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Summary

T2K is an accelerator-based long-baseline neutrino experiment in Japan. The main goal
of the T2K experiment is a search for CP violation in the lepton sector by measuring electron
(anti)neutrino appearance in a muon (anti)neutrino beam. Initial (anti)neutrino flux is produced
in decays of hadrons which originate from the interactions and the re-interactions of a 30GeV
proton beam with a 90 cm long graphite target. Knowledge of the T2K neutrino flux is limited
due to large hadron production uncertainties. A series of hadron production measurements were
done to solve this problem, in the NA61/SHINE experiment at CERN. Measurements were per-
formed with a proton beam and two target types: a thin graphite target and a replica of the T2K
target. Work presented in this thesis concentrates on the T2K replica target data taken in 2010
and the development of the analysis and calibration software. The aim of these measurements
is to fully constrain production of π+, π−, K+, K− and p coming from the target surface by
measuring differential hadron yields in the bins of outgoing particle momentum (p), polar angle
(θ) and longitudinal position on the target surface (z). This will allow reduction of the T2K neu-
trino flux uncertainties from around 10% to below 5%. Predictions of Fluka2011.2c.5 Monte
Carlo, NuBeam and QGSP_BERT physics lists from Geant4.10.03 have been compared to
the data, and it has been found that Fluka2011.2c.5 gives the best prediction.

Keywords: T2K, NA61/SHINE, neutrino, hadron production, neutrino flux, replica target
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1.1 Introduction

During the last 70 years, physicists have developed and extensively tested a remarkable
theory called the Standard Model of particle physics. The Standard Model gives a very precise
description of the particle composition of the known matter and the particle interactions based
on quantum field theory. However, there are some observations which cannot be predicted by
the Standard Model itself. For example, an existence of the particle masses was explained with
the Englert–Brout–Higgs mechanism [1, 2] within the framework of the Standard Model and
proven by the discovery of the Higgs boson [3, 4]. The same mechanism does not predict values
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of the masses which must be taken from different measurements. Also, measurements of the
anisotropies of the cosmic microwave background (for example, the latest measurements of the
Planck space observatory [5]) strongly suggest that 95% of the energy-matter content of the
visible universe is not made of the particles predicted by the Standard Model. Furthermore, an
asymmetry between matter and antimatter quantity in the universe which we observe today,
cannot be explained by any of the measured processes within the Standard Model (see, for
example the strong CP problem). These are just a few hints showing that there must exist
a better theory of nature. The limitations of the Standard Model do not only arise from the
disagreements with the previously described observations, but they are also engraved in its base.
It is important to note that a quantum description of gravity was never achieved and therefore,
gravity is not one of the interactions described by the Standard Model. The theory which will
explain all the problematic observations must also include the quantum description of gravity.

It is natural to think that the Standard Model can be extended by adding new particles
and interactions which would at least solve some of the discrepancies between the theory and
experiments. Since we haven’t observed any new particle so far, the hypothetical particle masses
are usually bounded from below, and the strength of their interactions with ordinary matter is
bounded from above. New theories or models can be (dis)proved by searching for new particles
and by looking for rare interactions of the hypothetical dark matter particles in a detector. Both
approaches have their strengths and limitations. However, it is nearly impossible to discriminate
between the theories on the market, since it is often possible to modify a disproved model and
change the phase space of the model’s parameters. While this is not an explicit topic for this
thesis, it illustrates that it is necessary to approach the physics beyond the Standard Model
from a different perspective.

An opportunity to do this has arisen after the discovery that the weakly interacting Standard
Model particles called neutrinos can oscillate between the flavors - electron, muon and tau
neutrino (νe, νµ, ντ ). The discovery was made by two independent groups: Super-Kamiokande [6]
and SNO [7], and it was awarded a Nobel prize in 2015. Neutrino oscillations, as it will be
shown later, imply that neutrinos have non-zero masses. This requires modification of the
Standard Model since initially, neutrinos in the Standard Model were considered to be the
massless particles. The structure of the neutrino mass matrix which is not yet fully understood
could potentially point to the existence of a sterile neutrino which in turn may solve the dark
matter puzzle. Also, depending on the properties of the neutrino oscillations, this can potentially
address some of the discrepancies presented above (for example asymmetry between the matter
and the antimatter). All of the possibilities will be tackled later in this chapter. It is clear that
neutrinos can be considered as a window on the physics beyond the Standard Model. However,
there are many experimental challenges when measuring neutrino properties, since they interact
only via the weak nuclear force.

The aim of this thesis is to solve some of the experimental challenges which limit the pre-
cision of the neutrino oscillation measurements in a particular type of neutrino experiment -
an accelerator-based long-baseline neutrino experiment. Although the results presented in this
thesis will be mostly used for a specific neutrino experiment called T2K (Tokai to Kamioka, see
chapter 2), the principles behind the results can be applied to similar experiments in the future.

This chapter serves as an introduction to the field of neutrino physics, and it is divided as
follows. First, a brief history of the neutrino discoveries is presented. Afterwards, neutrinos
are described within the framework of the Standard Model. And finally, a concept of neutrino
oscillations is introduced alongside with the all relevant experimental results.
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1.2 A brief history of neutrinos

1.2 A brief history of neutrinos

1.2.1 From the proposition to the discovery of the neutrinos

In the beginning of the 20th century, after the discovery of the atomic nucleus by Rutherford
it was not clear how to explain processes such as beta decay which was observed as a decay of
a nucleus with charge z to a nucleus with charge z+ 1 and a beta particle (electron):

Az→Az+1 +e−. (1.1)

Since beta decay was considered to be a two-body decay, energies of the outgoing nucleus and the
electron should be unambiguously defined by the conservation laws. However, in 1914. James
Chadwick measured the energy spectrum of the beta particles by using a magnetic spectrometer
and discovered that the spectrum was continuous. A problem was also observed in some cases
with the angular momentum of the outgoing nuclei. One possibility was that conservation laws
were violated, but unsatisfied with this, Wolfgang Pauli in 1930 proposed a solution to this puzzle
in his letter to the Federal Institute of Technology in Zürich. He proposed a new neutral particle
which at that time he called neutron. This particle is emitted from the nucleus alongside with
the electron, thus allowing a continuous energy spectrum for the electron and accounting for the
missing angular momentum. After Chadwick discovered what is known today as a neutron, this
mysterious particle was renamed by Enrico Fermi to an Italian word for "a little neutral one" -
a neutrino. It became clear that the process shown in Eq. 1.1 is a decay of the neutron in the
nucleus:

n→ p+ +e−+ ν̄. (1.2)

The neutron decays to a proton, an electron and an antineutrino. The neutrino is defined as a
particle appearing with the positron if the number of electrons(positrons) is zero in the initial
state. On the other hand, a particle which appears with the electron in the final state is defined
as the antineutrino. Fermi invented the first effective field theory of the beta decay. The theory
can be found in any undergraduate textbook such as Introduction to elementary particles by D.
Griffiths [8] and will not be explained here. The strength of the weak interactions in this theory is
given by the Fermi constant (GF , which has a value of 1.6674×10−5GeV −2). Although neutrinos
resolved the puzzle of beta decay, there was one difficulty left: how to observe neutrinos, since
they are neutral and the Fermi constant is extremely small. One possibility to detect neutrinos
was to measure the inverse beta decay by putting a large water tank near a high-intensity
neutrino source:

ν̄+p→ n+e+. (1.3)

In July of 1956., a few decades after Pauli’s letter, Frederick Reines and Clyde Cowan published
their observation of anti-neutrinos coming from the nuclear reactor [9]. They placed a tank filled
with aqueous solution of cadmium chloride (CdCl2) near the nuclear reactor. Positrons created
in inverse beta decays annihilated with an electrons in the solution and created two gamma rays,
while neutrons were captured by cadmium which released an additional gamma ray according
to:

n+ 108Cd→ 109mCd→ 109Cd+γ. (1.4)

These gamma rays were detected by a scintillator array sandwiching the tank. For his work,
Reines was awarded the Nobel prize in 1995. The discovered (anti)neutrino should be actu-
ally called electron (anti)neutrino (νe) since it always comes in pair with electron(positron).
However, today we know that electron has two more massive partners - muon and tau lepton
which in turn come with their own neutrinos - muon and tau neutrinos (νµ, ντ ). The muon
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neutrino was discovered in 1962 by Leon M. Lederman, Melvin Schwartz, and Jack Steinberger
at BNL [10] where they produced neutrinos through the interactions of a 15GeV proton beam
with a beryllium target and then observed their interactions in a spark chamber after other
particles were stopped by a steel wall. In 1988, they were awarded the Nobel prize for their
work. The discovery of ντ was made in the DONUT experiment at Fermilab [11] by producing
tau neutrinos through decays of charmed mesons and observing their interactions in the nuclear
emulsion layers, again after stopping all other particles.

1.2.2 Solar neutrino puzzle and atmospheric neutrino problem

In parallel to the beta decay puzzle, there was an ongoing discussion about what is the energy
source in the Sun. An English astronomer and physicist Arthur Eddington realized that four
hydrogen nuclei (protons) are a bit heavier than one helium nucleus. This meant that nuclear
fusion of hydrogen to helium, if possible, would release enormous amounts of energy. This was
especially convenient since the Sun is mostly made of hydrogen. After the discovery of the
neutron and the development of the Fermi theory, all necessary tools were available to calculate
which processes contribute to the production of energy in the solar core. The calculations were
done by Hans Bethe in 1938 and it was realized that the underlying processes in the stars depend
on their masses. In the lower mass stars like the Sun, fusion processes are dominated by the
so-called pp cycle. There are several possible branches of the pp cycle which depend on the
temperature of the star’s core. The schematic overview of the first branch which dominates in
the Sun is shown in Fig. 1.1. There are two additional branches of the pp cycle which include
a production of beryllium, lithium and boron. However, these are more significant for hotter
stars whose temperature of the core is closer to 20×106K. It is clear from Fig. 1.1 that the Sun
should produce a considerable flux of neutrinos, measurable on the Earth.

p

p

νe

e
+

d

p

γ 3He

p

p νe

e
+

d

p

γ
3He

p

p
4He

Figure 1.1: First branch of the pp fusion cycle in the Sun.

Contributions to the solar neutrino flux on the Earth from all processes is shown in Fig. 1.2
and it was taken from the calculation done by J. Bahcall et al. [12]. The dominant contribution
for low neutrino energies comes from the first branch of the pp cycle. However, the high energy
contribution comes from boron decays on two beryllium nuclei. Ray Davis measured the solar
neutrino flux in 1968. by putting a tank of chlorine deep into the Homestake mine in South
Dakota. If the Sun produces electron neutrinos, they would be able to convert chlorine into
argon:

νe+ 37Cl→ 37Ar+e−. (1.5)
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Figure 1.2: Contribution of the all relevant process in the Sun to the solar neutrino flux on
Earth. Taken from Ref. [12].

Davis devised a method for counting argon atoms and he measured only a third of what was
expected [13]. Resolution of the Solar neutrino problem is closely tied to the phenomenon of
neutrino oscillations during which neutrinos change their flavor (for example, νµ becomes ντ
while traveling from the source to the detector). Apart for the solar neutrinos, another natural
source of neutrinos is interactions of cosmic rays with upper layers of the atmosphere. These
neutrinos are produced in decays of hadrons, mostly pions and the expected ratio of the νµ flux
and the νe flux is:

R

(
νµ
νe

)
= 2

1 . (1.6)

However, the measured number of atmospheric neutrinos by the Kamiokande-II collabora-
tion [14] revealed that there some muon neutrinos are missing (i.e., R< 2). This effect is known
as the atmospheric neutrino problem. In 1998, the Super-Kamiokande collaboration measured
the νµ and νe energy spectra as a function of the zenith angle [6]. Since the typical height in the
atmosphere where neutrinos are created is known and neutrino energy spectra and zenith angle
are measured, it is possible to calculate the ratio of the neutrino flight path length to its energy
L/E. As it will be shown later in section 1.4, the probability of neutrino oscillations changes as a
function of L/E. Measurement performed in Super-Kamiokande are shown in Fig. 1.3. Missing
muon neutrinos for higher L/E are created on the opposite side of the Earth. It is important
to note that these measurements are only consistent with the neutrino oscillations, while other,
more exotic models like neutrino decays are disfavored.
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Figure 1.3: The zenith angle distributions for fully contained 1-ring e-like and µ-like events
with visible energy < 1.33GeV (sub-GeV) and > 1.33GeV (multi-GeV). For multi-GeV µ-like
events, a combined distribution with partially contained (PC) events is shown. The dotted
histograms show the non-oscillated Monte Carlo events, and the solid histograms show the
best-fit expectations for νµ→ ντ oscillations. Taken from Ref. [15].

After the discovery of the neutrino oscillations by Super-Kamiokande, Sudbury Neutrino
Observatory (SNO) started measuring neutrino flux from the Sun. They measured three inde-
pendent interactions in heavy water:

ν+ 2H → p+p+e−, (1.7a)
ν+e−→ ν+e−, (1.7b)
ν+ 2H → ν+p+n. (1.7c)

The first interaction (so-called charged current interaction - CC) is sensitive only to νe,
the second one (elastic scattering - ES) is sensitive to all three neutrino flavors. However, νe
contribution is the largest one. And the third interaction (neutral current interaction - NC)
is sensitive to all flavors equally. This allowed SNO collaboration to measure the total solar
neutrino flux and compare it to the solar νe neutrino flux and prediction of the Standard Solar
Model (SSM) [12]. The final results from the SNO collaboration are shown in Fig. 1.4 and can
be found in Ref. [16]. The ratio of the νe flux to the total flux is:

Φνe

Φall
= 0.340±0.023 (stat)+0.029

−0.031 (syst), (1.8)

The measurement of the NC flux is:

φNC = (4.94±0.21 (stat)+0.38
−0.34 (syst))×106cm−2s−1, (1.9)
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1.3 Neutrinos in the Standard Model of particle physics

while the lower and the upper bound for the φNC prediction from the standard solar model is:

φNCSSM,low = 4.34+0.71
−0.61×106cm−2s−1, (1.10a)

φNCSSM,high = 5.49+0.95
−0.81×106cm−2s−1. (1.10b)

The result is consistent with the SSM prediction and with neutrino oscillations - i.e. only
one-third of the νe flux arrives to the Earth. Although neutrino oscillations solved the solar
neutrino puzzle and the atmospheric neutrino problem, its consequences are far-reaching and to
understand them properly one must understand underlying theory of particles and interactions
- the Standard Model (SM) of particle physics.
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Figure 1.4: Flux of µ+ τ neutrinos versus flux of electron neutrinos. CC, NC and ES flux
measurements are indicated by the filled bands. The total 8B solar neutrino flux predicted
by the Standard Solar Model [12] is shown as dashed lines, and that measured with the NC
channel is shown as the solid band parallel to the model prediction. The narrow band parallel
to the SNO ES result correponds to the Super-Kamiokande result in [17]. The intercepts of
these bands with the axes represent the ±1σ uncertainties. The non-zero value of φµτ provides
strong evidence for neutrino flavor transformation. The point represents φe from the CC flux
and φµτ from the NC-CC difference with 68%, 95%, and 99% C.L. contours included. Taken
from Ref. [16].

1.3 Neutrinos in the Standard Model of particle physics

1.3.1 Standard Model

The Standard Model of particle physics divides the elementary particle content of the universe
into spin one-half fermions and spin one bosons. Fermions interact by exchanging the bosons and

7



Neutrinos

each fermion has its antiparticle - a particle with the same mass but opposite additive quantum
numbers. Depending on the type of its interactions, the fermion can be either a quark or a lepton.
Quarks interact via all fundamental interactions: strong, weak, electromagnetic and gravity.
Leptons do not interact via the strong interaction, and some of them (neutrinos) are without
electrical charge so they can interact only via the weak nuclear force and gravity. Fermions
are further divided into three families. In each family, fermions with the same fundamental
quantum numbers can be found. The only difference is in their masses, fermions in the first
family being lightest ones and in the third family, the heaviest ones. Although all fermions
can interact via gravity, the gravity itself is not included in the Standard Model, in particular,
because it is notoriously difficult to construct a quantum theory of gravity. In addition, this
interaction is 29 orders of magnitude weaker than the weak nuclear force at the proton scale
and therefore can be neglected for single particles in the energy domains that we are studying.
The Standard Model contains four spin one bosons which carry three fundamental interactions
between the fermions: photons (γ) for the electromagnetic interactionW± bosons and Z0 bosons
for the weak interaction and gluons (g) for the strong interaction. The particle content of the
Standard Model is further completed with the already mentioned discovery of the SM Higgs
boson, which has spin zero and whose importance lies in the SU(2)×U(1) symmetry breaking
mechanism resulting in the weak bosons becoming massive. The Higgs also gives their masses
to the fermions. The particle content of the Standard Model is depicted in Fig. 1.5.
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Figure 1.5: Standard Model of particle physics.

1.3.1.1 Gauge invariance in the Standard Model

The notion of symmetry has always been important in physics. From the Noether’s theorem,
we know that to every continuous symmetry of the action corresponds a conserved quantity. Well
known examples are energy, momentum, and angular momentum conservation. The Standard
Model was built to be invariant to the Poincaré group of transformations which include Lorentz
boosts, space-time translations and spatial rotations. The Standard Model is also invariant
under the transformation of the so-called internal gauge symmetry group. This can be best
illustrated through the example of quantum electrodynamics. In the 1930s, Paul Dirac tried to
include the special theory of relativity into quantum mechanics, since the standard formulation
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1.3 Neutrinos in the Standard Model of particle physics

of quantum mechanics is not invariant under the Lorentz transformations. He ended up with a
linearized equation which bears his name:

(iγµ∂µ−m)ψ = 0, (1.11)

where γµ are 4×4 matrices, ∂µ is the energy-momentum operator, m the mass of the particle
and ψ a four-component wave function of the particle, the so-called Dirac spinor. Two degrees of
freedom of the spinor describe particle with projections of the spin +1/2 and −1/2 and the other
two describe the antiparticle. The mere inclusion of special relativity into quantum mechanics
and the requirement that the obtained equation is the first order, lead naturally Dirac to find
the spin of the particle and to predict the existence of the antiparticles. Gamma matrices can
be written in many different representations of the Dirac basic anti-commutation rule:{

γµ,γν
}

=−2ηµνI4, (1.12)

where ηµν represents the Minkovski metric and I4 is a 4×4 unit matrix. For the sake of brevity,
a derivation of the Dirac equation and all consequences will not be described here. Instead they
can be found in textbooks, for example those of Walter Greiner [18, 19]. Dirac equation is valid
for all particles in vacuum. It is useful to write a Dirac Lagrangian:

L= ψ̄(γµ∂µ−m)ψ, (1.13)

where ψ̄ = ψ†γ0. The Lagrangian is invariant under a global phase transformation:

ψ→ eiαψ. (1.14)

The transformations are representations of the unitary group U(1). We can imagine that the
Lagrangian should be invariant to the different but simultaneous phase transformation in each
point of the space-time. In other words, we want to be able to choose different phases for different
electrons in the universe and the Lagrangian should be invariant to the transformations:

ψ→ eiα(xµ)ψ, (1.15)

where now α(xµ) is a function of the space-time coordinates. It turns out that Lagrangian
defined in Eq. 1.13 is not invariant under the local U(1) transformations. Nevertheless, if we
add a new vector field Aµ to the Lagrangian which transforms under the U(1) transformations
like:

Aµ→Aµ+ 1
e
∂µα, (1.16)

it is possible to get Lagrangian which is invariant under the local gauge transformations:

L= ψ̄(γµ∂µ−m)ψ+eψ̄γµψAµ. (1.17)

A new term in the Lagrangian represents the interaction between the electron and the new
vector field. If the vector field is a real physical field, it should also have a kinetic energy term,
which can be built from the field tensor:

Fµν = ∂µAν−∂νAµ. (1.18)
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Furthermore, if we define a covariant derivative:

Dµ = ∂µ− ieAµ, (1.19)

it is possible to write Lagrangian in the same form as in Eq. 1.13:

L= ψ̄(γµDµ−m)ψ− 1
4FµνF

µν . (1.20)

One may be tempted to introduce a mass term of the vector field 1
2mA

µAµ. However, this is
excluded because this term is not invariant under the local gauge transformations. This new
Lagrangian is the same as the Lagrangian of the quantum electrodynamics, and the introduced
massless vector field is a photon field. Therefore, the mere demand of local gauge invariance
under U(1) leads to the charged particle-photon coupled dynamics. This is a compelling idea and
it is possible to follow the same argument and obtain the Lagrangian for the strong interactions.
In order to follow experimental observations, one would need to require the local invariance under
the SU(3) transformations. Quarks carry a charge which is called the color and comes in three
different forms (called red, green and blue). Strong interactions are propagated by eight massless
vector bosons called gluons which also carry color and therefore, can self-interact. However, this
discussion is out of the scope of this chapter which is orientated towards weak interactions and
neutrinos. More details about the gauge invariance in the quantum chromodynamics can be
found in the book by F. Halzen and A. Martin [20].

1.3.2 Electroweak interactions

1.3.2.1 Weak interactions

Understanding weak interactions is of crucial importance for understanding neutrinos. It was
already shown that it is possible to get the interaction Lagrangian for quantum electrodynamics
and chromodynamics by applying a local gauge invariance principle. However, the weak force is
several magnitudes weaker compared to the strong and the electromagnetic forces. This could
potentially be explained if weak interactions are mediated by massive vector bosons (W±).
Furthermore, in an experiment done in 1956, Chien-Shiung Wu studied beta decays of polarized
60Co nuclei and showed that parity (symmetry under reflections) was violated in the measured
weak interactions (see Ref. [21]). In particular, Wu observed that electrons are preferentially
emitted in the direction opposite to the nuclear spin. The amplitude of any process (for example
scattering of two particles) can be written as a product of the currents:

M ∝ JµJµ (1.21)

If we examine an electromagnetic scattering of two electrons we expect the current to be pro-
portional to:

Jµ ∝ ū1γµu2, (1.22)

where u1 and u2 are spinors of the outgoing particles. In order to accommodate parity violation
and other experimental results, current for the weak scattering or decay (let’s say νe + e− →
e−+νe) must be written in the vector minus axial vector (V-A) form:

Jµ ∝ ēγµ
1
2(1−γ5)νe, (1.23)
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1.3 Neutrinos in the Standard Model of particle physics

where γ5 = iγ0γ1γ2γ3. This current is called the charged current since it transfers a unit of
charge. For example, an electron can become νe and the excess charge is transferred by the
emitted W− boson to some other fermion. The same principle is valid for the positron and νe
as can be seen in Fig. 1.6. Later on, Glashow proposed the existence of a weak neutral current.

W−

e− νe

(a)

W−

e− νe

(b)

Figure 1.6: Charged weak currents: positive (a) and negative (b).

These interactions should be mediated by a massive neutral boson (Z0). The existence of neutral
weak interactions was proved by the measurement of the νµ + e− scattering. The form of the
weak neutral current is:

Jµ ∝ ēγµ(cV − cAγ5)νµ, (1.24)

where cV and cA are constants which depend on the interacting particles. While in charged
current interactions (CC) parity violation is maximal, this is not the case in neutral current
interactions (NC) because of the cV and cA factors. In the previous subsections, electromagnetic
and strong interactions were derived from the principle of the local gauge invariance. In contrast
to these interactions which are mediated by massless bosons, weak interactions seem to be
mediated by the massive bosons. The mass term for the vector field is not invariant under
local gauge transformations, therefore we cannot directly apply the same principles to weak
interactions.

1.3.2.2 Electroweak unification

In 1961, Glashow attempted to unify the electromagnetic and the weak interactions under
the electroweak interaction. From the first glance, both of these interactions have a totally
different form: the electromagnetic interaction has vector form, while weak interactions have
V-A form. A useful concept to define are chirality operators P̂L and P̂R such that:

P̂Lψ = 1
2(1−γ5)ψ = ψL, P̂Rψ = 1

2(1 +γ5)ψ = ψR

P̂Lψ̄ = 1
2(1−γ5)ψ̄ = ψ̄R P̂Rψ̄ = 1

2(1 +γ5)ψ̄ = ψ̄L,
(1.25)

where ψL and ψ̄L are the particle and the antiparticle left-handed chiral states respectively, while
ψR and ψ̄R are the particle and the antiparticle right-handed chiral states. Chiral states are
equal to the helicity states (projection of the spin on the momentum) if the fermion is massless.
From Eq. 1.23, it follows that the CC interactions only include the left particle and the right
antiparticle states. From all experiments so far, we have only observed left-handed neutrinos.
The chiral states allow us to rewrite the electromagnetic interactions as a sum of the interaction
between the left-handed and the interaction between the right-handed states:

Jemµ ∝ ūLγµuL+ ūRγµuR. (1.26)
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The same principle can be applied to the measured NC interactions, however, in this case, we
have additional cV and cA factors. From the experimental measurements, we know that the
specific flavor of neutrinos, for example, νe (νe), always comes with the same charged lepton
flavor, in this case, e±. It is possible to construct a left-handed doublet states:

χL =
(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

,

(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

(1.27)

and right-handed singlet states:

χR = eR, µR, τR, uR, d
′
R, cR, s

′
R, tR, b

′
R. (1.28)

These states are singlets and doublets under the SU(2) symmetry group. Doublet states are
constructed from the lepton-neutrino pair or the quark pair and can undergo CC interactions,
while this is not the case for the right-handed singlet states. Quark eigenstates of the weak
interaction are not equal to the quark eigenstates of the strong interaction and therefore we
have quark mixing. For this reason, left-handed quark doublets are constructed, for example,
from u and d′ quarks where the latter one is a linear combination of the d, s, and b quarks. The
mixing of the quarks is represented by the Cabibbo-Kobayashi-Maskawa (CKM) matrix and for
the sake of brevity will not be explained here. More details can be found in Ref. [20]. Since the
symmetry group is SU(2), this allows as to define a quantum number called weak isospin, which
should not be confused with the regular spin. By using the doublets we can write the charged
currents in a more compact form:

J±µ = χ̄Lγµσ
±χL, (1.29)

where σ± are isospin raising and lowering operators defined as a combination of the Pauli
matrices. So, for the charged current we also expect to observe two charged vector bosons
(W±). There are three generators of the symmetry group SU(2) which are represented by the
Pauli matrices or some linear combination of them (in our case σ± = 1

2(σ1 + iσ2)). For the
charged current two operators are being used (σ±), while we are missing the third operator
(third Pauli matrix) and respective neutral vector field (W 3) which can be used for the neutral
current:

J3
µ = χ̄Lγµσ

3χL. (1.30)

The obtained neutral current, just from the symmetry considerations, has pure V-A form, while
this is not the case in the experiments. This proves that SU(2) symmetry group does not give a
complete description of weak interactions. The idea of Glashow was to introduce another U(1)
gauge symmetry similar to the electromagnetic U(1) symmetry and a neutral vector field Bµ.
An equivalent of the electromagnetic charge is called a weak hypercharge (Y ). A superposition
of the two neutral vector fields (W 3

µ and Bµ) can explain the observed NC weak interactions
and the physical neutral vector field Zµ. In addition, a second independent superposition gives
rise of the photon field Aµ:

Aµ =Bµ cosθw +W 3
µ sinθw, (1.31a)

Zµ =−Bµ sinθw +W 3
µ cosθw, (1.31b)
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where θw is a weak mixing angle. Because of the relation 1.31b, it is possible to write a relation
connecting the charge, the hypercharge and the third component of the weak isospin:

Q= I3 + 1
2Y. (1.32)

In order for this theory to work, the couplings of the CC interactions (gw), the NC interactions
(gz) and the electromagnetic interactions (ge) should be related as:

gw sinθw = gz cosθw sinθw = ge. (1.33)

By including the gauge symmetry SU(3)L×U(1)Y and two charged and two neutral vector
fields, we obtain the theory of the electroweak interactions. However, there are a few problems
left. To explain the effective weakness of weak interactions at low energy, we need massive W±
and Z bosons. The mass terms violate the local gauge invariance. The bosons were discovered in
1983 in the UA1 [22, 23] and UA2 [24, 25] experiments at CERN, thus confirming the hypothesis
of the massive weak bosons. Furthermore, the fermion mass terms which were always included
ad hoc in the Lagrangian without a deep understanding of the origin of these terms, also violate
the local gauge invariance of weak interactions. The problem comes from the fact that the mass
term can be written as:

Lm =−mψ̄ψ =−m(ψ̄LψR+ ψ̄RψL). (1.34)

The diagonal terms are equal to zero, while cross terms have only single left field, so any SU(2)L
transformation will change these terms.

1.3.3 Spontaneus symmetry breaking

In order to allow for the massive bosons, weak gauge symmetry of the Lagrangian must be
broken as seen in nature:

SU(2)L×U(1)Y → U(1)em, (1.35)

so that only electromagnetic U(1) symmetry with a massless photon field remains. The mech-
anism of the symmetry breaking will be illustrated on the example of the U(1) symmetry
and the extension of this principle to the real world problem in the Eq. 1.35 can be found
in Ref. [20]. First, we introduce a complex scalar field φ which can be parametrized by two real
fields (φ= φ1 + iφ2) so that Lagrangian becomes:

L= 1
2 (∂µφ1)2 + 1

2 (∂µφ2)2−
(1

2µ
2(φ2

1 +φ2
2)− 1

4λ(φ2
1 +φ2

2)2
)

︸ ︷︷ ︸
V

. (1.36)

The Lagrangian has a global U(1) symmetry and includes a potential with two parameters: µ2

and λ. The potential has a quadratic term which is a mass term for the field if µ2 > 0 and
a quartic term which describes possible self-interactions of φ. If we select only potentials for
which λ > 0 and µ2 < 0, the potential will have minima for nonzero fields which can be seen in
Fig. 1.7. In fact, minima of the potential can be easily calculated:

φ2
1 +φ2

2 = v2 =−µ
2

λ
. (1.37)
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We can choose a point where the potential is minimal and expand the scalar field around this
point. It is convenient to choose the point (v,0). The field becomes:

φ(x) =
√

1
2 (v+η(x) + iξ(x)) , (1.38)

where η and ξ are excitations around the minimum. The Lagrangian becomes:

L′ = 1
2 (∂µξ)2 + 1

2 (∂µη)2 +µ2η2 + const.+ self. int. (1.39)
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Figure 1.7: Scalar field potential with parameters µ2 < 0 and λ > 0.

The new Lagrangian does not display U(1) symmetry, but it represents the same physics
as the Lagrangian in Eq. 1.36 with one difference. The choice of the ground state which is not
invariant under the U(1) transformations brakes the explicit global U(1) symmetry. This break-
ing by an unsymmetrical ground state, rather than by non-invariant terms in the Lagrangian, is
spontaneous symmetry breaking. The nonsymmetrical choice is necessary because we can only
use the perturbation theory around the minimum. Along the way, two fields are generated, one
(η) with the mass term µ2η2 and other massless (ξ). If we imagine the potential in Fig. 1.7
in a cylindrical coordinate system, the massive field represents excitations in the radial direc-
tion, while the massless field (called Goldstone boson) represents excitations in the tangential
direction where the potential is flat. If we try to impose the local gauge U(1) invariance on
the Lagrangian, we need to repeat the same procedure as previously done for the fermions. In
other words, it is necessary to replace the derivative ∂µ with the covariant derivative Dµ and
introduce the massless vector field Aµ. The Lagrangian 1.36 becomes invariant under local gauge
transformations:

L= (∂µ+ ieAµ)φ∗ (∂µ− ieAµ)φ−µ2φ∗φ−λ(φ∗φ)2− 1
4FµνF

µν . (1.40)
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Now, if the field φ is again expanded around the minimum, the Lagrangian loses explicit local
gauge invariance:

L′ = 1
2 (∂µξ)2 + 1

2 (∂µη)2−v2λη2 + 1
2e

2v2AµA
µ−evAµ∂ξ−

1
4FµνF

µν . (1.41)

It is seen that after the spontaneous symmetry breaking. The vector boson Aµ acquires a mass
ev. However, we are left with the two scalar fields. In particular, the massless field is a problem,
since no such massless scalar has been observed in nature. Nevertheless, the expansion of the
field φ around the minimum can be written in the form:

φ=
√

1
2 (v+η(x))eiξ/v (1.42)

and we can get rid of the exponential factor by a local gauge transformation. If we choose a
particular gauge transformation so that we gauge away the phase of the φ field:

φ→
√

1
2 (v+h(x)) , (1.43)

the Lagrangian becomes:

L′′ = 1
2 (∂µh)2−λv2h2 + 1

2e
2v2AµA

µ−λvh3

− 1
4λh

4 + 1
2e

2AµA
µh2 +ve2AµA

µh− 1
4FµνF

µν .
(1.44)

The Goldstone boson is absorbed into the field Aµ. Before the symmetry is broken, Aµ is massless
and has only two polarizations. After the spontaneous symmetry breaking, Aµ becomes massive
and must have three polarizations. Therefore, one degree of freedom (Goldstone boson) is taken
from the scalar field and used as a third component of the polarization. This mechanism is
called Englert–Brout–Higgs mechanism and the remaining massive scalar boson h is called the
Higgs boson. In the case of the SU(2)L×U(1)Y symmetry breaking, we need to introduce scalar
SU(2) doublet

Φ =
(
φ+

φ0

)
L

, (1.45)

but the principle is the same, bosons (W± and Z) acquire mass and the single massive scalar
field remains (check Ref. [20]). As it was already mentioned in the introduction, the existence
of the Higgs boson has been confirmed by CMS and ATLAS collaborations [3, 4].

1.3.3.1 Fermion masses

After the introduction of the scalar field, it is possible to construct SU(2)L×U(1)Y invariant
terms:

L=−G
(
χ̄LΦχR+ χ̄RΦ̄χL

)
, (1.46)

where G is arbitrary constant, χL and χR are one of the doublets and singlets defined in Eq. 1.27
and Eq. 1.28 respectively, for example (νe,e) and eR. After the spontaneous symmetry breaking,
the previously defined term becomes:

L=−Gv√
2
ēe− G√

2
ēeh. (1.47)
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The constant coming with the first term can be recognized as a mass of the electron (me = Gv√
2).

Therefore, introducing the scalar field and the spontaneous symmetry breaking resolves both of
our problems, it generates mass terms for the weak bosons and fermions. Since both coupling
G and Higgs vacuum expectation value v are not predicted by the theory, we cannot predict
masses of the fermions. Instead, they must be measured.

1.3.4 Neutrino masses

From the theory of weak interactions presented in the last several subsections, it is clear that
neutrinos in the Standard Model should be massless particles. All (anti)neutrinos produced in
the SM weak interactions are left particles and right antiparticles. However, fermion mass terms
coming from the coupling with the Higgs field only exist if both chiral states are realized in
nature. Right neutrino states in the Standard Model are not strictly forbidden, and they are
not necessary for the explanation of the weak interaction. After the discovery of neutrino oscil-
lations which will be explained in more details in the next chapter, it was clear that neutrinos
have tiny but nonzero mass. Neutrino oscillations from one flavor to another are a consequence
of the neutrino eigenstates in the vacuum not being equal to the flavor states (νe, νµ, ντ ). The
mechanism behind the neutrino mass is not yet understood. The constraint on the antineutrino
mass can be measured from the electron energy spectra in the beta decay. World-leading mea-
surements of the electron antineutrino mass were performed in the Troitsk experiment [26] by
measuring tritium decays. A measured constraint is:

meff (νe)< 2 eV (95%CL). (1.48)

It is important to note that this is the measurement of the effective mass since νe is not the
mass eigenstate. In contrast to the νe mass measurement, measurements of the effective νe
mass were done by measuring the X-ray spectra of the electron capture in holmium atoms [27].
However, these measurements are two orders of magnitude less precise than the measurements
for νe. An additional constraint to the neutrino masses was obtained from the cosmological
measurements. The best constraint was obtained from the measurements of the fluctuations in
the cosmic microwave background combined with the galaxy clustering measurements and the
measurements of the baryon acoustic oscillations (see Ref. [28]):

mtot < 0.0926 eV(90%CL). (1.49)

These measurements include all stable neutrinos which contribute to the energy density of the
universe. Planck experiment also measured the effective number of these neutrinos which is
equal to:

nν = 3.3±0.5, (1.50)

as can be found in the Ref. [5]. However, similar measurements of the number of the neutri-
nos which couple to the Z boson were done in the LEP (Large Electron-Positron) collider at
CERN [29]. These measurements take into consideration only neutrinos lighter than mZ/2. The
existence of more than three neutrino flavors would decrease cross-section of the Z boson decay
into the hadrons by providing an additional channel for Z decay. The measurement is shown in
Fig. 1.8 and it is equal to:

nν,light = 2.9840±0.0082 (1.51)
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Figure 1.8: Measurements of the Z→ hadrons cross section at LEP (green) and predicted change
of the cross section if the number of light neutrinos is two and four (see Ref. [29]).

1.3.4.1 Dirac or Majorana neutrinos?

Although, the mechanism behind neutrinos masses is not known, there are some hints that it
is not the same as the mechanism which gives masses to other fermions. If we compare previously
mentioned constraints to the neutrino mass with the masses of other fermions, neutrinos are
lighter at least six orders of magnitude compared to the next lightest fermion (electron). Such
difference shows that if the right neutrino states exist, a coupling of the neutrinos with the Higgs
field would be extremely small. If we assume an existence of the right-handed neutrino field, on
top of the Dirac mass term which comes from the coupling with the Higgs field, we can construct
a Majorana mass term:

Lmν =−1
2mR(νR)CνR+h.c., (1.52)

where C denotes a charge conjugation. In other words, the Majorana mass term turns neutrino
to antineutrino. For all other fermions including the left-handed neutrinos, such term is not
possible since it will require the violation of the charge conservations (electromagnetic charge
and weak isospin). In a simplified picture with only one neutrino flavor, a total neutrino mass
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Lagrangian can be written as:

Lmν =−mDν̄RνL−
1
2mR(νR)CνR+h.c.

=−1
2
(
(νL)C , ν̄R

)( 0 mD

mD mR

)(
ν̄L

(νR)C

)
+h.c.,

(1.53)

where mD is the Dirac mass and mR is the Majorana mass. The mass eigenstates can be
obtained after matrix Mν :

Mν =
(

0 mD

mD mR

)
(1.54)

is diagonalized. The obtained eigenvalues are:

M ′ν =
(
m2
D/mR 0

0 mR

)
(1.55)

and it is easy to show that the mass eigenstates are Majorana particles (for example, see
Ref. [30]). If the mass of the second Majorana neutrino is large, we can get an arbitrarily
small mass for the first eigenstate which can explain our observations. A heavy neutrino can
be a possible candidate for the dark matter. Furthermore, if neutrinos are Majorana particles
(neutrino is its own antiparticle), a process called the neutrinoless double beta decay would be
possible:

A
ZX → A

Z+2X+ 2e−. (1.56)

Several experiments are trying to find the neutrinoless double beta decay in various materials,
but up to now, this process stays unconfirmed. One of the examples is the COURE experiment
which measures double beta decays of 130Te (see Ref. [31]) and sets a limit on the half-life of
this decay t1/2 > 4000×1021 y (90%CL).

1.4 Neutrino oscillations

The first prediction of the neutrino oscillations between ν and ν̄ was given in 1957 by Bruno
Pontecorvo [32]. After the discovery of νµ and a possibility of the existence of ντ , neutrino
oscillations were reformulated, and it was assumed that weak eigenstates (νe, νµ, ντ ) are not
eigenstates of the free Hamiltonian. This means that a produced neutrino is a superposition of
the mass eigenstates:

να =
∑
i

U∗αiνi, (1.57)

where να is a neutrino of defined flavor, νi are eigenstates of the free Hamiltonian with a defined
masses mi and the parameters U∗αi are elements of the neutrino mixing matrix. A square of the
absolute value of each parameter gives the probability that the neutrino να is νi. The previous
relation can be inverted to show the mass states as a superposition of the flavor states:

νi =
∑
α

Uαiνα. (1.58)

The scheme, showing the neutrino oscillations is presented in Fig. 1.9. First, a neutrino of
the flavor α is created together with an antilepton of the same flavor in the CC interactions.
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1.4 Neutrino oscillations

The neutrino travels freely through space, and after some distance L, it interacts with matter
in a detector and produces a lepton of the flavor β.

Figure 1.9: Scheme of the neutrino oscilations.

The amplitude of such process can be written as:

A(να→ νβ) =
∑
i

U∗αie
−imiτiUβi, (1.59)

where an exponential factor is a propagator, mi is a mass of the neutrino and τi is a proper time
needed for the neutrino to travel from its source to the detector. Since we assume that the neu-
trino has mass, we can boost the neutrino in the center of mass frame. In this case, the neutrino
is not a relativistic particle, and we can solve Schroedinger equation in the vacuum. After some
time t, the neutrino will only gain a phase because it is an eigenstate of the Hamiltonian. The
propagator must be transformed to the lab reference frame:

miτi = Eit−piL= Eit−
√
E2
i −m2

iL≈ E(t−L) + m2
i

2EL. (1.60)

It is assumed that all mass states must have the same energy to contribute coherently to the
oscillations and therefore Ei→E. In addition, the neutrino mass is expected to be much smaller
compared to the total energy, and because of this, we can use an ultra-relativistic approximation
for the momentum term

√
E2
i −m2

iL ≈ EL−
m2
i

2E . The constant value E(t−L) can be ignored
since it gives rise to a global phase which is the same for all mass states. The probability of the
oscillation from να to νβ is just a square of the absolute value of the amplitude, and after using
the propagator in the lab reference frame, we get:

P (να→ νβ) = |A|2 = δαβ−4
∑
i>j

<
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ij

L

4E

)

+ 2
∑
i>j

=
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ij

L

2E

)
,

(1.61)

where δαβ is a Kronecker delta and ∆m2
ij is defined as:

∆m2
ij =m2

i −m2
j . (1.62)
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If we assume that P (ν̄α→ ν̄β) = P (νβ → να), in other words, that CPT invariance is valid and
observe a feature of Eq. 1.61:

P (νβ → να,U) = P (να→ νβ,U
∗), (1.63)

it is straightforward to obtain the oscillation probability of the antineutrinos:

P (ν̄α→ ν̄β) = |A|2 = δαβ−4
∑
i>j

<
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ij

L

4E

)

−2
∑
i>j

=
(
U∗αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ij

L

2E

)
.

(1.64)

The main difference between the neutrino and antineutrino oscillation probabilities comes from
the third term which is only nonzero if the mixing matrix is complex. If this is the case, it will
cause a CP violation in the lepton sector, which is not yet confirmed experimentally. However,
some indications of the CP violation have been observed by the T2K collaboration [33]. Both,
oscillation probabilities for neutrinos and antineutrinos depend on the squared mass splittings.
Therefore, the oscillation probability would be:

P (να→ νβ) = δαβ (1.65)

if all masses are zero or degenerate. Because of this, the absolute values of the neutrino masses
cannot be measured in the oscillation experiments. Furthermore, since squared mass splittings
appear only as arguments of the sine squared, signs of these splittings cannot be directly de-
termined. This is a so-called problem of the neutrino mass hierarchy and it will be explained
later. Although we know that there are three light neutrino flavors, sometimes it is useful to
use an approximation of two neutrinos (for example, νe and νµ). If there is a clear difference
between the splittings (one is much smaller than the other), we will be sensitive to a specific
type of neutrino oscillations depending on the experiment (neutrino energy and distance from
the source). In the case when we have only two neutrinos, the oscillation probability is the same
for both, the neutrinos and antineutrinos (CP violation is not possible):

P (
(−)
ν α→

(−)
ν β) = sin2 2θ sin2

(
∆m2 L

4E

)
, α 6= β. (1.66)

The mixing matrix U , in this case, can be parametrized only by one parameter - a mixing angle
θ:

U =
[
Ue1 Ue2
Uµ1 Uµ2

]
=
[

cosθ sinθ
−sinθ cosθ

]
. (1.67)

The neutrino oscillations can be measured in two ways by placing the detector at some distance
from the neutrino source: a measurement of the neutrino disappearance (P (να → να)) and a
measurement of the neutrino appearance (P (να → νβ), α 6= β). In most cases, it is useful to
rewrite oscillation probability in units which represent typical values of the distance and the
neutrino energy in experiments. In addition, we already know that neutrino masses have values
in the sub-eV range. Therefore, Eq. 1.66 becomes:

P (
(−)
ν α→

(−)
ν β) = sin2 2θ sin2

(
1.27∆m2[eV2] L[km]

E[GeV]

)
, α 6= β (1.68)
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1.4 Neutrino oscillations

and the similar thing can be done for Eq. 1.61 and Eq. 1.64.

1.4.1 PMNS mixing matrix

A general mixing matrix for three light neutrino flavors can be parametrized by three mixing
angles: θ12, θ13, θ23, by a CP violating phase δCP and by two Majorana phases α1 and α2. This
parametrization is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

U PMNS =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3



=

 c12c13 s12c13 s13e
−iδ

−s12c23− c12s23s13e
iδ c12c23−s12s23s13e

iδ s23c13
s12s23− c12c23s13e

iδ −c12s23−s12c23s13e
iδ c23c13


 e

i
2α1 0 0
0 e

i
2α2 0

0 0 1



=

 1 0 0
0 c23 s23
0 −s23 c23


︸ ︷︷ ︸

atmospheric

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

solar

 e
i
2α1 0 0
0 e

i
2α2 0

0 0 1

 ,
(1.69)

where sij = sinθij and cij = cosθij . The PMNS matrix is often decomposed to a product of the
four different matrices. The first three matrices are of special interest since they govern the os-
cillations, while the fourth one contains only Majorana phases. Historically, neutrino oscillations
were first measured for the atmospheric neutrinos by the Super-Kamiokande collaboration [6]
and for the solar neutrinos by the SNO collaboration [7]. Solar neutrinos of interest come from
the boron decays and have typical energies around 10MeV, while atmospheric neutrinos created
in the collisions of the cosmic rays with the atmosphere have very broad spectra up to several
GeV. As a consequence of this difference in the energy scale, experiments measuring solar and
atmospheric neutrino oscillations are sensitive to different squared mass splittings. Atmospheric
neutrino oscillations are mostly oscillations from νµ to ντ , and they are governed by a mass
splitting

∆m2
atm ≈∆m23 ≈ 2.4×10−3 eV2. (1.70)

In this case, we can use two neutrino approximation, and the corresponding mixing matrix is
the first matrix in the decomposition shown in Eq. 1.69. The mixing angle is θ23 and it is close
to 45◦. On the other hand, solar neutrino oscillations are governed by about two orders of
magnitude smaller squared mass splitting

∆m2
sol ≈∆m2

12 ≈ 8.0×10−5 eV2. (1.71)

Fusion processes in the Sun produce only νe, and solar neutrino oscillations are oscillations of νe
to νµ and ντ . It may seem that atmospheric and solar neutrino oscillations are for any purpose
the same and the only difference is in the mass splittings and mixing angles. However, the
process of solar neutrino oscillations is a strongly dependent on neutrino interactions with the
matter in the Sun. This will be explained in more details in the next subsection. The third
matrix in the decomposition of the PMNS matrix in Eq. 1.69 and the corresponding mixing
angle θ12 is a good approximation for the observed solar neutrino oscillations. The matter effect
in the Sun also allows us to measure the sign of the solar mass squared splitting, while this is
not the case for the atmospheric neutrino oscillations measurements. Consequently, today we do
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not know if m3 >m2 >m1 or m2 >m1 >m3 which is portrayed in Fig. 1.10. The second matrix
in the PMNS decomposition cannot be studied with solar or atmospheric neutrinos. However,
experiments measuring reactor neutrinos and the accelerator-based neutrino experiments have
access to this oscillation sector. The former ones are usually measuring the oscillation parameters
by comparing the neutrino flux coming from the nuclear reactors placed at different distances
from the detector. The latter ones produce a neutrino beam from decays of pions and measure
the beam composition near to the source and after some distance L. Both of these experiment
types can measure the mixing angle θ13. This is of special interest since only recently it was
shown that θ13 has a nonzero value (see subsection 1.4.3. The necessary condition for the
observation of the CP violation in the lepton sector is that all three mixing angles have nonzero
values.

eν µν τν

1ν
2ν

3ν

1ν
2ν

3ν

Normal InvertedCPδ
π
0

π
0
π
0

atm
2m∆

sol
2m∆

Neutrino Mass Hierarchy

Figure 1.10: Fractions of the νe, νµ, ντ in the neutrino mass eigenstates ν1, ν2 and ν3 for the
normal and inverted hierarchy (see Ref. [34]).

1.4.2 The matter effect

In different neutrino experiments, neutrinos rarely pass through the vacuum. If we take, for
example, neutrinos in a long-baseline neutrino experiment, they pass through the Earth’s crust.
Neutrinos can interact with electrons in the matter via CC interactions. The Standard Model
interactions are flavor conserving, and therefore, only νe or νe can interact with electrons. This
gives rise to an effective potential:

VW =±
√

2GFNe, (1.72)

where + is for νe and − is for νe. Parameter GF is the already mentioned Fermi constant,
and Ne is a number of electrons per unit volume. The second contribution to the neutrino
interaction with matter is coming from the elastic scattering by exchanging Z boson. This
type of interactions can happen for any neutrino flavor, but for zero momentum transfer has
an opposite sign for electrons and protons. Consequently, only interactions with neutrons are
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important on average. Similarly, they give rise to the effective potential:

VZ =−
√

2
2 GFNn, (1.73)

where Nn is a number of neutrons per unit volume. If we imagine a two neutrino case, where
we have νe and νµ, it is possible to write a Hamiltonian for the free neutrinos in the vacuum
(see Ref. [35]):

H0 = ∆m2

4E

[
cos2θ sin2θ
−sin2θ cos2θ

]
. (1.74)

Hamiltonian for two neutrino flavors in the matter is obtained easily by adding previously defined
potentials:

Hmat = ∆m2

4E

[
cos2θ sin2θ
−sin2θ cos2θ

]
+VW

[
1 0
0 0

]
+VZ

[
1 0
0 1

]
. (1.75)

Added potentials reflect the fact that νe can interact by exchanging W and Z bosons, while νµ
can only interact by exchanging Z bosons. Terms which are proportional to the unit matrix can
be neglected because they just add constant to the energies of both flavors. After taking this
into consideration, the Hamiltonian can be rewritten as:

Hmat = ∆m2

4E

[
cos2θ sin2θ
−sin2θ cos2θ

]
+ VW

2

[
1 0
0 −1

]
. (1.76)

It is useful to define following quantities:

x≡ 2
√

2GFNeE

∆m2 , (1.77a)

∆m2
M ≡∆m2

√
sin2 2θ+ (cos2θ−x)2, (1.77b)

sin2 2θM ≡
sin2 2θ

sin2 2θ+ (cos2θ−x)2 , (1.77c)

where the parameter x is a measure of the competition between the two effects: the neutrino
oscillations with the mass squared splitting ∆m2 and the matter effect. The Hamiltonian can
be transformed to be a function of ∆m2

M and sin2 2θM :

Hmat = ∆m2
M

4E

[
cos2θM sin2θM
−sin2θM cos2θM

]
. (1.78)

The form of the matter Hamiltonian is the same as the form of the Vacuum Hamiltonian, the only
differences being θ→ θM and ∆m2→∆m2

M . It is straightforward to conclude that matter effect
modifies the neutrino oscillations. This effect is often called the Mikheyev-Smirnov-Wolfenstein
effect, and it increases with the neutrino energy, as can be seen in Eq. 1.77a. For neutrino
energies at the GeV scale, neutrino oscillations are governed by the atmospheric mass squared
splitting. The parameter x is:

x≈ E

12GeV . (1.79)

The matter effect becomes important for neutrino energies above 10GeV. The Hamiltonian
in Eq. 1.78 also holds for the antineutrinos if we change the sign of the VW constant. This
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difference between the neutrinos and the antineutrinos creates a false signal of the CP violation
and must be always taken into account. Additionally, the Hamiltonian is also sensitive to the
mass hierarchy, i.e., change of the sign in the mass squared splitting. If the cos2θ is known, one
can determine the sign of the mass squared splitting. A good example of this effect can be found
in solar neutrino oscillations. If we take only solar neutrinos produced in the boron decays which
have higher energies, it becomes clear that the matter effect gives a dominant contribution to
the Hamiltonian because: √

2GFNe ≈ 0.75×10−5 eV2/MeV (1.80)

which is three times larger than:

∆m2
sol

4E = 0.25×10−5 eV2/MeV. (1.81)

Neutrinos in the Sun are born as νe, and if we ignore the oscillation part of the Hamiltonian,
they are always the eigenstates of the Hamiltonian with higher energy

√
2GFNe. If we assume

that the electron density adiabatically changes from the core to the surface, we can solve the
Schroedinger equation for different regions and patch the wave functions. Neutrinos reaching
the Sun surface will still be the eigenstate with the higher energy. Once they enter the vacuum,
the electron density drops to zero and the eigenstate with higher energy becomes the mass state
with higher mass. Since neutrinos coming from the surface of the Sun are mostly in the more
massive mass eigenstate, they don’t oscillate while traveling to the Earth. We only measure a
flavor composition of the mass eigenstate. As it happens, m2 > m1, so we measure the flavor
content of ν2 and the νe flux is around 1/3 of the total flux coming from the Sun. This is
illustrated in Fig. 1.10.

1.4.3 Current knowledge of the oscillation parameters

It was previously shown that atmospheric and solar neutrino oscillations are fundamentally
governed by different squared mass splittings. Since these neutrinos are coming from the natural
sources, it is impossible to control neutrino energies or distances of the sources. Consequently, it
is beneficial to build detectors at some distance from nuclear reactors which are artificial sources
of the νe. In reactor neutrino experiments, the energy of antineutrinos is defined by the nuclear
reactions and cannot be changed. However, the distance can be tuned by carefully choosing a
position of the detector. For example, if we aim to get sensitivity to the solar squared mass
splitting and according to Eq. 1.68, the position should be chosen so that:

1.27∆m2
sol.[eV

2] L[km]
E[GeV] = π

2 . (1.82)

Neutrino oscillations in the solar regime were measured by the KamLAND experiment [36]. The
experiment was built in the Japanese Alps and it was measuring neutrino flux coming from
the 53 nuclear reactors. In contrast to the solar experiments like SNO or Super-Kamiokande,
KamLAND gives the best sensitivity to the squared mass splitting, while measurements of the
mixing angle θ12 are less precise. In that sense, KamLAND is the complementary experiment
to the solar neutrino experiments. Comparison of the KamLAND best-fit contours for ∆m2

sol.
and sin2 θ12 with the Super-Kamiokande solar neutrino measurements is shown in Fig. 1.11.
Values of the parameters are overlaid on top of the figure. There is a 2σ tension between the
Super-Kamiokande results and the KamLAND results, which is not yet understood.
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Figure 1.11: Allowed contours of ∆m2
21 vs. sin2 θ12 from Super-Kamiokande solar neutrino data

(green), KamLAND data (blue), and the combined result (red). For comparison, the almost
identical result of the SK+SNO combined fit is shown by the dashed dotted lines. The filled
regions give the 3 σ confidence level results, the other contours shown are at the 1 and 2 σ
confidence level (for the solar analyses, 4 and 5 σ confidence level contours are also displayed).
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)2
[37].

Measurements of the neutrino oscillations in the atmospheric regime are possible in a con-
trolled manner with accelerator-based long-baseline neutrino experiments. In this case, neutrinos
are produced from decays of hadrons which are coming from the proton beam interactions with
a target. Hadrons are focused by a magnetic field, and as a consequence, it is possible to obtain
narrow, a high-intensity neutrino beam. Usually, two detectors are built: one near the target for
measuring the unoscillated neutrino flux and other far away to measure the oscillated neutrino
flux. In principle, neutrino energy can be tuned by changing the energy of the proton beam
or by placing the detector at some angle with respect to the neutrino beam direction. While
distances of the detectors from the target can be optimized before the experiment is built, ratio
L/E, for this kind of experiments is usually tunned for the atmospheric squared mass splitting
∆m2

atm.. On top of that, it is possible to control the composition of the neutrino beam, by
changing the polarity of the focusing magnetic field. Depending on the polarity, positively or
negatively charged hadrons are focused and they, in turn, produce a νµ or νµ enhanced beam.
Measurements of θ23 and ∆m2

23 were performed by several accelerator-based long-baseline neu-
trino experiments: K2K [38], MINOS [39], T2K [33] and NOvA [40]. These measurements
were obtained by measuring the νµ disappearance. Currently, the most precise measurements
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are provided by the T2K collaboration which combines measurements with the νµ and the νµ
beam. Confidence regions of this measurement are presented in Fig. 1.12 and compared to other
relevant measurements.
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Figure 1.12: The 68% (90%) constant −2∆lnL confidence regions for the sin2 θ23 − |∆m2
32|

plane assuming normal hierarchy, alongside NOvA[40], MINOS+[39], SK[41], and IceCube[42]
confidence regions. Taken from Ref. [33].

Apart from the solar and the atmospheric neutrino sectors, in recent years the most inter-
esting progress was achieved in the so-called θ13 sector. The mixing angle θ13 was the only
unmeasured mixing angle. Reactor neutrino experiments are sensitive to the θ13 mixing angle
in νe→ νe channel. The most precise measurement of the θ13 mixing angle was performed by
the Daya Bay experiment [43] in China. The obtained result is sin2θ13 = 0.084±0.005 and it is
shown in Fig. 1.13. Several other reactor experiments like RENO [44] or Double Chooz [45] also
measured the mixing angle θ13. Results from Double Chooz are in 2σ tension with the results
from Daya Bay. Long-baseline accelerator experiments are also sensitive to the θ13 mixing angle,
by measuring the νe (νe) appearance in a νµ (νµ) beam (see, for example, T2K results [46] and
MINOS [47]).

Discovery of the θ13 6= 0 fulfilled the necessary condition that all mixing angles have nonzero
values in order to have a possibility for studying the CP violation in the lepton sector. A
value of the CP phase δCP is not yet constrained, but there are some indications from the T2K
experiment which favors maximal CP violation δCP = 3π

2 as can be seen in Fig. 1.14.
Although three-flavor neutrino oscillations are well established, there are experiments search-

ing for sterile neutrinos and oscillations between them and the Standard Model neutrinos. Usu-
ally, these are short-baseline neutrino experiments which are constructed so that the probability
of already established neutrino oscillations is negligible. Instead, L/E ratio is tunned to be
sensitive to the squared mass splittings around 1eV2. Observation of the νµ→ νe oscillations for
large mass squared splitting has been reported by the LSND collaboration [49]. The proposed
hypothesis was a so-called (3+1) scheme with one additional sterile neutrino flavor so that νµ
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32| using muon neutrino disappearance by the MINOS [47] and T2K [48] experiments,

converted to |∆m2
ee| assuming the normal (solid) and inverted (dashed) mass hierarchy. Taken

from Ref. [43].

oscillate to sterile neutrinos and afterward sterile neutrinos oscillate to νe. This anomaly was
later refuted by measurements from the MiniBoone experiment [50]. However, if one assumes
the existence of two sterile neutrino flavors, this induces possibility of the additional CP viola-
tion, and since the LSND measured antineutrino oscillations and MiniBoone measured neutrino
oscillations, their results become consistent.

1.4.3.1 Global fit

One of the global fits of the neutrino oscillation parameters was performed by Esteban et
al. [51] while using all relevant experimental data. The fit was done in six-dimensional parameter
space which includes: three oscillation angles (θ12, θ13, θ23), one CP phase (δCP ) and two squared
mass splittings (∆m2

12 and ∆m2
3`). The second mass squared splitting ∆m2

3` depends on the
mass hierarchy: in the normal hierarchy, it becomes ∆m2

32, while in the inverted hierarchy it
is ∆m2

13. Best fit parameters are obtained for the normal hierarchy(ordering), and they are
summarized in Tab. 1.1 alongside with the results for the assumption that the mass hierarchy
is inverted. In addition, allowed two-dimensional regions after the marginalization over other
parameters are shown in Fig. 1.15. The list of all experiments used in the global fit can also be
found in Ref. [51].
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 0.83) Any Ordering
bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.306+0.012
−0.012 0.271→ 0.345 0.306+0.012

−0.012 0.271→ 0.345 0.271→ 0.345
θ12/

◦ 33.56+0.77
−0.75 31.38→ 35.99 33.56+0.77

−0.75 31.38→ 35.99 31.38→ 35.99

sin2 θ23 0.441+0.027
−0.021 0.385→ 0.635 0.587+0.020

−0.024 0.393→ 0.640 0.385→ 0.638
θ23/

◦ 41.6+1.5
−1.2 38.4→ 52.8 50.0+1.1

−1.4 38.8→ 53.1 38.4→ 53.0

sin2 θ13 0.02166+0.00075
−0.00075 0.01934→ 0.02392 0.02179+0.00076

−0.00076 0.01953→ 0.02408 0.01934→ 0.02397
θ13/

◦ 8.46+0.15
−0.15 7.99→ 8.90 8.49+0.15

−0.15 8.03→ 8.93 7.99→ 8.91

δCP/
◦ 261+51

−59 0→ 360 277+40
−46 145→ 391 0→ 360

∆m2
12

10−5 eV2 7.50+0.19
−0.17 7.03→ 8.09 7.50+0.19

−0.17 7.03→ 8.09 7.03→ 8.09

∆m2
3`

10−3 eV2 +2.524+0.039
−0.040 +2.407→+2.643 −2.514+0.038

−0.041 −2.635→−2.399
[

+2.407→+2.643
−2.629→−2.405

]

Table 1.1: Three-neutrino oscillation parameters after the fit to the global data. Taken from
Ref. [51].

1.4.4 Open questions

Among many open questions in the neutrino physics, neutrino oscillations experiments are
directed toward answering the following questions:
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1. is there a CP violation in the lepton sector,

2. what is the neutrino mass hierarchy and

3. in which octant is the mixing angle θ23 located.

Measurement of the CP violation in the lepton sector could potentially help constrain models
which predict the matter-antimatter asymmetry created in the early universe. The CP violation
can be measured in the accelerator-based long-baseline neutrino experiments, by comparing the
appearance of νe in a νµ beam and the appearance of νe in a νµ beam. From these measurements,
one can obtain a CP asymmetry factor:

ACP = P (νµ→ νe)−P (νµ→ νe)
P (νµ→ νe) +P (νµ→ νe)

≈ ∆m2
12L

4E · sin3θ12
sinθ13

· sinδCP (1.83)

and consequently measure δCP . The knowledge of the neutrino mass hierarchy is important for
testing the neutrino mass models. In addition some of the cosmological constraints on the sum
of the neutrino masses depend on the neutrino mass hierarchy. To measure the neutrino mass
hierarchy, one needs large matter effect, in other words, long distance between the neutrino
source and the detector. The probability of neutrino appearance (for example νµ→ νe) depends
on the sin2 θ23. Such dependence creates ambiguity in the true value of the θ23 since we cannot
determine in which octant θ23 is located. As a consequence, this ambiguity propagates when we
try to measure the mass hierarchy or the CP violation. All of these questions will be tackled
by the new generation of the neutrino experiments such as DUNE [52] or Hyper-K [53, 54], but
they will be ready to take data in ten years. In the meantime, a good candidate for getting an
indication of the CP violation in the lepton sector is the T2K experiment in Japan. After the
planned upgrade in 2020 expected sensitivity to the δCP if it is maximal is larger than 3σ [55]
as can be seen in Fig. 1.16.
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Figure 1.16: T2K phase II sensitivity to δCP [55] if the mass hierarchy is unknown a) and if it
is measured by other experiment b).
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The T2K experiment
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The T2K (Tokai to Kamioka) experiment is an accelerator long-baseline neutrino experiment.
It has been designed to use a muon (anti-)neutrino beam and to measure:

1. muon (anti-)neutrino disappearance,

2. electron (anti-)neutrino appearance,

3. a CP violation in the lepton sector,

4. neutrino-nucleus cross sections and

5. to search for sterile neutrinos.

31



The T2K experiment

The T2K neutrino beam is produced in the T2K neutrino beam facility which is located at
the J-PARC [56] accelerator complex in Tokai on the east cost of Japan. It is produced as follows:
first, a proton beam with the kinetic energy of 30GeV is directed towards a graphite target where
hadrons (mostly pions) are produced in the proton-carbon interactions. Afterwards, positively
charged hadrons are focused by a set of three focusing elements (called magnetic horns) and
directed to the decay volume where they undergo decays. This way we obtain muon neutrino
enhanced beam. The polarity of the horns can be reversed to focus negatively charged hadrons
and therefore produce a muon antineutrino enhanced beam. Positive and negative focusings are
also denoted as a forward horn current (FHC) and reverse horn current (RHC) mode. Produced

Figure 2.1: Shematic display of the T2K baseline from J-PARC to the Super-Kamiokande.

(anti-)neutrino beam passes through two near detectors the ND280 and INGRID, located 280m
from the target, which measure the non-oscillated (anti-)neutrino flux. The measurement of the
oscillated (anti-)neutrino beam is performed 295km away at Super-Kamiokande. A schematic
display of the T2K experiment is shown in Fig. 2.1.

It is important to note that the T2K experiment is the first experiment to employ a so-called
off-axis method. The (anti-)neutrino beam has been directed at 2.5◦ angle to the baseline be-
tween the ND280 and Super-Kamiokande. Consequently, the neutrino beam passing through
Super-Kamiokande has a narrow energy spectrum with a maximum at 0.6GeV. At this energy,
the effect of neutrino oscillations at Super-Kamiokande is maximized (see Fig. 2.2). The off-axis
method will be described in more details in subsection 2.4.1. The advantages of off-axis (anti-
)neutrino beams produced in an accelerator neutrino experiment are obvious: it is possible to
get well-controlled, high-intensity, highly collimated beam with the narrow energy spectrum. It
is impossible to achieve all of these requirements with the neutrinos from any other source.

The oscillation measurements in the T2K experiment are done by comparing the number
and energy spectrum of the predicted neutrino interactions (without oscillations) in Super-
Kamiokande with the number and energy spectra of measured neutrino interactions. The pre-
diction is constrained by the measurements of the neutrino interaction rates from the ND280
and the hadron production measurements which reduce the (anti-)neutrino flux uncertainty.
The most significant measurement from the T2K experiment shows the first indication and later
confirmation of the νe appearance in the νµ beam [57, 58]. This is a ground-breaking discovery
since νe appearance proves that the mixing angle θ13 is nonzero. This is a necessary requirement
for the possible experimental detection of the CP violation in the lepton sector as explained in
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Figure 2.2: Neutrino off-axis flux and approximate probability of the νµ disapearance in Super-
Kamiokande.

section 1.4. Recently, a new measurement from T2K [33] indicates the existence of the CP vio-
lation. The hypothesis of CP conservation is excluded at 90% confidence level for both, normal
and inverted mass hierarchies (see Fig. 2.3). Measurements planed for the T2K phase II will try
to improve this significance [55].

The T2K data-taking started in 2010 with the muon neutrino beam (so-called positive focus-
ing mode in which νµ enhanced beam is created) and continued with several large interruptions
(due to the earthquake in 2011 and the hadron hall accident at J-PARC in 2013) till the spring of
2014 when we switched to the muon anti-neutrino beam (negative focusing mode of the horns).
During the summer of 2016, we switched again to the positive focusing mode. A total number
of protons on target (POT) collected is equal to 22.5× 1020, and it is shown in Fig. 2.4 with
approximately one third taken in the negative focusing mode. The proton beam power was
rising steadily during the data-taking and reached a maximum of 470kW. The goal is to achieve
the proton beam power of 750 kW during the T2K-I phase (before 2020). During the T2K-II
extension (2020-2025), the beam power increase to 1.3MW is planned.

This section is organized as follows: first, the most important measurements of the T2K
experiment will be discussed. Then, a brief overview of the near (ND280 and INGRID) and
the far (Super-Kamiokande) detectors will be presented. Towards the end of the section, the
neutrino beam-line with all of its elements will be described in great detail. Additionally, a
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normal and inverted mass hierachy respectively. Vertical lines show 90% confidence interval.

neutrino beam simulation alongside with a neutrino flux prediction and its uncertainties will
be presented. This will illustrate the main motivation for the measurements presented in this
thesis.

2.1 Near detector complex

The near detector complex is located 280m away from the target. It consists of two separate
detectors: an off-axis near detector (ND280 ) and an on-axis detector called Interactive Neutrino
Grid (INGRID).

2.1.1 Near detector (ND280 )

In principle, a near detector would not be the necessary part of the long-baseline neutrino
experiments if the neutrino flux and the neutrino interaction rates are entirely known. However,
this is not the case and for this reason, ND280 was constructed for T2K. In particular, it is
used for the measurements of the neutrino flux, νe (νe) contamination of the νµ (νµ) neutrino
beam and the neutrino interaction rates. These measurements considerably decrease systematic
uncertainties of the νµ (νµ) disappearance and the νe (νe) appearance measurements in Super-
Kamiokande. Above all, it is necessary to constrain νe (νe) contamination of the neutrino beam
with respect to the neutrino energy. In addition, νµ neutral current interactions in which single
π0 is created are of special interest, since they represent a dominant background in the νe
appearance measurements in Super-Kamiokande.

To perform all necessary measurements, the ND280 consists of several different sub-detector
systems. The sub-detectors are placed in the magnetic field of the dipole UA1/NOMAD magnet
from CERN (see Fig. 2.5a). The magnetic field strength is 0.2T. The magnet is cooled with the
water cooling. A pi-zero detector (PØD) is placed at the upstream part of the detector followed
by the tracker which consists of three time projection chambers (TPC) and two fine-grained
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2.1 Near detector complex

Figure 2.4: The total POT collected from the start of the data-taking till June 2017, both in
positive and negative focusing mode. Beam power is shown on the right side of the plot.

detectors (FGD). The tracker and the PØD are surrounded by an electromagnetic calorimeter
which captures most of the outgoing particles. Also, the magnet yoke is instrumented with the
side muon range detector (SMRD) made of scintillators, to measure the range of the exiting
muons. A schematic overview of the whole setup can be seen in Fig. 2.5b.

(a) (b)

Figure 2.5: A top view of the magnet and ND280 between the yokes (a). A schematic overview
of the ND280 (b).
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Pi-zero detector

The purpose of the PØD is to measure already mentioned νµ neutral current interactions in
water where single π0 is created:

νµ+N → νµ+N +π0 +X. (2.1)

The detector is made of x and y scintillator planes of scintillator bars. All bars are extruded
so that light guide can be inserted into them. The light from each bar is guided through the
wavelength shifting (WLS) fibers and transported to a multi-pixel photon counter (MPPC)
which is essentially a multi-pixel avalanche photo-diode operating as a multiple of small Geiger
counters. The ND280 uses extensively the MPPC technology since MPPCs can operate inside
the magnetic field. The space between the scintillator planes is filled with water bags, lead and
brass sheets. The material is used as a neutrino target. Water can be filled or emptied so that a
contribution to the measurements from other materials can be subtracted. More details about
the PØD design can be found in Ref. [59].

Time projection chambers

The TPCs are detectors which can reconstruct a trajectory of a particle in 3D. The particle
ionizes a medium which is usually, some gas and then electrons drift towards the sense plane in
the high electric field. The position in two dimensions is measured by a segmented sense plane,
while the third coordinate is obtained from the measurement of drift time which is needed
for electrons to reach the sense plane. Energy loss in the gas can be used as a method for
particle identification. On top of that, if a TPC is placed in the magnetic field as in T2K, it is
possible to measure particle momentum and charge. The three TPCs in the ND280 are using
Ar:CF4:iC4H10 (95 : 3 : 2) mixture as a drift gas. The box containing the mixture is placed in the
outer box filled with CO2 which is used as an insulator. For the sense planes, the TPCs employ
in total 72 micromegas detectors [60]. The position resolution of the TPCs is around 0.7mm,
the momentum resolution is around 10%, while the energy loss resolution is around 7.8%. More
details about the construction of the TPCs alongside with their characteristics can be found in
Ref. [61].

Fine grained detectors

The fine-grained detectors which were placed between the three previously described TPCs
(see Fig. 2.5b), provide a target for the neutrinos. First FGD consists of 30 scintillator lay-
ers. Each layer has x and y plane made of 192 extruded scintillator bars. The scintillator is
polystyrene (like in the PØD), and it is used as a target and a tracking system. The light signal
is again transported via the inserted WLS fibers and read out with the MPPCs. While first
FGD contains only scintillator bars, this is not the case for the second FGD. It has seven scin-
tillator layers, and the space between them is filled with water which is again used as a target
for the neutrinos. Despite the differences between the two FGDs, their outside dimensions are
the same. The FGD paper [62] provides more details about the construction and performance
of the FGDs.

Electromagnetic calorimeter

It was already described that electromagnetic calorimeter (ECal) surrounds the PØD and the
tracker (TPCs + FGDs). The purpose of the ECal is two-fold: it stops all outgoing particles, and
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it reconstructs photons produced from the π0 decays. The ECal has 13 independent modules,
and each module is made of the active scintillator and lead absorber layers. First six modules
surround the PØD from four sides parallel to the neutrino beam and form the PØD ECal. Next
six modules encompass the tracker in a similar manner and make the barrel ECal. One additional
module is placed at the downstream side. Again, light from the scintillator bars is read out by
the MPPCs. More details about the ECal can be found in one of the T2K instrumentation
papers [63].

Side muon range detector

High angle escaping muons are measured by 440 scintillator modules inserted in the air gaps
between the steel plates of the magnet yoke. In addition, these scintillators forming side muon
range detector (SMRD), are used to trigger on cosmic ray muons passing through the ND280 .
Also, the SMRD can identify neutrino interactions in the cavity walls and the magnet yoke.
Again, readout system employs MPPCs for the light detection. Additional information about
the SMRD can be found in Ref. [64].

2.1.2 INGRID

The purpose of INGRID is to measure the neutrino beam intensity and direction on a daily
basis. This is done by measuring a neutrino interaction rate in iron. The detector consists of
14 modules arranged in a cross pattern centered on the beam axis. Two additional modules
are placed off-axis as shown in Fig. 2.6a, for checking the axial symmetry of the beam. Each
module is made of 11 scintillator planes and nine iron plates with a total mass of iron exceeding
7 tons per module (Fig. 2.6b). The scintillator planes consist of two layers which are made of
24 horizontal and 24 vertical scintillator bars. On the outside faces of the detector and between
the modules, an additional segmented scintillator layer is placed to discard particles created
outside of the detector. The light created in the scintillator bars is transported by the WLS
fibers and read out by the already mentioned MPPCs. The precision of the measured beam
center is around 10 cm which corresponds to the neutrino beam direction precision of 0.4mrad
(see Ref. [65]).
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±5m

±5m

(a) (b)

Figure 2.6: An overview of INGRID (a) with 14 modules in the cross pattern and two off-axis
modules. The composition of one module (b). Blue planes are tracking scintillator planes, while
veto planes are black. The iron planes are grey.

2.2 Super-Kamiokande
Super-Kamiokande is a far detector of the T2K experiment which measures neutrino inter-

action rate after oscillations. On top of that, Super-Kamiokande functions as the independent
detector and also measures atmospheric neutrinos [17, 66]. In fact, neutrino oscillations were
discovered by the measurement of the atmospheric neutrinos done with Super-Kamiokande [6].
Additionally, Super-Kamiokande was an integral part of the previous accelerator experiment
K2K [38]. Furthermore, measurements of the proton lifetime [67] have also been performed at
Super-Kamiokande.

(a) (b)

Figure 2.7: An overview of Super-Kamiokande with surrounding facilities (a) and a look inside
of the detector during the service work.

Super-Kamiokande is a large water Cherenkov detector located 1km under Mt. Ikenoyama,
near Kamioka on the west coast of Japan. The detector is a large cylinder filled with 50kton
of water and divided into an inner detector (ID) and an outer detector (OD). The inner wall
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of the ID is instrumented with 11129 PMTs, which cover 40% of the surface. The wall is also
covered with the special coating to prevent light reflecting back to the ID volume. The OD,
on the other hand, is only sparsely instrumented and it is covered with 1885 outward facing
PMTs. The purpose of the ID is to count a number of νµ and νe interactions to determine
neutrino beam flavor composition and compare the results with the prediction from the ND280
and flux simulation. The primary task of the OD is to remove cosmic muons with ~100%
efficiency. However, neutrino events coming from the T2K neutrino beam can be separated from
the background, and the information from the OD can be used to a limited degree since the OD is
not well instrumented. More details about the hardware can be found in the Super-Kamiokande
detector paper [68].

Super-Kamiokande detects neutrino charged current quasi-elastic interactions (CCQE) in
which a lepton is produced with the same flavor as the incoming neutrino. The produced lepton
is either a muon (coming from the νµ) or an electron (coming from the νe). Their speed in the
detector is usually larger than the speed of light in the water. Hence, they produce a cone of
Cherenkov radiation which is then detected by the PMTs on the detector walls. However, while
the leptons pass through water, they experience multiple Coulomb scattering. Since they have
the same charge and muons are around 210 times more massive, electrons will be much more
affected by the scattering. For this reason, detected Cherenkov ring on the wall is sharp for
muons and diffuse for electrons. In this way, it is possible to distinguish between electrons and
muons. An example of the muon-like and electron-like event in Super-Kamiokande can be seen
in Fig. 2.8.

(a) (b)

Figure 2.8: An example of the muon-like (a) and the electron-like events in Super-Kamiokande.

2.3 The T2K neutrino beam facility
The advantage of the accelerator-based neutrino experiments is a much higher degree of

control over its neutrino source, which is not the case for other types of the neutrino experiments.
The T2K neutrino beam is produced at the T2K neutrino beam facility in Tokai, Japan. The
facility includes the J-PARC accelerator complex in which protons are accelerated, a primary
beam-line which is used for the transportation of the 30GeV protons and a secondary beam-line
where protons interact and produce hadrons. Also, the hadrons then decay to neutrinos in the
secondary beam-line.
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2.3.1 J-PARC accelerator complex

The J-PARC accelerator complex consists of three accelerators working as a part of a single
chain (Fig. 2.9): a linear accelerator (LINAC), a rapid-cycling synchrotron (RCS) and a main
ring (MR). The accelerating chain works as follows: first, H− ions are accelerated by LINAC to
the kinetic energy up to 400MeV. Then, H− ions are stripped of their electrons and injected
to the RCS, where they are accelerated to the kinetic energy of 3GeV. After the RCS, protons
are injected to the MR and accelerated to the kinetic energy of 30GeV in eight bunches. The
protons are then extracted and guided towards the experiment. There are two modes of the
proton extraction from the main ring: a fast extraction mode and a slow extraction mode. In the
fast extraction mode which is used for the T2K experiment, all eight bunches are extracted in
one step. This mode can be used only with the targets which are located underground because
of the high beam power and therefore high radiation risks. On the other hand, slow extraction
mode which gives lower beam power is used for other experimental facilities which are above
ground (see Fig. 2.9). The designed beam power with fast extraction mode is 750 kW, and
proton beam intensity is 3×1014 p/spill [69]. However, this power was never achieved because
main ring power supplies are not fully upgraded. So far, beam power peaked around 470kW.

Figure 2.9: A schematic overview of the J-PARC accelerator chain.

2.3.2 Primary beam-line

The extracted proton beam needs to be safely transported towards the target. This is done
by the primary beam-line. Along the way, measurements of the proton beam profile, position,
beam loss and beam intensity are performed. These are important for accurately predicting the
flux, since a number of protons on target and width of the beam influence hadron production
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and in turn the neutrino flux. Also, if large beam loss is detected, an abort signal is sent
to the MR to protect the beam-line. The primary beam-line consists of three main parts: a
preparation section, an arc section, and a final focusing section. The preparation section and the
final focusing section contain normal conducting magnets, while the arc section which is used
for bending the beam towards the secondary beam-line, contains superconducting magnets. An
overview of the primary and secondary beamline is shown in Fig. 2.10. More details about
the primary section and the magnet configuration used can be found in Ref. [69]. Inside all
three sections, there are several types of beam monitors which are used for already mentioned
measurements.

Beam monitors

Different types of beam monitors are used for each measurement. The intensity of the
beam is measured by five current transformers (CT) which are essentially toroidal coils wrapped
around the specially designed ferromagnetic core. Each CT measures absolute beam intensity
with a precision of around 2% and a beam timing with an accuracy of 10ns. Position of the
beam is measured by 15 electrostatic monitors (ESM), which have four segmented cylindrical
electrodes. By measuring asymmetry of the signals between top-bottom and left-right electrodes,
it is possible to determine the proton beam center. The precision of the measurements is
estimated to be 450µm.

It is important to note that the CT and ESM measurements are nondestructive measure-
ments, i.e., there is no beam loss because of the measurements. On the contrary, measurements
of the beam profile done by 19 segmented secondary emission monitors (SSEM) are destructive.
The estimated beam loss is around 0.005% per SSEM. For this reason, only a couple of SSEMs
are kept inside the beam-line during the data-taking, while others are only used during the beam
tuning. Each SSEM has two sets of titanium strips with the anode foil between them. When the
beam hits the strips, secondary electrons are emitted and they begin to drift towards the anode.
In turn, they induce a signal in the strips. The precision of the beam profile measurements is
around 200µm.

The beam loss measurement is done by 50 beam loss monitors (BLM) which are proportional
wire counters. They can measure beam loses up to 16mW. Previously mentioned loss caused
by SSEM is estimated by the BLMs. All of these measurements are of utmost importance since
a bias in the understanding of the proton beam will bias the calculated neutrino flux. For
this reason, there is ongoing research and development to replace and improve some of these
detectors. In particular, SSEM will be replaced by similar design which uses titanium wires
instead of strips.

2.3.3 Secondary beam-line

The secondary beam-line is the volume where hadrons are produced and decay to the neu-
trinos. The volume is around 1500m 3 and it is filled with helium at atmospheric pressure to
reduce the pion absorption and the production of tritium. The secondary beam-line consists of
the three main sections: a target station, a decay volume, and a beam dump.

Target station

The target station is located immediately after the primary beam-line. It consists of the
target and the set of three magnetic focusing horns. The target itself is located inside the first
horn. In front of the target, there is an optical transition radiation monitor (OTR) and a graphite
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Figure 2.10: A schematic overview of the T2K primary and secondary beam-lines.

baffle which serves as a beam collimator and protects the horns from the excess radiation. An
overview of the target station area is shown in Fig. 2.11. The OTR uses thin titanium foils tilted
by 45◦ with respect to the proton beam. When the beam hits the foil, the transition radiation
is created at the surface of the foil. After reflecting on several parabolic mirrors, the light is
then collected by a charge injection device camera which produces an image of the beam. The
OTR has a carousel with eight positions, similar to the revolver. Each position can contain a
different type of foil or an empty slot.

The target is a 91.4cm long graphite rod, with the radius of 1.3cm and density of 1.8g/cm3.
The material was selected to maximize the neutrino flux and to withstand the heat transfer
from the beam. The rod has been enclosed in the graphite tube and on top of that, in the
thin titanium case. The cooling is provided by helium flowing between the tube, the rod, and
the case. The whole structure is attached to the flange made of aluminum and titanium. In
addition, two titanium pipes are installed onto the flange, and they are used for transporting
helium in and out from the target. The whole assembly is inserted into the first horn.

Each of the three magnetic horns consists of two coaxial aluminum conductors which give
rise to the toroidal field in the space between them (B ∝ 1

r ). An example of the working principle
is shown in Fig. 2.12, alongside with the preview of the horn 1. The thickness of the conductors
is 3mm. This value was chosen to minimize the pion absorption while withstanding 750 kW
beam power and the Lorentz force created by 320kA current. The shape of the horns which can
be seen in Fig. 2.11, is optimized to focus pions. Typical transverse momenta of pions in the
T2K experiment is around 0.4GeV/c and for this reason, it is necessary to have bending power
of 1.3Tm. This could be done by one large horn however, because of the cooling and radiation,
a present design with three separate horns was adopted. Although the horns were designed to
operate with a pulse current of 320kA, they have been operated with a current of 250kA up to
now. More details about the horn operation and design can be found in Ref. [70, 71]
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Figure 2.11: A schematic overview the target station [70].

Decay volume and beam dump

After passing through the horns, hadrons enter the decay volume which is a 96m long steel
tunnel. At the end of the tunnel, a beam dump is placed to contain all non-decayed hadrons. It
is made of graphite core with the thickness of 3.2m and fifteen iron plates with a total thickness
of 2.4m. This stops all particles except muons with energy above 5GeV. The flux of these
muons is measured by the muon monitor [72, 73], behind the beam dump. Muons are produced
in the same decays with the neutrinos, so their direction is correlated with the direction of the
neutrino beam. The muon monitor consists of two types of the detectors: ionization chambers
and silicone PIN photo-diodes. It is designed to monitor neutrino beam direction with a precision
of 0.25mrad and the intensity with a precision better than 3%.

2.4 Neutrino beam

Knowledge of the neutrino flux is of the utmost importance for the T2K experiment since it
is one of the limiting factors for the precise measurement of the neutrino oscillation parameters
and the neutrino-nucleus cross sections. In this section, the off-axis method will be presented,
followed by the description of the neutrino beam simulation and uncertainties of the neutrino
flux.
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Figure 2.12: Working principle of the horns (a) and model of the horn 1 [70].

2.4.1 Off-axis technique

The off-axis method in T2K is used for achieving two things:

1. tune neutrino energy, so that the oscillation probability at Super-Kamiokande is maximal
and

2. reduce the high energy tail of the neutrino energy spectrum.

Here, only a brief review of the off-axis method will be presented, while the more detailed
explanation can be found in the work of J.M. Levy [74] which has been used as a base of this
subsection. Neutrinos in the T2K experiment, depending on which horn focusing mode is used,
are mostly muon (anti-)neutrinos produced in decays of pions:

π+→ µ+ +νµ, (2.2a)
π−→ µ−+νµ. (2.2b)

Therefore, their energy spectra are limited by the energy spectra of the pions and in turn, the
energy of the proton beam. In the lab reference frame, maximum neutrino energy for a given
pion energy can be achieved only for the neutrinos created with momenta parallel to the pion
momenta. This can be easily understood since no additional momentum is transferred to the
muons for balancing out transverse momentum of the neutrinos. It is useful to look at the pion
decays in the pion center of mass reference frame and then obtain values in the lab frame by
applying Lorentz boost to the four-momenta of the neutrinos. Quantities in the center of mass
frame will be presented with the star, for example, neutrino energy in the center of mass frame
is E∗ν , while in the lab system, they will be denoted without a star (for example Eν). It is also
assumed that the lab frame and the center of mass frame have aligned axes, i.e. they are parallel
to each other. Energy of the neutrino in the pion center of mass frame is constant and it is equal
to:

E∗ν =
m2
π−m2

µ

2mπ
, (2.3)
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where mπ and mµ are pion and muon masses respectively, while the neutrino mass is considered
to be 0. Consequently, longitudinal (p∗ν,l) and transverse momenta (p∗ν,t) of the neutrinos are
equal to:

p∗ν,l =
m2
π−m2

µ

2mπ
cosθ∗ν , (2.4a)

p∗ν,t =
m2
π−m2

µ

2mπ
sinθ∗ν , (2.4b)

where θ∗ is an angle of the neutrinos with respect to the axis which is parallel to the pion
momenta in the lab system. The angular distribution in the center of mass system is uniform.
Now, it is possible to introduce Lorentz transformations to get previously defined quantities in
the lab reference frame. These transformations are:

Eν = γE∗ν(1 +β cosθ∗ν), (2.5a)
pν,l = γE∗ν(β+ cosθ∗ν), (2.5b)
pν,t = E∗ν sinθ∗ν . (2.5c)

It is easy to rewrite the neutrino energy only as a function of the variables in the lab system:

Eν =
m2
π−m2

µ

2Eπ
1

1− cosθν
√

1−m2
π/E

2
π

, (2.6)

where Eπ is a pion energy and θν is a neutrino angle which can be written as a function of the
center of mass angle and pion velocity β:

tan θν2 =
√

1−β
1 +β

tan θ
∗
ν

2 . (2.7)

Depending on the pion energy, a small interval in the angle θν is represented by a large angle
interval in the center of mass frame. In the ultra-relativistic limit (Eπ >>mπ), for 0◦ angle, the
neutrino energy becomes a linear function of the pion energy:

Eν =
m2
π−m2

µ

m2
π

Eπ. (2.8)

It is clear that for 0◦ angle, neutrino energy is the unbounded function of the pion energy.
However, this is not the case for non-zero angle, it rises with pion energy and it reaches a
maximum value of:

Eν,max =
m2
π−m2

µ

2mπ

1
sinθν

= E∗ν
sinθν

. (2.9)

It is equal to the neutrino energy in the pion center of mass frame (E∗ν) divided by sinθν . This
can be understood differently: the neutrino energy Eν can be found only for the angles which
are equal or smaller than:

θν ≤ arcsin
(
E∗ν
Eν

)
. (2.10)

45



The T2K experiment

The maximum neutrino energy for a given angle is achieved for:

Eπ = mπ

sinθν
. (2.11)

Now, let’s imagine that we want neutrinos with a certain value of the angle θν , for example, 2.5◦.
The neutrino energy in the lab frame is a product of two competing factors: γ and (1+β cosθ∗ν).
The first one, γ, increases with the pion energy in the lab frame, while the second one decreases
with the pion energy for relativistic pions (β ≈ 1). To keep neutrino angle θν constant while
increasing pion energy, it is necessary to increase neutrino angle in the center of mass frame,
like it was shown in Eq. 2.7. After we cross pion energy defined in 2.11, we start to select
backward neutrinos in the center of mass frame. Consequently, cosθ∗ν becomes negative and term
(1+β cosθ∗ν) in the neutrino energy (equation 2.5a) starts to dominate. Neutrino energy is shown
as a function of the pion energy in Fig. 2.13a for the six neutrino angles (θ = 0◦,0.5◦, ...,2.5◦).
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Figure 2.13: Neutrino energy vs. pion energy for six angles (a) and neutrino probability density
vs. neutrino energy (b). The full line is the contribution of the forward neutrinos, while the
dashed line is the contribution of the backward neutrinos.

It is useful to introduce neutrino probability density distribution ( d2P
dEνdΩ) in terms of the

neutrino energy Eν and the neutrino angle θν . This distribution represents a probability that
we will get a neutrino (in this case from the pion decay) in the energy interval Eν + dEν and
solid angle interval Ω+dΩ. Furthermore, the distribution can be multiplied with the pion energy
spectra from the proton-carbon interactions and integrated over the possible energies and the
angle coverage of the detectors to obtain neutrino flux. For the pion decays in the center of
mass frame, it is straightforward to write the neutrino probability distribution:

dP

dE∗νdΩ∗ = 1
4πδ

(
E∗ν −

m2
π−m2

µ

2mπ

)
, (2.12)

where δ represents Dirac delta distribution. For the neutrino flux calculation we assume the
following pion energy spectra:

g(Eπ)∝ (Ep−Eπ)5H(Ep−Eπ), (2.13)

where H(Ep−Eπ) is the Heaviside step function, and Ep is the energy of the proton beam. It
is implicitly assumed that the pion energy spectra does not depend on the angle with respect
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to the proton beam since all pions are focused by the magnetic horns. In reality, divergence of
the pions is nonzero and changes with energy, but for the sake of this exercise, it is assumed
to be negligible. The probability distribution shown in Eq. 2.12, must be transformed from the
variables (E∗ν ,cosθ∗ν) to the (Eπ,cosθ∗ν). After the transformation, the probability distribution
can be multiplied by the pion energy spectra from Eq. 2.13. Now, an additional transformation
is introduced: (Eπ,cosθ∗ν)→ (Eπ,cosθν). This yields a new probability density distribution:
dNν

dEνdΩν which if multiplied by the energy and the solid angle interval (dEν and dΩ) gives a
fraction of the neutrino flux in the defined interval. The distribution is:

dNν

dEνdΩν
= mπ

4πE∗ sin2 θν
√

1− r2 sin2 θν

∑
k=1,2

g (Ek) |cosθν + (−1)k
√

1− r2 sin2 θν |, (2.14)

where r = Eν
E∗ν

and Ek are pion energies:

Ek =mπ
1 + (−1)k cosθν

√
1− r2 sin2 θν

r sin2 θν
, k = 1,2. (2.15)

The first term in Eq. 2.14 (for k = 1) is to be kept only for r ≥ 1. Apart from that, the
first term represents contributions of the forward neutrinos. Similarly, the second term is the
contribution of the backward neutrinos which is possible only if the pion energy spectra has a
non-vanishing contribution for the energies larger than the energy defined in the relation 2.11.
Both contributions have been plotted in Fig. 2.13b for several angles θν . The peaks in the
probability distributions are produced by the bound on the neutrino energy for a given angle
(equation 2.9). It is also important to note that the backward neutrinos tend to group close to
the maximum energy and therefore reinforce the peaks. This also could be seen in Fig. 2.13a,
where backward neutrinos are represented by a very long tail after the maximum.

2.4.2 T2K neutrino beam simulation

It was shown in the previous subsection that it is possible to calculate neutrino flux an-
alytically if the produced pions are perfectly collimated and if the pion production is known.
In fact, it is possible to repeat all calculations if the neutrinos are created from the decays of
charged kaons. However, in reality, none of these assumptions are true. The target is a 90 cm
long graphite rod inserted in the first magnetic horn, and because of that, not all hadrons are
produced in the same position along the target. Therefore, length of the trajectory inside the
focusing volume of the horns is not the same for all hadrons with the same momentum. Addi-
tionally, hadrons are produced with different polar angles and momenta, which also reduces the
efficiency of the focusing. Some of the hadrons will be created nearly parallel to the beam-line.
In this case, they will never enter region between the conductors in the horns and some of the
π− (in the positive focusing mode) which would otherwise be defocused, will contribute to the
wrong sign neutrino flux (νµ instead of νµ). Focusing and geometry of the experiment are not
the only problems. Hadron production is not well understood at the energies used in T2K,
and there exists only a handful of measurements which can be used to constrain the hadron
production. This will be explained in great detail in the next subsection.

A Monte Carlo simulation was developed to properly estimate neutrino flux at the ND280
and Super-Kamiokande. The simulation consists of two main parts. First part uses Fluka2011
Monte Carlo model for generating beam protons at the upstream part of the baffle, transporting
them to the target and simulating interactions inside the target. Once the produced particles or
non-interacted protons exit the target, tracking with Fluka2011 is stopped, and the tracking
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is continued with Geant3 based simulation called J-PARC neutrino beam (JNUBEAM) sim-
ulation. Interactions outside the target are simulated with the GCALOR model. Before we
proceed with the more detailed description of the simulation, it is necessary to define a naming
convention for the interactions and produced particles:

• primary particles - beam protons,

• primary interactions - an interaction of the primary beam protons with the target or the
elements of the beam-line,

• secondary particles - particles produced in the primary interactions,

• secondary interactions - interactions between the secondary particles and the material in
the beam-line (target, horns, etc...),

• tertiary particles - particles produced in the secondary interactions or the higher order
interactions,

• tertiary interactions - interactions of the tertiary particles.

Fluka2011 simulation

In the first part of the simulation, hadron interactions inside the target are simulated with
Fluka2011. This model was chosen since it gave the best prediction for the available hadron
production measurements. The geometry used in Fluka2011 is rather simple, it consists of
graphite baffle, helium gas in front of the target and the target itself (see Fig. 2.14). Beam
protons are generated at the upstream end of the hole in the baffle with a kinetic energy of
30GeV. Since position, where the beam proton hits the target can change the probability of
re-interactions and the focusing efficiency, it is necessary to generate the same beam profile as
the one obtained from the measurements.

The equation of motion for the particle beam inside a synchrotron is the Hill equation, and
phase space of such system has four dimensions (two coordinates and two divergences). If we look
only in the 2D phase space (let’s say one coordinate and one divergence), the beam is represented
by an ellipse. It is useful to introduce the so-called twiss parametrization of the ellipse which is
also used to describe parameters of the J-PARC beam. There are four parameters: α, β, γ and
ε which are shown in Fig. 2.15. Only three of these parameters are independent, and we can
write an equation of the ellipse:

γx2 + 2αxx′+βx′2 = ε. (2.16)

The parameter ε is called the beam emittance, and it is an area of the ellipse divided by π.
The emittance is an internal property of the beam, and it is constant (Liouville’s theorem) if we
neglect beam losses. In case of the Gaussian beam profile, the width of the beam is related to
the twiss parameters:

2σx =
√
βε. (2.17)
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Figure 2.14: Fluka2011 geometry used in the first step of the JNUBEAM simulation.

In T2K, the beam parameters σx, α and ε were chosen to be independent, while β and γ
are calculated using Eq. 2.16 and Eq. 2.17. An example of the J-PARC proton beam profile
and phase space for the T2K run 4 is shown in Fig. 2.16. To simulate the beam profile for
one coordinate in the Fluka2011 simulation we generate two normally distributed, non-biased
random numbers r1 and r2 with variance equal to 1. The numbers are then used for the
calculation of the beam position and divergence:(

x
x′

)
=
(

cosθ −sinθ
sinθ cosθ

)(
ar1
br2

)
+
(

x

x′

)
, (2.18)

where a and b are semi-major and semi-minor axes of the ellipse respectively:

a= 1
2

√
ε

γ+αtanθ , (2.19a)

b= 1
2

√
ε

β−αtanθ , (2.19b)

(2.19c)

and θ is an angle between the semi-major axis and x−axis:

θ = 1
2 arctan 2α

γ−β
. (2.19d)

Parameters x and x′ are mean values of the beam position and divergence respectively.
Naturally, the procedure described above must be repeated for the (y,y′) phase space to get
full beam profile. In total, six twiss parameters and four mean values are used to describe the
proton beam fully.

When beam profile is generated, the interactions insides the baffle and the target are simu-
lated in such a way that the history of all produced hadrons which exit the geometry shown in
Fig. 2.14 are preserved.
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Figure 2.16: J-PARC proton beam profile for T2K run 4 (a), beam divergence divx vs. x (b)
and divy vs. y (c).

Geant3 simulation

Hadrons from the Fluka2011 stage of the simulation are then propagated in JNUBEAM
all the way to the beam dump if they don’t decay in flight to neutrinos. There are several
constraints imposed onto the tracking of the particles to speed up the simulation and reduce the
output size. Tracking is stopped for hadrons and muons with momentum less than 0.1GeV/c
and their decays are simulated with appropriate branching ratios. The momentum threshold
for tracking of electrons and gammas is set higher, at 1GeV/c, since they do not contribute to
the neutrino flux. If hadrons pass through the beam dump, the limit is also set to 1GeV/c.
In addition, neutrinos produced in the decays of particles with momentum less than 10MeV/c
are ignored since their energy is very low and the interaction rate they produce at the ND280
or Super-Kamiokande is insignificant. All particles decaying to neutrinos are forced to produce
neutrinos in the direction of the ND280 and Super-Kamiokande to minimize computation time.
However, additional weight is applied to the neutrinos to account for the probability that created
neutrinos have direction towards the near and the far detectors. In case of Super-Kamiokande,
this weight is straightforward to calculate, since distance is large enough so that the neutrino
source can be considered point-like. In contrast to Super-Kamiokande, the neutrino source from

50



2.4 Neutrino beam

the ND280 is a line. Therefore, a position at the cross section of the detector is randomly
chosen, and then the probability of neutrino production in this direction is calculated. A total
of 14 different decays which are taken into account are summarized in Tab. 2.1. The history of
all neutrinos (all parents and grandparents with interactions and decays) is saved to the output
of the simulation.

Particle Channel BR [%]
π± µ±νµ(νµ) 99.9877

e±νe(νe) 0.0123
µ± e±νe(νe)νµ(νµ) 100
K± µ±νµ(νµ) 63.55

π0e±νe(νe) 5.07
π0µ±νµ(νµ) 3.35

K0
L π±e∓νe(νe) 40.55

π±µ∓νµ(νµ) 27.04

Table 2.1: Decay channels taken into account in JNUBEAM.

Neutrino spectra and neutrino parent particles

Since most of the produced hadrons are pions, it is obvious that neutrino flux is dominated
by the flux coming from the pion decays. Therefore, it is expected to get a narrow peak in the
neutrino spectra as explained in subsection 2.4.1. A small percentage of the produced particles
are kaons, and because of their higher mass, they will contribute to the flux with much broader
spectra and higher maximum. On the other hand, a small fraction of the neutrino flux also
comes from the muon decays, but the typical energy of these neutrinos is slightly below the
main peak. Contribution to the νµ flux in the positive focusing mode at the ND280 and Super-
Kamiokande is shown in Fig. 2.17. The flux is shown per unit area, per 1021 protons on target
and normalized by the total branching ratio of the decay channels which produce neutrinos.
Integrated fractions of neutrinos for energies less than 10GeV coming from different parents are
shown in Tab. 2.2.

Neutrino flux [%]
Parent νµ νµ νe νe

pion 95.08 82.88 0.98 0.40
kaon 4.91 6.95 41.52 89.23
muon 0.01 10.17 57.50 10.37

(a)

Neutrino flux [%]
Parent νµ νµ νe νe

pion 94.54 82.72 0.98 0.35
kaon 5.45 8.19 46.15 92.19
muon 0.01 9.09 52.87 7.46

(b)

Table 2.2: Proportion of the flux from different parent particles in positive focusing mode at the
ND280 (a) and Super-Kamiokande (b).

In general, fluxes in the positive and negative focusing mode show similar behavior at low
energies. However, the νµ flux in the positive mode is around 15% higher at the peak energy
with respect to the νµ flux in the negative focusing mode. The reason for this is related to the
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Figure 2.17: Neutrino flux coming from different parent particles as a function of neutrino energy
at the ND280 (a) and Super-Kamiokande (b).
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Figure 2.18: Neutrino flux for T2K run 6 at the ND280 for FHC (a) and RHC (b); neutrino
flux at Super-Kamiokande for FHC (c) and RHC (d).

u-d quark asymmetry of the primary interactions (p + C). For the same reason contribution of
the wrong-sign neutrinos in the negative focusing mode will be higher. Also, at higher neutrino
energies, in the negative focusing mode, main contributions come from K− and K0

L. Neutrino
fluxes at the ND280 and Super-Kamiokande are shown in Fig. 2.18, both in the positive and
negative focusing mode. Different colors represent contributions from different (anti)neutrinos.
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2.4 Neutrino beam

2.4.3 Systematic uncertainties of the neutrino flux

Estimate of the flux uncertainties is of crucial importance for T2K since expected neutrino
interaction rates in the detectors are proportional to the flux. There are several contributions
to the flux uncertainty:

• proton beam profile and off-axis angle,

• number of P.O.T.,

• horn and target alignment,

• horn current and field,

• material modeling and,

• hadron interactions.

The neutrino flux is affected by the beam profile. In particular, a change in the position and
the width of the beam affects the hadron production inside the target by changing amount of
material through which the particles pass. Also, this changes how produced particles are focused
by the horns and the neutrino beam direction. The off-axis angle is especially sensitive to the
proton beam y position and width because the near and the far detectors are shifted from the
beam direction in the vertical plane. The direction of the neutrino beam is measured by the
muon monitor and INGRID. A typical uncertainty of the beam direction and thus uncertainty of
the off-axis angle is around 0.4mrad. The uncertainty of the proton beam intensity measured by
CTs biases the neutrino flux. The total contribution of the beam profile and the beam intensity
uncertainty to the neutrino flux uncertainty is from 2% to 10% for the νµ and νµ fluxes in the
positive and negative focusing mode respectively.

The horn and the target alignment were changed in the simulation within their uncertainties.
The most significant contribution to the neutrino flux uncertainty from the alignment comes from
the overall alignment between the primary and secondary beam-line and the angular alignment
of the first horn. The value of this uncertainty is around 3%. The uncertainty of the horn
current is 2% which corresponds to the current variations within ±5 kA. Alongside with the
contributions from the magnetic field asymmetry, this induces possible flux bias of 2%.

Materials used in the construction of the target and the elements in the beam-line are modeled
by the simulation and have assigned nominal densities to them. However, the real densities are
only known up to a certain precision and any bias will induce a bias in the interaction probability
and therefore a bias in the neutrino flux prediction. The estimated systematic uncertainty of
the flux coming from the modeling of the materials is estimated to be around 2% or below.

The major contribution to the systematic uncertainty of the neutrino flux comes from the
modeling of the hadron interactions. Measurements of the hadron production in the T2K en-
ergy range and with the same materials are sparse and do not constrain Monte Carlo models
very well. If only models were used without any external hadron production data, the uncer-
tainty of the neutrino flux would increase to more than 25%. To illustrate this, a simulation
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of proton interactions and re-interactions inside the 90 cm graphite rod was made with three
different models: Fluka2011, NuBeam and QGSP_BERT physics lists from Geant4.10. A
comparison of π+ spectra in the phase space of polar angle (θ) and momentum (p) is presented
in Fig. 2.19. Large differences can be seen between the models and without any external data
to distinguish between them, those differences must be included as a systematic uncertainty of
the flux. Therefore, hadron production measurements are necessary for providing the accurate
prediction of the neutrino flux. A more detailed description of the usage of the external hadron
production data is provided in the next section.
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Figure 2.19: Comparison of Fluka2011 π+ yields, emitted from the surface of 90 cm long
graphite rod, with NuBeam (a) and QGSP_BERT (b) physics lists from Geant4.10. Proton
beam of 31GeV/c has been used, and a total number of 5·106 primary interactions have been
simulated for all three models.

With the current knowledge of the hadron production, the uncertainty of the flux prediction is
around 10%. The uncertainty of the νµ and νµ flux in Super-Kamiokande is shown in Fig. 2.20
with all previously described components. A detailed description of the uncertainties can be
found in the Ref. [75].
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Figure 2.20: Uncertainties of the νµ flux (a) and νµ flux (b) at Super-Kamiokande for positive
and negative focusing mode respectively based on the NA61/SHINE thin-target measurements.
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2.5 Re-weighting of the T2K neutrino flux with hadron produc-
tion measurements

It was already shown that the prediction of the hadron yields from different Monte Carlo
models could be radically different. In principle, it would be possible to simulate the interactions
by the updated model, based on the hadron production measurements, but this would coast a
lot of computation time. Therefore, a re-weighting procedure which scales the Monte Carlo
prediction to the external hadron production data must be applied to the primary interactions
and all re-interactions in the target and the elements of the beam-line. This includes interactions
of different hadrons (π±, K±, K0

L, p, and n) with different materials (mostly carbon, aluminum,
and iron). For each interaction, it is necessary to re-weight both the interaction probability
and differential production spectra of hadrons. The interaction probability defines a mean
free path through the material before the hadron interacts. On the other hand, differential
production of the hadrons gives the shape of the produced hadron spectra and a total number of
hadrons produced in the interaction. The re-weighting procedure is done after the neutrino beam
simulation, and the weights are applied to all interactions and re-interactions which produced
neutrinos. Consequently, a product of all weights from a single neutrino history is applied to that
neutrino. Although several different measurements are used for the re-weighting procedure, the
main source of the hadron production measurements is from NA61/SHINE [76] experiment at
CERN. It provided measurements of the primary p + carbon interaction at 31GeV/c [77, 78, 79].

2.5.1 Interaction probability re-weighting

Before the re-weighting of the interaction probability is presented, it is necessary to define two
different types of the interaction processes which differ in the energy transfer from the projectile
to the target and the number of particles produced. First one is a nuclear elastic scattering (from
now on called just the elastic scattering) where the energy of the projectile particle is nearly
conserved. In this case, new particles cannot be produced or the nuclei fragmented because of the
small momentum transfer. The probability of the elastic scattering is governed by elastic cross
section (σel). The second process is an inelastic scattering in which target nucleus is fragmented,
and new particles can be produced. It is governed by inelastic cross section (σinel). Such sample
of the inelastic events in which no new hadrons are produced except nucleons coming from the
fragmentation of the target nuclei are called quasi-elastic events, and the respective cross section
is the quasi-elastic cross section (σqel). In this case, the fragments of the nuclei usually have
low momentum and projectile retains most of its energy. Majority of the inelastic events are
so-called production events where new hadrons are produced. The respective cross section for
this process is production cross section (σprod).

The interaction probability re-weighting is applied to the production events since only they
contribute to the neutrino flux. All other processes keep the primary proton intact with most
of its energy. The re-weighting starts with the calculation of interaction probability (from now
on, it represents the probability of production of the new hadrons) in the infinitesimal length
∆x after traveling a distance x through the material of nuclear density ρ. The calculation of
the probability is done both for the data and Monte Carlo:

P (x;σprod) =
∫ x+∆x

x
σprodρexp(−x′σprodρ)dx′ = ∆xσprodρexp(−xσprodρ). (2.20)
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The calculated weight is a ratio of probabilities:

W =
P (x;σ′prod)
P (x;σprod) · exp(−x(σ′prod−σprod)ρ), (2.21)

where σ′prod and σprod are production cross sections for the data and Monte Carlo model respec-
tively. The weight has two distinct contributions: the first one is the weight for the probability
of interaction and the second one is for an attenuation of the particle flux after traveling distance
x. If a particle exits the material or decays before interacting, only the second contribution is
used, and the weight becomes:

W = exp(−x(σ′prod−σprod)ρ) (2.22)

Several different measurements have been used for the interaction probability re-weighting.
Some of these experiments measured σinel. In that case, it is necessary to subtract σqel from the
results. A list of all used measurements alongside with the explanation how σqel for different
interactions was calculated is provided in Ref. [75].

2.5.2 Multiplicity re-weighting

Re-weighting of the differential hadron production is done by re-weighting differential mul-
tiplicities:

dn

dp
(θ,pin,A) = 1

σprod(pin,A)
dσ

dp
(θ,pin,A), (2.23)

where pin is a momentum of the projectile, A is an atomic number, and θ is a polar angle
between the produced particle and the initial particle. Similarly to the interaction probability
re-weighting, the weight is calculated as a ratio between the data (usually NA61/SHINE) and
Monte Carlo:

W =

[
dn
dp (θ,pin,A)

]
data[

dn
dp (θ,pin,A)

]
MC

. (2.24)

If the available data match Monte Carlo in the initial particle momentum and the target material,
weights defined in Eq. 2.24 are applied directly. However, sometimes this is not the case. If
the initial particle momentum is different, data measurements are scaled assuming the perfect
Feynman scaling. The previously calculated weights are converted to the (xF ,pt) phase space,
where pt is transverse momenta of the produced particles and xF is a Feynman variable:

xF = pL
pmaxL

. (2.25)

The Feynman variable is a ratio of the longitudinal momentum of the produced particle and
the maximum allowed longitudinal momentum this particle can have (momentum in the center
of mass frame). If the target nuclei in the data are not the same to the simulation, additional
scaling is applied which includes A-dependence of the multiplicities (see Ref. [80, 81, 82]):

E
d3σ(A1)
dp3 =

[
A1
A0

]α(xF ,pt)
E
d3σ(A0)
dp3 , (2.26)

where:
α(xF ,pt) = (a+ bxF + cx2

F )(d+ep2
t ). (2.27)
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The scaling includes five parameters (a−e) which are determined by fitting the data taken with
different target nuclei. Measurements usually do not cover full phase space. For the missing
regions data is extrapolated by using the so-called BMPT parametrization [80]:

E
d3σ(A1)
dp3 =A(1−xR)α(1 +BxR)x−βR

[
1 + a

xγR
pt+

a2

2xδR
p2
t

]
e
−apt
x
γ
R , (2.28)

where α, β, γ, δ, a, A, B are parameters to be determined, pt is a transverse momentum, and
xR is a radial scaling variable:

xR = E

Emaxcm

, (2.29)

is a ratio of the particle energy and maximum possible energy in the center of mass frame. More
details about the re-weighting procedure can be found in Ref. [75, 83].

2.5.3 Hadron production uncertainties

Hadron production uncertainties can be divided into three main parts: uncertainties on the
interaction probability re-weighting ( related to production cross section σprod), uncertainties
on the meson re-weighting and uncertainties on the baryon re-weighting. The dominant contri-
butions come from the interaction probability re-weighting and the meson multiplicity tuning,
depending on the neutrino energy, flavor and focusing mode. Uncertainties of the production
cross section come mainly from the hadron production measurements themselves and are usu-
ally caused by the removal of the quasi-elastic contribution from the inelastic cross section. The
quasi-elastic contribution is often not well constrained or it is model dependent.

Re-weighting of the mesons has two regimes: a low energy regime where uncertainties are
dominated by pions re-weighting and a high energy regime where uncertainties are dominated by
kaon re-weighting. Underlying cause for this is apparent: the low energy neutrinos are mostly
produced in the pion decays, while high energy neutrinos are mostly produced in the kaon
decays. Both pion and kaon re-weighting uncertainty can be divided into four components:

• the uncertainty of the hadron production measurements,

• the uncertainties of the scaling to different energies,

• the uncertainty of the target material re-weighting and

• the uncertainty of the extrapolation to the uncovered phase space.

The meson re-weighting uncertainty is dominated by the hadron production measurements er-
rors, mostly from NA61/SHINE since they are mostly used for re-weighting. Secondary protons
are also re-weighted with the NA61/SHINE data, but the secondary interactions of this protons
outside of the target are not re-weighted since they contribute to less than 10% of the neu-
trino flux. However, uncertainties for these interactions are also estimated. Currently, the total
hadron production uncertainty is around 9% and can be found in Ref. [75]
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2.5.4 Hadron production measurements with the replica target

The total uncertainty of the neutrino flux is dominated by the hadron production uncer-
tainty. Since produced hadrons have continuous energy spectra and can re-interact with various
materials, scaling of the hadron production measurements to different energies and materials
is necessary. However, around 90% of the flux is coming from the decays of hadrons created
in the target. Thus, by measuring hadron spectra at the surface of the T2K replica target, it
is possible to directly re-weight 90% of the neutrino flux. This kind of measurement does not
require knowledge of the interaction probability, and all re-interactions inside the target are al-
ready included in the measurement. Re-interactions outside of the target must be treated in the
same way as before. This greatly reduces the hadron production uncertainties of the neutrino
flux. An estimate of the uncertainty after re-weighting the neutrino flux with the T2K replica
target measurements is 4− 5%. Consequently, the goal of the T2K collaboration is to reach
this precision, since any future measurements of the δCP are predicated on the assumption that
the flux uncertainty will be reduced. Because of the magnetic focusing and re-interactions, the
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Figure 2.21: Contirbution of the different longitudinal bins to the flux at Super-Kamiokande.

interactions in the different parts of the target contribute differently to the neutrino flux as can
be seen in Fig. 2.21. Any experiment capable of providing the measurements with the replica
of the T2K target must also be able to reconstruct hadron position on the target surface in at
least five longitudinal bins and the downstream target face. The only experiment, capable of
installing the T2K replica target and measuring the hadron yields coming from its surface in
the phase space of interest is the NA61/SHINE experiment at CERN.
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Chapter 3

The NA61/SHINE experiment
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The NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a fixed-target, multi-
purpose experiment located in the North Area of the CERN Super Proton Synchrotron (SPS).
The experiment was proposed in 2006, while the pilot data-taking was performed in 2007. Main
components of the experimental setup were inherited from the NA49 experiment [84]. A rich
physics program of the NA61/SHINE can be divided into three main parts:

1. hadron production measurements for improving the neutrino flux prediction in the T2K
and Fermilab-neutrino experiments,

2. hadron production measurements for improving the cosmic ray air-shower simulations, and

3. study of the onset of deconfinement and search for the critical point of strongly interacting
matter in proton-proton, proton-nucleus, and nucleus-nucleus collisions.

The aim of this chapter is to present T2K-related measurements along with the experimental
setup, reconstruction and calibration procedures used in these measurements.
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3.1 Hadron production measurements for the T2K experiment
Hadron production measurements for the T2K experiment were performed by using 30.92GeV/c

secondary proton beam and two different targets: a thin carbon target and a T2K replica tar-
get. These measurements follow the ideas described in section 2.5. Measurements with the
thin target were done to constrain primary interactions, while measurements with the T2K
replica target were designed to constrain all interactions inside the T2K target. Dimensions and
characteristics of the targets are described in subsection 3.2.2.

3.1.1 Data-taking periods

Data-taking for the T2K experiment started in 2007 and continued in 2009 and 2010. All
data-taking periods are summarized in Tab. 3.1. Low statistics data-sets collected in 2007,
both with the thin [77, 78] and replica targets [85] were used for development of the dedicated
calibration and analysis procedures. Moreover, the thin target results from 2007 were also
successfully incorporated in the T2K neutrino flux simulation and considerably reduced hadron
production uncertainty. Measurements performed in 2009, again both with the thin [79] and
replica targets [86] had ten times larger statistics, and they will be discussed in more details in
the next two subsections. Finally, a large statistics data-set with the replica target was taken
in 2010, and the analysis of this data-set is the main topic of this thesis.

Beam Target Year Triggers [106] Results
thin 2007 0.7 π+, π−, K+, K0

s, Λ multiplicities and σprod [77, 78]
p replica 2007 0.2 proof of principle for replica target measurements [85]
at thin 2009 5.4 π+, π−, K+, K−, p, K0

s, Λ multiplicities and σprod [79]
31GeV/c replica 2009 2.8 π+, π− multiplicities on target surface [86]

replica 2010 10.1 π+, π−, K+, K−, p multiplicities on target surface (this thesis)

Table 3.1: The NA61/SHINE data collected for the T2K experiment.

3.1.2 Thin target measurements with 2009 data-set

The purpose of the thin target measurements, as explained in section 2.5, is to constrain
primary production of the neutrino parent particles. The aim of 2009 thin target measure-
ments was to perform high-precision measurements of π±, K±, p, K0

s and Λ production in
proton-carbon interactions at 31GeV/c. As a result, it allowed to reduce further statistical and
systematic uncertainties of our results obtained in 2007 and to measure K− spectra for the first
time. Thin target measurements can be divided into two main parts: measurements of the pro-
duction cross-section (σprod) and measurements of the hadron multiplicities. Measurements of
the production cross-section are used to constrain interaction probability of protons at 31GeV/c
in carbon, while measurements of the hadron multiplicities constrain production of hadrons. In
addition to the inelastic events, a small fraction of elastic and quasi-elastic events is selected
because of the inefficiencies in the NA61/SHINE trigger system. For this reason, we cannot
measure production cross-section directly. Rather we measure a so-called trigger cross-section
(σtrig). Those inefficiencies are corrected by applying Monte Carlo correction factors. By re-
moving elastic events and correcting for any lost quasi-elastic and inelastic events, we obtain
information about the inelastic cross section. On the other hand, if quasi-elastic events are also
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removed (i.e., fragmentation of the nuclei, ...), we obtain the production cross section. Usage
of Monte Carlo models for correcting trigger inefficiencies creates a model dependence of our
result. This was studied in great detail, and corresponding systematic uncertainty was assigned
to the results [87]

σinel = (258.4±2.8(stat)±1.2(det)+5.0
−2.9(mod))mb, (3.1a)

σprod = (230.7±2.8(stat)±1.2(det)+6.3
−3.5(mod))mb. (3.1b)

Detector systematic uncertainty comes from uncertainty in the size of the scintillator counter
which discards elastic events. The importance of 2009 measurement is in uncertainty which
is reduced by a factor of two when compared to the 2007 result. Comparison of our results
with previous measurements is shown in Fig. 3.1. The NA61/SHINE measurement from 2009 is
consistent with our measurement from 2007.
Spectra of produced hadrons are measured in the momentum and polar angle (p,θ) phase

space. It is important for the T2K experiment to measure hadron spectra in the regions of
the phase space which contribute to the neutrino flux at Super-Kamiokande and ND280 . T2K
phase space is shown for the primary hadrons which contribute to the neutrino flux in Super-
Kamiokande in Fig. 3.2 and 3.3. Black lines represent coverage of the phase space by NA61/-
SHINE measurements. Our measurements cover most of the regions of interest except very
forward high momentum protons. This is due to poor forward acceptance of the detector with
the magnetic field configuration used for this data-taking. The results are presented in the form
of the double differential multiplicities which are calculated as a double differential cross section
normalized by the total production cross section:

d2n

dpdθ
= 1
σprod

d2σh
dpdθ

. (3.2)

In this form, our measurements show a number of hadrons per number of beam protons in the
given momentum and polar angle bin. Since we measured both spectra of charged and neutral
hadrons, two distinct analysis types were used. Particle identification for charged hadrons by
a single method is not possible in the whole (p,θ) phase space. Because of that, two different
particle identification techniques were used: energy loss and time of flight. For the measurement
of the π− spectra, we also used analysis without particle identification in which contamination
by other hadrons is corrected with Monte Carlo simulation. All of the methods give consistent
results in the overlapping regions of the phase space. In the case of neutral hadrons, we select
so-called V 0 decay candidates which are characterized by two oppositely charged tracks created
at the same point outside of the target. By assuming the mass of the outgoing tracks, the
invariant mass of the V 0 candidate is calculated. A number of neutral hadrons in each bin is
obtained from the signal and background fits to the invariant mass spectra. More details about
the analyses and systematic uncertainties can be found in [79]. Although the main reason for
thin target measurements is in constraining T2K neutrino flux, our results can also be used
for checking the validity of various Monte Carlo models. A comparison of π±, K±, p, K0

s

and Λ yields with several models was performed. In particular, we used: FTF_BIC physics
list from Geant4.9.5, Geant4.9.6 and Geant4.10 [88] [89], QGSP_BERT physics list from
Geant4.10, Epos1.99 [90], Venus4.12 [91] and GiBUU1.6 [92] [93] models. Only some of the
comparisons are presented here in Fig. 3.4 - 3.10, while all comparison can be found in CERN
preprint [94]. Hadron yields, total uncertainty, and comparison with two chosen models are
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Figure 3.1: Measurements of the inelastic cross-section (a) and production cross-section (b).
The results are compared with other measurements, in particular with the NA61/SHINE mea-
surement from 2007.

shown in each figure. In the case of π± spectra, FTF_BIC physics list gives the best prediction,
while other models show larger inconsistencies. For kaons and more massive hadrons, none of
the models give the accurate prediction of the hadron spectra. It is interesting to note that
Venus4.12 which is the oldest model used here gives best predictions for baryons (p and Λ),
although some differences up to 40% can be observed.
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Figure 3.2: The phase space of π±, K±, K0
s and protons contributing to the neutrino flux at

Super-Kamiokande in positive focusing configuration. Solid and dashed line represent coverage
of the NA61/SHINE measurements from 2009 and 2007 respectively.
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Figure 3.3: The phase space of π±, K±, K0
s and protons contributing to the neutrino flux at

Super-Kamiokande in negative focusing configuration. Solid and dashed line represent coverage
of the NA61/SHINE measurements from 2009 and 2007 respectively.
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Figure 3.4: Double differential multiplicities of π+ mesons (a), total fractional errors (b), com-
parison with FTF_BIC physics list from Geant4.9.5 (c) and comparison with QGSP_BERT
physics list from Geant4.10 (d).
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Figure 3.5: Double differential multiplicities of π− mesons (a), total fractional errors (b), com-
parison with FTF_BIC physics list from Geant4.9.6 (c) and comparison with QGSP_BERT
physics list from Geant4.10 (d).
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Figure 3.6: Double differential multiplicities of K+ mesons (a), total fractional errors (b), com-
parison with FTF_BIC physics list from Geant4.9.5 (c) and comparison with GiBUU1.6
model (d).
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Figure 3.7: Double differential multiplicities of K− mesons (a), total fractional errors (b), com-
parison with FTF_BIC physics list from Geant4.10 (c) and comparison with Epos1.99 model
(d).
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Figure 3.8: Double differential multiplicities of p (a), total fractional errors (b), comparison with
QGSP_BERT physics list from Geant4.10 (c) and comparison with Venus4.12 model (d).
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Figure 3.9: Double differential multiplicities of K0
s (a), total fractional errors (b), comparison

with FTF_BIC physics list from Geant4.9.5 (c) and comparison with Epos1.99 model (d).
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Figure 3.10: Double differential multiplicities of Λ (a), total fractional errors (b), comparison
with GiBUU1.6 (c) and Venus4.12 (d) models.
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3.1.3 The T2K replica target measurements with 2009 data-set

The purpose of hadron production measurements with the T2K replica target is to measure
the emission of hadrons from the 90 cm-long target. The measurement includes a contribution
from the secondary and tertiary hadrons produced inside the target and, because of that, in-
dependent measurement of the p + C production cross-section is not necessary. In 2009, we
measured only π± spectra [86] in the phase space of momentum, polar angle and longitudinal
position at the target surface (p,θ,z). One of the requirements of the T2K collaboration is to use
at least six longitudinal bins. Since the phase space has one more dimension, collected statistics
were not enough to measure spectra of other hadrons like it was done in the case of the thin
target measurements. The results are presented in the form of differential multiplicities which
are in this case equal to the number of hadrons in a given bin normalized by the number of beam
protons and momentum bin size. An example of the results for π+ and π− is shown in Fig. 3.11
alongside with Fluka2011 model [95] [96] prediction. Fluka2011 was selected because it is
used for simulation of interactions inside the target in the T2K neutrino beam simulation [75].
It gives consistent predictions of the π± yields when compared to our data. The figure 3.11
shows a small fraction of the angular range. Rest of the spectra will be shown and discussed at
the later stage as a comparison with our new measurements.

3.2 Experimental setup

Experimental setup of the NA61/SHINE will be discussed in this section, but the discussion
will be centered around the setup used during the 2010 run for the replica target measurements.
The setup can be seen in Fig. 3.12 with the coordinate system definition located in the bottom
right corner. The z-axis points in the direction of the beam, while the x-axis is directed to the
left from the beam point of view and the y-axis points upwards. The NA61/SHINE experiment
is a hadron spectrometer, and it consists of five Time Projection Chambers (TPCs). Two of the
TPCs (VTPC-1, VTPC-2) are located inside the magnetic field of two superconducting magnets.
Between the VTPCs there is a small TPC called GTPC which covers the very forward region.
Downstream from the VTPCs, two large main TPCs (MTPC-L and MTPC-R) are positioned
symmetrically to the beam-line. A scintillator wall for measuring particle time of flight is located
behind the MTPCs. Beam position in front of the TPCs is measured by three Multi-Wire
Proportional Chambers (MWPCs), called Beam Position Detectors (BPD1, BPD2, and BPD3),
while beam identification is done by Cherenkov Differential Counter with Achromatic Ring Focus
(CEDAR) [97] and Threshold Cherenkov Counter (THC). Several scintillator counters are used
in coincidence and anti-coincidence for triggering event. More details about important detector
subsystems and the beam-line will be presented in the following subsections.

3.2.1 Beam-line and triggers

Search for the critical point of strongly interacting matter requires scan through the phase
space of energy and system size, which is only possible by changing beam and target composi-
tion as well as beam momentum. Furthermore, hadron production measurements also require
different hadron beams. Consequently, the NA61/SHINE experiment uses secondary hadron
(p, π±, K±) and ion beams (Be, Ar, Pb, ...) with the momentum range from 13GeV/c to
400GeV/c. To achieve this, primary protons or ions from the SPS are extracted and transported
around 1km towards the primary target. Primary target station consists of several beryllium
plates which are located 11m underground to contain radiation. Secondary particles produced
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Figure 3.11: Differential multiplicities of π+ (a), and π− (b). Each column is a different z bin,
while each row shows different polar angle intervals. The blue line is a Fluka2011 prediction.

in the primary interactions are then used as a NA61/SHINE beam and transported towards
the experiment by the so-called H2 beam-line. Beam particles are selected according to their
rigidity (momentum to charge ratio) by two spectrometers and set of collimators downstream
from the primary target. In addition, the incident angle of the primary beam can be changed to
modify production angle of the desired secondary particles. Beam particles which are selected
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Figure 3.12: NA61/SHINE setup used for the T2K hadron production measurements.

by rigidity selection are usually mix of different hadrons and leptons with similar rigidity and
therefore must be identified before hitting the NA61/SHINE target. This is done differently for
hadrons and ions. Here, only selection of hadron beam particles will be discussed because it is
used for hadron production measurements. More information on ion beams can be found in [76].
For the hadron beams, identification is done by the already mentioned CEDAR. This counter is
filled with gas, usually with helium for beam momenta lower than 60GeV/c and with nitrogen
for higher momenta. If beam particle enters the counter, it radiates Cherenkov light cone which
is in turn transported by the optical system onto a diaphragm. The diaphragm has a circular
slit through which light passes towards eight photomultiplier tubes (PMTs). The pressure of
the gas can be tuned so that only light coming from desired beam particles passes through
the slit. Signals from at least six channels are used in coincidence for the beam identification.
Furthermore, to increase the purity of the beam, THC is tuned so that desired beam particles
have velocity below Cherenkov threshold and it is used in anti-coincidence. Total number of
misidentified particles is below 0.8%.
Except for two Cherenkov counters, there are several scintillator counters in the beam-line which
are used to ensure that the beam hits the NA61/SHINE target. The list of all scintillator coun-
ters used in the case of the T2K replica target measurements alongside with their dimensions
is shown in Tab. 3.2. Counters with the hole are used in anti-coincidence. The counter S1 is
providing the start signal for the whole trigger system and the reference time. It has four PMT
channels, although only one of them is used in the trigger system. However, other channels are
used during calibration to correct for the time jitter of the start signal.

Counter Dimension [cm]
S1 6×6×0.5
S2 Φ = 2.8, 0.2 thickness
S3 Φ = 2.6, 0.5 thickness
V0 Φ = 8, Φhole = 1, 0.2 thickness
V ′1 30×30×1, Φhole = 4

Table 3.2: List of the scintillator counters used in the trigger logic.
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Different combinations of the counters are used for triggering the events. In the hadron
production measurements in 2010, four different triggers were used. The triggers were named
T1-T4 and their exact definitions listed in Tab. 3.3. Trigger T1 represents only events with a
selected proton beam. Counter V0 ensures that only a narrow beam is selected, around 0.7 cm
in size at the upstream target face. It will be explained in the latter stages of this thesis why the
beam profile is important. Although T2 trigger selects wider beam, the S3 counter which is glued
to the upstream target face and has the same radius as the target, ensures that beam particles
hit the target. Main trigger T3 is the same as the T2 trigger, but in contrast to the T2 trigger,
it also selects narrower beam (same as T1). And finally, trigger T4 selects only wide beam
without identification or requirement that beam hits the target. In addition, the main trigger
was recorded each time, while other triggers were downscaled and only some fraction of them was
recorded. To precisely determine trajectories of the beam particles, triggers are not enough. For

Trigger Definition
T1 S1·S2·V0 ·V’1 ·CEDAR·THC
T2 S1·S2·S3·V’1 ·CEDAR·THC
T3 S1·S2·S3·V0 ·V’1 ·CEDAR·THC
T4 S1·S2·S3·V’1

Table 3.3: List of the scintillator counters used in the trigger logic.

this reason, we use measurements by already mentioned beam position detectors (BPDs). The
detectors are proportional chambers filled with a mixture of Ar and CO2. Each BPD consists of
six planes: a central plane, two orthogonal wire planes, and two outer cathode readout planes.
The readout planes are made of 24 aluminized mylar strips which are 48× 2× 0.025 µm in
size. Usually, passing beam particles induce the signal on five strips, and this gives position
resolution of about 200µm. If the signals in all three detectors are good, this allows for precise
determination of the beam position at the upstream surface of the T2K replica target.

3.2.2 The T2K replica target

It was already shown in subsection 2.3.3 that the T2K target is a rather complex object
and therefore, it is not straightforward to install it in the NA61/SHINE beam-line. For this
reason, a simplified version of the target, which is named as the T2K replica target, is used for
this purpose. It is made of the same graphite. However, it does not contain cooling and thin
titanium casing on the surface. Besides these differences, T2K replica target has a flange at the
upstream edge. The inner part of the flange is made of the graphite, while the outer shell is
made of aluminum. The flange is used for the purpose of anchoring the target to the holder.
On the outside layer of the flange, there is a hole which ensures that beam hits the graphite.
Scintillator counter S3 is fitted into the hole, while BPD3 is mounted on top of that. Schematic
view of the target alongside with the picture of the mounted target without BPD3 is shown in
Fig. 3.13. Also, technical characteristics of the replica target are compared to the thin target
in Tab. 3.4. Downstream target face is fixed by a thin plastic tread tied to the plastic ring to
minimize material budget between produced particles and the TPCs. It is important to note
that density of the T2K replica target is higher by around 1.5% when compared to the density
of the T2K target. This difference is equal in size to the density measurement uncertainty (see
table 3.4). Nominally, the same graphite was used as for the real T2K target (Toyo Tanso IG-43,
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see Ref. [98]), but there are possible fluctuations in the density from sample to sample as stated
on the Toyo Tanso’s web page. The uncertainty of the replica target density must be taken into
account when hadron yields from the surface of T2K replica target are used for the re-weighting
of the neutrino flux.

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

� �

� �

�� ��

�������������

�������������������� �����������������������
��������������������������

������������������

��

���

���

���

��������

�����������������

(a) (b)

Figure 3.13: Schematic overview of the T2K replica target (a), mounted target without the
BPD3 (b).

Target Thin T2K replica
Material Graphite Graphite
Density [g/cm3] 1.84±0.03 1.83±0.03
Length [cm] 2 90
x-Section 2.5×2.5 cm2 �= 2.6 cm
Int. length [λI ] 0.04 1.9

Table 3.4: Dimension and characteristics of the thin and the T2K replica target.

3.2.3 Time projection chambers

It was already stated in the introduction of this chapter that tracking system consists of
five TPCs. Each TPC is made of gas chambers filled with a mixture of Ar and CO2, support
frame and readout chambers (MWPC). When a particle passes through the gas, it leaves a trail
of ionized atoms and electrons. The high electric field is provided between the plates of the
TPCs. The field must be uniform to get constant drift velocity for the electrons drifting towards
the readout plane. This is achieved by 25µm wide aluminized mylar strips which go around
the surface of the chamber. The voltage is divided stepwise from the cathode at the bottom
of the chamber. The composition of the VTPC and a signal generation mechanism are shown
in Fig. 3.14. The readout planes work in the proportional range. Electrons drift through the
gating grid and cathode plane towards the anode sense wires. There, electron signal is amplified
by a factor of 5·104 because of the avalanche process in the strong electric field near the wires.
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The signal is then induced in the segmented pad plane which provides measurements of the
track’s x and y position, while measurement of the drift time provides z position. The readout
of the signal is performed by TPC Front End Electronics (FEE) which replaced electronics from
the NA49 experiment to increase the readout speed. In total 32 channels are available per one
FEE. The electronics cards pre-amplify the charge signal and store it in the capacitor array.
Afterwards, it is digitized by Wilkinson Analog to Digital converter (ADC). Although all TPCs
work on the same principle, there are differences in size (number of sectors), gas composition,
pad size and alignment and drift voltage. These are summarized in Tab. 3.5.

VTPC-1 VTPC-2 MTPC-L/R GTPC
Size (L×H×W) [cm ] 250×200×98 250×200×98 390×390×180 30×81.5×70
# of pads/TPC 26886 27648 63360 672
Pad size [mm ] 3.5×28(16) 3.5×28 3.6×40, 3.6×40 4×28
Drift length [cm ] 66.60 66.60 111.74 58.97
Drift velocity [cm/µs ] 1.4 1.4 2.3 1.3
Drift field [V/cm ] 195 195 170 173
Drift voltage [kV ] 13 13 19 10.2
Gas Mixture Ar/CO2 (90/10) Ar/CO2 (90/10) Ar/CO2 (95/5) Ar/CO2 (90/10)
# of sectors 2×3 2×3 5×5 1
# of padrows 72 72 90 7
# of pads/padrow 192 192 192, 128 96

Table 3.5: Parameters of the VTPCs, MTPCs and GTPC [76].
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Figure 12: Schematic drawing of the assembly of one of the VTPCs showing the support plate
housing the readout chambers, the two field cages on both sides of the beam, and the gas enve-
lope.
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Figure 14: Schematic layout of the TPC readout chambers. Note that the drift is vertically
upwards.
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Figure 3.14: Schematic drawing of the VTPC (a) and TPC readout scheme (b) [84].

While TPCs measure trajectory of the particle, additional pieces of information are needed
for measuring particle yields. Therefore, VTPCs and GTPC are immersed into the field of two
superconducting dipole magnets for measuring charge and momentum of the particles. The
magnets have a total bending power of 9Tm, and at the standard setting, the field is around
1.5T in the first and 1.1T in the second magnet. This setting is used for beam momenta larger
than 150GeV/c, and it is optimized to maximize spectrometer acceptance. For lower beam
momenta, the magnetic field is scaled down. Otherwise, most of the low momentum tracks are
bent out and never reach the MTPCs. Additional information about magnets, gas system and
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the TPC electronics can be found in [84] and in [76].
Achieved momentum resolution is around 1% or better depending on the number of clusters
in the VTPCs and GTPC. The NA61/SHINE experiment suffers from low coverage of the
high-momentum forward going tracks whose momenta is usually measured just by GTPC. In
this case, momentum resolution drops significantly. This issue has been addressed by developing
and building two additional forward TPCs (FTPC-1 and FTPC-2). These TPCs have been used
for the first time in July of 2017. The energy loss measurement has a resolution of around 4%,
and it depends on the number of clusters in the TPCs. These measurements are not performed
in the GTPC since its maximum of seven clusters would not improve dE/dx measurement in
any significant way.

3.2.4 Forward time of flight wall

The forward time of flight wall (ToF-F wall) is a detector used for measuring particle time of
flight (tof ). The purpose of the tof measurement is particle identification, and it is complemen-
tary to the energy loss measurement. The ToF-F wall was built for the sole purpose of hadron
production measurement for the T2K experiment. It was constructed in 2007, and originally
it consisted of 8 modules. However, two additional modules were added in 2009. The modules
were mounted on the frame just behind the MTPCs. Each module is an independent detector
and consists of eight scintillator slats which are placed in two rows (zig-zag pattern) with 1 cm
overlap between them. The slats are made of the plastic scintillator (Bicron BC-408) and have
dimensions of 120×10×2.5cm3. Size and position of the ToF-F detector are shown in Fig. 3.15.
A numbering of the slats is as follows: the first slat is located close to the corner of the MTPC-L
at x≈ 370 cm (Jura side), while the last slat is close to the corner of MTPC-R at x≈−370 cm
(Saleve side). The light from each slat is read out by two Fast-Hamamatsu R1828 PMTs located
on the top and bottom of the slat. For this reason, slats are wrapped with aluminum foil to
reflect light towards the PMTs. On top of that, slats were covered with black plastic foil and
tape. The signals from the 160 PMT channels are passed to the constant fraction discriminators

MTPC-L

MTPC-R

z

x

y

ToF-F

2.5 cm

1 cm

10 cm

x

y

z

120 cm BC-408
scintillator

R1828 PMT

Figure 3.15: ToF-F wall

(CFD). Each CFD has divider which divides signal for separate charge and time measurement.
While CFDs provide stop signal, the start signal is provided by S1 counter which is part of the
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trigger system. The charge and time measurements were done by LeCroy Fastbus TDC and
LeCroy ADC respectively. The TDC time window is 4000 channels in size with a sampling rate
of 25 ps. Since the NA61/SHINE proton beam rate during the hadron production measurements
for the T2K was around 100kHz or less, it is possible to reject pile-up tracks by using only tracks
with assigned tof hits. Measurements from a single slat are taken as a mean value from the top
and bottom channels:

tof = toftop+ tofbottom
2 (3.3)

Squared mass of each track is calculated by combining tof , momentum and track length:

m2
tof =

(
p

c

)2
[
c2tof2

l2
−1
]
, (3.4)

and it can be used for particle identification. Resolution of tof measurements and efficiency of
the detector will be discussed in subsection 4.6.7. It is important to note that although the ToF-
F wall has large phase space coverage, it is not useful in the nucleus-nucleus measurements for
which track density drastically increases. If two or more tracks hit the same slat, it is impossible
to distinguish between them. For the nucleus-nucleus collisions, a detector with finer granularity
is needed.

3.2.5 Other detector systems

On top of the ToF-F wall, there are two additional tof walls (ToF-L and ToF-R) which
are suitable for higher track density. They consist of scintillator pixels which vary in size
(34mm ×60(70)(80)mm). These detectors have much smaller coverage of the phase space, and
usually, they are used during data-taking for heavy ion programme of the NA61/SHINE. In
addition to the ToF-L and ToF-R, there are several other detectors used during heavy ion data-
taking. The most important is the Projectile Spectator Detector (PSD) which is a modular
lead hadron calorimeter containing 44 modules with a total area of 120× 120 cm2. It is used
for measuring the energy of projectile spectators in nucleus-nucleus collisions. Spectators are
nucleons which did not interact and by keeping their number low, we ensure centrality in the
nucleus-nucleus collisions. This is important for measuring fluctuations of the physical quantities
which are expected near the quark-gluon plasma transition. Trivial fluctuations caused by
collision geometry are removed by the PSD. On the other hand, in hadron-nucleus collisions
centrality of the collision can be inferred by measuring a number of low momentum protons
(grey protons). This is done by the Low Momentum Particle Detector (LMPD), which consists
of two small TPCs located in the transverse plane surrounding the target and measuring radially
emitted particles. The detector is divided into several detection and plastic absorber layers. By
measuring energy loss and range, it is possible to measure low momentum protons.
In addition to these detectors, there will be three additional detectors installed in the near
future. Two of them are FTPC-1 and FTPC-2 which were already mentioned. They will
improve acceptance for high momentum forward going particles. The design uses light materials
to minimize material budget in the beam-line. Since FTPC-2 will be located downstream from
the MTPCs, some changes will be introduced to the geometry of the ToF-F wall. Another
feature of the NA61/SHINE spectrometer which will be improved is the determination of the
vertex position in the target. For this reason, a vertex detector will be installed between target
and VTPC-1. It will consist of four-pixel stations of increasing size featuring Mimosa-26 sensors.
The Mimosa-26 sensor is CMOS Monolithic Active Pixel Sensor, and it has a very low material
budget (thickness of 50µm) and the pixel pitch of 18.4µm. It includes pixel output discrimination
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for binary readout and zero suppression microcircuits (see Ref. [99]). Discussion about further
upgrades and continuation of the measurements beyond 2020 are ongoing.

3.3 NA61/SHINE software
Since the configuration of the NA61/SHINE setup changes not just with hardware upgrades,

but also depending on the data-taking, it is important to have the versatile software. The legacy
software developed for the NA49 experiment has several serious limitations which limit changes
in the detector description necessary for different data-taking periods. Among others, these are a
usage of the mixed code (written in C, C++, and Fortran), outdated simulation and production
tools, portability issues (cannot be used outside of CERN) and lack of support. For this reason,
it was decided to migrate to the new framework, called Shine framework [100]. It is based on
the software from the Pierre Auger collaboration [101] and written in C++. The main parts of
the framework are:

1. detector interface

2. Shine Offline Event (SHO∗E) and

3. modules.

Detector interface provides geometry and all calibration constants of the detector. The data
is stored in the XML files or the MySQL database. It is accessed by CentralConfig and users
are not allowed to change it. Shine Offline Event is a collection of stream-able classes stored
in the Root file format. The legacy software uses several data structures, and the purpose of
SHO∗E is to replace all of them by a single file format. The advantage of SHO∗E is scalability,
it connects parent and child-object by indices, and it can store event information on several
levels: from raw detector signals to fully reconstructed events. Modules are used as a user
interface to the detector information and SHO∗E files. The XML configuration files are used to
set-up the detector information and modules, which can be stacked together. The specific task
of calibration, analysis or reconstruction are done by specialized modules. Recently, a lot of
effort was put forward to migrate the reconstruction, simulation, and calibration entirely to the
Shine framework.

3.4 Reconstruction of the data
The main purpose of the reconstruction software is to convert signals measured by detectors

to particle trajectories to calculate the event kinematics. Reconstruction based on the legacy
software is done as follows:

1. BPD reconstruction

2. cluster finder in the TPCs,

3. track reconstruction,

4. momentum determination,

5. primary vertex reconstruction,

6. momentum determination with vertex constraint,
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7. calculation of the maximum number of clusters which a given track can have (so-called
potential points),

8. energy loss and time of flight, and

9. V 0 and Ξ finder.

Reconstruction of the beam position is independent of the TPC reconstruction, and it consists
of cluster finder in the BPDs and track fitting. Moreover, this information is only necessary
during the later stages of reconstruction for determination of the primary interaction vertex.
Similarly, TPC track reconstruction starts with cluster finder. After the cluster reconstruction,
corrections are applied to remove distortions which can come for example from E×B effect.
Additional residual corrections can also be applied if they are calculated previously in the cal-
ibration procedure. From the reconstructed clusters in each TPC, it is possible to build local
tracks. These tracks are then matched with their counterparts in other TPCs (if any exists) and
global track parameters are fitted. In the case of measurements with the T2K replica target,
the main vertex is determined by extrapolating global TPC tracks toward the beam track until
the minimal distance of approach is reached. Once the primary vertex is determined, the TPC
tracks are refitted with a vertex constraint. However, both global tracks with and without ver-
tex constraint are kept on output. In the next step, potential points are counted by estimating
how many pad rows track crossed. After this step, energy loss is calculated for each track, and
tof hits are matched with the tracks. Some of the reconstructed tracks do not come from the
primary vertex. Rather, they are created in weak decays or re-interactions outside of the target.
Two finders (V 0 and Ξ) look for this kind of events. The first one looks for decays in which two
oppositely charged particles are created (K0

s or Λ decay), while the second one searches for Ξ
decays. These can be recognized as a kink in the original track since for example, Ξ− decays on
π− and Λ. Most of the calibration constants can be obtained only after reconstruction, several
iterations of reconstruction are necessary. Most of the reconstructions steps are also used for
the Monte Carlo simulation.

3.5 Monte Carlo simulation chain
Monte Carlo chain for p + T2K replica target interactions was developed for 2007 and 2009

data-taking. The same chain was used for analysis of the 2010 data with minor technical changes.
It consists of several stages:

1. simulation of the proton interactions and re-interactions inside the T2K replica target,

2. propagation of the particles from target surface through the detector by Geant3 with a
GCALOR model,

3. reconstruction of the simulated events and matching of the simulated particles with the
reconstructed tracks,

4. conversion to the SHO∗E format.

Simulation of the interactions inside the target is done by the Fluka2011 model to match
the T2K neutrino beam simulation. To study systematic uncertainties, Fluka2011 can be
replaced by physics lists from Geant4. It is important to emphasize that beam profile used in
the simulation is based on the data. Two histograms containing dependence of the divergence
in x and y on the beam position are added to the Fluka2011 input. These histograms are
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used as templates for generating simulated beam profile. Scintillators in front of the target and
BPDs are not simulated. Instead, protons are generated at the BPD3 position, and propagated
towards the target. Since S3 scintillator is glued to the upstream target face, it is included in
the Fluka2011 simulation. Particles created inside the target are propagated to the target
surface. The output of the Fluka2011 is stored in the Root files as follows: each entry
represents particle on the target surface with all necessary pieces of information (momentum,
exit point, pid, ...). Also, the whole history of the particle including all interactions and parent
particles is stored to the output. This is done to mimic the output of first part of the T2K
neutrino beam simulation. All re-interactions and decays outside of the target are simulated
with GCALOR model which is also used for interactions in the horns and other elements of
the beam-line in the T2K experiment. Simulation of the induced signals in the TPCs is done
by Geant3 based simulation [102]. However, simulation of the ToF-F signals is not performed.
Instead, tof mass is assigned to the particles which hit ToF-F wall with a resolution based on
the data. For this reason, ToF-F efficiency cannot be corrected with Monte Carlo simulation.
In the next step, simulated signals are reconstructed with the same procedure as in the data.
Afterwards, reconstructed tracks are matched with simulated tracks and events are converted
to the new SHO∗E format. During the simulation and reconstruction, various parameters, such
as drift velocity, detector positions, and alignment are taken from the calibration of the data.

3.6 Calibration of the data
Calibration of the data can be roughly divided into several steps:

1. TPC T0 and gain calibration (pad by pad and global),

2. drift velocity and TPC alignment (smoothing of the measured drift velocity, scaling, time
dependent residual corrections, GTPC drift velocity),

3. residual corrections for TPC clusters,

4. magnetic field,

5. BPD alignment,

6. BPD-TPC alignment,

7. energy loss, and

8. time-of-flight.

T0 and gain calibration

In the first calibration step, time delays are calculated for all pads in the TPCs. These
delays come from two sources: cable length, which is the same for all pads connected to one
chip and signal shaping time variations which are independent from pad to pad. The former
contribution is usually much larger than the later one. Calibration is done by injecting a charge
to the cathode wires, which in turn induces a signal in the pad plane. Time delays of the induced
signals are then subtracted to get non-biased drift time measurement. Additionally, pad gains
are calibrated by introducing an excited state of the 83Kr nuclei to the TPCs. Introduced atoms
decay to the ground state by releasing 41.5keV photons which in turn convert and ionize TPC
gas. The gains in the pads are then tuned so that signals match the energy of the peak. Proper
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gain calibration is important for precise energy loss measurement. A global time delay for the
TPCs is calculated by extrapolating MTPC tracks to the ToF-L and ToF-R walls. The position
of the tracks is compared with the positions of the active channels in the tof walls. Any difference
in y positions shows the miscalibration of the global MTPC delay time.

Drift velocity calibration

Differences may also arise due to biased drift velocity. Obtained position offset ∆y has a
linear dependence on measured drift time with a drift velocity as a slope. The product of the
drift velocity and the delay time is the intercept parameter. It is important to note that drift
velocity is measured during data-taking for all TPCs except for GTPC. Obtained values usually
vary due to fluctuations in temperature and pressure in the TPCs and need to be smoothed.
Because of these measurements, any change in the drift velocity of the MTPC after calibration
with TOF-L/R walls is expected to be small. After calibrating MTPCs, they are used as a
reference for the VTPC calibration. Also, time-dependent residual corrections are applied to
the drift time to reduce any fluctuations and distortions in the measurement. Finally, GTPC
drift velocity is calibrated by checking y alignment with other TPCs.

Magnetic field calibration and residual corrections

Alignment of the TPCs can also be checked for x, and any difference is usually small and
points to the miscalibration of the magnetic field or to the distortions in the TPCs. The former
one is calibrated by finding K0

s and Λ decay candidates in the detectors. By fitting invariant
mass distributions and comparing obtained masses with PDG values, it is possible to find bias
in the momentum and therefore in the magnetic field. These corrections are usually very small.
Distortions in the TPCs are usually larger close to the edges of the TPCs, and they are calculated
by looking to the residuals between fitted global tracks and clusters. The detector is binned in
the (x,y,z) space and residuals (cluster position – track position) are calculated for all the tracks
in the data. These residuals are stored in the spatial bins, and an average value is calculated
for each bin. If the average value in a given bin is different than zero, a correction is applied to
the positions of clusters in this bin. The correction is equal to the negative average value.

BPD-TPC alignment

Similarly, how alignment between TPCs is important for the accurate determination of the
track parameters, it is also important to determine alignment between BPDs. Large distances
between BPDs especially between BPD1 and other BPDs prevents accurate measurement of the
position before data-taking. Once this task is completed, it is also necessary to check alignment
between TPCs and BPDs. This is done by extrapolating TPC tracks to the target plane and
comparing position with BPD track. In the case of long target measurements (T2K replica
target or liquid hydrogen target), alignment with this method is more complicated to achieve,
since we do not know exact z position of the interaction vertex. Therefore, a modified method
is used which will be explained in section 4.5.

Energy loss and time-of-light calibration

Last steps of the calibration procedure include energy loss and time of flight calibration.
Energy loss depends on many parameters: gas mixture, gas pressure, drift losses and TPC gain.
All of the effects are usually corrected once per data-taking. On top of that, time-dependent
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residual corrections are applied to account for the fluctuations (for example, fluctuations of the
gas pressure).

Some of the calibration tasks were done as a part of this thesis work. They include the TPC
alignment, the BPD-TPC alignment and the time of flight calibration. All of them are described
in more detail in the next chapter, alongside with the corresponding software development.
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Chapter 4

Software and calibration
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Software for special calibration tasks and analysis of p + T2K replica target data was already
developed for the data taken in 2007 and 2009. In the meantime, the NA61/SHINE collaboration
is switching to the new software framework, and because of that a lot of previously developed
code will soon become obsolete. For this reason, the whole analysis code alongside with some
calibration procedures was re-written from scratch as a part of technical work done for this
thesis. As a consequence, any similar future measurement will profit from this work. In the
first section of this chapter, the discussion will be centered around the analysis tools and track
extrapolation in the non-homogeneous magnetic field with error propagation. Later on, several
calibration tasks will be reviewed. All of them profit from the developed track extrapolation in
the magnetic field.
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4.1 Analysis tools
As described in subsection 3.4, TPC tracks are used together with the beam track to deter-

mine a position of the primary interaction point (also known as the main vertex). In the case of
p + T2K replica target measurements, we require positions of the created particles on the target
surface. Reconstruction chain is not designed to extrapolate tracks to the target surface, and
because of that, track extrapolation is done during the analysis. The analysis code is divided
into several modules, and it is a part of the new Shine framework. The scheme in Fig. 4.1 shows
all analysis stages, where a single stage is done by one Shine module. In the first stage, tracks
are extrapolated to the target surface, and the simplest cuts are applied. These cuts remove
bad events and tracks, for example, tracks without fitted momentum or complete events where
the position of the beam track is not properly determined. All selected events and tracks are
stored with only necessary information in the form of the ROOT TTrees. In this way, size of the
data for analysis is reduced from a few TB to less than 1GB. Because of the track extrapolation
and large size of the files, the first stage of the analysis is slow. Once the first stage is done, it
does not need to be repeated unless some of the calibration constants (like target position) have
changed. In the second stage, all other cuts are applied, and tracks are stored in the phase space
bins chosen for analysis. The third module is a fitter based on RooFit, and it determines particle
content in each bin. Afterwards, fit results for data and MC are combined in the particle yields.
In the final step, systematic uncertainties are calculated, and the results are plotted. Several
auxiliary modules were also written for optimizing the cuts, defining phase space binning and
calculating, plotting the beam profile, etc... All of the auxiliary modules operate on the output
from the first stage.

1
Track extrapolation

and
basic cuts

Auxiliary steps

2
Cuts and

phase space
binning

3

PID

4

Particle yields

5

Systematic uncertainties
and plotting

Figure 4.1: Analysis tasks

4.2 Track extrapolation in non-homogeneous magnetic field

4.2.1 Magnetic field

The magnetic field map of the NA61/SHINE spectrometer is read from the Shine database.
The only important component is the y component which is at least three orders of magnitude
larger than other components of the field in the whole volume of interest. The field map covers
VTPCs, GTPC, and parts of the magnet. Target is located inside the residual field of the first
magnet, but only less than 30% of the target is covered by the field map. In Fig. 4.2, 2D slices of

82



4.2 Track extrapolation in non-homogeneous magnetic field

the map are plotted for the field component By. Rectangles are showing the size of the target,
VTPCs and GTPC are superimposed to the plots (nonsensitive volume of the TPCs is included).
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Figure 4.2: Slices of the field map: By in x− z slice for y = 0 cm (a) and By in y− z slice
for x = 0 cm (b). Red rectangles from left to right are: target, VTPC-1, GTPC and VTPC-2.
Dashed blue line is the upstream border of the field map.

For this analysis, the magnetic field map was extended to the whole target region in z by
fitting an exponential function to the tail of the magnetic field. The function is then used for
calculating the field outside of the existing field map. An example is shown in Fig. 4.3. The
dashed blue lines correspond to the target position. This figure shows the extrapolation of the
filed for x = 0 cm and y = 0 cm, but it was confirmed that the exponential function with the
same rate parameter works for every x and y.

4.2.2 Equation of motion

The force acting on charged particles in the magnetic field is the Lorentz force, and a corre-
sponding equation of motion is:

dp
dt

= κ·q·v×B, (4.1)

where p is a momentum, q is a charge, v is a particle velocity, and B is magnetic field. Since
we want to use momentum in GeV/c, velocity in cm/s, charge in unit charge and field in kG, a
constant κ is equal to κ= 2.99792458·10−4 (GeV/c)kG−1cm−1. If we ignore particle energy loss
in materials, the value of the momentum and therefore particle speed will be conserved. The
only change occurs in the direction of the momentum. This allows us to replace time with the
path length s, so that dt= ds/v. Also, useful concept to introduce is the unit vector e = v

v = p
p .

In our analysis we want to get track z position on the target surface, so instead of the path
length, we want to use z position as a parameter. A path length differential can be written as:

ds=
√

1 + t2x+ t2y·dz, (4.2)
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Figure 4.3: Extrapolation of the field component By outside of the field map. The dashed blue
lines represent target position.

where tx = ex
ez

= dx
dz and ty = ey

ez
= dy

dz are track directions. From Eq. 4.1, it is possible to extract
differential equations for particle directions and together with previously written definitions we
get five differential equations of the first order:

dx

dz
= tx, (4.3a)

dy

dz
= ty, (4.3b)

dtx
dz

= κ· q

p
·
√

1 + t2x+ t2y·
(
txty·Bx− (1 + t2x)·By + ty·Bz

)
, (4.3c)

dty
dz

= κ· q

p
·
√

1 + t2x+ t2y·
(
(1 + t2y)·Bx− txty·By− tx·Bz

)
, (4.3d)

d

dz

(
q

p

)
= 0. (4.3e)

From Eq. 4.3, it is evident that there exists a natural set of parameters which describe our
tracks:

r = (x,y, tx, ty,(q/p))T , (4.4)

where each component of the vector r is a function of z.

4.2.3 Track extrapolation in non-homogeneous magnetic field

Track extrapolation in a magnetic field is essentially solving the equations of motion 4.3a
- 4.3e with given initial condition rz0 and calculating the state vector for some value of z.
Extrapolated x and y positions are just integrals of track directions, so the essential part in
extrapolation is solving equations 4.3c and 4.3d. Speed and accuracy were both needed in
this analysis. An analytical method developed by S. Gorbunov and I. Kisel [103] was used for
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this purpose. The method was developed for the CBM experiment. The basic principles of
the method will be reviewed in this subsection. Derivatives of the directions tx and ty can be
rewritten in the form:

dtx
dz

=
∑

i1=x,y,z
Bi1(z)·ai1(z), (4.5a)

dty
dz

=
∑

i1=x,y,z
Bi1(z)·bi1(z), (4.5b)

where magnetic field components Bi1 can be written as functions of z. This is only possible
because the field value is taken at track position and track x and y position are functions of
z. The factors ai1(z) and bi1(z) do not depend on the magnetic field and can be written as
components of the vectors:

a(z) = κ· q

p
·
√

1 + t2x+ t2y·
(

txty, −(1 + t2x), ty
)
, (4.6a)

b(z) = κ· q

p
·
√

1 + t2x+ t2y·
(
(1 + t2y), −txty, −tx

)
. (4.6b)

For a general function T which depends only on the track directions tx and ty, a derivative is
equal to:

dT

dz
= dT

dtx
· dtx
dz

+ dT

dty
· dty
dz
. (4.7)

If we replace direction derivatives with Eq. 4.5a and Eq. 4.5b, we get:

dT

dz
=

∑
i1=x,y,z

Bi1(z)
(
dT

dtx
ai1(z) + dT

dty
bi1(z)

)
=

∑
i1=x,y,z

Bi1(z)Ti1 . (4.8)

Each factor Ti1(z) is also just a function of the track directions tx(z) and ty(z). Therefore we
can use the same identity for calculation of the dTi1

dz as in the previous equation. The procedure
can be iteratively repeated, and in each step we get factors:

dTi1...ik
dz

=
dTi1...ik−1

dtx
aik +

dTi1...ik−1

dty
bik . (4.9)

Now, we can rewrite function T (z) as a sum of magnetic field path integrals:
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T (z) = T (z0) +
∫ z

z0
T ′(z1)dz1

= T (z0) +
∑

i1=x,y,z

∫ z

z0
Bi1(z1)Ti1(z1)dz1

= T (z0) +
∑

i1=x,y,z

∫ z

z0
Bi1(z1)

(
Ti1(z0) +

∫ z1

z0
Bi2(z2)Ti2(z2)dz2

)
dz1

= ...

= T (z0) +
n∑
k=1

∑
i1,...,ik=x,y,z

Ti1...ik(z0)·
(∫ z

z0
Bi1 ...

∫ zk−1

z0
Bikdzk...dz1

)

+O

(
(κ(q/p)(z−z0))n+1

(n+ 1)!

)
.

(4.10)

Relation 4.10 is valid for a generic function T (tx(z), ty(z)), but in the case of track extrapolation
we have two simple functions: T1 = tx and T2 = ty. For initial values tx(z0) and ty(z0) we can
calculate tx(z) and ty(z) by using Eq. 4.10 with a desired precision. The only issue left is how
to calculate path integrals of the magnetic field in Eq. 4.10, because we do not know the path
before the extrapolation. For any non-homogeneous magnetic field we can do extrapolation in
small steps so that the field is approximately constant. Because of this, field integrals become
just integrals of the polynomial functions. All the details on how to implement these results into
track extrapolation software are presented in the CBM technical note [104]. The extrapolated
track parameters after one step ∆z are equal to:

x(z0 + ∆z) = x(z0) + tx(z0)∆z+
n∑
k=1

∑
i1,...,ik=x,y,z

hkAi1...ikSi1...ik , (4.11a)

y(z0 + ∆z) = y(z0) + ty(z0)∆z+
n∑
k=1

∑
i1,...,ik=x,y,z

hkBi1...ikSi1...ik , (4.11b)

tx(z0 + ∆z) = tx(z0) +
n∑
k=1

∑
i1,...,ik=x,y,z

hkAi1...iksi1...ik , (4.11c)

ty(z0 + ∆z) = ty(z0) +
n∑
k=1

∑
i1,...,ik=x,y,z

hkBi1...iksi1...ik , (4.11d)

where si1...ik and Si1...ik are integrals of the field:

si1...ik =
∫ z0+∆z

z0
Bi1(z1)...

∫ zk−1

z0
Bik(zk)dzk...dz1, (4.12a)

Si1...ik =
∫ z0+∆z

z0

∫ z′

z0
Bi1(z1)...

∫ zk−1

z0
Bik(zk)dzk...dz1dz

′. (4.12b)
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Parameters Ai1...ik and Bi1...ik are normalized parameters from Eq. 4.9 for T = tx and T = ty
respectively:

Ai1...ik = txi1...ik/h
k, (4.13)

Bi1...ik = tyi1...ik/h
k, (4.14)

where h is a constant for each track and it is equal to:

h= κ
q

p

√
1 + t2x(z0) + t2y(z0). (4.15)

Depending on desired precision, parameters Ai1...ik and Bi1...ik can be calculated only till specific
order n. For example, if we keep only first order, we will get very fast extrapolation code, but it
will not be very precise. Authors of the method claim in [103] that using all coefficients below the
fourth order will give the same precision as the fourth-order Runge-Kutta method with the same
step size. The method used to calculate all the coefficients is described in [104]. Furthermore,
in our case, some of the low-order coefficients can be discarded if they are multiplied with the
path integral of the x or z field component. List of all coefficient is located in Appendix A. The
extrapolation step size was chosen to be 0.5mm.

4.2.4 Propagation of uncertainties

If a track has long TPC segments in the magnetic field, so that momentum is properly
fitted, reconstruction software also calculates full covariance matrix. However, this matrix is
only provided for the position at which track parameters are evaluated. To get covariance
information at the extrapolated position, the covariance matrix needs to be transformed in a
way similar to the transformation between different coordinate systems. After each extrapolation
step, Jacobian matrix is calculated in the following manner:

Jij = dαi
dαj,0

, (4.16)

where αi is a component of the state vector from Eq. 4.4 after the extrapolation step, while
αj,0 is a component of the initial state vector. Jacobian is then used for the covariance matrix
transformation:

C(z0 + ∆z) = JC(z0)JT . (4.17)

4.2.5 Treatment of multiple scattering

Propagated uncertainties from the previous subsection are underestimated because multiple
Coulomb scattering is not taken into account. Multiple scattering represents a noise for the track
extrapolation. During each extrapolation step, a correction must be added to the covariance
matrix. Added contribution can be written in the form of noise covariance matrix. A good
approximation of the multiple scattering can be found in work from G. R. Lynch and O. I.
Dahl [105]. They present a simple formula for the width of the angular distribution:

σ(θs) = 13.6
βcp

z

√
L

Lr

[
1 + 0.038log

(
L

Lr

)]
, (4.18)
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where βc is a velocity of the particle, p is a momentum in MeV/c, L is a track length, and Lr is a
radiation length of the medium. For air, the radiation length is equal to 304m. The formula can
be applied to all relativistic particles, including heavy ions, and the authors claim a precision of
11%. Implementation of the formula 4.18 for the track extrapolation was done by R.J. Wolin
and L.L. Ho in [106]. They give covariance matrices of the noise for two different sets of track
parameters, one of which correspond to our choice. It is assumed that momentum of the particle
is conserved, therefore no noise is added to the q/p uncertainty. The covariance matrix of the
multiple scattering is:

Q =


(∆z)2 Var(tx) (∆z)2 Cov(tx, ty) −∆zVar(tx) −∆zCov(tx, ty) 0

(∆z)2 Cov(tx, ty) (∆z)2 Var(ty) −∆zCov(tx, ty) −∆zVar(ty) 0
−∆zVar(tx) −∆zCov(tx, ty) Var(tx) Cov(tx, ty) 0
−∆zCov(tx, ty) −∆zVar(tx) Cov(tx, ty) Var(ty) 0

0 0 0 0 0

 (4.19)

where Var(tx), Var(ty) and Cov(tx, ty) are equal to:

Var(tx) = σ2(θs)
(
1 + t2x

)(
1 + t2x+ t2y

)
, (4.20a)

Var(ty) = σ2(θs)
(
1 + t2y

)(
1 + t2x+ t2y

)
, (4.20b)

Cov(tx, ty) = σ2(θs)txty
(
1 + t2x+ t2y

)
. (4.20c)

4.2.6 Extrapolation to the target surface and validation

In the analysis, TPC tracks are extrapolated towards the target surface. Extrapolation is
done until track hits the target or distance of closest approach is found. Because of that, any
uncertainty of the target position will limit our extrapolation precision. This will be discussed in
section 4.5. Although the analytical method for track extrapolation was proven to work in [103],
basic sanity checks were done to avoid any bugs in the code. Monte Carlo chain described
in section 3.5 was used to check for any extrapolation biases. Tracks from the Monte Carlo
simulation were extrapolated backward towards the target and extrapolated track parameters
were compared to the simulated parameters. Comparison of all important track parameters
can be seen in Fig. 4.4 to check for a possible bias or a mistake in the extrapolation code.
Momentum comparison is not shown because momentum is conserved during the extrapolation
and by definition, there is no bias. Tracks can start in different TPCs and they can have crucially
different momentum resolutions and different distances from the target. Because of this reason,
all distributions in Fig. 4.4 have long tails.

4.3 Kalman filter

Kalman filter is an iterative method for estimating a future state of the system by using
measurements observed in the past. The method was developed in 1960 by R. E. Kalman [107],
and it is widely used in navigation, aircraft control, signal processing and particle physics. It
took more than 25 years for the Kalman filter to be introduced into the particle physics, and
now it is used for vertex fitting, track fitting, and merging. Only a brief review of Kalman
filtering will be provided here on the example of the NA61/SHINE experiment, while a more
detailed explanation is provided in work done by R. Fruhwirth [108]. The idea behind Kalman
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Figure 4.4: Comparison of the extrapolated and simulated track parameters: x (a), y (b), tx (c)
and ty (d).

filter is to predict the system state after step ∆t (time or some other parameter) and compare
prediction with measurement. Both, measurement and prediction have covariance matrices
assigned to them. New prediction for the same point, called filtered prediction is calculated as
a most probable value of the state parameters given the two covariance matrices. Graphical
representation of the Kalman filter algorithm is shown in Fig. 4.5. For a better clarity, let’s
briefly examine 1D case. Both, prediction and measurement are described by a Gaussian. In
this case, filtered value is a mean value of the product of two Gaussians which is actually the
weighted mean.
When tracks are fitted in the detector such as TPC, we only look at discrete intersections of

the tracks and detector which are called clusters or points. Therefore, our system to which we
want to apply the Kalman filter is a discrete system. If a track state at point k− 1 is known,
state at point k is given by:

r(zk)≡ rk = Fk−1rk−1 +wk−1, (4.21)

where rk−1 and rk are track states at points k−1 and k respectively, Fk−1 is a track propagator,
while wk−1 is a process noise. Track state is defined in Eq. 4.4 and the track propagator is
defined by the extrapolation procedure and it is given by Eq. 4.11. Noise of the system comes
from multiple Coulomb scattering and it is expected to be independent for all wk, unbiased
and with a finite variance. Furthermore, covariance matrix of the noise was already defined
in Eq. 4.19. Although, track state contains five parameters, usually only some of them are
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Figure 4.5: Schematic view of the Kalman filter algorithm.

measured or some combination of them is measured. We define measured state at point k as:

mk = Hkxk +εεεk, (4.22)

where εεεk is the noise of the measurement, while Hk in the NA61/SHINE case is defined as:

Hk =
[

1 0 0 0 0
0 1 0 0 0

]
(4.23)

The matrix Hk extracts only parameters x and y which represent cluster positions in the TPCs.
Measurement noise is also unbiased, independent and has a covariance matrix Vk. From these
definition it is possible to calculate filtered value of the track state:

rkk = rk−1
k +Kk

(
mk−Hkrk−1

k

)
, (4.24)

where rkk is filtered value, rk−1
k is predicted value and Kk is a Kalman gain matrix which is

defined as:
Kk = Ck−1

k HT
k

(
Vk +HkCk−1

k HT
k

)−1
. (4.25)

Filtered covariance matrix is equal to:

Ck
k = (I−KkHk)Ck−1

k . (4.26)

To better understand the role of the Kalman gain matrix, we can return to the 1D example in
which Kalman gain is a number:

rkk =
rk−1
k

(σk−1
k

)2 + mk
(σkm)2

1
(σk−1
k

)2 + 1
(σkm)2

= rk−1
k + (σk−1

k )2

(σk−1
k )2 + (σkm)2

(
rk−1
k +mk

)
= rk−1

k +Kk

(
mk− rk−1

k

)
. (4.27)

Now it is easy to understand that if uncertainty of the prediction is much larger than uncertainty
of the measurement, Kalman gain goes to 1 and update of the prediction is maximal. If opposite
is true, Kalaman gain goes to 0 and therefore prediction is not changed. If track was not
previously fitted by some other method it is important to select proper prior value for the
track state. Initial values of the parameters are not important, only if initial variances of
the parameters are large compared to the variances of the measurement. If too small initial
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variances are selected, it would take very long time (a lot of measurements) for track parameters
to converge. Track fitting during the track reconstruction in NA61/SHINE is done by a global
method which estimates track parameters at first point of track which is not suitable for some
of the calibration tasks. This was the main motivation for developing Kalman filter as a part
of the analysis code. Developed code can be used for the calibration purposes in any dataset
within the NA61/SHINE experiment. It is a part of TrackExtrapolation class and, in particular,
DoKalmanStep function which extrapolates a track towards provided cluster and calculates
filtered track parameters and its covariance matrix.

4.4 TPC alignment

When track segments from different TPCs are merged, any misalignment between the TPCs
will cause bias in the global track parameters. In turn, this will bias our hadron yields since
misalignment does not exist in Monte Carlo simulation. By using Kalman filter it is possible to
estimate track parameters for each track segment separately. Track segments are then extrap-
olated to the common z position, while x and y positions are compared. To check alignment
quality we compare segments from VTPC-2 to the segments from other TPCs since VTPC-2 is
in the center of the experimental setup. Alignment check for x and y can be seen in Fig. 4.6.
There are no significant systematic shifts between the TPCs. Small distortions can be found
close to the beam-line or close to the edges of the TPCs. These do not come from the overall
shift in the position of a TPC. Rather they are caused by various edge effects. If some of these
regions are not present in the Monte Carlo simulation, it is possible to remove such tracks by
carefully choosing quality cuts during the analysis. The TPC alignment is implemented in the
form of Shine module GeoAlign.

4.5 Target position calibration

A systematic shift of the target creates bias in the backward track extrapolation in the
data. For the tracks with a small polar angle (~5mrad) even a small shift of 0.05 cm in target
x position can induce migration in z which is 5− 10 cm in size. Therefore, it is important
to precisely determine target position and its uncertainty with respect to the TPCs. Target
position is parametrized by five parameters: (x,y,z) position of the center of upstream target
face, target tilt in x−z plane and target tilt in y−z plane.

4.5.1 Upstream target position

The position of the target upstream face with respect to the beam can be determined easily
because of the existing feature of the T2 trigger. It was explained in subsection 3.2.1 that T2
trigger was used for selection of the beam tracks which hit the target at upstream target face.
By plotting beam (x,y) position at target z position, it is possible to get a sharp circle which
represents upstream target face. It must be noted that measurement of the target z position
was performed before the data-taking along with the position of the BPDs. The z position is
equal to:

zt = (−657.41±0.05) cm. (4.28)

However, there were some doubts in the conversion from surveyor’s measurement coordinate
system to the NA61/SHINE system, and this will be checked later on. Even variation in z of
1cm induces negligible changes in the beam (x,y) distribution. Once we obtain (x,y) position of
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Figure 4.6: Alingment in x (a)-(c) and alignment in y (d)-(f).

the target with respect to the BPDs, it must be corrected for any misalignment between TPCs
and BPDs. During the data-taking in 2010, around 10% of the data was recorded with the
maximal magnetic field in the TPCs. In these data, beam protons which did not interact were
bent to the GTPC, VTPC-2, and MTPC-L. Measured TPC tracks can be extrapolated towards
the target and compared with the beam tracks. Any difference in position is due to BPD−TPC
misalignment. Quality cuts have been applied to the TPC proton tracks: the number of clusters
in the TPCs must be larger than 30 and the difference between extrapolated polar angle and
beam track polar angle must be less than 2mrad. The position of the upstream target face and
BPD-TPC misalignment are shown in Fig. 4.7. Several sources of the systematic biases were
checked for the BPD-TPC alignment: variation of the quality cuts, alignment of the TPCs and
variations of the drift velocity in the TPCs. The total systematic uncertainty is presented in
Tab. 4.1. The uncertainty of the x position is slightly larger (around 0.03cm), and this is mostly
due to TPC alignment.

Target z position is checked by extrapolating all TPC tracks in an event towards the respec-
tive beam track. When the minimal distance from the beam track is reached, the value of the z
position is stored. Tracks with momentum lower than 1GeV/c were removed to remove tertiary
particles (produced in decays and re-interactions). Obtained distribution is shown in Fig. 4.8.
A step function is fitted to the rising edge of the distribution, and z value of the half-maximum
is taken as the target z position. Dependence of this result on the BPD-TPC alignment and the
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Figure 4.7: Target position with respect to the BPDs (a), x BPD-TPC alignment (b) and y
BPD-TPC alignment (c).

function choice is taken as systematic uncertainty. The result is summarized in Tab. 4.1 and it
is consistent with the result in Eq. 4.28.

4.5.2 Target tilt

In the case of the NA61/SHINE experiment, target tilt can only be determined by looking
at vertex x and y distributions along the target. If distribution shifts with z position, the target
is tilted with respect to the beam-line. However, if the beam width is smaller than the target
radius, tilt will not influence vertex positions. For this reason, T2 triggers need to be used in
the tilt determination. Moreover, change in the mean x and y vertex position along z can be
due to beam divergence since beam tracks close to target surface can exit the target before
downstream target face. The mean proton beam divergence is around 0.3mrad and cannot be
neglected. Vertex distributions were determined by extrapolating TPC tracks toward the beam
tracks until the minimal distance is reached. Similarly, same quality cuts were applied as for the
check of the target z position. No appreciable tilt was found, either in the x− z or y− z plane.
The mean value of the divergence was taken as a systematic uncertainty of the tilt.

x [cm ] y [cm ] z [cm ] tx [mrad ] ty [mrad ]
Value 0.15 0.12 −657.5 0.0 0.0

Uncertainty 0.03 0.02 0.1 0.3 0.3

Table 4.1: Position of the T2K replica target and its uncertainty.

4.6 Forward time of flight wall calibration

It has already been stated in subsection 3.2.4 that the time of flight measurement is com-
plementary to the energy loss measurement. Particle identification in the momentum regions
where energy loss distributions cross is not possible without the time of flight measurement. It
also reduces the systematic uncertainty of the proton and kaon yields since proton and kaon
energy loss distributions overlap in the whole momentum region of interest. Therefore, a precise
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Figure 4.8: Target z position.

calibration of the forward time of flight wall is necessary, and it was done as a part of this thesis.
This calibration is implemented in the Shine module called FTOFCalib. Times measured by
top and bottom channels in each slat contain several sources of biases, and they are equal to:

Ttop = tof + ∆tS1 + tbeam+ ttopcable︸ ︷︷ ︸
ttop0

+
l
2 −y
vslat

,

Tbottom = tof + ∆tS1 + tbeam+ tbottomcable︸ ︷︷ ︸
tbottom0

+
l
2 +y

vslat
,

(4.29)

where tof is a true value of the time of flight, ∆tS1 is a time jitter of the start signal, tbeam is
a time needed for a beam proton to travel from the S1 counter to the interaction point, tcable is
time delay caused by cables and CFDs, and the last term is a signal delay caused by finite speed
of the signal inside a slat. The time jitter of the start signal does not create any systematic bias
in the mean value of the squared mass measurement, however, it can degrade the resolution.
Correction on the event by event basis is necessary to improve the resolution. Interaction point
can be anywhere in the target, so tbeam also varies on the event basis. Since the target is not
inside the tracking system and the percentage of tertiary tracks is not negligible, it is nearly
impossible to determine the position of interaction point with great precision. For this reason
tbeam is taken as the time needed for a beam proton to reach the target center. This does not
introduce any bias in the overall squared mass distributions, but it will degrade squared mass
resolution mostly for protons, and it will be discussed later. Beam track length change due to
divergence is negligible, and for any practical purpose tbeam was a constant during the data-
taking period. The sum (tbeam+ tcable) is constant named t0 and it is different for each channel.
The speed of signal propagation inside the slat (vslat) depends on 2 contributions: a speed of
light and geometry which defines path length for the light. The speed of light is a function of
the scintillator refraction index, and it can change due to aging effects, while geometry depends
on dimensions of the slat and quality of the aluminum foil wrapping, i.e., wrinkles in the foil can
change reflection angle. When we use mean time measured by top and bottom channels, signal
delay in the slat cancels out except for a constant term. This constant term can be included
into t0. However it will be clear later why we keep it separate and apply signal delay correction
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for each channel separately. Before correcting the measured time for all biases, it is necessary
to determine the exact position of each slat in relation to the tracking system.

4.6.1 ToF-F slat positions and track-hit matching

In the first step, only slats with the good signal are selected in each event. This was done
by looping over all events and selecting only slats which had good QDC and TDC values for
both PMTs. QDC values need to be above the certain threshold, and TDC values must be
inside the TDC time window defined in subsection 3.2.4. After the reconstruction, hits from
four slats were missing. The reason for this was found to be the problem with electronics for one
of the PMTs in these slats. Afterwards, hits in these 4 slats were reconstructed by using only
one PMT. However, this affects the efficiency of the ToF-F wall and tof resolution and, it will
be discussed later on. In the second step, tof hits were matched with TPC tracks. Matching
depends in particular on the precise knowledge of the slat x position. For example, if we want
to determine the x position of the slat m, we select events which contain hit in the slat m and
extrapolate all tracks from these events to the z position of the ToF-F wall. In the process of
the TPC track reconstruction, track parameters (momentum, position, and covariance matrix)
are calculated and stored only for the first point on track which is usually inside the VTPC-1,
more than 10 m away from the ToF-F wall. This greatly reduces the extrapolation precision. To
overcome this issue, Kalman filter with track extrapolation procedure described in subsection 4.2
was used. This allows us to get track parameters at the last point on the track. Afterwards, the
track is extrapolated from the last point to the ToF-F wall. Extrapolated track length from the
target center to the ToF-F wall and the extrapolation uncertainty are shown in Fig. 4.9. The
track length vs. x distribution has a comb-like structure which is due to the zig-zag positioning
of the slats as explained in subsection 3.2.4. The extrapolation uncertainty in x is less than
0.5mm for a typical track. Without Kalman filter, these uncertainties would be an order of
magnitude larger. The center of slat m is determined by fitting a superposition of two error
functions and a constant to the extrapolated x distribution. An example of this procedure can
be seen in Fig. 4.10. The shape of the slat is visible in the y−x distribution. Background in
these distributions comes from the tracks which never actually hit the ToF-F wall (because of
the decays, etc...), but they passed the cuts and were extrapolated to the ToF-F wall position.
Most of them can be removed by applying stricter cuts and selecting only tracks which reach the
last sector in the MTPCs. After obtaining slat positions, tracks are matched with the ToF-F
hits if they are extrapolated within 1 cm from the edge of the active slat, which is equal to the
width of the overlapping region.

4.6.2 Signal propagation speed in the ToF-F slats

From Eq. 4.29 we expect to have a linear dependence of the measured time in each channel
on the y position of the hit. The slope is equal to the inverse signal propagation speed in the
slat. To extract slope value, for a given slat, measured times for both channels were plotted vs.
y position of the hit. Distributions are divided into slices in y, and Gaussian is fitted to each
slice. Lines are then fitted to the mean values of the slices for both channels. Mean value of
the two slopes is taken as an inverse signal propagation speed in a given slat. An example of
the procedure described above is shown in Fig. 4.11. There are some nonlinearities at the edges
of the slat, and they are probably due to imperfections in the foil wrapping and attenuation of
the light for the hits which are created far away (near the opposite PMT). Mean inverse signal
propagation speed in the whole ToF-F wall is 70.3ps/cm and it can be seen in Fig. 4.12. This
value is quite different from the value obtained in 2007, which is equal to 64.2ps/cm. It was
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Figure 4.9: Extrapolated track x position at ToF-F wall vs. extrapolated track length from the
target center to the ToF-F wall (a) and extrapolated x uncertainty vs. x (b).
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Figure 4.10: Extrapolated position of tracks coming from the events with hit in scintillator 34:
y-x distribution (a) and x distribution with fitted scintillator x position (b).

assumed that this is due to aging effects. However, there is no significant difference between
central and edge slats where track density is higher and lower respectively.

4.6.3 Subtraction of t0 values

In the next calibration step, a measured time in each channel is corrected for a t0 constant.
Calculation of t0 constants is done under the assumption that produced hadrons below 2 GeV/c
are mostly pions. Energy loss distribution for electrons and positrons is well separated from
the pion energy loss distribution, so they can be removed from the hadron sample. Selected
TPC tracks are extrapolated towards the center of the target and the ToF-F wall. Under the
assumption that the track is a pion and with a known momentum and a track length it is possible
to calculate a prediction for the time of flight. Calculated time is subtracted from the measured
time of flight for both PMTs in the active slat. Obtained distributions are Gaussians with a
background which comes from the other hadrons identified as pions. Mean of the Gaussian is
the t0 constant for a given PMT. An example of t0 distribution can be seen in Fig. 4.13. In the
next iteration, the raw time of flight with subtracted t0 is used for calculating the squared mass
of the particles. Now, it is possible to apply cut on the mass and select only pions. With pure
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Figure 4.11: Time of flight dependence on the y coordinate of the hit for the top PMT (a) and
bottom PMT (b) in the slat 25. Superimposed orange points are mean values of each slice.
Superimposed dashed green lines are linear fits. Absolute value if the slope is equal to the
estimate of inverse signal propagation speed in the slat.

pion sample, the whole procedure is repeated to get small corrections for the t0 values. These
corrections are usually in the range 0−2ps in size. Final t0 values are shown in Fig. 4.14. The
distinction is made for the top and bottom PMTs in each ToF-F slat. It is visible that the values
are grouped in groups of 8 which shows a correlation between PMTs in the same ToF-F module.

4.6.4 Calibration of the start signal

A signal from the PMT1 connected to the S1 counter is used as a start signal for the whole
trigger system. However, the beam has a non-negligible width, and beam particles can hit S1
at different regions, thus generated light will need different time to reach the PMT1. The time
needed for light to reach PMT1 from the beam center is part of the tbeam and is included into t0
constant. Fluctuations around beam center will cause fluctuations in the measured tof . In the
end, this only affects the resolution of the squared mass, but not the mean value. As explained
in subsection 3.2.1, the S1 counter has four PMTs, connected on 4 different sides. By using the
mean time from all 4 PMTs it is possible to remove the dependence on the beam position and
to get correct start signal. The correction is equal to:

T corrstart = Tstart+ ∆t= t1 + 1
4 (∆t21 + ∆t31 + ∆t41) , (4.30)

where t1 is the start time used for the trigger, and it is defined as 0 and ∆tj1 is the measured time
difference between the signal in other PMTs and the first one. To improve the tof resolution,
T corrstart is subtracted from the measured tof . In previous measurements in 2007 and 2009, a
typical start signal jitter correction is from −50 to 50ps in size, depending on the event. It was
clear that to reach tof measurement precision from 2007 and 2009, the jitter corrections need to
have an order of magnitude larger range. This large increase suggests that there was another,
not well-understood effect. Also, the information about TDC sampling rate for the S1 time
difference measurement was lost, and the S1 counter was completely replaced before the start of
this work. For these two reasons, a special procedure for calculating the time jitter correction was
developed. Pions below 1GeV/c were selected by applying energy loss and squared mass cuts.
Energy loss was used to remove electrons and positrons, while squared mass resolution without
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Figure 4.13: Gaussian fit to the T0 distribution for top PMT in the slat 69: first iteration (a)
and second iteration (b).

jitter corrections was good enough to remove protons and kaons. True tof was parametrized as:

toftrue = tofmeas.−
1
4 [k21∆T31 +k31∆T21 +k41∆T41] , (4.31)

where toftrue and tofmeas. are the true and measured tof respectively, ∆Tj1 is the measured
TDC value with subtracted mean and kj1 parameters are to be determined. For selected pions,
variance of squared mass was calculated as a function of kj1 parameters. Values of these param-
eters for which squared mass variance is minimal were determined by using Newton’s method:

k21 = 6.55ps, k31 = 1.63ps, k41 = 9.25ps (4.32)

Before applying the correction, the large correlations were found between the difference of mea-
sured and calculated tof for pions and TDC values measured by 3 additional PMTs connected
to S1. After correcting for the jitter, these correlations vanish. This can be clearly seen in
figure 4.15.
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4.6.5 Intrinsic ToF-F resolution

After the calibration, the tof resolution was calculated to check the performance of the
detector. It is possible to calculate the tof resolution for a single slat by comparing the measured
time from the top and bottom channels. We expect to get Gaussian centered around 0, and
a half width of the Gaussian is equal to the resolution of the tof measurement. The obtained
resolution is equal to 113ps, which is in agreement with the value of 110ps reported in [109].
It is important to note that this value is not valid for all slats since we have four slats with
only one channel working. Resolution of tof measurements for these slats is around 160 ps.
This approach is shown in Fig. 4.16a. Low-quality hits, which are located in the tails of the
same distribution can be discarded by applying quality cut, but this can be done only for slats
with both channels working. Value of |toftop− tofbottom| < 2000ps was used. This reduces the
efficiency of the detector, but it improves separation between particles. If track hits the ToF-
F wall in the region where two slats overlap it is possible to estimate the tof measurement
resolution between 2 slats. Because centers of the two neighboring slats are 3 cm apart in z, we
expect to get Gaussian centered roughly around 100ps. As can be seen in Fig. 4.16b, the width
of the Gaussian divided by

√
2 is equal to the tof resolution. The extracted value is equal to

123ps which is comparable with the resolution obtained from the single slat measurements.

4.6.6 Squared mass resolution

Except for the intrinsic TOF-F resolution, effects like jitter of the start signal reduce the
precision of the tof measurement. In turn, this affects the precisions of the m2

tof . A realistic
estimate of the m2

tof resolution is important for particle identification used in the analysis. The
m2

tof vs. p distribution is plotted in Fig. 4.17a. To determine the resolution for hadrons, electrons
and positrons were removed by using the energy loss cut. All tracks with energy loss larger than
1.35mip are assumed to be electrons or positrons. Hadrons were separated by using a simple
m2

tof cut. This can be done up to 4GeV/c for protons and pions and up to 2GeV/c for kaons.
In the next step, m2

tof distributions for hadrons were binned in momentum and Gaussians were
fitted to each bin. The width of the Gaussian was taken as an estimate of the m2

tof resolution for
a given momentum slice. A parabola was then fitted to the obtained widths to get momentum
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Figure 4.15: Difference between the measured and predicted tof vs. mean subtracted TDC value
for PMT 2, 3, 4 in S1 counter, before (a, b and c) and after (d, e, f) jitter correction.
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Figure 4.16: Difference between the tof measured by top and bottom channels (a). The dark
red line is fitted Gaussian, while dashed black lines are quality cuts. Resolution of the tof
measurement by single slat is equal to the half width of the fitted Gaussian. Time resolution
between two overlapping slats (b). Resolution of the tof measurement between two slats is equal
to the width of the fitted Gaussian divided by

√
2.

dependence. This is shown in Fig. 4.17b. It can be seen that m2
tof resolution is a bit better

for pions than for more massive hadrons. The reason for this can be found in our choice that
tbeam is constant for all events and tracks. Imagine, for example, that beam proton interacts at
upstream target face and creates another proton with much lower momentum. Since we measure
tbeam from S1 to the target center, bias in the measured tof is equal to:

∆tof = l

2

( 1
vbeam

− 1
v

)
, (4.33)
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where l is the target length, vbeam is the beam proton speed which for this purpose can be equal
to c and v is a speed of produced proton. For 1GeV/c proton the bias is around 500ps, but for
a pion with the same momentum it is only 14ps.

4.6.7 ToF-F efficiency

Signals in the TOF-F wall were not digitized in the Monte Carlo simulation, and therefore
the efficiency of the hit detection with proper m2

tof measurement cannot be corrected with the
Monte Carlo. There are two contributions to the inefficiency:

1. quality cut |toftop− tofbottom|< 2000ps and

2. multiple tracks hitting the same slat.

The first contribution depends mostly on the slat electronics and can vary independently from
slat to slat. Slats with only one active channel do not suffer from this inefficiency. The second
contribution depends on track density, and it is higher near the beam-line. The efficiency is
determined by selecting only long tracks with good momentum measurement and a segment in
the last sector of the MTPCs. This is done to avoid decays before the ToF-F wall and artificially
reducing efficiency. A number of selected tracks with proper m2

tof measurement divided by the
total number of selected tracks gives the efficiency as shown in Fig. 4.18. The efficiency of the
first slat from the right is a bit lower. The reason for this is noisy electronics. It is hard to
determine the efficiency of the central slats because this area is not instrumented by the TPCs.
Also, this region is not very important, because the number of selected tracks is very low. It
can be seen in the sub-figure 4.18b around −60cm and −160cm that two slats have a bit higher
efficiency than neighboring slats. These two slats had only one active channel and, therefore, the
quality cut on the tof measurement was not applied. Overall, mean efficiency is slightly lower
than 97%. This information will be used for correcting the hadron yields during the analysis.
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Figure 4.18: ToF-F efficiency: y vs. x (a), mean efficiency per slab (b) and mean efficiency of
all slabs vs. y coordinate of the hit (c).

102



Chapter 5

Analysis of p + T2K replica target
data

Contents
5.1 Beam and triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Beam profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Beam composition and purity . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.3 Removal of off-time events . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.4 Beam and trigger selection . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Track selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1 Quality selection of the TPC tracks . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Energy loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.2 Time of flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Joint energy loss and tof mass squared fit . . . . . . . . . . . . . . . . . 119

5.3.3.1 Initialization of the parameters . . . . . . . . . . . . . . . . . . 120
5.4 Correction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Monte Carlo correction factors . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Time-of-flight efficiency correction . . . . . . . . . . . . . . . . . . . . . 122
5.4.3 Ad hoc correction factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Hadron loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5.2 Reconstruction bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.3 Backward track extrapolation . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.4 Feed-down correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.5 Time-of-flight efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.6 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5.7 Ad hoc correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

103



Analysis of p + T2K replica target data

The analysis of the p + T2K replica target data will be presented in this chapter. The aim
of this analysis is to extract hadron yields (π+, π−, K+, K− and p) at the surface of the T2K
replica target. Data were taken during the summer of 2010 and a total number of collected
triggers is around 10.2× 106. Additionally, it is important to note that around 11.7% of these
events were recorded with the maximal magnetic field in the TPCs. This gives a possibility to
measure a fraction of the non-interacting beam protons which are bent to the TPCs because of
the high magnetic field. This subset of the data was previously used to improve calibration of
the target position. The data taken with the maximum magnetic field will be denoted as high
magnetic field data-set (HMF dataset), while data taken with the optimized magnetic field (to
maximize total acceptance of the detector for these interactions) will be called low magnetic field
dataset (LMF dataset). The analysis will be presented as follows: first, selection of the events
and tracks will be explained. Afterwards, selected track for both the data and the Monte Carlo
simulation will be binned in the phase space of momentum, polar angle and longitudinal position
at the target surface (p,θ,z). A particle identification will be performed to distinguish between
different hadron species and to remove any e± contamination. The results will be corrected for
various inefficiencies by using Monte Caro simulation and data-based time of flight efficiencies.
Finally, possible systematic biases will be discussed.

5.1 Beam and triggers

The secondary proton beam at 30.92GeV/c used in 2010 data-taking was created by scattering
primary SPS proton beam on the beryllium target. When selecting good events, it is necessary
to ensure that:

1. beam hits the target,

2. pile-up events are removed and

3. number of misidentified beam particles is minimal.

5.1.1 Beam profile

As explained in subsection 3.2.1, the beam position is measured by three BPD detectors.
After finding clusters in x and y BPD planes, two lines are fitted to the cluster positions and
extrapolated towards the upstream target face. An example of reconstructed beam profile is
shown in Fig. 5.1, both for T2 and T3 triggers. It is important to note that beam position
in Fig. 5.1 is not corrected for the BPD-TPC alignment. A mesh structure can be seen on
both of the beam profiles. The origin of the structure is unphysical and comes from the biased
description of induced charge distribution on the cathode strip planes in the BPDs. During the
reconstruction, clusters are determined by checking if there is a signal in one or more strips
which is higher than a predefined threshold. Afterwards, a cluster is extended to include all
surrounding strips which have signal larger or equal to 15% of the maximum. Gaussian is then
fitted to the cluster to obtain cluster position. It was shown by Endo et al. [110] that using
centroid methods for finding clusters in MWPCs yield biased cluster positions and cause the
appearance of comb-like structures. These biases are possible to correct by calculating proper
charge distributions. However, an attempt was made to improve beam profiles by tunning the
signal thresholds used in cluster finding. The best result was obtained by using the threshold of
10% of the maximum. The improved beam profiles are shown in Fig. 5.2.
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Figure 5.1: T2 beam profile (a) and T3 beam profile (b).
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Figure 5.2: T2 beam profile (a) and T3 beam profile (b) after adjustment of the signal threshold.

There is a clear correlation between the beam profile and position of the track exit point on
the target surface. This will be explained in great detail in the final chapter. For this reason,
it is important to use the same beam profile in Monte Carlo simulation as explained in the
section 3.5. Any bias in the Monte Carlo beam profile will induce bias in the Monte Carlo
correction factors. It is also necessary to account for the beam divergence which is taken as a
slope from the linear fits. The beam divergence is shown in Fig. 5.3.
Several cuts are introduced to select beam tracks which hit the target. First, only beam tracks
with three good clusters both in x− z and y− z planes are selected. This cut is denoted as
BPD cut and it is applied by selecting only events with BPD reconstruction flag equal to 0. It
removes beam tracks in which one or more clusters hit the BPD edge, or they are created by two
beam particles which passed in quick succession. In next step, each beam track is extrapolated
towards the downstream target face. If the beam track can exit from the target before the
downstream target face (because of the divergence or target tilt), it is discarded (R cut). Since
the error of the BPD measurement is around 200µm, all tracks coming to the target mantle
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within this distance are discarded. Reason for this comes from the T2K experiment. Proton
beam at J-PARC is narrow and proton track cannot exit through the target mantle without
scattering.
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Figure 5.3: Beam divergence: dx/dz vs. x for T2 beam profile (a) and T3 beam profile (b);
dy/dz vs. y for T2 beam profile (c) and T3 beam profile (d).

5.1.2 Beam composition and purity

Since proton beam used in the NA61/SHINE experiment is the secondary beam, it is obliga-
tory to check the purity of the selected beam particles. If there is an admixture of other particles
present in the beam, this will bias the hadron spectra. Beam identification is done by CEDAR
in coincidence and the THC in anti-coincidence. The gas pressure in CEDAR is set so that
only protons produce Cherenkov radiation with a specific angle so that CEDAR optical system
can transport it to the PMTs. This also depends on the beam momentum, for higher momen-
tum, separation is harder to achieve. In the case of 30.92GeV/c protons, pressure for protons
is around 3.3bar, and it is shown in figure 5.4a. This measurement (so-called pressure scan) is
done by changing gas pressure and measuring detection probability of Cherenkov radiation with
six PMTs. The beam contains around 76.3% of π+, 1.6% of K+ and 12% of protons. Separation
of protons and other hadrons is nearly perfect. Only possible misidentification comes from a
small background caused by multiple scattering inside the CEDAR gas and beam divergence.
From the CEDAR measurement, the purity of the beam is higher than 99.9%.
On the other hand, THC pressure scan gives gas pressure threshold below which protons do not
radiate Cherenkov radiation. Percentage of protons found in THC pressure scan is consistent
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with CEDAR measurement, and it can be seen in Fig. 5.4a. Purity of the beam if selected only
with THC would be around 91.2%, while combined CEDAR and THC measurements give purity
very close to 100%. This ensures that it is not necessary to correct measured hadron yields for
the beam purity effect. A conservative estimation of the low limit on the beam purity was done
for 2009 beam and the reported value in [79] is 99.8%.
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Figure 5.4: CEDAR pressure scan (a) and THC scan (b). Beam composition measured by
both detectors is superimposed on the figures alongised with detector efficiencies. Vertical lines
represent pressure settings used during 2010 data-taking.

5.1.3 Removal of off-time events

The acquisition time of the TPCs is quite long (around 50µs) because of the long drift time
needed for electrons to drift from the bottom to the top of the gas chamber. Off-time events,
also called pile-up, are created when additional beam particles hit and interact with the target
inside the acquisition time of the detector. Any particle produced in off-time interaction will be
wrongly assigned to the triggered event. Since production of this particles is shifted in time with
respect to the triggered event, the y position of these tracks in the TPCs will also be shifted.
Secondary proton beam intensity measured by the S1 counter in 2010 was around 75000 particles
per spill. Each spill had a duration of approximately 9 s. This gives beam intensity of around
8.3 kHz. By using Poisson distribution, it is straightforward to calculate the probability that
there is at least one additional beam particle within ±25µs around the trigger. The obtained
value is 34.1%. Usually, off time particles are measured by the Wave-Form Analyzer (WFA), but
there was a problem with cabling during the data-taking, and this measurement was rendered
wrong. In any case, removing whole events which possibly contain off-time tracks is not an
optimal solution. The solution lies within the properties of the ToF-F wall. Its acquisition time
is only 100ns. The probability that off-time track hits the ToF-F wall inside of acquisition time
window is less than 0.1%. Besides this, measurement of tof are used for particle identification,
so practically all off-time tracks are removed without additionally loosing any statistics.

5.1.4 Beam and trigger selection

From the discussion in previous three subsections, it is clear that the only cuts which must
be applied to the events are BPD and R cut. Additional quality selection will be performed on
the individual tracks in the detector. Table 5.1 shows fractions of the events which passed the
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selection for both the LMF and the HMF datasets. Beam position detectors and triggers are not
simulated in the Monte Carlo, so by default, the MC events have good beam track, and there
is no pile-up or contamination of the beam. Furthermore, the HMF data does not have the T2
triggers recorded, because of a problem with the S3 counter during the HMF data-taking. For
this reason, the S3 signal was removed from the T3 triggers in the HMF data. However, this
did not change the beam profile since T3 beam is very narrow because of the V1’ counter. In
the LMF dataset, both, the T2 and the T3 triggers are not independent subsets of the data. In
the 80% of the data, the T3 triggers make a subset within the T2 triggers. In the remaining
data, information that event is a T2 was not stored for all events (it was prescaled by a factor of
two). This is usual practice in the NA61/SHINE experiment in which often only main triggers
are recorded every time (in this case T3), while others are prescaled by a predefined factor.

The hadron yields can be measured for both beam profiles. However, it is necessary to
decide which one is more convenient for T2K. From the previous work by Alexis Haesler [83], it
is already known that hadron yields at the upstream part of the target strongly depend on the
beam width and position on the upstream target face. A Monte Carlo study was done by using
Fluka2011.2c.5, π+ yields were simulated on the surface of the T2K replica target with both
of the NA61/SHINE beam profiles and compared with the π+ yields simulated with the T2K
run 4 beam profile. Ratios of the simulated yields are shown in Fig. B.1 and B.2. Yields are
binned in momentum, polar angle and the six longitudinal bins on the target surface, sixth bin
being downstream target face. It is clear that simulation with both of the NA61/SHINE beam
profiles does not generate same π+ yields at the low polar angle and upstream longitudinal bins
as the simulation with the T2K beam profile. Ratios for T2 beam profile in the problematic
region are larger than two, while for the T3 beam profile, they are around one half or less. It
is important to note that the T2 beam profile is wider, while the T3 beam profile is narrower
than the T2K beam profile. In the first order approximation, these differences can be explained
purely by geometry (see discussion in section 6.2). Since both of the beam profiles do not
accurately recreate conditions like in the T2K experiment, the final results must be re-weighted
for these differences or it must be proven that these differences do not change the neutrino flux.
Consequently, the only criteria or choosing the beam profile is statistics and for this reason, T2
has been chosen.

Total T2 T3 BPD R
[106] [106] [%] [106] [%] [106] [%] [106] [%]

LMF data 8.970 8.239 91.85 - - 6.762 75.39 6.726 74.98
- - 4.982 55.53 4.110 45.81 4.106 45.77

HMF data 1.235 - - 0.686 55.55 0.566 45.82 0.566 45.82

Table 5.1: Event selection in data and MC.

5.2 Track selection

After selection of the events, additional selection criteria have been applied to the TPC
tracks. In most of the NA61/SHINE analyses, this is done at the level of so-called vertex tracks
which are regular TPC tracks re-fitted with the vertex constraint. However, in the case of this
analysis, as it was stressed several times already, it is necessary to match TPC tracks with the
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point on the target surface. Therefore, the selection is applied directly to the TPC tracks before
and after the backward extrapolation to the target surface. Tracks in the TPCs differ from
each other in the two major ways. First, track parameters (for example momentum resolution)
strongly depend on the number of points in the TPCs and in which of the TPCs the track has
been reconstructed. So, we can divide tracks into several topologies, depending on which TPC
inside the magnetic field they are passing. Different TPC topologies cover different areas of the
(p,θ,z) phase space. Additionally, each track can be a right side track (RST) or a wrong side
track (WST). Right side tracks are defined by the relation:

q·px > 0, (5.1)

where q is a measured charge and px is a x component of the momentum. The magnetic field is
in −y direction, so right side tracks will always be bent in the direction of px and therefore away
from the beamline. In contrast to the right side tracks, the wrong side tracks are bent towards
the beamline and often enter the opposite MTPC. They can be distinguished from the RSTs by
the relation:

q·px < 0. (5.2)

(a) (b)

Figure 5.5: Example of the right side track (a) and the wrong side track (b).

An example of the RST and the WST is shown in Fig. 5.5. Momentum and polar angle
phase space coverages are rather different for the RSTs and the WSTs, and it will be shown
later on. For this reason, momentum resolution will also be affected even though tracks from
both categories can pass through the same TPCs. Momentum resolution for the different TPC
topologies, RSTs, and WSTs is plotted in Fig. 5.6. It is achieved from the track fits directly. The
worst resolution is obtained for the wrong side tracks for which the momentum was determined
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only by the GTPC. This is obvious since tracks can only have the maximum of seven clusters
in the GTPC. This limits the precision of the backward extrapolation of the tracks. Average
resolution for the majority of the tracks is below 1%. Some of the tracks with bad topologies
can be removed by applying quality cuts.
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Figure 5.6: Momentum resolution of the RSTs (a) and WSTs (b) for different TPC topologies.

5.2.1 Quality selection of the TPC tracks

The selection criteria were adopted and modified from the previous analyses done by N.
Abgrall [111] and by A. Haesler [83]. In the "proof of concept" analysis done by N.Abgrall on
the low statistics data taken in 2007, very strict selection criteria were used. Although these
cuts minimized correction factors and systematic uncertainties of the measurements, they also
removed tracks in the low polar angle regions of the phase space. However, pions in this region
contribute greatly to the wrong sign flux in T2K (for example, contamination with the νµ in
the νµ beam). For this reason, strict cuts were abandoned in favor of the more loose cuts which
did not completely remove tracks in the low polar angle region. A Similar idea was followed by
A. Hasler who analyzed data taken in 2009. The selection of the tracks can be roughly divided
into five steps:

1. track has properly fitted momentum which is larger than 0.2GeV,

2. track has energy loss and time of flight measurement,

3. track has a certain number of clusters:

• if track momentum has been measured only by the GTPC, track needs to have at
least 30 clusters in the MTPCs and 5 clusters in the GTPC,

• if track momentum has been measured by one TPC (other than the GTPC), track
needs to have at least 25 clusters in the VTPCs,

• if track momentum has been measured by more than one TPC, track needs to have
more than 20 clusters combined in VTPC1, VTPC2 and GTPC,
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4. track is inside the defined azimuthal region of the acceptance, and

5. the point of closest approach to the target surface is within 3σR, where σR is extrapolated
radial position uncertainty.

Momentum selection

The requirement that TPC tracks have fitted momentum is trivial to understand since we
want to measure hadron yields as a function of the momentum. Cut on the momentum value
(p > 0.2GeV/c) is not necessary, but it was applied to decrease computation time and remove
tracks which would be removed by other cuts. There are several reasons why we can remove
these tracks. Low-momentum tracks are bent away from the MTPCs and the TOF-F wall
because of the too strong magnetic field. Only high polar angle (> 260mrad) wrong side tracks
with the momentum of 0.2GeV/c can hit the TOF-F wall. This limit goes up for lower angles
and becomes 0.4GeV/c. Additionally, pions with momenta below 0.07GeV/c do not reach the
TOF-F wall inside the time acquisition window. A similar limit for kaons is around 0.25GeV/c
and for protons is around 0.5GeV/c. Since one of the goals of this analysis is the measurement
of the pions yields, the cut value was set to 0.2GeV/c.

Particle identification cuts

It is necessary for a track to have measurements of the energy loss and the time of flight.
These two pieces of information are used for particle identification. Energy loss can be used in
most of the cases alone, except when the energy loss distributions for different particle species
cross. In that case, time of flight is used to distinguish between the particles.

Selection of the track quality

Momentum and position resolution depend on the number of clusters in the TPCs. The cut
on the number of clusters changes with track topology. If the track momentum was measured
by more than one TPC in the magnetic field, tracks with less than 21 clusters in those TPCs
(VTPC1 + VTPC2 + GTPC) are discarded. This is sufficient to get momentum resolution of
2% or better (depending on momentum). When the track momentum has been measured by
one of the VTPCs, only tracks with more than 25 clusters in the VTPCs are selected. Near the
edges of the TPCs, there can exist a distortion in the electric and the magnetic fields. Such
distortions can bias track parameters and reduce the efficiency of the matching of the track
segments between the VTPCs and the MTPCs. Selected tracks with more than 25 clusters
ensure that this bias is minimal. Track passing through the GTPC can have a maximum of 7
clusters, while a minimum number of 4 clusters is required for the reconstruction software to
reconstruct a GTPC track. In cases when momentum has been measured only by GTPC, tracks
must have at least 5 clusters in the GTPC. Also, these tracks need to have at least 30 clusters
in the MTPCs. This condition removes GTPC tracks with momentum resolution worse than
5%. Additionally, all high momentum tracks (> 10GeV) passing nearly parallel and close to
the edges of the MTPCs are removed by this cut. In this region, interactions with the material
in the MTPCs are not negligible, and the secondary track density is high, thus decreasing the
efficiency of the matching between the track segments. In contrast to the previous analyses,
no requirement on the number of clusters in the MTPCs is applied to other track topologies.
Possible systematic biases regarding this choice of the cuts will be discussed in more details in
sections 5.3 and 5.5.
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Azimuthal selection

The efficiency of the detector changes depending on the azimuthal angle (φ) of the tracks.
After TPC tracks have been extrapolated towards the target surface, it is straightforward to
calculate the azimuthal angle:

φ= tan−1
(
py
px

)
, (5.3)

where px and py are x and y components of the momentum respectively. One reconstructed
event in the x−y plane of the NA61/SHINE coordinate system is shown in Fig. 5.7. Coordinate
axes and naming scheme for the azimuthal angle are overlaid on top of the figure. It is clear
that tracks with a higher polar angle (θ) will be reconstructed only for azimuthal angles around
0◦ and 180◦. The goal of applying the azimuthal angle selection is to select only regions in θ−φ
space in which acceptance is constant.

Figure 5.7: Azimuthal angle definition in the NA61/SHINE coordinate system.

The purpose of this cut is to reduce the model dependence of the particle yields. As men-
tioned before, measured yields will be presented in the bins of momentum, polar angle and lon-
gitudinal position along the target surface. Inefficiencies for all bins are corrected with Monte
Carlo simulation. Momentum and polar angle distributions of the hadrons in the simulation
may significantly differ from the data distributions. If this is the case and acceptance varies
significantly in a given bin, this could bias the correction factor. For this reason, the polar
angle has been divided into eleven intervals, and for each interval, only tracks within following
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5.2 Track selection

φ ranges are selected:

0≤ θ < 20mrad φ ∈ [−70◦,70◦]∪ [110◦,250◦], (5.4a)
20≤ θ < 40mrad φ ∈ [−60◦,60◦]∪ [140◦,220◦], (5.4b)
40≤ θ < 60mrad φ ∈ [−45◦,35◦]∪ [145◦,225◦], (5.4c)
60≤ θ < 80mrad φ ∈ [−30◦,30◦]∪ [150◦,210◦], (5.4d)

80≤ θ < 100mrad φ ∈ [−20◦,20◦]∪ [160◦,200◦], (5.4e)
100≤ θ < 120mrad φ ∈ [−17◦,17◦]∪ [163◦,197◦], (5.4f)
120≤ θ < 140mrad φ ∈ [−15◦,15◦]∪ [165◦,195◦], (5.4g)
140≤ θ < 160mrad φ ∈ [−13◦,13◦]∪ [167◦,193◦], (5.4h)
160≤ θ < 200mrad φ ∈ [−12◦,12◦]∪ [168◦,192◦], (5.4i)
200≤ θ < 240mrad φ ∈ [−11◦,11◦]∪ [169◦,191◦], (5.4j)

θ ≥ 240mrad φ ∈ [−10◦,10◦]∪ [170◦,190◦]. (5.4k)

Additionally, such cuts remove not just regions with rapidly changing acceptance, but also
regions where simulation behaves differently than data (for example regions where the percentage
of the selected tracks drops slower in the simulation than in the real data). Selected θ−φ regions
are shown in Fig. 5.8a, while the projection of the 2D distribution to the φ axis normalized to
one is shown both for the data (black points) and for Monte Carlo (red line) in Fig. 5.8b. Monte
Carlo distribution is in good agreement with the data.
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Figure 5.8: Selected region in the θ−φ phase space for the data (a) and comparison of the
selected φ angles between the data and the MC (b).

Point of closest approach

Some of the selected and extrapolated tracks were created outside of the target in the re-
interactions with the material in the detector or in the weak decays. An additional cut was
applied to the distance of approach with respect to the target surface, to minimize the number
of these tracks. Extrapolation is stopped when track reaches minimal distance from the target
surface. If a track does not hit the target, it is selected only if the distance from the target
surface is less than three radial position uncertainties. The uncertainty of the extrapolated
position depends strongly on the distance between the first cluster in the TPCs and the target.
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Additionally, it depends on the target topology (quality of the reconstruction). Distance from
the target surface, together with the radial position uncertainty are shown in Fig. 5.9. Different
track topologies have different uncertainty distributions which reflect already mentioned causes
(distance from the target and reconstruction quality). Around 93% of the tracks passes this cut,
and this number is somewhat lower for tracks which do not start in the VTPC1 (around 88%)
and somewhat higher for other tracks (95%).
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Figure 5.9: Track distance from the target surface (a) and radial position uncertainty (b).

A total number of the selected tracks, both for the data and the Monte Carlo is presented
in the appendix C (see table C.1). Fractions of tracks which belong to different track topologies
are also written in the table after each cut. Numbers of selected tracks for the data and the
Monte Carlo simulation are expected to be different since we do not expect to have the same
momentum and polar angle distribution in the Monte Carlo simulation. A number of selected
tracks per event can point out how large are differences between Fluka2011.2c.5 and the data:

R=
(
Ntr

Nev

)
MC

:
(
Ntr

Nev

)
data

= 1.08, (5.5)

where Ntr and Nev are numbers of selected tracks and event respectively. The average number
of the selected tracks per event is around 8% higher in the data compared to the simulation.
However, one needs to keep in mind that reconstruction of the tof signals was not done in the
Monte Carlo simulation (hits are just assigned to the tracks which hit the TOF-F wall). Some
of these differences come from the TOF-F measurement efficiency which is on average between
96% and 97%. Also, as it was described before, protons below 0.5GeV/c do not reach the TOF-F
wall during the acquisition time. If additional cut on momentum is applied (p > 0.5GeV/c) and
the number of selected tracks is corrected for the TOF-F inefficiency ratio becomes:

R= 1.02. (5.6)

5.2.2 Phase space

Selected tracks have been divided into the bins of momentum (p), polar angle (θ) and lon-
gitudinal position along the target surface (z). Reason for measuring hadron yields in the bins
of the longitudinal position is explained in subsection 2.5.4. Target has been partitioned into
five longitudinal bins covering whole target length and downstream target face as a sixth bin.
Then number of selected tracks per number of events as a function of the longitudinal position
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on the target surface is shown in Fig. 5.10. Monte Carlo distribution is scaled down by a factor
of 0.965 To account for the TOF-F efficiency. It is clear that the number of selected tracks in
the simulation is lower with respect to the data at the downstream part of the target (last two
bins) and a bit higher at the upstream side. This gives a hint that the best agreement between
measured hadron yields and the Fluka2011.2c.5 will be obtained for the central z bin. Selected
tracks in each z bin are further divided into θ−p bins. Polar angle vs. momentum phase space
is shown in Fig. 5.11 and 5.12 for the right side tracks and the wrong side tracks respectively. It
is clear that RSTs and WSTs do not cover same areas in the phase space. Right side tracks cover
low polar angle regions and higher momenta, while for the higher angles and low momenta, they
are bent out from the TPCs before hitting the TOF-F wall. In contrast to the right side tracks,
the wrong side tracks cover higher polar angles since they are bent back to the beam-line. For
this reason, wrong side high momentum forward going tracks stay in the beam-line and they
are not detected in the TPCs. A total number of θ− p bins depends on which hadron yields
we want to measure. It is obvious that the pion statistics will be much higher than the kaon
statistics (order of magnitude difference), so the number of bins for pions can be proportionally
larger. Pion binning for all z bins includes in total 884 θ−p bins, while for the kaons number
is equal to 144. In case of protons, there is a limitation in the momentum space. As already
mentioned, protons below 0.5GeV/c cannot hit the TOF-F wall in the acquisition time window,
while this is not the case in the Monte Carlo simulation. For this reason, momentum bins for
protons below 0.5GeV/c are not allowed. Total number of θ−p bins for protons is 580. Binning
has been optimized so that statistical uncertainty in each bin is roughly equal, except for some
bins at the edge of the phase space.
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Figure 5.10: Extrapolated z distribution for the data (black points) and for the Monte Carlo
simulation (red line). Longitudinal bin borders are overlaid on the top of the distribution.
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Figure 5.11: Polar angle vs. momentum (θ−p) phase space for the right side tracks. Each panel
represent different z bin.

5.3 Particle identification

Particle identification is applied to the positive and negatively charged tracks separately.
Method for particle identification is the so-called joint energy loss and time of flight identification.
Both, energy loss (dE/dx) and time of flight (tof ) have limitations when used separately, which
are avoided when used together. Energy loss suffers from ambiguity in the region around few
GeV/c. The reason for this is crossing of the energy loss distributions for protons and kaons over
the distributions for the lower mass particles (pions and electrons/positrons). In this region,
time of flight measurement has the sufficient resolution to distinguish between kaons, protons,
and pions, while above 8GeV/c resolution becomes insufficient for any discrimination between
the particles.

The reconstructed tracks are mostly: e±, π±, K±, and p. There is also a non-negligible
number of p̄, which is not enough to measure yields with good precision but must be taken
into account. Contamination with deuterons is mostly negligible and can be taken into account
by applying a cut on the tof mass squared (deuterons are well separated from all other tracks
below 4GeV/c). Muons created in decays of pions and kaons cannot be distinguished from pions
because of the similar mass. Nevertheless, a number of the muons is kept well below 1% in all
bins simply by applying cut on the distance of approach to the target surface. Any remaining
muons are removed by a Monte Carlo based correction factor. Any possible biases coming
from the correction are studied as a part of the systematic uncertainties. As a consequence,
four positive (e+, π+, K+, p) and four negative (e−, π−, K−, p̄) particle species are taken into
account. For each of the particle species, it is necessary to build joint dE/dx−m2

tof distribution.
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Figure 5.12: Polar angle vs. momentum (θ− p) phase space for the wrong side tracks. Each
panel represent different z bin.

5.3.1 Energy loss

Energy loss measurement is done in all TPCs except in the small GTPC. Therefore, resolution
of the energy loss measurement will depend on the total number of clusters in those TPCs.
The measured energy loss can be seen in Fig. 5.13 as a function of logp, alongside with the
parametrized mean values for different particles.

If we take a slice in momentum, the obtained dE/dx distribution is expected to be Gaussian-
like. In each phase space bin there are tracks with different number of clusters, therefore energy
loss distribution for particle species α should be a sum of Gaussians:

fαi (dE/dx;µα,σ1, ...,σn) =
n∑
j=1

Aαij

σj
√

2π
exp

(
−(dE/dx−µαi )2

2σ2
j

)
, (5.7)

where i is a phase space bin number (which determines momentum range), µαi is a dE/dx mean
value, which depends on the particle species and the momentum, σj is a width of the dE/dx
distribution for tracks with j number of clusters and Aαj is a number of tracks with j clusters. It
is assumed that widths of the dE/dx distribution do not depend on the momentum. A maximum
number of clusters (n) for which energy loss has been measured is 234. Cluster distribution is
shown in Fig. 5.14a, while dependence of the dE/dx resolution as a function of the number
of clusters is shown in Fig. 5.14b. Above 60 clusters per track, the resolution changes slowly
from 5% to 3%. For the lower number of clusters, the resolution changes rapidly from 15% to
5%. Around 98.5% of the selected tracks have more than 60 clusters, so it is possible to simplify
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charged tracks. Energy loss parameterization is overlaid on top of the distributions.

relation 5.7 by assuming that a single Gaussian is sufficient for describing the dE/dx distribution
in a single phase space bin:

fαi (dE/dx;µα,σαi ) = Aαi
σαi
√

2π
exp

(
−(dE/dx−µαi )2

2(σαi )2

)
. (5.8)
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Figure 5.14: Distribution of a number of clusters for selected tracks (a) and energy loss resolution
with respect to the number of clusters. Resolution saturates around 0.03 for tracks with the
large number of clusters. Clusters in the GTPC are not included since energy loss measurement
is not performed in the GTPC.

Tracks with the low number of clusters may create tails in the dE/dx distribution for a given
phase space bin. The possibility of the bias is investigated in subsection 5.5.6.
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5.3.2 Time of flight

Particle identification with the time of flight is done by using the tof mass squared mea-
surement as explained in detail in section 4.6. Similarly to the energy loss, tof mass squared
distribution in a given phase space bin should be normally distributed. From the calibration, it
has been already shown that width of the distribution is proportional to the momentum squared
(σ ∝ p2). If we divide one phase space bin (which can be for example 1GeV/c in size) to several
momentum slices (let’s say 0.2GeV/c in size), tof mass squared distributions can have radically
different widths in each slice. Furthermore, different track topologies have different momentum
resolution which can result in different tof mass squared resolution. It was found that best
description of the tof mass squared distribution is given by a double Gaussian:

fαi (m2
tof ;m2

αi,σ
tof
α1,2 ,η) =

Aαi√
2π

[
η

σtofα1i

exp
(
−

(m2
tof −m2

αi)2

2(σtofα1i
)2

)
+ (1−η)

σtofα2i

exp
(
−

(m2
tof −m2

αi)2

2(σtofα2i
)2

)]
,

(5.9)

where Aαi is a number of particles α in a given phase space bin i, m2
αi is a mean value of

the mass squared distribution for the particle species α, σtofα1,2i
are widths of the mass squared

distribution, and η is a fraction of the first Gaussian in the total distribution. The fraction is
assumed to be the same for all particle species. Above 8GeV/c where tof measurements lose
their discriminatory power, η is fixed to one, in other words, single Gaussian is used. Single
Gaussian can also be used for lower momenta without creating any significant bias, but double
Gaussian gives better fits especially for momenta below 3GeV/c.

5.3.3 Joint energy loss and tof mass squared fit

When dE/dx and tof are used together, each particle species is represented by the nor-
mally distributed structure in the two-dimensional m2

tof − dE/dx space. Joint m2
tof − dE/dx

parametrization for the two-dimensional distribution is:

fαi (dE/dx, m2
tof ; Aαi , µαi , σ

dE/dx
αi , m2

αi, σ
tof
α1i
, σtofα1i

, η) = Aαi

2πσdE/dxi

exp
(
−(dE/dx−µαi )2

2(σdE/dxi )2

)
×[

η

σtofα1i

exp
(
−

(m2
tof −m2

αi)2

2(σtofα1i
)2

)
+ (1−η)

σtofα2i

exp
(
−

(m2
tof −m2

αi)2

2(σtofα2i
)2

)]
,

(5.10)

where all parameter have been previously defined in Eq. 5.8 and 5.9. In total, there are 25
parameters for the positively charged tracks and the same number for the negatively charged
tracks, while for momenta above 8GeV/c number of parameters decreases to 20. Extended
log likelihood fits were performed within the RooFit framework. Parameters Aαi represent raw
particle yields in a given phase space bin (not corrected for any inefficiency effects). An example
of the fit for a single phase space bin is shown in Fig. 5.15. The figure shows two-dimensional
distribution and projection to the dE/dx and m2

tof axes with corresponding residuals. Bins are
usually optimized for one particle species, for example, pions. Selected tracks are re-binned, and
the fits are repeated to extract other particle species with low statistical uncertainty.
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Figure 5.15: Example of the particle identification fit for the positively charged tracks. The top
left panel shows m2

tof −dE/dx distribution, the top right panel shows a projection to the m2
tof

axis, the bottom right panel shows a projection to the dE/dx axis and the bottom left panel
shows a number of extracted particles.

5.3.3.1 Initialization of the parameters

Because of a large number of parameters, it is important to set the initial values and ranges
of the parameters properly. The mean value of the energy loss is taken from the calibrated
dE/dx parametrization (see figure 5.13). The allowed range for the mean value of the energy
loss varies depending on the particle species. For pions, it is set to ±10%, while for the protons
and electrons/positrons it is ±8%. In case of kaons, the range is set to only ±5%. This is
because kaons are under the proton peak in the energy loss distribution and under the pion
peak in the tof mass squared distribution for the momenta larger than 2GeV/c. This makes K+

yields difficult to extract with great precision. The width of the dE/dx distribution is estimated
to be 0.04µαi for all particle species, and the range is set to ±35% of the value, to account for
the possible variations in the number of clusters per track.

Mean values for the squared tof mass are taken from the figure 4.17a. Ranges for elec-
trons/positrons and pions are set to ±100% because of the very small absolute values of the
masses (for example, m2

π = 0.019GeV2/c4). Ranges for kaons and protons are set to ±50% and
±30% respectively. Widths of the tof mass squared distributions which are momentum depen-
dent are also taken from the calibration (see figure 4.17b), while the ranges are set to ±35% for
all particle species. Since there are two tof widths for each particle species, first one is evaluated
at the low momentum border of the phase space bin, while the second one is evaluated at the
high momentum border. Fraction η is set to value 0.7 and allowed to change from zero to one
for momenta below 8GeV/c and fixed to one above the defined threshold.
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After initial values for the energy loss and the tof parameters have been determined, initial
values for the multiplicity yields are calculated by counting the number of tracks 2.5σ around
the mean values for dE/dx and m2

tof . Allowed ranges are set to ±50% for electrons/positrons,
pions, and protons, while for kaons range is set to ±100%. This is because kaon distribution
mostly overlaps with the proton or the pion distribution.

5.4 Correction factors

Raw yields extracted from the particle identification fits need to be corrected for various
effects like geometrical acceptance, detector efficiency, bin migration, etc. This follows the
procedure developed in [111] and in [83] which proved that multiplicative corrections properly
corrected the data and more complicated procedures like unfolding are not necessary. Two
separate corrections are applied to the raw yields. First one is a Monte Carlo based correction,
while the second one is a data-based tof efficiency correction. The total correction factor is
a product of the Monte Carlo correction factor and the tof correction factor. The standard
convention in the NA61/SHINE collaboration is to use inverse correction factors which can be
represented as efficiencies:

C−1
ijk = εMC

ijk ε
tof
ijk , (5.11)

where C−1
ijk is an inverse total correction factor in a i−th z bin, j−th θ bin and k−th p bin, εMC

ijk

is a Monte Carlo efficiency in the same bin and εtofijk is a tof efficiency.

5.4.1 Monte Carlo correction factors

Monte Carlo efficiency is defined as:

εMC
ijk =

nselijk
N sim
ijk

, (5.12)

where nselijk is a number of particles (for example π+), reconstructed, selected and extracted
from the Monte Carlo fits. Parameter N sim

ijk is a total number of simulated particles in the
same phase space bin. The efficiency from the previous equation can be expanded into several
different factors:

εMC
ijk = εfeed−downijk ·εmigijk ·εselijk·εrecijk ·εlossijk ·εφijk, (5.13)

where:

• εφijk is a geometrical efficiency,

• εlossijk is a hadron loss efficiency,

• εrecijk is a reconstruction efficiency,

• εmigijk is an extrapolation migration efficiency, and
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• εfeed−downijk is a feed-down efficiency.

Geometrical efficiency is a pure geometrical factor. It is a ratio of the simulated number of
tracks in the defined azimuthal angle region and the total number of the simulated tracks in
a given bin. Hadron loss efficiency accounts for the hadrons which decayed or re-interacted
before hitting the TOF-F wall. Reconstruction efficiency can be divided into two factors: an
efficiency of the detector (εTPC recijk ) and an efficiency of the extrapolation (εextijk). The former
one is essentially the probability that track is reconstructed in the TPCs after passing through
the TPCs, while latter one gives the probability that the reconstructed Monte Carlo track is
extrapolated to the same phase space bin in which it was simulated. Migration efficiency is a
ratio of the number of reconstructed tracks which originated from the target surface and were
extrapolated to a given bin and the number of the reconstructed tracks which originated from
the same bin. In some cases, it can be larger than one. Finally, feed-down efficiency is a ratio
of the total number of particles reconstructed, selected and extracted from the Monte Carlo fits
and the number of reconstructed and selected tracks which originated from the target surface.
This efficiency is also larger than one since there are additional tracks created outside of the
target which can be extrapolated to the target surface and pass all cuts. These tracks usually
come from the weak decays outside of the target, for example, decays of K0

s and Λ.
Although Monte Carlo correction is applied in its global form, the factorization of the Monte

Carlo efficiency is useful since it is necessary to check for possible systematic biases for all factors.

5.4.2 Time-of-flight efficiency correction

Since the time of flight efficiency cannot be corrected with the Monte Carlo correction factor,
the tof efficiency correction is based on the data. The efficiency of each slat in the TOF-F
wall and its uncertainty have been evaluated during the calibration procedure and presented in
subsection 4.6.7. These results can be used for calculating tof efficiency in a given phase space
bin:

εtof
ijk = nijk∑80

s=1n
s
ijk/εs

, (5.14)

where nijk is a total number of data tracks in a given phase space bin, nsijk is a number of tracks
in a given bin with a tof hit in the tof slat s and εs is an efficiency of the slat s. Usually, tracks
from a single phase space bin have hits only in a few neighboring tof slats. Very small bins
contain tracks with hits in a single tof slat. It is clear that uncertainty of the tof efficiency
correction depends on the statistics contained in the phase space bin and the size of the bin
itself. Therefore, the tof efficiency and the uncertainty are re-calculated for different particles
species when different binning is used. As mentioned before, phase space bins were produced so
that obtained statistical uncertainty is roughly constant. This also creates stable tof efficiency
factors. Overall, the tof efficiency is close to 97%, but it can go down to 90% for the wrong side
tracks crossing the beam-line and hitting one of the central TOF-F slats.

5.4.3 Ad hoc correction factor

Monte Carlo correction factor, alongside with the data based tof correction factors are usually
sufficient to fully correct any of the NA61/SHINE data. However, it was noticed that for the
first three upstream bins and the polar angles larger than 260mrad, there is a sudden decrease
in the hadron yields. This sharp decrease was caused by the large decrease in the selection
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efficiency in the data which was in some cases more than 50% lower than in the simulation. The
missing tracks have been found only as segments in the VTPC1 (with more than 15 clusters),
while in the Monte Carlo these tracks were also reconstructed in the MTPCs and have the tof
hit assigned to them. High polar angle tracks coming from the upstream part of the target,
enter the VTPC1 close to its outer wall (far away from the beamline). Afterwards, these tracks
partially pass through the magnet yoke and close to the edge of the magnetic field map. In
Monte Carlo, the field outside of the coverage of the magnetic field map is zero, while this is
not the case in reality. Additionally, there is a strong possibility that the field at the edges of
the field map is not adequately described, and tracks passing through this region could be bent
differently than in the simulation. To correct for this effect an ad hoc correction was applied to
the hadron yields:

Cadhocijk =
(
nMC
sel,tof

nMC
sel

)
ijk

/

(
ndatasel,tof

ndatasel

)
ijk

, (5.15)

where nMC(data)
sel,tof is a number of selected tracks with tof hit in the Monte Carlo (data) and

n
MC(data)
sel is a number of selected tracks in the Monte Carlo(data) without the tof requirement.

In total, only around 1.5% of the phase space bins for pions and protons are affected by this
problem. Phase space bins for kaons are large and cover large polar angle regions (last polar
angle bin is 180mrad− 280mrad) so this bias is negligible. It is important to note that pion
yields in [83] are probably biased in the same region.

5.5 Systematic uncertainties
Before estimating the systematic uncertainties, it is necessary to define the hadron yields.

The results will be presented in the form of double differential multiplicities:(
dnα
dθdp

)
ijk

= 1
Nev

·
nαijk

∆θijk·∆pijk
·CMC

ijk ·Ctof
ijk , (5.16)

where:

• ijk are indexes representing i-th z bin, j−th polar angle bin and k−th momentum bin,

• Nev is a number of selected events,

• nαijk is a number of measured particles of species α= π+,π−,K+,K−,p,

• ∆θijk is a polar angle bin size,

• ∆pijk is a momentum bin size,

• CMC
ijk is a Monte Carlo correction factor, and

• Ctof
ijk is a data based tof correction factor.
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Correcting the data with the Monte Carlo or data based correction factors induces possible
systematic biases. Such biases are estimated by changing various parameters in the analysis like
cuts or target position. After changing one or more selection criteria or some other parameter,
the analysis is repeated, and ratios of the new hadron yields and the nominal hadron yields
are computed. In many cases, most of the factors defined in Eq. 5.16 cancel out. Systematic
uncertainties are taken as deviations of the ratio from one. There are several possible systematic
biases which need to be estimated:

• hadron loss,

• reconstruction algorithm,

• backward extrapolation uncertainty,

• feed-down correction,

• particle identification,

• tof efficiency, and

• ad-hoc correction for high polar angles (> 300mrad)

5.5.1 Hadron loss

Produced hadrons can re-interact with the material in the detector or in the case of pions
and kaons, they can decay before reaching the TOF-F wall. Since all selected tracks have
reconstructed TOF-F hits, it is expected that additional cut on the distance of the last measured
cluster from the TOF-F wall will not change the hadron yields. In other words:

nαijk·CMC
ijk = const. (5.17)

This assumption has been examined by selecting tracks with the z position of the last cluster
equal to z = 620cm, which is equivalent to the maximum distance of approximately 150cm from
the TOF-F wall. No limitation on this distance has been applied in the standard selection.
Hadron loss systematic uncertainties are presented in Fig. 5.16 till the figure 5.20 for π+, π−,
K+, K−, p (in that order). In the majority of the phase space bins, there is no difference
before and after applying the additional selection criteria. However, in the regions where wrong
side tracks cross beamline and remain close to the opposite MTPC wall, there can be large
differences. Example for this is region can be seen in the region between 20mrad and 60mrad
and from 5GeV/c to 10GeV/c in the first z bin. For positively charged pions and protons, the
additional cut seems to increase the yields in this regions up to 40%. For negatively charged
pions, bias goes in the opposite direction. In the same polar angle and momentum regions, in
other z bins, a similar effect is present, but it is much smaller in size (< 15%). Such behavior
may be explained if the sensitive areas in the MTPCs are slightly shifted in the Monte Carlo to
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5.5 Systematic uncertainties

−x side with respect to the data. These TPCs were built in the 1990s and inherited from the
NA49 experiment. Technical documentation is mostly lost, and there is a strong possibility that
description of the MTPCs in the Monte Carlo (close to the beamline) was not done properly. In
case of kaons, observed bias is much smaller, and this is a consequence of the bin sizes. Much
larger bin sizes ensure that number of the problematic tracks in a given bin is dominated by the
number of tracks passing through the well-described regions of the detector.

5.5.2 Reconstruction bias

Reconstruction bias related to the choice of the track merging algorithms was investigated
for the 2009 p+C measurements. Since reconstruction software remained the same till now, the
estimated value of 2% from 2009 analysis has been assigned to the whole phase space.
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Figure 5.16: Hadron loss systematic uncertainty for positively charged pions. Each panel shows
different z bin. Uncertainty ranges for the first two z bins are different. Errors presented here
show negative value which underlines the fact that these errors are asymmetric and go only in
one direction.
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Figure 5.17: Hadron loss systematic uncertainty for negatively charged pions. Each panel shows
different z bin. Uncertaintys range for the first two z bins are different.
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Figure 5.18: Hadron loss systematic uncertainty for positively charged kaons. Each panel shows
different z bin. Uncertainty ranges for the first z bin is different.
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Figure 5.19: Hadron loss systematic uncertainty for negatively charged kaons. Each panel shows
different z bin. Uncertainty range for the first z bis is different.
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Figure 5.20: Hadron loss systematic uncertainty for protons. Each panel shows different z bin.
Uncertainty ranges for the first two z bins are different.
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5.5.3 Backward track extrapolation

The accuracy of the backward extrapolation to the target surface is greatly affected by the
track topology and the distance of the first track cluster from the target. For this reason, the
worst precision is achieved for very low polar angle tracks (< 20mrad) and GTPC +MTPC
topology. Migration of the low polar angle tracks to different z bins can be larger than 50%. Polar
angle and longitudinal position migration are shown in Fig. 5.21, while momentum dependence
is not presented. For higher polar angles, migration is from 5% to 15%. As previously described
in section 4.5, the target position is known within calibration uncertainties, and this can induce
potential bias in the backward extrapolation.
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Figure 5.21: Migration matrix shows percentages of tracks extrapolated to different z− θ bins.
Each column is normalized to one.

For this reason, data has been reanalyzed after moving the target position and tilt within
the calibration uncertainties. The change has been applied only to the data since target position
in the simulation is perfectly known. Each target parameter has been changed in positive and
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negative direction. For example, systematic changes of π+ yields after changing each parameter
separately are shown in figures D.1 - D.30. Total systematic uncertainties coming from the
uncertainties of the different target parameters are calculated by adding individual components
in quadrature. Afterwards, line segments have been fitted to get smoother distributions (see
figures D.31 - D.36). Total backward extrapolation systematic uncertainties for all particle
species are shown in Fig. 5.22 - 5.26. As expected, largest uncertainties can be found in the first
longitudinal bin and low polar angles (5%−10%). In low polar angle regions, distributions do
not look smooth, and this is due to transitions between different track topologies (in particular,
GTPC+VTPC2+MTPC → GTPC+MTPC) which are affected differently by the change in
the target position. At downstream target face, for higher angles, systematic uncertainties are
around 3%. This is because of the higher polar angle tracks which exit closer to the outer rim
of the downstream target face, and therefore, they are sensitive to the target shifts in x and y.
For all other regions, backward extrapolation uncertainties are below 1%.
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Figure 5.22: Backward extrapolation systematic uncertainty for positively charged pions. Each
panel shows different z bin.

5.5.4 Feed-down correction

Selected tracks which do not come from the interactions in the target are removed with the
Monte Carlo based feed-down correction. These hadrons come from two different sources: re-
interactions in the detector and weak decays. All hadron species can be created in re-interactions.
However, only pions and protons can be created in the weak decays of K0

s and Λ. Kaons are
also created in the decays of φ mesons. But φ mesons decay via strong interaction and therefore
do not have enough time to exit from the target surface. Feed-down correction for protons and
pions produced from the weak decays outside of the target surface is model dependent because
it depends on the K0

s and Λ spectra. From the previous experiences in the analysis of the

129



Analysis of p + T2K replica target data

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

7

8

9

10

 z < 18 cm≤0 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 18 cm≤0 

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

7

8

9

10

 z < 36 cm≤18 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 36 cm≤18 

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

 z < 54 cm≤36 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 54 cm≤36 

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

 z < 72 cm≤54 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 72 cm≤54 

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

 z < 90 cm≤72 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 90 cm≤72 

U
nc

er
ta

in
ty

 [%
]

0

1

2

3

4

5

6

z = 90 cm

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

z = 90 cm

Figure 5.23: Backward extrapolation systematic uncertainty for negatively charged pions. Each
panel shows different z bin. Scales in the first two z bins are different.

2009 data, it was found that it is sufficient to take one-third of the feed down correction as
a systematic uncertainty. Feed-down uncertainty for positively charged pions (mostly coming
from the K0

s decays) is the largest in the low momentum region at the upstream part of the
target and downstream target face, but it never goes above 1.5% (see figure 5.27). In case of
the negatively charged pions, the correction factor is larger (it goes above 2%) since there is
a contribution coming from the Λ decays. However, the same regions of the phase space are
affected (see figure 5.28). The feed-down uncertainty of the proton yields comes purely from the
Λ decays, and it can be larger than 3% for the first z bin and momenta between 5GeV/c and
10GeV/c (see figure 5.29).

5.5.5 Time-of-flight efficiency

Time of flight correction factor has an uncertainty which comes from the efficiency uncertain-
ties of the TOF-F slats and statistics in a given phase space bin. Usually, efficiency uncertainties
for the TOF-F slats are below 0.5%. To estimate possible bias, the tof correction factor has been
varied within its uncertainties for all particle species separately. Obtained systematic uncertain-
ties, although mostly below 1%, are slightly larger for negatively charged particles because of
the lower statistics (see figures 5.30 - 5.34).
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Figure 5.24: Backward extrapolation systematic uncertainty for positively charged kaons. Each
panel shows different z bin.

5.5.6 Particle identification

It was already mentioned before that choice of the fitting function for dE/dx−m2
tof spectra

can potentially bias the hadron yields. In particular, description of the energy loss distribution
with a single Gaussian is possibly not sufficient because of the tails caused by the tracks with
the small number of clusters. However, after trying a combination of two Gaussians with the
same and different mean values, no significant bias in the hadron yields was found (differences
are well below 0.5%). Only problematic regions are high momentum bins for the polar angle
between 20mrad and 40mrad in which difference of 2% was observed. However, this may be
explained purely by fluctuations in the fits since statistical uncertainties, in this case, are above
10%. Another possible bias in the particle identification is tied for positively charged kaons.
As explained before, they are located under the proton peak in the energy loss distribution and
under the pion peak in the tof mass squared distribution. If the shape of the dE/dx−m2

tof
spectra is not properly described by the fitting function, there can be migration between K+

and p in both directions, especially for momenta above 4GeV/c. The same effect is possible
both in data and Monte Carlo, but proton spectra in the simulation are not the same as in
data, so mentioned migration might be different and this induces possible bias. To estimate this
effect, Monte Carlo K+ yields extracted from the fits have been compared to the true number of
positively charged kaons in each bin. In some cases, for higher momentum a difference around
30% can be found. However, in the most cases, it is below 10% (see figure 5.35).
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Figure 5.25: Backward extrapolation systematic uncertainty for negatively charged kaons. Each
panel shows different z bin.

5.5.7 Ad hoc correction

An ad hoc correction factor was applied only to a small number of bins for protons and pions.
Systematic uncertainties have been estimated by varying the correction factor within 50% of it
value, which gives 50% uncertainty. As it was mention before, only around 1.5% of the bins are
affected, and they are not of particular importance for the re-weighting of the T2K neutrino
flux.
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Figure 5.26: Backward extrapolation systematic uncertainty for protons. Each panel shows
different z bin.
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Figure 5.27: Feed-down systematic uncertainty for positively charged pions. Each panel shows
different z bin.
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Figure 5.28: Feed-down systematic uncertainty for negatively charged pions. Each panel shows
different z bin.
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Figure 5.29: Feed-down systematic uncertainty for protons. Each panel shows different z bin.
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Figure 5.30: Time of flight systematic uncertainty for positively charged pions. Each panel
shows different z bin.
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Figure 5.31: Time of flight systematic uncertainty for negatively charged pions. Each panel
shows different z bin.
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Figure 5.32: Time of flight systematic uncertainty for positively charged kaons. Each panel
shows different z bin.
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Figure 5.33: Time of flight systematic uncertainty for negatively charged kaons. Each panel
shows different z bin.
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5.5 Systematic uncertainties

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 z < 18 cm≤0 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 18 cm≤0 

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 z < 36 cm≤18 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 36 cm≤18 

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 z < 54 cm≤36 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 54 cm≤36 

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 z < 72 cm≤54 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 72 cm≤54 

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 z < 90 cm≤72 

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

 z < 90 cm≤72 

U
nc

er
ta

in
ty

 [%
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

z = 90 cm

p [GeV/c]
0 5 10 15 20 25 30

 [m
ra

d]
θ

0

50

100

150

200

250

300

350

400

z = 90 cm

Figure 5.34: Time of flight systematic uncertainty for protons. Each panel shows different z bin.
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Figure 5.35: Particle identification systematic uncertainty for positively charged kaons. Each
panel shows different z bin.
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Chapter 6

Hadron yields in p + T2K replica
target interactions

Contents
6.1 Comparison with Monte Carlo models . . . . . . . . . . . . . . . . . . 139
6.2 Beam profile dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Possible reduction of the T2K neutrino flux uncertainty . . . . . . . 168

6.1 Comparison with Monte Carlo models

Fully corrected π+, π−, K+, K− and p double differential yields will be presented in this
chapter as a function of the hadron momentum. Tables with results can be found in Ref. [112].
While the primary use of the hadron yields will be re-weighting of the neutrino flux, it is
important to compare the results to different Monte Carlo models. The results will be compared
with:

• Fluka2011.2c.5 Monte Carlo model,

• NuBeam physics list from Geant4.10.03, and

• QGSP_BERT physics list from Geant4.10.03.

The choice of Fluka2011.2c.5 is obvious since it is used in the T2K neutrino beam simulation.
An attempt was made by the Geant team to introduce NuBeam physics list which can be used
for purposes of the neutrino beam simulations. In other words, it uses a combination of models
whose transitions have been tuned so that it gives the best prediction of the hadron yields in
the largest region of the phase space possible. NuBeam physics list uses Bertini cascade model
(BERT) for energies lower than 3GeV, for intermediate energies (≈ 10GeV) it uses FRITIOF
(FTF) model, and for high energies it uses a variance of Quark Gluon String model (QGSP).
Hadron yields presented in this thesis are for momenta lower than 30GeV, so that comparisson
will be actually for FTF and BERT models. Among others, NA61/SHINE measurements of
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Hadron yields in p + T2K replica target interactions

charged pion spectra in proton-carbon interaction at 31GeV/c [77] have been used for tuning of
the NuBeam physics list. These data were taken in 2007, and they have limited statistics. The
second physics list from Geant4.10.03 (QGSP_BERT) was chosen to be entirely different
from the NuBeam. It is known from the previous measurements that it gives rather a different
prediction for the hadron yields in proton-carbon interactions. It uses the same model (BERT)
for low energy part of the spectra. However, its usage has been extended up to 9GeV. In the
intermediate region (9−25GeV), QGSP_BERT uses Low Energy Parameterized (LEP) models
which are a re-engineered version of the Gheisha. At high energies, QGSP is used to simulate
hadron interactions.

In the following subsections, comparisons of the measured hadron yields are shown. Yields
for different z bins are plotted in separate figures, while polar angle bins are represented by
separate panels within the same figure. Data is always drawn with black hollow markers, the
Fluka2011.2c.5 prediction is always a red line, NuBeam is a blue line, and QGSP_BERT
is a green line. Total errors for the data are shown in the form of vertical error bars, while
systematical errors are grey rectangles. In some cases, systematic errors are highly asymmetrical.
This is because of the hadron loss contribution (cut on the z position of the last cluster) as
previously explained.

Yields of positively charged pions are shown in Fig. 6.1-6.6. Total uncertainties are around
5% for most of the bins. Exceptions can be found at the edges of the phase space (high momenta)
where statistical uncertainties dominate. This is also the case, between 20mrad and 60mrad
in the first z bin where the total systematic uncertainties can go up to 30% because of the
backward extrapolation and the hadron loss. In addition, for the upstream z bins and very
high polar angle, systematic uncertainties can go up to 25% because of the ad hoc correction
factor. Overall, best prediction is given by Fluka2011.2c.5 with differences being in the most
cases smaller than 20%. The largest difference is for very low angles and high momenta, for
upstream z bins (more than 50%). Fluka2011.2c.5 predicts higher maxima and lower tails of
the distributions (the differences are within 20%). NuBeam physics list gives prediction very
similar to Fluka2011.2c.5, except for the very low momenta where it is slightly higher.

Similarly, yields of negatively charged pions are shown in Fig. 6.7-6.12. These yields are
around 25% lower than the π+ yields because of the u-d quark asymmetry in the primary
interactions. Consequently, this increases slightly statistical uncertainties, especially for the
high momenta, but in the most cases, they are still around 5%. Systematics uncertainties
remain mostly the same, except for the ad hoc correction which affects a slightly larger number
of high polar angle bins. Again, all models have the same behavior as for the π+ yields and
Fluka2011.2c.5 being one with the most accurate predictions.

Positively charged kaon yields are shown in Fig. 6.13-6.18 while negatively charged kaons
are shown in Fig. 6.19-6.24. Statistical uncertainties are around 10% and 15% for positively
charged kaons and negatively charged hadrons respectively. Systematic errors are similar in size
(around 10%) and are mostly dominated by the particle identification systematic uncertainty.
On average NuBeam and QGSP_BERT give a slightly better prediction for positively charged
kaons, while for negatively charged kaons, Fluka2011.2c.5 and NuBeam are better. It is hard
to choose a single model because of the size of total errors.

In case of proton yields (see figures 6.25-6.30), statistical errors are around 5% to 10% and
for the majority of the phase space bins, dominate the total uncertainties. All models fail to
reproduce the proton yields, and the differences can be more than a factor of two in size. One
cannot improve the predictions by scaling them with a constant factor since the shape of the
spectra is different. The Fluka2011.2c.5 prediction improves for more downstream z bins.
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Figure 6.1: Comparison of fully corrected π+ yields for the first longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant4.10.03 (green
line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.2: Comparison of fully corrected π+ yields for the second longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.3: Comparison of fully corrected π+ yields for the third longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.4: Comparison of fully corrected π+ yields for the fourth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.5: Comparison of fully corrected π+ yields for the fifth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.6: Comparison of fully corrected π+ yields for the downstream target face with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.7: Comparison of fully corrected π− yields for the first longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.8: Comparison of fully corrected π− yields for the second longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.9: Comparison of fully corrected π− yields for the third longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.10: Comparison of fully corrected π− yields for the fourth longitudinal z bin with
Monte Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03
(blue line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.11: Comparison of fully corrected π− yields for the fifth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.12: Comparison of fully corrected π− yields for the downstream target face with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.13: Comparison of fully corrected K+ yields for the first longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.14: Comparison of fully corrected K+ yields for the second longitudinal z bin with
Monte Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03
(blue line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.15: Comparison of fully corrected K+ yields for the third longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.16: Comparison of fully corrected K+ yields for the fourth longitudinal z bin with
Monte Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03
(blue line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.17: Comparison of fully corrected K+ yields for the fifth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.18: Comparison of fully corrected K+ yields for the downstream target face with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.19: Comparison of fully corrected K− yields for the first longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.20: Comparison of fully corrected K− yields for the second longitudinal z bin with
Monte Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03
(blue line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.21: Comparison of fully corrected K− yields for the third longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.22: Comparison of fully corrected K− yields for the fourth longitudinal z bin with
Monte Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03
(blue line) and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars
are total uncertainties, while grey rectangles are systematic uncertainties. Each panel shows
different polar angle region.
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Figure 6.23: Comparison of fully corrected K− yields for the fifth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.24: Comparison of fully corrected K− yields for the downstream target face with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.

158



6.1 Comparison with Monte Carlo models

p [GeV/c]
0 2 4 6 8 10 12 14 16 18

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

3−10×  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

1

2

3

4

5

6

3−10×  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

2
4

6
8

10
12
14

16
3−10×  < 60 mradθ ≤40  < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

5
10
15
20
25
30
35
40
45

3−10×  < 100 mradθ ≤60  < 100 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

20
40
60
80

100
120
140
160

3−10×  < 140 mradθ ≤100  < 140 mradθ ≤100 

p [GeV/c]
0 1 2 3 4 5 6 7 8

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

20
40
60
80

100
120
140
160
180
200

3−10×  < 180 mradθ ≤140  < 180 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

50

100

150

200

250

300
3−10×  < 220 mradθ ≤180  < 220 mradθ ≤180 

p [GeV/c]
1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

50

100

150

200

250

300

350
3−10×  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

50
100
150
200
250
300
350
400

3−10×  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0.40.60.8 1 1.21.41.61.8 2 2.2

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

n/
(d

pd
2 d 0

50
100
150
200
250
300
350
400

3−10×  < 380 mradθ ≤300  < 380 mradθ ≤300 

p yields: 

Data

FLUKA 2011.2c.5

NuBeam G4.10.03

QGSP_BERT G4.10.03

Figure 6.25: Comparison of fully corrected p yields for the first longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.26: Comparison of fully corrected p yields for the second longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.27: Comparison of fully corrected p yields for the third longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.28: Comparison of fully corrected p yields for the fourth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.29: Comparison of fully corrected p yields for the fifth longitudinal z bin with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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Figure 6.30: Comparison of fully corrected p yields for the downstream target face with Monte
Carlo models: Fluka2011.2c.5 (red line), NuBeam physics list from Geant 4.10.03 (blue line)
and QGSP_BERT physics list from Geant 4.10.03 (green line). Vertical error bars are total
uncertainties, while grey rectangles are systematic uncertainties. Each panel shows different
polar angle region.
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6.2 Beam profile dependence
It is essential to ensure that previously presented results are used correctly in the T2K

neutrino flux simulation. One of the greatest concerns is to quantify how different beam profiles
used in T2K and NA61/SHINE may bias the neutrino flux prediction. On top of that, the
possible bias may change per T2K run due to changing beam characteristics. To illustrate the
dependence of hadron yields on beam profile, pion yields obtained in this analysis have been
re-binned and compared to the measurements performed using 2009 data. Such comparisons
can be found in the appendix E. Beam profile in 2009 was around 10% wider compared to the
beam profile used during data-taking in 2010. For this reason, there is a suppression of hadron
yields in new measurements for upstream z bins and low polar angle.

Such suppression can be understood easily if we imagine two beam particles hitting different
spots on the target upstream face and both of them producing a pion with a polar angle equal
to 40mrad. If the first proton hits the target center and if we imagine that pion does not
re-interact with carbon, it will exit the target at the z position which is around 32.5 cm away
from the interaction point. In contrast, if the second proton hits, for example, a distance of
1cm away from the target center, a minimum possible z distance which pion will traverse before
exiting the target depending on the momentum direction is 7.5 cm. This simple observation
shows that for certain beam positions, secondary hadrons with low polar angle cannot exit the
target at upstream z bins. Therefore, the only contribution to this region of the phase space for
narrow beam can come from the tertiary hadrons. Such contribution is limited in momentum
due to conservation laws and should be negligible for the first z bin because of small amounts of
material available for re-interactions. For NA61/SHINE beams, there is always a tail in radial
beam distribution, so there will always be a non-vanishing contribution of secondary hadrons in
the suppressed bins.
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Figure 6.31: Ratio of Fluka2011.2c.5 π+ yields vs. bin number simulated with T2 and T3
beam profiles.

A Monte Carlo study was done to assess the dependence of the hadron yields on the beam
profile. For this study, T2 and T3 beam profiles were used. Ratios of Fluka2011.2c.5 π+ yields
vs. bin number, simulated with T2 and T3 beam profiles are shown in Fig. 6.31. Bin counting
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starts in the first longitudinal region, (0− 18 cm), for the lowest polar angle and momentum
bins and rises with momentum and polar angle. In this case, bin 154 is the last bin in the first
longitudinal region and next one is the first bin in the second longitudinal region. It is clear that
π+ yields simulated with T3 beam profile are suppressed, mostly in the first longitudinal bin.
Bins which seem grouped, span over the same polar angle region, however, they have different
momenta. Bins with higher bin number in the same group have higher momenta. It is obvious
that the suppression is higher for them. For high momentum, tertiary pions cannot be produced.
We can conclude that overall effect of using narrower beam is a shift of the hadron exit position
on the target surface towards the downstream target face. There is an increase in the number of
high polar angle pions. Such increase seems to be partially caused by re-interactions of low polar
angle hadrons. One idea of using measured hadron yields in the T2K neutrino beam simulation
is to calculate weights on the target surface for each bin (nz,nθ,np) = (i, j,k):

Wijk =
(

1
Npot

nijk
∆pijk∆θij

)
data

/

(
1

Npot

nijk
∆pijk∆θij

)
MC

(6.1)

and apply these weights to each hadron exiting the target surface. If both, data and Monte Carlo
have the same beam profile, some of the effects coming from the change of the beam profile may
cancel out in these ratios. In fact, this would be exactly the case if the differences are purely
geometrical (changes in re-interactions are negligible). Invariance of the ratios with respect to
the beam profile change would mean that ratios calculated with one beam profile could be applied
to the Monte Carlo created with another beam profile. This hypothesis is straightforward to
test by taking two different Monte Carlo models. For this purpose, Fluka2011.2c.5 is used as
a data and NuBeam from Geant4.10.p2 is used as a Monte Carlo. This choice seems ideal
since differences between those two models are similar in size to the differences between Fluka
and the data. Ratios have been compared for two hadrons: π+ and protons. Protons have been
chosen since there are large differences in the Monte Carlo prediction (see figure 6.32) and this
allows us to test if invariance of the weights is valid only if the differences between the Monte
Carlo predictions (or between data and MC) are large.
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Figure 6.32: Ratio of Fluka2011.2c.5 model prediction over NuBeamGeant4.10.02 for pions
(a) and protons (b) as a function of bin number.

Re-weighting factors simulated for T2 and T3 beam profiles are compared in Fig. 6.33. For
the majority of the bins, any potential bias is less than 2%. Only exceptions are the low polar
angle and upstream z bins which are heavily affected. However, most differences in this region
are below 8%. Total uncertainties of the measured pion yields in the problematic bins is between
7% and 15%, so the precision of the re-weighting factors in T2K will not be greatly affected.
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Figure 6.33: Ratio of the simulated re-weighting factors produced with T2 and T3 beam profiles
for π+ (a) and protons (b).

Beam profiles used in this study represent an extreme case. In reality, the width of the T2K
beam profile is in-between the two studied NA61/SHINE beam profiles (T2 and T3). For this
reason, suppression of hadron yields in T2K compared to the results presented in this thesis will
be smaller. Therefore, any possible bias will also be reduced. A simple solution for dealing with
different beam profiles in the T2K neutrino beam simulation is proposed:

1. simulate Fluka yields for NA61/SHINE T2 beam profile,

2. calculate weights of data and simulated Fluka with T2 beam profile,

3. apply weights to the Fluka yields simulated with T2K beam parameters, and

4. assign additional systematics for the low polar angle and upstream z bins.

The last step should be done by using a correct T2K beam profile for a given T2K run
and dedicated a Monte Carlo study. However, since this study was done for extreme beam
differences, it is expected that this error is smaller than 5%.
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6.3 Possible reduction of the T2K neutrino flux uncertainty
Although the results from this thesis have not been used for the re-weighting of the T2K

neutrino flux, some indications about the impact of these results can be inferred. Preliminary
implementation of the pion yields measured in 2009 has been done by Tomislav Vladisavljević
(see Ref. [113]) Resulting hadron production uncertainty of the neutrino flux can be seen in
Fig. 6.34.

Figure 6.34: Comparison of the hadron production component of νµ flux uncertainty at Super-
Kamiokande after thin target re-weighting (left) and after replica target re-weigihting (right).
Only pions have been re-weigheted with the replica target measurements.

In case of the thin target re-weighting, the dominant contribution to the hadron production
uncertainty at peak flux energy (0.6GeV) comes from the interaction length error. This contri-
bution is greatly reduced since re-weighting with the replica target does not require knowledge
of the cross-section. However, the interaction length error is still present, since pions in the
regions which are not covered by the replica target measurements are re-weighted with the thin
target measurements. Also, all hadrons produced in re-interactions outside of the target must be
re-weighted by using the thin target re-weighting procedure. Furthermore, for higher neutrino
energies, neutrinos are produced in kaon decays. In our previous replica target measurement we
did not measure kaon yields, and for this reason, hadron production uncertainty in this region
was not reduced. Uncertainties of pion yields measured in 2009 are dominated by statistical
component. For the results presented in this thesis, statistical uncertainties are reduced by a
factor 1.4− 2, since some bins are split in two. This improvement will further reduce hadron
production uncertainty of the neutrino flux. Without taking any additional uncertainty for the
beam profile differences, the expected hadron production uncertainty around the peak energy
should be 3%. This number was estimated simply by comparing total uncertainties in the new
pion yields with the total uncertainties in the old pion yields. Implementation of these results
in the T2K neutrino beam simulation is necessary to obtain accurate estimates. Reduction of
the flux uncertainties is also expected for higher energies because of the kaon yields measured
on the replica target surface.
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Conclusion

Accelerator-based neutrino experiments such as T2K suffer from large neutrino flux uncer-
tainties which are caused by a poor knowledge of the hadron production. Neutrino beam in
T2K is created mostly from the decays of pions and kaons which are produced in interactions
of the proton beam with a 90 cm-long graphite target. To tackle this problem, NA61/SHINE
collaboration performed hadron-production measurements for T2K by using a 31GeV/c proton
beam and graphite targets. Two types of measurements had been performed: with the thin
carbon target and with the 90 cm long T2K replica target. The latter measurement are the
main topic of this thesis. The analyzed data were taken in 2010 with three physics goals in
mind:

1. to measure positively and negatively charged pion yields coming from the surface of the
T2K replica target with greater precision than in measurements performed in 2009,

2. to measure for the first time positively and negatively charged kaon yields coming from
the surface of the T2K replica target and

3. to measure for the first time proton yields coming from the surface of the T2K replica
target.

For these measurements and because NA61/SHINE collaboration started using a new Shine
framework, several tools for analysis and calibration were developed. All three of physics goals
have been achieved in this thesis, and the results were presented in the form of double differential
yields in the phase space of outgoing particle momentum, polar angle and longitudinal position
on the target surface (p,θ,z).

In measurement performed with the data collected in 2009, total uncertainty of the pion
yields was dominated by the statistical uncertainty, while in the results presented in this thesis,
this was not the case. The total mean uncertainty across all phase space bins, dropped from
around 8% to around 5%, while the total number of bins is increased by 25%. Pion yields in
the region between 340mrad and 380mrad in polar angle are covered for the first time. Kaon
yields are measured with the statistical and systematical uncertainty of around 10%. Kaons
have limited coverage of the phase space ( limited to below 10GeV/c) because of the limitations
coming from energy loss and time of flight measurements. In addition, proton yields are also
measured for the first time, however with much better phase space coverage.

Yields for all five measured particle species ( π±, K±, p) are compared to Fluka2011.2c.5
Monte Carlo, NuBeam and QGSP_BERT physics lists from Geant4.10.03. In case of pions,
Fluka2011.2c.5 gives the best prediction, while QGSP_BERT fails to describe the data.
NuBeam physics list which was specially tuned for the usage in the neutrino beam simulations
gives a slightly worse prediction for low momenta when compared to Fluka2011.2c.5. Similarly
to pion yields, Fluka2011.2c.5 and NuBeam give a more accurate prediction of the kaons yields
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with differences being up to 30%. None of the models give the accurate prediction of the proton
yields. The predictions are in some cases different by a factor of two or three compared to the
data. Fluka2011.2c.5 prediction improves for downstream z bins, while Geant4.10.03 physics
lists fail to reproduce even the shape of the spectra.

The hadron yields presented here will be used for the calculation of neutrino and antineutrino
fluxes in the T2K experiment. The expected impact of these new measurements is a reduction
of (anti)neutrino flux uncertainties from 10% down to about 4%.
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Appendix A

Track extrapolation coefficients

A.1 A - coefficients

x y z

txty −(1 + t2x) ty

Table A.1: First order coefficients Ai.

x y z

x tx(3t2y + 1) −ty(3t2x+ 1) t2y− t2x
y −ty(3t2x+ 1) 3tx(t2x+ 1) −2txty
z 2t2y + 1 −2txty −tx

Table A.2: Second order coefficients Aij .

x y z

x 3txty(5t2y + 3) −3(t2x+ t2y + 5t2xt2y)−1 ty(−6t2x+ 3t2y + 1)
y −3(t2x+ t2y + 5t2xt2y)−1 3txty(5t2x+ 3) tx(3t2x−6t2y + 1)
z 2ty(−2t2x+ 2t2y + 1) 2tx(2t2x−2t2y + 1) −4txty

Table A.3: Third order coefficients Axij .
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x y z

x −3(t2x+ t2y + 5t2xt2y)−1 3txty(5t2x+ 3) tx(3t2x−6t2y + 1)
y 3txty(5t2x+ 3) −3(t2x+ 1)(5t2x+ 1) 3ty(3t2x+ 1)
z −2tx(4t2y + 1) 2ty(4t2x+ 1) 2(t2x− t2y)

Table A.4: Third order coefficients Ayij .

x y z

x 2ty(4t2y + 3) −2tx(4t2y + 1) −4txty
y −2tx(4t2y + 1) 2ty(4t2x+ 1) 2(t2x− t2y)
z −3txty 3t2x+ 1 −ty

Table A.5: Third order coefficients Azij .

A.2 B - coefficients

x y z

(1 + t2y) −txty −tx

Table A.6: First order coefficients Bi.

x y z

x 3ty(t2y + 1) −tx(3t2y + 1) −2txty
y −tx(3t2y + 1) ty(3t2x+ 1) t2x− t2y
z −2txty 2t2x+ 1 −ty

Table A.7: Second order coefficients Bij .

x y z

x 3(t2y + 1)(5t2y + 1) −3txty(5t2y + 3) −3tx(3t2y + 1)
y −3txty(5t2y + 3) 3(t2x+ t2y + 5t2xt2y) + 1 −ty(−6t2x+ 3t2y + 1)
z −2tx(4t2y + 1) 2ty(4t2x+ 1) 2(t2x− t2y)

Table A.8: Third order coefficients Bxij .
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A.2 B - coefficients

x y z

x −3txty(5t2y + 3) 3(t2x+ t2y + 5t2xt2y) + 1 −ty(−6t2x+ 3t2y + 1)
y 3(t2x+ t2y + 5t2xt2y) + 1 −3txty(5t2x+ 3) −tx(3t2x−6t2y + 1)
z 2ty(2t2x−2t2y−1) −2tx(2t2x−2t2y + 1) 4txty

Table A.9: Third order coefficients Byij .

x y z

x −2tx(4t2y + 1) 2ty(4t2x+ 1) 2(t2x− t2y)
y 2ty(4t2x+ 1) −2tx(4t2x+ 3) 4txty
z −(3t2y + 1) 3txty tx

Table A.10: Third order coefficients Bzij .
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Appendix B

Comparison of FLUKA 2011.2c.5 π+

yields

Monte Carlo simulation of p + T2K replica target interactions was repeated three times with
three different beam profiles: a NA61 T2 beam profile, a NA61 T3 beam profile and a T2K run
4 beam profile. Yields of π+ on the target surface were compared in the figures B.1 and B.2.
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Figure B.1: Ratio of the FLUKA 2011.2c.5 π+ yields on the T2K replica targer surface simulated
with the T2 beam profile and the π+ yields simulated with the T2K (run 4) beam profile. First
five panels show five longitudinal bins (18cm in size), while last panel shows downstream target
face.
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Figure B.2: Ratio of the FLUKA 2011.2c.5 π+ yields on the T2K replica targer surface simulated
with the T3 beam profile and the π+ yields simulated with the T2K (run 4) beam profile. First
five panels show five longitudinal bins (18cm in size), while last panel shows downstream target
face.
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Appendix C

Track selection efficiencies

Topology Total p fit dE/dx-tof Clusters φ d/σR

[106] 83.081 38.188 6.353 6.166 4.677 4.118
[%] 100 16.64 16.15 12.25 10.78

VTPC1 [106] 25.324 0.761 0.744 0.637 0.604
[%] 66.32 11.98 12.07 13.61 14.67

VTPC2 [106] 4.089 0.490 0.385 0.248 0.049
[%] 10.71 7.72 6.24 5.31 1.19

VTPC1+2 [106] 5.567 2.946 2.945 2.376 2.258
[%] 14.58 46.37 47.77 50.80 54.82

GTPC [106] 0.527 0.395 0.355 0.204 0.165
[%] 1.38 6.22 5.76 4.37 4.00

VTPC1+GTPC [106] 0.156 0.053 0.052 0.041 0.037
[%] 0.41 0.84 0.85 0.87 0.89

VTPC2+GTPC [106] 1.976 1.388 1.364 0.908 0.757
[%] 5.17 21.85 22.13 19.40 18.38

VTPC1+2+GTPC [106] 0.549 0.319 0.319 0.264 0.249
[%] 1.44 5.03 5.18 5.64 6.04

(a)
Topology Total p fit dE/dx-tof Clusters φ d/σR

[106] 253.751 166.237 36.876 36.200 26.484 25.187
[%] 100 22.18 21.77 15.93 15.15

VTPC1 [106] 108.757 4.808 4.711 3.764 3.649
[%] 65.42 13.04 13.02 14.21 14.49

VTPC2 [106] 10.609 1.332 1.009 0.697 0.327
[%] 6.38 3.61 2.79 2.63 1.30

VTPC1+2 [106] 28.322 17.511 17.510 13.632 13.360
[%] 17.04 47.49 48.37 51.47 53.04

GTPC [106] 2.655 2.297 2.147 1.164 1.058
[%] 1.60 6.23 5.93 4.40 4.20

VTPC1+GTPC [106] 0.724 0.293 0.287 0.218 0.209
[%] 0.44 0.79 0.79 0.82 0.83

VTPC2+GTPC [106] 11.661 8.456 8.355 5.263 4.881
[%] 7.01 22.93 23.08 19.87 19.38

VTPC1+2+GTPC [106] 3.509 2.180 2.180 1.746 1.704
[%] 2.11 5.91 6.02 6.59 6.76

(b)

Table C.1: Track selection for the data (a) and for MC (b).
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Systematic uncertainties
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Systematic uncertainties
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Figure D.1: Change in the number of selected positive tracks in the first z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.2: Change in the number of selected positive tracks in the second z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.3: Change in the number of selected positive tracks in the third z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.4: Change in the number of selected positive tracks in the fourth z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.5: Change in the number of selected positive tracks in the fifth z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.6: Change in the number of selected positive tracks in the sixth z bin after changing
target x position within measured uncertainty. Black points are for xtg + 0.03 cm change and
red points are for xtg−0.03 cm change). Phase space has been optimized for pions.
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Figure D.7: Change in the number of selected positive tracks in the first z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.
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Figure D.8: Change in the number of selected positive tracks in the second z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.
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Figure D.9: Change in the number of selected positive tracks in the third z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.
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Figure D.10: Change in the number of selected positive tracks in the fourth z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.

191



Systematic uncertainties

p [GeV/c]
0 5 10 15 20 25 30

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 60 mradθ ≤40 
 + 0.02 cm

tg
y

 - 0.02 cm
tg

y

 < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 2 4 6 8 10

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 120 mradθ ≤100  < 120 mradθ ≤100 

p [GeV/c]
0 2 4 6 8 10

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 140 mradθ ≤120  < 140 mradθ ≤120 

p [GeV/c]
0 1 2 3 4 5 6 7 8

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 160 mradθ ≤140  < 160 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7 8

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 180 mradθ ≤160  < 180 mradθ ≤160 

p [GeV/c]
0 1 2 3 4 5 6 7

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 200 mradθ ≤180  < 200 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5 6 7

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 220 mradθ ≤200  < 220 mradθ ≤200 

p [GeV/c]
0 1 2 3 4 5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 1 2 3 4 5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0 0.5 1 1.5 2 2.5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 340 mradθ ≤300  < 340 mradθ ≤300 

p [GeV/c]
0 0.5 1 1.5 2 2.5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 380 mradθ ≤340  < 380 mradθ ≤340 

Figure D.11: Change in the number of selected positive tracks in the fifth z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.
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Figure D.12: Change in the number of selected positive tracks in the sixth z bin after changing
target y position within measured uncertainty. Black points are for ytg+0.02cm change and red
points are for ytg−0.02 cm change). Phase space has been optimized for pions.
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Figure D.13: Change in the number of selected positive tracks in the first z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.14: Change in the number of selected positive tracks in the second z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.15: Change in the number of selected positive tracks in the third z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.16: Change in the number of selected positive tracks in the fourth z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.17: Change in the number of selected positive tracks in the fifth z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.18: Change in the number of selected positive tracks in the sixth z bin after changing
target z position within measured uncertainty. Black points are for ztg +0.1 cm change and red
points are for ztg−0.1 cm change). Phase space has been optimized for pions.
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Figure D.19: Change in the number of selected positive tracks in the first z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.20: Change in the number of selected positive tracks in the second z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.21: Change in the number of selected positive tracks in the third z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.22: Change in the number of selected positive tracks in the fourth z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.23: Change in the number of selected positive tracks in the fifth z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.24: Change in the number of selected positive tracks in the sixth z bin after changing
target x tilt within measured uncertainty. Black points are for txtg + 0.3mrad change and red
points are for txtg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.25: Change in the number of selected positive tracks in the first z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.

206



p [GeV/c]
0 5 10 15 20 25 30

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 60 mradθ ≤40 
 + 0.3 mrad

tg
ty

 - 0.3 mrad
tg

ty

 < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 2 4 6 8 10

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 120 mradθ ≤100  < 120 mradθ ≤100 

p [GeV/c]
0 2 4 6 8 10

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 140 mradθ ≤120  < 140 mradθ ≤120 

p [GeV/c]
0 1 2 3 4 5 6 7 8

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 160 mradθ ≤140  < 160 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7 8

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 180 mradθ ≤160  < 180 mradθ ≤160 

p [GeV/c]
0 1 2 3 4 5 6 7

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 200 mradθ ≤180  < 200 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5 6 7

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 220 mradθ ≤200  < 220 mradθ ≤200 

p [GeV/c]
0 1 2 3 4 5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 1 2 3 4 5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0 0.5 1 1.5 2 2.5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 340 mradθ ≤300  < 340 mradθ ≤300 

p [GeV/c]
0 0.5 1 1.5 2 2.5

 [%
]

tr
N∆

10−
8−
6−
4−
2−
0
2
4
6
8

10  < 380 mradθ ≤340  < 380 mradθ ≤340 

Figure D.26: Change in the number of selected positive tracks in the second z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.27: Change in the number of selected positive tracks in the third z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.28: Change in the number of selected positive tracks in the fourth z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.29: Change in the number of selected positive tracks in the fifth z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.30: Change in the number of selected positive tracks in the sixth z bin after changing
target y tilt within measured uncertainty. Black points are for tytg + 0.3mrad change and red
points are for tytg−0.3mrad change). Phase space has been optimized for pions.
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Figure D.31: Systematic uncertainties of the π+ yields for the first z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.
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Figure D.32: Systematic uncertainties of the π+ yields for the second z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.
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Figure D.33: Systematic uncertainties of the π+ yields for the third z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.
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Figure D.34: Systematic uncertainties of the π+ yields for the fourth z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.
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Figure D.35: Systematic uncertainties of the π+ yields for the fifth z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.
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Figure D.36: Systematic uncertainties of the π+ yields for the sixth z bin, coming from the
uncertainty of the target position. Line segments are fitted to the distributions. Each panel
represents different polar angle bin.

217



Systematic uncertainties

218



Appendix E

Monte Carlo comparisons

219
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Figure E.1: Yields of positively charged pions for the first z bin, simulated with Fluka2011.2c.5
by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue line).
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Figure E.2: Yields of positively charged pions for the second z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.3: Yields of positively charged pions for the third z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.4: Yields of positively charged pions for the fourth z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.5: Yields of positively charged pions for the fifth z bin, simulated with Fluka2011.2c.5
by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue line).
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Figure E.6: Yields of positively charged pions for the downstream target face, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue line).
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Figure E.7: Yields of negatively charged pions for the first z bin, simulated with Fluka2011.2c.5
by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue line).
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Figure E.8: Yields of negatively charged pions for the second z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).

227



Monte Carlo comparisons

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

1

2

3

4

5

3−10×  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10

20

30

40

50

3−10×  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

120

3−10×  < 60 mradθ ≤40  < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
20
40
60
80

100
120
140
160
180
200

3−10×  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250
3−10×  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 1 2 3 4 5 6 7 8 9 10

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

300

3−10×  < 140 mradθ ≤100  < 140 mradθ ≤100 

p [GeV/c]
0 1 2 3 4 5 6 7 8

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

300

350

3−10×  < 180 mradθ ≤140  < 180 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400

3−10×  < 220 mradθ ≤180  < 220 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5 6

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400
450

3−10×  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400
450

3−10×  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0 0.5 1 1.5 2 2.5 3

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

100

200

300

400

500
3−10×  < 340 mradθ ≤300  < 340 mradθ ≤300 

 z < 54 cm≤ yields: 36 -π

FLUKA 2011.2c.5 (2009 T2)

FLUKA 2011.2c.5 (2010 T2)

Figure E.9: Yields of negatively charged pions for the third z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.10: Yields of negatively charged pions for the fourth z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.11: Yields of negatively charged pions for the fifth z bin, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue
line).
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Figure E.12: Yields of negatively charged pions for the downstream target face, simulated with
Fluka2011.2c.5 by using 2009 T2 beam profile (red line) and 2010 T2 beam profile (blue line).
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Figure E.13: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the first longitudinal z bin.
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Figure E.14: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the second longitudinal z bin.

233



Monte Carlo comparisons

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
1
2
3
4
5
6
7
8
9

3−10×  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10

20

30

40

50

60

70

3−10×  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
20
40
60
80

100
120
140
160
180
200
220

3−10×  < 60 mradθ ≤40  < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

300

3−10×  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

300

350
3−10×  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 2 4 6 8 10

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400

3−10×  < 140 mradθ ≤100  < 140 mradθ ≤100 

p [GeV/c]
0 1 2 3 4 5 6 7 8

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400
450

3−10×  < 180 mradθ ≤140  < 180 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

100

200

300

400

500

3−10×  < 220 mradθ ≤180  < 220 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

100

200

300

400

500

3−10×  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

100

200

300

400

500

3−10×  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0 0.5 1 1.5 2 2.5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
50

100
150
200
250
300
350
400
450

3−10×  < 340 mradθ ≤300  < 340 mradθ ≤300 

Figure E.15: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the third longitudinal z bin.
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Figure E.16: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the fourth longitudinal z bin.
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Figure E.17: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the fith longitudinal z bin.
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Figure E.18: Comparison of fully corrected π+ yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the downstream target face.
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Figure E.19: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the first longitudinal z bin.
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Figure E.20: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the second longitudinal z bin.
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Figure E.21: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the third longitudinal z bin.
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Figure E.22: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the fourth longitudinal z bin.

241



Monte Carlo comparisons

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
1

2

3
4

5
6
7

3−10×  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
5

10
15
20
25
30
35
40
45

3−10×  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
10
20
30
40
50
60
70
80
90

3−10×  < 60 mradθ ≤40  < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

120

3−10×  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
20
40
60
80

100
120
140
160
180

3−10×  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 2 4 6 8 10

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
20
40
60
80

100
120
140
160
180
200
220

3−10×  < 140 mradθ ≤100  < 140 mradθ ≤100 

p [GeV/c]
0 1 2 3 4 5 6 7 8

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
20
40
60
80

100
120
140
160
180
200
220
240

3−10×  < 180 mradθ ≤140  < 180 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

3−10×  < 220 mradθ ≤180  < 220 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

3−10×  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

3−10×  < 300 mradθ ≤260  < 300 mradθ ≤260 

p [GeV/c]
0 0.5 1 1.5 2 2.5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

50

100

150

200

250

300
3−10×  < 340 mradθ ≤300  < 340 mradθ ≤300 

Figure E.23: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the fith longitudinal z bin.

242



p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10

20

30

40

50

3−10×  < 20 mradθ ≤0  < 20 mradθ ≤0 

p [GeV/c]
0 5 10 15 20 25 30

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

3−10×  < 40 mradθ ≤20  < 40 mradθ ≤20 

p [GeV/c]
0 2 4 6 8 10 12 14 16 18 20

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

3−10×  < 60 mradθ ≤40  < 60 mradθ ≤40 

p [GeV/c]
0 2 4 6 8 10 12 14

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

120
3−10×  < 80 mradθ ≤60  < 80 mradθ ≤60 

p [GeV/c]
0 2 4 6 8 10 12

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

120

3−10×  < 100 mradθ ≤80  < 100 mradθ ≤80 

p [GeV/c]
0 2 4 6 8 10

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

20

40

60

80

100

3−10×  < 140 mradθ ≤100  < 140 mradθ ≤100 

p [GeV/c]
0 1 2 3 4 5 6 7 8

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0
10
20
30
40
50
60
70
80
90

3−10×  < 180 mradθ ≤140  < 180 mradθ ≤140 

p [GeV/c]
0 1 2 3 4 5 6 7

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10
20

30
40

50
60

70

3−10×  < 220 mradθ ≤180  < 220 mradθ ≤180 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10

20

30

40

50

60

70

3−10×  < 260 mradθ ≤220  < 260 mradθ ≤220 

p [GeV/c]
0 1 2 3 4 5

]
-1

G
eV

/c
))

⋅
) 

[(
ra

d
θ

dn
/(

dp
d

0

10

20

30

40

50

60
3−10×  < 300 mradθ ≤260  < 300 mradθ ≤260 

Figure E.24: Comparison of fully corrected π− yields (black points) with previous NA61/SHINE
measurements [86] (red points) for the downstream target face.
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