.2 Viscosity solution characterization

In this section, we provide the proof of Theorem 6. Our strategy is the following.

1. First, we adapt the partial differential equation smoothing technique used in [13]
to provide a smooth supersolutions ¯ǫ,K,δ

γ̄ of (4.1.13) on [δ, T ] × R, with ǫ > 0,
from which super-hedging strategies can be constructed by a standard verification
argument. In particular, ¯ǫ,K,δ

γ̄ ≥ γ̄ on [δ, T ] × R. Moreover, this sequence has a
uniform linear growth and converges to a viscosity solution ¯γ̄ of (4.1.13) as δ, ǫ→ 0
and K → ∞. See Section 4.2.1.
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2. Second, we construct a lower bound γ̄ for γ̄ that is a supersolution of (4.1.13).
It is obtained by considering a weak formulation of the super-hedging problem and
following the arguments of [19, Section 5] based on one side of the geometric dynamic
programming principle, see Section 4.2.2. It is shown that this function has linear
growth as well.

3. We can then conclude by using the above results and the comparison principle for
(4.1.13) of Theorem 3 below: γ̄ ≥ ¯γ̄ however γ̄ ≤ γ̄ ≤ ¯γ̄ . As a result, γ̄ = ¯γ̄ =

γ̄ and γ̄ is a viscosity solution of (4.1.13), and has linear growth.

4. Our comparison principle, Theorem 3 below, allows us to conclude that γ̄ is the
unique solution of (4.1.13) with linear growth.

As already mentioned in the introduction, unlike [19], we could not prove the required
geometric dynamic programming principle that could directly lead to a subsolution prop-
erty (thus avoiding to use the smoothing technique mentioned in 1. above). This is due
to the strong interaction between the hedging strategy and the underlying price process
through the market impact. Such a feedback effect is not present in [19].

4.2.1 A sequence of smooth supersolutions

We first construct a sequence of smooth supersolutions ¯ǫ,K,δ
γ̄ of (4.1.13) which appears to

be an upper bound on the super-hedging price γ , by a simple verification argument. For
this, we adapt the methodology introduced in [13]: we first construct a viscosity solution of
a version of (4.1.13) with shaken coefficients (in the terminology of [32]) and then smooth it
out with a kernel. The main difficulty here is that our terminal condition ĝ is unbounded,
unlike [13]. This requires additional non trivial technical developments.

4.2.1.1 Construction of a solution for the operator with shaken coefficients

We start with the construction of the operator with shaken coefficients. Given ǫ > 0 and
a (uniformly) strictly positive continuous map κ with linear growth defined later on, let
us introduce a family of perturbations of the operator appearing in (4.1.13):

F ǫ
κ(t, x, q,M) :=

x′∈Dǫ
κ(x)

{

−q − σ2(x′)M

2(1− f(x′)M)
, γ̄(x′)−M

}

,

where

Dǫ
κ(x) := {x′ ∈ R : (x− x′)/κ(x′) ∈ [−ǫ, ǫ]}. (4.2.1)

For ease of notation, we set

F ǫ
κ[ϕ](t, x) := F ǫ

κ(t, x, ∂tϕ(t, x), ∂
2
xxϕ(t, x)),

whenever ϕ is smooth.

Remark 7. For later use, note that the map M ∈ (−∞, γ̄(x)] 7→ σ2(x)M
2(1−f(x)M) is non-

decreasing and convex for each x ∈ R, recall (4.1.9). Hence, (q,M) ∈ R × (−∞, γ̄(x)] 7→
F ǫ
κ(·, q,M) is concave and non-increasing in M , for all ǫ ≥ 0. This is fundamental for

our smoothing approach to work.

We also modify the original terminal condition ĝ by using an approximating sequence
whose elements are affine for large values of |x|.
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Lemma 1. For all K > 0 there exists a uniformly continuous map ĝK and xK ≥ K such
that

• ĝK is affine on [xK ,∞) and on (−∞,−xK ]

• ĝK = ĝ on [−K,K]

• ĝK ≥ ĝ

• ĝK − Γ̄ is concave for any C2 function Γ̄ satisfying ∂2xxΓ̄ = γ̄.

Moreover, (ĝK)K>0 is uniformly bounded by a map with linear growth and converges to ĝ
uniformly on compact sets.

Proof. Fix a C2 function Γ̄◦ satisfying ∂2xxΓ̄
◦ = γ̄. By definition, ĝ − Γ̄◦ is concave. Let

us consider an element ∆+ (resp. ∆−) of its super-differential at K (resp. −K). Set

ĝ◦K(x) :=ĝ(x) [−K,K](x)

+
[

ĝ(K) + (∆+ + ∂xΓ̄
◦(K))(x−K)

]

(K,∞)(x)

+
[

ĝ(−K) + (∆− + ∂xΓ̄
◦(−K))(x+K)

]

(−∞,−K)(x).

Consider now another C2 function Γ̄ satisfying ∂2xxΓ̄ = γ̄. Since Γ̄◦ and Γ̄ differ only by an
affine map, the concavity of ĝ◦K − Γ̄ is equivalent to that of ĝ◦K − Γ̄◦. The concavity of the
latter follows from the definition of ĝ◦K , as the superdiffential of ĝ◦K − Γ̄◦ is non-increasing
by construction. In particular, ĝ◦K − Γ̄◦ ≥ ĝ − Γ̄◦ and therefore ĝ◦K ≥ ĝ.

We finally define ĝK by

ĝK = {ĝ◦K , (2c0 + c1| · | − Γ̄◦) + Γ̄◦}, (4.2.2)

with c0 > 0 and c1 ≥ 0 such that

−c0 ≤ ĝ(x) ≤ c0 + c1|x|, x ∈ R,

recall Remark 3. The function ĝK has the same linear growth as 2c0 + c1| · |, by the same
reasoning as in Remark 3. Since 2c0 > c0, ĝK = ĝ◦K = ĝ on [−K,K]. Furthermore, as the
minimum of two concave functions is concave, so is ĝK− Γ̄ for any C2 function Γ̄ satisfying
∂2xxΓ̄ = γ̄. The other assertions are immediate. �

We now set

ĝǫK := ĝK + ǫ (4.2.3)

and consider the equation

F ǫ
κ[ϕ] [0,T ) + (ϕ− ĝǫK) {T} = 0. (4.2.4)

We then choose κ and ǫ◦ ∈ (0, 1) such that

κ ∈ C∞ with bounded derivatives of all orders,
κ > 0 and κ = |ĝK |+ 1 on (−∞,−xK ] ∪ [xK ,∞),

−1/ǫ◦ < ∂xκ < 1/ǫ◦,
(4.2.5)

in which xK ≥ K is defined in Lemma 1. We omit the dependence of κ on K for ease of
notations.

Remark 8. For later use, note that the condition |∂xκ| < 1/ǫ◦ ensures that the map
x 7→ x+ ǫκ(x) and x 7→ x− ǫκ(x) are uniformly strictly increasing for all 0 ≤ ǫ ≤ ǫ◦. Also
observe that xn → x and x′n ∈ Dǫ

κ(xn), for all n, imply that x′n converges to an element
x′ ∈ Dǫ

κ(x), after possibly passing to a subsequence. In particular, F ǫ
κ is continuous.
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When κ ≡ 1 and ĝǫK ≡ ĝ+ǫ, (4.2.4) corresponds to the operator in (4.1.13) with shaken
coefficients, in the traditional terminology of [32]. The function κ will be used below to
handle the potential linear growth at infinity of ĝ. The introduction of the additional
approximation ĝǫK is motivated by the fact that the proof of Proposition 4 below requires
an affine behavior at infinity. As already mentioned, these additional complications do
not appear in [13] because their terminal condition is bounded.

We now prove that (4.2.4) admits a viscosity solution that remains above the terminal
condition ĝ on a small time interval [T−cKǫ , T ]. As already mentioned, we will later smooth
this solution out with a regular kernel to provide a smooth supersolution of (4.1.13).

Proposition 2. For all ǫ ∈ [0, ǫ◦] and K > 0, there exists a unique continuous viscosity
solution ¯ǫ,Kγ̄ of (4.2.4) that has linear growth. It satisfies

¯ǫ,Kγ̄ ≥ ĝK + ǫ/2, on [T − cKǫ , T ]× R, (4.2.6)

for some cKǫ ∈ (0, T ).
Moreover, {[¯ǫ,Kγ̄ ]+, ǫ ∈ [0, ǫ◦],K > 0} is bounded by a map with linear growth, and

{[¯ǫ,Kγ̄ ]−, ǫ ∈ [0, ǫ◦],K > 0} is bounded by g−.

Proof. The proof is mainly a modification of the usual Perron’s method, see [21, Section
4].
a. We first prove that there exists two continuous functions w̄ and w with linear growth
that are respectively super- and subsolution of (4.2.4) for any ǫ ∈ [0, ǫ◦].

Since ĝǫK = ĝK + ǫ ≥ g by Lemma 1, it suffices to set

w := g > −∞,

see (4.1.12). To construct a supersolution w̄, let us fix η ∈ (0, ι ∧ f−1) with ι as in
(4.1.9), set Γ̃(x) = ηx2/2 and define g̃ = (ĝǫ◦K − Γ̃) + Γ̃. Then, g̃ ≥ ĝǫ◦K , while the same
reasoning as in Remark 3 implies that g̃ shares the same linear growth as ĝǫ◦K , see (4.2.3)
and Lemma 1. We then define w̄ by

w̄(t, x) = g̃(x) + 1 + (T − t)A

in which

A :=
σ2γ̄

2(1− fγ̄)
.

The constant A is finite, and w̄ has the same linear growth as g̃, see (4.1.1)-(4.1.9). Since a
concave function is a viscosity supersolution of −∂2xxϕ ≥ 0, we deduce that g̃ is a viscosity
supersolution of η − ∂2xxϕ ≥ 0. Then, w̄ is a viscosity supersolution of

{

−∂tϕ−A , η − ∂2xxϕ
}

≥ 0.

Since γ̄ ≥ ι ≥ η, it remains to use Remark 7 to conclude that w̄ is a supersolution of
(4.2.4).
b. We now express (4.2.4) as a single equation over the whole domain [0, T ]×R using the
following definitions

F
ǫ,K
κ,+ (t, x, r, q,M) := F ǫ

κ(t, x, q,M) [0,T ) +
{

F ǫ
κ(t, x, q,M), r − ĝǫK(x)

}

{T}

F
ǫ,K
κ,− (t, x, r, q,M) := F ǫ

κ(t, x, q,M) [0,T ) +
{

F ǫ
κ(t, x, q,M), r − ĝǫK(x)

}

{T}.

As usual F ǫ,K
κ,± [ϕ](t, x) := F

ǫ,K
κ,± (t, x, ϕ(t, x), ∂tϕ(t, x), ∂

2
xxϕ(t, x)). Recall that the formula-

tions in terms of F ǫ,K
κ,± lead to the same viscosity solutions as (4.2.4) (see Lemma 2 in the
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Appendix). This is the formulation to which we apply Perron’s method. In view of a., the
functions w and w̄ are sub- and supersolution of F ǫ,K

κ,− = 0 and F
ǫ,K
κ,+ = 0. Define:

¯ǫ,Kγ̄ := {v ∈ USC : w ≤ v ≤ w̄ and v is a subsolution of F ǫ,K
κ,− = 0},

in which USC denotes the class of upper-semicontinuous maps. Then, the upper- (resp.
lower-) semicontinuous envelope (¯ǫ,Kγ̄ )∗ (resp. (¯ǫ,Kγ̄ )∗) of ¯ǫ,Kγ̄ is a viscosity subsolution of

F
ǫ,K
κ,− [ϕ] = 0 (resp. supersolution of F ǫ,K

κ,+ [ϕ] = 0) with linear growth, recall the continuity
property of Remark 8 and see e.g. [21, Section 4]. The comparison result of Theorem 3
stated below implies that

(¯ǫ,Kγ̄ )∗ = (¯ǫ,Kγ̄ )∗, on [0, T ]× R.

Hence, ¯ǫ,Kγ̄ is a continuous viscosity solution of (4.2.4), recall Lemma 2. By construction,
it has linear growth. Uniqueness in this class follows from Theorem 3 again.
c. It remains to prove (4.2.6). For this, we need a control on the behavior of ¯ǫ,Kγ̄ as
t → T . It is enough to obtain it for a lower bound vǫ,K that we first construct. Let ϕ be
a test function such that

(strict)
[0,T )×R

(¯ǫ,Kγ̄ − ϕ) = (¯ǫ,Kγ̄ − ϕ)(t0, x0)

for some (t0, x0) ∈ [0, T )× R. By the supersolution property,

x′∈Dǫ
κ(x0)

{γ̄(x′)− ∂2xxϕ(t0, x0)} ≥ 0.

Recalling (4.1.1) and (4.1.9), this implies that, for x′ ∈ Dǫ
κ(x0),

1− f(x′)∂2xxϕ(t0, x0) ≥ ιf(x′) ≥ ι f =: ι̃ > 0.

Using the supersolution property and the above inequalities yields

0 ≤
x′∈Dǫ

κ(x0)

{

−∂tϕ(t0, x0)−
σ2(x′)∂2xxϕ(t0, x0)

2(1− f(x′)∂2xxϕ(t0, x0))

}

≤
x′∈Dǫ

κ(x0)

{

−∂tϕ(t0, x0)−
σ2(x′)

[

∂2xxϕ(t0, x0)− γ̄(x0)
]

2(1− f(x′)∂2xxϕ(t0, x0))

}

≤ −∂tϕ(t0, x0)−
σ̃2∂2xxϕ(t0, x0)

2ι̃
+
σ̃2γ̄(x0)

2ι̃

where σ̃ := σ.
Denote by vǫ,K the unique viscosity solution of

{

−∂tϕ− σ̃2∂2xxϕ

2ι̃
+
σ̃2γ̄

2ι̃

}

[0,T ) + (ϕ− ĝǫK) {T} = 0. (4.2.7)

The comparison principle for (4.2.7) and the Feynman-Kac formula imply that

¯ǫ,Kγ̄ (t, x) ≥ vǫ,K(t, x) = E

[

−
∫ T−t

0

σ̃2γ̄(Sx
r )

2ι̃
dr + ĝǫK(Sx

T−t)

]

where

Sx = x+
σ̃√
ι̃
W.
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It remains to show that (4.2.6) holds for vǫ,K in place of ¯ǫ,Kγ̄ . The argument is
standard. Since ĝK is uniformly continuous, see Lemma 1, we can find BK

ε > 0 such that

∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

{|Sx
T−t

−x|≤BK
ε } ≤ ε

for all ε > 0. We now consider the case |Sx
T−t − x| > BK

ε . Let C > 0 denote a generic
constant that does not depend on (t, x) but can change from line to line. Because ĝK is
affine on [xK ,∞) and on (−∞,−xK ], see Lemma 1,

E

[

∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

{Sx
T−t

≥xK}

]

≤ C(T − t)
1
2 if x ≥ xK ,

and
E

[

∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

{Sx
T−t

≤−xK}

]

≤ C(T − t)
1
2 if x ≤ −xK .

On the other hand, if x < xK , then by linear growth of ĝǫK

E

[

∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

{Sx
T−t

≥xK} {|Sx
T−t

−x|≥BK
ε }

]

≤ E

[

∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

2
] 1

2
P
[

|Sx
T−t − x| ≥ |xK − x| ∨BK

ε

]
1
2

≤ C
(1 + |x|)(T − t)

1
2

|xK − x| ∨BK
ε

≤ C

BK
ε

(T − t)
1
2 .

The (four) remaining cases are treated similarly, and we obtain

E
[∣

∣ĝǫK(Sx
T−t)− ĝǫK(x)

∣

∣

]

≤ C

BK
ε

(T − t)
1
2 + ε.

The fact γ̄ is bounded shows that for t ∈ [T − 1, T ]

|vǫ,K(t, x)− ĝǫK(x)| ≤ C

BK
ε

(T − t)
1
2 + ε.

Hence the required result for vǫ,K . Since ¯ǫ,Kγ̄ ≥ vǫ,K , this concludes the proof of (4.2.6). �

For later use, note that, by stability, ¯ǫ,Kγ̄ converges to a solution of (4.1.13) when
ǫ→ 0 and K → ∞.

Proposition 3. As ǫ→ 0 and K → ∞, ¯ǫ,Kγ̄ converges to a function ¯γ̄ that is the unique
viscosity solution of (4.1.13) with linear growth.

Proof. The family of functions {¯ǫ,Kγ̄ , ǫ ∈ (0, ǫ◦],K > 0} is uniformly bounded by a
map with linear growth, see Proposition 2. In view of the comparison result of Theorem
3 below, it suffices to apply [3, Theorem 4.1]. �

Remark 9. The bounds on ¯γ̄ can be made explicit, which can be useful to design a nu-
merical scheme, see Section 4.4.1 below. First, as a by-product of the proof of Proposition
2, ¯ǫ,Kγ̄ ≥ g. Passing to the limit as ǫ→ 0 and K → ∞ leads to

¯γ̄ ≥ g =: w.

We have also obtained that

¯ǫ,Kγ̄ ≤ (ĝǫ◦K − Γ̃) + Γ̃ + 1 +A
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in which x 7→ Γ̃(x) = ηx2/2 for some η ∈ (0, ι ∧ f−1) with ι as in (4.1.9), and A :=
T (σ2γ̄/[2(1− fγ̄)]). On the other hand, (4.2.2) implies

ĝǫ◦K ≤ 1 + (2c0 + c1| · | − Γ̄◦) + Γ̄◦

for Γ̄◦ such that ∂2xxΓ̄
◦ = γ̄. Then,

¯ǫ,Kγ̄ ≤
(

1 + (2c0 + c1| · | − Γ̄◦) + Γ̄◦ − Γ̃
)

+ Γ̃ + 1 +A

≤
(

1 + (2c0 + c1| · | − Γ̃) + Γ̃− Γ̃
)

+ Γ̃ + 1 +A

=
(

1 + 2c0 + c1| · | − Γ̃
)

+ Γ̃ + 1 +A =: w̄

and

¯γ̄ ≤ w̄.

The function w̄ defined above can be computed explicitly by arguing as in Remark 3.

Also note that (4.2.2) and the arguments of Remark 3 imply that there exists a constant
C > 0 such that

|x|→∞
|¯ǫ,Kγ̄ (x)|/(1 + |ĝK(x)|) ≤ C, for all ǫ ∈ [0, ǫ◦] and K > 0. (4.2.8)

4.2.1.2 Regularization and verification

Prior to applying our verification argument, it remains to smooth out the function ¯ǫ,Kγ̄ .
The smoothing technique is similar to that in [13, Section 3], but here again the fact that
ĝ may not be bounded incurs additional difficulties. We need in this circumstance to use
a kernel with a space dependent window.

We first fix a smooth kernel
ψδ := δ−2ψ(·/δ)

in which δ > 0 and ψ ∈ C∞
b is a non-negative function with the closure of its support

[−1, 0]× [−1, 1] that integrates to 1, and such that
∫

yψ(·, y)dy = 0. (4.2.9)

Let us set

¯ǫ,K,δ
γ̄ (t, x) :=

∫

R×R

¯ǫ,Kγ̄ ([t′]+, x′)
1

κ(x)
ψδ

(

t′ − t,
x′ − x

κ(x)

)

dt′dx′. (4.2.10)

We recall that κ enters into the definition of F ǫ
κ and satisfies (4.2.5).

The following shows that ¯ǫ,K,δ
γ̄ is a smooth supersolution of (4.1.13) with a space

gradient admitting bounded derivatives. This is due to the space dependent rescaling of
the window by κ and will be crucial for our verification arguments.

Proposition 4. For all 0 < ǫ < ǫ◦ and K > 0 large enough, there exists δ◦ > 0 such
that ¯ǫ,K,δ

γ̄ is a C∞ supersolution of (4.1.13) for all 0 < δ < δ◦. It has linear growth and

∂x¯
ǫ,K,δ
γ̄ has bounded derivatives of any order.

Proof. a. It follows from (4.2.5) and (4.2.8) that

|x|→∞
|¯ǫ,Kγ̄ (x)|/(1 + |κ(x)|) <∞.
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Direct computations and (4.2.5) then show that ¯ǫ,K,δ
γ̄ has linear growth and that all

derivatives of ∂x¯
ǫ,K,δ
γ̄ are uniformly bounded.

b. We now prove the supersolution property inside the parabolic domain. Since the proof
is very close to that of [13, Theorem 3.3], we only provide the arguments that require to
be adapted, and refer to their proof for other elementary details. Fix ℓ > 0 and set

vℓ(t, x) := ¯ǫ,K,δ
γ̄ (t, (−ℓ) ∨ x ∧ ℓ).

We omit the superscripts that are superfluous in this proof. Given k ≥ 1, set

vℓ,k(z) :=
z′∈[0,T ]×R

(

vℓ(z
′) + k|z − z′|2

)

.

Since vℓ is bounded and continuous, the infimum in the above is achieved by a point
ẑℓ,k(z) = (t̂ℓ,k(z), x̂ℓ,k(z)), and vℓ,k is bounded, uniformly in k ≥ 1. This implies that we
can find Cℓ > 0, independent of k, such that

|z − ẑℓ,k(z)|2 ≤ Cℓ/k =: (ρℓ,k)
2. (4.2.11)

Moreover, a simple change of variables argument shows that, if ϕ is a smooth function
such that vℓ,k − ϕ achieves a minimum at z ∈ [0, T )× (−ℓ, ℓ), then

(∂tϕ, ∂xϕ, ∂
2
xxϕ)(z) ∈ P̄−vℓ(ẑℓ,k(z)),

where P̄−vℓ(ẑℓ,k(z)) denotes the closed parabolic subjet of vℓ at ẑℓ,k(z), see e.g. [21] for
the definition. Then, Proposition 2 implies that vℓ,k is a supersolution of

x′∈Dǫ
κ(x̂ℓ,k(z))

{

−∂tϕ(z)−
σ2(x′)∂2xxϕ(z)

2(1− f(x′)∂2xxϕ(z))
, γ̄(x′)− ∂2xxϕ(z)

}

≥ 0,

z ∈ [ρℓ,k, T − ρℓ,k)× (−ℓ+ ρℓ,k, ℓ− ρℓ,k). We next deduce from (4.2.11) that x′ ∈ D
ǫ/2
κ (x)

implies

− ǫ
2
κ(x′)− Cℓ/k

1
2 ≤ x̂ℓ,k(t, x)− x′ ≤ ǫ

2
κ(x′) + Cℓ/k

1
2 .

Recall κ > 0, the above inequality shows that x′ ∈ Dǫ
κ(x̂ℓ,k(t, x)) for k large enough

with respect to ℓ. Hence, vℓ,k is a supersolution of

x′∈D
ǫ/2
κ

{

−∂tϕ− σ2(x′)∂2xxϕ

2(1− f(x′)∂2xxϕ)
, γ̄(x′)− ∂2xxϕ

}

≥ 0

on [ρℓ,k, T − ρℓ,k)× (−ℓ+ ρℓ,k, ℓ− ρℓ,k).
We now argue as in [30]. Since vℓ,k is semi-concave, there exist ∂2,absxx vℓ,k ∈ L1 and a

Lebesgue-singular negative Radon measure ∂2,singxx vℓ,k such that

∂2xxvℓ,k(dz) = ∂2,absxx vℓ,k(z)dz + ∂2,singxx vℓ,k(dz) in the distribution sense

and

(∂tvℓ,k, ∂xvℓ,k, ∂
2,abs
xx vℓ,k) ∈ P̄−vℓ,k a.e. on [ρk, T − ρk]× (−ℓ+ ρℓ,k, ℓ− ρℓ,k),

see [31, Section 3]. The above implies that

x′∈D
ǫ/2
κ

{

−∂tvℓ,k −
σ2(x′)∂2,absxx vℓ,k

2(1− f(x′)∂2,absxx vℓ,k)
, γ̄(x′)− ∂2,absxx vℓ,k

}

≥ 0
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a.e. on [ρℓ,k, T − ρℓ,k)× (−ℓ+ ρℓ,k, ℓ− ρℓ,k), or equivalently, by (4.2.1),
{

−∂tvℓ,k −
σ2(x)∂2,absxx vℓ,k

2(1− f(x)∂2,absxx vℓ,k)
, γ̄(x)− ∂2,absxx vℓ,k

}

(t′, x′) ≥ 0

for all x and for a.e. (t′, x′) ∈ [ρℓ,k, T−ρℓ,k)×(−ℓ+ρℓ,k, ℓ−ρℓ,k) such that 2|x′−x| ≤ ǫκ(x).
Take 0 < δ < ε/2. Integrating the previous inequality with respect to (t′, x′) with the
kernel function ψδ(·, ·/κ)/κ, using the concavity and monotonicity property of Remark 7
and the fact that ∂2,singxx vℓ,k is non-positive, we obtain

{

−∂tvδℓ,k −
σ2∂2xxv

δ
ℓ,k

2(1− f∂2xxv
δ
ℓ,k)

, γ̄ − ∂2xxv
δ
ℓ,k

}

≥ 0 (4.2.12)

on [ρℓ,k + δ, T − ρℓ,k)× (−x−ℓ,k, x+ℓ,k), in which

vδℓ,k(t, x) :=

∫

R×R

vℓ,k([t
′]+, x′)

1

κ(x)
ψδ

(

t′ − ·, x
′ − ·
κ(x)

)

dt′dx′

and

x+ℓ,k +
δ

2
κ(x+ℓ,k) = ℓ− ρℓ,k and − x−ℓ,k −

δ

2
κ(−x−ℓ,k) = −ℓ+ ρℓ,k.

The above are well defined, see Remark 8. By Remark 8 and (4.2.11), ±x±ℓ,k → ±∞ and

ρℓ,k → 0 as k → ∞ and then ℓ→ ∞. Moreover, vδℓ,k → ¯ǫ,K,δ
γ̄ as k → ∞ and then ℓ→ ∞,

and the derivatives also converge. Hence, (4.2.12) implies that ¯ǫ,K,δ
γ̄ is a supersolution of

(4.1.13) on [δ, T )× R.
c. We conclude by discussing the boundary condition at T . From Proposition 2,

¯ǫ,Kγ̄ ≥ ĝK + ǫ/2, on [T − cKǫ , T ]× R.

The uniform continuity of ĝ implies that of ĝK , see (4.1.12), therefore ¯ǫ,K,δ
γ̄ (T, ·) ≥ ĝK on

the compact set [−2xK , 2xK ] for δ > 0 small enough with respect to ǫ. Now observe that
x ≥ 2xK and |x′−x| ≤ δκ(x) imply that x′ ≥ 2xK(1− δcK1 )− δcK0 in which cK1 and cK0 are
constants. This actually follows from the affine behavior of κ on [xK ,∞), see (4.2.5) and
Lemma 1. For δ small enough, we then obtain x′ ≥ xK . Since ĝK is affine on [xK ,∞),
and ψ is symmetric in its second argument, see (4.2.9), it follows that

¯ǫ,K,δ
γ̄ (T, x) ≥

∫

R×R

ĝK(x′)
1

κ(x)
ψδ

(

t′ − T,
x′ − x

κ(x)

)

dt′dx′ = ĝK(x)

for all x ≥ 2xK . This also holds for x ≤ −2xK by the same arguments. �

We can now use a verification argument and provide the main result of this section.

Theorem 2. Let ¯γ̄ be defined as in Proposition 3. It has linear growth. Moreover,
¯γ̄ ≥ γ̄ on [0, T ]× R.

Proof. The linear growth property has already been stated in Proposition 3. We now
show that ¯γ̄ ≥ γ̄ by applying a verification argument to ¯ǫ,K,δ

γ̄ . From now on 0 < ǫ ≤ ǫ◦
in which ǫ◦ is as in (4.2.5). The parameters K, δ > 0 are chosen as in Proposition 4.

Fix (t, x) ∈ (0, T )×R and δ ∈ (0, t∧ǫ). Let (X,Y, V ) be defined as in (4.1.2)-(3.1.4)-(4.1.3)
with (x, ∂x¯

ǫ,K,δ
γ̄ (t, x), ¯ǫ,K,δ

γ̄ (t, x) − ∂x¯
ǫ,K,δ
γ̄ (t, x)x) as initial condition at t, and for the

Markovian controls

â =

(

σ∂2xx¯
ǫ,K,δ
γ̄

1− f∂2xx¯
ǫ,K,δ
γ̄

)

(·, X)

b̂ =

(

∂2tx¯
ǫ,K,δ
γ̄ + ∂2xx¯

ǫ,K,δ
γ̄ (µ+ âσf ′) + 1

2∂
3
xxx¯

ǫ,K,δ
γ̄ (σ + âf)2

1− f∂2xx¯
ǫ,K,δ
γ̄

)

(·, X).
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By definition of F , (4.1.9) and (4.1.1), the above is well-defined as the denominators are
always bigger than fι > 0. All the involved functions being bounded and Lipschitz,
see Proposition 4, it is easy to check that a solution to the corresponding stochastic
differential equation exists, and that (â, b̂) ∈ A◦. Direct computations then show that
Y = ∂x¯

ǫ,K,δ
γ̄ (·, X). Moreover, the fact that ¯ǫ,K,δ

γ̄ is a supersolution of F [ϕ] = 0 on
[t, T ]× R ensures that the gamma constraint (4.1.8) holds, for some k ≥ 1, and that

−∂t¯ǫ,K,δ
γ̄ (·, X)− 1

2
σ(X)â ≥ 0 on [t, T ).

The last inequality combined with the definition of â implies

1

2
f(X)â2 ≥ ∂t¯

ǫ,K,δ
γ̄ (·, X) +

1

2
(σ(X) + f(X)â)â

= ∂t¯
ǫ,K,δ
γ̄ (·, X) +

1

2
(σâX(X))2∂2xx¯

ǫ,K,δ
γ̄ (·, X) on [t, T ).

Based on all the elements above

VT = ¯ǫ,K,δ
γ̄ (t, x) +

1

2

∫ T

t

f(Xu)â
2
u du+

∫ T

t

∂x¯
ǫ,K,δ
γ̄ (u,Xu) dXu

≥ ¯ǫ,K,δ
γ̄ (t, x) +

∫ T

t

d¯ǫ,K,δ
γ̄ (u,Xu)

= ¯ǫ,K,δ
γ̄ (T,XT ) ≥ g(XT ),

in which the last inequality follows from Proposition 4 again.
It remains to pass to the limit δ, ǫ → 0. By Proposition 2, ¯ǫ,Kγ̄ is continuous, so that

¯ǫ,K,δ
γ̄ converges pointwise to ¯ǫ,Kγ̄ as δ → 0. By Proposition 3, ¯ǫ,Kγ̄ converges pointwise to

¯γ̄ as ǫ → 0 and K → ∞. In view of the above this implies the required result: ¯γ̄ ≥ γ̄ .
�

Remark 10. Note that, in the above proof, we have constructed a super-hedging strategy
in Ak,γ̄(t, x) and starting with |Yt| ≤ k, for some k ≥ 1 which can be chosen in a uniform

way with respect to (t, x), while ¯ǫ,K,δ
γ̄ has linear growth.

4.2.1.3 Comparison principle

We provide here the comparison principle used several times above. Before stating it, we
make the following observation, based on direct computations. Recall (4.1.1) and (4.1.9).

Proposition 5. Fix ρ > 0. Consider the map

(t, x,M) ∈ [0, T ]× R× R 7→ Ψ(t, x,M) =
σ2(x)M

2(eρt − f(x)M)
.

Then, M 7→ Ψ(t, x,M) is continuous, uniformly in (t, x), on

O := {(t, x,M) ∈ [0, T ]× R× R :M ≤ eρtγ̄(x)}.

Moreover, there exists L > 0 such that x 7→ Ψ(t, x,M) is L-Lipschitz on O.

Theorem 3. Fix ǫ ∈ [0, ǫ◦]. Let U (resp. V ) be a upper semicontinuous viscosity subso-
lution (resp. lower semicontinuous supersolution) of F ǫ

κ = 0 on [0, T )×R. Assume that U
and V have linear growth and that U ≤ V on {T} × R, then U ≤ V on [0, T ]× R.
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Proof. Set Û(t, x) := eρtU(t, x), V̂ (t, x) := eρtV (t, x). Then, Û and V̂ are respectively
sub- and supersolution of

x′∈Dǫ
κ

{

ρϕ− ∂tϕ− σ2(x′)∂xxϕ

2(eρt − f(x′)∂xxϕ)
, eρtγ̄(x′)− ∂xxϕ

}

= 0 (4.2.13)

on [0, T ) × R. For later use, note that the infimum over Dǫ
κ is achieved in the above, by

the continuity of the involved functions.
If [0,T ]×R(Û − V̂ ) > 0, then one can find λ ∈ (0, 1) such that [0,T ]×R(Û − V̂λ) > 0

with V̂λ := λV̂ + (1− λ)w, in which

w(t, x) := (T − t)A+ (cU0 + cU1 | · | −
ι

4
| · |2) (x) +

ι

4
|x|2

with cU0 , c
U
1 two constants such that eρT |U | ≤ cU0 + cU1 | · | and

A :=
1

2

σ2

1− ι
2f

ι

2
,

where ι > 0 is as in (4.1.9). Note that

V̂λ(T, ·) ≥ Û(T, ·), (4.2.14)

and that

w is a viscosity supersolution of (4.2.13)
V̂λ is a viscosity supersolution of λγ̄ + (1− λ) ι2 − ∂2xxϕ ≥ 0.

(4.2.15)

Moreover, by Remark 7, V̂λ is a supersolution of (4.2.13). Define for ε > 0 and n ≥ 1

Θε
n :=

(t,x,y)∈[0,T ]×R2

[

Û(t, x)− V̂λ(t, y)−
(ε

2
|x|2 + n

2
|x− y|2

) ]

=: η > 0, (4.2.16)

in which the last inequality holds for n > 0 large enough and ε > 0 small enough. Denote
by (tεn, x

ε
n, y

ε
n) the point at which this supremum is achieved. From (4.2.14), we see that

tεn < T , and, by standard arguments, see e.g., [21, Proposition 3.7],

n→∞
n|xεn − yεn|2 = 0. (4.2.17)

On the other hand, Ishii’s lemma implies the existence of (aεn,M
ε
n, N

ε
n) ∈ R3 such that

(aεn, εx
ε + n(xεn − yεn),M

ε
n) ∈ P̄2,+Û(tεn, x

ε
n)

(aεn,−n(xεn − yεn), N
ε
n) ∈ P̄2,−V̂λ(t

ε
n, y

ε
n),

where P̄2,+ and P̄2,− denote as usual the closed parabolic super- and subjets, see [21], and
(

M ε
n 0
0 −N ε

n

)

≤ Rε
n +

1

n
(Rε

n)
2 = 3n

(

1 −1
−1 1

)

+

(

3ε+ ε2

n
−ε

−ε 0

)

with

Rε
n := n

(

1 + ε
n

−1
−1 1

)

.

In particular, multiplying this inequality by the vector (1, 1) gives rise to

M ε
n −N ε

n ≤ δεn with δεn := ε+
ε2

n
. (4.2.18)
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Then, by (4.2.15) and (4.1.9), the inequality below holds

0 < (1− λ)
ι

2
≤ eρt

ε
n γ̄(ŷεn)−N ε

n ≤ eρt
ε
n γ̄(ŷεn)−M ε

n + δεn, (4.2.19)

in which ŷεn ∈ Dǫ
κ(y

ε
n). In view of Remark 8, this shows that eρt

ε
n γ̄(x̂εn) − M ε

n > 0 for
some x̂εn ∈ Dǫ

κ(x
ε
n), n large enough and ε small enough, recall (4.2.17). The super- and

subsolution properties of V̂λ and Û then imply that we can find uεn ∈ [−ǫ, ǫ] together with
ŷεn and x̂εn such that

ŷεn + uεnκ(ŷ
ε
n) = yεn , x̂

ε
n + uεnκ(x̂

ε
n) = xεn (4.2.20)

and

ρ(Û(tεn, x
ε
n)− V̂λ(t

ε
n, y

ε
n)) ≤

σ2(x̂εn)M
ε
n

2(eρtεn − f(x̂εn)M
ε
n)

− σ2(ŷεn)N
ε
n

2(eρtεn − f(ŷεn)N
ε
n)
.

By Remark 7 and (4.2.18), this shows that

ρ(Û(tεn, x
ε
n)− V̂λ(t

ε
n, y

ε
n))

≤ σ2(x̂εn)(N
ε
n + δεn)

2(eρtεn − f(x̂εn)(N
ε
n + δεn))

− σ2(ŷεn)N
ε
n

2(eρtεn − f(ŷεn)N
ε
n)
.

It remains to apply Proposition 5 together with (4.2.19) for n large enough and ε small
enough to obtain for some L > 0

ρ(Û(tεn, x
ε
n)− V̂λ(t

ε
n, y

ε
n))

≤ σ2(x̂εn)N
ε
n

2(eρtεn − f(x̂εn)N
ε
n)

− σ2(ŷεn)N
ε
n

2(eρtεn − f(ŷεn)N
ε
n)

+Oε
n(1)

≤ L |x̂εn − ŷεn|+Oε
n(1)

where Oε
n(1) → 0 as n → ∞ and then ε → 0. By continuity and (4.2.17) combined with

Remark 8 and (4.2.20), this contradicts (4.2.16) for n large enough. �

4.2.2 Supersolution property for the weak formulation

In this part, we provide a lower bound γ̄ for γ̄ that is a supersolution of (4.1.13). It is
constructed by considering a weak formulation of the stochastic target problem (4.1.10)
in the spirit of [19, Section 5]. Since our methodology is slightly different, we provide the
main arguments.

On C(R+)
5, let us now denote by (ζ̃ := (ã, b̃, α̃, β̃), W̃ ) the coordinate process and let

F̃◦ = (F̃◦
s )s≤T be its raw filtration. We say that a probability measure P̃ belongs to Ãk if

W̃ is a P̃-Brownian motion and if for all 0 ≤ δ ≤ 1 and r ≥ 0 it holds P̃-a.s. that

ã = ã0 +

∫ ·

0
β̃sds+

∫ ·

0
α̃sdW̃s for some ã0 ∈ R, (4.2.21)

R+

|ζ̃| ≤ k , (4.2.22)

and

EP̃
[ {

|ζ̃s′ − ζ̃s|, r ≤ s ≤ s′ ≤ s+ δ
}

|F̃◦
r

]

≤ kδ. (4.2.23)
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For φ̃ := (y, ã, b̃) and y ∈ R, we define (X̃x,φ̃, Ỹ φ̃, Ṽ x,v,φ̃) as in (4.1.2)-(3.1.4)-(4.1.3)
associated to the control (ã, b̃) with time-0 initial condition (x, y, v), and with W̃ in place
of W . For t ≤ T and k ≥ 1, we say that P̃ ∈ G̃k,γ̄(t, x, v, y) if

[

Ṽ
x,v,φ̃
T−t ≥ g(X̃x,φ̃

T−t) and − k ≤ γãY (X̃
x,φ̃) ≤ γ̄(X̃x,φ̃) on R+

]

P̃− . . (4.2.24)

We finally define

k
γ̄(t, x) := {v = c+ yx : (c, y) ∈ R× [−k, k] s.t. Ãk ∩ G̃k,γ̄(t, x, v, y) 6= ∅},

and

γ̄(t, x) :=
(k, t′, x′) → (∞, t, x)
(t′, x′) ∈ [0, T ) × R

k
γ̄(t

′, x′), (t, x) ∈ [0, T ]× R. (4.2.25)

The following is an immediate consequence of our definitions.

Proposition 6. γ̄ ≥ γ̄ on [0, T )× R.

In the rest of this section, we show that γ̄ is a viscosity supersolution of (4.1.13). Let
us start with a simple remark.

Remark 11. The gamma constraint in (4.2.24) implies that one can find ε > 0 such that

ε

1 + kε−1
≤ σãX(X̃x,φ̃) ≤ ε−1 + ε−2 and |ã| ≤ ε−1 P̃− . .,

for all P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y) and k ≥ 1. Indeed, if ã ≥ −σ/f then −k ≤ γãY ≤ γ̄ implies

(− kσ

1 + kf
) ∨ (−σ

f
) ≤ ã ≤ γ̄σ

1− γ̄f
and ãf + σ ≥ σ/(1 + kf).

Our claim follows from (4.1.1)-(4.1.9). On the other hand, if σ + ãf < 0, then γãY ≤ γ̄

implies ã ≥ γ̄σ/(1− fγ̄) ≥ 0, see (4.1.9), while ã < −f/σ < 0, a contradiction.

We next show that k
γ̄ has linear growth, for k large enough.

Proposition 7. There exists ko ≥ 1 such that {| k
γ̄ |, k ≥ ko} is uniformly bounded from

above by a continuous map with linear growth.

Proof. a. First note that Remark 10 implies that {( k
γ̄)

+, k ≥ ko} is uniformly bounded
from above by a map with linear growth, for some ko large enough.
b. Fix now P̃ ∈ Ãk∩G̃k,γ̄(t, x, v, y). Using Remark 11 along with (4.1.1) and the condition

that (ã, b̃, α̃, β̃) is P̃-essentially bounded, one can find P̌ ∼ P̃ under which
∫ ·
0 Ỹ

φ̃
s dX̃

x,φ̃
s

is a martingale on [0, T − t]. Then, the condition Ṽ
x,v,φ̃
T−t ≥ g(X̃x,φ̃

T−t) P̃-a.s. implies v +

EP̌[12
∫ T−t

0 ã2sf(X̃
x,φ̃
s )ds] ≥ g > −∞, recall (4.1.12). By Remark 11 and (4.1.1), v ≥

g − C > −∞, for some constant C independent of P̃ ∈ ∪k(Ãk ∩ G̃k,γ̄(t, x, v, y)). In
consequence, {( k

γ̄)
−, k ≥ ko} is bounded by a constant. �

We now prove that existence is attaint in the definition of k
γ̄ and it is lower-semicontinuous.

Proposition 8. For all (t, x) ∈ [0, T ] × R and k ≥ 1 large enough, there exists (c, y) ∈
R × [−k, k] such that k

γ̄(t, x) = c + yx and Ãk ∩ G̃k,γ̄(t, c + xy, y) 6= ∅. Moreover, k
γ̄ is

lower-semicontinuous for each k ≥ 1 large enough.

Proof. By [44, Proposition XIII.1.5] and the condition (4.2.23) taken for r = 0, the set
Ãk is weakly relatively compact. Moreover, [33, Theorem 7.10 and Theorem 8.1] implies
that any limit point (P∗, t∗, x∗, c∗, y∗) of a sequence (Pn, tn, xn, cn, yn)n≥1 such that Pn ∈
Ãk ∩ G̃k,γ̄(tn, xn, cn + xnyn, yn) for each n ≥ 1 satisfies P∗ ∈ Ãk ∩ G̃k,γ̄(t∗, x∗, c∗ + x∗y∗, y∗).
Since k

γ̄ is locally bounded, the Proposition 7 for the case k ≥ ko implies the announced
existence and lower-semicontinuity. �

We can finally prove the main result of this section.
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Theorem 4. The function γ̄ is a viscosity supersolution of (4.1.13). It has linear growth.

Proof. The linear growth property is an immediate consequence of the uniform linear
growth of {| k

γ̄ |, k ≥ ko} stated in Proposition 7. To prove the supersolution property, it
suffices to show that it holds for each k

γ̄ , with k ≥ ko, and then to apply standard stability
results, see e.g. [3].
a. We first prove the supersolution property on [0, T )×R. We adapt the arguments of [19]
to our context. Let ϕ be a C∞

b test function and (t0, x0) ∈ [0, T )× R such that

(strict)
[0,T )×R

( k
γ̄ − ϕ) = ( k

γ̄ − ϕ)(t0, x0) = 0.

Recall that k
γ̄ is lower-semicontinuous by Proposition 8.

Because the infimum is attaint in the definition of k
γ̄ , by the afore-mentioned propo-

sition, there exists |y0| ≤ k and P̃ ∈ Ãk ∩ G̃k(t0, x0, v0, y0), such that v0 := c0 + y0x0 =
k
γ̄(t0, x0) for some c0 ∈ R. Set (X̃, Ỹ , Ṽ ) := (X̃x0,φ̃, Ỹ φ̃, Ṽ x0,v0,φ̃) where φ̃ = (y0, ã, b̃). Let
θo be a stopping time for the augmentation of the raw filtration F̃◦, and define

θ := θo ∧ θ1 with θ1 := {s : |X̃s − x0| ≥ 1}.

Then, it follows from Proposition 9 below that

Ṽθo ≥ k
γ̄(t0 + θo, X̃θo) ≥ ϕ(t0 + θo, X̃θo),

in which here and hereafter inequalities are taken in the P̃-a.s. sense. After applying Itô’s
formula twice, the above inequality reads:

∫ θ

0
ℓs ds+

∫ θ

0

(

y0 − ∂xϕ(t0, x0) +

∫ s

0
mrdr +

∫ s

0
nrdX̃r

)

dX̃s ≥ 0. (4.2.26)

where

ℓ := 1
2 ã

2f(X̃)− Lãϕ(t0 + ·, X̃·) , m := µ
ã,b̃
Y (X̃)− Lã∂xϕ(t0 + ·, X̃·)

n := γãY (X̃)− ∂2xxϕ(t0 + ·, X̃·),

with
Lã := ∂t +

1

2
(σãX)2∂2xx

For the rest of the proof, recall (4.2.22), together with (4.1.1) and Remark 11, these imply

that σãX(X̃), σãX(X̃)−1 and µ
ã,b̃
X (X̃) are P̃-essentially bounded. Performing an equivalent

change of measure shows one can find P̌ ∼ P̃ and a P̌-Brownian motion W̌ such that:

X̃ =

∫ ·

0
σãsX (X̃s)dW̌s. (4.2.27)

Clearly, both P̌ and W̌ depend on (ã, b̃, y0).
1. We first show that y0 = ∂xϕ(t0, x0), and therefore

∫ θ

0
ℓs ds+

∫ θ

0

∫ s

0
mrdrdX̃s +

∫ θ

0

∫ s

0
nrdX̃rdX̃s ≥ 0. (4.2.28)

Let P̌λ ∼ P̌ be the measure under which

W̌ λ := W̌ +

∫ ·

0
λ[σãsX (X̃s)]

−1(y0 − ∂xϕ(t0, x0))ds
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is a P̌λ-Brownian motion. Consider the case θo := η > 0. Since all the coefficients are
bounded, taking expectation under P̌λ and using (4.2.26) imply that for some C ′ > 0

C ′η ≥ λ(y0 − ∂xϕ(t0, x0))
2EP̌λ

[θ]

+EP̌λ

[∫ θ

0

(∫ s

0
mrdr +

∫ s

0
nrdX̃r

)

λ(y0 − ∂xϕ(t0, x0))ds

]

.

Divide both sides by η and use the fact that (η ∧ θ1)/η → 1 P̌λ-a.s. as η → 0, one obtains

C ′ ≥ λ(y0 − ∂xϕ(t0, x0))
2.

Then, we send λ→ ∞ to deduce that y0 = ∂xϕ(t0, x0).
2. We now prove that

∂2xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0). (4.2.29)

First, let us consider the time change

h(t) = {r ≥ 0 :

∫ r

0

[

(σãsX (X̃s))
2

[0,θ](s) + [0,θ]c(s)
]

ds ≥ t}.

Again, σãX(X̃) and σãX(X̃)−1 are essentially bounded by Remark 11, so that h is absolutely
continuous and its density h satisfies

0 < ht ≤ h(t) :=
[

(σãX(X̃))2 [0,θ](t) + [0,θ]c(t)
]−1

≤ h̄t (4.2.30)

for some constants h and h̄, for all t ≥ 0. Moreover, Ŵ := X̃h is a Brownian motion in
the time changed filtration. Take θo := h−1(η) for some 0 < η < 1, then (4.2.28) reads

0 ≤
∫ η∧h−1(θ1)

0
ℓh(s)h(s) ds+

∫ η∧h−1(θ1)

0

∫ s

0
mh(r)h(r)drdŴs

+

∫ η∧h−1(θ1)

0

∫ s

0
nh(r)dŴrdŴs. (4.2.31)

All the involved processes are continuous and bounded, and (η ∧ h−1(θ1))/η → 1 a.s. as
η → 0, (4.2.31) combined with [19, Theorem A.1 b. and Proposition A.3] implies that

γã0Y (x0)− ∂2xxϕ(t0, x0) =
r↓0

nh(r) =
r↓0

nr ≥ 0.

Since γãY (X̃) ≤ γ̄(X̃), this proves (4.2.29).
3. It remains to show that the first term in the definition of F [ϕ](t0, x0) is also non-
negative, recall (4.1.11). Again, let us take θo := h−1(η) and recall from 2. that η→0(η∧
h−1(θ1))/η = 1 P̌-a.s. Note that ã being of the form (4.2.21) with the condition (4.2.22),
it satisfies [19, Condition (A.2)], and so does n. Using [19, Theorem A.2 and Proposition
A.3] and (4.2.31), we deduce that ℓ0h(0)− 1

2n0 ≥ 0. Now (4.2.30) and direct computations
based on (4.1.4) imply

0 ≤ 1

2
ã20f(x0)− Lã0ϕ(t0, x0)−

1

2

(

γã0Y (x0)− ∂2xxϕ(t0, x0)
)

(σã0X (x0))
2

=
1

2
ã20f(x0)− ∂tϕ(t0, x0)−

1

2
γã0Y (x0)(σ

ã0
X (x0))

2

= −∂tϕ(t0, x0)−
1

2

σ2(x0)

1− f(x0)γ
ã0
Y (x0)

γã0Y (x0)

≤ −∂tϕ(t0, x0)−
1

2

σ2(x0)

1− f(x0)∂2xxϕ(t0, x0)
∂2xxϕ(t0, x0),
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in which we use the facts that ∂2xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0) and z 7→ z/(1− f(x0)z) in
non-decreasing on (−∞, γ̄(x0)] ⊂ (−∞, 1/f(x0)), for the last inequality.
b. We now consider the boundary condition at T . Since k

γ̄ is a supersolution of γ̄ −
∂2xxϕ ≥ 0 on [0, T ) × R, the same arguments as in [23, Lemma 5.1] imply that k

γ̄ − Γ̄ is
concave for any twice differentiable function Γ̄ such that ∂2xxΓ̄ = γ̄. The function k

γ̄ being
lower-semicontinuous, the map

x 7→ G(x) :=
t′ → T, x′

→ x

t′ < T

k
γ̄(t

′, x′)

is such that G ≥ g and G− Γ̄ is concave. Hence, G = (G− Γ̄) + Γ̄ ≥ (g − Γ̄) + Γ̄
= ĝ. �

It remains to state the dynamic programming principle used in the above proof.

Proposition 9. Fix (t, x, v, y) ∈ [0, T ] × R2 × [−k, k] and let θ be a stopping time for
the P̃-augmentation of F̃◦ that takes P̃-a.s. values in [0, T − t]. Assume that P̃ ∈ Ãk ∩
G̃k,γ̄(t, x, v, y). Then,

Ṽ
x,v,φ̃
θ ≥ k

γ̄(t+ θ, X̃
x,φ̃
θ ) P̃− . .,

in which φ̃ := (y, ã, b̃).

Proof. Since k
γ̄ is lower-semicontinuous and all the involved processes have continuous

paths, up to approximating θ by a sequence of stopping times valued in finite time grids,
it suffices to prove our claim in the case θ ≡ r ∈ [0, T − t]. Let P̃ω be a regular conditional
probability given F̃◦

r for P̃. It coincides with P̃[·|F̃◦
r ](ω) outside a set N of P̃-measure zero.

Then, for all ω /∈ N , 0 ≤ δ ≤ 1 and r ≥ 0 the conditions (4.2.21)-(4.2.22)-(4.2.23) hold for
P̃r
ω defined on C(R+)

5 by
P̃r
ω[ω

′ ∈ A] = P̃ω[ω
′
r+· ∈ A].

Moreover, [20, Theorem 3.3] ensures that, after possibly modifying N ,

P̃r
ω

[

Ṽ
ξr(ω),ϑr(ω),φ̂(ω)
T−(t+r) ≥ g(X̃

ξr(ω),φ̂(ω)
T−(t+r) )

]

= 1

and P̃r
ω

[

γãY (X̃
ξr(ω),φ̂(ω)) ≤ γ̄(X̃ξr(ω),φ̂(ω)) on R+

]

= 1,

for ω /∈ N , in which
(ξr, ϑr, φ̂) := (X̃x,φ̃

r , Ṽ x,v,φ̃
r , (Ỹ x,φ̃

r , ã, b̃)).

This shows that ϑr(ω) ≥ k
γ̄(t+ r, ξr(ω)) outside the null set N , the required result. �

4.2.3 Conclusion of the proof and construction of almost optimal strate-

gies

We first conclude the proof of Theorem 6.
Proof of Theorem 6. Proposition 3 and Theorem 2 imply that ¯γ̄ ≥ γ̄ in which ¯γ̄
has linear growth and is a continuous viscosity solution of (4.1.13). On the other hand,
Proposition 6 and Theorem 4 imply that γ̄ ≤ γ̄ on [0, T ) × R in which γ̄ has linear
growth and is a viscosity supersolution of (4.1.13). By the comparison result of Theorem
3 applied with ǫ = 0, γ̄ ≥ ¯γ̄ . Hence,

γ̄ = γ̄ = ¯γ̄ on [0, T )× R and γ̄ = ¯γ̄ on [0, T ]× R (4.2.32)

Along with the continuity of ¯γ̄ , this shows that

(t′, x′) → (T, x)
t′ < T

γ̄(t
′, x′) = ¯γ̄(T, x) = γ̄(T, x).

One can conclude that γ̄ is a viscosity solution of (4.1.13), with linear growth. �
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Remark 12 (Almost optimal controls). In the proof of Theorem 2, we have constructed a

super-hedging strategy starting from ¯ǫ,K,δ
γ̄ (t, x). Since ¯ǫ,K,δ

γ̄ (t, x) → ¯γ̄(t, x) = γ̄(t, x) as
δ, ǫ→ 0 and K → ∞, this provides a way to construct super-hedging strategies associated
to any initial wealth v > γ̄(t, x).

4.3 Adding a resilience effect

In this section, we explain how a resilience effect can be added to our model. In the
discrete rebalancement setting, we replace the dynamics (3.1.6) by

Xn = X0 +

∫ ·

0
µ(Xn

s )ds+

∫ ·

0
σ(Xn

s )dWs +Rn,

in which Rn is defined by

Rn = R0 +

n
∑

i=1

[tni ,T ]δ
n
tni
f(Xn

tni −
)−

∫ ·

0
ρRn

s ds,

for some ρ > 0 and R0 ∈ R. The process Rn models the impact of past trades on the
price, the last term in its dynamics is the resilience effect. The continuous time dynamics
now becomes

X = X0 +

∫ ·

0
σ(Xs)dWs +

∫ ·

0
f(Xs)dYs +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs)− ρRs)ds

R = R0 +

∫ ·

0
f(Xs)dYs +

∫ ·

0
(as(σf

′)(Xs)− ρRs)ds

V = V0 +

∫ ·

0
YsdXs +

1

2

∫ ·

0
a2sf(Xs)ds.

This is obtained as a straightforward extension of Proposition 3.1.1.
Let R

γ̄ (t, x) be defined as the super-hedging price γ̄(t, x) but for these new dynamics
and for Rt = 0. The following states that R

γ̄ = γ̄ , i.e. adding a resilience effect does not
affect the super-hedging price.

Proposition 10. γ̄ = R
γ̄ on [0, T ]× R.

Proof. 1. To show that γ̄ ≥ R
γ̄ , it suffices to reproduce the arguments of the proof of

Theorem 2 in which the drift part of the dynamics of X does not play any role. These
arguments show that ¯γ̄ ≥ R

γ̄ . Then, one uses the fact that γ̄ = ¯γ̄ , by (4.2.32).
2. As for the opposite inequality, we use the weak formulation of Section 4.2.2 and a
simple Girsanov’s transformation. For ease of notations, we restrict ourselves to t = 0.
Fix v > R

γ̄ (0, x), for some x ∈ R. Then, one can find k ≥ 1, (c, y) ∈ R× [−k, k] satisfying
v = c+ yx, and (a, b) ∈ Ak,γ̄(0, x) such that VT ≥ g(XT ), with (V,X, Y,R) defined by the
corresponding initial data and controls. We write

a = a0 +

∫ ·

0
βsds+

∫ ·

0
αsdWs

as a decomposition into an Itô process. Let QR ∼ P be the probability measure under
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which WR :=W −
∫ ·
0(ρRs/σ(Xs))ds is a QR-Brownian motion, recall (4.1.1). Then,

X = X0 +

∫ ·

0
σ(Xs)dW

R
s +

∫ ·

0
f(Xs)dYs +

∫ ·

0
(µ(Xs) + as(σf

′)(Xs))ds

Y = Y0 +

∫ ·

0
(bs + asρRs/σ(Xs))ds+

∫ ·

0
asdW

R
s

a = a0 +

∫ ·

0
(βs + αsρRs/σ(Xs))ds+

∫ ·

0
αsdW

R
s

V = V0 +

∫ ·

0
YsdXs +

1

2

∫ ·

0
a2sf(Xs)ds.

Upon regarding (a, b+aρR/σ(X), α, β+αρR/σ(X),WR) as a generic element of the canon-
ical space C([0, T ])5 introduced in Section 4.2.2, then QR belongs to Ãk ∩ G̃k,γ̄(t, x, v, y),
and therefore v > γ̄(0, x). Hence, R

γ̄ (0, x) ≥ γ̄(0, x), and thus R
γ̄ (0, x) ≥ γ̄(0, x) by

(4.2.32). �

4.4 Numerical approximation and examples

In this section, we provide an example of numerical schemes that converges towards the
unique continuous viscosity solution of (4.1.13) with linear growth. The scheme is then
exemplified using two numerical applications in the case of constant market impact and
gamma constraint.

4.4.1 Finite difference scheme

Given a map φ and h := (ht, hx) ∈ (0, 1)2, define

Lh
1(t, x, y, φ) := −φ(t+ ht, x)− y

ht
− σ2(x)Gh(t, x, y, φ)

2(1− f(x)Gh(t, x, y, φ))

Lh
2(t, x, y, φ) := γ̄(x)−Gh(t, x, y, φ)

where

Gh(t, x, y, φ) :=
φ(t+ ht, x+ hx) + φ(t+ ht, x− hx)− 2y

h2x
.

The numerical scheme is set on the grid πh := {(ti, xj) = (iht, x+jhx) : i ≤ nt, j ≤ nx},
with ntht = T for some nt ∈ N, and nxhx = x − x, for some real numbers x < x. To
paraphrase, h

γ̄ is defined on πh as the solution of

S(h, ti, xj ,
h
γ̄(ti, xj),

h
γ̄) = 0 for i < nt, 1 ≤ j ≤ nx − 1 (4.4.1)
h
γ̄ = ĝ on πh ∩ {({T} × R) ∪ ([0, T ] ∩ {x, x})}

where

S(h, t, x, y, φ) := (w̄ − y) ∨ (y − w) ∧
l=1,2

{

Lh
l (t, x, y, φ)

}

with w̄ and w as in Remark 9.

Theorem 5. The equation (4.4.1) admits a unique solution h
γ̄ , for all h := (ht, hx) ∈

(0, 1)2. Moreover, if ht/h
2
x → 0 and h2x → 0, then h

γ̄ converges locally uniformly to the
unique continuous viscosity solution of (4.1.13) that has linear growth.
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Proof. The existence of a solution, that is bounded by the map with linear growth
|w̄|+ |w|, is obvious. We now prove uniqueness. First observe that Lh

2 is strictly increasing
in its y-component, and that

∂Lh
1

∂y
(t, x, y, φ) =

1

ht
+

σ2(x)

h2x(1− f(x)Gh(t, x, y, φ))2
> 0

on the domain {y : Lh
2(ti, xj , y, φ) ≥ 0}. Uniqueness of the solution follows.

It is easy to see that φ 7→ S(·, φ) is non-decreasing, so that our scheme is monotone.
Consistency is clear. Moreover, it is not difficult to check that the comparison result of
Theorem 3 extends to this equation (there is an equivalence of the notions of super- and
subsolutions in the class of functions w such that w ≤ w ≤ w̄). It then follows from
[5, Theorem 2.1] that h

γ̄ converges locally uniformly to the unique continuous viscosity
solution with linear growth of

[

(w̄ − ϕ) ∨ (ϕ− w) ∧ F [ϕ]
]

[0,T ) + (ϕ− ĝ) {T} = 0.

In view of (4.2.32), Remark 9 and Theorem 6, γ̄ is the unique viscosity solution of the
above equation. �

4.4.2 Numerical examples: the fixed impact case

To illustrate the above numerical scheme, we place ourselves in the simpler case where
f ≡ λ > 0 and γ̄ > 0 are constant. The dynamics of the stock is given by the Bachelier
model

dXt = σ dWt,

with σ := 0.2. In the following, T = 2.
First, we consider a European Butterfly option with three strikes K1 = −1 < K2 =

0 < K3 = 1, where K1 + 1/(2γ̄) ≤ K2 ≤ K3 − 1/(2γ̄). Its pay-off is

g(x) = (x−K1)
+ − 2(x−K2)

+ + (x−K3)
+,

and the corresponding face-lifted function ĝ can be computed explicitly:

ĝ(x) =
γ̄

2
(x− x−1 )

2
[x−

1 ,x+
1 ) + (x−K1) [x+

1 ,K2)

+(x−K1 − 2(x−K2)) [K2,x
−

2 )

+
( γ̄

2
(x− x+2 )

2 + 2K2 − (K1 +K3)
)

[x−

2 ,x+
2 )

+(2K2 − (K1 +K3)) [x+
2 ,+∞),

where x±1 = K1 ± 1/(2γ̄) and x±2 = K3 ± 1/(2γ̄).
In Figure 4.1, we separately show the effect of the gamma constraint and of the market

impact. As observed in Remark 6, the price is non-decreasing with respect to the impact
parameter λ and bounded from below by the hedging price obtained in the model without
impact nor gamma constraint. On the left and right tails of the curves, we observe the
effect of the gamma constraint. It does not operate around x = 0 where the gamma is
non-positive. The effect of the market impact operates only in areas of high convexity
(around x = −1.5 and x = 1.5) or of high concavity (around x = 0).

In Figure 4.2, we perform similar computations but for a call spread option, where

g(x) = (x−K1)
+ − (x−K2)

+,
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Figure 4.1: Left: Super-hedging price of the Butterfly option. Dashed line: λ = 0.5,
γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞. Right: Difference with
the price associated to λ = 0, γ̄ = +∞. Dashed line: λ = 0.5, γ̄ = 1.75; solid line: λ = 0,
γ̄ = 1.75 .

with K1 = −1 < K2 = 1 such that K1 + 1/(2γ̄) ≤ K2. The face-lifted function ĝ is given
by

ĝ(x) =
γ̄

2
(x− x−)2 [x−,x+) + (x−K1) [x+,K2) + (K2 −K1) [K2,+∞)

with x± = K1 ± 1/(2γ̄).
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Figure 4.2: Left: Super-hedging price of the Call Spread option. Dashed line: λ = 0.5,
γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞. Right: Difference with
the price associated to λ = 0, γ̄ = +∞. Dashed line: λ = 0.5, γ̄ = 1.75; solid line: λ = 0,
γ̄ = 1.75 .
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4.5 Appendix

The following lemma is very standard, we prove it for completeness.

Lemma 2. A upper-(resp. lower-) semicontinuous map is a viscosity sub-(resp. super-)
solution of

F ǫ
κ[ϕ] [0,T ) + (ϕ− ĝǫK) {T} = 0

if and only if it is a viscosity sub-(resp. super-) solution of F ǫ,K
κ,− [ϕ] = 0 (resp. F ǫ,K

κ,+ [ϕ] = 0).

Proof. The equivalence on [0, T ) is evident, we only consider the parabolic boundary
{T} × R. Since F ǫ,K

κ,+ ≥ F ǫ
κ and F

ǫ,K
κ,− ≤ F ǫ

κ, only one implication is not completely trivial.

a. Let v be a viscosity supersolution of F ǫ,K
κ,+ [ϕ] = 0, and ϕ ∈ C2 a test function such that

(strict)
[0,T ]×R

(v − ϕ) = (v − ϕ)(T, x0) = 0,

for some x0 ∈ R. We define a new test function φ ∈ C2,

φ(t, x) := ϕ(t, x)− C(T − t),

so that ∂tφ = ∂tϕ+ C. For C > 0 large enough, we have at (T, x0)

x′∈Dǫ
κ

{

−∂tφ− σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)
, γ̄(x′)− ∂xxφ

}

< 0

Now that the minimum of v − φ, being equal to 0, is also attaint at (T, x0), it must hold
that F ǫ,K

κ,+ [φ](T, x0) ≥ 0, and therefore

v(T, x0)− ĝǫK(x0) = ϕ(T, x0)− ĝǫK(x0) = φ(T, x0)− ĝǫK(x0) ≥ 0.

b. Let v be a viscosity subsolution of F ǫ,K
κ,− [ϕ] = 0, and ϕ ∈ C2 a test function such that

(strict)
[0,T ]×R

(v − ϕ) = (u− ϕ)(T, x0),

for some x0 ∈ R. Then, F ǫ,K
κ,− [ϕ](T, x0) ≤ 0. By replacing ϕ by φ, defined for α > 0 as

φ(t, x) := ϕ(t, x0 + α(x− x0)) + C(T − t),

we obtain a new test function at (T, x0). Since γ̄ > 0, recall (4.1.1), we can take α
small enough so that

x′∈Dǫ
κ

{γ̄(x′)− ∂xxφ(T, x0)} > 0.

As in the previous step, we can now choose C > 0 such that

x′∈Dǫ
κ

{

−∂tφ− σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)

}

> 0

at (T, x0). Since F ǫ,K
κ,− [φ](T, x0) ≤ 0, we conclude that v(T, x0) = φ(T, x0) ≤ ĝǫK(x0). �
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5.1 Introduction

Since the seminal paper of Pardoux and Peng [42], the theory of Backward Stochas-
tic Differential Equations (BSDEs hereafter) has been largely developed, and has lead
to many applications in optimal control, finance, etc. (see e.g. El Karoui, Peng and
Quenez [24]).Different approaches have been proposed during the last decade to solve
them numerically, without relying on pure PDE based resolution methods. A first fam-
ily of numerical schemes, based on a time discretization technique, has been introduced
by Bally and Pagès [2], Bouchard and Touzi [15] and Zhang [53], and generated a large
stream of the literature. The implementation of these numerical schemes requires the
estimation of a sequence of conditional expectations, which can be realized by simulations
along with either non-linear regression techniques or Malliavin integration by parts based
representation of conditional expectations, or by a quantization approach, see e.g. [16,26]
for references and error analysis.

Another type of numerical algorithms is based on a pure forward simulation of branch-
ing processes, and was introduced by Henry-Labordère [27], and Henry-Labordère, Tan
and Touzi [29] (see also the recent extension by Henry-Labordère et al. [28]). The main

73
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advantage of this new algorithm is that it avoids the estimation of conditional expecta-
tions. Instead, it relies on the probabilistic representation in terms of branching processes
of the so-called KPP (Kolmogorov-Petrovskii-Piskunov) equation:

∂tu(t, x) +
1

2
D2u(t, x) +

∑

k≥0

pku
k(t, x) = 0, u(T, x) = g(x). (5.1.1)

Here, D2 is the Laplacian on Rd, and (pk)k≥0 is a probability mass sequence, i.e. pk ≥ 0 and
∑

k≥0 pk = 1. This is a natural extension of the classical Feynmann-Kac formula, which has
gain its popularity since the works of Skorokhod [47], Watanabe [52] and McKean [40],
among others. The PDE (5.1.1) corresponds to a BSDE with a polynomial driver and
terminal condition g(WT ):

Y· = g(WT ) +

∫ T

·

∑

k≥0

pk(Yt)
kdt−

∫ T

·
ZtdWt,

in which W is a Brownian motion. Since Y· = u(·,W·), the Y -component of this BSDE
can be estimated in terms of the branching process based Feynman-Kac representation
of (5.1.1) by means of a pure forward Monte-Carlo scheme, see Section 5.2.3 below. The
idea is not new. It was already proposed in Rasulov, Raimov and Mascagni [43], although
no rigorous convergence analysis was provided. Extensions to more general drivers can
be found in [27–29]. Similar algorithms have been studied by Bossy et al. [9] to solve
non-linear Poisson-Boltzmann equations.

It would be tempting to use this representation to solve BSDEs with Lipschitz drivers,
by approximating the drivers by polynomials. This is however not feasible in general. The
reason being that PDEs (or BSDEs) with polynomial drivers, of degree bigger or equal to
two, typically explode in finite time. They are only well posed on a small time interval. It
becomes worse when the degree of the polynomial increases. Hence, no convergence can
be expected for the case of general drivers.

In this paper, we instead propose to use a local polynomial approximation. The conver-
gence of the sequence of approximating drivers to the original one can be ensured without
the corresponding BSDEs exploding. Thus those BSDEs can be defined on a arbitrary
time interval. This local polynomial approximation requires to be applied with the Pi-
card iteration scheme, as the form of the polynomials depend on the space position of
the solution Y itself. However, unlike classical Picard iteration schemes for BSDEs, see
e.g. Bender and Denk [6], we do not need to dispose precise estimation on the whole path
of the solution at each Picard iteration. Indeed, if local polynomials are defined through a
partition (Ai)i of R, then one only needs to know in which Ai the solution stays at certain
branching times of the underlying process. If the Ai’s are large enough, one does not need
to provide high precision on the intermediate estimations. We refer to Remark 5.2.3 for
more details.

All our results will be presented in a Markovian context for simplification. However,
our arguments can be extended to a non-Markovian setting trivially.

5.2 Numerical method for a class of BSDE based on branch-

ing processes

Let T > 0, W be a standard d-dimensional Brownian motion on a filtered probability
space (Ω,F ,F = (Ft)t≥0,P), and X be the solution of the stochastic differential equation:

X = X0 +

∫ ·

0
µ(Xs) dt+

∫ ·

0
σ(Xs) dWs, (5.2.1)
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where X0 is a constant, lying in a compact subset of Rd, and (µ, σ) : [0, T ] × Rd 7→
Rd ×Md is assumed to be Lipschitz continuous with support contained in . Our aim is
to provide a numerical scheme for the resolution of the BSDE

Y· = g(XT ) +

∫ T

·
f(Xs, Ys) ds−

∫ T

·
Zs dWs. (5.2.2)

In the above, g : Rd 7→ R is assumed to be measurable and bounded, f ∈ Rd × R 7→ R

is measurable with linear growth and Lipschitz in its second argument, uniformly in the
first one. As a consequence, there exists M ≥ 1 such that

|g(XT )| ≤M and |X|+ |Y | ≤M on [0, T ]. (5.2.3)

Remark 5.2.1. The above conditions are imposed to easily localize the solution Y of
the BSDE, which will be used in our estimates later on. One could also assume that g
and f have polynomial growth in their first component and that is not compact. After
possibly truncating the coefficients and reducing their support, one would reduce to our
conditions. Then, standard estimates and stability results for SDEs and BSDEs could be
used to estimate the additional error in a very standard way. See e.g. [24].

5.2.1 Local polynomial approximation of the generator

The first main ingredient of our algorithm consists in approximating the driver f by a
driver fℓ◦ that has a local polynomial structure. Namely, let

fℓ◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦
∑

j=1

ℓ◦
∑

ℓ=0

aj,ℓ(x)y
ℓϕj(y

′), (5.2.4)

in which (aj,ℓ, ϕj)ℓ≤ℓ◦,j≤j◦ is a family of continuous and bounded maps satisfying

|aj,ℓ| ≤ Cℓ◦ , |ϕj(y
′
1)− ϕj(y

′
2)| ≤ Lϕ|y′1 − y′2| and |ϕj | ≤ 1, (5.2.5)

for all y′1, y
′
2 ∈ R, j ≤ j◦ and ℓ ≤ ℓ◦, and some constants Cℓ◦ , Lϕ ≥ 0. In the following,

we shall assume that ℓ◦ ≥ 2 without loss of generality. One can understand the (aj,ℓ)ℓ≤ℓ◦

as the coefficients of a polynomial approximation of f on a subset Aj , the Aj ’s forming a
partition of [−M,M ]. Then, the ϕj ’s have to be regarded as smoothing kernels that allow
one to pass in a Lipschitz way from one part of the partition to another one. We therefore
assume that

{j ∈ {1, · · · , j◦} : ϕj(y) > 0} ≤ 2 for all y ∈ R, (5.2.6)

and that y 7→ fℓ◦(x, y, y) is globally Lipschitz. In particular,

Ȳ· = g(XT ) +

∫ T

·
fℓ◦(Xs, Ȳs, Ȳs) ds−

∫ T

·
Z̄s dWs, (5.2.7)

admits a unique solution (Ȳ , Z̄) such that E[ [0,T ] |Ȳ |2] < ∞. Moreover, by standard
estimates, (Ȳ , Z̄) provides a good approximation of (Y, Z) whenever fℓ◦ is a good approx-
imation of f :

E

[

[0,T ]
|Y − Ȳ |2

]

+ E

[

∫ T

0
|Zt − Z̄t|2dt

]

≤ CE
[

∫ T

0
|f − fℓ◦ |2(Xt, Yt, Yt)dt

]

, (5.2.8)

for some C > 0 that does not depend on fℓ◦ , see e.g. [24].
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The choice of fℓ◦ will obviously depend on the application to be dealt with and needs
no more comment. Let us just mention that our algorithm will be more efficient if the
sets {y ∈ R : ϕj(y) = 1} are large and the intersection between the supports of the ϕj ’s is
small, see Remark 5.2.3 below.

We also assume that

|Ȳ | ≤M. (5.2.9)

Since we intend to keep fℓ◦ with linear growth in its first component and bounded in
the two other ones, uniformly in ℓ◦, the above assumption does not incur any loss of
generality.

5.2.2 Picard iteration with doubly reflected BSDEs

Our next step is to introduce a Picard iteration scheme to approximate the solution Ȳ of
(5.2.7). Note however that, although the map y 7→ f(x, y, y) is globally Lipschitz, the map
y 7→ f(x, y, y′) being a polynomial given y′, is only locally Lipschitz in general. In order
to reduce to a Lipschitz driver, we shall apply our Picard scheme to a doubly (discretely)
reflected BSDE, with lower and upper barrier given by the bounds −M and M for Ȳ ,
recall (5.2.9).

Let h◦ be defined by (5.4.1) in the Appendix, a lower bound for the explosion time of
the BSDE of driver y 7→ f(x, y, y′). Fix h ∈ (0, h◦) such that Nh := T/h ∈ N, and define

tni = ih and T := {tni , i = 0, · · · , Nh}. (5.2.10)

We initialize our Picard scheme by setting

Ȳ 0
t = (t,Xt) for t ∈ [0, T ], (5.2.11)

in which is a deterministic function, bounded by M and such that (T, ·) = g. Then,
given Ȳ m−1, for m ≥ 1, we define (Ȳ m, Z̄m, K̄m,+, K̄m,−) as the solution on [0, T ] of

Ȳ m
t = g(XT ) +

∫ T

t

fℓ◦(Xs, Ȳ
m
s , Ȳ m−1

s ) ds−
∫ T

t

Z̄m
s dWs

+

∫

[t,T ]∩T
d(K̄m,+ − K̄m,−)s,

−M ≤ Ȳ m
t ≤M, ∀t ∈ T, a.s. (5.2.12)

∫

T

(Ȳ m
s +M)dK̄m,+

s =

∫

T

(Ȳ m
s −M)dK̄m,−

s = 0,

where K̄m,+ and K̄m,− are non-decreasing processes.

Remark 13. Since the solution Ȳ of (5.2.7) is bounded by M , the quadruple of processes
(Ȳ , Z̄, K̄+, K̄−) (with K̄+ ≡ K̄− ≡ 0) is in fact the unique solution of the same reflected
BSDE as in (5.2.12) but with fℓ◦(X, Ȳ , Ȳ ) in place of fℓ◦(Xs, Ȳ

m, Ȳ m−1).

Remark 14. One can equivalently define Ȳ m recursively. Let Ȳ m
T := g(XT ) be the ter-

minal condition, and define on each [ti, ti+1], (Y
m
· , Zm

· ) as the solution on [ti, ti+1] of

Y m
· = Ȳ m

ti+1
+

∫ ti+1

·
fℓ◦(Xs, Y

m
s , Ȳ m−1

s )ds−
∫ ti+1

·
Zm
s dWs. (5.2.13)

Then, Ȳ m := Y m on (ti, ti+1], and Ȳ m
ti

:= (−M) ∨ Y m
ti

∧M .
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The error due to our Picard iteration scheme is handled in a standard way. It depends
on the constants

L1 := 2Cℓ◦

ℓ◦
∑

ℓ=1

ℓ(Mh)
ℓ−1, L2 := Lϕ

ℓ◦
∑

ℓ=0

2Cℓ◦(Mh)
ℓ,

where Mh is defined by (5.4.2).

Theorem 6. The system (5.2.12) of doubly reflected BSDEs admits a unique solution
(Ȳ m, Z̄m, K̄m,+, K̄m,−)m≥0 such that Ȳ m is uniformly bounded for each m ≥ 0. Moreover,
for all m ≥ 0, |Ȳ m| is uniformly bounded by the constant Mh, and

|Ȳ m
t − Ȳt|2 ≤ L2

λ2

(L2(T − t)

λ2

)m

(2M)2
eβT

β
,

for all t ≤ T , and all constants λ > 0, β > 2L1 + L2λ
2.

Proof. ) First, when Ȳ m is uniformly bounded, fℓ◦(Xs, Ȳ
m
s , Ȳ m−1

s ) can be considered
to be uniformly Lipschitz in Ȳ m, then (5.2.12) has at most one bounded solution. Next,
in view of Lemma 5 and Remark 14, it is easy to see that (5.2.13) has a unique solution
Y m, bounded by Mh (defined by (5.4.2)) on each interval [ti, ti+1]. It follows the existence
of the solution to (5.2.12). Moreover, Ȳ m is also bounded by Mh on [0, T ], and more
precisely bounded by M on the discrete grid T, by construction.
) Consequently, the driver fℓ◦(x, y, y

′) can be considered to be uniformly Lipschitz in y

and y′. Moreover, using (5.2.5) and (5.2.6), one can identify the corresponding Lipschitz
constants as L1 and L2.

Let us denote ∆Ȳ m := Ȳ m − Ȳ for all m ≥ 1. We notice that, in Remark 14, the
truncation operation Ȳ m

ti
:= (−M)∨Y m

ti
∧M can only make the value (∆Ȳ m

ti
)2 smaller than

(Y m
ti
−Ȳti)2, due to the fact |Ȳ | ≤M . Thus we can apply Itô’s formula to (eβt(∆Ȳ m+1

t )2)t≥0

on each interval [ti, ti+1], and then take expectation to obtain

E
[

eβt(∆Ȳ m+1
t )2

]

+ βE
[

∫ T

t

eβs|∆Ȳ m+1
s |2ds+

∫ T

t

eβs|∆Z̄m+1
s |2ds

]

≤ 2E
[

∫ T

t

eβs∆Ȳ m+1
s

(

fℓ◦(Xs, Ȳ
m+1
s , Ȳ m

s )− fℓ◦(Xs, Ȳs, Ȳs)
)

ds
]

.

Using the Lipschitz property of fℓ◦ and the inequality λ2 + 1
λ2 ≥ 2, it follows that the

r.h.s. of the above inequality is bounded by

(2L1 + L2λ
2)E

[

∫ T

t

eβs(∆Ȳ m+1
s )2ds

]

+
L2

λ2
E

[

∫ T

t

eβs(∆Ȳ m
s )2ds

]

.

By definition β ≥ 2L1 + L2λ
2, the above implies

E

[

eβt(∆Ȳ m+1
t )2

]

≤ L2

λ2
E

[

∫ T

t

eβs(∆Ȳ m
s )2ds

]

, (5.2.14)

and hence

E

[

∫ T

0
eβt(∆Ȳ m+1

t )2dt
]

≤ L2

λ2
TE

[

∫ T

0
eβs(∆Ȳ m

s )2ds
]

.

Since |∆Ȳ 0| = | (·, X)− Ȳ | ≤ 2M by (5.2.9) and our assumption | | ≤M , this shows that

E

[

∫ T

0
eβt(∆Ȳ m

t )2dt
]

≤
(L2

λ2
T
)m

(2M)2eβT /β.

Plugging this in (5.2.14) leads to the required result at t = 0. It is then clear that the
above estimation does not depend on the initial condition (0, X0), so that the same result
holds true for every t ∈ [0, T ]. �
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5.2.3 A branching diffusion representation for Ȳ
m

We now explain how the solution of (5.2.13) on [ti, ti+1) can be represented by means
of a branching diffusion system. More precisely, consider an element (pℓ)0≤ℓ≤ℓ◦ ∈ Rℓ◦+1

+

such that
∑ℓ0

ℓ=0 pℓ = 1, set Kn := {(1, k2, . . . , kn) : (k2, . . . , kn) ∈ {0, . . . , ℓ◦}n} for n ≥ 1,
and K := ∪n≥1Kn. Let (W k)k∈K be a sequence of independent d-dimensional Brownian
motions, (ξk)k∈K and (δk)k∈K be two sequences of independent random variables, such
that

P[ξk = ℓ] = pℓ, ℓ ≤ ℓ◦, k ∈ K,

and

F̄ (t) := P[δk > t] =

∫ ∞

t

ρ(s)ds, t ≥ 0, k ∈ K, (5.2.15)

for some continuous strictly positive map ρ : R+ → R+. We assume that

(W k)k∈K , (ξk)k∈K , (δk)k∈K and W are independent. (5.2.16)

Given the above, we construct particles X(k) of the dynamics (5.2.1) up to a killing time
Tk at which they split into ξk different (conditionally) independent particles with the same
dynamics (5.2.1) till their own killing time. The construction is done as follows. First,
we set T(1) := δ1. Given k = (1, k2, . . . , kn) ∈ Kn with n ≥ 2, we let Tk := δk + Tk− in
which k− := (1, k2, . . . , kn−1) ∈ Kn−1. Define the Brownian particles (W (k))k∈K by the
following induction: for the first generation

W ((1)) :=W 1
[0,T(1)] , K

1
t := {(1)} [0,T(1)](t) + ∅ [0,T(1)]

c(t), t ≥ 0,

then, given n ≥ 2 and k ∈ K̄n−1
T := ∪t≤TKn−1

t , let

W (k⊕j) :=
(

W
(k)
·∧Tk

+W
k⊕j
·∨Tk

−W
k⊕j
Tk

)

[0,Tk⊕j ], 1 ≤ j ≤ ξk,

and
K̄n

t := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ξk s.t. t ∈ (0, Tk⊕j ]}, K̄t := ∪n≥1K̄n

t ,

Kn
t := {k ⊕ j : k ∈ K̄n−1

T , 1 ≤ j ≤ ξk s.t. t ∈ (Tk, Tk⊕j ]}, Kt := ∪n≥1Kn
t ,

in which we use the notation (1, k1, . . . , kn−1)⊕ j = (1, k1, . . . , kn−1, j).
Observe that the solution Xx of (5.2.1) on [0, T ] of initial condition Xx

0 = x ∈ Rd can be
identified in law on the canonical space as a process of the form Φ[x](·,W ) with (x, s, ω) 7→
Φ[x](s, ω) being deterministic, B(Rd) ⊗ P-measurable, where P is the predictable σ-filed
on [0, T ]× Ω. We then define the particles (Xx,(k))k∈K by Xx,(k) := Φ[x](·,W (k)).

Based on the above construction, we can now introduce a sequence of deterministic
maps associated to (Ȳ m)m≥0. First, we set

v0 := , (5.2.17)

recall (5.2.11). Then, given vm−1, we define

V m
t,x :=

(

∏

k∈Ktn
i+1

−t

Gm
t,x(k)

)(

∏

k∈K̄tn
i+1

−t\Ktn
i+1

−t

Am
t,x(k)

)

,

Gm
t,x(k) :=

vm
(

ti+1, X
x,(k)
tni+1−t

)

F (tni+1 − t− Tk−)
,

Am
t,x(k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(v
m−1(t+ Tk, X

x,(k)
Tk

))

pξk ρ(δk)
, ∀(t, x) ∈ [tni , t

n
i+1)× .
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We finally set, whenever V m
t,x is integrable,

vm(t, x) := E
[

V m
t,x

]

, (t, x) ∈ (ti, ti+1)× , m ≥ 1, (5.2.18)

vm(ti, x) := (−M) ∨ E
[

V m
ti,x

]

∧M, x ∈ , m ≥ 1.

Proposition 5.2.1. For all m ≥ 1 and (t, x) ∈ [0, T ] × , the random variable V m
t,x is

integrable. Moreover, Ȳ m
· = vm(·, X) on [0, T ].

This follows from Proposition 12 proved in the Appendix, which is in spirit of [28].
The main use of this representation result here is that it provides a numerical scheme for
the approximation of the component Ȳ of (5.2.7), as explained in the next section.

5.2.4 The numerical algorithm

The representation result in Proposition 5.2.1 suggests to use a simple Monte-Carlo estima-
tion of the expectation in the definition of vm based on the simulation of the corresponding
particle system. However, it requires the knowledge of vm−1 in the Picard scheme which
is used to localize our approximating polynomials. We therefore need to approximate the
corresponding (conditional) expectations at each step of the Picard iteration scheme. In
practice, we shall replace the expectation operator E in the definition of vm by an operator
Ê that can be computed explicitly, see Remark 5.2.2 below.

In order to perform a general (abstract) analysis, let us first recall that

vm(t, x) = E[Vt,x(v
m(ti+1, ·), vm−1(·)], t ∈ (ti, ti+1)

vm(ti, x) = (−M) ∨ E[Vti,x(v
m(ti+1, ·), vm−1(·)] ∧M

where, given two functions φ, φ′ : (ti, ti+1]× Rd → R,

Vt,x(φ, φ
′) :=

(

∏

k∈Ktn
i+1

−t

Gt,x(φ, k)
)(

∏

k∈K̄tn
i+1

−t\Ktn
i+1

−t

At,x(φ
′, k)

)

,

Gt,x(φ, k) :=
φ(tni+1, X

x,(k)
tni+1−t)

F (tni+1 − t− Tk−)
,

At,x(φ
′, k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(φ
′(t+ Tk, X

x,(k)
Tk

)

pξk ρ(δk)
.

Let us then denote by ∞
Mh

the class of all Borel measurable functions φ : [0, T ]×Rd → R

that are bounded by Mh, and let ∞
Mh,0

⊂ ∞
Mh

be a subspace, generated by a finite
number of basis functions. Besides, let us consider a sequence (Ui)i≥1 of i.i.d. random
variables of uniform distribution on [0, 1], independent of (W k)k∈K , (ξk)k∈K , (δk)k∈K and
W introduced in (5.2.16). Denote F̂ := σ(Ui, i ≥ 1).

From now on, we use the notations

‖φ‖tni :=
(t,x)∈[tni ,t

n
i+1)×Rd

|φ(t, x)| and ‖φ‖∞ :=
(t,x)∈[0,T ]×Rd

|φ(t, x)|

for all functions φ : [0, T ]× Rd → R.

Assumption 3. There exists an operator Ê[V̂t,x(φ, φ
′)](ω), defined for all φ, φ′ ∈ ∞

Mh,0
,

such that (t, x, ω) 7→ Ê[V̂t,x(φ, φ
′)](ω) is B([0, T ]× Rd)⊗ F̂-measurable, and such that the

function (t, x) ∈ [0, T ] × Rd 7→ Ê[V̂t,x(φ, φ
′)](ω) belongs to ∞

Mh,0
for every fixed ω ∈ Ω.

Moreover, one has

E(Ê) := ‖
φ,φ′∈ ∞

Mh,0

E

[

|E
[

V·(φ, φ
′)
]

− Ê[V̂·(φ, φ
′)]|

]

‖∞ <∞.
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Then, one can construct a numerical algorithm by first setting v̂0 ≡ , v̂m(T, ·) = g,
m ≥ 1, and then by defining by induction over m ≥ 1

v̂m(t, x) := (−Mh) ∨ Ê

[

V̂t,x(v̂
m(tni+1, ·), v̂m−1)

]

∧Mh, t ∈ (tni , t
n
i+1),

and
v̂m(ti, x) := (−M) ∨ Ê

[

V̂ti,x(v̂
m(tni+1, ·), v̂m−1)

]

∧M. (5.2.19)

In order to analyse the error due to the approximation of the expectation, let us set

q̄tni+1−t := K̄tni+1−t , qtni+1−t := Ktni+1−t,

and denote

VM
h :=

(

∏

k∈Kh

M

F̄ (h− Tk−)

)(

∏

k∈K̄h\Kh

2Cℓ◦

pξkρ(δk)

)

.

Recall that h < h◦ that is defined by (5.4.1) in the Appendix.

Lemma 4. The two constants

M1
h := E

[

qhV
M
h

]

and M2
h := E

[

q̄hV
M
h

]

are finite.

Proof. Notice that for any constant ε > 0, there is some constant Cε > 0 such that
n ≤ Cε(1 + ε)n for all n ≥ 1. Then

M1
h ≤ CεE[(1 + ε)qhVM

h ] ≤ CεE

[

∏

k∈Kt

M(1 + ε)

F̄ (t− Tk−)

∏

k∈K̄t\Kt

2Cℓ◦(1 + ε)

pξkρ(δk)

]

,

where the latter expectation is finite for ε small enough. This follows from the fact that
h < h◦ for h◦ defined by (5.4.1) and from the same arguments as in Lemma 5 in the
Appendix. One can similarly obtain that M2

h is also finite. �

Proposition 11. Let Assumption 3 hold true. Then

‖E [|vm − v̂m|] ‖∞ ≤ E(Ê)
(

1 +Nh

)(m+Nh)
Nh

Nh!

(

(2LϕM
2
h) ∨

M1
h

M
∨ 1

)m+Nh

.

Before turning to its proof, we comment on the use of this numerical scheme.

Remark 5.2.2. In practice, the approximation of the expectation operator can be simply
constructed by using pure forward simulations of the branching process. Let us explain this
first in the case h◦ = T . Given that v̂m has already been computed, one takes it as a given
function, one draws some independent copies of the branching process (independently of
v̂m) and computes v̂m+1(t, x) as the Monte-Carlo counterpart of E[Vt,x(v̂

m+1(T, ·), v̂m)],
and truncate it with the a-priori bound Mh for (Ȳ m)m≥1. This corresponds to the operator
Ê[V̂t,x(v̂

m+1(T, ·), v̂m)]. If h◦ < T , one needs to iterate backward over the periods [ti, ti+1].
Obviously one cannot in practice compute the whole map (t, x) 7→ v̂m+1(t, x) and this
requires an additional discretization on a suitable time-space grid. Then, the additional
error analysis can be handled for instance by using the continuity property of vm in Propo-
sition 14 in the Appendix. This is in particular the case if one just computes v̂m+1(t, x)
by replacing (t, x) by its projection on a discrete time-space grid.
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Remark 5.2.3. ). In the classical time discretization schemes of BSDEs, such as those
in [15,26,53], one needs to let the time step go to 0 to reduce the discretization error. Here,
the representation formula in Proposition 5.2.1 has no discretization error related to the
BSDE itself (assuming the solution of the previous Picard iteration is known perfectly),
we only need to use a fixed discrete time grid (ti)0≤i≤Nh

for ti = ih with h small enough.
). Let A′

j := {y ∈ R : ϕj(y) = 1} ⊂ Aj for j ≤ j◦, and assume that the A′
j’s are

disjoint. If the A′
j are large enough, we do not need to be very precise on v̂m to obtain a

good approximation of E[Vt,x(g, v
m)] by E[Vt,x(g, v̂

m)] for t ∈ [tNh−1, tNh
). One just needs

to ensure that v̂m and vm belong to the same set A′
j at the different branching times and

at the corresponding X-positions. We can therefore use a rather rough time-space grid
on this interval (i.e. [tNh−1, tNh

]). Further, only a precise value of v̂m(tNh−1, ·) will be
required for the estimation of v̂m+1 on [tNh−2, tNh−1) and this is where a fine space grid
should be used. Iterating this argument, one can use rather rough time-space grid on each
(ti, ti+1) and concentrate on each ti at which a finer space grid is required. This is the
main difference with the usual backward Euler schemes of [15, 26, 53] and the forward
Picard schemes of [6].

Proof of Proposition 11. Define

ṽm(·) := (−Mh) ∨ E

[

V·(v̂
m(tni+1, ·), v̂m−1)

∣

∣F̂
]

∧Mh.

Then, Lemma 6 below with the inequality |ϕ| ≤ 1 implies that for (t, x) ∈ [ti, ti+1)×

|ṽm(t, x)− vm(t, x)|

≤ E

[

∑

k∈Kti+1−t

1

M
VM
tni+1−t

∣

∣v̂m(tni+1, X
x,(k)
tni+1

)− vm(tni+1, X
x,(k)
tni+1

)
∣

∣

∣

∣

∣F̂
]

+ E

[

∑

k∈K̄ti+1−t\Kti+1−t

2LϕV
M
tni+1−t

∣

∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣

∣

∣

∣

∣F̂
]

.

Let us compute the expectation of the first term. By denoting by F̄ the σ-field generated
by the branching process, we obtain

E

[

∑

k∈Kti+1−t

1

M
VM
tni+1−t

∣

∣v̂m(tni+1, X
x,(k)
tni+1

)− vm(tni+1, X
x,(k)
tni+1

)
∣

∣

]

= E

[

∑

k∈Kti+1−t

1

M
VM
tni+1−tE

[

∣

∣v̂m(tni+1, X
x,(k)
tni+1

)− vm(tni+1, X
x,(k)
tni+1

)
∣

∣

∣

∣

∣F̄
]]

≤ 1

M
‖E[|v̂m − vm|]‖ti+1E

[

qti+1−tV
M
ti+1−t

]

≤ M1
h

M
‖E[|v̂m − vm|]‖ti+1 .

Similarly, for the second term, one has

E

[

∑

k∈K̄ti+1−t\Kti+1−t

2LϕV
M
tni+1−t

∣

∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣

∣

]

≤ 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖ti .

Notice that ‖E [|ṽm − v̂m|] ‖tni ≤ E(Ê) by Assumption 3. All these lead to

‖E[|v̂m − vm|]‖tni ≤ E(Ê) + 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖tni

+
M1

h

M
‖E[|v̂m − vm|]‖tni+1

.
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We now appeal to Proposition 13 to obtain

‖E[|v̂m − vm|]‖tni ≤ E(Ê)





m
∑

i=1

Ci +

Nh−i
∑

i′=2





m
∑

j1=1

· · ·
ji′−1
∑

ji′=1

Cm−ji′Ci′−1









≤ E(Ê)(1 +Nh)
(m+Nh)

Nh

Nh!
Cm+Nh ,

with C := (2LϕM
2
h) ∨

M1
h

M
∨ 1. �

5.3 Example of application

In this section, we consider a toy example of application. Let us set := [x, x̄] with
x = π/8 and x̄ = 7π/8, and consider the solution X of (5.2.1) with

µ(x) = 0.1× (
π

2
− x) and σ(x) := 0.2× (x̄− x)(x− x).

We then take

f(x, y) = µ(x)
(

√

1− y2 |y|≤ȳ +
√

1− ȳ2 |y|>ȳ

)

+
1

2
σ(x)2y

with ȳ := (x). As can be seen on Figure 5.1, the Lipschitz constant of the driver is
rather large. A simple application of Itô’s lemma shows that the solution of (5.2.2) with
g = is given by Y = (X), which will be used to assess the precision of our estimator.

The driver f is approximated by polynomials of order two weighted by localizing
functions. Let Aυ

j := (yj − υ, yj+1 + υ] for j = 1, . . . , 5, with υ := 10−5 and

y1 = −y6 = ∞, y2 = −y5 = ȳ, y3 = −y4 = (xNX+1

4
−1

),

where {x1, . . . , xNX
} are equidistant points with x1 = x and xNX

= x̄. Then, fℓ◦ is defined
as

fℓ◦(x, y, y
′) =

5
∑

j=1

(

µ(x)(aj0 + aj1y + aj2y
2) +

1

2
σ(x)2y

)

ϕj(y
′)

where

ϕj(y
′) =



















y′−yj+υ

2υ if y′ ∈ Aυ
j ∩ [yj − υ, yj + υ)

1 if y′ ∈ Aυ
j ∩ [yj + υ, yj+1 − υ]

1− y′−yj+1+υ

2υ if y′ ∈ Aυ
j ∩ [yj+1 − υ, yj+1 + υ)

0 if y′ /∈ Aυ
j

and

(a10, a11, a12) = (a50, a51, a52) = ((1− ȳ2)
1
2 , 0, 0)

(a20, a21, a22) = (a40, a41, a42)

= ((1− (y3)
2)

1
2 − a21y3,

(1− (y3)
2)

1
2 − (1− (x2)

2)
1
2

y3 − (x2)
, 0)

(a30, a31, a32) = (1, 0,−1− (1− (y3)
2)

1
2

(y3)2
).
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Figure 5.1: Driver f(π/4, ·).

Figure 5.2: Approximation of the driver - Crosses : f(·, ). Circles: fℓ◦(·, , ).

In Figure 5.2, we plot the approximation of x 7→ f(x, (x), (x)) by x 7→ fℓ◦(x, (x), (x)),
that drives the driver’s approximation error, recall (5.2.8). It works quite well except at
the boundary points, which should not have a major impact given our mean-reverting
dynamics for X.

To construct the approximation operator Ê[V̂ ]. The time interval [0, T ) is divided
into NT intervals [si, si+1), 0 ≤ i ≤ NT − 1, of equal length, with s0 = 0 and sNT

= T .
The branching density ρ is taken as the exponential law density of parameter λ = 0.6,
but branching times are replaced by the next time in (si)i≤NT

, if they are less than T .
We draw N independent path of the Brownian particules system (W (k),n; k ∈ K)n≤N (up
to T ) to which is associated the sequence of numbers of children, branching and birth
times (ζnk , δ

n
k , T

n
k ; k ∈ K)n≤N . The index sets Kn and K̄n are defined correspondingly.

Let Φ̄[x](·,W ) be the map that associates to x the Euler scheme of (5.2.1) starting from
X0 = x on the grid (si)i≤NT

. Then, we set X̄xl,(k),n := Φ̄[x](·,W (k),n) for each l ≤ NX . A
typical path starting from π/2 is provided in Figure 5.3.

The simplest algorithm reads as follows. We fix (t, ·) = (t/T ) , v̂m(T, ·) = , and
then set, for κ ≥ 1, m ≥ 0, i < NT /κ with siκ ∈ [ti′ , ti′+1) and l ≤ NX ,

Ê

[

V̂siκ,xl
(v̂m(ti′+1, ·), v̂m−1)

]

:=
1

N

N
∑

n=1

V̂ n
siκ,xl

(v̂m(ti′+1, ·), v̂m−1)
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Figure 5.3: A typical simulated path of the branching diffusion starting from π/2 on [0, 3].
Bullets denote branching or killing times.

where

V̂ n
siκ,xl

(φ, φ′) :=
(

∏

k∈Kn
t
i′+1−siκ

Ĝn
siκ,xl

(φ, k)
)(

∏

k∈K̄n
t
i′+1−siκ

\Kn
t
i′+1−siκ

Ân
siκ,xl

(φ′, k)
)

,

Ĝn
siκ,xl

(φ, k) :=
φ(X̄

xl,(k),n
ti′+1−siκ

)

F (ti′+1 − siκ − Tn
k−)

,

Ân
siκ,xl

(φ′, k) :=

∑j◦
j=1 aj,ξnk (X̄

xl,(k),n
Tn
k

)ϕj(φ
′(siκ + Tn

k , X̄
xl,(k),n
Tk

))

pξn
k
ρ(δnk )

.

For m ≥ 0, (v̂m(siκ, ·))i<NT /κ is extended to by a simple barycentric lineariza-
tion, and (v̂m(·, x))x∈ is extended to [0, T ] by setting v̂m(t, x) := v̂m(s(i+1)κ, x) if t ∈
(siκ, s(i+1)κ]. In particular, each function v̂m is computed on a time grid that is κ times
rougher than the one used to construct the Euler scheme of the branching system.

In practice, we proceed slightly differently. In what follows, we drop the index m for
more clarity as we shall somehow mix the Picard iterations. We set v̂(sj , ·) = v̂(T, ·)
for j > NT − κ. Then, one can compute v̂(sNT−κ, ·) as above, based on , and set
v̂(sj , ·) = v̂(sNT−κ, ·) for NT − κ ≥ j > NT − 2κ. This allows to compute immediately,
v̂(sNT−2κ, ·), since it only requires the knowledge of v̂(sj , ·) for NT ≥ j > NT − 2κ. We
then set v̂(sj , ·) = v̂(sNT−2κ, ·) for NT − 2κ ≥ j > NT − 3κ, from which we can compute
v̂(sNT−3κ, ·). We go on this way. The estimation v̂(sj , ·) corresponds to a unique Picard
iteration for NT ≥ j > NT − 2κ. But, around T , we expect to be very precise with only
one, as is based on the terminal condition. The estimation v̂(sj , ·) corresponds to a mix
between a unique and two Picard iterations for NT − κ ≥ j > NT − 2κ, and so on. We
therefore increase automatically the number of Picard iterations when we go further from
the terminal horizon.

In Figure 5.4, we plot the solution x 7→ (x) and the confidence interval obtained
by computing the mean estimated value over 100 independent estimations ± twice the
standard deviation computed over these 100 estimations, for N = 103, NX = 31, NT = 50,
κ = 10 and Nh = 1. As can be seen, the algorithm is already quite efficient with only
a rather small number of simulations. Figure 5.5 provides the same curves in the case
N = 10.103.

In Figure 5.6 and Figure 5.7, we consider the case T = 2 with Nh = 2, NT = 140 and
NX = 47. We use N = 103 and N = 10.103 simulations, respectively.
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Figure 5.4: T = Nh = 1 with N = 103 - Crosses: function. Dotted lines: mean of
estimations ± 2 standard deviation computed over the estimated values.

Figure 5.5: T = Nh = 1 with N = 10.103 - Crosses: function. Dotted lines: mean of
estimations ± 2 standard deviation computed over the estimated values.

Figure 5.6: T = Nh = 2 with N = 103 - Crosses: function. Dotted lines: mean of
estimations ± 2 standard deviation computed over the estimated values.
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Figure 5.7: T = Nh = 2 with N = 10.103 - Crosses: function. Dotted lines: mean of
estimations ± 2 standard deviation computed over the estimated values.

5.4 Appendix

5.4.1 Technical lemmas

Lemma 5. The ordinary differential equation η′(t) =
∑ℓ◦

ℓ=0 2Cℓ◦η(t)
ℓ with initial condition

η(0) =M > 0 has a unique solution on [0, h◦] for

h◦ :=
(ℓ◦ − 1)(1−M)+ + (1 ∨M)−(ℓ◦−1)

(ℓ◦ + 1)(ℓ◦ − 1)2Cℓ◦

. (5.4.1)

Moreover, it is bounded on [0, h◦] by

Mh :=
(

1,
(

(1 ∨M)1−ℓ◦+(ℓ◦−1)(1−M)+−h◦ℓ◦(ℓ◦−1)2Cℓ◦

)(1−ℓ◦)−1
)

. (5.4.2)

Consequently, one has, for all t ∈ [0, h◦],

E

[(

∏

k∈Kt

M

F̄ (t− Tk−)

)(

∏

k∈K̄t\Kt

2Cℓ◦

pξkρ(δk)

)]

≤ η(t) ≤ Mh. (5.4.3)

Proof. ) We first claim that

∫ Mh

M

dy

2Cℓ◦(1 + y + · · ·+ yℓ◦)
≥ h◦. (5.4.4)

Then, for every t ∈ [0, h◦], there is some constant M(t) ≤Mh <∞ such that

∫ M(t)

M

dy

2Cℓ◦(1 + y + · · ·+ yℓ◦)
= t =

∫ t

0
ds.

This indicates that (M(t))t∈[0,h◦] is a bounded solution (hence the unique one) of η′(t) =
∑ℓ◦

ℓ=0 2Cℓ◦η(t)
ℓ of initial condition η(0) =M > 0. In particular, it is bounded by Mh.

) Let us now prove (5.4.4). Notice that yk ≤ 1 ∨ yℓ◦ for any y ≥ 0 and k = 0, · · · , ℓ◦.
Then, it is enough to prove that

∫ Mh

M

(

1 ∧ 1

yℓ◦

)

dy ≥ h◦(ℓ◦ + 1)2Cℓ◦ . (5.4.5)
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By direct computation, the l.h.s. of (5.4.5) equals

(Mh −M) {Mh≤1} +
(

(1−M)+ +
1

ℓ◦ − 1

(

(1 ∨M)1−ℓ◦ −M1−ℓ◦
h

)

)

{Mh>1}.

When h◦ satisfies (5.4.1), it is easy to check that (5.4.5) holds true.
) We now prove (5.4.3). Recall that K̄n

t denotes the collection of all particles in K̄t of
generation n. Set

χn
t :=

(

∏

k∈∪n
j=1K

j
t

M

F̄ (t− Tk−)

)(

∏

k∈∪n
j=1(K̄

j
t\K

j
t )

2Cℓ◦

pξkρ(δk)

)(

∏

k∈K̄n+1
t

η(t− Tk−)
)

.

Since K̄n
t has only finite number of particles, the random variable χn

t is uniformly bounded.
Then by exactly the same arguments as in (5.4.6) and (5.4.7) below, and by repeating this
argument over n, one has

η(t) =M +

∫ t

0

ℓ◦
∑

ℓ=0

2Cℓ◦η(s)
ℓds = E

[

χ1
t

]

= E
[

χn
t

]

, ∀n ≥ 1.

It follows by Fatou Lemma that

E

[(

∏

k∈Kt

M

F̄ (t− Tk−)

)(

∏

k∈K̄t\Kt

2Cℓ◦

pξkρ(δk)

)]

= E
[

n→∞
χn
t

]

≤
n→∞

E[χn
t ] = η(t).

�

For completeness, we provide here the proof the representation formula of Proposition
5.2.1 and of the technical lemma that was used in the proof of Proposition 11.

Proposition 12. The representation formula of Proposition 5.2.1 holds.

Proof. We only provide the proof on [tNh−1, T ], the general result is obtained by induc-
tion. The representation holds true by construction for m = 0. Let us now fix m ≥ 1.

First notice that Lemma 5 shows that the random variable V m
t,x is integrable. Next,

Set (1)+ := {(1, j), j ≤ ℓ◦} ∩ K̄T and define Kt(1) := Kt ∩ (1)+ and K̄t(1) := K̄t ∩ (1)+.
For ease of notations, we write Xx := Xx,((1)). Then, for all (t, x) ∈ [tNh−1, T ]× Rd,

E[V m
t,x] = E

[

g(Xx
T−t)

F (T − t)
{T(1)≥T−t}

]

+ E





{T(1)<T−t}

∑j◦
j=1 aj,ξ(1)(X

x
T(1)

)ϕj(v
m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
Rm

t,x





where
Rm

t,x :=
(

∏

k∈KT−t(1)

Gt,x(k)
)(

∏

k∈K̄T−t(1)\KT−t(1)

Am
t,x(k)

)

satisfies
E[Rm

t,x|FT(1)
] =

∏

k∈(1)+

vm
(

T(1), X
t,x
T(1)

)

=
[

vm(T(1), X
x
T(1)

)
]ξ(1) ,

by (5.2.16). On the other hand, (5.2.15) and (5.2.16) imply

E

[

g(Xx
T−t)

F (T − t)
{T(1)≥T−t}

]

= E[g(Xx
T−t)] (5.4.6)
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and

E





{T(1)<T−t}

∑j◦
j=1 aj,ξ(1)(X

x
T(1)

)ϕj(v
1,m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
[vm(T(1), X

x
T(1)

)]ξ(1)





= E

[

∫ T−t

0

∑j◦
j=1 aj,ξ(1)(X

x
s )ϕj(v

1,m−1(t+ s,Xx
s ))

pξ(1)
[vm(s,Xx

s )]
ξ(1)ds

]

= E





∫ T−t

0

j◦
∑

j=1

∑

ℓ≤ℓ◦

aj,ℓ(X
x
s )ϕj(v

1,m−1(t+ s,Xx
s ))[v

m(s,Xx
s )]

ℓds





= E

[∫ T−t

0
fℓ◦(X

x
s , v

m(t+ s,Xx
s ), v

m−1(t+ s,Xx
s ))ds

]

. (5.4.7)

Combining the above implies that

vm(t,Xt) = E

[

g(XT ) +

∫ T

t

fℓ◦(Xs, v
m(s,Xs), v

m−1(s,Xs))ds
∣

∣

∣Ft

]

,

and the required result follows by induction. �

Lemma 6. Let (xi, yi)i≤I be a sequence of real numbers. Then,

∣

∣

∣

∣

∣

I
∏

i=1

xi −
I
∏

i=1

yi

∣

∣

∣

∣

∣

≤
∑

i∈I

(

|xi − yi|
∏

j 6=i

(|xj |, |yj |)
)

.

Proof. It suffices to observe that

I
∏

i=1

xi −
I
∏

i=1

yi = (x1 − y1)

I
∏

i=2

xi + y1
(

I
∏

i=2

xi −
I
∏

i=2

yi
)

,

and proceed by induction arguments. �

Proposition 13. Let c1, c2, c3 ≥ 0, and let (uim)m≥0,i≥0 be a sequence such that

uim ≤ c1u
i
m−1 + c2u

i+1
m + c3 for m ≥ 1, i < Nh.

Then

uim ≤cm1 ui0 +
Nh−i
∑

i′=1





m
∑

j1=1

j1
∑

j2=1

· · ·
ji′−1
∑

ji′=1

cm1 c
i′

2u
i+i′

0





+ c3





m
∑

i=1

ci +

Nh−i
∑

i′=2

(

m
∑

j1=1

j1
∑

j2=1

· · ·
ji′−1
∑

ji′=1

c
m−ji′
1 ci

′−1
2

)



 .

Proof. We have

uim ≤(c1)
mui0 +

m
∑

j=1

(c1)
m−j(c2u

i+1
m + c3).

The required result then follows from a simple induction. �
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5.4.2 More on the error analysis for the abstract numerical approxima-

tion

The regression error will depend on the regularity of vm. Here we prove that vm(t, x) is
Hölder in t and Lipschitz in x under additional conditions, and provide some estimates on
the corresponding coefficients. Given φ : [0, T ]× Rd → R, denote

[φ]tni :=
(t,x) 6=(t′,x′)∈[tni ,t

n
i+1]×

|φ(t, x)− φ(t′, x′)|
|t− t′| 12 + |x− x′|

.

Since (µ, σ) is assumed to be Lipschitz, it is clear that there exists LX > 0 such that for
all (t, x), (t′, x′) ∈ [0, T ]× ,

‖Xx
t −Xx′

t′ ‖ 2 ≤ LX

(

√

|t′ − t|+ |x′ − x|
)

. (5.4.8)

Proposition 14. Suppose that x 7→ g(x) and x 7→ fℓ◦(x, y, y
′) are uniformly Lipschitz

with Lipschitz constants Lg and Lf . Let β and λ1, λ2 > 0 such that L2

λ2
2
T < 1 and β ≥

2L1 + Lfλ
2
1 + L2λ

2
2, then for all m ≥ 1 and i ≤ Nh,

[vm]tni ≤ Lv := (1 + LX)LX

√

(

L2
g +

Lf

βλ21

)

TeβT /
(

1− L2

λ22
T
)

+ 2(1 + ℓ◦)Cℓ(1 ∨M ℓ◦
h )

√

h◦.

Proof. For ease of notations, we provide the proof for t = 0 only.
) Let x1, x2 ∈ Rd and Y m,1 := vm(·, Xx1), Y m,2 := vm(·, Xx2),and denote ∆Y m :=
Y m,1 − Y m,2, ∆X := Xx1 − Xx2 , where Xx1 (resp. Xx2) denotes the solution of SDE
(5.2.1) with initial condition X0 = x1 (resp. X0 = x2). Using the same arguments as in
the proof of Theorem 6, it follows that, for any β ≥ 2L1 + Lfλ

2
1 + L2λ

2
2, one has

E[eβt(∆Y m+1
t )2] ≤ E[eβT (∆Y m+1

T )2] +
Lf

λ21
E

[

∫ T

t

eβs|∆Xs|2ds
]

+
L2

λ22
E

[

∫ T

t

eβs(∆Y m
s )2ds

]

(5.4.9)

and then

E

[

∫ T

0
eβt(∆Y m+1

t )2dt
]

≤ TE[eβT (∆Y m+1
T )2] + T

Lf

λ21
E

[

∫ T

0
eβs|∆Xs|2ds

]

+ T
L2

λ22
E

[

∫ T

0
eβt(∆Y m

t )2dt
]

≤ TeβT
(

L2
g +

Lf

βλ21

)

L2
X |x1 − x2|2

+ T
L2

λ22
E

[

∫ T

0
eβt(∆Y m

t )2dt
]

.

Since L2

λ2
2
T < 1, this induces that

E

[

∫ T

0
eβt(∆Y m+1

t )2dt
]

≤
TeβT

(

L2
g +

Lf

βλ2
1

)

L2
X |x1 − x2|2

1− L2

λ2
2
T

.
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Plugging the above estimates into (5.4.9), it follows that

(∆Y m
0 )2 ≤ L̂2

v|x1 − x2|2, with L̂2
v :=

(

L2
g +

Lf

βλ2
1

)

L2
XTe

βT

1− L2

λ2
2
T

.

) For the Hölder property of vm, it is enough to notice that for t ≤ h◦,

|vm(0, x)− vm(t, x)| ≤ E

[

|vm(t,Xx
t )− vm(t, x)|+

∫ t

0
|f(Xx

s , Y
m
s , Y m−1

s )|ds
]

≤ L̂vLX

√
t+ 2(1 + ℓ◦)Cℓ(1 ∨M ℓ◦

h )t,

where the last inequality follows from the Lipschitz property of vm in x and the fact that
Y m is uniformly bounded by Mh. We hence conclude the proof. �
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Abstract 
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La th!orie classique de la valorisation des
produits d!riv!s se repose sur l'absence de
co"ts de transaction et une liquidit! infinie. Ces
hypoth#ses sont toutefois ne plus satisfaites
dans le march! r!el, en particulier lorsque la
transaction est grande et les actifs non-liquides.
Dans ce march! imparfait, on parle du prix de
sur-r!plication puisque la couverture parfaite est
devenue parfois infaisable.

La premi#re partie de cette th#se se concentre
sur la proposition d’un mod#le qui int#gre $ la
fois le co"t de transaction et l’impact sur le prix
du sous-jacent. Nous commençons par d!duire
la dynamique de l’actif en temps continu en tant
que la limite de la dynamique en temps discret.
Sous la contrainte d’une position nulle sur l’actif
au d!but et $ la maturité, nous obtenons une
!quation quasi-lin!aire pour le prix du d!riv!, au
sens de viscosit!. Nous offrons la strat!gie de
couverture parfaite lorsque l’!quation admet une
solution r!guli#re. Quant à la couverture d’une
option europ!enne “covered” sous la contrainte
gamma, le principe de la programme dynamique
utilis! pr!c!demment n'est plus valide. En
suivant les techniques du cible stochastique et
de l’!quation diff!rentielle partielle, nous
d!montrons que le prix de la sur-r!plication est
devenue une solution de viscosit! d’une
!quation non lin!aire de type parabolique. Nous
construisons !galement la strat!gie %-optimale,
et proposons un sch!ma num!rique.

La deuxi#me partie de cette th#se est consacr!e
aux études sur un nouveau sch!ma numérique
d'EDSR, bas! sur le processus de branchement.
Nous rapprochons tout d’abord le g!n!rateur
Lipschitzien par une suite de polyn&mes locaux,
puis appliquons l’it!ration de Picard. Chaque
itération de Picard peut 'tre repr!sent!e en
termes de processus de branchement. Nous
d!montrons la convergence de notre sch!ma sur
l’horizon temporel infini.

Classical derivatives pricing theory assumes
frictionless market and infinite liquidity. These
assumptions are however easily violated in real
market, especially for large trades and illiquid
assets. In this imperfect market, one has to
consider the super-replication price as perfect
hedging becomes infeasible sometimes.

The first part of this dissertation focuses on
proposing a model incorporating both liquidity
cost and price impact. We start by deriving
continuous time trading dynamics as the limit of
discrete rebalancing policies. Under the
constraint of holding zero underlying stock at
the inception and the maturity, we obtain a
quasi-linear pricing equation in the viscosity
sense. A perfect hedging strategy is provided as
soon as the equation admits a smooth solution.
When it comes to hedging a covered European
option under gamma constraint, the dynamic
programming principle employed previously is
no longer valid. Using stochastic target and
partial differential equation smoothing
techniques, we prove the super-replication price
now becomes the viscosity solution of a fully
non-linear parabolic equation. We also show
how !-optimal strategies can be constructed,
and propose a numerical resolution scheme.

The second part is dedicated to the numerical
resolution of the Backward Stochastic
Differential Equation (BSDE). We propose a
purely forward numerical scheme, which first
approximates an arbitrary Lipschitz driver by
local polynomials and then applies the Picard
iteration to converge to the original solution.
Each Picard iteration can be represented in
terms of branching diffusion systems, thus
avoiding the usual estimation of conditional
expectation. We also prove the convergence on
an unlimited time horizon. Numerical simulation
is also provided to illustrate the performance of
the algorithm.

R!plication dynamique, Impact permanent, Cible
stochastique, EDSR, M!thodes Monte-Carlo,
Processus de branchement

Dynamic hedging, Price impact, Stochastic
target, BSDE, Monte-Carlo methods, Branching
process.


