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Présidente Pr. Naomi Nakayama University of Edinburgh

Rapporteur Dr. Olivier Pouliquen CNRS–Université d’Aix-Marseille
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et amusante. Merci d’avoir été si généreux, en partageant avec moi tes nombreuses
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Abstract

Plant growth—the irreversible volume increase of a cell or an organ—remains

an exciting biological puzzle. Growth is essential to the shape regulation of the

developing organ. It is also the key for every plant, developing or mature, to adapt

to its environment.

The cellular mechanisms of plant growth rely on a competition between the

inner pressure of the cell and the elastic properties of the cell wall. Heterogeneities

of these mechanical properties across the tissue result in differential growth and

eventually lead to growth motions at higher scales. These macroscopic motions

can thus be read as an outward signal of the cellular mechanisms underlying shape

regulation and growth itself. Here, we propose to take benefit from the intimate link

between growth and its related motions to gain a new insight on growth through a

multiscale approach, from the organ to the cell wall level.

The compound leaves of Averrhoa carambola display two marked motions—

unfurling and nutation—that are widespread among developing leaves. Our ap-

proach consists in assuming that different phases of the motion correspond to dif-

ferent growth status within the tissues of the organ.

In the first place, we show that the shape of the leaf results from an active

regulation, especially of its macroscopic mechanical properties. The kinematics of

the two latter motions are then compared to the associated growth. Doing so, we

put forward the specific patterns of growth and growth heterogeneities underlying

the development of the leaf. Based on these findings, we build a kinematic model for

nutation which—accordingly with previous findings—suggests the occurrence of lo-

cal contractions during growth. The mechanics of the cell wall are then investigated.

Our results suggest that spatial heterogeneities of cell wall rigidity within the leaf

are correlated with the direction of the nutation. Finally, immunohistochemistry

reveals heterogeneities in the repartition of de-methylesterified pectins within the

leaf, possibly consistent with the direction of nutation.
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Résumé

Titre français : Forme, rythmes et hétérogénéites de croissance d’une feuille

Sous-titre français : Déroulement et nutation chez Averrhoa carambola

Chez les végétaux, la croissance est essentielle à la régulation de la forme de

tout organe en développement mais aussi à l’adaptation des organes matures à leur

environnement.

A l’échelle de la cellule, la croissance est le résultat de la compétition entre la

pression interne de la cellule et la rigidité de sa paroi. Des hétérogénéités de ces

propriétés mécaniques à l’échelle du tissu mènent alors à une croissance différentielle

puis à des “mouvements de croissance” à l’échelle de l’organe entier. Ces mouve-

ments macroscopiques peuvent alors être interprétés comme une manifestation des

processus de croissance microscopiques. Nous proposons dans cette thèse de mettre

à profit ce lien intime entre croissance et mouvements afin d’approcher la croissance

d’une nouvelle manière : de l’organe à la cellule.

Nos travaux portent sur les feuilles composées d’Averrhoa carambola qui montrent

deux mouvements typiques des feuilles en croissance : le déroulement et la nutation.

Nous montrons dans un premier temps que la forme de la feuille en croissance est

régulée de manière active. Nous étudions ensuite la cinématique du déroulement et

de la nutation. Ce faisant, nous mettons en évidence une relation particulière entre

croissance et croissance différentielle à partir de laquelle nous construisons ensuite un

modèle cinématique de nutation. Conformément à de précédents résultats, ce modèle

suggère que la croissance peut s’accompagner de contractions locales. A l’échelle du

tissu, la mécanique des parois cellulaires est ensuite étudiée. Nos résultats suggèrent

que les hétérogénéités spatiales de rigidité de la paroi sont corrélées à la direction

du mouvement de nutation. Enfin, des hétérogénéités de composition de la paroi,

possiblement corrélées à la nutation, sont révélées par immunohistochimie.
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1.1 Plant motions: diversity and ubiquity

1.1.1 Are plant motions exceptional?

Plants move. This short and simple statement often leads to a delicate mix of

contradictory ideas. As a matter of fact, the notion of plant motion is often regarded

through the prism of two opposed conceptions. On the one hand, the plant kingdom

is usually defined in opposition with the animal kingdom because of the apparent

stillness of plants. On the other hand, examples of moving plants come easily to

1
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(a)

1 cm

(b)

Figure 1.1: Two examples of well-known plant motions. (a) Mimosa pudica .
When touched, the leaves pack against each other in a couple of seconds. If the pertur-
bation is a bit more violent, the entire leaf fall down as pictured here. (Drawings from
P.H.W. Taubert’s Leguminosae, 1891). (b) Dionea muscipula might be the most famous
carnivorous plant. The inner part of the trap contains several hairs. If a prey touches at
least three of these hairs, the trap closes in less than a second (Forterre, 2013).

mind. Among these examples, the most popular might be the fast motions of car-

nivorous plants—such as Dionaea muscipula also known as the Venus Flytrap—and

of the so-called sensitive plant—Mimosa pudica (see figure 1.1). The paradox rais-

ing from the contradiction between the common idea of motionless plants and the

rapidity of the two latter motions resolves itself in a compromise: plant motions

must be exceptional.

It is interesting to note how this idea pervades our cultural environment. In the

late 19th century, stories about man-eating plants began to spread. These legendary

plant-monsters were usually described as moving in threatening ways, revealing the
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Figure 1.2: The legendary man-eating tree Ya-te-veo. This plant was described as
an ensemble of stems similar to ‘many huge serpents in an angry discussion, occasionally
darting from side to side as if striking at an imaginary foe’. Text and illustration from
J.W. Buel’s Sea and Land, 1887.

uneasiness about plant motion at these times1 (see figure 1.2). Nowadays, many nov-

els involve moving plants or plant-like beings. From Caroll’s animated and talkative

flowers to Rowling’s Whomping Willow or Tolkien’s Ents, plant motions may take

various aspects. They are however systematically astonishing or horrific, associated

with magic or witchcraft. In this sense, these outrageous depictions not only reveal

our uneasiness about plant motions but might also reinforce our preconceptions on

plant stillness.

On another note, the etymology of the noun ‘plant’ itself carries the idea of being

‘chained to a place’ (Marder, 2015). Certain phrases—such as ‘to be rooted to the

spot’ in English—also reveal the strong connection that is made between plants and

immobility. We see here how our everyday language implies a very specific definition

of motion: locomotion2. It is true that the position of individual plants is fixed

in space, but motions are not restrained to locomotion. The motions of Dionaea

muscipula and Mimosa pudica already show that plant motility lies in the position

and orientation of their different organs relative to each other (see figure 1.1), that

is to say in changes of the posture of the plant (Moulia et al., 2006).

1Note that Charles Darwin published his works on insectivorous plants at about the same
period, in 1875.

2From the Latin loco (place, location) and motio (motion, movement)
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In fact, there exist numerous motions of this kind. So, why would we think plant

motions are uncommon? The characteristic time scale involved in plant motions can

vary from milliseconds to several hours (Skotheim & Mahadevan, 2005; Forterre,

2013). In consequence, many plant motions—actually most of them—are beyond

our perception. Our eyes only grasp the most rapid and spectacular plant motions,

contrasting with our daily experience of plant stillness. Many plants and organs

display such motions. Carnivorous plants exhibit different capturing strategies and

motions, adapted to their surroundings (Forterre et al., 2005; Vincent et al., 2011).

In some cases, seed dispersal is performed in a violent and fast way, thanks to

bursts (Endo et al., 2010) or catapulting motions (Llorens et al., 2016). Nevertheless,

a patient and careful observation of any plant—maybe with the help of a dedicated

device—is likely to reveal beautiful motions. Slow motions have been observed in

roots (Barlow et al., 1994), hypocotyls (Silk & Erickson, 1978), stems (Bastien et al.,

2013) and leaves (Dornbusch et al., 2014). It would be excessive to state that we

are totally unaware of such slow motions. But do we really regard them as motions?

For instance, why would not we regard the growth of a tree as an upward motion?

Another fundamental distinction actually makes that slow motions do not match our

‘animal’ experience of motion. The slow changes of shape coming with slow motions

seem or are irreversible, contrary to our daily experience of reversible motions. So,

we might more readily regard them as deformations—which they are—than motions.

Despite the fact that they are relatively difficult to observe, slow plant motions

have likely been known for a long time, in all civilisations. In Ancient Greece for

instance, in the 4th century BCE, philosophers Anaxagoras and Empedocles already

defended the idea that plants were capable of motion (Whippo & Hangarter, 2006).

To the best of my knowledge, the first report about plant motion was written at the

beginning of the 3rd century BCE by Androsthenes of Thasos3. He described how

the leaves of the tamarind would close and pack against each other at night and

open anew on the morning (Theophrastus, 1916). Such motions were then referred

as ‘sleep movements’.

Considering that slow plant motions are a universal phenomenon and that they

have been known for at least 2, 500 years, how can we explain that they remain such

a surprise to us?

3An admiral of Alexander the Great, sent to explore the Persian gulf. Parts of his report The
Navigation of the Indian sea survive through later works such as Theophrastus’ Enquiry on Plants
(3rd century BCE).
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1.1.2 Early conceptions about plant motions

The evolution of the notion of plant motion cannot be separated from that of

plant sensitivity (Whippo & Hangarter, 2009). Because plant motions had been

observed, it seems that this notion was not contested in itself. On the contrary,

the notion of plant sensitivity failed to gain support among the Greek philosophers.

The vision according to which plants were insensitive actually prevailed. This vision

relied on a hierarchy of living beings—formalized by Aristotle—established on the

base of their different abilities. This hierarchy of nature persisted in time. It led

to the emergence of the scala naturae in the Christian world during the Middle

Ages. Since plants were considered to be deprived of sensitivity, the motions they

displayed were seen as the direct result of an external action onto them. In this way,

plant motions were completely passive: they did not perform motion but rather

underwent motion. As a result, the study of plant motions remained disregarded

until the end of the Renaissance (Whippo & Hangarter, 2006).

The end of the 16th century is a landmark in the study of plant motions. At

these times, several naturalists began questioning the insensitivity of plants. For

instance, Giambattista della Porta (1535–1615) studied the attraction of roots for

water. The renewed interest in plant motions is however mostly due to the discovery

of the American flora. European explorers were confronted for the first time to the

rapid motions and touch-responsiveness of the Mimosa pudica or similar plants (see

figure 1.1a). The motions of the Mimosa pudica were overall studied in England by

the scientists of the Royal Academy (Whippo & Hangarter, 2009). However, during

the 17th century, the proposed mechanisms to account for plant motion mainly kept

relying on passive mechanical processes.

Webster unearthed that plant sensitivity had actually been supported the idea

of sensitive plants during the 17th century (Webster, 1966). Their ideas found no

echo at the time, but they opened the way to a fundamental shift in the approach

to plant motions: from external, passive mechanisms to internal active mechanisms.

A first stone was laid by Augustin Pyrame de Candole and Henri Dutrochet.

De Candolle proposed that the slow re-orientation of plants toward light resulted

from differences in the maturation of the tissues exposed to due to their different

exposition to light (de Candolle, 1832). Dutrochet went even further and proposed

that motions were driven by changes in the inner turgor pressure4 within the plant

tissues (Bell, 1959). The mechanisms that they proposed remained passive (Whippo

4Turgor pressure will be detailed in section 1.2.2
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(a) (b) (c)

Figure 1.3: The ubiquitous nutation motions. Charles and Francis Darwin evidenced
the ubiquity of periodical oscillatory motions in plants called nutations. Here are pictured
three typical trajectory types (a) Circular nutation referred as circumnutation of Phaseolus
vulgaris tendrils (Millet et al., 1984) (b) Elliptical circumnutation of Brassica oleracea
seedlings (Darwin & Darwin, 1880). (c) Nutation ofAverrhoa carambola leaves.

& Hangarter, 2009), but they sought the origin of plant motions in physiological—

rather than purely mechanical—phenomena.

The final step was achieved by Sachs and Wiesner, two German botanists. They

tackled the question of the active character of plant motions. By depriving a plant

of oxygen, Julius von Wiesner observed that motion ceased (Bell, 1959), suggesting

that an energetic input from the plant is needed in order to move. The 18th and 19th

centuries were characterized by the interest of botanists in the influence of external

cues—such as the gravity or the light—on plants. At that time, Wiesner and Sachs

also studied the relationship between the ‘intensities’ of a given stimulus and that

of the response motion (Bell, 1959; Whippo & Hangarter, 2009). They showed that

the relation linking these intensities was not trivial, supporting the idea of active

plant motions.

The 19th century also saw the publication of three books of Charles Darwin ded-

icated to plants and their motions: The movements and Habits of Climbing Plants

in 1865, Insectivorous Plants in 1875 and finally The power of movement in Plants

in 1880. The latter one, written jointly with Francis Darwin, mostly deals with

the slow circumnutation revolving motion (see figure 1.3). It is still unanimously

referred as a founding text to the study of plant motions nowadays. Darwin’s works

greatly contributed to the awareness on the ubiquity of plant motions.

In summary, we see that the idea that plants are not able to perform—in an active

way—motion is deeply rooted in the history of thought and science. The progressive

accumulation of observations about plant motions led to reconsider the question of

plant sensitivity. This allowed to slowly shift from passive mechanical to active
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physiological mechanisms to account for plant motions during the 19th century.

1.1.3 Classical plant motion nomenclature

The increasing diversity of the observed plant motions led botanists to try and

classify motions. Historically, plant motions have mainly been distinguished thanks

to three different criteria: (i) Is the motion triggered by an external stimuli or not?

(ii) Does the direction of the motion depend on that of the stimulus? (iii) What is

the mechanism of the motion? (Firn & Myers, 1989). The second criterion allows

to distinguish two classes of motions—tropisms and nastic motions—which is often

used as a complete classification.

A tropism5 is a slow (re-)orientation motion of an organ in response to an anisotropic

stimulus in the environment. Here, the important point is that the direction of the

motion directly depends on the direction of the anisotropy. Tropisms are not always

obvious in nature and are more easily observed in the case of a brutal change of

the environmental conditions. Two important and illustrative examples are pho-

totropism and gravitropism. Gravitropism corresponds to the re-alignment of an

organ with respect to the vertical, i.e. the direction of the acceleration of gravity

(see figure 1.4a). Phototropism characterizes the re-orientation of an organ depend-

ing on the orientation of the source of light (see figure 1.4b). Actually, tropisms can

be aimed toward or away from the anisotropy. For instance, gravitropism can be

positive or negative, i.e. an organ may align with the downward (e.g. most roots)

or upward vertical (e.g. most stems) respectively. Of course, many other tropisms

exist. We can mention the hydrotropism of roots or the impressive thigmotropism6

helping climbing plants enrolling around a support (see figure 1.4c), for example.

When the direction of the motion is independent from the stimulus, it is said to

be a nastic motion7. The most iconic nastic motion might be thigmonasty. The

closure motions of Mimosa pudica and Dionaea muscipula are two examples of

thigmonasty (see figure 1.1). Changes of temperature can also result in closure or

opening motions—referred as thermonasty—in some flowers, such as tulips. The

direction of a nastic motion is generally imposed by an anatomical constraint. In

the case of thigmonasty for example, the direction is imposed by the pulvini. The

pulvini is a soft tissue capable of inflating differentially and thus to act as joint.

5From the Greek word ‘tropos’ meaning a ‘turning’.
6The Greek prefix ‘thigmo’ corresponds to ‘touch’
7From the Greek word ‘nastos’ meaning compact, evoking a closure motion.
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(a) (b) (c)

Figure 1.4: Three examples of tropisms. (a) Gravitropism of an Arabidopsis thaliana
inflorescence stem (courtesy of Renaud Bastien). (b) Phototropism of Oxalis triangularis
leaves. (c) Thigmotropism of a Humulus lupulus twining stem (Isnard & Silk, 2009).

In the preivously mentioned motion, a trigger is clearly identified. Such motions

are said to be paratonic. But there exist autonomic motions, for which no clear

trigger is identified (Firn & Myers, 1989). For example, autonomic motions contain

epinasty and hyponasty which correspond to changes in the height of an organ during

growth (Dornbusch et al., 2014). Nyctinasty—corresponding to ‘sleep movements’—

are also autonomic motions in the sense that the rhythm of this motion does not

entirely depend on the alternation of day and night8.

At last, the question of the mechanism underlying the motion is asked. It is

clear from the previous paragraphs that at least two kinds of mechanisms are nec-

essary to explain plant motions. As a matter of fact, tropisms seem to be irre-

versible motions—as long as the triggering anisotropy is maintained—while most

nastic motions are reversible. In addition to that, it has been observed that plant

motions occurred on various very different time scales, suggesting different mecha-

nisms (Skotheim & Mahadevan, 2005). In this thesis, however, we will focus on the

case of slow irreversible motions. The mechanisms of fast motions are thus out of

our scope, but the curious reader can refer to (Forterre, 2013) for a detailed review,

for example.

8This will be detailed in section 1.3.1
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Figure 1.5: Differential growth and curvature. Slit stems of Pisum sp. exhibit an
outward curvature in water (left column). By tuning the concentration in growth hormones
of the baths, this curvature can be enhanced or reversed. (Thimann & Schneider, 1938)

.

1.2 Origin of growth motions

It is now clear that slow motions are inherent to the plant kingdom. Contrar-

ily to animals, plants do not have muscles though. So, what are the mechanisms

underlying plant motions?

1.2.1 Differential growth drives the motion

Tropisms have been interpreted in terms of differential mechanisms—i.e. mech-

anisms relying of some kind of inhomogeneities—for a long time. For instance,

Theophrastus already explained phototropism by the differential dessication of the

shaded and enlightened faces of the bending organ (Whippo & Hangarter, 2009). To

my knowledge, Robert Sharrock has been the first to propose that tropisms resulted

from growth inhomogeneities between the opposed faces of the bending organ (Shar-

rock, 1660). De Candolle later built up a passive explanation to phototropism rely-

ing on differential growth (de Candolle, 1832). At last, Charles and Francis Darwin

proposed that circumnutation resulted from differential growth (Darwin & Darwin,

1880).

Differential growth basically corresponds to elongation heterogeneities within the

tissues of a growing organ. Because the tissues are cohesive, if a given part of the

organ elongates relatively more or faster than the rest of the organ, mechanical

stress will build up in the tissues. This is what is called ‘residual stress’. If the

different layers of the considered tissue grow at different rates, these inner tensions

can be revealed by sliting the organ in half (see figure 1.5, left column). Doing so,
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the tensions are released and curvature reveals the previous state of tension. In this

example, the resulting outer curvature shows that the inner tissues of the stem were

compressed by the outer ones. By stimulating the growth of the inner tissues, this

curvature can be exaggerated (see figure 1.5, columns 2 and 4). On the contrary,

stimulating the growth of the outer tissues reverses the curvature (see figure 1.5,

columns 3 and 5). This demonstrates how growth can affect the internal mechanics

of the tissue and eventually its shape.

However, growth inhomogeneities not only occur between the different layers of a

growing tissue, but can be found along elongating organs or between the opposing

faces of elongating organs (Tomos et al., 1989). The phrase ‘differential growth’ will

be used to designate the latter case in this whole thesis. In the simple case where the

two opposing faces of a growing organ have different elongation rates, the resulting

inner tensions make the organ bend toward the least-growing face (see figure 1.6).

In this way, we see how growth and differential growth can give rise to motions. The

nature of the resulting motions indeed depends on the time and spatial patterns of

differential growth (Bastien & Meroz, 2016).

Differential elongation has been experimentally evidenced in a variety of cases.

The basic method simply consists in comparing the elongation rates of the two op-

posite faces of the moving organ. The phototropism of coleoptiles, epicotyls and

hypocotyls (Franssen et al., 1981; Baskin, 1986) and epi/hyponastic motions of Ara-

bidopsis thaliana’s rosette leaves (Dornbusch et al., 2014) have been shown to rely

on differential elongation. Differential elongation have also been evidenced in the

(circum)nutation of roots (Chavarŕıa-Krauser et al., 2008), epicotyls (Baskin, 1986)

and Helianthus annuus seedlings (Berg & Peacock, 1992). Interestingly enough, in

the case of nutation, the two last cited studies put forward out of phase oscillations

of the elongation rates of the opposite faces of the considered organ.

In some other studies, the differential elongation of tissues is assumed and can

thus be directly quantified by the curvature variations of the moving organ (we will

detail it in Chapter 4).

We have seen that some slow motions—tropisms, some specific nastic motions

and circumnutation—are induced by differential elongation. The question of the

origin of these elongation inhomogeneities is now asked. To better understand how

differential elongation—and motions—emerge, it is now essential to take a look at

the cellular growth processes themselves.
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Figure 1.6: Illustration of the principle of differential growth. The two sides of the
growing organ elongate with different rates. Since the tissues are cohesive, this results in
a bending towards the side with the smallest elongation rate. Growth heterogeneities can
eventually be reversed, giving rise to oscillatory motions for instance. Adapted from (Mug-
nai et al., 2007).

1.2.2 Microscopic mechanisms of plant growth

It is now necessary to precisely define the word ‘growth’. In the scientific litera-

ture, growth usually refers to the irreversible increase in volume of an organ. The

growth of an organ relies on two contributions: the growth of individual cells and

mitosis—i.e. cell divisions. In plants, mitosis—contrarily to growth—is mostly con-

fined to specific tissues of growing organs called meristems. In this study we will

rather focus on the contributions of cellular growth. Plant growth unfolds in two

distinct and successive phases. Primary growth consists in an elongation of cells

while secondary growth refers to the radial enlargement of cells.

Like animals, plants are eukaryotes. Their cells contain a nucleus and several

organelles within a membrane (see figure 1.7). A number of differences however

exist between animal and plant cells. The most important of these differences is the

cell wall. In plants, the protoplast9 is encased within a semi-permeable and rigid cell

wall. Cell walls form an extracellular matrix, preventing plant cells to move relative

to one another but also constraining their size and shape. In this way, we see that

plant growth necessarily implies to irreversibly deform the cell wall. The cell wall

thus plays a major role in the mechanics of plant cells. This has been ingeniously

underlined by showing that plant protoplasts and animal cells shared comparable

mechanical behaviours (Durand-Smet et al., 2014).

Plant and animal cells contain water storage organelles: vacuoles. In mature

plant cells, the vacuole is unique and can take up to 90% of the cell volume. The

9The protoplast designates the plasma membrane and its content.
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Ribosomes

Filamentous cytoskeleton
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Plasma membrane
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Figure 1.7: Illustration of the plant cell structure. Plant and animal cells share most
of their organelles and structures. Plant specific structures and organelles are indicated
in bold green letters. (Illustration from the Wikicommons project. Artist: Lady of Hats.)

2 µm

Figure 1.8: Four cells and their cell walls. On this Cryo-SEM image of Averrhoa
carambola inner tissues, we can distinguish four different cells, surrounded by cell walls
(outlined by plain color lines). Note the presence of intercellular spaces where neighbouring
cell walls separate.
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water content of the cell is regulated by osmosis10. Water uptake results in an

volume increase of the protoplast. This increase in volume is however limited by the

rigid cell wall. When the protoplast of the cell is in contact with the cell wall, the

cell is said to be turgid. Because further water uptake is not possible, a hydrostatic

pressure rises within the cell to keep water from entering it. This turgor pressure

needs to be equal to the osmotic pressure. Turgor pressure values are usually of the

order of a few atmospheres. It thus appears here that the volume increase of a cell

is driven by osmosis and that turgor pressure is the source of cell wall deformation.

Finally, let us mention that—at the tissue level—neighbouring cell walls are tied

together by an intermediary layer called the middle lamella (see figure 1.8 for a close

view of a plant tissue). Cells are not perfectly joined and we often see intercellular

spaces. The communication between cells is allowed by small apertures in the cell

wall called plasmodesmata (see figure 1.7).

From the last paragraph, we see that plant growth is based on two contributions:

the irreversible extension of the cell wall and water uptake. These are at the base of

the plant growth model of Lockhart which was later augmented by Ortega (Lockhart,

1965; Ortega, 1985). In the Lockhart-Ortega model, the cell wall is submitted to

variations of the turgor pressure P . Below a critical threshold Pc, the cell wall

responds in a viscoelastic way. Above Pc, the cell wall yields and is irreversibly

deformed. The cell wall is thus modelled as an elasto-visco-plastic material. In the

case of an elongating cell, the rate of change of the cell length L is given by

dL

dt
= m (P − Pc)︸ ︷︷ ︸

irreversible

+
L0

εL

dP

dt︸ ︷︷ ︸
elastic

(1.1)

as shown in (Proseus et al., 1999). Here, εL is the elastic modulus11 of the cell

wall, m is its irreversible extensibility12 and L0 is the initial length of the considered

cell. From equation (1.1), we clearly see the superposition of irreversible and elastic

contributions here.

The Lockhart-Ortega model emphasizes the role of turgor pressure as the driving

phenomena of cell growth. Turgor pressure is indeed essential to growth since too

low turgor pressures have been found to inhibit growth (Cosgrove, 1987). But it

has been argued that the active regulation of the rheological properties of the cell

10Cells solutes usually in higher concentration than their surroundings. Water movements thus
arise to equilibrate concentrations.

11εL depends on both the geometry of the cell wall and its Young’s modulus.
12m not only depends on the geometry and rheology of the cell wall, but also on all the other

factors affecting growth (Proseus et al., 1999).
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increasing turgor and wall stress

reduced turgor
reduced stress

water

P P
cell wall

loosening

Figure 1.9: Putative cellular growth scenario. Red stars represent cell wall loosening.
While the turgor pressure provides the mechanical energy for elongation, cell wall loosening
and stress relaxation rule it. Inspired from (Cosgrove, 2015).

wall (Pc,m, εL) are at the basis of growth control (Cosgrove, 1987; Schopfer, 2006).

It has been observed that the mechanical status of the cell wall is modified during

growth. In growing cells, it has been observed that m increases with the rate of

elongation of the cell. This is what is referred to as the the cell wall loosening. In

the same time, P and Pc also decrease. More surprisingly, a correlation between

the elongation rate and the elastic modulus of growing cells has been established.

It was observed that growing cells were softer than non-growing cells (Geitmann &

Ortega, 2009).

From these observations, a simple primary growth scenario can be imagined (see

figure 1.9). First13, the cell wall is set under tension by the inner turgor pressure

of the cell. Then, the cell wall loosens, leading to a relaxation of its inner stresses.

This could be the result of growth hormones such as auxin. Because the cell wall

stress decreases, the inner turgor pressure also decreases. Doing so, it allows water

uptake and thus cell elongation. Elongation ceases when the mechanical equilibrium

between turgor and the cell wall stress is reached (Cosgrove, 2015). Finally, this cycle

can start anew.

Together with the Lockhart-Ortega model, this simple picture of growth helps us

understanding the mechanisms of growth. However, several aspects of growth were

not assessed here. First, in the case of elongating cells, growth is highly anisotropic.

No account on anisotropic growth was given. How can the directionality of growth

be explained? Second, we are here mainly concerned by plant motions and the

13Here the mechanism is decomposed for pedagogical purposes. In reality the presented steps
occur simultaneously.
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associated differential growth. So, how is differential growth generated within plant

tissues? We have seen that the mechanical properties of the cell wall play a great

role in plant growth. Hence, growth inhomogeneities might be caused by any kind of

mechanical inhomogeneities within the walls of the growing tissue. But then, from

what arise the cell wall rheological properties and their possible inhomogeneities?

To try and answer these questions, we now need to take a closer look at the cell

wall.

1.2.3 A quick picture of the cell wall

The cell wall is usually described as a complex, composite material. The main

component of the cell wall–which has logically focused most of the attention—is cel-

lulose. Cellulose is arranged in microfibrils which are embedded within a matrix of

polysaccharides (see figure 1.10). Two main families of cell wall polysaccharides were

defined, based on their chemical composition and solubility: insoluble hemicelluloses

and solube pectins. The most abundant hemicelluloses are xyloglucans. Arabinoxy-

lans and mannans are generally found lesser amounts within plant tissues. The most

abundant pectins are rhamnogalacturonans I and homogalaturonans. Other pectins

include xylogalacturonan, arabinans and rhamnogalacturonans II for instance. Fi-

nally, several other structural proteins (< 5%) and solutes can be found in the cell

wall (Cosgrove, 2005).

The extensibility of the cell wall results from the different bonds that can be

formed between its components. It is quite intuitive that the more the components of

the cell wall are linked together, the stiffer the cell wall is. It was classically thought

that a tethered network of cellulose microfibrils and xyloglucans bore most of the

load within the cell wall. Pectins and other wall components were thus regarded

as having little impact on the cell wall rheology. The ‘tethered network’ hypothesis

and the preponderant role of cellulose-xyloglucans links have however recently been

challenged and pectins—especially homogalacturonans—began to raise more and

more interest (Peaucelle et al., 2012).

Homogalacturonans can form Ca2+-mediated cross-links. The ability of homo-

galacturonans to form such cross-links directly depends on their chemical status.

The methyl-esterification of homogalacturonans actually blocks the possibility to

form cross-links. Homogalacturonans are usually synthesized in a highly methyl-

esterified state but can later be specifically demethyl-esterified via the action of

pectin methyl esterase (Cosgrove, 2005; Peaucelle et al., 2012). It is thus expected

that cell walls containing highly methyl-esterified homogalacturonans will be softer
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Figure 1.10: Illustration of the structure of the primary cell wall. The cell wall lies
beyond the plasma membrane. It is basically an entangled network of cellulose, hemicellu-
loses and pectins. Pectins and hemicelluloses are synthesized by the Golgi apparatus and
transported to the cell wall by vesicles. Cellulose microfibrils are synthesized by cellulose
synthase complexes in the membrane. For clarity, pectines were drawn solely on the right
half of the picture. Illustration taken from (Cosgrove, 2005)
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than those presenting low rates of methyl-esterification. In this way, it is further-

more expected that de-methyltesterification is associated with growth processes. In

roots and in the pollen tube, studies revealed such a correlation (Palin & Geitmann,

2012). But studies in the shoot apical meristem brought observations challenging

the classical view. It was found that low rates of methylesterification were associated

with softer cell walls and growth (Peaucelle et al., 2008, 2011). Several hypotheses

and mechanisms have since been proposed to conciliate the a priori contradictory

observed roles for pectins and methylesterification (Chebli & Geitmann, 2017).

More importantly, in both cases mechanical and chemical gradients have been

found to be correlated with growth. We thus see here how biochemical gradients

can lead to mechanical inhomogeneities and differential growth within the tissues.

What about the growth directionality? By essence, turgor pressure applies isotropic

stress on the cell wall. Then, how is it possible to explain the highly anisotropic

growth of an elongating organ? The anisotropy of growth must rely on cell wall

anisotropies, leading to stress anisotropies. It has been shown that growth anisotropy

is mostly dictated by the orientation of the cellulose microfibrils in the cell wall (Baskin,

2005). Highly anisotropic microfibril orientation will lead to anisotropic stress within

the cell wall and favor elongation in the orthogonal direction. However, cellulose

might not be the only actor in anisotropic cell growth. A recent study has indeed

shown that anisotropic demethyl-esterification precedes the anisotropic cellulose mi-

crofibril orientation (Peaucelle et al., 2015).

Finally, we have seen how the biochemical status of the cell wall is dynamic and

tightly connected to growth. Biochemical gradients across the tissues are likely

to give rise to mechanical inhomogeneities, to differential growth and in fine to

macroscopical motions. In this sense, plant motion is a multiscale phenomenon.

From the biochemistry of the cell wall to the bending of the whole organ, we see

how strong and intimate are the links between motions and growth. In summary,

macroscopic growth motions are an outward signal of microscopic growth processes.

1.3 Study of plant motions

When confronted with plant motions, our preconceptions are challenged and our

curiosity is naturally aroused. In this sense, plant motions are a formidable motor

for advances in plant sciences research. In this section, I want to try and show the

importance of plant motions in the improvement of our knowledge on plants and

nature.
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1.3.1 What have we already learnt from plant motions?

First, as discussed in section 1.1.2, plant motions have led several generations

of philosophers and scientists to rethink the place of plants in nature. Among

all the possible questions, the question of plant sensitivity has been of paramount

importance for further investigations on plants (Whippo & Hangarter, 2009).

Many of the plant sensitivities have been discovered through the motions they are

associated to. The specific mechanisms of plant sensitivities and their biochemical

pathways have naturally been investigated and are still active domains of research.

Among them, the mechanisms of mechanosensing (Moulia et al., 2015), photosensi-

tivity (Galvão & Fankhauser, 2015) and graviception (Pouliquen et al., 2017).

The study of gravitropism also led to further advances in our understanding of

plant posture regulation. A recent phenomenological model of gravitropism have

indeed revealed the essential role of proprioception in tropisms (Bastien et al., 2013,

2015).

Because of their tight links with growth, plant motions also helped understanding

the processes of plant growth. With plant sensitivity being accepted, plant motions

have finally been regarded as the possible outcome of physiological processes. In

consequence, this led scientists like von Sachs and von Wiesner to question the role

of the cell wall mechanics and of turgor pressure in growth and motions (Bell, 1959).

As discussed in sections 1.2.2 and 1.2.3, these domains are still very active nowadays.

It was also in an attempt to understand the mechanisms of phototropic bending

that the existence of a growth substance was postulated in the early 20th century.

In 1926, Frits W. Went demonstrated the existence of such a substance. He isolated

it from the apex of phototropically stimulated Avena sativa (Went, 1926). This was

the discovery of the plant growth hormone auxin14, which was later identified as

indole-3-acetic acid.

The study of plant motions also contributed to more general advances in general

biology. For the record, Robert Hooke came to be the first to describe a biological

cell during his works on the Mimosa pudica motions.

The study of plant motions have also been of great importance to chronobi-

ology15. Nyctinasty was not only the first example of biological rhythm, but it

remained the only known example until the 20th century and the discovery of hu-

man rhythms (McClung, 2006). During the 18th and 19th centuries, the works of

Jean-Jacques Dortous de Mairan and Augustin Pyrame de Candolle showed that

14The word auxin is derived from the ancient Greek word ‘auxein’, meaning increasing or growing.
15Chronobiology is the study of biological rhythms
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the nyctinasty of Mimosa pudica actually relied on an endogenous rhythm (Somers,

1999; McClung, 2006). The rhythm of nyctinasty is actually only forced by the

diurnal rhythm16

At last, works on plant motions are also motivated by possible technological out-

comes. In the beginning of the 21st century, plant motions have indeed become a

source of inspiration for adaptive materials and structures. The passive motions of

plant organs and fruits—opening of some flowers, pine cones or seed pods—have

drawn much attention and led to production of different kinds of passive actua-

tors (Reyssat & Mahadevan, 2009; Armon et al., 2011; Schleicher et al., 2015). Such

actuators usually rely on the anisotropic mechanical properties of the used materials.

Tropisms and differential growth have also provided some inspiration for bio-inspired

robots for example (Sadeghi et al., 2016).

1.3.2 The classical nomenclature called into question

Plant motions have contributed to advances in our general knowledge on plants,

and specifically in the mechanisms of growth. What can we learn more from plant

motions? While it is true that motions have been extensively studied, it appears

that the traditional classification has naturally led to regard plant motions in the

framework of tropisms and nastic motions. It has however been argued that the

study of plant motions could benefit from a reconsideration of the classification of

motions (Firn & Myers, 1989). As a matter of fact, this nomenclature presents

several shortcomings.

First, it is difficult to determine the position of certain motions within this

classification. Autotropism and circumnutation might be the two most patholog-

ical cases. Autotropism corresponds to the observed tendency of plants to grow

straight, aligned with themselves. But, in that case we see that the directionality

of the motion is necessarily imposed by an inner symmetry, in contradiction with

the very definition of tropism (Firn & Myers, 1989). Circumnutation and nuta-

tion are also difficult to fit in this classification. As a matter of fact, the originally

suggested autonomic character of these motions (Darwin & Darwin, 1880) is still

debated nowadays (Baskin, 2015). Notably, many experiments were conducted on

the influence of gravity on nutation. According to our current knowledge on nuta-

tion, it is possible that nutation is based on autonomic oscillations which amplitude

is enhanced by graviception (paratonic). Furthermore, the mechanism underlying

(circum)nutation might depend on both irreversible growth and reversible volume

16The diurnal rhythm corresponds to the alternation of day and night.
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Figure 1.11: Succession of motions on the developmental time line. An organ
will first take shape via autotropism. The integration of more and more external cues—
tropisms—then allows to achieve successful posture regulation. Before the end of the
development, oscillatory motions appear. Finally, a perturbation of the mature organ
may lead to posture correction and will induce a reversion to a previous state, evidenced
by a renewed anisotropic growth and motions. (Rivière et al., 2017).

changes. Differential growth has indeed been measured between the faces of nu-

tating organs (Baskin, 1986; Berg & Peacock, 1992). But reversible processes have

also been found to be involved in nutation. Local contractions have indeed been

measured at the organ level (Berg & Peacock, 1992; Stolarz et al., 2008) and at the

cellular level (Caré et al., 1998). These contractions have been shown to be reversible

and have been proposed to be linked to turgor pressure variations. Therefore, we

see how difficult it is to determine the position of nutation within the traditional

classification of motions.

Second, the two main categories that emerge from the traditional nomencla-

ture of motions—tropisms and nastic motions— are inconsistent in the sense that

they do not rely on a single mechanism. For example, the Mimosa pudica’s seis-

monasty resort on differential turgor changes and quick water displacements (Dumais

& Forterre, 2012) while epinasty and hyponasty rely on differential growth (Dorn-

busch et al., 2014).

We see here how resorting on a classification leads to a fragmented and somewhat

inconsistent picture of plant motions. It seems that at least a piece of information is
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lacking in order to recover the logic of plant motions. We have recently proposed that

the consistency and continuity of plant motions could be recovered by considering

their succession during development. The complete reasoning supporting this idea

is slightly out of scope and will not be discussed in this thesis. It has however been

developed in a review (Rivière et al., 2017). Basically, the succession of motions was

described to be organized in four phases (see figure 1.11).

First comes a shaping phase. The preferential elongation axes of the organ are

established, and motions consequently arise, guided by autotropism.

Then, the organ enters a phase of posture regulation. At this stage, the integra-

tion of external cues—i.e. tropisms—becomes useful in leading growth and motions,

to ensure a successful posture control. The end of growth is then accompanied by

a phase of oscillatory motions such as nutation. We have hypothesized that these

last developmental motions are a manifestation of autotropism before definitively

freezing both shape and posture (Rivière et al., 2017).

When the growth of the organ is over, two kinds of motions are still possible:

reversible motions and posture correction via tropisms (see figure 1.11, red arrows).

Our observations suggests that reversible motions are in fact the repetition of the

motions performed during the posture regulation phase. Their velocities and the

mechanism they rely on are necessarily not the same anymore, but their trajectories

and effects are similar (Rivière et al., 2017). Finally, in the case of an environmental

perturbation requiring a re-orientation of the mature organ growth is reactivated

to correct posture. This posture correction then implies to go back to the posture

regulation phase described earlier, and to go through the same time the succession

of their associated motions again.

In conclusion, we have seen how plant motions were actually unified under the

prism of organ development. Considering their logic and their arrangement in time

dissolves the apparent frontier between nastic motions and tropisms, but also be-

tween autonomic and paratonic motions. Doing so, it becomes possible to under-

stand plant motions as a single phenomenon, strongly connected to other develop-

mental phenomena such as growth. This picture of plant motions we have built

might, however, be limited by exceptions and counter-examples.
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1.4 Problematic and approach

In conclusion, slow plant motions have been known for a long time but remained

overlooked until the pioneering works of Charles and Francis Darwin (Darwin &

Darwin, 1880). Since then, a majority of works have focused on mature motions

such as tropisms and nastic motions. Circumnutation and nutation are also among

the most studied motions: the origin of these oscillations remains unanswered. So,

a majority of works have focused on a stimuli-response approach, often without any

insight on growth.

In contrast, in this thesis we chose to focus on plant growth motions—motions

displayed only during the development of an organ. Because of their strong link with

growth, we regard these motions as an outward signal of growth and developmental

processes of the plant. Following this idea, we will explore the connections between

the motions and several aspects of plant development: elongation kinematics, me-

chanics and biochemistry.

To do so, we will follow the succession of the motions in the course of the

development, as described earlier, and across the different scales. Our study is

mostly dedicated to the characterization of growth, mechanical and biochemical

patterns that underlie the development of an organ. An emphasis will thus be

put on heterogeneities, time and space variations. Those will be sought at several

scales: from the global shape of the organ to the cell wall. Our basic statement is

that different phases of the motion will correspond to different phases in growth.

In consequence, the oscillatory motions will be of particular interest all along this

work.

The first step of this work is now to define our plant and motions of interest.
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Arabidopsis thaliana has been one of the most studied model organisms of plant

sciences since the 1990s. Nevertheless, in the context of plant motions, we will focus

on another plant: Averrhoa carambola. In this chapter, the specificities of Averrhoa

carambola will first be discussed. Then, we will detail the numerous typical motions

exhibited by Averrhoa carambola leaves. Consistently with the ideas developed

in Chapter 1, we will do so by following the developmental course of the leaves. A

geometrical framework will also be established in order to properly describe motions

throughout this thesis.

23
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2.1 General information on Averrhoa carambola

Since the works of Carl von Linné, botanists have named plants using binomial

names. Binomial names are usually made of two words. The first word names

the genus and the second word names the species. A final addition to the binomial

name can be made—the ‘authority’— and designates the person who first named the

plant. The complete name of our plant of study is Averrhoa carambola L. The genus

‘Averrhoa’ directly refers to the Moorish astronomer Averroes (Quattrocchi, 1999).

The name of the species supposedly derived from a Sanskrit word—karamphala1,

meaning ‘food appetizer’—originally designated the fruit of the tree. Finally, the

authority refers to Carl von Linné—meaning the plant has been known in Europe

at least since the 18th century.

The Averrhoa genus belongs to the Oxalidaceae family which gathers 875 dicots2.

The only other member of this genus is Averrhoa bilimbi whose motions were already

mentioned by Charles and Francis Darwin (Darwin & Darwin, 1880).

The exact geographical origin of Averrhoa carambola is not known with certainty,

but it seems to have originated in South-East Asia. Several authors have proposed

that carambola is from the Malay peninsula, Indonesia or Sri Lanka (Litz & Griffis,

1989; Manda et al., 2012; Patil et al., 2012). Nowadays, carambola trees are dis-

tributed across a wide variety of tropical regions, from South East Asia to the

Caribbean.

Averrhoa carambola is an evergreen tree which can be up to 15 m in height (Litz &

Griffis, 1989). Its flowers are pink to purple and its fruits are oblong with five sharp

lobes. Carambola fruits have a waxy skin which is yellow-green when the fruits

are unripe and turns orange-yellow at maturity. Carambola fruits are famously

known as ‘star fruits’ because of the star shape of their slices. Another remarkable

characteristic of Averrhoa carambola are its leaves which will be described in section

2.2.

Like most of species belonging to the Oxalidaceae family, the carambola tree is

well suited to tropical climates (Patil et al., 2012). It adapts easily to any cultivation

condition however. The minimum prerequisites seem to be that it is well irrigated

and not exposed to frost for too long (Litz & Griffis, 1989). This makes Averrhoa

1or karmaranga, to karambal in Marathi and finally to carambola in Portuguese (Manda et al.,
2012)

2Right after germination, dicot seedlings possess two leaf-like storage organs called cotyledons.
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(a) (b)

(c)

Figure 2.1: Carambola tree, flower and fruit.

carambola a quite robust plant and easy to grow in the sheltered conditions of a

laboratory.

Carambola trees have been cultivated for centuries in South East Asia . In present

days, carambola trees are cultivated in many regions of the world. They are mainly

cultivated for their fruits. Starfruits appear to be a good source of proteins and

fibers as well as potassium or copper (Manda et al., 2012). They are used in various

food or drink preparations, from Malaysia to Hawaii (Manda et al., 2012; Patil et al.,

2012).

Averrhoa carambola is involved in many medicinal uses were it is traditionally

cultivated. Fruits, roots, leaves and flowers are all used to treat diverse ailments and

diseases (Saghir et al., 2013). They are mainly used to counteract skin conditions,

fever, headaches and stomach aches, but are sometimes used against serious diseases

such as diabetes or malaria (Patil et al., 2012). For these reasons, the majority of

the available literature about A. carambola deals with pharmacological and clinical

assays. Many tests were conducted on the possible uses of star fruits extracts. For

instance their antioxidant capacity, anti-ulcer activity, hypoglycaemic activity or hy-

potensive activity revealed promising for pharmacological applications (Patil et al.,
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2012). Carambolas contain high amounts of oxalic acid and also small quantities

of a neurotoxin. For this reason, star fruit consumption is dangerous – and can be

fatal – to people suffering certain kidney conditions (Patil et al., 2012; Saghir et al.,

2013).

2.2 Averrhoa carambola compound leaves

Leaves play a fundamental role in plant metabolism. They are the seat of pho-

tosynthesis, the process turning light energy into chemical energy. Leaves also play

a role in water uptake and osmotic regulation through transpiration. At last, some

leaves can store water and nutrients. The usual leaf is constituted by the follow-

ing elements: the blade or the lamina is a thin photosynthetic tissue ; the vascular

network (midvein and secondary veins) that ensures the transport of nutrients ;

and the petiole connecting the leaf to the stem. Finally, the bud is located at the

connection between the petiole and the stem. Leaves are usually almost symmetric

along their midveins but present a strong anatomical asymmetry between their up-

ward and downward faces3. These faces are referred to as adaxial and abaxial faces

respectively.

Different types of leaves Despite a clear—and almost unique—physiological

role, leaves present an astonishing diversity of shapes. Leaf shape differences lie

in the blade characteristics. Botanists resort to numerous terms to describe and

classify the shape of a leaf that answer the following questions: What is the global

shape of the leaf? What are the shapes of its apex, base and margin?

In particular, the blade can be more or less divided. These divisions create

indentations—more or less deep—and lobes of various sizes and shapes. In some

cases, indentations are so deep that the blade is discontinuous and forms independent

leaflets. Such leaves are called compound leaves, in opposition with simple leaves.

Several degrees of blade division, or pinnation, exist: simply pinnate or compound

(eg. Juglans, chestnut tree), bipinnate (eg. legumiceae, Caesalpinia sp., Mimosa

pudica) or even tripinnate (eg. Moringa oleifera). In compound leaves, the midvein

is completely disconnected from the blade and is in the perfect continuity of the

petiole. We call it the rachis. By definition, the rachis starts after the first leaflet.

Each leaflet is connected to the rachis by a second order petiole called the petiolule.

3This is often referred as bilateral symmetry
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Figure 2.2: Herbarium: four mature leaves of Averrhoa carambola . Each leaf has
an odd number of leaflets. The aspect ratio of leaflets increases from the petiole to the
apex (position effect). The asymmetry of leaflets around their midveins is particularly
visible for leaflets close to the apex. The presented leaves were not taken on the same
plant and had not the same position on the principal stem.
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2.2.1 Shape and anatomy of the leaves

Averrhoa carambola leaves belong to the category of compound leaves. The most

important characteristic of compound leaves is the arrangement of their leaflets.

Carambola leaves are imparipinnate, i.e. once-compound, with an odd number of

leaflets. Leaves usually bear from 5 to 19 leaflets, depending on the age of the

branch or stem they are connected to. The leaflet arrangement on the rachis is said

to be alternate. This means that the leaflets are placed on the opposing lateral

sides of the rachis, with their petiolules being not perfectly aligned (see figure 2.2).

In the case of Averrhoa carambola, two facing petiolules are usually close enough.

In addition to that, two successive petiolules on the same lateral face of the rachis

are well separated. This creates the impression that leaflets are grouped in pairs,

except for the apical one which stands alone. To further describe carambola leaves,

we can take a look at the rachis. The rachis is almost circular, with a radius of

about 1–2 mm at its basal end. As we get nearer to its apex, the rachis becomes

thinner and thinner. The rachis is densely covered with unicellular short hairs called

trichomes. At last, the bud is located at the connection between the stem – or the

branch – and the petiole, on the adaxial face of the petiole (see figure 2.3).

The global shape of the leaf evolves throughout its development. During the

growth of the leaf, the rachis is hook-shaped, as for many other compound leaves.

When the leaf reaches maturity, its rachis is straight and makes a certain angle with

the vertical which is called the gravitropic set-point angle. Carambola leaves usually

have θgsa ' 30◦ At last, all the leaflets of the leaf are coplanar when maturity is

reached.

The shape of a leaflet can be described with the usual morphological glossary

dedicated to leaves. Leaflets are laminar and elliptic, but their shape is not the

same along the rachis. There is a gradient of the aspect ratio of the leaflets along

the rachis (see figure 2.2). The closer we get to the apex, the bigger the aspect ratio.

Leaflets are also slightly asymmetric around their midvein. The half-blade which is

the closest to the base of the leaf is in general thinner. This is however not the case

for the apical leaflet which is completely symmetrical. The apical part of the leaflet

ends up in a short tapering tip. It is said to be acuminate. Depending on the position

of the considered leaflet on the rachis, the tip is more or less prominent. The basal

part of the leaf is rounded near the petiole and becomes more and more acute near

the apex. The margin of the leaflets is completely smooth, with no indentation at

all and are said to be entire. At last, to achieve a complete description of the leaflet,

let us describe its vascular network. Secondary veins derive from the midvein in a
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Figure 2.3: Drawing of a growing Averrhoa carambola compound leaf.

alternate fashion. Near to the margin of the leaflet, they branch to their neighbour

and form closed loops in which are enclosed most of the higher order veins. Such a

venation pattern is pinnate and brochidodromous.

In order to precisely describe the development and motions of Averrhoa carambola

leaves, let us define smaller units of the rachis, by analogy with the stem. The attach

points of leaflets will be referred as ‘leaf nodes’. Two successive leaf nodes define an

interleaflet (topological equivalent of an internode). A numbering convention can

then be established to label the successive interleaflets. Strictly speaking, the petiole

is not part of the rachis and is set to 0. The following interleaflets are numbered

from 1 onwards.

2.2.2 Histology of the rachis

As we will later discuss it, the rachis is of particular importance for the global

shape and most of the motions of Averrhoa carambola leaves. According to the

differential growth hypothesis, some tissues of a moving leaf have to grow in an

anisotropic manner. What are the tissues that are likely to display such a growth

behaviour? In order to answer this question, let us take a look at the inner anatomy

of the rachis. In the following paragraphs, we will describe the anatomy of a mature

rachis.
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A striking characteristic of the rachis is its hairiness. The trichome coverage

of an organ is also used by botanists to precisely describe it. The trichomes of the

rachis are sharp and lightly curved, soft with a single tip (unbranched). Averrhoa

carambola rachis is said to be villous. Right beneath the trichomes, one can see the

epidermis of the rachis. The epidermis consists in a single layer of cells delimiting

the environment and the plant. Under the epidermis lies the cortex. It is composed

of several layers (here four) of thin-walled cells. Some of these cells – mostly those

on the adaxial face of the rachis – enclose chloroplasts (see the greenish half-ring in

fig.2.4) or amyloplasts.

Beneath the outer layers we have just described, we find a ring of thick-walled

cells. They form what we call bast fibres or sclerenchyma. The sclerenchyma cells

are actually lignified. Their walls have been made impermeable by the deposition

of lignin, an hydrophobic substance. As a result, all the cells belonging to the bast

fibre ring are dead.

We now enter the innermost tissues of the rachis. Among these tissues, we

find the vascular tissues that allow the transport of water and nutrients within the

plant. As we will see it in Chapter 3, the vascular tissues form isolated bundles in

thee young rachis. Quite the contrary, for a mature rachis, the vascular tissues form

a complete ring. This ring has replaced the initial provasculature via the maturation

of the cambium. We first encounter the phloem which is composed by thin-walled

cells and ensures the transport of photosynthesis products from the leaf to the others

parts of the plant. Under the phloem lies the xylem. The main purpose of the xylem

is to transport basic nutrients and water from the roots to the upper parts of the

plant. It contains bigger cells than the phloem and is totally lignified4. At last,

the most central tissue of the rachis is a parenchyma. It is made of very large cells,

in comparison with the rest of the stem, with thin walls. This is what we call the

medullar parenchyma, medulla or pith. The pith is involved in both the transport

and the storage of nutrients.

The description of the inner tissues of the rachis reveals its strong anatomical

similarities with stems. This organization and succession of tissues is typical of

plant stems. The rachis of Averrhoa carambola is thus likely to follow the same

developmental path than a typical stem. From a young stem to a mature stem,

the most significant changes take place within the vascular tissues. Phloem and

xylem are initially procambium cells that will differentiate during primary growth.

Pith cells also considerably expand. At last, at the boundary with dermal tissues,

4The word ‘xylem’ actually derive from the Greek word for wood.
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Figure 2.4: Transverse cut of the rachis of Averrhoa carambola.

bast fibres are initially absent. We have now pinpointed three different tissues that

display important anatomical changes during the rachis development. In conclusion,

these tissues (the pith, phloem and xylem precursors and bast fibres precursors) may

be linked to differential growth – and to the observed motions.

2.2.3 Geometrical parametrization

It is now necessary to set a geometrical framework to describe—in a proper and

consistent way—both the shape and the motions of the leaves. As we will see later,

the motions are performed by only two distinct anatomical elements of the leaf: the

rachis and the leaflets.

The first step is to reduce the rachis to a curve, typically its midline. The geomet-

rical parametrization of the rachis can be broken down into two independent parts.

Depending on the studied motion we consider two different planes. For each of these

planes, it will be possible to define at least an arc length, a local orientation and a

local curvature for the midline of the rachis. By reducing the rachis to a line, we

lose some information about its shape. This is why we also define the local thickness

of the rachis which is set equal to 2R where R is the radius of the rachis.

Two directions are remarkable in the anatomy of the leaf: the vertical, roughly

indicated by the stem, and the direction defined by the rectilinear, mature parts of

the rachis. These two directions are represented by the vectors ~v and ~d respectively
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side view parameters: top view parameters:

Figure 2.5: Geometrical parameters describing the rachis. We define the arc length
s, the reverse arc length sR. The local orientation of the rachis with respect to the vertical
is described by θ. The local orientation with respect to its principal direction ~d is given
by φ. The corresponding curvatures are κ� and κ⊥ respectively.

(see figure 2.5). They define a plane (π) that will correspond to our side-view takes.

We define two arc lengths spanning the rachis’ midline: s from the base the to apex,

and sR in the other way. A local tangent vector ~t(s) can be associated to the midline

, and we define the local orientation θ of the rachis with respect to the vertical as

θ(s) = (~v,~t(s)). Finally, the curvature of the rachis in (π) is labelled as κ�.

All the motions of the rachis that do not occur in (π) will be referred as out-

of-plane motions. To describe these motions, we use a second set of geometrical

parameters that correspond to a top view of the rachis. As in the previous case,

we define the arc length s and the reverse arch length sR. Here, a natural choice

for the local orientation of the rachis is φ = (~d,~t(s)). It corresponds to the angle of

deflection of the rachis with respect to its principal direction. Finally, the curvature

of the rachis in the top view parametrization is labelled as κ⊥.

It is essential to note here that the motions—hence the shapes—we will de-

scribe and study are in three dimensions. This is why the geometrical quantities

defined above need to be considered carefully. They actually all correspond to pro-

jected quantities and do not account for the 3D geometry of the organ. In the top

view in particular, because of the typical hook shape of the leaf, the apical end of

the rachis is seldom visible. As a result, the s and sR cannot span the complete

rachis.

To completely describe the shape of the leaf, it is necessary to specify the orien-

tation and position of the leaflets. In a first approach of the mature leaf, we have

statued that leaflets were all flat and coplanar, with the petiolules orthogonal to

the rachis. Actually, the petiolules are not always orthogonal to the rachis (see fig-
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(a) (b) (c)

Figure 2.6: The different angles orientating leaflets. (a) α is the angle between
the rachis and the leaflet, (b) ψ characterizes the opening or flatness of a leaflet, (c) Ψ
quantifies the alignment of the two leaflets of a given pair.

ure 2.6a). The angle α varies between 0 and π/2. Leaflets can also be more or less

flat. The degree of flatness of a leaflet is quantified by the angle ψ between its two

half-blades (see figure 2.6b). At last, two leaflets of a given pair are can be more or

less aligned. In other words, the angle Ψ defined by the two midveins might not be

exactly equal to π (see figure 2.6c). Moreover, Ψ could not be equal from a pair of

leaflet to another one, or could even evolve in time.

2.3 The different motions of the leaf

Averrhoa carambola is a restless plant. Its leaves are particularly animated, display-

ing a wide variety of motions throughout the life of the plant. More precisely, the

mobile parts of the leaf are the rachis and the leaflets. The rachis only performs

growth motions. It bends itself in spectacular ways during its development and

stops moving once it reaches a straight shape. Leaflets exhibit several types of mo-

tions during their development, and contrary to the rachis, they remain mobile when

the leaf reaches maturity. Leaflets move around two essential anatomical axes: the

rachis and their own midvein. I will now describe all the motions of the Carambola

leaves in the following paragraphs, with an emphasis on growth motions.

2.3.1 Motions of the growing leaf

The growth of Averrhoa carambola leaves is mesmerizing to observe. It is during

growth that the great variety of the motions of the leaves is plain to see. The growth

phase is actually complete from the point of view of motions: growing leaves perform

all the different types of movement they are able to. These specific motions are

naturally growth motions in the sense that they occur during the primary growth of

the leaf. It is not clear, a priori, that these motions rely on a differential elongation

mechanism only. Their typical time scales vary from a dozen of hours to several
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days which clearly categorizes them as growth motions (Forterre, 2013). All these

different motions come one after another in a specific and robust order.

Carambola leaves do not develop inside of a closed bud. They develop at the

apical end of the principal stem or of a branch5. For this reason, it is difficult to state

when the leaf begins its development and what exactly is the first motion. During

the first developmental stages, when a structure becomes clearly visible at the tip of

the stem, the leaf is reduced to a small and compact organ with a cylindrical shape.

The leaflets are packed against the rachis and are barely distinguishable by the eye.

By comparing this initial state with the typical shapes of a growing and a mature

leaf, we see that numerous steps and motions are necessary.

From adaxial hook to abaxial hook The motion I will describe here can

be separated into two successive steps and corresponds to the establishment of the

typical hook shape described earlier. These two steps consist in slow and opposite

bending motions. The typical time scale of the complete motion is of the order of

one week but is extremely variable. Once the leafling has initiated its growth and

motion, it might stop at any moment for several days to several weeks. Most of the

time, brutal environmental changes seem to cause such a ‘freezing’.

First, the rachis progressively elongates and bends adaxially near its apex. If

this bending is completely due to differential growth, the adaxial face has to grow

faster than the abaxial face. At this moment, the rachis is almost vertical, fairly flat

except at its apical end. The leaflets close to the basal end of the rachis can now be

easily seen, the outline of the other ones can be distinguished. This could be called

the ‘upward’ phase of the motion.

Then comes the ‘downward’ phase of the motion. The leafling keeps growing,

but the rachis then bends abaxially, hypothetically through a reversed anisotropy

of growth (adaxial growth faster than abaxial growth). This eventually leads to a

complete reversion of the curvature of the rachis, that is to say that κ� changes sign

on a major part of the rachis. This ‘reversing’ motion finally results into the hook

shape that is typical of many compound leaves growth.

It is interesting to try and describe the ‘reversing’ motion in terms of the

classical nomenclature of plant motions. If we take a step back, we see that this

motion is also a change in the global orientation of the leaf. Globally, θ first gets

closer to 0 and then increases. Since the changes of orientation occur in the plant

5This is what botanists call a terminal and naked bud.
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Figure 2.7: Growth motions of Averrhoa carambola rachis. (a) Reversing motion
(0 – 5) followed by the unfurling motion (6 – 15). The typical hook propagates along the
rachis (6 – 14) until it almost reaches the apex (15). Pictures were taken every 1000 min.
(b) Top view of nutation. Pictures were taken every 15 minutes.
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(π) and relatively to the vertical, it appears natural to think about gravity. This

motion could then be ascribed to a shift from negative to positive gravitropism6.

Unfurling The rachis is now hook-shaped. This hook generally extends on

a length equivalent to three interleaflets. The final shape of the rachis is rather

rectilinear however. This means that the rachis now needs to straighten up i.e. κ�

has to globally nullify. The straightening of the rachis requires an adaxial bending.

Once again, this is hypothetically achieved thanks to differential growth where the

adaxial part of the rachis would grow in a slower way than its abaxial part.

This straightening motion is progressive and localized. The basal end of the

hook unbends—κ� locally tends toward 0—while the apical end of the hook remains

bent. This process is often referred as the ‘hook maintenance’ in the literature. The

hook maintenance results in the translation of the hook along the rachis. It looks

like an unrolling or rather an unfurling motion. This translation stops when the

hook reaches the apical end of the leaf and the rachis is completely straight. The

unfurling motion is usually completed in 8 to 12 days, depending on the vivacity of

growth.

The unfurling motion is concerted with growth. The growth behaviour of the

rachis can be described by the displacement of a growth zone of fixed length as in

stems and roots (Silk et al., 1989; Peters & Tomos, 2000; Bastien et al., 2013). The

observation of the unfurling motion easily reveals that once an interleaflet becomes

straight its elongation rate rapidly decays. Once the hook outreaches the apical

boundary of the interleaflet, its shape is almost fixed. Notably, θ is constant along

this interleaflet and is set to the so-called gravitropic set-point angle θgsa.

As we will see in Chapter 3, this hook shape is typical of numerous compound

leaves that eventually reach a flat and straight shape. So, it is likely that the

unfurling motion is as widespread in compound leaves as the hook shape.

Nutation The emergence of the final, straight and flat shape of the rachis is a

completely three-dimensional phenomena. It is not only accompanied by curvature

variations in (π), but also by out-of-plane curvature variations. The rachis bends

and unbends in a pseudo-periodical way, as if it were oscillating around a straight

state (κ⊥ = 0 along the whole rachis).

6The relation between graviception, proprioception and the hook shape is quickly addressed in
Appendix A. However, a beforehand reading of Chapters 3, 4 and 5 is recommended.
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As already discussed in Chapter 1, many plant organs undergo some oscillatory

motions. These are characterized by pseudo-periodical curvature oscillations. In the

case of Averrhoa carambola, the leaf swings in a pendulum-like manner, from right

to left. This motion is simply called nutation7.

The typical period τnut of Averrhoa carambola nutation varies between 1.5

hours and 2.5 hours. The angular amplitude ∆φ – defined as the amplitude of the

local orientation of the apex φapex – of nutation usually varies from 5◦ to 25◦. All

the nutation and circumnutation motions are also characterized by their bending

zone (Millet et al., 1988), the region where curvature varies in time. This bending

zone translates itself along the rachis as time goes. In this sense, nutation is localized.

Assuming that nutation only relies on the differential elongation of tissues, the

bending zone must be where the differential elongation takes place. The elongation

asymmetry associated with nutation is set between the lateral faces of the rachis

(not the abaxial and adaxial ones). Starting from a straight state,

(i) the left side of the rachis could grow faster than the right one for example.

This would result in a bending: κ⊥ would increase, the left and right sides

would now be the concave and convex sides of the rachis respectively.

(ii) At some point, φapex would reach its maximum value ∆φ and the elongation

asymmetry would start to reverse its direction.

(iii) From here, the whole process is reversed. The left side now grows faster than

the right one. The rachis is bending in the opposite direction and reaches a

straight state anew: κ⊥ and φapex both decrease and globally nullify.

(iv) The rachis goes beyond its principal direction given by ~d: κ⊥ and φapex both

decrease and become negative. The concave side is now the right one, and the

convex side is the left one.

This describes half a period of nutation. From this simple description of nu-

tation we first expect that – at any moment of the nutation motion – the concave

and convex sides of the rachis will present different growth status. We also expect

that φapex, or max(κ⊥), and the signal of differential elongation are in quadrature.

A careful observation of nutation reveals some of its interesting and puzzling

features. In this paragraph, I propose to list these observations. First, the rachis

does not perform nutation during the complete growth process. It seems that the

7From the latin word nutatio meaning ‘nodding’ or ‘swaying’.
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Figure 2.8: Idealized growth motions of the leaflets.

nutation motion does not start before the hook has outreached the first or second pair

of leaflets. Further than that, the variations of curvature seem to be systematically

localized at the basal end of the hook, where the rachis is eventually achieving its

unfurling motion.

Taking a closer look at the position of the nutation initiation point – the basal

end of the bending zone – it appears that the bending zone leapfrogs from a given

interleaflet to the following one.

At last, both the amplitude and the frequency of nutation seem to vary during

the day and the night. In most cases, a clear difference is visible in the nutation

behaviour between night and day.

Leaflets growth motions Leaflets are already formed and clearly visible before

the first reversing motion of the leafling. At this moment, all the leaflets are folded in

two along their midveins and packed against the rachis. Their midveins are turned

away from the rachis and their lower half-blades are resting on the adaxial face of

the rachis. By the end of the development of the leaf, the leaflets will be entirely

opened and their midveins orthogonal to the main plane (π) of the rachis. We can

imagine from the initial and final states of the leaflets that they have to go through

several rotations, around different axes.

The succession of rotations begins with a slight upward rotation of the whole

leaflet (Ψ slightly decreases). Then, the leaflet rotates around the point of attach-

ment of the petiolule on the rachis. When the reversing of the leafling begins,

leaflets start to get away from the axis of the rachis and α consequently increases up

to α ' π/2. At the same time, the leaflet begins to fall slowly i.e. Ψ increases. At

the moment when the hook shape of the rachis is set, the leaflet points downward

(Ψ ' 2π) and its midvein faces the base of the leaf. Then, while the unfurling of

the rachis is progressing, the leaflet unfolds and opens up. The angle ψ goes from
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almost 0 to almost 2π. Once the blade of the leaflet is entirely flat, Ψ increases until

Ψ ' π and the two leaflets of the pair are orthogonal to the (π) plane again. From

this point, the leaflet will not display any growth motions. Its development is not

over though. When the rachis is locally straight around a given leaflet, it starts its

areal expansion. This final step can last several days.

It is important to note that leaflets do not perform these motions in a concerted

manner. More precisely, the two leaflets of a given pair usually move in a coordinated

way, but the motions of two different pairs of leaflets will be time-delayed: when

the basal pair of leaflets is completely open, the leaflets of the tip are still packed

against the rachis. This remark can actually be generalised to all the other growth

motions by considering the time-delays between larger anatomical units of the leaf:

its interleaflets.

2.3.2 Motions of the mature leaf

Similarly to many other leaves, Averrhoa carambola leaves remain mobile once

their growth is over. The diversity of motions is now much reduced since—under nor-

mal conditions—the only moving part are now the leaflets. More precisely, leaflets

are animated by their petiolules and now only move around a single anatomical axis:

the rachis. There is no more motion of the half-blades around the midvein. All the

mature mature motions that I will present in the following paragraphs consist in

variations of Ψ.

The typical time and length scales involved in mature motions indicate that

they belong to the class of ‘hydraulic movements’ that include growth and swelling

motions (Dumais & Forterre, 2012). Mature motions however present a funda-

mental difference with the preceding motions: they are completely reversible. The

mechanism underlying the motions of the mature leaf is by definition necessarily

different from differential growth. They must rely on a differential swelling mech-

anism like the motions of Mimosa pudica leaves for example (Tamiya et al., 1988;

Vanden Driessche, 2000).

Therefore, the following motions rely on a pulvini-like mechanism, localized in

the petiolule of each leaflet. To make the leaflet fall, some of the cells of the abaxial

face of the petiolule have to be partially plasmolysed while the adaxial face stays

turgid. On the contrary, to make leaflets raise again, the abaxial cells have to

increase their water content and become turgid again.

The diversity of Averrhoa carambola mature motions mostly lies in the typical

time scales8, the extent to which Ψ is modulated and the sensitivities associated to

8These motions remain faster than growth motions though.
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Figure 2.9: Seismonastic motion of Averrhoa carambola. The instant t = 0 corre-
sponds to the moment of the perturbation. (a) Closure response of the leaflets. Oscillations
after contact correspond to artefacts due to the global motion of the leaf. (b) Closure and
opening over an hour. These graphs correspond to different experiment run on the same
pair of leaflets.

the different motions.

Seismonasty Averrhoa carambola leaflets are sensitive to the touch, or more

generally to mechanical stimuli. This similarity between the carambola and the

Mimosa pudica has struck some naturalists as soon as 1783 (Bruce, 1785). Like for

Mimosa pudica, it is possible to trigger leaflets independently. Carambola leaflets

however respond to mechanical stimuli in a lesser way. More violent stresses are

needed to trigger the reaction motion which is also slower than in the case of Mimosa

pudica and the petiole is not mobile. Carambola leaflets quickly fall and Ψ reaches a

plateau in a dozen of seconds (see figure 2.9a). Here, an exponential fit on the closure

motion revealed a characteristic closure time τ ' 2 s. Leaflets then slowly recover

their original orientation. Twenty minutes after the mechanical perturbation, Ψ is

still 10% superior to its initial value (see figure 2.9b). For the experiment pictured

in 2.9a, the total recovery of the initial position of the leaflets was observed 2 h after

contact.

It is interesting to note that the maximum value of Ψ is generally different from

2π. In his letter, Robert Bruce states that leaflets ‘move themselves downwards,

frequently in so great a degree that the two opposite almost touch one another by

their under sides’. I have not been able to reproduce such motion in the lab with a

simple pat though. I have tried applying repeated mechanical stimuli of the leaflets

once Ψ is stabilized on a maximum value. But no further evolution of Ψ was noticed.
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Figure 2.10: An example of the nyctinastic motion of Averrhoa carambola. The
leaflets rise during the day and fall down at night. In this case, the closure motion
is perturbed by grouped and incessant ‘nervousness’ motions. Gray/white backgrounds
indicate night/day respectively.

It is possible that a simple pat is not sufficient to trigger a complete fall down of the

leaflets. Continuous or periodical mechanical stimulation (eg. plant on a shaking

platform9) could be strong enough to make the leaflets go to Ψ ' 2π.

Nyctinasty Like many other plants, such as the Mimosa pudica, Averrhoa

carambola displays nyctinastic motions. More precisely, the position of its leaflets

evolve according to the alternation of day and night (see fig. 2.10). During daytime,

Averrhoa carambola leaflets are usually aligned (Ψ ' π). At night, the leaflets fall

down until they almost touch each other (Ψ ' 2π). Finally, at dawn, the leaflets

raise again and recover the alignment characteristic of daytime (Ψ ' π). Thus,

nyctinastic motions involve a single rotation of the leaflets around the axis of the

rachis in Averrhoa carambola. Note that, however, the extent of this rotation vary

from a plant to another. The closing value of Ψ might thus be much less that 2π

in some cases. The ascending and descending motions of the leaflets are initiated

a few hours earlier than dawn and dusk respectively. This suggests that the plant

has adapted its own (circadian) rhythm to the environmental condition in which it

lives.

9We have observed that the leaflets completely fall down after a train ride which can be shaky!
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Figure 2.11: Zoom on the ‘nervousness’ jolts. Leaflets are animated by sudden falls
during daytime. Here, they repeat with a characteristic period of about 15 min (same
data than in fig. 2.10).

‘Nervousness’ motions The qualitative difference between the ascending and

descending phases of nyctinasty is puzzling. We see that while the ascending phase

of the motion is smooth, the descending motion is quite jolty. The descending

phase of nyctinasty is accompanied by a succession of ‘nervousness’ motions until

the leaflets reach their night position. Such jolts have already been reported for

Averrhoa carambola (Ulrich, 1911), but also in the case of Averrhoa bilimbi (Darwin

& Darwin, 1880). Like in the case of the seismonasty, Ψ reaches a maximum value

Ψmax in a few seconds and slowly decreases. The value of Ψmax is not always the

same for a given leaflet. In the exposed example, the jolts are spaced of about 15

min (see fig. 2.11). The behaviour presented here is somewhat extreme as the leaflets

undergo numerous jolts. In other cases, the number of jolts was much more reduced.

We refer at these jolts as ‘nervousness’ motions since they are not clearly asso-

ciated to any sensitivity and seem completely autonomic. They could be triggered

by some air displacements (wind?), but considering the difficulty to trigger nastic

responses by patting the leaflets this is not the most likely. The leaflets jolt mostly

during daytime, making light a possible cue for these motions. But its influence is

not clear as jolts remain in its absence. These nervousness jolts might be tightly

connected to the osmotic regulation within the pulvini of the petiolules.
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Finally, we see how the motions that remain at maturity are similar—at the

level of their trajectories—to the developmental motions of the leaflets for Averrhoa

carambola.

2.4 Discussion and conclusion

Averrhoa carambola compound leaves display a wide variety of motions. Its dif-

ferent motions and their succession is also a perfect illustration of the vision of plant

motions developed in Chapter 1. The rachis unfurls in a typical hook shape and,

in the same time, is animated by a quite enhanced nutation motion. The leaflets,

initially folded and packed against the rachis, slowly unpack and unfold. When they

reach maturity, Averrhoa carambola leaflets also display two kinds of reversible mo-

tions: seismonasty and nyctinasty. These two motions have different time scales but

share the same trajectory. Their trajectories recall the unpacking of the leaflets dur-

ing growth, consistently with the idea that reversible plant motions are a regression

of some irreversible plant motions. The motions displayed by Averrhoa carambola

actually span the most of the known motions in the plant kingdom. They also

occur at several scales—from the petiolule to the whole rachis—and with different

timescales—from seconds to days.

Arabidopsis thaliana has been the usual plant model since the 1990s and should

naturally be considered for the study of plant motions. Among the strong advantages

Arabidopsis thaliana provides the experimentalist are the wide palette of available

mutants. As a matter of fact, its genome has been entirely sequenced and allows

proper biological investigations of the genetic regulation of growth and motions.

Despite this incontestable advantage, the motions of Arabidopsis thaliana are little

diversified. The leaves of its rosette go through successive epinastic and hyponas-

tic motions throughout their development (Dornbusch et al., 2014) that could be

interpreted as an oscillatory motion. Its inflorescence stems also display circumnu-

tation (Schuster & Engelmann, 1997) and, when mature, are able to correct their

posture thanks to tropisms (Bastien et al., 2013). Finally, no reversible motion is

kept at the maturity stage. So, Arabidopsis thaliana is a powerful plant model to

explore the genetic aspects of growth, posture regulation and their associated mo-

tions. But it does not allow a complete study of plant motions. A comprehensive

approach of plant motions can be carried out on plants showing a wider diversity of

motions. A lot of questions can be addressed on growth and motions—outside the

field of genetics—on the grounds of biological physics and histology. These questions

can then lead to hypothesis on genetic regulations that will then be testable on the
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model Arabidopsis thaliana. Conversely, the study of plant motions is also a way to

test the generality of recent findings on the growth of Arabidopsis thaliana.

In this sense, Averrhoa carambola is a strong model for the study of plant motions.

The rachis of its compound leaves—and its growth-driven motions—is of particular

interest to understand the interplays between growth and motions. Consistently

with the vision developed in Chapter 1, we are now going to study the motions in

the logic of their succession: unfurling, then nutation.



Chapter 3
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The most striking characteristic of growing Averrhoa carambola leaves is their

hooked shape. This hook shape is found in many plant organs such as hypocotyls or

inflorescence stems. Among compound leaves, the typical hook shape of the growing

rachis is found across a large span of genera, species and places (see figure 3.1).

These leaves eventually reach straightness through the unfurling motion introduced

in chapter 2. Averrhoa carambola is a typical illustration of this behaviour.

This motion and its associated shape are puzzling. The maintenance of a steady

hook shape during growth—which is by essence a dynamic process—is a first sur-

prise. Wendy Silk perfectly captured this apparent paradox in one of her titles

‘Steady form from changing cells’ (Silk, 1992). Such a behaviour necessarily implies

specific kinematics for both curvature and elongation. This is why, in a first sec-

tion, we will discuss the kinematics of leaf unfurling. Another source of questions is

45
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Six examples of hooked rachis in compound leaves. (a) Amorpha fruc-
ticosa (b) Sandora wallichii (c) Calliandra haematocephala, Jardin des Plantes, Paris (d)
Juglans regia, Villefranche de Rouergue, France (e) Murraya koenigii, Cambridge Univer-
sity Botanic Garden (f) Averrhoa carambola cultivated in the laboratory. Images (a) and
(b) from (Rivière et al., 2017) supplemental information.
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the hook shape itself. Such a curved shape naturally evokes buckling phenomena.

Could the leaf then be a passive outcome of the interplay between its self-weight

and mechanical properties? The active/passive character of motions and shapes will

be discussed in a second section through the analysis of the mechanical properties

of the rachis.

This third chapter will thus be driven by two major questions: how can we

explain the hook shape? How does this shape evolve in time?

3.1 Kinematics of leaf unfurling

The unfurling motion consists in the progressive unbending of the rachis in its prin-

cipal direction of growth. The maintenance of a hook—and its eventual opening—at

the apical part of the rachis may resort on specific time and spatial patterns of cur-

vature variations. For these reasons, a proper quantification of the curvature is likely

to reveal mechanisms underlying the unfurling. To this end, we will set our work in

the framework designed by Erickson and Silk for the study of plant motions, inspired

from fluid dynamics (Silk & Erickson, 1979).

This thesis is rooted in previous unpublished results in the team, notably obtained

by Amina Saadani and Yoann Corre, two former inters. I will now detail the used

approach and the results it has brought.

3.1.1 Experimental approach

For the described experiment, we want to analyse the spatial and time evolution

of the side-view curvature κ� of the rachis. A camera was thus placed in the plane

(π) and pictures were taken every 5 minutes.

The pictures are then analysed in order to extract the curvature of the rachis.

Images are made binary—i.e. black and white only—by applying a threshold on

their green channels. The contours of the rachis are determined and the skeletons

are then derived by an algorithm that was previously developed in the team (Cou-

turier, 2009). The algorithm is based on the Voronoi diagram of the contour. The

Voronoi diagram of a given set of points—often referred as seeds—basically consists

in dividing the plane into regions based on the distance to each seed. Each seed

is associated to a single region—called a Voronoi cell—which contains the points

of the plane that are closed to the considered seed than to any other seed. These

cells are obtained by using the perpendicular bisector of all the segments defined by

the considered seeds with all the other ones. Voronoi cells are thus polygons which
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vertices are equidistant to at least three seeds. In the case of a closed shape, the

Voronoi vertices which are located within the shape define its midline.

Voronoi-based algorithms for skeleton extraction have proven to be efficient in

a large diversity of cases. They have been successfully used for hypocotyls and

coleoptiles (Bastien et al., 2013), diverse networks such as in lungs (Clément et al.,

2012), intestines or gastric organs. Here, the leaflets make it difficult to use this

technique. The first reason is that leaflets hide significant parts of the rachis during

the day, when Ψ = π. The hidden proportion of the rachis also evolves during

acquisition because of the nervousness and nyctinastic motions of the leaflets. The

second reason is that leaflets make the global shape of the leaf more complex than

a single cylindrical rachis. As a result, Voronoi-based skeletons systematically fail

around leaflets. In such cases, further numerical treatment is thus needed. The

retrieved skeleton is affected by the contour of the leaflets at a range that partly

depends on the smoothing process that is applied to the raw skeleton. One of the

possible workarounds is to fit the skeleton with Bézier curves. Bézier curves are

parametric curves that are used for their smoothness and regularity. By doing so,

we retrieve a smooth skeleton and get rid of the artefacts due to the leaflets.

The different needed geometrical quantities are then derived from the skeleton

in a straightforward manner. The arc length s of the skeleton is defined as the

cumulative distance from the base of the skeleton to its apex. The local orientation

θ of the rachis is obtained from the Cartesian coordinates of the skeleton, and the

curvature κ� is obtained by differentiating θ with respect to s.

The evolution of κ� is then represented by using spatio-temporal diagrams. A

spatio-temporal diagram is a graph displaying both the space and time evolution of

a given quantity. Basically, the two axes are the arc length s of the skeleton and time

t. The quantity of intereset—the curvature κ� of the rachis in (π)—is represented by

a heat map. A spatio-temporal diagram essentially is a matrix. Creating the spatio-

temporal diagram of a given experiment thus requires to interpolate the represented

data on a regular space-time grid.

Finally, let us define the usual vocabulary used to characterize the growth be-

haviour of a plant organ. The following definitions will be used in this whole thesis.

Growth is generally understood as the irreversible volumic increase of the consid-

ered organ. Since we are dealing with the primary growth of Averrhoa carambola

leaves, growth manifests itself through the elongation of the rachis. To measure the

growth of a complete organ or any subsection, the relative growth rate (RGR) is
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used (Erickson & Sax, 1956). Let L be the length of the organ of interest. Then,

the relative growth rate is given by

RGR = Ė =
1

L

dL

dt
(3.1)

and simply corresponds to the relative elongation of the considered part of the

organ. The growth behaviour of an organ can also be studied in a more local way,

to precisely know the spatial variations of elongation along an organ for example.

Doing so however requires to keep track of material points and build small increments

of the studied organ of length, say, δl. The relative elemental growth rate (REGR)

is then defined in an analogous manner than the RGR (Erickson & Sax, 1956):

REGR = ε̇ =
1

δl

dδl

dt
(3.2)

Of course, the relative growth rate simply corresponds to the spatial average of the

relative elemental growth rate over the length of the considered organ.

3.1.2 Bent zone and growth zone

The results presented in this section were all obtained on the same Averrhoa

carambola leaf, during an acquisition that lasted for 250 hours, that is to say almost

10.5 days. The spatio-temporal diagram of the curvature κ� is shown in figure 3.2.

For the purpose of this graph, the profiles κ�(t) had been smoothed thanks to a

moving average over 5 h.

First, this spatio-temporal diagram shows us the extent of the total elongation

of the rachis. The total length L(t) of the rachis is indicated by a solid black line

on the left obtained from the extremities of κ�(t) profiles. The length of the rachis

is initially of 2 cm and increases up to 25 cm on the duration of the experiment.

We also see changes in the relative growth rate (RGR). We can distinguish three

regimes of increasing RGR: from t = 0 h to 50 h, from 50 h to 175 h and finally the

RGR approximately stays constant up to the end of the experiment.

Second, we distinguish on the diagram three different types of motions. From

t = 0 h to 70 h, the rachis is strongly curved at his base. Curvatures decreases along

the rachis to end with a negative curvature at the apex. This negative curvature is

the signature of the end of the reversal motion at the apical extremity of the leaf.

Then, the region of strong curvature translates along the rachis until t = 110 h.

From this moment, the position of the bent zone with respect to the apex is almost

constant. Its position sc(t) is marked with a dotted line in figure 3.2. For any point
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Figure 3.2: spatio-temporal diagram of κ� along the rachis. The arc length used in
this graph is the regular arc length s. The point s = 0 is situated at the base of the leaf.
The total length L(t) of the rachis is indicated by a plain black line. The arc length sc(t)
indicates the position of the bent zone. Courtesy of Yoann Corre.

such that s < sc, κ� ' 0 m−1. So we see here that the rachis has shifted from a

totally curved shape to the typical hook shape of compound leaves, with a straight

part and a curved part near the apex. The rachis is now unfurling. At last, we

notice that L(t) oscillates from t = 120 h. These oscillations of the total length of

the rachis are not physical. They actually correspond to the out-of-plane motions

of the rachis, that is to say nutation. Since the rachis bends and unbends in a plane

orthogonal to (π), its apparent length in the retrieved images is affected.

We have just seen that a bent zone at fixed distance from the apex underlies

the unfurling motion. According to our description of plant motions in Chapters

1 & 2, we except the unfurling motion to be driven by differential growth. So, we

can wonder what are the relationships between the bending zone and the growth

behaviour of the rachis. The global RGR of the rachis gave us information on the

global kinematics of growth but fails in providing local information on growth. To go

beyond this limitation, we are now going to study the trajectories of the leaflets along

the rachis (see figure 3.3a). This will give us information on the elongation of each

interleaflet of the rachis. Let us consider the first interleaflet, which is limited by the

trajectories 1 and 2. We see that the gap between the trajectories quickly increases

between t = 0 and t ' 120 h. Then, this distance remains constant until the end of

the experiment. The distance between the two trajectories is indeed the length of the
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Figure 3.3: Evidence of a growth zone. (a) Displacement of the leaflets along the
rachis. Raw data: blue dots, Fitted trajectories: red lines. (b) Trajectories of the leaflets
overlayed over the spatio-temporal diagram of κ�. Courtesy of Yoann Corre.

considered interleaflet. So, the interleaflet goes through an elongation phase which

stops around t = 120 h. Looking at the other interleaflets, we see that the closer

to the apex, the later they reach their final length. The duration of the experiment

prevents us from observing the end of the elongation phase for interleaflets 6 and 7

for instance. Altogether, these observations support the hypothesis of an elongation

zone, near the apex of the leaf. Do the organ elongate and bend on the same exact

region? Or does a spatial shift exist between the two considered zones?

The overlay of the fitted trajectories over the spatio-temporal diagram of cur-

vature previously presented brings some elements of answer to this question (see

figure 3.3b). We have discussed earlier the fact that the bending zone is properly

defined from t ' 110 h. Let us now take a look at the elongation behaviour of the

successive interleaflets from the same moment. The positions of the leaflets are all

almost constant in the zone of low curvature of the rachis. We thus see that for

all the interleaflets, most of their elongation is performed in the bent zone. This is

not perfectly verified as the petiole of the leaf finishes its elongation outside of the

bending zone. But we see that, later in the experiment, interleaflets closer to the

apex end their elongation while still being in the bent zone. In a first approximation,

the bending zone and the growth zone thus appear overlay. However, it is possible

that the elongation zone shrinks in time.

In summary, the analysis of these results have brought forward two major features

of Averrhoa carambola leaves during growth. We have seen that both curvature

and elongation occur in spatially defined regions of the rachis. The bending zone,
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corresponding to the region where the rachis unfurls and to the position of the hook,

develops quickly after the reversal motion. It is located at a constant distance from

the apex. The zone of elongation also corresponds to a limited part of the rachis,

near the apex. Although these two regions do not perfectly overlap, they seem to

have a significant overlay.

3.2 Macroscopic mechanics of the hook

The specificity of curvature and elongation kinematics during leaf unfurling has

been unravelled. The hook shape itself remains to be explained. The bending of the

rachis could be regarded as a passive bending resulting from the self-weight of the

rachis. Self weight is known to partially affect the shape of mature leaves (Moulia

et al., 1994). One can wonder to what extent the shapes and motions displayed

by compound leaves during their growth are active or passive. In addition, leaves

stiffen during their growth. Could a combination of these two phenomena explain

the shape of growing leaves?

3.2.1 Experimental approach

In their respective experiments, Silk and Moulia actively bent the studied organs

with weights. Here, to test the influence of the self-weight on the shape of the leaf,

it appears natural to modify the amplitude or the direction of the weight. To do

so, we simply flipped the plants upside-down. This results in an inversion of the

arrow of the weight and in a more or less prominent bending along the rachis. The

basic idea is then to compare the shape of the rachis in their normal and reversed

configurations. If the rotated leaf does not change its shape, this would suggest that

the self-weight has no direct mechanical role in the establishment of the shape.

Determination of mechanical quantities of interest

It is possible to extract the macroscopic mechanical properties of the rachis from

its shape thanks to beam theory (Silk & Beusmans, 1988). Some simplifications are

thus needed. The rachis is assumed to be axisymmetric, with an homogeneous den-

sity and isotropic mechanical properties. Moreover, we will neglect the mechanical

role of leaflets here.

When a beam is under the action of a given torque—or moment of force —, its

curvature κ� is modified and differs from its spontaneous curvature—the curvature

when no loading is applied—κ0�. Let us consider two configurations (+) and (−) of
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Figure 3.4: Parametrization of our mechanics problem. In this part of the study,
the reverse arc length sR will be used as it is more convenient. We define a global right
handed Cartesian coordinate system (~ex, ~ez). Consider an arbitrary force ~F applied on
the rachis at sR = s. ~F can be decomposed into two components, relative to the local
geometry of the rachis: a tangential component ~T and a normal component ~N . The sign
convention for an arbitrary torque Γ is indicated.

the same object undergoing the two corresponding torques Γ+ and Γ−. According

to beam theory, it is possible to express these two torques as follows:Γ+(s) = B(s)(κ+� (s)− κ0�(s))

Γ−(s) = B(s)(κ−� (s)− κ0�(s))
(3.3)

where s is the arc length along the beam, B is the flexural rigidity and κ0� is the

spontaneous curvature of the beam (Feynman et al., 1964). Simply put, the flex-

ural rigidity B corresponds to the resistance an objects opposes to a change of

curvature. A simple one-dimensional analogy can be done with Hooke’s law for a

spring F = k(x− x0) to better grasp equations (3.3). The quantity B is further-

more linked to the Young’s modulus of the considered material through the relation

B = EI where I is the second moment of area of the considered object. Finally, the

flexural rigidity B and the spontaneous curvature κ0� are given by:

B =
Γ+ − Γ−
κ+� − κ

−
�

; κ0� = κ� −
Γ

B
(3.4)

where Γ and κ� are the torques and the curvatures averaged over the two confor-

mations respectively.
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In our case, the two considered conformations are the initial shape and the shape

when the leaf is upside-down. In a first approach, we assume that the torque is only

caused by the self-weight of the rachis. In other words, we neglect the mechanical

action of the leaflets. We also assume that the rachis is cylindrical.

Let us now consider the frame and parametrization described in figure B.2. Let

us consider the free-body diagram of the studied leaf. The left part of the leaf—

0 6 sR 6 s for instance—has a weight
−→
P (s) such that

−→
P (s) = P (s)−→ez = ρgπ

∫ s

0

R2(sR)dsR
−→ez (3.5)

where g is the gravitational acceleration, ρ is the volumetric mass density of the

rachis and R its radius. This weight exerts a torque of force Γ(s) on the right part

of the rachis which is defined with respect to the apical end of the leaf—sR = 0. Its

intensity can be computed by the spatial integration of the normal component of

the weight
−→
N (see Appendix B for a complete derivation of this property).

Γ(s) =

∫ s

0

N(sR)dsR (3.6)

Altogether, the previous paragraphs show that it is possible to extract the macro-

scopic mechanical properties of the rachis from a few simple geometrical quantities.

Provided an assumption on the density of the rachis ρ, the knowledge of the arc

length s, the radius R and the curvature κ� of the rachis allow to determine its flex-

ural rigidity B. A reasonable approximation for ρ is—like for many soft biological

tissues—to take ρ = ρwater = 1 kg.m−3.

Experimental protocol

In order to collect all the needed quantities, we designed the following protocol.

The studied plant is firmly fixed to a clinostat1. The leaves that are not studied are

gently tied to the stem so that they do not hide the leaf of interest when flipped.

We deposit a small point of paint on the petiole of the studied leaf to make data

analysis easier. Also, a scale was inserted in the experimental setup.

The motor of the clinostat has been interfaced with Python. In consequence, it

can easily be programmed to perform any cycle of rotations2. Then, a camera—

1A clinostat is a slow rotating device usually used to counteract the effects of gravity. The
perpetual rotation of the plant prevents the sedimentation of the statoliths and supposedly disrupts
gravisensing.

2For instance, it is possible to set up random rotations at random moments, to assess the global
mechanical characteristics of the rachis.
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controlled with gphoto—is placed in front of the clinostat, and can take pictures

during the rotation or after it is complete.

Side-view pictures of the studied leaf are taken at short time intervals (approxi-

mately 1 every second) in order to track the evolution of their curvature. The two

most important pictures are: the initial one, and the one corresponding the mo-

ment when the leaf reaches the upside-down position. The viscous response to this

perturbation can be observed if we maintain the plant upside-down for longer times

(see Appendix B). In any case, the leaf should not be left upside-down more than

30 min. This duration of 30 min results from a trade-off. On the one hand, we want

to observe the evolution of the shape in time in case of viscous relaxation. On the

other hand, we want to avoid any gravitropic response from the plant. It has been

shown that gravitropic responses can be triggered by stimulations of only 3 minutes

in the case of Arabidopsis thaliana stems (Fukaki et al., 1996). Averrhoa caram-

bola stems are usually woodier than those of Arabidopsis thaliana. For this reason,

we expect gravitropic motions of Averrhoa carambola plants not to be triggered by

short gravistimulations. Moreover, no gravitropic response was observed during the

experiments and the growth of the studied leaves did not appear to be disturbed.

As a matter of fact, it is possible to study the evolution of the elasticity of the

rachis in time. Doing so, we would make it possible to correlate the changes in

mechanics with the histological changes taking place in the rachis. The evolution of

mechanics can be tracked in two different ways. One approach would be to select a

group of similar leaves (same number of leaflets for instance) but at different growth

stages. Thus, by performing the previously described experiment once on each leaf

there is no more gravisensing issue. The comparison of the obtained results becomes

less clear as several individuals (and therefore biological variability) are involved

though. another approach consists in performing the same experiment every day

on the same leaf. The main drawback of this method is that we are not absolutely

certain that the rotation of the plant has no effect on the development of the leaf

and eventually on its mechanics.

We have chosen the second method for our experiments since we did not notice

any gravitropic response nor abnormal growth behaviour for the studied leaves.

3.2.2 Data analysis

From the pictures that are the raw output of our experiment, we first want to

extract geometrical quantities such as κ�, sR and R. I propose to describe the main

steps required to achieve this goal in the following paragraphs.



56 Chapter 3. Hook shape of the growing leaf

Skeleton extraction

The most important step of our data processing is the skeleton extraction i.e. to

reduce the rachis to a single line. One of the major difficulties in the skeletonization

of the rachis is the presence of the leaflets. Segmentation-based techniques are

hard to apply since it is difficult to tell apart the leaflets from the rachis based

on their colors. Moreover, leaflets hide parts—sometimes large parts—of the rachis

and sometimes make it difficult to reconstruct the rachis by numerical methods.

On the contrary, the eye is good at completing and guessing curves. From here,

several methods could indeed be applied. Considering the low number of images

per experiment, we have chosen to digitalize the shape of the rachis thanks to a pen

tablet and the vector graphics editor Inkscape. This kind of digitalization has been

used in the past for experiments of this kind (Silk & Beusmans, 1988; Moulia et al.,

1994). The rachis is first drawn by hand on the pen tablet and is recorded as a set

of connected cubic Bézier curves by Inkscape. At first, the retrieved shape—or path

in the terms of vector graphics—is quite rough as it is affected by the motions of the

hand. This roughness can be smoothed out by progressively decreasing the number

of cubic Bézier curves constituting our path. While we do this, it is necessary to

adjust the parameters of the remaining Bézier curves to make the path fit to the

rachis. In particular, it is important to ensure that the last and first control points of

two consecutive Bézier curves and their common end/start point are aligned. Doing

so, we make sure that κ� is continuous.

Geometrical quantities

The next step is to compute all the geometrical quantities that are relevant to

our study: the reverse arc length sR, the curvature κ� and the radius of the rachis

R. The skeleton is first rasterized: we obtain a list of pixels with coordinates (x, y).

Then, the reverse arc length is simply computed as the cumulative distance from

the apex to the base of the rachis.

We then need to evaluate the radius R of the rachis. In order to do this, the local

orientation of the skeleton with respect to the vertical θ is determined in each point.

This allows us to determine the normal to the skeleton in each point. The value

of pixels in the green channel is then evaluated along the normal to the skeleton.

In a ideal case, the histogram is expected to look like a Heaviside distribution: 0

outside of the rachis, 1 on the rachis. The width of the step gives the diameter of

the rachis, 2R. In real cases, the value profile is smoother. Such a profile can be

fitted by the sum of two hyperbolic tangent functions—or equivalently by two error

functions. The retrieved value of R is indeed impacted by the presence of leaflets.
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Aberrant points are discarded thanks to a simple median filtering. Missing R values

are recovered by fitting the R vs. s relationship to a linear one. In other words,

we assume that the radius of the rachis decreases linearly as one gets closer to the

apex.

Finally, we want to get the curvature of the rachis. Rather than resorting to its

Cartesian definition—involving a double derivative—or to the spatial derivative of

θ, we have estimated κ� by locally fitting the rachis with a circle.

Mechanical quantities

All the geometrical and physical quantities have now been gathered to allow the

evaluation of the mechanical quantities of interest. It is necessary to acquire these

quantities for both conformations of the leaf: the normal one, and the upside-down

one. From this point, the derivation of the spontaneous curvature κ0� and of the

flexural rigidity B is straightforward.

Specific precautions should however be taken in order to ensure that the two

skeletons are evaluated consistently. That is to say that they should have the same

number of points, but also that these points effectively correspond to the same

material points on the rachis. This is needed because the evaluation of B at a given

point requires the knowledge of the geometrical quantities at this same material

point for the two configurations.

3.2.3 A first look at shape and self-weight

One of our goals is to understand the influence of the self-weight of the rachis on

its own shape. To do so, as previously explained, we simply flip the plant upside-

down and observe the deformation of the rachis. In this section, I will show the

evolution of a single leaf over five days of experiment. A single acquisition per day

was performed.

The simple experiment consisting in reversing the direction of the leaf self-weight

is illustrated in figure 3.5. A young leaf is flipped upside-down and the shapes of the

initial and final states are compared in the two first panels (left and center). We can

hardly see any difference in the shape of the rachis between the two conformations.

The right-most panel of figure 3.5 presents the superimposition of the two shapes—

the flipped conformation has been rotated. We notice that the rachis is globally

displaced upward, as it could have been reasonable expected. This displacement

is tenuous though. Colored arrows indicate the position of the apex for the two
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Figure 3.5: Superposition of the normal and flipped configurations of the leaf
(day 1). The arrows in the right-most panel indicate the position of the apex for the
normal configuration (blue) and the flipped configuration (yellow).

conformations. The position of the apex indeed integrates the deformation of the

whole rachis. We see that here the displacement of the apex resulting from the

reversal of the weight is small compared to the length of the rachis. This suggests

a reduced influence of the deformations of the rachis due to its own weight in its

shape. Does this observation extend to the further developmental stages of the leaf?

The repetition of this experiment over five successive days is presented in fig-

ure 3.6. The evolution of the shape of the rachis during its development is rep-

resented by the plain-lined skeletons. We see that the evolution of the shape is

indeed consistent with the description of the unfurling motion in chapter 2 and in

section 3.1. A bent zone persists throughout the development of the leaf. The hook

follows the apex and the part of the rachis the closest to the stem is now straight.

The observation of the skeletons also shows us that the mean curvature of the bent

zone gets lower and lower. We also see that, at first, the rachis is completely curved.

The length of bending zone Lbz is at least equal to the total length of the rachis, in

a completely analogous manner than the growth zone behaviour.

More importantly, the skeletons corresponding to the flipped conformation of the

rachis are shown in dotted line. The deformation of the rachis due to the reversal

of the direction of its weight appears to become greater and greater in time. This

is obvious when we compare the first and last pair of skeletons. Unlike in the case

of the first skeleton, the displacement of the apex is not negligible in the case of the

last skeleton. From the third day of experiment, deformations become so intense

that we clearly see inflexion points on the flipped rachis conformation skeletons,

characterizing local changes of sign of κ�.

Contrary to the previously discussed case, the great deformation of the rachis dur-

ing the experiment suggests an important role of the deformations due to self-weight

in the normal shape of the rachis. The importance of self-weight for the shape of the
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Figure 3.6: Evolution of the shape of the rachis in time. For each day of the
experiment, the skeletons corresponding to the normal (+) and flipped (−) conformations
are superimposed. The skeletons are arranged from the earlier stages of development (left)
to the later ones (right).

rachis seems to progressively increase in time, from negligible to important. How

can we explain these differences of behaviour? Considering the fact that Averrhoa

carambola rachis stiffen during their growth, could this be a signature of a change

in the mechanical properties of the rachis? At last, can we properly quantify the

importance of self-weight in the shape of the rachis?

3.2.4 Mechanical properties in time

The shape of the rachis results from the external mechanical actions it undergoes,

but also from its intrinsic mechanical properties. This is what expresses equa-

tion (3.3). The two quantities that determine the curvature the rachis adopts under

a given torque are its flexural rigidity B and its spontaneous curvature κ0�. In normal

conditions, the rachis is only submitted to the action of its own weight. Understand-

ing the observed shape of the rachis thus requires the knowledge of its own weight,

B and κ0�. The protocol discussed in section 3.2.1 allows us to determine the latter

ones.

In this section, we will try and go a step further in the understanding of the

shape of the rachis than in section 3.2.3. We are going to seek in the intrinsic
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Figure 3.7: Evolution of the spontaneous curvature κ0� of the rachis in time. The
arc length used here is the reverse arc length sR or the distance to the apex. The point
sR = 0 is then the apex of the leaf. The colors attributed to the different days of the
experiment correspond to those initially defined in figure 3.6.

mechanical parameters of the rachis an explanation for its shape. The repetition of

this experiment over 5 days on the same leaf will also allow us to track the evolution

of these quantities in time.

Among the parameters that characterize the mechanical behaviour of the rachis,

its spontaneous curvature is of particular interest. It is the curvature the rachis

would adopt in the absence of any load. In other words, it is the ‘natural’ curvature

of the rachis. The successive profiles of κ0� are shown in figure 3.7. The most striking

feature of this figure is that the rachis has a non-zero spontaneous curvature. Put

differently, the rachis is naturally curved. This strongly supports the active character

of shape regulation in Averrhoa carambola. The exact influence of the self-weight

on the rachis shape still needs to be properly investigated and quantified though.

Looking at each individual κ0� profile, we notice that the rachis can be divided in

two distinct parts:

1. A bent zone, close to the apex where most of the spontaneous curvature is

concentrated.
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2. A straight zone, close to the principal stem of the plant. In this part, the

spontaneous curvature is almost homogeneous and equal to 0.

These two regions change in time and in space. In particular, the global decrease

of the spontaneous curvature values in time is blatant. At first developmental stages,

the spontaneous curvature is large (maxκ0� = 240 m−1 at day 1), but the κ0� profile

becomes flatter and flatter in time, meaning that the rachis tends to straighten

itself. This can be viewed as an extension of the straight zone of the rachis. This

behaviour is indeed consistent with the unfurling motion of the rachis over the days,

as it has previously been described. In the same time, the length Lbz of the bent

zone increases in time. At the beginning of the experiment, we see that the rachis is

completely curved. The length Lbz of the bent zone appears to be limited by the size

of the rachis. From the second day of the experiment, the bent zone extends. Then,

Lbz stabilizes during the two last days of the experiment. At this stage, the bent

zone seems to have reached its complete length. The duration of the experiment

prevents us from observing the decrease of Lbz. Such a decrease should be expected,

considering the description of the unfurling motion 2.7: the bent zone disappears to

leave a completely straight rachis. We also note that the position of the maximum

of κ0� is not fixed and tends to translate toward the base of the leaf.

The second quantity which is necessary to characterize the flexural behaviour of

the rachis is the so-called flexural rigidity B. The rigidity profiles are shown for each

day of the experiment in figure 3.8. We first notice that B is strongly inhomogeneous

along the rachis. It spans a remarkably large interval of values, from 10−12 N.m2 to

10−4 N.m2, that is to say eight orders of magnitude. Note however that the results

shown in figure 3.8 have to be considered carefully. This is specifically true near

the apex where the torque exerted by the self-weight on the rest of the rachis is

negligible. This results in tiny variations of κ� and in a great error on B. However,

there is a clear tendency in the profile of B. In contrast with κ0�, we notice that all

the B profiles are collapsing on a single ‘master curve’. In other words, the profile

of B does not vary much on the duration of the experiment. Thanks to the spatial

stability of the B profile, we can define three different zones of fixed position. These

three zones are then defined both by their position relative to the apex and by the

local rate of change of B. The three zones are the following:

1. A soft region near the apex. In this part of the rachis, B varies between

10−12 N.m2 and 10−7 N.m2. Here, the soft region extends up to 2 cm away

from the apex. The rate of change of B is not a relevant information here,

because of the possible large errors on the values of B.
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Figure 3.8: Evolution of the flexural rigidity B along the rachis in time. The arc
length used here is the reverse arc length sR or the distance to the apex. The point sR = 0
is then the apex of the leaf. The colors attributed to the different days of the experiment
correspond to those initially defined in figure 3.6.

2. A transition region in which the rigidity evolves slowly along the rachis. Here,

it is located between 2 cm and 10 cm away from the rachis.

3. A rigid region in which the flexural rigidity is almost constant. This zone

corresponds to the parts of the rachis which are close to the petiole and the

petiole itself. Here the final value of the flexural rigidity is B ∼ 10−5 N.m2.

The previous division of the rachis enhances the fact that a material point of

the rachis is going to become stiffer and stiffer throughout the growth process.

Material points will all start in the soft region, near the apex, where new material

is synthesized and then migrate to the following regions. The rachis also becomes

globally stiffer, as it can be seen by comparing the B profiles for the first and the

last day for instance. These results do not show the complete development of the

leaf. But we can reasonably expect the profile of B to slowly become homogeneous.

At this point, a question naturally arises: what are the biological processes which

make the rachis stiffen?
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3.2.5 Links with lignification

In most vascular plants, the maturation of some specific tissues implies the depo-

sition of lignin3 on the cell walls. This is what we call lignification. Lignification is

known to affect the physical properties of the cell walls. Lignin being an hydropho-

bic component, they make conductive tissues such as secondary xylems impermeable

and facilitate water transport (Barceló, 1997). In addition to that, lignin deposition

stiffens the tissues. It has been shown that the higher the lignin content, the higher

the rigidity of the cell wall (Ruggeberg et al., 2008; Speck & Burgert, 2011). We

have observed that the inner tissues of the mature rachis of Averrhoa carambola con-

tain, for a large part, xylem and bast fibers that are lignified tissues (see figure 2.4).

Lignification is thus a possible candidate to explain the strong gradient of flexural

rigidity along the growing rachis (see figure 3.8).

Together with Clara Billard, a bachelor intern in the lab during spring 2016,

we have studied the lignification status of the inner tissues of a growing Averrhoa

carambola leaf. The lignified tissues were evidenced thanks to a classical dual stain-

ing technique with carmine (red stain, cellulosic walls) and iodine green (greenish-

blueish stain, lignified tissues). The lignification rate of each hand-cut sample was

then evaluated by measuring the ratio of the area of lignified tissues with the total

area of the sample. Such a method is not very accurate. It depends on the thickness

of the sample, on the time of exposure to the stain and on the quality of the final

picture. This method nevertheless provides interesting qualitative results.

The successive samples are show in figure 3.9a. We immediatly see that there

is a gradient of lignification along the rachis, with highly lignified tissues near the

stem and less lignified tissues at the apex. This global tendency is confirmed by

the quantification of the lignification ratio of each sample (see figure 3.9b). The

lignification rate is of 17% in the first sample and drops to 7% in sample 5. The

lignification rate then increases again in sample 6, but this is likely due to the

inaccuracy of our method. In the same time, we see that the higher levels of lignin

are reached where the local curvature is minimal. Can we pinpoint the presence of

a lignification zone, in a similar manner than for κ� or B?

We see in the sample corresponding to the first interleaflet that a complete ring of

bast fibers has already formed underneath the outermost layers of the rachis. Closer

to the centre, we see that the secondary xylem is developing4. It forms an incomplete

3From the latin word lignum meaning wood.
4We can tell it is still developing thanks to the comparison with figure 2.4 where a full ring

of xylem is visible, taking most of the room in between the bast fibres and the central medullar
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Figure 3.9: Evaluating the lignification status of the growing rachis. (a) Cross-
sections of a rachis colored with Carmine and Iodine green. The number of the interleaflet
to which the sample belongs is indicated. (b) Lignification rate per interleaflet. The ligni-
fication rate computed from each sample in (a) is shown on its corresponding interleaflet.
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ring, slightly thicker than the bast fibres ring. The following samples show less and

less complete bast fibres rings. The secondary xylem is already greatly reduced

in interleaflet 3 compared with interleaflet 1. For interleaflets from 4 to 6, the

iodine green stain only reveals disjoint vessels. We also see that their number keeps

decreasing when we go toward the apex. If we follow the usual direction for tissue

development—from the apex to the stem —, we thus see that vessels are lignified

early on. The number of lignified vessels increases in time. Their lignification seem

to take place from the abaxial face to the adaxial one. On the contrary, the ring of

bast fibres seems to develop from the adaxial face to the abaxial one.

Finally, we see that there is a lignification gradient oriented from the apex to the

petiole of the leaf. This lignification gradient is accompanied with a maturation

gradient of the tissues which underlies the formation of support tissues of the plant

(bast fibres). It is difficult to clearly evidence a lignification zone in the rachis. It

seems that the lignin deposition starts in the earlier developmental stages of the

tissues and seems to occur everywhere, but at different paces. The region where

lignification appears to be the quickest is near the petiole, with the formation of

thick rings of bast fibers and secondary xylem.

3.3 Discussion and partial conclusion

Our experiments allowed us to explore several aspects of the unfurling motion of

Averrhoa carambola leaves and their associated hook shapes. Two major questions

were asked: how can we explain the hook shape? How does this shape evolve in

time? We are now going to discuss the previously described results in order to

extract an answer to these questions.

Shape is actively regulated throughout development The hook shape of

growing compound leaves—among which Averrhoa carambola leaves—is character-

ized by a prominent curvature near the apex of the rachis (see figure 3.5, left-most

panel for instance). This curvature has been quantified (see figure 3.2) and the

radius of curvature 1/κ� has been found to be approximately ten times superior

to the typical radius of the rachis. The question was asked from what this curved

shape could result from. The natural idea of the influence of the self-weight on the

shape was explored in section 3.2. By flipping the leaf upside-down, we have shown

that the role of the deformations due to the self-weight of the leaf on its shape is

parenchyma.
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negligible at first developmental stages (see figure 3.5). This suggests that the hook

shape results from an active process at early stages at least.

A proper characterization of this behaviour has been carried out by the de-

termination of the mechanical properties at play: the flexural rigidity B and the

spontaneous curvature κ0�. We have neglected the mechanical actions applied by

the leaflets on the rachis. As a result, torques are thus underestimated and so is

B, but κ0� is overestimated. Our results are sufficient however to give us tendencies

and orders of magnitude. For the most early stage of the experiment, B was found

to be low (compare with other curves, see figure 3.8). However, the rachis is almost

not deformed when flipped. This is because the shape is indeed ruled by both κ0�
and B as shown in equation (3.3). In other words, soft tissues are not a sufficient

condition to get a curved rachis. Most of the contribution to the shape of the rachis

is actually contained in the spontaneous curvature (see figure 3.7, light blue). Con-

sistently with the previous paragraph, we show here that the hook shape is actively

regulated by the plant at the earliest developmental stages.

We then noted that the deformations of the rachis due to its self-weight during

the experiment seemed to increase for the latest stages of the experiment (see fig-

ure 3.6). This suggests that, as the development progresses, the shape of the leaf is

more and more impacted by the deformations due to its own weight. The question

of the mechanisms underlying the evolution of the hook shape—i.e. the unfurling

motion—was thus asked. We have shown that the unfurling motion is characterized

by the propagation of a bent zone at a fixed length of the apex (see figure 3.2).

The repetition of the flip experiment allowed us to track the evolution of the B and

κ0� profiles in time. We have put forward that the B profile is steady: all curves

overlay on a ‘master curve’ (see figure 3.8). On the contrary, κ0� exhibited strong

changes on the duration on the experiment. It goes from a peak distribution and

evolves toward a homogeneously null distribution (see figure 3.7). This indicates

that the rachis tends to a naturally straight shape and corresponds to the definition

of the unfurling motion. Thus, despite the increasing impact of the deformations

due to the self-weight on the shape of the rachis, κ0� keeps underlying the changes

associated to the unfurling motion. Altogether, this suggests an active regulation of

the shape of rachis throughout the development.

Differential growth seems to occur where the elongation rate drops

If the curvature of the rachis is actively controlled, it might now be asked what

drives the changes of κ� in time. According to the description of the unfurling

motion detailed in Chapter 2, we expect that changes in κ� are driven by differential
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growth. Let us consider a small material element of the rachis. This element starts

its development in the bent zone, near the apex and progressively drifts towards the

straight part of the rachis (see figure 3.2). In other words, the considered element

unbends itself downstream of the bending zone. Differential growth necessarily

takes place in this specific region. Referring to figure 3.3b, we see that, in most

cases, elongation has almost stopped downstream of the bent zone. In consequence,

differential growth is likely to occur in a region where elongation is getting lower

and lower. The results presented in section 3.1 do not allow us to go further in this

direction. We can however take this observation has a working hypothesis for the

rest of our work.

Growth, curvature, rigidity and lignification interplays The analysis of the

previous results also led us to define four different antagonisms along the rachis:

bent/straight (see figure 3.2), growing/not growing (figure 3.3b), soft/stiff (fig-

ure 3.8) and low/high lignification level (figure 3.9). Let us now discuss the interplays

between all these zones.

Bending zone Bending zones are often defined when treating plant motions

related problems. This is particularly true when it comes to circumnutation or

nutation (Millet et al., 1988). Because of the nature of the hook shape, it was

expected to pinpoint a bent zone in our measurements (see figures 3.5 and 3.6). Here,

the main feature of this bent zone is that it is set at a constant distance from the apex

(see figure 3.2). Such behaviours have already been reported in the case of hypocotyl

unfurling (Silk & Erickson, 1978). It was observed that the curvature profile was

approximately steady, consistently with our results. These similarities between the

kinematics of hook maintenance—or unfurling—in hypocotyls and compound leaves

are striking and may indicate a common regulation process for hook-shaped organs.

Growth zone It also appeared that the elongation of tissues is confined to

the apical region of the rachis (see figure 3.3b). This behaviour is often called

‘tip growth’. It has been observed for a diversity of cylindrical plant organs such

as hypocotyls (Silk & Erickson, 1978) and roots (Silk et al., 1989; Bizet et al.,

2015). This behaviour seems to be considered a widespread feature of plant growth

and is often used when modelling the growth and/or motions of complete plant

organs (Bastien et al., 2013).

Growth and curvature interplays We have already discussed the fact that

the growth zone and the bent zone almost overlap in section 3.1.2. The growth

zone however seems to be shrinking in time (see figure 3.3b) and an increasing
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discrepancy is set between the two zones. The position of the curved part of the

rachis nevertheless constitutes a good approximation of the position of the growing

zone in our case.

Rigidity zones The analysis of the flexural rigidity profiles has brought for-

ward three different zones on the rachis. The global behaviour of B was found to be

monotonic increasing, with 5 orders of magnitude between the apex and the base

of the rachis. We see that the minimum of B (the softest rigidity zone we defined)

is likely to be included in the growth zone. This behaviour contrasts with measure-

ments made on the apical region of growing roots (Beusmans & Silk, 1988). Silk

and Beusmans had found that the root presented a maximum of extensibility away

from the apex and from the growth zone. We have already discussed the possibly

large errors on B in section 3.1.2 to which this discrepancy could be partly ascribed.

Moreover, it should be remembered that in both studies the mechanical properties

of the rachis are probed in a direction orthogonal to the growth direction. Would the

behaviour of the first zone be confirmed, how could we understand it? The behaviour

of the first rigidity zone (very soft, and quick increase of B) may be explained by

the maturation of the cell walls. Because the first rigidity zone is located at the

apex, it is comprised in the growth zone and might be the place where cell divisions

occur and new material is synthesised. The mechanical properties of dividing plant

cells may be different from mature cells. Gradients of cell wall composition—other

than lignin—along the elongation zone of growing organs have already been mea-

sured (Zhang et al., 2014). For example, the contents in crystalline cellulose were

found to increase from the apex to the base. Moreover, the division of a mother cell

into two daughter cells requires the synthesis of a new physical border between the

two daughters. This step is called cytokinesis. The newly formed border is initially

reduced to the thin middle lamella. The middle lamella and the primary cell wall are

two distinct tissues that have different compositions and mechanical properties (Za-

mil & Geitmann, 2017). We thus see that the composition of the young primary cell

wall is dynamic and may explain the observed rigidity profile.

Lignification zone The second rigidity zone shows a more progressive increase

of B and the third zone presents almost homogeneous B. We had observed that

the tissues of Averrhoa carambola leaves are lignified relatively quickly after growth.

It has been shown that the higher the lignin content in a tissue, the higher its

rigidity (Speck & Burgert, 2011). Lignification was thus a possible explanation for

this stiffening of the rachis (see figure 3.8). The differential staining of transverse

cuts of the rachis revealed a gradient of lignification in the rachis from the base to the

apex (see figure 3.9). In our experiment, interleaflet 1, already straight and several
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interleaflets away from the bent/growth zone was by far the most lignified. The

lignification level drops after the third interleaflet and seems almost homogeneous

after that. Thus, it seems that the lignification zone is significantly delayed/shifted

from the bent/growth zone. Its position is however compatible with the second and

third rigidity zones defined earlier.

The technical limitations of the used technique have already been discussed in

section 3.2.5. The used technique however easily provides global information on

lignification. More quantitative results could be obtained thanks to spectrophotom-

etry (Ruggeberg et al., 2008) or more sophisticated chemical staining methods (Lion

et al., 2017). An obvious additional drawback of this experiment lies in the fact that

it only shows lignification status of the tissues at a given time. The spatial and time

patterns of lignification are still unclear and several types of lignification dynamics

could be imagined. In order to properly establish a link between lignification, growth

and curvature kinematics it is needed to track the evolution of lignification within

tissues in a non-invasive and non-destructive way. Lignification causes the tissues to

become stiffer and more dense (wider cell walls). It might thus be possible to detect

the resulting density/stiffness inhomogeneities and to follow their evolution thanks

to X-ray imaging for example.

Wrap-up: posture regulation and associated sensivities We have seen that

the posture of Averrhoa carambola leaves is actively regulated during their devel-

opment. The unfurling motion is the manifestation of this regulation of curvature.

The straightening of the rachis brings the idea of autotropism to mind. The ques-

tion of the sensitivities associated to the unfurling, the hook shape and posture

regulation may now be asked. Proprioception—the sensitivity to local curvature

and self-alignment—was shown to be of prime importance in gravitropism (Bastien

et al., 2013). It was proposed by the same authors that a mechanism for proprio-

ception could rely on the sensitivity to mechanical strain and/or stress. Would the

rachis rely on its strain to regulate its posture, it would then be necessary for it to

be deformable under its own weight. Here, we show that the mechanical properties

(κ0�, B) of the rachis dramatically change in time and in space. The spatial patterns

of B and κ0� could possibly be regulated to maintain a zone of high ‘curvature strain’

(κ� − κ0�)/(κ0�) = Γ/(Bκ0�). We see that the strain in curvature directly depends on

the applied torque—which basically depends on the distance to the apex of the con-

sidered point —, B and κ0�. The maintenance of a zone with high bending strain

would ensure a differential stress of the abaxial and adaxial faces of the rachis which

could in turn trigger differential growth.

The trajectory of a set of material points during the development of the leaf

would then be the following. After a given number of cell divisions at the apex,
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a set of cells would first see their primary cell walls mature and their elongation

would begin shortly afterwards (first rigidity zone + growth zone + bent zone).

Then, the elongation rate of the considered set of material points will decrease and

they will unbend (end of growth zone and bent zone). The rigidity of the set of

point keeps increasing and their curvature keeps decreasing (second rigidity zone +

straight zone + lignification zone). In this part, the sensitivity to the weight being

maximal, adjustments of the curvature of the rachis are still possible by differential

growth. At last, the considered set of points is perfectly straight. Its shape and

elongation are freezed by lignification (lignified zone + straight zone).

We have shown in this chapter that the leaf actively controls its curvature at the

earliest stages of development. Later on, its curvature is partially impacted by its

own weight. This is however accompanied by strong changes in the spontaneous

curvature of the rachis, suggesting an active control of the curvature throughout the

whole development.



Chapter 4

Characterizing the nutation

motion

Contents

4.1 Experimental method . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Quantities of interest . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Curvature variations and associated differential elongation 76

4.2.2 Relation between elongation and differential elongation . 80

4.2.3 Nutation described as an oscillation . . . . . . . . . . . . 86

4.3 Discussion and partial conclusion . . . . . . . . . . . . . . 96

The growth of Averrhoa carambola compound leaves is not solely accompanied by

the slow unfurling motion. A closer observation reveals a periodical swaying motion

of the rachis in the perpendicular direction: the nutation. Nutation contrasts with

the unfurling motion in several ways. In particular, compared to the time scale of

growth, their respective time scales correspond to two extreme cases. Despite their

opposed natures, could the unfurling and nutation motions share common growth

patterns and kinematics?

Nutation and circumnutation have been heavily studied, mostly since the works

of Charles and Francis Darwin at the end of the nineteenth century. Their apparent

autonomous character and their periodicity have drawn most of the attention. Many

studies investigated the possible interactions of nutation motions with external cues

71
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such as gravity. In contrast, fewer studies have been dedicated to understanding the

kinematics of nutation and its relation to growth.

In this fourth chapter, we will try to answer the following questions: what are

the characteristics of nutation? What are its kinematics?

4.1 Experimental method

4.1.1 Quantities of interest

Before discussing our experimental set-up, let us identify the relevant parameters

to describe and characterize the nutation of Averrhoa carambola leaves.

In many studies, the nutation motion is described in terms of tip position or tip

angle. Such quantifications of nutation are handy in the sense that they are easy to

understand and to measure. We have however discussed in Chapter 2 that a more

complete description of the nutation motion could be achieved by measuring the local

curvature of the nutating organ rather than the angle or position of a single point.

In this chapter, we will use both descriptions depending on the specific addressed

question. Our reduced measurement of the nutation is given by the deflection ∆y

of the apex with respect to the principal growth direction of the rachis ~d. Since

nutation is an out-of-plane motion, a more complete quantification of nutation is

given by the curvature κ⊥ along the rachis.

We then want to link the motion to the elongation behaviour in a similar manner

than what has been done in Chapter 3 for the unfurling motion. As discussed in

Chapter 1, the elongation behaviour of an organ undergoing growth motions can

be described by two components: elongation rate and differential elongation. The

elongation of the rachis can either be quantified by the relative elemental elongation

rate ε̇ or in an averaged way by the relative growth rate Ė. Differential elongation

is more tricky to measure. Under the hypothesis that nutation is driven by nutation

only, it can however be estimated. It is possible to establish a relationship between

the variation of curvature and the amount of differential growth (Bastien, 2010):

Dκ⊥
Dt

=
1−R2κ2⊥

R
δ̇ (4.1)

∂κ⊥
∂t

+ v
∂κ⊥
∂s

=
1−R2κ2⊥

R
δ̇ (4.2)

where v =
∫ s
0
ε̇(s′, t)ds′ is the speed at the considered arc length. Here, the typical

time scale of nutation is much smaller that the typical time scale of elongation. Thus,
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v
∂κ⊥
∂s
� ∂κ⊥

∂t
. We can then approximate the amount of differential elongation as:

δ̇ ' R

1−R2κ2⊥

∂κ⊥
∂t

(4.3)

This equation will allow us to approximate the amount of differential elongation

of the tissue, under the hypothesis that nutation is driven by differential growth

only.

In the previous chapter, we have formulated the hypothesis that differential growth

occurs where the relative elemental growth rate of the tissue drops. We will be

able to access the differential elongation rate thanks to the proxy of curvature, but

the REGR ε̇ will not be directly accessible. Like in section 3.1, we can retrieve

coarse information on the growth field—the relative growth rates RGR—for each

interleaflet thanks to the trajectories of the leaflets. A quantity equivalent to the

RGR has thus to be built for the differential elongation of the tissues. The RGR

actually correspond The ‘relative differential elongation rate’ Ḋ for each leaflet can

be defined as :

Ḋ =
1

Li

∣∣∣∣∣
∫ smax,i

smin,i

δ̇(s)ds

∣∣∣∣∣ (4.4)

where Li = smax,i − smin,i is the length of the considered interleaflet. Here we take

the absolute value of the score because the sign of δ̇ is purely conventional and we

are actually interested in the magnitude of differential elongation within the tissues.

4.1.2 Experimental set-up

Nutation being an out of plane motion, it is not relevant anymore to take pictures

in the plane (π) of growth. To capture the evolution of the κ⊥ in time, we place

a camera above the leaf of interest, orthogonal to the vertical direction. The main

drawback to top-view pictures is that it is not possible to observe the whole rachis.

Growing Averrhoa carambola leaves are indeed hooked and their apical part is most

of the time invisible from above. The apparent spatial extension of the rachis can be

affected in several ways. First, global motions of the rachis can result in phases of

apparent contraction or elongation of the rachis. It has already been discussed that

it is most of the time not possible to observe the complete rachis. But the observable

portion of the rachis however evolves as the rachis periodically—and partially—furls

and unfurls. Global changes of the orientation of the rachis with respect to the top

camera also affect the apparent length of the rachis. Global displacements of the

rachis can also result in the concealment of a part of the rachis. Finally, as the
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2 cm

∆y

Figure 4.1: Typical top-view image. The prepared rachis is covered with fluorescent
orange pigments. The position of the pairs of leaflets is indicated by blue fluorescent
points. The deflection ∆y of the rachis with respect to ~d is indicated.

rachis irreversibly unfurls and grows, more of it becomes observable.

Similarly to the experiments described in section 3.1, the follow-up of κ⊥ profiles

in time is realised by using time-lapse photography. The typical time interval for

this kind of acquisition varies between 1 min and 5 min and will be indicated when

needed. Images were taken with Nikon D3300 DSLR cameras piloted with the

software gphoto2. The cameras were firmly fixed on a rigid structure to avoid any

displacement or rotation.

Knowing that the leaf is going to considerably elongate during the experiment,

the camera needs to be set quite far away the rachis in order to be able to capture

the whole rachis at any time of its development. This results in a quite thin rachis

on the pictures. The most important quantity for our study is the out-of-plane

curvature κ⊥. The quality of the skeleton is then crucial for a precise quantification

of nutation. This is why I have chosen to heavily mark the rachis with fluorescent

orange paint. This step allows a good contrast between the rachis, the leaflets

and the black background. It thus helps overcoming two major difficulties for the

skeleton extraction: a thin rachis and the presence of leaflets.

Note that according to the technique previously discussed we can only observe the

painted parts of the rachis. In a first time, it is not possible to paint the complete

rachis because the leaflets are packed on its adaxial face. It is then necessary to

complete the paint of the plant several times during an experiment. If two painting

adjustments are too spaced, this unfortunately results in a brutal increase of the

apparent spatial extension of the rachis. Finally, false detections during the image

analysis can result into artificially bigger skeletons.
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We also want to evaluate the relative growth rate Ė of each interleaflet. Like in

the previous Chapter, the tracking of the leaflets enables such measurements. The

detection of leaflets in top-view pictures might be difficult to handle. The reason

for that lies in their nyctinasty. To go beyond this experimental difficulty, I chose

to simply indicate the position of the leaf nodes along the rachis with small dots of

paint. This time blue fluorescent pigments were used to enhance contrast with the

orange painted rachis (see figure 4.1).

At last, the relative humidity and temperature of the room were monitored thanks

to a DHT22 sensor connected to an Arduino Uno board.

4.1.3 Data analysis

The output of each one of our experiment is a set of isochronous pictures from

which several quantities must now be extracted. The starting point is—as usual—

the skeleton. Thanks to the heavy painting of the rachis, the points belonging to

the rachis are extracted by a simple thresholding of the pictures. The skeleton is

obtained by reducing the previous cloud of points to a single line. This is done by

moving median filter on the Y-coordinates of the cloud of points.

Once the skeleton has been obtained, the arc length s is easily computed. The

curvature κ⊥ is evaluated by locally fitting a circle to the skeleton. The radius of

the fitted circle gives us the radius of curvature of the skeleton in the vicinity of the

probed points.

Since the position of the leaflets are indicated by blue paint dots, they are also

retrieved by thresholding each the blue channel of each frame. Two major difficulties

have been encountered in the detection and tracking of the position of the leaflets.

First, the blue spot for each pair of leaflet ‘dilutes’ in time because of the non-

cohesiveness of the pigments dots and of elongation. Blue points were often painted

anew but with possible errors on position. Second, for the same reasons, the spots

of dry pigments could break down in several spots, making the detection and overall

tracking quite messy. No infallible workaround was found at the data analysis level.

Simple rules on the conservation of the number of detected points, distance between

consecutive points and on the values of displacement of the tracked points however

allowed to reject most of the erroneous detections. When errors could not be treated

by data analysis, they were rectified by manually selecting the correct blue dots.
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Curvature data are then prepared in order to be assembled in spatio-temporal

diagrams. Differential elongation rates are estimated from these processed κ⊥ data.

The resulting spatio-temporal diagrams are smoothed thanks to median and aver-

aging 2D filters. At last, the RGR of each interleaflet is computed thanks to the

trajectories of the two nodes at its extremities.

4.2 Results

I have now introduced the framework of our experiments on the nutation motion.

In this section I will present the results we have obtained by trying to characterize

nutation and its variations. Three main questions are addressed in this section.

The first is to properly describe nutation in terms of κ⊥ kinematics and estimate

the differential elongation behaviour of the tissues. Second, we want to explore

the hypothesis formulated from the results of Chapter 3 according to which the

differential elongation of tissues occurs where the elongation rate decays. Finally,

we are interested in the very rhythm of nutation. Variations of the nutation rhythm

could be an outward signal of some physiological processes associated to differential

growth and shape regulation.

4.2.1 Curvature variations and associated differential elon-

gation

In this section, I propose to analyse a single acquisition of nutation, for which a

maximum of information is available (leaf almost completely observable, good qual-

ity of the reconstructed trajectories, top and side views available). This acquisition

lasted for approximately seven days. It does not contain the complete develop-

ment on the leaf as it was started when the hook was already located on the fifth

interleaflet—the studied leaf had 9 pairs of leaflets and 9 interleaflets. Of course, this

acquisition is not complete but it is somehow representative of the typical behaviour

of nutation. For this experiment, top and side takes were shot every 2.5 min.

As it has been briefly discussed in the previous parts, the most complete way of

describing nutation is to study the spatial and temporal evolution of their curvature

κ⊥. The spatio-temporal diagram of curvature of the presented experiment is shown

in figure 4.2. The reading of this spatio-temporal diagram allows to grasp many

features of the nutation of the studied leaf but also of its development. Let us now

read this spatio-temporal diagram.

The spatio-temporal diagram is constituted by three different dimensions: space,

time and the dimension of interest. Each column of the diagram corresponds to a
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Figure 4.2: Spatio-temporal diagram of κ⊥ for a nutating leaf. The trajectories of
the nodes are represented in dashed white lines. The first trajectory is on the petiole and
is our reference point.

given time of the experiment. Each line corresponds to a spatial point of the rachis

(defined from the reference point s = 0). Finally, the color code stands for the

dimension of interest, which is here the curvature κ⊥ of the rachis.

If we now focus on a single column of the spatio-temporal diagram, we can read

more about the geometry of the rachis. We can spot two obvious zones on the rachis.

A zone of low curvature, on the lower interleaflets, near the petiole ; and a bent zone

near the apex. If we now navigate throughout the columns of the diagram, we can

read the spatial and temporal variations of curvature. We thus see that nutation is

indeed characterised by a bending zone where are confined most of the κ⊥ variations.

More precisely, κ⊥ oscillates from negative to positive values: the rachis is nodding

from left to right. In this experiment, the curvature roughly oscillates between

κ⊥ = −3×10−2 mm−1 and κ⊥ = 3×10−2 mm−1, which corresponds to a maximum

radius of curvature of about 3 cm. At last, we can see in figure 4.2 that the nutation

frequency is not constant in time. For example, the oscillations of κ⊥ are slower

around t = 20 h than around t = 100 h.

Finally, the trajectories of the nodes have been overlayed on the spatio-temporal

diagram. The first trajectory s = 0 corresponds to a reference point on the petiole.

Therefore, the first interleaflet is comprised between the second and third trajectories

and so on.

Two major artefacts are visible in figure 4.2. The first one is around t = 20 h.

We see a brutal elongation of the rachis, with points below the reference trajectory.
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This is typical of a false detection, leading to extra points in the rachis. The second

one is found at t = 70 h. Here we see that two interleaflets appear at once. This is

because I completed the paint over the rachis at this moment. Note also that at the

beginning of the experiment and at the moment of the second painting, the apical-

most trajectories are quite disturbed. It is possible that the stroking the rachis with

the paintbrush induces some kind curvature response.

The spatio-temporal diagram of curvature has revealed a zone of bending. Let us

now focus on this specific zone. To do so, we are going to estimate the differential

elongation δ̇ associated with the nutation motion. If we assume that (i) all the

curvature variations of the rachis result from differential elongation and that (ii)

curvature varies rapidly in comparison with the typical time scale of elongation, we

can estimate δ̇ from equation (4.3).

First, we need to compute the time derivative of κ⊥. Note here that all the

displayed geometrical quantities correspond to projected quantities. They are the

orthogonal projection of the 3D geometry of the rachis in the focal plane of the

camera. The bending zone clearly is the zone of interest in our case. Near the

hook, the rachis is reasonably parallel to the plane of the camera allowing satisfying

estimation of the κ⊥ and of its variations.

Second, we need to measure the radius R of the rachis. Our top-view takes do

not allow a precise measurement of R as the rachis appears quite thin. Instead, R

was measured in side-view takes. For the purpose of this experiment, R was only

measured once, in the bending zone1 Here, R ' 0.6 mm.

Finally, by applying equation (4.3) to the spatio-temporal diagram of curvature,

we can thus build a spatio-temporal diagram for the estimated differential elongation

rate δ̇ (see figure 4.3). The envelope of the δ̇ was obtained thanks to the Hilbert

transform (Feldman, 2011) (see figure 4.4).

Here, the bending zone—or equivalently the zone of differential elongation—

appears in an even clearer way than in figure 4.2. We clearly see that the part

of the rachis which is undergoing differential growth is situated at the tip. Down-

stream of this zone, we have δ̇ ' 0. It seems that the bending zone progressively

shifts along the rachis. More precisely, it seems that the bending zone is set an

almost constant distance from the apex (see figures 4.3 and 4.4).

1The radius of the rachis however slowly increases from the apex to the petiole. Because κ⊥
variations are confined to a single region, the measurement of R in this specific zone are sufficient
in a first approach.
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Figure 4.3: Spatio-temporal diagram of estimated δ̇ for a nutating leaf. This
diagram was directly obtained from figure 4.2 by applying equation (4.3). The trajectories
of the nodes are represented in dashed white lines. The first trajectory is on the petiole
and is our reference point.

The analysis of figure 4.2 has revealed irregularities in the frequency of nutation.

The δ̇-related spatio-temporal diagrams put forward the variations of amplitude in

time. As a matter of fact, we see that the amplitude of the δ̇ oscillations become

smaller and smaller in time (see figure 4.3). In addition to this global dampening

of nutation amplitude, we see that the amplitude is modulated by a slow rhythm of

about 35 h (see figure 4.4). We can spot regular nutation ‘surges’ or ‘tides’, that is

to say moments when the amplitude of nutation increases. In this case, the delay

between two tides is approximately 20 h (see around t = 30 h, t = 70 h, t = 110 h

and t = 140 h). Interestingly enough, we see thanks to the nodes trajectories—white

dashed lines—that these nutation surges appear to hop from an interleaflet to the

following one, toward the apex.

Finally, we can comment on the growth behaviour of the rachis thanks to the

several shown spatio-temporal diagrams. Following the spatial extension of the

rachis gives a first information on the rate of growth of the rachis. Here, we see

that the growth rate of the rachis is approximately constant as its spatial extension

increases almost linearly.

By using the trajectories of the nodes, we can also get qualitative information

on the distribution of growth along the rachis. We notice that the interleaflets with

the greatest elongation rates are located near the apex. Once again, we foresee the
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Figure 4.4: Spatio-temporal diagram of the enveloppe of δ̇. This diagram was
obtained thanks to a Hilbert transform of the signals δ̇(s) from figure 4.3. The bending
zone and nutation irregularities are highlighted.

existence of an elongation zone near the apex.

4.2.2 Relation between elongation and differential elonga-

tion

In Chapter 3, we have studied the kinematics of curvature during hook mainte-

nance. The existence of a bending zone and the clues for a growth zone have led us

to hypothesize a relation between elongation and differential elongation. Can we go

further and investigate this possible link? On the one hand, the previous section has

put forward the existence of a zone of differential elongation in the case of nutation.

On the other hand, we have a proxy for the elongation rate of rachis at our disposal.

It thus seems that we now have the tools to tackle this question.

The aim here is to directly compare the elongation and differential elongation of

the rachis. So, we must first get information on the elongation rate of the rachis. The

trajectories of the nodes allow us to measure the apparent length of each interleaflet

of the studied leaf. Trajectories are indeed affected by the global 3D motion of the

leaf. To go beyond this problem, trajectories were averaged over the typical time

scale of these motions (' 12 h). We can then extract an averaged relative growth

rate Ė of each interleaflet. Note here that, in the limit where θ varies slowly in

time—i.e. between a dozen of takes—the measured apparent Ė is approximately
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Figure 4.5: Spatio-temporal diagram of the relative growth rate Ė per inter-
leaflet. Ė values were obtained from the trajectories of the nodes. Trajectories are
indicated by white dashed lines. The position of the apex is indicated by black crosses.
The fitted trajectory of the apex is indicated by the red dashed line.

equal to the true, unprojected Ė. The values of Ė have been computed for each

interleaflet at each time and have been gathered in a spatio-temporal diagram (see

figure 4.5).

As expected from the previous section, we see that the larger Ė are met for the

apical-most interleaflets. A given interleaflets starts by a phase of strong elongation

(eg. interleaflet 6 between t = 0 h and t = 20 h). The relative growth rate

then slowly decays until it reaches Ė = 0 h−1. At this point, the growth of the

interleaflet is over. We see that, later, interleaflets 7 and 8 adopt the same behaviour.

Consistently with our rough descriptions of Chapter 3 and section 4.2.1, we see here

clues of a growth zone.

We already have the spatio-temporal diagrams of δ̇ at our disposal. For the sake

of consistency, however, we need to build an averaged measurement of differential

elongation. Such a quantity has already been introduced (see equation (4.4)). The

values of Ḋ are thus obtained by averaging δ̇ over each interleaflet, at each time.

Attention was paid to the fact that δ̇ is not always known on entire interleaflets

(see figure 4.3, apical-most interleaflets). Values of Ḋ were thus computed only

when at least 85% of the interleaflet was associated to a value of δ̇. The resulting

spatio-temporal diagram is shown in figure 4.6.
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Figure 4.6: Spatio-temporal diagram of the relative differential growth rate Ḋ
per interleaflet. Ḋ values were obtained by averaging data from figure 4.3 on each
interleaflet. Trajectories are indicated by white dashed lines. The position of the apex is
indicated by black crosses. The trajectory of the apex is indicated by the red dashed line.

The resulting spatio-temporal diagram is consistent with the previous spatio-

temporal diagrams of differential elongation in figures 4.3 and 4.4. We see that for

a given interleaflet, Ḋ is first low, then increases to a maximum value and finally

decreases to Ḋ = 0 h−1. This behaviour is repeated sequentially by all the successive

interleaflets. So, like previously, we can discern a zone of differential elongation.

The position of this zone is however different from the position of the elongation

zone. The peaks of Ḋ do not occur in the apical-most interleaflets, but seemingly

one interleaflet back. Finally, this diagram also underlines the slow modulation of

nutation, like in figures 4.3 and 4.4.

The comparison of the spatio-temporal diagrams of Ė and Ḋ suggests that the

zone of maximum differential elongation is situated downstream of the zone of max-

imum elongation. For instance, in figure 4.5, between t = 0 h and t = 40 h we

see that the sixth interleaflet is comprised in the zone of maximum elongation. In

figure 4.6, on the same time interval, we see that most of Ḋ is contained in the

fifth interleaflet. Differential elongation thus appears to take place where elongation

is decaying. The same comparison is possible once again, between t = 70 h and

t = 120 h and leads to the same observation.
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We now want to go beyond the simple comparison of the spatio-temporal diagrams

and completely take benefit from them. To investigate the spatial arrangement of

elongation and differential elongation, we are going to try and build the average Ė

and Ḋ profiles.

Since it appears that the elongation and bending zones are defined from the

apex, we first need to set the spatio-temporal diagrams in the referential of the

apex. The apex is unfortunately invisible on most top-view takes. Its position was

thus determined from the side-view takes—and from the top-view takes when it was

possible. The manual tracking of the apex is shown in figures 4.5 and 4.6 by small

black crosses. Since the global rate of elongation of the rachis is approximately

linear in this part of the experiment, we have fitted the trajectory of the apex with

a linear displacement. This fitted trajectory is indicated by the red dashed line.

It is now possible to shift the spatio-temporal diagrams in the referential of the

apex. Once this is done, the average profiles of Ė and Ḋ can be built. To do so,

we simply average the diagrams in the time dimension. Some of the information

in the shifted spatio-temporal diagrams were rejected from the analysis however.

As discussed earlier, the apical-most trajectories are disturbed around t = 10 h

and t = 75 h. This causes overestimated values for Ė. These specific parts were

thus excluded from the analysis of both Ė and Ḋ spatio-temporal diagrams. The

resulting Ė and Ḋ profiles are presented in figure 4.7.

The experimental data are represented by coloured dots in figure 4.7. Since we

cannot observe the whole rachis, because and we have excluded some points from

the analysis, the retrieved profiles are necessarily incomplete near the apex. They

start around sR = 25 mm. We observe that the average Ė profile smoothly decays

from the apex to the base. The hypothesis of a growth zone with saturation suggests

a sigmoidal shape for the Ė profile and the existence of a plateau. Unfortunately,

because of the missing spatial information, we cannot observe the presence or ab-

sence of a plateau. We nevertheless see that the average Ė profile decays to almost

0 h−1 in a few dozens of millimetres and stays then constant.

Let us now focus on the average Ḋ profile. Near the apex, we see that Ḋ increases

up to a maximum value which is reached in sR ' 40 mm. Ḋ then decreases in a

few dozens of millimetres to Ḋ = 0 h−1 and stays constant down to the base of the

leaf. It thus seems that the average Ḋ profile has a bell shape near the apex and is

flat near the petiole.

In accordance with our hypothesis, we see that the maximum of Ḋ is reached in

a zone where Ė is decaying. Moreover, we see that the characteristic lengths over

which the Ė profile varies and the width of Ḋ are comparable. This supports the

idea that the spatial distributions of these two quantities are tightly connected.
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Figure 4.7: Average Ė and Ḋ profiles. The experimental dots were obtained by tem-
porally averaging the re-aligned Ė and Ḋ spatio-temporal diagrams. Experimental data
were simultaneously fitted with a sigmoid (equation (4.5)) and its derivative (equation
(4.6)) respectively. One on ten experimental points have been plotted here.

The several spatio-temporal diagrams of elongation and differential elongation

have evidenced two zones: a growth zone and a bending zone. We thus see that

we need at least two characteristic lengths to describe the growth behaviour of the

rachis. These lengths are the growth zone length Lgz and the bending zone length

Lbz. In addition to that, the hypothesis of tip growth suggests a sigmoidal-like

profile for Ė which might be compatible with our experimental profile (see figure

4.7). A third length L—the characteristic length of the sigmoid—is thus needed. We

have however showed in the last paragraph that Ḋ occurs where Ė varies the most.

Moreover, the width Lbz of the Ḋ peak is comparable to 2∆L. These observations

are to some extent complementary and lead us to postulate that the spatial profile

of Ḋ is proportional to the spatial derivative of Ė, i.e. Ḋ ∝ ∂sĖ. I now propose

to test this hypothesis on our experimental data presented in figure 4.7. Following

the hypothesis of tip growth with a maximum elongation plateau near the apex, we

propose to fit our experimental Ė profile to:

Ė =
Ė0

2

(
1− tanh

(
sR − Lgz

∆L

))
+ Ė∞ (4.5)

where Ė0 is the maximum relative growth rate value and Ė∞ is a constant value.

In consequence, the experimental profile of Ḋ must be fitted with:
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between the two black dashed lines. The bending zone is comprised between the two red
dashed lines.

Ḋ = Ḋ0

(
1− tanh2

(
sR − Lgz

∆L

))
+ Ḋ∞ (4.6)

where Ḋ0 is the maximum rate of differential elongation and Ḋ∞ is a constant

value. The six parameters of the fit are thus {Lgz,∆L, Ė0, Ḋ0, Ė∞, Ḋ∞}. Since the

fitted profiles for Ė and Ḋ share two parameters, they are performed simultaneously.

Doing so greatly constrains the parameters of the fit but allows to check if our

hypothesis is reasonable.

We see a good qualitative agreement between our experimental data and the fitted

profiles (see figure 4.7). For our two quantities of interest, the fit gave Lgz = 33.4 mm

and ∆L = 20.8 mm. If we accept the equations (4.5) and (4.6), it is also possible

to give an experimental measurement of Lgz. by measuring the position of the

maximum of Ḋ. The maximum is found in sR = 35.9 mm. We thus see that Lexpgz

and Lfitgz differ by 7%. The growth zone is bounded by the apex on one side and

by sR = Lgz on the other side. By definition, the bending zone is delimited by the

peak of Ḋ and is thus centred around sR = Lgz and of length 2∆L. The spatial

arrangement of these zones on the spatio-temporal diagram of δ̇ is shown in figure

4.8.

Since the result of the coupled fitting of Ė and Ḋ gives satisfying results, we now
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have clear experimental support to claim that differential elongation takes place

where elongation is decaying.

The establishment of averaged spatial profiles for Ė and Ḋ revealed the intimate

connection between growth and differential growth and have paved the way for

further modelling of nutation. All the process that lead to their establishment was

guided by the idea of steady growth patterns underlying nutation. As a result,

the dynamical nature of nutation has been ignored. The several spatio-temporal

diagrams that we have seen up to now however contained evidences of changes in

the rhythm of nutation (see figures 4.3 and 4.4 in particular). We will now focus on

this specific aspect of nutation in the following section.

4.2.3 Nutation described as an oscillation

The nutation of Averrhoa carambola leaves naturally evokes the pendulum motion.

We have seen that nutation is characterized by rapid variations of κ⊥—in compar-

ison with the typical time scale of growth. These oscillations of κ⊥ are clearly

pseudo-periodic in the sense that their frequency vary over a few complete motion

cycles. In the same time, the amplitude of κ⊥ variations also appear to change. The

period and the amplitude of nutation both appear to be functions of time. We have

additionally seen that nutation is also characterized by a bending zone where most

of the curvature variations—or equivalently the differential elongation—is confined.

Finally, nutation can be described by its period τnut, its amplitude Anut and the

position of the bending zone. A proper characterization of the nutation motion then

requires to quantify the variations of these three quantities.

Frequency and amplitude variations

When the nutation motion has been observed on long enough periods—that is to

say more than 3 days—we tried to study the nutation signal ∆y itself (see section

4.1.1 for definition). The experiment presented in figure 4.9 is a beautiful illustration

of nutation. It lasted almost 6 days. The alternation of day and night is indicated

by white and gray backgrounds respectively. The top panel of figure 4.9 shows the

evolution of the deflection ∆y of the leaf with respect to the principal direction

of elongation ~d. Once again, we see that nutation is a continuous motion. The

motion does not stop, at any moment, before the end of the primary elongation.

Despite being continuous, nutation is not constant or regular though. We clearly

see a modulation of the ∆y signal in time. Variations of the nutation period τnut

can also be observed. The most obvious ones are for example between t = 20 h and

t = 50 h, where the motion decelerates and between t = 100 h and t = 120 h where
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Figure 4.9: Variations of the nutation signal in time. Top panel: nutation signal
represented by the deflection ∆y of the leaf with respect to the line described by the direc-
tion vector ~d. Middle panel: frequency of the nutation signal. Bottom panel: amplitude
of the nutation signal. Day/night alternation is indicated by white/gray background. The
black lines represent direct output from the wavelet transform. The red lines are smoothed
data. The absence of data around t = 70 h is due to a manipulation of the plant.

the motion accelerates. We also observe variations of the amplitude of the motion.

For instance, we see the amplitude increasing and decreasing around t = 30 h.

Nutation is thus a complex oscillatory motion, with modulations of both its fre-

quency and amplitude. These modulations are furthermore quite quick in compar-

ison with the mean period of the signal. As a matter of fact, Anut and τnut evolve

on a few complete cycles of the motion. A useful tool to analyse such signals is the

wavelet transform. Like Fourier transforms, wavelet transforms allow to extract the

frequency and amplitude information of a signal. Using Fourier transform however

implies to work on signals with a fixed spectrum. It is also possible to use short time

Fourier transform to evaluate the evolution of the frequency of a signal. But here,

the rapidity of frequency changes makes wavelet transform the appropriate tool.

Contrary to Fourier transforms, wavelet transforms do not use the whole signal for

analysis. Rather, a mother wavelet2 moves along the signal and is dilated at each

step to fit the signal. In this sense , wavelet transforms allow local determinations

of frequency. The results of wavelet transforms are shown in the middle and bottom

panels of figure 4.9.

2A function which square is integrable
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The middle panel of figure 4.9 shows the evolution of τnut. We see here that τnut

is comprised between 2 h and 4 h. The period of nutation globally decreases in

time, meaning a global acceleration of the motion. As previously discussed, we can

however spot several local maxima in the period around t = 20 h, t = 45 h, t = 90 h

and t = 120 h. Here we do not consider the data around t = 70 h because of the

absence of ∆y data at this moment.

The amplitude is shown in the bottom panel of figure 4.9. The amplitude of

nutation Anut is comprised between 0.5 cm and 1.1 cm. This means that the apex

of the leaf can go through horizontal displacements of approximately 2 cm. Like for

τnut, we see distinct Anut variations throughout the experiment. Around t = 20 h,

t = 45 h, t = 90 h and t = 120 h, significant increases of Anut were recorded.

Unlike for the behaviour of τnut, no underlying monotonic tendency is seen for the

amplitude. At last, we can wonder if Anut and τnut evolutions are correlated. It

appears quite clearly on this example that the local maxima do not necessarily

occur at the same time.

One of the most interesting features of the experiment pictured in figure 4.9 is the

progressive shift between the day/night cycle and the position of the local maxima

of amplitude. During the first complete day of the experiment—between t = 20 h

and t = 44 h —, we see that the amplitude is minimal at dawn, increases to a

maximum at dusk and finally decreases again during the night. On the contrary,

between t = 100 h and t = 124 h, we see that the amplitude of nutation increases

abruptly during the night and is maximal just before the dawn. In contrast with

the behaviour of the amplitude, there is no equivalent shift for the frequency of

nutation. We have already discussed the local minima of frequency, on an almost

daily basis. We additionally notice that the increase of τnut at dawn gets more

and more pronounced in time. The recurrent increases of the period—meaning

abrupt decelerations of nutation—are likely to be due to the sudden lighting of the

lamps in the cultivation room. Light is indeed known to play a role in the opening

of stomata, among other environmental factors such as temperature and humidity.

The opening of stomata initiates plant transpiration and may thus induce water loss

within the plant tissues. This water deficit stress may in turn affect growth, nutation

or any other physiological process. In the case of slow light intensity variations, the

opening of the stomata is not expected to be brutal, allowing an optimal opening

for equilibrated gas exchanges between the plant and its environment. In our case,

the sudden lightning might cause a quick and exaggerated opening of the stomata,

leading to water loss. This situation is however expected to be transient only,

as water deficit stress will induce the closing of stomata and reaching an optimal
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opening. Less water in cells results in reduced turgor pressures and finally reduced

overall rigidity of the plant. This is visible in the morning as the leaf goes through

a transient collapse, with a significant increase of θ at the base.

Can the observations made on this single leaf be generalized? More importantly,

these results question the link between the rhythm of nutation and the day/night

alternation. Is the progressive shift of the amplitude peaks a signature of the estab-

lishment of the circadian rhythm of the leaf? Or could it be that nutation is simply

not correlated to the day/night alternation? To answer this question, further inves-

tigations were conducted.

The experiment described previously was repeated a number of times. Some of

these repetitions are pictured in figure 4.10. If the extent of the nutation motion is

clearly different from an experiment to another—the maximum amplitudes roughly

vary between 0.5 cm and 2 cm—the shape of the signals is somehow universal. Like

previously, we see that the leaves move during day and night without interruption.

We also see that the leaves exhibit a succession of nutation tides. This behaviour

is particularly visible in the case of the first presented experiment (see top panel

of figure 4.10). The amplitude of each signal is shown in figure 4.11. Nutation

tides—meaning more or less prominent bursts of amplitude—are visible all along

the different experiments. We furthermore notice what seems to be a general ten-

dency of the nutation motion. Long experiments starting from early stages3—such

as experiments 2, 3 and 8—show the nutation establishing and then ending. In

these cases, we see a global increase of the amplitude of nutation in the first days

of development. Later on the amplitude decreases until it reaches 0 and the nuta-

tion motion completely vanishes. This decrease in amplitude can be observed for

every experiment showing the ending of nutation—that is all experiments except

experiment 7.

The evolution of the period of nutation revealed much less clear. Nutation tides

can be accompanied by an acceleration or a deceleration of the motion. In the

example of figure 4.9, we could see that the the period was globally monotonously

increasing. This appears to be an isolated event in our data set. The global rhythm

of nutation is however well-defined. The distribution of the periods of nutation is

shown in figure 4.12 under the form of box plots. For each experiment, the box shows

the first and third quartiles of the distribution. We see that most of the periods are

comprised between 2.5 h and 3 h. More precisely, the medians—indicated by the

line within each box—for each experiment are comprised between 2.3 h and 2.9 h.

3The roman numbers indicating the number of open leaflets in figures 4.10 and 4.11 are a good
indicator of how early in the development of the leaf the experiment has begun.
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Figure 4.10: Eight examples of nutation signals. The signals have been aligned in
order to make their last peak of amplitude coincide (t = 0). For each day of experiment,
a Roman number indicates the number of leaflets that had opened and raised. Day/night
alternation is indicated by white/gray background. The experiment shown in fig. 4.9
is the second one from the bottom. The first top panel corresponds to the experiment
described in section 4.2.2.
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Figure 4.11: Evolution of the amplitude of nutation in time. The amplitudes have
been determined thanks to wavelet decomposition. The signals of fig. 4.10 are shown in
the same order and colours.
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Figure 4.12: Distributions for the nutation period. The periods have been deter-
mined thanks to wavelet decomposition. The signals of fig.4.10 are shown in the same
order and colours. Outliers are not shown in this graph.

It is thus possible to identify common behaviours to all the nutating leaves. The

mismatch between their relation to the day/night alternation is however blatant.

The figures 4.10 and 4.11 present the nutation signal and their amplitudes with a

ad hoc temporal shift. The values of the time were shifted to make the last peaks

of amplitude coincide. In this way, we see that the amplitude behaviours roughly

coincide—peaks and decreasing amplitude—but that the day/night alternation com-

pletely disagree from an experiment to another. For example, let us focus on the two

first signals in figure 4.11. We see that the amplitude peaks roughly coincide, but

day and night are inverted. This discredits the hypothesis of a direct link between

nutation and the day/night cycle. Rather, it seems that the periodicity of nutation

tides—or amplitude peaks—is not 24 h.

The actual periodicity of each amplitude signal can be determined by autocorre-

lation. Autocorrelation consists in convolving a signal with itself. Plotting the score

of autocorrelation against the quantity by which it is shifted—called lag—reveals

the periodicity of the signal. A typical autocorrelation graph is shown in figure 4.13.

In some cases, no peaks could be detected. To overcome this endeavour, autocor-

relation signals were detrended in a first time and peaks detection was performed

afterwards. Once the lags corresponding to local maxima of autocorrelation are re-

trieved, we can estimate the period of nutation surges. To do so, the retrieved lags
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Figure 4.13: Example of autocorrelation curve. Data shown correspond to experiment
3. The autocorrelation score is plotted against the lag (time shift of the signal). Peaks
indicate a good overlay of the original and shifted signals and thus periodicity. Peaks are
indicated by red dots. Note the symmetry (and redundancy) of the signal around 0.

were divided by their peak position. In other words, we assume that peaks—except

for the 0-lag peak—correspond to harmonics of the first peak. The results of this

procedure are shown in figure 4.14. First, we see that most measured periods are

above 26 h. Mean periods are furthermore all different from 24 h and span a wide

interval, from 23 h to 35 h. In our data, three sets of behaviours are delineated:

1. Experiments 1, 3 and 4, with a mean tide period above 30 h.

2. Experiments 5, 6, 7 and 8, with a mean tide period slightly superior to 25 h,

between 26 h and 29 h.

3. At last, experiment 2 has a mean surge period slightly below 24 h.

Second, for a given experiment, the values of the measured periods sometimes

vary in a great extent. For instance, we see in experiment 6 that the measured

periods vary from 23 h to 34 h, that is a 9 h difference between the two periods.

It must however be noted that autocorrelation provides periodicity information in

an averaged and smooth way. Measuring the delays between peaks directly on the

graphs of figure 4.11, would provide slightly different results. In particular, if we

look at the experiment 3, we can spot two peaks separated by only 24 h—around

−100 h a,d −75 h—but most of the peaks are separated by a more than 30 h. This
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remark can be generalized to all the signals that are sufficiently long to allow the

comparison of several peak delays.

At last, we can try and compare the quick and slow rhythms of nutation. In order

to understand the nature of these rhythms, it is important to know how well-defined

they are. Here we are going to estimate how well the rhythm of nutation is defined,

in average, from a plant to another. To do so, we compute the mean period—of

the slow or quick rhythm, indifferently—for each experiment and gather all these

values. From these values we extract a mean period τ̄ and a standard deviation στ .

Standard deviation gives information on the extent of the dispersion of data within

a given distribution. To compare two different distributions, it is however needed

to normalize it by the mean of its corresponding distribution. This dimensionless

quantity is called the coefficient of variation: cv =
στ
τ̄

. For the quick rhythm, we

have cnutv ≈ 5.9% while for the rhythm of tides has ctidev ≈ 15.3%. We see here

that the mean periods of nutation tides is about 2.6 times more disperse than the

mean periods of nutation. In other words, the mean rhythm of nutation is better

determined than the rhythm of amplitude tides.

All in all, we see that the amplitude modulation of nutation is made on a rhythm

which is mainly plant-dependent and that do not correspond to the cycle of day and

night. Moreover, considering the variability of the measured periods, we can say that

the periodicity of nutation surges is not robust or ill-defined. The apparent lack of

correlation between the rhythm of these amplitude modulations and the day/night

cycle suggests a role for an internal clock.

Comments on the displacement of the nutation zone

The position of the nutation zone is the last parameter which evolution needs to

be tracked in order to completely describe the nutation as an oscillation. From the

description of nutation and the last sections, it is clear that the nutation zone shifts

along the rachis. We have mentioned in Chapter 2 that the point where nutation

is initiated seemed to do so in a succession of hops, from an interleaflet to another.

Can we confirm this behaviour to the light of the gathered data?

We have seen that the spatio-temporal diagrams were affected by some artefacts

due to the 3D motions of the rachis. In particular, changes in θ—global changes

or partial unfurling of the rachis—result in apparent dilations and contractions of

the rachis. We have thus to make sure that the displacement of the nutation zone

is independent of such effects. To do so, a first approach consists in comparing the
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Figure 4.14: Periods of nutation tides for each experiment. For each experiment,
black crosses correspond to the mean period. Error bars indicate standard errors. The
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displacement of the apparent tip and of the nutation zone. We measure the shift

of our differential elongation signal thanks to autocorrelation. From this, we can

extract the velocity vautocorr of the nutation zone and compare it to the velocity vtip

of the apparent tip.

Our results show that the velocity of the nutation zone mostly coincide with the

velocity of the apparent tip (see figure 4.15). Some exceptions to this observation are

found around obvious artefacts on the position of the tip. So, in first approximation,

we can say that the zone of nutation shifts continuously by following the apex.

The occurrence of hops is a priori excluded. Finally, we see that a continuous

displacement of the nutation zone, combined with tides of nutation might create the

impression of a discontinuous displacement mentioned in Chapter 2.

4.3 Discussion and partial conclusion

The shape of Averrhoa carambola leaves undergoes many shape changes during

its growth among which the rapid nutation oscillations. In the context of posture

regulation processes, such oscillations are puzzling. This fourth chapter was thus

dedicated to the characterization of nutation. Like for the unfurling motion, we

have first addressed the question of the kinematics of nutation. In a second time,

we have explored the rhythms of nutation and their variations.

Characteristics of nutation The first question here was to characterize nutation.

What are its remarkable features? We have seen that nutation is a swinging of

motion the rachis. In other words, it consists in oscillations of its curvature κ⊥. The

analysis of the kinematics of curvature (see figure 4.2) has revealed that κ⊥ variations

were confined to a specific region of the rachis. This region may be referred as the

bending zone or the nutation zone. This confinement of the curvature variations has

also been observed for the circumnutation of Phaseolus vulgaris (Millet et al., 1984).

Although it is seldom discussed in the literature, it is very likely that all nutation

and circumnutation motions share this characteristic. We have furthermore seen

that this nutation zone is set at an approximately fixed distance from the apex (see

figure 4.15). This behaviour recalls the bent zone in the case of the unfurling motion

which relied on specific kinematics (see Chapter 3).

The nutation of Averrhoa carambola was shown to be characterized by two

distinct rhythms. First, a short rhythm corresponding to the curvature oscillations

themselves (see figure 4.10). Second, a slow rhythm corresponding to the modulation

of amplitude Anut of nutation (see 4.11). Such amplitude modulations are also
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observed in the case of circumnutation (Schuster & Engelmann, 1997; Buda et al.,

2003).

The period of nutation τnut was found to be quite variable for a given plant

(see figure 4.12). It could roughly vary from 1.5 h to 4 h. Interestingly enough,

the comparison of the τnut distributions revealed that the period of nutation was

globally well-defined, with a low coefficient of variation for the median values. The

typical period of nutation was found to be of about 2.8 h. Depending on the cases,

the period of circumnutation varies between 20 min and 5 h (Mugnai et al., 2007;

Stolarz, 2009). Averrhoa carambola is thus in the usual interval of (circum)nutation

periods.

In contrast, the period of nutation tides τtide was found to be well-defined for

a given plant but ill-defined from a plant to another (see figure 4.14). The mean

τtide in our experiments is 28.8 h. The modulation of amplitude thus obeys to a

circadian rhythm, superior to 24 h in average and suggests and internal circadian

clock.

Finally, let us specify that in the case of circumnutation two rhythms are usu-

ally distinguished—short and long period nutations—corresponding to two entan-

gled motions, of different amplitudes (Schuster & Engelmann, 1997). Their typical

trajectories are epi– or hypotrochoids—i.e. the composition of a cycloid with an

ellipse. The nutation of Averrhoa carambola does not display such complex trajec-

tories. Trajectories might be affected in their spatial extent, but never change their

shape radically. Some reports of ‘composed nutations’ have however been made in

Phaseolus multiflorus (Heathcote, 1966). A low amplitude nutation—referred as

micronutation—was superposed to the regular nutation. Our observations did not

reveal such motions in the case of Averrhoa carambola though.

Nutation slow rhythm is decoupled from the diurnal rhythm We have

just discussed the occurrence of a slow modulation of Anut on a circadian basis. The

comparison of all the distributions of Anut revealed that nutation tides occurred at

different moments of the day-night cycle from a plant to another (see figure 4.11).

This observation suggests a decoupling between the rhythm of tides and the diurnal

rhythm (day/night alternation). It is not clear if such a decoupling is surprising

or not. On one hand, the tight connection between the diurnal rhythm and the

peaks of amplitude of circumnutation has been showed in the case of Heliantus

annuus seedlings (Buda et al., 2003; Charzewska & Zawadzki, 2006). On the other

hand, it has been shown that Arabidopsis thaliana exhibited a circadian modulation
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of nutation but, to the best of our knowledge, its link to the diurnal rhythm is

not clearly understood yet (Someya et al., 2006). In our case, it is possible that the

lightening of our lab is too weak to force the internal clock of the plants (illuminance

is about 300 lux and seems quite low).

The observed independence of the diurnal and nutation rhythms could suggest

that the leaf has not adapted to the day and night alternation yet. As discussed in

section 4.2.3, it is tempting to imagine that every leaf of the plant has its own inner

clock. Then, the alignment of the circadian rhythm of the leaf could require some

time to align itself on the diurnal forcing. This is however not likely. In fact, as

described in Chapter 2, the leaflets of the growing leaf perform on point nyctinastic

motions as soon as they reach their mature position. This rather indicates that

the inner clock of the leaf—if it ever exists—is already in phase with the forcing

diurnal rhythm. Another possibility coming from the previous observation would

be that each leaflet would have its inner and independent clock. But in this case,

the question would be asked of how leaflets adapt their inner rhythm to the forcing

rhythm quicker than the rachis. It thus appears that the explanation for the rhythm

of amplitude modulation is to be sought elsewhere.

Under the hypothesis of a δ̇-driven nutation, the nutation tides are by defini-

tion connected to the intensity of differential elongation in the rachis. Indeed, we see

that the peaks of δ̇ or Ḋ coincide with the peaks of Anut (compare figures 4.3 or 4.6

with the first panel of figure 4.11). It appears that the peaks of the δ̇ intensity occur

once in the development of each interleaflet (see figure 4.4). The distance of these

peaks to the apex appears to be roughly constant, recalling the behaviour of the

previously discussed growth zone. We thus foresee that the rhythm of the nutation

tides may be at least partially related to the growth rhythm of each plant. This could

explain the variability of the tides rhythm from a plant to another, as the rhythm

of elongation may depend on many parameters: resource availability (water, light

and nutrients), environmental parameters (temperature, moisture), growth phase of

the plant4 or even the global health of the plant. The question is thus asked if the

diversity of nutation tides rhythm can be explained by the growth dynamics.

At last, the shape of the nutation signal somehow evokes the beats of in-

terfering oscillators (see figure 4.10)5. Here, the nutation presumably results from

4Averrhoa carambola sometimes goes through growth bursts during which a single plant pro-
duces successively several leaves in a short duration (eg. 4 leaves in 3 weeks).

5When two oscillators with close frequencies f1 and f2 interact, this result in a signal of high
frequency 1/2 (f1 + f2) which amplitude is modulated at the slow frequency 1/2 |f1 − f2|.
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differences of elongation between the lateral faces of the rachis. Under this hypothe-

sis, the signal of differential elongation—and thus of nutation according to equation

(5.8)—depends on this difference of elongation. It is possible to imagine that tissues

do not elongate at a constant rate in the bending zone. The elongation rates of

both the lateral faces of the rachis could thus undergo some oscillations. In order

to generate beats of periods τnut = 2.8 h and τtide = 28.8 h, the two initial periods

should be τ1 = 5.1 h and τ2 = 6.2 h. Although, such oscillations have not been

reported up to now.

Differential growth occurs where mean growth decays The study of the

nutation motion has allowed us to learn more about the spatial distribution and

organization of growth within the tissues of the rachis. We have already discussed

the existence of a growth zone in Chapter 3. Here, thanks to the trajectories of

the leaf nodes, we were able to build averaged spatio-temporal diagrams of the

relative growth rates Ė of each interleaflet (see figure 4.5). From the observations of

Chapters 2 and 3 and of the built spatio-temporal diagram, it was confirmed that

Averrhoa carambola compound leaves undergo ‘apical growth’. That is to say that

the elongation of the tissues takes place in a confined growth zone, near the apex

of the rachis. Such a behaviour is classical in cylindrical plant organs and has been

put forward in roots (Silk et al., 1986; Walter et al., 2002), hypocotyls (Peters &

Tomos, 2000) and stems (Silk, 1992). Tip growth is sometimes used when modelling

the growth of complete organs (Bastien et al., 2014). From this observation, we

assumed that the distribution—set from the apex—of elongation along the rachis

was approximately steady in the tissues. The construction of time-averaged profiles

of Ė then revealed the spatial distribution of elongation in the tissues (see 4.7, green

experimental points).

Differential elongation is the other contribution to growth. The existence of a

bending zone, combined with the hypothesis of a δ̇-driven nutation suggested that

differential elongation occurred in a restrained region of the rachis. The δ̇-related

spatio-temporal diagrams (see figures 4.3, 4.4 and 4.6) highlighted the bending zone,

by definition. It is important to remember here that nutation may result from a

combination of irreversible and reversible processes (Stolarz, 2009; Baskin, 2015).

But, equation (4.3) used to build these diagrams do not allow us to discriminate

irreversible and reversible length variations. This is why the amount of differential

elongation is only estimated here. In a similar way than for Ė, the average profile

of Ḋ was determined (see figure 4.7, dark red experimental points).
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The comparison of the Ė and Ḋ profiles confirmed that differential elonga-

tion takes place where elongation varies the most (see figure 4.7). This suggests an

intimate link between the elongation and the differential elongation. The relation

between their spatial distributions has been summed up as Ḋ ∝ ∂sĖ. Following

this relationship, a sigmoidal and its derivative were fitted of the Ė and Ḋ pro-

files (see plain lines figure 4.7). They showed good qualitative agreement with the

experimental data. The shape of the fitted Ė profile is however to be considered

carefully. Our data is indeed incomplete, we do not have information on the exper-

imental distribution of elongation in the first millimetres after the rachis. In other

organs, the distribution of elongation was found to be a gaussian-like,reaching their

maximum several millimetres away from the rachis and finally decaying to 0 (Walter

et al., 2002; Peters & Tomos, 2000; Silk, 1992). It is thus possible that the Ė profile

decays near the apex. The same remark holds true for Ḋ. In any case, our results

suggest that the growth zone of the rachis does not reach any saturation plateau.

In Chapter 3, we have discussed the fact that a specific zone of the rachis

seemed to offer advantageous mechanical conditions for the achievement of au-

totropism. Here, we have shown that differential elongation is performed in a specific

zone. Could it be that these zone described in Chapter 3 and the nutation zone co-

incide? In this case, it would be possible to hypothesize that oscillatory motions

serve in some way autotropism, or that they are a manifestation of it.

At last, what is the physiological basis of this behaviour? The oscillations

of differential elongation (see figure 4.3) suggest an oscillatory behaviour for the

elongation of the lateral faces of the rachis. Oscillations in the elongation of opposite

faces of (circum)nutating organs have been measured (Baskin, 1986; Berg & Peacock,

1992). Although hypothesis on the physiological basis of such elongation oscillations

exist (Baskin, 2015), the question of the spatial localization of these oscillations is

now asked. The profiles pictured in figure 4.7 suggest a tight link between the

growth rate and differential elongation. Is it possible that the intensity of growth

oscillations is directly connected to the rate of elongation? It is possible to imagine

that in a zone of strong elongation, all cells grow synchronously and that the global

decay of the elongation rate is accompanied by more and more asynchrony within

the tissues, leading thus to oscillatory behaviours.

Finally, Baskin rightly pointed out that, once again, none of the evidences of

differential elongation in nutation have been properly decoupled from a possible

involvement of elastic phenomena (Baskin, 2015). In our case, actual differences in

the growth rates of the lateral sides of the rachis still have to be measured.
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Partial conclusion The results of this chapter have drawn the general features

of Averrhoa carambola growth and nutation rhythms and spatial organization. In

particular, the tight link between elongation and differential elongation—already

foreseen and discussed in the previous chapters—has been put forward. In this sense,

the fourth chapter has opened the way to the modelling of growth and nutation.

This chapter has also raised new questions on the spatial organization, the dy-

namical aspects of elongation and the slow rhythm of nutation. Tackling these

different questions implies that we go a step further in the characterization of the

distribution of elongation along the rachis. We thus see that, to better understand

the links between nutation and elongation, more advanced techniques need to be

used.
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The study of the unfurling and nutation motions have put forward specific growth

kinematics and growth patterns. Up to now, our approach has provided coarse

information on the elongation field of Averrhoa carambola compound leaves. The

upcoming chapter is devoted to the confirmation of our previous characterization

by two means: actual growth measurements and a kinematic model for growth and

nutation.

5.1 Growth measurements

5.1.1 Experimental protocol

Particle image velocimetry (PIV) is a common technique in fluid mechanics. The

basic idea is to introduce particles in the stream of interest and to film the resulting

motion of the tracers. It is then possible to extract the field of velocities of the

stream by auto or cross correlation from an image to the other.

103
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A PIV-inspired method had been previously developed in our team to measure

elongation fields along plant organs (Bastien et al., 2016). I took benefit of the

existing tools and methodology and adapted them to the specific case of Averrhoa

carambola. In the following paragraphs, I will detail this method and the adjust-

ments it required.

Experimental set-up

In our case, because plant motions and growth involve long time scales — order of

the hour and the day respectively — our technique relies on time-lapse photography

rather than on filming. Dry fluorescent orange pigments are carefully deposited1 on

the surface of the rachis thanks to a paintbrush. This is done in a way to create a

highly textured layer that will make image analysis easier.

A camera is placed as parallel as possible to the direction of growth of the leaf.

Flashes are covered with green filters for two purposes: first, ensure a strong contrast

between the green rachis and the orange pigments ; second, to avoid disturbing

the plant too much during the night by providing only green light (minimum of

absorption). At last, because we want to capture growth and motions, pictures

are typically shot every 1 to 5 minutes. This interval is to be compared with the

typical 2.5 hours period of nutation which is the fastest growth motion of Averrhoa

carambola.

In principle, it is thus possible to measure growth on the whole rachis and get

information on global characteristics of growth (e.g. position and length of the

growing zone) ; or to focus on a specific zone (typically on an interleaflet) and get a

fine measurement of growth. In practice, as I will explain later, we always focus on

a given interleaflet.

Data analysis

As already discussed in Chapter 3, Voronoi-based skeletization is not suited to the

case of Averrhoa carambola. One of the main reasons is the presence of leaflets—not

easily separable from the rachis by image analysis—hiding great proportions of the

rachis and deforming the retrieved contours and skeletons. An alternative method to

determine the midline of the rachis is needed. We use the fact that leaflets generally

deform the lower half of the leaf’s contour rather than its higher half. The skeleton

1The impact of pigment deposition on leaf development and viability were not assessed strictly
speaking. Several risks can be thought of: intoxication, thigmomorphogenesis or reduced photo-
synthesis for instance. However, no major dysfunction was ever noticed for the painted leaves. The
growth behaviour also seemed to be identical between painted and natural leaves.
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Figure 5.1: A simple geometrical process to build the midline of the rachis. The
upper contour is drawn in orange. The constructed midline is drawn in yellow.

is then obtained by a simple geometric procedure. First, the normal direction to

upper contour is determined at each point Pc. Second, a skeleton point Psk is created

for each Pc. This is done by placing a point at distance R from Pc on the normal to

the upper contour at Pc (see fig. 5.1).

The most important step is then to measure the elongation field along the rachis

of the studied leaf. To do this, we use an image-to-image correlation algorithm

that has been previously developed in the lab (Bastien et al., 2016). The idea is

to measure the displacement of small patterns at the surface of the rachis from

an image to the following one. Let us consider two successive pictures (n) and

(n + 1) of our complete set of pictures. A window Wn of interest in defined in

picture n. This window is centered on a point of the skeleton. Its dimensions

depend on the dimensions of the rachis in the considered set of images. Typically,

we use a square window, slightly wider than the rachis. We now need to find this

same window in the picture (n + 1). We first define an investigation zone of fixed

length in picture (n + 1). It is centered on the position sn of Wn in picture (n).

For each point in the investigation zone, an investigation window Wn+1 is defined

and compared to Wn by a correlation score. In other words, Wn+1 is translated

along the skeleton. Additionally to what was initially done, we have also allowed

Wn+1 to translate along the normal to the skeleton to counter act a possible bias

in the skeleton construction. The position of the maximum of correlation along

the rachis is considered to be the new position of the window of interest in picture

(n + 1). To avoid pixelation effects, the curve of correlation is locally fitted by a

parabola in the vicinity of its maximum. This allows a sub-pixelar measurement of

the displacement ∆s of Wn. The correlation step provides the displacement field of
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skeleton

investigation zone

normal investigation

picture (n)

picture (n+ 1)

Figure 5.2: Illustration of the image-to-image correlation principle. A window of
investigation Wn+1 is defined in picture 2. It translates along the skeleton and its content
is systematically compared to the window of interest Wn by a correlation score. The
position of the maximum of correlation gives the displacement of Wn along the midline.

the considered elements along the rachis. We access the elongation field by spatially

differentiating the retrieved displacement field. This procedure is repeated for each

point of the skeleton in picture (n) and then for each picture of the set. Doing

so, we can use the spatio-temporal representation for our experiments. Finally, the

derivation of ε̇ values can lead to quite noisy results. In order to reduce this noise,

the displacement data are smoothed thanks to a median and averaging filters before

being differentiated. Then, we smooth the kymograph itself by using a 2D median

and averaging filters.

5.1.2 Results

A number of experiments were carried out using this protocol. In this section, I

propose to describe only one of those. As described in section 5.1.1, the camera was

close from the leaf and a single interleaflet was analysed. During this experiment,

the time interval between two consecutive pictures is ∆t = 5 min.

The results of the image-to-image correlation step is shown in figure 5.3. Here,

the results are displayed on 18.75 h and on a reduced part of the rachis of about

initially measuring 17.5 mm. The data are cropped mainly to get rid of artefacts

due to the motions of the leaflets. Doing so, we can consistently observe a part of

the rachis which is never hidden by any leaflet.
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Figure 5.3: Experimental spatio-temporal diagram of elongation. This diagram
was established for a portion of an interleaflet which was continuously observable through-
out the experiment. The black dotted lines correspond to the trajectories of a given set
of points.

The most striking feature of figure 5.3 are the marked oscillations of the relative

elemental growth rate ε̇ in time, near the apical end of the observed interleaflet.

Moreover, we see that ε̇ periodically becomes negative, thus implying local contrac-

tions of the rachis. The amplitude of these oscillations can reach 0.3 h−1, meaning

that the rachis could locally dilate or contract by 30% in an hour. For instance here,

we see a contraction event at t = 9.6 h and a dilation event at t = 10 h. These

events occur on a clearly identifiable zone of length Losc ' 1 cm. On this zone,

the mean value of ε̇ during the contraction event is ε̇contract ' −1.8 × 10−1 h and

ε̇dilate ' 1.9 × 10−1 h during the dilation event. This values are one order of mag-

nitude greater than the maximum of the profile of Ė determined in Chapter 4 (we

had Ė0 ' 1.9 × 10−2 h−1). Considering their spatial extension, the contribution of

these dilation and contraction events to the total growth of the observed interleaflet

would be Loscε̇event = ±2 mm · h−1. Such growth rates are much greater than the

average growth rate of the observed part of the leaflet, which can be obtained from

the extreme trajectories, and is about 2.4 × 10−1 mm · h−1. We can also compare

Loscε̇event to LgzĖ0 ' 6.7 × 10−1 mm · h−1 from Chapter 4. We have discussed

in Chapter 4 the fact that growth might be inhomogeneous along the rachis. The

amplitude of the oscillations here is however so great that they do not seem to be
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actual growth inhomogeneities. So, what is their origin?

The observed ε̇ are actually completely artefactual. They are a result of the

nutation motion of the rachis. It is important to remember that several parameters

rule the apparent length of an object in a picture. The orientation of the object

with respect to the camera and its distance to the camera are the two main deciding

parameters. Because the rachis moves orthogonally to the focal plane of the camera,

its apparent length on pictures is modified by the variations of projection effects.

The relative distances between sub-elements of the rachis are also affected as it can

be seen on the trajectories displayed in figure 5.3. This is why the rachis appears

to periodically and violently elongate and contract in figure 5.3. The apparent

variations of length due to the nutation motion furthermore dominate the variations

of length driven by the growth process. This is clearly visible after t = 15 h, when

oscillations stop and the values of ε̇ decrease by a factor 10.

Another marking feature of the measurements presented in figure 5.3 is the obser-

vation of two modes in the ε̇ oscillations. In the two previous paragraphs we have

already discussed the oscillations taking place near the apical end of the observed

interleaflet—here for sR−sref < 0. But we also observe oscillations for sR−sref ≥ 0.

It seems that the frequency of the oscillations for sR < sref is twice the frequency

observed for sR ≤ sref . This is particularly visible between t = 3 h and t = 13 h.

Interestingly enough, the oscillations for sR ≤ sref vanish at the same time than

those for sR < sref . Could they also be linked to nutation?

To further investigate this apparent frequency doubling, we use wavelet analysis

once again. To make analysis easier, we focus on the spatial window defined by the

initially observable portion of the interleaflet—i.e. −6 mm ≤ sR − sref ≤ 12 mm.

Each ε̇s(t) signal has then been wavelet transformed. From the coefficients of the

transform, it is then possible to define an ‘energy’. This score is a way to represent

the weight of a given frequency in the complete analysed signal. By assembling all

the energy curves, we can visualize the dominant frequencies in the signal and their

position along the rachis (see figure 5.4). The diagram clearly shows two distinct

space-frequency domains. We see for sR − sref < −4 mm that most of the energy

of the signal is contained in a sharp band of periods, from τ = 0.9 h to τ = 1.5 h.

For sR − sref > 2 mm, the energy distribution is wider but shifted to higher values

of τ , from τ = 1.2 h to τ = 3 h. By determining the maxima of energy for each

position along the rachis in figure 5.4, the periods of maximal energy were found to

be τf ' 2.1 h and τ2f ' 1.2 h. Considering the large band of high energy for the

slowest mode, we can reasonably state that two modes are observed in ε̇ oscillations,
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Figure 5.4: Spatial distribution of energy for different frequencies. Two distinct
space-frequency domains are visible. For sR < sref , the dominant mode is τ2f ' 1.2 h.
For sR > sref , the dominant mode is τf ' 2.1 h. Here, τf roughly corresponds to the
period of nutation. This graph was derived from the data shown in fig. 5.3 thanks to
wavelet analysis.

one being indeed the double from the first. We see that the value of τf is close to

the usual range for the period of nutation as seen in Chapter 4. The determination

of the nutation period is uneasy here as we only have side takes at our disposal. It

has however been estimated to τnut = 2.0 ± 0.3 h by averaging measurements for

successive repetitions of the motion2.

In conclusion, we see that the observed basal oscillations of ε̇ seem to have the

same frequency than nutation while the apical oscillations have twice this frequency.

5.1.3 Impact of projection effects on elongation measure-

ments

As it appears, our attempt to precisely measure the elongation field along the

rachis is greatly disturbed by the nutation motion. We briefly discussed in the pre-

vious section that projection effects—or more precisely their variations —are at play

here. What are exactly the consequences of these variations on our measurements?

Can they explain the observation of ε̇ oscillations with two distinct rhythms?

2Here the indicated error corresponds to the standard deviation of the gathered measurements.
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Figure 5.5: Projection effects and apparent elongation. (a) Geometrical quantities
of the problem. A segment of length l elongates in time with an elongation rate ε̇. Its
orientation with respect to the reference axis is θ = θ0 cos(ωt). Its length and elongation
rate projected on the reference axis are l⊥ and ε̇⊥ respectively. (b) In the simple case
where ε̇ = 0, we clearly see that ε̇⊥ has twice the frequency of θ.



5.1. Growth measurements 111

Let us consider a segment S of length l. This segment elongates in time with an

arbitrary elongation rate ε̇. Let us now consider a reference axis (Ox). This axis

typically represents the focal plane of a camera in one of our experiments. The angle

between the considered segment and (Ox) is noted θ. This angle θ is also arbitrary

and can evolve in time. We now wonder what is the apparent elongation of the

segment onto the reference axis (Ox). The apparent length of S corresponds to the

length l⊥ of its orthogonal projection onto (Ox). So, the apparent elongation of S

will correspond to the elongation of its projection, in other words to the projected

elongation ε̇⊥. The reader can refer to figure 5.5a for a visual summary.

The projected elongation ε̇⊥ can be be expressed in terms of the previously intro-

duced geometrical parameters. It is defined as

ε̇⊥ ≡
1

δt

l⊥(t+ δt)− l⊥(t)

l⊥(t)
(5.1)

The projected length of S is given by l⊥ = l cos θ at any time, and the time

evolution of l(t) is known via the ‘true’ elongation rate ε̇. If we assume that the

time variations of θ are small, and we limit to the first order in δt, ε̇⊥ can be

expressed as

ε̇⊥ = ε̇− θ̇ tan θ (5.2)

We see here that the projected elongation rate ε̇⊥ is simply the sum of two

contributions. The first term is the ‘true’ elongation rate of the observed object.

The second term is a geometrical term accounting for the projection effects and the

motion of the object. The true and measured elongation thus differ only in the case

where the object of interest does move relative to the reference axis.

In our case, the rachis undergoes periodical oscillations orthogonal to the focal

plane of the camera. Let us now determine the impact of such a motion on the

measurement of elongation. We will simply assume that the nutation motion implies

θ(t) = ∆θ cos(ωt) for example, where ∆θ is the angular amplitude of the motion.

In the simple case where S does not elongate (ε̇ = 0), ε̇⊥ reduces to the projection

term. The angle θ and projected elongation are displayed as functions of time in

figure 5.5b. We clearly see that the projection term θ̇ tan θ has twice the frequency

of θ. The reason for this frequency doubling is actually quite simple to understand.

If S gets closer to the reference axis (Ox)—i.e. |θ| decreases—then l⊥ increases and

ε̇⊥ is positive. On the contrary, if |θ| increases, l⊥ decreases and ε̇⊥ is negative. We

thus see that for half a period of θ, the projected elongation goes through a complete

cycle.
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How could these artefacts be overcome? First, the knowledge of the orientation

of each element of the observed rachis with respect to the focal plane of the camera

could help removing the projection-related artefacts in our measurements. Doing

so requires supplementary cameras and substantial efforts to ensure precise calibra-

tions. Second, note from equation (5.2) that if 〈∆θ〉 = 0, then 〈ε̇⊥〉 = 〈ε̇〉. But our

aim was here to determine the growth behaviour as precisely as possible in space

and in time. In this way, this technique would not provide more precise results than

the technique developed in Chapter 4.

So, we see that the nutation motion induces variations of the projection effects

which alter our elongation measurements. These variations result in an additive

signal with twice the frequency of nutation, as seen in figures 5.3 and 5.4. But now,

how can we explain the ε̇ oscillations with the same frequency than the nutation?

It also appears that getting rid of these artefacts can be quite difficult. But what

can we learn on growth from our measurements anyway? Or from the motions

themselves?

5.2 Kinematic model of growth and nutation

To go beyond the previously described limitations and to gain more insight on

growth, a proper model is needed to reproduce the characteristics of the nutation

motion. Drawing on our observations and our experimental results from Chapter 4,

we have built a purely kinematic model of nutation.

5.2.1 Definition of the growth and nutation model

In this section, I will detail the construction of our kinematic model of nutation.

The underlying hypotheses and the different physical limits on the parameters will

be discussed.

Construction of the model

We have built our model in the frame of beam theory which is so convenient

and has been used several times in similar problems (Bastien et al., 2013). In a

few words, the growing rachis is reduced to an elongating 2D beam and different

growth paces are imposed to its lateral faces to reproduce nutation. Here, our

first and strong hypothesis lies in assuming that the nutation is driven only by the

differential elongation of the tissues.
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Figure 5.6: The nutation motion in terms of beam theory. Here is a top-view
drawing of the considered 2D rachis of radius R, which midline is spanned by the arclength
s. The quantities associated with the left and right lateral faces are respectively labelled
L and R.

Let us now detail the geometrical parameters of our model. We consider a 2D

rachis, similar to a beam, and its two opposite sides: right and left denoted (R) and

(L) respectively. The width of the beam is—abusively referred as diameter—2R and

its total length Ltot. The midline of the considered beam is spanned by an arclength

s orientated from the base to the apex. The geometry of the midline is furthermore

described by the local orientation φ and its curvature κ⊥. As already discussed, the

total elongation of the two sides might not be equal. We thus consider the average

elongation rate of the rachis ε̇ and the differential elongation rate δ̇:
ε̇ =

1

2
(ε̇R + ε̇L)

δ̇ =
1

2
(ε̇R − ε̇L)

(5.3)

Here, since the rachis is perfectly symmetrical around its midline, the average

elongation rate ε̇ can also be regarded as the elongation rate of the midline of the

rachis. Note that the sign of the differential elongation rate δ̇ only results from our

definition of δ̇ and is purely conventional. Of course, the total elongation rate of a

given lateral face of the rachis will be given by:
ε̇R =

1

2

(
ε̇+ δ̇

)
ε̇L =

1

2

(
ε̇− δ̇

) (5.4)

We now need to define the laws that will determine the evolution of our 2D rachis.

The first step is to set the law for the elongation of the midline. As discussed in

Chapters 3 & 4, the elongation of cylindrical organs is often described in terms of

elongation zone. In our case, the measurements of section 4.2.2 have put forward an
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Figure 5.7: Elongation and differential elongation laws. The elongation rate shows a
growth zone of length Lgz defined from the apex. The differential elongation δ̇ takes place
where elongation is dropping. Both quantities have a characteristic length of variation
∆L.

elongation zone at the apical end of the rachis. The spatial distribution of elongation

has furthermore been shown to be close to a sigmoid—with the possibility of a drop

in ε̇ near the apex. A natural choice here is then to write ε̇ as

ε̇(s) =
ε̇0
2

(
1 + tanh

(
s− s0
∆L

))
(5.5)

where ε̇0 is the maximum elongation rate, s0 is the position of the growth zone

and ∆L is the characteristic length of variation of ε̇. At each time, s0 is given by

s0 = Ltot − Lgz where Lgz is length of the growth zone3.

The next step is to define the differential elongation. Considering our observations

and results from Chapter 4, differential occurs downstream to the elongation zone,

where ε̇ decays. We had summarized in section 4.2.2 by saying that the spatial form

of δ̇ is proportional to the spatial derivative of ε̇. This hypothesis was tested and

was shown to fit the data in a satisfactory manner. In the frame we have established

for this model, δ̇ is also the only motor of nutation. Then, we have seen in section

4.2.3 that nutation is an almost periodic motion, with two distinct rhythms. Here,

3Together, the two latter equations are equivalent to equation (4.5), but expressed in terms of
regular arc length (s not sR)
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the nutation tides will not be treated. Instead, we will consider a perfectly periodic

nutation motion, with constant amplitude. Then, we can write

δ̇(s, t) ∝ ∂ε̇

∂s
sinωt (5.6)

In the general case, the amplitude of differential elongation is thus proportional

to ε̇0 up to a geometrical constant which depends on the chosen spatial form for the

elongation. In our specific case, we have:

δ̇(s, t) = δ̇0

(
1− tanh2

(
s− s0
∆L

))
sin (ωt+ ϕ) (5.7)

At last, differential elongation being the only motor for the motion, the link

between curvature variations and differential elongation needs to be established.

Since we are working in the frame of the beam theory, the relation between κ� and

δ̇ in section 4.1.1 still holds:

∂κ⊥
∂t
' 1−R2κ2⊥

R
δ̇ (5.8)

Recall that in the case of nutation, the advection of κ⊥ is negligible. This allows

to approximate the total time derivative of κ⊥ by its partial time derivative.

The laws ruling the evolution of our model rachis have been established. The

elongation laws are summed up in figure 5.7. With these three fundamental equa-

tions come a set of parameters of different natures, related to the geometry, the

motion or the elongation of the considered beam. A great freedom is now possible

in the choice of the values for the different parameters of the model. All the possible

sets of parameters do not correspond to the physical and physiological observations

of nutation however. I will now try and detail some limits in the choice of the

parameters.

Restricting the range of the parameters

First, we have to keep in mind that nutation is a real motion, performed by

growing plants. We have seen in Chapter 4 that the amplitude of the deflection ∆y

of nutation varied in time and from a plant to another. In an equivalent way, we

can say that the angular amplitude of nutation ∆φ varies. The angular amplitude

of nutation can be written thanks to a short dimensional reasoning. The physical

quantities at play in the bending of the beam are δ̇0, ∆L, R and ω. It is then

possible to show that
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local contractions τnut � τbz

δ̇0 ε̇c ε̇max0

ε̇0

Figure 5.8: Representation of the different limitations in the choice of ε̇0. In a
case where ε̇0 is the only free parameter, we see that its choice covers radically different
physical situations. The possibility of local contractions is not to avoid in our simulations
a priori but it should be kept in mind.

∆φ = 2
∆L

R

δ̇0
ω

(5.9)

which appears quite natural. The length on which the motion is initiated is indeed

the width of the δ̇ distribution, that is 2∆L. We see that the longer this zone, the

higher the amplitude of nutation. Conversely, the more a beam is thick, the harder

it is to bend. In the same way, the higher δ̇0, the higher ∆φ (see Appendix C for an

actual calcutation). Finally, the faster the nutation, the lower its amplitude.

We thus see from equation (5.9) that for a given motion, elongation and geometry,

there is a single possible δ̇0. The question may now be asked of what values should

be set for the other parameters.

The total elongation of a lateral face of the beam is given by ε̇ ± δ̇ (see equa-

tions (5.3) and (5.4)). In some cases, depending on the values chosen for ε̇0 and δ̇0,

we see that the beam can locally contract (see figure 5.7). The choice of these two

parameters is thus critical. It can be shown that there exists a sufficient condition

on ε̇0 and δ̇0 to allow or prevent local contractions of the beam (see Appendix C

for the derivation of this threshold). Supposing that in the model δ̇0 is fixed, the

threshold4 for contractions is simply given by:

ε̇c = 4δ̇0 = 2∆φ
R

∆L
ω (5.10)

Above this threshold, local contractions of the beam are forbidden.

Another limitation on the maximum elongation rate ε̇0 arises from the comparison

of the approximation made in equation (5.8). To put it simply, we want to make

sure the time scale of nutation is much smaller than the time scale of growth. More

specifically, the period of nutation τnut must be at least N times smaller than τbz

which is the time a material point spends in the bending zone. This comparison of

4Note that this threshold results from a sufficient condition and is consequently not strict.
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Figure 5.9: Simulated nutation motion observed from above. The length of the
growth zone Lgz, the length of the bending zone 2∆L and the angular amplitude of the
motion 2∆φ are indicatively represented. The time evolution is shown by colors: from
blue to yellow.

time scales leads to a new threshold in ε̇0:

ε̇max =
1

Nπ

∆L

Lgz
ω (5.11)

If ε̇0 goes beyond ε̇max, not only equation (5.8) is not valid, but material points

will also leave the bending zone too quickly. This gives rise to ‘non-physical’ motions

and non straight final shapes for the beam.

5.2.2 Results

Our kinematic model of nutation was implemented in Matlab. Given an ini-

tial condition on the shape of the rachis—length L0, radius R, local orientation

φ(s, t = 0)—and a set of parameters defining our model—ε̇0, δ̇0,∆L, Lgz, and ω—

the evolution of the rachis shape and of its different elongation rates is computed.

In the following section, I want to show the different results that this model has

brought.

Typical simulation result

What are the most important criteria that the results of our simulation must meet?

First, the motion has to be qualitatively reproduced. Second, we want to recover

measurements of ε̇⊥ similar to our experimental measurements (see figure 5.3). In

particular, we want to check that our model accounts for the observation of two

distinct modes of oscillations in the measurements of ε̇⊥ (see figure 5.4).
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Figure 5.10: Simulated spatio-temporal diagram of projected elongation. Two
oscillatory modes are visible in this diagram, with a transition around sR = Lgz and on a
characteristic length of 2∆L. Here, time is indicated in units of τ , the imposed period of
nutation.

The motion displayed by the simulated rachis is shown in figure 5.9. Half a period

of nutation is represented. The evolution in time is indicated by the color code: from

blue to yellow. We see that the most important features of the nutation motion are

qualitatively reproduced. As a matter of fact, the simulated motion is a periodical

pendulum-like motion, nodding from right to left. The curvature variations are

indeed localized downstream from the apex. When ε̇0 and ω are appropriately

tuned—i.e. ε̇0 � ω— the rachis freezes a straight shape downstream of the growth

zone, as it is the case in figure 5.9.

What about the measurement of the projected elongation rate ε̇⊥? A simulated

spatio-temporal diagram of ε̇⊥ is shown in figure 5.10. The spatio-temporal diagram

is presented in terms of reversed arclength sR in order to highlight the growth zone—

from sR = 0 to sR = Lgz—and the bending zone of length 2∆L and centred on

sR = Lgz. In a similar way than in figure 5.3, we see that the projected elongation

rate—as a function of time—has an oscillatory behaviour. Like in our experimental

measurements, this oscillatory behaviour is different near the base and near the

apex.

This is easily confirmed by performing a wavelet transform of the projected elon-

gation signals ε̇⊥(s, t) for each point between sR = 0 and sR = L0. Like in figure 5.4,
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Figure 5.11: Spatial distribution of energy for different frequencies. This graph
wasa obtained thanks to a wavelet transform of the data presented in figure 5.10. The
two dominant modes roughly correspond to the imposed nutation period τ = 2π/ω and
τ/2. The mode associated to the projection effects (τ/2) is strong near the apex while the
mode associated to differential elongation (τ) is strong near the base.

the spatial distribution of energy of the different modes can then be studied (see

figure 5.11). The wavelet analysis once again puts forward two space-frequency

domains. Above sR = Lgz, we see that the dominant mode has roughly a period

corresponding to τ , the imposed period of nutation. Meanwhile, below sR = Lgz,

the dominant mode has roughly a period τ/2—i.e. roughly twice the frequency of

nutation. Referring to equation (5.2) and to the definition of the differential elon-

gation rate δ̇, we understand that the observed fundamental mode is a signature

of the differential elongation of the tissues. Then, as discussed in section 5.1.3, the

second harmonic is a consequence of the variation of projection effects. Finally,

figure 5.4 confirms that the zone of transition between the two modes is centred

around sR = Lgz. It furthermore seems that the maximal level of energy for each

mode are reached for sR = Lgz −∆L and sR = Lgz + ∆L.

Rough estimation of experimental parameters

We have described the results of our simulations qualitatively. We now want

to use this model to extract some information—possibly quantitative—from our

experimental measurements. A first approach is to try and reproduce the features

of our experimental graphs (see figures 5.3 and 5.4). Our model indeed relies on a
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great number of parameters. The great freedom provided by the model can turn to

be a burden when it comes to fit our experimental data. Fortunately, some of the

parameters of the model can be measured or estimated.

Knowing what part of the rachis is observed, we can easily measure the radius.

Here, we have R = 0.26± 0.05 mm. The frequency of the motion is also known. A

somewhat averaged measurement of the nutation frequency is provided by figure 5.4.

With a period of about 2.1 h, we have a pulsation ω ' 3 h−1. At last, ε̇0 can be

roughly estimated from figure 5.3. As a matter of fact, the initial and final lengths are

known and allow to compute the elongation rate over the duration of the experiment.

Here, we can estimate ε̇0 ' 1.4× 10−2 h−1.

Then, note that figures 5.3 and 5.4 display both the fundamental frequency and

its second harmonic. As showed earlier, in the framework of the model the transition

between the two modes occurs around sR = Lgz. Here, the transition seems to occur

around sR ' sref (see figure 5.4). So, in first approximation we can hypothesize that

sref ' Lgz. The distance from the apex to the reference point has been measured

and sref ' 23.6 mm. A good first guess for Lgz is thus given by Lgz = 23.6 mm.

As previously discussed, the transition between the two oscillatory modes of ε̇⊥ is

achieved over a typical length of 2∆L. Since we do not observe the whole rachis, it

is likely that we are not able to see the complete transition between the two modes

in figure 5.4. The observation of this figure tells us that 2∆L is at least 8 mm. A

point of comparison is furthermore provided by the results of Chapter 4 where ∆L

was obtained by a different method.

Unfortunately, for the experiment studied here, top view takes are not available.

So, it is not possible to access ∆φ directly. We can at best restrict ourselves to the

following reasonable interval 5◦ ≤ ∆φ ≤ 20◦. For the same reason, no measurement

of the out-of-plane curvature κ⊥ of the rachis is available. So, it is a priori not possi-

ble to estimate the intensity δ̇0 of differential elongation. But, provided estimations

for ∆φ, R, ∆L and ω, equation (5.9) gives an estimation of δ̇0.

Finally, our experimental graphs only track a given part of the rachis. Ini-

tially, the extremities of the part of interest are located at sR = sref − 11 mm and

sR = sref + 6 mm. Our simulated data have thus to be limited in space to faithfully

reproduce our experimental data. To do so, the trajectories of the initial boundaries

of the segment of interest have computed. The final spatio-temporal diagram of ε̇⊥

is then cropped according to these two extremal trajectories.
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Figure 5.12: Results for three different simulations. Each line corresponds to a
run of the simulation for a different value of ∆L. Parameter δ̇0 is adjusted in order to
keep ∆φ constant. The spatio-temporal graph of ˙ε⊥ is shown in the left column. The
spatial distribution of wavelet energy is shown in the right one. (a–b) Occurrence of local
contractions, ε̇0 = 1/4ε̇c. (c–d) At the threshold of contraction, ε̇0 = ε̇c. (d–e) Local
contractions forbidden, ε̇0 = 2ε̇c.
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Let us now take a look at the impact of the variation of two parameters on the

results of our simulations. The radius R and the pulsation ω are fixed by our

measurements. We have then chosen Lgz = 23.6 mm, ε̇0 = 1.4 × 10−2 h−1 and

arbitrarily fixed ∆φ = 10◦. All the previous parameters are kept constant during

the simulation. In contrast, we have chosen to let ∆L free. Since we work with fixed

motion (∆φ and ω kept constant for all simulations), the value of δ̇0 is completely

determined by the other parameters. The diagrams presented in figure 5.12 show

the results of the simulation for three sets of parameters. The parameter ∆L has

been chosen to explore the following growth scenarios:

(i) occurrence of local contractions, here ε̇0 = 1/4ε̇c, see figures 5.12a and 5.12b

(ii) limit of contraction, i.e. ε̇0 = ε̇c, see figures 5.12c and 5.12d

(iii) absence of local contractions, here ε̇0 = 2ε̇c, see figures 5.12e and 5.12f

These scenarios respectively correspond to ∆L = 4.8 mm, ∆L = 19.4 mm, and

∆L = 38.8mm. The qualitative difference between the several diagrams of projected

elongation is striking. As ∆L get greater and greater, we see that the fundamental

mode—of period τ ∗—becomes more and more difficult to observe. This is confirmed

by the spatial distributions of energy (see right column of figure 5.12). This is

due to two effects. First, because of equation (5.9), when ∆L increases, δ̇0 has to

decrease to keep ∆φ constant. In consequence, the amplitude of the fundamental

mode decreases. In addition to that, increasing ∆L means increasing the zone over

which the transition between the two modes occurs. So, the fundamental mode and

its second harmonic are localized farther and farther away from the reference point

sR = sref . At some point, ∆L becomes so big that the observed zone of the rachis

only contains a part of the transition zone, preventing us to observe the oscillatory

modes of ε̇⊥. This is somewhat equivalent to zooming in initial transition zone of

figure 5.12e.

The qualitative comparison of figures 5.12b, 5.12d and 5.12e with figure 5.4 sug-

gests that the optimal value for ∆L is comprised between ∆L = 4.8 mm and

∆L = 19.4 mm. Of course, these values rely on the initial choice for all the other

parameters. Interestingly enough—with this initial set of parameters—this leads to

ε̇0 < ε̇c. Local contractions might thus be at play, but our lack of knowledge on

other parameters such as ∆φ prevent us from concluding. Can we go a step further?

In order to go beyond this difficulty, another approach is to try and fit our ex-

perimental distribution of energy (see figure 5.4). Doing so requires to be able to
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Figure 5.13: Optimal result of the fitting procedure. Here are presented the spatio-
temporal diagram of projected elongation (a) and the spatial distribution of wavelet energy
(b). The optimal parameters obtained after 104 iterations are: ∆φ = 8.0◦, Lgz = 20.6 mm,
∆L = 12.2 mm and δ̇0 = 4.5 × 10−3 h−1. The two last parameters have been fixed at
ε̇0 = 1.4× 10−2 h−1 and R = 0.26 mm.

quantitatively compare the experimental and simulated distributions of energy. We

have chosen the following score

η =
∑
i

∑
j

(
M exp

i,j −M sim
i,j

)2
(5.12)

which is basically the sum of the squared difference of the elements of the two

normalized5 energy distributions matrices M exp and M sim. The aim of the fitting

procedure is to reach an—minimal—optimal value for η.

For the purpose of our fit, we have reduced the number of parameters by fixing

R = 0.26 mm and ε̇0 = 1.4×10−2 h−1. The initial values of the other parameters Lgz,

∆L and ∆φ are randomly chosen. The last parameter δ̇0 is fixed by equation (5.9).

Then, the evolution of the parameters is ruled by a Metropolis-like algorithm. At

each iteration, the parameters have a certain probability to change value. The set of

parameters is first updated, a new simulated distribution of energy is then computed

and the score η is updated. This technique is advantageous in the sense that it allows

to explore the space of the parameters automatically.

Having initially fixed R = 0.26 mm and ε̇0 = 1.4 × 10−2 h−1, the optimal pa-

rameters given by our fit after 104 iterations are ∆φ = 8.0◦, Lgz = 20.6 mm,

∆L = 12.2 mm and δ̇0 = 4.5 × 10−3 h−1. The results of our fitting procedure

are shown in figure 5.13. The visual comparison of the experimental and simulated

5The energy distribution matrices have been normalized by the difference between their maxi-
mum and minimum.
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figures bring out some discrepancies.

Let us compare the spatial distributions of wavelet energy (see figures 5.13b

and 5.4). We notice that the wavelet energies of the fundamental mode and the

second harmonic are comparable in the experimental distribution of energies whereas

it is not the case in figure 5.13b. As a matter of fact, we see that the energy of the

fundamental mode (τ/τ ∗ = 1) remains lower than the energy of the second harmonic

(τ/τ ∗ = 1/2).

Another remark—rising from the comparison of figures 5.3 and 5.13a—lies in

the mean value of the signals ε̇⊥(s, t) for a given arc length in the spatio-temporal

diagrams. In particular, our experimental data show that the oscillations of ε̇⊥ are

centered around 0 near the apical end of our sample (see figure 5.3). This however

clearly not the case in the result of our simulations (see figure 5.13a).

Otherwise, the output of our fitting procedure shows a good qualitative agree-

ment with our experimental data. The two modes are indeed observed. More

importantly, they are approximately located in the expected regions, i.e. the fun-

damental mode is observed sR− sref > 0 while the second harmonic is found in the

region described by sR − sref < 0. The length of the transition zone also appears

to be reasonable6 as it allows to observe both modes. It is difficult to comment on

the value of ∆φ, but ∆φ = 8.0◦ is at least qualitatively consistent with the typical

values of ∆φ and seems reasonable considering the available pictures of the motion.

At last, we see that the optimal parameters bring ε̇0/4δ̇0 = 0.78 thus suggesting the

occurrence of local contractions.

5.3 Discussion and partial conclusion

The previous chapters have pinpointed possible regulation mechanisms underlying

both the growth and the posture regulation of Averrhoa carambola leaves. In par-

ticular, our results from Chapter 4 have unearthed the specific spatial organization

of elongation and differential elongation, but in a averaged way, at the scale of the

whole organ. However, the growth and motions of the carambola leaves is dynamic

by essence. Our main goal in this fifth chapter was thus to determine the elongation

and differential elongation fields at high spatial and temporal resolutions to account

for the dynamics of growth and motions.

Our technique to measure elongation along the rachis by combining time-lapse

photography and image-to-image correlation (Bastien et al., 2016) however revealed

6We can foresee in figure 5.4 that ∆L ' 8 mm with the possibility that the observed transition
is not complete.



5.3. Discussion and partial conclusion 125

insufficient in the case of a organ with enhanced out-of-plane motions. Our mea-

surements are clearly affected by artefacts (see figure 5.3) which are actually a

consequence of the nutation motion, as discussed in section 5.1.3. Unfortunately,

these artefacts of geometrical origin might be 10 to 100 times bigger than our signals

of interest. Rather than changing our technique, our approach consisted in trying to

extract as much information as possible from our biased measurements of the pro-

jected elongation. With this initial goal in mind, we have built a kinematic model

of nutation which benefits happened to be of broader interest.

A model accounting for the kinematics of nutation Armed with the experi-

mental characterisation of the elongation and differential elongation fields of Chapter

4, we have defined a new kinematic model for growth and nutation in compound

leaves (section 5.2.1). The originality of our model is twofold. First, contrary to

the vast majority of models of nutation, our model is not an attempt to explain

the emergence of the motion (Mugnai et al., 2007; Stolarz, 2009). In the frame-

work of kinematics, the origin of nutation oscillations is somewhat irrelevant. They

are consequently introduced ad hoc in the definition of the differential elongation

δ̇. Second, it is growth itself—more precisely, the spatial organization of elongation

and differential elongation—which at the base of our model.

Despite the great number of parameters—eight—involved in our model, it

provides a quite light framework, enabling us to link all the parameters through

simple relations (section 5.2.1,‘Restricting the range of the parameters’).

The simulations based on our model showed a good qualitative agreement

with nutation, reproducing quite faithfully the main features of the motion (see

figure 5.9). Furthermore, our simulations have successfully reproduced—at least

qualitatively—our experimental measurements of the projected elongation field ε̇⊥

(compare figure 5.3 to figures 5.10, 5.12 (left column) and 5.13a). In particular, the

puzzling presence of two frequencies in the measurements of ε̇⊥ have been reproduced

(compare figure 5.4 to figures 5.11, 5.12 (right column) and 5.13b) and explained

as an evidence of the differential elongation of the tissues (see section 5.2.2, ‘Typi-

cal simulation result’). Altogether, this brings further support to our observations

and results from Chapters 3 & 4, as the observed profiles for the elongation and

differential elongation allow to effectively reproduce the nutation motion.

Measuring the elongation of moving organs remains challenging Regard-

ing our initial aim, our model only provided approximate and macroscopic informa-

tion on the elongation behaviour of the rachis at this stage. The model indeed sheds
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a new light on our experimental data (figures 5.3 and 5.4) and allows to estimate

important quantities involved in the kinematics of growth such as the lengths of the

growth and bending zones (Lgz and 2∆L) respectively. A naive fit of the spatial

distribution of wavelet energy has been performed (see figure 5.13) and has provided

the following estimations: Lgz ' 20.6 mm and ∆L ' 12.2 mm. We can compare

these values to those obtained for a different experiment in Chapter 4 (indicated

with a prime here). We had L′gz ' 33.4 mm and ∆L′ ' 20.8 mm. Of course,

the values in the experiment of Chapter 4 are higher but stay in the same order of

magnitude than in the present experiment. Considering the fact that the two rachis

were of radius R = 0.26 mm and R′ = 0.6 mm, the different techniques used and

the possible biological variations, those differences are not so surprising. Moreover,

these values are compatible with mentions of centimetric growth and bending zones

in the literature (Millet et al., 1988).

The estimation of the other parameters—ε̇0, ∆φ and δ̇0—is much more del-

icate. As a matter of fact, the fit of the spatial distribution of wavelet energy

does not account for the value of ε̇0 since it is not involved in the expression of

the amplitude of the fundamental mode and the second harmonic (see Appendix

C). For this reason, we have estimated it thanks to the elongation of the studied

sample in figure 5.3. An approximation is made here: that the sample elongates

at a constant and homogenous rate ε̇0 which cannot be the case according to our

model. Our coarse approximation of ε̇0 ' 1.4× 10−2 h−1 is however consistent with

ε̇′0 ' 1.9× 10−2 h−1 measured in Chapter 4. Finally, the value of δ̇0 depends on ∆φ

which is difficult to check but seems reasonable, as already discussed. In any case,

our estimation δ̇0 ' 4.5× 10−3 h−1 is also comparable to δ̇′0 ' 7.0× 10−3 h−1.

Considering our current method to experimentally measure elongation and

differential elongation, we see that our model hardly gives precise quantitative in-

formation on the growth behaviour of our samples. Further efforts on our data set

and on the model might bring more precise estimations of the parameters. For in-

stance, it might be possible to estimate ∆φ from the oscillations of the individual

trajectories observed in figure 5.3. However, to cope with the growth of moving

organs, it appears that a different method of measurement might be needed. In

order to get rid of the variations of projection effects induced by nutation, a nat-

ural idea is to access the 3D geometry of the rachis. A collaboration with Franck

Hétroy-Wheeler and Julien Pansiot—computer scientists specialized in 3D motion

capture—has been engaged in this way and should bring precise unbiased measure-

ments of both elongation and differential elongation.
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Indirect evidences of local contractions

The benefits of our model to the description of Averrhoa carambola growth have

been discussed. Can we now go further and use it to other ends? In Chapter 4,

we have studied the rhythms of nutation. As a matter of fact, our results have

unearthed the slow amplitude modulation of nutation. The growing rachis goes

through daily bursts of activity. These nutation tides rely on bursts of differential

elongation. What is then the exact nature of this differential elongation? Reversible

or irreversible? The framework brought by our kinematic model of nutation gives

us a tool to analyse and understand such variations of differential elongation. In

particular, could they be linked to local contractions along the rachis?

As discussed in section 5.2.1, there exist a threshold ε̇c in ε̇0 under which local

contractions occur. Interestingly enough, we have seen that for the experiment

described in this chapter, ε̇0/ε̇c = 0.78. As for the experiment presented in Chapter

4, we see that for the averaged parameters we have ε̇′0/ε̇
′
c = 0.67. These values have

to be considered carefully as they are not the output of direct measurements and are

possibly affected by large errors. For both experiments however, this suggest that

the average behaviour on the duration of the experiments involves contraction. So,

the next step is naturally to spot when and where such contractions could occur.

To do so, I propose to quickly re-analyse and discuss the experiment of Chapter

4 at the light of our model. Here, we will split the experiment in several parts,

depending on the occurrence of a nutation tide. This was done manually on figure 4.4

and is thus necessarily subjective and imperfect. From here, we can first determine

ε̇0 and δ̇0 by applying the same method and fit than than in Chapter 4. The result

of this procedure is shown in figure 5.14. We see that for points belonging to a

nutation tide we systematically have ε̇0/ε̇c < 1. Regarding points not belonging to

a tide, the situation is not clear though. For two points, we fit systematically failed.

For the remaining points, contraction is suggested in one case over two. Here again,

these values should be considered carefully.

Another way to look at contraction events during nutation is by studying the

evolution of the angular amplitude ∆φ of the motion (see figure 5.15). For a given set

of parameters, it is possible to define an angle ∆φc = ∆L2/(2NπRLgz) above which

contractions must occur. Here, N corresponds to the number of nutation oscillations

a material point undergoes before leaving the bending zone and is somehow linked

to ε̇0. For the experiment of Chapter 4, we have approximately 20 ≤ N ≤ 30. These

two limits have been indicated in figure 5.15. We see that for every point belonging
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to a nutation tide, ∆φ is greater than the limits ∆φc,20 and ∆φc,30. In contrast,

points not belonging to a nutation tide are below or near ∆φc,20 and ∆φc,30. There

thus seems to be an alternation between phases with and without contractions in

the motion.

Then, we can also define an angle ∆φnc above which contractions are mandatory

for any value of ε̇0, corresponding to the limit of ∆φ for the minimal physical value

of N . Here, we have estimated ∆φnc by arbitrarily taking N = 5, which seems a

quite low limit. We then see on figure 5.15 that two nutation tides have ∆φ > ∆φnc.

For such motions, the local contraction of tissues may thus be mandatory.

As already discussed in Chapter 1, contractions have been measured in (cir-

cum)nutating organs (Berg & Peacock, 1992; Caré et al., 1998), and have also been

suggested to be involved in other growth motions such as gravitropism for exam-

ple (Berg et al., 1986). More precisely, Caré and coworkers have actually shown that

individual cells undergo reversible volume variations in the bending zone of Phase-

olus vulgaris (Caré et al., 1998). Moreover, some authors have also proposed that

growth itself is not sufficient to drive circumnutation and that reversible process

should be considered (Millet et al., 1988).

Taking into account the lack of precision of our preliminary results, we can say that

contractions might also be involved in the case of Averrhoa carambola nutation. This

is indicated by the global ε̇0/ε̇c ratios, but also by figures 5.14 and 5.15. In complete

agreement with the results of Caré and coworkers, our model furthermore predicts

that if contractions occur, then they should be localized within the bending zone of

the organ7. Then, in the framework of our model, we show that local contractions are

not a compulsory prerequisite to the nutation motion. Beneath the physical limit

∆φnc, motions can either involve contractions or not. On experimental grounds,

while it is not still perfectly clear, our results seem to suggest that contractions are

however involved in nutation, in particular during nutation tides (see figures 5.14

and 5.15).

What mechanisms could now be at the origin of such reversible contractions? A

careful observation of the convex and concave faces of nutating Phaseolus vulgaris

stems showed that cells on the concave face were rippled while cells on the convex face

were fully swollen (Millet et al., 1984). Based on previous evidences of variations

of osmotic potential in the bending zone, Caré et al. have proposed that these

reversible volume variations result from turgor variations. It is also possible that

7More generally, the spatial patterns of elongation described by these authors is consistent with
our measurements and model.
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more subtle mechanical effects are involved. For instance, the nutation motion could

also induce the compression of the tissues on the concave face of the bending organ.

At last, these reversible length variations could be indirectly linked to variations in

the elastic properties of the cell wall, which we will investigate in the next chapter.

Partial conclusion In this chapter we have developed a kinematic model of

growth and nutation, based on our previous experimental characterization of the

spatial patterns of elongation and differential elongation involved in Averrhoa caram-

bola nutation. Being consistent with our own characterizations of nutation, but also

with further observations in the literature, it seems that our model gathers the

essential features of the nutation kinematics.

We have also seen how a precise measurement of the elongation field of a moving

plant organ is a delicate task. Our kinematic model did not allow a rigorous quanti-

tative analysis of our experimental results yet. It however allowed us to understand

the nature of the observed measurement artefacts. In particular, we have been able

to pinpoint the signature of differential growth in our biased measurements.

The nature of this differential elongation has now to be investigated at a lower

organization scale, namely at the cell wall level.
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A major characteristic of plant cells is the rigid cell wall they are encased in.

Julius von Sachs and Julius von Wiesner already stressed the importance of the cell

wall as early as the 19th century. The cell wall is not only essential to give rigidity

to the plant, but it is also plays an important role in its growth. As discussed in

Chapter 1, on a mechanical point of view, plant growth is ruled by both the turgor

pressure and the resistance of the cell wall. The mechanical properties of the cell

wall partly ensue from the chemical status of its components.

The nutation motion is underlaid by the differential elongation of the rachis,

possibly with the contribution of reversible length variations. During nutation, the

lateral faces of the rachis must then undergo different elongation rates. We now want

to take benefit from the intimate link between growth and motions to explore the

microscopical aspects of growth. The aim of this sixth chapter is thus to investigate
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Figure 6.1: Simplified picture of an atomic force microscope. The illustrated
operating mode is the contact mode. Inspired from (Milani et al., 2013).

how this differential growth translates in terms of mechanics and biochemistry of

the cell wall.

6.1 Mechanical heterogeneities within tissues

6.1.1 Atomic force microscopy as a tool for plant mechanics

Atomic force microscopy (AFM) is a very high-resolution imaging technique that

was originally developed to image surfaces at the atomic scale (Binnig et al., 1986).

Such a resolution can be achieved by using a physical probe to image the surface. In

the case of the AFM, the probing element is an ultra-light and deformable cantilever

beam with a rigid tip on its bottom surface. A laser is constantly pointed at the

cantilever top surface and is reflected to a photodetector. When approached to the

sample, the tip extremity is submitted to interatomic forces. Because of its very low

mass, the cantilever is very flexible and the repulsive forces bend the cantilever. This

bending results in the displacement of the laser beam on the photodetector which

can finally be linked to the local height of the probed surface. We see here that

the AFM can be used both to measure forces and to determine the probed surface

topology. The original operating mode of the AFM relies on keeping the interaction

forces between the tip and the sample constant. This is made possible by a feedback

loop involving the measurement of the force and the control of piezoelectric drives

that allow to adjust finely the tip position (see figure 6.1).

The atomic force microscope is a versatile tool and is being used is several domains

including solid state physics, polymer chemistry or cell biology. In cell biology, one

of the main interest appears to have been surface-imaging of animal living cells in a

non-destructive manner (Milani et al., 2013). Another application of the AFM is the

determination of the mechanical properties of biological samples. This particular
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use of the AFM is the one we will be concerned with for the rest of this study.

To perform mechanical measurements—contrary to the original AFM operating

mode—the cantilever is brought to direct contact with the sample in order to indent

it, as pictured in figure 6.1. This contact mode is made of three phases: approach,

contact and retract. The vertical position of the cantilever and its deflection are

recorded during the whole process. During the approach phase, the cantilever gets

closer and closer to the sample. Then, the contact between the cantilever tip and

the sample is established. The cantilever keeps being lowered, the tip of cantilever

is sunk further down into the sample: both indentation depth and cantilever deflec-

tion increase. The indentation stops once the measured deflection of the cantilever

reaches its setpoint1. Finally, the retract phase begins and the cantilever is pulled up

to its initial z-position. However, extend and retract phases are not equivalent. The

sample may adhere to the cantilever tip and exert a force on it. When the cantilever

is high enough compared to the sample, adhesion ceases. Moreover, differences in

the approach and retract phases might be induced by dissipative phenomena such

as viscosity (Milani et al., 2013).

If the cantilever is properly calibrated, it becomes possible to link the deflection

of the cantilever to the applied force and to draw force-displacement curves. Such

curves are the basic material from which the mechanical properties of the sample are

extracted. To get the mechanical properties of the probed tissue, we need to establish

a relation between the indentation depth and the force applied on the sample. This

relation is given by the Hertz contact model. The Hertz model hypothesizes that

the sample is an isotropic and linear elastic medium occupying a half space ; the

cantilever tip is not deformable ; there is no interaction between the sample and the

probe. Given this set of hypotheses and considering that we use a spherical probe

on an incompressible half-plane, we have

F = E
√
Rd3/2 (6.1)

We see that given the force curve, the information about the position of the

sample with respect to the tip (indentation depth) and the radius of the used tip, it

becomes possible to extract the Young’s modulus of the sample (Lin et al., 2007).

6.1.2 Experimental protocol

Our present aim is to take benefit from the nutation motion to gain insight on the

mechanical changes implied by growth at the cell wall level. To this end, we resort

1Maximum value of the cantilever deflection set by the user
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to two different experimental techniques: time-lapse photography and Atomic Force

Microscopy (AFM).

Technical protocol

The first step of the protocol is to record the motion of the rachis. This is done

by placing a camera above the leaf—top view, with the camera as horizontal as the

geometry of the plant allows —of interest and performing time-lapse photography.

This step is designed to pinpoint the bending zone and to give us the direction of

the motion at the moment of the experiment. The choice of the time interval δt of

the time-lapse photography is ruled by the need of having a clear information on the

position of the bending zone at the moment when we cut down the leaf for sample

preparation. For our different experiments, δt was taken equal to 2.5 min.

The moment when the leaf is cut has to be chosen carefully. We want to make

sure that we do not take a sample at the moment when differential growth nullifies

for example. One could be tempted to cut the leaf when it is at one of its extreme

positions in the nutation process. Doing so has two severe drawbacks. First, when

the leaf reaches an extreme position, the motion gets slower, and it might be dif-

ficult to determine the actual direction of nutation. Moreover, differential growth

is supposedly low near to an extreme position. In Chapter 2, we have described

the implications of a the hypothesis a nutation motion only driven by differential

growth. In particular, we have deduced that differential growth has to be maximal

at the moment when the rachis is straight—φ globally nullifies—and minimal near

to an extreme position. Even if the results of Chapter 4 and Chapter 5 suggest that

nutation do not only rely on differential growth, we refer to these simple deductions.

We have consequently decided to cut the leaf when it approaches (or just leaves)

the straight-shape step of nutation.

Once the leaf has been cut, it is preserved from dessication in a moist box. The

next step is the sample preparation strictly speaking. As mentioned in Chapter 2,

Averrhoa carambola is a hairy plant. Its epidermis is densely covered with long

and curved trichomes. These trichomes prevent the cantilever from reaching the

epidermal cells. So, in our case, it is not possible to probe the mechanics of the

epidermis—as it is done for Arabidopsis thaliana hypoctyls for example (Peaucelle

et al., 2011). For this reason, we perform cross sections of the rachis and probe

the mechanics of its inner tissues. Doing so has an advantage: the elasticity of

the tissues will be probed directly in their direction of growth, contrary to most

indentation experiments on plant material. Then, several samples are taken from
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Figure 6.2: Illustration of the sample preparation. The cross-sections of the rachis
are placed vertically on structured microscopy slides and embedded in low-melting agarose.
This protocol was adapted from (Peaucelle, 2014).

the bending zone with a razor blade and are then arranged vertically on the slide

(see figure 6.2).

One of the major challenges in using fresh tissues is to make sure that they stay

immobile during the AFM measurements. To overcome this difficulty, samples are

placed on a slightly modified microscopy slide and then embedded in low-melting

agarose. To ensure the stability of the whole preparation—a priori agarose slips on

glass, and vertical samples might not be as stable as horizontal ones—the microscopy

slide has been prepared beforehand (see figure 6.2). Slides are structured glass

canals where to place the sample, and with deep scratches. Altogether, this allows

a better adhesion of agarose on glass and minimizes sample stability issues during

the measurement process (Peaucelle, 2014).

The prepared slice is then immersed in a saturated mannitol solution. While

this solution helps keeping the samples hydrated, it also plasmolyses the tissues.

The tissues being plasmolysed, it means that we will only probe the properties of

the cell wall material. However, plasmolysis is not an instantaneous process. The

plasmolysis status of the tissue should be carefully considered before starting any

measurement.

Two questions naturally arise from this remark. What is the plasmolysis dy-

namics? What is the effect of plasmolysis on our AFM measurements? A possible

approach to answer this question is to scan a given region of the sample of interest

repeatedly, compute the mean and the standard deviation of the Young’s modulus

over the scanned region and finally observe the temporal evolution of these quanti-

ties.

As we can see on figure 6.3, the longer the sample has been immersed in mannitol,

the lower is the average Young’s modulus Em. In the first minutes after immersion,

Em quickly decays. It then stabilizes after 18 minutes of immersion. Here, the

difference between the maximum of Em and its minimum is approximately 6 kPa

(i.e. around 20 % of the initial value of Em). This experiment indicates that we
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Figure 6.3: Plasmolysis dynamics and plasmolysis effects on Atomic Force Mi-
croscopy measurements. The same region is scanned repeatedly and the evolution of
its average Young’s modulus Em is traced. Error bars represent the standard deviation
over the AFM map.

should wait at least twenty minutes after immersion in mannitol to begin AFM

measurements and avoid errors due to incomplete plasmolysis.

Finally, the prepared slide is placed under the AFM and enclosed in a moist

atmosphere to avoid a quick evaporation of the mannitol solution.

Sample orientation

The thorniest part of sample preparation is to determine its orientation on the

microscopy slide. To properly correlate the direction of the motion and the mechan-

ical properties of the tissues, it is decisive to be certain of the orientation of the

sample. Fortunately, we can make good use of several anatomical clues to orient our

samples.

Leaves often have a bilateral symmetry. That is to say that their midveins define

an axis of symmetry. Thus, two opposite faces—usually the lateral ones—are ap-

proximate mirror images of each other. In this case, the adaxial and abaxial faces are

usually different. What about the rachis of Averrhoa carambola? We have already

seen in Chapter 2 that mature rachis have a radial symmetry, but developing rachis

present a clear bilateral symmetry. The symmetry of the lateral sides consequently

helps to distinguish the adaxial and abaxial faces. The adaxial face of the rachis is

flatter than the abaxial one. In a schematic way, we could say that the section of

the rachis have the shape of a heart of even of a triangle (see figure 6.4a).
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(a) (b)

Figure 6.4: Useful clues to determine the orientation of a sample. (a) Simplified
picture of a cross-section of Averrhoa carambola rachis. The bilateral symmetry of the
rachis allows a clear distinction between the lateral faces and the abaxial/adaxial faces.
Flatness, chloroplast and vessel densities allow to distinguish the adaxial and abaxial faces
from one another. (b) The rachis is covered with trichomes that all point toward the apex.

Two other anatomical clues are helpful. In the developing rachis, it appears that

the density of primordial vessels is higher in the lower part of the section than in the

higher one. At last, most of the time, the adaxial face contains more chloroplasts,

and consequently looks greener, than the abaxial one. This last point is also valid

for mature rachis and is a strong clue to help in determining the orientation of any

sample.

We already discussed an orientation convention in Chapter 2. We keep considering

the rachis in the same way: from the petiole to the apex. This defines the right and

left sides of the rachis. It is thus important to know ‘where the apex is’ when we

look at a given sample. A reliable indicator of this is the direction of the trichomes.

As we can see, the trichomes are all oriented in the same direction: their sharp ends

actually point toward the apex (see figure 6.4b).

Knowing the direction of the motion, and knowing the orientation of the sample,

we are now able to distinguish the concave and the convex sides of the rachis. This

finally allows us to compare the mechanical properties of two regions with supposedly

different growth behaviours.
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Choice of the different parameters

The AFM device can be tuned at many levels, ans several types of AFM tips can be

used. This gives a high number of parameters to choose. Some of these parameters

are likely to impact the final result of our mechanical measurements. Among them,

three parameters are of superior importance: bead diameter, indentation depth and

indentation speed.

The choice of which tip to use for AFM measurements is of great importance.

The resolution of the measurements obviously depends on the tip. All of the can-

tilevers used for these measurements bear a 25 µm diameter bead. This diameter

allow us to observe the elasticity pattern at a scale close enough to the cellular scale.

A greater diameter might also be adapted to our study. Indeed, we are interested

in the differences of Young’s modulus within the tissues of the rachis. Probing the

elasticity at a greater scale (some cells) might already be sufficient to bring out such

heterogeneities.

Indentation depth is not directly controllable. It is the result of the deforma-

tion of the probed material—and obviously depends on its mechanical properties—

under the action of the indentation force applied by the cantilever. In our experi-

ments it was generally of 1−−5 µm.

6.1.3 Data analysis

The AFM allows to probe the mechanics of the sample on 100 µm × 100 µm

regions. These regions are reduced to a certain amount of points depending on the

chosen spatial resolution. For each of these points, the AFM raw output is a set

of two ‘force versus height’ curves. One of these curves corresponds to the extend

phase measurement while the other one corresponds to the retract phase. In these

curves, the force corresponds to the force applied on the biological sample and the

height corresponds on the z-position of the cantilever2.

As discussed in section 6.1.1, the Hertz contact model allows to retrieve the

Young’s modulus of the tissue. But, in the frame of the Hertz contact model,

we first need to get force versus indentation depth curves. That is to say that we

need to determine the position of the contact point or, to put it in other words, the

position of the sample relative to the initial position of the cantilever. In simple

cases, this can be done by pinpointing the change of slope in the force-height curve.

2The used AFM does not provide the absolute position of the cantilever but only its position
relative to its initial position.
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What does this change of slope mean? It corresponds to the transition between a

resistance-free displacement of the cantilever—no change in the applied force while

the cantilever is displaced—and the displacement of the cantilever with a mechanical

resistance—any displacement of the cantilever induces a change in the applied force.

Most of the time however, this change of slope is hard to detect. For this reason, the

position of the contact point is fitted by the dedicated JPK data analysis software.

Once the contact point has been determined, the analysed force-height curve can be

transformed in force versus indentation depth curves. From this point, it becomes

possible to fit the Hertz contact model to the considered curve.

The described analysis has to be repeated twice—extent and retract curves—for

each point of a scanned area. When this is complete, a map of the rigidity—or any

other available information— of the area can be built. In such a map, each point

corresponds to a single AFM measurement and is associated to the retrieved Young’s

modulus. Hence, we can build two maps corresponding to the extent and retract

measurements. Maps are actually matrices built from the output files of the AFM

thanks to Matlab and are thereafter workable for statistical analysis for instance.

A single AFM map covers 10−2 mm2 while a typical rachis transverse area is of the

order of several tenths of mm2. Numerous maps are thus needed to image the whole

sample or at least a part of it. To obtain a proper image of the sample, we then need

to align all these maps. The alignment of the maps cannot be done automatically

since the cantilever is displaced across the sample during the experiment and the

AFM does not record the absolute X−−Y coordinates of the cantilever. In addition

to that, the sample is sometimes not completely stable in the agarose layer and may

be continually drifted because of repeated contacts with the cantilever. To go beyond

these issues, a picture of the cantilever over the sample is taken for each map. The

resulting pictures are aligned manuallyThe map position within the sample is known

thanks to the initial position of the cantilever in the aligned pictures. However, the

position of the maps over the studied sample is not perfect. In general, we do

not precisely know where the bead is placed under the used cantilever3. Strictly

speaking, we retrieve the position of the maps relative to each other.

The individual maps that are obtained can now be processed and corrected if

needed. Rigidity maps can be affected by numerous sources of error. In particular,

we are sometimes forced to probe the agarose layer. Some measurements might also

be disturbed by the presence of a trichome or of some unwanted material on top the

3The cantilevers used during my thesis were manually built by Alexis Peaucelle. As a result,
the position of the bead under the cantilever is not known.
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sample. Thanks to simple filters on the sample height and rigidity, we can exclude

aberrant points or regions external to the sample. Parts of the map that were

affected in some manner but cannot be excluded by simple filtering are manually

masked.

In this whole part, we are seeking mechanical heterogeneities within the growing

tissues of Averrhoa carambola rachis. Because of the nutation motion, we basically

expect one side of the rachis to be stiffer than the other. To reveal such a behaviour,

it is sufficient to use relative rigidity values. I have made the choice to use only rel-

ative Young’s modulus values partly for this reason, but also because it makes the

protocol simpler—the cantilever calibration is no longer relevant—and less depen-

dent to calibration issues. As a result, all the rigidity maps that will be presented

hereafter are in percentage of the global average Young’s modulus of the considered

sample Em.

6.1.4 Results

Full-mapping of the rachis

A first approach to explore the inner mechanics of the rachis is to realize a complete

AFM scan of a sample. As already discussed in section 6.1.3, such an experiment is

costly in the sense it requires to perform a large number of AFM maps. But, doing

so will allow to comparing the mechanical properties of the different tissues of the

rachis and eventually to pinpoint tissues more likely to be relevant for our study.

Such a map is presented in figure 6.5.

First, we see that the rigidity of the inner tissues of the rachis is quite heteroge-

neous. The Young’s modulus values E are mostly comprised in 0 ≤ E ≤ 5Em, where

Em is the global average of E. Then, it seems that the softest tissues are found in

the center of the sample while the stiffest tissues are found on its periphery. This is

somewhat consistent with the description of the inner tissues made in Chapter 2. As

a matter of fact, the most central tissue of the rachis—the medullar parenchyma—is

constituted of large thin-walled cells. On the contrary, the outermost layers have

thicker cell walls and are relatively much smaller. It could reasonably be expected

for the parenchyma to be softer than the rest of the tissues.

This sample had been taken in the bending zone of the growing rachis. So, can we

spot a mechanical heterogeneities that could correlate with the motion? Actually,

we see that the highest values of E/Em are found on the left half of figure 6.5. Not

only can we spot patches of high relative rigidity, but the mean values of E/Em also



6.1. Mechanical heterogeneities within tissues 141

0

1

2

3

4

5

E
/E

m

100 µm

Figure 6.5: Global rigidity mapping of the rachis’ inner tissues.

seem greater in the left maps. We thus see that there is a gradient of rigidity in the

tissues of the rachis. Could these variations be linked to the nutation motion?

Focusing on peripheral tissues

Mapping the rigidity of a whole rachis cut have put forward the mechanical hetero-

geneities resulting from the diversity of the inner tissues of the rachis. The presented

experiment also displayed a rigidity gradient between the faces of the rachis. Does

such a rigidity gradient correlate with the nutation motion?

The peripheral tissues of our sample seem of particular interest since they dis-

play mechanical inhomogeneities. Besides, as discussed in Chapter 2, these tissues

undergo important anatomical changes. So, we are now going to focus on these

specific tissues.

Here, accordingly to the protocol described in section 6.1.2, a time-lapse movie

of the leaf was systematically realized to determine the direction of the motion.

Then, like previously, series of AFM maps were realized on the inner tissues of the

rachis. We confined the measurements to the peripheral tissues, trying to probe

the same tissues consistently throughout the experiment. Thanks to the orientation

criteria described earlier, we have split our individual AFM maps in two popula-

tions: those belonging to the concave and convex faces of the rachis. To compare
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Figure 6.6: Relative rigidity histograms of the inner peripheral tissues. The
histograms of the concave and convex faces of the rachis are drawn separately, in blue and
red respectively. The three first moments of the distributions are compared and normalized
by an estimation of the variability in E (∆X ≡ Xconcave −Xconvex). This sample belongs
to the experiment 1, and is labelled 1.

these two populations, we have built the histograms of the relative rigidities E/Em

(see figure 6.6). To be able to quantitatively compare the characteristics of these

histograms, we have measured different moments of the distributions: their mean

µi, their standard deviation σi and their skewness γi
4. Finally, to assess the signif-

icance of the observed differences between the characteristics of the distributions,

we normalize the differences in the different scores by a measurement of the local

variations of E/Em, noted here σ̃. The local variations of E/Em are quantified by

computing the standard deviation on a small neighbourhood around each pixel of

each map. Finally, σ̃ corresponds to the median of this quantity.

In the case of the experiment presented in figure 6.6, we see that the histograms of

the concave and convex faces are qualitatively different. Not only the modes of the

distributions are clearly different, but their global shapes also differ. We see that

the distribution of E/Em for the concave face is almost symmetrical, looking like

a Gaussian distribution. In contrast, the convex distribution is asymmetrical and

4The skewness is basically a measurement of the asymmetry of a distribution. It corresponds
to the standardized centred third moment γi = 〈X − µi〉3/σ3

i . A positive skewness indicates that
the distribution leans to the left, on the contrary a distribution with negative skewness leans to
the right.
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µconcave µconvex ∆µ/σ̃ γconcave γconvex ∆γ/σ̃

Experiment 1

sample 1 1.18 0.80 5.60 0.76 0.90 -2.27

sample 2 1.10 0.90 3.14 0.17 1.20 -15.6

Experiment 2

sample 1 1.10 0.92 3.37 0.32 0.50 -3.29

Experiment 3

sample 1 1.06 0.96 1.03 0.87 0.91 -0.48

sample 2 1.06 0.95 1.25 1.00 1.54 -5.77

Table 6.1: Recapitulation of the distributions characteristics. This table gathers
the different comparison scores—mean, standard deviation and skewness—for the rela-
tive rigidity histograms shown in figures 6.6 and 6.7). For all the displayed quantities,
∆X ≡ Xconcave −Xconvex. Data is presented in the same order than the figures.

shifted towards low relative rigidities. At first glance, we thus see that in average

the convex face of the rachis is softer than the concave face. The difference of the

means is significative since we have ∆µ = 5.6σ̃. Besides, the skewness scores confirm

that both distributions lean to the left (see table 6.1), that is to say that there is

a tendency to over-represent the low E/Em. Finally, ∆γ = −2.27σ̃ confirms the

visual impression of figure 6.6: the asymmetry of the distribution of E/Em is more

marked for the convex face.

So, if we accept that the nutation motion is driven driven elongation—with possi-

ble irreversible and reversible contributions—these first results suggest a correlation

between the rigidity of the tissues and their elongation rate. More precisely, the

experiment pictured in figure 6.6 suggests that the tissues with the highest elon-

gation rate—on the convex face—have a lower rigidity than the tissues with the

lowest elongation rate—on the concave face. Here, the relative difference between

the Young’s moduli of the faces is of about 40% (see table 6.1).

In order to test the reproducibility of these results, we have performed further

experiments. Four additional rigidity mappings of the peripheral tissues of the

rachis are presented in figure 6.7. The characteristics of the different distributions

and their comparison are gathered in table 6.1.

First, we see that the two samples of experiment 1 provide qualitatively equivalent

results (compare figures 6.6 and 6.7a). We recover two distinguishable distributions

of relative rigidities. As previously, the convex tissues are in average softer than the
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Figure 6.7: Additional relative rigidity histograms. The results for four other sam-
ples are shown here. (a) Second sample from experiment 1 (same experiment than in
figure 6.6. (b) A single sample from experiment 2. (c–d) Two samples from experiment
3. The red and blue histograms correspond to the convex and concave faces respectively.
The comparison of the histograms characteristics is summed up in table 6.1.
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tissues of the concave face. Moreover, we find again a marked asymmetry in the case

of the convex distribution. In quantitative terms, the two means are significantly

different with ∆µ = 3.14σ̃. Similarly, for the skewness scores, we have ∆γ = −15.6σ̃.

Notably, we see that the relative difference between the Young’s moduli of the

faces is now reduced to 20% (against 40% previously). So, we see here that two

samples from the same experiment—and thus the same rachis—display important

quantitative differences that will need to be discussed. Interestingly enough, we see

that the only sample from experiment 2 also displays the characteristic behaviour of

the samples of the two previously discussed samples (see figure 6.7b and table 6.1).

As for the third and last experiment, the global behaviour is different from the

three previous cases (see figure 6.7c–d). For the two samples of experiment 3, the

tissues of the convex face remain softer than those of the concave face but the

mean values of the E/Em distributions are not as well separate. In both cases

∆µ ' σ̃. The observation of figures 6.7c–d shows that the asymmetry of relative

rigidity distributions is more pronounced than for the previous experiments. This

is particularly true in the case of the tissues of the concave face. Moving on a

more precise description of the distributions, we that the tissues of the concave face

present a slightly more important number of points with E > Em than tissues on

the convex face. Notably, in the case of the second sample where the difference in

skewness is important (see figure 6.7d, ∆γ = −5.77σ̃).

In summary, we have investigated the possibility of mechanical heterogeneities

within the tissues of the nutating rachis. As a matter of fact, our results are based

on few experiments and might be matter to some debate, inviting us to remain

cautious. Our results show evidences of inhomogeneities of the elastic properties of

the cell wall, correlating with the direction of the nutation motion.

6.2 Cell wall composition heterogeneities

The rachis of Averrhoa carambola presents clues of mechanical heterogeneities

in its bending zone. As discussed in Chapter 1, the mechanics of the cell wall is

greatly influenced by its biochemical status. So, can we now pinpoint biochemical

heterogeneities within the inner tissues of the nutating rachis? In particular, the

methylesterification of a family of pectins—homogalacturonans—has recently drawn

much attention in the plant biomechanics community. The biochemical status of the

cell wall can be assessed by different means. One of the most widespread techniques

is immunohistochemistry. In this section, I will first quickly introduce the principles
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of immunohistochemistry. Then, I will present the preliminary results we have

obtained on the composition of the cell wall.

Quick introduction to immunohistochemistry

The aim of immunohistochemistry is to localize certain proteins of interest within

a whole tissue. This is performed by taking benefit of the mechanisms of the immune

system. We use antibodies specific of the antigen (here a protein) of interest. These

antibodies will then react with the antigens of interest and bind to them exclusively.

The used antibodies are usually linked to a fluorophore that allows the detection

of the antibody-antigen complexes under fluorescence microscopy. Two methods

are then possible to prepare an immunohistochemistry observation: the direct and

indirect methods. The direct method relies on the injection of a single antibody

bearing a fluorophore. In contrast, in the case of the indirect method, two antibodies

are sequentially injected in the tissues. The primary antibody is not labelled and

directly binds to the antigen of interest. Then, a secondary antibody—specific to

the primary antibody—is injected in the tissues and binds on the primary antibody.

These secondary antibodies bear a fluorescent tag that allows the detection of the

antigen of interest. The different steps of the indirect labelling method are pictured

in figure 6.8.

Here, we will use the indirect labelling method. This method indeed requires

additional steps for the sample preparation before observation. In this sense, the

preparation is more tedious and might potentially undergo more experimental dif-

ficulties. The indirect labelling method however presents several advantages. The

signal is amplified in comparison with the direct labelling method. Actually, sec-

ondary antibodies can bind to several parts of a single primary antibody. Having

several secondary antibodies binding a primary antibody results in more fluores-

cent signal per targeted antigen. Furthermore, the indirect labelling method is less

constraining to use. The direct method requires to have antibodies specific to each

antigen of interest also linked to a fluorescent tag. For the indirect method, the sec-

ondary antibodies are rather versatile since they are not specific to a single antigen

but to a whole family of antibodies (e.g. anti-rat or anti-rabbit antibodies).

Experimental protocol

Performing immunohistochemistry requires a delicate preparation of the samples.

First, the tissues of interest have to be taken and fixed. The fixation process results

in the death of the cells of the sample but allows us to maintain the sample in its

original biological state. This is realized thanks to a bath in paraformaldehyde and
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antigen A of interest

fluorescent tag
anti-mouse antibody
(e.g. rat anti-mouse)

anti-A antibody
(e.g. mouse anti-A)

Secondary antibody

Primary antibody

Figure 6.8: Illustration of the indirect labelling principle. A first antibody, specific
to the antigen A is introduced. This primary antibody has been extracted from an animal
species (mouse, rabbit, rat, ...). Then, a secondary antibody is injected, specific to the
primary antibody (i.e. anti-mouse, anti-rabbit or anti-rat, ...). This second antibody is
bound to a fluorophore (or fluorescent tag) and allow to observe the localization of the
antigen A of interest within the studied tissues.
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a slow dehydration of the tissues. The sample is then embedded in a more or less

solid material—resin or wax—to facilitate its slicing. The samples are then sliced

thanks to a microtome and mounted on microscopy slides and dewaxed. In our case,

slices of 5 µm have been realized.

Then begins the immunostaining strictly speaking. The sliced samples are first

progressively rehydrated and placed in a buffer. The nature of the buffer might

depend on the nature of the antibodies used for the experiment5. The primary

antibody is injected over the microscopy slide and let to react overnight. After

washing the samples with the adequate buffer, the secondary antibody is introduced

and let to react for at least 12 h in the dark, to avoid bleaching. Finally, the samples

are washed a last time and the microscopy slides sealed. The samples are now ready

for observation under a confocal microscope.

Tested antibodies

Here, we want to assess if the mechanical heterogeneities observed in the inner

tissues of the Averrhoa carambola rachis are correlated with biochemical hetero-

geneities. We are going to focus on the homogalacturonans, which can be either

methylesterified or de-methylesterified. Several antibodies are available to discrimi-

nate the homogalacturonans in the cell wall depending on their degree of esterifica-

tion. The 2F4 antibody specifically binds to lowly methylesterified pectins—degree

of esterification up to 40%—forming Ca2+-cross links. On the contrary, LM20 and

JIM7 antibodies do not bind to unesterified homogalacturonans. These three anti-

bodies will thus allow us to compare the methylesterification status in the cell wall

of Averrhoa carambola.

6.2.1 Preliminary results

In this section, I will present the results obtained for a single experiment. The pre-

sented samples were taken in the bending zone of the rachis and prepared according

to the experimental protocol we have just described.

Since we are mostly interested in a possible antagonism between the lateral faces

of the rachis, the images from our immunohistochemistry experiments have been

locally averaged on a small neighbourhood of pixels. These coarse-grained images

help revealing patches and zones with different signal intensity.

5In the case of a complex material like the cell wall, additional treatments might be needed to
facilitate the action of the primary antibody. This is for example the case for cellulose labelling.
Degrading part of the cell wall pectins frees regions of the cellulose microfibrils useful to binding
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Figure 6.9: Evidences of cell wall composition heterogeneities in the bending
zone. The immunstaining images have been coarse-grained and re-aligned for the three
antibodies. JIM7 and LM20 display consistent asymmetries of de-methylesterification.
2F4 seems to show the complementary asymmetry. Color maps cannot be compared from
a sample to another. Colors evolve from blue to red.

The results of the whole procedure are shown in figure 6.9. In this figure, three

samples taken in the bending zone of the rachis are presented. Each one of them is

labelled with a different antibody: JIM7, LM20 or 2F4. Note that the colormaps

should not be used are not comparable from a sample to another. Their respective

minimum and maximum values do not match. These have been chosen in order to

enhance the contrast and the visualization of heterogeneities within a single sample.

The three different samples have been oriented in a similar way to compare the

spatial repartition of the signal intensity.

First, we see that—for all three samples—the signal intensity presents some

degree of heterogeneity. In all the cases shown in figure 6.9, the central tissues have

a weaker signal intensity than the peripheral tissues6. Furthermore, the samples all

seem to exhibit an antisymmetry of composition heterogeneity between their lateral

faces. Interestingly enough, it looks like JIM7 and LM20 asymmetries are oriented

likewise. On figure 6.9, we indeed see that the JIM7 labelling shows large signal

intensities on its left half, with two strong zones at the top and bottom. The LM20

sample returns the strongest signal intensities on its left lateral face, rather at the

bottom. In both cases, the upper part of the right face appears weaker. The zones

of high intensity do not exactly match but overlap to a large extent.

On the contrary, it looks like the sample labelled by 2F4 antibodies has the

complementary asymmetry (see figure 6.9, right sample). As a matter of fact, we

see that in this case, the strongest signal intensities are found in the right half of

and labelling.
6It should however been noticed that the coarse-graining process is sensible to the size of the

cells and to the thickness of their walls. Then, medullar parenchyma being characterized by large
thin-walled cells, the coarse-grained values are necessarily lower than elsewhere in the sample.
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Figure 6.10: Evidences of cell wall composition heterogeneities along the rachis.
Here are presented three samples labelled with JIM7 from three successive interleaflets
arranged from apex to base. The interleaflet N corresponds to the bending zone. Colors
evolve from blue to red.

the sample.

These simple observations are consistent with the specificity of the used anti-

bodies. On the one hand, JIM7 and LM20 both indicate that homogalacturonans

with high degrees of esterification are rather foud on the left half. On the other

hand, homogalacturonans with low degrees of esterification are indicated by 2F4

and found in the opposed face of the rachis.

We have just seen that there exist evidences of heterogeneities or an antisymmetry

in the degree of esterification of the homogalacturonans constituting the cell wall in

the bending zone. Can we also spot hints of variations of the methylation degree

along the rachis? In addition to the samples previously presented, we have also taken

samples in the two neighbouring interleaflets. Following the numbering convention

established in Chapter 2, the interleaflets are labelled from base to apex: N-1, N,

N+1. The interleaflet N thus corresponds to the centre interleaflet which samples

we have just studied.

Here, a sample per interleaflet—labelled with JIM7—is shown in figure 6.10. The

samples are arranged by increasing distance to the apex of the rachis. In the case of

interleaflet N+1, apart from some spots of higher methylation, the signal intensity

is quite homogeneous. Then, in the case of the interleaflet N-1, we see that the

peripheral tissues exhibit the higher degrees of esterification. This is particularly

true for the outermost layers of cells. The adaxial face of the sample and the central

tissues also appear to have a lower intensity. Apart from that, here again the signal

is quite homogeneous. The analysis of the patterns of JIM7 labelling suggests that

the antisymmetry of the methylation status for the lateral faces of the growing rachis
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is particularly pronounced in the bending zone.

6.3 Discussion and partial conclusion

The growth and nutation of Averrhoa carambola have been shown to be underlaid

by differential elongation. Hints of reversible contractions during nutation naturally

question the nature of this differential elongation. This is why this sixth chapter

brought the study of Averrhoa carambola growth and motions to the tissue and cell

wall scales. Two entangled aspects of the microscopic growth mechanisms have thus

been explored: the cell wall mechanics and the cell wall biochemistry. Our main

question was here to determine whether mechanical and biochemical heterogeneities

could correlate with nutation and differential growth.

Nutation could correlate with elasticity heterogeneities at the tissue scale

The elasticity of the inner tissues of the bending zone have been probed with Atomic

Force Microscopy (AFM). Our aim was to specifically pinpoint a mechanical antag-

onism between the lateral faces of the nutating rachis. A first global mapping of

the rachis confirmed the anticipated enhanced mechanical heterogeneities within

the peripheral tissues of the rachis (see Chapter 2 and figure 6.5). We consequently

targeted these tissues in the following experiments.

By keeping track of the orientation of our samples (see figure 6.4) we were able

to assess the link between the direction of the motion and the mechanical properties

of the inner tissues. Doing so, we have evidenced differences in the relative elasticity

of the concave and convex faces of the nutating rachis (see figures 6.6 and 6.7).

Differences have been quantified by studying the relative elasticity distributions

for each face. Our results have first revealed significant differences in the average

elasticity. In our experiments, the convex face of the rachis is in average softer

than the concave face by 10 to 40% (see table 6.1). Significant differences in the

distributions’ skewnesses were also noticed. This is a more subtle effect however. It

seems that the distribution of relative elasticity of the convex side has a tendency to

be lean toward the low values of relative elasticities. In other words, even in cases

where the average elasticities of the two lateral faces are close (eg. figures 6.7c–

d), the convex face presents fewer zones of high relative elasticity than the concave

face. It thus appears that the direction of nutation correlates with the inner elastic

properties of the tissues: the rachis bends toward its softer lateral face.

However, these results must be considered with caution, for several reasons.

First, the low number of performed experiments do not allow to draw any definitive
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conclusion. Second, we see that our third experiment shows less clear results (see

figures 6.7c–d). How can these differences between experiments be explained? It is

possible that the mechanical antagonism of the lateral faces depends on the charac-

teristics of nutation (eg. its amplitude or its velocity). Another source of variability

is the position of the sample in the bending zone. The thickness of our samples—

several hundreds of micrometers—combined with the strong spatial variations of

elongation (see Chapter 4 & 5) could indeed explain the observed variability. Fur-

ther experiments have thus be conducted to ascertain the mechanical antagonism of

the lateral faces of the rachis and its correlation to the direction of nutation.

Could this mechanical anisotropy correlate with growth? As discussed

in Chapter 1, plant growth is an irreversible process which relies on the plastic

properties of the cell wall. Our AFM measurements do not probe the plastic but

the elastic properties of the cell wall. So, the observed mechanical anisotropy could

naturally be interpreted as a signature of ongoing elastic processes. However, several

studies have established a correlation between the irreversible growth and the elastic

properties of the cell wall.

In our case, the convex face is expected to have a greater elongation rate than

the concave face. Thus, this would suggest that low Young’s moduli are correlated

with high elongation rates and inversely. This would be consistent with previous

findings for single cells such as Chara corallina internodes (Proseus et al., 1999) and

Papaver rhoeas pollen tube (Zerzour et al., 2009) ; or for the apical meristem of

both Arabidopsis thaliana and tomato plants (Peaucelle et al., 2011; Kierzkowski

et al., 2012). Our results on Averrhoa carambola could thus bring further support

to the correlation of the elastic properties of the cell wall and the growth rate in a

tissue context.

Hints of biochemical heterogeneities The next step consisted in assessing the

possible biochemical changes involved in the cell wall. Here, we have specifically

investigated the methylesterification status pectins constituting the cell wall. In the

same way than for the mechanical properties of the tissues, we have here focused

on seeking an antagonism between the lateral faces of the rachis. An averaged

information is thus sufficient. This is why we have used coarse-grained images (see

figures 6.10 and 6.9).

Our first results show that—in the bending zone of the rachis—the degree

of esterification of homogalacturonans is not homogeneous within our samples (see

figure 6.9). Moreover, we do see a antagonism between the lateral faces of the

rachis. Although biological repetitions are obviously needed in order to confirm this



6.3. Discussion and partial conclusion 153

tendency, the observation of the methylesterification asymmetry in these specific

samples is quite certain. As a matter of fact, three different antibodies—JIM7,

LM20 and 2F4—have consistently revealed the same asymmetry (see figure 6.9).

We have then investigated the evolution of this biochemical antagonism along the

rachis. Samples have been taken in the neighbouring interleaflets and submitted to

the same experimental protocol. Our results suggest that such an asymmetry—at

least of this magnitude—is localized to the bending zone of the rachis. As discussed

in the case of the elastic properties, the heterogeneities of methylesterification might

undergo quick spatial variations within the bending zone.

Here again, the interpretation of these preliminary results should be done care-

fully. By resorting on coarse-grained images, we have overlooked at the possibility

of cell wall thickness and cell size inhomogeneities within the tissues. To take this

possibility into account, further immunohistochemistry labelling experiments should

include a cellulose labelling. Doing so would also allow us to perform a proper quan-

tification of the signal intensity across the cell walls7.

Establishing a correlation betweeen the direction of the observed methylesterifi-

cation heterogeneities and the direction of nutation requires to perform immuno-

histochemistry assays in which we keep track of the orientation of the sample. We

have actually performed such experiments, but they have not been analysed at the

moment of this manuscript. From these new experiments, we will be able to assess

if there exists a correlation with the direction of the motion, and thus possibly with

elasticity and growth. In particular, it will be interesting to check in the case of

Averrhoa carambola if the high degrees of esterification correspond to stiffer tissues

like predicted by the classical view on pectins (see Chapter 1) and observed in the

case of the pollen tube for example (Parre & Geitmann, 2005). On the contrary,

high degrees of esterification could also correlate with soft tissues like in the case of

Arabidopsis thaliana meristem (Peaucelle et al., 2011).

Partial conclusion In conclusion, this chapter has revealed the mechanical and

biochemical heterogeneities involved in differential growth. In both cases, an antag-

onism between the lateral faces of the nutating rachis has been observed, localized

within the bending zone. Assuming that irreversible growth was involved in nuta-

tion, we were then able to hypothesize a correlation between the elastic properties

of the inner tissues to growth, thus building a putative scenario consistent with pre-

7Averrhoa carambola tissues actually are autofluorescent. Unfortunately, this autofluorescence
is weak and not specific to the cell wall: organelles such as amyloplasts and chloroplasts also emit
light. As a result, the autofluorescence signal does not allow a proper quantification.
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vious literature (see figure 6.11 for a graphical sum-up). Further work should enable

us to go a ascertain these first results but also to go a step further and determine a

link between the chemical status of the cell wall and growth.

ε̇convex > ε̇concav

Econvex < Econcav

nutation

convex
concave

Figure 6.11: Putative scenario for a growth-elasticity correlation in nutation.



Chapter 7

Conclusion & prospects

The foundation of this work lies in the intimate links between plant motions,

growth and several aspects of development. This is why, in contrast with numerous

studies on plant motions, we have left aside the notion of still plants set in motion

by a certain trigger to embrace the idea of evermoving plants. In this whole thesis,

plant motions have been considered as an outward signal of the microscopic growth

processes. In this sense, we have been able to investigate several aspects of growth—

kinematics, mechanics and biochemistry—at different scales. Let us now summarize

the different results brought by our approach and draw outlooks for further research.

Our works have been focused on the motions of Averrhoa carambola compound

leaves. Of course, Averrhoa carambola does not offer the mutant arsenal of Ara-

bidopsis thaliana but it is a more complete model for the study of plant motions.

This statement relies on the diversity and the extent of Averrhoa carambola motions,

but also on the fact that they are widespread motions. Following our idea according

to which the logic of growth motions lies in their temporal succession, we have then

studied the successive unfurling and nutation motions.

The unfurling motion and the associated hook shape is typical of many organs

and compound leaves. The reproducibility of this shape presages posture regulation

processes. Thanks to a simple ‘flipping’ test, we have verified that the shape of

Averrhoa carambola compound leaves indeed results from active processes. From

then on, the specificities of the unfurling motion may be helpful to the posture

regulation of the leaves. In particular, we have shown that the unfurling motion

involves prominent changes of the spontaneous curvature but also a gradient of

flexural rigidity along the rachis of the leaves. The changes in the stiffness of the

tissues are besides underlined by the maturation of the tissues via lignification.

155
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The characterization of nutation then revealed the spatial patterns of elongation

and differential elongation at the scale of the whole leaf. As many other organs, the

compound leaves of Averrhoa carambola show an apical growth. It is thus charac-

terized by a growth zone. More importantly, we have shown that the differential

elongation was localized within a bending zone, at the basal extremity of the growth

zone.

Based on these observations, we have built a kinematic model of growth and nuta-

tion. This model successfully reproduces the main features of nutation, and might

thus incorporate the essential components of growth and nutation kinematics. In

that sense, it provides a general framework to study the interplays between growth

and nutation.

Another part of our study of nutation focused on its dynamical aspects. We have

seen that nutation is not a steady process as the amplitude of the motion undergoes

periodical bursts—that we refer as nutation tides or nutation surges—on a circadian

basis. The well-defined periodicity of these nutation tides suggests inner clock.

The dynamical behaviour of nutation also implies variations of elongation and

differential elongation. To go beyond our averaged growth profiles, we have tried to

investigate the occurrence of such variations by measuring precisely the elongation

of nutating rachises. Our measurements were however greatly affected by artefacts

due to the nutation motion itself.

So, the question of the spatial and time variations of the elongation behaviour remain

unanswered for the moment. Getting a proper characterization of the growth of a

moving organ requires a new measurement technique implying 3D reconstruction

of the rachis. We are confident that such techniques could lead to advances in the

characterization of growth and differential growth dynamics.

Here, our kinematic model of nutation helped us retrieve important qualitative in-

formation from our biased measurements however. Importantly, we have been able

to spot a signature of differential elongation within our measurements.

Our model has also brought forward that dynamical changes of the elongation and

differential elongation could lead to local contractions of the rachis. Local con-

tractions of plant tissues have already been discussed, but our model clarifies the

conditions for their occurrence. The confrontation of the model to our experimental

data suggests that local contractions are indeed observed, particularly during nu-

tation tides. In agreement with previous works (Caré et al., 1998), we hypothesize

that these contractions correspond to local variation of the turgor pressure.

Differential elongation having been evidenced, we have then naturally tried to

pinpoint the associated variations at the scale of the tissue. While our results still
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need confirmation, they are encouraging. We have been able to put forward elasticity

heterogeneities between the lateral faces of the rachis, correlated with the direction

of the motion. Hints of a biochemical antagonism—based on the esterification degree

of pectins—have also been observed. The continuation of these works should allow us

to confirm these observations, and thus to establish a link between growth, mechanics

and the esterification degree of pectins in the case of Averrhoa carambola.

A natural extension of the microscopical aspect of our work would be to determine

the time and spatial variations of the observed mechanical and biochemical antago-

nisms. Doing so would allow a better understanding of the link between differential

elongation and the status of the cell wall. For example, the existence of time delays

between the changes in the cell wall and the motion could help to understand the

biological processes giving rise to oscillatory motions.

In this part of our work, we hope to have provided a proof of concept on the pos-

sibility to make use of motions to study the physiological implications of growth at

the scale of tissues, such as stems and rachises.

Besides the direct questions our results have raised, we can draw more general

questions and perspectives on the shape, growth and rhythms of plants.

Biological basis of the link between elongation and differential elongation

In the case of nutation, differential elongation takes place at the basal end of the

growth zone, where elongation decays. This specific localization of differential elon-

gation is puzzling. Could there be a direct link between the local rate of elongation

of an organ and its propensity to undergo differential growth? The nutation motion

implies periodical oscillations of the elongation rate within the bending zone. So,

it seems that asynchrony of elongation rises in the tissues coming out the growth

zone. What would be the biological basis for such a behaviour?

Mechanics and nutation Nutation is often presented as a result of irreversible

differential growth. However, contractions are known to be involved in nutation (Caré

et al., 1998) and have been indirectly observed in our case. It is likely that, in the

general case, nutation actually results from a mix of irreversible and reversible length

variations. These contractions could result from simple turgor variations, but could

also be the result of compressions. As a matter of fact, considering the possibility

of turgor variations and the heterogeneities of elasticity within the bending zone, it

is possible to imagine that the bending of the rachis puts the concave face under

compression and the concave face in tension. The resulting stresses could then be

sensed by the plant and used a feedback on nutation and/or entertain oscillations.
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This idea is not exactly new, as it was suggested by Johnsson as soon as 1979 (re-

fer to (Peacock & Berg, 1994)) but our renewed observations of local contractions

somewhat revives it. It is furthermore supported by numerous studies on the effects

of mechanical stress on growth (Baskin, 2015). Despite several authors encouraging

the modelling of mechanical effects in nutation, this issue has remained—to the best

of my knowledge—untackled for the moment. Instead, models of nutation mainly

revolve around two ideas: endogenous oscillations or oscillations triggered by gravit-

ropic overshooting (Mugnai et al., 2007). There is evidence of an interplay between

graviception and nutation (Mugnai et al., 2007; Baskin, 2015), and a mechanical-

based model of nutation could not account for such effets (Peacock & Berg, 1994).

But it could however bring a new light on nutation.

Posture regulation As already discussed, the reproducibility of the hook shape

and the associated unfurling motion suggest posture regulation processes of the leaf.

Similarly, Averrhoa carambola leaves systematically reach a flat and straight state.

The question of how exactly the shape of the leaf is regulated is now asked.

Our simple experiments from Chapter 3 have allowed us to characterize several geo-

metrical and mechanical quantities of the growing leaf. This experimental protocol

could be augmented and include coarse growth kinematics characterization. Doing

so, we would be able to explore the posture regulation processes of the leaf. In

particular, we have postulated in Chapter 3 that the rachis may maintain—through

the regulation of its flexural rigidity—a zone of high stress and/or strain as a mean

to enhance autotropism. These ideas could be tested by deforming locally the plant,

for instance.

Another question that arises from the observation of Averrhoa carambola growth and

motion is the possibility of a role for nutation in posture regulation. As a matter

of fact, nutation occurs at the basal end of the growth zone and upstream from the

lignification zone. Nutation corresponds to the last bending motion during the de-

velopment of the leaf. If, as discussed earlier, nutation does imply mechanical stress

within the tissues, it is possible to imagine that it allows enhanced autotropism be-

fore definitely freezing the shape of the rachis. Preliminary results in the lab show

that, when grown on a rotating clinostat the leaves show dramatically reduced nuta-

tion. More importantly, their final shapes clearly differ from the regular leaf shape:

they show a prominent torsion along the rachis and the leaflets are consequently no

longer coplanar.

Oscillatory motions are widespread among plant organs. Circumnutation and nu-

tation are certainly the most famous examples of this kind, but simple leaves

also display oscillatory motions. Their blades undergo fluttering motions around

their midrib before reaching flatness (e.g. Persea americana or Quercus sp.). Our
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thoughts on the topic remain speculative, but a role for oscillatory motions in pos-

ture regulation could give an explanation to their long questioned ubiquity and

purpose.

At last, let us underline that we have solely studied two of the motions of a

single plant—Averrhoa carambola—under the specific prism of development. The

perspectives drawn here are thus necessarily too specific. Considering the rich be-

haviour of plants and the fascinating diversity of their motions, there is no doubt

that future studies—focused on other motions or adopting different approaches—will

unearth interesting results for plant sciences. We hope to have demonstrated how

the long-known—and long overlooked—plant growth motions are rich and worth

further study.
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Appendix A

Graviception, proprioception and

hook shape
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Thanks to careful observations, one is often able to bring out a couple of impor-

tant contributions in a phenomenon. Building a consistent model based on these

few contributions allows to check if they are sufficient to explain the observed phe-

nomenon in the first place. Here we tried to understand if graviception and propri-

oception were enough to describe the unfurling of Averrhoa carambola leaves.

A.1 The graviproprioceptive model

Here I propose an insight on a specific model called the graviproprioceptive model—

or the AC model—and discuss its relevence in the specific case of Averrhoa caram-

bola.
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Figure A.1: Results of simulation for the gravitropic response of a tilted stem. (a) Without
the proprioceptive term (A model), the stem oscillates and is unable to converge to a
stationary shape. (b) The addition of the proprioceptive term (AC model) makes the
stem converge to a stationary vertical shape. Figures from (Bastien et al., 2013).

A.1.1 Origin of the model

The graviproprioceptive model was introduced by Bastien and coworkers (Bastien

et al., 2013, 2014) as an attempt to grasp the behaviour of plants undergoing grav-

itropism. Their approach lies on a geometrical analysis of the development of plants

and on a analysis of the symmetries of the problem. They argue that, on a geomet-

rical point of view, if we neglect the variations of radius along the plant organ (stem,

rachis, central rib, etc.) we can simplify the problem to a flexible rod problem. The

main modification induced by gravitropism is a modification of the curvature along

the organ. Since it is done without torsion, the local orientation and curvature are

sufficient to describe the geometry of the organ. Hence,

∂tC(s, t) = φ(A,C) (A.1)

(where s is the arc length along the plant organ and t is the time, A the local angle

of the stem with respect to the up vertical and C is the local curvature defined as
dA

ds
). Considering that we are here interested in a plant organ trying to recover an

alignment with the vertical, the straight and vertical state (A = 0, C = 0) must be

a stable solution of the previous equation. The system must satisfy A → −A and

C → −C symmetries together. Thus, only the odd terms remain in the development

around the stable solution. At first order, we end up with the following equation :

∂tC(s, t) = βA(s, t) + γC(s, t) (A.2)
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The βA term corresponds to the graviceptive term. If the angle is positive, it

must imply a diminution of the curvature in order to have A→ 0 and the plant to

become vertical again. Similarly, the term γC corresponds to a proprioceptive term.

If C becomes too negative, it must imply a counter-balancing in order to have the

plant organ straight in the end. Thus, Bastien and coworkers finally propose the

graviproprioceptive model :

∂tC(s, t) = −βA(s, t)− γC(s, t) (A.3)

where β and γ are positive constants. One other feature of this model is that

growth does not appear in a first time. However, the authors assume that growth

(and processes leading to the curvature of the organ) can only occur in a confined

region – the growth zone – represented by the length Lgz. Growth is then added

and convergence of the shape can only be reached under certain conditions I am not

going to discuss here.

A.1.2 A suitable model for Averrhoa carambola ?

Since we want to explain the relation between morphogenetic motions and posture

regulation in the case of Averrhoa carambola leaves, the previously described model

appears to be promising. The unrollment of the rachis in a plane associated with

the stabilization of the leaf at a well-regulated gravity set angle is a priori likely

to be linked to gravitropism. The same idea applies to nutation motions out of the

plane containing the rachis but it is of course not possible to simulate nutation with

such a 2D model. Nevertheless, the development of Averrhoa carambola leaves look

to be strongly influenced by gravitropism and autotropism. Previous results in the

lab have highlighted that Averrhoa carambola possesses a growth zone situated at a

fixed distance of the apex of the rachis. This zone matches with the curved zone of

the rachis.

For all these reasons, we have chosen to use this model in order to try to simulate

the rich dynamics of the leaves development. However, we propose in the following

section some modifications to adapt it to our specific case.

A.2 Adaptation of the model

A.2.1 Definition of the model

The problem of the growth of the leaves is slightly different than the previous prob-

lem. Here we want the extremity of the rachis to be aligned with the downward
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Figure A.2: (a) Parametrization of our problem. The angles are counted positive anti-
clockwise, s is the arc length starting at the basis of the rachis. The origin is set to the
basis of the rachis. (b) Example of growth distribution along the rachis (ε̇0 = 1 here)

.

vertical. Then it is more convenient to use θ than A as we will have θ → 0 at the

extremity of the rachis (see figure A.2). Moreover, we have to inverse the effect of

the gravitropism. The arc length s is now defined along the rachis of the leaf. The

origin is set at the basis of the rachis and the position of the rachis is denoted by

L(t).

The change of orientation of the angles has no consequences on eq. A.3 because

of the symmetries of the model. Now, considering θ and C =
dθ

ds
combined with a

reversed gravitropism, we end up with :

∂tC(s, t) = −βθ(s, t)− γC(s, t) (A.4)

We also included growth in the model in agreement with our experimental ob-

servations (apical growth). We chose the following function :

ε̇(s, t) =
ε̇0
2

(
tanh

(
L(t)− Lgz − s

Ld

)
+ 1

)
(A.5)

where ε̇ is the elongation rate, ε̇0 its amplitude, Lgz is the length of the growth-zone

and Ld is a characteristic length determining the length over which growth decays.

The idea that motivated this choice is that we wanted a smooth function sharing

characteristics with the step function used by Bastien and coworkers.

A.2.2 Growth-dependent parameters

The second modification that we made to the graviproprioceptive model is that we

introduced a dependence on growth for the parameter β. Bastien and coworkers
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assumed that gravitropic response can only occur where there is growth, so, as pre-

viously, we propose a smooth step-like function for the ε̇-dependence of β. Because

of the observations of Y.Corre we want the curvature zone and the growth zone to

match, so we propose :

β(s, t) =
β0
2

(
tanh

(
L(t)− Lgz − s

Ld

)
+ 1

)
(A.6)

where β0 is the amplitude of the gravitropic term. The proprioceptive term was

not modified in our model in a first time. However, a growth-dependence could

be introduced for γ too. It has been noticed that curvature of the leaves is only

subject to little changes under high elongation rate conditions. We could think of a

smoothed step function, decreasing when elongation rate increases and converging

to a non-zero minimum value for example.

A.3 Results

This model was implemented in Matlab thanks to a basic Newton algorithm. As

a matter of fact, our goal is not to perform a very precise simulation but to check

if the modified graviproprioceptive model is able to reproduce approximately the

evolution of the shape of the leaves.

As shown on the different pictures, the model produces shapes that look like

Averrhoa carambola. The choice of the parameters is of course arbitrary and I have

tuned them in a lot of combinations. One parameter seems to be more important

than the others in the similarity of the shapes, that is the length of the growth zone.

If the growth zone is not sufficiently long, it results in a weak curvature of the hook

and the extremity of the leaf cannot be vertical.

The absence of proprioceptive term leads to aberrant shapes, as in the case of

Arabidopsis thaliana. This suggests that proprioception is essential in the posture

regulation of Averrhoa carambola too.

This model gives promising results and confirms that proprioception and gravi-

ception are fundamental to explain the unfurling motion and the posture regulation

of the leaves of Averrhoa carambola during its development.
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(a) (b)

(c) (d)

Figure A.3: Results of my simulations. The three first graphs are with increasing Lgz and
show the importance of the length of the growth zone (represented in red). A long growth
zone is required for good agreement with the shape of the leaves. Last graph shows that
proprioception is fundamental in posture regulation on the leaves.



Appendix B

Mechanics of the rachis:

additional insights

Contents

B.1 Viscous deformation of the rachis . . . . . . . . . . . . . . 181

B.2 Useful calculations . . . . . . . . . . . . . . . . . . . . . . . 181

B.1 Viscous deformation of the rachis

The experiment presented in the second section of Chapter 3, we have flipped the

rachis upside-down at several moments of its development to assess the role of its

self-weight on its shape. For each experiment, we have also let the rachis in this

upside-down position for 30 min (see figure B.1).

We have thus observed that deformations amplified after 30 min, under the self-

weight of the leaf and leaflets. This is the signature of the viscous properties of

the rachis at the macroscopical scale. We have limited our study to the elastic

deformations of the rachis (or at least to the deformations underwent in a short

period of time). However, the extent of the viscous deformation of the rachis invites

to further investigation, as the normally observed shape should partly result from

the viscous properties of the rachis also.

B.2 Useful calculations

In this appendix, I propose to completely derive the beam theory properties used

to compute the mechanical properties of the rachis at the macroscopic scale. Let us

181
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Figure B.1: Viscous deformation of the rachis. For each day of experiment, three confor-
mations are overlayed. In dark green, the initial conformation of the rachis. In medium
green, the rachis when it reaches the upside-down position (elsatic deformation). In light
green, the rachis after 30 min in the flipped position. We see that deformations amplify
after 30 min.

consider the situation depicted in the following figure and the associated conventions.

Consider a random force F with linear origin:

~F (s) = Fx(s)~ex + Fz(s)~ez =

∫ s

0

fx(s
′)ds′ ~ex +

∫ s

0

fz(s
′)ds′~ez

Note that the vectors of the cartesian basis can be expressed in terms of ~n and ~t

from the Frenet basis:

∀s,

~ex = −cos(θ)~n+ sin(θ)~t

~ez = sin(θ)~n+ cos(θ)~t

We can now determine N and T in the general case, the normal and the tangential

forces respectively:

~F (s) = [−Fx(s)cosθ(s) + Fz(s)sinθ(s)]~n(s) + [Fx(s)sinθ(s) + Fz(s)cosθ(s)]~t(s)N(s) = −Fx(s)cosθ(s) + Fz(s)sinθ(s)

T (s) = Fx(s)sinθ(s) + Fz(s)cosθ(s)

Let us express the momentum Γ exerted on the left side of the beam by the right
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−→ez

−→ex

−→ey

sR = 0

−→
N

−→
F

−→
T

−→
Γ = Γ−→ey

Figure B.2: Parametrization of our mechanics problem. We define a global right
handed Cartesian coordinate system (~ex, ~ey, ~ez). Consider an arbitrary force ~F applied on

the rachis at sR = s. ~F can be decomposed into two components, relative to the local
geometry of the rachis: a tangential component ~T and a normal component ~N . The sign
convention for an arbitrary torque Γ is indicated.

side of the beam at each point s:

~Γ(s) =

∫ s

0

−−−→
MM ′(s′) ∧

−→
dF (s′)

=

∫ s

0


x(s′)− x(s)

0

z(s′)− z(s)

 ∧


fx(s
′)

0

fz(s
′)

 ds′

⇒ Γ(s) =

∫ s

0

[(z(s′)− z(s))fx(s
′)− (x(s′)− x(s))fz(s

′)]ds′

Let us differentiate Γ with respect to s:

dΓ

ds
(s) =

∫ s

0

fx(s
′)ds′

(
−dz
ds

(s)

)
−
∫ s

0

fz(s
′)ds′

(
−dx
ds

(s)

)
= −Fx(s)cosθ(s) + Fz(s)sinθ(s)

= N(s)

This relation is very useful in our case. It allows one to compute the momentum

exerted by the self-weight on the rachis by integrating its normal component over s.

In our specific case, the force F will reduce to the weight P (which is colinear to

~ez). Assuming that the rachis is a cylinder, we can write down P in terms of the

volumic mass of the rachis ρ, the gravitational acceleration g and the cross section
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area A:

~P (s) = P (s)~ez =

∫ s

0

ρgA(s′)ds′~ez

Γ′(s) = N(s) = P (s)sinθ(s)

Moreover, in the general case we can write:Γ+(s) = B(s)(C+(s)− C0(s))

Γ−(s) = B(s)(C−(s)− C0(s))

Which rises:

B =
Γ+ − Γ−
C+ − C−

C0 =
1

2

[
C+ + C− −

Γ+ + Γ−
B

]
E =

B

I
=

1

I

Γ+ − Γ−
C+ − C−

Finally, in the case of a cylinder we get:

E =
B

I
=

2

πR4

Γ+ − Γ−
C+ − C−
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In this appendix, I propose to detail some useful calculations for the kinematic

model of nutation presented in Chapter 5.

C.1 Angular amplitude of the motion

One of the most important features of the nutation motion is of course its angular

amplitude. One of the aim of our model is to infer the growth laws of the observed

rachis thanks to simple measurements. The measurement of ∆φ is among them.

Most of the time, we thus want to perform simulations at a fixed ∆φ. This requires to

understand the links between ∆φ and the other parameters. The angular amplitude

of the motion is fixed by the curvature variations on the rachis. Let us then first

determine the evolution of curvature for a given motion.

We have seen that—in the case of nutation—the variations of curvature are di-

rectly linked to the differential elongation of the tissues by

κ̇ ' 1−R2κ2

R
δ̇
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In the case of the observed motions, it seems reasonable to state that R� 1/κ. For

example, in the case of the experiment detailed in Chapter 4, we have R = 0.6 mm

and 1/κ ' 3 cm. In a first approximation, and by neglecting the time dependence

of s0, we thus have

κ̇ ' δ̇0
R

(
1− tanh2

(
s− s0
∆L

))
sinωt

so, κ ' − δ̇0
Rω

(
1− tanh2

(
s− s0
∆L

))
cosωt

Tthe local orientation of the rachis is then obtained by spatially integrating κ, and

by fixing the orientation of the base at φ(s = 0) = 0.

φ = − δ̇0
Rω

∫ (
1− tanh2

(
s− s0
∆L

))
ds · cosωt

= − δ̇0∆L
Rω

[
tanh

(
s− s0
∆L

)
+ tanh

( s0
∆L

)]
cosωt

Finally, the angular amplitude of the motion is measured at the apex, i.e. s = Ltot.

Granted that Ltot − Lgz � ∆L and Lgz � ∆L we have

∆φ =
2∆Lδ̇0
Rω

C.2 Threshold of contraction

Depending on the growth parameters—ε̇0 and δ̇0—local contractions can either be

allowed or forbidden. Let us now determine the value of the threshold of contraction.

The total growth of a lateral face of the rachis is given by

ε̇tot = ε̇± δ̇

depending on the considered side. The threshold of contraction is then simply given

by
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∀(s, t), ε̇tot ≥ 0

∀(s, t), ε̇± δ̇ ≥ 0

∀(s, t), ε̇0
2

(
1 + tanh

(
s− s0
∆L

))
± δ̇0

(
1− tanh2

(
s− s0
∆L

))
sinωt ≥ 0

Considering that ε̇0 and δ̇0 are both definite positive, it is thus sufficient to have

∀s, ε̇0
2

(
1 + tanh

(
s− s0
∆L

))
− δ̇0

(
1− tanh2

(
s− s0
∆L

))
≥ 0

∀s, ε̇0
2
− δ̇0

(
1− tanh

(
s− s0
∆L

))
≥ 0

Since 0 ≤ 1− tanh

(
s− s0
∆L

)
≤ 2, it is then sufficient to have

ε̇0 ≥ 4δ̇0

We can finally define two equivalent thresholds of contraction, in ε̇0 or δ̇0. These

thresholds indeed depend on the spatial distribution of elongation initially chosen.

C.3 Amplitude of the second harmonic term

The total projected elongation of a side of the rachis is given by

ε̇tot⊥ =
(
ε̇± δ̇

)
− φ̇ tanφ

The expressions of the ε̇ and δ̇ terms are already known, as they define our model.

We immediately see that they respectively correspond to a term a null frequency

and a term at the fundamental frequency ω. Let us now derive the expression of

the geometrical term φ̇ tanφ and show that, indeed, it corresponds to the term at

frequency 2ω.

We already know from the previous section the expression of φ. Its time deriva-

tive is simply given by
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φ̇ =
δ̇0∆L

R

[
tanh

(
s− s0
∆L

)
+ tanh

( s0
∆L

)]
sinωt

In the case where φ � 1, we can approximate φ̇ tanφ to φ̇φ at the first order in φ.

The geometrical term of projection then reads

φφ̇ = −

(
δ̇0∆L

Rω

)2

ω

[
tanh

(
s− s0
∆L

)
+ tanh

( s0
∆L

)]2
cosωt · sinωt

= −1

2

(
δ̇0∆L

Rω

)2

ω

[
tanh

(
s− s0
∆L

)
+ tanh

( s0
∆L

)]2
sin 2ωt

So, finally we confirm that the geometrical term of projection is responsible for the

observation of the second harmonic (and possibly higher harmonics at higher orders

in φ). The observation of the fundamental mode in our measurements is thus a

signature of the oscillations of elongation rate and of differential elongation.
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