N
N

N

HAL

open science

Software Asset Management and Cloud Computing

Anne-Lucie Vion

» To cite this version:

Anne-Lucie Vion. Software Asset Management and Cloud Computing. Databases [cs.DB]. Université
Grenoble Alpes, 2018. English. NNT: 2018GREAMO019 . tel-01901991

HAL Id: tel-01901991
https://theses.hal.science/tel-01901991v1
Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01901991v1
https://hal.archives-ouvertes.fr

| Communauté
& UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Anne-Lucie Vion

Thése dirigée par Noél DE PALMA, Professeur a I’Université
Joseph Fournier et

Codirigée par Fabienne BOYER, Professeur a I’Université Joseph
Fournier

Préparée au sein du département Orange Labs Services et du
Laboratoire d’Informatique de Grenoble

dans I'Ecole Doctorale Mathématiques, Sciences et Technologies
de I'Information, Informatique

Software Asset Management & Cloud
Computing

These soutenue publiquement le 29 mars 2018
devant le jury composé de :

M. Eddy CARON

Maitre de conférences HDR a I'Ecole Normale Supérieure de Lyon
(Président du jury)

Mme. Laurence DUCHIEN

Professeur a I'Université de Lille (Rapporteur)

M. Daniel HAGIMONT

Professeur a I'Institut National Polytechnique de Toulouse (Rapporteur)
Mme. Fabienne BOYER

Maitre de conférences a I'Université de Grenoble-Alpes (Co-directrice de
thése)

M. Noél DE PALMA

Professeur a I'Université de Grenoble-Alpes (Directeur de thése)
Mme. Noélle BAILLON

Responsable du programme SAM Orange (Co-Directrice de these)

Pour Zoé, j’ai enfin fini mon « livre »,
Pour Félix qui a peur des docteurs,

Pour L. et tous les bonheurs a venir.

REMERCIEMENTS

En tout premier lieu, je souhaite remercier ’ensemble des membres du jury
qui m’ont fait I'honneur de participer a ma soutenance et consacré un temps
précieux a la lecture de ce document. Tout particulierement Daniel Hagimont et
Laurence Duchien (rapporteurs) et Eddy Caron, (examinateur).

Je remercie tres chaleureusement mes encadrants de thése pour la confiance
qu’ils m’ont accordée et leurs précieux conseils: Merci a Pascal Dechamboux
d’avoir accepté d’encadrer ma thése chez Orange. Merci a Noél De Palma,
professeur a 1'Université Joseph Fournier ainsi qu’a Mme Fabienne Boyer,
professeur a l’'Université Joseph Fournier. Un merci tout particulier a Noélle
Baillon-Bachoc, mon encadrante chez Orange pour sa présence bienveillante et ses
encouragements quotidiens.

Merci aux équipes SAM et SUPRA pour leur accueil chaleureux, pour leur
écoute attentive et la qualité des échanges que nous avons eu. Merci a Karl pour son
support technique et sa patience face a mes questions parfois triviales.

Je remercie du fond du coeur mes parents qui ont fait grandir en moi la soif
d’apprendre ; ma famille pour les joies partagées et toutes celles que nous
partagerons encore, mon compagnon Janusz pour n’avoir jamais douté de ma
capacité d’aller jusqu’au bout malgré les embiiches.

Enfin, mon plus grand merci est adressé a Zoé et Félix, leur patience et
I’'amour inconditionnel pour leur maman parfois irritable ont été ma plus grande
force dans I'accomplissement de ce projet.

RESUME

ans le Cloud, peu de travaux traitent de l’analyse de l'usage réel et

dynamique des logiciels consommés afin de déterminer les cofits réels
engendrés et le respect des droits acquis aupreés des fournisseurs de ces
ressources. L’émergence de la pratique du Software Asset Management (SAM)
traduit pourtant la préoccupation grandissante des industriels et des ‘Telcos’
(Entreprises de télécommunications) face a la complexité des modeles de licences
dans des environnements virtualisés qui bouleversent nos usages de logiciel.

La réponse des éditeurs de logiciel est souvent wune incitation a ne plus
suivre la consommation de licences, par le biais de contrats onéreux de
consommation illimitée, rendant impossible une politique de maitrise des cofits.
Pour les utilisateurs finaux comme pour les fournisseurs de services cloud, il
devient impératif de maitriser et d’optimiser le déploiement des licences dans le
Cloud.

L’objectif devient celui de maitriser les besoins logiciels, au plus proche du
temps réel, puis de générer des scénarii d’optimisation basés sur I’évolution de la
consommation en modélisant les colts réels afférents. Cela représente un levier de
gains considérables pour tous les acteurs du cycle de vie du logiciel.

Le contexte d’étude couvre l’ensemble du scope du Cloud (applications,
plateformes, infrastructures et réseaux). Les travaux présentés ici s’attachent a
reconstituer tout le cycle de vie du logiciel, de I’achat jusqu’a la désinstallation, en
intégrant les contraintes liées a sa nature ou a son usage. Nous proposons de
résoudre le verrou majeur de l'identification du logiciel et de ses droits d'usage par
la création et le suivi d’un tag.

Nous proposons également une modélisation innovante s’appuyant sur une
base de données graphe qui permet d’intégrer 'instantanéité des changements de
configuration, de prendre en compte les différentes responsabilités impliquées par
les niveaux de services offerts, tout en offrant la souplesse nécessaire pour
supporter a la fois des modeles de licence classiques, ou a 'usage.

Deux cas d’usages seront envisagés pour juger de la pertinence des modeéles
proposés : la gestion des licences dans un contexte de Plateforme as a Service
(PaaS) et dans un cas de virtualisation de réseau (NFV).

ABSTRACT

bout Cloud, only few works deals with dynamic and real usage analysis
of deployed software in order to determine the true related costs, and
licensing compliance with acquired rights from the software editors.

However, the emergence of Software Asset Management (SAM) shows the
growing concerns of the industry and carriers facing the licensing model
complexity especially in virtualized environments where the software usage is
disrupted.

Editor’s answer consists in proposing to stop following this consumption via
very expensive unlimited-usage contracts. It makes impossible to implement true
cost management policies. For final users like for cloud service providers, it is
crucial to manage and optimize license deployments in cloud environments.

Firstly the aim is to control Software needs, as close as possible to real time,
then to generate optimization scenarios based on consumption evolution by cost
modeling.

[t represents a valuable saving leverage and may let spring up new licensing
models, more profitable for software lifecycle’s stakeholders.

Usage context covers all scope of Cloud (application, infrastructure and
network). Our works propose to rebuild the Software life-cycle, from procurement
to uninstallation, encompassing the constraints of it nature and usages. We propose
to solve software identification issue by creation and monitoring of tags.

Additionally, we propose an innovative modeling based on a graph database
which allows instant integration of configuration changes, to take into account the
different levels of responsibility induced by the different levels of granted services.
[t offers enough flexibility to handle classical licensing models as use-based model
which are often more attractive for cloud-users.

Two use-cases will be developed to evaluate our model efficiency: the
software licensing management in PaaS (Platform as a Service) context and in NFV
environment (Network Function Virtualization).

TABLE OF CONTENTS

Terms, Definitions and abbreviated terms...................... 19
[INtrodUCtION .o 26
1. Cloud ComMPULING OVEIVIEW ...oociiiiiirieeiee e e 27
2. Software Financial Issues: Audits And Wastes On The Risecccvvuenee. 29
3. The necessary emergence of Software Asset Managementccccceeeuenne 31
4. New Factors affecting Software and SAM new paradigmccccceeeevriueennen. 33
5. Contributions and follOWINGSccccoeeiriiiie e 34
[1. State of the art.... 37
1. Academic State Of The ATt .o 38
1.1. Theoretical works about SAM and its implementation limits...........ccccoceeeeecieeeennen. 38

1.2. Nowadays context justifies emergence of SAM in the literaturec.cccccccuveeenneen. 41

1.3. Synthesis: SAM mMaturity SCAlEccveiiieiiie i 42

2. Industrial State of The Art.... s 44
2.1 REQUITEIMENTS ..evviiiieeeiiriiiitieeeeeeesssirte ittt e e s s sssitbtaeeeeessssssabeaeeeeesssassssesaeeeesssnssssseaeees 44

P AV | [V F- 1 o] o W= { 4 o [USRSt 44

2.3. Choice of SAM Market tOOIS.......coiuiiiiiiiieereete ettt 49

2.4. Results of the evaluation........cc.coiiiiiiiiiiee e 49

2.5. Synthesis on Industrial State of the Art........cccvei i 69

3 SY NN SIS ittt 70

[II. Proposition of a Software Identification Model for

(0 T 0o B 25 9 74 1 o016 o 0 1= o 1 f S 73
1. Software licensing issues, challenges and opportunitiescccccecvenenne. 77

1.1. Licensing complexities moving to the cloud..........cccooeieiiiiiii i, 78

1.2. Cloud-oriented software licensing Modelscccceveeeiiiiiciiee e 81

2. Requirements for effective identification of Software and its

L2 0 Al =001 =3 L R 81
2.1. Requirements for Software identification.........ccceciieiiiciiii i 82
2.2. Requirements for Usage Rights (PUR) or entitlements identification 82

2.3. Requirements for Instances and bounded deployment environment identification 84

2.4. Requirements for identification inherent processes........ccccocveeeeecieeeeecveeeescieee e 84

3. Software PUR management process flow ... 85
4. Implementation of software identification patternscccceevriiiininnnne 88
4.1. Software identification hiNdrancesooceeriiiiiiiiniiii e 88

4.2. Software identification models proposed by ISO 19770-X......cccceevveeeriireeeenscrieeeennneen. 90

5. Workaround proposSitionsccccceeeiiiiiiiiiisiiisssiees e s s 98
5.0 ADOUL PUR Lottt sttt b e sttt e e s bt e smeeemeeeneean 98

5.2, ADOUL SKU ..ottt e e e e e et e e st a e e e et ae e e e nbre e e e aaeeeean 99

5.3. Proposed identification LIfeCyClecuuiiiiiiiiieee e 101

IV. Proposition of a SAM Model for the Cloud.......ccceuenen. 105
1. SAM CONLIO] LOOP ciiiiiiiiiiiiii e 106
1.1. Autonomic computing and general concept of control 100p.......cccecveevievriveeriieennns 106

1.2. Application to SAM CONtrol LOOPceiicuiieeiiciiiieiciieeesecieee e ecieeeesvteeesseareee s ssaraeeesanes 107

1.3, SAM MOAEL ..ttt et sbb e e sbe e e abe e s abeesneeesbeeenes 110

2. Database model for SAM 100D uuviiiiiiiieiiiiiisie e e e e 121
2.1. Relational Databases vs Graph Databasesccccccveeeeciiiieeciieee et 121

2.2. From relation to Graph Databases.........ccuevivciviiiiiiiiis e 122

2.3. SAM Graph PropoSitioNncccccuiieieciieeceieee et erte e e e e e stae e s esaae e e e are e e esaaaeeeas 125

V. Model ASSESSMENTS....cccceveiieriirreirersersie e 130
1. Platform Use Case [: PaaS - Cloud Foundryccccoooiriiiiiiininieeneeeeee, 132
1.1. Cloud- PaaS instantiation and USAgE CAPLUIe.......ccueeeeeciieeiiiieee et eceee e 132

1.2. How does Cloud FOUNAry WOTIK?ccccuiiiiiiiiie ettt eveee et e e siree e earne e 133

1.3, INSTANCES ..ottt e 134

R B U Y- (S oo =T o PPN 135

RS 1Y, [o 1= 1T o = USSR 137

2. Platform Use Case II: Network Function Virtualizationc..ccccevceenennnnne 157
2.1. Orchestration & Hypervisor in Operator’'s NetWOrk.......ccceeveevveeeiiiiieeesecieee e 157

2.2, CONTEXE CONCRINS..ciiiiiiiiiiiteiee ettt e e e s s r e e e e e s s s nrree e e e e s 162

P T UL =Ll ol] | F=Y o d o o TP USSP 165

D BV o Yo L] oY~ 165

L7 B 00} s Uod R0 63 T0) o SO 181
1. Reminding the ISSUEScciiiiiiiiiii s 181
2. Reminding the contributions ..o 182
3. FUITher WOTKS e 183
Referenced WOTKS ... 185

12

13

TABLE OF FIGURES

Figure 1. Enterprise Cloud services spending forecast 2016-21 ($bn)........... 29
Figure 2 - Proposition for a SAM maturity scaleccccvviniiniiiiincee, 43
Figure 3 - Study’s criteria Weight......ccoooiiiiiii e 48
Figure 4 - Aspera Evaluation SUmmarycccccoiiiniiiin e 51
Figure 5 - Aspera Evaluation detailed View.......c.ccooriiniiiiniincnce, 52
Figure 6 - Snow Software Evaluation SUummaryccccevinienirnenieneneseeseee 54
Figure 7 - Snow Software Evaluation detailed viewcccoceniiiiniiiiniiciinen, 55
Figure 8 - Flexera Evaluation SUmMmaryccccoceiiniinnn e 57
Figure 9. Flexera Evaluation Detailed VIieWcccocoiiiiiiiiiic e 58
Figure 10 - Spider Evaluation SUMMaATyccccviiiiiniininieeee e 59
Figure 11 - Spider Evaluation Detailed VieW.........ccoooiiiiiiiinineeeeeeeeeeee 60
Figure 12 - Eracent Evaluation SUMMAaAryc.cccoeeiiiininiininnine e 61
Figure 13 - Eracent Evaluation detailed VieWccoocoriiiiinninice e, 62
Figure 14 - HP Asset Manager Evaluation Summarycccccviiininiiniinicnenne, 63
Figure 15 - HP Asset Manager Evaluation detailed view......ccc.cccovoiniiiinninnnn. 64
Figure 16 - BMC Remedy Evaluation SUMmMAarycccoooerieinnniennee e 65
Figure 17 - BMC Remedy Evaluation detailed view ..o 66
Figure 18 - GLPI/OCSng Evaluation SUummarycccoccoevirieinenieesee e 67
Figure 19 - GLPI/OCSng Evaluation detailed Viewcccccovviiiiiniiiiniiccce, 68
Figure 20 - Features and limitations of most popular SAM tools.......ccceeuennen. 69
Figure 21 - Complexity factors brought about cloud architecture.................... 70
Figure 22 - Key operational processes in software PUR identification 87
Figure 23 - Recognition vs Identification.......cccoeieiiiiniiecneeee e 89
Figure 24 - SWID Tag lifecycle described in ISO 19770-2......ccccoiivviiiininnennn 93
Figure 25 - Analogy between PUR and railway......ccccooviiiiiniiiinceceeeeceee, 99
Figure 26 - Analogy between SKU and Juice Bottlescccoviviiiiiiiiiiiciinne 100
Figure 27 - Combination of SWID and SKUccccccooiiiiiriiiniiiecece e 101
Figure 28 - SWIDTag+ lifecycle with initial SWIDTag......ccccoeriirieiiinrieeieene 102
Figure 29 - SWIDTag+ lifecycle without initial SWIDTag.......ccccccevvrivreerinnnne 102
Figure 30 - Software identification lifecycle from provisioning to billing ...103
Figure 31 - Compliancy control 100pccccoveiiiiiiniiicee e 109
Figure 32 - Over-deployment control 100p ...cccceeieiiiiciiii e 109
Figure 33 - SAM lifeCyCle e e 110
Figure 34 - Software Lifecycle - Need & Purchasecccocevviiiniiiinicnicicne 113
Figure 35 - Software Lifecycle — DeliVery ... 113
Figure 36 - Software Lifecycle - Instantiation........ccccceceiiniiniincnnicnecsene 114
Figure 37 - Software Lifecycle — USageccoooeeieiriieiieeeeeeeeeeeeee e 115

Figure 38 - SAM general retroaction loop and controlcccceiiiriiiiiiinne 116

Figure 39 - Different measures of uses translated into licensing models.....120
Figure 40 - Example of junction table to match people and project............... 122
Figure 41 - Example of graph linking a person with projectsccccccoceevennnne 123
Figure 42 - Graph Databaseccccociiiiiiiiiii e 125
Figure 43 - SAM Graph Model ... 126
Figure 44 - Use case of Cloud APP ACCESS ..ooviriiriiririierie e 136
Figure 45 - Usage metering and aggregation for Cloud Foundryccceeue. 137
Figure 46 - Cloud Architecture Model.......cccocooiiiiiiniii e 138
Figure 47 - Product Catalog.....ccccovciiiiiiiiiiiiiii e 140
Figure 48 - Neo4] interface - Graph Step 1 ..o 141
Figure 49 - Neo4] interface - Graph Step 2 ..o 142
Figure 50 - Neo4] interface - Graph Step 3 ... 143
Figure 51 - Neo4] interface - Graph Step 4 ..o 144
Figure 52 - Neo4] interface - Graph Step 5 ..o 145
Figure 53 - Neo4] interface - Graph Step 6 ..cccoooeriieii i 147
Figure 54 - Neo4] interface - Graph Step 7 ...cccoviiiiiiiiin e 148
Figure 55 - Neo4] interface - Graph Step 8 ..o 149
Figure 56 - Neo4] interface - Query Bought ... 150
Figure 57 - Neo4] interface - Query InStance.......ccococvreeriniininnensesie e 151
Figure 58 - Neo4] interface - Query Compliancecccoccevirieenirnieenee e 151
Figure 59 - Popoto for graphic Neo4] interface.......cccccocvnniniininieninnecnenne 152
Figure 60 - cCSAM t00] FEatUres. ... 153
Figure 61 - Asynchronous feeding of graph for Software lifecycle................. 154
Figure 62- cSAM - Simulation on Oracle DB licensing.......cccccccvviiiriirennennne 156
Figure 63 - cSAM - Simulation on Oracle DB instance's resources 157
Figure 64 - HW and SW disconnection and separate lifecycle management 158
Figure 65 - NFV complexity factors for SAM ... 159
Figure 66 - License & metering server management model.........cccccerieennnne. 161
Figure 67 - NFV Cloud Orchestrationcccoeviiieiiiniiie e 163
Figure 68 - Blue Planet Ul ... 164
Figure 69 - NFV Architecture Model.......ccocoviriiiiiiiii e 167
Figure 70 - Product Catalog (2) «cooeeroerieeeeeeee e s 168
Figure 71 - Neo4] interface — Graph 2 Step 1 ... 169
Figure 72 - Neo4] interface — Graph 2 Step 2 ..cccoviiriirieninineeere e 170
Figure 73 - Neo4] interface — Graph 2 Step 3 ..o 172
Figure 74 - Neo4] interface — Graph 2 Step 4 ... 173
Figure 75 - Neo4] interface — Graph 2 Step 5. 174
Figure 76 - Neo4] interface — Graph 2 Step 6 ...cccceeeriiriiiiiineeee e 175
Figure 77 - Neo4] interface — Graph 2 Step 7 ..o 177

Figure 78 - cSAM - simulate metric changec.cccooriiiiinniie
Figure 79 - cSAM - simulate resource changeccccooiiiiiinicccne e

16

Tables

Table 1. Remarkable figures quoted from Flexera survey about Software

license audits iN 2014 ... e e e e e e e e e e e e e e e eaan e e e e enne e e e eenreeeeann 31
Table 2 - SAM Maturity [T@IMS ..cccceiiiiiiiciie e 45
Table 3 - Most used metrics and identified risks in cloud environments 80
Table 4 - Some ECA model rules ... 108

17

18

TERMS, DEFINITIONS AND ABBREVIATED TERMS

Bundle

Grouping of products which is the result of a marketing/licensing strategy to
sell entitlements to multiple products as one purchased item. A bundle can be
referred to as a “suite”, if the products are closely related and typically
integrated(such as an office suite containing a spreadsheet, word processor,
presentation and other related items). Bundles can also refer to software titles that
are less closely related such as a game, a virus scanner and a utility “bundled”
together with a new computer, or to groups of entitlements, such as multiple
entitlements for a backup software product. [SOURCE: ISO/IEC 19770 -5, 3.5]

Customer

Organization or person that receives a product or service. [SOURCE: ISO/IEC
19770-5, 3.10]

Downgrade right

Right granted to receive, install, and/or use an installation of a previous
version of software than the currently granted entitlement. [SOURCE: ISO/IEC
19770-5, 3.11]

Effector
An interface that enables state changes for a managed resource
End-user

Person or persons who will ultimately be using the system for its intended
purpose. [SOURCE: ISO/IEC 19770-5, 3.13]

Entitlement schema - Software entitlement schema - Ent

Information structure containing a digital encapsulation of a licensing
transaction and its associated entitlement information. A single transaction does
not necessarily encapsulate a full (or effective) entitlement. An effective
entitlement may need to be determined by an analysis of multiple licensing
transactions, of a full license and then of upgrades and/or maintenance
transactions assessed together with it. [SOURCE: ISO/IEC 19770 - 3]

19

Ent library - Service library

Construct which holds data about multiple Ents. The Ent library is typically a
database, but could also be a file or other data storage mechanism. [SOURCE:
ISO/IEC 19770-3]

Extensible markup language - XML

License-free and platform-independent markup language that carries rules
for generating text formats that contain structured data. [SOURCE: W3C
Recommendation Extensible Markup Language (XML) 1,1 (Second Edition), 1,2]

IT Asset Management

All the physical, logical, and virtual system platform, operating system, and
software configuration information required for life cycle management of IT Assets.
Asset Management systems compile accurate data about the IT environment,
including the supporting resources (people, applications, infrastructure and
information) and dependent services. Asset Management tracks and integrates the
physical, logical, and virtual location of IT Service Assets with key financial
properties. This collection of systems is focused on establishing a framework for
managing service assets in an operational context. [SOURCE: Laura Knapp, IBM
Services Management, The IBM® Software Group Strategy NoteBooks, 2008
http://w3-103.ibm.com/software/xl/portal/viewcontent?
type=doc&srcID=XT&docID=L107895Y49377G53]

License model

Class of licenses with common characteristics. [SOURCE: ISO/IEC 19770-5]
Limit

Restriction on rights or privileges granted by a software entitlement
Original equipment manufacturer license

Oem license

License for products or components that are created or manufactured by one
company and licensed by another company

20

Perpetual license

License for a software entitlement granted in perpetuity. The alternative to a
perpetual license is a term or subscription-based license.

Software entitlement reconciliation

Process of comparing software entitlements owned with those required
(granted and deployed), usually to determine compliance with software license
agreements release collection of one or more new or changed configuration items
deployed into the live environment as a result of one or more changes. [SOURCE:
ISO/IEC 19770-5, 3.28]

Right
Privilege or benefit granted by a software entitlement
SAM practitioner

Individual involved in the practice or role of managing software assets. A
SAM practitioner is often involved in the collection or reconciliation of software
inventory and/or software entitlements.[SOURCE: ISO/IEC 19770-5, 3.31]

SAM tool

Software used to assist in and automate parts of the process of management
of software assets

Sensor

An interface that exposes information about the state and state transitions of
a managed resource.

Software

All or part of the programs, procedures, rules, and associated documentation
of an information processing system. There are multiple definitions of software in
use. For the purpose of this part of ISO/IEC 19770, it is typically important to
include both executable and non-executable software, such as fonts, graphics, audio
and video recordings, templates, dictionaries, documents and information
structures, such as database records. [SOURCE: ISO/IEC 24765:2010, 3.34]

Software Asset Management

21

SAM

control and protection of software and related assets within an organization,
and control and protection of information about related assets which are needed in
order to control and protect software assets. For reference, a corresponding
industry definition is “all of the infrastructure and processes necessary for the
effective management, control and protection of the software assets within an
organization, throughout all stages of their lifecycle”. [SOURCE: ISO/IEC 19770-5,
3.35]

Software License Optimization
SLO

All actions enabling organizations to gain visibility and control of IT assets,
reduce ongoing software costs, and maintain continuous license compliance.

Software creator

Person or organization that creates a software product or package. This
entity might or might not own the rights to sell or distribute the software.
[SOURCE: ISO/IEC 19770-5, 3.38]

Software entitlement
Entitlement

Software license use rights as defined through agreements between a
software licensor and a software consumer. Effective use rights take into account
any contracts and all applicable licenses, including full licenses, upgrade licenses
and maintenance agreements. [SOURCE: ISO/IEC 19770-5, 3.39]

Software identification tag
SWID tag
SWID

Set of structured data elements containing authoritative identification
information about a software configuration item. [SOURCE: ISO/IEC 19770-2, 3.40]

22

Software license

Legal rights to use software in accordance with terms and conditions
specified by the software licensor. “Using a software product” can include:
accessing, copying, distributing, installing and executing the software product,
depending on the license’s terms and conditions. [SOURCE: ISO/IEC 19770-5, 3.41]

Software maintenance

Entitlement of additional rights (such as additional functionality, upgrade or
support) for a previously granted software entitlement

Software package

Complete and documented set of software supplied for a specific application
or function. In the iso/iec 19770 family of standards, the term software package
refers to the set of files associated with a specific set of business functionality that
can be installed on a computing device and has a set of specific licensing
requirements. In the iso/iec 19770 family of standards, the terms “product” and
“software package” are used synonymously depending on the context of the item
described.

Software product

Complete set of software designed for delivery to a software consumer or
end-user that may contain computer programs, procedures and associated
documentation and data. In the ISO/IEC 19770 family of standards, the terms
“software product” and “software package” are used interchangeably depending on
the context of the item described. [SOURCE: ISO/IEC 19770-5, 3.46]

Stock keeping unit
SKU

Identification, usually alphanumeric, of a particular product that allows it to
be tracked for inventory and software entitlement purposes. The term “stock
keeping unit” is traditionally associated with physical goods. In the sense of
licenses it refers to a unique identifier, sometimes also called “part number”. The
term “stock keeping unit” is typically associated with unique products for sales
purposes, such as software entitlements. It may not correspond uniquely to specific
software products, but may instead represent packages of software, and/or specific
terms and conditions related to software products, such as whether it relates to a

23

full product, upgrade product, or maintenance on an existing product. [SOURCE:
ISO/IEC 19770-1, 3.48]

Subscription-based license
Term-based license
Service-based license

License for an entitlement that is for a limited amount of time. This type of
license shall be renewed to remain in force. Specifically it is not a perpetual license.

24

25

Chapter 1

I. INTRODUCTION

INErOAUCTION e 26
1. Cloud cOMPULING OVEIVIEW....eiiiiiiiiiiiieiie st s 27
2. Software financial issues: Audits And wastes on the rise.......c.cccoevcvnennn. 29
3. The necessary emergence of Software Asset Managementcccccceeene 31
4. New factors affecting software and SAM new paradigm........cccccevvvrieennen. 33
5. Contributions and folloWINGSccccviiiiiiiiniciee e 34

26

loud computing is on the rise as Software market struggle. Pricing and

licensing systems become more and more complex and less and less
understandable for the clients. To face market’s growth stabilization, editors need
to find new sources of income. The current economic climate underlines this
particularly burning issue, as each non-compliance situation is heavily penalized in
financial aspects. Therefore, we are seeing a rise of software compliance audits
along with creation of dedicated unit showing their growing importance for some
editors.

1. CLouD COMPUTING OVERVIEW

Cloud computing is an information technology (IT) paradigm, a model for
enabling ubiquitous access to shared pools of configurable resources. These
resources can be rapidly provisioned with minimal management effort, often over
the Internet. Computing relies on sharing of resources to achieve coherence and
economy of scale.

Cloud computing comes in three forms: public clouds, private clouds, and
hybrids clouds.

e Public clouds are based on shared physical hardware, owned and
operated by a third-party provider. The main benefits of the public
cloud encompass the speed of IT resources deployment and the alleged
ability to pay only of the resources you use. The sheer size of public
clouds allows scaling compute power up and down as business
demands, within a matter of minutes.

e Private clouds are infrastructures dedicated entirely to their owner’s
business. They are hosted either on-site or in a service provider’s data
center. The private cloud delivers all the agility, scalability and
efficiency of the public cloud, but also provides greater levels of
control and security. A major benefit of private cloud is the ability to
customize it components to best suit any specific IT requirements
(something that cannot be achieved so easily in the public cloud
environment).

e Hybrid clouds allow combining public cloud with private cloud or
dedicated hosting and leverage the best of what each has to offer. For
example, to use the public cloud for non-sensitive operations, the
private cloud for business-critical operations, and incorporate any

27

existing dedicated resources to achieve a highly flexible, highly agile
and highly cost-effective solution.

The cloud computing paradigm proposes the on-demand usage of provided
and maintained resources on hardware and software level. The terms
Infrastructure, Platform and Software as a Service (IaaS, PaaS and SaaS) sort three
different service models and are widely used and commonly accepted in literature.
Theoretically, they characterize different layers of abstraction at which cloud
resources are offered at.

e JaaS is commonly perceived as providing resources on hardware level.

e PaaS allows tenants to deploy applications in a cloud environment.

e SaaS is the provisioning of whole applications as a resource.

The similarity between all cloud offerings is the provisioning of resources in
a flexible and abstracted way. Literature identifies three important types of
resource domains. Most prominent, computational resources allow the deployment,
execution and use of software, it provide mechanisms to run applications. Besides,
cloud systems may provide storage (offer a way to store data persistently) and
network services (comprise any mechanism used to communicate between (virtual)
machines, applications and users) usable either stand-alone or in conjunction with
computational resources.

Cloud computing is increasingly being adopted by enterprises. According to
Ovuml, enterprise cloud services spending will grow at a CAGR? of 17.5% during
the 2016-21 forecast periods3 (See Fig 1). Within enterprise cloud, the SaaS market
will remain dominant even in 2021, accounting for $97bn in global spend (a bit
more than half the market). Platform-as-a-service (PaaS) will be the fastest-
growing service line, with a CAGR of 29.6%.

1 Ovum is a market-leading research and consulting business focused on helping digital
service providers and their vendor partners thrive in the connected digital economy.

2 Compound annual growth rate (CAGR) is the mean annual growth rate of an investment
over a specified period of time longer than one year.

3 Ovum Research, Demystifying Accounting for Software Expenses, 2017, Publication Date
26 Jun 2017, Product code: TE0006-001409, Analyst: Gaurav (Shukla, 2017) [1]

28

3250

5200

150 ¥ Paas

"laas

£100 5335
£50
50

2015 2016 2017 2018 2018 2020 2021

£
T
o

Enterprise cloud services spending
(Sbn)

Figure 1. Enterprise Cloud services spending forecast 2016-21 ($bn)

2. SOFTWARE FINANCIAL ISSUES: AUDITS AND WASTES ON THE RISE

“Software vendors smell money”. Thus concludes 2014 Flexera annual
survey#4, observing that 65% of the interviewed companies faced at least one
software license audit during the previous year. The number of companies paying
more than $1 million in audit "true up" costs more than doubled in twelve months.
Software audit in general are on the rise. More recently, in 2016, a BDNAS survey
reveals the same®: 61% of the company panel said that they experienced at least
one software license audit in the last 18 months which was close to analyst finding
of 68 percent’”. While frequency of license audits is constantly increasing, it
appears that software vendors are generating a significant new revenue stream in
the form of “true up” charges, paid out in addition to the original contract. They
represent the penalty costs imposed by software vendors, associated for the
unauthorized use of software, and have been known to impact companies with fines
in the millions.

4 Key Trends in Software Pricing & Licensing Survey - Software License Audits: Costs &
Risks to Enterprises, conducted by Flexera Software with input from IDC’s Software Pricing and
Licensing Research division

5 BDNA transforms enterprise asset data by enriching it with market context to vastly
simplify integrations, accelerate business transformation and improve decision-making.

6 BDNA Research, Does Software Asset Management really help the Software Audit
Dilemma, 2016, Published August 2204, 2016, Analyst: Cathy Won

7 Gartner Survey Analysis: Software Audits are on the rise and your Enterprise might be
Next, 2013 Published: 30 April 2013, ID: G00249225 Analyst: Jane B. Disbrow, L. Samolsky

29

Usually, during audit processes, the software vendor has embedded tools in
their system allowing getting an account of software used licenses. The challenge is
that if a company has no efficient software asset management program in place, the
reliance of the data reflecting software license usage remains on the vendor’s side.

While 85% of those BDNA respondents said they had an IT Asset
Management (ITAM) practice in their organization, the challenge was that only 17%
have ITAM tools (it includes both hardware and software asset management) in
place to actually manage compliance. Ironically, 56 % of Flexera survey’s panel said
they are using commercial automation software to track application software usage
along with license compliance. Nevertheless, 75% of companies surveyed said they
remained out of compliance with software contracts last year, suggesting that
current audit compliance software itself might be a waste of money. Hence, asset
management and cyber security are "converging." The survey found that 73 percent
of respondents monitor their systems mainly "to identify instances of unlicensed
and unauthorized software on the network for cyber security purposes”.

In (Table 1), we can see some remarkable figures quoted from Flexera survey
about Software license audits in 2014. Flexera said that its survey reflected 489
responses, including 33 percent from enterprises with revenues of $1 billion or
more. Fifty-six percent of respondents were based in the United States of America.

30

https://www.bdna.com/use-cases/it-asset-management/
https://www.bdna.com/use-cases/it-asset-management/

|II

85 Percentage of organizations that are “accidental” software pirates

% — using more software than they have paid for

63 Percentage of organization audited by their software vendors in the
% last 18 months

34 Percentage of large enterprises ($3B+) audited three times or more
% in the last 18 months

21 Percentage of organizations that said they were charged $1 million
% or more this past year for software true ups

58 Percentage of enterprises that have been audited in the last year
% say they have been audited by Microsoft, the most frequently cited vendor

doing audits

64 Percentage of organizations that are not using automated,

% commercial software to manage their software licenses

Percentage of organization managing their software license

6% - .
manually that are satisfied with the results

Table 1. Remarkable figures quoted from Flexera survey about Software license audits in
2014

“The paradox of shelfware”. When company software budgets are getting
tight, it appears that many companies are wasting money on software: Flexera
survey, emphasized by Gartner in 20168, showed that 93 % of surveyed companies
are spending overwhelming amount of money on unused or underused application
software, otherwise known as "shelfware". A recent InfoWorld article® stated that
28% of software deployed in an enterprise is unused or rarely used, and accounts
for almost $7 billion of unused software worldwide.

3. THE NECESSARY EMERGENCE OF SOFTWARE ASSET MANAGEMENT

The rise of shelfware and the growing number of license audits by
commercial software vendors are together raising awareness of the software
license risks (counterfeiting like waste). Software Asset Management (SAM)
enables tracking software uses with the finest possible granularity. The aim is to
constantly reconcile the real uses with the usage rights acquired from software
providers in order to optimize and control the risks of non-compliance (i.e.,
counterfeiting).

8 Gartner Inc. Metrics and Planning Assumptions Required to Drive Business Unit IT
Strategies. April, 21st, 2016. Analyst(s): Kurt Potter | Stewart Buchanan

9 InfoWorld, Software audits: How high tech plays hardball, April, 25t, 2016,
article/3060596, by Dan Tynan.

31

‘Software Asset Management (SAM) is all of the
infrastructure and processes necessary for the effective
management, control, and protection of the software assets

within an organization throughout all stages of their lifecycle’
(ITIL, 2011)10

As mentioned above, the global responsibilities of SAM are to ensure the
accurate management of software assets throughout their lifecycle: from the
moment it is requested, through procurement, deployment, potential recycling and
finally retirement. Along with the software itself, SAM is also responsible for the
license that comes with it, ensuring all users are using the software within the
product use rights (PUR) and also ensuring that the organization keeps the highest
standards of compliancy. Recent emergence of SAM in many companies is
principally justified by two driving forces: to lower costs and to handle risks. The
first is about overbuying, often seen to mitigate the risks of being out of
compliance. The second is under buying: it deals with counterfeiting as soon as
companies used more software than anticipated or not according to contractual
clauses. This last, sometimes called “accidental piracy” is mainly due to difficulties
to rightsize the software environments mainly because of the growing licensing
complexity.

Moving to the cloud is a new challenge for the SAM; it represents another
source of complexity and put companies in a position of using more software that
they entitled to. When contracts and entitlements were based on traditional
architecture models, the issue is to transfer and use the license legacy in cloud
environments and slow down the incremental increase in audits for that reason. We
stress the fact that editors have a right to be paid for the software their customers
are consuming. The best SAM defense should be a good offense: being able to take
proactive stance with a defensible audit position. SAM challenge is to eliminate the
reliance on software editors for software license usage by having their own account

10 Formally an acronym for Information Technology Infrastructure Library, ITIL is a set of
detailed practices for IT service management (ITSM) that focuses on aligning IT services with the
needs of business. ITIL advocates that IT services are aligned to the needs of the business and
support its core processes. It provides guidance to organizations and individuals on how to use IT
as a tool to facilitate business change, transformation and growth. ITIL is mapped in ISO 20000
Part 11. This recognizes the way that ITIL can be used in to meet the requirements set out for ISO
20000 certification and the interdependent nature with ITIL. This is the first such mapping that
ISO (the International Organization for Standardization) has allowed to be part of their standards

32

of their software usage and licenses in order to minimize overspending on unused
software licenses.

4. NEW FACTORS AFFECTING SOFTWARE AND SAM NEW PARADIGM

In this document, we consider SAM processes in the context of emerging
technologies, namely virtualization and Cloud environments. This change from
traditional architectures to cloud environments, virtualized to the extreme, is still a
virgin territory. Cloud environments add many degrees of complexity!l. Among
others, tracking software becomes more challenging because installation is
disconnected from true physical infrastructure. Altogether, the complexity of
software lifecycle management, the multiplication of actors in this cycle and the
lack of efficient tools, lead to an understandable disconnection between software
usages, associated hardware and the related licensing model. Also, because cloud
environments tend to automate software lifecycle management, SAM processes are
expected to be automated as well. On the contrary, automation is currently
circumscribed to asset management in traditional architecture.

Going further, in cloud environments, SAM is not only assets management,
but also service management, which must be done in real time taking into account
the fast rhythm of changes: services are provisioned, configured, reconfigured and
decommissioned in a matter of minutes. Compliance risks are increased by the ease
and speed of provisioning, which can bypass traditional centralized processes. In
such conditions, SAM controls are difficult to implement. The idea that will be
developed is that turning to the Cloud is not changing the object of SAM, but
altering how SAM processes should be designed.

Some techno-economic drivers are converging to create a paradigm change in
the design and operation of future telecommunications networks and services.
These drivers encompass progress in Information Technologies (IT), pervasive
diffusion of ultra-broadband access, commoditization and falling costs of hardware,
and the maturity of virtualization techniques. Network Function Virtualization
(NFV) is a concept pushed by the industry to virtualize network equipment using
generic-built hardware platforms, in order to reduce costs and increase network

11 M. McRoberts, Software Licensing in the Cloud Age : soling the Impact of Cloud
Computing on Software Licensing Models, The International Journal of Soft Computing and
Software Engineering [JSCSE], Vol. 3, No. 3, , San Francisco State University, CA, U.S.A., March
2013Doi: 10.7321/jscse.v3.n3.60e-ISSN: 2251-7545

33

operation and performance efficiency/agility. The NFV concept separates network
functions from the hardware they run on using virtual hardware abstraction, and
attempts to virtualize entire classes of network node functions into building blocks
that may be connected or chained together to create communication services. Alike,
“Softwarization” is an overall techno-economic transformation impacting the
design, implementation, deployment and operations of infrastructures, deeply
integrating network nodes and IT systems. For both network functions and
services, flexibility and agility of software is highlighted. This transformation
enables new architectural models along with an automation of operational
processes. All these considerations force us to question a new dimension of
network management: as software becomes omnipresent, we assume that software
license’s management in real-time and on large-scale cloud environment will
sophisticate Virtualized Network Function (VNF, or Network Software) on-boarding
processes. Network virtualization and softwarization lead to a disruption in terms
of software licensing business model; thereby, we develop here the necessity to
adopt existing and relevant software license optimization IT process. We do believe
that this experience and expertise acquired from IT will facilitate this NFV turn. In
other words Software Asset Management (SAM) should play a major role in defining
best practices the network industry could follow.

5. CONTRIBUTIONS AND FOLLOWINGS

The following contributions are spread through three years collaboration
with Orange SA, an international telecommunication company. Thereby, the
industrial input address the possibility for Orange to propose new licensing model
designed for it cloud and virtualized network architectures through the
development of a prototype “cSAM”: a solution to analyze the real and dynamic
usages of software resources in the cloud. The aim is to ensure compliance, to
determine real costs for users, to optimize the deployment of licenses based on
predefined and adjustable scenario and finally to strengthen Orange position facing
editors including the creation of a software user open-community. cSAM value-
added is to integrate cloud dynamicity issues, to be flexible and multi-domains, to
integrate new and complex metrics (business models) and to propose innovative
simulation functions to allow better uses and deployment controls.

Thereby, we propose (i) a SAM maturity scale, (ii) an architecture for SAM in
the cloud, (iii) the related SAM management workflow, (iv) some major
implementation choices and (v) their evaluation; furthermore we question (vi) the

34

emerging contractual relation trends between service providers and software
editors; (vii) we argue that SAM is necessary in NFV environments and (viii) we
propose a SAM prerequisite approach for NFV environments.

The remaining of this dissertation is organized as follows: we propose in
section 2 an evaluation of the academic state of the art, an evaluation grid and
practical application on the SAM tools proposed by the market. Section 3 proposes
requirements for accurate SAM identification, management flow in cloud
environment and workaround propositions for its implementation. Section 4
proposes a SAM model for the cloud based on SAM processes control loop and
lifecycle identification and a database model for SAM loop. Section 5 proposes a
qualitative evaluation of our works based on model assessments for two use-cases:
on a PaaS layer and on a Network Function Virtualization (NFV) platform. We
conclude in Section 6.

35

36

Chapter 2

II. STATE OF THE ART

State Of the art... 37
1. Academic State Of The ATt .o e 38
A. Theoretical works about SAM and its implementation limitscoeneenreeseerseeennes 38

01. SAM organizational implementation’s limitscccceoeniinninnnience e 40

02. SAM technical implementation’s limitscccevviiiniinieseseee e 40

B. Nowadays context justifies emergence of SAM in the literature.........occoueeneeeneeneens 41

C. Synthesis: SAM MAtUTItY SCALEcoveereeereerreerreesees s seesseesss s sssessseees 42

2. Industrial State of The Art.... s 44
AL REQUITEIMENTS ... rvecerircrceer e sessse s sss s s s e ssnees 44

B. EVAlUALION GBI ..ottt sessse e s s s 44

C. Choice Of SAM MarKet tOO0IS....oucreneureeeresreensesssisesssessssssssssssssssssssssessssssssssssssssssssessssssssssssssns 49

D. Results of the eValUation ...t sssssssssss s sssssssssssssssns 49

01. Aspera Software Smart TracK ... 49

02. Snow License Manager 8.......cccoiiiiiiiiiiie e 53

03. Flexera FIeXNet Managercccoceieriereeree e et s e 56

O Y o) U 1= PP PR PP 59

0T 2 o= Tol =3 o L PSPPI 61

06. HP ASSEt Managerceeiiiiiiieiiee sttt 63

07. BMC REMEAY ceiieieei ettt s s 65

L0 0) = B O L O o ¥ = PP PPPRR 67

E. Synthesis on Industrial State of the Art...... e 69

3. SYNENESIS ittt 70

We propose to classify this chapter in (1) an academic state of the art
and (2) an industrial state of the art mostly based on market tool
analysis. (3) We propose as a synthesis a SAM maturity scale and analysis of SAM
complexity factors brought by cloud architectures.

1. ACADEMIC STATE OF THE ART

We can underline the low amount of academic publications dealing with
Software Asset Management comparing to the last decade proliferation of industrial
white papers and analyst’s recommendations. Yet, in the last few years, the slowly
growing amount of patents related with license management solutions point out the
receptiveness and permeability of this industrial concern about SAM. Moreover,
more and more every day, Software is considered as a consumable no more only
like an asset; resource consumption especially in virtualization context is a
booming concern in the scientific literature.

1.1. THEORETICAL WORKS ABOUT SAM AND ITS IMPLEMENTATION LIMITS

The idea spread that Software asset management is crucial to the success of
any IT organization. When a company has a comprehensive and efficient license
management program in place, it reduces costs and ensures that the organization
remains in compliance.

(N.F. Holsing, 1999) [2] proposed a software asset probation model and
identification of five problem areas which drive the need for software management:
ethical (intellectual property rights’ respect), legal (counterfeiting), technical
(monitoring), managerial and economic issues (true-up costs), when identified,
lead implementation of SAM within an organization, from different parties’
viewpoints: end-user, employer and software editor. The authors developed the
idea that the main goal of SAM is to ensure the software license compliance through
employee education which provides the groundwork for legal and cost effective
uses of software.

(M. Ben-Menachem, 2004) [3] introduced the “paradigm of change” based on
methods, tools and procedure for an accurate overall IT inventory management. For
them, one of the most significant failures of IT is the lack of systems to gather,
support, and supply information for managing software items. Most IT

38

professionals, if they consider software management, think in terms of version or
configuration control license and patch management. Version control systems and
software configuration management systems aim to manage versions of individual
software objects with support for linking into sets for release purposes. This has
nothing to do with addressing the issues of controlling large amounts of
geographically disbursed software, executing on different kinds of systems,
maintained by hundreds to thousands of programmers. For the authors, software
systems are the only major organizational asset with no real support for managing
them based on information technology. An appropriate IT inventory management
facility is the cornerstone of an integrated set of technologies (“Paradigm of
change”) designed to address constantly changing technologies and business
processes. Thereby, they underlined that investment in creation and maintenance
of dedicated software inventory is sine qua non prerequisite to proper long-term
software asset management. (M. Ben-Menachem, 2005) Erreur ! Source du renvoi
introuvable.[4] defined in addition a methodology software control by importance
and exception.

(M.McCarthy, 2011) [5] proposed a solution in four points to combined IT,
processes and business in SAM perspectives:

e Discover Software Assets
o Agents scan/discover distributed software license assets
o Software licenses are linked to employee & workstation
o Scan data populates asset database as discovered inventory
o Provides base line for audit compliance reporting
Reconcile Purchased Assets
o Reconcile software procurement inventory

o Life cycle management of purchased 3rd party software licenses
o Sustained asset reconciliation and compliance
o Leverage global purchasing power

Implement Contract Management
o Compliance with License Terms & Condition
o Enables reuse of licenses through off-loading (attrition,
allocation, entitlement)
o Enables governance and process automation

Produce Business Intelligence Reporting
o Audit readiness and compliance
o Analyze, track, & forecast global IT software spend
o Executive and management reports proactively target audit
compliance risks

39

Result of the experience showed that the solution's out-of-the-box
capabilities, comprehensive analytics, workflow automation and business controls
features immediately improved time-to-value, helping their organization realize
more than US$5 million in savings in the first year of deployment. It represents the
foundations of the SAM which was defined officially the same year by ITIL showing
the industry/literature concordance.

a. SAM organizational implementation’s limits

In the 2000s, when industrial concerns emerged about the necessity to
monitor software usage, the literature started addressing this topic by way of limits
in Software Asset Management. In order to explain the difficulty of setting up SAM
processes in medium-large organizations.

First limitation is about vague software lifecycle. Software is an intangible
asset, distributed as equally immaterial license, negotiated by buyers on the base of
contracts approved by layers, for dedicated purpose of a team usage, installed by
exploitation teams. (M.Sharifi, 2009) [6] explained that organizations are under the
pressures of managing software systems which are bigger and more complex than
those from past years, but also need to meet increasing demands for higher quality
to meet organization's objectives. One important problem is that most
organizations do not know how much software is running in their organizations.
The problem is increased by the fact that software is not visible and has a tendency
to live forever.

Literature also describes how vague software lifecycle leads to hazy
responsibilities. This is mainly explained by the lack of communication between
lifecycle stakeholders. (M.Benachem, 2008) [7] showed that IT department’s
inability to document and justify their expenses prevent CFOs and CEOs SAM
initiatives. He underlined basic issue of information transferability and lack of
interdepartmental data sharing.

b. SAM technical implementation’s limits

The second main limitation is about tracking software: a common mistake is
to underestimate the process of identifying software. The comparison between
contractual, installation and usage data is laborious due to their heterogeneity. The
lack of efficient tool (called “Excel sheet management”) was pointed by many
authors as a main challenge for the SAM: (Klint and Verhoel, 2002) [8] shown that
lack of inventory information blind organizations in terms of total IT spends.

(Ben Menachem, 2004) pointed the fact that major organizations have very
primitive or out of date assets inventory or central repository.

40

(McCarthy and Herger, 2010) [9] identified that the lack of tools to measure
and monitor usage and availability of software licenses make difficult to measure
software asset uses, creating compliance issues.

1.2. NOWADAYS CONTEXT JUSTIFIES EMERGENCE OF SAM IN THE LITERATURE

(A.Manzalini, 2015)[10] stated that Network Function Virtualization (NFV)
principles are going to impact not only the evolution of current networks, but also
the services and applications platforms. He argued that, in this evolution, the
border between the networks and the Cloud-Edge Computing platforms will
gradually disappear. As well the distinction between the networks and the future
“terminals” (i.e., devices, smart objects, drones, and robot) will blur.

(C.Matsumoto, 2014)[11] The promise of NFV is to move network functions
out of specialized appliances onto off-the-shelf servers. The objective is both to
save money and to gain regarding the time factor. The normal process of installing
new gear for new services can take weeks. (R. Jones, 2016)[12] promising agility
and flexibility, some network software vendors say NFV can shrink that process
down to minutes. Many challenges are involved in deploying and operating a cloud-
based NFV platform. (L.M.Contreras, 2015)[13] Virtualization and dynamic “on-
demand” services bring new challenges for traditional network ecosystems which
were used to have license keys to enforce entitlement. In NFV or other virtualized
environments, virtualization facilitates “copy/ distribute/run” application and
software. VNFs have a passing lifecycle, are not typically locked to a physical host.
Having available licenses key at the right time and place drives administrative costs
for a global distributed cloud system, such as a NFV infrastructure (M. Adler,
2014)[14].

Cloud computing is revolutionizing the way organizations pay for and use
their IT resources.(M.McRoberts, 2013)[15] has shown that while cloud computing
has the potential to simplify the licensing and use of software, it has, in fact, only
added to the problem. For commercial software vendors to successfully move into
the cloud age, they must work as a group with cloud providers to standardize
licensing in the cloud. Standards-developing organizations should govern the
activity. A successful solution must address legal and financial concerns, as well a
technical aspects of software licensing in the cloud.

As well, regarding NFV, software vendors have relationships with service
providers, who, in the long run, need to integrate with a vendor NFV platform. By
convention, VNF vendors have been selling their VNF products directly to service
providers. For the latter, there is a need for homemade or third-party integration
and bundling of VNF products together to reduce operational expenses and/or
engineering expenses. For some it would be advantageous to have a pluggable

41

framework for a cloud-based NFV system that allowed integration of VNF products
to provide a diverse catalog of VNF services in an integrated manner. As an example
(R. Jones, 2016)proposes a dynamic licensing method, implemented in an
integrated system, including a third-party application; an exchange of
private/public keys transiting through the integrated system validates the validity
of the application’s license key, determining whether to run the application.

1.3. SYNTHESIS: SAM MATURITY SCALE

SAM enables tracking software uses with the finest possible granularity. The
aim is to constantly reconcile the real uses with the usage rights acquired from
software providers in order to optimize and control the risks of non-compliance
(i.e., counterfeiting). Cloud environments add many degrees of complexity. Among
others, tracking software becomes more challenging because installation is
disconnected from true physical infrastructure. Altogether, the complexity of
software lifecycle management, the multiplication of actors in this cycle and the
lack of efficient tools, lead to an understandable disconnection between software
usages, associated hardware and the related licensing model. Also, because cloud
environments tend to automate software lifecycle management, SAM processes are
expected to be integrated and automated as well. On the contrary, automation is
currently circumscribed to asset management in traditional architecture. Going
further, in virtualized environments, SAM is not only assets management, but also
service management, which must be done in real time taking into account the fast
rhythm of changes: services are provisioned, configured, reconfigured and
terminated, retired in a matter of minutes. Compliance risks are increased by the
ease and speed of provisioning, which can bypass traditional centralized processes.
In such conditions, SAM controls are challenging to implement.

Based on the currents, we propose in Fig. 2, our evaluation of SAM maturity
on two axes. This scale allows focusing on SAM processes adding a “cloud ready”
dimension. Four levels can be defined on a vertical axis about SAM maturity. Each
level has to be supported by tools to perform efficient actions.

42

4 OPTIMIZATION What actions to take ? REAL TIME

RISK MANAGEMENT What degree of compliance ? COMPLEXITY
IDENTIFICATION What deg f VOLUME
1 VISIBILITY What are my resources and assets ? VOLUME

& &

Figure 2 - Proposition for a SAM maturity scale

The first is entitled VISIBILITY: it consists in a precise resource and asset
identification. In other words it consist in recognizing each device, with its physical
features; to identify lifecycle of virtual machines and resources allocated to it and
to discover all software which are installed on any physical or virtual devices.

The second level: IDENTIFICATION consists in translating all software
installation in terms of related licenses and products user rights. It can be
identifying a product as a trial version or circumscribed to a particular scope;
diagnose that it belong to a software suite or that it is an option which use is
conditioned by the use of the basic product. it is also identification of all usages, to
be able to discover and translate in terms of usage rights, all possible access to a
software.

The third level, RISK MANAGEMENT consists in reconciliation of data from
contracts (which specifies product usage rights), from installations (technical view)
and from real usages. Mainly, the aim is to prevent two different risks: the first one
is a legal one, piracy: you are using software without license or with wrong way of
licensing (accidental piracy, often due to the complexity of licensing models today).
The second is a financial risk, over-deployment: you are not using licensed
software, or your license is covering more usage rights than needed.

The fourth level is OPTIMIZATION: when you have an accurate view of your
usages and assets, you have to identify all possibility to improve both your license
spends and architecture of your installations.

43

The fact is that all this four levels do not have the same maturity. A lot of
tools are really efficient in terms of discovery of assets on equipped resources.
More problematic is the second level, especially because matching between
information from contracts, usages and technical view from first level is, at least,
not easy. In this situation, despite numerous tools of risk management, treatments
are approximate and optimization cannot be automatized.

2. INDUSTRIAL STATE OF THE ART

2.1. REQUIREMENTS

As a SAM we need to know, in real time, the status of the license stocks:
therefore as close as possible to the real time, we need to confront the software use
with the license stock according to a measure of consumption previously defined
(called metric). It implies that we can precisely identify the allocated resource
chain (through each layer of virtualization) and obtain the features needed to
measure usage and lifecycle software specifications on machines. We have to
integrate constraints imposed by the nature of the product or its uses (i.e. options,
technology stack: a combination of software products and programming languages
used to create an application). These constraints may involve links between
products. We must identify situation of multiple access and translate it in terms of
use (Bring your own device (BYOD), multiplexing, multidevice ...). We must be able
to anticipate organization needs as close as possible to real time: to create and
realize different scenarios based on the evolution of the consumption (including
automated process of adjustment); to create cost models for any measure of use
and identify the most suitable scenario of consumption for the customer’s billing.

Regularly, the tool must be able to prove its relevance especially with
reliable, accurate and auditable historic of established uses. We must monitor and
follow update of any product to detect and monitor related services (i.e., case of
maintenance). All information collected and analyzed should help to propose
legally, financially and technically acceptable models.

2.2. EVALUATION GRID

Software Asset Management processes like decision making about purchase,
management or elimination of software, have to be support by tools (for each four
levels described above). (M. Thompson, 2017) [16] comparing existing SAM tools is
challenging for the following reasons (among others):

44

[t is easy to notice the exuberant marketing made by publishers about
features that appears similar between existing tools and the lack of model to
classify them. The scope is also absolutely not defined between traditional
architecture and cloud environment, as if the way to manage software assets in
both environment was similar. The proliferation of tools is also due to
multiplication of actions to manage (as explained in the four levels scale above).
For example: management tools often perform discovery activities and inventory,
but they rarely gather sufficient details on the software inventory to allow decision
making, or compare inventory data to the product use rights acquired in the
contracts.

Based on the SAM maturity scale presented in synthesis (1.C), we can
propose a tool classification grid to evaluate performance of common tools
proposed by the market (open-source & proprietary software). As the SAM maturity
scale can be read on two axis (vertical for activities, horizontal for
traditional/cloud architecture), this grid should be read on the two same axis. It is
organized in 6 + 1 items (Tab.2)

VISIBILITY

IDENTIFICATION

RISK MANAGEMENT

OPTIMIZATION

DECISION MAKING

CONTINIOUS IMPROVEMENT

(COST)

Table 2 - SAM Maturity Items

Below, we provide a high level summary of the six major areas (in annexes,
the full grid used for the evaluation).

e Visibility: We want to check if the technology can track and manage
infrastructure up to the existence and usage of virtual platforms,
virtual operating systems or web based applications (each
virtualization layers). If the tool can tell where the virtual machines
are and how they relate it to users, locations and physical machines?

o Items:

45

* Identifying (and maintain list of) all assets
» Scope of identification
* Communication with assets
» Take organization into account
» Level of virtualization
* Dynamic partitioning
= Environment
o Our observations: Cloud and mobile discovery starts to emerge.
But accuracy of data is still a weak point.

o Identification: We want to check that the tool can recognize software
titles from raw technical data; identify all usages in the finest
granularity (disconnection from contract’s metric); identify the
product use rights for all software, manage entitlement statements
from software publishers and integrate with procurement systems.
Manage complex license types and bespoke negotiated clauses.

o Items:
= Recognition of software license needs
= Inter-software products links
» Additional elements rise
» Prioritization of products
» Identification of software uses
*» Which level of automatization
* How to reconcile product and rights
» How to reconcile real usages and metric
= Database access
» (Contracts management
o Our observations: Identification of a licensable status is a core
competence for modern tools, but still fragile because
conditioned by fragile processes of recognition. Accuracy of the
data is a critical issue, not solved for the moment, especially in
Cloud environment.

e Risk Management: What intelligence is provided to software asset
manager to assess that they are in compliance position, giving
possibility to re-negotiate contracts and remove risk?

o Items:
» Compliance verification
* Confidentiality of data
= Auto-Allocation of license

46

= Alerts
» Safety and permanence of data
o Our observation: Compliance statements are promised by major
part of tools. Of course, result is conditioned by accuracy of data
brought by inventory process

Optimization: Reporting on what applications are not being used,
identifying opportunities to renegotiate metric more fitted to real
usages. ldentifying suite or functional overlap, suggesting open-
sources or cheaper alternatives make smarter decisions on
maintenance or renewals subscription, benchmarking spends and
usages.
o Items:
» Usage measurement and interface with inventory
= Corrective action
» Maladjusted usage detection
= Portfolios consolidation
= Maintenance contract optimization
= Architecture optimization
o Our observations: Software usage is common among those SAM
that offer inventory but software optimization is under used.
There is significant further opportunity to optimize using
simulations features.

Decision making: Being proactive stakeholder in all actions and
processes which can have impact(s) on software lifecycle. Service
request automation, catalogues, automated processes, ITSM lifecycle
integrations, scenario modelling, advanced reporting, internal markets.

o Items:

= Scenario studies

» Helping IT to make decision

= Helping Buyers to make decision

= Help-Desk leverage

*» Helping Audit process (User/device advisor)

o Our observations: Anticipating and helping SAM to react on
changes should be enhanced by tools. Still need to be
implemented. Some theoretical works on it for traditional SAM,
nothing about cloud environments.

47

e Continuous Improvement: How the system can enrich the all
processes and how the system can be easily enriched? What is the level
of technical expertise needed to access this solution? - What will be
TCO of this solution?

o Items:

Processes reliability

Concepts modularity

Initial cost
Modification/adaptation costs
Access to support

Technical debt

o Our observations: As more logical is the deployment of assets
offered by virtualized environment as better are be the
possibility to find optimization both in technical architecture
and in license spends.

Depending the context, the weight of these items in the evaluation of SAM
tool’s efficiency may change. Indeed, VISIBILITY, in traditional architecture is no
more an issue, because a lot of discovery tools are quite efficient in devices
detections. In cloud environment, it starts to be more difficult to have precise and
REAL TIME view of all resources. Moreover, disconnection between hardware and
software in the cloud makes more difficult this recognition and link between assets:
IDENTIFICATION remains crucial point, especially in terms of usages.

From this finding, with focus on cloud perspective, we can attribute
like shown in Fig.3, the following weight to each ITEM (cost excluded):

30 ~
25 A .
20 A
15 -
10 -+
3 !
0 i T T T T T
Q <
P
S ¢ © CAEO\E)
DN S
S ¥ & O &
L QB(’% O ()0]

Figure 3 - Study’s criteria weight

48

2.3. CHOICE OF SAM MARKET TOOLS

Our aim is to provide an independent review and comparison of the market
leaders, identify key competitive differentiators between tools and confront what
the market is heading with our requirements presented in 2.a. The evaluation is a
broad competitive comparison of market leading SAM tools for large companies.
The choice of the selected tools was based on several criteria, including the
opportunity to test it (i.e. for Aspera Smart Track and Flexera Flexnet Manager) or
to benefit from detailed feedback and own experimentations (i.e., internal
feedbacks in Orange for GLPI/OCS, BMC Remedy, Snow License Manager and HP
Asset Manager). We choose major SAM editor’s products and included a couple of
open-source products (GLPI - OCSng) whose user communities are the most active
(M.Thompson, 2015)[17].

e Aspera Smart track [18]

e Snow License Manager [19]

e Flexera Flexnet Manager [20]
e Spider Brainware [21]

e Eracent [22]

e HP Asset Manager [23]

e BMC Remedy [24]

e GLPI - 0CSng [25]

2.4. RESULTS OF THE EVALUATION

The figures 4 up to 19 synthetize the results of evaluation. For each tool, a
first chart represents marks based on the seven criteria described above; a second
chart gives a mark to specific items for each of the criteria.

a. Aspera Software Smart Track

One of the SAM market’s leader Aspera’s offer want to be defined like
“optimize the right products to deploy, and deploy in the right way”. SmartTrack
offer an intuitive and user-friendly web based console interface.

Oriented on license management: contrary to its competitors who develop in
addition inventory/security/delivery tools or modules, Aspera does not provide
built-in discovery and inventory solution. (To overcome gap in inventory and
discovery coverage, Aspera works with the likes of iQuate and Raynet). Weak point
can be that if SmartTrack facilitates the license management within other tools

49

such as service desk, it does not provide app possibility to implement process
leading to creation of a single tool within entity.

Aspera’s strengths lie in compliance and optimization: Aspera addresses
software compliance very well. We can underline efficiency and cleverness of the
catalog’s data records automatically transferred to SmartTrack and seamlessly
linked to the metric engine algorithms. Aspera is transparent with calculations; you
can clearly see both the license metrics workings and whether gaps exist in
building an accurate license position. Future versions of the interface will include
the ability to build custom metrics into SmartTrack dashboards. However, Aspera
could improve emphasis on the data quality and import regarding inventory
sources: i.e. the tool highlights that missing data can generate gaps in recognition
for license management but on higher perspective does not show that the data you
imported is exhaustive and covers your entire estate by comparing and confronting
imported inventory sources. Aspera is designed for ongoing cost optimization as
well as point in time compliance; SmartTrack continually lists optimization
opportunities including comparing price points against the customers average
acquisition price to identify unnecessarily high unit costs. SmartTrack provides a
guide price based on previous procurement record entries, reseller pricing or
vendor price lists. SmartTrack also helps clients to fully exploit their product use
rights and making best use of their existing entitlement.

Interesting simulation beginnings: SAM can operate SmartTrack to forecast
the costs of some different architectures (mainly CPU changes), renewal or metric
considerations. The simulation allows building clusters, incorporating existing
licenses and historical purchases. Interesting visualization gives a topology of
datacenter environments and visual virtual relationships.

50

EFFICIENCY

Figure 4 - Aspera Evaluation Summary

51

=]

L= I = Y = U = B]

v I 51507 |EilU|

¢ DN 51500 uonEejdepy

SIS0

£ I 1104 dns 01 55320y Ase3

6 I uanep Hodau uondanxa
0 uodsiiasn-pul
2 I A11)1G 3 553904
I Aysejnpow 1dsouod

L —
S5
S I
L ——

LNINIAOHINI
SNOINILNGD

WawWaSeUEL 10B1IUDTD 35U
Aujigissaooe aseqeleq
uoI1I3|j0331 agesn
UDIIBLUOINE L0I1D3]|003Y
uon23j0231 s1ydiy s n/auemyos
uolewolne uoiugoosay
uoiyuSooss a8esn

1355E UD Japio Awloud
SIUSWS|E LSS |EUDILPRY
UOI1BUIGLUIOD 13NP0oid
uoiuBoaa1 Ynd

uoIyuBooad 31eMyos

NOQILY2 [HILNITI

Ot

2] 5

|041u03 SaueldWwoD

fyenuapyuod ezeq

uoneziwildo wawAholdap siemyos
SUS|E UCIIENLIS |EJIULD

LNIWIDTNT N

Aauzuew ssd pue AlelES B1RQ

£ I uoieziwdo 2anPsYIIY
L . U0epIjos u0d 1211000 S0UBUDIUIE [N
{ I UOIEPI[OSUOD Ol|0J10d
S I UOR2312p asn Seudosddeur
S I SUNSESLW 3AI03110D
S I S0BMISIUI 001 3Jns3W uoiduwinsuod

2 I

(=2 =R = R = R = i =

UDI1e31 IIPUEIS
(221042 |E2yaa1) Aupige Bupiew uols12q
(ruawainaoad) Appige Buryew uois123q
FMEs ysap-dipH

uswadeueww axnsp/iasn

wawageue |y 19558 |

uoleplosuod jo adoas

UOI1BIIUNLULLIOD 1355y

ssa004d AUBADISID 13558 MBN
S53UIIBME UOIEZIUETIO

WBWEE eUEW UDITEZI| BALIA
ewsFeurw Fuwuomyed anbiweuig
USSR URLW JUSLLILIOIIAUT

NOILYZINILIO MBI

ONEAYIN NOISIDAd

ALTTIFISIA

Figure 5 - Aspera Evaluation detailed view

52

b. Snow License Manager 8

A flexible solution from desktop to datacenter : Snow proposes a competitive
solution to measure consumption of software from mobile/tablet, desktop, virtual
machine, hypervisor, to cluster and even data center. Collecting data is getting
easier especially using the Snow inventory client, which supplement inventory
sources with the data necessary to measure consumption. The License Manager has
18 out-of-the-box connectors to 3rd party inventory sources or an XML based
connector to connect to anything else. Snow is equally soft in handling business
data (procurements), which can be automated in the same way as the input of
technical configuration data. We can underline the ease of use and simplicity of
Snow License Management to handle complex objects and show easy-to-understand
results. Snow is clearly oriented on fast cycles and agile deployments, less than on
customizable route of software tools. We can commend Snow’s transparency and
ability to show at the same time data and its origin/provenance thereby always
being audit-ready or finding negotiation leverages (latest version).

Pioneer in Software Recognition: Its Software Recognition Service recognizes
commercial software in a couple of days. Snow started to enrich this process via
direct relationships with software editors to ensure more accurate and relevant
recognition (i.e. Autodesk and Red Hat).

From interesting strategic functions to weak strategic planning: Snow License
Manager provides interesting views oriented on consumption and financial
optimization and both can be put in perspective by a well-managed historic. Snow
matches the overall trend for SAM to move from an administrative function to
strategic, while Snow’s competitors propose stronger functions of scenario
modeling and strategic planning.

Valuable Snow Automation Platform: It gives organizations the ability to
automate and integrate a diverse range of processes that contribute to the overall
effectiveness of SAM. From facilitating the bi-directional exchange of information
between the Snow SAM platform and other systems, to automating the process for
software requests and re-harvesting, the Snow Automation Platform is the key to
mapping the inherent capabilities in Snow License Manager into the organization’s
individual SAM processes.

53

EFFICIENCY

Figure 6 - Snow Software Evaluation Summary

54

[a]

L= LI = R = I = B =]

€ I 51500 [l

¢ DN 51500 uonejdepy

S1S02

2 I 1 10ddns 01 55300 Ase3

5 I A15ABP Bodau uodsoxg

2 I A2)1G e lfR) 5590014
L I Auenpow 1d33u0)

L —
L —

S I——
L ——

o uodsiissn-pul

LNIWIAOH NI

WsWaSeUEL 10B1UOTD S5USIIT
Ayjigissaooe aseqeleq
uoI1I3|j0331 agesn
UOIIBLIOLINE LOIL3]j03aY
uoI23|0231 s1ydiy 25 n/auemyos
uollewolne uoiuugoossy
uoiyugooas afesn

1355E UD Japio Alold
SIUSWB|3 LIS |BELOILPPY
UOI1BUIGLUIO 13NP0oid
uoiuBoaal ynd

uoIuuSooas BIEMYos

8 |oJ3u0d 33ueldwiod =
ou Ayenuspyuos ereq z
9 uoiieziwido wawhojdap aiemyos M
L SLIB[E UOIEN]IS [B1UID =
OF fousuewssd pue Alales B1EQ W_
7 I uolleziwildo 3ineUYI Y
w S I UoIepIOSU0D 1JBI1U0D SIUBUSTUIR A
Z ¢ I UOILEPI[0SU02 OIj0yLI0d
= C I U0N2313p 95n slepdoaddeu
m 9 I 2UNSsEILW 3n1s 10D
2 I 30B31Ul [00] 34Ns3LU uondwinsuo)
T I UOI1E34D IIBU30S
S I (301042 [e21uy231) Ayjige Bupew udisizea
£ I (1uswaanooad) Ajige Suryew uoisioag
¢ I 321035 ysep-djEH
o I JuswaF euew aansp/IEsn

I JUBWaFeue |y 13558 1)
uoIlepIosUod Jo adoag

NOILLW2 1LNATI
@

9 I UIOI1EDIUN UL D 1355y
9 I 55000.d Alsacosip 1asse maN
2 I S5SUSIEME UoIlezIuesi0
9 IS 1USWWSE BURL UCIIEZIBNLIIA
+ e uswisSeuew Suiuuoniued snbiweuiq
L . 1UB WS F e UR L JUBLIUOIALT

NCILYZIA LD Al

SN NOKI230

ALMTIGISIA

Figure 7 - Snow Software Evaluation detailed view

55

c. Flexera FlexNet Manager

A durable competitive solution in the SAM market: With FlexNet Manager,
Flexera proposes a challenging solution for Software Asset Management and
optimization. We can underline a solid dynamic license management, interesting
financial optimization features and ongoing strategic possibilities. Once
implemented with an appropriate SAM team and resources, FlexNet Manager is an
efficient visibility booth of software risk, optimizing spend and planning for the
future.

User oriented: Comparing with Flexera's competitors, the user interface and
the quality of dashboards are less attractive and user-friendly but we appreciate
the ability for software responsibilities to be delegated to end user customers via
their own login (in App Portal). Flexera’s Application Portal product allows users to
request a wide range of authorized applications, including SaaS apps as well as
desktop and mobile apps. Some of Flexera’s competitors also offer single sign on
solutions to automate provision of SaaS from within an app store. Flexera’s
proclaimed goal is helping customers with the large complex environments,
contracts and IT challenges such as virtualization, cloud and BYOD. Flexera includes
management of Amazon Web Services cloud infrastructure costs and utilization (via
FlexNet Manager for Cloud Infrastructure), as well as further development of their
App Portal enterprise app store offering. Flexera’s competitors are getting closer on
the Enterprise SAM space and some of Flexera’s competitive differentiators, such as
Oracle verification, are based on software publisher verification rather than
genuine technological innovation. Feedback from Flexera’s customers on Tools
Advisor suggests upgrades and enhancements can be labour intensive.

Good performances on software recognition: Flexera’s application recognition
library already contains 180,000 software titles, while its Product Use Rights
libraries include license characteristics such as processor point’s tables, upgrade
and downgrade rights, mobility rights and so on - adding vulnerabilities into the
mix in the longer term can only add value to their core

A foray to note into the security domain: We can underline that Flexera
acquired and included in offer Secunia, which provides visibility and risk
assessments of software vulnerabilities on end points. It is strategic dissimilarity
for Flexera; the addition of Secunia completes the software management trilogy of
packaging, asset management and security around applications. On paper Secunia is
a competitive differentiator but it may also prove to be a distraction in comparison
to Flexera’s key SAM competitors who focus only on SAM.

56

EFFICIENCY

Figure 8 - Flexera Evaluation summary

57

7 D 51500 |Ellu]
¥ I 51500 uoneldepy
1 IS 1.0ddns 01 55300y Ase3

6 I Auanip podal uondaoxg
2 I H0d51 1350-pu3
¢ I ApgenRa ss300.d
L I Aejnpow 1dsouod

2 |oJiuoa 3aueldwod =
ot fAjenuspyuod e1eq z
m g uoneziwndo wawhojdsp suemyos M
m L SH2|e uoientis [eJ1u1D M
O Aausuew ssd pue Al3leS B1EQ W_
+ I UOIEZIUND SINIIS YDy
Zn S IS UOI1EpI[OSU0D 1JB41U0D SJUBUSIUIE |
uOdm. m © IS UOIIERI0SUDD O1|0JL0d
5z + I UonJ313p asn aeudoaddeu
W m T I SUNSESL 3A11031100
- S I 308Ul (00 SunssW uopRdwnsuo)
uawaFeurw 1281U07 35USIM S I UOCI1P31D IUEUSIS
Aupigissaooe sseqeleq ¥ e (321042 [e21uyoa1) Aupige Buryew uoisizea
uoI123||0324 38esn L e (1uswsanooad) Aupige Suiyew uois1aeq
UDIIEWIOINE LUOIIS[|022Y L I 20103s Ysap-djEH
u0I123|[0234 S14S1Y 35 n/f=1emyos M L I 1UBWIEE BUBW 3JIAS P/ 185N
uonewiolne uonIuB03Y M I pmmmm 1U3WSSRUE Y 1955E 1|
uoinugoosss a8esn W_ I NN UOIEPI|OSU0D JO 3d00S
1355e U0 Japio Auioud g 7 IS UOIIEJIUNLILLOD 1955Y
S]UBLUB|3 L3S [EUOIIPPY T e 55300.4d AU2A00SID 19558 MBN
P . IS S5SUSIEME UOIEZIUEEIO
7 eessss——— 1U=W5 BUBL UOREZI[ENLIA
uoiud0ds) Hnd 7 mmmmmmm (usWaSeuew Suuuoiiued anbiweudg
uoIuBo23) 31eMlos ¢ DS]UaWaSeue W JUBLILOIIAUS

NOILYZINILdO M1y

SNRYIW NOKIDId

ALMIEIS A

Figure 9. Flexera Evaluation Detailed view

58

d. Spider

As strengths, we underline the Spider Brainware ability to bring in multiple
data sources, combined with great flexibility; uncluttered interface individual
configurations possible; it has a very good license and asset management know-
how. Yet, it is more an overall IT Asset Management than a dedicated tool only
focused on SAM. We regret lack of an internal workflow engine which leads to weak
search in contract and core data (Core is becoming increasingly important for user
licenses / cloud offerings). The compliance view might be too confusing and
reporting are not easy to get (mainly because of the interface).We also underline
weaknesses of the product catalog.

EFFICIENCY

Figure 10 - Spider Evaluation Summary

59

v I 51500 [EU|

& I AUSAlEp Lodaa uondaax3

2 I ApigeIfa 553201

]

¥ I 51500 uoneldepy m

0 —— 1:0ddns 0155300y Asez

=z

o

7 mmmmmm Vodal135n-pu3 3

5

=

m

9 I Auejnpow 1d30uo) Z

Wawafeurw 10811107 S5USOIT
Augissaaoe sseQEIEQ
uop=||03a1 28esn
UOILEWOINE Uo1133]|039Y
uonas|joaad s1ydiy asn/a1emyos
uollewolne uoiuugooay
uoipufosas afesn

1355E U0 Japlo Auioud
S1USWS|a USSH |BUOINPpPY
UoIlBeUIqLUIO? 1anpold
uoiudosal ynd

uoIyuBoIal 2IEMY0S

SMOINILNOD

NOILYZIFILNAT!

OF

on

% = = = = = = =

Joi1uoa 3oueldwol

Aenuapyuos eleq

uoneziwndo uswhopdsp asemyos
SUS|E UDIIENLIS [BIIULD

LNINIDTNT 1A

fousuew sad pue Males e1eg

v IS Uo1eZIWdD SINOB YT
S I UOIEeRI|OSU0D 1EIIU0D S0UBUSIUIE 1Y
7 I UonEpIosuod oljojuod
+ s Uon2319p 3sn alendosddew
T I SUNSEIW BAILSM0D
v I 301Ul [00] 24Nnsa W uoidwinsuo)

T m UOIIE31D IIEUSDS

T ——
I

{21042 [E21Y3Y) Appige Burjew uois1dzq
(ruswaunooad) Apjige Bupyew uoisioag
2SS ysap-diEH

uaWwageuew aomsp/iasn

wawafeue |y 12558 1]

uoiepjosuod jo adoog

UOIEDIUNLUILLIDD 1855y

ss3004d AUBN0ISID 19558 MEN
ssausleme uoneziuedig

WwaWwa8 eueL UOIIEZI BNUIA,
wawsSeurw Suuuonniped anbiweulia
1UBWaSeUELL 1USLUDIIALT

NOILYZINILdC A1

ONPVIN NOBI123d

ALMIGISIA

Figure 11 - Spider Evaluation Detailed view

60

e. Eracent

Eracent has a very comprehensive agent for discovery of both hardware and
software on a daily basis, as well as during software vendor audits. A special good
point for the robust Lifecycle Management capabilities of Eracent. As weaknesses
we first point that: Eracent continues to enhance and improve the Ul for the
Software License Entitlement and Reconciliation portion of their product. The
recently added CLR (Continuous License Reconciliation) feature provides detailed
software license reconciliation data as well as high level graphical summaries. We
look forward to the future enhancements that Eracent has on their roadmap. For
the second we regret a lack of documentation.

Figure 12 - Eracent Evaluation Summary

61

LNINAD TN A

k] Joa1uod 3aueldwon
T I 51500 |EfU| - ot Aienuapyuoo ereq
. qs05 uonexdepy M = uoneziwildo wawhojdsp suemyos
I I 1 oddns 01 sseooy Ases v £ SHIIE LOHEMIS 91D
[0 ¢ HKouauew sad pue Alales e1eqg
¢ I uolieziuldo ain1euYaY
6 I AusniEp podaiuondsoxs 2 A S I UOI1EPI[OSUOD 1IBIIU0D SOUBUSIUIE A
2 I Lodau Jasn-pu3 M M 7 I UOnEpIoSu0D OljojHod
¢ I A)1qE13] 553001 DZ ¥ E— 0}0513P 35N Selidoddeul
;! S A115E|n PO 1439007 _.|N:_ m v I 2INSESW BAI1021100)
S I 30BLISUI j00] 3ans3Ww uondwnsuod
L I JUBWaEeuR Ll 10BIU0D 35U30I] S I UOI1ES1D IBUSIS
S e Aigsss20e 3seqeleq v e (371042 [e2iuy2=1) Aujige Surjew uoisioag
T I U010 0034 38esn L . ((uzwzanooud) Ayjige Buryew uoisiozg
L I UCHELUGINE U0IIIS)|033Y { I 301AIES Ysep-dIEH
5 I UOI3]j003 SISy asn/aiemyos 2 L I 1U3WSE eue W B0IARR/ 1PN
L I UOIIBWoINe uoIyuEcIsY M z JuBwaSeuE Y 1355 1
5 I uongusooad ages w_ ¢ mmmmmmms UOI1EPI0SUCD JO 3d03S
L I 33558 U0 Japao Aysoud 2 7 BN UOI1RJIUNWWOD 13557
L I S1USLUS]3 USSU [eUoIIppY ¢ mmm— 5530010 Ai2n02sip 1955e MIN
S I S55USJEME UOIeZIUESIQ
I voneuquuel 1anpodd b —— 1USLWSSEUEW UONEZIENLIA
6 I uoiug 003l Hnd 7 mmmmmm JuswaBeuew Suluuoiiued anbiweudg
2 I uoipuBo0a siemyos S I (USWsEeuEwW JUSLULOIIALS

1Y
62

NOILLYZINILIO

DNDIVIN NOBIZA]
Figure 13 - Eracent Evaluation detailed view

ALITIAISIA

f. HP Asset Manager
HP Asset Manager offers a quite strong asset management discovery tool

with loads of possibilities if you want to have a picture of each asset attached. The

functionality where the scan agents are pushed out to the clients works well.
Basic recognition is quite poor, and the process of adding/learning new

software is complex and time consuming. Focusing on Software and Compliance HP

Asset Manager is really weak. There is no report builder, so you either stick to the
basic reports, or need to invest in more developments. A lot aof home-made

development are required, and the design and usability looks like something from
the 90's.In general this tool is too complex for the non-advanced user and SAM

module is difficult if used with external discovery sources.

P{‘.RS"S TENCE

Figure 14 - HP Asset Manager Evaluation Summary

63

¥ I 51502 [Briu|
T I 51500 uolEldepy

¢ I 1ioddns 01 55320y Ases

vodais 1esn-pul
Aupgena ss3a014

Agnpow 1daauo)

Aypqissaooe aseqgeleq
uolajoda1 28esn

UDIIELIOINE UDI103]|035Y

uoIlewoIne uoinudoosy
uoimudosas a8esn

18556 UO JapJo Auloud

T WS UCHBUIGIOD Jonpold
T s uouSodal und
¢ mEmm UOIIUB003) 31BM1J0S

Manpp podsa uondaixg

uaWaseuRLU 10BIUDT S5USII

SIUSLLB|S USSH [BUOIUPRY

S1S0D

ININFAOHINI

wolLaa|jo2a s1yBIY 35 n/aIemyos

SAQINILNGD

NOILY2H1LNAAI

1) 8

1) 8

|oJquod 3ouejdwod

Aljenuspyuoa el1eq

uoneziwindo uawhojdap aiemyos
SUB|E UOIIBNHIS [EUAD

LNIWIDTNT N

Kusuewiad pue A1a1eS B1RA

7 I uoileZIwdo 2Insuysy

T I UOIIEPIJOSUOD 1BIIU0D SIUBUSIUIE Y
T I UOnEepIOsSuUCd oljojuod
T mmm uonoslap asn slendosddew
T I 2UNSESLW 31031100
I BN S0EP31UI 001 3InsaW uondwnsuod
I BN UOI1R21D ILIPUIIS

5 I

(=21042 [e21UYa31) Anige Buniew uaisiazq
(1uawaanaoad) Aupge Buiyew uoisidag
a2nas ysap-diaH

SUEVE =R T

awageue |y 19558 1]

uoIlepijosuod Jo sdoas

UDIIEZIUNLWILIOD 1355y

ssa004d AA0IsIp 19558 MBN
ssaualeme uoneziuedin

1SS PUBLU UOIIEZI|BNLIA
wiswafeuew Suuuonued snbiweuig
uBWwEieUBL JUSLILOLAUT

NOILYZIAILLAC A1

SNDYIN NOK 1230

ALMIAISIA

Figure 15 - HP Asset Manager Evaluation detailed view

64

g. BMC Remedy
BMC offers solid asset management principles properly applied on a good

workflow and coverage across all elements of asset management (mainly geared for

hardware and basic software compliance though). It also integrates to the wider
Remedy CMDB, so will tie an organization incident and problem management

system and configuration management system with the asset management system
which is really the key strength of using this as the Remedy suite.
Remedy is not focused on the deeper software analysis that is now available

in competitive products leaving organisations to fill the gap themselves, or through
3rd party services. The product also requires a large amount of 3rd party services
to keep it running. Remedy is not intuitive to administer (either back end or front
end) and splits the deeper information to Atrium Discovery module which means
you end up using two products to get good reports. It seems that it has been left

behind by the other SAM competitors.

/8
.y

EFFICIENCY

Figure 16 - BMC Remedy Evaluation Summary

65

¥ I 51500 |Eeu|
¥ I 51500 uoieldepy
O I 1.0ddns 01 55300y Ase3

6 I faanEp podas uondaox
2 I 10d31 13s50-pul
2 I A11gjE 3 559001
{ I fyuenpow 1d3ouod

2 |oauos souendwon
oT Aljenuspyuod e1eg
g uoneziwildo waswAhojdsp siemyos

S1502
~

SUIS[E UDIIENYIS [E911ID)

0T Aouzuewsad pue Aja)es B1RQ

7 I UoeZIWILdO SINIe UYLy
S I uoIepIoS U0 10BI1UCD SJUBUSIUIER A
T I UOIEPIOSU0D OIjoj10d
+ IS UON2313p 3sn slepdosddeu
¢ I SINSEILW 3AI18II0D
S I S0ESIUI 003 2ns3W uoidwnsuod

INFMIACHIINI
SAOINILNGD

wawadeurLw 128UDD 35USIIT ¢ BN UOCIIESID LIBUSIS
Auiqiss=20e sseqeleq t I (301042 [E21UY331) AYjige Buryew uoisizag
uoI}I3[|0d31 38esn L s (1uawaanooad) Aupige Supjew uoisidag
UOIEBLWIOINE UDI132[|033Y { I 321U3s Ysep-deH
uonN2s|j0224 SISy 35 N/3uemos L I JUBWSE euBL 3DIABP/ I35
uCIlBWOINe :o:_.:moumz z WBwaTeus N 19ssE ||
uonEepIjosuod jo adoas

7 BN UCIEJUNWILLIOD 1355y

7 mmmmmmm 5529004d AU2A0DSIP 1955 MBN
¢ IS SSoUSJEME UOITRZIUESIO

uoipugooas aBesn

1355 U0 J3pJo Auloud

NOLLWOIJ1LLNIA!
(]

S1USLWIS|S USSH |BUDINPRY

UCIIEUIGUIOD 19Npod

Hewa #npoid T DEEEEesss——— lUBWSEeUBW UONEZIENLIA
uorudodss ynd 7 memmsmm 1UswaSeuew Suuuomped anbiweudg
uoiuuBoIas 21eMYoS S I 1USWe FeuR W JUBLIUOIIALT

LNIWIDTNT (A

NOILYZINILJO A1y

SNV NOKI23d

ALIIEISIA

Figure 17 - BMC Remedy Evaluation detailed view

66

h. GLPI - OCSng
The couple GLPI - OCSng offers a quite strong asset management discovery
tool with loads of possibilities if you want to have a picture of each asset attached.
The functionality where the scan agents are pushed out to the clients works well.
The injection in GLPI for inventory overview is interesting. Yet, virtualization
recognition is quite basic and the process of adding/learning new software is
complex and time consuming. Focusing on Software and Compliance GLPI is really
weak. There is no report builder, so you either stick to the basic reports, or need to
invest in more developments. Alike, there is no dedicated SAM module and no
automatic license stock review. A lot of home-made developments are required (we
underline the open-source license of GLPI) to enrich licensing modules, and the
design and usability are not easy to handle. In general data injection is difficult if

used with external discovery sources.

SIENCE

PERs ISTEN

Figure 18 - GLPI/OCSng Evaluation Summary

67

O 51500 [E1LIU]

S I 51500 uolieldepy

S1502

¢ I 1.oddns 0155300y Ase3

.|
¢ I

+ I
T I

£ I—

T
T
T
€ I
T
T .
£ ——

T
¢ I

HAiznap podss vondsoxg
vodas sasn-pul
Aupgenza ssaooid

Aienpow 1dsauon

INFWIAOHIAI
SNQINILNOD

wsWwaSeueLW 10811107 35U
Aujigissaooe asege1eg
uolI3||0324 38esn

UDIIELIDINE LDI1IS||023Y
u0I123|[0234 S1YS1Y 35 n/=4emyos
uollewolne uoituSooay
uoinudooas afesn

1355e U0 Japio Auloud

NOI1LW2H1LNATl

SIUSLUB|S LSS [EUCINPRY
UOIEUIGWOD 19Npold
uonudooal Ynd

uouuBooal alemyos

Josuod 3oueljdwol

fyjenuspyuod eleg

uopeziwido wawdhojdap aiemyos
SUT|E UOILENLIS |BIIULD
fauauewsad pue Maies e1RQ

UDITEZIWILCD SUN13UYI Y
UOI1EPI[OSU0D 1IBIIU0D SIUBLSIUIE [N
UDILEPI[OSUOD DIjoJUod

uonelep asn s1eudoiddeur

o o o o o

2INSEIL BAILIBII0D

T I 30BM3IUI 001 24Ns3W woidwinsuo)

1]

UDI1ES1D IIBUSIS
{21042 |E21UY35Y) Aujige Buryew uoisidsg
(1uzw=anooad) Aujige Suryew uois1a2q
0TS ysap-dpH

swadeuew sanap 45N

WwawaBeue |y 19558 ||

uoiiepl|osuod jo adoas

UOIBIIUNLULLIDD 1355

553301d AUSADISID 19558 MBN
SsaUIIEME UOIEZIUREID

WSWSEE eBUBLW UCITEZI|ENLIA,
ewafeuew Suuuonniped anbiweuiag
1UBWSERUBLW 1USLUUOLIAUT

LNIWFOTNT A

NOILYZIN IO M1

ONPYIN NOKS 23T

ALITIBISIA

Figure 19 - GLPI/OCSng Evaluation detailed view

68

2.5. SYNTHESIS ON INDUSTRIAL STATE OF THE ART

After identifying on horizontal axis, the prospect for improvement of SAM
processes and on horizontal axis, the complexity factors brought by the cloud, the
focus should be done on weak points of SAM processes. (Fig.20) summarizes the
evaluation of major market tools. We propose to use the SAM maturity scale to read
it. Visibility is first step and mainly we will find discovery tools (BladeLogic,
OCSInventory NG, and SCCM12). As transition to the second step: Identification, we
will find tools like GLPI, to manage assets discovered in first step but without
being able to truly identified software like tools proposed by Aspera, snow or
editors’ own solutions able to manage PUR and for some able to identify risks of
over/under deployments (Snow, Spider Brainware group, Aspera).

It summarizes that real sticking points for the expansion of SAM cloud
management are mainly based on level two of the SAM maturity scale presented
above: identification of software and modeling of automatized policy and controls
to sustain dynamic and real-time cloud provisioning. We propose to address these
two points in section 3 and 4.

2 famcemes] spider
= SUN C il 7 [SARd :
S e
o RESe @aspera “aspera
oc —_—
O bladelogic w4 LP' n snow)LPI ¢ snow
\ENTIEICATION RISK

VISIBILITY DENTIFICATION MANAGEMENT OPTIMIZATION
% Discover what are your Associate installations Comparison between Optimization of
% assets (servers & and Product User what is deployed and deployment (license
!;: features, what is Rights (License) whatis in contracts & architecture) ...
L s
LL installed and where ?) Mainly based on SKU

recognition
- SKU is not risen by all SKU database’s Difficult to implement
= discoverytools maintenance specific metrics or contract
% Problem of data quality depends on the rules
and injection solution’s editor

Figure 20 - Features and limitations of most popular SAM tools

12
September, 2016

www.microsoft.com/fr-fr/server-cloud/products/system-center-configuration-manager/,

69

3. SYNTHESIS

Going further, in cloud environments SAM is not only assets management, but
also service management which must be done in real time taking into account the
fast rhythm of changes: services are provisioned, configured, reconfigured and
decommissioned in a matter of minutes (summarized in Fig.21). Compliance risks
are increased by the ease and speed of provisioning which can bypass traditional
centralized processes. In such conditions, SAM controls are difficult to implement.

YESTERDAY TOMORROW
RE CYCLE Long cycle Real time
1 Calculable

PROVISIONNING Centralized

EXPENDITURE Organized

CONTROLS

Understandable BYOD, multiplexing ...
. NATURE OF .
S SOFTWARE ASSETS Software Cloud Services
* VIRTUALIZATION B e Multiple layers : HW-SW deconnection

Figure 21 - Complexity factors brought about cloud architecture

One of the business benefits of cloud computing is its agility and speed-to-
market. Services are provisioned, configured, release in a matter of minutes. Thus,
while traditional SAM processes assume long lifecycles (usually, we can consider 5
- 7 years for a software, which leads to long cycles of contracting, discovery,
inventory and reconciliation), cloud is accelerating these processes up to real-time
requirements.

A second issue to consider with cloud environments is that different levels of
services and multiplication of hidden costs have to be taken into account. These
hidden costs may include cost of migration, integration with IT systems, premium
support services, new storage requirements, cost of extraction of data, renewal
costs of the service, oversubscription costs.

We can also underline that if SaaS seems to reduce or even delete
infringement risks because it is supposed to be indexed on real usage, this use is in
fact restricted in many cases and is not often negotiable. In such cases, SAM should
have proper controls in place to ensure compliance with all requirements and

70

limitations (geographical scope, restriction on shared accounts, on non-
employees/providers, partners ... time of day, volume of transactions ...). It leads to
multiplications of complex rules, not only based on hardware metrics, but directly
on usages, sometimes more difficult to identify.

As said in (BSA, 2014) [26] cloud services are often considered as
operational expenses and not as capital expenditures, which can lead to several
problems: (1) less involvement in contracting phase, (2) loss on control of
operational dependencies, (3) loss of know limits to final costs, (4) lack of financial
visibility, (5) increased license compliance risks.

71

72

Chapter 3

III. PROPOSITION OF A SOFTWARE IDENTIFICATION MODEL FOR
CLOUD ENVIRONMENTS

Proposition of a Software Identification Model for Cloud

ENVIronments...... s 73
1. Software licensing issues, challenges and opportunitiescccccoceviirnne 77

A. Licensing complexities moving to the cloud......eceneneeneeneeeseesneeseeseesseesseennes 78

B. Cloud-oriented software licensing Models ... seesesseessesssessenns 81

2. Requirements for effective Software and entitlements identification....81

A. Requirements for Software identifiCation ... 82

B. Requirements for Usage Rights (PUR) or entitlements identificationccouceunee 82

01. Deployment and migration conditionsccceeveiiiiinienenieneseee e 82

02. Access & usages CONAItiONS . .ocviiiiiiii i e s 83

03. Geographical and location requUIrementsccccoecvriereereeniensee s 83

04. ElaStiCITY SCOPE couirieiieieeeetees e 83

C. Requirements for Instances and deployment environment identification 84

D. Requirements for identification inherent processeserenernseeseesseeesnees 84

01. Impact 0N ProCUrEMENT ..eviiiiiiiiiirie e e 84

02. Impact in measurement and tracking usagescccovvirinrcninncneseeenn, 84

3. Software PUR management process flow ... 85
4. Implementation of software identification patternsccccceccvriiiniiiennnne 88
A. Software identification hiNArances....... 88

B. Software identification models proposed by ISO 19770-X ...ccomrerrereerneernmersersseesseeesnees 90
01.1SO 19770-2: about Software Identification Tagsccceoeriernirierinrinriennee 90

02.1S0 19770-3: about Software Entitlements Tags (Ents)cccoevverienneenen. 96

5. Workaround propositions and USE-CaSESccccvceeriuerrerrieerseesireeseeseee e e 98
AL ADOUE PUR ottt ssse s ss s ss s s sss s ss s 98
B. ADOUL SKU ...t sssssssssssssssssssss s ssssssssssssssssssss s s sssssssssssssssssanes 99
C. Proposed identification LifeCyCle. ... sssesssssessesnees 101

74

In this chapter, we will (1) detail the software licensing issues, challenges
and opportunities brought by the cloud; (2) expose requirements for the
effective software identification, including entitlement’s identification; (3) propose
a software entitlement management process flow and (4) discuss about
implementation of software identification patterns.

Software business is often complicated by use of unprecise jargon and
acronyms. To help classify matters we propose here three definitions to make a
distinction between Software license, Software key and Software entitlements
which are commonly misunderstood and will be developed all among this chapter.

A software key is a special piece of software that unlocks the product
and allows it to run. Many vendors incorrectly refer to keys as
“licenses”. Moreover, contrary to the name, “license servers” do not
actually manage licenses but keys and do not show users how many
licenses a server manages. To re-use a well-known real-world analogy:
if you owe a house and it key but lose your key, you are still owner of
your house. Alike, if you found your neighbor’s key, it does not mean
that you owe his house. License grants a user the right to use the
software. Holding a key is not equivalent to owning a license, just as
having a door key does not make you the homeowner.

A software license is what grants a customer the right to use a specific
product. It contains a set of terms and conditions (in other words
called Product Usage Rights (PUR)) that define to what extent you may
legally use that software. When taken on its own, however, a license
only provides enforcement via legal recourse.

Software Entitlements and PUR represent software use rights granted
by a license as defined through agreements between a software
licensor and a software consumer. Entitlement management is a
system by which rights are assigned to their intended recipients and
then managed. It provides fine-grained management over the rights to
use the license and, as a consequence, the software. It enables you to
grant, resolve, enforce, and revoke access entitlements, as well as
enforce access policies for data, devices, and services.

Moving to the cloud is not going to simplify license lifecycle’s management
especially because of complexities on software entitlement management. These
hindrances affect among others, cloud providers, cloud subscribers and software

75

vendors and require cloud deployment dedicated solutions. To operate in this
environment, software users from cloud providers to cloud subscribers must
manage their PUR while balancing the usage, price, and performance features of
software entitlements with the software licensors. We can consider the two
following hindrances:

e There is multitude of software vendors proposing multiple of different
licensing schemes increasing the complexity of managing software
entitlements. One product might be distributed under 1 to n* different
metric(s). One metric might have different meaning depending
software vendors. Entitlements encompass large variety of limitations
and effective use rights take into account any contracts and all
applicable licenses, including full licenses, upgrade licenses and
maintenance agreements. Two relevant examples of this multitude of
licensing models: in 2015, IBM was proposing 143 different active IBM
license metrics13, only one could be tracked via SAM tools (Processor
Value Unit (PVU)). The German software editor SAP had 70 different
active license metrics.

e From traditional to hybrid and complex software entitlement
management structures, new specific mechanisms must be
implemented to overcome cloud deployment’s complexities.

In such context, predicting the total cost of software - including licensing and
managing compliance - present growing difficulties. Within a single PaaS or
software-as-a-service (SaaS) environment, multitude of entitlement models and
metrics exist for the different components and have to be synchronized and
reported with real-time level of requirement. But first of all, entitlements have to
be properly and quickly identified.

The objectives of this chapter are:

e To analyze Software licensing issues and challenges in Clouds

e To discuss about minimizing risks of software non-compliancy through
a detailed process of PUR identification, including requirements and
specifications.

13 D.Foxen, May 5% 2015, report on IBM & SAP Seminar. (online)
https://www.itassetmanagement.net/2015/05/05/ibm-sap-seminar-london-april-2015-report.
October 2017

76

e To discuss about relevancy of software identification pattern and
existing commercial initiatives and hindrances to standardize a
software identification model.

e To propose a cohesive identification model to accommodate scalable
and dynamic cloud deployments

It will be organized as follow: (1) Software licensing issues, challenges and
opportunities in cloud environments; (2) Requirements for effective identification
of Software entitlements; (3) Software entitlement identification process flow, (4)
operational software identification regarding current norms and practices.

1. SOFTWARE LICENSING ISSUES, CHALLENGES AND OPPORTUNITIES

In traditional architectures, we were used to see PUR tied to specific
computers, servers, resources (CPU, disk...) or users. This specificity does not fit to
cloud deployment models where the cloud subscriber looks for capability to
dynamically dimension software, as needed, without real-time compliance
concerns. In other words, the cloud significantly complicates the effective
management and optimization of software entitlements for cloud subscribers,
vendors and providers.

As an intangible asset, it is difficult to evaluate fair price of software and
what can be fair licensing costs. It can explain the gap between software consumers
and software vendors approaches to fair licensing and it requirements. It explains
partially the diversity of software licensing and pricing models being demanded by
carriers and offered by software vendors.

Software vendors propose multiple licensing models driven by:

e Increasing the predictability of their revenue. Software vendors are
expecting software licensing and maintenance revenue predictability
when software consumers are expecting predictability of the licensing
costs

e Better understanding of their customer software uses. To increase the
value of product and maintenance services directly bound to customer
needs

e Indexing software value on participation in wider solutions. Improved
alignment with value. Demonstrating the tangible value of intangible
software through relevant proof and metrics can improve alignment

77

between licensing costs and both editor and customer’s perception of
software value.

Software users expect software vendors to:

e Improve the effectiveness of licensing practices

e Allow flexibility and simplicity when proposing software licensing
contracts. License term’s complexity is directly linked with non-
compliance or accidental piracy.

1.1. LICENSING COMPLEXITIES MOVING TO THE CLOUD

Most often-used ‘traditional’ licensing models (such as number of cores,
CPUs, allocated physical resources, etc.,) bind software deployments to physical
infrastructures or hardware features (ownership, geographical restrictions,
installations, etc.,). This binds between IT environment and software licenses are
limiting usage and capacity especially when migrating from traditional IT models to
flexible cloud infrastructure. Actually, traditional granted usage-rights do not
match with cloud requirements such as virtualization, elasticity and on-demand. In
virtualized environment, an issue consists in mapping physical licensing to virtual
resources. It might be difficult to have the same use of software for equal costs. The
issue is nearly the same considering mobility between private, public, hybrid,
multi-tenant clouds which also implies software entitlements changes and
compliance failure.

Supervision of licensed software consumption is more difficult given the
increased complexity of identifying and tracking compliancy issues. Dynamic
provisioning of instances might lead to compliancy issue like underutilization or
overuse of assets without possibility to counterbalance it. Actually the ease of
migration and instance cloning force to multiply tracking and matching on multiple
platforms, data-centers, private/public/hybrid clouds across more complex
software lifecycle, to faster time-scale. Migrations and resource allocation changes
across datacenters and deployments weaken compliancy and accuracy of
entitlement inventories. The ease with which resources can be dynamically
allocated and used (scale up or scale down) in virtualized environment causes
issues to predict the initial and ongoing cost of software licensing. Hybrid license
models that encompass usage and device-based licensing models increase the risk
to burst limits and breach PUR agreements.

78

Considering the most commonly used metrics (processor, devices, user,
access), we can list (and summarize in Tab. 3) some major risks moving these

licenses schemes to cloud infrastructures.

e Bound to the processor capacity, like CPU (Core processor Unit, from
Oracle), PVU (Processor Value Unit from IBM), Core, processor, etc.

©)

In traditional architectures, these metric, especially in
virtualized environments are often complex, slightly different
from one to another depending the editor. Keeping track of the
proper amount of processor license counts and capacity levels
typically requires deployment of advanced monitoring systems.
Moving to the cloud, monitoring systems to track processors
counts and capacity levels in [aaS can be more challenging due to
compatibility, security and network issues.

e Bound to devices proposed by most publishers, like Instance, Device,
Computer, Installation etc.

o

e Bound

Often in traditional architectures, discovery tools and delivery
processes reduce risks of non-compliance for device licensed
products. As good 1is your coverage, as lower is the
counterfeiting risk. In cloud infrastructures, software discovery
is more challenging, due to diversity of technologies and cloud
(non)-interoperability, levels of security and monitoring.
Additionally, considering SaaS, many products can be accessed
and used via multiple devices; thus, keeping track of licensable
devices can be challenging

to User proposed by most publishers, like

Standard/Professional User, Limited User, Administrator/reader etc.

o

In traditional architectures like in Clouds, usage rights for each
user role are tailored in software license agreements. Access to
usage rights can hardly be technically restricted, and are
difficult to report and translate into licensed roles when Cloud
demand real-time visibility on user’s usage right assignments.

e Bound to In-direct Access, proposed by many publishers, especially by
SAP, IBM and Oracle, like Named User, Authorized User, Employee, etc.

o

These licensing rules often call for all interactions between
software and human users either directly, through a named
account, or indirectly through a shared account or third-party

79

application account, to be fully licensed. For SAM purposes, it is
hard to obtain more than the visibility of the number of accounts
(and not the true number of user behind each account) within an
application which is not showing the true amount of access.
Obtaining such visibility is again more challenging in cloud
environments due to the difficulty to fully observe the system
architecture and the multitude of user access mechanisms.

Metric From traditional architectures | To cloud architectures
Different licensing terms Tgmpt?tlon to, paldh.f;)r
between vendors and difficult to \Qrtga lcapac1jcty wil g
understand. physical capacity needs
Processor licensing
Requires advanced monitoring S
systems to track resources Track and momtorl.ng
even more challenging.
Risk is limited because software Lower discovery
Devices discovery has quite good performance.
coverage Multidevice access
Bespoke User’s rights Usage real time visibility
requirements
User No technically restrictions due to
difficult translation
Require difficult full visibility on Less visibilitv on svstem
Access all access (direct and in-direct) y y

architectures and access.
and accounts

Table 3 - Most used metrics and identified risks in cloud environments

This being said, we stress the necessity to create dedicated licensing models
and specific contractual terms for cloud environments; to simplify entitlement

identification

in order to ensure compliance management, support cloud

deployment flexibility and dynamicity and to gain a better understanding of
contractual terms used within the license scope (i.e., does processor mean CPU or
core? “Named user” include or exclude batch processing?).

80

Nevertheless, moving to the cloud should not mean for cloud-service
providers, that their license legacy becomes obsolete. Perpetual licenses bought for
traditional architecture should not have a practical limited lifecycle due to
technical obsolescence of the IT environment. A perpetual license is an entitlement
for an unlimited period of time which cannot be bound to the current technology
but be adapted to fit it.

1.2. CLOUD-ORIENTED SOFTWARE LICENSING MODELS

To better suit cloud deployments and their flexibity requirement, software
vendors started to propose new licensing models or to define adjustments to
existing ones.

Thus appears SaaS subscription-based licensing models (or ‘pay-as-you-go’)
where the license consists in a subscription basis depending on the number of
users. The SaaS provider manages accountancy, underlying software components
(Operating system, middleware, etc...) and the consumer is responsible for auditing
and monitoring compliance. However, in laaS or PaaS environments, issues
described above remains unsolved is case of legacy license asset migration from
traditional to cloud infrastructures. New pay-as-you-go models might be interesting
for some new services but do not allow to use with flexibility, already-owned
licenses. Some vendors propose new entitlements bound with virtual allocated
resources (vCPUs, virtual appliance, etc.,) or virtualized environment sizing (i.e
based on a virtual network element number) which better fit to cloud
infrastructure but force to adapt tracking on multiple platforms and clouds across
more complex software lifecycle, on real time identification requirement.

2. REQUIREMENTS FOR EFFECTIVE IDENTIFICATION OF SOFTWARE AND ITS
ENTITLEMENTS

The characteristics of software covered by a license, its instances and their
consumption have to be traceable regardless of the deployment (physical or virtual
computing through a virtualized environment, from the cloud and through a data
center). This requirement of traceability encompasses precise identification of (a)
software, (b) its PUR or entitlements, (c) its instances. The software vendor
entitlement requirements will impact the software user entitlement management
processes, in particular:

81

e The features implemented to manage and monitor software PUR at a
consumer level using SAM approaches

e Maintenance of deployment inventories

e Usage-based reporting of software deployments

e Internal elasticity management policies to fulfill entitlements
requirements

2.1. REQUIREMENTS FOR SOFTWARE IDENTIFICATION

Key attributes of software include its commercial name, version, editor,
third-party vendor, eventual patch and release and their version; It encompasses
the identification of packaged software/application: licensed software products
can be packaged to form solutions, suites, bundles, and virtual appliances.

2.2. REQUIREMENTS FOR USAGE RIGHTS (PUR) OR ENTITLEMENTS IDENTIFICATION

A catalogue of PUR should be implemented to store entitlements grouped by
software. It should encompass the term of the license and termination provisions,
including post-termination transition rights; Licensing metrics and model used,
such as named user, concurrent license, volume license, enterprise/personal
license, evaluation/trial license, original equipment manufacturers, hardware
platform- or device-based, role-based, employee-based, financial-based, or
transaction-based; and usage rights and restrictions like deployment restrictions,
including geographical restrictions.

Such catalogue of PUR should be integrated in an audit process of license
limitations especially for migration purpose, but not only. It should assess among
others (1) deployment and migration conditions, (2) access & usages conditions,
(3) geographical and location requirements, (4) Elasticity scope.

a. Deployment and migration conditions

We should identify if software can be deployed across the physical and/or
virtual infrastructure if migrations to the cloud are permitted and how?

e From physical data centers to virtual data centers

e From a virtual host to another virtual host within a virtual data center
e From one host to another host within a public cloud

e From one host to another host within a private cloud

e From a virtual data center to a public cloud, and back

e From a private cloud to a public cloud, and back

e From a public cloud to another public cloud, and back)

82

The natures of deployments, migrations, cloning varies depending the
goal and has to be easily identifiable. Adequate identification should be in place to
identify software vendors policies in case of back-up, standby equipment to
contend with hardware failure, parallel maintenance tasks to facilitate workload
shifting, load balancing in order to maintain service quality. As well, software
vendor position toward cloning of virtual machines has to be easily known.

b. Access & usages conditions

It encompasses limitation of the number of cloud users (people, human
operated device, non-human operated device, application etc..) who will be allowed
to access software, and clarification on how are considered the different type of
access (i.e. does “access” include or exclude batch processing?). Access rights
should be clearly defined in the context of user types and business need.

We should be able to identify some restrictions which can be based on
the type of environment, depending if the software instance will be used in
development, test or production or in combination of independently developed and
supported products. The impact of routine maintenance performance should be
assessed. As well, we should identify if any part of the cloud application delivered
by the vendor is outsourced or subcontracted to some other third parties.

c. Geographical and location requirements

Some software vendors limit where the software can be deployed or used
through software entitlements. We should be able to identify the restrictions on
geographical locations where a license can be used and the instance can be
provisioned and offered. Access rights should be clearly defined and managed in
the context location of access.

d. Elasticity scope
We should be able to identify:

e If the license can support cloud bursting or migrating from one cloud
to another and how to consider movement of cloud services and VM in
order to balance the data center load, to support disaster recovery, to
handle data center migrations, to handle capacity burst requirements?

e If the license allow transitory use of specific software

e The level of elasticity granted by licensing quotas and burst limitations
should be identified and assessed.

e I[f the vendor propose an elastic infrastructure with defined limits that
will ensure software entitlement obligations

83

2.3. REQUIREMENTS FOR INSTANCES AND BOUNDED DEPLOYMENT ENVIRONMENT
IDENTIFICATION

Basically, it includes whether software is currently used and the ability to
map software deployment back to its corresponding PUR and provisions for
accommodating legacy software PUR, such as those that correspond to physical-
hardware deployment.

Regarding packaged software, we should have interoperable capabilities to
discover bundled software within the deployment package in order to automate
and manage software installation, audit and migration.

2.4. REQUIREMENTS FOR IDENTIFICATION INHERENT PROCESSES
a. Impact on procurement

The level of identification requirements should impact the role capacity from
companies (software user) to procure software. In other words, it defines if
employees can procure software directly through Internet download or the level of
procurement department centralization. Likewise, it impacts the process of
software deployment and migration after within the company (who allows it and
where?) and how software license fees will be paid and through which channels? A
centralized procurement reduces counterfeiting risk exposition by eliminating the
acceptance of hazardous contractual terms, impracticable license usage rights and
restrictions, and not suitable financial costs.

Identification of entitlements should also impact the relation between
procurement and IT department for such questions like approved commercial
consideration regarding IT needs. For example, to balance more cost effective
metric with relevant IT deployment requirements. Companies should assess the
commercial goals of the agreement, evaluating the anticipated workloads for
normal and extraordinary short-term and long-term business use-cases. Then, they
should review which type of licensing patterns more are acting to meet their needs,
including interoperability and commitment requirements.

b. Impact in measurement and tracking usages

These requirements are directly bound to those expressed in previous
chapter and constitute prerequisites to implement processes and tools to precisely
identify and monitor usage for any software instance. Identification of entitlements
should allow a cloud subscriber to set up relevant SAM processes like:

e Build and update software entitlement ad usage library taking into
account interdependent software delivery processes

84

e Monitoring license compliance and implementing controls to manage
licensing compliance violation.

e Set up internal and external optimization of software licensing
investments

e Evaluate accuracy of provider reporting capability and reciprocally

e Propose relevant metrics to measure as precisely as possible real
consumption of software, based on metric’s costs and benefit
comparison

e Point suitability of software entitlements regarding their ability to be
measured or their cost-effectiveness

3. SOFTWARE PUR MANAGEMENT PROCESS FLOW

The integration of software PUR management and its consequences across
the software lifecycle are described in Fig.22. Once a contract (commercial
agreement) has been set up with a software vendor, entitlements are controlled
through a set of key operational processes within the whole lifecycle described in
previous chapter. Briefly, we can count:

e Service Catalog creation and update which consist in maintaining a set
of available services and levels and provide real-time information
about available stocks and applicable prices and conditions. The
catalog lists all proprietary software that requires licenses at company
level and special contractual agreements and arrangements.

e Image Catalog which consist in maintaining a library of VM and
software image enriched by entitlement metadata in keeping with
service catalog.

e Provisioning consist in charge required workload to available
environment respecting given limitations and permissions

e Identity management consists in federating identity sources,
prerequisite for user-based software licensing

e Delivery and operations consists in installing and accessing software
according to given entitlement limitations and necessitate to update
software entitlements database. Other activities can be provoked by
internal or external events like bursting

e Monitoring consists in detecting events in installation or usage of
software regarding bounded entitlements

85

e Metering consist in registering actual usage of software components
according to metrics which are bounded to software

e Billing consists in arranging payment for used software resources
directly to software vendors or third-party

e Termination consists in terminating services when no longer needed
and analyze their consequences in terms of entitlements in case of
usage-based licensing mainly

Each stakeholder has its own set of interactions. The processes follow a
logical order, although some of them are called iteratively, and in some cases there
are more complex patterns involved between steps. Software supplier cans SaaS,
PaaS or IaaS suppliers.

86

“Process

Service
catalogue

Image
Catalog

Delivery
operations

Provisioning

Monitoring

Termination

Identity
management

Metering

Billing

Termination

PURCHASING

DELIVERY

INSTANTIATION

USAGE

OPTIMIZATION

Software
Supplier

4

Provides identification
elements (saftware and
PUR) updates withcurrent
prices from vendors

Provides enriched saftware
image

Provides ongoing

environment

Fullfill allocation requests

Rise events and alerts

Reguest authorization
checis

Provides software instance
usage

Provides relevat
information

Terminate underlying
services and resources

LI Software
eeed Final User

Query to fullfill his neads
according to current stocls

Extract available resowrces

Issue requests

Issue requests
Issue requesis

Provide access to identity
sources

Use of enviromments

Pay

Figure 22 - Key operational processes in software PUR identification

87

Some interactions are possible between the processes which are not only
following vertical axis. For example, provisioning might be provoked by some
terminations and billing is triggered by metering and usage.

4. IMPLEMENTATION OF SOFTWARE IDENTIFICATION PATTERNS

4.1. SOFTWARE IDENTIFICATION HINDRANCES

Effective SAM results in the ability to have accurate and complete view of
software assets entitlements that are owned, deployed and used. However, if most
of the recognition tools are quite efficient (especially in traditional architecture), a
common mistake is to underestimate the process of identifying software after
discovery. Indeed, most system admins can more or less easily compose scripts to
collect program data or details on executable files; yet, the challenge is to associate
this raw list of executables with normalized entitlements. There is a huge difference
between software discovery, software recognition and software management. Here,
the most common hindrances.

e File Header Information is composed by the titles and descriptions
used to describe software when the manufacturer compiled it. [t does
not follow any industry conventions

e Add / Remove Program Data is well-known to be inaccurate and
incomplete

e Normalization: Data needs to be normalized to rull out duplicates
such as Oracle Limited, Oracle Corp and Oracle Inc.

e Suite Recognition - it is often not visible that a software instance
recognized is part of a suite

e Footprints : some application have bundles or arrangements which
may leave traces of installations - which at first look may look like a
full installation e.g. a bundled version of SQL

e Recognition does not always allow knowing what is the version, if it is
an upgrade, what is the level of services, professional, standard,
personal, what is the language?

Most of SAM tools use software recognition databases and algorithms to scan
raw files and provide information on what is installed. The aim is to find a
description of software that is closer to what might be stated on the invoice when
you bought it in order to perform reconciliation. Thus is does not eliminate most
listed-above issues. Two crucial points are

88

e The possibility to make own modifications : for some in-house written
software

e The possibilities to update this database each time new applications
are developed. SAM tool vendors usually provide periodic updates or
trickle down updates to download

Inventory has become much facilitated and in some instances free but the
strength and intelligence of software recognition really varies and do not allow yet
tools interoperability.

Filename: photoshop.exe
Filesize: 17.956.864

MDS: huiiuhzkueueuij

Discovery
Photoshop CS4
4
/ Photoshop Professional
4 v
Py Adobe Professional Photoshop
»
Recognition Adobe Photoshop
Software/Editor ?
G Version ?
Type ?
20N Bundle ?
Management Upgrade ?

Figure 23 - Recognition vs Identification

The Figure 23 illustrates a real reconciliation using available tools. We took
one product from one vendor (Photoshop CS4 from Adobe) and tried to perform a
trustworthy reconciliation to demonstrate compliance. Software recognition saves
a huge amount of time and frustration in manually crunching raw data and
interpreting raw executable files or header information. Yet, different tools raise
different recognition values, more or less relevant which do not allow identifying
precisely software following requirements exposed in this section.

89

4.2. SOFTWARE IDENTIFICATION MODELS PROPOSED BY ISO 19770-X

Software identification tags (1) record unique information about an installed
software application, including its name, edition, version, whether it’s part of a
bundle and more. SWID tags support software inventory and asset management
initiatives. (2) Software entitlement tags will specify how license consumption
measurement can be automated. This provides the next level of support for the
automated software asset management process.

a. ISO 19770-2: about Software Identification Tags

ISO 19770-2 [27] was first introduced in 2009, with a recent revision
released in 2015. SWID Tags are designed to help organizations identify what
software are installed within their estate to help them verify their compliance
position.

i. Purposes and scope
A SWID tag is added to a software package by the vendor before it is
provided to the customer for deployment. It displays information about software,
including name, edition, version, vendor and even whether it is part of a software
bundle or not. It is up to the software vendor to populate the SWID tags with all of
the mentioned information, and more, so that their customers can see what
applications are in use.

As designed in ISO 19770-2, it is obligatory for the software vendor to
provide SWID tags for their products and make sure that information provided is
accurate. This level of accuracy is important, as without the right information in the
SWID tag, it is not fit for purpose and can actually create problems calculating an
effective license position for the vendor. The responsibility is with the vendor to
adopt SWID tags and to make sure that each application has a unique identifier.

Because the SWID tag is created and populated by the software
publisher in accordance with the ISO 19970-2 standard, SAM technology vendors
were pressured to use SWID tags as the primary recognition where available. In
theory, the SWID tags are infallible and a ‘single source of truth’ for the true nature
of the installed application. These tags are used to normalize the installation data
to help the SAM team identify what a software bundle or package is, without having
to wade through incomprehensible .exe files or .msi packages.

A number of the world's leading software vendors support the SWID
concept, such as Microsoft, HP and Symantec [28].

90

Key benefits associated with software identification tags inventoried
in ISO/IEC 19770-2:2015 include the following:

e The ability to consistently and authoritatively identify software
products that need to be managed for any purpose, such as for
licensing, security, logistics, or for the specification of dependencies.
Software identification tags provide the meta-data necessary to
support more accurate identification than other software identification
techniques.

e The ability to identify groups or suites of software products in the
same way as individual software products, enabling entire groups or
suites of software products to be managed with the same flexibility as
individual products.

e The ability to automatically relate installed software with other
information such as patch installations, configuration issues, or other
vulnerabilities.

e Facilitate interoperability of software information between different
software creators, different software platforms, different IT
management tools, and within software creator organizations, as well
as between SWID tag producers and SWID tag consumers.

e Facilitate automated approaches to license compliance, using
information both from the software identification tag and from the
software entitlement schema as specified in ISO/IEC 19770-3.

e Provide a comprehensive information structure of the structural
footprint of products, for example the list of software components of
files and system settings associated with a product to identify if files
have been modified.

e Provide a comprehensive information structure that identifies
different entities, including software creators, software licensors,
packagers, distributors external to the software consumer, as well as
various entities within the software consumer, associated with the
installation and management of the product on an on-going basis.

e Through the optional use of digital signatures by organizations
creating software identification tags, the ability to validate that
information is authoritative and has not been maliciously tampered
with.

e The opportunity for entities other than original software creators (e.g.
independent providers or in-house personnel) to create software
identification tags for legacy software, and for software from software
creators who do not provide software identification tags themselves.

91

This part of ISO/IEC 19770 describes specifications for tagging software to
optimize its identification and management establishes different roles like describe

in Fig. 24.

e Tag producers: these organizations and/or tools create software
identification (SWID) tags for use by others in the market. A tag
producer may be part of the software creator organization, the
software licensor organization, or be a third-party organization. These
organizations and/or tools can broadly be broken down into the
following categories.

o

o

Platform providers: entities responsible for the computer or
hardware device and/or associated operating system, virtual
environment, or application platform, on which software may be
installed or run. Platform providers which support this part of
ISO/IEC 19770 may additionally provide tag management
capabilities at the level of the platform or operating system.
Software providers: entities that create, license, or distribute
software. For example, software creators, independent software
developers, consultants, and repackagers of previously
manufactured software. Software creators may also be in-house
software developers.

Tag tool providers: entities that provide tools to create software
identification tags. For example, tools within development
environments that generate software identification tags, or
installation tools that may create tags on behalf of the
installation process, and/or desktop management tools that may
create tags for installed software that did not originally have a
software identification tag.

e Tag consumers: these tools and/or organizations utilize information
from SWID tags and are typically broken down into the following two
major categories:

o

software consumers: entities that purchase, install, and/or
otherwise consume software;

IT discovery and processing tool providers: entities that provide
tools to collect, store, and process software identification tags.
These tools may be targeted at a variety of different market
segments, including software security, compliance, and logistics.

92

Software editor Software editor processes
produces
SWIDTag Software consumer processes

Software editor

validates and
¢§:;lf:]§;;gns Software consumer
¢ installs software
which also installs
SWIDTag Discovery tool
consumes
SWIDTag is S TDiiog et
Perlegsd e validates as
SW installati _
plr;css - Software required
consumer

uninstalls software
and the SWIDTag

Figure 24 - SWID Tag lifecycle described in ISO 19770-2

ii. Implementation of SWIDTag processes
¢ General requirements
The software identification tag file shall be defined as an XML data structure.
The XML schema definition (XSD) as specified in this revision may be found here
(http://standards.iso.org/iso/19770/-2/2015/schema.xsd)

In instances where a software product is installed on a device, a
software licensor conforming to this standard will ensure that a primary SWID tag
is included on the installation media and installed at the same time the software is
installed.

When software is uninstalled, or changed to a different release, the old
SWID tags shall be removed from the device.

In instances where a patch is installed, the patch will include a patch
SWID tag that will be installed when the patch is installed, and in most cases should
be removed when either the patch is uninstalled, or when the product is

93

uninstalled, or changed to a different release. The determination if a patch tag is to
be removed, or not, is based on additional data provided in the ownership attribute.

Supplemental tags provided by the software publisher (which may be
used to identify relationships between software products) shall be managed in a
manner similar to primary and patch SWID tags such that the supplemental tags
should be removed from a device when the software product is uninstalled. SWID
tags reside in the same directory tree as the applications installation directory tree.
It is expected that if an application directory tree is deleted when an application is
uninstalled, that the SWID tags associated with that application (including primary,
supplemental, and patch tags) are deleted as well.

¢ Elements
Due to the multiple use cases identified for SWID tag creation, the minimum
data requirements for a SWID tag are relatively sparse. The only values that are
required for a SWID tag to be considered “valid” to meet the requirements of the
XML schema shall be the following:

e Software Identity: represents the root element specifying data about a
software component. A software product may be made up of one or
multiple software components. Also, Software components may be
atomic, or may be made up of multiple components. Each component
will have its own SWID tag and only one Softwareldentity will exist for
any one component.

Name

taglD

patch (default value is false)

Supplemental (default value is false ; If set to true, this tag

specifies supplemental tag data that can be merged with primary

tag data to create a complete record of the software information.

Supplemental tags will often be provided at install time and may

O O O O

be provided by different entities (such as the tag consumer, or a
Value Added Reseller).

o tagVersion (default value is 0; The tagVersion indicates if a
specific release of a software product has more than one tag that
can represent that specific release. This may be the case if a
software tag producer creates and releases an incorrect tag that
they subsequently want to fix, but with no underlying changes to
the product the SWID tag represents. This could happen if, for
example, a patch is distributed that has a Link reference that
does not cover all the various software releases it can patch. A

94

newer SWID tag for that patch can be generated and the
tagVersion value incremented to indicate that the data is
updated.)

o version (default value is 0)

These default values are specified so that if no value is included for these
attributes, the SWID tag is considered to be the first version of a primary tag and
that the software product has the version number of 0.0.

e Entity: Specifies the organizations related to the software component
referenced by this SWID tag.
o Role of TagCreator The relationship between this organization
and this tag i.e.. tag, softwareCreator, licensor, tagCreator, etc..
Role may include any role value, but the pre-defined roles
include the following: aggregator; distributor; licensor;
softwareCreator; tagCreator. Other roles will be defined as the
market uses the SWID tags.
o Regid of TagCreator
o Name of TagCreator

¢ SWID supplemental attribute

Supplemental tag data is data that is directly associated with a specific
software product’s primary tag but, for various reasons, the data included in the
supplemental tag is not included in the primary SWID tag. SWID tag data may only
be modified by the tag Creator; in other words, if a software creator provides a
primary SWID tag for their product, the software consumer who installs and
manages that software is not allowed to modify any data in the primary SWID tag.
In this case, the software tag consumer can create a supplemental tag that provides
specific details for the primary SWID tag they are referencing and they will set the
attribute “supplemental” to the value of true. This supplemental tag can then be
deployed with the installation of the software, or added after the fact as part of a
device management process, or a software activation process. Supplemental tags
may also be provided by the tag creator to add additional information related to a
specific installation of a software entitlement.

¢ Effectiveness of ISO 19770-2
[t is unrealistic to expect to create, manage, and use software identification
tags without the use of automated capabilities built into specialist or generalist
tools. Some facts about approach to SAM and SWIDtag are that companies do not
have SAM tool that takes full advantage of the tags; instead they might slightly
modify tool, or more often modify their existing processes; they create and deploy

95

tags manually. Likewise, observing current trends, it seems unrealistic that
software editors will all adopt such generic approach described above and
generalize adoption of Software Entitlement tags.

Despite the ISO 19770-2 standard first release date from 2007, only
now are a few major editors (like Adobe, Microsoft, Symantec) starting to include
SWID tags in their software packages (only in the new versions of software). As a
result, a multitude of installed software across network will not have SWID Tags
and therefore organizations will have to rely on usual software recognition
methods. Moreover, SWID Tags are not unfailing:

e They still have to be created by humans which can make human
mistakes.

e They do not address the problem of ‘ghost’ software on the network. A
enduring challenge for SAM managers has been inventory solutions
detecting fragments of software applications on devices, which are
then ‘recognized’ as installed applications. In many cases, the
application in question might have been removed from the computer.
That is because it is common for files to be left behind after uninstall,
or for files used by multiple applications to be detected and used to
mistakenly assume that applications are installed.

e SWID tags can be guilty of creating ‘false positives’. If the SWID tag is
not removed as part of the uninstall process, that can lead many
inventory solutions to report software installs that simply are not
there.

e [t appears that some flaw exists, like Adobe’s one on Adobe Creative
Cloud suite products: Individual products are given two SWID tags:
One for the product, one for Creative cloud Suite. Discovery will show
that the user has the full Creative Cloud suite installed, rather than the
unique applications that are installed and being used.

SWIDTag have the potential to significantly improve the process of managing
software and entitlements on condition that they are adopted accurately and
unvaryingly by software editors. For now, they are not foolproof and not yet
commonly used.

b. ISO 19770-3: about Software Entitlements Tags (Ents)

The ISO/IEC 19770-3 [29] standard for software entitlement tags is designed
to integrate with ISO/IEC 19770-2, the standard for software identification tags.

96

The expectation is that software entitlement tags will not provide an
interpretation of a software entitlement contract, but rather will specify how
license consumption can be measured using automated means. This will be
accomplished by providing:

e Metrics that must be collected from computing devices
e Measures against which, the metrics are compared
e Additional grants or limits placed on the entitlement

By providing specific details about what must be tracked in order to
reconcile software entitlements, the expectation is that the SAM process can be
automated and become much more accurate and useful to organizations, with a
much lower administrative overhead.

Trustworthiness of Ents

This part of ISO/IEC 19770 does not require a specific process for generating
content for entitlement files. Anyone or any organization may create Ents. The
strong preference is for original Ents to be created by the software editors, so that
these Ents have the highest degree of trustworthiness facing the licensing
information they contain. However, there can be no assurance that all
licensors/software publishers will produce Ents, firstly for new license
transactions, and secondly for historical license transactions. Therefore, it should
be possible for end-user organizations and third parties to create such Ents
themselves. Furthermore, there are certain types of management transactions
which would normally only be created by end-user organizations, but likewise
these could also be produced by third parties depending on the circumstances.

Ents can never be assumed to have 100 % trustworthiness. Primary
reliance should always be placed on normal contractual documentation, including
invoices and terms and conditions for licenses which have been purchased or
otherwise acquired. Given this warning, the trustworthiness of Ents is dependent
on three things:

e Authority. Trustworthiness will depend on the authority of the person
or organization creating the Ent, for the information given in that Ent.
For example, the software licensor would be expected to have the
highest level of authority for creating an Ent for a license it has sold,
and therefore this type of information would have the highest degree
of trustworthiness.

o Authentication. The information in an Ent needs to be authenticated to
be certain of the level of trustworthiness which would be expected for

97

the Ent creator. The expectation is that Ents will be signed to provide
such authentication, at a minimum for Ents which are created by one
organization for use by another organization.

Universality. Models have to be general enough to encompass editors
licensing variety, which is far from being trivial. Moreover Ents have to be
effectively used by Software licensor and SAM tool. For now, only few marginal SAM
approaches foreshadow Ents recognition and use; Not one of software editors have
been announcing yet implementation of this part of ISO/IEC 19770-3.

5. WORKAROUND PROPOSITIONS

If ISO/IEC 19770 is currently the most advanced proposition to overcome
software identification throughout it whole lifecycle, we underlined it relative
efficiency in particular because of software market weak adherence (mostly for
Entitlements)

For efficiency reasons, we propose to adapt the ISO/IEC 19770-2 with
a concept borrowed from large retailers: Stock Keeping Unit (SKU) 14

Originally, SKU represents warehousing item that is unique because of
some characteristic (such as brand, size, model and color) and must be stored and
accounted for separate from other items. Every SKU is assigned a unique not
standardized identification number (inventory or stock number) which is often the
same as the item's EAN (European Article Number) or UPC (Universal Product
Code). For Software identification purposes, SKU identify Software and its PURs. To
be informative, here are two vivid examples.

5.1. ABout PUR

Purchasing a train ticket. For the same journey, a myriad of options and
variations and the price can vary significantly. Among others:

e type of ticket (flexible or no),

e time of the day (peak or off-peak)

e class (first or cattle)

e age of customer (infant/child/adult)

14 http://www.businessdictionary.com/definition/stock-keeping-unit-SKU.html

98

e special programs (season ticket, student card, loyalty card).

Like illustrate on Fig.25, it is the same for the software industry,
licensing provides options and flexibility, called PUR. PUR are (not exhaustive) :
customer’s use rights, Rights to use other versions, Applicable Use rights, disaster
recovery rights, permitted periods of use, conditions on use, required used of some
product, metric.

7 74 é
date A Trip » Software
season ' family
s8] O -
o)
ne
~
(off) peak age ﬁl >
- Ticket License
rm '/') contract
s ;wo way student senior
? et 1
) 2
first cattle loyalty program
T Conditions » Product Use Right

(om) flexible ~=— (non) business
route

Figure 25 - Analogy between PUR and railway

5.2. ABout SKU

On the shop’s juice shelf, on Fig.26, the same orange juice from the same
producer can be sold in three different packaging: containers like a glass bottle, a
can and plastic bottle. These three products containing the same juice will have
three different SKU. But if we put three glass bottle of this juice in our basket, they
will have the same SKU; it is not possible to find any difference between them.
Making a parallel between Software and Juice: Software is the content (Juice), and
Product Usage Rights are the packaging (PUR) (Bottle).

99

SKU

o

Juice - Source Code
+ +
o
(D 1y 18
= Containers - » Product Use Right

Product - *= Licensed Software
defined by unigue SKU defined by unigue SKU

L

Figure 26 - Analogy between SKU and Juice Bottles

SKU is a not normalized code defined by the Software editor. It can be found
very often in product catalogues/purchase orders during purchasing phase. Our
experience showed that this code is internally used by software editors, software
licensors and software retailers for stock management and orders management to
the detriment of usual software identifiers like name or commercial denomination.
[t guarantees higher accuracy and reliance. Strangely, this concept is not widely
spread for SAM purposes: identification, usually alphanumeric, of a particular
product that allows it to be tracked for inventory and software entitlement
purposes.

The term “stock keeping unit” is traditionally associated with physical
goods. In the sense of licenses it refers to a unique identifier, sometimes also called
“part number». The term “stock keeping unit” is typically associated with unique
products for sales purposes, such as software entitlements. It may not correspond
uniquely to specific software products, but may instead represent packages of
software, and/or specific terms and conditions related to software products, such
as whether it relates to a full product, upgrade product, or maintenance on an
existing product. SKU allows to identify precisely requirement exposed in II1.2.2
(deployment and migration conditions, access and usages, geographical and
location restrictions and elasticity scope).

100

5.3. PROPOSED IDENTIFICATION LIFECYCLE

Combining these two notions by including SKU in the SWIDTag allows
identifying with the highest accuracy Software and it PUR. The right approach has
to be to combine the ability to read SWID tags with a sophisticated software PUR
recognition methodology which has the capability to challenge the information held
in a SWID tag (to prevent false positives) and provide accurate software
entitlement recognition even in the absence of a SWID tag (Fig. 27).

Purchase

Installation Software Order

Enriched SWIDTag SKU

Reconciliation
Identification

Figure 27 - Combination of SWID and SKU

In Fig. 28 and 29, we propose to present software identification lifecycle
using enriched SWIDTag (SWIDTag +) where SKU will be intercept from purchasing
phase and included in SWID supplemental attributes. A SKU database should be
created and maintained to “translate’ the codes into understandable data which can
be integrated by SAM tools in order to match deployment, access and PUR.

Fig 28 represents SWIDTag+ lifecycle when the software editor is
providing a SWIDTag.

Fig 29 represents SWIDTag+ lifecycle when the software editor is not
providing SWIDTag.

101

Software editor
produces
SWIDTag

Software editor

validates and

digitally signs
SWIDTag

SWIDTag is
packaged with the
SW installation
process

SWIDTag is not
packaged with the
SW installation
process

Software supplier
provides SKU
during purchasing
phase

Software consumer
installs software
which also installs
SWIDTag

Software
consumer
uninstalls software
and the SWIDTag

Software consumer
claims SKU and
archive it in SKU

database

Software consumer
enriched SWID
supplemental
attribute by SKU

Software editor processes

Software consumer processes

Discovery tool
consumes
SWIDTag+ and
validates
identification and
PUR as required

Figure 28 - SWIDTag+ lifecycle with initial SWIDTag

Software supplier
provides SKU
during purchasing
phase

Software consumer
deploy software
with a SWID
supplemental
attribute

Software consumer
claims SKU and
archive it in SKU

database

Software consumer
enriched SWID
suppiementai
attribute by SKU

Software editor processes

Software consumer processes

Discovery tool
consumes SWID
supplemental
attribute for
Software and PUR
identification

Figure 29 - SWIDTag+ lifecycle without initial SWIDTag

In Fig 30, we propose to link the identification concerns with the purpose of
next chapter: how to identify a software package through the whole software
lifecycle to be able to implement SAM controls of compliance and optimization. In

this figure we will refer to the concepts proposed in Fig. 22:

102

(1) The software suppliers develops software packaged enriched by a SWID
tag which will be proposed under different licensing models (from 1 to n). A
prerequisite is that the suppliers will also give clear access to a service catalog
composed by transparent explanation of licensing conditions, restrictions, prices
and metrics using SKU as unique identifier of each couple software/licensing
models.

(2) During procurement & delivery phase, the software customer is choosing
software and a specific licensing model and enriching the software package with
corresponding SKU (in supplemental SWID Tag previously described).

(3) Software packaged is deployed in cloud environment and each instance
be identified using SWID Tag +.

(4) Software can be combined to create applications which might be
proposed to final customers. Applications are tagged by the service provider and to
allow identification of each software component, related entitlements,
identification of application itself and specific sub-licensing conditions proposed by
the service provider.

(5) SAM tools have access to procurement, instantiation and usage
identification’s data on software and application levels and allows (6) charging and
billing toward software suppliers and eventual final customer.

Software Market Place

Software Suppliers

[
+ o Define several
I De l"‘.,_ licensing models 1
1 velop s\
A
i - ”,\?ﬂ' - == ===~ Provide licensing models, SKU and prices —----
1 9
E ‘ > Provide st 'simage and (S\WDtag)
P
] develop Software+ licen3ing 4
i . . SAM tool query and find 52 K
i Service Providers mmmm— _ Rise events y .
i Compliance = o -------- Procurement E . Enrich metadata with
i & /\/I A & (. associated SKU
— Opfimization 0 . Delivery
\ R
$ Charging & Billing ,;’ Rise events and alerts ‘\:\\

Provide instance's usage

\‘.\ Provide ongoing environment
4 Fulffill allocation requests
. . Request authorization checks
Product Offering 4 %

. N (| Test & Production 3
I y Enrich metadata with A .
:. o < " associated SKU e mmm— e ————————— - Environnements
; Billing 3 "
I -~
. _J.«’De\iver
II I
i i
1 Order v

See——— » Service Provider’s Customers Use of environment & Provide access toidentity sources

Figure 30 - Software identification lifecycle from provisioning to billing

103

104

Chapter 4

IV. PROPOSITION OF A SAM MODEL FOR THE CLOUD

Proposition of a SAM Model for the Cloud.......cccevvennenene. 105
1. SAM CONEIol IOOP ceiiiiiiiieiiicie s 106
A. Autonomic computing and general concept of control 100pccoveereerreeereeenseenseesseeens 106

B. Application to SAM CONtrol LOOP....ieeeesssesns 107

C. SAM model, Sensors and effECLOrS ... s e ss s srssaes 110

01. Software abstraction 1ayers ... 110

02. Cloud resources Identification........ccvviiiiiiin s 111

03. Software LifeCyCle ..o 112

04. Dynamic reconCiliationccccooeiii i e 116

i. Complete discoveries and inventory consolidation.........cc.cceceneee. 117

ii. Dynamic software recognitionccocevceiieeieereeneese e 117

iii. License understanding and compliancecccceevveiiniircnnenennnns 117

iv. Dealing with use-scaling.....ccccoiirierieiii i 118

v. Focus on Usage Collectionccccereeierneniene e 118

2. Database model for SAM 100D ...coiiriiieiiiii e 121
A. Relational Databases vs Graph Databasescceeeesneesneesnneresseesssesssessseesseesseeens 121

B. From relation to Graph Databases ... sessssssssssssesnees 122

C. SAM Graph PropOSition ... eeesseesseessessseesseessesssssssssssessssessssssssesssessesssssssssssesssessssssssssssessns 125

105

Software Asset Management is not only improvement of license
compliance or cost-cutting, it is mainly about deciding about a strategic
approach of understanding software needs so that their deployment’s efficiency
and effectiveness will contribute to maximize the return on investment. The fact is
that license optimization requires a major shift within a company to implement
proactive SAM processes and be able to harness the power of this decisive business
asset. We propose (1) to develop our propositions for optimized SAM model and
processes and usage collection cases inspired from our experience in Orange SA, (2)
and to discuss about a graph database as a central process data connection.

1. SAM CONTROL LOOP

1.1. AUTONOMIC COMPUTING AND GENERAL CONCEPT OF CONTROL LOOP

Organizations need to reduce their software costs, simplify the management
of complex software licensing, and ensure the highest possible levels of system
availability, performance, security and asset utilization. Autonomic Computing
addresses these issues through a fundamental, evolutionary shift in the way that IT
systems are managed.

Autonomic computing is about shifting the burden of managing systems from
people to technologies. (IBM, 2005)[30] proposed a high-level architectural
blueprint to assist in delivering autonomic computing in phases. The architecture
reinforces that self-management uses intelligent control loop implementations to
monitor, analyze, plan and execute, leveraging knowledge of the environment.
These control loops can be embedded in resource run-time environments or
delivered in management tools. Autonomic managers and manual managers
communicate with managed resources through the manageability interface, in the
form of a touchpoint, using sensor and effector interfaces. A sensor interface
exhibits two interaction styles, the retrieve-state interaction style (used to query
information from a managed resource) and the receive-notification interaction
style (used to send asynchronous event information from a managed resource). The
effector interface exhibits two interaction styles, the perform-operation interaction
style (used to set state data in the managed resource) and the call-out request
interaction style (used by a managed resource to obtain services from some other
external entity in the system).

Basic concepts that apply in Autonomic Systems are closed control loops.
Essentially, a closed control loop in a self-managing system monitors some

106

resource (software or hardware component) and autonomously tries to keep its
parameters within a desired range.

1.2. APPLICATION TO SAM CONTROL LoopP

Basically, SAM aims to manage two types of risks: Counterfeiting which
represents any default in license compliancy (Fig. 31), and over-deployment (Fig.
32) which consist in more deployment than measured needs.

The model’s fundamental functions (further developed in next section)
consist in:

e Elaborating a consolidated software view based on contractual,
deployment and usage facets. It implies to comprehend a collection of
heterogeneous data and organize the optimal state of SAM processes

e Allowing software lifecycle accurate identification

e Handling and interpreting several licensing rules

e Anticipating, diagnosing and react to counterfeiting

e Discovering, diagnosing and react to over-deployment

e Comparing software usages and simulating licensing model’s changes

e Identifying the best licensing model’s according to current and
forecasted software usages

The decision part can be described as Event Condition Action (ECA) rules?s.
An ECA rule has three parts: an event, a condition, and an action. The semantics of
an ECA rule are: when the event has been detected, evaluate the condition, and if
the condition is satisfied, execute the action. (Tab.4) shows non-exhaustive list of
our model rules.

Event Condition Action
The i . .
A new software , ¢ instance and Link an instance and
. . associated PUR are properly
instance is detected . o a stock
identified

15 ECA rules are used within active databases for supporting reactive behavior and were
first proposed in the HiPAC project: Dayal U., Blaustein B., Buchmann A., et al. S.C. HiPAC: a
research project in active, time-constrained database management. Tech. Rep. CCA-88-02, Xerox
Advanced Information Technology. Cambridge, MA, USA, 1988.

107

License stocks The software product Link stock and with
changed is properly identified bound instances

New link between
instance and stock

Measure instances
usages and analyze Validate compliance
deployment conditions

New licensing All impacted objects Implement new

business model exists in the data model metric rule

Table 4 - Some ECA model rules

Sensor interfaces consists in interacting with:

License stocks: more specifically, consists in intercepting all software
license sales and purchases. It encompasses knowledges on software
and its PUR identification

Deployments: this consists in intercepting each software instantiation
and allowing queries about bound workflow configuration

Usage: this consists in intercepting different usage metrics and
allowing queries to workflow consumed resources

Effector interfaces exhibits several interactions:

Operation on license stocks: which consists in increasing license stocks
(purchasing new licensing, migrating stocks from another entity),
decreasing license by internal or external transfer. It can be contract
renegotiation or third-party supplier changes.

Deployment changes, it consists in changing workflow configuration to
change resources allocation or consumption, migration, software de-
installation

Usage: consists in setting/updating/removing access controls

108

Analyze in real
time contracts,
deployment
and access
Change Buy
deployment additional _;_
configuration licenses
Detect a Detect &
difference S
* 1 between
license stocks S
and license PUR
tenl and uses
Figure 31 - Compliancy control loop
_ Owver
. deployment
Analyze in real
time
deployment,
and usage
Migration Sell surplus
Deinstallation licenses ;
Detect a
T y difference
between
deployment
and access

Figure 32 - Over-deployment control loop

109

Our SAM proposal takes into account the complete software lifecycle,
considering that each step feeds a SoftWare DataBase (SWDB) and that every step
is accompanied by one or more SAM control (considered as sensors). All possible
information related with the use of software should be captured and stored in
order to implement all the required usage controls.

Through those controls, the SAM processes analyze the current
situation in real-time, confront the use of services with the license stock. SAM
processes also take potential optimization decisions, like described previously in
control loops. In Fig. 33, we name each step of the software lifecycle, the dynamic
adjustments and reconciliation necessary to introduce the next section.

1

> Need Purchase DeliveryInstanciation Usage Optimization

1 £ |

' dynamic adjustments !
............................

DYNAMIC RECONCILIATION

Figure 33 - SAM lifecycle

1.3. SAM MODEL

Accurate SAM model should allow representing platforms and software
abstraction layers, deployments and resources in order to evaluate related costs
and compliance risks given any licensing model from the simplest to the most
intricate. We assume here the necessity to collect cloud resource information on
each software abstraction layer. It will enrich a series of SAM processes described
as the software lifecycle. The characteristics of software, its instances and their
consumption have to be traceable and confronted to acquired rights and costs, by
means of these lifecycle elaboration processes.

a. Software abstraction layers

To illustrate the abstraction layers of a software system, we refer to
S.Kachele (2013)[31] Cloud taxonomy for Computation, storage and Networking. He
discussed the relevant abstractions bottom-up. Effective SAM necessitates having a

110

view on the cloud resources monitored on each abstraction layers presented. Yet,
access to these data is not always possible depending the layer (IaaS/PaaS):

Hardware (HW) represents the least abstract layer in his hierarchy. It
provides bare metal resources such as CPUs, computing cores, the amount and type
of RAM, co-processors and other hardware devices like network interface cards and
storage controllers.

Operating systems (0OS) reside on top of physical or virtual hardware. They
provide isolation features resulting in the ability to execute multiple processes
from multiple users and to share resources. From an operating system point of view
any application being executed is a process. Yet, with respect to abstraction and
programming, multiple types of applications exist. They may directly make use of
OS functionality or apply further software components with a possibly different
abstraction.

A runtime environment (RE) creates a container for the execution of
applications. The OS provides a basic runtime for all processes running in a system.
Higher level runtime environments might significantly enrich the OS runtime and
further intermediate runtime environments. Typical features of that layer are the
execution and interpretation of intermediate code and sophisticated libraries that
applications can use.

The framework layer (FW) uses mechanisms provided by RE and OS.

The application (APP) contains the business logic. It is located on top of the
software stack and can be run on any layer above HW. Yet, it is commonly deployed
on RE or FW layer. An APP may or may not be accessible for clients.

b. Cloud resources Identification

The characteristics of software, its instances and their
configuration/consumption have to be traceable regardless of the deployment
conditions. This requirement of traceability encompasses precise identification of
Software and resources to allow maintenance of deployment inventories, usage-
based reporting of software deployments, internal elasticity management inventory
to fulfill entitlements requirements.

[aaS offers bare HW resources to a tenant. As access is granted at a low level
the tenant is free to install and configure arbitrary software. Yet, this means that
the tenant is fully responsible for running and managing the entire software stack.
The provider has to maintain the hardware. He may support scalability by offering
mechanisms to spawn new machine instances and thus extend the resource pool of

111

the tenant. Yet, the tenant remains responsible for its application exploiting the
larger pool.

The PaaS allows tenants to deploy applications in a cloud environment. In
contrast to laaS, it no longer provides the perception of a computing node to the
tenant any more. At most, the tenant may observe multiple instances of his
application. PaaS represents the highest layer that still allows tenants to deploy
application logic. Tenants receive a fully managed software platform. Yet, it is
provided as a framework so that applications remain passive and are invoked by
the cloud controller. The provider has to maintain the environment and to manage
the underlying infrastructure including FW implementation. We need to implement
or strengthen bridges to recreate computing node perception and have transparent
view on the entire software stack.

c. Software lifecycle

In its basic form, the software lifecycle that we consider is composed of 5 + 1
steps as shown by (Fig. 34 - 37); each step corresponds to at least one process.
Some process can be played several times. We underline the necessity of strong
cooperation between the departments in charge of each part of the lifecycle; it
includes among others procurement, operations, IT and controlling. All the
processes are necessary to build the software lifecycle. Its accuracy is a catalyst of
compliance and optimization guarantee.

¢ Needs

In this process, the consumer justifies his need and choice of software.
Allowing employees to make ad hoc purchases and forget about controlling
authorized purchases is a common mistake. Companies often buy licenses as
needed bit by bit, rather than under a volume agreement, which can be much more
cost effective. Need should be also confront to internal available stocks, through
second-hand license market, supposing that there is no available substitutable
products.

¢ Purchasing

This step encompasses sourcing processes, negotiation, contract, billing etc.
We underline the necessity to have a central repository to keep proves of
purchased licenses and conditions. Easy access to this data allows fast-checking in
case of editor audit requests or internal compliancy audit. We underline the
necessity to keep tracks of software license agreements and renewal dates, makes
enterprises vulnerable to lapses in Software assurance or other maintenance
programs.

112

PURCHASING

15T control : Need and supplier

Need'’s Expression

i OS alternative available internal stock

Approval for need and supplier

Purchase Order

Identification(SKU) + Quantity 27deontrol -

' !
| compliance between '
! Delivery Order need and delivery :
i |
i i

i

Identification(SKU) + Quantity :

Figure 34 - Software Lifecycle - Need & Purchase

¢ Delivery

This process encompasses the software receipt via downloading platforms,
preparation for installation on user platform, entry into a software catalogue. We
underline the critical role of delivery to guarantee the respect of the Product Use
Rights (PUR) defining how software licenses can be consumed. They include
(among others) upgrade, downgrade, second use, virtual machine use and multiple
version rights. They are typically specified in the license agreements. Product Use
Rights can vary from product to product and version to version. Accurately
respecting PUR can significantly reduce risks related with counterfeiting and over-

deployments.
I, .. w
| SW Receipt :

3rd control: |
identification quality |

R S DU PP DU PPN DD SO —

Packaging
SWIDTag Creation/enrichment

4 conirol:
read/enrichment of PUR
(translation of SKU)

Figure 35 - Software Lifecycle - Delivery

113

¢ Instantiation
In this process, software is installed in an environment (for instance, a
given Cloud), in other words, software is able to be used. By tracking software
installations/instantiations, a company can be able to significantly reduce risks -
either because the applications might not be in use (risk of over-deployment) or
because of piracy (either accidental if PUR are not respected or intentional). We
will develop this idea further down in this section.

INSTANCIATION

5th control:
inventory verification
before any
authorization

| \ ~ 6th control: !
: NSTANCIATION - verification of the I
| e T b Nerad : g
l MIGRATION installation scope. !
' Swidtag change of !
: PaaS back new instantiation / state . control: :
: migration dynamic control of |
|

|

ressources allocation

8th contrble:

check that licenses
are actually released
into the stock.
Swidtag change of
state.

Figure 36 - Software Lifecycle - Instantiation

¢ Usage
A user consumes a service/software. In this process, we have to identify the
cases where multiple users consume the same service simultaneously and translate
this in terms of use (multiplexing, multidevice ...). By tracking software usage, a
company can be able to significantly reduce risks - either because the applications
might not be in use (risk of over-deployment) or because of piracy (either
accidental if PUR are not respected or intentional).

114

g9th control ;
User identification
verification

\ I

L e le . 10 control: |
Usersright onthe |

application !
verification !

uses' scope
verification

b] T T T 4

I
A e 11= control : !
I
I

Figure 37 - Software Lifecycle - Usage

¢ Optimization

This process corresponds to confronting the need/contract/installation/use
with the license stock according to a measure of consumption previously defined
(metric). Here we can create a model of costs for any measure of use and identify
the most suitable scenario of consumption or of customer billing. Optimization also
means that companies have to plan and schedule software needs and purchases on
longer term, based on use observations and predictions. Ordering licenses without
determining what the company truly requires on the horizon could be an expensive
mistake. Likewise, optimization is keeping track of software license agreements and
renewal dates to be able to purchase or renew/not renew maintenance in the right
moment, depending observed and predicted uses or according to strategic plan
when new release of software are expected (actually, if you buy maintenance before
announcement of a new release, the price might be lower but it will be eligible for
that product upgrade.

Guarantee that SAM processes are in place to provide the necessary use
intelligence and make extra licenses available. Removing unused instances ensures
cost-optimization, as freed-up licenses can be pooled for future use. This removes
overspend on licenses and it costs are reduced through automated adjustments.

115

SAM CONTROLS inot exhaustive;

budget
udge = N eed | stocks & alternatives
compliance needs and delvery
control
= Purchase |

dynomic reondiiotion scope verification
= mmmmmmmmm e mmmm e mmmmm e m - . A .

. identification gquality
| inventory . |

Software m— = l:)EII‘o"Er}'l ! tag enrichment of PUR
: 1
Owner Y » ! PRI N | inventary/stocks verification

i . . | identification
i Instantiation —
| — i
i ! - e . .
| 1 identificotion dynamic control of
: usage : allocotedconsumed
I e e e oo] ! ress0uUries

uction

> Qptimization

dynomic odjustment |

Figure 38 - SAM general retroaction loop and control

To operate dynamic adjustment shown in Fig 38 and operate sensors and
effectors, we need to have a clear view on each steps of this lifecycle, meaning an
exhaustive view on purchased license stocks and bound entitlements, precise
software allocation and consumption and it corresponding workflow resources.

d. Dynamic reconciliation

For whatever reason, the licensing rules frequently change and companies
need to stay on top of all the vendor rules and regulations. The software lifecycle is
not only in one-dimensional. It must be considered as a loop from needs to uses.
Not thinking so can result in non-compliancy. Virtualization and cloud computing
intensify this situation by increasing dynamicity of environments, where rights and
restrictions must be in real time investigated to ensure license compliancy. For
usage-based license, real-time management and monitoring is even more
inescapable and we should not underestimate the complexity of tracking software’s
license compliance and uses. However difficult, an optimized license program has
to be set up, as automated as possible. Software license optimization tool, also
known as next generation SAM tool allows to collect and confront all the necessary
data - from procurement stage to technical inventories - and to rightsize software
estate to reduce risk, ensure compliance and save significant costs. One of the ways
to create cost saving lies in effective Software license optimization controls - and
tools to support it.

116

Part of our experience in Orange reveals that organizations have some level
of under-licensing on their virtualized network (using more software than what
they purchased) and they fail to rightsize their usages of licenses they have bought.
Mainly, there are no continuous processes setting up a performant SAM approach
like proposed in figure above and allowing dynamic adjustments. These processes
encompass the followings.

i. Complete discoveries and inventory consolidation
[t is crucial to know what devices and software are present on the corporate
network, across each and all major platforms. Ideally, discovery or inventory tools
should track software use on every device from mobile to computer through
datacenter, servers and into the cloud in order to redeployed redundant software
to other users.

Most of the time, organizations need to use more than one inventory
technologies to audit the entire multi-platform network. If so, it is crucial to merge
the disparate inventories together into a single asset repository with unified
naming conventions.

ii. Dynamic software recognition
One of the biggest issue if to associate the known software licenses with
what is truly installed on machines across the network. Manually identifying
software is not conceivable because this process is too slow and leading to many
mistakes. It is necessary to rely on a highly-effect software recognition process to
recognize commercially-licensable software.

iii. License understanding and compliance
The continual introduction of new license models, often promoted to be
‘simplified’, mainly adds complexity to manage SAM within an organization. At the
most, new licensing models just mean more to manage (actually, vendors rarely
retire older licensing models at the same time as introducing new ones).

Imagining the worst scenario, the new licensing schemes are themselves
more complicated than previous ones. The move towards use-based license models
increases both the number of metrics that need to be managed and the complexity
of the actual calculation methods for assessing the appropriate licensing for
different scenarios. Indeed, SAM has to deal with different notions like ‘named
user’, ‘processor’ and capacity-based licensing models or ‘data traffic consumption’
etc. (in annexes, some examples of different metrics and their calculations). It
multiplies the controls and usage capture tools.

117

Very often, these metrics are too difficult to manage manually, especially that
we have to deal with many vendors’ distinct licensing models. Effective SAM needs
to integrate as fast as possible all types of new software license models and
translate it into automatic intelligence to calculate products usages right controls
and implement it - including upgrade and downgrade rights which are essential to
optimized license management.

Then, another lock is the ability to produce understandable reports based on
usage and resource consumption. SAM must feed each stakeholder from across the
organization and enable them to view, generate and interpret compliance and
management reports through an intuitive multi- user, roles-based interface. We
have observed in Orange that each stakeholder’s involvement and awareness is a
sine qua none condition to get valuable result for a SAM program - from CIO to
user, passing through operational.

iv. Dealing with use-scaling
Nowadays, users access data and consume software on multiple devices, from
wherever they are. We must integrate this scale effect thinking about software
license optimization and particularly focus on the multi-dimension of Software
lifecycle. If a company cannot understand the entire view of the software estate,
both on physical and virtual machines/containers (and indeed understanding the
relationship between virtual guests and their physical hosts), then it is impossible
to calculate and prove that the right licensing models are being used. Usage-based
licensing force to consider a new dimension of SAM issues: the market is moving
toward a preference for the subscription license, largely due to the cash flow
benefits, inclusion of value-added features and services, and flexibility of a pay-as-
you-need model. For the SAM’ point of view, real-time consumption models more
and more often proposed, questions the validity and relevance of selected criteria.

We propose to examine this point below.

v. Focus on Usage Collection

Fig. 39 proposes to differentiate usage in three categories: allocation -
supervision - consumption. Each variation might represent a metric (in that
licensing meaning). Allocation covers resource configuration like virtual machine
(VM) host, maximum allocated VM resources. It represents theoretical resource
uses unlike consumption which encompass real resource uses, observed traffic,
consumption of service, object, time, access. Supervision is not based on resources
allocation or consumption but on the service ability to manage/create objects or
services. Typically, an orchestrator use can be quantified by its amount of
managed/created container. This usage distinction allows to link usages and

118

licensing models and to forge a bond between the software licensing costs and
service providers’ business value-added.

119

EEIEET
V U] [BysUl <

daAlas

Apquap "

ajyold +— Ja5n <
wayshsoropoud <
1 «———
Iy +— UOISSIS
paload
Jun e
2URysUl

42U UDIAUA

UO LRI BAHIA
£o

g
As1p
Hprampung
jayos
2402

nda

oIl <

STI5 HIoMfaU L

Jaquinu x paboumu <

uoisiazadns J

uoyagsal <

M ABojouysay =

— UonR2o|Ip

3
N,
,
)

faxnesal <
¥

-

——————————= S22Inosal

> swn ﬁ

9sM) — uondwnsuod

> Iy m

_uv WIAIDS m

> poalgo m

—————— S55220D

_lv BALPIBULSALPE —

Ndd [pa1sdyd
WYd
[Ny
A=p
pouad
Yiuow “App

apnuny 1 uodas

nop
Yiplmpung
auBsUl

s/l smopy

sl Juana
LML B 23 UBE U]
|22 poddns
uonypzoud
SadIAIPUII|I
aanpadoad
a|emy

auj|

Aay

|22 adpul

H ﬂu—ﬂﬂ.ﬂ_.. |22 padip
—— JU24AUOD

sda5n

S3JIAIDE

Figure 39 - Different measures of uses translated into licensing models

120

2. DATABASE MODEL FOR SAM LOOP

Access to information is a key for effective sensor and effector operation. The
way information is stored has direct influence on the ability to use it. SAM
distinctive characteristic lies in heterogeneity of managed resources (contracts,
usages, deployments) and strong relation impacting them. Technical environments
which have to be monitor are vast and necessitate plurality of sensors, just like
licensing possibilities. It involves the highest flexibility in data model. For this
reason, we propose to discuss why graph database should be used to design SAM
loop. There are several arguments:

e Torecognize relational structures

e To identify relations and work directly with entities by relational
groups

e To benefit from an alive system (versus legacy storage system) by
exempting from some technical limitations (joins, foreign-keys...)

e Anticipation of constantly changing the orientation of the system (and
thus greater flexibility)

e For constant improvement of features

2.1. RELATIONAL DATABASES VS GRAPH DATABASES

Relational databases have been the standard of software applications since
the 80s, and nothing really changed so to this day. These databases are able to
store highly structured data in tables with predetermined columns of certain
types and many rows of the same type of information. This organizational
rigidity requires to formally structuring the data in the development of
applications and storage.

References to other rows and tables are recorded by referring to their
primary key attributes via foreign-key columns. This is enforceable with
constraints, but only when the reference is never optional. Joins are computed at
query time by matching primary- and foreign-keys of the many potentially
indexed rows of the to-be-joined tables (Fig.40). These operations are compute
and memory-intensive and have an exponential cost.

121

0010 1034 1034 Ven(0.1

0010 Julie 0010 8976 8976 Mar2.3
0010 2019 2019 Rum2.0
Persons Proj_Members Projects

Figure 40 - Example of junction table to match people and project

When you use many-to-many relationships, you need to create a junction
table (JOIN) that stores foreign keys of both participating tables which will of
course increase join operation costs. Those costly join operations are usually solved
by de-normalizing data to reduce the number of joins necessary.

These relational databases were originally created to diagram tabular
structures and still yet are doing it very well. But contrary to what their name
suggests, they are not effective for managing relationships between data. In
particular when the structure of this data may vary, be adjusted...

This is probably the biggest weakness of relational databases: their lack of
flexibility. In such a changing environment, constantly moving, such as software
licensing models, evolving organizational IT processes, their scheme cannot
support the dynamic real time, and uncertain nature of data, new technologies and
platforms.

To overcome the lack of flexibility, you can divert the models. The challenge
is to take into account all exceptions (non-modelized originally) and to strength
embedding them to the original relational model. But this approach requires more
code, energy, difficulties, and you have to resign to a simple and easy
understandable model. Your data multiplies in complexity and diversity, your
database is burdened with join tables which can reduce performance and paralyzed
further developments.

However this relational model is still performant for many situations and it
took a long time to emerge an alternative to this model.

2.2. FROM RELATION TO GRAPH DATABASES

122

Graph data model are centered on relationships, unlike other database
management systems, which require us to infer connections between entities using
special properties such as foreign keys, or out-of-band processing like map-reduce.
Just by connecting nodes and relationships, graph databases can create connected
structures and so, sophisticated models that fit closer to our problem.

Each node (entity or attribute) in the graph database model directly and
physically contains a list of relationship-records that represent its relationships to
other nodes. These relationship records are organized by type and direction and
may hold additional attributes. Whenever you run the equivalent of a JOIN
operation, the database just uses this list and has direct access to the connected
nodes, eliminating the need for expensive search / match computation.

This ability of pre-materializing relationships into database structures
allows graph database to provide performances of several orders of magnitude,
especially for join heavy queries, the minutes to milliseconds advantage that many
users leverage.

The resulting data models in Fig. 41 are much simpler and at the same time
more expressive than those produced using traditional relational or other NoSQL
databases.

VenOJ
Duport p e e Mar2.3

Rum?2.0

Figure 41 - Example of graph linking a person with projects

What is interesting for Software Asset Management is that graph databases
support a very flexible and fine-grained data model which will allow us to model
and manage this domain in a more intuitive and easier way. We can more or less
keep the data as it is in the reality: unit, normalized, yet richly connected entities.
This allows you to query and view your data from any imaginable point of interest,
supporting many different use-cases.

123

The fine-grained model also means that there is no fixed boundary around
aggregates, so the scope of update operations is provided by the application during
the read or writes operation. The well-known and tested concept of transactions
groups a set of updates of nodes and relationships into an atomic, consistent,
isolated, and durable (ACID) operation. Graph databases like Neo4j fully support
the transactional concepts including write-ahead logs and recovery after abnormal
termination. So you never lose your data that has been committed to the database.

To manage software assets, we want a cohesive picture of our (big) data,
including the connections between very different elements like contracts,
installations and real usages. Contrary to relational databases, graph databases
store data relationships as relationships. It means a lower disconnection between
our evolving schema and our actual database.

By the facts, graph model is providing the flexibility which will allow adding
new nodes and relationships without compromising any existing network. All
original data (and its original relationships) remain intact.

Here is a quick recap of what is a graph database (property graph) (Fig.42):

e A property graph contains nodes (data entities) and relationships (data
connections).

e Nodes can contain properties.

e Nodes can be labeled with one or more labels.

e Relationships have both names and directions.

e Relationships always have a start node and an end node.
e Like nodes, relationships can also contain properties.

124

What is a

graph
tatabase 7

MAMNAGESA _ -~
,

¥

RECORDS
DATAIN

-

r
"
HAVE
NAVIGATES |
J HAVE
{

-—

A

L
~ ~
HAVE p
° Frq“ﬁﬁ
MAPSFRO

IDENTIFIES

-

Figure 42 - Graph Database

Graph databases may be used as a tool for easy management of very
intensively changing environment of data and data relations without losing focus
on owner of asset and measurement of license demands.

Approach of storing asset data in graph databases is enabling fast and
accurate allocation of software resources into project and initiatives. This way not
only will help to keep usage of software according to license agreements, it will
help to manage cost of software more precisely and forecast requirements. It will
helps also to go beyond: to show in the future to software editors our true needs,
asking for specific type of licensing, tailored exactly according to needs and model
of usage of software in company.

2.3. SAM GRAPH PROPOSITION

Considering proposition of software and identification lifecycles and control
loop proposed earlier, we propose a graph model in (Fig. 43) fulfilling loop
requirements.

125

@

Access

5
acct 0

a
3

£
e access

Application
ey edits runs
£ : L) - a»
1 G ¥ . <)
> state
Editor c\“\‘m Software Instance o
| | %

¢5°

defines '(,o Time
. r dr-{””‘: o Resources
s " NN
o & J)
S % !
o Contract G] »,
J s
Container
oll
oy -
Infrastructure
Enti
Y Supplicr

Figure 43 - SAM Graph Model

This graph models is motivated by real-life software lifecycle where
component interconnectivity is a key feature. Here, information about data
interconnectivity or topology is as important, as the data itself. In this case, the
data and relations among the data are at the same level. Introducing graphs for this
model has several advantages for this heterogeneous data:

[t allows a more natural modeling of data. Graph structure is visible centered
on the object ‘Software’ and allows a natural way of handling data. It has the
advantage of being able to keep all the information about an object ‘Software’ in a
single node and showing related information by arcs connected to it. Software is
directly related to one or more contract(s), to its instances and to its usages which
have to converge to check compliance and optimal deployment.

A contract is signed by an ‘Entity’ and a ‘Supplier’, it encompass several
objects ‘PUR’ which represent all the specific licensing conditions agreed between
the parties. Each specific PUR, corresponding to a unique label, has different
properties depending it nature (i.e. metric, deployment restriction, access

126

conditions, etc.). The relation ‘defines’ between PUR(s) and software is
characterized by the SKU.

The object ‘instance’ is bound to VLayers nodes which can be subdivided for
each layer of virtualization up to the physical one. The relation ‘runs’ characterize
effective consumed resources when each node contains specific workload features.
Physical infrastructure is bound to resources (i.e. network board, cpu, hard drive
...). Instance is bound to other instances to represent it lifecycle duration and
encompass migrations, licensing persistence for backup architectures etc. The
relation ‘runs’ between software and an instance is characterized by a SWIDTag
containing a property ‘SKU’ which allow to bound an instance with associated PURs.

Access and uses can be monitored on a double level: software or application.
The object ‘Application’ is composed by several software objects and depending the
business purposes, this double monitoring is relevant.

Here, queries can refer directly to this graph structure. Explicit graphs and
graph operations allow the SAM to express a query at a high level of abstraction.
(i.e. “which entity(ies) own this specific software ?”,”which PURs characterize my
instance”?) To some extent, this is the opposite of graph manipulation in deductive
databases. It is not important to require full knowledge of the structure to express
meaningful queries.

We propose to use this graph model to develop further SAM sensors and
effectors in section below, based on two specific use-cases.

To design SAM controls we need to make assumptions on the targeted cloud
environments, especially in terms of the laaS/PaaS layer that will be used to deploy
services. In a first design, we consider clouds managed through the well-known and
commonly used Cloud Foundry PaaS [32]. We consider that it will be possible to
apply our model to a variety of PaaS as long as they allow instantiation/usage’s
capture. In a second layer, we consider an Infrastructure as a Service (IaaS)
approach based on BluePlanet (Network Orchestrator designed by Ciena) plugged
on an OpenStack plateform. Both of these approaches are in use in Orange, but also
quite representative of global trends in industry and telcos.

The main difference between the first approach - Pure PaaS - and the second
that we will present here is that a container is a way of packaging an application
and all its dependencies into a single entity that can be run on a Linux or other
server. It is similar to a virtual machine (VM), but lighter-weight than a VM because
a container doesn’t include an operating system. Multiple containers (each running
different application) may be run on any given VM. A hypervisor is software that

127

creates, runs, and monitors VMs. That being said, from SAM point of view, the
difference is slender, in both case, access to the valuable configuration data will be
perform through the monitoring interface.

We propose, in next chapter, to describe two use-cases (1) PaaS Instantiation
and usage capture, (2) laaS infrastructure for network virtualization management
and to propose as syntheses SAM controls for both use-cases.

128

129

Chapter 5

V. MODEL ASSESSMENTS

V. Model ASSESSMENTS...cccceiiiriririerriese s 130
1. Platform Use Case [: PaaS - Cloud Foundryccccervininiininncniniecseen, 132
1.1. Cloud- PaaS instantiation and USAZE CAPLUIE.......ccueeeeecuieieeecieee et e e eeetee e ecreee e 132

1.2. How does Cloud FOUNAry WOTIK?ccccuiiiiiiiiie ettt ettt e eitee e e nrne e 133

1.3 INSEANCES..ceiietiee ettt e s 134

R B U Y- { T ol | =T o PSPPSR 135

T 1Y, [o 1] 1T o = U RUPRRRN 137

a. Graph model CONStrUCTION .eovuieieiieiceesee e 139

I PUFChaSINg oo s 139

I, ProviSIONING ..oooiiiicie s 144

I INSTANtIAtION cueiiici e 145

IV, USRS ittt e s 148

b. Basic control of inventory’s CONSiSteNCYccooeririiriineesieseeseere e 150

c. Cost-Saving Identification...c.ccoiiciiineseeeee e 153

2. Platform Use Case II: Network Function Virtualizationcccccecvnnennne 157
2.1. Orchestration & Hypervisor in Operator’'s NetWOrk...........eeeeccuveeeecciieeeeecieee e, 157

2.2, CONEEXE CONCEINS . .c..eeeiieeeiiiee ettt s e e s e e s e e e s amn e e e e s nne e e e sannneeenan 162

PG T UL =Ll ol] | {=Y o o o ISP 165

D BV o Yo I=] oV~ P 165

a. Graph model CONSTIUCTION ..ooviiiiiiiiceieee e 168

I PUFChaSINg oo s 168

I, ProviSIONING .cocoiiiiiee s 173

0 ' 3 o= o = 0) o U 173
JR7 A0)01 10 o PR 176

b. Cost-saving [dentification. ... 177

131

We propose a qualitative evaluation of our model to prove it usability in
modeling cloud platforms and resources, software deployments; and
guarantee legal compliance and cost optimization no matter the licensing model
level of complexity.

We underlined the necessity to build a multiplatform inventory solution to track all
assets, their hardware configuration, software deployments and their virtual
resources and usages regardless of platform. We need to identify each virtual
appliance that run for couples of minutes of days and that cannot be find by any
scheduled inventory scans or agent deployments but directly from getting this
information from the build process.

1. PLATFORM USE CASE I: PAAS - CLOUD FOUNDRY

Many enterprises adopt a PaaS$ platform such as Cloud Foundry (CF) [32] to
enable easier scaling and management of applications. Cloud Foundry is an open
source project originally started by VMWare and now owned by Pivotal which is a
joint venture of VMWare, GE and EMC. PaaS platform such as CF enables developers
to focus on development and provides entire platform at click of a button.
Developers can simply deploy their binary archives and CF takes care of
provisioning everything required for application to run. CF also provides additional
components such as database, caches as a service which makes it a true platform.

1.1. CLOUD- PAAS INSTANTIATION AND USAGE CAPTURE

From our observations in literature and from Orange experience, we already
reach this statement how complex SAM in dynamic cloud environments is. In fact,
just answering the following questions is difficult even though it is crucial for any
organization who wants to rationalize its IT expenditures:

e What is the total number of virtual/physical devices on the network?

e How many devices and apps are deployed in any datacenter whatever
is underlying technology and environment?

e What software is being used and what is lying redundant?

e Which users are using which devices to access company applications?

Our experience shows that for sure, companies have some visibility of what

is on the network, but mainly from a number of different and disparate sources. We
underline that the real need is to have a single source giving a complete view across

132

the entire IT environment. The unknown represents a massive risk and cannot be
proactively managed. Fact is that Gartner16 predicts that ‘by 2020 large enterprises
with a strong digital business focus or aspiration will see business unit IT increase
to 50% of enterprise IT spending’. And, according to Forrester’s recent
publication!” of its Midyear Global Tech Market Outlook, the trend for Cloud
Adoption is accelerating (to 5.6%) as well as software being the second-largest
category of tech spending (after telecom services).

Orange, like other telco and famous digital companies are intensifying move
to the Cloud and hardly evaluate the potential financial risks like software license
cost’s explosion. They have to handle these costs, and discover and inventory their
entire estate in order to be able to make decisions on future plans and get
optimizations. Even if we want to focus on license expenditures, we need to
consider for a moment the combined costs of hardware and software assets to
understand how cloud technologies, which encourage insatiable consumption, can
create unused cloud licenses and virtual hardware which are left running and leads
to another cause of overspend.

We understand the necessity to build a multiplatform inventory solution to
track all assets, their hardware configuration, software deployments and their
virtual resources and usages regardless of platform. We need to identify each
virtual appliance that run for couples of minutes, of days and that cannot be find by
any scheduled inventory scans or agent deployments but directly from getting this
information from the build process.

1.2. How DOES CLOUD FOUNDRY WORK?

Clouds balance their processing loads over multiple machines, optimizing
for efficiency and resilience against point failure. A Cloud Foundry installation
accomplishes this at three levels:

1. BOSH creates and deploys virtual machines (VMs) on top of a
physical computing infrastructure, and deploys and runs Cloud
Foundry on top of this cloud. To configure the deployment, BOSH
follows a manifest document.

16 Gartner Inc. Metrics and Planning Assumptions Required to Drive Business Unit IT
Strategies. 21 April 2016. Analysts: Kurt Potter | Stewart Buchanan

17 Forrester Research. The Midyear Global Tech Market Outlook For 2016 To 2017. Slowing
Economies And Cloud Constrict Tech Market Growth. September 16, 2016. Analysts Andrew
Bartels with Matthew Guarini, Rachael Klehm

133

http://bosh.io/

2. The CF Cloud Controller runs the apps and other processes on the
cloud’s VMs, balancing demand and managing app lifecycles.

3. The router routes incoming traffic from the world to the VMs that
are running the apps that the traffic demands, usually working
with a customer-provided load balancer.

Cloud Foundry designates two types of VMs: the component VMs that
constitute the platform’s infrastructure and the host container that host apps for
the outside world. Within CF, the Diego system distributes the hosted app load
over the entire host containers, and keeps it running and balanced through
demand surges, outages, or other changes. Diego accomplishes this through an
auction algorithm.

To meet demand, multiple host containers run duplicate instances of the
same app. This means that apps must be portable. Cloud Foundry distributes app
source code to containers with everything the containers need to compile and
run the apps locally. This includes the OS stack that the app runs on, and a
buildpack containing all languages, libraries, and services that the app uses.
Before sending an app to a container, the Cloud Controller stages it for delivery
by combining stack, buildpack, and source code into a droplet that the VM can
unpack, compile, and run. For simple, standalone apps with no dynamic pointers,
the droplet can contain a pre-compiled executable instead of source code,
language, and libraries.

1.3. INSTANCES

Deploying an application through the Cloud Foundry (CF) PaaS layer is done
by running a push command from a Command Line Interface (CLI), either as part
of the CF build packs or through a service broker:

e Build pack. User pushes app bits (i.e. artefact: .jar, .war, tgz, etc.) from
desktop/CLI selecting one of the supported stack (i.e., Ubuntu)

e Service broker pushes a docker image reference (public or private
registry), or a container specification reference

In both cases, a droplet is produced, taking into account dependencies
configuration; As a result, app instances are started and run the image within
quotas (Random Access Memory (RAM), Computer Process Unit (CPU), etc.).

134

https://docs.cloudfoundry.org/concepts/architecture/cloud-controller.html
https://docs.cloudfoundry.org/concepts/architecture/router.html

Among others, between push and application’s availability, CF uploads and stores
the application files, and examines and stores the application’s metadata (for
SAM purposes the software identifier enriched by all relevant contractual
information during delivery step).

As the cloud operates, the Cloud Controller VM, router VM, and all containers
running apps continuously generate logs and metrics. The Loggregator system
aggregates this information in a structured, usable form, the Firehose. You can
use all of the output of the Firehose, or direct the output to specific uses, such as
monitoring system internals or analyzing user behavior, by applying nozzles.

Before one can retrieve any application or service information, one must
retrieve the Cloud Controller (using the Service Broker Application Programming
Interface (API)). The brain of this controller knows services and applications as
well as their instances and settings. The Cloud Controller exposes a Rest
(Representational State Transfer) API for all this information through which the
SAM processes can get the necessary knowledge to perform their tasks.

1.4. USAGE COLLECT

To organize user access to the cloud and to control resource use, a cloud
operator defines Orgs and Spaces within an installation and assigns Roles such
as admin, developer, or auditor to each user. The User Authentication and
Authorization (UAA) server supports access control as an OAuth2 service, and
can store user information internally or connect to external user stores through
LDAP or SAML.To implement SAM check-points over the USAGE step, we need to
get the knowledge of which applications are used. We decided to achieve this
first through the application rights verification. In more details (Fig. 44), we
summarize the steps performed when a user wants to use an application in our
context:

1. The user wants to access the cloud application via the user portal

2. The user is identified and authenticated via a User Identification
and Information System Access libraries

3. The system checks permission of the authenticated user to access
the applications via the Application rights library and if yes, return
a certificate. This step allows collecting usage information,
especially the moment when a certificate for using the application is
issued or withdrawn. The lifecycle of this certificate allows
determining the time of using the application and all its software
components

135

https://docs.cloudfoundry.org/concepts/roles.html

4. Embedding cookies and certificate, the user can start to consume
application

2 , ﬁ
e
User POHEW Q /Huth&ntication processes
1 // # S r:r:hca ion Rig!
" A tion Rights

Application

Figure 44 - Use case of Cloud App Access

An application may embed several software services, so it is
necessary to cross the information on usage with internal software cartography
to be able to determine and affect usage directly to software. Typical apps
depend from services such as databases or third-party APIs. To incorporate these
into an app, a developer writes a Service Broker, an API that publishes to the
Cloud Controller the ability to list service offerings, provision the service, and
enable apps to make calls out to it.

Application’s usages cannot be summarized only by a number of
access or minutes spent. We consider that it also covers consumed resources
(i.e., CPU, RAM, bandwidth, event p/s, flow p/s, etc.).

Open-source tool Abacus [33] provides usage metering and aggregation for
Cloud Foundry services (Fig. 45). This is implemented as a set of REST micro-
services that collect usage data, apply metering formulas, and aggregate usage at
several levels within a Cloud Foundry organization. Runtime provider (CF

136

Bridge) submits application usage events (other runtime providers submit other
runtime usage events); external services providers submit service usage events
that are received and stored by Abacus, metered, accumulated, aggregated to

provide usage reports and summaries.

CF app
usage
events

Service provider
Submits service usage events
Usage event
collector
receives and stores

—
i

Configuration plugins
Provides metering, rating and

pricing

Runtime provider (CF bridge)
Submits CF app usage

Runtime provider
Submits other runtime usage events

Meter
applies metering
formulas

Accumulator Aggregator
accumulates aggregates (space,
usage (time) service etc.)

Reporting
Provides usage reports, billing, analyticsetc

Figure 45 - Usage metering and aggregation for Cloud Foundry

1.5. MODELING

Our objective is to validate the fact that our graph model can be managed
through a capture of PaaS usages (Cloud Foundry/Abacus). It will validate our
assumption that the model can be used to easily model complex platforms and
software. To achieve these experiences, we first considered well-known software:

an Oracle database (Oracle DB).

137

We choose the Oracle Database Enterprise Edition (Oracle DB EE) example
for several reasons:

e It is a vivid example for the SAM community; one of the most often
mentioned for the complexity of its license management.

e Oracle DB licenses can be defined by several types of metrics, oriented
on material (i.e., CPU) or user (i.e., Named User Plus).

e It will allow us to increase complexity of our use cases such as:
integrating controls between product’s link (options - standard
product) and constraints of uses.

To evaluate relevance of our model, we propose to define in Fig. 46 below a
Cloud architecture model.

laaS PaaS SaasS

Figure 46 - Cloud Architecture Model

The diagram illustrates how the PaaS will leverage enabling services from
[aaS components and supporting services to provide PaaS service offerings, such as
application hosting and database hosting. The [aaS model is depicted by a node
labeled ‘Infrastructure as a Service’ that contains compute virtualization, network
virtualization and storage virtualization. (Not detailed in the diagram, the

138

‘Virtualized Compute’ node contains smaller nodes labeled CPU and Memory as an
illustration of the technologies that make up compute virtualization. The
‘Virtualized Network’ node contains smaller nodes labeled Network Interface Card,
TCP/IP Ethernet, Fibre Channel on Ethernet and Load Balancer to illustrate
technologies that make up network virtualization. The ‘Virtualized Storage’ node
contains smaller nodes labeled Thin Provisioning, Block, Object, Solid State Drive
and Serial Advanced Technology Advancement to illustrate technologies that make
up storage virtualization). The hypervisor label is associated with this pattern in its
commitment to applying reservations for different cloud consumers in order to
ensure that they are allocated the guaranteed amounts of IT resources. In support
of this, it is responsible for locking, and pre-allocating the virtual servers’ reserved
computing capacity based on their configurations. The PaaS model is depicted in
violet box that contains a PaaS stack, Application hosting Stack. The Application
Hosting stack is comprised of layered nodes labeled ‘App server’, ‘database server’;
we could add ‘Web server’ or ‘operating system’.

a. Graph model Construction

In this section, we will follow the Software lifecycle proposed in previous
chapter and refer to the Fig.2 about SAM maturity scale: Visibility, Identification,
Risk Management and Optimization.

i. Purchasing
For the purpose of our example, we will skip the first phase of
need/choice/approval, and directly start with purchasing processes.

Fig.47 might be an extract from “License Store’s” catalogue which proposes
the product we identified as needed and are planning to buy.

139

coce qo¢ Oraclke Database Enterprise Edition ———— Product name

C 11g Release2 (11.2) —— Version
iii Processor Perpetual —— Metricand term
e taion € 41.239,44 —— Unit price
First year support per processor - €9.072,67 —— Maintenance
E47877-06 —> SKU
Requirements PUR
- Maximum CPU — no limit
- RAM — O5 Max

- Database Size — no limit
- Windows, Linux, Unix, 64-Bit Support

Figure 47 - Product Catalog

Few elements (in green above) are necessary to identify precisely this offer
and determine the level of grants (PUR) given by this type of licensing. These
elements have to be collected in the purchase order and reconciliated with data
from the delivery order.

In the graph, on Fig.48, the first step is to create our product, with a label
‘Software’ and several attributes found in the purchase order. In the same way, we
create a label ‘Supplier’ and ‘Editor’ to identify a node ‘License Store’ and ‘Oracle’:

140

$ MATCH (n) RETURN n LIMIT 25

3

Displaying 3 nodes, 0 relationships

Figure 48 - Neo4] interface - Graph Step 1

CREATE (S:SOFTWARE {NAME:"ORACLE DATABASE ENTERPRISE EDITION",
SKU:"E47877-06",VERSION:"11G RELEASE 2", CATEGORY:"DATABASE"})

CREATE (R:SUPPLIER {NAME:"LICENSE STORE"})

CREATE (E:EDITOR {NAME:"ORACLE"})

Then, Fig. 49, we create several nodes with label ‘PUR’, which represents
scope of usage, metrics, environments ... The idea is to create nodes, independent
from products (not node properties) to allow further comparison between product,
version; identify similar metrics; verify entitlement compliance.

CREATE (P:PUR {TYPE:"METRIC",METRIC:"PROCESSOR"})
CREATE (P1:PUR {TYPE:"TERM",TERM:"PERPETUAL"})
CREATE (P2:PUR {TYPE:"REQUIREMENT",MAXIMUMCPU:0})

CREATE (P3:PUR {TYPE:"OPERATING SYSTEM", WINDOWS:1, LINUX:0, UNIX:0})

141

$ MATCH (n) RETURN n LIMIT 25 = M "

@ *(7)
Graph

RER

Table

> O

Code

Displaying 7 nedes, 0 relationships

Figure 49 - Neo4] interface - Graph Step 2

Then: to create relations between nodes:

e Between an editor and product (EDITS): ‘Oracle’ edits ‘Oracle
Database’

e Between a product and PUR (DEFINES): ‘Oracle DB’ is licensed under
processor metric/ or can run on windows/Unix/Linux ...

e Between a supplier and a product (DISTRIBUTES): ‘License Store’
distributes ‘Oracle DB’. This relation is important because contains all
information about the contract: financials, number, maintenance, etc.
This link may be multiple (unique relations), as many as the number of
contract.

This process and collect are essential to fulfill Identification requirements:
PUR are translated in the SKU, this SKU enriches the SWIDTag delivered during
provisioning processes; it guarantees the link between a contract and Software/
Software and Instance, on Fig.50.

MATCH (S:SOFTWARE {NAME:"ORACLE DATABASE ENTERPRISE EDITION"})

142

MATCH (u:SUPPLIER {NAME:"LICENSE STORE"})

MATCH (E:EDITOR {NAME:"ORACLE"}) MATCH (P:PUR)

MERGE (c:COoNTRACT {NAME:"CSI001",DATE:01-06-2017,CONTACT:"FELIX"})
MERGE (SP:ENTITY {NAME:"SERVICE PROVIDER"})

MERGE (P)-[D:DEFINES]->(s)

MERGE (E)-[E1:EDITS]->(s)

MERGE (u)-[p1:DISTRIBUTES]->(s)

MERGE (u)-[s1:SIGNS]->(c) MERGE (sP)-[s2:SIGNS]->(c)

MERGE (c)-[D2:DEFINES {QUANTITY:10, UNITPRICE:150, CURRANCY:"£"}]->(S)

$ MATCH (n) RETURN n LIMIT 5@ S s e ™ A8

N e CID COED CED G CIED CID

Graph

Table

A

Text

<>

Code

Displaying 9 nodes, 9 relationships.

Figure 50 - Neo4] interface - Graph Step 3

143

i1. Provisioning
After Global sourcing processes, our Oracle Database is right now under
exploitation teams’ responsibility. The software can be packaged/enriched (i.e.,

tag) according to company’s rules or considered like included in an Application
before being instantiated.

In our case, we create a label ‘Application” and a node
‘HumanRessources’ which will include our Database. An application program is a
computer program designed to perform a group of coordinated functions, tasks, or
activities for the benefit of the user, composed by one or several software. Each
application has its own SKU characterizing its composition and eventual licensing
models (in case where the service provider will propose it as a commercial offer).

The relations ‘CONTAINS’ is enriched by properties like a project’s id
or application’s project manager (Fig. 51)

MATCH (S:SOFTWARE)

CREATE (A:APPLICATION {NAME :'"HUMANRESSOURCES', SKU:"AA90875"})

CREATE (A)-[C:CONTAINS {ID_PROJECT : '1234R'}]->(S)

$ MATCH (n) RETURN n LIMIT 25 E N S

@ *10) -

{

f~)
@
=
CONTaye
-y
%

<S>

4 J&%
=l

-
SIEh= g

Size Caption:

Figure 51 - Neo4] interface - Graph Step 4

144

iii. Instantiation
To fulfill the step 1 (visibility) of the maturity scale, we need to have an
exhaustive view of infrastructure, resources and instantiation. The PaaS handles
infrastructure workload (Virtual Machine (VM), networking, storage);
instantiation’s inventories, subscription to shared services, application
deployment, installation, configuration, application monitoring, application log
collection and interaction with app-ops (inventory/CMDB, monitoring/alerting).

Crucial point is now to create a link between the instance and the product
which we bought. The instance knows and updates all identification elements of it
components. This allows creating the link between the product in catalogue and the
installed product, Fig. 52.

MATCH (S:SOFTWARE{SKU:"E47877-06"})

MERGE (I:INSTANCE {NAME:"INSTANCE DB",SKU:"E47877-
06",IMAGE:"DBENTREPRISEEDITION"})

CREATE (I)-[11: INSTANTIATES] ->(S)

$ MATCH (n) RETURN n LIMIT 25 & X TN
® R INSTANCE(1)
[
@ 5o
4- SiGNg
o % ;

% g
<>
Coxde INSTANGE DB INSTANTUATES O

DEFINES
5 %

Figure 52 - Neo4] interface - Graph Step 5

The characteristics of software, its instances and their configuration have to
be traceable regardless of the deployment conditions. This requirement of

145

traceability encompasses precise identification of Software and resources to allow
maintenance of deployment inventories. IaaS (Open Stack) offers bare HW
resources access. The bridge developed through abacus metering solution allows
binding PaaS deployment to physical architecture using laaS resources collection.

In our example, the application, which contains our Database has been
deployed on the cloud via a “push” command and ran as an instance. We stress that
this instance’s image contains metadata used for identification enclosed during the
provisioning (Fig.53). To make it simpler for the purpose of this example, we will
transform it into a property ‘SKU’ of the Instance.

MATCH (I: INSTANCE)
MERGE (VM:CONTAINER {NAME:'VM1',CPU:4, RAM:8})
MERGE (T:-TENANT {NAME:'TENANT1',NBINSTANCE :20, RAM :100})

MERGE (V:VLAYER {NAME:'OPENSTACK1', REGION:'FRANCE',
VERSION:'ZOE'})

MERGE (M:MACHINE {NAME:'BAREMETAL'})
MERGE (R:RESOURCE {TYPE:'CPU', RAM:'X86'})
CREATE (VM)-[RO:RUNS]->(1)

CREATE (T)-[R1:RUNS]->(VM)

CREATE (V)-[R2:RUNS]->(T)

CREATE (M)-[R3:RUNS]->(V)

CREATE (M)-[R4:HAS {NUMBER:20}]->(R)

Considering the Fig. 39, we are collecting and integrating data corresponding
to allocated resources (the green branch), technologies and binding it to eventual
restriction.

146

E]

$ MATCH (n) RETURN n LIMIT 5@ SN R A D X

6 CONWNERD) TEWAWTD) VAYERD) MACHNEN) Resoscen) (AL CIIED CIED GED

BAREM...|~ AUNS —»| opENs,.. - AUNS H{TENAN... — RUNS —%{ WM1 —— AUNS —» inSTANGEDS |

— SYH —|

GPU

Displaying 16 nodes, 16 relationships.

Figure 53 - Neo4] interface - Graph Step 6

In case of migration, Fig. 54, we need to keep and maintain a history for
auditing purposes. We propose to create a relation between instances specifying
that relatedness.

MERGE (I1: INSTANCE {NAME:'INSTANCE DB', STATUS:'"MIGRATION'})

MERGE (I)-[R5:MIGRATEDTO {TIMESTAMP:15908664663}]->(I1)

147

$ MATCH (n:INSTANCE) RETURN n LIMIT 25 & XS A
@ 2 INSTANCE(2)

Graph

B

INSTANCE DB

A

<[>

QLo YHEIN

INSTANCE DB

Figure 54 - Neo4] interface - Graph Step 7

iv. Usages
The Oracle DB is expected to be accessed by both humans and Software
(automated applications encompassing the optimization phase of the SAM model as
described previously in the paper). Different queries can be performed on the
different links of the database.

Considering the Fig. 39, we are collecting and integrating data corresponding
to consumption (blue branch) and supervision (red branch); In terms of access,
object, service, traffic, time, and resources, network size, amount of managed
objects, etc. Each event, captured is enriching a relation property. We make a
difference between theoretical capacities and observed ones. For example, the
relation HAS between a machine and its CPU is characterized by two properties:

e Formal link between the machine and CPU : the machine HAS 20 CPU
e The machine HAS real observed CPU consumption data (coming from
the current CPU load observation)

We propose to modelize it in Fig. 55, using a mesure of uses based on
access (consumption) and Authaccess (supervision/consumption).

MATCH (1:INSTANCE {NAME:'INSTANCE DB'})

MERGE (U:USER {NAME:'JEAN', ID:'1906197913022014'})

148

CREATE (U)-[A:ACCESS {CHARACTERISTIC:'RESOURCES'}]->(1)

MATCH (AA:APPLICATION)

MERGE (U:USER {NAME:'CATHERINE', ID:'12071962'})

CREATE (U)-[A:AUTHACCESS {CHARACTERISTIC:'RESOURCES'}]->(I)

CREATE (U)-[AAA:AUTHACCESS {CHARACTERISTIC:'RESOURCES'}]->(AA)

$ MATCH (n) RETURN n LIMIT 25 & &2 ST A
@ *10) CONTAINER(1) TENANT{1) MACHINE(1) RESOURCE(1) INSTANCE(1)
Gragh
. - INETANTIETES
q) — - TEMAN. FUNS vrer AUNS INSTANCE DB
c
)
g 7 3 %
¥ (,)
1
BAREM... HAE cPU
ATHADCESS
=pl 31 des, 10 relationships.

Figure 55 - Neo4] interface - Graph Step 8

“Show me all ‘ACCESS’ relation(s) to ‘HumanRessources” will provide all
access/authaccess related to Software. As we can identify the Product Usage
Rights (via the SWIDTag/SKU) by a direct link between Software/PUR and
Software/Access, we can fulfill second part of the step 3 (here: over-deployment
risk).

149

b. Basic control of inventory’s consistency

Obviously, a lot of queries would be necessary to implement true SAM
analysis. For the purpose of our example, let’s study quickly three of the most basic,
but also the most important.

e What I bought?

This query (Fig. 56) returns a table: the number of bought licenses order by
software and metric with a list of contract per software

MATCH (E:ENTITY)-[G:SIGNS]-(C:CONTRACT)-[H1:DEFINES]->(S:SOFTWARE)
MATCH (P:PUR{TYPE:'METRIC'})-[H:DEFINES]->(S)

RETURN E.NAME AS ENTITY, S.NAME AS SOFTWARE, S.SKU AS SKU, P.METRIC
AS METRIC, H1.QUANTITY AS QUANTITY

$ MATCH (E:ENTITY)-[G:SIGNSI-(C:CONTRACT)-[H1:DEFINES]->(S:SOFTWARE) MATCH (P:PUR{TYPE: 'METRI.. & A e a
3:3] ENTITY SOFTWARE SKU METRIC QUANTITY
= SERVICE PROVIDER ORACLE DATABASE ENTERPRISE EDITION E4TBTT-06 PROCESSOR 20

<[>

Started streaming 1 records after 10 ms and completed after 12 ms.

Figure 56 - Neo4] interface - Query Bought

e What I Instantiated?

This query (Fig. 57) returns a table: the number of instance per software
ordered by metric with collection of application containing this software.

MATCH (V:CONTAINER)-[T:RUNS]->(I:INSTANCE)-[R:INSTANTIATES]-
>(S:SOFTWARE)<-[]-(A:APPLICATION)

150

RETURN S.CATEGORY AS CATEGORY, S.NAME AS SOFTWARE, A.NAME, S.SKU
AS SKU, COUNT(T) ASINSTANCENUMBER

$ MATCH (V:CONTAINER)-[T:RUNSI->(I:INSTANCE)-[R:INSTANTIATES]->(5:SOFTWARE)<-[1-(A:APPLICATIO & A - O
B CATEGORY SOFTWARE A.NAME SKU INSTANCENUMBER
= DATABASE ORACLE DATABASE ENTERPRISE EDITION HUMANRESSOURCES E47877-06 2

Text

<[>

Started streaming 1 records after 2 me and completed after 2 mes.

Figure 57 - Neo4] interface - Query Instance

e Am I Compliant?

In our simple example, this last query (Fig.58) consists in a verification of the
‘Processor’ metric (typical for Oracle). Basically, we have to multiply number of
core per processor of the physical machine hosting the DB by the number of
processor and by a coefficient given by Oracle for each processor. It returns a table
of licenses ordered by software, number of bought/instantiated (according to

Oracle licensing rules).

ATTO - e

$ MATCH (TAINER)-[T:RUNS]->(I: INSTANCE)-[R: INSTANTIATES]->(S: SOFTWARE (A:APPLICATIO

g CATEGORY SOFTWARE ANAME SKU LICENSENEEDED LICENCEBOUGHT
e DATABASE ORACLE DATABASE ENTERPRISE HUMANRESSOURCES E47877-06 28 20

A EDITION

Figure 58 - Neo4] interface - Query Compliance

151

Some libraries like, Popoto.js (Fig.59) allow user to navigate in the graph to
do the same in graphic mode. Popoto is an open-source library.

= Software
= Editor

= Supplier
= PUR

= Instance
= VM

= Tenant
= Machine
= Resources
= Entity

= user

= Contract

Figure 59 - Popoto for graphic Neo4] interface

Optimization consists first in automating the rise of alerts. When
counterfeiting situation 1is detected (piracy, but mainly editor’s metric
misunderstanding) or when use reaches or exceeds a fixed threshold or the level of
inventories. Then, purchasing/activating new licenses could be automated to adjust
the license stock, in real time.

When the visibility and identification steps are mastered, optimization might
consist in operating simulations: usage/instantiation captures, may reveals some
possibility to renegotiate a contract in a more favorable (financial) way: i.e., to
change the Oracle DB negotiated metric (currently Processor) into another metric
(i.e., Access), more appropriated to observe uses. Or to project a future
software/license uses based on current observed situation.

152

c. Cost-Saving Identification

Based on the previous observations and experimentations, we built a
prototype (cSAM) in order to analyze real and dynamic uses of software resources
in cloud environments. First to ensure compliance and to determine real costs for
users, then to optimize the deployment of licenses based on predefined and
adjustable scenario. It is based on tag process recognition and implementation for
software identification purpose and modeling based on graph.

Comparing to SAM market tools, the prototype developed in Node]S shows it
value-added in integration of cloud dynamicity issues; it is flexible and multi-
domains; it is design (Fig. 60) to integrate quickly and easily new/complex metrics
linked with new business models and support innovative simulation functions to
allow better uses and deployment control. The simulation functions encompass
possibility to simulate a change in metric and evaluate the best in terms of licensing
costs depending the inventoried deployments and uses. Moreover it add the
possibility to evaluate the impact of changing allocated resources in terms of
licensing costs. cSAM relies on several asynchronous sources of provisioning
related with software lifecycle: First one is from procurement information system
(the weakest part of our experiment, due to the difficulty to access some
confidential data from contracts and the arcane legacy of sourcing information
system we were not yet able to automatize relaying information from it). The
second is from validation and service creation and concern product and service
catalogue enrichment, before the third supply from operations for instantiation and
usage detection (Fig. 61).

Primary SAM Data feed Simulation Industrialisation
@ _J
° @ Clw ® | v
F | 2
+ Updated and * History recuperation v+ Metric opportunities .
comprehensive * Continicus feeding + Migrations (HW, App, \
inventory views work on Cloudfoundry VI L)

+ Alert managements - use :.55&.5 DM for
+ Kink, ancmalies
* Mew metrics and
* Reportings
icensing rules
* Mawvigation in Graph
mplementation

Figure 60 - cSAM tool Features

153

Procurement —

Information System (IS) \

\
M
o. I
. 0
Delivery _ O‘
Validation IS _"\
__9 : ,
---- o_ aratio

Instantiation- _/ : ’ = liocated ressources
Exploitation IS 0‘"0

Usage — Exploitation IS —'/ = o “
“0 B (.‘Tu: | o‘l.‘

Figure 61 - Asynchronous feeding of graph for Software lifecycle

Thanks to it graph database, cSAM can analyze complex, connected data in
easier way than a relational database and persist that analysis for future reference.
Depth and density of connections and data volume affect query times importantly.
Query data with a depth of millions or tens of millions of connections per second
per computer core would be the equivalent in a relational database of millions of
“join” operations per second per core, which cannot be done. There is a significant
speed difference, and it increases the tighter connections are and the more data you
have. The more data you have, the slower it is to link data in other kinds of
databases. Using Neo4j, a shortest path query on data with tens of billions of nodes
and relationships might take one or two milliseconds to run. The equivalent SQL
query would run many thousands of times slower if an application was solely using
a relational database.

In terms of simulation, it allows us to simulate a change in licensing model -
like metric. In other words, for given software, in a given environment, cSAM can
not only check compliancy with contractual conditions, but also simulate other
licensing conditions and evaluate their costs in similar technical conditions in order
to identify optimal way of licensing (based on usage, on capacity, or on all other
criteria like shown on Fig.39)). This knowledge allows orienting potential contract

154

renegotiations, technical implementation decision, project or service architecture
etc.

Fig.62 below illustrates a simulation on our Oracle Database deployment cost
evaluation. Currently, all instances of our Oracle DB are licensed under a
“Processor”18 metric. This rule is implemented in a rule engine and running it
knowing the current running instances can guarantee compliance with contractual
acquired rights. However, it is important to check relevance of such contractual
metric considering the current deployments. cSAM allows finding an optimal metric
by applying other existing rules in the rule engine or creating a new one on the fly.
Thus, in this example, we can easily simulate a metric change, based on real time
deployment state and identify that considering our current situation, a Name User1?
metric would cost less, by far (1 453 460€ saved). This metric is also proposed by
Oracle, but any kind of metric can be tested included those not proposed by the
supplier. Prices used to evaluate the licensing costs might be:

e extracted from observed prices for identical couple of product/metric
e estimated by analogy with a product from same category/metric
e defined via a price list during simulation

18 Processor: shall be defined as all processors where the Oracle programs are installed
and/or running. Programs licensed on a processor basis may be accessed by your internal users
(including agents and contractors) and by your third party users. The number of required licenses
shall be determined by multiplying the total number of cores of the processor by a core processor
licensing factor specified on the Oracle Processor Core Factor Table which can be accessed at
http://oracle.com/contracts. All cores on all multicore chips for each licensed program are to be
aggregated before multiplying by the appropriate core processor licensing factor and all fractions
of a number are to be rounded up to the next whole number. When licensing Oracle programs with
Standard Edition One or Standard Edition in the product name, a processor is counted equivalent
to an occupied socket; however, in the case of multi-chip modules, each chip in the multi-chip
module is counted as one occupied socket."

19 Name User Plus is defined as an Individual authorized by you to use the programs which
are installed on a single server or multiple servers, regardless of whether the individual is actively
using the programs at any given time. A non-human operated device will be counted as a named
user plus in addition to all individuals authorized to use the programs, if such devices can access
the programs. If multiplexing hardware or software (e.g., a TP monitor or a web server product) is
used, this number must be measured at the multiplexing front end. Automated batching of data
from computer to computer is permitted. You are responsible for ensuring that the named user
plus per processor minimums are maintained for the programs contained in the user minimum
table in the licensing rules section; the minimums table provides for the minimum number of
named users plus required and all actual wusers must be licensed. Source
http://oracle.com/contracts.

155

Scope Results

Entity
Entite ':
e || Access Name User
Editor
Needed licenses Meeded licenses
Oracle -
: 879 610
Software
DB Enterprise Edition [+ Costs Costs
_ 713748 € 313540 €
Contract
Contract .q-
Metric | Caleuler
Processor

7| Access

MNeeded licenses
| Minutes
J| Name User
Costs
1 767 000 €

Network Device
P

7| Processor

Figure 62- cSAM screenshot - Simulation on Oracle DB licensing

The Fig. 63 illustrates another simulation based on a second scenario: if
resources allocated to support an Oracle DB instance will change, we need to
evaluate in real time this impact in terms of compliance and costs whatever the
complexity of the virtualization architecture. Reminding the definition of the
Processor metric giving on previous page, we assume that changing a processor of a
physical server will have an impact on all instances bound to it (by analogy,
instances under a metric indexed on bandwidth might be impacted by changing the
network board). The tool (via a simple graph request ()-[:RUNS*]->()) allows
identifying all the impacted instances. In our example, we identify among others, a

gap of 28 Oracle processor licenses, which represent an estimated readjustment
cost of 27 832€.

156

Scope Results

Machine HW B Show: 10 ,' Search
SERO11 v|
Hard Disk Last Qwmed MNew Cost of
. Metric Software SKU City. Oty. Oty. Delta Adj.
Intel SSD DC S6410 Series 1-|
T Processor ForliGate FO452 32 37 48 -11 -13 541 €
Metwork Board NGFW
Intel Ethernet Server Adapter Iz | DB Enterprise - - o o P — ———
p— Edition
Processor CFX-5000 NO12345t68 32 3800 48 3752 3560648
{ IntelXeon E4-6650 v3 3
S — PVU Redknee Policy REDB973P 4800 2850 7200 4350 -47 850 €
Mumber of CPU Control
6 - |
Showing 4 of 4 records Pages: n

Figure 63 - cSAM screenshot - Simulation on Oracle DB instance's resources

2. PLATFORM USE CASE II: NETWORK FUNCTION VIRTUALIZATION

Network functions virtualization (NFV) is a network architecture concept
that uses the technologies of IT virtualization to virtualize entire classes of network
node functions into building blocks that may connect, or chain together, to create
communication services. NFV relies upon, but differs from, traditional server-
virtualization techniques, such as those used in enterprise IT. A virtualized network
function, or VNF, may consist of one or more virtual machines running different
software and processes, on top of standard high-volume servers, switches and
storage devices, or even cloud computing infrastructure, instead of having custom
hardware appliances for each network function. For example, a virtual session
border controller could be deployed to protect a network without the typical cost
and complexity of obtaining and installing physical network protection units.

2.1. ORCHESTRATION & HYPERVISOR IN OPERATOR’S NETWORK

With NFV, like in Fig.62, network operators (in other words : telco) are
reducing their reliance on single-purpose appliances by taking functions that were
previously built into hardware and implementing them in software that runs on
industry-standard servers, network, and storage platforms. Beyond reducing
network operators’ dependency on dedicated hardware, leveraging NFV enables

157

more programmability in the network and greatly reduces the complexity and time-
to-market associated with introducing new services.

BEFORE

A server dedicated -
to one network T Is
function =}

M N

AFTER

VNFrunona
standard server - -

Figure 64 - HW and SW disconnection and separate lifecycle management

Telco need to quickly introduce, automate, and operationalize new
virtualized services between data centers, on top of existing network services.
Legacy hardware-based appliances dedicated to performing a single function within
the network are expensive and wasting resources. Orchestration can resolve this
issue by delivering essential framework, templates and processes in order to stitch
together virtual and physical resources, as well as automating and dynamically
configuring these resources across multiple network domains. Network operators
will be able to offer their customers dynamic instantiations of cloud resources, like
virtual machines, tenant networks, and storage, on-demand through an enterprise
portal with the ability to control network (bandwidth-on-demand) and virtual (VM)
resource allocation.

The relation between network software vendors and service providers is
deeply changing due to a confluence of economic, market, and technological factors
(Fig. 63). Software licensing is complex and may become a hindrance to the
adoption of new transformative technology. In such context both service providers
and network software vendors would be well advised to bet on trustworthy
partnership, promoting emergence of Software Asset Management. The problem
has many dimensions, but they sum up this fact: software licenses are overly strict.
A license entitles using software in a very specific manner, but many of the
licensing schemes in use are not flexible enough to really support the dynamism of

158

NFV cloud. Inflexible license might inhibit the growth of NFV, because a strict
license conflicts with dynamic requirements. No vendor is enough set up to support
dynamic entitlements (ie, if you need to scale up an application to meet peak
demand without having license in stock). Nevertheless network services on Amazon
Web Services acquired through the Amazon Marketplace can be purchased on
demand for periods as short as one hour, so dynamic licensing is possible if the
proper entitlement infrastructure is in place.

Yersterday Today
|/er{)| Traditional physical netwark \{Jﬁ] Software-driven operations
l‘ Relation 1 = 1 HW SW * Dizconnechon HW SW

alls Specific hardware or infrastructure a- Cloud bursting, muliplexing ...

ity Long cyeles ﬂ Real time
Caleulable costs Indirect. hidden costs
e Centrolized supply 9 Built to be decentralized
clear Il.'“?n:'il'ﬂ rules Canmbinaison of :nrrp!::u: rules

Figure 65 - NFV complexity factors for SAM

NFV architecture separates software purchase decisions from hardware
decisions by splitting closed appliances into separate hardware and software
components, enabling independent selection of each. Until now, service providers
had almost exclusive relations with hardware big vendors (licensing based on
invariants such as chassis ID, etc.). They have been accustomed to this sort of
comfortable situation. First steps towards NFV force them to take ownership of
their own stack. Temptations exist to keep old habits instead of starting a new NFV
initiative which will probably cost more than promoting dedicated resource
management process. Many service providers have deployed Proof of Concepts
(PoCs) use cases in this network function virtualization software but few have the
all needed operational tools in place to orchestrate and manage VNF from multiple
vendors.

159

ETSI MANO standards and Open Source initiatives (i.e., OPNVF, OpenMANO,
and ONAP) will help service providers in moving toward real implementations.
(Open Source Mano, 2017)[34], (The Linux Foundation, 2017)[35], (OPNFV,
2016)[36].

Nevertheless, nothing is easy and complexities of licensing have to be
addressed specifically: while service providers and VNF suppliers have different
interests to defend in this aspect the value creation for each of them is generated
from their collaboration and interdependency. The firsts want to pay as little as
possible and only for what they are using, only when they are using it, with the
smallest impact on VNF-onboarding process and no service disruption. The seconds
need to plan their business and claim they have to protect intellectual property
rights (IPR).

Basically, Service providers have interest to promote a usage-based licensing
(habitual model in IT), in other words, licensing models with fees that vary with
uses. “Use” encompasses notions like time, bandwidth, packets, peaks, etc.
Convergence with IT is clearly displayed by the emergence of new players that
come with open source “DNA” and open source business model but also with IT
inspired business models. Era of single vendor delivering turnkey solution is over
and like in IT, service providers needs to integrate new technologies from different
vendors.

Main VNF supplier’s concerns are about Intellectual Property Rights (IPR)
protection (1) and revenue recognition (2). For this reasons, few of them proposes
services/application like integrated license manager or capacity tracking manager;
in order to report application uses and aggregate it, decide if it licensed to run, can
be cloned, etc.

(1) Licensing must meet service provider requirement while being easy to
implement but preventing unauthorized use of the software. Network functions are
virtualized and may run on different host hardware at different times, i.e. elastic
scaling and be easily cloned as part of regular operation like migration/backup but
enable rogue employee or attacker running stolen software. Vendors want to
prevent misuse to secure their IPR, but it comes with inconvenience: too much
protection could be too inconvenient to use (i.e. service interference, legitimation
of VM cloning, tie to specific hosts, extension to future applications, etc.). It implies
that the responsibility of the license compliance fall back on Software vendors; just
the same, usage monitoring and control.

(2) VNF vendors propose to connect their license manager to business
system to be able to recognize what to bill and consider as revenue (Fig.64). It

160

questions about the vendor usage supervision legitimacy and might convey a
business encroachment to the cost of service providers.

Service tiers IIll'I
14 sage sse e

e e
! I.aill I----I

Editor’s
Editor’s Manager
Cloud

Product’s VM
Instances

Figure 66 - License & metering server management model

The fact is that since years IT Software is mainly distributed on “declarative
license” mode. In other words, during contracting phase, Software supplier trusts
Software buyer and adjust negotiated license quantity on the amount of licenses
that will be installed. Software installation and usage do not required interaction
with any license manager because IPR protection is guaranteed by first clause of
contract signed between Software vendors:

“This software and related documentation are provided under a license
agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.”

This clause quoted from a standard End-User License Agreement (EULA)
proposed by (Oracle, 2010)[37], is nearly the same than clauses proposed by other
well-known IT software vendors. These contracts are often jointly proposed with
“True-up” process (Microsoft, 2017)[38]: an annual reconciliation process through
with you can increase or decrease your license subscription counts. Main benefit
from this system is that customer keeps controls on what, where, when and how he
deploys Software, processes his own allocated/consumed resource and asset
optimization. It is translated into usage-based metrics like presented on Fig

(usage).

161

Hard truth is that while NFV offers stronger partnership opportunities
between service providers and Software vendors, first contracting methods do not
reflect expected trust between partners. Trust is not a matter of technique, tricks or
tools but of character and will.

Considering experience and process maturity on IT level, relation with
software editors based on declarative license uses and perpetual usage rights
seems to be the best approach to follow. Our aim is to replicate relevant software IT
processes on production optimization as much as possible when relevant. VNF
vendors can allow tremendous innovation and growth to telco industry, on
condition that related software licensing is adapted to the service providers and do
not stand in the way of fast on-boarding of VNF.

Fact is that trust is built with consistency so : to turn into declarative license
uses and perpetual usage rights, service providers need to have generic and reliable
process and tools to demonstrate their audit-readiness and accurate counting loop.
It involves setting up relevant SAM program which will first address the
prerequisites developed in chapter 3.

2.2. CONTEXT CONCERNS

As a reminder, a NFV cloud is designed to host and deploy several virtual
network functions (VNFs) using a cloud network. Before, to deploy a firewall
service or a Wide Area Network (WAN) service, operator were installing specific
customer premises equipment (CPE) to deliver the service. Using an NFV model,
telco can deploy NFV servers in data centers, and then deploy VNFs and network
services to the customer using software. One of the NFV advantage is that carriers
can significantly reduce new services ‘time to market’ and software rather than
specialized hardware networks.

Blue Planet delivers carrier-grade NFV orchestration capabilities for
instantiating, managing, and chaining Virtual Network Functions (VNFs). Blue
Planet provides Management and Orchestration (MANO) guidelines to manage and
automate the VNF lifecycle, and intelligently orchestrate NFV Infrastructure (NFVI)
resources across multiple data centers. It leverages RESTful APIs and model-driven
templates to simplify integration with different 0SS, SDN, and Virtual
Infrastructure Manager (VIM) platforms. Blue Planet is cloud management
plateform neutral: OpenStack and VMware are supported today, and architecture
allows support of other cloud management alternatives. The Fig.65 explains the
context the architecture of our experimental environment. The aim is to provide a
Network as a Service based on an open and flexible NFV WAN strategy.

162

NFV POPs

1 Cf\} o Consistent and quick application
of global policies to every end-point
openstack
Customer
self-service
portal
B Operator Networ X
e h Overlay R
4 =
)5 ﬁ;))'l BluePlanet
&-j Orchestrator
H global centralized contraol
uCPEs for better resource and service management
Fast execution across POPs and CPEs (virtualized and legacy)

at the network edge

Figure 67 - NFV Cloud Orchestration

The Blue Planet User Interface (Ul) yields a real-time view, dynamically
updated to show changes in the network service or the addition/removal of a VNF
from the service chain (Figure below illustrates it). Moreover, we can move through
hierarchy on various elements to get more details on individual VNFs and network
services and get access to supporting resources.

This use-case is very interesting for carriers’ point of view because it deals
orchestration allows monitoring of, simultaneously, NFV Point-of-presence which
are consuming a lot of resources but in limited amount (less than 15 distributed in
Europe) mainly based on Open-stack infrastructure; and universal Customer
Premise Equipment (CPE) mainly enterprise clients. uCPE do not consume a lot of
resources but will potentially be very numerous (millions of equipment). Concerns
related with this two types of equipment (POP and uCPE) will generate different
issues like reliability, real-time and volume which should be addressed in a
different approaches but through the same operation center.

163

vRouter vWANOP vFirewall

—>

_J]! J
VAN Access @ |

Figure 68 - Blue Planet Ul

Like shown on Fig.66, Blue Planet (BP) questions POP’s OpenStack instances
about deployed virtual machines and related allocated resources. OpenStack
returns information like BP ID, VM’s creation timestamp, VM’s end timestamp,
cpu/ram/disk allocation, running image name, admin ip address, a label typical of
VM purpose, tenant id and allocated resources and a unique hostname. The serial
number, or any information related with license management is reachable through
the vendor management module (here FortiManager provided by Fortinet) using
the admin ip address as primary key.

To get information directly related to distinguishing features of an instance,
a dedicated connector converses with the virtual machine in SSH mode, to
recompose a configuration bloc and obtain such information like identification
metadata or potential running options. For example: a Firewall instance runs an
antivirus function (an option): it is visible in the configuration bloc, found by key-
words research like “antivirus” and “enable”. A connector depends on product
vendor and is provided either by the vendor itself, the orchestrator or is developed
by the service provider. In case of Fortinet, the connector already exists in
BluePlanet. Nevertheless, in case the product will go up a version, we will be
dependant from the one in use by the connector and might be not able to recognize
a running option. In such case, we should implement a module as generic as
possible from the connector to be as less as possible dependent on the version to
catch VNF’s internal configuration.

164

This allows us to get all configuration data about an instance (in other words
configuration data) like VM sizing. Linked with the figure above (usage), we get
access to allocation (allocated resources like CPU, RAM, disk, sockets, bandwidth,
etc...) and supervision like network sizing, link between instances, managed
objects etc... We can easily get running duration of each network service using
timestamp function attached to each instance. Nevertheless, BluePlanet does not
provide yet consumption usage like traffic (event or flow per seconds, data or
bandwidth), amount of access (direct, not direct) or calls, neither resource real
consumption (like physical CPU consumption per minute). As standards assumes
that one VNF only can be instantiated on one VM (or more) we make assumption
that we can get this information through OpenStack using program like
Telemetry. Yet, we did not find opportunity to implement it but Telemetry’s aims
are to collect reliable data on the physical and virtual resource usages
comprising deployed clouds, to persist these data for subsequent retrieval and
analysis, and trigger actions when defined criteria are met the Telemetry
requirements of an OpenStack environment are vast and varied, they include,
among other, use cases like metering, monitoring, and alarming.

2.3. USAGE COLLECTION

The Telemetry Data Collection services can efficiently polls metering data
related to OpenStack services; collects event and metering data by monitoring
notifications sent from services and publishes collected data to various targets
including data stores and message queues. The Telemetry includes the following
components:

e A compute agent (ceilometer-agent-compute) which runs on each compute
node and polls for resource utilization statistics.

e A central agent (ceilometer-agent-central) which runs on a central
management server to poll for resource utilization statistics for resources
not tied to instances or compute nodes. Multiple agents can be started to
scale service horizontally.

e A notification agent (ceilometer-agent-notification) which runs on a central
management server and consumes messages from the message queue to
build event and metering data. Data is then published to defined targets.

2.4. MODELING

Our objective is to validate the fact that our graph model can be managed in
NFV cloud environment (Blue Planet Orchestration/OpenStack/uCPE). It will
validate our assumption that the model can be used to easily model complex

165

platforms and software. To achieve these experiences, we consider a Firewall VNF
from Fortinet.

We choose the Fortinet virtual Firewall (FortiGate VMX) example for several
reasons:

e FortiGate VMX licenses can be defined by several types of entitlements
and performance values vary depending on system configuration

e It will allow us to increase complexity of our use case such as:
integrating controls between product’s link (FortiGate VMX can be
enriched by options) and constraints of uses (based on technical
specifications and system performances).

To evaluate relevance of our model, we propose to define in Fig. 69 below a
NFV architecture model.

166

NFV Management and Orchestration

NFV VNFs
Insfrastructure

Figure 69 - NFV Architecture Model

The diagram illustrates:

VNFs represents the collection of Virtualized Network Functions: a Service
Provider implements network services using VNF instances (which shall encompass
several software components called VNFc) running on common infrastructure
elements.

The NFV Infrastructure (NFVI) depicting the mapping (virtualizing) of
physical servers and network facilities onto equivalent virtual functions. The NFVI
shall provide compute capabilities comparable to an IaaS cloud computing service
as a run time execution environment as well as support the dynamic network
connectivity services. The computing nodes of the NFV Infrastructure will be
located in NFVI-Points of Presence (PoP) or embedded in other network
equipments. The resource pooling concept includes a notion of multi-tenancy -

167

where the same pool of resources supports multiple applications from different
administrative or trust domains.

The NFV management plane, with various independent VNFs all competing
for resources, the management plane is responsible for allocation of the physical
resources in a fair manner to support various Service Level Agreements.

a. Graph model construction

In this section, we will follow the Software lifecycle proposed in Section IV
and refer to the Fig.2 about SAM maturity scale.

i. Purchasing
Fig.70 might be an extract from VNF Market Place which proposes the
product we identified as needed and are planning to buy under a specific metric
‘Instance’.

FG-VMX-1 FortiGate-VMX Instance < Product Name
License One (1) FortiGate-VMX [— Metric
Instance ‘;_;__----——--_-_"_‘_':_______ SKU
FG-VMX-1 <« —— ———

US$3,790.05 Unit Price
QUANTITY Entitlements

- 1 + ADD TO CART

DESCRIPTION

Fortinet Ordering Type{Based on Standard SKU) PUR
1, Hardware only plus 8*5 Forticare
Hardware Unit, Hardware Replacement, Firmware and General Upgrades

2 Hardware plus 8x5 Forticare and FortiGuard UTM Bundle
Hardware Unit, Hardware Replacement, Firmware and General Upgrades, 8x5 Enhanced Support, UTM Services
Bundle (NGFW, AV, Web Filtering, and Antispam) plus term of contract

3, 1 Year Hardware Premium Bundle Upgrade to 24x7 Comprehensive Support
24X7 Comprehensive Support, Advanced Hardware Replacement (NBD)

List Not exhaustive

Figure 70 - Product Catalog (2)

Few elements (in green above) are necessary to identify precisely this offer
and determine the level of grants (PUR) given by this type of licensing. These

168

elements have to be collected in the purchase order and reconciliated with data
from the delivery order. We can notice in this offer that softare’s editor is missing.

Some research is necessary to identify Fortinet.

In the graph (Fig. 71): first step is to create our product, with a label ‘VNF’
and several attributes found in the purchase order. In the same way, we create a
label ‘Supplier’ and ‘Editor’ to identify a node ‘License Store’ and ‘Fortinet’”:

$ MATCH (s:SUPPLIER), (e:EDITOR), (s0:SOFTWARE) RETURN s,e,so

= (3

S

Displaying 3 nodes, 0 relationships

Figure 71 - Neo4] interface - Graph 2 Step 1

CREATE (S:VNF {NAME:"FORTIGATE-VMX", SKU:"GF-VMX-1",VERSION:"5.4",
CATEGORY:"FIREWALL"})

MERGE (R:SUPPLIER {NAME:"LICENSE STORE"})

CREATE (E:EDITOR {NAME:"FORTINET"})

Then, in Fig. 72, we create several nodes with label ‘PUR’, which represents
scope of usage, metrics, environments .. The following list is not exhaustive
regarding current Fortinet definition of this couple product/metric.

CREATE (P:PUR {TYPE:"METRIC",METRIC:"INSTANCE"})

169

CREATE (P2:PUR {TYPE:"PERFORMANCE",CONCURRENTSESSION:"NO LIMIT"})
CREATE (P3:PUR {TYPE:"SPECIFICATION ", VIRTUALDOMAINSMAX:250})

CREATE (P4:PUR {TYPE:"SPECIFICATION ", USERLICENSE:"UNLIMITED"})

L
=

S
]
b3

$ MATCH (P:PUR {TYPE:'METRIC',METRIC:"INSTANCE"}) MATCH (P2:PUR {TYPE:"PERFOR..

5 N

O
O

Displaying 7 nodes, 0 relationships

Figure 72 - Neo4] interface - Graph 2 Step 2

Then, in Fig. 73: to create relations between nodes:

e Between an editor and VNF (EDITS): ‘Fortinet’ edits ‘Fortigate-VMX’

e Between a VNF and PUR (DEFINES): ‘Fortigate-VMX’ is licensed under
Instance metric

e Between a supplier and a product (DISTRIBUTES): ‘License Store’
distributes ‘Fortigate-VMX’.

Once again, this process and collect are essential to fulfill Identification
requirements: PUR are translated in the SKU, this SKU enriches the SWIDTag

delivered during provisioning processes; it guarantees the link between a contract
and VNF/ VNF and Instance.

MATCH (P:PUR {TYPE:"METRIC',METRIC:"INSTANCE"})

170

MATCH (P2:PUR {TYPE:"PERFORMANCE",CONCURRENTSESSION:'NO
LIMIT'})

MATCH (P3:PUR {TYPE:"SPECIFICATION ", VIRTUALDOMAINSMAX:250})
MATCH (P4:PUR {TYPE:"SPECIFICATION ", USERLICENSE:'UNLIMITED'})
MATCH (S:VNF {NAME:"FORTIGATE-VMX"})

MATCH (R:SUPPLIER) MATCH (E:EDITOR {NAME:"FORTINET"})

MERGE (C:CONTRACT {NAME:"CUIMT002",DATE:18-10-
2017,CONTACT:"ZOE"})

MERGE (SP:ENTITY {NAME:"SERVICE PROVIDER"})

MERGE (P)-[D:DEFINES]->(S) MERGE (P2)-[D2:DEFINES]->(S)
MERGE (P3)-[D3:DEFINES]->(S) MERGE (P4)-[D4:DEFINES]->(S)
MERGE (E)-[E1:EDITS]->(S) MERGE (R)-[D1:DISTRIBUTES]->(S)
MERGE (R)-[S1:SIGNS]->(C) MERGE (SP)-[S2:SIGNS]->(C)

MERGE (C)-[DC:DEFINES {QUANTITY:2, UNITPRICE:"3790", CURRANCY:"$"}]-
>(S)

171

& A
$ MATCH (P:PUR {TYPE:'METRIC',METRIC:"INSTANCE"}) MATCH (P2:PUR {TYPE:"PERFOR. = = i - O X

» CID CED comen QERED CLLD D :

CONTRACT Color: Sze: @ @ @ Gaption: [<id>) [DATE | [CONTACT) QLIS

Figure 73 - Neo4] interface - Graph 2 Step 3

172

i1. Provisioning

We create a label ‘NetworkService’ and a node ‘NetworkServicel’
which will include our Firewall. Each NetworkService has its own SKU
characterizing its composition and eventual licensing models (in case where the
service provider will propose it as a commercial offer).

The relations ‘CONTAINS’ is enriched by properties like a service id
(specific SKU), in Fig.74.

MATCH (S:VNF)
CREATE (A:NETWORKSERVICE {NAME :'NETWORKSERVICE1', SKU:"NS001"})
CREATE (A)-[C:CONTAINS]->(S)

$ MATCH (P:PUR {TYPE: 'METRIC' METRIC:"INSTANCE"}) MATCH (P2:PUR {TYPE:"PERFOR. = X . A~ O X

10 I conTRACTH) (Punis]
Graph

E= .
A 4

Text

<P

. o T DEFINES — — — CUIMT...

O, v

N | %@

Displaying 10 nodes, 10 relationships.

Figure 74 - Neo4] interface - Graph 2 Step 4

iii. Instantiation
To fulfill the step 1 (visibility) of the maturity scale, we need to have an
exhaustive view of infrastructure, resources and instantiation.

173

Crucial point is now to create a link between the instance and the product
which we bought (Fig. 75). The Orchestrator knows and updates all identification
elements of it components. This allows creating the link between the product in
catalogue and the installed product.

MATCH (S:VNF{NAME:'FORTIGATE-VMX'})

MERGE (I:INSTANCE {NAME:"FW-VM1",SKU:"GF-VMX-
1",IMAGE:"FORTIGATEVMX1"})

CREATE (I)-[I1: INSTANTIATES] ->(S)

L

S
k']
)

$ MATCH (P:PUR {TYPE:'METRIC',METRIC:"INSTANCE"}) MATCH (P2:PUR {TYPE:"PERFOR..

*11) CONTRACT(1) 4

i M E
-

. L5
FN-VMA % &s‘i"
iy,
< r'r > m’“"”"i"fs

g L, CUIMT...

S
2 -
] Sighg

<id=: 12 METRIG: INSTANCE TYPE: METRIC

Figure 75 - Neo4] interface - Graph 2 Step 5

The characteristics of the VNF, its instances and their configuration have to
be traceable regardless of the deployment conditions. This requirement of
traceability encompasses precise identification of Software and resources to allow
maintenance of deployment inventories. [aaS (Open Stack) offers bare HW
resources access which are visible through Blue Planet monitoring interface.

In our example, the firewall has been deployed on the cloud via the
orchestrator and run as one instance (Fig.76).

174

MATCH (I:INSTANCE {NAME:"FW-VM1"})
MERGE (VM:VM {NAME:'VM2',CPU:4, RAM:8})
MERGE (T:TENANT {NAME:' TENANT2',NBINSTANCE :20, RAM :100})

MERGE (v :VLAYER {NAME:'OPENSTACK?2', REGION:'FRANCE',

VERSION:'ZOE'})

MERGE (M:MACHINE {NAME:'BAREMETAL2'})
MERGE (R:RESOURCE {TYPE:'CPU2', RAM:'X86'})
CREATE (VM)-[RO:RUNS]->(1I)

CREATE (T)-[R1:RUNS]->(VM)

CREATE (V)-[R2:RUNS]->(T)

CREATE (M)-[R3:RUNS]->(V)

CREATE (M)-[R4:HAS {NUMBER:20}]->(R)

- - — - - I _ b & e e)
$ MATCH (P:PUR {TYPE:"METRIC',METRIC:"INSTANCE"}) MATCH (P2:PUR {TYPE:"PERFOR.. = Il “ X
© “(16) CONTRACT(1) 1
Grph
Table ¢
N Q;,% O
- OPENS. RUNS —# TENAN RUNS M2 AUNS FW-VI1 N o
= coo NSTANTIATES
>

RUNS
L
@c')'
&
i
o
&
P LS
g
k
3

BAREM... §)
w
oy
E: Sng
CUIMT...
5-.&“5
CPUZ2

=]
7]

Displaying 16 nodes, 16 relationsh

Figure 76 - Neo4] interface - Graph 2 Step 6

175

In case of migration or backup purpose, among others, we need to keep and
maintain a link between instances. We propose to create a relation between

iv. Options
There are a number of features in our Firewall that can be configured to
either be displayed or disabled. Activation of feature influences the licensing
conditions and prices. We choose to represent it using a label ‘Feature’, each node
‘Feature’ represent a function of the Firewall. The relation between the instance
and the function is enriched by the status of activation. ‘1’ represents a displayed
feature, ‘0’ represents a disabled one (in Fig.77).

CREATE (F:FEATURE {NAME:"CENTRAL NAT TABLE"})
CREATE (F2:FEATURE {NAME:"LOAD BALANCE"})
CREATE (F3:FEATURE {NAME:"EXPLICIT PROXY"})
CREATE (F4:FEATURE {NAME:"DYNAMIC PROFILE"})
MATCH (I:INSTANCE {NAME:"FW-VM1"})

CREATE (1)-[F5:FEATURES {STATUS:1}]->(F)

CREATE (1)-[F6:FEATURES {STATUS:1}]->(F2)
CREATE (1)-[F7:FEATURES {STATUS:0}]->(F3)

CREATE (1)-[F8:FEATURES {STATUS:1}]->(F4)

176

s .
$ MATCH (I:INSTANCE {NAME:"FW-VM1"}) MATCH (F:FEATURE {NAME:"CENTRAL NAT TABLE"}) .. ! B

6B *(5) INSTANGE(1)

»
e

o
A
T,
%
)

FW-VT

g
A

<id>: 44 STATUS: 1

Figure 77 - Neo4] interface - Graph 2 Step 7

b. Cost-saving Identification

Like in section V.1.5.c, we propose two simulations. The first one simulate a
metric change for the Firewall Fortigate from Fortinet (Fig.78). Based on relation in
the graph including usages, user access, allowed users, time spent on application,
running time of all instances, virtual link between instances etc., we easily identify
that for this specific software, in this scope (Entity), under Access metric, we would
need 879 licenses for an evaluated cost of 186 348€. Editor might not propose all
these metrics in his offer, nevertheless this knowledge is valuable. In case were a
metric does not exist for a given editor, cSAM proceed by analogy with software and
price from the same category. Accuracy of the simulation depends on the volume of
metric and software in the base.

177

Simuler un changement de meétrique

Sirmnulation

Périmétre Résultats
Fnl:ry
o Access Minutes

Editor

Fortinet Nesded censes Neaded licenses

879 11871

Software

Tortigate-vimx Costs Cosis

186 348 € 130 581 €

Contract

Contra

Meétrigque lﬂdﬁule-r]

MName User

MNetwork Device

7| Access
. Meaded hoermsas Headed hosnses
| Minutes 610 81
11
Coata Coats
7] Marne Lser 313 540 € 95 823 €

214

Figure 78 - cSAM - simulate metric change

We can instantly (thanks to the chain or “runs” relations) evaluate potential
impact of resources reallocation on each virtual or physical layer(s) in terms of
licensing costs. For example, changing a CPU in a data center or a tenant has an
impact for all instances with a processor-capacity-based metric; changing network
board has an impact on instances with a traffic-based metric.

Fig.79 illustrates a resource change : what will be the impact of a processor
replacement on hardware (here the machine SER001)? Graph allows winding up
each layers of virtualization and to identify impacted instances (which are
supported by this physical and/or virtual equipment given a processor-based
metric). cSAM calculates previous amount of needed license, new amount after
resource changes, compares it with license stocks and evaluate costs of adjustment
(based on contract’s average prices). Estimated cost of adjustment is around 75k<€.
It offers new interesting vision of infrastructure optimization, adding a license
criteria.

178

Périmétre
Machine HW

{ SER001

Hard Disk

Hard Disk

Netweork Board

Netweork Board

CPU

> IntelXeon E5-2650 v4

Number of CPU
8

B B E] E]

Résultats

Show: 10

Metric Software
Processor AFP
Processor FortiGate

NGFW

Showing 2 of 2 records

SKU

KEDO987

FO452

48

20

a7

Figure 79 - ¢cSAM - simulate resource change

Cost of
Delta Adj
-76 -T5544 €
-59 -T2 629 €

Pages: Previous n Next

179

180

Chapter 6

VI. CONCLUSION

his final chapter will be organized as follow. (1) We will remind the keys
issues who motivated our works; (2) we will remind our main
contributions and (3) propose a set of tracks to overcome their current limitations.

1. REMINDING THE ISSUES

Cloud computing represents a more dynamic and flexible approach to
provide resources on hardware and software level. It supposes innovative
distributed architectures, ownership and controls as well as new software pricing
models.

The disruptive influence of cloud computing on software licensing has to be
taken into consideration mainly because traditional and complex licensing models
often jeopardize using these products in the cloud. The flip side of the flexibility
promised by large-scaled virtualization is that software licensing issues may hold
back the benefices offered by the Cloud environments. The rise of shelfware and the
growing number of license audits by commercial software vendors are together
raising awareness of the software license risks, counterfeiting and over-
deployment. This context stresses the necessity to adapt and reinforce automation
of current SAM processes when organizations use cloud computing.

Moreover, some techno-economic drivers are converging to create a
paradigm of change in the design and operation of future telecommunications

181

networks and services. “Softwarization”, currently impacting the Network,
highlights a new dimension of network management. We assume that software
license’s management in real-time and on large-scale cloud environment will
sophisticate Virtualized Network Function (VNF, or Network Software) on-boarding
processes. Network virtualization and softwarization disrupt software licensing
business models.

Altogether, the complexity of software lifecycle management, the
multiplication of actors in this cycle and the lack of efficient tools, lead to an
understandable disconnection between software usages, associated hardware and
the related licensing model. Also, because cloud environments tend to automate
software lifecycle management, SAM processes are expected to be automated as
well. The combination of on premise solutions and modern, fast growing cloud
technologies makes it hard to manage the software lifecycle as a part of SAM. Many
products provide their own license enforcement mechanism; however, most of
these are problematic for use in the cloud. These mechanisms may depend on
features difficult to provide in the cloud, such as hardware keys, physical server
IDs, CPU class, and global user identity. Where schemes can be implemented on one
cloud, they cannot generally span multiple clouds (hybrid model). The main
hindrance to overcome this issue lays in identification of software during it all
lifecycle, including identification of product uses rights (PUR). Heterogeneity of the
restriction and right’s nature make it extremely difficult likewise identification of
consumed cloud resources to run software on each.

2. REMINDING THE CONTRIBUTIONS

The idea that we developed is that turning to the Cloud is not changing the
object of SAM, but altering how SAM processes should be designed. Turning to the
Cloud, SAM controls must be done in real time taking into account the fast rhythm
of changes: services are provisioned, configured, reconfigured and decommissioned
in a matter of minutes. Compliance risks are increased by the ease and speed of
provisioning, which can bypass traditional centralized processes. As software
becomes omnipresent, we developed the necessity to adopt existing and relevant
software license optimization IT process. Furthermore we questioned the emerging
contractual relation trends between service providers and network software
editors;

Effective SAM results in the ability to have accurate and complete view of
software assets entitlements that are owned, deployed and used. However, if most

182

of the recognition tools are quite efficient (we proposed an evaluation of the most
often-used), a common mistake is to underestimate the process of identifying
software after discovery. There is a huge difference between software discovery,
software recognition and software management. If ISO/IEC 19770 is currently the
most advanced proposition to overcome software identification throughout it
whole lifecycle, we underlined it relative efficiency in particular because of
software market weak adherence. For efficiency reasons, we proposed to adapt the
ISO/IEC 19770-2 with a concept borrowed from large retailers: Stock Keeping Unit.
The intended benefits of this better management of identification include easier
demonstration of proof of ownership, cost optimization of the use of entitlements
and easier license compliance management.

Software Asset Management is mainly about deciding about a strategic
approach of understanding software needs so that their deployment’s efficiency
and effectiveness will contribute to maximize the return on investment. The fact is
that license optimization requires a major shift within a company to implement
proactive SAM processes and be able to harness the power of this decisive business
asset. We proposed a model for SAM approach in the cloud based on control loop
and automatic computing concepts; we discussed about relevance of using a graph
database as a central process data connection. Then we proposed a qualitative
evaluation of our model based on two relevant use-cases. First use-case deals with
Paa$ Instanciation through Cloud Foundry. Second deals with virtualized network
function orchestration. We demonstrated that the model can be adapted to fit
complex and distinct cloud environment overtaking concerns brought by complex
licensing models.

Following this model, we proposed a multi-domain prototype build to
integrate cloud dynamicity issues; designed to integrate quickly and easily new
composed metrics support innovative simulation functions to allow better uses and
deployment control. The simulation functions encompass possibility to simulate a
change in metric and evaluate the best in terms of licensing costs depending the
inventoried deployments and uses; and the possibility to evaluate the impact of
changing allocated cloud resources in terms of licensing costs.

3. FURTHER WORKS

In further works we will improve Product Usage Rights identification by
proposing normalized standards. SKU itself is not self-sufficient because not
normalized and might not describe all details of specific agreement between the

183

software supplier and software users. It still necessitate to be translated into
entitlements and easily transformed to automate compliancy verification. In this
aim, we could propose a general model of entitlement’s classification handling most
of the current and forecasted licensing models.

To go further in our model tests, we will increase its complexity, by
implementing more complex licensing rules. We need to strengthen user interfaces
and create relevant queries allowing realistic SAM controls and optimization
especially considering elastic applications. The qualitative evaluation proposed will
be enriched in further works by a quantitative evaluation approach, among others
to measure cost of interception of identification metadata and to measure cost of
interception of usages.

We believe that an major step in SAM approach will be to move compliancy
and optimization control from a posteriori (observation of current deployments
leading to adapted corrective actions) to a priori (before software instantiations).
The most advanced usage opportunities provided by the cloud (elasticity, load
overflow) add a new dimension to SAM controls. Elasticity consists of being able to
switch to other clouds in case of overload; these clouds might have different
responsibilities, geographical location or different architectures. It can strongly
impact licensing compliance. Overflow consists in punctually requesting all the
potentially available resources in a given geographical scope (for example all the
resources available in a building, including smartphones, boxes, etc.)... to solve a
contention problem. The impact of these evolutions will be even more penalizing in
NFV where concerns about bandwidth and response time are crucial and where the
potential occurrences are counted by million. There is no work to date on SAM
optimization in next-generation cloud environments.

184

REFERENCED WORKS

[1] Shukla, G., 2017. Demystifying Accounting for Software Expenses, s.l.:
Ovum.

[2] N.F. Holsing, D. Y., 1999. Software Asset Management: analysis,
development and implementation. Information Resources Management Journal,
Volume 12 Issue 3, pp. 14-26.

[3] M. Ben-Menachem, G. M., 2004. Inventorying information technology
systems: supporting the "paradigm of change". IEEE Software, Sept.-Oct., 21(0740-
7459), pp- 34 - 43.

[4] M. Ben-Menachem, G. M., 2005. IT assets-control by importance and
exception: supporting the "paradigm of change". Volume 22, pp. 94 - 102.

[5] L.McCarthy, 2011. Managing Software Assets in a Global Enterprise. IEEE
International Conference on Services Computing, pp. 560-567.

[6] M.Sharifi, 2009. A Novel ITSM-Based Implementation Method to Maintain
Software Assets in Order to Sustain Organizational Activities. Athens, IEEE.

[7] M.Ben-Menachem, 2008. Towards management of software as assets: A
literature review with additional sources. Information and Software Technology,
50(4), pp.241-258.

[8]P. Klint, C. Verhoef, 2002. Enabling the creation of knowledge about
software assets. Data & Knowledge Engineering, 41(2-3), pp.141-158.

[9] M.McCarthy, L.M. Herger 2011. Managing Software Assets in a Global
Enterprise. [EEE International Conference on Services Computing, pp. 560-567.

[10] A.Manzalini, A. G. W. K., 2015. Softwarization of telecommunications,
Special issue : SDN and NFV. Information Technology, Issue 10.1515/itit-2015-0025,
pp- 321-329.

[11] C.Matsumoto, 2014. Ciena turns NFV into an Online Shopping Experience.
[En ligne] Available at: https://www.sdxcentral.com/articles/news/ciena-turns-
nfv-online-shopping-experience/2014/12/

[12] R. Jones, 2016. Dynamic licensing for applications and plugin framework
for virtual network systems. US, Patent No. US20160226663 A1l.

185

[13] L.M.Contreras, P. H. D., 2015. Operational, organizational and business
challenges for network operators in the context of SDN and NFV. Computer Network,
9 December, Volume 92, Part 2, pp. 211-217.

[14] M. Adler, T. R. N., 2014. Systems and methods for identifying a secure
application when conneting to a network. US, Brevet n® US20140282821 Al.

[15] M.McRoberts, 2013, Software Licensing in the Cloud Age, Solving the
Impact of Cloud Computing on Software Licensing Models. The International
Journal of Soft Computing and Software Enginnering, Vol 3, No.3

[16]M.Thompson, Practical ITAM - The essential guide for IT Asset Managers
- getting started and making difference in the field of IT Asset Management,
published by The ITAM Review, July 2017, ISBN 978-1547011216

[17]M.Thompson, 28th Feb 2015, SAM Tool Buyers Guide [On Line] Available
at : https://www.itassetmanagement.net/2015/02/28/sam-tool-buyers-guide/. ,
October 2017.

[18] Aspera Smart track, www.aspera.com/fr/, September, 2016
[19] Snow License Manager, www.snowsoftware.com/fr, September, 2016

[20]Flexera Flexnet Manager, www.flexera.fr/enterprise/products/software-
license management/flexnet-manager-engineering-apps/

[21] Spider Brainware, www.brainwaregroup.com/en/solutions/software-
asset-management/spider-licence/, September, 2016

[22] Eracent, https://eracent.com/tag/software-asset-management/
September 2016

[23] M.Thomson, 31st July 2013, Review, HP Asset Manager for SAM [online]
available at: https://www.itassetmanagement.net/2013/07/31/review-hp-asset-
manager-sam/ October, 2017

[24] BMC Remedy, www.bmcsoftware.fr/it-solutions/asset-
management.html, September, 2016

[25] GLPI - OCSng, www.glpi-project.org/, September, 2016 &
www.ocsinventory-ng.org/fr/, September, 2016

[26] BSA, The Software Alliance, Seizing Opportunity through License
Compliance, Global Software Survey 2016, May 2016,

186

[27] ISO/IEC 19770-2:2015, ISO/IEC 19770-2, Information technology —
Software asset management — Part 2: Software identification tag

[28]TagVault Membership list available on
www.tagvault.org/about/membership-list/, September, 2016

[29]ISO/IEC 19770-3:2016

[30] IBM Corporation, June 2005, An architectural blueprint for autonomic
computing, Autonomic Computing White Paper; Third Edition

[31] S. Kachele, C. Spann, F.J. Hauck, J.Domaschka, 2013, Beyond [aaS and
PaaS: an extended Cloud Taxonomy for Computation, Storage and Networking,
Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference, 9
- 12 Dec. 2013, Dresden, Germany, DOI: 10.1109/UCC.2013.28

[32] www.cloudfoundry.org/, September, 2016
[33] https://github.com/cloudfoundry-incubator/cf-abacus, January 2017

[34] Open Source Mano, An ETSI OSM Community White Paper. Technical
Overview, Release Two. - Sophia Antipolis, France: ETSI, 2017.

[35] The Linux Foundation, Harmonizing Open Source and Standards in the
Telecom World. The Linux Foundation, 2017.

[36] OPNFV, State of NFV and OPNFV, Study on "What Operators Think of
OPNFV". The Linux Foundation, 2016.

[37] Oracle License and Service Agreements [Online]. - 26 August 2010. - 5
May 2017. - http://www.oracle.com/us/corporate/contracts/license-service-
agreement/license-service-agreement-070712.html

[38] Microsoft License Review [Online]. - 21 March 2017. - 5 May 2017. -
http://www.microsoftlicensereview.com/?p=1159

187

