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Abstract

Knowledge representation and reasoning on the Semantic Web has recently
focused, due to practical rationale, on the subset of first order logic called
existential rules. Reasoning amounts to answering queries over a data layer
of factual knowledge and an ontological layer of deductive rules and nega-
tive constraints. These negative constraints express contradictions that may
arise either from the data layer (erroneous facts that lead to inconsistency)
or from the ontological layer (defeasible rules that lead to incoherence).
Classical query answering in presence of contradictions is trivial since from
falsehood everything follows (ex falso quodlibet). In this thesis we investi-
gate reasoning with existential rules in presence of conflicting information
and introduce defeasible existential rules reasoning. We provide three main
salient results as follows. First we show that classical defeasible reasoning
techniques need to be revisited for existential rules and study their theo-
retical and implementation related challenges. Second, we provide a new
combinatorial structure that allows for diverse variants of defeasible rea-
soning to be captured together and study its expressivity and versatility.
Third we evaluate our work with respect to the state of the art in inconsis-
tency handling in existential rules and investigate the human appeal of such
reasoning techniques.
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Resumé (version courte)

La représentation des connaissances et le raisonnement sur le Web sémantique
se sont récemment concentrés, pour des raisons pratiques, sur le sous-ensemble
de la logique du premier ordre appelé règles existentielles. Dans cette thèse,
nous étudions le raisonnement avec des règles existentielles en présence
d’informations contradictoires et introduisons un raisonnement existentiel
défaisible. Nous proposons trois résultats principaux: Premièrement, nous
montrons que les techniques de raisonnement défaisibles classiques doivent
être revisitées pour les règles existentielles et étudions leurs défis théoriques
et de mise en œuvre. Deuxièmement, nous fournissons une nouvelle struc-
ture combinatoire qui permet de capturer diverses variantes du raisonnement
défaisable et étudions son expressivité et sa polyvalence. Troisièmement,
nous évaluons notre travail par rapport à l’état de l’art dans le traitement des
incohérences et des inconsistances dans les règles existentielles et étudions
l’intérêt humain de telles techniques de raisonnement.

Resumé (version longue)

Cette thèse présente une recherche originale dans le domaine de la représenta-
tion de la connaissance et du raisonnement, l’un des principaux sous-domaines
de l’intelligence artificielle. Le langage pour la représentation des connais-
sances que nous considérons est Datalog± (règles existentielles) [Cali et al.,
2010a], une famille de langages logiques pour représenter les ontologies au
cœur des domaines de Systèmes de Base De Données et Web sémantique. Ce
langage est largement utilisé dans le paradigme Ontology-Based Data
Access (OBDA) [Poggi et al., 2008] où une ontologie (ensemble de règles)
au-dessus d’une couche de données (connaissance factuelle) est utilisée pour
enrichir le processus de raisonnement. Parmi les principales difficultés de
cette représentation, nous nous concentrons dans cette thèse sur deux: as-
surer un raisonnement fini et maintenir la capacité de raisonner en présence
de conflits. Les conflits proviennent de deux sources possibles, soit la con-
naissance factuelle est incorrecte (connue sous le nom d’inconsistance), ou les
règles elles-mêmes sont contradictoires (connu sous le nom d’incohérence).
La contribution de la thèse est la proposition d’un formalisme unificateur
pour le raisonnement tolérant aux conflits avec des règles existentielles qui
prennent en compte les mécanismes utilisés pour assurer un raisonnement
fini. L’objectif est de fournir des outils qui fournissent aux ingénieurs de
données une variété d’options pour raisonner avec des règles existentielles
d’une manière tolérante aux conflits.

Compte tenu de la croissance rapide du Web sémantique et du grand
nombre d’ontologies différentes décrivant des points de vue potentiellement
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conflictuels pour le même domaine, les problèmes d’incohérence et d’inconsis-
tance risquent de se poser. Par conséquent, la question de recherche à laque-
lle nous voulons répondre dans cette thèse est:

Question de Recherche

Comment peut-on raisonner avec une base de connaissances in-
cohérente ou inconsistante exprimée à l’aide de règles existentielles?

Pour résoudre ce problème, on peut être tenté de réutiliser les techniques
de Raisonnement Défaisable pour les règles existentielles. Malheureusement,
cette solution n’est pas simple car elle entrâıne plusieurs problèmes tech-
niques. Les règles existentielles viennent avec un ensemble de mécanismes
de raisonnement complexes afin d’assurer la décidabilité. Ces mécanismes
peuvent induire une perte de chemins de raisonnement (dérivations) en fonc-
tion de l’ordre des applications de règles. Cela rend l’application directe des
techniques de raisonnement défaisable à des règles existentielles peu solides.
Notre problème de recherche peut alors être reformulé en un sous-ensemble
de questions de recherche plus précises comme suit:

Questions de Recherche

• Comment pouvons-nous appliquer les techniques du raison-
nement défaisable aux règles existentielles?

• Pouvons-nous fournir un ensemble de formalismes et d’outils
qui permettent le Raisonnement Défaisable avec différentes in-
tuitions dans le contexte des règles existentielles?

• Peut-on comparer le raisonnement défaisable à la sémantique
de réparation? Si oui, pouvons-nous fournir un formalisme
unificateur pour le raisonnement tolérant aux conflits avec des
règles existentielles?

Voyons maintenant comment les contributions de la thèse abordent les
trois questions de recherche mentionnées précédemment.

Contribution 1: Perte de Derivations. Le raisonnement défaisable en
général est basé sur la notion de derivation, qui est une séquence d’applications
de règles qui permet de générer de nouvelles informations. Afin de savoir si
cette information tient en présence de conflits, toutes ses dérivations possi-
bles doivent être évaluées. Le besoin d’extraire toutes les dérivations est ce
qui empêche l’application directe des techniques de raisonnement défaisable
aux règles existentielles, car certaines dérivations peuvent être perdues. Plus
précisément, les mécanismes d’application des règles effectuent un ensem-
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ble de vérifications qui assurent la décidabilité en supprimant ce qui est
considéré comme une information redondante. Cela signifie que certains
chemins de raisonnement peuvent être perdus et cela peut être problématique
en raisonnant d’une manière défaisable. Notre contribution peut se résumer
en ces points principaux:

• Les techniques de raisonnement défaisibles ne peuvent pas être di-
rectement appliquées au langage des règles existentielles en raison du
problème de perte de dérivation (certaines applications de règles peu-
vent être supprimées par le réducteur de dérivation de chasse). Nous
définissons formellement quand et pourquoi cela se produit (la perte de
dérivation peut survenir dans certains cas en fonction de la poursuite
utilisée et de l’ordre dans lequel les règles sont appliquées cf. Proposi-
tions 3.1, 3.2, 3.3, et 3.4).

• Nous définissons le Graph de la Dépendance d’Atom et montrons com-
ment sa construction est affectée par le chase et comment elle peut être
utilisée pour extraire toutes les dérivations.

• Nous présentons le premier outil de Raisonnement Defaisable pour les
règles existentielles (appelé DEFT) basé sur les Arbres Dialectiques et
en nous appuyant sur le Graph de Dépendance d’Atom pour assurer
un raisonnement correct et complet.

• Nous définissons le premier benchmark pour l’analyse et la classifi-
cation des outils de Raisonnement Défaisif logique de premier ordre.
En plus de montrer que DEFT a des performances satisfaisantes, ce
benchmark donne une vision claire de ce que permettent les outils ex-
istants pour le Raisonnement Défaisable, quel est le meilleur outil à
utiliser en fonction des données et des besoins, et quelles sont les la-
cunes actuelles des outil existant.

Après avoir traité le problème de perte de dérivation, nous pouvons soit
étendre et implémenter les différentes techniques de Raisonnement Défaisable
aux règles existentielles, ou définir un nouveau formalisme capable de repré-
senter la plupart des variantes du Raisonnement Défaisable dans une struc-
ture combinatoire unique qui prend en compte le spécificités des règles ex-
istentielles.

Contribution 2: Représentation du Raisonnement Défaisable. Étant
donné la variété des intuitions de Raisonnement Défaisable et les différents
degrés d’expressivité qu’un outil de Raisonnement Défaisible peut avoir,
avoir un formalisme flexible qui couvre la plupart des intuitions est d’une
grande valeur théorique et pratique. Notre deuxième contribution se con-
centre sur l’utilisation de notions d’argumentation pour définir une structure
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combinatoire appelée Statement Graphs qui peut représenter diverses tech-
niques de Raisonnement Défaisif utilisant des fonctions d’étiquetage flexi-
bles. Nous utilisons ce formalisme pour mettre en œuvre un outil appelé
ELDR (Existential Rules Language for Defeasible Reasoning) qui couvre la
plupart des lacunes identifiées à l’aide de notre indice de référence. Cette
contribution peut être résumée dans les points suivants:

• Nous définissons des Graphiques de Déclaration qui sont un formal-
isme capable de représenter les Logiques Défaisibles via des fonctions
d’étiquetage flexibles (blocage ou propagation d’ambigüıté, avec ou sans
défaite en équipe, et échec par boucle). Ils peuvent être définis en util-
isant un langage propositionnel, un langage de premier ordre (FOL)
sans le quantificateur existentiel, ou des règles existentielles.

• Pour les règles existentielles, les Graphes Statement sont construits
en utilisant une poursuite de frontière et prennent en compte la perte
de dérivation pour représenter la plupart des fonctionnalités discutées
pour le Raisonnement Defaisible.

• Nous présentons ELDR, une implémentation de Statement Graphs, qui
est le premier outil permettant le blocage ou la propagation d’ambigüıtés,
avec ou sans défaite d’équipe, et l’échec par bouclage pour les différentes
langues considérées (propositionnel, FOL sans quantificateur existen-
tiel et règles existentielles).

Après avoir présenté le formalisme et l’outil du Raisonnement Défaisable
avec des règles existentielles capables de capturer la plupart des intuitions,
l’étape suivante consiste à utiliser ce formalisme unifiant pour essayer de
comparer et éventuellement combiner la Sémantique de Réparation tolérante
à l’inconsistance avec le Raisonnement Défaisable tolérant à la incohérent.

Contribution 3: Sémantiques de Réparation et Raisonnement Dé-
faisable. Le raisonnement défaisable provient de la nécessité de raisonner
avec des connaissances incomplètes par “ combler les lacunes dans les infor-
mations disponibles en faisant une sorte d’hypothèse plausible (ou souhaitable)
” [Billington et al., 2010]. D’autre part, la sémantique de réparation [Lembo
et al., 2010] provient, entre autres, de la nécessité de gérer les incohérences
dues à la fusion de différentes sources de données appliquées à “Ontology-
Based Data Access” [Poggi et al., 2008] où une ontologie est utilisé pour
accéder à un ensemble de sources de données.

Le raisonnement défaisable et la sémantique de réparation sont généra-
lement considérés comme deux approches intrinsèquement distinctes qui
répondent à des problèmes différents et sont étudiées par des communautés
éloignées et, à notre connaissance, n’ont jamais été explicitement rassemblées.
L’objectif de notre troisième contribution est de montrer qu’ils peuvent
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être comparés sous la restriction de bases de connaissances inconsistantes
mais cohérentes, et de combiner leurs intuitions et de créer une nouvelle
sémantique “entre-deux”. Cette contribution peut être résumée dans les
points suivants:

• Nous montrons que la sémantique de raisonnement et de réparation
défaisable peut être comparée sous les restrictions de règles strictes,
de faits irrécupérables et sans préférences (voir propositions 5.4, 5.5
et Figure 5.9 qui affiche le lien de productivité entre les différentes
techniques).

• Statement Les graphes peuvent être vus comme une représentation
unificatrice pour obtenir une implication équivalente à certaines tech-
niques de Sémantique de Raisonnement et de Réparation. Cela nous
permet de combiner les intuitions des deux approches. Plus précisément,
les sémantiques de réparation IAR et ICAR peuvent être combinées
avec l’intuition bloquante d’ambigüıté du raisonnement défaisable. La
sémantique résultante semble cöıncider avec le raisonnement humain
dans des situations abstraites, comme le prouvent les résultats em-
piriques de l’expérience de la section 5.2.3.

• Enfin, nous montrons que les Graphes d’Énoncé peuvent être appliqués
à d’autres formes de raisonnement humain que le Raisonnement Défai-
sable ou la Sémantique de Réparation ne peuvent représenter, à savoir
la tâche de suppression où les conclusions logiques valides sont sup-
primées.

L’intégration de certaines techniques de Sémantique de Réparation et de
Raisonnement Défaisable dans un seul outil de raisonnement tolérant aux
conflits avec des règles existentielles fournit aux ingénieurs de données une
grande variété de sémantique qu’ils peuvent appliquer en fonction de leurs
objectifs.
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1
Introduction

This thesis presents an original research in the field of Knowledge Represen-
tation and Reasoning, one of the main sub-domains in Artificial Intelligence.
The language for knowledge representation we consider is the existential
rules framework (Datalog±) [Cali et al., 2010a], a family of logical languages
for representing ontologies at the heart of Database Systems and Seman-
tic Web domains. This language is widely-used in the Ontology-Based
Data Access (OBDA) paradigm [Poggi et al., 2008] where an ontology
(set of rules) on top of a data layer (factual knowledge) is used to enrich
the reasoning process. Among the main difficulties of this representation,
in this thesis we focus on two: ensuring a finite reasoning and maintain-
ing the ability to reason in presence of conflicts. Conflicts arise from two
possible sources, either the factual knowledge is incorrect (known as incon-
sistence), or the rules themselves are contradictory (known as incoherence).
The contribution of the thesis is the proposal of a unifying formalism for
conflict-tolerant reasoning with existential rules that takes into account the
mechanisms of ensuring a finite reasoning. The goal is to provide tools that
supply data engineers with a variety of options to reason with existential
rules in a conflict-tolerant manner.

This chapter is structured as follows. In Section 1.1 we introduce the
general context of the thesis. Then in Section 1.2 we discuss the problem of
conflicts and how they can be handled within the existential rules framework,
this allows us to present the research problem alongside our contributions on
this regard in Section 1.3. Finally, we conclude this chapter by highlighting
the structure of the thesis.

1.1 Knowledge Representation and Reasoning

Knowledge Representation and Reasoning deals with the quest of represent-
ing real world knowledge in order to achieve human-level intelligence and
reasoning faculties. This requires a trade-off between expressiveness and
computation tractability as the difficulty of reasoning increases proportion-
ally with the expressive power of the underlying logical language [Levesque
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and Brachman, 1987]. With the rapid growth of data and ontologies for
the Semantic Web in the last two decades, an emergent need for tractable
yet expressive logical languages has been raised. At first, Description Log-
ics [Baader et al., 2005] where introduced, then with the combination of
Relational Databases with Logic Programming, another language has been
proposed [Cali et al., 2010a] based on Datalog [Ceri et al., 1989] where data
is represented as facts alongside rules written in first order language. Dat-
alog can be seen as the adaptation of “... Prolog, which has a ‘small-data
world view to a ‘large-data’ world” [Ramakrishnan and Ullman, 1995]. The
extension of Datalog to Datalog± by the addition of the existential quanti-
fier to account for unknown individuals (the person X has a parent whose
name is unknown) has made Datalog± general enough to capture a variety
of Description Logics families [Cali et al., 2010a]. This generality promotes
Datalog± as an adequate language for representing ontologies in the Seman-
tic Web [Cal̀ı et al., 2012]. Due to historical reasons Datalog± is also called
existential rules framework, and as such we may use the two names
interchangeably.

The addition of the existential quantifier makes the reasoning process
undecidable since applying rules might not stop as it generates new individ-
uals at each rule application. Nevertheless, different classes of rules based
on their syntactic structure can be defined to ensure that the forward chain-
ing mechanism of applying rule becomes finite. The restriction to decidable
classes of rules solves the first problem of ensuring a finite reasoning. How-
ever, the second problem of maintaining the ability to reason in presence of
conflicts remains.

1.2 Incoherence and Inconsistence Handling

Conflicts arise in Knowledge Representation from two possible sources, ei-
ther the factual knowledge is inconsistent, in the sense that applying the
rules on that specific set of facts generates ⊥ (falsum), or the set of rules
is incoherent in the sense that applying the set of rules on any set of facts
will always lead to falsehood. Inconsistency can be seen as a special case
of incoherence [Flouris et al., 2006]. The following Examples 1.1 and 1.2
describe inconsistence and incoherence.

Example 1.1 (Inconsistence). Consider the following legal situation where
we want to know if the defendant Alice is guilty or not of a crime. Suppose
there are no means by which we can verify the truthfulness and reliability of
the factual knowledge.

• Factual knowledge: There is a piece of evidence “e1” incriminating
the defendant Alice, there is another piece of evidence “e2” absolving
Alice, and Alice has an alibi.
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• Rules: If there is an incriminating evidence against a defendant then
he is responsible of the crime. If there is an absolving evidence for a
defendant then he is not responsible of the crime. If a defendant is
proven responsible of the crime then he is guilty, and if a defendant
has an alibi then he is innocent (not guilty).

The set of factual knowledge is inconsistent because we can generate the
fact that Alice is responsible and not responsible of the crime (given evidence
“e1” and “e2”), we can also generate the fact that she is guilty (given that she
is responsible of the crime) and that she is innocent (given her alibi) which
are contradictions. However, the set of rules in itself is coherent. Indeed, we
can a find a set of facts such that all rules can be applied and no contradiction
can be generated. For example, there is an evidence incriminating Bob, there
is an evidence absolving Alice, and Alice has an alibi.

Example 1.2 (Incoherence). Consider the following set of rules: penguins
are birds, birds fly, penguins do not fly, and one cannot fly and not fly at the
same time. Any set of factual knowledge on which these rules are applicable
will always lead to contradiction (fly and not fly).

Inconsistence and Incoherence management is a well-established research
discipline in Knowledge Representation. In fact, it dates since the pre-
Socratic era with the concept of logical contradiction “The great Parmenides
from beginning to end testified.. ‘Never shall this be proved - that things that
are not are’ ” (Plato, Sophist, 237A). The principle of explosion states that
given an inconsistent knowledge base in a logical language L, one can derive
that any formula of the language is true. This problem of inconsistence
is addressed within the context of existential rules using Repair Semantics
[Lembo and Ruzzi, 2007] where the set of facts is split into maximally (with
respect to inclusion) consistent sets of facts called repairs, these can be seen
as possible consistent worlds. However, for Repair Semantics to properly
yield results, the set of rules must be coherent [Deagustini et al., 2015].
This leaves unsolved the problem of incoherence for existential rules.

In order to solve this problem, we can turn to incoherence-tolerant tech-
niques such as Defeasible Reasoning [Pollock, 1987] which is a formalism for
non-monotonic reasoning with low computational cost [Nute, 1988]. The
idea behind Defeasible Reasoning is to detect conflicts and solve them by
choosing the “preferred” outcome. Unfortunately, there is no universally
valid way to reason defeasibly. An inherent characteristic of Defeasible Rea-
soning is its systematic reliance on a set of intuitions and rules of thumb,
which have been longly debated between logicians [Horty et al., 1987, Makin-
son and Schlechta, 1991, Prakken, 2002, Antoniou, 2006]. For instance, one
of these intuitions is ambiguity handling also known as zombie paths de-
scribed in the following example.
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Example 1.3 (Ambiguity Handling). Consider the knowledge in the
previous Example 1.1: there is a doubt about the responsibility of Alice in
the crime (given evidence “e1” and “e2”). Some argue that since the guilti-
ness of Alice is based on a doubtful fact (her responsibility of the crime),
her innocence remains unchallenged, and subsequently conclude that Alice
is innocent of the crime. However others argue that there is evidence for
her responsibility of the crime and therefore we should not be able to say if
whether or not she is innocent.

The domain of Defeasible Reasoning is vivid and full of approaches and
intuitions, especially with the various argumentation-based techniques. We
limit the scope of this thesis to the following intuitions: Ambiguity Han-
dling, Team Defeat, Floating Conclusions, and Handling of Strict Rules.
One of the main approaches we consider in this thesis are Defeasible Logics
[Antoniou et al., 2000a], Dialectical Trees [Garćıa and Simari, 2004], and
Argumentation Grounded Semantics [Dung, 1995]. The problem of inco-
herence for existential rule can be solved by extending and applying these
techniques to Datalog±.

1.3 Research Problem and Contributions

Given the rapid growth of the Semantic Web and the large number of differ-
ent ontologies describing potentially conflicting points of view for the same
domain, the problems of inconsistence and incoherence are likely to arise.
Therefore, the research question we want to answer in this thesis is:

Research Question

How can we reason with an inconsistent or incoherent knowledge
base expressed using existential rules?

To address this problem one can be tempted to reuse Defeasible Rea-
soning techniques for existential rules. Unfortunately this is not a straight-
forward solution as it leads to several technical challenges. Existential rules
come with a set of intricate reasoning mechanisms in order to ensure decid-
ability. These mechanisms might induce a loss of reasoning paths (deriva-
tions) depending on the order of rule applications. This makes the direct
application of Defeasible Reasoning techniques to existential rules unsound.
Our research problem can then be reformulated into a subset of more precise
research questions as follows:
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Research Questions

• How can we apply Defeasible Reasoning techniques to Existen-
tial Rules?

• Can we provide a set of formalisms and tools that allow for
Defeasible Reasoning with different intuitions within the context
of existential rules?

• Can Defeasible Reasoning be compared to Repair Semantics?
If so, can we provide a unifying formalism for conflict-tolerant
reasoning with existential rules?

Let us now see how the contributions of the thesis address all three of
the previously mentioned research questions.

1.3.1 Contribution 1: Preventing Derivation Loss

Defeasible reasoning in general is based on the notion of derivation, which
is a sequence of rule applications that allows to generate new information.
In order to know if this information holds in presence of conflicts, all its
possible derivations must be evaluated. The need to extract all derivations
is what prevents the direct application of Defeasible Reasoning techniques
to existential rules as some derivations can be lost. More precisely, the rule
application mechanisms perform a set of verifications that ensure decidabil-
ity by removing what is considered redundant new information. This means
that certain paths of reasoning might be lost and this can be problematic
when reasoning in a defeasible manner. Our contribution can be summed
up in these main points:

• Defeasible reasoning techniques cannot be directly applied to the ex-
istential rule language due to the derivation loss problem (some rule
applications might be removed by the chase derivation reducer). We
formally define when and why this happens (derivation loss can occur
in certain cases depending on the used chase and the order in which
rules are applied cf. Propositions 3.1, 3.2, 3.3, and 3.4).

• We define the Graph of Atom Dependency and show how its construc-
tion is affected by the chase and how it can be used to extract all
derivations.

• We present the first Defeasible Reasoning tool for existential rules
(called DEFT) based on Dialectical Trees and relying on the Graph
of Atom Dependency to ensure a sound and complete reasoning.

• We define the first benchmark for first order logic Defeasible Reason-
ing tools analysis and classification. Beside showing that DEFT has
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satisfactory performance, this benchmark provides a clear view of what
existing tools for Defeasible Reasoning allow for, what is the best tool
to use depending on the data and requirements at hand, and what are
the current gaps that are not covered yet by any tool.

After dealing with the derivation loss problem, we can either extend and
implement the different Defeasible Reasoning techniques to existential rules,
or we can define a new formalism that is able to represent most variants
of Defeasible Reasoning in a single combinatorial structure that takes into
account the specificities of existential rules.

1.3.2 Contribution 2: Representing Defeasible Reasoning

Given the variety of Defeasible Reasoning intuitions and the different degrees
of expressiveness a Defeasible Reasoning tool can have, having one flexible
formalism that covers most intuitions is of great theoretical and practical
value. Our second contribution focuses on using argumentation notions to
define a combinatorial structure called Statement Graphs that can represent
various Defeasible Reasoning techniques using flexible labeling functions.
We use this formalism to implement a tool called ELDR (Existential rules
Language for Defeasible Reasoning) that covers most gaps identified using
our benchmark. This contribution can be summed up in the following points:

• We define Statement Graphs which are a formalism able to represent
Defeasible Logics via flexible labeling functions (ambiguity blocking or
propagation, with or without team defeat, and with failure-by-looping).
They can be defined using a propositional language, a first order lan-
guage (FOL) without the existential quantifier, or existential rules.

• For existential rules, Statement Graphs are constructed using a frontier
chase and account for derivation loss to represent most of the discussed
features for Defeasible Reasoning.

• We present ELDR, an implementation of Statement Graphs, which is
the first tool that allows for ambiguity blocking or propagation, with
or without team defeat, and failure-by-looping for the different consid-
ered languages (propositional, FOL without existential quantifier, and
existential rules).

After presenting the formalism and the tool for Defeasible Reasoning
with existential rules that can capture most intuitions, the next step is to
make use of this unifying formalism to try to compare and possibly combine
the inconsistence-tolerant Repair Semantics with the incoherence-tolerant
Defeasible Reasoning.
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1.3.3 Contribution 3: Unifying Repair Semantics and Defeasible
Reasoning

Defeasible reasoning originates from the need to reason with incomplete
knowledge by “filling the gaps in the available information by making some
kind of plausible (or desirable) assumptions” [Billington et al., 2010]. Repair
semantics [Lembo et al., 2010] on the other hand originate, among others,
from the need to handle inconsistency that arises due to merging of different
data sources applied to “Ontology-Based Data Access” [Poggi et al., 2008]
where an ontology is used to access a set of data sources.

Like apples and oranges, Defeasible Reasoning and Repair Semantics are
generally seen as two inherently distinct approaches that answer different
problems and are studied by distant communities and, to the best of our
knowledge, have never been explicitly put together. The objective behind
our third contribution is to show that they can be compared under the
restriction of inconsistent but coherent knowledge bases, and to combine
their intuitions and to create new “in-between” semantics. This contribution
can be summed up in the following points:

• We show that Defeasible Reasoning and Repair Semantics can be com-
pared under the restrictions of strict rules, defeasible facts and no pref-
erences (cf. propositions 5.4, 5.5 and Figure 5.9 that displays the pro-
ductivity link between the different techniques).

• Statement Graphs can be seen as a unifying representation to obtain
equivalent entailment as some Defeasible Reasoning and Repair Se-
mantics techniques. This allows us to combine the intuitions of both
approaches. Specifically, IAR and ICAR Repair Semantics can be com-
bined with the ambiguity blocking intuition of Defeasible Reasoning.
The resulting semantics seems to coincide with human reasoning un-
der abstract situations as supported by the empirical results of the ex-
periment in Section 5.2.3.

• Lastly, we show that Statement Graphs can be applied to other forms
of human reasoning that neither Defeasible Reasoning nor Repair Se-
mantics can represent, namely, the suppression task where valid logical
conclusions are suppressed.

Integrating some Repair Semantics and Defeasible Reasoning techniques
into a single tool for conflict-tolerant reasoning with existential rules pro-
vides data engineers with a wide variety of semantics that they can apply
depending on their objectives.

1.4 Thesis Structure

The structure of this thesis is as follows:
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Chapter 2. This chapter introduces necessary preliminaries on how to
represent knowledge using existential rules and how to reason with this
knowledge (chase, decidable classes of rules, and the query entailment prob-
lem). It also defines the different types of conflict (inconsistency and inco-
herence) and presents Defeasible Reasoning as a way to maintain the ability
to reason in presence of conflicts. We discuss the different Defeasible Rea-
soning intuitions that we consider throughout the remainder of the thesis,
present Defeasible Logics, Dialectical Trees, and some Argumentation Se-
mantics, study how they can be applied to different logical languages and
when they might coincide.

Chapter 3. In this chapter we present the obstacle that prevents the direct
application of Defeasible Reasoning techniques to existential rules, namely
derivation loss. We define the derivation loss problem and when and why it
might happen depending on the chosen chase and the order of rules applica-
tions. We then introduce the Graph of Atom Dependency as a solution to
this problem, we study its construction for the different chases and how it
can be used to extract all derivations. We then present the first tool (called
DEFT) for Defeasible Reasoning with existential rules based on Dialectical
Trees and define a benchmark for first order logic Defeasible Reasoning tools
analysis and classification. We use this benchmark to (1) make sure DEFT
has satisfactory performance, (2) provide a clear view of what existing tools
for Defeasible Reasoning allow for, (3) help data engineers chose the best
tool to use, and (4) identify the current gaps that are not covered yet by
any tool. This chapter builds upon the work published in [Hecham et al.,
2017b, ?].

Chapter 4. We introduce in this chapter “Statement Graph” which is a
formalism able to represent Defeasible Logics via flexible labeling functions.
This formalism can be constructed using a propositional language, a first
order language without the existential quantifier, or existential rules. For
existential rules we use the frontier chase and account for derivation loss.
We implement this structure in a tool called ELDR which is the first tool
that allows for Defeasible Reasoning with ambiguity blocking or propaga-
tion, with or without team defeat, and failure-by-looping for the different
considered languages. We run the previously defined benchmark to make
sure the performance is satisfactory compared to the existing tools. This
chapter build upon the work published in [Hecham et al., 2018].

Chapter 5. In this chapter, we present the Statement Graph’s labellings
for the IAR and ICAR Repair Semantics. We investigate the links (produc-
tivity and complexity) between Defeasible Reasoning and Repair Semantics
and when they can be compared. We then show that the intuitions stemming
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from the different domains can be combined to produce new semantics; these
resulting semantics seem to coincide with human reasoning under abstract
situations as supported by the results of an empirical experiment. Lastly
we discuss other forms of human reasoning that neither Defeasible Reason-
ing nor Repair Semantics can represent, namely, the suppression task and
show how Statement Graphs can be used to represent such reasoning. This
chapter builds upon the work published in [Hecham et al., 2017a, Hecham
et al., 2018].

Chapter 6. This chapter concludes, summarizes our contributions, and
presents a number of interesting future research problems based on possible
extensions of both this work and our work published in [Hecham et al.,
2016, Bisquert et al., 2016, Bisquert et al., 2017] (but not included in this
thesis).

9





2
Preliminaries

2.1 Existential Rules Framework . . . . . . . . . . . . . . 12

2.1.1 Logical Language . . . . . . . . . . . . . . . . . . 12

2.1.2 Rules and Reasoning . . . . . . . . . . . . . . . . 15

2.1.3 Chase and Finite Expansion Set . . . . . . . . . . 18

2.1.4 Complexity Classes . . . . . . . . . . . . . . . . . 23

2.1.5 Incoherence and Inconsistence . . . . . . . . . . . 24

2.2 Defeasible Reasoning . . . . . . . . . . . . . . . . . . 28

2.2.1 Defeasible Knowledge Bases and Representation . 28

2.2.2 Defeasible Reasoning Intuitions . . . . . . . . . . 32

2.2.3 Defeasible Logics . . . . . . . . . . . . . . . . . . 40

2.2.4 Dialectical Trees . . . . . . . . . . . . . . . . . . 50

2.2.5 Argumentation Semantics . . . . . . . . . . . . . 55

2.2.6 Comparing Defeasible Reasoning Techniques . . . 61

2.2.7 Defeasible Reasoning Tools . . . . . . . . . . . . . 64

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 65

In this chapter we discuss the two main difficulties of knowledge repre-
sentation, namely, ensuring a finite reasoning and maintaining the ability to
reason in presence of conflicts. Representing knowledge requires a trade-off
between expressiveness and computational tractability, since higher expres-
siveness might lead to infinite reasoning. We start by providing an introduc-
tion to knowledge representation with the existential rules logical fragment
along with its forward chaining inference mechanism called “chase”. We
present the reasoning problem of query entailment and introduce the no-
tion of finite classes of existential rules for which the chase is guaranteed
to halt. Since knowledge representation might contain conflicts, we define
the different types of conflicts (inconsistence and incoherence) and discuss
the conflict-tolerant Defeasible Reasoning approach along with its intuitions
and different formalisms. We study their complexity and when they might
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coincide in order to prepare the stage for applying these conflict-tolerant
techniques to existential rules.

Research Questions in this Chapter

• How is knowledge represented using existential rules and how
can we reason with this knowledge (query entailment problem)?

• What are the different types of conflict (inconsistence and in-
coherence) and how can we maintain the ability to reason in
presence of conflicts?

• What are the different intuitions and formalisms for the
conflict-tolerant Defeasible Reasoning approach?

2.1 Existential Rules Framework

The aim of knowledge representation and reasoning is to achieve human-level
intelligence and reasoning faculties. The biggest dilemma in this case is the
trade-off between expressiveness and computational tractability of a given
logical language [Levesque and Brachman, 1987]. Existential rules are a
first order logical language that emerged from the intersection of Knowledge
Representation, Database Systems, and Semantic Web. It has the ability to
express knowledge about “unknown” individuals (e.g. “every human has a
parent” this parent might be unknown but its existence still holds). This
level of expressiveness comes at the high cost of undecidability (the reasoning
mechanism can be infinite), that is why different decidable fragments of
existential rules have been defined under the name of Dataloд± [Cal̀ı et al.,
2012] which is a generalization of Datalog [Ceri et al., 1989] and certain
fragments of Description Logics [Baader et al., 2005].

2.1.1 Logical Language

We consider a first-order logical (FOL) language L with no function sym-
bols (except for constants) built with the existential and universal quantifiers
(∃,∀) and the implication and conjunction connectives (→,∧) on a vocabu-
lary Voc = (P,C) composed of a finite set of predicates P and a potentially
infinite set of constants C. Each predicate p ∈ P is associated with a positive
integer which is called the arity of p. We are also given an infinite set of vari-
ables V, and an infinite set of existential “fresh” variables N (called “nulls”,
which act as placeholders for unknown constants, and can thus be seen as
variables). We denote variables by uppercase letters X ,Y ,Z , etc ., constants
by lowercase letters a,b, c, etc ., and fresh variables (nulls) by Null1,Null2, etc.
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A logical language is a symbolic representation of some knowledge about
the world. For these symbols to have meaning, they need to be ‘mapped’
to elements of the world. This is done using an interpretation function
which maps predicates and constants symbols to elements of the domain of
interpretation.

Definition 2.1 (Interpretation). An interpretation of a logical language
L built on a vocabulary Voc = (P,C) is a pair (D, I) where D is a non-empty
set called the interpretation domain and I is an interpretation function of
the symbols of L such that:

1. for each constant c ∈ C, I(c) ∈ D.

2. for each predicate p ∈ P of arity k, I(p) ⊆ Dk .

3. for each pair (c, c ′) of distinct constants in C, I(c) , I(c ′).

The third condition in the above definition corresponds to the unique
name assumption and indicates that different constants should be inter-
preted by different elements of the interpretation domain. This assump-
tion is often made in knowledge representation, however note that as long
as equality between constants is not considered (which is the case in this
thesis), adopting the unique name assumption or not does not make any
difference in the considered reasoning tasks [Baget et al., 2011a].

Knowledge about the world is expressed using formulas built from the
logical language. The basic building blocks are called atomic formulas (or
atoms).

Definition 2.2 (Atom). An atom over Voc is of the form p(t1, . . . , tk ),
where p ∈ P is a predicate of arity k and ti ∈ V ∪ C ∪N is either a variable,
a constant, or a null.

Given a formula Φ built on a language L, we note terms(Φ) and vars(Φ)
respectively the terms and variables (including nulls) occurring in Φ. >
(tautology) and ⊥ (falsity) are allowed and considered themselves atoms. A
ground atom contains only constants.

Example 2.1 (Atoms, conjunctions, and interpretations). Consider
the following vocabulary P = {p,q}, C = {a,b}, then “∃X p(a,X )” is an
atom, “p(a,b)” is a ground atom, and “∃X (p(a,X ) ∧q(X ))” is a conjunction
of atoms. An interpretation might map “p” to the concept of parenthood,
“p(a,b)” might be interpreted as the individual “a” is a parent of “b” (e.g.
Alice is a parent of Bob). “∃X p(a,X )” might be interpreted as there exists
an individual such that “a” is its parent.

A basic form of knowledge is factual knowledge which is represented
using facts. Usually a fact is a ground atom, however to account for knowl-
edge expressing the existence of unknown constants (nulls), the definition of

13
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fact is generalized to an atom that contains constants or nulls (existentially
quantified variables).

Definition 2.3 (Fact). A fact on a language L is an existentially closed
atom on L. It is of the form ∃ ®X p(®a, ®X ) where p ∈ P is a predicate, ®a is
a finite (potentially empty) set of constants, and ®X is a finite (potentially
empty) set of existentially quantified variables.

Please note that for the purposes of this thesis, a fact is not a conjunc-
tion. To be able to manipulate conjunctions as sets of facts, existential
variables are represented using nulls.

Notation 2.1 (From existential variables to nulls). An existential vari-
able can be represented as a “fresh” Skolem term by removing the existential
quantifier and replacing the variable with a null. This null has to be “fresh”
(or “safe”) meaning that it has not been used before. For example, ∃X p(a,X )
can be represented as p(a,Null1) as long as Null1 is fresh (has not been used
before).

Notation 2.2 (From conjunctions to sets of facts). A conjunction of
facts can be represented as a set of facts by removing the existential quantifier
and replacing the variables with nulls. For example, ∃X (p(a,X ) ∧ q(X )) can
be represented as {p(a,Null1), q(Null1)} assuming Null1 is fresh.

A model of a formula built on L is an interpretation of L that makes this
formula true by considering the classical interpretation of logical connectives
and quantifiers.

Definition 2.4 (Logical Consequence and Equivalence). Given a lan-
guage L and two formulas Φ1 and Φ2 on L, Φ2 is a (logical) consequence of
Φ1 (denoted Φ1 � Φ2) if all models of Φ1 are models of Φ2. Φ1 and Φ2 are
said to be logically equivalent (denoted Φ1 ≡ Φ2) if Φ1 � Φ2 and Φ2 � Φ1.

One of the relevant problems in knowledge representation is the entail-
ment problem, which is asking whether a formula is a consequence of another
formula. This can be expressed on facts as follows: given two facts f1 and
f2, is it true that f2 is a consequence of f1 (i.e. f1 � f2)? It is well known
that f1 � f2 if and only if there exists a homomorphism from f2 to f1 [Baget
et al., 2011a].

Definition 2.5 (Substitution and Homomorphism). Let ®X be a set
of variables and ®T a set of terms. a substitution of ®X to ®T is a mapping
form ®X to ®T (notation ®X → ®T ). A homomorphism π from an atom a1 to an
atom a2 is a substitution of each occurrence of X ∈ vars(a1) by an element
in terms(a2). The resulting atom after the substitution is denoted π (a1). A
homomorphism π from a set of atoms S to a set of atoms S ′ is a substitution
of vars(S) to terms(S ′) such that π (S) ⊆ S ′.

14
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Example 2.2 (Homomorphism). The atom p(a,Null1) can be mapped to
the atom p(a,b) by the homomorphism π = {Null1 → b} that substitutes
Null1 by b. Therefore p(a,b) � p(a,Null1).

Notation 2.3 (Homomorphism restriction π | ®X ). Given a homomor-

phism π , we denote by dom(π ) the domain of π . Given a set of variables ®X ,
we denoted the restriction of π to ®X by π | ®X = {(X ,π (X )) |X ∈ dom(π ) ∩

®X }.

The entailment problem is generally expressed using queries (query an-
swering problem), specifically conjunctive queries which are an existentially
closed conjunctions of atoms. These can be seen as asking if there is a set of
constants and nulls that make an existentially closed conjunction of atoms
a consequence of the set of facts.

Definition 2.6 (Query). A Conjunctive Query (CQ) is an existentially
closed conjunction of atoms of the form Q( ®X ) = ∃®Y Φ( ®X , ®Y ), where ®X is a
set of variables, ®Y is a set of existential variables (possibly with constants)
and Φ is a conjunction of atoms. A Boolean Conjunctive Query (BCQ) is
a conjunctive query of the form Q() = ∃®Y Φ( ®Y ).

The answers to a conjunctive query Q( ®X ) = ∃®Y Φ( ®X , ®Y ) over a set of for-
mulas F is the set of all tuples (constants and nulls) that if, substituted with
®X and ®Y , make Φ a consequence of F. The answer to a boolean conjunctive
query is either true or false, and it is true over a set of facts F if and only
if it is a consequence of F, otherwise it is false.

Example 2.3 (Conjunctive and boolean queries). Consider the query
Q(X ) = ∃Y p(X , Y ), the answers to this query over the set of facts F =

{p(a,b),p(c,Null1)} are {a, c} because there is a homomorphism π1 = {X →
a,Y → b} from Q to p(a,b), and there is a homomorphism π2 = {X → c,Y →
Null1} to p(c,Null1). The answer to the BCQ Q() = ∃X ,Y p(X , Y ) is true
(because it can be mapped to F using π1 or π2).

2.1.2 Rules and Reasoning

Rules are formulas that allow the enrichment of a set of facts with new
deduced knowledge. These rules generally encode domain-specific implica-
tions, for example “if X is a cat then X is an animal”. Existential rules
[Baget et al., 2011a] are general rules that account for unknown individuals,
they are also known as Tuple Generating Dependencies (TGD) [Abiteboul
et al., 1995], Conceptual Graphs rules [Salvat and Mugnier, 1996], Datalog∃
rules [Cali et al., 2013], etc.

Definition 2.7 (Existential Rule). An existential rule (or simply a rule)
r is a formula of the form ∀ ®X , ®Y (

B( ®X , ®Y ) → ∃ ®Z H( ®X , ®Z )
)

where ®X , ®Y are

tuples of variables, ®Z is a tuple of existential variables, and B, H are
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finite non-empty conjunctions of atoms respectively called body and head
of r and denoted Body(r ) and Head(r ). The frontier of r (denoted f r (r ))
is the set of variables occurring in both the body and the head of r i.e.
f r (r ) = vars(Body(r )) ∩vars(Head(r )).

Rules are used to infer new knowledge starting from an initial set of
facts based on the notion of rule application.

Definition 2.8 (Rule Application). A rule r is said to be applicable to
a set of facts F if there is a homomorphism π from Body(r ) to F. In that
case, the application of r to F according to π (denoted α(F, r ,π )) adds to F

a set of facts π saf e (Head(r )) where π saf e ensures that existential variables
are replaced with fresh nulls.

Example 2.4 (Rule application). Consider the rule r stating that two
siblings have the same parent: ∀X ,Y siblinдO f (X ,Y ) → ∃Z parentO f (Z ,X ) ∧
parentO f (Z ,Y ). This rule is applicable to the set F = {siblinдO f (alice,bob)}
using the homomorphism π = {X → alice,Y → bob}. Therefore α(F, r ,π ) =
F ∪ {parentO f (Null1,alice), parentO f (Null1, bob)} assuming Null1 is safe.

Notation 2.4 (Rules with Atomic Head). In general, rules might have
a conjunction of atoms in their head, however for the purposes of this thesis,
we only consider rules with one atom in their head. Any set of rules can be
transformed to a set of rules with atomic head [Baget et al., 2011a]. For ex-
ample, the rule ∀X ,Y siblinдO f (X ,Y ) → ∃Z parentO f (Z ,X ) ∧parentO f (Z ,Y )
can be transformed to a set of three rules with atomic heads:

1. ∀X ,Y siblinдO f (X ,Y ) → ∃Z p(X ,Y ,Z )

2. ∀X ,Y ,Z p(X ,Y ,Z ) → parentO f (Z ,X )

3. ∀X ,Y ,Z p(X ,Y ,Z ) → parentO f (Z ,Y )

A rule is applicable on a set of facts if there is a homomorphism from
the body of the rule to this set of facts, furthermore, a rule might not be
applicable right away but could become applicable after some new knowledge
is generated by another rule, which might make another rule applicable and
so on. This sequence of rule applications is called a derivation. Normally, a
derivation is a sequence of facts generated at each rule application, however,
we generalize this notion to include the rule and the homomorphism used
at each step.

Definition 2.9 (Derivation). Given a set of facts F and a set of rules
R, a derivation of F with respect to R is a (potentially infinite) sequence δ
of Di s.t. Di is a tuple (Fi , ri ,πi ) composed of a set of facts Fi , a rule ri
and a homomorphism πi from Body(ri ) to Fi where: D0 = (F0 = F, ∅, ∅), and
Fi = α(Fi−1, ri ,πi ). We denote by Facts(Di ), Rule(Di ), and Homo(Di ) the set
of facts, rule and homomorphism of a tuple Di .
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A derivation can be infinite as a rule can be applied again and again
without restrictions as shown in the following Example 2.5.

Example 2.5 (Derivation). Consider the set of facts F stating that bob
is a male human, and the rules R stating that any human has a parent and
that a male human is a man.

• F = {human(bob), male(bob)}.

• R = {r1 : ∀X human(X ) → ∃Y parentO f (Y ,X ),
r2 : ∀X male(X ) ∧ human(X ) →man(X )}.

A possible derivation of F w.r.t R is:

δ = 〈(F, ∅, ∅), (F1 = F0 ∪ {man(bob)}, r2,π1 = {X → bob}),

(F2 = F1 ∪ {parentO f (Null1,bob)}, r1,π2 = {X → bob}),

(F3 = F2 ∪ {man(bob)}, r2,π3 = {X → bob}),

(F4 = F3 ∪ {parentO f (Null2,bob)}, r1,π4 = {X → bob}),

. . . 〉.

A derivation for a specific fact f is a finite minimal sequence of rule
applications starting from a set of facts F and ending with a rule application
that generates f .

Definition 2.10 (Derivation for a Fact). Given some sets of facts F and
rules R, a derivation for a fact f is a finite derivation δ = 〈D0, . . . ,Dn〉 of
F′ ⊆ F w.r.t. R such that:

1. f ∈ Facts(Dn) (i.e. the last rule application contains f ).

2. δ is minimal i.e. there does not exist another derivation δ ′ = 〈D ′0, . . . ,D
′
m〉

for f such that:

• Facts(D ′0) ⊂ Facts(D0) and

•
⋃

D′∈δ ′(Rule(D
′),Homo(D ′)) ⊂

⋃
D∈δ (Rule(D),Homo(D)).

Example 2.6 (Derivation for a Fact). Consider the previous Example
2.5, a derivation from F to man(bob) is the sequence:

δ1 = 〈(F0 = {human(bob),male(bob)}, ∅, ∅), (F1 = F0 ∪ {man(bob)}, r2,π )〉.

Query answering over a set of facts and rules can be done by generating
all possible knowledge then finding homomorphisms from the queries to this
“saturated” set of facts. In order to generate this knowledge, rules are
applied in a breadth first manner. A breadth-first derivation is obtained by
considering at each “breadth-first” step all possible rule applications on the
current set of facts and applying them all before moving to the next step.
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Definition 2.11 (Breadth-First Derivation). Given a set of facts F

and a set of rules R, a breadth-first derivation of F w.r.t. R is a derivation
δ = 〈(F0 = F, ∅, ∅), . . . , (Fi , ri ,πi ), . . . 〉 such that for all i < j, if (Fi+1\Fi ) ∩

πj (Body(r j )) , ∅ then for all k > j, πk (Body(rk )) * Fi .

The above definition ensures that if a rule is applied on some atoms
generated by a rule application i + 1 then no rule application afterwards can
use only the atoms in Fi . Intuitively, once we go to the next breadth-first
step, we cannot apply a rule that could have been applied in a previous step
according to the same homomorphism.

An exhaustive breadth-first derivation ensures that all rules have been
applied according to all possible homomorphisms. An exhaustive derivation
may be infinite and might contain “redundant” rule applications, however
removing these “redundant” rule applications might make the exhaustive
derivation finite. The role of a chase is to remove rule applications that it
considers redundant.

2.1.3 Chase and Finite Expansion Set

In order to answer queries over a set of facts and rules, the exhaustive
derivation has to be finite. A chase is a mechanism that takes an exhaustive
derivation and removes what it considers “redundant” rule applications us-
ing a derivation reducer. We use the formalization of [Rocher, 2016] for its
simplicity to define a derivation reducer and a chase.

Definition 2.12 (Derivation Reducer). Given a set of facts F and a set
of rules R, a derivation reducer σ is a function that takes a rule application
tuple Di = (Fi , ri ,πi ) in a derivation δ = 〈D0, . . . ,Di , . . . 〉 of F w.r.t. R and
returns a rule applications tuple σ (Di ) = (F

′
i , ri ,πi ) such that F′i ≡ Fi .

Definition 2.13 (σ-Chase). Given a set of facts F, a set of rules R, a
derivation reducer σ , and an exhaustive breadth first derivation δ = 〈D0, . . . ,

Di , . . . 〉 of F w.r.t. R: σ-chase(F,R) = 〈σ (D0), . . . ,σ (Di ), . . . 〉 and σ (Di ) ∈

σ-chase(F,R) if and only if Facts(σ (Di )) , Facts(σ (Di−1)).

The above definition ensures that only non redundant “meaningful” rule
applications are kept (i.e. rule applications that generate something new
according to the derivation reducer). A chase is finite if there is a breadth-
first rule application step k such that for all D j at step k, no new facts are
generated [Baget et al., 2014b].

Applying a chase on a set of facts F and a set of rules R generates the
saturated set of facts F∗ that contains all initial and generated facts.

Definition 2.14 (Saturated Set of Facts). Given a set of facts F and a
set of rules R, the saturated set of facts is: F∗ =

⋃
D∈σ-chase(F,R) Facts(D)
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Saturating a set of facts F with a set of rules R until no new rule appli-
cation is possible allows us to obtain the universal model. The particularity
of this model is that it is representative of all models of (F ∪R) (we denote
the set of models of (F ∪ R) by models(F,R)).

Definition 2.15 (Universal Model). Given a set of facts F and a set of
rules R, a universal model M of (F ∪ R) is a model of (F ∪ R) such that for
all models M ′ of (F ∪ R), there is a homomorphism from M to M ′.

It is not always possible to obtain the universal model (the saturated set
of facts might be infinite), however if the chase is finite then the model of the
saturated set of facts is a universal model [Baget et al., 2011a]. Therefore
query entailment can be expressed using the notion of chase.

Theorem 2.1 (Query entailment and Chase [Baget et al., 2011a]).
Given a set of facts F, a set of rules R, and a Boolean conjunctive query Q:
if σ-chase(F,R) is finite then (F ∪ R) � Q if and only if Facts(σ-chase) � Q.

Different kinds of chases can be defined using different derivation re-
ducers. Each derivation reducer ensures a universal model if its chase is
finite. The most common chase is the Frontier chase [Baget et al., 2011a],
it yields equivalent results as the well-known Skolem chase [Marnette, 2009]
that relies on a “skolemisation” of the rules by replacing each occurrence of
an existential variable Y with a functional term f rY (

®X ), where ®X = f r (r ) are
the frontier variables of r . Frontier chase and skolem chase yield isomorphic
results [Baget et al., 2014a], in the sense that they generate exactly the same
atoms, up to a bijective renaming of nulls by skolem terms.

The frontier chase considers two rule applications redundant if their map-
ping of the frontier variables are the same for the same rule.

Definition 2.16 (Frontier/Skolem Chase). The frontier chase σf r -chase
(equivalent to the Skolem chase [Marnette, 2009]) relies on the frontier
derivation reducer (denoted by σf r ) defined as follows: for any derivation
δ , σf r (D0) = D0 and ∀Di = (Fi , ri ,πi ) ∈ δ :

Facts(σf r (Di )) =


Fi−1 ∪ π

saf e
i (Head(ri )) if ∀j < i with ri = r j ,

πj |f r (r j )(Body(r j )) , πi |f r (ri )(Body(ri ))

Fi−1 otherwise

Example 2.7 (Frontier chase). Consider the following set of facts F and
set of rules R stating that an animal shelter would keep a dog found alone
if it has an owner. If it has a collar or a microchip then it has an owner. A
dog named “Jack” with a collar and a microchip is found alone.

• F = {alone(jack), hasCollar (jack), hasMicrochip(jack)}
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• R = {r1 : ∀X ,Y hasOwner (X ,Y ) → keep(X ),
r2 : ∀X alone(X ) ∧ hasCollar (X ) → ∃Y hasOwner (X ,Y ),
r3 : ∀X alone(X ) ∧ hasMicrochip(X ) → ∃Y hasOwner (X ,Y )}

A possible frontier chase of F and R is:

σf r -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {hasOwner (jack,Null1)}, r2,π1 = {X → jack}),

(F2 = F1 ∪ {hasOwner (jack,Null2)}, r3,π2 = {X → jack}),

(F3 = F2 ∪ {keep(jack)}, r1,π3 = {X → jack,Y → Null1})〉.

First, r2 is applied on {alone(jack), hasCollar (jack)} and generates ∃Y
hasOwner (jack,Y ) which is not redundant since r2 has never been applied
before, therefore F1 = F0 ∪ {hasOwner (jack,Null1)}. Then r3 is applied on
{alone(jack), hasMicrochip(jack)} and generates ∃Y hasOwner (jack,Y ) which
is also not redundant because r3 has never been applied before (even if it
generates the same atom as r2), therefore F2 = F1∪{hasOwner (jack,Null2)}.

Afterwards, r1 is applied on {hasOwner (jack,Null1)} and generates
{keep(jack)} which is not redundant as r1 has never been applied before, there-
fore F3 = F2∪{keep(jack)}. Finally, r1 is applied on {hasOwner (jack,Null2)}
with the homomorphism π4 = {X → jack,Y → Null2} and generates {keep(jack)}
which is redundant since this rule application reuses the same rule and
frontier mapping as the rule application on {hasOwner (jack,Null1)} (i.e.
π4 |f r (r1) = π3 |f r (r1) = {X → jack}). Since any additional rule application
would be redundant (all rules have been applied with all possible homomor-
phisms) the frontier chase stops.

Even if the frontier reducer removes some redundant rule applications,
the frontier chase might be infinite as shown in the following Example 2.8.

Example 2.8 (Infinite Frontier Chase). Consider the set of fact F and
the set of rules R containing one fact and one rule.

• F = {p(a)}

• R = {r1 : ∀X p(X ) → ∃Y p(Y )}

A possible frontier chase of F and R is:

σf r -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {p(Null1)}, r1,π1 = {X → a}),

(F2 = F1 ∪ {p(Null2)}, r1,π2 = {X → Null1}),

(F3 = F2 ∪ {p(Null3)}, r1,π2 = {X → Null2}),

. . . 〉.

First, r1 is applied using π1 and generates ∃Y p(Y ) which is not redun-
dant since r1 has never been applied before, therefore F1 = F0 ∪ {p(Null1)}.
Then r1 is applied on {p(Null1)} using π2 and generates ∃Y p(Y ) which is
not redundant since π2 |f r (r1) = {X → Null1} , π1 |f r (r1) = {X → a}, therefore
F2 = F1 ∪ {p(Null2)}, and so on infinitely.
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Some derivation reducers are “stronger” than others, this implies that
their chase might stop in cases where others do not. This is known as the
reducer order relation.

Definition 2.17 (Reducer Order Relation [Rocher, 2016]). Given two
derivation reducers σ1 and σ2, we say that σ1 is weaker than σ2 (denoted by
σ1 ≤ σ2) if for any set of rules R and set of facts F, if σ1-chase is finite then
σ2-chase is also finite. Furthermore, we say that σ1 is strictly weaker than
σ2 if σ1 ≤ σ2 and σ2 � σ1.

In the literature, there are four well-known types of chase: the Oblivious
chase (σobl -chase) [Cali et al., 2013], the Skolem/Frontier chase (σf r -chase)
[Marnette, 2009, Baget et al., 2011a], the Restricted chase (σr es -chase) [Fagin
et al., 2005], and the Core chase (σcore -chase) [Deutsch et al., 2008].

Proposition 2.1 (Chases Finiteness Order [Onet, 2013, Rocher,
2016]). The following relations hold: σobl ≤ σf r ≤ σr es ≤ σcore .

It is well-known that query entailment using a chase is undecidable (the
chase might be infinite) [Beeri and Vardi, 1981] even under strong restric-
tions such as using a single rule or restricting to binary predicates with no
constants. However, some restrictions on the set of rules can ensure decid-
ability for a specific type of chase. These restrictions are classified into three
big categories known as “abstract classes”. The first one is “Finite Expan-
sion Set” (FES) [Baget et al., 2014b] that ensures that a finite universal
model of the knowledge base exists and can be generated using a chase.
For each chase we can define its FES class: oblivious-FES, skolem-FES,
restricted-FES, and core-FES. The second class is called “Finite Unifica-
tion Set” (FUS) [Baget et al., 2011a] which guarantees that some backward
chaining method halts. Finally, the class called “Greedy Bounded Treewidth
Set” (GBTS) [Baget et al., 2011b] ensures that the potentially infinite uni-
versal model of a knowledge base has a bounded treewidth. Each abstract
class has a set of “concrete classes” that classifies rules based on their syn-
tactic properties e.g. the concrete class Datalog describes rules that do not
contain existentially quantified variables. The following Figure 2.1 shows
the most studied concrete classes in the literature and the relation between
them: an upward edge going from a class C to a class C’ means that any
set of rules in class C is also in Class C’.

In this thesis we rely mainly on the frontier chase to reason with exis-
tential rules, for simplicity we will only give examples and intuitions about
concrete classes of skolem-FES 1. Restricting ourselves to the frontier chase

1For more information about these concrete classes see [Baget et al., 2011a]. The on-
line tool Kiabora http://graphik-team.github.io/graal/downloads/kiabora-online

checks automatically if a set of rules is skolem-FES.
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and subsequently to the skolem-FES classes of rules is not a very restric-
tive constraint since most studied concrete FES classes are skolem-FES (cf.
Figure 2.2).

MFA

Super-weak-
acyclic

Jointly-acyclic

Weakly-acyclic

aGRD

Datalog

Weakly-sticky

W-sticky-join

Sticky-join

Sticky

Domain-
restricted

Linear

Jointly-fg

Glut-fg

Weakly-
frontier-guarded

Weakly-
guarded

Frontier-
guarded

Guarded Frontier-1

FES FUS
GBTS

Figure 2.1: Abstract and known concrete classes of existential rules [Baget
et al., 2011a, Rocher, 2016]
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Jointly-acyclic
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Skolem-FES

Oblivious-FES

Figure 2.2: Known concrete FES classes and chases finiteness (all
skolem-FES concrete classes are restricted-FES and core-FES cf.

Proposition 3.4.)

A concrete class is simply a syntactic distinction of rules. The most
basic skolem-FES concrete class is the Datalog class (also known as Range
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Restricted [Abiteboul et al., 1995]) which are rules without the existential
quantifier. Another simple class is the aGRD class (Acyclic Graph of
Rule Dependency) [Baget et al., 2014a]. A Graph of Rule Dependency is a
directed graph that encodes possible interactions between rules: the nodes
represent the rules and there is an edge from a node r1 to r2 iff an application
of the rule r1 may create a new application of the rule r2. A GRD is acyclic
when it has no circuit. The notions of “weak acyclicity” [Marnette, 2009] and
“joint acyclicity” [Krötzsch and Rudolph, 2011] are based on the position
of the predicate and the existential and frontier variables. The MFA class
(Model Faithful Acyclicity) [Cuenca Grau et al., 2013] relies on detecting
a specific set of facts called critical instance. The following Example 2.9
provides some rules that are skolem-FES.

Example 2.9 (Skolem-FES rules). Consider the following sets of rules:

• R1 = {∀X ,Y ,Z p(X ,Z )∧p(Z ,Y ) → p(X ,Y )} is range restricted (Datalog).

• R2 = {∀X ,Y siblinдO f (X ,Y ) → ∃Z parentO f (Z ,X ,Y )} is aGRD.

• R3 = {r1 : ∀X ,Y p(X ,Y ) → ∃Z r (Y ,Z ),
r2 : ∀X ,Y r (X ,Y ) → p(Y ,X )}. {r1} is aGRD and {r2} is range re-
stricted, however R3 is weakly-acyclic and is neither aGRD nor range-
restricted.

• R4 = {r1 : ∀X ,Y p(X ,Y ) → ∃Z r (Y ,Z ),
r2 : ∀X ,Y r (X ,Y ) ∧ r (Y ,X ) → p(X ,Y )}. {r1} is aGRD and {r2} is range
restricted, however R4 is Jointly-acyclic.

• R5 = {r1 : ∀Xq(X ) → ∃Y p(X ,Y ) ∧ p(Y ,X ) ∧ p(X ,X ),
r2 : ∀X p(X ,X ) → r (X ),
r3 : ∀X r (X ) → q(X )}. {r1} alone is aGRD, {r2, r3} is range restricted,
however R5 is super-weakly-acyclic.

• R6 = {∀X ,Y p(X ,Y ) → ∃Z ,T q(Y ,Z ) ∧p(Z ,T )} is model-faithful-acyclic.

Not all concrete classes are created equal, some might have higher com-
plexity for query answering, and applying a chase on these classes would
require more time. In the next section we recall the definitions for some
complexity classes and describe the complexity of the skolem-FES concrete
classes.

2.1.4 Complexity Classes

Complexity is an indication of a computational problem inherent difficulty.
We briefly recall the definitions of the complexity classes by increasing com-
plexity. For more details about complexity theory, the reader is referred to
[Papadimitriou, 2003].
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Definition 2.18 (AC0). A problem is in AC0 if it can be solved by a boolean
circuit of bounded depth with a polynomial number of AND and OR gates.

Definition 2.19 (Polynomial Time (PTime)). A problem is in PTime
if it can be solved by a deterministic Turing machine running in polynomial
time in the input.

Definition 2.20 (NP). A problem is in NP if it can be solved by a non-
deterministic Turing machine running in polynomial time in the input.

Definition 2.21 (coNP). A problem is in coNP if its complement is in the
class NP, meaning that there is a polynomial-time algorithm that can verify
no instances (counterexamples) using a non-deterministic Turing machine.

Definition 2.22 (Exponential Time (ExpTime)). A problem is in ExpTime
if it can be solved by a deterministic Turing machine running in simple ex-
ponential time (2p(n)) in the input. 2ExpTime is running in exponential

time 22
p(n)

while 3ExpTime is 22
2p(n)

.

Furthermore, a problem P is hard for a given complexity class C if any
instance of a problem from C can be reduced to an instance of P through
a reduction (in most cases, this reduction has to be in polynomial time,
but for lower classes (PTime and below), logarithmic space reductions must
be used). A problem P is complete for a given complexity class C if it
belongs to C and is hard for C. For the query entailment problem, two
different measures of complexity are considered:

• Combined complexity: the input contains the set of rules, the set
of facts and the query.

• Data complexity: the input contains only the set of facts while the
set of rules and the query are assumed to be fixed.

Data complexity is sometimes considered more relevant [Lembo et al.,
2010] because the query and the rules are usually far smaller than the
set of facts in practical applications, however both complexities can help
understand where the difficulties lie. Indeed, for instance, query answer-
ing over skolem-FES rules using a frontier chase has in the worst case
2ExpTime-complete combined complexity and PTime-complete data
complexity. The following Table 2.1 describes the combined and data com-
plexity of query answering for each studied concrete class of Skolem-FES.

2.1.5 Incoherence and Inconsistence

To represent knowledge about the world one should account for “negative
knowledge”, i.e. information that dictates how things ought not to be, es-
pecially since generating new knowledge from seemingly correct information
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Rule Class Combined Complexity Data Complexity

Datalog ExpTime-complete [Chandra et al., 1981] PTime-complete [Dantsin et al., 2001]

aGRD ExpTime-complete [Cali et al., 2010b] PTime-complete [Cali et al., 2010b]

Jointly-acyclic 2ExpTime-complete [Krötzsch and Rudolph, 2011] PTime-complete [Krötzsch and Rudolph, 2011]

Weakly-acyclic 2ExpTime-complete [Fagin et al., 2005] PTime-complete [Fagin et al., 2005]

Super-weakly-acyclic 2ExpTime-complete [Marnette, 2009] PTime-complete [Marnette, 2009]

MFA 2ExpTime-complete [Zhang et al., 2015] PTime-complete [Marnette, 2009]

Table 2.1: Complexity of CQ entailment for studied Skolem-FES concrete
classes

might lead to a contradiction down the line. A basic form of “negative knowl-
edge” is stating that a fact and its negation (or complement) should not be
both asserted at the same time. While the existential rules language L is
negation-free, the notion of integrity constraint from the database domain
can be used to express negative knowledge.

Definition 2.23 (Negative Constraint). A negative constraint (or simply
a constraint) is a rule of the form ∀ ®X B( ®X ) → ⊥ where ®X is a tuples of
variables, and B is a finite non-empty conjunction of atoms.

In this thesis, we only consider “binary” negative constraints (a.k.a. de-
nial constraints) that express a conflict between two atoms. This restriction
simplifies subsequent definitions and does not imply a loss of generality since
any negative constraint can be transformed into a set of rules and binary
negative constraints [Cal̀ı et al., 2012].

Definition 2.24 (Conflicting Facts). Two facts f1 and f2 are in conflict
if the body of a negative constraint can be mapped to { f1, f2}.

Example 2.10 (Negative Constraint and Conflicting Facts). Con-
sider the negative constraint stating that it is impossible that a person is
alive and dead at the same time: ∀X alive(X ) ∧ dead(X ) → ⊥. The fact
alive(bob) is in conflict with dead(bob) (and vice-versa) because the body of
the negative constraint can be mapped to these facts.

Negative constraints are used to ensure that a set of facts is consistent
(i.e. contains no contradiction). This is especially important since in pres-
ence of conflict, query answering becomes trivial due to the principle of
explosion (ex falso quodlibet) “from falsehood anything follows”.

In the various domains of knowledge representation, conflicts might be
inherent to the represented domain or may arise from an incorrect descrip-
tion of the world. When a set of factual knowledge contains no conflicts it
is said to be consistent, otherwise it is inconsistent.
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Definition 2.25 (Inconsistence). A set of facts F is inconsistent with
respect to a set of negative constraints N if and only if (F∪N) has no possible
model (models(F,N) = ∅) i.e. (F ∪N) � ⊥. In practice, F is inconsistent if a
negative constraint can be applied i.e. ∃r ∈ N such that F � Body(r ).

An inconsistent set of facts does not necessarily mean an incorrect rep-
resentation of the factual knowledge of the world. In some cases, the incon-
sistency of the generated set of facts is unavoidable (i.e. the representation
has no model) even with a correct description of factual knowledge. This is
due to an incoherent set of rules.

Definition 2.26 (Incoherence). A set of rules R is incoherent with respect
to a set of negative constraints N if and only if R∪N is unsatisfiable i.e. for
any set of facts S such that all rules in R are applicable, models(S,R ∪N) =
∅. The application of R on any set of facts S will inevitably lead to an
inconsistent saturated set of facts S∗ with respect to N.

Clearly, the notions of incoherence and inconsistence are highly related.
In fact, an incoherent set of rules R will always lead to an inconsistent set of
facts F∗ if all rules in R are applied on F [Flouris et al., 2006]. The following
Examples 2.11 and 2.12 describe the key difference between incoherence and
inconsistence.

Example 2.11 (Incoherence). Consider the following sets of facts F ,
rules R, and negative constraints N representing the knowledge that birds
fly, penguins are birds, and penguins cannot fly. “Kowalski” is a pen-
guin, does it fly (i.e. Q1() = f ly(kowalski))? Does it not fly (i.e. Q2() =

notFly(kowalski))?

• F = {penдuin(kowalski)}

• R = { r1 : ∀X penдuin(X ) → bird(X ),
r2 : ∀X bird(X ) → f ly(X ),
r3 : ∀X penдuin(X ) → notFly(X )}

• N = {∀X f ly(X ) ∧ notFly(X ) → ⊥}

The saturated set of facts resulting from a frontier chase is

• F∗ = {penдuin(kowalski), bird(kowalski), f ly(kowalski), notFly(kowalski)}.

The set of rules R is incoherent because no set of facts (even outside F)
that makes all rules in R applicable prevents the application of the negative
constraint, therefore models(F,R∪N) = ∅. The answer to the boolean queries
Q1 and Q2 is “true” (principle of explosion) i.e. Kowalski flies and does not
fly at the same time. The saturated set of facts F∗ is inconsistent because
models(F,R ∪N) = ∅.
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Example 2.12 (Inconsistence vs Incoherence). Consider the following
sets of facts F , rules R, and negative constraints N describing a simplified
legal situation: If there is a scientific evidence incriminating a defendant
then he is responsible for the crime, if there is a scientific evidence absolving
a defendant then he is not responsible for the crime. A defendant is guilty
if responsibility is proven. If a defendant has an alibi then he is innocent.
There is a scientific evidence “e1” incriminating a defendant “alice”, while
another scientific evidence “e2” is absolving her of the crime. She also has
an alibi. Is Alice innocent (i.e. Q1() = innocent(alice))? Is she guilty (i.e.
Q2() = дuilty(alice))?

• F = {incrim(e1,alice), absolv(e2,alice), alibi(alice)}

• R = {r1 : ∀X ,Y incrim(X ,Y ) → resp(Y ),
r2 : ∀X ,Y absolv(X ,Y ) → notResp(Y ),
r3 : ∀X resp(X ) → дuilty(X ),
r4 : ∀X alibi(X ) → innocent(X )}

• N = {∀X resp(X ) ∧ notResp(X ) → ⊥,
∀X дuilty(X ) ∧ innocent(X ) → ⊥}

The saturated set of facts resulting from a frontier chase is

• F∗ = {incrim(e1,alice), absolv(e2,alice), alibi(alice), resp(alice), notResp(alice),
дuilty(alice), innocent(alice)}.

The set of rules R is coherent because R∪N is satisfiable i.e. there ex-
ists a possible set of facts S = {incrim(e1, bob), absolv(e2,alice), alibi(alice)}
such that all rules in R are applicable and models(S,R ∪ N) , ∅, the set
S∗ = {incrim(e1, bob), absolv(e2,alice), aibli(alice), resp(bob), notResp(alice),
дuilty(bob), innocent(alice)} is consistent as no negative constraint is ap-
plicable on it.

However the saturated set of facts F∗ is inconsistent because a negative
constraint is applicable, thus models(F,R ∪ N) = ∅. Since the set of rules is
coherent, the inconsistence of F∗ is due to an erroneous set of intial facts
(either one of the evidences, the alibi, or all of them are not valid).

The classical answer to the boolean queries Q1 and Q2 is “true” (i.e.
Alice is guilty and innocent), because from falsehood, anything follows.

Inconsistence and incoherence are problematic for classical query an-
swering. Nevertheless, the ability to reason in presence of conflicts can be
preserved by relying on “conflict-tolerant” techniques such as Defeasible
Reasoning.
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2.2 Defeasible Reasoning

Defeasible Reasoning is a form of non-monotonic reasoning that stems from
the need to reason with incomplete knowledge by “filling the gaps in the
available information by making some kind of plausible (or desirable) as-
sumptions” [Pollock, 1987]. It can be seen as “jumping to conclusions that
may prove to be wrong when additional information becomes available. It
is the kind of reasoning in which a quick application of a simple rule of
thumb is considered to be of more value than a logically correct inference”
[Vreeswijk, 1995].

2.2.1 Defeasible Knowledge Bases and Representation

Making plausible “leaps” to generate new knowledge might ultimately lead
to an inconsistent or incoherent representation of the world. This also re-
quires a distinction between definite “strict” implications and plausible “de-
feasible” implications. Furthermore, one might want to “block” a plausible
implications in a certain context using “defeater” implications. We extend
the existential rule language L to the defeasible existential rules language
denoted L∀∃ (a.k.a. Defeasible Datalog± [Martinez et al., 2014]) to allow for
the different types of implications.

Definition 2.27 (Strict, Defeasible, and Defeater Rules). Defeasible
reasoning distinguishes three types of rules:

• Strict rules (→) of the form r : ∀ ®X , ®Y (
B( ®X , ®Y ) → ∃ ®Z H( ®X , ®Z )

)
ex-

pressing undeniable implications i.e. if Body(r ) then definitely Head(r ).

• Defeasible rules (⇒) of the form r : ∀ ®X , ®Y (
B( ®X , ®Y ) ⇒ ∃ ®Z H( ®X , ®Z )

)
expressing weaker (plausible) implications i.e. if Body(r ) then generally
Head(r ).

• Defeater rules ( ) of the form r : ∀ ®X , ®Y (
B( ®X , ®Y )  ∃ ®Z H( ®X , ®Z )

)
used to prevent defeasible implications by producing evidence of the
contrary i.e. stating that if Body(r ) then any conflicting atom with
Head(r ) should not be derived. This does not however imply that
Head(r ) is derived.

We denote the set of strict rules by R→, the set of defeasible rules by
R⇒, and the set of defeater rules by R .

While the intuition behind strict and defeasible rules is easy to grasp, one
might find it difficult to intuitively understand the notion of defeater rules.
A defeater rule r , when it is applicable, states that given some premises
Body(r ), there is sufficient evidence to “defeat” (i.e. prevent) the conclusion
of any atom conflicting with Head(r ). At the same time, these premises are
not sufficient evidence to conclude Head(r ).
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Example 2.13 (Defeasible and Defeater Rules). Consider the follow-
ing sets of rules R and negative constraints N stating that birds generally
fly, and having a broken wing is sufficient evidence against flying.

• R = {r1 : ∀X bird(X ) ⇒ f ly(X ),
r2 : ∀X bird(X ) ∧ brokenWinдs(X ) notFly(X )}

• N = {∀X f ly(X ) ∧ notFly(X ) → ⊥}

The defeater rule r2 expresses that having broken wings for a bird is a
special context that prevents one from concluding that this bird flies. In other
words, one does not wish to conclude that a bird with broken wings does not
fly, however it is sufficient evidence to prevent the conclusion that it flies.

Much like strict and defeasible implications, factual knowledge can be
strict or defeasible. To express this distinction we transform the set of facts
F to a set of fact rules with a > body.

Notation 2.5 (Fact Rules). A set of facts F can be seen as a set of “fact
rules” of the form > V f such that f is a fact and V∈ {→,⇒}. A strict
fact is of the form > → f and a defeasible fact is of the form > ⇒ f .

Given the different types of rules and the fact that from a contradiction
anything follows, the notion of derivation for a fact has to be adapted to
be “conflict-free” and to not rely on defeater rules to generate intermediate
knowledge. However, there is an interesting debate between logicians on
what constitutes a “conflict-free” derivation. Some, mostly from the De-
feasible Logic community, consider a derivation “conflict-free” if it does not
contain conflicting atoms [Billington et al., 2010]. This is what we will call
a directly consistent derivation.

Definition 2.28 (Directly Consistent Derivation for a Fact). Given a
set of facts F, a set of rules R = R→∪R⇒∪R , a set of negative constraints
N, and a derivation δ = 〈D0, . . . ,Dn〉 for a fact f , we say that δ is a directly
consistent derivation if and only if:

1. ∀i s.t. 0 ≤ i < n, Rule(Di ) ∈ R→ ∪ R⇒ i.e. a derivation can only rely
on strict and defeasible rules to generate knowledge.

2. ∀r ∈ N Facts(Dn) 2 Body(r ) i.e. no negative constraint is directly
applicable on the set of facts contained in the derivation.

On the other hand, other logicians such as [Garćıa and Simari, 2004]
argue that for a derivation to be “conflict-free” it has to be consistent with
regards to the set of strict rules. This is what we call an indirectly consistent
derivation.
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Definition 2.29 (Indirectly Consistent Derivation for a Fact). Given
a set of facts F, a set of rules R = R→ ∪ R⇒ ∪ R , a set of negative
constraints N, and a derivation δ = 〈D0, . . . ,Dn〉 for a fact f , we say that δ
is an indirectly consistent derivation if and only if:

1. ∀i s.t. 0 ≤ i < n, Rule(Di ) ∈ R→ ∪ R⇒ i.e. a derivation can only rely
on strict and defeasible rules to generate knowledge.

2. models(Facts(Dn),R→) , ∅ i.e. the set of facts contained in the deriva-
tion are consistent w.r.t. the set of strict rules.

We can see here that if the set of strict rules is incoherent, no derivation
can be indirectly consistent. That is why most conflict-tolerant techniques
make the assumption that the set of strict rules is coherent, this assumption
is a safe one to make since strict rules describe definite undeniable implica-
tions. In the remainder of this thesis we will suppose that the set of strict
rule is coherent unless specified otherwise.

Derivations2 can be seen as arguments in favor of a conclusion. The exact
definition of an argument varies from a formalism to another [Antoniou et al.,
2000a, Garćıa and Simari, 2004, Modgil and Prakken, 2014], for simplicity
we consider for now that an argument is a tuple arд = 〈δ , f 〉 where δ is a
derivation for f . Depending on the used facts and rules, we can distinguish
three types of arguments: strict, defeasible and defeater ones.

Definition 2.30 (Strict, Defeasible, and Defeater Arguments). Given
a set of facts F, a set of rules R = R→ ∪ R⇒ ∪ R , a set of negative con-
straints N, and a derivation δ = 〈D0, . . . ,Dn〉 for a fact f , an argument for
f is a tuple arд = 〈δ , f 〉.

• arд is a strict argument if ∀Di ∈ δ , Rule(Di ) ∈ R→.

• arд is a defeasible argument if it is not a strict argument and ∀Di ∈ δ ,
Rule(Di ) ∈ R→ ∪ R⇒.

• arд is a defeater argument if ∀Di ∈ δ such that i < n, Rule(Di ) ∈

R→ ∪ R⇒ and Rule(Dn) ∈ R .

Defeasible reasoning is basically a formalism that handles the attack
between rules applications or arguments. We say that two rule applications
attack each other if they generate conflicting atoms and we say that an
argument attacks another argument if the conclusion of the first is in conflict
with a fact in the derivation of the second.

Definition 2.31 (Attack between Rule applications). Given a set
of negative constraints N, a rule application α(S1 ⊆ F, r1,π1) attacks an-
other rule application α(S2 ⊆ F, r2,π2) (and vice-versa) if ∃r ∈ N such that

2“Derivation” refers to either a directly or indirectly consistent derivation in general,
we will make a clear distinction when we discuss Defeasible Reasoning formalisms.
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π1(Head(r1)) ∧ π2(Head(r2)) � Body(r ) i.e. the body of a negative constraint
can be mapped to the generated facts.

Definition 2.32 (Attack between Arguments). An argument arд1 =
〈δ1, f1〉 for a fact f1 attacks an other argument arд2 = 〈δ2, f2〉 if ∃f3 ∈
Facts(δ2) such that f1 and f3 are in conflict. If two argument are for con-
flicting facts then they attack each other.

Not all attacks are created equal, Defeasible Reasoning relies on the
notion of preference relation (a.k.a. priority relation) to handle these attacks
and resolve conflicts. Different techniques of Defeasible Reasoning apply a
preference relation on different levels, either at the rule level (a rule may
override another rule) or at the argument level (an argument may be superior
to another argument). Defeasible Reasoning makes the assumption that
preferences at the rule level can only be between non strict attacking rules
since strict rules are by definition undeniable implications.

Definition 2.33 (Preference Relation). A preference relation � (also
called priority relation) is a binary relation between rules or between argu-
ments. An element (rule or argument) e1 is superior to another element e2
if and only if e1 � e2 and e2 � e1 (e2 is said to be inferior to e1).

Defeasible Reasoning focuses mainly on acyclic preference relation i.e.
there cannot be two elements e1 and e2 such that e1 � e2 and e2 � e1.

Example 2.14 (Preference Relation). Consider the following set of rules
R, negative constraints N, and preference relation � describing the fact that
a customer would not buy a product if it is detrimental to the environment
unless it is cheap:

• R = {r1 : ∀X eco(detrimental ,X ) ⇒ notBuy(X ),
r2 : ∀X cheap(X ) ⇒ buy(X )}

• N = {∀X buy(X ) ∧ notBuy(X ) → ⊥}

• �= {(r2, r1)} (can be denoted as r2 � r1).

Suppose the customer was offered a cheaply priced phone that is detri-
mental to the environment (F = {eco(detrimental ,phone), cheap(phone)}).
Given the preference relation �, r2 can override r1 and the conflict between
buy(phone) and notBuy(phone) is resolved in favor of buy(phone).

Let us now define the concept of “knowledge base” which is a structure
that regroups all the key notions of defeasible knowledge representation.

Definition 2.34 (Knowledge Base). A knowledge base is a tuple KB =

(F,R,N,�) where F is a set of fact rules, R is a set of rules, N is a set of
negative constraints, and � is an acyclic preference relation.

31



CHAPTER 2. PRELIMINARIES

In order to analyze and better understand a defeasible knowledge base,
we will make use of schematic inference graphs called Inheritance Networks
[Pollock, 1987] with the following conventions: dashed arrows signify in-
ferences (i.e. supports) and simple arrows signify that the complement of
the pointed fact is implied (i.e. attacks). For instance, Example 2.11 is
illustrated in Figure 2.3.

penдuin(kowalski)

bird(kowalski)

f ly(kowalski)

Figure 2.3: Inheritance Network of Example 2.11

Representing defeasible knowledge is only the first step, the next step
would be defining the reasoning mechanism for resolving conflicts. The prob-
lem however, is that it appears that no single way of Defeasible Reasoning is
appropriate in all situations or for all purposes, one technique may achieve
desired outcomes in some situations and not in others. In the next section
we define most studied Defeasible Reasoning intuitions in the literature.

2.2.2 Defeasible Reasoning Intuitions

Defeasible reasoning techniques generally agree that a fact is entailed if it
is not derived from challenged facts and is either not in conflict or is the
preferred outcome of its conflicts. However, they disagree on what consti-
tutes a “valid challenge” or a “preferred outcome”. Unfortunately, there
is no universally valid way to reason defeasibly. An inherent characteristic
of Defeasible Reasoning is its systematic reliance on a set of intuitions and
rules of thumb, which have been longly debated between logicians [Horty
et al., 1987, Makinson and Schlechta, 1991, Prakken, 2002, Antoniou, 2006].

Discussed Defeasible Reasoning intuitions

• Ambiguity Handling (what constitutes a valid challenge)?

• Team Defeat (what is a preferred outcome)?

• Floating Conclusions?

• Are arguments evaluated on construction or after construction?

• How are strict rules handled (direct or indirect consistency)?
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The aim of Defeasible Reasoning is to resolve conflicts, which might be
an easy task when the preference relation indicates the preferred outcome.
However, when the preference relation does not indicate which rule or argu-
ment is superior, the conflicting facts become ambiguous.

Definition 2.35 (Ambiguous Facts). A fact f is ambiguous if there is an
argument (or rule application) for f that is neither inferior to any argument
(or rule application) for a fact in conflict with f nor superior to an argument
(or rule application) for a fact in conflict with f .

Most Defeasible Reasoning techniques agree that ambiguous facts should
not be skeptically entailed since one cannot choose between the conflicting
outcomes, these ambiguous facts are considered “dead” or unjustified. How-
ever, some argue that facts derived from ambiguous ones should be allowed
to attack other facts and to “propagate” their ambiguity to others. These
attacks from ambiguous facts are called “zombie attacks” because the fact it-
self is “dead” but its attack is “alive”. This first intuition is called ambiguity
handling also known as zombie arguments [Stein, 1992].

1. Ambiguity Handling: A fact f that is derived from ambiguous facts is
ambiguous (i.e. contested). The intuition behind ambiguity handling is
whether to “block” or “propagate” the ambiguity of f to other facts that
are in conflict with it.

Example 2.15 (Ambiguity Handling). Consider the knowledge base
KB = (F,R,N, ∅) describing the legal situation of Example 2.12:

• F = {> ⇒ incrim(e1,alice), > ⇒ absolv(e2,alice), > ⇒ alibi(alice)}

• R = {r1 : ∀X ,Y incrim(X ,Y ) → resp(Y ), r2 : ∀X ,Y absolv(X ,Y ) →
notResp(X ), r3 : ∀X resp(X ) → дuilty(X ), r4 : ∀X alibi(X ) → innocent(X )}

• N = {∀X resp(X ) ∧ notResp(X ) → ⊥, ∀X дuilty(X ) ∧ innocent(X ) → ⊥}

incrim(e1,alice)absolv(e1,alice)

alibi(alice)
resp(alice)

innocent(alice)

Figure 2.4: Inheritance Network of
Example 2.15 for innocent(alice)

incrim(e1,alice)absolv(e1,alice)

alibi(alice)
resp(alice)

дuilty(alice)

Figure 2.5: Inheritance Network of
Example 2.15 for дuilty(alice)

The inheritance networks for innocent(alice) and дuilty(alice) are shown
in Figures 2.4 and 2.5 respectively. “incrim(e1, alice)” is not ambiguous
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because there is no chain of rule applications for a fact directly contra-
dicting it. On the other hand, “resp(alice)” is ambiguous because it can be
derived and there is a derivation for its conflicting fact “notResp(alice)”.
“дuilty(alice)” is also ambiguous because it relies on an ambiguous premise
(i.e. “resp(alice)”).

In an ambiguity propagating setting, innocent(alice) is ambiguous be-
cause дuilty(alice) can be derived (even from ambiguous facts), the am-
biguity of дuilty(alice) is propagated to innocent(alice), thus KB 2prop
innocent(alice) and KB 2prop дuilty(alice) ( �prop denotes entailment in
ambiguity propagating).

On the other hand, in an ambiguity blocking setting, the ambiguity of
resp(alice) blocks any ambiguity derived from it, meaning that дuilty(alice)
cannot be used to attack innocent(alice). Therefore innocent(alice) is not
ambiguous, thus KB �block innocent(alice) and KB 2block дuilty(alice)
( �block denotes entailment in ambiguity blocking).

Ambiguity propagation results in fewer conclusions (since more ambi-
guities are allowed), which might make it preferable when the cost of an
incorrect conclusion is high, whereas ambiguity blocking might be more in-
tuitive in situations where contested claims cannot be used to contest other
claims (e.g. in the legal domain) [Horty et al., 1987]. The ambiguity han-
dling intuition is simply a disagreement on what constitutes a valid challenge
(attack), another intuition is team defeat which defines what is regarded as
a preferred outcome.

2. Team Defeat. The intuition behind team defeat (also known as
direct reinstatement) [Horty et al., 1987, Prakken, 2002] is whether an
argument (or a rule application) has to be superior to all its attacking
arguments in order to be accepted, or if other arguments can be used
to override attacks that this argument is not superior to.

Example 2.16 (Team Defeat). Consider the following KB = (F,R,

N,�) that describes the process of deciding whether to buy a product
or not: An individual will not buy a product if it is detrimental to the
environment unless it is cheap. He will also not buy it if it has slow de-
livery unless it has good reviews. Suppose we have a cheap smart-phone
with good reviews that is detrimental to the environment and with slow
delivery. Should the individual buy it (i.e Q1 = buy(phone))? Should
he not buy it (i.e Q2 = notBuy(phone))? The inheritance network for
buy(phone) is shown in Figure 2.6

• F = {> → price(phone, cheap), > → reviews(phone, дood),
> → eco(phone,detrimental), > → delivery(phone, slow)}
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• R = {r1 : ∀X price(X , cheap) ⇒ buy(X ),
r2 : ∀X reviews(X ,дood) ⇒ buy(X ),
r3 : ∀X eco(X ,detrimental) ⇒ notBuy(phone),
r4 : ∀X ,Y derlivery(X , slow) ⇒ notBuy(phone)}

• N = {∀X buy(X ) ∧ notBuy(X ) → ⊥}

• (r1 � r3), (r2 � r4)

price(phone, cheap)reviews(phone,дood)eco(phone,detrimental)delivery(phone, slow)

buy(phone)

Figure 2.6: Inheritance Network for buy(phone) of Example 2.16

In the absence of team defeat, a fact is accepted if it has a rule
application (or argument) for it that single-handedly defeats (i.e. supe-
rior to) all its attacking rule applications. In this context, the answer
to Q1 and Q2 is “false” (i.e. KB 2noTD buy(phone) and KB 2noTD

notBuy(phone) where �noTD denotes entailment in Defeasible Reasoning
without team defeat) because there is no rule application for buy(phone)
that is superior to all its attacking rule applications: even if r1 over-
rides r3 (r1 � r3) it is not superior to r4 (r1 � r4) i.e. the cheap price
is a valid reason for buying the phone and overrides the fact that the
phone is eco-detrimental, however it is not superior to slow delivery.
The same applies for r2: it overrides r4 (r2 � r4) but not r3 (r2 � r3)
i.e. good reviews is a valid reason to buy the phone and overrides slow
delivery, however it is not strong enough to prevail against the phone
being eco-detrimental.

In the presence of team defeat, a fact is accepted if all its at-
tacking rule applications are defeated (overridden). In this context, Q1

is “true” (i.e. KB �TD buy(phone) where �TD denotes entailment in
Defeasible Reasoning with team defeat) because all attacking rules are
overridden: the application of r1 overrides r3 and the application of r2
overrides r4. The answer to Q2 is false (i.e. KB 2TD notBuy(phone))
because all rule applications for notBuy(phone) are overridden.

The intuition of team defeat can be combined with ambiguity handling to
create different semantics for Defeasible Reasoning. Allowing team defeat
is less skeptical than forbidding it [Prakken, 2002]. Ambiguity propagat-
ing without team defeat is considered the most skeptical approach and is
adopted by most argumentation-based techniques [Prakken, 2002, Antoniou
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et al., 2000a]. Another intuition that logicians disagree about is “float-
ing conclusion” that describes conclusions that would always be reached no
matter how conflicts are resolved.

3. Floating Conclusions: Sometimes two conflicting and equally strong
rule applications (or arguments) might lead to the same conclusion
down the line, these conclusions are called “floating conclusions” [Makin-
son and Schlechta, 1991].

Example 2.17. Consider the following knowledge base KB = (F,R,N, ∅)

describing a criminal case where a first witness says that “Jack” killed
“John” by stabbing him while a second witness says that he shot him.
Both testimonies are of equal strength and both imply that “Jack” killed
“John”, however they are conflicting on the modus operandi. Did jack
kill John (i.e. Q = killed(jack, john))? The inheritance network for
killed(jack, john) is shown in Figure 2.7.

• F = {> ⇒ stabbed(jack, john), > ⇒ shot(jack, john).

• R = {r1 : ∀X ,Y stabbed(X ,Y ) ⇒ killed(X ,Y ),
r2 : ∀X ,Y shot(X ,Y ) ⇒ killed(X ,Y ), r3 : ∀X ,Y stabbed(X ,Y ) ⇒
notShot(X ,Y ), r4 : ∀X ,Y shot(X ,Y ) ⇒ notStabbed(X ,Y )}.

• N = {∀X ,Y stabbed(X ,Y )∧notStabbed(X ,Y ) → ⊥,∀X ,Y shot(X ,Y )∧
notShot(X ,Y ) → ⊥}

stabbed(jack, john)shot(jack, john)

killed(jack, john)

Figure 2.7: Inheritance Network for killed(jack, john) of Example 2.17

“killed(jack, john)” is a floating conclusion. One might argue that re-
gardless of whether the witnesses disagree on the details, the conclu-
sion is the same and therefore the answer to Q1 is ‘true’ (i.e. KB �FC

killed(jack, john) where �FC denotes entailment in Defeasible Reason-
ing with floating conclusions). However, one can also argue that the
two witnesses undermine each other’s credibility, and therefore the an-
swer to the query Q1 should be false (i.e. KB 2noFC killed(jack, john)
where �noFC denotes entailment in Defeasible Reasoning without float-
ing conclusions).
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Defeasible Reasoning intuitions can be combined to create different skep-
tical semantics, a single example combining these Defeasible Reasoning in-
tuitions can be found in Chapter 3 Example 3.6 on page 92.

Another intuition that indirectly affects the semantics is whether ar-
guments should be evaluated on construction (bottom-up) or after their
construction (top-down). Some proponents of evaluation on construction
such as Horty prefer an approach in which “arguments are constructed step-
by-step and are evaluated in each step of their construction: those that are
indefensible (ambiguous) (...) are discarded at once, and so cannot influence
the status of others” [Horty, 2002]. This approach is used as a justification
for ambiguity blocking and team defeat, however it is prone to support and
attack cycles and might lead to circular reasoning which is generally seen
as a logical fallacy.

4. Evaluation on Construction: Most argumentation based techniques
construct arguments first while most non-monotonic logics evaluate ar-
guments on construction. This latter approach starts with a conclusion
then evaluates its premises and its attacking rule applications which
makes the formalism sensible to support and attack cycles.

Support Cycle: is when a rule application generates one of the premises
it relies on. This might lead to an infinite cycle of evaluating the
conclusion then the premise then the conclusion and so on as shown
in the following example.

Example 2.18 (Support Cycle). Consider the following knowledge
base KB = (F,R,N, ∅) for representing legal contracts. A person is
generally an individual and an individual is a person. “bob” is a per-
son. Is “bob” an individual Q = individual(bob)? The inheritance
network for person(bob) is shown in Figure 2.8.

• F = {> → person(bob)}

• R = {r1 : ∀X person(X ) ⇒ individual(X ), r2 : ∀X individual(X ) ⇒
person(X )}

person(bob)

individual(bob)

Figure 2.8: Inheritance Network for person(bob) of Example 2.18

If arguments are evaluated on construction, evaluating Q would re-
quire evaluating the rule application of r1 generating individual(bob),
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which would require evaluating person(bob), this in turn can either stop
by noticing that person(bob) is a fact or it might require evaluating
individual(bob) given r2 and continue on and on in an infinite support
cycle.

In its extreme form, a support cycle might lead to circular reasoning.
Most non-monotonic formalisms have now incorporated a failure-by-
looping mechanism that avoids circular reasoning which is generally
seen as a logical fallacy [Brewka, 2001, Maier and Nute, 2010a].

Example 2.19 (Circular Reasoning). Consider the following knowl-
edge base KB = (F,R,N, ∅) and the query Q = p(a)?

• F = {> ⇒ p(a)}

• R = {r1 : q(a) → q(a)}

• N = {∀X p(X ) ∧ q(X ) → ⊥}

Although one could easily see that r1 would never be applicable as there
is no q(a), evaluating p(a) on construction would require evaluating
q(a) as an attacker which in turn would require evaluating q(a) and so
on. Non-monotonic logics without looping-as-failure would not be able
to prove p(a).

Attack Cycle: is when two arguments “undermine” each other, mean-
ing that arд1 attacks a premise in arд2 and arд2 attacks a premise in
arд1 as shown in the following example.

Example 2.20 (Attack Cycle). Consider the following knowledge
base KB = (F,R,N, ∅) stating that an animal with fur is generally a
mammal. An animal that lays eggs is generally a bird. Birds do not
have fur and mammals generally do not lay eggs. Suppose we have an
animal called “Platy” that appears to have fur and lay eggs. Is it a bird
(Q = bird(platy))? The inheritance network for bird(platy) is shown in
Figure 2.9.

• F = {> ⇒ f ur (platy), > ⇒ layEддs(platy)}

• R = {r1 : ∀X f ur (X ) ⇒ mammal(X ), r2 : ∀X layEддs(X ) ⇒ bird(X ),
r3 : ∀X mammal(X ) ⇒ notLayEддs(X ), r4 : ∀X bird(X ) → notFur (X )}

• N= {∀X layEддs(X )∧notLayEддs(X )→⊥,∀X f ur (X )∧notFur (X )→⊥}

If arguments are evaluated on construction, evaluating Q = bird(platy)
means evaluating layEддs(platy) which would require evaluating the
rule application of r3 as it generates the conflicting atom notLayEддs(platy),
which would require evaluating mammal(platy) then f ur (platy) that re-
quires evaluating its conflicting atom notFur (platy), this in turn would
require evaluating bird(platy) and so on in an infinite attack cycle.
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f ur (platy)layEддs(platy)

mammal(platy)bird(platy)

Figure 2.9: Inheritance Network of Example 2.20

One might find it difficult to understand the problem of support and
attack cycles without a concrete formalism of a non-monotonic logic,
in the next section we will present defeasible logics and clearly show
the problems related to support and attack cycles.

The definition of what constitutes an argument changes from a formal-
ism to another. Some, such as Defeasible Logics, consider an argument as
a directly consistent derivation for a conclusion. Others such as Defeasible
Logic Programming consider an argument as an indirectly consistent deriva-
tion for a conclusion. This difference has a direct effect on the semantics.

5. How strict rule are handled: some logicians argue that facts that
are derivable and not in direct conflict should be accepted, others point
out that since strict rules are definite implications, facts that would
lead to a conflict if strict rules are applied should not be accepted as
shown in the following example:

Example 2.21. Consider the following knowledge base KB = (F,R,N, ∅)

stating that a person with a wedding ring is generally married. A per-
son that is married has a wife. A bachelor does not have a wife. A
person that is happy is generally a bachelor. John is a happy person
with a wedding ring. Is John married (Q1 = married(john))? Is he a
bachelor (Q2 = bachelor (john))? The inheritance network is shown in
Figure 2.10.

• F = {> → weddinдRinд(john), > → happy(john)}

• R = {r1 : ∀X weddinдRinд(X ) ⇒ married(X ), r2 : ∀X married(X ) →
hasW i f e(X ), r3 : ∀X bachelor (X ) → noWi f e(X ), r4 : ∀X happy(X ) ⇒
bachelor (X ),

• N= {∀X hasW i f e(X ) ∧ noWi f e(X ) → ⊥}

Some formalisms such as Defeasible Logics consider Q1 =married(john)
and Q2 = bachelor (john) “true” because there is a directly consistent
derivation for bachelor (john) and married(john) that is not attacked by
any other directly consistent derivation, the entailed facts in this case
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weddinдRinд(john)happy(john)

married(john)bachelor (john)

hasW i f e(john)

Figure 2.10: Inheritance Network of Example 2.21

are {happy(john),weddinдRinд(john),married(john),bachelor (john)}. How-
ever, if we consider strict rules, we can see that married(john) and
bachelor (john) are conflicting because they generate hasW i f e(john) and
noWi f e(john) when strict rules are applied. Some formalisms such as
Defeasible Logic Programing discard any fact that can generate con-
flicts when strict rules are applied.

The previously discussed intuitions are, of course, not the only intuitions
in Defeasible Reasoning, “implicit preferences”, “consistent answers”, and
“default negation” among others are also important points of discussion
between logicians. Given that our main objective is to handle conflicts in
existential rules, we will mainly focus on ambiguity handling, team defeat,
floating conclusions, consistent derivations, and cycles. Incorporating other
intuitions will be the subject of future work.

The main Defeasible Reasoning techniques that will be discussed in this
thesis are variants of non-monotonic logics called Defeasible Logics and the
argumentation based techniques: Dialectical Trees and Grounded Seman-
tics.

2.2.3 Defeasible Logics

Defeasible Logics are a simple rule-based skeptical form of non-monotonic
reasoning originally proposed by Nute [Nute, 1988]. Their appeal resides
in their low computational complexity and high flexibility [Antoniou et al.,
2000a]. They have been applied in various domains such as modeling reg-
ulations and business rules [Antoniou et al., 1999], legal reasoning [Gov-
ernatori and Rotolo, 2010], agent negotiations [Governatori and Rotolo,
2008, Governatori and Rotolo, 2004], modeling of contracts [Governatori,
2005], planning [Dastani et al., 2005], and Semantic Web [Bassiliades et al.,
2006, Kravari et al., 2010]. Defeasible Logics are defined using a proposi-
tional defeasible language and extended to a first order defeasible language
without the existential quantifier or function symbols.
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2.2.3.1 Propositional Defeasible Language

Consider a propositional language Lp with the implication and conjunction
connectives (→,⇒, ,∧) and strong negation (¬) on a finite set of literals
(facts) where a literal is either an atomic proposition or its negation. Given
a literal f , f denotes its complement, that is, for an atomic proposition p,
p = ¬p and ¬p = p.

Notation 2.6 (Negative Constraint and ¬). In the context of Defeasible
Reasoning, strong negation (¬) can be seen as a succinct representation of
a negative constraint [Antoniou, 2006]. For example ¬p can be translated to
a literal np with the negative constraint p ∧ np → ⊥. We omit the negative
constraint when using ¬.

A fact in Lp is simply a literal (so is a ground atomic query) while the
body and head of a rule are finite conjunction of literals. A rule expressed
in Lp is applicable on a set of literals if its body is included in this set.

Example 2.22 (Propositional KB). Consider the knowledge base KB =

(F,R,N, ∅) of a penguin with broken wings expressed in Lp :

• F = {> → penдuin}

• R = {penдuin → bird, penдuin → ¬f ly, bird ⇒ f ly, brokenwinдs  ¬f ly}

In Defeasible Logics, arguments are simply a locally consistent derivation
for a fact. They are evaluated on construction using proofs which are linear
sequences Proo f = 〈Proo f (1), ..., Proo f (n)〉 of labeled literals. A literal f in a
KB expressed in Lp has one of four possible labels describing its entailment
(provability):

• +∆f means that f is strictly (definitely) provable.

• −∆f means that it is proved that f is not strictly provable.

• +δ f means that f is defeasibly provable.

• −δ f means it is proved that f is not defeasibly provable.

To define the labeling of literals we use the formalism of [Billington,
1993]. The conditions for each label are essentially inference rules phrased
as conditions on proofs. Proo f (1..i) denotes the initial part of the sequence
Proo f of length i. F→ denotes strict fact rules.

• +∆: If Proo f (i + 1) = +∆f then ∃r ∈ R→ ∪ F→ s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) : +∆ϕ ∈ Proo f (1..i).

• −∆: If Proo f (i + 1) = −∆f then ∀r ∈ R→ ∪ F→ s.t. Head(r ) = f ,
∃ϕ ∈ Body(r ) : −∆ϕ ∈ Proo f (1..i).
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In order to show that a literal f is strictly provable, we need to show that
there is a strict derivation for f , specifically: there is a strict rule for f and all
literals in its body are deducible with strict rules and so on recursively until
we reach a fact rule (since > is always strictly provable). On the other hand,
in order to show that it is proved that f is not strictly provable, we need to
show that there is no strict derivation for f (i.e. no strict rule for f can be
applied by chaining strict rules starting form F). For instance, in Example
2.22 +∆penдuin, +∆bird, +∆¬f ly, and −∆f ly. Defeasible provability relies
on the notions of supported and defeated rules:

• A rule is supported if and only if all its premises are defeasibly provable.
A rule is applicable if and only if it is supported.

• A rule for f is defeated if and only if there is an applicable rule for f
that is superior to it.

Defeasible Logics come in different “flavors” of defeasible provability that
are “tunable” to the desired set of intuitions. Nevertheless they all follow
the same structure of proof in three phases:

1. In the first phase we put forward a rule for the literal we want to prove.

2. In the second phase we consider all possible rule applications against
the literal.

3. In the third phase we rebut the attacks with two possible options:

(a) we either show that the attack is unsupported, i.e. some of the
premises do not hold, or

(b) we can defeat the attacking rule by providing a stronger applica-
ble rule for the literal.

2.2.3.2 Ambiguity Blocking with Team Defeat

Defeasible Logic for ambiguity blocking with team defeat is closely related
to the “directly skeptical” semantics of non-monotonic inheritance networks
[Antoniou et al., 2000b] “arguments are constructed step-by-step and are
evaluated in each step of their construction: those that are indefensible
[ambiguous] (...) are discarded at once, and so cannot influence the status
of others.” [Horty, 2002].

All Defeasible Logics follow the same definition for strict (non)provability.
Defeasible provability on the other hand requires considering the arguments
for conflicting literals and possible resolution of these conflicts using the
preference relation (Defeasible Logics only consider preference relation be-
tween rules). Defeasible provability for ambiguity blocking with team defeat
is denoted +δTDblock and defined as follows:
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• +δTDblock : If Proo f (i + 1) = +δTDblock f then either f is strictly provable or
the following three conditions hold:

1. there is an applicable strict or defeasible rule for f and

2. f is not strictly provable and

3. every rule for f is either:

3.1. unsupported (one of the premises is not provable) or

3.2. defeated (overridden by a superior applicable rule for f ).

Formally:

• +δTDblock : If Proo f (i + 1) = +δTDblock f then either +∆f ∈ Proo f (1..i) or the
following three conditions hold:

1. ∃r ∈ (R→∪R⇒∪F) s.t. Head(r ) = f and ∀ϕ ∈ Body(r ) : +δTDblockϕ ∈
Proo f (1..i) and

2. −∆f ∈ Proo f (1..i) and

3. ∀r ′ ∈ R ∪ F s.t. Head(r ′) = f , either:

3.1. ∃ϕ ∈ Body(r ′) : −δTDblockϕ ∈ Proo f (1..i), or

3.2. ∃r ′′ ∈ R∪F s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDblockϕ ∈
Proo f (1..i) and r ′′ � r ′.

Defeasible non-provability (denoted −δTDblock ) is simply the negation of
defeasible provability and is defined as follows:

• −δTDblock : If Proo f (i + 1) = −δTDblock f then f is not strictly provable and
one of the following three conditions holds:

1. either there is no applicable strict or defeasible rule for f or

2. f is strictly provable or

3. there is a rule for f such that

3.1. the rule is supported and

3.2. the rule is not defeated.

Formally:

• −δTDblock : If Proo f (i + 1) = −δTDblock f then −∆f ∈ Proo f (1..i) and one of
the following three conditions holds:

1. ∀r ∈ (R→ ∪ R⇒ ∪ F) s.t. Head(r ) = f , ∃ϕ ∈ Body(r ) : −δTDblockϕ ∈
Proo f (1..i) or

2. +∆f ∈ Proo f (1..i) or

3. ∃r ′ ∈ R ∪ F s.t. Head(r ′) = f and:
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3.1. ∀ϕ ∈ Body(r ′) : +δTDblockϕ ∈ Proo f (1..i) and

3.2. ∀r ′′ ∈ R ∪ F s.t. Head(r ′′) = f , ∃ϕ ∈ Body(r ′′) : −δTDblockϕ ∈
Proo f (1..i) or r ′′ � r ′.

Example 2.23. Consider the knowledge base KB = (F,R,N, ∅) of Example
2.15 expressed in the propositional language Lp :

• F = {> ⇒ e1, > ⇒ e2, > ⇒ alibi}

• R = {r1 : e1→ responsible, r2 : e2→ ¬responsible,
r3 : responsible → дuilty, r4 : alibi → ¬дuilty}

Applying the Defeasible Logic with ambiguity blocking would result in:

• +δTDblocke1, +δTDblocke2, and +δTDblockalibi because there is a defeasible unattacked
rule for these literals.

• −δTDblockresponsible and −δTDblock¬responsible because there is a rule ap-
plication for their conflicting atoms that relies on accepted premises
(+δTDblocke2, +δTDblocke1 respectively) and is not overridden.

• −δTDblockдuilty because the only rule application for this literal relies on
the rejected ambiguous premise −δTDblockresponsible.

• +δTDblock¬дuilty because there is an applicable rule application for it us-
ing +δTDblockalibi and the attacking rule application is blocked since it
relies on rejected premises −δTDblockresponsible.

2.2.3.3 Ambiguity Propagating with Team Defeat

Another variant of Defeasible Logics is ambiguity propagating with team
defeat [Antoniou et al., 2000a]. Compared to ambiguity blocking, ambiguity
propagating considers attacks coming from ambiguous facts. In order to do
that, this logic introduces a new label

∑TD indicating if there is a non
overridden derivation for a literal by considering team defeat.

• +
∑TD : If Proo f (i + 1) = +

∑TD f then either f is strictly provable or:

1. there is a strict or defeasible rule for f with derivable premises
and

2. f is not strictly provable and

3. every rule r ′ for f is either:

3.1. unsupported (w.r.t. defeasible provability with ambiguity
propagating and team defeat).

3.2. or there is a rule for f with derivable premises that is not
inferior to r ′.
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Formally:

• +
∑TD : If Proo f (i + 1) = +

∑TD f then either +∆f ∈ Proo f (1..i) or:

1. ∃r ∈ R ∪ F s.t. Head(r ) = f and ∀ϕ ∈ Body(r ) : +
∑TD ϕ ∈

Proo f (1..i) and

2. −∆f ∈ Proo f (1..i) and

3. ∀r ′ ∈ R ∪ F s.t. Head(r ′) = f either:

3.1. ∃ϕ ∈ Body(r ′) : −δTDpropϕ ∈ Proo f (1..i), or

3.2. ∃r ′′ ∈ R∪F s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +
∑TD ϕ ∈

Proo f (1..i) and r ′ � r ′′.

Non derivability (denoted −
∑TD) is defined as follows:

• −
∑TD : If Proo f (i + 1) = −

∑TD f then f is not strictly provable and:

1. either there is no strict or defeasible rule for f with derivable
premises or

2. f is strictly provable or

3. there is a rule r ′ for f such that:

3.1. r ′ is supported (w.r.t. defeasible provability with ambiguity
propagating and team defeat) and

3.2. r ′ is superior to all rules for f with derivable premises.

Formally:

• −
∑TD : If Proo f (i + 1) = −

∑TD f then either f is not strictly provable
and:

1. ∀r ∈ R ∪ F s.t. Head(r ) = f , ∃ϕ ∈ Body(r ) : −
∑TD ϕ ∈ Proo f (1..i)

or

2. +∆f ∈ Proo f (1..i) or

3. ∃r ′ ∈ R ∪ F s.t. Head(r ′) = f and:

3.1. ∀ϕ ∈ Body(r ′) : +δTDpropϕ ∈ Proo f (1..i) and

3.2. ∀r ′′ ∈ R ∪ F s.t. Head(r ′′) = f , ∃ϕ ∈ Body(r ′′) : −
∑TD ϕ ∈

Proo f (1..i) or r ′ � r ′′.

The ambiguity propagation defeasible provability (+δTDprop) variant of De-

feasible Logic can be easily achieved by changing the conditions of +δTDblock
to allow for attacks from derivable literals.

• +δTDprop : If Proo f (i + 1) = +δTDprop f then either +∆f ∈ Proo f (1..i) or the
following three conditions hold:
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1. ∃r ∈ (R→∪R⇒∪F) s.t. Head(r ) = f and ∀ϕ ∈ Body(r ) : +δTDpropϕ ∈
Proo f (1..i) and

2. −∆f ∈ Proo f (1..i) and

3. ∀r ′ ∈ R ∪ F s.t. Head(r ′) = f , either:

3.1. ∃ϕ ∈ Body(r ′) : −
∑TD ϕ ∈ Proo f (1..i), or

3.2. ∃r ′′ ∈ R ∪ F s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDpropϕ ∈
Proo f (1..i) and r ′′ � r ′.

Defeasible provability for a literal f in ambiguity propagation is the same
as for ambiguity blocking, the difference however, is that any rule for f has
either a premise that is not derivable (3.1), or there is a defeasible applicable
rule for f that is superior to it. (i.e. an attacking rule only need to rely on
derivable premises to be considered). Defeasible nonprovability in ambiguity
propagation (denoted −δTDprop) is as follows:

• −δTDprop : If Proo f (i +1) = −δTDprop f then −∆f ∈ Proo f (1..i) and one of the
following three conditions holds:

1. ∀r ∈ (R→ ∪ R⇒ ∪ F) s.t. Head(r ) = f , ∃ϕ ∈ Body(r ) : −δTDblockϕ ∈
Proo f (1..i) or

2. +∆f ∈ Proo f (1..i) or

3. ∃r ′ ∈ R ∪ F s.t. Head(r ′) = f and:

3.1. ∀ϕ ∈ Body(r ′) : +
∑TD ϕ ∈ Proo f (1..i) and

3.2. ∀r ′′ ∈ R ∪ F s.t. Head(r ′′) = f , ∃ϕ ∈ Body(r ′′) : −δTDpropϕ ∈
Proo f (1..i) or r ′′ � r ′.

A literal f is not defeasibly provable in ambiguity propagation if there is
an attacking rule with derivable premises such that no rule for f is applicable
on defeasibly provable premises or is superior to it.

Example 2.24. Consider KB of the previous Example 2.23:

• +δTDprope1, +δTDprope2, and +δTDpropalibi because there is a defeasible unattacked
rule for these literals.

• −δTDpropresponsible and −δTDprop¬responsible because there is a rule ap-
plication for their conflicting atoms that relies on accepted premises
(+δTDprope2, +δTDprope1 respectively) and is not overridden.

• −δTDpropдuilty because the only rule application for this literal relies on

the rejected ambiguous premise −δTDpropresponsible.

• −δTDprop¬дuilty because there is an attacking rule that relies on derivable
premises (+

∑
responsible) and is not inferior to the rule for ¬дuilty.
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2.2.3.4 Removing Team Defeat

Defeasible Logics discussed so far incorporate the idea of team defeat. That
is, an attack on a rule with head f by a rule for f may be defeated by a
different rule for f . One might find the idea of team defeat natural, however
many other non-monotonic formalism and most argumentation frameworks
do not adopt this idea. To remove team defeat we only need to change
one condition (3.2) in the definitions of defeasible (non)provability to the
following [Billington et al., 2010]:

• for defeasible provability (+δnoTD): 3.2. r � r ′.

• for defeasible non provability (−δnoTD): 3.2. r ′ � r .

• for derivability (+
∑noTD): 3.2. r ′ � r .

• for non derivability (−
∑noTD): 3.2. r ′ � r .

This means that a rule that is defeasibly applicable for f has to override,
all by itself, any attack it receives.

Example 2.25. Consider the KB = (F,R,N,�) of Example 2.16 expressed
in the propositional language Lp :

• F = {> → cheap, > → дoodReviews, > → detrimental , > → slowDelivery}

• R = {r1 : cheap ⇒ buy, дoodReviews ⇒ buy,
detrimental ⇒ ¬buy, slowDelivery ⇒ ¬buy}

• (r1 � r3), (r2 � r4)

If team defeat is allowed, we can see that +δTDbuy because for every
attacking rule there is a rule that overrides it. However, if team defeat
is removed, then −δnoTDbuy because there is no single rule for buy that is
superior to all attacking rules.

The authors in [Antoniou et al., 2000b, Billington et al., 2010] stated
that all variants of Defeasible Logics are coherent in the sense that no literal
is provable and not provable at the same time.

Theorem 2.2 ([Billington et al., 2010]). Given a knowledge base KB

with a coherent set of strict rules (i.e. there is no literal f such that KB `

+∆f and KB ` +∆f ) then there is no literal f such that KB ` +Lbl f and
KB ` −Lbl f where lbl denotes any of the discussed labels (δTDblock , δnoTDblock ,

δTDprop , δnoTDprop ,
∑TD ,

∑noTD).

Furthermore, the “strength” (degree of cautiousness) of the different
conditions of provability can be compared. The most cautious inference
is strict inference +∆, the least cautious one is +

∑noTD . Accordingly, the
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strongest condition in rejecting a literal is strict non provability −∆, the
weakest one is −

∑noTD . A label Lbl1 is included in another label Lbl2 if any
literal that is labeled Lbl2 is also labeled Lbl1.

Theorem 2.3 (Inclusion [Billington et al., 2010]).

1. +∆ ⊆ +δnoTDprop ⊆ +δ
TD
prop ⊆ +δ

TD
block ⊆ +

∑TD ⊆ +
∑noTD

2. +
∑noTD ⊆ +

∑TD ⊆ −δTDblock ⊆ −δ
TD
prop ⊆ −δ

noTD
prop ⊆ −∆

3. For each inclusion relationship there exists a knowledge base KB such
that the inclusion is strict.

The inclusions (1) and (2) in Theorem 2.3 are to be expected. For
example, the relation +δnoTDprop ⊆ +δ

TD
prop appears trivial since the absence of

team defeat makes the inference rule weaker. However there is a potential
source of complication: when the logic fails to prove a literal f and instead
shows its non-provability, then that result may be used by the logic to prove
another literal f ′ that could not be proven if f were provable. That is why
+δnoTDblock is not included in +δTDblock (while +δnoTDprop is included in +δTDprop).

2.2.3.5 Support and Attack Cycles

Defeasible Logics evaluate argument on construction which makes them
prone to infinite loops in presence of support and attack cycles. Several
efforts have been made to incorporate “loop-checking” into the inference
mechanism of the logics. Nute among others, in a series of works [Maier
and Nute, 2010a, Maier and Nute, 2006], have investigated Defeasible Logic
with explicit “failure-by-looping” mechanisms and their relationship to well-
founded semantics of logic programs. In particular, they have defined two
Defeasible Logics, namely: NDL and ADL, and shown to be equivalent to
well-founded semantics. Concurrently, Billington [Billington, 2004, Billing-
ton, 2008] has developed several logics that involve incorporating loop check-
ing mechanisms. Other work [Governatori et al., 2004, Billington et al.,
2010] investigated Defeasible Logics with various inference structures under
the original notion of failure detection [Antoniou et al., 2001].

Failure-by-looping provides a mechanism for falsifying (−δ or −
∑

) a lit-
eral when it is within a loop that cannot be avoided by using rules outside
the cycle. If a literal f is within a support cycle that cannot be avoided
by considering other rules then it cannot be derived (−

∑
f , −δTDblock f , and

−δnoTDblock ). If it is within an attack cycle that cannot be avoided by considering
other rules and preferences then it cannot be defeasibly proven (−δTDblock f ,
−δnoTDblock f , −δTDprop f , −δnoTDprop f ) [Billington, 2004, Lam, 2012]. Failure-by-
looping can be implemented by keeping track of evaluated literals in a “bin”
as the proof procedure recursively calls itself, as soon as a literal appears
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twice in the same evaluation then its argument is discarded and other rules
for the literal are evaluated if there is any [Billington, 2004]. However, this
loop checking has a computational cost as we will discuss in the next section.

Example 2.26 (Support Cycles). Consider the following knowledge base
KB = (F,R,N, ∅) of the support cycle Example 2.18 expressed in Lp and
stating that from a legal point of view a person is generally an individual.
An individual is a person. A company is not an individual, and a company
is a company (circular reasoning). Suppose we have a person and we want
to know if it is an individual Q = individual.

• F = {> → person}

• R = {r1 : person ⇒ individual , r2 : individual ⇒ person, r3 : company →
company, r4 : company → ¬individual}

Evaluating Q requires evaluating the application of r1 that relies on person
which might lead to a loop if r2 is evaluated next. However, failure-by-looping
also considers other rules for person and can prove that +∆person given the
fact rule. Then the attacking rule for ¬individual is evaluated along with its
premise company which is generated by the support loop of r3. Given failure-
by-looping we can deduce −

∑
company, −δcompany (−δ denotes defeasible

non-provability with ambiguity blocking or propagating with or without team
defeat), therefore the attacking rule cannot be applied and the query is de-
feasibly provable +δindividual.

Example 2.27 (Attack Cycle). Consider the following knowledge base
KB = (F,R,N, ∅) of Example 2.20 expressed in Lp .

• F = {> ⇒ f ur ,> ⇒ layEддs}

• R = {r1 : f ur ⇒mammal , r2 : layEддs ⇒ bird,
r3 : mammal ⇒ ¬layEддs, r4 : bird → ¬f ur }

Evaluating the query Q = bird would result in an attack cycle (a.k.a.
negative loop [Billington, 2004]) that cannot be avoided. Given failure-by-
looping we can deduce −δbird, −δmammal, −δ f ur , −δlayEддs.

2.2.3.6 First Order Defeasible Language

Defeasible Logics have been defined for the propositional language Lp . How-
ever, they can be applied to a first order language without existential quan-
tifier (denoted L∀) built with the universal quantifier ∀, the connectives →,
⇒, ,∧, and atomic negation ¬ [Billington et al., 2010].

In this language L∀, facts are simply ground atoms and rules are of
the form ∀ ®X , ®Y B( ®X , ®Y ) V H( ®Y ) where V∈ {→,⇒, }, ®X and ®Y are tu-
ples of universally quantified variables, and B,H are conjunctions of atom.
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Using a grounding procedure, rules in L∀ can be transformed into a set of
ground rules without variables that can be seen as rules expressed in Lp , this
grounding phase however has a computational cost [Chandra et al., 1981].

Defeasible Logics evaluate arguments on construction, another Defeasible
Reasoning technique is Dialectical Trees that constructs arguments first then
evaluates them in a tree describing the defeat relation between them.

2.2.4 Dialectical Trees

Dialectical Trees [Garćıa and Simari, 2004] are an argumentation-based for-
malism for Defeasible Reasoning with the aim to uncover which information
prevails in a conflict (i.e. which piece of information is such that no accept-
able reason (argument) can be put forward against it). Dialectical Trees
are used as a warrant (proof procedure) for accepting a literal in Defeasible
Logic Programming (DeLP) [Garćıa and Simari, 2004].

Dialectical Trees have been firstly defined for the defeasible propositional
language Lp without defeater rules (only strict and defeasible rules). Using
a grounding phase, they can also be applied to the first order defeasible
language L∀ without the existential quantifier and without defeater rules.

Within the context of Dialectical Trees, a knowledge base is seen as a
logic program with strict and defeasible facts and rules. The definition of
derivation is the same as the one presented previously except that the rules
are not represented.

Definition 2.36 (Derivation [Garćıa and Simari, 2004]). Given a
knowledge base KB = (F,R,N,�) and a literal f . A derivation is a finite
sequence of ground atoms 〈f1, . . . , fn = f 〉 such that fi is either a fact or
there is a rule with the head fi and every literal of its body appears before
fi . We say that KB ` f iff there is a derivation for f in KB.

An argument for a literal f is a minimal consistent set of defeasible rules
that allows (possibly using strict facts and strict rules) to derive f .

Definition 2.37 (Argument [Garćıa and Simari, 2004]). Given a
knowledge base KB = (F,R,N,�), an argument for a literal f is a tuple
arд = 〈A, f 〉 where A ⊆ F⇒ ∪ R⇒ is a set of defeasible facts and rules s.t.

1. there is a derivation for f from A ∪ F→ ∪ R→

2. no conflicting atoms can be derived from A ∪ F→ ∪ R→

3. A is minimal: there is no proper subset A′ of A such that A′ satisfies
condition (1) and (2)

An argument arд = 〈A, f 〉 is a sub argument of arд′ = 〈A′, f ′〉 iff A ⊆ A′.
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An argument attacks another argument if its conclusion combined with
a literal in the second argument leads to conflicting atoms when strict facts
and rules are applied.

Definition 2.38 (Counter-argument). An argument arд1 = 〈A1, f1〉 at-
tacks (counter-argues) an argument arд2 = 〈A2, f2〉 at fact f of arд2 if and
only if there exists a sub-argument arд′ = 〈A′, f ′〉 of arд1 such that conflict-
ing atoms can be derived from { f ′, f } ∪ F→ ∪ R→.

Example 2.28 (Arguments and Counter-arguments). Consider the
following KB = (F,R,N, ∅) expressed in L∀ stating that chickens are birds
that generally do not fly, generally a scared chicken flies, penguins are birds
that do not fly. Tina is a scared chicken, does Tina fly Q = f ly(tina)? :

• F = {> → chicken(tina), > → scared(tina)}

• r1 : ∀X chicken(X ) → bird(X ),
r4 : ∀X bird(X ) ⇒ f ly(X ),
r5 : ∀X chicken(X ) ⇒ ¬f ly(X ),
r4 : ∀X chicken(X ) ∧ scared(X ) ⇒ f ly(X )}

To evaluate a query, all the arguments for and against it are constructed.
For example, there are two arguments for f ly(tina): arд1 = 〈{bird(tina) ⇒
f ly(tina)}, f ly(tina)〉 and arд2 = 〈{chicken(tina) ∧ scared(tina) ⇒ f ly(tina)},
f ly(tina)〉. There is also the counter-argument arд3 = 〈{chicken(tina) ⇒
¬f ly(tina)}, ¬f ly(tina)〉.

It is worth noticing that an argument for a strictly derived literal has an
empty A, for example the argument for bird(tina) is arд4 = 〈∅, bird(tina)〉.
Furthermore, this argument cannot have or be a counter-argument for any
other argument [Garćıa and Simari, 2004].

2.2.4.1 Comparing Arguments

Within the DeLP framework, arguments and their counter-arguments can be
compared based on any arbitrary preference between arguments. However,
two preference relations have been defined, one that is implicit called “Gen-
eralized Specificity”, and another that relies on explicit preference between
defeasible rules and elevates it to a preference between arguments.

Generalized specificity favors two aspects in an argument: it prefers an
argument (1) with greater information content (more precise i.e. relies on
more facts) or (2) with fewer use of rules (more concise).

Definition 2.39 (Specificity Preference [Garćıa and Simari, 2004]).
Let KB = (F,R,N,�) be a knowledge base, F∗ the set of all literals that
have a derivation, and arд1 = 〈A1, f1〉 and arд2 = 〈A2, f2〉 be two argument
obtained from KB. arд1 is more specific than arд2 (denoted arд1 � arд2) if
the following conditions hold:
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1. for all F′ ⊂ F∗: if R→∪F
′∪A1 ` f1 and R→∪F

′ 0 f1, then R→∪F
′∪A2 `

f2, and

2. there exists F′′ ⊂ F∗ such that R→ ∪ F′′ ∪ A2 ` f2 and R→ ∪ F′′ 0 f2,
and R→ ∪ F

′′ ∪A1 0 f1

Example 2.29 (Generalized Specificity). Consider the knowledge base
of Example 2.28, the argument arд2 = 〈{chicken(tina)∧scared(tina) ⇒ f ly(tina)},
is more precise than arд3 = 〈{chicken(tina) ⇒ ¬f ly(tina)}, because it relies
on more literals chicken(tina) plus scared(tina). Therefore arд2 � arд3

However, arд3 is more concise than arд1 = 〈{bird(tina) ⇒ f ly(tina)},
f ly(tina)〉 because arд1 relies on the rules r1 and r4 whereas arд3 relies on
one rule r5, therefore arд3 � arд1.

DeLP also defines a preference relation based on explicit preference be-
tween defeasible rules. Basically, when there is an explicit preference be-
tween rules, an argument is preferred if it has a superior rule to another
argument, if both argument have a superior rule to the other, then no ar-
gument is preferred.

Definition 2.40 (Explicit Preference [Garćıa and Simari, 2004]).
An argument arд1 = 〈A1, f1〉 is preferred to arд2 = 〈A2, f2〉 if:

• there exists a rule r1 ∈ A1 and a rule r2 ∈ A2 such that r1 is superior
to r2, and

• there is no rules r ′2 ∈ A2 and r ′1 ∈ A1 such that r ′2 is superior to r ′1.

Given two arguments arд1 and arд2 and a sub-argument arд′2 of arд2 such
that arд1 is a counter-argument to arд′2, if arд1 � arд′2 then arд1 is said to
be a “proper defeater” of arд2. On the other hand if there is no preference
between arд1 and arд′2 (i.e. arд1 � arд′2 and arд′2 � arд1) then arд1 is said to
be a “blocking defeater” of arд2.

2.2.4.2 Warrant Procedure

To establish whether an argument is undefeated (it has no “warranted”
defeater), all its defeaters have to be considered along with its “defenders”
and so on (an argument arд1 defends another argument arд2 if arд1 defeats a
defeater of arд2). This creates a sequence of argument called “argumentation
line” where each element of the sequence defeats its predecessor. In order to
avoid logical fallacies, an argumentation line has to follow some conditions:

1. An argument arд1 = 〈A1, f1〉 cannot defend another argument arд2 =
〈A2, f2〉 while A1 and A2 would lead to conflicting literal when strict
rules and facts are added (defending arguments have to be consistent
with each other).
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2. A sub-argument cannot be reintroduced if it was defeated earlier in the
line, this is a form of unwanted circular reasoning [Garćıa and Simari,
2004].

3. A blocking defeater can only be defeated by a proper defeater.

Definition 2.41 (Argumentation Line [Garćıa and Simari, 2004]).
Given a knowledge base KB and an argument arд1 = 〈A1, f1〉 obtained from
KB. An argumentation line for arд1 is a finite sequence of arguments from
KB denoted Λ = 〈arд1,arд2, ...,arдn〉 where each argument arдi (i > 1) of the
sequence is a defeater of its predecessor arдi−1 and:

1. ∀arдi = 〈Ai , fi 〉 such that i is an odd number (defending arguments of
arд1), no conflicting literals can be derived from R→ ∪ F→ ∪

⋃n
i=1Ai .

The same applies for even i.

2. No argument arдk in Λ is a sub-argument of an argument arдi appear-
ing earlier in Λ (i.e. i < k).

3. ∀i such that arдi is a blocking defeater for arдi−1, if arдi+1 exists, then
arдi+1 is a proper defeater for arдi .

Example 2.30 (Argumentation Line [Garćıa and Simari, 2004]).
Consider the following knowledge base KB = (F,R,N,�) stating that gen-
erally tigers are dangerous and baby animals and pets are not. Suppose we
have a baby pet tiger, is it not dangerous Q = ¬danдerous?

• F = {> → tiдer , > → baby, > → pet}

• R = {r1 : tiдer ⇒ danдerous, r2 : baby ⇒ ¬danдerous, r3 : pet ⇒
¬danдerous}

• � is generalized specificity.

The arguments for Q are arд1 = 〈{baby ⇒ ¬danдerous},¬danдerous〉
and arд2 = 〈{pet ⇒ ¬danдerous},¬danдerous〉 and their counter-argument is
arд3 = 〈{tiдer ⇒ danдerous},danдerous〉. The sequence 〈arд1,arд3,arд2〉 is
not a valid argumentation line for arд1 because arд3 is a blocking defeater and
it is being defeated by another blocking defeater. Therefore the argumentation
line for arд1 is Λ = 〈arд1,arд3〉.

An argument can have different defeater and consequently different ar-
gumentation lines, putting them together creates a Dialectical Tree.

Definition 2.42 (Dialectical Trees [Garćıa and Simari, 2004]). Given
an argument arд1 obtained from a KB. A dialectical tree for arд1 (denoted
Tarд1) is defined as follows:

1. arд1 is the root node of the tree.
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2. Given a non root node arдn of the tree and 〈arд1, . . . ,arдn〉 the sequence
of nodes from the root to arдn, if there is a defeater arд′ of arдn such
that Λ = 〈arд1, . . . ,arдn ,arд

′〉 is an argumentation line, then arд′ is a
child node of arдn otherwise arдn is a leaf node.

In a dialectical tree every node (except the root) represents a defeater
(proper or blocking) of its parent, and leaves correspond to undefeated ar-
guments. Each path from the root to a leaf corresponds to a different argu-
mentation line. In order to decide whether the root of a dialectical tree is
defeated (not warranted), a labeling process is used: nodes are recursively
labeled “Defeated” or “Undefeated”.

Definition 2.43 (Dialectical Tree Marking [Garćıa and Simari, 2004]).
Given a Dialectical Tree Tarд1 for an argument arд1:

1. All leaves in Tarд1 are marked as “Undefeated”.

2. A non-leaf node arдn is marked as “Undefeated” iff every one of its
children are marked “Defeated”. It is marked “Defeated” iff at least
one of its children is marked “Defeated”.

This marking procedure is a bottom-up process, through which the label
(marking) of the root argument is determined. We denote the label of the
root argument in Tarд1 by Label(Tarд1).

Example 2.31 (Dialectical Trees). Consider the KB = (F,R,N,�) of the
legal reasoning Example 2.23 and the queries Q1 = дuilty and Q2 = ¬дuilty:

• F = {> ⇒ e1, > ⇒ e2, > ⇒ alibi}

• R = {r1 : e1→ responsible, r2 : e2→ ¬responsible,
r3 : responsible → дuilty, r4 : alibi → ¬дuilty}

• � is generalized specificity.

The argument for Q1 is arд1 = 〈{> ⇒ e1},дuilty〉 and its counter-
arguments are arд2 = 〈{> ⇒ e1},¬responsible〉 and arд3 = 〈{> ⇒ alibi},¬дuilty〉.
Given the preference relation, no argument is superior i.e. arд1 � arд2,
arд2 � arд1, arд1 � arд3 and arд3 � arд1. The Dialectical Trees Tarд1 for
arд1 and Tarд3 for arд3 are shown in Figure 2.11 and 2.12 respectively.

arд1 [Defeated]

arд2 [Undefeated] arд3 [Undefeated]

Figure 2.11: Dialectical Tree for arд1

arд3 [Defeated]

arд1 [Undefeated]

Figure 2.12: Dialectical Tree for arд3

As we will show next, since neither Q1 nor Q2 have an argument that
is labeled undefeated by its dialectical tree, the answer to Q1 and Q2 is
UNDECIDED.
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Dialectical Trees are used to determine if a literal is warranted (justified)
or not. A literal f is warranted if and only if there is an argument arд for f
such that label(Tarд) is Undefeated, otherwise it is not warranted. Answers
to queries can then be defined based on the warrant procedure.

Definition 2.44 (Query Answering in Dialectical Trees [Garćıa and
Simari, 2004]). Given a knowledge base KB expressed in Lp , or L∀ without
defeater rules. A ground query Q = f has four possible answers:

• Q is answered YES iff f is warranted.

• Q is answered NO iff f is warranted.

• Q is answered UNDECIDED iff neither f nor f are warranted.

• Q is answered UNKNOWN iff f does not appear in KB.

Notation 2.7 (Dialectical Trees Entailment). For simplicity, we denote
then answers to queries in Dialectical Trees using the entailment notation.
�DT denotes entailment in Dialectical Trees.

• KB �DT f iff Q = f is answered YES.

• KB 2DT f iff Q = f is answered NO, UNDECIDED, or UNKNOWN .

Dialectical Trees can be extended to the first order language L∀ without
defeater rules using a grounding phase. In recent work, the notion of Di-
alectical Trees has been applied to the first order defeasible language with
existential rules L∀∃ (without defeater rules) [Martinez et al., 2014, Deagus-
tini et al., 2015]. The definitions of DeLP for Lp are extended to existential
rules using a Skolem chase, the nulls are considered as skolem terms and the
generated atoms are considered ground. All Dialectical Trees notions can
therefore directly be applied to L∀∃ [Martinez et al., 2014]. However, in the
following Chapter 3, we will show that this direct application of Dialectical
Trees to L∀∃ can be unsound as reasoning with existential rules might induce
a possible loss of derivations due to the derivation reducer (as we will show
in Chapter 3).

Dialectical Trees provide a link between argumentation and logic pro-
gramming. Argumentation has always been seen as a natural application
for non-monotonic reasoning [Governatori et al., 2004], especially with ar-
gumentation semantics proposed by Dung in his seminal paper on abstract
argumentation [Dung, 1995].

2.2.5 Argumentation Semantics

Argumentation has long been used to study Defeasible Reasoning [Chesñevar
et al., 2000]. Abstract argumentation frameworks [Dung, 1995] have been
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developed to support the characterization of non-monotonic reasoning in
argumentation-theoretic terms, this characterization is abstract because it
is independent of what an argument means from a logical point of view.
The basic element of these frameworks is the notion of “acceptability” of
an argument. Briefly, an argument is acceptable if we can show that it
is not possible to rebut it with other arguments. Several well-known non-
monotonic reasoning systems can be seen as concrete instances of abstract
argumentation frameworks [Governatori et al., 2004].

2.2.5.1 Abstract Argumentation Semantics

An abstract argumentation framework as defined by [Dung, 1995] takes as
input a set of arguments and a pre-constructed binary relation that repre-
sents attacks between arguments.

Definition 2.45 (Argumentation Framework [Dung, 1995]). An ar-
gumentation framework is a pair F = (A ,R) where A is a set of arguments
and R is a binary relation over A . Given two arguments a,b ∈ A , we say
that a attacks b if (a,b) ∈ R.

An argumentation framework can be seen as a directed graph where
vertices represent arguments and edges represent attack between argument.

Example 2.32 (Argumentation Framework). Suppose we have three
arguments a, b, and c such that a and b attack each other (i.e. (a,b), (b,a) ∈
R), and c attacks b (i.e. (c,b) ∈ R). This argumentation framework is
shown in Figure 2.13.

a b c

Figure 2.13: Argumentation Framework of Example 2.32

Definition 2.46 (Set Attack and Defense). A set of argument S attacks
an argument b if there exists an argument c ∈ S such that (c,b) ∈ R. If there
is an argument a ∈ S such that (b,a) ∈ R and S attacks b then S defends a.

Example 2.33 (Cont’d Example 2.32). The set {c} attacks b and de-
fends a.

Argumentation is based on the notion of acceptability of an argument in
the sense that a rational agent accepts only arguments which she can defend
from all possible attacks.
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Definition 2.47 (Acceptability of an Argument). Given an argumen-
tation framework F = (A ,R). An arguments a ∈ A is acceptable with
respect to a set of argument S ⊆ A if and only if S defends a from all its
attacks, that is ∀b ∈ A such that (b,a) ∈ R, ∃c ∈ S such that (c,b) ∈ R.

Example 2.34 (Cont’d Example 2.32). a is acceptable w.r.t. {c}.

Acceptability of argument is used to define argumentation semantics.
Two different methods are proposed to define semantics: extension-based
[Dung, 1995] and labeling-based [Caminada, 2006]. The latter labels ar-
guments with in, out, and undec to represent that an argument is ac-
cepted, rejected and undecided respectively. We start by the extension-
based approach which defines what an acceptable argument means under
some specific semantics. Examples of these semantics, the admissible, com-
plete, grounded, preferred and stable [Dung, 1995]. Other semantics such
as prudent, recursive, semi-stable and ideal (among others) can be found in
[Baroni and Giacomin, 2009]. We limit the scope of the thesis to grounded
semantics as it can be shown to coincide with Defeasible Logics.

Extension-based semantics are based on the principle of conflict-freeness
which translates the idea the arguments in an extension should be able to
“stand together”, that is the arguments of the same extension do not attack
each other.

Definition 2.48 (Conflict-freeness). Given an argumentation framework
F = (A ,R). A set of arguments S ⊆ A is conflict-free if and only if there
are no a,b ∈ S such that (a,b) ∈ R).

Example 2.35 (Cont’d Example 2.32). {a, c} is conflict-free.

A set of non-conflicting arguments can be seen as an agent’s position in
a debate, for this position to hold she has to defend all its argument. This
corresponds to the notion of admissibility [Dung, 1995].

Definition 2.49 (Admissibility of a Set). Given an argumentation frame-
work F = (A ,R). A conflict-free set of arguments S ⊆ A is admissible if
and only if every argument a ∈ S is acceptable with respect to S.

An admissible set of arguments is a set of non-conflicting arguments that
defends all its elements, such set is called an admissible extension. Every
argumentation framework has at least one admissible set: the empty set.

Example 2.36 (Cont’d Example 2.32). The admissible extensions are:
∅, {a}, {c}, and {a, c}. Note that {b} is not an admissible set since it does
not defend itself from c .

Grounded semantics is the most skeptical of argumentation semantics, it
is defined based on the notion of complete extension. That is the admissible
extension that includes all the arguments it can defend from all attacks.
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Definition 2.50 (Complete Semantics). Given an argumentation frame-
work F = (A ,R). An admissible set of arguments S ⊆ A is a complete
extension if and only if ∀a ∈ A if S defends a then a ∈ S.

Definition 2.51 (Grounded Semantics). The grounded extension of an
argumentation framework is the least (w.r.t. set-inclusion) complete exten-
sion.

Example 2.37. Consider the following argumentation framework

abcde

Figure 2.14: Argumentation Framework of Example 2.32

The admissible extensions are {d}, {a}, {a,d}, {a, c}. The complete ex-
tensions are {a}, {a, c}, and {a,d}. The least complete extension is {a} which
is the ground extension.

Grounded semantics (along with all Dung semantics) can also be ob-
tained using labeling-based semantics of [Caminada, 2006]. A labeling is
function that maps an argument to a set of labels {in,out ,undec}. A rein-
statement labeling is a function that maps an argument to “in” if and only if
all its defeaters are labeled “out”, an argument to “out” if it has a defeater
that is “in”, and an argument to “undec” if it is neither “in” nor “out”.

Definition 2.52 (Reinstatement Labeling [Caminada, 2006]). Given
an argumentation framework F = (A ,R) and a (total) function L : A →

{in,out ,undec}. L is a reinstatement labeling if and only if it satisfies the
following:

• ∀a ∈ A : L(a) = out iff ∃b ∈ A s.t. (b,a) ∈ R and L(b) = in,

• and ∀a ∈ A : L(a) = in iff ∀b ∈ A s.t. (b,a) ∈ R, L(b) = out .

An argumentation framework can have different reinstatement labellings.
These labeling can be seen as an extension: “in” arguments are elements
of the extension, “out” arguments are attacked by the extension, and “un-
dec” arguments are not part of the extension and not attacked by it. All
possible reinstatement labellings correspond to complete extensions and the
reinstatement labeling with the most arguments labeled “undec” coincides
with the grounded extension [Caminada, 2006].

Example 2.38 (Grounded Labeling). The argumentation framework in
Example 2.37 can have different reinstatement labellings. Figure 2.15 cor-
responds to the complete extension {a, c} and Figure 2.16 corresponds to the
grounded extension {a}.
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a

in

b

out

c

in

d

out

e
undec

Figure 2.15: Labeling that corresponds to {a, c} of Example 2.32

a

in

b

out

c

undec

d

undec

e
undec

Figure 2.16: Labeling that corresponds to {a} of Example 2.32

In order to relate these argumentation semantics to knowledge repre-
sentation, abstract argumentation frameworks need to be instantiated using
a logical language. Different approaches have been used such as [Besnard
and Hunter, 2001, Bondarenko et al., 1993, Wyner et al., 2013, Modgil and
Prakken, 2014], each instantiation has a specific objective in mind and postu-
lates that it adheres to. Since we are interested in a specific set of intuitions
and languages, we will not delve deeply into each approach. The reader
is referred to [Rahwan and Simari, 2009] for more details about different
methods of instantiating argumentation frameworks.

2.2.5.2 Logic-based Argumentation

Instantiating an argumentation framework from a knowledge base consists
in the following four steps [Caminada and Amgoud, 2007]:

1. Constructing arguments (in favor or against a literal).

2. Determining the different conflicts among arguments.

3. Evaluating the acceptability of the arguments.

4. Defining the justified conclusions.

Most instantiations of argumentation frameworks do not consider de-
feater rules. In order to fully represent the language Lp with defeater rules
we consider the instantiation in [Governatori et al., 2004]. An argument in
this instantiation is a directly consistent derivation for a literal where each
step of rule application is itself an argument. An argument arд1 attacks
another argument arд2 if arд2 is not a strict argument and the conclusion of
arд1 is in conflict with the conclusion or a premise in arд2 that is not part of
a strict sub-argument. An argument arд1 defeats another argument arд2 if
and only if arд1 attacks arд2 and arд2 is not preferred to arд1 (arд2 � arд1)
[Lam, 2012, Lam et al., 2016]. Handling preferences has always been tricky,
the first problem is to elevate preferences on rules to preferences on argu-
ments, the second one is that in most cases removing attacks based on pref-
erences will lead to counter-intuitive results [Amgoud and Vesic, 2011]. The
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instantiation in [Governatori et al., 2004] replaces preferences on rules by
new rules based on rule labels [Antoniou et al., 2001], for example the rules
r1 : bird ⇒ f ly and r2 : brokenWinдs ⇒ ¬f ly with r2 � r1 are transformed
to:

bird ⇒ ¬in f (r )

¬in f (r ) ⇒ f ly

brokenWinд⇒ ¬in f (r1)

¬in f (r2) ⇒ ¬f ly

¬in f (r2) ⇒ in f (r1)

This transformation has been shown that it might lead to non-intuitive
results [Garćıa and Simari, 2004]. However, it allows to obtain equivalent
results with Defeasible Logics [Governatori et al., 2004, Lam et al., 2016].

Under these definitions, an argumentation framework can be built based
on the defeat relation between arguments. Grounded semantics is then ap-
plied to identify justified arguments [Governatori et al., 2004]. A conclusion
f is entailed using grounded semantics if and only if there is an argument
for f that is an element of the grounded extension [Governatori et al., 2004].

Proposition 2.2 (Grounded Semantics entailment [Governatori et al.,
2004]). Given a knowledge base KB expressed in Lp and a literal f . We
denote entailment under grounded semantics by �GS .

• KB �GS f iff there is an argument for f that is an element of the
grounded extension built on KB.

• KB 2GS f iff there is no argument for f that is an element of the
grounded extension built on KB.

Another instantiation of abstract argumentation frameworks is the one
defined in [Modgil and Prakken, 2014, Amgoud et al., 2004] where argu-
ments are defined using Lp without defeater rules. If no preference relation
is considered (with the condition that defeasible arguments cannot attack
strict arguments), the grounded semantics obtained in this definition and
constructed using a knowledge base expressed in Lp without defeater rules
is equivalent to the one obtained by the instantiation of [Governatori et al.,
2004] as shown in [Lam et al., 2016].

There are many ways to instantiate an argumentation framework, some
define argument as directly consistent derivation for a literal [Amgoud et al.,
2004], other define them as indirectly consistent derivation for a conjunction
of literals [Croitoru and Vesic, 2013], some remove attacks from an inferior
argument to a superior one [Modgil and Prakken, 2014], others apply prefer-
ences after constructing extensions [Amgoud and Vesic, 2011]. Considering
all these instantiations is beyond the scope of this thesis given our primary
objective of obtaining Defeasible Reasoning for existential rules. However,
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the work presented in the following chapters can be extended to various
instantiations of argumentation framework as discussed in Chapter 6.

2.2.6 Comparing Defeasible Reasoning Techniques

The discussed Defeasible Reasoning techniques can be compared, in fact,
under certain conditions, they can be shown to yield equivalent results.
Grounded Semantics under the instantiation of [Governatori et al., 2004]
or ASPIC+ [Modgil and Prakken, 2014] without implicit preferences give
equivalent results to Defeasible Logic with ambiguity propagation without
team defeat [Lam et al., 2016, Governatori et al., 2004].

Proposition 2.3 (Grounded Semantics and Defeasible Logic [Gov-
ernatori et al., 2004]). Given a knowledge base KB expressed in Lp or
L∀ and a literal f :

• KB ` +δnoTDprop f iff KB �GS f

• KB ` −δnoTDprop f iff KB 2GS f

It can be shown that Defeasible Logic Programming (DeLP) with its Di-
alectical Trees follows the intuition of ambiguity propagating when no pref-
erence is used. We recall that a literal f is ambiguous if there is an argument
for f that is neither inferior to any argument for f nor superior to an ar-
gument for f . In Dialectical Trees terms this entails that an argument for
f has a blocking defeater and no proper defeater. Given that no preference
is used, all attacks become blocking defeats, meaning that the argument
for f will be at the end of the argumentation line of the arguments it at-
tacks and cannot be “blocked” (since a blocking defeater cannot be defeated
with another blocking defeater), therefore no literal that is attacked can
have a warranted argument and ambiguous literal are allowed to propagate
their ambiguity to other literals as shown in Example 2.31. However this
only holds when no preference relation is used. If a preference relation is
used then DeLP can yield unintuitive results that do not correspond with
ambiguity propagating as shown in the following Example 2.39.

Example 2.39. Consider the following knowledge base KB = (F,R,N,�):

• F = {> → a,> → b,> → c}

• R = {r1 : a ⇒ f , r2 : b ⇒ f , a ∧ c ⇒ ¬f }

• � is generalized specificity.

Suppose we want to evaluate the query Q = f . The arguments that can
be constructed from this knowledge base are:

• arд1 = 〈{a ⇒ f }, f 〉
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• arд2 = 〈{b ⇒ f }, f 〉

• arд3 = 〈{a ∧ c ⇒ ¬f },¬f 〉

Given generalized specificity, arд3 is preferred to arд1 because arд3 is
more precise (relies on more strict facts), but it is not preferred to arд2 (they
rely on different strict facts) i.e. arд3 � arд1, arд3 � arд2 and arд2 � arд3.

One can see that the query Q = f should be “false” because the literal
f is ambiguous (there is a derivation for f (arд2) that is not inferior to
any derivation attacking it and there is a derivation for f (arд3) such that
neither derivations is superior). However, having arд3 � arд1 makes arд3 a
proper defeater of arд1, this allows us to use arд2 as a blocking defeater to
arд3 making arд1 undefeated as shown in Figure 2.17, therefore KB �DT f .

arд1 [Undefeated]

arд3 [Defeated]

arд2 [Undefeated]

arд2 [Defeated]

arд3 [Undefeated]

arд3 [Defeated]

arд2 [Undefeated]

Figure 2.17: Dialectical Trees for arд1, arд2, and arд3

The following proposition defines the link between Dialectical Trees and
Defeasible Logic with ambiguity propagation.

Proposition 2.4 (Dialectical Trees and Defeasible Logic). Given a
knowledge base KB = (F,R,N, ∅) expressed in Lp or L∀ without defeater
rules, strict rules nor a preference relation:

• KB ` +δprop f iff KB �DT f .

• KB ` −δprop f iff KB 2DT f .

Proof Sketch. No preference relation means that all defeats are blocking
defeats, thus if an argument is attacked it becomes unwarranted, meaning
that a literal can only have a warranted arguments iff it is not attacked, this
means that its derivation does not rely on ambiguous literals which exactly
corresponds to Defeasible Logic with ambiguity propagation (cf. detailed
Proof 7.2.1 on page iv). �

It can also be shown that Dialectical Trees follow the intuition of team
defeat as described in the following Example 2.40.

Example 2.40. Suppose that there are two arguments arд1, arд2 for a literal
f and two arguments arд3, arд4 for f such that arд1 � arд3 and arд2 � arд4.
The Dialectical Trees for arд1 and arд2 are shown in Figures 2.18 and 2.19.
Even if arд4 is a blocking defeater of arд1, arд2 is a proper defeater of arд3
which makes arд1 undefeated, and the same applied for arд2.
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arд1 [Undefeated]

arд4 [Defeated]

arд2 [Undefeated]

Figure 2.18: Dialectical Tree for arд1

arд2 [Undefeated]

arд3 [Defeated]

arд1 [Undefeated]

Figure 2.19: Dialectical Tree for arд2

However, given Example 2.39 it can be shown that Dialectical Trees and
Defeasible Logic with ambiguity propagating and team defeat do not coin-
cide even under defeasible rules only. Table 2.2 describes the intuitions of
Defeasible Reasoning techniques. Please note that the fact that two tech-
niques follow the same intuition does not imply they yield the same results,
this serves as an indicator on the set of intuitions a certain formalism adopts.

Feature Defeasible Logics Grounded Semantics Dialectical Trees

Ambiguity
Prop. X X X∗

Block X - -

Team Defeat
TD X - X

noTD X X -

Floating FC - - -

Conclusions noFC X X X

Consistent Direct X X -

Derivation Indirect - - X

Table 2.2: Intuitions of Defeasible Reasoning Techniques (∗ in the absence of

preferences)

Finally, all the discussed Defeasible Reasoning techniques do not respect
the rationality postulate of indirect consistency [Caminada and Amgoud,
2007], in the sense that applying strict rules over the set of all accepted
literals might lead to a conflict.

Example 2.41 (Consistent Answers). Consider the following knowledge
base KB = (F,R,N, ∅)

• F = {> ⇒ a,> ⇒ b,> ⇒ c,> → d}

• R = {a ∧ b ∧ c → ¬d}

- in Defeasible Logics (and Grounded Semantics), the set of accepted
literals is {a,b, c,d} since +δa, +δb, +δc, and +∆d. However, this set
of accepted literals is not consistent w.r.t. strict rules as d and ¬d can
be derived.
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- In DeLP, the argument 〈{> ⇒ a},a〉 has no attacker (since there is
no fact f such that { f ,a} ∪ F→ ∪ R→ is inconsistent), therefore a is
warranted (same for b, c, and d). The set of all warranted literals
{a,b, c,d} is not consistent w.r.t. strict rules.

Having a consistent set of answers is a desirable feature, even a critical
one for some [Caminada and Amgoud, 2007]. However, the restriction of the
logical languages (no disjunction) makes satisfying rationality postulate hard
[Caminada and Amgoud, 2007]. Given our initial aim of applying Defeasible
Reasoning techniques to the already problematic existential rules, we will
not consider rationality postulates in this thesis.

2.2.7 Defeasible Reasoning Tools

A number of Defeasible Reasoning tools and systems have been proposed
in recent years to cover different techniques as well as other intuitions of
non-monotonic reasoning:

• ASPIC [Prakken, 2010] is a framework for specifying systems in struc-
tured argumentation. It is used for Defeasible Reasoning thanks to
its grounded semantics. An official prototype JAVA implementation
available online3 (denoted here by ASPIC∗) uses a Prolog-like syntax
to express the first order language L∀ without defeater rules and al-
lows for preference over rules using decimal numbers between 0 and
1. It implements grounded semantics instantiated with the ASPIC
theoretical framework and provides explanation for query entailment.
Other implementations of ASPIC either use a propositional language
or are not publicly available.

• DeLP [Garćıa and Simari, 2004] (Defeasible Logic Programming) is
a formalism that combines results of Logic Programming and Argu-
mentation to obtain Defeasible Reasoning thanks to the Dialectical
Trees warranting procedure. A prototype JAVA implementation of
DeLP provided in Tweety1.7 libraries [Thimm, 2014] (that we denote
by DeLP∗) uses the first order language L∀ without defeater rules and
defines a set of preference relations including generalized specificity.
An online tool called DeLPclient4 is also available and provides a di-
alectical explanation of query entailment.

• Flora-2 [Yang et al., 2003, Wan et al., 2015] is a rule-based knowledge
base system designed for a variety of automated tasks on the Semantic
Web, ranging from meta-data management to intelligent agents. It is
based on Defeasible Logics and uses a prolog-like syntax to express

3http://aspic.cossac.org
4http://lidia.cs.uns.edu.ar/delp_client
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the first order language L∀. It allows for explicit preferences on rules.
Flora-2 has a commercial version called Ergo5 with additional func-
tionalities including explanation of query entailments and the ability
to use relational databases and OWL ontologies to represent defeasible
knowledge base.

• SPINdle [Lam, 2012] is a reasoning tool based on Defeasible Logics
that allows for ambiguity blocking or propagating with team defeat
for the first order language L∀. It is a bottom-up approach which
is capable to perform efficient and scalable reasoning with defeasible
knowledge bases. It is implemented with performance in mind and
has been used for most applications of Defeasible Logics. We use its
official implementation6.

To the best of our knowledge, these are the only still functioning, pub-
licly available tools for first order Defeasible Reasoning as of the time of
writing of this thesis. Other implementations such as DR-Device and DR-
Prolog [Bikakis and Antoniou, 2005] are no longer maintained. The inter-
ested reader is referred to [Bryant and Krause, 2008] for a discussion on the
evolution of Defeasible Reasoning tools.

2.3 Summary

In this chapter we presented the existential rule logical fragment along with
the frontier chase forward chaining inference mechanism. We showed that
allowing the existential quantifier might lead to infinite rule applications,
that is why a derivation reducer is needed to remove redundant rule applica-
tions. We presented the frontier derivation reducer and showed the types of
rules (Skolem-FES ) for which it is guaranteed to stop. Then we defined the
different types of conflicts, namely, inconsistence when a negative constraint
is applicable, and incoherence when the set of rules is unsatisfiable.

Afterwards, we presented Defeasible Reasoning which is a conflict-tolerant
non-monotonic form of reasoning and discussed the different intuitions a for-
malism can adopt, namely, ambiguity blocking or propagating, team defeat,
floating conclusions, and how strict rules are handled (directly or indirectly
consistent derivation). We presented various Defeasible Reasoning tech-
niques that we will consider throughout this thesis and showed when they
might coincide:

1. Defeasible Logics is a top-down approach (arguments are evaluated
on construction), it has different variants for ambiguity blocking or
propagation with or without team defeat along with failure-by-looping
to remove cycles.

5http://coherentknowledge.com/
6http://spindle.data61.csiro.au/spindle
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2. Grounded Semantics is a bottom-up argumentation approach (argu-
ments are evaluated after construction) that can be instantiated in var-
ious ways. We presented the instantiation of [Governatori et al., 2004]
that coincides with Defeasible Logic ambiguity propagation without
team defeat (Proposition 2.3).

3. Dialectical Trees is a bottom-up approach, it relies on indirectly con-
sistent derivations. We showed that it coincides with Defeasible Logic
ambiguity propagation under the restriction of no defeater rules or
preferences (Proposition 2.4), and follows the intuition of team defeat
(Example 2.40).

We discussed that Dialectical Trees are the only Defeasible Reasoning
technique that has been applied to the existential rule language L∀∃ without
defeater rules. However, as we will see in the next chapter, directly applying
Defeasible Reasoning techniques to existential rules is not as straightforward
as it might seem. Finally, we presented the different first order Defeasible
Reasoning tools that are still functioning and publicly available as of the
time of writing of this thesis.
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Chapter 2 in a Nutshell

• Reasoning with existential rules requires a derivation reducer to
become decidable. Frontier/Skolem chase is the most used for-
ward chaining inference mechanism and has decidable classes
(types) of rules called Skolem-FES.

• There are two types of conflicts: inconsistency when a negative
constraint is applicable, and incoherence when the set of rules
is unsatisfiable.

• There is no universal way of reasoning in presence of conflict.
However, a set of intuitions can be adopted: ambiguity blocking
or propagating, team defeat, floating conclusions, and directly
or indirectly consistent derivations (among others).

• Defeasible reasoning is a conflict-tolerant reasoning approach,
some of its techniques are: Defeasible Logics, Dialectical Trees,
and Grounded Argumentation Semantics. These techniques
have different semantics and coincide under certain conditions.

• The discussed Defeasible Reasoning techniques have been de-
fined for the propositional language Lp (and by grounding can
be applied to the first order language without existential quan-
tifier L∀), not all of them allow for defeater rules.

• Aside from Dialectical Trees, there is no Defeasible Reasoning
technique for the defeasible existential rules language L∀∃.
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Intuitively, the ideas behind defeasible reasoning techniques such as de-
feasible logics, dialectical trees, and argumentation semantics are general
enough to be directly applied to the existential rules framework as theo-
retically demonstrated by [Martinez et al., 2014] using dialectical trees for
Datalog±. One might be tempted to assume that transitioning from the
propositional language of these techniques to the existential rules logical
fragment would be straightforward. However, the particularities of existen-
tial rule make this transition not as clear-cut.

In this chapter, we explain the problem of “Derivation Loss” when rea-
soning with existential rules, we provide a combinatorial structure to prevent
this problem and present the first tool for defeasible reasoning with existen-
tial rules using Dialectical Trees. Finally we provide the first benchmark for
the classification of first order logic defeasible reasoning tools based on the
intuitions discussed in Section 2.2.2 (ambiguity handling, etc), expressive-
ness (logical language, preferences, etc.), and basic performance.
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Research Questions in this Chapter

• Can defeasible reasoning techniques (for example Dialectical
Trees) be directly applied to the existential rule language L∀∃?
If not, what is needed to apply these techniques to L∀∃?

• Given the variety of tools and formalisms for defeasible reason-
ing, how can we help a Data Engineer chose the best defeasible
reasoning tool depending on the data and the requirements at
hand?

3.1 Derivation Loss Problem

Most of the defeasible reasoning techniques are based on the notion of deriva-
tion for a fact. Therefore, it is essential to have a mechanism for extracting
these derivations. Existing work of derivation extraction for existential rules
focuses on obtaining one derivation for a specific fact as it is enough for clas-
sical query entailment. However, for certain practical applications such as
explanation [Frawley et al., 1992], abduction [Kakas et al., 1998], debugging
[Caballero et al., 2008], as well as for our purposes in this thesis (as show
in Section 3.1.1) we need to extract all possible derivations (a.k.a. prove-
nance paths) for that fact. Without a sound and complete derivation ex-
traction mechanism, defeasible reasoning with dialectal trees for existential
rules [Martinez et al., 2014] becomes unsound. This unexpected behavior is
due to the order in which rules are applied and to the type of chase used as
demonstrated in Section 3.1.2.

3.1.1 Derivation Loss and the Frontier Chase

The most common chase is the frontier/skolem chase, however, there are
other chases that generate a universal model with more or less strong deriva-
tion reducers such as the Oblivious chase [Cali et al., 2013] and the Re-
stricted chase [Fagin et al., 2005]. While these derivation reducers are cru-
cial for the chase to stop, they might induce a loss of rule applications
depending on the order in which the rules are applied. This order of rule
applications (as long as it is breadth-first) does not impact the generation of
a universal model (and thus does not affect entailment in Datalog±), how-
ever, it might induce a derivation loss not picked up by existing work on
derivation extraction which focuses on obtaining one derivation. Obtaining
all derivations was implicitly assumed to be not a difficult task but a mere
enumeration of the first. Unfortunately this is not the case as shown in the
following example.
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Example 3.1 (Animal Shelter Extended). Let KB = (F,R,N,�) be a
knowledge base expressed in L∀∃ of an animal shelter describing the process
of deciding if a found dog should be kept or put for adoption. Generally, an
animal found alone is a stray and is put for adoption. If it has an owner
then it is kept. If it has a collar or a microchip then it generally has an
owner. An animal cannot be kept and put for adoption at the same time. A
dog named “Jack” with a collar and a microchip is found alone, should it be
kept (Q1 = keep(jack))? Or put for adoption (Q2 = adoption(jack))?

• F = {> → alone(jack), > → hasCollar (jack), > → hasMicrochip(jack)}

• R = {r1 : ∀X ,Y hasOwner (X ,Y ) → keep(X ),
r2 : ∀X hasCollar (X ) ⇒ ∃Y hasOwner (X ,Y ),
r3 : ∀X hasMicrochip(X ) ⇒ ∃Y hasOwner (X ,Y ),
r4 : ∀X alone(X ) ⇒ stray(X ),
r5 : ∀X stray(X ) → adoption(X )}

• N = {∀X adoption(X ) ∧ keep(X ) → ⊥}

A possible frontier chase of KB is:

σf r -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {hasOwner (jack,Null1)}, r2,π1 = {X → jack}),

(F2 = F1 ∪ {hasOwner (jack,Null2)}, r3,π2 = {X → jack}),

(F3 = F2 ∪ {stray(jack)}, r4,π3 = {X → jack}),

(F4 = F3 ∪ {adoption(jack)}, r5,π4 = {X → jack}),

(F5 = F4 ∪ {keep(jack)}, r1,π5 = {X → jack,Y → Null1})〉.

To extract derivations using forward chaining, the state of the art uses
a chase graph [Cal̀ı et al., 2012] (also called derivation trees [Arora et al.,
1993]). A chase graph is a directed graph representing the rule applications
in a chase, the set of nodes represents the facts and there is an edge from a
fact u to v if and only if v is obtained from u (possibly with other atoms)
by a rule application in the chase. The chase graph of σf r -chase(F,R) is
represented in Figure 3.1.

hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1) hasOwner (jack,Null2)

keep(jack)

alone(jack)

stray(jack)

adoption(jack)

Figure 3.1: chase graph for σf r -chase(F,R) of Example 3.1

From the chase graph we can find that there is only one derivation δ1 for
keep(jack) which is applying r2 on hasCollar (jack) then r1 on the resulting
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fact hasOwner (jack,Null1):

δ1 = 〈(F0 = {hasCollar (jack)}, ∅, ∅), (F1 = F0 ∪ {hasOwner (jack,Null1)}, r2,π1),

(F2 = F1 ∪ {keep(jack)}, r1,π5)〉.

However, we can see that by applying r3 on the atom hasOwner (jack,Null2)
we also get keep(jack), which gives us another derivation that does not show
in the chase graph. This rule application (F6 = F5 ∪ {keep(jack)}, r1,π6 =
{X → jack,Y → Null2}) is not part of the chase sequence because the fron-
tier derivation reducer considers it redundant as it uses the same rule r1
with π5 |f r (r1) = π6 |f r (r1) = {X → jack}.

Moreover if r1 is applied on hasOwner (jack,Null2) first, then its applica-
tion on hasOwner (jack,Null1) would be redundant and therefore dismissed
as shown in Figure 3.2.

hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1) hasOwner (jack,Null2)

keep(jack)

alone(jack)

stray(jack)

adoption(jack)

Figure 3.2: Chase graph for σf r -chase(F,R) if r1 is applied on
hasOwner (jack,Null2) first

In this case, there is also only one derivation δ ′1 for keep(jack):

δ ′1 = 〈(F0 = {hasMicrochip(jack)}, ∅, ∅),

(F1 = F0 ∪ {hasOwner (jack,Null2)}, r3,π2),

(F2 = F1 ∪ {keep(jack)}, r1,π6)〉.

This loss of derivation has no effect on classical entailment, however it
has critical consequences for defeasible reasoning techniques. To answer
the queries Q1 = keep(jack) and Q2 = adoption(jack) we need to build the
arguments for and against it. Given Figure 3.1 there is only one argument
for keep(jack) (arд1 = 〈δ1,keep(jack)〉) and one argument for adoption(jack)
(arд2 = 〈δ2,adoption(jack)〉) such that:

δ2 = 〈(F0 = {alone(jack)}, ∅, ∅),

(F1 = F0 ∪ {stray(jack)}, r4,π3),

(F2 = F1 ∪ {adoption(jack)}, r5,π4)〉.

Suppose the preference relation � used in this KB considers that having
a collar is a good reason to keep the animal and not put it for adoption
(i.e. arд1 � arд2). Therefore arд1 has no defeater and it defeats arд2. The
dialectical trees that evaluate arд1 and arд2 are shown in Figure 3.3 and 3.4
respectively.
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arд1 = 〈δ1,keep(jack)〉 [Undefeated]

Figure 3.3: Dialectical Tree for arд1

arд2 = 〈δ2,adoption(jack)〉 [Defeated]

arд1 = 〈δ1,keep(jack)〉 [Undefeated]

Figure 3.4: Dialectical Tree for arд2

From Figures 3.3 and 3.4 arд1 is undefeated while arд2 is defeated, there-
fore the answer to the query Q1 = keep(jack) is true (i.e. KB �DT Q1) and
to the query Q2 = adoption(jack) is false (i.e. KB 2DT Q2). However if we
extract derivations from the chase graph in Figure 3.2 we get one argument
for keep(jack) (arд′1 = 〈δ

′
1,keep(jack)〉) and one argument for adoption(jack)

(arд2 = 〈δ2,adoption(jack)〉), and if we suppose that the preference relation
� considers having a microchip not a strong reason for having a current
owner because people might abandon their animals without removing the
microchip (i.e. arд′1 � arд2 and arд2 � arд′1), then arд′1 is a blocking defeater
for arд2 and vise-versa. The dialectical trees that evaluate arд′1 and arд2 are
shown in Figures 3.5 and 3.6 respectively.

arд′1 = 〈δ
′
1,keep(jack)〉 [Defeated]

arд2 = 〈δ2,adoption(jack)〉 [Undefeated]

Figure 3.5: Dialectical Tree for arд′1

arд2 = 〈δ2,adoption(jack)〉 [Defeated]

arд′1 = 〈δ
′
1,keep(jack)〉 [Undefeated]

Figure 3.6: Dialectical Tree for arд2

From Figures 3.5 and 3.6 arд′1 and arд2 are defeated, therefore the an-
swer to the queries Q1 = keep(jack) and Q2 = adoption(jack) is false (i.e.
KB 2DT Q1 and KB 2DT Q2). The loss of derivation affects query en-
tailment in defeasible Datalog±, in one case Q1 is entailed and in the other
it is not depending on the order in which rules are applied. This order is
non-deterministic as we have no control over which rules are applied when
two or more can be applied at the same breadth-first step.

The above example showcases a simple case of derivation loss, but de-
pending on the chase, losing paths might become more intricate. The loss
of derivations in forward chaining depends on two main factors: the order
of rule applications and the derivation reducer of the used chase. Motivated
by the above example, the first research question we answer in this chap-
ter is the following: “In existential rules, how does the chase choice affect
derivation extraction and how can we prevent it?”.

3.1.2 Derivation Loss and the Different Kinds of Chase

As shown in the previous example, some derivations might not show in the
chase graph built with a frontier chase.
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Proposition 3.1 (Frontier Chase Graph Derivations Incomplete-
ness). Extracting derivations for a fact from a frontier chase using chase
graph is incomplete.

Proof. By contradiction (cf. Example 3.1) �

There are different kinds of chases defined in the literature (Oblivious,
Skolem/Frontier, Restricted, and Core chases) each one with a “stronger”
derivation reducer (by “stronger” we mean that they might remove rule
applications in cases where others do not). A first possible solution to the
derivation loss problem that might come to mind is to use a derivation
reducer that is less strong than the frontier one (for example, the Oblivious
derivation reducer).

The oblivious chase (also called naive chase [Cali et al., 2013]) removes
rule applications that reuse the same rule with the exact same homomor-
phism. Contrary to the frontier chase, it compares the whole homomorphism
and not only the frontier part.

Definition 3.1 (Oblivious Chase [Cali et al., 2013]). The oblivious
chase σobl -chase relies on the oblivious derivation reducer (denoted σobl ) de-
fined as follows: for any derivation δ , σobl (D0) = D0 and ∀Di = (Fi , ri ,πi ) ∈ δ :

Facts(σobl (Di )) =

{
Fi−1 ∪ π

saf e
i (Head(ri )) if ∀j < i,πj , πj or r j , ri

Fi−1 otherwise

Essentially, the oblivious chase ensures that a rule r is applied according
to a homomorphism π only if it has not already been applied according to
that same homomorphism. A possible application of the oblivious chase on
the animal shelter example is:

σobl -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {hasOwner (jack,Null1)}, r2,π1 = {X → jack}),

(F2 = F1 ∪ {hasOwner (jack,Null2)}, r3,π2 = {X → jack}),

(F3 = F2 ∪ {stray(jack)}, r4,π3 = {X → jack}),

(F4 = F3 ∪ {adoption(jack)}, r5,π4 = {X → jack}),

(F5 = F4 ∪ {keep(jack)}, r1,π5 = {X → jack,Y → Null1}),

(F6 = F5 ∪ {keep(jack)}, r1,π6 = {X → jack,Y → Null2})〉

From the chase graph of σobl -chase(F,R) in Figure 3.7, we can see that
no derivation for keep(jack) is lost as the chase considers that applying r1
using π5 and π6 is not redundant since π5 , π6. Therefore there are two
arguments for keep(jack) (arд1 = 〈δ1,keep(jack)〉 and arд′1 = 〈δ

′
1,keep(jack)〉)

and one argument for adoption(jack) (arд2 = 〈δ2,adoption(jack)〉).

To evaluate the queries Q1 and Q2 we just need to build the dialectical
trees for arд′1 (or arд1) and arд2 respectively. From Figures 3.8 and 3.9 arд′1
is undefeated while arд2 is defeated, therefore KB �DT Q1 and KB 2DT Q2.

74



3.1. DERIVATION LOSS PROBLEM

hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1) hasOwner (jack,Null2)

keep(jack) keep(jack)

alone(jack)

stray(jack)

adoption(jack)

Figure 3.7: Chase graph for σobl -chase(F,R) of Example 3.1

arд′1 = 〈δ
′
1,keep(jack)〉 [Undefeated]

arд2 = 〈δ2,adoption(jack)〉 [Defeated]

arд1 = 〈δ1,keep(jack)〉 [Undefeated]

Figure 3.8: Dialectical Tree for arд′1

arд2 [Defeated]

arд′1 [Undefeated] arд1 [Undefeated]

Figure 3.9: Dialectical Tree for arд2

As shown above, the oblivious chase does not lose derivations, however
the “weakness” of its derivation reducer compared to the frontier one re-
moves the guarantee that the chase will stop for some concrete classes of
Finite Expansion Set [Onet, 2013] (as explained in Chapter 2 Figure 2.2).

Proposition 3.2 (Oblivious Chase Graph Derivations Complete-
ness). Extracting derivations for a fact from an oblivious chase using chase
graph is complete.

Proof. We prove this by construction, a rule application is removed only
if the rule has already been applied with the exact same homomorphism,
therefore all possible rule applications with all possible homomorphisms are
kept once, thus no derivation is lost. �

Intuitively, the stronger the derivation reducer, the bigger the risk of
losing derivations. The restricted chase is stronger than the frontier one,
it relies on the notion of “useful” rule application. A rule application is
“useful” if it generates facts that cannot be mapped to previously generated
ones, meaning that there is no homomorphism from the generated facts to
the existing set of facts.

Definition 3.2 (Restricted Chase [Fagin et al., 2005]). The restricted
chase σr es -chase (also called standard chase [Fagin et al., 2005]) uses the
restricted derivation reducer denoted by σr es and defined as follows: for any
derivation δ , σr es (D0) = D0 and ∀Di = (Fi , ri ,πi ) ∈ δ :

Facts(σr es (Di )) =

{
Fi−1 ∪ π

saf e
i (Head(ri )) if Fi−1 2 π

saf e
i (Head(ri ))

Fi−1 otherwise
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The restricted chase removes any rule application that generates facts
that can be mapped to existing ones. A possible application of the restricted
chase on the animal shelter example is:

σr es -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {hasOwner (jack,Null1)}, r2,π1 = {X → jack}),

(F2 = F1 ∪ {stray(jack)}, r4,π2 = {X → jack}),

(F3 = F2 ∪ {adoption(jack)}, r5,π3 = {X → jack}),

(F4 = F3 ∪ {keep(jack)}, r1,π4 = {X → jack,Y → Null1})〉.

Applying the rule r2 would generate {hasOwner (jack,Null1)}, which is
considered new since it is not directly entailed by F0 (F0 2 {hasOwner (jack,
Null1)}). Hence F1 = F0 ∪ {hasOwner (jack,Null1)}. Afterwards applying r3
would generate {hasOwner (jack,Null2)}, which is redundant since it can be
mapped to {hasOwner (jack, Null1)} (Null2 is mapped to Null1), this rule
application is therefore discarded, then keep(jack) is generated by applying
r1 on hasOwner (jack,Null1). The chase graph of this restricted chase is
depicted in Figure 3.10.

hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1)

keep(jack)

alone(jack)

stray(jack)

adoption(jack)

Figure 3.10: Chase graph for σr es -chase(F,R) if r2 is applied before r3

However, if r3 is applied before r2 then r3 would generate {hasOwner (
jack,Null1)} which is considered new as F0 2 {hasOwner (jack,Null1)}, then
applying r2 would generate {hasOwner (jack,Null2)} which is considered re-
dundant as it can be mapped the previously generated hasOwner (jack,Null1):

σr es -chase(F,R) = 〈(F, ∅, ∅), (F2 = F1 ∪ {hasOwner (jack,Null1)}, r3,π1 = {X → jack}),

(F2 = F1 ∪ {stray(jack)}, r4,π2 = {X → jack}),

(F3 = F2 ∪ {adoption(jack)}, r5,π3 = {X → jack}),

(F5 = F4 ∪ {keep(jack)}, r1,π4 = {X → jack,Y → Null1})〉

The chase graph built with the restricted chase when r3 is applied before
r2 is shown in Figure 3.11.

As shown above, depending on the order of rule applications, chase graph
built using the restricted chase is also prone to derivation loss.

Proposition 3.3 (Restricted Chase Graph Derivations Incomplete-
ness). Extracting derivations for a fact from a restricted chase using chase
graph is incomplete.

Proof. By contradiction (cf. Example 3.1) �
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hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1)

keep(jack)

alone(jack)

stray(jack)

adoption(jack)

Figure 3.11: Chase graph for σr es -chase(F,R) if r3 is applied before r2

The restricted chase checks only for local redundancy (i.e. if the gener-
ated facts can be mapped to the existing set of facts), the core chase however
checks for local and global redundancy (i.e. if there are also some facts in
the existing set of facts that can be mapped to the new generated facts),
therefore any rule application removed by the restricted chase, will also be
removed by the core chase. In fact, given the strength results of the deriva-
tion reducer order relation in Proposition 2.1 on page 21 we can define a
derivation loss order as shown in the following Proposition 3.4.

Definition 3.3 (Derivations Loss Chase Order). We say that a type
of σ1-chase is more prone to derivation loss than another type of chase
σ2-chase (denoted σ1-chase ≤ σ2-chase) if when a derivation for a fact is
lost in σ1-chase, it is also lost in σ2-chase.

Proposition 3.4. The following holds: σobl -chase ≤ σf r -chase ≤ σr es -chase ≤
σcore -chase.

Proof. Given the reducer order relation ≤ of Proposition 2.1, if σ1 ≤ σ2 then
any rule application removed by σ1 will also be removed by σ2. Therefore a
chase graph built with σ2-chase will at least lose the same derivations as a
chase graph built with σ1-chase. �

3.2 Derivation Loss Fix: Graph of Atom Dependency

In order to avoid the derivation loss problem, a more adapted combinatorial
structure for derivation extraction is needed. In this section we present the
notion of Graph of Atom Dependency (GAD), we define the algorithms that
can be used to construct it and explain how the different kinds of chase can
impact its construction, then we show how this hypergraph structure is used
in order to construct all derivations for a fact.

The Graph of Atom Dependency relies on the notions of hypergraphs and
hyperpaths [Gallo et al., 1993, Nguyen and Pallottino, 1989]. A hypergraph
is a graph where the edges link a set of nodes to another set of nodes.

Definition 3.4 (Edge-labeled Directed Hypergraph [Gallo et al.,
1993]). A directed edge-labeled hypergraph is a tuple H = (V,E,L) where:
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• V is a set of vertices (or nodes).

• E ⊆ 2V × 2V is a set of directed hyperedges (or edges). A directed
hyperedge e ∈ E is an ordered pair e = (U ,W ) of non empty disjoint
subsets of vertices U ,W ∈ 2V; U is the tail of e while W is its head
noted tail(e) and head(e) respectively.

• L : E → Labels is a labeling function that maps each edge e ∈ E with
an element of the labeling set Labels.

Definition 3.5 (Path and Hyperpath [Nguyen and Pallottino, 1989]).
In a hypergraph H = (V,E), a path Ps/t of length k in a hypergraph H = (V,E)

from a node s ∈ V to a node t ∈ V is a sequence of hyperedges 〈e1, . . . , ek 〉
such that: s ∈ tail(e1), t ∈ head(ek ), and ∀1 < i ≤ k,head(ei−1) ∩ tail(ei ) , ∅.

A hyperpath ΘS/t from S ⊆ V to t ∈ V is a hypergraph Hp = (Vp ,Ep )

satisfying the following conditions:

1. Ep ⊆ E,

2. S ∪ {t} ⊆ Vp where Vp =
⋃

e ∈Ep (tail(e) ∪ head(e)),

3. ∀v ∈ Vp , there is a path Pv/t from v to t .

In order to clearly define hypergraphs and how we draw them in this
chapter, let us consider the following Example 3.2 that illustrates the notions
of hypergraph and hyperpath. In Figure 3.13 we give the equivalent bipartite
depiction of the hypergraph shown in Figure 3.12. For clarity reasons we
will use the bipartite depiction throughout the chapter.

Example 3.2 (Hypergraph and Hyperpath). Consider a hypergraph
H = (V,E,L) with

• V = {v1,v2,v3,v4,v5}.

• E = {ε1, ε2} s.t. ε1 = ({v1}, {v3,v4,v5}) and ε2 = ({v1,v2}, {v3}).

• L = {(ε1, labelε1), (ε2, labelε2)}.

In this hypergraph we have tail(e2) = {v1,v2} (please note that tail(e2) is
depicted in the upper half of the hyperedge e2 in Figure 3.13).

A path from v1 to v4 is a sequence of hyperedges Pv1/v4 = 〈ε2〉. A hy-
perpath from {v1} to v4 is the hypergraph Θ{v1 }/v4 = (VΘ,EΘ) s.t. VΘ =

{v1,v3,v4,v5} and EΘ = {ε1}.
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v1	  

v4	   v3	  

v2	  

v5	  

ε2	  

ε1	  

Tail	  of	  ε1	  
Tail	  of	  ε2	  

Head	  of	  ε2	  

Head	  of	  ε1	  

Figure 3.12: Hypergraph in
Example 3.2

v1 v2

v3v4v5

Labelε2Labelε1

Figure 3.13: Bipartite depiction
of the hypergraph in Example 3.2

A Graph of Atom Dependency (GAD) is a hypergraph where the set
of nodes corresponds to the set of atoms and the set of labeled edges cor-
responds to rule applications labeled by the rule and the corresponding
homomorphism.

Definition 3.6 (Graph of Atom Dependency). Given a knowledge base
KB = (F,R,N,�) and the set of all homomorphisms Π, a Graph of Atom
Dependency of KB is a directed edge-labeled hypergraph GADKB = (V,E,L)
where:

• V is a set of ground atoms s.t. F∗ ⊆ V (V contains F and all generated
atoms from F using R).

• E ⊆ 2V × 2V is a set of hyperedges.

• L : E → R × Π is a labeling function that maps each edge e ∈ E to a
tuple (r ,π ) where r ∈ R and π ∈ Π, s.t. head(e) is obtained by applying
r on tail(e) using π .

Example 3.3 (GAD of σobl -chase for Animal Shelter). Figure 3.14
describes the Graph of Atom Dependency GADKB = (V,E,L) of the oblivious
chase in Example 3.1:

• V = {alone(jack), hasCollar (jack), hasMicrochip(jack), hasOwner (jack, Null1),
hasOwner (jack,Null2), stray(jack), adoption(jack), keep(jack)}

• E = {e1 = ( {hasCollar (jack)}, {hasOwner (jack,Null1)} ),
e2 = ( {hasMicrochip(jack)}, {hasOwner (jack,Null2)} ),
e3 = ( {alone(jack)}, {stray(jack)} ), e4 = ( {stray(jack)}, {adoption(jack)} ),
e5 = ( {hasOwner (jack,Null1)}, {keep(jack)} ),
e6 = ( {hasOwner (jack,Null2)}, {keep(jack)} ) }

• L = {( e1, (r2,π1) ), ( e2, (r3,π2) ), ( e3, (r4,π3) ), ( e4, (r5,π4) ), ( e5, (r1,π5) ),
( e6, (r1,π6) )}
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alone(jack) hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1) hasOwner (jack,Null2)stray(jack)

adoption(jack) keep(jack)

(r2,π1) (r3,π2)(r4,π3)

(r5,π4) (r1,π5) (r1,π6)

Figure 3.14: Graph of Atom Dependency for the oblivious chase of
Example 3.1

3.2.1 GAD Construction and Chases Variants

The Graph of Atom Dependency is constructed using a chase. The chase
choice directly affects how the GAD is built. The algorithm to construct
a GAD = (V,E) using a σ-chase is run alongside the chase on an exhaus-
tive breadth-first derivation of the knowledge base and takes as input the
breadth-first derivation and the derivation reducer of the chase (as described
by Algorithm 3.1): for each possible rule application, if it generates new
facts (according to the chase derivation reducer), then these new facts are
added to the set of nodes. Else, if no new facts are generated for the last
breadth-first rule application step (i.e. the chase stops) then the algorithm
terminates. Given that each chase considers “new facts” differently, a proce-
dure named HandleRuleApplication that handles rule applications is called.
This procedure is specific to the type of chase and its aim is to create edges
between the used facts and the generated ones of each rule application.

The algorithm is finite if the chase is finite and its complexity depends on
the complexity of HandleRuleApplication since the tests in lines 3, 5, and 7
of Algorithm 3.1 can be done in polynomial time. The call to the procedure
HandleRuleApplication is what differentiates a Graph of Atom Dependency
from a chase graph.

In what follows, we define the HandleRuleApplication procedure for the
various kinds of chase: oblivious, frontier, and restricted.

Oblivious Chase. It ensures that a rule is never applied more than once
with the same homomorphism, thus two rule applications are considered
the same (i.e. redundant) if they used the same rule with the same ho-
momorphism. Due to the simplicity of this test, the HandleRuleApplication
procedure (defined in Algorithm 3.2) for the oblivious chase simply ensures
that for any rule application, if an edge representing it has not already been
created, it creates it and adds it to the set of edges. This algorithm is
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Algorithm 3.1 GAD construction with chase

Function ChaseGAD (δ ,σ)
input : δ : An exhaustive breadth-first derivation of a knowledge base,

σ : The derivation reducer
output: GAD = (V,E) : Graph of Atom dependency w.r.t. F and R

1 V← F0; E← ∅; GAD ← (V,E);
2 foreach Di = (Fi , ri ,πi ) ∈ δ do
3 if Facts(σ (Di )) , Facts(σ (Di−1)) then
4 foreach v ∈ πi (Head(ri )) do
5 if v < V then
6 Add v to V;

7 else if No new facts are generated for the last breadth-first step then
8 break;

9 HandleRuleApplication(δ ,Di ,GAD);

10 return GAD;

polynomial because checking if an edge is part of the set of edges is polyno-
mial. The GAD of the oblivious chase of the animal shelter Example 3.1 is
depicted in Figure 3.14 on the preceding page.

Algorithm 3.2 Handle rule applications for oblivious chase

Procedure HandleRuleApplication (δ ,Di ,GAD)
input : δ : An exhaustive breadth-first derivation of KB,

Di = (Fi , ri ,πi ) : rule application tuple,
GAD = (V,E) : graph of atom dependency

1 if e = (πi (Hi ),πi (Ci )) < E then
2 Add e to E;

The following proposition states that for any rule application in an ex-
haustive breadth-first derivation of a knowledge base, there exists an edge
representing it in the generated GAD using Algorithms 3.1 and 3.2, meaning
that no rule application is lost.

Proposition 3.5 (GAD σobl -chase Completeness). Given a knowledge
base KB = (F,R,N,�) expressed in L∀∃ and GAD = (V,E) generated by a
finite oblivious chase, for all (ri ,πi ) possible rule applications in KB, ∃e ∈ E
such that e = (πi (Body(ri )), πi (Head(ri ))).

Proof. We prove this by construction. Given a knowledge base KB and an
exhaustive breadth-first derivation δ of KB, since for any Di = (Fi , ri ,πi ) ∈ δ
until the last breadth-first step k in which all possible rule applications have
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been applied at least once in δ , HandleRuleApplication is called (as per Algo-
rithm 3.1), if e = (πi (Body(ri )), πi (Head(ri ))) < E then it is added, otherwise it
already exists. Therefore all possible rule applications are represented with
an edge. �

Frontier/Skolem Chase. For this chase, a rule application is redundant
if its rule has already been applied with the same mapping of the frontier
variables. The HandleRuleApplication for the frontier chase (defined in Algo-
rithm 3.3) ensures that if a rule application tuple Di = (Fi , ri ,πi ) is applying
a rule that has already been applied with a homomorphism πj having the
same mapping of frontier variable as πi , then an edge starting from the facts
used by this rule application Di to the generated facts of the previous rule
application D j is added to the set of edges (if it does not already exists).
Otherwise Di is not redundant and the edge representing it is added to the
set of edges. This algorithm is simply applying the same tests made by the
frontier derivation reducer and its complexity is the same as the frontier
chase (polynomial data complexity and exponential combined complexity)
[Marnette, 2009].

Algorithm 3.3 Handle rule application for Frontier chase

Procedure HandleRuleApplication (δ ,Di ,GAD)
input : δ : An exhaustive breadth-first derivation of KB,

Di = (Fi , ri ,πi ) : rule application tuple,
GAD = (V,E) : graph of atom dependency

1 if ∃D j = (Fj , r j ,πj ) ∈ δ s.t. j < i, r j = ri , and πj |f r (r j )(Head(r j )) =

πi |f r (ri )(Head(ri )) then
2 if e = (πi (Body(ri )),πj (Head(ri ))) < E then
3 Add e to E;

4 else
5 Add e = (πi (Body(ri )),πi (Head(ri ))) to E;

Similarly to Proposition 3.5, Proposition 3.6 states that no possible rule
application is lost, even if it does not generate new facts, it is still added to
the edges of the GAD.

Proposition 3.6 (GAD σf r -chase Completeness). Given a knowledge
base KB = (F,R,N,�) expressed in L∀∃ and GAD = (V,E) generated by
a frontier chase, ∀(ri ,πi ) possible rule applications in KB, ∃e ∈ E such
that e = (πi (Body(ri )), πi (Head(ri ))) or e = (πi (Body(ri )), πj (Head(ri ))) where
πj |f r (ri ) = πi |f r (ri ).

Proof. We prove this by construction. Given a knowledge base KB =

(F,R,N,�) and an exhaustive breadth-first derivation δ of KB, since for
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any Di = (Fi , ri ,πi ) ∈ δ until the last breadth-first step k in which all possi-
ble rule applications have been applied at least once in δ , HandleSameAtoms
is called (as per Algorithm 3.1). There are three possible cases: first, if a
rule has never been applied with the same homomorphism for the frontier
variables then the edge representing it is simply added. Second, if it has
been applied with the same frontier mapping then an edge is added with a
head pointing to the previously generated facts. Third, if it has been applied
with the same homomorphism then the edge representing it already exists.
Therefore all possible rule applications are represented with an edge. �

The GAD of the frontier chase of the animal shelter Example 3.1 is
the same as the one constructed using the oblivious chase (depicted in Fig-
ure 3.14 on page 80). However, since HandleRuleApplication for the frontier
chase is more general than the one for the oblivious chase, it might result
in different GADs for the same knowledge base as shown in the following
Example 3.4.

Example 3.4 (Oblivious vs Frontier GAD). Consider the knowledge
base KB = (F,R,N,�) where:

• F = {p(a,b),p(a, c)}

• R = {r1 : ∀X ,Y p(X ,Y ) → ∃Z q(X ,Z ); r2 : ∀X ,Y q(X ,Y ) → t(X )}.

A possible oblivious chase of KB:

σobl -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {q(a,Null1)}, r1,π1 = {X → a, Y → b}),

(F2 = F1 ∪ {q(a,Null2)}, r1,π2 = {X → a, Y → c}),

(F3 = F2 ∪ {t(a)}, r2,π3 = {X → a,Y → Null1}),

(F4 = F3 ∪ {t(a)}, r2,π4 = {X → a,Y → Null2})〉

The rule applications of r1 on p(a, c) and r2 on q(a,Null2) are not con-
sidered redundant by the oblivious chase reducer because the same rules are
applied with a different homomorphism. However, for the frontier chase re-
ducer, applying r1 on p(a,b) is the same as applying it on p(a, c) because they
have the same mapping for frontier variable (i.e. π1 |f r (r1) = π2 |f r (r1)). A
possible frontier chase of KB:

σf r -chase(F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {q(a,Null1)}, r1,π1 = {X → a, Y → b}),

(F2 = F1 ∪ {t(a)}, r2,π2 = {X → a,Y → Null1})〉

The Graphs of Atom Dependency GADσobl and GADσf r generated by σobl -chase(F,
R) and σf r -chase(F,R) are shown in Figures 3.15 and 3.16 respectively.
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p(a,b) p(a, c)

q(a,Null1) q(a,Null2)

t(a)

(r1,π1) (r1,π2)

(r2,π3) (r2,π4)

Figure 3.15: GADσobl from oblivious
chase of Example 3.4

p(a,b) p(a, c)

q(a,Null1)

t(a)

(r1,π1) (r1,π2)

(r2,π3)

Figure 3.16: GADσf r from frontier
chase of Example 3.4

The structural differences between a GAD constructed using an oblivious
chase and a GAD constructed using a frontier chase can be quantified as
shown in the following proposition.

Proposition 3.7 (Structural link between GADs obtained by obliv-
ious and frontier chases). Let GADσobl = (Vσobl ,Eσobl ) and GADσf r =

(Vσf r ,Eσf r ) be two Graphs of Atom Dependency for (F,R) generated by an
oblivious and a frontier chase respectively. If the oblivious chase is finite,
then |Vσf r | ≤ |Vσobl | and |Eσf r | ≤ |Eσobl |.

Proof. Given that frontier is stronger than the oblivious chase (cf. Propo-
sition 2.1 on page 21) more rule applications might be removed, thus some
facts containing nulls might not be generated compared to the oblivious
chase, therefore |Vσf r | ≤ |Vσobl | and |Eσf r | ≤ |Eσobl |. �

Furthermore, since rule applications are not lost given Propositions 3.5
and 3.6, the generated GADs by an oblivious or a frontier chase would always
yield the same number of derivations for the same fact containing the same
rule applications. In Example 3.4, the derivations for t(a) using oblivious
chase are:

• δ1 = 〈(F0 = {p(a,b)}, ∅, ∅) , (F1 = F0 ∪ {q(a,Null1)}, r1,π1), (F2 = F1 ∪

{t(a)}, r2,π3)〉

• δ2 = 〈(F0 = {p(a, c)}, ∅, ∅) , (F1 = F0 ∪ {q(a,Null2)}, r1,π2), (F2 = F1 ∪

{t(a)}, r2,π4)〉.

The derivations for t(a) using frontier chase are:

• δ1 = 〈(F0 = {p(a,b)}, ∅, ∅) , (F1 = F0 ∪ {q(a,Null1)}, r1,π1), (F2 = F1 ∪

{t(a)}, r2,π3)〉

• δ2 = 〈(F0 = {p(a, c)}, ∅, ∅) , (F1 = F0 ∪ {q(a,Null1)}, r1,π2), (F2 = F1 ∪

{t(a)}, r2,π3)〉.
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Restricted Chase. A rule application is redundant in the restricted chase
if the facts it generates can be mapped to existing ones. The HandleRule-
Application for the restricted chase (defined in Algorithm 3.4) ensures that
if there is a homomorphism π ′ from the body and the head of the rule to
the existing set of facts (meaning that this rule application and its homo-
morphism are not “useful”) then an edge starting from the used facts to the
previously generated ones is added (if it does not already exist in the set of
edges). Otherwise, this rule application and its homomorphism are useful
and an edge representing it is added. This algorithm is simply applying the
same tests made by the restricted derivation reducer and its complexity is
the same as the restricted chase which is polynomial data complexity and
exponential combined complexity [Fagin et al., 2005].

Algorithm 3.4 Handle same atoms for restricted chase

Procedure HandleRuleApplication (Fi−1,Di ,GAD)
input : δ : An exhaustive breadth-first derivation of KB,

Di = (Fi , ri ,πi ) : rule application tuple,
GAD = (V,E) : graph of atom dependency

1 if ∃π ′ s.t. π ′(Head(ri )) ⊆ Fi−1 then
2 /* πi is not a useful homomorphism */
3 if e = (π (Body(ri )),π

′(Head(ri ))) < E then
4 Add e to E;

5 else
6 /* πi is a useful homomorphism */
7 Add e = (πi (Body(ri )),πi (Head(ri ))) to E;

Similarly to Propositions 3.5 and 3.6, Proposition 3.8 states that no rule
application is lost for the restricted chase.

Proposition 3.8 (GAD σr es -chase(F,R) Completeness). Given a knowl-
edge base KB = (F,R,N,�) expressed in L∀∃ and GAD = (V,E) generated by
a frontier chase, ∀(ri ,πi ) possible rule applications in KB, ∃e ∈ E such that
e = (πi (Body(ri )),πi (Head(ri ))) or e = (π (Body(ri )),π

′(Head(ri ))) where π ′ is a
homomorphism such that π ′(Head(ri )) ⊆ Fi−1.

Proof. We prove this by construction. Given a knowledge base KB =

(F,R,N,�) and an exhaustive breadth-first derivation δ of KB, since for
any Di = (Fi , ri ,πi ) ∈ δ until the last breadth-first step k in which all possi-
ble rule applications have been applied at least once in δ , HandleSameAtoms
is called (as per Algorithm 3.1). There are three possible cases: (1) either
the generated facts can be mapped to existing ones (π is not useful) then an
edge is added with a head pointing to the previously generated atoms, or (2)
the generated facts are new (π is useful) then the edge representing its rule
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application is simply added, or (3) the rule application already exists then
the edge representing it has been previously added. Therefore all possible
rule applications are represented with an edge. �

The GAD of the restricted chase of the animal shelter Example 3.1 is
shown in Figure 3.17, it is the same if r2 is applied before r3 or not.

alone(jack) hasCollar (jack) hasMicrochip(jack)

hasOwner (jack,Null1)stray(jack)

adoption(jack) keep(jack)

(r2,π1) (r3,π1)(r4,π2)

(r5,π3) (r1,π4)

Figure 3.17: Graph of Atom Dependency for the restricted chase of
Example 3.1 if r3 is applied before r2

Since the restricted derivation reducer is stronger than the frontier one,
HandleRuleApplication might result in different GADs for the same knowl-
edge base as shown in Figures 3.14 and 3.17. They would yield however,
the same number of derivations containing the same rule applications for
the same fact since rule applications are not lost given Propositions 3.6 and
3.8. The structural differences between a GAD constructed using a frontier
chase and a GAD constructed using a restricted chase is quantified in the
following Proposition 3.9.

Proposition 3.9 (Structural link between GADs obtained by fron-
tier and restricted chases). Let GADσf r = (Vσf r ,Eσf r ) and GADσr es =

(Vσr es ,Eσr es ) be two Graphs of Atom Dependency for a knowledge base KB =

(F,R,N,�) generated by a restricted and a frontier chase respectively. If the
frontier chase is finite, then |Vσr es | ≤ |Vσf r | and |Eσr es | ≤ |Eσf r |.

Proof. Given that the restricted reducer is stronger than the frontier reducer
(cf. Proposition 2.1) more rule applications might be removed, thus some
facts containing nulls might not be generated compared to the frontier chase,
therefore |Vσr es | ≤ |Vσf r | and |Eσr es | ≤ |Eσf r |. �

3.2.2 Derivation Extraction

The intuition behind the use of the GAD is that, for a given GAD and a
given facts f , there is a one-to-one mapping, up to derivation equivalence,
between the set of hyperpaths to f and the set of derivations to f . Therefore,
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once the GAD constructed (by considering the different chase mechanisms)
the problem of obtaining all derivations for f can be transformed into the
problem of generating all hyperpaths from the starting set of facts to f .

Two derivations for a fact are equivalent if they have the same set of
facts and the same set of applied rules (along with their respective homo-
morphisms).

Definition 3.7 (Derivation Equivalence). Given two derivations δ and
δ ′ for a fact f , we say that δ and δ ′ are equivalent (denoted δ ' δ ′) iff:

•
⋃

D∈δ f act(D) =
⋃

D′∈δ ′ f act(D
′) and

•
⋃

D∈δ (rule(D),homorph(D)) =
⋃

D′∈δ ′(rule(D
′), homorph(D ′))

Derivations are constructed from the hyperpaths of the GAD. The fol-
lowing proposition shows that for every hyperpath of the GAD starting from
a subset of the initial set of facts to a certain fact we can construct an equiva-
lent derivation for that fact. This will ensure the soundness of the hyperpath
generation with respect to the problem of generating all derivations.

Proposition 3.10 (Hyperpath Soundness w.r.t. a Derivation). Let
GAD be a Graph of Atom Dependency generated by applying a σ-chase(F,R)
on a set of facts F w.r.t. a set of rules R. If there exists a hyperpath ΘS/f
in GAD from S ⊆ F to a fact f , then there exists a derivation δ for f .

Proof. We prove this by construction. Since ΘS/t starts from a subset of
the initial set of facts F then there is at least one acyclic ordering of its
hyperedges [Gallo et al., 1993] 〈e0, . . . , ek 〉. Based on this ordering we can
generate a sequence equivalent to the derivation for f as follows: D0 = (F0 =
S, ∅, ∅) and Di = (Fi = Fi−1 ∪ head(ei ), ri ,πi ). �

The following proposition indicates that for a given GAD and for a given
hyperpath ΘS/f in that GAD, the derivations for f that can be constructed
from ΘS/f are equivalent.

Proposition 3.11 (Hyperpath Soundness). Given a GAD of a knowl-
edge base KB = (F,R,N,�) and a hyperpath ΘS/f in GAD from S ⊆ F to a
fact f , all the possible derivations for f generated from ΘF/t are equivalent.

Proof. We prove this by construction. Since ΘS/t starts from a subset of
the initial set of facts F then there is at least one acyclic ordering of its
hyperedges [Gallo et al., 1993]. In fact, ΘF/t can have different acyclic
orderings of its hyperedges [Gallo et al., 1993]. Derivations generated from
these valid orderings contain the same facts and rule applications since all
ordering are for the same hyperedges. Thus, the generated derivations are
equivalent. �
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Let us now show that the completeness holds. More precisely we can
show that for a given knowledge base and its GAD, if there is a derivation
for a fact, then there is a hyperpath in the GAD from a subset of the initial
set of facts to this fact.

Proposition 3.12 (Hyperpath Completeness). Given a knowledge base
KB = (F,R,N,�), if there is a derivation δ for f in KB, then there exists
a hyperpath ΘS/f in the GAD of KB such that S ⊆ F and any derivation
extracted from ΘS/f is equivalent to δ .

Proof. We prove this by contradiction. Let us suppose that there exists a
derivation δ for a fact f in KB such that no hyperpath ΘS/f with S ⊆ F can
be constructed in the associated GAD. This means that a rule application
in the derivation is not present in the hyperpath. which implies that in
the construction of the GAD this rule application has not been considered.
This is impossible given the results of the completeness of GAD construction
using different chase variants (Propositions 3.5, 3.6, and 3.8). �

In order to construct all non-equivalent derivations from a set of facts F

to a fact f we only need to find all hyperpaths from F to f and then construct
an acyclic ordering of their edges. To compute the paths (sequences of
hyperedges) from S ⊆ F to f we start from the node representing f and
we branch backward using the incoming edges. The function that lists the
incoming edges is called the backward star [Nguyen and Pallottino, 1989]
and is defined as follows: BS(v) = {e ∈ E|v ∈ head(e)}. The recursive function
FP defined in Algorithm 3.5 computes all acyclic paths that connect a subset
of F to an atom f using backward branching; we then use these paths in
the procedure FindAllHyperpaths in order to construct the hyperpaths.

The Algorithm 3.5 is a modification of [Nguyen and Pallottino, 1989]
to take into account hyperedges rather than hyperarcs, it extracts all hy-
perpaths from a source to a target. The function FP is called in the worst
case maxdepth × branchinд times where maxdepth is the maximum depth of
the GAD and branchinд is the branching factor (maximum number of in-
coming edges). This function has a cost of O(branchinд2 × n3) (where n is
the number of nodes) since it performs a Cartesian product (O(n2)) and a
cycle check (O(n)) [Pandy and Chawla, 2003], the over all execution cost

is O(nk
(maxdepth×branchinд)

) where k is a constant. Therefore the combined
complexity of Algorithm 3.5 is exponential while its data complexity is poly-
nomial since data complexity considers the set of rules and subsequently the
set of edges fixed which makes maxdepth and branchinд constants as they
depend on the number and the body size of the rules.

The following Algorithm 3.6 is sound and complete with respect to the
problem of all hyperpaths generation. The soundness is straightforward as
the output is a list of hyperpaths by construction. The completeness can be
proved by contradiction. Let us suppose that there exists a hyperpath that
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Algorithm 3.5 Compute Paths

Function FP (S, t)
input : S : source nodes, t : target node
output: paths: set of all paths between S and t

1 paths ← {};
2 if t ∈ S then
3 return {}; /* t is part of the starting set S; stopping condition */

4 if BS(t) = ∅ then
5 return null; /* t has no incoming edges, thus there is no path from

S to t i.e. no derivation for t */

6 foreach e ∈ BS(t) do
7 path ← {e};
8 tmp ← {};
9 foreach v ∈ tail(e) do

10 /* Compute all possible paths for all nodes in the tail of e */
tmp ← FP (S,v) × tmp; /* Cartesian product */

11 /* Add the edge e to all paths for the nodes in its tail */
If adding e to a path in tmp creates a cycle remove it from tmp;
paths ← (path × tmp);

12 return paths;

has not been outputted by the algorithm. This means that there exists a
path not computed by Algorithm 3.5, implying that there exists an incoming
edge to a node that is not part of the backward star of that node which is
impossible.

Algorithm 3.6 Construct Hyperpaths

Function FindAllHyperpaths (S, t)
input : S : source nodes, t : target node
output: hyperpaths: set of all hyperpaths between S and t

1 hyperpaths ← {}; paths ← FP(S, t);
2 foreach path ∈paths do
3 V← S;
4 E← path;
5 foreach e ∈ E do
6 Add head(e) and tail(e) to V;

7 Add H = (V,E) to hyperpaths;

The complexity of constructing the Graph of Atom Dependency and
extracting all derivations for a fact f using the previous algorithms is expo-
nential combined complexity and polynomial data complexity.
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After addressing the problem of derivation loss has, in the next section we
present a tool for defeasible reasoning with existential rules using Dialectical
Trees that relies on the Graph of Atom Dependency.

3.2.3 Graph of Atom Dependency at Work: DEFT Tool

In this section we present our chase-based implementation of defeasible
Datalog± (cf. L∀∃ in Section 2.2.1 on page 28) with dialectical trees called
DEFT1 that allows for lossless derivation extraction using the Graph of
Atom Dependency.

Annotated 
DLGP Files GRAAL GAD Dialectical

Tree
Results

Figure 3.18: Simplified DEFT Architecture.

Implementation. DEFT architecture (depicted in Figure 3.18) relies on
the Datalog± dedicated inference engine called GRAAL [Baget et al., 2015]
that accepts a wide variety of formats (OWL2, RuleML and the Datalog±

format DLGP [Baget et al., 2015]). To represent defeasible facts and rules
we update DLGP to allow for the strict implication “<-” and the defeasible
implication “<=” as shown in Example 3.5.

Example 3.5 (DLGP representation of Example 3.1). The DLGP
representation of the animal shelter defeasible knowledge base:

% −−−−−−−−−−−−−−−−−−−−−−−−− Rules −−−−−−−−−−−−−−−−−−−−−−−−
[ r1 ] keep (X) <− hasOwner (X,Y) .
[ r2 ] hasOwner (X,Y) <= h a s C o l l a r (X) .
[ r3 ] hasOwner (X,Y) <= hasMicrochip (X) .
[ r4 ] s t r a y (X) <= al o n e (X) .
[ r5 ] a d op t i on (X) <− s t r a y (X) .
% −−−−−−−−−−−−−−−−−− N e g a t i v e C o n s t r a i n t s −−−−−−−−−−−−−−−−
! <− keep (X) , a d o p t i o n (X) .
% −−−−−−−−−−−−−−−−−−−−−−−−− Facts −−−−−−−−−−−−−−−−−−−−−−−−
a l on e ( j a c k ) <− .
h a s C o l l a r ( j a c k ) <− .
hasMicrochip ( j a c k ) <− .

We run the frontier chase using the GRAAL framework and create the
GAD. We then generate the arguments for a query and use a preference
criterion to compute their dialectical tree. DEFT can either use explicit
preferences based on rule labels or rely on the general specificity criterion

1Available at: https://github.com/hamhec/DEFT

90

https://github.com/hamhec/DEFT


3.3. BENCHMARK FOR DEFEASIBLE REASONING TOOLS

[Garćıa and Simari, 2004, Stolzenburg et al., 2003] which favors two aspects
in an argument: it prefers a more precise argument (relying on more atoms)
or a more concise argument (relying on fewer rules). DEFT’s API also
provides hooks to define custom preference functions if needed.

DEFT is the first tool for defeasible reasoning with existential rules
(without defeater rules). In order to assess the performance overhead of
relying on the Graph of Atom Dependency to avoid derivation loss, we de-
fine a benchmark that tests the performance of defeasible reasoning tools
and their limitations for each considered feature of defeasible reasoning (cf.
Section 2.2.2). This benchmark can also be used to analyze defeasible rea-
soning implementations and classify them based on their semantics (e.g.
ambiguity handling), expressiveness (e.g. existential rules).

3.3 Benchmark for Defeasible Reasoning Tools

An inherent characteristic of defeasible reasoning is its systematic reliance
on a set of intuitions and rules of thumb, which have been longly debated be-
tween logicians [Horty et al., 1987, Makinson and Schlechta, 1991, Prakken,
2002, Antoniou, 2006]. For example, should an information that is derived
from a contested claim be used to contest another claim (i.e. ambiguity
handling)? Or, can different ‘chains’ of reasoning for the same claim be
combined to defend against challenging statements (i.e. team defeat)? How
strict rules are handled? etc. It appears that no single approach is appro-
priate in all situations, or for all purposes [Antoniou, 2006].

Several tools in the literature implement defeasible reasoning (cf. Sec-
tion 2.2.7), each one follows a certain set of intuitions. In this section we are
interested in defining a general benchmark that can be used by a data engi-
neer looking to select what tool to use to perform defeasible reasoning. It is
the first benchmark in the literature for first order logic defeasible reasoning
tools classification and analysis based on their semantics (e.g. ambiguity
handling), logical language (e.g. existential rules) and expressiveness (e.g.
priorities on rules). We stress that we do not want to compare the tools
amongst themselves to find the ‘best’ one. We want to be able to provide an
informative benchmark that will allow data scientists to better understand
the strengths of available tools and the intuitions they follow and allow for.
This is particularly important as some of the tools are not full implementa-
tions of the formalisms behind them and their features and chosen intuitions
are not explicitly stated in their description or companion papers.

3.3.1 Semantics, Expressiveness, and Performance

Let us now concretely discuss the various features concerning semantics,
expressiveness and performance based on the different intuitions behind
defeasible reasoning (cf. Section 2.2.2 on page 32). Please note that we do
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not discuss what intuitions are better to adopt, as these often conflict, our
aim is to facilitate the task of selecting what defeasible reasoning tool to use
based on the reasoning requirements and the data at hand.

Semantics. Different intuitions impact what conclusions are accepted or
rejected in a defeasible reasoning setting (cf. Section 2.2.2):

1. Ambiguity Handling: The intuition is whether information derived from
an ambiguous (i.e. contested) fact should be used to contest another
fact (ambiguity blocking / ambiguity propagating) [Stein, 1992].

2. Team Defeat: The absence of team defeat means that a rule r1 (or a
derivation) for a fact f attacked by another rule r2 for a conflicting
fact f ′ can only defend itself (meaning that for r1 to ‘survive’ it has to
be superior to r2 i.e. r1 � r2 and r2 � r1). However, if we allow team
defeat, r1 can be successfully defended by another rule r3 for f that is
superior to r2 (even if r1 is inferior to r2).

3. Floating Conclusions: Sometimes two conflicting and equally strong
rules (or derivations) might be used to generate the same fact down
the line [Makinson and Schlechta, 1991]. The intuition is whether this
fact should be considered entailed given that regardless of how conflicts
are handled it can always be concluded.

The following Example 3.6 explains the different effects of combining
ambiguity handling, team defeat, and floating conclusions.

Example 3.6. Consider the following KB = (F,R,N,�) that describes
the process of deciding whether to buy a product or go on a vacation:
An individual will not go on a vacation if he buys a smart-phone. He
will not buy a product if it is detrimental to the environment unless it
is cheap. He will also not buy it if it has slow delivery unless it has
good reviews. In either case he will take a loan to pay for the phone
or the vacation.

Suppose we have a cheap smart-phone with good reviews that is detri-
mental to the environment and with slow delivery. Should the in-
dividual buy it (i.e Q1 = buy(phone))? Should he go on a vacation
(Q2 = дo(vacation))? Will he take a loan (Q3 = take(loan))?:

• F = {> ⇒ дo(vacation), > → price(phone, cheap), > → reviews(phone,
дood), > → eco(phone,detrimental), > → delivery(phone, slow)}

• R = {r1 : ∀X price(X , cheap) ⇒ buy(Y ),
r2 : ∀X reviews(X ,дood) ⇒ buy(X ),
r3 : ∀X eco(X ,detrimental) ⇒ notBuy(phone),
r4 : ∀X ,Y derlivery(X , slow) ⇒ notBuy(phone),
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r5 : ∀X buy(X ) ⇒ take(loan),
r6 : ∀X buy(X ) ⇒ notGo(vacation),
r6 : дo(vacation) ⇒ take(loan)}

• N = {∀X buy(X ) ∧ notBuy(X ) → ⊥,
дo(vacation) ∧ notGo(vacation) → ⊥}

• (r1 � r3), (r2 � r4)

- Q1 = buy(phone) entailment: in presence of team defeat, buy(phone)
is not ambiguous because for each chain of reasoning using a rule r
for notBuy(phone) there is a chain of reasoning using a rule r ′ for
buy(phone) such that r ′ � r (i.e. (r1 � r3), (r2 � r4)). Therefore
KB �TD buy(phone) and KB 2TD notBuy(phone).

In the absence of team defeat, buy(phone) is ambiguous because there
is no chain of reasoning for buy(phone) that can defend itself from
all attacks: even if r1 defends itself from r3 (because r1 � r3), it
does not defend against r4 (since r1 � r4 and r4 � r1), and the
same applies for r2: it defends against r4 but not against r3 because
r2 � r3 and r3 � r2. Therefore KB 2nTD buy(phone) and KB 2nTD

notBuy(phone).

- Q2 = дo(vacation) entailment: In an ambiguity blocking setting, if
buy(phone) is ambiguous (absence of team defeat) then notGo(vacation)
is also ambiguous and cannot be used to contest дo(vacation). There-
fore KB �nTDblock дo(vacation) and KB 2nTDblock notGo(vacation). On the
other hand if buy(phone) is not ambiguous (presence of team defeat)
then notGo(vacation) does not rely on an ambiguous fact and can be
used to contest дo(vacation). Therefore KB 2TDblock дo(vacation) and
KB 2TDblock notGo(vacation).

In an ambiguity propagating setting, whether buy(phone) is ambigu-
ous or not, it can always be used to generate notGo(vacation) and
contest дo(vacation). Therefore KB 2prop дo(vacation) and KB 2prop
notGo(vacation).

- Q3 = take(loan) entailment: If floating conclusions are allowed
then take(loan) can be derived, it can also be derived if buy(phone) is
entailed (presence of team defeat).

4. Handling of Strict Rules: In some defeasible reasoning tools, such as
the ones based on Defeasible Logics, facts that are not in direct conflict,
and that are defeasibly derived from non ambiguous ones, are accepted
(even if the application of strict rules and facts generates conflict).
Other formalisms reject any fact that leads to conflict when strict
rules and facts are applied.

Example 3.7 (Consistent Answers). Consider the following knowl-
edge base KB = (F,R,N, ∅):
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• F = {> ⇒ incrim(e1,alice), > ⇒ absolv(e2,alice)}

• R = {r1 : ∀X ,Y incrim(X ,Y ) → resp(Y ),
r2 : ∀X ,Y absolv(X ,Y ) → notResp(X )}

• N = {∀X resp(X ) ∧ notResp(X ) → ⊥}

The facts incrim(e1,alice) and absolv(e2,alice) are entailed in some
formalisms because there is no direct attack on them, however other
formalisms consider that these facts are not entailed because they lead
to a conflict if strict rules are applied.

Expressiveness. Reasoning tools can be classified w.r.t. the expressive-
ness of their underlying language:

1. Rules with Existential Variables: This logical fragment is useful in ap-
plication such as Ontology Based Data Access (OBDA) [Lenzerini,
2002] and Semantic Web [Cali et al., 2010b]. Detecting support for
existential rules is tricky since most defeasible reasoning tools omit
quantifiers which might lead to unwanted results. Variables appearing
in the head of rules are sometimes considered existential variables,
for example the rule p(X ) → q(X ,Y ) can be either interpreted as
∀Xp(X ) → ∃Yq(X ,Y ) or ∀X ,Yp(X ) → q(X ,Y ). Example 3.8 shows
how this affects reasoning.

Example 3.8. Consider the following situation where “jack” is a mur-
derer and “john” is a victim. A murderer is a person who killed some-
one. This situation is described in KB = (F,R,N,�):

• F = {> ⇒murderer (jack), > ⇒ victim(john)}.

• R = {murderer (X ) → killed(X ,Y )}.

If we run the query Q = killed(jack, john) (did jack kill john?) using
a tool that does not take into account existential variables the answer
would be “true” because it assumes that all known constants (per-
sons) are killed by all murderers (i.e. ∀X ,Y murderer (X ) ∧ >(Y ) →
killed(X ,Y )). In fact, it will also consider that killed(jack, jack) is
“true” (jack killed himself).

However if we run the query Q using a tool that supports existential
variables, the answer would be “false” since it is not possible to make
the link between the generated Null and the constant “john”.

2. Cycles: We consider two types of cycles: Support cycles (when the
Graph of Rule Dependency is cyclic) and Attack cycles (cf. Sec-
tion 2.2.2 on page 32). In presence of a cyclic GRD some inference
mechanisms (such as SLD resolution [Apt and Van Emden, 1982])
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might loop infinitely. Cyclic conflict happens when two chains of rea-
soning attack each other at different levels as shown in Example 3.9.
Some logics (such as Defeasible Logics) would loop infinitely in such
situations.

Example 3.9 (Attack Cycle). Let KB = (F,R,N,�):

• F = {> ⇒ p(a),> ⇒ q(a)}.

• R = {∀X p(X ) ⇒ nq(X ), ∀X q(X ) ⇒ np(X )}

• N = {∀X p(X ) ∧ np(X ) → ⊥, ∀X q(X ) ∧ nq(X ) → ⊥}

Evaluating the query Q = np(a) would result in an infinite cycle if the
arguments are evaluated on construction. Otherwise the answer to Q
is ‘false’.

3. Rule Application Blocking: Some situations require that rules are pre-
vented from being applied. For example we might want to express that
a fact should not be derived for some reason, and at the same time
its conflicting fact is not necessary derived either. This solves some
non-intuitive results of certain logics [Prakken, 2002]. Blocking rule
applications can be achieved in two ways, either by giving rules labels
and considering them as atoms, or by using defeater rules.

Example 3.10. Birds generally fly. We cannot say that birds with
broken wings can fly or not. Let KB = (F,R,N,�):

• F = {> ⇒ bird(tweety),> ⇒ brokenWinдs(tweety)}.

• R = {r1 : ∀X bird(X ) ⇒ f ly(X ),
r2 : ∀X brokenWinдs(X ) notFly(X )}.

• N = {∀X f ly(X ) ∧ notFly(X ) → ⊥}

Or, if we use rule labels:

• F = {> ⇒ bird(tweety),> ⇒ brokenWinдs(tweety)}.

• R = {r1 : ∀X bird(X ) ⇒ f ly(X ),
r2 : ∀X brokenWinдs(X ) ⇒ ¬r1}.

The answer to the query Q = f ly(tweety) is “false”.

4. Priority Relation: Priorities between rules are used to resolve ambigu-
ities. These priorities can be expressed in various manners: (1) either
by using decimal numbers (between 0.0 and 1.0), or (2) a partial ex-
plicit priority relation using the labels of rules, or (3) even not rely
on an explicit priority relation but rather to use an implicit one like
generalized specificity [Garćıa and Simari, 2004].
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5. Type of Queries: All defeasible tools support at least atomic boolean
ground queries, but some of them allow for conjunctive ground and
non-ground queries.

Basic Performance. Independently of the semantics or expressiveness of
tools, basic performance relates to simple situations where there are long
derivations, a large number of short derivations, or many derivations for
the same fact. This indicator is not meant to identify the best performing
tools, as most of the time performance must be sacrificed for semantics or
expressiveness. However it can be used to decide what tool could be used
when requirements and data at hand allow the use of two or more tools.

3.3.2 Benchmark Description

The benchmark provides indications on how defeasible reasoning tools are
handling the previously described features (their support and subsequent
scaling up).

Benchmarking Methodology. We build upon the propositional defea-
sible logic performance-oriented benchmark from [Maher et al., 2001] that
generates various parameterized knowledge bases (also known as theories).
We adapt existing theories for the first order language and extend them with
twelve additional theories to account for features listed in the previous sec-
tion. These theories serve two purposes: first, to test the tools’ ability to
handle the features (especially when these features are not explicitly stated
in the companion paper of the tools). Second, to test their performance
when faced with gradually complex situations requiring these features. For
example: does the tool allow for team defeat? How does it perform when
there are larger and larger instances requiring team defeat?

Before defining the benchmark, two key notions must be kept in mind:

1. To test the support for a semantics feature, this feature must be “iso-
lated”, meaning that the result of the query must only depend on the
feature and no other external factor. That is why most theories use
only defeasible rules (to avoid the disruptive effect of handling strict
rules) and no preferences.

2. While negative results (i.e. situations where tools are not able to give
the results required by a certain feature) are definitive, positive results
(i.e. situations where tools do provide the intended results of a feature)
on the other hand do not prove the feature is fully supported.

Benchmark Theories. Figures 3.19 and 3.20 give a representation of the
benchmark theories, dashed lines represent conflict,→,⇒ and are strict,
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defeasible, and defeater rules respectively. For simplicity we use strong
negation to represent negative constraints:

Figure 3.19: Representation of semantics theories

• Ambiguity: (denoted ambiдuity(n)) contains a chain of n rules si−1(a) ⇒
si (a), and two chains of 2n rules qi−1(a) ⇒ qi (a) and pi−1(a) ⇒ pi (a),
plus the rules sn(a) ⇒ ¬qn(a) and q2n(a) ⇒ ¬p2n(a), and the defeasible
facts s0(a), q0(a), p0(a). The query Q = p2n(a)? is not entailed (false) in
ambiguity propagating, but is entailed (true) in ambiguity blocking. The
parameter n allows the scaling of the theory to longer and longer chains
where conflicts appear further down the line.

• Team Defeat: [Maher et al., 2001] (denoted team(n)) each conclusion
is supported by a team of two defeasible rules and attacked by another
team of two defeasible rules. Preferences ensure that each attacking rule
is inferior to one of the supporting rules. The antecedents of these rules
are in turn supported and attacked by cascades (n levels) of teams of rules.
The query Q = p0(a)? is entailed if team defeat is allowed, otherwise, it is
not entailed.

• Floating Conclusions: (denoted f loatinд(n)) contains n couples of con-
flicting rules > ⇒ pi (a) and > ⇒ ¬pi (a), and n rules pi (a) ⇒ q(a). The
query Q = q(a)? is entailed if floating conclusions are allowed. The param-
eter n allows the scaling by creating more and more couples of conflicting
rules leading to the same conclusion.
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• Consistent Derivation: (denoted consistent(n)) contains two defeasible
facts p0(a), q0(a) and two chains of n strict rules of the form pi−1(a) → pi (a)
and qi−1(a) → qi (a) that lead to a conflict down the line because of the
rules pn(a) → pn+1(a) and qn(a) → ¬pn+1(a). The query Q = p0(a) is
not entailed if atoms need to be consistent w.r.t. strict rules (indirectly
consistent derivation), otherwise it is entailed.

Figure 3.20: Representation of some expressiveness theories

• Existential Rules: (denoted exist(n)) composed of n rules > ⇒ p(ai ),
and the rule without quantifiers p(X ) ⇒ q(X ,Y ). The query q = q(a0,an)?
is not entailed if existential rules are supported.

• Skolem-FES: (denoted skolemFES()) simply contains the sets of rules of
concrete classes of Skolem-FES shown in Example 2.9 chained so that
each set fires the next set of rules:

1. > ⇒ pr r (a,b), > ⇒ pr r (b, c),

2. ∀X ,Y ,Z pr r (X ,Z )∧pr r (Z ,Y ) ⇒ pr r (X ,Y )∧pwa(X ,Y ) (this rule is range-
restricted and prepares the atom pwa(a,b) for the next set of weakly
acyclic rules),

3. ∀X ,Y pwa(X ,Y ) ⇒ ∃Z rwa(Y ,Z ), ∀X ,Y rwa(X ,Y ) ⇒ pwa(Y ,X )∧pja(X ,Y )
(these rules are weakly-acyclic and generates the atom pja(a,b) for
the next set of rules),

4. ∀X ,Y pja(X ,Y ) ⇒ ∃Z r ja(Y ,Z ), ∀X ,Y r ja(X ,Y )∧r ja(Y ,X ) ⇒ pja(X ,Y )∧
qswa(X ) (these rules are jointly-acyclic and generate the atom qswa(a)
for the next set of rules),

5. ∀Xqswa(X ) ⇒ ∃Y pswa(X ,Y )∧pswa(Y ,X )∧pswa(X ,X ), ∀X pswa(X ,X ) ⇒
rswa(X ), ∀X rswa(X ) ⇒ ∃Yqswa(X )∧pmf a(X ,Y ) (these rules are super-
weakly-acyclic and generates the atom pmf a(a,Null) for the next set
of rules),
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6. ∀X ,Y pmf a(X ,Y ) ⇒ ∃Z ,T qmf a(Y ,Z ) ∧ pmf a(Z ,T ) ∧ p(X ) (this rule is
model-faithful-acyclic and generates the atom p(a)).

Evaluating the query Q = p(a)? would result in an infinite loop if Skolem-
FES existential rules are not supported.

• FUS: (denoted linear (n)) contains the rule > ⇒ p0(a,b), and a chain of
n linear rules of the form ∀X ,Y , pi−1(X ,Y ) ⇒ ∃Z , pi−1(X ,Z ) ∧ pi−1(Z ,Y ) ∧
pi (X ,Y ). The query Q = pn(a,b)? would result in an infinite loop if FUS
existential rules are not supported.

• GBTS: (denoted chainFrG(n)) contains the rule > ⇒ p0(a,b) ∧ p0(b, c),
and a chain of n frontier-guarded rules of the form ∀X ,Y ,Z , pi−1(X ,Y ) ∧
pi−1(Y ,Z ) ⇒ ∃W , pi−1(X ,W ) ∧ pi−1(W ,Y ) ∧ pi (X ,Y ) ∧ pi (Y ,W ). Evaluating
the query Q = pn(a,b)? would result in an infinite loop if GBTS existential
rules are not supported.

• Cyclic GRD: (denoted cyclicSupp(n)) contains the rule > ⇒ p1(a) and
a cyclic chain of n defeasible rules of the form pi (X ) ⇒ pi mod n(X ). Eval-
uating the query Q = p0(a)? might result in an infinite loop due to the
support cycle.

• Circular Reasoning: (denoted circular (n)) consists of a defeasible fact
¬p0(a) and a cycle of rules of the form pi (a) ⇒ pi mod n(a). Evaluating the
query Q = ¬p0(a) might result in an infinite loop due to circular reasoning.

• Cyclic Conflict: (denoted cyclicConf (n)) composed of the defeasible
facts p0(a), q0(a) and n cyclic conflict of the form pi (a) ⇒ ¬qi (a) and
qi (a) ⇒ ¬pi (a). Evaluating the query Q = pn+1(a)? might loop infinitely
due to the Attack cycle. The parameter n determines how many attack
cycles are generated.

• Rule Block: (denoted ruleBlock(n)) contains n rules > ⇒ pi (a) and
pi (a) ⇒ q(a), and a single defeater rule >  ¬q(a) that blocks all other
rules. The queries Q1 = q(a)? and Q2 = ¬q(a)? are not entailed. The
parameter n determines how many rules have to be blocked. This theory
tests performance with regards to handling rule applications blocking.

• Preference: [Maher et al., 2001] (denoted levels(n)) is a cascade of n
disputed conclusions pi (a). For each i, there are rules ri : > ⇒ pi (a) and
r ′i : pi+1 ⇒ ¬pi (a). For each odd i ≥ 1 a priority asserts that r ′i � ri . A
final rule > ⇒ pn+1(a) gives uncontested support for pn+1(a). The query
Q = p0(a)? is entailed if explicit preferences are respected. The parameter
n allows the scaling to n conflicts with preferences in order to determine
performance when faced with more and more preferences between rules.
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• Queries: (denoted query(n)) composed of n rules > ⇒ p(ai ), and the
rule ∀X , p(X ) ⇒ q(X ). The query Q = ∃Xq(X )? is entailed if existentially
closed queries are supported (as there are n atoms of the form q(ai )).

• Chain Theory [Maher et al., 2001] (denoted chain(n)) contains the rule
> ⇒ p0(a) and a chain of n defeasible rules of the form pi−1(X ) ⇒ pi (X ).
Evaluating the query Q = pn(a)? would test performance when faced with
a long chain of rules.

• Tree Theory [Maher et al., 2001] (denoted tree(n,k)) is a k-branching
tree of depth n in which every atom occurs once and p0(a) is its root. The
query Q = p0(a)? would test performance w.r.t. a large number of short
arguments.

• Directed Acyclic Graph Theory [Maher et al., 2001] (denoted daд(n,k))
is a k-branching tree of depth n in which every literal occurs k times. The
query Q = p0(a)? would test performance when faced with many argu-
ments for the same atom.

The generated knowledge bases have to be adapted to the format of each
tool. For example, rules can be transformed into an equivalent set of rules
with atomic head, defeater rules can be transformed into rules for negated
rule labels, negation can be represented with negative constraints, etc.

We conclude this section by an important remark: while the support for
Skolem-FES can be fully known since all concrete Skolem-FES classes are
represented, the support for other abstract classes FUS and GBTS is only
achieved via one concrete decidable classes. Not satisfying a concrete class
(e.g. linear) implies not satisfying the corresponding abstract class (e.g.
FUS rules). However, the inverse is not necessarily true.

3.3.3 Running the Benchmark on Tools

To the best of our knowledge, defeasible reasoning tools discussed in Sec-
tion 2.2.7 (ASPIC∗, DeLP∗, Flora-2, SPINdle, and DEFT) are the only still
functioning, publicly available tools for first order defeasible reasoning as of
the time of writing of this thesis.

A key notion to keep in mind is that we are not comparing the formalisms
themselves, we are comparing the tools based on those formalisms. A for-
malism might allow for more than what the tool presents. That is one of
the reasons that justify having a dedicated benchmark to better analyze and
understand the implementation of the tools. Furthermore, some of the tools
considered are prototypes, therefore they might not have been developed
with performance in mind.

Tools can only be compared on theories where they compute the same
results. That is why benchmark theories isolate the tested features. For ex-
ample, most theories rely on defeasible rules to avoid the effects of strict rules
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and were designed to avoid any effect of ambiguity blocking or propagating.
Furthermore, team defeat and preferences theories use explicit preferences
and different starting facts for each conflicting atoms to avoid the effects of
implicit preferences, that is also why we use the explicit preference of DeLP
rather than its generalized specificity.

All experiments presented in this section were performed on an Intel core
i7 2.60GHz quad core Linux machine with 8GB of RAM and a Java heap of
2GB. To avoid random performance fluctuations each test is performed five
times for each tool and we record the average in CPU execution time. The
experiments are reproducible 2.

Tools Benchmark Results. Table 3.1 presents the time (in CPU sec-
onds) required for each tool to answer the query according to the size and
type of the query (the execution time includes the time needed for parsing
the knowledge base and answering the query). ∞ denotes a stack overflow,
T .O . denotes a timeout (set to 5 minutes), and N .A. indicates that a test
theory is not applicable for that tool.

Results discussion. The main objective of the proposed benchmark is to
help with tools analysis and classification according to the type of knowledge
base and reasoning they can handle. To this end, from the results in Table
3.1, we can draw the following conclusions (summarised in Table 3.2):

• Semantics: The underlying theoretical and practical choices affect the
semantics the tools can handle:

Figure 3.21: Response time for
ambiдuity(n)

Figure 3.22: Response time for
team(n)

– Ambiguity Handling: ASPIC∗, DEFT and DeLP∗ cannot express ambi-
guity blocking and correspond to ambiguity propagation due to the
underlying formalisms. Flora corresponds only to ambiguity blocking

2https://github.com/anoConf/Benchmark
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Theory ASPIC∗ DeLP ∗ SPINdle Flora-2 DEFT

ambiдuity(n)

n = 50 0.44 (false) 148.17 (false) 0.11 (false) | 0.09 (true) 1.06 (true) 0.11 (false)

n = 1800 ∞ T .O . ∞ 17.237 (true) 12.503 (false)

n = 2000 ∞ T .O . ∞ 18.942 (true) ∞

team(n)
n = 4 0.227 (false) 301.19 (true) 0.289 (true) 4.358 (true) 0.287 (true)

n = 7 T .O . T .O . 109.46 (true) T .O . 201.917(true)

f loatinд(n)
n = 100 0.270 (false) 209.45 (false) 0.332 (false) 2.143 (false) 1.345 (false)

n = 5000 198.861 (false) T .O . 150.144 (false) T .O . 203.18 (false)

consistent (n)
n = 1000 0.193 (true) 269.984 (false) 0.703 (true) 5.292 (true) 2.969 (false)

n = 8000 8.321 (true) T .O . 8.854 (true) 36.821 (true) 239.504(f alse)

exist (n) n = 100 0.09 (true) 0.93 284.39 (true) 1.28 (true) 0.01 (false)

SkolemFES (n) n = 100 N .A. N .A. N .A. N .A. 253.62 (true)

l inear (n) n = 1 N .A. N .A. N .A. N .A. T .O .

chainFrG(n) n = 1 N .A. N .A. N .A. N .A. T .O .

cyclicSupp(n)
n = 1000 ∞ 291.37 (true) 0.35 (true) 5.712 (true) 0.44 (true)

n = 10000 ∞ T .O . 26.61 (true) 51.72 (true) 288.71 (true)

circular (n) n = 1000 ∞ 284.90 (true) 0.31 (true) 4.38 (true) 0.04 (true)

cyclicConf (n)
n = 5 0.627 (true) 55.89 (true) 0.903 (true) 0.922 (true) 0.106 (true)

n = 1000 T .O . T .O . T .O . T .O . 79.525 (true)

ruleBlock (n) n = 500 19.23 (true) N .A. 1.41 (true) 12.99 (true) N .A.

levels(n) n = 100 0.20 (true) 4.61 (true) 0.33 (true) 5.17 (true) 0.81 (true)

query(n) n = 100 N .A. N .A. N .A. 1.25 (true) N .A.

chain(n)
n = 600 108.05 (true) 99.46 (true) 0.24 (true) 2.35 (true) 0.33 (true)

n = 10000 ∞ T .O . 16.04 (true) 45.44 (true) 288.71 (true)

tr ee(n, 5)
n = 2 0.04 (true) 193.64 (true) 0.03 (true) 0.83 (true) 0.022 (true)

n = 7 ∞ T .O . ∞ 211.94 (true) 182.83 (true)

daд(n, 10)
n = 1 ∞ 239.75 (true) 7.51 (true) 18.41 (true) 19.53 (true)

n = 10 ∞ T .O . 60.82 (true) 113.53 (true) 73.05 (true)

Table 3.1: Execution time in seconds (selected results). ‘true’ and ‘false’
indicate query entailment and are used to check support of the feature (the

best time is shown in bold)

while SPINdle is the only tool that can handle both blocking and propa-
gating. Performance wise (Figure 3.21), DeLP∗ has a timeout at n = 10,
ASPIC∗ stops at n = 300, SPINdle at n = 1400, and DEFT n = 1800
due to stack overflow. Flora-2, DEFT, and SPINdle can scale to longer
chain of rules for ambiguous facts with significantly low response time.

– Team Defeat: Most tools allow only for team defeat except ASPIC∗ that
does not allow for it. While Defeasible Logics can represent the presence
and absence of team defeat, SPINdle and Flora-2 only implement the
presence of team defeat. SPINdle has the best performance, followed
by DEFT, ASPIC∗, Flora-2, then DeLP∗.
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Figure 3.23: Response time for
f loatinд(n)

Figure 3.24: Response time for
consistent(n)

– Floating Conclusions: None of the considered tools support floating con-
clusions due to their underlying formalisms.

– Handling Strict Rules: DEFT and DeLP∗ use indirectly consistent deriva-
tions while ASPIC∗, Flora and SPINdle do not. This directly impacts
performance results (as seen in Figure 3.24).

Feature ASPIC∗ DeLP∗ SPINdle Flora-2 DEFT

Ambiguity
Prop. X X X - X

Block. - - X X -

Team Defeat
TD - X X X X

noTD X - - - -

Floating FC - - - - -

Conclusions noFC X X X X X

Consistent Direct - X - - X

Derivation Indirect X - X X -

Existential Rules

S-FES - - - - X

FUS - - - - -

GBTS - - - - -

Cycles
Support - X X X X

Attack X X X X X

Rule Block X - X X -

Preference
� - X X X X

R X - - - -

Non-gound Queries - - - X -

Table 3.2: Classification results (Xindicates the tool supports the feature).
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• Expressiveness: The choice of the inference mechanism affects the ex-
pressiveness the tool can handle.

– Existential rules: ASPIC∗, DeLP∗, SPINdle, and Flora were not designed
to account for existential rules. As supported by the results of the
Existential theory, FES, FUS and GBTS are not applicable in their
context. DEFT can handle existential rules in general, and SkolemFES
rules in particular (due to its use of forward chaining), however it loops
infinitely in FUS and GBTS fragments.

– Cycles: DEFT, DeLP∗, and Flora can handle cyclic GRDs and circular
reasoning (support cycle) contrary to ASPIC+. This is due to the fact
that ASPIC∗ relies on SLD resolution (which loops infinitely in presence
of cycles in the GRD), while DEFT uses a chase mechanism (which is
guaranteed to stop when no existential rule is used). DeLP∗, SPINdle
and Flora rely on resolution with a grounding phase and cycle checks.
All considered tools can handle cyclic conflicts (attack cycles). However,
the attack cycle checks are not needed for DEFT since arguments are
evaluated after construction, that is why it outperforms other tools (e.g.
n = 1000 in Figure 3.26).

Figure 3.25: Response time for
cyclicSupp(n)

Figure 3.26: Response time for
cyclicConf (n)

– Rule Application Block: ASPIC∗ uses negated labels of rules to block
their application, SPINdle uses defeater rules, while Flora uses the
predicate ‘\cancel(label)’. DEFT and DeLP∗ have no support for such
feature. As seen in Table 3.1, SPINdle has the best performance fol-
lowed by Flora-2 and ASPIC∗.

– Preference between rules: ASPIC∗ uses decimal values to express priority
on rules (this priority relation is total and might lead to unwanted
behavior as it is hard to express incomparability between rules). DeLP∗,
SPINdle, Flora, and DEFT use a partial priority relation based on
labeled rules.

– Non-ground queries: Only Flora supports non ground queries.
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• Performance: In case of a tie in expressiveness or semantics, one can
use performance to make an informed choice on the tool to be used. From
Table 3.1 we can see that each tool makes trade-offs between performance
and expressiveness. In general, SPINdle has the best performance com-
pared to other tools, followed by DEFT and Flora-2. ASPIC∗ is as fast
as SPINdle on small knowledge bases but it does not scale well (cf. Fig-
ure 3.27). DEFT has the best performance when there are attack cycles
as shown in Figure 3.26. These differences in performance are due to
three main factors. First, grounding phase is costly. DEFT, for instance,
achieves its performance results thanks to its forward chaining algorithms
that ground rules on the fly, contrary to the other tools. Second, handling
cycles is costly. ASPIC∗ is faster than DeLP∗ for example because the latter
relies on cycle checks to avoid infinite loops. DEFT does not need to check
loops contrary to all other tools. Third, expressiveness is costly, DEFT
and DeLP∗ has to perform consistency checks using strict rule. Flora also
provides very powerful syntactic features (dynamic rule labels, higher or-
der syntax, etc.) which might affect its performance. Overall, our tool
DEFT has satisfactory performance given the expressiveness (existential
rules) and semantics it allows for (e.g. indirectly consistent derivations).

Figure 3.27: Response time for
chain(n)

Figure 3.28: Response time for
tree(n, 5)

Figure 3.29: Response time for daд(n, 10)
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Practical Example. To conclude this section, let us show how a data
engineer could make practical use of our benchmark in order to chose the
appropriate defeasible reasoning tool. We consider the following example:

Example 3.11. Consider the following decision scenario of an emergency
response team that wants to determine if a person victim of an accident is
an organ donor. A person being hurt in an accident is considered a victim.
Legally any victim is assumed not to be an organ donor. A person that gives
her consent is considered an organ donor. A person in a critical condition
generally cannot give her consent. The legal tutor of a person can give his
consent for her being an organ donor. The following KB describes this use
case. KB = (F,R,N, ∅) where:

• F = {> ⇒ hurt(john)}.

• R = {r1 : ∀X hurt(X ) ⇒ victim(X ),
r2 : ∀X , victim(X ) ⇒ notOrдanDonor (X ),
r3 : ∀X , consentFor (X ,X ) ⇒ orдanDonor (X ),
r3 : ∀X ,Y , leдalTutor (X ,Y ) ∧ consentFor (X ,Y ) ⇒ orдanDonor (Y ),
r3 : ∀X , critical(X ) ⇒ notConsentFor (X ,X ) }.

• N = {∀XorдanDonor (X )∧notOrдanDonor (X ) → ⊥, ∀X ,Y consentFor (X ,Y )∧
notConsentFor (X ,Y ) → ⊥}

This knowledge base does not use existential rules and is acyclic. There-
fore, given the results of the benchmark, all considered tools can be applied.
If the data engineer wants to use ambiguity blocking with team defeat then
she can either use SPINdle or Flora-2 (SPINdle is in this case recommended
given the performance results), if she does not want to allow for team defeat
then no tool can be used. If on the other hand the data engineer wants
to use ambiguity propagation then she can either use DeLP∗ or DEFT if she
needs team defeat (DEFT is in this case recommended given the performance
results) or ASPIC∗ if she does not.

Let us add the rule that a victim is probably someone who is hurt (∀X ,
victim(X ) ⇒ hurt(X )). In this case the knowledge base becomes cyclic.
Therefore ASPIC∗ cannot be used (cf. Table 3.2). Let us now add a new exis-
tential rule stating that if someone is an organ donor then somebody gave his
consent (the person or her tutor i.e. ∀X orдanDonor (X ) → ∃Y consentFor (Y ,X )).
In this case, according to the Table 3.2 results, only DEFT can be used.

3.4 Summary

In this chapter we demonstrated the significance of the derivation loss prob-
lem and showed how it prevents the direct application of defeasible reasoning
techniques to existential rules. Derivation loss can occur in certain cases de-
pending on the used chase and the order in which rules are applied. To
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solve this problem, we presented the notion of Graph of Atom Dependency
and showed how the chase choice impacts its construction and how it can be
used to extract all derivations for a given fact. We then presented the first
defeasible reasoning tool for existential rules using Dialectical Trees called
DEFT that implements the algorithms of the Graph of Atom Dependency
to extract all derivations.

In order to evaluate our tool with regard to the state of the art, we
defined the first benchmark for first order logic defeasible reasoning tool
classification with the aim to shed light on existing tools and their capa-
bilities. Given the wide range of defeasible knowledge base expressiveness
and the diversity of needs, selecting a relevant tool for a given application
might be difficult. The benchmark provides a set of scalable knowledge
bases that tests defeasible reasoning tools against a list of features inspired
from different discussions of intuitions [Horty et al., 1987, Makinson and
Schlechta, 1991, Prakken, 2002, Antoniou, 2006] and important differences
in expressiveness. This benchmark however does not include implicit priority
relations. Nevertheless most of these implicit priorities can be represented
using explicit priorities [Prakken, 2002] (a list of examples regarding implicit
priority relations is discussed in [Vreeswijk, 1995]).

Beside showing that DEFT has more than satisfactory performance, the
benchmark gives a clearer view of what it is possible to handle with the
existing tools and provides insights about current gaps in the state of the art
and the limitation of our tool DEFT. For instance, we can observe in Table
3.2 that some features such as ambiguity blocking with or without team
defeat for existential rules is not supported by any tool. In order to expand
the usability and appeal of Defeasible Reasoning to existential rules, those
gaps need to be filled. However, rather than creating a tool that implements
different defeasible reasoning techniques for each desired feature, in the next
chapter we present a new formalism that is able to represent most variants
of defeasible reasoning in a single combinatorial structure.
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Chapter 3 in a Nutshell

• Defeasible Reasoning techniques cannot be directly applied to
the existential rule language L∀∃ due to the derivation loss
problem (some rule applications might be removed by the chase
derivation reducer).

• Derivation loss can occur in certain cases depending on the used
chase and the order in which rules are applied (cf. Propositions
3.1, 3.2, 3.3, and 3.4).

• To solve this problem, we defined the notion of Graph of Atom
Dependency and showed how its construction is affected by the
chase and how it can be used to extract all derivations.

• We presented the first defeasible reasoning tool for existential
rules based on Dialectical Trees (called DEFT) that relies on
the Graph of Atom Dependency to extract all derivations.

• We defined the first benchmark for first order logic defeasible
reasoning tools analysis and classification. Beside showing that
DEFT has satisfactory performance, this benchmark provides a
clear view of what existing tools for defeasible reasoning allow
for, what is the best tool to use depending on the data and
reasoning requirements at hand, and what are the current gaps
that are not covered yet by any tool.
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Given the variety of defeasible reasoning intuitions and the different de-
grees of expressiveness a defeasible reasoning tool can have (as described in
the previous chapter Table 3.2), extending each defeasible reasoning tech-
nique to existential rules seems tedious. A better approach would be to have
a unifying formalism that takes into account the specificities of existential
rules and can capture most features discussed in Table 3.2. To this end, in
this chapter we define a new formalism called “Statement Graph” and show
how it can capture defeasible reasoning features via flexible labeling func-
tions. The chapter is organized as follows: we start by defining Statement
Graphs using the propositional language Lp in order to model Defeasible
Logics, then we extend it to existential rule language L∀∃ and provide the
first tool that can handle most discussed features of defeasible reasoning for
existential rules.

Research Questions in this Chapter

• How can we define a formalism that can capture most features
of defeasible reasoning discussed in Table 3.2 while taking into
account the logical specificities of existential rules?

• Can we provide a performant tool based on this formalism
that provides defeasible reasoning with existential rules covering
most gaps in the literature identified in Table 3.2?
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4.1 Propositional Statement Graph

A Statement Graph (SG) is a representation of the reasoning process hap-
pening inside a knowledge base, it can be seen as an updated Inheritance
Net [Horty et al., 1990] or an instantiation of Abstract Dialectical Frame-
work [Brewka and Woltran, 2010] with a custom labeling function. An SG
is built using logical building blocks (called statements) that describe a situ-
ation (premises) and a rule that can be applied on that situation. To define
statement graphs we use the propositional language Lp discussed in Section
2.2.3.1 and consider defeater rules.

Definition 4.1 (Statement). A statement s is either:

1. A ‘query statement’ (Q → ∅) where Q is a query.

2. The ‘Top statement’ (∅ → >).

3. A ‘rule application statement’ (Body(r ) V Head(r )) where r is a rule
and V∈ {→,⇒, } if r is strict, defeasible, or defeater respectively.

Given a statement s = (Φ V ψ ) we denote by the premises by Premise(s) = Φ
and the conclusion by Conc(s) = ψ . We denote the rule of a rule application
statement s by Rule(s).

Statements can attack or support each other. Intuitively, a statement
s1 supports another statement s2 if the conclusion of s1 is used by the rule
application in s2. Furthermore, a statement s1 can attack another statement
s2 in two possible ways: either the conclusion of s1 conflicts with a premise
in s2 (we say that s1 undercuts s2), or the rule in s1 is a defeater rule with
a conclusion that conflicts with the conclusion of s2 (we say that s1 attacks
the rule application of s2).

Definition 4.2 (Statements Attack and Support). Given two state-
ments s1 and s2:

• s1 supports s2 iff Conc(s1) , ∅, Conc(s1) ∈ Premise(s2), and Rule(s1) <
R . (we say that s1 supports s2 on f ).

• s1 attacks s2 iff:

1. Either ∃f ∈ Premise(s2) s.t. f and Conc(s1) are in conflict, and
Rule(s1) < R . (we say that s1 undercuts s2 on f ).

2. Or Rule(s1) ∈ R and Conc(s1) and Conc(s2) are in conflict (we
say that s1 attacks the rule application of s2).

Please note that statements with defeater rules cannot support other
statements. Furthermore, we do not consider “rebut” attacks (i.e. when
the conclusion of a statement is in conflict with the conclusion of another
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statement) except for statements with defeater rules as a way to express rule
application attack. To better understand the notions of support and attack
between statements consider the following Example 4.1.

Example 4.1 (Undercut and Rule Application Attack). Consider the
knowledge base KB = (F,R,N, ∅) describing a penguin with a broken wing
expressed in the propositional language Lp :

• F = {> → penдuin, > → brokenWinдs}

• R = {penдuin → ¬f ly, penдuin → bird, bird ⇒ f ly, brokenWinдs  ¬f ly}

For example, the query statement (f ly → ∅) is supported by the statement
(bird ⇒ f ly) and is undercut (attacked) by the statement (penдuin → ¬f ly).
The statement (brokenWinдs  ¬f ly) that relies on a defeater rule, attacks
the rule application of (bird → f ly).

Statements are generated from a knowledge base, they can be structured
in a graph according to their support and attack relations.

Definition 4.3 (Statement Graph). A Statement Graph of the knowledge
base KB is a directed graph SG

KB
= (V,ES ,EA):

• V is the set of statements generated from KB.

• ES ⊆ V × V is the set of support edges. There is a support edge e =
(s1, s2) ∈ ES iff s1 supports s2.

• EA ⊆ V × V is the set of attack edges. There is an attack edge e =
(s1, s2) ∈ EA iff the statement s1 attacks s2.

For an edge e = (s1, s2), we denote s1 by Source(e) and s2 by Tarдet(e). For a
statement s we denote its incoming attack edges by E−A(s)={e ∈ EA |Tarдet(e) =
s} and its incoming support edges by E−S (s)={e ∈ ES |Tarдet(e) = s}. We also
denote its outgoing attack edges by E+A(s)={e ∈ EA |Source(e) = s} and outgo-
ing support edges by E+S (s)={e ∈ ES |Source(e)=s}.

We say that an edge e is superior to another edge e′ and that e′ is
inferior to e iff Rule(Source(e)) � Rule(Source(e′)).

A Statement Graph is constructed by generating all possible fact and
rule application statements in a knowledge base along with their attack and
support edges. Query statements are added when evaluating queries, as
shown in the following Example 4.2.

Example 4.2 (Statement Graph of Example 4.1). Consider the knowl-
edge base in the previous Example 4.1, its Statement Graph SG

KB
= (V,EA,ES )

is shown in the following Figure 4.1 along with the query statement for f ly
and ¬f ly (support edges are depicted by dashed arrows, the top statement
and the starting set of fact rules are colored gray).
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• V = {s1 = (∅ → >), s2 = (> → penдuin), s3 = (> → brokenWinдs),
s4 = (penдuin → ¬f ly), s5 = (penдuin → bird), s6 = (bird ⇒ f ly), s7 =
(brokenWinдs  ¬f ly), s8 = (f ly → ∅), s9 = (¬f ly → ∅)}

• ES = {e1 = (s1, s2), e2 = (s1, s3), e3 = (s2, s4), e4 = (s2, s5), e5 = (s3, s7),
e6 = (s4, s9), e7 = (s5, s6), e8 = (s6, s8)}

• EA = {e9 = (s4, s8) e10 = (s6, s9), e11 = (s7, s6)}

¬f ly → ∅ f ly → ∅

penдuin → ¬f ly bird ⇒ f ly

penдuin → bird brokenWinдs  ¬f ly

> → penдuin > → brokenWinдs

∅ → >

Figure 4.1: SG generated from KB in Example 2.15.

An SG provides statements and edges with a label using a labeling func-
tion that starts from the Top statement and propagates labels to the other
statements. Query answering can then be determined based on the label of
the query statement.

Definition 4.4 (Labeling Function). A labeling function applied to a
statement graph is a function Lbl : V∪EA∪ES → Label that takes as input a
statement s ∈ V or an edge e ∈ EA∪ES and returns a label in Label = {INstr,
INdef, OUTstr, OUTdef, AMBIG, UNSUP}.

The intuition behind these labels is as follows:

• INstr indicates that the statement is accepted and its rule can be
strictly applied based on strictly accepted premises.

• INdef indicates that the statement is accepted and its rule can be
defeasibly applied based on strictly or defeasibly accepted premises.

• OUTstr and OUTdef indicate that the statement is not accepted
because its rule or premises have been strictly or defeasibly defeated
respectively.

• AMBIG indicates that the statement’s rule or premises are chal-
lenged and the superiority relation cannot be used to determine if it
is accepted or not.
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• UNSUP indicates that at least one of the statement’s premises is not
supported by undefeated facts.

A statement is given a label based on its incoming edges and their labels.
The notion of complete support describes the situation where a statement
has a support edge for each one of its premises.

Definition 4.5 (Complete Support). A complete support for a statement
s is a set of support edges denoted Es

CS such that:

• ∀f ∈ Premise(s), ∃e ∈ Es
CS such that Source(e) supports s on f .

• �S ′ such that S ′ ⊂ Es
CS and S ′ is a complete support for s (minimality

w.r.t. set inclusion).

Example 4.3 (Complete Support). Consider the following knowledge
base KB = (F,R,N,�): A person will stay home if it is cold with a bad
weather. It is “bad weather” if it will rain or be cloudy. The weather forecast
indicates that today will have low temperature and will be cloudy with a
significant chance of rain.

• F = {> ⇒ lowTemp, > ⇒ cloudy, > ⇒ rain, }

• R = {cold ∧ badWheather ⇒ stayHome, lowTemp → cold, cloudy ⇒
badWheather , rain ⇒ badWheather }

> ⇒ lowTemp > ⇒ cloudy > ⇒ rain

lowTemp → cold cloudy ⇒ badWheather rain ⇒ badWheather

cold ∧ badWheather ⇒ stayHome

∅ → >

Figure 4.2: SG generated from KB in Example 4.3.

The Statement Graph SG
KB
= (V,EA,ES ) of KB is depicted in Figure 4.2.

• V = {s1 = (∅ ⇒ >), s2 = (> ⇒ lowTemp), s3 = (> ⇒ cloudy), s4 =
(> ⇒ rain), s5 = (lowTemp → cold), s6 = (cloudy ⇒ badWheather ),
s7 = (rain ⇒ badWheather ), s8 = (cold ∧ badWheather ⇒ stayHome)}

• ES = {e1 = (s1, s2), e2 = (s1, s3), e3 = (s1, s4), e4 = (s2, s5), e5 = (s3, s6),
e6 = (s4, s7), e7 = (s5, s8), e8 = (s6, s8), e9 = (s7, s8)} and EA = ∅.

Statement s8 has two complete supports Es8
CS = {e7, e8} and Es8

CS ′ = {e7, e9}.
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Given a complete support Es
CS :

• Es
CS is called “INstr complete support” iff ∀e ∈ Es

CS , Lbl(e) = INstr.

• Es
CS is called “INdef complete support” iff it is not a INstr complete

support, and ∀e ∈ Es
CS , Lbl(e) ∈ {INstr, INdef}.

• Es
CS is called “AMBIG complete support” iff it is not an INstr nor

an INdef complete support, and ∀e ∈ Es
CS , Lbl(e) ∈ {INstr, INdef,AMBIG}.

4.2 Reasoning with Statement Graphs

Statement Graphs are flexible enough to represent most variants of defeasible
reasoning depicted in Table 2.2 on page 63. This flexibility is due to the
labeling function that evaluates all supports and attacks for a specific rule
application step. We start by explaining how SGs capture basic defeasible
reasoning with ambiguity blocking, team defeat, and without cycles.

4.2.1 Labeling for Ambiguity Blocking

The intuition behind ambiguity blocking is to “block” facts that rely on am-
biguous premises from being used to contest other facts. Defeasible Logic
with ambiguity blocking allows for team defeat by default. From SGs point
of view ambiguity blocking means that all ambiguous attack edges are not
taken into account while team defeat means that a statement survives as
long as each attacking edge is defeated by one of its support edges. We
use the labeling function ‘BDL’ (Blocking Defeasible Logic) to obtain en-
tailment results equivalent to Billington’s defeasible logic [Billington, 1993]
(i.e. defeasible reasoning with ambiguity blocking, team defeat and without
cycles). BDL is defined as follows: edges are given the same label as their
source statements (i.e. given an edge e, BDL(e) = BDL(Source(e)). Given a
statement s, if s is the Top statement then BDL(s) = INstr. Otherwise:

(a) BDL(s) = INstr if s has an INstr complete support, has a strict rule
Rule(s), and �e ∈ E−A(s) s.t. BDL(e) = INstr.

A statement is labeled INstr (i.e. strictly accepted) iff it is the Top statement
or if it has a complete strict support (i.e. there is a strict derivation for each
of its premises), uses a strict rule, and is not attacked by a strict derivation.

(b) BDL(s) = OUTstr iff ∃e ∈ E−A(s) s.t. BDL(e) = INstr.

A statement is labeled OUTstr (i.e. strictly defeated) iff it is strictly attacked
(i.e there is a strict derivation against its premises or its rule application).

(c) BDL(s) = INdef iff BDL(s) < {INstr,OUTstr} and s has a INstr or
INdef complete support and
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1. ∀e ∈ E−A(s) that undercut s on a premise f ∈ Premise(s) s.t. BDL(e) =
INdef, ∃es ∈ E−S (s) for f s.t. BDL(es) = INstr or (BDL(es) = INdef
and es is superior to e).

2. and ∀e ∈ E−A(s) s.t. BDL(e) = INdef and e attacks the rule applica-
tion of s, Rule(s) is either a strict rule or Rule(s) � Rule(Source(e)).

A statement is labeled INdef iff it is not strictly accepted nor strictly
defeated and it has a strict or defeasibly accepted complete support (i.e.
there is a strict or defeasibly accepted derivation for each of its premises)
and (c.1.) for any defeasibly accepted attack it receives on a premise, it has a
support edge for that premise that is either strictly accepted or is defeasibly
accepted and superior to the attacking edge (this condition allows for team
defeat since a support edge does not have to defeat all attacks by itself) and
(c.2.) the statement rule is either a strict rule or is superior to any defeasibly
applicable defeater rule attacking it.

(d) BDL(s) = OUTdef iff BDL(s) , OUTstr and s has an INstr or INdef
complete support and

1. either ∃f ∈ Premise(s) where �es ∈ E
−
S (s) for f s.t. BDL(es) = INstr

and ∀e′s ∈ E−S (s) for f s.t. BDL(e′s) ∈ {INdef, AMBIG}, ∃e ∈ E−A(s)
attacking s on f s.t. BDL(e) = INdef and e is superior to e′s.

2. or ∃e ∈ E−A(s) s.t. BDL(e) = INdef attacking the rule application of
s and Rule(s) is not a strict rule and Rule(Source(e)) � Rule(s).

A statement is labeled OUTdef iff it is not strictly defeated and it has
a strict or defeasibly accepted complete support and either (d.1.) one of
its premises is not strictly supported and for all its defeasibly accepted or
ambiguous support edges, there exists a defeasibly accepted attack edge that
is superior to it (this condition allows for team defeat as an attack edge does
not have to defeat all supports by itself). Or (d.2.) the statement’s rule is
not strict and is inferior to a defeasibly applicable defeater rule attacking it.

(e) BDL(s) = AMBIG if BDL(s) < {INstr, OUTstr, INdef, OUTdef} and
s has an INstr, INdef, or AMBIG complete support

A statement is labeled AMBIG if it is not strictly or defeasibly accepted
or defeated and it has a complete support that is either strict, defeasible or
ambiguous.

(f) BDL(s) = UNSUP if BDL(s) , OUTstr and ∃f ∈ Premise(s) s.t.
�es ∈ E

−
S (s) where Conc(Source(es)) = f and BDL(es) ∈ {INstr, INdef,

AMBIG}.
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A statement is labeled UNSUP iff it is not strictly defeated and it has
a premise that is not supported by a strictly accepted, defeasibly accepted,
or ambiguous edge.

Example 4.4 (BDL labeling function). Consider the SG of Example
2.15. Applying BDL labeling function results in Figure 4.3. In particular:

• BDL(> → evidA) = INstr because it has an INstr complete support with a
strict rule.

• BDL(evidA⇒ responsible) = INdef because it has a complete INstr support
and a defeasible rule that is not attacked by a defeater rule.

• BDL(responsible ⇒ дuilty) = AMBIG because it has a INdef complete sup-
port and is attacked by a defeasible accepted edge that is neither superior
nor inferior to its support edge.

• BDL(дuilty → ∅) = AMBIG because it has an AMBIG complete support
and no INstr or INdef complete support.

• BDL(¬дuilty → ∅) = INdef because it has a INdef complete support and is
not attacked by a strictly or defeasibly accepted edge.

¬дuilty → ∅
INdef

дuilty → ∅
AMBIG

> ⇒ ¬дuilty
INdef

> → evidA
INstr

> → evidB
INstr

evidA⇒ responsible
INdef

evidB ⇒ ¬responsible
INdef

responsible ⇒ дuilty
AMBIG

INdef

INstr INstr

INdef

AMBIG

INdef

INdef

AMBIG

∅ → >
INstr

INstr

INstr

INstr

Figure 4.3: SGBDL
KB

of Example 2.15.

The labeling process of the BDL function can be expressed as a decision
diagram shown in Figure 4.4. SGBDL

KB
denotes an SG that uses the BDL

labeling function, and SGBDL
KB
〈s〉 denotes the label of a statement s.

Lemma 4.1 (BDL is a function). All statements in a knowledge base
KB have exactly one label in SGBDL

KB
.

Proof. From the definition of BDL (cf. Figure 4.4). �
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Is s the Top statement?

∃ strictly accepted attack on s?

INstr

OUTstr

no

yes

s has INstr complete supports?

no

yes

is Rule(s) a strict rule?

s has INdef complete supports?

no

yes
INstr

∃ an INdef rule applica-
tion attack on s with a rule
that is superior to Rule(s)?

no

yes

OUTdef

Is Rule(s) superior to all the rules of
its INdef rule application attacks?

no

yes

INdefAMBIG
no yes

∃f ∈ Premise(s) where � an INstr
support edge for f and ∀ INdef sup-
port edges for f , there is an INdef
attack edge that is superior to it?

s has AMBIG complete supports?

no

yes
OUTdef

Is Rule(s) not a strict rule and ∃
an INdef rule application attack
on s that is superior to Rule(s)?

no

yes

OUTdef

Is Rule(s) not a strict rule
and ∃ an INdef rule applica-
tion attack on s with a rule

that is not inferior to Rule(s)?

no

yes

AMBIG

∃f ∈ Premise(s) where ∃e an
INdef attack edge on f and �
a support edge that is either

INstr or INdef and superior to e?

no

yes

AMBIGINdef
no yes

Is Rule(s) not a strict rule and ∃
a INdef rule application attack
on s that is superior to Rule(s)?

UNSUP

no

yes
OUTdef

AMBIG

no

yes

Figure 4.4: BDL function’s decision diagram.

The equivalence between BDL and Defeasible Logic with ambiguity block-
ing and team defeat without attack or support cycles is described in the
following Proposition 4.1.

Proposition 4.1. Let f be a literal in a defeasible KB expressed in Lp that
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contains no attack or support cycles:

1. KB ` +∆f iff SGBDL
KB
〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SGBDL
KB
〈(f → ∅)〉 , INstr

3. KB ` +δTDblock f iff SGBDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δTDblock f iff SGBDL
KB
〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof. cf. Proof 4.1 in Section 7.2.2 on page v. �

4.2.2 Labeling for Ambiguity Propagating

The intuition behind ambiguity propagation is to reject a literal if there is a
derivation attacking it which is not inferior (whether it relies on ambiguous
literals or not). From an SG point of view, ambiguity propagating means
that ambiguous attack edges are considered valid attacks that make the
statement ambiguous if it cannot defend against them.

We use the labeling function ‘PDL’ (Propagating Defeasible Logic) to
obtain entailment results equivalent to defeasible reasoning with ambiguity
propagating, team defeat and without cycles [Antoniou et al., 2000a]. PDL
is defined the same as BDL except for the definition of the INdef label. Edges
are given the same label as their source statements (i.e. given an edge e,
PDL(e) = PDL(Source(e))). Given a statement s, if s is the Top statement
then BDL(s) = INstr. Otherwise:

(a) PDL(s) = INstr if s has an INstr complete support, has a strict rule
Rule(s), and �e ∈ E−A(s) s.t. PDL(e) = INstr.

(b) PDL(s) = OUTstr iff ∃e ∈ E−A(s) s.t. PDL(e) = INstr.

(d) PDL(s) = OUTdef iff PDL(s) , OUTstr and s has an INstr or INdef
complete support and

1. either ∃f ∈ Premise(s) where �es ∈ E
−
S (s) for f s.t. PDL(es) = INstr

and ∀e′s ∈ E−S (s) for f s.t. PDL(e′s) ∈ {INdef, AMBIG}, ∃e ∈ E−A(s)
attacking s on f s.t. PDL(e) = INdef and e is superior to e′s.

2. or ∃e ∈ E−A(s) s.t. PDL(e) = INdef attacking the rule application of
s and Rule(s) is not a strict rule and Rule(Source(e)) � Rule(s).

(e) PDL(s) = AMBIG if PDL(s) < {INstr, OUTstr, INdef, OUTdef} and
s has an INstr, INdef, or AMBIG complete support

(f) PDL(s) = UNSUP if PDL(s) , OUTstr and ∃f ∈ Premise(s) s.t.
�es ∈ E

−
S (s) where PDL(es) ∈ {INstr, INdef, AMBIG}.
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The only difference between ambiguity blocking (BDL) and ambiguity
propagating (PDL) is that in the latter ambiguous attacks are taken into
account and can make the statement ambiguous. This change only affects
the definition of INdef labeling.

(c) PDL(s) = INdef iff PDL(s) < {INstr,OUTstr} and s has a INstr or
INdef complete support and

1. ∀e ∈ E−A(s) that undercut s on a premise f ∈ Premise(s) s.t. PDL(e) ∈
{INdef, AMBIG}, ∃es ∈ E−S (s) for f s.t. PDL(es) = INstr or
(PDL(es) = INdef and es is superior to e).

2. and ∀e ∈ E−A(s) s.t. BDL(e) ∈ {INdef,AMBIG} and e attacks the
rule application of s, Rule(s) is either a strict rule or Rule(s) �
Rule(Source(e)).

In BDL, an INdef statement has to defend itself against defeasibly accepted
attacks; in PDL it also has to defend itself against ambiguous ones.

Example 4.5 (PDL labeling function). Consider the SG of Example
2.15. Applying PDL labeling function results in Figure 4.5. In particular:
PDL(¬дuilty ⇒ ∅) = AMBIG because it has an INdef complete support and
is attacked by an ambiguous edge.

¬дuilty → ∅
AMBIG

дuilty → ∅
AMBIG

> ⇒ ¬дuilty
INdef

> → evidA
INstr

> → evidB
INstr

evidA⇒ responsible
INdef

evidB ⇒ ¬responsible
INdef

responsible ⇒ дuilty
AMBIG

INdef

INstr INstr

INdef

AMBIG

INdef

INdef

AMBIG

∅ → >
INstr

INstr

INstr

INstr

Figure 4.5: SGPDL
KB

of Example 2.15.

The equivalence between PDL and Defeasible Logic with ambiguity pro-
pagating and team defeat is shown in Proposition 4.2.

Proposition 4.2. Let f be a literal in a defeasible KB expressed in Lp that
contains no attack nor support cycles:

1. KB ` +∆f iff SGPDL
KB
〈(f → ∅)〉 = INstr
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2. KB ` −∆f iff SGPDL
KB
〈(f → ∅)〉 , INstr

3. KB ` +δTDprop f iff SGPDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δTDprop f iff SGPDL
KB
〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof. cf. Proof 4.2 in Section 7.2.2 on page ix. �

4.2.3 Labeling without Team Defeat

The intuition behind removing team defeat is that for a literal to be accepted
it has to have a chain of reasoning that defends itself, alone, against all
attacks. From an SG’s perspective, forbidding team defeat means that for
a statement to be INdef it has to have a support edge that is superior to
all attacks on the same premise. For a statement to be OUTdef it has to
have an attack edge that is superior to all supports for the same premise, as
shown in the following Example 4.6.

Example 4.6 (Labeling without Team Defeat). Consider the SG of the
knowledge base KB of Example 2.25 with the query statements for (buy, ∅)
and (¬buy, ∅). Applying a labeling that allows for team defeat would result in
Figure 4.6. The statement (buy → ∅) is labeled INdef because for each INdef
attack edge there is an INdef support edge that is superior. On the other
hand, applying a labeling that does not allow for team defeat would result in
Figure 4.7. The statement (buy → ∅) is labeled AMBIG because there is no
INdef support edge that is superior to all INdef attacks.

¬buy → ∅
OUTdef

buy → ∅
INdef

cheap ⇒ buy
INdef

detrimental ⇒ ¬buy
INdef

дoodReviews ⇒ buy
INdef

slowDelivery ⇒ ¬buy
INdef

> → cheap
INstr

> → detrimental
INstr

> → дoodReviews
INstr

> → slowDelivery
INstr

∅ → >
INstr

INstr INstr INstr
INstr

INstr INstr INstr INstr

INdef

INdef

INdef

INdef

INdef

INdefINdef

INdef

Figure 4.6: SG
KB

of Example 2.25 with a defeasible logic labeling that
allows for team defeat.

We denote the labeling function for ambiguity blocking without team
defeat by BDLnoTD which is almost the same as BDL except for INdef and
OUTdef labels.
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¬buy → ∅
AMBIG

buy → ∅
AMBIG

cheap ⇒ buy
INdef

detrimental ⇒ ¬buy
INdef

дoodReviews ⇒ buy
INdef

slowDelivery ⇒ ¬buy
INdef

> → cheap
INstr

> → detrimental
INstr

> → дoodReviews
INstr

> → slowDelivery
INstr

∅ → >
INstr

INstr INstr INstr
INstr

INstr INstr INstr INstr

INdef

INdef

INdef

INdef

INdef

INdefINdef

INdef

Figure 4.7: SG
KB

of Example 2.25 with a defeasible logic labeling that
does not allow team defeat.

(a) BDLnoTD (s) = INstr iff BDL(s) = INstr.

(b) BDLnoTD (s) = OUTstr iff BDL(s) = OUTstr.

(e) BDLnoTD (s) = AMBIG iff BDL(s) = AMBIG.

(f) BDLnoTD (s) = UNSUP iff BDL(s) = UNSUP.

For INdef, only the condition (c).1 is changed to state that there must
exist a support edge that is superior to all attack edges on the same premise.

(c) BDLnoTD (s) = INdef iff BDLnoTD (s) < {INstr,OUTstr} and s has a
INstr or INdef complete support and

1. ∃es ∈ E−S (s) that supports a premise f s.t. BDLnoTD (es) = INstr
or BDLnoTD (es) = INdef and ∀e ∈ E−A(s) that undercut s on f s.t.
BDLnoTD (e) = INdef, es is superior to e.

2. and ∀e ∈ E−A(s) s.t. BDLnoTD (e) = INdef and e attacks the rule appli-
cation of s, Rule(s) is either a strict rule or Rule(s) � Rule(Source(e)).

For OUTdef, only the condition (d).1 is changed to state that there
must exist an attack edge that is superior to all support edges for the same
premise.

(d) BDLnoTD (s) = OUTdef iff BDLnoTD (s) , OUTstr and s has an INstr
or INdef complete support and

1. either ∃f ∈ Premise(s) where �es ∈ E
−
S (s) for f s.t. BDLnoTD (es) =

INstr and ∃e ∈ E−A(s) attacking s on f s.t. BDLnoTD (e) = INdef
and ∀e′s ∈ E−S (s) for f s.t. BDLnoTD (e

′
s) ∈ {INdef, AMBIG}, e is

superior to e′s.

121



CHAPTER 4. STATEMENT GRAPH AND DEFEASIBLE LOGICS

2. or ∃e ∈ E−A(s) s.t. BDLnoTD (e) = INdef attacking the rule application
of s and Rule(s) is not a strict rule and Rule(Source(e)) � Rule(s).

The equivalence between BDLnoTD and Defeasible Logic with ambiguity
blocking without team defeat is shown in Proposition 4.3.

Proposition 4.3. Let f be a literal in a defeasible KB that contains no
attack or support cycles:

1. KB ` +∆f iff SG
BDLnoTD
KB

〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SG
BDLnoTD
KB

〈(f → ∅)〉 , INstr

3. KB ` +δnoTDblock f iff SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δnoTDblock f iff SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof. cf. Proof 4.3 in Section 7.2.2 on page xi. �

As for ambiguity propagating without team defeat (denoted by PDLnoTD)
the same changes are done accordingly.

(a) PDLnoTD (s) = INstr iff PDL(s) = INstr.

(b) PDLnoTD (s) = OUTstr iff PDL(s) = OUTstr.

(c) PDLnoTD (s) = INdef iff PDLnoTD (s) < {INstr,OUTstr} and s has a
INstr or INdef complete support and

1. ∃es ∈ E−S (s) that supports a premise f s.t. PDLnoTD (es) = INstr
or PDLnoTD (es) = INdef and ∀e ∈ E−A(s) that undercut s on f s.t.
PDLnoTD (e) ∈ {INdef}, es is superior to e.

2. and ∀e ∈ E−A(s) s.t. PDLnoTD (e) ∈ {INdef,AMBIG} and e attacks
the rule application of s, Rule(s) is either a strict rule or Rule(s) �
Rule(Source(e)).

(d) PDL(s) = OUTdef iff PDLnoTD (s) , OUTstr and s has an INstr or
INdef complete support and

1. either ∃f ∈ Premise(s) where �es ∈ E
−
S (s) for f s.t. PDLnoTD (es) =

INstr and ∀e′s ∈ E−S (s) for f s.t. PDLnoTD (e
′
s) ∈ {INdef, AMBIG},

∃e ∈ E−A(s) attacking s on f s.t. PDLnoTD (e) = INdef and e is
superior to e′s.

2. or ∃e ∈ E−A(s) s.t. PDLnoTD (e) = INdef attacking the rule application
of s and Rule(s) is not a strict rule and Rule(Source(e)) � Rule(s).

(e) PDLnoTD (s) = AMBIG iff PDL(s) = AMBIG.
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(f) PDLnoTD (s) = UNSUP iff PDL(s) = UNSUP.

The equivalence between PDLnoTD and Defeasible Logic with ambiguity
propagating without team defeat is shown in Proposition 4.4.

Proposition 4.4. Let f be a literal in a defeasible KB that contains no
attack or support cycles:

1. KB ` +∆f iff SG
PDLnoTD
KB

〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SG
PDLnoTD
KB

〈(f → ∅)〉 , INstr

3. KB ` +δnoTDprop f iff SG
PDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δnoTDprop f iff SG
PDLnoTD
KB

〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof. Proof 4.3 in Section 7.2.2 on page xi. �

4.2.4 Support and Attack Cycles

The first formalisms of defeasible reasoning [Nute, 1988, Billington, 1993,
Antoniou et al., 2000a] did not take attack and support cycles into ac-
count and would loop infinitely, thus fail to draw reasonable conclusions in
some cases [Maier and Nute, 2010b]. There are two types of cycles, sup-
port cycles (a.k.a. positive loops [Billington, 2008]) where cycles are due to
rule applications (in SGs the cycle would only contain support edges), and
attack cycles (a.k.a. negative loops [Billington, 2008]) where the cycles are
due to conflicting rules (these cycles contain attack and possibly support
edges). Failure-by-looping is a mechanism to avoid drawing unreasonable
conclusions in presence of cycles [Maier and Nute, 2010b].

Support cycle: a sequence of unlabeled edges 〈e0, . . . , en〉 where ei ∈ ES ,
∀i ∈ [0..n − 1] Tarдet(ei ) = Source(ei+1), and Source(e0) = Tarдet(en). If all
statements in the cycle cannot be labeled by taking into account other edges
outside this cycle then these statements are labeled UNSUP, as described
in the following Example 4.7. Formally, (for all labeling functions, not only
BDL):

(g) BDL(s) = UNSUP if BDL(s) < {INstr, OUTstr, INdef, OUTdef,
AMBIG} and s is part of a support cycle.

Example 4.7 (Support Cycle). Consider the following KB = (F,R,N,�)

(and SGBDL
KB

in Figure 4.8) representing the knowledge that if a defendant
is guilty then he is responsible. If he is guilty then he is responsible. The
defendant is presumed not guilty unless responsibility is proven, and there is
no proof for or against his responsibility.
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• F = {> ⇒ ¬дuilty}

• R = {r1 : responsible ⇒ дuilty, r2 : дuilty ⇒ responsible}.

The query ‘is the defendant not guilty?’ cannot be answered without
failure-by-looping. The original Defeasible Logics would loop infinitely be-
tween “responsible” and “дuilty”. The statement (responsible ⇒ дuilty) can-
not be labeled without taking into account its support cycle with (дuilty ⇒
responsible), therefore all statements in this cycle are labeled UNSUP. Thus,
the defendant is not guilty (i.e. SGBDL

KB
〈(¬дuilty, ∅)〉 = INdef).

¬дuilty → ∅
INdef

дuilty → ∅
UNSUP

responsible ⇒ дuilty
UNSUP

дuilty ⇒ responsible
UNSUP

> ⇒ ¬дuilty
INdef

∅ → >
INstr

INstr

INdef

UNSUP

UNSUP

UNSUP

INdef

INdefUNSUP

Figure 4.8: SGBDL
KB

of Example 4.7.

Support cycles are taken into account only when there is no other choice
i.e. the statement cannot be labeled using edges outside the support cycle. In
some cases however, the labeling function does not need to check the support
cycle as shown in the following Figure 4.9. Suppose we add to the KB

of this example the fact that there is an evidence “evidA” implicating the
responsibility of the defendant. In this case, the statement (responsible ⇒
дuilty) is labeled INdef because it has an INdef complete support and the
support cycle has no impact.

Attack cycle: a sequence of unlabeled edges 〈e0, . . . , en〉 where ei ∈ EA∪ES ,
∀i ∈ [0..n − 1] Tarдet(ei ) = Source(ei+1), Source(e0) = Tarдet(en), and at least
one edge is an attack edge. If all statements in the cycle cannot be labeled
using edges outside this cycle then these statements are labeled AMBIG,
as described in Example 4.8. Formally (for all labeling functions, not only
BDL):

(h) BDL(s) = AMBIG if BDL(s)< {INstr,OUTstr, INdef,OUTdef,UNSUP}
and s is not part of a support cycle and is part of an attack cycle.

Example 4.8. Consider the following KB = (F,R,N, ∅) of Example 2.27
(and SGBDL

KB
in Figure 4.10).
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¬дuilty → ∅
AMBIG

дuilty → ∅
AMBIG

responsible ⇒ дuilty
INdef

дuilty ⇒ responsible
AMBIG

evidA⇒ responsible
INdef

> ⇒ ¬дuilty
INdef

> → evidA
INstr

∅ → >
INstr

INstr

INstr

INdef

INstr

INdef

AMBIG

INdef

INdef

INdef

INdefINdef

Figure 4.9: SGBDL
KB

of Example 4.7 with evidence for responsibility.

The query “is this animal a bird?” cannot be answered without
failure-by-looping. The statement (layEддs ⇒ bird) cannot be labeled without
taking into account the attack cycle with (mammal ⇒ ¬layEддs), therefore
all statements in this cycle are labeled AMBIG. Thus, we cannot say if the
animal is a bird or not (i.e. SGBDL

KB
〈(bird, ∅)〉 = AMBIG).

bird → ∅
AMBIG

layEддs ⇒ bird
AMBIG

bird → ¬f ur
AMBIG

f ur ⇒mammal
AMBIG

mammal ⇒ ¬layEддs
AMBIG

> ⇒ layEддs
INdef

> ⇒ f ur
INdef

∅ → >
INstr INstrINstr

INdef

INdef

AMBIG

AMBIG

AMBIG

AMBIG AMBIG

Figure 4.10: SGBDL
KB

of Example 4.8.

Similar to support cycles, attack cycles are taken into account only when
there is no other choice i.e. the statement cannot be labeled using edges
outside the attack cycle. In some cases however, the labeling function does
not need to check the attack cycle as shown in the following Figure 4.11.
Suppose we only observe that the animal lays eggs and does not have wings
(i.e. has fur is removed from the KB of this example). In this case, the
statement (mammal ⇒ ¬layEддs) is labeled UNSUP because it does not have
a complete support and the attack cycle has no impact.
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bird → ∅
INdef

layEддs ⇒ bird
INdef

bird → ¬f ur
INdef

f ur ⇒mammal
UNSUP

mammal ⇒ ¬layEддs
UNSUP

> ⇒ layEддs
INdef

∅ → >
INstr INstr

INdef

INdef

UNSUP

INdef

INdef UNSUP

Figure 4.11: SGBDL
KB

of Example 4.8.

Proposition 4.5 states that the equivalence between labeling functions
and Defeasible Logics with failure-by-looping still holds in presence of attack
and support cycles.

Proposition 4.5. Propositions 4.1, 4.3, 4.2, and 4.4 still hold for failure-
by-looping in presence of attack and support cycles.

Proof. cf. Proof 4.5 in Section 7.2.2 on page xiv. �

Proposition 4.6 makes the link between Statement Graphs and argumen-
tation’s Grounded Semantics.

Proposition 4.6. Given a knowledge base KB expressed in Lp :

1. KB �GS f iff SG
PDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}.

2. KB 2GS f iff SG
PDLnoTD
KB

〈(f → ∅)〉 ∈ {OUTstr, OUTdef, UNSUP}.

Proof. Directly follows from Propositions 2.3 and 4.5. �

Constructing the Statement Graph of a knowledge base KB expressed in
the propositional language Lp can be done in polynomial time by creating a
rule application statement for each rule and fact then generating the support
and attack edges. Labeling a statement graph can also be done in polyno-
mial time since detecting if a statement is part of a cycle has polynomial
complexity [Tarjan, 1972] along with checking the labels of the incoming
edges which amounts to a breadth first graph traversal.

Proposition 4.7 (SG construction and labeling complexity for Lp).
Given a knowledge base KB expressed in the propositional language Lp , con-
structing and labeling SGLbl

KB
where Lbl ∈ {BDL,BDLnoTD ,PDL,PDLnoTD }

has polynomial data and combined complexity.
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Proof. Constructing a Statement Graph in Lp amounts to creating a state-
ment for each rule and fact rule then adding attack and support edges which
is done in linear time. Computing the label of a query statement amount to a
breadth first traversal of the graph with loop checking which has polynomial
complexity [Tarjan, 1972]. �

Since Defeasible Reasoning techniques for the propositional language Lp
can be extended to a first order language without the existential quantifier
L∀ by grounding the rules using the constants, all the entailment equivalence
between Statement Graph labellings and Defeasible Reasoning techniques
still hold for L∀. However the computational complexity changes as the
grounding phase has an exponential combined complexity [Chandra et al.,
1981].

Proposition 4.8 (SG construction and labeling complexity for L∀
). Given a knowledge base KB expressed in the first order language with-
out existential quantifier L∀, constructing and labeling SGLbl

KB
where Lbl ∈

{BDL,BDLnoTD ,PDL,PDLnoTD } has polynomial data complexity and expo-
nential combined complexity.

Proof. Grounding a knowledge base expressed in L∀ produces a program in
Lp [Chandra et al., 1981], Statement Graph can then be constructed directly
after grounding. This grounding procedure has polynomial data complexity
and exponential combined complexity [Chandra et al., 1981, Dantsin et al.,
2001]. Given that reasoning with Statement Graph for Lp is polynomial,
computing labels with a Statement Graph in a knowledge base expressed in
L∀ has polynomial data complexity and exponential combined complexity.

�

Statement Graphs can be seen as a logic instantiation of Abstract Di-
alectical Framework (ADF) or bipolar argumentation frameworks [Cayrol
and Lagasquie-Schiex, 2005]. ADF are abstract argumentation frameworks
with attack and support relations between arguments, they have been in-
stantiated in [Strass, 2013] with a propositional language without defeater
rules. The difference with Statement Graphs is that the semantics for ADFs
were designed to coincide with argumentation extensions and labellings
(grounded, preferred, etc.), therefore, one cannot represent ambiguity block-
ing with ADFs semantics for example. Nevertheless, it seems possible to
transform Statement Graphs to ADFs or argumentation framework, how-
ever this is left for future work.

In this section we showed how Statement Graphs can be used to obtain
equivalent entailment results as Defeasible Logics and some argumentation
semantics for the propositional language Lp and the first order language
without existential quantifiers L∀. In the next section, we define Statement
Graphs for existential rules and study their expressiveness and complexity.
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4.3 Existential Rules Statement Graph

One of the advantages of using Statement Graphs is that they can be easily
extended to the existential rules language L∀∃. Since the labeling func-
tions are defined based on statements’ edges, they are not affected by the
language used to construct the Statement Graph (as long as no rule appli-
cation is lost). However, the definition of statement has to be adapted to
the existential rules logical fragment.

4.3.1 Statement Graph Construction and Labeling

For existential rules, a rule statement is no longer simply the body and the
head of a rule, but rather the application of that rule.

Definition 4.6 (Statement Existential Rules). Given a knowledge base
KB = (F,R,N,�) expressed in L∀∃ , a statement s is either:

1. A ‘query statement’ (Q → ∅) where Q is a query.

2. The ‘Top statement’ (∅ → >).

3. A ‘rule application statement’ (Φ V ψ ) represents a rule application
α(F′ ⊆ F, r ∈ R,π ) such that Φ = π (Body(r )), ψ = π (Head(r )), and
V∈ {→,⇒, } if r is a strict, defeasible, or defeater rule respectively.

By using the Frontier/Skolem chase to generate rule applications all
the generated atoms can be seen as ground atoms, therefore the definitions
of attack and support do not change: a statement s1 supports another
statement s2 iff the conclusion of s1 is included in the premises of s2, and
a statement s1 attacks another statement s2 iff the conclusion of s1 is in
conflict with one of the premises of s2 or s1 uses a defeater rule, and the
conclusions of s1 and s2 are in conflict.

Example 4.9 (SG with Existential Rules). Consider the knowledge base
KB = (F,R,N,�) of the animal shelter example (Example 3.1 on page 70).
The statement graph of this example is shown in Figure 4.12.

• F = {> → alone(jack), > → hasCollar (jack), > → hasMicrochip(jack)}

• R = {r1 : ∀X ,Y hasOwner (X ,Y ) → keep(X ),
r2 : ∀X hasCollar (X ) ⇒ ∃Y hasOwner (X ,Y ),
r3 : ∀X hasMicrochip(X ) ⇒ ∃Y hasOwner (X ,Y ),
r4 : ∀X alone(X ) ⇒ stray(X ), r5 : ∀X stray(X ) → adoption(X )}

• N = {∀X adoption(X ) ∧ keep(X ) → ⊥}

• r5 � r2, r3 � r5
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keep(jack) → ∅
INdef

adoption(jack) → ∅
OUTdef

hasOwner (jack,Null1) → keep(jack)
INdef

hasOwner (jack,Null2) → keep(jack)
INdef

hasCollar (jack) ⇒ hasOwner (jack,Null1)
INdef

hasMicrochip(jack) ⇒ hasOwner (jack,Null2)
INdef

stray(jack) ⇒ adoption(jack)
INdef

alone(jack) ⇒ stray(jack)
INdef

> → hasCollar (jack)
INstr

> → hasMicrochip(jack)
INstr

> → alone(jack)
INstr

∅ → >
INstr

INstr

INstr

INstr

INstr

INstr

INstr

INdefINdef

INdef

INdef

INdef

INdef

INdef

INdef

INdef

Figure 4.12: SGBDL
KB

of animal shelter Example 3.1.

However, relying on the frontier chase to construct the Statement Graph
makes it prone to rule application loss. As discussed in the previous Chapter
3, the frontier chase derivation reducer might remove some rule applications
which leads to the loss of some support edges. The following Algorithm
4.1 for the construction of a statement graph relies on the same tests as
the Graph of Atom Dependency construction Algorithm 3.3 for the frontier
chase in order to prevent any rule application loss.

The construction of a Statement Graph for a knowledge base KB ex-
pressed in the existential rule language L∀∃ has the same complexity as the
frontier chase i.e. polynomial data complexity and exponential combined
complexity. As previously discussed, the labeling can be done in polynomial
time since it amounts to a breadth first graph traversal.

Proposition 4.9 (SG construction and labeling complexity for L∀∃).
Given a knowledge base KB expressed in the existential rule language L∀∃,
constructing and labeling SGLbl

KB
where Lbl ∈ {BDL,BDLnoTD ,PDL,PDLnoTD }

has polynomial data complexity and exponential combined complexity.

Proof. The Algorithm 4.1 for constructing a Statement Graph of knowledge
base expressed in L∀∃ using a Frontier/Skolem chase starts by running the
chase to create the statements and at the same time uses the chase derivation
reducer checks to prevent derivation loss which has polynomial data com-
plexity and exponential combined complexity (cf Table 2.1 and Algorithm
4.1). Computing the labels afterwards for a query Statement amounts to a
breadth first graph traversal which has polynomial complexity. �
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Algorithm 4.1 SG construction with a frontier chase

Function SGConstruction (KB = (F,R,N,�),δ)
input : KB : A knowledge base expressed with the existential rules

language, δ : An exhaustive breadth-first derivation of KB

output: SG
KB

: Statement Graph of KB

1 V← {(∅ → >)}; ES ← ∅; EA ← ∅; SG
KB
← (V,ES ,EA);

2 foreach r ∈ F do
3 V← r ; /* Add fact rules */

4 /* Creating Statements */
5 foreach Di = (Fi , ri ,πi ) ∈ δ do
6 if ∃D j = (Fj , r j ,πj ) ∈ δ s.t. j < i, r j = ri , and πj |f r (r j )(Head(r j )) =

πi |f r (ri )(Head(ri )) then
7 /* This rule application is redundant */
8 if s = (πi (Body(ri )) V πj (Head(ri ))) < V then
9 /* V stands for the type of implication in ri */

10 Add s to V;

11 else
12 if s = (πi (Body(ri )) V πi (Head(ri ))) < V then
13 Add s to V;

14 if No new facts are generated for the last breadth-first step then
15 break;

16 /* Adding Edges */
17 foreach s ∈ V do
18 if Rule(s) ∈ R then
19 Create support edges from s to all s′ s.t. Conc(s) ∈ Premise(s′);
20 Create attack edges from s to all s′ s.t. Conc(s) and a premise

f ∈ Premise(s′) are in conflict;
21 else
22 Create attack edges from s to all s′ s.t. Conc(s) and Conc(s′) are

in conflict;

23 return SG
KB

;

This section extended the Statement Graph reasoning reasoning mecha-
nism to existential rules. In the next section we present the first defeasible
reasoning tool for existential rules that can handle various variants of de-
feasible reasoning and we evaluate its performance compared to the existing
tools.
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4.3.2 ELDR Tool and Evaluation

In order to expand the usability and appeal of defeasible reasoning, we
propose an implementation of Statement Graph called ELDR (Existential
Language for Defeasible Reasoning) that provides defeasible reasoning with
first order existential rules, ambiguity blocking or propagating, with or with-
out team defeat, and without consistent answers (the support for consistent
answers will be addressed in the next chapter along with Repair Semantics).

ELDR Implementation. In order to express the different types of im-
plication (strict, defeasible, and defeater) we extended the DLGP format
[Baget et al., 2015] to allow for strict “<−”, defeasible “<=”, and defeater
“<∼” implications. ELDR1 relies on the Datalog± dedicated inference engine
called GRAAL [Baget et al., 2015] to run a frontier chase on the knowledge
base and build the statement graph (as described in the previous Algorithm
4.1). The following Table 4.1 indicates what variants of defeasible reasoning
ELDR tool can handle compared to the exiting tools.

Feature ASPIC∗ DeLP∗ SPINdle Flora-2 DEFT ELDR

Ambiguity
Prop. X X X - X X

Block. - - X X - X

Team Defeat
TD - X X X X X

noTD X - - - - X

Floating FC - - - - - -

Conclusions noFC X X X X X X

Consistent Directly - X - - X -

Derivation Indirectly X - X X - X

Existential Rules

S-FES - - - - X X

FUS - - - - - -

GBTS - - - - - -

Cycles
Support - X X X X X

Attack X X X X X X

Rule Block X - X X - X

Preference
� - X X X X X

R X - - - - -

Non-gound Queries - - - X - -

Table 4.1: Classification results with ELDR (Xindicates the tool supports the
feature).

1open source implementation available at https://github.com/hamhec/eldr
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Theory ASPIC∗ DeLP ∗ SPINdle Flora-2 DEFT ELDR

ambiдuity(n)
n = 50 0.44 (false) 148.17 (false)

0.11 (f alse)
0.09 (true) 1.06 (true) 0.11 (f alse)

0.09 (false)
0.09 (true)

n = 2000 ∞ T .O . ∞ 18.942 (true) ∞ ∞

team(n)
n = 4 0.22 (false) 301.19 (true) 0.28 (true) 4.35 (true) 0.28 (true)

0.31 (false)
0.29 (true)

n = 7 T .O . T .O . 109.46 (true) T .O . 201.917 (true)
155.36 (false)
155.04 (true)

cyclicSupp(n)
n = 1000 ∞ 291.37 (true) 0.35 (true) 5.712 (true) 0.44 (true) 0.38 (true)

n = 10000 ∞ T .O . 26.61 (true) 51.72 (true) 288.71 (true) 241.61 (true)

cyclicConf (n)
n = 5 0.62 (true) 55.89 (true) 0.90 (true) 0.92 (true) 0.10 (true) 0.83 (true)

n = 1000 T .O . T .O . T .O . T .O . 79.52 (true) 257.94 (true)

chain(n)
n = 600 108.05 (true) 99.46 (true) 0.24 (true) 2.35 (true) 0.33 (true) 0.41 (true)

n = 10000 ∞ T .O . 16.04 (true) 45.44 (true) 288.71 (true) 215.81 (true)

tr ee(n, 5)
n = 2 0.04 (true) 193.64 (true) 0.03 (true) 0.83 (true) 0.022 (true) 0.07 (true)

n = 7 ∞ T .O . ∞ 211.94 (true) 182.83 (true) 167.19 (true)

daд(n, 10)
n = 1 ∞ 239.75 (true) 7.51 (true) 18.41 (true) 19.53 (true) 11.84 (true)

n = 20 ∞ T .O . ∞ T .O . T .O . 186.96 (true)

Table 4.2: Execution time in seconds (selected results). ‘true’ and ‘false’
indicate query entailment and are used to check support of the feature (the

best time is shown in bold)

Tool Evaluation. In order to assess the performance of Statement Graphs
and their labeling functions we use the benchmark defined in Chapter 3.3.
Handling more variants of defeasible reasoning is a desirable feature as long
as performance does not significantly suffer. As shown in Table 4.2, ELDR
is the only tool that allows for ambiguity blocking without team defeat for
any of the considered languages. It can handle support and attack cycles
and has better performance than DEFT and almost as good as SPINdle as
shown in Figures 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18.

Figure 4.13: Response time for
ambiдuous(n)

Figure 4.14: Response time for
team(n)
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Figure 4.15: Response time for
cyclicConf (n)

Figure 4.16: Response time for
chain(n)

Figure 4.17: Response time for
tree(n, 5)

Figure 4.18: Response time for
daд(n, 10)

4.4 Summary

In this chapter we presented a new formalism called Statement Graph that
represents rule applications as “statements” with attack and support rela-
tions between them. By applying a flexible labeling function on edges, differ-
ent variants of defeasible reasoning can be obtained (ambiguity propagating
or blocking, with or without team defeat, and potentially with support and
attack cycles). We first defined Statement Graph for the propositional lan-
guage Lp and the first order language without existential quantifier L∀ to
obtain equivalent entailment results as defeasible logics and argumentation
grounded semantics. We then defined Statement Graph for first order lan-
guage with existential rules L∀∃ and presented its construction algorithm
that prevents the derivation loss problem.

In order to fill the gaps of defeasible reasoning implementations we pre-
sented a tool for existential rules called ELDR based on Statement Graphs
and showed that it is the first tool to provide defeasible reasoning with
ambiguity blocking or propagating, with or without team defeat, and with
failure-by-looping. We ran the benchmark defined in Chapter 3 and showed
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that ELDR has similar and sometimes better performance results compared
to existing tools.

In order to introduce the contribution of the next chapter we make, at
this point, the observation that defeasible reasoning is not the only way to
handle conflicts in knowledge bases, another well known technique is “Repair
Semantics” [Lembo et al., 2010, Baget et al., 2016]. Having a tool that allows
reasoning with both methods would be, thus, of great practical value. In
the next chapter, we show the versatility of Statement Graph by presenting
labellings for repair semantics, we compare them with defeasible reasoning
variants and combine both techniques to produce new semantics that we
evaluate with regards to human reasoning.

Chapter 4 in a Nutshell

• Statement Graphs are a formalism able to represent Defeasi-
ble Logics via flexible labeling functions (ambiguity blocking or
propagation, with or without team defeat, and with failure-by-
looping).

• Statement Graphs can be constructed with different logical lan-
guages Lp , L∀, and L∀∃. For existential rules they are con-
structed using a frontier chase and account for derivation loss
to represent most of the discussed features for defeasible rea-
soning.

• ELDR is an implementation of Statement Graphs and is the
first tool that allows for ambiguity blocking or propagation, with
or without team defeat for the languages Lp , L∀, and L∀∃.
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5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 156

Conflicts in knowledge representation cause severe problems, notably
due the principle of explosion (from falsehood anything follows). These con-
flicts arise from two possible sources, either the facts are incorrect (known
as inconsistence), or the rules themselves are contradictory (known as inco-
herence). In order to preserve the ability to reason in presence of conflicts,
several approaches can be used, in particular Defeasible Reasoning (that we
discussed in previous chapters) and Repair Semantics. These two approaches
stem from different needs and address conflicts in different ways. However,
as we will show in this chapter, they can be compared and combined. We
start by defining under which conditions Repair Semantics and Defeasible
Reasoning can be compared, then we show that Statement Graphs not only
can represent certain Repair Semantics but also combine them with Defeasi-
ble Reasoning intuitions to obtain new semantics. We run an experimental
evaluation to see how these new semantics coincide with human reasoning,
and discuss the ability of Statement Graph to represent certain human rea-
soning tasks such as the suppression task.
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Research Questions in this Chapter

• Under which conditions can Defeasible Reasoning and Repair
Semantics be compared? Do their semantics coincide?

• Can the different intuitions of Defeasible Reasoning be com-
bined with those of Repair Semantics to obtain new semantics?
If so, how do these new semantics compare to human reason-
ing? Can Statement Graphs represent them?

• Can Statement Graphs represent other forms of human rea-
soning that Defeasible Reasoning and Repair Semantics cannot
represent (such as the suppression task)?

5.1 Repair Semantics

Defeasible reasoning originates from the need to reason with incomplete
knowledge by “filling the gaps in the available information by making some
kind of plausible (or desirable) assumptions” [Billington et al., 2010]. Repair
semantics [Lembo et al., 2010] on the other hand originate from the need to
handle inconsistency that arises due to merging (among others) of different
data sources. It has also been applied to “Ontology-Based Data Access”
[Poggi et al., 2008] where an ontology is used to access a set of data sources.

Defeasible Reasoning and Repair Semantics are generally seen as two
inherently distinct approaches that answer different problems, are studied
by distant communities and, to the best of our knowledge, have never been
explicitly put together. A key difference between Defeasible Reasoning and
Repair Semantics is that the former was designed for incoherence while
the latter was designed for inconsistence. However, since inconsistence is
a special type of incoherence [Flouris et al., 2006], Defeasible Reasoning
can be applied to inconsistent but coherent knowledge, and thus it can be
compared to the Repair Semantics as we will see in Section 5.2.3.

Contrary to Defeasible Reasoning that considers different types of im-
plications (strict and defeasible), Repair Semantics only consider definite
strict implications, any conflict that arises in a knowledge base is due to
“corrupt”, erroneous data. The initial set of facts can be seen as defeasible
facts. In order to handle conflicts, Repair Semantics construct all possible
ways of “repairing” the set of facts while preserving as much information as
possible (in the sense of set inclusion).

Definition 5.1 (Repair). Let KB = (F,R,N, ∅) be a knowledge base that
contains only strict rules, a repair is an inclusion-maximal subset of facts
D ⊆ F that is consistent with the rules and negative constraints (i.e. models(D,R∪
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N) , ∅). We denote the set of repairs of a knowledge base by repairs(KB).

Example 5.1. Consider the following KB = (F,R,N, ∅) that describes a
simplified legal situation: If there is a scientific evidence incriminating a
defendant then he is responsible for the crime, if there is a scientific evidence
absolving a defendant then he is not responsible for the crime. A defendant
is guilty if responsibility is proven. If a defendant is guilty then he will be
given a sentence. If a defendant has an alibi then he is innocent. There is
a scientific evidence “e1” incriminating a female defendant “alice”, while
another scientific evidence “e2” is absolving her of the crime. She also has
an alibi. Is Alice innocent (i.e. Q1() = innocent(alice))? Is she guilty (i.e.
Q2() = дuilty(alice))?

• F = {incrim(e1,alice), absolv(e2,alice), alibi(alice), f emale(alice)}

• R = {r1 : ∀X ,Y incrim(X ,Y ) → resp(Y ),
r2 : ∀X ,Y absolv(X ,Y ) → notResp(X ),
r3 : ∀X resp(X ) → дuilty(X ),
r4 : ∀X alibi(X ) → innocent(X ),
r5 : ∀X дuilty(X ) → ∃Y sentence(X ,Y )}

• N = {∀X resp(X ) ∧ notResp(X ) → ⊥, ∀X дuilty(X ) ∧ innocent(X ) → ⊥}

The Statement Graph representation of this example is shown in Figure 5.1.

> ⇒ f emale(alice)

f emale(alice), ∅

innocent(alice), ∅

sentence(alice,Null1), ∅

> ⇒ alibi(alice)

alibi(alice) → innocent(alice) resp(alice) → дuilty(alice)

дuilty(alice) → sentence(alice,Null1)

incrim(e1,alice) → resp(alice) absolv(e2,alice) → notResp(alice)

> ⇒ incrim(e1,alice) > ⇒ absolv(e2,alice)

∅ → >

Figure 5.1: Example 5.1’s Statement Graph.

The saturated set of facts resulting from a frontier chase is:
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• F∗ = {incrim(e1,alice), absolv(e2,alice), alibi(alice), f emale(alice), resp(alice),
notResp(alice), дuilty(alice), innocent(alice), sentence(alice,Null1)}.

This knowledge base is inconsistent, because a negative constraint is
applicable, (thus models(F,R ∪ N) = ∅). This inconsistency is due to an
erroneous set of facts (either one of the evidences, the alibi, or all of them
are not valid). The repairs constructed from the starting set of facts are:

- D1 = {absolv(e2,alice), alibi(alice), f emale(alice)}

- D2 = {incrim(e1,alice), f emale(alice)}

5.1.1 AR and IAR Repair Semantics

A well-known semantics for inconsistent databases is consistent answers
[Arenas et al., 1999] (also known as All Repairs (AR) semantics [Lembo
et al., 2010]) which considers “entailed” atoms that can be derived from all
possible repairs built from the initial set of facts.

Definition 5.2 (AR Semantics [Lembo et al., 2010]). Given a knowl-
edge base KB, a query Q is AR entailed (denoted KB �AR Q) if and only if
it is entailed from every repair i.e. ∀D ∈ repairs(KB) : D ∪ R � Q.

Example 5.2 (Cont’d Example 5.1). The fact f emale(alice) can be en-
tailed from both repairs, therefore KB �AR f emale(alice).

AR semantics is the most accepted Repair Semantics [Lembo and Ruzzi,
2007], however it comes with a high computational cost. Different approxi-
mations of AR semantics with a lower complexity have been defined, most
notably, the IAR semantics (Intersection of All Repairs).

The Intersection of All Repairs semantics [Lembo et al., 2010] is the
most skeptical of the Repair Semantics, it follows the principle of “when in
doubt throw it out”. In this semantics a fact is entailed if it is entailed by
the intersection of all repairs constructed from the starting set of facts. This
condition is equivalent to stating that this fact is not involved in any conflict
[Lembo et al., 2010], meaning that it does not “lead”1 to any conflict and is
not generated from facts that are in conflict with other facts (i.e. ambiguous
ones).

Definition 5.3 (IAR Semantics [Lembo et al., 2010]). Given a knowl-
edge base KB, a query Q is IAR entailed (denoted KB �IAR Q) if and only
if it is entailed from the intersection of all repairs i.e.

⋂
repairs(KB)∪R � Q

where
⋂
repairs(KB) is the intersection of the repairs of KB.

Example 5.3 (Cont’d Example 5.1). The intersection of all repairs is⋂
repairs(KB) = { f emale(alice)}, therefore KB �IAR f emale(alice).

1A fact f is said to lead to a conflict if there is a derivation relying on (i.e. containing)
f that generates conflicting atoms.
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Any fact that is IAR entailed is also AR entailed.

Proposition 5.1 (IAR and AR [Lembo et al., 2010]). Given a knowl-
edge base KB and a query Q, if KB �IAR Q then KB �AR Q.

However, the inverse is not necessarily true as shown in the following
example.

Example 5.4 (AR vs. IAR). Consider the following knowledge base
KB = (F,R,N, ∅) stating that Bob is cat and a dog. Dogs and cats are
animals. Is Bob an animal Q = animal(bob)?

• F = {doд(bob), cat(bob)}

• R = {r1 : ∀X doд(X ) → animal(X ), r2 : ∀X cat(X ) → animal(X )}

• N = {∀X doд(X ) ∧ cat(X ) → ⊥}

The repairs constructed from the initial set of facts are: D1 = {doд(bob)}
and D2 = {cat(bob)}. The query Q = animal(bob) is AR entailed (KB �AR Q)
because animal(bob) can be derived from all repairs (i.e. D1∪R � animal(bob)
and D2∪R � animal(bob)). However, the intersection of the repairs is empty
(i.e.

⋂
repairs(KB) = ∅), therefore Q is not IAR entailed (KB 2IAR Q).

5.1.2 CAR and ICAR Repair Semantics

AR and IAR semantics are based on the set of repairs constructed from
the initial set of facts. Another way of handling conflicts is to consider the
repairs constructed after saturating the initial set of facts using all possible
rule applications. Applying the same intuition behind AR semantics to
these repairs gives the Closed ABox Repair Semantics (CAR) that considers
a query entailed if it can be derived from all the repairs constructed after
saturating the initial set of facts.

Definition 5.4 (CAR Semantics [Lembo et al., 2010]). Given a knowl-
edge base KB, a query Q is CAR entailed (denoted KB �CAR Q) if and only
if it is entailed from every repair constructed from the saturated set of facts
i.e. ∀D ∈ repairs∗(KB) : D ∪ R � Q where repairs∗(KB) denotes the set of
repairs constructed from F∗.

Example 5.5 (Cont’d Example 5.1). The repairs constructed from the
saturated set of facts are:

- D′1 = {absolv(e2,alice), alibi(alice), f emale(alice), notResp(alice),
sentence(alice,Null1)}

- D′2 = {incrim(e1,alice), f emale(alice), resp(alice), дuilty(alice),
sentence(alice,Null1)}
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The fact sentence(alice,Null1) is not AR entailed, however it is CAR
entailed since D′1 and D′2 entails it (i.e. KB �CAR sentence(alice,Null1)).

It might seem at first that CAR semantics yields unintuitive results such
as in Example 5.1 where it is CAR entailed that Alice is sentenced while it
is not CAR entailed that she is found guilty. However, the CAR semantics
can be seen as an approximation of the AR semantics since it has a lower
computational cost and any fact that is AR entailed is also CAR entailed
(CAR semantics can be seen as an upper bound to AR semantics) [Lembo
et al., 2010].

Another semantics is the Intersection of Closed ABox Repairs (ICAR)
semantics which is an approximation of the CAR semantics with better
complexity. A fact is ICAR entailed if it can be derived from the intersection
of the repairs constructed from the saturated set of facts.

Definition 5.5 (ICAR Semantics [Lembo et al., 2010]). Given a
knowledge base KB, a query Q is ICAR entailed (denoted KB �ICAR Q) if
and only if it is entailed from the intersection of all repairs constructed from
the saturated set of facts i.e.

⋂
repairs∗(KB) ∪ R � Q where

⋂
repairs∗(KB)

is the intersection of the repairs constructed from F∗ of KB.

Example 5.6 (Cont’d Example 5.5). The intersection of all repairs con-
structed from F∗ is

⋂
repairs∗(KB) = { f emale(alice), sentence(alice,Null1)},

therefore KB �ICAR f emale(alice) and KB �ICAR sentence(alice,Null1).

Same as for IAR and AR semantics, every atom that is ICAR entailed
is also CAR entailed while the inverse is not necessarily true. CAR can
be seen as an upper bound approximation of AR, and the same applies for
ICAR and IAR as described by the following Proposition 5.2.

Proposition 5.2 (CAR, AR, ICAR, and IAR [Lembo et al., 2010]).
Given a knowledge base KB that only contains defeasible facts, strict rules
and no preferences, and a query Q:

• if KB �AR Q then KB �CAR Q

• if KB �ICAR Q then KB �CAR Q

• if KB �IAR Q then KB �ICAR Q

Semantics can be compared based on the notion of productivity [Baget
et al., 2016]. We say that a semantics �1 is less productive than �2 (rep-
resented as �1→ �2) if it results in fewer conclusions being drawn (i.e. if
�1 f then �2 f ). Figure 5.2 displays the productivity relation between the
discussed Repair Semantics.
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�AR

�IAR

�ICAR

�CAR

Figure 5.2: Productivity of discussed Repair Semantics [Baget et al., 2016].

The complexity of Repair Semantics depends on the cost of checking
consistency [Lembo et al., 2015].

Proposition 5.3 (AR, CAR, IAR, and ICAR complexity for the
Frontier Chase). Given a knowledge base expressed in L∀∃ with only defea-
sible facts, strict rules, and no preferences, ground query answering for AR
and ICAR has coNP-complete data complexity and 2ExpTime-complete
combined complexity using a Frontier chase. For IAR and ICAR it is
PTime-complete data complexity and 2ExpTime-complete combined
complexity using a Frontier chase.

Proof. We prove AR and CAR complexity using the same proof of [Lembo
et al., 2015] for backward chaining. Showing that a query Q is not entailed
under AR semantics by a KB can be done by guessing a repair D ⊆ F of
KB such that D ∪R 2 Q. Checking that D is consistent, that for every fact
f ∈ F\D: D∪{ f } is inconsistent, and that D∪R 2 Q has PTime-complete
data complexity for the Frontier chase. Thus, query answering is coNP. For
the lower bound, a proof for hardness by reduction from SAT is presented
in [Lembo et al., 2015]. The same proof is applied for CAR by guessing a
repair D ⊆ F∗ from the saturated set of facts.

IAR can be computed by finding all derivations for the atom ⊥ then
removing any initial fact in those derivations. This has PTime-complete
data complexity and 2ExpTime-complete combined complexity for the
Frontier chase as shown in Proposition ?? on page ??. ICAR can be com-
puted by first saturating the initial set of facts then applying same principle
as IAR on the saturated set of facts. �

The complexity of the considered Repair Semantics for the skolem-FES
fragment of existential rules is summarized in Table 5.1.

Semantics Combined Complexity Data Complexity

AR 2ExpTime-complete coNP-complete

IAR 2ExpTime-complete PTime-complete

CAR 2ExpTime-complete coNP-complete

ICAR 2ExpTime-complete PTime-complete

Table 5.1: Complexity of query answering of the considered Repair
Semantics for the Frontier chase
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The discussed semantics are not the only Repair Semantics, different
ones can be defined based on how repairs are constructed and handled. For
more information, the interested reader is referred to the detailed analysis
and comparison in [Baget et al., 2016].

5.1.3 Defeasible Reasoning and Repair Semantics

Repair semantics make the assumption that the set of rules is coherent
because an incoherent set of rules might lead to an empty set of repairs
[Deagustini et al., 2015] as shown in the following Example 5.7.

Example 5.7 (Incoherence). Consider the following KB = (F,R,N, ∅):

• F = {penдuin(kowalski)}

• R = { r1 : ∀X penдuin(X ) → bird(X ), r2 : ∀X bird(X ) → f ly(X ),
r3 : ∀X penдuin(X ) → notFly(X )}

• N = {∀X f ly(X ) ∧ notFly(X ) → ⊥}

The set of rules is incoherent because no set of facts (even outside F)
that makes all rules in R applicable prevents the application of the negative
constraint. No repair from the initial set of facts can be constructed since
models({penдuin(kowalski)},R ∪N) = ∅.

This assumption of coherence is a key difference between Repair Seman-
tics and Defeasible Reasoning. However, these two approaches are similar in
the sense that they can both be applied to potentially inconsistent knowledge
bases with a coherent set of rules, i.e. knowledge bases with defeasible facts
and only strict rules (here we do not consider a preference relation between
facts since preferences are not considered in most Repair Semantics).

Furthermore each method is based on inherently different intuitions, for
example, Defeasible Logics consider ‘entailed’ any information derived before
a contradiction happens, while Repair Semantics consider ‘not entailed’ any
information leading to a contradiction as shown in the following example.

Example 5.8 (Cont’d Example 5.1).

- Defeasible Logics: SGBDL
KB

and SGPDL
KB

are shown in Figures 5.3 and
5.4 respectively (top statement has been omitted for clarity). There
are no direct attacks within the initial set of facts, therefore they
are all defeasibly entailed in Defeasible Logics. In ambiguity block-
ing innocent(alice) is entailed because дuilty(alice) is ambiguous while
in ambiguity propagation it is not entailed. The remaining facts rely
on ambiguous ones, therefore they are not entailed.

- Dialectical Trees: The only fact that is entailed is f emale(alice) because
its argument 〈{> ⇒ f emale(alice)}, f emale(alice)〉 is not attacked.
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- Grounded Semantics: The only entailed facts are the initial set of facts.

Table 5.2 summarizes the entailed facts for each approach.

Semantics Entailed Facts

�BDL f emale(alice), incrim(e1,alice),absolv(e2,alice), innocent(alice)

�PDL f emale(alice), incrim(e1,alice),absolv(e2,alice)

�DT f emale(alice)

�GS f emale(alice), incrim(e1,alice),absolv(e2,alice)

�AR f emale(alice)

�IAR f emale(alice)

�CAR f emale(alice), sentence(alice,Null1)

�ICAR f emale(alice), sentence(alice,Null1)

Table 5.2: Entailed facts of Example 5.1

> ⇒ f emale(alice)
INdef

f emale(alice), ∅
INdef

innocent (alice), ∅
INdef

sentence(alice, Null1), ∅
AMBIG

> ⇒ alibi(alice)
INdef

alibi(alice) → innocent (alice)
INdef

r esp(alice) → дuilty(alice)
AMBIG

дuilty(alice) → sentence(alice, Null1)
AMBIG

incr im(e1, alice) → r esp(alice)
INdef

absolv(e2, alice) → notResp(alice)
INdef

> ⇒ incr im(e1, alice)
INdef

> ⇒ absolv(e2, alice)
INdef

INdef INdef

INdef

INdef INdef

AMBIG
INdef

INdef

AMBIG

AMBIG
INdef

Figure 5.3: BDL applied to Example 5.1’s
Statement Graph.

> ⇒ f emale(alice)
INdef

f emale(alice), ∅
INdef

innocent (alice), ∅
AMBIG

sentence(alice, Null1), ∅
AMBIG

> ⇒ alibi(alice)
INdef

alibi(alice) → innocent (alice)
INdef

r esp(alice) → дuilty(alice)
AMBIG

дuilty(alice) → sentence(alice, Null1)
AMBIG

incr im(e1, alice) → r esp(alice)
INdef

absolv(e2, alice) → notResp(alice)
INdef

> ⇒ incr im(e1, alice)
INdef

> ⇒ absolv(e2, alice)
INdef

INdef INdef

INdef

INdef INdef

AMBIG
INdef

INdef

AMBIG

AMBIG
INdef

Figure 5.4: PDL applied to Example
5.1’s Statement Graph.

While Defeasible Logics do not yield the same results as Repair Seman-
tics, a productivity relation can be established between Defeasible Logics
and IAR semantics: any fact that is IAR entailed is also entailed in Defea-
sible Logics (with both ambiguity propagation and blocking).

Proposition 5.4 (PDL, BDL, and IAR). Given a knowledge base KB

that only contains defeasible facts, strict rules and no preferences, and a
ground query Q:

1. if KB �IAR Q then KB �PDL Q

2. if KB �IAR Q then KB �BDL Q
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3. if KB �PDL Q then KB �BDL Q

Sketch. IAR semantics considers entailed any fact that does not lead to a
conflict and is not generated from one. In Defeasible Logics this means
that the fact is supported and is not ambiguous. The productivity relation
between �PDL and �BDL can be extracted from the inclusion theorem in
[Billington et al., 2010] (cf. detailed proof 5.3 in Section 7.2.3 on page xv).

�

Since both Dialectical Trees and IAR semantics, in presence of strict
rules discard facts leading to a conflict, one might be tempted to assume
that Dialectical Trees give equivalent results to IAR semantics under the
restriction of defeasible facts, strict rules and no preferences. However, con-
sider the following example (similar to Example 3.7).

Example 5.9 (Dialectical Trees vs. IAR). Consider the following
knowledge base KB = (F,R,N, ∅) expressed in Lp for simplicity.

• F = {> ⇒ a,> ⇒ b,> ⇒ d}

• R = {a ∧ b → ¬c,d → c}

The repairs that can be constructed from the initial set of facts are D1 =

{a,b} and D2 = {d}, their intersection is empty, therefore no fact is entailed
in IAR semantics. However, the argument 〈{> ⇒ a},a〉 has no defeater
(since there is no fact f such that { f ,a} ∪ F→ ∪ R→ is inconsistent) and is
therefore warranted in Dialectical Trees, thus KB �DT a.

Nevertheless, we can show that under the restrictions of defeasible facts,
strict rules, and no preferences, entailment using Dialectical Trees is strictly
more productive than IAR semantics. More precisely, In the following
Proposition 5.5 we show that any fact that is IAR entailed is also entailed
using Dialectical Trees. Furthermore, under these restrictions, entailment
using Defeasible Logics is strictly more productive than entailment using
Dialectical Trees.

Proposition 5.5 (Dialectical Trees, PDL and IAR). Given a knowl-
edge base KB that only contains defeasible facts, strict rules and no prefer-
ences, and a ground query Q:

1. if KB �IAR Q then KB �DT Q

2. if KB �DT Q then KB �PDL Q

Proof. cf. Proof 5.5 in Section 7.2.3 on page xv. �

Figure 5.5 represents the productivity relations between the discussed
Defeasible Reasoning and Repair Semantics approaches along with their
data complexity.

144



5.2. STATEMENT GRAPH LABELLINGS FOR REPAIR SEMANTICS

�block

�prop �AR

�IAR

�ICAR

�CAR

�DT

coNP-completePTime-complete

NP

Figure 5.5: Productivity and data complexity of the discussed Defeasible
Reasoning and Repair Semantics approaches (only defeasible facts, strict

rules, and no preferences).

5.2 Statement Graph Labellings for Repair Semantics

Statement Graphs can be used to represent IAR and ICAR Repair Semantics
using labeling functions with IN, OUT, and AMIBG labels. The idea here is
to first detect conflicts, then apply a second pass from the query statements
to the initial facts in order to discard any source of ambiguity.

5.2.1 Labeling for IAR

The intuition behind IAR is to reject any fact that would lead to a conflict
(by applying rules) or that is generated from a conflict [Lembo et al., 2010].
From an SG point of view, any statement that is attacked, or that supports
statements that lead to an attack, or that is only supported by an ambiguous
statement, is discarded. This can be obtained by first detecting all conflicts,
then discarding any statement that either leads to a conflict or is generated
from conflicting atoms.

In order to detect conflicts using Statement Graphs, we need to ensure
that all conflicts are represented. Algorithm 4.1 for Statement Graph con-
struction ensures that no rule application is lost. Given that statements
attack each other on the premise, the upper most statements with no out-
going edges might generate conflicting atoms, that is why any statement
with no outgoing edges must be linked to a query statement as shown in the
following example.

Example 5.10 (Representing all conflicts). Consider the knowledge
base KB of Example 5.1 and its SG

KB
in Figure 5.1. If the query statement

(innocent(alice) → ∅) is not added, then the conflict between (resp(alice) →
дuilty(alice)) and (alibi(alice) → innocent(alice)) would not be detected. That
is why we add to any rule application statement π (Body(r )) V π (Head(r ))
that has no outgoing edges a query statement of the form (π (Head(r )) → ∅).

Now that all conflicts are accounted for, we first apply PDL to detect
ambiguous statements, then backwardly broadcast this ambiguity to any
statement that is linked (by a support or attack edge) to an ambiguous
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statement (cf. Figure 5.6). Labellings for Defeasible Logics start from fact
statements and propagate upward towards query statements, however, for
Repair Semantics, the labellings have to conduct a second pass from query
statements and propagate downward towards fact statements. We use the la-
beling function ‘IAR’ to obtain entailment results equivalent to IAR [Lembo
et al., 2010]. IAR is defined as follows: edges have the same label as their
source statements (i.e. given an edge e, IAR(e) = IAR(Source(e)). Given a
statement s:

(a) IAR(s) = IN iff IAR(s) , AMBIG and PDL(s) = INdef 2.

(b) IAR(s) = AMBIG iff either PDL(s) = AMBIG or ∃e ∈ E+S (s) ∪E+A(s)
such that IAR(Tarдet(e)) = AMBIG.

(c) IAR(s) = OUT iff PDL(s) = UNSUP.

> ⇒ f emale(alice)
IN

f emale(alice), ∅
IN

innocent (alice), ∅
AMBIG

sentence(alice, Null1), ∅
AMBIG

> ⇒ alibi(alice)
AMBIG

alibi(alice) → innocent (alice)
AMBIG

r esp(alice) → дuilty(alice)
AMBIG

дuilty(alice) → sentence(alice, Null1)
AMBIG

incr im(e1, alice) → r esp(alice)
AMBIG

absolv(e2, alice) → notResp(alice)
AMBIG

> ⇒ incr im(e1, alice)
AMBIG

> ⇒ absolv(e2, alice)
AMBIG

∅ → >
IN

IN IN

IN

IN

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Figure 5.6: IAR applied to Example 5.1’s Statement Graph.

A statement is labeled AMBIG if it was labeled ambiguous by PDL
or if it leads to an ambiguous statement. Otherwise, it is IN if it has an
IN complete support and is not attacked (i.e. PDL labels it INdef). The
equivalence between IAR labeling function and IAR semantics is shown in
the following proposition.

Proposition 5.6 (Statement Graphs and IAR). Let KB be a knowl-
edge base that contains only defeasible facts, strict rules and no preferences.
Given a ground query Q:

2Since all starting facts are considered defeasible, no statement can be labeled INstr.

146



5.2. STATEMENT GRAPH LABELLINGS FOR REPAIR SEMANTICS

1. KB �IAR Q iff SGIAR
KB
〈(Q → ∅)〉 = IN.

2. KB 2IAR Q iff SGIAR
KB
〈(Q → ∅)〉 ∈ {AMBIG, OUT}.

Proof. cf. Proof 5.6 in Section 7.2.3 on page xv. �

5.2.2 Labeling for ICAR

The intuition behind ICAR is to reject any fact that would lead to a conflict
while accepting those that would not lead to a conflict even if they were
generated from ambiguous facts [Lembo et al., 2010]. From an SG point of
view, any statement that is attacked or that supports statements that lead
(by a support or attack edge) to attacked ones is considered “ambiguous”.
This is done by first applying PDL to detect ambiguous and accepted state-
ments then the ICAR labeling starts from query statements and progresses
downward towards fact statements. We use the labeling function ‘ICAR’
to obtain entailment results equivalent to ICAR [Lembo et al., 2010]. ICAR
is defined as follows: given an edge e, ICAR(e) = ICAR(Source(e)). Given a
statement s:

(a) ICAR(s)=IN iff ICAR(s) , AMBIG and PDL(s) ∈ {INdef,AMBIG}.

(b) ICAR(s) = AMBIG iff

1. either PDL(s) = AMBIG and ∃e ∈ E−A(s) s.t. PDL(e) ∈ {IN,AMBIG},

2. or ∃e ∈ E+S (s) ∪ E+A(s) such that ICAR(Tarдet(e)) = AMBIG.

(c) ICAR(s) = OUT iff PDL(s) = UNSUP.

A statement is labeled AMBIG if it was labeled ambiguous by PDL and
it is attacked, or if it leads to an ambiguous statement. It is labeled IN if it
was labeled INdef or AMBIG by PDL and is not attacked and does not lead
to an ambiguous statement. Figure 5.7 shows ICAR labeling applied to the
Statement Graph of Example 5.1.

Proposition 5.7 (Statement Graphs and ICAR). Let KB be a knowl-
edge base that contains only defeasible facts, strict rules and no preferences.
Given a ground query Q:

1. KB �ICAR Q iff SGICAR
KB

〈(Q → ∅)〉 = IN.

2. KB 2ICAR f iff SGICAR
KB

〈(Q → ∅)〉 ∈ {AMBIG, OUT}.

Proof. cf. Proof 5.7 in Section 7.2.3 on page xvi. �
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> ⇒ f emale(alice)
IN

f emale(alice), ∅
IN

innocent (alice), ∅
AMBIG

sentence(alice, Null1), ∅
IN

> ⇒ alibi(alice)
AMBIG

alibi(alice) → innocent (alice)
AMBIG

r esp(alice) → дuilty(alice)
AMBIG

дuilty(alice) → sentence(alice, Null1)
AMBIG

incr im(e1, alice) → r esp(alice)
AMBIG

absolv(e2, alice) → notResp(alice)
AMBIG

> ⇒ incr im(e1, alice)
AMBIG

> ⇒ absolv(e2, alice)
AMBIG

∅ → >
IN

IN IN

IN

IN

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Figure 5.7: ICAR applied to Example 5.1’s Statement Graph.

5.2.3 Combining Defeasible Reasoning and Repair Semantics

Defeasible Logics and Repair Semantics stem from two inherently different
domains, and as such, to the best of our knowledge, they were never studied
together. In this section, we first show by an experiment that there is
practical value in considering intuitions from both domains. Then we show
that SGs are adequately equipped to combine such notions.

5.2.3.1 Experiment

In order to get an idea of what intuitions humans follow in an abstract
context, we ran an experiment with 41 participants in which they were told
to place themselves in the shoes of an engineer trying to analyze a situation
based on a set of sensors. These sensors (with unknown reliability) give
information about the properties of an object called “o”, e.g. “Object ‘o’
has the property P” (which could be interpreted for example as ‘o’ is red).
Also, as an engineer, they have a knowledge that is always true about the
relations between these properties, e.g. “All objects that have the property
P, also have the property Q”. Some of the properties cannot be true at the
same time on the same object, e.g. “An object cannot have the properties
P and T at the same time”. Using abstract situations allowed us to avoid
unwanted effects of a priori knowledge while at the same time representing
formal concepts (facts, rules and negative constraints) in a textual simplified
manner. A transcript of the original text that the experiment participants
have received is shown in the following Example 5.11.
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Example 5.11 (Situation 1). Textual representation: Three sensors are
respectively indicating that “o” has the properties S, Q, and T. We know
that any object that has the property S also has the property V. Moreover,
an object cannot have the properties S and Q at the same time, nor the
properties V and T at the same time. Question: Can we say that the
object “o” has the property T?

Let us also provide here the logical representation of the above text.
Please note that the participants have not also received the logical transcript.

• F = {s(o),q(o), t(o)}

• R = {∀X s(X ) → v(X )}

• N = {∀X s(X ) ∧ q(X ) → ⊥,

∀X v(X ) ∧ t(X ) → ⊥}
• Query Q() = t(o)

Participants were shown in a random order 5 situations containing in-
consistencies3. For each situation, the participants were presented with a
textual description of an inconsistent knowledge base and a query (with-
out the logical representation). Possible answers for a query were “Yes”
(entailed) or “No” (not entailed). The 41 participants were second year uni-
versity students in computer science with no formal background in logic, 12
females and 29 males aged between 17 and 46 years old.

Table 5.3 presents the situations and the semantics under which their
queries are entailed (X) or not entailed (−). The “% of Yes” column in-
dicates the percentage of participants that answered “Yes”. The aim of
each situation is to identify if a set of semantics coincide with the majority.
For example the query in Situation 1 (Example 5.11) is only entailed under
�block . Not all cases can be represented, for example �IAR f and 2prop f ,
due to productivity (c.f. Section 5.1.3).

Situations �block �prop �DT �IAR �ICAR % of “Yes” �blockIAR

#1 X - - - - 73.17% X

#2 X X - - - 21.95% -

#3 X X - - X 21.95% -

#4 - - - - X 4.87% -

#5 X X X X X 78.04% X

Table 5.3: Situations Entailment and Results.

From the results in Table 5.3, we observe that blocking and IAR are the
most intuitive (Situations 1 and 5), however blocking alone is not sufficient as
shown by Situations 2 and 3, and IAR alone is not sufficient either (Situation
1). One possible explanation is that participants are using a semantics
that is a mix of IAR and ambiguity blocking ( �blockIAR ). Such a semantics is
absent from the literature as it is interestingly in between Repair Semantics

3Situations and detailed results are available in Section 7.1 on page i.
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and Defeasible Reasoning. Please note that this experiment serves as an
illustration of the possible applications of the new semantics, it does not
claim to be a throughout validation of the link between IAR with ambiguity
blocking and human reasoning. In fact, defining what is “more intuitive” is
almost a lost cause (even between logicians) given the complexity of human
reasoning [Horty et al., 1987]. That is why relying on abstract situations
rather than real world examples might possibly isolate some of the unknown
variables, remove background knowledge, and allow a (rather limited) view
on what human considers a valid conclusion.

5.2.3.2 Combining Ambiguity Blocking with IAR/ICAR

Combining ambiguity blocking and IAR or ICAR can be done by applying
the same intuitions as IAR or ICAR on an SG which has been labeled using
BDL rather than PDL. This would amount to replacing PDL by BDL in
the definitions of IAR and ICAR labellings. The resulting labeling functions
are denoted IARblock and ICARblock respectively and are defined as follows.

• IAR:

(a) IARblock (s) = IN iff IARblock (s) , AMBIG and BDL(s) = INdef.

(b) IARblock (s) = AMBIG iff either BDL(s) = AMBIG or ∃e ∈ E+S (s)∪
E+A(s) such that IARblock (Tarдet(e)) = AMBIG.

(c) IARblock (s) = OUT iff BDL(s) = UNSUP.

• ICAR:

(a) ICARblock (s)=IN iff ICARblock (s) , AMBIG and BDL(s) ∈ {INdef,AMBIG}.

(b) ICARblock (s) = AMBIG iff

1. either BDL(s) = AMBIG and ∃e ∈ E−A(s) s.t. BDL(e) ∈ {IN,AMBIG},

2. or ∃e ∈ E+S (s) ∪E+A(s) such that ICARblock (Tarдet(e)) = AMBIG.

(c) ICARblock (s) = OUT iff BDL(s) = UNSUP.

As it turns out, IARblock fully coincides with the answers given by the
majority of the participants in our experiment.

Notation 5.1 (Ambiguity Blocking IAR and ICAR). Let f be a fact
in a KB that contains only defeasible facts, strict rules and no preferences:

• KB �blockIAR f iff SG
IARblock
KB

〈({ f }, ∅)〉 = IN.

• KB 2blockIAR f iff SG
IARblock
KB

〈({ f }, ∅)〉 ∈ {AMBIG, OUT}.

• KB �blockICAR f iff SG
ICARblock
KB

〈({ f }, ∅)〉 = IN.

• KB 2blockICAR f iff SG
ICARblock
KB

〈({ f }, ∅)〉 ∈ {AMBIG, OUT}.
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To illustrate this semantics, consider Example 5.12.

Example 5.12. Applying IARblock on Example 5.1’s SG (cf. Figure 5.8)
gives KB �blockIAR f emale(alice)∧innocent(alice). Note that the difference with
BDL is that KB 2blockIAR incrim(e1,alice) and KB 2blockIAR absolv(e2,alice). The
difference with IAR is that KB 2IAR innocent(alice).

> ⇒ f emale(alice)
IN

f emale(alice), ∅
IN

innocent (alice), ∅
IN

sentence(alice, Null1), ∅
AMBIG

> ⇒ alibi(alice)
AMBIG

alibi(alice) → innocent (alice)
AMBIG

r esp(alice) → дuilty(alice)
AMBIG

дuilty(alice) → sentence(alice, Null1)
AMBIG

incr im(e1, alice) → r esp(alice)
AMBIG

absolv(e2, alice) → notResp(alice)
AMBIG

> ⇒ incr im(e1, alice)
AMBIG

> ⇒ absolv(e2, alice)
AMBIG

∅ → >
IN

IN IN

IN

IN

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Figure 5.8: IAR applied to Example 5.1’s Statement Graph.

Facts entailed by IAR are also entailed by IAR with ambiguity blocking
and the same applies for ICAR as shown in the following proposition.

Proposition 5.8. Let KB be a knowledge base that contains only defeasible
facts, strict rules and no preferences. Given a ground query Q:

1. if KB �IAR Q then KB �blockIAR Q

2. if KB �blockIAR Q then KB �blockICAR Q

3. if KB �ICAR Q then KB �blockICAR Q

Proof. cf. Proof 5.8 in Section 7.2.3 on page xvii. �

Computing the labellings for IAR, ICAR, IARblock , and ICARblock us-
ing SGs amounts to two breadth first graph traversals which can be done in
polynomial time [Ausiello et al., 2001], combined with the SG construction,
it has PTime − complete data complexity and 2ExpTime-complete com-
bined complexity as shown in Proposition 4.8. Productivity comparison of
Defeasible Reasoning and Repair Semantics is shown in Figure 5.9.
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�block

�prop

�DT

�AR

�IAR

�ICAR

�CAR

�blockIAR

�blockICAR

coNP-completePTime-complete

NP

Figure 5.9: Productivity and data complexity of different semantics under
FES fragment of existential rules with only defeasible facts, strict rules,

and no preferences.

5.3 Human Reasoning

We conclude this chapter by a discussion on how Statement Graphs can be
used to capture other forms of human reasoning, namely, the suppression
task. A psychological study conducted in [Byrne, 1989] shows that people
tend to change (suppress) previously drawn conclusions when additional
information becomes available even if from a logical point of view, the new
information should not affect reasoning. This suppression effect has longly
been studied in cognitive computer science and can be presented in different
forms. We are interested in the modus-ponens suppression task explained
in Example 5.13.

Example 5.13 ([Byrne, 1989]). Consider the following Situation 1 :

1. “If Lisa has an essay to write, she will study late in the library”.

2. “Lisa has an essay to write”.

- Will Lisa study late in the library?

Most subjects (96%) conclude that she will study late in the library. How-

ever, if subjects receive an additional information (Situation 2):

3. “If the library stays open, she will study late in the library”.

Only a minority (38%) concludes she will study late in the library. This

is called the modus-ponens suppression effect because the rule (1) is no longer
applied even though it logically should be.

This study shows that, much like non-monotonic reasoning, conclusions
can be suppressed in human reasoning in presence of additional information.
Since humans tend to rely on background knowledge, the first step of human
reasoning is reasoning towards an appropriate logical representation of the
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situation [Stenning and Lambalgen, 2005]. This is an especially important
step since the suppression effect can occur either as a consequence of a
suitable reasoning mechanism, or due to specific logical representation of
the situation [Ragni et al., 2017]. Extracting what background knowledge
has been used by humans to reason on a situation is hard and subjective,
therefore, one is only left with intuition to justify a certain representation.
That is why we use the “plain” direct representation [Ragni et al., 2017]
where each sentence is a rule and the background knowledge rule “if the
library does not stay open then Lisa will not study late in the library” (the
contrapositive of rule (3.)) is added as shown in Example 5.14.

Example 5.14. Consider a representation of Example 5.13 such that:

• “essay” denotes “She has an essay to write”.

• “library” denotes “She will study late in the library”.

• “open”denotes “Library stays open”.

Let KB1 = (F,R1, ∅, ∅) be the representation of Situation 1:

• F = {> → essay} • R1 = {r1 : essay ⇒ library}

Let KB2 = (F,R2,N,�) be the representation of Situation 2:

• R2 = R1 ∪ {r2 : open ⇒ library, r3 : ¬open ⇒ ¬library}.

• r3 � r1.

Figures 5.10 and 5.11 display the Statement Graphs of the logical repre-
sentations of Situations 1 and 2.

library → ∅

essay ⇒ library

> → essay

∅ → >

Figure 5.10: SG
KB1

of Example
5.14.

library → ∅

essay ⇒ library

open ⇒ library

¬open ⇒ ¬library

> → essay

∅ → >

Figure 5.11: SG
KB2

of Example
5.14.
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Defeasible reasoning (in all its variants) cannot represent the sup-
pression task as “library” is derivable and not defeasibly contested (i.e
KB1 � library and KB2 � library). Most logicians would agree that library
should still be logically derivable in Situations 1 and 2 [Dietz et al., 2014,
Stenning and Van Lambalgen, 2012, Ragni et al., 2017].

A possible explanation for the modus-ponens suppression effect is that
humans consider unsupported counter-arguments as valid attacks: they
think that the library might be closed and therefore cannot conclude that
Lisa will study in the library. Let us show in the remainder of the section
how such reasoning behavior could be captured by a labeling function of the
SGs. More precisely, this can be represented by a labeling function (denoted
SUP) that takes into account UNSUP attack edges if they are superior to
the support edges, which makes the attacked statement AMBIG. For sim-
plicity, we define SUP using the same definitions of BDL for the labels INstr,
OUTstr, OUTdef, AMBIG and UNSUP. Keep in mind however that a label-
ing function based on the same intuition as SUP but using ambiguity propa-
gating (with or without team defeat) would also effectively model the modus-
ponens suppression effect. Given an edge e, SUP(e) = SUP(Source(e)). Given
a statement s:

(a) SUP(s) = INstr if s has an INstr complete support, has a strict rule
Rule(s), and �e ∈ E−A(s) s.t. SUP(e) = INstr.

(b) SUP(s) = OUTstr iff ∃e ∈ E−A(s) s.t. SUP(e) = INstr.

(d) SUP(s) = OUTdef iff BDL(s) , OUTstr and s has an INstr or INdef
complete support and

1. either ∃f ∈ Premise(s) where �es ∈ E
−
S (s) for f s.t. SUP(es) = INstr

and ∀e′s ∈ E−S (s) for f s.t. SUP(e′s) ∈ {INdef, AMBIG}, ∃e ∈ E−A(s)
attacking s on f s.t. SUP(e) = INdef and e is superior to e′s.

2. or ∃e ∈ E−A(s) s.t. SUP(e) = INdef attacking the rule application of
s and Rule(s) is not a strict rule and Rule(Source(e)) � Rule(s).

(e) SUP(s) = AMBIG iff SUP(s)< {INstr,OUTstr, INdef,OUTdef,UNSUP}
and s is not part of a support cycle and is part of an attack cycle.

(f) SUP(s) = UNSUP iff SUP(s) < {INstr, OUTstr, INdef, OUTdef,
AMBIG} and s is part of a support cycle.

The key difference for representing the modus-ponens suppression effect
is to change the INdef labeling to account for unsupported attack edges,
that is why we add the conditions (c.3) and (c.4) stating that for any attack
edge e s.t. SUP(e) = UNSUP, if e attacks a premise then there must exist a
support edge for that premise that is not inferior to e, and if e attacks the
rule, then the rule must not be inferior to e.
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(c) BDL(s) = INdef iff BDL(s) < {INstr,OUTstr} and s has a INstr or
INdef complete support and

1. ∀e ∈ E−A(s) that undercut s on a premise f ∈ Premise(s) s.t. BDL(e) =
INdef, ∃es ∈ E−S (s) for f s.t. BDL(es) = INstr or BDL(es) = INdef
and es is superior to e.

2. and ∀e ∈ E−A(s) s.t. BDL(e) = INdef and e attacks the rule applica-
tion of s, Rule(s) is either a strict rule or Rule(s) � Rule(Source(e)).

3. and ∀e ∈ E−A(s) s.t SUP(e) = UNSUP and e undercuts s on f ,
∃es ∈ E−S (s) for f s.t. es is not inferior to e.

4. and ∀e ∈ E−A(s) s.t. SUP(e) = UNSUP and e attacks the rule applica-
tion of s, Rule(s) is either a strict rule or Rule(Source(e)) � Rule(s).

Applying the SUP labeling function yields SGSUP
KB1
〈(library → ∅)〉 =

INdef and SGSUP
KB2
〈(library → ∅)〉 = AMBIG (as shown in Figures 5.12 and

5.13) which correctly models the modus ponens suppression effect.

library → ∅
INdef

essay ⇒ library
INdef

> → essay
INstr

∅ → >
INstr

INstr

INstr

INdef

Figure 5.12: SGSUP
KB1

of Example
5.14.

library → ∅
AMBIG

essay ⇒ library
INdef

open ⇒ library
UNSUP

¬open ⇒ ¬library
UNSUP

> → essay
INstr

∅ → >
INstr

INstr

INstr

INdef

UNSUP

UNSUP

Figure 5.13: SGSUP
KB2

of Example
5.14.

Please note that we defined SUP using BDL but there is no proof that
human use ambiguity blocking with team defeat. However we make this
assumption for simplicity. A labeling function based on the same intuition as
SUP but using ambiguity propagating (with or without team defeat) would
also effectively model the modus-ponens suppression effect. Empirical data
and more testing are needed to justify one or the other.

Finally, let us note again that while the suppression effect can occur
either as a consequence of a suitable reasoning mechanism or due to specific
logical representation of the situation [Ragni et al., 2017], we made sure
to use the “plain” representation where only the background knowledge is
added [Ragni et al., 2017]. Other representations can be used such as the
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“necessary condition” by using the rule “essay∧open ⇒ library” or the weak
completion semantics and adding an abnormality predicate [Dietz et al.,
2014].

5.4 Summary

Defeasible logics and Repair Semantics stem form different needs and are
studied in distinct domains. A first attempt to apply Defeasible Reason-
ing to the Database domain is made in [Deagustini et al., 2015] where it is
shown that Repair Semantics produce no useful answers under incoherence.
However, the link between defeasible logics and Repair Semantics when both
can be applied is not studied. In this chapter we investigated the link be-
tween Defeasible Reasoning and Repair Semantics, we showed that they
are not so different and can both be applied to inconsistent but coherent
knowledge bases under the restriction of defeasible facts, strict rules, and
no preferences. We started by showing the productivity link between theses
techniques (summarized in Figure 5.5), namely:

• Proposition 5.4: everything that is IAR entailed is also entailed by
Defeasible Reasoning with ambiguity propagation and by grounded
semantics; the same cannot be said for ICAR semantics.

• Proposition 5.5: everything that is IAR entailed is also entailed by
Dialectical Trees, and everything that is entailed by Dialectical Trees
is also entailed by Defeasible Reasoning with ambiguity propagation
and by grounded semantics (cf. Figure 5.5).

We then showed how Statement Graphs can represent IAR and ICAR
semantics by first applying the labeling function for Defeasible Reasoning
with ambiguity propagation then discarding statements that lead to con-
flicts. Afterward, we ran an experiment with 41 participants in order to
understand what intuitions humans follow in abstract inconsistent situa-
tions. The results seem to indicate that ambiguity blocking and IAR are
the most intuitive (cf. Table 5.3), however blocking alone or IAR alone
are not sufficient to account for all entailment results. A possible expla-
nation is that participants are using a semantics that is a mix of IAR and
ambiguity blocking. Such a semantics is absent from the literature as it is in-
terestingly “in-between” Repair Semantics and Defeasible Reasoning. This
experiment serves as an illustration to the possible applications of combining
both approaches, but it does not claim to be a thorough validation of human
reasoning since defining what is “more intuitive” is particularly difficult.

Motivated by the experiment results, we defined labellings that combines
IAR or ICAR with ambiguity blocking, we studied their complexity and pro-
ductivity links with regards to Defeasible Reasoning and Repair Semantics
techniques (summarized in Figure 5.9). These new semantics display the
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flexibility of Statement Graphs and the next step was to check if SGs can
represent human reasoning that neither Defeasible Reasoning nor Repair
Semantics can represent, namely, the suppression task.

The suppression task is a psychological study conducted in [Byrne, 1989]
that shows that people tend to change (suppress) previously drawn conclu-
sions when additional information becomes available, even if from a logical
point of view, this new information should not affect reasoning. A possible
explanation for this effect is that human tend to consider exception even if
they are not supported. From an SG point of view, this means that attacks
from unsupported statements should be considered valid attacks if they are
superior to the support edges. We defined a labeling function called SUP
that is able to represent the suppression effect under the “plain” logical
representation of the situation presented to the participants.

The results in this chapter allowed us to make the link between Defeasible
Reasoning, Repair Semantics, and some forms of human reasoning. The
labellings for IAR and ICAR are included in the ELDR tool giving more
options for conflict-tolerant reasoning with existential rules.
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Chapter 5 in a Nutshell

• Defeasible Reasoning and Repair Semantics can be compared
under the restrictions of strict rules, defeasible facts and no
preferences (cf. Propositions 5.4, 5.5 and Figure 5.9 that dis-
play the productivity links between the different techniques).

• Statement Graphs can represent the IAR and ICAR Repair
Semantics by first applying the labeling function for Defeasi-
ble Reasoning with ambiguity propagation then removing state-
ments that lead to conflicts.

• Statement Graphs provide a unifying representation to obtain
equivalent entailment as some Defeasible Reasoning and Re-
pair Semantics techniques, which allows us to combine the in-
tuitions of both approaches. Specifically, IAR and ICAR Repair
Semantics can be combined with the ambiguity blocking intu-
ition of Defeasible Reasoning. The resulting semantics seems
to coincide with human reasoning under abstract situations as
supported by the empirical results of the experiment in Section
5.2.3.

• Statement Graphs can be applied to other forms of human rea-
soning that neither Defeasible Reasoning nor Repair Semantics
can represent, namely, the suppression task where valid logi-
cal conclusions are suppressed. We proposed to represent this
effect by considering unsupported attacks as valid if they are
more preferred.
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In this thesis we set out to answer a seemingly simple research problem
stemming from the need to preserve the ability to answer queries in presence
of conflicts in a knowledge base expressed using existential rules. Conflicts
can arise at two different levels: inconsistence when the factual knowledge
is incorrect, and incoherence when the rules themselves are contradictory.
The problem of inconsistence has been addressed for existential rules using
the various Repair Semantics. The problem of incoherence has not been
addressed in a throughout manner for existential rules, since repair semantics
fail to provide answers when the set of rules is incoherent.

Research Question

How can we preserve the ability to reason in an inconsistent or inco-
herent knowledge base expressed using existential rules?

Our research hypothesis is that Defeasible Reasoning provides a way to
retain the ability to reason in presence of inconsistence and incoherence.
However, there is no universal way of reasoning in presence of conflict, that
is why we have to account for the different intuitions that can be adopted.
Our research question can be refined as follows:

1. How can Defeasible Reasoning techniques be applied to Exis-
tential Rules?

2. Can we provide formalisms and tools that allow for defeasible
reasoning with different intuitions under existential rules?
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6.1 Scope

Since our research problem vast, its scope had to be restricted in order to
address it in a reasonable manner:

• Existential Rules are a first order logical language that emerged from
the intersection of Knowledge Representation, Database Systems, and
Semantic Web. It has the ability to express knowledge about “un-
known” individuals. This level of expressiveness comes at the high
cost of undecidability (the reasoning mechanism can be infinite), that
is why different decidable fragments of existential rules have been de-
fined: Finite Expansion Set (FES) guaranteeing a finite forward chain-
ing mechanism (chase), Finite Unification Set (FUS) guaranteeing a
finite backward chaining mechanism, and Greedy Bounded Treewidth
Set (GBTS) guaranteeing a finite forward-like inference mechanism.
The first choice that was made is to focus on the forward chaining
mechanism which is arguably the most intuitive one given its ability
to handle transitive rules [Rocher, 2016]. The second choice is what
type of chase do we want to use? There are four kinds of chases:
Oblivious, Frontier/Skolem, Restricted, and Core chases. While we
addressed most of them for the derivation loss problem, we focused
in the remainder of the thesis on the Frontier/Skolem chase which is
the most used chase given its relatively low cost and its ability to stay
decidable for all known concrete classes of the FES fragment [Baget
et al., 2011a].

• Defeasible Reasoning is an efficient form of non-monotonic reasoning.
There are various techniques to achieve this kind of reasoning; we
focused on Defeasible Logics since they can represent most of the intu-
itions of defeasible reasoning, Dialectical Trees since they are the only
attempt to apply defeasible reasoning to existential rules, and argu-
mentation’s Grounded Semantics under the instantiation of [Governa-
tori et al., 2004] since, in particular cases, they coincide with Defeasi-
ble Logics. Of course these are not the only techniques for defeasible
reasoning, argumentation can be instantiated and defined in different
ways, but we focused on the previous techniques because they provide
an implemented reasoning tool that we can compare to.

• Repair Semantics are the first inconsistency-tolerant techniques ap-
plied to existential rules. AR semantics is the most intuitive and used
one [Lembo et al., 2010]. We focused on IAR and ICAR as they are a
less costly approximation of AR.
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6.2 Summary and Contributions

To achieve our aim we provided three main contributions:

1. We demonstrated why one cannot simply directly apply defeasible rea-
soning techniques to existential rules (derivation loss problem in Chap-
ter 3).

2. We provided a unifying formalism that takes into account the speci-
ficities of existential rules and can represent most defeasible reasoning
intuitions (Statement Graphs). We also defined the first benchmark for
first order defeasible reasoning tools that allows the analysis and clas-
sification of the implementations. Moreover, provides a clear overview
on the gaps not covered by these tools (Chapter 4).

3. We showed that Repair Semantics and Defeasible Reasoning can be
seen as two particular cases of a more general mechanism of conflict-
tolerant reasoning. This mechanism can be represented using State-
ment Graphs which can be used to combine both approaches in order
to produce new semantics (Chapter 5).

In Chapter 2 we reviewed various Defeasible Reasoning techniques and
provided links and connections between them such as their complexity, the
intuitions they follow, and under which restrictions they might coincide.

In Chapter 3, we showed the Derivation Loss problem (where the deriva-
tion reducer of the chase might remove some rule applications and subse-
quently lose derivations) which prevents the direct application of defeasible
reasoning techniques to existential rules. To solve this problem, we defined
the notion of Graph of Atom Dependency (GAD) for the different kinds of
chases, and described how it can be used to extract all derivations. Using
GAD we presented the first defeasible reasoning tool for existential rules
based on Dialectical Trees (called DEFT) and we compared its features and
performance to other defeasible reasoning tools using a dedicated bench-
mark. This benchmark provides a clear view of what the tools allow for
(e.g. ambiguity handling, team defeat, preferences, cycles, etc.), and thus
can be used by a data engineer to choose the best tool to use depending on
the data and requirements at hand; for instance, DEFT is recommended for
ambiguity propagation with team defeat due to its satisfactory performance
in this context. Moreover the benchmark provides insights about the current
gaps that are not covered yet by any tool.

Based on the gaps we uncovered previously, and given the fact that it
would be tedious to extend every defeasible reasoning technique to existen-
tial rules, we introduced in Chapter 4 a unifying formalism that is able to
represent ambiguity blocking or propagation, with or without team defeat,
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and that can handle cycles: Statement Graph. It also takes into account
the specificities of existential rules and avoids the problem of derivation loss.
Implementing Statement Graphs in a tool (called ELDR) answered most of
the gaps identified in the previous chapter. This tool has been shown to
have satisfactory performance given the results of the benchmark.

Following this idea of unifying these formalisms, we investigated the link
between Defeasible Reasoning and Repair Semantics and showed in Chap-
ter 5 that these approaches can be compared under the restrictions of strict
rules, defeasible facts and no preferences. We studied the productivity links
between Defeasible Reasoning techniques and Repair Semantics and used
Statement Graphs to represent the entailment of IAR and ICAR repair se-
mantics. Once represented in the unifying formalism, it was a natural con-
sequence to combine them with the intuitions of defeasible reasoning. The
resulting hybrid semantics seem to coincide with human reasoning as sup-
ported by the empirical experiment. Moreover we showed that Statement
Graphs can represent other forms of human reasoning that neither Defea-
sible Reasoning nor Repair Semantics are able to represent, namely, the
suppression task where valid logical conclusions are suppressed depending
on the context.

6.3 Perspectives

While we successfully answered the significant research question we set out
to address, our contributions open interesting avenues for future work.

1. Existential Rules. Forward chaining where rules are applied over
a starting set of facts to generate new knowledge is not the only way
to reason with existential rules. Backward chaining can also be used.
In this context, the query is rewritten using the rules until it is trans-
formed into a conjunction of starting facts. The questions that can
be asked here are: is backward chaining prone to derivation loss? If
so, how can this be prevented? The first question can be easily an-
swered: yes. Indeed, while a derivation reducer removes rule applica-
tions, backward chaining removes rule rewritings which might lead to
derivation loss as shown by this simple example:

Example 6.1 (Derivation Loss in Backward Chaining). Con-
sider the following knowledge base KB = (F,R, ∅, ∅) stating that ani-
mals that lay eggs are generally birds, and animals that lay eggs and
have feathers are definitely birds. Suppose we have an animal named
Tweety that lays eggs and has feathers. Is Tweety a bird (Q = bird(tweety))?

• F = {layEддs(tweety),hasFeathers(tweety)}
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• R = {r1 : ∀X layEддs(X ) ⇒ bird(X ),
r2 : ∀X layEддs(X ) ∧ hasFeathers(X ) → bird(X )}

In backward chaining, a query is rewritten using a rule if the query can
be mapped to the head of rule. If the resulting atoms are more specific
than some previously generated ones then they are removed in order to
ensure termination of the algorithm [Thomazo, 2013]. The sequence
of rewriting for the query Q can be represented in a graph (Figure 6.1)
where nodes represent rewritten queries and edges represent the rules
and homomorphisms used to rewrite. The rule r1 can be used to rewrite
Q into Q1 = layEддs(tweety), and the rule r2 can be used to rewrite Q
into Q2 = layEддs(tweety) ∧ hasFeathers(tweety). The rewritten query
Q2 is more specific to Q1 since Q1 can be mapped to Q2, therefore the
rewriting using r2 is removed. If we want to extract the derivations
for bird(tweety) we find only one derivation (the one using r1). Thus
backward chaining is prone to derivation loss.

Q = bird(tweety)

Q1 = layEддs(tweety) Q2 = layEддs(tweety) ∧ hasFeathers(tweety)

r1 r2

Figure 6.1: Backward chaining graph of Example 6.1 (the rewriting using
r2 is removed and displayed in gray for clarity)

Another interesting thing to consider is the fact that derivation loss
is not only problematic for defeasible reasoning, it is also a problem
for any situation where more than simple entailment is needed, in
particular when the path of reasoning for this entailment is needed
as well. For instance, we previously worked on query explanation
[Hecham et al., 2017a] and in this context, it is not just entailment
that is important but also the reasoning behind it. Derivation loss in
this case may gravely impede the purpose of this enterprise.

Moreover, since repairs can be expressed using consistent derivations
[Croitoru and Vesic, 2013], it seems that the Graph of Atom Depen-
dency can be used to compute minimal conflicting sets by considering
the query Q = ⊥. These minimal conflicting sets can then be used to
compute repairs in a manner that is more efficient that considering all
possible subsets of starting facts.

2. Defeasible Reasoning. The discussed techniques for defeasible rea-
soning are not the only existing ones. An interesting research topic
would be considering those that follow rationality postulates [Cam-
inada and Amgoud, 2007]. This requires defining arguments for a
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conjunction of atoms with possibly material implication to avoid dis-
junction. Another topic worth studying is to consider other semantics
of argumentation, such as preferred semantics which seem to coincide
with AR repair semantics, or other instantiations of argumentation
such as Assumption Based Argumentation (ABA) [Toni, 2014] and its
different ways of handling preferences.

3. Repair Semantics. In order to continue our work on unifying Defea-
sible Reasoning with Repair Semantics, it is necessary to check whether
it is possible to extend Statement Graphs labeling functions to Rep-
resent AR and CAR semantics. This would allow the creation of new
semantics by combining defeasible reasoning intuitions with AR and
CAR (and possibly more). Furthermore, in recent work, repair seman-
tics that include preferences over facts have been defined [Bourgaux,
2016], it would be interesting to consider how these semantics could
coincide with Defeasible Reasoning. Moreover, this would allow us to
combine the different intuitions on preferences (e.g. team defeat) with
these semantics through the prism of Statement Graphs.

4. Human Reasoning. We studied in this thesis one particular form
of the suppression task, namely the modus-ponens suppression task.
Continuing this effort would include extending Statement Graphs to
other forms of suppression task (modus-tollens, denial of antecedent,
and affirmation of consequent) and potentially the selection task [Ragni
et al., 2017]. Finally, we worked on defining a formal model for hu-
man reasoning [Bisquert et al., 2017, Bisquert et al., 2016, Hecham
et al., 2016] based on the psychological model of Dual Process Theory
[Evans, 2003, Kahneman, 2011]. This model includes a set of strict
rules describing System 2 (reasoning part that is slow but precise) and
defeasible rules describing System 1 (reasoning part that is fast but
logically sloppy). A possible continuation of this work is to include
Statement Graphs and their ability to represent different intuitions
into the reasoning process of this model.

164



7
Appendix

7.1 Experiment of Chapter 5 . . . . . . . . . . . . . . . . i

7.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

7.2.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . iv

7.2.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . v

7.2.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . xiv

This chapter contains details about the human reasoning experiment of
Chapter 5 and the proofs for the propositions in different chapters.

7.1 Experiment of Chapter 5

We ran an experiment with 41 participants in which they were told to place
themselves in the shoes of an engineer trying to analyze a situation based
on a set of sensors, these sensors (which we ignore the reliability) give in-
formation about the properties of an object called “o”, e.g. “Object ‘o’ has
the property P” (which could be for example, ‘o’ is red). Also, as an engi-
neer, they have a knowledge that is always true about the relations between
these properties, e.g. “All objects that have the property P, also have the
property Q”. Some of the properties cannot be true at the same time on
the same object, e.g. “An object cannot have the properties P and T at the
same time”. Using abstract situations allows us to avoid unwanted effects
of a priori knowledge.

Participants were shown in a random order 5 situations containing in-
consistencies. For each situation, the participant is presented with a textual
description of an inconsistent knowledge base and a query. Possible answers
for a query is “Yes” (entailed) or “No” (not entailed). The 41 participants
are second year university students in computer science, 12 female and 29
male aged between 17 and 46 years old.

Table 5.3 represents the situations and the semantics under which their
queries are entailed (X) or not entailed (−). The “% of Yes” column indi-
cates the percentage of participants that answered “Yes”. The aim of each

i



CHAPTER 7. APPENDIX

situation is to identify if a set of semantics coincides with the majority, for
example, the query in Situation 1 is only entailed under �block . Not all cases
can be represented, for example �IAR f and 2prop f , due to productivity.

Situation 1. Textual representation:

• Sensor1: “o” has the property S.

• Sensor2: “o” has the property Q.

• Sensor3: “o” has the property T.

• Any object that has the property S also has the property V.

• An object cannot have the property S and Q at the same time.

• An object cannot have the property V and T at the same time.

• Question: Can we say that the object “o” has the property T?

Logical representation:

• F = {s(o),q(o), t(o)}

• R = {∀X s(X ) → v(X )}

• N = {∀X s(X ) ∧ q(X ) → ⊥, ∀X v(X ) ∧ t(X ) → ⊥}
• Query Q = t(o)

Situation 2. Textual representation:

• Sensor1: “o” has the property W.

• Sensor2: “o” has the property X.

• Any object that has the property W also has the property Y.

• Any object that has the property X also has the property Z.

• An object cannot have the property Y and Z at the same time.

• Question: Can we say that the object “o” has the property W?

Logical representation:

• F = {w(o),x(o)}

• R = {∀X w(X ) → y(X ), ∀X x(X ) → z(X )}

• N = {∀X y(X ) ∧ z(X ) → ⊥}

• Query Q = w(o)
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Situation 3. Textual representation:

• Sensor1: “o” has the property M.

• Sensor2: “o” has the property J.

• Sensor3: “o” has the property T.

• Any object that has the property M also has the property S.

• Any object that has the property J also has the property D.

• Any object that has the property J also has the property L.

• An object cannot have the property S and D at the same time.

• Question: Can we say that the object “o” has the property L?

Logical representation:

• F = {m(o), j(o), t(o)}

• R = {∀X m(X ) → s(X ), ∀X j(X ) → d(X ),
∀X j(X ) → l(X )}

• N = {∀X s(X ) ∧ d(X ) → ⊥}

• Query Q = l(o)

Situation 4. Textual representation:

• Sensor1: “o” has the property E.

• Sensor2: “o” has the property T.

• Any object that has the property T also has the property C.

• An object cannot have the property E and T at the same time.

• Question: Can we say that the object “o” has the property C?

Logical representation:

• F = {e(o), t(o)}

• R = {∀X e(X ) → c(X )}

• N = {∀X e(X ) ∧ t(X ) → ⊥}

• Query Q = c(o)

Situation 5. Textual representation:

• Sensor1: “o” has the property F.

• Sensor2: “o” has the property G.

• Sensor3: “o” has the property H.

• Any object that has the property H also has the property Z.

• An object cannot have the property Z and G at the same time.

• Question: Can we say that the object “o” has the property F?
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Logical representation:

• F = { f (o),д(o),h(o)}

• R = {∀X h(X ) → z(X )}

• N = {∀X z(X ) ∧ д(X ) → ⊥}

• Query Q = f (o)

Situations Nbr of “Yes” Nbr of “No” % of “Yes”

#1 30 11 73.17%

#2 9 32 21.95%

#3 9 32 21.95%

#4 2 39 4.87%

#5 32 9 78.04%

Table 7.1: Experiment Results.

7.2 Proofs

7.2.1 Chapter 2

Proposition 2.4 (Dialectical Trees and Defeasible Logic) Given a
knowledge base KB = (F,R,N, ∅) expressed in Lp or L∀ without defeater
rules, strict rules or a preference relation:

• KB ` +δprop f iff KB �DT f .

• KB ` −δprop f iff KB 2DT f .

Proof 2.4. We split the proof of (1.) in two, first we prove by induction that
if KB ` +δprop f then KB �DT f :

• Inductive base: KB ` +δprop f means that Proo f (1) = +δprop f . Given
the fact that there is only defeasible rules with no preferences, this
implies that there a defeasible rule of the form > ⇒ f (fact rule)
and no fact rule for a literal in conflict with f (otherwise f would be
ambiguous), which means that there is an argument 〈{> ⇒ f }, f 〉 for
f that has no defeater, therefore there is a warranted argument for f ,
thus KB �DT f .

• Inductive step: Let us suppose that the proposition holds for Proo f (1..i)
and Proo f (i + 1) = +δ f , therefore
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1. there is a defeasible rule r ∈ R s.t. Head(r ) = f and ∀ϕ ∈ B(r ) :
+δpropϕ. By the inductive hypotheses we have that ∀ϕ ∈ B(r ),
KB �DT ϕ. This means that there is an argument for f such
that none of its sub-arguments (except the argument itself) has
a defeater, and

2. ∀r ′ ∈ R s.t. Head(r ′) is in conflict with f : ∃ϕ ′ ∈ Body(r ′) s.t. there
is no rule applications for ϕ ′, which means that r ′ is not applica-
ble, implying that there is no argument attacking the argument
for f , therefore it is undefeated.

From 1. and 2. there is an argument for f that is warranted, thus
KB �DT f .

Now we prove that if KB �DT f then KB ` +δprop f : KB �DT f means
that there is an argument for f that is warranted (undefeated). Given the
fact that there is only defeasible rules with no preferences, all defeats are
blocking defeats, meaning that a literal can only have a warranted argument
if it has no defeater since blocking defeats cannot be prevented using blocking
defeaters. This implies that there is an argument for f that has no defeater
i.e. there is a derivation for f and no derivation for a literal in conflict with
any literal in the derivation for f , therefore KB ` +δprop f .

From (1.) the proposition (2.) directly holds (contra-positive) since
KB 0 +δprop f means KB ` −δprop f [Billington, 1993]. �

7.2.2 Chapter 4

Proposition 4.1 Let f be a literal in a defeasible KB expressed in Lp
that contains no attack or support cycles:

1. KB ` +∆f iff SGBDL
KB
〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SGBDL
KB
〈(f → ∅)〉 , INstr

3. KB ` +δTDblock f iff SGBDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δTDblock f iff SGBDL
KB
〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof 4.1. We split the proof of (1.) in two, first we prove by induction that
if KB ` +∆f then SGBDL

KB
〈(f , ∅)〉 = INstr:

• Inductive base: Proo f (1) = +∆f . This implies that there is a strict rule
of the form > → f , which means that SGBDL

KB
contains the statement

(> → f ) that is labeled INstr since it has a support edge labeled INstr
coming from the top statement, therefore the statement (f → ∅) has
a complete strict support, thus SGBDL

KB
〈(f → ∅)〉 = INstr.
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• Inductive step: Let us suppose that the proposition holds for Proo f (1..i)
and Proo f (i + 1) = +∆f , therefore there is a strict rule r ∈ R→
s.t. Head(r ) = f and ∀ϕ ∈ Body(r ) : +∆ϕ. By the inductive hy-
potheses we have that ∀ϕ ∈ Body(r ), ∃s′ = (Body(r ′) → Head(r ′))
s.t. Head(r ′) = ϕ and SGBDL

KB
〈s′〉 = INstr. This means that the

statement s = Body(r ) → Head(r ) has a INstr complete support i.e.
SGBDL

KB
〈()〉 = INstr, therefore (f → ∅) has a INstr complete support,

thus SGBDL
KB
〈(f , ∅)〉 = INstr.

Now we prove by induction that if SGBDL
KB
〈(f , ∅)〉 = INstr then KB ` +∆f :

• Inductive base: (f → ∅) has a INstr complete support from the top
statement, this means that there is a strict rule of the form > → f
therefore KB ` +∆f .

• Inductive step: the statement (f → ∅) is supported by a statement
s = (r ) s.t. Head(r ) = f and SGBDL

KB
〈s〉 = INstr. This means that

s has a complete INstr support and is not attacked by INstr attack
edge, which implies that ∀ϕ ∈ Body(r ) there is a INstr statement with
a strict rule for ϕ. By the inductive hypotheses we have that ∀ϕ ∈
Body(r ) : +∆ϕ, therefore KB ` +∆f .

From (1.) the proposition (2.) directly holds by contra-positive since KB 0

+∆f means KB ` −∆f [Billington, 1993].
We split the proof of (3.) in two, first we prove by induction that if KB `

+δTDblock f then SGBDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}:

• Inductive base: Proo f (2) = +δTDblock f . This implies that either +∆f ∈

Proo f (1) which means SGBDL
KB
〈(f → ∅)〉 = INstr (as shown in (1.)) or:

1. there exist a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) there is a strict or defeasible fact rule for ϕ and
no rule for ϕ (which means that there is a statement for ϕ that
is either labeled INstr or INdef, therefore the statement (r ) has
INstr or INdef complete), and

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on (f → ∅) which means it is not labeled OUTstr) and

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −δTDblockϕ
′ ∈ Proo f (1) i.e. there is no strict

or defeasible fact rule for ϕ ′ (which means that all statement
for f do not have a INstr or INdef complete support, they
are therefore not labeled INdef or INstr).

(b) or ∃r ′′ ∈ R s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDblockϕ ∈
Proo f (1) and r ′′ � r ′, which means the statements (r ′) and
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(r ′′) have a INstr or INdef complete support (coming from the
top statement since r ′ and r ′′ are fact rules), meaning that
for all the INdef attack edge on (f → ∅) there is a support
edge that is superior to it (r ′′ � r ′).

Form 1. 2. and 3. we can see that the query statement for f has
a INstr or INdef complete support and (no INstr or INdef attack
edge) or (all INdef attack edges are inferior to a support edge),
therefore SGBDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

• Inductive step: Let us suppose that the proposition holds for Proo f (1..i)
and Proo f (i + 1) = +δTDblock f . This implies that either +∆f ∈ Proo f (i)

(which means that SGBDL
KB
〈(f → ∅)〉 = INstr as shown in 1.), or:

1. there exits a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) : +δTDblockϕ ∈ Proo f (1..i), by the inductive hypotheses
we have that there is a INstr or INdef statement for ϕ, meaning
that the statement (r ) has a INstr or INdef complete support.

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on the query statement for f ).

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −δTDblockϕ
′ ∈ Proo f (1..i), given results in

[Billington, 1993] where it is shown that KB ` −δTDblockϕ
′

means KB 0 +δTDblockϕ
′, and by the contrapositive of the in-

ductive hypothesis we get that SGBDL
KB
〈(ϕ ′→ ∅)〉 < {INstr, INdef}

which means that there is no INstr or INdef complete sup-
port for (r ′) which implies that there is no INstr or INdef
attack edge on the query statement for f .

(b) or ∃r ′′ ∈ R s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDblockϕ ∈
Proo f (1..i) and r ′′ � r ′, which means the statements (r ′) and
(r ′′) have a INstr or INdef complete support, meaning that
for all the attack edge on the query statement for f there is
a support edge that is superior to it (r ′′ � r ′).

Form 1. 2. and 3. we can see that the query statement for f has a
INstr or INdef complete support and (no INstr or INdef attack edge) or
(all INdef attack edges are inferior to a INdef support edge), therefore
SGBDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

Now we prove by induction that if SGBDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef} then

KB ` +δTDblock f .

• Inductive base: SGBDL
KB
〈(f → ∅)〉 = INstr implies that there is a strict

fact rule for f (which means KB ` +∆f given (1.)). SGBDL
KB
〈(f →
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∅)〉 = INdef means there is a defeasible fact rule for f and no strict
fact rule for f and for all INdef attack edge there is a support edge
that is superior to it, which implies that for every rule r ′ for f there
is a rule r ′′ for f s.t. r ′′ � r ′, therefore KB ` +δTDblock f .

• Inductive step: Let us suppose that the proposition holds for all
premises of a rule r for f and SGBDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

Either SGBDL
KB
〈(f → ∅) = INstr which means that r is strict rule and

its statement has INstr complete support, meaning that (from (1.))
∀ϕ ∈ Body(r ) : +∆ϕ therefore KB ` +δTDblock f . Or SGBDL

KB
〈(f → ∅) =

INdef which means that s = (f → ∅) has:

– either a INstr complete support and r is a defeasible rule and is
superior to the rules of all edges attacking it (which means that
for all INdef statements with a defeater rule r ′ for f , r � r ′). By
the inductive hypothesis, ∀ϕ ′ ∈ Body(r ′) : +δTDblockϕ

′ and r � r ′,
therefore KB ` +δTDblock f ).

– or a INdef complete support and

1. for all INdef attack edge there is a support edge superior
to it, which means for all INdef statements with a strict or
defeasible rule r ′ for f there is a rule r ′′ for f such that
r ′′ � r ′, which implies by the inductive hypothesis that for
every literal ϕ ′′ in the body of r ′′ KB ` +δTDblockϕ

′′ and r ′′ � r ′.

2. and for all INdef attack edges on the rule application, r is
either a strict rule or r is a defeasible rule and is superior
to the defeater rule attacking it, which means that for all
INdef statement with a defeater rule r ′ for f r � r ′. By the
inductive hypothesis, ∀ϕ ′ ∈ Body(r ′) : +δTDblockϕ

′ and r � r ′.

from 1. and 2. for all r ′ for f there is a rule r ′′ for f s.t. r ′′ � r ′,
therefore KB ` +δTDblock f .

Thus if SGBDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef} then KB ` +δTDblock f .

From (3.) the proposition (4.) directly holds by contrapositive since KB 0

+δTDblock f means KB ` −δTDblock f [Billington, 1993] and SGBDL
KB
〈(f → ∅)〉 <

{INstr, INdef} implies SGBDL
KB
〈(f → ∅)〉 ∈ {OUTstr, OUTdef, AMBIG,

UNSUP} given Lemma 4.1 stating that BDL is a function). �

Proposition 4.2 Let f be a literal in a defeasible KB expressed in Lp
that contains no attack or support cycles:

1. KB ` +∆f iff SGPDL
KB
〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SGPDL
KB
〈(f → ∅)〉 , INstr
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3. KB ` +δTDprop f iff SGPDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δTDprop f iff SGPDL
KB
〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof 4.2. The definition for the INstr label of PDL is the same as BDL,
therefore, given Proposition 4.1, (1.) and (2.) directly hold. Given that the
only difference between PDL and BDL is the INdef label, we only need to
prove that KB ` +δTDprop f iff SGPDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

We split the proof in two, first we prove by induction that if KB `

+δTDprop f then SGPDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

• Inductive base: Proo f (2) = +δTDprop f . This implies that either +∆f ∈

Proo f (1) which means SGPDL
KB
〈(f → ∅)〉 = INstr (as shown in (1.)) or:

1. there exist a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) there is a strict or defeasible fact rule for ϕ and
no rule for ϕ (which means that there is a statement for ϕ that
is either labeled INstr or INdef, therefore the statement (r ) has
INstr or INdef complete), and

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on (f → ∅) which means it is not labeled OUTstr) and

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −
∑TD ϕ ′ ∈ Proo f (1) i.e. there is no strict or

defeasible fact rule for ϕ ′ (which means that all statement for
f do not have a INstr or INdef complete support, they are
therefore not labeled INdef or INstr).

(b) or ∃r ′′ ∈ R s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDblockϕ ∈
Proo f (1) and r ′′ � r ′, which means the statements (r ′) and
(r ′′) have a INstr or INdef complete support (coming from the
top statement since r ′ and r ′′ are fact rules), meaning that
for all the INdef attack edge on (f → ∅) there is a support
edge that is superior to it (r ′′ � r ′).

Form 1. 2. and 3. we can see that the query statement for f has
a INstr or INdef complete support and (no INstr or INdef attack
edge) or (all INdef attack edges are inferior to a support edge),
therefore SGPDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

• Inductive step: Let us suppose that the proposition holds for Proo f (1..i)
and Proo f (i + 1) = +δTDprop f . This implies that either +∆f ∈ Proo f (i)

(which means that SGPDL
KB
〈(f → ∅)〉 = INstr as shown in 1.), or:

1. there exits a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) : +δTDpropϕ ∈ Proo f (1..i), by the inductive hypotheses
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we have that there is a INstr or INdef statement for ϕ, meaning
that the statement (r ) has a INstr or INdef complete support.

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on the query statement for f ).

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −
∑TD ϕ ′ ∈ Proo f (1..i) which means that

r ′ cannot be applied, therefore there is no INstr, INdef or
AMBIG complete support for (r ′) which implies that there is
no INstr, INdef, or AMBIG attack edge on the query state-
ment for f .

(b) or ∃r ′′ ∈ R s.t. Head(r ′′) = f and ∀ϕ ∈ Body(r ′′) : +δTDpropϕ ∈
Proo f (1..i) and r ′′ � r ′, which means the statements (r ′) and
(r ′′) have a INstr or INdef complete support, meaning that for
all the INdef or AMBIG attack edge on the query statement
for f there is a support edge that is superior to it (r ′′ � r ′).

Form 1. 2. and 3. we can see that the query statement for f has
a INstr or INdef complete support and (no INstr, INdef, or AMBIG
attack edge) or (all INdef attack edges are inferior to a INdef support
edge), therefore SGPDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

Now we prove by induction that if SGPDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef} then

KB ` +δTDprop f .

• Inductive base: SGPDL
KB
〈(f → ∅)〉 = INstr implies that there is a strict

fact rule for f (which means KB ` +∆f given (1.)). SGPDL
KB
〈(f →

∅)〉 = INdef means there is a defeasible fact rule for f and no strict
fact rule for f and for all INdef or AMBIG attack edge there is a
support edge that is superior to it, which implies that for every rule
r ′ for f where its statement has a complete INdef or AMBIG support
there is a rule r ′′ for f s.t. r ′′ � r ′, therefore KB ` +δTDprop f .

• Inductive step: Let us suppose that the proposition holds for all
premises of a rule r for f and SGPDL

KB
〈(f → ∅)〉 ∈ {INstr, INdef}.

Either SGBDL
KB
〈(f → ∅) = INstr which means that r is strict rule and

its statement has INstr complete support, meaning that (from (1.))
∀ϕ ∈ Body(r ) : +∆ϕ therefore KB ` +δTDprop f . Or SGPDL

KB
〈(f → ∅) =

INdef which means that s = (f → ∅) has:

– either a INstr complete support and r is a defeasible rule and is
superior to the rules of all edges attacking it (which means that
for all INdef or AMBIG statements with a defeater rule r ′ for f ,
r � r ′). By the inductive hypothesis, ∀ϕ ′ ∈ Body(r ′) : +δTDpropϕ

′

and r � r ′, therefore KB ` +δTDprop f ).
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– or a INdef complete support and

1. for all INdef or AMBIG attack edge there is a support edge
superior to it, which means for all INdef or AMBIG state-
ments with a strict or defeasible rule r ′ for f there is a rule
r ′′ for f such that r ′′ � r ′, which implies by the induc-
tive hypothesis that for every literal ϕ ′′ in the body of r ′′

KB ` +δTDpropϕ
′′ and r ′′ � r ′.

2. and for all INdef or AMBIG attack edges on the rule appli-
cation, r is either a strict rule or r is a defeasible rule and is
superior to the defeater rule attacking it, which means that
for all INdef or AMBIG statement with a defeater rule r ′ for f
r � r ′. By the inductive hypothesis, ∀ϕ ′ ∈ Body(r ′) : +

∑TD ϕ ′

and r � r ′.

from 1. and 2. for all r ′ for f there is a rule r ′′ for f s.t. r ′′ � r ′,
therefore KB ` +δTDprop f .

Thus if SGPDL
KB
〈(f → ∅)〉 ∈ {INstr, INdef} then KB ` +δTDprop f .

From (3.) the proposition (4.) directly holds by contrapositive since KB 0

+δTDprop f means KB ` −δTDprop f [Billington, 1993] and SGBDL
KB
〈(f → ∅)〉 <

{INstr, INdef} implies SGBDL
KB
〈(f → ∅)〉 ∈ {OUTstr, OUTdef, AMBIG,

UNSUP} given that PDL is a function).
�

Proposition 4.3 Let f be a literal in a defeasible KB that contains no
attack or support cycles:

1. KB ` +∆f iff SG
BDLnoTD
KB

〈(f → ∅)〉 = INstr

2. KB ` −∆f iff SG
BDLnoTD
KB

〈(f → ∅)〉 , INstr

3. KB ` +δnoTDblock f iff SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}

4. KB ` −δnoTDblock f iff SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {OUTstr,OUTdef,AMBIG,UNSUP}

Proof 4.3. (1.) and (2.) directly hold given Proposition 4.1 since they are
not affected by preferences. The only difference between BDL and BDLnoTD
is the handling of preferences, therefore we will only prove this part (the rest
is already proven in Proposition 4.1).
We split the proof of (3.) in two, first we prove by induction that if KB `

+δnoTDblock f then SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}:

• Inductive base: Proo f (2) = +δnoTDblock f . This implies that either +∆f ∈

Proo f (1) which means SG
BDLnoTD
KB

〈(f → ∅)〉 = INstr (as shown in (1.))
or:
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1. there exist a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) there is a strict or defeasible fact rule for ϕ and
no rule for ϕ (which means that there is a statement for ϕ that
is either labeled INstr or INdef, therefore the statement (r ) has
INstr or INdef complete), and

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on (f → ∅) which means it is not labeled OUTstr) and

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −δTDblockϕ
′ ∈ Proo f (1) i.e. there is no strict

or defeasible fact rule for ϕ ′ (which means that all statement
for f do not have a INstr or INdef complete support, they
are therefore not labeled INdef or INstr).

(b) or r � r ′, which means the support edge coming from (r ) is
superior to all the INdef attack edge on (f → ∅) .

Form 1. 2. and 3. we can see that the query statement for f has
a INstr or INdef complete support and (no INstr or INdef attack
edge) or (all INdef attack edges are inferior to the support edge
coming from r), therefore SG

BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}.

• Inductive step: Let us suppose that the proposition holds for Proo f (1..i)
and Proo f (i + 1) = +δnoTDblock f . This implies that either +∆f ∈ Proo f (i)

(which means that SGBDL
KB
〈(f → ∅)〉 = INstr as shown in 1.), or:

1. there exits a strict or defeasible rule r s.t. Head(r ) = f and
∀ϕ ∈ Body(r ) : +δnoTDblock ϕ ∈ Proo f (1..i), by the inductive hypotheses
we have that there is a INstr or INdef statement for ϕ, meaning
that the statement (r ) has a INstr or INdef complete support.

2. KB ` −∆f (which means that the claim statement for f is not
labeled INstr (as show in (1.)), i.e. there is no INstr attack edge
on the query statement for f ).

3. for all rules r ′ for f either:

(a) ∃ϕ ′ ∈ Body(r ′) : −δnoTDblock ϕ
′ ∈ Proo f (1..i), given results in

[Billington, 1993] where it is shown that KB ` −δnoTDblock ϕ
′

means KB 0 +δnoTDblock ϕ
′, and by the contrapositive of the in-

ductive hypothesis we get that SGBDL
KB
〈(ϕ ′→ ∅)〉 < {INstr, INdef}

which means that there is no INstr or INdef complete sup-
port for (r ′) which implies that there is no INstr or INdef
attack edge on the query statement for f .

(b) or r � r ′, which means the statements for all the attack edge
on the query statement for f the support edge coming from
r is superior.
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Form 1. 2. and 3. we can see that the query statement for f has a
INstr or INdef complete support and (no INstr or INdef attack edge)
or (all INdef attack edges are inferior to the INdef support edge from
(r )), therefore SG

BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}.

Now we prove by induction that if SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}
then KB ` +δnoTDblock f .

• Inductive base: SG
BDLnoTD
KB

〈(f → ∅)〉 = INstr implies that there is a

strict fact rule for f (which means KB ` +∆f given (1.)). SG
BDLnoTD
KB

〈(f →
∅)〉 = INdef means there is a defeasible fact rule for f and no strict
fact rule for f and for all INdef attack edge the support edge of r is
superior to it, which implies that for every rule r ′ for f r � r ′, therefore
KB ` +δnoTDblock f .

• Inductive step: Let us suppose that the proposition holds for all
premises of a rule r for f and SG

BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef}.

Either SG
BDLnoTD
KB

〈(f → ∅) = INstr which means that r is strict rule
and its statement has INstr complete support, meaning that (from (1.))
∀ϕ ∈ Body(r ) : +∆ϕ therefore KB ` +δnoTDblock f . Or SG

BDLnoTD
KB

〈(f →
∅) = INdef which means that s = (f → ∅) has:

– either a INstr complete support and r is a defeasible rule and is
superior to the rules of all edges attacking it (which means that
for all INdef statements with a defeater rule r ′ for f , r � r ′). By
the inductive hypothesis, ∀ϕ ′ ∈ Body(r ′) : +δnoTDblock ϕ

′ and r � r ′,
therefore KB ` +δnoTDblock f ).

– or a INdef complete support and

1. for all INdef attack edge the support edge coming from r
superior to it, which means for all INdef statements with a
strict or defeasible rule r ′ for f , r � r ′.

2. and for all INdef attack edges on the rule application, r is
either a strict rule or r is a defeasible rule and is superior to
the defeater rule attacking it, which means that for all INdef
statement with a defeater rule r ′ for f r � r ′..

from 1. and 2. for all r ′ for f , r � r ′, therefore KB ` +δnoTDblock f .

Thus if SG
BDLnoTD
KB

〈(f → ∅)〉 ∈ {INstr, INdef} then KB ` +δnoTDblock f .

From (3.) the proposition (4.) directly holds by contrapositive. �

Proposition 4.5 Propositions 4.1, 4.3, 4.2, and 4.4 still hold for failure-
by-looping in presence of attack and support cycles.
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Proof 4.5. We prove this by construction, we start by support cycles. Sup-
pose that evaluating a rule r for f produces a support cycle, then the
premises of this rule cannot be derived i.e. ∃ϕ ∈ Body(r ) such that −

∑
ϕ, if

there is no other rule for f then −
∑

f [Billington, 2004, Lam, 2012]. This
means that the statement (r ) is part of a support cycle, therefore it is labeled
UNSUP, meaning that (f → ∅) does not have a complete INstr, INdef, or
AMBIG support, thus it is labeled UNSUP.

• In Defeasible Logic with ambiguity blocking (with or without team de-
feat) f is labeled −δTDblock which means that (f → ∅) must be labeled by
BDL in {OUTstr,OUTdef,AMBIG,UNSUP} which is the case given
that SGBDL

KB
〈(f → ∅)〉 = UNSUP.

• In Defeasible Logic with ambiguity propagating (with or without team
defeat) f is labeled −

∑
, thus −δprop [Antoniou et al., 2000a] which

means that (f → ∅) must be labeled by PDL in {OUTstr,OUTdef,
AMBIG,UNSUP} which is the case given that SGPDL

KB
〈(f → ∅)〉 =

UNSUP.

Suppose that evaluating a rule r for f produces an attack cycle that cannot
be avoided by checking other rules, this means that the statement (r ) is part
of an attack cycle and is labeled AMBIG.

• In Defeasible Logic with ambiguity blocking (with or without team de-
feat) f is labeled −δblock which means that (f → ∅) must be labeled by
BDL in {OUTstr,OUTdef,AMBIG,UNSUP} which is the case given
that SGBDL

KB
〈(f → ∅)〉 = AMBIG since it only has an AMBIG complete

support coming from (r ).

• In Defeasible Logic with ambiguity propagating (with or without team
defeat) f is labeled −δprop and +

∑
since it is not part of a support cycle

(otherwise the attack cycle can be avoided), which means that (f →
∅) must be labeled by PDL in {OUTstr,OUTdef, AMBIG,UNSUP}
which is the case given that SGPDL

KB
〈(f → ∅)〉 = UNSUP, and it must

also be derivable to be able to attack other statement, which is the
case since PDL considers AMBIG attacks.

�

7.2.3 Chapter 5

Proposition 5.4 Given a knowledge base KB that only contains defeasible
facts, strict rules and no preferences, and a ground query Q:

1. if KB �IAR Q then KB �PDL Q

2. if KB �IAR Q then KB �BDL Q
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3. if KB �PDL Q then KB �BDL Q

Proof 5.4. We prove (1.) by contradiction. Suppose there is a fact f such
that KB �IAR f and KB 2PDL f . KB �IAR f means that there is a
derivation for f from an initial set of facts T ⊆ F and there is no mini-
mal consistent set of initial facts S ⊆ F such that S ∪ T is inconsistent (i.e
models(S,R∪N) , ∅ and models(S ∪T ,R∪N) = ∅) [Lembo et al., 2010]. This
means that f is derivable and does not rely conflicting facts, therefore the
statement (f → ∅) has a complete INdef support and no INdef or AMBIG
attack edges, i.e. SGPDL

KB
〈(f → ∅)〉 = INdef, thus KB �PDL f which is a

contradiction. (3.) directly follows from the inclusion theorem in [Billington
et al., 2010], it states that any literal that is +δprop is also +δblock . From
(1.) and (3.), (2.) directly follows. �

Proposition 5.5 Given a knowledge base KB that only contains defeasible
facts, strict rules and no preferences, and a ground query Q:

1. if KB �IAR Q then KB �DT Q

2. if KB �DT Q then KB �PDL Q

Proof 5.5. We prove (1.) by contradiction. Suppose there is a fact f such
that KB �IAR f and KB 2DT f . KB �IAR f means that there is a
derivation for f and there is no minimal set of initial facts S such that there
is a derivation from S to atoms that make a negative constraint applicable
(i.e models(S,R ∪ N) = ∅) [Lembo et al., 2010]. This means that there is
an argument for f that has no defeater (since no derivation containing f is
inconsistent), thus KB �DT f which is a contradiction.

We prove (2.) by contradiction, Suppose there is a fact f such that
KB �DT f and KB 2PDL f . KB �DT f means that there is an argument for
f with no defeaters (since any defeater is a blocking defeater in the absence
of preferences), this means that there is a derivation for f and no atom in
that derivation is attacked, thus KB 2PDL f which is a contradiction. �

Proposition 5.6 Let f be a fact in a KB that contains only defeasible
facts, strict rules and no preferences:

1. KB �IAR f iff SGIAR
KB
〈(f → ∅)〉 = IN.

2. KB 2IAR f iff SGIAR
KB
〈(f → ∅)〉 ∈ {AMBIG, OUT}.

Proof 5.6. We split the proof of (1.) in two, first we prove by contradiction
that if KB �IAR f then SGIAR

KB
〈(f → ∅)〉 = IN: Suppose we have a fact f

such that KB �IAR f iff SGIAR
KB
〈(f → ∅)〉 , IN:
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1. KB �IAR f means that there is a derivation for f from an initial set
of facts T ⊆ F and there is no minimal consistent set of initial facts
S ⊆ F such that S ∪ T is inconsistent (i.e models(S,R ∪ N) , ∅ and
models(S ∪ T ,R ∪ N) = ∅), which means that f is not generated by
conflicting atoms and is not used to generate conflicting atoms i.e.
PDL((f → ∅)) = INdef (Proposition 5.4).

2. SGIAR
KB
〈(f → ∅)〉 , IN means that either:

(a) SGIAR
KB
〈(f → ∅)〉 = OUT which is impossible given 1. (i.e.

PDL(f → ∅) = INdef)

(b) or SGIAR
KB
〈(f → ∅)〉 = AMBIG which means either:

i. PDL(f → ∅) = AMBIG (impossible given 1.),

ii. or ∃e ∈ E+S (s) ∪ E+A(s) such that IAR(Tarдet(e)) = AMBIG
which means that f is used to generate conflicting atoms
(impossible given 1.).

Now we prove by contradiction that if SGIAR
KB
〈(f → ∅)〉 = IN then

KB �IAR f : Suppose we have a fact f such that SGIAR
KB
〈(f → ∅)〉 = IN

and KB 2IAR f :

1. SGIAR
KB
〈(f → ∅)〉 = IN means that IAR(f → ∅) , AMBIG and

PDL(f → ∅) = IN, which means that (f → ∅) is not attacked (i.e.
there is no chain of rule applications for an atom conflicting with f )
and is not used to generate conflicting atoms (no outgoing edge leads
to an AMBIG statement).

2. KB 2IAR f means that either f is generated by conflicting atoms (im-
possible given 1.) or is used to generate conflicting atoms (impossible
given 1.).

From (1.) the proposition (2.) directly holds (SGIAR
KB
〈(f → ∅)〉 , IN

means SGIAR
KB
〈(f → ∅)〉 ∈ {AMBIG, OUT} given that IAR is a function).

�

Proposition 5.7 Let f be a fact in a KB that contains only defeasible
facts, strict rules and no preferences:

1. KB �ICAR f iff SGICAR
KB

〈(f → ∅)〉 = IN.

2. KB 2ICAR f iff SGICAR
KB

〈(f → ∅)〉 ∈ {AMBIG, OUT}.

Proof 5.7. We split the proof of (1.) in two, first we prove by contradiction
that if KB �ICAR f then SGICAR

KB
〈(f → ∅)〉 = IN. Suppose we have a fact

f such that KB �ICAR f and SGICAR
KB

〈(f → ∅)〉 , IN:
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1. KB �ICAR f means that there is a derivation for f and there is no
minimal consistent set of facts S ⊆ F∗ such that S ∪ { f } is inconsistent
(models(S,R ∪N) , ∅ and models(S ∪ { f },R ∪N) = ∅) i.e f is not used
to generate conflicting atoms.

2. SGICAR
KB

〈(f → ∅)〉 , IN means that either:

(a) SGICAR
KB

〈(f → ∅)〉 = OUT which is impossible given 1. (there is a
chain of rule applications for f i.e. PDL(f → ∅) ∈ {INdef,AMBIG}).

(b) or SGICAR
KB

〈(f → ∅)〉 = AMBIG which means either:

i. PDL(f → ∅) = AMBIG and there is an edge attacking it
(impossible given 1. i.e. there is no derivable conflicting
atom with f ).

ii. or ∃e ∈ E+S (s) ∪ E+A(s) such that ICAR(Tarдet(e)) = AMBIG
which means that f is used to generate conflicting atoms
(impossible given 1.).

Now we prove by contradiction that if SGICAR
KB

〈(f → ∅)〉 = IN then
KB �ICAR f : Suppose we have a fact f such that SGICAR

KB
〈(f → ∅)〉 = IN

and KB 2ICAR f :

1. SGICAR
KB

〈(f → ∅)〉 = IN means that ICAR(f → ∅) , AMBIG and
PDL(f → ∅)) ∈ {IN,AMBIG}, which means that (f → ∅) is not at-
tacked (i.e. there is no chain of rule applications for an atom conflicting
with f ) and it is used to generate conflicting atoms (no outgoing edge
leads to an AMBIG statement).

2. KB 2ICAR f means that either there is a chain of rule applications for
an atom conflicting with f or f is used to generate conflicting atoms
(impossible given 1.).

From (1.) the proposition (2.) directly holds (SGICAR
KB

〈(f → ∅)〉 ,

IN means SGICAR
KB

〈(f → ∅)〉 ∈ {AMBIG, OUT} given that ICAR is a
function). �

Proposition 5.8 Given a knowledge base KB that only contains defeasible
facts, strict rules and no preferences, and a ground query Q:

1. if KB �IAR Q then KB �blockIAR Q

2. if KB �blockIAR Q then KB �blockICAR Q

3. if KB �ICAR Q then KB �blockICAR Q

Proof 5.8. We prove (1.) by contradiction, suppose we have KB �IAR f and
KB 2blockIAR f :
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1. KB �IAR f means that there is a derivation for f from an initial
set of facts T ⊆ F and there is no minimal consistent set of initial
facts S ⊆ F such that S ∪ T is inconsistent (i.e models(S,R ∪ N) , ∅

and models(S ∪ T ,R ∪ N) = ∅), which means that f is not generated
by conflicting atoms and is not used to generate conflicting atoms i.e.
PDL((f → ∅)) = INdef (Proposition 5.4) which implies that BDL((f →
∅)) = INdef (given Proposition 5.4).

2. KB 2blockIAR f means that either BDL((f → ∅)) , INdef (impossible
given 1.) or f is used to generate conflicting atoms (impossible given
1.)

We prove (2.) by contradiction, suppose we have KB �blockIAR f and
KB 2blockICAR f :

1. KB �blockIAR f means that BDL((f → ∅)) = INdef and f is not used to
generate conflicting atoms.

2. KB 2blockICAR f means that either BDL(f → ∅) , INdef (impossible
given 1.) or there is a derivable atom conflicting with f or f is used
to generate conflicting atoms (impossible given 1.)

We prove (3.) by contradiction, suppose we have KB �ICAR f and
KB 2blockICAR f :

1. KB �ICAR f means that PDL((f → ∅)) ∈ {INdef,AMBIG}, there is no
derivable fact conflicting with f , and f is not used to derive conflicting
atoms.

2. KB 2blockICAR f means that BDL((f → ∅)) , INdef and BDL((f → ∅)) =
AMBIG and either there is a derivable fact that is conflicting with
f (impossible given 1.) or f is used to generate conflicting atoms
(impossible given 1.).

�
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