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Lastly, I would like to thank my family, my students, my instructors and my friends, certainly Mr.Samir Berjoui and Dr.Rached Zantout (My Instructor), for all their love and encouragement. For my brothers and my sisters Amal and Hayat who gave me inspiration, for my parents who raised me with a love of science and supported me in all my pursuits. Thank you. First, we started with preprocessing the vertical ground reaction force (VGRF) signals and showed in this first part of the thesis that filtering can remove a vital part of the signal. That is why an adaptive filter based on empirical mode decomposition (EMD) was built. Turning points are filtered using synochronosqueezing of time-frequency representations of the signal. We also showed that the content of gait force signals is highly affected by unquantifiable parameter such as cognitive tasks which make them hard to be normalized. That is why features being extracted are derived from inter-subject ix comparison. For example we equated the difference in the load distribution between feet. It is also recommended in this work to choose the mid-sensor rather than relying on summation of forces from array of sensors for classification purposes.

A hypothesis of balanced and unbalanced gait is verified to be potential in improving the classification accuracy. The power of this hypothesis is shown by using the load distribution and Age×Speed in the first classifier and the correlation in the second classifier. A time series simulation of VGRF based on a modified version of nonstationary-Markov model of first order is derived. This model successfully predict gaits in normal subjects and fairly did in Parkinson's gait.

We found out that the three modes: time, frequency and space are helpful in analyzing force signals that is why parallel factor analysis is introduced as a tensor method to be used in a future work. 

General Introduction

Why and how do we move? For thousands of years we have been thinking about such question. Still we do not have a very clear idea about the motor act itself. Movement ecology is then developed by biologists to come up with explanations about how limbs move in seconds and how the body dynamic per minutes in addition to the locations being traveled per day. Such a study involves the participation of engineers to explain motion, cognitive scientists to handle navigation, neuroscientist and so on. Newton's law states that acceleration are a cause of forces being applied against environment. Those forces are carried by appendages, limbs,… However, these appendages have to travel with body at the time they asserting forces and transmitting forces from ground to body. As a result definitely there will be oscillation. And if this is the case, they must oscillate in a very tight coordination. This requires a very complicated feedback loops to be understood by engineers and biologists. In other words, enough intelligence is built into our muscles. They function as motors and even as brakes and certainly as springs. What if this intelligence is baked into the whole body?

Understanding human locomotion will inspire us in building robotic passively walking toys, develop a Prosthetics leg exoskeleton robot, improve athletic performance, identification of people for security purposes, diagnose specific pathologies, researching new rehabilitative tools in the treatment of mobility-limiting conditions, motion planning and control problems for under actuated robots and many more.

Our first objective as presented in this thesis is to differentiate normal human gait from abnormal gait, particularly in aged people. This would enhance the ability to figure out gait parameters that could lead to falling if they are subjected to alteration. We will focus only on one kinematic parameter which is by examining the amount of VGRF produced by each foot contacting the ground. To achieve our goals, statistical analysis and modeling are being conducted. There Chapter 5 is a concluding chapter. In this chapter, we emphasize future perspectives in gait analysis. In fact by using multiway analysis mainly parallel factor analysis (PARAFAC), we can verify easily the previous results and deliver more insight about the dataset. Moreover, a comparison between normal and Parkinson is being presented on time, space and frequency modes of PARAFAC. The feasibility of classification using PARAFAC is just introduced.

To conclude, we end up with a summary of the overall results for each path of study, before presenting the research perspectives associated with this work.

CHAPTER 1 LITERATURE REVIEW

Human locomotor system is a complex and higher level of cognitive functioning and dynamical system [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF], a rule for time evolution on state space [START_REF] Basdogan | Nonlinear Dynamics of Human Locomotion: From the Perspective of Dynamical Systems Theory[END_REF]. Very often, state of dynamical systems is described in terms of variables by a set of differential equations. The objective behind this mathematical model is to predict future states giving the past and the present states or to diagnose the past states that led to the present state or in contrary to provide theory for this physical phenomenon [3]. However, gait analysis, the study of locomotion, can be considered to be high stochastic so that the person walk with minimum energy expenditure and then the sequence of observations could infer some features. In addition, time series analysis and its transforms and distributions forms superior to mathematical modeling since we are starting from experimental data. Therefore, is it possible to identify people based on the analysis of their walking gait and thus to predict falls in elderly?

Definition of Human Locomotion

Human gait is a manner or style of walking and a suited medical term to describe human locomotion [4]. Walking gait defined as sequences of repetitive cyclic gestures as it consists of both periodic movement of each foot from one position of support to a next position of support. In addition, support of body is done by sufficient ground reaction forces applied through the feet [5].

This bipedal locomotion is enhanced by different parts of body like bones, muscle, nervous system and others. Consequently, each limb contributes to braking and propulsive forces, to maintain balance, as well as they contribute to the forward velocity and to vertical support forces of body [START_REF] Skinner | FREQUENCY DOMAIN ANALYSIS OF GROUND REACTION FORCE DOES NOT DIFFERENTIATE BETWEEN HYPERKINETIC AND HYPOKINETIC MOVEMENT DISORDERS[END_REF] .Therefore, any defect in one of those parts may lead to a pathological gait. However, those patients still be able to correct their gait before unexpected fall occurring. In the other hand, physiology alteration and disability including cardiovascular changes and mental health [START_REF] Hausdorff | Gait variability: methods, modeling and meaning[END_REF] such that problems in cortical processing of information as in dementia could also result in falling [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF].

In addition, gait can be affected by a function of many other variables such as aging [START_REF] Khandokerl | A Wavelet-Based Approach for Screening Falls Risk in the Elderly using Support Vector Machines[END_REF], weight, disease that can deteriorate the correlation in stride interval [START_REF] Gates | PERIPHERAL NEUROPATHY DOES NOT ALTER THE FRACTAL DYNAMICS OF GAIT STRIDE INTERVALS[END_REF], injuries, skeletal structure, muscular activity, limb lengths, bone structures, etc… [START_REF] Amin | Determinants in Human Gait Recognition[END_REF]. 

Usual walking cycle shown in

Biomechanics point of view

Human gait is a legged mobile type of motion where the dynamics and energy management is a main concern. First, those will enable the human body to direct the ground reaction forces (a specific force as it is a force per mass) to outcome a forward movement or redirect them to jump up or even to lead subject to fall and so on. That is why we are interested in the timing, amplitude of forces and the coordination of leg patterns that will definitely give a variety of VGRF signals.

Such a variety will give different styles of locomotion. Second, through our legs we can feel the environment and this is so called proprioception. For instance, when we in a stance phase the body need to be in a given posture not to burn any more energy by exerting extra forces on the ground [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF]. During push off, the foot pushes against ground and the GRF pushes back against foot. If insufficient traction occur by creating a virtual pin joint, a foot will slide back ward. This can only be achieved by sensing forces of the ground through legs and hips to get balanced and efficient foot to ground contact. However, we must spend energy to get into our ends. Specific power that result on how to move energy from one form into another can be thought as the speed at which a GRF can be sustained resulting in a stable energetic display called basins. For illustration, basins of attraction places energy at its lowest states.

In biomechanics, we look at the behavioral components by modeling the human walking by so called templates to give a simplest model that describes the target behavior and then embed them into a higher dimensional physical system so called anchor. In addition, we also focus on physical components that's corresponds to the materials and their compliance properties, structures and energy needed by our actuator muscles. For instance, walking can be thought as a vaulting over inverted pendulum executing compass gait as shown in Fig. 1.2[1]: Therefore human walking results from complex dynamical interactions between the subject whom is made up of complex multi-link mechanism and environment [START_REF] Ergović | Models and methods for locomotion analysis of lower limbs[END_REF]. In above model, it is clear that part of mechanical energy is pertained from one stride to the nest stride. Then the massless model can be derived as in equation (1.1) based on D'Alembert principle:
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The center of mass is denoted by "com" and has the coordinates (Xcom,Ycom). The dynamic equation is then given by equation (1.2):
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During foot collision as shown in Fig. 1.3, the angular momentum around the point of collision at time just before the next foot collides with the ground is
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Figure1.3: Angular momentum is conserved around the point of impact

The angular momentum at the same point immediately after the collision is
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Assuming angular momentum is conserved, this collision causes an instantaneous loss of velocity:
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Different models being adopter to understand how the foot impact the ground in addition to understand how humans walk. Fig. 1.4 is another way of analysis. However, we will not dive too much in this domain throughout this thesis and we can will handle this in a future work. 

Gait Analysis

Gait analysis used in many applications including the improvement of sports techniques and performance, assisting disabilities by improving rehabilitation program, the planning and assessment of surgical outcomes, and the recognition of gaits due to falls-risk in the elderly [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF].

Human locomotors system is a dynamical system, a rule for time evolution on state space [START_REF] Bloswick | AN ERGONOMIC ANALYSIS OF THE LADDER CLIMBING ACTIVITY[END_REF]. Very often, state of dynamical systems is described in terms of variables by a set of differential equations. The objective behind this mathematical object is to predict future states giving the past and the present states or to diagnosing the past sates that led to the present state or in contrary to provide theory for this physical phenomenon [START_REF] Jeffry | Gait in Parkinson's Disease[END_REF]. However, gait analysis can be considered to be high stochastic where the sequence of observations could infer some features.

Human body requires a continuous contact with the ground during walking and thus GRF formed as reflections of various forces that the entire body examine during gait. VGRF holds the major amplitude and thus has been a topic of interest for many scientists certainly when dealing with its peak value [START_REF] Niu | Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling[END_REF]. They are highly correlated to bone growth and strength [START_REF] Pouliot-Laforte | Validity of an accelerometer as a vertical ground reaction force measuring device in healthy children and adolescents and in children and adolescents with osteogenesis imperfecta type I[END_REF]. Their profile is also proved to examine gait mechanics of powered exoskeleton-assisted walking and reflections to the amount of loading given that subjects are of different level of assist and with different weights and cadences [START_REF] Boozari | Effect of Functional Fatigue on Vertical Ground-Reaction Force in Individuals With Flat Feet[END_REF]. In addition, VGRFs capture various parameters with no need to measure them. For instance, The peak vertical ground reaction force shows a linear relationship with drop height [START_REF] Niu | Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling[END_REF].Furthermore, they are used in diagnosing the effectiveness of surgeries at knee and hip, neuromuscular impairments like in Parkinson's disease, analyses of injury risk, assessment of falling risk, biomechanics and so on [START_REF] Bloswick | AN ERGONOMIC ANALYSIS OF THE LADDER CLIMBING ACTIVITY[END_REF].

Human walking is produced based on all information acquired from the environment that would affect the walking pattern. With the help of the central nervous system, humans will fit their walk to maximize their stability. Understanding the internal forces inside human body are not limited to rehabilitation, prosthesis design, biomechanics, robotics modelling, sports [START_REF] Niu | Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling[END_REF] and others, but exceed to cover sensor validation when it comes to real implementation of gait system. However those forces are hardly measurable [START_REF] Chau | A review of analytical techniques of gait data. Part2: neural network and wavelet methods[END_REF]. An alternative was to use external forces that are readily observable (experimental data) that serves as an input for musculoskeletal modelling (computer based simulation) to estimate those in vivo forces. This is the potential of inverse dynamic analysis. Having then the VGRF mathematically modelled introduces some inconsistency stemmed from the boundary conditions.

It was proven that each person has a specific and unique gait pattern [START_REF] Ramamoorthy | Qualitative Hybrid Control of Dynamic Bipedal Walking[END_REF]. It has been used in biometrics as gait information acquired to identify individuals, differentiating between normal and patient subjects, orthoses and prostheses devices for rehabilitation, and assessing fall risk among subjects as this study concerns, where elderly are our apprehension. Gait analysis can be done using different techniques. For example, gait variability considered as a quantifiable feature of walking in clinically relevant syndromes, such as falling, frailty, and neuro-degenerative disease [START_REF] Hausdorff | Gait variability: methods, modeling and meaning[END_REF]. Moreover, biometrics, stride interval, ground reaction force (GRF), pressure which is our focus are used in gait analysis. Other forces like gravitational force, muscular force and forces of momentum considered also forces of gait. Such biomechanical parameters and others like heel velocity and cadence could give a great insight into gait analysis.

Biometrics

In biometrics (the recognition of people by their physiological or behavioral characteristics), person's walking can be recognized from the nonstationary in the distribution of 2D image features relationships over time which are represented as points in a space of probability functions (SoPF) using standard pattern recognition techniques such as the principle component analysis (PCA) that is applied over probability functions [START_REF] Vega | Experiments on Gait Analysis by Exploiting Nonstationarity in the Distribution of Feature Relationships[END_REF]. As gait is considered a behavioral biometric, dynamic features extracted from different parts of the body can be perceived from a distance without personal contact [START_REF] Amin | Determinants in Human Gait Recognition[END_REF].

Stride Interval

Studying stride interval data can also be used in analysis of human locomotion [START_REF] Hausdorff | Gait variability: methods, modeling and meaning[END_REF]. One of the techniques used is recurrent plots and recurrent quantification. The main advantage of the recurrence plots over another widely used techniques as for example Fourier analysis, is that they preserve both temporal and spatial dependence in the time series. Their analysis shows that the gait maturation data are mixed of high dimensional deterministic and stochastic process with maturation signals become more stochastic. The gait analysis of neurodegenerative diseased people show high stride interval with low speed and increased instability. According to a study, patterns in the recurrence plot of stride interval variability differentiate healthy from diseased, young from old [START_REF] Šušmáková | Nonlinear statistical analysis of human gait dynamics[END_REF]. It's also shown that normal gait exhibits long range correlation in stride interval and its deterioration implies an aging or disease [START_REF] Terrier | Kinematic variability, fractal dynamics and local[END_REF]. However, it's worth mentioning that subjects who underwent a Physical Rehabilitation Program (PRP) for four consecutive weeks, the coefficient of variation (CV) improved in Parkinson disease (PD) and remained constant and smaller for control one.

Unfortunately, there was no statistically significant difference between groups [START_REF] Del Olmo | Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues[END_REF]. The dynamics of gait examine alterations in the fractal pattern with healthy aged [START_REF] Hausdorff | Gait variability: methods, modeling and meaning[END_REF]. Some other result based on wavelet denoising based on Inertial Measurement Unit (IMU) that measure both gravitational acceleration vector and acceleration due to body movement. This lead to two factors of gait and postural characteristics: double-support time and postural transition times. And their variation in elderly indicates instability [START_REF] Lockhart | Wavelet based automated postural event detection and activity classification with single IMU ( TEMPO)[END_REF].

GRF and Pressure

As mentioned, GRF provides significant information in differentiating between normal walking and pathologic gait [START_REF] Winiarski | Estimated ground reaction force in normal and pathological gait[END_REF]. Accordingly, disorder in gait implies that a subject is patient.

Pathological gait is then can be used for clinical purposes. GRF is generated initially by a nerve impulse in central nervous system [5]. GRF is a "reflection of the total mass-timesacceleration product of all body segments and therefore represents the total of all net muscle and gravitational force actions at each instant of time over the stance phase" [26 ,27]. This force can be measured in 3-D, three axis as shown in Fig. 1.5 [START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF]: mediolateral (𝐹 𝑥 ) , anteriorposterior force component ( 𝐹 𝑧 ) in the sagittal plane, and longitudinal (𝐹 𝑦 ) [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF]. The vertical ( 𝐹 𝑦 ) GRF has a characteristic double hump. The first hump appears at heel contact, showing a rapid rise to a value in excess of body weight as full weight bearing takes place and the body's downward velocity is being arrested. Then, as the knee flexes during midstance, the plate is partially unloaded and Fz drops below body weight. At push-off the plantar flexors are active, causing a second force peak greater than body weight, which demonstrates that the body's center of mass is being accelerated upwards to increase its upward velocity. Finally the weight drops to zero as the opposite limb takes up the body weight.

Therefore, the vertical component of GRF which is our concern can be classified into Mshaped and non-M-shaped. This classification is correlated with both gait parameters and functional performance as the pain component of the Japan Orhopaedic Association (JOA) score [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. In addition, the type of foot contact with the ground could also affect the shape of VGRF. Knowing that, VGRF has no significant differences between the left and right foot during walking and not affected by the sex of normal subjects [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. Unfortunately, the vertical load curve has been found to be unreliable as a clinical measure [START_REF] Marasović | Analysis and Interpretation of Ground Reaction Forces in Normal Gait[END_REF]. In contrary, vertical GRF has been shown to be reliable and repeatable feature of gait [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. Cyclostationary modeling of GRF signal where it's periodically varying statistics and its contribution to PSD (Power Spectrum Density) is used to characterize the gait and running assessment where during locomotion, parameters vary from step to step. The PSD analysis of GRF signal indicates the presence of periodic part and the presence of resonance frequency. The cyclic spectra before and after fatigue shows that the amplitude of the spectral correlation density (SCD) is more after fatigue which is due to the tiredness of the runner. Therefore step fluctuation signal increases after fatigue i.e. the frequency of the step become more random [START_REF] Sabri | Cyclostationary Modeling of Ground Reaction Force Signals[END_REF]. In addition, the first two principal component coefficients of GRF are used to differentiate between normal and patient with lower limb fracture and how the later coefficients moves toward the normal region after the linear separator with a rehabilitation treatment [START_REF] Am | Principal component analysis of vertical ground reaction force: a powerful method to discriminate normal and abnormal gait and assess treatment[END_REF]. A further study proposed a score to quantify the abnormality of gait where two, four and six PCCs were used to obtain the standard distance (D) and using the six sigma have the best accuracy of 96.1%. The study shows that D decreased for that fracture group after rehabilitation (FGA). In addition, FG subjects had positive PCC while control group (CG) subjects presented negative values [START_REF] Muniz | Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait[END_REF].

GRF measured during a run on a treadmill is also used to characterize the runner's step and its analysis is based on cyclostationary to model signals with periodically varying statistics, instead of assuming it statistically stationary signal features [START_REF] Sabri | Cyclostationary Modeling of Ground Reaction Force Signals[END_REF]. Separation results of GRF signal using Blind Source Separation (BSS) as to separate multiple sources mixed through an unknown mixing system using spatial diversity which is given by system outputs offers good results in separation of the contribution of each leg [START_REF] Sabri | Blind Separation of Ground Reaction Force Signals, LASPI, Universit´e Jean Monnet[END_REF]. Some results also shows that the frequency components difference of the GRF may not significantly recorded. For instance, t-tests were used to examine the frequency content of all three components of the ground reaction force in patients with Essential Tremor (ET) and PD and results are not significantly different from each other [START_REF] Skinner | FREQUENCY DOMAIN ANALYSIS OF GROUND REACTION FORCE DOES NOT DIFFERENTIATE BETWEEN HYPERKINETIC AND HYPOKINETIC MOVEMENT DISORDERS[END_REF]. It also revealed no significant difference in the vertical GRF between young and elderly females. Where a significantly higher frequency content in elderly compared with young females in the anterior-posterior direction [START_REF] Sterqiou | Frequency domain characteristics of ground reaction forces during walking of young and elderly females[END_REF].

However, one can reduce the effect of determinants by taking one component of the force. For illustration, aging differences were not detected in vertical direction of GRF using the frequency domain analysis in both elderly and young [START_REF] Sterqiou | Frequency domain characteristics of ground reaction forces during walking of young and elderly females[END_REF]. The maximum peak value in vertical GRF is observed to be high in parkinsons group and was not observed in healthy. In addition, a trouble in damping down vertical axis perturbation occurs in PD subjects [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF].

Pressure can also be used in the gait analysis and therefore to detect falls in elderly that may cause serious injuries. The center of pressure is shown to be the neuromuscular response to imbalances of the body's center of gravity. The comparison between left and right leg during normal gait cycle shows a high similarity [START_REF] Marasović | Analysis and Interpretation of Ground Reaction Forces in Normal Gait[END_REF].

Preprocessing

Before using data for any purpose, preprocessing must be performed on the data to remove any undesirable characteristics that were produced during acquisition. For instance, normalization and filtering of the signals are being pointed out in the scope of others work.

Normalization

If one variable is to be normalized to another variable, it is important to understand the relation between them [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]. For instance correlation coefficients are normalized to fall between zero and one which makes them insensitive to the variations in the gain of the data acquisition process. However, in our case, the variable scales are similar and therefore one can use covariance instead to compare between two variables. In a large number of studies, Division normalization of GRF data were successful. Such kind of normalization occurs through dividing the data by parameters like body weight (BW) [START_REF] Winiarski | Estimated ground reaction force in normal and pathological gait[END_REF], [START_REF] Yu | Towards a Methodology for the Differential Analysis in Human Locomotion: A Pilot Study on the Participation of Individuals with Multiple Sclerosis[END_REF], [START_REF] Fournier | GROUND REACTION FORCES DURING THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN[END_REF], [START_REF] Raja | Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters[END_REF] body mass [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF], body weight x height (BWH), and body weight x leg length (BWL) [START_REF] Muniz | Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait[END_REF]. Others investigate the power curve normalization, and offset normalization on peak GRF to normalize data at all variables [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF]. Power curve and offset normalization, however, were effective at normalizing all variables, "therefore, when attempting to normalize GRF and joint moments, perhaps nonlinear or offset methods should be implemented" [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF]. In another study that takes running into consideration shows that normalizing peak forces by linearly scaling to body weight is not an appropriate method. It also has been documented that normalizing VGRF signals through dividing by body weight to the power (𝐵𝑊 𝛼 ), where 𝛼 is the exponent of the best fit power curve equation, effectively eliminates the influence of the body weight on the data set [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]. In contrast one could also found that GRFs were normalized to body weight (BW) and % stance phase [START_REF] Fournier | GROUND REACTION FORCES DURING THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN[END_REF]. And as the GRF is normalized by body height in some studies, a different constraint is also normalized by the same parameter, for instance the distance parameters of stride length and step width were normalized for the height of the subject [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. In addition, the distribution of number of falls, DST, CV step length and CV stride time variables were also found to be normalized using log transformations [START_REF] Taylor | Gait impairment and falls in cognitively impaired older adults: an explanatory model of sensorimotor and neuropsychological mediators[END_REF].

Normalizing VGRF by the mass is not an accurate practice since the body will be moving in the three directions making it difficult to compute the mass that contributes to the vertical force.

The 26 bones that are forming the foot will act as a rigid lever and termed as supination. However this is possible during the stance phase where all body is most likely be supported by a single foot but still need more investigation. Nonetheless, since the viscoelastic properties of the shoe affect the load rate [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF], diseases that reduces level chemical mediator production by neurons that are essential on movement coordination [START_REF] Dubey | Gait Based Vertical Ground Reaction Force Analysis for Parkinson's Disease Diagnosis Using Self Organizing Map[END_REF], and other parameters like age and height as shown in Many others are complicated enough to be estimated in a quantifiable way like when having emotional and psychological case. That is why normalization is a topic that needs accurate dealing that help in avoiding us from handling data in a wrong way and therefore result in erroneous interpretations. Some questions that rises: Is there a need for normalization? Why? When? And How? In addition to what appropriate elucidation restrictions one should follow. It is enough to remember that during heel contact the body weight begins to shift into stance limb.

Filtering

Filtering removes any unwanted disturbance in any signal GRF data. For instance, the presence of noise can totally mask the true information in data. In addition, it's significant to eliminate sources of variation on the measured VGRF like the influence of mediolateral and anterior-posterior variations.

Butterworth low pass filter of second order with 20 Hz cut-off frequency is used to smoothen GRF data because during walking on treadmill, white noise existed due to vibrations and motion artifact [START_REF] Yu | Towards a Methodology for the Differential Analysis in Human Locomotion: A Pilot Study on the Participation of Individuals with Multiple Sclerosis[END_REF]. Fourth-order low-pass Butterworth filter with a cutoff frequency of 100 Hz used to smooth the data before analysis in another study [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]. In addition, further study used GRF data after being filtered at 50 Hz with a second order low pass Butterworth filter [START_REF] Šušmáková | Nonlinear statistical analysis of human gait dynamics[END_REF]. The vertical GRF is low passed filtered with a cut-off frequency 15 Hz to reduce measurement noise according to another article [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF]. While other studies consider the reservation GRF data as being filtered using a 7 point moving average [START_REF] Fournier | GROUND REACTION FORCES DURING THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN[END_REF]. GRF data were also filtered with a cutoff frequency of 75 Hz [START_REF] Šušmáková | Nonlinear statistical analysis of human gait dynamics[END_REF]. However, in another study GRF data were filtered using a low-pass filter with 50 Hz cutoff frequency [START_REF] Del Olmo | Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues[END_REF]. In a further study, 13-point moving average low-pass filter with a cutoff frequency of 33.3Hz was used to filter the GRF data [START_REF] Kluitenberg | Comparison of vertical ground reaction forces during overground and treadmill running. A validation study[END_REF]. Moreover, GRFs were low-pass filtered using a fourth-order, zero-lag Butterworth filter with a 20 Hz cutoff frequency in alternative study [START_REF] Raja | Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters[END_REF]. A second order Butterworth filter with a 6 Hz cut-off frequency is being used in a different study [START_REF] Kram | Force treadmill for measuring vertical and horizontal ground reaction forces[END_REF]. However, it was recorded that the frequency content of ground reaction during walking for both vertical and lateral components to be less than 9 Hz. While in running the vertical is less than 10 Hz and for the lateral component was at frequencies less than 17 Hz [START_REF] Kram | Force treadmill for measuring vertical and horizontal ground reaction forces[END_REF]. In order to eliminate noise and not affecting the data, a fourth order low passed Butterworth nonrecursive filter with 25 Hz cutoff frequency is chosen to be 25 Hz at the former study [START_REF] Kram | Force treadmill for measuring vertical and horizontal ground reaction forces[END_REF]. Such kind of filtering without relying on a given basis may remove components of the actual movements [START_REF] Borget | ON OPTIMAL FILTERING FOR INVERSE DYNAMICS ANALYSIS[END_REF].

Antonsson's database composed of two categories, runners and walkers. He studied 30 foot contacts from 12 subjects. By applying FFT spectral power analysis of these force records, 99% of the integrated power content of VGRF signals below 9 Hz. For running, 99% of the integrated power content of the VGRF signals was at frequencies less than 10 Hz [START_REF] Yu | Towards a Methodology for the Differential Analysis in Human Locomotion: A Pilot Study on the Participation of Individuals with Multiple Sclerosis[END_REF][START_REF] Fournier | GROUND REACTION FORCES DURING THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN[END_REF]. Furthermore, the amplitudes above 10 Hz are recorded to be less than 5 % of the fundamental frequency. 2 % above 20 Hz and all amplitudes more than 1 % are delimited below 50 Hz. 99.5 % frequency in VGRF is recorded to be 6.39±2.31 Hz in Parkinson subjects. The median frequency is found 0.45±0.09

Hz and the bandwidth is said to be 1.23±0.29 Hz. A difference is found in frequency content when compared to healthy subjects [START_REF] Raja | Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters[END_REF]. After averaging the VGRF signals of PD subjects, the power of high frequency is lower and the first and second peak's amplitude are lower than normal subjects with a delayed occurrence of the first peak. The average power is between 0.5 Hz and 1.5 Hz is logged in PD [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF].

These results helped in the process of selecting the appropriate filter that is the fourth order Butterworth filter with a 25Hz cutoff frequency. This filter appeared to eliminate 99% of the noise while retaining all of the important components of the signal [START_REF] Fournier | GROUND REACTION FORCES DURING THE STANCE PHASE OF GAIT OF YOUNG AUTISTIC CHILDREN[END_REF]. Another research done in the University of Nebrashka Omaha has discussed the effect of multiple sclerosis on the frequency content in VGRF during walking by applying Fourier transform on the signals. Wurdeman et al.

results showed that patients with multiple sclerosis had significantly lower than 99.5% frequency (P= 0.006) and median frequency (P<0.001) in the vertical ground reaction force. The lower frequency content suggests lesser vertical oscillation of the center of gravity [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF]. Analysis of the frequency content may potentially serve to provide earlier diagnostic assessment of this debilitating disease [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF].

Likewise, frequency content of various body movement is recorded to be less than 20 Hz where 99% of the FFT spectrum is contained below 15Hz in walking signals [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF]. However as a majority of the signal existed below 10 Hz as shown by Simon et al, at the heel contact a peak appeared with frequency content of 10-75 Hz. Giakis and Baltzopoulos indicated that 95 % of signal's amplitude is within the first 15 harmonics up to 20.27 Hz [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. Vertical GRF impact peak is assumed within 8-50 Hz given that it will visually absent in time domain for forefoot running and a suggestion of an overlap between impact and active peak frequencies do exist [START_REF] Sabri | Blind Separation of Ground Reaction Force Signals, LASPI, Universit´e Jean Monnet[END_REF].

Moreover, the standards for testing prosthetic components required for ankle-foot in order to study the fatigue process are by applying alternating forces within 0.5-3Hz as given by the international organization for standardization [START_REF] Sterqiou | Frequency domain characteristics of ground reaction forces during walking of young and elderly females[END_REF].

Classification

Many studies examined the exceptional ability of humans to develop internal models of environmental dynamics by learning different motor tasks. Those models related to walking could be updated by providing unexpected environmental force perturbations [START_REF] Wannop | Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion[END_REF]. Studies show that one limb is responsible for transferring and supporting body weight while the contralateral limb is responsible for providing propulsion. For instance, the limb dominance shows a great impact on VGRF and COP [START_REF] Wang | Limb Dominance Related to the Variability and Symmetry of the Vertical Ground Reaction Force and Center of Pressure[END_REF]. Symmetrical foot loading patterns are recorded in normal gait. It is found that Mediolateral (Fx) and vertical (Fz) forces have no significant difference. This asymmetry becomes significant in pathological gait at fast walking [START_REF] Perttunen | Foot Loading in Normal and Pathological Walking[END_REF].

Numerous variables interfere in gait ground reaction force such as age and height. The viscoelastic properties of the shoe is another parameter that affect the load rate [START_REF] Khajah | Parameter identification for vertical ground reaction forces on feet while running[END_REF]. Diseases that reduce level chemical mediator production by neurons are also examples that mark movement coordination [START_REF] Dubey | Gait Based Vertical Ground Reaction Force Analysis for Parkinson's Disease Diagnosis Using Self Organizing Map[END_REF]. Many of them are complicated enough to be estimated in a quantifiable way like when having emotional and psychological cases.

The preferred walking speed of many humans is around 1.4 m/s. This forms a sign of independence and mobility [START_REF] Browning | Effects of obesity and sex on the energetic cost and preferred speed of walking[END_REF]. The speed selection in elderly tends to be slow. This is a usual prominent characteristic in Parkinson subjects caused by degeneration of central nervous system and decrease in ability to control the locomotors system. Gait variability is shown to increase with slower walking speed in addition to age. However, elderly with gait disability have a tendency to walk more slowly to improve their dynamic stability regardless of increasing gait variability that is known to increase risk of falling [START_REF] Dingwell | Kinematic variability and local dynamic stability of upper body motions when walking at different speeds[END_REF]. Walking speed could minimize metabolic energy costs which is associated to aerobic capacity that is correlated with aging [START_REF] Malatesta | Aerobic determinants of the decline in preferred walking speed in healthy, active 65-and 80-yearolds[END_REF]. Furthermore, there is a need to distinguish the effect of walking speed from the effect of age on gait variability. In trunk roll angle, Age × Speed displays a crucial interaction. Research results indicate that variations in gait variability occur in healthy normal aging [START_REF] Kang | Separating the effects of age and walking speed on gait variability[END_REF]. Likewise, the foot clearance is too small in elderly. This could be reflected by the COP variation underneath the foot. Certainly, patients with idiopathic Parkinson Disease (PD) have gait disturbance marked by postural instability, slow walking in addition to shuffling and a difficulty in initiating steps [START_REF] Hausdorff | Gait Variability and Basal Ganglia Disorders: Stride-to-S tride Variations of Gait Cycle Timing in Parkinson's Disease and Huntington's Disease[END_REF]. Such disturbance could lead subject to lose stability and fall. Consequently, Gait variability in addition to other factors associated with aging is correlated to risk of falling in elderly [START_REF] Kang | Separating the effects of age and walking speed on gait variability[END_REF]. Injuries in elderly, due to falling have turned out to be very serious with the increase in the life expectancy and aging in population [START_REF] Winter | Human balance and posture control during standing and walking[END_REF].

On the other hand, one of the studies shows that the first two principal component coefficients of GRF can be used to differentiate between normal and patient with lower limb fracture and indicate how the later coefficients moves toward the normal region after the linear separator with a rehabilitation treatment [START_REF] Winiarski | Estimated ground reaction force in normal and pathological gait[END_REF]. A further study proposed a score to quantify the abnormality of gait where two, four and six principle component coefficients (PCCs) were used to obtain the standard distance (D) and using the six have the best accuracy of 96.1%. The study shows that D decreased for that fracture group after rehabilitation (FGA). In addition, fracture group subjects had positive PCCs while control group subjects presented negative values [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF].

An artificial neural network (ANN) has been used successfully used to diagnosis correctly 10 out of 10 PD patients and 9 out of 10 healthy subjects [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]. The average power between 0.5 Hz and 1.5 Hz and between 1.5 and 20 Hz in addition to swing phase , first and second peak magnitude normalized by body weight, time of first peak, and DFA scaling exponent α for the left and right foot are used as features for ANN. The total accuracy is recorded to be 95%. Fourier transform coefficients served as inputs as stated in a review article [START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF] into ANN with one hidden layer and achieved also 95% accuracy in distinguishing pathological gait from normal one. Kohonen maps is also used for clustering locomotion kinetic characteristics in normal and Parkinson's disease based on the following features: Mean Coefficient of Variation, Mean Sum of Variation, Mean Max and Mean Standard deviation of the VGRF. A sensitivity and specificity of 94.44% and 88.23% respectively are being recorded [START_REF] Dubey | Gait Based Vertical Ground Reaction Force Analysis for Parkinson's Disease Diagnosis Using Self Organizing Map[END_REF]. On another study, applying Principal component analysis to Spatial-Temporal Image of Plantar pressure that includes both temporal and spatial information among the change of plantar pressure during heel to toe motion, yields a classification of accuracy of 91.73% by applying support vector machine using the weights on each principal components [START_REF] Hs | Classification of Parkinson gait and normal gait using Spatial-Temporal Image of Plantar pressure[END_REF].

Falls risk assessment, prediction, and detection

Fall by definition is "an event whereby an individual comes to rest on the ground or another lower level with or without the loss of consciousness" [START_REF] Kenny | Falls Prevention in the Home: Challenges for New Technologies[END_REF]. A kind of fall is proceeded by missteps which is defined near falls but if no sufficient recovery mechanisms are activated, a fall will result due to loss of balance [START_REF] Iluz | Automated detection of missteps during community ambulation in patients with Parkinson's disease: a new approach for quantifying fall risk in the community setting[END_REF]. Note that the mentioned is one type that reveal an etiology of fall. Most falls occur during whole-body movement like walking. It can be analyzed from two perspectives: kinematics to know the motion and position of different joints and/or kinetics by studying the force that cause the motion. Therefore, dynamic stability and its control mechanism during walking are crucial to understand falling. It is known that greater variability indicates greater instability. That's why there is a need for accurate gait analysis that provide with specific risk factors for falls that improve diagnosis and better understand risk of falling [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF]. Occasionally, Psychophysical, Biomechanical, Tribology, and Epidemiology of falls in the Elderly are not introduced in complete details. For occurrence, dementia-related gait changes could be used to diagnosis the risk of falling in dementia and pre-dementia stage [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF]. Subjects with Alzheimer's disease tend to walk in a slower speed and therefore support time increase and decrease in stride length [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF]. Furthermore, elderly tend to move slower but this will not ensure the risk of fall because younger people could also move slowly. Though, elderly usually exhibit significantly faster horizontal heel contact velocity but shorter step length and slower transitional acceleration of the whole body center-of-mass (COM) than younger. This affect initiation of slip-induced falls [START_REF] Lockhart | Effects of age-related gait changes on the biomechanics of slips and falls[END_REF]. That is why when heel contact occur, the heel sliding velocity should decrease to a certain level. The major cause of falling among elderly is reported when trying to avoid an obstacle [START_REF] Casebolt | biomechanical comparison of elderly gait during elevation changes[END_REF]. The faster a step is executed during perturbations increases the chance of preventing a fall from occurring and this clinically viewed from the parameter "foot contact time" among the step execution parameters (Initiation Phase, Preparation Phase, Swing phase, Foot off time, Foot contact time ) extracted from GRF [START_REF] Melzer | Reliability of voluntary step execution behavior under single and dual task conditions[END_REF]. Study findings show an increase in mediolateral sway in narrow base stance in older faller individuals. Also, static two-point discrimination (TPD) seems to be weakened in elderly fallers.

This could be used as an indicator of falling risk [START_REF] Benjuya | Postural stability in the elderly: a comparison between fallers and non-fallers[END_REF]. For aged individuals who fell more than once during 12 month exhibited linear association between double support phase besides to step length variability and increased risk of multiple falls [START_REF] Taylor | Gait impairment and falls in cognitively impaired older adults: an explanatory model of sensorimotor and neuropsychological mediators[END_REF][START_REF] Callisaya | Gait, gait variability and the risk of multiple incident falls in older people: a populationbased study[END_REF]. Multiple falls can be predicted from gait dysfunction in cognitive impaired older adults and is mediated largely by sensorimotor function and to a lesser extent by neurophysiological function [START_REF] Taylor | Gait impairment and falls in cognitively impaired older adults: an explanatory model of sensorimotor and neuropsychological mediators[END_REF]. One study demonstrates the deficit of co-existing sensory like poor vision and hearing form a key to increase risk of falling [START_REF] Kulmala | Poor vision accompanied with other sensory impairments as a predictor of falls in older women[END_REF]. In another study, Lyapunov exponents directly quantify how the neuromuscular system responds to local perturbations and this should have a study to investigate if it has a relationship with a risk of fall [START_REF] Khajah | Parameter identification for vertical ground reaction forces on feet while running[END_REF]. In the other side, developing a model for detection of balance impairment and estimation of the falls risk in the elderly using Support Vector Machines (SVM) based on wavelet multiscale analysis of minimum foot clearance (MFC) as a gait variable [START_REF] Khandokerl | A Wavelet-Based Approach for Screening Falls Risk in the Elderly using Support Vector Machines[END_REF]. Again, the postural perturbations combined with a cognitive task shows that older influenced more than young during quiet standing [START_REF] Challis | postural stability in the young and elderly as a consequence of perturbations[END_REF]. Therefore regaining postural stability is highly perturbed by a secondary task during obstacle clearance which increase the risk of falling because of the inability to recover from slips and trips during gait. This can be explained by the inability to effectively allocate attention to balance under multi-task conditions with poor executive function mainly in elderly [START_REF] Melzer | Reliability of voluntary step execution behavior under single and dual task conditions[END_REF][START_REF] Siu | secondary task effect on gait stability during obstacle clearance in older adults[END_REF]. For illustration, when aged participants asked to count aloud backward from 50 associated with walking , this task was strongly linked with falls and this characterize a new way to predict falls among elderly [START_REF] Beauchet | Faster counting while walking' as a predictor of falls in older adults[END_REF]. A measurement of standing balance termed "Functional Reach (FR) test" can predict falls in elderly people [START_REF] Takahashi | vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females[END_REF]. Furthermore, Berg Balance Test (BBS) and Timed Get Up and Go (TUG) can be used to assess balance and gait function, however they don't indicate any significant statistical difference between elderly fallers and non-fallers. In contrary, adding cognitive load to the Voluntary can identify elderly individual at risk of falls [START_REF] Melzer | Application of the voluntary step execution test to identify elderly fallers[END_REF]. In order to discriminate fallers from non-fallers, fractal scaling index of gait is useful [START_REF] Hausdorff | Gait variability: methods, modeling and meaning[END_REF].

Given that there is still no worldwide consensus on the definition of falling, some research documented falling to be approximately one in three people over the age 65 [START_REF] Kenny | Falls Prevention in the Home: Challenges for New Technologies[END_REF]. Elderly are the most rapidly increasing proportion of the society [START_REF] Challis | postural stability in the young and elderly as a consequence of perturbations[END_REF]. Reported falls in older adults shows 40-60% of falls lead to injuries and this cost social and economic apprehensions [START_REF] Kenny | Falls Prevention in the Home: Challenges for New Technologies[END_REF]. For instance, it can cause considerable mortality, morbidity, reducing functioning and home nursing [START_REF] Rubenstein | Falls and Their Prevention in Elderly People: What Does the Evidence Show?[END_REF]. That's why a fall with its psychological impact can increase the self-restrictions of activities and therefore a decrease in quality of life [START_REF] Melzer | Application of the voluntary step execution test to identify elderly fallers[END_REF]. Table 1  One person in three over the age of 65 will fall on average once a year, and from the age of 80 this ratio rises to one in two. [START_REF] Jérôme | French National Health at Home center[END_REF] -Every year in France, nearly 400,000 seniors are an accidental fall.

-Nearly 12,000 people die.

-The number of fractures of the femoral neck in France each year is estimated to be 50,000 [START_REF] Figaro | The falls in the elderly are common and cause serious complications[END_REF].

 70% of all fatal falls occur at home [START_REF] Jérôme | French National Health at Home center[END_REF]. -More than £4.6 million a day in UK [START_REF] Jane | Falls among elderly 'cost NHS &pound;4.6m a day[END_REF] 1



.8 Research Objective

As mentioned previously, human gait is considered complicated dynamical system and their analyses based on observable data contaminated by noise. Therefore, improper methods can lead to wrong outcomes. Fourier transform can be effectively applied to stationary signals and make little sense when applied to non-stationary [START_REF] Junsheng | Research on the Intrinsic mode function (IMF) criterion in EMD method[END_REF]. Even wavelet has been applied widely to non-stationary signals, it is still has its limitations like the limited length of wavelet base function and therefor energy leakage, adjustable window, outcome with a fixed scale and others [START_REF] Junsheng | Research on the Intrinsic mode function (IMF) criterion in EMD method[END_REF]. It is become more essential to use or to develop methods that can extract essential components. In fact, previous studies put the data under certain limitations for example by some filtering which usually force the gait data to be stable and linear. However, this is not the case. Most of the experimental data certainly gait data should be criticized to be non-stationary and nonlinear. This will avoid us from handling the data in artificial way by going into linear analysis of these nonlinear and nonstationary signals. Merely, methods of non-stationary can be employed to emphasize the real changes in the gait time series data signals.

CHAPTER 2 METHODOLOGY & TECHNIQUES

This chapter will introduce the main techniques being used to come up with the analysis throughout this work. This chapter starts with the database description being used. Then some data transformation techniques are introduced as a try to get more deep understanding of gait signals.

Finally, some definitions are introduced as a basis for the upcoming chapters. 

Gait Data Description

Data Transformation Techniques

Signal is a physical quantity that we can measure such as gait VGRF. However, the latter is a composition of non-stationary signals that require a deep understanding of their instantaneous amplitude, phase and frequency. From this, one can model its stationary and non-stationary part and approximate the noise. In addition, one can practice such features for inter-subject classification of the VGRF signals such as between normal and pathological gait. Moreover, one could also concentrate in intra-subject classification like between usual gait and gait associated with cognitive tasks for the same subject.

Fourier Transform

A periodic signal has a property of

) 2 ( ) ( T t X t X  
where T is the period of the signal and  2 exist as indication of repetition of trigonometric functions. Even "t" her stands for time, it can also be generalized to cover spatial repetition. Fourier stated that such repetitive complex functions could be decomposed into an infinite series made up of cosine and sine terms then by equation (2.1) we can examine the frequency domain analysis [START_REF] Iatsenko | Linear and synchrosqueezed time-frequency representations revisited. Part I: Overview, standards of use, related issues and algorithms[END_REF].
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𝜀 𝑡 is the residual and K stands for the K th harmonic of the fundamental frequency (1/N) and N is the number of observations. Then coefficients ak and bk can computed up to k=N/2 as in equation (2.2):
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And M is maximum lag given by 0.25N. This a good indication that degree of dependence and other computations are highly dependent on the sample size.

Then the amount of variance per interval of frequency is given by spectral density in equation (2.3):
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However it is better to have the power spectrum, a smoother diagram given by equation
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And m is mean function of process X(t).

Lag window (λj) can be estimated using Tukey window as indicated in equation (2.5):
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Certainly, this is not the only decomposition. Fourier transforms has its own limitations and her we can summarize some of them:

-Cannot not provide simultaneous time and frequency localization.

-The power spectrum derived from Fourier, there is a duplication of frequency coefficients.

Thus only N/2 points are unique. This is called the Nyquist sampling theorem -Not very useful for analyzing time-variant, non-stationary signals.

-Not appropriate for representing discontinuities or sharp corners (i.e., requires a large number of Fourier components to represent discontinuities).

-An artificial effect is created by the finite sampling time T in which the value of the frequency coefficients "leaks" into adjacent coefficient positions. This means you get a reduced value of the wanted coefficient and contamination of adjacent coefficients.

-A sample time must be picked to ensure that all the frequencies in time signal resolved in the resulting bandwidth of the frequency coefficients. This is difficult certainly when the signal is not well understood beforehand. That is why filtering is done before Fourier transform to remove unwanted frequencies otherwise signal aliasing or unwanted higher frequencies fold back into spectrum in unwanted places.

Time-Frequency Transforms

Fourier transform (FT) is used to examine the frequency content of the signal while short time Fourier transform (STFT), wavelet transform, Hilbert transform and many others provide the time-frequency representation of the signal [START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF]. Depending on the type of analysis and assumptions made, a transform is used. Table 2.1 shows a comparison between some different techniques used in processing VGRF signals. 

2.2.2.a Short Time Fourier Transform (STFT)

The STFT or Gabor transform, ) , ( t w s G is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. It is done by segmenting the signal into narrow time intervals (i.e., narrow enough to be considered stationary) and take the FT of each segment. Then each FT provides the spectral information of a separate time-slice of the signal and thus it provides simultaneous time and frequency information.

It is defined as in equation (2.6) of signal s (t) [START_REF] Iatsenko | Linear and synchrosqueezed time-frequency representations revisited. Part I: Overview, standards of use, related issues and algorithms[END_REF]:

    du u iw e t u g u s t w s G h ) ( ) ( ) , ( (2.6) 
where s (t) is the signal of interest, g (u) is the windowed function (e.g. a rectangular window) of size L, "t" stands for time and "wh" is the digital harmonic frequency in radian defined by equation (2.7), and N is the total number of harmonics. Frequency and respectively [START_REF] Iatsenko | Linear and synchrosqueezed time-frequency representations revisited. Part I: Overview, standards of use, related issues and algorithms[END_REF].
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In this thesis the Gaussian window is being a topic of interest given by equation (2.8) since the signal shape is Gaussian. 0 f is the resolution frequency that specifies the spread of Gaussian window in both time and frequency:
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Since the Window should be narrow enough to ensure that the portion of the signal falling within the window is stationary, this do not offer good localization in the frequency domain. That is why wavelets in which a use of multiple window sizes compromises a good solution.

2.2.2.b Wavelet Transform (WT)

WT offers effective time-frequency representation of signals. It is based on a short duration wavelet of a specific center frequency. It is defined by
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"a" is the scale and ) ( * u  is the chosen wavelet function and is given in equation (2.10) as lognormal analogous to Gaussian in STFT [START_REF] Iatsenko | Linear and synchrosqueezed time-frequency representations revisited. Part I: Overview, standards of use, related issues and algorithms[END_REF]:
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The * is the complex conjugate symbol. It is crucial to mention that time and frequency resolutions are must be paid attention in short time Fourier transform (STFT) and wavelet transform (WT). In addition, when comparing signals of the same type but from different groups like normal and pathological gait signals, those techniques hardly provide an insight to the main difference. Synchrosqueezing is raised up as a better resolution in both domains and will be explained later in this chapter.

2.2.2.c Hilbert-Haung Transformation

Hilbert-Haung transformation is an empirical algorithm that is convenient on nonstationary and nonlinear time series data. It is a combination of both Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HAS):

1) Empirical Mode Decomposition (EMD)

A self-adaptive method applied for non-stationary and nonlinear signal-processing, EMD is proposed by Haung et al [START_REF] Junsheng | Research on the Intrinsic mode function (IMF) criterion in EMD method[END_REF]. Empirical unlike other transforms which relies on theory, EMD derived from observation or experiment in time domain. Mode stands for a particular form or variety. Decomposition because it generates a set of finite time series basic parts called Intrinsic Mode Functions (IMF) resulted from the separation of the original signal. Those IMFs include different frequency bands, with different frequency component, ranging from high to low. It's intrinsic because they naturally derived from the raw signal itself based upon the local time scale of the signal. That's why EMD is adaptive. The technique can be summarized as follows [START_REF] Stearns | Digital Signal Processing with Examples in MATLAB®, Second Edition[END_REF]:

-Identify all local extreme (maxima and minima) then interpolate between minima (maxima) ending up with upper and lower envelops curve [Xmin(t), Xmax(t)] that encompasses the whole data set.

-Subtract the mean of the two envelops from the raw signal to obtain new function:
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(2.9) -Use the above sifting techniques frequently to minimize the mean to approach zero. The stopping criterion is given by:
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T is the whole time period

(2.10)

-The number of extrema and zero crossing are equal or differ at most by one.

-The original signal X(t) can be reconstructed using the following equation
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This results on a set of IMFs with a certain frequency range and the last IMF is the residue Rn(t). The IMFs are arranged from higher frequency components into lower one. The residue represents the trend (i.e. the time-varying mean) of the raw signal and which characterized by being monotonic or having one extreme i.e. not having periodic behavior.

The method can be summarized by the following flow chart as shown in Fig. 2.3: The Hilbert Transform y(t) of the raw signal x(t) is given by:
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Where PV is the Cauchy principle value.

The analytic signal associated to x(t) which forms the complex trace is given by:
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(2.13) "i" stands for a rotation of the complex number counterclockwise (CCW) by 90 °.

The amplitude:

a(t) = √x 2 (t) + y 2 (t) (2.14)
𝑒 -𝑖𝜃(𝑡) is the complex number or the tip of phasor then the phase (radians/sec) can be derived as shown in equation (2.15):

𝜃(𝑡) = 𝑡𝑎𝑛 -1 ( 𝑦(𝑡) 𝑥(𝑡) ) = 2𝜋𝑓 0 𝑡 (2.15) 
Where 𝑓 0 corresponds to cycles/sec or Hertz. Take 𝑓 0 =3Hz, then the point will rotate 3 times per second counterclockwise around the circle in the complex plane.

Therefore 𝑍(𝑓) in frequency domain is single sided Fourier transform and therefore:

𝑍(𝑓) = 0 𝑓𝑜𝑟 𝑓 < 0 (2.16)
𝑍(𝑓) = 𝑍(0) 𝑓𝑜𝑟 𝑓 = 0 (2.17)

𝑍(𝑓) = 2𝑍(𝑓) 𝑓𝑜𝑟 𝑓 > 0 (2.18)
a(t) is the amplitude and θ(t) is the phase.

The instantaneous angle speed:

𝑤(𝑡) = 𝑑𝜃(𝑡) 𝑑𝑡 (2.19)
The instantaneous frequency (IF):

𝑤(𝑡) = 1 2𝜋 𝑑𝜃(𝑡) 𝑑𝑡 (2.20)
From equation (2.20), the local derivative of the phase defines the frequency resolution.

IF is defined as the rate of change of the phase angle at time t of the analytic version of the signal with no need for long wave to characterize it.

It is worthy then to plot time-frequency graph where 𝑎(𝑡) and 𝑤(𝑡) are time-dependent.

Then the original signal can be expressed in terms of a Fourier-like expansion as a function of instantaneous amplitude and frequency

𝑥(𝑡) = 𝑟𝑒𝑎𝑙 ∑ 𝑎 𝑗 (𝑡)𝑒 𝑖 ∫ 𝑤 𝑗 (𝜏)𝑑𝜏 𝑛 𝑗=1
(2.21)

𝑥(𝑡) = 𝑟𝑒𝑎𝑙 ∑ 𝑎 𝑗 𝑒 𝑖𝑤 𝑗 𝑡 𝑛 𝑗=1
(2.22)

The Hilbert spectrum, H(t,w) is thus obtained by the time-frequency representation of the amplitude representing a measure of energy contribution for each frequency and time. That's why Hilbert spectrum is useful for determining the frequencies covered by each IMF preserving the instants in which they occurred.

Formerly the marginal spectrum can be obtained with different point of views:

-Marginal time and this is when integrating the signal 𝐻(𝑡, 𝑤) with respect to frequency to obtain distribution in time domain i.e. marginal time

ℎ(𝑡) = ∫ 𝐻(𝑡, 𝑤)𝑑𝑤 𝑁 0 (2.23) 
-Marginal frequency when integrating with respect to time to obtain frequency distribution and this is given by:

ℎ(𝑤) = ∫ 𝐻(𝑤, 𝑡) 𝑁 0 𝑑𝑡 (2.24)
Where N is the total data length. This is useful in providing measure of the total amplitude/energy contribution from each frequency.

Synchrosqueezing of Time-Frequency Transform

As we mentioned, STFT and the WT form the fundamental approaches to simultaneously decompose a signal into time and frequency components. "synchrosqueezing transform" (SST) is an extension of the wavelet transform incorporating elements of EMD , however it has a theoretical foundation, and frequency reallocation techniques by combining all time-frequency (TF) coefficients corresponding to same instantaneous frequencies into one SST coefficient. SST is also an adaptive and invertible transform that improves the readability of a wavelet-based timefrequency map using frequency reassignment by condensing the spectrum along the frequency axis [START_REF] Herrera | Applications of the synchrosqueezing transform in seismic time-frequency analysis[END_REF]. 
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Then it would be simple to show that the signal can be reconstructed by equation ( 
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To sum up, synchrosqueezing improves the "readability" of the TFR, providing a more visually appealing picture.

Modelling

Modelling of signals is used to represent the given signal with some model parameters. The objective of modelling can be used for signal compression, prediction of behavior of a time series from past values alone, reconstruction and understanding of the physical system. There are different model classes. We will consider her the Autoregressive moving average model (ARMA) in brief for it importance. The General equations are summarized as follows for autoregressive (AR) and moving average (MA) separately [START_REF] Nau | [END_REF].

A) AR(p):

t p t p t t t e x x x x            ... 2 2 1 1
The autoregressive model states that there is a linear dependence of the output variable on its own previous values and on a stochastic term. The model is in the form of a stochastic difference equation. B) MA(q):
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Moving-average (MA) model of order "q" is another time series analysis method. q   .... C) ARMA(p,q):
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Autoregressive-moving-average (ARMA) models is a combination of the previous two models. From equations above, the model main concern is the persistence, or autocorrelation, in a time series.

underlying populations (i.e. normal or not normal) and it is non parametric. This means that the AUC is a useful parameter regardless of the distribution of the underlying populations. It also means that AUC can be used even when a test result does not give an accurate numberas long as one can rank the results and construct the curve.

Classification Techniques

In order to map every new observation into it is own category a classifier is needed. The objective is to introduce a learning algorithm having the ability to classify two different groups based on certain chosen features. Therefore, the algorithm has the ability to draw certain decision boundary between both groups. This will give the capacity to predict new introduced subjects to which group they fall by observing on which side of the decision boundary they drop.

Various classifiers serve this goal such as logistic regression, Decision Tree, Naive Bayesian, boosting, Artificial Neural Network, K Nearest Neighbors, Support Vector Machine. A good classification system should have the following characteristics:

 Use all information available.

 Make few classification errors.

 Minimize the negative consequences of making classification errors.

logistic regression Classification

For instance logistic regression Classification is based on the choice of hypothesis function which is chosen to be nonlinear function [START_REF] Ng | Machine Learning[END_REF]. If θ is the weight then it is given by equation:
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g is the sigmoid function and fitted as a threshold function:
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The cost least mean square function in logistic regression to make h(x) close to y is given by:
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is the i-th training example and m is the number of training examples. In order to optimize the cost function J (θ) with parameters θ, Newton's method serves the ability to minimize this function. The update rule for Newton's method is emphasized by equation (2.30):
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The gradient and Hessian (H) matrix are given by:
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The decision boundary is defined as the line:
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And this corresponds to
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Principle component analysis (PCA)

PCA Discriminant analysis (DA) is based on Bayes' Rule and likelihood that yields a posterior probability as in equation (2.36) [START_REF] Ng | Machine Learning[END_REF]:
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z is the squared Mahalanobis distance from the data vector x to the kth group mean. pi = P(ci), the probability of a subject to be in group ci . i={Normal, Parkinson} . f (x | πi ) is the conditional probability density function. Then classifying an observed subject's gait to whether a subject have a balanced or unbalanced gait, given the hypothesize is true, by which pi f (x | ci ) is highest.

If the covariance matrix determinants are equal then the decision boundary is a line: 
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Then the decision boundary fall when the ratio
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is equal one. If the ratio is greater than one then the subject drops into the first class; otherwise the subject's gait fall under the second class.

Comparing DA with PCA yields that DA has X and Y variables, whereas in PCA there is only one set of variables. In addition, DA has predetermined groups. However, both use the concept of creating new variables that are linear combinations of the original ones.

k-Nearest Neighbors Algorithm (K-NN)

K-NN is a non-parametric method used for classification and regression. The input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression [START_REF] Ng | Machine Learning[END_REF].

K-NN classification divides data into a test set and a training set. For each row of the test set, the K nearest (in Euclidean distance) training set objects are found, and the classification is determined by majority vote with ties broken at random. If there are ties for the K th nearest vector, all candidates are included in the vote. In order to measure the distance Euclidean:
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(2.40) Fig. 2.6 shows a flowchart that summarizes the algorithm of K-nearest neighbors. 
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-A signal is said to be stationary (time-invariant spectra) if the local statistics do not change with time over the entire duration of the signal. That is why the probability density function does not depend on the definition of the time origin. Thus, a periodic signal is a stationary signal, but a transient signal that occurs locally in a long time domain is not stationary and therefore is said to be time-varying spectra. As to bond our definition, throughout this wok, we will limit the definition of stationarity to the change in the frequency content of the signal over time. If a DC-frequency is obtained then the signal is said to be stationary. 

ANALYSIS & CLASSIFICATION OF VGRF SIGNALS

In this chapter, the analysis and manipulations of the GRF data will be carried out to give an insight about the VGRF signals themselves. This would help in extracting significant features and specific information that help in predicting or even preventing falls in elderly. First we have proved the best sensors among other sensors that best can be used for classification purposes. We have also treated the total VGRF signals issued from the array of sensors as various studies in the literature commit to use it.

Pressure distribution underneath the foot has been a topic of interest for assessing falls in elderly and certain pathology like Parkinson's disease. In this chapter, we performed spatial and time signal analysis over VGRF signals. This was done to classify gaits between balanced and unbalanced. The synchronization of consecutive gait steps in elderly subjects in both normal and Parkinson was analyzed. This helped us in building a classifier that work well in the classification of both groups.

Filtering

While standing at rest, the VGRF is the only one existing .However at the time of heelstrike that separates the swing phase from the stance phase in addition to the toe-off, the vertical force is no longer vertical, it tilts over to produce shear force. When the foot hits the ground as termed heel strike, the VGRF associated with tangential forces slanted from GRF vector component parallel to the ground acting backwards. It is formed by an exchanging of frictional forces with ground that leads to a brake impulse and therefore the body slow down. This prevent foot sliding forward along the ground. Fig. 3.1 shows the horizontal component affecting the vertical ground reaction force contaminated by noise. However, the dynamic characteristics of gait reaction forces are usually exploited by filtering as shown in Fig. 3.2. Filtering at 25 Hz is useful for certain data while it is not applicable for another subjects as in Fig. 3.2. Given that the foot will act also as a shock absorber as to disperse the force of the body during landing. The GRF vector is illustrated by a black arrow on Fig. 3.1 during contact, midstance and propulsive phase. Likewise, during toe-off there will be an appearance of propulsive impulse to stimulate motion due to tilting of the force over forwards. This helps accelerating the body. Knowing that concavity upward horizontal and normal forces indicate brake impulse which is followed by deceleration motion while concavity downward signifies propulsive impulse followed by acceleration motion. This specify an important coefficient to consider which named static friction. Static friction is defined as the ratio of the magnitude of the horizontal frictional force to the normal force. This coefficient could yield when slippage could occurs. Knowing that, part of this noise reflect the speed horizontal speed of the foot during the touchdown of the heel with the ground. Where, µ is the dimensionless coefficient of friction. It can be defined from equation (3.3) as the ratio of the force of friction between foot and ground and the pressing normal force.

To sum up, and by newton's law the force is given by: F=ma where "m" is the mass of the parts contributed to this force, and "a" is the acceleration. Since a frictional backward force exist, this suggest definitely the existence of backward acceleration as a braking action on the body, slowing it down. From Fig. 3.4, at instant just prior to the collision of the heel with ground i.e. as it start to touches the ground the normal force is in negative due to the fact that a forward directed force termed as "claw back" due to initial parameters [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF] and in addition the skeletal system act as a shock absorber. At those moments slippage is occurring and shown by the small red peak and this indicate the existence of force with direction of motion. However, this pronation activate information record by the lower central nervous system through sensory neurons that registered in central nervous system which in turns activate the muscles contraction to prevent the forefoot from slapping down and therefore generate forces and moments at synovial joints to invoke the movement regulated by rigid links. Fig. 3.4 can be used for illustration. The last exert ground reaction force which followed by a decreasing in magnitude of the horizontal component as shown in Fig. 3.3 to serve a friction in the opposite direction of motion preventing the subject from slipping and therefore falling. As a result, at the period of absorption shown in Fig. 3.4 indicates that the horizontal and frictional force are equal in magnitude but in opposite directions where still there is no movement. This can be verified by newton's third law that states that for every action i.e.

force there is an equal and opposite reaction i.e. counter force.

As a summary, in this thesis instead of using a fixed filtering bandwidth of frequencies over all gait VGRF signals (x[n]), we have developed an adaptive filter using the EMD technique as shown in Fig. 3.5.

Figure 3.5: Adaptive filter

Then we choose to remove certain intrinsic mode functions (example is shown in Table 3.1) according to their weighted energy and preferred number of intrinsic mode function. As a result, it is better to filter the signal at a mean frequency of 29.09 Hz instead of filtering it by 25 Hz second order Butterworth filter and losing crucial part of the signal. This filtering could be at 28 Hz on another gait if it represents the mean frequency of the highest oscillations. This is because we have assumed in this case that noise exist in the IMF1. Fig. 3.5 therefore indicates that EMD is applied to the signal then a choice of the number of intrinsic mode functions that must be removed from signal must be made. This would remove same number of oscillations between different gait subjects but not necessary the same frequency content.

The foot-ground contact part of the VGRF time series signal are then extracted forming steps. Some steps are being eliminated when their statistical properties form outlier in the vast of other segmented step signal, mainly this is done by computing the mean and standard deviation.

For instance the black segment of VGRF shown in Fig. 3.7 forms an outlier. Those are so called turning points. 

Synchrosqueezing Characterize Non-Stationary Signals

Synchrosqueezing of time-frequency representation is being used to spot its power in nonstationary signal analysis and classification. It is has been used to when signal components are not well separated in STFT, WT and empirical mode decomposition (EMD). It also gives a more readability of the frequency spectrum. In order to have more concentrated time -frequency representation, the algorithm of synchrosqueezing of STFT or WT will be convenient to be used by joining all coefficients having same instantaneous frequency into one coefficient [START_REF] Basdogan | Nonlinear Dynamics of Human Locomotion: From the Perspective of Dynamical Systems Theory[END_REF]. Keeping in mind it is nonlinear transformation of time-frequency (TF) method. It is an alternative to empirical mode decomposition (EMD) that fits the analysis of a time-varying spectrum. From the modulus of TF representation, one can evaluate the instantaneous frequency. This technique helped in developing an accurate detection of outliers within such time series signal like when subjects encounter turning points during walking. This is needed also to track the instantaneous frequency with respect to time to have better understanding of the signal [START_REF] Borget | ON OPTIMAL FILTERING FOR INVERSE DYNAMICS ANALYSIS[END_REF].

In order to show the power of synchrosqueezing on analyzing non-stationary signal, we will consider the signal generated using equation (3.4):
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The spectral is fixed with respect to time within those two intervals. However this is not true when considering the whole interval T t   0 . In this later whole interval, the signal is made up of stationary component (
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Time-frequency representation is powerful for non-stationary analysis [START_REF] Borget | ON OPTIMAL FILTERING FOR INVERSE DYNAMICS ANALYSIS[END_REF], however, they don't infer enough knowledge for the correct analysis when the non-stationary signal is made up of multiple closed frequencies. For illustration and simplicity, assume the amplitudes are
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0 3 2 1      
. The angular frequencies are given as  

) (t nst VGRF st VGRF VGRF     (3.8)
This suggests the power of synchrosqueezing in non-stationary signal analysis and would be helpful in separating the active and impact peaks in VGRF, differentiate the effect of heelstrike, mid-stance and propulsion on gait and many others as mentioned by figuring out the outliers in the signal 

Turning Points Filtering

The divergence of instantaneous frequency marked as turning points when subject reaches the end of the walking line and then the subject is asked to turn come back. Those must be treated separately for comparison between normal and Parkinson. They are outliers in a typical study.

Knowing that turning while walking is highly associated to falls in elderly [START_REF] Kang | Separating the effects of age and walking speed on gait variability[END_REF]. were asked to walk at their own pace for two minutes. Those ellipses are obtained when the subject reaches an end point and then asked / required to turn around. Such turning points as shown in the figure will alter the frequency content of the signals and therefore the analysis. The frequency at those instants scatters from 0.6 to 0.9 Hz. That's why it is become important to reconstruct those part. Otherwise, different segments of the signal must be treated separately.

The divergence in the frequency content from its rigid form introduces instantaneous change in frequency content. In order to relate this phenomena to the real experiment, those are obtained at turning points in the experiment as the subjects are asked to move without any secondary task in a well-lit 25-m long corridor. Such change suggest either to consider those events as outliers or they should be investigated separately in cases of classification between normal and pathological gait. 

Effect of Dual Task on Gait : Instances where Normalization Fails

Dual task induced a significant increase sway parameters variability in both control and Parkinson subjects [START_REF] Winter | Human balance and posture control during standing and walking[END_REF]. In this part, two sets of measurements for VGRF derived from six elderly normal control subjects and six elderly patients with Parkinson are used due to database limitations. Participants then walked and performed a second task: serial 7 subtractions. The effect of dual task gait training is pointed out by comparing gait properties before and after training. It improves balance and gait abilities of chronic stroke patients [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]. Furthermore, another study shows the rhythmic walk is not affected by cognitive tasks in healthy subjects and have an 72 influence on pathological gaits [START_REF] Powell | Effects of Vertical Loading on Arch Characteristics and Intersegmental Foot Motions[END_REF]. In addition, during specific dual task the gait speed decreased (p <.001) and swing time variability increased (p <.001) [START_REF] Kluitenberg | Comparison of vertical ground reaction forces during overground and treadmill running. A validation study[END_REF].

To sum up, a bunch of literature directly pointed out some features that would be affected as a result of adding cognitive task during walking. However, a need for deep analysis of main properties (like instantaneous frequency) of gait changes while performing a dual task as this part will focus on. In addition, VGRF consist of close frequency components contaminated by noise.

Such signals are time varying frequency and amplitude. However, major stationary component is dominating the VGRF signals that masks the detection of such non-stationary components that would give the most relevant difference between two signals. That is why filtering and normalization must be given specific attention. While we perform gait pathological assessment, it is hard to normalize signals from cognitive tasks or even when it comes to physiological or other situations. Therefore, significant content of the signal will be altered. That is why the adaptive filtering model best fit in such cases. Keeping in mind it is always to go over the frequency content of the signal. In addition, normalizing VGRF from parameters like cognitive tasks for comparison purposes among subjects became problematic. In order to overcome this debate, we focused mostly on this thesis on inter subject -VGRF comparison. This is done by comparing VGRF from right and left foot of the same subject in addition to comparing two consecutive steps with each other from the same foot.

Treating the Total VGRF

A new method for analyzing human gait is based on Hilbert Haung Transform ( HHT)

which is doing well in non-stationary and nonlinear analysis. The proposal is based on the Hilbert spectrum of raw signal to show relation between gait pressure and frequency. Results indicate an inversely proportional relationship. Usual human gait analysis like Fourier transform is conducted to get the different spectral components of the signal. However, to detect the occurrence of fall or walking abnormality, a need for a more advanced analysis to take into account the instantaneous and therefore quick lateral changes in the raw gait signal observed over small time windows. Such instantaneous features like frequency, magnitude, and phase are observed from the complex trace / analytic signal given by Hilbert transform. The ground reaction force is observed and the results

shows variation of the first IMF by getting the number of zero crossing and standard deviation as a good indicators to distinguish normal subjects from those who are patients with idiopathic PD. The frequency as shown in Hilbert spectrum is at high and starts to decrease as the foot becomes plantar with ground. From the color bar, the amplitude of frequency starts from minimum and starts gradually increasing as inferred by time interval 1 l . When the foot is in plantar position with ground, the force is at maximum while the frequency is at minimum, however, its magnitude is at maximum suggesting the long time and this can be inferred 2 l . As the force decreases during the toe-off, the frequency starts to increase. As a result the maximum frequencies exist at the heel strike and toe-off during gait. In addition, this suggests that the frequency opposes the change which produces it as a trying to retain the body in balance and therefore of not falling [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF]. Hilbert Spectrum of both normal and

Indications from Hilbert spectrum applied to the raw signal

Parkinson subject indicate difference in frequency pattern distribution [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF] and this is clearly shown at different mean frequencies represented by IMFs

Normal and Parkinson

The Hilbert spectrum of gait signals in This indicates that the frequency of the signal is high at heel-strike and at the toeoff and also suggests that the frequency opposes the change which produces it as a trying to retain the body in balance and not falling. subjects have higher frequency at instants of heel-strike and toe-off than those in the patient. Thus, the information in the first IMFs extracted from ensemble empirical mode decomposition (EEMD) important for analysis.

IMf General property

Plotting the number of zero crossing versus average instantaneous frequency for each IMF including all subjects shows the same linear relationship and is given by equation (3.10) after a linear fitting is done as shown in Fig. 3 Again, the weakness of EMD in our case can be summarized as follows: for the closed envelopes that formed using cubic spline and at a height away from zero, there will be a combination of frequencies rather than a clean IMF signal. This is called mode mixing.

Zero Crossing effect of each IMF on training accuracy

In each step, one of the IMFs features are omitted and then its effect on the training accuracy can be formed. 

Frequency Content Analysis

The aim of this section is to investigate more on the main fundamental frequency content of gait VGRF. In addition, a comparison between normal and Parkinson subjects in terms of their frequency is developed.

System's Frequency Nonlinearity

A linear system in frequency is achieved when the net amplitude frequency (Afreq) of the summed signal (total VGRF) is equal to the sum of the amplitude frequencies produced by each sensor's signal. More clearly this is emphasized in equation (3.9) where "i" is the senor number:
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Figure 3.17: The power of frequency content present in tVGRF and the summed amplitude is different from the summation of frequencies for sensor's VGRF. However, this is not the case on gait VGRF. Fig. 3.17 emphasizes clearly the difference between the frequency content of the total VGRF (tVGRF) and the summation of frequencies of the array of 8 sensor's VGRF. The most fact is that the second peak becomes of lower amplitude compared to the third peak in tVGRF. This suggests the Heterodyne phenomena around ~ 1.63 Hz. In addition, the even harmonics are most likely to be affected.

Frequency content

Up to our knowledge, the marginal level of frequency in the gait VGRF is noted to be less than 20 Hz [START_REF] Dubey | Gait Based Vertical Ground Reaction Force Analysis for Parkinson's Disease Diagnosis Using Self Organizing Map[END_REF]. Consequently, our focus will not exceed the 20 Hz for the reason that STFT confirms no valuable power frequency content revealed for frequency above 15 Hz. Fig. 3.18 displays up to 5Hz for graph clarity in addition that concentrated power frequency content is located at this region.

First, all sensors contain the same frequency content with a relatively small different amplitudes as shown in Fig. 3.19 within the same person, this is found in all subjects and can be explained as a tend to maintain coherence in gait at least during experimenting for small duration. This also quantifies that participants are walking on free obstacle level ground! imperfect separation of both active and impact peaks [START_REF] Alkhatib | Classification of Ground Reaction Forces Based on Non Stationary Analysis[END_REF]. While it is not that such frequencies don't exist in Parkinson subjects as frequency tends to increase (i.e. the more they correspond to the impact peak), but the peaks and the valleys tend to be much more muted. That justifies the damping oscillations of the decomposed impact curve [START_REF] Alkhatib | Classification of Ground Reaction Forces Based on Non Stationary Analysis[END_REF], on other words the result of spectral decomposition of VGRF. The lack of such peaks can be related to the stiffness or rigidity of limbs and consequently the postural instability that most Parkinson subjects will encounter. Nonetheless, Parkinson's restricted step length reduces their walking speed and number of steps per minute [START_REF] Laughton | Ground reaction force variables as predictors of lower extremity shock in forefoot and rearfoot strike patterns[END_REF]. In order to discriminate the low frequencies (that usually forms the identity / main characteristics of the signal) between normal and Parkinson more clearly, the wavelet transform is used to provide higher temporal resolution for high frequencies as shown in Fig. 3.21.

Difference between Normal and Parkinson

As a result, the first peak suggests the active curve and the second is due to impact peak. The latter is at higher amplitude in normal subjects. Table 3.4 shows a coefficient of variation in the second peak of 7.04 % among normal subjects while it is 33.89 % among Parkinson. This totally agrees with the results of [88] that emphasize higher power at higher frequency in normal gait compared to a Parkinson gait. The latter shows smaller peak heights in the VGRF at heel contact and toe-off phases of gait. Such an impact peak becomes harder to be observed at advanced stages of disorder where steps of Parkinson characterized by shuffling steps.

Analysis of Sensor's Array

As the dataset is made up of 8 electrodes underneath each foot, it's hard to visualize and then analyze them in the absence of theoretical background.

Dimensionality reduction is the key. A hypercube is made up of matrices like the one in equation (3.11) at different time lags.

Mc(𝜏) = [ 𝐶[𝐿 1 𝑅 1 ] 𝜏 𝐶[𝐿 1 𝑅 2 ] 𝜏 ⋯ 𝐶[𝐿 1 𝑅 8 ] 𝜏 𝐶[𝐿 2 𝑅 1 ] 𝜏 ⋮ ⋱ ⋮ 𝐶[𝐿 8 𝑅 1 ] 𝜏 ⋯ 𝐶[𝐿 8 𝑅 8 ] 𝜏 ] = (3.11)
-𝐿 𝑖 is i-th left signal and 𝑅 𝑗 is the j-th right foot signal -𝜏 is the time shift or lag between signals ; 0≤ 𝜏 ≤ 𝑁 -1

-"CLR" :the covariance sequence given as the mean-removed cross-correlation sequence

𝐶 𝐿𝑅 (𝜏) = 𝑅 𝐿𝑅 (𝜏) -𝜇 𝐿 𝜇 𝑅 𝐾 𝐿𝑅 (𝜏) = 𝐸{𝐿 𝑡 𝑅 𝑡-𝜏 }
-𝜇 is the mean and E is the expectation and K is cross-correlation and therefore crosscovariance can be computed using (4.3):

𝐶[𝐿 𝑖 𝑅 𝑗 ] 𝜏 = 1 𝑁-1 ∑ 𝐿 𝑖 (𝑡)𝑅 𝑗 (𝑡 -𝜏) -𝐿 𝑖 ̅ 𝑁 𝑡=1 𝑅 𝑗 ̅ (3.12) 0 ≤ 𝜏 ≤ 𝑁 -1 𝑖, 𝑗 ∈ [ 1 8 ]
Each covariance matrix allows us to characterize the direction of the greatest variance in our data. This is so called principal component analysis (PCA) used to reduce the dimensionality of the data by selecting directions along which our data has the largest variance. Finding such eigenvectors have the property of not rotating when multiplied by the covariance matrix. Then eigenvectors (e) having largest eigenvalues (𝝀) corresponds to our principal components that will

give a new dimensions of our data.

𝑀 𝑐 (𝜏). 𝑒 = 𝜆. 𝑒

The eigenvalues are obtained by solving equation (3.14). Fig. 3.22 shows eigenvalues of the 8 principal components for normal subject. The first principal component has variance (eigenvalue) 6.6677. The first three principal components accounts for 84.46 % of the total variance. The first four counts for 94%. This is a good indicator that most of the data structure can be captured in three or four underlying dimensions. The remaining principal components account for a very small proportion of the variability and are probably unimportant.

The same analysis is performed to obtain the eigenvalues for all 16 sensors. Then the maximum eigenvalues is plotted against different time lags as shown in Fig. 3.23. The smooth decrease that forms the trend forms a non-stationarity relation among sensor's data. However, a seasonality that described by the repeated patterns are observed after certain period lags around 60 points (100 Hz sampling frequency). Knowing that when the covariance didn't attain zero value, this specify that the randomness situation no longer available. In consequence, the VGRF signal are a mixture of stationary and non-stationarity sources. They are stationary from macroscopic point of view but microscopically they are non-stationary. The latter is of lower power component as Fig. 3.23 illustrates.

Sensor Selection

However, still many studies consider the sensor location to measure the Ground reaction force either at both toe and heel or usually by analyzing the total force from sensors underneath each foot [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF]. Though, a need to investigate more exploration of choosing the correct position of a sensor or set of sensors in the insole becomes crucial. This is for the reason that some features ROC curve is then used to evaluate each feature for all sensors. This could contribute to other research conducting in the goal of anticipating the risk of falling among people and especially among elderly [START_REF] Bloswick | AN ERGONOMIC ANALYSIS OF THE LADDER CLIMBING ACTIVITY[END_REF].

Features Used

In this part, simple features were extracted after the data being pre-processed. Then their performance was tested. The features used here are used from literature, we found 23 features. In this section the 11 most relevant features were retained. A list of the commonly wide used features are shown below [START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF], [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF], [START_REF] Jeffry | Gait in Parkinson's Disease[END_REF], and [START_REF] Worobets | Normalizing vertical ground reaction force peals to body weight in heel-toe running[END_REF]:

 Mean: Signal averaging  Median: numerical value separating the higher half of a data from the lower half.

 standard deviation: measures the amount of variation or dispersion from the average  range: the difference between the maximum and minimum values  Interquartile range: robust estimate for the spread of the data being equal to the difference between the upper and lower quartiles IQR = Q3 -Q1.

 95% percentiles of the distribution of the signal. A percentile (or a centile) is a measure used in statistics indicating the value below which a given percentage of observations in a group of observations fall.

 Skewness: measure of lack of symmetry  Kurtosis: measure of whether the data are peaked or flat relative to a normal distribution.

 Power of the signal  Mean power frequency  Magnitude of peak frequency

Testing: Features Evaluation by ROC

As too many statistical features could be extracted and evaluated in time domain analysis and frequency domain, in this section one feature is used to demonstrate the evaluation. However this is done for all features among all sensors for the 47 subjects. For instance the skewness is chosen since it has been used widely in various studies related to VGRF [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF] and has demonstrated its capability in distinguishing normal and Parkinson's disease person.

Once again when AUC = 1, this refers to a perfect discrimination and has a ROC curve that passes through the upper left corner i.e. 100% sensitivity and 100% specificity with no overlap in the two distributions. Fig. 3.24 shows a plot of the ROC curve for skewness feature tested over sensor 5 in the right foot among normal and Parkinson. Each point on the ROC curve represents the sensitivity and specificity pair corresponding to a particular decision threshold. The diagonal line dividing the ROC space is also called line of no-discrimination in which a point on this line corresponds to a completely guess. When points are above the diagonal, this indicates a good classification results and on the other side points below this line indicate a poor predictors. Therefore the distance from the random guess line is the best indicator of how much predictive power a method has. Using the above listed data, 0.9 as area under the curve indicates an excellent performance of skewness in discriminating normal from Parkinson using VGRF from sensor 5.

The results of ROC evaluation among all the 47 subjects are shown in Table 3.5 for each sensor. 3.5 indicates that unlike other studies similar to [START_REF] Bazin | Probabilistic combination of static and dynamic gait features for verification[END_REF] that consider total summation of force signals from all sensors as the most important, however, its clearly shown that sensor 5 is the most important sensor (AUC = 0.9) to consider in building acquisition system to acquire data for analyses. Not to add, the average of the strides of the 2 classes corresponding to the 120 seconds of walking is also considered. As a result, each series of strides are represented by their average. Next, 3 features were extracted: the amplitude of the first peak, that is, the peak that corresponds to the heel contact (in case of total force), time to the first peak, stride time. The ROC evaluation also infers a better accuracy for sensor 5 com-pared to other sensors.

Verification

In order to verify results, the features are passed through a chosen classifier, knearest neighbors (KNN) in this case. As mentioned, KNN is not used to test its power in classification, but to test the power of sensor 5 in a given classifier. Ten subjects from each class are chosen as training and the rest are tested by the classifier.

In this study, this is done in two ways. First, select one sensor among all subjects and then choose two features randomly and iterate between them. The feature chosen will have a high score from ROC evaluation and then feed them to KNN-classifier one example is shown in Fig. 

A simple feature of the mid-sensor

The mean and the standard deviation of the segments of each step is computed and then they are plotted versus each other for mid-sensor signals. 

Classification Methodology

Vertical Ground Reaction Forces (VGRF) are reflection of the net forces exerted by human body on ground while walking. In this section, instead of summing VGRFs collected from various sensors underneath the foot as others do, they are treated separately. Therefore, the equivalent force will be on Center of Pressure (COP), i.e. at the centroid of the distributed load.

Starting from arguments that most falls in older adults are a result of variability in gait pattern, this study focuses on kinetic parameters: VGRFs and COP. As mentioned, VGRFs reflect the resultant of forces encountered by external (gravitational) and internal (muscle) forces in addition to the feet-ground interaction forces (spring-damper model). Likewise, focusing on VGRFs decreases the effect of environmental interferences like friction on the wellful gait. The speed and age are also used in this analysis. This analysis constitutes setting up a nonlinear decision boundary between balanced and unbalanced gaits through two related hypothesized lemmas. Then the unbalanced gaits are excluded from the next step of the analysis. These unbalanced gaits are certainly considered abnormal due to their high gait variability measured by their load of distribution and speed times age. The remaining balanced gaits that include both normal and Parkinson subjects are taken into another classifier using a simple correlation feature. In fact, this would be very beneficial during real time implementation that will end up with a portable device. This analysis is helpful in evaluation of a rehabilitation program. It may turn out dropping injuries by enhancing fall prevention on the elderly in particular those affected by Parkinson.

3.7

Observations and methods

Center of pressure path

Center of pressure (COP) is a kinetic parameter that represents VGRF's point of Parkinson subjects yields a mean of 58±15 and 61±15 (mean±std) respectively. Testing the null hypothesis that the pairwise difference between normal subjects and Parkinson subjects has a mean equal to zero shows (h=0, p=0.7). This directs t-test not to reject the null hypothesis with 5% significance level. This is one of the real facts that the difference between the two groups will be masked as a subset of one group share same properties of the other group.

Load Distribution

The above observations in the gait variability within the same group of subjects and their overlapping in their characteristics, guide to have more or less rules in advance to perform any statistical interpretation of signals. This is because external factors could mask the real datum of signal being premeditated. The following two hypothesized lemmas:

Lemma 1: The axis of body balance is highly related to distribution of loads by subjects during switching of the feet. This axis appears clearly when walking in a straight line and passes through center of gravity. This center changes location in case of imbalance due to a certain disease.

Lemma1 outline Lemma2:

Lemma 2: The movement of feet is uniform when walking due to the distribution of loads between the feet. Therefore, imbalance is due to irregular distribution of loads between the feet. In a simpler way, pressure distribution between feet differs when a subject is affected with disease like Parkinson. This is more obvious in diseased subjects where their metabolic system is affected.

Setting up Lemma2 articulate the following hypothesis: In this manner, Parkinson subjects are split to end up with a subset that for sure comprise Parkinson syndrome and the rest are driven into supplemental examination. In fact, reducing the dataset would be very beneficial as all statistical parameter will not be deviated and affected by parameters of subjects that we are guaranteed to partake irregular posture.

Since a classification is required on a first step, it is more than enough to train a classifier that draws a boundary for balanced gaits. It is mainly affected by the bunch of normal gait subjects as we have a conditional hypothesis.

The flowchart of the tracked technique is illustrated in Fig. 3.31. The Euclidean distance to each sensor weighted by its consistent energy is then computed by equation (3.15):
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i  is the load distribution at sensor (i), E is the equivalent averaged energy normalized to other total sensors energy, xi and yi are the coordinates of sensor (i). Then testing variation on i  obtained from right whether it corresponds to variation on left foot or not is implemented by Pearson correlation coefficient (r) as in equation (3.16). Based on reference [START_REF] Kang | Separating the effects of age and walking speed on gait variability[END_REF], Age × Speed forms an important parameter in the corresponding study.
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Speed and age

For case in point, having 18 normal and 18 Parkinson subjects yields a difference in speed [START_REF] Hausdorff | Gait Variability and Basal Ganglia Disorders: Stride-to-S tride Variations of Gait Cycle Timing in Parkinson's Disease and Huntington's Disease[END_REF] as shown in the box plot of Fig. 3.34. The difference between the medians of the normal and Parkinson gait is around 0.33 m/sec.

The medians are different with a confidence of 95% and this is indicated by notches in the box plot as they don't overlap.

Correlation

Some noticeable features are obtained in a previous work [START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF][START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF]. For instance finding the correlation between the VGRF obtained from the sensor located in the inner sole of both right and left foot in addition to the correlation for the sensor just above this sensor (i.e. sensors 5 and 7 as allocated in Fig. 1.1) yields the scatter plot shown in Fig. 3.35. The correlation between right and left foot sensors is computed using the Pearson correlation as in equation (3.17):
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The number of sample is designated by n, r and l represent right and left foot VGRF. Fig. 3.33 designates that VGRF in Parkinson gait has a high correlation and therefore the foot stay in contact with ground until the other foot turn out to be flat with ground. The negative sign is due to a decrease in VGRF (lifting ground to swing phase) in one foot and the increase in the other foot (striking ground to a stance phase). The correlation is relatively lower in normal subjects.

Investigation and results

Thirteen subjects from each normal and Parkinson groups are randomly. That is to say 26 out of 47 subjects are considered for training and the rest are used for testing. As mentioned above, Age × Speed in addition to load distribution between right and left foot could be used as prominent features in first classifier. Such features form a boundary between balanced and unbalanced gaits.

Their scatter plot is exposed in Fig. 3.36. As indicated in Table 3.6, all normal subjects have balanced gait while Parkinson subjects could have balanced or unbalanced gait. The latter could be a result of tactically improving their gait stability certainly during the experiment. In order to be more generous, Parkinson subjects near the boundary and tending to be normal will considered for the second classifier. Therefore 10 out of 29 Parkinson subjects will be considered to have balanced gait. For the moment, a cluster of subjects having common properties and characteristic of walking denoted as balanced gait is formed. It is made up of both normal and Parkinson gaits. Subsequently, the overlapping between normal and Parkinson gaits diminish after the first classifier being used. Now, the load distributions between the two feet are similar.

In this part, the 10 obtained balanced Parkinson gait and 10 randomly chosen normal gait will be taken into consideration. Five from each group will be used as training and the rest for testing. Only the correlation out of many features is being tested to show the power of the previous methodology in simplifying investigation and discrimination of Parkinson and normal subjects.

For simplicity the linear discriminant analysis as presented in equation 8 will be used given that the variance in both group is approximately similar and this is exposed in Fig. 3.39. Fig. 3.39 entitles a true classification of 90% with a 100% accuracy. A more featured result will be obtained in case of nonlinear decision boundary. The overall classification is beyond 95%.

Discussion and future work

The goal of this chapter is to shape preferences for gait analysis captivating into account the parameter that could affect our statistical analysis. In this chapter we highlighted the removing of turning points in the signal by synchrosqueezing. In addition, certain parameters like cognitive tasks could affect the content of gait signals and difficult then to be normalized. That is why we moved from intra-subject into inter-subject comparison to come up with relevant features. We highlighted the importance of the mid sensor in classification. This chapter also focused on the COP path difference in both right and left foot which led us to set a hypothesis that is verified by the load distribution. In order to avoid ourselves from examining certain thresholds, discriminant analysis is used for discrimination and classification. Certain parameters like speed and age are used. The obtained results indicate that there is a great variety between Parkinson gait subjects and the result leads to take only the balanced gaits out of them. Then a new dataset is formed of balanced gaits made up of both normal and Parkinson gait. The overlapping is no longer exist and this is verified by a correlation feature of VGRF, in precise those obtained on the midfoot. This designates that normal subjects don't focus too much on the mid of the foot while switching the foot-ground contact in the course of walking. Nonetheless, this is not obtained for the case of Parkinson gait in which double support is a major feature in their postural stability. This agrees with other research that point out patients tend to decrease their double support as a designate preparation to transfer weight properly while stepping [START_REF] Tramontano | Blindfolded Balance Training in patients with Parkinson Disease: a sensory-motor strategy to improve the gait[END_REF].

The decision tree is then formed as shown in Fig. 3.40:

Using the load distributions figures, they could form a gait signature for each subject which is recorded to be unique to each person. Fig. 3.41 illustrates this point. To increase the resolution of the signature more sensors must be add underneath each foot. This model doesn't cover in one equation both distinctive phases of gait: stance and swing.

In fact, a switch control system is proposed that switches between the two phases of gait that corresponds to the real practiced segment during walking. This chapter focuses on the stance phase.

Analysis and Motivation

VGRF signal is used as part of kinetic analysis as a vertical net summation of all forces during walking observed over time.

Assumption: VGRF denoted Xt is made up of deterministic (future data predicted from past values) denoted Dt and stochastic (future data can be predicted in statistical probabilistic terms) denoted St. This is given in equation (4.1).

Xt = Dt+ St (4.1)

In this part, we will apply modelling techniques on a chosen sensor signal that is located under the heel of the left foot. Then we will generalize the model to all other sensors and try to figure out their relation. Fig. 4.1 shows a sample of this signal: 
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The partial autocorrelation function (PACF) shown in Fig. 4.3 which seeks the correlation between two values in series excluding their linear dependence on other values in the whole series.

It specifies significant values at lag=1 and lag=2 associated with a slow decay in the ACF. This designate an autoregressive process AR (2) of order two.

VGRF Analysis for Normal Subject

The autocorrelation function (ACF) of VGRF for a normal subject gait articulates a slow decay as revealed from Fig. 4.4. This indicates a long memory [START_REF] Alkhatib | Sensor's Ground Reaction Force Behaviour for Both Normal and Parkinson Subjects -a Qualitative Study[END_REF]. In addition, plotting the partial autocorrelation function (PACF) demonstrates the non-stationarity phenomena of the signal. This non-stationarity is of integration order 2 because the PACF value at lag two recorded to be one in absolute value. This proposes the existence of stochastic trend of order 2.

However, this range of dependence is not fixed throughout the different steps of the same signal. It would be interesting to investigate more on its range of variation. Knowing that performing the difference transformation over the original data signals two consecutive times, no longer memory is then will be available as shown in Fig. 4.6. However the non-stationarity of integration of order 1 will be available at the first difference. The power spectrum indicates a periodicity around 0.81 Hz then around 1.66 Hz and so on. This approve results indicated by the correlogram by dividing sampling frequency (100 Hz) by the time lag of the peaks. Therefore a regularity in the heel strike pattern during walking is registered mainly every 1.23 seconds. However, there is a need to test for significance of periodicity.

Modelling Insight into One Stride

In this section, the mid sensor is taken into consideration [START_REF] Niu | Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling[END_REF]. Fig. 4.8 and Fig. 4.9 display an interesting linear relationship between 𝑦 𝑡-1 and 𝑦 𝑡 . Knowing that the degree of linearity decreases as the time lag (𝜏) to the future values increases (𝑦 𝑡+𝜏 ). In addition, the slope of the regressor starts to diverge from one in both increasing and decreasing phases of the foot step, where the slope from the "heel strike" to the moment where the foot becomes flat starts to decrease and the slope for "foot flat to toe off" starts to increase. This leads to elliptical shape in the whole data. Where 0 ≤ 𝑦 𝑡 ≤ 𝑦 𝑚𝑎𝑥 and 𝑦 𝑚𝑎𝑥 is the maximum value that can be reached. It is related to the weight [START_REF] Alkhatib | Classification of Ground Reaction Forces Based on Non Stationary Analysis[END_REF] in addition to the way a person walks (step starts by heel contact, toe contact or shuffling). This can be easily determined from a previous step and forms a parameter to the model.

The slope is shown to be (𝛽 = 1) for both increasing and decreasing phases of the step. However, the intercept 𝛼 can be obtained either from a trained previous step or from the first few values i.e.

local model is obtained as recent observations are used. The error term is important and forms the residual and its model is purely indeterministic as to be handled later. From The above hypothesis doesn't indicate whether one step affect the whole style of walking but definitely get capture some characteristics of the previous step and affect the step gait a head.

The accumulation of errors between two steps that are far away from each other contribute also in gait variability. This means that certain parameters are needed to be adjusted continuously while generating the upcoming signals. To realize this hypothesis in practice, a model will be chosen then the parameters are fit into equation to achieve the minimum error between actual and simulated data. Then, modelling vertical ground reaction force signals based on historical data can reproduce and forecast the gait signals for a short period of time.

The initial guess of parameter values in gait VGRF are taken to be zero and this makes sense in the real gait that every stance phase is followed by a swing phase where there is no contact with the ground and therefore the VGRF measured must be zero. Where 𝑦 ̂𝑖 is the fitted values and 𝑦 ̅ represents the mean. Finding 𝑅 2 for the model in Fig. 4.17 for a normal gait subject yields a value of 0.9143 and this means that the fit explains 91.43% of the total variation in the data about the average. Autoregressive Moving Average (ARMA (5, 5)) linear model is conducted on VGRF [START_REF] Garza-Ulloa | Sensor Validation using Linear Regression for Error Detection between prediction data behavior and acquired data applied on sensing vertical Ground Reaction Forces on Human Gait Analysis[END_REF].

However this technique is fit for stationary time series signals and therefore periodicities are not desirable. It is worthy that VGRF are assumed to be cyclostationary [START_REF] Sabri | Cyclostationary Modeling of Ground Reaction Force Signals[END_REF] and nonstationary as on this chapter. Furthermore, the several combination of orders must be conducted then the best model will be chosen based on verification tests like Maximum likelihood rule. In another research the linear and polynomial regression models are being used and tested by Normalized Root Mean Square Error. However, the linear model didn't capture the peak forces and the polynomial didn't capture the dynamic patterns in force profiles. In order to increase estimation accuracy, the writer suggests to have different fitting methods for better explaining of the unique patterns in force profiles, and thus [START_REF] Lee | CPWR Final Report[END_REF]. Another work on modelling VGRFs signals is introduced by the fourth order polynomial with additional two parameters. However, this technique requires the location of the local maxima in the actual VGRF data [START_REF] Anthony | Biomecahnics of Running and Walking, Issue 43 of Dolciani Mathematical Expositions[END_REF]. Therefore, the model will capture a huge error when both feet are in contact with the ground (i.e. no aerial phase). That is why, building models based on historical data is helpful specifically when it comes also to the type of foot: normal, low, and high-arch foot [START_REF] Fineberg | Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia[END_REF]. Research shows that this would affect the pattern of VGRF [START_REF] Yorozu | Electron spectroscopy studies on magneto-optical media and plastic substrate interface[END_REF] making it difficult to have a common model generalized over different human gaits. This chapter presented representation. Synchrosqueezing helped in spotting Active and Passive peaks in the gait signal.

This would help in signal separation. In addition, as normalization and filtering are handled from statistical point of view, we showed that there could be other non-quantifiable parameters that one should take them into consideration when handling signals from different subjects. As many other parameters, cognitive task are hard to be filtered or normalized. We suggest in such cases to come up with features based on inter-subject analysis. For instance, the variation in the COP and energy distribution difference from one stride into another stride are used as features.

The total VGRF from array of sensors is widely used in literature. In our work we proved that the first four principal components, derived from PCA applied into the array of signals derived from different locations underneath both feet, counts for 94% of the total variance in VGRF signals. This is a good indicator that most of the data structure can be captured in three or four underlying dimensions. However, more attention to which sensor is chosen must be made to enhance analysis. This is especially recommended when building an acquisition system. This study shows the sensor located at the inner arch of the insole of the foot (i.e. at the mid foot) near the axis of the center of body holds the most pertinent information for classification. This could help more in using such sensor location to model walking with a 3D-link dynamics as one foot is in contact with ground while the other is in swing phase. This mid-sensor helped us with simple statics (mean and standard deviation) to prove that the signal is nonstationary.

Certain Parkinson subjects have the ability to synchronize their steps while experimenting and this is detected by variation in the COP. This will mislead us in building classifiers as their gait looks pretty like a normal subject. We proved that the movement of feet is uniform when walking due to the distribution of loads between the feet. Therefore, imbalance is due to irregular distribution of loads between the feet. In a simpler way, pressure distribution between feet differs when a subject is affected with disease like Parkinson. This is more obvious in diseased subjects where their metabolic system is affected. In addition, the center of pressure variation between different gait steps was a good indicator of the type of gait. A decision tree for the used algorithm is developed and proved to work well. For instance, unbalanced gait corresponds to pathological subjects. However, balanced gait could be relevant to normal or pathological subjects.

Differentiating between pathological subjects and normal subjects when they both exhibit balanced gait become easier due to the verified hypothesis that is derived from analysis of the database.

Removing the unbalanced gait, allows the use of simple features like correlation to differentiate between normal subjects and Parkinson subjects. With linear models a classification of 90% with a 100% accuracy is achieved. A 100 % classification with quadratic discriminant analysis can be achieved. However, we didn't point out such a result in this thesis as the goal is to increase the database size and then we can generalize this conclusion. Then a gait signature is introduced. We recommended to increase the array of sensors to improve this signature.

This bipedal locomotion is an evoked response sensitive to the initial conditions of the nonlinear dynamical stimuli signals or perturbations which make them very difficult to predict within short intervals of time into future. A novel model technique is introduced using a modified version of Nonstationary first order markov model. Results show that this model best predict normal gait subject with 95.6% and fairly do in Parkinson gaits with 58 %. i.e. the preference of a particular foot. It has been known that general population are rightfootedness [START_REF] Velotta | RELATIONSHIP BETWEEN LEG DOMINANCE TESTS AND TYPE OF TASK[END_REF]. Such tests required too many analysis and laboratory work. For instance, Leg 147 preference is hypothesized to be dependent on the nature of the required test to be performed [START_REF] Velotta | RELATIONSHIP BETWEEN LEG DOMINANCE TESTS AND TYPE OF TASK[END_REF].

Introduction to the Future Work:

Anteroposterior floor oscillations are being used to test foot dominance to achieve postural stability and this done at various frequencies [START_REF] Kiyota | Dominant side in single-leg stance stability during floor oscillations at various frequencies[END_REF]. Other researchers consider the handedness and footedness are correlated, but it has been shown that they are partially correlated and footedness must be considered as a standalone variable [START_REF] Chapman | The Measurment of Foot Preference[END_REF]. It indicates that after the heel get in contact with the ground the foot strikes at location 5.

In summary, PARAFAC provided important information concerning the footedness and the type of foot strike of a certain subject. At least it classify subjects with commonalities before further analysis. Most importantly as gait forces are captured from multi-sensor system, PARAFAC had provided a summarized information with only one component. It is therefore useful in analysis of variance.

PARAFAC Summarizes Information from Multi-Sensors :

We have proved previously that all sensors underneath the foot share most of obvious information. For instance the fundamental frequency is the same underneath all locations of the same foot and this is also similar to the contrary foot. However, Parkinson subjects could have some variability between right and left feet. As a result, 3 components will be chosen. One A superficial analysis will be provided here and we will not dwell too much into details. This is because a more deep interpretations must be conducted.

Space Mode

The loadings for underneath different feet locations is shown in Fig. 

Frequency Mode

A summary in frequency domain is also obtained as in Fig. 5.11. Variations in the frequency content is spotted to be higher in Parkinson gait than normal gait. 

Discussion :

PARAFAC seems to be a good tool if used appropriately. More attention must be given to the number of components being used. Then it is important to find a tool to spot which component correspond to which situation. For instance it is important to differentiate components corresponds to left or right foot, or components that reflect Parkinson or normal gait... and so on. Most importantly, this three-way analysis provide an overall point of view to all traditional domain of analysis. It summarizes them and give the most relevant information.

  thèse: Analyse, classification et modélisation de la locomotion humaine : application a des signaux GRF sur une population âgée La marche est définie par des séquences de gestes cycliques et répétées. Il a été déjà montré que la vitesse et la variabilité de ces séquences peuvent révéler des aptitudes ou des défaillances motrices. L'originalité de ce travail est alors d'analyser et de caractériser les foulées de sujets âgés à partir des signaux de pression issus de semelles instrumentées lors de la marche, au moyen d'outils de traitement du signal. Une étude préliminaire, sur les signaux de pression générés lors de la marche, nous a permis de mettre en évidence le caractère cyclo-stationnaire de ces signaux. Ces paramètres sont testées sur une population de 47 sujets. Tout d'abord, nous avons commencé par un prétraitement des signaux et nous avons montré dans la première de cette thèse que le filtrage peut éliminer une partie vitale du signal. C'est pourquoi un filtre adaptatif basé sur la décomposition en mode empirique a été conçu. Les points de retournement ont été filtrés ensuite en utilisant une technique temps-fréquence appelée «synochronosqueezing». Nous avons également montré que le contenu des signaux de force de marche est fortement affecté par des paramètres vii inquantifiables tels que les tâches cognitives qui les rendent difficiles à normaliser. C'est pourquoi les paramètres extraits de nos signaux sont tous dérivées par une comparaison inter-sujet. Par exemple, nous a assimilé la différence dans la répartition de poids entre les pieds. Il est également recommandé dans ce travail de choisir le centre des capteurs plutôt que de compter sur la somme des forces issues du réseau de capteurs pour la classification. Ensuite, on a montré que l'hypothèse de la marche équilibrée et déséquilibrée peut améliorer les résultats de la classification. Le potentiel de cette hypothèse est montré à l'aide de la répartition du poids ainsi que le produit de l'âge × vitesse dans le premier classificateur et la corrélation dans le second classificateur. Une simulation de la série temporelle de VGRF basé sur une version modifiée du modèle de Markov non stationnaire, du premier ordre est ensuite dérivée. Ce modèle prédit les allures chez les sujets normaux et suffisamment pour les allures des sujets de Parkinson. On a trouvé que les trois modes: temps, fréquence et espace sont très utiles pour l'analyse des signaux de force, c'est pourquoi l'analyse de facteurs parallèles est introduite comme étant une méthode de tenseur qui peut être utilisée dans la future. viii AN ABSTRACT OF THE THESIS OF Rami Alkhatib for Doctor of Philosophy Title of Thesis: Human Locomotion Analysis, Classification and Modeling of Normal and Pathological Vertical Ground Reaction Force Signals in Elderly Walking is defined as sequences of repetitive cyclic gestures. It was already shown that the speed and the variability of these sequences can reveal abilities or motorskill failures. The originality of this work is to analyze and characterize the steps of elderly persons by using pressure signals. In a preliminary study, we showed that pressure signals are characterized by cyclostationarity. In this study, we intend to exploit the nonstationarity of the signals in a search for new indicators that can help in gait signal classification between normal and Parkinson subjects in the elderly population. These parameters are tested on a population of 47 subjects.
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  have been numerous studies involving research and development, for detecting falls exhibited by the elderly. Studying and exploiting the nonstationary properties of vertical ground reaction provide an insight into the neural function and the neural control of walking which would be altered by changes associated with aging and the presence of certain diseases. This thesis is structured as follows:Chapter 1 provides a definition of human gait bounded to bipedal locomotion. Then biomechanics point of view is presented to inspire our research thinking. Gait analysis techniques are collected as the state of the art of biometrics, stride interval, ground reaction forces and pressures. Since preprocessing is a fundamental step in any signal contaminated with noise, filtering and normalizing techniques are expressed. Moreover, an intuition for classification techniques is presented to classify normal from pathological gaits. Finally, fall risk assessments and their prediction and detection are introduced before we offered our research motivation and objectives.Chapter 2 delivers data transformation techniques like Fourier transform, wavelet transform and others are presented. Then synchrosqueezing of time-frequency transformations is expressed with its advantages. In addition, receiver operator characteristic is explained as one of the feature selection techniques. Some of the classification methods used in this thesis are explained. One mathematical modelling technique of the signal is also presented to enhance our understanding of the signal. We end with general definitions that would enrich our empathetic of the reminder of this work.Chapter 3 provides an intuition of how synchrosqueezing of time-frequency transforms enriches the detection of non-stationarity evidenced with higher resolution behavior and in particular augments signal separation. Most importantly, the effect of cognitive task on gait is clearly pointed out in the context of signal preprocessing. It is also beneficial to extract frequency content of signals certainly the instantaneous frequencies and study their properties in both walking conditions (usual walking and walking while examining cognitive tasks) to inspect if there is a difference in both normal and Parkinson subject.Various sensory network architectures were designed to capture the most of the biomechanics of walking and running in subjects. In fact, sensor distribution in such designs is crucial and should be delicately treated, knowing that we have continuously varying centers of pressure (COP). That being observed that the sensor located at the inner arch of the sole of the foot (i.e. at mid foot) holds the most relevant information needed for better classification between balanced and unbalanced gait in comparison to other sensor positions, this contradicts the traditional research that only focuses on the summation of the array of signals. It forms a foundation in manufacturing the insole data acquisition system. Then a classification between normal and Parkinson is implemented based on hypothesis of balanced and unbalanced gaits which are ultimately verified. Chapter 4 mainly focuses on the main statistical component and basis in Gait-GRF analysis. The ultimate objective is to identify model of VGRF in addition to generate and forecast one step ahead VGRF. In fact, a time series simulation of VGRF based on a modified version of nonstationary-Markov model of first order is exposed. An estimate of a normal and Parkinson gait is conducted to spot out a difference between them.
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 111 Figure 1.1. Phases of walking cycle
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 12 Figure 1.2 Standard conceptual models of legged locomotion. The inverted pendulum is a

Figure 1 . 4 :

 14 Figure 1.4: Limit cycle trajectory for kneed walker

Figure 1 . 5 .

 15 Figure 1.5. Forces during the stance phase

Fig. 1 .

 1 Fig.1.6 includes examples of variable that could interfere in gait ground reaction force.

Figure 1 . 6 :

 16 Figure 1.6: Example of Gait Variables

  After a fall, the risk of falling again in the same year is multiplied by 20. fallers develop phobia of falling again  The risk of falling increases with age. Each year, falls affect: 35% of those aged 65 to 79 people; 45% of people 80 to 89 years; 55% of people over 90 years.  The costs of falls is 31 -25 billion Euros each year in the EU -$19.2 billion in the US in 2006 [75].

  Fig.2.1. The origin (0, 0) is located between the legs and the person is facing towards the positive

Figure 2 . 1 :

 21 Figure 2.1: Sensor's position as distributed underneath both feet.

Figure 2 . 2 :

 22 Figure 2.2: Sample of VGRF data captured by the eight sensors underneath the left foot. The red curve represents the resulting signal of their summation. The first row corresponds to normal gait and second raw corresponds to Parkinson gait subject

Figure 2 . 3 .

 23 Figure 2.3. Flowchart of Empirical Mode Decomposition algorithm

  noise. The order (p) of an autoregression is the number of immediately preceding values in the series that are used to predict the value at the present time. So, the preceding model is a first-order autoregression, written as AR[START_REF] Beauchet | Gait analysis in demented subjects: Interests and perspectives[END_REF].

1 are

 1 the parameters of the model.

  model indicates a linear regression of the current value of series against current previous and current white noise error terms. The error terms are mutually independent and generated from the same distribution. For instance, the normal distribution with zero mean and fixed variance is used.

Figure 2 . 5 .

 25 Figure 2.5. Maximizing the variance of the projection in the residual subspace

Figure 2 . 6 .

 26 Figure 2.6. Flowchart for the K-NN

  Otherwise non-stationarity of signal is assumed. The only way to examine the later signals is by time varying spectrum. Fig.2.7 highlights this idea where time varying characteristics of the VGRF signal is shown.
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 272 Figure 2.7: the first row plot is for stationary signal and the rest corresponds to nonstationary signal
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 31 Figure 3.1: Vertical GRF vector during Gait Cycle
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 32 Figure 3.2: Ground Reaction Force filtering by second order Butterworth filter of 25 Hz shows a vital part being attenuated colored in red

Figure 3 . 3 :

 33 Figure 3.3: During Heel strike, the measured VGRF consist of horizontal frictional component

Figure 3 . 4 :

 34 Figure 3.4: loading response and the push-off are circled.

Fig. 3 .

 3 [START_REF] Skinner | FREQUENCY DOMAIN ANALYSIS OF GROUND REACTION FORCE DOES NOT DIFFERENTIATE BETWEEN HYPERKINETIC AND HYPOKINETIC MOVEMENT DISORDERS[END_REF] illustrates the idea that the first IMF captures the largest frequency components. The second IMF has a lower oscillation and so on to reach a trend with the lowest component as shown in the last row of Fig.3.6. Therefore EMD acts as an adaptive filter to extract the components present in the signal. It's worthy therefore to mention that the first IMF extracts most of noise present in signal.
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 36 Figure 3.6. The first raw is the original signal. Seven IMFs plus the trend are plotted

Figure 3 . 7 :

 37 Figure 3.7: Segments colored in black are being omitted

  synchrosqueezed STFT on x(t) yields Fig.3.8 and Fig.3.9 respectively. One can investigate the main difference in the two time-frequency representation of the signal. The STFT vaguely provides the frequency content of the signal and do not show the two representations of the signal.
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 3839 Figure 3.8. STFT and its time averaged applied on the assumed signal x(t)
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 3 Fig.3.10 indicates ellipses at certain instant of times. When recording the signals, subjects
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 3 Figure 3.10: synchrosqueezed short time Fourier transform

Fig. 3 .

 3 Fig.3.11 shows two main important phenomena. A shift in the frequency and this is
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 311 Figure 3.11: Time Averaged Synchrosqueezed STFT
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 3 Figure 3.12: Synchrosqueezed STFT for total VGR signal extracted from the gait of Parkinson subject on both walking conditions

Fig. 3 .Figure 3 . 13 :

 3313 Fig.3.13 shows the Hilbert spectrum of the original VGRF. The U-shaped pattern

Fig. 3 .

 3 14 and Fig.3.15 corresponds for normal and patient with idiopathic Parkinson disease respectively. The GRF is at minimum as shown in Fig.3.14 by arrow at moment of heel-strike.
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 3314315 Figure 3.14: Hilbert spectrum of the raw signal corresponding for a control subject
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 3319 Figure 3.18: STFT plot and upper plot is time averaged STFT
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 320 Figure 3.20: Amplitude of time averaged short time Fourier transform -Gaussian

Figure 3 . 21 :

 321 Figure 3.21: Amplitude of time averaged wavelet transform -Lognorm
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 322 Figure 3.22: Eigenvalue versus its component number for Left foot sensors in a normal subject

Figure 3 . 23 :

 323 Figure 3.23: Maximum Eigenvalues being computed at different time lags for left sensor to right foot sensors (Red), left sensor to Left foot sensors (Blue), and black indicates when computed for all sensors as one matrix.

  classification and better work when they are extracted from sensors data at a given location. Then features being used widely in the literature are passed into a KNN classifier.
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 324 Figure 3.24: Skewness ability in discrimination between Normal and Parkinson Gait

Fig 3 .

 3 [START_REF] Winiarski | Estimated ground reaction force in normal and pathological gait[END_REF] shows the ROC curve of the total ground reaction force from sensors of the right foot. The sensitivity is recorded to be 0.6552 while the specificity is 0.5556. This yield AUC = 0.5460 which refers a fail level of accuracy in classification.

Figure 3 . 25 .

 325 Figure 3.25. Skewness is extracted from the total force from sensors located under the

Figure 3 . 26 :

 326 Figure 3.26: The most important locations to acquire data for Gait analysis.

3 . 27 .

 327 In a second case of study, fix the feature and iterate a number of sensors among the KNN classifier. The results of KNN classifier indicate an accuracy of around 83% on average in most cases where sensor five exist. Other sensor shows a relatively smaller value. While the total force when used shows an accuracy of around 15% smaller than sensor five.

Figure 3 . 27 .

 327 Figure 3.27. Skewness and Median Frequency are extracted from signals of sensor 5 in mid-foot.

Fig. 3 .

 3 [START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF] clearly shows that those statistics vary from one step into another. In our case the mean and standard deviation are highly correlated. Furthermore, such a change in the mean that ranges from 32 deviation that ranges from 70 to 135 is a clear indicator that the signal is non-stationary.

Figure 3 . 28 :

 328 Figure 3.28: Standard deviation versus mean for an abnormal subject upon midsensor located in the right foot.

  single step standard deviation of a single step Mean V.S. Standard Deviation of Sensor 5 located at the midfoot of right foot

(

  application. Therefore, it can be used to track the transfer of weight to asses balance. The instantaneous location of COP was deliberated as a weighted average of the measured VGRF values for each sensor by means of equations (3.13) and (3.14): 𝑋 𝑐𝑜𝑝 , 𝑌 𝑐𝑜𝑝 ) are coordinates corresponding to the instantaneous place of the center of pressure . (𝑋 𝑖 , 𝑌 𝑖 ) represents the location of sensor (i). 𝑉𝐺𝑅𝐹 𝑖 is the force obtained from sensor (i) and n is the total number of sensors.
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 3293 Figure 3.29: Path of COP over 30 consecutive steps underneath the right foot for two Parkinson gait subjects. The right columns represent their mean and their standard deviations

Figure 3 . 30 .

 330 Figure 3.30. Path of COP over 30 consecutive steps underneath the right foot for a Normal gait subject. The right column represent their mean (in blue) and their standard deviations
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 331 Figure 3.31: Flowchart of gait classification
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 332 Figure 3.32: Load Distribution underneath both feet in Normal and Parkinson Gaits

Figure 3 . 33 :

 333 Figure 3.33: Scatter plot with two marginal histograms to envision the association between Speed (m/sec) and Age (years).
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 3 Fig.3.33 designate no significant correlation between speed and age in both normal (r= -
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 334 Figure 3.34: Box plots of Speed in Normal and Parkinson Gait.

Figure 3 . 35 .

 335 Figure 3.35. Scatter plot of correlations between right and left foot at sensors 5 and 7. A comparison between Normal and Parkinson Gait (all dataset).

Figure 3 . 36 :

 336 Figure 3.36: Box plots of Speed in Normal and Parkinson Gait.
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 337 Figure 3.37: Decision boundary between balanced and unbalanced gait.
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 339 Figure 3.39: Decision boundary between the two groups of balanced gait based on correlation between right and left foot at sensors 5 and 7.
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 341 Figure 3.41: Gait Signature.
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 41 Figure 4.1: Sample of VGRF
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 44 Figure 4.4: Sample and Partial Autocorrelation for a Normal subject.

Figure 4 . 5 :

 45 Figure 4.5: Sample and Partial Autocorrelation for a Parkinson subject.

Figure 4 . 6 .

 46 Figure 4.6. Sample and Partial Autocorrelation for VGRF signal differenced two times.

Fig. 4 .

 4 Fig.4.7 indicates the power spectrum after removing the mean to see the other fluctuations

Figure 4 . 7 :

 47 Figure 4.7: Sample and Partial Autocorrelation for VGRF signal differenced two times.

Figure 4 . 8 :

 48 Figure 4.8: Linearity in the plot of current values versus past values in VGRF's data for midsensor on a single step. In this case the difference is one time lag. Given ( 𝑦 = 𝑦 𝑡 ) and (𝑥 = 𝑦 𝑡-1 ) in equations.
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 494946411 Figure 4.9: Linearity in the plot of current values versus past values in VGRF's data for midsensor given the 2 min signal.
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 412 Figure 4.12: Sample Autocorrelation Function

Figure 4 Fig. 4 .Fig. 4 . 15 .

 44415 Figure 4.13: Partial Autocorrelation Function
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 414 Figure 4.14: Stance phases being isolated from VGRF extracted from the heel sensor underneath the left foot of a normal gait subject and their contour plot
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 41548 Figure 4.15: Stance phases being isolated from VGRF extracted from the heel sensor underneath the left foot of a Parkinson gait subject and their contour plot
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 416 Figure 4.16: Power Spectrum for both altered signals of Normal and Parkinson gait subject

Figure 4 . 17 :

 417 Figure 4.17: Data generated by markov-Model V.S. Raw Experimental Data

4. 12 Modified 2 ( 4 . 14 )Figure 4 . 18 :

 122414418 Figure 4.18: Data generated by the modified Markov-Model V.S. Raw Experimental Data An acceptable data modelling as shown in Fig.4.18 is then reached using the new proposed
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 420 Figure 4.20: Forecasting Normal and Parkinson Gaits.

Fig. 4 .

 4 Fig.4.20 shows a 95.62 percentage of fit in the predicted normal gait signals while the
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 51252 Figure 5.1: PARAFAC a special case of 2-way PCA

Figure 5 . 3 :

 53 Figure 5.3: PARAFAC Model of a randomly chosen subject. Mode#1, 2 and 3 reflect the footedness, time domain signal and the type of foot strike respectively.

  component corresponds to most variability captured from left foot, the other is from the right foot and one component represent the overlapping between the two feet. Fig.5.7 indicate the three-way PARAFAC procedure being implemented.

Figure 5 . 7 :

 57 Figure 5.7: PARAFAC Model for the all sensors underneath both feet. Now, all 5 locations VGRF signals underneath both foot are summarized in three

Figure 5 . 8 :

 58 Figure 5.8: First component after conducting the PARAFAC Model for the all sensors underneath both feet.
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 5959542 for both normal and Parkinson. The left graphs indicate both real and imaginary part while the right graph indicate only the real part over locations indicated in Fig.5.2.In the normal subject there is an indication that there is no need to three components. This is because the right and left foot load distributions are the same. This has been verified on the previous chapter. However, three components obtained in the Parkinson subject do indicate a difference between the obtained three components in this mode of loadings. Loadings Under both Feet for a normal subject (a) and Parkinson subject (b) Time Mode Three components obtained as a summary of forces in both feet is shown in Fig.5.10.
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 5 Figure 5.10: VGRF component both Feet for a normal subject (a) and Parkinson subject (b)

Figure 5 . 11 :

 511 Figure 5.11: Loadings Under both Feet for a normal subject (a) and Parkinson subject (b)

Figure 5 . 13 :

 513 Figure 5.13: PARAFAC Model conducted on both normal and Parkinson subject under the inner arch of the left foot.
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Table 1 .

 1 .1 explains the common fall risk factors[START_REF] Kenny | Falls Prevention in the Home: Challenges for New Technologies[END_REF].

		Intrinsic		Extrinsic
		Age, Gender	Environment outside of home
		History of previous Falls	(e.g. uneven paving, ice)
	Non-modifiable	Acute or Chronic medical problems
		(e.g.	Parkinson's,	osteoporosis,
		cardiovascular disease)
		Neurological function

1: Common falls risk factors 1.7 Research Motivation Figure 1.7. Falls injury pyramid

In this section, we will present the key motivation points of our research and can be summarized as follows:

[START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF] 

The fatal falls reported over the years 2010-2012 by EU-member states to the WHO-office for the European Region is shown in Table

1

.2. The mean age in France standardized incidence rate (IR) per 100.000 persons with age of 65 and older (IR 65+) is reported to be 45.85

[START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF]

.

Table 1 .

 1 2: fatal falls in numbers First cause of accidental death, third cause of chronic disability, and the fifth most common cause of death[START_REF] Spellbring | Assessing elderly patients at high risk for falls: A reliability study[END_REF][START_REF] Murray | The global burden of disease[END_REF].

	 In France, the yearly number of falls is approximately 2.7 million[73]

Table 2 .

 2 1: Comparison between various techniques used to analyze our VGRF signals In order to comprehend the frequency content of the VGRF signals over time, both STFT and WT can serve a good foundation.

		Fourier	STFT	Wavelet	HHT
	Basis	A priori	A priori	A priori	Adaptive
	Frequency	Convolution:	Convolution: regional,	Convolution: regional,	Differentiation: local,
		global,	uncertainty	uncertainty	certainty
		uncertainty			
	Presentation	Energy-frequency Energy-time-frequency Energy-time-frequency Energy-time-frequency
	Nonlinear	No	No	No	Yes
	Nonstationary	No	Yes	Yes	Yes
	Based on	yes	yes	yes	No (Empirical)
	theoretical				

  2.29): Most importantly, it is possible to reconstruct the component's parameters using time frequency representation (TFR) values at the ridge points denoted as ridge reconstruction. The ridge reconstruction formulas are for STFT, WT, SSTFT, SWT are shown in equations (2.30),

																						
				S	a	( t	)			s V	(	, w	t	)	d	w			s T	(	, w	t	)	d	w	(2.29)
											0												0
	(2.31), (2.32) and (2.33) respectively:
	v	( t	)	w	p	( t	)			v	d	( t	),	( t A	)	e	i	(	t	)	)) ˆ) ), ( ) ( ( ( ( 2 t v t w g t t w G p s	,
																								p

Table 3 .

 3 1: Intrinsic mode function characteristicsAn example of EMD applied to a data from a control subject is shown in Fig.3.6. The first subplot represents the raw signal.

	Channel	Zero Crossings Extrema Counts Mean Freq. [Hz] Power (%)
	IMF_h1	7050	4056	29.09068	0.045846
	IMF_h2	2506	1676	10.34326	0.354629
	IMF_h3	736	472	3.04068	9.128521
	IMF_h4	494	316	2.042248	4.668593
	IMF_h5	229	114	0.948923	84.29544
	IMF_h6	158	86	0.655995	1.052419
	IMF_h7	75	40	0.313557	0.241007
	IMF_h8	35	18	0.148527	0.089646
	IMF_h9	18	10	0.078389	0.041991
	IMF_h10	10	6	0.045383	0.008957
	IMF_h11	2	4	0.012377	0.031212
	IMF_h12	3	1	0.016503	0.041738
	IMF_residual	0	1	0.004126	

Table 3 .

 3 .[START_REF] Niu | Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling[END_REF] where IMF2 is deliberated. 2: The percentage of certain number of IMFs present in raw signal From Table3.2, there is a clear indication 72% from control subject have 13 IMFs while 25% of Patients are recorded to have 13 IMFs. This suggests that a certain frequency band is either added or omitted from the signal. Later in this document, this will indicate that frequency is related to pressure evolution and therefore the elderly is either having a certain frequency band more than usual to control and balance his/her walking, and this could be voluntary. A less IMF indicates that elderly is walking on his usual and a decrease of reaction time and this suggests a more body shiver and the patient is subjected to the risk of falling.

	Mean Frequency=0.0041(zero crossing + 1)	(3.10)

As a result using both features couldn't affect classification performance but can computationally expensive. Accordingly, either Mean frequency or zero crossing could be used.

A set of intrinsic mode functions are generated using the sum of the 8 sensor outputs of the left foot. 18 control subjects and patients with idiopathic PD are considered. The counting number of IMFs is shown in table 3.2.

Table 3 .

 3 3 presents the result. For instance, in row 1 where none of the IMFs is gone is able to classify 95.7% of the examples in the training set correctly. In row 7, the IMF6 is excluded and the training accuracy decreased to 76.6%. As the table indicates, excluding IMF5 and IMF13 from the training set has no effect in the training accuracy. Knowing that IMF5 is recorded to have the highest energy percentage compared to the total energy of the original signal in all subjects, except for Residue as shown in

Table 3 .

 3 4. IMF13 forms the trend of the signal and all subject therefore have the same mean instantaneous frequency for IMF13. All other IMFs will affect the training accuracy specifically IMF3, IMF11 and IMF6 were the most important one since they encounter low training accuracy in their absence.

Table 3 .

 3 3. Omitted IMF effect on training accuracy

	i-th	IMF	Training		i-th	IMF	Training
	Omitted		Accuracy		Omitted		Accuracy
	None is omitted	95.744681=	2	7		91.489362
			out 47 subjects		
			classified			
			incorrectly			
	1		93.617021		8		91.489362
	2		93.617021		9		93.617021
	3		89.361702		10		91.489362
	4		91.489362		11		89.361702
	5		95.744681		12		91.489362
	6		76.595745		13		95.744681

Table 3 .

 3 3. Energy percentage compared to the total energy of the original signal, except for Residue

		Normal		Parkinson	
		Mean	Stdv	Mean	Stdv
	IMF_h1	0.075	0.05	0.061	0.058
	IMF_h2	0.442	0.212	0.246	0.193
	IMF_h3	9.723	4.493	5.872	3.899
	IMF_h4	6.451	3.771	10.05	9.051
	IMF_h5	80.03	6.201	81.93	10.47
	IMF_h6	2.704	2.18	1.345	1.923
	IMF_h7	0.252	0.122	0.18	0.126
	IMF_h8	0.099	0.046	0.088	0.058
	IMF_h9	0.067	0.03	0.059	0.051
	IMF_h10	0.048	0.034	0.058	0.065
	IMF_h11	0.065	0.154	0.063	0.082
	IMF_h12	0.044	0.07	0.051	0.112

Table 3 .

 3 4 demonstrate the first three fundamental peaks that cover the most power of the frequency content. The first peak is in the range of ~ 0.5658 -1.1182 Hz for almost 98 % of subjects. It is approximately 2.0276 Hz for the second peak on average and 2.7108

	Hz for the third peak.			
		TABLE 3.4: FREQUENCY CONTENT	
		Normal (mean ± std)	Parkinson (mean ± std)
	Peak #	Frequency range (Hz)	Peak value	Frequency range(Hz)	Peak value
	1 st	0.9154 ± 0.0676 ~0.22 0.8985 ± 0.1109	~0.24
	2 nd	1.8347 ± 0.1292	~0.09 8	2.1473 ± 0.7278	~0.07 3
	3 rd	2.9458 ± 0.8859	~0.05 9	2.5650 ± 0.7220	~0.04 5

Table 3 .

 3 5. ROC evaluation of skewness among all sensors.

	ROC-AUC

  Hypothesis: Normal Gait must be balanced. However, balanced gait doesn't indicate normal gait subject.The stemmed hypothesis points out that if a healthy gait subject is considered, then this subject must have a balanced bearing between feet. While if the subject is affected by a disease like Parkinson this disease replicated on his gait. It may appears as unbalanced gait, however this is not always the case. Parkinson subjects could be placed into rehabilitation program or get beforehand some medication prior to the experiment. This would mark the gait performance during the experiment and it would appear as balanced way of walking. That's why and before undertaking any statistical analysis, it's really become an essential task to differentiate Parkinson subjects as having balanced and imbalanced gait. Again, normal subjects are definitely considered to have balanced gaits.

Feature Selection techniques : Receiver Operating Characteristic

In order to develop robust classifiers and learning models, a subset of features must be carefully selected. Receiver operating characteristic (ROC) curve compares sensitivity or true positive rate (TPR) against the fall-out (1-specificity) or false positive rate (FPR) to exemplify the performance of binary classifier. Therefore it can serve a direct evaluation of feature by plotting equation (2.25) versus (2.26) [START_REF] Pepe | Estimation and comparison of receiver operating characteristic curves[END_REF]. Where T refers to true whenever the prediction matches the actual situation. Therefore, TP is true positive, TN is true negative and FP is false positive. Thus, with 95% confidence interval, the area under the curve (AUC) will reflect the accuracy on how well a feature could well separate normal gait from Parkinson's gait. The following scores could be used to evaluate the accuracy: 0.9-1: Excellent 0.8-0.9: Good 0.7-0.8: Fair 0.6-0.7: Poor 0.5-0.6: Fail

If AUC=1 refers to a perfect discrimination and has a ROC curve that passes through the upper left corner i.e. 100% sensitivity and 100% specificity with no overlap in the two distributions.

Consequently, ROC curves are constructed by simply ranking the population according to their test result. This means that the area under the ROC curve does not reflect the shapes of the Different methods are adopted for nonstationary data processing and here are some:

Evolutionary spectrum, Spectrogram, Wigner-Ville distribution, Wavelets analysis, Empirical orthogonal function expansion (EOF), Smoothed moving average, Trend least-squares estimation and many others.

A testing dataset will serve as new observations and verified on the assembled clusters to evaluate this method in classification. The testing part will serve a trustworthy and unbiased estimate of classification error. The assessment of the classifier can be summarized using Fig. 3.38 by adding the test set to the scatter of Fig. 3.37. It is better analyzed using the matching matrix on Table 3.6 Following this method of analysis forms a good approach before handling the signal themselves directly like in [START_REF] Sanderson | school of human kinetics biomechanics 1[END_REF][START_REF] Minamisawa | Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson's disease[END_REF]. In this manner the results are better and easily achieved rather than using cutting-edge algorithms like BFT, BPANN, k-NN, SVM with Ln kernel, SVM with Polykernel and SVM with Rbf kernel that yields a classification rate of 66.43%, 89.97%, 87.00%, 88.47%,86.80% and 87.53% respectively [START_REF] Chia Min Lim | Gait Analysis and Classification on Subjects with Parkinson's Disease[END_REF], in addition to various other techniques like Self-Organizing Map [START_REF] Šušmáková | Nonlinear statistical analysis of human gait dynamics[END_REF].

Based on Fig. 

First order Markov model

A. Stationary

Suppose the future step values to be predicted are generated by the following 1st order Markov Model that is stationary with respect to mean, variance in addition to auto-correlation of first lag, this is indicated by equation (4.11).

Where tj+1 stands for the standard normal variable (∼ N (0, 1)) which is a series generated randomly with zero mean and unity variance. µx, σx and ρ1 are the mean, standard deviation and first lag autocorrelation respectively.

B. Non-Stationary

The same model will be generalized for nonstationary process as indicated in equation (4.12).

Where i is the number of stance phase of gait step, ρj is serial correlation between the jth moment of a stance phase and j+1 th moment of the same stance phase. Once again the standard variable series is given by ti, j+1 ∼ N(0, 1).

As we proved previously, VGRF signals are non-stationary certainly in the variance and in the mean. CHAPTER 5

First order Markov model of VGRF with non-stationarity

GENERAL CONCLUSION AND PERSPECTIVES

In this chapter, we will wrap up this thesis with main results being obtained from the previous work. Previous chapters treated VGRF in time, frequency and space separately or in combination of two. Frequency-spatial characteristics will be easily obtained using multiway analysis like parallel factor analysis (PARAFAC) that contribute in identifying Parkinson elderly gait. Multiway modelling of human VGRF is not engaged yet. This analysis requires different measurements underneath the foot.

Summary: The Main Results of this Research

A strict relation between the frequency content of the signal and the way a subject moves is recorded. The frequency of the signal is shown to be high at heel-strike and at the toe-off. In addition, the frequency opposes the change of VGRF which produces it as a trying to retain the body in balance and not falling. In control subjects, higher frequency at instants of heel-strike and toe-off compared to patients is registered. However, the frequency content as a whole in Parkinson gait subjects tends to increase (i.e. the more they correspond to the impact peak), but the peaks and the valleys tend to be much more muted. Furthermore, we proved that traditional filters like Butterworth filter can eliminate a vital part of the signal's content. New adaptive filtering model is being proposed based on EMD. On the other hand, we have focused on eliminating turning points in the gait signals that impact their content by synchrosqueezing the time frequency

We have proven that summing signals stemmed from all sensors is not a good practice. It's better to treat them as a single entity. Thus, dynamical changes of VGRF underneath both feet must be processed in time, frequency, and space. VGRF signals are captured in time domain, Synchrosqueezing of short time Fourier transform is then obtained for each sensor location to build three-way Time-Frequency-Space VGRF tensor (TFS-VGRF). A good separation of the three main events during gait is attained. A comparison between normal and Parkinson gait is then conducted. The results will be tested on experimental database obtained from 600 elderly participants walked at their self-selected normal speed. The database is obtained collaboratively as a teamwork between Laboratory of Signal Analysis and Industrial Processes (LASPI) and the University Hospital Center (CHU) of Saint-Étienne. However, a more innovative approach is to be followed using tensor methods.

Multi-way analysis techniques keep the structure of the multidimensional data dimensions.

They are so called tensor methods formed of different tools like Tucker decomposition, Parallel factor analysis (PARAFAC) and Incrementalization. The objective is then to decompose arrays into set of loadings and scores which provide a condensed description way of data. Multi-way methods provides more adequate, robust and interpretable models than other models like given by PCA. However, PARAFAC is still a special case of Tucker3 which is a case in 2-way PCA as shown in Fig. 5.1 below. However, this specificity of PARAFAC put it under bounded constraints even it requires fewer degree of freedom.

dijk stands for the point of i th sensor at the j th variable on the time mode and at the k th variable on the frequency mode. The variability that not included in the model is denoted by residual eijk. Small "p" represents the number of the PARAFAC component. Each PARAFAC component will end up with I a-scores: one for each sensor, J b-values: one for each time and K cvalues: one for each frequency.

The general PARAFAC is based on the alternating least squares (ALS) algorithm and can be summarized as follows:

In this part, both set of 8 signals from both right and left foot will be considered. We have assumed that two patterns must be obtained one for the left and the other for the right foot. A third pattern will be capturing the overlapping in gait data while walking. However, there should be consistency when considering sensors locations underfoot. That's why, As we believe that averaging is also is not a good practice between the mid sensors because of the difference in the location and the foot structure, we will handle the heel and toe as one set of sensors and the sensors is between as another set. Considering the same subject in Fig. 5.3 but now with two components gives Fig. 5.5 with PARAFAC. Mode#3 convey the fact that this subject is with rear foot strike. However, Mode#1 shows two components with opposite slanted lines.

Examining VGRF components obtained in Mode #3 shows that part of the second component is highly correlated with the first component while the other portion is negatively correlated. Adding other component lead all the components to be correlated and therefore no additional information can be captured. So when dealing with VGRF from different sensors underneath both feet, the first component is enough to summarize the most important information in both feet. 
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