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Résumé: Le Cloud Computing est
un nouveau paradigme qui fournit des
ressources informatiques sous forme de
services à la demande via internet. Il
est fondé sur le modèle de facturation
pay-per-use et il est de plus en plus util-
isé pour le déploiement et l’exécution des
processus métier en général et des pro-
cessus métier à base de services (SBPs)
en particulier. Les environnements Cloud
sont généralement très dynamiques. À
cet effet, il devient indispensable de
s’appuyer sur des agents intelligents ap-
pelés gestionnaires autonomiques (AMs),
qui permettent de rendre les SBPs ca-
pables de se gérer de façon autonome
afin de faire face aux changements dy-
namiques induits par le Cloud. Cepen-
dant, les solutions existantes sont limitées
à l’utilisation soit d’un AM centralisé, soit
d’un AM par service pour la gestion d’un
SBP. Il est évident que la deuxième so-
lution représente un gaspillage d’AMs et
peut conduire à la prise de décisions de
gestion contradictoires, tandis que la pre-
mière solution peut conduire à des goulots
d’étranglement au niveau de la gestion

du SBP. Par conséquent, il est essen-
tiel de trouver le nombre optimal d’AMs
qui seront utilisés pour gérer le SBP afin
de minimiser leur nombre tout en évitant
les goulots d’étranglement. De plus, en
raison de l’hétérogénéité des ressources
Cloud et de la diversité de la qualité
de service (QoS) requise par les SBPs,
l’allocation des ressources Cloud pour ces
AMs peut entraîner des coûts de cal-
cul et de communication élevés et/ou
une QoS inférieure à celle exigée. Pour
cela, il est également essentiel de trou-
ver l’allocation optimale des ressources
Cloud pour les AMs qui seront utilisés
pour gérer un SBP afin de minimiser les
coûts tout en maintenant les exigences de
QoS. Dans ce travail, nous proposons un
modèle d’optimisation déterministe pour
chacun de ces deux problèmes. En outre,
en raison du temps nécessaire pour ré-
soudre chacun de ces problèmes qui croît
de manière exponentielle avec la taille
du problème, nous proposons des algo-
rithmes quasi-optimaux qui permettent
d’obtenir de bonnes solutions dans un
temps raisonnable.
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Abstract: Cloud Computing is a new
paradigm that provides computing re-
sources as a service over the Internet in
a pay-per-use model. It is increasingly
used for hosting and executing business
processes in general and Service-based
Business Processes (SBPs) in particular.
Cloud environments are usually highly dy-
namic. Hence, executing these SBPs re-
quires autonomic management to cope
with the changes in Cloud environments,
which implies the usage of a number of
controlling devices, referred to as Auto-
nomic Managers (AMs). However, exist-
ing solutions are limited to using either
a centralized AM or an AM per service
for managing a whole SBP. It is obvi-
ous that the latter solution is resource-
consuming and may lead to conflicting
management decisions, while the former
may lead to management bottlenecks. A
main problem in this context consists in
finding the optimal number of AMs for

the management of an SBP, minimizing
costs in terms of number of AMs while
at the same time avoiding management
bottlenecks and ensuring good manage-
ment performance. Moreover, due to the
heterogeneity of Cloud resources and the
diversity of the required Quality of Ser-
vice (QoS) of SBPs, the allocation of
Cloud resources to these AMs may result
in high computing costs and an increase
in the communication overheads and/or
lower QoS. It is also crucial to find the
optimal allocation of Cloud resources to
the AMs, minimizing costs while main-
taining the QoS requirements. To ad-
dress these challenges, we propose in this
work, a deterministic optimization model
for each problem. Furthermore, due to
the amount of time needed to solve each
one of these problems, which grows expo-
nentially with the size of the problem, we
propose near-optimal algorithms that pro-
vide good solutions in a reasonable time.
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Chapter 1
Introduction

Contents
1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . 2
1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . 3

1.3.1 AMs Optimization in SBPs . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 AMs Components Optimization in Timed SBPs . . . . . . . . . . . 4
1.3.3 Placement of AMs for the Management of SBPs in the Cloud . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 General Context
Over the last decade, Cloud computing has appeared as an emerging paradigm, based on
the pay-per-use economic model, for the provisioning of on-demand computing resources
(e.g. networks, servers, storage, applications, and services) as a service over the Internet.
These resources can be dynamically and easily provisioned and released with a minimal
effort [10]. The Cloud paradigm basically utilizes three delivery service models known
as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). The adoption of this paradigm is rapidly increasing due to its capacity
to reduce the management complexity and cost for enterprise customers while increasing
scalability and flexibility and to provide ongoing revenue for providers [11]. According to
a survey conducted by the IDG Enterprise [12] in 2016, 70 percent of the companies were
at that time adopting the Cloud. However, 16 percent of them planned to adopt it in
the following 12 months, while the remaining will have migrated to the Cloud within the
following three years.

Cloud environments are increasingly used for hosting and executing business processes,
especially Service-based Business Processes (SBPs) [13]. An SBP is built according to

1



2 Introduction

Service Oriented Architecture (SOA) and consists of a set of elementary and heteroge-
neous services which are related in terms of their contribution to the realization of the
business process. Assembling services into an SBP can be ensured by using any appro-
priate service composition specification, such as Business Process Model and Notation
(BPMN) [14], Unified Modeling Language (UML) activity diagram [15].

However, executing SBPs in the Cloud is exposed to dynamic evolution workload
and fluctuation during their life-cycle due to the dynamic nature of the environment.
Consequently, the management of SBPs in Cloud environments is a challenging task.
Indeed, the management of such business processes is time and effort consuming, not
to mention the risks of being an error-prone process and the need for costly experts. In
response to this problem, one of the main adapted technique is to resort to autonomic
computing to enforce the autonomy and ensure the required Quality of Service (QoS) of
SBPs. Autonomic computing [3] is the ability of a computing system to automatically
and dynamically manage itself to respond to the requirements of the business based on
on service level agreement. We advocate that coupling Cloud computing with autonomic
management is really interesting since it allows intelligently coping with the dynamic
evolution of Cloud environments with minimal human intervention [4]. This coupling is
possible by means of Autonomic Managers (AMs) [3] that consist in collecting monitoring
data from a running SBP, analyzing them, and planning and executing adaptation actions
to meet the requirements of the managed SBP.

The autonomic management of an SBP implies the usage of one or more AMs, which
are dedicated to the management of the services that make up the SBP. These services
are generally deployed on different heterogeneous Cloud resources (i.e. virtual machines).
Consequently, the efficiency of the management of SBPs as well as their performance
depend highly on the allocation decisions of AMs and Cloud resources by these AMs in
respect of the agreement between the service consumer and its provider.

1.2 Motivation and Problem Statement
When applied to SBPs in a Cloud environment, autonomic management becomes a com-
plicated problem that faces many challenges. The first challenge faced by Cloud providers
is to optimize the number of AMs for the management of SBPs. In fact, using a cen-
tralized AM for the monitoring and adaptation of a whole SBP can lead to management
bottlenecks and single points of failure [16]. Thus, to reduce the load on the centralized
AM and avoid bottlenecks and single points of failure, a solution is to dedicate different
AMs to the SBP services, but this solution is resource-consuming. Consequently, it is
interesting to autonomically manage SBPs such that the number of AMs is minimized
while avoiding management bottlenecks.

It is obvious that determining the appropriate number of AMs for the management of
SBPs is not sufficient to provide efficient management of deployed business processes. In
fact, it is also necessary to consider the allocation decisions of Cloud resources to these
AMs in the Cloud, which allows fulfilling the business process QoS requirements. Thus, the
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second challenge is to optimize the allocation of Cloud resources to host and execute AMs
that will be used to manage SBPs. In fact, due to the heterogeneity of Cloud resources and
the diversity of the SBP services QoS needs, the allocation of Cloud resources to SBPs
may result in high computing costs and an increase in the communication overheads.
Consequently, it is interesting to select the right Cloud resources to achieve an efficient
SBPs deployment such that the overall deployment cost is minimized while fulfilling SBPs
QoS requirements.

Many attempts to provide autonomic management of applications in the Cloud have
been proposed, but as we will explain, almost all the proposed solutions are limited to
modeling and implementing autonomic mechanisms. It is worth noting that the existing
approaches either do not take care of management cost issue, they do not optimize the
Cloud resource allocation during the SBPs management process or do not include an
efficient management of SBPs. In addition, the existing works on the optimal resource
allocation are not suitable to solve the previously described problems because the number
of these resources is considered as an input, which is not the case for AMs.

1.3 Objectives and Contributions
The main goal of this thesis is to propose an efficient solution for allocating Cloud resources
to autonomic SBPs based on optimization programs that aim to provide an optimal num-
ber of AMs for the management of SBPs as well as optimal placement of these AMs in
the Cloud. The objective of the optimization programs is to minimize the Cloud resource
allocation cost while ensuring the QoS of deployed SBPs and avoiding the management
bottlenecks. This thesis does not discuss all the aspects related to the autonomic manage-
ment of SBPs. For example, we do not deal with modeling and implementing autonomic
mechanisms or coordinating AMs. While we believe that a lot of issues related to au-
tonomic management are important to address, the problem discussed here is complex
enough to deserve a separate treatment.

To achieve our targeted objectives, this thesis makes the following contributions:

• AMs optimization in SBPs.

• AMs components optimization in timed SBPs.

• Placement of AMs for the management of SBPs in the Cloud.

1.3.1 AMs Optimization in SBPs

Executing SBPs in Cloud environments requires AMs to cope with the changes in these
environments. However, using a centralized AM for managing a large number of services
can lead to management bottlenecks and performance degradation of SBPs. While using
an AM per service is resource-consuming, we argue for a decentralized approach that aims
to reduce the number of AMs while avoiding management bottlenecks.
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In our work, we opt for the use of directed graphs to formally represent SBPs to
focus on all service dependencies between them when processing their management. We
propose an exact optimization model that aim to find the optimal number of AMs for
the management of SBPs. The amount of time needed to solve this problem grows
exponentially with the size of the graph, so we propose near-optimal approaches that
provide good solutions in a reasonable time. We use the exact optimization model for
smaller graphs to benchmark our approaches that exhibit better scaling behavior, possibly
at the expense of optimality.

1.3.2 AMs Components Optimization in Timed SBPs

An AM consists of four main components: a monitor, an analyzer, a planner, and an
executor. Therefore, to further optimize the Cloud resource allocation cost, we propose to
extend our work by considering these components separately in the optimization process.
Doing so, we first propose an exact optimization model to find the optimal number of
monitors, analyzers, planners, and executors for the management of SBPs such that their
QoS is satisfied while avoiding management bottlenecks. Then we introduce a near-
optimal algorithm that provides good solutions faster. We use the exact optimization
model for smaller graphs to compare our algorithm to the optimal solution.

1.3.3 Placement of AMs for the Management of SBPs in the Cloud

Due to the heterogeneity of Cloud resources and the diversity of SBPs QoS needs, the
allocation of Cloud resources to autonomic SBPs may result in high computing costs and
an increase in the communication overheads and/or lower QoS if resource allocation is
not well addressed. Indeed, several works [17, 18, 19] have been proposed to determine
the optimal placement of SBP services in the Cloud, but there is no approach that tries
to solve the optimal placement of AMs that will be used to manage these SBPs in the
Cloud. Hence, we first suggest exact optimization models to solve this problem where the
number of AMs is known or not known in advance. After that, we propose two different
approaches that provide effective placement of AMs in the Cloud such that the required
QoS of deployed SBPs is met while reducing the used Cloud resources in a cost-efficient
way as per the economic model of the Cloud.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents the different concepts
used throughout our thesis as well as the state of the art of our research. In this chapter, we
start by giving the definitions of Cloud computing, SOA and SBPs, autonomic computing
as well as an overview of optimization problems. We then give an overview of the existing
works related to autonomic computing as well as optimal resource allocation. Therein, we
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will cite the different works in each area to highlight the existing limitations and emphasize
the significance of our work.

Chapters 3, 4, and 5 are the core of our thesis which elaborate our approach to
optimize Cloud resource allocation for the management of SBPs. Illustrative examples
and experiment results are provided in each chapter.

In Chapter 3, we present our solution to determine the optimal number of AMs for the
management of SBPs. Our objective is to minimize the number of AMs while avoiding
management bottlenecks. The proposal entails the Integer Linear Programming (ILP)
solution as well as a set of algorithms to solve the problem based on the representation of
SBPs (i.e. graph with or without cycles). The main content of this chapter was published
in [20, 21].

In Chapter 4, we push further our work by proposing to determine the optimal number
of AMs components separately for the management of SBPs. The objective is to mini-
mize their number while avoiding management bottlenecks. Our proposal entails the ILP
solution as well as a set of algorithms to solve this problem. The main content of this
chapter was published in [22, 23].

In Chapter 5, we present our solution to determine the optimal placement decisions of
AMs or AMs components that will be used to manage SBPs. The objective is to minimize
the Cloud resource allocation while fulfilling the QoS requirements of SBPs. The chapter
content was published in [22, 24].

Finally, in Chapter 6, we conclude this thesis by summarizing our contributions and
giving an outlook of future work.
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2.1 Introduction

In this thesis, we aim to provide a solution for optimizing autonomic resources for the
management of SBPs in Cloud environments. In order to understand the rest of this
manuscript, we dedicate the first section of this chapter to briefly introduce a basic knowl-
edge on different concepts and paradigms related to our work (Section 2.2). We start by
presenting the environment of our work which is Cloud Computing. Afterwards, we define
the service oriented architecture as well as SBPs that represent the type of applications
that we basically target. Next, we introduce the concept of autonomic computing as well
as a brief background about optimization problems. In the second section, we discuss the
existing works on autonomic management in distributed systems and optimal resource

6
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allocation to service-based applications (Section 2.3). Finally, we conclude the chapter in
Section 2.4.

2.2 Background

In this section, we present definitions and basic concepts related to our work. First, we
introduce the context of our work, which is Cloud Computing. Then, we introduce SBPs
that represent the specific type of applications that we target. Finally, we define the
concept of autonomic computing that we aim to address in our work.

2.2.1 Cloud Computing

Cloud Computing is an emerging paradigm in information technology. According to the
National Institute of Standards and Technology (NIST) [10], it is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g. networks, servers, storage, applications, and services) which can
be rapidly provisioned and released with minimal management effort or service provider
interaction. Cloud computing is characterized by its pay-per-use economic model that
allows a user to consume Cloud resources as needed. Virtualization forms the foundation
of Cloud computing, as it is a key technology that makes Cloud computing possible. It
abstracts physical hardware resources typically as Virtual Machines (VMs) with associate
storage and networking connectivity, allowing applications to run in different VMs in a
flexible manner [25]. Through virtualization, a Cloud provider can ensure the Quality
of Service (QoS) delivered to users while achieving an energy efficiency and high server
utilization.

Services in the Cloud are basically delivered under three layers:

• Infrastructure as a Service (IaaS): It provides to consumers processing, networks,
storage, and other computing resources so as to deploy and run software, which can
include operating systems and applications. Examples of IaaS infrastructures are
Amazon AWS1 and Google Compute Engine2;

• Platform as a Service (PaaS): It provides to consumers appropriate resources
to develop, deploy and manage applications onto the Cloud infrastructure using
libraries, programming languages and tools supported by the Cloud provider. Ex-
amples of PaaS platforms are Cloud Foundry3 and Windows Azure4;

• Software as a Service (SaaS): The consumer is able to use applications running
1aws.amazon.com/fr/
2cloud.google.com/compute
3www.cloudfoundry.org
4azure.microsoft.com

aws.amazon.com/fr/
cloud.google.com/compute
www.cloudfoundry.org
azure.microsoft.com
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on a Cloud infrastructure over the Internet. Examples of SaaS are Salesforce5 and
Netsuite6.

Nowadays, more services have appeared, called as XaaS, where X stands for anything
that can be provisioned and abstracted as services. Examples include NaaS for Network
as a Service, DaaS for Desktop as a Service, etc.

Clouds can be provisioned following different models according to the requirements
of users. Whenever the Cloud infrastructure is exclusively used by a single organization
that owns, manages and maintains the Cloud, we talk about Private Cloud. However,
if the Cloud infrastructure is used by a specific community of consumers from different
organizations that own and operate it, we talk about Community Cloud. Otherwise, if
the Cloud infrastructure is exposed to public use, we talk about Public Cloud. There
is another model in which the Cloud infrastructure is composed of two or more distinct
Cloud infrastructures (public, private, or community), we talk herein about Hybrid Cloud.

Figure 2.1 gives an overview of the introduced Cloud computing concepts.

Figure 2.1: Cloud computing models [1].

5www.salesforce.com
6http://www.netsuite.com/portal/home.shtml

www.salesforce.com
http://www.netsuite.com/portal/home.shtml


2.2 Background 9

2.2.2 Service-Oriented Architecture and Service-based Business Processes
Service-Oriented Architecture (SOA) is a software architecture that is based on services
as fundamental elements for developing and integrating applications [26]. A service is a
self-describing component that supports rapid, low cost development and deployment of
distributed applications. The goal of this architecture style is to meet the requirements
of loosely coupled, standards-based, and protocol-independent distributed computing. As
defined by Papazoglou [27], SOA is a logical way of designing a software system to provide
services to either end user applications or other services distributed in a network through
published and discoverable interfaces.

The SOA is structured around the three actors illustrated in Figure 2.2: a service
provider, a service consumer, and a service registry; whereas, the interactions between
these actors involve publish, find and bind operations. Service provider is the role of a
software entity providing a service. Service consumer is the role assumed by a requesting
entity that seeks to consume a specific service. However, service registry is the role
assumed by an entity that maintains information on available services as well as the way
to access them.

Figure 2.2: SOA actors and roles.

The advantage of this approach lies in the loose coupling of the services composing
an application. Services are provided by independent parts of a platform, which implies
that a client using any programming language, operating system and any computational
platform can use the services, although different service providers and service customers
may use different technologies to implement and access the services. Thus, an application
can be made up of different services provided by heterogeneous parts with respect to their
services descriptions.

A business process is an ordered set of services aiming to reach a business objective
or policy goal, normally within the context of an organizational structure that defines
functional roles and relationships. A process may be wholly contained in a single organi-
zational unit or may span mutiple different organizations such as in a customer-supplier
relationship [28].

An SBP is a business process that consists in assembling a set of elementary IT-
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enabled services which are related in terms of their contribution to the overall realization
of the process. A service is typically the smallest unit of work that represents a module
offering computation or data capabilities. It carries out the business activities of an SBP.
Assembling services into an SBP can be ensured using any appropriate service composition
specification such as Event-driven Process Chains (EPCs) [29], Business Process Modeling
Notation (BPMN) [14], and UML activity diagram [15]. In this thesis, we aim to abstract
away from these specific notations and focus on basic commonalities of these languages
[30]. Accordingly, we define an SBP as a set of services and gateways that are connected
by control-flow arcs. Throughout this thesis, we consider the following types of gateways;
each acts as either a split or a join node. Split gateways have exactly one incoming edge
and at least two outgoing edges. Join gateways have at least two incoming edges and
exactly one outgoing edge.

• Parallel (AND) indicates that all branches must be executed in parallel. AND-split
enables all its outgoing branches to execute concurrently. AND-join waits until all
its incoming branches have completed their execution.

• Inclusive (OR) is used when at least one branch must be executed. OR-split
enables one or more of its outgoing branches to execute whose condition evaluates
to true. OR-join waits until all the latter branches have completed their execution.

• Exclusive (XOR) specifies that only one branch must be executed. XOR-split
enables only one of its outgoing branches to execute. XOR-join waits until the
chosen branch has completed its execution.

2.2.3 Autonomic Computing

Autonomic computing aims to build computing systems capable of self-management with-
out needing human intervention. It is inspired by the human body’s autonomic nervous
system that monitors heartbeat, checks blood sugar levels, and keeps the body temper-
ature normal without any conscious effort from the human [2]. The term autonmic was
originally coined by IBM in 2001 [3]. IBM defines autonomic computing as the abil-
ity to manage computing resources that automatically and dynamically respond to the
requirements of the business based on Service Level Agreement (SLA).

Management tasks like monitoring, protection, configuration and optimization are the
non-functional objective of most applications, but they have a critical importance for
applications to accomplish their tasks. Thus, the challenge is to enable self-managing
computing systems that take control of all the non-functional tasks in order to let the
developers focus on the main functional tasks of applications. To do so, there must exist
a way to develop self-governing features and to integrate them with applications.
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Figure 2.3: IBM architecture of autonomic resource [2].

To achieve autonomic computing, IBM has suggested a reference model for an auto-
nomic resource called Autonomic Manager (AM), also known as the MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge) loop [2], as illustrated in Figure 2.3. An AM is a
software agent that implements the autonomic behavior. A managed resource represents
any hardware or software resource that is coupled with an AM to exhibit an autonomic
behavior. Sensors are used by an AM to collect information about the state of a managed
resource, while effectors are used by an AM to carry out changes to a managed resource.
A common element, called Knowledge, represents the management data (e.g. adaptation
strategies, change plans, etc.), which can be shared between the phases (i.e. monitor,
analyze, plan, and execute) of the control loop. An AM gathers monitoring information
from the managed resource through sensors where this information is stored in the knowl-
edge base. The latter data are then analyzed in order to determine whether an adaptation
is required. If it is the case, an adaptation plan is provided by the AM and the latter plan
is executed over the managed resource through effectors.

2.2.4 Optimization Problems

2.2.4.1 Classification of optimization problems

Optimization problems can be classified according to several criteria. An important clas-
sification of these problems is based on the nature of equations for the objective function
and the constraints. Optimization problems can be classified into four classes: linear,
nonlinear, quadratic, and geometric programming[31].

• Linear Programming (LP): In this type of problems, both the objective function
and the constraints are linear functions of variables. LP problems can be classified
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according to their decision variables as Integer Linear Programming (ILP), where
all variables are integer, and Mixed Integer Linear Programming (MILP) problems,
where some but not all variables are integer.

• Nonlinear Programming (NLP): In this type of problems, any of the functions
among the objective function and the constraints is nonlinear.

• Quadratic Programming (QP): This category of problems has a quadratic objec-
tive function and linear constraints.

• Geometric Programming (GP): In this type of problems, the objective function
and the constraints are expressed as polynomials.

Optimization problems can be classified also based on the deterministic nature of the
variables as deterministic and stochastic programming problems [31].

• Deterministic Programming: In this type of optimization problems, all the design
variables are deterministic. A model is deterministic if, for a given input, it always
produces the same output.

• Stochastic Programming: In this type of problems, some or all of the parameters
of the optimization problem are considered as random or probabilistic variables
(nondeterministic or stochastic). A stochastic variable is a variable that has different
values with certain probabilities.

2.2.4.2 Complexity of optimization problems

There are mainly two classes of optimization problems: P and NP [32]. P is the class
of problems solvable by algorithms operating within a polynomial time (if it is run O(nk)
steps where k is a constant and n denotes the problem size). NP is the class of problems
solvable by non-deterministic algorithms operating within a polynomial time. It stands
for a non-deterministic polynomial.

Definition 2.2.1. A decision problem is NP-Hard if every problem in NP can be reduced
to it in polynomial time.

Definition 2.2.2. A decision problem is NP-Complete if it is in NP and is also NP-Hard.

In fact, NP-Hard problems are generally difficult to solve and time-consuming. They
are often addressed using approximation algorithms.

Definition 2.2.3. An approximation algorithm is an algorithm that always returns a
feasible solution in polynomial time to an optimization problem.

Although approximation algorithms provide near-optimal solution, it is interesting to
study the quality of approximate solutions where there are two equivalent measures of
this quality: the relative error and the optimality gap.
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Definition 2.2.4. Given an optimization problem, for any instance i of this problem, we
denote by m(i) the feasible solution and by opt(i) the optimal solution with respect to
instance i. The relative error is defined as:

E(i) = m(i)− opt(i)
opt(i)

For both minimization and maximization problems, if the relative error is equal to 0,
the approximate solution is optimal. It becomes close to 1 when the obtained solution is
very poor.

Definition 2.2.5. The optimality gap of an approximate solution is expressed in % and
is defined as:

G = E(i)× 100

2.3 State of the Art
In this section, we present a selection of works around autonomic computing in Cloud
and distributed environments (Section 2.3.2) and optimal resource allocation (Section
2.3.3). In fact, a plethora of studies exists in the literature aiming to provide autonomic
computing and optimal resource allocation solutions, but to the best of our knowledge,
these proposals treat the two areas separately. In this manuscript, we will refrain from
citing all these studies to highlight just a selection of them that we believe representative.

2.3.1 Evaluation Criteria
To address the autonomic management of SBPs issues mentioned in Section 1.2, the
proposed approach should provide appropriate ways to efficiently manage SBPs by deter-
mining the appropriate number of AMs and selecting the appropriate Cloud resources to
host and execute these AMs such that the management cost is minimized while avoiding
management bottlenecks to fulfill the QoS requirements with minimal costs. In addition
to that, it should cover complex business process patterns like AND-blocks, OR-blocks,
XOR-blocks and Repeat Loop which are very common in real world business processes
[30]. It should also be suitable for small and large SBPs and structured and unstructured
SBPs.

2.3.2 Autonomic Computing
IBM is a pioneer in the field of autonomic computing that proposed a dedicated toolkit,
which is a set of tools and technologies designed to permit users to develop autonomic
behavior for their systems. The authors in [3] introduced the needed steps to add au-
tonomic capabilities to resources. One of the basic tools is the autonomic management
engine that includes representations of an AM which provides self-management properties
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to managed resources. Furthermore, IBM suggested several tools to allow managed re-
sources to create log messages using a standard format understandable by the AM. This is
achieved using a touch-point that consists of a sensor and an effector. The sensor detects
the state of the managed elements and generates logs, while the effector is used to carry
out adaptations on the managed resource. Moreover, an adapter rule builder is proposed
to create specific rules to generate adaptation plans. Figure 2.4 illustrates IBM’s vision
of the structure of the autonomic resources and their interactions.

Monitor Execute

PlanAnalyze

Knowledge

Autonomic Manager

Managed Element

Figure 2.4: Structure of autonomic resources and their interactions [3].

In [4], the authors put forward a conceptual architecture enabled the autonomic man-
agement of SaaS applications in Cloud environments. The proposed architecture was
basically composed of a SaaS Web application that hosted the SaaS application and
negotiates the SLA between the service provider and consumers, an Autonomic Manage-
ment System (AMS) integrated in the PaaS level, and an IaaS layer that provided Cloud
resources. As shown in Figure 2.5, the AMS incorporates an application scheduler assigns
each service in an application to Cloud resources and an energy-efficient scheduler that
minimizes the energy consumption during the application scheduling process. The AMS
implements logic for provisioning and managing virtual resources according to the resource
requirements specified by the application scheduler. It incorporates also a component to
detect security infraction and attack tentatives.
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Figure 2.5: System architecture for autonomic Cloud management [4].

Rainbow [5] is a framework that uses an architecture-based approach to add self-
adaptation mechanisms to software systems. The proposed framework uses an abstract
model to represent an application as a graph. Vertices in the graph represent compo-
nents, and arcs represent interactions between components. A model manager is used
to continuously adapt the model. It collects monitoring data from the model through
probes. The latter data is analyzed using a constraint evaluator to detect violations and
trigger adaptation. The appropriate adaptation plan is chosen using an adaptation engine
and is applied using an executor. As shown in Figure 2.6, the framework is divided into
architecture, translation and system layers. The architecture layer consists of the needed
components to self-manage a system. The system layer describes the managed system
access interface (e.g. probes, effectors). Between these two basic layers, the translation
infrastructure is used as a mediator to exchange information.

Figure 2.6: Rainbow framework [5].

In [33], the authors proposed a framework for dynamically adapting applications to the
changes of environments. A real-time monitor checks applications and triggers adaptation
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if a constraint violation occurs to meet the desired goals. The functionalities of the
framework are implemented in separate components: sensors, actuators, distributed name
servers, and clients. Sensors and actuators are used to remotely collect and modify
the values of application variables. They have to register themselves to a name server
(registry). Clients specify a set of desired properties, and the manager provides start
points to the interesting sensors or actuators in order to allow clients to establish direct
communication with applications.

The authors in [6] introduced a generic framework to create Java-based applications
with self-managing properties. It was an open source project that used Java management
extensions to enable self-managing capabilities where management logic was separate from
application logic. The framework implemented adaptive behavior using policy languages
or Java codes following condition-action rules. As depicted in Figure 2.7, it consists
of two main elements: the Execution Engine and a set of Services. The Execution
Engine enables AMs to perform their jobs using services provided by the Services element.
Management logic is implemented as a set of entities called processes where each process
may implement one or more consecutive components of an AM. The composition of
processes forms an execution chain which acts as an AM.

Figure 2.7: StarMX high-level static architecture [6].

C. Ruz et al. [7] suggested a framework that allowed the monitoring and manage-
ment of component-based applications. As presented in Figure 2.8, the authors separated
components for the monitoring, SLA analysis, decision, and execution of a classical AM.
These components were attached to each component to manage it, where these com-
ponents could be added or removed if necessary and each one could communicate with
other components. The monitoring component would gather information from the man-
aged component. The SLA analyzer component would compare the collected data to
previously defined SLA. The decision component would generate a sequence of actions to
be applied on the managed component to meet SLA. The execution component would
apply the decided actions.



2.3 State of the Art 17

Figure 2.8: Autonomic component ”A” [7].

N. Belhaj et al. [34] introduced an approach to improve the decision making process
of a traditional AM to dynamically adapt component-based applications. To do so, the
authors equipped the analyzer component with sophisticated learning blocks instead of
using inflexible hand-coded strategies where its decision making process was formulated
as a Markov decision process with a finite set of states and actions. During each state
transition, a reinforcement signal would indicate to the proposed decision maker whether
it would choose the appropriate action for the current state or not. In this work, each
component of an application is self-managed by its own AM.

In [35], the authors focused on the collaboration between multiple policy-based AMs
to efficiently manage the overall system. AMs are organized in a hierarchical structure
where the higher-level AMs have more authority over AMs of lower levels. The lower-level
AM is responsible for allocating resources, such as memory and CPU, to the Web server
to improve its response time and avoid SLA violations. An AM requests the help of a
higher level AM when no further local adjustments are possible. These AMs communicate
by exchanging predefined messages by means of a message broker.

F. de Oliveira et al. [8] proposed a framework for the coordination of AMs in Cloud
environments. This framework would improve the synergy between AMs. As shown in
Figure 2.9, each application is managed by its own Application AM (AAM) which is
responsible for determining the best architectural configuration and the minimum amount
of VMs needed to deliver the best QoS under a certain workload. the IaaS layer (physical
machines and VMs) is managed by a single Infrastructure AM (IAM) which is responsible
for the optimal placement of VMs. The IAM is composed of a public knowledge while each
AAM maintains a private knowledge. AAMs can make changes to the public knowledge
using a synchronization protocol. This protocol uses a token to synchronize the actions
executed by the access of AMs to the shared knowledge in order to avoid concurrency
and consistency problems and to make the knowledge available to both SaaS and IaaS
resources. An event-based coordination protocol is also proposed to coordinate the AMs
actions.



18 Background & State of the Art

Figure 2.9: Architecture overview of self-adaptation framework [8].

Beside the abovementioned approaches, there is a lot of other work in the literature
related to autonomic computing [36, 37, 38, 39, 40, 41, 42]. However, to the best of
our knowledge, all the existing works have been limited to modeling and implementing
autonomic environments. They either do not take care of the management cost issue by
using an AM per SBP service, or do not include an efficient management of SBPs by
using a centralized AM to manage all the SBP services that can lead to management
bottlenecks and/or a violation of QoS. In addition, we have not found any work that aims
to achieve good trade-offs between management performance and management costs by
attempting to optimize the used AMs and Cloud resources allocated to these AMs during
the management process while respecting QoS constraints and avoiding management
bottlenecks. In contrast, in our proposal, we will give solutions to manage SBPs such
that the number of AMs as well as the Cloud resources allocated to these AMs are
optimized in a cost-efficient way while avoiding management bottlenecks and fulfilling
the QoS constraints.

2.3.3 Optimal Resource Allocation

2.3.3.1 Cloud environments

In a Cloud environment, the resource allocation process consists in selecting an optimal
set of physical machines to host the received services while respecting resource and QoS
constraints. To solve this NP-Hard problem [43], many works have been proposed that
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aim to achieve good trade-offs between solution quality and computation time. Some of
them are summarized below.

In [44], the authors presented a cost-efficient deployment approach for Business Pro-
cesses (BPs) in the Cloud. They proposed an optimization model based on the MILP
technique to achieve an optimal scheduling and placement of services that would com-
pose a BP on VMs. The objective was to minimize the cost of leased Cloud resources and
the penalty cost that would arise when a process execution did not meet a user-defined
deadline while guaranteeing the defined QoS. In [17], the authors extended this work by
considering an inter-cloud data transfer cost.

In [45], Bessai et al. proposed resource allocation and scheduling models for BP
applications in the Cloud. A BP was represented as a Directed Acyclic Graph (DAG).
The authors defined two optimization models to determine the optimal assignment of
tasks that would make up a BP to VMs such that the overall execution time (respectively
cost) was minimized. They took into account the execution time and cost for each
task and the data transfer time and cost between tasks that depended on resources that
executed them. They also proposed three optimization algorithms that provide near-
optimal solutions based respectively on the execution cost, the overall execution time,
and a priority-based Pareto efficient combination.

Fakhfakh et al. [46] suggested a provisioning solution of Cloud resources for dynamic
workflow applications. The objective was to find a Cloud resource allocation that would
minimize the execution cost while satisfying a defined deadline. The authors put forward
an algorithm that mapped Cloud resources (VMs) to workflow tasks, and if needed,
some adaptation actions could be performed to cope with exceptional situations and
evolution where a workflow was modeled as DAGs. They considered the data transfer
time between tasks that only depended on the amount of data to be transferred between
the corresponding tasks.

The work presented in [47] addressed the problem of resource allocation for BPs. To
this end, the authors proposed an approach that would improve the process structure based
on resource allocation requirements such that the overall cost was minimized while meeting
the process execution time requirement. The structure of a BP was modeled as a DAG.
They applied a basic allocation strategy to minimize the overall cost without considering
the time limit. Then an adjustment strategy was applied to adjust the allocation scheme
to ensure that the overall execution time of the process did not exceed the time limit.

In [48], the authors addressed the problem of scheduling and resource provisioning
for scientific workflow where a scientific workflow was modeled as a DAG. They looked
for an efficient mapping of tasks to available resources and selecting of the best resource
provisioning plan under budget and deadline constraints. To this end, they proposed a
set of algorithms based on offline and online strategies for task scheduling and resource
provisioning that relied on estimates of task runtimes.

Goettelmann et al. in [49] suggested an algorithm for deploying BPs on different Cloud
platforms under security constraints. The main idea was to split a BP into sub-processes
and deploy them in different Clouds to meet security requirements. A security level was
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assigned to each BP task describing its security requirements, and arbitrary security levels
were assigned to Cloud providers. The algorithm would select the suitable Cloud providers
which offered the minimum communication costs between the derived sub-processes.

Beside the aforementioned approaches, there have been many other attempts to opti-
mize resource allocation for deploying BPs in the Cloud [50, 51, 52, 53, 54, 55, 56]. Up to
our knowledge, almost all of the proposed solutions have not dealt with the repeat-loop
pattern, i.e. SBPs that could be represented as directed graphs with cycles. In addition,
the existing works have not tackled the XOR-block pattern (i.e. XOR-Split, XOR-Join) in
the optimization process. Furthemore, such work has not dealt with unstructured SBPs,
and some of these studies [19, 51] proposed exact solutions that can only solve for small
SBPs. Moreover, the most important was that these works took as inputs the services that
composed an SBP and the dependency relationship between these services and selected an
optimal set of Cloud resources to host and execute these services while meeting resource
and QoS constraints. In our case, the number of AMs and the dependency relationship
between AMs and services are not known in advance. In fact, even though we consider
an AM as a service, the existing works cannot be adapted to address our research needs.
However, in this manuscript we propose solutions that deal with the different business
process patterns (i.e. AND-blocks, OR-blocks, XOR-blocks and a repeat-loop) and can
be applied to small and large SBPs as well as structured and unstructured SBPs.

2.3.3.2 Graph theory techniques

Besides the aforementioned approaches, there has been a lot of work on solving op-
timization problems based on graph theory techniques. In fact, graph coloring, graph
partitioning and shortest and longest paths are among the most important and funda-
mental techniques that have been widely applied in the literature to find the solutions for
real world problems in optimization, such as network design and computer science, and
we can adopt/adapt them for solving the optimization problems that we tackle in this
thesis. Broadly speaking, these problems belong to the class of NP-hard problems [57],
and generally only small problem sizes can be solved in acceptable times. Therefore, based
on these problems, several heuristic approaches have been proposed to solve these various
problems. Some of these studies are summarized in the following.

The graph coloring problem involves mapping a minimum number of colors to the
vertices of a graph such that each two adjacent vertices, i.e two vertices connected with
an edge, do not have the same color. Graph coloring has a wide range of applications,
including task scheduling, resource allocation, and frequency assignment. In [58], the
authors proposed a new graph coloring model for resource reservation in Cloud datacenters
with minimum datacenters energy consumption and maximum resource utilization (VMs).
They introduced an ILP formulation to define the graph coloring optimization problem.
They also suggested a near-optimal heuristic that would provide the efficient reservation
of VMs in acceptable computational time even for large problem sizes. The main idea was
to build a graph where vertices represented requested resources that would be associated
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(colored) to VMs, and links represented time overlap between these requested resources. It
was noted that each VM represented a unique color in the graph coloring problem. With
this representation, the VM reservation consisted in determining an optimal mapping
between the requested resources and VMs.

In [59], the authors studied the problem of service deployment for efficient execution of
SaaS applications in the Cloud. Among various QoS aspects of applications, they focused
on the response time of applications. The authors proposed deployment strategies to de-
termine the placement of services on VMs based on optimizing inter-task communication
costs and parallelism. In order to reduce communication costs and increase parallelism
simultaneously, two kinds of graphs, which represented two types of relationships among
services, were proposed. The first one, namely the Service Dependency Graph (SDG),
described the interdependence relationship between services, whereas the second one was
the Service Concurrence Graph (SCG) where an edge between two vertices would indi-
cate that the two corresponding services could run concurrently. To raise parallelism,
the service deployment problem was transformed into a graph coloring problem for SCG
where the number of colors represented the available VMs in order to deploy concurreny
services onto different VMs for increasing the potential parallelism and thus improving
the execution performance.

In [60], the authors put forward an algorithm for the radio frequency assignment
problem. The objective was to minimize the number of radio frequencies used by trans-
mitters at different locations while avoiding interference. The problem was closely related
to graph coloring where vertices represented transmitters and edges represented possible
interferences.

Graph Partitioning is the problem of dividing a graph into a given number of sub-
graphs such that the number of edges connecting these sub-graphs is minimized. It has
been widely used in many real life applications such as problems involving load balancing
in distributed computing, parallel processing, and clustering in data mining. In [61],
the authors addressed the problem of social network data placement and replication in
Cloud datacentres with a minimum monetary cost while satisfying the latency requirement
for users to access their own data and their friends’ data in an acceptable time. They
introduced a mathematical formulation to solve this optimization problem and proposed a
graph-partitioning based algorithm that would divide a social graph of users into different
connected partitions where the vertices represented social network users and the edges
represented the list of friends for these users. The algorithm started with users with
the biggest number of friends. These users and their friends were assigned to random
partitions. Then for all unassigned users, it started with user’s neighbours, and all their
friends were assigned to the dominant partition between their neighbours. After that, for
each partition, data items related to all users were placed in the nearest datacenter to
the user who had the most number of friends in this partition. Data were replicated on
multiple datacenters until the required latency was satisfied.

In [62], the authors addressed the problem of optimal deployment of software appli-
cations in the Cloud. They introduced an ILP formulation to define the problem and
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proposed a heuristic approach that was based on a graph partitioning algorithm. The
algorithm would partition the components that composed a software application on a set
of interconnected machines in the Cloud such that the communication cost between the
components was minimized. The vertices of the graph represented components that made
up a distributed software application, and the edges represented communication overhead
between those components.

In [63], the authors focused on the problem of workflows scheduling such that the
communication cost was minimized. They proposed a graph partitioning approach to
partition tasks that composed a workflow over a given number of computation nodes
while minimizing inter-node communication.

Shortest and longest paths are the problems of finding a path between two vertices
in a graph such that the sum of the weights of its constituent edges is, respectively,
minimized and maximized. They are widely used in road navigation and network routing.
In [64], the authors suggested an algorithm based on partial critical paths for workflow
scheduling in utility grids. The objective of the proposed algorithm was to minimize the
total workflow execution cost while satisfying a user-defined deadline. The algorithm
consisted of two main phases: deadline distribution and planning. In the first phase, it
tried to assign sub-deadlines to all tasks of the critical path of the workflow which was the
longest execution path in the workflow [65], such that it could complete before the user’s
deadline and its execution cost was minimized. Then it determined the partial critical
path to each assigned task, and it recursively assigned sub-deadlines to the tasks of the
partial critical paths. In the planning phase, the algorithm selected the cheapest service
for each task while meeting its sub-deadline.

In [66], the authors addressed the end-to-end QoS problem for composite complex BPs.
The objective was to maximize the user benefits and minimize the cost while meeting the
QoS needs. In fact, every service provider would offer many service levels for a service
functionality. The authors put forward an approach that consisted in modeling the problem
as a constrained shortest path problem, where vertices represented the service levels of
services. If service i is connected to service j, then all service levels in i are connected
to all service levels in j. The algorithm would connect all vertexes that had no incoming
edges to a source node and all vertexes that had no outgoing edges to a destination node.
For each edge, it added a cost, a benefit, and a delay. Then it determined the path
with the highest utility between source and destination nodes based on the shortest path
technique to select the most suitable services and service levels for clients and construct
optimal BPs.

There are many other approaches to solve optimization problems based on graph
theory techniques [67, 68, 69, 70, 71]. To the best of our knowledge, all the existing
proposals have not dealt with the semantics of the nodes of a graph (e.g. XOR-Split,
XOR-Join) in the optimization method. Moreover, unlike these studies, the number
of AMs and the dependency relationship between AMs and services are not known in
advance. However, in this manuscript we propose solutions that deal with the semantics
of the different BP patterns.
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2.4 Conclusion
In the first part of this chapter, we presented the basic concepts related to the thesis. We
introduced Cloud Computing as the environment of our research. Afterwards, we defined
the SOA and specified the type of applications that we target, namely SBPs. Next,
we presented the autonomic computing concept as well as a brief background about
optimization problems. In the second part of this chapter, we gave an overview of the
existing works on autonomic computing, optimal Cloud resource allocation to SBPs and
optimization based on graph theory, and we presented the difference between existing
approaches and our approach.

We start presenting in detail our approaches in the next chapters. We will propose an
approach for determining an appropriate number of AMs in SBPs (Chapter 3). In Chapter
4, we will propose an approach for determining an appropriate number of AMs components
in timed SBPs. Thereafter, we will propose an approach that aims to optimally allocate
Cloud resources to AMs for the management of SBPs in Chapter 5.
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3.1 Introduction
Executing SBPs in the Cloud requires autonomic management to cope with the dynamism
and scalability of Cloud environments. It is obvious that using one centralized Autonomic
Manager (AM) for the monitoring and adaptation of a large number of distributed services
may cause a performance degradation and/or bottlenecks in the SBP management. It

24
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is also obvious that using one AM per service may result in a high management cost.
Therefore, we aim in this chapter to find the optimal number of AMs for the management
of SBPs in order to reduce the management cost while avoiding management bottlenecks.

This chapter is organized as follows: First, we describe the problem of finding the
minimum number of AMs for the management of SBPs while avoiding management
bottlenecks, and we formulate it as an optimization model in Section 3.2. Then we
present our defined algorithms, where SBPs can be represented as graphs with cycles
(respectively without cycles) in Section 3.3 (respectively 3.4). Illustrative examples as
well as experiments results are provided for both cases. Finally, we conclude the chapter
in Section 3.5.

3.2 Problem Description and Formulation
In this section, we first show how to map an SBP to a directed graph, and we present
some preliminary notions on business processes. Then we define the problem that we
tackle in this chapter, followed by an Integer Linear Programming (ILP) formulation to
solve it. Finally, we introduce the need for an approximate approach.

3.2.1 SBP Modeling

An SBP is a collection of related services, gateways and possibly events that accomplish
a specific goal. Many graphical notations are available to model SBPs such as EPC [29],
UML Activity Diagram [15], and BPMN [14]. In this thesis, we try to abstract as much
as possible from these specific notations. Therefore, as an SBP model can be mapped
to a graph, we use graph theory to represent it as a directed graph called SBP graph
according to the following definition, which is inspired from the BP graph definition given
in [72].

Definition 3.2.1 (SBP graph). An SBP graph G = (V,E, I, τ, ID) is a directed graph
where:

• V is the set of nodes. It represents the set of services, events, and gateways;

• E ⊆ V × V is the set of edges that represents the data dependencies between
nodes, such that (vi, vj) ∈ E if the output data of the node i is required for the
execution of the node j;

• I ⊂ V is the set of initial nodes;

• τ : V ← T is a function that assigns, for each node v ∈ V , a type t ∈ T .
T={service, start event, end event, gateway}, where gateway={AND, OR, XOR};

• ID : V ← N is a function that assigns, for each node v ∈ V , a unique identifier
id ∈ N.
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An SBP can be represented as a structured SBP that consists of a set of nodes and
transitions between them. A node can be a service, AND-split, AND-join, OR-split, OR-
join, XOR-split, or XOR-join. In the following, we introduce the definition of a structured
SBP.

Definition 3.2.2 (Structured SBP). A structured SBP is inductively defined in [73] as
follows:

• An SBP that consists of a single service is a structured SBP. This service is both
initial and final.

• Let P1 and P2 be structured SBPs. Their concatenation is also a structured SBP,
where the final node of P1 has a transition to the initial node of P2. The initial and
final nodes of this SBP are the initial and final nodes of P1 and P2, respectively.

• Let P1,...,Pn be structured SBPs, s an AND-split (respectively OR-split, XOR-split),
and f an AND-join (respectively OR-join, XOR-join). An SBP that has s as an initial
node and f as a final node as well as transitions between s and the initial node of Pi

(i ∈ {1, 2, ..., n}) and between the final node of Pi and f is also a structured SBP.
The initial and final nodes of this structured SBP are s and f, respectively.

3.2.2 Problem Statement

Determining the optimal number of AMs for the management of a given SBP is a crucial
issue. Figures 3.1a and 3.1b illustrate two naive approaches that represent two different
extremes to this problem. In the first approach, a centralized AM is used to manage
all the services that make up SBP [8]. This can lead to management bottlenecks and
performance problems due to the large amount of data that can be periodically generated
by multiple services at the same time and will be processed by a single AM. In the second
approach, each SBP service is managed by its own AM [74]. Although this approach
avoids management bottlenecks, it incurs high management costs in terms of number of
used AMs. Therefore, it is interesting to minimize the number of AMs that will be used
to manage SBPs while avoiding management bottlenecks.

The main question we ask is: How to reach a trade-off between these two extremes?
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Figure 3.1: First research problem: Finding appropriate number of AMs for management
of SBP services.

3.2.3 Problem Formulation
We start this section by introducing some assumptions and notations in order to facilitate
the formulation. Possible management bottlenecks can be caused by the number of
AMs, their placement, the communications between them either directly or through a
common knowledge base, and other properties such as security and privacy mechanisms.
We tackle in this chapter the optimization of the number of AMs to address bottlenecks
of the management of SBPs. Without loss of generality, we assume that all AMs have
the same requirements in terms of hardware resources (RAM, CPU, etc.), so that the
optimization of their hosting cost is reduced to the optimization of their number.

Given an SBP graph, we denote by:

• S the set of services;
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• M the set of candidate AMs that may be assigned to S (|M | = |S|, where |M |
and |S| are, respectively, the cardinality of M and S). In fact, in the worst case,
different AMs will be assigned to S;

• P the set of sets of services where an element of P is a pair of services that are at
the same level in the SBP graph and their parent node is an AND/OR -Split. In
order to determine P, we implement an algorithm with a polynomial time complexity
that first determines the sets of services that belong to the same level in the graph,
and then it checks for each pair of services that are at the same set whether their
parent node is an AND/OR -Split. If it is the case, this pair is added to P.
Consider the example illustrated in Figure 3.1b, P={(Compute initial price, Choose ship-
per),(Compute retouch price, Compute shipper price)}.

Towards this end, the following decision variables are defined:

• xs
m takes 1 if AM m ∈M is assigned to service s ∈ S, and 0 otherwise;

• ym takes 1 if AM m ∈M is used by at least one service, and 0 otherwise.

Given the above assumption and notations, our problem can be formulated in equa-
tions [3.1-3.6] where objective function 3.1 aims to minimize the number of AMs for the
management of an SBP. Constraint 3.2 makes sure that each service is managed by only
one AM all along the SBP life cycle. The authors in [75, 16] adopted the principle of
using multiple AMs for the management of applications in order to avoid management
bottlenecks, but they did not provide any means to optimize their number. In our work,
an AM is able to manage a set of sequential services to reduce the amount of monitoring
data that will be processed by each AM to prevent bottlenecks. Therefore, constraint 3.3
ensures that parallel services are managed by different AMs. Constraint 3.4 guarantees
that if an AM is assigned to at least one service, then it is considered as used. Constraints
3.5 and 3.6 are the binary restrictions of the decision variables.

min
∑

m∈M
ym (3.1)

Subject to:∑
m∈M

xs
m = 1 ∀s ∈ S (3.2)

xi
m + xj

m <= 1 ∀m ∈M, ∀(i, j) ∈ P (3.3)
xs

m <= ym ∀s ∈ S, ∀m ∈M (3.4)
xs

m ∈ {0, 1} ∀s ∈ S, ∀m ∈M (3.5)
ym ∈ {0, 1} ∀m ∈M (3.6)
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3.2.4 Need for Approximate Approach

To realize whether it is reasonable or not to solve the above-mentioned optimization model
and come up with an optimal solution every time we have a new application to deploy in
a public Cloud, let us consider how many deployments of applications in a public Cloud
there are and how long it takes to resolve this optimization problem.

In a public Cloud such as OpenShift [76], there is a deployment of a new applica-
tion every minute. In addition, according to new principles of application development,
delivery, operation such as DevOps, and continuous delivery, for each application, there
are multiple deployments per day. Furthermore, as we will show in the evaluation sec-
tion (Section 3.4.3), the time needed to solve the optimization model using the CPLEX
solver [77] is not acceptable. It can exceed two hours, and whenever the number of ser-
vices goes beyond 250, the solver will not find the optimal solution. In fact, a large SBP
may comprise hundreds or thousands of services [78, 79], so finding the optimal solution,
in this context, is not possible. Consequently, to tackle this NP-hard problem [80], we
introduce in the following section our first approach that aims to find a near-optimal
number of AMs for the management of SBPs in a polynomial time.

3.3 AMs Optimization in SBP Graphs with Cycles

In this section, we present our first proposal for determining the appropriate number
of AMs that will be used by SBP services for their management (Section 3.3.1). An
illustrative example of our approach is then provided (Section 3.3.2). Afterwards, we
present the experiments that we perform to evaluate it (Section 3.3.3).

3.3.1 Proposed Approach

The approach is based on three algorithms called LowerBound, ServiceRelated-
ParallelSets and AMsAssignement. Firstly, the LowerBound algorithm (cf.
Algorithm 3.1) takes as inputs an SBP graph, and it aims at determining all the sets of
services that can run in parallel. Secondly, the ServiceRelatedParallelSets algo-
rithm (cf. Algorithm 3.2) takes as inputs the sets of parallel services, and it consists in
determining, for each service, the set of services that can run in parallel with it. Thirdly,
the AMsAssignement algorithm (cf. Algorithm 3.3) takes as inputs the set of services
that can run in parallel with each service. It aims at assigning AMs to the SBP services
while fulfilling the constraints given in equations 3.2 and 3.3.

To sum up, the proposed approach operates in three successive steps:

1. Determination of all sets of parallel services,

2. Construction of all sets of related services,

3. Assignment of AMs to the SBP services.
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3.3.1.1 Determination of all sets of parallel services

Step 1 is implemented using the LowerBound algorithm. It starts by initializing the
current set of parallel services with the initial services of the SBP graph and the lower
bound number with the number of elements of the current set (cf. lines 1-2). The
current set is added to the resulting sets of parallel services (cf. line 3). The algorithm
iterates until determining all the sets of parallel services (cf. line 4 and line 15). To do
so, the elements of the current set are assigned to the previous set, and the current set
is initialized to the empty set (cf. lines 5-6). Next, it iterates over the set of immediate
successors of the previous parallel services (cf. lines 7-8). For each node, whether its type
is either an AND/OR -Join and all its predecessors have completed their execution or not
an AND/OR -Join, LowerBound continues to explore the successors of the candidate
node seeking a node of service type, and then the latter is added to the new set of services
that can run in parallel (cf. lines 9-10). The algorithm checks whether the current set has
not been determined in a previous iteration yet (cf. line 11). If it is the case, this set is
added to the resulting sets of parallel services (cf. line 12), and the lower bound number
of AMs is possibly updated (cf. lines 13-14). This number is equal to the maximum
number of services that can run in parallel. LowerBound terminates when either the
current set of services is empty or it is a subset of an existing set (cf. line 15).

Algorithm 3.1: LowerBound
Data: - G =(V,E,I,τ ,ID): SBP graph
Result: - ParallelSets: Set of sets of parallel services

- lbn: Lower bound number of AMs
begin

1 CurrentParallelSet ← Services(I);
2 lbn ← |CurrentParallelSet|;
3 ParallelSets ← {CurrentParallelSet};
4 repeat
5 PreviousParallelSet ← CurrentParallelSet;
6 CurrentParallelSet ← ∅;
7 for vi ∈ PreviousParallelSet do
8 for (vi,vj) ∈ E do
9 if (τ(vj) /∈ {AND-Join, OR-Join}) or (τ(vj) ∈ {AND-Join,

OR-Join} and AllPredecessors(vj)) then
10 CurrentParallelSet ← CurrentParallelSet ∪ Services(vj);

11 if @ set s.t.(set ∈ ParallelSets and CurrentParallelSet ⊆ set) then
12 ParallelSets ← ParallelSets ∪ CurrentParallelSet;
13 if |CurrentParallelSet| > lbn then
14 lbn ← |CurrentParallelSet|;

15 until (CurrentParallelSet = ∅ or ∃ set s.t.(set ∈ ParallelSets and
CurrentParallelSet ⊆ set));
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3.3.1.2 Construction of all sets of related services

Step 2 is implemented using the ServiceRelatedParallelSets algorithm. It starts
by determining the nodes of service type in the SBP graph (cf. line 2). After that, for
each service (cf. lines 3-4), its corresponding set is initialized to the empty set (cf. line
5). The algorithm iterates over the sets of parallel services (cf. line 6), and if the current
service belongs to the current set (cf. line 7), that is it can be run in parallel with the
services belonging to the current set, then these services are added to its set of related
services (cf. line 8).

Algorithm 3.2: ServiceRelatedParallelSets
Data: - G =(V,E,I,τ ,ID): SBP graph

- ParallelSets: Set of sets of parallel services
Result: - ServiceRelatedParallelSets: Array of <serviceId,serviceSet>
begin

1 i ← 1;
2 S ← ServiceNodes(V );
3 for s ∈ S do
4 ServiceRelatedParallelSets[i].serviceId ← s;
5 ServiceRelatedParallelSets[i].serviceSet ← ∅;
6 for set ∈ ParallelSets do
7 if s ∈ set then
8 ServiceRelatedParallelSets[i].serviceSet ←

ServiceRelatedParallelSets[i].serviceSet ∪ (set \{s});

9 i ← i+ 1;

3.3.1.3 Assignment of AMs to SBP services

Step 3 is implemented using the AMsAssignement algorithm. The algorithm starts by
initializing the AM number that will be assigned to each service and the number of AMs
to 0 (cf. lines 1-2). After that, the elements of ServiceRelatedParallelSets are sorted in
decreasing order according to their cardinality to promote services with maximal number
of services that can run in parallel with them (cf. line 3). Then for each service s (cf.
line 5), the algorithm tries to assign an AM to it that fulfills the constraints given in
equations 3.2 and 3.3 (cf. lines 6-12). To do so, it starts with the first AM (cf. line 6)
and checks whether this AM might be assigned to s (cf. line 8); i.e., this AM has not been
assigned to any service that can run in parallel with s yet. If it is the case, the current
AM is assigned to s (cf. line 9). Otherwise, the algorithm just updates the current AM
(cf. lines 10-11). This step is repeated until an AM is assigned to the current service (cf.



32 Autonomic Managers Optimization in SBPs

line 12). The resulting number of AMs is possibly updated (cf. lines 13-14).
Algorithm 3.3: AMsAssignement
Data: - G =(V,E,I,τ ,ID): SBP graph

- ServiceRelatedParallelSets: Array of <serviceId,serviceSet>
Result: - AMs: Array containing the AM assigned to each service

- nbAMs: Number of AMs
begin

1 AMs ← [vector of 0s];
2 nbAMs ← 0;
3 SortDecreasingOrderOfCardinalityOfSets(ServiceRelatedParallelSets);
4 S ← ServiceNodes(V );
5 for i ∈ {1, 2,. . . |S|} do
6 currentAM ← 1;
7 repeat
8 if @ s s.t.(s ∈

ServiceRelatedParallelSets[i].serviceSet and AMs[s] = currentAM)
then

9 AMs[ServiceRelatedParallelSets[i].serviceId] ← currentAM ;
10 else
11 currentAM ← currentAM + 1;

12 until @ s s.t.(s ∈
ServiceRelatedParallelSets[i].serviceSet and AMs[s] = currentAM);

13 if currentAM > nbAMs then
14 nbAMs ← currentAM ;

According to the constraint given in equation 3.3, we assume that if the number of
AMs provided by the AMsAssignement algorithm is equal to the lower bound number
of AMs provided by the LowerBound algorithm, then the former number is optimal.

3.3.1.4 Theoretical complexity

Our proposed approach consists of three main steps: The first one consists in determining
all the sets of parallel services (Algorithm 3.1). The worst case time complexity of this
step is bounded by O(n4 × 2n), where n is the number of services that compose a given
SBP. Thus, the number of iterations of the while loop is bounded by O(2n), and the time
complexity of an iteration is bounded by O(n4). In fact, the number of sets of services
that can run in parallel is not large. Therefore, we do not face the problem of determining
all the possible combinations of services, where its time complexity is O(n4 × 2n).

The second step is to determine all the sets of related services (Algorithm 3.2). The
worst case time complexity of this step is bounded by O(n×m), where n is the number
of services, and m is the number of sets of parallel services.

The third step aims to assign AMs to the SBP services (Algorithm 3.3). The worst
case time complexity of this step is bounded by O(n × log(n) + n2) ' O(n2), where n
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is the number of services. We choose the QuickSort algorithm to sort ServiceRelated-
ParallelSets. This algorithm has a complexity of O(n × log(n)).

Hence, the overall time complexity of the approach is: O(n4 × 2n).

3.3.2 Illustrative Example

Herein, we present an example illustrating how the proposed algorithms work. Let us
consider the example depicted in Figure 3.2 that represents an SBP graph with a cycle.
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Figure 3.2: Example of SBP graph with cycle.

First, CurrentParallelSet is initialized to the set of the initial services of the graph, i.e.
{S1, S2}, and lbn is set to 2, which corresponds to the cardinality of CurrentParallelSet.
Then {S1, S2} is added to the resulting set ParallelSets. The repeat loop iterates until
CurrentParallelSet is either empty or already added to ParallelSets.

The first iteration considers the set {S1, S2}. The successors of S1 and S2 of service
type are added to the current set of parallel service, i.e. CurrentParallelSet={S3, S4}.
This set is added to ParallelSets because neither it is empty nor its elements belong to
a set in ParallelSets. During iteration 2, iteration 3 and iteration 4, respectively, the set
{S5, S3}, {S1, S5} and {S3, S1} is added to ParallelSets. The process goes on until
reaching the 5th and last iteration since the set {S5, S3} has been already added to
ParallelSets during iteration 2.

The LowerBound algorithm comes to an end after five iterations and checking that
all the sets of parallel services are determined. Thus, it yields the following output:

• ParallelSets = {{S1, S2}, {S3, S4}, {S5, S3}, {S1, S5}, {S3, S1}}

• lbn = 2

After that, ServiceRelatedParallelSets starts by determining the set of ser-
vices that can run in parallel with S1. This set is the union of the sets of parallel services
that contain S1, and it is equal to {S2, S5, S3}. In the second iteration, the set of
services that can run in parallel with S2 is determined, which is {S1}. During iteration
3, iteration 4 and iteration 5, respectively, the set of services that can run in parallel with
S3, S4 and S5 is determined: {S4, S5, S1}, {S3} and {S3, S1}. The ServiceRelat-

edParallelSets algorithm yields the following output:
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< 1, {S2, S5, S3} > < 2, {S1} > < 3, {S4, S5, S1} > < 4, {S3} > < 5, {S3, S1} >

Next, AMsAssignement sorts the elements of the above array in a decreasing
order according to their cardinality: < 1, {S2, S5, S3} >, < 3, {S4, S5, S1} >, <
5, {S3, S1} >, < 2, {S1} >, < 4, {S3} >. In the first iteration, AM number 1, i.e.
AM1, is assigned to S1. In the second iteration, since the service S3 can run in parallel
with S1 as shown in the above table, AM1 can not be assigned to S3. In this case, AM2
is dedicated to S3. In the third iteration, the algorithm tries to assign AM1 and then
AM2 to S5. These AMs can not be assigned to S5 because S5 can run in parallel with
S1 and S3, and AM1 and AM2 have been already assigned to these services. Thus,
AM3 is assigned to S5. AMsAssignement proceeds in the same manner to determine
the AM that will be assigned to services S2 and S4. After 3 iterations, the algorithm
comes to the end and returns the following results:

Services S1 S3 S5 S2 S4
AM number 1 2 3 2 1

nbAMs = 3

3.3.3 Performance Evaluation
In this section, we present a series of performance evaluations of our proposed approach
in terms of execution time and quality of the provided solutions based on the close-
ness between these solutions and the lower bound numbers of AMs outputted by the
LowerBound algorithm. The first part is the experimental results conducted on two
real datasets, and the second part is the performance results of experiments conducted
on a dataset based on randomly generated graphs to push further experiments in order to
generalize the performance results. All experiments are carried out on an Intel Core i5 PC
with 2.53 GHz and 4GB of RAM. All the results are average values across 10 independent
runs.

To the best of our knowledge, none of the existing works has explicitly focused on the
determination of the optimal number of AMs for the management of SBPs in the Cloud
(see Chapter 2 for more details). Therefore, we do not make comparisons with existing
work here.

3.3.3.1 Experiments on public real datasets

We present in the following the performance results of experiments conducted on two
public datasets of real business processes which are presented in an XML format. Each
XML file stores the data of an SBP including services names and gateways (parallel,
inclusive, and exclusive gateways), and the sequence flows between SBP elements.

• Dataset 1 consists of 560 BPMN process models shared by the IBM Business
Integration Technologies (BIT) team [81]. At most, there are 195 services, 139
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gateways, and 326 edges in a process (Table 3.1).

Min. Max.
Number of start events 1 32
Number of end events 1 32
Number of services 1 195
Number of gateways 1 139
Number of edges 2 326

Table 3.1: Details of the IBM dataset.

• Dataset 2 consists of 205 EPC process models from the SAP reference models
represented in an EPC Markup Language (EPML) format [82]. At most, there are
43 services, 39 gateways, and 125 edges in a process (Table 3.2).

Min. Max.
Number of events 2 67(start, end, intermediate)
Number of services 1 43
Number of gateways 0 39
Number of edges 2 125

Table 3.2: Details of the SAP dataset.

At this level, we recall our assumption that considers that if the number of AMs
provided by the AMsAssignement algorithm is equal to the lower bound number of
AMs provided by the LowerBound algorithm, the latter number is optimal. According
to this assumption, our approach provides optimal solutions for all the considered real
SBPs (Figure 3.3) in a reasonable time that does not exceed 0.1 second (Figure 3.10a).
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Figure 3.3: First proposal: Number of AMs versus number of services - Experiments on
IBM and SAP datasets.

3.3.3.2 Experiments on randomly generated dataset

SBPs are generally modeled as sparse graphs where nodes indicate services to invoke and
gateways and directed edges represent dependencies between nodes. In order to consider
a realistic dataset, we generate different connected SBP graphs with 10-100 services, in
increments of 10, and a number of edges ranging from n− 1 to 3.2× (n− 1) (i.e. 320%
of (n − 1)), in increments of 0.2, where n is the order of the graph. Indeed, we do
not generate graphs with more edges since whenever the number of edges goes beyond
2.4× (n− 1), the lower bound number of AMs is equal to n. Thus, the number of AMs
that will be used by n SBP services is equal to n. Therefore, in our experiment, for each
graph of order n, we consider 12 densities (from 100% of (n− 1) to 320% of (n− 1)).

As shown in Figure 3.4, when the number of edges of an SBP graph of order n goes
beyond 2.4 ∗ (n − 1), the lower bound number of AMs is equal to n. For this reason,
we limit our evaluation of the quality of the results provided by the AMsAssignement
algorithm to graphs with n− 1 – 2.4× (n− 1) edges.
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Figure 3.4: First proposal: Lower bound number of AMs / services number (in %) versus
SBP graph density - Experiments on randomly generated dataset.

Although the time complexity of the proposed approach is exponential (in fact, it is
equal to O(|ParallelSets|) that is bounded by O(2n)), where n is the number of SBP
services, the approach is useful in practice because the number of sets of services that
can run in parallel (|ParallelSets|) is usually far less than the number of sets under
consideration. The results depicted in Figure 3.5 show that the experimental variations
of |ParallelSets| versus the number of services are linear with a low slope. For example,
for SBP graphs with 50 services, the number of sets of parallel services does not exceed
23. We note that the execution time of the approach is very small and does not exceed
0.24 second.
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Figure 3.5: First proposal: Cardinality of ParallelSets versus number of services - Experi-
ments on randomly generated dataset.

Based on our assumption, our algorithm outputs optimal solutions for 94% instances
of the randomly generated graphs and near-optimal solutions for the remaining instances
(6% of the considered graphs). As depicted in Figure 3.6, the difference between the
optimal solution and the solution provided by our algorithm does not exceed 6 AMs,
where for 49% of them, the difference is equal to one AM. It is interesting to note, as it
is shown in Figure 3.2, that the optimal number of AMs for the management of an SBP
may be greater than the lower bound number of AMs, which means that our approach
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solves more than 94% of the considered graphs to optimality.

Figure 3.6: First proposal: Difference between number of AMs provided by AMsAs-

signement algorithm and lower bound number of AMs (in %) - Experiments on randomly
generated dataset.

3.4 AMs Optimization in SBP Graphs Without Cycles
In this section, we present our second attempt that aims to determine the appropriate
number of AMs for the management of large SBPs. In this proposal we focus on large
SBPs that can be modeled as Directed Acyclic Graphs (DAGs), since a large percentage
of SBPs are usually expressed as DAGs. Our first proposal introduced in the above
section deals with the different types of gateways (e.g. AND, OR, XOR) in the same
way; i.e., the outgoing services of each gateway are always considered as parallel services
even for alternative services, which are the outgoing services of a XOR-split gateway.
This proposal is not effective when the given SBP graph contains XOR-split gateways.
Because of this, we suggest a second proposal that attempts to further reduce the number
of AMs by focusing on XOR-split gateways. We first introduce our proposed approach
(Section 3.4.1). We then present an illustrative example of how it works (Section 3.4.2).
Thereafter, we introduce the experiments that we perform to evaluate our second proposal
(Section 3.4.3).

3.4.1 Proposed Approach
Our second approach is based on two algorithms called Compaction and AMsAs-

signement. The Compaction algorithm, whose pseudo-code is given in Algorithm 3.4
takes as input an SBP graph and outputs a compact graph. It mainly aims to (i) merge
the outgoing paths of each XOR-Split gateway into a single path in order to assign only
one AM to alternative services, and (ii) remove all gateways, regardless of their types, to
avoid assigning AMs to them. The AMsAssignement algorithm, whose pseudo-code
is given in Algorithm 3.5, has as an input a compact graph and outputs the AM assigned



3.4 AMs Optimization in SBP Graphs Without Cycles 39

to each service. It aims to assign AMs to the SBP services while fulfilling the constraints
given in equations 3.2 and 3.3.

3.4.1.1 Compaction Algorithm

The Compaction algorithm operates in two successive steps: Step 1 is to determine the
set of nodes of the compact graph (cf. lines 1-31). Step 2 is to discover the dependency
relationships between these nodes (cf. lines 32-39).

It starts by initializing the nodes, the initial nodes, and the edges sets of the output
graph G1 denoted, respectively, by V1, I1, and E1 to the empty set and the current set
CurrSet to the set of initial nodes of the input graph G (cf. lines 1-2). CurrSet is a
set of meta-nodes where each meta-node consists of a set of alternative services; i.e.,
only one of these services will be executed all along the SBP life cycle. In the first step,
Compaction iterates until all the nodes of G1 are determined (cf. line 3). To do so,
it checks whether all the candidate meta-nodes that belong to CurrSet consist of only
nodes of service type in order to remove all gateways, regardless of their types (cf. lines
4-6). If it is the case, these meta-nodes are added to V1 (cf. lines 28-30), and the
successors of each one are merged into a single meta-node which is added to the new
CurrSet (cf. line 31). Otherwise, there is at least one candidate meta-node that contains
gateways (cf. lines 6-27). In this case, the algorithm goes through the set of nodes that
composes the candidate meta-node in order to remove gateways from it (cf. line 7). If
the current node is an AND/OR -Split (cf. lines 8-17), in fulfillment of the constraint
given in equation 3.3, different AMs should be assigned to the successors of this node. To
do so, these nodes are added to different meta-nodes in CurrSet (cf. lines 11-15), and, if
necessary, a new meta-node is added to CurrSet to make sure that parallel services belong
to different meta-nodes (cf. lines 16-17). Otherwise, the type of the gateway is not an
And/Or -Split (cf. lines 18-27), so only one of its successors will be executed, and then
one AM is sufficient to manage them. The algorithm checks whether all its predecessors
have completed their execution (cf. line 21). If it is the case, it merges all the successors
of the current gateway into the current meta-node (cf. line 22). Otherwise, since the
gateway will be removed (cf. line 20), it looks to merge the current meta-node with
another one (cf. lines 24-27).

After determining the set of meta-nodes V1 of the compact graph, Compaction
looks for determining the dependency relationships between these meta-nodes (cf. lines
32-39). For each meta-node u (cf. line 32), it checks whether all the nodes constituting
this meta-node belong to the set of initial nodes of G. If so, u is added to the set of initial
nodes I1 (cf. lines 34-35). Otherwise, the algorithm determines the predecessors of the
nodes constituting u (cf. lines 36-38) and the edge connecting u, and each meta-node
consisting of at least one of these predecessors is added to E1 (cf. line 39).
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Algorithm 3.4: Compaction
Data: - G =(V,E,I,τ ,ID): SBP graph
Result: - G1 =(V1,E1,I1,τ1,ID): SBP graph
begin

- - - - - - - - - - - - - - - - Step 1 - - - - - - - - - - - - - - - -
1 V1, I1, E1 ← ∅;
2 CurrSet ← I;
3 while CurrSet 6= ∅ do
4 setOfMetaServices ← false;
5 while not(setOfMetaServices) do
6 if ∃ MetaNode s.t.(MetaNode ∈

CurrSet and not(IsSetOfServices(MetaNode))) then
7 for v ∈ MetaNode do
8 if τ(v) ∈ {AND-Split,OR-Split} then
9 MetaNode ← MetaNode \ {v};
10 for u ∈ Successor({v}) do
11 isAdded ← false;
12 for Node ∈ CurrSet where not(isAdded) do
13 if ParentNodeIsXor({u},Node) then
14 Node ← Node ∪ {u};
15 isAdded ← true;

16 if not(isAdded) then
17 CurrSet ← CurrSet ∪ {u};

18 else
19 if τ(v) 6= service then
20 MetaNode ← MetaNode \ {v};
21 if Predecessor({v}) ⊆ V1 then
22 MetaNode ← MetaNode ∪ Successor({v});
23 else
24 for Node ∈ CurrSet do
25 if ParentNodeIsXor(MetaNode,Node) then
26 MetaNode ← MetaNode ∪ Node;
27 CurrSet ← CurrSet \ Node;

28 else
29 setOfMetaServices ← true;

30 V1 ← V1 ∪ CurrSet;
31 CurrSet ← Successor(CurrSet);

- - - - - - - - - - - - - - - - Step 2 - - - - - - - - - - - - - - - -
32 for u ∈ V1 do
33 τ1(u) ← service;
34 if InitialMeta-node(u) then
35 I1 ← I1 ∪ {u};
36 else
37 for v ∈ V1 do
38 if ∃ s s.t.(s ∈ Predecessor(u) and s ∈ v) and (v,u) /∈ E1 then
39 E1 ← E1 ∪ {(v,u)};



3.4 AMs Optimization in SBP Graphs Without Cycles 41

3.4.1.2 AMsAssignement Algorithm

At first, the AMsAssignement algorithm initializes the AM number that will be assigned
to each service and the number of AMs to 0 (cf. lines 1-2). After that, it tries to assign
AMs to the SBP services that fulfill the constraints given in equations 3.2 and 3.3 (cf.
lines 3-20). It starts with the initial nodes of the compact graph where different AMs
are assigned to these nodes (cf. lines 3-5). Then the current set of parallel services is
initialized to the graph’s initial nodes (cf. line 6). The algorithm iterates until all the
services have AMs assigned to them (cf. line 7). To do so, it looks for the successors of
the current parallel services, and for each service, it checks whether all its predecessors
have completed their execution (cf. lines 8-11). If it is the case, this service is added to
the set of next parallel services (cf. line 12), and if the AM assigned to its predecessor
service is not used by another services that can run in parallel with it (cf. line 13), then
this AM is assigned to it in order to assign the same AM to sequential services (cf. line
14). Otherwise, the algorithm updates the current AM with an AM that is not already
assigned to any service that can run in parallel with the current service. This AM is then
assigned to it (cf. lines 15-17). The total number of AMs needed to manage the SBP is
possibly updated (cf. lines 18-19).

3.4.1.3 Theoretical complexity

Our proposed approach consists of two algorithms. The first one aims to compact an
SBP graph by merging the outgoing paths of each XOR-Split gateway into a single path
and removing all gateways, regardless of their types (Algorithm 3.4). It consists of two
main steps. The first step is to determine the set of nodes of the compact graph. The
worst case time complexity of this step is bounded by O(m6), where m is the number
of nodes in the graph. The second step is to determine the dependency relationships
between the resulting nodes. The worst case time complexity of this step is bounded by
O(n3), where n is the number of services. The second algorithm aims to assign AMs to
the SBP services (Algorithm 3.5). Its worst case time complexity is bounded by O(n4),
where n is the number of services.

Therefore, the overall time complexity of the approach is: O(m6 +n3 +n4) ' O(m6).

3.4.2 Illustrative Example

Herein, we present an example illustrating how the proposed algorithms work. Let us
consider the example depicted in Figure 3.7 that represents an SBP composed of ten
services (see Figure 3.7 (left)).

Based on the characteristics of SBPs, we assume that an SBP is split into levels
that can be executed sequentially, and services belonging to a level are independent from
each other. The compact graph is in fact an intermediary graph, which is used only to
determine the appropriate number of AMs. It consists of a set of meta-nodes where a
meta-node is a group of alternative services. The relationship between levels of services
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Algorithm 3.5: AMsAssignement
Data: - G = (V,E,I,τ ,ID): SBP graph
Result: - AMs: Array containing the AM assigned to each service

- nbAMs: Number of AMs
begin

1 AMs ← [vector of 0s];
2 nbAMs ← 0;
3 for s ∈ I do
4 nbAMs ← nbAMs+ 1;
5 AMs[ID of s] ← nbAMs;
6 CurrentParallelSet ← I;
7 while CurrentParallelSet 6= ∅ do
8 NextParallelSet ← ∅;
9 for si ∈ CurrentParallelSet do
10 for (si,sj) ∈ E do
11 if @ s s.t.(s ∈ Predecessor({sj}) and AMs[ID of s]=0) then
12 NextParallelSet ← NextParallelSet ∪ {sj};
13 if @ s s.t.(s ∈ Successor({si}) and AMs[ID of s] = AMs[ID of

si]) then
14 AMs[ID of sj ] ← AMs[ID of si];
15 else
16 currentAM ← GetAM(sj);
17 AMs[ID of sj ] ← currentAM ;

18 if nbAMs < currentAM then
19 nbAMs ← currentAM ;
20 CurrentParallelSet ← NextParallelSet;
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is kept in this graph. Level 1 contains the initial nodes of the input graph G. Level
L + 1 contains the successors of the services of level L. Hence, the dependencies in this
graph do not reflect the execution dependencies between individual services, but rather
the dependencies between levels.
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Figure 3.7: Example of SBP graph without cycles where XOR-Split preceding two AND-
Splits (left) and result of applying Algorithms 3.4 and 3.5 on it.

In the first step, Compaction initializes CurrSet to the set of the initial nodes of
the input graph CurrSet={{XOR-split1}}. The while loop iterates over CurrSet until the
latter is empty. The first iteration considers the meta-node {XOR-split1}. This meta-
node does not consist only of nodes of service type. In this case, the algorithm goes
through these nodes; and for each one, in case it is not a service, this node is replaced by
its successors if and only if, the predecessors of these nodes have been processed earlier.
XOR-split1 is replaced by its successors, i.e. CurrSet={{AND-split1, AND-split2}}.

The second iteration considers the meta-node {{AND-split1, AND-split2}}. The
node AND-split1 is replaced by its successors S1 and S2 because S1 and S2 can run
in parallel. These nodes are added to two different meta-nodes, i.e. CurrSet={{S1,
AND-split2},{S2}}.

The third iteration considers the meta-node {S1, AND-split2}. The node AND-split2
is replaced by its successors: S3, S4, and S5, which are added to different meta-nodes, i.e.
CurrSet={{S1,S3},{S2,S4},{S5}}. All the meta-nodes in CurrSet consist of only nodes
of service type. These meta-nodes are added to the set of nodes of the compact graph, i.e.
V1={{S1,S3},{S2,S4},{S5}}; and the successors of each meta-node are merged into a
meta-node that is added to the new CurrSet: CurrSet={{AND-join1,S7},{S6,S8},{S9}}.

The fourth iteration considers the meta-node {AND-join1, S7}. The node AND-join1
is removed form this meta-node because its predecessor S10 has not been processed yet,
CurrSet={{S7},{S6,S8},{S9}}. All the meta-nodes in CurrSet consist of only nodes of
service type. These meta-nodes are added to V1 and the successors of each one are merged
into a meta-node that is added to the new CurrSet: CurrSet={{AND-join2},{S10,AND-
join2}}.

The same process is applied to the current set {{AND-join2},{S10,AND-join2}}. The
meta-node {S10} is added to V1, and the algorithm comes to an end as CurrSet = ∅
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To conclude the first step, the resulting set of the nodes of the compact graph is
V1={{S1,S3},{S2,S4},{S5},{S7},{S6,S8},{S9},{S10}}.

In the second step, Compaction iterates over the set of resulting meta-nodes V1 to
determine the dependency relationships between them. The first iteration considers the
meta-node {S1,S3}. Since S1 and S3 are initial nodes in the input graph (Figure 3.7
(left)), this meta-node is added to the set of initial nodes of the compact graph I1. The
same process is applied to the meta-nodes {S2,S4} and {S5} that are then added to I1.

The next iteration considers the meta-node {S7}. S3 is a predecessor of it, then an
edge connecting the meta-node {S7} and the meta-node that contains S3 is added to
the set of the edges of the compact graph E1, i.e. E1={({S1,S3},{S7})}. Similarly, the
rest of the edges are determined. Therefore, we get the following set of results:

E1={({S1,S3},{S7}),({S2,S4},{S6,S8}),({S5},{S9}), ({S6,S8},{S10})}.
I1={{S1,S3},{S2,S4},{S5}}.
Applying the AMsAssignement algorithm on the compact graph, three AMs are

needed for the management of the given SBP. The first AM is assigned to the services
S1, S3, and S7. The second AM is assigned to the services S2, S4, S6, S8, and S10,
while the third one is assigned to the services S5 and S9.

Applying our approach on the SBP graph example depicted in Figure 3.8 (left), two
AMs are enough for managing SBP. The first AM is dedicated to managing the services
S1, S2, S6, and S10, while the second AM is assigned to the services S3, S4, S5, S7,
S8, and S9.
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Figure 3.8: Example of SBP graph without cycles where AND-Split preceding two XOR-
Splits (left) and result of applying Algorithms 3.4 and 3.5 on it.

3.4.3 Performance Evaluation

This section presents a series of performance evaluations of our second proposed approach
in terms of execution time and quality of the provided solutions. In order to show the
efficiency of this approach, we compare it to our first approach presented in Section 3.3
to verify how it enhances the AMs optimization process for the management of large
SBPs. We also compare the solution provided by this approach to the solution obtained
by solving the optimization model presented in Section 3.2.3 using the CPLEX solver [77]
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when such a solution is possible. Let us denote by:

• Sa the solution provided by our second proposed approach;

• S∗ the optimal solution provided by CPLEX;

• G the gap between Sa and S∗ (in %). Note that if G = 0%, it means that Sa is
optimal. G is defined as follows:

G = Sa − S∗

S∗
× 100

The first part of the series of performance evaluations is the experimental results
conducted on two real datasets (Section 3.4.3.1), and the second part is the performance
results of experiments conducted on a realistic dataset based on randomly generated
graphs (Section 3.4.3.2). It is worth mentioning that, to the extent of our knowledge,
there is no available public dataset of large business process models. Thus, to perform
experiments on large SBPs, we generate a dataset of random large SBPs. All the results
are average values across 10 independent runs.

The different experiments are carried out on an Intel Core i7 PC with 2.70 GHz and
8GB of RAM. We use the commercial CPLEX solver 12.6 to solve the ILP formulation
(Section 3.2.3).

3.4.3.1 Experiments on public real datasets

Herein, we present the performance results of experiments conducted on IBM and SAP
datasets (see Section 3.3.3.1 for more datasets details). In this proposal we focus on
SBPs that can be modeled as DAGs. In fact, 85% of the IBM dataset and 94% of the
SAP dataset are SBPs that can be represented as DAGs.

Experiment results on real datasets, depicted in Figure 3.9 show, our second proposal
compared to the first one. It can be seen that the second proposal outperforms our first
one in terms of reducing the number of AMs for the management of SBPs. It reduces this
number by 18% and 7% for for IBM and SAP datasets, respectively. On the other hand,
it can always find the optimal solution for the SBP models in IBM and SAP datasets in
a short time, which does not generally exceed 0.06 second, as depicted in Figure 3.10.
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Figure 3.9: Second proposal: Number of AMs versus number of services - Experiments
on IBM and SAP datasets.
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Figure 3.10: Second proposal: Execution time versus number of services - Experiments
on IBM and SAP datasets.

The results on real datasets show that our second proposal has good performance
in terms of both quality and execution time. It provides the optimal solution for all
the considered SBPs in few milliseconds. In the following, we perform experiments on
randomly generated small and large graphs. On the one hand, we highlight that our
generated dataset behaves the same way as real datasets. On the other hand, we evaluate
our approach on large SBPs, which is our main goal here.

3.4.3.2 Experiments on randomly generated dataset

In order to evaluate the performance of the proposed approach on large SBPs, we im-
plement a generator of random structured SBPs. The generation of these SBP graphs is
based on Definition 3.2.2. Note that structured processes represent a class of business
processes widely used in industry and academia [73]. We generate SBP graphs with two
different sizes (small, large), with a number of services varying, respectively, from 10 to
100, in increments of 10, and from 150 to 600, in increments of 50. These graphs are
sparse because SBP graphs are generally sparse (see IBM and SAP dataset details in
Tables 3.1 and 3.2). The characteristics of the considered SBP graphs are reported in
Table 3.3, where the nodes include both services and gateways (AND-split, AND-join,
OR-split, OR-join, XOR-split, and XOR-join).

Experiment results on the randomly generated dataset are illustrated in Figure 3.11.
Compared to the first approach, it can be seen that our second proposal outperforms the
first one in terms of reducing the number of AMs. It decreases this number by 41%. On
the other hand, it is able to find the optimal solution for 99% of the considered SBPs. We
note that the gap between our approximate solution provided by the second proposal and
the optimal solution is very small and does not exceed 0.75%. It means that our solution
is very close to the optimal solution. As for the execution time of our second proposal, the
results presented in Figure 3.12 show that its execution time remains reasonable even for
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Graph Sizes Services Nodes Edges

Small

10 16 - 22 19 - 30
20 32 - 46 42 - 59
30 48 - 72 60 - 100
40 70 - 100 85 - 122
50 90 - 124 112 - 152
60 114 - 134 130 - 171
70 126 - 150 155 - 214
80 150 - 182 184 - 220
90 164 - 198 203 - 260
100 174 - 210 227 - 275

Large

150 286 - 348 369 - 432
200 356 - 424 458 - 544
250 474 - 524 604 - 673
300 582 - 636 754 - 814
350 658 - 748 850 - 950
400 760 - 846 967 - 1084
450 854 - 966 1099 - 1228
500 972 - 1036 1243 - 1316
550 1078 - 1152 1384 - 1486
600 1178 - 1258 1494 - 1602

Table 3.3: Characteristics of generated small and large SBP graphs.

large SBPs. In fact, it does not exceed 12 seconds, whereas the CPLEX solver takes more
than 2 hours to solve the problem; and whenever the number of services goes beyond
250, the solver can not find the optimal solution due to a problem of memory.
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Figure 3.11: Second proposal: Number of AMs versus number of services - Experiments
on randomly generated dataset.
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Figure 3.12: Second proposal: Execution time versus number of services - Experiments
on randomly generated dataset.

Experiment results on the randomly generated dataset show that our second proposal
has good performance in terms of both quality and execution time. It returns an optimal
solution for more than 99% of the considered small and large SBPs in a reasonable time.
Although these series of experiments are performed on a randomly generated dataset, we
advocate that this dataset is realistic. For small SBP graphs, it behaves the same way
as IBM and SAP real datasets, as shown in Figures 3.10 and 3.12a. Therefore, based on
the generated dataset, we can conclude that the computational time of CPLEX increases
quickly with the number of SBP services (Figure 3.12c). In fact, considering the example
of the public Cloud OpenShift where there are few deployments of a new application
every minute, we cannot use the CPLEX solver to determine the optimal number of AMs
because it can take more than two hours to solve the model. However, we can apply our
approaches that come up with near-optimal solutions in an acceptable time, which is of
the order of a few milliseconds for small SBP graphs, and it does not exceed 12 seconds
for large graphs.

To sum up, our two proposals are complementary; and based on them, we cover
all types of SBPs, i.e. small and large SBPs that are represented as graphs with or
without cycles. The second proposal is better than the first one for both small and large
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SBPs expressed as DAGs. Thus, if the given SBP graph contains cycles, we use our first
proposal for determining the appropriate number of AMs that will be used by services
for their management; otherwise, the second proposal will be the most appropriate and
effective method to solve the problem.

3.5 Conclusion
In this chapter, we focused on the optimization of the number of AMs in SBPs while
avoiding management bottlenecks. We formally represented SBPs as graphs that allow
us to preserve the semantics of business processes. Then we proposed an ILP formulation
to solve this problem. Since solving the ILP formulation is time-consuming for large
SBPs, we also proposed two different approaches for SBPs that are represented as graphs,
respectively with and without cycles. Their main idea is to manage parallel services with
different AMs in order to reduce the number of allocated AMs and avoid management
bottlenecks. An illustrative example of how each approach works was given. Experiment
results showed that our proposals obtain very encouraging results.

After facing the challenges of optimizing the number of AMs for the management of
SBPs, since an AM consists of four basic components (monitor, analyzer, planner, and
executor), we were motivated to extend our work to break down the AM into its main
components. We are interested in optimizing the number of monitors, analyzers, planners,
and executors separately. Hence, in the next chapter, we will focus on how to formulate
this problem and solve it in a polynomial time.
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4.1 Introduction
Executing SBPs in the Cloud requires autonomic management to cope with the dynamism
and scalability of Cloud environments. In the previous chapter, we proposed an approach
that aims to determine the appropriate number of AMs for the management of SBPs
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such that this number is minimized while avoiding management bottlenecks. Since an
AM consists of four basic components: a monitor, an analyzer, a planner, and an executor,
which are not used with the same frequency. Thus, to go beyond the boundaries of an AM
that is seen as a single resource, we propose in this chapter a new approach that consists
in determining the appropriate number of monitors, analyzers, planners, and executors for
the management of timed SBPs to further reduce the management costs.

This chapter is organized as follows: Preliminaries on the four basic components of an
AM are firstly introduced in Section 4.2. Then we describe the problem that we tackle in
this chapter, and we suggest an ILP formulation to solve it in Section 4.3. Our proposed
approach as well as an illustrative example of how it works are presented, respectively, in
Sections 4.4 and 4.5. Finally, the experimental results are detailed in Section 4.6.

4.2 Preliminaries: Monitor, Analyzer, Planner, Executor

Figure 4.1: Autonomic control loop for Cloud resource.

Autonomic management resource for Cloud resources is depicted in Figure 4.1. In this
autonomic loop, the managed element represents any hardware or software Cloud resource
for which we want to endow an autonomous behavior. A shared knowledge is essential to
maintain data of the managed resource, adaptation goals, and other information needed
by the AM components. The different components of an AM are defined as:

1. The Monitor is used to periodically gather monitoring data from the managed
resource;

2. The Analyzer is in charge of periodically analyzing monitoring data and checking
whether an adaptation is required. If so, it sends an alert (as an event) to the
planner;

3. The Planner is responsible for producing adaptation plans. An adaptation plan
represents a workflow of elementary adaptation actions described in the knowledge
base, which are needed to achieve the resource goals;
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4. The Executor is responsible for carrying out the adaptation actions provided by
the planner over the managed resource.

4.3 Problem Description and Formulation
In this section, we first show how to map a timed SBP to a directed graph. After that,
we define the research problem that we tackle in this chapter. We then introduce the
notations that are used throughout the problem formulation as well as the assumptions.
Finally, we give an ILP formulation to solve the problem.

4.3.1 Problem Description
Managing SBPs in the Cloud involves using AMs to cope with the dynamism of Cloud
environments. In fact, an AM consists of four basic components which are the monitor,
the analyzer, the planner, and the executor that are not used with the same frequency.
For example, the monitor is used much more frequently than the executor. Then we can
imagine that assigning the same monitor to services that can run in parallel may lead
to management bottlenecks, but this is not necessarily the case for the executor. Thus,
we can share a component between different parallel services in order to further reduce
the management costs while ensuring that each component is assigned to only one SBP
service at a time. Consequently, to go beyond the boundaries of an AM that is seen as a
single resource, it is interesting to minimize the number of monitors, analyzers, planners
and executors separately while avoiding management bottlenecks.

In fact, the authors in [75, 16] adopted the principle of using multiple AMs for the
management of applications to avoid management bottlenecks, but they did not provide
any means to optimize their number. In our work, an AM component is able to manage
a set of services, while it is assigned to only one service at a time to reduce the amount
of monitoring data that will be processed by each AM to prevent bottlenecks. To this
end, it is essential to determine all sets of services that can run in parallel.

In order to determine the optimal number of monitors that will be used by the SBP
services for their management, we are required to know the monitoring time and frequency
for each service to figure out the set of time stamps at which we can monitor each service
in an attempt to share a monitor between different parallel services while ensuring that
this monitor is used by only one service at a time. While the determination of the optimal
number of analyzers requires us to know the set of time stamps at which we can analyze
each service by means of the analysis time for each event that will happen for a service and
the analysis frequency for each service as well as the probability that a problem will happen
for a service. Moreover, in order to find the optimal number of planners, it is essential
to know the probability that an action will be chosen for a service and the planning time
for each action for a service. Furthermore, we need to know the execution time that is
taken by an executor to carry out each adaptation action over each service in order to
determine the optimal number of executors.
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In order to do all of that, it is essential to know an estimate of the execution time of
each service as well as an estimate of the data transfer time between services. For that,
we opt for timed SBPs. In this work, we assume that there is maximum Quality of Service
(QoS) degradation time that a timed SBP can not exceed.

4.3.2 Timed SBP Modeling

As the structure of a timed SBP can be mapped to a graph, we choose graph theory
to represent such SBP as a directed graph called the timed SBP graph according to the
following definition.

Definition 4.3.1 (Timed SBP graph). A timed SBP graph G = (V,E, I, τ, ε, δ, ι) is a
directed graph where:

• V is the set of nodes;

• E ⊆ V ×V is the set of edges that represents the data dependencies between nodes,
such that (vi, vj) ∈ E if the output data of node i is required for the execution of
node j;

• I ⊂ V is the set of initial nodes;

• τ : V ← Γ is a function that maps nodes to their types;

• ε : V ← N is a function that assigns, for each service v ∈ V , where τ(v) = service,
an estimated execution time;

• δ : V × V ← N is a function that assigns, for each pair of services, an estimated
data transfer time between them;

• ι : V ← N is a function that maps each node v ∈ V to a unique identifier id ∈ N.

Based on Definition 4.3.1, Figure 4.2 shows an example of a timed SBP graph. The
number within the dash circle represents the estimated execution time of a service. The
number next to an edge represents an inter-service estimated data transfer time. For
example, the estimated execution time of Choose supplier is equal to 16, while the esti-
mated data transfer time between the latter and Contact supplier 1 (respectively Contact
supplier 2, Contact supplier 3) is equal to 11, and it is equal to 9 between Contact supplier
1 and Receive products.
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Figure 4.2: Example of timed SBP graph.

4.3.3 Notations and Assumptions
Let S be the set of services that make up a timed SBP and PS the sets of parallel
services. Let M , A, P and E respectively represent the set of candidate monitors,
analyzers, planners and executors that may be assigned to S. Each set has as cardinality
the number of services, i.e. |S|, since in the worst case different monitors, analyzers,
planners and executors will be assigned to the autonomic management of services.

Let mts be the monitoring time for service s ∈ S. It is equal to the sum of the time
taken by a monitor to collect monitoring data from s and the time needed to save data
in the knowledge base and the time needed to send an event to an analyzer component.
Let mfs be the monitoring frequency for service s (e.g. monitor each 5 ms) and Is the
set of time stamps at which we can monitor it, where the step size between each element
in Is and the next element is equal to mfs.

We define Evs as the set of events that could result from the analysis of the monitoring
data collected from service s. It contains the event ’no problem found’ in addition to all
the predefined problems that could happen. Let atevs be the analysis time for event
ev ∈ Evs when it happens for service s. It is equal to the sum of the time taken by an
analyzer to identify that event ev happened for s and the time needed to send an alert to
a planner component when an adaptation is required. Let afs be the analysis frequency
for service s (e.g. analyze each 10 ms) and Js the set of time stamps at which we can
analyze it, where the step size between each element in Js and the next element is equal
to afs. We denote by pevs the probability that problem ev will happen for service s. Thus,
∀s ∈ S,

∑
evs∈Evs

pevs = 1.
We also define Acs as the set of adaptation actions that can be produced by a planner

component in order to process problems that may happen for service s. Let ptacs be the
planning time for action ac ∈ Acs for service s. It is equal to the sum of the time taken
by a planner to generate the adaptation plan ac ∈ Acs for s and the time needed to send
management actions to an executor component. We denote by pacs the probability that
action ac will be chosen for service s. Hence, ∀s ∈ S,

∑
acs∈Acs

pacs = 1. Let etacs be
the execution time that is taken by an executor to carry out the adaptation action ac
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over service s. Note that a degradation of QoS lasts the time taken to produce and carry
out adaptation plans over SBP services. We define mdt as the maximum allowed QoS
degradation time for a timed SBP. It keeps the QoS degradation below a certain upper
limit.

Without loss of generality, we assume that all the monitors, analyzers, planners and
executors have the same requirements in terms of hardware resources (RAM, CPU, etc.),
so that the optimization of their hosting cost will be reduced to the optimization of their
number.

4.3.4 Problem Formulation

In this formulation, we consider the following decision variables: αm indicates if monitor
m ∈M is used by at least one service; βa indicates if analyzer a ∈ A is used by at least
one monitor; σp indicates if planner p ∈ P is used by at least one analyzer; ϕe indicates
if executor e ∈ E is used by at least one planner; ya

m specifies if monitor m ∈M is linked
to analyzer a ∈ A; zp

a specifies if analyzer a ∈ A is linked to planner p ∈ P ; we
p specifies

if planner p ∈ P is linked to executor e ∈ E; xs
m expresses if monitor m ∈M is assigned

to service s ∈ S; γt
sm expresses if monitor m ∈ M is assigned to service s ∈ S at time

t ∈ T ; λt
sa expresses if analyzer a ∈ A is assigned to service s ∈ S at time t ∈ T . These

decision variables are equal to 1 if their indications are verified and 0 otherwise.

Given the aforementioned assumptions and notations, our problem can be formulated
in equations [4.1-4.14] where objective function 4.1 aims to minimize the number of
monitors, analyzers, planners and executors for the management of a timed SBP. Con-
straint 4.2 makes sure that only one monitor is assigned to each service all along the SBP
life cycle. Constraint 4.4 (respectively 4.6, 4.8) makes sure that if a monitor is used (re-
spectively analyzer, planner), then it is linked to only one analyzer (respectively planner,
executor). Constraint 4.3 ensures that if a monitor is assigned to at least one service,
then it is considered as used. Constraint 4.5 (respectively 4.7, 4.9) ensures that if an
analyzer (respectively planner, executor) has at least one monitor (respectively analyzer,
planner) linked to it, then it is considered as used. Constraints [4.10-4.14] guarantee that
each component is assigned to at most one service at a time. The maximum allowed QoS
degradation time for a given SBP is met according to constraint 4.14.

min
∑

m∈M

αm +
∑
a∈A

βa +
∑
p∈P

σp +
∑
e∈E

ϕe (4.1)
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Subject to:∑
m∈M

xs
m = 1 ∀s ∈ S (4.2)

xs
m 6 αm ∀s ∈ S, ∀m ∈M (4.3)∑

a∈A

ya
m = αm ∀m ∈M (4.4)

ya
m 6 βa ∀m ∈M, ∀a ∈ A (4.5)∑

p∈P

zp
a = βa ∀a ∈ A (4.6)

zp
a 6 σp ∀a ∈ A, ∀p ∈ P (4.7)∑

e∈E

we
p = σp ∀p ∈ P (4.8)

we
p 6 ϕe ∀p ∈ P, ∀e ∈ E (4.9)

xs
m 6 γt

sm ∀m ∈M, ∀s ∈ S, ∀i ∈ Is,

∀t ∈ {i, ..., i+mts − 1} (4.10)∑
s∈S

γt
sm 6 1 ∀m ∈M, ∀t ∈ T (4.11)

∑
m∈M

∑
evs∈Evs

pevs .x
s
m.y

a
m 6 λt

sa ∀a ∈ A, ∀s ∈ S,

∀j ∈ Js, ∀t ∈ {j, ..., j + atevs − 1} (4.12)∑
s∈S

λt
sa 6 1 ∀a ∈ A, ∀t ∈ T (4.13)

∑
S∈P S

∑
m∈M

∑
a∈A

max
p∈P

(
∑
s∈S

∑
acs∈Acs

pacs .ptacs .x
s
m.y

a
m.z

p
a) + max

e∈E
(
∑
s∈S

∑
acs∈Acs

pacs .etacs .x
s
m.y

a
m.z

p
a.w

e
p) 6 mdt (4.14)

However, the above model is not linear due to constraints 4.12 and 4.14. In order to
linearize it, we introduce new decision variables us

a, vs
p, and ks

e defined as follows:

us
a = xs

m.y
a
m ∀s ∈ S, ∀m ∈M, ∀a ∈ A (4.15)

vs
p = xs

m.y
a
m.z

p
a ∀s ∈ S, ∀m ∈M, ∀a ∈ A, ∀p ∈ P (4.16)

ks
e = xs

m.y
a
m.z

p
a.w

e
p ∀s ∈ S, ∀m ∈M, ∀a ∈ A, ∀p ∈ P, ∀e ∈ E (4.17)

We substitute equation 4.15 in constraint 4.12 and equations 4.16 and 4.17 in con-
straint 4.14. Constraints 4.12 and 4.14 respectively become as follows:∑

evs∈Evs

pevs .u
s
a 6 λt

sa ∀a ∈ A, ∀s ∈ S, ∀j ∈ Js, ∀t ∈ {j, ..., j + atevs − 1} (4.18)
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∑
S∈P S

max
p∈P

(
∑
s∈S

∑
acs∈Acs

pacs .ptacs .v
s
p) + max

e∈E
(
∑
s∈S

∑
acs∈Acs

pacs .etacs .k
s
e) 6 mdt (4.19)

Then we must add the following logical constraints:

xs
m + ya

m 6 us
a + 1 ∀s ∈ S, ∀m ∈M, ∀a ∈ A (4.20)

xs
m + ya

m + zp
a 6 vs

p + 2 ∀s ∈ S, ∀m ∈M, ∀a ∈ A, ∀p ∈ P (4.21)
xs

m + ya
m + zp

a + we
p 6 ks

e + 3 ∀s ∈ S, ∀m ∈M, ∀a ∈ A, ∀p ∈ P, ∀e ∈ E (4.22)

Considering the number of deployments of applications in a public Cloud (see the
previous chapter, Section 3.2.4 for more details), and as we will show in the evaluation
section (Section 4.6), the time needed to solve the optimization model using the CPLEX
solver is not acceptable. It can exceed two hours; and whenever the number of services
goes beyond 26, the solver can not find the optimal solution. Consequently, finding
the optimal solution, in this context, is not possible. Therefore, to tackle this NP-hard
problem [80], we propose in the following section an approach that provides near-optimal
solutions in a polynomial time.

4.4 Proposed Approach

4.4.1 Approach Overview

In this section, we introduce an approach based on two algorithms called ParalelSer-
vices and M-A-P-E_Assignment, for the determination of the appropriate number
of monitors, analyzers, planners and executors that will be used by SBP services for their
management such that this number is minimized while avoiding management bottlenecks.

The ParalelServices algorithm, whose pseudo-code is given in Algorithm 4.1,
takes as input a timed SBP graph. It aims to determine all sets of services that can run
in parallel.

The M-A-P-E_Assignment algorithm, whose pseudo-code is given in Algorithm 4.2,
takes as input the sets of parallel services as well as the data needed for managing each
service. It consists in assigning AM components to services while fulfilling the constraints
given by equations [4.1-4.14].

4.4.2 ParallelServices Algorithm

First of all, CurrentParallelSet and CurrentPendingSet are initialized to the initial services
of the timed SBP graph and the empty set, respectively (cf. lines 1-2). They are respec-
tively used to store the current set of services that can run in parallel and the current
set of pending services that will be executed after receiving the data required for their
execution. After that, the current set of parallel services is added to the resulting sets
(cf. line 3), and an array is initialized with the estimated execution times of services (cf.
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lines 4-5). ParalelServices iterates until determining all the sets of parallel services
(cf. line 6 and line 28). To do so, the elements of the current sets are assigned to the
previous sets, and the current sets are initialized to the empty set (cf. lines 7-9). Then the
algorithm determines the minimum time from the times required by the current services
to complete or start execution in order to determine the new sets of parallel and pending
services (cf. line 10). First, it iterates over the previous set of parallel services; and for
each service vi, the algorithm checks whether this service has completed its execution;
i.e., the remaining time to complete its execution is equal to zero (cf. lines 11-13). As a
result, for each successor, whether the type of this candidate node is either an AND/OR
-Join and all its predecessors have completed their execution or not an AND/OR -Join, if
the current node is of type service, then it is added to the current set of pending services;
otherwise, ParalelServices continues to explore the successors of the candidate node
seeking a node of service type (cf. lines 13-17). If, the current has not completed its
execution, it is added to the current set of parallel services (cf. lines 18-19). Second,
the algorithm iterates over the previous set of pending services; and for each service vi, it
checks whether the data transfer time to it has been completed (cf. lines 20-21). If it is
the case, vi is added to the current set of parallel services (cf. lines 22-23), otherwise it is
added to the current set of pending services (cf. lines 24-25). Afterwards, if the current
set of parallel services has not been already determined in a previous iteration, it is added
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to the resulting sets of parallel services (cf. lines 26-27).
Algorithm 4.1: ParallelServices
Data: - G = (V,E, I, τ, ε, δ, ι): SBP graph
Result: - ParallelSets : Set of sets of parallel services
begin

1 CurrentParallelSet ← Services(I);
2 CurrentPendingSet ← ∅;
3 ParallelSets ← {CurrentParallelSet};
4 for s ∈ S do
5 t[s] ← ε(s);
6 repeat
7 PreviousParallelSet ← CurrentParallelSet;
8 PreviousPendingSet ← CurrentPendingSet;
9 CurrentParallelSet, CurrentPendingSet ← ∅;
10 time ← MinimumTime(PreviousParallelSet, PreviousPendingSet);
11 for vi ∈ PreviousParallelSet do
12 t[vi] ← t[vi]− time;
13 if t[vi] = 0 then
14 for (vi,vj) ∈ E do
15 if (τ(vj) /∈ {AND-Join, OR-Join}) or (τ(vj) ∈ {AND-Join,

OR-Join} and AllPredecessors(vj)) then
16 CurrentPendingSet ← CurrentPendingSet ∪

{Services(vj)};
17 dt[vj ] ← δ(vi,vj);

18 else
19 CurrentParallelSet ← CurrentParallelSet ∪ {vi};

20 for vi ∈ PreviousPendingSet do
21 dt[vi] ← dt[vi]− time;
22 if dt[vi] = 0 then
23 CurrentParallelSet ← CurrentParallelSet ∪ {vi};
24 else
25 CurrentPendingSet ← CurrentPendingSet ∪ {vi};

26 if @ set s.t.(set ∈ ParallelSets and CurrentParallelSet ⊆ set) then
27 ParallelSets ← ParallelSets ∪ CurrentParallelSet;
28 until (CurrentParallelSet = ∅ and CurrentPendingSet = ∅);

4.4.3 M-A-P-E_Assignment Algorithm

M-A-P-E_Assignment is mainly based on two procedures, called M/A_Assignment
and P-E_Assignment. The M/A_Assignment procedure, whose pseudo-code is
given in Algorithm 4.6, aims to assign a minimum number of monitors and analyzers to
the SBP services. The P-E_Assignment procedure, whose pseudo-code is given in
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Algorithm 4.3, tries to assign a minimum number of planners and executors to the ser-
vices such that the maximum allowed QoS degradation time for the SBP is not exceeded.
To avoid management bottlenecks, our algorithms ensure the assignment of different
monitors (respectively analyzers, planners, and executors) to parallel services.

Since each monitor must be linked to only one analyzer and multiple monitors can be
linked to the same analyzer, the number of monitors that will be used to manage a timed
SBP must be greater than or equal to the number of analyzers, i.e. M ≥ A. In addition,
each analyzer (respectively planner) must be linked to only one planner (respectively
executor), and multiple analyzers (respectively planners) can be linked to the same planner
(respectively executor). The number of analyzers (respectively planners) must be greater
than or equal to the number of planners (respectively executors), i.e. A ≥ P (respectively
P ≥ E). Therefore, we must have M ≥ A ≥ P ≥ E, so P + E ≤ 2 × A.

As P +E ≤ 2 × A, if we start by determining the number of monitors and analyzers,
the number of planners and executors may be less than the minimum required number
of planners and executors that maintain the QoS degradation time for SBP below a
certain upper limit. Consequently, M-A-P-E_Assignment starts by determining the
number of planners and executors by invoking the P-E_Assignment procedure (cf.
line 1). After that, it determines the number of analyzers and monitors by applying the
M/A_Assignment procedure twice (cf. lines 2-3).

Algorithm 4.2: M-A-P-E_Assignment
Data: - ParallelSets: Set of sets of parallel services

- T: Array containing the required execution time of each service
- MT, MF: Arrays containing, respectively, the monitoring time and the

monitoring frequency for each service
- AT, AF: Arrays containing, respectively, the analysis time and the analysis

frequency for each service
- PT: Array containing the maximum planning time for each service
- ET: Array containing the maximum adaptation time for each service
- mdt: Maximum allowed QoS degradation time for the SBP

Result: - M, A, P, E: Arrays containing, respectively, the monitor, analyzer, planner, and
executor assigned to each service
- nm, na, np, ne: Number of, respectively, monitors, analyzers, planners, and

executors
begin

1 P , np, E, ne ← P-E_Assignment(PT , ET , mdt);
2 A, na ← M/A_Assignment(PSets, AT , AF );

/*PSets is a set of sets of services where services belonging to a set are managed by
the same Planner*/

3 M , nm ← M/A_Assignment(ASets, MT , MF );
/*ASets is a set of sets of services where services belonging to a set are managed by
the same Analyzer*/
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4.4.3.1 P-E_Assignment procedure

Initially, the P-E_Assignment procedure dedicates a planner and an executor for the
management of the given SBP (cf. lines 2-5). The total QoS degradation time for SBP
is then calculated, which is equal to the sum of time required to generate and execute
adaptation plans over the services that make up SBP (cf. line 5). The algorithm iterates
as long as the total QoS degradation time for SBP exceeds the maximum allowed QoS
degradation time (cf. line 6). It operates in two steps: First, it adds a new planner
by invoking the P_Assignment procedure (cf. lines 7-8). Second, if the maximum
allowed QoS degradation time is still not respected (cf. line 9), it calculates the new QoS
degradation time whether we add: (i) a new planner by invoking the P_Assignment
procedure, and (ii) a new executor by invoking the E_Assignment procedure (cf. lines
10-11). Then the algorithm adds the component (planner or executor) that further reduces
the total QoS degradation time for SBP (cf. lines 12-20). The first step of the algorithm
consists in ensuring that the number of planners is greater than or equal to the number
of executors in order not to push any planner to link to more than one executor.

Algorithm 4.3: P-E_Assignment procedure
Data: mdt
Result: P, np, E, ne

begin
1 tdt ← 0; /*tdt is the total QoS degradation time for the SBP*/
2 np, ne ← 1;
3 for s ∈ S do
4 P [s], E[s] ← 1;
5 tdt ← tdt+ PT [s] + ET [s];
6 while (tdt > mdt) do
7 np ← np + 1;
8 tdt, P ← P_Assignment(np);
9 if tdt > mdt then
10 tdtp, I ← P_Assignment(np + 1);
11 tdte, set ← E_Assignment(ne + 1, tdt);
12 if (tdtp < tdte) then
13 np ← np + 1;
14 tdt ← tdtp;
15 P ← I;
16 else
17 ne ← ne + 1;
18 tdt ← tdte;
19 for s ∈ set do
20 E[s] ← ne;
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P_Assignment procedure The main objective of the P_Assignment procedure,
whose pseudo-code is given in Algorithm 4.4, is to find the appropriate assignment of
a given number of planners, i.e. np, to the SBP services such that the total QoS degra-
dation time for SBP is minimized. It goes through the sets of parallel services set by
set; and for each one, their elements are sorted in a decreasing order to promote services
with maximum planning time (cf. lines 1-2). After that, different planners are assigned
to the first np services in the current set; and for each planner assigned to a service, its
working time is set to the planning time of the latter service (cf. lines 3-8). Then the
total time required to generate adaptation plans for services belonging to the current set
is calculated, and the latter is evenly shared between the np planners to further reduce
the total QoS degradation time for SBP (cf. line 9). The total QoS degradation time is
equal to the sum of the maximum time from the times taken by the planners to generate
adaptation plans for each set of parallel services and the the sum of the maximum time
from the times taken by the executors to carry out adaptation plans for each set of parallel
services (it is given in equation 4.9 (left)). Afterwards, the algorithm iterates over the
set of services to which no planner has been assigned (cf. line 10); and for each one,
it starts with the first planner (cf. line 11), and it checks whether the latter might be
assigned to the current service, that is whether if the sum of the working time of this
planner and the planning time required for the current service is less than or equal to
the estimated time that a planner is expected to take to generate adaptation plans for
the current set of parallel services (cf. line 16). If it is the case, this planner is assigned
to the current service and its working time is updated (cf. lines 17-19). Otherwise, the
algorithm just updates the current planner (cf. line 20). In the case where the current
planner number is greater than np, P_Assignment looks for the appropriate planner
that has the minimum working time to assign it to the current service (cf. lines 14-15).
This step is repeated until a planner is assigned to the service (cf. lines 12-13). Finally,
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the total QoS degradation time for SBP is calculated (cf. line 21).

Algorithm 4.4: P_Assignment procedure
Data: - np

Result: - P: Array containing the planner assigned to each service
- tdt: Total QoS degradation time for the SBP

begin
1 for set ∈ ParallelSets do
2 SortDecreasingOrderOfPlanningTimeOfServices(set);
3 currentP ← 1;
4 for s ∈ set where currentP 6 np do
5 P [s] ← currentP ;
6 set ← set r {s};
7 currentP ← currentP + 1;
8 timeP [currentP ] ← PT [s];
9 time ← TotalPlanningTime(set)/np;
10 for s ∈ set do
11 currentP ← 1;
12 isAssigned ← false;
13 while not(isAdded) do
14 if currentP > np then
15 currentP ← GetPlanner(timeP );
16 if timeP [currentP ] + PT [s] 6 time or currentP > np then
17 isAssigned ← true;
18 P [s] ← currentP ;
19 timeP [currentP ] ← timeP [currentP ] + PT [s];
20 currentP ← currentP + 1;

21 tdt ← QoSDegradationTime();

E_Assignment procedure The main purpose of the E_Assignment procedure, whose
pseudo-code is given in Algorithm 4.5, is to find the appropriate assignment of a new ex-
ecutor to the SBP services such that the total QoS degradation time for SBP is minimized.
It starts by initializing the set of services to which the new executor will be assigned to
the empty set (cf. line 1). Next, it goes through the sets of services, where the services
belonging to a set are managed by the same planner, set by set, to ensure that each
planner is linked to only one executor (cf. line 6). The set of services that further reduces
the total QoS degradation time for SBP when the new executor is assigned to them is
determined through the invocation of the QoSDegradationTime function (cf. lines
7-18). After that, the algorithm looks for other services to which it assigns the executor,
and it comes to an end when it can not further reduce the total QoS degradation time
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(cf. line 19).

Algorithm 4.5: E_Assignment procedure
Data: ne, tdt
Result: tdt, Services
begin

1 Services ← ∅;
2 mintdt ← tdt;
3 repeat
4 tdt ← mintdt;
5 mintdt ← +∞;
6 for set ∈ PSets do
7 I ← E;
8 for s ∈ set do
9 E[s] ← ne; /*ne is the new executor number*/
10 tdt ← QoSDegradationTime();
11 E ← I;
12 if tdt < mindt then
13 mintdt ← tdt;
14 BestSet ← set;

15 if mintdt < tdt then
16 for s ∈ BestSet do
17 E[s] ← ne;
18 Services ← Services ∪ BestSet;
19 until mintdt > tdt;

4.4.3.2 M/A_Assignment procedure

The M/A_Assignment procedure, whose pseudo-code is given in Algorithm 4.6, aims
to assign a minimum number of analyzers (respectively monitors) to the SBP services. It
goes through the sets of services, where the services belonging to a set are managed by the
same planner (respectively analyzer), set by set, to ensure that each analyzer (respectively
monitor) is linked to only one planner (respectively analyzer) (cf. line 2). Then for each
service, the algorithm looks for an analyzer (respectively monitor) which is not used by
any service during any time period when the current service uses it to guarantee that each
analyzer (respectively monitor) is assigned to only one service at a time (cf. lines 4-12).
The latter analyzer (respectively monitor) is then assigned to the service (cf. line 13), and
it is considered as used at these time periods (cf. lines 14-16). The number of analyzers
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(respectively monitors) that will be used by services is possibly updated (cf. lines 17-18).
Algorithm 4.6: M/A_Assignment procedure
Data: Sets, AT, AF
Result: nc, C
begin

1 nc ← 0;
2 for set ∈ Sets do
3 for s ∈ set do
4 currentC ← 0;
5 repeat
6 unoccupied ← true;
7 currentC ← currentC + 1;
8 for (i← sts; i < sts + T [s]; i← i+AF [s]) do
9 for (t← i; t < i+AT [s]; t← t+ 1) do
10 if currentC ∈ occupied[t] then
11 unoccupied ← false;

12 until unoccupied;
13 C[s] ← currentC;
14 for (i← sts; i < sts + T [s]; i← i+AF [s]) do
15 for (t← i; t < i+AT [s]; t← t+ 1) do
16 occupied[t] ← occupied[t] ∪ {currentC};

17 if currentC > nc then
18 nc ← currentC;

4.4.4 Theoretical Complexity

Our approach consists of two main algorithms called ParalelServices and M-A-P-
E_Assignment. The first one consists in determining all the sets of parallel services
(Algorithm 4.1). The worst case time complexity of this algorithm is bounded by O(n4),
where n is the number of services that compose the given SBP.

The second algorithm aims to assign a minimum number of monitors, analyzers,
planners, and executors to the SBP services such that the total QoS degradation time for
SBP is maintained below a certain upper limit while avoiding management bottlenecks
(Algorithm 4.2). It consists of two procedures, called P-E_Assignment (Algorithm 4.3)
and M/A_Assignment (Algorithm 4.6):

• The complexity of the P-E_Assignment procedure depends on those of the two
invoked procedures, namely P_Assignment and E_Assignment, which have,
respectively, a complexity of O(n4) and O(n4), where n is the number of services.
The number of iterations of the while loop of P-E_Assignment is equal to 2×n.
Hence, its overall complexity is O(2× n× n4) ' O(n5);
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• The complexity of the M/A_Assignment procedure is O(n3 × m2), where n is
the number of services and m is the maximum execution time from the estimated
execution times of the SBP services. The number of iterations of the repeat loop
is equal to n.

The worst case time complexity of the M-A-P-E_Assignment algorithm is O(n5 +
n3×m2). In summary, we can say that the theoretical complexity of the proposed approach
is bounded by O(n5 + n3 × m2).

4.5 Illustrative Example
Herein, we present an example illustrating how the approach works. Let us consider the
example depicted in Figure 4.3 that represents a timed SBP graph.
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Figure 4.3: Example of timed SBP graph.

Applying the ParallelServices algorithm, as shown in Figure 4.4, the first iteration
considers the initial sets: ParallelSet={S1,S2,S3,S4,S5} and PendingSet=∅. The number
within the blue rectangle represents the estimated remaining time required by a service
to complete its execution, while the number within the yellow rectangle represents the
estimated remaining time required by a service to start its execution. The minimum time
is equal to 10, so the estimated remaining time required by the service S1, S2, S3, S4
and S5 to complete their execution is 18, 0, 0, 5 and 5, respectively. It is equal to 0
for services S2 and S3, then their successors are added to the current pending set, i.e.
PendingSet={S7} and ParallelSet={S1, S4, S5}. In the second iteration, the minimum
time is equal to 5. Thus, the estimated remaining time required by service S1, S4 and
S5 to complete their execution is 13, 0 and 0, respectively; and the estimated remaining
time required by service S7 to start its execution is 0. It is equal to 0 for services S4, S5
and S7. The successors of services S4 and S5 (S8 and S9) are added to the current set
of pending services, where the estimated time required by each one to start its execution
is mentioned within the yellow rectangle; and service S7 is added to the current set of
parallel services since the time required to transfer data from S3 to S7 is completed,
where the time required by S7 to complete its execution is mentioned within the blue
rectangle. The same process is applied until reaching the 7th iteration with PendingSet=∅
and ParallelSet=∅.
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Iteration 1:

ParallelSet={(S1, S2), S3, S4, S5}
28 10 10 15 15

PendingSet=  
time=min(28,10,10,15,15)=10

Iteration 2:

ParallelSet={(S1, S2), S3, S4, S5}
18 0 0 5 5

PendingSet= {S7}

time=min(18,5,5,5)=5

Iteration 3:

ParallelSet={S1, S4, S5, S7}
13 0 13

PendingSet= {S7, S8, S9}

time=min(13,13,13,21)=13

5 0 13

Iteration 4:

ParallelSet={S1, S7, S8}
0 0 12

PendingSet= {S8, S6, S9}

Iteration 5:

ParallelSet={S8, S6}
7 14

PendingSet= {S9}

Iteration 6:

ParallelSet={S8,S6,S9}
4

PendingSet=   
3

0 5

Iteration 7:

ParallelSet={S6,S9}
7

PendingSet=  
time=min(7,7)=7

ParallelSet= {S6,S9}= 

PendingSet=  

0

21 8

11 11 7

0 0

ParallelSet={S1, S4, S5}
18 5 5

PendingSet= {S7}
5

ParallelSet={S1, S7}
13 13

PendingSet= {S8, S9}
13 21

ParallelSet={S8}
12

PendingSet= {S6, S9}
5 8

time=min(12,5,8)=5

ParallelSet={S8, S6}
7 14

PendingSet= {S6, S9}
30

time=min(7,18,3)=3

ParallelSet={S8,S6,S9}
4

PendingSet=   

11 11

time=min(4,11,11)=4

ParallelSet={S8,S6,S9}
7

PendingSet=  

70

Figure 4.4: Execution trace of ParallelServices algorithm.

The ParallelServices algorithm comes to an end after seven iterations and check-
ing that all the sets of parallel services are determined. Thus, it yields the following output:

ParallelSets={{(S1, S2), S3, S4, S5}, {S1, S7}, {S6, S8, S9}}

Then the P-E_Assignment algorithm is applied to determine the appropriate num-
ber of planners and executors for the management of the given timed SBP using the
following inputs:

• ParallelSets={{(S1, S2), S3, S4, S5}, {S1, S7}, {S6, S8, S9}};

• PT=[3, 2, 4, 3, 2, 1, 2, 2, 3];

• ET=[3, 2, 2, 3, 3, 1, 2, 3, 2];

• mdt=26.

As shown in Figure 4.5, the first iteration considers a planner and an executor for the
management of the given SBP. The time taken by the planner (respectively executor) to
manage the services that belong to the first set of parallel services {(S1,S2),S3,S4,S5}
is equal to max(3, 2) + 4 + 3 + 2 = 12 (respectively max(3, 2) + 2 + 3 + 3 = 11). In fact,
services S1 and S2 are two alternative services, then we take the maximum time between
the times needed to generate adaptation plans for these services (i.e. max(3, 2)); and
as a planner (respectively executor) must be assigned to only one service at a time, it
sequentially produces adaptation plans for the current services. As a result, we have done
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the sum for the planning times (respectively carry out times). However, the time taken
by the planner (respectively executor) to manage the services that belong, respectively,
to the second and the third set of parallel services is equal to 3 + 2 (respectively 3 + 2)
and 1 + 2 + 3 (respectively 1 + 3 + 2). Using one planner and one executor, the total
QoS degradation time for SBP is equal to 45. It is greater than the maximal allowed QoS
degradation time that is equal to 26, so a new planner is added. In the second iteration,
for each set of parallel services, the total time required for generating adaptation plans
for the current services is calculated, and it is evenly shared between the two planners.
The first set of parallel services consists of services S1, S2, S4, S3 and S5, so planner
number 1 is assigned to services S1, S2 and S4, and planner number 2 is assigned to the
services S3 and S5. The same process is applied to the second and third sets: planner
number 1 is assigned to services S6 and S8, and planner number 2 is assigned to services
S7 and S9. Using tow planners and one executor, tdt is equal to 34. It is still greater
than the maximal allowed QoS degradation time. In this case, we calculate the new tdt
whether we add (i) a new planner, or (ii) a new executor. It is respectively equal to 33
and 25. A new executor is then added for the management of SBP because it further
reduces tdt and the algorithm comes to an end (25 � 26).

1 Planner 1 Executor 2 Planner 1 Executor

3 Planner 1 Executor 2 Planner 2 Executor

 OR

Iteration 1: Iteration 2:

Iteration 3:

Figure 4.5: Execution trace of P-E_Assignment algorithm.

The P-E_Assignment algorithm comes to an end after three iterations. It yields
the following outputs:

P 1 1 2 1 2 1 2 1 2

After that, the M/A_Assignment algorithm is applied to determine the appropriate
number of analyzers using the following inputs:
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E 1 1 2 1 2 1 2 1 2

• PSets={{S1, S2, S4, S6, S8}, {S3, S5, S7, S9}};

• AT=[3, 1, 1, 2, 2, 1, 3, 2, 2];

• AF=[7, 4, 4, 5, 5, 4, 4, 5, 3].

As shown in Figure 4.6 (right), the algorithm goes through the sets of services PSets,
set by set, where the services belonging to a set are managed by the same planner; and
for each service in the current set, it looks for an unoccupied analyzer. At first, analyzer
number 1, i.e. A1, is assigned to service S1. Since S1 or S2 will be executed, A1 is also
assigned to service S2. A1 is not occupied during any time period when service S4 will
use it, i.e. [5,7](left), the latter is assigned to S4. The same process is applied to services
S6 and S8. To ensure that each analyzer is linked to only one planner, different analyzers
from the analyzers linked to planner number 1 must be used to manage the services to
which planner number 2 is assigned, that is we can not use A1 to manage service S3, S5,
S7 or S9. At first, analyzer number 2, i.e. A2, is assigned to service S3. We try then to
assign A2 to service S5. In fact A2 is not occupied during any time period when service
S5 will use it, i.e. [5,7],[10,12], it is assigned to S5. The same process is repeated for
services S7 and S9, and A2 is assigned to them.

E1

E2 

P1

P2

A1A1
A1A1
A1A1
A1A1
A1

A2

A2A2
A2

A2

Figure 4.6: Execution trace of M/A_Assignment algorithm: Assignement of analyzers
to SBP services.

Finally, the M/A_Assignment algorithm is applied in order to determine the ap-
propriate number of monitors using the following inputs:

• ASets={{S1, S2, S4, S6, S8}, {S3, S5, S7, S9}};

• MT=[3, 2, 1, 3, 2, 2, 4, 2, 3];

• MF=[5, 3, 4, 3, 5, 3, 4, 3, 3].
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As shown in Figure 4.7 (right), the algorithm goes through the sets of services, set
by set, where the services belonging to a set are managed by the same analyzer; and
for each service in the current set, it looks for an unoccupied monitor. At first, monitor
number 1, i.e. M1, is assigned to service S1. Since S1 or S2 will be executed, M1 is
also assigned to service S2. M1 is occupied when service S4 will use it (it is already
used by service S2 at the time periods [3,5] and [6,8]), then monitor number 2, i.e. M2,
is assigned to S4. M1 is not occupied during any time period when service S6 will use
it, i.e.[36,38],[39,41],[42,44],[45,47] (left), M1 is assigned to S6. We can not assign M1
to service S8 because it is occupied during the time period [37,38] when S8 will use it,
but M2 is not occupied at these time periods: M2 is assigned to S8. To ensure that
each monitor is linked to only one analyzer, different monitors from the monitors linked
to analyzer number 1 must be used to manage the services to which analyzer number 2
is assigned. At first, monitor number 3, i.e. M3, is assigned to service S3. We try then
to assign M3 to service S5. M3 is not occupied by any service when S5 will use it. It
is also assigned to S5. The same process is repeated for services S7 and S9, and M3 is
also assigned to them.
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Figure 4.7: Execution trace of M/A_Assignment algorithm: Assignement of monitors
to SBP services.

4.6 Performance Evaluation
In this section, we present a series of performance evaluations of our approach in terms
of execution time and quality of provided solutions. In order to show the efficiency of this
approach, we compare it to our solution presented in the previous chapter, Section 3.3.1,
to verify how the approach enhances the AM components optimization process for the
management of timed SBPs. We also compare the solution provided by this approach
with the solution obtained by solving the formal model presented in Section 4.3.4 using
the CPLEX solver, when such a solution is possible (see the previous chapter, Section
3.4.3 for more details).

The different experiments are carried out on an Intel Core i7 PC with 2.70 GHz and
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8GB of RAM. We use the commercial CPLEX solver 12.6 to solve the ILP formulation
(Section 4.3.4).

In order to evaluate the performance of the proposed approach, we implement a
generator of random timed SBPs. To the best of our knowledge, there is no available
public dataset of timed business process models. Thus, to perform the experiments, we
generate different connected timed SBP graphs with a number of services varying from
10 to 100, in increments of 10, and a number of edges ranging from n−1 to 3.2× (n−1)
(i.e. 320% of (n − 1)), in increments of 0.2, where n is the order of the graph. Indeed,
we do not generate graphs with more edges, since whenever the number of edges goes
beyond 2.4 × (n − 1), the lower bound number of AMs is equal to n (see the previous
chapter for more details). All the results are average values across 10 independent runs.
All data inputs are randomly generated and detailed in Table 4.1.

Information Range
Number of services [10− 100]
Number of edges [(n− 1)− 3.2× (n− 1)]

Execution time of a service [5− 30]
Data transfer time between services [5− 30]

Monitoring time [2− 10]
Monitoring frequency [1− 5]

Analysis time [2− 10]
Analysis frequency [1− 5]
Planning time [2− 10]
Adaptation time [2− 10]

Maximum allowed QoS degradation time [0− 50]

Table 4.1: Characteristics of data inputs of generated SBP graphs and AM components.

The experimental results on the randomly generated dataset are illustrated in Fig-
ures 4.8 and 4.9. Compared to our previous approach, it can be seen that the proposed
approach outperforms the previous approach in terms of reducing the number of monitors,
analyzers, planners and executors for the management of timed SBPs. It decreases the
number of AMs by about 54%. On the other hand, the gap between our approximate
solution and the optimal solution is very small and does not exceed 10.34%. It means
that our solution is very close to the optimal solution. As for the execution time, the
results presented in Figure 4.10 show that our proposed approach takes a very short time
to provide a near-optimal solution (less than 0.07 second). However, the exact method,
solved by the ILP solver, takes more than two hours for 26 services. Note that the solver
can not to find the optimal solution for the SBP graphs with more than 26 services due
to a problem of memory.
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Figure 4.8: Number of monitors, analyzers, planners, and executors versus number of
services varying from 10 to 26.
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Figure 4.10: Execution time versus number of services.

The experimental results demonstrate that our approach outperforms the previous one
significantly in terms of both quality and execution time.
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4.7 Conclusion
In this chapter, we broke down AM into its main components (monitor, analyzer, plan-
ner, executor) to minimize the number of each one separately for the management of
timed SBPs while avoiding management bottlenecks. We formally defined the problem
as ILP. Since solving the ILP formulation is time-consuming even for small timed SBPs,
we proposed a near-optimal approach to solve this problem in a polynomial time, and
an illustrative example of how it works was given. The experimental results show the
efficiency of our approach.

The performance of the management SBPs depend highly on the autonomic resources
allocated to them and the placement decisions of these latter in the Cloud. One of
the key challenges faced by Cloud providers is to optimize the placement cost of the
autonomic resources that will be used for the management of SBPs while fulfilling SBP
QoS requirements. Hence, in the next chapter, we will focus on how to formulate this
problem and solve it in a polynomial time.



Chapter 5
Placement of Autonomic Managers for
the management of SBPs in the Cloud

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Preliminaries: IaaS Cloud provider, Deployed SBP . . . . . . . 77

5.2.1 IaaS Cloud Provider . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Deployed SBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Placement of AMs in the Cloud for Efficient Management of
SBPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Joint Optimization of the Number of AMs and their Placement
in the Cloud for Efficient Management of SBPs . . . . . . . . . 86

5.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

76



5.1 Introduction 77

5.1 Introduction

The performance of SBPs depend highly on the Cloud resources allocated to them in-
cludes: (i) the allocation of the adequate number of autonomic resources for their man-
agement, which is the subject of our two previous chapters, and (ii) the allocation of the
adequate Cloud resources to host and execute these AMs and the services that make up
SBPs. Since several research works (such as [44, 45, 49, 48]) have treated the problem of
the allocation of the adequate Cloud resources to SBP services, in this chapter, we focus
on the allocation of Cloud resources to host and execute autonomic resources that will
be used by services for their management such that the management cost is minimized
while meeting the QoS requirements.

This chapter is organized as follows: Preliminaries on IaaS Cloud providers and de-
ployed SBPs are firstly introduced in Section 5.2. Then we describe the problem of
determining the best placement decisions of AMs for the management of SBPs in the
Cloud, and we formulate it as an optimization model in the case where the number of
AMs is known or not known in advance. We also present two different approaches for
these two cases in Sections 5.4 and 5.5. Illustrative examples as well as experimental
results are provided for both cases. Finally, we conclude the chapter in Section 5.6.

5.2 Preliminaries: IaaS Cloud provider, Deployed SBP

In this section, we present some definitions and basic concepts related to an IaaS Cloud
provider and deployed SBPs.

5.2.1 IaaS Cloud Provider

An IaaS Cloud provider is hosted in multiple geographically distributed regions. Each
region has multiple Availability Zones (AZs), i.e. multiple data centers in simple terms,
and each one may offer different VM types. Furthermore, multiple instances of each VM
type can be offered by a zone. Figure 5.1 depicts a simplified representation a Cloud
infrastructure provider.

Figure 5.1: Cloud infrastructure provider [9].



78 Placement of Autonomic Managers for the management of SBPs in the Cloud

Definition 5.2.1 (IaaS Cloud provider). An IaaS Cloud provider is defined as a 3-tuple
〈Z, cinter, cintra〉 which is inspired from a real Cloud provider1 where:

• Z is the set of AZs. Each AZ offers several types of VMs (Vz = {vm}), vm =
(cu, ram, cpu, bw, avail, vmax) such that cu is the compute price ($/h), ram is
the RAM capacity (GB), cpu is the quantity of CPU cores, bw is the bandwidth
capacity (Mb/s), avail is the availability capacity (%), and vmax is the maximum
number of instances that can be deployed;

• cinter is the inter-AZ data transfer price ($/GB);

• cintra is the intra-AZ data transfer price ($/GB).

5.2.2 Deployed SBP

A deployed SBP in the Cloud is represented by a graph, where services are deployed on
different instances of VMs into different AZs.

Definition 5.2.2 (Deployed SBP). A deployed SBP is defined as a 6-tuple 〈S,E, I, l, ε, δ〉
where:

• S is the set of services;

• E ⊆ S × S is the set of edges that represents the data dependencies between
services, such that (si, sj) ∈ E if the output data of service i is required for the
execution of service j;

• I ⊂ S is the set of initial services;

• l : S → Z × V × I is a function that assigns, for each service s ∈ S, an instance
i ∈ I of VM v ∈ Vz in AZ z ∈ Z, where s is deployed. I = {1, ..., vmaxzv};

• ε : S ← N is a function that assigns, for each service s ∈ S, an estimated execution
time;

• δ : S × S ← N is a function that assigns, for each pair of services (si, sj) ∈ E, an
estimated quantity of data to be transferred from si to sj .

1The IaaS Cloud is inspired from the Amazon EC2 https://aws.amazon.com/fr/ec2/pricing/on-
demand/

https://aws.amazon.com/fr/ec2/pricing/on-demand/
https://aws.amazon.com/fr/ec2/pricing/on-demand/
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5.3 Problem Description
Managing SBPs in the Cloud involves using autonomic resources to dynamically adapt
services to changes. A key challenge faced by Cloud providers is to efficiently allocate
Cloud resources to the services that make up these SBPs, which results in lower computing
and communication costs while the required QoS is met. In fact, due to the diversity of
services and autonomic resource QoS requirements as well as the heterogeneity of Cloud
resources, and to ensure the performance of execution and other QoS aspects of SBPs, the
computing resources allocated to them must satisfy the requirements of SBP services and
autonomic resources that will be used by these services for their management in terms
of hardware resources (CPU, RAM). Furthermore, these applications are characterized
by their large data volume; which will result in a high amount of communication traffic
between VMs. Consequently, it is also important to consider the placement decisions of
services and autonomic resources in the Cloud. Since several research works (such as
[44, 45, 49, 48]) have treated the problem of placement of services in the Cloud, in this
chapter, we focus on the placement of autonomic resources that will be used by services
that make up SBPs in the Cloud. The placement decisions of services will be considered
as inputs.

AZ=us-east-1bAZ=us-east-1a

AZ=us-east-1c

Figure 5.2: Second research problem: Finding the best placement decisions of AMs to be
used by SBP services in the Cloud.

5.4 Placement of AMs in the Cloud for Efficient Manage-
ment of SBPs

In this section, we present our first proposal for determining the best placement decisions
of a given number of AMs that will be used by services that make up SBPs for their
management in the Cloud (see the two previous chapters for more details). First, we



80 Placement of Autonomic Managers for the management of SBPs in the Cloud

present an ILP formulation to solve this problem such that the total placement cost is
minimized (Section 5.4.1). Afterwards, we present a near-optimal algorithm that provides
good solutions in a polynomial time (Section 5.4.2). An illustrative example of our algo-
rithm is then provided (Section 5.4.3). Afterwards, we present the experiments that we
perform to evaluate it (Section 5.4.4).

5.4.1 Problem Formulation
We start this section by introducing some assumptions and notations in order to facilitate
the formulation. Without loss of generality, we assume that all AMs have the same
requirements in terms of hardware resources (RAM, CPU, etc.). Furthermore, we assume
that all VMs are homogeneous, that is all VMs are characterized by the same hardware
configuration in terms of CPU, RAM, etc. and have the same compute price. Given a
deployed SBP, we denote by:

• S the set of services that make up SBP;

• PS the sets of services that can run in parallel;

• Z the set of AZs;

• Vz the set of VMs offered by AZ z ∈ Z;

• M the set of AMs that will be used by services;

• Dv the set of services deployed on VM v ∈ V;

• data the estimated data transfer quantity between a service and an AM.

.
Towards this end, the following decision variables are defined:

• xs
m takes 1 if AM m ∈M is assigned to service s ∈ S, and 0 otherwise;

• ys
m takes 1 if AM m ∈ M and service s ∈ S are deployed on the same VM, and 0
otherwise;

• zs
m takes 1 if AM m ∈M and service s ∈ S are in the same AZ, and 0 otherwise;

• wv
m takes 1 if AM m ∈M is deployed on VM v ∈ V , and 0 otherwise.

Given the above assumptions and notations, our problem can be formulated in equa-
tions [5.1-5.8] where the objective function 5.1 aims to minimize the sum of intra-AZ
communication costs (the data transfer cost in the same VM is null) and the sum of
inter-AZ communication costs. Constraint 5.2 makes sure that only one AM is assigned
to each service all along the SBP life cycle. The authors in [75, 16] adopted the principle
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of using multiple AMs for the management of applications to avoid management bottle-
necks, but they did not provide any means to optimize their number. In our work, an
AM is able to manage a set of sequential services to reduce the amount of monitoring
data that will be processed by each AM to prevent bottlenecks. Therefore, constraint 5.3
ensures that parallel services are managed by different AMs. Constraint 5.4 guarantees
that each AM is placed (deployed) on only one VM.

min
∑
s∈S

∑
m∈M

cintra.data.xs
m.z

s
m.(1− ys

m) +
∑
s∈S

∑
m∈M

cinter.data.xs
m.(1− zs

m) (5.1)

Subject to:∑
m∈M

xs
m = 1 ∀s ∈ S (5.2)

∑
s∈P

xs
m <= 1 ∀m ∈M, ∀P ∈ PS (5.3)

∑
z∈Z

∑
v∈Vz

wv
m = 1 ∀m ∈M (5.4)

Constraint 5.5 makes sure that δv
s takes 1 if service s ∈ S is deployed on VM v ∈ V .

We add equations [5.6-5.8] which ensure the linear relationships among the decision
variables.

δv
s = 1 ∀z ∈ Z, v ∈ Vz, s ∈ Dv (5.5)∑

v∈Vz

δv
s + wv

m − 2.zs
m ≤ 1 ∀z ∈ Z, ∀s ∈ S, ∀m ∈M (5.6)

∑
v∈Vz

δv
s + wv

m − 2.zs
m ≥ 0 ∀z ∈ Z, ∀s ∈ S, ∀m ∈M (5.7)

δv
s + wv

m − 2.ys
m ≥ 0 ∀z ∈ Z, ∀v ∈ Vz, ∀s ∈ S,∀m ∈M (5.8)

Considering the number of deployments of applications in a public Cloud (see Chapter
3, Section 3.2.4 for more details), and as we will show in the evaluation section (Sec-
tion 5.4.4), the time needed to solve the optimization model using the CPLEX solver
is not acceptable. It can exceed two hours, and whenever the number of services goes
beyond 21, the solver can not find the optimal solution. Consequently, finding the optimal
solution, in this context, is not possible. Therefore, to tackle this NP-hard problem [80],
we propose in the following section an algorithm that provides near-optimal solutions in
a polynomial time.

5.4.2 Proposed Algorithm
In this section, we introduce our proposed algorithm, whose pseudo-code is given in
Algorithm 5.1. It takes as inputs a deployed SBP and a number of AMs and outputs AM
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assigned to each service, VM in which this AM is placed, and the total placement cost of
AMs. It aims to determine the best placement decisions of these AMs in the Cloud such
that the total transfer cost is minimized while fulfilling the constraints given by equations
[5.1-5.8].

The algorithm starts by initializing the total placement cost to 0 (cf. line 1). After
that, it starts with the first AM, and it looks for the set of maximum cardinality that
contains the services that are deployed on the same VM and can run sequentially (cf.
lines 6-10). The current AM is assigned to each service in this set, and it is placed in
the current VM (cf. lines 11-14). This step is repeated until all the AMs are assigned
to services (cf. line 15). Then for each service that does not have an AM assigned to
it, the algorithm starts by AMs that are placed in the same AZ with this service in order
to minimize the data transfer cost, and it checks whether there is an AM that can be
assigned to it (cf. line 17). If it is the case, the latter AM is assigned to this service (cf.
line 18). Otherwise, an AM that is placed into a different AZ is assigned to the current
service (cf. line 21). The total placement cost is then updated (cf. line 19 and line 22).

Our Proposed algorithm consists in determining the best assignment decisions of a
given number of AMs to the services that make an SBP as well as to VMs. The worst
case time complexity of this algorithm is bounded by O(n2 × m × p), where n is the
number of AMs, m is the number of VMs on which the services are deployed, and p is
the number of sets of parallel services.

5.4.3 Illustrative Example

Herein, we present an example illustrating how the algorithm works. Let us consider the
example depicted in Figure 5.3 that represents an example of an SBP composed of six
services that are deployed on three homogeneous VMs.

In our example, we assume that the quantity of data to be transmitted from a service
to an AM is 30. In addition, and for simplicity purposes, we assume that the sets of
parallel services are: {S1}, {S2, S3}, {S2, S5}, {S4, S6}. The number of AMs that will
be used by services is equal to 2.

S3

S1

AZ1

  AZ2

S2
S4

S5
S6

Figure 5.3: Example of SBP composed of six services deployed on three different homo-
geneous VMs.
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Algorithm 5.1: AMsPlacement
Data: - 〈S,E, I, l, ε, δ〉: Deployed SBP

- PS: Set of Sets of parallel services
- nbAMs: Number of AMs

Result: - AMs: Array containing the AM assigned to each service
- VMs: Array containing the VM on which each service is deployed
- totalcost: AMs placement cost

begin
1 totalcost ← 0;
2 currentAM ← 0;
3 repeat
4 currentAM ← currentAM + 1;
5 maxCardinality ← 0;
6 for vi ∈ V do
7 Find the set of sequential services with maximum cardinality Gi;
8 if |Gi| > maxCardinality then
9 maxCardinality ← |Gi|;
10 vmin ← vi;

11 for s ∈ Gi do
12 AMs[s] ← currentAM ;
13 S ← S \ {s};
14 VMs[currentAM ] ← vmin;
15 until (currentAM = nbAMs);
16 for si ∈ S do
17 if ∃ AM s.t.(VMs[AM ] in AZ(si) and @ sj s.t.(AMs[sj ] =

AM and {si, sj} ⊆ P ∈ PS)) then
18 AMs[si] ← AM ;
19 totalcost ← totalcost+ intra× data;
20 else
21 AMs[si] ← GetAM(si);
22 totalcost ← totalcost+ inter × data;
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First, the algorithm consists in grouping the services that are deployed on the same VM
and can sequentially run in different groups to determine the set of sequential services
with a maximum cardinality. In this example, it is {S2, S4}. As a consequence, AM
number 1, i.e. AM1, is assigned to services S2 and S4, and AM1 is placed in VM2. The
same process is applied to the rest of services, so AM number 2 is assigned to services S5
and S6, and AM2 is placed in VM2. The total placement cost is equal to 0 because the
data transfer cost in the same VM is null. After that, the next iteration considers service
S1. AM1 is assigned to S1 resulting in cost = 0.01× 30 = 0.3$. For service S3, AM1
can not be assigned to it because it is already assigned to service S2 that can run in
parallel with it, then AM2 is assigned to S3 resulting in cost = cost+ 0.05× 30 = 1.8$.

5.4.4 Experimental Results

In this section, we present a series of performance evaluations of our algorithm in terms
of execution time and quality of provided solutions. In order to show the efficiency of this
approach, we compare it to the solution obtained by solving the formal model presented
in Section 5.4.1 using the CPLEX solver, when such a solution is possible (see Chapter
3, Section 3.4.3 for more details).

To the best of our knowledge, none of the existing works has explicitly focused on the
determination of the optimal placement decisions of AMs for the management of SBPs
(see Chapter 2 for more details). Therefore, we do not make comparisons with existing
work here. The different experiments are carried out on an Intel Core i5 PC with 2.53
GHz and 4GB of RAM. We use the commercial CPLEX solver 12.6 to solve the ILP
formulation (Section 5.4.1).

In order to evaluate the performance of the proposed algorithm, we implement a
generator of random SBPs (see the previous chapter, Section 4.6 for more details). For
the experimental study, we vary the number of services from 2 to 22, in increments of 2.
In addition, we vary the number of VMs form 2 to 10, in increments of 2. We consider
that cinter is equal to 0.05$, cintra is equal to 0.01$, and the quantity of data exchange
between a service and an AM is equal to 30.

The experimental results are depicted in Figure 5.4. We note that the gap between
the objective function of our algorithm and the exact model is small and does not exceed
11.72%. It means that our solution is very close to the optimal solution.

In addition, the results show that our algorithm takes a very short time to provide
the best placement decisions of AMs in the Cloud (less than 0.14 second). However, the
exact method, solved by the ILP solver, takes more than two hours for 21 services, which
are deployed on 10 different VMs. Note that the solver can not find the optimal solution
even for small size problems (for more than 21 services) due to a problem of memory
(Figure 5.5). In fact, the exact method is very time and resource-consuming due to the
branch and bound algorithm that performs poorly.
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Figure 5.4: First proposal: AMs placement cost versus number of services and VMs.
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Figure 5.5: First proposal: Execution time of CPLEX versus number of services.
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5.5 Joint Optimization of the Number of AMs and their
Placement in the Cloud for Efficient Management of
SBPs

In this section, we present our second proposal for determining the best placement deci-
sions of AMs components for the management of SBPs, which will be determined during
the placement process. First, we present an ILP formulation to solve this problem such
that the total placement cost is minimized while meeting the QoS requirements (Section
5.5.1). Afterwards, we present a near-optimal approach that provides good solutions in a
polynomial time (Section 5.5.2). An illustrative example of our approach is then provided
(Section 5.5.3). Afterwards, we present the experiments performed to evaluate it (Section
5.5.4).

5.5.1 Problem Formulation

We start this section by introducing the notations that are used throughout the chapter as
well as the assumptions. Next, we give the formulation of determining the best placement
decisions of AM components that will be used by SBP services for their management in
the Cloud.

Notations and Assumptions
Let S be the set of services that compose an SBP and PS the sets of parallel services.

Let Z be the set of AZs, Vz be the set of VMs types offered by AZ z ∈ Z, and Izv be
the set of instances of VM v ∈ Vz. We define Di as the set of services deployed on
instance i ∈ I of VM v ∈ V into AZ z ∈ Z, and tet as the estimated execution time of
SBP. Let M , A, P and E respectively represent the set of candidate monitors, analyzers,
planners and executors that may be assigned to |S|. Each set has as cardinality the
number of services, i.e. |S|, since in the worst case different monitors, analyzers, planners
and executors will be assigned to the services. Let rcpui, rrami and ravaili respectively
be the required quantity of CPU cores, RAM capacity and availability by AM component
i ∈M ∪A ∪ P ∪ E or service i ∈ S.

We denote by tcv the time taken by AM component c deployed on VM v ∈ V
to achieve its task, and by dkh the quantity of data to be transmitted from service
(respectively monitor, analyzer, planner, executor) k to monitor (respectively analyzer,
planner, executor, service) h. Let mfs be the monitoring frequency for service s and Is

the set of time stamps at which we can monitor it, where the step size between each
element in Is and the next element is equal to mfs. We define Evs as the set of events
that can result from the analysis of the monitoring data collected from service s. It
contains the event ’no problem found’ in addition to all the predefined problems that
could happen. Let afs be the analysis frequency for service s, and Js be the set of time
stamps at which we can analyze it, where the step size between each element in Js and
the next element is equal to afs. We denote by pevs the probability that problem ev will



5.5 Joint Optimization of the number of AMs and their placement in the Cloud 87

happen for service s. Thus, ∀s ∈ S,
∑

evs∈Evs
pevs = 1. We also define Acs as the set

of adaptation actions that can be produced by a planner component in order to process
problems that could happen by service s. We denote by pacs the probability that action
ac will be chosen for service s. Hence, ∀s ∈ S,

∑
acs∈Acs

pacs = 1. Moreover, allocnt

takes 1 if instance n ∈ I of VM v ∈ V into AZ z ∈ Z is allocated to at least one service
at time t ∈ [0..tet], and 0 otherwise.

Without loss of generality, we assume that all monitors (respectively analyzers, plan-
ners, executors) have the same requirements in terms of hardware resources (RAM, CPU,
etc.) and that resource requirements by services and AM components are static. We also
assume that the time is divided into time slots of equal length t ∈ [0..tet] and that each
service i has a start time si and a termination time ei.

Intervals
C = {1, 2, .., |S|} is the set of services or the set of candidate monitors (respectively

analyzers, planners, or executors).
I = {1, .., vmaxzv}.
T = {monitor, analyzer, planner, executor}.

Constants
m = 1, a = 2, p = 3, e = 4 and s = 5 are respectively the identifiers of monitor,

analyzer, planner, executor and service types.

Decision variables
In this formulation, we consider the following decision variables:

• xrjn takes 1 if the candidate AM component j ∈ C of type r ∈ T is placed in
instance n ∈ I of VM v ∈ V into AZ z ∈ Z, and 0 otherwise.

• ykihj takes 1 if the candidate AM component i ∈ C of type k ∈ T (or service
i ∈ C) and the candidate AM component j ∈ C of type h ∈ T (or service j ∈ C)
are in the same AZ, and 0 otherwise.

• zkihj takes 1 if the candidate AM component i ∈ C of type k ∈ T (or service
i ∈ C) and the candidate AM component j ∈ C of type h ∈ T (or service j ∈ C)
are placed in the same VM, and 0 otherwise.

• wkjhi takes 1 if the candidate AM component j ∈ C of type k ∈ T (or service
i ∈ C) is linked/assigned to the candidate AM component i ∈ C of type h ∈ T (or
service i ∈ C), and 0 otherwise.

• αki takes 1 if the candidate AM component i ∈ C of type k ∈ T is used by at least
one AM component/service, and 0 otherwise.

• βsihjt takes 1 if service i ∈ C is assigned to the candidate AM component j ∈ C
of type h ∈ T at time t ∈ {0, ..., tet}, and 0 otherwise.
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• δsihjv takes 1 if service i ∈ C is assigned to the candidate AM component j ∈ C
of type h ∈ T and j is placed in VM v ∈ V into AZ z ∈ Z, and 0 otherwise.

• γnt takes 1 if instance n ∈ I of VM v ∈ V into AZ z ∈ Z is allocated to at least
one AM component at time t ∈ {0, ..., tet}, and 0 otherwise.

Constraints
The objective functions are subject to the following set of constraints:
(a) Resource constraints: The resource constraints impose that VM capacities in

terms of RAM and CPU should satisfy the AM components and the services deployed on
it:

∀z ∈ Z, ∀v ∈ Vz, n ∈ Izv, ∀S ∈ PS, ∀t ∈ [0..tet]∑
k∈S

rcpuk.xskn +
∑
k∈S

∑
r∈T

∑
j∈C

rcpukr.xrjn.βskrjt 6 cpuv (5.1)

∑
k∈S

rramk.xskn +
∑
k∈S

∑
r∈T

∑
j∈C

rramkr.xrjn.βskrjt 6 ramv (5.2)

(b) QoS constraint: The QoS constraint imposes the minimum availability level
required by an AM component:

availi.xrjn ≥ ravailr.xrjn ∀z ∈ Z,∀v ∈ Vz,∀n ∈ Izv, ∀r ∈ T, ∀j ∈ C (5.3)

(c) Placement constraints: The placement constraint (5.4) imposes that each AM
component should be placed on one (and only one) VM. Constraint 5.5 ensures that xsjn

takes 1 if service s ∈ S is placed in instance n ∈ I of VM v ∈ V into AZ z ∈ Z.

∑
z∈Z

∑
v∈Vz

∑
n∈Izv

xrjn = αrj ∀r ∈ T, ∀j ∈ C (5.4)

xsjn = 1 ∀z ∈ Z, ∀v ∈ Vz, n ∈ Izv, ∀j ∈ Di (5.5)

(d) Assignment constraints: Constraint 5.6 makes sure that only one monitor is
assigned to each service all along the SBP life cycle. Constraint 5.10 ensures that if
a monitor is used, then it is linked to only one analyzer. Constraint 5.14 guarantees
that the latter analyzer is linked to only one planner. Constraint 5.18 ensures that the
latter planner is linked to only one executor. Constraint 5.7 makes sure that if a monitor is
assigned to at least one service, then it is considered as used. Constraint 5.11 (respectively
5.15, 5.19) makes sure that if an analyzer (respectively planner, executor) has at least
one monitor (respectively analyzer, planner) linked to it, then it is considered as used.
Constraints (5.8), (5.9), (5.12), (5.13), (5.16), (5.17), (5.20), and (5.21) guarantee that
each component is assigned to at most one service at a time.
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∀z ∈ Z, ∀v ∈ Vz,∀n ∈ Izv, ∀j, k, h, l, o ∈ C∑
k∈C

wshmk = 1 (5.6)

wshmk 6 αmk (5.7)
wshmk.xmkn 6 βshmkt ∀j ∈ Ih, ∀t ∈ {j, .., j + tmv − 1} (5.8)∑
h∈C

βshmkt 6 1 ∀t ∈ [0..tet] (5.9)
∑
k∈C

wmhak = αmh (5.10)

wmhak 6 αak (5.11)∑
evl∈Evl

pevl
.wslmh.wmhak.xakn 6 βslakt ∀j ∈ Jl,∀t ∈ {j, .., j + tav − 1} (5.12)

∑
j∈C

βsjakt 6 1 ∀t ∈ [0..tet] (5.13)

∑
k∈C

wahpk = αah (5.14)

wahpk 6 αpk (5.15)

∑
acj∈Acj

pacj .wsjmo.wmoah.wahpk.xpkn 6 βsjpkt ∀t ∈ [sj ..ej ] (5.16)

∑
j∈C

βsjpkt 6 1 ∀t ∈ [0..tet] (5.17)

∑
k∈C

wphek = αph (5.18)

wphek 6 αek (5.19)∑
acj∈Acj

pacj .wsjmo.wmoal.walph.wphek.xekn 6 βsjekt ∀t ∈ [sj ..ej ] (5.20)

∑
j∈C

βsjekt 6 1 ∀t ∈ t ∈ [0..tet] (5.21)

(e) Linearity constraints: We add constraints (5.22-5.38) which ensure the linear
relationships among the decision variables.
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∀z ∈ Z, ∀v ∈ Vz, ∀n ∈ Izv, ∀i, j, k, h, o ∈ C
δsimjv = wsimk.xmkn (5.22)
δsiajv = wsimk.wmkaj .xajn (5.23)
δsipjv = wsimk.wmkah.wahpj .xpjn (5.24)
δsiejv = wsimk.wmkah.wahpo.wpoej .xejn (5.25)

We replace equation (5.22) in constraint (5.8), equation (5.23) in constraint (5.12),
equation (5.24) in constraint (5.16), and equation (5.25) in constraint (5.20). Thus,
constraints (5.8), (5.12), (5.16) and (5.20) respectively become:

∀k ∈ C,∀h ∈ C
δshmkv 6 βshmkt ∀j ∈ Ih, ∀t ∈ {j, .., j + tmv − 1} (5.26)∑
evh∈Evh

pevh
.δshakv 6 βshakt ∀j ∈ Jh, ∀t ∈ {j, .., j + tav − 1} (5.27)

∑
evh∈Evh

pevh
.δshpkv 6 βshpkt ∀t ∈ [sh..eh] (5.28)

∑
evh∈Evh

pevh
.δshekv 6 βshekt ∀t ∈ [sh..eh] (5.29)

Then we must add the following logical constraints:

∀z ∈ Z, ∀v ∈ Vz, ∀n ∈ Izv, ∀i, j, k, h, o ∈ C
wsimk + xmkn ≤ δsimkv + 1 (5.30)
wsimh + wmhak + xakn ≤ δsiakv + 2 (5.31)
wsimj + wmjah + wahpk + xpkn ≤ δsipkv + 3 (5.32)
wsimo + wmoaj + wajph + wphek + xekn ≤ δsiekv + 4 (5.33)

wsimk + wmkah + wahpo + wpoej ≤ wejsi + 3 (5.34)
βsihjt + xhjn ≤ γnt + 1 ∀h ∈ T (5.35)

∀z ∈ Z, ∀v ∈ Vz, ∀n ∈ Izv, ∀k, h ∈ T ∪ {s}
xkizvn + xhjzvn ≤ zkihj + 1

(5.36)∑
v∈Vz

∑
n∈I

xkin + xhjn − 2ykihj ≥ 0 (5.37)

∑
v∈Vz

∑
n∈I

xkin + xhjn − 2ykihj ≤ 1 (5.38)
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Cost objective function: It consists in finding the minimum deployment cost of AM
components that will be used to manage the given SBP, which includes: (i) the sum
of VM allocation costs in order to execute these components, (ii) the sum of intra-AZ
communication costs (the data transfer cost in the same VM is null), and (iii) the sum
of inter-AZ communication costs.

Min cost =
∑
z∈Z

∑
v∈Vz

∑
n∈Izv

tet∑
t=0

cuv.γnt.(1− allocnt) +
∑

k∈T∪{s}

∑
i∈C

∑
h∈T∪{s}

∑
j∈C

cintra.

dkihj .wkihj .ykihj .(1− zkihi) +
∑

k∈T∪{s}

∑
i∈C

∑
h∈T∪{s}

∑
j∈C

cinter.dkihj .wkihj .(1− ykihj)

We then retrieve sol∗ the best solution found for cost, associated with the value
cost∗ = cost(sol∗). Therefore, cost∗ = cost(sol∗) (5.39) becomes a constraint of the
problem associated with componentsNumber.

ComponentsNumber objective function: It consists in finding the minimum number
of AMs components (componentsNumber objective function and constraints [5.1-5.39])
while ensuring the minimum deployment cost (cost objective function and constraints
[5.1-5.38]).

Min componentsNumber =
∑
k∈T

∑
i∈C

αki

Considering the number of deployments of applications in a public Cloud (see Chapter
3, Section 3.2.4 for more details), and as we will show in the evaluation section (Sec-
tion 5.5.4), the time needed to solve the optimization model using the CPLEX solver
is not acceptable. It can exceed two hours and whenever the number of services goes
beyond 14, the solver can not find the optimal solution. Consequently, finding the optimal
solution, in this context, is not possible. Therefore, to tackle this NP-hard problem [80],
we propose in the following section an approach that provides near-optimal solutions in a
polynomial time.

5.5.2 Proposed Approach
In this section, we introduce our proposed approach that operates in two steps. Step 1 is
implemented using the AMsComponentsPlacement algorithm, whose pseudo-code is
given in Algorithm 5.2. It aims to determine the best placement decisions of monitors, an-
alyzers, planners and executors, which will be used by services for their management in the
Cloud such that the total placement cost of these components is minimized while meeting
the QoS requirements. Step 2 is implemented using the AMsComponentsNumber al-
gorithm, whose pseudo-code is illustrated in Algorithm 5.3. Its main target is to reduce
the number of AMs components while ensuring the placement cost determined in step 1.
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5.5.2.1 AMsComponentsPlacement algorithm

The AMsComponentsPlacement algorithm takes as inputs a deployed SBP graph,
the IaaS capacity in the form of VMs, and services and components requirements in terms
of VM capacities in RAM, CPU, and availability. It outputs the monitor, the analyzer,
the planner, and the executor assigned to each SBP service, on which VMs as well as in
which AZs these latter components are placed as well as their placement cost.

The algorithm starts by initializing the total placement cost to 0 (cf. line 1). After
that, for each service, it dedicates an AM that is placed in the VM where this service is
deployed in order to avoid the communication and computing costs (cf. lines 2-3). The list
of services is sorted in a decreasing order according to the total amount of resources (CPU
then RAM) required by the dedicated components (cf. line 4). Next, for each service,
AMsComponentsPlacement checks if the capacities of VM (on which the current
service is deployed) in terms of RAM and CPU satisfy the AM components (cf. lines 5-6).
If it is not the case, then for each component assigned to it where this component is placed
on VM in which the current service is deployed (cf. line 8), the list of candidate VMs
which can host the current component is determined (cf. lines 9-10). For each candidate
VM, the cost of the placement of the current AM in this VM is calculated which takes
into account inter-AZ and intra-AZ communication costs as well as VMs compute costs
(cf. lines 11-12). The component to be chosen is the one with the minimum cost, and
it is moved to VM on which it executes in minimum cost (cf. lines 13-17). Then the
total placement cost is updated (cf. line 18). These steps are repeated until the resource
constraints on VM, on which the current service is deployed, is not violated (cf. line 6).

5.5.2.2 AMsComponentsNumber algorithm

AMsComponentsNumber starts by minimizing the number of executors, planners,
analyzers and monitors, which will be used by the SBP services in order not to push any
monitor (respectively analyzer, planner) to link to more than one analyzer (respectively
planner, executor). To do so, it checks for each service whether there is an executor that is
not used by any service during the execution period of this service, and the latter executor
guarantees its requirements while it is placed on VM where the executor assigned to it
is placed to ensure the placement cost provided by the AMsComponentsPlacement
algorithm. If it is the case, this executor is assigned to the current service (cf. lines 1-3).
After that, the algorithm goes through the sets of services, where the services belonging
to a set are managed by the same executor, set by set, to ensure that each planner is
linked to only one executor (cf. lines 4-5). For each set, it looks for minimizing the
number of planners assigned to this set (cf. lines 6-9). In the same way, it determines
the appropriate number of analyzers and monitors (cf. lines 10-11).
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Algorithm 5.2: AMsComponentsPlacement
Data: - 〈S,E, I, l, ε, δ〉: Deployed SBP
Result: - M, A, P, E: Sets of, respectively, 〈s,m, az, vm〉, 〈s, a, az, vm〉, 〈s, p, az, vm〉,

and 〈s, e, az, vm〉
- totalcost: AMs components placement cost

begin
1 totalcost ← 0;
2 for s ∈ S do
3 Assign to s an AM that satify its requirement and place it in the VM where s is

deployed;
4 Sort S in descending order according to the total amount of resources (CPU, RAM)

required by the AM components;
5 for s ∈ S do
6 while capacity(vm(s)) is violated do
7 mincost ← + ∞;
8 for c ∈ Cs where c ∈ vm(s) do
9 CandidateVMs ← ∅;
10 Record in CandidateVMs the VMs that have a free capacity ≥ cap(c)

during the execution period of c;
11 for v ∈ CandidateVMs do
12 cost← intra× ic(c)× az(v, vc) −intra× oc(c, v)× az(v, vc)

+inter × ic(c)× (1− az(v, vc))
+(inter − intra)× oc(c, azvms(vc))× (1− az(v, vc))
−inter ∗ oc(c, v)× (1− az(v, vc))
+(intra− inter)× oc(c, azvms(v) \ {v})× (1− az(v, vc))
+cuv × time(c, v);

/*ic(c) returns the sum of the inner data transfer quantity between
component c and the other components linked to it as well as the
service to which c is assigned, where these latter are deployed on the
same VM with c*/

/*oc(c, V ) returns the sum of the outer data transfer quantity
between c and the set of VMs V */

/*az(v, vc) takes 1 if VMs v and vc are into the same AZ, and 0
otherwise*/

/*azvms(v) returns the set of VMs offered by the AZ containing VM
v*/

/*time(v, c) returns the sum of time units where the VM v is only
used by c*/

13 if cost < mincost then
14 mincost ← cost;
15 cmin ← cs;
16 vmin ← v;

17 〈s, cmin, az(vm(s)), vm(s)〉 ← 〈s, cmin, az(vmin), vmin〉;
18 totalcost ← totalcost+mincost;
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Algorithm 5.3: AMsComponentsNumber
Data: - M, A, P, E: Sets of, respectively, 〈s,m, az, vm〉, 〈s, a, az, vm〉, 〈s, p, az, vm〉,

and 〈s, e, az, vm〉
Result: - M, A, P, E: Sets of, respectively, 〈s,m,az,vm〉, 〈s,a,az,vm〉, 〈 s,p,az,vm〉,

and 〈s,e,az,vm〉
begin

1 for s ∈ S do
2 if ∃ e (requiredResources(e)≥ requiredResources(es) and

vm(e)=vm(es) and isNotUsed(e,s)) then
3 〈s, es, az, vm〉 ← 〈s, e, az, vm〉; /*update*/

4 Group the services into different sets, i.e. ESets;
5 for set ∈ ESets do
6 if |set| > 1 then
7 for s in set do
8 if ∃p (requiredResources(p)≥ requiredResources(ps) and

vm(p)=vm(ps) and isNotUsed(p,s) and p ∈ planner(set)) then
9 〈s, ps, az, vm〉 ← 〈s, p, az, vm〉; /*update*/

10 Group the services into different sets, i.e. PSets, then look to minimize the number of
analyzers;

11 Group the services into different sets, i.e. ASets, then look to minimize the number of
monitors;
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5.5.2.3 Theoretical Complexity

Our proposed approach consists of two algorithms. The first one aims to find the best
placement decisions of AMs components for the management of an SBP (Algorithm 5.2).
Its worst case time complexity is bounded by O(n2 ∗ m ∗ p), where n is the number
of services that compose SBP, m is the number of VMs, and p is the maximum time
from the estimated execution times of the SBP services. The second algorithm aims to
minimize the number of AMs components while ensuring the total placement cost provided
by Algorithm 5.2 (Algorithm 5.3). The worst case time complexity of this algorithm is
bounded by O(n2 ∗ p), where n is the number of services and p is the maximum time
from the estimated execution times of the SBP services. In summary, we can say that the
theoretical time complexity of our approach is bounded by O(n2 ∗ m ∗ p).

5.5.3 Illustrative Example
Herein, we present an example illustrating how the approach works. Let us consider the
example depicted in Figure 5.6 that represents an example of an SBP composed of five
services that are deployed on three heterogeneous VMs.

In our example, we assume that the resources required for each AM component to
complete its execution are 200MB of RAM and one CPU. In addition, we assume that each
service requires 500 MB of RAM and services S1, S2, S3, S4 and S5 respectively require
2, 4, 2, 2 and 4 CPUs to complete their execution. Furthermore, we assume that the
quantity of data to be transmitted from service (respectively monitor, analyzer, planner,
executor) to monitor (respectively analyzer, planner, executor, service) is 30 (respectively
25, 20, 25, 18). For simplicity purposes, we also assume that the sets of parallel services
are: {S1, S2, S3}, {S4, S6}.

AZ1

  AZ2

Cu=0.7$
    RAM=4 GB

CPU= 12

Cu=0.5$
   RAM=4 GB

CPU= 8

S4

S5S3S4
S2

Figure 5.6: Example of SBP composed of five services deployed on three different hetero-
geneous VMs.

Initially, AMsComponentsPlacement assigns to each service an AM (monitor,
analyzer, planner, and executor) which is placed in the same VM with it. Next, the
services are sorted in a descending order according to the total amount of resources
(CPU, RAM) required by their AMs: S2, S5, S1, S3, S4.
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The first iteration of the while loop considers service S2. The capacity of VM2 is
violated. The component to be moved is the one with the minimum cost. In this case,
monitor m2 is moved from VM2 to VM3 resulting in cost=0.01× (30+25)×1 = 0.55$
(intra × ic(m2) × az(VM3,VM2)). Then analyzer a2 is moved from VM2 to VM3
resulting in cost=0.55 + 0.01× 20× 1− 0.01× 25× 1 = 0.5$ (cost + intra × ic(a2) ×
az(VM3,VM2) - intra × oc(a2,VM3) × az(VM3,VM2)). VM3 can not host component
p2 since VM3 has 8 CPUs which are used by S3, the AM components assigned to S3
and components m2 and a2 (2 + 4 + 1 + 1). Thus, p2 is moved from VM2 to VM1
resulting in cost=0.5 + 0.05× 25× 1 + 0.04× 20× 1 = 2.55$ (cost+ inter × ic(p2) ×
(1-az(VM1,VM2)+(inter-intra) × oc(p2, VM3) ×(1-az(VM1, VM2)). e2 is also moved
from VM2 to VM1 resulting in cost=2.55+0.05×18×1−0.05×25×1 = 2.2$ (cost+
inter × ic(e2) × (1-az(VM1,VM2)-inter × oc(e2, VM2) × (1-az(VM1, VM2)).

The second iteration of the while loop considers service S5. The capacity of VM3
satisfies the requirements of the components assigned to S5, so there are no component
to move. The same process is applied to services S1 and S3.

The fifth iteration considers service S4. The capacity of VM2 is violated. Monitor
m4 is moved from VM2 to VM1 resulting in cost=2.2 + 0.05× (30 + 25)× 1 = 4.95$
(inter × ic(m4) × az(VM1,VM2)). Then analyzer a4 is moved from VM2 to VM1
resulting in cost=4.95− 0.05× 25× 1 + 0.05× 20× 1 = 4.7$ (cost - inter × oc(a4,VM1)
× az(VM1,VM2) + inter × ic(a4) × (1-az(VM1,VM2)).

5.5.4 Experimental Results

In this section, we present a series of performance evaluations of our approach in terms of
execution time and quality of the provided solutions. In order to show the efficiency of this
approach, we compare it to the solution obtained by solving the formal model presented
in Section 5.5.1 using the CPLEX solver, when such a solution is possible. The different
experiments are carried out on an Intel Core i7 PC with 2.70 GHz and 8GB of RAM. We
use the commercial CPLEX solver 12.6 to solve the ILP formulation (Section 5.5.1).

In order to evaluate the performance of the proposed approach, we implement a
generator of random SBPs (see the previous chapter, Section 4.6 for more details). For
the experimental study, we vary the number of services from 2 to 14, in increments of
1, and from 10 to 100, in increments of 10. In addition, we consider that VMs have
different hardware capacities. In particular, the following capacities are considered for
VMs where at least a service is deployed on each one: Each VM may host 100%, 75%,
50%, 25%, or 0% of the components assigned to the services deployed on it; i.e., CPU and
RAM capacities of a VM depend on the RAM and CPU required by the components. All
the results are average values across 10 independent runs. All data inputs are randomly
generated and detailed in Table 5.12.

The proposed algorithm is able to find the optimal solution for more than 33% of
2The IaaS Cloud is inspired from the Amazon EC2 https://aws.amazon.com/fr/ec2/pricing/on-

demand/

https://aws.amazon.com/fr/ec2/pricing/on-demand/
https://aws.amazon.com/fr/ec2/pricing/on-demand/
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Information Type Range
Number of AZs (Z) Integer [2..10]

Number of VM types (V) Integer [1..86]
Number of maximum instances (vmax) Integer [1..10]
inter-AZ communication cost (cinter) Double [0.01..0.10]
intra-AZ communication cost (cintra) Double [0.001..0.01]

Compute price (cu) Double [0.0058..5.424]
Availability level (avail) Integer [0.5..1]

Number of CPU cores (cpu) Integer [1..128]
RAM amount (ram) Double [0.5..1952]

Requirement in availability (ravail) Double [0.5..1]
Requirement in CPU (rcpu) Integer [1..32]

Requirement in RAM (rram) Double [0.5..488]

Table 5.1: Characteristics of data inputs of Cloud resources.

the considered SBPs. We note that the gap between the two solutions does not exceed
18.20%. It means that our solution is very close to the optimal solution (Figure 5.7). As
for the execution time, the results presented in Figures 5.8 and 5.9 show that its execution
time is reasonable. Indeed, it does not exceed 0.15 second, whereas CPLEX takes more
than two hours to solve the problem, and whenever the number of SBP services goes
beyond 14, the solver can not find the optimal solution due to a problem of memory.
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Figure 5.7: Second proposal: Placement cost of AM components and their number versus
number of services.
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Figure 5.9: Second proposal: Execution time of proposed approach versus VMs capacities
and number of Services.

5.6 Conclusion
In this chapter, we focused on the problem of the placement of autonomic resources for the
management of timed SBPs in the Cloud. We first proposed an approach for determining
the best placement decisions of a pre-determined number of AMs in the Cloud. Then
we presented an approach that aims to combine the placement and determination of
an appropriate number of AMs in the Cloud. An ILP formulation and an illustrative
example of how the approach works were given for both cases. We presented the different
experiments that we realized to show the efficiency of our proposals.



Chapter 6
Conclusion and Future Works

The research problem of this thesis is expressed by this interrogation: How to determine
the optimal Cloud resource allocation for the management of SBPs? Previous chapters
presented in details our solutions to answer this question. In this chapter, we summarize
our contributions in Section 6.1 and present the future work in Section 6.2.

6.1 Contributions

Cloud Computing is an emerging paradigm in Information Technologies (IT). It refers to
a model for the provision of every network-available resource ”X” as a service ”XaaS”
based on the pay-per-use economic model. Cloud environments being increasingly used
for hosting and executing applications that are described according to Service-Oriented
Architecture (SOA) such as service-based business processes (SBPs) that we targeted in
our work. Executing SBPs in dynamic environments requires autonomic management to
cope with the dynamic evolution of Cloud environments with minimal human intervention.
Autonomic management consists of a number of controlling devices known as Autonomic
Managers (AMs).

Management of an SBP in Cloud environments has not received the needed attention
in research work, particularly optimizing Cloud resource allocation for the management of
SBPs that face many challenges : (1) allocating the adequate number of AMs to manage
the process services and (2) allocating the required Cloud resource to host and execute
these AMs.

In this regard, as a first contribution, we presented an approach that efficiently man-
ages SBPs such that the number of used AMs is minimized while avoiding management
bottlenecks. To do this, we modeled SBPs using directed graphs. We proposed a deter-
ministic optimization model to solve this problem. We also suggested two main algorithms
that provide a near-optimal solution for both SBPs that can be represented as graphs with
and without cycles. An illustrative example of each algorithm is then provided. The dif-

99
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ferent experiments that we performed on public real and randomly generated datasets of
SBPs show the added value of our contribution in managing SBPs.

After facing the challenge of allocating the appropriate number of AMs for the man-
agement of SBPs, we were interested in the components that make up an AM (monitor,
analyzer, planner and executor) to integrate these latter separately in the optimization
process. We proposed a deterministic optimization model to find the optimal number
of monitors, analyzers, planners and executors, which will be used by SBPs. We also
suggested an approach that provides good solutions. An illustrative example as well as
experimental results are provided and show the effectiveness of the proposed approach.

In order to go further in our reasoning, we proposed to provide solutions for the
placement of AMs that will be used to manage SBPs in the Cloud. To this end, we pro-
posed two approaches for the placement of AMs while considering two different contexts:
Placement of a given number of AMs and placement of AMs that will be determined
progressively during the placement process. These approaches consist in determining the
optimal placement decisions of AMs in the Cloud such that the overall management cost
is minimized while ensuring the required quality of service of SBPs. We used a deter-
ministic optimization model for smaller graphs to benchmark our approaches that exhibit
better scaling behavior.

6.2 Future work
In this thesis, we faced different complex problems related to optimal Cloud resource
allocation for the management of SBPs. We solved many of them and we included others
in our future work.

Our suggested approaches allow for the optimization of the number of AMs that will
be assigned to the SBP services for their management. Nonetheless, decisions taken in
isolation by an AM may indirectly interfere with the decision taken by other AMs and
globally affect the performance of the whole SBPs. Hence, the coordination of AMs is
a key task for the effective management of the whole business process. Several research
works have, by and large, tackled the problem either in hierarchical fashion by adding AMs
in charge of coordination or in centralized fashion by using a shared public knowledge for
coordinating AMs which are assigned to services [35, 74, 8]. As a first extension of
our work, we propose to extend our approaches to optimize not only AMs that will be
explicitly used to manage the SBP services but also additional AMs that will be in charge
of coordinating AMs in order to guarantee the effective management of the whole SBP.

The second extension consists in proposing a management tool based on an autonomic
system for optimal deployment of SBPs in the Cloud integrating our proposed algorithms
as well as other optimization algorithms regarding the deployment of the SBP services
and the coordination of AMs. In fact, it would be interesting to be able to make optimal
decisions for these problems when a new SBP deployment request is triggered. To do this,
we can investigate the use of a higher-level AM. The latter is responsible for (1) collecting
information relative to the interdependency relationship among the SBP services, the
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assignment constraint, the resource consumption of different services and AMs, the Cloud
resources capacities, etc., (2) analyzing the collected data, and (3) carrying out the
assignment, placement and coordination decisions made by the planner component.

Evaluating the performance of allocation policies in real Cloud environments for dif-
ferent applications under critical conditions is a challenging task. Indeed, the use of a
real Cloud environment is costly and makes the reproduction of some results an extremely
difficult task due to the system size and configuration. Moreover, the evaluation of certain
scenarios is not supported [83]. An alternative to that is the use of simulation tools that
allow the reproduction of the tests and offer the possibility of evaluating the hypothesis
and models under different conditions to cope with the possible performance degradation
before deploying in a real Cloud. In addition, these simulation tools are free. In [84],
the authors presented a study and comparison of existing Cloud simulation tools. As
an extension of our work, we aim to utilize the Cloud simulator CloudSim [83] which is
widely used in the literature [85, 46, 86] to allow the simulation of different Cloud and
SBP configurations and come up with decisions regarding management resource amounts
and their placement at low cost. To do this, we propose to implement an extension of the
CloudSim simulator that enables the simulation of the autonomic management of SBPs.
The extension will include an implementation of the dependency relationships between
the SBP services and the implementation of our proposed algorithms.
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