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Abstract 

Home networks are facing a continuous evolution and are becoming more and more com-

plex.  Their complexity has evolved according to two interrelated dimensions. On the one 

hand, the home network topology (devices and connectivity technologies) tends to produce 

more complex configurations.  On the other hand, the set of services accessed through the 

home network is growing in a tremendous fashion. Such context has made the home network 

management more challenging for both Internet Service Provider (ISP) and end-users. In 

this dissertation, we focus on the traffic dimension of the above described complexity. 

Our first contribution consists on proposing an architecture for traffic monitoring in Home 

Networks. We provide a comparative study of some existing open source tools. Then, we 

perform a testbed evaluation of the main software components implied in our architecture. 

Based on the experiments results, we discuss several deployment limits and possibilities. 

In our second contribution, we conduct a residential traffic and usages analysis based on real 

trace involving more than 34,000 customers. First, we present our data collection and pro-

cessing methodology. Second, we present our findings with respect to the different layers of 

the TCP/IP protocol stack characteristics. Then, we perform a subjective analysis across 645 

of residential customers. The results of both evaluations provide a complete synthesis of 

residential usage patterns and applications characteristics. 

In our third contribution, we propose a novel scheme for real-time residential traffic classi-

fication. Our scheme, which is based on a machine learning approach called C5.0, aims to 

fulfil the lacks identified in the literature. At this aim, our algorithm is evaluated using several 

traffic inputs. Then, we detail how we implemented a lightweight probe able to capture, track 

and identify finely applications running in the Home Network. This implementation allowed 

us to validate our designing principles upon realistic test conditions. The obtained results 

show clearly the efficiency and feasibility of our solution. 
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Keywords Home Network, Network Performances, Passive Measurements, Traffic classifi-

cation, Machine Learning Algorithms, Home Gateway, Traffic Analysis, Flow Monitoring. 
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Résumé 

Les réseaux domestiques sont confrontés à une évolution continue et deviennent de plus en 

plus complexes. Leur complexité a évolué selon deux dimensions interdépendantes. D'une 

part, la topologie du réseau domestique devient plus complexe avec la multiplication des 

équipements et des technologies de connecvitié. D'autre part, l'ensemble des services acces-

sibles via le réseau domestique ne cesse de s’élargir. Un tel contexte a rendu la gestion du 

réseau domestique plus difficile pour les Fournisseurs d’Accès Internet (FAI) et les utilisa-

teurs finaux. Dans ce manuscrit, nous nous concentrons sur la deuxième dimension de la 

complexité décrite ci-dessus liée au trafic circulant depuis/vers le réseau domestique. 

Notre première contribution consiste à proposer une architecture pour la supervision du 

trafic dans les réseaux domestiques. Nous fournissons une étude comparative de certains 

outils open source existants. Ensuite, nous effectuons une évaluation de performances expé-

rimentale d’un sous ensemble des processus impliqués dans notre architecture. Sur la base 

des résultats obtenus, nous discutons les limites et les possibilités de déploiement de ce type 

de solution. 

Dans notre deuxième contribution, nous présentons notre analyse à large échelle des usages 

et du trafic résidentiel basée sur une trace de trafic réelle impliquant plus de 34,000 clients. 

Premièrement, nous présentons notre méthode de collecte et de traitement des données. 

Deuxièmement, nous présentons nos observations statistiques vis-à-vis des différentes 

couches de l’architecture Internet. Ensuite, nous effectuons une analyse subjective auprès de 

645 clients résidentiels. Enfin, nos résultats fournissent une synthèse complète des usages et 

des caractéristiques des applications résidentielles. 

Dans notre troisième contribution, nous proposons une nouvelle méthode pour la classifi-

cation en temps réel du trafic résidentiel. Notre méthode, laquelle est basée sur l’utilisation 
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d’un algorithme d’apprentissage statistique de type C5.0, vise à combler les carences identi-

fiées dans la littérature. Ensuite, nous détaillons notre implémentation d’une sonde légère sur 

un prototype de passerelle résidentielle capable de capturer, de suivre et d'identifier d’une 

manière fine les applications actives dans le réseau domestique. Cette implémentation nous 

permet, en outre, de valider nos principes de conception via un banc d'essai réaliste mis en 

place à cet effet. Les résultats obtenus indiquent que notre solution est efficace et faisable. 

Mots-clés Réseau domestique, Performances réseau, Mesures passives, Classification du tra-

fic, Algorithmes d'apprentissage statistique, Passerelle domestique, Analyse du trafic, Super-

vision des flux. 
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Chapter 1 Introduction 

 

1.1 Overview of Home Networks 

Home networks are facing a continuous evolution and are becoming more and more com-

plex.  Their complexity has evolved according to two interrelated dimensions. On the one 

hand, the home network topology (devices and connectivity technologies) tends to produce 

more complex configurations [1].  On the other hand, the set of services accessed through 

the home network is growing in a tremendous fashion. Such context has made the home 

network management more challenging for both Internet Service Provider (ISP) and end-

users. 

Let us introduce the context where the home network is placed today, with respect to the 

two-point perspective (topology and services) introduced above.  

From a topological perspective, the home network tends to be more extensive and composite 

as there are more devices connected using heterogeneous technologies. In fact, the home 

network is the interconnection of the Home Gateway (Access Gateway) with the user’s end-

devices set. The continuous reduction of Central Processing Unit (CPU) costs according to 

the Moore law [2] has driven the proliferation of the users’ connected devices. As example, 

an average of 6.8 screens per French household is recently reported in [3]. Indeed, the user’s 

end-devices set has evolved from a single computer to a large set of various terminals such 

as Laptops, Tablets, Smartphones, Smart TVs, Gaming consoles, Network Attached Storage 

(NAS), etc. In addition, the observed growth of Internet of Things (IoT) devices [4] enlarge 

this set with new devices such as smart body scales, smart door locks, connected thermostat, 

etc. Additionally, Home Network Infrastructure Devices (HNID) such as Ethernet switches, 

Power Line Communication (PLC) plugs, Wi-Fi access points, Wi-Fi extenders and so on 

are used to expand the coverage to the whole house. A subset of these HNIDs could even 

induce hybrid links (i.e. Wi-Fi/PLC). Consequently, the home network topology is evolving 
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from a classic star based topology (around the Home Gateway) to a more complex tree or 

mesh topology [1].  

From services perspective, the evolution is twofold. On the one hand, the proliferation of 

new devices has generated a new spectrum of ISP’s offered services. Indeed, classical man-

aged services (i.e. Voice over IP (VOIP), Television over IP (IPTV) or Video on Demand 

(VoD)) are continuously enriched with new usages and services such as Energy management, 

Healthcare or Home Monitoring and Control which emerged as promising business oppor-

tunities in the residential market. On the other hand, Internet services and applications have 

witnessed a boom during the last two decades. In fact, web activities were limited to visiting 

some text and images contents hosted by a savvy set of servers during the early days of 

Internet. Nowadays, web activities face an exponential growth resulting on dozen to hun-

dreds of modern web applications and services such as media streaming portals (e.g. Netflix, 

YouTube, DailyMotion, Spotify, etc.), online gaming platforms (e.g. Steam, Xbox Live, etc.), 

communications services (e.g. Google Hangout, Facebook Messenger, Viber, Skype, etc.) or 

social networks (e.g. Facebook, Twitter, Instagram, LinkedIn, etc.) [5]. 

 

Figure 1.1 Home Network Services and Hybrid Connectivity Technologies 

Figure 1.1 depicts a modern home network context where several devices are connected 

through hybrid technologies to the Home Gateway. The Home Gateway interconnects the 
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home network with the Wide Area Network (WAN) access. Thus, both managed services 

and web services can be accessed. 

While understanding the above introduced complexity on a single schema is tricky, the ques-

tion that arises logically is:  How both end-users and ISPs deal with such configuration in 

real case scenarios? 

From an end-user perspective, the home network management appears as a challenging task. 

For instance, a user can start a video conference while another one is downloading a big file. 

Both services require bandwidth and the quality perceived by both users may be affected. In 

this scenario, users can hardly determine the cause of their performance degradation issue. 

In fact, authors in [6] report the difficulties that the household members face when trouble-

shooting, maintaining, and setting up their home network. In [7], authors highlight the fact 

that end-users were even unable to articulate properly what the problem is. Based on a sub-

jective study conducted in both US and UK, the experiment shows that the home network 

management is challenging even for advanced users. Thus, authors conclude that a great 

potential exists for developing applications that help end-users while managing their home 

network. 

From an ISP standing point, when the customers are bothered by some issues with their 

home network, they tend to call the ISP hotline. The ISP’s diagnosis process in such context 

is both costly and frustrating. In fact, discussions with several large access ISPs are reported 

in [8] and reveal that hotline calls are costly, ranging from 9 to 25$ per call. Furthermore, 

75% of hotline calls from customers are usually caused by problems that have nothing to 

deal with the ISP. Thus, improving the diagnosis process with tools providing more visibility 

of the user’s home network context is mandatory to improve customer’s satisfaction level 

and to reduce the hotline cost by decreasing both frequency and duration of hotline calls. 

Finally, it will help ISPs to stand out in a highly competitive market where regulatory agency 

become more and more interested in comparing the quality of service offered by ISPs with 

what they actually deliver [9]. 

1.2 Problem Statement 

As discussed above, managing efficiently the home network portion, yields to several benefits 

for both users and ISPs. To perform this task, both above dimensions of home network 

complexity (topology and services) must be tackled. While tools providing a full topology, 
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discovery are addressed in [10] and start to be deployed by ISPs, we focus in this thesis on 

providing a complete visibility of home network traffic. In particular, we aim to provide both 

end-users and ISPs with a real-time monitoring system of active applications running in the 

home network. Consequently, tracking each application performances (e.g. transmitted 

bytes, throughput, etc.) will facilitate the diagnosis process for both end-users and ISP help 

desks. Additionally, it will allow the ISP to deploy new Quality of Service (QoS) prioritization 

and management mechanisms. For instance, a user can prioritize Skype flows over other 

application flows or block a given application in a specific time range for parental control 

purposes (e.g. blocking Social Networks applications on the kids’ devices after 9pm). Fur-

thermore, we highlighted in [11] how traffic monitoring is mandatory in several home net-

works for anomalies detection scenarios (i.e. flooder device detection, blocking Distributed 

Denial of Service (DDoS) attacks, etc.). Finally, a fine characterization of home networks 

traffic helps ISPs to adapt their infrastructure according to customers’ usages and hence, 

leverage new billing opportunities. 

As stated, a crucial step when facing the challenge of home networks management is a real-

time monitoring of running applications and their corresponding performances. To perform 

such task, two main processes must be achieved: 

a) Performance monitoring: capture, monitor and track performance metrics (bytes/pack-

ets transferred, Transmission Control Protocol (TCP) Flags, duration, etc.) of the active 

flows in the Home Network. 

b) Application Identification: Identify the application (e.g. Facebook, Skype, Google, etc.) 

behind each monitored flow. 

1.2.1 Performance monitoring 

Deploying a monitoring probe able to perform both described processes is already challeng-

ing in backbone networks where servers and substantial infrastructure are dedicated at this 

aim [12]. In a Home Network context, this task become more challenging as several ques-

tions must be addressed. The first question that arises logically is: where the probe should be 

placed? 

Unless deploying dedicated hardware in each household which is an unrealistic approach, 

there is mainly two possible approaches: the end-host based approach [13, 14, 15, 16] and 

the Home-Gateway based one [17, 18]. Each approach has its pros and cons. 
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The end-host based approach consists of placing a monitoring unit on each end-host device. 

Monitoring the Home Network applications performances at the closest point (i.e. the device 

running the application) appears as the most accurate solution. However, such architectural 

choice is assuming having control of all user’s end devices. In real-life scenario, only few 

devices in the home network are controlled by the ISP (typically the Home Gateway, TV 

decoder and some HNIDs) which limits the viability of such an approach. Another common 

weak spot of the end-host based approach that bias the diagnosis results is the un-observa-

bility of activities of other devices which do not run the corresponding probe. Due to the 

above-mentioned reasons, some research efforts focused on an alternative solution. 

The Home Gateway based approach overcomes the lack of network visibility described 

above. As it constitutes a central point of the home network, monitoring major part of traffic 

activity is achievable by placing a monitoring unit on the Home Gateway. Moreover, the 

Home Gateway is fully controlled by the ISP and thus, such approach is more viable from 

an ISP standing point. Nevertheless, such placement strategy is challenged by several hard-

ware constraints that had not been addressed in the past. In fact, the ISP’s Home Gateways 

are typically limited in terms of CPU, memory and storage capacity. Moreover, traffic moni-

toring is mainly based on the flows’ packets observation which is not trivial to achieve on 

such devices. In fact, Home Gateways are designed to support packets routing at high speeds 

(typically packets switching and routing are performed by dedicated Field-Programmable 

Gate Arrays (FPGAs) (also known as hardware accelerators)). Consequently, classical packet 

observation methods (packet observation at the Operating System (OS) kernel space) are not 

applicable. In this dissertation, we focus on designing a Home Gateway based real-time mon-

itoring architecture. Thus, the above introduced limitations must be addressed carefully.  

To tackle the constraints related to the Home Gateway based application monitoring ap-

proach, we need a deep understanding of how a monitoring system is designed. There are 

two main categories of monitoring approaches: the active and the passive one. On the one 

hand, the active monitoring approach consists on actively monitoring a dedicated metric by 

injecting traffic in the network. On the other hand, the passive monitoring approach consists 

on computing performance metrics based on the network traffic observation. 

As discussed earlier, we aim to perform more than a single metric supervision and thus, we 

focus in this thesis on passive approaches. Also, among all possible approaches, we argue in 

this thesis that the flow export architecture fulfils a large set of home network monitoring 

requirements. It mainly consists of a probe which observes packets, aggregates them into 
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flows and exports continuously records of the performed observations to an external com-

ponent for collection and analysis. In this thesis, we propose to deploy flow export architec-

tural components in a Home Network context. Therefore, several questions arise naturally 

regarding the feasibility of such approach:  

a) Does the overhead (CPU, memory and network load) induced by such approach is sus-

tainable in a Home Network context? 

b) How do we perform packets observation if packets are not observable (hardware accel-

erator concerns)? 

To sum up, the implemented probe must achieve packet observation, flow aggregation and 

export with a limited resource impact. Furthermore, it must deal with the requirement of our 

second process: the application identification. 

1.2.2 Application identification 

Application identification is a corner stone in our approach as we aim to provide an applica-

tion oriented monitoring system. To identify an application, we need to classify the traffic 

belonging to this application’s flows. While integrated to our architecture, the addressed chal-

lenge is fourfold. First, we must identify the application behind each flow at an early stage 

(real-time constraint for QoS or parental control usage). Second, our classification output 

granularity must be fine enough to distinguish specific services (e.g. Facebook, Skype, Bit-

torrent, etc.). Third, our approach must be resilient to traffic evolution (e.g. encryption, tun-

neling, patterns changes, etc.). Finally, the overall classification process must be performed 

in a lightweight manner to cope with the Home Gateway characteristics discussed con-

straints. Thus, our scope is related to the wide research field of traffic classification.  

The oldest and most classical used approach for traffic classification is the port-based one. 

It consists on mapping the observed communication ports in the transport protocol header 

to the well-known labels assigned by the Internet Assigned Numbers Authority (IANA). 

Despite being fast and lightweight, a major drawback of this approach is its unreliability due 

to several reasons (e.g. port abuse, random port usage with Peer to Peer (P2P) applications 

for instance, tunneling, etc.). Moreover, the resulting classification granularity (e.g. Hypertext 

Transfer Protocol (HTTP), Domain Name System (DNS), etc.) is completely outdated with 

respect to the context of modern web activities. As discussed above, such context implies a 

need of fine grained classification. The first alternatives tackling the inadequacy of port-based 
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approaches relied on payload inspection for packets pattern matching [19, 20]. These meth-

ods, usually called Deep Packet Inspection (DPI) techniques, examine the content of each 

packet of a flow looking for a set of characteristic signatures. Despite being accurate, DPI 

technique induces a consequent computational overhead. Moreover, its accuracy is chal-

lenged by encrypted traffic trend (i.e. HTTPS, HTTP 2.0, Quick UDP Internet Connections 

(QUIC) by Google, etc.). Furthermore, virtual tunneling technologies (including Tor) are 

evolving rapidly and are more adopted by residential users due to several factors (e.g. privacy 

concerns, European Union Intellectual Property Rights Enforcement Directive (IPRED) 

and the HADOPI law [21] in France). Finally, a heavy signatures engineering task to cope 

with traffic evolution is needed. 

To overcome these issues, Machine Learning Algorithms (MLA) emerge as an alternative. 

They rely on identifying statistical patterns of applications based on a set of flows character-

istics used to train a given algorithm. A high overall accuracy is reported using MLA in a 

large subset of the literature [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, several gaps 

limit the deployment of these approaches [32]. In this thesis, we rely on a MLA approach to 

identify Home Network applications. Consequently, the commonly identified issues from 

the literature must be addressed. Thus, the resulting solution must be lightweight, real-time, 

fine-grained and resilient to traffic evolution. 

1.3 Contributions 

Taking into consideration the constraints imposed by the Home Network context, this dis-

sertation proposes an architecture for real-time traffic monitoring. Our architecture is mainly 

based on a probe that is able to capture, identify and track applications running in the Home 

Network. To achieve this goal, several challenges are addressed. In a nuttshell, this thesis 

makes contributions to two interrelated research fields which are flow monitoring and traffic 

classification.  

Our contributions consist, firstly, on designing a novel architectural approach to perform 

home network flow monitoring. To understand the deployment possibilities and limits, we 

conducted a comparative study of existing flow monitoring open source tools. Then, we 

evaluated a promising one (nProbe [33]) on an experimental testbed focusing on resource 

consumption criteria. The obtained experimental results were positive in terms of resource 

consumption as well as bandwidth utilization for typical Digital Subscriber Line (DSL) access 
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speed scenario. However, our work highlighted several possible improvements and chal-

lenges. We leverage the need of a reliable traffic identification method. While we evaluated a 

widely used DPI library using several configurations, we showed that the overhead induced 

by such approach is quite low. And thus, we concluded that the main lack of DPI method is 

the need of a heavy signature engineering in addition to encrypted traffic concerns. There-

fore, we turned our interest towards overcoming such issue using an MLA approach. 

Secondly, we focus on characterizing residential traffic and usages. In fact, residential traffic 

characterization is a key aspect for ISPs to tune up their networks according to their custom-

ers' requirements. Despite the significant gap between business and residential customers, a 

large body of literature measurements is performed at higher observation points and only 

few studies have examined residential traffic characteristics. Furthermore, traffic analysis 

granularity is often too coarse to tackle observed growth of applications and services. In this 

contribution, we present a fine-grained analysis of a real residential traffic dataset collected 

in France and provided by a major ISP involving more than 40,000 customers. Moreover, 

we conducted a subjective behavioral analysis of 645 residential customers. The benefits of 

this contribution are twofold. While our findings provide useful insights of residential usage 

patterns and applications characteristics, the collected data is also used as a starting point to 

our MLA approach design. 

Thirdly, we propose a fine-grained early classification method for residential traffic. Our ap-

proach main core is based on the C5.0 machine learning algorithm trained to identify modern 

Internet services. At this aim, we relied on our previously collected dataset and developed 

the suitable tools to process it. Our solution achieves an average accuracy of 98.8% while 

finely classifying applications flows (i.e. Facebook, Google Services, Skype, BitTorrent, Web-

Browsing and Secure-Web-Browsing) using statistical features of the very first packets of 

each flow. Performances are evaluated using advanced metrics based on a disjoint testing 

dataset involving more than 34,000 residential customers. Consequently, we think that our 

results are more convincing than the previously reported ones based on a synthetic single 

user dataset. Moreover, we provide the community with an extension which, integrated with 

open source components, allows a reliable data processing chain. Finally, we ensure the via-

bility of our approach by proposing a retraining architecture to address MLA deployment 

issue. 
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Finally, we present a home network traffic monitoring platform. We implemented a probe 

on a home gateway prototype (having the same chipset and hardware characteristics as a 

commercially deployed one) that is able to capture the traffic and export performance metrics 

at real-time. The probe performs also real-time traffic classification using our previously de-

veloped machine learning approach. Consequently, the classifier allows application flows to 

be identified based on the statistical features of the very first packets only. Our design prin-

ciples overcome the hardware accelerators issue that is inherent to this kind of devices. Fi-

nally, our implemented probe is evaluated using several scenarios. Our experimental results 

are promising and prove a limited impact in terms of resource consumption (CPU, memory 

and network load). Thus, we conclude that despite several possible improvements, our pro-

posed approach is fulfilling a large part of residential traffic classification stated issues and 

challenges. 

1.4 Thesis Structure 

The rest of this dissertation is structured as follows.  

In the second chapter, we provide an overview of prior works related to the research areas 

we highlight in this thesis. First, we expose strengths and weaknesses of existing architectural 

approaches. Then, we deepen our overview and focus on flow monitoring architecture. Fi-

nally, we present an analysis of existing application identification approaches. We focus on 

MLA approaches and depict the lacks related to this field. 

In Chapter 3, we introduce our proposed architecture for traffic monitoring in Home Net-

works. We provide a comparative study of existing open source tools. Then, we perform a 

benchmark of the nProbe tool and evaluate the computational overhead of each performed 

process. Based on experiments results, we discuss several deployment limits and possibilities. 

In Chapter 4, we present our conducted residential traffic and usages analysis. First, we pre-

sent our data collection and processing methodology. Second, we present our finding with 

respect to TCP/IP protocol stack characteristics. Then, we conduct a subjective analysis 

across 645 of residential customers. Finally, our findings provide a complete synthesis of 

residential usage patterns and applications characteristics. 
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In Chapter 5, we propose a novel scheme for real-time residential traffic classification. Our 

scheme, based on the C5.0 decision tree algorithm, aims to fulfil the lacks identified in the 

literature. At this aim, our scheme is evaluated using several traffic inputs. Then, we detail 

how we implemented it as part of a lightweight probe able to capture, track and identify 

finely applications running in the Home Network. Hence, our design principles are validated 

using a real testbed. 

Finally, in Chapter 6, we conclude this dissertation by summarizing our main contributions 

and discussing some perspectives. 
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Chapter 2 Traffic Monitoring and 

Classification in Home Networks: Ap-

proaches, Concepts and Limitations 

2.1 Introduction 

In this thesis, we focus on providing both users and ISP with a real-time monitoring of 

running applications in the Home Network and their corresponding performances. Such 

automated system will facilitate the management and diagnosis processes and thus, benefit 

for both ISP and customers. 

Real-time monitoring of active applications in the home network involves monitoring active 

flows and mapping each of them to its corresponding application in a reliable manner. Thus, 

our scope falls in the intersection of two wide but complementary research fields which are 

Traffic Monitoring and Traffic Classification. In this chapter, we review the literature in each 

of both research field. Our aim is to place prior works and existing concepts with respect to 

the Home Network context. We focus on four functional requirements: 

- Full visibility: To diagnose and troubleshoot a Home Network, the monitoring approach 

must provide a full visibility of the network activities. 

- Real-time flow monitoring: The monitoring approach must be real-time oriented and 

must be able to monitor active flows present in the Home Network. 

- Early and Reliable application identification: The timeliness and the reliability of how an 

approach identifies the application behind each flow is a main concern. First, applica-

tions must be identified at early time (real-time identification) to allow online actions 
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such as parental control, anomalies detection, QoS management, etc. Second, Applica-

tions must be identified in a fine manner and thus allow to distinguish the real applica-

tion behind the flow such as Facebook or Bittorrent. Finally, the monitoring approach 

must be resilient to traffic evolution (encryption, new protocols, etc.) 

- Computational and hardware limitations: In a Home Network context, the monitoring 

approach must be lightweight as it will be naturally deployed on a Home Network con-

nected device (Home Gateway, HNIDs or a user end device). Our definition of ‘light-

weight’ includes both computational load (i.e. CPU and memory) and network load 

(bandwidth overhead induced by running the solution). Moreover, the monitoring ap-

proach must deal with hardware constraints (hardware accelerators) of the Home Gate-

way when its placement strategy involves such a device. 

Studying existing concepts and approaches according to the above requirements allows us to 

explain in detail where our work comes at play. 

2.2 Active vs. Passive Monitoring Approaches 

Network monitoring approaches have been well studied and developed throughout the years. 

A starting classification could be the used mode to perform the measurements. 

2.2.1 Active monitoring approaches 

Active monitoring approach consists on measuring a dedicated metric by injecting traffic in 

the network. Several tools were previously proposed such as: 

- Ping and traceroute. 

- King [34]: estimates delay by measuring the delay between the closest DNS servers. 

- Pathload [35]: measures available bandwidth. 

- T-rat [36]: evaluates the rates at which flows transmit data. 

Despite being accurate, the required measurement overhead is a concern to our objective 

which is supposed to operate in a continuous manner. Furthermore, this approach deals only 

with metrics collection. It does not apply to active flow monitoring neither to application 

identification. Consequently, we turn our interest on passive monitoring approaches for traf-

fic monitoring. 
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2.2.2 Passive monitoring approaches 

Passive monitoring approaches consist on observing traffic at an observation point to extract 

traffic information and performance metrics. One passive approach is based on packet cap-

ture. This method consists of a full packet capture, storage and analysis. The major drawback 

of this approach is an expensive hardware and the substantial infrastructure need for storage 

and analysis.  In our home network context, this approach is naturally non-viable, as we aim 

to use a Home Network connected device (which have generally limited resources (even if 

it’s a commercial connected PC)). 

Another passive network monitoring approach that fits better our context is flow export, in 

which a probe aggregates packets into flows and export observation records to a collector 

for storage and analysis. Flow Export technologies like Cisco NetFlow [37] or IETF stand-

ardized IP Flow Information eXport (IPFIX) [38] collects Internet Protocol (IP) traffic in-

formation, such as source and destination IP addresses, ports, timestamps for the flow start 

and finish time, number of bytes and packets observed in the flow and so on. This approach 

is powerful to collect IP information statistic and provide flexibility that makes it easy to 

extend. As it offers distributed configuration alternative (probes/collector on different de-

vices), flow export appears as a suitable solution to our purposes. 

2.3 Home Network Monitoring Architectural Ap-

proaches 

As previously depicted in Figure 1.1, the home network architecture could be summarized 

as the interconnection of the home gateway with the users’ end devices. Additional infra-

structure devices (e.g. Ethernet switches, Wi-Fi access points, etc.) can also be used. Conse-

quently, achieving a complete visibility of the residential traffic is possible through two ar-

chitectural approaches. The first one is to place a monitoring unit per End-host device, 

whereas the second one is to deploy one monitoring unit on an ISP’s controlled device, 

typically the home gateway. 

2.3.1 End host based approaches 

To improve troubleshooting and to ensure a better understanding of home network usage, 

some research efforts were oriented on the end-host approaches. A monitoring unit has been 
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designed in several works to run on the end user devices. As the aim is to collect different 

network information, the usage of this collection process differs from one project to another. 

In the following we describe few of these propositions. 

2.3.1.1 HostView 

HostView [13] is a data collection utility that runs on individual end-hosts (running Linux 

and MAC OS). It exports the following information from the hosting device: 

a) Network data: 

- Packet headers (anonymized IP source) 

- Extract content-type from HTTP responses (Image or text, video, audio) 

- Full DNS packets (with anonymized local IP addresses) 

- Log periodically applications (process names) associated with open network sockets 

based on gt toolkit [39]. 

- Log the active network interface type: wired or wireless 

- Records the hash of the Media Access Control (MAC) address of the home gateway 

for an Ethernet connection or the hash of the Basic Service Set Identifier (BSSID) 

of the access point for a wireless connection 

- A pop-up questionnaire asks the user to describe the networking environment (i.e. 

home, work, airport, coffee shop) 

b) Machine performance data: the sysperf module ensures measuring system perfor-

mance metrics such as CPU load. 

c) User feedback data: the user feedback module incorporates two different mecha-

nisms: 

- An "I am annoyed!" button that is always displayed at the edge of the screen; users 

are supposed to click on it when they are not happy with their network performance.  

- A system-triggered feedback form, which prompts the user three times per day to 

respond to a questionnaire about their network experience in the 5 minutes preceding 

the questionnaire. The system-triggered questionnaire is configurable. The user can 

turn it off. 
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All the above data is logged on the user machine and periodically uploaded to a remote server 

(at LIP6-UPMC). The server then transfers the data sets to a back-end repository discon-

nected from the Internet. Finally, the HostView tool provides the user with some network 

usage statistics (per device overall bandwidth consumption, per application bandwidth usage, 

etc.).  

2.3.1.2 HomeMaestro 

HomeMaestro [14] is a distributed system running on multiple end devices for the monitor-

ing and the instrumentation of home networks. It performs extensive measurements at the 

host level to infer application network requirements, and identifies network related problems 

through time-series analysis. 

Monitoring processes implemented to extract network statistics on End-hosts (Windows 

Vista OS) include: 

- Monitoring read/write operations at the network socket level 

- Monitoring internal TCP state of all connections  

- Collecting extensive measurements (TCP’s estimation of the RTT, total number of 

bytes/packets IN/OUT, congestion events) 

- Collecting application-specific information such as process name and used libraries. 

By sharing and correlating information across hosts in the home network, the system auto-

matically detects and resolves contention over network resources between applications (e.g. 

limiting flow’s rate to resolve contention on constrained resources such as the upstream of 

the Internet access link) based on predefined policies. Finally, HomeMaestro implements a 

distributed virtual queue to enforce those policies by prioritizing applications without addi-

tional assistance from network equipment such as routers or access points. 

2.3.1.3 Netalyzer 

The Netalyzr [16] tool analyses various properties of the Internet connection. Those prop-

erties include: 

- Blocking of important services: direct TCP access to remote servers (HTTP, IMAP, 

SNMP, NetBIOS, etc.) status (Blocked or allowed) and possible reasons explanation.  

- HTTP caching behavior and proxy correctness, 

- DNS server's resilience to abuse, 
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- NAT detection 

- Latency & bandwidth measurements. 

The results are presented in a detailed report form. To perform these tests, the Netalyzer 

tool runs a Java applet on the user device (Multiplatform tool).  

2.3.1.4 HomeNet Profiler 

The HomeNet Profiler [15] is a tool that runs on any computer (Windows, MacOS, Linux) 

connected inside a home network. It collects a wide range of measurements about home 

networks including the set of devices, the set of services (with UPnP and Zeroconf), the 

characteristics of the Wi-Fi environment (ESSID, BSSID, channel number and RSSI), run-

ning and installed application’s information and end-host configuration information (OS 

name, OS version, etc.) 

The HomeNet Profiler runs one-shot measurements upon user demand and integrates the 

Netalyzer module to enrich statistics. Finally, it lists the running and installed applications 

without mapping them to the corresponding flows. 

Table 2.1 Positioning of studied end-host approaches 
Reference Full vis-

ibility 
Real-time flow 

monitoring 
Early and Reliable ap-
plication identification 

Computational/hardware 
limitations 

HostView    Not addressed 

HomeMaestro    Not addressed 

Netalyzer    Not addressed 

HomeNet Profiler    Not addressed 

2.3.1.5 Discussions and positioning 

As summarized in Table 2.1, end-host studied approaches do not fulfil our stated functional 

requirements. In fact, these tools have been developed in a measurement and data collection 

logic. Consequently, several lacks arise with respect to our defined requirements. Our first 

observation is regarding the full visibility criteria. Indeed, the proposed approaches is assum-

ing having control of each of customer’s devices. As deployment on devices such as laptops 

or smart phones would be tricky (multiple OS, client agreement, etc.) but still possible, the 

increasing number of connected devices and objects (smart TV, smart sensors, etc.) makes 

this deployment approach non-viable from an ISP standing point. Moreover, these tools 

suffer from the un-observability of activities of other devices inside the home network (e.g. 

guest devices), which do not run the corresponding tools, which can bias the diagnose results.  
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Secondly, studied approaches do not address resource consumption limitations despite con-

sidering deployment on constrained resource devices (Smartphone, tablet, etc.). Our expla-

nation is that the studied tools are mainly designed for research data collection purposes and 

thus, they are not optimized for low resource consumption but rather for high accuracy in-

vesting more resources. 

Note that only two tools among the studied ones perform both real-time flow monitoring 

and a reliable application identification. We focus on application identification used method. 

In particular, we consider identifying applications on end-host with a direct mapping between 

the process and the active network socket as an asset for end-host architectural placement. 

In fact, such method is identified in the literature [40] as the most accurate and reliable one.  

For these reasons, we are more interested in ISP controlled devices based approaches. In 

particular, the home gateway appears as the most appropriate monitoring point as it is the 

border between the Local Area Network (LAN) and the WAN constituting a central point 

of the home network from where a full visibility could be achieved (except for intra LAN 

traffic which can be addresses through intermediate nodes). 

2.3.2 Home Gateway based approaches 

As major part of the traffic (going in/out the home network) passes through the home gate-

way, this approach appears as the most promising to fulfil our full visibility criteria. A first 

idea to perform this approach would be to directly apply the existing end-host based solu-

tions on home gateways. However, this is not possible due to various reasons. Firstly, the 

home gateway is typically constrained in terms of resources and hardware design. Secondly, 

end-host measurements (e.g., applications process name or network stack details) are not 

achievable on home gateways where traffic packets are the only available source of data. 

Due to the above-mentioned restrictions, some research efforts on how home network mon-

itoring could be performed from a home gateway perspective have been conducted.  

Calvert et al. [41] consider requirements for a general-purpose logging facility for home net-

works. They propose to capture packets events using tcpdump and to log wireless (L2)-re-

lated events using ewenet. Their study concludes that such strategy will miss up to 10% of 

traffic due to home gateway buffer size restrictions. Moreover, storing the data on such de-

vice is considered as a major bottleneck. 
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To overcome data storage limitation, the Bismarck  [18] project proposed a home gateway 

firmware (based on OpenWRT) which is extended by a flow monitoring function. The Bis-

marck firmware includes the Bismarck-passive function which passively collects traces in-

cluding flow and packet records (timestamps, size, ports, IP addresses, transport protocol 

and IP to domain name mappings from DNS traffic) and exports them to a remote server. 

Several works are based on the Bismarck firmware to perform further analysis. For instance, 

authors in [8] reuse the Bismarck firmware to design the “Where is The Fault” home gate-

way-based solution. Authors aim to identify if the home network performance degradation 

is due to the wireless link or the access link. In [17], authors studied the feasibility of appli-

cation performance tracking on home gateways, which involves both identification of active 

applications and monitoring their performance. They implement a modified version of the 

Bismarck firmware to perform some additional metrics measurements. However, real-time 

traffic identification is not formally addressed. Finally, The EU projects Nanodatacenters 

[42] and Figaro [43] design the home gateway for Next-generation Internet services and in-

clude traffic monitoring as a key component. They consider flow export technology as a 

suitable candidate for their architecture. However, authors neither consider the hardware 

limitations nor the resource consumption constraints introduced above. 

2.3.2.1 Discussion and positioning 

Studying the different existing solutions, the Bismarck project and flow export based solu-

tions appear the closest to fulfil our requirements. Firstly, both solutions are home gateway 

based and thus, achieve partly our full visibility criteria. In fact, some intra LAN traffic such 

as traffic between hosts not connected directly to the home gateway (e.g. through interme-

diate HNIDs like an Ethernet switches) may not be observed. While such lack was not ad-

dressed in prior works, we propose in chapter 3 a home network monitoring architecture 

that considers such scenarios. 

Secondly, the Bismarck firmware runs on WRT compatible routers and is designed for re-

source constrained devices. However, the overhead induced by enabling the Bismarck pas-

sive flow monitoring function (without application identification) is evaluated in [17] and is 

pointed as unsustainable in terms of CPU and memory consumption when forwarding up to 

96Mbps traffic. Moreover, authors conclude that real-time traffic identification is not feasible 

on home gateways and propose to deploy this function on an external server. In our context, 

our monitoring approach must be lightweight and must be sustainable at 1Gbps speed. Ad-

ditionally, traffic identification must be real-time and must run on the home gateway. In fact, 
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we consider that placing such process on an external component eliminates the real-time 

criteria. Indeed, recognizing an application after the flow termination is useless for block-

ing/prioritization scenarios.   

For the above-mentioned reasons, we focus on flow export methods. Our interest is turned 

to the IETF IP Flow Information eXport (IPFIX) standard [38]. Designed as a flexible stand-

ard, it offers large configuration possibilities. However, several challenges must be tackled to 

fulfil our defined requirements. In fact, previous studies based on such technology do not 

address the hardware constraint of home gateways. In our work, we evaluate the resource 

overhead induced by running such technology on a real home gateway. Additionally, we aim 

to overcome hardware acceleration limitation which raises the challenge to higher levels. 

Moreover, prior works do not address the traffic identification step. Worse, authors in [17, 

44] claim that the Home Gateway can observe and export flows only in a best-case scenario 

where traffic identification is placed on a remote dedicated server. In this thesis, our contri-

butions are oriented to achieve traffic observation, export and a reliable identification of 

applications in a lightweight manner. To achieve these goals, we need a deep understanding 

of both flow export architecture and traffic classification concepts. In the rest of this chapter, 

we provide some insights studying the literature of both fields. 

2.4 Detailed Overview of the IPFIX Architecture 

2.4.1 Historical background of the IPFIX standard 

While the first publication of IETF IPFIX was in 2013, its standardization process is the 

result of flow monitoring evolution during preceeding two decades. Figure 2.1 details this 

evolution back to the 90s. The different steps were: 

1991 Internet Accounting (IA) Working Group (WG) of the Internet Engineering Task 
Force (IETF) (Started on 1990) describes aggregation of packets into flows based 
on packet header information (Concluded in 1993). 

1995 The authors of [45] presented a methodology for profiling traffic flows based on 
packet aggregation. 

1996 IETF Real Time Traffic Flow Measurement (RTFM) WG started with the objec-
tives of producing an improved traffic flow model and developing an architecture 
for improved flow measurements. Cisco worked on its flow export technology 
named NetFlow and patented it the same year. 

1999 IETF RTFM WG published a generic framework for flow measurements (RTFM 
Traffic Measurement System). 

2002 NetFlow first version, NetFlow v5, became available to public. 
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2004 Cisco releases NetFlow v9 with an improvement in terms of flexibility. IETF starts 
a standardization process of flow export protocol (IP Flow Information eXport 
WG). 

2006 Cisco provided more flexibility publishing Flexible NetFlow. 
2008 First IPFIX specification. 
2011 Cisco presented NetFlow Lite based on Flexible NetFlow. 
2013 IPFIX internet standard published. 

 

Figure 2.1 Historical evolution of IPFIX standard 

Flow export approach faced a lack of vendor’s interest until Cisco published NetFlow v5 

and released NetFlow v9 two years after. As NetFlow v9 data model was freely available, 

IETF selected NetFlow v9 as the starting candidate to its IPFIX standardization process.  

While NetFlow technologies are still widely deployed and integrated into ISP’s high-end 

packets forwarding devices (e.g. routers, firewalls, etc.), we observe that vendors and ISP’s 

are progressively integrating IPFIX in their solutions. On one hand, IPFIX standardization’s 

process strongly involved researchers (e.g. Fokus [46], ETH Zürich [47] and WAND [48]), 

industry actors (e.g. Cisco) and operators (e.g. NTT) resulting on various IPFIX open source 

implementations [49, 33]. On the other hand, NetFlow v9 was criticized for its lack of flexi-

bility. IPFIX extends monitoring process to new devices, systems and usages and thus, sev-

eral networking actors (e.g. Cisco, Nortel, Dell, Juniper, FlowMon Networks, nTop, etc.) 

start to adopt IPFIX in their solutions. 

2.4.2 IPFIX architecture 

As we study the feasibility of constrained resource devices flow monitoring based approach, 

we focus on different IPFIX architecture components. The aim is to identify possible de-

ployment bottlenecks and limits. Furthermore, it is a key step to compare existing IPFIX 

toolsets. Figure 2.2 illustrates the IPFIX architecture where several stages are depicted. The 

main two components of the IPFIX architecture are the probe (exporter) and the collector. 
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The IPFIX probe achieves packets observation, aggregation into flows and export of obser-

vations records. The collector collects the data exported from the probe and analyze it. IP-

FIX consider the probe as a device. Such definition includes dedicated devices (e.g. servers) 

which are connected through a network tap or a port mirroring configuration. In our context, 

the probe must be a home network connected device, since deploying a dedicated probe 

device in each household is not viable. Such configuration leverages the weight of our com-

putational limitation challenge as the probe device is not fully dedicated for monitoring task 

and thus, our approach impact must be as transparent as possible. For the above reasons and 

for sake of brevity, we focus more on probe processes rather than collector one.  

 

Figure 2.2 IPFIX overall architecture 

2.4.2.1 Packet observation 

Packet observation is a key stage in flow monitoring as it is the starting point. Consequently, 

we detail in the following each step involved at this phase: 

Packet capture: This step is performed on the Network Interface Card (NIC) level. After 

passing various checks such as checksum error, packets stored in on-card reception buffers 

are moved to the hosting device memory. Several libraries are available to capture network 

traffic such as libpacap; libtrace [50] for UNIX based operating systems and Winpcap for 

Windows. These libraries are running on the top of the operating system stack which may 

reduce performances passing through several layers. To overcome such limitation in a high-

speed network context, software and hardware optimization technique are proposed:  
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- Network stack bypass techniques which consist on using a zero-copy path while trans-

mitting packets data from NIC buffers to userspace. While several libraries exist such as 

PF_RING/ZC [51], netmap [52], Intel DPDK [53], a question that naturally arises and 

that we address in chapter 3 is: what are the benefit of using such technologies in a home 

network context?  

- Cost effective hardware capture optimization is provided by some vendors of commod-

ity NICs. It consists of hardware acceleration of packet capture process. In this case, 

packet capture (and processing in some cases) is/are directly performed by dedicated 

FPGAs. Consequently, the CPU load is not impacted by the capture process. Such de-

sign choice is deployed on modern home gateways for networking functions (forward-

ing, routing, etc.) purposes. However, monitoring traffic while such hardware compo-

nents are present is an open research question. In fact, authors in [54] highlighted pack-

ets offloading techniques (which include hardware accelerators) as open issues in the 

traffic monitoring field. A first solution that could be considered is to implement a mon-

itoring probe as an additional function of those FPGAs. Such strategy is not viable for 

several reasons. First, such technology is usually vendor proprietary and thus, ISPs do 

not have access to such option. Second, such FPGA are not designed for this task and 

are very constrained in terms of resources capacity. Finally, a monitoring probe is a 

highly evolving software component. Application monitoring requires a frequent update 

cycles to deal with traffic evolution. Consequently, such software characteristic is not 

applicable on a hardware low level implementation context. In this thesis, our aim is to 

design and implement a probe which overcomes the introduced limitations. 

Timestamping: As packets may come from several observation points, reordering process 

is based on packet’s timestamp. While hardware timestamping provides a high accuracy up 

to 100 nanoseconds in case of the IEEE 1588 protocol, it’s not supported by most of com-

modity NIC. Software timestamping based on Network Time Protocol (NTP) is widely used 

to outcome this lack providing an accuracy up to 100 microseconds [55]. 

Truncation (optional): Defining a snapshot length, the process selects precise bytes from 

the packet. It is performed in some cases to reduce the amount of data captured by the probe 

and therefore CPU and bus bandwidth load. 

Packet sampling (optional): is generally performed to reduce load on subsequent stages. 

It can be systematic (periodic sampling scheme) or random. The latter is recommended as 

periodic scheme may introduce unwanted correlation in the observed network data. 
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Packet filtering (optional): performs filtering of packets to separate packets having specific 

properties from those not having them [56]. A packet is selected if some specific fields are 

equal or in the range of given values. Another technique is a hash based filtering, applying a 

hash function on a portion of the packet, the result is compared to a value or a range of 

values. 

2.4.2.2 Metering process 

It includes packets aggregation into flows and flow records exporting process. A flow layout 

is defined as a set of Information Elements. First, the metering process performs the aggre-

gation of packets into flows based on its layout (set of Information Elements). Second, a 

flow entry is cached until the flow is considered as terminated (entry expiration). Finally, 

optional steps such as flow sampling and filtering may be performed. 

Table 2.2 Common IPFIX information elements 

ID Name Description 

152 flowStartMilliseconds Timestamp of the flow’s first packet 

153 flowEndMilliseconds Timestamp of the flow’s last packet 

8 sourceIPv4Address IPv4 source address in the packet header 

12 destinationIPv4Address IPv4 destination address in the packet header 

7 sourceTransportPort Source port in the transport header 

11 destinationTransportPort Destination port in the transport header 

4 protocolIdentifier IP protocol number in the packet header 

2 packetDeltaCount Number of packets for the flow 

1 octetDeltaCount Number of octets for the flow 

 

Information Elements: IPFIX flow record’s fields are named Information Elements (IEs). 

It can be divided into two categories; IANA IE’s registry that ensures cross-vendor interop-

erability and enterprise-specific IEs that allow defining new IEs for particular uses. IE is 

defined by numeric ID (added to an enterprise ID in enterprise-specific IE case), name, 

length (fixed or variable), type and status. IPFIX suggests that IE can be defined on any layer 

level going from layer 2 to layer 7 (application awareness using application identification 

techniques). In addition to that, IPFIX includes some SNMP MIB information IEs to pre-

vent redundant definition of IEs on the IANA registry. Finally, few advanced mechanisms 

have been defined to handle IEs: 

- Variable length encoding which can be used for variable length IE to avoid waste of 

bytes due to fixed length IEs.  
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- Structured data [57] is useful for encapsulating a list of the same IE in a single field 

(MPLS labels, for example). In IPFIX, probe instruments collectors by means of a tem-

plate which is a description of used IEs. Table 2.2 describes the minimum IEs set needed 

to describe a flow. 

Flow Caches: Flow caches consist of tables in which the metering process stores infor-

mation regarding active flows in the network. A flow key (a set of IEs, typically IP source 

and destination addresses, source and destination ports, and protocol) determines whether a 

packet is matching an existing flow entry in the cache or not. In the first case, flow’s counters 

are updated. In the latter one, a new entry is created. Non-key fields are utilized to collect 

flow characteristics (e.g. number of packets, number of bytes, etc.). If IP addresses are part 

of flows key, and that traffic between two pairs generates flows on both directions; IPFIX 

provides bidirectional flows records solution adding counters for both directions and special 

IEs such as “biflowDirection” that indicate the flow initiator pair and reverse. The cache’s 

size depends on exporter device memory capacity and should be configured based on criteria 

such as key/non-key fields, maximum number of flows expected and expiration policy. 

Entry expiration: Cache entries are maintained in the cache table until they are considered 

as terminated. Termination of a flow is triggered by an expiration event. According to IPFIX, 

the metering process should consider an entry as expired based on: 

- Natural expiration: observed TCP packet belonging to a flow with FIN/RST flag. 

- Emergency expiration: flush a certain number of entries to free some space when the 

cache become full. 

- Active timeout: a flow entry expires after being considered active during a certain period 

(range from 120 seconds to 30 minutes). Counters are reset while start/ end timestamp 

are updated. 

- Idle timeout: a flow entry expires if no packets belonging to it are observed during a 

specific period (range from 15 second to 5 minutes). 

- Resource constraints: special heuristics such as dynamic timeouts configuration at 

runtime. 

- Cache flush: flush of all the entries due to unexpected situations. 

It is possible to configure our metering process based on expiration policy to reduce the 

amount of records exported. 
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Flow record Sampling and Filtering: Flow record sampling and filtering processes are 

quite like packet sampling and filtering process explained above. The major differences are 

the processed unit; while packet sampling and filtering process packets, flow sampling and 

filtering process flow records coming from the metering process. 

2.4.2.3 Export process 

The export process involves the following components: 

IPFIX message: Figure 2.3 shows a simplified version of the IPFIX message format [38]. 

Field size (in bytes) is indicated for fixed size fields. The first 16 bytes constructs the header 

of the message. One or multiple sets described by an ID and a variable length come after the 

header. It can be typed from one of the following:  

- Template sets: contains one or more templates that describe the layout of data records. 

- Data sets: used to handle data records (flow records). 

- Options template: are used to send metadata to collectors (example: a probe informs 

the collector which flow keys are used by the metering process). 

- Version number (2) Length (2) 

Export time (4) 

Sequence number (4) 

Observation Domain ID (4) 

Set ID (2) Length (2) 

Record 1 

Record 2 

Record n 

Figure 2.3 Simplified IPFIX message 

The exporting process decides if a set is composed from one or multiple records (usually a 

limited number of records to avoid IP fragmentation). While IPFIX message size does not 

exceed maximum MTU (1500 bytes) of a link [38], an exception may arise when using vari-

able length IEs. Figure 2.4 shows a detailed example composed by: template, corresponding 

data record and flow records. 
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Figure 2.4 Correlation between IPFIX data types 

Transport protocol: A crucial step in the flow monitoring export is to select an adequate 

transport protocol which must be supported by both nodes running the probe and the col-

lector instances. TCP, User Datagram Protocol (UDP) and Stream Control Transmission 

Protocol (SCTP) are the supported protocols while the latter is the mandatory protocol to 

implement. In fact, SCTP provides a considerable advantage assuring a compromise between 

TCP and UDP features and providing more flexibility [58]. After a certain timeout, IPFIX 

export process over SCTP is able to cancel retransmission of unreceived datagrams which 

avoid overloading the export buffer with pending retransmissions ensuring a graceful degra-

dation. One major drawback of SCTP is that it is still the least deployed one due to compat-

ibility issue with existing systems.  

As mentioned, IPFIX over TCP is supported as well. While TCP stack is continuously im-

proved and widely deployed which makes deployment of IPFIX support over TCP easy, it 

doesn’t provide a graceful degradation in overload situations. In fact, the collector (TCP 

receiver) window mechanism limits the sending rate of the probe (TCP sender) in such situ-

ations and results on the probe buffer saturation.  

Finally, IPFIX over UDP is still the most widely deployed and implemented. Despite being 

unreliable providing a “best effort” service, UDP is the leader on IPFIX current implemen-

tation. 

2.4.2.4 Data collection process 
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Data collection process deals with reception of messages sent by the probe at the collector 

side, storing them in an adequate manner, and pre-process data (compression, anonymization 

[59], aggregation [60], filtering and summary generation) before transmitting them to the 

analysis module. 

Storage Formats: The collector performance depends strongly on how the storage process 

is performed. We have two types of storage formats:  

- Volatile:   very fast as it is performed in memory. Generally used in real time processing 

approach as a caching step where only results had to be stored (generating time-series 

to be stored on persistent format). 

- Persistent: performed for long time data storing. It can be considered as a second level. 

Persistent storage is significantly slower than the volatile one. Speed and performance 

depend on storage type: flat files, row-oriented databases and Column-oriented data-

bases. 

Data anonymization: Flow data are less privacy sensitive than raw packet traces as they 

exclude packet payload but still exploitable by hackers to identify individuals and track their 

activity. To this concern, data anonymization process [61] could be performed at collector 

side to protect customer’s data. A survey of data anonymization techniques is provided in 

[62]. 

2.4.2.5 Data Analysis process 

The results of all previously explained stages are provisioning a final stage which consists of 

data analysis. Data analysis could be classified according to three application areas. 

Flow analysis and reporting: In our approach, flow monitoring probe would be deployed 

in strategical locations (typically home gateways or HNIDs) which would allow to gather a 

comprehensive set of home network connections summaries. Flow analysis and reporting 

current basic functionalities are: 

-  Browsing and filtering flow data. 

- Statistics overview: detailed statistics such as top talkers in the network, statistics per 

host, Autonomous Systems or services. 
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- Reporting and alerting: a common reporting functionality is bandwidth reporting (which 

user/host exchanged how much traffic). Alerting process is generally configured to trig-

ger an alert when specified thresholds are exceeded (e.g. number of connections per 

host, communication with unwanted protocols or applications, etc.). 

Threat Detection: Flow data is used for threat detection operations. We can distinguish 

between two types of uses:  

- Use of flow data: flow export is useful for detection of attacks and malwares such as 

DDoS attacks, worn spreading, network scan and botnet communications. In fact, 

these attacks typically affect metrics that could be extracted from flow records (num-

ber of active flows during a time interval, volume of traffic in terms of packets and 

bytes, suspicious port numbers or destination hosts). In general, suspicious destination 

hosts are based on a reputation lists or a blacklist used as reference to compare host 

destination in the flow records. 

- Use of the definition of the flow: this approach is based on the common definition of 

a flow to detect certain types of attacks.  

Performance monitoring: Performance monitoring observes the status of running services 

in the network. Typical observed metrics are Round-Trip-Time (RTT), delay, jitter, response 

time, packets loss and bandwidth usage. Flow based performance monitoring applications 

post-process flow data and presents a set of metrics per target service. 

2.4.3 Discussions and Positionning 

As detailed above, IPFIX architecture is composed of a set of several processes on both 

probe and collector sides. In this thesis, our goal is to deploy IPFIX based monitoring system 

in a home network context. Consequently, sevral questions must be addressed regarding the 

deployment of such architecture. In fact, we need to identify accurately where possible bot-

tlenecks may appear, and at which level. Is it the packet observation, the metring or the 

export process? 

On a second step, we need to evaluate the real benefits of the mentioned optimization tech-

niques. For example, software packet capture optimization had proven its efficiency in a 

high-speed network context but has not been evaluated in the home network context. 

Moreover, IPFIX probe exporting process induces an additional network load. Such addi-

tional load must be studied as our goal is to monitor tens of millions of Home networks. 

In this thesis, we address the above questions in Chapter 3 while evaluating the nProbe tool.  
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Finally, the classification method used by the exporter to identify the application flows is not 

fixed by IPFIX. The used method must deal with several challenges inherent to traffic clas-

sification field. 

2.5 Traffic Classification Approaches 

As IPFIX architecture provides flexible definition of IEs, we focus in this section on the 

following step: application identification (traffic classification). In fact, one of our functional 

requirements is a reliable application recognition (mapping an active flow to its correspond-

ing application). We note that IPFIX provides IEs definition to export/collect application 

information without recommending how to process the recognition process. Application 

classification techniques could be regrouped according to two input data types: 

- End-host data input: it is the most reliable and accurate approach. It consists on directly 

mapping the open network socket of a flow to the process name [39, 63] . Such tech-

nique is the most lightweight and is not impacted by the traffic characteristic change 

neither by the encryption trend. However, it is achievable when the probe is directly 

placed on the end-host. Consequently, it inherits the above architectural option stated 

lacks. 

- Traffic data input: it consists on extracting from packets belonging to a given flow the 

knowledge required to identify the originating application. Such approach is more suit-

able for Home Gateway based placement. However, the reliability and the computa-

tional induced overhead is correlated to the used technique. In the rest of this section 

we focus on detailing the state of the art of the existing techniques to this data type. 

2.5.1 Port based approach 

The most common method (and oldest) for traffic classification is the port-based approach 

which consists of mapping the used communication ports observed in the TCP/UDP header 

to the well-known TCP/UDP port numbers assigned by the IANA [63, 64]. As port numbers 

are easily accessible, this approach provides the advantage of being fast and having low com-

putational cost. Nevertheless, such approach reliability is heavily affected by modern appli-

cations characteristics: 

- Port abuse: Applications like P2P can use non-standard ports for communication 

(e.g. BitTorrent can run on TCP: 80 if all ports are blocked). 
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- Random port usage: Applications can use random ports for communication (e.g. 

BitTorrent can run on any TCP or UDP port configured by the user) 

- Tunneling: Applications can tunnel traffic inside other applications to prevent de-

tection. 

Moreover, the obtained granularity (HTTP, DNS, SMTP, etc.) is too coarse with respect to 

our needs and thus, such approach is considered as outdated. 

2.5.2 Deep Packet Inspection 

Deep Packet Inspection (DPI) was proposed to address port based approach drawbacks.  It 

is based on the inspection of the content of packets beyond layer 4 headers, searching for 

distinctive hints of application protocols in the packets payload. The payload is searched for 

signatures (keywords, known patterns, regular expressions) which are specific to an applica-

tion protocol. This approach is implemented in various commercial solutions (e.g. NBAR 

and NBAR2 by Cisco, ixEngine by Qosmos, etc.) as well as in open source projects such as 

OpenDPI [65], nDPI [19], L7-filter [66], libprotoident [20]. 

The question that arises naturally is: Are these techniques reliable for classifying modern 

traffic? 

In [67], the authors studied the accuracy of DPI solutions based on real collected traffic 

traces. While DPI approach is known as providing high accuracy, this study showed that only 

two libraries which are libprotoident and nDPI could be considered as reliable and provide 

the best accuracy among open source libraries. In [68], the results of the previous work are 

confirmed using a larger collection of traffic data. Moreover, only nDPI output is fulfilling 

our fine-grained definition of the classification output and is able to distinguish services such 

as Google, Facebook, etc. 

The second question that arises is: What is the cost in terms of resource consumption while 

enabling such technology? 

DPI techniques had been initially criticized for being resource consuming [69, 70]. However, 

recent implementations such as libprotoident and nDPI are less resource consuming. More-

over, devices running these kinds of tools are becoming more powerful. In chapter 3, we aim 

to answer this question while evaluating resource consumption of nDPI using real traffic on 

a testbed developed at this aim.  
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DPI approach suffers from another major drawback which is the signatures engineering. In 

fact, signatures database must be continuously updated and deal with traffic evolution which 

leads to high engineering costs.  

Another limitation is that, DPI accuracy is challenged by encrypted traffic trend. Further-

more, virtual tunneling technologies (including Tor) are evolving rapidly and are more and 

more adopted by residential users due to several factors (e.g. privacy concerns, European 

Union Intellectual Property Rights Enforcement Directive (IPRED) and the HADOPI law 

[21] in France). Finally, deep packet inspection is considered as illegal in some countries due 

to the privacy concerns of using such intrusive technique. 

2.5.3 Machine Learning Based Approaches 

To overcome the above mentionned issues, Machine Learning Algorithms (MLA) emerge as 

an alternative. It consists in detecting, in an offline phase (usually called Training Phase), 

characteristic patterns of the applications based on a set of flows’ statistical observations. 

More specifically, machine learning algorithms use a training dataset which is a collection of 

flow features to extract and then generate the knowledge in a specific output structure (e.g. 

clusters, rules, decision trees) depending on the used algorithm. During the online phase, the 

obtained structure is used to classify unlabeled flow features while assuming that the ex-

tracted knowledge is sufficiently representative to recognize the statistical behavior of a given 

application. The large body of literature in this field could be categorized into two main areas: 

the supervised [71, 24, 25, 27, 28, 29, 72, 73, 74] and unsupervised [71, 22, 23, 26, 27, 30, 31] 

learning approaches. While the first category requires a labelled dataset predefining the out-

put classes, the latter discovers hidden structures from unlabeled data. A high overall accu-

racy (over 90%) is reported using MLA approach in a large subset of the literature [22, 23, 

24, 25, 26, 27, 28, 29, 30, 31]. 

As introduced above, a fine classification granularity is a key requirement in modern net-

works context and only a subset of the proposed approaches fulfil this requirement. Indeed, 

MLA seems to represent the best option to cope with our needs; therefore, in the rest of this 

dissertation, we will focus on this approach. Note that, MLA reliability depends heavily on 

the methodology used to collect and to process the training dataset as reported in [32]. Es-

pecially, the performance of the supervised approach relies directly on the quality of the input 

label. Furthermore, some proposed approaches are based on the post-mortem flow statistical 

features (i.e. transferred bytes/packets, cumulative TCP flags, packets size distribution, etc.). 
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Despite being highly accurate, such timeliness is not relevant in a real-time manage-

ment/control context (i.e. QoS management, Layer 7 policer, etc.). Finally, traffic character-

istics evolve rapidly (software updates, end-to-end encryption trend, new OTT delivery pro-

tocols such as QUIC, etc.) which decreases the performance achieved by an MLA approach 

at a given time, if no updates are performed. Hence, the retraining process of MLA is a 

crucial step to ensure temporal robustness. Previous works tend to provide a “one shot” 

evaluation and such issue has not been formally addressed. 

2.6 State of the Art of MLA approaches: Limitations 

and Positioning 

Traffic classification is a well-studied research field. In fact, several MLA based approaches 

had been proposed during the last decade and are surveyed in [75, 76]. In [77], Khalife et al. 

provided a descriptive taxonomy for the properties of traffic classification methods. Based 

on this defined taxonomy, we depict in Table 2.3 several MLA based approaches used as 

landmarks during the design of our solution. We focus particularly on seven characteristics 

to compare the studied methods. 

2.6.1 Input Features and Early Classification 

A large set of traffic features is used as input for an MLA approach as listed in [78] and could 

be categorized into two branches as per their observation level. The first one [22, 26, 72] is 

based on features computed at packet level (i.e. size, inter-arrival delay, etc.), while the latter 

[23, 25, 28, 29, 30, 73, 74] uses flows post-mortem statistics (i.e. transferred bytes/packets, 

cumulative TCP flags, packets size distribution, etc.). Finally, some propositions are based 

on a combination of both levels [71, 24, 27, 31] to perform higher accuracy.  

The early identification aspect refers to the timeliness of a proposed approach. While some 

approaches [22, 26, 27, 72] are able to provide early classification based on first packets char-

acteristics, a major part of contributions [71, 23, 25, 24, 28, 30, 31, 73, 74] is performed at 

post-mortem (after flow termination) stage. Note that the timeliness of an approach is di-

rectly related to the used input features (packet: early, flow: post-mortem). 



Traffic Monitoring and Classification in Home Networks: Approaches, Concepts and Limitations 

33 

 

2.6.2 Dataset 

We focus on the characteristics of used dataset as it is the corner stone of an MLA approach. 

First, we distinguish between synthetic datasets generated by some tools [24, 29, 31, 73] and 

the ones captured from live networks [71, 22, 23, 24, 25, 26, 27, 28, 30, 74]. In fact, perfor-

mances reported in a small lab network are not generalizable to a real network context. 

Worse, it is even not generalizable from a large campus network as pointed out in [32]. Nev-

ertheless, most of real traffic datasets are collected in campus networks. In fact, ISP real 

datasets are rarely published, and some published ones are truncated which limits the ground-

truth generation process. 

One key factor while gathering the data, is obtaining a reliable ground-truth. While it is easily 

achievable on synthetic dataset (i.e. socket name captured on end-host) [73], such process is 

much more complicated on real datasets. Early works [71] used port-based approach which 

is well-known for its unreliability. Researchers tried to overcome this gap by using DPI tools 

as ground truth generators. Such approaches [22, 23, 24, 25, 26, 27] had been considered as 

reliable until authors in [40] raised the unreliability of most commonly used libraries. In fact, 

comparative studies of several DPI engines showed that only two engines [19, 20] over six 

could be considered as providing a reliable accuracy. Consequently, we consider ground truth 

by nDPI [19] and libprotoident [20] as trustworthy. We also include in this category methods 

that are based on end-host labelling. 

2.6.3 Encryption Awareness 

Despite the wide spread of encrypted application protocols, some approaches [23, 24, 25, 

26, 28, 30] do not deal with such traffic classes. Furthermore, Secure Shell protocol (SSH) is 

the most commonly used example for encryption aware approaches validation. From our 

point of view, we strongly believe that modern usages require a deeper granularity (services 

behind SSL/TLS) when dealing with encryption challenges. 

2.6.4 Output Granularity 

The output granularity definition has evolved according to the continuously growing set of 

modern web applications. Nowadays, a fine classification is defined as an approach able to 

identify the application/service behind a given protocol. Only [74] fulfils this definition. In 

fact, other surveyed works provide a coarse definition of used output classes (FTP, P2P, 

HTTP, etc.). On one hand, this observation could be explained by the limitation of the used 
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ground-truth generation tool. On the other hand, defining large classes limits the error rate 

of an approach. Consequently, our classification approach output must be fine-grained (Fa-

cebook, Skype, Google-Services, etc.) to fulfil this requirement. 

2.6.5 Machine Learning Methods 

While both ML methods (supervised and non-supervised) provide good performance, the 

main difference is the need of labelled data in the supervised ones [71, 24, 25, 27, 28, 29, 72, 

73, 74]. Such labelled data implies the predefinition of output classes of the supervised ap-

proach. Conversely, non-supervised approaches [23] detect natural clusters (groups) from 

the dark based on statistical features only. In this case, giving a label to each extracted cluster 

could be a challenging task. Consequently, semi-supervised methods are used in [71, 22, 26, 

27, 30, 31] consisting of combining a mixture of labelled and unlabeled data as training input. 

A large set of ML algorithms are tuned to provide high performance. The most commonly 

used algorithms from the non-supervised branch are k-means and k-nearest neighbor. The 

category of supervised MLA includes Hidden Markov Models, Adaboost, Ripper, Support 

Vector Machines (SVM), C4.5 and Naive Bayes. As our approach is based on predefined 

output classes, we focus on supervised category algorithms. Several works [27, 25] compare 

these algorithms performance. It turns out that C4.5 decision tree algorithm [79] performs 

better in terms of accuracy and computational speed. 
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Table 2.3 A summary table of cited papers and used classification methods properties 
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[71] 2006     HMM, k-nearest neighbor          

[22] 2007     Gaussian Mixture Model          

[23] 2009     K-means, genetic Programming          

[24] 2009     Ripper, C4.5          

[25] 2009     Ripper, SVM, Adaboost, C4.5, Naïve Bayes          

[26] 2010     k-nearest neighbor, k-means          

[27] 2011     Naïve Bayes, Multi-Layer Perception, Ripper, Random Tree, k-

nearest neighbor, J48 

         

[28] 2011     MOGA, k-means, C4.5          

[29] 2011     Naïve Bayes          

[30] 2011     Hierarchical k-means          

[73] 2012     C5.0          

[31] 2013     k-means          

[72] 2014     C4.5, SVM          

[74] 2015     Hoeffding Adaptive Tree          

Our work 2017     C5.0          
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2.6.6 Retraining Considerations 

Only few proposals address formally the retraining process which is required to ensure the 

temporal robustness of a classifier. In fact, such issue is addressed only in [74] over the sur-

veyed works using Hoeffding Adaptive Tree (dynamic update of the tree branches). Such 

lack in the literature limited the deployment of MLA for traffic classification. 

2.6.7 Deployability Considerations 

Among the studied approaches, deployability of the proposed solution is never considered. 

In this thesis, we address such question by implementing our proposed solution on a real 

Home Gateway prototype. Moreover, both accuracy and resource consumption are evalu-

ated using real-traffic scenarios. While the first issue is a concern addressed by all proposed 

approaches, the second one is mistakenly ignored. 

2.6.8 Discussions and Positionning 

As illustrated in Table 2.3, several lacks are reported while studying the literature. Our first 

observation is related to the used dataset. Most of the presented studies were based on an 

unreliable dataset. In fact, we consider a dataset as reliable if it is real (ISP or campus) and 

labelized using a reliable ground-truth generation process. Hence, only the dataset used by 

authors in [74] fulfills such criterias. In Chapter 4, we address these lacks and present a large-

scale analysis of residential traffic collected on real ISP network. At this aim, we detail our 

data collection and ground-truth generation methodology. 

Secondly, early classification which is mandatory to perform real-time management actions 

is addressed only in [22, 26, 27, 72]. Thirdly, early proposed approaches deal with encrypted 

traffic but do not provide a fine-grained classification output. Furthermore, retraining and 

deployability considerations have never been addressed despite their importance regarding 

the viability of a classicfication approach. In Chapter 5, we propose an early, fine-grained 

classification approach based on the C5.0 machine learning algorithm. Moreover, we validate 

its deployability while integrated as part of our Home Gateway based probe. A retraining 

architecture is also designed to ensure the vialbility of our proposed scheme. 



Traffic Monitoring and Classification in Home Networks: Approaches, Concepts and Limitations 

37 

 

2.7 Towards Autonomic Home Network Management 

Exported IPFIX records are collected on the collector side to allow plan and to execute 

management and optimization rules. Thus, our logic is to construct an autonomic control 

loop which automates home network management process. In this thesis, we assume that 

our architecture is based on MAPE-K (Monitor Analyze Plan Execute - Knowledge) para-

digm [82]. MAPE-K control loop was first introduced by IBM for Autonomic computing. It 

consists of a closed feedback loop that could be summarized as follows in our Home Net-

work context: 

 Touchpoints:  Touchpoint are composed by a set of sensors and effectors. On the 

one hand, sensors expose information about the current state of a managed re-

source. On the other hand, effectors allow the change of a state of a managed re-

source. In our context, the Home Gateway and the managed HNIDS are seen as-

sensors when monitoring active flows and become effectors when actions must be 

performed (i.e. Path selection, traffic blocking, etc.) 

 Monitor (HNMC side):  Collects the details from the managed resources (i.e. to-

pology information, configuration property settings, etc.). The monitor function ag-

gregates, correlates and filters the collected details until it determines a symptom 

that needs to be analyzed. 

 Analyze (HNMC side): Based on the symptom provided by the monitor function, 

deep data analysis and reasoning (i.e. machine learning model) is performed. If 

changes are required, a change request is passed to the Plan function. 

 Plan (HNMC side): Based on the change request provided by the analyze function, 

actions are structured to achieve a desired alteration on managed resources. Change 

plan can take many forms, ranging from a simple command to a complex workflow. 

The obtained change plan is logically passed to the Execute function. 

 Execute: As a final step, the Execute function is responsible of changing the be-

havior of managed resources using effectors (Home Gateway and managed 

HNIDS). 

 Knowledge: The knowledge is a set of shared data among the Monitor, Analyze, 

Plan and Execute functions. Updates may occur if the Monitor function raises un-

observed information. 
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2.8 Conclusion 

In this chapter, we exposed strengths and weaknesses of existing architectural approaches 

for Home Network monitoring. We focused on flow monitoring architecture and present 

possible bottlenecks that need to be evaluated in our Home Network context and that will 

be addressed in Chapter 3. Then, we presented an analysis of existing application identifica-

tion approaches. Our interest was turned to MLA based approaches. Several lacks have been 

identified in the literature. Dataset collection and analysis were pointed as a crucial step in 

such approaches and will be addressed in Chapter 4. Finally, we propose a novel scheme of 

early residential traffic classification based on C5.0 machine learning algorithm. Our scheme 

is implemented and validated as part of a Home Gateway exporter in      Chapter 5. 
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Chapter 3 Traffic Monitoring in 

Home Networks: Enhancing Diagnosis 

and Performance Tracking                                                  
 

 

3.1 Introduction 

In this thesis, we focus on home network traffic monitoring which involves several tasks 

including active flows identification, per flow performance tracking and services matching. 

In fact, enabling services monitoring is a major requirement to enhance existing topology 

monitoring systems [10] as it offers multiple benefits. For end-users, it provides a better 

knowledge of their home network usage (devices with high bandwidth consumption, running 

applications, etc.). For ISPs, it provides enablers to improve QoS as highlighted in [81]; it 

would also allow applying advanced parental control, anomaly detection [11], etc. 

In this chapter, we study the feasibility of ISP devices (Home Gateway, HNIDs such as PLC 

plugs and Wi-Fi extenders) based flow monitoring approach. These devices have typically 

constrained resources (CPU and memory) inducing technical challenges for traffic monitor-

ing. After depicting our proposed architecture in Section 3.2, we select a promising tool to 

evaluate its performances using both real and synthetic traffic and upon a representative 

testbed (section 3.3). The aim of our evaluation is to detect possible deployment issues and 

bottlenecks. Finally, we conclude the chapter (Section 3.4).   
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3.2 Flow Monitoring in Home Networks:  Our Archi-

tectural Approach 

In this section, we propose to study the feasibility of ISP devices based flow monitoring 

approach.  Our monitoring approach involves: active flow detection, real-time flow perfor-

mance monitoring and application identification (each flow is associated with its generating 

application). Achieving these tasks produces a home network traffic detailed knowledge. 

Based on this collected knowledge, autonomic management and optimization tasks could be 

performed efficiently. 

Figure 3.2 shows the designed overall architecture to perform these tasks. Three distributed 

major components are detailed: 

 

Figure 3.1 Home network monitoring approach architecture 

 Managed Home Gateway, which refers to a flow monitoring enabled Home Gate-

way. While traffic passing through the Home Gateway is directly monitored, some 

intra LAN traffic may not pass through the Home Gateway (e.g. a file transfer be-

tween 2 devices connected to an Ethernet switch). Therefore, it raises the need to 
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extend the observation process to secondary sensors. In such case, a proxy feature 

may be enabled to forward HNID’s records providing a unified export.  

 Managed HNIDs, which refer to a flow monitoring enabled HNIDs (i.e. Wi-Fi 

extenders, PLC plugs).  Enabling these devices as additional sensors aims to provide 

a full visibility of home network usage. Moreover, enabling adequate filters (Intra 

LAN traffic monitoring only) will avoid data redundancy on Home Gateway.  

 Home Network Monitoring Center (HNMC) is in charge of collecting and ana-

lyzing exported Home Gateway records. Combining analysis results with topology 

information would allow advanced home network diagnosis and troubleshooting. A 

first deployment option for the HNMC is on a home network local device (typically 

the Home Gateway). A second option could be to perform the data collection in the 

Cloud from several home networks. The first option will guarantee continuous mon-

itoring compared to a cloud placement (e.g. when there is a WAN access issue). On 

the other hand, the second option is more suited to avoid supplementary burden on 

the home gateway (constrained resources) and would allow more advanced analysis 

based on several households’ data. Both options support remote access by the sup-

port desk (after user agreement). 

3.3 nProbe tool experimental Evaluation 

3.3.1 nProbe as a suitable tool? 

Open source IPFIX tools are developed both for IPFIX probes (exporters) and collectors. 

As we aim to assess possible limitations and bottlenecks for resource constrained devices, 

we focus on exporter’s proposed tools. We consider only exporters implementing at least 

one of the needed features for our approach (performance metrics and application identifi-

cation) as detailed in Table 3.1. 

Considering our approach needs, we select nProbe as the promising exporter to test. As an 

“all in one” option, this tool offers the largest set of configuration’s possibilities. Moreover, 

it integrates native packet capture optimization techniques. Furthermore, integrated in vari-

ous low-resource devices (raspberry Pi, SFP), nProbe proved its embeddability (binary size 

< 100 KB). 
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Table 3.1 Comparative summary of IPFIX exporters 

 Version Packet capture 

library 

Performance metrics Application 

Identification 

Sampling 

option 

YaF1 2.7.1 libpcap  DPI (regular expres-

sion matching for 46 

protocols) 

 

nProbe2 7.1 Libpcap, 

PF_RING/ZC 

Application and net-

work latency, TCP 

metrics, plugins 

nDPI (170 protocols) Packet, 

Flow 

pmacct3 1.5.1 libpcap  Optional patch (L7-

filter library, RTP, 

eDonkey) 

Packet, 

Flow 

QoF4 0.9.0 libtrace TCP metrics   

In this section, we study the performances of the nProbe exporter running on an experi-

mental testbed. It is a first step evaluation conducted on laptops devices. The target is to 

estimate the load induced by such tools before testing them on resource limited devices 

(home gateway) as a second step. As nProbe was designed and validated for high speed net-

works (10 Gbps), our evaluation is not focusing on packet processing speed but rather on 

resources consumption (CPU usage, memory usage, bandwidth load) of the exporter device. 

Furthermore, we selected ntopng [14] which is an open source collector provided within the 

same project. 

3.3.2 Testbed setup 

Our testbed is designed to fit major home network configuration use cases (multiple de-

vices/OS and connectivity technologies) as depicted in Figure 3.2. As nProbe is not inte-

grated into our Home Gateway (CPU: 500 MHz, Memory: 128 MB), we used port mirroring 

configuration to simulate gateway based packet capture. Therefore, we run the nProbe tool 

on a Linux PC receiving all the traffic sent to the home gateway. Moreover, we compiled 

nProbe with both standard libpcap and PF_RING libraries. Indeed, testing both libraries 

allows us to evaluate the benefits of integrating fast processing techniques in our approach.  

                                                                        

1 https://tools.netsa.cert.org/yaf/ 
2 http://www.ntop.org/products/nprobe/ 
3 http://www.pmacct.net/ 
4 http://www.ict-mplane.eu/public/qof 
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Finally, per process resource consumption computation is performed by the atop/netatop 

tool. We tested both real and synthetic traffic scenarios as detailed in the Figure 3.4.  

 

Figure 3.2 Testbed configuration 

We disabled the Wi-Fi access point on the Home Gateway (Livebox 3) and simulate the same 

behavior using a PLC/Wifi extender plugs. Such configuration allows us to generate real 

traffic using multiple wireless devices (Smartphone, Tablet). Real traffic scenario includes 

also TV traffic generated using a STB connected to the Ethernet port of the Wi-Fi extender. 

3.3.2.1 Real traffic scenario 

We emulate a user’s typical heavy load scenario as depicted in Figure 3.4 with 34.75 Mbps 

average traffic throughput (5135 unique flows with an average IP packet size of 1046 bytes) 

while capturing a full packet trace. Then, we replay the captured traffic using Pfsend traffic 

generator (PC1) to evaluate several nProbe configurations: 

- LPCAP-DPI: nProbe compiled using libpcap and nDPI enabled 

- LPCAP-NODPI: nProbe compiled using libpcap and nDPI disabled 

- PFRING-DPI: nProbe compiled using PF_RING and nDPI enabled 

- PFRING-NODPI: nProbe compiled using PF_RING and nDPI disabled 
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Also, one should note that such evaluation configuration allows us to evaluate the generated 

bandwidth load by the exporter in real life scenarios. 

3.3.2.2 Synthetic traffic scenario 

 

Figure 3.3 Collected real traffic distribution (obtained by nDPI) 

We modified our testbed removing all devices except of PCs. We run a traffic generator and 

a traffic receiver on PC1 and PC2, respectively (port mirroring configuration is set up be-

tween PC1 and nProbe). Then we generate, in a first series of tests, UDP synthetic traffic 

(packet size of 1500 bytes) at several rates (50 Mbps, 200Mbps, 400Mbps, 600Mbps, and 

800Mbps). A second series of tests consist of setting the rate of UDP traffic at 200 Mbps 

while varying the number of parallel flows. While the aim of the first series of tests is to 

evaluate CPU and memory usage under several data rates, the latter focuses on the impact 

of the number of entries in the flow cache.  

Indeed, we emphasize that varying the number of parallel flows has the same effect of varying 

the number of hosts as it is processed on the same way on the flow cache. 

3.3.3 Performance evaluation results 

At the probe side, we evaluate the resource consumption in terms on CPU usage and 

memory. Furthermore, we evaluate additional network load generated by the exporting pro-

cess. 
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3.3.3.1 CPU Usage 

Measured CPU usage is observed on one 2.6 GHz core processor. A first observation is that 

nProbe-PFRING configuration runs on an idle network with an average of 10% CPU usage 

as shown in Figure 3.5(a). This is mainly due to a technical implementation choice. Indeed, 

nProbe’s developers implemented an active polling approach instead of the classical passive 

one (use of usleep until packets arrive) to ensure an optimal packet capture in high speed 

networks scenarios. This explains why nProbe-LPCAP (passive polling) provides a better 

performance while traffic load is less than ~450 Mbps. A second important observation is 

that CPU usage is almost constant with respect to the number of flows (with a constant total 

rate of 200Mbps) except for very low number of flows (less than 25) as shown in Figure 

3.5(b). We suppose that it is mainly due to the flow cache management process which is not 

optimized for a low number of entries. A final observation is concerning the DPI impact on 

device’s CPU usage as shown in Figure 3.4(a). The observed average loads for LIBPCAP- 

noDPI/DPI and PFRING-noDPI/DPI are 5.01%, 6.16%, 13.7% and 15% respectively. 

We conclude that enabling application identification on real traffic costs 9.3% average addi-

tional overhead comparing to nProbe-PFRING disabled DPI scenario. A higher overhead 

is observed using standard libpcap where it reaches up to 23%. However, the main outcome 

is that the activation of nDPI causes a relatively low CPU load in both cases. 

3.3.3.2 Memory Usage 

In our approach, the memory usage is expected as the most probable bottleneck. In fact, 

while CPU capacity is evolving according to the Moore law, memory resource evolves in a 

slower way. We focus on real traffic scenario to evaluate possible bottlenecks. While memory 

usage is low and stable: less than 12 MB, enabling DPI increases memory load up to 32MB 

in our test scenario as illustrated in Figure 3.4(b). The increase follows a continuous trend 

which might be an issue when running the application identification for a long period of 

time. This is mainly explained by the nDPI data caching feature. Fixing the maximum allo-

cated cache size according to the device memory capacity might allow limiting this increase. 

3.3.3.3 Network Load 

Our last evaluation focuses on the bandwidth load generated by the exported data. In the 

real traffic scenario (with DPI enabled), we observe an average load of 156 Kbps with spikes 

up to 6.67 Mbps corresponding to export instants as depicted in Figure 3.4(c).  
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Figure 3.4 nProbe resource consumption using real traffic scenario 
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Figure 3.5 nProbe resource consumption using synthetic traffic scenarios 
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As the network load depends on various parameters (e.g. flows duration and/or number of 

flows) which we do not control in the real traffic scenario, we decided to focus on maximum 

peak rates while varying the number of flows. Therefore, we used long lived (300 seconds) 

synthetic controlled UDP flows with constant rate of 200 Mbps. The metering process is 

mainly driven by active timeout expiration entry which determines the frequency of export-

ing data (120 s default value). As depicted in Figure 3.5(c), throughput spikes maximum value 

increases while varying the number of generated flows:  1.17 Mbps for 200 parallel flows, 2.6 

Mbps for 1000 flows case.  In our approach, we must keep the overhead as low as possible 

as access link upstream rate might be a bottleneck. Fortunately, major IPFIX exporters allow 

tuning entry expirations timeouts and rules which allows controlling efficiently exported data 

rate. 

3.3.3.4 Synthesis and discussion 

To sum up, we can say that nProbe performance, under several scenarios, are satisfactory. 

Indeed, L7 monitoring using a standard library (libpcap) capturing heavy load real traffic 

needs less than 6% of the average CPU usage on a single 2.6Ghz CPU core. Moreover, 

memory average load is less than 20 MB. Finally, IPFIX exporting induces an average over-

head of 156Kbps with the conducted scenarios. 

We expect near future home gateways to be less resource constrained (e.g. Dual core pro-

cessor with at least a 512MB RAM) which would facilitate the deployment of such traffic 

monitoring tools as advocated in section 3.2.  However, almost all modern gateways integrate 

hardware packet processing accelerators (no packet visibility at kernel-level) leveraging 

packet capture process to a new challenging level. We will address this issue in Chapter 5. 

Finally, to illustrate the benefits of traffic monitoring for improving home network diagnosis 

tools, we used ntopng [14] to provide traffic statistics information to the Home Network 

Assistant tool proposed in [2]. As shown in Figure 3.6, combining both topology and flows 

monitoring information provides better insight on the home network (bandwidth usage rep-

artition per device, ongoing flows on each links, etc.). The aim is to rely on such information 

for troubleshooting purposes in a self-care mode (done by the customer) and customer care 

fashion (done by the ISP hotline). Indeed, it would help to reduce the ISP hotline costs. 
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Figure 3.6 HNA traffic monitoring screenshot 

3.4 Conclusion 

Home networks services monitoring is a key feature to improve users Quality of Experience 

(QoE) and reduce ISP hotline costs. In this chapter, we provided an architectural approach 

to perform enriched home network monitoring. Then, we evaluated the nProbe tool on an 

experimental testbed focusing on resource consumption criteria.  

While the obtained results are promising, our work highlighted several possible challenges 

and improvements. Our conducted experiments were based on Deep Packet Inspection and 

provided useful insights related to the overhead induced by such technology indicating its 

feasibility. 
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However, we believe that such technique is not viable due the stated reasons in chapter 2 

(signature engineering, traffic encryption, etc.). To design and deploy efficiently our pro-

posed architecture components, we focus on building a reliable MLA approach. At this aim, 

a deep understanding of home networks traffic and usages must be achieved as it is presented 

in the next chapter. Indeed, the trace captures presented in the next chapter are the input 

data set for the training of our machine learning algorithm described in        Chapter 5. 
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Chapter 4 Towards Understanding 

Residential Networks’ Usages: From 

Packets to Customers 
 

4.1 Introduction 

The continuous change of home networks usages is raising several challenges. From an ISP 

standing point, managing efficiently the home network portion, yields to a better customer’s 

satisfaction while reducing help-desk costs. As stated in Chapter 3, real time traffic charac-

terization in home networks faces several challenges. In fact, one crucial step when address-

ing this task is a deep understanding of users’ modern Internet usage. Reporting traffic pat-

terns and usages profiles helps to understand the demands of today and the challenges of 

tomorrow. Thus, optimization components, such as application aware QoS controller [81] 

or content caching optimizer [83], could be efficiently designed and deployed. 

A large body of the literature [84, 85, 86, 87, 88] presented fixed access characterization 

focusing on application usages. Four major observations can be reported while studying the 

state of the art.  

The first observation is concerning the measurement points. In fact, a major part of the 

observations is reported from IP backbone level [84]. This implies collecting both business 

and residential customers’ traffic despite the significant gap that might exist between both 

profiles.  

The second observation is regarding the traffic classes’ granularity. In most of the papers [86, 

89], traffic analysis granularity is too coarse to tackle the growth of web applications. In fact, 

traffic classes such as Web, P2P, DNS, SSH, etc. were sufficient in the early days of the 
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Internet where web activity was limited to visiting some text and images contents hosted by 

a savvy set of servers. Nowadays, web applications are growing in a tremendous fashion 

resulting on tens to hundreds of embedded objects loaded from several dedicated servers 

such as media streaming portals, online gaming platforms or social network servers. Moreo-

ver, some major over-the-top (OTT) actors such as Google are starting to deploy their own 

delivery protocols such as QUIC (Quick UDP Internet Connections). Last but not least, 

virtual tunneling technologies (including Tor) are evolving rapidly and are more adopted by 

residential users due to several factors (e.g. privacy concerns, European Union Intellectual 

Property Rights Enforcement Directive (IPRED) and HADOPI law in France). The above 

described evolutions require the need of a fine-grained classification while reporting traffic 

patterns and profiles.  

The third observation is concerning the reliability of traffic identification engines and is 

closely related to the previous observation. While some researchers used coarse grained open 

source identification engines [87], some works achieve fine grained classification provided 

by commercial tools [85, 88, 5] with unknown precision performances. This weakness affects 

the reliability of the reported results and is inherited from the traffic classification field where 

the community warned about the lack of common benchmark standards [54].  

Our last observation is concerning the lack of subjective studies of home networks usages 

and residential customers’ behavioral habits. In fact, previous works are conducted objec-

tively based on packet traces only. A subjective view tackles customer’s habits and usages 

trends that cannot be unveiled using network data and is mandatory to achieve a complete 

view of residential networks usages. 

In this chapter, we aim to overcome these lacks. To do so, we first present residential users’ 

traffic characterization and usage pattern identification based on real traces collected at the 

closest points to the users. Moreover, our fine-grained analysis is partly based on an open 

source engine with well-known precision performances. Then, we rely on our own developed 

tools to analyze the traces more in depth. By doing so, we are able to focus on service cate-

gories of most popular applications. Finally, we conduct a subjective behavioral analysis of 

more than 600 residential customers through a questionnaire. The obtained knowledge is 

used to perform a complete synthesis of residential network usages. To the best of our 

knowledge, this is the first time that such detailed analysis of residential Internet usages, 

combining the above-mentioned criteria, is presented. 
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The rest of the chapter is organized as follows. In section 4.2, we present some relevant 

works used as landmarks during the design of our network data collection and processing 

methodology which is given in Section 4.3. Then, in section 4.4, we depict residential users’ 

traffic characteristics based on our collected data set at several scales focusing on applications 

usages level. In section 4.5, we present our subjective analysis of residential networks usages. 

Then, we discuss the obtained results in comparison with other reports in Section 4.6. Finally, 

we conclude the chapter (Section 4.7). 

4.2 Related Work 

Traffic characterization reported works are distributed among several countries over conti-

nents. We already mentioned few of them in the previous section highlighting the lacks that 

we would like to overcome. Internet traffic usages differ considerably between countries [5] 

and, thus, in this section, we consider only measurements performed on the same French 

ISP’s broadband access network. Note that reported dates in the rest of the chapter refer to 

dataset capture dates.  

In early 2006, Siekkinen et al [89] reported the low bandwidth utilization measured at 1300 

Asymmetric Digital Subscriber Line (ADSL) users scale, mainly explained by P2P applica-

tions upload limited rate from “producer” side. More than half of the traffic was unidentified 

due to the use in this study of a port-based traffic classifier. 

The early fiber access deployment (2008, July) impact is studied in [87] among 1182 ADSL 

and 1905 FTTH (Fiber To The Home) customers, respectively. Authors reported that a large 

part of upstream traffic was unclassified and, thus considered only TCP flows with SYN 

packet observed (to improve classifier accuracy) while characterizing the traffic applications 

distribution. The described breakdown confirmed that P2P applications were the main con-

sumers of uplink capacity whereas the downlink bandwidth was mainly used by video stream-

ing. 

In [85], a recent traffic characterization (2013, October) from two major European ISPs is 

reported. The French observed customers’ pool size was 7500 with the third identified as 

FTTH users. While unclassified traffic ratio was not reported in this study, video streaming 

reaches up to 36% of downstream classified FTTH customers’ traffic (26% for ADSL) fol-

lowed by P2P applications (16% and 12%, respectively). Uplink traffic was dominated by 

P2P applications (78% and 48%, respectively). Authors reported that for FTTH access up-

link (resp. downlink), 3% (resp. 15%) of customers generates 80% of the measured traffic. 
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4.3 Network Data Collection and Processing 

As introduced in the previous sections, several works providing traffic behavior characteri-

zation do not provide their measurement’s logic. Based on “Tell me how you measure me, 

and I will tell you how I will behave” principle, we depict in the following our measurements 

processes. 

4.3.1 Network Data Collection 

Our network data collection process is performed at a major French ISP residential aggrega-

tion network. Two measurements servers are located between the clients and a Broadband 

Remote Access Server (BRAS) as depicted in Figure 4.1. This configuration allows capturing 

bidirectional flows generated by residential customers as well as small and medium enter-

prises. Moreover, managed services such as IPTV and VOIP are excluded at this observation 

level. Consequently, the traffic characterization presented in this chapter differs from previ-

ous contributions which were based either on backbone or an academic network traffic. 

 

Figure 4.1 Overview of the collection process architecture 

Based on the daily behavior of residential traffic reported in the literature [85, 88], two traffic 

packet traces are captured on July 8th, 2015 at 12am and November 26th, 2015 at 8pm, 

respectively. While the first one (referred as JUL8-12) is obtained using server 1, the latter 
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(referred as NOV26-8) is obtained using both servers and it captures a commonly identified 

“busy hours” period. Note that dates spacing is realized to provide more than a “one shot” 

view of the traffic. Finally, all data are anonymized as per the French laws on personal integ-

rity. 

Table 4.1 Details of collected traffic traces 
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The collected data is combined with per customer additional knowledge such as subscribed 

offer, uplink (resp. downlink) negotiated rate between the Home Gateway and the access 

node (Digital Subscriber Line Access Multiplexer (DSLAM) or Optical Line Termination 

(OLT)), etc. Thus, it allows us to have a detailed view of our collected traces as described in 

Table 4.1. Moreover, enterprise customers’ data are filtered to focus on residential subscrib-

ers only. Few customers are not represented (experimental lines and in progress termination 

subscribers) below. Note that, “Other” category refers to residential subscribers that do not 

use provided the ISP Home Gateway. We assume that “Other” class is mainly dominated by 

enterprise customers that subscribe to residential offers for saving money purposes while 

including some few “geek” customers. Our hypothesis is consolidated by the breakdown 

between the two traces. Despite being collected on both servers, “Other” customers’ traffic 

aggregated volume in NOV26-8 trace is 7 times lower than the one observed in JUL8-12 

trace. This is mainly explained by the time slice of JUL8-12 trace which is a working hour. 

Consequently, “Other” customers’ class traffic is excluded in our reported results. While this 

issue is not addressed in the literature, we consider that such class of customers’ may affects 
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the reported results as upstream traffic volume generated reaches up to 12.7% of the overall 

traffic in working hours. 

 

Figure 4.2 Data processing overview architecture 

4.3.2 Network Data Processing 

Packet-level traces allow the aggregation of traffic at several abstraction scales. In the follow-

ing, we identify flows as bidirectional connections based on the classical 5-tuple {protocol 

ID, source IP address, destination IP address, source port, destination port}. Flow expiration 

is mainly driven by inactive timeout (120 sec) or natural expiration (FIN packet observed for 

TCP flows). Concerning the flow direction definition, we consider that data transmitted from 

the customer’s Home Gateway to the measurement point is counted as “uplink” while the 

reverse direction is called “downlink”. 

Flow features are extracted using the nProbe [25] tool; nProbe (v7.3) allows the extraction 

of the main flows’ characteristics in addition to some advanced performance metrics5. Be-

sides, we enabled HTTP plugin which performs HTTP headers extraction (i.e. URL, content 

type, user agent, etc.). Consequently, HTTP flows entries are enriched with their correspond-

ing headers.  

                                                                        

5 http://www.ntop.org/nprobe/how-to-monitor-latency-using-nprobenagios-world-conference-europe/ 
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The application identification engine is partly performed using the nDPI library [15]. As 

mentioned above, one common weakness in some fine-grained traffic analysis works is the 

reliability of used commercial classifiers [85, 88, 5]. The detailed dissection logic implemented 

in nDPI is open source. Its main core consists of a combination of payload patterns matching 

(Aho-Corasick algorithm) and IP address mapping approach while port-based identification 

is used as a last resort. Accuracy performance of nDPI is evaluated with respect to other 

both open source and commercial engines in [68]. Authors reported the high accuracy of 

nDPI which outperformed the other evaluated tools. While authors used nDPI version 1.6, 

we used in this work the latest available version (1.7) which introduced several improvements 

such as the QUIC protocol dissector among 223 applications set. 

Moreover, we developed a set of parsers to refine the classification results. In fact, the used 

nDPI version allows defining a set of consistent application labels such as {protocol.sub-

protocol} (e.g. HTTP.Facebook). We enrich sub-protocol identification for HTTP flows 

using knowledge extraction from HTTP headers (HTTP User Agent, URL and content type). 

In addition, flows’ sub-protocols identification is also affined based on resolved server name 

parsing. Based on these inputs (user agent, url, reverse dns), a majority vore strategy is ap-

plied. A manual labelization is performed in case no majority was established. Such approach 

allows us to provide in-depth view of application classes such as Video on Demand, Live 

TV, Advertising, etc. which is not provided by nDPI. The several tasks involved while pro-

cessing capture traces (depicted in Figure 4.2) results in a reliable fine-grained analysis. 

Table 4.2 Explanation of traffic categories 

Traffic categories Examples 

Real-Time entertain-
ment 

Video streaming sites (YouTube, NetFlix, Twitch, etc.), Streamed or buffered 
Audio or video content (RTP, RTMP, Flash, MPEG), Video Advertising, etc. 

Gaming Steam, WorldOfWarcraft, LeagueOfLegends, CandyCrush, Scrabble, Console 
portals, etc. 

Social Networking Facebook, Instagram, Google+, Tinder, LinkedIn, Viadeo, Tumblr, Pinterest, 
Twitter, etc. 

Storage FTP, DropBox, AppleiCloud, UpToBox, 1fichier, CrashPlan, etc. 

Marketplaces Software Update/Download, GooglePlay, AppleAppStore, AppleiTunes, Win-
dows Update, etc. 

Administration DNS, MDNS, NTP, NetFlow, STUN, etc. 

Web Browsing Google, Advertising, Yahoo, News Portals, LeBonCoin, HTTP_Others, etc. 

Tunneling HTTP_Proxy, SSL_Others, Tor, SSH, IPSec, etc. 

Filesharing P2P (Bittorrent, eDonkey, Gnutella), Newsgroups, etc. 

Communications Skype, Viber, YahooMail, Gmail, WhatsApp, IMAPS, POP3, etc. 

Others GoogleNow, GoogleMaps, QUIC, etc. 
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Finally, applications are categorized into main service categories as shown in Table 4.2. Our 

definition of each category is based on the one provided in [5].  The categorization is per-

formed in a protocol ascendant way. For example, “DNS.YouTube” is categorized as Ad-

ministration services while “HTTP.YouTube” is categorized as Real-Time entertainment. 

Thus, applications analysis is performed at three consistent granularities scales which are the 

application layer (L7) protocol (e.g. HTTP), the application itself (e.g. YouTube) and the 

traffic categories (e.g. social networking). 

4.4 Traffic Analysis and Characteristics 

We describe in this section the traffic characteristics extracted from the captured traces. Our 

analysis is presented as a walk through the TCP/IP protocol stack layers. 

4.4.1 Overview of the Aggregated Traffic 

The aggregated traffic measurements provide useful insights to grasp the general traffic pat-

terns in residential networks.  

The average number of flows in progress observed is 27562 (resp. 79253) for the JUL8-12 

(resp. NOV26-8) trace with an average aggregate rate of 345.6 Mbps (resp. 810 Mbps) as 

depicted in Figure 4.3. While no major fluctuation is reported for JUL8-12 trace, we observe 

a decreasing activity for [8pm-9pm] time slot in NOV26-8 trace. This could be explained by 

typical dinner time slot (French main news broadcast time) correspondence. 

 

Figure 4.3 Number of flows in progress and aggregate rate 

Note that we do not consider one packet flows to compute the number of flows in progress. 

Indeed, the number of flows having only one packet represents 44% (resp. 53%) of the 

observed flows in JUL8-12 trace (resp. NOV26-8) as depicted in Figure 4.4.a. However, 
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single packet flows constitute only 0.2 % (resp. 0.4%) of overall data volume in JUL8-12 

trace (resp. NOV26-8). This observation is also reflected on flows duration (see Figure 4.4.b) 

where the average flow duration is 21 secs (resp. 24 sec) for flows counting at least two 

packets.  

 

Figure 4.4 Cumulative distribution function of flows length 

Figure 4.5 shows the proportions of flows contributing to the cumulated total data volume. 

It highlights that 1% of flows generate 80% of the observed data volume on both traces. As 

expected, most flows are short, but few long flows contribute to most of the total volume. 

 

Figure 4.5 Flows contribution to transferred data volume proportions 

Table 4.3 Packet size repartition 

 Total Size clusters 

Up to 128 128 to 256 256 to 512 512 to 1024 124 to 1500 

JUL8-12 108,539,550 36.13% 3.46% 2.05% 2.4% 55.96% 

NOV26-8 915,820,653 38.42% 3.26% 1.73% 1.54% 55.05% 
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Finally, an analysis of packet sizes reveals that most packets have either a size around the 

MTU or are very short (less than 128 bytes: TCP SYN and ACK typically) as detailed in 

Table 4.3. 

4.4.2 Costumers’ Behavior Analysis 

Table 4.1 summarizes the data volume generated by each access type in both upstream and 

downstream directions. While the maximum line speed is 1Gbps (resp. 200Mbps) in the 

downlink (resp. uplink) for FTTH customers, the maximum downlink (resp. uplink) negoti-

ated rate for xDSL customers is 102 Mbps (resp. 26Mbps).  Note that JUL8-12 trace data 

volume is mainly generated by FTTH customers due to the used capture configuration (only 

server 1 enabled).  On the other hand, despite that the number of FTTH customers is almost 

the same as xDSL customers for NOV26-8 trace, the volume generated in upstream (resp. 

downstream) by FTTH customers is 3 times (resp. 1.25) higher than the volume generated 

by xDSL customers.  As expected, since FTTH access provides higher rates, the correspond-

ing users tend to generate more traffic. Moreover, xDSL customers’ upstream channel limi-

tation is observed in the ratio between the downstream volume and the upstream one.  In 

fact, the computed ratio in JUL8-12 (resp. NOV26-8) trace is equal to 6.2 (resp. 10.3). The 

traffic is more balanced for FTTH customers with a ratio equals to 3.4 (resp. 4) due to the 

increased capacity of the upstream channel in the FTTH case. 

 

Figure 4.6 Customers contributions to transferred data proportions 

One major observation while analyzing customers’ behavior in both traces is the impact of 

“heavy users” on the overall generated traffic. In fact, 80% of the overall data volume in 

JUL8-12 (resp. NOV26-8) trace is generated by 5% (resp. 15%) of the customers. To provide 

an in-depth analysis, we clustered household’s traffic according to their access types and to 

the channel direction as illustrated in Figure 4.6. 
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Almost 80% of the FTTH upstream traffic is generated by 1% (resp. 2.7%) of customers in 

JUL8-12 trace (resp. NOV26-8) while 5 times more customers are generating 80% of the 

downstream traffic.  In the xDSL networks case, 80% of the upstream traffic is generated by 

3.6% (resp. 13.2%) of customers while 7% (resp. 16.5%) of them generates the same ratio in 

the downstream direction. These results indicate that the impact of heavy users is more dom-

inant in the upstream direction than in the downstream for both xDSL and FTTH access 

types. It may suggest that heavy users generate types of applications requiring more traffic 

on the uplink with respect to the other users (e.g. P2P applications, cloud storage, etc.). In 

addition, 6% (resp. 10%) of FTTH heavy users’ population in JUL8-12 trace (resp. NOV 26-

8) is the same on both upstream and downstream directions meaning that 94% (resp. 90%) 

of heavy users’ customers’ pool are considered as heavy users only on one direction. 

In a second step, we focus on the average link utilization of the observed customers. The 

results are summarized in Figure 4.7 and show a low average bandwidth usage per customer. 

As we can see, the maximum observed link utilization per customer in JUL8-12 trace is 6.7%, 

while it is 12.3% for NOV26-8 trace. 

 

Figure 4.7 Cumulative distribution function of per customer average link utilization 

4.4.3 Transport Layer Characteristics 

Table 4.4 summarizes the transport protocol statistics observed in both traces. Unsurpris-

ingly, TCP connections represent 92.6 % (resp. 89.6%) of the downstream traffic volume in 

JUL8-12 (resp. NOV26-8), while UDP traffic is low. We observe an increasing ratio of UDP 

traffic volume in the uplink direction up to 34% in JUL8-12 (resp. NOV26-8) (resp.45.3%). 

This proportion change is mainly due to P2P application as explained in the next section in 

addition to the fact that TCP traffic in the upstream direction usually involves ACK packets. 
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Finally, the UDP/TCP bytes ratio which is 0.15 (resp. 0.18) in JUL8-12 (resp. NOV26-8) 

trace is greater than the ratios reported in previous studies [90]. While researchers expected 

UDP expansion to be mainly driven by some UDP based P2P applications (e.g. uTP, 

PPLive), we assume that this could be reinforced by new OTT delivery protocols such as 

QUIC as we will see in the next section. 

Table 4.4 Transport layer protocols distribution 

 Flows Volume (Bytes) 

TCP (%) UDP (%) TCP (%) UDP (%) 

up down total up down total 

JUL8-12 68.1 31.1 65.9 92.6 86.7 34 7.2 13.1 

NOV26-8 69.4 30.1 54.2 89.6 84.1 45.3 10 15.4 

 

Table 4.5 Higher layer protocols statistics 
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Flows (%) JUL8-12 26 25.2 31.8 6.2 1.3 0.06 0.4 1.5 4.8 2.7 

NOV26-8 29.6 27.8 29.3 4.5 1.1 0.04 0.2 0.9 4.7 1.8 
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Downlink JUL8-12 45.6 37.1 10.4 1.5 2 0.8 0.46 1.6 0.03 0.5 

NOV26-8 49.6 32.4 9.6 2.3 3 1.2 0.9 0.3 0.07 0.6 

Uplink JUL8-12 5.63 21.7 57.6 11 0.7 0.3 0.5 0.4 0.05 2.1 

NOV26-8 10.2 16.4 56.4 12.1 1.1 0.4 0.8 0.5 0.3 1.8 

Total JUL8-12 36.7 33.7 20.9 3.5 1.7 0.7 0.47 1.36 0.04 0.93 

NOV26-8 43.5 29.9 16.8 3.8 2.7 1.1 0.8 0.3 0.1 1 

4.4.4 Higher Layer characteristics 

Application layer protocols statistics in terms of flows and bytes are depicted in Table 4.5.  

As can be seen, HTTP and SSL (including HTTPS) traffic dominates, with 70.4% (resp. 

73.4%) of total traffic volume in JUL8-12 (resp. NOV26-8) trace.  Finally, early QUIC pro-

tocol deployment is also observed in both traces contributing up to 2% (resp. 3%). We as-

sume that the observed increase between the traces is mainly due to Google deployment 

strategy adopted in 2015 [91]. P2P traffic represents less than 4% of the total volume, alt-

hough it is higher on the uplink side. The contribution of the other protocols is quite low, 

except for the unknown part. 
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4.4.4.1 Digging into the unknown 

20.9% (resp. 16.8%) of total traffic volumes are classified by nDPI as unknown. Our initial 

hypothesis is that ‘unknown’ traffic is dominated by encrypted P2P traffic. Our hypothesis 

is consolidated by the asymmetric distribution of “unknown” class contributing up to 57% 

(resp. 56%) of uplink traffic. Moreover, we isolated the 2,556,142 unique distant peers in-

volved in unknown flows in both traces. The resolved peers’ names inspection reveals that 

the isolated pool is mainly dominated by ISP customers (more than 80%).  Thus, P2P pro-

tocols constitute most of the unknown class. Consequently, the impact of the French 

HADOPI law is reflected through the observed dominance of obfuscation in P2P protocols. 

 

Figure 4.8 Device type traffic breakdown 

 

Figure 4.9 Content type traffic breakdown 
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4.4.4.2 HTTP traffic characterization 

We focus on HTTP traffic characteristics to understand more in depth the main dominant 

protocol observed in both traces. Based on the extracted User Agent field in each flow, we 

build a device type detector able to recognize more than 80% of extracted user agents. In 

addition to well-known existing parsers67 , we developed a third parser and rely on a majority 

voting output. Manual inspection is performed when three distinct outputs are obtained. 

Traffic volume distribution among detected device types is depicted in Figure 4.8. Empty 

user agents and some bot-like user agents that we are unable to identify are referred as ‘Un-

known’. 

As a second step, we focus on content types used by HTTP servers to indicate the type of 

the content they are delivering to the clients. As depicted in Figure 4.9, application type is 

the most prominent in JUL8-12 trace generating up to 45% of the total traffic volume, fol-

lowed by video8 contents. This trend is reversed in NOV26-8 trace where the video domi-

nates representing 43% of the downlink traffic volume. While 58% of HTTP transfers do 

not indicate a content type value in JUL8-12 (resp. NOV26-8) trace, more than 70% of those 

transfers are generated by desktop devices. It suggests that desktop HTTP applications are 

subject to less careful design than mobile ones. 

Table 4.6 Traffic categories statistics 
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Flows (%) JUL8-12 1.9 0.3 2.6 0.6 0.3 6 33.4 8 36.9 3.8 6.2 

NOV26-8 2.6 0.3 4.3 0.4 0.2 5.4 31.7 11.6 32.8 4 6.7 
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Downlink JUL8-12 25.3 3.6 3.1 2.6 1 0.04 32.4 13.9 11.7 2 4.36 

NOV26-8 36.5 3.6 3.6 2.1 1 0.1 29.5 5.9 11.4 1.5 4.8 

Uplink JUL8-12 1.9 0.2 0.8 1.8 0.1 0.08 17 6.7 68 1.5 1.9 

NOV26-8 4.1 0.5 1.5 0.7 0.2 0.5 10.8 6.2 66.8 4 4.7 

Total JUL8-12 20.1 2.9 2.6 2.4 0.8 0.1 29 12.3 24.2 2 3.6 

NOV26-8 31.5 3.1 3.3 1.9 1 0.2 26.6 6 19.9 1.9 4.6 

                                                                        

6 https://www.npmjs.com/package/device 
7 https://pypi.python.org/pypi/user-agents 
8 We include other content types referring to video content such as “application/vnd.apple.mpegurl” 
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4.4.5 Traffic Services Analysis 

Traffic categories statistics are depicted in Table 4.6. A first observation is concerning 

Filesharing traffic which dominates in both traces in terms of flows and upstream traffic 

volume (more than 67%). While a large part of Filesharing traffic is obfuscated, Bittorrent is 

the main identified application used. Note that unknown traffic which we detect as P2P as 

explained in section 4.4.4.1 fall into this category. 

Web browsing dominates the traffic volume in JUL8-12. Our category definition covers both 

HTTP (almost 80%) and SSL traffic that do not fall into other defined categories. While we 

acknowledge that more investigation is needed, we assume that this category may cover some 

different traffic categories that we are unable to detect. As an example to illustrate this issue, 

encrypted traffic generated by a subset of Content Delivery Networks (CDNs) that we clas-

sify as Web Browsing may fall into the real-time entertainment category. 

Real-time entertainment traffic contributes up to 20% of the total traffic volume in JUL8-12 

and dominates NOV26-8 trace (31%).  Video streaming applications are the most prominent, 

in particular, YouTube as detailed in Table 4.7. 

Tunnelling class represents 12.3% (resp. 6%) of the traffic volume in JUL8-12 (resp. 

NOV26-8) trace. The generated volume is dominated by SSL_unresolved traffic; it refers to 

identified SSL transfers to servers that do not provide reverse DNS response and where we 

are unable to extract a readable certificate name. While Tor applications usually use such SSL 

exchanges, we assume that other services could also use such configuration. 

Facebook largely dominates the Social Networking category (90%) which contributes up to 

3.6% of downlink traffic volume in NOV26-8 trace. 

Gaming traffic generates up to 3% of the total volume in both traces. Traffic generated by 

the Steam platform represents more than 50% of the generated volume. Note that in 

NOV26-8 trace, Candy Crush generates up to 22% of observed gaming flows. 

DropBox dominates storage traffic in terms of flows while 1fichier.co is the most prominent 

in terms of volume. 

Regarding marketplaces traffic which is equal to almost 1% in both traces, software update 

flows leads the category in term of flows in both traces. In terms of volume, the trend is 

dominated by both Windows Update and Apple_iTunes. 

The communication category represents up to 2% of the observed traffic volume on both 

traces. IMAPS contributes up to 62.2% of the traffic volume in JUL8-12 trace while Skype 
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leads the category in terms of flows. In addition, Skype generated 68% of communications 

traffic volume observed in NOV26-8.  Note that “others” category is mainly dominated by 

QUIC flows and Google (1e100)9 flows that we are unable to categorize. Finally, the admin-

istration traffic is mainly composed of DNS traffic. 

Table 4.7 Zoom on per category applications 
 JUL8-12 NOV26-8 

Flows (%) Bytes (%) Flows (%) Bytes (%) 

 YouTube 65.5 54.3 68.1 46.5 

Real-Time entertainment NetFlix 4 15.7 3.9 16.8 

LiveTV 5.2 8.7 11.2 20.3 

VoD 2.7 4.9 2.2 5 

Twitch 3 4.6 2.7 2.8 

Gaming Steam 42.5 52.9 45.5 66 

Candy Crush 9 0.01 21.9 0.05 

Console Portal 8.9 4.9 6.4 12.5 

Social Networking Facebook 89.1 93.1 93.7 89.8 

Twitter 4.6 1.6 1.9 1 

Instagram 3.8 3.6 2.9 7.8 

Storage DropBox 52 32.1 43.3 2.4 

AppleiCloud 15.3 0.3 27.8 0.7 

1Fichier.co 0.3 32.7 1.1 73.8 

Marketplaces Apple_iTunes 36 65.3 38.4 30 

WindowsUpdate 11.7 17.4 10.9 57.3 

Software update 47.8 8.1 45.3 3 

Tunnelling SSL_unresolved 57.9 82.6 35.2 71.8 

HTTP_Proxy 1.2 2.2 42.9 5.6 

Tor 4.4 8.7 0.2 0.2 

Communications Skype 45.9 12.9 67.6 67.7 

IMAPS 30.1 62.2 17.4 12.6 

Viber 6.8 1.5 6.7 2.4 

 

A last observation is concerning previously identified heavy users. More precisely, we focus 

on the traffic distribution of such cluster of customers. In the upstream, heavy users’ traffic 

volume is mainly dominated by Filesharing flows up to (73%).  In the downstream, the main 

part of the traffic is composed of real-time entertainment, Filesharing applications and Tun-

neling traffic. Our conclusion is that FTTH access links capacity allows a subset of customers 

to act as P2P seeds which turns them into heavy users. 

4.5 Subjective Analysis of Home Network Usages 

In this section, we present the results of our conducted subjective analysis of home network 

usages. The purpose of the study is to correlate the knowledge extracted from the packets 

                                                                        

9 https://support.google.com/faqs/answer/174717?hl=en 
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traces with subjective truth obtained from customers to build a complete view of residential 

network usages.  

 

Figure 4.10 Interviewed population characteristics 

4.5.1 Overview of the study 

We prepared an online questionnaire addresses sent to users via Email. The subjects are 

invited to answer a set of questions to unveil their behavioral habits while connected to the 

Internet through their fixed access.  The study is conducted among 645 subjects during both 

October and November 2015 (same period of the packets traces capture). The interviewed 

population characteristics are depicted in Figure 4.10. Furthermore, interviewed customers 

are in France and are part of the employees of the same ISP involved in the packet traces 

capture. While the interview questions are detailed in Appendice A, our logic could be sum-

marized as follow: 

- We study home networks complexity by focusing on the home network topology of 

interviewed customers (number of connected devices, distribution among several de-

vices types, etc.) 

- For each Internet service category, we focus on the popularity of widely used appli-

cations. 

- For each Internet service category, we depict usage distribution among connected 

devices in the home network. Such information is not available through network data 

analysis. As mentioned in Section 4.4.4.2, device type is extracted using HTTP User 

Agent only for HTTP flows and thus, could not provide sufficient knowledge re-

garding other protocol usages. 
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One of the aims of this study is to identify potential correlation between devices 

types and the associated traffic types (e.g. social networks usage on smartphone/tab-

let rather than desktops, etc.). 

 

Figure 4.11 Number of connected devices per household 

 

Table 4.8 Per Household connected devices distribution 

 Average Standard 

deviation 

Median Min -Max Sum 

PCs 2.45 1.34 2 0 - 9 1579 

Smartphones 2.35 1.25 2 0 - 7 1517 

Tablets 1.05 0.91 1 0 - 5 680 

Set-Top-Boxes 0.83 0.52 1 0 - 3 537 

Gaming Consoles 0.53 0.75 0 0 - 4 340 

Connected TVs 0.46 0.61 0 0 - 3 296 

Embedded Cards (i.e. Raspberry Pi) 0.22 0.75 0 0 - 9 144 

Network Attached Storage (NAS) 0.35 0.53 0 0 - 3 224 

Connected Radio Stations 0.24 0.67 0 0 - 7 153 

Connected Audio Amplifiers 0.18 0.54 0 0 - 6 117 

Others 0.22 0.73 0 0 - 9 143 

 



Towards Understanding Residential Networks’ Usages: From Packets to Customers 

69 

 

4.5.2 Residential Networks Topology 

In this section, we focus on the topology of the subjects’ residential networks. Our obtained 

results confirm the impact of the proliferation of users end-devices observed during the last 

decade. In fact, a typical home network is composed by an average of 9 connected devices 

as depicted in Figure 4.11. Moreover, 67.3% of interviewed persons had more than 7 con-

nected devices. 

In a second step, we focus on the composition of the identified set of connected devices. 

Table 4.8 summarizes the collected results. The average set of 8.88 connected devices is 

mainly composed by 2.45 PCs, 2.35 Smartphones and 1.05 Tablet. Thus, the rest of the 

connected devices are slightly distributed among STBs (0.83), Gaming Consoles (0.53), Con-

nected TVs (0.46), NAS (0.35), Connected Radio Stations (0.24) and Connected Audio Am-

plifiers (0.18). Other connected devices which are not provided in Table 4.8 represent only 

an average of 0.22 and are dominated by Blue Ray Players, Chromecast and Connected Print-

ers. 

4.5.3 Residential Networks Services: A Customer Point of View 

Let’s focus now on home network non-managed services. Our aim is to discover which ap-

plications are the most prominent while connected to a fixed Internet access. In addition, 

interviewed subjects are invited to depict which connected device they use for each applica-

tion category. A summary of the obtained answers is presented in the following. 

 

Figure 4.12 Social Networks services usages distribution (% of interviewed subjects)  
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4.5.3.1 Social Network services  

As depicted in Figure 4.12, Facebook and LinkedIn dominates monthly usage of social net-

work applications. In fact, 61.2% (resp. 57.5%) of subjects uses Facebook (resp. LinkedIn) 

at least once per month. However, usages frequency is balanced differently between both 

applications. While Facebook is the most used application per day (36.2% of interviewed 

subjects use it at least once each day), LinkedIn is used in a lighter way (weekly/monthly 

frequency). 

Social Networks applications are more accessed through Smartphones when it comes to a 

daily usage. Monthly/Weekly connections to such services are coming more from PCs. 

 

Figure 4.13 Voice Communications services usages distribution 

 

Figure 4.14 Voice Communications services usages distribution 

4.5.3.2 Vocal communication services 

Skype is the most used application among the voice communication services as depicted in 

Figure 4.13. 48.1% of interviewed subjects perform a voice call through Skype at least once 
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per month. PCs device usage is prevalent followed by smartphones and tablets for vocal 

communications. 

4.5.3.3 Visio communication services 

Again, Skype service is the most used one: 51% of interviewed subjects at least once per 

month as illustrated in Figure 4.14. Other services that are not represented in the Figure are 

mainly dominated by the FaceTime application. Usage among connected devices has the 

same trend as voice communication services with PCs being the most dominant devices. 

However, we observe a higher contribution of Tablets and a lower utilization of 

smartphones. Consequently, we assume that users tend to use tablets when performing a 

video communication more than smartphones for visual comfort reasons.  

 

Figure 4.15 Video streaming services usages distribution 

4.5.3.4 Video streaming services 

Figure 4.15 illustrates the dominance of YouTube application usage. In fact, 92.9% of sub-

jects affirm using YouTube at least once per month. TV-On-Demand platforms come in the 

second position followed by DailyMotion. The distribution of video streaming usages among 

connected residential devices unveils some new trends. While PCs, Smartphones, Tablets 

and Set-Top-Boxes set unsurprisingly lead the interviewed subjects’ preferences, we observe 

that 22.1% of users start using Connected TVs at least once per month. Such trend could be 

explained by the recent proliferation of these advanced TV sets on the market. Furthermore, 

the repartition among the different devices is more balanced with respect to the previous 

services. 
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4.5.3.5 ISP Live TV services 

In this section, we focus on ISP’s Live TV services. Note that in addition to IPTV services, 

we also include in our definition, applications provided by the ISP to their customers to 

benefit from Live TV services (e.g. Orange TV application for smartphones and tablets). As 

depicted in Figure 4.16, 34.9% of interviewed subjects do not use Live TV services. Unsur-

prisingly, Set-Top-Boxes is prevalent as used device followed by tablets and PCs. 

 

Figure 4.16 ISP’s Live TV services’ usages distribution 

 

Figure 4.17 ISP’s Video on Demand services’ usages distribution 

4.5.3.6 ISP’s Video on Demand services 

66.9% of subjects use Video On demand services provided by their ISP as illustrated in 

Figure 4.17. The observed distribution unveil that users tend to access VoD services more 

on a Weekly/Monthly frequency compared to Live TV services. In fact, a proportion of 

62.4% of users consumes such services at a frequency range of [1-6] per week or [1-3] per 

month while it decreases to 34.2% for ISP’s Live TV services. This trend could be explained 

by the interviewed population based on some French ISP employees which get some free 
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VoD credits. As expected, the Set-Top-Box are clearly the preferred devices for this service. 

We note also that PCs are preferred to Tablets unlike Live TV services case. 

4.5.3.7 Audio streaming services 

Deezer audio streaming platform is largely used as depicted in Figure 4.18. We observe that 

45.8% of interviewed users connect at least once per month to this application while only 

7% of them use Spotify at the same frequency. Other services that are not represented in the 

figure below are mainly composed by audio streaming services offered by radios broadcast-

ers. The dominant trend of Deezer services is mainly explained by the interviewed population 

characteristics. In fact, interviewed subjects are mostly customers of the ISP that owns the 

Deezer platform. Consequently, the access to Deezer services is offered as part of some ISP 

subscribe offers. Smartphones are the most used device while connecting to such services 

followed by PCs and Tablets. 

 

Figure 4.18 Audio streaming services’ usages distribution 

 

 

Figure 4.19 Web Browsing services’ usages distribution 



Towards Understanding Residential Networks’ Usages: From Packets to Customers 

74 

 

4.5.3.8 Web browsing services 

Unsurprisingly, 95.4% of subjects navigate through Internet websites at least once per day. 

Subjects use mainly PCs as depicted in Figure 4.19. Smartphones are preferred to Tablets for 

this usage. 

4.5.3.9 File Downloading services 

People are asked about File Downloading habits. Answers unveil that Direct Download is 

used by 51.4% of interviewed population while 29.5% affirm using P2P downloading at least 

once per month. PCs are prevalent as the used connected device while downloading files.  

 

Figure 4.20 File downloading services’ usages distribution 

 

Figure 4.21 Online Social Gaming services’ usages distribution 

4.5.3.10 Online Social Gaming services 

As we assume that the online gaming category is too coarse to tackle observed growth of 

social networks gaming such as CandyCrush, we decide to isolate this type of services as a 

separate category. 41.6% of interviewed population affirms playing on social networks at 
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least once per month. Such usage is mainly performed on mobile devices (Smartphones and 

Tablets) as illustrated in Figure 4.21. 

 

Figure 4.22 Online Interactive Gaming services’ usages distribution 

4.5.3.11 Online interactive gaming services 

Let’s focus now on online interactive gaming services. Our definition includes gaming activ-

ities that are played with multiple connected users (e.g. Call of Duty, World of Warcraft, etc.). 

We observe a low usage of such services. In fact, only 1 subject over 10 affirms playing online 

games at least once per day. As such services are usually attractive for young users (18 – 34 

years old), such observation is consequently explained by the characteristics of the inter-

viewed population (only 13.4% in this age range). Unsurprisingly, PCs and gaming consoles 

are the most used connected devices as illustrated in Figure 4.22. 

 

Figure 4.23 Mailing services’ usages distribution 
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4.5.3.12 Mailing services 

We focus on mailing usages of customers while connected to their fixed Internet access. 

Mailing services appears as the most used services among the studied application categories. 

While 90% of subjects affirm consulting their emails at least once per day, 84.3% affirms 

writing emails at the same frequency range. They use PCs as a first option and smartphones 

as a second one as depicted in Figure 4.23.  

4.5.3.13 Online Storage services 

Finally, we are interested on Online Storage services (i.e. DropBox, GoogleDrive, Orange 

cloud, etc.). 65.2% of studied subjects consume such services at least once per month. Their 

usage device source is mostly PCs. Smartphones come in the second position as shown in 

Figure 4.24.  

 

Figure 4.24 Online Storage services’ usages distribution 

4.6 Synthesis and Discussion 

We performed a deep analysis of residential Internet usages at several scales. To the best of 

our knowledge, this is the first-time residential network usages are studied on both objective 

(Packet based) and subjective dimensions. Among our findings, 80% of the collected traffic 

volume is generated by 1% of the flows also known as “elephant flows”. At customers’ scale, 

heavy users’ impact is observed as 5% (resp. 15%) of customers in JUL8-12 (resp. NOV26-

8) trace contributing to up to 80% of the total traffic volume. This trend is more important 

in the uplink direction where 80% of the total volume is generated by less than 3% of the 

customers in the FTTH access case. This is mainly explained by Filesharing applications 

which represent more than 73% of such customers’ uplink volume. Moreover, we found that 

a large proportion of Filesharing traffic is encrypted. This is mainly due to the HADOPI law 



Towards Understanding Residential Networks’ Usages: From Packets to Customers 

77 

 

in France. In downstream, Real-time entertainment applications (e.g. YouTube, LiveTV, 

NetFlix) dominates the traffic in the evening while we observe a decrease at working hours 

period. Moreover, early deployment of OTT actor’s delivery protocols such as QUIC by 

Google is observed. QUIC ratio increased between July and November reaching 2.7% of the 

overall traffic volume. Such deployment strategy may affect the known TCP/UDP ratio. 

Observed Google services traffic reaches 20% of the total volume at peak period (NOV26-

8). Indeed, TCP represents 90% of the total traffic volume on downlink. However, on uplink, 

UDP generates 45% of the total traffic volume on the NOV26-8 trace and 34% for JUL8-

12 trace. Finally, we observed low per-customer average link utilization.  

Our reported observations are quite similar to those reported in 2013 on the same French 

ISP network [85] with an increasing trend regarding Filesharing applications. Comparing to 

Sandvine recent European reported ratios [5], we find a much higher contribution of 

Filesharing applications in Uplink direction. On the other hand, some applications growth 

such as NetFlix or Twitch is confirmed in both traces.  

From a customer’s standing point, our presented subjective study unveils specific character-

istics of modern residential networks usages. First, home network topology complexity 

growth is confirmed as a typical home network tends to be composed by an average of 9 

connected devices. Regarding social networks application usages, the dominance of some 

application such as YouTube and Facebook observed using packets analysis is confirmed. 

We also found that mailing services are the most daily used applications. Moreover, we lev-

erage statistical correlation between consumed services and the corresponding device type. 

Customers tend to prefer the use of PCs while browsing websites or downloading files while 

they choose smartphone for services such as Online Social Gaming or Social Networks.  

Our subjective analysis methodology is quite unique and thus, we observe a lack of works in 

the literature to use as landmarks. Note that Médiamétrie reported on their Home Device 

analysis [3] an average of 6.8 screens per household. Compared to our reported topology, 

results are quite similar if we exclude devices that are not plugged to a screen (Connected 

Radio Stations, NAS, etc.) from our 8.88 average connected devices set. 

4.7 Conclusion 

Exploiting a very accurate open source traffic analyzer that we enriched with our own devel-

oped tools, we presented in this chapter the results of a measurement campaign of residential 
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Internet traffic. The traces were collected from a major French ISP network; at a close ob-

servation point to the end users.  This allows us to accurately quantify Internet customers’ 

behavior and trends. Digging into the data at different scales, we identified common trends 

and patterns that allowed us to understand more in depth residential traffic.  We also enriched 

our findings by a subjective analysis of residential customers’ behavioral pattern providing a 

complete view of home networks usages. 

Finally, despite combining several approaches and using more than 1000 application dissec-

tors, several challenges limited our fine-grained classification process. In particular, traffic 

encryption and new delivery protocols are raising challenges regarding traffic identification. 

As we aim to provide real-time traffic classification at home network resource constrained 

devices (e.g. Home Gateways), we present in the next chapter our approach for overcom-

ing classical traffic classification methods limitations. The traces capture presented in this 

chapter are used as an input data set for our machine learning algorithm depicted in the 

next chapter.
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Chapter 5 Early Classification of 

Residential Networks Traffic using 

C5.0 Machine Learning Algorithm                                        
 

 

5.1 Introduction 

 

In the previous chapter, our large-scale analysis of a real residential traffic raised several chal-

lenges encountered using classical approaches (deep packet inspection, DNS resolving, etc.).  

While MLA approaches are proposed as a promising alternative, several lacks are still to be 

addressed as pointed out in Chapter 2. Therefore, we foresee a limited adoption of such 

approach in real world deployment scenario. Consequently, performing an early and reliable 

traffic classification is a crucial step to meet real management challenges faced by both ISP 

and users. Thus, value added services such as application aware QoS controller [81] or ad-

vanced parental control [82] could be efficiently designed and deployed. 

In this chapter, we present an early classification approach of residential network traffic. 

Based on the very first packets statistical features, our approach can identify finely modern 

Internet services. To do so, our approach uses the C5.0 machine learning algorithm. After 

positioning our work in Section 5.2, we present in section 5.3 the design of our data collection 

and processing methodology. Then, we evaluate in section 5.4 our approach using several 

configurations. We address in Section 5.5 and Section 5.6 the deployment strategy of our 

approach. While we present the design and the implementation of our Proof of Concept 
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(PoC) monitoring probe in Section 5.5, we discuss our retraining process considerations in 

Section 5.6. Finally, we conclude in Section 5.7. 

 

5.2 Comparative Study and Positioning 

Our proposed approach aims to fulfil the seven requirements depicted in Chapter 2 namely: 

early input features and real-time classification, reliable dataset collection and ground-truth 

generation, encryption awareness, fine-grained classification output, accurate machine learn-

ing method, retraining and deployability considerations. To the best of our knowledge, this 

is the first time that such classification approach, combining the mentioned criteria is pre-

sented as illustrated in Table 2.3 (cf. page 35). While authors in [74] provided a post-mortem 

classification, our approach is real-time oriented which raises several challenges. Moreover, 

our dataset includes modern services (i.e. Google, Facebook, etc.) that are not considered in 

[74]. Furthermore, our approach is based on the C5.0 algorithm which is the evolution of 

the widely used C4.5. In fact, authors in [73] reported a high accuracy of C5.0 based on a 

synthetic dataset only. Consequently, this is the first time the C5.0 algorithm is evaluated on 

a real network dataset. Additionally, we developed an extension to an nProbe open source 

tool allowing a reliable data processing chain for features extraction. We hope that the pro-

posed chain will be incentive to the research community to use a common benchmark. Such 

effort will facilitate the comparative evaluation of future contributions. Finally, our proposed 

approach is evaluated while deployed on a real Home Gateway hardware platform. Our re-

sults are promising in terms of resource consumption while tested using several probe/net-

work configurations. 

5.3 Data Collection and Processing Methodology 

As introduced in the previous sections, the performance of statistical approaches is directly 

related to the used dataset.  

5.3.1 Data Collection 

Our data collection process is based on the two traces presented in the previous chapter. 

Both traces are merged in a single dataset as presented. To obtain a high-quality dataset, we 

perform several cleaning operations. First, we exclude TCP bidirectional flows that do not 

contain a SYN flag. We also exclude UDP bidirectional flows observed during the first 120s 
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of the capture. Such heuristics are especially useful to filter out connections initiated before 

the traffic capture is started and thus, ensure the extraction of the first packets statistical 

features correctly. The resulting dataset is presented in Table 5.1. 

Table 5.1 Details of the initial dataset 

Duration 2 H 33 min 49 sec 

Clients Total xDSL (%) FTTH (%) 

34,194 15,73 84,27 

Flows Total TCP (%) UDP (%) 

41,828,024 68,13 31,25 

Volume Total (MB) Uplink (%) Downlink (%) 

371,423 19 81 

Packets Total Uplink (%) Downlink (%) 

482,188,747 41,83 58,17 

5.3.2 Data Processing 

Several limitations reported from the literature could be explained by the lack of a common 

open source chain for data processing. Despite that open source NetFlow/IPFIX probes 

[33, 49] exist and are sufficient to extract required features for post-mortem classification, 

they do not provide the early characteristics required for real-time approaches. To the best 

of our knowledge, only the TiE platform [83] performs such tasks. However, the ground-

truth generation engine used in TiE is based on a non-reliable library (OpenDPI [66]) as 

identified in [68]. Moreover, being a research tool, some implemented features are considered 

unstable by their authors.  Such observations motivate us to implement the data processing 

chain illustrated in Figure 5.1. In the following, we detail its major components. 

5.3.2.1 Flow Features Extractor and HTTP Plugin 

Flows features are obtained using the nProbe [33] (v7.3) tool allowing the extraction of the 

main flows’ characteristics (classical 5-tuple, packets/bytes counters, etc.) in addition to some 

advanced performance metrics (server/network latency, etc.). We identify flows as bidirec-

tional connections based on the classical 5-tuple {protocol ID, source IP address, destination 

IP address, source port, destination port}. Flow expiration is mainly driven by inactive 

timeout (120 sec) or natural expiration (FIN packet observed for TCP flows). Concerning 

the flow direction definition, we consider that data transmitted from the customer’s Home 
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Gateway to the measurement point is counted as “uplink” while the reverse direction is called 

“downlink”.  

In addition to the common flow features obtained above, we also enabled the HTTP plugin 

which is available as an nProbe extension. This one performs HTTP headers extraction (i.e. 

URL, content type, user agent, etc.). Consequently, HTTP flows entries are enriched with 

their corresponding headers. 

5.3.2.2 Ground-Truth Generation 

The application identification engine for ground-truth generation is partly performed using 

the nDPI [19] library. As mentioned previously, the weakness in TiE existing platform is the 

reliability of one of its used libraries. Authors in [68] reported the high reliability of nDPI 

which outperformed the other evaluated tools. While they used nDPI version 1.6, we used 

in this work the following released version (1.7) which introduced several improvements 

such as the QUIC protocol dissector among 223 applications set. The detailed dissection 

logic implemented in nDPI is open source. Its main core consists of a combination of pay-

load patterns matching (Aho-Corasick algorithm) and IP address mapping approach with 

port-based identification used as a last resort. 

 

Figure 5.1 Knowledge extraction overall chain 

5.3.2.3 Ground-Truth Refinement 

We developed a set of parsers to refine the classification results. In fact, the used nDPI 

version allows defining a set of consistent application labels such as {protocol.sub-protocol} 

(e.g. HTTP.Facebook). We enrich sub-protocol identification for HTTP flows using 
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knowledge extraction from HTTP headers (HTTP User Agent, URL and content type). In 

addition, flows’ sub-protocols identification is also affined based on resolved server name 

parsing for other protocols. Such approach allows us to provide in-depth view of application 

classes including Video on Demand, Live TV etc. which is not provided by nDPI. 

 

Figure 5.2 Example of LFE output per flow 

5.3.2.4 Learning Features Extraction (LFE) Plugin 

As we focus on early stage classification, we developed an LFE plugin which is an extension 

of the nProbe tool. The LFE plugin extends the extracted flow information with a set of 47 

additional early learning features as depicted in Figure 5.2:  

 PS1..10:  refers to the payload size of the ith packet of the flow. 

 D1..10: refers to the detected direction (uplink/downlink) of the ith packet of the flow. 

 IPT2..10: refers to Inter Packet arrival time (computed in msecs). 

 IDPT2..10: refers to Inter Downlink Packet arrival time (computed in msecs). 

 IUPT2..10: refers to Inter Uplink Packet arrival time (computed in msecs). 

 LFE_PP: LFE plugin processed packets count. 

Note that our LFE plugin implementation is designed to exclude zero payload packets and 

thus, observe applicative layer exchanges only. Finally, we assume that 10 packets are the 

maximum number of per flow observed packets to perform the early classification. Previous 

works showed that a threshold around 5 is usually sufficient. 

5.3.2.5 Data Cleaning and Preparation Stage 

Moreover, bidirectional flows for which we are not able to obtain a ground-truth label are 

evicted. Finally, our preparation process ensures the quality of both training and testing da-

tasets based on three configurable thresholds: 
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 Minimum-Packets-Threshold: It sets per flow minimum observed packets thresh-

old. For example, setting this parameter value to 6 will filter all flows having LFE_PP 

value < 6. 

 Minority-Class-Threshold: Sets the minimum occurrences per traffic class to be 

considered. Such parameter allows us to filter minority classes as it is a known vali-

dation issue [32]. 

 Cutting-Threshold: sets the percentage of the input data to consider as training 

dataset. Our definition of this parameter is per-class oriented to avoid validation bias. 

For example, setting this parameter value to ‘80’ will ensure that 80% of the occur-

rence of each predefined class will be included in the training dataset while the re-

maining 20% will be considered as test set. Such logic avoids the unbalanced data 

validation issue [32]. 

5.3.2.6 Summary 

Combining nProbe (or forked project [84]) with our provided components results in a relia-

ble fine-grained data processing chain. Moreover, it inherits high processing performances 

from the used open source tool. Finally, our output datasets (training and testing) are saved 

under csv format which allows to directly use it with open source ML frameworks (e.g. scikit-

learn [85], WeKA [86]). 

After obtaining our dataset, we propose to use the C5.0 MLA to perform early traffic classi-

fication. The conducted performance evaluation is presented in the next section. 

5.4 C5.0 Classifier Performance Evaluation 

5.4.1 C5.0 at a glance 

The C5.0 is a new generation of decision trees based Machine Learning Algorithms. It means 

that the decision trees are built from applicable features extracted from the training dataset. 

The built tree is used to classify unknown cases (usually called testing phase).  While C4.5 is 

identified in the literature as providing the highest accuracy, C5.0 is developed as an im-

proved version of its ancestor [80]. Thus, the generated rules are more accurate and obtained 

faster (even around 360 times faster on some data sets). A detailed description of C5.0 and 

all its options is published in [87]. In the following, we summarize the main new techniques 

introduced by C5.0 editor: 
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 Winnowing: C5.0 winnowing routine consists of constructing a tree from the half of 

the data. First, the algorithm removes features that are never used as splits. Then, 

features that increase error rate while testing on the remaining data are filtered. Fi-

nally, it checks that the new error cost does not increase. 

 Boosting: generate several classifiers (either decision trees or rulesets) rather than just 

one. When a new case is to be classified, each classifier votes for its predicted class 

and the votes are counted to determine the final class. 

 New attributes: dates, times, timestamps, ordered discrete attributes. 

 Missing data declaration: values can be marked as missing or not applicable for par-

ticular cases. 

 Sampling and cross-validation: one-fold of cross-validation involves partitioning a 

sample of data into complementary subsets, performing the training on one subset, 

and validating the performances on the other subset (validation/testing set). Multiple 

folds of cross-validation are performed using different partitions, and the validation 

results are averaged over the folds. 

The C5.0 classifier implementation [87] is open source and based on the C language. It con-

sists of a simple command-line interface that we chained to our developed data preparation 

process. 

5.4.2 How many packets do we need to identify a bidirectional flow? 

In this section, we evaluate the C5.0 performance to define the optimum number of packets 

needed to achieve a reliable classification of a flow. Consequently, the evaluation dataset is 

prepared as follows: Cutting-Threshold = 80%, Minority-Class-Threshold = 5000 10  flows, 

Minimum-Packets-Threshold = 10 packets.  

Two resulting disjoint datasets are obtained to evaluate the C5.0 classifier performances. 

While the training dataset size is 129,973 flows, a set of 32,495 flows is used as testing dataset 

as illustrated in Table 3 (available packets=10). The used statistical features are PS1..i, D1..i, 

IPT2..i, IUPT2..i, IDPT2..i and the corresponding transport protocol (TCP/UDP) number. 

Furthermore, the classes included in our evaluation are: Facebook, BitTorrent, Skype, 

Google Services, QUIC, Web-Browsing (HTTP) and Secure-Web-Browsing (HTTPS). Note 

that for the latter classes (e.g. Web-Browsing and Secure-Web-Browsing), our definition is 

                                                                        

10 Computed as follow: sum(filtered_flows) / n  

   Where n is the number of classes existing in the filtered dataset. 



Early Classification of Residential Networks Traffic using C5.0 Machine Learning Algorithm 

86 

 

fine grained as explained in Section 5.3.2.4. In fact, only flows detected as visiting simple web 

pages (it excludes video, audio, and media web applications) fall into those classes.  We depict 

in Table 5.2 the performance achieved by C5.0 while we vary the number of observed packets 

i. For example, setting i=3 will fix the input features set as the one available when observing 

only 3 packets. Finally, at each execution, we run C5.0 using two modes (default and boost) 

to determine what the best configuration for the C5.0 classifier is. 

 

Figure 5.3 C5.0 error rate vs. min packets threshold 

 

Table 5.2 C5.0 classification performance per observed packets threshold 

 2 3 4 5 6 7 8 9 10 

Training 
Time 
(secs) 

Default 27.5 23.3 23.8 26.6 24.1 26 28.1 29.3 29.4 

Boost 99.9 104.3 125.2 146.4 162.7 189.5 210.8 240 256.1 

Training 
accuracy 

(%) 

Default 88 89.1 89.7 89.9 89.9 90.1 90.2 90.2 90.4 

Boost 88.4 89.8 90.8 91.4 91.8 92.3 92.7 93 93.4 

Testing 
accuracy 

(%) 

Default 85.4 86.7 87.5 87.1 87.2 87.5 87.2 87.2 87.1 

Boost 85.6 87.1 88.3 88.1 88.4 88.5 88.5 88.8 88.6 

Generated 
tree size 

(KB) 

Default 309 253.5 262 256.8 253.8 264.5 265.1 261 263.1 

Boost 1708.8 1572.7 1850 2012.9 2218 2541.9 2728.8 2919.3 3165.5 

 

While we provide the accuracy measured on both training and testing datasets, we focus on 

the results obtained on the testing dataset. Our first observation is that the obtained accuracy 

is quite stable when the number of used packet features is greater than or equal to 4 on both 

C5.0 modes as illustrated in Figure 5.3. Furthermore, this threshold has an impact on the 

cost in terms of training time and generated model (tree) size as showed in Table 5.2. Thus, 

we conclude that 4 packets are a good trade-off in terms of accuracy vs. cost. In fact, such 
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threshold will allow the extraction process to check the first 4 packets only which ensures 

our lightweight logic in a deployment context. 

Our second observation is regarding the boosted mode of C5.0. Despite a slight improve-

ment of achieved accuracy, it dramatically increases the generated tree size (average factor of 

9 compared to the default mode). Moreover, it increases also the required training time up 

to 9 times for 10 packets case.  Such consequences, especially the size of the tree, could be a 

limitation in a deployment scenario where early classification is typically running on resource 

constrained devices (e.g. Home Gateway) which are limited in terms of memory size. There-

fore, we conclude that the boost mode is not suitable in our context. 

 

Figure 5.4 C5.0 features usages (4 first packets and destination port scenario) 

5.4.3 Is port number still relevant? 

Despite port-based approach is criticized for its well-known unreliability; it can be relevant 

for certain type of traffic. Therefore, we propose to test the destination port number of a 

flow as an additional input feature. Consequently, the evaluation dataset is preparedusing the 

previously choosen values for: Cutting-Threshold (80%) and Minority-Class-Threshold 

(5000 flows) but while Minimum-Packets-Threshold to 4 packets. Two resulting disjoint da-

tasets are used to evaluate the C5.0 classifier performance where the training dataset size is 

266775 flows and the testing dataset size is 66698 flows as shown in Table 5.3 (available 

packets=4). The included classes on both datasets are the same as in the previous step. 

Table 5.3 Details of the processed dataset (Minority-Class-Threshold=5000, Cutting-
Threshold=80) 

Available Packets Training cases Testing cases 

4 266,755 66,698 

5 218,632 54,661 

6 188,708 47,181 

7 167,850 41,965 

8 152,452 38,117 

9 139,999 35,003 

10 129,973 32,495 
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Table 5.4 C5.0 per class performance metrics on testing dataset 

 Accuracy Precision Recall 
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BitTorrent 99.3 98.4 98.2 

Facebook 99.3 93.4 92 

Google-services 98.4 93.1 92.9 

Web-Browsing 99.4 98.7 99.1 

Secure-Web-Browsing 97.8 88.9 93.3 

QUIC 99.5 98.3 99.6 

Skype 98.5 93.2 75.5 

Average performances 98.8 94.8 92.9 

 True Positive (TP): eq. with hit. 

 True Negative (TN): eq. with correct rejection. 

 False Positive (FP): eq. with false alarm. 

 False Negative (FN): eq. with miss. 

 Condition Positive (P): the number of real positive cases in the data. 
 Condition Negative (N): the number of real negative cases in the data. 

 

 

 Accuracy Precision Recall 

Naive Bayes 53.3 42.6 40.5 

K-NN 76.2 64.1 59.8 

C4.5 98.1 94.5 92.8 

C5.0 (K=1) 98.9 94.7 92.6 

C5.0 (K=10) 99.0 95.3 93.4 

C5.0 (K=20) 99.1 95.9 93.8 

C5.0 (K=25) 99.1 95.9 93.9 

 

Detailed performance evaluation of the C5.0 classifier applied to our input features set are 

depicted in Figure 5.5. We present the detailed results using the obtained confusion matrix 

(lines: ground-truth, columns: predictions) on the testing dataset. We also provide per class 

recall and precision metrics in addition to accuracy in Table 5.4. 

The overall measured accuracy on the testing dataset is 98.8%. Such good performance is 

explained by the high-quality dataset used. Our approach can identify accurately encrypted 

services behind SSL such as Facebook and Google Services (99.3% and 98.4% respectively). 

Moreover, we identify Bittorrent flows (which is known to be a challenge for classical ap-

proaches) with over 99.3% of accuracy. Finally, despite performing high accuracy on Skype 

flows, the computed recall is quite low. This is mainly due to Skype flows that are classified 

as HTTPS. Such observation is explained by the initiation phase of Skype applications. In 
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fact, such phase involves HTTPS flows contacting the Microsoft platform. Those flows are 

classified as Skype using our ground truth generator while the extracted knowledge from 

HTTPS class of our classifier detects it as HTTPS. 

It is worth mentioning that including destination port number as an input feature increases 

drastically the generated model size. In fact, port number is used as a split node in early tree 

building phase as showed in Figure 5.4 and the large covered set of discrete ports values 

implies higher number of branches. In spite of that, our results motivates using the destina-

tion port in a non-boosted configuration as it is relevant for improving our approach perfor-

mances. 

 

Figure 5.5 Confusion matrix of resulting classification 

To the best of our knowledge, it is the first time that a detailed evaluation of C5.0 algorithm 

used for traffic classification is provided. In fact, authors in [74] reported high accuracy (99%) 

of C5.0 algorithm evaluated on a synthetic dataset. 

While we provide an evaluation based on a real dataset, we also focus on early classification 

which is not addressed in [74]. Authors in [73] report a high accuracy while evaluating C4.5 

in early classification task. However, the defined granularity is coarse and the results cannot 

be directly compared to ours using C5.0.  Finally, these other works report performance 
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based on accuracy only. In our work, we present detailed metrics of our classification includ-

ing recall and precision parameters. Such methodology can reveal per class performance lim-

itations that are not reported by accuracy only (e.g. Skype case). 

5.5 Experimental study 

In this section, we address the deployment issue of our approach through an experimental 

PoC implementation of a home network traffic monitoring platform. We implemented a 

software probe on a home gateway prototype (having the same chipset and hardware char-

acteristics as a commercially deployed one). The objective of this software probe is to classify 

at early time residential active flows using our C5.0 developed machine learning approach. 

The probe performs also real-time traffic monitoring and exports flow statistics. 

 

Figure 5.6 Overall design of the implemented probe 

5.5.1 Overall Design 

Our probe [88] is designed to fulfill the four functional requirements defined in Chapter 2 

(full visibility, real-time flow monitoring, early and reliable application identification, low 

computational and hardware complexity). At this aim, several software modules are imple-

mented as depicted in Figure 5.6. 

- Hardware Acceleration Triggering Process: performs per flow hardware acceleration 

triggering. This module is responsible of delaying the hardware acceleration process 

by ‘n’ packets for each flow. While a packet index is lower than ‘n’, a trigger signal is 

sent to hardware accelerators to ignore this packet. Packets with index greater than 
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‘n’ are processed by the hardware accelerators. Consequently, released ‘n’ packets are 

observable at software level allowing to compute the necessary operations to detect 

the corresponding application. Indeed, hardware accelerators are used on our proto-

type home gateway preventing the packet observation at Linux kernel to guarantee 

higher routing performance.  

- Flow Observation Process: Running at kernel level, this process captures and treats 

(extract TCP flags for example) each observable packet belonging to a given flow. 

Resulting output of such process is a bidirectional flow tuple, first observed packets 

counter, first observed packets bytes counter.  

- ML Features Extractor: It extracts the C5.0 tree required features as packet sizes, 

inter arrival delays, direction and so on (ps_i, ipt_i, dst_port, idpt_i, iupt_i, d_i) for 

each flow. This process is isolated from the Flow Observation Process to facilitate 

the implementation update in case of new features choice. 

- C5.0 Online Classifier: It consists mainly on the generated tree file and a parsing 

module that can parse the generated file and return the classification results. Conse-

quently, a flow fine-grained classification result is obtained at the nth packet of a flow. 

The tree based classifier is computed offline after the training stage, then it is em-

bedded to our prototype home gateway. 

- Hardware Acceleration Flow Cache: a flow cache is maintained by the hardware ac-

celerators of the prototype home gateway and exposed to the kernel level through a 

process information pseudo-file system. It contains the current state of accelerated 

flows 5-tuple (IP source and destination addresses, source and destination ports and 

protocol), bytes counter, packets counter). When a flow expires (natural expiration, 

inactive timeout), the entry related to this flow is automatically flushed. 

- Metering Process: The metering process takes as input flows entries transmitted by 

the Flow Observation Process and maintain a flow table with periodic updates of 

performance metrics. Considering a configurable parameter poll_period, the meter-

ing process accesses periodically the hardware acceleration flow cache maintained 

table to refresh per flow counters. The periodic update is performed until a flow 

expiration trigger is detected. A flow is considered as expired based on inactive 

timeout or natural expiration in TCP FIN case. Active timeout is also implemented 
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and is set to the same value of export periodic value. It enables real-time monitoring 

of active flows on the collector side. 

- Export Process:  export periodically the expired flows using TCP protocol. We used 

json format as its provide more flexibility on the collector side [89]. Note that flows 

that expired naturally are exported immediately. The periodic export is configurable 

using the export_period parameter. In addition, our architecture for export is based 

on the publish/subscribe paradigm. The probe is the publisher and the export is 

performed only if a collector subscribes to the probe. 

5.5.2 Performance evaluation 

In this section, we study the performance of our probe PoC implementation running on an 

experimental testbed. The target is to estimate the load induced by our approach under sev-

eral scenarios. Our evaluation is focusing on resources consumption (CPU usage, memory 

usage and bandwidth load) on the Home Gateway. Furthermore, ntopng [91]  was used as a 

collector, it is an open source collector provided by the ntop project. 

 

Figure 5.7 Testbed setup 
 

5.5.2.1 Testbed setup 

Our testbed is designed to fit both synthetic and real traffic scenarios test cases. We emulate 

several home network configuration use cases (multiple devices/OS and connectivity tech-

nologies) as depicted in Figure 5.7. Our probe is integrated on a Home Gateway prototype 
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having the same hardware characteristics (CPU: 2* 1.2 Ghz, Memory: 1GB) as a commer-

cially deployed one (Orange Livebox 4). For our testbed purposes, ntopng collector runs on 

a local computer in the LAN. We acknowledge that a remote placement of the collector 

could be studied in a future work. Finally, per process resource consumption (CPU and 

memory) computation is performed on the Home Gateway side. Network load is measured 

on the collector side using the atop/netatop tool. We used both synthetic and real traffic 

scenarios as follows. 

- Synthetic traffic scenario:    The PC is used as an iperf client connected to a remote 

iperf server (public one). Then, we generate, as a first step, a single UDP flow (packet 

size of 1500 bytes) at several rates (50 Mbps, 200Mbps, 400Mbps, and 800Mbps). A 

second series of tests consist of setting the rate at 800Mbps while varying the number 

of parallel flows (1 flow at 800Mbps, 10 parallels flows at 80Mbps, 50 parallels flows 

at 16Mbps and 100 parallel flows at 8Mbps). Our test is limited to 100 flows due to 

the used public server limitation. The aim of the first series of tests is to evaluate 

CPU and memory usage under different flow rates while fixing the probe parameters 

as poll_period is set to 1 seconds and export_period is set to 2 seconds. Then, we 

evaluate the impact of flows number in the second series of tests. Finally, in the third 

series of tests, we focus on our probe parameters impact (both poll_period and ex-

port period) while setting the network traffic parameters to 100 flows at 8Mbps each. 

At this aim, we first fix the poll_period value to 1 second while varying the export 

period to 1, 2, 5, 10 and 15 seconds. In a second step, we fixed the export_period 

value to 5 seconds while varying the poll_period in [1, 5 seconds] range. Note that 

all the above test series are conducted during a 5 minutes time slice. 
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Figure 5.8 Real traffic scenario activity statistics 

- Real traffic scenario:  traffic generator devices (smartphone, Tablet and PC) are used 

to simulate a user’s typical heavy load scenario (Bittorrent downloading, web brows-

ing, playing multiple HD videos, Skype, large file downloading) with 58.73 Mbps 

cumulated average traffic throughput (5950 unique flows with an average of 156 

flows/seconds). Generated traffic distribution is depicted in Figure 5.8.  Note that 

the probe is evaluated using a single parameters configuration (poll_period = 2 sec-

onds, export_period = 5 seconds) while connected to a 1Gbps FTTH access line. 

Test duration is kept on 300 seconds. 

 

Figure 5.9 Impact of the number of flows on the probe resources consumption 
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Figure 5.10 Impact of the export_period parameter on the probe resources consumption 

 

Figure 5.11 Impact of the poll_period parameter on the probe resources consumption 
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Figure 5.12 Performances evaluation using real traffic scenario 

5.5.2.2 Discussion of the results 

As stated above, we focus on the evaluation of our probe resource consumption based on: 

- CPU usage: We measured CPU consumption using 1 UDP flow at several bitrates 

(50, 200, 400 and 800 Mbps). We observe that a very low consumption (maximum 

measured value of 1% and mean value is 0.37%) is induced. Such observation was 

expected due to our implementation design. In fact, only 4 packets are delayed and 

transmitted to the software level while remaining packets are processed at hardware 

level. Thus, we conclude that the bitrate does not impact our probe CPU consump-

tion and we focus rather on the number of flows. Indeed, in a second step, we fixed 

the bitrate at 800 Mbps and we varied the number of parallel flows. Obtained results 

are depicted in Figure 5.9. While CPU consumption remains low for 1 and 10 flows 

cases, we observe a mean consumption of 9.61% and 10.67% for 50 and 100 flows, 

respectively. This is mainly explained by the metering and exporting process which 

is linearly solicited when increasing the number of flows. Finally, we checked the 

impact of the probe parameters. Under 100 flows generating an overall bitrate of 800 

Mbps, we varied the export_period parameter while fixing the poll_period to 1 sec. 

We observe a stable consumption which shows no real impact on CPU consumption 

(mean consumption ~ 11%) as illustrated in Figure 5.10. In a second step, we fix the 

export_period to 5 seconds and vary the poll_period while keeping the same network 

load configuration. We observe a decreasing CPU usage trend while incrementing 
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the poll_period passing from a measured mean of 11.3% for 1 sec scenario to a 

measured mean of 1.8% for 5 secs case, as showed in Figure 5.11. Such trend is due 

to the metering process refresh frequency. Unsurprisingly, reducing poling activity 

induces lower CPU load at the expense of lower reactivity. Based on the above ob-

servation, we set our probe with poll_period = 2 secs and export_period = 5 secs 

which appears as a good tradeoff between monitoring accuracy (driven by poll_pe-

riod), real-time observation (driven by export_period) and resource consumption. 

Then, we test our probe using real traffic scenario detailed in the previous section. 

Our results are depicted in Figure 5.12 and shows very promising performances in a 

real-life scenario. In fact, our probe process, classify and export a heavy user traffic 

load scenario flows while keeping average CPU usage under 1%. 

- Memory usage: Measured memory consumption is stable and is equal to 4% in all 

realized tests. Memory used space is mainly consumed by the C5.0 generated model 

structure (tree based in our case, trained with 4 packets threshold and including port 

number). 

- Network load: Our last evaluation focuses on the bandwidth load generated by ex-

ported data. In synthetic traffic scenario, we analyze the impact of varying the num-

ber of synthetic flows (Figure 5.9). Our evaluation confirms the trend observed for 

CPU usage and shows an increasing trend of network load while increasing generated 

flows number. For 100 flows scenario, we observe peaks up to 243Kbps where the 

mean measured value is 73.8 Kbps. Such observation is logical as the number of 

exported records is directly related to the number of monitored flows. However, we 

keep in mind that for FTTH access links such peaks value would have little impact 

on user upstream bandwidth. Finally, export parameter has a slight impact on the 

network load induced by the probe. Therefore, poll_period reversely impact the 

measured mean of network load (passing from 40 Kbps for 1 second case to 20 Kbps 

for 5 seconds case). This is directly related to the fact that enlarging the poll_period 

decreases the number of flow expiration detections. 

In real traffic scenario, we observe an average load of 1.03 Kbps with spikes up to 

8Kbps corresponding to export instants as depicted in Figure 5.12. Note that our 

probe is configured to export only flows that have a packet counter of at least 4 

packets which is the configured classification threshold. 
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To sum up, we can say that the probe performance, under several scenarios, are satisfactory. 

Indeed, L7 monitoring using heavy load real traffic needs less than 1% of average CPU usage. 

Moreover, memory average load is stable at 40MB. Finally, records exporting induces an 

average overhead of 1.03Kbps with the conducted scenario.  

To illustrate the benefits of flow monitoring, we display the exported flow records on the 

ntopng Graphical User Interface (GUI), as depicted in Figure 5.13. Real time throughput 

and volume of each flow are indicated along with other information (IP addresses, duration, 

etc.). It is also possible to focus on a specific device to check all flows it generates and the 

corresponding applications. This kind of information might be useful for the end user and 

the ISP help-desk for troubleshooting purposes. As we can see, our probe is able to identify 

the QUIC protocol and the Facebook flows (with 99.9% and 96% confidence levels, respec-

tively). Some False positives (e.g. 2 Facebook flows detected as Google with high confidence 

level) are also observed. We note that used classifier (i.e. C5.0 decision tree) was generated 

in 2015 while classified traffic is generated in 2017. Such observation can be addressed by 

retraining architecture as described in the next section. 

 

Figure 5.13 Screenshot of collector GUI, ongoing flows 

5.6 Discussion: Retraining Process 

In this section, we describe our retraining process proposed architecture as depicted in Figure 

5.14. We believe that it is a key step to ensure the viability of an MLA on the long run (i.e.  

deployment context). 
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Based on the architecture components that we previously proposed in Chapter 3, our re-

training process steps are as follows: 

- The initial ML traffic classification model is deployed on the Home Gateway to en-

sure early classification inside the home network. As it is a resource constrained de-

vice, our approach based on the observation of the first 4 packets only as a statistical 

features is lightweight and could be easily achieved without performance degradation 

as demonstrated in the previous section. 

- Once, a flow is identified after its 4th packet, the used input features, the flow 5-tuple, 

and the classification result are exported using IPFIX to the Home Networks Mon-

itoring Center (cloud based).  

- Ground-truth is obtained from some end-host based probes and is exported using 

IPFIX labelled records used as Oracle for our supervised approach. Such end-host 

tools ( [88] for mobile platform and [63] for desktops) already exist and provide the 

most reliable base-truth. In fact, we assume that the retraining process should not be 

based on DPI or port-based approach. In fact, such choice implies the inheritance 

of the limitations introduced by classical approaches and thus prevents ML approach 

from being a real replacement of existing approaches. The deployment of end-host 

based ground truth generator would be performed only on a small subset of volun-

teer customers. Such population must be statistically representative to cover residen-

tial customers usages.  

- At the Home Networks Monitoring Center side, the classification performance of 

the deployed trained models is continuously compared to labelled records. Such pro-

cess is equivalent to a tensor to our approach and is responsible for prompting a 

retraining process when high False Positive rate is detected. The updated retrained 

model is automatically pushed to Home Gateways allowing an automatic system up-

date. 

Note that these are the first basic ideas of our proposed retraining process. Clearly, 

a deeper study is needed to obtain and evaluate a more detailed process. This study 

could be part of future work. 
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Figure 5.14 Retraining process architecture components 

 

5.7 Conclusion 

Based on the lessons learnt from the literature, we proposed in this chapter a fine-grained 

early classification method for residential traffic. Our approach main core is based on the 

C5.0 machine learning algorithm trained to identify modern Internet services in a fine-

grained manner. At this aim, we detailed our developed methodology to obtain a high-quality 

dataset. Our approach achieves an average accuracy of 98.8% while finely classifying appli-

cations flows (e.g. Facebook, Google Services, Skype, BitTorrent, Web-Browsing and Se-

cure-Web-Browsing) using statistical features of the first 4 packets of each flow. Performance 

was evaluated using advanced metrics based on a disjoint testing dataset involving more than 

34,000 residential customers. Consequently, we think that our results are more convincing 

than previously reported ones based on a synthetic single user dataset. Moreover, we provide 

the community with an extension which, integrated with open source components, provide 

a reliable data processing chain. 

Furthermore, we implemented a proof of concept of a probe fulfilling the requirements of 

our approach on a prototype Home Gateway. Our probe was designed to deal efficiently 

with hardware constraints inherited from such a platform. Thus, we validated our implemen-
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tation by setting an experimental testbed. Our obtained results demonstrate that our ap-

proach is feasible and efficient. In fact, the probe can monitor, classify and track statistics of 

active flows in the home networks while inducing a low resource overhead.  

Finally, we ensure the viability of our approach by discussing how a retraining process can 

be set up in order to address ML deployment issue. To the best of our knowledge, this is the 

first time that such classification approach, combining the above-mentioned design princi-

ples, is presented. 
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Chapter 6 Conclusion                                             
 

Home network complexity is increasing with the multiplication and diversification of devices, 

services and connectivity technologies (mainly Ethernet, Wi-Fi, PLC and MoCA). Moreover, 

various application types are generated: Facebook, YouTube, Skype, Bittorrent, etc. In this 

context, when service degradation occurs, it is difficult for both the end user and the ISP 

help-desk to easily tackle the issue. In fact, usually, the customer tends to call the ISP help-

desk even if the problem is outside the home network. On the other hand, ISPs control all 

segments of their networks (core, access, etc.) but not the home network portion which is 

becoming the most fragile one. Therefore, relying on efficient traffic monitoring tools allow-

ing to observe and to identify home network flows is a key aspect for diagnostic enhance-

ment and network performance improvement.   

In fact, home network traffic monitoring would allow among other functions: 

- Having better insight on network usage (e.g. devices consuming the highest band-

width, flows rates, etc.) 

- Applying advanced parental control (e.g. blocking access to a specific application 

from a given device) 

- Deployment of QoS mechanisms (e.g. application based prioritization) 

- Anomaly detection (e.g. botnets attacks) 

However, home network traffic monitoring raises many challenges. In this dissertation, we 

addressed those challenges, especially in terms of feasibility. Our contributions could be out-

lined as follows: 

- First, we proposed a novel architecture for traffic monitoring in Home Networks 

using flow export approach based on probe and collector components. We provided 

a comparative study of existing open source probe tools. Then, we performed a 
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benchmark of the nProbe tool evaluating the computational overhead of each per-

formed process. Based on experiment results, we highlighted several limits prevent-

ing real-life deployment. In particular, we pointed out a crucial need for a reliable, 

lightweight and viable traffic classification approach. 

- Then, we presented a large scale residential traffic and usages analysis based on real 

traces collected at a major French ISP involving more than 34,000 customers. At this 

aim, we developed a reliable methodology for data collection and processing. Then, 

we analyzed customers behavior with respect to TCP/IP protocol stack layers char-

acteristics. Moreover, we conducted a subjective analysis across 645 residential cus-

tomers. Our findings provided a complete synthesis of residential usage patterns and 

applications characteristics.  

- The extracted knowledge was used as a corner stone to build a novel traffic moni-

toring and classification approach based on the C5.0 MLA. We proposed an early, 

fine-grained traffic classification approach. Our classifier performance accuracy was 

evaluated and validated on a disjoint test dataset. We implemented the proposed so-

lution on a prototype Home Gateway proving its feasibility. Finally, we discussed 

retraining process which will enable to ensure the temporal viability of our approach. 

In a home network context, the traffic characteristics are evolving rapidly due to the constant 

emergence of new applications and services. Maintaining the reliability and the efficiency of 

traffic monitoring and classification tools, in such context, is crucial.  So, we need more 

reliable, viable and less intrusive monitoring techniques. The ultimate goal is an autonomic 

management of the end-to-end quality of experience of sensitive and critical applications. 

Our work presented here is a first step toward this aim. 
 
We see a promising field of work for residential traffic monitoring and classification. Future 

work can include different studies such as: 

- Extending our test bed evaluation with a collector deployed in the cloud. The goal 

will be to study possible bottlenecks implied by such architecture. The network 

load induced by millions of Home Gateways must be considered properly in terms 

of collection network dimensioning and storage challenges. 

- In this dissertation, our machine learning model was tested mainly using an offline 

collection process. A next step could be to deploy such model on several Home 

Gateways and to analyse its online classification performance. Such analysis will ad-

dress one of the most common validation issues observed in the literature.  
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- Some improvements could be done in future work on both implementation and 

evaluation parts of our PoC implementation. In our current implementation ver-

sion, our metering process expiration detection mechanism is mainly based on an 

active polling of hardware accelerator flow cache. Such approach has an impact on 

the resource consumption, especially, with a high number of flows. One possible 

improvement is to change our expiration detection mechanism by sniffing expira-

tion events using the conntrack tool. Another potential improvement is related to 

the performance evaluation. In the synthetic scenario, we used 100 as a maximum 

number of flows. Such limitation was due to iperf used public server limitation. 

One future work could be to deploy our remote server and thus, provide an exten-

sive evaluation with higher number of flows.  

- While we proposed a monitoring and a classification approach, we need to keep in 

mind that such approach is a component of a larger pipeline as explained in Chap-

ter 2. The goal is to exploit the exported records to improve the user experience 

and to facilitate Home Network diagnosis process. A future work could be based 

on Home Network connected devices traffic profiling to detect network anomalies. 

IoT devices security known vulnerability could be addressed as a use case. For ex-

ample, combining device type (e.g. IP camera) and the traffic patterns (streaming 

video, etc.) could be a first step in an outlier detection system.  

- Home network monitoring architecture could be enlarged with virtualization possi-

bilities. An architecture based on a virtual Home Gateway could include a subset of 

pre-analyzing and aggregation components. Thus, in-line management rules could 

be set without exporting records to a third-party component. 

- Network load (bandwidth overhead induced by the probe) possible bottleneck could 

be investigated more in depth. The impact of optimization techniques such as flow 

sampling on the quality of the exported data could provide some interesting insights. 

- Our analysis provided in Chapter 4 could be extended to a larger temporal and spatial 

distribution. Monitoring several customers from several observation points and dur-

ing a larger period will provide additional insights that may be difficult to extract on 

a few hours’ time slice. 

Furthermore, other perspectives could include: 

- A community-oriented ground-truth generation platform. End-host based tools 

which were highlighted as the most accurate existing solution could be improved. In 

fact, current ground-truth generation is based on the process name label. Despite 
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being considered as fine-grained, such technique faces several limits when dealing 

with web activities. For example, a ‘Mozilla Firefox’ label is useful to identify the 

running application. However, identifying the services running from such application 

seems to be trickier. The goal is to provide the community with a multilevel reliable 

labelling method. 

- Multi-classification could be investigated to build a multi-layer retraining architecture. 

The use of both post-mortem and early classification with different granularities for 

each classifier seems to be a promising approach. 
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Appendix A Survey of Customers’ 

Residential Usages  

A.1 Overview of the study 

The study was conducted using an online form sent via Email. Subjects were invited to an-

swer a set of questions to unveil their behavioral habits while connected through their fixed 

access to the Internet. In this appendix, we detail the survey process. 

Table A.1 Examples of Home Network devices 

Devices included in this experiment Devices excluded in this experiment 

PCs (Desktop, Laptop, Mini), 

smartphone, tablet, TV decoder, gam-

ing console, smart TV, connected radio, 

NAS (Network Attached Storage), em-

bedded cards (Raspberry Pi, Beagle 

Board, etc.), connected (IP) audio am-

plifier (non-Bluetooth), etc. 

Smart watch, Presence sensor, smoke sensor, 

Bluetooth speakers, network switch, PLC 

plug, Home Automation Box, IP camera, Wi-

Fi extender, LivePlug Wi-Fi, smart body scale, 

connected printer, etc. 

A.1 Introduction and Overall Context 

In order to improve the management process of Home Networks, a crucial step is to under-

stand the user’s usages according to the connected devices in their Home Networks. This 

survey aims to study the importance of the device’s type (laptop, smartphone, tablet, etc.) 

and its impact on the daily habits. The goal of this experiment is to build a more efficient 

Home Network management process to improve the quality of experience. 
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The questionnaire is related to the Home Network usages. This implies the usages, when 

connected at home through the fixed access provided by the ISP. In the following, we detail, 

all the asked questions. 

A.1 Panel Overview 

Your age? 

<25  

25-28  

28 - 35  

36 - 45  

46 – 55  

> 55  

 

Your household members’ number 

Your gender 

Male   

Female  

A.2 Home Network Topology 

List the devices included in the experiment (detailed in the Table.B.1) that are present in your 

current Home Network configuration. 

Example: 2 Smartphones, 1 Tablet, 2 PCs/laptops, 1 TV Decoder, 1 Gaming Console 

PC (Desktop, laptop, mini PC)        

Smartphones   

Tablet   

TV decoder   

Gaming console   

Smart TVs   

Embedded cards   

NAS   

Connected Radio   

 



Survey of Customers’ Residential Usages 

108 

 

IP Audio Amplifier   

Others    

 

Total number of listed devices (including «Others»)   

A.3 Home Network Services 

A.3.1 Social Networks Services 

At which frequency do you use social networks services (i.e. Facebook, Instagram, 

Twitter, WhatsApp, Snapchat, Google+, LinkedIn, Viadeo, Cluster, etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

Facebook      

Instagram      

Twitter      

WhatsApp      

Cluster      

Snapchat      

Google+      

LinkedIn      

Viadeo      

Other       

 

Which device do you use to connect to social networks (i.e. Facebook, Instagram, 

Twitter, WhatsApp, Snapchat, Google+, LinkedIn, Viadeo, Cluster, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      
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Other       

A.3.2 Vocal Communication Services 

At which frequency do you use vocal communication services (Skype, Viber, 

WhatsApp, Facebook Messenger (voice call), TeamSpeak, Mumble, etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

Skype      

Viber      

WhatsApp      

Facebook Messenger      

TeamSpeak      

Mumble      

Other       

 

Which device do you use to connect to vocal communication services (Skype, Viber, 

WhatsApp, Facebook Messenger (voice call), TeamSpeak, Mumble, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

Smart TVs      

Gaming Consoles      

Embedded cards      

Other       

A.3.3 Visio Communication Services 

At which frequency do you use Visio communication services [Vocal + Video] (i.e. 

Skype, Viber, Facebook Messenger (video call), etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

Skype      

Viber      

Facebook Messenger      
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Other       

 

Which device do you use to connect to Visio communication services [Vocal + Video] 

(i.e. Skype, Viber, Facebook Messenger (video call), etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

Smart TVs      

Embedded cards      

Other       

A.3.4 Video Streaming Services 

At which frequency do you use video streaming services (i.e. YouTube, DailyMotion, 

NetFlix, Video on Demand (MyTF1, M6Replay, etc.), etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

YouTube      

NetFlix      

DailyMotion      

Video on Demand      

Other       

 

Which device do you use to connect to video streaming services (i.e. YouTube, Dai-

lyMotion, NetFlix, Video on Demand (MyTF1, M6Replay, etc.), etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      
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Other       

A.3.5 ISP Live TV services 

At which frequency do you use your ISP Live TV services? 

5/day or + 1-4/day  1-6/week 1-3/month Never 

     

     

Which device do you use to connect to your ISP Live TV services? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Embedded cards      

Other       

A.3.6 ISP Video on Demand Services 

At which frequency do you use your ISP Video on Demand services? 

5/day or + 1-4/day  1-6/week 1-3/month Never 

     

 

Which device do you use to connect to your ISP Video on Demand services? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Smart TVs      

Embedded cards      

Other       
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A.3.7 Audio Streaming Services 

At which frequency do you use audio streaming services (i.e. Spotify, Deezer, etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

Spotify      

Deezer      

Other       

Which device do you use to connect to audio streaming services (i.e. Spotify, Deezer, 

etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

Connected Radio      

IP Audio Amplifier      

Other       

A.3.8 Web Browsing Services 

At which frequency do you use Web Browsing services (i.e. web sites, blogs, forums, 

etc.)? 

5/day or + 1-4/day  1-6/week 1-3/month Never 

     

     

Which device do you use to connect to Web Browsing services (i.e. web sites, blogs, 

forums, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      
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TV decoders      

Smart TVs      

Embedded cards      

Other       

A.3.9 File Downloading Services 

At which frequency do you use File Downloading services (i.e. torrents, direct down-

load, etc.)? 

 5/day or + 1-4/day  1-6/week 1-3/month Never 

Torrents (P2P, etc.)      

Direct download      

Other       

 

Which device do you use to connect to File Downloading services (i.e. torrents, direct 

download, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

NAS      

Other       

A.3.10 Online Social Gaming 

At which frequency do you use Online Social Gaming services (i.e. Candy Crush, 

Angry Birds, Social Networks Gaming, etc.)? 

5/day or + 1-4/day  1-6/week 1-3/month Never 
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Which device do you use to connect to Online Social Gaming services (i.e. Candy 

Crush, Angry Birds, Social Networks Gaming, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

Other       

 

A.3.11 Online Interactive Gaming Services 

At which frequency do you use Online Interactive Gaming services (i.e. Call of Duty, 

League of Legends, World of Warcraft, etc.)? 

5/day or + 1-4/day  1-6/week 1-3/month Never 

     

     

Which device do you use to connect to Online Interactive Gaming services (i.e. Call 

of Duty, League of Legends, World of Warcraft, etc.)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

Other       

A.3.12 Mailing Services 

At which frequency do you use Mailing services (e.g. Writing/Reading Emails)? 
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5/day or + 1-4/day  1-6/week 1-3/month Never 

     

 

Which device do you use to connect to Mailing services (e.g. Writing/Reading 

Emails)? 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

Other       

A.3.13 Online Storage Services 

At which frequency do you use Online Storage services (i.e. le Cloud d’Orange, Drop-

box, Google Drive, etc.) 

5/day or + 1-4/day  1-6/week 1-3/month Never 

     

 

Which device do you use to connect to Online Storage services (i.e. le Cloud d’Or-

ange, Dropbox, Google Drive, etc.) 

 5/day or + 1-4/day 1-6/week 1-3/month Never 

PCs      

Smartphones      

Tablets      

TV decoders      

Gaming Consoles      

Smart TVs      

Embedded cards      

Other       
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