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1 Introduction 

 

Nonlinear optics, which has attracted the world’s attention since the invention 

of LASER in 1960, is an important technique for expanding the frequency range 

of existing laser sources thanks to the excellent coherent properties and the 

high intensity of the laser. A huge spectral range can be then addressed, from 

ultraviolet to visible, infrared and even terahertz, so that nowadays nonlinear 

optics plays vital roles in the fields of medicine, industry, military applications, 

spectroscopy, and quantum information. During a nonlinear process, phase‐

matching conditions have to be fulfilled in order to get an optimal frequency 

conversion efficiency compatible with real applications. There are two main 

ways for realizing such a condition: the first one is by using anisotropic 

dispersive crystals and is called birefringence phase‐matching (BPM); the other 

one is based on the periodic modulation of the sign of the second‐order 

nonlinear coefficient of isotropic or anisotropic crystals, which corresponds to 

quasi‐phase‐matching (QPM). Reaching BPM or QPM is then a crucial target, 

but whether BPM or QPM, nonlinear crystals must be of excellent crystal 

quality, exhibiting large size, high damage threshold and a large transparency 

range. The present dissertation is at the heart of this problem, since we have 

addresses materials and phase‐matching purposes. We have grown large size 

La3Ga5.5Nb0.5O14 (LGN) crystals and evaluated their nonlinear properties in the 

framework of BPM. This crystal is a promising nonlinear crystal for high 

energy applications in band II of transmission of the atmosphere, i.e. between 

3 μm and 5 μm, for Lidar applications for example. Concerning the QPM 

approach, we have realized the first full validation of the theory of angular 

QPM (AQPM) in the case of a biaxial crystal, by studying a periodically‐poled 

large‐aperture Rb‐doped KTiOPO4 (PPRKTP) crystal. 
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 This work has been performed in the frame work of an international 

collaboration between Shandong University in China where the LGN crystals 

were grown, KTH in Sweden where the PPRKTP crystal was poled, and 

University of Grenoble‐Alpes in France where the most parts of the nonlinear 

theoretical and experimental studies on LGN and PPRKTP were done.  

 

 Chapter II gives all the theoretical tools that are necessary for achieving 

and analyzing our experiments, including the description of light propagation 

based on the real part of the first‐order dielectric permittivity tensor that 

defines the linear properties, and the basis of second‐order nonlinear optics by 

focusing on BPM and QPM.  

 

 Chapter III is devoted to the LGN crystal. Firstly, we introduced the crystal 

structure and the growth method we used, i.e. the Czochralski method, 

including the description of all the relevant optimization parameters that have 

to be mastered, and that lead to the LGN crystals we used for the experiments. 

Secondly, we worked on the linear optical properties of LGN by measuring the 

transmission spectra in polarized light, the optical damage threshold, as well as 

the Sellmeier equations. Thirdly, the second‐order nonlinear optical properties 

of LGN have been theoretically evaluated: it includes the BPM conditions and 

the corresponding effective coefficients of second‐harmonic generation (SHG), 

sum‐frequency generation (SFG), and difference‐frequency generation (DFG). 

Finally, the BPM angles of SHG and DFG were directly measured by using 

the sphere method. Meanwhile, the nonlinear coefficient d11 was measured 

using the Maker Fringes method as well as BPM measurements. All these 

results proved the strong potentiality of LGN. 

 

 Chapter IV reports the first general validation of the AQPM scheme in the 
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case of a biaxial crystal. The PPRKTP crystal was used because it can be 

obtained in larger size so that it can be shaped as a sphere. This validation 

included the calculations and the measurements using the sphere method of the 

angular distribution of the four SHG AQPM types that are allowed in 

PPRKTP on the one hand, and of the corresponding effective coefficients on 

the other hand. The agreement between theory and experiment was perfect, 

which opens a new and exciting door in nonlinear optics. 

 

 The works performed during this thesis led to the three publications given 

in the Appendix: 

 

- D. Lu, T. Xu, H. Yu, Q. Fu, H. Zhang, P. Segonds, B. Boulanger, X. Zhang, and 

J. Wang, “Acentric langanite La3Ga5.5Nb0.5O14 crystal: a new nonlinear crystal for the 

generation of mid‐infrared parametric light” Optics Express 24 (16), 17603 (2016); 

- F. Guo, D. Lu, P. Segonds, J. Debray, H. Yu, H. Zhang, J. Wang, and B. Boulanger, 

“Phase‐matching properties and refined Sellmeier equations of La3Ga5.5Nb0.5O14” 

Optical Materials Express 8(4), 858 (2018); 

- D. Lu, A. Peña, P. Segonds, J. Debray, S. Joly, F. Laurell, V. Pasiskevicius, H. Yu, 

H. Zhang, J. Wang, C. Canalias and B. Boulanger, “Validation of the Angular Quasi-

Phase-Matching theory for the biaxial optical class using PPRKTP”, Optics Letters, 

accepted (2018). 
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2 Theory 

 

2.1 Introduction 

 

This chapter presents briefly the theoretical elements which will be used in the 

next chapters. The first part deals with the linear optical properties, and 

describes the propagation of light based on the real part of the dielectric 

permittivity tensor. The second part introduces the basis of nonlinear optics, 

by focusing on the quadratic parametric phenomena. Two ways for obtaining 

the maximum parametric generation are specifically described, one is 

birefringence phase‐matching [1], and the other one is angular quasi‐phase‐

matching [2]. 

 

2.2 Linear optical properties 

 

When light propagates in a medium, its electric field gives rise to an induced 

polarization in the medium. This polarization can vary linearly or nonlinearly 

with the electric field according to the intensity of the exciting electric field.  

 

When the light intensity is lower than around 1 MW/cm2, then the 

induced polarization is written [3]: 

�⃗� 𝜔 𝜖 𝜒 𝜔 . �⃗� 𝜔      (2.1) 

 

where 𝜖  is the free‐space permittivity, and 𝜒 𝜔  is the first‐order electric 

susceptibility tensor that is a complex quantity in the general case. The dot “.” 

stands for the contracted product. It is also a rank‐2 tensor, which means that 
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it is represented by a 3 × 3 matrix. The present work is limited to transparent 

media, so that the imaginary part of 𝜒 𝜔  can be neglected. 

 

In a non‐conducting and non‐magnetic medium, the propagation equation 

of light at the circular frequency ω is: 

∇⃗ ∇⃗ �⃗� 𝜔 �⃗� 𝜔 𝜔 𝜇 �⃗� 𝜔    (2.2) 

 

where 𝜔 2𝜋𝑐/𝜆, λ is the wavelength and c is the velocity of light in a vacuum; 

𝜇  is the free‐space permeability. Combined with Eq. (2.1), Eq. (2.2) becomes: 

∇⃗ ∇⃗ �⃗� 𝜔 𝜖 𝜔 . �⃗� 𝜔 0    (2.3) 

 

where “ ” stands for a vectorial product and “.”for the contracted product;  

𝜖 𝜔  is the dielectric permittivity tensor of the crystal defined by 𝜖 𝜔

1 𝜒 𝜔 . It is then a rank‐2 tensor. In the crystal, there is an orthonormal 

frame, named the dielectric frame written (x, y, z), in which the dielectric 

tensor of the medium is diagonal, which gives for the representative matrix: 

 

𝜖 𝜔
𝜀 0 0

0 𝜀 0
0 0 𝜀

      (2.4). 

 

The axes ( Ox⃗ , Oy⃗, 𝑂𝑧 ) are the principle axes of the medium. Three 

situations exist according to the relative values of εrxx , εryy , and εrzz , which 

define the three optical classes [4]. The isotropic optical class corresponds to 

𝜀 𝜀 𝜀 ; it includes gaz, liquids, glasses and cubic crystals. 

Rhombohedral, tetragonal and hexagonal crystals belong to the uniaxial optical 

class, which corresponds to 𝜀 𝜀 𝜀 . The biaxial optical class is 

defined by 𝜀 𝜀 𝜀  and it concerns monoclinic, triclinic and 
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orthorhombic crystals. In this work two crystals are studied: LGN and 

PPRKTP, which belong to the uniaxial and biaxial optical classes, respectively. 

 

The wave plane is a solution of the propagation equation (2.3); it is written 

[4]: 

�⃗� 𝜔, 𝑟, 𝑡 𝑒 𝜔 𝐸 𝜔, 𝑟 exp 𝑖𝑘 ∙ 𝑟 exp 𝑖𝜔𝑡    (2.5) 

 

where 𝑟 is the position, 𝑒 𝜔  is the unit vector of the electric field vector, 

𝐸 𝜔, 𝑟  is the scalar complex amplitude of the electric field verifying 

𝐸∗ 𝜔, 𝑟 𝐸 𝜔, 𝑟 , and 𝑘  is the wave vector that corresponds to the 

direction of propagation of the wave. In a lossless medium, 𝑘 ∙ 𝑟 corresponds 

to a forward propagation whereas 𝑘 ∙ 𝑟  corresponds to a backward 

propagation. 

 

When an electromagnetic wave propagates in a given direction of unit 

vector 𝑢 in an anisotropic medium, with |𝑢 𝜃, 𝜑 | 1, the wave vector can 

exhibit two different values, 𝑘  and 𝑘  corresponding to 𝑘  and 𝑘  

defined as: 

 

𝑘 𝜔, 𝜃, 𝜑 𝑛 𝜔, 𝜃, 𝜑 𝑢 𝜃, 𝜑     (2.6) 

 

where 𝜃, 𝜑  are the angles of spherical coordinates of 𝑢  in the dielectric 

frame (x, y, z), as presented in Fig. 2.1.  
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Figure 2.1 Orientation of the direction of propagation 𝑢 in the dielectric frame 

(x, y, z): ux, uy and uz are the Cartesian coordinates of 𝑢 while θ and φ are the 

angles of spherical coordinates. 

 

According to Fig. 2.1, the Cartesian coordinates are related to the angles of 

spherical coordinates by: 

 

𝑢 sin 𝜃 cos 𝜑      
𝑢 sin 𝜃 sin 𝜑      
𝑢 cos 𝜃          

        (2.7). 

 

Starting from the propagation equation (2.3) it can be shown that the 

refractive index n in a given direction of propagation can be found by solving 

the following equation at the circular frequency ω, which is called the Fresnel 

equation [5]: 

 

𝑢 ∙ 𝜖 / 𝜖 𝑛 𝑢 ∙ 𝜖 / 𝜖 𝑛 𝑢 ∙ 𝜖 / 𝜖 𝑛 0 

(2.8). 

This equation has two solutions in the general case, which can be written: 

𝑛 𝜔, 𝑢
2

𝐵 ∓ 𝐵 4𝐶
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with  B 𝑢 𝑏 𝑐 𝑢 𝑎 𝑐 𝑢 a b  

C 𝑢 𝑏𝑐 𝑢 𝑎𝑐 𝑢 𝑎𝑏  

a 𝑛 𝜔 , b 𝑛 𝜔 , c 𝑛 𝜔       (2.9) 

 

nx(ω), ny(ω) and nz(ω) are the three principal refractive indices. These are scalar 

quantities defined from the principal values of the dielectric permittivity tensor, 

i.e.: 𝑛 𝜖  , 𝑛 𝜖  and 𝑛 𝜖 . 

 

The graphical representation of 𝑛 𝜔, 𝑢  is called the index surface, and 

the quantity 𝑛 𝜔, 𝑢 𝑛 𝜔, 𝑢  is the birefringence of the direction 𝑢 at 

the circular frequency 𝜔. 

 

In the case of a biaxial crystal, the three principal refractive indices have 

different magnitudes, i.e. 𝑛 𝑛 𝑛 . The corresponding index surface is 

represented Fig. 2.2 in the two possible situations: 𝑛 𝑛 𝑛 , which 

defines what is called a positive biaxial crystal, and 𝑛 𝑛 𝑛  that 

corresponds to a negative biaxial crystal [4]. 

 

Figure 2.2 The index surface of a positive (left) and a negative (right) biaxial 

crystal represented in 1/8 of the space. OA stands for an optical axis. 
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Note that the principal axes of the index surface coincide with the 

crystallographic axes for the orthorhombic, tetragonal and cubic crystal 

systems. It is only the case for one principal axis, which is the z axis by 

convention, in rhombohedral and hexagonal crystal systems. It is also true for 

one principal axis in the monoclinic system, but the two other axes are not 

connected. There is no connection between the principal axes and the 

crystallographic axes in the case of triclinic systems [6]. 

 

Figure 2.2 indicates that the birefringence is nil in a given direction located 

in the (x, z) plane; it is called the optical axis (OA). Along this direction there 

is a contact between the external and internal layer of the index surface. This 

specific point of the space is called the ombilic. There are in fact 4 ombilics 

lying in the (x, z) plane, which give two optical axes, each joining two opposite 

ombilics. It is why such a crystal is called biaxial. The angle V between OA 

and the z axis is expressed as [4]: 

 

𝑠𝑖𝑛 𝑉 𝜔
𝑛 𝜔 𝑛 𝜔
𝑛 𝜔 𝑛 𝜔

 

     (2.10) 

 

The propagation of light along the optic axes leads to a nice phenomenon 

that is the internal conical refraction [7, 8]. It exists only in biaxial crystals. 

 

In the case of a uniaxial crystal, the principal refractive indices verify 

𝑛 𝑛 𝑛 . By convention, they are defined as the ordinary and the 

extraordinary principal refractive indices 𝑛  and 𝑛 , respectively: 𝑛

𝑛 𝑛  and 𝑛 𝑛 . In that case, the index surface has only two ombilics 

located along the z axis as shown in Fig. 2.3. These two ombilics then define a 
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single optical axis, which explains why such a crystal is called uniaxial. Note 

that the optical axis is always oriented along the crystallographic fold rotation 

axis of higher order. The ordinary sheet is spherical, i.e. 𝑛 𝜔, 𝜃, 𝜑 𝑛 𝜔  

for any direction. The extraordinary sheet is ellipsoidal, i.e. 𝑛 𝜔, 𝜃, 𝜑

𝑐𝑜𝑠 𝜃/𝑛 𝜔 𝑠𝑖𝑛 𝜃/𝑛 𝜔 / . By convention a uniaxial optical class is 

said positive when 𝑛 𝑛 , and negative when 𝑛 𝑛 , as shown in Fig. 2.3. 

 

 

Figure 2.3 The index surface of a positive (left) and a negative (right) uniaxial 

crystal. OA is the optical axis. 

  

The vector configuration of the fields when light propagates in an 

anisotropic medium is presented in Fig. 2.4. The frame (X, Y, Z) is a laboratory 

frame, where the Z axis corresponds to the propagation direction. Note that 

this frame is different than the dielectric frame (x, y, z). The orthogonal 

vibration planes 𝞟  [9] are the planes containing the dielectric displacements 

𝐷 , the electric fields �⃗� , the Poynting vectors 𝑆  given by 𝑆 �⃗� 𝐻  

(𝐻  being the magnetic field) and the wave vectors 𝑘 . 
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Figure 2.4 Vector configuration of an electromagnetic wave propagating in an 

anisotropic medium [4]. The angles 𝜌  are called the walk‐off angles. 

 

The power density, also called the intensity, is expressed as follows [3]: 

 

𝑆 𝜔
⃗

�⃗� 𝜔 𝑐𝑜𝑠 𝜌 𝜔    (2.11). 

 

According to Fig. 2.4, the walk‐off angles can be defined as: 𝜌

arccos 𝑑 ∙ 𝑒 arccos 𝑢 ∙ 𝑠 , where 𝑠  and 𝑑  are the unit vectors 

associated with 𝑆 and 𝐷, respectively. The walk‐off angles 𝜌  in a direction 

of propagation α located in the principal plane (u, v) is written [10]: 

 

ρ 𝛼, 𝜔 arccos 
𝑛 𝜔 /𝑛 𝜔 cos 𝛼 sin 𝛼

𝑛 𝜔 /𝑛 𝜔 cos 𝛼 sin 𝛼
 

(2.12) 

with, for biaxial crystals: (u, v) = (x, z) and α	= θ in the principal plane (x, z), (u, 

v) = (y, z) and α	= θ in the principal plane (y, z), and (u, v) = (y, x) and α = φ in 

the principal plane (x, y) ; and for uniaxial crystals, the angle ρ is equal to zero 

in the plane (x, y), whereas (u, v) = (o, e) and α	= θ in the planes (x, z) and (y, 

z). Equation (2.12) shows that in the case of biaxial crystals, the walk‐off angle 

is nil only along a principal axis of the index surface.  
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Out of the principal planes of biaxial crystals, and when projecting the 

direction of propagation onto the three principal axes, it is possible to calculate 

the three Cartesian coordinates (ex , ey , ez) of the unit electric field vectors 𝑒  

as a function of the three Cartesian corrdinates (ux , uy , uz) of the unit wave 

vector from [9]: 

 

𝑒 𝜔, 𝜃, 𝜑 𝑢 𝜃, 𝜑 𝑢 𝜃, 𝜑 ∙ 𝑒 𝜔, 𝜃, 𝜑
𝑛 𝜔 𝑒 𝜔, 𝜃, 𝜑

𝑛 𝜔, 𝜃, 𝜑
 

  (2.13) 

with 𝑒 𝑒 𝑒 1, 𝑛 𝜔, 𝜃, 𝜑  corresponds to the refractive 

index given by Eq. (2.9), whereas 𝑛 𝜔  stands for the principal refractive 

indices with i = x, y and z. 

 

In the two principal planes (y, z), where φ = 90°, and (x, z) at 𝜃 𝑉  and 

φ = 0°, of a positive biaxial crystal as PPRKTP, the unit electric field vectors 

𝑒 𝜔, 𝜃, 𝜑  are given by [4]: 

 

𝑒 𝜑
𝑒
𝑒
𝑒

sin𝜑
cos𝜑

0
      (2.14) 

𝑒 𝜔, 𝜃, 𝜑
𝑒
𝑒
𝑒

cos 𝜃 𝜌 𝜔, 𝜃 cos𝜑
cos 𝜃 𝜌 𝜔, 𝜃 sin𝜑

sin 𝜃 𝜌 𝜔, 𝜃
  (2.15). 

 

In the (x, z) plane at 𝜃 𝑉  where φ = 0°, Eq. (2.15) is valid, while 𝑒 𝜑  

is given by: 

 

𝑒 𝜑
𝑒
𝑒
𝑒

0
1

0
      (2.16)
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In the (x, y) plane, where θ = 90°, the components of the electric field can 

be written as follows: 

𝑒 𝜔, 𝜑
𝑒
𝑒
𝑒

sin 𝜑 𝜌 𝜔, 𝜑
cos 𝜑 𝜌 𝜔, 𝜑

0
   (2.17) 

𝑒
𝑒
𝑒
𝑒

0
0
1

      (2.18) 

 

In a positive uniaxial crystal as LGN, the unit field vector 𝑒 𝜔, 𝜃, 𝜑  

and 𝑒 𝜔, 𝜃, 𝜑  can be established by the Eqs. (2.14) and (2.15), respectively. 

Note that in uniaxial crystals and in the principal planes of biaxial crystals, 

𝑒 𝜑 ∙ 𝑒 𝜔, 𝜃, 𝜑 0 is always fulfilled according to the previous equations. 

But 𝑒  and 𝑒  are not perpendicular out of the principal planes of biaxial 

crystals. 

 

2.3 Nonlinear optical properties 

 

When the power density of the electric field of light is bigger than about 1 

MW/cm2, the nonlinear optical effects can be detected. In this work, we will 

focus on the interaction among three electromagnetic waves at the circular 

frequencies ω1 ,	ω2 , and	ω3 . In this process, the frequencies fulfill the energy 

conservation: 

 

ћ𝜔 ћ𝜔 ћ𝜔        (2.17). 

 

Then each of the Fourier components 𝜔  (with i = 1, 2, 3) of the induced 

polarization can be developed up to the second order as [1, 11]: 
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�⃗� 𝜔 𝜖 𝜒 𝜔 . �⃗� 𝜔 �⃗� 𝜔     (2.18) 

 

�⃗� 𝜔  is the second order nonlinear polarization defined by: 

 

�⃗� 𝜔 𝜖 𝜒 𝜔 : �⃗� 𝜔 ⨂�⃗�∗ 𝜔

�⃗� 𝜔 𝜖 𝜒 𝜔 : �⃗� 𝜔 ⨂�⃗�∗ 𝜔

�⃗� 𝜔 𝜖 𝜒 𝜔 : �⃗� 𝜔 ⨂�⃗� 𝜔

 

(2.19) 

where “.” and “:” are the contracted products and “⨂” is the tensor product. 

𝜒 𝜔  is the so‐called second‐order electric susceptibility tensor. It is a rank‐

3 tensor, so that its representative matrix has 3 × 9 coefficients, i.e. [4]: 

 

 𝜒 𝜔
𝜒
𝜒
𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 𝜒
 𝜒
 𝜒

 (2.20) 

 

where x, y and z refer to the dielectric frame. Each of the 27 coefficients depends 

on 𝜔 but it is not written in the matrix for more clarity. Neumann’s principle 

allows some coefficients to be equal to zero, and other coefficients to have equal 

or opposite magnitudes [6]. Furthermore, in the cases of low absorption and low 

dispersion of the wavelength of the electric susceptibility, so‐called Kleinman’s 

conditions, the number of non‐zero elements among the tensors can be also 

reduced because tensor 𝜒  becomes fully symmetrical, i.e. 𝜒 𝜒

𝜒 𝜒 𝜒 𝜒 , where i, j, k = x, y or z [11]. The tensor 𝜒  of the 

two crystals studied in the present work will be given in the corresponding 

chapters. 

 

Three nonlinear process can occur according to Eqs. (2.17) and (2.19): the 

difference‐frequency generation (DFG) between ω3 and ω2 giving birth to a 
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wave at ω1 = ω3 ‐ ω2 , the DFG between ω3 and ω1 leading to ω2 = ω3 ‐ ω1 , and the 

sum‐frequency generation (SFG) leading to ω3 = ω1 + ω2 . The degenerate SFG, 

i.e. ω1 = ω2 (= ω) is called second‐harmonic generation (SHG), which 

corresponds to ω3 = 2ω = ω + ω. 

 

The propagation equation of each interacting electromagnetic wave can be 

obtained from Eqs. (2.2) and (2.18), which gives: 

 

∇⃗ ∇⃗ �⃗� 𝜔 𝜖 𝜔 . �⃗� 𝜔 𝜔 𝜇 �⃗� 𝜔   (2.21) 

where i = 1, 2, 3. 

 

This is the second‐order nonlinear equation of propagation that differs 

from the first‐order linear equation of propagation given by Eq. (2.3) due to a 

non‐zero term on the right side depending on �⃗� 𝜔 . By combining Eqs. (2.19) 

and (2.21), and by assuming the slowly variable envelope approximation, it is 

possible to establish the following system of coupled differential equations [12]: 

 

⎩
⎪
⎨

⎪
⎧

𝜕𝐸 𝜔 , 𝑍
𝜕𝑍

𝑗𝜅 𝜒 𝐸 𝜔 , 𝑍 𝐸∗ 𝜔 , 𝑍 𝑒𝑥𝑝 𝑗∆𝑘𝑍

𝜕𝐸 𝜔 , 𝑍
𝜕𝑍

𝑗𝜅 𝜒 𝐸 𝜔 , 𝑍 𝐸∗ 𝜔 , 𝑍 𝑒𝑥𝑝 𝑗∆𝑘𝑍

𝜕𝐸 𝜔 , 𝑍
𝜕𝑍

𝑗𝜅 𝜒 𝐸 𝜔 , 𝑍 𝐸 𝜔 , 𝑍 𝑒𝑥𝑝 𝑗∆𝑘𝑍

 

(2.22) 

Z is the space coordinate in the direction of propagation, i.e. the Z axis of the 

laboratory frame defined above. 𝐸 𝜔 , 𝑍  with i = 1,2,3 stands for the complex 

wave amplitudes, 𝜅 𝜇 𝜔 / 2𝑘 𝜔 cos 𝜌 𝜔 , and ∆𝑘 𝑘 𝜔 , 𝜃, 𝜑

𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑  when the interacting waves are collinear. 

 

The quantity ∆𝑘 ∙ 𝑍 corresponds to the phase shift between the nonlinear 
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polarization �⃗� 𝜔  and the electric field �⃗� 𝜔  radiated by the nonlinear 

polarization itself. 𝜒  is the effective coefficient, which depends on the linear 

and nonlinear optical properties. Actually in the direction of 

propagation 𝑢 𝜃, 𝜑 , it is expressed as [4]: 

 

𝜒 𝜃, 𝜑 𝑒 𝜔 , 𝜃, 𝜑 ∙ 𝜒 𝜔 𝜔 𝜔 : 𝑒 𝜔 , 𝜃, 𝜑 ⨂𝑒 𝜔 , 𝜃, 𝜑  

 𝑒 𝜔 , 𝜃, 𝜑 ∙ 𝜒 𝜔 𝜔 𝜔 : 𝑒 𝜔 , 𝜃, 𝜑 ⨂𝑒 𝜔 , 𝜃, 𝜑  

𝑒 𝜔 , 𝜃, 𝜑 ∙ 𝜒 𝜔 𝜔 𝜔 : 𝑒 𝜔 , 𝜃, 𝜑 ⨂𝑒 𝜔 , 𝜃, 𝜑  

    (2.23). 

In the framework of the present study, it is interesting to write 𝜒 𝜃, 𝜑  

as following [4]: 

𝜒 𝜃, 𝜑 𝐹 𝜔 , 𝜔 , 𝜔 , 𝜃, 𝜑 𝜒 𝜔  

𝐹 𝜔 , 𝜔 , 𝜔 , 𝜃, 𝜑 𝜒 𝜔  

𝐹 𝜔 , 𝜔 , 𝜔 , 𝜃, 𝜑 𝜒 𝜔  

(2.24). 

The three terms of this equation corresponds from top to bottom to 

DFG(ω1), DFG(ω2) and SFG(ω3). The coefficients 𝐹 𝜔 , 𝜔 , 𝜔 , 𝜃, 𝜑  are 

those of a rank‐3 tensor that is called the field tensor: it has 27 coefficients as for 

𝜒 , but contrary to 𝜒  it depends on the direction of propagation. The field 

tensor F is built from the unit electric field of the three interacting waves. It is 

defined by [13]: 

 

𝐹 𝜔 , 𝜔 , 𝜔 , 𝜃, 𝜑 𝑒 𝜔 , 𝜃, 𝜑 𝑒 𝜔 , 𝜃, 𝜑 𝑒 𝜔 , 𝜃, 𝜑   

 (2.25) 
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where 𝑒 , 𝑒 , 𝑒  are three Cartesian coordinates of the unit electric field 

vectors expressed in the dielectric frame (x, y, z) by Eq. (2.13). Note that the 

notation deff = χeff /2 is also used. 

 

The general solutions 𝐸 𝜔 , 𝑍  of Eqs. (2.22) are Jacobi’s elliptic functions 

[12]. The solutions are simplified under the undepleted pump approximation. 

In the case of SFG for example and in the direction of propagation at the angles 

of spherical coordinates 𝜃, 𝜑 , it comes: 

 

⎩
⎪
⎨

⎪
⎧ 𝐸 𝜔 , 𝑍 𝐸 𝜔 , 0

𝐸 𝜔 , 𝑍 𝐸 𝜔 , 0

𝐸 𝜔 , 𝑍 2𝑗𝜅 𝑑 𝜔 , 𝜃, 𝜑 𝐸 𝜔 , 0 𝐸 𝜔 , 0 𝑒𝑥𝑝 𝑗∆𝑘 𝜃, 𝜑 𝑍 𝑑𝑍
 

(2.26) 

Then the power 𝑷 𝜔 , 𝑍  generated at 𝜔  is expressed as [11]: 

 

𝑷 𝜔 , 𝑍  

2𝑁 1
𝑁

72𝜋
𝜀 𝑐

𝐴
𝜆 𝜆

𝐺 𝑍, 𝑤 , 𝜌 𝑑 𝜃, 𝜑 𝑷 𝜔 , 0 𝑷 𝜔 , 0
𝑍

𝑤
𝑠𝑖𝑛𝑐

∆𝑘 𝜃, 𝜑 𝑍
2

 

  (2.27)  

N is the number of longitudinal modes of the incident beams. 𝑷 𝜔 , 0  and 

𝑷 𝜔 , 0  are the power of the incident beams, and λi = 2πc/ωi (i = 1 or 2) are the 

corresponding wavelengths. 𝐺 𝑍, 𝑤 , 𝜌 , which will be detailed hereafter in § 

2.3.4, is the attenuation coefficient due to spatial walk‐off where Z is the 

interaction length and w0 is the radius of the two incident fields. The quantity 

𝐴 is defined as: 

  

𝐴
𝑇 𝜔 , 𝜃, 𝜑 𝑇 𝜔 , 𝜃, 𝜑 𝑇 𝜔 , 𝜃, 𝜑
𝑛 𝜔 , 𝜃, 𝜑 𝑛 𝜔 , 𝜃, 𝜑 𝑛 𝜔 , 𝜃, 𝜑

 

(2.28) 

where 𝑇 𝜔 , 𝜃, 𝜑  (i = 1, 2, 3) stands for the Fresnel coefficient at ωi given by 
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𝑇 𝜔 , 𝜃, 𝜑 4𝑛 𝜔 , 𝜃, 𝜑 / 𝑛 𝜔 , 𝜃, 𝜑 1 , 𝑛 𝜔 , 𝜃, 𝜑  being the 

refractive index given by Eq. (2.9) [4]. Then the notation sinc(u) corresponds 

to the cardinal sinus function. 

 

Figure 2.5 shows the generated power as a function of the interaction length 

Z. When ∆𝑘 0, the power oscillates. The half‐period of oscillation is called 

the coherence length of the parametric process Lc that is considered, and it is 

equal to 𝜋/𝛥𝑘 according to Eq. (2.27). In this case, the interference between 

the nonlinear polarization and the radiated field is destructive due to a phase‐

mismatch of ∆𝑘. In particular, this dephasing is equal to 𝜋 at each coherence 

length Lc. At the opposite, the interference is constructive when ∆𝑘 0 since 

the function sin𝑐  is equal to 1 so that the generated power grows continuously 

and is proportional to 𝑍 . 

 

 

Figure 2.5 Evolution of the power 𝑷 𝜔 , 𝑍  generated by SFG as a function of the 

interaction length Z in the medium in the case of non phase‐matching (∆𝑘 0) and 

phase‐matching (∆𝑘 0). Lc is the coherence length of the SFG. 
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The power conversion efficiency 𝜂 𝜔 , 𝑍  is defined by the ratio between 

generated power at ω3 and the incident powers at ω1 and ω2, i.e.: 

 

𝜂 𝜔 , 𝑍
𝑷 𝜔 , 𝑍

𝑷 𝜔 , 0 𝑷 𝜔 , 0
 

(2.29). 

2.3.1 Birefringence phase‐matching 

 

As seen in the previous section, the power transfer between the interacting 

waves is maximum when the nonlinear polarization is phase‐matched with the 

radiation field, i.e. when ∆𝑘 0 . It corresponds to the momentum 

conservation from the quantum point of view, which gives when the three 

photons propagate collinearly in the same direction 𝑢 𝜃, 𝜑 : 

 

𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑 0   (2.30) 

with 

𝑘 𝜔 , 𝜃, 𝜑 𝜔 𝑛 𝜔 , 𝜃, 𝜑 /𝑐     (2.31) 

 

Then the phase‐matching relation (2.30) can be written: 

 

𝑛 𝜔 , 𝜃, 𝜑
𝜆

𝑛 𝜔 , 𝜃, 𝜑
𝜆

𝑛 𝜔 , 𝜃, 𝜑
𝜆

0 

  (2.32). 

There exist 23 possibilities for solving Eq. (2.32) [4]. Among these 

combinations, only three are possible, which are named Types I, II and III 

according to the polarization states of the three waves. They are presented in 

the following Table 2.1 [14]. 
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Table 2.1 Definitions of the different possible phase‐matching relations and 

interaction types related to sum‐frequency generation (SFG) and difference‐frequency 

generation (DFG). 𝑛  stands for the refractive index at the circular frequency 𝜔 . 

 

Phase‐matching relations 
Interaction types 

SFG (ω3) DFG (ω1) DFG (ω2) 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛  I II III 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛  II III I 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛  III I II 

 

Note that types II and III are equivalent for a SHG process since ω1 = ω2 , 

and it will be then named type II SHG. 

 

Table 2.1 shows that the interacting waves have to exhibit different 

polarization states, which can exist only when there is a birefringence in the 

direction of propagation. It is why this phase‐matching scheme is called 

birefringence phase‐matching (BPM). 

 

2.3.2 Angular quasi‐phase‐matching  

 

Quasi‐phase‐matching (QPM) is another configuration that allows the 

nonlinear conversion efficiency to be improved. It is based on a periodic reversal 

of the sign of the effective coefficient at each coherence length of the parametric 

process that is considered, as shown in Fig. 2.6. Then this artificial structure 

enables a periodic reset of 𝜋  between the nonlinear polarization and the 

radiated field, leading to a periodic phasing [12]. 

 



2.3  Nonlinear optical properties 

25 

 

 

Figure 2.6 Scheme of SFG QPM where the periodic reversal of sign of the effective 

coefficient is produced along the x‐axis of the dielectric frame: “+” and “‐” stand for 

𝜒  and 𝜒  , respectively. λ1 and λ2 are the wavelengths of the two incident 

beams. λ3 is the generated wavelength by SFG. Λ is the periodicity of the structure. 

 

By this way, the constructive interference can be kept along the 

propagation direction because of the periodic reset of phase, as presented in Fig. 

2.7.   

 

Figure 2.7 Generated power 𝑷 𝜔 , 𝑍  as a function of the interaction length Z in 

the cases of non phase‐matching condition (∆𝑘 0), birefringence phase‐matching 

(BPM) and quasi‐phase‐matching (QPM). χeff is the effective coefficient and Lc the 

coherence length. 
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When the crystal that is considered has ferroelectric properties, the sign of 

the effective coefficient can be obtained by the application of an electric field. 

Then the resulting material is said “periodically‐poled”. It is the case of the 

periodically‐poled LiNbO3 (PPLN) [15] or the periodically‐poled KTiOPO4 

(PPKTP) [16] that is considered in this work. When the crystal is not a 

ferroelectric one, the reversal of the sign can be obtained during the crystal 

growth or a posteriori by bonding. It is the case of the Orientation‐Pattern‐GaAs 

(OP‐GaAs) [17] or ‐GaP (OP‐GaP) [18]. 

 

In all these artificial materials, the grating vector is directly implicated in 

the momentum conservation that writes in a collinear configuration of 

propagation [1]: 

 

𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑
2𝜋
𝛬

0 

 (2.33). 

It can demonstrated that the power of the wave generated in a QPM 

configuration is lower by a factor of 4/π2 compared to the power generated by 

BPM, as shown in Fig. 2.7. 

 

There are 23 possible configurations of polarization for achieving QPM,  

when BPM have only 3 of them [2]. All the 8 possibilities are shown in Table 

2.2. 

 

Table 2.2 Definitions of the different quasi‐phase‐matching relations and interaction 

types related to sum‐frequency generation (SFG) and difference‐frequency generation 

(DFG).𝑛  stands for the refractive index at the circular frequency 𝜔 . 

 



2.3  Nonlinear optical properties 

27 

Quasi‐Phase‐matching relations 
Interaction types 

SFG (ω3) DFG (ω1) DFG (ω2) 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  I II III 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  II III I 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  III I II 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  IV IV IV 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  V V V 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  VI VIII VII 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  VII VI VIII 

𝜔 𝑛 𝜔 𝑛 𝜔 𝑛 1/𝛬  VIII VII VI 

 

A generalization of QPM has been proposed by the group of Grenoble [2]. 

It consists in the propagation of three interacting electromagnetic waves at any 

angle with respect to the grating vector. This configuration is called angular 

quasi‐phase‐matching (AQPM) [2, 19]. The scheme of AQPM is shown in Fig. 

2.8, where 𝑢 (θ,φ) represents any direction of propagation expressed as a 

function of the angles of spherical coordinates (θ, φ) in the dielectric frame. 

 

 

Figure 2.8 Scheme of AQPM where the grating vector of modulus Λ lies along the x 

axis of the dielectric frame (x, y, z). 𝑢 is the unit wave vector that is the same for the 

three interacting waves. 
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In the AQPM configuration, the periodicity, written	Λeff, can vary as a 

function of the direction of propagation as following [2]: 

 

𝛬 𝜃, 𝜑
𝛬

|sin 𝜃 cos 𝜑|
 

(2.34). 

Thus the momentum conservation corresponding to AQPM can be 

expressed as: 

 

𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑 𝑘 𝜔 , 𝜃, 𝜑
2𝜋

𝛬 𝜃, 𝜑
0 

(2.35) 

where Λeff (θ,φ) is the effective periodicity defined by Eq. (2.34).  

About the phase‐matching types, AQPM exhibits the same 8 possible 

combinations of polarizations than that of QPM presented in Table 2.2.  

 

2.3.3 Acceptances 

 

As presented in Eq. 2.27, the interference function sinc2(∆kZ/2) reaches a 

maximum value when ∆k = 0, which can be obtained by BPM, QPM as well as 

AQPM. It occurs in a particular direction of propagation of spherical 

coordinates written (θPM, φPM) and a given set of wavelengths 𝜆 , 𝜆 , 𝜆 , 

where PM stands for BPM, QPM or AQPM. 

 

It is important to know the effect of the variation of ∆k (ξPM) from the 

value 0, due to variations in angle, ( 𝜃 ∆𝜃 , 𝜑 ∆𝜑 ), or in 

wavelengths (𝜆 ∆𝜆 ) with i = (1, 2, 3), from either sides of the phase‐

matching point (𝜃 , 𝜑 , 𝜆 ) [4]. It will be studied at the output of the 

crystal i.e. at Z = L where L is the crystal length. The corresponding variation 

given by the normalized generated power with respect to its maximum value as 
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a function of ξ is shown in Fig. 2.9, where ξ = θ, φ,	λ. The acceptance bandwidth 

is then defined by the deviation value δξ, corresponding to the width at 0.405 of 

the maximal value of the function represented in Fig. 2.9. Meanwhile, it is also 

the variation of ∆k from 0 to 2π/L, i.e. δξ = ξ2π/L (see Fig. 2.9). 

 

 

Figure 2.9 Normalized generated power as a function of the dispersive parameter ξ 

= λ, θ or φ of the refractive indices. δξ is the width of the curve at 0.405 of the 

maximal value. 𝜉 /  corresponds to ξ for which 𝛥𝑘 2𝜋/𝐿. 

 

The acceptance bandwidth is usually calculated by writing ∆k in the form 

of a Taylor series about ξ [4], i.e.: 

 

𝛥𝑘 𝜉
2𝜋
𝐿

𝛿𝜉
𝜕𝛥𝑘
𝜕𝜉

│
1
2

𝛿𝜉
𝜕 𝛥𝑘
𝜕𝜉

│ ⋯ 

(2.36) 

In the case where the first‐order term is dominating, the phase‐matching 

is called “critical” and the acceptance Lδξ is written as: 
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𝐿𝛿𝜉
2𝜋

𝜕𝛥𝑘
𝜕𝜉 │

 

(2.37). 

When the first order term is zero, then the second‐order one dominates, 

the phase‐matching is called non‐critical (NCPM). Under this condition, Lδξ is 

written as: 

𝐿𝛿𝜉
4𝜋𝐿

𝜕 𝛥𝑘
𝜕𝜉 │

 

(2.38). 

A NCPM situation will be preferred to a critical (CPM) phase‐matching, 

in order to maximize the conversion efficiency regarding the divergence or the 

spectral linewidth of the incident beams. Actually, the ideal situation is when 

the angular acceptances and the wavelength acceptance are larger than the 

incident beams divergence and the spectral linewidth respectively. 

 

2.3.4 Spatial walk‐off 

 

When propagating the waves in an optically anisotropic crystal, the effect of 

the double refraction angle ρ(ω, θ, φ) must be taken into account and it may 

affect the amount of the generated power as indicated in Eq. (2.27) through the 

quantity 𝐺 𝑍, 𝑤 , 𝜌 . Actually, the incident waves will only interact in a 

restricted volume. The magnitude of this effect is particularly important when 

the Poynting vectors of the two incident beams are not collinear, which is for 

example the case of type II SHG, as shown in Fig. 2.10. 
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Figure 2.10 Spatial separation between the interacting beams in the case of Type II 

SHG in the principle planes (x, z) or (y, z) of a positive uniaxial crystal as an 

example. 

 

Figure 2.10 well shows that the SHG is interrupted beyond the separation 

of the two fundamental beams. 

 

The G factor can be analytically calculated only for SHG in the case of a 

propagation under the parallel beam approximation, that is to say when the 

crystal length L is lower than the twice Rayleigh length 𝑍 𝜋𝑤 /𝜆 . It is 

given by [4, 20]: 

 

Type I: 𝐺 𝑡
√𝜋
𝑡

𝑒𝑟𝑓 𝑡
1
𝑡

1 𝑒𝑥𝑝 𝑡  

(2.39) 

Type II: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐺 𝑡

2

√𝜋
𝐹 𝑎, 𝑡 𝑑𝑎                

𝑤ℎ𝑒𝑟𝑒                                 

𝐹 𝑎, 𝑡
1
𝑡

𝑒𝑥𝑝 𝑎 𝑒𝑥𝑝 𝑎 𝜏 𝑑𝜏   

 

(2.40) 

where t = ρL/w0 , a = m/w0 , τ = ρn/wf0 , and m and n are the Cartesian 

coordinates in the plane containing the angle of double refraction as presented 

in Fig. 2.10.
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The G factor will be strictly equal to 1 when the angle of double refraction 

is zero, which occurs when the propagation is along one of the principal axes of 

the dielectric frame, that is to say x, y or z, in a crystal belonging to the uniaxial 

or biaxial optical class. It is also the case when propagating the waves in any 

direction of the principal plane x ‐ y of a uniaxial crystal. Otherwise, the double 

refraction phenomenon occurs and limits the value of the conversion efficiency 

with 𝐺 1. 

 

2.4 Conclusion 

 

When light propagates with a strong intensity, then the induced polarization 

varies non‐linearly with the electric field of light. This phenomenon leads to 

nonlinear processes such as sum‐ and difference‐frequency generations that will 

be experimentally considered in the following chapters. 

 

Several conditions are required for achieving an optimal conversion 

efficiency. On the one hand, the phase‐matching can be achieved, using several 

possible configurations: by compensating the dispersion of the refractive indices 

by the birefringence (BPM), or by reversing periodically the sign of the 

effective coefficient (QPM and AQPM). On the other hand, the magnitude of 

the effective coefficient has to be maximal, which can be reached by finding the 

right direction associated with the right configuration of polarization of the 

three interacting waves. 

 

This theoretical chapter is useful for understanding and analyzing the 

experimental works that are described in the next chapters.
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3 LGN crystal 

 

3.1 State of the art and motivations 

 

The optical parametric generation in the near infrared from 2 to 6 μm is of prime 

interest for numerous applications in civil and military fields [21‐24]. The 

properties of the nonlinear crystals are key factors for achieving the nonlinear 

processes. But there is still a lack of appropriate crystals for high energy in this 

range. For example, the borates like LiB3O5 (LBO), and β‐BaB2O4 (BBO) [25, 

26] crystals have multi‐photons absorption that limits the transmission range 

[27] ; LiNbO3 (LN) [28] exhibits a photorefractive effect [29] ; and finally 

ZnGeP2 (ZGP) can be pumped only above 2 μm, the damage threshold being 

reported as 60 MW/cm2, which is quite low [30, 31]. 

 

“Langasite” is the generic name given to a family of crystals that are isotype 

of La3Ga5SiO14 (LGS). These mineral materials belong to the 32 trigonal point 

group, where 3 and 2 stands for the 3‐fold and 2‐fold axes, respectively. These 

crystals can be grown in large size and good quality by the Czochralski method. 

They are widely used for bulk acoustic wave (BAW), surface acoustic wave 

(SAW), as well as high temperature sensor devices because of their outstanding 

piezoelectric properties and low acoustic friction [32‐37]. Recently, the 

Langatate La3Ga5.5Ta0.5O14 (LGT), that is a langasite compound, was reported 

as a novel mid‐infrared nonlinear crystal with very good indicators compared 

to KTP [33]. This reveals that this family may have a strong potential. This 

chapter describes the study of another crystal of this family, i.e. La3Ga5.5Nb0.5O14 

(LGN): some preliminary measurements published in 2002 seemed to indicate 

that this crystal has also interesting nonlinear properties [32], in particular for 

parametric generation between 3 and 5 μm according to its transparency range, 
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with the ability to be grown to centimeter size. The present chapter aims at 

describing the LGN crystal structure, our crystal growth experiments and 

measurements of the linear and nonlinear optical properties. 

 

3.2 Crystallographic structure  

 

The Langasite crystals, with the general chemical formula A3BC3D2O14, belong 

to trigonal system and the P321 space group [38]. They contain 4 cationic sites 

that can be occupied by different ions. The crystal structure of LGN is shown 

Fig. 3.1, and briefly described hereafter. The La3+ ions sit at the center of (LaO8) 

dodecahedrons (yellow), the Ga3+ ions have two positions, i.e. (GaO4) 

tetrahedrons (deep green) and trigonal‐pyramids (light green), and the Nb5+ 

ions are in forms of (NbO6) octahedrons (light purple). Meanwhile, the (LaO8) 

dodecahedrons and (NbO6) octahedrons share the O‐O edge. Then the two 

types of (GaO4) are situated around the octahedrons according to the 3‐fold axis. 

The ionic radii of Ga3+ (6) and Nb5+ (6) are 0.62 and 0.68 Å, respectively, which 

are close and these cations possessing ns2np6 electron shells could produce less 

localized chemical bonds which are beneficial for substitutions. Then the Ga3+ 

(6) sites could be occupied by Nb5+ (6) forming (NbO6) octahedrons [39, 40].  

Note that the Nb5+ ions are located only in the octahedral sites that result in the 

deviation of the rotation of opposite faces of octahedrons, these faces being 

normal to the c‐axis [41]. Moreover, the octahedrons are distorted, which 

induces a high nonlinear polarizability and also influences the infrared (IR) cut‐

off of the compound [42].
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Figure 3.1 A fragment of the structure of LGN crystal (left); polyhedrons of (LaO8), 

(GaO4) and (NbO6) (right). a, b and c correspond to the crystallographic axes. 

 

The c axis of the crystallographic frame is along the ternary axis. It is 

perpendicular to the axes a and b that make an angle of 120° between each other, 

the a‐axis being oriented along a 2‐fold axis.  

 

3.3 Crystal growth 

 

3.3.1 Introduction 

 

The crystals of Langasite family are all congruent compounds, which means 

that they keep the same chemical composition up to the melting temperature, 

ranging between 1300 and 1500°C. Furthermore, these crystals do not exhibit any 

phase transition up to these temperatures. Therefore, the Czochralski method 

can be used for the crystal growth process: it consists in growing the crystal 

from a seed immerged in a high temperature liquid solution having the same 

chemical composition than the crystal. Among all the crystal growth techniques, 

like the flux method, the floating zone method, and vapor phase epitaxy for 
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example [43], the Czochralski method is nowadays one the most popular for 

fabricating single crystals in the field of microelectronics and photonics. 

Actually it has several advantages given below: 

(1) the growth condition can be observed during the whole growth process 

which means an easy adjustment of the parameters; 

(2) there is no direct contact between the crystal and the crucible, hence the 

stress could be reduced; 

(3) the necking technique could be utilized for suppressing the defects; 

(4) it is easy to obtain single crystals with large sizes and high optical quality. 

 

In 1916, Czochralski first used this method for fabricating the metal single 

crystals such as Sn, Zn, Pb for example [44]. In 1918, Warenberg invented the 

seed technique, where a Zn crystal was obtained from a Zn wire [45]. In 1948, 

Teal and Litter grew Ge and Si crystals by using the seed technique combined 

with the rotation and shape control of the crystal [46]. In 1958, Dash discovered 

the necking technique aiming at reducing the dislocations in the crystal [47]. 

This technique has been widely used from this last step. Since the progress of 

the induction heating combined with the use of iridium crucible, more and more 

crystals have been grown, especially many with a high melting point. Thanks 

to further technological developments, the Automatically Control System 

(ADC) of the crystal diameter has been installed into the furnace. Meanwhile, 

several kinds of softwares, for example CGSim (STR Group), have been 

developed for simulating the growth process, which helps to improve the crystal 

growth parameters, i.e. temperatures, rotating rates and pulling rates, etc.. 

 

For growing a crystal using the Czochralski method, the raw materials 

have to be put into a crucible and heated until melting. The seed is then 

immersed into the melt, also called the “fusant”, and the temperature is adjusted 
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until a slight melting of the surface of the seed. Soon afterwards, the seed is 

pulled up slowly with a control of the temperature that leads to the 

crystallization of the melt onto the seed. For obtaining the required diameter, 

the heating power must be adjusted. Figure 3.2 shows some pictures of the 

Czochralski growth process used for the emblematic example of silicon crystal 

growth. 

 

 

 

Figure 3.2 Schematic diagram of the silicon crystal growth process using Czochralski 

method [48]. 

 

 The Czochralski method usually includes the following procedures: 

dosing, sintering, melting, necking, shouldering, equal‐diameter growth and 

cooling [49]. 

 

3.3.2 Chemical composition of the melt for the growth of LGN 
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The raw materials were prepared from a mixture of La2O3, Ga2O3, and Nb2O5 

powders with a purity of 99.99% in stoichiometric ratio according to the 

following chemical equation: 

 

6𝐿𝑎 𝑂 11𝐺𝑎 𝑂 𝑁𝑏 𝑂 → 4𝐿𝑎 𝐺𝑎 . 𝑁𝑏 . 𝑂   (3.1). 

  

The mixture was put into the sintering furnace and kept for 10 hours at the 

temperature of 1100°C. Then it was grinded and mixed again and ready for 

briquetting. Afterwards, the blocks were kept for 10 hours at the temperature of 

1100°C again, so that the polycrystal raw materials are ready for starting the 

growth. There are two points that require paying attention to: La2O3 absorbs 

moisture and CO2 so that it has to be sintered prior to the global sintering 

process; and Ga2O3 can be easily volatilized during the process of sintering and 

crystal growth, which requires putting more Ga2O3 at the beginning, typically 

1‐2 weight% more. 

 

3.3.3 Description of the furnace used for our experiments  

  

For the crystal growth, we used the TDJ‐L50 furnace conceived at Xi’an 

University of Technology, as shown in Fig. 3.3. 

 

This furnace is equipped with a medium frequency power supply, whose 

power is 25 kW and frequency is 0.2~20 kHz. Using this furnace, we can grow 

crystals with a melting point up to 2100°C. Meanwhile, the temperature 

controlling is realized by a temperature controller/programmer 

(EUROTHERM818) with an accuracy of ± 0.2°C. The pulling rate of this 

furnace is 0.1~10 mm/h with a precision better than 1 μm, and the rotating rate 

can be tuned between 0 and 40 rpm (revolutions per minute). Moreover, we 
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improved this furnace by adding an automatic growth control system which 

could enable the ADC crystal growth.  

 

 

Figure 3.3 TDJ‐L50 Czochralski crystal growth furnace. 

 

3.3.4 Weight control  

 

This process was achieved by the automatic top‐weighing method allowing the 

weight of the crystal to be collected and processed by a computer: from a 

comparison between the collected signal and the set value, i.e. crystal weight or 

diameter, the computer realizes the real‐time controlling and adjusting using 

the Proportion Integral Derivative (PID) function for the ADC process. The 

controlling software that we used was the JPG Auto Diameter Control Program 

XT‐02 V 4.1, with a sensor in the weighting system having a measuring range 

up to 10 kg and a precision of ± 0.01 g. The goal of the ADC technique is that 

the crystal growth follows exactly the set value, which required the suited P, I 

and D parameters. The PID function is described below: 
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Y P ∙ E I ∙ 𝐸 𝑑t D ∙ 𝑑E/𝑑t     (3.2) 

 

where Y is the output power; E is the error between feedback signal, such as the 

diameter, and the set signal; the parameters P, I and D stand for proportion, 

integral and derivative respectively. P is mainly responsible for the temperature 

control. When an error E exists between the actual and set values, the heating 

power will be proportionally adjusted according to P for eliminating the error. 

As presented in Eq. (3.2), the output power will reach 0 when E = 0. Therefore, 

the error E cannot be eliminated only by adjusting P. Then the integral 

parameter I is led in for thoroughly achieving the balance between the actual 

and set values. The main purpose of the derivative parameter D is to improve 

the reactive sensitivity of the system. Under the common regulation of P, I and 

D, the actual values can follow the change of set values thanks to a proper choice 

of the initial set values of P, I and D. 

 

 

Figure. 3.4 (a) The as‐designed crystal shape; (b) the control program interface. 
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The designed crystal shape and the control program interface are shown in 

Fig. 3.4 (a) and (b), respectively. 

 

Once the suited values of P, I and D are defined, the growth process can 

begin from the heating and melting of the polycrystal raw materials, followed 

by the introduction of the seed into the melt. When the crystal has reached the 

expected size, the temperature is then increased by 20~30°C up to the melting 

temperature and the as‐grown crystal is simultaneously pulled out of the melt. 

The increasing of temperature allows the crystal to be extract of the melt 

quickly without redundant crystallization in the bottom. Then the melt is 

cooled down at a rate of 20~50 °C /h to the room temperature. 

 

In order to grow high‐optical quality crystals, several other essential 

factors have to be taken into account as described below. 

 

3.3.5 Thermal field  

 

A proper thermal field, which is the spatial distribution of the temperature, 

requires to be established for achieving a high‐quality crystal. The thermal field 

is described by the axial and radial temperature gradient vectors that affect the 

shape of the crystal inside the melt. This shape is given by the shape of the 

isothermal surface at the melting point corresponding to the solid/liquid 

interface. There are three possible topologies: convex to the fusant (Fig. 3.5 (a)), 

plane (Fig. 3.5 (b)), and concave (Fig. 3.5 (c)). Among these three topologies, the 

plane shape is the best one while the concave is the worst one because it is 

detrimental to the thermal stability of the interface. But the plane shape is hard 

to achieve in practice, so that a slight convex shape is usually considered. 
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Figure 3.5 The schematic of the three possible topologies for the solid/liquid interfaces 

in shapes of convex (a), plane (b) and concave (c). 

 

The crystal growth velocity V, also called the crystal growth rate, can be 

described by the following equation: 

 

𝑉 𝑘 𝐺 𝑘 𝐺 /𝜌 𝐿     (3.3) 

 

ks and kL are the heat conduction coefficient of the crystal and fusant 

respectively; Gs and GL are the temperature gradient in the crystal and the 

fusant respectively; ρs is the density of the crystal and L is the solidification heat 

of the crystal. The lower the temperature gradient of the fusant GL, the faster 

the crystal growth rate V is, according to the invariability of the temperature 

gradient of the crystal Gs. Then we could get the largest crystal growth rate 

Vmax, which is given by the following equation when GL=0: 

  

𝑉 𝑘 𝐺 /𝜌 𝐿     (3.4). 

 

Hence, the crystal growth rate is higher when the radial temperature gradient 

becomes smaller. 
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The thermal field is mainly influenced by the crucible, the heating system, 

the applied atmosphere, and the thermal insulation material. The thickness and 

types of the latter are the easiest to adjust. We selected a thick mullite brick 

after a lot of attempts. Figure 3.6 shows the simulated results using the software 

CGSim for three different kinds of the thermal insulation materials: thin 

mullite brick, thick mullite brick and thick cellucotton. As shown in Fig. 3.6 (a) 

and (b), the temperature in the furnace when utilizing thin insulation material 

is much higher than that using a thick insulation material. Therefore, the heat 

loss is bigger in the thin insulation material, which needs a lot of input power 

to be compensated. On the other hand, the heat loss caused by this thin material 

induces poor heat stability, which is harmful to the stability of the crystal 

growth environment. When we compare the thick mullite brick (b) and 

cellucotton (c), we see that the heat insulation effect is much better. But the 

forced convection is much stronger than the free convection (b‐2 and c‐2), which 

leads to a concave shape solid‐liquid interface in the condition of cellucotton. 

For all these reasons, we selected the thick mullite brick.  
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Figure 3.6 Simulated thermal field in the cases of thin mullite brick (a), thick 

mullite brick (b) and thick cellucotton (c). Pictures 1 correspond to the thermal 

distribution in the furnace, while pictures 2 concern the fusant [50]. 

 

Besides the thickness and types of the thermal insulation materials, the 

axial symmetry of the thermal field is also very important. This axial symmetry 

can guarantee the cylinder shape of the crystal. Actually, it has to be optimized 

in order to prevent from the radial growth rate up to the required crystal 

diameter and also the spiral growth [51, 52]. Two conditions should be fulfilled 
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for achieving this goal: firstly, it is necessary to have an observation hole in the 

mullite brick allowing to surveille the growth process, but it should be as little 

as possible in order to get no thermal perturbation; secondly, the seed holder, 

seed, crucible and thermal insulation material should have the same symmetry 

axis, which is also the symmetry axis of the thermal field. 

  

3.3.6 Growing atmosphere  

  

A N2 atmosphere should be filled in the furnace for preventing the oxidization 

of the iridium crucible. But the gallium oxide Ga2O3 in the fusant is much easier 

to volatilize in an oxygen‐deficient environment. Then we chose an atmosphere 

of N2 with the oxygen content of 2%~3% vol., which looked like a good 

compromise. Note that our previous study on the growth of LGS [53] had 

shown that the color of the crystal depends on the oxygen content in the furnace: 

the color got deeper when there was more oxygen, as shown in Fig. 3.7 . 

 

 

Figure 3.7 Different LGS crystals grown in an atmosphere with different oxygen 

content: 3% vol. (left), 1% vol. (right) [54]. 

 

3.3.7 Rotating and pulling rates  
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The constitutional supercooling theory is useful for analyzing how the pulling 

and rotating rates affect the crystal quality. The constitutional supercooling 

condition is defined as following, which is the criterion for getting the best 

crystal quality: 

 

𝐺
𝑣

𝑚𝐶 𝑘 1

𝐷 𝑘 1 𝑘 𝑒𝑥𝑝 𝑣
𝐷 𝛿

 

(3.5) 

𝛿 1.61𝐷 / 𝑣 / 𝜔 /  

(3.6) 

𝛿 is the thickness of the solute boundary layer, D is the diffusion coefficient 

for solute in the fusant, v is the pulling rate, ω is the rotating rate, G is the radial 

thermal gradient at the interface, m is liquidus rate, CL is the average 

concentration of the medium in the fusant, and k0 is the equilibrium segregation 

coefficient of the solute. From Eq. (3.5), it can be seen that when the rotating 

rate gets higher, then the thickness of the solute boundary layer becomes 

thinner, so that it is harder to achieve the constitutional supercooling. Moreover, 

a higher rotating rate is beneficial to the change process from the convex 

interface to the ideal plane interface. However, it will also affect the interface 

stability. Fig. 3.8 (a), (b), (c), (d) are the simulated thermal field of LGN crystal 

growth using different rotating rates of 0, 9, 13 and 17 rpm, respectively.  
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Figure 3.8 Simulated thermal field in the cases of different rotating rates of 0 

(a), 9 (b), 13 (c) and 17 (d) rpm [50]. 

 

Figure 3.8(a) indicates that when there is no rotation, then there is no 

forced convection, so that the free convection rises along the wall and flows to 

the bottom of the crucible with passing the surface. A forced convection appears 

when the rotation is activated, and it increases with the rotation speed. When 

the rotating rate is equal to 13 rpm (see Fig. 3.8 (c)), the solid‐liquid interface 

becomes plane, which is a good configuration. The solid‐liquid interface 

becomes concave when the rotating rate reaches 17 rpm, as shown in Fig. 3.8(d). 

Then we used a rotating rate ranging between 9 and 13 rpm. 

 

The pulling rate has also an influence on the crystal quality through the 

crystal growth rate. Actually, an increasing of this rate is beneficial for making 

the effective segregation coefficient close to 1, which ensures a uniform 

chemical composition of the crystal. The segregation coefficient is given by the 
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ratio of the concentrations in the crystal (CL) and in the liquid phase (Cs), and 

it is expressed as following [55]:  

 

𝑘
𝐶
𝐶

𝑘

𝑘 1 𝑘 𝑒𝑥𝑝 𝑉
𝐷 𝛿

 

(3.7) 

k0 is the equilibrium segregation coefficient of the solute determined by the 

characteristics of the solute and the solution, 𝛿 is the thickness of the solute 

boundary layer, D is the diffusion coefficient for solute in the fusant, and V is 

the crystal growth rate. As shown by Eq. (3.7), the effective segregation 

coefficient becomes close to 1 when V increases. It is the target, but the pulling 

rate should not be too fast because it would be unfavorable for removing the 

impurities. The best compromise is to work with a pulling rate ranging between 

0.3‐2 mm/h. 

  

3.3.8 Summary of the crystal growth technical parameters and 

produced crystals   

 

All the technical parameters for growing LGN crystals defined in the previous 

sections are summarized in Table 3.1. 

 

Table 3.1 Crystal growth technical parameters used for the growth of LGN 

 

Crucible iridium, diameter‐100 mm, height‐56 mm 

Atmosphere N2+O2 (2~3% vol) 

Pulling rate 0.3~2 mm/h 

Rotating rate 9~13 rpm 

Cooling rate 20~50 °C /h 
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An as‐grown LGN crystal weighting 410 g, with 45 mm in diameter and 

100 mm in length, is shown in Fig. 3.9 (left); another LGN crystal weighting 215 

g, with 27 mm in diameter and 70 mm in length is depicted in Fig. 3.9 (right). 

 

 

Figure 3.9 As‐grown LGN crystals along the c‐axis by the Czochralski method. 

 

 

3.4 Linear optical properties 

 

This part is based on the theoretical elements discussed in § 2.2 of Chapter 2. 

 

3.4.1 Orientation of the dielectric frame 

 

The dielectric frame (x, y, z) is the frame in which the tensor of the real part of 

the dielectric constant is diagonal. It is then the frame in which any optical 

property has to be expressed. It is an orthonormal frame, so that it cannot 

correspond to the crystallographic frame of LGN defined in § 3.2. We used the 

standard convention for the relative orientation between these two frames [6]: 

z is parallel to c, x is parallel to a, while y is located at 30° from b, as shown in 

Fig. 3.10. 
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Figure 3.10 Orientation between the crystallographic (red) and the dielectric (blue) 

frames of LGN. 

 

3.4.2 Transmittance spectra 

 

The transmittance spectra were recorded using a 2‐mm‐thick and x‐cut slab with 

aperture dimensions of 4 × 4 mm2. It was uncoated but polished to optical 

quality. We used an ultraviolet‐visible‐NIR spectrometer (JASCO, Model V‐

570) emitting polarized light between 0.19 and 2.5 μm, and a FT‐IR spectrometer 

(NEXUS 670, Thermo Nicolet Co.) emitting unpolarized light between 2.5 and 

8 μm. 

 

Polarized and unpolarized transmittance spectra are depicted in Fig. 3.11(a) 

and 3.10(b) respectively, the inset of Fig. 3.11(a) corresponding to a zoom of the 

ultraviolet edge. LGN is globally transparent between 0.22 and 7.4 μm, despite 

a strong and narrow polarized absorption peak located at 1.85 μm, which is 

probably due to oxygen defects. There is also a smaller absorption peak at 3 μm 

because of Ga‐O bonds [56]. From the transmission point of view, Figs. 3.11 

show that LGN is suited for optical parametric generation (OPG) in band II (3 

~ 5 μm) of transmission of the atmosphere when pumped with femtosecond 

Ti:Sapphire or nanosecond Nd:YAG lasers, and that without any two photon 

absorption (TPA) of the pump. 
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Figure 3.11 Polarized (a) and unpolarized (b) transmittance spectra of a 2‐mm‐thick 

slab of LGN cut along the x‐axis. The insert in (a) corresponds to a zoom of the 

ultraviolet edge. 

 

3.4.3 Optical damage threshold 

 

The optical damage was studied using a Q‐switched Nd:YAG laser (ICT Laser 

Work Station, Piano 2000) with a 5‐ns pulse width and a 10‐Hz repetition rate. 

The laser beam was focused using a 100‐mm‐focal BK7 lens onto a polished 2‐

mm‐thick LGN slab with aperture dimensions of 4 × 4 mm2. We also 

illuminated a KTP slab for reference in the same conditions. The two samples 

were moved toward the beam waist plane, by using a precision translation stage 

(Zolix Inc.), until the occurrence of a damage at the input surface of the crystals. 

 

The beam waist diameter was equal to 30 μm at input surface of the two 

crystals. In these conditions, LGN was damaged at an incoming energy of 500 

𝜇J, i.e. a peak power density of 2.82 GW/cm2. It is a little bit lower than that of 

KTP where the damage was observed at 760 𝜇J, i.e. 4.29 GW/cm2. 

 

3.4.4 Sellmeier equations using the prism method 
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For the measurement of the principle refractive indices, a high optical quality 

LGN crystal was cut as a few centimeters prism with a vertex angle of 

25.05±0.112° as shown in Fig. 3.12. 

 

 

Figure 3.12 LGN prism used for the measurement of the refractive indices 

 

The edge was cut along the z‐axis so that the light propagates in the (x, y) 

plane of a uniaxial crystal. It has the advantage of a birefringence, i.e. ∆n = ne – 

no, independent of the direction of propagation, and without any spatial walk‐

off. 

 

The LGN prism was placed in a high precision automatic spectrometer‐

goniometer (HR Spectro Master UV‐VIS‐IR from Trioptics). This commercial 

device provides measurements of the minimum deviation in polarized light for 

eleven sets of discrete wavelengths ranging between 0.43 and 2.33 μm known 

with a precision of 10‐5. By adjusting the proper orientation of the linear 

polarization of the input beam, it has been possible to determine the values of 

the ordinary and extraordinary principal refractive indices of LGN, i.e. no and 

ne respectively, with an accuracy of 10‐5.  

 

The corresponding data are displayed in Table 3.2 for the eleven sets of 

discrete wavelengths.  
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Table 3.2 Ordinary (no) and extraordinary (ne) principal refractive indices of LGN, 

and corresponding maximal value of birefringence ∆n, as a function of wavelength. 

λ (nm) ne no ∆n =(ne ‐ no) 

435.8350 2.02817 1.99267 0.0355 

479.9920 2.01203 1.97811 0.03392 

546.0750 1.99536 1.96286 0.0325 

587.5620 1.98823 1.95639 0.03184 

643.8470 1.98064 1.94940 0.03124 

706.5190 1.97414 1.94349 0.03065 

768.1943 1.96944 1.93908 0.03036 

852.1100 1.96436 1.93440 0.02996 

1013.9800 1.95866 1.92877 0.02989 

1529.5800 1.94816 1.91926 0.0289 

2325.4199 1.93697 1.90883 0.02814 

 

These measurements show that LGN is a positive uniaxial crystal, i.e. no < 

ne as defined in § 2.2, with a strong birefringence ∆n = (ne ‐ no)~ 0.03, which is a 

priori favorable for achieving phase‐matching.  

 

By using a Levenberg‐Marquardt algorithm, we fitted simultaneously the 

refractive indices values of Table 3.2 with the same form of Sellmeier equation 

than that given in [32] where λ is expressed in μm, which gives: 

 

𝑛 𝜆 3.79511
0.0500

𝜆 0.03405
0.00964𝜆  

(3.8) 

𝑛 𝜆 3.68270
0.0464

𝜆 0.02980
0.00870𝜆  

(3.9) 

and the corresponding curves is shown in Fig. 3.13. 
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Figure 3.13 Measured principal refractive indices no and ne plotted as a function of 

wavelength (dots), and fit of these experimental data (solid lines). 

 

3.5 Nonlinear optical properties 

 

The theoretical background of this part is detailed in § 2.3 of Chapter 2. 

 

3.5.1 Calculations of the birefringence phase‐matching conditions and 

of the corresponding effective coefficients 

 

The birefringence phase‐matching conditions have to be fulfilled in order to 

maximize the conversion efficiencies of Types I and II SHG, Types I, II and 

III SFG and DFG. The phase‐matching equations and corresponding 

interaction types are shown in Table 2.1 of § 2.3.1. These conditions imply that 

the incident beams propagate along the phase‐matching direction θPM in the (x, 

z) or (y, z) planes of LGN crystal, indicating that in a uniaxial crystal, the phase‐

matching equations only depend on the phase‐matching angle θPM. 
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Table 3.3 Phase‐matching conditions of a positive uniaxial crystal like LGN. λω is the 

fundamental wavelength of SHG, and λ1, λ2 and λ3 correspond to the three 

wavelengths involved in SFG & DFG (ω1), with the relation of order 𝜆 𝜆 𝜆 . 

Interaction Birefringence Phase‐Matching Condition 

Type I SHG 𝑛 𝜆 , 𝜃 𝑛 𝜆 /2  

Type I SFG 𝑛 𝜆 , 𝜃
𝜆

𝑛 𝜆 , 𝜃
𝜆

𝑛 𝜆
𝜆

 
Type II DFG 

Type II/III SHG 𝑛 𝜆 𝑛 𝜆 , 𝜃 2𝑛 𝜆 /2  

Type II SFG 𝑛 𝜆
𝜆

𝑛 𝜆 , 𝜃
𝜆

𝑛 𝜆
𝜆

 
Type III DFG 

Type III SFG 𝑛 𝜆 , 𝜃
𝜆

𝑛 𝜆
𝜆

𝑛 𝜆
𝜆

 
Type I DFG 

 

As presented in Fig. 2.3 of § 2.2, the internal layer of the index surface of a 

positive uniaxial crystal corresponds to the ordinary refractive index no(λ), 

while the outer layer corresponds to the extraordinary refractive index ne(λ,	

θPM). These two indices are written as following for all phase‐matching 

directions of the (x, z) or (y, z) plane identified by the angle θPM: 

 

⎩
⎨

⎧
𝑛 𝜆 𝑛 𝜆

𝑛 𝜆, 𝜃
𝑐𝑜𝑠 𝜃

𝑛 𝜆
𝑠𝑖𝑛 𝜃

𝑛 𝜆
/

 

(3.10) 

where no(λ) and ne(λ) are the two principal refractive indices. 

 

According to the Neumann principle and the Kleinman assumption, the 

nonlinear coefficients of LGN verify: dxxx = ‐dxyy = ‐dyyx = ‐dyxy [4]. The second‐

order electrical susceptibility tensor d(2) = χ(2)/2 should be then written : 
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𝑑
𝑑 𝑑 0

0 0 0
0 0 0

     
0 0 0
0 0 0
0 0 0

    
0 0 0
0 𝑑 𝑑
0 0 0

 

(3.11). 

As written in the head part of the § 2.3, the effective coefficient of LGN 

writes: 

 

𝑑 𝜃𝑃𝑀, 𝜑 𝑑 𝐹 𝜃𝑃𝑀, 𝜑 𝐹 𝜃𝑃𝑀, 𝜑 𝐹 𝜃𝑃𝑀, 𝜑    

 (3.12) 

The factors Fijk are calculated from Eqs. (2.14) and (2.15). There is only one 

independent coefficient of LGN, i.e. dxxx , written as d11 in the conventional 

contracted notation. Since the effective coefficient deff depends on the unit 

electric field vectors of the three interacting waves, and thus on the associated 

refractive indices, then the amplitude of deff depends on the phase‐matching 

types. All the corresponding expressions of the effective coefficients regarding 

Types I, II and III SHG & SFG & DFG for any phase‐matching direction (θPM, 

φ) of LGN are presented in the following Table 3.4.  

 

The effective coefficient deff is proportional to sin(3φ) in the cases of Types 

I SHG & SFG and Type II DFG: so it will reach a maximal value at φ = 90°, 

which corresponds to the (y, z) principal plane, and at φ = 30°; it reaches zero at 

φ = 0°, i.e. in the (x, z) principal plane, and at φ = 60°. In the cases of Types II 

and III for SHG and SFG, and Types I and III for DFG, the corresponding deff 

is proportional to cos(3φ) ; then it is maximal at φ = 0° and at φ = 60°, and it is 

equal to zero at φ = 90° and φ = 30°. Then it is possible to measure the phase‐

matching angles of Types I SHG & SFG as well as of Types II DFG 

interactions in the (y, z) principal plane, while it can be done in the principle 

plane (x, z) in the cases of Types II and III SHG and SFG and Types I and III 

for DFG. It is what is described in the following section. 



3.5  Nonlinear optical properties 

57 

Table 3.4 Effective coefficient deff of LGN as a function of the phase‐matching 

direction (θPM, φ) in the cases of Types I, II/III SHG and Types I, II and III SFG 

& DFG (ω1). 

Interaction Effective Coefficient deff 

Type I SHG 𝑑 𝜆 cos 𝜃 𝜌 𝜆 , 𝜃 sin 3𝜑  

Type I SFG 𝑑 𝜆 cos 𝜃 𝜌 𝜆1, 𝜃𝑃𝑀 cos 𝜃 𝜌 𝜆 , 𝜃 sin 3𝜑  

Type II DFG 𝑑 𝜆1 cos 𝜃𝑃𝑀 𝜌 𝜆1, 𝜃𝑃𝑀 cos 𝜃 𝜌 𝜆 , 𝜃 sin 3𝜑  

Type II/III SHG 𝑑 𝜆 cos 𝜃 𝜌 𝜆 , 𝜃 cos 3𝜑  

Type II SFG 𝑑 𝜆 cos 𝜃 𝜌 𝜆 , 𝜃 cos 3𝜑  

Type III DFG 𝑑 𝜆1 cos 𝜃 𝜌 𝜆 , 𝜃 cos 3𝜑  

Type III SFG 𝑑 𝜆 cos 𝜃𝑃𝑀 𝜌 𝜆1, 𝜃𝑃𝑀 cos 3𝜑  

Type I DFG 𝑑 𝜆1 cos 𝜃𝑃𝑀 𝜌 𝜆1, 𝜃𝑃𝑀 cos 3𝜑  

 

3.5.2  Measurement of the birefringence phase‐matching properties 

and refinement of the Sellmeier equations 

 

3.5.2.1 Description of the sphere method 

 

3.5.2.1.1 Introduction 

 

This part of the chapter aims at introducing the so‐called “sphere method” 

proposed and developed by our group since 1989 [57], and that has been used to 

study the optical properties of LGN, as well PPRKTP. This method has the 

advantage of giving an access to any direction in the three dimensions of the 

space with a single sample. Because of the spherical shape, an incident laser 
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beam properly oriented and focused can cross the sphere in normal incidence 

along the sphere diameter. The smallest diameter that can be reasonably 

considered is around 2 mm [58]. 

By using this method, it is possible to determine any phase‐matching angle 

with an accuracy better than ± 0.5°. This method has been successfully applied 

for the study of many nonlinear crystals, such as KTP [59], RTP [60], KTA 

[61], RTA [61], CTA [61], CSP [62], YCOB [63], GdCOB [64], LGT [33], 

BGSe [65], and PPLN [66] for example.  

 

3.5.2.1.2 General configuration of the experiment setup 

 

For achieving the required tunability of the incident beam, the optical source 

we used is a multi‐stages parametric source from Excel Technology and Light 

conversion, presented in Fig. 3.14. 

 

 

Figure 3.14 Scheme of the parametric source used for the sphere method. 
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A Nd:YAG laser with a pulse width of 15 ps, a repetition rate of 10 Hz and 

a wavelength of 1.064 μm is used as a pump source for the multi‐stages 

parametric source. It has an average pulse energy of 40 mJ, and it is divided into 

two parts: 10 mJ for the DFG stage in a AgGaS2 (AGS) crystal, while 30 mJ are 

used for the OPG‐OPA stage based on a LBO crystal. For generating the pulses 

at 532 nm and 355 nm, two BBO crystals have been used for doubling and tripling 

the beam at 1.064 μm. An energy of 8 mJ at 355 nm can be obtained. The rotation 

of the LBO crystal is motorized and controlled by a computer for achieving a 

tunability by step of 1 nm. From this stage, it is possible to get a signal 

wavelength λs tunable from 0.4 ~ 0.71 μm, the corresponding idler wavelength λi 

varying between 2.4 ~ 0.71 μm. The energy of these pulses changes a little bit 

with the wavelength and ranges around 200 μJ. The DFG stage is based on the 

mixing of this idler beam with a part of the beam at 1.064 μm inside a AGS 

crystal, which leads to the emission of a beam tunable from 2 to 11 μm.  

 

The experimental setup for measuring the phase‐matching angles of LGN 

sphere is presented in Fig. 3.15. 

 

 

Figure 3.15 (a) Picture of the sphere of LGN stuck on a goniometric head; (b) Setup 

used for the direct measurement of SHG and DFG phase‐matching angles. 
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The LGN sphere has a diameter of 10.8 mm and an asphericity below 1%. 

We studied Type I SHG and Type II DFG measurements in the (y, z) plane 

and Type III DFG in the (x, z) plane. SHG needs only one incident beam, 

which can be the signal or idler of the OPG‐OPA or the beam generated by the 

DFG stage; the full tunability is then from 2 ~ 11 μm. For the DFG 

measurements, two incident beams are required with perfect spatial and 

temporal overlaps: one beam arises from the OPG‐OPA while the other one is 

a part of the 1.064 μm beam. Achromatic half wave plates (HWP) are used for 

adjusting the polarization of the different beams. A 100‐mm‐focusing lens (f) 

is also placed in front of the sphere in order to properly focus the incident beams 

inside the sphere as detailed in § 3.5.2.1.3. The energy of the incoming beams is 

measured by a J4‐09 Molectron pyroelectric joulemeter placed behind a beam 

splitter (BS) and a lens with a focal length of 50 mm. Simultaneously, a J3‐05 

Molectron joulemeter combined with a PEM 531 amplifier is placed at the exit 

of the sphere with a filter for removing the input wavelength in order to detect 

only the generated beam. The phase‐matching angles are measured thanks to 

the Euler circle, described in more details in § 3.5.2.1.4, with an accuracy of ± 

0.5°. 

 

3.5.2.1.3 Focusing conditions in the sphere 

 

It is important to get a quasi‐parallel propagation of the interacting beams 

inside the sphere for achieving a precise measurement of the angles of collinear 

phase‐matching. Actually, a divergence inside the sphere would lead to non‐

collinear phase‐matched interactions that would have lower efficiencies than 

those in the collinear phase‐matched interactions [59]. Furthermore, the 

divergence could enlarge the spectral and angular acceptances. The distance 
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between the focusing lens and the sphere must be then judiciously chosen, as 

described hereafter. 

 

The sphere consists of two contiguous spherical diopters and it is 

equivalent to a spherical lens with two identical focal lengths f described by 

[67]: 

𝑓 𝜆, 𝜃, 𝜑
𝑛 𝜆, 𝜃, 𝜑 𝑅

2 𝑛 𝜆, 𝜃, 𝜑 1
 

(3.13) 

where R is the radius of the sphere and 𝑛 𝜆, 𝜃, 𝜑  is the refractive index in 

the direction of angles of spherical coordinates (θ, φ). If 𝑛 𝜆, 𝜃, 𝜑 2 then 

𝑓 𝜆, 𝜃, 𝜑 𝑅 , which means that the two focal planes of the sphere are 

outside the crystal as presented in Fig. 3.16(a). On the other hand, if 

𝑛 𝜆, 𝜃, 𝜑 2 , they are located inside the sphere since 𝑓 𝜆, 𝜃, 𝜑 𝑅 , 

which could damage the sphere as shown in Fig. 3.16(b). Several constraints 

should be taken into account for achieving the quasi‐parallel condition [68]: the 

focal plane of the incident beam must be located at the focal plane of the input 

diopter of the sphere if 𝑛 𝜆, 𝜃, 𝜑 2 as indicated in Fig. 3.16(a). On the 

opposite, when 𝑛 𝜆, 𝜃, 𝜑 2, the so‐called configuration 2f ‐ 2f has to be 

used, as shown in Fig. 3.16(b) [68]. 

 

Not that under the quasi‐parallel condition, the sphere diameter D is much 

smaller than twice the Rayleigh length ZR defined by [69]: 

 

𝑍
𝜋𝑛 𝜆, 𝜃, 𝜑 𝑤

𝜆
 

(3.14) 

where wsph is the beam waist radius inside the sphere. 
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Figure 3.16 Focusing conditions of the incident beam when (a) 𝑛 𝜆, 𝜃, 𝜑 2 and 

(b) 𝑛 𝜆, 𝜃, 𝜑 2. 

 

3.5.2.1.4 The Euler circle 

 

The sphere is stuck on a goniometric head and it is placed at the center of the 

Euler circle. Each displacement of the sphere is controlled by adjusting the 

small translation plates located on the goniometric head. The Euler circle 

enables the manual control of the sphere rotation with an accuracy of 0.003°. 

The schematic figure of Euler circle is shown in Fig. 3.17, and the three rotations 

are marked by the angles α, β and γ.  
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Figure 3.17 Schematic diagram (a) of the Euler circle, consisting of three rotation axes 

marked by the angles α, β and γ; (b) example of a sphere oriented along the y axis. 

 

The beams have to propagate through the center of the sphere. Under these 

conditions, the rotation of the sphere on it‐self allows the beams to propagate 

in any direction (θ, φ) of the dielectric frame (x, y, z). Note that some areas 

close to the sticking axis of the sphere cannot be reached because of the 

screening by the goniometric head or the circles of the Euler circle. Then if 

necessary, the sphere will have to be stuck in different directions. But we did 

not need that in the present study of LGN. 

 

As presented in Fig. 3.17 (a), the angle β can be fixed for holding the vertical 

direction of the sphere, which is along the y axis for example as shown in Fig. 

3.17(b). Then the rotation of the sphere through the angle α = γ makes it possible 

to explore the (x, z) principle plane. The corresponding relationship between 

the angles (θ, φ) in the dielectric frame and the angles α, β and γ is written as 

following [68]: 

 

𝜃
𝜋
2

𝛼 𝛾

𝜑 0
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(3.15). 

3.5.2.2 Measured phase‐matching angles of Second‐Harmonic 

Generation and Difference‐Frequency Generation 

 

The recorded SHG phase‐matching tuning curve with the sphere method is 

presented in Fig. 3.18 [70]. According to the analysis performed in § 3.5.1, Type 

I SHG (1 𝜆⁄ 1 ⁄ 𝜆  1 ⁄ 𝜆 ) has been studied in the (y, z) plane. 𝜆  

and 𝜆  are the fundamental and second harmonic wavelengths, respectively. 

Here, the fundamental wavelength ranges from 1.3 to 3.43 μm, and no 

measurement is accessible beyond 75° because the associated effective 

coefficient is too low according to Table 3.4. 

 

  

Figure 3.18 Type I SHG tuning curve in the (y, z) plane of LGN. The wavelength 

accuracy is within dots size. 

 

We performed the experiments of Type II DFG 1/𝜆 1/𝜆 1/𝜆  in 

the (y, z) plane, and type III DFG 1/𝜆 1/𝜆 1/𝜆  in the (x, z) plane. 

𝜆 , 𝜆  and 𝜆  are respectively the pump, signal and idler wavelengths 
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verifying the following relation of order: 𝜆 𝜆 𝜆 , with  𝜆 , 𝜆 , 𝜆 →

𝜆 , 𝜆 , 𝜆 . The DFG measurements could cover from 0.6 to 6.5 μm which is 

almost the entire transparency range of LGN. 

The recorded DFG phase‐matching tuning curves are presented in Fig. 3.19 

[70]. 

 

(a) 

 

(b) 

Figure 3.19 DFG tuning curve (a) in the (y, z) and (b) in the (x, z) plane of LGN. 

The wavelength accuracy is within dots size. 
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3.5.2.3 Refinement of the Sellmeier equations from the fit of the phase‐

matching angles 

 

We refined the Sellmeier equations of LGN by the simultaneous fit of all our 

SHG and DFG experimental data shown in Figures 3.18 and 3.19. We used the 

Levenberg‐Marquardt algorithm encoded with Matlab. Among the several 

possible forms of Sellmeier equations to fit the ordinary and extraordinary 

refractive indices, the best one was that previously used in Refs. [32, 71], i.e: 

 

𝑛 𝜆 𝐴
𝐵

𝜆  𝐶
𝐷 𝜆  

(3.16) 

where λ is in μm and j stands for o or e. The precision of our angular 

measurements is ± 0.5°, which leads to a relative accuracy 𝛥𝑛 𝑛⁄  better than 

10‐4, where j stands for o and e [60]. The numerical values of the best fit 

parameters Aj, Bj, Cj and Dj are summarized in Table 3.5. Our interpolated 

tuning curves using the Sellmeier equations of the present work correspond to 

the solid red lines shown Figures 3.18 and 3.19 [70]. They clearly show a much 

better agreement with our experimental data than using the calculations from 

Refs. [71] and [32].  

 

Table 3.5. Refined Sellmeier Coefficients of the Two Principal Refractive Indices no 

and ne of LGN 

Sellmeier 

coefficients 
Aj Bj Cj Dj 

j = o 3.6836 0.0460 0.0296 0.0094 

j = e 3.7952 0.0483 0.0314 0.0102 
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Figure 3.20 Spectral ranges where the principal refractive indices of LGN, no and ne, 

are involved, using the sphere method (red lines), and the prism technique from [71] 

and [32] (black dashed lines). 

 

Figures. 3.18 and 3.19 also show the calculated phase‐matching curves using 

the Sellmeier equations from Refs. [71] and [32]. It highlights discrepancies 

between our experimental data and both sets of calculations, even if calculations 

using [32] are closer to our experimental data. This discrepancy is true especially 

above 2.3 μm that corresponds to the limit of the spectral range over which the 

ordinary and extraordinary principal refractive indices were determined in Refs. 

[71] and [32]. As shown in Fig. 3.20, by performing our measurements with the 

sphere method up to 6.5 μm, we widely extended the wavelength range where 

the two principal refractive indices of LGN are involved. Such a difference 

might explain the discrepancies between the measurements made with the 

sphere method and the prism method. 

 

3.5.3 Measurements of the nonlinear coefficient d11 

 

3.5.3.1 Non‐phase‐matching measurements 
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A Maker Fringes setup [72, 73] was implemented to determine the second‐order 

electric susceptibility coefficient d11 of LGN relatively to d36 of potassium 

dihydrogen phosphate (KDP) at the same fundamental wavelength. The 

incoming beam was delivered by a Q‐switched Nd:YAG laser (Spectra‐Physics, 

Model Pro 230) at the fundamental wavelength λω = 1.064 μm with a 10‐Hz 

repetition rate and 10‐ns pulse width. The averaged power P(λω) was set at 20 

mW and focused inside the LGN and KDP slabs. The corresponding beam 

waist radius was w0 = 0.2 mm in the samples, which ensures a propagation in 

the parallel beam approximation since the Rayleigh length (zR = 11.8 cm) is 

much longer than the crystal length (L = 1 mm). The slabs were cut with 

uncoated surface dimensions of 10 × 12 mm2 polished to optical quality, the 

optical parallelism being less than 0.5’ of arc. These samples were stuck on a 

rotation plate with a precision of 0.00125° (RAK100, Zolix Inc.) ensuring a 

continuous rotation of the crystals in the (y, z) and (x, y) planes. At room 

temperature, the power of the SHG generated beam, P(λ2ω), was measured as a 

function of the sample orientation by using a photomultiplier tube (PMT, 

Hamamatsu, Model R105). It was averaged by a fast‐gated integrator combined 

with a boxcar (Stanford Research Systems), and recorded using a software. 

 

Using the Maker Fringes setup, we selected type I SHG (1 𝜆⁄ 1 ⁄ 𝜆  

1 ⁄ 𝜆 ) in the (y, z) plane of LGN, the corresponding effective coefficient being 

𝑑 𝜆 𝑐𝑜𝑠 𝜃 𝜌 𝜆 , 𝜃 𝑠𝑖𝑛 3𝜑 : θ is the phase‐matching angle of 

spherical coordinate from the z‐axis, φ is the spherical coordinates from the x‐

axis, λω = 1.064 μm, λ2ω = 0.532 μm, and ρ is the spatial walk‐off. For this purpose, 

a 1‐mm‐length LGN slab was cut oriented along the three axes of the dielectric 

frame: the axis of rotation of the sample is the x‐axis the y‐axis is the direction 

of polarization of the incoming fundamental beam. The direction of 

propagation will range from either side of the z‐axis in the (y, z), as shown in 
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Fig. 3.21(a). We performed the measurement relatively to the nonlinear 

coefficient d36 (0.532 μm) = 0.57±0.02 pm/V of the uniaxial crystal KDP [74]: we 

implemented type I SHG (1 𝜆⁄ 1 ⁄ 𝜆  1 ⁄ 𝜆 ) in the (x, y) plane of 

KDP where there is no spatial walk‐off. The corresponding effective coefficient 

is 𝑑 𝜆 sin 2𝜑  where φ is the angle of spherical coordinate from the x‐axis. 

We used a 1.5 mm‐length [110]‐cut KDP slab (φ= 45°) rotated around the z‐axis, 

the incoming beam being polarized perpendicularly to this axis (see Fig. 3.21(b)). 

 

 

Figure 3.21 Orientation and polarization schemes of LGN (a) and KDP (b) slabs 

for the Maker fringes measurements. The waves propagate in the (y, z) plane of LGN 

and in the (x, y) plane of KDP. 

 

The recorded fringes pattern involving d11 of LGN is shown in Fig. 3.22. The 

figure also gives a fit of our data, using the Eqs. (2.27) and (2.28) presented in § 

2.3 and Ref. [72]: 

 

𝑃 𝜆 , 𝛼 𝛽𝑓 𝛼 𝑑 𝑃 𝜆
𝐿
𝑤

sin𝑐 𝜓 𝛼  

(3.17) 

with 

𝑓 𝛼 𝑐𝑜𝑠 𝛼
2366

𝜆
𝑇 𝜆 , 𝛼 𝑇 𝜆 , 𝛼
𝐴 𝜆 , 𝛼 𝐴 𝜆 , 𝛼

 

(3.18) 
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and 

𝜓 𝛼
2𝜋𝐿
𝜆

𝑛 𝜆 , 𝛼 𝑠𝑖𝑛 𝛼 𝑛 𝜆 , 𝛼 sin 𝛼  

(3.19) 

where α stands for θ in LGN and (φ ‐ 45°) in KDP. L is the sample thickness, 

and Pω and w are respectively the power and beam waist radius of the incoming 

beam. T(λi, α) is the sample Fresnel transmission coefficient and n(λi, α) is the 

refractive index, where the index i = ω stands for the input beam, and i = 2ω for 

the generated beam. The correction factor (β) has been added in Eq. (3.17) for 

LGN in order to take into account the absorption of the Second harmonic wave. 

β = 1.15 calculated from 𝛽 𝑒 / 𝑇 /
 where T1 is the 

transmittance of a 2 mm‐length sample (l1=2 mm) while l2 is the length of the 

LGN sample used in the Maker Fringes measurement. 

 

 

Figure 3.22 Recorded (black points), fit of experimental data (red line) and of the 

envelope (blue line) of the Maker Fringes pattern involving d11 coefficient of LGN. 

 

By fitting the envelope of the Maker fringes pattern of Fig. 3.22 using Eq. 

(3.8) and (3.9), and Eqs. (3.17)‐(3.19), we determined the magnitude of its 
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maximum value at normal incidence (α=0°), relatively to that of KDP measured 

in the same condition, using: 

 

𝑑 𝜆
𝑑 𝜆

𝑃 𝜆 , 0
𝑃 𝜆 , 0

𝐿
𝐿

𝑓 0
𝑓 0

𝑠𝑖𝑛𝑐 𝜓 0
𝑠𝑖𝑛𝑐 𝜓 0

 

(3.20) 

with 

𝜓 0
2𝜋𝐿

𝜆
𝑛 𝜆 𝑛 𝜆  

(3.21) 

and 

𝜓 0
2𝜋𝐿

𝜆
𝑛 𝜆 𝑛 𝜆  

(3.22). 

 

According to the measurement of the ratio 𝑃 𝜆 , 0 /𝑃 𝜆 , 0  and 

Eqs. (3.17)‐(3.22), we found that the second‐order nonlinear coefficient of LGN 

is : d11(λ2ω = 0.532 μm) = 3.0±0.1 pm/V. 

 

3.5.3.2 Phase‐matching measurements 

 

In this part, the absolute value of the d11 nonlinear coefficient of LGN has been 

determined from phase‐matched type I SHG in the (y, z) plane. Owing to the 

simplicity of the LGN tensor d(2) which possesses only the element d11 = dxxx (see 

matrix (3.9)), it is not necessary to determine the sign of this element, because 

it keeps squared in the generated energy expression (see Eq. (2.27)). 

 

As shown in Eqs. (2.27) and (2.29) written for a SHG process, the effective 

coefficient can be measured directly from the ratio ζ between the energy P(λ2ω, 

L) generated at λ2ω and the square of the energy P(λω, 0) incident to λω: 
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𝜁
P 𝜆 , 𝐿
P 𝜆 , 0

 

(3.23). 

We carried out a relative measurement of the nonlinear coefficient d11 of 

LGN with respect to the reference d24 of the KTP crystal, regarding the type II 

SHG in the (x, z) plane [67]. Both crystals were studied under the same 

experimental conditions so that the spatial‐temporal parameters of the beam are 

identical in the samples. Two slabs were then prepared with the same thickness 

L = 0.52 mm in order to neglect the effect of the double refraction (see § 2.3.4). 

The fundamental beam emitted by the OPG was focused on the crystals with a 

100‐mm‐focal length CaF2 lens. The corresponding beam waist diameter inside 

the crystals was 𝑤  = 120 μm, which gives a Rayleigh length of 30 mm much 

longer than L. Then parallel beam propagation was ensured, and non‐collinear 

SHG is avoid. The orientations of LGN and KTP, (𝜃 , φ = 90°) and (𝜃 , 

φ = 0°) respectively, were chosen so that the corresponding fundamental 

wavelengths, 𝜆  and 𝜆 , are very close, i.e. ∆λ |𝜆 𝜆 | 0.05 μm. 

This value can be determined by comparing Type I SHG phase‐tuning curve of 

LGN in the (y, z) plane shown in Fig. 3.18, and Type II SHG phase‐tuning curve 

of KTP in the (x, z) plane [70]. 

 

A LGN slab was then cut at 𝜃  = 70.4°, 𝜑  = 90°), which 

corresponds to 𝜆  1.32 μm, and a KTP slab was cut at (𝜃  = 58.5°, 

𝜑  = 0°) corresponding to 𝜆  1.32 μm. The difference of phase‐matching 

wavelength is then very small, i.e. ∆λ =0.003 μm. The effective coefficient of 

LGN has been calculated in the previous part in this chapter, and that of KTP 

is given by: 

 

 𝑑 𝑑 𝜆 𝑠𝑖𝑛 𝜃 𝜌 𝜃 , 𝜆   
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(3.24) 

where the nonlinear coefficient of KTP is 𝑑 (𝜆  = 0.66 μm) = 2.37±0.17 

pm/V as a reference [59]. 

 

The type I SHG experiments in LGN at 𝜆  and type II SHG in KTP 

at 𝜆  were performed using the parametric source in picosecond regime 

described above in § 3.5.2.1.2. The half‐wave plate allowed us to control the 

polarization of the incident beam in order to achieve type I SHG in LGN and 

type II SHG in KTP. A semi‐reflective plate (UVFS 50/50 900‐2600 nm) was 

used to collect half of the incident energy P 𝜆 , 0 . A filter for cutting the 

fundamental beam was placed behind the crystals in order to measure only the 

energy P 𝜆 , 𝐿  of the generated Second‐Harmonic wave. The simultaneous 

measurement of the incident fundamental energy and of the generated Second‐

Harmonic energy enabled to determine the ratio ζ defined by Eq. (3.23) in each 

slab. 

 

We took care of the maximization of the ratio ζ, which corresponds to 

phase‐matching, by measuring its variation as a function of the fundamental 

wavelength around 𝜆  for LGN and around 𝜆  for KTP. This 

measurement also provided an estimate of the spectral acceptance, which is 19.8 

mm.nm for LGN as shown in Fig. 3.23, and 19.2 mm.nm for KTP as shown in 

Fig. 3.24 [70]. Figure 3.23 also shows the very good agreement between the 

experimental points and the calculations based on our refined Sellmeier 

equations given in § 3.5.2.3. The small difference is due to the cutting orientation 

of the slab compared with the requested one. Actually the measured phase‐

matching wavelength, corresponding to the peak value, is equal to 1.317 μm, 

which is very close to the expected 1.32 μm. The same comment for KTP as 

shown in Fig. 3.24: the measured fundamental wavelength is 1.32 μm. The peak 



3.5  Nonlinear optical properties 

74 

magnitude of ζ for LGN and KTP allowed us to determine d11 of LGN relatively 

to d24 of KTP, considering that the wavelengths are the same in the two cases. 

 

 

Figure 3.23 Calculated (red line) and measured (dots linked with black line) ratio ζ in 

LGN as a function of the fundamental wavelength.  

 

 

Figure 3.24 Calculated (black line) and measured (dots) ratio ζ in KTP, as a function 

of the fundamental wavelength.  

  

Once the fundamental wavelength was determined for each sample, the 

incident energy at the wavelength 𝜆  (with i = LGN or KTP) was measured 

with the J4‐09 Molectron pyroelectric joulemeter placed behind a beam splitter 
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through a lens with a focal length of 50 mm, while the energy at 𝜆  in LGN 

and KTP was measured with the J3‐05 Molectron pyroelectric joulemeter 

combined with a PEM531 amplifier, a filter removing the input beam. 

 

Under the phase‐matching condition (∆k = 0) and according to Eqs (2.27), 

(2.28) and (2.29) described in § 2.3, the ratio between ζLGN and ζKTP is: 

 

𝜁
𝜁

L 𝐴
𝜆

𝐺 𝑑

L 𝐴
𝜆 𝐺 𝑑

 

(3.25). 

 

Due to the same thickness of the LGN and KTP slabs, we have 

L /L =1, so that the effective coefficient of LGN becomes according to the 

Eq. 2.28: 

𝑑
𝜁
𝜁

𝜆
𝜆

𝐺

𝐺

𝐴

𝐴
𝑑  

(3.26) 

with  

A
𝑇 𝜆 , 𝜃

𝑛 𝜆 , 𝜃
𝑇 𝜆
𝑛 𝜆

 

(3.27) 

and 

A
𝑇 𝜆
𝑛 𝜆

𝑇 𝜆 , 𝜃
𝑛 𝜆 , 𝜃

𝑇 𝜆
𝑛 𝜆

 

(3.28). 

In equation (3.26), the G and G  parameters correspond to the 

attenuation due to double refraction defined in § 2.3.4. Equations (2.39) for type 

I SHG in LGN and (2.40) for type II SHG in KTP lead to: G  = 0.999 and 
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G  = 0.987 [4, 59], corresponding to a spatial walk‐off angle 

𝜌 𝜃 , 𝜆  = 0.55° for LGN, and 𝜌 𝜃 , 𝜆  = 2.57° for KTP. To and 

Te are the corresponding Fresnel transmission coefficients. The maximum 

value of 𝜁 /𝜁  was measured to be 0.021. According to Eq. (3.26), we 

found that |𝑑 0.659 µ𝑚 | 2.9 0.5 pm/V for LGN [70].  

 

3.5.3.3 Analysis 

 

For comparing the absolute magnitude of d11 from Maker fringes and the one 

from phase‐matching measurements, we took 0.532 μm to be the generated 

wavelength. Therefore the Miller relation has to be used for calculating d11 at 

0.532 μm from d11 measured at different wavelengths. 

 

In the framework of the Lorentz model applied to the anharmonic 

oscillator, it can be shown that the second‐order electrical susceptibility tensor 

depends on the circular frequency (ω). The Miller relation is then defined as 

following [75]: 

 

𝜒 𝜆 𝛿 𝜒 𝜆 𝜒 𝜆 𝜒 𝜆  

(3.29) 

where δijk is called the Miller index which is independent of ω, and 1/𝜆

1/𝜆 1/𝜆 . Thus any element of the second‐order nonlinear electrical 

susceptibility tensor (𝜒 ) can be expressed as a function of the elements of the 

first‐order electrical susceptibility tensor (𝜒 ), that depends on the principle 

refractive index na through 𝜒 𝑛 1 (with a = i, j or k).  
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Then the |𝑑 0.532 µm | , which is the contracted notation of 

|𝑑 0.532 µm | , can be calculated from |𝑑 0.659 µm | by using Miller 

relation (Eq. (3.29)) and the Sellmeier equations given by Eq. 3.16 and Tab. 3.5, 

i.e.: 

 

|𝑑 0.532 µ𝑚 |

|𝑑 0.659 µ𝑚 |
𝑛 0.532µ𝑚 1 𝑛 1.064µ𝑚 1
𝑛 0.659µ𝑚 1 𝑛 1.318µ𝑚 1

 

(3.30). 

The value of |𝑑 0.532 µ𝑚 |  from phase‐matching measurement is 

found to be 3.02±0.52 pm/V, while the value is 3.0±0.1 pm/V measured by the 

Maker fringes method. The agreement is then perfect. This value is also very 

close to  |𝑑 0.532 µm | = 2.51±0.13 pm/V of KTP [59], and to 

|𝑑 0.532 µ𝑚 | = 2.62±0.44 pm/V of LGT [33]. 

 

3.5.4 Calculation of supercontinuum conditions 

 

The previous parts refer to the main basic optical properties of LGN. It is now 

interesting to study the potentiality of LGN for generating a supercontinuum 

by optical parametric generation, i.e. OPG 1/𝜆 1/𝜆 1/𝜆 . Here λp 

stands for the pump wavelength, λs is the wavelength of the signal, and λi is for 

the idler wavelength, with λp < λs ≤ λi. 

 

A supercontinuum can be generated only during a type II interaction, i.e., 

λ , λ  and λ  where “o” and “e” refer to the ordinary and extraordinary 

polarizations , respectively [76]. The pump wavelength, that we write λ∗ , for 

which a broadband spectrum (supercontinuum) is generated, corresponds to the 

wavelength for which the dispersion of the extraordinary refractive index ne of 

a positive uniaxial crystal as LGN has an inflection point, i.e. [76, 77]:
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𝜕 𝑛 𝜆, 𝜃
𝜕𝜆 ∗ ∗

0 

(3.31). 

Using our refined Sellmeier equations (Eq. 3.16, Fig. 3.18) [70] and the 

method described in ref [76], we showed that a supercontinuum can be 

generated when LGN is pumped at λp = 0.982 μm and cut at (PM= 52°,  = 90°): 

Figure 3.25 shows that the emission ranges between 1.4 and 3.45 μm. Concerning 

the pump laser to use, Figure 3.25 shows that the tuning curve of LGN exhibits 

a quasi‐supercontinuum behavior when the crystal is pumped at the Nd:YAG 

wavelength ( λp = 1.064 μm), while it is not anymore the case at the Ti:Sapphire 

wavelength ( λp = 0.8 μm). 

 

  

Figure 3.25 Calculated OPG tuning curves in the (y, z) plane of LGN at different 

values of the pump wavelength P. 

                                                

3.6 Summary and discussion 
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We grew large size of the new Langanite crystal La3Ga5.5Nb0.5O14 (LGN). The 

linear and second‐order nonlinear optical properties have been studied in detail: 

we found that the transparency is ranging between 0.28 and 7.4 μm, we 

determined accurate Sellmeier equations, and we determined that the nonlinear 

coefficient d11 is around 3.0 pm/V. Using our Sellmeier equations, we identified 

the possibility of generating a supercontinuum in the mid‐IR by pumping LGN 

at the standard wavelength of emission of the Nd:YAG laser. From these 

results, LGN appears as a promising crystal for high energy generation in band 

II of transmission of the atmosphere, for Lidar applications for example. It gives 

also inspiration for the study and development of other nonlinear crystals from 

the same chemical family. 

 

The relevant parameters of the reference nonlinear crystals for the 

emission between 2 and 6 μm i.e. PPLN, PPKTP, LBO, KTP, LGT and LGN 

are depicted in Table 3.6. We show that LGN has a transparent range covering 

the atmosphere transparency range band II. Furthermore, we report phase‐

matching tuning curves over this transparency range, and a relatively high 

damage threshold of this crystal. The nonlinear coefficient d11 of LGN is a little 

bit higher than that of LGT. However, LGN crystallizes in the 32 point group 

as LGT, which leads to an unfavorable trigonometric function at the level of 

the effective coefficient deff when compared to other nonlinear crystals of Table 

3.6. Fortunately, this disadvantage can be compensated by the fact that LGN (as 

LGT) can be grown with large dimensions. Then LGN permits firstly the use 

of a large beam diameter so that a very high energy can be considered while 

remaining below the intensity damage threshold, and secondly it enables a long 

interacting length that is favorable for maximizing the conversion efficiency. 

Note that nowadays, the biggest aperture for a LGS crystal is 52 mm × 100 mm 
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[78]. Then we think that LGN can be grown as large as LGS after optimizing 

our crystal growth techniques.  
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4 PPRKTP crystal 

 

4.1 State of the art and motivations 

 

As seen in Chapter II, nonlinear optics deals with a strong coupling between 

light and matter. Its ability to convert and tune the frequency range of existing 

laser sources is of prime importance in optical devices [12, 95]. It was also 

explained in Chapter II that phase‐matching conditions have to be fulfilled in 

order to obtain and improve frequency conversion during the nonlinear process. 

The common way for obtaining phase‐matching is to use birefringence phase‐

matching (BPM) as it was done in the case of LGN and described in Chapter 

III [12, 71, 92, 96]. The present chapter is devoted to the study of quasi‐phase‐

matching (QPM) that is performed in an artificial medium in which there is a 

periodic modulation of the sign of the crystal’s second‐order nonlinear 

coefficient. This modulation can realized in one or two dimensions [15, 97], and 

it gives the possibility to access to the highest coefficient of the second‐order 

electric susceptibility tensor [15, 16] or to shape the spatial and spectral 

properties of light [98]. Recently, significant improvement of the electric field 

poling or bonding techniques have led to larger aperture QPM crystals. For 

example, few‐millimeters‐thick periodically poled 5%MgO:LiNbO3 

(5%MgO:PPLN) [99], LiTaO3 (PPLT) [100], KTiOPO4 (PPKTP) [101], Rb‐

doped KTiOPO4 (PPRKTP) [102] and orientation‐patterned GaAs (OP‐GaAs) 

[103] have been successfully obtained. Such large‐size artificial materials not 

only allow laser beams with large apertures and high energies to be used, but 

they also give the possibility to implement the angular quasi‐phase‐matching 

(AQPM) scheme proposed in 2007 [2]. It corresponds to a generalization of 

QPM since it can be achieved at any angle with respect to the grating vector of 

the artificial nonlinear medium. This scheme was validated for the first time in 
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2009 by using a uniaxial crystal, concretely a sphere shaped 5% MgO:PPLN [66]. 

By studying second‐harmonic generation (SHG) and difference‐frequency 

generation (DFG), it had been shown in particular that AQPM brings giant 

spectral acceptances compared with BPM.  

 

In this chapter, we report the first general validation of the AQPM scheme 

in the case of a biaxial crystal using SHG. We considered a crystal of PPRKTP 

because it can be obtained in larger size than PPKTP [101] and with a reliable 

control of the ferroelectric‐domain structures [102]. The composition of the 

crystal we study is Rb0.003K0.997TiOPO4, and its grating period is Λ = 38.52 μm 

[104]. 

 

4.2 Theoretical analysis 

 

The AQPM condition is given by the following equation described in § 2.3.2 of 

Chapter II [2]: 

     
 

3 2 1

3 2 1

, , ,

,
0

1

eff

n n n     
    

  

  


     (4.1) 

 

θ and φ are the angles of spherical coordinates in the dielectric frame (x, y, z). 

λ1, λ2 and λ3 are the wavelengths of the three interacting waves that are linked 

by energy conservation, i.e. 
-1 -1 -1
3 2 1    ; n1

±, n2
± and n3

± are the corresponding 

refractive indices in the considered AQPM direction (θ, φ), the signs + and – 

denoting the two possible values of the refractive index according to 

birefringence. In the following, the notations λω (= λ1 = λ2) and λ2ω (=λ3) for the 

fundamental and second‐harmonic (SH) wavelengths respectively will be used. 

  1
= sin( )cos, ( )eff        is the effective grating periodicity in the 
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direction (θ, φ) that has been defined in § 2.3.2 : it ranges from a minimal value 

corresponding to a propagation of the interacting waves along the x‐axis, i.e. 

eff(θ = 90°, φ = 0°) = Λ, to a maximal one obtained when propagation occurs in 

the y‐z plane, i.e. eff (θ, φ =90°)  . Note that AQPM authorizes six possible 

combinations of refractive indices in Eq. (4.1) for SHG, which defines the six 

SHG AQPM types, BPM exhibiting only two of them[2, 96]. 

 

The Sellmeier equations of RKTP are not known, therefore we used those 

of KTP since the Rubidium (Rb) concentration is small (0.3%). Then we used 

the Sellmeier equations of Ref. [105] for the calculation of the SHG AQPM 

angles. We found that only four SHG AQPM types are allowed among the six 

possible types, and that for fundamental wavelengths above 2.098 μm. At this 

wavelength, type V AQPM exists only along the x‐axis, and it disappears for 

smaller wavelengths. We chose 2.15 μm as fundamental wavelength, which was 

close to the cut‐off of the source we used. The four AQPM relations are given 

in Tab. 4.1, as well as those of types I and II BPM that are allowed in RKTP. 

Note that the corresponding phase‐matching relations can be obtained from 

those of types I and II AQPM given in Tab. 4.1 by doing eff (θ, φ)  . The 

consideration of BPM in this framework of AQPM is relevant from the 

experimental point of view as it will be shown hereafter. 

 

Figure 4.1 shows the tuning curves of the corresponding AQPM and BPM 

angular tuning curves at λω = 2.15 μm.  

 

Table 4.1 Possible SHG AQPM and BPM types in PPRKTP; n+ and n‐ are the two 

possible values of the refractive index at the fundamental or second harmonic 

wavelengths, λω and λ2ω respectively, in the PM direction (θ, φ). 
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Types AQPM relations 

I      -1 -1 -1
2 2n 2n, , ,eff           

II        -1 -1 -1 -1
2 2n n n, , , ,eff                    

IV      -1 -1 -1
2 2n 2n, , ,eff            

V      -1 -1 -1
2 2n 2n, , ,eff            

Types BPM relations 

I    -1 -1
2 2n 2 ,n,          

II      -1 -1 -1
2 2, , ,n n n                 

 

 

Figure 4.1 All the possible SHG AQPM and BPM curves calculated in PPRKTP 

pumped at a wavelength of 2.15 μm are shown as solid and dashed lines, respectively.  

 

As PPRKTP belongs to the crystal class mm2, there exist five independent 

nonlinear coefficients in the case of SHG, i.e. using the contracted notation : d15, 

d24, d31, d32 and d33 [4]. 
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Thus the effective coefficient corresponding to any SHG AQPM direction 

(θ, φ) can be calculated using the following equation:  
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  (4.2) 

with 

       , 2 , , , , , ,ijk i j kF e e e                 (4.3). 

 

The index i stands for x, y or z, and ea
± (a = i, j, k) represent the unit vectors 

of the electric fields of the different interacting waves corresponding to the 

refractive indices of Tab. 4.1 according to the type that is considered. The 

expressions of unit electric field vectors 𝑒  and the field tensors Fijk are 

presented as in Eqs. (2.13) and (2.25) of Chapter II. The expressions of the five 

relevant coefficients in the contracted notation are the following: 

 

           15 , , , 2 2 , , , , , ,xxz xzx x x zF F F e e e                    

           24 , , , 2 2 , , , , , ,yyz yzy y y zF F F e e e                    

         31 , , 2 , , , , , ,zxx z x xF F e e e                 

         32 , , 2 , , , , , ,zyy z y yF F e e e                 

         33 , , 2 , , , , , ,zzz z z zF F e e e                 

(4.4) 

These field tensor coefficients are calculated using the Sellmeier equations 

of reference[105] for the four AQPM types of PPRKTP pumped at the 
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fundamental wavelength λω = 2.15 μm. They are plotted as a function of the 

phase‐matching angle φ in Fig. 4.2. 

 

 

Figure 4.2 Field tensor coefficients as a function of the AQPM angle φ for the four 

SHG AQPM types in PPRKTP pumped at a wavelength of 2.15 μm. 

 

The calculation of the effective coefficients deff corresponding to the field 

tensor coefficients of Fig. 4.2 requires to know the magnitude of the five 

independent nonlinear coefficients, i.e. d15, d24, d31, d32 and d33 of PPRKTP at the 

SH working wavelength, i.e. λ2ω = λω/2 = 1.075 μm. For that we used the Miller 

rule[75]. Using this law, it is indeed possible to calculate the value of any 𝜒  

coefficient at any wavelength ω ω ω  knowing the value of this 

coefficient at a given wavelength ω ω ω  on the one hand, and the 

values of the principal refractive indices at all the wavelengths that are 

concerned. Then the coefficients 
(2) ( )ijk A  and 

(2) ( )ijk B  are related by the 

relation 
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(1) (1) (1)
1 2(2) (2)

1 2 1 2 (1) (1) (1)
1 2

( ) ( ) ( )
( ) ( ).

( ) ( ) ( )
ii A jj A kk A

ijk A A A ijk B B B
ii B jj B kk B

     
       

     


    
                 

(4.5) 

where χ 𝜔 n 𝜔 1 a i, j and k . 

Using Eq. (4.5), the nonlinear coefficients at λωB = 0.532 μm given in 

reference [106], we got for the nonlinear coefficients at λωA = 1.075 μm : d15 = 1.199 

pm/V, d24 = 2.27 pm/V, d31 = 1.19 pm/V, d32 = 2.25 pm/V and d33 = 8.97 pm/V. 

From these values the effective coefficients corresponding to the four SHG 

AQPM types in PPRKTP pumped at λω = 2.15 μm are plotted in Fig. 4.3 as a 

function of the angle φ. 

 

 

Figure 4.3 Effective coefficients deff as a function of the AQPM angle φ for the four 

SHG AQPM types in PPRKTP pumped at a wavelength of 2.15 μm. 
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Note that the only cases for which the effective coefficient is zero are those 

of types I and IV in the principal planes, as shown in Fig. 4.3. Note also that in 

the case of a biaxial crystal, which is the case of PPRKTP, the effective 

coefficient has an analytical expression only in the principal planes. Table 4.2 

gives the corresponding expressions of the types for which the effective 

coefficient is non zero, i.e. of types II and V. 

 

Table 4.2 Non zero effective coefficients of the four types of SHG AQPM in the 

principle planes; ρ is the Poynting walk‐off angle. 

Types Planes Effective coefficients (deff) 

II 
(x, z)  24(2 / ) sin - ( )d      

(y, z)  15(2 / ) sin - ( )d      

V 

(x, y) 33(2 / ) d   

(x, z) 
     

      
15 2

2 2
2 31 33

2 sin - ( ) cos - ( ) cos - ( )2
( )

sin - ( ) cos - ( ) sin - ( )

d

d d

  

  

        

         

 
 
   

 

 

The five coefficients of the field tensor of the BPM SHG can be calculated 

using the same equations than those of AQPM, i.e. Eqs. 4.4. They are plotted 

in Figs. 4.4(a) and (b) as a function of the BPM angle in the case of the SHG 

pumped at 2.15 μm. From these coefficients it is easy to calculate the effective 

coefficients of the SHG of types I and II using Eqs. 4.2 without the factor 2/π, 

and the Miller rule described above; they are plotted in Figs. 4.4 (c) and (d), 

respectively. 
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Figure 4.4 Field tensor coefficients for Type I (a) and II (b) SHG BPM, and 

effective coefficients for Type I (c) and II (d) SHG BPM as a function of the BPM 

angle φ in PPRKTP pumped at a wavelength of 2.15 μm. 

 

4.3 Measurements 

 

In order to determine at best the full angular distribution of AQPM, we shaped 

the PPRKTP crystal as a sphere using a specific technique allowing us to get a 

perfect polishing and an asphericity below 1% [58]. We got a sphere with a 

diameter of 4.76 mm, as shown in Fig. 4.5 (a), the volume of the sphere being 

fully periodically poled as shown in Fig. 4.5 (b). 
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Figure 4.5 (a) PPRKTP sphere used for the experiments. (b) Scheme of AQPM in 

the sphere where Λ is the grating periodicity along the x‐axis and  


,s  is the unit 

vector of the wave vectors of the interacting waves where (θ, φ) are the angle of 

spherical coordinates in the dielectric frame (x, y, z). 

 

As seen in Fig. 4.1, all the tuning curves range between the (x, z) and the 

(x, y) or (y, z) planes, which determine a specific strategy for scanning the space 

in order to measure at best the corresponding phase‐matching angles, as shown 

in Fig. 4.6. The method consists in rotating the sphere around the z‐axis by 

incremental values of the angle φ (φ‐Scanning), and, for each value of φ, the 

sphere is then rotated by the angle θ (θ‐Scanning) until the fundamental beam 

and the phase‐matching direction are in coincidence in the plane that is 

considered. The best choice was to stick the sphere along the y‐axis since one 

cone surrounds the x‐axis and the other one the z‐axis. A Laue orientation of the 

sphere gives us a precision better than 0.05°. 
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Figure 4.6 Schematic diagram of the scanning mode for determining the two possible 

topologies of phase‐matching cones, i.e. around the x‐axis (brown) or z‐axis (blue).The 

ik


 (i = 1,2,3,4) correspond to the phase‐matching directions at the angles i  and i

crossing the cones at iA . (x, y, z) is the dielectric frame. 

 

The sphere was then placed at the center of a Kappa circle described in Fig. 

4.7. 

 

 

 

Figure 4.7 Kappa circle consisting of three rotation angles marked by the axes κ, Фk 

and Ωk ; (xlab,ylab,zlab) is the laboratory frame.  

 

The Kappa circle is motorized by stepper motors with an accuracy of 0.003° 

and is electronically controlled. It has three rotation axes κ, Фk and Ωk. The three 
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rotation axes κ, Фk and Ωk are arranged in such a way that the axis of rotation κ 

is placed at a non‐zero angle (α) with respect to the vertical direction. This 

arrangement enables multiple combinations between the three axes for a same 

direction, which allowed us to choose the combination for which we had no 

“blind spot”. 

The phase‐matching angles have to be known in terms of their angle of 

spherical coordinates (θ, φ) in the dielectric frame (x, y, z), but their 

measurement is performed using the Kappa circle that gives the three angles 

(Ωk, κ, Фk) defined according to the laboratory frame (xlab, ylab, zlab) as shown in 

Fig. 4.7. The relative orientation between the laboratory and dielectric frames 

is described in shown in Fig. 4.8. 

 

 

Figure 4.8 (xlab, ylab, zlab) are the principal axes of the laboratory frame ; the spherical 

coordinates (θ,φ) are relative to the propagation direction u⃗ 𝜃, 𝜑  in the dielectric 

frame (x, y, z). 

  

A change of the reference is then required for determining the relationship 

between the spherical coordinate angles (θ, φ) and the Kappa angles (Ωk, κ, Фk). 

We use the following equation between the Cartesian coordinates (ux,uy,uz) in 

the dielectric frame and the Cartesian coordinates (uxlab,uylab,uzlab) in the 

laboratory frame : 
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𝑢
𝑢
𝑢

M
𝑢
𝑢
𝑢

 

(4.6) 

where 

M 𝛤 𝛷 . 𝛤 𝛼 . 𝛤 𝜅 . 𝛤 𝛼 . 𝛤 𝛺  (4.7) 

with 

𝛤 𝛷
cos𝛷 sin𝛷 0
sin𝛷 cos𝛷 0

0 0 1
 

𝛤 𝛼
cos𝛼 0 sin𝛼

0 1 0
sin𝛼 0 cos𝛼

 

(4.8) 

𝛤 𝜅
cos𝜅 sin𝜅 0
sin𝜅 cos𝜅 0

0 0 1
 

𝛤 𝛺
cos𝛺 sin𝛺 0
sin𝛺 cos𝛺 0

0 0 1
 

(4.9) 

And finally we get:  

𝜃 arccos 𝑢

𝛷 arctan 
𝑢
𝑢

 

(4.10). 

For this change of frame, we have written a usable interfacing program 

with a command system of a motor positioning allowing a given direction (θ, 

φ) to be selected. For all possible combinations (Ωk, κ, Фk), the program ensures 

the following steps: 1) calculation of the coordinates of 𝑢 𝜃, 𝜑  in the dielectric 

frame according to the Eq. 4.6 using Eqs. 4.7, 4.8 and 4.9; 2) calculation of the 

corresponding solutions (θ, φ) from Eq. (4.10); 3) test of the correspondence of 

the solutions with the command for each combination. Afterwards, a procedure 

will run for finding solutions by means of iteration and quick targeting. The 
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program will repeat this operation until the accuracy of the solution is well 

matched with the initial command. 

 

The advantage of Kappa circle is that there are a large number of 

combinations (Ωk, κ, Фk) corresponding to the same (θ, φ). Hence, if the 

mechanical support of the goniometer blocks the laser beam, which corresponds 

to a dead angle situation, there is the possibility to move it in order to find new 

angles (Ωk, κ, Фk) enabling a position without blocking. 

 

The PPRKTP sphere is cut along the y‐axis and it was illuminated by a 

beam at the fundamental wavelength λω = 2.15 μm. It was emitted by an optical 

parametric oscillator that delivers 5‐ns‐FWHM pulses at 10‐Hz‐repetition rate. 

A half‐wave plate allowed the incident beam to be polarized according to the 

chosen AQPM types. A focusing lens was properly located at the entrance of 

the sphere, ensuring the quasi‐parallel propagation of the beams inside the 

sample. The energy of the generated beam was measured at the exit of the 

sphere by an amplified Si Hamamatsu C2719 photodiode placed after a 75‐mm‐

focusing lens, a filter removing the fundamental beam. The experimental setup 

was presented in Fig. 4.9. The phase‐matching wavelengths were controlled by 

a NIRquest 512 Ocean Optics spectrometer with an accuracy of ± 3 nm. The 

SHG phase‐matching angles are detected when the associated conversion 

efficiency is maximal. The corresponding angular accuracy is of ±0.5°. 
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Figure 4.9 Experimental setup for the AQPM measurements in the PPRKTP 

sphere. 

 

4.4 Results and discussions 

 

Figure 4.10 (a) gives the example of the determination of the type V AQPM 

angle at λω = 2.15 μm in the (x, z) plane of the PPRKTP sphere. Meanwhile, the 

conversion efficiency as a function of the fundamental wavelength (λω) is also 

measured for validating the angular measurement: actually the peak of the 

AQPM curve is well at λω = 2.15 μm as shown in Fig. 4.10 (b). The same 

determinations in the (x, z) plane for Type II AQPM and Type II BPM are 

presented in Fig. 4.11 and 4.12, respectively. 
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Figure 4.10 (a) Measured (dots fitted by dashed line) and calculated (solid line) SHG 

conversion efficiency as a function of θ angle for Type V AQPM; (b) Measured (dots 

fitted by dashed line) and calculated (solid line) SHG conversion efficiency as a function of 

the fundamental wavelength (λω) for Type V AQPM. 

 

 

Figure 4.11 (a) Measured (dots fitted by dashed line) and calculated (solid line) SHG 

conversion efficiency as a function of θ angle for Type II AQPM; (b) Measured (dots 

fitted by dashed line) and calculated (solid line) SHG conversion efficiency as a function of 

the fundamental wavelength (λω) for Type II AQPM. 
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Figure 4.12 (a) Measured (dots fitted by dashed line) and calculated (solid line) SHG 

conversion efficiency as a function of θ angle for Type II BPM; (b) Measured (dots fitted 

by dashed line) and calculated (solid line) SHG conversion efficiency as a function of the 

fundamental wavelength (λω) of Type II BPM. 

 

Fig. 4.10 clearly shows that the experimental type V AQPM SHG angle in 

the (x, z) plane is θ = 78.5 ± 0.5°, which is bigger than the calculated one, i.e. 

67.56°. This discrepancy is due to the fact that the Sellmeier equations we used 

for the calculation are those of KTP [105] and not those of PPRKTP that are not 

yet known, as mentioned above. The experimental and calculated angular and 

spectral acceptances are also larger than the calculated values, but it is probably 

mainly due to a small divergence inside the sphere, of about several mrad. 

Following the scanning process described by Fig. 4.6, we measured the entire 

angular tuning curves of types I, II, IV and V. As shown in Fig. 4.13, there is a 

shift of a couple of degrees between measurements and calculations. But the 

behaviors are the same, and we also confirm the fact that no more than the four 

calculated AQPM types are allowed, which was the first step in the validation 

of the AQPM theory in a biaxial crystal. 
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Figure 4.13 All the possible SHG AQPM and BPM curves calculated in PPRKTP 

pumped at a wavelength of 2.15 μm are shown as solid and dashed lines, respectively. Cross 

dots stands for the experimental data. 

 

The second step of validation has concerned the angular evolution of the 

effective coefficient. The later one acts at the level of the Figure of Merit (FOM) 

through the following equation [4]: 
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In order to avoid the difficulties associated with absolute measurements, 

we considered a normalized SH intensity defined as follows: 
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   (4.12). 

 

It corresponds to the ratio between the SH intensities at different AQPM 

angles (θ, φ) and the SH intensity at the minimal value of φ corresponding to 
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the different types: φ = 0° for types II and V AQPM, and φ = 10° for types I 

and IV since the corresponding effective coefficients are zero in the principal 

planes as mentioned above. The calculated and measured normalized SH 

intensities are plotted in Fig. 4.14 as a function of the AQPM angle φ for the 

four AQPM types. The corresponding AQPM angles θ are given by the four 

curves of Fig. 4.1. Figure 4.14 confirms the very good agreement between theory 

and experimental results. 

Note that there is an abnormal peak on the type II AQPM curve of Fig. 

4.14(b) for φ ranging from 40° to 60°. That can be well explained by the crossing 

of this curve with that of type I BPM, as shown in Fig. 4.1. Actually, BPM can 

exist in a periodically‐poled medium since birefringence exists. 

 

 

Figure 4.14 Normalized SH intensities as a function of types I, II, IV and V AQPM 

angles φ for a fundamental wavelength λω = 2.15 μm.
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The coexistence of BPM and AQPM is then possible if the phase‐matching 

directions are in coincidence, and if there are the required common polarization 

states, which is the case for type I BPM and type II AQPM in PPRKTP. One 

of the polarization states of the fundamental waves for generating type I BPM 

(ω+ + ω+ → 2ω‐) is the same as that of type II AQPM (ω+ + ω‐ → 2ω‐), i.e. 

the (+) mode, therefore, type I BPM is automatically excited during a type II 

AQPM experiment due to the common fundamental mode (+). Figure 4.1 also 

shows an intersection between the angular tuning curves of type IV AQPM (ω‐ 

+ ω‐ → 2ω‐) and type II BPM (ω‐ + ω+ → 2ω‐) for φ ranging from 0° to 10°. 

But in that case, type II BPM cannot be excited during a type IV AQPM 

because the fundamental (+) mode is missing. Then type II BPM cannot 

influence the tuning curve of type IV AQPM, which can be verified in Fig. 4.14 

(c). 

 

4.5 Conclusions and perspectives 

 

As a conclusion, we experimentally validated the theory of AQPM in the case 

of a biaxial crystal by performing SHG at a fundamental wavelength of 2.15 μm 

in a large‐aperture PPRKTP shaped as a sphere. The angles of the four possible 

AQPM types were measured by the sphere method using a Kappa circle. 

Meanwhile, the measured SH generated intensities matched perfectly well with 

the calculations. The next step of this work will be the measurement of the 

AQPM angles as a function of wavelength followed by the fitting of these data, 

which should allow us to determine the proper Sellmeier equations of RKTP. 

By this way, we can find out for example if there is some giant spectral 

acceptance situations in PPRKTP as in the case of PPLN [68].
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5 Conclusion 

 

This work was motivated by the investigation of the nonlinear crystal LGN 

suited for the generation using birefringence phase‐matching (BPM) in the 

mid‐infrared, and of the validation of the scheme of angular quasi‐phase‐

matching (AQPM) in biaxial crystal, i.e. PPRKTP. These two crystals were 

shaped as polished spheres allowing any direction of propagation to be 

addressed. By this way it has been possible to fully and directly characterized 

the angular distribution of the BPM and AQPM properties of LGN and 

PPRKTP, respectively. 

 

We grew large size 45 × 45 × 100 mm3 of the new Langanite crystal 

La3Ga5.5Nb0.5O14 (LGN). The linear and quadratic optical properties have been 

studied in detail: we found that the transparency is ranging between 0.28 μm 

and 7.4 μm, we determined accurate Sellmeier equations, and we found that the 

absolute magnitude of the nonlinear coefficient d11 is equal to 3.0 pm/V, which 

is of the same order of magnitude of other oxides like KTP for example. Using 

our Sellmeier equations, we identified the possibility of generating a super 

continuum in the mid‐Infrared by pumping LGN at the standard wavelength 

of emission of the Nd:YAG laser. From these results, LGN appears as a 

promising crystal for high energy generation. The immediate following of the 

optical experiments will be the generation of a super continuum from 1.5 μm to 

3.5 μm using a pump beam at 1.064 μm. This study gives also inspiration for the 

study and development of other nonlinear crystals belonging to the same 

chemical family, which will be done in the longer term. 

 

We performed for the first time the experimental validation of the AQPM 

theory in the case of a biaxial crystal by performing SHG at a fundamental 
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wavelength of 2.15 μm in a large‐aperture PPRKTP. This scheme is a 

generalization of QPM using a unidirectional grating where the pump beam is 

allowed to propagate in any direction with respect to the grating vector. The 

experimental demonstration of such a scheme had been completely achieved in 

the case of the uniaxial optical class in 2009. The well‐known PPLN had been 

then considered for that purpose. Here we study the AQPM scheme in the case 

of the biaxial optical class by taking the example of PPRKTP. We measured 

the angular distribution of the loci as well of the conversion efficiency of the 

four possible SHG AQPM types allowed in PPRKTP. The experiments 

matched perfectly well with the calculations. The next direct step of this work 

will be the measurement of the SHG AQPM angles of types II and IV in the 

principle planes as a function of wavelength followed by the fitting of these 

data, which should allow us to determine the Sellmeier equations of PPRKTP 

that are unknown nowadays. We will also look for the directions for which the 

spectral acceptance is giant, as it exists in the case of PPLN. And finally the 

completion of the validation of the AQPM theory will require addressing the 

case of the third optical class, i.e. the isotropic one. OP‐GaAs is the natural 

candidate for such a study, but its current thinness, no more than 1 mm, will 

not allow the shaping of a sphere, but of a cylinder. 
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Abstract: The mid-infrared spectral range extending from 2 to 6 μm is significant for 
scientific and technological applications. A promising nonlinear oxide crystal 
La3Ga5.5Nb0.5O14 (LGN) is proposed and fully characterized for the first time to our 
knowledge. The transparency range extends between 0.28 and 7.4 μm. The two principal 
refractive indices were measured and we found that the nonlinear coefficient d11 = 3.0 ± 0.1 
pm/V at 0.532 μm. The simultaneous fit of data allowed us to refine the Sellmeier equations 
of LGN and to calculate the tuning curves for optical parametric generation (OPG) pumped at 
1.064 μm. Calculations are consistent with recorded data and also show the generation of a 
supercontinuum between 1.5 and 3.5 μm when pumped at 0.98 μm by a Ti:Sapphire laser. 
©2016 Optical Society of America 
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mixing; (190.4975) Parametric processes. 
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1. Introduction 

Optical parametric generation emitting in the near infrared from 2 to 6 µm is a real need for 
various applications like trace gas monitoring or laser surgery [1–4]. But there is still a lack of 
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appropriate nonlinear crystals for high energy applications. For example, KTiOPO4 (KTP) or 
the periodically-poled KTP (PPKTP) [5, 6], the periodically-poled LiNbO3 (PPLN) [7], as 
well as the new CdSiP2 (CSP) crystal [8] have very good nonlinear optical properties but they 
suffer from the difficulty to fabricate large samples, which forbids to use large laser beams. 
Nowadays, a lot of efforts have been made for investigating new kinds of nonlinear crystals 
for high power mid-infrared lasers. For example, 4H-SiC with a high damage threshold (>3.0 
GW/cm2) has been explored to be a promising crystal for producing high-power mid-infrared 
lasers [9]. Recently, the Langatate La3Ga5.5Ta0.5O14 (LGT) was also reported as a novel mid-
infrared nonlinear crystal with very good indicators compared to KTP [10] and with an easier 
crystal growth leading to very high quality and several-centimeters-size crystals thanks to the 
Czochralski method [11]. 

In the same langasite family, we identified La3Ga5.5Nb0.5O14 (LGN) [12]. LGN belongs to 
the 32 trigonal point group, where 3 and 2 stand for a 3-fold and a 2-fold axis respectively, 
leading to four non-zero and independent coefficients of the second order electric 
susceptibility tensor according to Neumann principal [13]. These coefficients under 
Kleinmann assumption are: dxxx = - dxyy = - dyxy = - dyyx ( = d11) where d11 stands for the 
contracted notation [13]. The ordinary and extraordinary principal refractive indices of LGN, 
written no and ne respectively, have been previously determined as a function of the 
wavelength between 0.36 µm and 2.32 µm using an oriented prism [12]. It has enabled to 
show that LGN is a positive uniaxial crystal (no < ne), and the determined Sellmeier equations 
have been used to calculate birefringence phase-matching directions of second harmonic 
generation (SHG) [12]. To the best of our knowledge, no value of d11 and damage threshold 
have been reported. 

In this work, we report crystal growth, transmission spectra, and accurate values of the 
two principal refractive indices of LGN as a function of wavelength measured using the 
minimum deviation technique in a prism. The fit of these data allowed us to refine the 
Sellmeier equations of LGN and worked out calculations for all possible phase-matched 
quadratic processes associated with a non-zero effective coefficient, and corresponding 
devices based on optical parametric generation (OPG). The second-order nonlinear 
coefficient d11 was determined using the Maker Fringe Technique, and we measured the 
damage threshold. We also discuss the interest of this crystal for second-order frequency 
conversion in the infrared range from the structural point of view. 

2. Experimental methods 

LGN crystal was grown using the Czochralski method. The raw materials were prepared from 
a mixture of La2O3, Ga2O3, and Nb2O5 powders with a purity of 99.99% in stoichiometric 
ratio. During the crystal growth process, an argon-oxygen atmosphere with an oxygen 
concentration of 2% was chosen to reduce the evaporation of the gallium sub-oxide from the 
melt, and an extra 2 wt% Ga2O3 was added to reduce the volatilization. 

The transmission spectra were recorded using a 2 mm-thick x-cut slab with aperture 
dimensions of 4 × 4 mm2. It was uncoated and polished to optical quality. We used an 
ultraviolet-visible-NIR spectrometer (JASCO, Model V-570) emitting polarized light between 
190 nm and 2500 nm, and a FT-IR spectrometer (NEXUS 670, Thermo Nicolet Co.) emitting 
unpolarized light between 2500 nm and 8000 nm. 

For the measurement of refractive indices, a high optical quality LGN crystal was cut as a 
few centimeters prism with a vertex angle of 25.05 ± 0.112°. The edge was cut along the c (or 
z) axis, so that the incidence plane corresponds to the (x,y) plane that is parallel to (a,b) plane. 
It has the advantage of a birefringence, i.e. Δn = ne – no, independent of the direction of 
propagation, and without any spatial walk-off. The LGN prism was placed in a high precision 
automatic spectrometer goniometer (HR Spectro Master UV-VIS-IR from Trioptics). This 
commercial device provides measurements of the minimum deviation in polarized light, for 
eleven sets of discrete wavelengths ranging between 0.43 and 2.33 μm which values are 
known with a precision of 10−5. By adjusting the proper orientation of the linear polarization 
of the input beam, it has been possible to determine the values of the ordinary and 
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extraordinary principal refractive indices of LGN, i.e. no and ne, respectively, with an 
accuracy of 10−5. 

A Maker Fringe setup [14, 15] was implemented to determine the second-order electric 
susceptibility coefficient d11 of LGN relatively to d36 of potassium dihydrogen phosphate 
(KDP) at the same wavelength. The incoming beam was delivered by a Q-switched Nd:YAG 
laser (Spectra-Physics, Model Pro 230) at the fundamental wavelength λω = 1.064 μm with a 
10-Hz repetition rate and 10-ns pulse width. The averaged power P(λω) was set at 20 mW and 
focused inside the LGN and KDP slabs. The corresponding beam waist radius was w = 0.2 
mm in the samples, which ensures a propagation in the parallel beam approximation since the 
Rayleigh length (zR = 11.8 cm) is much longer than the crystal length (L = 1 mm). The slabs 
were cut with uncoated surface dimensions of 10 × 12 mm2 polished to optical quality, the 
optical parallelism being less than 0.5′ of arc. These samples were stuck on a turntable with a 
precision of 0.00125° (RAK100, Zolix Inc.) ensuring a continuous rotation of the crystals in 
the (z, y) and (x, y) planes. At room temperature, the power of the SHG generated beam, 
P(λ2ω) was measured as a function of the sample orientation, by using a photomultiplier tube 
(PMT, Hamamatsu, Model R105). It was averaged by a fast-gated integrator combined with a 
boxcar (Stanford Research Systems), and recorded using a software. 

The optical damage was studied using a Q-switched Nd:YAG laser (ICT Laser Work 
Station, Piano 2000) with 10-ns pulse width and 1-Hz repetition rate. The laser beam was 
focused onto a polished 2-mm-thick LGN slab with aperture dimensions of 4 × 4 mm2 using a 
100-mm-focal lens. The sample was moved toward the beam waist plane using a precision 
translation stage (Zolix Inc.), until damage was observed at the input surface of the crystal. 
This damage was checked by an optical microscope and this test mode is according to the 
International Standard Organization 11254-1 [16]. 

For the optical parametric generation (OPG), the pump source was a homemade Q-
switched Nd:YAG laser at 1.064 μm with a pulse width of 10 ns. The input beam polarization 
was set ordinary. The spectrum of the light generated by the OPG was measured using two 
spectrometers for presenting the generated fluorescence clearly (OSA205, Thorlabs Inc. & 
YOKOGAWA AQ 6315A, 0.05 nm resolution). 

3. Results and discussions 

3.1 Crystal growth and structure 

An as-grown LGN crystal weighting 410 g, with 45 mm in diameter and 100 mm in length, is 
shown in Fig. 1(a). Since LGN belongs to the 32 trigonal point group, the c axis of the 
crystallographic frame is perpendicular to the two other axis, i.e. a and b, making an angle of 
120°. Consequently, the crystallographic frame does not correspond to the orthonormal 
dielectric frame (x, y, z); we used the following convention: a is parallel to x while y is located 
at 30° from b, as shown in Fig. 1(b). 

 

Fig. 1. (a) An as-grown LGN crystal using the Czochralski method; (b) Orientation between 
the crystallographic (red) and the dielectric (blue) frames. 

The langasite crystallographic structure A3BC3D2O14 contains 4 cationic sites that can be 
occupied by different ions [17], the displacements of ions and their electron shells playing a 
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key role in optical effects [18]. In LGT, the Ta5+ ions are located in two sites (octahedral and 
trigonal-pyramidal) by substitution of Ga3+ ions thanks to the ion polarizabilities. But the 
structure of LGN is different: the La3+ ions sit in the center of (LaO8) dodecahedron (yellow), 
the Ga3+ ions have two positions, i.e. (GaO4) tetrahedron (deep green) and trigonal-pyramid 
(light green), and the Nb5+ ions are in forms of (NbO6) octahedron, as shown in Fig. 2. The 
structure of LGN is formed along the shortest distance between the (LaO8) dodecahedron and 
(NbO6) octahedron. Meanwhile, the (LaO8) dodecahedron and (NbO6) octahedron share the 
O-O edge. Then the two types of (GaO4) situated around the octahedra according to the 
threefold axis law. The ionic radii of Ga3+ (6) and Nb5+ (6) are 0.62 and 0.68 Å, respectively, 
which are close and these cations possessing ns2np6 electron shells could produce less 
localized chemical bonds which are benefical for substituting. Then the Ga3+ (6) sites could 
be occupied by Nb5+ (6) forming (NbO6) octahedra [19, 20]. Note that the Nb5+ ions are 
located only in the octahedral site that results in the deviation of the rotation of opposite faces 
of octahedron, these faces being normal to the c-axis [18]. Moreover, the octahedra are 
distorted, which induces a high nonlinear polarizability and also influences the infrared (IR) 
cut-off of the compound [21]. For comparison with other famous nonlinear oxide crystals, the 
borates like LiB3O5 (LBO) and β-BaB2O4 (BBO) with π-orbital borate systems have an IR 
cut-off around 3.2 μm [22, 23]; LiNbO3 (LN) and LiTaO3 (LT) [24], where (NbO6) and 
(TaO6) octahedrons exist, can reach 5.5 μm [25]. On the other hand, the IR cut-off of LGT is 
6 μm [10], which is larger than that of borates. Based on the anion group theory [21, 25], 
LGN should have enough polarizability and a comparable transmission range to that of LGT. 
Another important property is that the langasite family has a much higher band gap (~6.6 eV 
[26] than AgGaS2 (2.51 eV), AgGaSe2 (1.83 eV) [27] and ZnGeP2 (~2 eV) [28, 29], which 
indicates that LGN should have a much higher optical damage threshold. 

 

Fig. 2. (a) The fragment of the structure of LGN crystal; (b) polyhedrons of (LaO8), (GaO4) 
and (NbO6). 

3.2 Transmission spectra, refractive indices and Sellmeier equations 

The transmission spectra are depicted in Fig. 3(a) and 3(b) respectively, the inset of Fig. 3(a) 
corresponding to a zoom of the ultraviolet edge. Through using the Tuac’s equations αhv = 
A(hy - Eg)

2, where α is the absorption coefficient, A is an energy independent constant [30], 
the ultraviolet and infrared cut-offs could be estimated. The (αhv)2 versus hv has been plotted, 
then the indirect band-gaps were found by extrapolating the linear portion to (αhv)2 = 0 (see 
the green indicative line in the inset of Fig. 3 (b)). Then the band-gaps are determined to be 
4.43 eV and 0.167 eV and the ultraviolet cut-off could be caculated to be 0.28 μm and the 
infrared one should be 7.4 μm. Then LGN is transparent between 0.28 and 7.4 μm, despite a 
strong and narrow polarized absorption peak located at 1.85 μm due to oxygen defects during 
crystal growth. A smaller absorption peak exists at 3 μm because of Ga-O bonds [31]. From 
the transmission point of view, Fig. 3 shows that LGN could enable optical parametric 
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generation (OPG) covering band II of transmission of the atmosphere when pumped with 
femtosecond Ti:Sapphire or nanosecond Nd:YAG lasers, and that without any two photon 
absorption (TPA) of the pump. 

 

Fig. 3. LGN polarized (a) and unpolarized (b) transmission spectra as a function of wavelength 
through a 2-mm-thick and x-cut slab. The inset of (a) corresponds to a zoom of the ultraviolet 
edge and the insets of (b) are the (αhv)2 versus hv curves for determining the ultraviolet 
(above) and infrared (below) cut-offs. 

Table 1. Ordinary (no) and extraordinary (ne) principal refractive indices, and 
corresponding maximal value of birefringenceΔn = (ne – no) as a function of wavelength 

in LGN. 

λ (nm) ne no Δn = (ne - no) 

435.8350 2.028173 1.992677 0.035496 

479.9920 2.012033 1.978113 0.033920 

546.0750 1.995363 1.962867 0.032496 

587.5620 1.988239 1.956393 0.031846 

643.8470 1.980643 1.949400 0.031243 

706.5190 1.974146 1.943494 0.030652 

768.1943 1.969443 1.939087 0.030356 

852.1100 1.964365 1.934405 0.029960 

1013.9800 1.958660 1.928771 0.029889 

1529.5800 1.948163 1.919266 0.028897 

2325.4199 1.936976 1.908830 0.028146 

 

Fig. 4. Measured principal refractive indices no and ne plotted as a function of wavelength 
(dots), and fit of these experimental data (continuous lines). The picture shows the oriented 
centimeter-size LGN prism that was used. 
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Ordinary and extraordinary principal refractive indices, no and ne, respectively, were 
determined as a function of the wavelength presented in Fig. 4 (the inset is the LGN prism). 
The measured data are displayed in Table 1 for eleven sets of discrete wavelengths, showing 
that LGN is a positive uniaxial crystal (no <ne) with a strong birefringence Δn ~0.03. By using 
the Levenberg-Marquardt algorithm, we fitted simultaneously the refractive indices values of 
Table 1 with the same form of Sellmeier equation than that given in [12] where λ is expressed 
in μm, which gives: 

 2 2
2

0.0500
( ) 3.79511 0.00964

0.03405en λ λ
λ

= + −
−

 (1) 

 2 2
2

0.0464
( ) 3.68270 0.00870

0.02980on λ λ
λ

= + −
−

 (2) 

3.3 Nonlinear coefficient and damage threshold 

Using the Maker Fringe setup, we selected type I second harmonic generation (SHG) 
( 21/ 1/ 1/o e e

ω ω ωλ λ λ= + ) in the (y, z) plane of LGN, the corresponding effective coefficient 

being 2
2 11 2( , ) ( ) cos ( ( , ))

eff

yz o o ed dω ω ωλ θ λ θ ρ θ λ= − : θ is the angle of spherical coordinate from 

the z-axis, λω = 1.064 μm which is the fundamental wavelength, λ2ω = 0.532 µm which is the 
second harmonic wavelength, and ρ is the spatial walk-off. For this purpose, a 1-mm-length 
LGN slab was cut oriented along the three axes of the dielectric frame and rotated around the 
x-axis with the incoming beam polarized along the y-axis, as shown in Fig. 5(a). In order to 
perform a relative measurement relatively to the nonlinear coefficient d36 (0.532 μm) = 0.57 ± 
0.02 pm/V of KDP [32], we implemented type I SHG ( 21/ 1/ 1/e o o

ω ω ωλ λ λ= + ) in the (x, y) 
plane of KDP where there is no spatial walk-off. The corresponding effective coefficient is 

2 36 2( , ) ( )sin(2 )xy e e
effd dω ωλ ϕ λ ϕ=  where φ is the angle of spherical coordinate from the x-axis. 

We used a 1.5 mm-length [110]-cut KDP slab (φ = 45°) rotated around the z-axis, the 
incoming beam being polarized perpendicularly to this axis (see Fig. 5(b)). 

 

Fig. 5. Orientation and polarization schemes of LGN (a) and KDP (b) slabs. 

The recorded fringe pattern involving d11 of LGN is shown in Fig. 6. The figure also gives 
a fit of our data, using [14]: 

 [ ]
2

2 2 2
2 2

( , ) ( ) ( ) sin ( )
wij

L
P f d P cω ωλ α β α λ ψ α=       (3) 
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where α stands for θ in LGN and (φ - 45°) in KDP. L is the sample thickness, and Pω and w 
are respectively the power and beam waist radius of the incoming beam. T(λi, α) is the sample 
Fresnel transmission coefficient and n(λi, α) is the refractive index, where the index i = ω 
stands for the input beam, and i = 2ω for the generated beam. On consideration of the 
absorption at the wavelength of SHG signal, the correction factor (β) has been added in Eq. 
(3). β could be caculated to be 1.15 by 2 1 1 2 1( / ) lnT ( / )

1
l l l le Tβ − −= =  where T1 is the transmittance 

of as-measured 2 mm-length sample (l1 = 2 mm) in the transmission measurement, l2 is the 
length of LGN sample in the Maker Fringe measurement. 

 

Fig. 6. Recorded (black points), fit of experimental data (red line) and of the envelope (blue 
line) of the Maker Fringes pattern involving d11 coefficient of LGN. 

By fitting the envelope of the Maker fringes pattern of Fig. 6 using Eq. (1) and (2), and 
Eqs. (3)-(5), we determined the magnitude of its maximum value at normal incidence (α = 
0°), relatively to that of KDP measured in the same condition, using: 
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From the measurement of the ratio 2 2( ,0) / ( ,0)LGN KDPP Pω ωλ λ  and from Eqs. (3)-(8), we found 
that the second-order nonlinear coefficient of LGN is: d11(λ2ω = 0.532 μm) = 3.0 ± 0.1 pm/V. 
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The laser damage threshold was measured, using an input energy per pulse of 40 mJ at 
1.064 μm. Damage appeared when the beam diameter was 0.6 mm, which corresponds to a 
damage threshold intensity of 1.41GW/cm2. 

3.4 Tuning curves and associated nonlinear coefficients 

By using Eq. (1) and (2), we calculated all the possible tuning curves associated with a 
nonzero effective coefficient in the transparency range of LGN. It is the case of type I SHG 
( 21/ 1/ 1/o e e

ω ω ωλ λ λ= + ), type I sum frequency generation (SFG) ( 3 1 21/ 1/ 1/o e eλ λ λ= + ) and 

type II difference-frequency generation (DFG) ( 1 3 21/ 1/ 1/e o eλ λ λ−= ) in the (y,z) plane [33]: 
superscripts o and e stand for the ordinary and extraordinary polarizations respectively, and 
we took the relation of order 3 2 1λ λ λ< ≤ . The corresponding effective coefficient is the 

biggest in the (y,z) plane and given by 2
11( , ) ( ) cos ( )

eff

yz
i PM i PMd dλ θ λ θ=  where i = 2ω (for 

SHG), 3 (for SFG) and 1 (for DFG) respectively, since deff (λi, θPM, φ) = d11(λi)cos2(θPM)sin3φ 
for arbitrary plane. Two more turning curves were found in the (x,z) plane which were type III 
SFG ( o

3 1 21/ 1/ 1/o eλ λ λ= + ) and type I DFG ( 1 3 21/ 1/ 1/e o oλ λ λ−= ). The corresponding 
effective coefficients which are the biggest in the (x,z) plane are given by 

11( , ) ( ) cos( )
eff

xz
i PM i PMd dλ θ λ θ=  since deff (λi, θPM, φ) = d11(λi)cos(θPM)cos3φ for arbitrary 

plane, where i = 2ω (for SHG), 3 (for SFG) and 1 (for DFG) respectively, and θPM is the 
phase-matching angle. The calculated phase-matching wavelength of type I SHG is shown as 
a function of θPM in Fig. 7. The cases of type I- and type III- SFG with λ2 = 1.5 μm are shown 
in Fig. 8(a) and 8(b) respectively. Figures 9(a) and 9(b) give the calculated tuning curves of 
type II- and type I- DFG with λ2 = 1.064 μm respectively. Figures 7 to 9 also give the tuning 
curves calculated by using Sellmeier equations of [12], which highlights a strong discrepancy 
with our calculations, probably due to a lower accuracy of data recorded in [12], especially 
above 1.5 µm. 

 

Fig. 7. Calculated type I SHG tuning curve as a function of the phase-matching angle θPM in 
the (y,z) plane of LGN. 
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Fig. 8. Calculated tuning curves of (a) type I SFG and (b) type III SFG, with λ2 = 1.5 μm as a 
function of the phase-matching angle θPM in the (y,z) and (x,z) planes of LGN, respectively. 

 

Fig. 9. (a) Calculated tuning curves of (a) type II DFG and (b) type I DFG, with λ2 = 1.064 μm 
as a function of the phase-matching angle θPM in the (y,z) and (x,z) planes of LGN, 
respectively. 

We also calculated 1( , )
eff

yz
PMd λ θ  and 1( , )

eff

xz
PMd λ θ  associated to type II DFG and type I 

DFG tuning curves with λ2 = 1.064 μm in the (y,z) and (x,z) plane of LGN respectively. They 
are depicted in Fig. 10(a) as a function of the generated phase-matching wavelength λ1. Fig. 
10(a) also shows the calculated magnitude of the spatial walk-off angle ρ that is given 

by: 2 2 2 2 2 2 1
1 1 1 1 1tan ( , ) sin cos ( ( ) ( )) ( ( ) cos ( )sin )e o e on n n nρ λ θ θ θ λ λ λ θ λ θ − = − ⋅ +   [25]. We 

used Eqs. (1) and (2), and the angle θ = 45° where the spatial walk-off is maximum. The 
corresponding angular acceptance (expressed in mrad cm) and spectral acceptance (expressed 
in 10−2 μm mm) defined for type II DFG and type I DFG are respectively given as: 

 

-1
2 2 3

1 2 2 2
1 2 2 2 3

2 1 1 1

sin 2 [ ( ( ) ( ) ) ( , )
( )

( ( ) ( ) ) ( , )]

o e eyz

o e e

n n n
L

n n n

θ λ λ λ λ θ
θ λ λ

λ λ λ λ θ

− −

− −

 ⋅ ⋅ − ⋅ Δ ⋅ =  
+ ⋅ − ⋅  

 (9) 

 
-12 2 3

1 1 1 1( ) sin 2 ( ( ) ( ) ) ( , )xz
o e eL n n nθ λ θ λ λ λ θ− − Δ ⋅ = ⋅ − ⋅   (10) 

 
( ) 22 2 1

1 1 1 3 1 1

2 2 2 2
3

1

3 3 3 3

( ) ( 0.9398 ) 0.00964 0.05 0.03405 ( )

(1 0.9398 ) 0.0087 0.0464( 0.0298) ( ) ( )
0.5

e e

o o

n n
L

n n

λ λ λ λ λ λ

λ λ λ λ λ
λ

−− −

− − −

−
 ⋅ − − + − ⋅  

 
 Δ ⋅

 ⋅ − − + − ⋅ −
= ⋅ 

  ⋅
 (11) 

                                                                                                  Vol. 24, No. 16 | 8 Aug 2016 | OPTICS EXPRESS 17612 



where 
0.52 2 2 2( , ) (cos ) (sin )e

o en n nλ θ θ θ
−− − = +   is the extraordinary layer of the index 

surface. These acceptances are shown in Fig. 10(b) as a function of the incoming wavelength 
λ3 [25]. The corresponding values of phase-matching angles can be found using Fig. 9. 

 

Fig. 10. (a) Second-order effective coefficents 1( , )
eff

yz
PMd λ θ  (blue continuous line) and 

1( , )
eff

xz
PMd λ θ  (blue dashed line), and walk-off angle (black continuous line for (y,z) plane 

and black dashed line for (x,z) plane) as a function of the generated phase-matching 
wavelength λ1. (b) Angular and spectral acceptances (continuous line for (y,z) plane and dashed 
line for (x,z) plane) as a function of λ3 in LGN. They are associated to type II- and type I- DFG 
tuning curves of Fig. 9 in LGN, respectively. 

From the previous calculations, it appears that LGN will have a much higher conversion 
efficiency in the (x,z) than in the (y,z) plane, essentially because the trigonometric function is 
cos(θPM) for the former and cos2(θPM) for the latter. However, in both planes, since 45PMθ ≥ °  
is always fulfilled in LGN with λ2 = 1.064 μm, the value of the walk-off angle remains lower 
than 0.8° and decreases when the generated wavelength λ1 increases. On the other hand, the 
angular acceptances are always higher than 1.35 mrad cm, and the spectral acceptances are 
always lower than 7 × 10−2 μm mm, for type I and type II DFG. All these properties are in 
advantage of LGN, especially for DFG processes in the infrared range. 

Using our refined Sellmeier equations, type II OPG tuning curves associated with a 
maximal conversion efficiency have been calculated in the (y, z) plane of LGN. Figure 11 
gives the corresponding idler (λi) and signal (λs) wavelengths as a function of the phase-
matching angle θPM, with λp < λs < λi and 1 1 1

s i pλ λ λ− − −+ = . We selected several pump 

wavelengths: λp = 1.064 µm emitted by the Nd:YAG laser (see Fig. 11(a)), and λp = 0.78 µm, 
0.88 µm and 0.98 µm emitted by the Ti:Sapphire laser (see Fig. 11(b)). Figure 11 shows that a 
LGN-OPG can emit over the whole transparency range of the crystal when rotated by an 
internal angle of the order of 40°. Furthermore, a super continuum is generated when LGN is 
pumped at λp = 0.98 µm and oriented at (θPM = 51.5°, φPM = 90°): it corresponds to the highest 
value of the spectral acceptance in this crystal, which may lead to a super continuum ranging 
between 1.56 µm and 3.54 µm. It is also associated to the maximal magnitude of the second-
order effective coefficient: i.e. deff = 2.19 pm/V (see Fig. 10(a)). 
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Fig. 11. Calculated type II-OPG tuning curves in the (y, z) plane of LGN with a pump 
wavelength of (a) 1.064 μm, (b) 0.98 μm, 0.88 μm, and 0.78 μm. λi and λs are the idler and 
signal wavelengths, respectively. 

3.5. A Nd:YAG pumped LGN optical parametric generator 

A type II OPG pumped at 1.064 µm was implemented, using a LGN slab with dimensions of 
4 × 4 × 21 mm3. It was cut in the (y, z) plane along the phase-matching direction (θPM = 52°, 
φPM = 90°) polished to optical quality and uncoated. Figure 12 shows the recorded signal and 
idler spectrum of the type II LGN-OPG measuring by OSA205 (Thorlabs Inc.) ranging from 
1.06 μm to 4.7 μm. The inset of Fig. 12 shows the signal spectra from 1.43 μm to 1.46 μm 
measuring by YOKOGAWA AQ 6315A ranging from 1.4 μm to 1.475 μm. The emission of a 
signal beam at λs = 1.43 μm and an idler beam at λi = 4.14 μm are expected in this direction by 
using our Eqs. (1) and (2). For comparison, we find λs = 1.64 μm and λi = 3.03 μm, if 
Sellmeier equations of [12] are used. These two sets of calculated wavelengths are marked 
out in Fig. 12. It clearly shows that our experimental spectrum is consistent with our 
calculation, contrary to the calculations using Sellmeier equations from [12]. Further 
experiments will be devoted to optical parametric oscillation (OPO), using the proper cavity 
design and coating of the LGN crystal faces. 

 

Fig. 12. Recorded spectra (black lines for the OSA205, Thorlabs Inc. and the inset for 
YOKOGAWA AQ 6315A spectrum analyzer) at the output of a LGN-OPG pumped by a 
Nd:YAG laser at 1.064 μm. Arrows mark calculations using our Sellmeier equations (blue) and 
the dispersion equations of [12] (red). 
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3.6 Comparison with nonlinear crystals of references 

The relevant parameters of the reference nonlinear crystals for the emission between 2 and 6 
μm i.e. LN, KTP, KTA, 4H-SiC and LGT are depicted in Table 2. It shows that LGN has the 
largest transparency and phase-matching ranges. Furthermore, LGN has the following 
advantages like the walk-off angle and the angular acceptance. And its damage threshold is 
high (even if 4 times lower than that of LGT and 2 times lower than 4H-SiC). But the 
nonlinear coefficient d11 of LGN is a little bit higher than that of LGT. However, LGN 
crystallize in the 32 point group as LGT, which leads to a defavorable trigonometric function 
at the level of the effective coefficient deff when compared to other nonlinear crystals of Table 
2. Fortunately, this disadvantage can be compensated by the fact that LGN (as LGT) can be 
grown with large dimensions. Nowadays, the biggest size of optical grade LGS crystal could 
reach Φ52 mm × 100mm [34]. Then LGN (as LGT) can be grown as large as LGS after 
optimizing the crystal growth techniques. Thanks to these advantages, LGN permits at first 
the use of large beam size so that very high energy can be considered while remaining below 
the intensity damage threshold, and secondly it enables a long interacting length that is 
favorable for maximizing the conversion efficiency. 

Table 2. Comparison of some parameters of LGN with other nonlinear crystals that can 
be used in OPG for an emission between 2 µm and 6 µm. 

Crystal LN KTP KTA 4H-SiC LGT LGN 
Point Group 3m mm2 mm2 6mm 32 32 

Transmission range (μm) 0.35~5.5 0.35~4.5 0.35~5.3 0.37~6 0.3~6.8 0.28~7.4 
Nonlinear coefficient 
(pm/V) @ 0.532 μm 

d31 =
4.35 

d32 =
2.65 

d32 =
4.5 

d15 =
6.7 

d11 =
2.4 

d11 = 
3.0 

Maximum spatial walk-off 
angle (°) @ 3 μm 

2 2.5 1.6 0.67 

Angular acceptance (mrad 
cm) @ 1.5 μm 

0.69 1.7 1.1  ~2 

Damage threshold 
(GW/cm2) @1.064 μm 

0.1 0.65 1.2 3.0 4.34 1.41 

References [25,35] [36–39] [39–42] [9,43] [10,11] this work 

4. Summary 

The linear and nonlinear optical properties of nonlinear second-order frequency conversions 
have been studied in detail in the new Langanite crystal La3Ga5.5Nb0.5O14 (LGN). The crystal 
structure analysis predicted large transmission range, high hyperpolarizability and high 
damage threshold. We found that the transparency is ranging between 0.28 and 7.4 μm, the 
nonlinear coefficient d11 = 3.0 ± 0.1 pm/V at 0.532 μm, and the optical damage threshold is 
1.41GW/cm2. The fit of the measured principal refractive indices as a function of wavelength 
allowed us to calculate all possible tuning curves associated with a non-zero effective 
coefficient. A supercontinuum between 1.5 and 3.5 μm could be generated when pumped by a 
Ti:Sapphire laser. Furthermore, our calculations are consistent with the recorded spectrum at 
the output of a LGN-OPG pumped at 1.064 μm. From these results, LGN appears as a 
promising large size crystal for high energy generation in band II [3-5 μm] of transmission of 
the atmosphere, for Lidar applications for example. It gives also inspiration for the study and 
development of other nonlinear crystals from the same chemical family. 
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Abstract: We directly measured the phase-matching angles of second-harmonic generation 
and difference-frequency generation up to 6.5 µm in the Langanate crystal La3Ga5.5Nb0.5O14 
(LGN). We also determined the nonlinear coefficient and damage threshold. We refined the 
Sellmeier equations of the ordinary and extraordinary principal refractive indices, and 
calculated the conditions of supercontinuum generation. 
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1. Introduction 

We identified the Langatate La3Ga5.5Ta0.5O14 (LGT) as a serious candidate for the parametric 
generation between 3 and 6.5 µm [1]. We then focused on a new compound of the same 
family, i.e. the Langanate La3Ga5.5Nb0.5O14 (LGN). We reported in a previous paper that when 
the transmittance is half its maximal value, the ultraviolet cut-off is down to 0.35 µm and the 
infrared cut-off is up to 6.5 µm, in very high quality and large-size crystals grown with the 
Czochralski method [2]. Since LGN crystallizes in the 32 trigonal point group, there is only 
one nonzero element of its second-order electric susceptibility tensor under Kleinman 
symmetry, i.e. dxxx = - dxyy = - dyxy = - dyyx ( = d11) where d11 stands for the contracted 
notation. We found that the absolute magnitude of d11 is equal to 3.0 ± 0.1 pm/V at 0.532 µm 
using the Maker fringes method [2]. We also reported a damage threshold of 1.41 GW/cm2 at 
1.064 µm in the nanosecond regime [2]. LGN is a positive uniaxial crystal, so that the 
ordinary principal refractive index (no) is smaller than the extraordinary one (ne). Both indices 
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were previously measured as a function of the wavelength using an oriented prism, which 
enabled to determine Sellmeier equations valid between 0.36 and 2.32 µm [3]. Using the 
same method, we proposed an alternative set of equations valid between 0.43 and 2.3 µm [2]. 

Using sets of equations from [2] and [3], we did not find the same calculated phase-
matching tuning curves in the principal dielectric planes of LGN for all the possible quadratic 
processes associated with a non-zero conversion efficiency [2]. Then we decided to directly 
record these curves, which is described in the present paper. We report for the first time to the 
best of our knowledge the direct measurement in LGN of the phase-matching tuning curves of 
second harmonic generation (SHG) and difference frequency generation (DFG). A 
simultaneous fit of all our data allowed us to refine the Sellmeier equations of the two 
principal refractive indices of LGN. We also determined the nonlinear coefficient d11 at 
another wavelength from [2] and the damage threshold. We could then calculate the 
conditions of supercontinuum generation. 

2. Phase-matching angles and Sellmeier equations 

The LGN crystal was cut and polished as a sphere with a diameter of 10.8 mm and asphericity 
below 1%. It was stuck on a goniometric head as shown in Fig. 1(a). It was successively 
oriented along the x- and y- dielectric axes with an accuracy better than 0.5°, using the X-ray 
backscattered Laue method. Then the LGN sphere was placed at the center of an Euler circle 
to be rotated in any direction. Thus any directions of the two (y, z) and (x, z) principal 
dielectric planes can be addressed successively in the same sample. 

 

Fig. 1. (a) Picture of the LGN crystal sphere stuck on a goniometric head; (b) Setup used for 
the direct measurement of SHG and DFG phase-matching tuning curves. 

Only one incoming beam tunable between 0.4 and 11 µm is used for studying SHG. It was 
emitted by a Light Conversion optical parametric generator (OPG) with 15-ps FWHM and 
10-Hz repetition rate. The OPG is pumped by the third-harmonic of a beam at 1.064 µm 
emitted by a Excel Technology Nd:YAG laser. Thus for the study of DFG, we can combine 
the OPG beam with part of the 1.064 µm beam directly in the sphere as shown in Fig. 1(b). 

A 100-mm-focusing lens (f) placed at the entrance side of the sphere ensured normal 
incidence and quasi-parallel propagation of all the input beams along any diameter of the 
sphere. The polarization was adjusted by using achromatic half-wave-plates (HWP). 

The energy of the incoming beams was measured with a J4-09 Molectron pyroelectric 
joulemeter placed behind a beam splitter (BS) and a lens with a focal length of 50 mm. The 
energy of the generated beam was measured simultaneously at the exit of the sphere by a  
J3-05 Molectron pyroelectric joulemeter associated with a PEM531 amplifier. A filter 
removed all input beams. The phase-matching wavelengths were controlled by monitoring the 
wavelengths of the input beams between 0.4 and 1.7 µm with accuracy of ± 1 nm using HR 
4000 and of ± 3 nm with NIRquest 512 Ocean Optics spectrometer. The phase-matching 

                                                         Vol. 8, No. 4 | 1 Apr 2018 | OPTICAL MATERIALS EXPRESS 859 



angles were read on the Euler circle with an accuracy of ± 0.5°. A phase-matching direction is 
detected when the conversion efficiency reaches a maximal value. 
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Fig. 2. SHG tuning curve in the (y, z) plane of LGN. Wavelengths accuracy is within dots size. 

The recorded SHG and DFG phase-matching tuning curves are shown in Figs. 2 and 3, 
respectively. We studied type I SHG ( 21/ 1  1o e e

ω ω ωλ λ λ= ⁄ + ⁄ ) and type II DFG 

( )1/ 1/ 1/  e o e
i p sλ λ λ= −  in the (y, z) plane, and type III DFG ( )1/ 1/ 1/o o e

i p sλ λ λ= −  in the  

(x, z) plane. Superscripts o and e stand for the ordinary and extraordinary waves, respectively. 
 ωλ  and 2 ωλ  are the fundamental and second harmonic wavelengths. pλ , sλ  and iλ  are 

respectively the pump, signal and idler wavelengths verifying p s iλ λ λ< ≤ . 

 

Fig. 3. DFG tuning curve (a) in the (y, z) and (b) in the (x, z) plane of LGN. Wavelengths 
accuracy is within dots size. 

Figures 2 and 3 also show the calculated phase-matching curves using the Sellmeier 
equations from Refs [2]. and [3]. It highlights discrepancies between our experimental data 
and both sets of calculations, even if calculations using [3] are closer to our experimental 
data. It is true especially above 2.3 µm that corresponds to the limit of the spectral range over 
which the ordinary and extraordinary principal refractive indices were determined in Refs [2]. 
and [3]. As shown in Fig. 4, by performing our measurements up to 6.5 µm, we widely 
extended the wavelength range where the two principal refractive indices of LGN are 
involved. Such a difference might explain the discrepancies shown in Fig. 2 and 3. 
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Fig. 4. Spectral ranges where the principal refractive indices of LGN, no and ne, are involved, 
using the sphere method (red lines), and the prism technique from [2] and [3] (black dashed 
lines). 

We refined the Sellmeier equations of LGN by the simultaneous fit of all our SHG and 
DFG experimental data shown in Fig. 2 and 3. We used the Levenberg-Marquardt algorithm 
encoded with Matlab. Among the several possible forms of Sellmeier equations to fit the 
ordinary and extraordinary refractive indices, the best one was that used in Refs [2, 3], i.e: 

 ( )2 2
2  

j
j j j

j

B
n A D

C
λ λ

λ
= + −

−
 (1) 

where λ is in µm and j stands for o or e. The precision of our angular measurements is ± 0.5°, 
leading to a relative accuracy /j jn nΔ  better than 10−4. The numerical values of the best fit 

parameters Aj, Bj, Cj and Dj are summarized in Table 1. Our interpolated tuning curves using 
the Sellmeier equations of the present work correspond to the continuous red lines shown 
Figs. 2 and 3. They clearly show a much better agreement with our experimental data than 
using the calculations from Refs [2]. and [3]. 

Table 1. Refined Sellmeier Coefficients of the Two Principal Refractive Indices no and ne 
of LGN 

Sellemeir coefficients Aj Bj Cj Dj 

j = o 3.6836 0.0460 0.0296 0.0094 

j = e 3.7952 0.0483 0.0314 0.0102 

3. Nonlinear coefficient and damage threshold 

The absolute value of d11 of LGN can be determined from angle critical phase-matched type I 
SHG in the (y, z) plane. The corresponding effective coefficient is expressed as: 

 ( )
1 1 1 1

2
11 2 cos ( , ) LGN LGN e

eff PM PMd d ω ωλ θ ρ θ λ = −   (2) 

where 
1 1

( , ) e
PM ωρ θ λ  stands for the spatial walk-off. 

We chose the nonlinear coefficient of KTP 24
KTPd (

22  ωλ  = 0.66 µm) = 2.37 ± 0.17 pm/V as 

a reference [4] for the determination of d11 of LGN. The coefficient 24
KTPd  governs type II 

SHG 
2 2 22(1/ 1/ 1/ )e o o

ω ω ωλ λ λ+ =  in the (x, z) plane of KTP, the corresponding effective 

coefficient being ( )
2 2 2 224 2 sin ( , ) KTP KTP e

eff PM PMd d ω ωλ θ ρ θ λ = −   with 
2   58.5PMθ = °  and 

( )
2 2
,  e

PM ωρ θ λ  = 2.57° at the fundamental wavelength 
2ωλ  = 1.32 µm. A LGN slab was then 

cut at 
1  ( PMθ  = 70.4°, 

1  PMϕ  = 90°) according to our refined Sellmeier equations, the goal 

being to study the SHG in LGN at a fundamental wavelength the closest as possible to that of 
KTP. It has the advantage that we could get rid of the spectral response of the experimental 
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setup. The LGN and KTP slabs were cut with the same small thickness L  = 0.52 mm. The 
fundamental beam emitted by the OPG was focused with a 100-mm-focal length CaF2 lens. 
Then the beam waist diameter was ow  = 120 µm on the two slabs surface, with a Rayleigh 

length of 30 mm that is much longer than L. Then parallel beam propagation was ensured, and 
the spatial walk-off attenuation is minimized. 

The fundamental beam energy was measured with the J4-09 Molectron pyroelectric 
joulemeter placed behind a beam splitter and a lens with a focal length of 50 mm. The SHG 
energy was measured at the exit of each slab by the J3-05 Molectron pyroelectric joulemeter 
combined with a PEM531 amplifier, while a filter removed the input beam. Then we can 
determine the corresponding SHG conversion efficiency of type I SHG in LGN ( LGN

Iη ), and 

that of type II SHG in KTP ( KTP
IIη ). 
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Fig. 5. Calculated (red line) and measured (dots linked with black line) conversion efficiency 
in LGN relatively to KTP, as a function of the fundamental wavelength. Wavelengths accuracy 
is within dots size. 

Figure 5 shows the ratio LGN KTP
I IIη / η  recorded as a function of the fundamental wavelength 

ωλ . The peak wavelength is 
1ωλ  = 1.317 µm for LGN, which is very close to the targeted 

value ωλ
 2

. The spectral acceptance L.δλω1 is equal to 19.8 mm nm. It is in very good 

agreement with the calculation using our refined Sellmeier equations. In these conditions, we 
can calculate LGN

effd  relatively to KTP
effd  as follows: 

 ( ) ( )
2

2 2

2

LGN KTP
LGN KTPI KTP II
eff eff

KTP
II
LKTP LGNGN
III LGN I

GL A
d d

L AG

η
η

=  (3) 
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=  
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and 

 2 2 2 2

2 2 2 2

2

2

( ) ( , ) ( )

( ) ( , ) ( )

KTP KTP KTP
o e PM oKTP

II KTP KTP KTP
o e PM o

T T T
A

n n n
ω ω ω

ω ω ω

λ λ θ λ
λ λ θ λ

=  (5) 

no and ne are the ordinary and extraordinary refractive indices. They were calculated at 

1ωλ
 

 = 1.317 µm for LGN using Eq. (1) and Table 1, and at ωλ
2

 = 1.320 µm for KTP using 
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respectively the phase-matching angles 
1PMθ  and 

2PMθ  defined above and [4]. To and Te are 

the corresponding Fresnel transmission coefficients. For LGN, the spatial walk-off angle 

1 1
( , ) e

PM ωρ θ λ  = 0.55° and the spatial walk-off attenuation 0.999.LGN
IG =  0.987KTP

IIG =  for 

KTP [4,5]. Note that Fig. 5 shows a conversion efficiency of KTP that is two orders of 
magnitude higher than that of LGN: it is due to the relative value of their trigonometric 
functions that weigh differently on the nonlinear coefficients at the considered phase-
matching angles. According to Eq. (2), we found that 11d (0.659 m)  μ  = 2.9 ± 0.5 pm/V and 

11δ =  0.284 ± 0.049 pm/V, the Miller index [6], which corroborates the result obtained using 

the Maker fringes technique [2]. Furthermore it is also very close to 24 (0.660 µm)d   = 2.37 ± 

0.17 pm/V of KTP [4], and a little bit larger than 11(0.659 µm)d   = 2.4 ± 0.4 pm/V of LGT 

[1]. 
We also determined the surface damage threshold of the same LGN and KTP slabs. Both 

crystals were illuminated by the same Nd:YAG laser at 1.064 µm with a very high beam 
quality, a pulse duration of 5 ns (FWHM) and repetition rate of 10 Hz. By using a 100-mm-
focal BK7 lens, we measured a beam waist diameter of 60 ± 3 µm at their input surface using 
the standard knife-method. In these conditions, LGN was damaged at an incoming energy of 
500 ± 10 μ J, corresponding to a peak power density of 2.8 ± 0.7 GW/cm2. It is a little bit 

lower than that of KTP where the damage was observed at 760 ± 10 μ J, i.e. 4.3 ± 1.1 

GW/cm2. Using the same setup and same KTP crystal as a reference, LGT had been damaged 
for an input energy of 480 ± 10 μ J, which corresponds to a peak power density of 2.7 ± 07 

GW/cm2 [3]. In our previous work, we reported a surface damage threshold of 1.41 GW/cm2 
in a 1-mm thick LGN slab using KDP as a reference [2]. They were illuminated by a 
Nd:YAG laser at 1.064 µm with a pulse duration of 10 ns (FWHM) and a repetition rate of 1 
Hz. Moreover, the experimental protocol was different than the one we used here since the 
average power had been set at 20 mW and the beam waist diameter at the entrance surface of 
the slab was equal to 200 µm. Furthermore, the slabs were moved toward the focal point until 
damage was observed at their input surface. All these differences could explain the different 
result. 

4. Calculation of the supercontinuum generation by phase-matched OPG 

Using our refined Sellmeier equations and the method described in ref [7], we showed that a 
supercontinuum can be generated using a type II phase-matched OPG i.e. 
1/ 1/ 1/o e e

P s iλ λ λ→ +  when pumped at λp = 0.982 µm in the (y, z) plane of LGN. Figure 6 

shows that the emission could range between 1.4 and 3.45 µm, the LGN crystal being cut at 
(θPM = 52°, φPM = 90°). According to the value of d11 determined above, the calculated 

corresponding figure of merit ( )2
/ ( ) ( ) ( ) yz o e e

eff P i sd n n nλ λ λ  is equal to 
2

2
0.15

pm

V
 in LGN, 

which is a relatively low value. However, the supercontinuum range and the figure of merit 
are both larger in LGN compared with LGT [1]. Concerning the pump laser to use, Fig. 6 
shows that the tuning curve of LGN exhibits a quasi-supercontinuum behavior when the 
crystal is pumped at λp = 1.064 µm, while it is not anymore the case at λp = 0.8 µm. 
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Fig. 6. Calculated OPG tuning curves in the (y, z) plane of LGN at different values of the 
pump wavelength λP. 

5. Conclusion 

We measured the SHG and DFG phase-matching tuning curves of LGN as well as the 
absolute magnitude of the associated nonlinear coefficient. These data can be used per se for 
designing any parametric device, but we also used them for refining the Sellmeier equations 
of the crystal. Using these equations, we found the possibility of generating a super 
continuum in the mid-IR by pumping LGN at the standard wavelength of emission of the 
Nd:YAG laser. This interesting feature combined with the ability of this crystal to be grown 
in large size and high optical quality put LGN in the category of the best nonlinear crystals 
for practical applications. 
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We report the first experimental validation of angular 
quasi-phase-matching (AQPM) theory in a biaxial crystal 
by performing second-harmonic generation (SHG) in the 
periodically-poled Rb-doped KTiOPO4 (PPRKTP) crystal 
cut as a sphere. Both AQPM and birefringence phase-
matching (BPM) angles were measured thanks to a 
Kappa circle.   © 2018 Optical Society of America 

OCIS codes: (160.4330) Nonlinear optical materials; (190.2620) 
Harmonic generation and mixing; (190.4410) Nonlinear optics, 
parametric processes. 
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Nonlinear optics deals with a strong coupling between light and matter. Its ability to convert and tune the frequency range of existing laser sources is of prime importance in optical devices [1-2]. Phase-matching conditions should be fulfilled in order to obtain and improve frequency conversion during the nonlinear process. The common way for obtaining phase-matching is by using anisotropic crystals with refractive index dispersion and is called birefringence phase-matching (BPM)[1,3]. It is also possible to get phase-matching by a periodic modulation of the sign of the crystal’s second-order nonlinear coefficient in one or two dimensions, which corresponds to quasi-phase-matching (QPM) [4,5]. It gives the possibility to access to the highest coefficient of the second-order electric susceptibility tensor [4,6] or to shape the spatial and spectral properties of light [7]. Recently, significant improvement of the electric field poling or bonding techniques have led to larger aperture QPM crystals. For example, few-millimeters-thick periodically poled 5%MgO:LiNbO3 

(5%MgO:PPLN) [8], LiTaO3 (PPLT) [9], KTiOPO4 (PPKTP) [10], Rb-doped KTiOPO4 (PPRKTP) [11] and orientation-patterned GaAs (OP-GaAs) [12] have been successfully obtained. Such large-size artificial materials not only allow laser beams with large apertures and high energies to be used, but they also give the possibility to implement the angular quasi-phase-matching (AQPM) scheme proposed in 2007 [13]. It corresponds to a generalization of QPM since it can be achieved at any angle with respect to the grating vector of the artificial nonlinear medium. This scheme was validated for the first time in 2009 in the case of the uniaxial optical class by studying a 5% MgO:PPLN crystal shaped as a sphere [14]. By studying second-harmonic generation (SHG) and difference-frequency generation (DFG), it had been shown in particular that AQPM brings giant spectral acceptances compared with BPM. In this letter, we report the first validation of the AQPM proposal in the case of the biaxial optical class. We considered a crystal of PPRKTP because it can be obtained in larger size than PPKTP [10] and with a reliable control of the ferroelectric-domain structures [11]. The composition of the crystal we study is Rb0.003K0.997TiOPO4, and its grating period is  Λ = 38.52 µm [15]. In the previous studies, PPRKTP was only used along the x-axis of the medium. In the case of  5% MgO:PPLN, the (x,z) plane of the crystal sphere was the only one to be considered. In the present study we aim at accessing to the full angular distribution of AQPM, inside and outside the principal planes. We shaped the PPRKTP crystal as a sphere using a specific technique allowing us to get  a perfect polishing and an asphericity below 1% [16].  We got  a sphere with a diameter of 4.76 mm, as shown in Fig. 1(a), the volume of the sphere being fully periodically poled as shown in Fig. 1 (b).  



 

 Fig. 1.  (a) PPRKTP sphere used for the experiments. (b) Scheme of AQPM in the sphere where Λ is the grating periodicity along the x-axis and θ ϕ( , )s  is the unit vector of the wave vectors of the interacting waves where (θ, φ) are the angle of spherical coordinates in the dielectric frame (x, y, z). The AQPM condition is given by the following equation [13]:  
( ) ( ) ( )

( )
3 2 1

3 2 1

, , ,

,
0

1

eff

n n nθ ϕ θ ϕ θ ϕ
λ λ λ θ ϕ

± ± ±

− − −
Λ

=  (1) 
θ and φ are the angles of spherical coordinates in the dielectric frame (x, y, z). λ1, λ2 and λ3 are the wavelengths of the three interacting waves that are linked by energy conservation, i.e.  
-1 -1 -1
3 2 1λ λ λ= + ; n1±, n2± and n3± are the corresponding refractive indices in the considered AQPM direction (θ, φ), the signs + and – denoting the two possible values of the refractive index according to birefringence. In the following, the notations λω (= λ1 = λ2) and λ2ω 

(= λ3) for the fundamental and second-harmonic (SH) wavelengths respectively will be used. ( ) 1
= sin( )cos, ( )eff θ ϕ θ ϕ −Λ Λ  is the effective grating periodicity in the direction (θ, φ) : it ranges from a minimal value corresponding to a propagation of the interacting waves along the x-axis, i.e. Λeff(θ = 90°, φ = 0°) = Λ, to a maximal one obtained when propagation occurs in the y-z plane, i.e. Λeff (θ, φ =90°) → ∞. Note that AQPM authorizes six possible combinations of refractive indices in Eq. (1) for SHG, which defines the six SHG AQPM types, BPM exhibiting only two of them [3, 13]. The Sellmeier equations of  RKTP are not known, therefore we used those of KTP since the Rubidium concentration is small (0.3%).  Then we used the Sellmeier equations of Ref. [17] for the calculation of the SHG AQPM angles. We found that only four SHG AQPM types are allowed among the six possible types, and that for fundamental wavelengths above 2.098 µm.  At this wavelength, type V AQPM exists only along the x-axis, and it disappears for smaller wavelengths. We chose 2.15 µm as fundamental wavelength, which was close to the cut-off of the source we used. The four AQPM relations are given in Tab. 1., and the corresponding angular tuning curves at λω = 2.15 µm are shown in Fig. 2.   

Table 1 Possible SHG AQPM types in PPRKTP; n+ and n- are 
the two possible values of the refractive index at the 

fundamental or second harmonic wavelengths, λω and λ2ω 
respectively, in the AQPM direction (θ, φ). Types AQPM relations I ( ) ( ) ( )-1 -1 -1

2 2 ,n , ,2nω ω ω ωθ ϕ θ ϕ θλ ϕλ− += + Λeff  II ( ) ( ) ( ) ( )-1 -1 -1 -1
2 2n n n, , , ,ω ω ω ω ω ωλ λ λθ ϕ θ ϕ θ ϕ θ ϕ− + −= + + Λeff  IV ( ) ( ) ( )-1 -1 -1
2 2 ,n , ,2nω ω ω ωθ ϕ θ ϕ θλ ϕλ− −= + Λeff  

V ( ) ( ) ( )-1 -1 -1
2 2 ,n , ,2nω ω ω ωθ ϕ θ ϕ θλ ϕλ+ += + Λeff   Figure 2 also shows the tuning curves of types I and II BPM at λω = 2.15 µm. The corresponding phase-matching relations can be obtained from those of types I and II AQPM given in Tab. 1 by doing Λeff (θ, φ) → ∞. The consideration of BPM in this framework of AQPM is relevant from the experimental point of view as it will be shown hereafter. As seen in Fig. 2, all the tuning curves range between the (x, z) and the (x, y) or (y, z) planes, which determine a specific strategy for scanning the space in order to measure the corresponding phase-matching angles, as shown in Fig. 3. The method consists in rotating the sphere around the z-axis by incremental values of  the angle φ (φ-Scanning), and, for each value of φ, the sphere is then rotated by the angle θ (θ-Scanning) until the fundamental beam and the phase-matching direction are in coincidence in the plane that is considered. One cone surrounding the x-axis and the other one the z-axis, so the best choice was to stick the sphere along the y-axis. A Laue orientation of the sphere gives us a presicion better than 0.05°  

 Fig. 2.  All the possible SHG AQPM and BPM curves calculated in PPRKTP pumped at a wavelength of 2.15 μm are shown as solid and dashed lines, respectively. Cross dots stands for the experimental data.    

 Fig. 3. (a) Schematic diagram of the scanning mode for determining the two possible topologies of phase-matching cones, i.e. around the x-axis (brown) or z-axis (blue).The ik
 ’s (i = 1,2,3,4) correspond to the phase-matching directions at the angles iθ  and iϕ crossing the cones at iA . (x,y,z) is the dielectric frame; (b) Schematic diagram of the Kappa circle, consisting in the three rotation angles κ, Фk and Ωk. The sphere was then placed at the center of a Kappa circle described in Fig. 3(b). It was motorized by stepper motors with an accuracy of 0.003° and controlled by precise electronics. The three rotation axes κ, Фk and Ωk are arranged in such a way that the axis 



of rotation κ is placed at a non-zero angle with respect to the vertical direction. This arrangement enables multiple combinations between the three axes for a same direction, that allowed us to choose the combination for which we had no “blind spot”. The correspondence between the angles of spherical coordinates (θ, φ) and the Kappa angles (Ωk, κ, Фk) is established thanks to a homemade interfacing program with a command system.  Then the PPRKTP sphere was illuminated by a beam at the fundamental wavelength λω = 2.15 µm. It was emitted by an optical parametric oscillator that delivers 5-ns-FWHM pulses at 10-Hz-repetition rate. A half-wave plate allowed the incident beam to be polarized according to the chosen AQPM types. A focusing lens was properly located at the entrance of the sphere, ensuring the quasi-parallel propagation of the beams inside the sample [14]. The energy of the generated beam was measured at the exit of the sphere by an amplified Si Hamamatsu C2719 photodiode placed after a 75-mm-focusing lens, a filter removing the fundamental beam. The phase-matching wavelengths were controlled by a NIRquest 512 Ocean Optics spectrometer with an accuracy of ± 3 nm. The SHG phase-matching angles are detected when the associated conversion efficiency is maximal. The corresponding angular accuracy is of ±0.5°. Figure 4 gives the example of the determination of type V AQPM angle at λω = 2.15 µm in the (x, z) plane of the PPRKTP sphere.   

 Fig. 4.  Measured (dots fitted by dashed line) and calculated (solid line) SHG conversion efficiency as functions of θ angle of Type V AQPM. It clearly appears from Fig. 4 that the experimental AQPM angle in the (x, z) plane is θ = 78.5 ± 0.5°, which is bigger than the calculated one, i.e. 67.56°. This discrepancy is due to the fact that the Sellmeier equations we used for the calculation are those of KTP [17], as mentionned above. The experimental and calculated angular and spectral acceptances are also larger than the calculated values because there is a small divergence inside the sphere, of about several mrad. Following this scanning process, we measured the entire angular tuning curves of types I, II, IV and V.  As shown in Fig. 2, there is a shift of a couple of degrees between measurements and calculations. But the behaviors are the same, and we also confirmed the fact that no more than the four calculated AQPM types are allowed, which was the first step in the validation of the AQPM theory in a biaxial crystal. Note also that the measured Types I and II BPM curves agree with the calculation, which highlights the fact that the periodical poling does not modify the refractive indices. The second step of validation concerned the angular evolution of the effective coefficient. As PPRKTP  belongs to the crystal class 

mm2, there exist five independent nonlinear coefficients in the case of SHG, i.e. using the contracted notation : d15, d24, d31, d32 and d33 [18]. Thus the effective coefficient corresponding to any AQPM direction (θ, φ) can be calculated using the following equation :   
( )

( ) ( )
( ) ( )

( ) ( )
( )

15

24

31 32

33

(2 )( , , )

(2 )( , , )2
,

(2 ) , (2 ) ,

(2 ) ,

xxz xzx

yyz yzy

eff

zxx zyy

zzz

d F F

d F F
d

d F d F

d F

ω θ ϕ θ ϕ
ω θ ϕ θ ϕ

θ ϕ
π ω θ ϕ ω θ ϕ

ω θ ϕ

 +
 
+ + 

=  + + 
 +       (2) with 

( ) ( ) ( ) ( ), 2 , , , , , ,ijk i j kF e e eθ ϕ ω θ ϕ ω θ ϕ ω θ ϕ± ± ±=   (3) The index i stands for x, y or z, and ea± (a = i, j, k) represent the unit vectors of the electric fields of the different interacting waves corresponding to the refractive indices of Tab. 1 according to the type that is considered. From Eqs. (2) and (3), it appears that the only cases for which the effective coefficient is zero are those of types I and IV in the principal planes. Table 2 gives the expression of the effective coefficient for types II and V AQPM, for which it has a non zero value in the principal planes.  
Table 2 Non-zero effective coefficient in (x, z) and (x, y) 

principle planes; ρ is the Poynting walk-off angle. Types Planes Effective coefficients (deff) II (x, z)  ( )24(2 / ). sin - ( )d ωπ θ ρ θ  (y, z) ( )15(2 / ). sin - ( )d ωπ θ ρ θ  
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+ +  (x, y) 33(2 / ).dπ    The effective coefficient acts at the level of the Figure of Merit (FOM) through the following equation [18]:  
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          (4) In order to avoid the difficulties associated with absolute measurements, we considered a normalized SH intensity defined as follows: 
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      (5) It corresponds to the ratio between the SH intensities  at different AQPM angles (θ, φ) and the SH intensity at the minimal value of φ corresponding to the different types: φ = 0° for  types II and V AQPM, and φ = 10° for types I and IV since the corresponding effective coefficients are zero in the principal planes as mentioned above.  The calculated and measured normalized SH intensities are plotted in Fig. 5 as a function of the AQPM angle φ for the four AQPM types. The corresponding AQPM angles θ are given by the four curves of Fig. 2. Figure 5 confirms the very good agreement between theory and experimental results. Note that there is an abnormal peak on the type II AQPM curve of Fig. 5(b) 



for φ ranging from 40° to 60°. That can be well explained by the  crossing of this curve with that of type I BPM, as shown in Fig. 2. Actually, BPM can exist in a periodically-poled medium since birefringence exists.  

 Fig. 5.  Normalized SH intensities as a function of types I, II, IV and V AQPM angles φ for a fundamental wavelength λω = 2.15 µm.  The coexistence of BPM and AQPM is then possible if the phase-matching directions are in coincidence, and if there are the required common polarization states, which is the case for type I BPM and type II AQPM in PPRKTP. One of the polarization states of the fundamental waves for generating type I BPM (ω+ + ω+ → 2ω-) 

is the same as that of type II AQPM (ω+ + ω- → 2ω-), i.e. the (+) mode, therfore,  type I BPM is automatically excited during a type II AQPM experiment due to the common fundamental mode (+). Figure 2 also shows an intersection between the angular tuning curves of  type IV AQPM (ω- + ω- → 2ω-) and Type II BPM (ω- + ω+ → 2ω-) for φ ranging from 0° to 10°. But in that case, Type II BPM cannot be excited during a type IV AQPM because the fundamental (+) mode is missing. Then type II BPM cannot influence the tuning curve of type IV AQPM, which can be verified in Fig. 5 (c). As a conclusion, we performed the first experimental validation of the AQPM proposal in the case of the biaxial optical class by performing SHG at a fundamental wavelength of 2.15 µm in a large-aperture PPRKTP shaped as a sphere. The angles of the four possible AQPM types were measured by the sphere method using a Kappa circle, and it is the first time that AQPM directions are explored out of the principal planes of a periodically poled medium. Meanwhile, the measured SH generated intensities matched perfectly well with the calculations.  It is also the first time to the best of our knowledge that it has been shown that BPM can be excited during QPM without any modification of the respective angular distributions. The next step of this work will be devoted to AQPM experiments in the case of the isotropic optical class, by studying for example OP-GaAs or OP-GaP [19].  
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Résumé de thèse 

L’optique non linéaire qui convertit la gamme de fréquences des sources lasers 

vers l’ultraviolet, le visible, l’infrarouge ou le térahertz, joue un rôle crucial pour la 

médicine, l’industrie, les applications militaires, la spectroscopie ou l’information 

quantique par exemple. L’accord de phase par biréfringence (BPM) ou le quasi‐

accord de phase (QPM) de processus non linéaires quadratiques dans des cristaux 

massifs sont deux voies privilégiées dans ce contexte. Au cours de ce travail de thèse, 

un cristal uniaxe de La3Ga5.5Nb0.5O14 (LGN) a été élaboré en utilisant la méthode de 

Czochralski, puis il a été étudié en configuration de BPM. Nous avons aussi validé 

la théorie du QPM angulaire (AQPM), qui correspond à la généralisation du QPM 

par la considération de n’importe quel angle par rapport au vecteur du réseau. Pour 

cela, nous avons étudié un cristal biaxe de Rb: KTiOPO4 à domaines ferroélectriques 

alternés périodiquement (PPRKTP) usiné en forme de sphère. Tous ces résultats 

constituent une base fiable pour les études avenir consacrées à la conception de 

dispositifs pour la conversion de fréquence. 

Mot clés : Optique non linéaire, Conversion de fréquences, Croissance de cristaux 

par Czochralski, Accord de phase par biréfringence, Quasi‐accord de phase. 

 

Abstract 

Nonlinear optics converting the frequency range of laser sources to ultraviolet, 

visible, infrared or terahertz ranges, plays a crucial role in medicine, industry, 

military applications, spectroscopy or quantum information for example. 

Birefringence phase‐matching (BPM) or quasi‐phase‐matching (QPM) of quadratic 

nonlinear processes in bulk crystals are two preferred alternatives in this context. 

During this PhD work, a La3Ga5.5Nb0.5O14 (LGN) uniaxial crystal was grown using 

the Czochralski method and then studied in the framework of BPM. We also 

validated the theory of angular QPM (AQPM), corresponding to a generalization 

of QPM by considering any angle with respect to the grating vector. For that 

purpose, we studied a periodically‐poled large‐aperture Rb:KTiOPO4 (PPRKTP) 

biaxial crystal cut as a sphere. All these results provide a reliable corpus for further 

studies devoted to the design of frequency conversion devices. 

Key words: Nonlinear optics, Frequency conversion, Czochralski crystal growth, 

Birefringence phase‐matching, Quasi‐phase‐matching 
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