
HAL Id: tel-01905831
https://theses.hal.science/tel-01905831

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of model-driven engineering to multi-agent
systems : a language to model behaviors of reactive

agents
Paulo Pimenta

To cite this version:
Paulo Pimenta. Application of model-driven engineering to multi-agent systems : a language to model
behaviors of reactive agents. Multiagent Systems [cs.MA]. Université Montpellier, 2017. English.
�NNT : 2017MONTS031�. �tel-01905831�

https://theses.hal.science/tel-01905831
https://hal.archives-ouvertes.fr


Délivré par l'Université de Montpellier

Préparée au sein de l'école doctorale I2S
Et de l'unité de recherche UR GREEN - Cirad

Spécialité: Informatique

Présentée par Paulo Pimenta

Application of Model-driven

engineering to multi-agent

systems: a language to model

behaviors of reactive agents

Soutenue le 5 Janvier 2017 devant le jury composé de:

M. Jacques Ferber Professseur Université de Montpellier Pres. du Jury

M. Jean-Pierre Müller HDR CIRAD Dir. de thèse

M. David Hill Professseur Université Blaise-Pascal Rapporteur

M. Jean-Michel Bruel Professseur Université de Toulouse Rapporteur

M. Mamadou Kaba Traore Mâitre de conference/HDR Université Blaise Pascal Examinateur

M. Fabien Michel Mâitre de conference/HDR Université de Montpellier Examinateur

M. Jaime Simao Sichman Mâitre de conference Universidade de São Paulo Invité

M. Pierre Bommel Docteur CIRAD Invité





iii

“Façamos da interrupção um caminho novo. Da queda um passo de dança, do medo
uma escada, do sonho uma ponte, da procura um encontro”

Fernando Sabino





v

Abstract
Many users of multi-agent systems (MAS) are very commonly disinclined to
model and simulate using current MAS platforms. More specifically, modeling
the dynamics of a system (in particular the agents’ behaviors) is very often
a challenge to MAS users. This issue is more often observed in the domain
of socio-ecological systems (SES), because SES domain experts are rarely pro-
grammers. Indeed, the majority of MAS platforms were not conceived taking
into consideration domain-experts who are non-programmers. Most current
MAS tools are not dedicated to SES, or nor do they possess an easily understan-
dable formalism to represent the behaviors of agents. Moreover, because it is
platform-dependent, a model realized in a given MAS platform cannot be pro-
perly used on another platform due to incompatibility between MAS platforms.
To overcome these limitations, we propose a domain-specific language (DSL)
to describe the behaviors of reactive agents, regardless of the MAS platform
used for simulation. To achieve this result, we used model-driven engineering
(MDE), an approach that provides tools to develop DSLs from a meta-model
(abstract syntax), textual editors with syntax highlighting (for the concrete syn-
tax) and code generation capabilities (for source-code generation of a model).
As a result, we implemented a language and a textual editor that allow SES
domain experts to describe behaviors in three different ways that are close to
their natural expression: as equations when they are familiar with these, as a
sequence of activities close to natural language or as an activity diagram to re-
present decisions and a sequence of behaviors using a graphic formalism. To
demonstrate interoperability, we also developed code generators targeting two
different MAS platforms (Cormas and Netlogo). We tested the code generators
by implementing two SES models with the developed DSL. The generated code
was targeted to both MAS platforms (Cormas and Netlogo), and successfully
simulated in one of them. We conclude that the MDE approach provides ade-
quate tools to develop DSL and code generators to facilitate MAS modeling and
simulation by non-programmers. Concerning the DSL developed, although the
behavioral aspect of MAS simulation is part of the complexity of modeling in
MAS, there are still other essential aspects of model and simulation of MAS
that are yet to be explored, such as model initialization and points of view on
the model simulated world





vii

Acknowledgements
Tout d’abord, je voudrais remercier le Conseil National de Développement Scien-
tifique et Technologique (CNPq) au Brésil pour le financement de cette thèse et
l’opportunité de progresser dans ma carrière scientifique. Je remercie aussi le
co-directeur de cette thèse, Pierre Bommel, pour m’avoir invité au sein de l’unité
de recherche GREEN, au CIRAD, pour commencer la longue journée qui est une
thèse. Puis je voudrais remercier le directeur de cette thèse, Jean-Pierre Müller,
pour m’avoir fait confiance malgré les connaissances plutôt légères que j’avais
en septembre 2012 sur le système multi-agents. Je lui remercie pour sa patience,
ses encouragements, ses indications et pour m’avoir délégué une responsabilité
dans un projet ambitieux, où j’ai trouvé mon propre chemin.

Mes remerciements vont également à toute l’unité de recherche GREEN pour
l’accueil pendant les quatre ans de thèse. Plus spécialement, à Martine Antona
et à Aurélie Botta pour le soutien pendant toute la période de ma thèse, mais
également à Jean-François Tourrand et Marie-Gabriele Pikety pour les moments
de discussion (et surtout d’amitié) qui m’ont énormément aidé dans les mo-
ments critiques de ce travail.

Je remercie Amaury, Paulo, Claudio Almeida, Moises et leurs familles pour
l’accueil en France, pour les conseils et pour les moments très conviviaux en
famille. Je ne sais comment exprimer ma gratitude à vous tous. De la même
façon, merci aux amis Francesca, Antonio, Sylvain et Victor pour leurs encoura-
gements et pour les très bons et agréables moments au CIRAD.

Je remercie les Profs. David Hill et Jean-Michel Bruel qui ont accepté d’être les
rapporteurs de cette thèse, et de participer au Jury. Ils ont également contri-
bué par leurs nombreuses remarques et suggestions à améliorer la qualité de ce
mémoire, et je leur en suis très reconnaissant.

Enfin, ces remerciements ne seraient pas complets sans mentionner mes amis
chercheurs qui ont joué un rôle très spécial pour le début de cette thèse : René
Poccard et Marcelo Thales. C’est grâce à eux que j’ai pu commencer cette thèse.
Merci à vous.





ix

Contents

List of Figures xv

List of Tables xvii

List of Codes xvii

List of Abbreviations xxi

1 General introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Modeling and simulation behavior of multi-agent systems 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Behavior and MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Cognitive behavior . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Goal-based behavior . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Reactive behavior . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Participatory Modeling and MAS . . . . . . . . . . . . . . . . . . . 11
2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experiences of MAS tools used in participatory modeling . . . . . 12
2.4.1 CORMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 NetLogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Anylogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 GAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 MIMOSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Limits of the current MAS tools used in participatory modeling . 19
2.5.1 The Challenge of MAS behavior simulation in SES . . . . . 19

2.5.1.1 Programming language learning . . . . . . . . . 19
2.5.1.2 MAS behavior representation . . . . . . . . . . . 20

2.5.2 Possible improvements to current MAS tools . . . . . . . . 21



x

2.5.2.1 Domain specific language for MAS behavior mo-
deling . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2.2 Platform independence . . . . . . . . . . . . . . . 22
2.5.2.3 Visual tools to model with stakeholders . . . . . 23

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Model driven engineering 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Model driven engineering . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 The Eclipse Modeling Project . . . . . . . . . . . . . . . . . . . . . 34

3.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.2 EMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.3 Abstract syntax development . . . . . . . . . . . . . . . . . 37
3.8.4 Concrete syntax development . . . . . . . . . . . . . . . . . 38

3.8.4.1 TMF . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8.4.2 GMF . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.5 Model-to-text transformation . . . . . . . . . . . . . . . . . 44
3.8.6 Model-to-model transformation . . . . . . . . . . . . . . . 45

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Modeling social-ecological systems 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 The ECEC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 The plant and its behavior . . . . . . . . . . . . . . . . . . . 51
4.2.2 The Foragers and its behavior . . . . . . . . . . . . . . . . . 51
4.2.3 The foragers’ energy consumption behavior . . . . . . . . 52
4.2.4 The foragers’ feeding behavior . . . . . . . . . . . . . . . . 52
4.2.5 The foragers’ reproductive behavior . . . . . . . . . . . . . 52
4.2.6 The foragers’ move behavior . . . . . . . . . . . . . . . . . 52
4.2.7 The foragers’ die behavior . . . . . . . . . . . . . . . . . . . 53
4.2.8 Model initial values and execution . . . . . . . . . . . . . . 53

4.3 ECEC behavior representation . . . . . . . . . . . . . . . . . . . . . 54
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xi

5 B-Reactive - A DSL to model reactive behaviors in MAS 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 The Semantic domain . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Abstract syntax for reactive behavior . . . . . . . . . . . . . . . . . 64

5.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 The EntityClass . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3.1 Activity Diagram Behaviors . . . . . . . . . . . . 66
5.3.3.2 Activity Behaviors . . . . . . . . . . . . . . . . . . 67
5.3.3.3 Primitive Activities . . . . . . . . . . . . . . . . . 68
5.3.3.4 Equation Behaviors . . . . . . . . . . . . . . . . . 70

5.3.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.4.1 Variable Class . . . . . . . . . . . . . . . . . . . . 71
5.3.4.2 Function Call Expressions . . . . . . . . . . . . . 71

5.3.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Concrete syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 A model declaration . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 The Entities declaration . . . . . . . . . . . . . . . . . . . . 74
5.4.3 Attributes, Parameters and Local variables declaration . . 74
5.4.4 The Behavior declaration . . . . . . . . . . . . . . . . . . . 75

5.4.4.1 Equation Behavior . . . . . . . . . . . . . . . . . . 76
5.4.4.2 Activity Behavior . . . . . . . . . . . . . . . . . . 76
5.4.4.3 Activity Diagram Behaviors . . . . . . . . . . . . 77

5.4.5 Function Expressions . . . . . . . . . . . . . . . . . . . . . . 81
5.4.5.1 Location Functions . . . . . . . . . . . . . . . . . 82
5.4.5.2 LocationSet Functions . . . . . . . . . . . . . . . . 83
5.4.5.3 Entity Functions . . . . . . . . . . . . . . . . . . . 84
5.4.5.4 EntitySet Functions . . . . . . . . . . . . . . . . . 85
5.4.5.5 Boolean Functions . . . . . . . . . . . . . . . . . . 86
5.4.5.6 Numeric Functions . . . . . . . . . . . . . . . . . 87

5.4.6 Model initialization . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Implementation of B-Reactive language using MDE 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Application of MDE . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Implementing a textual editor with XText . . . . . . . . . . . . . . 92

6.3.0.1 UML to Ecore . . . . . . . . . . . . . . . . . . . . 95



xii

6.3.0.2 Add new validation rules . . . . . . . . . . . . . . 95
6.4 Abstract syntax analysis of the target language . . . . . . . . . . . 98
6.5 Building code generators . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.1 Code generation of Netlogo procedures . . . . . . . . . . . 101
6.5.1.1 Generating Breedings, Turtles and Patches . . . . 102
6.5.1.2 Generating Setup procedures . . . . . . . . . . . 102
6.5.1.3 Generating command and reporter procedures . 103
6.5.1.4 Generating the go procedure . . . . . . . . . . . . 104

6.5.2 Code generation of Cormas methods . . . . . . . . . . . . 104
6.5.2.1 Generating Cormas classes . . . . . . . . . . . . . 106
6.5.2.2 Generating methods for the accessing protocol . 107
6.5.2.3 Generating methods for the instance-creation pro-

tocol . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.2.4 Generating methods for init protocol . . . . . . . 108
6.5.2.5 Generating methods for control protocol . . . . . 108
6.5.2.6 Generating methods for probes protocol . . . . . 109
6.5.2.7 Generating methods for custom protocols . . . . 109

6.6 Model simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.1 Netlogo simulation . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.2 Cormas simulation . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 General conclusion 113
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 MDE as an approach for designing DSL for SES . . . . . . 113
7.1.2 Cyclic approach for developing a DSL . . . . . . . . . . . . 115
7.1.3 Evaluation of DSL and simulation of generated code . . . 115

7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A SES axmodels in B-Reactive language 119
A.1 Implementation of ECEC model in B-Reactive language . . . . . 119
A.2 Implementation of prison rebellion model B-Reactive language . 122

B Generated code 125
B.1 Cormas generated code for ECEC model . . . . . . . . . . . . . . . 125
B.2 Cormas generated code for Prison rebellion model . . . . . . . . . 126
B.3 Netlogo generated code for ECEC model . . . . . . . . . . . . . . 127
B.4 Netlogo generated code for Prison Rebellion model . . . . . . . . 129



xiii

C M2T Acceleo templates 133
C.1 Netlogo M2T templates . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.2 Cormas M2T templates . . . . . . . . . . . . . . . . . . . . . . . . . 140





xv

List of Figures

2.1 A human behavior process : from cognitive to reactive behaviors 6
2.2 A cognition process.Source : Sowa, 2011 . . . . . . . . . . . . . . . 8
2.3 An example of goal based behavior "satisfy hunger" and the many

activities that might be executed by the intelligent agent to achieve
his goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A finite state machine representing a reactive behavior . . . . . . 10
2.5 Cormas activity diagram tool to interpret agent’s behavior. Source

: Bommel and Dieguez, 2011 . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Netlogo in a participatory modeling experience for human epi-

demiological study. Source : Maharaj et al., 2011 . . . . . . . . . . 14
2.7 Agents’ behavior parametrization on Anylogic. Source : Tàbara

et al., 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 GAMA and the interaction view in the urban emergency mana-

gement context Source : Chu et al., 2012 . . . . . . . . . . . . . . . 16
2.9 Mirana and Household behavior. Source: Aubert and Müller, 2013 18

3.1 MDA’s official logo . Source : OMG, 2014 . . . . . . . . . . . . . . 27
3.2 Model-Driven Engineering (Adapted from : Cabot, 2009) . . . . . 28
3.3 MDA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Main elements of a modeling language . . . . . . . . . . . . . . . . 30
3.5 The 4-layered architecture of Meta-Object Facility. Source : Euro-

pean PhD School on Robotic Systems, 2016 . . . . . . . . . . . . . 32
3.6 Model Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Eclipse Modelig Project and its projects . . . . . . . . . . . . . . . 35
3.8 A simplified version of the Ecore meta-model. Source : Eclipse

Foundation, 2016(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 The meta-modeling process. Source : Eclipse Foundation, 2016(a) 37
3.10 The parsing process . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.11 Abstract and concrete syntax . . . . . . . . . . . . . . . . . . . . . 39
3.12 Abstract and concrete syntax. Adapted from : Jan Köhnlein, 2009 41
3.13 The GMF process for generating graphical concrete syntax. Adap-

ted from Eclipse Foundation, 2016(b) . . . . . . . . . . . . . . . . . 42
3.14 Template approach mechanism in M2T. Source : Brambilla et al.,

2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15 Model to model transformation (M2M) . . . . . . . . . . . . . . . 45

4.1 ECEC representation : Foragers distributed in a spatial grid of
plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xvi

4.2 Activity diagram representing the sequence of behaviors to be
executed during an ECEC model simulation . . . . . . . . . . . . 53

4.3 Diffrent ways to represent a behavior in ECEC . . . . . . . . . . . 55

5.1 A model definition and its elements . . . . . . . . . . . . . . . . . 58
5.2 A different way to explain behaviors . . . . . . . . . . . . . . . . . 59
5.3 Terms used by domain experts to model SES . . . . . . . . . . . . 60
5.4 An example of behavior described in natural language and its

main elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 EntityClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.8 Activity diagram behavior (a) and its subtype of nodes : Control-

Node(b) and ExecutableNode(c) . . . . . . . . . . . . . . . . . . . 67
5.9 ActivityBehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.10 Primitive Activity class diagram . . . . . . . . . . . . . . . . . . . 69
5.11 ActivityDiagramBehavior . . . . . . . . . . . . . . . . . . . . . . . 70
5.12 Expression class diagram . . . . . . . . . . . . . . . . . . . . . . . . 70
5.13 VariableClass class diagram . . . . . . . . . . . . . . . . . . . . . . 71
5.14 FunctionCallExpression . . . . . . . . . . . . . . . . . . . . . . . . 72
5.15 Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.16 Syntax diagram for a model definition . . . . . . . . . . . . . . . . 74
5.17 Syntax diagram for an entity definition . . . . . . . . . . . . . . . 74
5.18 Syntax diagram for attributes, parameters and local variable de-

finition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.19 Syntax diagram for an equation behavior and its equation . . . . 76
5.20 Syntax diagram for the activity behavior . . . . . . . . . . . . . . . 77
5.21 Syntax diagram for the activity diagram behavior . . . . . . . . . 77
5.22 Syntax diagram for control nodes . . . . . . . . . . . . . . . . . . . 78
5.23 Syantax diagram for primitive activities . . . . . . . . . . . . . . . 80
5.24 Syntax diagram for the max-one-of location function . . . . . . . . 83
5.25 Syntax diagram of SelectConditionedLocation function . . . . . . 84
5.26 Syntax diagram of function OneOfEntity . . . . . . . . . . . . . . 85
5.27 Syntax diagram of Entities function . . . . . . . . . . . . . . . . . . 85
5.28 Syantax diagram for InitEntity and InitSpace rules . . . . . . . . . 88

6.1 Cyclical process of MDE application to obtain a DSl textual editor
with code generator capabilities . . . . . . . . . . . . . . . . . . . . 92

6.2 A dsl textual editor generated by Xtext . . . . . . . . . . . . . . . . 96
6.3 A textual editor containing a message of OCL constraint violation 97
6.4 B-reactive editor after implementation of validation rules . . . . . 98
6.5 General abstract syntax for Cormas and Netlogo models . . . . . 99
6.6 B-reactive editor after implementation of validation rules . . . . 101
6.7 B-reactive editor after implementation of validation rules . . . . 106
6.8 Model simulation from generated code in Netlogo . . . . . . . . . 110



xvii

List of Tables

3.1 Model-to-model technologies available in EMF . . . . . . . . . . . 46

4.1 ECEC model’s initial values . . . . . . . . . . . . . . . . . . . . . . 54

5.1 B-Reactive’s semantic domain . . . . . . . . . . . . . . . . . . . . . 61
5.2 Examples of functions according to their co-domain . . . . . . . . 82





xix

List of Codes

5.1 Model declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Entity declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Attributes and Parameters declaration . . . . . . . . . . . . . . . . 75
5.4 Equation behavior definiton . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Activity Behavior definiton . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Activity diagram behavior definition . . . . . . . . . . . . . . . . . 81
5.7 Location expression examples . . . . . . . . . . . . . . . . . . . . . 83
5.8 LocationSet expression examples . . . . . . . . . . . . . . . . . . . 84
5.9 Entity function example . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 Entity set function example . . . . . . . . . . . . . . . . . . . . . . 86
5.11 Boolean functions example . . . . . . . . . . . . . . . . . . . . . . . 86
5.12 Entity set function example . . . . . . . . . . . . . . . . . . . . . . 87
5.13 Model initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.1 Generated instance-creation method of ECEC model . . . . . . . . 125
B.2 Generated code for die behavior of ECEC model . . . . . . . . . . 126
B.3 Netlogo generated code for ECEC model . . . . . . . . . . . . . . 127
B.4 Netlogo generated code for ECEC model . . . . . . . . . . . . . . 129
C.1 Acceleo file generator template . . . . . . . . . . . . . . . . . . . . 133
C.2 Acceleo file generator template for Netlogo code generation . . . 133
C.3 Breed, patch and turtles declaration . . . . . . . . . . . . . . . . . 134
C.4 Code generation for turtles setup . . . . . . . . . . . . . . . . . . . 134
C.5 Code generation for environment setup . . . . . . . . . . . . . . . 135
C.6 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.7 Transformation of Equation Behaviors into Netlogo procedures . 136
C.8 Transformation of Acvitity Behaviors into Netlogo procedures . . 137
C.9 Netlogo code generation into primitive activities . . . . . . . . . . 137
C.10 Mapping Acvitity Diagram Behaviors into Netlogo procedures . 138
C.11 The go procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.12 Cormas classes generation . . . . . . . . . . . . . . . . . . . . . . . 140
C.13 Code generation for accessing protocol methods in Cormas . . . . 141
C.14 Methods code generation for the instance-creation protocol . . . . 142



xx

C.15 Methods code generation for the init protocol . . . . . . . . . . . . 143
C.16 Method code generation for the control protocol . . . . . . . . . . 143
C.17 Methods code generation for the probes protocol . . . . . . . . . . 144
C.18 Model behaviors for custom protocols . . . . . . . . . . . . . . . . 144



xxi

List of Abbreviations

MAS Multi-Agent Systems
PM Participatory Modeling
M&S Model and Simulation
SES Social-Ecological Systems
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
EMF Eclipse Modeling Framework
EMP Eclipse Modeling Project
OMG Object Management Group
FIPA Foundation for Intelligent Physical Agents
MOF Meta Object Facility
M2M Model-to-Model
M2T Model-to-Text
MOFM2T MOF Model-to-Text
DSL Domain Specific Language
UML Unified Modeling Language





xxiii

To my family, for their dedicated partnership and love
in every moment of my life.





1

Chapter 1

General introduction

1.1 Context

As in any interdisciplinary context, terms that eventually have the same mea-
ning can be differently described by domain experts. Social-ecological systems
(SES) are no exception. The domain of SES is an interdisciplinary domain that
focuses on understanding and investigating how society relations influence the
environment and vice-versa. In this context, Modeling and Simulation (M&S),
is one way to understand these inherently complex relations. In (M&S), one
must make use of available computer platforms that are able to capture and
represent such complexities.

In the past decade, modeling and simulation (M&S) has been used as a pro-
mising approach that can give understandings to natural phenomena (Jarrah
et al., 2015). Modeling and simulation (M&S) has the ability to increase our
understanding of systems, to evaluate them or to predict their evolution (Tou-
raille et al., 2012). At the same time, some Participatory Modeling (PM) appro-
aches have been developed (Andersen et al., 2007; Etienne, 2014; Cardwell et
al., 2009), aiming to build a common methodology to design model with sta-
keholders. One of the key objectives of PM is the attempt to actively involve
all stakeholders (e.g. designers, developers, experts, end-users, etc.) in the de-
sign process to help ensure that the designed product meets their needs and is
indeed usable (Chu et al., 2012).

One of the available approaches in the (M&S) field is the multi-agent systems
approach (MAS). MAS allows the modeler to assume the role of an agent du-
ring a simulation and thus, to characterize its rules from the ego perspective.
Reactivity, autonomy, pro-activity and ability to react to other agents are among
the main characteristics that define an agent (see (Ferber, 1999) for a broader de-
finition), where reactivity is specified by set of action-state rules (Bandini et al.,



2 Chapter 1. General introduction

2009). Reactive agents simply retrieve a pre-set of behaviors similar to reflexes,
without maintaining any internal state. Thus, actions contained in that type of
behavior can be easily programmed.

Since MAS platforms have been increasingly used to deal with ecological and
socioeconomic issues (Promburom, 2002), combining them with PM approa-
ches might be a very efficient method for modeling and discussing social en-
vironmental systems. However, even if most of the existing MAS tools share
the common basic concepts about what an agent is (role, interaction, reactivity,
etc.), current modeling languages differ in the approach of how those concepts
are modeled. Consequently, modeling in most of these tools requires stakehol-
ders to adapt to a specific platform philosophy or programing language.

Although the reactivity of an agent can be relatively easy to program, using con-
cepts (i.e. programing language concepts) that are not related to what partici-
pants desire to model is one of the reasons why involving them inthe modeling
process is not an easy task. Another reason is that most stakeholders are not
programmers and thus, may be reluctant to spend much time on the project.
Sometimes they are forced into a predefined top-down procedure, or the tools
and models at their disposal are fitted with pre-fabricated black boxes that they
cannot understand and assess (Ramsey, 2009).Consequently, the absence of in-
tuitive tools using identical vocabulary to that used by stakeholders, may have
contributed to their lack of interest in M&S.

1.2 Objectives

Our objective in this thesis is to investigate how new technologies and compu-
ter modeling approaches can tackle the problems previously mentioned. More
specifically, our focus will be the abstraction of some MAS models in SES dom-
ain and platform coding details.

Our first goal is to create a structure of syntactic terms based on the observation
of common terms that reflect stakeholder’s vocabulary to describe behaviors.
To this end, we should consider how behaviors are specified before they are
modeled. This specification should contain terms and relations that are more
familiar to stakeholders. After identifying such terms, we should be able to
construct an abstract syntax and use it to develop a programing language (con-
crete syntax) that will be as close as possible to the vocabulary used to specify
behavior in SES models.



1.3. Outline 3

Our second goal is to develop a high-level abstraction language that allows
practitioners to focus on modeling without worrying about the simulation as-
pect. This language should offer enough expressibility to make use of domain
terms stakeholders are more used to. As in any language, formalisms should be
respected and for that reason, validation syntax rules should be implemented
to ensure model validity. Additionally, since the simulation aspect should not
be of concern to stakeholders, neither should the specificities of MAS platforms
(such as initialization, agents activation and programming language). To solve
this issue, we should provide code generators for any specific MAS platform.

1.3 Outline

This thesis is structured into five main chapters. Chapter 2 provides an over-
view of Modeling and simulation behavior of multi-agent systems. The first
sections focus on how behaviors can be specified in MAS, starting with a brief
section of what is our vision of a computer agent. The next sections are dedica-
ted to MAS tools used in PM for modeling behavior, followed by an analysis of
some of these tools limitations, and possible improvements that could be done
in these tools.

Chapter 3 focus on Model-Driven Engineering (MDE) software development
methodology. We begin with some background theory and explanation of some
terms and definitions commonly used by the MDE and some initiatives that
implement MDE. Then, we dedicate the rest of the chapter to the description
of the MDE modeling framework we actually used for our works, namely the
Eclipse Modeling Project. We show how Eclipse Modeling Framework tools
could be used to develop domain-specific languages.

In Chapter 4, we introduce an example of MAS model in the domain of biology.
To explain this model, we focus on how agents and their behaviors are usually
described by non-programmers. Chapter 5 is dedicated to the definition of an
abstract syntax based on stakeholders’ specification that was captured by a par-
ticipatory methodology. We describe a meta-model that was conceived based
on terms existing in the SES model introduced in Chapter 4. This meta-model
is used as an abstract syntax and, in further sections, we explain the semantic
domain and propose a concrete syntax from the conceived meta-model.

Chapter 6 demonstrates the application of Eclipse Modeling Framework to de-
velop a textual editor for a domain-specific language in order to model and



4 Chapter 1. General introduction

initialize reactive behaviors on MAS. The framework is also used to implement
code generators for two specific MAS platforms. The code generators are tested
by using 2 SES models implemented with the language proposed in Chapter
5. Later, the generated code is analyzed and used in MAS simulations. Finally,
we conclude this thesis in Chapter 7, where we discuss the main contributions
exposed in this document, along with some avenues for future works.



5

Chapter 2

Modeling and simulation behavior
of multi-agent systems

2.1 Introduction

In the domain of artificial intelligence, an intelligent agent can be defined as a
computational autonomous entity with perception, reactivity and pro-activity
abilities (Wooldridge et al., 1995). However, several authors differ in their point
of views on these concepts (Franklin and Graesser, 1997) and we still are lacking
a consensual definition (Dent, 2007)

A broadly accepted definition for intelligent agents, however, is that of an en-
capsulated computer system that is situated in a certain environment and ca-
pable of autonomous actions and interactions capabilities (Wooldridge, 2009).
An autonomous action can be seen as the ability of an agent to decide for them-
selves in order to satisfy their design objectives. Interaction capabilities can
be understood as the ability to mimic our social everyday behaviors, such as
cooperation, coordination and negotiation. In this sense, Multi-Agent Systems
(MAS) arises from the idea of systems adopting an agent-oriented view of the
world, which involves multiple agents and the relationships between them

In this chapter, we discuss how their autonomous behaviors can be expressed,
while we explain the most common types of behaviors present in the majority
of MAS. Our goal is also to provide an overview of some PM experiences using
MAS platforms and how those platforms were used to express agent behaviors.
Finally, we will present some challenges linked to modeling with stakeholders
using current MAS tools, some limitations of the previously presented tools,
and possible improvements to be applied to those tools.



6 Chapter 2. Modeling and simulation behavior of multi-agent systems

2.2 Behavior and MAS

Intelligent agents can be classified from many different perspectives, accor-
ding to their intelligence degree (Russell et al., 1995): reflex agents, goal-based
agents, utility-based agents and learning agents; or according to their functiona-
lities (Hostler et al., 2005): collaborative agents, reactive agents, mobile agents,
interface agents, etc. But those classifications do not focus on the behavioral
aspect of an agent. In (Nilsson, 1998), this particular aspect is defined as the
process of mapping perceptions to actions. Yet, according to the author, this
process can be broken down into the following sequential steps: Sensor data,
Perception, Cognition, Reasoning, Goal-setting, Evaluation, Action validation,
Action Performance and Learning. Without exhaustively discussing each one
of these steps, we provide an example that illustrates the relation between these
steps, represented in Figure 2.1.

Figure 2.1 – A human behavior process : from cognitive to reactive behaviors

In figure 2.1, a prehistoric human hunting process is used as an example of
behavior process. The whole hunting process as a behavior, is divided in many
steps. Even if the main behavior is to attack an animal, the attack itself is neither
the first nor the last behavior in the whole hunting process. Some steps, such
as sensing and perception, are fundamental for goal definition. In the example
illustrated in Figure 2.1, depending of the noise or hunting environment, the
hunter may decide to wait, or follow the prey a little while more. Defining a
goal or a strategy is also part of the hunting process. They serve as parameters
for the final action to be taken by the hunter: attacking the prey. Note that



2.2. Behavior and MAS 7

attacking the prey may also involve a set of actions: attacking on the left, on the
right, run and attack, attack and run, wait, move left, surround the prey and
attack, etc. These sets of actions can be considered as reactive behaviors.

The learning process (although out of the scope of this work) is also worth to
mention, since is the last (and a fundamental) part of any intelligence behavior.
Learning behavior is the capacity of acquiring experience for further decision
making. Or as defined by (Michell, 1997), "a computer program is said to learn
from experience E with respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E". As a subfield of ar-
tificial intelligence, machine learning makes use of several available techniques
(genetic algorithms, neural networks and many others) that are applied to MAS
learning capacity.

Since the focus of this work is the behavioral aspect of MAS, we classify the
agent’s behavior into 3 types of behaviors: cognitive behavior, goal-based beha-
vior and reflexive behavior. These groups were defined based on more detailed
definitions of agents behavior made by (Russell et al., 1995), and a classification
proposed by (Demazeau and Müller, 1990).

2.2.1 Cognitive behavior

Cognition is the mental action or process of acquiring knowledge and under-
standing through experience, and the senses1. Cognition is largely studied in
the fields of linguistics, neuro-science, psychiatry, biology, computer science
and many others. Cognition processes are studied by cognitive science, an
inter-disciplinary scientific field that seeks to understand how cognitive mental
processes work. More precisely, it tries to understand how conscious mental
behavior, such as the behavior of thinking, understanding, learning, and re-
membering, are processed in the human brain. Nevertheless, this process can
be more or less complex according to the type of intelligence we want to mi-
mic. In the simplistic scheme in Figure 2.2, the number of steps required to take
an action is directly proportional to the complexity of the individual taking this
action. In this case, humans may be able to process a higher number of steps be-
fore displaying any type of behavior, by contrast with simple organisms found
in nature.

1 "Cognition". Oxford English Dictionary Third Edition, 2010.



8 Chapter 2. Modeling and simulation behavior of multi-agent systems

Figure 2.2 – A cognition process.Source : Sowa, 2011

One of the main characteristics of an intelligent agent is their capacity of au-
tonomous actions in the environment, in order to meet their objectives (Wool-
dridge et al., 1995). But the ability to perceive that environment is also part
of a cognitive behavior of any intelligent agent. In that sense, as an interdis-
ciplinary study of philosophy, psychology, artificial intelligence, etc, cognition
science played a major role in defining cognition architectures for the percep-
tion of intelligent agents. One example is the ACT-R theory (short of "Adaptive
Control of Thought Rational") proposed by the psychologist John Anderson. In
the work titled "The Architecture of Cognition" (J. Anderson, 1996), Anderson
uses ACT-R theory (J. R. Anderson, 1983) to develop a formal architecture that
provides capabilities to simulate cognition.

Many other cognitive architectures were also derived from ACT-R theory, such
as SOAR (Newell, 1992), CLARION (Ron, 2006), EPIC (Kieras et al., 1997),
ADAPT (Benjamin et al., 2001), and others. The aim of such architectures is
to provide a common computer programming architecture that allows, based
on ACT-R theory concepts, to specify knowledge-intensive reasoning, reactive
execution, hierarchical reasoning, planning, and learning from experience.

2.2.2 Goal-based behavior

A goal-based behavior comes from the idea of a goal: to construct a plan to
change current (or given) world state into a desired world state. Those states
area analogous to states contained finite state machines (FSM). In finite state
machines, states change from one to another when a required (or a set of) con-
dition(s) is detected. In A.I, FSM can be used by agents as a representation of
how their states change when a certain event is perceived on the agent’s envi-
ronment or when it is triggered by another agent.



2.2. Behavior and MAS 9

A simple example of FSM would be an automatic door: a door has a state "open"
and "closed" that changes between one to another whenever the door sensor
detects the presence ("open") or absence ("close") of someone close enough to it.
But instead of focusing on how states change, defining a goal-based behavior
is instead to define what is the goal of an agent. In other words, based on a
set of available and simple tasks, a goal-based behavior does not focus on how
those simple tasks are implemented. Rather, a goal-based behavior specifies
situations that are desirable.

Consider, for instance, a simplified behavior tree example given in Figure 2.3.
In this example, a hypothetical agent has one single goal: to satisfy their hunger.
Given a set of actions (on the left of Figure 2.3), and some pre-conditions to each
activity (on the middle of Figure 2.3), a behavior tree is specified in order to
achieve a goal. In the example, action "pick up the telephone" has, as an effect,
the "telephone at hand" state. The telephone, however, can be at close range (in
this case, the agent would just have to pick it up) or the telephone can be far
(he would have to move), or not in the agent’s range (triggering another action
to search for the telephone). In any way, the goal "telephone at hand" would be
achieved, but in more or less time. Depending on the weight attributed to some
specific actions, the slowest option might also be the best one.

Figure 2.3 – An example of goal based behavior "satisfy hunger" and the many activities
that might be executed by the intelligent agent to achieve his goal

On one hand, if a more refined behavior is specified, goal-based behavior may
have multiple goals and this could lead to a non-deterministic behavior. But



10 Chapter 2. Modeling and simulation behavior of multi-agent systems

incorporating goal-based behaviors to MAS can greatly enhance the intelligence
of agents.

2.2.3 Reactive behavior

Also termed Simple Reflex Behavior by (Nilsson, 1998), the basic notion of
reactive behaviors was first defined in the field of behaviorist psychology by
John Broadus Watson, in 1925. By using the notion of "S-R" (Stimulus-Reaction)
scheme (see Figure 2.2), any a priori "reasoning" is excluded between S and R,
where S is considered as a particular perception of the environment containing
the entity, and R as a sequence of basic actions.

One key difference between reactive behaviors and the previously discussed
type of behaviors is that in the first, actions are based on the agents current
perception or the environment, and not on past perceptions. For example, con-
sider a robot that would be required to gather a specific type of soil sample
(peaty soil) from a specific place. Considering that the action of gathering a soil
sample is a simple reactive behavior, if the robot finds the same soil sample in
a different place, it would then still gather new samples. The robot does not
take into account that it has already collected samples. That idea is illustrated
through an FSM in Figure 2.4.

Figure 2.4 – A finite state machine representing a reactive behavior

The reactivity showed in the example above is quite straightforward. It is very
similar to a human reactive behavior (e.g. when we dodge something approa-
ching us at a very high speed).



2.3. Participatory Modeling and MAS 11

2.3 Participatory Modeling and MAS

2.3.1 Background

In participatory modeling, Role Playing Games (RPG) are very often used as an
interactive and collaborative storytelling approach to simulate models. Some
approaches successively used RPG on PM for discussion with stakeholders (see
D’Aquino et al., 2002 for a list of 5 PM experiments using RPG). Combining RPG
with M&S allowed modelers to use RPG as an observation and data collection
tool to develop MAS simulation models. It allows individuals to play an active
part in their participation, by concretely set out the issues (Gourmelon et al.,
2013). But even if that type of approach is very effective for model discussion,
in the end the model is almost entirely developed by researchers.

This could lead one to believe that RPG are enough to simulate models, and
MAS would not be of much use. Yet, as stated by (Barreteau et al., 2000) two
points must be considered. One is that RPG alone as a modeling tool are repor-
ted to be limited as they are cumbersome and slow to develop, and analysis of
their results is still difficult. Another point is that comparison between different
experiments using RPG is difficult since many parameters in a game are not
controlled.

To overcome these issues, computer games based on repeated RPG observations
were developed. That is the case of FishBanks (Meadows et al., 2015),a multi-
player web-based simulation in which participants play the role of fishermen
and seek to maximize their income as they compete against other players and
deal with variations in fish stocks and in their catches.

One of RPG concepts is that, by taking the part of a character in the game, the
player must follow rules that have been previously defined by the game creator.
This affords, however, little flexibility to players during a game, since rules can-
not be changed. In real case scenarios, such as natural resources management
for example, discussions can last hours due to natural conflict of interest bet-
ween stakeholders. Also, the addition of new rules or new parameters might be
necessary. Rules flexibility of should be considered if we wish to capture how
stakeholders mediate and solve their conflicts. This understanding is essential
to capture the ways they behave.

The fact is that, in most cases, scientists are inclined to favor the tools that they
are most familiar and comfortable with (Voinov and Francois Bousquet, 2010).



12 Chapter 2. Modeling and simulation behavior of multi-agent systems

As a result, some works (as described in section 2.4) tried to incorporate new
tools into MAS platforms. Their aim was to add new visual or textual langua-
ges to facilitate the M&S process and consequently, behavior modeling with
stakeholders. Some of these experiences are presented in the next section.

2.4 Experiences of MAS tools used in participatory

modeling

2.4.1 CORMAS

From COmmon-pool Resources and Multi-Agent Simulations, Cormas (François
Bousquet et al., 1998) is a MAS tool that focuses on models for renewable natural
resource management. According to the authors, CORMAS is oriented towards
the representation of interactions between stakeholders about the use of rene-
wable natural resources. Based on the VisualWorks programming environment,
users can develop their model using SmallTalk programming language.

Used in several PM works2, CORMAS provides some facilities to interpret (and
modify) the behavior of agents during M&S. An executable activity diagram
(Figure 2.5) allows to directly change the behavior of agents through a UML
activity diagram. The diagram is, in turn, interpreted by the agents and can be
modified by the users to redefine the order on which behaviors will be executed.

The diagram was used in ((Bommel, Dieguez, et al., 2014, and Bommel and
Dieguez, 2011)).The authors stated that, although the aim of the tool was not
to generate the entire simulator code, it was able to improve the collective mo-
dification of a model. Moreover, the tool was based on a simplified version
of UML’s activity diagram. Since a tool based on a full specification of UML’s
activity diagram could discourage potential users, a simpler version enabled
anyone involved in the modeling process to participate more actively.

2An exaustive list models (but not all involving PM) can be found at :
http://cormas.cirad.fr/en/applica/tousmodeles.htm



2.4. Experiences of MAS tools used in participatory modeling 13

Figure 2.5 – Cormas activity diagram tool to interpret agent’s behavior. Source : Bom-
mel and Dieguez, 2011

2.4.2 NetLogo

NetLogo (Wilensky, 1999) is a multi-agent programmable modeling environ-
ment. Netlogo allows quick development and prototyping from simple to com-
plex models. That is due to the fact Netlogo programming language is based
on the Logo language, a dialect of Lisp that was designed for learning and ot-
her educational purposes. As a result, Netlogo’s data structures (such as words
and lists) closely parallel the words, phrases, and sentences that make up spo-
ken and written language. Plus, logo-based languages provide the user with a
good feedback on individual instructions, helping in the debugging and lear-
ning process.

With many applications in a plethora of domains3, agents in Netlogo are pro-
grammed in the form of turtles, patches, links and the observer. The most cited
MAS tool in the last decade (Page et al., 2012), NetLogo uses grids, bars and
charts to represent agent’s environment and interactions. It also offers a Sy-
stem Dynamics Modeler, which allows the user to draw diagrams that define
populations of agents as "stocks" and flows.

In a PM experience concerning contagious human diseases (Maharaj et al., 2011),
the authors developed a graphical user interface (GUI) for Netlogo to be used in
participatory experiments aiming at investigating human attitudes toward the
risk of being infected by a disease.

3Netlogo model library, also available in the version for download:
http://ccl.northwestern.edu/netlogo/models/



14 Chapter 2. Modeling and simulation behavior of multi-agent systems

Figure 2.6 – Netlogo in a participatory modeling experience for human epidemiological
study. Source : Maharaj et al., 2011

2.4.3 Anylogic

AnyLogic (Borshchev, 2007) is a multi-paradigm modeling platform based on
Java that provides capabilities to develop and combine agent-based models,
system dynamics models, discrete-event models, and continuous and dynamic
system models. Although AnyLogic does not focus on SES and though it is
not under GNU GPL license, the platform has been used in some participatory
modeling on SES domain.

In (Gaube et al., 2006) for example, AnyLogic was used for modeling the im-
pacts of subsidy policy on farmer households, land use and nutrient flows. In
this work, the behavior of the agents could be affected by the system they are
part of and by changes in their environment (in this case, land use). Conse-
quently, the behavior of the whole system would depend on the individual be-
havior of each agent. The model was programmed in Java and later used in
participatory processes.

Another example of Anylogic’s usage in the context of SES can be found in
(Tàbara et al., 2007), where the authors aimed at using participatory modeling
for integrated water sustainability assessment. Interestingly, the authors imple-
mented a first version on Netlogo to describe the physical system ( that is, the
hydrology system ) and the agent system that describes the behavior of different
agents. Then, AnyLogic was applied to develop an agent model that represen-
ted farmers (for agricultural water), electricians (for water dependency), frogs
(water environmental use) and households (human water consumption besides
agriculture). The agents could interact with and be influenced by their surroun-
dings and the environment (the physical system) whereas the behavior of and



2.4. Experiences of MAS tools used in participatory modeling 15

decisions made by the agents were in turn reflected in the physical model. Fi-
nally, certain initial parameters for the agents’ behaviors were defined by the
players and assigned to the agents, as represented in (2.7)

Figure 2.7 – Agents’ behavior parametrization on Anylogic. Source : Tàbara et al., 2007

2.4.4 GAMA

The GAMA platform (Taillandier et al., 2012) - short for GIS & Agent-based
Modeling Architecture, is a modeling and simulation development environ-
ment for building spatially explicit agent-based models. GAMA has its own
modeling language (GAML - GAma Modeling Language) and it was based on
XML. The GAML language focus is simplicity and considered by the authors to
be as simple and easy to understand as the Netlogo modeling language (Taillan-
dier, 2014). Gama has a declarative user interface, focusing on GIS and multi-
layer 2D/3D visualization.

Although GAMA possesses many visualization options and a programming
language focused on simplicity (GAML), few works relate that platform to PM
experience. However, in (Chu et al., 2012) GAMA was applied in an approach
proposal based on a participatory design to find the most effective way to mo-
del human behavior. As a part of a broader PM methodology, a participatory
design attempts to actively involve all stakeholders (e.g. designers, developers,



16 Chapter 2. Modeling and simulation behavior of multi-agent systems

experts, end-users, etc.) in the design process to help ensure that the designed
product meets their needs and is usable.

Figure 2.8 – GAMA and the interaction view in the urban emergency management con-
text Source : Chu et al., 2012

In this work, the authors developed a model in the context of urban emer-
gency management, aiming at the organization of resources and responsibilities
for dealing with many aspects of emergencies occurring in cities (e.g. search
and rescue of injured persons, extinguishing fires, etc).Among many available
"views" (parameter view, chart view , display view, agent view, etc), GAMA
provides the interaction view (Figure 2.8), which shows the coordination occur-
ring between the agents and allows the users to add or modify the messages
they are exchanging. The messages, however, are modeled with GaML.



2.4. Experiences of MAS tools used in participatory modeling 17

2.4.5 MIMOSA

MIMOSA4 is a MAS platform aiming at providing tools capable of managing a
process from building conceptual models to running the simulations. Through
a visual ontology editor, MIMOSA allows the description of the concepts, the
structure and the relationship of agents to be made through ontologies. The
modeled ontology can be used together with an extensible set of formalisms
for model initialization and model visualization. Additionally, the conceptual
model can be designed using a simplified UML class diagram. For the model
dynamics (like agent’s behaviors), Mimosa allows the user to choose the forma-
lism to be used, conditioning the possible states, and initialize model dynamics.
Mimosa’s simulation kernel is based on DEVS (Zeigler and Sarjoughian, 2003)

In (Aubert, Müller, and Ralihalizara, 2010), MIMOSA platform was used to de-
velop an agent-based model called MIRANA. Mirana model aimed to evalu-
ate the impacts of the management plans made by Malagasy local communities
and explore the impacts of their decisions in scenarios. In this work, the concep-
tual model was made of a set of ontologies describing the actors of the system
(households, communities, etc.), objects on which they were acting on (lands,
animal and plant species, etc.), actions carried out by the actors on the objects
(hunting, cropping, etc.) and the regulations on the actions. The actors are pro-
vided with needs (food, money, etc.) or objectives (conservation, production,
etc.) and planning mechanisms. MIRANA model was composed of two kinds
of dynamics: the first one was the biophysical dynamics, representing the po-
pulation growth of the species and the evolution of the fertility expressed and
represented as equations of time; the second one was the decision process of the
agents, representing the households and the collective actors such as the local
community.

In a more recent work (Aubert and Müller, 2013), the authors improved the MI-
RANA model by incorporating normative rules to models. An ontology was
modeled considering definitions (and relations between) institutions, stakehol-
ders, resources and territories. In the modeled ontology, the institutions and
stakeholders respectively represented the "macro" and "micro" levels of des-
cription. They considered institutions as a set of constitutive and regulative
norms, where organization is a representation of a concrete group of people on
whom the institution applies (e.g. household). Stakeholders were considered to

4From the french acronym for “Méthodes Informatiques de MOdélisation et Simulation
Agents”: computer science methods for agent-based modeling and simulation



18 Chapter 2. Modeling and simulation behavior of multi-agent systems

be exclusively active, human, individual or collective, decision-making parties
with objectives. To represent the dynamics between MIRANA model elements,
the authors used a mixture of natural language descriptions and UML activity
diagrams. An example of dynamics representation is illustrated by Figure 2.9
where household behavior is conceptualized in an UML activity diagram

Figure 2.9 – Mirana and Household behavior. Source: Aubert and Müller, 2013

In MIMOSA, the modeler has to define two types of models: the conceptual mo-
del (that corresponds to the concepts and their relationships) and the concrete
model (that corresponds the instantiation of the conceptual model). Those des-
criptions are further used to generate a simulation model in the form of DEVS,
and the whole model, written in Java.



2.5. Limits of the current MAS tools used in participatory modeling 19

2.5 Limits of the current MAS tools used in partici-

patory modeling

2.5.1 The Challenge of MAS behavior simulation in SES

In M&S, a formalism must be chosen if one desires to simulate a computer mo-
del. Concerning SES, the chosen formalism should be able to provide most of
the concepts involved in SES elements, such as territory, environment and ac-
tors. These concepts are essential for MAS modeler behavior, especially if we
consider that the way behaviors are modeled is strongly influenced by the way
these concepts are formalized.

In MAS, the concept of environment is essential for M&S of agent-based models.
Unfortunately, the multiplicity of disciplines involved in social environmental
systems (SES) results in a non-consensus about many of the concepts involved
in SES. To exemplify this, in his work titled "The Significance of Territory" (El-
den, 2013), the author discusses how the concept of territory may vary from
group to group. Not only do the concepts vary, but interests are also very diffe-
rent. For instance, politicians see the territory as population aiming at resources
while militaries view the territory as topographic features aiming at tactical and
strategic actions. To jurists, the territory is a jurisdiction and delimitation since it
aims at national and international laws. To the geographer, it could be a portion
of space enclosed by boundary lines, but one interested in political geography
might see the territory as a material, spatial notion establishing essential links
between politics, people, and the natural setting.

Because of this diversity in disciplines involved in PM, it is still not very com-
mon for stakeholders to find the concepts that they are used to in the current
MAS platforms. Covering concepts from all disciplines does not seem to be a
logical solution, even though a consensus on these concepts would be ideal.
Providing stakeholders with a way of expressing their own concepts in a for-
malism they could easily understand is a task still to be accomplished in MAS.

2.5.1.1 Programming language learning

One of the main obstacles for stakeholders during M&S phase is learning a new
programming language. They tend to be discouraged during this stage because



20 Chapter 2. Modeling and simulation behavior of multi-agent systems

a majority of stakeholders are not programmers. Additionally, much of stake-
holders time during PM is consumed during sessions of discussing and con-
ceptualizing a model. Furthermore, even non-programmer researchers might
spend quite some time learning and applying a programming language to spe-
cify behaviors in a given MAS platform.

In a PM experience concerning contagious human diseases for example (Maha-
raj et al., 2011), the authors concluded that, although the tool was created to be
interesting and engaging for participants, it is still very far from a real-world ex-
perience of an epidemic reality. One of the reasons might be due to the fact that
behaviors specified in the model were predefined by developers. Also, some
MAS platforms (such as AnyLogic), "...have their use still confidential and regarded
as “too advanced” or “too complicated” by many adaptation planning projects in PM
(Drogoul, 2015). Although there are more user-friendly platforms, and although
enhancing the education and training of stakeholders and deciders could help
overcome this issue, stakeholders still spend quite some time on training and
learning programming languages, if they wish to simulate their model.

2.5.1.2 MAS behavior representation

Concerning the behavior aspect of MAS tools in most PM experiences, the be-
havior represented is usually a reactive one. One possible reason is that the
implementation of cognition and goal-based behavior could be very difficult
to program, especially for non-programmers. Although the idea of following
cognition and goal-based architectures would highly increase the detail level of
a model description, following these architectures would proportionally incre-
ase the complexity of representing that model. Certainly, this does not mean,
though, that cognition and goal concepts are not present in MAS tools, but rat-
her, that cognition and goal-based architectures should be implicitly incorpora-
ted by developers of MAS platforms that are commonly used by stakeholders.

In general, there are three ways to graphically represent behaviors in MAS si-
mulation: through system dynamics, through DEVS, or through activity dia-
grams. The last can be considered as a good ratio of intuitiveness/level of for-
malization since it is also suitable for representing reactive behaviors due to its
control flow nature. MIMOSA and CORMAS advocate the need for conceptual
modeling before simulating models, providing an Ontology and an Activity di-
agram editor, respectively, as a way to facilitate modeling.



2.5. Limits of the current MAS tools used in participatory modeling 21

Nonetheless, class diagrams and ontologies are only capable of describing the
general structure of the model and relations between them. Which means that
agents’ behaviors are always hand-coded by researchers. In the recent attempt
(session 2.4.1) to increase stakeholders involvement during M&S process, the
activity diagram editor only allowed users to visually modify the ranking of
behaviors that were previously programmed by an expert modeler. The authors
also stated that the tool does not prevent the modeler from programming his
ABM.

Finally, the chosen formalism to represent a behavior should not be exclusi-
vely coupled with the programming language paradigm of the chosen MAS
platform. For example, if Netlogo and Anylogic provide many ways to model
behaviors (like slide bars, text, stack and flow, etc), CORMAS on the other hand
uses UML diagrams because, among other reasons, UML was designed to visu-
ally represent models according to the object-oriented paradigm, and because
CORMAS programming language (SmallTalk) is also object-oriented.

2.5.2 Possible improvements to current MAS tools

2.5.2.1 Domain specific language for MAS behavior modeling

Most MAS platforms presented so far are based on programming languages
that were not designed through taking into account concepts present in a sta-
keholders’ discourse. Correspondingly, stakeholders are forced to deal with
programming language aspects and MAS platform specificities. To solve that
issue, "what" a model should simulate must be separated from "how" the same
model should be implemented. In other words, the simulation model must
be separated from the conceptual model. This could be achieved by imple-
menting an intermediary layer, significantly reducing M&S complexity for non-
programmers. This intermediary layer could be represented by another pro-
gramming language, composed of concepts that are common to modelers and
stakeholders.

Many aspects (such as type system, implementation, etc.) are used to distin-
guish and classify programming languages. Programing languages may also be
distinguished by their type: they can be general-purpose languages (GPL), or
domain-specific languages (DSL). GPLs are programming languages designed
to be used for writing software in a wide variety of application domains. Java,
Smalltalk, C++, are some examples of GPL. DSL on the other hand, can abstract



22 Chapter 2. Modeling and simulation behavior of multi-agent systems

the design and implementation expertise of a domain: the DSL programmer fo-
cuses on what to compute or to describe, as opposed to how instructions should
be computed. Even if DSLs are less understandable for those who do not be-
long to the targeted language domain, they are much more expressive in their
domain, and consequently, a DSL exhibits minimal redundancy. Some exam-
ples of DSL include HTML for web markup, SQL for relational database and
Mathematica for symbolic mathematical computation.

Because domain-specific languages are more compact (Mernik et al., 2005; Fow-
ler, 2010) and typically far less powerful than generic programming langua-
ges, they communicate their intent far better. This is because DSLs do not in-
clude many features found in general-purpose programming languages. While
it is intended to increase expressiveness (thus decreasing maintenance cost),
GPL contains features that also require a certain amount of domain and pro-
gramming expertise when they are used. But stakeholders are mostly non-
programmers, so the use of GPL may discourage them if they wish to simu-
late their model. DSLs, on the other hand, could highly increase stakeholders’
participation level by incorporating some of their domain’s concepts in current
MAS programming languages and tools (see Mernik et al., 2005 for an analy-
sis of when and why DSLs should be developed and Kosar et al., 2010 for an
empirical comparison between DSLs and GPLs).

With the exception of Netlogo and GAML, most programming languages used
in the MAS platforms presented are GPL. However, neither Netlogo, nor GAML
were specifically made for SES. But even if they can be used, and since social
environmental systems are very often modeled using MAS platforms, we still
lack DSLs for the SES domain.

2.5.2.2 Platform independence

As intuitive or user-friendly a MAS tool could be, it should be flexible enough
to provide the user with tools for quick model validation. One way to validate
a model is also to confirm the reproducibility of that model on any platform.
But this way of model validation is still not possible in current MAS platforms
because models are platform dependent. This means that specific platform ele-
ments (such as icons, colors used and the how models are initialized on a speci-
fic platform) are modeled along with the model specification. The model should
thus be platform-independent.



2.5. Limits of the current MAS tools used in participatory modeling 23

As an intermediary layer that separates the simulation model from the concep-
tual model, DSLs may easily provide code generation facilities. One of DSL
advantages are the ability to generate simulation models from conceptual mo-
dels. This is achieved by defining text templates that read a model of the DSL
and generate text files. Developers use domain-specific languages to construct
models that are specific to their applications and use models to generate source
code. Although building DSLs is not a recent approach, and has already been
applied to MAS domain (Challenger et al., 2014,Demirkol et al., 2013), DSL code
generation capabilities have never been used in PM, specially to describe the be-
haviors of reactive agents.

2.5.2.3 Visual tools to model with stakeholders

CORMAS and MIMOSA use activity diagrams to model reactive agents beha-
viors. But MIMOSA experience in PM only used activity diagrams during the
conceptual stage of modeling. CORMAS provided stakeholders with a visual
tool to "interpret" graphically model behaviors through an activity diagram,
meaning that behaviors were previously defined. Additionally, behaviors were
hand-coded by expert modelers and not by stakeholders.

Domain-specific languages are usually textual, but can also be visual. In that
sense, visual languages are used to communicate a representation of a system,
in order to understand or change it (Renger et al., 2008). "Thinking by dia-
grams” (Blackwell, 2001) affords more efficiency than a text, or a stack of in-
struction blocks. Also, they seem more powerful than textual description or
lines of code, especially for collective design involving non-computer specia-
lists such as local stakeholders (Bommel, Dieguez, et al., 2014). But computer
simulations require some kind of formalism to run simulations. So, should a
visual formalism be incorporated to a DSL capable of reproducing reactive be-
haviors in MAS, then that visual formalism should also prove useful in promo-
ting a multidisciplinary discourse among stakeholders (like activity diagrams,
for instance).

In PM experiences, flux diagrams (such as activity diagrams) and cause-effect
diagrams (such as ARDI5 (Etienne et al., 2011) are very popular among stake-
holders. These types of diagrams can provide a way to represent decisions (re-
presented by agents behaviors on MAS). Moreover, the popularity of these dia-
grams is due the fact that many policy makers start their professional education

5ARDI - From Actions, Resources, Dynamics and Interactions



24 Chapter 2. Modeling and simulation behavior of multi-agent systems

by learning how to construct cause-effect diagrams and means-end branching
trees (Mayer, 2009). However, cause-effect diagrams poorly describe the spatial
and environment aspects of an agent and these types of diagrams might not be
enough to represent behaviors.

Nonetheless, a programmer’s mindset is still needed when using such visual
modeling editors because "users have to deal with concepts such as if-then-
else statements, loops, variables usage and so on" (Michel et al., 2011). Despite
of that, visual modeling languages have great advantages. They have special
virtues such as visualization, immediacy, spatiality, creativity, and compliance
with intuition (Morand, 2000).

2.6 Conclusion

In this chapter, we presented how behaviors are represented in some MAS ar-
chitectures. Participatory modeling usually makes use of MAS tools because
MAS is an individual-centered approach. In most PM experiences with MAS
tools, reactive behaviors are the most used type of behavior due to their simpli-
city of programming. Although many advances were made in the past decade,
the current MAS platforms are still not able to sufficiently involve participati-
ons in M&S simulation process. This is mainly observed in social environmental
systems, where most stakeholders are non-programmers. Visual languages to
represent reactive behavior, platform dependence and programming languages
that are not specifically designed for SES domain are among the reasons why
current MAS platforms are still far from keeping stakeholders’ level of partici-
pation. It is undeniable that much work has been carried out in this field for
the past decade, but much remains to be done. Still, we conclude that domain-
specific languages should be designed for SES, to which some kind of visual
formalism should be incorporated.



25

Chapter 3

Model driven engineering

3.1 Introduction

So far, we have been using the term "stakeholders" to denote a group of users
(including researchers) for whom MAS platforms should be developed. Terms
such as "clients" or "users" could also be applied.

Considering that stakeholders (including researchers) are experts in their own
domain, the term "domain expert" seems more convenient to use. A domain
expert is a person with special knowledge or skills in a particular area of en-
deavor. The term domain expert is frequently used in expert systems software
development, and there the term always refers to the domain other than the
software domain. Therefore, the term "domain-expert" will be used instead.

In the domain of software development, a programming language is usually
used to develop a software. As previously introduced in chapter 2 progra-
ming languages can be a general-purpose language (GPL) or domain-specific
languages (DSL). DSL "are small, usually declarative, offering expressive po-
wer focused on a particular problem domain" (Van Deursen et al., 2000). Also,
MDE has adopted the term ’toolsmith’ to refer to developers that use graphical
frame-works to build plug-ins. Although many methods for developing DSL
are available in the literature, this chapter will focus on Model-Driven Engi-
neering (MDE). We provide a brief overview of MDE, focusing on some of the
necessary concepts to develop DSLs. Finally, we explore MDE’s perspective on
those concepts and how they are implemented.



26 Chapter 3. Model driven engineering

3.2 Background

Before getting into the "E" of MDE, some "MD" past initiatives should not be
neglected if we are aiming at understanding MDE goals. Even before previ-
ous model-driven initiatives (as illustrated in figure 3.2), ), "various past efforts
have created technologies that further elevated the level of abstraction used to
develop software" (Schmidt, 2006).

With little impact during the 1980s and 1990s, Computer-aided software engi-
neering (CASE) focused on developing software methods and tools that ena-
bled developers to express their designs in terms of general-purpose graphi-
cal programming representations, such as state machines, structure diagrams,
and data-flow diagrams. However, CASE tools were unable "to scale to handle
complex, production-scale systems in a broad range of application domains"
(Schmidt, 2006). Later, developers start to typically use more expressive object-
oriented languages, such as C++, Java, or C#. Re-usability was one of the main
advantages that allowed such languages to implement complex solutions in ma-
ture enough platforms. By using reusable functionality, middlewares (such as
J2EE, .NET and the Common Object Request Broker Architecture - CORBA)
were created in order to offer solutions to frequently encountered problems on
development : heterogeneity, interoperability, security, dependability, etc.

Later, developers started to typically use more expressive object-oriented lan-
guages, such as C++, Java, or C#. Re-usability was one of the main advantages
that allowed such languages to implement complex solutions in mature enough
platforms. By using reusable functionality, middlewares (such as J2EE, .NET
and the Common Object Request Broker Architecture - CORBA) were created
in order to offer solutions to frequently encountered problems in development:
heterogeneity, interoperability, security, dependability, etc.

Meanwhile, with the advances and the increasing popularity of other standards
defined by the Object Management Group (OMG), the not-for-profit techno-
logy standards consortium decided (around 2001), to adopt a new framework
termed the Model Driven Architecture MDA. MDA is in fact, a set of many
OMG’s standards: the Unified Modeling Language - UML, the Meta Object Fa-
cility (MOF), the XML Metadata interchange (XMI) and even CORBA. This idea
is depicted in the official logo of MDA (Figure 3.1), illustrating the idea of an
architecture composed of many standards, which aims to be used in many sec-
tors in software development. Some of the standards used by MDA will be



3.2. Background 27

discussed in further sections.

Figure 3.1 – MDA’s official logo . Source : OMG, 2014

Nevertheless, unlike other OMG’s standards, MDA offers a way to use mod-
els instead of the traditional source code (Sacevski and Veseli, 2007). In that
sense, the software engineering approach that uses models to create products,
increasing quality, efficiently and predictability of large-scale software develop-
ment is called Model-driven development (Beydeda et al., 2005). Model-Driven
Development- MDD (Pastor et al., 2008) is very often called MDSD - Model-
Driven Software Development (Stahl et al., 2006) and although there is no con-
sensus on these terms, our understanding is that both approaches have quite the
same philosophy: that software development’s primary focus and products are
models rather than computer programs. The idea is to express models using
concepts that are much less bound to the underlying implementation techno-
logy and are much closer to the problem domain (Selic, 2003).

Finally, Model Driven Engineering (MDE) has a wider scope than MDD (or
MDSD). MDE covers the whole engineering process to develop software (such
as tasks, documentation, etc..) by combining it with architectures (Kent, 2002).
In short, MDA would be OMG’s point view (there may be others) of how MDD
(or MDSD) should be implemented. And on the top of hierarchy (depicted by
figure 3.2), we have MDE, a software engineering approach. Boosted by MDA,



28 Chapter 3. Model driven engineering

MDE is very much established in the industry, and is supported by important
groups such as IBM, Microsoft and OMG (Touraille et al., 2012). We will discuss
MDE further in section 3.7

Figure 3.2 – Model-Driven Engineering (Adapted from : Cabot, 2009)

3.3 Model

In its most simple definition, a model is a simplification of reality. In a more
broad definition of a model, (Le Moigne, 1990) state that:

"A model is an artificial representation that we built in our minds..which
we design on some surface object : the beach sand, a leaf of paper, the screen
of a computer....also understood as a system of symbols, an artificial system
(created by men) that arranges symbols..."1

Models can be physical, such as a toy car or an architect’s model of a building,
or symbolic, such as a natural language, a computer program, or a set of mat-
hematical equations. Considering certain characteristics and the "Nature of the
definition of a model", (Rothenberg et al., 1989) affirm that:

"A model represents reality for the given purpose; the model is an ab-
straction of reality in the sense that it cannot represent all aspects of reality.
This allows us to deal with the world in a simplified manner, avoiding the
complexity, danger and irreversibly of reality."

Accordingly, a model can be a representation of a selected part of the world
(the system). A model can represent a theory in the sense that it interprets the

1 From the original text : "Le modèle est une représentation artificielle que «l’on construit dans
sa tête»...et que l’on «dessine» sur quelque support physique : le sable de la plage, la feuille
de papier, l’écran du «computeur»... Autrement dit un système de symboles, un système ar-
tificiel (créé par l’homme) qui agence des symboles..."



3.3. Model 29

laws and axioms of that theory. These two notions are not mutually exclusive as
scientific models can be representations in both senses at the same time (Frigg
and Hartmann, 2012). However, because a model may concern different aspects
of a system, MDA introduces the notion of viewpoints. Viewpoints in MDA
Viewpoints in MDA are "a reusable set of criteria for the construction, selection,
and presentation of a portion of the information about a system, addressing
particular stakeholder concerns" (OMG, 2014). Therefore, MDA defines 3 vie-
wpoints: 1) a Computation Independent Viewpoint, 2) a Platform Independent
Viewpoint, and 3) a Platform Specific Viewpoint. As shown in Figure 3.3, all of
these viewpoints are captured in the following models:

Figure 3.3 – MDA models

• The Computation Independent Model (CIM): is basically a simple repre-
sentation of a system without specific information on how it is to be im-
plemented. A CIM does not carry any detail of the structure of systems,
but it focuses solely on the description of the domain and requirements of
the system.

• The Platform Independent Model (PIM): is a somewhat more detailed
view of a system containing more details but from a platform indepen-
dent viewpoint. It captures information on the data of a system and, from
the computational viewpoint, leaves aside all lower-level details;

• The Platform Specific Model (PSM): is a view of a system from the plat-
form specific viewpoint. A PSM contains PIM specifications but with de-
tails about the usage on a concrete platform. Probably generated from a
PIM, the PSM must be precise and complete, conforming to the constraints
of a specific (class of) platform(s). The PSM usually contains enough in-
formation to allow the generation of codes.



30 Chapter 3. Model driven engineering

3.4 Modeling Language

Considering it as the representation of a system, a set of theories, or both, a mo-
del is a description of (part of) a system written in a well-defined language. A
well-defined language is a language with well-defined form (syntax), and mea-
ning (semantics), which is suitable for automated interpretation by a computer
(Kleppe et al., 2003). For a model to be useful, OMG, 2014 recommends that:

"A model needs to be expressed in a way that communicates information
about a system among involved stakeholders that can be correctly inter-
preted by the stakeholders and supporting technologies. This requires the
model to be expressed in a language understood by these stakeholders and
their supporting technologies."

As illustrated in figure 3.4, a modeling language is composed of an abstract
syntax (expressed in a meta-model, see 3.5), a concrete syntax (represented by
notations) and semantics.

Figure 3.4 – Main elements of a modeling language

While the abstract syntax defines the structure of the modeling language, in-
dependent of any particular representation or encoding, concrete syntax rep-
resents a particular way to represent that structure. Thus, the concrete syntax
must always be conform to an abstract syntax. As the third element of modeling
languages, semantics reveals the meaning of syntactically valid expressions of
that language (Rodrigues Da Silva, 2015).

For instance, let us suppose that we wish to implement a modeling language
for modeling classes in object-oriented languages. Usually, a class is abstractly
de-fined by a name, many methods (which in turn has its own abstract syn-
tax) and a modifier. Each object-oriented programming language (such as Java,
C++,SmallTalk, etc) have their own (concrete) syntax to implement the abstract



3.5. Meta-model 31

syntax that defines a class. If we hypothetically wish to develop a new programming-
oriented- language, we could use the same abstract syntax of previous object-
oriented programing languages and provide our own concrete syntax.

In other words, designing a modeling language is the process of setting up all
those elements together, that should provide enough expressivity to create mo-
dels. UML, SQL Schema, are two examples of well-known modeling languages.
They have their own semantic modeling domain, such as ontologies (for UML)
and data-base (for SQL). From a single abstract syntax, they may have several
concrete syntax.

3.5 Meta-model

Designing modeling languages requires a higher level of abstraction. We call
that level a meta-model. A meta-model is set of objects that describes the dom-
ain model. That means that all modeling languages (such as UML, SQL, OWL,
and other) also have their meta-model. In that way, UML, for instance, may be
considered both as a model and a meta-model. OMG for example, use a core
meta-model (also in UML) to define some of MDA’s standards (some of them
are dis-cussed in further sections). This core meta-model is called Meta-Object
Facility - MOF (OMG, 2015) and it is based on a simplification of UML’s class
modeling capabilities. MOF is designed as a 4-layered architecture, as illustra-
ted in Figure 3.5.

At the bottom level, the M0 level represents the system. The M1 level represents
the models of real system in the view point of the uses. These models conform
to a meta-model represented by the M2 level, level, which in turn, conforms to
a meta-meta-model defined in M3 level. In the the MOF’s M3 viewpoint level,
a meta-meta-model should be able to represent itself. The UML formalism, for
example, is a formalism that can be represented by itself. It also means that no
domain knowledge is transmitted at this level. The M2 level is defined by the
DSL designer: it is the DSL itself, expressed with M3. The DSL user models one
or many M1 to represent the M0 system.

However, this architecture might bring about some confusion because the clas-
sical 4-layered architecture organization is not suited to all kind of languages.
For this reason, MOF specifications (see section 7.1) point out that MOF and
other OMG standards should not have the perceived rigidness of a 4-layered
meta-model architecture, since some other standards use a smaller number of



32 Chapter 3. Model driven engineering

Figure 3.5 – The 4-layered architecture of Meta-Object Facility. Source : European PhD
School on Robotic Systems, 2016

layers. Moreover, while there are typically up to four meta-levels, (Mabrouki,
2015) states that some standards may have even more than 4 layers.

3.6 Model Transformation

Another key activity of MDSD is the concept of model transformation. Basi-
cally, transformation is the automatic process to transform a source model into
a target model through a transformation too. According to (Kleppe et al., 2003),
transformation is defined by a set of transformation rules that are "a description
of how one or more constructs in the source language can be transformed into
one or more constructs in the target language". More precisely, transformation
is not restricted to one source and one target, as illustrated in Figure 3.6.

Different kinds of model transformations (Mens and Van Gorp, 2006) are dis-
tinguished: endogenous transformation (also known as in-place transforma-
tion) modify models conform to the same meta-model and exogenous trans-
formation (also known as model-to-model transformations) translates models
between different meta-models. Endogenous transformations are applied for
different tasks such as model refactoring, optimization, evolution, and simula-
tion (Kappel et al., 2012), while exogenous transformation are used, for exam-
ple, for map-ping PIMs to PSMs. Model transformation can also be classified



3.7. Model driven engineering 33

Figure 3.6 – Model Transformation.

by abstraction level. In this case, they can be horizontal (where the source and
target mod-els reside at the same abstraction level) or vertical (where the source
and target models reside at different abstraction levels).See also (Diaw et al.,
2010) for more detail about model transformation taxonomy.

Transformation rules are usually expressed with meta-models, which make ru-
les also applied to each model conform to that meta-model. Ideally, both source
and target models should conform to well-defined meta-models. But there is
often a need to generate artifacts without an explicit meta-model such as code-
generation, or documentation (Touraille et al., 2012). Therefore, MDE tends
to make a distinction between two types of transformations: model-to-model
transformations (M2M) and model-to-text transformations (M2T). These trans-
formations will be discussed in later sections.

3.7 Model driven engineering

One disadvantage of using general-purpose languages (GPL) is that sometimes,
developers are forced to implement non-optimal solutions in order to deliver
products that represent more precisely the semantic domain of stakeholders
(domain experts). To deal with this issue, MDE is one approach that focuses
on tackling the inability of GPL to alleviate this complexity and express domain
concepts (Schmidt, 2006). As an integrative approach resulting from years of ef-
forts and experience in software development, MDE combines Domain-Specific
Modeling Languages (DSMLs) with transformation engines and generators by
delivering the basic principles for the use of models as primary engineering



34 Chapter 3. Model driven engineering

artifacts throughout the software development life-cycle (Galvão and Goknil,
2007), combined with meta-models and transformations.

DSMLs are modeling languages that incorporate domain expert’s concepts into
their syntax (abstract and concrete). These DSML provide a higher level of ab-
straction than a set of tools to produce DSL through models and transformati-
ons (also known as artifacts). MDE Transformation engines and generators, in
turn, supply the necessary guidelines to execute the appropriate mappings be-
tween the produced artifacts. Additionally, model validation, model checking
and model-based testing are also part of MDE practices to ensure model qua-
lity. Some of the -best known MDE initiatives are Microsoft’s DSL Tools and
The Eclipse Modeling Project (EMP), the latter being discussed in the following
section 3.8

3.8 The Eclipse Modeling Project

3.8.1 Overview

The Eclipse Modeling Project is an initiative that has developed as layers around
a central core. Starting from the Eclipse Modeling Framework(EMF) along with
the Graphical Modeling Framework(GMF), the project has had an increasing
number of contributors in the past decade, with a very active and continuously
growing community. The Eclipse Modeling Project focuses on the evolution and
promotion of model-based development technologies, providing a unified set of
modeling frameworks, tooling, and standards implementations (Eclipse Foun-
dation, 2014). Although the Eclipse Modeling Project hardly mentions MDA
at all, it is nonetheless supported to a large degree by the MDA concepts and
standards discussed for far.

The Eclipse Modeling project is largely a collection of projects related to mo-
deling and MDSD technologies. This collection was formed to coordinate and
focus model-driven software development capabilities within Eclipse (Gron-
back, 2009). The initial logo of the Eclipse modeling project (figure 3.7) depicts
EMF (an older Eclipse project ) as the core of Eclipse Modeling Project, enviro-
ned by many components represented by research initiatives, projects, models
and capabilities.



3.8. The Eclipse Modeling Project 35

Figure 3.7 – Eclipse Modelig Project and its projects

3.8.2 EMF

The Eclipse Modeling Framework - EMF (Steinberg et al., 2009) provides a mo-
deling and code generation framework for Eclipse applications based on struc-
tured data models. EMF is a framework and code generation facility for buil-
ding Java applications based on simple model definitions. It unifies Java, XML,
and UML, where models can be defined using a UML modeling tool or an XML
Schema, or even by specifying simple annotations on Java interfaces.

In MOF specifications, 3 compliance points are defined: the complete MOF
(CMOF), the Essential MOF (EMOF) and the Semantic MOF (SMOF). The CMOF,
as its name states, is the entire specification itself. EMOF is a MOF subset that
closely corresponds to the facilities found in object-oriented programing lan-
guages and XML. Finally, SMOF (or semantic MOF) was a later request pro-
posal by OMG to add semantic to MOF. More details about these compliance
points can be found in MOF’s specification (OMG, 2015)

Although EMF supports the key MDA concept of using models as input to de-
velopment and integration tools, it does not use however any one of the MOF
compliance points previously described. Instead, EMF uses ECore, a not fully
aligned variant of OMG’s EMOF. Essentially, among other elements, an ecore



36 Chapter 3. Model driven engineering

meta-model allows to define an EClass, an EAttribute, an EReference, and an
EDataType. An EClass represents a class, with zero or more attributes and zero
or more references. An EAttribute: represents an attribute which has a name
and a type. A EReference represents one end of an association (containment or
reference) between two classes. Finally, an EDataType represents the type of an
attribute (such as an integer, a float or java.util.Date).The Ecore model has a root
object representing the whole ecore model. A more detailed version (but not a
full one) of the ecore meta-model is presented in Figure 3.8)

Figure 3.8 – A simplified version of the Ecore meta-model. Source : Eclipse
Foundation, 2016(a)

Since EMF’s core is the Ecore meta-model, Ecore is used as a meta-meta-model
to define DSLs. EMF notably relies on Ecore as a central pivot to enable intero-
peration between the different tools (Touraille et al., 2012). Because Ecore’s aim
is to provide mappings from EMOF to Java, the EMF core (Ecore) provides only
basic validation and code-generation capabilities (basically only a Java direct
translation). To overcome this issue, EMF supplies model transformation and
constraints capabilities. Model transformation can be model-to-model (M2M)
or model-to text (M2T). Model constraints can be added to a model, and defi-
ned either in Java or in Object Constraint Language (OCL), an OMG standard.



3.8. The Eclipse Modeling Project 37

3.8.3 Abstract syntax development

One of the key benefits of MDE resides in its meta-modeling capabilities. By
using meta-modeling languages, the language designer may define the abstract
syntax of his/her own modeling language either a general or domain specific
languages (Brambilla et al., 2012). The abstract syntax, made in Ecore, is re-
presented by a meta-model and its development process can be, in its simplest
form, a three-step iterative and incremental process (Brambilla et al., 2012) as
illustrated in Figure 3.9

Figure 3.9 – The meta-modeling process. Source : Eclipse Foundation, 2016(a)

• Modeling domain analysis: technical literature, existing implementations,
customer surveys and expert advice are some of the required elements
for domain analysis, according to (Prieto-Diaz, 1990). Modeling domain
analysis can be seen as a process where information used in developing
software systems is identified, captured, structured, and organized for
further reuse. Reuse is performed through the use of infrastructure, such
as domain models, development standards, and repositories (libraries) of
reusable components.

• Modeling language design: this is the process that formalizes the concepts
in the abstract syntax into a concrete syntax. Later, some constraints are



38 Chapter 3. Model driven engineering

specified in OCL in order to remove language ambiguities and add well-
formedness rules. In that case, some feedback of domain experts may be
needed, wherever the concrete syntax should be an accessible modeling
language.

• Modeling language validation: this is an essential process in MDE to check
whether a model meets the informal requirements a developer has in mind.
It pro-vides the necessary feedback to the next iteration step in meta-
model development process.

In MDE, the abstract syntax is used in the development of almost every ar-
tifact that follows, including text and graphical concrete syntax, model-to mo-
del transformations, and model-to-text transformations (Gronback, 2009). Since
EMF relies on Ecore, the abstract syntax is defined in an Ecore meta-model.
There-fore, the creation and edition of an Ecore meta-model can be performed
in several ways: by using a tree-like editor to add, remove or move model ele-
ments and modify their properties; by importing a set of annotated Java class,
by importing a xml file; by importing UML models (Rational Rose. mdl file
format is recommended, but other formats are also usable) or still; by using
EcoreTools 2, a graphical tool quite similar to an UML editor.

By default, EMF uses XMI (XML Metadata Interchange), an OMG standard
for-mat for exchanging metadata information via Extensible Markup Language
(XML). Additionally, since Ecore is a representation of the persistent XMI for-
mat, textual editing is also possible through the use of OCLinEcore3, an Ecore
editor with highlight syntax for editing OCL constraints.

3.8.4 Concrete syntax development

Computer languages are always processed by a compiler. One of the main
functions of a compiler is to process statements written in a particular computer
language and turn them into machine language. This process is usually divided
into lexing and parsing. In lexing, the compiler performs the lexical analysis to
generates tokens from each word contained in a string. In the parsing process,
(also called syntax analysis), the compiler checks whether a sentence is gram-
matically correct according to a formal grammar by identifying the function of
each generated token. The whole process is called the parsing process (figure

2http://www.eclipse.org/ecoretools/index.html
3https://wiki.eclipse.org/OCL/OCLinEcore



3.8. The Eclipse Modeling Project 39

3.10) aand is executed by a parser. Although parsers can be manually desig-
ned, using a parser generator affords some advantages, such as a higher level
of program-ming abstraction and the capacities to generate the target parser in
multiple languages (Ghosh, 2010). Many parser generators are available today
(such as YACC, BISON, ANTLR, etc.). Usually, the function of a parser gene-
rator is to produce parser trees. Parser trees represent the syntactic structure of
a string according to some grammar and some custom actions that are execu-
ted in recognition of those rules. Differently from abstract syntax trees (AST),
which are an abstract representation of the input grammar, parser trees retain
all of the information on the concrete structure of the input grammar.

Figure 3.10 – The parsing process

While the abstract syntax includes those concepts that are represented in the
language and the relationships between those concepts, concrete syntax defini-
tion provides a mapping between meta-elements and their representations for
models (Challenger et al., 2014). AAbstract syntax only consists of the structure
of data, while concrete syntax also includes information about the representa-
tion (Figure 3.11). In other words, the abstract syntax represents which concepts
are present in a language and how they relate to each other.

Figure 3.11 – Abstract and concrete syntax

The concrete syntax, on the other hand, is defined by a grammar, which is a
set of rules that specifies the syntactic structure of the DSL. These rules are
made from the terminals (symbols of the alphabet taken into consideration) and



40 Chapter 3. Model driven engineering

non-terminals represented by variables ranging over strings of terminals. In
Chomsky hierarchy4, , context-free grammars are type-2 grammar rules that are
produced by A → β, where A is single non-terminal symbol and β is a string
of symbols. For a more detailed view of the different grammars contained in
Chomsky hierarchy, see section 2 in (Jäger and Rogers, 2012).

Nevertheless, in order to express context-free grammars, some meta-syntax no-
tations are used to obtain a formal description of a formal language. One exam-
ple of a meta-syntax notation is Backus–Naur Form (BNF). It was initially de-
veloped by John Backus in an effort to develop the FORTRAN language. Later,
Peter Naur, an editor of the ALGOL report, popularized the BNF notation, using
it to describe the complete notation and describe the complete syntax of ALGOL
(Pattis, 2013). With some modifications, the Extended form of the Backus–Naur
Form (called EBNF) has today many variants of the original ISO EBNF (Infor-
mation technology Syntactic metalanguage, 1996) and is largely employed as
formal notation to define programming languages.

In MDA, MOF plays exactly the same role as EBNF (as a meta-syntax nota-
tion) to define programming language grammars. MOF is used to define meta-
models, just as EBNF is a DSL to define grammars. Similarly, to EBNF (that can
be used to define itself), MOF could be defined in MOF. Because of similarities
between MOF layers and concrete syntax development using BNFs notations,
concrete syntax definitions can be easy mapped to EMF environment. Also,
EMF provides a concrete syntax which can be textual or graphical concrete syn-
tax, respectively supported by the TMF and GMF projects.

3.8.4.1 TMF

The Textual modeling framework (TMF) is an EMP’s project aiming to support
the development of textual concrete syntax. TMF is based on a meta-model and
syntax specification, offering several functionalities that include a parser that
reads the textual representation of the model and instantiates the correspon-
ding EMF model, an eclipse text editor that supports syntax highlighting, code
completion, navigation, and other features. Moreover, both the editor and the
parser are able to plug in various constraint engines (such as OCL) in order to
provide model validation.

4The Chomsky hierarchy is a collection of four classes of formal languages, each of which is a
proper subset of the classes above it



3.8. The Eclipse Modeling Project 41

These and many other objectives were part of the Textual Concrete Syntax -
TCS (Jouault et al., 2006) available in the early years of TMF project. Although
currently inactive, much of the TCS project’s philosophy has simultaneously
evolved into another TMF project termed Xtext, in an attempt to speed up gram-
mar development and ease synchronization between the meta-model and gram-
mar. Xtext is a framework for programming languages development through a
grammar language to implement textual DSL. Grammar language provided by
Xtext is similar to EBNF, but with additional features (such as cross-references)
to achieve similar expressivity as an ecore-based meta-modeling language.

In fact, Xtext uses a specific implementation of the ANTRL5for parsing input
files. As an output, Xtext framework generates a meta-model (by default), an
editor, and an abstract syntax tree (AST). Moreover, because Xtext heavily re-
lies on EMF, the generated AST is implemented in EMF and can be re-used
and integrated with other EMF-based editors such as GMF. This mechanism is
illustrated in Figure 3.12.

Figure 3.12 – Abstract and concrete syntax. Adapted from : Jan Köhnlein, 2009

Although not officially part of TMF, other DSL textual modeling frameworks are
also available for EMF environment, MontiCore6, Eclipse IMP (currently mar-
ked as an archived eclipse project), and Textual Editing Framework (TEF). All
these frameworks use a text-parser-model paradigm and basically implement
the background parsing strategy (like Xtext). TEF, on the other hand, used a
slightly different approach, where a kind of graphical editor is provided and
using Model-View-Controller (MVC) technique, the textual model representa-
tion is separated into smaller sub-views for each model element. This MVC

5Differently from YaCC, that is a LARL parser generator, ANTRL is a LL(*) parser generator
6http://www.monticore.de/



42 Chapter 3. Model driven engineering

pattern is implemented throught eclipse’s Graphical Editor Framework (GEF),
allowing graphical and textual notations to be combined.

3.8.4.2 GMF

The GMF 7 project is a set of tools that combines both EMF and GEF8 for buil-
ding graphical concrete syntax with eclipse-based functionality. GMF develo-
pers have mostly adopted the term ’toolsmith’ to refer to developers that use
GMF to build plug-ins. One of the reasons is due to the straightforward process
to use tools to create graphical concrete syntax: the toolsmith first defines the
graphical definition (i.e. visual aspects of the generated editor), the tooling defi-
nition (editor palettes, menus, etc.) and finally, the mapping definition between
the meta-model and visual model (graphical and tooling definition).

Figure 3.13 – The GMF process for generating graphical concrete syntax. Adapted
from Eclipse Foundation, 2016(b)

7Graphical Modeling Framework, also called Graphical Modeling Project (GMP) :
http://www.eclipse.org/modeling/gmp/

8Graphical Editing Framework - a framework to create rich graphical applications in the
Eclipse Workbench : https://eclipse.org/gef/



3.8. The Eclipse Modeling Project 43

Although a quick editor could be rapidly produced from this process, any fu-
ture modifications should then be done either by hand (requiring a good know-
ledge of GEF objects) or by repeating the whole process over and over until the
editor is conform to the toolsmith’s specification.

To improve this method, EuGENia9 is a tool that automatically generates .gmf-
graph, .gmftool and .gmfmap models needed to implement a GMF editor. Eu-
genia uses the Emfatic10 language to annotate Ecore meta-models and include
elements to generate the graphical editor. With that approach, much of the
graphical editor customization can be easily programmed by annotating a sin-
gle Ecore meta-model with EuGENia. However, one drawback of EuGENia’s
approach is the available number of notations: since EuGENia does not sup-
port all GMF features (as it should not, lest it would be as complex as GMF),
modifying a graphical editor feature that was not supported by the notations
provided by EuGENia is not a simple process.

In parallel, focusing on decreasing the complexity of specifying graphical edi-
tors based on the GMF, some other projects arose as an alternative to the pure
GMF or Eugenia approaches. One of these projects is the Papyrus11 modeling
environment, a graphical editing tool for UML2 targeted at implementing the
whole OMG specification. Although the initial objective of the Papyrus project
was to provide a UML editor in the context of EMF, Papyrus also offers a custo-
mizable environment to define a toolsmiths’ own graphical, textual or tabular
notation, to change existing palettes and many other features.

Also, intenting on facilitating the building of graphical concrete syntax, Sirius12

provides a graphical designer editor where the toolsmith can specify a variety of
and customizable viewpoints adapted to the user’s role or activity. Specifying
different viewpoints in Sirius allows, for instance, a employee of a department
to visualize a graphical concrete syntax (i.e. table format) in a different way than
his superior (i.e. icon-trees). All those points-of-view can be specified from the
same ecore meta-model. Metamodel elements can be graphically selected or
parsed using the Acceleo Query Language (ACL). Additionally, Sirius allows
"services" to be specified in Java, enabling to easily combine do-main elements
with additional data that are sometimes retrieved from outside of the domain
model (like date from external databases).

9http://www.eclipse.org/epsilon/doc/eugenia/
10A language designed to represent EMF Ecore models in a textual form
11https://eclipse.org/papyrus/
12https://eclipse.org/sirius/



44 Chapter 3. Model driven engineering

3.8.5 Model-to-text transformation

One of the aims of M2T transformation languages is to improve code-generation
by tackling some drawbacks of GPL code-generators, such as the lack of decla-
rative query languages and reusable base functionality. These transformation
languages use a template-based approach (not to be confused with template
programming). Templates are composed of meta-markers (for the dynamic
part), where they (the templates) query additional data sources (in this case,
user models) to produce text through a template engine. The process is summa-
rized in Figure 3.14

Figure 3.14 – Template approach mechanism in M2T. Source : Brambilla et al., 2012

In M2T projects, the most common available frameworks to perform model
transformation into text are JET, Xpand, and Acceleo. JET is a code generation
framework that offers facilities that are used by EMF. In Jet, JSP-like template
files can be edited and transformed into any kind of source artifact. Xpand is
a template engine, similar to FreeMarker, Velocity, JET and JSP. However, it fe-
atures some very unique properties that make using Xpand very suitable for
generating code from models, such as type safety and polymorphic dispatch.
Acceleo, on the other hand, is a pragmatic implementation of the MOF Model
to Text Language standard13, an OMG’s standard that addresses how to trans-
late a model to various text artifacts such as code, deployment, specifications,
etc. With code highlighting and auto-completion, Acceleo syntax is also based
on OCL’s syntax standard.

13MOFM2T - http://www.omg.org/spec/MOFM2T/1.0/



3.8. The Eclipse Modeling Project 45

3.8.6 Model-to-model transformation

TThe Model-to model transformation (also known as M2M or MMT) is a project
that hosts Model-to-Model Transformation languages. With these M2M langua-
ges, we can define model transformations to produce other models or generate
textual output. In general, M2M language mechanism (Figure 3.15) consists in
taking a model (that conforms to a source meta-model) as an input, specify some
transformation rules using an M2M language, and generate a target model (that
conforms to a target meta-model).

Figure 3.15 – Model to model transformation (M2M)

BBut in some specific cases, some M2M techniques can be considered. Some of
these techniques include: Model Refactoring (when the source and target mo-
del(s) belong to the same level of abstraction and are also conform to the same
meta-model), Model Migration (when source model needs to be updated to a
target model to re-establish conformance in response to meta-model evolution),
and Model Merge (when a set of source models must be transformed into a
target model that conform to a meta-model resulting from merging all source
meta-models). More details about the implementation of these techniques can
be found in (Gronback, 2009).

In order to perform M2M transformation, MDE provides M2M transformation
languages to implement mappings between models. Some of these languages
include QVT (Query/View/Transformation), ATL Kermeta, and Xtend. Their
general characteristics are presented in Table 3.1.

The Query-View-Transformation standard of OMG covers three languages for
developing model transformations : QVT-R (for Relations), QVT-C (for Core)
and QVT-O (for Operational). The former two are declarative (a description



46 Chapter 3. Model driven engineering

Table 3.1 – Model-to-model technologies available in EMF

MM2
Language

Maintained by Features

ATL
OBEO and

INRIA

Deals with heterogeneous data.
Provides imperative constructs

with virtual machine for executing
model transformations

QVT OMG
Provides a declarative language to
specify mappings on MOF models

(xmi to xmi)

Xtend
Eclipe

Foundation

Statically-typed programming
language with its roots in the Java
programming language. Can also

be used as code generation
language

Kermeta
INRIA, CNRS,

INSA

MOF compliant, model oriented,
imperative, statically typed and

object-oriented language

of what to investigate, the implementation being left to an interpreter), while
the latter is imperative and a direct implementation of transformation instructi-
ons. QVT-R is a declarative approach for both unidirectional and bidirectional
model transformations, while and QVT-C, a small language designed to define
semantics in a more simple way. Finally, QVT-O is a unidirectional imperative
language: it is designed for writing unidirectional, operational mappings where
there is a source model and one or more target models. Operational mappings
are either transformed to the Relations language and then to the Core language,
or directly to the Core language (Barendrecht, 2010)

An editor and parser for both QVT-R and QVT-C is available in the QVT De-
clarative for Eclipse14 while QVT-Operational has also his own editor15. QQVT
however does not cover what is not considered by OMG as a model transfor-
mation, view or query (e.g transformations to or from textual models). Be-cause
ATL deals with heterogeneous data, it provides some solutions to QVT trans-
formational problems. Moreover, ATL offers imperative constructs to facilitate
the specification of mappings that can hardly be expressed declaratively.

Xtend2 (or Xtend for simplicity), is considered as a successor to Xtend which
allows having Xpand’s template syntax as an expression. Xtend is actively used

14http://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)
15https://wiki.eclipse.org/QVTo

http://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)
https://wiki.eclipse.org/QVTo


3.9. Conclusion 47

by Xtext to implement custom scoping and validations rules. But since version
2, Xtend’s focus has changed from code generation to a java-like GPL. Con-
sequently, many features that are common in template-based language envi-
ronments are not provided, such as component generators to observe how the
generated code looks like and where to produce output codes when templates
are invoked. Nevertheless, Xtend is still used by many developers as a code
generator language.

Lastly, Kermeta is an imperative language for modeling, with a basic syntax
inspired from Eiffel. Its compliance with MOF is based on EMOF level, and it
is based on Xtend since version 3. Additionally, some other M2M languages
include: MoTE, a model transformation engine developed by MDELab16 to mo-
del Triple Graph Grammars (Schürr, 1994) and perform model transformations
and synchronizations; the Janus Transformation Language, developed by the
University of L’Aquila17; the Epsilon Transformation Language18, maintained
by the Epsilon project; and the Ruby Tranformation Language, an extension of
the Ruby programming language19 for model to model transformation.

3.9 Conclusion

As a vast set of tools and approaches developed over the past decades, Model
Driven Engineering is a software development methodology designed through
many years of combined experience from both industry and academia in soft-
ware engineering. Born as an effort to define standards and tools to facilitate
and cover all stages of software development, MDE is currently one of the main
approaches in software engineering to deliver quality and reliable solutions,
having applications in a plethora of domains. Moreover, with the advances in
MDE, the process of developing DSLs has become more transparent. Combi-
ned with MDE’s “everything is a model” philosophy, products are more easily
developed, granting faster feedback from domain-experts.

16https://www.hpi.uni-potsdam.de/giese/public/mdelab
17http://jtl.di.univaq.it/index.php
18http://www.eclipse.org/epsilon/doc/etl/
19http://rubytl.rubyforge.org/

https://www.hpi.uni-potsdam.de/giese/public/mdelab
http://jtl.di.univaq.it/index.php
http://www.eclipse.org/epsilon/doc/etl/
http://rubytl.rubyforge.org/




49

Chapter 4

Modeling social-ecological systems

4.1 Introduction

Social-ecological systems(SES) can basically be understood as the link between
social and ecological systems. Essentially, SES researchers seek to understand
the relations between institutions, actors, types of environmental ecosystems
and ecosystems services. Grasping the relation between these elements natu-
rally leads to an engagement of many different disciplines in SES study. These
disciplines are in a constant effort to share a common vocabulary for the con-
struction and test of alternative theories and models (McGinnis and Ostrom,
2014), that in turn, may become more and more complex.

In this chapter we introduce the specification of a MAS model called ECEC,
short for Evolution of Cooperation in an Environmental Context. Previsouly
described by (Pepper and Smuts, 2000) our specification is a simplified repli-
cation of the authors’ model. The ECEC model was chosen for two reasons.
First, the model specification is platform-independent: the model is elucidated
by using a natural language (i.e. English) where the model’s description is rea-
lized without mention of any programing language or MAS platform. Second,
the model possesses different types of behaviors, which in turn, are described in
a different way. And it is precisely these different manners of describing a mo-
del that is very often found in SES modeling. The model discussion will serve
as a through-line to Chapter 5.

In this short chapter, we will describe in detail the ECEC model and the agents
involved in the model. Next, we shall focus on their behaviors, and how their
initial values are set and described



50 Chapter 4. Modeling social-ecological systems

4.2 The ECEC Model

In the domain of evolutionary biology, there is a high interest in understanding
how fostering selfish (individualistic) and altruistic (or cooperative) behavior
can influence natural selection and benefit group members under particular de-
mographic conditions. These members can organize themselves into "small trait
groups", a collection of individuals that influence one another’s behaviors. In
nature, traits usually aim at reproductive benefits, increased chances of feeding
and higher protection from predation. Those traits commonly result in coope-
rative behaviors, with many examples found in nature, such as schools of fish,
flocks of birds or herds of bisons.

The ECEC model thus aims at investigating the evolution of two different coope-
rative traits: alarm calling and feeding restraint. Alarm calling is a trait which
benefits only individuals near the alarm-caller (i.e. prey presence, natural re-
sources proximity, etc.). This trait is uniquely taken for self-benefice. Feeding
restraint, on the other hand, considers that an individual action takes into con-
sideration the common interest of the group to which an individual belongs.
This is the classic example of altruistic behavior among non-humans. or pru-
dent predation behavior found in certain type of animals.

The majority of works that try to explain those behaviors through models, are
mostly quantitative models of group selection or, alternatively, make use of sy-
stems of equations (Pepper and Smuts, 2000). However, there are some limi-
tations in modeling traits based on purely mathematical models1. Instead of
using equations, the authors advocate the use of a multi-agent systems appro-
ach to pursue their investigation, due to MAS ability to represent the behaviors
and interactions of individuals in a more direct and natural way, to incorporate
variation over space and time, and to incorporate non-linear dynamics capacity.

To represent the ECEC model using MAS approach, (Pepper and Smuts, 2000)
considered a model consisting of a two dimensional grid, wrapped in both axes
(to avoid edge effects) containing two kinds of entities: plants and foragers. The
main idea is the study of the survival of two populations of agents that depends
on the spatial configuration. The representation of ECEC is depicted in Figure
4.1

1According to (Williams, 1966), those type of models either require simplifying assumptions,
such as homogeneous randomly mixed populations and infinite population sizes, or in some
cases, population structure (the division of a population into more or less discrete groups)
must be assumed a priori.



4.2. The ECEC Model 51

Figure 4.1 – ECEC representation : Foragers distributed in a spatial grid of plants

4.2.1 The plant and its behavior

The Plants are created only once and have a fixed location. They do not move,
die, or reproduce. A plant’s only behavior is to grow (and be eaten by foragers).
The plants vary only in their biomass, which represents the amount of food
energy available to foragers. At each time unit, this biomass level increases
according to a logistic growth curve:

Xt+1 = Xt + rXt

(
1− Xt

K

)
where Xt+1 is the plant’s biomass over time, r is reproduction rate, and K the
capacity rate.

4.2.2 The Foragers and its behavior

In order to study two types of behaviors with different traits, the model con-
sidered two types of Foragers: Restrained foragers and Unrestrained foragers.
Their only difference is their feeding behavior, explained in section 4.2.4. The
foragers, thus, have the following common behaviors: they consume energy,
they move, they feed, they reproduce and, eventually, they die.



52 Chapter 4. Modeling social-ecological systems

4.2.3 The foragers’ energy consumption behavior

At each step, the Foragers burn energy according to their catabolic rate. This
rate is the same for all foragers. It is fixed to 2 units of energy per time period.
Foragers lose energy (catabolic rate, 2 points) regardless of whether or not they
move.

4.2.4 The foragers’ feeding behavior

When "Restrained" foragers eat, they take only 50% of the plant’s energy (bi-
omass). In contrast, when "Unrestrained" foragers feed, they take 99% of the
plant’s biomass, so that plants can continue to grow after being fed on, rather
than being permanently destroyed. However, when all foragers eat, they feed
on the plant in its current location, increasing their own energy level by redu-
cing the same amount of the plant’s biomass.

4.2.5 The foragers’ reproductive behavior

Foragers reproduce if their energy reaches the fertility threshold (100 energy
units). Their offspring keep the same heritable traits (i.e. same feeding beha-
vior). In that case, it reproduces asexually, creating an offspring with the same
heritable traits as itself (e.g. feeding strategy). At the same time the parent’s
energy level is reduced by 50 energy units, the offspring’s initial energy (50
energy units). The newborn offspring will occupy the free place nearest to their
parent.

4.2.6 The foragers’ move behavior

In their search for food, Foragers examine their current location and their sur-
roundings. From those locations not occupied by another forager, they choose
the one containing the plant with the highest biomass. If the chosen plant yields
enough food to meet their catabolic rate (2 units of energy) they move there. If
not, they move instead to a randomly chosen adjacent free place not occupied
by any forager. This movement rule leads to the migration of foragers from de-
pleted patches, and simulate the behavior of individuals exploiting local food
sources while they last, but migrating rather than starving in an inadequate
food patch.



4.2. The ECEC Model 53

4.2.7 The foragers’ die behavior

If its energy level drops to zero, a forager dies. Foragers do not have maximum
life spans.

4.2.8 Model initial values and execution

The model is executed in the following order: the plants grow, then, foragers
eat, then reproduce, then move, then die (if the energy level reaches zero). That
sequence of behaviors can also be visualized in the form of an activity diagram,
as shown in Figure 4.2

Figure 4.2 – Activity diagram representing the sequence of behaviors to be executed
during an ECEC model simulation



54 Chapter 4. Modeling social-ecological systems

Table 4.1 – ECEC model’s initial values

Variable Entity Initial value

Biomass Plant
Random value

between 0 and K

K Plant 10

r Plant 2

Catabolic
Rate

All foragers 2 units of energy

Fertility
Threshold

All foragers 100 units of energy

Energy All foragers 50 units of energy

Harvest
rate

Restrained
Forager

0.5 (or 50% of the
plant’s biomass)

Harvest
rate

Unrestrained
Forager

0.9

In order to initialize the model, some initial values are required. The plant must
have initial values for its biomass, K and r. Those variables are used in the
growth behavior of the plant. Foragers also possesses initial values that are
used in the description of some of their behaviors. The catabolic rate is the
amount of energy that foragers lose over time and has a default value of 2. The
fertility threshold is the max energy value of a forager before it reproduces. It is
fixed as 100. Finally, the initial energy of all foragers is set as 50. Those values
are listed in Table 4.1

4.3 ECEC behavior representation

In ECEC, behaviors may be expressed through 3 different ways: through equa-
tions (like in the “grow” behavior of the plant), through a list of activities (like
in the main behavior of ECEC or other behaviors) and as activity diagrams (like
the “eat” behavior of a foragers). Each behavior is characterized by using a dif-
ferent set of elements to describe itself. For instance, equations use numbers
and letters combined with arithmetic operations. Activity diagrams use graphi-
cal UML symbols to represent the flow of a behavior. A behavior declared as a
list of activities employs the natural English language to describe a set of acti-
ons. The difference between these behaviors is depicted in Figure 4.3, and that



4.4. Conclusion 55

figure will be used in chapter 5 to explain in more details the elements that are
part of each of these behavior representations.

Figure 4.3 – Diffrent ways to represent a behavior in ECEC

4.4 Conclusion

In this chapter, we introduced a model called ECEC, a model in the domain of
biology that aims to investigate the survivability of two populations with dif-
ferent traits feeding on a common resource. To illustrate the idea of the model,
ECEC was conceptualized based on MAS approach, where individuals influ-
ence other individuals through their relations with an environment. Although it
is a limited and simplified version of the original model, the model description
is completely independent of a programming language, and does not require
any previous understanding of any MAS platform. Consequently, the model
explained in this chapter will be used to illustrate how we implemented the
language that we propose in the following chapter, which is the main contribu-
tion of this work. Through the ECEC model, we discovered that some of the
elements contain discourses used by domain experts to model reactive behavi-
ors on SES. The concepts presented in this chapter will be used to demonstrate
the conception of a DSL that we propose in the next chapter.





57

Chapter 5

B-Reactive - A DSL to model
reactive behaviors in MAS

5.1 Introduction

In this chapter, we propose a DSL to model reactive behaviors for MAS, called
B-reactive. During the conception of B-reactive, our objective was to build a
DSL focusing SES models. As seen in Chapter 3, developing a domain-specific
modeling language essentially involves three main steps: the definition of an
abstract syntax, the specification of a semantic domain and the design of a con-
crete syntax. We first define our semantic domain in section 5.2. To define the
semantic domain of our language, we used the ECEC model described in Chap-
ter 4 as a guide to illustrate some of the common terms found in SES, as well
as how behaviors are defined in those type of models. Next, we use UML to
define B-reactive’s abstract syntax, based on the semantic domain discussed in
section 5.2. Finally, in section 5.4, we propose a concrete syntax that is explained
through a set of different examples. With that, we provide the basic structure of
a concrete syntax that can be used to model reactive behaviors of MAS.

5.2 The Semantic domain

The semantic domain is related to the domain on which the description of a lan-
guage is based. The semantic domain is a layer that provides a clear separation
of concerns between parsing a language and the resulting semantics. It is usu-
ally defined in two different ways: through informal semantics (by using plain
English) or through formal semantics (by using some mathematical notation



58 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

formalism such as operational semantics, axiomatic semantics or denotational
semantics).

For some, it is often argued that an accepted mathematical formalism (such as
CSP or Z) should be the starting point for defining a computer language (e.g.
LISP), since informal semantics although easier to read, can easily be misinter-
preted. However, when it comes to modeling languages such as UML, applying
a mathematical formalism to describe semantics might not be the most suitable
approach (Selic, 2004). One of the reasons might be the fact that there is still no
consensus about the UML semantic definition. In particular, some fundamen-
tal premises regarding the nature of UML behavioral semantics are missing: it
only deals with event-driven or discrete behaviors. This means that continuous
behaviors, such as those found in many physical systems, are not supported.

Nonetheless, UML is one of the keystones of MDA and for that reason, the ab-
stract syntax defined in section 5.3 was conceptualized making use of UML. Mo-
reover, behaviors were defined through an abstract representation of the UML
activity diagram. Therefore, diving into a formal semantic definition of many
UML aspects would be out of the scope of this work.

Before we provide an informal semantic definition of our proposed language,
we first analyzed some terms contained in SES domain. Using the ECEC model
description as an illustration, a model can be defined according to the general
structure depicted in Figure 5.1

Figure 5.1 – A model definition and its elements

In Figure 5.1, models usually have a name (i.e. ECEC) and use a sequence of
behaviors (i.e. grow, then eat, then move, etc) to define in which order the



5.2. The Semantic domain 59

model will perform activities. This model is also composed of entities (i.e Plant,
Forager), that in turn, have attributes (i.e. energy, biomass) and behaviors (such
as “grow”, “eat”, etc.). The model also defines initial values (k=10, r=0.2, etc.)
for their entities. These entities may represent the environment (like the Plant)
or Agents (like Foragers). Nonetheless, this general structure only defines what
the model contains and how behaviors are defined.

By deepening the analysis of how behaviors are explained, let us consider the
foragers’ behaviors of eating and energy consumption. In the first behavior (ea-
ting), foragers take up only 50% (if restrained) of the plant’s energy (biomass).
By feeding from the plant, they increase their own energy level by reducing the
same amount of the plant’s biomass. In the second, foragers loose 2 energy units
at each time step. Intuitively, these behaviors could be replaced by the simple
action of Adding something to an attribute (in the case of taking the energy
from the plant) or Removing something from an attribute (in the case of an gra-
zed plant loosing its biomass or the forager loosing its energy over time). The
idea of using these terms to express certain types of behaviors are illustrated in
Figure 5.2

Figure 5.2 – A different way to explain behaviors

These types of behavior, however, are not the only ones found in ECEC. As
previously explained in Chapter 4, ECEC behaviors are expressed through 3
different ways: through equations, through activity diagrams or through a list
of activities. In the case of equations, it is mainly composed of a set of varia-
bles (attributes and parameters) and constants. Activity diagrams, on the other



60 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

hand, are a graphical representation composed of two main elements (nodes
and edges). The decision node may also be seen as a primitive activity termed
decide, where a condition is evaluated. Lastly, the list of activities (termed acti-
vity behaviors) is simply a list of primitive activities. These types of behaviors
and their main elements are represented in Figure 5.3

Figure 5.3 – Terms used by domain experts to model SES

Additionally, a natural language (such as the English Language) is used to des-
cribe behaviors: the combination of linguistic constructs (such as verbs and
nouns) contains the same semantic elements for each behavior. This type of
construction is presented in Figure 5.4, where we decomposed the structure of
the "move" behavior of foragers. In this example, a set of locations is previously
calculated (the neighbors of a location), and this set can be stored in a varia-
ble (e.g. local variables). Some expressions with verbs (such as "occupied by")
represent a condition that is evaluated. Each condition can be represented by
a Boolean function, with certain arguments (in this case, the location and the
entity) and which that, naturally, is evaluated as true or false. The guard con-
dition itself participates in the decision of an entity: the agent might "move" (a
primitive activity) to a location or to another, depending on how the condition
is evaluated. Therefore, this behavior can be formally represented as an activity
diagram. The following figure describes the different elements of the forager
movement in natural language.



5.2. The Semantic domain 61

Figure 5.4 – An example of behavior described in natural language and its main
elements

Based on these previously explained concepts and terms, we provide an infor-
mal semantic definition of DSL in Table 5.1.

Table 5.1 – B-Reactive’s semantic domain

Terms Semantics

Model

A model is unique and contains descriptions of each agent
and of their respective behaviors. It also contains definitions
of the initial values of agents and the environment.
A model must declare a main behavior, that, in turn, defines
which behaviors will be performed by the model.

Entity
An entity represents any agent in the model. Entities may
have attributes and behaviors

Behavior

A Behavior is associated to an entity. It represents what
agents should do in the model. Behaviors are defined by
optional set of parameters, local variables and expressions
that are used to build the declaration of a behavior

Activity
Behavior

A type of behavior that contains a sequence of
primitive activities to be executed by the agent

Activity
Diagram
Behavior

A type of behavior that provide elements (such
as nodes and edges) to describe a behavior in a
form of an UML Activity Diagram. Moreover,
any behavior may also be seen as a node, and
decision nodes can be used to express
conditions.



62 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Equation
Behavior

A type of behavior that represents all behaviors
expressed in an form of equation. As in any
type behavior, it can contain local variables,
parameters and attributes. It must have an
equation

Primitive
Activities

Primitive activities are a type of pre-defined activities
preformed by entities

Add
A primitive activity that adds a numeric value
(represented by any type of variable) to an
attribute.

Remove
A primitive activity that removes a value
(represented by any type of variable) from an
attribute.

Move

A primitive activity that returns a location to
which an entity moves to. It is represented by
primitive location (top, down, lef, right) or a
location expression contained either in a
variable, in an expression that returns a location

Decide

A primitive activity that is used to specify the
next action to be performed by an entity, based
on the evaluation of a Boolean expression as
true or false.

Reproduce

A primitive activity that describes some entities
reproduction parameters, such as the number of
newborn siblings, the siblings initial position
and the initial value of the attributes inherited
by the the parent

Die
A primitive activity that is used to express how
an entity dies and disappears

Function

A function is a type of expression commonly used in the
definition of a behavior. It reflects an action taken by an
entity. A function has always an output, and may take some
values as input. Both input and output values can be of
String, Numeric, Boolean, Entity, EntitySet, Location or
LocationSet types



5.2. The Semantic domain 63

Numeric
function

All functions that return a numeric value. Basic
arithmetic operation (such as plus, minus,
multiplication and division) are example of
numeric functions.

String
functions

All functions that return a string value.
A function that returns the name of an entity is
an example of such function. Concatenation is
another example of such a function

Boolean
functions

All functions that return a boolean value.
Comparison boolean functions (i.e. functions
that compare two numeric values or two
entities) are example of boolean functions

Location
functions

All functions that return a location value. An
example is a function that returns the bottom
location of a location.

LocationSet
functions

All functions that return a a set of locations
value. For instance, the neighborhood of a
entity returns a set of locations.

Entity
functions

All functions that return an Entity value. For
example, a function that returns a random
entity of the environment is Entity type function

EntitySet
functions

All functions that return a set of entities value.
For instance, a function that returns entities
having a certain value for their attribute is such
a type of function

Initialization
The initialization represents the initial value of environment
and the entities

Th envi-
ronment’s

initial
values

The initial value of the environment defines
initial values (such as size) of the model’s
environment

The
entities
initial
value

The initial values of entities are defined by the
act of initializing all entities that represent
agents, as well as the parameters used by the
entity’s behaviors. It is also the part of model
where the modeler instantiates all entities
declared in the model



64 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

5.3 Abstract syntax for reactive behavior

The abstract syntax is usually represented by the use of trees. In that sense, ab-
stract syntax trees (AST) are commonly used to represent the abstract syntax of
natural languages, because trees are ideal for representing hierarchic structures.
However, as stated by (Brambilla et al., 2012):

Meta-models define the abstract syntax of a language, but not the concrete
notation of a language, such as graphical or textual elements used to render
the models elements in modeling editors. This is a major difference bet-
ween EBNF-based grammars which define the abstract syntax as well as
the concrete syntax of textual languages all at once

In MDE, a meta-model-centric design enables many concrete syntax (graphical
and textual) to be developed for a modeling language. In that sense, we decided
to use UML models to represent our abstract syntax (as a kind of MOF graphical
representation).

5.3.1 The model

A model is the first element of the abstract syntax (or the top element if we
consider an abstract syntax tree). It must have a name, at least one type of initi-
alization (entities and environment), and it is composed by at least one entity. A
model must also declare its main behavior, that is, what will be actually execu-
ted by the model’s scheduler (i.e. a sequence of behaviors). A Model initializes
entities and the environment and instantiates entities (see section 5.3.5 for more
details about the model initialization). A model has also a scheduler, that is re-
sponsible for defining the sequence in which behaviors will be simulated. To
that effect, the model’s scheduler references at least one behavior, as shown in
Figure 5.5

Figure 5.5 – The Model



5.3. Abstract syntax for reactive behavior 65

5.3.2 The EntityClass

EntityClasses are part of a model and represent an Entity. An EntityClass must
have a name and may have attributes (see section 5.3.4.1 for AttributeClass)
and behaviors (see section 5.3.3 for Behaviors). An EntityClass is also located
at a Location. The location has a neighborhood relationship with other locati-
ons. Considering a Moore neighborhood1 a location’s neighborhood should be
composed by at least 3 other locations (in the case these locations represent the
boundary of the space) and a maximum of 8 locations.

Figure 5.6 – EntityClass

5.3.3 Behaviors

Considering the behaviors explained in Chapter 4, three types of behaviors
were included in the meta-model: ActivityBehavior, ActivityDiagramBehavior
and EquationBehavior. Behaviors may have parameters and local variables and
are types of variables (see section 5.3.4.1 for variable definition)

1The Moore neighborhood considers a two dimensional cellular space where each cell have
eight surrounding other cells



66 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Figure 5.7 – Behavior

5.3.3.1 Activity Diagram Behaviors

An ActivityDiagramBehavior class represents a subset of UML’s activity dia-
grams. It is essentially composed of 2 type of elements: Nodes and Edges. Each
Edge has two relationships with Node class: a many-to-one target relationship
and a many-to-one source relationship. The Node element is specialized into
ControlNode and ExecutableNode while possible types of an Edge element are:
TrueEdge (for edges pointing to nodes when a Boolean function is evaluated
as true ), FalseEdge (for edges pointing to nodes when a Boolean function is
evaluated as false ) and UnconditionedEdge (for edges that simply connect one
Node to another).

The ControlNode is a type node used to coordinate flows between other no-
des. It includes the initial node (Start), the final node (End), the decision node
(Decide) and the Merge, Fork and Join nodes. The Merge node brings together
multiple incoming edges to accept a single outgoing flow. The Fork node has
one incoming edge and multiple outgoing edges and is used to split an inco-
ming flow into multiple concurrent flows. Finally, the Join node has multiple
incoming edges and one outgoing edge, and is used to synchronize concurrent
incoming flows.

The ExecutableNode is a type of node used to represent an ordered arrange-
ment of executable activities. They can be a DeclaredBehavior (a reference to a
previously declared behavior) or a PrimitiveActivity (section 5.3.3.3)



5.3. Abstract syntax for reactive behavior 67

(a) Activity Diagram Behavior

(b) ControlNode

(c) ExecutableNode

Figure 5.8 – Activity diagram behavior (a) and its subtype of nodes : ControlNode(b)
and ExecutableNode(c)

5.3.3.2 Activity Behaviors

Activity Behaviors are composed by at least one primitive activity (section 5.3.3.3).
Because of its sequential nature, the main difference between an ActivityBeha-
vior and an ActivityDiagramBehavior is that no control nodes (like Start, Deci-
sion and End) are necessary. It is a simple type of behavior that is composed of
a sequence of primitive activities.



68 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Figure 5.9 – ActivityBehavior

5.3.3.3 Primitive Activities

PrimitiveActivity is a type of Node that represents activities that cannot be de-
composed. These activities can be specialized into Move, Add, Remove, Re-
produce, Die, and Set (see Figure 5.10). Add and Remove activities refer to the
action of adding or removing a value respectively to and from a numerical va-
riable. Reproduce is a primitive activity with three relationships: a relationship
to a Constant-Expression (representing the initial number of new population),
a relationship to an Expression (representing the initial location of the new-
born entities) and a relationship to a FunctionCall expression (representing the
initial values of the newborn’s entity attributes). The Set primitive activity is
composed by an Assignment, allowing a new value to be assigned to a variable
through an expression



5.3.
A

bstractsyntax
for

reactive
behavior

69

Figure 5.10 – Primitive Activity class diagram



70 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

5.3.3.4 Equation Behaviors

EquationBehavior is a behavior described by equations. An Equation is com-
posed of LHS (short for left-hand side) and RHS (short for right-hand side).
Therefore, LHS is an AttributeClass, and RHS represented by one expression.

Figure 5.11 – ActivityDiagramBehavior

5.3.4 Expressions

The abstract syntax often expressed by the data structures of the language used
for its implementation, instead of the syntax elements that are part of the con-
crete syntax. For that reason, some representations in the abstract syntax might
differ from the ones used to represent the concrete syntax. That is the case of
the expression in our abstract syntax. The expression is an abstract class with
three subclasses: ConstantExpression (with an attribute value of float type), Va-
riableClass (section 5.3.4.1) and FunctionCallExpression (section 5.3.4.2).

Figure 5.12 – Expression class diagram



5.3. Abstract syntax for reactive behavior 71

5.3.4.1 Variable Class

Like expressions, VariableClass is an abstract class that represents variables.
The VariableClass has one name, one type (e.g. String, Float, Boolean, Location,
LocationSet, Entity or EntitySet) and it is specialized by each of its subclasses:
AttributeClass, ParameterClass and LocalVariableClass.

Figure 5.13 – VariableClass class diagram

5.3.4.2 Function Call Expressions

FunctionCallExpression is a type of expressions composed of at least one function.
A function is a relation from a set of inputs to a set of one possible output, where
each input is related to exactly one output. Its formal definition is given by
f : X → Y , where X is the set of inputs (called domain) and Y is the only out-
put (called co-domain). To every domain and co-domain, a type (TypeEnum)
is associated, being S for string type, B for boolean type, N for (integer or float
type), E for Entity type, ES for EntitySet type, L for location type, and LS for
LocationSet type. Functions can be of two types: a predefined named function,
or an anonymous function. The latter uses parameters and an expression to
define itself.

In that sense, the abstract syntax for function call expressions shown in Figure
5.14 provides all the necessary elements to implement each function implemen-
ted in the DSL. These functions are instances of the Function class, and since
they belong to the concrete syntax representation of our DSL, we will provide
more details about function call expressions in section 5.4.5



72 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Figure 5.14 – FunctionCallExpression

5.3.5 Initialization

The Init class is an abstract class specialized in two subclasses: InitSpace and
InitEntity. The first (InitSpace), has a "function call expression" to initialize the
space. The second (InitEntity) has a function call to instantiate entities and anot-
her function call to define the initial position of Entities. It may have many as-
signments that define the initial values of an entity’s attributes and parameters.

Figure 5.15 – Init



5.4. Concrete syntax 73

5.4 Concrete syntax

The advantage of UML is that it is a formalism that is independent of both
graphical and textual concrete syntaxes. However, some notational elements
do not have a corresponding abstract syntax element in UML (e.g. punctuation
symbols to delineate tokens in textual concrete syntax). For that reason, concrete
syntaxes are defined based on a grammar specification such as EBNF. A possible
notation to express EBNF grammars is through syntax diagrams (also known as
railroad diagrams). They are very often used to explain syntaxes in programing
languages documentations 2. Nevertheless, to facilitate the understanding of
our concrete syntax, we will provide some syntax diagrams along with some
examples that illustrate how B-reactive language can be applied.

5.4.1 A model declaration

An model specification starts with the keyword Model, followed by its name
declaration represented by an ID. An ID is an identifier starting with a letter,
followed by a sequence of letters, digits, or underscores. It is usually defined to
describe names with or without numbers. Qualified names, in turn, are made
of an ID preceded by an optional dot-separated sequence of identifiers. Quali-
fied names are used to define a fully qualified name. In programming langua-
ges, a fully qualified name is an unambiguous name that specifies which object,
function, or variable a call refers to, whatever the context of the call. More pre-
cisely, they are used to distinguish possibly similar names that are declared in a
different scope of a model.

The Entities are declared later, followed by the scheduler definition, which, in
turn, is represented by a behavior. The scheduler declaration starts by using the
keyword Run-main-as:, followed by the name of a behavior. Next, entities
and the environment must be initialized. The concrete syntax for the model ini-
tialization is showed in section 5.4.6. Figure 5.16 shows the syntax diagram for
a model definition, and code 5.1 present how a model is declared in B-reactive
language.

2Oracle MySQL (http://dev.mysql.com/doc/x-devapi-userguide/en/
mysql-x-expressions-ebnf-definitions.html) and SQLite (https://www.
sqlite.org/lang.html) documentation syntaxes for SQL are both expressed in RailRoad
diagrams

http://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-expressions-ebnf-definitions.html
http://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-expressions-ebnf-definitions.html
https://www.sqlite.org/lang.html
https://www.sqlite.org/lang.html


74 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Figure 5.16 – Syntax diagram for a model definition

B-reactive syntax 5.1 – Model declaration
1 Model myModel {
2 E n t i t i e s d e c l a r a t i o n s { . . . }
3 Run−main−as : aDeclaredBehavior \\ Run the scheduler
4 E n t i t i e s i n i t i a l i z a t i o n and i n s t a n t i a t i o n . . . \\
5 Environment i n i t i a l i z a t i o n and i n s t a n t i a t i o n . . . \\
6 }

5.4.2 The Entities declaration

Entities declaration starts with keyword Entity, followed by a name (ID rule)
and brackets. Next, an entity may declare its own attributes (see section 5.4.3
for attributes) and the behaviors it can perform (session 5.4.4). The syntax dia-
gram and the concrete syntax definition of for entity in B-reactive language are
presented in Figure 5.17 and in code 5.9 respectively.

Figure 5.17 – Syntax diagram for an entity definition

B-reactive syntax 5.2 – Entity declaration
1 Entity anEntityName {
2 A t t r i b u t e ( s ) d e c l a r a t i o n
3 . . .
4 Behavior ( s ) d e c l a r a t i o n
5 . . .
6 }

5.4.3 Attributes, Parameters and Local variables declaration

Attributes and parameters are initially declared by using keywords Attribu-
tes and Parameters (respectively), followed by a name (ID) and their type.
Attributes can only be defined inside an entity definition (see previous section



5.4. Concrete syntax 75

5.4.2) and parameters, only inside a behavior definition (as shown in section
5.4.4). Like parameters, local variables, must be defined inside behaviors and
its declaration starts with keyword let, followed an ID, followed by a function
expression. The syntax diagram for attributes and parameters is shown in Fi-
gure 5.18a and local variable syntax diagram is represented in Figure 5.18b

In B-reactive language, attributes and parameters are defined according to the
example presented in code 5.3

(a) Attributes and parameters

(b) Local variable

Figure 5.18 – Syntax diagram for attributes, parameters and local variable definition

B-reactive syntax 5.3 – Attributes and Parameters declaration
1 Entity Person {
2 A t t r i b u t e s {
3 c o l o r : S t r i n g
4 s i z e : F l o a t
5 }
6 Behavior d e c l a r a t i o n . . . . {
7 Parameters {
8 d i s t a n c e : F l o a t
9 time : F l o a t

10 d e s t i n a t i o n : Locat ion
11 }

5.4.4 The Behavior declaration

In B-reactive language, behaviors must always be defined inside entities decla-
rations. Behaviors may have parameters and local variables. Like parameters,
local variables declaration is done inside, but with a slightly different syntax:
their definition starts with the keyword let, preceded by an ID, an assignment
symbol, and an expression (see section 5.4.5 for expressions). Behaviors and
can be of three types : Equation behaviors, Activity Behaviors, and Activity
Diagram behaviors.



76 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

5.4.4.1 Equation Behavior

As shown in code 5.4, Equation behaviors start with the keyword Equation-

Behaviour followed by an name (ID) and the declaration of parameters. Next,
an equation must be provided. Its definition starts with the keyword Equation

where its LHS is defined by an declared attribute, and its RHS is defined by an
arithmetic (numeric) function call expression (see section 5.4.5).

(a) Equation Behavior

(b) Equation

Figure 5.19 – Syntax diagram for an equation behavior and its equation

B-reactive syntax 5.4 – Equation behavior definiton
1 EquationBehavior anEquationName {
2 Parameters {
3 x : f l o a t
4 y : f l o a t
5 }
6 Equation {
7 aDec laredAttr ibute = ( x + y ) / x ∗ x
8 }
9 }

5.4.4.2 Activity Behavior

Activity behavior definition starts with the keyword ActivityBehavior, fol-
lowed by a provided ID, a list of possible parameters and local variable defi-
nitions. An activity behavior must later define at least one primitive activity
(see Figure 5.10). The syntax diagram for the activity behavior is presented in
Figure 5.20. Code 5.5 shows the concrete syntax of B-reactive language to define
activity behaviors.



5.4. Concrete syntax 77

Figure 5.20 – Syntax diagram for the activity behavior

B-reactive syntax 5.5 – Activity Behavior definiton
1 ActivityBehavior Live {
2 Parameters {
3 A L i s t of parameters . . .
4 }
5 l e t aLocalVar iab le <− 5 \\A l o c a l v a r i a b l e d e f i n i t i o n
6 a L i s t of p r i m i v i t e a c t i v i t i e s . . . . }

5.4.4.3 Activity Diagram Behaviors

Although UML’s Activity diagram is a graphical formalism, there are some rea-
sons (according to Flater et al., 2009) to specify human-readable text form from
a graphical formalism such as activity diagrams. First, graphical representa-
tions are very time-consuming to create and take a lot of space on a screen.
The second reason is that a programmer can perform a faster prototyping when
running human-readable text format for input or output since it takes signifi-
cantly less effort and up-front investment. Additionally, many of the semantics
elements contained in activity diagrams are similar to those of flow chart dia-
grams.

The declaration of an activity diagram behavior starts with the keyword Acti-

vityDiagramBehavior, followed by a name, a list of parameters and local
variable definitions and the initial rule (Start) representing the Start node. The
syntax diagram for the activity diagram behavior is presented in Figure 5.21.

Figure 5.21 – Syntax diagram for the activity diagram behavior



78 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

The Start rule definition begins with the keyword Start, followed by the key-
word -> that represents an UnconditionedEdge rule. Next, a node must be
provided: it can either be a ControlNode or an ExecutableNode. Control nodes
in turn can be Fork, Decide, Merge, Join or End. A syntax diagram for each
control node is provided in Figure 5.22.

(a) Start

(b) Fork

(c) Merge

(d) join

(e) End

(f) Decision

Figure 5.22 – Syntax diagram for control nodes

Executable nodes can be a previously declared behavior, or primitive activities.
If the latter type is provided, then B-reactive language provides 6 types of pri-
mitive activities: Add, Remove, Decide, Reproduce, Move, Die and Set. Add
and Remove are primitive activities starting with keywords Add and Remove,
respectively. Next, a user inputed function call expression is calculated. The
result of this calculus is either added to a declared attribute (if the primitive



5.4. Concrete syntax 79

activity is Add) or the result of the calculus is removed to a declared attri-
bute (if the primitive activity is Remove). The primitive activity Decide can
only be defined inside activity diagram behaviors. Its definition starts with the
keyword Decide followed by the keyword if and a boolean expression (see
section 5.4.5.5) that is evaluated, leading to another node. This node may be
another primitive activity, a declared behavior, an else keyword (in case that
the boolean expression is evaluated as false) or an end node that marks the end
of a activity diagram behavior.

The primitive activity Reproduce starts its declaration with the keyword Re-

produce. Its declaration is followed by a number that represents the initial
number of the entity’s decedents, a function expression (section 5.4.5) that sets
an initial value of an attribute inherited by the entity, and an initial location
given by a location expression (see section 5.4.5.1). The Move primitive acti-
vity starts its declaration with the keyword Move-to, followed by a location
expression or a local variable that contains a location. The Set primitive activity
starts with the keyword Set and it is in fact, an assignment, since it sets a new
value to a declared attribute, or parameter. Finally, the Die primitive activity
is simply defined by the use of the keyword Die. The syntax diagram for each
primitive activity diagram is presented in Figure 5.6



80 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

(a) Add

(b) Remove

(c) Reproduce

(d) Move

(e) Set

Figure 5.23 – Syantax diagram for primitive activities

To illustrate how an activity digram behavior is defined in B-reactive language,
consider an example of a model with a single entity Parent, with attributes age
and maxlifetime. The parent has two behaviors: Live and WorkandRep-

dorucebehavior that reproduces and move their children into any place that
is occupied by any Parent. The activity diagram behavior (called WorkandRe-

produce) defines two parameters : money (as float type) and city (as a location
type). In that example, we define a local variable called aGoodCity: its value
is initialized with a random location (in the environment) that is not occupied
by any Parent. Next, if the Parent is too old (that is, his age is equal to its max-
lifetime), then he dies. Otherwise, if he is not too old (age is lower than
maxlifetime) and aGoodCity contains at least one location, then the parent
reproduces 1 child, with 10 initial units of money, immediately placing their
children in a location given by the local variable aGoodCity. That algorithm is
implemented with B-reactive language in code 5.6



5.4. Concrete syntax 81

B-reactive syntax 5.6 – Activity diagram behavior definition
1 Entity Parent {
2 A t t r i b u t e s {
3 maxl i fet ime : I n t e g e r
4 age : I n t e g e r
5 }
6 ActivityBehavior Live {
7 Parameters {
8 money : F l o a t
9 }

10 Add 1 to age
11 Add 1 2 . 5 to money
12 Remove 1 from maxl i fet ime
13 }
14 }
15

16 ActivityDiagramBehavior WorkandReproduce {
17 Parameters {
18 money : F l o a t
19 c i t y : l o c a t i o n
20 }
21

22 l e t aGoodCity <− one−of c i t y NOT occupied by Parent
23 Start −> Decide { i f ( Live . age = Live . maxl i fe t ime AND count ( aGoodCity ) > 0) −>
24 Die −> End −> Else
25 Reproduce ( 1 ) with money ( 1 0 ) placed−on aGoodCity −>
26 Set Live . maxl i fe t ime := Live . maxt imel i fe − 2 −> Live −> End
27 } −> End
28 }
29 }

5.4.5 Function Expressions

In B-reactive language, every expression that return values is a "function call
expression". Some functions takes more than one argument or sometimes, takes
no argument (i.e primitive functions). However, they must always return a type
value: that value can be a location, a set of locations, an entity, a set of entities, a
boolean, a numeric value or a string. These functions are usually associated to
a name (different from anonymous functions) and classified according to their
return type. Table 5.2 shows some examples of function call expressions, and in
the next sections, we present the concrete syntax for some of these (and other)
functions available in B-reactive language



82 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Table 5.2 – Examples of functions according to their co-domain

Function Name FunctionType Definition

Here, Top, Bottom, Right, Left Location f : ∅ → L

TopOf, BottomOf, RightOf, LeftOf Location f : L→ L

MaxOneOf Location f : N× LS→ B

GreaterThan,

GreaterOrEqualThan, LessThan,

LessOrEqualThan, Equal

Numeric f : N→ B

Plus, Minus, Multiplication,

Subtraction
Numeric f : R× R→ R

BooleanNumericComparison Boolean f : N× N→ B

Entities EntitySet f : ES× ES× B→ ES

IsOccupiedLocation Boolean f : L× B× E→ B

Not Boolean f : B→ B

And, Or Boolean f : B× B→ B

Oneof Entity f : ES× B→ E

SelectConditionedLocation LocationSet f : L× B→ LS

UnionLocation LocationSet f : L× L→ LS

5.4.5.1 Location Functions

Locations expressions (that is, expressions that return a location) can be pri-
mitives or non-primitives. Primitives locations takes no arguments and return
a location. Considering the current location of the entity, primitive location
functions here, top, bottom, right, left returns the the top, bottom, right
and left position of this entity’s current location, respectively

Other location expressions include top-of, bottom-of, right-of and left-
of. In that case, they require a location as a parameter. Although the one-of
is a E function that returns a random entity from a set of entities, it can also



5.4. Concrete syntax 83

can also be used to return a random location, given a set of The function. The
function max-one-of returns a random location based on the maximum value
of a attribute, given a set of locations as input. The function declaration consu-
mes the MaxOneOfLocationFunction rule that in turn, returns the name of the
function as a keyword max-one-of. Next, an declared attribute (a reference
to an attribute) must be inputed as the first argument. The second argument
should be a LS function (see section 5.4.5.2 for location set functions). The syn-
tax diagram for max-one-of function is presented in Figure 5.24 and code 5.7
shows B-reactive concrete syntax examples of location functions.

Figure 5.24 – Syntax diagram for the max-one-of location function

B-reactive syntax 5.7 – Location expression examples
1 top \\ Returns the top of an e n t i t y ’ s current l o c a t i o n
2 top−of here \\ Returns the top of an e n t i t y ’ s current l o c a t i o n ( same as top )
3 l e f t−of aLocation \\ Returns the l e f t of " aLocat ion " v a r i a b l e
4 one−of aSeto fLoca t ion \\ Returns a random l o c a t i o n from a s e t of l o c a t i o n s
5 max−one−of [ anEnt i ty . anAttr ibute , a S e t o f L o c a t i o n s ]

5.4.5.2 LocationSet Functions

These types of function expressions always return a set of location functions.
Like L functions, LS functions also have primitives : neighborhood returns a
set of locations that correspond the they neighbors of the entity’s current loca-
tion. Another primitive is space, that returns the environment of the models.
As non-primitive examples of LS functions, the union-location function al-
lows two or more locations to be grouped into a set of location.

CreateGridOf is also an example of LS function. It returns a set of locations
using on a set of entities, the size of the grid, and an optional boolean expres-
sion. It is commonly used in the initialization of the model environment and its
declaration starts with the keyword create-grid-of, followed by two argu-
ments of type integer (representing the X and Y size of the grid) and a optional
boolean express as an argument. See section 5.4.6 for more details about this
function.



84 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

Another example of LS function is the SelectConditionedLocation function : it
returns a location, based on set of locations and a given condition. This function
is declared by using the keyword select-location-from, followed by a pri-
mitive location function (L or LS), and ending its declaration with a condition
(a boolean expression). Its syntax diagram representation is presented in Fi-
gure 5.25. Some few examples of B-reactive’s concrete syntax of LS function are
given in code 5.8

Figure 5.25 – Syntax diagram of SelectConditionedLocation function

B-reactive syntax 5.8 – LocationSet expression examples
1 one−of neighborhood \\ Returns a random neighbor
2 one−of space \\ Returns a random l o c a t i o n of the environment
3 select−location−from a S e t o f L o c a t i o n s where ( anEnt i ty . anAtt r ibute > 1)

5.4.5.3 Entity Functions

Entity functions returns only one entity. The OneOfEntity function is an exam-
ple of E function. This function returns an entity from a given location and a B
function (see section 5.4.5.5 for boolean functions). The OneOfEntity function
declaration starts with keyword one-of-entity, preceded by a location (or a
set of locations. This functions optionally a boolean expression, where the con-
dition must be evauluated as true. If a B function is given, it must be preceded
by the keyword having. The use of this function is illustrated in the syntax
diagram 5.26.

To illustrate the use of this function in B-reactive language, consider the follo-
wing example of a cat is placed in a environment with dogs of all races. In-
stinctively aware that bigger dogs are usually more quiet, the cat will seek a
random place in the environment (represented by the landfield entity) where a
dog’s weight is greater than 10.5. The cats will move to a place that is occupied
by random heavy dog. This example in B-reactive language, as shows code 5.9.



5.4. Concrete syntax 85

Figure 5.26 – Syntax diagram of function OneOfEntity

B-reactive syntax 5.9 – Entity function example
1 Entity l a n d f i e l d {
2 }
3 Entity Dog{
4 A t t r i b u t e s {
5 weight : F l o a t
6 }
7 Entity Cat {
8 A behavior d e c l a r a t i o n . . .
9 \\ Returns an random heavy ( and usual ly quie t ) dog from the environment

10 l e t heavyDog <− one−of Dog from l a n d f i e l d having Dog . weight >= 1 0 . 5
11 \\ Returns a presumably s a f e l o c a t i o n from the space
12 l e t aSafeP lace <− select−location−from [ space ] such−that l a n d f i e l d
13 i s occupied−by heavyDog
14 \\ Move to a s a f e place
15 Move−to aSafeP lace
16 }

5.4.5.4 EntitySet Functions

Functions of ES type return a set of entities, such as the Entities function. This
function returns a set of entities placed on the an primitive or a LS function,
and that also satisfies a given boolean function. This function declaration takes
three arguments : the first is the set of entities to be returned, preceded by the
keyword entities. The second, is the LS primitive (or function), followed by
the having plus the thrid and final argument of the function (boolean expres-
sion). The syntax digram for that function is represented in Figure 5.27 and an
example of its concrete syntax in B-reactive language is implemented in code
5.10.

Figure 5.27 – Syntax diagram of Entities function



86 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

B-reactive syntax 5.10 – Entity set function example
1 Entity farmer {
2 A t t r i b u t e s {
3 type : S t r i n g
4 }
5 }
6 Entity landuse {
7 A t t r i b u t e s {
8 type : S t r i n g
9 }

10 }
11 Behavior d e c l a r a t i o n . . .
12 // Returns a l l the farmers placed on the pastures
13 e n t i t i e s farmer placed−on landuse
14 // Returns a l l secondary f o r e s t s occupied by mechanized farmers
15 e n t i t i e s landuse placed−on landuse having landuse . type =" secondary_fores t "

5.4.5.5 Boolean Functions

The Boolean function always return a boolean value (true and false). Com-
monly, they can be logic (like not, and, and or), or comparison boolean functi-
ons (such as >=, <=, > and <). B-reactive also provides the location boolean
function IsOccupiedLocation. That function returns a boolean value after
evaluating if a location (location set) is occupied. The function definition starts
with the the mandatory argument (a location or a location set) followed by ke-
yword is. Next, a second optional argument may be prodivided (the unary
boolean function not), followed by the keyword occupied. Finally, the third
optional argument must be an entity or an entityset. If provided, it is prece-
ded by the keyword by. Some examples are boolean functions in B-reactive
language are presented in code 5.11

B-reactive syntax 5.11 – Boolean functions example
1 // Comparison boolean funct ion
2 l e t x <− 5
3 l e t y <− f a l s e
4 ( x >= 4 ) , (5 < 7 ) , (6 >= 6 ) , ( y == f a l s e ) // Returns t rue
5 ( x = 4 ) , (5 > 1 0 ) , (6 <= 5 ) , ( y != f a l s e ) // Returns f a l s e
6 // Boolean l o c a t i o n occupation
7 Entity Dog { . . . }
8 // Returns true i f a l l l o c a t i o n s around are occupied .
9 // Otherwise , re turns f a l s e

10 l e t neighStatus <− neighborhood i s occupied
11 // Returns true i f a l l l o c a t i o n s around are f r e e .
12 // Otherwise , re turns f a l s e
13 l e t neighStatus <− neighborhood i s NOT occupied
14 // Returns true i f a l l l o c a t i o n s around not occupied by any dog .
15 l e t isNeighFreeOfDogs <− neighborhood i s NOT occupied by Dog



5.4. Concrete syntax 87

5.4.5.6 Numeric Functions

The Numeric functions must return numeric values. They can be mathematic
functions (such as random-int, random-float, str, exp, power, etc) or bi-
nary arithmetic functions, commonly used in equations (i.e. +,-,/,-). If we
considering the set of numeric numbers N, where f : N → N is x 7→ x, then
for every input(domain) x, and output (co-domain) x of same value is produ-
ced. For instance, if 5 is the input, then 5 is the output. Code 5.12 shows some
example of numeric functions in B-reactive language.

B-reactive syntax 5.12 – Entity set function example
1 Entity c e l l {
2 A t t r i b u t e s { energy : F l o a t }
3 Behavior d e c l a r a t i o n . . . .
4 random−int 5 , // Returns a random i n t e g e r number between 0 and 5
5 2 power 5 // Returns 32

5.4.6 Model initialization

Due to the declarative notion of the B-reactive language, the behaviors of re-
active agents are described, but they are neither instantiated, nor initialized.
For instance, attribute and parameters of an equation (although valid), must
have an initial value if they are going to be simulated. In MAS, located agents
must declare a initial position in the environment The model must also instance
a initial number of agents and define the environment’s initial state. That can be
perform through the rules InitEntity and InitSpace after the model is defined
(as shown in section 5.4.1)

In our B-reactive syntax, the InitEntity rule allows agents to be instantiated and
initialized. To instantiate agents, the function definition starts with the keyword
create, followed by the name of the entity, followed by an ID that distinguis-
hes eventual instances of the same agent type. That allows the simulation of
heritage mechanism present in objected-oriented programing languages. We
will discuss about that in more details in Chapter 6.

Next, to initialize agents, for every entity, an initial value is assigned (through
the assignment rule) to every attribute that belongs to the entity. We must also
provide the initial value to every parameter declared in entities’ behaviors. Fi-
nally, the entity’s initial position must be provided (see section 5.4.5.1 for loca-
tion functions). The initial position declaration stats with the keyword position,
succeeded by any functional call expression with a L function as co-domain. Its



88 Chapter 5. B-Reactive - A DSL to model reactive behaviors in MAS

syntax diagram is depicted in Figure 5.28a. An example of entities instantiation
and initialization in presented in code 5.13, from lines 18 to 32.

The InitSpace rule enable the initialization of the environment. To instanti-
ate the environment, the function create-grid-of (as explained in section
5.4.5.4) is used to create a grid of locations with a specif size. Later, the grid ini-
tializes its attributes values through assignment rules. The syntax diagram of
InitSpace rule is presented in Figure 5.28b and the code implemented in Figure
5.13 shows, from lines 12 to 17, an example of the environment’s instantiation
and initialization.

(a) InitEntity

(b) InitSpace

Figure 5.28 – Syantax diagram for InitEntity and InitSpace rules

B-reactive syntax 5.13 – Model initialization
1 Model aModel {
2 Entity s o i l {
3 A t t r i b u t e s {
4 type : S t r i n g
5 f e r t i l i t y : S t r i n g }
6 }
7 Entity v i l l a g e r {
8 A t t r i b u t e s {
9 a c t i v i t y : " S t r i n g "

10 incoming : " F l o a t " }
11 }
12 // I n s t a n t i a t e and i n i t i a l i z e the environment
13 create−grid−of s o i l ( 1 5 , 1 5 ) {
14 each s o i l {
15 type := " t e r r a f irme "
16 f e r t i l i t y : = " poor " }
17 }
18 // I n s t a n t i a t e , i n i t i a l i z e and place 15 v i l l a g e r s as big farmers
19 c r e a t e v i l l a g e r 15 as big−farmers {
20 each farmer {



5.4. Concrete syntax 89

21 p o s i t i o n = one−of [ grid−of S o i l ]
22 a c t i v i t y : := " a g r i c u l t u r e "
23 income : := " 5 0 . 5 " }
24 }
25 // I n s t a n t i a t e , i n i t i a l i z e and place 15 v i l l a g e r s as small farmers
26 c r e a t e v i l l a g e r 15 as small−farmers {
27 each farmer {
28 p o s i t i o n = one−of [ grid−of S o i l ]
29 a c t i v i t y : := " a r t i s a n "
30 income : := " 3 2 . 6 " }
31 }
32 }

5.4.7 Conclusion

In this chapter, we presented the implementation of the three main steps (ab-
stract syntax, semantic domain and concrete syntax) of the design process of
our B-Reactive language. B-Reactive is a DSL designed to specify reactive be-
haviors for MAS. Its design process was realized thought a meta-modeling ap-
proach based on existent concepts proposed in a simple SES model. From this
simple model, we were able to specify an initial concrete syntax that is closer to
the discourse used by stakeholders and SES non-programmers. The language is
platform-independent and oriented towards natural speech. As in all DSL, the
language is very prone to modifications. However, through the meta-modeling
approach, the concrete language may by easily extended by adding new functi-
ons and adapting the concrete syntax to the domain of experts with no (or very
few) changes in the abstract syntax.





91

Chapter 6

Implementation of B-Reactive
language using MDE

6.1 Introduction

In this chapter, we discuss how we applied MDE based on a DSL, to develop
a textual editor for B-reactive language (Chapter 5). We propose an approach
based on 5 steps: 1) the implementation of a textual editor, 2) the development
of language validation rules, 3) abstract syntax analysis of the target language,
4) code generators development and 5) test and validation of generated code.
That approach is introduced in section 6.2. In section 6.3 we discuss the possible
approaches (and advocate our choice) of implementing a textual editor and in
section 6.3.0.2 we demonstrate how (and why) we added some validation ru-
les to the editor. Section 6.5 is used to demonstrate how we implemented code
generation into two MAS target platforms (Cormas and Netlogo) using MDE
model-to-text capabilities. Next, we use section 6.6 to briefly discuss some si-
mulation results from the generated code of two SES models (ECEC and Prison
Rebellion) implemented in B-Reactive language. Finally, session 6.7 concludes
this chapter

6.2 Application of MDE

We apply MDE by following a cyclical process of activities (Figure 6.1). In the
first step, a first version of a textual editor was implemented using B-reactive
concrete syntax specification. Later, we added some validation rules to cover
certain constraints that ensure model’s validity. In the next step, we analyzed
the abstract syntax of two target MAS platforms (Netlogo and Cormas). This



92 Chapter 6. Implementation of B-Reactive language using MDE

is an essential step if we aim to build code generators for 2 or more target lan-
guages, since each target language requires a different transformation strategy.
Based on that, the next step was to develop two code generators for the two tar-
get platforms (Netlogo and Cormas). To validate and test code generators, two
SES models were implemented in B-reactive language, and source code for Net-
logo and Cormas platforms were generated. The textual editor is later modified
(grammar rules) and the process re-started

Figure 6.1 – Cyclical process of MDE application to obtain a DSl textual editor with
code generator capabilities

6.3 Implementing a textual editor with XText

In order to implement DSL textual editor, (Brambilla et al., 2012) states that two
possible approaches can be employed: a Grammar First approach or a Meta-
model First approach. We identified a third possible approach if Xtext is chosen
as a textual concrete syntax framework. Based on the authors’ classification and
our experience, the three known approaches are:

1. Grammar centered approach : The grammar is more important : The syn-
tax is specified by the grammar (abstract and concrete syntax) and the



6.3. Implementing a textual editor with XText 93

meta-model is not a major concern. A meta-model is later derived from
the produced grammar;

2. Meta-model centered approach : The metamodel is more important. The
meta-model is first specified, followed the concrete syntax specification
that is conform to the meta-model;

3. Meta-model and grammar-centered approach : Both the meta-model and
grammar are important. They are independently specified and the pro-
duced meta-model that is automatically inferred by the grammar is later
transformed according to a model-to-model specification through the use
of an M2M language

Approach number one (1) is by far the easiest and the most recommended way
of working with Xtext. It is also the fastest since a previous meta-model is not
required. However, this might not be the best approach if we aim to perform
code generation into two or more target languages. The reason is that, although
Xtext has good meta-model inference capabilities, some customizations to the
inferred Ecore meta-model are very often required (e.g. when adding a derived
operation). In that case, two options are left: 1) using some customized post
processing rules; or 2) moving to a manually maintained meta-model. The first
option requires much code adjustment (and knowledge) of the many core clas-
ses of Xtext. The second option leads to approach number two (2), which uses
a manual meta-model as an input for the development of the textual concrete
syntax.

Approach number two (2) is very often used by the archived TCS project, con-
siders the meta-model as the first and most import element of the grammar.
Xtext also supports this type of approach, but unfortunately, there is not much
documentation if the toolsmith decides to build his grammar using a meta mo-
del centered approach. Despite this, no meta-model is generated, but models
created are fully conform to the manually maintained Ecore meta-model

Nonetheless, Xtext syntax must be considered when using this approach. Xtext
grammar language is not exactly EBNF but very similar. It extends EBNF by
adding object-oriented concepts and the information necessary to derive meta-
models and modeling editors. This can be considered an advantage from the
point of view of grammar language flexibility or meta-model inference capabi-
lities. But, since the meta-model is manually maintained, Xtext syntax requires
return types (Ecore EClasses) for each rule specified in the grammar. In addi-
tion, possible left factoring or left recursion might occur and although this can



94 Chapter 6. Implementation of B-Reactive language using MDE

be solved by adding new production rules, it may create some ambiguities in
the grammar. But because the rules must return a type (EClass) previously de-
fined in the input meta-model, using the meta-model centered approach may
lead to some loss in grammar flexibility. If, however, the toolsmith wants to
keep models strictly conform to a manual provided meta-model, that is defini-
tely the approach to go with.

Finally, approach number three (3) is available for toolsmiths desiring to keep
some flexibility in grammar development but who still want to keep an exter-
nally maintained meta-model. In larger projects such as B-Reactive, the infer-
red meta-model is considerably different from the meta-model that is manu-
ally maintained. The reason is that additional rules are sometimes necessary
(especially when solving left recursivity). But since the Ecore inferred meta-
model translates the specified grammar elements into a Ecore model, an Ecore
EPackage, for instance, is created for each generate declaration (Xtex syntax);
an EClass is created for each return type of a parser rule (rules usually have a
return type in Xtext syntax); an EEnum for each return type of an enumeration
rule; an EDataType for each return type of a terminal rule or a data type rule,
and so on.

To overcome this difference in models (conform to different meta-models), one
option is to use a M2M language (like QVT) to transform the Xtext inferred
model into a model that conforms to the manually maintained meta-model.
One of the major advantages of using this approach is the high flexibility for
meta-model and grammar specification. However, transformations may be-
come quite complex (if not impossible) since the target implementation tends
to be more complex due to added implementation details (Andova et al., 2012)

Despite all the drawbacks discussed (and advantages of other approaches), we
chose approach number 2. Because our meta-model was used to describe our
abstract syntax and because it was conceptualized with domain experts, a meta-
model centered approach seems the most logical approach. Moreover, it is less
time consuming compared to approach number 3, since an extra M2M transfor-
mation is not required. Our aim was to translate our meta-model (developed
in Modelio modeling environment) into an Ecore meta-model. We shall discuss
that step in session 6.3.0.1



6.3. Implementing a textual editor with XText 95

6.3.0.1 UML to Ecore

In order to use our meta-model in EMF, the Ecore format is expected as a meta-
model specification format. We used Modelio modeling environment to design
B-reactive meta-model; Modelio offers two format possibilities when exporting
a uml project: an uml file or an xmi format. Both formats may conform to UML
standards (from version 2.1 to 2.4) or conform to EMF UML 3.0 standards

Although mapping from Ecore to UML is simple and direct (supported by the
native EcoreTools editor), doing the opposite is not really possible. One reason
is that although there’s a fairly strong correlation among the ’type’ concepts in
Ecore and UML (for example, EClass, EAttribute, EDataType, EReference, EO-
peration, etc.) there are still some semantic mappings that needs to be solved.

Papyrus modeling environment supports direct export from a UML model into
a Ecore model. But the whole meta-model must be initially designed in Pa-
pyrus. Hence, we decided to manually port our UML meta-model using the
EcoreTools graphical designer provided by EMF.

6.3.0.2 Add new validation rules

Once the meta-model is the Ecore format, developing a textual editor with Xtext
is a very straight forward process. The grammar syntax is very similar to EBNF
and once the concrete syntax is implemented, a textual editor is automatically
generated by the Xtext framework, as shown in Figure 6.2. Among many featu-
res, the generated editor provides auto-completion, highlight syntax and custo-
mizable features.



96 Chapter 6. Implementation of B-Reactive language using MDE

Figure 6.2 – A dsl textual editor generated by Xtext

Nonetheless, one of the key steps of modeling is model validation, where mo-
del’s semantics are validated through the use of constraints. In EMF, OCL con-
straints can be added to the Ecore meta-model, using the OCLinEcore editor.
The editor provides direct editing of Ecore meta-model, where the toolsmith
may define constraints and invariants. Once defined, the constraints can be au-
tomatically evaluated by the textual (or graphical) editor. Figure 6.3 illustrates
a constraint evaluation in the textual editor during the modeling process.

The OCL constraint imposes a restriction on all types of behaviors, where the
name of behaviors must be unique (the violation message is shown on the bot-
tom of figure. Even if at first sight this mechanism may seem well suited to
a textual editor, the constraint message violation is not so user friendly . Mo-
reover, validation checking is not so efficiently handled by the editor: when a
constraint is violated, no fix solutions are offered to the user.



6.3. Implementing a textual editor with XText 97

Figure 6.3 – A textual editor containing a message of OCL constraint violation

Nonetheless, one of the benefits of EMF environment is the possibility of im-
plementing validation and quick fixes. Xtext provides default and custom vali-
dators that, through a serialization mechanism, convert the changes in the AST
(executed by the quick fixes) back to text. More precisely, those validators pro-
vide @Check methods (for validation) and @Fix methods (for modification)
definition to be directly applied in the Xtext editor. Modifications are imple-
mented using quick fixes - a proposal to solve a problem in a program, Quick
fixes are tightly connected to validation and act a semantic modification to the
EMF resource. Although pure java can be used to customize DSLs, Xtext advo-
cates the use of Xtend to specify validators. As mentioned in Chapter 3, Xtend
is java-like programming language that has, among other features, a more com-
pact and easier to use syntax.

With Xtext, we implemented some quick fixes for their correspondent warnings.
Warnings are normally produced when a validation rule is not respected. Alt-
hough errors may also have quick fixes, there is a consensus in most of mo-
dern editors to distinguish errors from warning. In that case, an error only de-
tects (and points to) a customized error message, while warnings should have a
quickfix. Figure 6.4 shows the editor after some quick fixes were implemented.



98 Chapter 6. Implementation of B-Reactive language using MDE

A validation rule that ensures that every entity’s attribute name must start with
non-capital letters triggers a quick fix that provides the user with a possibility
of fixing warnings. Figure 6.4 shows a quick fix that automatically uncapitalizes
the first letter of an entity’s attribute name.

Figure 6.4 – B-reactive editor after implementation of validation rules

6.4 Abstract syntax analysis of the target language

In order to implement code generators for an specif MAS platform, we first need
to define the abstract syntax for each of the target platforms. Although our aim
is to build code generators for Netlogo and Cormas, it is essential to aim at
what in fact we want to generate. In that case, we emphasize the behavioral
aspect of these two platforms. However, because each platform has its own
specificities (and different programing language paradigms), code generators
had to be organized according to a general structure of how models are defined
in each platform. Figure 6.5 illustrates this general structure for both Netlogo
and Cormas platforms.



6.4. Abstract syntax analysis of the target language 99

(a) Netlogo

(b) Cormas

Figure 6.5 – General abstract syntax for Cormas and Netlogo models

Netlogo models are usually composed of five type of agents: turtles (to repre-
sent agents), patches (to represent an environment unit, such as a cell, or land,
for instance), links (connects two turtles) and the observer (oversees everything
that’s going on and does whatever the turtles, patches and links cannot do by
themselves). Agents may have their own attributes. Netlogo also has com-
mands and reporters that are used to tell what agents must do and to define a
Netlogo’s scheduler We will discuss more about them in subsection 6.6.



100 Chapter 6. Implementation of B-Reactive language using MDE

In general, models in Cormas are defined as follows: the agents and the envi-
ronment are represented by Classes where their attributes and methods are in-
herited by other agents. That means that agents may inherit from other agents.
To create agents and the environment, Cormas defines the AgentLocation

class and SpatialEntityCell class, respectively. Every agent has a step()
method : this method is executed at each time step of simulation. SpatialEn-
tityCell also possesses its own methods, and inherits many others from its
superclass SpatialEntityElement that in turn, is a subclass of SpatialEn-
tity class. Both SpatialEntityCell and AgentLocation inherit many
other methods from their correspondent super classes and for that reason, the
abstract syntax presented in 6.5 is only partially presented.

Next, to initialize the simulation in Cormas, the agents and environment must
be instantiated and the links between the entities, established. Cormas provides
methods for scheduling (Scheduler) and for observation (Probes) of the simula-
tion. Cormas classes may have protocols and class methods are defined inside
protocols. We shall discuss Cormas methods (actually Smalltalk methods) in
details in section 6.5.2

6.5 Building code generators

IIn the context of a M2T project, five template base languages are available to
perform model-to-text transformation, but only two are mainly used: Acceleo
and Xtend. Xtend is indeed a very powerful and easy-to-learn programming
language. It can also be used for M2M transformation, model validation and
test. But because of its full OCL support for querying models and its mature tool
support, Acceleo was chosen, in this work,as the M2T language to implement
code generation. The fact that Acceleo is based on templates (and not on code) is
another reason for this choice: Templates can be more easily changed and since
there is no programming language involved (such as Xtend), building tests or
deploys are not necessary.

In order to demonstrate how our proposed language and the editor could be
used to express models, we implemented two SES models using B-Reactive mo-
del: the Ecec model (as explained in Chapter 4) and the Prison rebellion model,
a model based on (Wilensky, 2004) which in turn, is an adaptation of a model
for civil violence proposed by (Epstein, 2002). Next, to test the Acceleo M2T
code generation we implemented two different code generators: one aiming at



6.5. Building code generators 101

code generation for Cormas and the other, at NetLogo platform. Because each
of those platforms have their particularities, code generators must be separately
designed to support specificities possessed by each platform.

6.5.1 Code generation of Netlogo procedures

Once the general structure of Netlogo platform is defined, a set of code gene-
rator templates was implemented based on that platform structure. The next
step was to specify a sub-structure for what we want to generate. Because we
wish to generate procedures, an abstract syntax of how procedures are defined
in Netlogo is shown in Figure 6.6

Figure 6.6 – B-reactive editor after implementation of validation rules

In NetLogo, commands and reporters tell agents what to do. A command is
an action for an agent to carry out, resulting in some effect. A reporter is an
instruction for computing a value, which the agent then "reports" to whoever
asked it. Usually, a command name begins with a verb, such as create, die,
jump, inspect, or clear". Most reporter names are nouns or noun phrases.

There are two types of procedures in Netlogo: those that are built into Net-
Logo (called primitives) and those defined by the user (called user defined).
Commands and reports have a name. They are preceded by the keyword to

or to-report, depending on whether it is a command procedure or a reporter
procedure. The keyword end marks the end of the commands in the procedure.
Once a procedure is defined, it can be used elsewhere in the model. Commands
and reporters may take inputs: these are values that the command or reporter
uses in carrying out its actions or computing its result.



102 Chapter 6. Implementation of B-Reactive language using MDE

Procedures can take inputs, just like many primitives do. To create a proce-
dure that accepts inputs, put their names in square brackets after the procedure
name. Netlogo has two essential command procedures (user-defined) that must
be specified in the model: the setup and go procedures. The go procedure de-
fines the order of what NetLogo will perform during simulation and thus, can
be considered as NetLogo’s schedulers procedure, where time passes in discrete
steps called tick.

Agent variables are places to store values (such as numbers) in an agent. An
agent variable can be a global variable, a turtle variable, a patch variable, or
a link variable. If a variable is a global variable, there is only one value for
this variable, and each agent can access it. Turtle, patch, and link variables are
different: each turtle has its own value for every turtle variable and the same
goes for patches and links.

Considering the presented general structure of Netlogo, the B-Reactive meta-
model, and the Acceleo good practices of template organization, the following
package struture is proposed for NetLogo code generator: a main template per
generator (called generate), a template per file generated (called generateNet-
logo) and a package (called common) containing many templates for behaviors
(and its elements) transformations into NetLogo procedures. The main template
and the file genetator template are implemented in appendix code C.1 and C.2
respectively. They include import declarations, output file definition, and they
call NetLogo agent’s template generators (turtles and patches), setup procedu-
res generators, agent’s procedures generators and the go procedure generator.

6.5.1.1 Generating Breedings, Turtles and Patches

In NetLogo, patches and turtles are defined with keyword “breed”, and like glo-
bals, turtles-own, and patches-own keywords (used to define NetLogo’s
agents attributes), it can only be used at the beginning of the Code tab, before
any procedure definitions. In appendix code C.3, a breed is defined for every
B-reactive entity, where turles-own and patches-own attributes are also ge-
nerated.

6.5.1.2 Generating Setup procedures

Turtles and patches are later initialized in setup procedures. But in order to
create turtles and patches, one question remains: how to distinguish entities



6.5. Building code generators 103

that will become patches from the ones that will become turtles ? The answer
relies one the way we initialize our agents with B-Reactive. In both models
shown in appendix code A, if we initialize entities using Entity Set function call
expressions, turtles will be created. If on the other hand, if a space of entities
made of agents is declared, then a NetLogo grid of patches is created. The
whole setup procedure for turtles is divided into appendix codes C.4 and C.5.
First, the turtles are transformed from B-reactive’s entities, their initial position
is defined in and all their variables (parameters and attributes) are initialized. A
special report procedure is created for every turtle in the model, called one-of

entity’s name-here. This is done to facilitate later turtle’s reference

Next, the code generator create a set of turtles that simulates the environment.
However, this approach creates a set of turtles, placed in the environment and
for that reason, it is not possible to inspect (observe) Netlogo’s patches. Since
spatial entities possess some methods that are different from agents’ methods
(like many MAS), predicting the correct scope for each of those procedures may
highly increase the complexity of code generation. By considering the environ-
ment as a set of spatial entities, it facilitates code generation into Netlogo code
because turtles will have the same type of procedures. NetLogo’s setup pro-
cedure is realized for patches and turtles. The appendix code in C.5 shows how
the space is initialized in NetLogo.

NetLogo’s function resize-world uses values defined in B-reactive’s entity
initialization to create a grid (environment) of x size per y cells. The code per-
forms a loop to create the correct number of cells in the space and put static
entities on each cell. Next, a turtle per cell is created, and the environment is
initializes. Turtles are set to hidden to better visualize other turtles.

6.5.1.3 Generating command and reporter procedures

To generate procedures in NetLogo, we created a main template (appendix code
C.6) that calls other templates to individually treat for each type of behavior
specified in B-reactive models. More precisely, B-reactive EquationBehaviors,
ActivityBehaviors and ActivityDiagramBehaviors are detected by the appendix
template C.6, that in turn, calls an specific template to deal with M2T transfor-
mation.

To transform B-reactive EquationBehaviors, the appendix code C.7 generates
all possible local variables and equations. Since the values are initialized in the
NetLogo’s setup procedure, the parameters are not generated here. We used



104 Chapter 6. Implementation of B-Reactive language using MDE

the same strategy for all succeeding behaviors. Activity behaviors are trans-
formed into NetLogo’s procedures according to appendix template code C.8).
This template declares all local variables and calls another the template (see ap-
pendix code C.9) that is responsible for mapping every B-reactive’s primitive
activity (such as Add, Remove, Set, etc) into Netlogo’s code.

Last, in order to generate B-reactive’s ActivityDiagramBehavior, every node
and edge found are transformed in template code C.10. Activity diagram be-
haviors template starts by importing a template that defines transformation of
nodes and edges. This template carries? the first Node (Start) transformation
that calls other elements of an activity diagram behavior until all nodes and
edges are transformed.

In addition, we still have a considerable number of templates that implement
function call expressions that are necessary to specific procedures transforma-
tion in Netlogo. One example, is the arithmetic function call expression for
equation generations. Other templates are implementations of recursive expres-
sions that try to detect the correct procedure to be translated into code. There-
fore, for the sake of simplicity, the explanations of templates with exhaustive
template calls were deliberately omitted from this chapter.

6.5.1.4 Generating the go procedure

This code should be self-explanatory. The go procedure is equivalent to B-
reactive’s scheduler, i.e. a modeler declares what (and in what sequence) proce-
dures will be executed during model simulation. Since B-reactive does not have
such a method, the behavior definition followed by the keyword as main, in
B-reactive language will be transformed into Netlogo’s go procedure, as high-
lighted in appendix code C.11

6.5.2 Code generation of Cormas methods

In Smalltalk (Cormas programing language), the message is the most basic con-
struction. Control structures are nothing more than message passing : messa-
ges have receivers and selectors, but messages can also have arguments. For
example, in the expression 2 raisedTo:4, 2 is the receiver, raisedTo is the
message, and 4 is the message argument. Messages can also be assigned to
variables, like in aVariable := 2 raisedTo:4, resulting in 16.



6.5. Building code generators 105

Similarly, in (x>1) ifTrue:[Transcriptshow:"bigger"], the block
ifTrue:[] is a message to the boolean expression (x>1). In that sense, we
can say that every expression is a message sent. Messages can be unary (i.e.
transcript, factorial, squared,etc.), binary (i.e. +,-, etc.) or keyword messages
(i.e. raidsedTo, modulo, etc.). Each statement will have one or more smalltalk
expression. A valid Smalltalk expression can be a variable name, a literal, a
keyword, a statement, a block or a method.

Differently from object-orienrted langauges such as Java and C++, Smalltalk
does not need constructors: instead, we can just create a class method that can
take parameters. For instance, the method newName:age: of the class Per-
son can be invoked by using the statement p := Person newName: ’Ada

Lovelace’ age: 201 .

In VisualWorks, a class has shared variables and namespace shared variables,
while Squeak and many other implementations have class variables, pool vari-
ables and global variables. Temporary variable declarations in Smalltalk are va-
riables declared inside a method. As in many SmallTalk environments, Cormas
makes use of protocols. A protocol is a way to organize methods that ideally,
indicate the methods’ intent in the protocol’s name. For that reason, some com-
mon protocol names have been established by convention. For example, the
accessing protocol for all accessors methods, the init protocol for establishing a
consistent initial state for the object, and the control protocol to send commands
to the model and update its state.

A non exhaustive abstract syntax that represents the discussed concepts is de-
picted in figure 6.7



106 Chapter 6. Implementation of B-Reactive language using MDE

Figure 6.7 – B-reactive editor after implementation of validation rules

The templates for code generation are organized as follows: a template for ge-
nerating Cormas core classes and template for generating model classes. The
first generates main classes used by the kernel of Cormas, but also generates
code for the accessing, init, control, instance-creation and probes protocols. The
second template generate classes that for the defined entities in the model, as
well as methods for their correspondent protocols. The generated code howe-
ver, strictly follows the .pst visualworks file structure, although Cormas will be
ported in future to Pharo - an open source SmallTalk environment development.

6.5.2.1 Generating Cormas classes

In object-oriented programing languages (like SmallTalk), there are two types of
variables that a class may define. The first is the Class variables type: it occurs
when just one copy of a class variable is shared with all instances of a class.
This means class variables cannot be modified by the instances of that class.
The second is the Instance variables type: it occurs when variables of a class
also belong to the instances of that class. This means that these variables can
have their value modified.



6.5. Building code generators 107

Although B-reactive does not explicitly implement such mechanism, we assu-
med that it is safe enough to transform entities’ attributes of B-reactive lan-
guage into instance variables, and parameters defined in Breactive’s behaviors
into class variables. The transformation into class variables and instance varia-
bles are implemented as shown in appendix code C.12. CormasModel classes,
AgentLocation class, and SpatialEntityCell general structure are also
generated. The template also declares some POVs (for point-of-view), a special
type of attribute that is used to define points of views in Cormas. We will briefly
discuss more Cormas POVs in further sections.

6.5.2.2 Generating methods for the accessing protocol

In Cormas, the accessing protocol is created to group two types of accessors
methods that are very commonly used in object oriented programing: getters
and setters. For the CormasModel class, Cormas automatically generates code
for getters and setters for agents, for every attribute of B-reactive entities. Acces-
sors methods are generated for all initialized parameters and attributes of B-
reactive language. Next, a getter method is specified (for each Entity). The
getter method returns a collection of all instances of aClass (and sub classes) col-
lected by the CormasModel class. For every entity of B-reactive language, Cor-
mas usually generated a getter and a setter method for a special attribute. This
attribute name (also generated by default), is called theAgentNames. That at-
tribute returns a list of cells (if it is a SpatialEntityCell) or a list of agents (if it
is an AgentLocation class) and it is later used to define probes (see section
for C.17). Finally, getter setter methods are also generated for every B-reactive
at-tributes that define the initial number of agents and cells, according to B-
reactive’s initialization and instantiation. The accessing protocol is generated
according to the appendix code, C.13,

6.5.2.3 Generating methods for the instance-creation protocol

The instance-creation protocol organizes methods that are responsible for defi-
ning how instances of AgentLocation and SpatialEntityCell classes are
created. In the appendix code C.14 the environment is initialized using the the
Cormas method initializeRegular. The method responsible for the envi-
ronment initialization requires some parameters, such as the number of lines
and columns, the shape of cells, the number of neighbors, and the shape of



108 Chapter 6. Implementation of B-Reactive language using MDE

boundaries. Lines and columns are provided by the InitSpace definition of B-
reactive model. The other parameters are generated with default values : "eight"
for the number of neighbors, #squared for the shape of cells, and #toroidal

for the shape of boundaries. The appendix code also generated code to initialize
the agents by calling the method initAgents.

The initAgents method must be generated for every subclass of AgentLoca-
tion class. Although B-reactive does not explicitly support the heritage me-
chanism, B-reactive offers the possibility to define an "alias" for every entity,
during model initialization. If an "alias" is defined, the code is accordingly ge-
nerated, simulating the heritage mechanism. If not (meaning that the entities
do not have subclasses), the initAgent method is generated using the class
name for variables definition.

6.5.2.4 Generating methods for init protocol

In general, the init protocol contains methods that initialize the environment
in a simulation. In Cormas, the environment can be defined by the user, or it
can be loaded as predefined grids that are manually defined. Since environ-
ments are usually defined by external files in Cormas, the appendix template
code C.15 only generates code that references those predefined environments
The first predefined environment is called noAgents and it is useful to run a
simulation without any AgentLocation, just to show how SpatialEntity-

Cells behaves if any behavior is associated to them. Note that the previously
initAgent method (defined in the init-creation protocol) is not called here.
The second predefined environment is called homogeneousEnv and initiali-
zed agents to be distributed in an homogeneous environment. The last (called
fragmentedEnv) initializes a fragmented environment composed by patches of
SpatialEntityCell units.

6.5.2.5 Generating methods for control protocol

The control protocol contains a sequence of all methods that are performed by
every agent and spatial entity, according to the model’s specification: these met-
hods instantiate the agents and the environment and set the links between the
entities. In this sense, the control protocol generation is very straightforward,
since it defines all behaviors to be performed by every entity in the model. But
the main class of Cormas (CormasModel) does not possesses any behaviors as-
sociated to it. Instead, the control protocol of the main class schedules entities



6.5. Building code generators 109

by sending a step to each one of these entities. Cormas is oriented towards
step-by-step simulations (although it is possible to program discrete events si-
mulations. The step method is generated as highlighted in code appendix code
C.16. At each step, the environment is activated by pointing to previously gene-
rated probes (session C.17) and agents are randomly activated according their
own definition for the step method.

6.5.2.6 Generating methods for probes protocol

Probes are special methods in Cormas used to record the variations of markers
: they return changes occurred in any desired variable. By default, we define
probes that return the population of every AgentLocation (B-reactive entity)
and every SpatialEntityCell attribute, that is the attributes of the entities
that represent the grid of location in B-reactive langauge. The probes code ge-
neration is shown in appendix code C.17.

6.5.2.7 Generating methods for custom protocols

We define custom protocols as a protocol containing all methods that defined
by the user. By default, this protocol is called GeneratedProtocol. Every
behavior that is defined the user in B-reative language is organized inse the
GeneratedProtocol. Methods are transformed in almost the same manner
as Netlogo: template Expressions evaluate the type of expressions, and, if a
function is called, then for each function domain, another template is called
until the expression is fully evaluated and transformed into code.

Cormas also generates many other protocols such as "-probes" (to define pro-
bes), "info", "description", "pov symbols", etc. Each class also defines its own
accessing, init, control and many of the protocol discussed so far. Additionally,
we implemented code generation for methods that are responsible for obser-
ving the entities (called POV). They are generated with a certain degree of auto-
mation, thanks to the use of Acceleo queries. Acceleo queries allow using java
language, further increasing the possibilities of text generation. Appendix code
C.18 shows the generation of custom protocols.



110 Chapter 6. Implementation of B-Reactive language using MDE

6.6 Model simulation

As a final objective of our approach, we aimed at performing direct simula-
tion from the generated code. In order to achieve this, two models were im-
plemented in B-reactive language: the ECEC model and the prison rebelion
model. These models were implemented in B-reactive language, as shown in
appendix A. With some visualization customization, we were able to simulate
them in Netlogo. Although most of the methods were successfully generated in
Cor-mas, the simulation could not be directly performed from the source code
obtained, for reasons explained in section 6.6.2.

6.6.1 Netlogo simulation

Figure 6.8 shows results for the ECEC model (6.8a) and prison rebellion model
(6.8b) simulations, respectively. In (6.8a) the simulation shows a very simple
plot visualization: it computes the population of both forager species (Restrai-
ned and Unrestrained) over time. Initially, the unrestrained foragers will always
prevail over the restrained foragers, since their feeding is not restricted. In a
standard scenario we could say that this is an expected scenario for a first ob-
servation This could change, of course, depending on whether we also change
certain initial parameters of the model, or on what we wish to observe.

(a) ECEC model simulation (b) Rebellion model simulation

Figure 6.8 – Model simulation from generated code in Netlogo

The prison rebellion also shows an expected behavior: the population of pri-
soners to be jailed decreases (in the same proportion) as the population of pri-
soners who are quiet increases. That means that law enforcements are being
applied to prisoners that are considered subversive, leaving the quiet ones into
an observation status by the agents jail. As in the ECEC model, we have chosen



6.7. Conclusion 111

to observe only the prisoners population size during the simulation, according
to their situation (quiet or jailed).Observing other variables or setting different
values for some parameters would certainly produce distinct plots for that mo-
del.

6.6.2 Cormas simulation

At the time of writing, the Cormas official version was still based on Visual-
Works, a proprietary cross-platform implementation of Smalltalk language. It is
implemented as a development system based on "images", which are dynamic
collections of software objects, each contained in a system image. Visualworks
source code (from .pst files) into parcel files (.pcl). that contains only compiled
code in a binary format. However, Visualworks may also store source code in a
number of different places. Additionally, there is no interface or command line
(as far as we know) that allows VisualWorks VM to translate .pst (source code)
to .plc (binary) files. For those reasons, we were not able to directly perform
model simulation in Cormas from the generated code. Still, some codes could
be successfully generated for Cormas (see code B.1 for ECEC model and code
B.2 for the prison rebellion model )

6.7 Conclusion

In this chapter, we showed how MDE was applied to implement a proposed
language to represent reactive behavior in multi-agent systems. Starting from
a meta-model conceived with stakeholders, we implemented an Xtext editor
and added validation rules and icons outline that highlight code to facilitate the
modeling process. Next,we developed two code generators targeting Netlogo
and Cormas platforms. For each code generator, different strategies were es-
tablished considering the platform structure and the abstract syntax of each of
the target MAS platforms In a cyclic process, as long as the generated code was
tested and, if not executable, (or not valid), then new grammar and validation
rules were added, re-starting the process. As a result, we could obtain executa-
ble code generation for Netlogo, and a reasonable code generation for Cormas.
The generated codes were directly obtained from SES models implemented in
B-Reactive models. Although code generation was not fully performed (due



112 Chapter 6. Implementation of B-Reactive language using MDE

to time constraints), we consider MDE as a fully capable approach for provi-
ding tools and quick customization options to implement solutions that solve
the issues expounded so far.



113

Chapter 7

General conclusion

7.1 Discussion

7.1.1 MDE as an approach for designing DSL for SES

In this thesis, we developed a domain-specific language to facilitate the speci-
fication of reactive behaviors of MAS. We aimed to overcome three of the main
issues found in the domain of SES during the specification of behaviors in MAS.

The first issue is the lack of an accessible language to specify the MAS system’s
dynamics (in that case, the behavior of an agent). Most MAS developers sel-
dom took into consideration what are the terms used by non-programmers and
domains-experts to describe a behavior. To overcome this , we used a meta-
model conception approach, based on the discourse of SES domain-experts.
This discourse was captured by analyzing the semantic structure of a SES mo-
del described in a natural or more formal language. Once understood, that
discourse was used to increase the abstraction level of a meta-model that we
conceptualized

Much of the discourse of SES domain-experts relies on informal definitions
about certain modeling concepts. To overcome this, a modeling language (cal-
led B-reactive) was developed to provide domain-experts with an easier way
to express behaviors in MAS. Based on a previous SES, we were able to pro-
vide a detailed specification of the three conceptual levels that are usually in-
volved in the implementation of a modeling language: the abstract syntax (to
describe what is the dis-course of domain experts), the concrete syntax (to des-
cribe how domain experts express their discourse) and the semantic level (to
describe what the discourse employed by domain experts is about).



114 Chapter 7. General conclusion

From the perspective of choosing MDE to develop an abstract syntax, we chose
the meta-model centered approach. This approach increases the level of ab-
straction of a DSL, but also it is certainly the slowest one. Despite the fact that
the ECore is very similar to UML and that the EMF provides a good set of vi-
sual for modeling an Ecore meta-model, Ecore is just a fraction of the full UML
specification. For that reason, if the complexity level of the DSL increases and
a meta-model approach is chosen, some adaptations to the final Ecore meta-
model will eventually be required. These adaptations include some modifica-
tions in the EMF generator and the addition of some constraints to the Ecore
meta-model that can only be achieved by learning EMF and OCL.

From the perspective of choosing MDE to develop the concrete syntax, our ini-
tial aim was to develop a DSL editor that would be as close as possible to a
natural language. But some grammar rules specified in Xtext had to be very
of-ten changed to fit its modified ANTRL parser. As all EMF frameworks, Xtext
is strongly based on EMF and the grammar should respect some of EMF phi-
losophy. Although EMF is easy to learn, most MDE frameworks require a deep
knowledge of the internals of the EMP and a lot of programing. That was one
of the major constraints of this work, specially in its early stages, when at the
same time the meta-model was being conceptualized and EMF learning was
required.

The second issue is that most programming languages used by MAS plat-forms
to describe the behavior of agents are platform-dependent. This means that
a model specified in one MAS platform cannot be properly used in a second
MAS platform due to the incompatibility of programming languages or tools’
specificities. Hence, a common layer between MAS platforms is necessary. At
the same time, this layer should be easily accessible to domain-experts with
virtually no programming language skills. M2T transformation plays an es-
sential role in building up the interoperability layer between MAS since code-
generation can effectively decrease MAS platform dependence. Nonetheless,
code generation efficiency relies on a deep knowledge of target platforms, spe-
cially when platforms (MAS) specificities and programming languages should
be taken into consideration. For that reason, it is essential to develop a meta-
model with a high-enough level of abstraction to reach this purpose.

The last issue is the lack of a graphical formalism to represent reactive beha-
viors in multi-agent systems. MDE provides a good set of tools in compliance
with most OMG’s standards that are frequently used in the domain of software



7.1. Discussion 115

engineering. There are many tools (graphical and textual) that could be po-
tentially used to translate (or help to formalize) some informal terms used by
domain-experts of SES. Additionally, the developed editor is still built as an
eclipse plug-in. If an RCP (Rich-Client Application) is aimed to be a final DSL
product, dealing with the powerful, but vast EMF is inevitable.

7.1.2 Cyclic approach for developing a DSL

The meta-model provided a sufficient level of abstraction to target other MAS
platforms but, as stated, it significantly reduces the speed of a DSL implementa-
tion. One way to improve this could be the development of quick prototypes of
the concrete syntax, with continuous testing performed with domain experts.
Although the inferred meta-model would be significantly different from the
one we conceived, time constraints did not allow to evaluate whether, in fact, a
gram-mar centric approach could speed up the DSL development process. It is
certain, however, that had prototypes been provided to domain-experts in the
early stages of the DSL, this would have increased DSL feedback , and conse-
quently would have increased the speed of the DSL implementation, regardless
of the chosen approach (grammar or meta-model centred)

Transformations are not always perfect. Best practices are often context depen-
dent - what is optimal in one context may be suboptimal in another. Acceleo
compensates the little freedom in language design by adding rich tooling. In
that sense, perhaps it would be more efficient to perform a model-to-model
transformation before performing model-to-text transformation. More preci-
sely, a desirable scenario would be the porting the meta-models of procedures
and methods into Ecore, perform a M2M transformation from B-reactive model
to Netlogo or Cormas meta-models, and later, apply a M2T transformation.

7.1.3 Evaluation of DSL and simulation of generated code

Model-driven engineering can indeed reduce, but not remove the inherent com-
plexity that exists in software development; Although the proposed language
could provide enough expressibility to implement two SES, there is still much to
be done for improving the syntax of B-reactive language, specially regarding the
set of predefined functions or a mechanism to extend the language. In Cormas
for instance, if we wish to create the location that represents the nearest spatial
entity within a given radius and with no occupant of any kind, we just have to



116 Chapter 7. General conclusion

use the method nearestEmptyLocationWithinRadius. Because B-reactive
language has no equivalent function, the code is manually generated to simu-
late the behavior of function nearestEmptyLocationWithinRadius. The
same happens between Cormas method randomWalkConstrainedBy and B-
reactive’s function selectConditionedLocation. By consequence, the use
of local variables is very often required to reduce expressions into smaller parts,
decreasing the complexity of code generators implementation.

Another aspect is the distinction between the environment and the agents. Alt-
hough these terms are specific to MAS (not SES), the meta-model provided
enough abstraction to separate entities that represent the environment from en-
tities that represent agents. However, the majority of MAS tools apply very
specific functions to agents and to environments. This brings complexity to
code generation since the way that code is generated may drastically change
depending on what type of entity is represented in the model. A possible so-
lution could be to add a distinct representation for Entity and Environment

that would allow a direct mapping between B-Reactive’s Entity into Cormas’
AgentLocation and Netlogo’s turtle. In the same sense, B-Reactive En-

vironment could be easily mapped to Cormas SpaceEntityCell and Net-
logo’s patch.

7.2 Future works

While this thesis has demonstrated the potential of efficiently using MDE to
implement a DSL for SES to facilitate the modeling of reactive behavior in MAS,
many opportunities for extending the scope of this thesis remain. This section
presents some of these directions, which include:

• The improvement of the meta-model to support other types of equation
and formalisms to describe a given behavior. Although non-programmers
might not be familiar with some formalisms such as logistic regression and
differential equation, researchers would likely appreciate the possibility to
describe MAS behaviors using other types of equations. Moreover, new
types of formalisms (such as DEVS, CSP, Z, etc) could also be included in
the meta-model, thus increasing the flexibility of code generation to MAS
platforms (such as MIMOSa) that are based on such formalisms. Finally,
with new elements that cover most of the MAS platforms, the meta-model



7.2. Future works 117

could be refined to support code generation to a third MAS plat-form,
such as GAMA.

• The addition of other validation rules can help to ensure the validity of a
model and could prevent the generation of erroneous codes. With the spe-
cification of more complex behaviors, validation rules may provide some
semantic checks even if the compiler does not find any compile-time er-
rors. By using the quick fix mechanisms provided by Xtend, the user can
easily make a suggestion to fix an error, reducing the possibility of syntax
and semantic errors.

• The implementation of a graphic editor to represent some elements of acti-
vity diagrams to improve the modeling process. With a graphical editor,
behaviors expressed as activity behaviors or activity diagram behaviors
would be easily expressed by non-programmers. However, certain as-
pects (such as equations) are not as efficiently represented with graphical
icons. But this could be easily overcome through the development of edi-
tors combining both graphical and textual representation of behaviors.

• Model point-of-view capabilities should be incorporate-rated to B-Reactive.
Although we provide a very limited code-generation of point-of-views
during Cormas code generation, B-Reactive was not initially conceived to
describe MAS point-of-views. Point-of-views are very useful and are an
essential aspect of MAS M&S because they allow a user to choose what he
wishes to observe during simulation (e.g. the value of an attribute or the
population of an agent over time). Ideally, a new layer (abstract syntax)
for point-of-view specification should be designed along with a concrete
syntax to be incorporated to B-Reactive language.

• The realization of tests of our proposed DSL during participatory mo-
deling workshops. Due to time limitations, we were not able to effectively
test our language in a real-case scenario. Even though the B-reactive lan-
guage is still a prototype, B-Reactive can be improved trough the feedback
of domain experts. This feedback can be captured in such events as trai-
ning sessions and workshops, where the needs of domain experts during
model and simulation stages are more easily identified.



118 Chapter 7. General conclusion

7.3 Conclusion

B-reactive is a prototype of DSL to model reactive behaviors on MAS. Built with
MDE tools, the language aims at enhancing the level of participation of SES
domain-experts with no programming skills. Additionally, the language was
conceived by applying a meta-model approach that aimed to decrease MAS
models’ dependence to different platforms. The meta-model served as an inter-
operable layer from which model-to-text transformations can be easily applied
to generate code for various MAS platforms. Meanwhile, B-Reactive represents
the intent to look at a different direction for establishing a modeling environ-
ment (starting with a language) that is truly suited to non-programmers, while ,
providing them at the same time the means to apply their own discourse during
MAS modeling and simulation. While it is true that there is no silver bullet to
overcome MAS model’s complexity, there is much theoretical work to be done
tot address some of the complexities of SES and directly influences the way
DSL are developed. One of these particularities is granularity. This requires the
introduction of a new representation of formalisms and inference mechanisms
such as aggregation and disaggregation. Hence, a large field of research still re-
mains open to SES domain formalization. This work endeavours to be the first
step toward a further understanding of these important issues.



119

Appendix A

SES axmodels in B-Reactive
language

A.1 Implementation of ECEC model in B-Reactive

language

1 Model Ecec {

2

3 Entity Plant {

4 Attributes { biomass: Float }

5 EquationBehaviour grow {

6 Parameters (k : Float,r : Float)

7 Equation {biomass = biomass + r*biomass * (1-biomass/k)}

8 }

9 }

10

11 Entity Forager {

12 Attributes {energy: Float}

13 ActivityBehavior ConsumeEnergy {

14 Parameters (catabolic_rate:Float)

15 Remove catabolic_rate from energy

16 }

17

18 ActivityDiagramBehavior ToMove {

19 let biomassOfPlant <- Plant.biomass of Plant from here

20 let aLocation <- max-one-of [ Plant.biomass,

select-location-from [ neighborhood ] such that (

neighborhood is NOT occupied by (any Forager here) )

union-location (here) ]



120 Appendix A. SES axmodels in B-Reactive language

21 Start -> Decide { if (biomassOfPlant >= ConsumeEnergy.

catabolic_rate) then Move to {aLocation} -> End else Move to

{one-of[ union-location(neighborhood,here) ]} -> End }

22 }

23

24 ActivityBehavior Eat {

25 Parameters ( harvest_rate: Float )

26 let aPlantBiomass <- Plant.biomass of one-of (Plant from

here )

27 Add harvest_rate * aPlantBiomass to Plant.biomass

28 Remove harvest_rate * aPlantBiomass from Plant.biomass

29 }

30

31 ActivityDiagramBehavior ToReproduce {

32 Parameters ( Fertility_Threshold: Float )

33 Start -> Decide { if ( energy >= Fertility_Threshold ) then

Reproduce(1) with energy (50) placed on one-of [neighborhood

] -> Remove 50 from energy -> End

34 }

35 }

36

37 ActivityDiagramBehavior ToDie {

38 Start -> Decide { if ( energy < 0 ) then Die -> End }

39 }

40 }

41

42 Run main as : ActivityDiagramBehavior Main {

43 Start -> Plant.grow ->Forager.ConsumeEnergy -> Forager.Eat ->

Forager.ToMove -> Forager.ToReproduce -> Forager.ToDie ->

End

44 }

45 //---------------------------------------------|

46 // INITIALIZATION |

47 //---------------------------------------------|

48 //------------Space init---------------------

49 Create Forager 10 as Restrained{

50 each Forager {

51 position = one-of [ grid of Plant ]

52 Forager.ConsumeEnergy.catabolic_rate := 2

53 Forager.Eat.harvest_rate := 0.5

54 Forager.energy := 50



A.1. Implementation of ECEC model in B-Reactive language 121

55 Forager.ToReproduce.Fertility_Threshold := 100

56 }

57 }

58

59 Create Forager 10 as Unrestrained {

60 each Forager {

61 position = one-of [ grid of Plant ]

62 Forager.ConsumeEnergy.catabolic_rate := 2

63 Forager.Eat.harvest_rate := 0.9

64 Forager.energy := 50

65 Forager.ToReproduce.Fertility_Threshold := 100

66 }

67 }

68 //-----------Entity init-------------------

69 Create grid of Plant (20,20) {

70 each Plant {

71 Plant.grow.k := 10

72 Plant.grow.r := 0.2

73 Plant.biomass := random-float (Plant.grow.k)

74 }

75 }

76 }



122 Appendix A. SES axmodels in B-Reactive language

A.2 Implementation of prison rebellion model B-Reactive

language

1 Model AgentsAndCops {

2

3 Entity agent {

4 Attributes {

5 active : Boolean ,

6 movement:Boolean,

7 jailterm : Int,

8 arrestProbability : Float,grievance : Float,

9 riskAversion:Float,

10 perceivedhardship : Float,

11 governmentlegitimacy:Float

12 }

13

14 EquationBehaviour estimateArrestProbability {

15 Parameters (k : Float )

16 let c <- count ( cop neighborhood )

17 let a <- count ( agent neighborhood having ( get active

true ) )

18 Equation {

19 arrestProbability = 1 - ( exp ( - k * ( floor ( c / (a+1) )

) ) )

20 }

21 }

22

23 ActivityDiagramBehavior DetermineBehavior {

24 let test <- grievance - riskAversion * arrestProbability

25 Start -> Decide { if ( test > cop.enforce.threshold ) then

26 Set active := true else

27 Set active := false -> End

28 }

29 }

30

31 ActivityDiagramBehavior MoveAgent {

32 let targets <- select a location from [ neighborhood ]such

that ( neighborhood is NOT occupied by ( any cop here ) )

AND ( all agent on here has jailterm > 0 )



A.2. Implementation of prison rebellion model B-Reactive language 123

33 let numtargets <- count ( targets )

34 Start -> Decide { if ( numtargets >= 1) then

35 Move to { one-of [ targets ] } -> End }

36 }

37

38 ActivityDiagramBehavior ReduceJailTerm {

39 Start -> Decide { if ( jailterm > 1 ) then

40 Remove 1 from jailterm -> End }

41 }

42

43 }

44

45 Entity cop {

46

47 ActivityDiagramBehavior enforce {

48 Parameters ( maxJailTerm : Float,threshold : Float )

49 let suspect <- one-of (agent from neighborhood having ((get

agent.active true )))

50 let numsuspect <- count (suspect)

51 Start -> Decide { if ( numsuspect > 0 ) then

52 Set agent.active := false -> Set agent.jailterm :=

random-int ( maxJailTerm ) -> Move to { one-of [suspect] }

-> End

53 }

54 }

55

56 ActivityDiagramBehavior MoveCops {

57 let targets <- select a location from [ neighborhood ]such

that (neighborhood is NOT occupied by ( any cop here ) )

AND( all agent on here has agent.jailterm > 0)

58 let numtargets <- count ( targets )

59 Start -> Decide { if ( numtargets >= 1) then

60 Move to { one-of [ targets ] } -> End }

61 }

62 }

63

64 Entity cell {}

65

66 Run main as : ActivityDiagramBehavior MainAgentsAndCops {

67



124 Appendix A. SES axmodels in B-Reactive language

68 Start -> agent.estimateArrestProbability -> agent.MoveAgent

-> agent.DetermineBehavior -> agent.ReduceJailTerm -> cop.

MoveCops -> cop.enforce -> End

69 }

70 Create agent 20 as prisonerAgent {

71 each agent {

72 position = one-of [ select a location from [ grid ]

73 such that (grid is NOT occupied by ( any agent here , any

cop here )) ]

74 agent.riskAversion := 1.0

75 agent.perceivedhardship := 1.0

76 agent.jailterm := 0

77 agent.governmentlegitimacy := 0.83

78 agent.active := false

79 agent.estimateArrestProbability.k := 2.3

80 cop.enforce.threshold := 0.1

81 agent.grievance := agent.perceivedhardship * 1 - agent.

governmentlegitimacy

82 }

83 }

84 Create cop 20 as copAgent {

85 each cop {

86 position = one-of [select a location from [ grid ]such that

87 (grid is NOT occupied by ( any agent here , any cop here ) )

]

88 cop.enforce.maxJailTerm := 30

89 }

90 }

91 Create grid of cell (20,20) {

92 each cell { }

93 }

94 }



125

Appendix B

Generated code

B.1 Cormas generated code for ECEC model

Code B.1 – Generated instance-creation method of ECEC model

1 "The init enviromment method"
2 initEnviromment
3 self spaceModel initializeRegularX: 20.0 Y: 20.0 shape: #squared nbNeighbours:

#eight boundaries: #toroidal
4 self thePlants do: [: cell | cell initRandomBiomass].
5 self initAgents
6
7 "The init agents method"
8 initAgents
9 self createN: self restrainedInitialNumber randomlyLocatedAloneEntities:

Restrained
10 self createN: self unrestrainedInitialNumber randomlyLocatedAloneEntities:

Unrestrained
11
12 "The toEat agents method"
13 toEat
14 |aPlantBiomass |
15 aPlantBiomass := self patch neighboursMaxOf biomass
16 self energy: self energy + self harvest_rate ∗ aplantbiomass
17 self biomass: self biomass − harvest_rate ∗aplantbiomass
18
19 "The ToMove method"
20 toMove
21 |aLocalVariable biomassOfPlant aLocation |
22 aLocation := self patch neighbourhoodAndSelf select : [cell : | cell biomass &gt;

self class catabolicRate and :[ cell noOccupant]]
23 biomassOfPlant := self patch neighboursMaxOf biomass
24 self biomassofplant >= catabolicRate
25 ifTrue : [ self moveTo: alocation]



126 Appendix B. Generated code

26 ifFalse : [ self moveTo: (biomassOfPlant asSortedCollection:[:c1 :c2 |biomass &gt
; c2 biomass]) first ]

27
28 "The ToReproduce method"
29 self energy >= fertility_threshold
30 ifTrue : [newborn:= self createN: 1 entity : Forager initMethod: #initEnergy.
31 newborn randomWalkConstrainedBy [:c | c noOccupant]
32 self energy:= energy − 50]
33
34 "The ToDie method"
35 ToDie
36 self energy < 0.0
37 ifTrue : [ self dead: true]
38
39 "The toGrow method"
40 toGrow
41 self biomass biomass + r ∗ biomass ∗ 1.0 − biomass /k

B.2 Cormas generated code for Prison rebellion mo-

del

Code B.2 – Generated code for die behavior of ECEC model

1 "The estimateArrestProbability method"
2 estimateArrestProbability
3 |c a aPerceived|
4 c:= size perceivedEntities : Cop withinRange: 1.
5 aPerceived:= size perceivedEntities : Agent withinRange: 1
6 a:= size select : [: aPerceived | aPerceived #active:true ]
7 self arrestprobability 1.0 − (−k ∗(c /a +1.0 ) floor ) exp
8
9 "The DetermineBehavior method"

10 determineBehavior
11 | test riskaversion arrestprobability |
12 test := grievance − riskaversion ∗ arrestprobability
13 self test > threshold
14 ifTrue : [ self active : true ]
15 ilFalse : [ self active : false ]
16
17 "The enforce method"
18 enforce
19 |suspect numsuspect|
20 suspect perceivedEntities: agent withinRange: 1 select :[: active | active:= true]



B.3. Netlogo generated code for ECEC model 127

21 numsuspect := size self suspect
22 self numsuspect > 0.0
23 ifTrue : [ self active false .
24 self jailterm := Cormas random < self maxjailterm.
25 moveTo: Cormas selectRandomlyFrom: self suspect.]

B.3 Netlogo generated code for ECEC model

Code B.3 – Netlogo generated code for ECEC model

1 breed[plants plant ]
2 breed[foragers forager]
3 foragers−own [ fertility_threshold catabolic_rate harvest_rate energy ]
4 plants−own [k r biomass ]
5 to setup
6 clear−all
7 setup−plants
8 setup−foragers
9 reset−ticks

10 ;; TODO should be implemented
11 end
12 to setup−foragers
13 ;; Start of user code Forager
14 ;; TODO should be implemented
15 ;; End of user code
16 create−foragers (10.0) [
17 move−to one−of patches
18 set catabolic_rate 2.0
19 set harvest_rate 0.5
20 set energy 50.0
21 set fertility_threshold 100.0
22 ]
23 create−foragers (10.0) [
24 move−to one−of patches
25 set catabolic_rate 2.0
26 set harvest_rate 0.9
27 set energy 50.0
28 set fertility_threshold 100.0
29 ]
30 end
31 to−report plant−here
32 report one−of plants−here
33 end
34 to setup−plants



128 Appendix B. Generated code

35 resize−world 0 20.0 0 20.0
36 let i 0
37 let j 0
38 repeat 21 [
39 set j 0
40 repeat 21 [
41 create−plants 1[
42 setxy i j
43 set biomass random 1.0
44 set k 10.0
45 set r 0.2
46 set hidden? true
47 ]
48 set j j + 1
49 ]
50 set i i + 1
51 ]
52 end
53 to grow
54 set biomass biomass + r ∗ k + 1.0 − biomass / k
55 end
56 to ConsumeEnergy
57 set energy energy − catabolic_rate
58 end
59 to Eat
60 let aPlantBiomass [biomass] of one−of plant−here
61 set energy energy − harvest_rate ∗ aPlantBiomass
62 set biomass biomass − harvest_rate ∗ aPlantBiomass
63 end
64 to ToMove
65 let aLocalVariable 5.0
66 let biomassOfPlant [biomass] of plant−here
67 let aLocation max−one−of (patch−set (patch−set patch−here ) neighbors with [ not any

? foragers])[[biomass] of plant−here]
68 ifelse biomassOfPlant >= catabolic_rate
69 [move−to aLocation]
70 [move−to one−of neighbors with [ not any? foragers]]
71 end
72 to ToReproduce
73 if Energy >= Fertility_Threshold
74 [hatch−foragers 1.0[ move−to one−of neighbors set energy(50.0) ]]
75 end
76 to ToDie
77 if Energy < 0.0
78 [die]
79 end



B.4. Netlogo generated code for Prison Rebellion model 129

80 to step
81 ConsumeEnergy
82 Eat
83 ToMove
84 ToReproduce
85 ToDie
86 end
87 to go
88 ask turtles [
89 ;; TODO should add activities
90 ]
91 tick
92 end

B.4 Netlogo generated code for Prison Rebellion mo-

del

Code B.4 – Netlogo generated code for ECEC model

1 breed[agents agent]
2 breed[cops cop]
3 breed[cells cell ]
4 agents−own [k arrestprobability jailterm active riskaversion grievance

perceivedhardship governmentlegitimacy]
5 cops−own [maxjailterm threshold]
6 cells−own [surroundinglocation ]
7 to setup
8 clear−all
9 setup−agents

10 setup−cops
11 setup−cells
12 reset−ticks
13 ;; TODO should be implemented
14 end
15 to setup−cops
16 ;; Start of user code cop
17 ;; TODO should be implemented
18 ;; End of user code
19 create−cops (64) [
20 move−to one−of patches with [not any? agents−here] with [ not any? cops−here ]
21 set threshold 0.1
22 set maxjailterm 30
23 set shape "circle "



130 Appendix B. Generated code

24 set color blue
25 ]
26 end
27 to setup−agents
28 ;; Start of user code agent
29 ;; TODO should be implemented
30 ;; End of user code
31 create−agents (80) [
32 move−to one−of patches with [ not any? agents−here] with [ not any? cops−here ]
33 set riskaversion 1.0
34 set perceivedhardship 1.0
35 set governmentlegitimacy 0.83
36 set jailterm 0.0
37 set active false
38 set k 2.3
39 set grievance perceivedhardship ∗ (1 − governmentlegitimacy)
40 ]
41 end
42 to−report cell−here
43 report one−of cells−here
44 end
45 to−report agent−here
46 report one−of agents−here
47 end
48 to−report cop−here
49 report one−of cops−here
50 end
51 to setup−cells
52 resize−world 0 40 0 40
53 let i 0
54 let j 0
55 repeat 41 [
56 set j 0
57 repeat 41 [
58 create−cells 1[
59 setxy i j
60 set hidden? true
61 ]
62 set j j + 1
63 ]
64 set i i + 1
65 ]
66 end
67 to estimatearrestprobability
68 let c count cops−on neighbors
69 let a count agents−here with [active]



B.4. Netlogo generated code for Prison Rebellion model 131

70 set arrestprobability 1 − exp(− k ∗ floor (c / (a + 1.0)) )
71 end
72 to determinebehavior
73 let test grievance − riskaversion ∗ arrestprobability
74 ask cops [
75 ifelse test > threshold
76 [ask agents [ set active true ] ]
77 [ask agents [ set active false ] ]
78 ]
79 ; print active
80 end
81 to moveagent
82 let targets neighbors with [ not any? cops−here and all? agents−here [jailterm > 0]]
83 let numtargets count targets
84 if numtargets >= 1
85 [move−to one−of targets]
86 end
87 to reducejailterm
88 if jailterm > 1.0
89 [set jailterm jailterm − 1.0]
90 end
91 ;; COPS BEHAVIOR
92 to enforce
93 let activeagents (agents−on neighbors) with [active]
94 let numactive count activeagents
95 if numactive >= 1 [
96 ;; arrest suspect
97 let suspect one−of activeagents
98 ask suspect [
99 set active false

100 set jailterm random [maxjailterm] of myself
101 ]
102 move−to suspect ;; move to patch of the jailed agent
103 ]
104 end
105 to movecops
106 let targets neighbors with [ not any? cops−here and all? agents−here [jailterm > 0]]
107 let numtargets count targets
108 if numtargets >= 1
109 [move−to one−of targets]
110 end
111 to go
112 ask patches [
113 ask cells []
114 ]
115 ask agents [



132 Appendix B. Generated code

116 print jailterm
117 estimatearrestprobability
118 ifelse jailterm = 0
119 [ determinebehavior moveagent ]
120 [ reducejailterm]
121 ]
122 ask cops [
123 movecops
124 enforce
125 ]
126 tick
127 end



133

Appendix C

M2T Acceleo templates

C.1 Netlogo M2T templates

Template C.1 – Acceleo file generator template

1 [comment encoding = UTF-8 /]

2 [module generate(’/org.cirad.dsl.behavior.metamodel/model/

metamodel.Ecore’) /]

3 [import org::cirad::dsl::behavior::gen::netlogo::files::

generateNetLogoFile /]

4 [template public generate(m : Model)]

5 [comment @main/]

6 [generateNetLogoFile(m)/]

7 [/template]

Template C.2 – Acceleo file generator template for Netlogo code generation

1 [comment encoding = UTF-8 /]

2 [module generateNetLogoFile(’/org.cirad.dsl.behavior.

metamodel/model/metamodel.Ecore’) /]

3 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateTurtlesAndBreed/]

4 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateSetup/]

5 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateToGo/]

6 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateBehaviors/]

7 [template public generateNetLogoFile(m : Model)]

8 [file(’generated_’.concat(m.name).concat(’.nlogo’), false, ’

UTF-8’)]

9 [generateBreed(m)/]

10 [generateTurtlesOwn(m)/] [generatePatchesOwn(m)/]

11 [generateSetup(m)/]

12 [generateBehaviors(m)/]



134 Appendix C. M2T Acceleo templates

13 [generateToGo(m)/]

14 [/file]

15 [/template]

Template C.3 – Breed, patch and turtles declaration

1 [comment encoding = UTF-8 /]

2 [module generateTurtlesAndBreed(’/org.cirad.dsl.behavior.

metamodel/model/metamodel.Ecore’)]

3 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateExpressions]

4 [template public generateBreed(aModel : Model)]

5 [for (anEntity:Entity | aModel.entities)]

6 breed[’[’/][anEntity.name.toLowerCase()/]s [anEntity.name.

toLowerCase()/][’]’/]

7 [/for]

8 [/template]

9 [template public generateTurtlesOwn(aModel : Model) ]

10 [for (initEnt : Entity | aModel.eAllContents(InitEntity).

entity->asSet())]

11 [initEnt.name.toLower()/]s-own [’[’ /][initEnt.behavior.

parameters.generateArithimeticExpressions().toLower()->

asSet().concat(’ ’)/][initEnt.attributes.

generateArithimeticExpressions().toLower()->asSet().

concat(’’)/][ ’]’ /]

12 [/for]

13 [/template]

14 [template public generatePatchesOwn(aModel : Model) ]

15 [for (initSpaceEntity: Entity | aModel.eAllContents(

InitSpace).entity->asSet())]

16 [initSpaceEntity.name.toLower()/]s-own [’[’ /][

initSpaceEntity.behavior.parameters.

generateArithimeticExpressions().toLower()->asSet().

concat(’ ’)/][initSpaceEntity.attributes.

generateArithimeticExpressions().toLower()->asSet().

concat(’ ’)/][ ’]’ /]

17 [/for]

18 [/template]

Template C.4 – Code generation for turtles setup

1 [template public generateSetup(aModel : Model)]

2 to setup

3 clear-all

4 [for (anEntity:Entity | aModel.entities)]

5 setup-[anEntity.name.toLower()/]s

6 [/for]



C.1. Netlogo M2T templates 135

7 reset-ticks

8 ;;TODO should be implemented

9 end

10 [for (anInitEntity:InitEntity | aModel.eAllContents(

InitEntity)->asSet()) separator (’\n’)]

11 to setup-[anInitEntity.entity.name.toLowerCase()/]s

12 ;;[protected (anInitEntity.entity.name)]

13 ;;TODO should be implemented

14 ;;[/protected]

15 create-[anInitEntity.entity.name.toLower()/]s ([aModel.

eContents(InitEntity).initFunctionCall.oclAsType(

FunctionCallExpression).arguments->last().

generateArithimeticExpressions()/]) [ ’[’ /]

16 move-to [aModel.eContents(InitEntity)->first().

initialLocation.generateLocationFunctionCallExpression()

->asSet()/]

17 [for (anAssignement:Assignment | anInitEntity.eAllContents(

Assignment))]

18 set [anAssignement.variable.generateArithimeticExpressions()

.toString().toLower()/] [anAssignement.expression.

generateFunctionCallExpressions()/]

19 [/for]

20 [ ’]’ /]

21 end

22 [/for]

23 [for (entities : Entity | aModel.eAllContents(Entity))]

24 to-report [entities.name.toLower()/]-here

25 report one-of [entities.name.toLower()/]s-here

26 end

27 [/for]

Template C.5 – Code generation for environment setup

28 [for (anInitSpace:InitSpace|aModel.eAllContents(InitSpace))]

29 to setup-[anInitSpace.entity.name.toLower()/]s

30 [if (anInitSpace.initFunctionCall.eContents(NamedFunction).

name->first() = ’Create grid’)]

31 resize-world 0 [anInitSpace.initFunctionCall.oclAsType(

FunctionCallExpression).arguments->at(2).

generateArithimeticExpressions()/] 0 [anInitSpace.

initFunctionCall.oclAsType(FunctionCallExpression).

arguments->at(3).generateArithimeticExpressions()/]

32 let i 0

33 let j 0



136 Appendix C. M2T Acceleo templates

34 repeat [anInitSpace.initFunctionCall.oclAsType(

FunctionCallExpression).arguments->at(2).

generateArithimeticExpressions().toReal().round() + 1 /]

[’[’/]

35 set j 0

36 repeat [anInitSpace.initFunctionCall.oclAsType(

FunctionCallExpression).arguments->at(2).

generateArithimeticExpressions().toReal().round() + 1/] [

’[’/]

37 create-[anInitSpace.entity.name.toLower()/]s 1[’[’/]

38 setxy i j

39 [for (anAssignement:Assignment | anInitSpace.eAllContents(

Assignment))]

40 set [anAssignement.variable.generateArithimeticExpressions()

/] [anAssignement.expression.

generateFunctionCallExpressions()/]

41 [/for]

42 set hidden? true

43 [’]’/]

44 set j j + 1

45 [’]’/]

46 set i i + 1

47 [’]’/]

48 [/if]

49 end

50 [/for]

51 [/template]

Template C.6 – Behavior

1 [module generateBehaviors(’/org.cirad.dsl.behavior.metamodel

/model/metamodel.Ecore’)]

2 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateExpressions/]

3 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateEquations]

4 [import org::cirad::dsl::behavior::gen::netlogo::commmon::

generateNodesAndEdges /]

5 [template public generateBehaviors(aModel : Model)]

6 [generateEquationBehaviors(aModel)/]

7 [generateActivityBehavior(aModel)/]

8 [generateActivityDiagramBehavior(aModel)/]

9 [/template]

Template C.7 – Transformation of Equation Behaviors into Netlogo procedures

1 [template public generateEquationBehaviors (aModel:Model)]



C.1. Netlogo M2T templates 137

2 [for (anEquationBehavior : EquationBehavior | aModel.

eAllContents(Entity).eAllContents(EquationBehavior))]

3 to [anEquationBehavior.name.toLower()/]

4 [for (aLocalVariable : LocalVariable | anEquationBehavior.

eAllContents(LocalVariable)) separator(’\n’)]

5 let [aLocalVariable.generateArithimeticExpressions()/] [

aLocalVariable.expression.generateFunctionCallExpressions

()/]

6 [/for]

7 [generateEquation(anEquationBehavior.equation)/]

8 end

9 [/for]

10 [/template]

Template C.8 – Transformation of Acvitity Behaviors into Netlogo procedures

1 [template public generateActivityBehavior (aModel:Model)]

2 [for (activityB:ActivityBehavior | aModel.eAllContents(

Entity).eAllContents(ActivityBehavior))]

3 to [activityB.name.toLower()/]

4 [for (aLocalVariable : LocalVariable | activityB.

eAllContents(LocalVariable)) separator(’\n’)]

5 let [aLocalVariable.generateArithimeticExpressions()/] [

aLocalVariable.expression.generateFunctionCallExpressions

()/]

6 [/for]

7 [for (aPrimitiveActivity: PrimitiveActivities | activityB.

eAllContents(PrimitiveActivities))] [aPrimitiveActivity.

generatePrimitiveActivities()/]

8 [/for]

9 end

10 [/for]

11 [/template]

Template C.9 – Netlogo code generation into primitive activities

1 [template public generateAddNode(anAddNode : Add) post (

replaceAll(’\n’, ’’).trim())]

2 set [anAddNode.toAttribute.generateArithimeticExpressions().

toLower()/] [anAddNode.toAttribute.

generateArithimeticExpressions().toString().toLower()/] -

[anAddNode.expression.generateArithimeticExpressions().

toLower()/]

3 [/template]

4 [template public generateRemoveNode(aRemoveNode : Remove)

post (replaceAll(’\n’,’’).trim())]



138 Appendix C. M2T Acceleo templates

5 set [aRemoveNode.from.generateArithimeticExpressions().

toLower()/] [aRemoveNode.from.

generateArithimeticExpressions().toLower()/] - [

aRemoveNode.expression.generateArithimeticExpressions().

toLower()/]

6 [/template]

7 [template public generateSetVariableNode(aSetNode :

SetVariable)post (replaceAll(’\n’, ’’).trim())]

8 set [aSetNode.assignment.variable.

generateArithimeticExpressions()/] [aSetNode.assignment.

expression.generateFunctionCallExpressions()/]

9 [aSetNode.outcome_edge.generateEdges()/]

10 [/template]

11 [template public generateDieNode(aDieNode : Die)]

12 die

13 [/template]

14 [template public generateMoveNode(aMoveNode : Move)]

15 move-to [aMoveNode.locationexpression.

generateFunctionCallExpressions()/]

16 [/template]

17 [template public generateReproduceNode(aReproduceNode :

Reproduce) post (replaceAll(’\n’, ’’).trim())]

18 hatch-[aReproduceNode.ancestors(Entity).name.toLower()/]s [

aReproduceNode.offspring_quantity.

generateArithimeticExpressions()/][’[’/] move-to [

aReproduceNode.initial_location.

generateFunctionCallExpressions()/]

19 set [aReproduceNode.declaredattributes.oclAsType(

FunctionCallExpression).arguments->at(1).

generateArithimeticExpressions().toLower()/]([

aReproduceNode.declaredattributes.oclAsType(

FunctionCallExpression).arguments->at(2).

generateArithimeticExpressions().toLower()/]) [’]’/]

20 [aReproduceNode.outcome_edge.generateEdges()/]

21 [/template]

Template C.10 – Mapping Acvitity Diagram Behaviors into Netlogo procedures

1 [template public generateActivityDiagramBehavior (aModel:

Model) ]

2 [for (activityDB:ActivityDiagramBehavior | aModel.

eAllContents(Entity).eAllContents(ActivityDiagramBehavior

))]

3 to [activityDB.name.toLower()/]

4 [for (aLocalVariable : LocalVariable | activityDB.

eAllContents(LocalVariable)) separator(’\n’)]



C.1. Netlogo M2T templates 139

5 let [aLocalVariable.generateArithimeticExpressions()/] [

aLocalVariable.expression.generateFunctionCallExpressions

()/]

6 [/for]

7 [activityDB.start.generateControlNodes()/]

8 end

9 [/for]

10 [/template]

Template C.11 – The go procedure

1 [template public generateToGo(aModel:Model) ]

2 to go

3 [for (aPatch : Entity | aModel.eAllContents(InitSpace).

entity)]

4 ask patches [ ’[’ /]

5 ask [aPatch.name.toLower()/]s[ ’[’ /]

6 [for (aNode : Node | aModel.mainBehavior.eAllContents(Node)

->asSequence())]

7 [if (aNode.oclIsTypeOf(DeclaredBehavior) and not aPatch.

eAllContents(Behavior)->indexOf(aNode.oclAsType(

DeclaredBehavior).behavior).oclIsUndefined() )]

8 [aNode.oclAsType(DeclaredBehavior).behavior.name.toLower()/]

[’]’/]

9 [/if]

10 [/for]

11 [ ’]’ /]

12 [/for]

13 [for (anInitEntity : Entity | aModel.eAllContents(InitEntity

).entity->asSet())]

14 ask [anInitEntity.name.toLower()/]s [’[’/]

15 [for (aNode : Node | aModel.mainBehavior.eAllContents(Node)

->asSequence())]

16 [if (aNode.oclIsTypeOf(DeclaredBehavior) and not

anInitEntity.eAllContents(Behavior)->indexOf(aNode.

oclAsType(DeclaredBehavior).behavior).oclIsUndefined())]

17 [aNode.oclAsType(DeclaredBehavior).behavior.name.toLower()/]

18 [/if]

19 [/for]

20 [’]’/]

21 [/for]

22 tick

23 end

24 [/template]



140 Appendix C. M2T Acceleo templates

C.2 Cormas M2T templates

Template C.12 – Cormas classes generation

1 [comment Instances of all AgentLocation classes /]

2 [for (initSuperClass : Entity | m.eAllContents(InitEntity).

entity->asSet())]

3 <class>

4 <Name>[initSuperClass.name.toUpperFirst()/]</Name>

5 <environment>CormasNS.Models.[m.name.toUpper()/]</

environment>

6 <super>CormasNS.Kernel.AgentLocation</super>

7 <private>false</private>

8 <indexed-type>none</indexed-type>

9 <inst-vars>[for (att : AttributeClass | initSuperClass.

attributes))][att.name.toLower()/] [/for]</inst-vars>

10 <class-inst-vars>[for (par : ParameterClass | initSuperClass

.behavior.parameters)][par.name.toLower()/] [/for]</class

-inst-vars>

11 <imports></imports>

12 <category>[m.name.toUpper()/]Category</category>

13 <attributes>

14 <package>[m.name.toUpper()/]</package>

15 </attributes>

16 </class>

17 [/for]

18 [comment Instances of SpatialEntityCell /]

19 [for (initSpace : InitSpace | m.eAllContents(InitSpace))]

20 <class>

21 <Name>[initSpace.entity.name.toUpperFirst()/]</Name>

22 <environment>CormasNS.Models.[m.name.toUpper()/]</

environment>

23 <super>CormasNS.Kernel.SpatialEntityCell</super>

24 <private>false</private>

25 <indexed-type>none</indexed-type>

26 <inst-vars>[for (att : AttributeClass | initSpace.

eAllContents(Assignment).variable->selectByKind(

AttributeClass))][att.name.toLower()/] [/for]</inst-vars>

27 <class-inst-vars>[for (par : ParameterClass | initSpace.

eAllContents(Assignment).variable->selectByKind(

ParameterClass))][par.name.toLower()/] [/for]</class-inst

-vars>

28 <imports></imports>

29 <category>[m.name.toUpper()/]Category</category>

30 <attributes>

31 <package>[m.name.toUpper()/]</package>



C.2. Cormas M2T templates 141

32 </attributes>

33 </class>

34 [/for]

35 <class>

36 <name>[m.name/]</name>

37 <environment>CormasNS.Models.[m.name.toUpper()/]</

environment>

38 <super>CormasNS.Kernel.CormasModel</super>

39 <private>false</private>

40 <indexed-type>none</indexed-type>

41 <inst-vars>[for (initEntity : InitEntity | m.eAllContents(

InitEntity))]the[initEntity.initName.toUpperFirst()/]s [

initEntity.initName.toLower()/]InitialNumber [/for] [for

(initSpace : InitSpace | m.eAllContents(InitSpace))]the[

initSpace.entity.name.toUpperFirst()/]s[/for]</inst-vars>

42 <class-inst-vars></class-inst-vars>

43 <imports></imports>

44 <category>[m.name.toUpper()/]Category</category>

45 <attributes>

46 <package>[m.name.toUpper()/]</package>

47 </attributes>

Template C.13 – Code generation for accessing protocol methods in Cormas

1 [template public generateAccessingMainClass(m : Model)]

2 <methods>

3 <class-id>CormasNS.Models.[m.name.toUpper()/].[m.name.

toUpper()/]</class-id> <category>accessing</category>

4 [for (create : InitEntity | m.eAllContents(InitEntity)->

asSet())]

5 <body package="[m.name.toUpper()/]" selector="the[entities.

name.toUpperFirst()/]">the[m.entities.name.toUpperFirst()

/]s

6 ^self allTheEntities: [entities.name.toUpperFirst()/]

7 </body>

8
9 <body package="[m.name.toUpper()/]" selector="the[create.

initName.toLowerFirst()/]s">the[create.initName/]s

10 ^the[create.initName/]s ifNil:[’[’/]the[create.initName/]s

:= IndexedSet new[’]’/]

11 </body>

12
13 <body package="[m.name.toUpper()/]" selector=’[create.

initName/]InitialNumber">[create.initName/]InitialNumber



142 Appendix C. M2T Acceleo templates

14 ^[create.initName/]InitialNumber : ifNil:[’[’/][create.

initName/]InitialNumber := [create.initFunctionCall.

oclAsType(FunctionCallExpression).

generateInitialAgentNumbers()/][ ’]’ /]

15 </body>

16
17 <body package="[m.name.toUpper()/]" selector="[create.

initName.toLowerFirst()/]InitialNumber">[create.initName.

toLowerFirst()/]

18 InitialNumber: anObject[create.initName/]InitialNumber :=

anObject

19 </body>

20 [/for]

21 </methods>

22 [/template]

Template C.14 – Methods code generation for the instance-creation protocol

1 [template public generateInstanceCreationMainClass(model :

Model)]

2 <methods>

3 <class-id>CormasNS.Models.[model.name/].[model.name/]</class

-id>

4 <category>instance-creation</category>

5 <body package="[model.name/]"selector="homogeneousEnv2">

6 homogeneousEnv2

7 self spaceModel initializeRegularX: [model.eAllContents(

InitSpace).initFunctionCall.oclAsType(

FunctionCallExpression).arguments->at(2).

generateArithimeticExpressions()/] Y: [model.eAllContents

(InitSpace).initFunctionCall.oclAsType(

FunctionCallExpression).arguments->at(3).

generateArithimeticExpressions()/] shape: #squared

nbNeighbours: #eight boundaries: #toroidal.

8 [for (assign : Assignment | model.eAllContents(InitSpace).

assingnments)]

9 [if (assign.variable.variableclass.oclIsTypeOf(

AttributeClass))]

10 self the[model.eAllContents(InitSpace).entity.name/]s do:[

’[’/]: cell | cell init[assign.variable.variableclass.

generateArithimeticExpressions().toUpperFirst()/][’]’/].

11 [/if]

12 [/for]

13 self initAgents

14 </body>

15 <body package="[model.name/]" selector="initAgents">

16 initAgents



C.2. Cormas M2T templates 143

17 [for (initEntity : InitEntity | model.eAllContents(

InitEntity))]

18 [if (initEntity.initName.oclIsUndefined())]

19 self createN: self [initEntity.entity.name.toLower()/]

InitialNumber

20 randomlyLocatedAloneEntities[initEntity.entity.name.

toUpperFirst()/][else]

21 self createN: self [initEntity.initName.toLower()/]

InitialNumber randomlyLocatedAloneEntities:[initEntity.

initName.toUpperFirst()/]

22 [/if]

23 [/for]

24 </body>

25 </methods>

26 [/template]

Template C.15 – Methods code generation for the init protocol

1 [template public generateInitMainClass(model : Model)]

2 <methods>

3 <class-id>CormasNS.Models.[model.name/].[model.name/]</class

-id> <category>init</category>

4 <body package="[model.name/]" selector="noAgents">noAgents

5 self spaceModel loadEnvironmentFromFile: ’poor.env’

6 </body>

7 <body package="[model.name/]" selector="homogeneousEnv">

homogeneousEnv

8 self spaceModel loadEnvironmentFromFile: ’poor.env’.

9 self initAgents

10 </body>

11 <body package="[model.name/]" selector="fragmentedEnv">

fragmentedEnv

12 self spaceModel loadEnvironmentFromFile: ’fragmented.env’.

13 self initAgents

14 </body>

15 </methods>

16 [/template]

Template C.16 – Method code generation for the control protocol

1 [template public generateControlMainClass(model : Model)]

2 <methods>

3 <class-id>CormasNS.Models.[model.name/].[model.name/]</class

-id> <category>control</category>

4 <body package="[model.name/]" selector="step">

5 step: t



144 Appendix C. M2T Acceleo templates

6 [for (initSpace : InitSpace | model.eAllContents(InitSpace))

]

7 self stepEntities: self the[initSpace.initFunctionCall.

oclAsType(FunctionCallExpression).arguments->first().

generateArithimeticExpressions().toUpperFirst()/]s.

8 [/for]

9 [for (initEntity : InitEntity | model.eContents(InitEntity)

->asSet())]

10 self askRandom: [initEntity.initFunctionCall.oclAsType(

FunctionCallExpression).arguments->first().

generateArithimeticExpressions().toUpperFirst()/] toDo: #

step

11 </body>

12 [/for]

13 </methods>

14 [/template]

Template C.17 – Methods code generation for the probes protocol

1 [template public generateProbesMainClass(model : Model)]

2 <methods>

3 <class-id>CormasNS.Models.[model.name.toUpper()/].[model.

name.toUpper()/]</class-id> <category>probes</category>

4 [for (initEntity : InitEntity | model.eAllContents(

InitEntity)->asSet())]

5 <body package="[model.name.toUpper()/]" selector="[

initEntity.initName.toLower()/]Size">[initEntity.initName

/]Size

6 ^self the[initEntity.initName.toUpperFirst()/]s size</body>

7 [/for]

8 [for (initSpace : InitSpace | model.eAllContents(InitSpace)

->asSet())]

9 [for (att : AttributeClass | initSpace.entity.attributes)]

10 <body package="[model.name.toUpper()/]" selector="[initSpace

.entity.name.toLower()/][att.name.toUpperFirst()/]">[

initSpace.entity.name.toLower()/][att.name.toUpperFirst()

/]

11 ^self the[initSpace.entity.name.toUpperFirst()/]s size

12 </body>

13 [/for]

14 [/for]

15 </methods>

16 [/template]

Template C.18 – Model behaviors for custom protocols

1 [template public generateCustomProtocol(m : Model)]



C.2. Cormas M2T templates 145

2 <methods>

3 <class-id>CormasNS.Models.[m.name.toLower()/].[m.eContents(

Entity).name.toLower()/]</class-id> <category>

GeneratedProtocol</category>

4 [for (be : Behavior | m.eAllContents(Behavior))]

5 <body package="[m.name.toLower()/]" selector="[be.name.

toLower()/]">[be.name.toLower()/]

6 </body>

7 [/for]

8 </methods>

9 [/template]





147

Bibliography

Andersen, David F. et al. (2007). “Group Model Building: Problem Structing,
Policy Simulation and Decision Support”. In: The Journal of the Operational
Research Society 58.5, pp. 691–694.

Anderson, J (1996). “A simple theory of complex cognition”. In: American Psy-
chologist 51.4, pp. 355–365.

Anderson, J R (1983). The Architecture of Cognition. Harvard University Press.

Andova, Suzana, Mark G J Van Den Brand, and Luc Engelen (2012). “Reusable
and correct endogenous model transformations”. In: Lecture Notes in Compu-
ter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 7307 LNCS. Springer Berlin Heidelberg, pp. 72–
88.

Aubert, Sigrid and Jean-Pierre Müller (2013). “Incorporating institutions, norms
and territories in a generic model to simulate the management of renewable
resources”. In: Artificial Intelligence and Law 21.1, pp. 47–78.

Aubert, Sigrid, Jean-Pierre Müller, and Julliard Ralihalizara (2010). “MIRANA:
a socio-ecological model for assessing sustainability of community-based re-
gulations”. In: International Congress on Environmental Modelling and Software,
p. 9.

Bandini, Stefania, Sara Manzoni, and G Vizzari (2009). “Agent Based Modeling
and Simulation : An Informatics Perspective”. en. In: Journal of Artificial Socie-
ties and Social Simulation 12.4, p. 4.

Barendrecht, P.J. (2010). Modeling transformations using QVT Operational Map-
pings. Tech. rep. Eindhoven University of Technology, p. 47.

Barreteau, O., F. Bousquet, and J.-M. Attonaty (2000). Role-playing games for ope-
ning the black box of multi-agent systems: method and lessons of its application to
Senegal River. en. (Last accessed: 05/16/2014).



148 BIBLIOGRAPHY

Benjamin, D Paul, Pace Plaza, and New York (2001). “ADAPT : A Cognitive
Architecture for Robotics An Implementation of ADAPT”. In: Forum American
Bar Association, pp. 337–338.

Beydeda, Sami, Matthias Book, and Volker Gruhn (2005). Model-driven software
development. Ed. by Sami Beydeda, Matthias Book, and Volker Gruhn. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 1–464.

Blackwell, Alan F. (2001). “Introduction: Thinking with diagrams”. en. In: Arti-
ficial Intelligence Review 15.1-2. Ed. by Alan F. Blackwell, pp. 1–3.

Bommel, Pierre and Francisco Dieguez (2011). “One more step towards partici-
patory modeling: Involving local stakeholders in designing scientific models
for participative foresight studies”. In: Proceedings of the 2011 European Social
Simulation Association Conference, pp. 19–23.

Bommel, Pierre, Francisco Dieguez, et al. (2014). “A further step towards parti-
cipatory modelling. fostering stakeholder involvement in designing models
by using executable UML”. In: JASSS 17.1, p. 6.

Borshchev, Andrei (2007). “Multi-Method Simulation Modeling using AnyLo-
gic This presentation . . . ” In:

Bousquet, François et al. (1998). “Cormas : Common-Pool Resources and Multi-
agent Systems”. In: Tasks and Methods in Applied Artificial Intelligence 1416.De-
cember, pp. 826–837.

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2012). Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool, pp. 182–.

Cabot, Jordi (2009). Model-based Engineering vs Model-Driven Engineering. URL:
http://modeling-languages.com/model-based-engineering-

vs-model-driven-engineering-2/ (Last accessed: 05/19/2016).

Cardwell, Hal, Stacy Langsdale, and Kurt Stephenson (2009). The Shared Vision
Planning Primer : How to incorporate. English. Tech. rep. January, pp. 11–38.

Challenger, Moharram et al. (2014). “On the use of a domain-specific modeling
language in the development of multiagent systems”. In: Engineering Applica-
tions of Artificial Intelligence 28, pp. 111–141.

Chu, Thanh Quang et al. (2012). “Towards a methodology for the participatory
design of agent-based models”. In: Lecture Notes in Computer Science (including

http://modeling-languages.com/model-based-engineering-vs-model-driven-engineering-2/
http://modeling-languages.com/model-based-engineering-vs-model-driven-engineering-2/


BIBLIOGRAPHY 149

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinforma-
tics) 7057 LNAI, pp. 428–442.

D’Aquino, Patrick et al. (2002). “The Role Playing Games in an ABM participa-
tory modeling process: outcomes from five different experiments carried out
in the last five years”. In: Integrated Assessment and Decision Support,1st Bien-
nial Meeting of the International Environmental Modelling and Software Society,
pp. 275–280.

Demazeau, Yves and Jean-Pierre Müller (1990). “Decentralized A.I. : procee-
dings of the First European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, Cambridge, England, August 16-18, 1989”. In: pp. viii,
263.

Demirkol, Sebla et al. (2013). “A DSL for the development of software agents
working within a semantic web environment”. In: Computer Science and Infor-
mation Systems 10.4 SPEC.ISSUE, pp. 1525–1556.

Dent, Valeda F. (2007). “Intelligent agent concepts in the modern library”. In:
Library Hi Tech 25.1. Ed. by Kenneth Einar Himma, pp. 108–125.

Diaw, Samba, Redouane Lbath, and Bernard Coulette (2010). “Etat de l’art sur le
développement logiciel basé sur les transformations de modèles”. In: Numéro
spécial TSI - Ingénierie Dirigée par les Modèles 29:4-5.4-5, p. 2.

Drogoul, Alexis (2015). “Agent-based modeling for multidisciplinary and par-
ticipatory approaches to climate change adaptation planning”. In: RFCC (Re-
gional Forum on Climate Change).

Eclipse Foundation (2014). Eclipse Modeling Project. URL: http://www.eclip
se.org/modeling/ (Last accessed: 07/04/2016).

– (2016[a]). Ecore API. URL: http://download.eclipse.org/modeling/
emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-

summary.html (Last accessed: 07/04/2016).

– (2016[b]). Graphical Modeling Framework Tutorial - Part 1. URL: https://wiki
.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_

1 (Last accessed: 07/11/2016).

Elden, S. (2013). “The Significance of Territory”. In: Geographica Helvetica 68,
pp. 65–68.

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1


150 BIBLIOGRAPHY

Epstein, Joshua M. (2002). “Modeling civil violence: an agent-based computati-
onal approach.” In: Proceedings of the National Academy of Sciences of the United
States of America 99.3, pp. 7243–7250.

Etienne, Michel (2014). Companion Modelling - A participatory Approach to Support
Sustainable Development. en. Editions Quae, pp. 1–403.

Etienne, Michel, Derick R. du Toit, and Sharon Pollard (2011). “ARDI: A co-
construction method for participatory modeling in natural resources mana-
gement”. In: Ecology and Society 16.1.

European PhD School on Robotic Systems (2016). Model-Driven Engineering and
Knowledge representation. URL: http://www.phdschoolinrobotics.eu/
ContentMDE.html (Last accessed: 06/17/2016).

Ferber, Jacques (1999). Multi-agent Systems: An Introduction to Distributed Artifi-
cial Intelligence, p. 509.

Flater, David, Philippe Martin, and Michelle Crane (2009). “Rendering UML
Activity Diagrams as Human-Readable Text.” In: Ike, pp. 207–213.

Fowler, Martin (2010). Domain-Specific Languages. Vol. 5658. Addison-Wesley Pro-
fessional, p. 640.

Franklin, Stan and Art Graesser (1997). “Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents”. In: Intelligent agents III agent theories, ar-
chitectures, and languages, pp. 21–35.

Frigg, Roman and Stephan Hartmann (2012). “Models in Science”. In: The Stan-
ford Encyclopedia of Philosophy. Ed. by Edward N Zalta. Fall 2012.

Galvão, Ismênia and Arda Goknil (2007). “Survey of traceability approaches
in model-driven engineering”. In: Proceedings - IEEE International Enterprise
Distributed Object Computing Workshop, EDOC, pp. 313–324.

Gaube, Veronika et al. (2006). “Linking agent-based models with stock and flow
models: Impacts of subsidy policy an farmer housholds, land use and nutrient
flow at regional level”. In: ConAccount Conference. Vol. 35. 2. Vienna, p. 2.

Ghosh, Debasish (2010). DSLs in Action. Manning, pp. 1–377.

Gourmelon, Françoise et al. (2013). “Role-playing game developed from a mo-
delling process: A relevant participatory tool for sustainable development?

http://www.phdschoolinrobotics.eu/ContentMDE.html
http://www.phdschoolinrobotics.eu/ContentMDE.html


BIBLIOGRAPHY 151

A co-construction experiment in an insular biosphere reserve”. In: Land Use
Policy 32, pp. 96–107.

Gronback, Richard C (2009). Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. 1st ed. Addison-Wesley Professional.

Hostler, R. Eric, Victoria Y. Yoon, and Tor Guimaraes (2005). “Assessing the im-
pact of internet agent on end users’ performance”. In: Decision Support Systems
41.1, pp. 313–323.

Information technology Syntactic metalanguage, Extended BNF (1996). ISO/IEC
14977. URL: http://standards.iso.org/ittf/PubliclyAvailabl
eStandards/s026153_ISO_IEC_14977_1996(E).zip (Last accessed:
05/19/2016).

Jäger, Gerhard and James Rogers (2012). “Formal language theory: refining the
Chomsky hierarchy.” In: Philosophical transactions of the Royal Society of London.
Series B, Biological sciences 367.1598, pp. 1956–70.

Jan Köhnlein (2009). Domain-Specific Langauges. URL: http://www.slidesha
re.net/meysholdt/converging-textual-and-graphical-editor

s (Last accessed: 07/06/2016).

Jarrah, Moath et al. (2015). “A Multi-Agent Simulation Framework to Support
Agent Interactions under Different Domains”. In: pp. 211–223.

Jouault, Frédéric, Jean Bézivin, and Ivan Kurtev (2006). “TCS: a DSL for the spe-
cification of textual concrete syntaxes in model engineering”. In: Proceedings
of the 5th international conference on Generative programming and component en-
gineering - GPCE ’06, pp. 1–6.

Kappel, Gerti et al. (2012). “Model transformation by-example: A survey of the
first wave”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7260 LNCS,
pp. 197–215.

Kent, Stuart (2002). “Model Driven Engineering”. In: Integrated Formal Methods
2335.2, pp. 286–298.

Kieras, David E., Scott D. Wood, and David E. Meyer (1997). “Predictive engi-
neering models based on the EPIC architecture for a multimodal high-performance
human-computer interaction task”. In: ACM Transactions on Computer-Human
Interaction 4.3, pp. 230–275.

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.slideshare.net/meysholdt/converging-textual-and-graphical-editors
http://www.slideshare.net/meysholdt/converging-textual-and-graphical-editors
http://www.slideshare.net/meysholdt/converging-textual-and-graphical-editors


152 BIBLIOGRAPHY

Kleppe, Anneke, J Warmer, and Wim. Bast (2003). “The Model Driven Architec-
ture: Practice and Promise. 2003”. In: Addison Wesley, p. 170.

Kosar, Tomaž et al. (2010). “Comparing general-purpose and domain-specific
languages: An empirical study”. In: Computer Science and Information Systems
7.2, pp. 247–264.

Le Moigne, Jean-Louis (1990). La modélisation des systemes complexes.

Mabrouki, Olfa (2015). “Semantic Framework for Managing Privacy Policies in
Ambient Intelligence Olfa Mabrouki Semantic Framework For Managing Pri-
vacy Policies In Ambient Intelligence”. In:

Maharaj, Savi, Tamsin Mccaldin, and Adam Kleczkowski (2011). “A Participa-
tory Simulation Model for Studying Attitudes to Infection Risk”. In: SCSC ’11:
Proceedings of the 2011 Summer Computer Simulation Conference, pp. 8–13.

Mayer, I. S. (2009). “The Gaming of Policy and the Politics of Gaming: A Re-
view”. In: Simulation & Gaming 40.6, pp. 825–862.

McGinnis, Michael D. and Elinor Ostrom (2014). “Social-ecological system fra-
mework: Initial changes and continuing challenges”. In: Ecology and Society
19.2, art30.

Meadows, Dennis, John Sterman, and Andrew King (2015). Fishbanks: A Re-
newable Resource Management Simulation. URL: https://mitsloan.mit.
edu/LearningEdge/simulations/fishbanks/Pages/fish-banks.

aspx.

Mens, Tom and Pieter Van Gorp (2006). “A taxonomy of model transformation”.
In: Electronic Notes in Theoretical Computer Science 152.1-2, pp. 125–142.

Mernik, Marjan, Jan Heering, and Anthony M. Sloane (2005). “When and how to
develop domain-specific languages”. In: ACM Computing Surveys 37.4, pp. 316–
344.

Michel, Fabien et al. (2011). “Situational programming: Agent behavior visual
programming for MABS novices”. In: Lecture Notes in Computer Science (inclu-
ding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 6532 LNAI. Springer, pp. 1–15.

Michell, T M (1997). “Machine Learning”. In:

https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks/Pages/fish-banks.aspx
https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks/Pages/fish-banks.aspx
https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks/Pages/fish-banks.aspx


BIBLIOGRAPHY 153

Morand, Bernard (2000). “Le processus de représentation, un cadre préliminaire
pour une approche expérimentale du cas des diagrammes.” In: Journées fran-
cophones d’ingénierie des connaissances. Toulouse,France, pp. 73–81.

Newell, Allen (1992). Précis of Unified theories of cognition. Vol. 15. Harvard Uni-
versity Press, pp. 425–492.

Nilsson, Nils J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann,
p. 513.

OMG (2014). Model Driven Architecrure - Guide revision 2.0. URL: http://www.
omg.org/cgi-bin/doc?ormsc/14-06-01.

– (2015). Meta Object Facility(MOF) Core Specification. URL: http://www.omg.
org/spec/MOF/2.5/.

Page, Christophe le et al. (2012). Participatory agent-based simulation for renewa-
ble resource management: The role of the cormas simulation platform to nurture a
community of practice.

Pastor, Oscar et al. (2008). “Model-driven development”. In: Informatik-Spektrum
31.5, pp. 394–407.

Pattis, Richard (2013). “Chapter 1 EBNF : A Notation to Describe Syntax”. In:
pp. 1–19.

Pepper, J. W. and B. B. Smuts (2000). “The evolution of cooperation in an eco-
logical context: an agent-based mode”. In: Dynamics of human and primate
societies: agent-based modeling of social and spatial processes. Oxford University
Press,Oxford, pp. 45–76.

Prieto-Diaz, Ruben (1990). “Domain Analysis: An Introduction”. In: Software
Engineering Notes 15.2, pp. 47–54.

Promburom, P (2002). “Participatory Multi-agent Systems Modeling for Col-
lective Watershed Management: The Use of Role Playing Game.” In: Manage-
ment.

Ramsey, Kevin (2009). “GIS, modeling, and politics: On the tensions of col-
laborative decision support”. In: Journal of Environmental Management 90.6,
pp. 1972–1980.

Renger, Michiel, Gwendolyn L. Kolfschoten, and Gert Jan De Vreede (2008).
“Challenges in collaborative modelling: a literature review and research agenda”.

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/MOF/2.5/


154 BIBLIOGRAPHY

In: International Journal of Simulation and Process Modelling. Ed. by Jan L. G.
Dietz, Antonia Albani, and Joseph Barjis. Vol. 4. Lecture Notes in Business
Information Processing 3/4. Springer Berlin Heidelberg, p. 248.

Rodrigues Da Silva, Alberto (2015). “Model-driven engineering: A survey sup-
ported by the unified conceptual model”. In: Computer Languages, Systems and
Structures 43, pp. 139–155.

Ron, Sun (2006). “The CLARION cognitive architecture: Extending cognitive
modeling to social simulation”. In: Cognition and MultiAgent Interaction, pp. 79–
99.

Rothenberg, Jeff et al. (1989). “The Nature of Modeling”. In: in Artificial Intelli-
gence, Simulation and Modeling. John Wiley & Sons, pp. 75–92.

Russell, Stuart, Peter Norvig, and Artificial Intelligence (1995). “A modern ap-
proach”. In: Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25, p. 498.

Sacevski, Igor and Jadranka Veseli (2007). “Introduction to Model Driven Ar-
chitecture ( MDA )”. In: June, pp. 1–15.

Schmidt, Douglas C. (2006). “Model-driven engineering”. In: Computer 39.2,
pp. 25–31.

Schürr, Andy (1994). “Specification of Graph Translators with Triple Graph Gram-
mars”. In: WG 1994. Vol. 903. Springer Berlin Heidelberg, pp. 151–163.

Selic, Bran (2003). “The pragmatics of model-driven development”. In: IEEE
Software 20.5, pp. 19–25.

– (2004). “On the Semantic Foundations of Standard UML 2.0”. In: Formal Met-
hods for the Design of Real-Time Systems, pp. 181–199.

Sowa, John F (2011). “Cognitive Architectures For Conceptual Structures”. In:
Proceedings of the 19th international conference on Conceptual structures for disco-
vering knowledge, pp. 35–49.

Stahl, Thomas, Markus Voelter, and Krzysztof Czarnecki (2006). Model-Driven
Software Development: Technology, Engineering, Management. John Wiley & Sons.

Steinberg, David et al. (2009). EMF: Eclipse Modeling Framework 2.0, p. 704.

Tàbara, J David et al. (2007). “Participatory Modelling For The Integrated Sus-
tainability Assessment Of Water: the World Cellular Model and the MATISSE
Project”. In: Integrated Assessment, pp. 1–29.



BIBLIOGRAPHY 155

Taillandier, Patrick (2014). “Traffic simulation with the GAMA platform”. In:
International Workshop on Agents in Traffic and Transportation.

Taillandier, Patrick et al. (2012). “GAMA: A simulation platform that integrates
geographical information data, agent-based modeling and multi-scale cont-
rol”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7057 LNAI. Sprin-
ger, pp. 242–258.

Touraille, Luc, David R.C. Hill, and Mamadou K. Traore (2012). “Application
of Model-Driven Engineering and Metaprogramming to DEVS Modeling &
Simulation”. English. PhD thesis. Clermont-Ferrand, p. 312.

Van Deursen, Arie, Paul Klint, and Joost Visser (2000). “Domain-specific lan-
guages”. In: Centrum voor Wiskunde en Informatika 35.6, pp. 26–36.

Voinov, Alexey and Francois Bousquet (2010). “Modelling with stakeholders”.
In: Environmental Modelling and Software 25.11, pp. 1268–1281.

Wilensky, Uri (1999). NetLogo: Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL. en. URL: http://jmvidal.
cse.sc.edu/lib/netlogo.html (Last accessed: 05/13/2016).

– (2004). NetLogo Rebellion model. URL: http://ccl.northwestern.edu/ne
tlogo/models/Rebellion%20http://www.cs.sjsu.edu/~pearce/

modules/lectures/nlogo/library/Rebellion.htm (Last accessed:
08/08/2016).

Williams, G C (1966). “Adaptation and Natural Selection: A Critique of Some
Current Evolutionary Thought. Princeton: Princeton University Press”. In:
p. 307.

Wooldridge, Michael (2009). An Introduction to MultiAgent Systems. 2nd. Wiley
Publishing.

Wooldridge, Michael, Jörg P Müller, and Milind Tambe (1995). “Agent theories,
architectures, and languages: A bibliography”. In: Intelligent Agents II Agent
Theories, Architectures, and Languages 890, pp. 408–431.

Zeigler, Bernard P. and Hessam S Sarjoughian (2003). “Introduction to devs mo-
deling and simulation with java: Developing component-based simulation
models”. In: Technical Document, University of Arizona.

http://jmvidal.cse.sc.edu/lib/netlogo.html
http://jmvidal.cse.sc.edu/lib/netlogo.html
http://ccl.northwestern.edu/netlogo/models/Rebellion%20http://www.cs.sjsu.edu/~pearce/modules/lectures/nlogo/library/Rebellion.htm
http://ccl.northwestern.edu/netlogo/models/Rebellion%20http://www.cs.sjsu.edu/~pearce/modules/lectures/nlogo/library/Rebellion.htm
http://ccl.northwestern.edu/netlogo/models/Rebellion%20http://www.cs.sjsu.edu/~pearce/modules/lectures/nlogo/library/Rebellion.htm

	List of Figures
	List of Tables
	List of Codes
	List of Abbreviations
	General introduction
	Context
	Objectives
	Outline

	Modeling and simulation behavior of multi-agent systems
	Introduction
	Behavior and MAS
	Cognitive behavior
	Goal-based behavior
	Reactive behavior

	Participatory Modeling and MAS
	Background

	Experiences of MAS tools used in participatory modeling
	CORMAS
	NetLogo
	Anylogic
	GAMA
	MIMOSA

	Limits of the current MAS tools used in participatory modeling
	The Challenge of MAS behavior simulation in SES
	Programming language learning
	MAS behavior representation

	Possible improvements to current MAS tools
	Domain specific language for MAS behavior modeling
	Platform independence
	Visual tools to model with stakeholders


	Conclusion

	Model driven engineering
	Introduction
	Background
	Model
	Modeling Language
	Meta-model
	Model Transformation
	Model driven engineering
	The Eclipse Modeling Project
	Overview
	EMF
	Abstract syntax development
	Concrete syntax development
	TMF
	GMF

	Model-to-text transformation 
	Model-to-model transformation

	Conclusion

	Modeling social-ecological systems
	Introduction
	The ECEC Model
	The plant and its behavior
	The Foragers and its behavior
	The foragers' energy consumption behavior
	The foragers' feeding behavior
	The foragers' reproductive behavior
	The foragers' move behavior
	The foragers' die behavior
	Model initial values and execution

	ECEC behavior representation
	Conclusion

	B-Reactive - A DSL to model reactive behaviors in MAS 
	Introduction
	The Semantic domain
	Abstract syntax for reactive behavior
	The model
	The EntityClass
	Behaviors
	Activity Diagram Behaviors
	Activity Behaviors
	Primitive Activities
	Equation Behaviors

	Expressions
	Variable Class
	Function Call Expressions

	Initialization

	Concrete syntax
	A model declaration
	The Entities declaration
	Attributes, Parameters and Local variables declaration
	The Behavior declaration
	Equation Behavior
	Activity Behavior
	Activity Diagram Behaviors

	Function Expressions
	Location Functions
	LocationSet Functions
	Entity Functions
	EntitySet Functions
	Boolean Functions
	Numeric Functions

	Model initialization
	Conclusion


	Implementation of B-Reactive language using MDE 
	Introduction
	Application of MDE
	Implementing a textual editor with XText
	UML to Ecore
	Add new validation rules


	Abstract syntax analysis of the target language
	Building code generators
	Code generation of Netlogo procedures
	Generating Breedings, Turtles and Patches
	Generating Setup procedures
	Generating command and reporter procedures
	Generating the go procedure

	Code generation of Cormas methods
	Generating Cormas classes
	Generating methods for the accessing protocol
	Generating methods for the instance-creation protocol
	Generating methods for init protocol
	Generating methods for control protocol
	Generating methods for probes protocol
	Generating methods for custom protocols


	Model simulation
	Netlogo simulation
	Cormas simulation

	Conclusion

	General conclusion
	Discussion
	MDE as an approach for designing DSL for SES
	Cyclic approach for developing a DSL
	Evaluation of DSL and simulation of generated code

	Future works
	Conclusion

	SES axmodels in B-Reactive language
	Implementation of ECEC model in B-Reactive language 
	Implementation of prison rebellion model B-Reactive language

	Generated code
	Cormas generated code for ECEC model
	Cormas generated code for Prison rebellion model
	Netlogo generated code for ECEC model
	Netlogo generated code for Prison Rebellion model

	M2T Acceleo templates
	Netlogo M2T templates
	Cormas M2T templates


