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Introduction

Multiferroics are generally defined as the materials that exhibit more than one of the

ferroic order parameters – (anti-)ferromagnetism, ferroelectricity, ferroelasticity and ferri-

magnetism – in the same phase. In a restricted sense, the term multiferroics is frequently

used to describe the magnetoelectric multiferroics, in which ferroelectricity and (anti-

)ferromagnetism coexist. Ferroelectricity and (anti-)ferromagnetism are two particular

examples of long-rage order.

A very insightful understanding of multiferroic phenomena has emerged from first-

principles calculations based on Density Functional Theory (DFT), which have experi-

enced an enormous and fruitful development in recent years [1, 2, 3]. They enable the

investigation of the electronic and structural properties in a variety of materials. Partic-

ularly for multiferroics, microscopic calculations on the relevant properties, such as the

spontaneous polarization and magnetic moments, become accessible [4, 5]. They also al-

low the determination of the coupling constants and other input parameters that can be

subsequently used to formulate Landau-like models and effective Hamiltonians. A spec-

tacular achievement concerns the correct descriptions of the sequence of both ferroelectric

and magnetic phase transitions, revealing the microscopic origins of these transitions.

At the same time, the Landau theory of phase transition continues to be very help-

ful especially in the context of multiferroics, where the coupling between different order

parameters plays a crucial role. By construction, it is also a very suitable approach to

describe the emergence of long-range modulated orders and multi-domain structures. This

theory builds the foundations of a more general theory from simple but very deep con-

cepts. In particular, it exploits the fact that, when a system approaches a continuous

phase transition (or critical point), the correlation length diverges and hence the micro-

scopic details of the system become no longer important. Instead, the initial symmetry

and how it changes as a result of the transition are important. These ideas happen to be

fruitful and universal. Different phase transitions having the same initial and final sym-

metries are isomorphic. Also, it indicates that the amplitude of irreducible representation

of the initial symmetry group emerging after transition can be taken as a measure of the

symmetry breaking (i.e. the order parameter) [6, 7].
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In this thesis, we exploit these two approaches to investigate the ferroic instabilities in

confined geometries and distorted lattices. In Chapter 1, we give a brief introduction on

the phenomenological descriptions and the microscopic model on ferroelectricity and the

magnetic orders appear in rare-earth manganites. In Chapter 2, we introduce and describe

the first-principles calculations within the DFT framework. In Chapter 3, we consider

structural instabilities in standard ferroelectrics confined to novel nanotube and nano-

shell geometries. Here, the Landau-like description provides a very convenient framework

to describe the the competition between different instabilities, which include vortex-like

distributions of polarization. In Chapter 4, we consider magnetic instabilities rare-earth

manganites under pressure. These systems represent a model-case family of multiferroic

materials, and we use first-principles calculations to predict novel ground states that can

be induced by pressure. In Chapter 5, we extend this study to thin films to demonstrate

that their ground state properties can also be tuned by means of epitaxial strain.



1

Fundamentals of (multi-)ferroics

1.1 Phenomenological description of ferroelectricity

We start by discussing different type of ferroelectrics according to their phenomenological

description in terms of Landau theory, namely, proper, improper and pseudo-proper ferro-

electrics. The Landau theory of phase transitions is constructed near the phase transition

point from the Taylor series expansion of an effective thermodynamic potential in terms

of a primary parameter [5, 8, 9, 10, 11, 12]. The above three cases are distinguished from

the physical meaning of this order parameter, which directly determines the symmetry

breaking associated to the transition and hence the new physical properties that emerge

as a result of it.

1.1.1 Proper ferroelectrics

If the primary order parameter can be directly associated to the electric polarization P ,

then we have the case of a proper ferroelectric. We start by reviewing some basic features

of this case, which will be further developed in Chapter 3 to take into account finite-size

effects related to specific geometries such as the nanotube geometry. For the moment, we

restrict ourselves to the case of uniform polarization in an infinite system. Thus, near the

phase transition point, we expand the Landau free energy as:

F (T, P ) = F0(T ) +
1

2
a(T )P 2 +

1

4
b(T )P 4. (1.1)

Here F0 represents the free energy of the initial (high-symmetry) state and, for the sake of

concreteness, we assume that temperature represents the control parameter. Since the free

energy is a scalar quantity that is invariant under the space-inversion symmetry operation,

the free energy expansion cannot contain odd powers of P . In order to describe a second-

order transition at T = Tc, we assume that the sign of the coefficient a changes from

positive to negative in continuous way (so that it vanishes at Tc), while the coefficient b

3



1. FUNDAMENTALS OF (MULTI-)FERROICS

Figure 1.1: The Landau free energy as a function of the order parameter P at T > Tc and
T < Tc.

(a) (b)

Figure 1.2: Temperature dependence of (a) the order parameter P and (b) the electric
susceptibility χ for proper ferroelectrics.

stays positive. Thus, near Tc, it suffices to consider the first-order terms in the expansion

of these coefficients: a = a′(T −Tc) with (a′ > 0), and b(T ) = b(Tc) = const. In Figure 1.1

we show the resulting (non-equilibrium) free energy as a function of the order parameter

P . If T > Tc (a > 0), the energy displays only one minimum that corresponds to P = 0.

If T < Tc (a < 0), however, we obtain two symmetric minima that correspond to P 6= 0.

These equilibrium values of polarization are determined by the conditions of minimization

of the free energy:

∂F

∂P
= 0, (1.2)

∂2F

∂P 2
> 0. (1.3)

From these conditions, we obtain the expression for the polarization

P =

{
0 (T ≥ Tc)

±
√

a′|T−Tc|
b (T ≤ Tc)

. (1.4)

We plot the polarization as a function of temperature in Fig. 1.2(a), which shows that

there are two nonzero equilibria P corresponding to each temperature.

Then we consider a case that an external electric field is applied on the system. An

4



1.1 Phenomenological description of ferroelectricity

additional coupling term −EP should be taken into account in the free energy, which is

written as

F (T, P ) = F0(T ) +
1

2
a′(T − Tc)P 2 +

1

4
bP 4 − EP. (1.5)

By minimizing the free energy with respect to the polarization, we get

∂F

∂P
= a′(T − Tc)P + bP 3 − E = 0. (1.6)

Then, we differentiate this equation with respect to E,

a′(T − Tc)
∂P

∂E
+ 3bP 2 ∂P

∂E
− 1 = 0. (1.7)

Therefore we obtain the electric susceptibility

χ =
∂P

∂E
=

1

a′(T − Tc) + 3bP 2
. (1.8)

By using expression (1.4), we find

χ =

{
1

a′(T−Tc) (T ≥ Tc)
− 1

2a′(T−Tc) (T ≤ Tc)
. (1.9)

In Figure 1.2(b), we plot the electric susceptibility, which shows that it is divergent at

transition temperature Tc and and obeys “the 1/2 law” [13].

When the temperature is slightly higher than Tc, the dielectric constant is ε ≈ 4πχ

(χ � 1). Thus, the temperature dependence of dielectric constant can be described by

the Curie-Weiss law

ε =
C

T − Tc
, (1.10)

where C is Curie-Weiss constant related to the Landau coefficients and the transition

temperature Tc is called Curie temperature or Curie point.

1.1.2 Improper ferroelectrics

In the case of improper ferroelectrics, the primary order parameter is a different variable,

say Q, and the electric polarization is just a by-product of it [12]. This situation takes

place in the magnetically-induced ferroelectrics that we will study in Chapters 4 and 5.

For the sake of simplicity, let us compare the basic properties of these ferroelectrics and

the standard ones by considering the Landau free energy

F (T, P ) = F0(T ) +
1

2
aP 2 +

1

2
AQ2 +

1

4
BQ4 − λPQ2. (1.11)

5



1. FUNDAMENTALS OF (MULTI-)FERROICS

(a) (b) (c)

Figure 1.3: Temperature dependence of the order parameter (a) Q and (b) P and (c) the
electric susceptibility χ for improper ferroelectrics.

Here, the nominal polarization stiffness a can be assumed to be constant so that there

is no ferroelectric instability. Instead, the phase transition is due to the spontaneous

emergence of the quantity Q. Accordingly, we can take A = A′(T − Tc) and B as a

positive constant. The coefficient λ, in its turn, describes the coupling between the electric

polarization and the primary order parameter of the transition Q. In general, this quantity

is a multicomponent quantity Q = (Q1, Q2, . . . ). However, here we restrict ourselves to

one particular direction in order-parameter space [say Q = (Q, 0, . . . )] assuming that the

coupling to P involves the square of the Q components only. The latter is eventually

determined by the symmetry properties of these variables.

The minimization of the free energy (1.11) implies

∂F

∂P
= aP − λQ2 = 0, (1.12)

∂F

∂Q
= AQ+BQ3 − 2λPQ = 0. (1.13)

According to these equations we obtain

Q =

{
0 (T ≥ Tc)

±
√

A′|T−Tc|
B′ (T ≤ Tc)

, (1.14)

where B′ = B − 2λ2/a, and the electric polarization is

P =
λQ2

a
=

{
0 (T ≥ Tc)
λA′|T−Tc|

aB (T ≤ Tc)
. (1.15)

In Figure 1.3(a) and (b), we plot the order parameter P and Q as a function of tem-

perature respectively. The order parameter Q in this case have the similar dependence of

temperature as P in proper case [see Fig. 1.2]. However, the polarization in improper case

becomes linear below the critical point [see Fig. 1.3(b)]. There are two ferroelectric do-

mains, the positive and the negative one, which correspond to Q = (Q, 0) and Q = (0, Q)

respectively.

6



1.1 Phenomenological description of ferroelectricity

In the presence of an external electric field, we have the additional term −EP in the

free energy:

F (T, P ) = F0(T ) +
1

2
aP 2 +

1

2
AQ2 +

1

4
BQ4 − λPQ2 − EP. (1.16)

The minimization of the free energy now implies

∂F

∂P
= aP − λQ2 − E = 0, (1.17)

∂F

∂Q
= AQ+BQ3 − 2λPQ = 0. (1.18)

The variation of these two equations (1.17) and (1.18) with respect to the electric field

gives

a
∂P

∂E
− 2λQ

∂Q

∂E
= 1, (1.19)

−2λQ
∂P

∂E
+ (A+ 3BQ2 − 2λP )

∂Q

∂E
= 0.. (1.20)

Substitute the expressions of Q and P [see Eq. (1.14) and (1.15)] into these two equations,

we have

χ =

{
1
a (T ≥ Tc)
1
a(1 + λ2

aB′ ) (T ≤ Tc)
, (1.21)

where B′ has been defined above. According to these functions, in Figure 1.3(c), we plot

the electric susceptibility of the improper ferroelectrics as a function of temperature. We

can see that, the behavior of susceptibility of improper case is totally different with the

proper one. It is constant with a jump of λ2

a2B′ at the critical point.

1.1.3 Pseudo-proper ferroelectrics

In addition to proper and improper ferroelectrics, it is sometimes useful to distinguish a

third “intermediate” case: the pseudo-proper case. In this case, even if P is “qualified”

to be the primary order parameter from the symmetry point of view, it turns out to be

more physical to identify the primary order parameter to another quantity, Q, with the

same symmetry properties but a different physical meaning. This will be the case of the

spin-spiral ferroelectrics studied in Sec. 1.2.3.1. In this case, the Landau free energy can

be taken in the form

F (T, P ) = F0(T ) +
1

2
aP 2 +

1

2
AQ2 +

1

4
BQ4 − λPQ. (1.22)

where a and B are positive constants and A = A′(T − T0), T0 is the critical temperature

of Q in absent of P . Here the coupling between P and Q is bilinear owing the fact that

7



1. FUNDAMENTALS OF (MULTI-)FERROICS

(a) (b) (c)

Figure 1.4: Temperature dependence of the order parameter (a) Q and (b) P and (c) the
electric susceptibility χ for pseudo-proper ferroelectrics.

these quantities have the same symmetry properties.

The minimization of the free energy now implies:

∂F

∂P
= aP − λQ = 0, (1.23)

∂F

∂Q
= AQ+BQ3 − λP = 0. (1.24)

Then we obtain:

Q =

{
0 (T ≥ Tc)

±
√

A′|T−Tc|
B (T ≤ Tc)

, (1.25)

and

P =
λ

a
Q =

{
0 (T ≥ Tc)

±λ
a

√
A′|T−Tc|

B (T ≤ Tc)
. (1.26)

Here we have set A = A′(T − Tc) + λ2

a , where Tc is the critical temperature of Q by

considering the coupling term. There is a shift between Tc and T0: Tc = T0 + λ2

aA′ . In

Figure 1.4 (a) and (b), we plot the temperature dependence of the order parameter Q and

P respectively. We find that both order parameter Q and P have the similar behavior as

P in proper ferroelectrics [see Fig. 1.2(a)].

By considering an external electric field, we have

F (T, P ) = F0(T ) +
1

2
aP 2 +

1

2
AQ2 +

1

4
BQ4 − λPQ− EP. (1.27)

Following the same process as the improper case [see Sec. 1.1.2],

∂F

∂P
= aP − λQ− E = 0, (1.28)

∂F

∂Q
= AQ+BQ3 − λP = 0. (1.29)

8



1.2 Magnetic order in rare-earth manganites

The variation of both equations with respect to the electric field:

a
∂P

∂E
− λ∂Q

∂E
= 1, (1.30)

−λ∂P
∂E

+ (A+ 3BQ2)
∂Q

∂E
= 0. (1.31)

By considering the expression of Q in Eq. (1.25), we obtain the electric susceptibility:

χ =

{
1
a + λ2

a2
1

A′(T−Tc) (T ≥ Tc)
1
a −

λ2

a2
1

2A′(T−Tc) (T ≤ Tc)
. (1.32)

In Fig. 1.4(c), we show the temperature dependence of the electric susceptibility. It has

a similar behavior as that in the proper case. However, near Tc, the divergence of the

susceptibility is more narrow and sharp due to the factor λ2/a2. When the temperature

is such that |T − Tc| and |T − T0| � 0, then the susceptibility tends to its nominal value

1
a .

1.2 Magnetic order in rare-earth manganites

In Chapters 4 and 5 we will focus on the magnetism of the rare-earth manganites TbMnO3

and EuMnO3, and consider also that of the rare-earth ferrites in Appendix. This type of

perovskite generally displays a very rich phase diagram in which various magnetic orders

compete with each other. These orders include inversion-symmetry breaking orders that

give rise to multiferroicity, and also other ones that preserve this symmetry. Since the

competition between all these orders will be crucial in our investigation of these systems,

we find it convenient to give a brief overview of the overall experimental situation in this

Section.

In Figure 1.5 we show the original Pbnm crystal structure of the RMO3 systems of our

interest and its cubic prototype, R is a lanthanide (rare-earth) ion and M is a transition-

metal element. The Pbnm structure can be viewed as deriving from cubic perovskite

prototype, where the M ion occupies the centre of the oxygen octahedron, and the R

ion takes up the centre of the cage formed by octahedron. The structure distortion is

affected by the size of R and M ion cooperatively. A convenient measure of the distortion

can be indicated by the Goldschmidt tolerance factor t = (rR + rO)/[
√

2(rM + rO)].

t = 1 corresponds to a perfect cubic phase. When t < 1, the symmetry is reduced to

orthorhombic phase with space group Pbnm. This occurs when the R-size decrease, and

the R-O bond length shrinks, leading to the rotation and buckling of the MO6 octahedra.

9



1. FUNDAMENTALS OF (MULTI-)FERROICS

Figure 1.5: Crystal structure of orthorhombic RMO3 with Pbnm space group and its cubic
prototype, visualized by VESTA [14].

1.2.1 Conventional magnetic orders in perovskites

In Pbnm perovskites like CaMnO3, the dominant interaction between the Mn spins is the

isotropic exchange interaction between nearest-neighbors. Since the unit cell contains four

magnetic Mn atoms, then there are four types of collinear orders that can emerge at this

level depending on the relative sign of these interactions [see Fig. 1.6]:

- F-type, with all the spins pointing in the same direction (FM ordering),

- A-type, with spins pointing in opposite directions in consecutive planes (AFM order

of FM planes),

- C-type, with spins pointing in opposite directions in consecutive lines (AFM order

of FM chains),

- G-type, with nearest-neighboring spins pointing in opposite directions (‘full’ AFM

ordering).

In terms of the cubic lattice with one spin per unit cell, these orders are associated to the

propagation vectors q = (0, 0, 0), (0, 0, 1/2), (0, 1/2, 1/2), and (1/2, 1/2, 1/2) respectively.

Alternatively, these configurations can also be defined from the relative orientation of four

magnetic sublattices (one per magnetic Mn atom of the unit cell). Thus, in terms of the

spin cluster depicted in Fig. 1.6, they correspond to non-zero values of the following order

10



1.2 Magnetic order in rare-earth manganites

(a) F-type (b) A-type

(c) C-type (d) G-type

Figure 1.6: Conventional collinear spin orders in Pbnm unit cell.

parameters:

F = S1 + S2 + S3 + S4 (1.33)

A = S1 − S2 − S3 + S4 (1.34)

C = S1 + S2 − S3 − S4 (1.35)

G = S1 − S2 + S3 − S4 (1.36)

1.2.2 Experimental phase diagram in the rare-earth manganites

In Fig. 1.7, we show the experimentally-determined magnetic phase diagram of the rare-

earth manganites RMnO3 [15, 16]. The relative complexity of this phase diagram and the

emergence of additional orders compared to the ones discussed before are due to more

complex interactions between spins that give rise to magnetic frustration. This will be

discussed in Landau framework and microscopic model in the following sections.

Specifically, we can see that there is a first transition from the paramagnetic (PM)

state to the incommensurate (IC) sinusoidal antiferromagnetic state [see Fig. 1.7], that

occurs at TN1 = 40 ∼ 50 K for all the systems. By lowering the temperature, Mn spins

are stabilized in different type of orderings depending on the size of the rare-earth R ion,

at different transition temperature TN2. Four magnetoelectric phases successively appear

at low temperatures by decreasing the R size.

- A-type phase with the FM Mn spins aligning in the ab-plane;

11



1. FUNDAMENTALS OF (MULTI-)FERROICS

Figure 1.7: Experimentally obtained magnetoelectric phase diagram of RMnO3 and solid-
solution systems in the plane of temperature and (effective) ionic radius of the R ion [15].

- spiral spin phase in ab-plane with P‖a;
- spiral spin phase in bc-plane with P‖c;
- collinear E-type phase with very large P‖a.

In all of these magnetic phases, the Mn spins along the c axis is strongly antiferromag-

netically coupled. We note that, A-AFM order is the only conventional collinear order

appears in the phase diagram. It is stabilized as the ground state of EuMnO3. However,

the ground states of most of the systems are cycloidal spirals or E-AFM states, which are

not conventional spin orders in perovskites.

TbMnO3 is one of the most studied orthorhombic rare-earth manganites and can be

considered as a representative of this family. Its magnetic structure has been determined

by neutron and x-ray resonant scattering experiments [17, 18, 19, 20, 21]. It undergoes

successive magnetic phase transitions [see Fig. 1.7]:

bc cycloidal phase
28K←−→ IC-sinusoidal AFM

42K←−→ PM

At TN1 = 42 K, the Mn spins transform into an incommensurate sinusoidal spin wave,

forming a longitudinal spin-density-wave along the b direction and an AFM structure along

c with the wave-vector qMn = (0, 0.28, 1). The Mn spins further develop a transverse

component along the c-axis at TN2 = 28 K that transforms the structure into a (non-

collinear) cycloidal in the bc plane. In addition, the spin order of Tb 4f -electron at

T Tb
N = 7 K is stabilized in a cycloidal order with wave vector qTb = (0, 0.42, 1).

12



1.2 Magnetic order in rare-earth manganites

Figure 1.8: Magnetic and dielectric anomalies of TbMnO3 [18].

In Fig. 1.8, we show the magnetic and dielectric anomalies of TbMnO3 from exper-

iments [18]. The anomaly in magnetization and specific heat confirms the above phase

transitions. There exists a narrow divergence in the dielectric constant measurement at the

second critical temperature TN2, which is similar with that in pseudo-proper ferroelectrics

[see Figure 1.4(c)]. The polarization starts to appear along the c direction below TN2.

These electric properties change during the magnetic sinusoidal→ spiral phase transition,

implying there is a strong magnetoelectric coupling between them.

A pressure-induced transition from the bc cycloidal spiral state to the E-AFM state

has been observed at around 4 ∼ 5 GPa, accompanied with a spontaneous polarization

flopping from the c to the a-axis and its amplitude increases about ten times of the

magnitude [22]. Neutron diffraction and electric measurements confirm a commensurate

E-AFM order stabilized in highly strained (010) oriented TbMnO3 thin film grown on

YAlO3 substrate. The polarization of the thin film is relatively larger compared to that of

the bulk materials [23]. These observations indicate that the specific E-AFM order should

have stronger coupling with polarization than the cycloidal spiral.
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1.2.3 Spin orders breaking inversion-symmetry

As we can see from the above experiments, the multiferroic properties of the RMnO3 sys-

tems trace back to the emergence of spin spirals and E-AFM orders. These two particular

magnetic orders break the inversion symmetry and hence induce ferroelectricity. In the fol-

lowing, we briefly discuss the main features of these two orders from the phenomenological

point of view.

1.2.3.1 Spin-spiral order

Emergence of the spin spiral In terms of the Landau theory, the pure magnetic free

energy can be written as

Fm =
∑
i

ai
2
M2
i +

b

4
M4 +

c

2
M(q2 +∇2)2M. (1.37)

Here a, b, c are the Landau coefficients of second-order, fourth-order and gradient term

respectively, M represents the distribution of magnetization. In the following we consider

the easy-axis case such that ax < ay < az. The last term involving the gradients comes

from the magnetic frustration and takes into account that the system favors a periodic

spin density wave (SDW) with vector q. We seek the distribution of magnetization in the

form

M =
∑
q

[Mxcos(q · r)x̂ +Mysin(q · r)ŷ +Mzẑ], (1.38)

where q is the propagation wave vector in reciprocal space and r is the position vector in

real space. Mx, My and Mz are the components of magnetic moment along the orthogonal

x, y and z axes, respectively.

For each spin density wave, Mz = 0 indicates a coplanar spin wave in xy-plane. Hence

if either Mx or My is zero, it transforms to a sinusoidal wave. Specifically, when the q

vector and M are along the same direction, the sinusoidal wave is longitudinal, otherwise

it is transverse. In Figure 1.9(a) we plot the longitudinal wave M = Mxsin(qxx)x̂ with

both M and q along x-axis. If neither Mx nor My is zero, it describes a non-collinear

cycloidal wave. When the q vector is along z-axis, e.g. M = Mxcos(qzz)x̂ +Mysin(qzz)ŷ,

it is a longitudinal cycloidal wave. Whereas when the q vector lies in xy-plane, e.g.

M = Mxcos(qxx)x̂ +Mysin(qxx), it specifies a transverse cycloidal wave, which is plotted

in Fig. 1.9(b). The case of Mz 6= 0 indicates a three-dimensional conical spiral order

with a net magnetic moment along the z-axis. It can be simply viewed as a coplanar

spin density wave adding a net out-of-plane component. In Fig. 1.9(c) we plot one of the

transverse conical waves, formatted as M = Mxcos(qxx)x̂ +Mysin(qxx)ŷ +Mzẑ [15, 24].
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1.2 Magnetic order in rare-earth manganites

(a) Sinusoidal wave

(b) Cycloidal spiral

(c) Conical spiral

Figure 1.9: Three types of spin density wave from expression (1.38).

First we discuss a longitudinal sinusoidal SDW state with both q-vector and M are

along x-axis [see Figure 1.9(a)]:

M = Mxcos(qx)x̂. (1.39)

By substituting it into the magnetic free energy (1.37), we got

Fm =
ax
2
M2
xcos2(qx) +

b

4
M4
xcos4(qx). (1.40)

If we consider only the uniform term, we got

Fm =
ax
4
M2
x +

3b

32
M4
x . (1.41)

If we minimize this magnetic free energy with respect to Mx, we can easily obtain

M2
x =

{
0 (T ≥ TN1)

−4ax
3b (T ≤ TN1)

. (1.42)
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The energy minimum is

Fmin = −a
2
x

6b
, (1.43)

when the wave vector of the sinusoidal SDW state with M2
x = −4ax

3b .

Another case refers to the cycloidal SDW state [see Figure 1.9(b)] in xy-plane, formu-

lated as

M = Mxcos(qx)x̂ +Mysin(qx)ŷ. (1.44)

By substituting it into the magnetic free energy Eq. (1.37) and using Eq. (1.43), we will

have

Fm = −a
2
x

6b
+
ay
2
M2
y sin2(qx) +

b

4
[2M2

xM
2
y cos2(qx)sin2(qx) +M4

y sin4(qx)], (1.45)

By neglecting the higher harmonics and using the magnetic moment Mx in Eq. (1.42),

the expression becomes

Fm = −a
2
x

6b
+

3ay − ax
12

M2
y +

3b

32
M4
y . (1.46)

By minimizing this magnetic free energy with respect to My, we obtain

M2
y =

{
0 (T ≥ TN2)

− 4
9b(3ay − ax) (T ≤ TN2)

. (1.47)

This indicates that the cycloidal ordering appears at ay = ax/3, since ax = a′(T − TN1)

and we assume that the anisotropy parameter ∆ = ax − ay is not too large, we have

TN2 = TN1 −
3∆

2a′
(1.48)

At this point, the total free energy is

Fmin = −a
2
x

6b
− (ax − 3ay)

2

54b
. (1.49)

Compared with the energy of sinusoidal SDW in expression (1.43), the cycloidal state has

the lowest energy at temperature lower than T = TN2. Therefore, by the above formula,

we can well explain the origin of the successive phase transitions observed in experiments,

from PM to sinusoidal state at TN1, then to cycloidal spiral state a TN2. It is due to

the successive appearance of the primary order parameters Mx and My by decreasing the

temperature, which successively decrease the free energy of the system.

Emergence of the electric polarization We now discuss the coupling between the

distribution of magnetization and the polarization, which is the origin of magnetic ferro-
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1.2 Magnetic order in rare-earth manganites

electricity. This coupling can be found by using general symmetry analysis [25, 26]. The

time reversal symmetry t → −t, transforms P → P and M → −M, requires the lowest-

order coupling to be quadratic in M. However, the spatial inversion symmetry, r → −r,

leading to P → −P and M → M, is respected when the coupling between an uniform

polarization and magnetization is linear in P and contains one gradient of M. Therefore,

the most general coupling can be written as [27]

Fem = λP · [(M · ∇)M−M(∇ ·M)]. (1.50)

Minimizing total free energy with respect to P , we obtain

P =
λ

a
[(M · ∇)M−M(∇ ·M)]. (1.51)

If the magnetic moments align according to a collinear pattern, either ferromagnetic (FM)

or antiferromagnetic (AFM), the expression (1.51) gives a zero polarization. This result

also applies the sinusoidal SDW state. However, in the case of the cycloidal order we

obtain a non-zero polarization

< P >=
λ

a
MxMy(z× q). (1.52)

since both Mx and My are different from zero in this state. This explains the experimental

results in Fig. 1.8, in which the polarization and the cycloidal spiral state appear simul-

taneously at TN2. Since the direction of the polarization is the cross product of the wave

vector and the out-of-plane direction. The polarization induced by the bc cycloidal spiral

in Pbnm structure is along the c-axis.

The expression (1.52) has the form −λQ2

a . Consequently, if the system transforms

directly from the paramagnetic to the spiral state, we then have an improper ferroelectrics

in which the susceptibility should behave as in Fig. 1.3(c). In TbMnO3, however, the

dielectric constant shows a large and narrow peak [see Fig. 1.8] [18]. This can be explained

in terms of the phase transition process. It is not a direct transition from the paramagnetic

state to the spiral state, but from the collinear sinusoidal wave to the spiral state. In this

case, we have a pseudo-proper ferroelectric where the primary order parameter of the

transition is Q = My (and then the coupling effectively becomes λ′PQ).

In principle, we can build a structure for spiral spin wave with any propagation wave

vector. However, more specifically and practically, we need to adapt the spiral orders

into the real lattice structure for DFT calculations. In the practical implementation of

the calculations, we have to simplify our models to the commensurate spirals. The spiral

is limited by the size of the unit cell we use. In Figure 1.10(a) and (b), we construct
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(a) 90◦ spiral

(b) 60◦ spiral

Figure 1.10: Non-collinear spin spiral orders

two typical representatives, 90◦ and 60◦ cycloidal spiral. They are with propagation wave

vector q = 1/2 and q = 1/3 along y-axis. Thus we need a supercell of two and three Pbnm

unit cells respectively. We can reasonably use these two common models to simulate the

actual ground state in the experiments.

1.2.3.2 E-type collinear AFM order

The rare-earth manganites of our interest display another important realization of mag-

netically induced ferroelectricity. In this case, the spins arrange according to a particular

collinear ordering, which is denoted as E-AFM order. In Figure 1.11, we plot two types of

E-AFM order. The propagation wave vector associated to this order is q = 1/2, and con-

sequently we need to consider two Pbnm unit cells to reproduce its pattern (for example

a×2b×c). E-AFM order is a specific magnetic state with up-up-down-down in-plane spin

ordering and anti-parallel inter-plane alignment. Correspondingly, the two E-type order

can be described by means of the order parameters:

E1 = S1 + S2 − S3 − S4 − S5 − S6 + S7 + S8, (1.53)

E2 = S1 − S2 − S3 + S4 − S5 + S6 + S7 − S8, (1.54)

where Si refers to ith magnetic atom in unit cell.

The magnetic atoms are numbered according to Fig. 1.11(a), the same number cor-

responds to the identical atom. The switch from E1 to E2-type, is turning the in-plane
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1.2 Magnetic order in rare-earth manganites

(a) E1-AFM (b) E2-AFM

Figure 1.11: Unit cell of two kinds E-AFM order in Pbnm space group.

magnetic series from up-up-down-down series to up-down-down-up. In the experimental

phase diagram Fig. 1.7, several compounds with relative small R ion are stabilized as

E-AFM state at low temperature.

Since E-AFM state is a collinear ordering, we consider E1 and E2 as scalars E1 and

E2. The pure magnetic free energy of the system has the following form:

Fm =
1

2
A(E2

1 + E2
2) +

1

4
B1(E4

1 + E4
2) +

1

2
B2E

2
1E

2
2 . (1.55)

Minimizing this energy we obtain two possible sets of solutions. If B2 < 0 (but still

|B2| < B1), (E1, E2) = (±E,±E) with

E =

{
0 (T ≥ TN )√

A
B1+B2

(T ≤ TN ).
(1.56)

However, if B2 > 0, we then have (E1, E2) = (±E, 0) and (E1, E2) = (0,±E) where

E =

{
0 (T ≥ TN )√

A
B1

(T ≤ TN )
. (1.57)

Emergence of the electric polarization The couplings to the electric polarization

can be obtained from the general symmetry analysis. The generators of the Pbnm space

group in the irreducible representation can be obtained from GENPOS on Bilbao Crystal-

lographic Server [28], which gives three generators – two-fold operator {2a|12
1
20}, {2c|001

2}

and inversion operator {−1|0}. Under these operations, the symmetric coordinates can be

transformed according to table 1.1.

The Landau free energy of the system should be invariant under the operation of the

generators. According to the transformation table 1.1, it allows us to obtain the form of
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{2a|12
1
20} {2c|001

2} {−1|0}
E1 −E1 −E2 E2

E2 E2 −E1 E1

Pa Pa −Pa −Pa
Pb −Pb −Pb −Pb
Pc −Pc Pc −Pc

Table 1.1: Table of transformation of the symmetric coordinates under the generators of
space group Pbnm

(a) E∗1-AFM (b) E∗2-AFM

Figure 1.12: Two E∗-type collinear spin orders

the coupling term as follow

Fem = −λ1Pa(E
2
1 − E2

2)− λ2Pb(E
2
1 − E2

2)E1E2. (1.58)

We have two coupling terms between the polarization and the magnetic order parameters,

both of them persist the symmetric invariant. Minimizing the free energy with respect to

the polarizations Pa and Pb, we obtain

Pa =
λ1

a
(E2

1 − E2
2) (1.59)

Pb =
λ2

a
(E2

1 − E2
2)E1E2 (1.60)

Pc = 0. (1.61)

We will have four types of domains inducing polarizations: (±E1, 0)→ (Pa, 0), (0,±E2)→
(−Pa, 0), (±E,±E) → (0, 0) and (±E1,±E2) → (Pa, Pb). E1 and E2 are leading to

polarizations oriented along +a and −a directions. The coexistence of E1 and E2 (E1 6=
E2) may induce polarization in the ab-plane which is the vector sum of Pa and Pb.

There are another kinds of E-AFM orders, we denote them as E∗-AFM orders, which

with up-up-down-down (or up-down-down-up) in-plane spin ordering, but parallel align-

20



1.3 Microscopic model

ment inter-plane. There are also two order parameters of E∗-AFM structure:

E∗1 = S1 + S2 − S3 − S4 + S5 + S6 − S7 − S8 (1.62)

E∗2 = S1 − S2 − S3 + S4 + S5 − S6 − S7 + S8 (1.63)

corresponding to Fig. 1.12(a) and (b). After employing normal collinear orders (A,C,G,F),

the crystal structure keeps its Pbnm space group, whereas by imposing E-type orders, the

structure decomposes into P21nm, which is a maximal non-isomorphic subgroup of Pbnm.

1.3 Microscopic model

In this section we discuss a general microscopic model that enables the unified description

of all the aforementioned spin orders. The parameters of this model can be determined

from DFT calculations.

1.3.1 General model

For a magnetic system, we can write a general Hamiltonian:

H = −
∑
i,j

∑
α,β

Jαβij S
α
i S

β
j . (1.64)

Here, i and j indicate the positions of the spins in the crystal lattice, while α and β refer

to spin components. We can further write the formula into a matrix form:

H = −
∑
i,j

(S1
i , S

2
i , S

3
i )

 J11
ij J12

ij J13
ij

J21
ij J22

ij J23
ij

J31
ij J32

ij J33
ij

 S1
j

S2
j

S3
j

 . (1.65)

the trace of the symmetric part corresponds to the isotropic exchange interaction:

Jij =
1

3

∑
α

Jααij . (1.66)

The off-diagonal part is related to the Dzyaloshinskii-Moriya (DM) interactions:

Dγ
ijε

γαβ =
1

2
(Jαβij − J

βα
ij ). (1.67)

The off-diagonal terms of the specific self-interaction case i = j, give rise to the single-ion

anisotropic interaction. In the following, we are going to provide detailed discussions of

these three interactions.
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1.3.2 Exchange interaction

We employ a classical Heisenberg model [29] to describe the microscopic interaction be-

tween magnetic atoms, in which the spins of the magnetic atoms are treated as classical

vectors. The Heisenberg Hamiltonian describes the exchange interaction between two

different individual spins S1 and S2, and can be written as:

H = −J12S1 · S2, (1.68)

where J is the exchange interaction parameter determined by the overlap of the electron

wave functions subjected to Pauli’ s exclusion principle. When J > 0, the exchange in-

teraction favors the parallel orientation of spins which is the ferromagnetic (FM) order,

otherwise, for J < 0 the interaction favors the antiparallel spin alignment, forming anti-

ferromagnetic (AFM) order. In a crystal lattice structure, the exchange interaction term

in a general Hamiltonian involves the sum over all spin pairs:

HEX = −
∑
i,j

JijSi · Sj (1.69)

i and j represent different coordinates of the lattice. Since there is almost no overlap of

electron for distant pairs, compared to the near neighboring pairs, the interaction between

distant pairs can be neglected.

Taking the xy-plane spiral as an example, for the most simple model of the interac-

tion, we consider a FM nearest-neighbor (NN) and AFM next-nearest-neighbor (NNN)

interactions in the xy plane (which is the easy plane), inter-plane interaction along z is

excluded. The Hamiltonian can be reduced to

H = −J1

∑
i

Si ·(Si+x+Si−x+Si+y+Si−y)+J2

∑
i

Si ·(Si+x+y+Si−x−y+Si−x+y+Si+x−y).

(1.70)

The AFM NNN interaction tends to destabilize the FM NN interaction, forming the spin

spiral state. The spin can be parametrized as

Si = Scos(Q · ri)x̂ + Ssin(Q · ri)ŷ, (1.71)

in which the wave vector Q = Q√
2
(1, 1, 0). By directly substituting it into the hamiltonian

(equation (1.70)) and minimizing the total energy with respect to Q, we got the energy

minimum of the spiral ES = J2
1S

2/J2 when cos(Q/
√

2) = J1/(2J2). Comparing ES with

the energy of FM state EFM = 4J1(1− J2/J1)S2, we can determine that the spiral state

is stable when J2 > J1/2. This means that when the NNN interaction J2 exceeds half of

the NN interaction J1/2, the system is inclined to stabilize as spiral state. We can use this
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Figure 1.13: Schematic diagram of exchange interactions in Pbnm lattice, for simplicity,
only magnetic atoms (B-site) are shown. Jab and Jc are the in-plane and out-of-plane nearest
interactions, while Ja is the in-plane next-nearest interaction.

simple model to explain the stabilization the spin spiral state in the orthorhombic man-

ganites RMnO3, which is due to the competition between isotropic exchange interactions.

And such isotropic exchange interactions are strongly affected by the size of A-site ion.

The plane of the spiral is determined by a subtle competition between SIA and DM inter-

action, which are strongly dependent on specific compound and its condition. Therefore

this competition can be controlled by external stimuli such as magnetic field, pressure or

epitaxial strain.

We take the orthorhombic Pbnm perovskite structure as a typical example. In Figure

1.13, we include both the NN and NNN interactions, in which in-plane and out-of-plane

are distinguished with each other. Therefore we obtain the exchange interaction part of

the hamiltonian

HEX = Jab1

ab∑
〈i,j〉

Si · Sj + Jc1

c∑
〈i,j〉

Si · Sj + Jab2

ab∑
〈〈i,j〉〉

Si · Sj + Jc2

c∑
〈〈i,j〉〉

Si · Sj (1.72)

where Jab1 and Jc1 are the in-plane and out-of-plane NN interactions, Jab2 and Jc2 are the in-

plane NNN interactions. In a sense, the exchange interaction has already been considered

as anisotropic at this level. Nevertheless, it remains isotropic that it only depends on the

relative orientation of the spins. For a Pbnm structure, each magnetic atom is surrounded

by 4 in-plane NN atoms, 2 out-of-plane NN atoms, 4 in-plane NNN atoms and 8 out-of-

plane NNN atoms.

1.3.3 Single-ion anisotropy

Magnetic anisotropy is the dependence of magnetic properties on a preferred direction.

Inside a crystal, the orbital state of a magnetic ion is obviously affected by the crystal

field produced by its surrounding charges. This effect will act on its spin via spin-orbit
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1. FUNDAMENTALS OF (MULTI-)FERROICS

coupling, leading to a dependence of the magnetic energy on the spin orientation relative

to the crystalline axes. Such a dependence is the so-called single-ion anisotropy (SIA).

The SIA drives the separation of easy and hard axes. In a cubic perovskite structure, the

SIA contribution to the Hamiltonian can be expressed as

HSIA = K
∑
i

(S2
i,xS

2
i,y + S2

i,yS
2
i,z + S2

i,zS
2
i,x) (1.73)

Thus, when K > 0, the easy-axes are along the [100], [010] and [001] directions, whereas

K < 0, they are along the [111] directions. If the local environments become uniaxial, the

single-ion anisotropy can be written as

HSIA = −
∑
i

[KiS
2
i,z +K ′i(S

2
i,x − S2

i,y)] (1.74)

in such expression, the anisotropy is determined by two parameters, Ki and K ′i. If Ki > 0

the anisotropy is of the easy axis type while if Ki < 0 it is of the easy plane type. The

other parameter K ′i determines the direction of the spin in the xy-plane.

1.3.4 Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya (DM) interaction [30, 31, 32], or antisymmetric anisotropic

exchange, arises from the interplay between broken inversion symmetry and spin-orbit

coupling. For a simple two magnetic atoms model [see Figure 1.16], its hamiltonian is

written as

HDM = −D12 · (S1 × S2), (1.75)

where D12 is the DM vector for magnetic atom 1 and 2, which contains at most three

independent parameters, is constrained by symmetry. Normally, the DM interaction favors

the perpendicular alignment of spins with respect to their original orientation. It competes

with the isotropic exchange interaction preferring the (anti-)parallel alignment of nearest-

neighboring spins. Thus the DM interaction represents an important source of magnetic

frustration. In fact, two spins interacting via equations (1.68) and (1.75) will tend to be

perpendicular to the DM vector with a the relative angle θ12 = arctan(D12/J12) modulo

a π angle (such that, in the limit D12 → 0, θ12 ≈ 0 if J12 > 0 while θ12 ≈ π if J12 < 0).

This basically explains many of the non-collinear magnetic orderings, e.g. spin spiral, spin

canting and weak FM.

In a Pbnm perovskite crystal structure, the overall hamiltonian has a more complex
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1.3 Microscopic model

Figure 1.14: Schematic plot of perovskite Pbnm structure for the description of the
Dzyaloshinsky-Moriya interactions associated with different Mn-O-Mn bonds, Mn is in blue
and O is in red, the A-site ions are neglected for simplicity.

expression, which includes all neighboring spin pairs.

HDM = −
∑
<i,j>

Dij · Si × Sj, (1.76)

in which Dij is the DM vector for magnetic atom i and j. They follow the antisymmetric

relation: Dij = −Dij. In the perovskites, e.g. manganites, the exchange interactions are

mediated by the oxygen atoms, the DM vector is defined on the Mni-O-Mnj bond. Each

Dij can be expressed in terms of five parameters αab, βab, γab, αc, βc

Di, i+x =

 −(−1)ix+iy+izαab
(−1)ix+iy+izβab

(−1)ix+iyγab

 , (1.77)

Di, i+y =

 (−1)ix+iy+izαab
(−1)ix+iy+izβab

(−1)ix+iyγab

 , (1.78)

Di, i+z =

 (−1)izαc
(−1)ix+iy+izβc

0

 . (1.79)

We show an example in Figure 1.14, where the Mn atoms are labelled accordingly.

Associated with different Mn-O-Mn bonds in perovskite structure, the corresponding DM

vectors are DI1 = DI2 = (−αab, βab, γab), DI3 = DI4 = (αab, βab, γab), DJ5 = DJ6 =

(αab,−βab, γab), DJ7 = DJ8 = (−αab,−βab, γab), DIJ = (αc, βc, 0).
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(a) (b)

Figure 1.15: (a) Phase diagram and (b) the corresponding ground states UUDD and (π, 0)
(0, π)

1.3.5 Biquadratic interaction

The biquadratic interaction

HBI = −
∑
<i,j>

Bij(Si · Sj)2, (1.80)

is isotropic. This interaction results from fourth-order perturbation theory within the

Hubbard model in the limit t/U � 1. Such high-order exchange interaction [see Equation

(1.80)] can be incorporated into the frustrated Heisenberg model, in order to search for

the origin of collinear E-type (up-up-down-down) order. Such interaction is originating

from the spin-phonon coupling, which is derived by integrating out the phonon degrees of

freedom. The stabilization of E-type state is cooperatively determined by the frustrated

exchange interaction and its competition with biquadratic coupling

In Fig. 1.15, we show the the phase diagram in terms of the parameter a and γ [33],

where a = B/|J1| and γ = J2/|J1|, the parameters B, J1 and J2 have been defined as

above. The physical meaning of a and γ correspond to the biquadratic interaction and

frustrated effect respectively. The schematic diagram of ground state up-up-down-down,

(π, 0) and (0, π) are plotted in Figure 1.15(b). As we can see, the alone frustrated effect

is not able to stabilize E-type order, no matter how large it is. Only when a strong

biquadratic interaction is involved, the uudd E-type ground state can be obtained.

An effective way to enhance this interaction is by applying external pressure. A

pressure-induced transition from the bc cycloidal spiral state to the E-AFM state has

been observed at around 4 ∼ 5 GPa, accompanied with the spontaneous polarization flop-

ping from c to a axis and its amplitude increases about ten times with respect to the

magnitude [22].
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1.3 Microscopic model

Another approach to tune multiferroicity is the application of epitaxial strain [23,

34]. Neutron diffraction and electric measurement reveal that in highly strained (010)

oriented thin film on YAlO3 substrate, the magnetic order in TbMnO3 stabilized into a

commensurate E-AFM order along with an enormous increase of the polarization compare

to that of bulk materials [23].

1.3.6 Spin-orbit coupling

In the above sections, we have clarify the microscopic origin of the emergence of spin

spirals and E-AFM orders. In this section, we describe two microscopic mechanisms on

the spin spirals induced ferroelectricity in perovskites.

One the one hand, the electric polarization can emerge due to the dependence of

the symmetric exchange interactions on the atomic displacements (i.e. symmetric magne-

tostriction). That is, due to the dependence of the wavefunction overlaps on the specific

positions of the atoms. In perovskites, these interactions are mediated by the oxygen

atoms (superexchange) and hence J(ri, rj ; r
o
ij), where ri(j) represents the position of the

magnetic atoms and roij corresponds to that of the oxygen. These positions can be ex-

pressed as r = r(0) + δr, where δr accounts for the corresponding displacement. Thus, the

aforementioned dependence can formally be written as

J(ri, rj ; r
o
ij) = Jij + J

(i)
ij · δri + J

(j)
ij · δrj + Joij · δroij + . . . (1.81)

where Jij = J(r
(0)
i , r

(0)
j ; r

o(0)
ij ) and the form of vector Jαij can be deduced from symmetry

considerations. If one considers the displacements associated to the electric polarization:

J
(i)
ij · δri + J

(j)
ij · δrj + Joij · δroij = J′ij · P. Then, whenever J′ij 6= 0, the spin order can

induce this polarization because the minimization of the total energy implies:

P ∝
∑
ij

J′ij(Si · Sj) (1.82)

This mechanism is rather general, and in fact can be triggered by purely electronic effects.

In the case of the orthorhombic RMnO3 manganites, the ferroelectricity induced by the

particular collinear E-AFM order is due to this mechanism. The parameter J′ij is deter-

mined by the symmetry of the system. It also works when the system has two species of

spins, which is the case of perovskites like GdFeO3 or DyFeO3. However, this mechanism

is ineffective if the spiral is in the bc plane.

On the other hand, the same reasonings can be applied to DM interaction. In general,

this interaction also depends on the atomic displacements (i.e. antisymmetric magne-
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Figure 1.16: Schematic plot of a M-O-M bonding example for description of Dzyaloshinsky-
Moriya interactions, M represents a magnetic ion and O is an oxygen ion.

tostriction):

D(ri, rj) = Dij + D
(i)
ij · δri + D

(j)
ij · δrj + Do

ij · δroij + . . . (1.83)

and therefore can produce an electric polarization:

P ∝
∑
ij

D′ij(Si × Sj) (1.84)

whenever these changes are associated to polar displacements. This is the so-called inverse

DM mechanism [35].

Specifically, the exchange between spins of magnetic ions is usually mediated by an

oxygen ion, forming M-O-M bonds, see Figure 1.16. In the first-order approximation, the

magnitude of the DM vector D12 is proportional to the displacement of oxygen ion (x)

away from the “original” middle point

D12 ∝ x× r̂12, (1.85)

where r̂12 is a unit vector along the line connecting the magnetic ions 1 and 2, and x is

the shift of the oxygen ion from this line, indicating in Fig. 1.16. Thus, the energy of the

DM interaction decreases with x, describing the degree of inversion symmetry breaking at

the oxygen site. Minimize the total energy with respect to the oxygen displacement x, we

got:

x ∝ r̂12 × (S1 × S2). (1.86)

In the spiral state, the vector product has the same sign for all pairs of neighboring spins,

the negative oxygen ions are pushed to the same direction, which is perpendicular to the

spin chain formed by positive magnetic ions, giving arise to a macroscopic ferroelectric

polarization.
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1.4 Conclusions

It also has a purely electronic version, in which the electric polarization can be associ-

ated to the spin current generated by the vector chirality Si×Sj of non-collinear spins. In

this case, it is called the spin-current mechanism [36]. More phenomenologically, this type

of polarization can be seen as due to coupling terms of the type P · [(M ·∇)M−M(∇·M)]

in expression (1.50) which, in contrast to the symmetric magnetostriction, is always al-

lowed by symmetry. The specific form of these couplings, however, depends on the specific

symmetry of the system.

In the particular case of the orthorhombic RMnO3 manganites the antisymmetric

magnetostriction yields P ∝
∑

ij r̂ij × (Si × Sj), as we have defined above, r̂ij is the unit

vector connecting the corresponding spins. Specifically, for the bc cycloidal spiral (the

ground state of TbMnO3), rij is along b direction and Si × Sj is along a-axis, therefore

the oxygen is pushed along the c-axis, thus induce polarization along c direction.

1.4 Conclusions

In conclusion, we have given a brief introduction on the (multi-)ferroics based on the phe-

nomenological theory and the microscopic models. We started with the Landau description

of three types of ferroelectrics – the proper, improper and pseudo-proper ferroelectrics.

These provided the fundamentals for the phenomenological study on confined geometrics

in Chapter 3. And then we reviewed various magnetic orders in rare-earth manganites,

especially inversion-symmetry breaking orders – the spin spirals and the E-AFM orders

– that give rise to the multiferroicity. We discussed the emergence of these orders and

the mechanism of magnetically-induced ferroelectricity in these materials. Finally, we il-

lustrate the general microscopic model that enables the unified description of all these

magnetic orders. These discussions serve as the background of our DFT study on the

magnetic phase instability of EuMnO3 and TbMnO3 in Chapter 4 and 5.
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2

First principles calculations

“The underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty is only that

the exact application of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of applying quantum

mechanics should be developed, which can lead to an explanation of the main features of

complex atomic systems without too much computation.”[37]

– Paul Dirac

2.1 Introduction

In 1929, just three years after the Schrödinger derived his famous equation [38], Paul Dirac

made the above prospective opinions, emphasizing on the difficulty of solving the equa-

tions of quantum mechanics and desirability of developing practical methods of applying

quantum mechanics to explain complex systems. During the same period, Thomas [39]

and Fermi [40] proposed a scheme based on the density of the electrons in the system

n(r), it stands separate from the wave function theory as being formulated in terms of the

electronic density alone. This Thomas-Fermi model is viewed as a precursor to modern

density functional theory (DFT). In the following several decades, physicists made great

efforts on solving Schrödinger-type equations with local effective potentials and improving

numerical methods [41, 42, 43, 44, 45], which have been decisive in carrying out density

functional calculations. Until 1965, Kohn and Sham introduced the famous Kohn-Sham

equation, suggesting an alternative way to implement the DFT [46]. Within the framework

of Kohn-Sham DFT, the complex many-body problem of interacting electrons is reduced

to a tractable problem of non-interacting electrons moving in an effective potential. DFT

is that powerful “approximate practical methods, which can lead to an explanation of the

main features of complex atomic systems without too much computation”.
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In the first three sections of this chapter we describe the precursor methods before

DFT, including Born-Oppenheimer approximation, Hartree-Fock and Thomas-Fermi ap-

proach. In the next two sections, we introduce the fundamentals of DFT and the related

exchange-correlation approximations. Finally, we show the details of the practical numer-

ical implementation as it is used in this thesis: basis sets, k-point mesh and pseudopoten-

tials.

2.2 The many-body Schrödinger Equation

In the time-independent many-body quantum theory, a system of interacting particles is

described by the following many-body Schrödinger equation:

HΨ = EΨ, (2.1)

where H is the Hamiltonian of the system, Ψ is the wave function for all the particles and

E is the corresponding energy. For a solid state system, the hamiltonian is decomposed

into the kinetic energy and potential of electrons and nuclei plus the interactions between

them, which can be written as:

H(R, r) = Te(r) + Vee(r) + Ven(R, r) + Tn(R) + Vnn(R)

= − }2

2me

∑
i

∇2
i +

1

2

∑
i6=j

e2

|ri − rj |
+
∑
i,I

ZIe
2

|ri −RI |

−
∑
I

}2

2mI
∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.2)

where the subscript e and n indicate the electron and nucleus, me and mI are the mass

of electron and nucleus. Different electrons and nuclei are denoted by lower case i, j and

upper case subscripts I, J respectively. ZI is the charge of nuclei. Since the difference

of the mass of electrons and nuclei is huge, we can assume that the motion of electrons

and nuclei are separated. The electrons follow the nuclear motion adiabatically, thus to

rearrange instantaneously to the ground state for the given atomic coordinates. The total

wave function can be written into the multiplication of electronic and nuclear parts, this is

called Born-Oppenheimer approximation [47]. Due to the large nuclei mass, kinetic energy

of the nuclei can be treated as a perturbation on the electronic hamiltonian,

H(R, r) = Te(r) + Vint(r) + Vext(R, r) + Vnn(R)

= −1

2

∑
i

∇2
i +

1

2

∑
i6=j

e2

|ri − rj |
+
∑
i,I

VI(|ri −RI |) + Vnn.
(2.3)
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2.3 Hartree-Fock approximation

Here we adopt Hartree atomic units } = me = e = 4πε0 = 1. In this expression, the

electronic hamiltonian includes four distinct operators: the kinetic energy of the electrons

Te, electronic interactions Vint, the fixed external nuclear potential acting on the elec-

trons Vext and the classical nuclear interaction Vnn, which can be trivially obtained. This

hamiltonian is central to the theory of electronic structure.

2.3 Hartree-Fock approximation

When we discuss the electronic properties in a solid state, it is natural to consider the

many-electron wave function, Ψ(r), where r denotes the particle coordinates. One of

the earliest and most widely used of all approximations is the Hartree-like approximation

[48, 49], which treats the many-electron wave function as a product of single-particle

functions, i.e

Ψ(r1, r2, ..., rN ) = ψ1(r1)...ψN (rN ). (2.4)

Each of the functions satisfies a one-electron Schrödinger equation

[−1

2
∇2 + Vext + Vi]ψi(r) = εiψi(r), (2.5)

with a potential term arising from the average field of the other electrons, i.e. the Coulomb

potential Vi which is given by

Vi =

N∑
j(6=i)

∫
dr′

1

|r− r′|
ψ∗j (r

′)ψj(r
′) (2.6)

and an external potential due to the nuclei Vext. Fermi statistics can be incorporated into

this picture by replacing the product wave function by a properly determinant function for

a fixed number N of electrons. Due to the Pauli exclusion principle, the total wavefunction

for the system must be antisymmetric under particle exchange:

Ψ(r1, r2, ..., ri, ..., rj , ..., rN ) = −Ψ(r1, r2, ..., rj , ..., ri, ..., rN ), (2.7)

where ri includes coordinates of position. A Slater determinant wavefunction [50] which

satisfies antisymmetry is used instead of the simple product form,

D =

∣∣∣∣∣∣∣∣
ψσ1 (r1) ψσ1 (r2) ... ψσ1 (rN )
ψσ2 (r1) ψσ2 (r2) ... ψσ2 (rN )
... ... ... ....

ψσN (r1) ψσN (r2) ... ψσN (rN )

∣∣∣∣∣∣∣∣ , (2.8)
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where σ indicates the spin. We can rewrite the Schrödinger equation into the Hartree-Fock

form [51]:

[
1

2
∇2 + Vext(r) + VHartree(r) + V i

x(r)]ψσi (r) = εiψ
σ
i (r) (2.9)

with

VHartree(r) =
∑
j

∫
dr′

1

|r− r′|
ψσ∗j (r′)ψσj (r′), (2.10)

V i
x(r) = −

∑
j

∫
dr′

1

|r− r′|
ψσ∗j (r′)ψσi (r)

ψσj (r)

ψσi (r)
. (2.11)

VHartree(r) being the classical Coulomb potential (Hartree potential). Additionally, the

Hartree-Fock approximation leads to nonlocal exchange term Vx, which makes the Hartree-

Fock equations difficult to solve.

2.4 Thomas-Fermi approach

Thomas [39] and Fermi [40, 52] are taking a different approach, which is a scheme based

on the electronic density of the system, n(r):

n(r) = N

∫
dr2...

∫
drNΨ(r, r2, ..., rN )Ψ∗(r, r2, ..., rN ). (2.12)

The Thomas-Fermi method assumed that the motions of the electrons are uncorrelated,

the electron-electron interaction energy only comes from the electrostatic energy and that

the corresponding kinetic energy can be written into an explicit functional of the density,

describing the free electrons in a homogeneous gas with density equal to the local density

at any given point.

ETF [n] = C

∫
drn(r)5/3 +

∫
drVext(r)n(r) +

1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
. (2.13)

The first term is the local approximation to the kinetic energy with C = 3
10(3π2)2/3 = 2.871

in atomic units. The second and third terms are the external energy and the classical

electrostatic Hartree energy respectively. The density and energy of the ground state

can be obtained by the method of Lagrange multipliers, to minimize the above functional

ETF [n] for all possible n(r) subject to the constraint of total constant number of electrons:

N =

∫
drn(r), (2.14)
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leads to the following stationary condition,

δ
{
ETF [n]− µ

∫
drn(r)

}
= 0. (2.15)

The Lagrange multiplier µ is the Fermi energy. Finally, we got the Thomas-Fermi equa-

tions,
5

3
n(r)3/2 + Vext(r) +

∫
n(r′)

|r− r′|
− µ = 0. (2.16)

that can be solved directly to obtain the density of the ground state.

Thomas-Fermi theory suffers from many deficiencies, probably the most serious defect

is that it does not predict bonding between atoms, so that solids cannot form in this theory.

The main source of error comes from the crude approximation of the kinetic energy, which

represents a substantial portion of the total energy of the system. Another shortcoming is

the over-simplified description of the electron-electron interactions. It is treated classically

and thus neglect the exchange interaction which was lately extended and formulated by

Dirac [41]. In next Section, we will introduce the density functional formalism, which is

developed based on the Thomas-Fermi model for the electronic structure of materials.

2.5 Density Functional Formalism

In view of the extensive study of the Thomas-Fermi scheme and its well-known deficiencies,

we discuss the further developments and improvements of the density functional formalism

in this section. Two basic theorems of the density functional formalism were first derived

by Hohenberg and Kohn [53]. These remarkably powerful theorems formally established

the electron density as the central quantity describing electron interactions in many-body

systems. As an exact theory of many-body systems, they can be applied to any system of

interacting particles in an external potential, Vext(r). The two theorems are now stated

as follows:

• Theorem 1. For any system of interacting particles under the influence of an

external potential Vext(r), the external potential Vext(r) is a unique functional of the

electron density n(r).

• Theorem 2. The exact ground state energy can be obtained variationally for any

particular Vext(r), the density n(r) that minimises the total energy is the exact ground

state density n0(r).
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According to these two theorems, the total energy functional can be viewed as a functional

of n(r) and written in the following form,

EHK [n] = T [n] + Eint[n] +

∫
drVext(r)n(r) + Enn. (2.17)

The functional includes all internal energies Eint[n], kinetic energy T [n], the energy of

external potential and interaction energy of nuclei Enn. Although the Hohenberg-Kohn

theorems are extremely powerful, they do not offer a way of computing the ground-state

density of a system in practice. About one year after the seminal DFT paper by Hohenberg

and Kohn, Kohn and Sham developed a simple method for carrying-out DFT calculations,

that retains the exact nature of DFT [46]. They assume that the ground state density

of interacting system is equal to that of certain non-interacting system. This enable

us to use the independent-particle Kohn-Sham equation (KS equation) to describe the

non-interacting system, which is exactly soluble by incorporating all the difficult many-

body terms into an exchange-correlation functional. Therefore, we can obtain the ground

state density and energy of the interacting system by solving the KS equations, with the

accuracy limited only by the approximations in the exchange-correlation functional.

In the framework of Kohn-Sham approach, the Hohenberg-Kohn expression (2.17) is

rewritten as

EKS [n] = Ts[n] + EHartree[n] +

∫
drVext(r)n(r) + Enn + Eex[n], (2.18)

which includes the independent-particle kinetic energy,

Ts[n] =
1

2

∑
σ

Nσ∑
i=1

|∇ψσi |2, (2.19)

the classic Coulomb interaction energy among electrons EHartree[n] (have been defined as

in ETF [n], Eq. (2.13)),

EHartree[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (2.20)

the energy of the external potential, interaction of nuclei Enn (the same as in HK ex-

pressions) and exchange-correlation energy Eex[n]. The exchange-correlation term Eex[n]

contains all approximations of many-body effect, which can be comprehended as

Exc[n] = 〈T 〉 − Ts[n] + 〈Vint〉 − EHartree[n]. (2.21)

This expression shows explicitly that Exc is just the difference of the kinetic and internal

interaction energies of true many-body system from the independent-particle system with
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classical Coulomb interaction. For a spin-polarized system with N = N ↑ +N ↓ indepen-

dent electrons, the density is given by the sums of the squares of the orbitals for each spin

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2. (2.22)

The variational equation for the exact functional can be obtained by minimizing the

KS expression with respect to the density. In the KS expression of energy (2.18), the

kinetic term Ts is written as a functional of orbitals while all other terms are expressed

as functionals of the density. Thus, we vary the wavefunctions to derive the variational

equation:

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+
[δEHartree

δn(r)
+ Vext(r) +

δExc
δn(r)

] δn(r)

δψσ∗i (r)
= 0. (2.23)

and subject to the normalization constraints

〈ψσi |ψσ
′
j 〉 = δi,jδσ,σ′ . (2.24)

Using the definitions (2.19) and (2.22) for n(r) and Ts together with the Lagrange multi-

plier method, we will eventually arrive to the famous Kohn-Sham equation

[1
2
∇2 + VKS(r)

]
ψσi (r) = εiψ

σ
i (r) (2.25)

with

VKS(r) =

∫
dr′

n(r′)

|r− r′|
+ Vext(r) + Vex[n]. (2.26)

and

n(r) =
∑
σ

occ∑
i=1

|ψσi (r)|2. (2.27)

in which εi is the eigenvalues and Vex[n] = δExc[n]/δn(r) is the functional derivative of the

exchange-correlation energy, which is referred to as the “exchange-correlation potential”

and is a functional of the electron density.

Compared to the Schrödinger equation, both
∫
dr′ n(r′)
|r−r′| and Vex[n] in the KS equations

depend on the density n(r), hence the VKS is a functional of the density. The problem of

solving KS equations is non-linear. They can be solved by starting from a trial density

n(r) and iterate to self-consistency with the following procedure:

• The KS potential VKS is constructed from the trial density by Eq. (2.26);

• KS orbitals ψσi (r) can be obtained by solving Eq. (2.25) with the above KS potential;

• A new density n′(r) is achieved from the KS orbitals ψσi (r) related to Eq. (2.27);
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2. FIRST PRINCIPLES CALCULATIONS

• If difference exists between the new density n′(r) and the previous density n(r),

repeat the above procedure by starting from a mix of n(r) and n′(r).

The procedure stops until it self-consistently reaches the target precision.

2.6 Exchange and correlation functionals

As we described above, the KS approach can be exactly applied to any many-body system,

if the exact exchange-correlation functional Exc[n] is known. This term is very complex,

approximations should be used. Exc[n] is often written as a sum of exchange and electron

correlation contribution Exc[n] = Ex[n]+Ec[n]. KS approach is widely used by reasonably

approximating the Exc[n] as a local or nearly local functional of the density.

2.6.1 The Local Density Approximation (LDA)

One of the most widely-used approximations is called The Local Density Approximation

(LDA). LDA was firstly proposed by Kohn and Sham in their seminal paper [46]. The

Exc[n] simply depends on the density locally and it was constructed exactly in the same

spirit as the local approximation to the kinetic energy functional that we discussed in

section 2.4.

ELDAxc [n] =

∫
εhomxc [n]n(r)dr. (2.28)

From the non interacting homogeneous electron gas, the exchange energy is explicitly

known as an analytic term:

εLDAx [n] = − 3

4π
(3π2n)1/3. (2.29)

The explicit expression of the correlation part εLDAc [n] is achieved from accurate quantum

Monte-Carlo simulations of the homogeneous electron gas at selected densities [54].

It can be naturally generalized to spin-polarized system, known as Local Spin Density

Approximation (LSDA). For a partially polarized homogeneous electron gas, the exchange-

correlation energy per electron depends on both the total mean electron density n = n↑+n↓

and the spin polarization σ = n↑ − n↓. By interpolating between the unpolarized and the

fully polarized case, we obtain the exchange-correlation energy for LSDA:

ELSDAxc [n, σ] =

∫
εhomxc (n(r), σ(r))n(r)dr. (2.30)

Despite its simplicity, the LDA works quite well in many systems, no matter they are

quasi-homogeneous or not. It is because LDA fulfils the sum rule on exchange-correlation

hole, which gives rise to error compensation on computing the exchange-correlation energy.
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Typically, LDA overestimates exchange energy Ex and underestimates correlation energy

Ec. LDA has many drawback, we list a few of them:

• The LDA tends to overestimate cohesive energies, resulting in overbinding.

• The electrons are not localised enough in space.

• LDA is appropriate for some s and p electrons, but not for d and f electrons, since

it is generalized from homogeneous electron gas.

• The long-range effects (e.g. image effects, van der Waals bonds) are completely

missing, due to the extremely local nature of the LDA. Therefore, the potential that

an electron feels when approaching an atom or a surface is badly described by the

LDA. The hydrogen bond is also poorly reproduced in many chemical reactions.

2.6.2 The Generalized Gradient Approximation (GGA)

As expected, any real electron system is non-homogeneous with electron density varying

in space. Reasonably, the gradients of the density should be considered into the approx-

imations to describe such variations. However, it was realized that there is no need to

include the gradient expansion order by order. Instead, the density and its gradient, is

good enough to construct the new functionals, which are currently known as generalized

gradient approximations (GGA) [55]:

EGGAxc [n, σ] = ELSDAxc [n, σ] +

∫
εGGAxc (n(r), σ(r))n(r)dr. (2.31)

In many cases, GGA can largely improve LDA results with accuracy, e.g. GGA de-

scribes XC effects in atoms and molecules much better than LDA. It also has its own

drawbacks:

• GGA often overcorrects LDA. Bond lengths are estimated 0-2% larger than experi-

mental values and cohesive energy is resulted in 10-20% smaller.

• GGA cannot describe long-range effects, such as Van der Waals, which is the same

as LDA.

• GGA is generally not suitable for strongly correlated electron systems.

2.6.3 DFT+U

The standard approximations in DFT calculations normally give poor answers on the

“strongly correlated” systems, in which the potential energy dominates over the kinetic
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energy and often involve transition element or rare earth atoms. A common way of modi-

fying DFT calculations is the addition of an on-site Coulomb repulsion (“Hubbard U”) as

done in the “DFT + U” scheme [56, 57]. The on-site Coulomb interactions are particularly

strong for localized d and f electrons, but can be also important for p localized orbitals.

The strength of the on-site interactions are usually described by parameters U (on site

Coulomb) and J (on site exchange), and practically, by an effective Ueff = U − J param-

eter, while the rest of valence electrons are treated at the level of “standard” approximate

DFT functionals. Within DFT+U the total energy of a system can be written as follows:

EDFT+U = EDFT +
∑
α

Ueff
2

Tr(ρa − ρaρa) (2.32)

where ρa is the atomic orbital occupation matrix. The DFT+U can be understood

as adding a penalty functional to the DFT total energy expression that forces the on-site

occupancy matrix in the direction to either fully occupied or fully unoccupied levels.

2.7 Computational implementation

2.7.1 Basis sets

In order to solve the KS equations, each orbital ψj(r) can be expended on a basis set

fα(r):

ψj(r) =
∑
α

cj,αfα(r). (2.33)

So that we can transform the problem of solving KS equations into solving a set of linear

equations by standard diagonalization method. Here the basis functions are defined on

the real space and should form a complete functional space. Any arbitrary function could

be expanded as in (2.33).

Plane wave is the most general basis set for the expansion, while for a periodic crystal,

according to the Bloch theorem, the KS orbital can be decomposed into a product of a

plane wave and a function un(k, r):

ψn,k(r) =
1√
Ω
un,k(r)eik·r, (2.34)

where Ω is the volume of the cell, k is a wave vector of the reciprocal space. un,k(r) is a

periodic function, un,k(r + R) = un,k(r). It can be further expanded in a discrete Fourier

expression:

un,k(r) =
∑
G

cn,k(G)eiG·r, (2.35)
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where G is the vector of reciprocal space, cn,k(G) are the Fourier coefficients in the wave

vector space. In practice, we cannot include infinite number of plane waves, such an

expansion should be truncated at a crucial energy level, which is called cut-off energy

Ecut:
}2

2m
|k + G|2 ≤ Ecut. (2.36)

Optimization of Ecut is determined through a compromise between numerical accuracy

and computational burden.

2.7.2 K-points mesh

Consider a finite system with an integer number N = N1N2N3 of unit cells. Because of

the Born-von Karman conditions, the number of k wave-vectors in the Brillouin zone (BZ)

is equal to N = N1N2N3 and their density to Ω0/(2π)3. The electronic density in DFT

is calculated through the integration of the square modulus of the Bloch functions on all

occupied energy bands and over the Brillouin zone. The integration over the reciprocal

space involves the choice of an optimal finite set of k-points, which is often referred to as

Brillouin zone sampling. The method proposed by H. J. Monkhorst and J. D. Pack [58] is

one of the most widely used sampling techniques, which allows to sample a uniform grid

of k-points along each direction, using a simple formula:

kn1,n2,n3 =
3∑
i

2ni −Ni − 1

2Ni
Gi. (2.37)

We notice that, the high symmetric points (points in the center and boundary of the BZ)

are excluded in this method. Indeed, the electronic bands may be flat or degenerate in

highly symmetric k-points, which would artificially reinforce the computed weight of such

electronic transitions. The k-points sampling depends on the symmetry of the system and

must be converged in each case study by increasing its size.

2.7.3 Pseudo-potentials

Problems arise when we are using the plane waves to describe the core electrons. Since

these electrons are closely around the nucleus, the wave function oscillates rapidly due

to the large attractive potential of the nucleus. It needs a large number of plane waves

to describe correctly the behavior of these electrons, which largely increases the time

consuming of the calculations. To solve this problem, we refer to the methods that are

based on plane waves in conjunction with pseudopotentials [59]. The pseudopotential is an

effective potential that “froze” the core electrons together with the nuclei, so that the ionic

potential screened by the core electrons is replaced by such a smoothly varying potential.
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This allows us to use fewer Fourier modes to describe pseudo-wavefunctions, making plane-

wave basis sets practical to use. The pseudopotentials are constructed so as to reproduce

the total effect of the nucleus and core electrons on the valence electron wave-functions,

requiring the pseudo potential wavefunctions to reproduce the exact wavefunction beyond

a certain cut-off radius from the core. Pseudopotentials with larger cut-off radius are said

to be softer, that is more rapidly convergent, however, at the same time less transferable,

that is less accurate to reproduce realistic features in different environments.

In our calculations we adopted to a more general approach, projector augmented wave

method (PAW), which naturally generalizes both the pseudopotential method and the

linear augmented-plane-wave method [60]. The strategy is to seek a linear transformation

T̂ which linked from an auxiliary smooth wave function |ψ̃n〉 to the true all electron Kohn-

Sham single particle wave function |ψn〉

|ψn〉 = T̂ |ψ̃n〉 (2.38)

where T̂ is explicitly written as

T̂ = 1 +
∑
i

∑
a

(|φai 〉 − |φ̃ai 〉)〈p̃ai | (2.39)

including three sets of quantities: all-electron partial waves |φi〉, pseudo wave |φ̃i〉 and

projector functions |p̃i〉. Following the above strategy, we have separated the original

wave functions into auxiliary smooth wave functions and a contribution which contains

rapid oscillations, but only contributes in augmentation spheres.

2.8 Polarization

In this subsection, we introduce the fundamentals of the modern theory of polarization.

The macroscopic polarization is an essential property of ferroelectrics and the dielectric

materials in the phenomenological theory. As we have described in the first chapter,

the spontaneous polarization is an important order parameter indicating the ferroelec-

tric phase transition. Classically, it is defined as a vector quantity equal to the electric

dipole moment per unit volume. The standard picture is based on the venerable Clausius-

Mossotti (CM) model, in which the presence of identifiable polarizable units is assumed.

The charge distribution of a polarized system is regarded as the superposition of localized

contributions, each of them provides an electric dipole. In a crystalline structure, the

CM macroscopic polarization is defined as the sum of the dipole moments in a given cell

divided by the cell volume.
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Figure 2.1: Example of charge density in real materials. Shaded areas indicate regions of
negative charge; circles indicate atomic positions [5]

However, in real materials, the picture is more inhomogeneous. Specially in typical

FE oxides, the bonding has a mixed ionic/covalent character, with a sizeable fraction of

the electronic charge being shared among ions in a delocalized manner, for example see

Figure 2.1. This fact makes any CM picture inadequate.

Experimentally, the method to estimate the spontaneous polarization of ferroelectric

materials is through measurement of the hysteresis loop of P versus electric field E. This

hysteresis loop is obtained experimentally by the measurement of the integrated macro-

scopic current j(t) through the sample during a time t:

∆P =

∫ ∆t

0
j(t)dt = P (∆t)− P (0) (2.40)

In periodic systems, the Born-Oppenheimer approximation allows us to decompose the

total polarization into two parts, ionic and electronic contributions:

P = Pion + Pel (2.41)

The ionic part can be written by following the classic definition

Pion =
e

Ω

∑
κ

ZκRκ (2.42)

where Ω is the volume of the cell and Zκ is the charge of the core ion κ at position Rκ.

While the electronic contribution is formalised as the Berry phase of the occupied bands

[61]:

Pel = − 2ie

(2π)3

m∑
n=1

∫
BZ

< unk|∇k|unk > dk (2.43)

where m is the number of occupied electronic states, unk is the lattice-periodical part

of the Bloch wave function. We should notice that A(k) = i < unk|∇k|unk > is a

“Berry connection” or “gauge potential” and its integral over the Brillouin zone is known
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as a “Berry phase”. The expression requires that the system must remain insulating

everywhere along the path in order to keep the adiabatic condition. Remarkably, in the

adiabatic condition, the result is independent of the path traversed through parameter

space, so that the result depends only on the final state. In practice, the integration is

over a discrete grid of k-points in the Brillouin zone, and the polarization is modulated by

a quantum eR/Ω,

∆P := (Pλ=1 −Pλ=0) mod
eR

Ω
(2.44)

where R is the lattice vector. The symbol “:=” is introduced here to indicate that the

value on the left-hand side is equal to one of the values on the right-hand side.
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3

Ferroelectric instability in

nanotubes and spherical

nanoshells

Due to the finite-size effects, in most of the small particles, the transition temperature

Tc can drop dramatically as the size reduces. Such a ferroelectric instability limits the

applications of ferroelectrics in nano devices. In this chapter, we use phenomenological ap-

proach to investigate the emergence of ferroelectricity in the novel confined geometries, i.e.

nanotubes and spherical nanoshells, due to their special topologies. Specifically, we study

semi-analytically the size and thickness dependence of the ferroelectric instability, as well

as its dependence on the properties of the surrounding media and the corresponding inter-

faces. By properly tuning these factors, we demonstrate possible routes for enhancing the

ferroelectric transition temperature and promoting the competition between irrotational

and vortex-like states in ultra-thin limit.

3.1 Introduction

Ferroelectric nanoparticles, such as nanodots, nanowires, nanotubes et al. receive a con-

siderable research attention [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72] and novel fabrication

methods are being developed [73, 74]. The case of ferroelectric nanotubes and nanoshells

is particularly interesting, as their specific topology can be exploited for engineering ad-

ditional functionalities relevant for technological applications [62, 63, 75].

However, one of the limiting factors of these systems is the ferroelectric instability it-

self, as the corresponding transition temperature Tc can drop drastically due to finite-size

effects. Such a phenomenon has been investigated in both experimental and theoretical

studies.[5, 63, 67, 76, 77, 78, 79, 80, 81, 82]. Levanyuk et al. investigated the ferroelectric
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phase transition in both 2D and 3D nanostructures within Landau-Ginzburg-Devonshire

theory. They studied the stability of a paraelectric phase with respect to different polar-

ization distributions (homogeneous polarization and vortex structures) to find the phase

transition temperature and the profile of polarization appearing at the phase transition.

The loss of stability is indicated by the appearance of nontrivial solutions of equations

consisting of linearized governing equations for polarization, the electrostatic equations,

and the boundary conditions [67].

In this chapter, we address this crucial point within the Ginzburg-Landau-like for-

malism, with which we describe analytically the ferroelectric transition in nanotube and

nanoshell geometries. Thus, we extend the considerations reported in [65, 66, 67, 68, 71]

to novel geometries of experimental relevance. Specifically, in the case of ferroelectric nan-

otubes, we will consider the electric polarization perpendicular to their axis. In addition to

the overall size effect, we analyse the impact of the thickness, relative permittivities, and

boundary conditions on the possible competition between different type of polarization

distributions.

3.2 Method

The emergence of ferroelectricity in a finite-size system is ultimately determined by two

fundamental factors [79, 83].

On one hand, there is the tendency towards ferroelectricity itself, which can satisfac-

torily be modelled within the Ginzburg-Landau formalism [79]. For this we consider the

free energy:

F =
1

2
aP 2 +

1

4
bP 4 +

1

2
g
(
|∇Px|2 + |∇Py|2 + |∇Pz|2

)
+ P · ∇φ, (3.1)

where P is the ferroelectric polarization, a = a′(T − Tc0) is the inverse susceptibility, with

Tc0 being the nominal transition temperature (a′ = const.), g is associated to the gradient

term, and φ is the electric potential. This provides the constitutive equation that, to our

purposes, can be linearized and taken as

(a− g∇2)P = −∇φ, (3.2)

For the sake of simplicity, the response of the ferroelectric is assumed to be isotropic –

either completely (nanoshell) or within the ferroelectric plane (nanotube). As in [67, 71],

this approximation is expected to capture the key qualitative features of the ferroelectric

instability 1.

1A more realistic description including e.g. strain fields is beyond the scope of this inaugural work
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On the other hand, there is a purely electrostatic aspect described by Gauss’s law:

∇ · (ε∇φ−P) = 0, (3.3)

where ε is the so-called background permittivity [84], and the corresponding boundary con-

ditions [79, 83]. Thus, whenever ∇·P 6= 0, the spontaneous polarization will be penalised

by the accompanying electric potential and the corresponding increase of electrostatic

energy.

3.3 Irrotational polarization

Following [67], the task is to find the nontrivial solution of the above equations that can

appear at the highest T (i.e., for the maximum value of the coefficient a). This search can

be restricted to the family of divergenceless distributions of polarization (∇ ·P = 0) that

automatically minimize (most of) the electrostatic energy in the ferroelectric. Further-

more, two subfamilies can be identified among the targeted distributions: i) irrotational

distributions (∇ × P = 0) and ii) vortex-like states (∇ × P 6= 0). In the first case the

gradient energy is minimised at the expense of some electrostatic energy generated by

interfacial bound charges (depolarizing field). In the second case the situation is reversed,

and the electrostatic energy is minimised at the expense of some gradient energy in the

ferroelectric. These cases will be analysed separately for the different geometries of inter-

est, and the results will be illustrated by considering the material parameters of BaTiO3.

In the case of a cylinder or a sphere, the only possible irrotational distribution of polar-

ization corresponds to the P = constant (homogeneous polarization). The presence of the

internal boundary in the nanotube or the nanoshell, however, introduces more complex

patterns. In this case, since ∇2P = ∇(∇ ·P)−∇× (∇×P) = 0, the above equations re-

duce to the Laplace equation ∇2φ = 0 (P = −a−1∇φ). We thus adopt cylindrical (r, θ, z)

and spherical (r, θ, ϕ) coordinates for the nanotube and the nanoshell respectively, and

consider the solutions:

φ2D(r, θ) = (Anr
n +Bnr

−n) cos(nθ), (3.4)

φ3D(r, θ) = (Anr
n +Bnr

−n−1)Pn(cos θ), (3.5)

for the electrostatic potential, where Pn(x) represent the Legendre polynomials. Hereafter

R1(2) represents the internal (external) radius. The irrotational distributions of polar-

ization are illustrated in Fig. 1. n = 1 corresponds to the homogeneous polarization for

R1 = 0 [see Fig. 1(a)]. Whenever R1 6= 0, however, the resulting polarization is inhomoge-
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(a) (b)

(c) (d)

Figure 3.1: Irrotational distributions of polarization (a)∼(c) and vortex-like polarization (d)
across the cross section of a ferroelectric nanotube. (a) and (b) correspond to n = 1, while (c)
to n = 3.

neous [Fig. 1(b)], and this inhomogeneity increases with the corresponding order n [Figs.

1(c)].

We consider first the (2D) case of a nanotube. The electric potential φ has to be

continuous at R1 and R2, while its gradient has to be such that εn · ∇φ
∣∣R+

i

R−i
= σRi . Here

n is the normal unit vector to the interface while σRi represents the interfacial charge

density. In order to ensure charge neutrality, the interfacial charge densities can be taken

as σR1 = −
(
R1
R2

)
P0 cos(nθ) and σR2 = P0 cos(nθ), with P0 being a constant. Thus, the

solutions (3.4) become compatible with the boundary conditions whenever the condition

(εFE + ε2)(εFE + ε1) = (ε2 − εFE)(ε1 − εFE)

(
R1

R2

)2n

(3.6)

is satisfied. Here εFE = ε+a−1 is the permittivity of the ferroelectric, while ε1 and ε2 are

those of inner and outer medium respectively. Eq. (3.6) determines the hypothetical Tc

associated to the irrotational solutions (3.4) as a function of R1/R2 and the corresponding

order n, which is illustrated in Fig. 2. As we can see, while all orders tend to be degenerate
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3.4 Vortex state

Figure 3.2: Tc associated to irrotational distributions of polarization in ferroelectric nan-
otubes. R2 = 25 nm, a′ = 6.6× 105J m C−2K−1, ε1 = 100ε0 and ε2 = 500ε0.

in the limits R1 = 0 and R1 = R2, the highest Tc corresponds to the n = 1 solution and

this hierarchy is maintained for all the radii R1/R2.

In the (3D) case of the nanoshell, the interfacial charge densities can be taken as

σR1 = −
(
R1
R2

)2
P0Pn(cos θ) and σR2 = P0Pn(cos θ). Thus, the compatibility between the

solutions (3.5) and the electrostatic boundary conditions implies

[nεFE + (n+ 1)ε2] [(n+ 1)εFE + nε1] =

n (n+ 1) (ε2 − εFE) (ε1 − εFE)

(
R1

R2

)2n+1

. (3.7)

We now have two different situations depending on the relative permittivities ε1 and ε2.

If ε1 < ε2 the degeneracy at R1 = 0 is lifted, although the n = 1 solution has always the

highest Tc as in the previous (2D) case. If ε1 > ε2, however, this hierarchy is reversed for

small R1 and, interestingly, a crossover is obtained as the R1/R2 ratio increases.

Interestingly, in both 2D and 3D cases, the strong suppression of the Tc of the irrota-

tional polarization can be moderated in the limit R1/R2 → 1. However, the question of

whether they can be realised experimentally eventually depends on the competition with

other families of solutions. In the following we consider the vortex-like patterns, as they

are the most serious contenders.

3.4 Vortex state

In our systems, a vortex-like distribution of polarization implies ∇ ·P = 0 everywhere,

and hence φ = 0. Thus, the emergence of this type of polarization is simply governed by

the equation (a−g∇2)P = 0 under the corresponding boundary conditions. The solutions
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(a) ε1 < ε2

(b) ε1 > ε2

Figure 3.3: The relation between Tc-Tc0 and R1/R2 with respect to different orders of FE
nanoshell structure. (a) ε1 = 100ε0 and ε2 = 500ε0 while for (b) ε1 = 1000ε0 and ε2 = 100ε0,
other parameters are the same as nanotube.

of interest can be written as P = Pϕ(r)êϕ where

P 2D
ϕ (r) = C1J1(r/rc) + C2Y1(r/rc), (3.8)

P 3D
ϕ (r) = C1j1(r/rc) + C2y1(r/rc), (3.9)

for the (2D) nanotube and (3D) nanoshell geometries respectively. Here rc = (g/a)1/2 is

the correlation length, J1 and Y1 are Bessel functions of first and second kind, while j1 and

y1 are spherical Bessel functions of first and second kind respectively. The Tc associated

to these vortex-like distributions of polarization depends on the boundary conditions. We

consider the general boundary conditions (1± λ∂r)P |Ri = 0, where λ is the so-called

extrapolation length [79]. Thus, in the (2D) case of a nanotube Tc is determined by

[
J1

(R1

rc

)
− λ

rc
J ′1

(R1

rc

)][
Y1

(R2

rc

)
+
λ

rc
Y ′1

(R2

rc

)]
=[

J1

(R2

rc

)
+
λ

rc
J ′1

(R2

rc

)][
Y1

(R1

rc

)
− λ

rc
Y ′1

(R1

rc

)]
. (3.10)
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(a) λ = 0nm (b) λ = 25nm
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A similar equation is obtained for the (3D) nanoshell case with J1 (Y1)→ j1 (y1). For the

sake of simplicity, we consider that the two interfaces are described by the same λ 1.

We find that the Tc as a function of R1 and R2 can show rather different behaviors when

these parameters are varied separately. This is eventually determined by the extrapolation

length λ, as illustrated in Fig. 4 for the case of a ferroelectric nanotube. Specifically, the

“topography” of the Tc(R1, R2) map changes in such a way that its maximum gradient

rotates by 45◦ as λ goes from 0 to ∞. Thus, for λ = 0, Tc decreases by decreasing

the thickness of the shell. That is, by either increasing R1 or decreasing R2 [A-O and

B-O paths respectively in Fig. 4(a), which correspond to blue and orange lines in the

bottom plot]. For a finite λ [Fig. 4(b)-(c)], however, Tc initially increases by increasing

R1 and then decreases after reaching a maximum. By decreasing R2, in contrast, the

behavior is monotonous and Tc always decreases. For λ = ∞, which corresponds to

the so-called natural boundary conditions ∂rP = 0, the dependency on the nanotube

thickness is different for different paths [Fig. 4(d)]. While Tc increases by increasing R1,

it decreases by decreasing R2. This unequivalence in the finite-size effect is related to the

1Qualitatively, the same results are obtained for different extrapolation lengths
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(e) λ = 250nm (f) λ = ∞
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Figure 3.4: Transition temperature for vortex-like polarization state in a ferroelectric nan-
otube (g = 2× 10−11J m−3C−2). (a)(b)(e)(f) Contour plots for Tc-Tc0 as a function of internal
(R1) and external (R2) radii of the nanotube. (c)(d)(g)(h) Tc-Tc0 along the paths A-O (blue)
and B-O (orange).

specific topology of the systems under consideration. In fact, in the case of the nanoshell,

the Tc associated to the vortex-like distribution of polarization behaves qualitatively in

the same way within the approximations of our model.

We note that, compared to the irrotational states, the Tc associated to vortex-like

distributions of polarization is generally much closer to its nominal value Tc0 (irrespective

of the properties of the surrounding media). However, when R1/R2 → 1, the Tc for the

vortices can drop significantly while that of the irrotational distributions approaches Tc0.

Thus, we find that the specific topology of these systems enables the competition between

different type of polarization distributions in the ultra-thin limit.
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3.5 Conclusions

In summary, we have studied theoretically the ferroelectric instability in nanotubes and

spherical nanoshells. Specifically, we have considered semi-analytically different families of

polarization distributions and examined how their emergence is affected by the thickness

of the nanoparticle, the dielectric properties of the surrounding media, and the interfacial

boundary conditions. We have found an intriguing topological finite-size effect that can

promote the competition between different types of ferroelectricity in the ultra-thin limit.

These results illustrate new routes to control the ferroelectric instability and engineer

ferroelectric properties at the nanoscale. This possibility is expected to motivate both

extended theoretical analyses and future experimental work.
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4

Pressure-induced insulator-metal

transition in EuMnO3

Taking a different route from the previous chapter, in the following chapters, we turn to

the theoretical study on distorted lattice structures by applying external stimuli. Specifi-

cally, we investigate the multi-functionality of orthorhombic perovskites by first-principles

method.

In this chapter, we study the influence of external pressure on the magnetic and

electronic structure of EuMnO3. We find a pressure-induced insulator-metal transition

at which the magnetic order changes from A-type antiferromagnetic to ferromagnetic

with a strong interplay with Jahn-Teller distortions. In addition, we find that the non-

centrosymmetric E∗-type antiferromagnetic order can become nearly degenerate with the

ferromagnetic ground state in the high-pressure metallic state. This situation can be ex-

ploited to promote a magnetically-driven realization of a non-centrosymmetric (ferroelectric-

like) metal.

4.1 Introduction

Manganese-based perovskite oxides are well known for displaying the colossal magnetore-

sistance (CMR) phenomenon. This intriguing feature is associated to a paramagnetic-

insulator to ferromagnetic-metal transition taking place in these systems. CMR com-

pounds mainly derive from the prototypical perovskite LaMnO3, where the insulator-metal

transition can be induced by either doping with divalent cations such as Ca, Sr and Ba

[85, 86] or external pressure [87, 88, 89]. One the other hand, the rare-earth manganites

RMnO3 (R = Eu, Gd, Tb, ..., Lu) provide an outstanding subfamily of manganites with a

very rich temperature-composition phase diagram [90]. These RMnO3 compounds display
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in particular multiferroicity, a property that holds great promises for a novel generation

of spintronic devices and related applications.

In contrast to the CMR manganites, no insulator-metal phase transition has been

reported in the multiferroic RMnO3 systems so far. Broadly speaking, the multiferroic

RMnO3 compounds are found to be insulators whose magnetic ground state can evolve

from an A-type antiferromagnetic (A-AFM) state to spin-spiral order and then to an E-

type antiferromagnet (E-AFM). This happens in particular if the effective R-ion radius is

reduced. Such a “chemical-pressure”-induced transformation can be interpreted in terms

of enhanced magnetic frustration and its likely competition with biquadratic coupling,

which favor non-collinear spiral states and collinear E-AFM states respectively [91, 92].

As a result of this interplay, two prominent realizations of magnetically-induced ferro-

electricity can be observed in these systems. On one hand, we have the spontaneous

electric polarization due to spin spiral order as originally observed in TbMnO3 [18]. This

is currently understood as due to antisymmetric magnetostriction via the so-called inverse

Dzyaloshinskii-Moriya or spin-current mechanism [35, 36, 93]. On the other hand, we also

have ferroelectricity linked to collinear E-AFM order as observed in HoMnO3 [94, 95].

In this case, the spontaneous polarization is expected from symmetric magnetostriction

terms and is generally much larger than other spin-driven ferroelectrics [96], as we have

already discussed in Sec 1.3.6.

Recently, the application of external pressure has been found to have a similar effect to

that of “chemical-pressure” in multiferroic RMnO3 [22, 97]. The spontaneous polarization

of TbMnO3, in particular, has been found to increase dramatically above ∼ 4.6 GPa, which

is interpreted as due to the stabilization of the E-AFM order over the initial spiral order of

the Mn spins [22]. A similar increase of the polarization has subsequently been observed

in GdMnO3 and DyMnO3 [97]. At the same time, the behavior of the corresponding

polarization under magnetic field suggests that the rare-earth magnetic moments can

interact with the Mn spins and hence have a substantial interference with their pressure-

induced multiferroic properties. Motivated by these findings, here we study the effect of

pressure on the magnetic order of EuMnO3 from first-principles calculations.

EuMnO3 has the R-ion with the largest ionic radius among the multiferroic RMnO3

compounds. Interestingly, its magnetic properties clearly emerge from the Mn spins since,

unlike the other rare-earth manganite multiferroics, the Eu-ion is in a non-magnetic state.

Multiferroicity can be induced by e.g. Y doping in this system. Thus, as a result of the

Y-induced chemical-pressure, the system undergoes the whole sequence of phase transi-

tions A-AFM ↔ spiral state ↔ E-AFM by varying the Y content [91, 92]. In view of

this, the application of external pressure can be expected to have a similar effect on this

system. In this paper we show from first-principles calculations that external pressure has,
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however, a dramatically different influence on EuMnO3. Specifically, the application of

pressure transforms the A-AFM-insulator state directly into a FM-metal. This unexpected

pressure-induced insulator-to-metal transition, although similar to the observed in CMR

LaMnO3, is unprecedented within the multiferroic RMnO3 series. In addition, we find

that the non-centrosymmetric E∗-AFM state is also metallic in this system and becomes

quasi-degenerate with the FM ground state under pressure. These features make EuMnO3

an unique compound among the manganites because it behaves differently with respect

to physical and “chemical” pressure, and hosts a genuinely new type of ferroelectric-like

metallic state. To some extent, EuMnO3 can be regarded as bridging the gap between the

CMR and multiferroic manganite compounds.

4.2 Methods

Our density functional theory (DFT) based calculations are performed with projected

augmented waves (PAW) potentials as implemented in the VASP code [98, 99]. We use

the generalized gradient approximation (GGA) PBEsol [100] exchange correlation func-

tional and apply an on-site Coulomb correction for the Mn-3d states characterized through

DFT+U scheme [57]. The Eu-4f electrons are treated as core electrons. We consider the

most relevant Mn-spin collinear orders found in manganites. Namely, ferromagnetic (FM),

A-, E- and E∗-AFM orders as discussed in Chapter 1. Note that E- and E∗-AFM states

correspond to the same in-plane Mn spin ordering but with AFM and FM inter-plane cou-

pling respectively. In addition, we also consider two representative cases of non-collinear

spin-spiral antiferromagnetic order: the 60◦ spiral order with propagation vector k = 1/3

in the bc plane and its 90◦ version with k = 1/2. In our calculations we neglect the

spin-orbit coupling. This coupling produces corrections that are at most one order of

magnitude smaller than the symmetric exchange interactions [see e.g. Ref. [101]]. Thus,

even if it plays a key role for the multiferroic properties (by e.g. determining the value

and orientation of the spin-driven electric polarization in the spiral phases [35, 36, 93]),

it does not introduce qualitative changes in the magnetic phase diagram of the rare-earth

manganites [22, 91]. For the collinear orders and the 90◦ spiral order we use an a× 2b× c

orthorhombic Pbnm supercell with 6×3×4 Monkhorst-Pack k-points sampling, while the

60◦ spiral configuration is constructed in an a× 3b× c supercell using 4× 2× 3 k-points

grid. The cutoff energy for plane waves is set at 500 eV.
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Figure 4.1: Energy of the A-AFM, E-AFM, E∗-AFM 60◦ and 90◦ spiral states as a function
of pressure taking the FM state as the reference state. The FM state becomes the ground
state at ∼ 2 GPa.

4.3 Results

4.3.1 A-AFM to FM transition

In Figure 4.1, we plot the energy difference between the A-AFM, E-AFM, E∗-AFM, 60◦

and 90◦ spiral states and the FM state as a function of pressure. The results are obtained

by fully relaxing the lattice parameters and internal atomic positions with a Hubbard

parameter U = 1 eV. We find that the A-AFM state has the lowest energy from ambient

pressure to ∼2 GPa, while the next energy state corresponds to the E-AFM order. How-

ever, by increasing the pressure, the reference FM state eventually has the lowest energy,

and hence becomes the ground state of the system. We find that the transition between

A-AFM and FM orders occurs at ∼ 2 GPa. This transition corresponds to a first-order

phase transition in which the net magnetization jumps from 0 to 3.7 µB/Mn.

Together with this transition, we find that the E-AFM order could display a lower

energy compared to the A-AFM order when the pressure exceeds 5 GPa. This is in tune

with what is observed in the Tb, Gd and Dy compounds [22, 97]. In addition, we observe

that, while they can compete with the E∗-AFM state at low pressure, both 60◦ and 90◦

spiral orders are always above in energy compared with the FM state. When it comes to

the E∗-AFM state, its energy displays an intriguing behavior under pressure. As can be

seen in Figure 4.1, the energy of this state shows an important decrease from 5 GPa and

tends to the value of the FM state at high pressure (∆E = 3.6 meV/f.u. at 20 GPa and

further decrease to 2.0 meV/f.u. at 22 GPa).

The zigzag spin-order of the E∗-AFM breaks inversion symmetry and transforms the
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initial Pbnm space-group symmetry of the system into the non-centrosymmetric P21nm

one with a spontaneous polar distortion that emerges via symmetric magnetostriction

[96]. This distortion defines two domains and in principle can be switched by means of

its direct link to the E∗-AFM underlying structure. The stabilization of this state then

could bring multifuntional properties in EuMnO3 in analogy with the one observed in

TbMnO3. However, according to our calculations, in EuMnO3 the E∗-AFM state stays

nearly degenerate with the FM state above 20 GPa but it never becomes the ground state

of the system.

4.3.2 Metallic character of the FM state

In Figures 4.2(a) and 4.2(b), we show the density of states (DOS) of the A-AFM state

at 0 GPa and the FM state at 5 GPa respectively. The A-AFM DOS displays a gap of

0.5 eV and is symmetric between spin-up and spin-down states. The DOS of FM state,

on the contrary, has no gap at the Fermi energy for spin-up state, whereas it is gaped

for spin-down state. This finite DOS is dominated by the contribution of Mn-3d orbitals,

with a non-negligible contribution of O-2p ones. We note that this band structure does

not come from a mere shift of the A-AFM one, but results from important reconstruction

in which structural distortions play a role as we show below. Using different values of

the U parameter we obtain essentially the same results, and hence we conclude that the

FM state in EuMnO3 is therefore a half-metal. Thus, we find that the pressure-induced

A-AFM to FM transition is, in addition, an insulator-metal transition.

In addition, the DOS associated to the E∗-AFM order reveals that this state is also

metallic as shown in Figure 4.2(c). In this case, the contribution of the Mn-3d orbitals in

the DOS at the Fermi level is even more dominant compared to the FM state. Since type

of order is accompanied with a polar distortion of the crystal structure that in principle

can be switched, the E∗-AFM state in EuMnO3 can be seen as an intriguing realization

of a magnetically-induced ferroelectric-like metal.

4.3.3 Interplay between metallicity and Jahn-Teller distortions

The insulator-metal transition in the reference compound LaMnO3 takes place from a

highly Jahn-Teller distorted structure to weakly distorted one and hence is strongly in-

terconnected to the lattice [89, 102, 103]. In order to investigate this aspect in EuMnO3,

we performed a symmetry-adapted mode analysis of the distortions that accompany the

magnetic orders using the program ISODISTORT [104]. Thus, we compare the virtual

cubic structure with the Pbnm structures obtained for the FM, A-AFM and 60◦ spiral

orders and the P21nm structures obtained for the E-AFM and E∗-AFM ones. All these
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Figure 4.2: Spin-polarized DOS of (a) A-AFM (0 GPa), (b) FM (5 GPa) and (c) E∗-AFM (20
GPa) states of EuMnO3, where the Fermi level has been shifted to 0 (vertical black line). Total
(grey area) and partial (s, p and d-electrons) DOS are shown, spin-up and -down electrons are
mapped on positive and negative area separately. The initial A-AFM ground state transforms
into the metallic FM state under pressure. The metastable E∗-AFM state is also metallic and
tends to be nearly degenerate with the FM state at high pressure.

structures contain Jahn-Teller distortions associated to the M+
3 and the Γ+

3 modes (Q2

and Q3 respectively in the traditional notation, see e.g. [105]). The evolution of these

distortions as a function of pressure is shown in Fig. 4.3.

As we can see, the system displays an abrupt decrease of the Jahn-Teller distortions

at the metal-insulator transition due to the different weight of these modes in the A-AFM

and FM states. Besides, the amplitude of these distortions taken separately decreases
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Figure 4.3: Amplitude of the M+
3 (red) and Γ+

3 (blue) Jahn-Teller modes as a function of
pressure for the different magnetic orders considered above. Open (close) symbols indicate
insulating (metallic) states. The thick lines in the top panel highlight the evolution of the
Jahn-Teller distortions in the ground state across the insulator-metal transition. The thick
lines in the bottom panel highlight the evolution in the (metastable) E∗-AFM metallic state.

for each state by increasing the pressure, which can be interpreted as an increase of the

corresponding stiffness. This reduction, however, has a step-like feature for the metallic

FM and E∗-AFM states while it is gradual for the insulating states. This interplay between

Janh-Teller distortion and metallicity has indeed a correspondence to the one observed in

LaMnO3 [see e.g. [87, 88, 89, 102, 103]], and hence establishes a parallelism between these

two compounds unnoticed so far.

4.4 Discussion

4.4.1 Robustness of the first-principles calculations

Our first-principles calculations suggest that an insulator-to-metal transition can be in-

duced in EuMnO3 by applying external pressure. In order to assess the reliability of this

prediction, we have carefully analyzed the main premises of these calculations.
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First of all, we checked the dependence of the results on the Hubbard U parameter [see

Sec. 4.4.1.1]. It has been shown that the U correction applied on Mn d orbitals can be

taken as zero in other compounds of the RMnO3 series such as TbMnO3 [22]. In EuMnO3,

however, U = 0 eV gives the E-AFM state as the ground state of the system at ambient

pressure, and hence is inconsistent with the A-AFM state observed experimentally [see

table 4.1 in Sec. 4.4.1.1]. The experimental ground state at ambient pressure is correctly

reproduced with U ≥ 1 eV. Thus, the need of a small but non-zero U parameter in

EuMnO3 makes this system a genuinely correlated system compared to other multiferroic

manganites. Nonetheless, in order to avoid artifacts due to unphysical correlations, we

take the lowest possible value of the U parameter that is compatible with the experiments

[i.e. U = 1 eV, see Sec. 4.4.1.1].

The optimization of the crystal structure turns out to be a crucial point in our calcula-

tions. To verify our method, we carried out a comparative study of TbMnO3 and EuMnO3

[see Sec. 4.4.1.2]. While we reproduce the results reported in Ref. [22] for TbMnO3, where

the authors did their calculation at fixed cell parameters by imposing A-AFM order, we

however find that these results are strongly affected by structural relaxations. The re-

sults for EuMnO3, in contrast, are totally robust with respect to structure changes, which

supports the predictive power of our calculations. Specifically, the observed competition

between spiral and E-AFM order in TbMnO3 is captured only by means of the very spe-

cific optimization procedure followed in Ref. [22], while usual optimization schemes fail.

This seems to be related to an overestimation of the corresponding magnetostriction cou-

plings and possibly to the interplay between the Mn spins and the additional order of

the Tb ones. In this respect, EuMnO3 turns out to be a more robust system where the

insulator-to-metal transition is always obtained, together with the accompanying changes

in the magnetic properties.

The evolution of EuMnO3 under pressure presented in this work has been studied with

full atomic and cell relaxations. The lattice parameters obtained in this way are compared

to the experimental data [106] in Figure 4.4. As we can see, the PBEsol functional produces

a good agreement (within a 2% error) with the experimental data for all the magnetic

structures. We note that the distortions along b axis are slightly larger in the FM and

E∗-AFM states, which turns out to be an important parameter to minimize the overall

energy. Thus, we expect a correct description of the predicted transition at the qualitative

level, although the precise value of the e.g. transition pressure has to be taken with a grain

of salt. This is illustrated in our analysis of the dependence of the transition against the U

parameter and the structure optimization procedure [see Sec. 4.4.1.1 and 4.4.1.2]. From

this analysis we see that different U ’s produce different values of the transition pressure,

and a similar shift is obtained as a function of the optimization procedure. The important
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Figure 4.4: Experimental lattice parameters as a function of pressure obtained from Ref.
[106] (black lines) and calculated ones for FM, A-AFM, E-AFM and E∗-AFM orders.

U value FM A-AFM E-AFM

0 eV 0 -2.3 -18.4
1 eV 0 -3.2 -2.8
2 eV 0 -4.5 4.8

Table 4.1: Total energy (unit: meV/f.u.) of A-AFM and E-AFM phase with respect to FM
one for U = 0, 1, 2 eV at ambient pressure.

point is, however, that the application of external pressure, no matter which calculation

procedure we follow, systematically results into a insulator-metal transition in EuMnO3

that, fundamentally, is always the same. This calls for experimental studies on EuMnO3

under pressure to determine the exact critical pressure of the transition.

4.4.1.1 Dependence on the Hubbard U parameter

In table 4.1, we list the total energy of A-AFM and E-AFM order by taking FM one as

the reference state, calculated with U =0, 1, 2 eV at ambient pressure. The results show

the ground state is E-AFM phase for U = 0 eV, whereas A-AFM one for U =1, 2 eV,

as we stated in the main text. In Figure 4.5(a) we show the results obtained for U = 2

eV. As for U = 1 eV, both the lattice parameters and the internal positions are obtained

self-consistently for each magnetic state. In Figure 4.5(a) we see that, compared to the

results of U = 1 eV (Figure 4.1), the relative energy of the E-AFM and E∗-AFM states is

shifted upwards. At the same time, the relative energy between the A-AFM order and the

FM one remains basically the same and the same crossover is obtained at a slightly higher

pressure of ∼ 4 GPa. The qualitative picture is thus similar for U = 1 and U = 2 eV. The
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Figure 4.5: (a) Relative energy of the different magnetic orders as a function of pressure for
U = 2 eV. The lattice parameters and the internal atom positions are obtained self-consistently
for each magnetic order. (b) Experimental lattice parameters (black lines) and calculated ones
for U = 2 eV.

lattice parameters obtained in this way are compared with the experimental data in Figure

4.5(b). The degree of agreement is essentially the same as the one obtained for U = 1 eV

[see Figure 4.4]. This confirms that the qualitative prediction of pressure-induced A-AFM

(insulator) to FM (metal) transition in EuMnO3 is robust with respect to the choice of

the U parameter.

4.4.1.2 Dependence on the structure optimization scheme

In Figure 4.7 we compare the results obtained for TbMnO3 and EuMnO3 according to

different schemes of structure optimization. For TbMnO3 we took U = 0 eV as in Ref.
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[22]. For EuMnO3 we took U = 1 eV to obtain the correct ground state at ambient

pressure as explained in the main text. In Figure 4.7(a) and 4.7(b) we plot the results

obtained by following the structure optimization described in Ref. [22]. In their paper

they relaxed the internal coordinates within the A-AFM state at the experimental cell

parameters and kept this peculiar relaxed structure fixed to compute the energy of the

other magnetic states. Even if the A-AFM state is never observed to be the ground state

in TbMnO3 at any pressure, the results obtained in this way reproduce the experimental

transition remarkably well [see Figure 4.7(a) and Ref. [22]]. The overestimation of the

transition pressure in our calculations could be related to different convergence precision

used in Ref. [22] (2 meV/f.u.). In the case of EuMnO3, if we follow this procedure the A-

AFM to FM transition occurs at a much higher pressure (not shown in 4.7(b)). Otherwise,

as we discussed in the main text, the qualitative picture remains basically the same.

In Figure 4.7(c) and 4.7(d) we show the results obtained according to a more physical

procedure of structure optimization. In this case the lattice parameters are also fixed to

the experimental values, but the internal atomic coordinates are relaxed for each magnetic

phase at each value of the pressure. This procedure captures magnetostriction effects

that are ignored in the previous procedure. These effects can indeed be important as

they promote e.g. the spin-driven spontaneous electric polarization. As we see in Figure

4.7(c), this method changes completely the picture in TbMnO3. Specifically, among the

considered states, the E-AFM state becomes the ground state already at zero pressure

(while it becomes the ground state beyond 9 GPa if one uses the A-AFM structural

parameters). Experimentally, however, the ground state corresponds to the spiral order.

This means that, once magnetostriction effects are switched on, none of the considered

spirals reproduce adequately the actual ground state of TbMnO3. EuMnO3, in contrast,

does not have this complication. For this crystal the overall qualitative picture remains

the same, even if the energy difference between the different states is now reduced due to

the additional energy minimization that comes from magnetostriction effects [see Figure

4.7(d)]. These magnetostriction couplings then pull the transition pressure down compared

to the one obtained according to the procedure of Ref. [22].

For the procedure discussed in the main text, magnetostriction effects are fully taken

into account as both lattice parameters and internal positions are relaxed self-consistently

for each magnetic state separately. This explains the additional shift of the insulator-to-

metal transition, and the subsequent possibility of achieving the quasi-degeneracy between

FM and E∗-AFM states.
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Figure 4.6: Comparative study of the structure optimization procedure in TbMnO3. The
lattice parameters correspond to their experimental values while the internal positions are
obtained following two different methods. (a) A-AFM order is imposed and the internal posi-
tions are obtained by optimizing the internal coordinates in this magnetic state. The output
is used to compute the energy associated to the other magnetic orders, with no additional
optimization. This method is used in Ref. [22] for TbMnO3, although the A-AFM state is not
the ground state of this system. (b) The internal positions are relaxed self-consistently for each
type of magnetic order separately. We note the strong sensitivity of the E-AFM against the
structural relaxations, which changes the qualitative description of TbMnO3 under pressure.

4.4.2 Mapping to a Heisenberg model

In order to gain additional insight about the microscopic cause of the predicted A-AFM-

insulator to FM-metal transition, we follow Refs. [22, 107] map the magnetic energy of
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Figure 4.7: Comparative study of the structure optimization procedure in EuMnO3, using
the same methods as those used in TbMnO3 in Figure 4.6.

the system into a simple Heisenberg model plus a biquadratic coupling term:

H = Jab

ab∑
〈n,m〉

Sn · Sm + Jc

c∑
〈n,m〉

Sn · Sm

+ Ja

ab∑
〈〈n,m〉〉

Sn · Sm + Jb

ab∑
〈〈n,m〉〉

Sn · Sm

+B
ab∑
〈n,m〉

(Sn · Sm)2. (4.1)

Here Jab and Jc represent nearest-neighbor interactions in the ab plane and along the c

axis respectively, while Ja and Jb are second-nearest-neighbor interactions along aA and
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b respectively. The biquadratic coupling is restricted to nearest neighbors in the ab-plane

only and its strength is determined by the B parameter. The competition between FM

nearest- and AFM second-nearest-neighbor interactions is a source of magnetic frustration

in the rare-earth manganites. This can be quantified by means of the ratio Ja(b)/|Jab|.
Thus, the frustration criterion of spiral configuration is 1/2: Ja(b)/|Jab| < 1/2 favors FM

order while Ja(b)/|Jab| > 1/2 favors the spiral state. Jc simply determines if the stacking

along c is FM or AFM, while B 6= 0 favors collinear orders.

In order to determine the parameters of Eq. 4.1 in the Pbnm structure, we compute

the energy associated to the FM, A-, C-, 90◦ spiral, and the E-AFM sate with the induced

polarization along two perpendicular directions (Ea- and Eb-AFM with 2a × b × c and

a× 2b× c supercells respectively) for different pressures between 0 and 20 GPa. In terms

of the parameters of the Hamiltonian 4.1 these energies are

EFM = E0 + 4(2Jab + Jc + Ja + Jb + 2BS2)S2,

EA-AFM = E0 + 4(2Jab − Jc + Ja + Jb + 2BS2)S2,

EC-AFM = E0 + 4(−2Jab + Jc + Ja + Jb + 2BS2)S2,

EEa-AFM = E0 + 4(−Jc − Ja + Jb + 2BS2)S2,

EEb-AFM = E0 + 4(−Jc + Ja − Jb + 2BS2)S2,

E90◦spiral = E0 + 4(−Jc + Ja − Jb)S2,

(4.2)

where E0 represents the energy of the non-magnetic state. In Figure 4.8, we plot the

solution of this system of equations as a function of pressure, where the Mn3+ spin is

taken as S = 2. The parameters obtained from this mapping elucidates the intriguing

competition between the different magnetic orders in EuMnO3. First of all, we note that

the second-nearest-neighbor exchange parameters Ja and Jb are both AFM with a much

weaker anisotropy than reported in TbMnO3 [92, 108]. The first-order transition from

A-AFM to FM state implies the abrupt change of these parameters followed by a more

gradual variation. Jc, in particular, changes from positive to negative. In TbMnO3 the

biquadratic interaction is enhanced under pressure, which is important for the stabilization

of the collinear E-AFM phase observed in this system. In EuMnO3, on the contrary, the

biquadratic coupling is rather small compared with the exchange interactions at ambient

pressure. Furthermore, such a coupling is not enhanced by applying pressure, and therefore

is not able to promote the C-AFM state. This eventually enables the emergence of the

FM order and the accompanying metallicity of the system under pressure.

The mapping to the Heisenberg model, however, has to be taken with some reserva-

tions. If we estimate the Néel temperature following a mean-field treatment of the system,

we obtain TA-AFM
N ≈ 199 K [see Sec. 4.4.3]. The experimental value, however, is 49

68



4.4 Discussion

-10

-5

 0

 5

 10

 0  5  10  15  20

J s
 (

m
e
V

/f
.u

.)

Pressure (GPa)

Jab

Jc

Ja

Jb

B

Figure 4.8: Exchange parametres Jab, Jc, Ja and Jb and biquadratic coupling B of the
Heisenberg model of Eq. 4.1 as a function of pressure. The abrupt change of these parameters
at the A-AFM to FM transition is indicated by the dashed line.

K [109]. One of the possible reasons of this discrepancy can be related to the metallic

character of the FM state itself, as we included this state to compute the J ′s. In such

a state, the localized-spin picture may not be fully appropriate (even if we find a rather

large magnetic moment at the Mn’s in the FM state) and/or the exchange interactions

can be longer ranged. This point requires further investigations that, however, are beyond

the scope of the present paper.

4.4.3 Mean-field theory for Néel temperature

We estimate the Néel temperature of A-AFM using a mean field theory [110] based on

the exchange parameters J ’s we obtained from total energy DFT calcuations. We can

rewrite the hamiltonian of the ith atom in term of an effective magnetic field (first consider

interaction with its nearest-neighbours),

Hi = JSi ·
z∑
j

Sj = −gµBSi ·Heff , (4.3)

where g and µB are the Lande factor and Bohr magneton respectively, z is the total

number of its nearest neighbours, . Then we have

Heff = − J

gµB

z∑
j

Sj = − zJ

gµB
〈Sj〉, (4.4)

here, we assume all magnetic atoms are identical and equivalent, 〈Sj〉 is related to the

total magnetic moment by M = NgµB〈Sj〉, N is the total number of atoms in the whole
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cell, so that we can rewrite the Heff as a function of total magnetic moment:

Heff = − zJ

Ng2µ2
B

M. (4.5)

Therefore, we obtain the molecular field coefficient for the nearest-neighbour interaction,

γ = − zJ

Ng2µ2
B

. (4.6)

Generalize the case to include further interactions, we summarize the total field acting on

an atom in the ith sublattice as

Hi = H0 +
n∑
k=1

γikMk, (4.7)

Mk is the magnetic moment of the kth sublattice and γik is the molecular field coefficient

for the field acting on an atom in ith sublattice by its neighbors in kth sublattice, which is

defined as:

γik =

{
0 i = k

−n(zikJik)
Ng2µB2 i 6= k

(4.8)

The first case (i = k) shows that an atom has no interactions with any neighbors of its own

sublattice. For the second case (i 6= k), n is the number of sublattices, zik is the number

of kth neighbors of i atom, Jik is the exchange interaction between an i atom and a kth

neignbor atom. It is convenient to consider only the high temperature approximation, we

have

Mi =
C

nT
Hi

=
C

nT
(H0 +

n∑
k=1

γijMk) i = 1, 2, 3, ..., n.
(4.9)

This is a set of n linear algebraic equations, we can write them explicitly

M1 −
C

nT
γ12M2 − ...−

C

nT
γ1nMn =

C

nT
H0

− C

nT
γ21M1 +M2 − ...−

C

nT
γ2nMn =

C

nT
H0

.........

− C

nT
γn1M1 −

C

nT
γn2M2 − ...+Mn =

C

nT
H0.

(4.10)

To determine the transition temperatures in the generalized molecular field theory, we can

simply set H0 = 0 and solve a linear homogeneous set of equations. We will have non-zero
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solutions for the Mi only if the determinant of the coefficients is zero.∣∣∣∣∣∣∣∣
nT
C −γ12 ... −γ1n

−γ21
nT
C ... −γ2n

... ... ... ...

−γn1 −γn2 ... nT
C

∣∣∣∣∣∣∣∣ = 0 (4.11)

Since the anisotropy in the in-plane second-nearest-neighbor interactions is very weak,

we simplify this interaction and consider the averaged value J2 = (Ja + Jb)/2 in the

following. Thus, we can construct the determinantal equation of the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a1 a3 0 0 0
a1 a0 a1 a2 0 a3 0 0
a2 a1 a0 a1 0 0 a3 0
a1 a2 a1 a0 0 0 0 a3

a3 0 0 0 a0 a1 a2 a1

0 a3 0 0 a1 a0 a1 a2

0 0 a3 0 a2 a1 a0 a1

0 0 0 a3 a1 a2 a1 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.12)

for the eight magnetic atoms of the a× 2b× c orthorhombic Pbnm supercell. Here

a0 =
8T

C
, a1 = −4γ1, a2 = −8γ2, a3 = −8γ3, (4.13)

where T is the temperature, C is the Curie constant C = NS(S+1)
3kB

g2µ2
B, and the γ’s are

related to the exchange parameters Ji as

γi = − ziJi
Ng2µ2

B

, (4.14)

with J1 = Jab and J3 = Jc. Among the eight solutions of the Eq. (4.12),

a0 = −2a1 − a2 + a3 (4.15)

corresponds to the A-AFM state. Thus, from Eqs. (4.13) to (4.15) the Néel temperature

of A-AFM state can be estimated as

TA-AFM
N =

−2S(S + 1)

3kB
(2Jab + Ja + Jb − Jc) . (4.16)

4.5 Conclusions

We performed a first-principles investigation of the structural, electronic and magnetic

structure of EuMnO3 under pressure. We found a pressure-induced insulator-metal tran-

sition that is unprecedented in the multiferroic rare-earth manganites RMnO3. This tran-
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sition is accompanied with a change of the magnetic order from E-AFM to FM, which

preempts the spiral and E-AFM phases that normally promote multiferroicity in these

systems. The overall transition, in addition, displays a strong interplay with Jahn-Teller

distortions similar to the one observed in LaMnO3. EuMnO3 thus establishes an interest-

ing link between colossal-magnetoresistance and multiferroic manganties. We also found

that the non-centrosymetric E∗-AFM state is metallic in EuMnO3 and tends to be nearly

degenerate with the FM ground state at high pressures. Thus, EuMnO3 hosts a potential

realization of a new type of (magnetically-induced) ferroelectric metal that can add an

extra dimension to the thought-provoking question of ferroelectricity emerging in metals

[111, 112, 113, 114, 115]. These findings are expected to motivate further experimental

and theoretical work.
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5

Epitaxial-strain-induced

multiferroic and polar metallic

phases in RMnO3

Motivated by the quasi-degenerate ground state E∗-AFM of EuMnO3 induced by pressure

in our previous chapter, we continue to exploit more functionalities in the rare-earth

manganites by DFT calculations. Instead of pressure, we use epitaxial strain, which offers

more flexibilities on structural alteration.

In this chapter, we simulate the strained TbMnO3 and EuMnO3 thin film in both (001)

and (010) orientations. We obtain the magnetic and electric phase diagrams for these

compounds as a function of strain. Specifically, we predict that both the multiferroic E-

AFM order and the polar metallic E∗-AFM state are stabilized in TbMnO3 in a particular

range of epitaxial strain. In contrast, we predict that a multiferroic E-AFM order emerges

in EuMnO3 thin film that is not obtained from the bulk materials under pressure.

5.1 Introduction

In the previous chapter, we have demonstrated an insulator-AFM to metal-FM phase

transition in EuMnO3 induced by pressure from our first-principles calculations. This is

an unprecedented phenomenon in multiferroic rare-earth manganites that establishes a

link between these systems and colossal magnetoresistance compounds. Additionally at

high pressure, we found a new phase, E∗-AFM order, becoming quasi-degenerate with

FM ground state. Such a E∗-AFM order can be regarded as a ferroelectric-like metal,

which drive a coexistence of non-centrosymmetric ionic crystal structure and half metallic

electronic band structure. Polar metal is a very rare state, only being identified in several

specific systems [114, 116].
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These findings represent an unexpected addition to what is known in the model-case

system TbMnO3. In this case, TbMnO3 undergoes a spin-spiral to E-AFM phase transition

under hydrostatic pressure at around 3.6 GPa, which implies a significant increase of the

polarization together with its reorientation from the c-axis to the a one [22, 117].

One way to further exploit all these possibilities is by means of epitaxial strain. In fact,

several intriguing phenomena have recently been found by following this strategy. These

include multiferroicity in AMnO3 systems [118, 119], insulator-metal transitions in rare-

earth nickelates thin films [120, 121] and novel polar metal states by e.g experimentally

geometric design [114, 116]. In TbMnO3 in particular, it has been confirmed that (001)-

oriented TbMnO3 thin film on SrTiO3 substrate display a weak ferromagnetism within

E-AFM order [122, 123], while (010)-oriented film on YAlO3 substrate is stabilised in a

E-AFM state [124].

In this chapter, we make a comparative study of the effect of the epitaxial strain on the

properties of TbMnO3 and EuMnO3 by means of first-principles calculations. Specifically,

we obtain the phase diagram for these compounds as a function of strain. Thus, we

find several transitions between different ground states that include the transition to the

polar metallic state. In addition, we compute the electric and magnetic properties of

these compounds as a function of strain and for different orientations with respect to the

substrate.

5.2 Methods

5.2.1 DFT calculations

Our density functional theory (DFT) based calculations are performed with projected

augmented waves (PAW) potentials as implemented in the VASP code [98, 99]. We use the

generalized gradient approximation (GGA) PBEsol [100] exchange correlation functional

and apply an on-site Coulomb correction for the Mn-3d states following the DFT+U

scheme [57]. The Eu-4f and Tb-4f electrons are treated as core electrons and relativistic

spin-orbit-interaction (SOI) effects for Tb, Eu and Mn are excluded. We consider the

most relevant Mn-spin collinear orders found in manganites: collinear magnetic order –

ferromagnet (FM), A-, Ea-, E∗a-, Eb- and E∗b -AFM and noncollinear order – spin spiral

states [see Sec. 1.2]. Here E- and E∗-AFM correspond to the same E-type in-plane Mn

spin ordering but with AFM and FM inter-plane coupling respectively. The orthorhombic

Pbnm supercell containing two unit cells is employed for all collinear magnetic states.

Specifically, FM and A-AFM states are built in 1× 2× 1 supercell. As for E-AFM orders,

the subscript notation “a” (“b”) indicates that the supercell is constructed by doubling

the unit cell along a(b)-direction. The noncollinear spiral state is a cycloidal spin wave

74



5.3 Results

with commensurate wave vector k = 1/3 along b-axis, built in a 1 × 3 × 1 supercell. We

use 6× 3× 4 (3× 6× 4) Monkhorst-Pack k-points grid for 1× 2× 1 (2× 1× 1) supercell

and 4× 2× 3 k-points grid in 1× 3× 1 supercell. The cutoff energy for plane waves is set

to be 500 eV. We use different U values for the different compounds. Specifically Ueff = 0

eV for Mn-3d states of TbMnO3 [22], and Ueff = 1 eV for Mn-3d states of EuMnO3. The

choice of these values was studied in detail in the previous chapter [see Sec. 4.4.1.1].

5.2.2 Implementation of epitaxial strain

We will consider thin films subjected to in-plane biaxial strain grown on either (010) or

(001)-oriented substrates.

In Figure 5.1(a), we illustrate the (010)-oriented case. Here the underlying orthorhom-

bic substrate is indicated by the grey rectangles. The “freestanding” lattice is represented

by dashed lines and, for the sake of simplicity, only the manganese atoms are shown. We

consider the perovskite YAlO3 as the substrate material and define the epitaxial strain as

η = (a− as)/as = (c− cs)/cs, where as and cs represent the experimental in-plane lattice

parameters of YAlO3. Consequently, we assume that the relative change of the lattice pa-

rameters a and c is the same. Note that, for zero strain, the TbMnO3 and EuMnO3 films

already experience a compression with respect to the freestanding case. Specifically, the

compression is 2.1% and 3.1% along a-axis, 0.4% and 1.1% along the c-axis respectively.

For the (001)-oriented case, we consider a cubic substrate as shown in Figure 5.1(b).

Thus, we define the epitaxial strain as η = (a − as)/as = (b − bs)/bs, where we assume

that the in-plane lattice parameter as and bs of the substrate (in solid line) is the average

of that of the “freestanding” lattice a0 and b0 (in dashed line), i.e. as = bs = (a0 + b0)/2.

Thus, we change the lattice by keeping the a = b. Correspondingly, the freestanding lattice

has been already stretched along a-axis and compressed along b-axis at zero strain.

In both cases, for every given value of the in-plane lattice parameters (i.e. the strain),

we relax both the out-of-plane lattice parameter and the internal atom positions by im-

posing different magnetic orders.

5.3 Results

5.3.1 TbMnO3

5.3.1.1 (010)-oriented films

In Fig. 5.2, we show the total energy, polarization and band gap of (010)-oriented TbMnO3

thin film as a function of epitaxial strain (from -6% to 6%) . As we can see in Fig. 5.2(a),

the energy is essentially a quadratic function of the strain. However, the minimum of
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Figure 5.1: Schematic diagram of (a)(010) and (b) (001)-oriented thin films, the lattices of
substrate and thin film are plotted with solid and dashed lines respectively.

Optimization procedure Eb-AFM FM A-AFM SPIRAL

Fix lp to freestanding lattice 0 27.62 5.87 -0.81

Fix in-plane lp to zero strain 0 40.93 23.48 41.53

Table 5.1: Total energy (unit: meV/f.u.) of FM, A-AFM and spiral state with respect to
Eb-AFM magnetic orders calculated in two optimization methods. First, relax the internal
atomic positions by fixing the lp to experimental values (freestanding lattice) and imposing A-
AFM; Second, optimise the structure by fixing in-plane lp to zero strain and imposing A-AFM
spin orders. **lp – lattice parameter.

the parabola is different for the different magnetic orders. This difference is highlighted

in Fig. 5.2(b), where we plot the energy of these orders with respect to the reference

Eb-AFM state. In this way we can clearly see the phase competitions and transitions

that are induced by means of epitaxial strain. Specifically, the ground state of the system

transforms according to the sequence:

Eb-AFM
1%←→ E∗b -AFM

3%←→ A-AFM.

As we discussed in the previous chapter, the energy of the spiral state is very sensitive to

the method of structural relaxation (see Sec. 4.4.1.2). However, the spiral state cannot be

stabilised irrespective of the relaxation method. Specifically, we performed a comparative

study of the energy of two different optimization procedures by taking the Eb-AFM as

the reference state. The results are shown in table 5.1. If the lattice parameters are

fixed at the values of freestanding bulk materials and the internal positions are optimised

by imposing A-type antiferromagnetic order, then 60◦ spiral state is obtained to be the

ground state [see Sec. 4.4.1.2]. However, as soon as we impose the epitaxial strain and

the in-plane lattice parameters to those of YAlO3 substrate, the ground state becomes the

Eb-AFM order. The energies of the spiral state shown in Fig. 5.2(a) correspond to this

second method.
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Figure 5.2: The total and relative energy, polarization and band gap as a function of epitaxial
strain of (010)-oriented TbMnO3 thin film.

In Fig. 5.2(c), we show the polarization and band gap as a function of epitaxial

strain. When the strain is between -6% and 1%, both the polarization and the band gap

decrease almost linearly by increasing the strain. Then both these quantities drop to zero.

Specifically, there is a jump in the polarization of 0.97 µC/cm2, and in the band gap

of 0.22 eV. This represents a first-order transition induced by the transformation of the

magnetic ground state from a E-AFM order to FM one.
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Figure 5.3: The total and relative energy, polarization and band gap as a function of epitaxial
strain of (001)-oriented TbMnO3 thin film.

5.3.1.2 (001)-oriented films

In Fig. 5.3, we show the total and relative energies (the E∗b -AFM is now taken as reference

state) as a function of the epitaxial strain for (001)-oriented TbMnO3 thin films, together

with the electric polarization and band gap of the corresponding ground state. In this

case we obtain a different sequence of phase transitions:

E∗b -AFM
−3%←−→ FM

−1%←−→ Eb-AFM
2%←→ Ea-AFM
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We note that the total energy of the Ea-AFM and E∗a-AFM states is not exactly parabolic

as for the other states. Specifically, when the strain exceeds 2%, the dependence on the

strain for these two states change from parabolic to linear. We also note that in the strain

range between -1% and 2%, the spiral state is only slightly higher in energy (∼ 2 meV/f.u.)

compared to the Eb-AFM ground state.

As we can see in Figure 5.3(c), both the electric polarization and the band gap are

zero if the strain is between -6% and -1%. At η = −1%, the polarization jumps to 9.8

µC/cm2. This is followed by a quick decrease to 1 µC/cm2 at η = 2%, from which it

stays practically constant (∼ 2µC/cm2) up to η = 6%. The band gap, in its turn, opens

abruptly at η = −1% where it becomes ∼ 0.20 eV. Then, it increases and takes the value

1.55 eV at η = 6%. Similar to the (001)-oriented case, we obtain a first-order phase

transition driven by the magnetic order reorientation from a E-AFM order to FM one.

5.3.2 EuMnO3

5.3.2.1 (010)-oriented films

In Fig. 5.4, we show the total and relative energy (take Eb-AFM order as reference state),

as well as the polarization and the band gap of (010)-oriented EuMnO3 thin film as a

function of epitaxial strain, following the same procedure as TbMnO3 films. From Fig.

5.4(a) and (b), we obtain the following sequence of ground states in this system:

Eb-AFM
0.5%←−→ A-AFM

1%←→ FM.

In this case, we find the A-AFM ground state in a narrow range of strain (∼ 0.5%) between

Eb-AFM and FM state. This is in contrast to the (010)-oriented TbMnO3, where we find

the E∗-AFM state instead. As we can see in Fig. 5.4(c), by increasing the strain, the

polarization and the band gap also decrease linearly in this system. However, they vanish

at different strains. Specifically, we find the critical strain ηc = 0.5% for the polarization

and ηc = 1.0% for the band gap. Above these strains, both of these quantities are zero.

We then have two first-order phase transitions, that originate from two different magnetic

order reorientations: Eb-AFM → A-AFM and A-AFM → FM respectively.

5.3.2.2 (001)-oriented films

In Fig. 5.5(a) and (b) we show total and relative energy (take FM state as reference) as

a function of strain in (001)-oriented EuMnO3 thin films. In this case, we obtain three

different ground states according to the sequence:

FM
−0.5%←−−→ A-AFM

3%←→ Ea-AFM.
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Figure 5.4: The total and relative energy, polarization and band gap as a function of epitaxial
strain of (010)-oriented EuMnO3 thin film.

The A-AFM order is now stable in a larger range of strain compared with the (010)-

oriented case. Similar to (001)-oriented TbMnO3 film, the dependence on the strain of

the energy of Ea-AFM and E∗a-AFM states change from parabolic to linear when the

strain exceeds 3%. From Fig. 5.5(c) we see that the electric polarization and the band

gap display a similar behavior in the sense that they emerge abruptly from zero and

increase by increasing the strain. The critical strains, however, are different: ηc = 3% and

ηc = −0.5% for the polarization and the band gap respectively. These strains are again
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Figure 5.5: The total and relative energy, polarization and band gap as a function of epitaxial
strain of (001)-oriented EuMnO3 thin film.

associated to two separated first-order transitions, which in this case correspond to FM

→ A-AFM and A-AFM → Ea-AFM.
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(a) (010)-oriented TbMnO3
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(c) (010) oriented EuMnO3
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Figure 5.6: Magnetic and electric phase diagram of (a) the (010)-oriented and (b) the
(001)-oriented TbMnO3 thin film as well as (c) the (010)-oriented and (d) the (001)-oriented
EuMnO3 thin film.
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5.4 Discussion

5.4.1 Predicted phase diagrams and comparison with experiments

In Figure 5.6 we show the overall magnetic and electric phase diagrams of TbMnO3 and

EuMnO3 thin films summarising the above results. In these figures, we first indicate on

the top the magnetic ground state with respect to the epitaxial strain. And then, below,

we show the corresponding spin-driven electric phase transitions, e.g. insulator – metal

transition and polar – non-polar phase transition. For the (010)-oriented TbMnO3, we

predict a magnetic phase transition accompanied with the spin-driven insulator – metal

and polar – non-polar transitions [see Fig. 5.6(a)]. As discussed in Sec. 5.2.2, zero strain

in this case corresponds to a film grown on the (010)-oriented YAlO3 substrate. At this

specific point, we find the Eb-AFM ferroelectric insulator state as the ground state of the

system. This is totally consistent with the experimental results recently reported [23],

where the authors have successfully grown TbMnO3 film on the (010)-oriented YAlO3

substrate and confirmed that the multiferroic E-AFM state is stabilised as the ground

state. Furthermore, the polarization obtained from our calculations (3.2 µC/cm2) is in a

very good agreement with the experimental value (0.6 – 2 µC/cm2) measured along the a

direction.

More interestingly, we predict that the E∗b -AFM order will be stabilised as the ground

state in the strain range of 1% – 3%. The symmetry of the lattice resulting from this mag-

netic structure is reduced to the Pmn21 space group. We then have a non-centrosymmetric

distortion of the original lattice due to the emergence of this particular order. At the same

time, the density of states (DOS) obtained from our calculations reveals that this state is a

metal Such an epitaxial-strain-induced E∗b -AFM state then represents an intriguing realiza-

tion of a polar metal [111, 112, 113, 114, 115], with coexisting both non-centrosymmetric

crystal structure and half-metallic electronic properties. It is worth noting that we have

already observed the tendency towards this state when the bulk EuMnO3 is subjected to

hydrostatic pressure. As we see, this tendency can eventually be materialised by means of

epitaxial-strain in TbMnO3. This is one of important results of this thesis work.

In the case of the (001)-oriented TbMnO3 films we also obtain magnetically driven

metal – insulator and polar – non-polar – polar transitions [see Fig. 5.6(b)]. In addition,

our phase diagram explain the experimental observations reported in [123]. Here, the

E-AFM state is reported together with weak ferromagnetism for a thin film grown on

(001)-oriented SrTiO3 cubic substrate. In this case, the film is subjected to a strain

equivalent to η = −1% in our phase diagram as indicated by the red arrow in Fig. 5.6(b).

This amount of strain locates exactly at the phase boundary between Eb-AFM and FM
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state. Since this transition is expected to be a first-order transition, then the coexistance

between the corresponding orders can naturally happen at this point.

We also obtain the non-centrosymmetric metallic E∗b -AFM state for this orientation in

TbMnO3. This state is now stabilized for relative large compressive strains (below −3%).

Then, there is a similar polar to non-polar transition associated to the transformation of

the ground state from E∗b -AFM to FM order in which the system stays metallic. Next, the

subsequent transition in this case corresponds to a metal – insulator transition and non-

polar – polar phase transition that take place simultaneously at the same critical strain

ηc = −1%. This is due to the stabilization of the Eb-AFM order at low levels of strain.

Finally, at η = 2%, there is an additional transition from Eb-AFM to Ea-AFM order. Even

if both of these states are polar, the electric polarization changes from the a-axis to the

b-axis and its magnitude becomes nearly constant as a function of strain [see Fig. 5.3].

In Fig. 5.6(c) and (d) we show the overall phase diagrams of strained EuMnO3 films.

The main difference compared to TbMnO3 is the absence of polar metallic states, even

if some tendency towards these state can be induced by means of hydrostatic pressure in

bulk samples. At the same time, the A-AFM order can be stabilised in this system which

is not the case for TbMnO3. This A-AFM order corresponds in fact to the ground state

of bulk EuMnO3 [92, 125]. It survives in the range of strain from 0.5% to 1% in (010)-

oriented film and from -0.5% to 3% in (001)-oriented ones. We note also that, because

of the stabilization of such a A-AFM order, the insulator – metal transition and polar –

non-polar transition occur separately at different critical strains.

It is worth noting that, by means of epitaxial strain, we essentially obtain the same

insulating A-AFM to metallic FM phase transition obtained in the previous chapter by

means of hydrostatic pressure in bulk samples. Specifically, we can achieve the transition

by increasing tensile strain in (010)-oriented film or increasing compressive strain in (001)-

oriented one. Additionally, we predict a multiferroic Eb-AFM phase in (010)-oriented

EuMnO3 (-6% – 0.5%) and a multiferroic Ea-AFM in (010)-oriented EuMnO3 (3% – 6%).

These latter results are totally new compared with our previous study on hydrostatic

pressure.

5.5 Conclusions

In conclusion, we have presented a comparative study between TbMnO3 and EuMnO3

epitaxial thin films by means of first principles calculations. We have obtained the phase

diagram as a function of epitaxial strain for two experimentally relevant orientations of

these films, namely, the (010) and (001) orientations. And we show that epitaxial strain

allows a richer phase diagram in these systems. Our results confirm the findings of recent
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experiments carried out in TbMnO3 films grown on YAlO3 and SrTiO3 substrates. In

addition, we predict novel magnetically-induced insulator – metal and polar – non-polar

transitions. More specifically, we find that both the multiferroic E-AFM order and the

polar metallic E∗-AFM state are stabilized in TbMnO3 by means of expitaxial strain. For

EuMnO3, we predict a multiferroic E-AFM state that is not obtained from our previous

study by hydrostatic pressure. We expect our results will encourage further experimental

and theoretical investigations on the rare-earth manganites.
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Conclusions

In this thesis, we have presented a theoretical study of various ferroic instabilities. We

considered two particular cases: i) the ferroelectric instability in novel confined geometries

and ii) magnetic instabilities controlled by the distortion of the underlying crystal lattice.

The first two Chapters were aimed at providing the relevant background for the main

content of this thesis. In Chapter 1, we gave a brief introduction to ferroelectricity from

the phenomenological point of view and introduced a more microscopic description of the

different magnetic orders that appear in the particular case of the rare-earth manganites.

In Chapter 2, we described the first-principles calculations based on the DFT framework,

mainly on the associated tools to extract physical properties in condensed mater simula-

tions.

After these two introductory chapters, in Chapter 3 we considered in detail the fer-

roelectric instability in confined structures, specifically, the nanotubes and the spherical

nanoshells and developed a phenomenological theory for describing such an instability. We

determined, in particular, how the emergence of polarization is affected by the thickness

of the nanoparticle, the dielectric properties of the surrounding media and the interfa-

cial boundary conditions. We found an intriguing topological finite-size effect that can

promote an unexpected competition between two different types of distribution of polar-

ization – irrotational and vortex-like – in the ultra-thin limit. Our work represents the first

semi-analytical study of the ferroelectric instability in these particular geometries, which

has the potential to be applied in new nano devices. However, it is an inaugural study

in which a number of likely important factors such as the polarization anisotropy and the

strain fields have been ignored. Also, we did not consider a specific ferroelectric material,

but just determined the qualitative trends in the problem. All these limitations need to be

overcame in future developments. Even though, we have presented a global picture that

captures the main physics of the problem and our results suggest new routes to control
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the ferroelectric instability and engineer ferroelectric properties at the nanoscale. This is

expected to motivate and guide future experiments.

In Chapters 4 and 5 we employed a different formalism to investigate the structural,

electronic and magnetic properties of the rare-earth manganites. Specifically, we conducted

a theoretical investigation from first-principles calculations. In Chapter 4 we focused on

EuMnO3 under hydrostatic pressure. The main finding of this investigation is the predic-

tion of a pressure-induced A-AFM insulator to FM metal transition that is unprecedented

in the multiferroic rare-earth manganites RMnO3. This transition displays a strong in-

terplay with Jahn-Teller distortions similar to the one observed in LaMnO3. We thus

established an interesting link between colossal-magnetoresistance and multiferroic man-

ganites via the EuMnO3 compound. This investigation was extended in Chapter 5 to the

study to the epitaxial strain effects on both EuMnO3 and TbMnO3 thin films. We thus

determined the magnetic phase diagram as a function of epitaxial strain for two experi-

mentally relevant orientations of these films, namely, the (010) and (001) orientations. We

showed that epitaxial strain generates a much richer phase diagram compared to hydro-

static pressure. Our results are fully consistent with the findings of recent experiments

carried out in TbMnO3 films grown on YAlO3 and SrTiO3 substrates. In addition, we

predicted novel magnetically-induced insulator – metal and polar – non-polar transitions.

More specifically, we found that both the multiferroic E-AFM order and the polar metal-

lic E∗-AFM state are stabilized in TbMnO3 by means of epitaxial strain. On the other

hand, we found a novel epitaxial-strain-induced multiferroic E-AFM state in EuMnO3

that cannot be obtained by means of just hydrostatic pressure.

When it comes to future investigations, it will be particularly interesting to clarify

further the link between the two families of compounds, i.e. colossal-magnetoresistance

and multiferroic manganites, that we have revealed during this thesis. Our results also

indicate that TbMnO3 thin film hosts a potential realization of a new type of (magnetically-

induced) ferroelectric metal. This can add an extra dimension to the thought-provoking

question of ferroelectricity emerging in metals and hence can become a reference model-

case for future studies. In principle, our study can be straightforwardly extended to the

ferroic instabilities to the whole series of rare-earth manganites. In addition of determining

the general phase diagram of these systems, novel fundamental properties and extra multi-

functionalities can be discovered in such a study. We truly hope that the results of present

PhD thesis will intrigue more research activities in the field of ferroics.
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Appendix A

Rare-earth Ferrites

A.1 Introduction to rare-earth ferrites

In this appendix, we discuss another important series of oxides, the orthorhombic RFeO3.

The main character of this series is, in contrast to RMnO3, displaying a non-collinear

magnetic orders with weak canting on both R and Fe ions.

The spin canted order is described by the combinations of the collinear orders from

different directions. Considering the spatial anisotropy, there are totally 3 × 4 basis:

Fx, Fy, Fz, Ax, Ay, Az, Cx, Cy, Cz, Gx, Gy, Gz. A common notation to describe the complex

magnetic canted structure of perovskites is the so-called Bertaut’s notation [126]. In this

notation, the magnetic structure can be labelled as AxByCz, where A,B,C represent

different types of order, and x, y, z are the directions. For example, suppose we have a

simple G-type structure in which the spins are aligned along x direction, it is labelled as

Gx in Bertaut’s notation, see Figure A.1(a). If this order displays an additional A-type

component along y direction, we then have GxAy configuration as shown in Fig. A.1(b).

Further if there is an extra F-type component along z axis, then the overall structure is

denoted as GxAyFz (see Fig. A.1(c)). This is the case in most of the perovskites with the

Pbnm structure [90, 127]. The Bertaut’s notation is convenient for describing spin orders

on both A-site and B-site atoms in perovskites [128].

In Figure A.2, we show the main magnetic phase diagram of the orthorhombic RFeO3

(R represents the rare-earth element) [90]. As shown in Fig. A.2, the whole series has

a relatively high Néel temperature of the Fe ions, which are above 600 K. Below this

transition temperature, the initial magnetic order of the Fe ion is stabilized as GxAyFz

for every compound. As the temperature decreases, in the compounds with R = La,

Eu, Gd and Lu, the GxAyFz order persists to very low temperature. While in some

other cases with R = Pr, Nd, Sm, Tb, Ho, Er and Yb, a spin reorientation takes place

continuously from GxAyFz to FxCyGz, which results from the continuous rotation of the
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(a) Gx (b) GxAy (c) GxAyFz

Figure A.1: Non-collinear spin-canted order

Figure A.2: Néel and spin-reorientation temperatures for the Fe spin order in RFeO3 per-
ovskites. Filled circles, open circles and squares indicate the establishment of spin order
GxAyFz, FxCyGz and AxGyCz respectively.

easy axis from x to z-axis. The reorientation temperature varies from ∼ 500 K to several

K (< 10 K). There are two special cases RFeO3 (R = Ce, Dy), in which the magnetic

order abruptly transforms from GxAyFz to AxGyCz. In this case, the easy axis turns

from x to y discontinuously. At very low temperature (< 10 K) regimes, the magnetic

ordering starts to appear on the R ion, it can be collinear and non-collinear.

The spin reorientations suggest that the interplay between the R and the Fe spins is

already strong at a relative high temperature, which is much higher than the ordering tem-

perature of the rare-earth. The total magnetization of some systems reduces and reverses

by decreasing the temperature [129, 130, 131]. The temperature at which the magnetiza-

tion vanishes is Tcomp, which is 7.6 K, 3.9 K and 46 K for Nd, Sm and Er respectively.

Such a temperature-induced magnetization reversal has been attributed to the gradual

magnetization of the R-sublattice in opposite direction to the Fe-wFM component. This

unusual mechanism was proposed by Yamaguchi to originate from an effective exchange

field between Fe and R spins and resulting from a competition between the Fe-Fe, R-Fe

and R-R interactions [128]. Since this exchange field is negative, R and Fe spins are an-

tiparallel, which is in agreement with the experimental observations. This series provides

a good example of spin-induced ferroelectricity generated by two magnetic species via
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symmetric magnetostriction, as we have discussed in Sec. 1.3.6.

In this series, GdFeO3 is one of the most important examples due to its huge non-linear

magnetoelectric response [132]. The spin order of Fe in GdFeO3 transforms into GxAyFz

at 661 K, where the weak FM canting along z direction is due to DM interaction. The

Fe spins do not reorient any more as the temperature decrease. However, the Gd spins

develop an additional GxAy order at a very low temperature TGd = 2.5 K[132]. From the

point-group symmetry analysis of representative orders in orthorhombic perovskites, the

resulting magnetism, breaks both time reversal and space inversion symmetries [see Table

1 in reference [90]]. The measured magnetization is about 0.37 µB/f.u. and the electric

polarization is around 0.12 µC/cm2 at 2 K [132] which is relatively large compared to

the other spin-induced ferroelectrics. The electric polarization is extremely sensitive to an

external magnetic field and decreases nonlinearly irrespective of the direction of the field,

making GdFeO3 a strong magnetoelectric crystal. Beyond a critical magnetic field, the

polarization is completely suppressed due to the reorientation of both Fe and Gd spins to

configurations not promoting the electric polarization.

In this appendix, we perform the first-principles calculations on magnetic interactions

in the orthorhombic GdFeO3. We extract the interaction parameters J ’s between rare-

earth and Fe lattices. With these parameter, we investigate the temperature dependence

of magnetization by the spin-dynamics approach.

A.2 Methods

A.2.1 First-principles calculations

We perform the first principles calculations here by following the similar procedure and

settings on the manganites [see Sec. 4.2]. However, here we use a Pbnm unit cell of

GdFeO3. We consider the magnetic moment on both Gd and Fe ions, by initiating it as

7µB for Gd and 5µB for Fe. The on-site Coulomb correction are applied for both Gd-4f

and Fe-3d states through DFT+U scheme.

A.2.2 Spin Dynamics

To describe the equilibrium properties of the spins in GdFeO3, we use the Landau-Lifshitz-

Gilbert equation [133]:

dSi
dt

= − γi
(1 + λ2

i )µi
Si × [Hi + λiSi ×Hi], (A.1)

where λi is the coupling to the magnon thermal bath which governs return to FM equi-

librium. In the high damping limit equilibrium properties can be obtained by calculating
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(a) Gd-Gd (b) Fe-Fe (c) Gd-Fe

Figure A.3: Exchange interaction constant J of Gd-Gd, Fe-Fe and Gd-Fe.

thermodynamic averages and is similar in spirit to quenched molecular dynamics The ef-

fective fields Hi at the site i are determined using a Heisenberg Hamiltonian including

exchange extended with anisotropy and Zeeman terms:

HASD = −
∑
〈i,j〉

JijSi · Sj −
∑
i

Ki(Si · n̂)2 −
∑
i

µiSi ·B , (A.2)

where Ki is a small uniaxial anisotropy constant (Ki = 10−24J) and n̂ is the direction

of the easy axis taken here to be in the x direction. The final term in Eq. (A.2) is the

Zeeman term with the applied magnetic field B. Based on a real space formalism, the

magnetic moments µi are assumed to be localized on a given atomic site, i, with their time-

dependence given by the phenomenological LLG equation. The effective field is given by

the derivative of the Hamiltonian with respect to the spin:

Hi = −∂HASD

∂Si
+ ζi, (A.3)

and includes stochastic thermal fluctuations ζi. These are included by incorporating a

Langevin thermostat set to the desired magnonic temperature, T . In the present work, the

noise process is assumed to be white (〈ζαi (t)〉 = 0) because of the time-scale of equilibrium

properties, where the heat bath (phonon or electron system) acts much faster than the

spin system. The correlator of the process is defined through the fluctuation dissipation

theorem as:

〈ζαi (t)ζβj (t′)〉 =
2λikBTµi

γi
δijδαβδ(t− t′). (A.4)

The α, β represent cartesian (spin) components and i, j represent spatial indices. Full

details of the derivation of the correlator can be found in Ref. [134].
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A.3 Magnetic interactions

The hamiltonian of the ferrites system can be written as

H = HGd−Gd + HFe−Fe + HGd−Fe

=
∑
i,j

JijSi · Sj +
∑
m,n

JmnSm · Sn +
∑
i,m

JimSi · Sm (A.5)

which include the interactions of Gd-Gd, Fe-Fe and Gd-Fe. The coupling constants Jij ,

Jmn and Jim correspond to the JMR, JM and JR in Fig. A.3.

In Figure A.3, we show the interaction between each atoms for our model. In order to

determine the parameters J ’s, we compute the energy associated to the FM, A-, C-, G-

AFM spin orders on the irons (for simplicity, we only consider the Fe-Fe interaction first).

Each Fe ion is surrounded by 6 nearest neighbors (4 in-plane and 2 out-of-plane neighbors),

and 8 next next nearest out-of-plane neighbors (4 in-plane next nearest neighbors are

neglected because we use a 20 atom unit cell). In terms of the above Hamiltonian, these

energies read:

EFM = E0 + 4JM1S
2 + 8JM2S

2 + 2JM3S
2, (A.6)

EA−AFM = E0 + 4JM1S
2 − 8JM2S

2 − 2JM3S
2, (A.7)

EC−AFM = E0 − 4JM1S
2 − 8JM2S

2 + 2JM3S
2, (A.8)

EG−AFM = E0 − 4JM1S
2 + 8JM2S

2 − 2JM3S
2. (A.9)

respectively. Therefore, we simply need to solve a linear equation to obtain the interaction

constants JM ’s. The Gd-Gd interactions will have the similar expressions. And if we

consider the interaction between the spins of Gd and Fe, we can obtain the JRM ’s

In Table A.1, we summarize the coupling constant J ’s and Néel temperature of Fe

and Gd obtained by using different U values (UGd = 1, 3, 5 eV and UFe = 5 eV). We

found the results are not strongly dependent on U . The NN interactions have the relation

JM > JMR > JR, the differences between them are about one order of magnitude. However

the NNN interaction between Fe ions, JM2, is smaller than the interaction between Gd

and Fe ions, JMR. The Néel temperature of Fe and Gd are estimated by mean field theory

in Sec. 4.4.3. We found that TFeN is almost three order of magnitude larger than TGdN .

Compared with the experiments, TFeN (exp) = 661 K and TGdN (exp) = 2.5 K, our results

from mean field theory overestimate TFeN but fit well with TGdN .

93



A. RARE-EARTH FERRITES

Table A.1: Coupling constant J ’s and Néel temperature of Fe and Gd obtained by using
different U ’s on Gd (keep UFe = 5 eV).

UGd = 1eV UGd = 3eV UGd = 5eV

JM (meV )
2.6984
0.0828
2.8827

2.7239
0.0841
2.9008

2.7413
0.0851
2.9134

JR(meV )
0.0186
0.0003
0.0134

0.0104
0.0004
0.0075

0.0060
0.0010
0.0052

JMR(meV )

0.1631
0.1647
0.1055
0.1430

0.0985
0.1003
0.0650
0.0855

0.0538
0.0558
0.0367
0.0478

TFeN (K) 1101.0561 1108.7145 1113.9602

TGdN (K) 10.7765 5.7911 3.0382
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Figure A.4: Atom magnetization as a function of temperature for GdFeO3, magnetization
of Fe is labeled by red line, while that of Gd is by blue line.

A.4 Magnetic phase transition

In this section, we use spin dynamic method to simulate the phase transition process.

The first step was to determine the Curie temperature by simulating a critical damping

regime, λ = 1.0 to relax the spins. This is done as a function of temperature and at each

temperature an equilibration period of 50ps was simulated followed by another 50ps of

averaging where the mean and variance of the magnetization (of each spin) was monitored

over time until convergence. Generally, convergence is reached at low temperature with

convergence taking longer at elevated temperatures as the thermal fluctuations increase.

An averaging of 50ps is, in most cases, sufficient to achieve a good magnetization curve.

In Figure A.4, we show the magnetization as a function of temperature for GdFeO3.

They agree very well with the experiments, with two phase transitions largely different

with each other, with critical temperature of Fe is around 550 K while that of Gd is about
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10 K.

A.5 Conclusions

We have preliminarily studied the magnetic interactions in GdFeO3. We map the energy

calculated by first principles calculations into Heisenberg model in order to determine the

coupling parameters J ’s for three types of exchange interactions, i.e. Gd-Gd, Fe-Fe and

Gd-Fe. With these parameters, we use mean field theory and spin dynamic simulations

to investigate the phase transition process. Results from both methods are in a good

agreement with the experiments. More work needs to be done in the future, for example,

we can include more interactions such as SIA and DM interactions, to determine the easy-

plane and non-collinear magnetism, and to study the temperature magnetization reversal

mechanism observed in these compounds.
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Abstract

In this thesis, we present a theoretical study of two types of ferroic instabilities: the ferroelectric
instability in novel confined geometries and magnetic instabilities controlled by the distortion of
the underlying crystal lattice. On the one hand, we consider in detail the ferroelectric instability,
specifically, in the nanotubes and the spherical nanoshells and develop a phenomenological theory
for describing such an instability. We determine how the emergence of polarization is affected by
the thickness of the nanoparticle, the dielectric properties of the surrounding media and the inter-
facial boundary conditions. We find an intriguing topological finite-size effect that can promote an
unexpected competition between two different types of distribution of polarization – irrotational
and vortex-like – in the ultra-thin limit. One the other hand, we employ a different formalism to
investigate the structural, electronic and magnetic properties of the rare-earth manganites. Specif-
ically, we conduct a theoretical investigation from first-principles calculations. First, we predict
a pressure-induced A-AFM insulator to FM metal transition on EuMnO3 under hydrostatic pres-
sure, that is unprecedented in the multiferroic rare-earth manganites RMnO3. This investigation
is extended to the study to the epitaxial strain effects on both EuMnO3 and TbMnO3 thin films.
We show that epitaxial strain generates a much richer phase diagram compared to hydrostatic
pressure. We predict novel magnetically-induced insulator – metal and polar – non-polar transi-
tions. More specifically, we find that both the multiferroic E-AFM order and the polar metallic
E∗-AFM state are stabilized in TbMnO3 by means of epitaxial strain. In the contrast, we find a
novel epitaxial-strain-induced multiferroic E-AFM state in EuMnO3 that cannot be obtained by
means of just hydrostatic pressure.

Résumé

Dans cette thèse de doctorat nous présentons une étude théorique de deux types d’instabilités
ferroélectriques: celles apparaissant dans des géométries confinés et celles induites par le magnétisme
dans dans composés massifs de structure perovskite. Dans une première partie nous abordons le
problème des instabilités ferroélectriques apparaissant dans des nanotubes et des nanocoquilles
où nous développons un modèle théorique phénoménologique approprié à ces structures. Nous
étudions comment l’émergence de la polarisation est affectée par (i) l’épaisseur des nanostructures,
(ii) par la réponse diélectrique des matériaux environant la couche ferroélectrique et (iii) les con-
ditions aux interfaces. Nous observons un effet de taille finie topologique qui peut promouvoir
une compétition inhabituelle entre deux types de distribution de la polarization, irrotationel et
en vortex, dans la limite des très petites épaisseurs. Dans une deuxième partie nous utilisons des
calculs ab-initio à base de la théroie de la fonctionnelle de la densité pour étudier les instabilités
ferroélectriques des perovskites manganites à base de terres rares (RMnO3). A partir de ces calculs
nous prédisons qu’il est possible d’induire une transition de phase sous pression dans EuMnO3 le
faisant transiter d’un ordre antiferromagnétique de type A isolant vers un ordre ferromagnétique
métallique sous pression. Ce type de transition n’avait jamais été reporté précédemment dans les
matériaux RMnO3. Nous étendons ensuite cette analyse à l’étude des effets de strain épitaxial dans
les films minces de TbMnO3 et EuMnO3. Nos résultats montrent que le diagramme de phase sous
contrainte d’épitaxie est bien plus riche que celui sous pression hydrostatique. Nous trouvons que
les types antiferromagnétiques E-AFM et E∗-AFM sont stabilisés dans le cas de TbMnO3, où le
type E∗-AFM est une phase métallique polaire. Dans le cas de EuMnO3, nous trouvons une phase
antiferromagnétique de type E qui n’a pas été observée sous pression hydrostatique.
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