
HAL Id: tel-01901991
https://theses.hal.science/tel-01901991v1

Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Asset Management and Cloud Computing
Anne-Lucie Vion

To cite this version:
Anne-Lucie Vion. Software Asset Management and Cloud Computing. Databases [cs.DB]. Université
Grenoble Alpes, 2018. English. �NNT : 2018GREAM019�. �tel-01901991�

https://theses.hal.science/tel-01901991v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Anne-Lucie Vion

Thèse dirigée par Noël DE PALMA, Professeur à l’Université
Joseph Fournier et
Codirigée par Fabienne BOYER, Professeur à l’Université Joseph
Fournier

Préparée au sein du département Orange Labs Services et du
Laboratoire d’Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et Technologies
de l’Information, Informatique

Software Asset Management & Cloud
Computing

Thèse soutenue publiquement le 29 mars 2018

devant le jury composé de :

M. Eddy CARON
Maître de conférences HDR à l’Ecole Normale Supérieure de Lyon
(Président du jury)

Mme. Laurence DUCHIEN
Professeur à l’Université de Lille (Rapporteur)

M. Daniel HAGIMONT
Professeur à l’Institut National Polytechnique de Toulouse (Rapporteur)

Mme. Fabienne BOYER
Maître de conférences à l’Université de Grenoble-Alpes (Co-directrice de
thèse)

M. Noël DE PALMA
Professeur à l’Université de Grenoble-Alpes (Directeur de thèse)

Mme. Noëlle BAILLON
Responsable du programme SAM Orange (Co-Directrice de thèse)

2

3

Pour Zoé, j’ai enfin fini mon « livre »,

Pour Félix qui a peur des docteurs,

Pour L. et tous les bonheurs à venir.

4

 REMERCIEMENTS

En tout premier lieu, je souhaite remercier l’ensemble des membres du jury

qui m’ont fait l’honneur de participer à ma soutenance et consacré un temps

précieux à la lecture de ce document. Tout particulièrement Dan iel Hagimont et

Laurence Duchien (rapporteurs) et Eddy Caron, (examinateur).

Je remercie très chaleureusement mes encadrants de thèse pour la confiance

qu’ils m’ont accordée et leurs précieux conseils : Merci à Pascal Dechamboux

d’avoir accepté d’encadrer ma thèse chez Orange. Merci à Noël De Palma,

professeur à l’Université Joseph Fournier ainsi qu’à Mme Fabienne Boyer,

professeur à l’Université Joseph Fournier. Un merci tout particulier à Noëlle

Baillon-Bachoc, mon encadrante chez Orange pour sa présence bienveillante et ses

encouragements quotidiens.

Merci aux équipes SAM et SUPRA pour leur accueil chaleureux, pour leur

écoute attentive et la qualité des échanges que nous avons eu. Merci à Karl pour son

support technique et sa patience face à mes questions parfois triviales.

Je remercie du fond du cœur mes parents qui ont fait grandir en moi la soif

d’apprendre ; ma famille pour les joies partagées et toutes celles que nous

partagerons encore, mon compagnon Janusz pour n’avoir jamais douté de ma

capacité d’aller jusqu’au bout malgré les embûches.

Enfin, mon plus grand merci est adressé à Zoé et Félix, leur patience et

l’amour inconditionnel pour leur maman parfois irritable ont été ma plus grande

force dans l’accomplissement de ce projet .

5

6

 RÉSUMÉ

ans le Cloud, peu de travaux traitent de l’analyse de l’usage réel et

dynamique des logiciels consommés afin de déterminer les coûts réels

engendrés et le respect des droits acquis auprès des fournisseurs de ces

ressources. L’émergence de la pratique du Software Asset Management (SAM)

traduit pourtant la préoccupation grandissante des industriels et des ‘Telcos’

(Entreprises de télécommunications) face à la complexité des modèles de licences

dans des environnements virtualisés qui bouleversent nos usages de logiciel.

La réponse des éditeurs de logiciel est souvent une incitation à ne plus

suivre la consommation de licences, par le biais de contrats onéreux de

consommation illimitée, rendant impossible une politique de maîtrise des coût s.

Pour les utilisateurs finaux comme pour les fournisseurs de services cloud, il

devient impératif de maîtriser et d’optimiser le déploiement des licences dans le

Cloud.

L’objectif devient celui de maitriser les besoins logiciels, au plus proche du

temps réel, puis de générer des scénarii d’optimisation basés sur l’évolution de la

consommation en modélisant les coûts réels afférents. Cela représente un levier de

gains considérables pour tous les acteurs du cycle de vie du logiciel.

 Le contexte d’étude couvre l’ensemble du scope du Cloud (applications,

plateformes, infrastructures et réseaux). Les travaux présentés ici s’attachent à

reconstituer tout le cycle de vie du logiciel , de l’achat jusqu’à la désinstallation , en

intégrant les contraintes liées à sa nature ou à son usage. Nous proposons de

résoudre le verrou majeur de l’identification du logiciel et de ses droits d’usage par

la création et le suivi d’un tag.

Nous proposons également une modélisation innovante s’appuyant sur une

base de données graphe qui permet d’intégrer l’instantanéité des changements de

configuration, de prendre en compte les différentes responsabilités impliquées par

les niveaux de services offerts, tout en offrant la souplesse nécessaire pour

supporter à la fois des modèles de licence classiques, ou à l’usage.

Deux cas d’usages seront envisagés pour juger de la pertinence des modèles

proposés : la gestion des licences dans un contexte de Plateforme as a Service

(PaaS) et dans un cas de virtualisation de réseau (NFV).

D

7

8

 ABSTRACT

bout Cloud, only few works deals with dynamic and real usage analysis

of deployed software in order to determine the true related costs, and

licensing compliance with acquired rights from the software editors.

However, the emergence of Software Asset Management (SAM) shows the

growing concerns of the industry and carriers facing the licensing model

complexity especially in virtualized environments where the software usage is

disrupted.

Editor’s answer consists in proposing to stop following this consumption via

very expensive unlimited-usage contracts. It makes impossible to implement true

cost management policies. For final users like for cloud service providers, it is

crucial to manage and optimize license deployments in cloud environments.

Firstly the aim is to control Software needs, as close as possible to real time,

then to generate optimization scenarios based on consumption evolution by cost

modeling.

It represents a valuable saving leverage and may let spring up new licensing

models, more profitable for software lifecycle’s stakeholders.

Usage context covers all scope of Cloud (application, infrastructure and

network). Our works propose to rebuild the Software li fe-cycle, from procurement

to uninstallation, encompassing the constraints of it nature and usages. We propose

to solve software identification issue by creation and monitoring of tags.

Additionally, we propose an innovative modeling based on a graph database

which allows instant integration of configuration changes, to take into account the

different levels of responsibility induced by the different levels of granted services.

It offers enough flexibility to handle classical licensing models as use -based model

which are often more attractive for cloud-users.

Two use-cases will be developed to evaluate our model efficiency: the

software licensing management in PaaS (Platform as a Service) context and in NFV

environment (Network Function Virtualization).

A

9

10

 TABLE OF CONTENTS

Terms, Definitions and abbreviated terms 19

I. Introduction .. 26

1. Cloud Computing Overview .. 27

2. Software Financial Issues: Audits And Wastes On The Rise 29

3. The necessary emergence of Software Asset Management 31

4. New Factors affecting Software and SAM new paradigm 33

5. Contributions and followings .. 34

II. State of the art ... 37

1. Academic State of The Art .. 38

1.1. Theoretical works about SAM and its implementation limits 38

1.2. Nowadays context justifies emergence of SAM in the literature 41

1.3. Synthesis: SAM maturity scale ... 42

2. Industrial State of The Art .. 44

2.1. Requirements ... 44

2.2. Evaluation grid .. 44

2.3. Choice of SAM Market tools ... 49

2.4. Results of the evaluation .. 49

2.5. Synthesis on Industrial State of the Art .. 69

3. Synthesis ... 70

III. Proposition of a Software Identification Model for

Cloud Environments .. 73

1. Software licensing issues, challenges and opportunities 77

1.1. Licensing complexities moving to the cloud .. 78

1.2. Cloud-oriented software licensing models .. 81

11

2. Requirements for effective identification of Software and its

entitlements ... 81

2.1. Requirements for Software identification.. 82

2.2. Requirements for Usage Rights (PUR) or entitlements identification 82

2.3. Requirements for Instances and bounded deployment environment identification 84

2.4. Requirements for identification inherent processes ... 84

3. Software PUR management process flow ... 85

4. Implementation of software identification patterns 88

4.1. Software identification hindrances .. 88

4.2. Software identification models proposed by ISO 19770-x ... 90

5. Workaround propositions .. 98

5.1. About PUR .. 98

5.2. About SKU... 99

5.3. Proposed identification Lifecycle ... 101

IV. Proposition of a SAM Model for the Cloud..................... 105

1. SAM Control loop .. 106

1.1. Autonomic computing and general concept of control loop 106

1.2. Application to SAM Control Loop ... 107

1.3. SAM model ... 110

2. Database model for SAM loop .. 121

2.1. Relational Databases vs Graph Databases ... 121

2.2. From relation to Graph Databases ... 122

2.3. SAM Graph Proposition .. 125

V. Model Assessments ... 130

1. Platform Use Case I: PaaS - Cloud Foundry .. 132

1.1. Cloud- PaaS instantiation and usage capture... 132

1.2. How does Cloud Foundry work? .. 133

1.3. Instances ... 134

12

1.4. Usage collect .. 135

1.5. Modeling .. 137

2. Platform Use Case II: Network Function Virtualization 157

2.1. Orchestration & Hypervisor in Operator’s network ... 157

2.2. Context concerns .. 162

2.3. Usage collection ... 165

2.4. Modeling .. 165

VI. Conclusion .. 181

1. Reminding the issues ... 181

2. Reminding the contributions ... 182

3. Further works .. 183

Referenced works .. 185

13

14

 TABLE OF FIGURES

Figure 1. Enterprise Cloud services spending forecast 2016-21 ($bn) 29

Figure 2 - Proposition for a SAM maturity scale ... 43

Figure 3 - Study’s criteria weight .. 48

Figure 4 - Aspera Evaluation Summary ... 51

Figure 5 - Aspera Evaluation detailed view .. 52

Figure 6 - Snow Software Evaluation Summary .. 54

Figure 7 - Snow Software Evaluation detailed view ... 55

Figure 8 - Flexera Evaluation summary ... 57

Figure 9. Flexera Evaluation Detailed view .. 58

Figure 10 - Spider Evaluation Summary .. 59

Figure 11 - Spider Evaluation Detailed view .. 60

Figure 12 - Eracent Evaluation Summary ... 61

Figure 13 - Eracent Evaluation detailed view .. 62

Figure 14 - HP Asset Manager Evaluation Summary .. 63

Figure 15 - HP Asset Manager Evaluation detailed view 64

Figure 16 - BMC Remedy Evaluation Summary ... 65

Figure 17 - BMC Remedy Evaluation detailed view .. 66

Figure 18 - GLPI/OCSng Evaluation Summary ... 67

Figure 19 - GLPI/OCSng Evaluation detailed view ... 68

Figure 20 - Features and limitations of most popular SAM tools 69

Figure 21 - Complexity factors brought about cloud architecture 70

Figure 22 - Key operational processes in software PUR identification 87

Figure 23 - Recognition vs Identification .. 89

Figure 24 - SWID Tag lifecycle described in ISO 19770-2................................... 93

Figure 25 - Analogy between PUR and railway.. 99

Figure 26 - Analogy between SKU and Juice Bottles .. 100

Figure 27 - Combination of SWID and SKU ... 101

Figure 28 - SWIDTag+ lifecycle with initial SWIDTag .. 102

Figure 29 - SWIDTag+ lifecycle without initial SWIDTag.................................. 102

Figure 30 - Software identification lifecycle from provisioning to billing ... 103

Figure 31 - Compliancy control loop .. 109

Figure 32 - Over-deployment control loop ... 109

Figure 33 - SAM lifecycle ... 110

Figure 34 - Software Lifecycle - Need & Purchase .. 113

Figure 35 - Software Lifecycle – Delivery ... 113

Figure 36 - Software Lifecycle – Instantiation ... 114

Figure 37 - Software Lifecycle – Usage .. 115

15

Figure 38 - SAM general retroaction loop and control 116

Figure 39 - Different measures of uses translated into licensing models 120

Figure 40 - Example of junction table to match people and project 122

Figure 41 - Example of graph linking a person with projects 123

Figure 42 - Graph Database .. 125

Figure 43 - SAM Graph Model .. 126

Figure 44 - Use case of Cloud App Access ... 136

Figure 45 - Usage metering and aggregation for Cloud Foundry 137

Figure 46 - Cloud Architecture Model .. 138

Figure 47 - Product Catalog .. 140

Figure 48 - Neo4J interface - Graph Step 1 ... 141

Figure 49 - Neo4J interface - Graph Step 2 ... 142

Figure 50 - Neo4J interface - Graph Step 3 ... 143

Figure 51 - Neo4J interface - Graph Step 4 ... 144

Figure 52 - Neo4J interface - Graph Step 5 ... 145

Figure 53 - Neo4J interface - Graph Step 6 ... 147

Figure 54 - Neo4J interface - Graph Step 7 ... 148

Figure 55 - Neo4J interface - Graph Step 8 ... 149

Figure 56 - Neo4J interface - Query Bought ... 150

Figure 57 - Neo4J interface - Query Instance ... 151

Figure 58 - Neo4J interface - Query Compliance ... 151

Figure 59 - Popoto for graphic Neo4J interface ... 152

Figure 60 - cSAM tool Features .. 153

Figure 61 - Asynchronous feeding of graph for Software lifecycle 154

Figure 62- cSAM - Simulation on Oracle DB licensing .. 156

Figure 63 - cSAM - Simulation on Oracle DB instance's resources 157

Figure 64 - HW and SW disconnection and separate lifecycle management 158

Figure 65 - NFV complexity factors for SAM .. 159

Figure 66 - License & metering server management model 161

Figure 67 - NFV Cloud Orchestration ... 163

Figure 68 - Blue Planet UI ... 164

Figure 69 - NFV Architecture Model ... 167

Figure 70 - Product Catalog (2) ... 168

Figure 71 - Neo4J interface – Graph 2 Step 1 ... 169

Figure 72 - Neo4J interface – Graph 2 Step 2 ... 170

Figure 73 - Neo4J interface – Graph 2 Step 3 ... 172

Figure 74 - Neo4J interface – Graph 2 Step 4 ... 173

Figure 75 - Neo4J interface – Graph 2 Step 5 ... 174

Figure 76 - Neo4J interface – Graph 2 Step 6 ... 175

Figure 77 - Neo4J interface – Graph 2 Step 7 ... 177

16

Figure 78 - cSAM - simulate metric change .. 178

Figure 79 - cSAM - simulate resource change .. 179

17

Tables

Table 1. Remarkable figures quoted from Flexera survey about Software

license audits in 2014 .. 31

Table 2 - SAM Maturity Items .. 45

Table 3 - Most used metrics and identified risks in cloud environments 80

Table 4 - Some ECA model rules .. 108

18

19

 TERMS, DEFINITIONS AND ABBREVIATED TERMS

Bundle

Grouping of products which is the result of a marketing/licensing strategy to

sell entitlements to multiple products as one purchased item. A bundle can be

referred to as a “suite”, if the products are closely related and typically

integrated(such as an office suite containing a spreadsheet, word processor,

presentation and other related items). Bundles can also refer to software titles that

are less closely related such as a game, a virus scanner and a utility “bundled”

together with a new computer, or to groups of entitlements, such as multiple

entitlements for a backup software product. [SOURCE: ISO/IEC 19770‑5, 3.5]

Customer

Organization or person that receives a product or service . [SOURCE: ISO/IEC

19770‑5, 3.10]

Downgrade right

Right granted to receive, install, and/or use an installation of a previous

version of software than the currently granted entitlement. [SOURCE: ISO/IEC

19770‑5, 3.11]

Effector

An interface that enables state changes for a managed resource

End-user

Person or persons who will ultimately be using the syste m for its intended

purpose. [SOURCE: ISO/IEC 19770‑5, 3.13]

Entitlement schema - Software entitlement schema - Ent

Information structure containing a digital encapsulation of a licensing

transaction and its associated entitlement information. A single transaction does

not necessarily encapsulate a full (or effective) entitlement. An effective

entitlement may need to be determined by an analysis of multiple licensing

transactions, of a full license and then of upgrades and/or maintenance

transactions assessed together with it. [SOURCE: ISO/IEC 19770‑3]

20

Ent library – Service library

Construct which holds data about multiple Ents. The Ent library is typically a

database, but could also be a file or other data storage mechanism. [SOURCE:

ISO/IEC 19770‑3]

Extensible markup language - XML

License-free and platform-independent markup language that carries rules

for generating text formats that contain structured data. [SOURCE: W3C

Recommendation Extensible Markup Language (XML) 1,1 (Second Edition), 1,2]

IT Asset Management

All the physical, logical, and virtual system platform, operating system, and

software configuration information required for life cycle management of IT Assets.

Asset Management systems compile accurate data about the IT environment,

including the supporting resources (people, applications, infrastructure and

information) and dependent services. Asset Management tracks and integrates the

physical, logical, and virtual location of IT Service Assets with key finan cial

properties. This collection of systems is focused on establishing a framework for

managing service assets in an operational context. [SOURCE: Laura Knapp, IBM

Services Management, The IBM® Software Group Strategy NoteBooks, 2008

http://w3-103.ibm.com/software/xl/portal/viewcontent?

type=doc&srcID=XT&docID=L107895Y49377G53]

License model

Class of licenses with common characteristics. [SOURCE: ISO/IEC 19770‑5]

Limit

Restriction on rights or privileges granted by a software entitlement

Original equipment manufacturer license

Oem license

License for products or components that are created or manufactured by one

company and licensed by another company

21

Perpetual license

License for a software entitlement granted in perpetuity. The alternative to a

perpetual license is a term or subscription-based license.

Software entitlement reconciliation

Process of comparing software entitlements owned with those required

(granted and deployed), usually to determine compliance with software license

agreements release collection of one or more new or changed configuration items

deployed into the live environment as a result of one or more changes. [SOURCE:

ISO/IEC 19770‑5, 3.28]

Right

Privilege or benefit granted by a software entitlement

SAM practitioner

Individual involved in the practice or role of managing software assets. A

SAM practitioner is often involved in the collection or reconciliation of software

inventory and/or software entitlements.[SOURCE: ISO/IEC 19770‑5, 3.31]

SAM tool

Software used to assist in and automate parts of the process of management

of software assets

Sensor

An interface that exposes information about the state and state transitions of

a managed resource.

Software

All or part of the programs, procedures, rules, and associated documentation

of an information processing system. There are multiple definitions of software in

use. For the purpose of this part of ISO/IEC 19770, it is typically important to

include both executable and non-executable software, such as fonts, graphics, audio

and video recordings, templates, dictionaries, documents and information

structures, such as database records. [SOURCE: ISO/IEC 24765:2010, 3.34]

Software Asset Management

22

SAM

control and protection of software and related assets within an organizat ion,

and control and protection of information about related assets which are needed in

order to control and protect software assets. For reference, a corresponding

industry definition is “all of the infrastructure and processes necessary for the

effective management, control and protection of the software assets within an

organization, throughout all stages of their lifecycle”. [SOURCE: ISO/IEC 19770‑5,

3.35]

Software License Optimization

SLO

All actions enabling organizations to gain visibility and control of IT assets,

reduce ongoing software costs, and maintain continuous license compliance.

Software creator

Person or organization that creates a software product or package. This

entity might or might not own the rights to sell or distribute the software.

[SOURCE: ISO/IEC 19770‑5, 3.38]

Software entitlement

Entitlement

Software license use rights as defined through agreements between a

software licensor and a software consumer. Effective use rights take into account

any contracts and all applicable licenses, including full licenses, upgrade licenses

and maintenance agreements. [SOURCE: ISO/IEC 19770‑5, 3.39]

Software identification tag

SWID tag

SWID

Set of structured data elements containing authoritative identification

information about a software configuration item. [SOURCE: ISO/IEC 19770‑2, 3.40]

23

Software license

Legal rights to use software in accordance with terms and conditions

specified by the software licensor. “Using a software product” can include:

accessing, copying, distributing, installing and executing the software product,

depending on the license’s terms and conditions. [SOURCE: ISO/IEC 19770‑5, 3.41]

Software maintenance

Entitlement of additional rights (such as additional functionality, upgrade or

support) for a previously granted software entitlement

Software package

Complete and documented set of software supplied for a specific application

or function. In the iso/iec 19770 family of standards, the term software package

refers to the set of files associated with a specific set of business functionality that

can be installed on a computing device and has a set of specific licensing

requirements. In the iso/iec 19770 family of standards, the terms “product” and

“software package” are used synonymously depending on the context of the item

described.

Software product

Complete set of software designed for delivery to a software consumer or

end-user that may contain computer programs, procedures and associated

documentation and data. In the ISO/IEC 19770 family of standards, the terms

“software product” and “software package” are used interchangeably depending on

the context of the item described. [SOURCE: ISO/IEC 19770‑5, 3.46]

Stock keeping unit

SKU

Identification, usually alphanumeric, of a particular product that allows it to

be tracked for inventory and software entitlement purposes. The term “stock

keeping unit” is traditionally associated with physical goods. In the sense of

licenses it refers to a unique identifier, sometimes also called “part number”. The

term “stock keeping unit” is typically associated with unique products for sa les

purposes, such as software entitlements. It may not correspond uniquely to specific

software products, but may instead represent packages of software, and/or specific

terms and conditions related to software products, such as whether it relates to a

24

full product, upgrade product, or maintenance on an existing product. [SOURCE:

ISO/IEC 19770‑1, 3.48]

Subscription-based license

Term-based license

Service-based license

License for an entitlement that is for a limited amount of time . This type of

license shall be renewed to remain in force. Specifically it is not a perpetual license.

25

26

Chapter 1

 I. INTRODUCTION

Introduction .. 26

1. Cloud computing overview ... 27

2. Software financial issues: Audits And wastes on the rise........................... 29

3. The necessary emergence of Software Asset Management 31

4. New factors affecting software and SAM new paradigm 33

5. Contributions and followings .. 34

27

loud computing is on the rise as Software market struggle. Pricing and

licensing systems become more and more complex and less and less

understandable for the clients. To face market’s growth stabilization, editors need

to find new sources of income. The current economic climate underlines this

particularly burning issue, as each non-compliance situation is heavily penalized in

financial aspects. Therefore, we are seeing a rise of software compliance audits

along with creation of dedicated unit showing their growing importance for some

editors.

1. CLOUD COMPUTING OVERVIEW

Cloud computing is an information technology (IT) paradigm, a model for

enabling ubiquitous access to shared pools of configurable resources. These

resources can be rapidly provisioned with minimal management effort, often over

the Internet. Computing relies on sharing of resources to achieve coherence and

economy of scale.

Cloud computing comes in three forms: public clouds, private clouds, and

hybrids clouds.

 Public clouds are based on shared physical hardware, owned and

operated by a third-party provider. The main benefits of the public

cloud encompass the speed of IT resources deployment and the alleged

ability to pay only of the resources you use. The sheer size of public

clouds allows scaling compute power up and down as business

demands, within a matter of minutes.

 Private clouds are infrastructures dedicated entirely to their owner’s

business. They are hosted either on-site or in a service provider’s data

center. The private cloud delivers all the agility, scalability and

efficiency of the public cloud, but also provides greater levels of

control and security. A major benefit of private cloud is the ability to

customize it components to best suit any specific IT requirements

(something that cannot be achieved so easily in the public cloud

environment).

 Hybrid clouds allow combining public cloud with private cloud or

dedicated hosting and leverage the best of what each has to offer. For

example, to use the public cloud for non-sensitive operations, the

private cloud for business-critical operations, and incorporate any

C

28

existing dedicated resources to achieve a highly flexible, highly agile

and highly cost-effective solution.

The cloud computing paradigm proposes the on-demand usage of provided

and maintained resources on hardware and software level. The terms

Infrastructure, Platform and Software as a Service (IaaS, PaaS and SaaS) sort three

different service models and are widely used and commonly accepted in literature.

Theoretically, they characterize different layers of abstraction at which cloud

resources are offered at.

 IaaS is commonly perceived as providing resources on hardware level.

 PaaS allows tenants to deploy applications in a cloud environment.

 SaaS is the provisioning of whole applications as a resource.

The similarity between all cloud offerings is the provisioning of resources in

a flexible and abstracted way. Literature identifies three important types of

resource domains. Most prominent, computational resources allow the deployment,

execution and use of software, it provide mechanisms to run applications. Besides,

cloud systems may provide storage (offer a way to store data persistently) and

network services (comprise any mechanism used to communicate between (virtual)

machines, applications and users) usable either stand-alone or in conjunction with

computational resources.

Cloud computing is increasingly being adopted by enterprises. According to

Ovum1, enterprise cloud services spending will grow at a CAGR 2 of 17.5% during

the 2016–21 forecast periods3 (See Fig 1). Within enterprise cloud, the SaaS market

will remain dominant even in 2021, accounting for $97bn in global spend (a bit

more than half the market). Platform-as-a-service (PaaS) will be the fastest-

growing service line, with a CAGR of 29.6%.

1 Ovum is a market-leading research and consulting business focused on helping digital
service providers and their vendor partners thrive in the connected digital economy.

2 Compound annual growth rate (CAGR) is the mean annual growth rate of an investment
over a specified period of time longer than one year.

3 Ovum Research, Demystifying Accounting for Software Expenses, 2017, Publication Date
26 Jun 2017, Product code: TE0006-001409, Analyst: Gaurav (Shukla, 2017) [1]

29

Figure 1. Enterprise Cloud services spending forecast 2016-21 ($bn)

2. SOFTWARE FINANCIAL ISSUES: AUDITS AND WASTES ON THE RISE

“Software vendors smell money”. Thus concludes 2014 Flexera annual

survey4, observing that 65% of the interviewed companies faced at least one

software license audit during the previous year. The number of companies paying

more than $1 million in audit "true up" costs more than doubled in twelve months.

Software audit in general are on the rise. More recently, in 2016, a BDNA 5 survey

reveals the same6: 61% of the company panel said that they experienced at least

one software license audit in the last 18 months which was close to analyst findi ng

of 68 percent7. While frequency of license audits is constantly increasing, it

appears that software vendors are generating a significant new revenue stream in

the form of “true up” charges, paid out in addition to the original contract. They

represent the penalty costs imposed by software vendors, associated for the

unauthorized use of software, and have been known to impact companies with fines

in the millions.

4 Key Trends in Software Pricing & Licensing Survey - Software License Audits: Costs &
Risks to Enterprises, conducted by Flexera Software with input from IDC’s Software Pricing and
Licensing Research division

5 BDNA transforms enterprise asset data by enriching it with market context to vastly
simplify integrations, accelerate business transformation and improve decision-making.

6 BDNA Research, Does Software Asset Management really help the Software Audit
Dilemma, 2016, Published August 22 nd, 2016, Analyst: Cathy Won

7 Gartner Survey Analysis: Software Audits are on the rise and your Enter prise might be
Next, 2013 Published: 30 April 2013, ID: G00249225 Analyst: Jane B. Disbrow, L. Samolsky

30

Usually, during audit processes, the software vendor has embedded tools in

their system allowing getting an account of software used licenses. The challenge is

that if a company has no efficient software asset management program in place, the

reliance of the data reflecting software license usage remains on the vendor’s side.

While 85% of those BDNA respondents said they had an IT Asset

Management (ITAM) practice in their organization, the challenge was that only 17%

have ITAM tools (it includes both hardware and software asset management) in

place to actually manage compliance. Ironically, 56 % of Flexera survey’s panel said

they are using commercial automation software to track application software us age

along with license compliance. Nevertheless, 75% of companies surveyed said they

remained out of compliance with software contracts last year, suggesting that

current audit compliance software itself might be a waste of money. Hence, asset

management and cyber security are "converging." The survey found that 73 percent

of respondents monitor their systems mainly "to identify instances of unlicensed

and unauthorized software on the network for cyber security purposes”.

In (Table 1), we can see some remarkable figures quoted from Flexera survey

about Software license audits in 2014. Flexera said that its survey reflected 489

responses, including 33 percent from enterprises with revenues of $1 billion or

more. Fifty-six percent of respondents were based in the United States of America.

https://www.bdna.com/use-cases/it-asset-management/
https://www.bdna.com/use-cases/it-asset-management/

31

85
%

Percentage of organizations that are “accidental” software pirates
– using more software than they have paid for

63
%

Percentage of organization audited by their software vendors in the
last 18 months

34
%

Percentage of large enterprises ($3B+) audited three times or more
in the last 18 months

21
%

Percentage of organizations that said they were charged $1 million
or more this past year for software true ups

58
%

Percentage of enterprises that have been audited in the last year
say they have been audited by Microsoft, the most frequently cited vendor

doing audits

64
%

Percentage of organizations that are not using automated,
commercial software to manage their software licenses

6%
Percentage of organization managing their software license

manually that are satisfied with the results
Table 1. Remarkable figures quoted from Flexera survey about Software license audits in

2014

“The paradox of shelfware”. When company software budgets are getting

tight, it appears that many companies are wasting money on software: Flexera

survey, emphasized by Gartner in 20168, showed that 93 % of surveyed companies

are spending overwhelming amount of money on unused or un derused application

software, otherwise known as "shelfware". A recent InfoWorld article9 stated that

28% of software deployed in an enterprise is unused or rarely used, and accounts

for almost $7 billion of unused software worldwide.

3. THE NECESSARY EMERGENCE OF SOFTWARE ASSET MANAGEMENT

The rise of shelfware and the growing number of license audits by

commercial software vendors are together raising awareness of the software

license risks (counterfeiting like waste). Software Asset Management (SAM)

enables tracking software uses with the finest possible granularity. The aim is to

constantly reconcile the real uses with the usage rights acquired from software

providers in order to optimize and control the risks of non-compliance (i.e.,

counterfeiting).

8 Gartner Inc. Metrics and Planning Assumptions Required to Drive Business Unit IT
Strategies. April, 21st, 2016. Analyst(s): Kurt Potter | Stewart Buchanan

9 InfoWorld, Software audits: How high tech plays hardball, April, 25th, 2016,
article/3060596, by Dan Tynan.

32

‘Software Asset Management (SAM) is all of the

infrastructure and processes necessary for the effective

management, control, and protection of the software assets

within an organization throughout all stages of their lifecycle’

(ITIL, 2011)10

As mentioned above, the global responsibilities of SAM are to ensure the

accurate management of software assets throughout their lifecycle: from the

moment it is requested, through procurement, deployment, potential recycling and

finally retirement. Along with the software itself, SAM is also responsible for the

license that comes with it, ensuring all users are using the software within the

product use rights (PUR) and also ensuring that the organization keeps the highest

standards of compliancy. Recent emergence of SAM in many companies is

principally justified by two driving forces: to lower costs and to handle risks. The

first is about overbuying, often seen to mitigate the risks of being out of

compliance. The second is under buying: it deals with counterfeiting as soon as

companies used more software than anticipated or not according to contractual

clauses. This last, sometimes called “accidental piracy” is mainly due to difficulties

to rightsize the software environments mainly because of the growing licensing

complexity.

Moving to the cloud is a new challenge for the SAM; it represents another

source of complexity and put companies in a position of using more software that

they entitled to. When contracts and entitlements were based on traditional

architecture models, the issue is to transfer and use the license legacy in cloud

environments and slow down the incremental increase in audits for that reason. We

stress the fact that editors have a right to be paid for the software their customers

are consuming. The best SAM defense should be a good offense: being able to take

proactive stance with a defensible audit position. SAM challenge is to eliminate the

reliance on software editors for software license usage by having their own account

10 Formally an acronym for Information Technology Infrastructure Library, ITIL is a set of
detailed practices for IT service management (ITSM) that focuses on aligning IT services with the
needs of business. ITIL advocates that IT services are aligned to the needs of the business and
support its core processes. It provides guidance to organizations and individuals on how to use IT
as a tool to facilitate business change, transformation and growth. ITIL is mapped in ISO 20000
Part 11. This recognizes the way that ITIL can be used in to meet the requirements set out for ISO
20000 certification and the interdependent nature with ITIL. This is the first such mapping that
ISO (the International Organization for Standardization) has allowed to be part of their standa rds

33

of their software usage and licenses in order to minimize overspending on unused

software licenses.

4. NEW FACTORS AFFECTING SOFTWARE AND SAM NEW PARADIGM

In this document, we consider SAM processes in the context of emerging

technologies, namely virtualization and Cloud environments. This change from

traditional architectures to cloud environments, virtualized to the extreme, is still a

virgin territory. Cloud environments add many degrees of complexity 11. Among

others, tracking software becomes more challenging because installation is

disconnected from true physical infrastructure. Altogether, the complexity of

software lifecycle management, the multiplication of actors in this cycle and the

lack of efficient tools, lead to an understandable disconnection between software

usages, associated hardware and the related licensing model. Also, because cloud

environments tend to automate software lifecycle management, SAM processes are

expected to be automated as well. On the contrary, automation is currently

circumscribed to asset management in traditional architecture.

Going further, in cloud environments, SAM is not only assets management,

but also service management, which must be done in real time taking into account

the fast rhythm of changes: services are provisioned, configured, reco nfigured and

decommissioned in a matter of minutes. Compliance risks are increased by the ease

and speed of provisioning, which can bypass traditional centralized processes. In

such conditions, SAM controls are difficult to implement. The idea that will be

developed is that turning to the Cloud is not changing the object of SAM, but

altering how SAM processes should be designed.

Some techno-economic drivers are converging to create a paradigm change in

the design and operation of future telecommunications networks and services.

These drivers encompass progress in Information Technologies (IT), pervasive

diffusion of ultra-broadband access, commoditization and falling costs of hardware,

and the maturity of virtualization techniques. Network Function Virtualiz ation

(NFV) is a concept pushed by the industry to virtualize network equipment using

generic-built hardware platforms, in order to reduce costs and increase network

11 M. McRoberts, Software Licensing in the Cloud Age : soling the Impact of Cloud
Computing on Software Licensing Models, The International Journal of Soft Computing and
Software Engineering [JSCSE], Vol. 3, No. 3, , San Francisco State University, CA, U.S.A., March
2013Doi: 10.7321/jscse.v3.n3.60e-ISSN: 2251-7545

34

operation and performance efficiency/agility. The NFV concept separates network

functions from the hardware they run on using virtual hardware abstraction, and

attempts to virtualize entire classes of network node functions into building blocks

that may be connected or chained together to create communication services. Alike,

“Softwarization” is an overall techno-economic transformation impacting the

design, implementation, deployment and operations of infrastructures, deeply

integrating network nodes and IT systems. For both network functions and

services, flexibility and agility of software is highlighted. This transformation

enables new architectural models along with an automation of operational

processes. All these considerations force us to question a new dimension of

network management: as software becomes omnipresent, we assume that soft ware

license’s management in real-time and on large-scale cloud environment will

sophisticate Virtualized Network Function (VNF, or Network Software) on -boarding

processes. Network virtualization and softwarization lead to a disruption in terms

of software licensing business model; thereby, we develop here the necessity to

adopt existing and relevant software license optimization IT process. We do believe

that this experience and expertise acquired from IT will facilitate this NFV turn. In

other words Software Asset Management (SAM) should play a major role in defining

best practices the network industry could follow.

5. CONTRIBUTIONS AND FOLLOWINGS

The following contributions are spread through three years collaboration

with Orange SA, an international telecommunication company. Thereby, the

industrial input address the possibility for Orange to propose new licensing model

designed for it cloud and virtualized network architectures through the

development of a prototype “cSAM”: a solution to analyze the real and dynamic

usages of software resources in the cloud. The aim is to ensure compliance, to

determine real costs for users, to optimize the deployment of licenses based on

predefined and adjustable scenario and finally to strengthen Orange position facing

editors including the creation of a software user open-community. cSAM value-

added is to integrate cloud dynamicity issues, to be flexible and mul ti-domains, to

integrate new and complex metrics (business models) and to propose innovative

simulation functions to allow better uses and deployment controls.

Thereby, we propose (i) a SAM maturity scale, (ii) an architecture for SAM in

the cloud, (iii) the related SAM management workflow, (iv) some major

implementation choices and (v) their evaluation; furthermore we question (vi) the

35

emerging contractual relation trends between service providers and software

editors; (vii) we argue that SAM is necessary in NFV environments and (viii) we

propose a SAM prerequisite approach for NFV environments.

The remaining of this dissertation is organized as follows: we propose in

section 2 an evaluation of the academic state of the art, an evaluation grid and

practical application on the SAM tools proposed by the market. Section 3 proposes

requirements for accurate SAM identification, management flow in cloud

environment and workaround propositions for its implementation. Section 4

proposes a SAM model for the cloud based on SAM processes control loop and

lifecycle identification and a database model for SAM loop. Section 5 proposes a

qualitative evaluation of our works based on model assessments for two use -cases:

on a PaaS layer and on a Network Function Virtualization (NFV) platform. We

conclude in Section 6.

36

37

Chapter 2

 II. STATE OF THE ART

State of the art .. 37

1. Academic State of The Art .. 38

A. Theoretical works about SAM and its implementation limits .. 38

01. SAM organizational implementation’s limits .. 40

02. SAM technical implementation’s limits .. 40

B. Nowadays context justifies emergence of SAM in the literature 41

C. Synthesis: SAM maturity scale ... 42

2. Industrial State of The Art .. 44

A. Requirements .. 44

B. Evaluation grid ... 44

C. Choice of SAM Market tools ... 49

D. Results of the evaluation .. 49

01. Aspera Software Smart Track .. 49

02. Snow License Manager 8... 53

03. Flexera FlexNet Manager .. 56

04. Spider .. 59

05. Eracent .. 61

06. HP Asset Manager ... 63

07. BMC Remedy .. 65

08. GLPI – OCSng.. 67

E. Synthesis on Industrial State of the Art .. 69

38

3. Synthesis ... 70

e propose to classify this chapter in (1) an academic state of the art

and (2) an industrial state of the art mostly based on market tool

analysis. (3) We propose as a synthesis a SAM maturity scale and analysis of SAM

complexity factors brought by cloud architectures.

1. ACADEMIC STATE OF THE ART

We can underline the low amount of academic publications dealing with

Software Asset Management comparing to the last decade proliferation of industrial

white papers and analyst’s recommendations. Yet, in the last few years, the slowly

growing amount of patents related with license management solutions point out the

receptiveness and permeability of this industrial concern about SAM. Moreover,

more and more every day, Software is considered as a consumable no more only

like an asset; resource consumption especially in virtualization context is a

booming concern in the scientific literature.

1.1. THEORETICAL WORKS ABOUT SAM AND ITS IMPLEMENTATION LIMITS

The idea spread that Software asset management is crucial to the success of

any IT organization. When a company has a comprehensive and efficient license

management program in place, it reduces costs and ensures that the organization

remains in compliance.

(N.F. Holsing, 1999) [2] proposed a software asset probation model and

identification of five problem areas which drive the need for software management:

ethical (intellectual property rights’ respect), legal (counterfeiting), technical

(monitoring), managerial and economic issues (true-up costs), when identified,

lead implementation of SAM within an organization, from different parties’

viewpoints: end-user, employer and software editor. The authors developed the

idea that the main goal of SAM is to ensure the software license compliance through

employee education which provides the groundwork for legal and cost ef fective

uses of software.

(M. Ben-Menachem, 2004) [3] introduced the “paradigm of change” based on

methods, tools and procedure for an accurate overall IT inventory management. For

them, one of the most significant failures of IT is the lack of systems to gather,

support, and supply information for managing software items. Most IT

W

39

professionals, if they consider software management, think in terms of version or

configuration control license and patch management. Version control systems and

software configuration management systems aim to manage versions of individual

software objects with support for linking into sets for release purposes. This has

nothing to do with addressing the issues of controlling large amounts of

geographically disbursed software, executing on different kinds of systems,

maintained by hundreds to thousands of programmers. For the authors, software

systems are the only major organizational asset with no real support for managing

them based on information technology. An appropriate IT inventory management

facility is the cornerstone of an integrated set of technologies (“Paradigm of

change”) designed to address constantly changing technologies and business

processes. Thereby, they underlined that investment in creation and maintenance

of dedicated software inventory is sine qua non prerequisite to proper long -term

software asset management. (M. Ben-Menachem, 2005) Erreur ! Source du renvoi

introuvable.[4] defined in addition a methodology software control by importance

and exception.

(M.McCarthy, 2011) [5] proposed a solution in four points to combined IT,

processes and business in SAM perspectives:

 Discover Software Assets

o Agents scan/discover distributed software license assets

o Software licenses are linked to employee & workstation

o Scan data populates asset database as discovered inventory

o Provides base line for audit compliance reporting

 Reconcile Purchased Assets

o Reconcile software procurement inventory

o Life cycle management of purchased 3rd party software licenses

o Sustained asset reconciliation and compliance

o Leverage global purchasing power

 Implement Contract Management

o Compliance with License Terms & Condition

o Enables reuse of licenses through off-loading (attrition,

allocation, entitlement)

o Enables governance and process automation

 Produce Business Intelligence Reporting

o Audit readiness and compliance

o Analyze, track, & forecast global IT software spend

o Executive and management reports proactively target audit

compliance risks

40

Result of the experience showed that the solution's out-of-the-box

capabilities, comprehensive analytics, workflow automation and business controls

features immediately improved time-to-value, helping their organization realize

more than US$5 million in savings in the first year of deployment. It represents the

foundations of the SAM which was defined officially the same year by ITIL showing

the industry/literature concordance.

a. SAM organizational implementation’s limits

In the 2000s, when industrial concerns emerged about the necessity to

monitor software usage, the literature started addressing this topic by way of limits

in Software Asset Management. In order to explain the difficulty of setting up SAM

processes in medium-large organizations.

First limitation is about vague software lifecycle. Software is an intangible

asset, distributed as equally immaterial license, negotiated by buyers on the base of

contracts approved by layers, for dedicated purpose of a team usage, installed by

exploitation teams. (M.Sharifi, 2009) [6] explained that organizations are under the

pressures of managing software systems which are bigger and more complex than

those from past years, but also need to meet increasing demands for higher quality

to meet organization's objectives. One important problem is that most

organizations do not know how much software is running in their organizations.

The problem is increased by the fact that software is not visible and has a tendency

to live forever.

Literature also describes how vague software lifecycle leads to hazy

responsibilities. This is mainly explained by the lack of communication between

lifecycle stakeholders. (M.Benachem, 2008) [7] showed that IT department’s

inability to document and justify their expenses prevent CFOs and CEOs SAM

initiatives. He underlined basic issue of information transferability and lack of

interdepartmental data sharing.

b. SAM technical implementation’s limits

The second main limitation is about tracking software: a common mistake is

to underestimate the process of identifying software. The comparison between

contractual, installation and usage data is laborious due to their heterogeneity. The

lack of efficient tool (called “Excel sheet management”) was pointed by many

authors as a main challenge for the SAM: (Klint and Verhoel, 2002) [8] shown that

lack of inventory information blind organizations in terms of total IT spends.

(Ben Menachem, 2004) pointed the fact that major organizations have very

primitive or out of date assets inventory or central repository.

41

(McCarthy and Herger, 2010) [9] identified that the lack of tools to measure

and monitor usage and availability of software licenses make diffi cult to measure

software asset uses, creating compliance issues.

1.2. NOWADAYS CONTEXT JUSTIFIES EMERGENCE OF SAM IN THE LITERATURE

(A.Manzalini, 2015)[10] stated that Network Function Virtualization (NFV)

principles are going to impact not only the evolution of current networks, but also

the services and applications platforms. He argued that, in this evolution, the

border between the networks and the Cloud-Edge Computing platforms will

gradually disappear. As well the distinction between the networks and the future

“terminals” (i.e., devices, smart objects, drones, and robot) will blur.

(C.Matsumoto, 2014)[11] The promise of NFV is to move network functions

out of specialized appliances onto off-the-shelf servers. The objective is both to

save money and to gain regarding the time factor. The normal process of installing

new gear for new services can take weeks. (R. Jones, 2016)[12] promising agility

and flexibility, some network software vendors say NFV can shrink that process

down to minutes. Many challenges are involved in deploying and operating a cloud -

based NFV platform. (L.M.Contreras, 2015)[13] Virtualization and dynamic “on-

demand” services bring new challenges for traditional network ecosystems which

were used to have license keys to enforce entitlement. In NFV or other virtualized

environments, virtualization facilitates “copy/ distribute/run” application and

software. VNFs have a passing lifecycle, are not typically locked to a physical host.

Having available licenses key at the right time and place drives administrative costs

for a global distributed cloud system, such as a NFV infrastructure (M. Adler,

2014)[14].

 Cloud computing is revolutionizing the way organizations pay for and use

their IT resources.(M.McRoberts, 2013)[15] has shown that while cloud computing

has the potential to simplify the licensing and use of software, it has, in fact, only

added to the problem. For commercial software vendors to successfully move into

the cloud age, they must work as a group with cloud providers to standardize

licensing in the cloud. Standards-developing organizations should govern the

activity. A successful solution must address legal and financial concerns, as well a

technical aspects of software licensing in the cloud.

As well, regarding NFV, software vendors have relationships with service

providers, who, in the long run, need to integrate with a vendor NFV platform. By

convention, VNF vendors have been selling their VNF products directly to service

providers. For the latter, there is a need for homemade or third-party integration

and bundling of VNF products together to reduce operational expenses and/or

engineering expenses. For some it would be advantageous to have a pluggable

42

framework for a cloud-based NFV system that allowed integration of VNF products

to provide a diverse catalog of VNF services in an integrated manner. As an example

(R. Jones, 2016)proposes a dynamic licensing method, implemented in an

integrated system, including a third-party application; an exchange of

private/public keys transiting through the integrated system validates the validity

of the application’s license key, determining whether to run the application.

1.3. SYNTHESIS: SAM MATURITY SCALE

SAM enables tracking software uses with the finest possible granularity. The

aim is to constantly reconcile the real uses with the usage rights acquired from

software providers in order to optimize and control the risks of non -compliance

(i.e., counterfeiting). Cloud environments add many degrees of complexity. Among

others, tracking software becomes more challenging because installation is

disconnected from true physical infrastructure. Altogether, the complexity of

software lifecycle management, the multiplication of actors in this cycle and the

lack of efficient tools, lead to an understandable disconnection between software

usages, associated hardware and the related licensing model. Also, because cloud

environments tend to automate software lifecycle management, SAM processes are

expected to be integrated and automated as well. On the contrary, automation is

currently circumscribed to asset management in traditional architecture. Going

further, in virtualized environments, SAM is not only assets management, but also

service management, which must be done in real time taking into account the f ast

rhythm of changes: services are provisioned, configured, reconfigured and

terminated, retired in a matter of minutes. Compliance risks are increased by the

ease and speed of provisioning, which can bypass traditional centralized processes.

In such conditions, SAM controls are challenging to implement.

Based on the currents, we propose in Fig. 2, our evaluation of SAM maturity

on two axes. This scale allows focusing on SAM processes adding a “cloud ready”

dimension. Four levels can be defined on a vertical axis about SAM maturity. Each

level has to be supported by tools to perform efficient actions.

43

Figure 2 - Proposition for a SAM maturity scale

The first is entitled VISIBILITY: it consists in a precise resource and asset

identification. In other words it consist in recognizing each device, with its physical

features; to identify lifecycle of virtual machines and resources allocated to it and

to discover all software which are installed on any physical or virtual devices.

The second level: IDENTIFICATION consists in translating all software

installation in terms of related licenses and products user rights. It can be

identifying a product as a trial version or circumscribed to a particular scope;

diagnose that it belong to a software suite or that it is an option which use is

conditioned by the use of the basic product. it is also identification of all usages, to

be able to discover and translate in terms of usage rights, all possible access to a

software.

The third level, RISK MANAGEMENT consists in reconciliation of data from

contracts (which specifies product usage rights), from installations (technical view)

and from real usages. Mainly, the aim is to prevent two different risks: the first one

is a legal one, piracy: you are using software without license or with wrong way of

licensing (accidental piracy, often due to the complexity of licensing models today).

The second is a financial risk, over-deployment: you are not using licensed

software, or your license is covering more usage rights than needed.

The fourth level is OPTIMIZATION: when you have an accurate view of your

usages and assets, you have to identify all possibility to improve both your license

spends and architecture of your installations.

44

The fact is that all this four levels do not have the same maturity. A lot of

tools are really efficient in terms of discovery of assets on equipped resources.

More problematic is the second level, especially because matching between

information from contracts, usages and technical view from first level is, at least,

not easy. In this situation, despite numerous tools of risk management, treatments

are approximate and optimization cannot be automatized.

2. INDUSTRIAL STATE OF THE ART

2.1. REQUIREMENTS

As a SAM we need to know, in real time, the status of the license stocks:

therefore as close as possible to the real time, we need to confront the software use

with the license stock according to a measure of consumption previously defined

(called metric). It implies that we can precisely identify the allocated resource

chain (through each layer of virtualization) and obtain the features needed to

measure usage and lifecycle software specifications on machines. We have to

integrate constraints imposed by the nature of the product or its uses (i.e. options,

technology stack: a combination of software products and programming languages

used to create an application). These constraints may involve links between

products. We must identify situation of multiple access and translate it in terms of

use (Bring your own device (BYOD), multiplexing, multidevice …). We must be able

to anticipate organization needs as close as possible to real time: to create and

realize different scenarios based on the evolution of the consumption (including

automated process of adjustment); to create cost models for any measure of use

and identify the most suitable scenario of consumption for the customer’s billing.

Regularly, the tool must be able to prove its relevance especially with

reliable, accurate and auditable historic of established uses. We must monitor and

follow update of any product to detect and monitor related services (i.e., case of

maintenance). All information collected and analyzed should help to propose

legally, financially and technically acceptable models.

2.2. EVALUATION GRID

Software Asset Management processes like decision making about purchase,

management or elimination of software, have to be support by tools (for each four

levels described above). (M. Thompson, 2017) [16] comparing existing SAM tools is

challenging for the following reasons (among others):

45

It is easy to notice the exuberant marketing made by publishers about

features that appears similar between existing tools and the lack of model to

classify them. The scope is also absolutely not defined between traditional

architecture and cloud environment, as if the way to manage software assets in

both environment was similar. The proliferation of tools is al so due to

multiplication of actions to manage (as explained in the four levels scale above).

For example: management tools often perform discovery activities and inventory,

but they rarely gather sufficient details on the software inventory to allow decisi on

making, or compare inventory data to the product use rights acquired in the

contracts.

Based on the SAM maturity scale presented in synthesis (1.C), we can

propose a tool classification grid to evaluate performance of common tools

proposed by the market (open-source & proprietary software). As the SAM maturity

scale can be read on two axis (vertical for activities, horizontal for

traditional/cloud architecture), this grid should be read on the two same axis. It is

organized in 6 + 1 items (Tab.2)

VISIBILITY

IDENTIFICATION

RISK MANAGEMENT

OPTIMIZATION

DECISION MAKING

CONTINIOUS IMPROVEMENT

(COST)

Table 2 - SAM Maturity Items

Below, we provide a high level summary of the six major areas (in annexes,

the full grid used for the evaluation).

 Visibility: We want to check if the technology can track and manage

infrastructure up to the existence and usage of virtual platforms,

virtual operating systems or web based applications (each

virtualization layers). If the tool can tell where the virtual machines

are and how they relate it to users, locations and physical machines?

o Items:

46

 Identifying (and maintain list of) all assets

 Scope of identification

 Communication with assets

 Take organization into account

 Level of virtualization

 Dynamic partitioning

 Environment

o Our observations: Cloud and mobile discovery starts to emerge.

But accuracy of data is still a weak point.

 Identification: We want to check that the tool can recognize software

titles from raw technical data; identify all usages in the finest

granularity (disconnection from contract’s metric); identify the

product use rights for all software, manage entitlement statements

from software publishers and integrate with procurement systems.

Manage complex license types and bespoke negotiated clauses .

o Items:

 Recognition of software license needs

 Inter-software products links

 Additional elements rise

 Prioritization of products

 Identification of software uses

 Which level of automatization

 How to reconcile product and rights

 How to reconcile real usages and metric

 Database access

 Contracts management

o Our observations: Identification of a licensable status is a core

competence for modern tools, but still fragile because

conditioned by fragile processes of recognition. Accuracy of the

data is a critical issue, not solved for the moment, especially in

Cloud environment.

 Risk Management: What intelligence is provided to software asset

manager to assess that they are in compliance position, giving

possibility to re-negotiate contracts and remove risk?

o Items :

 Compliance verification

 Confidentiality of data

 Auto-Allocation of license

47

 Alerts

 Safety and permanence of data

o Our observation: Compliance statements are promised by major

part of tools. Of course, result is conditioned by accuracy of data

brought by inventory process

 Optimization: Reporting on what applications are not being used,

identifying opportunities to renegotiate metric more fitted to real

usages. Identifying suite or functional overlap, suggesting open -

sources or cheaper alternatives make smarter decisions on

maintenance or renewals subscription, benchmarking spends and

usages.

o Items:

 Usage measurement and interface with inventory

 Corrective action

 Maladjusted usage detection

 Portfolios consolidation

 Maintenance contract optimization

 Architecture optimization

o Our observations: Software usage is common among those SAM

that offer inventory but software optimization is under used.

There is significant further opportunity to optimize using

simulations features.

 Decision making: Being proactive stakeholder in all actions and

processes which can have impact(s) on software lifecycle. Service

request automation, catalogues, automated processes, ITSM lifecycle

integrations, scenario modelling, advanced reporting, internal markets.

o Items:

 Scenario studies

 Helping IT to make decision

 Helping Buyers to make decision

 Help-Desk leverage

 Helping Audit process (User/device advisor)

o Our observations: Anticipating and helping SAM to react on

changes should be enhanced by tools. Still need to be

implemented. Some theoretical works on it for traditional SAM,

nothing about cloud environments.

48

 Continuous Improvement: How the system can enrich the all

processes and how the system can be easily enriched? What is the level

of technical expertise needed to access this solution? - What will be

TCO of this solution?

o Items:

 Processes reliability

 Concepts modularity

 Initial cost

 Modification/adaptation costs

 Access to support

 Technical debt

o Our observations: As more logical is the deployment of assets

offered by virtualized environment as better are be the

possibility to find optimization both in technical architecture

and in license spends.

Depending the context, the weight of these items in the evaluation of SAM

tool’s efficiency may change. Indeed, VISIBILITY, in traditional architecture is no

more an issue, because a lot of discovery tools are quite efficient in devices

detections. In cloud environment, it starts to be more difficult to have precise and

REAL TIME view of all resources. Moreover, disconnection between hardw are and

software in the cloud makes more difficult this recognition and link between assets:

IDENTIFICATION remains crucial point, especially in terms of usages.

 From this finding, with focus on cloud perspective, we can attribute

like shown in Fig.3, the following weight to each ITEM (cost excluded):

Figure 3 - Study’s criteria weight

0
5

10
15
20
25
30

49

2.3. CHOICE OF SAM MARKET TOOLS

Our aim is to provide an independent review and comparison of the market

leaders, identify key competitive differentiators between tools and confront what

the market is heading with our requirements presented in 2.a. The evaluation is a

broad competitive comparison of market leading SAM tools for large companies.

The choice of the selected tools was based on several criteria, including the

opportunity to test it (i.e. for Aspera Smart Track and Flexera Flexnet Manager) or

to benefit from detailed feedback and own experimentations (i.e., internal

feedbacks in Orange for GLPI/OCS, BMC Remedy, Snow License Manager and HP

Asset Manager). We choose major SAM editor’s products and included a couple of

open-source products (GLPI – OCSng) whose user communities are the most active

(M.Thompson, 2015)[17].

 Aspera Smart track [18]

 Snow License Manager [19]

 Flexera Flexnet Manager [20]

 Spider Brainware [21]

 Eracent [22]

 HP Asset Manager [23]

 BMC Remedy [24]

 GLPI – OCSng [25]

2.4. RESULTS OF THE EVALUATION

The figures 4 up to 19 synthetize the results of evaluation. For each tool, a

first chart represents marks based on the seven criteria described above; a second

chart gives a mark to specific items for each of the criteria.

a. Aspera Software Smart Track

One of the SAM market’s leader Aspera’s offer want to be defined like

“optimize the right products to deploy, and deploy in the right way”. SmartTrack

offer an intuitive and user-friendly web based console interface.

Oriented on license management: contrary to its competitors who develop in

addition inventory/security/delivery tools or modules, Aspera does not provide

built-in discovery and inventory solution. (To overcome gap in inventory and

discovery coverage, Aspera works with the likes of iQuate and Raynet). Weak point

can be that if SmartTrack facilitates the license management within other tools

50

such as service desk, it does not provide app possibility to implement process

leading to creation of a single tool within entity.

Aspera’s strengths lie in compliance and optim ization: Aspera addresses

software compliance very well. We can underline efficiency and cleverness of the

catalog’s data records automatically transferred to SmartTrack and seamlessly

linked to the metric engine algorithms. Aspera is transparent with calc ulations; you

can clearly see both the license metrics workings and whether gaps exist in

building an accurate license position. Future versions of the interface will include

the ability to build custom metrics into SmartTrack dashboards. However, Aspera

could improve emphasis on the data quality and import regarding inventory

sources: i.e. the tool highlights that missing data can generate gaps in recognition

for license management but on higher perspective does not show that the data you

imported is exhaustive and covers your entire estate by comparing and confronting

imported inventory sources. Aspera is designed for ongoing cost optimization as

well as point in time compliance; SmartTrack continually lists optimization

opportunities including comparing price points against the customers average

acquisition price to identify unnecessarily high unit costs. SmartTrack provides a

guide price based on previous procurement record entries, reseller pricing or

vendor price lists. SmartTrack also helps clients to fully exploit their product use

rights and making best use of their existing entitlement.

Interesting simulation beginnings: SAM can operate SmartTrack to forecast

the costs of some different architectures (mainly CPU changes), renewal or metric

considerations. The simulation allows building clusters, incorporating existing

licenses and historical purchases. Interesting visualization gives a topology of

datacenter environments and visual virtual relationships.

51

Figure 4 - Aspera Evaluation Summary

52

Figure 5 - Aspera Evaluation detailed view

53

b. Snow License Manager 8

A flexible solution from desktop to datacenter : Snow proposes a competitive

solution to measure consumption of software from mobile/tablet, desktop, virtual

machine, hypervisor, to cluster and even data center. Collecting data is getting

easier especially using the Snow inventory client, which suppleme nt inventory

sources with the data necessary to measure consumption. The License Manager has

18 out-of-the-box connectors to 3rd party inventory sources or an XML based

connector to connect to anything else. Snow is equally soft in handling business

data (procurements), which can be automated in the same way as the input of

technical configuration data. We can underline the ease of use and simplicity of

Snow License Management to handle complex objects and show easy-to-understand

results. Snow is clearly oriented on fast cycles and agile deployments, less than on

customizable route of software tools. We can commend Snow’s transparency and

ability to show at the same time data and its origin/provenance thereby always

being audit-ready or finding negotiation leverages (latest version).

Pioneer in Software Recognition: Its Software Recognition Service recognizes

commercial software in a couple of days. Snow started to enrich this process via

direct relationships with software editors to ensure more accurate and relevant

recognition (i.e. Autodesk and Red Hat).

From interesting strategic functions to weak strategic planning: Snow License

Manager provides interesting views oriented on consumption and financial

optimization and both can be put in perspective by a well -managed historic. Snow

matches the overall trend for SAM to move from an administrative function to

strategic, while Snow’s competitors propose stronger functions of scenario

modeling and strategic planning.

Valuable Snow Automation Platform: It gives organizations the ability to

automate and integrate a diverse range of processes that contribute to the overall

effectiveness of SAM. From facilitating the bi-directional exchange of information

between the Snow SAM platform and other systems, to automating the process for

software requests and re-harvesting, the Snow Automation Platform is the key to

mapping the inherent capabilities in Snow License Manager into the organization’s

individual SAM processes.

54

Figure 6 - Snow Software Evaluation Summary

55

Figure 7 - Snow Software Evaluation detailed view

56

c. Flexera FlexNet Manager

A durable competitive solution in the SAM market: With FlexNet Manager,

Flexera proposes a challenging solution for Software Asset Management and

optimization. We can underline a solid dynamic license management, interesting

financial optimization features and ongoing strategic possibilities. Once

implemented with an appropriate SAM team and resources, FlexNet Manager is an

efficient visibility booth of software risk, optimizing spend and plann ing for the

future.

User oriented: Comparing with Flexera’s competitors, the user interface and

the quality of dashboards are less attractive and user-friendly but we appreciate

the ability for software responsibilities to be delegated to end user custome rs via

their own login (in App Portal). Flexera’s Application Portal product allows users to

request a wide range of authorized applications, including SaaS apps as well as

desktop and mobile apps. Some of Flexera’s competitors also offer single sign on

solutions to automate provision of SaaS from within an app store. Flexera’s

proclaimed goal is helping customers with the large complex environments,

contracts and IT challenges such as virtualization, cloud and BYOD. Flexera includes

management of Amazon Web Services cloud infrastructure costs and utilization (via

FlexNet Manager for Cloud Infrastructure), as well as further development of their

App Portal enterprise app store offering. Flexera’s competitors are getting closer on

the Enterprise SAM space and some of Flexera’s competitive differentiators, such as

Oracle verification, are based on software publisher verification rather than

genuine technological innovation. Feedback from Flexera’s customers on Tools

Advisor suggests upgrades and enhancements can be labour intensive.

Good performances on software recognition: Flexera’s application recognition

library already contains 180,000 software titles, while its Product Use Rights

libraries include license characteristics such as processor point’s tables, u pgrade

and downgrade rights, mobility rights and so on – adding vulnerabilities into the

mix in the longer term can only add value to their core

A foray to note into the security domain: We can underline that Flexera

acquired and included in offer Secunia, which provides visibility and risk

assessments of software vulnerabilities on end points. It is strategic dissimilarity

for Flexera; the addition of Secunia completes the software management trilogy of

packaging, asset management and security around applications. On paper Secunia is

a competitive differentiator but it may also prove to be a distraction in comparison

to Flexera’s key SAM competitors who focus only on SAM.

57

Figure 8 - Flexera Evaluation summary

58

Figure 9. Flexera Evaluation Detailed view

59

d. Spider

As strengths, we underline the Spider Brainware ability to bring in multiple

data sources, combined with great flexibility; uncluttered interface individual

configurations possible; it has a very good license and asset management know -

how. Yet, it is more an overall IT Asset Management than a dedicated tool only

focused on SAM. We regret lack of an internal workflow engine whic h leads to weak

search in contract and core data (Core is becoming increasingly important for user

licenses / cloud offerings). The compliance view might be too confusing and

reporting are not easy to get (mainly because of the interface).We also underline

weaknesses of the product catalog.

Figure 10 - Spider Evaluation Summary

60

Figure 11 - Spider Evaluation Detailed view

61

e. Eracent

Eracent has a very comprehensive agent for discovery of both hardware and

software on a daily basis, as well as during software vendor audits. A special good

point for the robust Lifecycle Management capabilities of Eracent. As weaknesses

we first point that: Eracent continues to enhance and improve the UI for the

Software License Entitlement and Reconciliation portion of their product. The

recently added CLR (Continuous License Reconciliation) feature provides detailed

software license reconciliation data as well as high level graphical summaries. We

look forward to the future enhancements that Eracent has on their roadmap. For

the second we regret a lack of documentation.

Figure 12 - Eracent Evaluation Summary

62

Figure 13 - Eracent Evaluation detailed view

63

f. HP Asset Manager

HP Asset Manager offers a quite strong asset management discovery tool

with loads of possibilities if you want to have a picture of each asset attached. The

functionality where the scan agents are pushed out to the clients works well.

Basic recognition is quite poor, and the process of adding/learning new

software is complex and time consuming. Focusing on Software and Compliance HP

Asset Manager is really weak. There is no report builder, so you either stick to the

basic reports, or need to invest in more developments. A lot aof home-made

development are required, and the design and usability looks like something from

the 90's.In general this tool is too complex for the non-advanced user and SAM

module is difficult if used with external discovery sources.

Figure 14 - HP Asset Manager Evaluation Summary

64

Figure 15 - HP Asset Manager Evaluation detailed view

65

g. BMC Remedy

BMC offers solid asset management principles properly applied on a good

workflow and coverage across all elements of asset management (mainly geared for

hardware and basic software compliance though). It also integrates to the wider

Remedy CMDB, so will tie an organization incident and problem management

system and configuration management system with the asset management system

which is really the key strength of using this as the Remedy suite.

Remedy is not focused on the deeper software analysis that is now available

in competitive products leaving organisations to fill the gap themselves, or through

3rd party services. The product also requires a large amount of 3rd party services

to keep it running. Remedy is not intuitive to administer (either back end or front

end) and splits the deeper information to Atrium Discovery module which means

you end up using two products to get good reports. It seems that it has been left

behind by the other SAM competitors.

Figure 16 - BMC Remedy Evaluation Summary

66

Figure 17 - BMC Remedy Evaluation detailed view

67

h. GLPI – OCSng

The couple GLPI – OCSng offers a quite strong asset management discovery

tool with loads of possibilities if you want to have a picture of each asset attached.

The functionality where the scan agents are pushed out to the clients works well.

The injection in GLPI for inventory overview is interesting. Yet, virtualization

recognition is quite basic and the process of adding/learning new software is

complex and time consuming. Focusing on Software and Compliance GLPI is really

weak. There is no report builder, so you either stick to the basic reports, or need to

invest in more developments. Alike, there is no dedicated SAM module and no

automatic license stock review. A lot of home-made developments are required (we

underline the open-source license of GLPI) to enrich licensing modules, and the

design and usability are not easy to handle. In general data injection is difficult if

used with external discovery sources.

Figure 18 - GLPI/OCSng Evaluation Summary

68

Figure 19 - GLPI/OCSng Evaluation detailed view

69

2.5. SYNTHESIS ON INDUSTRIAL STATE OF THE ART

After identifying on horizontal axis, the prospect for improvement of SAM

processes and on horizontal axis, the complexity factors brought by the cloud, the

focus should be done on weak points of SAM processes. (Fig.20) summarizes the

evaluation of major market tools. We propose to use the SAM maturity scale to read

it. Visibility is first step and mainly we will find discovery tools (BladeLogic,

OCSInventory NG, and SCCM12). As transition to the second step: Identification, we

will find tools like GLPI, to manage assets discovered in first step but without

being able to truly identified software like tools proposed by Aspera, snow or

editors’ own solutions able to manage PUR and for some able to identify risks of

over/under deployments (Snow, Spider Brainware group, Aspera).

It summarizes that real sticking points for the expansion of SAM cloud

management are mainly based on level two of the SAM maturity scale presented

above: identification of software and modeling of automatized policy and controls

to sustain dynamic and real-time cloud provisioning. We propose to address these

two points in section 3 and 4.

Figure 20 - Features and limitations of most popular SAM tools

12 www.microsoft.com/fr-fr/server-cloud/products/system-center-configuration-manager/,
September, 2016

70

3. SYNTHESIS

Going further, in cloud environments SAM is not only assets management, but

also service management which must be done in real time taking into account the

fast rhythm of changes: services are provisioned, configured, reconfigured and

decommissioned in a matter of minutes (summarized in Fig.21). Compliance risks

are increased by the ease and speed of provisioning which can bypass traditional

centralized processes. In such conditions, SAM controls are difficult to implement.

Figure 21 - Complexity factors brought about cloud architecture

One of the business benefits of cloud computing is its agility and speed -to-

market. Services are provisioned, configured, release in a matter of minutes. Thus,

while traditional SAM processes assume long lifecycles (usually, we can consider 5

– 7 years for a software, which leads to long cycles of contracting, discovery,

inventory and reconciliation), cloud is accelerating these proce sses up to real-time

requirements.

A second issue to consider with cloud environments is that different levels of

services and multiplication of hidden costs have to be taken into account. These

hidden costs may include cost of migration, integration with IT systems, premium

support services, new storage requirements, cost of extraction of data, renewal

costs of the service, oversubscription costs.

We can also underline that if SaaS seems to reduce or even delete

infringement risks because it is supposed to be indexed on real usage, this use is in

fact restricted in many cases and is not often negotiable. In such cases, SAM should

have proper controls in place to ensure compliance with all requirements and

71

limitations (geographical scope, restriction on shared accounts, on non-

employees/providers, partners … time of day, volume of transactions …). It leads to

multiplications of complex rules, not only based on hardware metrics, but directly

on usages, sometimes more difficult to identify.

As said in (BSA, 2014) [26] cloud services are often considered as

operational expenses and not as capital expenditures, which can lead to several

problems: (1) less involvement in contracting phase, (2) loss on control of

operational dependencies, (3) loss of know limits to final costs, (4) lack of financial

visibility, (5) increased license compliance risks.

72

73

Chapter 3

 III. PROPOSITION OF A SOFTWARE IDENTIFICATION MODEL FOR

CLOUD ENVIRONMENTS

Proposition of a Software Identification Model for Cloud

Environments ... 73

1. Software licensing issues, challenges and opportunities 77

A. Licensing complexities moving to the cloud .. 78

B. Cloud-oriented software licensing models ... 81

2. Requirements for effective Software and entitlements identification 81

A. Requirements for Software identification .. 82

B. Requirements for Usage Rights (PUR) or entitlements identification 82

01. Deployment and migration conditions ... 82

02. Access & usages conditions .. 83

03. Geographical and location requirements ... 83

04. Elasticity scope ... 83

C. Requirements for Instances and deployment environment identification 84

D. Requirements for identification inherent processes ... 84

01. Impact on procurement .. 84

02. Impact in measurement and tracking usages .. 84

3. Software PUR management process flow ... 85

4. Implementation of software identification patterns 88

A. Software identification hindrances .. 88

B. Software identification models proposed by ISO 19770-x .. 90

01. ISO 19770-2: about Software Identification Tags .. 90

74

02. ISO 19770-3: about Software Entitlements Tags (Ents) 96

5. Workaround propositions and use-cases ... 98

A. About PUR .. 98

B. About SKU ... 99

C. Proposed identification Lifecycle .. 101

75

n this chapter, we will (1) detail the software licensing issues, challenges

and opportunities brought by the cloud; (2) expose requirements for the

effective software identification, including entitlement’s identification; (3) propose

a software entitlement management process flow and (4) discuss about

implementation of software identification patterns.

Software business is often complicated by use of unprecise jargon and

acronyms. To help classify matters we propose here three definitions to make a

distinction between Software license, Software key and Software entitlements

which are commonly misunderstood and will be developed all among this chapter.

 A software key is a special piece of software that unlocks the product

and allows it to run. Many vendors incorrectly refer to keys as

“licenses”. Moreover, contrary to the name, “license servers” do not

actually manage licenses but keys and do not show users how many

licenses a server manages. To re-use a well-known real-world analogy:

if you owe a house and it key but lose your key, you are still owner of

your house. Alike, if you found your neighbor’s key, it does not mean

that you owe his house. License grants a user the right to use the

software. Holding a key is not equivalent to owning a license, just as

having a door key does not make you the homeowner.

 A software license is what grants a customer the right to use a specific

product. It contains a set of terms and conditions (in other words

called Product Usage Rights (PUR)) that define to what extent you may

legally use that software. When taken on its own, however, a license

only provides enforcement via legal recourse.

 Software Entitlements and PUR represent software use rights granted

by a license as defined through agreements between a software

licensor and a software consumer. Entitlement management is a

system by which rights are assigned to their intended recipients and

then managed. It provides fine-grained management over the rights to

use the license and, as a consequence, the software. It enables you to

grant, resolve, enforce, and revoke access entitlements, as well as

enforce access policies for data, devices, and services.

Moving to the cloud is not going to simplify license lifecycle’s management

especially because of complexities on software entitlement management. These

hindrances affect among others, cloud providers, cloud subscribers and software

I

76

vendors and require cloud deployment dedicated solutions. To operate in this

environment, software users from cloud providers to cloud subscribers must

manage their PUR while balancing the usage, price, and performance features of

software entitlements with the software licensors. We can consider the two

following hindrances:

 There is multitude of software vendors proposing multiple of different

licensing schemes increasing the complexity of managing software

entitlements. One product might be distributed under 1 to n* different

metric(s). One metric might have different meaning depending

software vendors. Entitlements encompass large variety of limitations

and effective use rights take into account any contracts and all

applicable licenses, including full licenses, upgrade licenses and

maintenance agreements. Two relevant examples of this multitude of

licensing models: in 2015, IBM was proposing 143 different active IBM

license metrics13, only one could be tracked via SAM tools (Processor

Value Unit (PVU)). The German software editor SAP had 70 different

active license metrics.

 From traditional to hybrid and complex software entitlement

management structures, new specific mechanisms must be

implemented to overcome cloud deployment’s complexities.

In such context, predicting the total cost of software - including licensing and

managing compliance - present growing difficulties. Within a single PaaS or

software-as-a-service (SaaS) environment, multitude of entitlement models and

metrics exist for the different components and have to be synchronized and

reported with real-time level of requirement. But first of all, entitlements have to

be properly and quickly identified.

The objectives of this chapter are:

 To analyze Software licensing issues and challenges in Clouds

 To discuss about minimizing risks of software non-compliancy through

a detailed process of PUR identification, including requirements and

specifications.

13 D.Foxen, May 5 th 2015, report on IBM & SAP Seminar. (online)
https://www.itassetmanagement.net/2015/05/05/ibm-sap-seminar-london-april-2015-report.
October 2017

77

 To discuss about relevancy of software identification pattern and

existing commercial initiatives and hindrances to standardize a

software identification model.

 To propose a cohesive identification model to accommodate scalable

and dynamic cloud deployments

It will be organized as follow: (1) Software licensing issues, challenges and

opportunities in cloud environments; (2) Requirements for effective identification

of Software entitlements; (3) Software entitlement identification process flow, (4)

operational software identification regarding current norms and practices.

1. SOFTWARE LICENSING ISSUES, CHALLENGES AND OPPORTUNITIES

In traditional architectures, we were used to see PUR tied to specific

computers, servers, resources (CPU, disk…) or users. This specificity does not fit to

cloud deployment models where the cloud subscriber looks for capability to

dynamically dimension software, as needed, without real-time compliance

concerns. In other words, the cloud significantly complicates the effective

management and optimization of software entitlements for cloud subscribers,

vendors and providers.

As an intangible asset, it is difficult to evaluate fair price of software and

what can be fair licensing costs. It can explain the gap between software consumers

and software vendors approaches to fair licensing and it requirements. It explains

partially the diversity of software licensing and pricing models being demanded by

carriers and offered by software vendors.

Software vendors propose multiple licensing models driven by:

 Increasing the predictability of their revenue. Software vendors are

expecting software licensing and maintenance revenue predictability

when software consumers are expecting predictability of the licensing

costs

 Better understanding of their customer software uses. To increase the

value of product and maintenance services directly bound to customer

needs

 Indexing software value on participation in wider solutions. Improved

alignment with value. Demonstrating the tangible value of intangible

software through relevant proof and metrics can improve alignment

78

between licensing costs and both editor and customer’s perception of

software value.

Software users expect software vendors to:

 Improve the effectiveness of licensing practices

 Allow flexibility and simplicity when proposing software licensing

contracts. License term’s complexity is directly linked with non -

compliance or accidental piracy.

1.1. LICENSING COMPLEXITIES MOVING TO THE CLOUD

Most often-used ‘traditional’ licensing models (such as number of cores,

CPUs, allocated physical resources, etc.,) bind software deployments to physical

infrastructures or hardware features (ownership, geographical restrictions,

installations, etc.,). This binds between IT environment and software licenses are

limiting usage and capacity especially when migrating from traditional IT models to

flexible cloud infrastructure. Actually, traditional granted usage-rights do not

match with cloud requirements such as virtualization, elasticity and on -demand. In

virtualized environment, an issue consists in mapping physical licensing to virtual

resources. It might be difficult to have the same use of software f or equal costs. The

issue is nearly the same considering mobility between private, public, hybrid,

multi-tenant clouds which also implies software entitlements changes and

compliance failure.

Supervision of licensed software consumption is more difficult given the

increased complexity of identifying and tracking compliancy issues. Dynamic

provisioning of instances might lead to compliancy issue like underutilization or

overuse of assets without possibility to counterbalance it. Actually the ease of

migration and instance cloning force to multiply tracking and matching on multiple

platforms, data-centers, private/public/hybrid clouds across more complex

software lifecycle, to faster time-scale. Migrations and resource allocation changes

across datacenters and deployments weaken compliancy and accuracy of

entitlement inventories. The ease with which resources can be dynamically

allocated and used (scale up or scale down) in virtualized environment causes

issues to predict the initial and ongoing cost of software licensing. Hybrid license

models that encompass usage and device-based licensing models increase the risk

to burst limits and breach PUR agreements.

79

Considering the most commonly used metrics (processor, devices, user,

access), we can list (and summarize in Tab. 3) some major risks moving these

licenses schemes to cloud infrastructures.

 Bound to the processor capacity, like CPU (Core processor Unit, from

Oracle), PVU (Processor Value Unit from IBM), Core, processor, etc.

o In traditional architectures, these metric, especially in

virtualized environments are often complex, slightly different

from one to another depending the editor. Keeping track of the

proper amount of processor license counts and capacity levels

typically requires deployment of advanced monitoring systems.

Moving to the cloud, monitoring systems to track processors

counts and capacity levels in IaaS can be more challenging due to

compatibility, security and network issues.

 Bound to devices proposed by most publishers, like Instance, Device,

Computer, Installation etc.

o Often in traditional architectures, discovery tools and delivery

processes reduce risks of non-compliance for device licensed

products. As good is your coverage, as lower is the

counterfeiting risk. In cloud infrastructures, software discovery

is more challenging, due to diversity of technologies and cloud

(non)-interoperability, levels of security and monitoring.

Additionally, considering SaaS, many products can be accessed

and used via multiple devices; thus, keeping track of licensable

devices can be challenging

 Bound to User proposed by most publishers, like

Standard/Professional User, Limited User, Administrator/reader etc.

o In traditional architectures like in Clouds, usage rights for each

user role are tailored in software license agreements. Access to

usage rights can hardly be technically restricted, and are

difficult to report and translate into licensed roles when Cloud

demand real-time visibility on user’s usage right assignments.

 Bound to In-direct Access, proposed by many publishers, especially by

SAP, IBM and Oracle, like Named User, Authorized User, Employee, etc.

o These licensing rules often call for all interactions between

software and human users either directly, through a named

account, or indirectly through a shared account or third-party

80

application account, to be fully licensed. For SAM purposes, it is

hard to obtain more than the visibility of the number of accounts

(and not the true number of user behind each account) within an

application which is not showing the true amount of access.

Obtaining such visibility is again more challenging in cloud

environments due to the difficulty to fully observe the system

architecture and the multitude of user access mechanisms.

Metric From traditional architectures To cloud architectures

Processor

Different licensing terms
between vendors and difficult to

understand.

Requires advanced monitoring
systems to track resources

Temptation to paid for
virtual capacity while

physical capacity needs
licensing

Track and monitoring
even more challenging.

Devices
Risk is limited because software

discovery has quite good
coverage

Lower discovery
performance.

Multidevice access

User

Bespoke User’s rights

No technically restrictions due to
difficult translation

Usage real time visibility
requirements

Access
Require difficult full visibility on
all access (direct and in-direct)

and accounts

Less visibility on system
architectures and access.

Table 3 - Most used metrics and identified risks in cloud environments

This being said, we stress the necessity to create dedicated licensing models

and specific contractual terms for cloud environments; to simplify entitlement

identification in order to ensure compliance management, support cloud

deployment flexibility and dynamicity and to gain a better understanding of

contractual terms used within the license scope (i.e., does processor mean CPU or

core? “Named user” include or exclude batch processing?).

81

Nevertheless, moving to the cloud should not mean for cloud-service

providers, that their license legacy becomes obsolete. Perpetual licenses bought for

traditional architecture should not have a practical limited lifecycle due to

technical obsolescence of the IT environment. A perpetual license is an entitlement

for an unlimited period of time which cannot be bound to the current technology

but be adapted to fit it.

1.2. CLOUD-ORIENTED SOFTWARE LICENSING MODELS

To better suit cloud deployments and their flexibity requirement, software

vendors started to propose new licensing models or to define adjustments to

existing ones.

Thus appears SaaS subscription-based licensing models (or ‘pay-as-you-go’)

where the license consists in a subscription basis depending on the number of

users. The SaaS provider manages accountancy, underlying software components

(Operating system, middleware, etc…) and the consumer is responsible for auditing

and monitoring compliance. However, in IaaS or PaaS environments, issues

described above remains unsolved is case of legacy license asset migration from

traditional to cloud infrastructures. New pay-as-you-go models might be interesting

for some new services but do not allow to use with flexibility, already -owned

licenses. Some vendors propose new entitlements bound with virtual allocated

resources (vCPUs, virtual appliance, etc.,) or virtualized environment sizing (i.e

based on a virtual network element number) which better fit to cloud

infrastructure but force to adapt tracking on multiple platforms and clouds across

more complex software lifecycle, on real time identification requirement.

2. REQUIREMENTS FOR EFFECTIVE IDENTIFICATION OF SOFTWARE AND ITS

ENTITLEMENTS

The characteristics of software covered by a license, its instances and their

consumption have to be traceable regardless of the deployment (physical or virtual

computing through a virtualized environment, from the cloud and through a data

center). This requirement of traceability encompasses precise identification of (a)

software, (b) its PUR or entitlements, (c) its instances. The software vendor

entitlement requirements will impact the software user entitlement management

processes, in particular:

82

 The features implemented to manage and monitor software PUR at a

consumer level using SAM approaches

 Maintenance of deployment inventories

 Usage-based reporting of software deployments

 Internal elasticity management policies to fulfill entitlements

requirements

2.1. REQUIREMENTS FOR SOFTWARE IDENTIFICATION

Key attributes of software include its commercial name, version, editor,

third-party vendor, eventual patch and release and their version; It encomp asses

the identification of packaged software/application: licensed software products

can be packaged to form solutions, suites, bundles, and virtual appliances.

2.2. REQUIREMENTS FOR USAGE RIGHTS (PUR) OR ENTITLEMENTS IDENTIFICATION

A catalogue of PUR should be implemented to store entitlements grouped by

software. It should encompass the term of the license and termination provisions,

including post-termination transition rights; Licensing metrics and model used,

such as named user, concurrent license, volume license, enterprise/personal

license, evaluation/trial license, original equipment manufacturers, hardware

platform- or device-based, role-based, employee-based, financial-based, or

transaction-based; and usage rights and restrictions like deployment rest rictions,

including geographical restrictions.

Such catalogue of PUR should be integrated in an audit process of license

limitations especially for migration purpose, but not only. It should assess among

others (1) deployment and migration conditions, (2) access & usages conditions,

(3) geographical and location requirements, (4) Elasticity scope.

a. Deployment and migration conditions

We should identify if software can be deployed across the physical and/or

virtual infrastructure if migrations to the cloud are permitted and how?

 From physical data centers to virtual data centers

 From a virtual host to another virtual host within a virtual data center

 From one host to another host within a public cloud

 From one host to another host within a private cloud

 From a virtual data center to a public cloud, and back

 From a private cloud to a public cloud, and back

 From a public cloud to another public cloud, and back)

83

 The natures of deployments, migrations, cloning varies depending the

goal and has to be easily identifiable. Adequate identification should be in place to

identify software vendors policies in case of back-up, standby equipment to

contend with hardware failure, parallel maintenance tasks to facilitate workload

shifting, load balancing in order to maintain service quality. As well, software

vendor position toward cloning of virtual machines has to be easily known.

b. Access & usages conditions

It encompasses limitation of the number of cloud users (people, human

operated device, non-human operated device, application etc..) who will be allowed

to access software, and clarification on how are considered the different type of

access (i.e. does “access” include or exclude batch processing?). Access rights

should be clearly defined in the context of user types and business need.

 We should be able to identify some restrictions which can be based on

the type of environment, depending if the software instance will be used in

development, test or production or in combination of independently developed and

supported products. The impact of routine maintenance performance should be

assessed. As well, we should identify if any part of the cloud application delivered

by the vendor is outsourced or subcontracted to some other third parties.

c. Geographical and location requirements

Some software vendors limit where the software can be deployed or used

through software entitlements. We should be able to identify the restrictions on

geographical locations where a license can be used and the instance can be

provisioned and offered. Access rights should be clearly defined and managed in

the context location of access.

d. Elasticity scope

We should be able to identify:

 If the license can support cloud bursting or migrating from one cloud

to another and how to consider movement of cloud services and VM in

order to balance the data center load, to support disaster recovery, to

handle data center migrations, to handle capacity burst requirements?

 If the license allow transitory use of specific software

 The level of elasticity granted by licensing quotas and burst limitations

should be identified and assessed.

 If the vendor propose an elastic infrastructure with defined limits that

will ensure software entitlement obligations

84

2.3. REQUIREMENTS FOR INSTANCES AND BOUNDED DEPLOYMENT ENVIRONMENT

IDENTIFICATION

Basically, it includes whether software is currently used and the ability to

map software deployment back to its corresponding PUR and provisions for

accommodating legacy software PUR, such as those that correspond to physical -

hardware deployment.

 Regarding packaged software, we should have interoperable capabilities to

discover bundled software within the deployment package in order to automate

and manage software installation, audit and migration.

2.4. REQUIREMENTS FOR IDENTIFICATION INHERENT PROCESSES

a. Impact on procurement

The level of identification requirements should impact the role capacity from

companies (software user) to procure software. In other words, it defines if

employees can procure software directly through Internet download or the level of

procurement department centralization. Likewise, it impacts the process of

software deployment and migration after within the company (who allows it and

where?) and how software license fees will be paid and through which channels? A

centralized procurement reduces counterfeiting risk exposition by eliminating the

acceptance of hazardous contractual terms, impracticable license usage rights and

restrictions, and not suitable financial costs.

 Identification of entitlements should also impact the relation between

procurement and IT department for such questions like approved commercial

consideration regarding IT needs. For example, to balance more cost effective

metric with relevant IT deployment requirements. Companies should assess the

commercial goals of the agreement, evaluating the anticipated workloads for

normal and extraordinary short-term and long-term business use-cases. Then, they

should review which type of licensing patterns more are acting to meet their needs,

including interoperability and commitment requirements.

b. Impact in measurement and tracking usages

These requirements are directly bound to those expressed in previous

chapter and constitute prerequisites to implement processes and tools to precisely

identify and monitor usage for any software instance. Identification of entitlements

should allow a cloud subscriber to set up relevant SAM processes like:

 Build and update software entitlement ad usage library taking into

account interdependent software delivery processes

85

 Monitoring license compliance and implementing controls to manage

licensing compliance violation.

 Set up internal and external optimization of software licensing

investments

 Evaluate accuracy of provider reporting capability and reciprocally

 Propose relevant metrics to measure as precisely as possible real

consumption of software, based on metric’s costs and benefit

comparison

 Point suitability of software entitlements regarding their ability to be

measured or their cost-effectiveness

3. SOFTWARE PUR MANAGEMENT PROCESS FLOW

The integration of software PUR management and its consequences across

the software lifecycle are described in Fig.22. Once a contract (commercial

agreement) has been set up with a software vendor, entitlements are controlled

through a set of key operational processes within the whole lifecycle described in

previous chapter. Briefly, we can count:

 Service Catalog creation and update which consist in maintaining a set

of available services and levels and provide real-time information

about available stocks and applicable prices and conditions. The

catalog lists all proprietary software that requires licenses at company

level and special contractual agreements and arrangements.

 Image Catalog which consist in maintaining a library of VM and

software image enriched by entitlement metadata in keeping with

service catalog.

 Provisioning consist in charge required workload to available

environment respecting given limitations and permissions

 Identity management consists in federating identity sources,

prerequisite for user-based software licensing

 Delivery and operations consists in installing and accessing software

according to given entitlement limitations and necessitate to update

software entitlements database. Other activities can be provoked by

internal or external events like bursting

 Monitoring consists in detecting events in installation or usage of

software regarding bounded entitlements

86

 Metering consist in registering actual usage of software components

according to metrics which are bounded to software

 Billing consists in arranging payment for used software resources

directly to software vendors or third-party

 Termination consists in terminating services when no longer needed

and analyze their consequences in terms of entitlements in case of

usage-based licensing mainly

Each stakeholder has its own set of interactions. The processes follow a

logical order, although some of them are called iteratively, and in some cases there

are more complex patterns involved between steps. Software supplier cans SaaS,

PaaS or IaaS suppliers.

87

Figure 22 - Key operational processes in software PUR identification

88

Some interactions are possible between the processes which are not only

following vertical axis. For example, provisioning might be provoked by some

terminations and billing is triggered by metering and usage.

4. IMPLEMENTATION OF SOFTWARE IDENTIFICATION PATTERNS

4.1. SOFTWARE IDENTIFICATION HINDRANCES

Effective SAM results in the ability to have accurate and complete view of

software assets entitlements that are owned, deployed and used. However, if most

of the recognition tools are quite efficient (especially in traditional architecture), a

common mistake is to underestimate the process of identifying software after

discovery. Indeed, most system admins can more or less easil y compose scripts to

collect program data or details on executable files; yet, the challenge is to associate

this raw list of executables with normalized entitlements. There is a huge difference

between software discovery, software recognition and software management. Here,

the most common hindrances.

 File Header Information is composed by the titles and descriptions

used to describe software when the manufacturer compiled it. It does

not follow any industry conventions

 Add / Remove Program Data is well-known to be inaccurate and

incomplete

 Normalization: Data needs to be normalized to rull out duplicates

such as Oracle Limited, Oracle Corp and Oracle Inc.

 Suite Recognition – it is often not visible that a software instance

recognized is part of a suite

 Footprints : some application have bundles or arrangements which

may leave traces of installations – which at first look may look like a

full installation e.g. a bundled version of SQL

 Recognition does not always allow knowing what is the version, if it is

an upgrade, what is the level of services, professional, standard,

personal, what is the language?

Most of SAM tools use software recognition databases and algorithms to scan

raw files and provide information on what is installed. The aim is to find a

description of software that is closer to what might be stated on the invoice when

you bought it in order to perform reconciliation. Thus is does not eliminate most

listed-above issues. Two crucial points are

89

 The possibility to make own modifications : for some in-house written

software

 The possibilities to update this database each time new applications

are developed. SAM tool vendors usually provide periodic updates or

trickle down updates to download

Inventory has become much facilitated and in some instances free but the

strength and intelligence of software recognition really varies and do not allow yet

tools interoperability.

Figure 23 - Recognition vs Identification

The Figure 23 illustrates a real reconciliation using available tools. We took

one product from one vendor (Photoshop CS4 from Adobe) and tried to perform a

trustworthy reconciliation to demonstrate compliance. Software recognition saves

a huge amount of time and frustration in manually crunching raw data and

interpreting raw executable files or header information. Yet, different tools raise

different recognition values, more or less relevant which do not allow identifying

precisely software following requirements exposed in this section.

90

4.2. SOFTWARE IDENTIFICATION MODELS PROPOSED BY ISO 19770-X

Software identification tags (1) record unique information about an installed

software application, including its name, edition, version, whether it’s part of a

bundle and more. SWID tags support software inventory and asset management

initiatives. (2) Software entitlement tags will specify how license consumption

measurement can be automated. This provides the next level of support for the

automated software asset management process.

a. ISO 19770-2: about Software Identification Tags

ISO 19770-2 [27] was first introduced in 2009, with a recent revision

released in 2015. SWID Tags are designed to help organizations identify what

software are installed within their estate to help them verify their compliance

position.

i. Purposes and scope

A SWID tag is added to a software package by the vendor before it is

provided to the customer for deployment. It displays information about software,

including name, edition, version, vendor and even whethe r it is part of a software

bundle or not. It is up to the software vendor to populate the SWID tags with all of

the mentioned information, and more, so that their customers can see what

applications are in use.

 As designed in ISO 19770-2, it is obligatory for the software vendor to

provide SWID tags for their products and make sure that information provided is

accurate. This level of accuracy is important, as without the right information in the

SWID tag, it is not fit for purpose and can actually create p roblems calculating an

effective license position for the vendor. The responsibility is with the vendor to

adopt SWID tags and to make sure that each application has a unique identifier.

 Because the SWID tag is created and populated by the software

publisher in accordance with the ISO 19970-2 standard, SAM technology vendors

were pressured to use SWID tags as the primary recognition where available. In

theory, the SWID tags are infallible and a ‘single source of truth’ for the true nature

of the installed application. These tags are used to normalize the installation data

to help the SAM team identify what a software bundle or package is, without having

to wade through incomprehensible .exe files or .msi packages.

 A number of the world's leading software vendors support the SWID

concept, such as Microsoft, HP and Symantec [28].

91

 Key benefits associated with software identification tags inventoried

in ISO/IEC 19770-2:2015 include the following:

 The ability to consistently and authoritatively identify software

products that need to be managed for any purpose, such as for

licensing, security, logistics, or for the specification of dependencies.

Software identification tags provide the meta-data necessary to

support more accurate identification than other software identification

techniques.

 The ability to identify groups or suites of software products in the

same way as individual software products, enabling entire groups or

suites of software products to be managed with the same flexibility as

individual products.

 The ability to automatically relate installed software with other

information such as patch installations, configuration issues, or other

vulnerabilities.

 Facilitate interoperability of software information between different

software creators, different software platforms, different IT

management tools, and within software creator organizations, as well

as between SWID tag producers and SWID tag consumers.

 Facilitate automated approaches to license compliance, using

information both from the software identification tag and from the

software entitlement schema as specified in ISO/IEC 19770-3.

 Provide a comprehensive information structure of the structural

footprint of products, for example the list of software components of

files and system settings associated with a product to identify if files

have been modified.

 Provide a comprehensive information structure that identifies

different entities, including software creators, software licensors,

packagers, distributors external to the software consumer, as well as

various entities within the software consumer, associated with the

installation and management of the product on an on-going basis.

 Through the optional use of digital signatures by organizations

creating software identification tags, the ability to validate that

information is authoritative and has not been maliciously tampered

with.

 The opportunity for entities other than original software creators (e.g.

independent providers or in-house personnel) to create software

identification tags for legacy software, and for software from software

creators who do not provide software identification tags themselves.

92

This part of ISO/IEC 19770 describes specifications for tagging software to

optimize its identification and management establishes different roles like describe

in Fig. 24.

 Tag producers: these organizations and/or tools create software

identification (SWID) tags for use by others in the market. A tag

producer may be part of the software creator organization, the

software licensor organization, or be a third-party organization. These

organizations and/or tools can broadly be broken down into the

following categories.

o Platform providers: entities responsible for the computer or

hardware device and/or associated operating system, virtual

environment, or application platform, on which software may be

installed or run. Platform providers which support this part of

ISO/IEC 19770 may additionally provide tag management

capabilities at the level of the platform or operating system.

o Software providers: entities that create, license, or distribute

software. For example, software creators, independent software

developers, consultants, and repackagers of previously

manufactured software. Software creators may also be in-house

software developers.

o Tag tool providers: entities that provide tools to create software

identification tags. For example, tools within development

environments that generate software identification tags, or

installation tools that may create tags on behalf of the

installation process, and/or desktop management tools that may

create tags for installed software that did not originally have a

software identification tag.

 Tag consumers: these tools and/or organizations utilize information

from SWID tags and are typically broken down into the following two

major categories:

o software consumers: entities that purchase, install, and/or

otherwise consume software;

o IT discovery and processing tool providers : entities that provide

tools to collect, store, and process software identification tags.

These tools may be targeted at a variety of different market

segments, including software security, compliance, and logistics.

93

Figure 24 - SWID Tag lifecycle described in ISO 19770-2

ii. Implementation of SWIDTag processes

 General requirements

The software identification tag file shall be defined as an XML data structure.

The XML schema definition (XSD) as specified in this revision may be found here

(http://standards.iso.org/iso/19770/-2/2015/schema.xsd)

 In instances where a software product is installed on a device, a

software licensor conforming to this standard will ensure that a primary SWID tag

is included on the installation media and installed at the same time the software is

installed.

 When software is uninstalled, or changed to a different release, the old

SWID tags shall be removed from the device.

 In instances where a patch is installed, the patch will include a patch

SWID tag that will be installed when the patch is installed, and in most cases sh ould

be removed when either the patch is uninstalled, or when the product is

94

uninstalled, or changed to a different release. The determination if a patch tag is to

be removed, or not, is based on additional data provided in the ownership attribute.

 Supplemental tags provided by the software publisher (which may be

used to identify relationships between software products) shall be managed in a

manner similar to primary and patch SWID tags such that the supplemental tags

should be removed from a device when the software product is uninstalled. SWID

tags reside in the same directory tree as the applications installation directory tree.

It is expected that if an application directory tree is deleted when an application is

uninstalled, that the SWID tags associated with that application (including primary,

supplemental, and patch tags) are deleted as well.

 Elements

Due to the multiple use cases identified for SWID tag creation, the minimum

data requirements for a SWID tag are relatively sparse. The only values th at are

required for a SWID tag to be considered “valid” to meet the requirements of the

XML schema shall be the following:

 Software Identity: represents the root element specifying data about a

software component. A software product may be made up of one or

multiple software components. Also, Software components may be

atomic, or may be made up of multiple components. Each component

will have its own SWID tag and only one SoftwareIdentity will exist for

any one component.

o Name

o tagID

o patch (default value is false)

o Supplemental (default value is false ; If set to true, this tag

specifies supplemental tag data that can be merged with primary

tag data to create a complete record of the software information.

Supplemental tags will often be provided at install time and may

be provided by different entities (such as the tag consumer, or a

Value Added Reseller).

o tagVersion (default value is 0; The tagVersion indicates if a

specific release of a software product has more than one tag that

can represent that specific release. This may be the case if a

software tag producer creates and releases an incorrect tag that

they subsequently want to fix, but with no underlying changes to

the product the SWID tag represents. This could happen if, for

example, a patch is distributed that has a Link reference that

does not cover all the various software releases it can patch. A

95

newer SWID tag for that patch can be generated and the

tagVersion value incremented to indicate that the data is

updated.)

o version (default value is 0)

These default values are specified so that if no value is included for these

attributes, the SWID tag is considered to be the first version of a primary tag and

that the software product has the version number of 0.0.

 Entity: Specifies the organizations related to the software component

referenced by this SWID tag.

o Role of TagCreator The relationship between this organization

and this tag i.e.. tag, softwareCreator, licensor, tagCreator, etc..

Role may include any role value, but the pre-defined roles

include the following: aggregator; distributor; licensor;

softwareCreator; tagCreator. Other roles will be defined as the

market uses the SWID tags.

o Regid of TagCreator

o Name of TagCreator

 SWID supplemental attribute

Supplemental tag data is data that is directly associated with a specific

software product’s primary tag but, for various reasons, the data included in the

supplemental tag is not included in the primary SWID tag. SWID tag data may only

be modified by the tag Creator; in other words, if a software creator provides a

primary SWID tag for their product, the software consumer who installs and

manages that software is not allowed to modify any data in the primary SWID tag.

In this case, the software tag consumer can create a supplemental tag that provides

specific details for the primary SWID tag they are referencing and they will set the

attribute “supplemental” to the value of true. This supplemental tag can then be

deployed with the installation of the software, or added after the fact as part of a

device management process, or a software activation process. Supplemental tags

may also be provided by the tag creator to add additional information related to a

specific installation of a software entitlement.

 Effectiveness of ISO 19770-2

It is unrealistic to expect to create, manage, and use software identification

tags without the use of automated capabilities built into specialist or generalist

tools. Some facts about approach to SAM and SWIDtag are that companies do not

have SAM tool that takes full advantage of the tags; instead they might slightly

modify tool, or more often modify their existing processes; they create and deploy

96

tags manually. Likewise, observing current trends, it seems unrealistic that

software editors will all adopt such generic approach de scribed above and

generalize adoption of Software Entitlement tags.

 Despite the ISO 19770-2 standard first release date from 2007, only

now are a few major editors (like Adobe, Microsoft, Symantec) starting to include

SWID tags in their software packages (only in the new versions of software). As a

result, a multitude of installed software across network will not have SWID Tags

and therefore organizations will have to rely on usual software recognition

methods. Moreover, SWID Tags are not unfailing:

 They still have to be created by humans which can make human

mistakes.

 They do not address the problem of ‘ghost’ software on the network. A

enduring challenge for SAM managers has been inventory solutions

detecting fragments of software applications on devices , which are

then ‘recognized’ as installed applications. In many cases, the

application in question might have been removed from the computer.

That is because it is common for files to be left behind after uninstall,

or for files used by multiple applications to be detected and used to

mistakenly assume that applications are installed.

 SWID tags can be guilty of creating ‘false positives’. If the SWID tag is

not removed as part of the uninstall process, that can lead many

inventory solutions to report software installs that simply are not

there.

 It appears that some flaw exists, like Adobe’s one on Adobe Creative

Cloud suite products: Individual products are given two SWID tags:

One for the product, one for Creative cloud Suite. Discovery will show

that the user has the full Creative Cloud suite installed, rather than the

unique applications that are installed and being used.

SWIDTag have the potential to significantly improve the process of managing

software and entitlements on condition that they are adopted accurately and

unvaryingly by software editors. For now, they are not foolproof and not yet

commonly used.

b. ISO 19770-3: about Software Entitlements Tags (Ents)

The ISO/IEC 19770-3 [29] standard for software entitlement tags is designed

to integrate with ISO/IEC 19770-2, the standard for software identification tags.

97

 The expectation is that software entitlement tags will not provide an

interpretation of a software entitlement contract, but rather will specify how

license consumption can be measured using automated means. This will be

accomplished by providing:

 Metrics that must be collected from computing devices

 Measures against which, the metrics are compared

 Additional grants or limits placed on the entitlement

 By providing specific details about what must be tracked in order to

reconcile software entitlements, the expectation is that the SAM process can be

automated and become much more accurate and useful to organizations, with a

much lower administrative overhead.

Trustworthiness of Ents

This part of ISO/IEC 19770 does not require a specific process for generating

content for entitlement files. Anyone or any organization may create Ents. The

strong preference is for original Ents to be created by the software editors, so that

these Ents have the highest degree of trustworthiness facing the licensing

information they contain. However, there can be no assurance that all

licensors/software publishers will produce Ents, firstly for new license

transactions, and secondly for historical license transact ions. Therefore, it should

be possible for end-user organizations and third parties to create such Ents

themselves. Furthermore, there are certain types of management transactions

which would normally only be created by end-user organizations, but likewise

these could also be produced by third parties depending on the circumstances.

 Ents can never be assumed to have 100 % trustworthiness. Primary

reliance should always be placed on normal contractual documentation, including

invoices and terms and conditions for licenses which have been purchased or

otherwise acquired. Given this warning, the trustworthiness of Ents is dependent

on three things:

 Authority. Trustworthiness will depend on the authority of the person

or organization creating the Ent, for the information given in that Ent.

For example, the software licensor would be expected to have the

highest level of authority for creating an Ent for a license it has sold,

and therefore this type of information would have the highest degree

of trustworthiness.

 Authentication. The information in an Ent needs to be authenticated to

be certain of the level of trustworthiness which would be expected for

98

the Ent creator. The expectation is that Ents will be signed to provide

such authentication, at a minimum for Ents which are created by one

organization for use by another organization.

Universality. Models have to be general enough to encompass editors

licensing variety, which is far from being trivial. Moreover Ents have to be

effectively used by Software licensor and SAM tool. For now, only few marginal SAM

approaches foreshadow Ents recognition and use; Not one of software editors have

been announcing yet implementation of this part of ISO/IEC 19770-3.

5. WORKAROUND PROPOSITIONS

If ISO/IEC 19770 is currently the most advanced proposition to overcome

software identification throughout it whole lifecycle, we underlined it relative

efficiency in particular because of software market weak adherence (mostly for

Entitlements)

 For efficiency reasons, we propose to adapt the ISO/IEC 19770-2 with

a concept borrowed from large retailers: Stock Keeping Unit (SKU) 14.

 Originally, SKU represents warehousing item that is unique because of

some characteristic (such as brand, size, model and color) and must be stored and

accounted for separate from other items. Every SKU is assigned a unique not

standardized identification number (inventory or stock number) which is often the

same as the item's EAN (European Article Number) or UPC (Universal Product

Code). For Software identification purposes, SKU identify Software and its PURs. To

be informative, here are two vivid examples.

5.1. ABOUT PUR

Purchasing a train ticket. For the same journey, a myriad of options and

variations and the price can vary significantly. Among others:

 type of ticket (flexible or no),

 time of the day (peak or off-peak)

 class (first or cattle)

 age of customer (infant/child/adult)

14 http://www.businessdictionary.com/definition/stock -keeping-unit-SKU.html

99

 special programs (season ticket, student card, loyalty card).

 Like illustrate on Fig.25, it is the same for the software industry,

licensing provides options and flexibility, called PUR. PUR are (not exhaustive) :

customer’s use rights, Rights to use other versions, Applicable Use rights, disaster

recovery rights, permitted periods of use, conditions on use, required used of some

product, metric.

Figure 25 - Analogy between PUR and railway

5.2. ABOUT SKU

On the shop’s juice shelf, on Fig.26, the same orange juice from the same

producer can be sold in three different packaging: containers like a glass bottle, a

can and plastic bottle. These three products containing the same juice will have

three different SKU. But if we put three glass bottle of this juice in our basket, they

will have the same SKU; it is not possible to find any difference between them.

Making a parallel between Software and Juice: Software is the content (Juice), and

Product Usage Rights are the packaging (PUR) (Bottle).

100

Figure 26 - Analogy between SKU and Juice Bottles

SKU is a not normalized code defined by the Software editor. It can be found

very often in product catalogues/purchase orders during purchasing phase. Our

experience showed that this code is internally used by software editors, software

licensors and software retailers for stock management and orders management to

the detriment of usual software identifiers like name or commercial denomination.

It guarantees higher accuracy and reliance. Strangely, this concept is not widely

spread for SAM purposes: identification, usually alphanumeric, of a particul ar

product that allows it to be tracked for inventory and software entitlement

purposes.

 The term “stock keeping unit” is traditionally associated with physical

goods. In the sense of licenses it refers to a unique identifier, sometimes also called

“part number». The term “stock keeping unit” is typically associated with unique

products for sales purposes, such as software entitlements. It may not correspond

uniquely to specific software products, but may instead represent packages of

software, and/or specific terms and conditions related to software products, such

as whether it relates to a full product, upgrade product, or maintenance on an

existing product. SKU allows to identify precisely requirement exposed in III.2.2

(deployment and migration conditions, access and usages, geographical and

location restrictions and elasticity scope).

101

5.3. PROPOSED IDENTIFICATION LIFECYCLE

Combining these two notions by including SKU in the SWIDTag allows

identifying with the highest accuracy Software and it PUR. The right approach has

to be to combine the ability to read SWID tags with a sophisticated software PUR

recognition methodology which has the capability to challenge the information held

in a SWID tag (to prevent false positives) and provide accurate software

entitlement recognition even in the absence of a SWID tag (Fig . 27).

Figure 27 - Combination of SWID and SKU

In Fig. 28 and 29, we propose to present software identification lifecycle

using enriched SWIDTag (SWIDTag +) where SKU will be intercept from purchasing

phase and included in SWID supplemental attributes. A SKU database should be

created and maintained to “translate’ the codes into understandable data which can

be integrated by SAM tools in order to match deployment, access an d PUR.

 Fig 28 represents SWIDTag+ lifecycle when the software editor is

providing a SWIDTag.

 Fig 29 represents SWIDTag+ lifecycle when the software editor is not

providing SWIDTag.

102

Figure 28 - SWIDTag+ lifecycle with initial SWIDTag

Figure 29 - SWIDTag+ lifecycle without initial SWIDTag

In Fig 30, we propose to link the identification concerns with the purpose of

next chapter: how to identify a software package through the whole software

lifecycle to be able to implement SAM controls of compliance and optimization. In

this figure we will refer to the concepts proposed in Fig. 22:

103

(1) The software suppliers develops software packaged enriched by a SWID

tag which will be proposed under different licensing models (from 1 to n). A

prerequisite is that the suppliers will also give clear access to a service catalog

composed by transparent explanation of licensing conditions, restrictions, prices

and metrics using SKU as unique identifier of each couple software/licensing

models.

(2) During procurement & delivery phase, the software customer is choos ing

software and a specific licensing model and enriching the software package with

corresponding SKU (in supplemental SWID Tag previously described).

(3) Software packaged is deployed in cloud environment and each instance

be identified using SWID Tag +.

(4) Software can be combined to create applications which might be

proposed to final customers. Applications are tagged by the service provider and to

allow identification of each software component, related entitlements,

identification of application itself and specific sub-licensing conditions proposed by

the service provider.

(5) SAM tools have access to procurement, instantiation and usage

identification’s data on software and application levels and allows (6) charging and

billing toward software suppliers and eventual final customer.

Figure 30 - Software identification lifecycle from provisioning to billing

104

105

Chapter 4

 IV. PROPOSITION OF A SAM MODEL FOR THE CLOUD

Proposition of a SAM Model for the Cloud 105

1. SAM Control loop .. 106

A. Autonomic computing and general concept of control loop ... 106

B. Application to SAM Control Loop.. 107

C. SAM model, sensors and effectors .. 110

01. Software abstraction layers ... 110

02. Cloud resources Identification .. 111

03. Software lifecycle ... 112

04. Dynamic reconciliation ... 116

i. Complete discoveries and inventory consolidation 117

ii. Dynamic software recognition .. 117

iii. License understanding and compliance .. 117

iv. Dealing with use-scaling .. 118

v. Focus on Usage Collection .. 118

2. Database model for SAM loop .. 121

A. Relational Databases vs Graph Databases .. 121

B. From relation to Graph Databases ... 122

C. SAM Graph Proposition ... 125

106

oftware Asset Management is not only improvement of license

compliance or cost-cutting, it is mainly about deciding about a strategic

approach of understanding software needs so that their deployment’s efficiency

and effectiveness will contribute to maximize the return on investment. The fact is

that license optimization requires a major shift within a company to implement

proactive SAM processes and be able to harness the power of this decisive business

asset. We propose (1) to develop our propositions for optimized SAM model and

processes and usage collection cases inspired from our experience in Orange SA, (2)

and to discuss about a graph database as a central process data connection.

1. SAM CONTROL LOOP

1.1. AUTONOMIC COMPUTING AND GENERAL CONCEPT OF CONTROL LOOP

Organizations need to reduce their software costs, simplify the management

of complex software licensing, and ensure the highest possible levels of system

availability, performance, security and asset utilization. Autonomic Computing

addresses these issues through a fundamental, evolutionary shift in the way that IT

systems are managed.

Autonomic computing is about shifting the burden of managing systems from

people to technologies. (IBM, 2005)[30] proposed a high-level architectural

blueprint to assist in delivering autonomic computing in phases. The architecture

reinforces that self-management uses intelligent control loop implementations to

monitor, analyze, plan and execute, leveraging knowledge of the environment.

These control loops can be embedded in resource run-time environments or

delivered in management tools. Autonomic managers and manual managers

communicate with managed resources through the manageability interface, in the

form of a touchpoint, using sensor and effector interfaces. A senso r interface

exhibits two interaction styles, the retrieve-state interaction style (used to query

information from a managed resource) and the receive-notification interaction

style (used to send asynchronous event information from a managed resource). The

effector interface exhibits two interaction styles, the perform -operation interaction

style (used to set state data in the managed resource) and the call -out request

interaction style (used by a managed resource to obtain services from some other

external entity in the system).

Basic concepts that apply in Autonomic Systems are closed control loops.

Essentially, a closed control loop in a self-managing system monitors some

S

107

resource (software or hardware component) and autonomously tries to keep its

parameters within a desired range.

1.2. APPLICATION TO SAM CONTROL LOOP

Basically, SAM aims to manage two types of risks: Counterfeiting which

represents any default in license compliancy (Fig. 31), and over-deployment (Fig.

32) which consist in more deployment than measured needs.

The model’s fundamental functions (further developed in next section)

consist in:

 Elaborating a consolidated software view based on contractual,

deployment and usage facets. It implies to comprehend a collection of

heterogeneous data and organize the optimal state of SAM processes

 Allowing software lifecycle accurate identification

 Handling and interpreting several licensing rules

 Anticipating, diagnosing and react to counterfeiting

 Discovering, diagnosing and react to over-deployment

 Comparing software usages and simulating licensing model’s changes

 Identifying the best licensing model’s according to current and

forecasted software usages

The decision part can be described as Event Condition Action (ECA) rules15.

An ECA rule has three parts: an event, a condition, and an action. The semantics of

an ECA rule are: when the event has been detected, evaluate the condition, and if

the condition is satisfied, execute the action. (Tab.4) shows non -exhaustive list of

our model rules.

Event Condition Action

A new software
instance is detected

The instance and
associated PUR are properly

identified

Link an instance and
a stock

15 ECA rules are used within active databases for supporting reactive behavior and were
first proposed in the HiPAC project: Dayal U., Blaustein B., Buchmann A., et al. S.C. HiPAC: a
research project in active, time-constrained database management. Tech. Rep. CCA-88-02, Xerox
Advanced Information Technology. Cambridge, MA, USA, 1988.

108

License stocks
changed

The software product
is properly identified

Link stock and with
bound instances

New link between
instance and stock

Measure instances
usages and analyze

deployment conditions
Validate compliance

New licensing
business model

All impacted objects
exists in the data model

Implement new
metric rule

Table 4 - Some ECA model rules

Sensor interfaces consists in interacting with:

 License stocks: more specifically, consists in intercepting all software

license sales and purchases. It encompasses knowledges on software

and its PUR identification

 Deployments: this consists in intercepting each software instantiation

and allowing queries about bound workflow configuration

 Usage: this consists in intercepting different usage metrics and

allowing queries to workflow consumed resources

Effector interfaces exhibits several interactions:

 Operation on license stocks: which consists in increasing license stocks

(purchasing new licensing, migrating stocks from another entity),

decreasing license by internal or external transfer. It can be contract

renegotiation or third-party supplier changes.

 Deployment changes, it consists in changing workflow configuration to

change resources allocation or consumption, migration, software de -

installation

 Usage: consists in setting/updating/removing access controls

109

Figure 31 - Compliancy control loop

Figure 32 - Over-deployment control loop

110

Our SAM proposal takes into account the complete software lifecycle,

considering that each step feeds a SoftWare DataBase (SWDB) and that every step

is accompanied by one or more SAM control (considered as sensors). All possible

information related with the use of software should be captured and stored in

order to implement all the required usage controls.

 Through those controls, the SAM processes analyze the current

situation in real-time, confront the use of services with the license stock. SAM

processes also take potential optimization decisions, like described previously in

control loops. In Fig. 33, we name each step of the software lifecycle, the dynamic

adjustments and reconciliation necessary to introduce the next section.

Figure 33 - SAM lifecycle

1.3. SAM MODEL

Accurate SAM model should allow representing platforms and software

abstraction layers, deployments and resources in order to evaluate related costs

and compliance risks given any licensing model from the simplest to the most

intricate. We assume here the necessity to collect cloud resource information on

each software abstraction layer. It will enrich a series of SAM processes described

as the software lifecycle. The characteristics of software, its instances and their

consumption have to be traceable and confronted to acquired rights and costs, by

means of these lifecycle elaboration processes.

a. Software abstraction layers

To illustrate the abstraction layers of a software system, we refer to

S.Kachele (2013)[31] Cloud taxonomy for Computation, storage and Networking. He

discussed the relevant abstractions bottom-up. Effective SAM necessitates having a

111

view on the cloud resources monitored on each abstraction layers presented. Yet,

access to these data is not always possible depending the layer (IaaS/PaaS):

Hardware (HW) represents the least abstract layer in his hierarchy. It

provides bare metal resources such as CPUs, computing cores, the amount and type

of RAM, co-processors and other hardware devices like network interface cards and

storage controllers.

Operating systems (OS) reside on top of physical or virtual hardware. They

provide isolation features resulting in the ability to execute multiple processes

from multiple users and to share resources. From an operating system point of view

any application being executed is a process. Yet, with respect to abstraction and

programming, multiple types of applications exist. They may directly make use of

OS functionality or apply further software components with a possibly different

abstraction.

A runtime environment (RE) creates a container for the execution of

applications. The OS provides a basic runtime for all processes running in a system.

Higher level runtime environments might significantly enrich the OS runtime and

further intermediate runtime environments. Typical features of that layer are the

execution and interpretation of intermediate code and sophisticated libraries that

applications can use.

The framework layer (FW) uses mechanisms provided by RE and OS.

The application (APP) contains the business logic. It is located on top of the

software stack and can be run on any layer above HW. Yet, it is commonly deployed

on RE or FW layer. An APP may or may not be accessible for clients.

b. Cloud resources Identification

The characteristics of software, its instances and their

configuration/consumption have to be traceable regardless of the de ployment

conditions. This requirement of traceability encompasses precise identification of

Software and resources to allow maintenance of deployment inventories, usage -

based reporting of software deployments, internal elasticity management inventory

to fulfill entitlements requirements.

IaaS offers bare HW resources to a tenant. As access is granted at a low level

the tenant is free to install and configure arbitrary software. Yet, this means that

the tenant is fully responsible for running and managing the entire software stack.

The provider has to maintain the hardware. He may support scalability by offering

mechanisms to spawn new machine instances and thus extend the resource pool of

112

the tenant. Yet, the tenant remains responsible for its application exploiting the

larger pool.

The PaaS allows tenants to deploy applications in a cloud environment. In

contrast to IaaS, it no longer provides the perception of a computing node to the

tenant any more. At most, the tenant may observe multiple instances of h is

application. PaaS represents the highest layer that still allows tenants to deploy

application logic. Tenants receive a fully managed software platform. Yet, it is

provided as a framework so that applications remain passive and are invoked by

the cloud controller. The provider has to maintain the environment and to manage

the underlying infrastructure including FW implementation. We need to implement

or strengthen bridges to recreate computing node perception and have transparent

view on the entire software stack.

c. Software lifecycle

In its basic form, the software lifecycle that we consider is composed of 5 + 1

steps as shown by (Fig. 34 - 37); each step corresponds to at least one process.

Some process can be played several times. We underline the necessity of strong

cooperation between the departments in charge of each part of the lifecycle; it

includes among others procurement, operations, IT and controlling. All the

processes are necessary to build the software lifecycle. Its accuracy is a catalyst of

compliance and optimization guarantee.

 Needs

In this process, the consumer justifies his need and choice of software.

Allowing employees to make ad hoc purchases and forget about controlling

authorized purchases is a common mistake. Companies often buy li censes as

needed bit by bit, rather than under a volume agreement, which can be much more

cost effective. Need should be also confront to internal available stocks, through

second-hand license market, supposing that there is no available substitutable

products.

 Purchasing

This step encompasses sourcing processes, negotiation, contract, billing etc.

We underline the necessity to have a central repository to keep proves of

purchased licenses and conditions. Easy access to this data allows fast -checking in

case of editor audit requests or internal compliancy audit. We underline the

necessity to keep tracks of software license agreements and renewal dates, makes

enterprises vulnerable to lapses in Software assurance or other maintenance

programs.

113

Figure 34 - Software Lifecycle - Need & Purchase

 Delivery

This process encompasses the software receipt via downloading platforms,

preparation for installation on user platform, entry into a software catalogue. We

underline the critical role of delivery to guarantee the respect of the Product Use

Rights (PUR) defining how software licenses can be consumed. They include

(among others) upgrade, downgrade, second use, virtual machine use and multiple

version rights. They are typically specified in the license agreements. Product Use

Rights can vary from product to product and version to version. Accurately

respecting PUR can significantly reduce risks related with counterfeiting and over -

deployments.

Figure 35 - Software Lifecycle – Delivery

114

 Instantiation

In this process, software is installed in an environment (for instance, a

given Cloud), in other words, software is able to be used. By tracking software

installations/instantiations, a company can be able to significantly reduce risks –

either because the applications might not be in use (risk of over -deployment) or

because of piracy (either accidental if PUR are not respected or intentional). We

will develop this idea further down in this section.

Figure 36 - Software Lifecycle – Instantiation

 Usage

A user consumes a service/software. In this process, we have to identify the

cases where multiple users consume the same service simultaneously and translate

this in terms of use (multiplexing, multidevice …). By tracking software usage, a

company can be able to significantly reduce risks – either because the applications

might not be in use (risk of over-deployment) or because of piracy (either

accidental if PUR are not respected or intentional).

115

Figure 37 - Software Lifecycle – Usage

 Optimization

This process corresponds to confronting the need/contract/installation/use

with the license stock according to a measure of consumption previously defined

(metric). Here we can create a model of costs for any measure of use and identify

the most suitable scenario of consumption or of customer billing. Optimization also

means that companies have to plan and schedule software needs and purchases on

longer term, based on use observations and predictions. Ordering licenses without

determining what the company truly requires on the horizon could be an expensive

mistake. Likewise, optimization is keeping track of software license agreements and

renewal dates to be able to purchase or renew/not renew maintenance in the right

moment, depending observed and predicted uses or according to strategic plan

when new release of software are expected (actually, if you buy maintenance before

announcement of a new release, the price might be lower but it will be eligible for

that product upgrade.

Guarantee that SAM processes are in place to provide the necessary use

intelligence and make extra licenses available. Removing unused instances ensures

cost-optimization, as freed-up licenses can be pooled for future use. This removes

overspend on licenses and it costs are reduced through automated adjustments.

116

Figure 38 - SAM general retroaction loop and control

To operate dynamic adjustment shown in Fig 38 and operate sensors and

effectors, we need to have a clear view on each steps of this lifecycle, meaning an

exhaustive view on purchased license stocks and bound entitlements, precise

software allocation and consumption and it corresponding workflow resources.

d. Dynamic reconciliation

For whatever reason, the licensing rules frequently change and companies

need to stay on top of all the vendor rules and regulations. The software lifecycle is

not only in one-dimensional. It must be considered as a loop from needs to uses.

Not thinking so can result in non-compliancy. Virtualization and cloud computing

intensify this situation by increasing dynamicity of environments, where rights and

restrictions must be in real time investigated to ensure license compliancy. For

usage-based license, real-time management and monitoring is even more

inescapable and we should not underestimate the complexity of tracking software’s

license compliance and uses. However difficult, an optimized license program has

to be set up, as automated as possible. Software license optimization tool, also

known as next generation SAM tool allows to collect and confront all the necessary

data – from procurement stage to technical inventories – and to rightsize software

estate to reduce risk, ensure compliance and save significant costs. One of the ways

to create cost saving lies in effective Software license optimization controls - and

tools to support it.

117

Part of our experience in Orange reveals that organizations have some level

of under-licensing on their virtualized network (using more software than what

they purchased) and they fail to rightsize their usages of licenses they have bought.

Mainly, there are no continuous processes setting up a performant SAM approach

like proposed in figure above and allowing dynamic adjustments. These processes

encompass the followings.

i. Complete discoveries and inventory consolidation

It is crucial to know what devices and software are present on the corporate

network, across each and all major platforms. Ideally, discovery or inventory tools

should track software use on every device from mobile to computer through

datacenter, servers and into the cloud in order to redeployed redundant software

to other users.

Most of the time, organizations need to use more than one inventory

technologies to audit the entire multi-platform network. If so, it is crucial to merge

the disparate inventories together into a single asset repository with unified

naming conventions.

ii. Dynamic software recognition

One of the biggest issue if to associate the known software licenses with

what is truly installed on machines across the network. Manually identifying

software is not conceivable because this process is too slow and leading to many

mistakes. It is necessary to rely on a highly-effect software recognition process to

recognize commercially-licensable software.

iii. License understanding and compliance

The continual introduction of new license models, often promoted to be

‘simplified’, mainly adds complexity to manage SAM within an organization. At the

most, new licensing models just mean more to manage (actually, vendors rarely

retire older licensing models at the same time as introducing new ones).

Imagining the worst scenario, the new licensing schemes are themselves

more complicated than previous ones. The move towards use-based license models

increases both the number of metrics that need to be managed and the complexity

of the actual calculation methods for assessing the appropriate licensing for

different scenarios. Indeed, SAM has to deal with different notions like ‘named

user’, ‘processor’ and capacity-based licensing models or ‘data traffic consumption’

etc. (in annexes, some examples of different metrics and their calculations). It

multiplies the controls and usage capture tools.

118

Very often, these metrics are too difficult to manage manually, especially that

we have to deal with many vendors’ distinct licensing models. Effective SAM needs

to integrate as fast as possible all types of new software license models and

translate it into automatic intelligence to calculate products usages right controls

and implement it – including upgrade and downgrade rights which are essential to

optimized license management.

Then, another lock is the ability to produce understandable reports based on

usage and resource consumption. SAM must feed each stakeholder from across the

organization and enable them to view, generate and interpret compliance and

management reports through an intuitive multi- user, roles-based interface. We

have observed in Orange that each stakeholder’s involvement and awareness is a

sine qua none condition to get valuable result for a SAM program – from CIO to

user, passing through operational.

iv. Dealing with use-scaling

Nowadays, users access data and consume software on multiple devices, from

wherever they are. We must integrate this scale effect thinking about software

license optimization and particularly focus on the multi -dimension of Software

lifecycle. If a company cannot understand the entire view of the software estate,

both on physical and virtual machines/containers (and indeed understanding the

relationship between virtual guests and their physical hosts), then it is impossible

to calculate and prove that the right licensing models are being used. Usage-based

licensing force to consider a new dimension of SAM issues: the market is moving

toward a preference for the subscription license, largely due to the cash flow

benefits, inclusion of value-added features and services, and flexibility of a pay-as-

you-need model. For the SAM’ point of view, real-time consumption models more

and more often proposed, questions the validity and relevance of selected criteria.

We propose to examine this point below.

v. Focus on Usage Collection

Fig. 39 proposes to differentiate usage in three categories: allocation –

supervision - consumption. Each variation might represent a metric (in that

licensing meaning). Allocation covers resource configuration like virtual machine

(VM) host, maximum allocated VM resources. It represents theoretical resource

uses unlike consumption which encompass real resource uses, observed traffic,

consumption of service, object, time, access. Supervision is not based on resources

allocation or consumption but on the service ability to manage/create objects or

services. Typically, an orchestrator use can be quantified by its amount of

managed/created container. This usage distinction allows to link usages and

119

licensing models and to forge a bond between the software licensing costs and

service providers’ business value-added.

120

Figure 39 - Different measures of uses translated into licensing models

121

2. DATABASE MODEL FOR SAM LOOP

Access to information is a key for effective sensor and effector operation. The

way information is stored has direct influence on the ability to use it. SAM

distinctive characteristic lies in heterogeneity of managed resources (contracts,

usages, deployments) and strong relation impacting them. Technical environment s

which have to be monitor are vast and necessitate plurality of sensors, just like

licensing possibilities. It involves the highest flexibility in data model. For this

reason, we propose to discuss why graph database should be used to design SAM

loop. There are several arguments:

 To recognize relational structures

 To identify relations and work directly with entities by relational

groups

 To benefit from an alive system (versus legacy storage system) by

exempting from some technical limitations (joins, foreign-keys…)

 Anticipation of constantly changing the orientation of the system (and

thus greater flexibility)

 For constant improvement of features

2.1. RELATIONAL DATABASES VS GRAPH DATABASES

Relational databases have been the standard of software applications since

the 80s, and nothing really changed so to this day. These databases are able to

store highly structured data in tables with predetermined columns of certain

types and many rows of the same type of information. This organizational

rigidity requires to formally structuring the data in the development of

applications and storage.

References to other rows and tables are recorded by referring to their

primary key attributes via foreign-key columns. This is enforceable with

constraints, but only when the reference is never optional. Joins are computed at

query time by matching primary- and foreign-keys of the many potentially

indexed rows of the to-be-joined tables (Fig.40). These operations are compute

and memory-intensive and have an exponential cost.

122

Figure 40 - Example of junction table to match people and project

When you use many-to-many relationships, you need to create a junction

table (JOIN) that stores foreign keys of both participating tables which will of

course increase join operation costs. Those costly join operations are usually solved

by de-normalizing data to reduce the number of joins necessary.

These relational databases were originally created to diagram tabular

structures and still yet are doing it very well. But contrary to what their name

suggests, they are not effective for managing relationships between data. In

particular when the structure of this data may vary, be adjusted...

This is probably the biggest weakness of relational databases: their lack of

flexibility. In such a changing environment, constantly moving, such as software

licensing models, evolving organizational IT processes, their scheme cannot

support the dynamic real time, and uncertain nature of data, new technologies and

platforms.

To overcome the lack of flexibility, you can divert the models. The challenge

is to take into account all exceptions (non-modelized originally) and to strength

embedding them to the original relational model. But this approach requires more

code, energy, difficulties, and you have to resign to a simple and easy

understandable model. Your data multiplies in complexity and diversity, your

database is burdened with join tables which can reduce performance and paralyzed

further developments.

However this relational model is still performant for many situations and it

took a long time to emerge an alternative to this model.

2.2. FROM RELATION TO GRAPH DATABASES

123

Graph data model are centered on relationships, unlike other database

management systems, which require us to infer connections between entities using

special properties such as foreign keys, or out-of-band processing like map-reduce.

Just by connecting nodes and relationships, graph databases can create connected

structures and so, sophisticated models that fit closer to our problem.

Each node (entity or attribute) in the graph database model directly and

physically contains a list of relationship-records that represent its relationships to

other nodes. These relationship records are organized by type and direction a nd

may hold additional attributes. Whenever you run the equivalent of a JOIN

operation, the database just uses this list and has direct access to the connected

nodes, eliminating the need for expensive search / match computation.

This ability of pre-materializing relationships into database structures

allows graph database to provide performances of several orders of magnitude,

especially for join heavy queries, the minutes to milliseconds advantage that many

users leverage.

The resulting data models in Fig. 41 are much simpler and at the same time

more expressive than those produced using traditional relational or other NoSQL

databases.

Figure 41 - Example of graph linking a person with projects

What is interesting for Software Asset Management is that graph databases

support a very flexible and fine-grained data model which will allow us to model

and manage this domain in a more intuitive and easier way. We can more or less

keep the data as it is in the reality: unit, normalized, yet richly connected entities.

This allows you to query and view your data from any imaginable point of interest,

supporting many different use-cases.

124

The fine-grained model also means that there is no fixed boundary around

aggregates, so the scope of update operations is provided by the application during

the read or writes operation. The well-known and tested concept of transactions

groups a set of updates of nodes and relationships into an atomic, consistent,

isolated, and durable (ACID) operation. Graph databases like Neo4j fully support

the transactional concepts including write-ahead logs and recovery after abnormal

termination. So you never lose your data that has been committed to the database.

To manage software assets, we want a cohesive picture of our (big) data,

including the connections between very different elements like contracts,

installations and real usages. Contrary to relational databases, graph databases

store data relationships as relationships. It means a lower disconnection betwe en

our evolving schema and our actual database.

By the facts, graph model is providing the flexibility which will allow adding

new nodes and relationships without compromising any existing network. All

original data (and its original relationships) remain intact.

Here is a quick recap of what is a graph database (property graph) (Fig. 42):

 A property graph contains nodes (data entities) and relationships (data

connections).

 Nodes can contain properties.

 Nodes can be labeled with one or more labels.

 Relationships have both names and directions.

 Relationships always have a start node and an end node.

 Like nodes, relationships can also contain properties.

125

Figure 42 - Graph Database

Graph databases may be used as a tool for easy management of very

intensively changing environment of data and data relations without losing focus

on owner of asset and measurement of license demands.

Approach of storing asset data in graph databases is enabling fast and

accurate allocation of software resources into project and initiatives. This way not

only will help to keep usage of software according to license agreements, it will

help to manage cost of software more precisely and forecast requirements. It will

helps also to go beyond: to show in the future to software editors our true needs,

asking for specific type of licensing, tailored exactly according to needs and model

of usage of software in company.

2.3. SAM GRAPH PROPOSITION

Considering proposition of software and identification lifecycles and contr ol

loop proposed earlier, we propose a graph model in (Fig. 43) fulfilling loop

requirements.

126

Figure 43 - SAM Graph Model

This graph models is motivated by real-life software lifecycle where

component interconnectivity is a key feature. Here, information about data

interconnectivity or topology is as important, as the data itself. In this case, the

data and relations among the data are at the same level. Introducing graphs for this

model has several advantages for this heterogeneous data:

It allows a more natural modeling of data. Graph structure is visible centered

on the object ‘Software’ and allows a natural way of handling data. It has the

advantage of being able to keep all the information about an object ‘Software’ in a

single node and showing related information by arcs connected to it. Software is

directly related to one or more contract(s), to its instances and to its usages which

have to converge to check compliance and optimal deployment.

A contract is signed by an ‘Entity’ and a ‘Supplier’, it encompass several

objects ‘PUR’ which represent all the specific licensing conditions agreed between

the parties. Each specific PUR, corresponding to a unique label, has different

properties depending it nature (i.e. metric, deployment restriction, access

127

conditions, etc.). The relation ‘defines’ between PUR(s) and software is

characterized by the SKU.

The object ‘instance’ is bound to VLayers nodes which can be subdivided for

each layer of virtualization up to the physical one. The relation ‘runs’ characterize

effective consumed resources when each node contains specific workload features.

Physical infrastructure is bound to resources (i.e. network board, cpu, hard drive

…). Instance is bound to other instances to represent it lifecycle duration and

encompass migrations, licensing persistence for backup architectures etc. The

relation ‘runs’ between software and an instance is characterized by a SWIDTag

containing a property ‘SKU’ which allow to bound an instance with associated PU Rs.

Access and uses can be monitored on a double level: software or application.

The object ‘Application’ is composed by several software objects and depending the

business purposes, this double monitoring is relevant.

Here, queries can refer directly to this graph structure. Explicit graphs and

graph operations allow the SAM to express a query at a high level of abstraction.

(i.e. “which entity(ies) own this specific software ?”,”which PURs characterize my

instance”?) To some extent, this is the opposite of graph manipulation in deductive

databases. It is not important to require full knowledge of the structure to express

meaningful queries.

We propose to use this graph model to develop further SAM sensors and

effectors in section below, based on two specific use-cases.

To design SAM controls we need to make assumptions on the targeted cloud

environments, especially in terms of the IaaS/PaaS layer that will be used to deploy

services. In a first design, we consider clouds managed through the well -known and

commonly used Cloud Foundry PaaS [32]. We consider that it will be possible to

apply our model to a variety of PaaS as long as they allow instantiation/usage’s

capture. In a second layer, we consider an Infrastructure as a Service (IaaS)

approach based on BluePlanet (Network Orchestrator designed by Ciena) plugged

on an OpenStack plateform. Both of these approaches are in use in Orange, but also

quite representative of global trends in industry and telcos.

The main difference between the first approach – Pure PaaS – and the second

that we will present here is that a container is a way of packaging an application

and all its dependencies into a single entity that can be run on a Linux or other

server. It is similar to a virtual machine (VM), but lighter-weight than a VM because

a container doesn’t include an operating system. Multiple containers (each running

different application) may be run on any given VM. A hypervisor is software that

128

creates, runs, and monitors VMs. That being said, from SAM point of view, the

difference is slender, in both case, access to the valuable configuration data will be

perform through the monitoring interface.

We propose, in next chapter, to describe two use-cases (1) PaaS Instantiation

and usage capture, (2) IaaS infrastructure for network virtualization management

and to propose as syntheses SAM controls for both use-cases.

129

130

Chapter 5

 V. MODEL ASSESSMENTS

V. Model Assessments ... 130

1. Platform Use Case I: PaaS - Cloud Foundry .. 132

1.1. Cloud- PaaS instantiation and usage capture... 132

1.2. How does Cloud Foundry work? .. 133

1.3. Instances ... 134

1.4. Usage collect .. 135

1.5. Modeling .. 137

a. Graph model Construction .. 139

i. Purchasing ... 139

ii. Provisioning ... 144

III. Instantiation ... 145

iv. Usages ... 148

b. Basic control of inventory’s consistency .. 150

c. Cost-Saving Identification ... 153

2. Platform Use Case II: Network Function Virtualization 157

2.1. Orchestration & Hypervisor in Operator’s network ... 157

2.2. Context concerns .. 162

2.3. Usage collection ... 165

2.4. Modeling .. 165

a. Graph model construction .. 168

i. Purchasing ... 168

ii. Provisioning ... 173

131

III. Instantiation ... 173

iv. Options ... 176

b. Cost-saving Identification ... 177

132

e propose a qualitative evaluation of our model to prove it usability in

modeling cloud platforms and resources, software deployments; and

guarantee legal compliance and cost optimization no matter the licensing model

level of complexity.

We underlined the necessity to build a multiplatform inventory solution to track all

assets, their hardware configuration, software deployments and their virtual

resources and usages regardless of platform. We need to identify each virtual

appliance that run for couples of minutes of days and that cannot be find by any

scheduled inventory scans or agent deployments but directly from getting this

information from the build process.

1. PLATFORM USE CASE I: PAAS - CLOUD FOUNDRY

Many enterprises adopt a PaaS platform such as Cloud Foundry (CF) [32] to

enable easier scaling and management of applications. Cloud Foundry is an open

source project originally started by VMWare and now owned by Pivotal which is a

joint venture of VMWare, GE and EMC. PaaS platform such as CF enables developers

to focus on development and provides entire platform at click of a button.

Developers can simply deploy their binary archives and CF takes care of

provisioning everything required for application to run. CF also provides additional

components such as database, caches as a service which makes it a true platform.

1.1. CLOUD- PAAS INSTANTIATION AND USAGE CAPTURE

From our observations in literature and from Orange experience, we already

reach this statement how complex SAM in dynamic cloud environments is. In fact,

just answering the following questions is difficult even though it is crucial for any

organization who wants to rationalize its IT expenditures:

 What is the total number of virtual/physical devices on the network?

 How many devices and apps are deployed in any datacenter whatever

is underlying technology and environment?

 What software is being used and what is lying redundant?

 Which users are using which devices to access company applications?

Our experience shows that for sure, companies have some visibility of what

is on the network, but mainly from a number of different and disparate sources. We

underline that the real need is to have a single source giving a compl ete view across

W

133

the entire IT environment. The unknown represents a massive risk and cannot be

proactively managed. Fact is that Gartner16 predicts that ‘by 2020 large enterprises

with a strong digital business focus or aspiration will see business unit IT increase

to 50% of enterprise IT spending’. And, according to Forrester’s recent

publication17 of its Midyear Global Tech Market Outlook, the trend for Cloud

Adoption is accelerating (to 5.6%) as well as software being the second -largest

category of tech spending (after telecom services).

Orange, like other telco and famous digital companies are intensifying move

to the Cloud and hardly evaluate the potential financial risks like software license

cost’s explosion. They have to handle these costs, and discover and inventory their

entire estate in order to be able to make decisions on future plans and get

optimizations. Even if we want to focus on license expenditures, we need to

consider for a moment the combined costs of hardware and software assets to

understand how cloud technologies, which encourage insatiable consumption, can

create unused cloud licenses and virtual hardware which are left running and leads

to another cause of overspend.

We understand the necessity to build a multiplatform inventory solut ion to

track all assets, their hardware configuration, software deployments and their

virtual resources and usages regardless of platform. We need to identify each

virtual appliance that run for couples of minutes, of days and that cannot be find by

any scheduled inventory scans or agent deployments but directly from getting this

information from the build process.

1.2. HOW DOES CLOUD FOUNDRY WORK?

Clouds balance their processing loads over multiple machines, optimizing

for efficiency and resilience against point failure. A Cloud Foundry installation

accomplishes this at three levels:

1. BOSH creates and deploys virtual machines (VMs) on top of a

physical computing infrastructure, and deploys and runs Cloud

Foundry on top of this cloud. To configure the deployment, BOSH

follows a manifest document.

16 Gartner Inc. Metrics and Planning Assumptions Required to Drive Business Unit IT
Strategies. 21 April 2016. Analysts: Kurt Potter | Stewart Buchanan

17 Forrester Research. The Midyear Global Tech Market Outlook For 2016 To 2017. Slowing
Economies And Cloud Constrict Tech Market Growth. September 16, 2016. Analysts Andrew
Bartels with Matthew Guarini, Rachael Klehm

http://bosh.io/

134

2. The CF Cloud Controller runs the apps and other processes on the

cloud’s VMs, balancing demand and managing app lifecycles.

3. The router routes incoming traffic from the world to the VMs that

are running the apps that the traffic demands, usually working

with a customer-provided load balancer.

Cloud Foundry designates two types of VMs: the component VMs that

constitute the platform’s infrastructure and the host container that host apps for

the outside world. Within CF, the Diego system distributes the hosted app load

over the entire host containers, and keeps it running and balanced through

demand surges, outages, or other changes. Diego accomplishes this through an

auction algorithm.

To meet demand, multiple host containers run duplicate instances of the

same app. This means that apps must be portable. Cloud Foundry distributes app

source code to containers with everything the containers need to compile and

run the apps locally. This includes the OS stack that the app runs on, and a

buildpack containing all languages, libraries, and services that the app uses.

Before sending an app to a container, the Cloud Controller stages it for delivery

by combining stack, buildpack, and source code into a droplet tha t the VM can

unpack, compile, and run. For simple, standalone apps with no dynamic pointers,

the droplet can contain a pre-compiled executable instead of source code,

language, and libraries.

1.3. INSTANCES

Deploying an application through the Cloud Foundry (C F) PaaS layer is done

by running a push command from a Command Line Interface (CLI), either as part

of the CF build packs or through a service broker:

 Build pack. User pushes app bits (i.e. artefact: .jar, .war, tgz, etc.) from

desktop/CLI selecting one of the supported stack (i.e., Ubuntu)

 Service broker pushes a docker image reference (public or private

registry), or a container specification reference

In both cases, a droplet is produced, taking into account dependencies

configuration; As a result, app instances are started and run the image within

quotas (Random Access Memory (RAM), Computer Process Unit (CPU), etc.).

https://docs.cloudfoundry.org/concepts/architecture/cloud-controller.html
https://docs.cloudfoundry.org/concepts/architecture/router.html

135

Among others, between push and application’s availability, CF uploads and stores

the application files, and examines and stores the appli cation’s metadata (for

SAM purposes the software identifier enriched by all relevant contractual

information during delivery step).

As the cloud operates, the Cloud Controller VM, router VM, and all containers

running apps continuously generate logs and me trics. The Loggregator system

aggregates this information in a structured, usable form, the Firehose. You can

use all of the output of the Firehose, or direct the output to specific uses, such as

monitoring system internals or analyzing user behavior, by applying nozzles.

Before one can retrieve any application or service information, one must

retrieve the Cloud Controller (using the Service Broker Application Programming

Interface (API)). The brain of this controller knows services and applications as

well as their instances and settings. The Cloud Controller exposes a Rest

(Representational State Transfer) API for all this information through which the

SAM processes can get the necessary knowledge to perform their tasks.

1.4. USAGE COLLECT

To organize user access to the cloud and to control resource use, a cloud

operator defines Orgs and Spaces within an installation and assigns Roles such

as admin, developer, or auditor to each user. The User Authentication and

Authorization (UAA) server supports access control as an OAuth2 service, and

can store user information internally or connect to external user stores through

LDAP or SAML.To implement SAM check-points over the USAGE step, we need to

get the knowledge of which applications are used. We decided to achieve this

first through the application rights verification. In more details (Fig. 44), we

summarize the steps performed when a user wants to use an application in our

context:

1. The user wants to access the cloud application via the user portal

2. The user is identified and authenticated via a User Identification

and Information System Access libraries

3. The system checks permission of the authenticated user to access

the applications via the Application rights library and if yes, return

a certificate. This step allows collecting usage information,

especially the moment when a certificate for using the application is

issued or withdrawn. The lifecycle of this certificate allows

determining the time of using the application and all its software

components

https://docs.cloudfoundry.org/concepts/roles.html

136

4. Embedding cookies and certificate, the user ca n start to consume

application

Figure 44 - Use case of Cloud App Access

 An application may embed several software services, so it is

necessary to cross the information on usage with internal software cartography

to be able to determine and affect usage directly to software. Typical apps

depend from services such as databases or third-party APIs. To incorporate these

into an app, a developer writes a Service Broker, an API that publishes to the

Cloud Controller the ability to list service offerings, provision the service, and

enable apps to make calls out to it.

 Application’s usages cannot be summarized only by a number of

access or minutes spent. We consider that it also covers consumed resources

(i.e., CPU, RAM, bandwidth, event p/s, flow p/s, etc.).

Open-source tool Abacus [33] provides usage metering and aggregation for

Cloud Foundry services (Fig. 45). This is implemented as a set of REST micro-

services that collect usage data, apply metering formulas, and aggregate usage at

several levels within a Cloud Foundry organization. Runtime provider (CF

137

Bridge) submits application usage events (other runtime providers submit other

runtime usage events); external services providers submit service usage events

that are received and stored by Abacus, metered, accumulated, aggregated to

provide usage reports and summaries.

Figure 45 - Usage metering and aggregation for Cloud Foundry

1.5. MODELING

Our objective is to validate the fact that our graph model can be managed

through a capture of PaaS usages (Cloud Foundry/Abacus). It will validate our

assumption that the model can be used to easily model complex platforms and

software. To achieve these experiences, we first considered well-known software:

an Oracle database (Oracle DB).

138

We choose the Oracle Database Enterprise Edition (Oracle DB EE) example

for several reasons:

 It is a vivid example for the SAM community; one of the most often

mentioned for the complexity of its license management.

 Oracle DB licenses can be defined by several types of metrics, oriented

on material (i.e., CPU) or user (i.e., Named User Plus).

 It will allow us to increase complexity of our use cases such as:

integrating controls between product’s link (options – standard

product) and constraints of uses.

To evaluate relevance of our model, we propose to define in Fig. 46 below a

Cloud architecture model.

Figure 46 - Cloud Architecture Model

The diagram illustrates how the PaaS will leverage enabling services from

IaaS components and supporting services to provide PaaS service offerings, such as

application hosting and database hosting. The IaaS model is depicted by a node

labeled ‘Infrastructure as a Service’ that contains compute virtualization, network

virtualization and storage virtualization. (Not detailed in the diagram, the

139

‘Virtualized Compute’ node contains smaller nodes labeled CPU and Memory as an

illustration of the technologies that make up compute virtualization. The

‘Virtualized Network’ node contains smaller nodes labeled Network Interface Card,

TCP/IP Ethernet, Fibre Channel on Ethernet and Load Balancer to illustrate

technologies that make up network virtualization. The ‘Virtualized Storage’ node

contains smaller nodes labeled Thin Provisioning, Block, Object, Solid State Drive

and Serial Advanced Technology Advancement to illustrate technologies that make

up storage virtualization). The hypervisor label is associated with this p attern in its

commitment to applying reservations for different cloud consumers in order to

ensure that they are allocated the guaranteed amounts of IT resources. In support

of this, it is responsible for locking, and pre-allocating the virtual servers’ reserved

computing capacity based on their configurations. The PaaS model is depicted in

violet box that contains a PaaS stack, Application hosting Stack. The Application

Hosting stack is comprised of layered nodes labeled ‘App server’, ‘database server’;

we could add ‘Web server’ or ‘operating system’.

a. Graph model Construction

In this section, we will follow the Software lifecycle proposed in previous

chapter and refer to the Fig.2 about SAM maturity scale: Visibility, Identification,

Risk Management and Optimization.

i. Purchasing

For the purpose of our example, we will skip the first phase of

need/choice/approval, and directly start with purchasing processes.

Fig.47 might be an extract from “License Store’s” catalogue which proposes

the product we identified as needed and are planning to buy.

140

Figure 47 - Product Catalog

Few elements (in green above) are necessary to identify precisely this offer

and determine the level of grants (PUR) given by this type of licensing. These

elements have to be collected in the purchase order and reconciliated with data

from the delivery order.

 In the graph, on Fig.48, the first step is to create our product, with a label

‘Software’ and several attributes found in the purchase order. In th e same way, we

create a label ‘Supplier’ and ‘Editor’ to identify a node ‘License Store’ and ‘Oracle’:

141

Figure 48 - Neo4J interface - Graph Step 1

CREATE (S:SOFTWARE {NAME:"ORACLE DATABASE ENTERPRISE EDITION",

SKU:"E47877-06",VERSION:"11G RELEASE 2", CATEGORY:"DATABASE"})

CREATE (R:SUPPLIER {NAME:"LICENSE STORE"})

CREATE (E:EDITOR {NAME:"ORACLE"})

Then, Fig. 49, we create several nodes with label ‘PUR’, which represents

scope of usage, metrics, environments … The idea is to create nodes, independent

from products (not node properties) to allow further comparison between product,

version; identify similar metrics; verify entitlement compliance.

CREATE (P:PUR {TYPE:"METRIC",METRIC:"PROCESSOR"})

CREATE (P1:PUR {TYPE:"TERM",TERM:"PERPETUAL"})

CREATE (P2:PUR {TYPE:"REQUIREMENT",MAXIMUMCPU:0})

CREATE (P3:PUR {TYPE:"OPERATING SYSTEM", WINDOWS:1, LINUX:0, UNIX:0})

142

Figure 49 - Neo4J interface - Graph Step 2

Then: to create relations between nodes:

 Between an editor and product (EDITS): ‘Oracle’ edits ‘Oracle

Database’

 Between a product and PUR (DEFINES): ‘Oracle DB’ is licensed under

processor metric/ or can run on windows/Unix/Linux …

 Between a supplier and a product (DISTRIBUTES): ‘License Store’

distributes ‘Oracle DB’. This relation is important because contains all

information about the contract: financials, number, maintenance, etc.

This link may be multiple (unique relations), as many as the number of

contract.

This process and collect are essential to fulfill Identification requirements:

PUR are translated in the SKU, this SKU enriches the SWIDTag delivered during

provisioning processes; it guarantees the link between a contract and Software/

Software and Instance, on Fig.50.

MATCH (S:SOFTWARE {NAME:"ORACLE DATABASE ENTERPRISE EDITION"})

143

MATCH (U:SUPPLIER {NAME:"LICENSE STORE"})

MATCH (E:EDITOR {NAME:"ORACLE"}) MATCH (P:PUR)

MERGE (C:CONTRACT {NAME:"CSI001",DATE:01-06-2017,CONTACT:"FELIX"})

MERGE (SP:ENTITY {NAME:"SERVICE PROVIDER"})

MERGE (P)-[D:DEFINES]->(S)

MERGE (E)-[E1:EDITS]->(S)

MERGE (U)-[D1:DISTRIBUTES]->(S)

MERGE (U)-[S1:SIGNS]->(C) MERGE (SP)-[S2:SIGNS]->(C)

MERGE (C)-[D2:DEFINES {QUANTITY:10, UNITPRICE:150, CURRANCY:"£"}]->(S)

Figure 50 - Neo4J interface - Graph Step 3

144

ii. Provisioning

After Global sourcing processes, our Oracle Database is right now under

exploitation teams’ responsibility. The software can be packaged/enriched (i.e.,

tag) according to company’s rules or considered like included in an Application

before being instantiated.

 In our case, we create a label ‘Application’ and a node

‘HumanRessources’ which will include our Database. An application program is a

computer program designed to perform a group of coordinated functions, tasks, or

activities for the benefit of the user, composed by one or several software. Each

application has its own SKU characterizing its composition and eventual licensing

models (in case where the service provider will propose it as a commercial offer).

 The relations ‘CONTAINS’ is enriched by properties like a project’s id

or application’s project manager (Fig. 51)

MATCH (S:SOFTWARE)

CREATE (A:APPLICATION {NAME :'HUMANRESSOURCES', SKU:”AA90875”})

CREATE (A)-[C:CONTAINS {ID_PROJECT : '1234R'}]->(S)

Figure 51 - Neo4J interface - Graph Step 4

145

iii. Instantiation

To fulfill the step 1 (visibility) of the maturity scale, we need to have an

exhaustive view of infrastructure, resources and instantiation. The PaaS handles

infrastructure workload (Virtual Machine (VM), networking, storage);

instantiation’s inventories, subscription to shared services, application

deployment, installation, configuration, application monitoring, application log

collection and interaction with app-ops (inventory/CMDB, monitoring/alerting).

Crucial point is now to create a link between the instance and the product

which we bought. The instance knows and updates all identification elements of it

components. This allows creating the link between the product in catalogue and the

installed product, Fig. 52.

MATCH (S:SOFTWARE{SKU:"E47877-06"})

MERGE (I:INSTANCE {NAME:"INSTANCE DB",SKU:"E47877-

06",IMAGE:"DBENTREPRISEEDITION"})

CREATE (I)-[I1: INSTANTIATES] ->(S)

Figure 52 - Neo4J interface - Graph Step 5

The characteristics of software, its instances and their configuration have to

be traceable regardless of the deployment conditions. This requirement of

146

traceability encompasses precise identification of Software and resources to allow

maintenance of deployment inventories. IaaS (Open Stack) offers bare HW

resources access. The bridge developed through abacus metering solution allows

binding PaaS deployment to physical architecture using IaaS resources collection.

 In our example, the application, which contains our Database has been

deployed on the cloud via a “push” command and ran as an instance. We stress that

this instance’s image contains metadata used for identification enclosed during the

provisioning (Fig.53). To make it simpler for the purpose of this example, we will

transform it into a property ‘SKU’ of the Instance.

MATCH (I: INSTANCE)

MERGE (VM:CONTAINER {NAME:'VM1',CPU:4, RAM:8})

MERGE (T:TENANT {NAME:'TENANT1',NBINSTANCE :20, RAM :100})

MERGE (V:VLAYER {NAME:'OPENSTACK1', REGION:'FRANCE',

VERSION:'ZOE'})

MERGE (M:MACHINE {NAME:'BAREMETAL'})

MERGE (R:RESOURCE {TYPE:'CPU', RAM:'X86'})

CREATE (VM)-[R0:RUNS]->(I)

CREATE (T)-[R1:RUNS]->(VM)

CREATE (V)-[R2:RUNS]->(T)

CREATE (M)-[R3:RUNS]->(V)

CREATE (M)-[R4:HAS {NUMBER:20}]->(R)

Considering the Fig. 39, we are collecting and integrating data corresponding

to allocated resources (the green branch), technologies and binding it to eventual

restriction.

147

Figure 53 - Neo4J interface - Graph Step 6

In case of migration, Fig. 54, we need to keep and maintain a history for

auditing purposes. We propose to create a relation between instances specifying

that relatedness.

MERGE (I1: INSTANCE {NAME:'INSTANCE DB', STATUS:'MIGRATION'})

MERGE (I)-[R5:MIGRATEDTO {TIMESTAMP:15908664663}]->(I1)

148

Figure 54 - Neo4J interface - Graph Step 7

iv. Usages

The Oracle DB is expected to be accessed by both humans and Software

(automated applications encompassing the optimization phase of the SAM model as

described previously in the paper). Different queries can be performed on the

different links of the database.

Considering the Fig. 39, we are collecting and integrating data corresponding

to consumption (blue branch) and supervision (red branch); In terms of access,

object, service, traffic, time, and resources, network size, amount of managed

objects, etc. Each event, captured is enriching a relation prop erty. We make a

difference between theoretical capacities and observed ones. For example, the

relation HAS between a machine and its CPU is characterized by two properties:

 Formal link between the machine and CPU : the machine HAS 20 CPU

 The machine HAS real observed CPU consumption data (coming from

the current CPU load observation)

We propose to modelize it in Fig. 55, using a mesure of uses based on

access (consumption) and Authaccess (supervision/consumption).

MATCH (I:INSTANCE {NAME:'INSTANCE DB'})

MERGE (U:USER {NAME:'JEAN', ID:'1906197913022014'})

149

CREATE (U)-[A:ACCESS {CHARACTERISTIC:'RESOURCES'}]->(I)

MATCH (AA:APPLICATION)

MERGE (U:USER {NAME:'CATHERINE', ID:'12071962'})

CREATE (U)-[A:AUTHACCESS {CHARACTERISTIC:'RESOURCES'}]->(I)

CREATE (U)-[AAA:AUTHACCESS {CHARACTERISTIC:'RESOURCES'}]->(AA)

Figure 55 - Neo4J interface - Graph Step 8

“Show me all ‘ACCESS’ relation(s) to ‘HumanRessources” will provide all

access/authaccess related to Software. As we can identify the Product Usage

Rights (via the SWIDTag/SKU) by a direct link between Software/PUR and

Software/Access, we can fulfill second part of the step 3 (here: over -deployment

risk).

150

b. Basic control of inventory’s consistency

Obviously, a lot of queries would be necessary to implement true SAM

analysis. For the purpose of our example, let’s study quickly three of the most basi c,

but also the most important.

 What I bought?

This query (Fig. 56) returns a table: the number of bought licenses order by

software and metric with a list of contract per software

MATCH(E:ENTITY)-[G:SIGNS]-(C:CONTRACT)-[H1:DEFINES]->(S:SOFTWARE)

MATCH (P:PUR{TYPE:'METRIC'})-[H:DEFINES]->(S)

RETURN E.NAME AS ENTITY, S.NAME AS SOFTWARE, S.SKU AS SKU, P.METRIC

AS METRIC, H1.QUANTITY AS QUANTITY

Figure 56 - Neo4J interface - Query Bought

 What I Instantiated?

This query (Fig. 57) returns a table: the number of instance per software

ordered by metric with collection of application containing this software.

MATCH (V:CONTAINER)-[T:RUNS]->(I:INSTANCE)-[R:INSTANTIATES]-

>(S:SOFTWARE)<-[]-(A:APPLICATION)

151

RETURN S.CATEGORY AS CATEGORY, S.NAME AS SOFTWARE, A.NAME, S.SKU

AS SKU, COUNT(T) AS INSTANCENUMBER

Figure 57 - Neo4J interface - Query Instance

 Am I Compliant?

In our simple example, this last query (Fig.58) consists in a verification of the

‘Processor’ metric (typical for Oracle). Basically, we have to multiply number of

core per processor of the physical machine hosting the DB by the number of

processor and by a coefficient given by Oracle for each processor. It returns a table

of licenses ordered by software, number of bought/instantiated (according to

Oracle licensing rules).

Figure 58 - Neo4J interface - Query Compliance

152

Some libraries like, Popoto.js (Fig.59) allow user to navigate in the graph to

do the same in graphic mode. Popoto is an open-source library.

Figure 59 - Popoto for graphic Neo4J interface

Optimization consists first in automating the rise of alerts. When

counterfeiting situation is detected (piracy, but mainly editor’s metric

misunderstanding) or when use reaches or exceeds a fixed threshold or the level of

inventories. Then, purchasing/activating new licenses could be automated to adjust

the license stock, in real time.

When the visibility and identification steps are mastered, optimization might

consist in operating simulations: usage/instantiation captures, may reveals some

possibility to renegotiate a contract in a more favorable (financial) way: i.e., to

change the Oracle DB negotiated metric (currently Processor) into another metric

(i.e., Access), more appropriated to observe uses. Or to project a fu ture

software/license uses based on current observed situation.

153

c. Cost-Saving Identification

Based on the previous observations and experimentations, we built a

prototype (cSAM) in order to analyze real and dynamic uses of software resources

in cloud environments. First to ensure compliance and to determine real costs for

users, then to optimize the deployment of licenses based on predefined and

adjustable scenario. It is based on tag process recognition and implementation for

software identification purpose and modeling based on graph.

Comparing to SAM market tools, the prototype developed in NodeJS shows it

value-added in integration of cloud dynamicity issues; it is flexible and multi-

domains; it is design (Fig. 60) to integrate quickly and easily new/complex metrics

linked with new business models and support innovative simulation functions to

allow better uses and deployment control. The simulation functions encompass

possibility to simulate a change in metric and evaluate the best in terms of lic ensing

costs depending the inventoried deployments and uses. Moreover it add the

possibility to evaluate the impact of changing allocated resources in terms of

licensing costs. cSAM relies on several asynchronous sources of provisioning

related with software lifecycle: First one is from procurement information system

(the weakest part of our experiment, due to the difficulty to access some

confidential data from contracts and the arcane legacy of sourcing information

system we were not yet able to automatize relaying information from it). The

second is from validation and service creation and concern product and service

catalogue enrichment, before the third supply from operations for instantiat ion and

usage detection (Fig. 61).

Figure 60 - cSAM tool Features

154

Figure 61 - Asynchronous feeding of graph for Software lifecycle

Thanks to it graph database, cSAM can analyze complex, connected data in

easier way than a relational database and persist that analysis for future reference.

Depth and density of connections and data volume affect query times importantly.

Query data with a depth of millions or tens of millions of connections per second

per computer core would be the equivalent in a relational database of millions of

“join” operations per second per core, which cannot be done. There is a significant

speed difference, and it increases the tighter connections are and the more data you

have. The more data you have, the slower it is to link data in other kinds of

databases. Using Neo4j, a shortest path query on data with tens of billions of nodes

and relationships might take one or two milliseconds to run. The equivalent SQL

query would run many thousands of times slower if an application was solely using

a relational database.

In terms of simulation, it allows us to simulate a change in licensing model –

like metric. In other words, for given software, in a given environment, cSAM can

not only check compliancy with contractual conditions, but also simulate other

licensing conditions and evaluate their costs in similar technical conditions in order

to identify optimal way of licensing (based on usage, on capacity, or on all other

criteria like shown on Fig.39)). This knowledge allows orient ing potential contract

155

renegotiations, technical implementation decision, project or service architecture

etc.

Fig.62 below illustrates a simulation on our Oracle Database deployment cost

evaluation. Currently, all instances of our Oracle DB are licensed under a

“Processor”18 metric. This rule is implemented in a rule engine and running it

knowing the current running instances can guarantee compliance with contractual

acquired rights. However, it is important to check relevance of such contractual

metric considering the current deployments. cSAM allows finding an optimal metric

by applying other existing rules in the rule engine or creating a new one on the fly.

Thus, in this example, we can easily simulate a metric change, based on real time

deployment state and identify that considering our current situation, a Name User19

metric would cost less, by far (1 453 460€ saved). This metric is also proposed by

Oracle, but any kind of metric can be tested included those not proposed by the

supplier. Prices used to evaluate the licensing costs might be:

 extracted from observed prices for identical couple of product/metric

 estimated by analogy with a product from same category/metric

 defined via a price list during simulation

18 Processor: shall be defined as all proc essors where the Oracle programs are installed
and/or running. Programs licensed on a processor basis may be accessed by your internal users
(including agents and contractors) and by your third party users. The number of required licenses
shall be determined by multiplying the total number of cores of the processor by a core processor
licensing factor specified on the Oracle Processor Core Factor Table which can be accessed at
http://oracle.com/contracts. All cores on all multicore chips for each licensed p rogram are to be
aggregated before multiplying by the appropriate core processor licensing factor and all fractions
of a number are to be rounded up to the next whole number. When licensing Oracle programs with
Standard Edition One or Standard Edition in t he product name, a processor is counted equivalent
to an occupied socket; however, in the case of multi -chip modules, each chip in the multi-chip
module is counted as one occupied socket."

19 Name User Plus is defined as an Individual authorized by you to use the programs which
are installed on a single server or multiple servers, regardless of whether the individual is actively
using the programs at any given time. A non-human operated device will be counted as a named
user plus in addition to all individuals authorized to use the programs, if such devices can access
the programs. If multiplexing hardware or software (e.g., a TP monitor or a web server product) is
used, this number must be measured at the multiplexing front end. Automated batching of data
from computer to computer is permitted. You are responsible for ensuring that the named user
plus per processor minimums are maintained for the programs contained in the user minimum
table in the licensing rules section; the minimums table provides for the minimum number of
named users plus required and all actual users must be licensed. Source
http://oracle.com/contracts.

156

Figure 62- cSAM screenshot - Simulation on Oracle DB licensing

The Fig. 63 illustrates another simulation based on a second scenario: if

resources allocated to support an Oracle DB instance will change, we need to

evaluate in real time this impact in terms of compliance and costs whatever the

complexity of the virtualization architecture. Reminding the definition of the

Processor metric giving on previous page, we assume that changing a processor of a

physical server will have an impact on all instances bound to it (by analogy,

instances under a metric indexed on bandwidth might be impacted by changing the

network board). The tool (via a simple graph request ()-[:RUNS*]->()) allows

identifying all the impacted instances. In our example, we identify among others, a

gap of 28 Oracle processor licenses, which represent an estimated readjustm ent

cost of 27 832€.

157

Figure 63 - cSAM screenshot - Simulation on Oracle DB instance's resources

2. PLATFORM USE CASE II: NETWORK FUNCTION VIRTUALIZATION

Network functions virtualization (NFV) is a network architecture concept

that uses the technologies of IT virtualization to virtualize entire classes of network

node functions into building blocks that may connect, or chain together, to create

communication services. NFV relies upon, but differs from, traditional server-

virtualization techniques, such as those used in enterprise IT. A virtualized network

function, or VNF, may consist of one or more virtual machines running different

software and processes, on top of standard high-volume servers, switches and

storage devices, or even cloud computing infrastructure, instead of having custom

hardware appliances for each network function. For example, a virtual session

border controller could be deployed to protect a network without the typical cost

and complexity of obtaining and installing physical network protection units.

2.1. ORCHESTRATION & HYPERVISOR IN OPERATOR’S NETWORK

With NFV, like in Fig.62, network operators (in other words : telco) are

reducing their reliance on single-purpose appliances by taking functions that were

previously built into hardware and implementing them in software that runs on

industry-standard servers, network, and storage platforms. Beyond reducing

network operators’ dependency on dedicated hardware, leveraging NFV enables

158

more programmability in the network and greatly reduces the complexity and time -

to-market associated with introducing new services.

Figure 64 - HW and SW disconnection and separate lifecycle management

Telco need to quickly introduce, automate, and operationalize new

virtualized services between data centers, on top of existing network services.

Legacy hardware-based appliances dedicated to performing a single function within

the network are expensive and wasting resources. Orchestration can resolve this

issue by delivering essential framework, templates and processes in order to stitch

together virtual and physical resources, as well as automating and dynamically

configuring these resources across multiple network domains. Network operators

will be able to offer their customers dynamic instantiations of cloud resources, like

virtual machines, tenant networks, and storage, on-demand through an enterprise

portal with the ability to control network (bandwidth-on-demand) and virtual (VM)

resource allocation.

The relation between network software vendors and service providers is

deeply changing due to a confluence of economic, market, and technological factors

(Fig. 63). Software licensing is complex and may become a hindrance to the

adoption of new transformative technology. In such context both service providers

and network software vendors would be well advised to bet on trustworthy

partnership, promoting emergence of Software Asset Management. The problem

has many dimensions, but they sum up this fact: software licenses are overly strict.

A license entitles using software in a very specific manner, but many of the

licensing schemes in use are not flexible enough to really support the dynamism of

159

NFV cloud. Inflexible license might inhibit the growth of NFV, because a strict

license conflicts with dynamic requirements. No vendor is enough set up to support

dynamic entitlements (ie, if you need to scale up an application to meet peak

demand without having license in stock). Nevertheless network services on Amazon

Web Services acquired through the Amazon Marketplace can be purchased on

demand for periods as short as one hour, so dynamic licensing is possible if the

proper entitlement infrastructure is in place.

Figure 65 - NFV complexity factors for SAM

NFV architecture separates software purchase decisions from hardware

decisions by splitting closed appliances into separate hardware and software

components, enabling independent selection of each. Until now, service providers

had almost exclusive relations with hardware big vendors (licensing based on

invariants such as chassis ID, etc.). They have been accustomed to this sort of

comfortable situation. First steps towards NFV force them to take ownership of

their own stack. Temptations exist to keep old habits instead of starting a new NFV

initiative which will probably cost more than promoting dedicated resource

management process. Many service providers have deployed Proof of Concepts

(PoCs) use cases in this network function virtualization software but few have the

all needed operational tools in place to orchestrate and manage VNF from multiple

vendors.

160

ETSI MANO standards and Open Source initiatives (i.e., OPNVF, OpenMANO,

and ONAP) will help service providers in moving toward real implementations.

(Open Source Mano, 2017)[34], (The Linux Foundation, 2017)[35], (OPNFV,

2016)[36].

Nevertheless, nothing is easy and complexities of licensing have to be

addressed specifically: while service providers and VNF suppliers have different

interests to defend in this aspect the value creation for each of them is generated

from their collaboration and interdependency. The firsts want to pay as litt le as

possible and only for what they are using, only when they are using it, with the

smallest impact on VNF-onboarding process and no service disruption. The seconds

need to plan their business and claim they have to protect intellectual property

rights (IPR).

Basically, Service providers have interest to promote a usage-based licensing

(habitual model in IT), in other words, licensing models with fees that vary with

uses. “Use” encompasses notions like time, bandwidth, packets, peaks, etc.

Convergence with IT is clearly displayed by the emergence of new players that

come with open source “DNA” and open source business model but also with IT

inspired business models. Era of single vendor delivering turnkey solution is over

and like in IT, service providers needs to integrate new technologies from different

vendors.

Main VNF supplier’s concerns are about Intellectual Property Rights (IPR)

protection (1) and revenue recognition (2). For this reasons, few of them proposes

services/application like integrated license manager or capacity tracking manager;

in order to report application uses and aggregate it, decide if it licensed to run, can

be cloned, etc.

(1) Licensing must meet service provider requirement while being easy to

implement but preventing unauthorized use of the software. Network functions are

virtualized and may run on different host hardware at different times, i.e. elastic

scaling and be easily cloned as part of regular operation like migration/backup but

enable rogue employee or attacker running stolen software. Vendors want to

prevent misuse to secure their IPR, but it comes with inconvenience: too much

protection could be too inconvenient to use (i.e. service interference, legitimation

of VM cloning, tie to specific hosts, extension to future applications, etc.). It implies

that the responsibility of the license compliance fall back on Software vendors; just

the same, usage monitoring and control.

(2) VNF vendors propose to connect their license manager to business

system to be able to recognize what to bill and consider as revenue (Fig.64). It

161

questions about the vendor usage supervision legitimacy and might convey a

business encroachment to the cost of service providers.

Figure 66 - License & metering server management model

The fact is that since years IT Software is mainly distributed on “declarative

license” mode. In other words, during contracting phase, Software supplier trusts

Software buyer and adjust negotiated license quantity on the amoun t of licenses

that will be installed. Software installation and usage do not required interaction

with any license manager because IPR protection is guaranteed by first clause of

contract signed between Software vendors:

“This software and related documentation are provided under a license

agreement containing restrictions on use and disclosure and are protected by

intellectual property laws. Except as expressly permitted in your license agreement or

allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,

license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this

software, unless required by law for interoperability, is prohibi ted.”

This clause quoted from a standard End-User License Agreement (EULA)

proposed by (Oracle, 2010)[37], is nearly the same than clauses proposed by other

well-known IT software vendors. These contracts are often jointly proposed with

“True-up” process (Microsoft, 2017)[38]: an annual reconciliation process through

with you can increase or decrease your license subscription counts. Main benefit

from this system is that customer keeps controls on what, where, when and how he

deploys Software, processes his own allocated/consumed resource and asset

optimization. It is translated into usage-based metrics like presented on Fig

(usage).

162

Hard truth is that while NFV offers stronger partnership opportunities

between service providers and Software vendors, first contracting methods do not

reflect expected trust between partners. Trust is not a matter of technique, tricks or

tools but of character and will.

Considering experience and process maturity on IT level, relation with

software editors based on declarative license uses and perpetual usage rights

seems to be the best approach to follow. Our aim is to replicate relevant software IT

processes on production optimization as much as possible when relevant. VNF

vendors can allow tremendous innovation and growth to telco industry, on

condition that related software licensing is adapted to the service providers and do

not stand in the way of fast on-boarding of VNF.

Fact is that trust is built with consistency so : to turn into declarative license

uses and perpetual usage rights, service providers need to have generic and reliable

process and tools to demonstrate their audit-readiness and accurate counting loop.

It involves setting up relevant SAM program which will first address the

prerequisites developed in chapter 3.

2.2. CONTEXT CONCERNS

As a reminder, a NFV cloud is designed to host and deploy several virtual

network functions (VNFs) using a cloud network. Before, to deploy a firewall

service or a Wide Area Network (WAN) service, operator were installing specifi c

customer premises equipment (CPE) to deliver the service. Using an NFV model,

telco can deploy NFV servers in data centers, and then deploy VNFs and network

services to the customer using software. One of the NFV advantage is that carriers

can significantly reduce new services ‘time to market’ and software rather than

specialized hardware networks.

Blue Planet delivers carrier-grade NFV orchestration capabilities for

instantiating, managing, and chaining Virtual Network Functions (VNFs). Blue

Planet provides Management and Orchestration (MANO) guidelines to manage and

automate the VNF lifecycle, and intelligently orchestrate NFV Infrastructure (NFVI)

resources across multiple data centers. It leverages RESTful APIs and model -driven

templates to simplify integration with different OSS, SDN, and Virtual

Infrastructure Manager (VIM) platforms. Blue Planet is cloud management

plateform neutral: OpenStack and VMware are supported today, and architecture

allows support of other cloud management alternatives. The Fig.65 explains the

context the architecture of our experimental environment. The aim is to provide a

Network as a Service based on an open and flexible NFV WAN strategy.

163

Figure 67 - NFV Cloud Orchestration

The Blue Planet User Interface (UI) yields a real-time view, dynamically

updated to show changes in the network service or the addition/removal of a VNF

from the service chain (Figure below illustrates it). Moreover, we can move through

hierarchy on various elements to get more details on individual VNFs and network

services and get access to supporting resources.

This use-case is very interesting for carriers’ point of view because it deals

orchestration allows monitoring of, simultaneously, NFV Point-of-presence which

are consuming a lot of resources but in limited amount (less than 15 distributed in

Europe) mainly based on Open-stack infrastructure; and universal Customer

Premise Equipment (CPE) mainly enterprise clients. uCPE do not consume a lot of

resources but will potentially be very numerous (millions of equipment). Concerns

related with this two types of equipment (POP and uCPE) will generate different

issues like reliability, real-time and volume which should be addressed in a

different approaches but through the same operation center.

164

Figure 68 - Blue Planet UI

Like shown on Fig.66, Blue Planet (BP) questions POP’s OpenStack instances

about deployed virtual machines and related allocated resources. OpenStack

returns information like BP ID, VM’s creation timestamp, VM’s end timestamp,

cpu/ram/disk allocation, running image name, admin ip address, a label typical of

VM purpose, tenant id and allocated resources and a unique hostname. The serial

number, or any information related with license management is reachable through

the vendor management module (here FortiManager provided by Fortinet) using

the admin ip address as primary key.

To get information directly related to distinguishing features of an instance,

a dedicated connector converses with the virtual machine in SSH mode, to

recompose a configuration bloc and obtain such information like identification

metadata or potential running options. For example: a Firewall instance runs an

antivirus function (an option): it is visible in the configuration bloc, found by key -

words research like “antivirus” and “enable”. A connector depen ds on product

vendor and is provided either by the vendor itself, the orchestrator or is developed

by the service provider. In case of Fortinet, the connector already exists in

BluePlanet. Nevertheless, in case the product will go up a version, we will be

dependant from the one in use by the connector and might be not able to recognize

a running option. In such case, we should implement a module as generic as

possible from the connector to be as less as possible dependent on the version to

catch VNF’s internal configuration.

165

This allows us to get all configuration data about an instance (in other words

configuration data) like VM sizing. Linked with the figure above (usage), we get

access to allocation (allocated resources like CPU, RAM, disk, sockets, bandw idth,

etc…) and supervision like network sizing, link between instances, managed

objects etc… We can easily get running duration of each network service using

timestamp function attached to each instance. Nevertheless, BluePlanet does not

provide yet consumption usage like traffic (event or flow per seconds, data or

bandwidth), amount of access (direct, not direct) or calls, neither resource real

consumption (like physical CPU consumption per minute). As standards assumes

that one VNF only can be instantiated on one VM (or more) we make assumption

that we can get this information through OpenStack using program like

Telemetry. Yet, we did not find opportunity to implement it but Telemetry’s aims

are to collect reliable data on the physical and virtual resour ce usages

comprising deployed clouds, to persist these data for subsequent retrieval and

analysis, and trigger actions when defined criteria are met the Telemetry

requirements of an OpenStack environment are vast and varied, they include,

among other, use cases like metering, monitoring, and alarming.

2.3. USAGE COLLECTION

The Telemetry Data Collection services can efficiently polls metering data

related to OpenStack services; collects event and metering data by monitoring

notifications sent from services and publishes collected data to various targets

including data stores and message queues. The Telemetry includes the following

components:

 A compute agent (ceilometer-agent-compute) which runs on each compute

node and polls for resource utilization statistics.

 A central agent (ceilometer-agent-central) which runs on a central

management server to poll for resource utilization statistics for resources

not tied to instances or compute nodes. Multiple agents can be started to

scale service horizontally.

 A notification agent (ceilometer-agent-notification) which runs on a central

management server and consumes messages from the message queue to

build event and metering data. Data is then published to defined targets.

2.4. MODELING

Our objective is to validate the fact that our graph model can be managed in

NFV cloud environment (Blue Planet Orchestration/OpenStack/uCPE). It will

validate our assumption that the model can be used to easily model complex

166

platforms and software. To achieve these experiences, we consider a Firewall VNF

from Fortinet.

We choose the Fortinet virtual Firewall (FortiGate VMX) example for several

reasons:

 FortiGate VMX licenses can be defined by several types of entitlements

and performance values vary depending on system configuration

 It will allow us to increase complexity of our use case such as:

integrating controls between product’s link (FortiGate VMX can be

enriched by options) and constraints of uses (based on technical

specifications and system performances).

To evaluate relevance of our model, we propose to define in Fig. 69 below a

NFV architecture model.

167

Figure 69 - NFV Architecture Model

The diagram illustrates:

VNFs represents the collection of Virtualized Network Functions: a Service

Provider implements network services using VNF instances (which shall encompass

several software components called VNFc) running on common infrastructure

elements.

The NFV Infrastructure (NFVI) depicting the mapping (virtualizing) of

physical servers and network facilities onto equivalent virtual functions. The NFVI

shall provide compute capabilities comparable to an IaaS cloud computing service

as a run time execution environment as well as support the dynamic network

connectivity services. The computing nodes of the NFV Infrastructure will be

located in NFVI-Points of Presence (PoP) or embedded in other network

equipments. The resource pooling concept includes a notion of multi -tenancy -

168

where the same pool of resources supports multiple applications from different

administrative or trust domains.

The NFV management plane, with various independent VNFs all competing

for resources, the management plane is responsible for allocation of the physical

resources in a fair manner to support various Service Level Agreements.

a. Graph model construction

In this section, we will follow the Software lifecycle proposed in Section IV

and refer to the Fig.2 about SAM maturity scale.

i. Purchasing

Fig.70 might be an extract from VNF Market Place which proposes the

product we identified as needed and are planning to buy under a specific metric

‘Instance’.

Figure 70 - Product Catalog (2)

Few elements (in green above) are necessary to identify precisely this offer

and determine the level of grants (PUR) given by this type of licensing. These

169

elements have to be collected in the purchase order and reconciliated with data

from the delivery order. We can notice in this offer that softare’s editor is missing.

Some research is necessary to identify Fortinet.

 In the graph (Fig. 71): first step is to create our product, with a label ‘VNF’

and several attributes found in the purchase order. In the same way, we create a

label ‘Supplier’ and ‘Editor’ to identify a node ‘License Store’ and ‘Fortinet’:

Figure 71 - Neo4J interface – Graph 2 Step 1

CREATE (S:VNF {NAME:"FORTIGATE-VMX", SKU:"GF-VMX-1",VERSION:"5.4",

CATEGORY:"FIREWALL"})

MERGE (R:SUPPLIER {NAME:"LICENSE STORE"})

CREATE (E:EDITOR {NAME:"FORTINET"})

Then, in Fig. 72, we create several nodes with label ‘PUR’, which represents

scope of usage, metrics, environments … The following list is not exhaustive

regarding current Fortinet definition of this couple product/metric.

CREATE (P:PUR {TYPE:"METRIC",METRIC:"INSTANCE"})

170

CREATE (P2:PUR {TYPE:"PERFORMANCE",CONCURRENTSESSION:”NO LIMIT”})

CREATE (P3:PUR {TYPE:"SPECIFICATION ", VIRTUALDOMAINSMAX:250})

CREATE (P4:PUR {TYPE:"SPECIFICATION ", USERLICENSE:”UNLIMITED”})

Figure 72 - Neo4J interface – Graph 2 Step 2

Then, in Fig. 73: to create relations between nodes:

 Between an editor and VNF (EDITS): ‘Fortinet’ edits ‘Fortigate -VMX’

 Between a VNF and PUR (DEFINES): ‘Fortigate-VMX’ is licensed under

Instance metric

 Between a supplier and a product (DISTRIBUTES): ‘License Store’

distributes ‘Fortigate-VMX’.

Once again, this process and collect are essential to fulfill Identification

requirements: PUR are translated in the SKU, this SKU enriches the SWIDTag

delivered during provisioning processes; it guarantees the link between a contract

and VNF/ VNF and Instance.

MATCH (P:PUR {TYPE:'METRIC',METRIC:"INSTANCE"})

171

MATCH (P2:PUR {TYPE:"PERFORMANCE",CONCURRENTSESSION:'NO

LIMIT'})

MATCH (P3:PUR {TYPE:"SPECIFICATION ", VIRTUALDOMAINSMAX:250})

MATCH (P4:PUR {TYPE:"SPECIFICATION ", USERLICENSE:'UNLIMITED'})

MATCH (S:VNF {NAME:"FORTIGATE-VMX"})

MATCH (R:SUPPLIER) MATCH (E:EDITOR {NAME:"FORTINET"})

MERGE (C:CONTRACT {NAME:"CUIMT002",DATE:18-10-

2017,CONTACT:"ZOE"})

MERGE (SP:ENTITY {NAME:"SERVICE PROVIDER"})

MERGE (P)-[D:DEFINES]->(S) MERGE (P2)-[D2:DEFINES]->(S)

MERGE (P3)-[D3:DEFINES]->(S) MERGE (P4)-[D4:DEFINES]->(S)

MERGE (E)-[E1:EDITS]->(S) MERGE (R)-[D1:DISTRIBUTES]->(S)

MERGE (R)-[S1:SIGNS]->(C) MERGE (SP)-[S2:SIGNS]->(C)

MERGE (C)-[DC:DEFINES {QUANTITY:2, UNITPRICE:"3790", CURRANCY:"$"}]-

>(S)

172

Figure 73 - Neo4J interface – Graph 2 Step 3

173

ii. Provisioning

 We create a label ‘NetworkService’ and a node ‘NetworkService1’

which will include our Firewall. Each NetworkService has its own SKU

characterizing its composition and eventual licensing models (in case where the

service provider will propose it as a commercial offer).

 The relations ‘CONTAINS’ is enriched by properties like a service id

(specific SKU), in Fig.74.

MATCH (S:VNF)

CREATE (A:NETWORKSERVICE {NAME :'NETWORKSERVICE1', SKU:”NS001”})

CREATE (A)-[C:CONTAINS]->(S)

Figure 74 - Neo4J interface – Graph 2 Step 4

iii. Instantiation

To fulfill the step 1 (visibility) of the maturity scale, we need to have an

exhaustive view of infrastructure, resources and instantiation.

174

Crucial point is now to create a link between the instance and the product

which we bought (Fig. 75). The Orchestrator knows and updates all identification

elements of it components. This allows creating the link between the product in

catalogue and the installed product.

MATCH (S:VNF{NAME:'FORTIGATE-VMX'})

MERGE (I:INSTANCE {NAME:"FW-VM1",SKU:"GF-VMX-

1",IMAGE:"FORTIGATEVMX1"})

CREATE (I)-[I1: INSTANTIATES] ->(S)

Figure 75 - Neo4J interface – Graph 2 Step 5

The characteristics of the VNF, its instances and their configuration have to

be traceable regardless of the deployment conditions. This requirement of

traceability encompasses precise identification of Software and resources to allow

maintenance of deployment inventories. IaaS (Open Stack) offers bare HW

resources access which are visible through Blue Planet monitoring interface.

 In our example, the firewall has been deployed on the cloud via the

orchestrator and run as one instance (Fig.76).

175

MATCH (I:INSTANCE {NAME:"FW-VM1"})

MERGE (VM:VM {NAME:'VM2',CPU:4, RAM:8})

MERGE (T:TENANT {NAME:'TENANT2',NBINSTANCE :20, RAM :100})

MERGE (V :VLAYER {NAME:'OPENSTACK2', REGION:'FRANCE',

VERSION:'ZOE'})

MERGE (M:MACHINE {NAME:'BAREMETAL2'})

MERGE (R:RESOURCE {TYPE:'CPU2', RAM:'X86'})

CREATE (VM)-[R0:RUNS]->(I)

CREATE (T)-[R1:RUNS]->(VM)

CREATE (V)-[R2:RUNS]->(T)

CREATE (M)-[R3:RUNS]->(V)

CREATE (M)-[R4:HAS {NUMBER:20}]->(R)

Figure 76 - Neo4J interface – Graph 2 Step 6

176

In case of migration or backup purpose, among others, we need to keep and

maintain a link between instances. We propose to create a relation between

iv. Options

There are a number of features in our Firewall that can be configured to

either be displayed or disabled. Activation of feature influences the licensing

conditions and prices. We choose to represent it using a label ‘Feature’, each node

‘Feature’ represent a function of the Firewall. The relation between the instance

and the function is enriched by the status of activation. ‘1’ represents a displayed

feature, ‘0’ represents a disabled one (in Fig.77).

CREATE (F:FEATURE {NAME:"CENTRAL NAT TABLE"})

CREATE (F2:FEATURE {NAME:"LOAD BALANCE"})

CREATE (F3:FEATURE {NAME:"EXPLICIT PROXY"})

CREATE (F4:FEATURE {NAME:"DYNAMIC PROFILE"})

MATCH (I:INSTANCE {NAME:"FW-VM1"})

CREATE (I)-[F5:FEATURES {STATUS:1}]->(F)

CREATE (I)-[F6:FEATURES {STATUS:1}]->(F2)

CREATE (I)-[F7:FEATURES {STATUS:0}]->(F3)

CREATE (I)-[F8:FEATURES {STATUS:1}]->(F4)

177

Figure 77 - Neo4J interface – Graph 2 Step 7

b. Cost-saving Identification

Like in section V.1.5.c, we propose two simulations. The first one simulate a

metric change for the Firewall Fortigate from Fortinet (Fig.78). Based on relation in

the graph including usages, user access, allowed users, time spent on application,

running time of all instances, virtual link between instances etc., we easily identify

that for this specific software, in this scope (Entity), under Access metric, we would

need 879 licenses for an evaluated cost of 186 348€. Editor might not propose all

these metrics in his offer, nevertheless this knowledge is valuable. In case were a

metric does not exist for a given editor, cSAM proceed by analogy with software and

price from the same category. Accuracy of the simulation depends on the volume of

metric and software in the base.

178

Figure 78 - cSAM - simulate metric change

We can instantly (thanks to the chain or “runs” relat ions) evaluate potential

impact of resources reallocation on each virtual or physical layer(s) in terms of

licensing costs. For example, changing a CPU in a data center or a tenant has an

impact for all instances with a processor-capacity-based metric; changing network

board has an impact on instances with a traffic-based metric.

Fig.79 illustrates a resource change : what will be the impact of a processor

replacement on hardware (here the machine SER001)? Graph allows winding up

each layers of virtualization and to identify impacted instances (which are

supported by this physical and/or virtual equipment given a processor-based

metric). cSAM calculates previous amount of needed license, new amount after

resource changes, compares it with license stocks and evaluate costs of adjustment

(based on contract’s average prices). Estimated cost of adjustment is around 75k€.

It offers new interesting vision of infrastructure optimization, adding a license

criteria.

179

Figure 79 - cSAM - simulate resource change

180

181

Chapter 6

 VI. CONCLUSION

his final chapter will be organized as follow. (1) We will remind the keys

issues who motivated our works; (2) we will remind our main

contributions and (3) propose a set of tracks to overcome their current limitations.

1. REMINDING THE ISSUES

Cloud computing represents a more dynamic and flexible approach to

provide resources on hardware and software level. It supposes innovative

distributed architectures, ownership and controls as well as new software pricing

models.

The disruptive influence of cloud computing on software licensing has to be

taken into consideration mainly because traditional and complex licensing models

often jeopardize using these products in the cloud. The flip side of the flexibility

promised by large-scaled virtualization is that software licensing issues may hold

back the benefices offered by the Cloud environments. The rise of shelfware and the

growing number of license audits by commercial software vendors are together

raising awareness of the software license risks, counterfeiting and over-

deployment. This context stresses the necessity to adapt and reinforce automation

of current SAM processes when organizations use cloud computing.

Moreover, some techno-economic drivers are converging to create a

paradigm of change in the design and operation of future telecommunications

T

182

networks and services. “Softwarization”, currently impacting the Network,

highlights a new dimension of network management. We assume that software

license’s management in real-time and on large-scale cloud environment will

sophisticate Virtualized Network Function (VNF, or Network Software) on -boarding

processes. Network virtualization and softwarization disrupt software licensing

business models.

Altogether, the complexity of software lifecycle management, the

multiplication of actors in this cycle and the lack of efficient tools, lead to an

understandable disconnection between software usages, associated hardware and

the related licensing model. Also, because cloud environments tend to automate

software lifecycle management, SAM processes are expected to be automated as

well. The combination of on premise solutions and modern, fast growing cloud

technologies makes it hard to manage the software lifecycle as a part of SAM. Many

products provide their own license enforcement mechanism; however, most of

these are problematic for use in the cloud. These mechanisms may depend on

features difficult to provide in the cloud, such as hardware keys, p hysical server

IDs, CPU class, and global user identity. Where schemes can be implemented on one

cloud, they cannot generally span multiple clouds (hybrid model). The main

hindrance to overcome this issue lays in identification of software during it all

lifecycle, including identification of product uses rights (PUR). Heterogeneity of the

restriction and right’s nature make it extremely difficult likewise identification of

consumed cloud resources to run software on each.

2. REMINDING THE CONTRIBUTIONS

The idea that we developed is that turning to the Cloud is not changing the

object of SAM, but altering how SAM processes should be designed. Turning to the

Cloud, SAM controls must be done in real time taking into account the fast rhythm

of changes: services are provisioned, configured, reconfigured and decommissioned

in a matter of minutes. Compliance risks are increased by the ease and speed of

provisioning, which can bypass traditional centralized processes. As software

becomes omnipresent, we developed the necessity to adopt existing and relevant

software license optimization IT process. Furthermore we questioned the emerging

contractual relation trends between service providers and network software

editors;

Effective SAM results in the ability to have accurate and complete view of

software assets entitlements that are owned, deployed and used. However, if most

183

of the recognition tools are quite efficient (we proposed an evaluation of the most

often-used), a common mistake is to underestimate the process of identifying

software after discovery. There is a huge difference between software discovery,

software recognition and software management. If ISO/IEC 19770 is currently the

most advanced proposition to overcome software identification throughout it

whole lifecycle, we underlined it relative efficiency in particular because of

software market weak adherence. For efficiency reasons, we proposed to adapt the

ISO/IEC 19770-2 with a concept borrowed from large retailers: Stock Keeping Unit.

The intended benefits of this better management of identification include easier

demonstration of proof of ownership, cost optimization of the use of entitlements

and easier license compliance management.

Software Asset Management is mainly about deciding about a strategic

approach of understanding software needs so that their deployment’s efficiency

and effectiveness will contribute to maximize the return on investment. The fact is

that license optimization requires a major shift within a company to implement

proactive SAM processes and be able to harness the power of this decisive business

asset. We proposed a model for SAM approach in the cloud based on control loop

and automatic computing concepts; we discussed about relevance of using a graph

database as a central process data connection. Then we proposed a qualitative

evaluation of our model based on two relevant use-cases. First use-case deals with

PaaS Instanciation through Cloud Foundry. Second deals with virtualized network

function orchestration. We demonstrated that the model can be adapted to fit

complex and distinct cloud environment overtaking concerns brought by complex

licensing models.

Following this model, we proposed a multi-domain prototype build to

integrate cloud dynamicity issues; designed to integrate quickly and easily new

composed metrics support innovative simulation functions to allow better uses and

deployment control. The simulation functions encompass possibility to simulate a

change in metric and evaluate the best in terms of licensing costs depending the

inventoried deployments and uses; and the possibility to evaluate the impact of

changing allocated cloud resources in terms of licensing costs.

3. FURTHER WORKS

In further works we will improve Product Usage Rights identification by

proposing normalized standards. SKU itself is not self -sufficient because not

normalized and might not describe all details of specific agreement between the

184

software supplier and software users. It still necessitate to be translated into

entitlements and easily transformed to automate compliancy verification . In this

aim, we could propose a general model of entitlement’s classification handling most

of the current and forecasted licensing models.

To go further in our model tests, we will increase its complexity, by

implementing more complex licensing rules. We need to strengthen user interfaces

and create relevant queries allowing realistic SAM controls and optimization

especially considering elastic applications. The qualitative evaluation proposed will

be enriched in further works by a quantitative evaluation approach, among others

to measure cost of interception of identification metadata and to measure cost of

interception of usages.

We believe that an major step in SAM approach will be to move compliancy

and optimization control from a posteriori (observation of current deployments

leading to adapted corrective actions) to a priori (before software instantiations).

The most advanced usage opportunities provided by the cloud (elasticity, load

overflow) add a new dimension to SAM controls. Elasticity consists of being able to

switch to other clouds in case of overload; these clouds might have different

responsibilities, geographical location or different architectures. It can strongly

impact licensing compliance. Overflow consists in punctually requesting all the

potentially available resources in a given geographical scope (for example all the

resources available in a building, including smartphones, boxes, etc.)... to solve a

contention problem. The impact of these evolutions will be even more penalizing in

NFV where concerns about bandwidth and response time are crucial and where the

potential occurrences are counted by million. There is no work to date on SAM

optimization in next-generation cloud environments.

185

 REFERENCED WORKS

[1] Shukla, G., 2017. Demystifying Accounting for Software Expenses, s.l.:

Ovum.

[2] N.F. Holsing, D. Y., 1999. Software Asset Management: analysis,

development and implementation. Information Resources Management Journal,

Volume 12 Issue 3, pp. 14-26.

[3] M. Ben-Menachem, G. M., 2004. Inventorying information technology

systems: supporting the "paradigm of change". IEEE Software, Sept.-Oct., 21(0740-

7459), pp. 34 - 43.

[4] M. Ben-Menachem, G. M., 2005. IT assets-control by importance and

exception: supporting the "paradigm of change". Volume 22, pp. 94 - 102.

[5] L.McCarthy, 2011. Managing Software Assets in a Global Enterprise. IEEE

International Conference on Services Computing, pp. 560-567.

[6] M.Sharifi, 2009. A Novel ITSM-Based Implementation Method to Maintain

Software Assets in Order to Sustain Organizational Activities. Athens, IEEE.

 [7] M.Ben-Menachem, 2008. Towards management of software as assets: A

literature review with additional sources. Information and Software Technology,

50(4), pp.241–258.

[8]P. Klint, C. Verhoef, 2002. Enabling the creation of knowledge about

software assets. Data & Knowledge Engineering, 41(2-3), pp.141–158.

[9] M.McCarthy, L.M. Herger 2011. Managing Software Assets in a Global

Enterprise. IEEE International Conference on Services Computing, pp. 560-567.

[10] A.Manzalini, A. G. W. K., 2015. Softwarization of telecommunications,

Special issue : SDN and NFV. Information Technology, Issue 10.1515/itit-2015-0025,

pp. 321-329.

[11] C.Matsumoto, 2014. Ciena turns NFV into an Online Shopping Experience.

[En ligne] Available at: https://www.sdxcentral.com/articles/news/ciena-turns-

nfv-online-shopping-experience/2014/12/

[12] R. Jones, 2016. Dynamic licensing for applications and plugin framework

for virtual network systems. US, Patent No. US20160226663 A1.

186

[13] L.M.Contreras, P. H. D., 2015. Operational, organizational and business

challenges for network operators in the context of SDN and NFV. Computer Network,

9 December, Volume 92, Part 2, pp. 211-217.

[14] M. Adler, T. R. N., 2014. Systems and methods for identifying a secure

application when conneting to a network. US, Brevet n° US20140282821 A1.

[15] M.McRoberts, 2013, Software Licensing in the Cloud Age, Solving the

Impact of Cloud Computing on Software Licensing Models. The International

Journal of Soft Computing and Software Enginnering, Vol 3, No.3

[16]M.Thompson, Practical ITAM – The essential guide for IT Asset Managers

– getting started and making difference in the field of IT Asset Management,

published by The ITAM Review, July 2017, ISBN 978-1547011216

[17]M.Thompson, 28th Feb 2015, SAM Tool Buyers Guide [On Line] Available

at : https://www.itassetmanagement.net/2015/02/28/sam-tool-buyers-guide/. ,

October 2017.

 [18] Aspera Smart track, www.aspera.com/fr/, September, 2016

 [19] Snow License Manager, www.snowsoftware.com/fr, September, 2016

[20]Flexera Flexnet Manager, www.flexera.fr/enterprise/products/software-

license management/flexnet-manager-engineering-apps/

 [21] Spider Brainware, www.brainwaregroup.com/en/solutions/software-

asset-management/spider-licence/, September, 2016

 [22] Eracent, https://eracent.com/tag/software-asset-management/

September 2016

[23] M.Thomson, 31st July 2013, Review, HP Asset Manager for SAM [online]
available at: https://www.itassetmanagement.net/2013/07/31/review-hp-asset-
manager-sam/ October, 2017

[24] BMC Remedy, www.bmcsoftware.fr/it-solutions/asset-

management.html, September, 2016

 [25] GLPI – OCSng, www.glpi-project.org/, September, 2016 &

www.ocsinventory-ng.org/fr/, September, 2016

[26] BSA, The Software Alliance, Seizing Opportunity through License

Compliance, Global Software Survey 2016, May 2016,

187

[27] ISO/IEC 19770-2:2015, ISO/IEC 19770-2, Information technology —

Software asset management — Part 2: Software identification tag

[28]TagVault Membership list available on

www.tagvault.org/about/membership-list/, September, 2016

[29]ISO/IEC 19770-3:2016

[30] IBM Corporation, June 2005, An architectural blueprint for autonomic

computing, Autonomic Computing White Paper; Third Edition

[31] S. Kachele, C. Spann, F.J. Hauck, J.Domaschka, 2013, Beyond IaaS and

PaaS: an extended Cloud Taxonomy for Computation, Storage and Networking,

Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference, 9

– 12 Dec. 2013, Dresden, Germany, DOI: 10.1109/UCC.2013.28

[32] www.cloudfoundry.org/, September, 2016

[33] https://github.com/cloudfoundry-incubator/cf-abacus, January 2017

[34] Open Source Mano, An ETSI OSM Community White Paper. Technical

Overview, Release Two. - Sophia Antipolis, France: ETSI, 2017.

[35] The Linux Foundation, Harmonizing Open Source and Standards in the

Telecom World. The Linux Foundation, 2017.

[36] OPNFV, State of NFV and OPNFV, Study on "What Operators Think of

OPNFV". The Linux Foundation, 2016.

[37] Oracle License and Service Agreements [Online]. - 26 August 2010. - 5

May 2017. - http://www.oracle.com/us/corporate/contracts/license-service-

agreement/license-service-agreement-070712.html

[38] Microsoft License Review [Online]. - 21 March 2017. - 5 May 2017. -

http://www.microsoftlicensereview.com/?p=1159

