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Introduction

Its beauty calls us, we can’t go
back. Our quest begins now,
even if the ice should crack.

The Great Old Ones
Antarctica

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche
and David J. Wineland "for ground-breaking experimental methods that
enable measuring and manipulation of individual quantum systems".

This small line on the Nobel prize website crowns what is, in my
opinion, one of the most groundbreaking experimental achievement of
the last 30 years: the demonstration that our degree of control on quan-
tum systems is now sufficiently good to perform the thought experi-
ments of the founding fathers of quantum mechanics in the laboratory.
Schrödinger cats or entangled states are now routinely generated on de-
mand for single quantum systems, as are the completely non-classical
Fock states, containing a fixed number of photons, for electromagnetic
fields in a cavity.

One particular point that strikes me in this quest for the control
and manipulation of individual quantum systems are the measurements
performed in these experiments. We are now able to analyze one of the
most important issues in quantum mechanics: projective measurements.
Even more, we are able to tune extensively the measurement process, go-
ing from standard projective measures to non-destructive ones, in which
the state of the system is left pretty much unchanged, at the expense of
the information we are able to recover on it. All this work proves the
crucial role of entanglement between the system and external degrees of
freedom. It gradually leads to the emergence of quantum states for the
system that are relative to the state of the environment and somehow
more robust than a generic quantum state of the system [185, 89, 124,
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Introduction

186]. This process, called decoherence, has now been monitored with
great precision in several experiments, and is an important piece of the
puzzle towards clarifying the link between our everyday experience of
the classical world and the mysteries of the quantum world [187]. Pi-
oneering experiments on decoherence [20] have sparked a great line of
research aiming at understanding, and ultimately tame, this decoher-
ence processes. In particular, decoherence is one of the main challenges
that prevents us from everyday life use of quantum mechanics for com-
munication and computation, two areas that have really taken off in
recent years precisely due to the degree of control attained on quantum
systems [77].

Among possible quantum information systems, quantum optics starts
with a clear advantage: because of their nature, photons do not interact
easily with each other, in general couple weakly to matter degrees of free-
dom, and can thus be well isolated from decoherence. This has led, for
example, to the demonstration of entangled pairs of photons propagat-
ing over several hundreds of kilometers in optical fibers or in space [165,
131] while retaining their coherence. However, this advantage may also
be a limitation of photon based quantum information processing: in or-
der to use quantum systems for computation or communication, we need
to be able to make them act on each other. This is where solid state
physics comes into play.

Solid state devices can allow us to engineer the coupling between
matter and electromagnetic degrees of freedom. Superconducting cir-
cuits are one of the mainstream alleys for building quantum computa-
tion systems [178] whereas quantum spintronics is viewed as a promising
challenger that would combine the relative isolation of a single nuclear
or electronic spin to the electric controlabillity of mesoscopic devices,
as originally proposed in [92]. In this context, understanding and con-
trolling quantum electrical currents down to the single electron level as
well as their coupling to the electromagnetic field is a very important
problem.

From this perspective, one specific class of system has appeared very
promising at the end of the 20th century, owing to its clear analogy with
standard quantum optics: bi-dimensional electron gases in the quantum
Hall regime. It had long been envisioned that, in this system, elec-
tronic transport occurs within quasi one-dimensional chiral edge chan-
nels which could constitute an electronic analogue of optical fibers [22].
The demonstration of tunable beamsplitters for electrons [172, 173] has
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been an important step in this direction and has lead to the first demon-
strations of electronic Mach-Zehnder interferometers [88], demonstrating
the coherence of electrons in quantum Hall edge channels over several mi-
crometers [137]. At the same time, experimental techniques for measur-
ing electrical current fluctuations drastically improved both in sensitivity
and accessible frequency range [60, 122], thus opening the way to the ex-
ploration of electron dynamics on subnanosecond timescales. However,
it was the advent of single electron sources a decade ago [44] that truly
ignited the domain. This emerging field has since been dubbed “Electron
Quantum Optics” and should be viewed as a subfield or, maybe more
appropriately, as an evolution of quantum coherent nano-electronics [17].
Since then, several efforts have been made to close the gap between elec-
tron quantum optics and its photon counterpart, through the demon-
stration of several interferometry experiments reviewed in [111]. In the
meantime, a lot of effort has been devoted to the development of new
single electron sources [38, 4] as well as to the extension of electron
quantum optics concepts beyond its original birthplace (quantum Hall
edge channels) [43], thus contributing to the maturation and expansion
of this rapidely developing field whose state of the art has been reviewed
quite extensively in a recent volume of Physica Status Solidi [151].

If on the bright side the real advantage of photons over electrons is
their reduced sensibility to decoherence, then on the dark side the main
pitfall of electron quantum optics is the charged nature of the excita-
tions. Electrons propagating in the edge channels of the quantum Hall
effect will experience the effect of screened Coulomb interactions with
every other electron present in the system, and in particular with all
the electrons present within the conductor. Under the effect of interac-
tions, electronic states will then lose their coherence over lengthscales
which are of the order of the size of experimental setups, thus preventing
their use as good quantum information carriers up to now, even though
this had been a huge motivation [10, 86, 11, 184] for developing single
electron sources and electron quantum optics setups.

This is where my work comes into play. Since the effect of inter-
action seems to prohibit the use of electron quantum optics systems
for quantum information processing (at least naively), it was natural to
shift our focus towards the study of these interactions themselves. A
research program has thus been started aiming at predicting the effect
of screened Coulomb interactions on electronic excitations [32] in exper-
imentally relevant cases, while at the same time the experimental group
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led by G. Fève in Laboratoire Pierre Aigrain worked on testing these
ideas in the lab in order to confirm or infirm our scenarios. This collab-
oration has led to fruitful developments both in the experimental and
theoretical sides, most of which are presented in this manuscript. In par-
ticular, we have developed a computation scheme predicting the effect
of several interaction models on any single-electron wavepacket [OP2],
which has since been confirmed by experiments [OP3]. Joint work be-
tween our two groups has also led to the demonstration of a quantum
signal analyzer extracting the single electron wavefunctions present in a
quantum electrical current [OP4].

Finally, building on these developments, we felt that it was time
to tackle decoherence, motivating us for studying decoherence control
protocols [OP1]. Our main motivation was that getting an in-depth un-
derstanding of single to few electron decoherence is now crucial both
for our understanding of electronic quantum transport as well as for
developing applications of electron quantum optics such as quantum in-
formation processing1 and the quantum metrology of charge and electric
currents.

From a personal point of view, the strong link between theory and
experiment has been a great advantage of my doctoral research project,
as I think that doing theoretical physics is meaningful only when results
can at least shed some light on forthcoming experiments and, if possible,
be tested by actually performed experiments. The fruitful collaboration
between our group in Lyon and the experimental group of G. Fève has
given me the opportunity to spend one year within the experimental
group in Paris, prior to the start of my PhD, in order to familiarize
myself with these experiments.

This one year stay has allowed me to understand better the chal-
lenges which await an experimentalist trying to study electron quantum
optics, the difficulties to overcome, and finally which theoretical situa-
tions might be reasonably attainable and which are still relying on much
more prospective experimental developments. This double vision on my
scientific field has remained intact all along my PhD, and I hope that
this manuscript will show it, explaining the scientific construction of a
theoretical work heavily inspired by experiments, and how and why we
were led to explore more prospective questions.

1As we shall see in this manuscript, a proper choice of material may restore some
of the original hopes in the field.
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Outline of the manuscript

Let me now describe the content of this thesis from a more down-to-
earth point of view. This manuscript is divided into three chapters
with clear focuses: the first one is devoted to a presentation of electron
quantum optics and the associated tools. The second chapter presents
the experimental setups and protocols that are studied in the laboratory.
Finally, the third chapter is devoted to the effect of screened Coulomb
interactions on electronic excitations. In both chapter 2 and chapter 3,
we will present work that has been fully completed and published, as
well as work in progress and more preliminary results that will lead to
forthcoming publications.

Chapter 1 will present an overview of the tools and concepts at the
core of the electron quantum optics framework, both from an experimen-
tal and a theoretical point of view. Its first section will be devoted to the
experimental toolbox used on a daily basis in experimental groups such
as the one at Laboratoire Pierre Aigrain. We will review in detail how
bi-dimensional electron gases under strong magnetic fields can be used
to engineer ballistic conduction channels, as well as the equivalent of a
beamsplitter for electrons. Then, we will turn ourselves to the sources
that are used in electron quantum optics experiments, with a specific
emphasis on single-electron sources used at LPA.

After this overview, section 1.2 will be devoted to introducing the
theoretical framework of electron quantum optics and, in particular, the
main concept that will be used throughout this manuscript: the elec-
tronic coherence function. This quantity introduced by C. Grenier [66,
67] is the direct equivalent in electronics of Glauber’s coherence function
for photons [62]. We will spend quite some time showing this analogy
and explaining how it relates to physically observable quantitites. On
our way, we will introduce several representations of single electron co-
herence, among which a time-frequency representation called the elec-
tronic Wigner function [41]. In order to forge our intuition on the elec-
tronic Wigner function, a variety of examples will be discussed, including
in particular the ones relevant for single-electron sources or sinusoidal
drives.

Section 1.3 will continue this exploration of coherence functions by
going beyond single particle quantities and defining second and n-th or-
der coherence functions. These functions have several symmetry prop-
erties reflecting the fermionic statistics of electrons, as well as quite
complicated representations. However, this will prove useful, as we will
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be able to extract several interesting physical properties from them, and
will use these functions at several points of the manuscript.

We will end this first chapter with another theoretical tool that will
be used extensively to treat Coulomb interactions: bosonization. As
will be explained, there is an equivalence between the creation of low-
energy electrons above a Fermi sea and the excitation of bosonic degrees
of freedom called edge-magnetoplasmons in a vacuum. This last section
will therefore give all the necessary equations allowing us to translate
quantities from one language to the other, thus providing a dictionary
between electrons and bosons.

The second chapter of this manuscript, devoted to how actual exper-
iments work, will review first which physical quantities can be accessed
using current technology, explaining the challenges that need to be over-
come for such measurements to be possible.

Then, section 2.2 will give a complete overview of the different in-
terferometry experiments that have been realized in the framework of
electron quantum optics. Two interferometers will be discussed: the
Mach-Zehnder interferometer, which is an amplitude interferometer, and
Hong-Ou-Mandel interferometer, which is an intensity interferometer.
We will discuss the pros and cons of each interferometer, as well as the
main physical quantities that they give access to. Another point of view
on these problems is presented in one of our publications [OP5], in which
we have developed a re-interpretation of all electron quantum optics in-
terferometry experiments in terms of analog quantum signal processing.

Using Hong-Ou-Mandel interferometry, we can also perform another
type of measurement that was, once again, reserved to quantum optics
up to these last few years: a complete tomography of an unknown quan-
tum current. Section 2.3 will be devoted both to the presentation of the
protocol that can be used to reconstruct the full Wigner function of an
unknown state, and to its actual implementation in the experiment. I
have had the opportunity to work both on the experimental and theo-
retical parts of this work, and I have performed the benchmarking of a
completely new tool that we expect to become a standard procedure in
the study of quantum currents [OP4]. However, while the tomographic
reconstruction of single electron coherence is an impressive experimental
achievement, it is not the only thing that is done by our quantum signal
analyzer. Indeed, B. Roussel has invented during his PhD in our theory
group in Lyon a numerical analysis of the signal allowing the extraction
of all single-electron and single-hole wavefunctions present in a periodic
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quantum electrical current. This enablies us to understand any quantum
current in terms of its elementary single particle excitations, which we
have called electronic atoms of signal [OP5]. While I have participated
in this part of the work, I was not the main researcher on this topic, and
I will thus only briefly review it here, refering the interested reader to
the PhD thesis by B. Roussel [138] and to our forthcoming publications.

Finally, we will turn ourselves to more prospective experiments, aim-
ing at transposing the results presented up to now for first order coher-
ences in the case of second order ones. This work started during the
PhD of E. Thibierge [OP6, 159], and I have participated to its further
development. This work which aims at providing a new protocol for
reconstructing second electron coherence is, to my great sorrow, not yet
fully complete but I will nevertheless present our results here.

The third and last chapter will then be devoted to the study of
Coulomb interaction in electron quantum optics, their effect, their char-
acterization and control. As can be expected from its length, this was
the main focus of my PhD: it will thus constitute the main part of this
manuscript.

I will first state how bosonization can be used to treat screened
Coulomb interaction in our framework. Using the dictionary from chap-
ter 1, we are able to express the coherence after a finite-length interaction
region for any incoming single-electronic wavepacket located above the
Fermi sea. As we will see, the result can be casted under a quite com-
pact form, but needs to be expanded as a quite tedious sum of terms in
order to be evaluated. This analytical approach is a first necessary step,
which I developed. The second step, which I did not develop due to a
lack of the necessary coding skills, is feeding this development to a com-
puter. I will briefly present the very clever numerical implementation
that is used to evaluate the resulting expressions. This implementation
was done by B. Roussel, whithout whom explicit results could not have
been obtained. The main part of my work is then the third step of this
treatment: having a powerful tool allowing the computation of single
electron coherence taking into account interaction effects for any type of
interaction and any incoming wavepacket, we have to extract physically
relevant results for the experiments as well as use this tool to enlighten
us on the physics of decoherence in the many body (strongly) interacting
electron fluid. In this thesis, I will focus on three important situations
in which interesting physics can be extracted from our modelization.

The first one, presented in section 3.2 directly concerns actual ex-
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periments: we consider single electron decoherence within a two channel
system capacitively coupled by short-range effective screened Coulomb
interactions. This section will be devoted to the physical interpreta-
tion of how this modifies incoming currents, and more specifically to
the differences it implies between classically driving an Ohmic contact
and emitting energy-resolved single electron excitations. In particular,
we will show that our model can predict single electron coherence and
Hong-Ou-Mandel experimental signals with a very good agreement with
experimental results. Moreover, we will discuss how it should be possi-
ble, with our current experimental sensibility and taking into account the
limitations of the experimental setup, to discriminate between different
microscopic interaction models, namely short- and long-range ones.

Then, section 3.3 will discuss how a clever engineering of the elec-
tromagnetic environment of an edge channel can be used to protect
electronic excitations from decoherence. This will be done by giving a
complete study, within our framework and with our numerical approach,
of an idea that has been used in the DC regime by our community for
some years now [2, 83]. This will provide useful insights both on the way
that such systems can allow some decoherence protection, and on how
electronic relaxation and decoherence could be useful in cases where this
protection fails.

The third case of interest for us will simply be the case where only
one conduction channel is present in the system and the edge channel
is not coupled to external degrees of freedom. This seems a rather
academical problem but it deals with a basic physics issue: single particle
decoherence within a quantum coherent interacting many-body system.
Moreover, it also addresses the question of the velocity of electronic
excitations within the 1D channel. More precisely, it answers whether
single electron quantum currents propagate at the Fermi velocity or
at the plasmon velocity, these two being different in the presence of
interactions. As we shall see, the answer to this questions turns out to
be subtle and illuminating. As a byproduct, it will shed some light on
the role of the material in single electron decoherence, an issue that has
often been overlooked due to the fact that experience have, up to very
recently, only been performed within GaAs bi-dimensional gases.

As we will see, in this ideal single edge channel case, interactions
only lead to a frequency-dependent plasmonic velocity. Yet, we will
show that even such a simple case can lead to pretty interesting results
and in particular provides clear answers to the above questions. We will
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also discuss an effective electrical circuit approach to the finite frequency
transport, which we think is a good way to introduce bulk dissipation
in our treatment of the system.

Finally, this chapter will end with what may be the most complicated
section of this manuscript formula-wise: the computation of a generic n-
th order coherence after an interaction region, in a case where we injected
p electrons in the system. This is a very interesting problem since higher
order electronic coherences are the key to understand and quantify en-
tanglement within the electronic fluid. Entanglement within a many
body quantum system is a very important and subtle problem [3] which
is of high interest, for example in the cold atom community. It has also
been a hot topic in the field of electronic quantum transport, from the
unraveling of entanglement generation from the Fermi sea at a quantum
point contact by Beenakker [6], entanglement measurement proposals
before the advent of electron quantum optics [27, 143, 58, 59, 95] to the
recent proposals for generating and detecting entanglement in electron
quantum optics setups [147, 30, 29, 160, 81]. Although this aspect has
not been developed so much during my PhD, E. Thibierge’s thesis [159]
as well as one of our papers [OP5] explain how to connect electronic
coherences to quantum information quantities relevant for quantifying
entanglement.

In section 3.5, we also provide the complete analytical solution to the
problem of computing the effect of effective screened Coulomb interac-
tions on any electronic coherence for an initial state involing a p-electron
Slater determinant on top of the Fermi sea. The bad news is that,
even with B. Roussel’s programming skills, apart from the case already
treated by us, a numerical implementation of the full solution seems to
be out of reach, or with a cost to benefit ratio that may exceed the
enthusiasm of any academic funding agency. However, we have looked
beyond these formidable equations and we have been able to extract
some clear physical information in some specific and physically relevant
cases, such as the high energy regime already discussed for first order
coherence in [32]. In particular, I will show that the effect of Coulomb
interaction between the injected electrons takes quite a nice form, lead-
ing to some interesting results and possibly giving us hopes to obtain
explicit numerical results under the proper assuptions.

As a side note before leaving the reader with the rest of my text, let
me stress here that most of this work has been published in 6 papers,
which are denoted by [OPx], as a way to make them more distinct from
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standard bibliography. The complete publication list can be found on
the very last page of this manuscript.
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Chapter 1

Electron Quantum Optics

Durch leeren Raum bricht ein
Schein.

Der Weg einer Freiheit
Lichtmensch

This introductory chapter aims at presenting the evolution of elec-
tronic transport during the last decades from a purely condensed matter
to a quantum optics-inspired paradigm. This shift has been catalyzed
by new experimental developments allowing for the controlled prepara-
tion and manipulation of new states of the electronic fluid, all the way
down to single-electronic excitations in the equivalent of optical fibers
for the electrons. New theoretical concepts have then been developed for
interpreting the new experiments built upon these breakthroughs. They
are inspired by the corresponding concepts of quantum optics such as
coherence functions introduced by Roy Glauber in the 1960s.

In this chapter, we will first focus on the experimental tools that
have lead to the transition from coherent electronic transport to electron
quantum optics. These tools somehow mirror the usual components that
can be found on an optical table: optical fibers which will be provided by
the chiral edge channels in the integer quantum Hall effect; beamsplitters
tunable via metallic top gates; and single to few electron sources, two
families of which will be presented in section 1.1.2. These elements can
then be combined to design new experiments that mirror the famous
quantum optics ones, as will be explained in details in chapter 2.

The second part of this chapter will then be devoted to the presen-
tation of the theoretical arsenal that has been developed to understand
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and conceptualize these new experiments. Two main concepts will be
presented here and used extensively through the whole manuscript. We
will first introduce electronic coherence functions and discuss their main
properties, their various representations and the physical quantities they
give access to. Then, we will discuss bosonization which provides the dic-
tionary between electron and photon quantum optics. This technique
will be at the heart of my work, as will be made clear in chapter 3, where
we will see that going back and forth between the two ways of looking
at excitations in our system allows us to treat non-trivial problems such
as Coulomb interaction induced electronic decoherence in a transparent
and unified way.

1.1 Experimental tools

1.1.1 From condensed matter to optics-like elements

The first goal of an experimentalist trying to make electron quantum
optics is to find a way to control electronic propagation as cleanly as
possible. This means first of all that we need to have a sufficiently small
system. Indeed, there are several length scales to consider when looking
at the conduction properties of a conductor, and two of them are really
important for us.

One of these length scales is the inelastic scattering length, lin, de-
fined as the mean distance over which an electron can propagate without
loosing energy. It is mostly limited by the strength of electron-phonon
and electron-electron interactions, and is the one we experience in our
everyday life. Indeed, these inelastic processes are the ones responsible
for the heating of classical electric wires when we send current through.
As we will see, controlling lin is not an easy feat, and will occupy us for
a long time in a much further section (3.3).

The other length scale of interest in our setup is the elastic scattering
length, which describes collisions over static impurities which do not
change the energy. The mean distance between two such collisions is
denoted by lel, and our goal is to find a system in which this length is
longer than the typical size of our experiments, to put ourselves in what
is called the ballistic regime of conduction.

Of course, this is only a small part of all possible regimes of conduc-
tion that could appear in general, but we are not going to detail those
any further and rather refer the reader to the book by Montambaux
[115] for more information.
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2DEG under a magnetic field

A system of choice for realizing a ballistic conductor has been found in
bi-dimensional electron gases, or 2DEG. They are heterostructures ob-
tained at the interface between two semiconductors, which will mostly
be GaAs and AlGaAs in our case. At such junctions, a triangular po-
tential well is created which leads to the quantization of the transverse
quasi-momentum. In the optimal regime, only the electronic bands as-
sociated with the lowest quantized transverse quasi-momentum matters
and a bi-dimensional electron gas located at the interface can be ob-
tained. The corresponding electrons usually arise from donor atoms
located about 100 nm away from the gas. The potential associated with
these ionized impurities is thus smoothed out by this 100 nm distance,
which leads to high mobility in the material. This is why these materials
are so interesting: the electronic elastic mean free path lel can exceed
several hundreds of micrometers [17]. Since typical samples for electron
quantum optics experiments involve 1 to few tens of micrometers prop-
agation lengths, we can expect the two dimensional electron gas to be
in the ballistic propagation regime at sufficiently low temperature.

Using state-of-the-art lithography techniques, it is indeed possible
to etch samples or to deposit metallic gates with submicronic preci-
sion, meaning that the ballistic regime can be obtained in a real ex-
periment. However, without any other assumptions, propagation in our
2DEG can happen in any direction of the plane and elastic scattering
effects may limit the possible applications of such systems for electron
quantum optics when increasing their size. However, the application
of a perpendicular magnetic field has proven useful to circumvent this
potential difficulty. It turns out that applying a strong magnetic field
(a few Teslas) to a cryogenically cooled 2DEG allows one to enter a new
regime of electronic transport, called the integer quantum Hall regime.
This groundbreaking discovery by Klitzing, Dorda, and Pepper [96] was
awarded the Nobel prize five years later. Its very specific properties,
which we shall review now, are precisely what makes this regime so
useful for electron quantum optics.

In the integer quantum Hall regime, the longitudinal resistivity van-
ishes, while the transverse resistivity takes quantized values:

ρxy = RK
ν
, ν ∈ N and RK = h

e2 (1.1)

where e is the electron charge and h is Planck’s constant. The quan-
tity RK = h/e2, called the von Klitzing resistance, has a value of about
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Figure 1.1: Figure extracted from [175]. Left: A schematic view of a
quantum Hall experiment. A bi-dimensional electron gas is put in a
strong perpendicular magnetic field and we apply some current along
one of the plane direction (here along the x-axis). We can then measure
resistivities either in the same direction (Rxx) or along the transverse
one (Rxy) by measuring the potential difference between either contacts
1 and 2 or 1 and 3. Right: Experimental results. When the magnetic
field varies, Rxy goes from one quantized plateau to another, and Rxx
vanishes whenever we are on a plateau.

25.8 kΩ. Finally, the integer ν is called the filling factor and we will see
why in a few paragraphs. The remarkable discovery by von Klitzing is
that this regime is exceptionally stable under a variation of the mag-
netic field: the transverse resistance only varies from one integer value
of ν to another in narrow transition regions where the longitudinal re-
sistivity is non-zero, as can be seen on figure 1.1. Between two transi-
tions, it is stable up to 10−9, a remarkable property of great interest for
metrology [175] which explains why physicists talk about quantum Hall
plateaus.

How can we explain such a behaviour? The idea is simply to look at
the energy levels of our system under a magnetic field, which are called
Landau levels. These highly degenerated levels are, in the case of an
infinite plane, equivalent to harmonic oscillator levels, and are there-
fore equally spaced with an energy ~ωc between them. ωc is called the
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cyclotron pulsation, as it is the pulsation associated with the classical
circular motion of electrons in a magnetic field. Moreover, due to the
magnetic field, the spin degeneracy of electrons is lifted, and a Zeeman
energy separation ~ωZ appears between the two spin populations. With
only this simple spectrum, conduction in our sample would be quite easy
to understand: either the chemical potential µ set by our voltage is in-
side one Landau level, in which case the whole system is a conductor and
both resistivities have finite values, or it is between two possible levels,
in which case we have an insulating system, where resistivity becomes
infinite. Here, we must make a small remark on the role of disorder for
the existence of the plateaus. Indeed, the existence of disorder in our
system is unexpectedly advantageous for us! Disorder leads to the pres-
ence of localized states that will trap extra electrons when the chemical
potential is between two Landau levels, thus stabilizing the insulating
behaviour of the sample. Of course, we need the disorder to be not
too strong, since it will also change the degeneracy of Landau levels, so
that too strong disorder will even make us lose the energy-localization
of levels. A good review of this topic can be found in the lectures given
by D. Tong at Cambridge University [163].

However, in reality, a quantum Hall sample is not insulating: it has
a non-zero transverse resistivity. The above discussion indeed overlooks
a crucial point of real samples: they are not infinite. Equivalently, they
have edges which are precisely where they are connected to electronic
reservoirs. Therefore, our energy spectrum must be modified to take
into account the confinement potential at the edge. This confinement
potential will bend the energy levels as can be seen on figure 1.2, and our
discussion of conduction properties must be refined. Not much changes
when the chemical potential is at the same energy as one of the original
Landau levels, but the picture becomes radically different when it lies
between them which is the integer quantum Hall regime. In this case,
the chemical potential crosses every filled Landau level near the edges
of the system, therefore creating one dimensional metallic states which
are electronic conduction channels. Moreover, since the electronic ve-
locity is linked to the gradient of the potential, electrons within a given
channel system will propagate in the opposite direction than those of
the opposite edge: electronic propagation is thus chiral. Chirality im-
plies that no backscattering is possible along one edge of the sample
and, when the two edges are sufficiently far apart, any backscattering
event from one channel to the other one is prohibited [22], since it would
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require a very improbable tunneling event from one edge to the other.
This explains why the longitudinal resistivity vanishes on a quantum
Hall plateau. It also explains why the transverse resistivity (or equiva-
lently conductivity) is quantized since transport can only occur via an
integer number of conduction channels. At a given chemical potential,
changing the magnetic field therefore allows us to change the number
of conduction channels in our system by modifying the energies of the
Landau levels. As can directly be seen on the spectrum, the number of
channels ν is equal to the number of filled Landau levels situated below
the chemical potential, explaining why we called the integer factor ap-
pearing in equation (1.1) the filling factor. A last interesting property
of those edge channels is the fact that inter-channel tunneling events are
rare, and therefore only happen over long propagation distances (typi-
cally a few hundreds of nanometers). Since our experiments will always
be smaller than such sizes in order to be in the ballistic propagation
regime, we can always consider adjacent channels as independent. This
does not mean that they do not interact with each other, as we will ex-
tensively see in chapter 3, but it will greatly simplify the way in which
we can treat a system of several copropagating channels.

To conclude this small overview of quantum Hall edge channels, we
showed that they have all the properties we could ask of optical fibers:
unidimensional propagation, with no backscattering possible. This will
put them at the heart of our implementation of electron quantum optics
experiments, and next section will be devoted to how we can better
control these channels to manipulate the propagation of electrons.

Controlled propagation of electrons

Now that we have access to a controlled medium for the propagation
of electrons, what we need to find is a way to modify this propagation
at will, and to interact with the edge channels. Parallel to the under-
standing of the quantum Hall effect, the 1980s also saw a great deal of
experimental evolutions allowing to transition from bi-dimensional elec-
tron gases to one-dimensional ones. The first results, obtained both in
silicon [31] and GaAs-based heterojunctions [8, 161], made clear that
the main tool for this was to create a constriction in the 2DEG. Such a
constriction can be made directly by design of the sample, but the real
result allowing its practical use in many successful experiments is the
fact that it can be obtained by using metallic gates deposited on the
top of the sample, and applying a negative bias to them in order to de-
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Figure 1.2: Left: Energy spectrum of an infinite 2DEG under a per-
pendicular magnetic field B = Bez. Landau levels are separated by
an energy ~ωc, while the two spins populations are separated by Zee-
man splitting ~ωZ. Since the chemical potential is between two levels,
this sample is insulating. Middle: Schematic energy spectrum of a fi-
nite 2DEG under a magnetic field. Levels are bent due to the confining
potential. Chemical potential therefore crosses energy levels near the
edges, creating conduction channels. Right: Schematic vision of the
edge channels created in the case described by the previous spectrum.
Propagation along the edges is chiral.

plete the gas from electrons under them. This setup, called a quantum
point contact (or QPC), is represented on figure 1.3. It was first demon-
strated by Wees et al. [172] and independently by Wharam et al. [179], as
a way to show that ballistic transport in one-dimensional systems leads
to a quantization of resistance. In terms of edge channels, what this
means is that it is possible to change the number of channels that can
go through the sample by varying the gate potential. It even allows for
partial transmission of a channel when the potential is precisely tuned,
as was theoretically understood by Büttiker [23]. Therefore, the quan-
tum point contact can be seen as a tunable beamsplitter for electrons,
and will obviously be of great practical use for any electron quantum
optics experiment.

Let us now take a brief moment to examine how the QPC works.
From the point of view of an electron in the 2DEG, the negative bias
applied to the top gates creates a repulsive potential, in much the same
way as the edges of the samples. These gates therefore allow for a
smooth and tunable additional confinement potential, which leads to a
modification of the path followed by conduction channels. When we take
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Figure 1.3: Schematic representation of a quantum point contact action
on the edge channels. From left to right: starting from a strong negative
bias applied to the top gates, all channels are reflected. As we relax
the bias, repelling potential becomes weaker and one channel can be
partially transmitted, and then fully transmitted. This goes on until
every channel is transmitted. In cases where channels are not fully
transmitted, we observe some mixing between the incoming channels
from both sides of the QPC in the output. This will be of particular
interest in chapter 2.

a look at the shape of the quantum point contact in figure 1.3, it is clear
that if this confinement potential is strong enough, all edge channels
will stay on one side of the barrier and we will be in a fully reflective
situation. When relaxing a bit this confinement, it will become possible
for electrons in the outer channel to tunnel from one side of the barrier
to the other, leading to a partial transmission of this channel. If we relax
it even more, electrons from the outer channel are no more sufficiently
repelled to be backscattered, and only follow a modified edge, while
other edge channels are still reflected. This goes on until all channels
are transmitted through the QPC.

1.1.2 On-demand single electron sources

In the previous section, we have studied the means of propagation of
electrons through a sample, and discovered the existence of electronic
equivalent to optical fibers and to beamsplitters. Let us now focus on
the excitations that propagate within these elements and ask ourselves:
what are the electronic sources of interest in electron quantum optics?
Performing electron quantum optics-like experiments calls for sources
that are able to emit simple, few-particles electronic excitations, or even
better single electron (or hole) excitations.
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Figure 1.4: A schematic view of the quantum dot source. A small cavity
of the 2DEG is closed by a quantum point contact, leading to a Fabry-
Pérot type quantization of levels in the cavity. The energy position of
these levels can then be tuned by applying some voltage to a metallic
top gate.

Landau quasiparticle source

The first on-demand single electron source has first been demonstrated
by Fève et al. [44] in the Laboratoire Pierre Aigrain. It is shown in
figure 1.4 and is based on the rearrangement of single particle states
within an electronic cavity. A quantum point contact defines this elec-
tronic cavity, which we call a quantum dot, in a controlled way. By
tuning the transmission D of the dot, the spectrum inside the cavity
can go from a continuum at full transmission D = 1 to a discrete one at
D = 0 with energy levels separated by an energy gap ∆. It is analogous
to a Fabry-Pérot interferometer in classical optics. In an equilibrium sit-
uation, all quantized levels up to the Fermi level are filled, and nothing
happens.

The idea of this source is to rapidly shift the position of all levels
by applying a square drive voltage Vd(t) to a top gate placed above the
dot. In an ideal case, as shown in figure 1.5, all levels inside the dot are
shifted upwards in energy when −eVd(t) increases. Appropriately tuning
the amplitude of the drive so that this shift is equal to the gap between
levels ∆ ensures that exactly one discrete level is promoted above the
Fermi level. The corresponding electron can therefore tunnel out of the
dot and propagate into the sample. When −eVd(t) decreases back to
its initial value, the now-empty discrete level fills up again: our source
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Figure 1.5: Schematic view of the ideal operating cycle of the source
obtained when applying a square voltage of well-tuned amplitude to the
top gate. (1) At the beginning, all levels below the Fermi level are filled.
(2) A brutal raise of voltage leads to a fast shift in energy of all levels.
One level is promoted above the Fermi level. (3) After some typical
dwelling time τ0, the promoted electron tunnels out of the cavity and
propagates into the sample. (4) We brutally decrease back the voltage
and thus shift an empty level below the Fermi level. (5) After some
time, an electron tunnels into the dot to fill this empty level, and a hole
is emitted into the sample. We are back to the initial situation. By
repeating this cycle, we obtain a source emitting an electron and a hole
per period, separated from each other by half a period

emits a single hole excitation. In the ideal regime, this source emits
one single energy resolved electron and one single energy resolved hole
excitation per period.

In a realistic situation, this ideal picture needs to be precised: the
Heisenberg principle forbids a fully energy-resolved excitation to be emit-
ted within a finite time, and in particular during a half period. However,
the dot transmission D controls both the width ~γ of the quantized
levels and the typical escape time (or dwelling time) τ0 = 1/γ of the
cavity. Closing the dot improves the energy resolution of the emitted
excitations but τ0 may exceed the half-period and we may thus enter a
regime in which no excitation is emitted. In the opposite regime of a
short dwelling time, the transparency D has to be close to 1 and charge
quantization, which is a hallmark of single electron emission, may break
down. Designing and operating such a system as a single electron source

30



Chapter 1 – Section 1.1

thus requires some compromise between several requirements:

• The dwelling time τ0 has to be much longer than the typical rising
time of our square voltage, in order for the single particle levels
to be rearranged before any hybridization with continuum single
particle states of the edge channel. This ensures electronic emission
well above the Fermi level1.

• τ0 has to be shorter than the half-period of the drive, in order to
maximize the probability to emit an electron per cycle.

• The energy level width ~γ has to be smaller than half the gap
between levels, in order to promote only one level above the Fermi
level.

• The repetition rate of the source must be high enough to generate
measurable quantities.

The importance of the last point will appear clearly in the next chapter
when discussing how to perform measurements in electron quantum op-
tics experiments. A realistic implementation of this source typically uses
a drive frequency in the 1 to 3 GHz range and the geometry of the dot
is such that ∆ ' 120 µeV, corresponding to a 30 GHz frequency. This
leaves one decade for the escape time around 100 ps since we ask for

3 GHz < 1
τ0
< 30 GHz , (1.2)

which can be obtained experimentally. Let us stress that even if source
parameters seem to be tightly constrained, we still have access to a
variety of regimes by tuning the transmission of the dot or the position
of the levels with respect to the Fermi sea. This versatility will be
of particular importance when studying Coulomb interaction effects on
energy-resolved excitations in chapter 3.

A single electron classical drive?

Due to the associated nanofabrication constraints, quantum dot based
sources are challenging devices to build and operate within a real sample.
People have thus looked for simpler single to few electron sources. Of

1In the opposite case, the electron would tunnel out of the cavity as soon as it
crosses the Fermi level, and we would have a low energy emission instead of the
resolved, high-energy one we are looking for.
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course, the simplest device that can be imagined is a simple Ohmic
contact, driven by a classical time dependent voltage. In full generality,
the state created by such a drive is not built from a well defined number
of electron and hole excitations on top of the Fermi sea. Nevertheless,
lowering the amplitude will certainly give access to a regime where the
average number of such excitations emitted per period is close to unity
and, in some well controlled regimes, such sources lead to very interesting
electronic states.

The first one is the adiabatic regime, in which the only thing that
happens is that the Fermi sea chemical potential directly follows the
drive. Everything is then equivalent to a slowly varying DC potential.
While this state is not of huge interest in terms of electronic wave-
functions, it will often be used throughout this manuscript, and will be
covered in much more details in the corresponding sections.

The second regime of interest is indeed a remarkable one, and has
been predicted by Levitov, Lee, and Lesovik [104]: using a Lorentzian
voltage pulse of total charge −e, we can emit exactly one single electron
excitation on top of the Fermi sea, which is called a Leviton. More
generally, for a Lorentzian voltage drive Vd(t)

i(t) = Vd(t)
RK

= q

πτ0

1
1 + (t/τ0)2 (1.3)

with controlled duration τ0 and total charge q, the resulting state when
q = −ne is an n-electronic state built as a Slater determinant of an n
electron excitation on top of the Fermi sea [93]. This n-Leviton state
is emitted around t = 0, with a typical width τ0 around the emission
time. In the case n < 0, the equivalent hole excitation obtained by
removing the Slater determinant from the Fermi sea is generated, and
will be called an n-anti-Leviton. Another interesting property for sin-
gle electronic Levitons or anti-Levitons is that any train of Lorentzian
voltage pulses of charges −e leads to a state containing only electronic
excitations and no electron-hole pairs on top of the Fermi sea. This
means that we can repeat the emission of Levitons to create a periodic
source of single-electronic Lorentzian wavepackets. Such a source has
been recently demonstrated in the group of D. C. Glattli [38] and will
be very useful in the study of Coulomb interaction effects on electronic
excitations.

Evidently, there are some drawbacks to this simpler electron source,
and the main one is the fact that all electronic excitations obtained
by applying a voltage to an Ohmic contact have, by design, an energy
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content localized close to the Fermi level. High energy scenarios, and
more importantly situations studying electronic wavepackets located far
above the Fermi sea can therefore not be attained using Leviton sources.
The existence of both types of sources will then provide complementary
information on the underlying physics.

1.2 First order coherence

Now that we have seen a quick overview of the experimental tools al-
lowing us to do optics-like experiments, we need to turn ourselves to
the theoretical tools at work in optics (both classical and quantum) and
search for their electronic equivalent. In this work, we are mainly inter-
ested in interference experiments, as we will see in chapter 2. In optics,
the good tool to study such experiments is called coherence, and it is
presented in a great number of books [183, 48]. We will only give some
reminders about its definition and properties in a first section, before
going to electronic coherence.

1.2.1 Coherence in optics

Classical optics

Let us start with a simple interferometry experiment in classical optics,
Young’s experiment. We are interested in the light intensity I that can
be measured by some detector at position rd and time t. We know that
this intensity can be related to two things: the response function of the
detector, given by some function Kd(τ), and the electric field at the
detector’s location, E(rd, t). To simplify things, we suppose here that
the light used is linearly polarized and monochromatic with pulsation ω,
such that we can use a complex scalar to describe the field. This gives
the following equation

I(rd, t) =
∫ t+τd

t−τd
Kd(τ − t)E(rd, τ)E∗(rd, τ)dτ (1.4)

which is just a way of saying that the detector gives an average, with
some response function, of the energy flux that goes through it during
some duration 2τd around t. Due to the specific form of the double hole
experiment, we know that the field at the detector’s location and time t
can be linked to the field at positions of the holes r1 and r2 at previous
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r1

r2

rd
τ1 = |rd − r1|/c

τ2 = |rd − r2|/c

Figure 1.6: A schematic representation of Young’s interferometry exper-
iment. The field at the detector’s location rd can be linked to its values
at the two sources at previous times.

times, as can be seen in figure 1.6, giving

E(rd, t) = E(r1, t− τ1) + E(r2, t− τ2) . (1.5)

When going back to intensity, this leads to a three terms equation

I(rd, t) = I1(rd, t) + I2(rd, t) (1.6a)

+ 2Re
(∫ t+τd

t−τd
Kd(τ − t)E(r1, τ − τ1)E∗(r2, τ − τ2)dτ

)
(1.6b)

in which we recognize the intensity coming from each source in term 1.6a
and an interference effect between the fields in term 1.6b. From this
equation, we understand that the relevant quantity to compute in order
to know if interference effects will be observed in this experiment is the
classical coherence function defined as

G(r1, t1|r2, t2) = 〈E(r1, t− t1)E∗(r2, t− t2)〉 (1.7)

where the average is a time average over t. From this function, we can
define a normalized quantity as

g(r1, t1|r2, t2) = G(r1, t1|r2, t2)√
G(r1, t1|r1, t1)G(r2, t2|r2, t2)

(1.8)

such that |g| = 1 if the fields are perfectly correlated, meaning that the
contrast in the interference pattern will be maximal, and |g| = 0 if the
fields are completely decorrelated, so that no interference pattern can
be observed. A simple Cauchy-Schwartz inequality gives

|G(r1, t1|r2, t2)|2 ≤ G(r1, t1|r1, t1)G(r2, t2|r2, t2) (1.9)

such that g cannot take values bigger than 1.
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Quantum optics

In order to describe quantum sources, the idea of a quantum version
of optical coherence had to be developed. This became especially true,
as can be expected from their name, after the development of coherent
sources such as the maser in the 1950s. Then, in 1963, Roy Glauber
defined what would become the quantum theory of optical coherence in a
series of three articles [61, 62, 63]. From the classical equation, we would
expect that all we would need to do is to replace the classical field by an
operator and complex conjugation by hermitian conjugation. Things are
unfortunately not as simple, because the quantum field operator E(r, t)
at position r and time t is hermitian. The great idea of Glauber was to
define two sub-operators from this one, taking either only the positive
frequencies of its Fourier transform or only its negative frequencies:

E(r, t) = E(−)(r, t) + E(+)(r, t) (1.10a)

E(−)(r, t) =
∫ 0

−∞
Ẽ(r, ω)e−iωtdω

2π (1.10b)

E(+)(r, t) =
∫ +∞

0
Ẽ(r, ω)e−iωtdω

2π (1.10c)

These operators are hermitian conjugates of each other, and can be
interpreted respectively as the annihilation (for E(+)) and creation (for
E(−)) operators for a photon at position r and time t. Using these
operators, it is possible to describe an interferometry experiment in a
quantum optics manner, for example with a destructive measurement
such as photodetection at the end of the experiment. What Glauber
then found is that the probability to detect a photon on the interval
[0, t] for a quantum state described by the density matrix ρ is given by

P 1ph
[0,t] =

∫ t

0
Kd(t1 − t2)G(1)

ρ (rd, t1|rd, t2)dt1dt2 (1.11)

where
G(1)
ρ (r1, t1|r2, t2) = Tr

[
E(+)(r1, t1)ρE(−)(r2, t2)

]
(1.12)

is the quantum optics equivalent of the coherence function, and Kd is as
before the response function of the detector. Let us try to understand it
in quite the same way as we did for classical fields. The density matrix ρ
corresponds in the general case to a statistical mixture of quantum pure
states, meaning that the coherence function contains information both
on statistical properties of the source and on the quantum properties
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of each state in the mixture. In the case of a pure quantum state, the
coherence function can be seen as the transition amplitude between the
initial state minus a photon removed at the detector’s position rd at
time t1 (the action of E(+)(r1, t1) on the “ket”) and the same state with
the photon removed at time t2 (the action of E(−)(r2, t2) on the “bra”).
During that period of time, the photodetector has some probability to
“click” given by its response function. This is indeed what we expect
from a photodetector: it needs to remove one photon from the field
it probes in order to detect something. Here, the coherence function
directly encodes the average over all the pure states that constitute our
full quantum state.

Without going into more detail, we can use Glauber’s first order co-
herence G(1) in exactly the same way as its classical equivalent. We can
for example define a coherence degree by creating some normalized quan-
tity g(1)(r, t|r′, t′) = G(1)(r, t|r′, t′)/

√
G(1)(r, t|r, t)G(1)(r′, t′|r′, t′) and use

it to define different regimes of light. But, in this work, we are not in-
terested that much in quantum optics coherence functions, and we will
therefore go directly to the electronic case, where we will give much more
detail about the properties and interpretation of coherence.

1.2.2 Electronic first order coherence

Definitions

The electronic equivalent of quantum optics coherence function is simply
defined by replacing the photonic field operators by electronic ones. Let
us denote by ψ(r, t) the annihilation operator at position r and time t,
and by ψ†(r, t) its creation counterpart. Given these operators, the
electronic first order coherence function has been defined by Grenier
[67] as

G(e)
ρ (r, t|r′, t′) =

〈
ψ†(r′, t′)ψ(r, t)

〉
ρ

= Tr
[
ψ(r, t)ρψ†(r′, t′)

]
(1.13)

where ρ denotes, as before, the density matrix of the state under consid-
eration. In most of this manuscript, position dependence of the coher-
ence function will be dropped as the position variable will be fixed by the
actual position of detectors in our system. At first glance, this may seem
like a loss of generality but, fortunately, several properties of our system
ensure that all information in the coherence function can be recovered
from its temporal dependence. Within an interaction free region, elec-
tronic propagation is chiral and ballistic at a fixed velocity vF which
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is the Fermi velocity along the edge channel. In this free propagation
regime, position and time are closely related along the edge: anything
happening at position x and time t will be happening at position x+vFτ
at time t+ τ . The position dependence of single electron coherence can
then be recovered from its time dependence at a fixed position x, thus
showing that the real quantity of interest for us can simply be denoted
G(e)
ρ,x(t|t′). Let us stress that, for 1D systems, single electron coherence

is dimensionally equivalent to the inverse of a length.
Contrary to the photonic case, the electronic vacuum in edge chan-

nels is not the true electronic vacuum which we denote by |∅〉, but a
Fermi sea |Fµ〉 in which all single particle energy levels are filled up to
a certain chemical potential µ, following Fermi-Dirac statistics. As a
consequence, our first difference with photon optics is that even when
all sources are switched off, first order coherence is not zero but is equal
to its Fermi sea value, which we will denote either by G(e)

F (t|t′) for µ = 0
or G(e)

µ (t|t′) for the specific case of chemical potential µ. An important
property of the Fermi sea is that it is a stationary state. Its coher-
ence function only depends on the difference between the two times:
G(e)
F (t|t′) = G(e)

F (t− t′).
Since we are interested in the specific contribution of a source to

single electron coherence, we define the excess single electron coherence
by

∆G(e)
ρ (t|t′) = G(e)

ρ (t|t′)− G(e)
F (t|t′) . (1.14)

As the presence of the Fermi sea allows for creation of hole excitations,
obtained by removing an electron from the Fermi sea, defining the hole
coherence function as

G(h)
ρ (x, t|x′, t′) =

〈
ψ(x′, t′)ψ†(x, t)

〉
ρ
. (1.15)

enables us to analyze the many body state in terms of hole excitations.

Properties

Let us now derive a few properties of interest which are valid for any
state ρ. First of all, it is straightforward that

Gρ(t|t′) = G∗ρ(t′|t) . (1.16)

As we will see later, this property ensures that the probability of finding
an electron in some particular state is real.
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Another property of interest deals with the link between electron and
hole coherences. It can be derived simply by using the anticommutation
relation between the creation and destruction operators

G(e)
ρ,x(t|t′) + G(h)

ρ,x(t′|t) = 1
vF
δ(t− t′) , (1.17)

the 1/vF factor coming from the combination of the anticommutator{
ψ(x), ψ†(x′)

}
= δ(x−y) with the time dependence ψ(x, t) = ψ(x−vFt)

in a free propagation region, as is always assumed for the place where
the detectors are located.

Finally, single electron coherence satisfies a Cauchy-Schwartz in-
equality of the form:∣∣∣G(e)(t|t′)

∣∣∣2 ≤ G(e)(t|t)G(e)(t′|t′) . (1.18)

It can be derived in the following way: since the many body density
operator is positive definite, Tr

[
AρA†

]
≥ 0 for any operator A. Using

A = αψ(t) + βψ(t′) where (α, β) ∈ C2, we have

|α|2G(e)(t|t) + |β|2G(e)(t′|t′) + αβ∗G(e)(t|t′) + α∗βG(e)(t′|t) ≥ 0 . (1.19)

This equation being valid for any α and β, it implies that the matrix de-
fined by single electron coherences defines a definite positive sesquilinear
form, which implies equation (1.18)2. More generally, using the same
idea, we have

det
[
G(e)(ti|tj)

]
≥ 0 (1.20)

for any given list of times ti. Equation (1.18) imposes a clear constraint
on possible values for the non-diagonal coherence G(e)(t|t′): diagonal
coherences need to be non-zero at both t and t′ for it to be non-zero.

Wick’s theorem

Before discussing simple examples, let us discuss a final property of
single electron coherence that is not valid for any many-body state ρ
but which relies on specific physical hypotheses: Wick’s theorem [180].

This theorem applies only for a certain class of states called Gaussian,
which are described by a reduced density matrix that can be written as

2Even if this does not seem obvious when using the standard mathematical for-
mulation, which states that all leading principals minor of AρA† are positive.
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the exponential of a quadratic form in terms of creation and destruc-
tion operators. In that case, we can use anticommutation relations and
properties of the exponential function to show that every average over
a balanced number of ψ and ψ† operators can be expressed as the sum
over all possible pairings of one ψ with one ψ†. Fermionic statistics add
moreover the constraint that pairings should come with a minus sign
if there is an odd number of “crossings” in the corresponding pairing
graph. In order to put that in a more visual manner, figure 1.7 shows
some simple examples of how to use Wick’s theorem. For a more math-
ematical approach and definition of this theorem, books such as [101,
125] are great resources.

The fact that only averages of the form 〈ψψ†〉 appear in the result
comes from superselection rules. The most general superselection rule is
called the parity superselection rule [181] and states that no many-body
states containing superpositions between states with different fermion
numbers are allowed. In a metallic conductor, no state containing su-
perpositions between different total charges are allowed which is even
a stronger requirement. Consequently, any average containing differ-
ent numbers of ψ and ψ† operators is directly equal to 0 in a normal
metal. Let us stress that superconductors allow for superpositions be-
tween states differing by a charge 2e, meaning that averages of ψ2 – the
superconducting order parameter – can be non-zero.

This theorem is of particular importance and will be used extensively
in this manuscript, as a wide variety of physical many body states of
the electronic fluid are indeed Gaussian. This is the case of equilibrium
states, such as the Fermi sea at any temperature, but also of states
generated by a driven Ohmic contact, or more generally states that can
be obtained from an equilibrium state by time dependent single particle
scattering theory. However, Wick’s theorem is generically no longer valid
is in the presence of interactions, but we will see in section 3.1.2 that a
generalized version of Wick’s theorem can be obtained.

Simple examples

Let us now review simple examples to get a more intuitive understand-
ing of the physical content of single electron coherence. First, consider
a state |Ψ1〉 containing an electron in some wavefunction ϕ1. In the sec-
ond quantification picture, it is obtained from the action of a creation
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〈
ψ(1)ψ†(2)ψ(3)ψ†(4)

〉
=
〈
ψ(1)ψ†(2)

〉〈
ψ(3)ψ†(4)

〉
+
〈
ψ(1)ψ†(4)

〉〈
ψ†(2)ψ(3)

〉

〈
ψ†(1)ψ†(2)ψ†(3)ψ(4)ψ(5)ψ(6)

〉
= 〈ψ†(1)ψ(6)〉〈ψ†(2)ψ(5)〉〈ψ†(3)ψ(4)〉

− 〈ψ†(1)ψ(6)〉〈ψ†(2)ψ(4)〉〈ψ†(3)ψ(5)〉

− 〈ψ†(1)ψ(5)〉〈ψ†(2)ψ(6)〉〈ψ†(3)ψ(4)〉

+ 〈ψ†(1)ψ(5)〉〈ψ†(2)ψ(4)〉〈ψ†(3)ψ(6)〉

+ 〈ψ†(1)ψ(4)〉〈ψ†(2)ψ(6)〉〈ψ†(3)ψ(5)〉

− 〈ψ†(1)ψ(4)〉〈ψ†(2)ψ(5)〉〈ψ†(3)ψ(6)〉

Figure 1.7: A visualization of Wick’s theorem. For any Gaussian state,
the average of a balanced number of ψ and ψ† operators can be expressed
as the sum of products of two-operators averages. Minus signs appear
in those sums when the pairing graph has an odd number of crossing, a
fact coming from Fermionic anticommutation relations.

operator on the true fermionic vacuum:

|Ψ1〉 = ψ†[ϕ1] |∅〉 with ψ†[ϕ1] =
∫
ϕ1(t)ψ†(t)dt . (1.21)

The first order coherence for that state is simply

G(e)
|Ψ1〉(t|t

′) = ϕ1(t)ϕ∗1(t′) . (1.22)

It contains all the information on the single-electronic wavefunction ϕ1,
not only on its square modulus but also on its phase, which can be read
from the t− t′ dependence. What happens when using states with more
electrons? Let |ΨN 〉 be the state containing N electrons in the mutually
orthogonal wavefunctions (ϕn)n∈{1,...,N}. In a second quantification pic-
ture, in which antisymmetry of the resulting state is naturally obtained,
this state is written as

|ΨN 〉 =
N∏
n=1

ψ†[ϕn] |∅〉 (1.23)
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and, using Wick’s theorem, we obtain

G(e)
|ΨN 〉(t|t

′) =
N∑
n=1

ϕn(t)ϕ∗n(t′) . (1.24)

Once again, single electron coherence contains information on all the
single-electronic wavefunctions present within the many-body state. This
object allows us to answer any question regarding single-particle prop-
erties.

For example, let us compute the probability to find an electron in
some specific wavefunction ϕ given a possibly multi-electronic state de-
scribed by the density matrix ρ. The electron number operator for this
single particle state is

n[ϕ] = ψ†[ϕ]ψ[ϕ] . (1.25)
Because of Fermi statistics, its spectrum consists of 0 and 1. The prob-
ability to find an electron in ϕ is therefore directly given by its average,
which can be expressed simply using first order coherence

p[ϕ] = 〈n[ϕ]〉 =
∫
ϕ∗(t)ϕ(t′)G(e)(t|t′)dtdt′ . (1.26)

For example, in the case of the state |Ψ1〉 described before, this proba-
bility would simply be the square modulus of the scalar product between
wavefunctions ϕ and ϕ1, as expected from standard quantum mechanics.

Another important quantity that can be recovered quite easily from
the coherence function is the average time dependent electrical current.
Indeed, the average current at time t is directly linked to the excess
number of electrons (with respect to the Fermi level) at the detector’s
location at time t:

〈i(t)〉ρ = −evF∆G(e)
ρ (t|t) (1.27a)

= −evF
(〈
ψ†(t)ψ(t)

〉
ρ
−
〈
ψ†(t)ψ(t)

〉
F

)
(1.27b)

where the vF factor arises from the dimensionality of G(e)(t|t). As ex-
pected, the time representation of coherence is relevant when looking at
time-dependent quantities. It should be noted here that most figures
in this manuscript will plot the quantity 〈ie(t)〉 = −〈i(t)〉/e, which cor-
responds to the current of particles and not the electrical current. For
more information on how to link detection events and first order coher-
ence, I recommend reading E. Thibierge’s PhD [159] (unfortunately only
available in French).
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Energy representation

Suppose that we are not interested in time-dependent quantities, but
rather on energy-dependent ones. In that case, is first order coherence
rendered useless? The answer is no, but we need to change our repre-
sentation of it. Such another possible representation of coherence can
be obtained by using a double Fourier transform in order to go to the
frequency domain:

G̃(e)(ω|ω′) = v2
F

∫
G(e)(t|t′)ei(ωt−ω′t′)dtdt′ . (1.28)

In terms of fermionic operators, we have

G̃(e)
ρ (ω|ω′) = 2πvF

〈
c†(ω′)c(ω)

〉
ρ

(1.29)

where c(ω) is the operator annihilating an electron at energy3 ~ω, defined
from its time-domain counterpart by

c(ω) =
√
vF
2π

∫
ψ(t)eiωtdt (1.30)

so that c and c† satisfy the anticommutation relation
{
c(ω), c†(ω′)

}
=

δ(ω − ω′).
To understand the advantages of this representation, let us consider

a state obtained by adding a single electron and a single hole to a Fermi
sea at a chemical potential µ = 0, at zero temperature4

|Ψe/h〉 = ψ[ϕh]ψ†[ϕe] |Fµ=0〉 . (1.31)

For this state to be non-zero, the energy content of the electronic wave-
function ϕe needs to be entirely above the Fermi level: ϕe(ω < 0) = 0.
In the same way, for the electron removed from the Fermi sea, ϕh(ω >
0) = 0. The excess coherence of this state is given, in the energy domain,
by

∆G̃(e)
|Ψe/h〉(ω|ω

′) = ϕ∗e(ω)ϕe(ω′)− ϕ∗h(ω)ϕh(ω′) . (1.32)

Given the constraints on the wavefunctions, this directly shows that
all electronic contributions to the coherence will be contained in the

3Throughout this manuscript, the words “energy” and “frequency” will be used
most of the time without distinction.

4We choose µ = 0 for simplicity, but everything developed here can be done by
shifting all frequencies limits to µ/~ instead.
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(ω ≥ 0, ω′ ≥ 0) quadrant, whereas hole contributions only contribute in
the (ω ≤ 0, ω′ ≤ 0) quadrant. What about the two others quadrants,
characterized by ωω′ < 0? They correspond to electron-hole coherences,
but they cannot be obtained by elementary electron-hole pairs created
by moving an electron from below the Fermi level to above it, as is
made clear by equation (1.32). In reality, the simplest type of excitation
leading to a non-zero contribution in these off-diagonal quadrants is a
coherent superposition between the emission of such an elementary pair
and doing nothing to the Fermi sea:

|Ψcoh〉 = 1√
2

(
1 + ψ[ϕh]ψ†[ϕe]

)
|Fµ=0〉 . (1.33)

We can also interpret this state as presenting one electron in a coherent
superposition of an electronic and a hole wavefunction (|ϕe〉+ |ϕh〉)/

√
2

instead than on |ϕh〉 as in the Fermi sea. The excess coherence of such
an excitation is, using once again Wick’s theorem:

∆G̃(e)
|Ψcoh〉 = 1

2

(
ϕe(ω)ϕ∗e(ω′)− ϕh(ω)ϕ∗h(ω′) (1.34a)

−ϕe(ω)ϕ∗h(ω′)− ϕh(ω)ϕ∗e(ω′)
)
. (1.34b)

The contribution (1.34a) is the excess coherence of the electron-hole
pair |Ψe/h〉, while equation (1.34b) encodes the contribution within the
electron-hole quadrants presented in figure 1.8. The frequency repre-
sentation of first order coherence therefore allows a direct access to the
nature of the excitations which was hidden in the off-diagonal phase of
the time-domain representation.

There is another case in which the frequency representation of co-
herence can have an advantage over the time-domain one: stationary
sources. In this case, G(e)(t|t′) = G(e)(t − t′). The Fourier transform of
such a function only depends on the average energy ω = (ω+ω′)/2 and
is singular in the difference of ω and ω′:

G̃(e)
stat(ω|ω′) = 2πvFf(ω)δ(ω − ω′) . (1.35)

In this equation, f(ω) is the occupation number at energy ~ω for the
stationary state under consideration.

Let us look at an example of such a state using the Fermi sea at some
temperature Tel and chemical potential µ = 0. Its many-body state can
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Figure 1.8: A visual representation of the frequency quadrants of co-
herence. Electronic-only excitations have a non-zero contribution to the
quadrant with both frequencies positive and holes-only in the quadrant
with both frequencies negative. The two last quadrants are signatures
of electron-hole coherences.

be represented by the density matrix

ρF,Tel =
⊗
ω∈R

(
fTel(ω)c†(ω)|0ω〉〈0ω|c(ω) + (1− fTel(ω))|0ω〉〈0ω|

)
(1.36)

where fTel is the Fermi-Dirac distribution at temperature Tel. This den-
sity matrix simply represents a collection of statistical mixtures at all
energies ~ω, between a state occupied with probability fTel(ω) and its
empty counterpart5. Using equation (1.29), we obtain

G̃(e)
Tel,µ=0(ω|ω′) = 2πvF

〈
c†(ω′)c(ω)

〉
ρF,Tel

(1.37)

= 2πvFδ(ω − ω′)fTel(ω) .

This result is expected from equation (1.35) for a Fermi sea at temper-
ature Tel.

1.2.3 Wigner representation

Up to now, we have seen that coherence functions can be represented
in two possible ways. In the time domain, they give information on all
time-dependent quantities, like the current associated with a state for

5At zero temperature, we would recover the pure state |Fµ=0〉 used before, corre-
sponding to all negative-energy states occupied and all positive-energy states empty.
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example, but no direct information on the energy content of the state.
Equivalently, in the frequency domain, it is easy to recover information
on the energy of single particle excitations present in a many body state,
but difficult to read the temporal evolution. It then seems quite natural
to look for a representation of coherence that would give us access to
both informations at once. It is indeed possible to do so, by using a rep-
resentation called the Wigner representation of coherence, inspired from
the one developed by Wigner [182] in the context of quantum mechanics
and independently by Ville [169] for classical signal processing. It is
simply defined as a time-frequency representation, obtained by taking
a single Fourier transform of any of the two preceding representations
with respect to the difference of parameters [41]:

W(e)(t, ω) = vF

∫ +∞

−∞
G(e)

(
t+ τ

2

∣∣∣∣ t− τ

2

)
eiωτdτ (1.38a)

= 1
vF

∫ +∞

−∞
G̃(e)

(
ω + Ω

2

∣∣∣∣ ω − Ω
2

)
e−itΩ dΩ

2π . (1.38b)

In the following, we will drop the · superscript for simplicity, and denote
the Wigner function W(e)(t, ω), which depends on one time and one
frequency. Note that τ and ω are conjugated variables, as well as t
and Ω. This will be used in particular for higher order coherences in
section 1.3. The excess Wigner distribution function is defined in the
same way from the excess single electron coherence

∆W(e)
ρ (t, ω) =W(e)

ρ (t, ω)−W(e)
F (t, ω) . (1.39)

Finally, a Wigner distribution function for holesW(h) as well as its excess
∆W(h) can also be defined in the same way from G(h).

Properties of the Wigner function

A first nice property comes from the hermiticity of the first order coher-
ence function: W(e)(t, ω) is a real-valued function. This means that it
will be easily represented on a bi-dimensional density plot, contrary to
coherence functions which require plots of their modulus as well as of
their phase.

The marginals of the Wigner function also contain relevant infor-
mation for us: integrating over one of the two variables is completely
equivalent, with some vF factors, to looking at the diagonal of the co-
herence function in the other variable. And, as was already shown in
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equations (1.27a) and (1.35), those diagonal quantities can be directly
linked to physical properties: average current at time t, or occupation
number at energy ~ω. This gives the following equations:∫ +∞

−∞
∆W(e)(t, ω)dω

2π = −〈i(t)〉
e

(1.40a)

lim
T→∞

(
1
T

∫ +T/2

−T/2
W(e)(t, ω)dt

)
= f(ω) . (1.40b)

In order to better visualize physical states, marginals of the Wigner
functions will be plotted alongside their density plot in most figures
presented in this manuscript.

Finally, a classicality criterion can be defined as
0 ≤ W(e)(t, ω) ≤ 1 . (1.41)

Whenever this criterion holds, the Wigner function can be interpreted
as a probability distribution, i.e. as the probability to detect an elec-
tron of energy ~ω at time t. This classicality criterion extends to hole
excitations, as equation (1.17) expressed in the Wigner representation
gives W(h)(t, ω) = 1−W(e)(t,−ω). Yet, as we will later see, we need to
be careful when using the name “classical”. For example, only a subset
of all states obtained with a driving of an Ohmic contact fulfill this clas-
sicality criterion, even if one would usually call them “classically driven
states”. This will be made clear in next section, which is devoted to the
coherence of all sources used in this manuscript, and how they compare
to one another.

1.2.4 Wigner functions of useful sources

After these general considerations, it is time to turn ourselves to specific
examples. Four of them will be discussed in this section: we will first
discuss the equilibrium state characterized by a given electronic temper-
ature Tel and chemical potential µ and how its single electron coherence
is affected by the application of a classical voltage drive. We will then
briefly discuss the form of single electron coherence for time-periodic
sources in general and review the two single-electron sources introduced
in section 1.1.2.

The driven Fermi Sea

As a starting point, let us talk about the base element of our system:
the Fermi sea. As we have seen in equation (1.37), its coherence is easy
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Figure 1.9: Wigner function of the Fermi sea at temperature Tel and
chemical potential µ = 0. At all times, we recover a Fermi-Dirac distri-
bution in energy. The energy marginal plotted on the left of the graph
is therefore a Fermi-Dirac distribution as well.

to compute in the energy representation. Starting from that, it is direct
to find the Wigner function of a Fermi sea at chemical potential µ and
temperature Tel:

W(e)
µ,Tel

(t, ω) = fµ,Tel(ω) . (1.42)

As expected from the stationarity of the state, this Wigner function does
not depend on time. It is shown for the case µ = 0 in figure 1.9, as µ 6= 0
corresponds only to a global shift in energies.

Now, let us see how this Wigner function is modified when apply-
ing some time dependent voltage to an Ohmic contact. Each electron
feels the effect of the applied time dependent potential and accumulates
the corresponding electric phase φV (t) =

∫ t V (τ)dτ . Consequently, the
single electron coherence is modified by a time dependent phase

G(e)
drive(t|t

′) = exp
(

i e
~

∫ t

t′
V (τ)dτ

)
G(e)
µ,Tel

(t− t′) . (1.43)

For a constant (DC) potential V (t) = V0, we then have

W(e)
DC(t, ω) =W(e)

µ,Tel

(
t, ω + eV0

~

)
(1.44)
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which is completely equivalent, as expected, to a chemical potential shift:
µ′ = µ− eV0/~.

In the case of an AC drive, the simplest case is a sinusoidal drive,
V (t) = V0 cos(2πft). For this specific voltage, we can compute analyti-
cally the additional phase in the coherence [41]:

exp
(

i e
~

∫ t

t′
V (τ)dτ

)
= exp

(
i2eV0
hf

sin(πfδt) cos(2πft)
)

(1.45)

which is equal, using the Bessel decomposition eiz sin(θ) = ∑
n∈Z einθJn(z),

to ∑
n∈Z

einπfδtJn

(2eV0
hf

cos(2πft)
)
. (1.46)

From this equation, the full Wigner function is obtained as:

W(e)
cos(t, ω) =

∑
n∈Z

Jn

(2eV0
hf

cos(2πft)
)
fµ,Tel(ω + nπf) . (1.47)

This formula shows that three energy scales need to be compared in or-
der to understand the resulting coherence. The first one is the temper-
ature scale kBTel, which corresponds to the smoothing of the electronic
distribution function by thermal fluctuations. When Tel goes to 0, the
Wigner function (1.47) will present a series of steps of width πf in the
ω variable. In the opposite limit Tel � hf , these steps are smoothed out
by thermal fluctuations. The energy scale hf can be interpreted as the
energy carried by a monochromatic photon of frequency f such as the
one associated with the sinusoidal drive. As it directly appears in the
argument of the Bessel function, this energy scale needs to be compared
to the electric energy scale eV0, which represents the classical energy ex-
changed between the drive and the electronic fluid per half period. The
ratio eV0/hf then estimates the average number of photons absorbed
and exchanged by the electronic fluid during a single period.

The classical regime for this type of driving corresponds to hf �
kBTel and hf � eV0, respectively meaning that thermal fluctuations
smooth the Wigner’s behaviour in energy and that large number of pho-
tons are exchanged between the drive and the fluid. This is obviously
the case for a standard AC drive (220V, 50Hz) at room temperature. In
that regime, the Wigner function can be approximated by an adiabatic
evolution of the Fermi distribution

W(e)
classical(t, ω) = fµ,Tel

(
t, ω + eV (t)

~

)
. (1.48)
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Figure 1.10: Wigner function of the state created when applying a si-
nusoidal drive to an Ohmic contact, with eV0 = 10hf , for different
temperatures. When the temperature is high enough, the evolution in
energy is smoothed and everything behaves as an adiabatic evolution of
the chemical potential. On the contrary, when the temperature goes to
zero, the thermal coherence time of electrons becomes larger than the
period and interferences appear, leading to non-classical values of the
Wigner function. In this latter case, the Wigner function exhibits steps
in the energy direction, a signature of the fact that all energy exchanges
at zero temperature need to be multiples of hf .

This classical distribution is presented in the first panel of figure 1.10.
When decreasing the electronic temperature below hf/kB (other panels
of that same figure), two things happen:

• The variation of W(e)(t, ω) along the energy axis is no longer
smooth, but presents steps reflecting that, at low temperatures,
all energy exchanges arises from photons of energy hf injected by
the drive.

• Interference effects appear and with them values of W(e) bigger
than 1 and smaller than 0. In this case, our drive can no longer
be called “classical”, as per equation (1.41). This is due to the
fact that the thermal coherence time of electrons in the system,
~/kBTel, becomes larger than the period 1/f of the drive.

The other regime of interest, which may be coined as a “quantum”
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regime6 is the opposite limit where hf becomes the dominant energy
scale: kBTel � eV0 � hf . In this regime, less than one photon is
exchanged per period on average between the drive and the electronic
fluid. Only the first few Bessel functions will contribute to the Wigner
function, which can thus be expanded as

W(e)
cos(t, ω) =W(e)

µ,Tel
(t, ω) (1.49a)

− Fµ,Tel(ω) cos(2πft)
(
eV0
hf

)
(1.49b)

+ gµ,Tel(ω) cos2(2πft)
(
eV0
hf

)2
+O

((
eV0
hf

)3)
(1.49c)

where we have used the auxiliary functions

Fµ,Tel(ω) = fµ,Tel(ω + πf)− fµ,Tel(ω − πf) (1.50a)

gµ,Tel(ω) = 1
2fµ,Tel(ω + 2πf) + 1

2fµ,Tel(ω − 2πf)− fµ,Tel(ω) . (1.50b)

At zero temperature, Fµ,Tel is equal to −1 in a range 2πf around the
chemical potential µ and zero everywhere else, while gµ,Tel is equal to 1/2
for ω ∈]µ, µ+ 2πf ], to −1/2 for ω ∈]µ− 2πf, µ], and to zero elsewhere.

Let us have a closer look at the different terms of this development.
The first order term given by equation (1.49b) can be interpreted as
an harmonic modulation of weak amplitude of the Wigner function for
energies between −hf/2 and hf/2 around the base chemical potential.
As the average of a cosine function on a period is zero, no change to the
occupation number are linked to this term, meaning that no photon is
absorbed by the electronic fluid at first order. This term contributes to
the average current with

〈i(t)〉1st order = e2

h
V (t) . (1.51)

We recover directly the expected response of an edge channel, i.e. Ohm’s
law with a resistance RK. We will see in section 2.3.1 that this con-
tribution is of particular interest for the tomography protocol used to
reconstruct any coherence function from interferometry measurements.

The second order contribution (1.49c) has no effect on the average
current, since the integration over ω of gµ,Tel is equal to 0, but it con-
tributes to a change of occupation number. Electrons are added in a

6Even though we just saw that quantum effects are by no mean limited to such a
regime!
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Figure 1.11: Wigner function for a low-amplitude sinusoidal drive ap-
plied to an Ohmic contact, at zero temperature. From left to right, as we
increase the voltage, we see that the different orders appearing in equa-
tion (1.49) lead to processes in wider energy bands. Of course, this type
of drive dominated by few-photon processes is completely non-classical.

band of energy hf over the chemical potential and removed in a band
of the same width below µ. This is actually the signature of the ab-
sorption of a photon of energy hf which creates electron-hole pairs by
promoting electrons from below the Fermi level to higher energies. To
recover multiphotonic processes in which several photons are absorbed
by the system, the drive amplitude needs to be increased. The next
terms in the development from equation (1.49) then start to play a role,
as depicted in figure 1.11 for excitations of increasing voltage at zero
temperature.

Periodic sources

The case we just studied is in reality a specific type of periodic source
and we managed to solve it without really using the periodicity property.
However, in a completely general case, there are still things to say about
coherence and Wigner functions using only the fact that the source is
periodic. Indeed, for a generic T = 1/f periodic source, single electron
coherence in the time domain has a time-translation invariance

G(e)
periodic(t+ T |t′ + T ) = G(e)

periodic(t|t
′) . (1.52)
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Equation (1.52) is completely equivalent to saying that coherence is
periodic in the t variable, which translates into a direct periodicity of
the Wigner function in the time domain, W(e)(t, ω) =W(e)(t+ T, ω) as
was the case in the previous paragraph’s example.

Time periodicity also greatly simplifies the expression of single elec-
tron coherence in the frequency domain, since the variable conjugated
to t̄ = (t+ t′)/2 is now periodic:

G̃(e)
periodic(ω|ω

′) = vF
∑
n∈Z

δ(ω − ω′ − 2πnf)G̃n
(
ω + ω′

2

)
. (1.53)

The functions G̃n(ω) are nothing but the harmonics of the Wigner dis-
tribution function W(e)(t, ω) when expressing its T -periodicity in the
t variable:

W(e)(t, ω) =
∑
n∈Z
G̃n(ω)e2iπnft (1.54)

Now, can we find the form of functions G̃n in a generic case? We already
did, without saying it, for the case of a sinusoidal drive: the first few
ones can be pretty easily extracted from equation (1.49).

Floquet scattering theory

In a more generic case, there is another possibility to find the form of
functions G̃n: we can use Floquet theorem [45, 119], which states that
if we apply some periodic potential in a finite region of space, we can
find a scattering matrix7 relating the incoming electronic modes to the
outgoing ones in the following form:

c(out)(ω) =
∑
n∈Z

Sn(ω)c(in)(ω − 2πnf) . (1.55)

In the case of a periodic driving through an Ohmic contact, we al-
ready saw in equation (1.43) that, in the time domain, first order coher-
ence is modified by a phase which depends on the integral of the applied
voltage over time. Another way to express the same result is given when
looking at the fermionic operators. Under a driving by V (t), they are
modified in the following way:

ψ(out)(t) = exp
(

i e
~

∫ t

−∞
V (τ)dτ

)
ψ(in)(t) . (1.56)

7In full generality, this matrix can relate modes in different edge channels. Here,
we only look at the single channel case.
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This is directly equivalent, in the time domain, to the definition given
in equation (1.55). By taking a Fourier transform of equation (1.56), we
find that the matrix elements Sn are in fact the Fourier coefficients of
the added phase, denoted by αn, given by

exp
(

i e
~

∫ t

−∞
V (τ)dτ

)
=
∑
n∈Z

αne−2iπnft . (1.57)

The scattering matrix coefficients Sn(ω) = αn do not depend on ω here.
The first order coherence in the frequency domain then depends on G̃n
functions of the form

G̃n(ω) =
∑
p∈Z

αpα
∗
n−pfµ,Tel(ω + (n− 2p)πf) (1.58)

and the corresponding Wigner function is given by

W(e)(t, ω) =
∑
p,q

αpα
∗
qe2iπ(q−p)ftfµ,Tel(ω − π(p+ q)f) . (1.59)

How can the coefficients αn be interpreted? Let us look at the tran-
sition amplitude to go from an incoming state at energy ~ω to another
state of energy ~ω′. This amplitude is given by

A(ω → ω′) =
〈

0
∣∣∣c(out)(ω′)c†(in)(ω)

∣∣∣ 0〉
=
∑
n∈Z

αn(ω′)δ(ω′ − ω − 2πnf) . (1.60)

The αn are therefore directly associated with a transition in energy of
multiples of hf . They are therefore called photo-assisted transition am-
plitudes: for n > 0, αn corresponds to the amplitude of probability to
absorb n photons of energy hf coming from the drive, and for n < 0
it corresponds to the emission of n photons. α0 is directly the elastic
scattering amplitude for an electron at energy ~ω. To confirm this inter-
pretation, we can also use the Wigner function to compute the outgoing
occupation number per period

f(ω) = 1
T

∫ +T/2

−T/2
W(e)(t, ω)dt =

∑
n∈Z
|αn|2fµ,Tel(ω − 2πnf) . (1.61)

As expected from what was said before, this clearly shows that |αn|2 is
the probability to have an event shifting the energy by nhf .
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After these considerations on time periodic sources, let us consider
the single electron sources described in section 1.1.2. Of course, in a
realistic experiment, these sources are operated in a periodic way such
that measurements can be made, as will be explained in chapter 2. Yet,
for most applications, we can consider single electron sources as one-shot
emitters and only study the coherence of a single emitted wavepacket,
which we will then repeat over time.

The Leviton source

Let us start with the Leviton source, corresponding to a driving of the
Fermi sea with some voltage given in equation (1.3). Its excess Wigner
function can be computed analytically for charges that are integer factors
of the electron charge [41], but its expression is not that much interesting
for us. It is sufficient to know that it is done starting from the energy
representation of coherence, as

∆G̃(e)
Lev(ω|ω′) = ϕLev(ω)ϕ∗Lev(ω′) (1.62)

with ϕLev the electronic wavefunction describing a Leviton quasiparticle,
whose expression is given by

ϕLev(ω) =
√

4πτ0vFH(ω)e−ωτ0 , (1.63)

τ0 being the typical width of the Lorentzian pulse, and H(ω) the Heav-
iside distribution.

The corresponding excess Wigner function is displayed in the q = −e
case in figure 1.12, and we can see that it exhibits all the features we
could expect from such a time-resolved drive:

• It has only low energy contributions, as expected for any classical
drive of the Fermi sea, energy levels close to the Fermi levels are
populated first.

• It leads to a Lorentzian current centered around the emission time
of the excitation.

• It has no hole contribution at negative energies, as expected from
the fact that such an excitation should be purely electronic.

We also recover the fact that it contains exactly one excitation, which
can be checked by seeing that the integration of a Lorentzian shape of
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Figure 1.12: Excess Wigner function of a Leviton excitation obtained
by applying a Lorentzian voltage to an Ohmic contact. This leads to a
Lorentzian shape for the current. As expected, this type of excitation is
located mainly near the Fermi level, as can be also seen on the excess oc-
cupation number. We can furthermore see that it only has contributions
above the Fermi level, meaning that it is a purely electronic excitation.
Finally, the negative values of the excess Wigner function at ω > 0 are
the signature of the quantum nature of this excitation.

height 1/π is equal to 1, as is the integral
∫∞

0 4πe−2ωdω/2π. Moreover,
we see that this Wigner function exhibits values outside of the [0, 1]. As a
single electron state, the Leviton is not quasi-classical. This is due to its
proximity with the Fermi sea. Indeed, it is known that a single particle
wavefunction with a positive Wigner function is Gaussian. As such, its
Wigner function is also Gaussian and therefore has infinite spreading
in the (t, ω) plane. Any purely electronic wave-function leading to a
vanishing Wigner function for ω < 0 cannot be Gaussian and therefore
should exhibit negativities.

Energy-resolved excitations

The last case of interest for us is the energy-resolved excitation emit-
ted by the quantum dot, which is called the Landau quasiparticle by
analogy with the famous problem of relaxation of energy-resolved exci-
tations originally considered by Landau for justifying his approach to
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the interacting electron fluid within normal metals.
This excitation is emitted at some given energy ~ω0 controlled by

the amplitude of the drive, and has a typical width in energy ~γ given
by the width of the levels inside the dot, therefore controlled by the
transmission of the tunneling barrier. The average current is a decaying
half-exponential with timescale τ0 = 1/γ. In the frequency domain, its
wavefunction is given by a Lorentzian shape (coming from the shape
of levels in the dot), centered around ω0, with a typical width γ, and
truncated so that it is non-zero only for positive energies as expected
from an electronic-only wavefunction:

ϕLandau(ω) =
√
vFγ

N
H(ω)

ω − ω0 + iγ/2 (1.64)

with H(ω) the Heaviside function and N the normalization factor ensur-
ing that this wavefunction follows the conventions defined in appendix A.
Intuitively, equation (1.64) is justified by making an analogy with the
problem of a discrete level coupled to a continuum: once the voltage has
been risen above the Fermi level, the dot’s populated level is connected
by tunneling amplitudes to a continuum of extended single particle lev-
els. In this case, it is known to leak into the continuum and the long
time leaked wavefunction is of Weisskopf-Wigner form [176] because of
the broad band tunneling coupling [28]. Within the framework of Flo-
quet scattering theory, this form has been justified more rigorously by
Moskalets, Haack, and Büttiker [118].

The excess Wigner function associated with such a wavefunction is
displayed in figure 1.13 for values of γ and ω0 close to the one available
experimentally: ~ω0 = 0.7 K and τ0 = 1/γ = 140 ps. As expected,
it has no contribution at negative energies since it has only electronic
contributions to coherence, and it exhibits values outside of the [0, 1]
range, sign of its quantum nature. It looks very similar to the Leviton
Wigner function tilted by 90 degrees, which could be expected since
they are both Lorentzian wavepackets, either in the time domain or the
energy domain. In particular, the excess Wigner function is very broad
in energy at short times and becomes more and more resolved in the
energy domain when considered over a broader time interval: this is a
direct consequence of Heisenberg uncertainty principle. This is dual to
the fact that, when looking close to the Fermi sea, the Leviton’s Wigner
function spreads over a large time interval.

But this duality is not exact: due to the specific shape of the wave-
function in the energy domain, the Wigner function exhibits a kind of
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Figure 1.13: Excess Wigner function of an energy-resolved excitation of
the form given by equation (1.64) (Landau excitation). Parameters are
close to the ones observed experimentally: ~ω0 = 0.7 K and τ0 = 1/γ =
140 ps. As for the Leviton, this is a purely electronic and quantum
excitation. It is located away from the Fermi sea.

cutoff around ω = ω0/2, which can be understood by looking at the
coherence in the energy domain, as is shown in figure 1.14. The cutoff
in the energy domain at ω < 0 and ω′ < 0 means that the Fourier trans-
form along an axis parallel to the x axis is bound to be close to zero
whenever we are below ω = ω0/2. This is why the Leviton and Landau
quasi-particle Wigner functions are not exactly deduced from each over
by a 90 degrees rotation in the (t, ω) plane.

After half a period, the quantum dot will emit a hole in the system,
as can be seen in figure 1.15. The full Wigner function is simply given
by a Fermi sea in which we have removed one electron, giving quite the
same shape as what was seen before, albeit symmetrically with respect
to the chemical potential µ = 0. The excess Wigner function is also
show in that same figure, as a way to familiarize ourselves with the
excess Wigner functions for “missing electrons”. Here, we need to take
some extra caution in interpreting the data: even if it mainly exhibits
negative values, we need to remember that it is the full Wigner function
that needs to be between 0 and 1 for it to be interpreted as a classical
probability density. Therefore, for negative energies and at Tel = 0, the
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Figure 1.14: Left: Modulus of the coherence in the energy domain, for
the same excitation as figure 1.13. Right: Wigner function of that same
excitation. Since both of them are linked via Fourier transforms along
horizontal lines of this graph, it is clear why the cutoff of ϕLandau(ω)
at ω < 0 leads to a vanishing of the Wigner function at ω . ω0/2.
For example, the Wigner function along the red and blue lines would
have been identical if the coherence was not restrained to the electronic
quadrant.
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Figure 1.15: Left: Electronic Wigner function, for the hole corresponding
to the excitation of figure 1.13. We have removed an electron in the
wavefunction seen before (with opposite ω0) from a Fermi sea at zero
temperature. Right: excess electronic Wigner function for the same hole.

classicality condition can be expressed as −1 ≤ ∆W(e) ≤ 0. Here, it
does not change the result, but it will be interesting to remember this
fact later in this work.

Of course, when looking at the real source emitting a periodic train
of such electron-then-hole excitations, we need to change things a bit
and be careful, as excitations emitted at one period may share coher-
ences with the ones emitted at other periods. One way to do that is
by modelling the full source using Floquet scattering theory [67], which
allows to compute the full coherence using a scattering matrix of the
form

Sn(ω) =
∑
p∈Z

αpα
∗
p+nSdot(ω − 2πpf) (1.65)

where the coefficients αn are defined as before from the square voltage
applied to the dot, and the Sdot function is the scattering matrix of the
dot itself with no voltage applied. It can be obtained rather easily in the
time domain by modelling the dot as a Fabry-Pérot interferometer, as
was presented in figure 1.4 in which electrons can make a certain number
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of turns around an l-sized loop:

Sdot(t−t′) =
√

1−Dδ(t−t′)−D
+∞∑
k=1

√
1−Dk−1

δ(t−t′−kl/vF) . (1.66)

Equation (1.66) confirms the intuitive idea that either the electron goes
through the dot region without going in (

√
1−Dδ(t− t′)) or it goes into

the dot, makes k turn and goes out. In the energy domain, this directly
leads to

Sdot(ω) =
√

1−D − eiωl/vF

1−
√

1−Deiωl/vF
. (1.67)

The full single electron coherence emitted by the dot can be computed
numerically from equation (1.67). In most cases, the result will be quite
different from the repeated single-electron emission we studied just be-
fore, which means that some work is needed to recover what are the
wavepackets emitted by the source and to characterize in which regime
and to which extent it really works as a single-excitation emitter. This
will be discussed extensively in section 2.3.3.

1.3 Higher order coherences
In his seminal papers [62, 63], Glauber realized that first order photonic
coherences are not sufficient to describe all possible experiments. In
particular, his approach to photodetection showed that describing mul-
tiple photo-detections required more than the first order coherence of
the electromagnetic field. In fact, only Gaussian states may be charac-
terized by their first order coherence function alone, a fact that directly
comes from the application of Wick’s theorem, as seen in section 1.2.2
on page 38. In full generality, we need to define higher order electronic
coherences functions of the form

G(2e)
ρ (t1, t2|t′1, t′2) =

〈
ψ†(t′1)ψ†(t′2)ψ(t2)ψ(t1)

〉
ρ

(1.68a)

G(ne)
ρ (t1, ··, tn|t′1, ··, t′n) =

〈
ψ†(t′1) · ·ψ†(t′n)ψ(tn) · ·ψ(t1)

〉
ρ
. (1.68b)

G(2e) is called the second order electronic coherence function, and G(ne)

the n-th order one. Of course, we can define their holes equivalent de-
noted by G(nh) by simply reversing the order of annihilation and creation
operators. The remainder of this section will be devoted to the prop-
erties of these functions, first in the simpler second order case, before
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using the knowledge gained in that case to discuss their n-th order gen-
eralizations.

1.3.1 Second order coherence

In this section, I will summarize the results obtained by Étienne Thi-
bierge during his PhD [159] concerning the symmetry properties of sec-
ond order coherence and the definition of excess second order coher-
ence for any source. I will also briefly review the energy and Wigner
representations of second order coherence, and introduce simple exam-
ples which will be discussed throughout the text when appropriate. It
should be noted here that second order coherence has also been de-
fined by Moskalets [117] who has focused on the specific case of sources
described by Floquet scattering theory. So far, the difficulty to per-
form measurements of this quantity has prevented the development of
thorough studies of second order coherence in electron quantum optics
whereas it is routinely used in the photonics community.

Simple properties

We can derive properties equivalent to the first order coherence ones in
the second order case. For example, anticommutation relations impose
that

G(2e)(t1, t2|t′1, t′2) = G(2h)(t′1, t′2|t1, t2) (1.69)

− 1
vF
δ(t1 − t′1)G(h)(t′2|t2) + 1

vF
δ(t1 − t′2)G(h)(t′1|t2)

− 1
vF
δ(t2 − t′1)G(e)(t1|t′2) + 1

vF
δ(t2 − t′2)G(e)(t1|t′1)

which is the direct equivalent of equation (1.17).
In the same way, by using the same reasoning as the one developed

on page 38 for equation (1.18) but with another operator, a Cauchy-
Schwartz inequality for second order coherence is obtained∣∣∣G(2e)(t1, t2|t′1, t′2)

∣∣∣2 ≤ G(2e)(t1, t2|t1, t2)G(2e)(t′1, t′2|t′1, t′2) . (1.70)

This equation implies, as before, that non-diagonal coherences can ex-
ist only when the corresponding diagonal coherences are non-zero. Of
course, for second order coherence, the diagonal is defined as a plane in
the 4D space by taking t1 = t′1, t2 = t′2, rather than a standard line in
the 2D space as before.
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Symmetries and the Pauli principle

The second order coherence function exhibits antisymmetry properties
coming directly from the fermionic nature of electrons:

G(2e)(t1, t2|t′1, t′2) = −G(2e)(t2, t1|t′1, t′2)
= −G(2e)(t1, t2|t′2, t′1) (1.71)
= G(2e)(t2, t1|t′2, t′1) .

Note that the last equation G(2e)(1, 2|1′, 2′) = G(2e)(2, 1|2′, 1′) reflects the
indistinguishability of electrons. When combined with the hermiticity
condition

G(2e)(t1, t2|t′1, t′2) = G(2e)(t′1, t′2|t1, t2)∗ (1.72)

the antisymmetry properties show that we only need to compute the
value of G(2e) on one-eighth of the total 4D space of parameters in order
to reconstruct its value everywhere.

Because of these symmetries, one must be careful when interpret-
ing electronic second order coherence. The diagonal part of coherence,
obtained by focusing on the plane t1 = t′1∩ t2 = t′2 corresponds to corre-
lations between two successive electronic detections, regardless of their
order. But all the non-diagonal parts of second order coherence will not
be as easy to interpret as the off-diagonal part of first order electronic co-
herence. This comes directly from equation (1.71), which shows that for
each non-zero point in the diagonal plane, three other points in the 4D
space are non-zero, two of them being out of the diagonal plane. Con-
sequently, even in the presence of strong electronic decoherence, there
will always be a non-vanishing off-diagonal contribution to second order
electronic coherence. We will come back to this when discussing the
Wigner function representation of second order electronic coherence.

Another interesting feature of the antisymmetry relations (1.71) is
the fact that second order coherence is zero on two full 3D hyperplanes
of the space of parameters: those defined by t1 = t2 or t′1 = t′2. This is
a direct consequence of the Pauli principle that forbids the existence of
two electrons in the same state.

Figure 1.16 depicts these symmetries in a graphical manner. The
figure is based on specific variables that are either even or odd when we
apply one of the exchanges presented in equation (1.71). These variables
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are given by the transformation

t = t1 + t′1 + t2 + t′2
4 = t1 + t2

2 (1.73a)

δt = t1 + t′1
2 − t2 + t′2

2 = t1 − t2 (1.73b)

τ = t1 − t′1 + t2 − t′2
2 = τ1 + τ2

2 (1.73c)

δτ = t1 − t′1 − t2 + t′2 = τ1 − τ2 (1.73d)

where ti = (ti + t′i)/2 and τi = ti − t′i are directly equivalent to the ones
introduced before for first order coherence. On the figure, we do not use
the variable t = (t1 + t2)/2 as it is the only one that does not change
under any of the symmetries considered here. In these new variables, the
Pauli principle leads to zero second order coherence on the hyperplanes
defined by δt = ± δτ

2 .

A simple example

Before we continue to explore the different representations of second
order coherence, let us take a break and have a look at really simple
examples in order to understand the physical content of this quantity as
well as its symmetries.

A good starting point is the N -electronic state from equation (1.23),
|ΨN 〉 = ∏N

n=1 ψ
†[ϕn] |∅〉. To begin with, let us focus on the simple case

N = 2 containing two electrons on top of the true electronic vacuum in
orthogonal wavefunctions ϕ1 and ϕ2. Using Wick’s theorem, the second
order coherence is obtained as

G(2e)
|Ψ2〉(t1, t2|t

′
1, t
′
2) = ϕ1(t1)ϕ2(t2)ϕ∗1(t′1)ϕ∗2(t′2)
− ϕ1(t2)ϕ2(t1)ϕ∗1(t′1)ϕ∗2(t′2) (1.74)
− ϕ1(t1)ϕ2(t2)ϕ∗1(t′2)ϕ∗2(t′1)
+ ϕ1(t2)ϕ2(t1)ϕ∗1(t′2)ϕ∗2(t′1) .

As expected, it displays all the symmetries discussed before. In order to
understand better the physical meaning of this function, let us rewrite
it as

G(2e)
|Ψ2〉(t1, t2|t

′
1, t
′
2) = Φ12(t1, t2)Φ∗12(t′1, t′2) (1.75)
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δt

t ′1 =
t ′2

σ′

t1 = t2

σ C
δτ/2

τ

δt

δτ/2

P

σ′P

σP

σσ′P

CP

Cσ′P

CσP

Cσσ′P

Figure 1.16: Representation of the symmetries of second order coher-
ence. Left: at fixed t, symmetries act on a 3D space parametrized by
(δt̄, τ̄ , δτ). The mirror symmetry with respect to the red plane, denoted
by σ, corresponds to the exchange of t1 and t2: coherences on these
mirror points are opposite of each other. The same applies for the blue
plane, corresponding to the exchange of t′1 and t′2 and denoted by σ′.
Due to the Pauli principle, second order coherence is directly equal to 0
within the blue and red planes. The rotation C around the δt axis by an
angle π is equivalent to the exchange of t1 with t′1 and of t2 with t′2. Co-
herences at these points are complex conjugated. Right: Representation
of the eight points of the orbit under the action of the three exchange
operations in the 3D space (Top), and their projections in the 2D plane
τ = 0 (Bottom). Starting from the black point, we create the red one
by applying the symmetry with respect to the red plane, and so on for
other colors. For example, violet corresponds to the red plane symmetry
combined with the blue one. As the blue plane is the image of the red
one with respect to the green rotation, there are two equivalent ways of
obtaining two of the greenish points.
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where we have defined the two-electron wavefunction Φ12(t1, t2) as the
Slater determinant built from single-electron wavefunctions ϕ1 and ϕ2:

Φ12(t1, t2) = det
[
ϕ1(t1) ϕ2(t1)
ϕ1(t2) ϕ2(t2)

]
. (1.76)

Second order coherence therefore contains in this example all the infor-
mation on the two-electron objects that constitute our system. In this
simple case, of course, only one such object is present since we only have
two electrons in the full quantum state.

Let us now turn ourselves to the N -electron case |ΨN 〉. The elec-
tronic second order coherence is directly

G(2e)
|ΨN 〉(t1, t2|t

′
1, t
′
2) =

N∑
n=2

n−1∑
m=1

Φmn(t1, t2)Φ∗mn(t′1, t′2) (1.77)

where Φmn is once again the two-electron Slater determinant built from
ϕm and ϕn. The antisymmetry of all these wavefunctions implies that
G(2e) still verifies all symmetries discussed before. This indeed shows
that G(2e) contains information on all the two-electron wavefunctions
present in the electronic fluid.

Defining the excess 2nd order coherence

The above discussion makes it clear that the Fermi sea has non-zero
second order coherence, since it is indeed built as a Slater determinant of
a huge number of wavefunctions over the true fermionic vacuum. As for
first order coherence, this rises the question of defining the excess second
order coherence emitted by an electronic source. However, removing the
contribution of the Fermi sea is not enough to really corner the intrinsic
excess two-electron coherence which contains the contribution of two-
particle states emitted by the source. Part of the total second order
coherence comes from correlations between the source and the Fermi
sea through classical and quantum processes, in such a way that the
total electronic second order coherence can be decomposed as [OP6]
G(2e)
ρ (t1, t2|t′1, t′2) =

+ G(2e)
F (t1, t2|t′1, t′2) (1.78a)

+ G(e)
F (t1|t′1)∆G(e)

ρ (t2|t′2) + G(e)
F (t2|t′2)∆G(e)

ρ (t1|t′1) (1.78b)

− G(e)
F (t1|t′2)∆G(e)

ρ (t2|t′1)− G(e)
F (t2|t′1)∆G(e)

ρ (t1|t′2) (1.78c)
+ ∆G(2e)

ρ (t1, t2|t′1, t′2) . (1.78d)
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This equation is represented schematically in figure 1.17: the full second
order coherence can be seen as the joint “clicking” of two single elec-
tron detectors, one associated with times t1 and t′1, the other one with
times t2 and t′2. What equation (1.78) means is that electrons making
those detectors click do not always come from the source S. Obviously,
both may come from the Fermi sea (1.78a), leading simply to the Fermi
contribution to second order coherence. It is also possible to detect one
electron from the Fermi sea and one from the source (1.78b). These
two terms correspond to classical correlations between the source and
the Fermi sea, and would also be present if we were discussing classical
particles. The third line (1.78c) is of purely quantum nature: it cor-
responds to quantum exchanges between the source and the Fermi sea.
This means that we cannot assign an origin to the detected electrons.
Furthermore, the minus sign for these terms is a direct consequence of
fermionic statistics. Finally, the last term (1.78d) is the intrinsic contri-
bution of the source to second order coherence, which we will sometimes
call the excess contribution. This full equation may indeed be under-
stood as the definition of this intrinsic quantity from the full second
order coherence and the excess single electron coherence. Of course,
the intrinsic second order coherence satisfies the properties discussed in
equations (1.71) and (1.72), as can be checked easily using the properties
of first order coherence.

One additional property that can be derived directly from this de-
composition, using Wick’s theorem8, is the fact that, for a single electron
excitation on top of the Fermi sea |Ψe〉 = ψ†[ϕe] |Fµ〉, we have

∆G(2e)
|Ψe〉(t1, t2|t

′
1, t
′
2) = 0 . (1.79)

This is also valid for single-hole states of the form |Ψh〉 = ψ[ϕh] |Fµ〉.
This was expected: since the source only corresponds to one excitation,
there are no processes in which we could detect two electrons as coming
from it. By contrast, a single electron-hole pair would lead to a non-zero
intrinsic second order coherence.

More generally, the intrinsic second order coherence for any many-
body state satisfying Wick’s theorem is easy to compute. Using Wick’s

8Remember that the Fermi sea is an equilibrium state, and therefore Gaussian.
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Figure 1.17: A schematic representation of second order coherence in
the presence of the Fermi sea. G(2e)(t1, t2|t′1, t′2) can be interpreted as
a two-electron detection event by detectors D1 associated with times t1
and t′1 and D2 (times t2 and t′2). We can divide the contribution to
coherence into four parts, depending on which of the incoming parts
(Fermi sea or source) the ψ and ψ† operators are applied.
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theorem, the full second order coherence is obtained as

G(2e)
Wick(t1, t2|t′1, t′2) = G(e)(t1|t′1)G(e)(t2|t′2)− G(e)(t1|t′2)G(e)(t2|t′1)

= det
[
G(e)(t1|t′1) G(e)(t1|t′2)
G(e)(t2|t′1) G(e)(t2|t′2)

]
(1.80)

Using G(e)(t|t′) = G(e)
F (t|t′) + ∆G(e)(t|t′) in equation (1.80), we recover

all the terms from equation (1.78) and find that

∆G(2e)
Wick(t1, t2|t′1, t′2) = det

[
∆G(e)(t1|t′1) ∆G(e)(t1|t′2)
∆G(e)(t2|t′1) ∆G(e)(t2|t′2)

]
(1.81)

which gives in a straightforward way equation (1.79) as soon as ∆G(e)
|Ψe〉(t|t

′) =
ϕe(t)ϕ∗e(t′).

Energy representation

As for first order coherence function, we will sometimes use an energy
representation of second order coherence, which is defined as

G̃(2e)(ω1, ω2|ω′1, ω′2) (1.82)

= v4
F

∫
G(2e)(t1, t2|t′1, t′2)ei(ω1t1+ω2t2−ω′1t

′
1−ω

′
2t
′
2)dt1dt2dt′1dt′2 .

As expected, in terms of fermionic operators, we have

G̃(2e)
ρ (ω1, ω2|ω′1, ω′2) = 4π2v2

F
〈
c†(ω′2)c†(ω′1)c(ω1)c(ω2)

〉
ρ
. (1.83)

The intrinsic second order coherence in the energy domain can also be
defined using the process described by equation (1.78) in the time do-
main. Naturally, all symmetry properties linked to the exchange of two
variables are still valid in this representation and the Pauli principle leads
to a cancellation of coherence in the 3D spaces ω1 = ω2 and ω′1 = ω′2.

More interestingly, in a direct analogy with what we saw for first
order coherence, the energy representation allows a simple access to the
nature of the excitations leading to coherences. Here, we need to divide
the full 4-dimensional space into 6 sectors:

• (2e) : electron pairs, all frequencies positive.

• (2h) : hole pairs, all frequencies negative.
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• (e+h) : one electron and one hole, ω1ω2 < 0 and ω′1ω′2 < 0.

• (e+e/h) : one electron and one e/h pair, 3 frequencies positives,
one negative.

• (h+e/h) : one hole and one e/h pair, 3 frequencies negative and
one positive.

• (2e/h) : two e/h pairs, either ωi > 0 and ω′i < 0 or ωi < 0 and
ω′i > 0.

These 6 sectors are stable under the effect of symmetries, as could be
expected, and obviously do not overlap with each other. This will prove
useful at the very end of this manuscript, in section 3.5, when we will
try to discuss the physics behind interaction-induced second order co-
herence.

Of course, it might also be useful to change variables in the same
way as was done in equation (1.73), and define

ω = ω1 + ω′1 + ω2 + ω′2
4 = ω1 + ω2

2 (1.84a)

δω = ω1 + ω′1
2 − ω2 + ω′2

2 = ω1 − ω2 (1.84b)

Ω = ω1 − ω′1 + ω2 − ω′2
2 = Ω1 + Ω2

2 (1.84c)

δΩ = ω1 − ω′1 − ω2 + ω′2 = Ω1 − Ω2 (1.84d)

where ωi = (ωi + ω′i)/2 and Ωi = ωi − ω′i just like for first order co-
herence. Rewriting the Fourier transform using these reduced energy
variables explicitly shows which one is conjugated with which reduced
time variable:

G̃(2e)(ω, δω,Ω, δΩ) = v4
F

∫
exp

[
i
(

2ω τ + 2Ω t+ 1
2δΩδt+ 1

2δωδτ
)]

G(2e)(t, δt, τ , δτ) dt dδtdτ dδτ . (1.85)

In these variables, the Pauli principle leads to an annulation of coher-
ence in the 3D spaces defined by δω = ± δΩ

2 . The 6 sectors defined above
are still valid, but they are not that easy to represent in a fully compre-
hensive manner. Yet, in the Ω = 0 subspace, we can draw quite easily
the projection of most of these sectors, as can be seen in figure 1.18.
The only sector that does not appear in this subspace is the (2e/h) one,
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since it is impossible to satisfy both its condition of existence and Ω = 0.
However, this Ω = 0 subspace is of much interest for us, as we will ex-
plain just now, and will be the one we use the most in this manuscript.

Fermi sea coherence and stationary states

As a first example of second order coherence, it is instructive to com-
pute the second order of a Fermi sea with temperature Tel and chemical
potential µ = 0. As its first order coherence is, from equation (1.37),

G̃(e)
Tel,µ=0(ω|ω′) = 2πvFδ(ω − ω′)fTel

(
ω + ω′

2

)
(1.86)

we can use Wick’s theorem to get

G̃(2e)
Tel,µ=0(ω1, ω2|ω′1, ω′2)

= G̃(e)(ω1|ω′1)G̃(e)(ω2|ω′2)− G̃(e)(ω1|ω′2)G̃(e)(ω2|ω′1) (1.87a)
= 4π2v2

F

+×
[
δ(ω1 − ω′1)δ(ω2 − ω′2)fTel(ω1)fTel(ω2) (1.87b)

+−δ(ω1 − ω′2)δ(ω2 − ω′1)fTel(ω1)fTel(ω2)
]
.

The Fermi sea contribution to first order coherence is located in two 2D
subspaces (ω1 = ω′1) ∩ (ω2 = ω′2) or (ω1 = ω′2) ∩ (ω2 = ω′1), meaning
that the c† operators populate back one of the removed electronic exci-
tation. In those subspaces, it can be non-zero only when both energies
are populated, which is given by the Fermi-Dirac distribution. In order
to visualize this coherence, it will be easier to use the reduced variables:

G̃(2e)
Tel,µ=0(ω, δω,Ω, δΩ) = 4π2v2

Fδ(Ω)

+×
[
δ(δΩ)fTel

(
ω + δω

2

)
fTel

(
ω − δω

2

)
(1.88)

+−δ(δω)fTel

(
ω + δΩ

2

)
fTel

(
ω − δΩ

2

)]
.

We see here that the two planes of interest are both contained in the
3D subspace Ω = 0. We can therefore draw the second order coherence
of the Fermi sea easily, as shown in figure 1.19 for the specific case of
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(h+e/h) sector

Figure 1.18: A drawing of the different two-excitations sectors that ap-
pear in second order coherence, in the subspace Ω = 0. This subspace
will be the one we use most of the time in this manuscript, even if it
does not give access to all possible types of coherences. In particular,
the (2e/h) sector corresponding to coherences between two electron/hole
pairs does not appear in this subspace. For any of the 5 others, we have
only shown a finite part of the full sector. For example, the (2e) sector
(in red) corresponds to the extension of the reversed pyramid seen here
up to ω = +∞, while the (2h) one (in blue), goes all the way down to
ω = −∞. The three others sectors would extend in the direction of their
outward facing faces. It is easy to see that all 5 parts sum up to the full
space displayed here.
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ω

δω/2δΩ/4

−4π2 4π2

Fermi sea 2nd
order coherence

ω

δω/2δΩ/4 π/4
π/4

Pauli exclu-
sion planes

Figure 1.19: Second order coherence function of the Fermi sea (see equa-
tion (1.88)) at zero temperature and zero chemical potential, in the 3D
subspace Ω = 0. It is non-zero only in two orthogonal planes, δΩ = 0
and δω = 0. In those planes, it is equal to the product of two Fermi-
Dirac distributions, which explains the triangular shape. Due to the
Pauli principle it is also equal to 0 at the intersection of the two planes
discussed above. In the general case, the Pauli principle imposes that
second order coherence vanishes on the two planes shown on the right
panel.

zero temperature. As could be expected from our division into different
excitations sectors, we see that the Fermi sea is fully contained within
the (2h) sector.

As was already discussed for first order coherence, the Fermi sea is
only a particular stationary state, and the only thing we need to change
to recover the results for any stationary state is replacing the Fermi-
Dirac distribution by the real electronic distribution of that particular
state (see for example equation (1.35)). Defining the excess occupation
number as before by subtracting the Fermi-Dirac distribution, δf(ω) =
f(ω)− fµ,Tel(ω), the excess second order coherence in a stationary case
has exactly the same form as the one of the Fermi sea, but with δf(ω)
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instead of fµ,Tel(ω):

∆G̃(2e)
stat (ω1, ω2|ω′1, ω′2) = 4π2v2

F

+×
[
δ(ω1 − ω′1)δ(ω2 − ω′2)δf(ω1)δf(ω2) (1.89)

+−δ(ω1 − ω′2)δ(ω2 − ω′1)δf(ω1)δf(ω2)
]
.

Other simple examples

There are two more simple examples that we are going to discuss in this
section: a single energy-resolved excitation above the Fermi sea, and two
such excitations above the Fermi sea.

We first look at an electron emitted at an energy ω0, c†(ωo) |F 〉.
In such a diverging case, we will not be interested in the real values
of second order coherence, but rather in finding the points where it
is non-zero. The result is displayed in figure 1.20. We recognize the
Fermi sea contribution, as well as 4 lines corresponding to correlations
and exchange terms, which are the product of the point-like first order
coherence for the emitted electron with the half-line first order coherence
of the Fermi sea. Note that this coherence is fully contained within the
Ω = 0 subspace.

The second simple example we are interested in is one with two
excitations emitted above the Fermi sea, c†(ω1)c†(ω2) |F 〉. Once again,
second order coherence is fully contained within the Ω = 0 subspace,
and points where it is non-zero are displayed in figure 1.21. Just as
before, we recognize the Fermi contribution and lines corresponding to
the quantum exchanges and correlation terms. Yet, we also have a new
contribution coming from coherences between the two emitted electrons,
appearing in the (2e)-part of this coherence subspace. This contribution
is simply the intrinsic coherence ∆G(2e) associated with our state!

At the very end of this manuscript, in section 3.5.2, we will use again
this type of states and study their second order coherence in presence of
interaction.

Wigner representation

To conclude this part on second order coherence, let us take a look at
a mixed energy-time representation, which is the direct equivalent of
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Figure 1.20: A schematic vision of coherences for a single electron emit-
ted with a resolved energy ω0 above a Fermi sea at zero temperature.
Left: First order coherence. It is completely contained in the δω = 0
subspace, and displays an half-line corresponding to the Fermi sea, and
a single point at ω = ω0 corresponding to the injected excitation. Right:
Second order coherence. With a single injected electron, all terms that
appear are either coming from the Fermi sea contribution, or from cor-
relations and quantum exchanges. This leads to 4 half-lines stopping
at ω = ω0/2, that can be understood in a simple way. For example,
all 4 purple points are coming from correlations and exchanges between
the emitted excitation at ω0 and the specific electron at energy ωF from
the Fermi sea highlighted on the first order coherence. Changing which
specific electron from the Fermi sea we chose leads to the full red line.
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ω

δω/2

ω1
ω2

First order coherence

ω

δω/2δΩ/4

ω = (ω1 + ω2)/2
δω = (ω1 − ω2)
δΩ = 0

Second order coherence

Figure 1.21: A schematic vision of coherences for two electrons emitted
with resolved energies ω1 and ω2 above a Fermi sea at zero temperature.
Left: First order coherence. It is completely contained in the δω = 0
subspace, and displays an half-line corresponding to the Fermi sea, and
two points corresponding to the injected excitations. Right: Second
order coherence. We recover the Fermi sea contribution as well as the
four terms coming from correlations and quantum exchanges, in the
same way as for figure 1.20. Yet, 4 new points appear, corresponding
to coherences between the two emitted excitations: the intrinsic second
order coherence of our state.
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Wigner representation:

W(2e)(t1, ω1; t2, ω2) (1.90)

= v2
F

∫
G(2e)

(
t1 + τ1

2 , t2 + τ2
2

∣∣∣∣ t1 − τ1
2 , t2 −

τ2
2

)
ei(ω1τ1+ω2τ2)dτ1τ2 .

As before, we will drop the · superscript for simplicity when using only
Wigner functions. The symmetry property of second order coherence
implies that

W(2e)(t1, ω1; t2, ω2) =W(2e)(t2, ω2; t1, ω1) (1.91)

reflecting the indistinguishability of electrons. Exactly as for the Wigner
representation of single electron coherence, the Wigner representation of
two-electron coherence within a single edge channel is also real. How-
ever, the anti-symmetry of the two-electron coherence which reflects the
fermionic statistics of electrons has drastic implications.

As explained in our recent work [OP5], the Wigner representation
of two electron coherence exhibits essential non-classical features. The
natural extension of the definition of quasi-classicality to two-electron
Wigner distribution would be that 0 ≤ W(2e)(t1, ω1, t2, ω2) ≤ 1 so that
it could be interpreted as a two-electron time dependent distribution
function.

A natural example of a quasi-classical two electron Wigner distribu-
tion arises when considering two edge channels. In that case, we can
define an inter-channel two-electron distribution, as the Fourier trans-
form of G(2e)(1t1, 2t2|1t′1, 2t′2), the 1 and 2 variables meaning that the
corresponding ψ and ψ† operators act on the specified channel. When
computing this quantity, we find that

W(2e)(1, t1, ω1; 2, t2, ω2) =W(e)
1 (t1, ω1)W(e)

2 (t2, ω2) . (1.92)

This product expression reflects the role of the edge channel index as
an orbital degree of freedom breaking the indistinguishability between
electrons within edge channel 1 and electrons within edge channel 2.
It also implies that if W(e)

1 and W(e)
2 are both quasi-classical, then

W(2e)(1, t1, ω1; , 2, t2, ω2) is also quasi-classical.
On the other hand, considering the two-electron Wigner distribution

for electrons within the same edge channel systematically leads to non
classical W(2e) because of quantum exchange. The case of a pure two-
electron excitation on top of the Fermi sea ψ†[ϕ1]ψ†[ϕ2] |F 〉 where ϕ1,2
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are identical wavepackets ϕe respectively shifted by times ±τ/2, already
displays this property since we have in that case

∆W(2e)(t1, ω1; t2, ω2) =
W(e)
ϕ1 (t1, ω1)W(e)

ϕ2 (t2, ω2) (1.93a)
+W(e)

ϕ2 (t1, ω1)W(e)
ϕ1 (t2, ω2) (1.93b)

−2 cos((ω1 − ω2)τ))W(e)
ϕe (t1, ω1)W(e)

ϕe (t2, ω2) . (1.93c)

The oscillating term (1.93c) arises from the antisymmetry of ∆G(2e) and
is responsible for the non-classicality of the Wigner distribution function.
Note that these oscillations happen in the energy difference. Energy
shifted excitations would lead to oscillations in the variable t1− t2. This
is for example the case when computingW(2e) for a thermal equilibrium
state:

W(2e)
µ=0,Tel

(t1, ω1; t2, ω2) = (1.94)

fTel(ω1)fTel(ω2)− 2πkBTelδ(ω1 − ω2)fB(ωtot)
sin(ωtott12)

sinh(t12/τth(Tel))

where ωtot = ω1 + ω2, t12 = t1 − t2 and τth(Tel) = ~/kBTel denotes the
thermal coherence time for electrons at electronic temperature Tel. Here
fB denotes the Bose distribution at temperature Tel. The singular oscil-
lating term occurring for ω1 = ω2 is a signature of the Pauli principle.
These t12 oscillations correspond to the Friedel oscillations associated
with two electrons at energies ~ω1 and ~ω2, and are damped over a time
scale corresponding to the thermal electron coherence time τth(Tel).

We will not go into any more details here on second order coherence,
but will turn ourselves to the completely general case, for which we will
briefly present the generalizations of most properties seen in this section.

1.3.2 n-th order coherence

Exactly as in photonics, the G(ne) functions are natural generalizations
of what we have just described for second order coherence. For the sake
of brevity, we will denote the list (t1, t2, · · · , tn) by t , and its counterpart
for primed variables by t′ throughout the present section.
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First properties and symmetries

Exactly as before, a Cauchy-Schwarz inequality is also valid for higher
order electronic coherences:∣∣∣G(ne)(t|t′)

∣∣∣2 ≤ G(ne)(t|t)G(ne)(t′|t′) . (1.95)

It has the same exact implications as before, and we will still call di-
agonal coherence the part of coherence contained in the n-dimensional
space defined by t = t′. A similar one is also valid in the frequency
domain.

Of course, since the link between electronic and holes coherence
comes from anticommutation properties, they will be related at higher
orders. Yet, it is quite tedious to write in a general case as every smaller
order appears in the relation. Since we will not be interested in hole
n-th order coherences in this thesis, the full formula will not be given
here.

Fermi statistics also lead to antisymmetry properties in this general
case. If we exchange any two times ti and tj , the coherence function
is just transformed in its opposite. This means that we can apply any
permutation of indexes in the list t, and find that the coherence in the
new point is equal to its value in the old one, times the signature of the
permutation. Since we can do the same thing to t′, we can summarize
it in the following form:

∀ (σ, σ′)∈S2
n, G(ne)(t|t′) = ε(σ)ε(σ′)G(ne) (σ[t]|σ′[t′]

)
(1.96)

where σ[t] denotes the list (tσ(1), tσ(2), · · · , tσ(n)) obtained by applying
the permutation σ to the different coordinates of the t vector, and ε(σ)
is the signature of σ.

The hermiticity condition still implies

G(ne)(t|t′) = G(ne)(t′|t)∗ (1.97)

When putting all these properties together, we find that we only need
to compute the value of the n-th order coherence function in 1

2(n!)2 of
the full n-dimensional space9, since the cardinal of Sn is n!. For obvious
reasons, we will not try to show graphically all the points that arise from
all those symmetries, and we will not construct reduced variables in the
general case even if it could in principle be done.

9We can directly verify that the n = 2 case corresponds to what we saw before.
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Finally, the Pauli principle is still valid for n-th order coherence,
which means that as soon as there is a pair ti = tj or t′i = t′j , coherence
will be zero. This means that there are n(n − 1) spaces of dimension
(2n− 1) where the n-th order electronic coherence vanishes.

A simple example

Let us consider our favorite N -electron state |ΨN 〉 = ∏N
k=1 ψ

†[ϕk] |∅〉
once again. When N > n, this state has non-zero G(ne) coherence. This
means that the Fermi sea exhibits electronic coherence at all orders, since
it is exactly such a state but with an infinite number of electrons. To
compute G(ne)

|ΨN 〉, we will do exactly the same steps as for equation (1.77),
and find

G(ne)
|ΨN 〉(t|t

′) =
∑

i1>i2>···>in
Φi1,i2,··· ,in(t)Φ∗i1,i2,··· ,in(t′) (1.98)

where Φi1,i2,··· ,in is the n-electron wavefunction built from wavefunctions
ϕi1 , · · · , ϕin , each index being taken in {1, · · · , N}

Φi1,i2,··· ,in(t1, t2, ··, tn) = det


ϕi1(t1) ϕi2(t1) · · · ϕin(t1)
ϕi1(t2) ϕi2(t2) · · · ϕin(t2)

...
... . . . ...

ϕi1(tn) ϕi2(tn) · · · ϕin(tn)

 . (1.99)

Naturally, we recover the fact that n-th order electronic coherence con-
tains all the information on the n-electronic wavefunctions present in
the system.

Excess coherence

As for first and second order electronic coherence, defining the intrinsic
contribution of a source to n-th order electronic coherence is an im-
portant issue. Our approach is a generalization of the one followed for
second order electronic coherence in equation (1.78): we proceed in a
recursive way using all lower order coherences. Suppose that we have
defined excess electronic coherences functions up to order n− 1. Then,
the n-th order coherence function can be decomposed in the following
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way:

G(ne)
ρ (t|t′) = G(ne)

F (t|t′) (1.100a)

+
∑
σ∈Sn

∑
σ′∈Sn

n−1∑
k=1

ε(σ)ε(σ′)× (1.100b)

∆G(ke)
ρ

(
tσ(1), · · · , tσ(k)|t′σ′(1), · · · , t

′
σ′(k)

)
×

G((n−k)e)
F

(
tσ(k+1), · · · , tσ(n)|t′σ′(k+1), · · · , t

′
σ′(n)

)
+ ∆G(ne)

ρ (t|t′) . (1.100c)

This equation must be understood as the definition of the intrinsic n-th
order coherence of the source (term 1.100c). The second term, 1.100b,
contains all possible correlations between the Fermi sea and the source,
both classical and coming from quantum exchanges as discussed in the
second order case. Classical correlations correspond to all cases when
the set {σ(1), · · · , σ(k)} is the same as {σ′(1), · · · , σ′(k)}. We can easily
check that this formula reduces to the one obtained previously in the
n = 2 case, as there are only two possible permutation in that case: the
identity or the exchange of 1 and 2.

In the specific case of a state described by Wick’s theorem, we have

G(ne)
Wick(t|t′) = det

[
G(e)(ti|t′j)

]
(1.101)

where G(e)(ti|t′j) has to be understood as the matrix taking this value on
line i and column j. Developing the determinant leads to an expression
of the same form as equation (1.100) which implies that the intrinsic
higher order electronic coherence is, in that case, equal to

∆G(ne)
Wick(t|t′) = det

[
∆G(e)(ti|t′j)

]
. (1.102)

Energy and Wigner representation

To end this brief overview of the properties of the coherence at any order,
we can define the energy and Wigner representation of G(ne) respectively
as:

G̃(ne)(ω|ω′) = v2n
F

∫
G(ne)(t|t′)ei(ω·t−ω′·t′)dnt dnt′ (1.103)

W(ne)(t|ω) = vnF

∫
G(ne)

(
t + τ

2 |t−
τ

2

)
eiω·τdnτ (1.104)
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where a ·b has to be understood as the scalar product between the two
vectors. These representations will not be used much in the rest of this
manuscript, but are given for the sake of completeness.

1.4 From fermions to bosons (and back)

To conclude this chapter, we will present in this last section bosoniza-
tion, a crucial tool for studying Coulomb interaction effects in electron
quantum optics. The key idea is to describe all electrons in one di-
mension in terms of quantized charge density waves, which are bosonic
degrees of freedom called edge-magnetoplasmons, or simply plasmons.
This approach has two main limitations. First, it is only valid for low
energy electrons (with respect to the Fermi sea) so that the energy spec-
trum can be linearized around the Fermi crossing points. Second, we are
limited to the description of situation that are not to far from equilib-
rium, which means that we always need to be able to define a Fermi sea
for this to work. In this section, we shall simply recall all useful equa-
tions relating electronic excitations to plasmonic ones without detailing
their proof. Quoting the words from a review by Delft and Schoeller
[35]: “ironing out all the subtleties [of the bosonization formalism] is
substantially harder than simply applying it.”

A reader interested in a more complete derivation of bosonization
may then choose to read this review, which presents a constructive proof
of all expressions used in this manuscript, or the collection of histori-
cal articles that was compiled by Stone [153]. In the specific case of
condensed matter, and more particularly for one-dimensional systems,
a book by Giamarchi [57] provides a complete overview of the way in
which bosonization allowed us to solve quite a number of theoretical
problems. To summarize history in a few lines, one problem encoun-
tered when trying to describe interacting electrons was the dimension-
ality of the system. Indeed, in one dimension, the standard Fermi liquid
theory developed by Landau [99] to treat interacting electrons breaks
down. This fact was first remarked in a model developed independently
by Luttinger [107] and Tomonaga [162], which led to the coining of the
term “Tomonaga-Luttinger liquid” for systems of fermions interacting
in one dimension. A bosonization approach was developed by Mattis
and Lieb [113] to solve this model, and lead to its exact resolution. A
few years later, Haldane [74] used this bosonization approach as a ba-
sis to describe a general interacting gas of fermions in one dimension,
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which proved useful to solve systems such as quantum 1D wires or spin
chains. Later on, this was extended to the case that interests us here:
edge channels of the quantum Hall effect, both in the integer and frac-
tional regimes [177]. More recently, several works have started to develop
bosonization schemes that are valid beyond the usual approximations.
For example, Snyman and Florens [150] has developed new ideas to go
beyond the linear dispersion relation needed in standard bosonization,
while Gutman, Gefen, and Mirlin [72] are searching for a way to treat sit-
uation far from equilibrium. Of course, these more recent developments
will not be used in the present manuscript.

After this quick summary, let us now present an overview of what we
need to use bosonization in edge channels: a simple dictionary relating
bosonic quantities and operators to fermionic ones.

1.4.1 The dictionary

Translation into bosonic fields

The two operators describing plasmons in our 1D chiral channels are
defined as

b(ω) = 1√
ω

∫ +∞

−∞
c†(ω′ − ω)c(ω′) dω′ (1.105a)

b†(ω) = 1√
ω

∫ +∞

−∞
c†(ω′ + ω)c(ω′) dω′ (1.105b)

where c(ω) and c†(ω) respectively denote the electronic annihilation and
creation operators at energy ~ω. A plasmonic excitation is thus nothing
but a coherent superposition of all electron/hole pairs of energy ~ω.
To verify that they are indeed bosonic excitations, let us compute the
commutator of b and b†:[
b(ω), b†(ω′)

]
= 1√

ωω′

∫ [
c†(ω+ − ω)c(ω+), c†(ω− + ω′)c(ω−)

]
dω+dω−

= 1√
ωω′

∫ (
c†(ω− + ω′ − ω)c(ω−) (1.106)

− c†(ω− + ω′)c(ω− + ω)
)

dω− .

We need to be especially cautious here, as we are looking at the difference
of two infinite quantities. To regularize this expression, we need to use
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normal ordering. We will denote by :A: the normal ordered version of
expression A with respect to the Fermi sea:

:A:= A− 〈A〉F . (1.107)

In reality, we already did such a conversion without saying it when
linking the current to first order coherence in equation (1.27), which we
could rewrite as i(t) = −evF :ψ†(t)ψ(t):. Let us continue the calculation
of our commutator:[
b(ω), b†(ω′)

]
= (1.108)

+
∫ (

:c†(ω− + ω′ − ω)c(ω−): − :c†(ω− + ω′)c(ω− + ω):
) dω−√

ωω′

+
∫ (〈

c†(ω− + ω′ − ω)c(ω−)
〉
F
−
〈
c†(ω− + ω′)c(ω− + ω)

〉
F

) dω−√
ωω′

.

The first term of this equation corresponds to regularized, finite value
integrals that therefore cancel each other. The second term corresponds
to a correlator of which we know the value, see equation (1.37). This
means that the corresponding integrand is, at zero temperature, equal
to zero almost everywhere, except in [0, ω] where it is equal to one. This
leads finally to[

b(ω), b†(ω′)
]

= δ(ω − ω′) ω√
ωω′

= δ(ω − ω′) (1.109)

Back-translation

Having defined bosonic operators from fermionic ones, let us give the
inverse relations and construct fermionic operators from the bosonic
ones and discuss their interpretation. The link between fermions and
bosons is given by

ψ(t) = U√
2πa

exp
[∫ +∞

0

(
b(ω)e−iωt − b†(ω)eiωt

) dω√
ω

]
(1.110)

where a is the short distance cutoff below which bosonization is not valid
and U is called the Klein ladder operator which removes one electron
from the fluid. The Klein operator and its hermitian conjugate U† are
needed in order to take into account that applying ψ or ψ† changes
the number of charges present in the system, something that can not
be done by the b and b†. The Klein operators act simply by changing
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the chemical potential of the fluid in exactly the right way to remove
or add one excitation from the ground state. Let me comment a bit
on what it means in terms of physical states. At a given number of
electrons N , the ground state is given by a Fermi sea with N electrons
|FN 〉. From a bosonic point of view, this is a vacuum state: the plasmons
are coherent superpositions of electron/hole pairs, and there are no such
pairs in the Fermi sea. However, it is a specific vacuum linked to the
fact that there are N electrons. As we said, applying U correspond
to the removal of one electron, leading to the Fermi sea |FN−1〉. Of
course, this state is still a vacuum for plasmons, but we need to keep
in mind that it differs from the previous one. In a way, in terms of
bosons, we have a family of vacuums given by |Oi〉, where i is a counter
of the number of fermions in the system, over which we can create states
using the b† operators. In the case where we bosonize several species of
fermions, for examples two different spins or different edge channels, we
will have different Klein operators for each species. They anticommute
with each other in order to implement the anticommutation relations of
the fermionic operators. They also commute with all bosonic operators,
so that changing the chemical potential before or after applying the
bosonic part of ψ is completely equivalent.

The exponential, bosonic, part of the fermionic operators can be
seen as a generalized version of coherent displacement operators from
quantum optics. For a single bosonic mode, the displacement operator
creating the coherent state |α〉 is given by

D(α) = eαb†−α∗b (1.111)

such that D(α) |0〉 = |α〉. Here, we use a generalized version

D [α] = exp
(∫ +∞

0

(
α(ω)b†(ω)− α(ω)b(ω)

)
dω
)

(1.112)

that creates a multimode coherent state

D [α] |0〉 =
⊗
ω>0

D(α(ω)) |0ω〉 =
⊗
ω>0
|α(ω)〉 = |[α]〉 . (1.113)

The notation |[α]〉 will be used throughout this manuscript for that
multimode state, as a way to keep equations as compact as possible.
Displacement operators and coherent states will be of particular impor-
tance for us, especially in chapter 3, so let us devote a few lines to list
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their most useful properties:

D [α]D [β] = exp
(

i
∫ ∞

0
Im (β∗(ω)α(ω)) dω

)
D [α+ β] (1.114a)

D [α] = exp
(
−
∫ ∞

0

|α(ω)|2
2 dω

)
:D [α]: (1.114b)

These two properties together allow us to compute, for example, the
scalar product between two coherent states 〈[β]|[α]〉,

〈[β]|[α]〉 = exp
(∫ ∞

0
i Im (β∗(ω)α(ω))− |α(ω)− β(ω)|2

2 dω
)

(1.115)

as well as the following matrix elements:

〈[α]| :D [γ]: |[β]〉 = exp
(∫ ∞

0
γ(ω)α∗(ω)− γ∗(ω)β(ω)dω

)
〈[α]|[β]〉 .

(1.116)
After this small technical parenthesis, let us refocus on the operators ψ
and ψ†. Using the above definitions, they are connected to generalized
displacement operators by

ψ(t) = U√
2πa
D [Λt] (1.117a)

ψ†(t) = U†√
2πa
D [−Λt] (1.117b)

where we have defined
Λt(ω) = −eiωt

√
ω
. (1.118)

Creating an electron at time t thus corresponds, in the bosonic domain,
to the creation of an infinite dimensional coherent state with functional
parameter ω 7→ Λt(ω). Let us now discuss the physical meaning of this
specific parameter.

1.4.2 Creating coherent plasmonic excitations

Equivalently, one may ask how we can create such a coherent plasmonic
state in a real experiment. The answer to that question is simple: as for
standard quantum optics, any classical forcing applied to our system will
lead to a coherent state. This of course raises the following important
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question: what is the coherent state created by applying some classical
voltage V (t) to an Ohmic contact?

To answer it, let us look at the electric current operator in our sys-
tem, i(t). It is straightforward to show that the finite-frequency compo-
nents of the current, obtained by Fourier transforming i(t), are directly
linked to plasmonic operators by

i(ω) = −e
√
ω b(ω) . (1.119)

As discussed in section 1.1.2 devoted to Leviton sources, applying some
time dependant AC voltage V (t) to an Ohmic contact directly creates
the current i(t) = e2V (t)/h in the edge channel of interest. The coher-
ent state created by that same voltage is therefore such that all finite-
frequency components of the current are equal to the one created by the
voltage of interest,

∀ω > 0, −e
√
ω 〈b(ω)〉 = e2

h
Ṽ (ω) (1.120)

where Ṽ is the Fourier transform of V . The coherent state we are search-
ing for is thus given by

D
[
−eṼ (ω)
h
√
ω

]
|0〉 . (1.121)

This leads to two main remarks:

• Since all states created by applying some voltage to an Ohmic
contact are coherent plasmonic states, this is in particular true for
Levitons!

• The coherent state associated with ψ†(t0), of parameter −Λt0(ω),
corresponds to the state created by a percussional voltage drive
V (t) = −h

e δ(t − t0). This is indeed what we would expect, as we
want to express the idea that we added some charge −e exactly at
time t0.

If we look closely at equation (1.121), there is still a property that
seems to be important: if we want to avoid any infra-red divergence, we
need limω→0 Ṽ (ω) = 0. How can we regularize our state when this is
not the case? Suppose that we have some voltage with a non-zero limit
at low frequency. In that case, let us look at a periodic source emitting
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this voltage with a frequency f . Such a periodic source will only have
non-zero Ṽ (ω) when ω = 2πnf . The only diverging part is then exactly
at ω = 0, and thus corresponds to a DC current. Such a DC part will
simply lead to a change of chemical potential, and thus implies a change
from one bosonic vacuum to another. It can be completely absorbed by
changing the vacuum state on which we would apply the displacement
operator corresponding to the AC-only part of that periodic voltage,
which has no divergence at all.

1.4.3 Electrons as superpositions of plasmons

A last point that will be useful for us in the following of this work is the
ability to express any electronic state as a plasmonic state, and back.
To begin, let us look at single electronic states above the Fermi sea, of
the form ψ†[ϕe] |F 〉. We can express it in terms of bosons as

ψ†[ϕe] |F 〉 =
(∫

ϕe(t)ψ†(t)dt
)
|F 〉 = U†√

2πa

∫
ϕe(t) |[Λt]〉dt . (1.122)

From the bosonic point of view, any added excitation on top of the
Fermi sea is thus simply a superposition of coherent states. As an exam-
ple, let us look at an electron emitted by our usual single-electron source.
From equation (1.122), we expect it to be built as a continuous super-
position of bosonic coherent states, each of these states corresponding in
the electronic point of view to a time-localized excitation. To test this
point of view, we can try to construct artificially such superpositions of
bosonic coherent states, and see if we recover the Wigner distribution
function of our usual wavepacket in the continuous limit. Figure 1.22
shows this reconstruction at work through the lens of Wigner functions.
By superposing more and more time-resolved excitations, with weights
given by ϕLandau(t), the interference pattern between them visible on the
Wigner functions gives rise to the energy-localization and to all other
features we talked about in section 1.2.4. On the other hand, a well
known theorem by Levitov, Lee, and Lesovik [104] states that the only
single electron excitations on top of the Fermi sea that correspond to co-
herent plasmonic states are the Levitons (see also [138] for an alternating
proof).

In other words, a Landau quasi-particle, as well a a generic single
electron excitation on top of the Fermi sea, is a continuous Schrödinger
cat state of coherent plasmon states. This plasmonic interpretation of
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Figure 1.22: Reconstruction of the excess Wigner function for a Landau
excitation (see equation (1.64)) with parameters such that ω0τ0 = 5.
Each panel depicts the Wigner function associated with a finite superpo-
sition ∑N

j=1 ϕe(tj)ψ†(tj)|F 〉 where the times tj are picked up randomly
through probability distribution |ϕe(t)|2. The final form of the wave-
packet’s Wigner distribution function can thus be interpreted as arising
from quantum interferences between its different time-localized contri-
butions.

single electron excitations will prove particularly useful when we will
later discuss Coulomb interaction induced relaxation.
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Measuring coherences

The traces we leave are vague,
but they still catch sight

Harakiri for the Sky
The Traces We Leave

In this chapter, I will discuss the challenges linked to electron quan-
tum optics experiments, focusing mainly on the experiment I worked on.
I will also explain how these experiments give access to electron quantum
optics quantities such as electronic coherences. This chapter will thus
connect the concept-oriented previous chapter to more advanced models
and experiments that have been developped in electron quantum optics.
In particular, I will discuss several interferometry experiments directly
inspired by classical and quantum optics which have been demonstrated
over the last few years. I will mainly review them within the framework
of electron quantum optics that have been presented in the previous
chapter.

During the time of my PhD, all this work has culminated with the
demonstration of a quantum current analyzer which I have helped to de-
velop both from the experimental and theoretical point of views, while
not being the leading researcher on these topics. I will go into much more
details in the corresponding section, but let me stress how crucial the
experimental and theoretical contributions done respectively by A. Mar-
guerite and B. Roussel have been in the development of the quantum
current analyzer.

The first part of this chapter will mainly be devoted to first order
coherence measurements. Then, we will turn to more prospective exper-
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iments, still in the development stage, which aim at probing two-electron
coherence.

2.1 Experimental challenges

As mentioned in the introduction, electron quantum optics experiments
require overcoming several experimental challenges. This has been pos-
sible by using cutting edge materials, as well as cryogenic and radio-
frequency technologies which we shall now describe briefly.

The first challenge is, of course, the manufacturing of a high-quality
bi-dimensional electron gas. This step is performed by Y. Jin and A. Ca-
vanella at the Laboratoire de Photonique et Nanostructure, in Marcous-
sis. They are also responsible for all lithography processes, a crucial
step for the success of all subsequent experiments. Not being the most
familiar with material and sample fabrication, I will not go into further
detail and simply stress that this first step is what makes everything else
possible.

Within the group at Laboratoire Pierre Aigrain, the challenges con-
cern the embedding of samples into the experimental setup and collect-
ing the experimental signals. Reaching the integer quantum Hall regime
requires putting the sample inside a dilution fridge in order to be cooled
down to about 70 mK in the presence of a high magnetic field (typically
of the order of 4 T) generated by a superconducting coil. Maintaining
such low temperatures also requires specific protections around all the
coaxial lines used to control or drive the sample [53] since external ra-
diation can heat up the electron gas. Once the experimental setup is
operational, the real challenge is to collect the experimental signals and
to process them in order to extract all relevant physical information.
These are the steps we will focus on in the following.

Cryogenic amplification and measurement time

In electronics, the experimentally accessible quantities are electrical cur-
rents or voltages. However, the typical order of magnitude of these quan-
tities in our experiments (V ' 10 nV) makes such a measurement quite
difficult. Moreover, quantum Hall samples are characterized by their
high impedances (of the order of RK ' 25 kΩ) and experimentalists
have to confront severe impedance matching problems when collecting
AC signals.
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In order to measure such low voltages, a two-step amplification chain
is used, wich involves cryogenic amplifiers allowing a small amplification
factor with very low added noise followed by room temperature ampli-
fiers at the end of the measurement chain. Let us stress that, as of now,
on-chip quantum-limited superconducting amplifiers1 are not an option
because of the high magnetic field required for entering the quantum Hall
regime. The interested reader is advised to take a look at V. Freulon’s
PhD thesis [52]2, in which a full chapter is devoted to cryogenic ampli-
fication and the experimental techniques he has developed in order to
reach the present level of sensitivity. The generation of experiments I
have been working on is based on his work.

Once the signal is recovered, it can be analyzed using several ex-
perimental techniques depending on the quantity we want to measure.
However, even with our state-of-the-art amplifying chain, measurement
over a large number of periods is still required for the acquired signal
to be greater than the noise accumulated from thermic fluctuations and
amplifiers. This puts strong constrains on the repetition rate as well as
on the acquisition time. To give an idea of numbers, we need to measure
for approximately 1 min with a repetition rate around 1 GHz to get a
signal-to-noise ratio around 30. This means that we cannot gain access
to time-resolved quantities at the scale of a single period in the current
state of experimental techniques. The situation is completely different
from photonics where time-resolved single photon detection is routinely
performed with a high efficiency. In our experiments, it is completely
impossible to perform a single shot time-resolved detection of a single
electron. Consequently, the quantities we are measuring are averaged
over many periods. These include the average time dependent current
〈i(t)〉 (up to time resolution restrictions), the average finite-frequency
current, 〈i(ω)〉, or the low-frequency noise which will be defined in equa-
tion (2.5). Let us now discuss more precisely these quantities.

Current measurements

Using an ultrafast acquisition card, it is possible to measure the current
with a 500 ps resolution to get the average current 〈i(t)〉, where the
average is typically done over 108 periods in order to get enough signal.
This technique has been used, for example, to extract some parameters of
the single-electron source from section 1.1.2 such as the typical dwelling

1See [139] for a review on parametric amplification using superconducting circuits.
2Unfortunately only in french.
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time [108]. As we have seen in equation (1.27a), measuring the average
time dependent electrical current gives access to the diagonal part of the
excess coherence in the time domain, ∆G(e)(t|t):

〈i(t)〉ρ = −evF∆G(e)
ρ (t|t) . (2.1)

However, even if they can prove useful in specific situation, average cur-
rent measurements in the time domain are not the bread and butter of
our experimental setup. The time resolution is limited and, most of the
time, it is more convenient to switch to finite-frequency current mea-
surements. To this end, we use a custom homodyne detection setup,
enabling the recovery of the finite frequency current in a wide frequency
range, from 0.7 GHz to 11 GHz. Since homodyne detection works by
mixing a signal with some reference signal in order to measure only DC
quantities, it requires specific radio-frequency components such as mix-
ers and amplifiers in the frequency range we want to cover. Of course, it
is unrealistic up to now to expect components working on such a large
scale. In practice, different combinations of components have been used
to cover the 0.5 to 15 GHz frequency range. In particular, such a setup
has allowed the measurement of the finite frequency admittance of a
ν = 2 quantum Hall edge channels system up to 15 GHz [14]. As will be
discussed in detail in chapter 3, and particularly in section 3.2, this par-
ticular measurement has been of great use to clarify our understanding
of effective Coulomb interactions within the ν = 2 edge channel system.

Noise measurements

Although current measurements are very useful, they are still not the
full story of interest for us, due to their fundamental limit with respect
to coherences: they only give access to the diagonal part of first order
coherence functions (time resolved average current). As we shall see,
current noise measurements will be the tool of choice in our experimental
investigation of electronic coherence. Let us then take some time to give
a more precise account of how we define current noise, how it is measured
in an experiment, and how it is linked to electronic coherences. First of
all, the definition of current noise is simply

S(t, t′) = 〈i(t′)i(t)〉 − 〈i(t′)〉〈i(t)〉 . (2.2)
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Expressed in terms of electronic coherences, it is equal to

S(t, t′) = (2.3)

(evF)2
[
δ(t− t′)
vF

G(e)(t′|t) + G(2e)(t, t′|t, t′)− G(e)(t|t)G(e)(t′|t′)
]

where one recognizes the full first and second order electronic coherences,
which are known to be highly singular. This is not surprising since this
quantity depends on the full coherence, and therefore contains contri-
butions arising from the Fermi sea in which the quantum current noise
is non vanishing, even at non zero temperature [56]. Consequently, we
shall focus on the quantity ∆S(t, t′) corresponding to the excess current
noise, defined as the difference between this quantity when sources are
“on”, to the same when sources are “off”. The excess current noise can
then be expressed in terms of the excess electronic coherences as

∆S(t, t′) = (evF)2
[
δ(t− t′)
vF

∆G(e)
ρ (t|t′) (2.4a)

− G(e)
F (t|t′)∆G(e)

ρ (t′|t)− G(e)
F (t′|t)∆G(e)

ρ (t|t′) (2.4b)

+ ∆G(2e)
ρ (t, t′|t, t′)−∆G(e)

ρ (t|t)∆G(e)
ρ (t′|t′)

]
. (2.4c)

Let us now discuss the physical interpretation of this equation. The
first term (2.4a) is directly proportional to the current, and thus cor-
responds to the standard Poissonian noise associated with the granular
nature of electrons. The second term (2.4b) corresponds to noise com-
ing from quantum exchanges between electrons from the source and
electrons from the Fermi sea (see equation (1.78)). Finally, term (2.4c)
corresponds to the real excess noise contribution of the source itself. Not
surprisingly, it involves the intrinsic second order coherence of the source
which characterizes electron or equivalently electron/hole pair emissions
by the source itself.

From an experimental point of view, we are limited by the acquisition
setup and cannot have access to any time-resolved quantity. Instead,
what is measured is the low-frequency current noise averaged over a
long acquisition time. This corresponds to

S = lim
T→∞

1
T

∫ +T/2

−T/2
dt
∫ +∞

−∞
dδtS

(
t+ δt

2 , t−
δt

2

)
. (2.5)
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Note that equation (2.4) already gives us an order of magnitude for
the expected noise signal in electron quantum optics. A single electron
source with repetition rate f emits an average current of order −ef
and therefore, one should expect a current noise of the order of e2f '
10−29 A2/Hz. Since we are often looking for small variations of such a
signal, a sensitivity level of 10−30 or even better 10−31 is often required.

In order to reach such sensitivity levels for current noise measure-
ments, clever solutions have been worked out. The current collected with
an Ohmic contact in the sample is sent into two parallel amplification
lines, both of them containing cryogenic and room temperature ampli-
fiers adding some noise3 to the measured signal. A spectrum analyzer
is then used to compute the noise spectral density of cross-correlations
between the two amplifying lines. This has the advantage that volt-
age noise added by the amplifiers4 is no more important, since noises of
the two amplifiers are independent from each other. Finally, this power
spectral density is integrated over a range corresponding to the width
of a resonant LC circuit placed inside the setup, giving access to the
quantity we want to measure.

Looking back at the relation between measured noise and coherences
from equation (2.4), it becomes clear that the averaging process used in
the real measurement will make it difficult to gain access to any other
quantity than time averaged electronic coherences. However, the same
problem also exists in optics and in standard classical electronics and a
solution called homodyning has been devised to circumvent it. As we
shall see in the forthcoming section, a variant of this idea can be devised
in electronic interferometry experiments to capture the time dependence
of the signals we want to access to.

2.2 Interferometry experiments for first order
coherences

The history of interferometry experiments in electron quantum optics
begun as soon as 1990 with the demonstration of what was essentially
an electronic Fabry-Pérot interferometer [149], but really took off when
the group of M. Heiblum demonstrated first the electronic equivalent

3Real noise in the sense of the “unwanted added part to the signal”, not the noise
that we wish to measure, which is the real signal we are interested in. Not so easy to
follow, is it?

4This is the dominant contribution to noise in our setup.
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to Young’s slit experiment [146] in 1997, and then an electronic Mach-
Zehnder interferometer [88]. This sparked quite an interest in the de-
velopment of electron quantum optics, leading, as we discussed in chap-
ter 1, to the development of single electron sources, and some years
later to the demonstration of another optically-inspired interferometer:
the Hong-Ou-Mandel experiment [13]. In the present section, we will
give an overview of these two interferometers and discuss how, and to
what extent, they can be used to access the electronic single electron
coherence.

2.2.1 Mach-Zehnder interferometry

The first electronic interferometer of interest is the Mach-Zehnder inter-
ferometer (MZI) which was first demonstrated in 2003 [88] and has since
been studied by several experimental groups [12, 106, 136]. In particular,
these experiments have proved that propagation in the edge channels of
the quantum Hall effect is indeed phase coherent with a typical coherence
length of 20 µm at an electronic temperature of 20 mK [137]. A pictorial
representation of the interferometer is drawn in figure 2.1. Two quan-
tum point contacts (QPCs) with tunable transmission are used to define
two propagation paths of different lengths and a source is placed before
the separation of paths. The average electrical current is then measured
at the output of the interferometer. In a realistic quantum Hall ex-
periment, creating the two paths is challenging because of the chirality
of edge channels. This has been achieved through careful lithography
techniques and the use of air bridges as shown on the top right part
of figure 2.2. Varying the length difference between the two paths is
achieved by polarizing a side gate to repel the edge channel. A modula-
tion of the outgoing current is then observed, as shown on the bottom
panel of figure 2.2.

Can we understand this electrical current modulation in terms of
(electronic) coherences just as in optics? As explained in equation (2.1),
the measured quantity is simply ∆G(e)

1,out(t|t). Using notations from fig-
ure 2.1, this outgoing coherence can be linked to the coherence just
before QPC B, using:(

ψ1(t)
ψ2(t)

)
out

=
(√

RB i
√
TB

i
√
TB

√
RB

)(
ψ1(t)
ψ2(t)

)
MZI,out

(2.6)

RB and TB being respectively the current reflexion and transmission co-
efficients for QPC B, which can be tuned by the experimentalist. In the
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Figure 2.1: Schematic drawing of a Mach-Zehnder interferometer: Two
incoming channels are fed to a first beamsplitter whose outputs corre-
spond to two paths of different lengths enclosing some mangnetic flux Φ.
These paths are recombined at a second beamsplitter, and the average
electrical outgoing current is measured.

absence of interactions, electronic propagation along quantum Hall edge
channels is chiral and ballistic. Consequently, these fermionic operators
right before QPC B can be derived from the ones just after QPC A with
a time delay and a phase:

ψ1,MZI,out(t) = eiφAB/2ψ1,MZI,in(t− τ1) , (2.7a)
ψ2,MZI,out(t) = e−iφAB/2ψ2,MZI,in(t− τ2) . (2.7b)

Here φAB denotes the Aharonov-Bohm phase that needs to be taken into
account since the Mach-Zehnder loop encloses some magnetic flux Φ:
φAB = eΦ/~. It is then easy to express these operators at the beginning
of the interferometer in terms of the incoming ones, using the matrix
given by QPC A. Finally, assuming that the source is located on the
incoming channel 1 and that the incoming channel 2 is simply fed with
the reference Fermi sea, we obtain the outgoing excess single electron
coherence as a linear function of the incoming one

∆G(e)
1,out(t|t′) = RARB∆G(e)

1,in(t− τ1|t′ − τ1)

+ TATB∆G(e)
1,in(t− τ2|t′ − τ2) (2.8a)

−
√
RARBTATB eiφAB∆G(e)

1,in(t− τ1|t′ − τ2)

−
√
RARBTATB e−iφAB∆G(e)

1,in(t− τ2|t′ − τ1) . (2.8b)

In this equation, we can recognize two contributions with distinct ori-
gins. The first two terms (2.8a) are the classical terms associated with
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τ2

τ1

Gate

Φ

Figure 2.2: Top: Visualization of a realistic implementation of a Mach-
Zehnder interferometer. It needs to take into account the chirality of
channels in the Quantum Hall effect, and would look more like the
scheme on the left of this figure. We therefore need to have contacts
inside the loop to inject and recover the current. This can be done ex-
perimentally through careful lithography, in which we can create some
metallic bridges over the 2DEG without touching it, as can be seen on
the scanning electron microscopy picture displayed on the right here.
Bottom: Experimental measurement of the outgoing current when we
vary the voltage applied to the side gate. We see clear oscillations of the
current. These results and the SEM picture are extracted from [88].
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electronic propagation along one branch of the MZI or the other, while
the last two terms (2.8b) describe the quantum interferences between
these two possible paths. Of course, only the interfering terms depend
on φAB, since they are the only ones that are sensitive to the presence
of the magnetic flux inside the loop.

The average outgoing current depends on both contributions. But
the classical parts only correspond to the time delayed incoming cur-
rents. It thus only probes the diagonal of the excess single electron
coherence in the time domain. On the contrary, the quantum terms
depends directly on the off-diagonal excess single electron coherence
∆G(e)(t− τ1|t− τ2). By extracting these terms from the outgoing time
dependent average current, one thus gains an access to the excess sin-
gle electron coherence. This is the idea behind a protocol proposed by
Haack et al. [73]: measuring the outgoing current for different values of
the magnetic flux allows, with a suitable Fourier transform, the deter-
mination of both the modulus and the phase of ∆G(e)

1,in(t− τ1|t′− τ2). By
varying the times of flight τ1 and τ2 with side gates, we could then in
principle measure the full incoming electronic coherence.

In practice, this reconstruction protocol suffers from one major draw-
back. Since it requires extended propagation channels, electrons prop-
agating in the interferometer will experience Coulomb interaction, and
therefore electronic decoherence. This will be discussed in more detail
in the next chapter, but let us stress here that the effect of Coulomb in-
teraction is in fact quite drastic and completely prevents the use of this
setup for the direct measurement of an unknown coherence. Decoher-
ence effects within the measurement apparatus itself are so strong that
measuring the average time dependent current will not give any usable
information on the incoming quantities. However, it gives information
on decoherence within the MZI, as was studied for example by Roulleau
et al. [134].

2.2.2 Intensity interferometry

Is there a way to overcome this apparatus problem? The answer is yes,
and once again comes from the realms of optics. A similar problem had
indeed been met in a totally different context, during the first part of
the 20th century, when astronomers started to build really huge tele-
scopes. In these old times, random phase shifts, accumulated as light
went through the Earth’s atmosphere, blurred images to the point that
making measurements of stars’ diameters was pretty much impossible
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even if, in principle, one could have built larger telescopes5. In order
to circumvent this problem, Hanbury Brown and Twiss (denoted from
now on by HBT) had the idea of using intensity correlations [75], since
intensity is insentitive to phase blurring. This technique, implemented
using two relatively small optical telescopes in the Australian desert al-
lowed them to successfully measure the angular diameter of Sirius. This
achievement was met with skepticism at first, since it was expected that
visible light arriving from Sirius would only lead to a small number of
photons detected during the measurement time, so that intensity cor-
relations would not necessarily give access to the same information as
standard optical interferometric measurements. But another experiment
by the same authors [76] helped prove that this measurement scheme was
indeed valid, and that correlations between photons could be observed
when using an incoherent light beam as a source.

This experiment sparked a huge interest in the use and develop-
ment of intensity interferometry in several domains [5], and also lead to
spectacular new experiments in quantum optics. In particular, the one
that is of particular interest to us has been demonstrated for the first
time in 1987 by Hong, Ou, and Mandel [82] (denoted from now on by
HOM). Its idea, represented on the left of figure 2.3, is quite simple: two
independent sources are used to feed a beamsplitter and detectors are
placed in the outgoing branches. We then count the number of coinci-
dental detections. Since the two sources emit identical single photons,
which are indistinguishable from a quantum point of view, two particle
interferences are expected to lead to spectacular effects.

By changing the time delay between the two sources, we recover the
typical curve displayed on the right of figure 2.3. When the two photons,
prepared in the same wavepacket collide at the same time on the beam-
splitter, two particle interferences associated with bosonic statistics lead
to a phenomenon called bunching: both photons regroup in the same
outgoing branch. Consequently, one of the detectors does not detect
any signal: the coincidence count drops down to 0. By contrast, when
they are sufficiently separated from each other (more separated than the
typical time-width of their wavefunction), they partition classically re-
flecting the fact that they have been prepared in distinguishable single
particle states. Between the two regimes, a smooth drop of the rate

5It took more than a century of development for adaptative optics to reach the
point where optical telescopes with mirror diameters above 10 meters could be built
and even combined in giant interferometers.
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of coincidences is observed when increasing the overlap of the incoming
excitations.

Let us now turn directly to the analogue of these experiments in
electron quantum optics.

Creating HOM experiments in electronics

The first Hanbury Brown and Twiss experiments have been demon-
strated at the end of the previous century [79, 120] in a 2DEG in a quan-
tum Hall regime. Being performed before the advent of single-electron
sources, these experiments relied on stationary beams of electrons. The
main outcome of these experiments is the following: the excess of cor-
relations between the two outputs is the opposite of the excess noise
measured on any of them:

〈∆i1∆i2〉out = −〈∆i21〉out . (2.9)

Howoever, this result only tells us that charge is conserved in the par-
titionning at the beamsplitter but does not really give more insight on
the details of the quantum partitionning process.

The first electron quantum optics results on electron partitionning
was the implementation within the experimental group of G. Fève of
both the HBT [123, 15] and of the HOM experiment [13, 16]. These two
experiments have opened the way to discussing quantum partitionning
at a beamsplitter down to the single electron level.

Electrons being fermions, the results were quite opposite to the ones
obtained with photons: two indistinguishable electrons arriving at the
same time on the beamsplitter are forbidden to scatter into the same
exit channel by the Pauli principle. This leads to the antibunching of
electrons, and consequently to a rise of coincidence counts as presented
in figure 2.3. In the real experiment shown in figure 2.4 however, we
do not measure the correlations between the two outputs, but rather
the current noise on one of the exiting channels. From equation (2.11),
we expect this quantity to have a dip at zero time-delay between the
two independent and identical sources. This is indeed what has been
observed in the experiment, as can be seen on the right of figure 2.5.

Now, let us be more quantitative and find the physical quantities to
which such an experiment gives access to. In particular, as a first step,
let us ask ourselves how we can express the outgoing noise in terms of
electronic coherences.
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Figure 2.3: A schematic view of the HOM experiment (Top) and of its
usual results (Bottom), adapted from [16]. Two identical wavepackets
are sent, with some time-delay, on the two inputs of a beamsplitter.
We then measure either correlations between the two outputs of the
beamsplitter, or variance in one of the outputs. Quantum statistics
lead to spectacular results: for bosons, a bunching phenomenon occurs,
leading identical bosons to go out of the experiment in the same output.
On the contrary, identical fermions are forbidden to be in the same
output, which leads to an antibunching. In electron quantum optics,
we are going to measure the current noise in one output, and therefore
expect to find curves such as the one displayed in the right graph for
fermions.
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Figure 2.4: Left: A false color SEM picture taken from [16] of a real
HOM setup. The 2DEG is in blue, and gates are in yellow. We clearly
see the two quantum dots that are used as sources, as well as the central
QPC. Right: A closer look at the sources and the QPC region. This
picture, which I took during my stay at Laboratoire Pierre Aigrain,
corresponds to a sample with some additional gates.

Figure 2.5: Results of an electronic HOM experiment, taken from [16]:
we clearly recover the expected dip in the current noise for a low time-
delay between the two sources. Its exact depth will be the key subject
of section 3.2.
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The “on minus off” process gives access to the low-frequency excess
noise obtained from equation (2.4). This quantity is indeed independent
from any process happening between the QPC and the Ohmic contact
that recovers the current, since it is the total power inside the outgoing
channel. In particular, this will mean that any interactions happening
after the QPC will not have any impact on the result, as will be made
clearer in the next chapter.

We therefore need to compute the excess single and two-electron co-
herences in the output branch, just after the QPC. Let us remember
first that outgoing and incoming fermionic operators are related to each
other through equation (2.6). Furthermore, the two sources being inde-
pendent, there are no electronic coherences between the two incoming
channels. This leads to

∆G(e)
1out(t|t′) = R∆G(e)

1in(t|t′) + T∆G(e)
2in(t|t′) (2.10a)

∆G(2e)
1out(t1, t2|t′1, t′2) = R2∆G(2e)

1in (t1, t2|t′1, t′2) + T 2∆G(2e)
2in (t1, t2|t′1, t′2)

+RT∆G(e)
1in(t1|t′1)∆G(e)

2in(t2|t′2)

+RT∆G(e)
1in(t2|t′2)∆G(e)

2in(t1|t′1) (2.10b)

−RT∆G(e)
1in(t1|t′2)∆G(e)

2in(t2|t′1)

−RT∆G(e)
1in(t2|t′1)∆G(e)

2in(t1|t′2) .

Substituting these expressions into equation (2.4) gives us an expression
for the excess noise that can be decomposed into three parts:

∆S1out(t, t′) = R2∆S1in(t, t′) + T 2∆S2in(t, t′) +RTQ(t, t′) . (2.11)

The first two terms correspond to the incoming excess noise within each
incoming channel transmitted through the electronic beam splitter. The
additionnal part Q(t, t′) contains all the effects of two particle interfer-
ences between the two incoming channels. It can be decomposed in three
contributions

Q(t, t′) = QHBT,1(t, t′) +QHBT,2(t, t′) +QHOM(t, t′) (2.12)

in which QHBT,i is an additionnal part to the noise that appears due
to the partition of current from channel i on the QPC, that would also
appear when only one of the source is switched on, whereas QHOM only
appears when both sources are switched on6.

6Of course, their names were not chosen at random! QHBT corresponds to the
contribution appearing in a Hanbury Brown and Twiss experiment, QHOM to the one
appearing on top of it in a Hong, Ou and Mandel one.
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Their expressions in terms of coherence is given by

QHBT,i(t, t′) = (2.13a)

(evF)2
[
δ(t− t′)
vF

∆G(e)
i,in(t|t′)− G(e)

F (t|t′)∆G(e)
i,in(t′|t)− G(e)

F (t′|t)∆G(e)
i,in(t|t′)

]
QHOM(t, t′) = (2.13b)

− (evF)2
[
∆G(e)

1in(t|t′)∆G(e)
2in(t′|t) + ∆G(e)

1in(t′|t)∆G(e)
2in(t|t′)

]
.

The first contribution, QHBT depends only on products between the
excess coherence of a source and the Fermi sea coherence7. In the real
experiment, we are not measuring this quantity directly, but rather a
time averaged low frequency excess noise, and we will therefore obtain
the following overlap8:

QHBT,i = e2
∫

dt
∫ dω

2π∆W(e)
i,in(t, ω)(1− 2fF(ω)) . (2.14)

This equation makes the physical meaning of the excess noise quite easy
to understand: at zero temperature QHBT,i directly counts the total
number of excitations (electrons and holes) emitted by the source.

Let us now focus on the QHOM term. The first relevant question
is simply: how to access this quantity? To do so, we will have to run
the experiments three times: once with both sources on, once with only
source 1 on, and once with source 2 only. For each of these runs, we
measure the excess current noise obtained by subtracting the noise signal
with all sources off. Finally, we simply subtract the excess noise mea-
sured when only one source is on and the other one is turned off. This
directly leads to QHOM and, we obtain the full overlap of the coherences
functions from both sources:

QHOM = −2e2
∫

dt
∫ dω

2π∆W(e)
1,in(t, ω)∆W(e)

2,in(t, ω) . (2.15)

This contains exactly what we are searching for in our quest for the
equivalent of homodyne detection: since this probes the overlap between
two sources, we may be able to use one of the source in a controlled

7We can absorb back the δ(t − t′) term from equation (2.13a) if we write the
product of an electronic coherence G(e) with a hole one G(h), rather than using only
electronic coherences.

8Equations (2.14) and (2.15) use the Wigner representation of coherence as it will
be the most useful for us in the next sections of this manuscript, but it could also be
written in terms of time or frequency representations of single electron coherences.
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manner to gain more information on the other one. This will be discussed
mostly in section 2.3, but it all comes down to this overlap problem. As
of now, let us concentrate on “standard” HOM experiments, and look
at the expected results when the two sources are the same.

A simple example

To get a better understanding of QHOM, lets us consider a simple case in
which source 1 emits a single-excitation state described by a wavepacket
ϕ1, whereas source 2 emits ϕ2. In this case, we have ∆G(e)

i (t|t′) =
ϕ∗i (t′)ϕi(t), leading to

QHOM = −2(evF)2|〈ϕ1|ϕ2〉|2 . (2.16)

In order to normalize this quantity, we define

∆q = Q
QHBT,1 +QHBT,2

(2.17)

which, in the simple case considered here, gives

∆q = 1− |〈ϕ1|ϕ2〉|2 (2.18)

since we just saw that QHBT,i is simply e2 times the number of excita-
tions emitted by source i, which is equal to 1 here.

The quantity ∆q is the one displayed in experimental results, just
as in figure 2.5. This is due to the fact that in the specific case of our
experiment, it is as simple to measure this specific quantity as it is to
measure QHOM. Indeed, it can be shown that the excess low-frequency
current noise of single electron sources operated in an AC regime at
high-frequency is zero: ∆S1in = ∆S2in = 0. This can be understood
simply through the fact that this quantity measures the fluctuation of
the number of charges emitted at each period by our sources. In the
single electron regime, we should emit exactly one electron at every
period, and the fluctuation is therefore null. This was confirmed up to
our experimental resolution [16], and is in fact a way to test whether the
source is really in the single electron regime or not.

The three measurement steps to get ∆q are then:

• both sources switched on minus both sources turned off to measure
Q,

• source 1 switched on minus both sources turned off to get QHBT,1,
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• same measurement for source 2.

These three measurements together give us one point of the ∆q curve.
In order to have relevant averages and errors, each point corresponds
to approximately 5 to 10 minutes of data acquisition. We then change
the time-delay between sources for the next point and iterate until the
whole curve is recovered. The full process therefore takes a few hours
for each Hong-Ou-Mandel curve9.

When looking at the results in figure 2.5, the attentive reader will
see that the HOM dip represented on that figure does not go all the way
down to zero. Yet, as we just said, the depth should be directly linked
to the overlap between the incoming states. If both of our sources emit
indistinguishable single particle excitations in the system, an overlap
equal to 1 is expected when they collide at the same time on the QPC.
The HOM dip should then go to zero. Could the observed non-zero
HOM dip be related to differences between the two sources such that
they emit sufficiently different wavepackets ?

In order to test this hypothesis, we have tuned the sources’ parame-
ters over a broad range in order to see if we could detect differences in
the resulting HOM curves [OP3]. The result of these investigations is
depitected in figure 2.6. We have tested two types of differences on the
sources. First, we have changed the escape time of one of the source,
keeping the injection energies equal. A clear asymmetry of the two parts
of the HOM curve has been observed. This feature was not present when
both sources have expected escape times close to one another.

Next, we have changed the emission energy of one source, either by
detuning the potential applied to the source or by applying some large
random fluctuations to the voltage applied to one of them (leading to a
varation of the order of 400 mK on the initial emission energy, which is of
700 mK). In both cases, the recovered HOM curve shows no differences
with the one obtained when both sources are operated with identical
parameters.

These two results are a convincing proof that the smaller than one
dip cannot be explained by differences at the source level, but has a
different physical origin. Indeed, as we shall see, the explanation for this
phenomenon is electronic decoherence induced by Coulomb interaction,
which takes place along propagation between the source and the QPC.

9Let me stress here how thankful I am to V. Freulon, whose work allowed such
small measurement times, as compared to approximately one week for a single curve
such as the one presented in Bocquillon et al. [13].
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This will be discussed extensively in chapter 3, and more specifically in
section 3.2.

2.3 Reconstruction of an unknown coherence

The theoretical discussion of the HOM experiment suggests that one
should be able to recover the value of the overlap between two excess
single electron coherences. As was hinted before, it is then natural to ask
wether or not we can go beyond this result and reconstruct an unknown
coherence, with several measurements. Such a process is generically
called tomography, a name that encompasses all techniques aiming at
reconstructing full properties of a system from measurements giving ac-
cess only to partial results. For example, in the medical domain, tomog-
raphy allows the visualization of the internal structure of the human
body from measurement of secondary properties such as X-ray trans-
mission, radioactive counting rates or radio-frequency signals (in MRI)
depending on the internal structure. In a simplistic manner, tomogra-
phy is exactly like solving the inner part of a “magic square”, knowing
the sums of each lines and columns as well as the rules applying to the
square itself.

In our case, what we want to reconstruct is directly the Wigner
function of an unknown source. This exact idea and experiment has
already been demonstrated and greatly used in other domains of quan-
tum physics, and tomography experiments aiming at reconstructing the
Wigner function of an unknown state have been demonstrated in the case
of trapped ions [103], vibration modes of molecular systems [39], and of
a field in a cavity [9]. These experiments are among the main reasons for
the attribution of the 2012 Nobel prize to S. Haroche and D. Wineland,
“for ground-breaking experimental methods that enable measuring and
manipulation of individual quantum systems”. Indeed, during the past
25 years, this type of tomography experiments have made their way from
their demonstration on simple cases to being used as an everyday tool
in order to prepare complex quantum states [129, 145] or characterize
their evolution [19]. However, in the case of quantum electronics, such a
protocol allowing the reconstruction of an unknown quantum state has
long been out of reach, and has only been demonstrated during my PhD,
more than 20 years after its optics counterpart.

In this section, I will try to give a detailed account of its birth and
describe how we achieved the realization of a fully-working tomography
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Figure 2.6: Results of Hong-Ou-Mandel measurements, taken from
[OP3], for two different sources. Main panel: sources with different
escape times. We see a clear asymmetry between the two halves of the
curve, a fact which was not visible before. The sources used in the
previous experiment thus had escape times close to one another. In-
set: sources with different energies. We compare the standard case (in
red) with a case in which the energy of the source is changed randomly
through an added noise (in black). As we can see, the energy change
has no effect on the measured HOM curve, meaning that the smaller
than one size of the dip cannot be explained by a difference in energy
between the two sources. Both results indicate that there is another
process at play to explain the fact that we do not get the expected size
of the dip, and that this process erases all information on the emission
energy of the sources. The answer to that problem will be developed in
section 3.2.
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protocol for quantum currents. This will be done first from a theoretical
standpoint, by describing how a generic protocol for reconstructing sin-
gle electron coherence from HOM-like measurements can be obtained.
Then, I will describe its experimental implementation at the Laboratoire
Pierre Aigrain, on which I had the chance to work during my stay there.
Finally, I will describe a recently invented signal processing step added
to this protocol which enables us to extract the individual electronic
wavefunctions present in quantum electrical current propagating along
a quantum Hall edge channel.

2.3.1 Single electron tomography protocol: the idea

The main ingredient of our tomography protocol is the HOM experi-
ment presented in the previous section. Because it computes the over-
lap between two coherences, the idea is to probe the unknown coher-
ence arriving on a QPC via a suitable family of reference coherences on
the other source. We thus have to find which clever family of probes
provides enough information for reconstructing the unknown electronic
coherence.

A first answer to this question has been given by Grenier et al. [66]
to reconstruct the Wigner function of a periodically driven electronic
source. In this case, the full Wigner function of the source can be ex-
panded in a Fourier series with respect to t, using equation (1.53):

W(e)
S (t, ω) =

+∞∑
n=−∞

W(e)
S,n(ω)e2iπnft . (2.19)

Our protocol allows to recover the harmonics W(e)
S,n(ω). This is achieved

by using a family of probe that has in fact already been presented in
section 1.2.4: sinusoidal drives applied to an Ohmic contact. Indeed, a
drive of the form VPn(t) = VPn cos(2πnft+ φ) applied to a Fermi sea at
chemical potential µ and temperature Tel has a Wigner function given
by equation (1.49) in the “quantum regime” kBTel � eV0 � hf . As we
shall see, its oscillating time dependance at low drive amplitude can be
used to reconstruct the unknown Wigner function.

Spectroscopy of the source

Let us start with the n = 0 harmonic, which is probed using a simple DC
drive applied on the incoming channel 2, for which the Wigner function
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W(e)
µ2,Tel

is directly the one of the Fermi sea at chemical potential µ2.
The chemical potential can be controlled experimentally and thus be
different from the one of our unknown source µ1. To simplify notations,
we will take µ1 = 0 and µ2 = µ in the following. At zero temperature,
the excess Wigner function in channel 2 with respect to the equilibrium
situation at µ = 0 is therefore a function equal to 1 in the range [0, µ]
and to 0 everywhere else. This means that the HOM noise that can be
measured is, using equation (2.13):

Q(0)
HOM(µ) = −2e2 lim

T→∞

1
T

∫ T/2

−T/2
dt
∫ µ

0

dω
2π∆W(e)

S (t, ω) (2.20)

where the subscript S is used to denote the (unknown) Wigner function
of the source. The average over time leads to a vanishing of all harmonics
of the Wigner function except for the stationary one ∆W(e)

S,0. Moreover,
when starting from a point where the excess coherence of the source
vanishes, increasing µ only adds a small quantity related to ∆W(e)

S,0(µ).
Taking the derivative of Q(0)

HOM(µ) with respect to µ leads directly to the
recovery of ∆W(e)

S,0(µ), which is simply equal to the excess occupation
number δfe(ω = µ/~) at the corresponding frequency.

This first step of the protocol therefore realizes a spectroscopy of
the source and measures its excess occupation number. From a physical
point of view, this expresses that a DC bias directly probes whether or
not there are electrons present up to a certain energy, as is schematically
depicted in figure 2.7. From an experimental point of view, spectroscopy
measurements have been accessible for a few years now, but often use
another protocol based on quantum dots to recover the excess occupation
number emitted by the source [1]. The real advantage of our protocol
thus comes from the fact that the same setup can also be used to get
higher harmonics of the Wigner function, as we will see now.

Getting the harmonics

Measuring the harmonics ∆W(e)
S,n is quite simple from a theoretical point

of view once we understand which drive to use. Indeed, using one of
the drives VPn(t) in the quantum regime leads, for low enough voltage
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~ω0

1 2

µ

Noise

µ~ω0

QHBT,1

QHBT,2
Q

−QHOM

Figure 2.7: A schematic representation of the principle behind our spec-
troscopy protocol. An unknown source, for example with an excitation
around energy ~ω0 above the Fermi sea, is sent into channel 1, while we
use a Fermi sea with chemical potential µ as the source in channel 2.
The HBT contributions to noise, with respect to µ, are: a constant for
channel 1, and a line for channel 2, since we send more and more excita-
tions on the beamsplitter. However, if µ > ~ω0, an antibunching effect
can occur between the electron in channel 1 and the corresponding one
in channel 2. This leads to a reduction of the total noise, or equivalently
to the apparition of a non-zero HOM contribution. The derivative of
this contribution with respect to µ will grant us an access to the energy
distribution of excitations emitted by source 1.
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amplitude and at zero temperature, to a measured noise of the form

Q(n)
HOM(µ, φ)

= −2e2 lim
T→∞

1
T

∫ T/2

−T/2
dt
∫ µ+nπf

µ−nπf

dω
2π∆W(e)

S (t, ω)eVPn
hnf

cos(2πnft+ φ)

= −e
3VPn
hnf

∫ µ+nπf

µ−nπf

dω
2π
(
∆W(e)

S,n(ω)eiφ + ∆W(e)
S,−n(ω)e−iφ

)
. (2.21)

Reality of the Wigner function implies that ∆W(e)
S,n and ∆W(e)

S,−n are
complex conjugated. Changing the phase φ thus allows to recover both
the real and imaginary part of ∆W(e)

S,n
10. The full energy dependence

of ∆W(e)
S,n(ω) can finally be recovered by varying the chemical poten-

tial with an added DC part to the drive, starting from µ such that
Q(n)

HOM(µ, 0) = 0.

2.3.2 Experimental results

The first tomography experiment realized in the context of electron
quantum optics was performed in 2014 by D.C. Glattli’s group in Saclay,
and demonstrated the successful reconstruction of a Leviton’s wave func-
tion [90]. However, the method used was not the generic tomography
protocol presented in the previous section. It was a clever adaptation of
its idea based on the fact that a periodic driving of an Ohmic contact can
be described entirely through the photo-assisted transitions amplitude
αn defined in equation (1.57). This enabled getting the necessary in-
formation for reconstructing the Leviton’s wavefunction at a reasonable
measurement cost, but the demonstration relied on strong hypotheses.
Nevertheless, this work showed that the necessary requirements in terms
of excess noise measurement sensitivity had been achieved, and that to-
mography was no more a theoretical idea only.

The first demonstration of the generic tomography protocol we dis-
cussed was performed just a bit later within the group of G. Fève at the
Laboratoire Pierre Aigrain, during the PhD of A. Marguerite [112], in
the case of a sinusoidal source. This specific source has been chosen for
a proof of concept since it is mostly unaffected by interactions. On the
contrary, most other electronic sources will experience drastic changes
in their Wigner distribution function during their propagation within
quantum Hall edge channels, as will be discussed in chapter 3 (see page

10Of course, the imaginary part should be equal to 0!

112



Chapter 2 – Section 2.3

152). The physical interpretation of the equations presented there is
that the system is in a linear response regime with respect to sinusoidal
drives. The specific case of a sinusoidal drive thus enables an easy com-
parison between the experimental results and the theoretically expected
Wigner function without any parameter arising from the modelling of
screened effective Coulomb interactions. Here, the expected single elec-
tron coherence can be computed using Floquet theory, providing a way
to benchmark the tomography experiment. We shall therefore focus on
this specific case and present the results published in [OP4].

In order to test the validity of our tomography protocol, we have used
two sinusoidal drives with different frequencies. The first one is a low-
frequency drive at 10 MHz, which satisfies the condition hf � kBTel,
thus allowing the investigation of the quasi-classical regime expected
for adiabatic driving (see section 1.2.4, figure 1.10). For this very low
frequency driving, we expect the recovered Wigner function to be given
by a Fermi sea with a time-dependent chemical potential following the
time dependent drive voltage.

By contrast, our second drive at a frequency of 9 GHz is expected
to be in the quantum regime. It is applied both at Tel = 100 mK and
60 mK which, in both cases, satisfy kBTel . hf . The drive’s ampli-
tude, is kept almost constant over all experiments ranging from 31 µV
to 33 µV, so that we are always in the kBTel . eV regime. Deviations
from classicality are then expected, in particular values of the Wigner
function outside of the [0, 1] range. Such deviations from classicality
should moreover be stronger at the lowest electronic temperature.

On the probing side of the experiment, we need to be able to use
sources with frequencies that are multiples of the drive’s frequency. This
is quite simple in the case of the low-frequency drive, as we can easily
use sources with frequencies equal to several times 10 MHz. Howevever,
in the 9 GHz case, we are limited by the radiofrequency sources and
cables and will therefore only be able to reconstruct the first three har-
monics of the Wigner function, which already involves a 27 GHz probe.
Knowing the phase relationship between the n = 1, n = 2 and n = 3
probes is also quite difficult, since for such high frequencies, the phase
accumulated along the transmission lines can depend on the frequency.
A careful calibration was required, and performed using the fact that the
imaginary part of the Wigner function should be zero. This has allowed
us to easily find the points where φ = π/2 or 3π/2 (see equation (2.21)).
Since we could never know for sure whether the one we get with this
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calibration is π/2 or 3π/2, we have taken the average between pairs of
points with phases separated by π, and chosen for reference the pair of
points that minimizes the noise. Doing so implies that the real part of
∆W(e)

S,n has been obtained through Q(n)
HOM(µ, 0) +Q(n)

HOM(µ, π).
This problem of phase calibration is not the only one present in

the experiment. The effect of a non-zero electronic temperature has
indeed been overlooked so far in our pedagogical presentation of the
protocol. Hence, although equation (2.21) is completely valid at zero
temperature, the energy limits in the integral are less stringent in a
non-zero temperature case. To be more specific, our protocol does not
directly recover the harmonics of the Wigner function, but a convolution
of them with a thermal broadening function. A deconvolution process
called Wiener filtering of the acquired signal has to be performed, and
only requires a sufficiently good knowledge of the electronic temperature.
We will not go into more detail on the filtering technique here, but a
reader interested in this technique will find the reading of A. Marguerite
PhD [112] particularly useful.

Without further discussion, let us describe the results obtained with
this setup, shown in figure 2.8. First of all, we can see a clear agreement
between measured points and Floquet scattering theory which allows
us to confirm that our setup indeed works as intended and performs
single electron tomography in a controlled way for this specific source.
Looking at the Wigner distribution functions reconstructed from the
measurements using

W(e)
S (t, ω) = (2.22)

fTel(ω) + ∆W(e)
S,0(ω) + 2

3∑
n=1

Re
(
∆W(e)

S,n(ω)
)

cos(2πnft) ,

we immediately see the difference between classical and quantum regimes:
apart from small discrepancies related to the deconvolution process, the
classical source at 10 MHz corresponds to values of the Wigner function
within 0 and 1. On the contrary, the high-frequency drives display clear
negative and greater than 1 values, which are more visible at the lowest
electronic temperature.

This groundbreaking experimental work is a first proof of concept
showing that the generic tomography protocol devised a few years ago
can indeed be used experimentally. As explained in this manuscript,
this has been made possible by improving drastically the degree of con-
trol and the precision of excess current noise measurements in Hong-
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data model
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T=0.06K

Figure 2.8: Results of measurements for the tomography protocol pre-
sented in section 2.3.2, taken from [OP4]. From top to bottom, we
use three type of sources: f = 10 MHz drive at Tel = 100 mK, 9 GHz
at 100 mK and finally 9 GHz at 60 mK. Left: ∆W(e)

S,n obtained from
measured noise in the experiment (points), compared to the theoretical
prediction (dashed lines), for harmonics n = 0 to n = 3. Right: Recon-
structed Wigner function using the experimentally measured harmonics.
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Ou-Mandel experiments. However, in the meantime, theorists have not
stood idle, and important developments have been made in order to
extract as much information as possible from reconstructed – or com-
puted – electronic Wigner functions. Indeed, up to now, we had mostly
predicted and discussed Wigner functions associated with specific many
body quantum states such as the ones supposedly generated by the elec-
tronic sources. But, with the advent of tomographic reconstructions of
a priori unknown Wigner functions, the opposite question finally be-
comes relevant: given a Wigner function, can we extract the single-
electronic wavefunctions present in the many-body electronic state ?
What can we say about their emission probabilities? How coherent is
the electronic source that generates such a Wigner function ? These
questions will now be addressed.

2.3.3 Extracting electronic wavefunctions from the coher-
ence

The problem of extracting information from coherence functions has
been adressed mostly by B. Roussel during his PhD [138]. His manuscript
is partly devoted to a new approach to the analysis of quantum coherent
beams of particles which we have dubbed “Quantum Signal Processing”.
A full chapter is devoted to the mathematics and usages of a method for
analyzing quantum electrical currents at the single particle level, which
as we shall see, provides an answer to the question we have just formu-
lated. This section will only serve as a brief summary of the more than
60 pages devoted to this theme in his manuscript, which I advise any
reader interested in a more mathematically sound formulation to con-
sult. The present discussion could be seen as my own retro-engineering
of the method invented by B. Roussel in a tone more fitting the present
manuscript.

The main question is to find the single electron and hole wavefunc-
tions that build a full electronic coherence. In a way, we want to extend
the results obtained in equation (1.34) to the case where, for example,
several electron-hole pair superpositions are present, without knowing
a priori which single particle wavefunctions appear in the coherence.
How can we achieve this?

First of all, we restrict ourselves to periodic sources, which implies
that the wavefunctions appearing in the coherence at some specific time
should also appear a period later. Then, inspired by M. Devoret’s discus-
sions of photons propagating in a transmission line [36], we imagine that
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the quantum electrical current can be described in terms of electronic
atoms of signal which form a family of single-electron wavefunctions ϕ(e)

a,l

with the following properties:

ϕ
(e)
a,l (t) = ϕ

(e)
a,0(t− lT ) (2.23a)

〈ϕ(e)
a,l |ϕ

(e)
a′,l′〉 = δaa′δll′ . (2.23b)

For a periodic source, this is quite natural: all electronic and hole wave-
functions should be deduced from the set of single particle wavefunctions
associated with a given time period. The a subscript accounts for the
fact that several electrons may be emitted in a given period. The or-
thogonality condition means that single particle excitations emitted at
one period are perfectly distinguishable from the ones emitted during
other periods. Of course, we also need to define in exactly the same way
single-hole wavefunctions, denoted by ϕ(h)

b,l . Our problem is then to find
a way to extract these atoms of signal from the coherence function itself.

A first specific case in which this had indeed been done is the case of a
Leviton excitation train. An analytical approach has allowed Moskalets
[116] to find a representation of the emitted coherence under the form

G(e)
Lev. train(t|t′) =

l=∞∑
l=−∞

ϕ
(e)
l (t′)∗ϕ(e)

l (t) (2.24)

with wavefunctions given by

ϕ
(e)
l (t) =

√
τ0
πvF

1
t− lT + iτ0

∞∏
k=l

t− kT + iτ0
t− kT − iτ0

(2.25)

We can show that the ϕ(e)
l satisfy all properties from equation (2.23),

and are indeed a case in which it has been possible to find an analytic
expression for the electronic atoms of signal11. Moreover, in the case of
well-separated Levitons (τ0 � T ), we directly see that each electronic
atom of signal becomes closer to the standard Leviton wavefunction
from equation (1.63) shifted in time, as we would expect from a source
emitting Levitons pretty much one by one.

Yet, as of today, no analytical approach has lead to the correspond-
ing family of wavefunctions appearing for n-Levitons obtained with a

11Here, since there is only one family of wavefunctions, we have no need for the a
subscript that appeared in our general definition.
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Lorentzian voltage pulse of charge −ne. Even more importantly, in
a completely generic case, this family also remained pretty much un-
knowned, as well as the generic form of a single electron excess coher-
ence. This is where our approach comes into play: it is a systematic
procedure allowing to extract numerically the wavefunctions appearing
in any coherence. Let us now present how this procedure works, before
showing its results for the coherence that was experimentally measured,
which we presented in figure 2.8.

Numerically extracting single particle wavefunctions

Let us assume for a moment that we have families of wavefunctions
describing electrons and holes present in the system, satisfying the con-
ditions given in equation (2.23). If this is the case, the most natural
and general ansatz for the excess coherence with respect to a zero-
temperature Fermi sea, which we denote by ∆0G , can be written as:

∆0G(e)
S (t|t′) =

∑
(l,l′)∈Z2

[∑
a

g(e)
a (l − l′)ϕ(e)

a,l (t)ϕ
(e)
a,l′(t

′)∗ (2.26a)

−
∑
b

g
(h)
b (l − l′)ϕ(h)

b,l (t)ϕ(h)
b,l′(t

′)∗ (2.26b)

+2
∑
a,b

Re
(
g

(eh)
ab (l − l′)ϕ(e)

a,l (t)ϕ
(h)
b,l′(t

′)∗
) ]

. (2.26c)

First of all, this result is sesquilinear in all the electronic and hole atoms
of signal at our disposal, and displays both the electrons and holes atoms
of signal that are supposed to be present in our coherence, as well as
three coefficients g(e)

a , g(h)
b and g(eh)

ab . These complex numbers are easy
to interpret. First, when l − l′ = 0, g(e)(0) is real and between 0 and
1. It simply represents the probability to emit an electron in the wave-
packet ϕ(e)

a at each period. Obviously, g(h)(0) represents the probability
to emit a hole in ϕ(h)

b at each period. Then, whenever l 6= l′, they repre-
sent coherences between wavepackets emitted at different periods. The
last coefficient g(eh)

ab (l− l′) represents, as expected, the electron/hole co-
herences between the associated electrons and holes. Such electron/hole
coherences can only occur when the probabilities to emit electrons or
holes excitations differ from 1, such that a coherent superposition be-
tween the equilibrium and the creation of an electron/hole pair is gen-
erated. Of course, the l − l′ dependence on the period indices reflects
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the time periodicity of the source. The only non trivial feature in this
expression is the fact that it is diagonal in the a index for the electronic
part, and in the b index for the hole part. We will explain in a few lines
why this is not restrictive, and show that there are always electronic and
hole atoms of signal such that equation (2.26) is satisfied.

Our objective here is simply to find these atoms of signal and the
value of all coherence coefficients, in order to understand in the best
way possible the building bricks of our coherence. Remembering the
quadrant decomposition from figure 1.8, it is easy to show that the three
terms from equation (2.26) live respectively in the electron quadrant, the
hole quadrant, and the two electron-hole quadrants.

We focus first on the electronic wavefunctions ϕ(e)
a , or equivalently

restrict ourselves to the electronic quadrants of coherence, denoted by
G(e)

+ . We are then facing a problem that closely looks like solid state
physics, with some localized wavefunctions coupled through amplitudes
depending only on the separation l−l′ between them. We can draw some
inspiration from Bloch’s theorem, and search whether the coherence can
be written in terms of functions that would be the equivalent of Bloch
waves in the time domain. From this perspective, electronic atoms of
signal would be the time-domain equivalent of Wannier functions in stan-
dard solid state physics. We thus have the following relations between
them:

ψa,ν(t) = 1√
f

∑
l

eilνTϕa,l(t) (2.27a)

ψa,ν(t+ T ) = e−iνTψa,ν(t) (2.27b)
ψa,ν(t) = eiνtua,ν(t) (2.27c)

where we have dropped the (e) subscript for brevity, and the ua,ν func-
tions are T -periodic. The quasipulsation index ν is chosen in [0, 2πf [,
which plays the role of a 1D Brillouin zone in the pulsation domain.
What happens when we try to rewrite coherence in those variables?
First of all, we will use the fact that the functions ua,ν are periodic, and
can therefore be written using a Fourier series. This leads to

∆0G(e)
+ (t|t′) = (2.28)∑

n,p

∫ 2πf

0

dν
2πf g̃a(ν)ua,ν,nu∗a,ν,pe2iπf(p−n)tei(ν+πf(p+n))τ
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where ua,ν,n is the n-th coefficient in the Fourier series of ua,ν(t), and
we have defined

g̃a(ν) =
∑
l

ga(l)e−iνlT . (2.29)

Using the fact that coherences for periodic sources can be decomposed
as a sum of harmonics, with equation (1.53), we finally get∑

n,p

vF∆0G̃(e)
+,n−p(ν + π(n+ p)f)− g̃a(ν)ua,ν,nu∗a,ν,p = 0 . (2.30)

This equation gives us what we need in order to obtain the functions
ũa,ν as well as the g̃a(ν). Indeed, it can be interpreted as a simple
diagonalization problem for each quasipulsation ν! Diagonalizing the
matrix M defined by

Mnp = vF∆0G̃(e)
+,n−p(ν + π(n+ p)f) (2.31)

directly gives access to good eigenvectors ũa,ν and associated eigenvalues
g̃a(ν) appearing in the simplest possible representation of coherence.
Using the inverse transformation of the one from equation (2.27), we can
then get back the Wannier functions ϕa,l and the coefficients ga(l − l′).

To summarize, our procedure contains five main steps:

• Using a tomography experiment, or from numerical results, get
some coherence G(e)(t|t′). Restrain yourself to the electronic quad-
rant.

• Diagonalize the matrix M defined by equation (2.31) from the
resulting projection of the excess single electron coherence to the
electronic quandrants.

• Build Wannier functions ϕa,l(t) and inter-period coherences ga(l−
l′) from the eigenvectors and eigenvalues of M . These constitute
the building blocks of the total coherence, and may be interpreted
on their own.

• Perform the first three steps for the hole part of the electronic
excess coherence.

• Compute from the electronic and hole eigenvectors the interband
matrix elements of the excess single electron coherence.
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Testing it on the experiment

Now that we have explained the full protocol for extracting wavefunc-
tions from a coherence, let us test it on the experiment. As a first
example, figure 2.9 presents the result of this protocol on the drive at a
9 GHz frequency and a 60 mK electronic temperature (bottom Wigner
function from figure 2.8).

In this case, we find that coherence is completely dominated by one
electronic ϕ(e) and one hole ϕ(h) atoms of signal12. We therefore do not
need to keep the a and b subscripts. The Wigner functions associated
with these wavepackets, displayed on the top of the figure, show that the
hole excitation is shifted by half a period with respect to the electron.
In the energy domain, they are almost perfectly upside-down versions
of each other, a fact that was expected since we are using a symmetric
drive with respect to the Fermi level. Moreover, the energy distribution
of these wavepackets presents almost flat plateaus of width hf , as can
be seen on the left of each Wigner. In the case of a sinusoidal drive, all
energy exchanges should be multiples of hf , so that this behaviour is also
expected. The deviation from flatness arises from the finite temperature
of the system.

However, the Wigner function depicted in figure 2.8 does not seem
to be simply given by one electron in ϕ(e) and one hole in ϕ(h) at each
period. This is because finding the wavefunctions is only one half of
the problem of reconstruction: we also need to study the g(e/h/eh) co-
herences! Their moduli are depicted on the bottom of figure 2.9, both
for the experimental data (circles) and for the expected coherence simu-
lated through Floquet theory (bars). We can obviously see quite a good
agreement between them, which will allow us to compare results with the
not experimentally available situation of zero temperature. On all these
graphs, we first remark that the probability to emit these wavepackets
is far less than 1, which is completely coherent with the fact that a
sinusoidal drive should not be in the single electron regime. This was
also expected since the ratio α = eV/hf , equal to 0.8 in this case, is
directly linked to the average number q of electron/hole pairs emitted
per period: q = α/π. Since both g(e)(0) and g(h)(0) are less than 1, we
also observe non-zero electron/hole coherence.

Now, the evolution of coherences with temperature also has quite an
interesting story to tell. At zero temperature, as was said before, the

12This means that the eigenvalues found in the diagonalization of equation (2.31)
are roughly all equal to 0, except one.
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Figure 2.9: Results of the extraction protocol for a sinusoidal drive at
f = 9 GHz, taken from [OP4]. Top: Wigner function associated with the
dominant electronic (left) and holes (right) Wannier functions extracted
from the coherence. Once we get these functions from our numerical
protocol, we simply use G

ϕ(e/h)(t|t′) = ϕ(e/h)(t)ϕ(e/h)(t′)∗ and plot the
associated Wigner function. Bottom: Moduli of the interperiod coher-
ences |g(e)(l)|, |g(h)(l)| and |g(eh)(l)|. Colored bars correspond to numer-
ical simulations from Floquet theory, and points to the ones extracted
from the experimental data. A complete interpretation of these results
is given in the main text, but let us strees that the good agreement
between them allows us to believe that our experiment has passed our
benchmarking test.
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state of the system is a quantum superposition for each period between
the emission of an electron/hole pair and the equilibrium [166]. We can
thus recover some coherences between the electrons at one period and
the holes at some other. Remarkably, though, no interperiod coherence
can appear for the electrons or the holes alone in that case. This fact
can be understood in another way by noting that a source described by
Floquet theory cannot mix wavepackets from different periods (see for
example the appendix of [37]).

Then, as we can see, the occupation probability g(e)(0) ' g(h)(0)
increases with temperature, from 0.17 at 0 mK to 0.26 (60 mK) and 0.28
(100 mK). This reflects the fact that at finite temperature, the avail-
able states have a finite probability to be occupied by thermal excita-
tions. This additional thermal population has coherence over a typical
timescale given by h/kBTel, thus leading to the apparition of interpe-
riod coherences g(e)(l − l′) and g(h)(l − l′) over such a scale. On the
contrary, the electron-hole coherences which where quite strong at zero
temperature are suppressed when temperature increases. This is a di-
rect reflection of the fact that there is a transition from a pure quantum
state at zero temperature to a statistical mixture at higher ones.

Our quantum signal processor, as we dubbed it, therefore already
proved its usefulness in terms of extracting physically relevant quanti-
ties from a given coherence, allowing an interpretation in terms of simple,
single-excitation packets. Moreover, this first example also serves as a
benchmark of the experiment itself, since we can compute the expected
coherence through Floquet theory, and compare the extraction results
on that numerical simulation. And the least we can say is that this
benchmarking test has been passed by the experiment: the fidelity be-
tween the extracted wavefunctions obtained for the data and the ones
obtained for a simulation was greater than 0.99 for all wavefunctions
and temperatures, and we already discussed the good agreement for the
extracted g coefficient between both cases.

To further prove that our process was indeed working in the gen-
eral case, we also tested it on a case where more than one excitation is
expected to be emitted in the system. We chose a drive with a 4 GHz
frequency, 60 µV amplitude, at Tel = 55 mK. In this case, we have
α ' 3.6, leading to an average number of electron/hole pairs per pe-
riod just above 1, q ' 1.1. Once again, our analyzer passed the test
with no problem, unambiguously showing that the quantum electrical
current in this case was built from two electronic wavepackets (ϕ(e)

1 and
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ϕ
(e)
2 ) and two holes (ϕ(h)

1 and ϕ(h)
2 ), which are emitted with probabilities

g
(e)
1 (0) = g

(h)
1 (0) = 0.85 and g(e)

2 (0) = g
(h)
2 (0) = 0.25. The experimental

tomography results, reconstructed Wigner function, and the extracted
atoms of signal are displayed in figure 2.10. As could be expected from
the fact that it appears for higher amplitude drives, the second wave-
packet is at a higher energy than the first one. Both of them are emitted
within the first half-period.

This second example also proves that our quantum signal processor
is perfectly able to distinguish between a regime where a single elec-
tron/hole state is generated and one with several states, and we hope
to be able to use it next to fully characterize the extent to which single-
electron sources really emit a single excitation in the system.

To conclude this part, let me stress once again that this full ex-
periment, from the tomography step to the atoms of signal extraction,
allows a full characterization of any quantum electrical current. This
is done with only minimal assumptions on the electronic state, as the
only requirement of our protocol is the periodicity of the source. There-
fore, we expect that it may one day be used on a frequent basis as a
characterization tool for electronic quantum states, in the same way as
tomography made its way to a daily usage in quantum optics.

2.4 Interferometry experiments for second or-
der coherences

Up to now, we have only studied experiments giving access to first order
coherence. Even when second order coherence appeared in our measure-
ments, such as in the excess noise from equation (2.4c), it was through
its diagonal part G(2e)(t, t′|t, t′). It then seems natural to ask if we can
imagine interferometry experiments allowing the measurements of sec-
ond order coherence completely or even just partially, and maybe even
find a kind a tomography protocol allowing the reconstruction of any
unknown second order coherence.

In this section, I will discuss experimental setups which are mostly
inspired by the ones we have seen before: Franson interferometers, and
Samuelsson-Büttiker interferometers. We will discuss to what extent
they give access to the intrinsic second order coherence ∆G(2e) intro-
duced in section 1.3.1. As we shall see, our discussion will go pretty
much along the same lines as our discussion of single electron coherence
which will, in the end, enable us to clarify our view of electron quantum
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Figure 2.10: Figure taken from [OP4]. Top: Results of a tomography
experiment performed with our usual protocol, for a sinusoidal drive
with 4 GHz frequency, 60 µV amplitude, at Tel = 55 mK. Note that, in
this case, we can obtain one more harmonic of the Wigner function. The
reconstructed Wigner function is given on the right. Bottom: Extracted
wavefunctions using our quantum signal processing step on the recon-
structed Wigner function. In this case, the amplitude of the drive is such
that more than one electron is emitted on average during each period.
This leads to the extraction of two atoms of signal, the second one being
at a higher energy and its emission less probable. The associated holes
wavepackets (not shown here) are symmetric with respect to 0 in the
energy domain, and emitted half a period later.
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optics as quantum signal processing [OP5].
Of course, the problematic of second order coherence measurement

is still far from the every day agenda of experimentalists, due to the
technical challenges it rises. Yet, I firmly believe that designing and
studying protocols even years before their implementation can be very
useful. This is an important lesson we can draw from the development
of single electron tomography: the protocol proposed by Ch. Grenier in
2011 [66] was at least seen as extremely challenging by all experimental-
ists in the field. Nevertheless, it lead to exremely fruitful discussions on
the perspective opened by this technique as well as on the underlying
experimental challenges. This has motivated the experimental groups to
express their talent and improve their setups so that the goal has finally
been achieved. On the theory side, this dialog has allowed to improve
our ideas and develop new concepts such as the Wigner function rep-
resentation of single electron coherence [41] before the experiment was
performed. The whole process, which indeed took almost a decade, has
been extremely fruitful and has produced a radically new way to look
at quantum electrical currents [OP4]. I think that designing proposals
for the measurement of second order intrinsic electronic coherence can
also lead to exremely fruitful developments both on the experimental
and theoretical side, in particular for gaining access to the notion of
entanglement in the many-body electron fluid.

2.4.1 Franson interferometry

General idea

The first type of interferometers we want to present is a two electron
interfermeter which is in some sense the generalization of the Mach-
Zehnder interferometer. However, for practical reasons, it has to com-
bine the ideas behind both Mach-Zehnder and Hanbury Brown and
Twiss interferometers.

As shown by equation (2.8b), the main idea behind an MZI is to
make a diagonal quantity, such as the average electrical current, depen-
dent on the off-diagonal part of the unknown excess single coherence we
want to access to. In a completely general manner, and using a signal
processing inspired terminology, we can say that the experimental sig-
nal (an average time dependent electrical current) is obtained from the
quantum signal of interest (the unknown excess first order coherence)

126



Chapter 2 – Section 2.4

2S1S

S
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Figure 2.11: A first general idea of interferometer probing the intrinsic
second order coherence of the source ∆G(2e)

S . Correlations between the
outcoming currents i1out and i2out are related to the incoming intrinsic
second order coherence of the source through equation (2.34). By us-
ing appropriate linear filters L1/2, the incoming intrinsic second order
coherence may be fully recovered.

by a linear filtering [OP5]:

〈i〉 = L
[
∆G(e)

]
. (2.32)

Concurringly, HBT interferometers are designed in such a way that the
currents correlation between the two outputs of a beam splitter directly
depends on the diagonal part of the incoming second order coherence on
channel 1 when the other is fed with a reference Fermi sea:

〈i1out(t1)i2out(t2)〉 ∝ ∆G(2e)
1in (t1, t2|t1, t2) . (2.33)

The main idea is then to combine the two setups by adding two (possibly
different) linear filters for first order electronic coherence on the outcom-
ing channels of a quantum point contact, as depicted in figure 2.11. The
outcoming current correlation will then be a linear filtering of the intrin-
sic second order coherence of the source (S). This can be summarized
by the following simple formula:

〈i1outi2out〉 = RT (L1 ⊗ L2)
[
∆G(2e)

1S

]
. (2.34)

As explained before, Mach-Zehnder interferometers are natural can-
didates for the linear filtering part. This leads to the setup schematically
displayed in figure 2.12, which is completely analogous to the interfer-
ometer devised and demonstrated by Franson to study photon entan-
glement [49, 50]. This setup has been used extensively in the domain of
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Figure 2.12: A schematic view of a Franson interferometer: the two
linear filters from figure 2.11 are Mach-Zehnder interferometers with
different Aharonov-Bohm fluxes Φi and time-of-flight delays between
the long path and the short one, τi.

quantum optics to study time-bin entanglement [18, 109] about which
we will talk in just a few pages. In the electronic transport domain, it
has also been proposed to use such an interferometer to probe a two-
particle non-local Aharonov-Bohm effect and use it to entangle electrons
coming from two sources [152]. In our case, we use it as a two-particle
interferometer that performs a linear filtering of the excess second order
coherence into current correlations that are measured experimentally.

Quantitative analysis

Let us now analyze in detail the relation between the measured cur-
rent correlation 〈i1out(t1)i2out(t2)〉 and ∆G(2e)

S . A simple combinatoric
argument shows that the outgoing current correlation involves a total of
16 terms, since each outgoing fermionic operator is a linear combination
of two incoming ones. Let us break these terms down.

The first type of terms corresponds to classical contributions to the
correlations. As before for the Mach-Zehnder interferometer, these are
terms in which electrons propagate along a single branch of the interfer-
ometer, so that no interferences between the paths appear. These terms
do not depend on the Aharonov-Bohm fluxes applied to the MZIs, and
we will therefore denote this contribution to the full coherence with a
subscript 0AB. In order to simplify notations, we will assume that both
QPCs in each Mach-Zehnder are identical and that the times of flight
from the source to any detector along the shortest branch of any of
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the two interferometer are equal. This time of flight will not appear in
subsequent equations, as it simply corresponds to taking different time
origins for the detectors and the source. For the classical terms, this
finally leads to13

∆G(2e)
out,0AB(1t1, 2t2|1t′1, 2t′2) =

+R0T0T
2
1 T

2
2 ∆G(2e)

S (t1, t2|t′1, t′2) (2.35a)

+R0T0R
2
1T

2
2 ∆G(2e)

S (t1 − τ1, t2|t′1 − τ1, t
′
2) (2.35b)

+R0T0T
2
1R

2
2∆G(2e)

S (t1, t2 − τ2|t′1, t′2 − τ2) (2.35c)

+R0T0R
2
1T

2
2 ∆G(2e)

S (t1 − τ1, t2 − τ2|t′1 − τ1, t
′
2 − τ2) . (2.35d)

As expected from classical terms, these terms only probe the diagonal
part of ∆G(2e)

S .
The second type of terms corresponds to terms involving single parti-

cle quantum interferences in only one of the two Mach-Zehnder interfer-
ometers. These terms therefore only depend on one Aharonov-Bohm flux
and are denoted by the subscript 1AB. They transform an off-diagonal
coherence for one of the variable pairs (t1 and t′1, or t2 and t′2) into the
current correlation that can be accessed by the experiment.

∆G(2e)
out,1AB(1t1, 2t2|1t′1, 2t′2) =

−R0T0R1T1T
2
2 eiφ1∆G(2e)

S (t1 − τ1, t2|t′1, t′2) (2.36a)

−R0T0R1T1T
2
2 e−iφ1∆G(2e)

S (t1, t2|t′1 − τ1, t
′
2) (2.36b)

−R0T0T
2
1R2T2eiφ2∆G(2e)

S (t1, t2 − τ2|t′1, t′2) (2.36c)

−R0T0T
2
1R2T2e−iφ2∆G(2e)

S (t1, t2|t′1, t′2 − τ2) (2.36d)

−R0T0R1T1R
2
2eiφ1∆G(2e)

S (t1 − τ1, t2 − τ2|t′1, t′2 − τ2) (2.36e)

−R0T0R1T1R
2
2e−iφ1∆G(2e)

S (t1, t2 − τ2|t′1 − τ1, t
′
2 − τ2) (2.36f)

−R0T0R
2
1R2T2eiφ2∆G(2e)

S (t1 − τ1, t2 − τ2|t′1 − τ1, t
′
2) (2.36g)

−R0T0R
2
1R2T2e−iφ2∆G(2e)

S (t1 − τ1, t2|t′1 − τ1, t
′
2 − τ2) . (2.36h)

Finally, the third and last type of terms is the one for which both de-
tected electronic excitations get delocalized over the two branches while
propagating within each Mach-Zehnder interferometer. These terms are

13Here, we use the notation G(it|jt′) to define delocalized coherence over the chan-
nels. It must be understood, as previously, as 〈ψi(t)ψ†j (t

′)〉.
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dependent on both Aharonov-Bohm phases and offer a possibility to ac-
cess to fully off-diagonal second order coherence. They are the terms we
are mostly interested in and are denoted with the subscript 2AB. More
precisely

∆G(2e)
out,2AB(1t1, 2t2|1t′1, 2t′2) =

+R0T0R1T1R2T2ei(φ1+φ2)∆G(2e)
S (t1 − τ1, t2 − τ2|t′1, t′2) (2.37a)

+R0T0R1T1R2T2e−i(φ1+φ2)∆G(2e)
S (t1, t2|t′1 − τ1, t

′
2 − τ2) (2.37b)

+R0T0R1T1R2T2ei(−φ1+φ2)∆G(2e)
S (t1, t2 − τ2|t′1 − τ1, t

′
2) (2.37c)

−R0T0R1T1R2T2ei(φ1−φ2)∆G(2e)
S (t1 − τ1, t2|t′1, t′2 − τ2) . (2.37d)

Generalizing the proposal by Haack et al. [73] for a standard Mach-
Zehnder interferometer, we have proposed [OP6] to measure the outgo-
ing current correlations between the two outputs of the interferometers
for several values of the magnetic fluxes going through each MZI. Ex-
tracting the part depending only on φ1 +φ2 allows us to get ∆G(2e)

S (t1−
τ1, t2 − τ2|t1, t2). By varying the time-delays τ1 and τ2, one could in
principle recover the whole intrinsic second order coherence emitted by
the source.

Of course, this time domain measurement protocol through Franson
interferometry suffers from the same problems as its MZI based first
order counterpart: current and noise measurements in the time domain
are quite hard to realize and the spatial extension of the interferometer
makes it really sensitive to Coulomb interaction induced decoherence.
Howevever, even in its idealized form, this example is interesting since
it enables us to capture aspects of two-electron interferences and second
order coherence. Let us take a little more time to study an example on
which ideal Franson interferometry can yield interesting results.

Using Franson interferometry on time-bin entangled pairs

As mentioned before, Franson interferometry has been used in quan-
tum optics to test a specific type of two-photon entanglement called
time-bin entanglement which was motivated by quantum communica-
tion protocols. Time-bin entanglement consists in creating a superposi-
tion between a given two-particle state and a time-shifted copy of it. In
standard quantum mechanical notations, this corresponds to a state of
the form

|Ψ2〉 = α |φ1(t)〉 ⊗ |φ2(t)〉+ β |φ1(t− τ)〉 ⊗ |φ2(t− τ)〉 . (2.38)
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In this state, three time scales appear: the typical time-scale over which
wavefunction φ1 is non-zero, its equivalent for φ2, and the time shift τ
between pairs. Of course, the most interesting case to study is when
the time shift between pairs is greater than the typical time-scale of
each wavefunction. Indeed, each pair taken alone will already dis-
play some second order coherence on the off-diagonal. For example,
∆G(2e)(t1, t2|t1 + τ1, t2 + τ2) will be non-zero if each τi is smaller than
the typical time-scale of wavefunction ϕi. However, the time-bin super-
position leads to coherence much further away from the diagonal, since
we can have ∆G(2e)(t1, t2|t1 + τ, t2 + τ) non-zero, where τ is the time
shift. This is why we will mostly be interested in superpositions with a
large time shift τ in the following.

How can we create such superpositions? In quantum optics, a source
of such time-bin entangled pairs can be realized using two steps. First, a
photon is injected into an unbalanced Mach-Zehnder interferometer with
a time delay difference τ between its two branches. This creates the time
delocalized single photon state |Ψ〉 = α |φ(t)〉 + β |φ(t− τ)〉. It is then
sent into a non-linear crystal, in which parametric downconversion con-
verts it into twin photons of lower energy. This leads to the creation
of the time-bin entangled two-photon state from equation (2.38), which
may then be used for quantum communication [18]. Experimentally, sev-
eral groups have reported the creation of such time-bin entangled states,
and shown that they could be distributed over large distances [110] or
stored for later use [71].

In the domain of electron quantum optics, such a source has not
been demonstrated yet, but some theoretical proposals have already
been made. One of them [25] proposes to use a quantum dot operated
with a period smaller than the typical escape time of the source, so that
the electron and hole emitted during the standard operation procedure
of the source (see figure 1.5) will not always be emitted in the same
period. This leads to some kind of entanglement between the state
where they are emitted in the same period, and the one where they are
not, which could lead to interesting effects even if it is not exactly the
one we discussed before. Another proposal [80] has been made in the
context of quantum Hall spin effect (QSHE), in which the edge channels
have an additionnal property of helicality, i.e. different spin channels
propagates in different directions. Since this feature is also present in
topological insulators, proposals for time-bin entangled pairs generation
have also been made in this context [85].
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In the present case, we will not try to model such an experimentally
feasible source but rather assume that we have it at our disposal. Our
starting point will thus be a pair of Landau excitations with typical time
width τ0, separated by a time δt. In second quantization notation, we
have the state

|Ψ2〉 = ψ† [ϕ1]ψ† [ϕ2] |F 〉 (2.39)

where ϕ1(t) = ϕLandau(t) and ϕ2(t) = ϕ1(t− δt). Using equation (1.75),
we remember that the excess coherence is given in a simple way in terms
of the two-electron pair wavefunction Φ12 corresponding to the Slater
determinant of ϕ1 and ϕ2:

∆G(2e)
|Ψ2〉(t1, t2|t

′
1, t
′
2) = Φ12(t1, t2)Φ∗12(t′1, t′2) . (2.40)

Denoting by subscripts 3 and 4 the vavefunctions equivalent to 1 and
2, but emitted after some time τ , a time-bin entangled two-excitations
state is then

|Ψtime bin〉 = 1√
2

(
ψ† [ϕ1]ψ† [ϕ2] + ψ† [ϕ3]ψ† [ϕ4]

)
|F 〉 . (2.41)

On the other hand, a 50-50 statistical mixture state would be either
ψ† [ϕ1]ψ† [ϕ2] |F 〉 or ψ† [ϕ3]ψ† [ϕ4] |F 〉.

We would like to show that Franson interferometry enables us to
distinguish between these two physically different cases of a time-bin
entangled equal superposition of two Landau pairs, and a 50-50 statis-
tical mixture of pairs emitted at different times. The intrinsic second
order coherences for each case are given by:

∆G(2e)
mixture(t1, t2|t′1, t′2) = (2.42a)

1
2

(
Φ12(t1, t2)Φ∗12(t′1, t′2) + Φ34(t1, t2)Φ∗34(t′1, t′2)

)
∆G(2e)

time-bin(t1, t2|t′1, t′2) = (2.42b)
1
2

(
Φ12(t1, t2) + Φ34(t1, t2)

)(
Φ∗12(t′1, t′2) + Φ∗34(t′1, t′2)

)
.

The difference between these two cases is flagrant! Whereas the mixture
case only shows coherences within each pair, the time-bin entangled
state contains terms involving the 12 and 34 Landau pairs. The main
question is therefore whether or not this difference can be detected in a
Franson interferometry experiment.
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Using the setup described, low frequency current correlations be-
tween the two outputs of the Mach-Zehnder interferometers are propor-
tional to the integral over both t1 and t2 of ∆G(2e)

S (t1− τ1, t2− τ2|t1, t2).
Figure 2.13 displays both the real and imaginary part of this integral,
respectively for the mixture and for the entangled case, with parameters
δt = 3τ0 and τ = 7τ0.

Three types of contributions to coherence appear on these figures:

• First of all, we get a central peak when τ1 ' τ2 ' 0. This peak
corresponds to interferences between any excitation and itself: any
of the emitted wavepackets, delocalized over the 4 possible paths
in the interferometer, will lead to second order coherence on a
time-scale related to the typical time-width of the wavepacket.

• The second type of contribution corresponds to points where the
delay on both interferometers is such that an electron within a pair
can interfere with the other electron emitted in the same pair. This
corresponds to τ1 = −τ2 = ±δt, and leads to a contribution with
the opposite sign and half the amplitude of the one at the center
of the figure.

Those two first contributions are classical contributions to coherence
coming from single particle interferences between the electrons present
inside each two-particle state ψ†[ϕ1]ψ†[ϕ2] |F 〉 and ψ†[ϕ3]ψ†[ϕ4] |F 〉. In-
terestingly, having removed all information on the time reference of the
emitted states with the integration over t1 and t2, any pair emitted with
a separation δt contributes in the same way to the experimental time-
averaged current correlation signal. In particular, this means that they
are exactly identical for both a unique pair emitted around some time
t0 and for the statistical mixture of several pairs of interest for us!

• Finally, a third contribution to coherence appears for the entangled
pair. It takes the form of a copy of the classical part discussed
before for a single pair, shifted around the position τ1 = τ2 = ±τ .
Of course, this is the signature of the entangled nature of our state,
and corresponds to quantum interferences involving the two pairs
of electrons present in the superposition: the first pair can take
the long path of the MZI, and arrive at the end beamsplitter at
the same time as the second pair taking the short path, leading to
non-zero correlations.
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Figure 2.13: Figure taken from [OP6]. Numerical simulation of the real
(left) and imaginary (right) parts of

∫
dt1dt2∆G(2e)

S (t1−τ1, t2−τ2|t1, t2),
as could be extracted using a Franson interferometer, for two types of
sources. Top: Pair of Landau excitations with typical time scale τ0 and
an energy ω0 = 3/τ0, separated by a time δt = 3τ0. Note that statistical
mixture between several such pairs would give the exact same result.
Bottom: Time-bin entangled state built from a superposition of two
pairs with a time shift τ = 7τ0. We see new contributions appearing,
signature of the fact that coherence can appear between the pairs in this
superposition. (See main text for a more detailed approach).
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To summarize the conclusions from this simple example, we can read
the presence of off-diagonal ∆G(2e) in the experimental Franson inter-
ferometry correlation signal. All contributions associated with semi-
classical two-particle paths are located close to the anti-diagonal zone
τ1 = −τ2 of the Franson interferometer parameter space whereas, by
contrast, the signature of off diagonal two electron coherence emitted by
the source will manifest itself close to the diagonal zone τ1 = τ2. These
two zones are sufficiently separated from each other and this is why the
Franson interferometry experiment can distinguish between the time-
bin entangled state versus the statistical mixture of two time-shifted
two-excitation states.

Generalization of the Franson interferometer

As we have said at the beginning of this section, using Mach-Zehnder in-
terferometers at the outputs of the first beamsplitter is not the only way
to transform off-diagonal parts of the coherence into measurable quanti-
ties, and other linear filters could be used. For example, we could imag-
ine a situation in which one would simply measure correlations between
two different finite-frequency currents at the output of the beamsplitter.
This would require doing an homodyning of the measured signal at each
output with a reference wave, and using different references with pulsa-
tions ωr1 and ωr2 for the two outputs. Then, by measuring the power
density of their cross-correlation, one could recover a quantity propor-
tional to

∫
dω1dω2∆G̃(2e)(ω1−ωr1, ω2−ωr2|ω1, ω2). Such an experiment

could thus certainly distinguish between a state formed as the superpo-
sition of pairs of excitations with different energies and the mixture of
such pairs. However, this would be a challenging experiment. Therefore,
in the same way that noise measurements took over for first order coher-
ence experiments with the advent of Hong-Ou-Mandel experiments, we
can ask ourselves if the same type of setup can be imagined for second
order coherence. This is what we are going to do now.

2.4.2 The double Hong-Ou-Mandel interferometer

As we have seen, Franson interferometry is a two-particle interference
experiment, giving access to information on the intrinsic second order
coherence of the source S through currents correlation measurements.
It assumes we have two linear filters located right after a first electronic
beam splitter. However, since it relies on Mach-Zehnder interferometers,
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Figure 2.14: A schematic representation of a 2-HOM setup, where we
want to probe the second order electronic coherence from source S using
two probe sources A and B, with Hong-Ou-Mander interferometry.

the original Franson interferometer device will be plagued by strong
decoherence effects exactly as the MZI was for measuring single electron
coherence. This decoherence issue is controlled only for specific cases
of the generalized Franson interferometers, for example when looking
at finite frequency current correlations, as was discussed just before.
However such a device is only able to recover partial information on the
intrinsic second order coherence ∆G(2e)

S . This allows the determination
of some properties of the source, but will prevent us from performing a
full tomography of ∆G(2e)

S .
Therefore, it is natural to ask ourselves whether we could create

some kind of interferometry experiment inspired from Hong-Ou-Mandel
interferometry, that would encode the overlap between two second order
coherences into some measurable quantity. Such a device would be the
second order equivalent of the quantum signal analyzer we have already
demonstrated for reconstrucing ∆G(e)

S .
The simplest idea to achieve this goal consists in using Hong-Ou-

Mandel interferometers instead of fixed linear filters such as the Mach-
Zehnder interferometer. This amounts to using highly parametrizable
linear filters in figure 2.11, and leads to the setup depicted on figure 2.14,
in which two sources A and B will be used to probe second order coher-
ence coming from the source S. Even if this setup still has some spatial
extension and may be sensitive to decoherence between the first QPC
and any of the two other ones, we hope that it may be possible to build
it on much smaller sizes than Mach-Zehnder interferometers, so that the
influence of decoherence may at least be smaller.
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Now, what is the quantity of choice to measure in order to obtain
what we are searching for? In the case of HOM interferometry we mea-
sured the excess current correlations between the two outputs of the
interferometer to obtain information on the overlap between two single
electron coherences. In the present case, one has to look at 4-current
correlators between all possible outgoing channels of the interferometer.
Let us consider the connected current correlator

C4(t1, t′1, t2, t′2) = 〈i1(t1)i1′(t′1)i2(t2)i2′(t′2)〉out (2.43)
− 〈i1(t1)i1′(t′1)〉out〈i2(t2)i2′(t′2)〉out
− 〈i1(t1)i2(t2)〉out〈i1′(t′1)i2′(t′2)〉out
− 〈i1(t1)i2′(t′2)〉out〈i1′(t′1)i2(t2)〉out

which corresponds to the fourth cumulant of currents in the case where
all average outgoing currents are zero.

In a realistic experiment, what we may be able to measure is the
integrated version of this quantity over all times. Indeed, measurements
of this integrated quantity, or rather of its equivalent frequency formu-
lation, have already been done experimentally by Forgues et al. [46]
to show that the photo-assisted shot noise of tunnel junction was non-
Gaussian, and could be accessible in our usual setup of choice.

Let us now explain how this quantity relates to electronic coherences.
Using the standard relations between outgoing and incoming electronic
operators for each beamsplitter, C4(t1, t′1, t2, t′2) can be recasted into a
sum of four parts: one only depending on properties of the source S, one
depending on S and A, one depending on S and B, and finally one that
depends on all the three sources S, A and B. This last contribution is
the one of interest for us. To extract it, we once again combine on/off
measurements in a clever way. The linear combination

C
on/off
4 = C4(A on, B on) + C4(A off, B off) (2.44)

− C4(A on, B off)− C4(A off, B on)

removes all contributions that do not depend on the properties of all
three sources. Straightforward but tedious computations, using only
the canonical anticommutation relations between the various ψ and ψ†
operators allow to rewrite all correlators as products of electron and hole
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coherences, leading to the following result:

∫
C

on/off
4 (t1, t′1, t2, t′2)dt1dt′1dt2dt′2 = 4e4R0T0RATARBTB×∫

∆W(e)
A (t, ω)∆W(e)

B (t′, ω′)∆W(2e)
S (t, ω; t′, ω′)dtdω

2π
dt′dω′

2π (2.45a)

−
∫

∆W(e)
A (t, ω)∆W(e)

S (t, ω)dtdω
2π ∆W(e)

B (t′, ω′)∆W(e)
S (t′, ω′)dt′dω′

2π .

(2.45b)

The first term (2.45a) contains the overlap between the first order Wigner
function of sources A and B and the intrinsic second order Wigner func-
tion of source S. This contribution is of central interest for us as it
is the only one involving the intrinsic second order coherence ∆G(2e)

S .
The second term (2.45b) corresponds to the product of two HOM over-
laps probing first order coherence. Consequently it can be accessed by
measuring each of the corresponding HOM current noise independently.
This can be achieved using the same procedure as before for HOM in-
terferometry, once using current correlation measurements on outputs 1
and 1′, and once doing the same with outputs 2 and 2′. Once we have
done all measurements of both C4 and the different HOM parts, we gain
an access to the quantity

Q4 = 4e4
∫

∆W(e)
A (t, ω)∆W(e)

B (t′, ω′)∆W(2e)
S (t, ω; t′, ω′)dtdω

2π
dt′dω′

2π
(2.46)

in a direct manner. This quantity is then the equivalent, for this inter-
ferometer, of the Hong-Ou-Mandel noise QHOM for first order coherence.

Tomography of second order coherence

Can we use this last result to do some tomography of unknown sources?
A first, simple idea is to use the same probes as before: sinusoidal drives
with low amplitudes. Let us denote by Q(nA,nB)

4 (µA, φA, µB, φB) the
measured Q4 when using two sinusoidal drives in the quantum regime
as probes, one for source A and one for source B. In full generality, we
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get in the zero temperature case

Q(nA,nB)
4 (µA, φA, µB, φB) = (2.47)

lim
T→∞

1
T

∫ T/2

−T/2
dt lim

T ′→∞

1
T ′

∫ T ′/2

−T ′/2
dt′
∫ µA+nAπf

µA−nAπf

dω
2π

∫ µB+nBπf

µB−nBπf

dω′
2π

4e4∆W(2e)
S (t, ω; t′, ω′)

eVPnA
hnAf

cos(2πft+ φA)
eVPnB
hnBf

cos(2πft+ φB) .

In the case of a periodic source, the excess second order coherence func-
tion can be decomposed as

∆W(2e)
S (t, ω; t′, ω′) =

∑
n

∆W(2e)
S,n (t− t′, ω, ω′)e2iπnf t+t

′
2 (2.48)

leading to

Q(nA,nB)
4 (µA, φA, µB, φB) = (2.49)

e6VPnAVPnB
h2f2nAnB

∫ µA+nAπf

µA−nAπf

dω
2π

∫ µB+nBπf

µB−nBπf

dω′
2π

∫
dτ[

2Re
(
∆W(2e)

S,nA+nB (τ, ω, ω′)e−i(φA+φB)e−iπfτ(nA−nB)
)

+ 2Re
(
∆W(2e)

S,nA−nB (τ, ω, ω′)e−i(φA−φB)e−iπfτ(nA+nB)
) ]

.

There are several analogies between this equation and equation (2.21)
for first order coherence. Once again, chosing good phases φA and φB al-
lows a direct access to one specific harmonic of the second order Wigner
function. Then, using the chemical potential will allow the full recon-
struction of its energy dependence, in exactly the same way as we did
before, by starting from a point where ∆W(2e)

S,n vanishes. The only prob-
lem with this setup is that we do not gain a full access to the time
dependence of each harmonic, but only to specific point of its Fourier
transform. This could have been expected, since we tried to probe a
signal which was not periodic in one of its time variables using only
periodic signals. Nevertheless, this signal reconstruction is still an in-
teresting result, and the protocol can still be used to realize a partial
tomography of the excess second order coherence for periodic sources.

In a completely generic case, I have not been able during my PhD to
find a family of wavefunctions allowing the reconstruction of the excess

139



Chapter 2 – Section 2.4

second order coherence from its overlap with two first order ones. I think
that it should be possible to do so with another family of signals, which
may even already exist in the signal processing community, however I
did not have the time to study this problem any further. My personal
feeling is that we would need to use the standard periodic sinusoidal drive
with low energy extension for one of the sources, in order to capture the
harmonics of the Wigner function and their behaviour in at least one
energy variable. For the other source, we would maybe need to use a
source that would be mostly the opposite, i.e. a very localized excitation
with high energy extension. Indeed, another type of time-frequency
representation called Gabor transform exists in signal processing [54],
and is defined as

Gx(t, f) =
∫

e−π(τ−t)2e−2iπfτx(τ)dτ (2.50)

for the signal x(t). In this equation, we recognize some sort of time-
resolved kernel in the Gaussian function. In our case, maybe an equiva-
lent expression using Lorentzian wavepackets such as the Levitons could
also give us some good insight on the properties of our source.

2.4.3 Samuelsson-Büttiker interferometry

In the same family of interferometers based on the HOM interferometer,
our first idea when trying to develop a second order tomography protocol
was to try to find an interferometer that could compute the overlap
between two second order coherences, and would therefore be the direct
equivalent of HOM interferometry for second order.

This can be done by adapting a setup that was first proposed by
Samuelsson, Sukhorukov, and Büttiker [144] as a way to create two-
particle interference effects in mesoscopic capacitors. The same authors
then understood that properties of the source could be measured with
this setup, and that it could be used to perform a quantum state tomog-
raphy of a DC source [142]. We therefore call this setup a Samuelsson-
Büttiker interferometer, and have represented it in figure 2.15. Its idea
is indeed quite simple: using quantum point contacts, we split the in-
coming current from two sources of interest in two, and then recombine
currents from both sources together with a second layer of QPCs. The
main idea is then to measure current correlations between the different
outputs of this second layer.

Based on what we saw before for Mach-Zehnder interferometers, we
know that enclosing some magnetic flux will lead to an Aharonov-Bohm
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Figure 2.15: Left: A schematic representation of a Samuelsson-Büttiker
interferometer. Two sources are used as inputs of two beamsplitters,
whose outputs are then combined using two other beamsplitters. We
will recover correlation between the two outputs 1 and 4. Right: A vi-
sualization of the type of terms we hope to recover with correlators of
the form 〈i21i24〉. Solid lines represent ψ operators while dashed lines rep-
resent ψ† ones. We think that these terms where each detected electron
cannot be attributed to one of the source should be associated with the
overlap of second order excess coherences of both sources.

phase φAB. In the spirit of what we did for equation (2.7a), we at-
tribute some phase φi to each of the paths inside the interferometer,
with ∑i φi = φAB. Using notations from figure 2.15, the full relation
between outgoing operators and incoming ones is given by:

ψ1
ψ2
ψ3
ψ4


out

= M


ψ1
ψ2
ψ3
ψ4


in

(2.51)

with

M =


eiφ1
√
RARC ieiφ1

√
TARC ie−iφ3

√
RBTC −e−iφ3

√
TBTC

ie−iφ2
√
TARD e−iφ2

√
RARD −eiφ4

√
TBTD ieiφ4

√
RBTD

ieiφ1
√
RATC −eiφ1

√
TATC e−iφ3

√
RBRC ie−iφ3

√
TBRC

−e−iφ2
√
TATD ie−iφ2

√
RATD ieiφ4

√
TBRD eiφ4

√
RBRD


In order to keep everything quite compact, we will suppose that all QPCs
are controlled in such a way that all Rα and Tα are equal to 1/2. This
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leads to

M = 1
2


eiφ1 ieiφ1 ie−iφ3 −e−iφ3

ie−iφ2 e−iφ2 −eiφ4 ieiφ4

ieiφ1 −eiφ1 e−iφ3 ie−iφ3

−e−iφ2 ie−iφ2 ieiφ4 eiφ4

 . (2.52)

As was the case for standard HOM interferometry, outgoing currents
from the same beam splitter (either 1out and 3out or 2out and 4out)
contain pretty much the same information on the incoming coherences.
For symmetry reasons, we will therefore only look at correlations be-
tween channels 1out and 4out. In terms of sources, since we do not
want to overcomplicate things, we will put sources S1 and S4 on the
input channels 1in and 4in, and connect 2in and 3in to the ground, as
drawn on the scheme of the experiment in figure 2.15. We will also, as
before, suppose that all paths have the same total length, so as not to
take propagation inside the interferometer into account.

Now, what might be the quantity to look at in order to recover the
overlap between both sources second order coherences? Since we want
at least 4 creation and 4 destruction operators overall, we need to look at
4-currents correlators, such as for example 〈i21i24〉. Yet, it is obvious that
this contains far too many terms (48 = 65536 ones to be precise). Of
course, several properties may be used to simplify this. Since all sources
are completely independent, we need to chose paths having the same
numbers of creation and destruction operators for each source, which
puts the number of terms down to 4! × 44 = 1536. This is still far too
much, as it contains mostly terms where the sources do not interact with
each other or terms that correspond to standard classical correlations,
as well as terms that can be expressed using lower-order coherences that
do not interest us. In order to get what we want, we would like terms
such as the one depicted on the right of figure 2.15: current detected
at the outputs comes from both sources, and no electron can be safely
attributed as coming from one of the source or the other. What this
schematic representation shows is that this term corresponds to enclosing
twice the magnetic flux that pierces the center region. Therefore, our
first idea to recover it is to select, within all the terms appearing in the
4-currents correlator, the ones that have a 2φAB dependence of their
phase. This can be done through a careful Fourier transform of the
signal acquired for several fluxes, in the same way as what was done for
Franson interferometry before. This allows us to reduce the problem to
only 36 terms!
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So, what exactly is contained in those terms? The full result is
expressed as the product of two quantities, one relative to the sources 1
and 2, the other to sources 3 and 4:

〈i1(t1)i1(t2)i4(t3)i4(t4)〉2φAB = e2iφAB

24 ×(
G(2h)
S1

(t3, t4|t1, t2) + G(2h)
F2

(t3, t4|t1, t2) (2.53a)

−
∑

σ,σ′∈S2

G(h)
S1

(tσ′(3)|tσ(1))G
(h)
F2

(tσ′(4)|tσ(2)

)
× (2.53b)

(
G(2e)
S4

(t3, t4|t1, t2) + G(2e)
F3

(t3, t4|t1, t2) (2.53c)

−
∑

σ,σ′∈S2

G(e)
S4

(tσ′(3)|tσ(1))G
(e)
F3

(tσ′(4)|tσ(2)) .
)

(2.53d)

This corresponds to the overlap between hole coherences for sources 1
and 2, and electron ones for sources 3 and 4. However, there are still
some parasitic terms (b and d) that do not depend on second order
coherence. Is there some clever way to decompose the result from equa-
tion (2.53)? Taking the cumulant rather than the simple correlator may
simplify the product of all first order coherences together, but since this
lower order correlators cannot create a non-diagonal second order co-
herence, all terms where second order coherences are multiplied by first
order ones will still exist.

Thus far, we are therefore still blocked with this partial result. I
firmly believe that there are clever ways to measure such quantities
that would allow us to measure the overlap between two excess second
order coherences, but have not yet found how to achieve it. Moreover,
as was the case for the interferometer using two HOM experiments, I
do not know which family of sources might be used as probes in this
specific case, leaving me a bit in the dark at the time of writing this
manuscript about how exactly to tackle the problem of second order
coherence tomography. I am convinced that conversations with signal
processing specialists could lighten the path for us, but as far as this
manuscript goes, I am forced to leave this question in the middle of a
foggy road.
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Interactions

Every empire, every nation,
every tribe, thought it would
end in a bit more decent way

Mgła
Exercices in Futility IV

As mentioned before, the main obstacle to controlled manipulation
and propagation of electronic excitations compared to what can be
done in photon quantum optics is Coulomb interactions. Because of
them, electrons experience strong decoherence effects, the consequences
of which are observed both in Mach-Zehnder and Hong-Ou-Mandel in-
terferometry (see sections 2.2.1 and 2.2.2 of previous chapter).

In this chapter, we present an approach to effective screened Coulomb
interactions within finite regions of space based on edge magnetoplasmon
scattering. We show that it enables us to compute electronic coherences
after propagation in the sample from the one that are emitted by our
sources in a non-perturbative way. This will be the focus of section 3.1.
In section 3.2, we will then turn ourselves to practical applications
of these computations, making predictions of experimental results for
Hong-Ou-Mandel interferometry experiments. This experimental test is
indeed the first experimental study of the celebrated quasi-particle de-
cay thought experiment imagined by Landau to introduce its theory of
the Landau-Fermi liquid. In the present case, we shall see that the ex-
perimental results are in agreement with our theoretical predictions and
that we are really observing signatures of the total decay of a Landau
quasi-particle excitation in the presence of strong interchannel Coulomb
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interactions.
We will then turn to the problem of decoherence control which we

will explore along two tracks. In section 3.3, we will present theoret-
ical predictions on electronic decoherence for specific sample designs
that are indeed envisioned for blocking electronic decoherence. Then,
in section 3.4, we will discuss electronic decoherence in an ideal ν = 1
quantum Hall edge channel, an interesting problem in itself that will
lead us to suggest that exfoliated graphene and GaAs are very different
materials from the point of view of electronic decoherence because of
their difference in bare Fermi velocities.

Finally, the last section of this chapter will be devoted to the ef-
fects of Coulomb interactions on higher order decoherence. Besides a
general analytical solution to this problem, we will mostly discuss the
second order electronic coherence generated by an incoming single elec-
tron coherence and discuss how it encodes signatures of the generation
of coherent plasmonic excitations. Then we will explore the relaxation of
a pure two-electron excitation in the specific regime in which Coulomb
interactions do not smash it down to the Fermi level. As we shall see,
the general formalism is considerably simplified and a relatively simple
but neverthless subtle image of the underlying physics emerges.

3.1 Computing interactions effects

This section will review how bosonization enables us to compute the
effect of effective screened Coulomb interactions on electronic coher-
ences. Most of those ideas have been unraveled several years ago, dur-
ing the PhD of C. Grenier [67] under the direction of P. Degiovanni.
Yet, at the time, they had only been able to apply the method to the
case of fixed-energy single-electron excitations, and not to obtain results
in other physically relevant situations such as arbitrary single electron
wavepackets. As we will see, it was quite a big step to solve the full
problem and the computation of the full coherence function was quite
a challenging problem in many ways. This is indeed the problem on
which I started my work in the field of electron quantum optics. To-
gether with B. Roussel and D. Ferraro, we managed to devise a method
allowing to solve this problem of interactions and decoherence for an
arbitrary single-electron wavepacket [OP2]. This was an important step
in the field since, as should already be clear to the reader, this is essen-
tial to produce predictions for HOM experiments performed with single
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electron sources.
Most of what I present in this section comes directly from this

work. It will allow us to familiarize ourselves with the effect of screened
Coulomb interactions on single electron excitations. In the remaining
of this chapter, we will then use and extend this framework, in order to
use it to its full extent and discuss various problems related to Coulomb
interaction effects on various electronic excitations.

3.1.1 Interactions as a beamsplitter

Let us consider a chiral relativistic edge channel, coupled to an external
environment within a finite length region. This environment can be
another edge channel in the case where there are several of them, or
the bulk of the sample, or nearby conductors and even transmission
lines. The only assumption we make here is that all conductors involved
should be in the linear response regime. This prevents us from studying
the influence of a non-linear conductor such as a double quantum dot
capacitively coupled to the edge channel under consideration but, as we
shall see, these assumptions already describe a large number of physically
relevant situations.

Under this hypothesis, Coulomb interactions between electrons cou-
ple charge densities that, as discussed in section 1.4, are linear in terms
of free bosonic fields1. In particular, the excess charge density n(x, t)
within the edge channel at position x and time t, which corresponds to
:ψ†ψ: (x, t), can be linked to a bosonic field φ(x, t) via

φ(x, t) = 1√
π

∫ ∞
x

n(y, t)dy . (3.1)

The equation of motion obeyed by the field φ is then

(∂t + vF∂x)φ(x, t) = e
√
π

h
V (x, t) (3.2)

where V (x, t) denotes the electric potential along the edge channel of
interest. In the linear regime, V (x, t) is linear in all the free bosonic
variables describing the conductors to which our channel is coupled.
Since the charge density and the electrical current are linearly related,
this construction is in fact equivalent, in a free propagation regime, to

1This is where the linear response hypothesis comes in.
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Figure 3.1: (a) A schematic representation of plasmon scattering. The
incoming and outgoing modes of several systems are linked to one-
another by a frequency dependent scattering matrix S(ω). This can
be used to describe several different physical situations such as, for ex-
ample, (b) two copropagating edge channels coupled over a distance l,
or (c) an edge channel coupled to some linear external circuit described
by some frequency-dependent impedance Z(ω).

the one of chapter 1, provided that

φ(x, t) = − i√
4π

∫ ∞
0

(
b(ω)eiω(x/v−t) − b†(ω)e−iω(x/v−t)

) dω√
ω

(3.3)

where v is the chiral velocity along the edge of interest, and is generally
speaking edge-dependent.

A finite-length interaction region can then be described using the
input/output formalism that connects, for each of the interacting ele-
ments, the incoming field φ(in) to the outgoing one φ(out). Both of these
fields propagate freely respectively before and after the interaction re-
gion. We thus have incoming and outgoing bosonic modes b(in) and
b(out) which are related by input/output relations. In our case, under
the assumption of linearity, and since we have time-translation invariant
dynamics, the whole interaction region is described by an energy depen-
dent elastic scattering matrix S(ω) between the incoming and outgoing
modes

b(out)α (ω) =
∑
β

Sαβ(ω)b(in)β (ω) (3.4)

where α and β denote the different conductors we are describing. This
situation is schematically depicted in figure 3.1 for the case of two con-
ductors, along with two examples of such situations.

A special case is obtained when there are no interactions between
different edge channels. Then, we have

Sαβ(ω) = δαβeiωl/vα (3.5)
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with vα the velocity in the corresponding edge channel. In the pres-
ence of inter-channel interactions, the scattering matrix couples them.
Because the dynamics is time translation invariant, and the interaction
region is not subjected to any external driving, energy conservation is
satisfied and, in the present case, this implies that S(ω) is unitary for
any ω > 0. To summarize, the finite size interaction region is an edge
magnetoplasmon frequency-dependent beamsplitter, exactly similar to
a directional coupler in the microwave domain.

The two main questions that must be answered once we have this
bosonic scattering approach to interactions are

• What are the specific forms of the scattering matrix S(ω) for (semi-
)realistic effective screeened Coulomb interaction models or in the
presence of a capacitive coupling to the channel’s electromagnetic
environment?

• Can we use this to compute fermionic correlators after an interac-
tion region? As we shall see, a positive and clever answer to this
question contains the key to understanding the effect of Coulomb
interactions on electronic coherences.

In the rest of this chapter, we will thus discuss some specific models of in-
teractions and derive their scattering matrix, before using it to compute
outgoing electronic coherences in the case where specific wavepackets
are sent into the edge channel. But before this, let us connect the edge
magnetoplasmon scattering matrix to some physical quantities: finite-
frequency admittances.

Relation between S(ω) and admittance

The edge magnetoplasmon scattering matrix S determines the outgo-
ing current in any channel from the incoming one. If the incoming
channel is fed from an AC generator, this suggests that the scattering
matrix encodes AC transport properties of the interaction region seen
as a quantum conductor. To make this intuition more quantitative, let
us remember that a voltage drive applied to the reservoir feeding the
channel β corresponds to the injection of a coherent plasmonic state
into the edge channel. Its functional parameter only depends on the
Fourier transform of the voltage in said channel (see equation (1.121)).

Because the interaction region is a simple beam-splitter for the edge
magnetoplasmon modes, a tensor product of incoming coherent states is
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scattered into a tensor product of outgoing coherent states. This is well
known for electromagnetic waves in optics: linear optical components
cannot generate non-classical quantum states of light, and therefore in
particular entanglement. The parameter of the outgoing state in channel
α is, at fixed ω, simply given by the sum over β of the product of
Sαβ(ω) with the parameter of the coherent state in channel β at the
same frequency. We can associate some voltage to this parameter in
channel α and determine the average current associated with this state
by reversing what we did in equation (1.121). If we send in a time-
resolved excitation at t = 0, associated with the percussional voltage
V (t) = −h

e δ(t), we find that the expected outgoing voltage in channel
α is directly given by the inverse Fourier transform of −h

eSαβ(ω). In
other words, the finite frequency admittance of the interaction region is
nothing but

Gαβ(ω) = ∂〈iα(ω)〉
∂Vβ(ω) = e2

h
(1− Sαβ(ω)) . (3.6)

Such a relation had indeed been found before in the context of quantum
wires, which are non-chiral 1D conductors, as explained for example in
[140]. Here we have obtained the analogous relation in the case of chiral
1D edge channels where it takes a particularily simple form.

This link between the finite-frequency admittance and edge magneto-
plasmon scattering is of particular interest for us. On the one hand, it
will allow us to derive a scattering matrix from considerations based
on the expected admittance of some circuits, or even from real mea-
surements. On the other hand, it will also allow us to discuss possible
representations of the interaction region in terms of a simple discrete
electrical elements representation.

General properties of S(ω)

The direct interpretation of the single-edge transmission coefficient t(ω) =
S11(ω) as a finite-frequency admittance has strong implications which
we will discuss now.

First of all, since the analytic continuation to negative frequen-
cies of finite-frequency admittance G11(ω) obeys the reality condition
G11(−ω) = G∗11(ω), we have the same analytic extension for t(ω)

t(−ω) = t∗(ω) . (3.7)
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Next, the dimensionless finite-frequency admittance g(ω) = 1− t(ω) is
the one of a passive circuit. As such, it obeys the general property first
proposed by Cauer [24] and then proven by Brune [21] of being positive
real. With our convention, this means that for z = σ + iω, z 7→ g(z) is
analytic in the half plane Re ((z)) < 0 and

Re ((g(z))) > 0 when σ < 0 , (3.8a)
Im ((g(z))) = 0 when z ∈ R− . (3.8b)

The analyticity condition ensures that the current response is causal,
while the two other conditions express that, when driven by a time-
dependent voltage, the corresponding effective dipole dissipates energy
and does not produce it.

3.1.2 Theoretical elements

To explain how to compute the coherence after the interaction region
from the one before in a way that is both quite general and not too
tedious, I will focus here on the particular example of a ν = 2 system
without dissipation. As will be clear, this discussion is however still
valid for different situations such as ν = 1 (which will be extensively
discussed in section 3.4) or an edge channel coupled to a general linear
environment. The model for ν = 2 is of particular interest when trying
to explain what happens in real experiments, as we will see in section 3.2.

I shall also focus here on the situation in which a single electron
wavepacket is present above the Fermi sea and only compute the first
order electronic coherence for the moment. Of course, they are not
the full story of interactions, but most of what we will present later
can be directly understood as a generalization of what we present here.
In particular, a more general case with p electrons and the n-th order
coherence will be discussed in section 3.5.

Incoming and outgoing states

The situation of interest for us is simply a two-channel interaction region
of length l, which is described by the unitary two-by-two scattering
matrix

S(ω) =
(

t(ω) rE(ω)
r(ω) tE(ω)

)
. (3.9)
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The incoming state is simply an electron in a wavepacket ϕe injected in
edge channel 1, while edge channel 2, playing the role of the environ-
ment, is assumed to be at zero temperature. Since the interaction region
is simply a beamsplitter for plasmonic modes, we know that coherent
states are also simply scattered into other coherent states: an incoming
coherent plasmonic state of the form |[Λ1]〉 ⊗ |[Λ2]〉 is transformed into
the state |[Λ′1]〉 ⊗ |[Λ′2]〉, with

Λ′α(ω) =
∑
β

Sαβ(ω)Λβ(ω) . (3.10)

From a physical point of view, this means that all states created by clas-
sical voltage pulses can, after an interaction region, still be understood
as being created by classical voltage pulses. We only need to use equa-
tion (1.121) in one direction to express the incoming state as a bosonic
coherent state, and then in the other direction to describe the outgoing
coherent state in terms of a classical voltage pulse.

This relation is of a particular interest for us in the case of sinusoidal
driving. Indeed, if the incoming state in channel α is a sinusoidal drive
with pulsation ω0, the corresponding coherent state has a parameter of
the form −eδ(ω − ω0)/h√ω0. When its environment β is at equilib-
rium (or, equivalently, in a vacuum of bosons), the outgoing state will
simply be the coherent state of parameter −eSαα(ω0)δ(ω − ω0)/h√ω0.
Obviously, this state still describes a sinusoidal drive of pulsation ω0,
but the amplitude and the phase of that drive may have changed. In a
way, equation (3.10) simply describes that our model corresponds to a
linear response regime with respect to sinusoidal drives. This is why we
could say in section 2.3.2 that sinusoidal drives were mostly unaffected
by interactions.

Now, if we want a result that is valid in a completely general case, all
we need to do is to express any incoming state using the bosonization
framework of section 1.4 in the form of coherent states. Our state of
interest is thus

|ϕe〉1 ⊗ |F 〉2 =
∫
ϕe(t)

U†1√
2πa
|[−Λt]〉1 ⊗ |[0]〉2 dt (3.11a)

=
∫
ϕe(t)

U†1√
2πa

⊗
ω>0

(|−Λt(ω)〉1 ⊗ |0ω〉2) dt (3.11b)

where |0ω〉 denotes the vacuum of bosons in mode ω. The outgoing state
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|Φout〉
|F 〉

|ϕe〉Electron
point
of view Interaction zone

⊗

|0ω〉 |r(ω)Λt(ω)〉

|Λt(ω)〉 |t(ω)Λt(ω)〉Plasmon
point
of view Plasmon scatterer

⊗ ⊗

Figure 3.2: A representation of an interaction zone and its effect on
plasmons and electrons. Top: Interactions seen as a plasmonic scatterer.
For mode ω, the incoming state is a coherent state with parameter Λt(ω)
in one channel, and the vacuum in the other. The outgoing state is
still factorized between two coherent states, one corresponding to the
transmitted part and the other to the reflected part. Bottom: For the
full electronic picture, things are different. Since it is a superposition of
plasmons, the outgoing state is a superposition of factorized states, or
equivalently an entangled state.

is then simply

|Φout〉 =
∫
ϕe(t)

U†1√
2πa

⊗
ω>0

(|−t(ω)Λt(ω)〉1 ⊗ |−r(ω)Λt(ω)〉2) dt

=
∫
ϕe(t)

U†1√
2πa
|[−tΛt]〉1 ⊗ |[−rΛt]〉2 dt . (3.12)

As could be expected, interactions have turned a factorized state be-
tween the system and the environment into an entangled state, as de-
picted in figure 3.2.

Computing electronic coherences in either of the two edge channels
requires computing the outgoing reduced density matrices in the two
channels. Let us start with the reduced density matrix in the injection
edge channel, ρ1.

ρ1 = Tr [|Φout〉 〈Φout|]2 (3.13)

=
∫
ϕe(t+)ϕ∗e(t−)〈[−rΛt− ]|[−rΛt+ ]〉ψ†(t+) |[gt+ ]〉 〈[gt− ]|ψ(t−)dt+dt−

where we have defined the coherent plasmonic state |[gt]〉 as

|[gt]〉 = |[(1− t)Λt]〉 =
⊗
ω>0
|(1− t(ω))Λt(ω)〉 (3.14)
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so that we could re-introduce the ψ and ψ† operators to reabsorb the
Klein operators. This coherent state corresponds to the cloud of elec-
tron/hole pairs generated by Coulomb interaction when a localized ex-
citation of the form ψ†(t) |F 〉 is sent into the system. Of course, its
complete form depends on the scattering matrix under study. Yet, the
reduced density matrix is not directly given by the pure state corre-
sponding to superpositions of such |[gt]〉. The imprint these states leave
in the environment leads to decoherence between the different parts of
the superposition. The corresponding many-body decoherence coeffi-
cient is given by

Dext(t+ − t−) = 〈[−rΛt− ]|[−rΛt+ ]〉 (3.15)

= exp
(∫ +∞

0
|r(ω)|2

(
eiω(t+−t−) − 1

) dω
ω

)
where the second line can be obtained using equation (1.115).

In the same way, the reduced density matrix for the other edge chan-
nel is given by

ρ2 = Tr [|Φout〉 〈Φout|]1 (3.16)

=
∫
ϕe(t+)ϕ∗e(t−)Dinj(t+ − t−) |[−rΛt+ ]〉 〈[−rΛt− ]|dt+dt−

where

Dinj(t+ − t−) = 〈[−tΛt− ]|[−tΛt+ ]〉 (3.17)

= exp
(∫ +∞

0
|t(ω)|2

(
eiω(t+−t−) − 1

) dω
ω

)
is the decoherence associated with the imprints left in the injection chan-
nel for different environmental states. From these two reduced density
matrices, all electronic coherence functions after the interaction region
can be computed, as we will show now.

Generalized Wick theorem

To continue our calculations, we will be interested in computing co-
herence functions of the states defined above. This next step involves
correlators of the form

〈[α]|ψ†(t1)ψ†(t2)ψ(t3)ψ(t4)|[β]〉 (3.18)
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which are reminiscent of correlators we could compute using Wick’s the-
orem (see section 1.2.2). Although these are matrix elements between
two edge magnetoplasmon coherent states – and not expectation val-
ues in the Fermi sea – these correlators still have a surprisingly simple
form arising from the properties of displacement operators displayed by
equations (1.114) to (1.116). Since all electronic creation operators can
be written as plasmonic displacement operators, we have to compute
a product of displacement operators, sandwiched between two coherent
states. Yet, we know that a product of displacement operators can al-
ways be expressed as a single one, whose parameter is the sum of all
initial parameters, times some number depending on the parameters.
In the same way, this final operator can always be expressed as a nor-
mal ordered one up to a multiplicative factor. This means that we can
rewrite the product of fermonic operators as

ψ†(t1)ψ†(t2)ψ(t3)ψ(t4) (3.19)
= A(t1, t2, t3, t4)× :D [−Λt1 − Λt2 + Λt3 + Λt4 ]:

withA some number to determine. The definition of normal order makes
finding out this number quite easy: because 〈F | :D: |F 〉 = 1, it has to
be given by

A(t1, t2, t3, t4) = 〈ψ†(t1)ψ†(t2)ψ(t3)ψ(t4)〉F . (3.20)

Therefore, these equations mean that all the matrix elements we have
to compute can be decomposed into the Fermi correlator multiplied by
some exponential that depends on the specific times and states we are
looking at, given by equation (1.116). Since the Fermi sea is a state for
which Wick’s theorem is valid, we can then decompose any correlator
into two-points ones on the Fermi sea, which may be easier to compute.
Putting everything together, we can get a generalized version of Wick’s
theorem that reads, for the case under consideration here

〈[α]|ψ†(t1)ψ†(t2)ψ(t3)ψ(t4)|[β]〉
〈[α]|[β]〉 (3.21)

= 〈[α]|ψ†(t1)ψ(t4)|[β]〉
〈[α]|[β]〉

〈[α]|ψ†(t2)ψ(t3)|[β]〉
〈[α]|[β]〉

−〈[α]|ψ†(t1)ψ(t3)|[β]〉
〈[α]|[β]〉

〈[α]|ψ†(t2)ψ(t4)|[β]〉
〈[α]|[β]〉 .

Similar results can be obtained for higher order correlators. Most of
the time we will directly compute coherences using equation (3.19) as it
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will lead to simpler calculations, but this generalized version of Wick’s
theorem may still be useful.

Outgoing coherence in the injection channel

Let us complete the full calculation of the outgoing coherence in the
injection channel, i.e. the one associated to the reduced density matrix
ρ1:

G(e)
ρ1 (t|t′) =

∫
ϕe(t+)ϕ∗e(t−)Dext(t− t′) (3.22)

〈[gt− ]|ψ(t−)ψ†(t′)ψ(t)ψ†(t+) |[gt+ ]〉 dt+dt− .

From the above discussion, the main component we need to compute is

〈[gt− ]| :D
[
Λt− − Λt′ + Λt − Λt+

]
: |[gt+ ]〉 (3.23)

using equation (1.116). Without going into more detail, we find that
this last quantity times Dext(t − t′) is equal to some full decoherence
coefficient D(t, t′, t+, t−) given by

D(t, t′, t+, t−) = γ+(t+ − t′)γ−(t+ − t)γ∗+(t− − t)γ∗−(t− − t′) (3.24)

where we introduce

γ±(t) = exp
(
±
∫ +∞

0

dω
ω

(1− t(ω))(eiωt − 1)
)
. (3.25)

Finally, the outgoing coherence in this channel can be rewritten under
a rather compact form

G(e)
ρ1 (t|t′) =

∫
ϕe(t+)ϕ∗e(t−)D(t, t′, t+, t−) (3.26)

〈ψ(t−)ψ†(t′)ψ(t)ψ†(t+)〉F dt+dt− .

Using Wick’s theorem on the Fermi correlator, we can decompose the
outgoing coherence as a sum of two terms. The first one corresponds to
a modification of the Fermi sea which can be seen, under the right con-
ditions, as the contribution of electron/hole pairs generated by Coulomb
interaction in the vacuum state. We call it the modified vacuum part,
and we denote it with an MV subscript. The second contribution corre-
sponds, also under proper conditions, to the coherence of the incoming
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excitation after interaction-induced relaxation. It is called the wave-
packet contribution and will be denoted with a WP subscript. These
two contributions can be written as

G(e)
MV,1(t|t′) =

∫
ϕe(t+)ϕ∗e(t−)D(t, t′, t+, t−) (3.27a)

〈ψ†(t′)ψ(t)〉F〈ψ(t−)ψ†(t+)〉F dt+dt− ,

G(e)
WP,1(t|t′) =

∫
ϕe(t+)ϕ∗e(t−)D(t, t′, t+, t−) (3.27b)

〈ψ(t)ψ†(t+)〉F〈ψ(t−)ψ†(t′)〉F dt+dt− .

Outgoing coherence in the other channel

The same line of reasoning for the other reduced density matrix, ρ2,
corresponding to the environment in our simple system can be followed.
At the end of the day, a strikingly simple result is obtained: the outgoing
coherence G(e)

ρ2 (t|t′) is given by a modified vacuum term of the same
form as G(e)

WP,1(t|t′), but using function r(ω) rather than 1 − t(ω) in
the decoherence coefficient. The fact that there is no wavepacket term
emphasizes that no electron has been injected in that channel, so that
only electron/hole pairs can be created. Therefore, we obtain:

G(e)
ρ2 (t|t′) =

∫
ϕe(t+)ϕ∗e(t−)D(−r)(t, t′, t+, t−) (3.28)

〈ψ(t)ψ†(t+)〉F〈ψ(t−)ψ†(t′)〉F dt+dt−

where D(−r) is defined in the same way as D, but using −r(ω) instead
of 1− t(ω). This notation, and the corresponding one for γ± functions,
will be reused later in this manuscript. Of course, if no subscript is
given, it must be understood as γ(1−t)

± as defined in equation (3.25).

3.1.3 Numerical implementation

After this rather theoretical approach to computing coherence, we need
to find a way to calculate the result for some specific form of interaction
or wavepacket. To do so, B. Roussel has implemented a clever numerical
implementation to evaluate the result. This section will therefore be
devoted to a rapid explanation of this numerical approach, as well as of
the analytic tools which I have developed used to simplify this problem.
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Figure 3.3: A visual representation of the propagation of coherence in
the ω, δω space. Any point of the incoming coherence leads to coherence
in the same δω line, down to −ω. Therefore, interactions lead to hole
coherences as well as electron/hole ones.

Going to the frequency space

Using time translation invariance, we know that the decoherence co-
efficient D(t, t′, t+, t−) from equation (3.24) and all Fermi correlators
appearing in equation (3.27) are independent in the variable correspond-
ing to the sum of all times. Translating this property to the frequency
domain shows that the outgoing electronic coherence is of the form

G̃(e)
ρ1

(
ω + δω

2

∣∣∣∣ ω − δω

2

)
= (3.29)∫ +∞

−∞
ϕe

(
ω′ + δω

2

)
ϕ∗e

(
ω′ − δω

2

)
K(ω, ω′; δω)dω′

where the propagatorK depends on the product of two points correlators
on the Fermi sea in the energy domain and of the Fourier transforms
of the γ± functions defined by equation (3.25), which we will denote by
Γ±.

Let me stress the physical interpretation of equation (3.29): it shows
that ω and δω are decoupled variables, in the sense that the incoming
coherence at (ω′+δω/2, ω′−δω/2) only leads to coherence at points with
the same value of δω. This is depicted in figure 3.3. As shown in this
figure, this same points can only create coherences down to −ω′ but not
lower by energy conservation. The numerical challenge is to compute
this propagator in the most efficient way.
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Identifying potential difficulties

Expressions (3.27a) and (3.27b) show that the computation of each of
the terms contributing to single electron coherence involves two point
correlators of free fermion operators in the Fermi sea as well as deco-
herence coefficients, which are all built from building blocks defined by
equation (3.25).

As is well known, the two-point correlator of free fermion operators at
equilibrium spreads over the thermal coherence time τth(Tel) = ~/kBTel
which diverges at zero temperature. It also has an ultraviolet (UV) di-
vergence. Moreover, for the simplest interaction model at ν = 2 [105],
the building blocks γ±(τ) also present algebraic singularities both in the
infrared (IR) and UV. Consequently, a direct time domain evaluation of
these expression is certainly likely to encounter serious difficulties. This
is the track followed by our partner of the 1shot ANR project [171]
and their approach is limited to a specific model for effective screened
Coulomb interactions. It also experiences IR divergences at low temper-
atures.

Our approach is to bypass all these difficulties by tracking down all
singularities in the reciprocal (frequency) domain so that they could be
kept under control. The equilibrium fermionic correlator has no singu-
larity in the energy domain: it is the equilibrium occupation number
which is at most discontinuous at zero temperature. More importantly,
the key point here is that the Γ± functions2 which encode the effect of
effective screened Coulomb interactions have a simple singularity struc-
ture whatever effective model we consider. More precisely, we always
have a delta function singularity and a regular part

Γ±(ω) = 2πκ± (δ(ω) +B±(−ω)) (3.30)

with constants κ± such that κ+κ− = 1, and B± regular functions such
that B±(ω < 0) = 0. The regular part can be found as the solution of

ωB±(ω) = ±
[
1− t(ω) +

∫ ω

0
B±(ω′)(1− t(ω − ω′))dω′

]
(3.31)

with the condition

B±(0+) = ± lim
ω→0+

1− t(ω)
ω

. (3.32)

2They are the Fourier transforms of γ±(t).
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How can this help us compute the outgoing coherences? The idea is
to find a propagator K with the simplest possible expression in terms
of computational cost. What I have done was therefore to expand all
possible combination of δ and B± for both terms of equation (3.27), so
that all δ singularities could be taken out by evaluating them. In full
generality, this leads to 16 possible terms for the wavepacket part and
16 more for the modified vacuum part of coherence. The corresponding
expansions are given in appendix B. In principle, the last step is to
numerically compute all these 31 terms3 but, as we shall explain now,
a brute force approach is not the best way to obtain the results we are
longing for.

Computational complexity

In order to estimate the complexity of the numerical evaluation of all
these terms, the first thing to do is to organize them according to the
number of integrals that would be needed in order to compute the value
of the propagator.

The worst term for K, appearing in the modified vacuum contri-
bution when all regular functions are present, corresponds to a triple
integration. In terms of computation, this means that we would need a
quadruple integral for each point of the outgoing coherence. If we want
to evaluate it on n2 points, computing the full coherence would therefore
scale as O(n6). Even if it is polynomial and thus an easy problem from
a computer scientist point a view, this is a very bad scaling in practice:
doubling the number of points multiplies the computation time by 64.
Obtaining accurate results may thus prove impossible by a brute force
apprach.

Luckily, a whole part of the propagator, including the dominating
term, is of the form

∫∞
ω F (k)dk which means that by starting at large

ω and going downwards, saving the previous value at each time, we
only have to evaluate F once, thus lowering the complexity to O(n5).
Moreover, the two variables ω and δω encode different things, and need
not be discretized in the same manner in the general case. Indeed, δω
is conjugated to the average time, and therefore encodes the temporal
evolution of the wavepacket. But the precision needed to recover it is
mostly fixed by the duration and shape of the incoming wavepacket. It
can therefore be fixed in a clever way at the beginning and does not

3One of them is trivially recognized as the Fermi sea first order coherence.
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need to be changed even if we want to refine the calculation to capture
the dependence of K in the other variables. As a matter of fact, the
number of points in the ω direction controls the precision of all integrals
we have to compute in order to reconstruct the energy dependence of
the propagator.

This suggest to use an anisotropic discretization with n points in the
ω direction and m in the δω one. Our full numerical computation then
scales as O(m × n4), a scaling that can be confirmed by real measure-
ments of the CPU time for different numbers of points. The last tool
we use in order to decrease computation time is the parallel OpenMP
framework that allows the computation of most of the 32 terms on their
own, leading to a running time of about 5 minutes on the best computer
available in our lab4 for parameters n = 512,m = 256.

Let us finally mention that specific indicators are used to test the
accuracy of the code: they are based on sum rules, such as total charge
conservation which had been used previously in the study of the relax-
ation of an electronic excitation with perfectly defined energy [32]. In
time-dependent situations considered here, this sum rule is generalized
into sum rules involving the time-dependent average electric current.

More precisely, due to the relation between the Fourier components
of the electrical current and the edge magnetoplasmon modes [65], the
average outgoing electric current can be computed straightforwardly
from the incoming current and the edge magnetoplasmon transmission
amplitude t(ω). It can then be compared to the average electrical cur-
rent directly obtained from the result of our computation, that is the
outgoing excess single electron Wigner function. These numerical indica-
tors are precisely what is used to specify the discretization for obtaining
our final results (see supplementary information of [OP2]).

3.2 The fate of an electron : an experimental
autopsy

Having a way to predict the outgoing first order coherence after a single-
electron excitation has propagated across an interaction region, it is time
to confront the theoretical predictions with expreriments. The purpose
of this section is to present the results obtained on single electron deco-
herence in the ν = 2 quantum Hall edge channel system. These results

4Dell Poweredge R920 with 4 Intel Xeon E7-4870v2 15 core 2.3 GHz CPUs.
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have been published in several papers: the decoherence scenario for
single-electron excitations being presented in [OP2] and the first (and
successful) comparison between theory and experiments for HOM ex-
periments being done in [OP3].

Nevertheless, the latter paper is not the end of the story. As will be
discussed in the forthcoming section, finite frequency admittance mea-
surements performed a sample at ν = 2 have shown explicitely that the
simplest model for effective screened Coulomb interactions is only valid
at low enough energies [14]. This rises the question of the influence of
differences between effective models on the relaxation and decoherence
of single electron excitations. In our recent work [OP1], we discuss how
single electron relaxation differs between different models for effective
screened Coulomb interactions in the ν = 2 edge channel system, but
this will be the central point of further sections.

3.2.1 Spin-charge separation

Let us start by discussing which model could describe screened Coulomb
interactions in our typical experiments. Based on admittance measure-
ments performed by Bocquillon et al. [14] and time-domain measure-
ments by Hashisaka et al. [78], we know that the low energy behaviour
is given by a so-called spin-charge separation model.

The spin-charge model is based on short-range capacitive coupling
between the two edge channels of interest, inspired by Luttinger liquid
treatments [57] and developed first and extensively by Levkivskyi and
Sukhorukov [105]. The basic assumption is that, in the presence of
metallic side gates, Coulomb interactions are screened and the charge
density in one channel gets capacitively coupled to the charge density
at the same point in the other channel, as schematically depicted on
the left of figure 3.4. In terms of electric potentials, charge densities
are coupled to potentials through distributed capacitances, nα(x, ω) =∑
β Cα,βVβ(x, ω). Looking back at equation (3.2), this implies that a

2 by 2 velocity matrix describes the motion of the bosonic fields in the
interaction region. Within this region, the eigenmodes of this matrix are
delocalized over the two channels, and propagate at different velocities.
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This leads to the following edge magnetoplasmon scattering matrix5:

S(ω) =
(
p+eiωτ+ + p−eiωτ− q

(
eiωτ− − eiωτ+

)
q
(
eiωτ− − eiωτ+

)
p+eiωτ− + p−eiωτ+

)
(3.33)

where

p± = 1± cos(θ)
2 , q = sin(θ)

2 , (3.34a)

τ+ = l

v+
, τ− = l

v−
. (3.34b)

In these equations, θ corresponds to the coupling strength, v+ to the
velocity of the slowest mode and v− to the one of the fastest mode. In
the strong coupling regime, θ = π

2 , the corresponding modes are a fast
charge mode symmetric over the two channels, and a slow neutral mode
which is antisymmetric, schematically depicted in the right of figure 3.4.

To understand this behaviour directly from the scattering matrix,
one has to refer to the discussion of section 3.1.1 on the properties of
the scattering matrix: the inverse Fourier transform of Sαβ correspond
to the expected outgoing voltage in channel α if the incoming state
is simply an electron emitted at t = 0 in channel β. At θ = π

2 , if
we inject such an electron in channel 1, the corresponding voltages are
− h

2e(δ(t− τ+) + δ(t− τ−)) in channel 1 and − h
2e(δ(t− τ−)− δ(t− τ+))

in channel 2. This corresponds to percussional current pulses of charge
−e/2 arriving at times τ+ and τ− in channel 1, and pulses of charges
e/2 and −e/2 at the same times in channel 2. The initial current pulse
is splitted in two and we recover the idea of a symmetric mode and an
antisymmetric one over the two channels. This separation is often called
the spin-charge separation as the two edge channels are of opposite spins.
The fast mode (arriving at τ−) bears all the charge of the incoming
excitation whereas the slow one bears the initial spin. Howoever, do
not forget that this view is valid only for the average electrical current,
which only contains a small part of the information on single electron
coherence. As we shall see, this point will be crucial to understand the
rich physics of single electron decoherence.

Before we move on to discussing results for single electron decoher-
ence, the reader should be aware that the spin charge separation model
is not the end of the story. The admittance measurements performed

5See for example Degiovanni et al. [33], specifically its supplementary material for
the complete derivation from the equations of motion.
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Figure 3.4: Left: A schematic of the short-range capacitive coupling
model under study in this section. Right: Representation of the separa-
tion into two modes propagating at different velocities in the system.

by Bocquillon et al. [14] as well as the time-domain measurements by
Hashisaka et al. [78] clearly show that the eigenmodes we are discussing
exhibit dispersion as well as dissipation at high enough energies, which
will be discussed later.

Results for Leviton excitations

To begin our discussion of single electron decoherence in the short-range
interaction model, let us start with a unit charge Leviton excitation
propagating over larger and larger distances. The nice feature of this
example is that the case of a train of Leviton excitation can be treated
within the framework of Floquet theory [65] and thus, this simple ex-
ample can be used as a testbench for our general method.

The results are visible in figure 3.5. Since the Leviton is gener-
ated by a classical voltage pulse, it is a coherent state of plasmons, and
therefore does not entangle with its environment in the bosonic point
of view. The incoming coherent state associated with a Levitonic ex-
citation, |[−eṼ (ω)/h

√
ω]〉 is simply changed into |[−t(ω)eṼ (ω)/h

√
ω]〉.

There is no many-body decoherence in this case: ρ1 and ρ2 are pure
many body states. Of course, there is no reason for this new coherent
state to correspond to a perfectly electronic state. It contains elec-
tron/hole pairs which can be seen in the Wigner function. Yet, the
Wigner function exhibits all features we expected from the spin-charge
separation: the incoming Leviton splits into two Lorentzian pulses, each
carrying half an electric charge and called half-Levitons. They prop-
agate at different speeds. In the “environmental” channel, we recover
a half-Leviton propagating at the fast speed and an anti-half-Leviton
propagating at the slow speed. The typical timescale over which this
spin charge separation takes place is nothing but the temporal width of
the leviton:
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To gain an understanding about what will happen in the general
case, let us consider a superposition of two Levitons emitted at dif-
ferent times. The corresponding results are depicted on figure 3.6,
with the same interaction parameters as before, for the superposition
(|Lev−δt〉 + |Levδt〉)/

√
2, with δt = 12τ0. As we can see, each part of

the superposition undergoes the same type of spin-charge separation as
a single Leviton, creating a fast symmetric mode and a slow antisym-
metric one over the two channels. More interesting is what happens to
the interference pattern between these two parts, which is clearly visible
at t = 0 on the incoming Wigner function. As spin/charge separation
occurs, this pattern is washed out, a sign that the outgoing state is no
more the quantum superposition of the two parts but rather a mixture
of them. We cannot detect this effect by looking only at the current,
since the current is not sensitive to the energy content in our system.
Its manifestation is much stronger on the electron distribution function,
as can be seen in figure 3.7.

Death of the Landau excitation

The previous discussion makes it clear that a generic electronic state
will undergo a totally different decoherence scenario when propagating
across the interaction region. This comes from the fact that such a
generic state is indeed a quantum superposition of an infinite number of
time-localized states, each of them experiencing the effects of spin-charge
separation. The superposition will thus be subject to decoherence. Note
that the only case in which this argument does not work is for the
Levitons considered in the previous paragraph. As explained before,
this is because Levitons are also edge magnetoplasmon coherent states,
but are the only single electron excitations for which this is the case [138].

Without further discussion, let us therefore look at the evolution of
an energy-resolved excitation, shown in figures 3.8 and 3.9. We clearly
see that the situation is radically different from the Leviton state. A
fast relaxation in energy happens, arising from the washing out of all in-
terferences between the parts forming the quantum superposition. This
comes from the many-body decoherence experienced by the edge chan-
nel in which the excitation is injected under the influence of the second
edge channel.

It is only after this initial relaxation that the separation into two
main parts propagating at different velocities becomes visible. This
reflects the fact that we end up in a statistical mixture of coherent
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Figure 3.5: Excess Wigner function of a Leviton excitation sent in chan-
nel 1 at t = 0, going through a short range interaction region with
parameters θ = π/2 and τ− = τ+/20. From top to bottom, we show
∆W(e)

ρ1 (t, ω),〈ie,1〉, ∆W(e)
ρ2 and 〈ie,2〉. From left to right, the interaction

region gets longer and longer. We clearly see a separation of the in-
coming excitation into two halves propagating at different speeds, that
spread further apart from each other with interacting length. As ex-
pected from the previous discussion, the fastest part corresponds to a
symmetric mode over the two channels, whereas the slow one is an-
tisymmetric and corresponds to hole excitations in the inner channel.
The current in both channels shows the same results.
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Figure 3.6: Excess Wigner function of a superposition of Levitons, with
separation δt = 12τ0 going through a short range interaction region with
parameters θ = π/2 and τ− = τ+/20. As before we have from top to
bottome ∆W(e)

ρ1 , 〈ie,1〉, ∆W(e)
ρ2 and 〈ie,2〉, and interaction time rises from

left to right. Each part of the superposition undergoes a separation into
two halves, but the interference pattern between them vanishes with
longer interaction time, a sign of decoherence. This is not visible on
the currents, since they are not sensitive to the energy content of the
system.
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Figure 3.7: Energy distribution for the outer edge channel in the cases
displayed on figure 3.5 (left) and on figure 3.6 (right). When a Leviton
goes through an interaction region, it leads to excitations closer to the
Fermi sea, and in particular creates hole excitations. For a superposition
of two Levitons, however, the interference fringes seen on the Wigner
function lead to oscillations in the energy distribution. After the effect
of interaction, these oscillations are washed out, reflecting the fact that
the state of the system goes from a pure state to a statistical mixture.

plasmonic states, and each of those states undergoes the standard spin-
charge separation, leading to the apparition of two mixtures of states
involving the two propagation velocities v− and v+. Of course, look-
ing at the average current enables us to recover the standard image of
symmetric and antisymmetric pulses spread over the two channels. By
looking only at the current, we see no difference at all between the Levi-
ton and Landau case. But the full Wigner function tells us a completely
different story: the Landau excitation undergoes a fast relaxation even
before the current pulses become separated.

To summarize, the decoherence scenario of the Landau quasi-particle
involves two tim scales. For an energy resolved excitation (γ � ω0),
the single electron coherence relaxes close to the Fermi level after a
time of flight proportional to ω−1

0 . Then, after a time of flight pro-
portional to the wave packet duration γ−1

0 � ω−1
0 , ∆W(e)

out(t, ω) splits
into two parts progressing at the velocities of the two edge magneto-
plasmon eigenmodes, thus giving birth to collective excitations close to
the Fermi sea. The first phenomenon is associated with energy relax-
ation probed by Sueur et al. [155], whereas the second one corresponds
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to the expected fractionalization arising from the charged/neutral mode
separation probed by Bocquillon et al. [14]. This is to be contrasted with
the Leviton decoherence scenario for which the only time scale appear-
ing is the time needed to fractionalize a Leviton [65]. The full picture
of coherence is therefore necessary to really understand the physics at
play here!

The important message here is that the rapid electronic relaxation is
simply the electronic analogue of a recent cavity QED experiment [34]
which probed the decay of interference fringes in the Wigner function of
a superposition of two coherent states. Here, electronic relaxation arises
from the decoherence of a mesoscopic superposition of quasi-classical
charge density waves. This process takes place over a shorter time than
the evolution of each of these quasi-classical states, which corresponds
to spin-charge separation. Once extrinsic decoherence has taken place,
the outgoing many-body state is an incoherent mixture of fractionalized
localized electronic excitations. We confirm this scenario by computing
both the current pulse and the electron distribution function correspond-
ing to the outgoing Wigner functions: as shown in Fig. 4 of [OP2], the
decay of the quasi-particle peak takes place at short times while the cur-
rent pulses are almost unseparated and no hole excitations are created,
thus confirming that it is a purely extrinsic decoherence effect. It is only
when the two half-charge current pulses split that hole excitations are
created.

3.2.2 Experimental confirmation

In order to probe the decoherence scenario we just discussed, a tool of
choice will be Hong-Ou-Mandel interferometry. Indeed, as discussed in
section 2.2.2, the measured quantity for HOM experiments is directly
proportional to the time-shifted overlap between the Wigner functions
of interest. In our case, we will thus probe the time-shifted overlap
between the outgoing Wigner functions arising from two Landau excita-
tions whose injection energy and width of the wavepacket can be tuned
by the experimentalist. Note that the length of propagation between
the source and the central QPC, which is nothing but the interaction
region length, is fixed by the sample geometry. This setup also gives
access to the speed of the slow mode [14], which can be compared with
an estimation of the speed of the fast one [97]. This leads to a 1/20
factor between τ+ and τ−, as was used before.

From these information, we can numerically compute the electronic
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Figure 3.8: Excess Wigner function of a Landau excitation such that
ω0τ0 = 10, going through an interaction region with parameters θ = π/2,
τ− = τ+/20 and varying τ+. As for Levitons, we present from top to
bottome ∆W(e)

ρ1 , 〈ie,1〉, ∆W(e)
ρ2 and 〈ie,2〉. The situation is quite differ-

ent from the Leviton case: after a very short time, coherence between
the different magnetoplasmon coherent states constituting the Landau
excitation is lost, leading to a rapid energy relaxation. This is similar to
the decay of interference fringes seen for the superposition of two Levi-
tons. Of course, this is not visible on the current, which only exhibits a
separation of the incoming exponential into two parts.

170



Chapter 3 – Section 3.2

τ+ = 0.6τ0

−1

0

1

ω
/ω

0

−1

0

1

ω
/ω

0
τ+ = 0.8τ0 τ+ = 1τ0

−1.5

−1

−0.5

0

0.5

1

1.5

−0.8
0

0.8

〈i e
,1
(t
)〉

−0.8
0

0.8

0 1 2 3

〈i e
,2
(t
)〉

t/τ0
0 1 2 3

t/τ0
0 1 2 3

t/τ0

Figure 3.9: Follow-up to figure 3.8 for longer interaction times. We see
that after the initial loss of coherence and energy relaxation, the state
ends up in a mixture of coherent plasmonic states, each of them un-
dergoing the natural spin-charge separation. This leads to a separation
of the resulting state into two parts, and to symmetric and antisym-
metric situations over the two channels. In the current, we recover the
separation of the initial exponential into two halves.
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Wigner functions at the QPC location, and predict from these the HOM
noise as a function of the time delay between the two single electron
sources. The main result of these computation is shown in figure 3.10 for
excitations of the same energy, but with different temporal width. This
figure also depicts the experimental results measured in the experimental
group of G. Fève as well as a theoretical prediction at Tel = 100 mK from
the group of Th. Martin6

As can be deduced directly from figure 3.10, the results predicted
by both theoretical approaches have a strikingly good agreement with
experiments. It is a first hint that our decoherence scenario for Landau
excitations is correct, or at least not totally wrong. It also shows that
the experiment is performed at a low enough temperature for our zero
temperature computation to be quite in agreement with the experimen-
tal results. Most importantly, the main effect showed here is that the
more energy-resolved the incoming excitation is, the more drastic inter-
action effects become, leading to smaller and smaller dips in the HOM
curves.

Before moving on, let us take a moment to adress the disagreement
between the value of τ0 used for the fits and the one given for the exper-
imental data. For that, let us take a look at how the electronic escape
time from the source is measured in the experiment and how it is chosen
for the numerical computation. In the experimental setup, the electronic
escape time is extracted from the phase of the first harmonic in the AC
current generated by the source. Unfortunately, this simple method has
several limitations: first of all, the measurement precision can lead to
significative error bars7. Next, the rise time of the excitation pulse is
not taken into account, and neither is the widening of current pulses
under the effect of interactions. This is the most important caveat since
correcting it would require using an interaction model, which is precisely
what we are testing. The fact is that the value extracted from the exper-
iment using this method is therefore expected to be somehow different
from the real escape time describing the wavepacket injected into the
system by the single electron source. Knowing that, how can we choose

6The main differences between Th. Martin’s group predictions, developed more
specifically in Wahl et al. [171], and ours is that their approach relies on the specific
model of interaction but is performed at non-zero electronic temperature. As for us,
we have not yet implemented the non-zero temperature, but our approach is valid for
any effective screened Coulomb interaction model.

7For the data presented here, measured escape times are τ0 = 30± 5, 100± 18
and 180± 50 ps.
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Figure 3.10: Comparison between experimental results and theoretical
predictions for electrons emitted at the same energy ω0, with various
time resolutions. Top: Results extracted from Marguerite et al. [OP3],
showing experimental data points and theoretical predictions both from
our zero-temperature computation (dotted curves) and finite tempera-
ture computation at Tel = 100 mK from Th. Martin’s group (dashed
curves). Middle: Excess Wigner function of the incoming excitations
in the ideal single-electron regime. We have 2πω0 = 15 GHz (see sec-
tion 1.1.2) and τ0 values are 140 ps (black), 91 ps (blue), and 34 ps (red).
Bottom: Outgoing excess Wigner function for each of the three injected
wavepackets. The HOM theoretical curves are obtained using the over-
laps of these Wigner functions with themselves, using a varying time
shift. As can be seen on the top part of the figure, theoretical predic-
tions are in great agreement with experimental results, but the effect of
temperature is not visible with our experimental resolution.
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the value to obtain numerical predictions? To answer this question, we
have chosen the escape time in such way that the HOM prediction would
have the same width as the data, since this width is a direct result of
temporal width of the incoming excitation. All other parameters (en-
ergy of the source, interaction length) were directly extracted from the
experiment since we had a better resolution on them. The advantage of
this approach is that, once the width of the dip had been fixed to match
the experimental data, its depth would also fit with the data! Moreover,
the value we get for τ0 in this approach are indeed within experimental
error bars. This allows us to be confident in the fact that our theoretical
approach does indeed provide a quantitative explanation of interaction
effects on single electron coherence in this experiment. However, we
would like a more direct and explicit proof of the many body decoher-
ence effect that is responsible for the spectacular difference between the
decoherence scenario of Levitons and Landau excitations.

3.2.3 A revival of indiscernability ?

Having a closer look at our decoherence scenario clearly emphasizes the
role of energy relaxation in the difference between Leviton and Landau
excitations. In the absence of interaction, two Landau excitations with
different energies and high quality factor would be quite easy to distin-
guish from one another. These wavepackets would only have a small
overlap, and the expected HOM curve would only have some small dip
down to one minus the value of that overlap. On the other hand, in the
absence of interactions, two identical Landau excitation depict an HOM
dip that goes down to zero.

By contrast, our theoretical approach to interactions shows that any
wavepacket not created from a classical current experiences many-body
decoherence whose fingerprint on single electron coherence is fast energy
relaxation. This suggests that the information on the injection energy
might be partially absorbed by the environment and, in contrast with
the non-interacting case, this should have visible consequences on the
HOM curves.

Let us confirm this intuition by looking more precisely into our
analysis: many body decoherence tends to kill all the contributions to
the outgoing coherence which would come from coherences of the form
ϕe(t)ϕ∗e(t′) with t 6= t′. This implies that the outgoing single electron
coherence, or equivalently the Wigner function, should only depend on
|ϕe(t)|2. This has the striking consequence that all injected wavepackets
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with the same escape time τ0 but different injection energies should lead,
in the limit of an infinite interaction region, to the same HOM curve!
This prediction is indeed supported by our numerical computations, and
can therefore be tested experimentally. The results of this study are pre-
sented in figure 3.11. In this figure, we can see that experimental results
confirm, up to our resolution, that the HOM curves for excitations with
the same temporal form but different energy contents are indeed the
same.

This is the smoking gun we were looking for: at the single electron
coherence level, the quantum states after the interaction region are less
distinguishable than the ones that have been injected by the single elec-
tron sources. Through the looking glass of single electron coherence,
the interaction region acts as an eraser for the injection energy, thus
restoring indistinguishability of the quantum electrical currents within
each incoming channel of the HOM interferometer. This kind of indis-
cernability revival can be confirmed by looking at the expected Wigner
functions after the interaction region, presented on that same figure.
Indeed, the Wigner function displays a low-energy state with two main
parts, and looks quite identical for both incoming states. Of course,
the outgoing states are not pure quantum states, so the contrast of the
HOM experiment cannot go all the way down to zero.

As will be clear later, this effect is due to the strong coupling be-
tween the injection (outer) edge channel and the second (inner) one. A
weaker coupling may lead to an energy relaxation scenario that could be
described by a non-zero probability for the electron to propagate across
the interaction region without experiencing any inelastic process. We
would therefore still have a quasi-particle peak at the injection energy,
even in the limit of a very long interaction region. Because these rem-
nants would retain information about the initial injection energy, we
would not observe such an indiscernability revival and such an indepen-
dance of the HOM curves from the incoming initial energy.

Another way to present the environment induced erasure of the in-
jected initial energy is by refering to the famous quasi-particle decay
problem originally considered by Landau to motivate his theory of the
Fermi liquid. It is a signature that no significant quasi-particle peak
survives propagation over a distance which is inversely proportional to
the injection energy of the quasi-particle. By contrast, for an electronic
quasi-particle created above the Fermi level in a Fermi liquid, the typical
energy relaxation time decays as the inverse of the square of the injec-

175



Chapter 3 – Section 3.2

Figure 3.11: Comparison between experimental results and theoreti-
cal predictions for electrons emitted with the same temporal width
τ0 = 40 ps, with two possible injection energies. Top: Results extracted
from Marguerite et al. [OP3], showing experimental data points and
theoretical predictions from our zero-temperature computation (dashed
curves) for two separated cases: both injected wavepacket have the same
energy (red) or different energies (black). Blurred lines correspond to the
expected HOM signal in the absence of interaction: identical wavepack-
ets lead to a complete dip down to 0, while different ones lead to a smaller
dip. We see that the experimental data is pretty much the same for both
situations, indicating that we have more indiscernability after interaction
than before! Middle: Excess Wigner function of the incoming excita-
tions in the ideal single-electron regime. Energies are ~ω0/kB = 0.7 K
(left) and 0.3 K (right) Bottom: Outgoing excess Wigner function for
each of the two injected wavepackets. The HOM theoretical curves are
obtained using the overlaps of these Wigner functions with themselves,
using a varying time shift. These Wigner functions clearly exhibit less
differences than the incoming ones, explaining why the theoretical curves
are much closer to each other for the outgoing wavepackets. As before,
the agreement between theory and experiment is quite good.

176



Chapter 3 – Section 3.2

tion energy, thus ensuring that the quasi-particle peak does not broaden
towards vanishing injection energy. This is clearly not the case here!
The fact that the electronic quasi-particle does not survive propagation
in a quantum Hall edge channel at ν = 2 has first been noticed by the
group of F. Pierre during their study of the relaxation of a non equilib-
rium electronic distribution [155]. Here, we are confirming it by a direct
study of the fate of a single energy-resolved electronic excitation.

3.2.4 Comparison to another model at ν = 2: long-range
interaction

As teased before, we know from Bocquillon et al. [14] that even if the
short-range interaction model is valid at low energies, the effect of the
finite range of effective screened Coulomb interactions reveals itself at
higher energies, typically 10 GHz in the sample studied in this publi-
cation. Since this is comparable to the frequencies associated with the
injection energy by the single electron source, it is important to discuss
the influence of long range interaction effects on electronic decoherence.

Derivation of the transmission matrix

The model we are interested in is a simple case of two co-propagating
channels in which Coulomb interactions are not screened locally. The
interaction region is thus seen as a capacitor, which amounts to saying
that local potentials U seen by electrons are uniform on the whole length
of the interaction region. In that case, the interaction region can be
discussed in the spirit of the discrete element circuit models introduced
by Büttiker and his collaborators for quantum conductors [128] and
quantum Hall edge channels [26]. This approach leads to the following
edge magnetoplasmon scattering matrix [65]:

S(ω) =
(
p+T+(ω) + p−T−(ω) q (T−(ω)− T+(ω))
q (T−(ω)− T+(ω)) p+T−(ω) + p−T+(ω)

)
(3.35)

where p± and q are given by equation (3.34) and other parameters are
given in terms of the dimensionless parameter x = ωl/vF by

T±(ω) = eix − 1 + iα±xeix

eix − 1 + iα±x
(3.36)

α± being related to the eigenvalues of the capacitance matrix C± by
α± = RKC±vF/l.
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Before using this expression to compute outgoing Wigner functions,
let us estimate the typical values of these α±. The first thing we know
is that the low-energy limit of this long-range case gives back the short-
range case introduced before. The low energy limit is given by T± =
eiωτ lr

± , where the long-range times τ lr± are given by

τ lr± = ωl

vF

α±
1 + α±

. (3.37)

Since we want these times to be equal to their short-range counterparts,
and in particular since we want to have τ lr− = τ lr+/20, we get a first
relation between α+ and α−. Moreover, measurements from Bocquillon
et al. [14] tell us that the velocity of the slow mode should be v+ '
4× 105 m s−1, whereas the Fermi sea velocity is vF ' 1× 105 m s−1.
Equivalently, this leads to τ+vF/ωl = 4. All this together leads us to
chose, for the remainder of this section,

α+ = 1
3 α− = 1

79 . (3.38)

The outgoing Wigner functions for excitations crossing a long-range
interaction region can then be computed using the approach described
in the present chapter. The results are shown in figure 3.12 for Landau
excitations. Several qualitative changes can be noticed compared to the
short-range case. First, non-vanishing coherence and current appear at
times smaller than the time taken for a free excitation to cross the in-
teraction region. This is due to the long range character of Coulomb
interactions: as soon as the incoming excitation enters the interaction
region, it excites low-energy electron/hole pairs in the whole interaction
region. This explains that a first current peak should begin at a time
τ = l/vF before the arrival of the “real” excitation, as can be seen in the
figure. Of course, this is not a violation of causality: the electromagnetic
disturbance does propagate within the space around the conductor at
the speed of light since it is not screened by any nearby gate. Speaking
of the electrical current, the bottom panel shows that the outgoing av-
erage current has three main peaks, compared to the two obtained in a
short-range setting. Finally, as expected from the long-range nature of
interactions, the outgoing coherence has a bigger spreading in the time
domain.

It is then natural to ask whether or not these differences can be
detected by an HOM experiment. To answer this question, figure 3.13
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Figure 3.12: Comparison between short- and long-range interactions, for
Landau excitations with ω0τ0 = 10. Left: Wigner function of the outer
channel for an excitation going out of a long-range interaction zone.
Right : Wigner function for the same incoming excitation, with a short-
range interaction region of the same length. Parameters are τ+ = τ0/2,
τ− = τ+/20. In both cases, the region length is the same, and we
are in the strong interaction regime (θ = π/2). The finite frequency
admittance of both interaction regions has the same low energy limit
when using values given by equation (3.38), as discussed in the text.
Time spreading of coherence is different in the two models, and lon-
range interaction leads to the apparition of excitations at earlier times,
three main peaks in the current instead of two, and a more complex
pattern in the energy domain.
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displays our prediction for HOM curves for both the short and long
range interaction models assuming interaction regions of the same length
and the same incoming excitations. As seen from this figure, these two
interaction models lead to qualitatively different HOM curves: the long
range one shows a wider dip, as expected of the wider time spreading of
the outgoing excitation and more “secondary dips” than the short range
case. This last feature can be traced back to the three main peaks in
the outgoing Wigner function of the long range case compared to the
two peaks of short range interaction.

To comment on the experimental state of the art [OP3, 51, 52, 112],
we have plotted on the right panel of figure 3.13 the HOM predictions
for parameters corresponding to the recently published experimental re-
sults in [OP3]. Unfortunately the side lobes that would enable us to
differentiate between the two interaction models occur for a time shift
comparable or greater than 300 ps. However, probing time shifts larger
than 200 ps brings us to values too close to the half-period of the drive,
which is typically 1 ns. In such situations, it is not possible anymore
to ignore the excitation emitted in the other half period: we cannot
rely on a single-electron decoherence computation for a quantitative
theory/experiment comparison. Probing such large time shifts while
comparing to our present theoretical predictions would therefore require
lowering the drive frequency f , thus deteriorating the signal to noise
ratio of the low-frequency current noise measurements. This calls for
complementary investigations and/or experimental developments in or-
der to determine which interaction model for the ν = 2 edge channel
system would be the best at reproducing the full HOM curves in detail.

3.3 Protection from decoherence

We have seen in the previous section that decoherence effects are partic-
ularly strong in the ν = 2 quantum Hall edge channel system. This has
been confirmed experimentally several times, as we already discussed,
putting to a stop the retrospectively naive idea that these systems could
be used to process quantum information carried by single electron ex-
citations. Using edge channels as rails for some kind of “flying qubit”
system would be severely limited, to say the least, by the effects of
electron-electron interactions.

Of course, this has sparked a line of research aiming for the protection
of electronic wavepackets against decoherence in these systems. This
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Figure 3.13: Predicted results of an Hong-Ou-Mandel experiment after
an interaction region in the short-range (dashed lines) and long-range
(solid lines) cases, at ν = 2. Left: Interaction parameters are the ones
given in the caption of figure 3.12, excitation is a Landau excitation with
ω0τ0 = 10. The two HOM curves are quite different, the most striking
features being the depth of the HOM dip at ∆τ = 0, and the secondary
dips at ∆τ = ±2τ0 in the long range case, associated with the excitations
at those same times that can be seen directly on the Wigner function
or the current on figure 3.12. The wider time spreading of the outgoing
coherence also leads to a wider HOM dip. Right: Interaction parameters
are realistic experimental ones, with τ+ = 70 ps and τ− = τ+/20 for the
short-range case and a long-range case giving the same low-energy limit.
Incoming excitation is a Landau wavepacket with ~ω0/kB = 0.7 K and
τ0 = 34 ps (red) or τ0 = 140 ps (black), as in figure 3.10. Long-range
interaction would lead to different HOM curves from the short-range
case, specifically in terms of secondary dips.
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is the main topic of this section: how can we engineer our setup in
order to protect electronic excitations from decoherence? What can we
realistically achieve in an experiment? To what extend can some sort of
“flying qubit” behaviour be recovered ?

3.3.1 A closed environment

The main idea that has indeed been explored in the last few years at
ν = 2 is passive decoherence control using a clever design of the sample
allowing to close the inner edge channel on itself. The idea is simple: a
closed loop is associated with some energy scale, so that a blocking of
energy transfers below that typical energy should happen. Moreover, if
the two channels stay close enough, interactions between them should
be sufficiently strong to screen all other possible sources of interaction
with the edge channel of interest.

This idea has been implemented in two experiments in the DC regime.
In the experimental group of F. Pierre at LPN, in Marcoussis, interaction
effects indeed lead to energy relaxation along the edge channels in their
setup [155] which can be partially blocked by letting the outer channel
propagate on longer paths, but along a closed inner edge channel [2].
In the nanoelectronic group at CEA Saclay (SPEC), P. Roche and his
collaborators have focused on probing decoherence and limiting its effect
in Mach-Zehnder interferometers [134, 135, 83, 157]. The most relevant
article for this section is the one of Huynh et al. [83], in which electronic
decoherence was partially blocked by bordering the propagating edge
channel by closed loops.

Theoretical model

There are two possible ways to interact with a closed inner channel,
depending on the geometry of the experiment. In the paper by le Sueur
et al. [155], the outer edge channel propagates along the inner edge
channel on the whole length of the loop, thus corresponding to what
we will call type (a) loops. By contrast, in the paper by Huynh et
al. [83], the outer channel only follows the loop on a small part of its
length, a feature which we will call type (b) loops. Both are drawn in
figure 3.14. We shall now compute the edge magnetoplasmon scattering
matrix associated with such an environment.

The main idea is that both geometries impose a periodicity condition
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l

Closed inner channel (a)

l

L

Closed inner channel (b)

Figure 3.14: Schematic representation of the two types of closed envi-
ronments we are interested in. Either the outer edge channel follows
the loop along its whole length (type (a), see [155]), or it only interacts
with it on a small part of the loop (type (b), see [83]). For both types,
the interaction length is called l, and the interaction type can be chosen
from any ν = 2 interaction.

on the field for the inner channel:

φ2(0, ω) = φ2(l, ω)eiωτL (3.39)

where τL = L
v+

is the time it takes for an excitation to cover the non-
interacting length L of the loop, and l is the size of the region where
the two-channels interact. The transmission coefficient for the complete
model is then obtained in full generality as

t(ω) = S11(ω) + S12(ω)S21(ω)
e−iωτL − S22(ω) (3.40)

with S the scattering matrix describing the interaction region of size l
between the two channels in the general case. For short-range interac-
tion, this specializes to

t(ω) = −eiω(τ++τ−−τL)
(

eiωτL − p+e−iωτ+ − p−e−iωτ−

e−iωτL − p+eiωτ+ − p−eiωτ−

)
. (3.41)

As expected, this transmission coefficient has a unit modulus since no
dissipation is present here and the unitary scattering matrix thus reduces
to a simple complex number. Of course, the special case (a) is recovered
for τL = 0.

Time-domain interpretation

To get a better understanding of this transmission coefficient, let us take
a look at its interpretation in the time domain, by computing the inverse

183



Chapter 3 – Section 3.3

Fourier transform of t(ω) as we did before for short-range interaction.
First, we can rewrite the transmission coefficient as

t(ω) = S11(ω) + eiωτLS12(ω)S21(ω)
∞∑
n=0

einωτLS22(ω)n . (3.42)

This expression has a clear physical meaning. Indeed, all excitations
recovered in channel 1 after the interaction region of size l correspond
to one of the following paths :

• Either incoming excitations cross directly the region in channel 1
(S11);

• Or incoming excitations create excitations in channel 2 (S21) which
go round the closed loop and create excitations back in channel 1
(S12). This can either happen after one lap around the loop (eiωτL)
or after n+ 1 laps, in which case we need to take into account the
fact that excitations in channel 2 crossed the interaction region
in channel 2 n times (Sn22) and made n more laps (einωτL). This
corresponds to the sum in equation (3.42) .

In the case of short range interaction, t(ω) can be rewritten as a sum
of complex exponentials

t(ω) = p+eiωτ+ + p−eiωτ− (3.43)

+
∞∑
n=0

n+2∑
k=0

wn,keiω((n+1)τL+kτ++(n+2−k)τ−)

where the weights wn,k are given by8

wn,k = (3.44)

q2
[(
n

k

)
pn−k+ pk− +

(
n

k − 2

)
pn+2−k

+ pk−2
− − 2

(
n

k − 1

)
pn+1−k

+ pk−1
−

]

This equation shows that the outgoing voltage for a localized excita-
tion of charge −e created at time t0 corresponds to the generation of a
percussional current pulse with charge −p+e emitted at time t0 + τ+,
another one with charge −p−e at time t0 + τ−, and an infinity of others
at times t0 + (n+ 1)τL+kτ+ + (n+ 2−k)τ− with charges −wn,ke. Total
current is conserved, since p+ + p− = 1 and ∀n,∑n+2

k=0 wn,k = 0.
8In this equation, we adopt the convention that

(
n
k

)
= 0 if k > n or k < 0.
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Figure 3.15: Outgoing current for an incoming Leviton excitation of
width τ0/4 after an interaction with a closed loop. Parameters are
τ− = τ0, τ+ = 3τ0 and τL = 7τ0. Such parameters, while not exper-
imentally reasonable, allow a good visualization of the physical prop-
erties of the current. Going from left to right, we indeed see first the
two peaks corresponding to standard fractionalization when crossing the
interaction region, followed by a series of three peaks corresponding to
excitations having crossed twice the interaction region and going around
the loop once (first corresponds to two crossings in the symmetric mode,
then one antisymmetric and one symmetric, third one is two crossings in
antisymmetric mode), and so on. Top: as given by the analytical com-
putation from equation (3.43). Bottom: as recovered when integrating
the numerically obtained outgoing Wigner function over all energies.

For the Leviton source, with the exact same reasoning, the outgo-
ing current is a sum of time-shifted Lorentzian currents with suitable
charges. Figure 3.15 shows the outgoing current for this type of envi-
ronment computed in two different ways. The top panel corresponds to
an analytical computation of the expected current in the way we just
exposed. The bottom panel is obtained from our numerical code used
to compute the outgoing single-electron coherence by integrating the re-
sulting excess Wigner distribution function over the energy. The very
good agreement between the two results illustrates the validity of our
numerical approach.
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Frequency domain interpretation

Let us now turn to the transmission coefficient as a function of energy.
Since |t(ω)|2 = 1, this system behaves as an effective ν = 1 system,
with a transmission of the form t(ω) = eiωτ(ω), τ(ω) being an effective
frequency-dependent plasmon velocity.

First of all, let us consider short-range interactions at weak coupling.
In that case, the closed inner channel can be seen as a Fabry-Pérot
interferometer with low transparency on one side and total reflection on
the other side. The interaction region can then be viewed as a cavity
connected to a transmission line. As in optics, the phase of its reflexion
coefficient, which is here the edge magnetoplasmon transmission t(ω),
exhibits sharp resonances. To characterize these resonances, let us look
at the Wigner-Smith time delay

τWS(ω) = 1
2πi

d log (t(ω))
dω (3.45)

which represents the dwelling time within the cavity for plasmons at
ω. Resonances in the phase will lead to peaks in τWS, corresponding
to the fact that quasi-bound scattering states are available within the
interaction region seen as a cavity. These resonances are sharply visible
in the weak-coupling regime, as can be seen in figure 3.16. The left
panel depicts the phase of teff(ω) = e−iωτ−t(ω), and displays strong
jumps of 2π every time ω(τ+ + τL) ' 2nπ. These jumps lead to strong
resonances in the Wigner Smith time delay as seen on the right panel.
At low coupling, we therefore expect that all plasmon states with an
energy lower than 2~π/(τ+ + τL) will not be affected by the interaction
region at all, since there are no available bound states in the cavity at
such energies.

Of course, we already presented strong experimental evidence that
the coupling between quantum Hall edge channels is strong (θ ' π/2).
It is then natural to ask ourselves how the results obtained for the low-
coupling case are modified. As can be expected from the comparison
with a Fabry-Pérot interferometer with higher transparency, higher cou-
pling leads to an energy broadening of the quasi bound states inside the
loop, as can be seen in figure 3.17. Equivalently, the phase does not dis-
play the same plateaus separated with strong jumps, but still exhibits
some kind of washed-out version of that behaviour.
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Figure 3.16: Phase of the transmission coefficient (Left) and the asso-
ciated dwelling time τWS(ω) (Right) for a short-range interaction with
weak coupling (θ = π/10) and parameters τ− = τ+/20, for 4 differ-
ent geometries of the loop. We see that the phase jumps each time
ω(τ+ + τL) ' 2nπ, with a stronger jump when ωτ+ = 2π. These jumps
are the signature of a quasi bound state (scattering resonance) at corre-
sponding energy inside the loop.
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Figure 3.17: Phase of the transmission coefficient (Left) and associ-
ated dwelling time in the closed inner channel (Right) for a short-range
interaction with strong coupling (θ = π/2) and the same 4 different
geometries for the loop as for the low-coupling case. We see that the
phase does not go from one plateau to another, but still exhibits jumps
at values close to the ones seen before, the jump at ωτ+ = 2π being once
again the strongest. The corresponding quasi bound states inside the
loop are therefore broadened in energy.
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3.3.2 Experimental predictions and Wigner functions

Comparison to an open channel

Now that we have a better understanding of the expected behaviour
of our transmission coefficient, we hope that any excitation whose en-
ergy content is completely below the first resonance will be protected
against decoherence. To test this assertion, we have computed numeri-
cally the Wigner functions of an electron emitted in an energy-resolved
wavepacket centered around ω0 = π/τ+, propagating across an inter-
action region of length l. The results are displayed in figure 3.18 both
for a closed environment of type (a) (τL = 0) and for a standard, open,
co-propagating short-range interaction region. In this situation, elec-
tron/hole pair generation is inhibited in the first case, because the elec-
tronic energy is off resonance with the cavity. In other words, relaxation
is blocked and almost no decoherence happens: the single electron exci-
tation leaves the interaction region pretty much unchanged. This is in
complete opposition with the result for standard spin-charge separation,
where the usual decoherence takes place.

Of course, we are also interested in the evolution of excitations emit-
ted above the cavity resonances. Figure 3.19 depicts such a case, with
an incoming excitation centered around ω0 = 5π/(2τ+). In this case,
the Landau excitation relaxes by emitting electron/hole pairs precisely
at the energy given by the first resonance. This relaxation leads to a
peak in the electronic distribution at the final energy of the electron,
which is its injection energy minus the resonance energy. In the tem-
poral domain, the characteristic features of the interaction-generated
electron/hole pairs cloud are the oscillations of ∆W(e) at energies below
the resonance energy.

To be more precise, we expect that the state generated by this system
is simply a plasmon emitted with the energy of the loop. The two
decoherence processes are completely different: on the one hand, in the
closed environment case, the quasiparticle peak stays quite strong, and
relaxation involves a typical energy scale. On the other hand, for an
open environment, decoherence leads to a proliferation of low energy
excitations close to the Fermi level, and the incoming quasiparticle is
washed out. The result of this process is far more complicated than a
simple energy-loss of the excitation. Of course, saying that closing the
environment leads to a completely controlled decoherence scenario is an
overstatement, but we can safely say that it leads to more control on
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Figure 3.18: Outgoing Wigner function for an incoming Landau excita-
tion of duration τ0 = 0.8τ+. Interaction parameters are θ = π/2 and
τ− = τ+/10. Left: short-range interaction with a closed environment of
type (a) (τL = 0). Right: copropagation along an open channel on the
same distance with same interaction parameters. For both graphs, the
incoming excitation is at an energy ω0τ+ = π, below the energy reso-
nances of the loop. When interacting with a closed channel, relaxation
is highly suppressed compared to copropagation along an open channel.
Because the injection energy is below closed channel resonances, the
outgoing occupation number remains close to the incoming one. Elec-
tron/hole pair creation is responsible of the spikes that appear on the
average electric current which are characteristic of the closed channel
geometry.
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Figure 3.19: Same as figure 3.18 for an incoming excitation above the
resonance energy, ω0τ+ = 5π/2. Energy relaxation involves the emis-
sion of electron/hole pairs at the resonance energy, leading to a second
peak in the energy distribution. We have a clear difference in the two
decoherence scenarii.

decoherence than in the presence of an open second channel.

To be a bit more quantitative on these discussions, we can of course
look at the expected HOM signals for all these excitations, and check
whether or not we are protected against decoherence. This is what is dis-
played on figure 3.20. We clearly see that the HOM dips for wavepackets
propagating along a closed inner channel are deeper than their opened
environment counterparts, meaning that less decoherence has occured
during their propagation. In the specific case of the low-energy wave-
packet emitted below the first resonance, we even recover a dip going
down close to 0, denoting a quasi-complete protection from decoherence.
In theory, the setups we are interested in should therefore be good candi-
dates for decoherence protection. Yet, we need to ask ourselves whether
they can be built in a real experiment, specifically in terms of loop sizes.

Can we imagine a possible geometry in which Landau excitations
such as the one emitted by a single-electron source would be protected
against decoherence? This is what we are going to discuss in the forth-
coming section.
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Figure 3.20: Results of an Hong-Ou-Mandel experiment for the 4
Wigner distributions presented in figures 3.18 and 3.19 . The greater
depth of the HOM dip for the loop environment proves that closing the
environment on itself provides a net advantage compared to the open
case. Specifically, in the case where the excitation is emitted below the
first level in the loop (ωτ+ = π), we see a dip going nearly all the way
down to 0, which denotes a quasi-complete protection from decoherence.
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A realistic sample proposal

One may naively think that loops smaller than the size of dots used to
emit the excitation would be needed, which seems unreasonable experi-
mentally. Luckily, previous experimental studies [156] have shown that
the speed of electronic excitations in top-gated regions of the electron
gas are smaller than the “free” velocity, a fact that can be checked using
available experimental data on the energies of the quantum dot. The en-
ergy ~ω0 of Landau particles emitted by the dot used in [OP3] is around
60 µeV, the size of the dot being 2 µm, leading to a relevant velocity in
gated region of the 2DEG vgate ∼ 5.8× 104 m s−1, whereas the velocity
in chemically defined edge channels, vchem. is around 1× 105ms−1. The
dwelling time of excitations in the dot is τ0 ' 100 ps, leading to a typical
width in energy of about 1/10th of the injection energy. Consequently,
a safe limit for blocking decoherence would be to have a loop such that
ω0(τ++τL) < 3π/2. The edge magnetoplasmon modes populated within
the incoming electronic excitations would then have their energies below
the resonance, even when considering the resonance width.

A sample design with a loop of total size 4 µm is sketched in fig-
ure 3.21. Such a size may be available experimentally, and we predict
that this design leads to protection against decoherence for the single-
electron excitations we are interested in. Of course, by tuning the dot
parameters for emitting excitations at two times lower energies, deco-
herence protection would still be possible even with two times larger
loops.

The design presented here would allow a test of decoherence protec-
tion for single-electron excitations emitted by the mesoscopic capacitor
driven by square pulses. Electronic decoherence and relaxation of en-
ergy resolved single-electron excitations being stronger than for an out
of equilibrium distribution generated by a biased QPC, such an experi-
ment would provide a stronger test of the potential of sample design for
decoherence protection.

3.4 Interaction without an environment : the
ν = 1 case

One of the commonly asked question when discussing electronic deco-
herence within quantum Hall edge channels is “Why don’t you work at
ν = 1? Surely, without the second channel acting as an environment,
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Figure 3.21: Top: a possible experimental design for testing decoherence
control on a Landau excitation. Here, the 2DEG defines a cavity delim-
ited by a top gate shifting the electron density so that only the outer
edge channel can pass through. This creates a region with a closed in-
ner channel. The single-electron source as well as the QPC of the HOM
probe should be located close to the loop. The loop corresponds to
τ+ = (w + 2d)/vchem.

+ and τL = w/vgateF , where vchem.
+ denotes the speed

of the slow mode in chemically defined edge channels, whereas vgateF is
the Fermi velocity in an edge channel propagating along a metallic gate.
Bottom: outgoing Wigner functions when w = 1.5 µm, d = 0.5 µm for an
incoming excitation with parameters ω0τ0 = 10 and τ0 = 100 ps. The
velocities are vchem.

+ = 1× 105 m s−1 and vgateF = 5.8× 104 m s−1. Left:
Case where the gates let the outer channel through, making it interact
with a cavity. Right: Case where the gate closing the loop is used to
either let both channels through or none (times of flight are equivalent
in those two cases). Decoherence would be far more important in such
cases where the inner channel is not closed on itself.
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decoherence should be much less important, right?”
There are several answers to this important and natural question.

In a real experiment, having two channels close to each other leads to a
strong coupling between them that effectively screens other sources of de-
coherence, allowing a better understanding of decoherence mechanisms
compared to an experiment in which uncontrolled capacitive couplings
to nearby conductors, metallic gates or even bulk degrees of freedom
would occur. In particular, the ν = 1 case is often dissipative precisely
because bulk degrees of freedom carry some energy away.

But, even leaving dissipation aside, discussing systems for which the
scattering matrix is a simple transmission coefficient t(ω) with modulus
equal to one has its own interest. In such a case, the many body state
does not decohere and electronic decoherence is due to the influence
of all other electrons on the one injected by the single electron source.
But in this situation, because electrons are identical quantum particles,
we cannot separate the system and the environment. Therefore, this
situation is a case study for understanding how quantum information
initially stored within a single particle state spreads into many body
correlations. The objective of the current section is therefore to study
this interesting problem using a semi-realistic model for ν = 1 systems.
As we shall see, this will also shed some light on the role of the material
used to perform electron quantum optics experiments.

3.4.1 Long-range interaction in a single channel

Let us first derive an exact expression for the edge magnetoplasmon
transmission coefficient in the ν = 1 case in a simple model. We describe
the effective unscreened long-range intrachannel interaction within a fi-
nite length region of size l by assuming that electrons within the in-
teraction region feel an electric potential U(x, t) given by a capacitive
coupling inside the whole region:

U(x, t) =


0 if x /∈

[
− l

2 ,
l
2

]
1
C

∫ l
2
− l

2
n(y, t)dy else

(3.46)

where the excess density of charges n is itself expressed in terms of
the bosonic field φ through equation (3.1). Equation (3.2) can then be
recasted as a closed equation on φ expressed in the frequency domain as

(−iω + vF∂x)φ(x, ω) = e2

hC

(
φ

(
− l2 , ω

)
− φ

(
l

2 , ω
))

. (3.47)
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Expressing φ(x, ω) as eiωx/vFϕω(x) leads to

∂xϕω(x) = e2

vFhC
e−iωx/vF (3.48)(

e−iωl/(2vF)ϕω

(
− l2

)
− eiωl/(2vF)ϕω

(
l

2

))
which can be integrated over the whole interaction region to give us a
relation between ϕω

(
− l

2

)
and ϕω

(
l
2

)
. Finally, the solution reads

φ

(
l

2 , ω
)

= t(ω)φ
(
− l2 , ω

)
(3.49)

where

t(ω) = eiωl/vF
1 +A(ω, l)e−iωl/(2vF)

1 +A(ω, l)eiωl/(2vF) (3.50a)

A(ω, l) = 4e2/C

hvF/l
sinc

(
ωl

2vF

)
. (3.50b)

We recognize in A(ω, l) the kinetic energy scale hvF/l as well as the
dimensionless ratio α = e2l/ChvF between the electrostatic energy e2/C
and this kinetic energy scale. The dimensionless ratio α quantifies the
strength of Coulomb interactions in this system. Note that, at least for
sufficiently long edge channels, this coupling constant does not depend
on the length l since C also scales as l.

As expected, the transmission coefficient t(ω) we just recovered is
of modulus 1, since no energy can be lost in a ν = 1 setup without any
dynamical environment. The quantity of interest is therefore the phase
of t(ω).

In the limit where Coulomb interaction effects can be neglected (α→
0), t(ω) = eiωl/vF showing that the bare Fermi velocity is recovered. The
opposite limit of ultrastrong Coulomb interactions (α → ∞) leads to
t(ω) = 1: the edge magnetoplasmon velocity is infinite as expected since
the electromagnetic disturbance is then propagated instantaneously (i.e.
at the speed of light) across the interaction region. At a fixed finite and
non-zero value of the coupling α, the edge magnetoplasmon velocity
tends to v∞ = vF when ωl/vF � 1. At low frequency, we find that the
time of flight of edge magnetoplasmons is renormalized, thus leading to
an increased renormalized plasmon velocity

v0
v∞

= 1 + 4e2/C

hv∞/l
(3.51)
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Figure 3.22: Velocity v(ω)/v0 corresponding to t(ω) = exp(iωl/v(ω))
given by equation (3.50) in terms of ωl/vF for α = 1/20 (graphene),
α = 1/5, α = 3/4 (GaAs) and α = 1.

compared to the high frequency velocity. As can be seen on figure 3.22,
the edge magnetoplasmon velocity v(ω) therefore decreases from v0 =
(1 + 4α)vF to its asymptotic value v∞ = vF, showing some mild oscil-
lations that arise from the sharp position dependence of the interaction
potential at the boundary of the interaction region.

We expect a more realistic model of intra-channel interactions to
lead to a qualitatively similar but smoother behavior of v(ω). Key fea-
tures are the two different asymptotic velocities v0 and v∞ in the limits
ω → 0 and ω → +∞. The infrared velocity v0 is the velocity of low
energy edge magnetoplasmon modes and should therefore be called the
plasmon velocity. Due to Coulomb interactions, it is expected to be
higher than the velocity of high-energy excitations which do not expe-
rience interactions for a long time. Reasonable models for v(ω) should
thus interpolate between v0 and v∞ with v0 > v∞ and we shall denote
by ωc the crossover scale. However, the relation between t(ω) and the
finite-frequency admittance combined with the positive reality condition
(3.8) severely constrains the general form of t(ω). As explained in the
Appendix E of our recent paper [OP1], it indeed rules out most of the
simple phenomenological expressions for the edge magnetoplasmon ve-
locity v(ω), and that is why we will stick with our long-range model for
most of the results presented here: it can indeed be explicitely checked
that this model leads to a transmission coefficient that satisfies the phys-
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ical constrains.

Estimating α

Motivated by experiments, let us estimate an order of magnitude of the
ratio α. First of all, C being the capacitance of an interaction region
which is roughly similar to a 1D wire, we have for large l, that is when
boundary effects are small, C ' 2πε0εrl up to a geometrical factor. As
annouced before, α does not depend on l but behaves as [65]

α ' αqed
πεr

× c

vF
× (Geometrical Factor) (3.52)

where αqed denotes the fine-structure constant, εr the relative permittiv-
ity of the material and vF the bare Fermi velocity. Therefore, the choice
of material could have a big impact on the coupling constant, and con-
sequently on electronic decoherence in ν = 1 systems. We will focus on
two types of materials in this manuscript in order to keep things simple:
GaAs and graphene.

For GaAs, one usually estimates vF ' 105 m/s and εr ' 10, thus
leading to

α ' 0.75× (Geometrical Factor) (3.53)
Assuming a geometrical factor of order 1, this gives a velocity for low-
energy magnetoplasmons of the order of v0 ∼ 4× 105 m/s which is com-
patible to what has been observed in ν = 2 edge channel systems by
Kamata et al. [91]. However, let us remind that the edge magneto-
plasmon velocity depends on the details of the electric potential seen
by electrons near the edge of the 2DEG and therefore of the design
and manufacturing of the sample. This is precisely what is used in the
above reference to modulate it by polarising gates, or what we used in
section 3.3.2 for a realistic decoherence protection sample design.

In the case of graphene, a common estimation for the Fermi velocity
is of the order of vF ' 1× 106 m/s and εr ' 14 [126] thus leading to

α ' 0.054 (3.54)

when using a geometrical factor equal to unity. The coupling constant is
much lower, leading to v0/vF ' 1.2. Let us stress that, as far as we know,
no direct measurement of vF in quantum Hall edge channels of graphene
have been performed yet. Nevertheless, if this commonly discussed value
is confirmed, this would put graphene in a totally different coupling
range than GaAs.
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3.4.2 High-energy decoherence and relaxation

To start our discussion of electronic decoherence, we begin by using a
very crude physical picture for a single edge channel in which we have a
low-frequency (ω . ωc) edge magnetoplasmon velocity v0 greater than
the high frequency (ω & ωc) velocity v∞. This is an oversimplification
of the model presented before, but it presents the key feature of having
distinct high and low energy edge magnetoplasmon velocities.

Since for ω & ωc, edge magnetoplasmons travel at the velocity v∞,
decoherence only arises from the effective edge magnetoplasmon scat-
tering phase t̃(ω) = t(ω)e−iωτ∞ which is roughly 1 for ω & ωc and
e−iω∆τ for ω . ωc, where ∆τ = τ∞− τ0 denotes the difference of time of
flights between high and low energy edge magnetoplasmons. As inter-
actions have an effective bandwidth ∼ ωc, creation of electron/hole pair
excitations happens close to the Fermi level (within one to a few ωc).
Consequently, for electronic excitations injected at a much higher en-
ergy, the corresponding low energy edge magnetoplasmon modes can be
viewed as an effective distinct environment for the high-energy electronic
excitations [32].

At lower energies, electronic decoherence also arises from the ω-
dependence of the edge magnetoplasmon velocities but, at low enough
frequency, a perturbative approach in ωRKCµ can be used. This will
be the point of section 3.4.3. In the following, we shall first explore the
high energy limiting regime of electronic decoherence.

Elastic scattering and relaxation tail

For a single-electron excitation injected at high energy, the contribution
to electronic coherence ϕe(t)ϕ∗e(t′) picks up an effective decoherence
coefficient D(t− t′):

∆G(e)
WP(t|t′) ' ϕe(t)ϕ∗e(t′)D(t− t′) . (3.55)

At ν = 1, this coefficient is equal to the overlap 〈g(t′)|g(t)〉 of the elec-
tron/hole pair clouds generated by Coulomb interactions:

D(τ) = exp
(∫ +∞

0
|1− t̃(ω)|2

(
eiωτ − 1

) dω
ω

)
. (3.56)

This description is analogous to the one used in the weak-coupling de-
scription of dynamical Coulomb blockade across a tunnel junction [84].
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The relaxation kernel

D̃(ω′) =
∫ +∞

−∞
e−iωτD(τ) dτ . (3.57)

can then be decomposed into an elastic and an inelastic part: D̃(ω′) =
2π(Z∞δ(ω′) + d(ω′)) where

Z∞ = exp
(
−
∫ +∞

0
|1− t̃(ω)|2 dω

ω

)
(3.58)

is nothing but the high-energy limit of the elastic scattering probability
|Z(ω)|2. The inelastic part d(ω) describes electronic relaxation: it repre-
sents the probability that the electron has lost energy ω. It is determined
by the integral equation

ω d(ω) = |1− t̃(ω)|2

+
∫ ω

0
|1− t̃(ω′)|2d(ω − ω′) dω′ (3.59)

which can readily be solved on a computer using the inital condition
that d(ω → 0+) → limω→0+

(
|1− t̃(ω)|2/ω

)
. It can also be expressed

as a formal series corresponding to the various processes involving the
emission of an increasing number of pairs of electron/hole excitations,
exactly the same structure as in the dynamical Coulomb blockade theory.
With these notations, the elastic part of the outgoing Wigner function
is well separated from the inelastic part:

∆W(e)
WP(t, ω) = Z∞Wϕe(t, ω) (3.60a)

+
∫ ω

0
d(ω′)Wϕe(t, ω + ω′) dω′ (3.60b)

where Wϕe(t, ω) denotes the Wigner function associated to the incom-
ing wavepacket ϕe. The incoming electron loses energy through elec-
tron/hole pair creation within a few ~ωc of the Fermi sea.

In order to make this discussion a bit more visual, figure 3.23 dis-
plays the elastic scattering probability |Z(ω)|2 in the specific long-range
model from equation (3.50), as well as its asymptotic high energy limit
Z∞, with respect to coupling strength. As could be expected, stronger
coupling leads to a vanishing elastic scattering probability, meaning that
high-energy excitation will never go through an interaction region with
strong coupling without experiencing some kind of decoherene.
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Figure 3.23: Left: Elastic scattering probability for a single-electron
excitation as a function of ωl/vF for the long-range interaction model
given by equation (3.50), for different values of the coupling constant α.
Right: Asymptotic elastic scattering probability for high energy elec-
trons Z∞(α) given by equation (3.58) as a function of the coupling con-
stant α for that same interaction model.

Of course, for our approach to be valid, we need to show that for high-
energy electrons the amount of energy dissipated through electron/hole
pair creations is small compared to their injection energy. With these
first results, we expect it to hold at small coupling only, but we are going
to search for a more quantitative vision now.

Dissipated energy

In order to study the validity of our approach, we shall assume that the
spectral weight of the incoming electron as well as of the contribution
G(e)
WP to the outgoing coherence are well above the vicinity of the Fermi

level.
The incoming average energy comes from the injected electron and

is equal to
Ein = ~

∫ +∞

0
|ϕe(ω)|2 ω dω

2πvF
. (3.61)

The outgoing average energy then consists of two parts: the energy
carried by the injected electron which has flewn across the interaction
region either elastically or inelastically, and the energy of electron/hole
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excitations created by its passage through the region:

E
(e)
out = Z∞Ein (3.62a)

+ ~
∫

(R+)2
|ϕe(ω)|2 (ω − ω′)d(ω′) dω′ dω

2πvF
. (3.62b)

The first line corresponds to elastic scattering and the second line to
inelastic processes in which the electron has fallen down from ~ω to
~(ω − ω′). Because of our working hypothesis, we can safely extend the
integrals to +∞ safely as the relaxation tail is well above the Fermi
level. We then use that

∫+∞
0 d(ω′) dω′ = 1− Z∞ and the normalization

condition of the wavepacket to rewrite this as

E
(e)
out = Ein − ~

∫ +∞

0
ω′d(ω′) dω′ . (3.63)

Energy conservation, which is true on average, shows that the dissipated
energy in electron/hole pair creation is equal to

E
(diss)
out = ~

∫ +∞

0
ωd(ω) dω . (3.64)

Recognizing that
∫+∞

0 ωd(ω)dω corresponds to the derivative of the de-
coherence coefficient D(τ) when τ → 0+ leads to

E
(diss)
out = ~

∫ +∞

0
|1− t̃(ω)|2 dω . (3.65)

In the particular case of the transmission coefficient given by equa-
tion (3.50), the dissipated energy is finally given by

E
(diss)
out = hvF

π l

∫ +∞

0

64α2 sin4(u) du
(u+ 2α sin(2u))2 + 16α2 sin2(u) (3.66)

which converges both in the UV and the IR.
Figure 3.24 presents the numerical evaluation of the dissipated en-

ergy in units of hv0/l, where v0 = (1 + 4α)vF is the low energy edge
magnetoplasmon velocity in this model. We observe that it saturates to
1 at large coupling. The finiteness of the dissipated energy validates a
posteriori that the high-energy description of electronic decoherence is
valid as long as the average energy of the incoming excitation is large
compared to αhv0/l.
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Figure 3.24: Dependence of the average energy dissipated by an incom-
ing high-energy electron, E(diss)

out (α, hvF/l), with respect to the coupling
constant α, in units of hv0/l, in the specific case of the long-range model
given by equation (3.50). In that case, E(diss)

out is given by equation (3.66).

As a final check, one can rederive equation (3.65) by considering the
reduced density operator for the low energy electron/hole pair excita-
tions. When assuming that even after relaxation, the wavepacket re-
mains well separated from the Fermi sea, one can use 〈ψ(t−)ψ†(t+)〉F '
v−1
F δ(t+− t−) in the modified vacuum term from equation (3.27a). This
means that G(e)

MV(t|t′) can be approximated by an expression which corre-
sponds to the statistical mixture of states |g(t)〉 ponderated by |ϕe(t)|2.
This naturally comes from the physical image of the incident electron
emerging from the interaction in a quantum superposition of the co-
herent electron/hole pair clouds |g(t)〉 attached to the electron being at
position vFt. Two different positions vFt and vFt

′ of the electron be-
ing perfectly distinguishable, what comes out is the statistical mixture
of coherent electron/hole pair clouds for the low energy edge magneto-
plasmon modes. Computing the average energy stored in this statistical
mixture precisely leads to (3.65) since all the states |g(t)〉 carry the same
average energy.

3.4.3 Low-energy decoherence

Let us now turn ourselves towards the opposite limit, that means to low-
energy decoherence. In this limit, we can study the interaction region as
an effective electric dipole. Following the tracks of M. Büttiker [128], we
can look for a simple description of this linear dipole in terms of discrete
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Figure 3.25: Left: Effective dipole associated with the interaction re-
gion. Middle: Equivalent effective ZC-circuit at low-frequency in the
generic case. Right: The simplest non-dissipative circuit that can be
built. The resistive part of Z(ω) is the relaxation resistance Rq = RK/2
and its imaginary part comes from an LC circuit.

circuit elements. This simple low frequency description is interesting
for the experimentalists since it describes the frequency dependance of
the edge magnetoplasmon transmission amplitude by a few parameters
which have a simple physical interpretation. Then, we can study sin-
gle electron decoherence using this effective description which is, per
construction, well suited to the low frequency domain9.

Discrete elements circuit description

At low frequency, the interaction region effective linear electrical dipole
does not respond to a DC bias and can thus be described in terms
of a frequency dependent admittance G(ω) in series with a capacitor
Cµ as shown in figure 3.25. Using the relation t(ω) = 1−RKG(ω), the
transmission amplitude t(ω) can be expressed in terms of the impedance
Z(ω) as

t(ω) = 1 + ωCµIm (Z(ω)) + iωCµ(RK − Re (Z(ω)))
1 + ωCµIm (Z(ω))− iωCµRe (Z(ω)) . (3.67)

Consequently, t(ω) is a pure phase, corresponding to non-dissipative
processes, if and only if Re (Z(ω)) = RK/2 at all frequencies. We can
then write

t(ω) = 1 + iα(ω)
1− iα(ω) = exp (2i arctan (α(ω))) (3.68)

9Here low frequencies can go up to a few gigahertz.
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where
α(ω) = ωRKCµ

2
1

1 + ωCµIm (Z(ω)) . (3.69)

With our conventions, the reactance Im (Z(ω)) is a strictly decreasing
function of ω [47]. Since, by definition, the electrochemical capacitance
Cµ contains the low-frequency divergence of the ZC circuit, it is expected
to be regular at low frequency, starting with a zero at ω = 0 and then
alternating poles and zeroes. A suitable low-frequency expansion of t(ω)
can then be obtained using a Cauer form of circuit synthesis [24, 21],
which leads to a continuous fraction expansion of the finite-frequency
admittance. Starting from any t(ω), we could therefore find a circuit
representing it up to any order.

What we are going to do is the inverse process. Starting from a
simple circuit at low order, we will recover the first orders in the devel-
opment of t(ω) for the specific case of long-range interaction, in order
to study its low energy behaviour. This simplest case corresponds to the
circuit depicted on the right panel of figure 3.25. It leads to

α(ω) = ωRKCµ
2

1− ω2LC

1− ω2L(C + Cµ) . (3.70)

Expanding 2 arctan (α(ω)) in powers of ωRKCµ then leads, up to order
(ωRKCµ)5, to

t(ω) = 1 + iωRKCµ −
1
2(ωRKCµ)2 (3.71a)

+ i
[
L/RK
RKCµ

− 1
4

]
(ωRKCµ)3 (3.71b)

−
[
L/RK
RKCµ

− 1
8

]
(ωRKCµ)4 (3.71c)

+ i

(1 + C

Cµ

)[
L/RK
RKCµ

]2

+ 1
16 −

3
4
L/RK
RKCµ

 (ωRKCµ)5 . (3.71d)

Being described by two parameters (L and C) besides Cµ and Rq =
RK/2, this circuit provides an expansion of the phase of t(ω) up to
order (ωRKCµ)5. In order to capture the low-frequency behavior of the
transmission to the next non trivial orders (7 and 9), we would need to go
one step further in the Cauer form of the circuit. This would correspond
to adding another LC impedance in series with the capacitor C. This
process, called circuit synthesis, can then be iterated to reconstruct the
full ω dependence of any transmission coefficient.
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Perturbative expansion

Let us now discuss electronic decoherence in the low frequency domain,
trying to make use of its analytical behavior. Since we are at low energy,
the relevant base velocity is v0 and it is convenient to define the effective
transmission amplitude as t̊(ω) = t(ω)e−iωτ0 so that the deviation from
t̊(ω) = 1 for 0 < ω . ωc is small.

If we had t̊(ω) = 1 for ω . ωc, the electronic excitation would not
experience decoherence for the part which is located below ωc: it would
simply move at the plasmon velocity v0. This is consistent with the
high-energy picture discussed in section 3.4.2: although a high-energy
electronic excitation moves forward at the velocity v∞ together with its
relaxation tail, the electron/hole pairs created close to the Fermi level
move at the plasmon velocity v0. Therefore, in order to account for
the real frequency dependence of t(ω), the idea is to perform a pertur-
bative expansion in terms of ωτ0 of the rescaled edge magnetoplasmon
transmission coefficient t̊(ω).

At low frequency, this coefficient is a pure phase that depends an-
alytically on the frequency. The linear term in the phase being taken
out, it is of the form

t̊(ω) = exp

i
∑
k≥2

αk(ωτ0)k
 (3.72)

where τ0 is a typical time scale of the problem and αk are dimensionless
couplings. Note that only odd powers of ωτ0 need to be considered
because we know from the link between transmission and admittance
that t(ω)∗ = t(−ω). Using this form for the expansion of the phase,
we can derive the low energy behaviour of several interesting physical
quantities. In particular, we will be interested in the inelastic scattering
probability σin(ω) = 1 − |Z(ω)|2. To do this, we are going to expand
perturbatively in ωτ0 the elastic scattering amplitude

Z(ω) = 1 +
∫ ω

0
B−(ω′) dω′ (3.73)

where

B−(ω) =
∞∑
n=1

1
n!

(t(ω)− 1
ω

)∗n
(ω) (3.74)

is obtained as a series of convolution powers (·)∗n.
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We can show that the expansion of Z(ω) up to order (ωτ0)8 only
involves the 2nd convolution power of (1− t(ω))/ω, which corresponds
to two edge magnetoplasmon emission processes. Processes with higher
order multi-plasmon emission will only contribute to higher powers in
Z(ω)’s expansion, and can therefore be neglected at low energy. We
finally get, using the expansion of t̊(ω) up to this order, the final result
for the inelastic scattering probability σin(ω) = 1− |Z(ω)|2:

σin(ω) = 11α2
3

180 (ωτ0)6 + 5α3α5
42 (ωτ0)8 +O

(
(ωτ0)9

)
. (3.75)

Note that keeping only the first convolution power in the expansion
would lead to

σ
(1)
in (ω) = α2

3
18 (ωτ0)6 − 7α3α5

60 (ωτ0)8 +O
(
(ωτ0)9

)
(3.76)

which is the inelastic scattering probability arising from single edge
magnetoplasmon emission.

Link between the two approachs

As can be seen directly in the result of equation (3.75), in order to
obtain the behaviour of the inelastic scattering probability at low en-
ergies, we only need to expand the phase of t(ω) up to order 5. Yet,
as we saw in equation (3.71), the simplest possible circuit – displayed
on the right of figure 3.25 – corresponds to such an expansion. We can
therefore relate the circuit parameters (L,C) to the family of αk. In
particular, the inductance L is directly related to the α3 coefficient, and
the capacitance C only contributes to the next order:

τ0 = RKCµ (3.77a)

α3 = L/RK
RKCµ

− 1
12 (3.77b)

α5 = 1
80 −

1
4
L/RK
RKCµ

+
(
L/RK
RKCµ

)2(
1 + C

Cµ

)
(3.77c)

This connects the inelastic scattering probability for an incoming elec-
tron to the low-frequency discrete element circuit description for the
interaction region.

A complementary understanding can be obtained by relating the
finite-frequency admittance to the edge magnetoplasmon’s effective ve-
locity v(ω) within the interaction region, using t(ω) = exp (iωl/v(ω)).
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The effective circuit of figure 3.25 corresponds to a low-frequency ex-
pansion of v(ω) of the form

v(ω)
v0

= 1 +
(

1
12 −

L/RK
RKCµ

)
(RKCµω)2 (3.78a)

−

 C
Cµ

(
L/RK
RKCµ

)2

− 1
12
L/RK
RKCµ

+ 1
180

 (RKCµω)4 (3.78b)

+O
(
(ωRKCµ)6

)
(3.78c)

where RKCµ is the low-frequency time of flight l/v0. This expansion
directly connects the discrete circuit element parameters L and C to the
low-frequency behavior of v(ω). The value L = CµR

2
K/12 (or, equiv-

alently, α3 = 0) corresponds to a frequency dependency of the form
v(ω) = v0 +O

(
(RKCµω)4). For 0 ≤ L < CµR

2
K/12, the velocity of edge

magnetoplasmons first increases quadratically at low-frequency, whereas
v(ω) directly starts decreasing for L > CµR

2
K/12. Note that a higher

inductance contributes to a stronger slow-down of the edge magneto-
plasmons with increasing frequency, as expected for an inductive effect.
The order 4 term given by equation (3.78b) describes the behavior of
the plasmon velocity beyond this first order and contributes to its de-
crease with increasing frequency. All of this is coherent with our initial
approach stating that low-energy plasmons should, in a realistic model,
move faster than their high-energy counterparts.

Coming back to the electronic inelastic scattering probability given
by equation (3.75), the case where L = R2

KCµ/12 minimizes its growth:
the first non zero term is at order (ωτ0)10. This reflects the fact that for
L = R2

KCµ/12, the distorsion of a percussional current pulse is minimal
at low-frequencies.

When α3 6= 0, the first and second non trivial orders in ωτ0 com-
pete as soon as α3α5 < 0, which means that they also compete in the
expansion of the edge magnetoplasmon time of flight as a function of
frequency.

Long-range interaction

Now that we have given most general results surrounding the low energy
expansion of both t(ω) and quantities such as the inelastic scattering
probability, let us apply them to our specific long-range intra-channel
interaction model from equation (3.50). Expanding the phase of this
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model in powers of ωτ0 leads to

τ0 = l

v0
= l

(1 + 4α)vF
(3.79a)

α3 = α

3 (3.79b)

α5 = 8α
90
(
α2 + 2α− 1/8

)
(3.79c)

with α the coupling strength. Equivalently, the discrete element circuit
parameters for this interaction type are

RKCµ = τ0 = l/v0 (3.80a)
L/RK
RKCµ

= 1 + 4α
12 (3.80b)

C

Cµ
= 1 + 4α

5 (3.80c)

As expected, the low energy time of flight for the edge magnetoplasmon
gives the main RC time scale of the circuit: RKCµ. Increasing α in-
creases the capacitance C of the first Cauer ladder element. It also
increases the inductance reflecting the increase of the low frequency ve-
locity with respect to the bare Fermi velocity: this means that electrons
have more inertia than low energy edge magnetoplasmon10. Since this
effect increases with α, the inductance which encodes kinetic inertia of
the electrons has to increase.

Using these parameters, we can comment on the validity of our low
energy expansion when compared to the full results plotted in figure 3.23.
This is done on figure 3.26, which depicts the ratio of the full inelastic
scattering probability to the perturbative expression as a function of ω.
It shows that the perturbative result is only valid at very low energies,
that is significantly before the drop of the elastic scattering probabil-
ity, when the inelastic scattering probability is still very close to unity.
Understanding the full behavior of the elastic scattering probability in-
deed requires a full non-perturbative approach even at weak coupling
because, at higher injection energies, multiple low energy electron/hole
pair emissions coexist with the emission of a single electron/hole pair
of higher energy. Properly accounting for all these processes requires
the full knowledge of the frequency dependance of g(ω) for which the
simplest discrete element circuit description is not sufficient.

10Electrons are slower at equal energy.
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Figure 3.26: Ratio of inelastic scattering probabilities for the full model
to its perturbative circuit expansion obtained in equation (3.75) at low
energy. Numerical errors at small ωl/vF are due to the rapid decay of the
dominant (ωl/vF)6 asymptotic behavior of the inelastic scattering prob-
ability at very low energies. Remember that the full elastic scattering
probability was plotted in figure 3.23.

3.4.4 Numerical results at ν = 1

After this extensive discussion of the limiting regimes of decoherence in
the ν = 1 case, it is now time to discuss the full result for the outgoing
Wigner functions associated with initial Landau excitations.

Let us start with wavepackets injected at a high energy. Figure 3.27
presents the electronic decoherence of an incoming wavepacket injected
at energy ω0τ0 = 15, with a temporal width also equal to l/vF. In the
weak-coupling case, we clearly see the separation in energy between the
elastically scattered electronic excitation together with its relaxation tail
at high energy, and the resulting electron/hole pairs close to the Fermi
level. From the previous discussions, we know that this is expected since
the elastic scattering probability is quite high at the injection energy.
The temporal separation, which is a result of the difference between
the hot-electron velocity v∞ and the plasmon velocity v0 is also clearly
visible on the average electric current 〈ie(t)〉: the sharp rise of the current
corresponds to the arrival of the elastically scattered quasi-particle and
t = 0 corresponds to propagation at the fastest velocity v0.

By contrast, in the strong-coupling case, electronic decoherence is
much stronger. The relaxation tail of the incoming excitation is visible
as a sharp rise of the current which arrives later than the beginning of the
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neutral electron/hole pairs cloud. As expected, the difference between
the plasmon and high-energy electron velocities is also more important
than in the weak-coupling case.

These results can be compared to the ones depicted in figure 3.28,
which displays the electronic decoherence of an incoming wavepacket
injected at ω0l/vF = 3, an energy lower than the previously discussed
threshold (see figure 3.22 or figure 3.23: the threshold between the two
velocities is around ωl/vF = 2π). Most of its spectral weight is below the
threshold and thus, the Landau quasiparticle propagates without expe-
riencing much decoherence in both cases. We also see that it propagates
at the low energy edge magnetoplasmon velocity v0. As expected, the
incoming excitation seems less altered at weak coupling (α = 0.05) than
at strong coupling (α = 0.75).

All this discussion confirms the following physical picture: a low en-
ergy single electron excitation will indeed propagate at the edge magneto-
plasmon low energy velocity which corresponds to the RKCµ time scale.
The fate of a high energy excitation will depend on the value of the
coupling constant α and thus on the material. For a strong coupling
material, the excitation will be torned between two very different veloc-
ities and will relax by creating a cloud of low energy electron/hole pair
excitations. Only a small part of it will propagate at the high energy
Fermi velocity. On the contrary, in a small coupling material, electronic
decoherence is much weaker and the propagation of the unscattered sin-
gle electron excitation will occur at the Fermi velocity.

As explained several times in this manuscript, the main tool that
can be used in electron quantum optics to test robustness to decoher-
ence is an Hong-Ou-Mandel experiment. We then expect strong and
weak coupling regimes to lead to quantitatively different results in such
experiments. In order to answer this question, we have computed the
HOM signal in both cases. Results are shown in figure 3.29 for both
injection energies and both coupling values. As was discussed when
looking at the Wigner functions, theses curves confirm that weak cou-
pling materials would lead to a stronger protection against decoherence.

3.4.5 Low vs strong coupling materials: a comment on
GaAs vs Graphene

As discussed above, exfolliated graphene on a silicon oxyde surface may
correspond to a weak coupling value of α and thus to much lower
electronic decoherence. Moreover, provided velocities in graphene are
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Figure 3.27: Wigner distribution function of an incoming wavepacket
injected at energy ω0l/vF = 15. Left: outgoing single-electron coherence
for α = 0.75. Right: outgoing single-electron coherence for α = 0.05.
t = 0 corresponds to the expected time of reception for a free propagation
at the low energy velocity v0. In the weak coupling case, we recover an
elastically scattered excitation with its relaxation tail, well separated in
energy from the electron/hole pairs it created close to the Fermi level. In
the strong coupling case, electronic decoherence is clearly much stronger,
and there is no more energy separation between the relaxation tail of the
incomng excitation and the electron/hole pairs clouds. In both cases,
we see a temporal separation between the arrival of the cloud around
t = 0 and the sharp rise of current corresponding to the arrival of the
relaxation tail: this is a direct signature of the difference between low-
and high-energy velocities in our model.
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Figure 3.28: Wigner distribution function of an incoming wavepacket
injected at energy ωel/vF = 3. Left: outgoing single-electron coherence
for α = 0.75. Right: outgoing single-electron coherence for α = 0.05.
t = 0 is the expected time of reception for a free propagation at the low
energy velocity v0. Contrary to figure 3.27, there is not much electronic
decoherence happening for low-energy excitations, as everything pretty
much moves at the low-energy velocity. Yet, we still get some peak in
the current at a later time, coming from the relaxation tail associated
with the small part of the incoming wavepacket that lies at high energy.
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Figure 3.29: Theoretical results of an Hong-Ou-Mandel interferometry
experiment obtained from the Wigner functions displayed in figures 3.27
and 3.28. As expected from the Wigner functions themselves, low energy
excitations (ω0τ0 = 3) present a high contrast HOM dip. The results for
high-energy exitations (ω0τ0 = 15) are clearly different between a weak
coupling (α = 0.05) and a strong coupling (α = 0.75) material, thus
providing a clear signature of the protection against decoherence offered
by weak coupling materials.
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much higher than in GaAs, the crossover energy between the low and
high energy regimes should be much higher for fixed device dimen-
sions. For example, a l = 20 µm propagation distance corresponds
to ω/2π = vF/l ' 500 GHz for vF = 106 m s−1 and to 50 GHz for
vF = 105 m s−1.

The single-electron source based on the mesoscopic capacitor that
has been developed in GaAs generates electronic excitations at an energy
comparable to this crossover scale. With our estimated parameters,
strong electronic decoherence is expected for a propagation above 30 µm
when injecting at an energy of the order of 40 µeV11. Although no single-
electron source has been developed yet for graphene in the quantum Hall
regime, the ratio of estimated high-energy velocities in the two materials
suggests a propagation distance of the order of 200 µm in a ν = 1 ideal
channel before any significant step in the inelastic scattering probability
manifests itself in graphene. Moreover, as discussed in the previous
section, even for such long propagation distances, electronic decoherence
would be much lower in a weak coupling material compared to the case
of a strong coupling material (see figure 3.23).

Of course, this discussion has been made within the framework of
our model for electronic propagation within an ideal ν = 1 edge channel.
In practice, it is known that edge magnetoplasmons propagating along
quantum Hall edge channels experience dissipation [170, 97, 14, 126,
98]. This is one of the possible causes for missing energy in electronic
relaxation experiments [66], but I unfortunately did not have the time
to look at it more closely during my PhD. One possible path towards
taking into account dissipation problems may be found using the discrete
element circuit discussed in section 3.4.3 with dissipative elements. In
particular, a first try of such dissipative circuits seemed to give pretty
consistent results with the phenomenological dissipative model presented
in [14], and I hope that we will be able to go a bit deeper in this study
soon.

Nevertheless, the main point stressed in the present paragraph is
that the effect of the Fermi velocity difference both on the coupling con-
stant and on the length to time scale conversion may lead to important
differences between strong and weak-coupling materials, as far as single-
electron decoherence is concerned. As suggested by figure 3.29, HOM

11These numbers correspond to the ideal ν = 1 case which is not the case that has
been experimentally studied. In the experiments, extrinsic decoherence induced by
the second edge channel leads to much shorter coherent propagation distance for such
energy resolved excitations.
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experiments may offer clear discriminating signatures of weak versus
strong coupling materials, but this would require the experimental de-
velopment of single electron sources for Landau quasi-particles injection
in graphene quantum Hall edge channels.

On the experimental side, a Mach-Zehnder interferometer has re-
cently been demonstrated with encapsulated monolayer graphene sheets
embedded within hexagonal boron nitride [174]. The beam splitters
exploit same-spin intervalley scattering at a p-n junction and the inter-
ferometer’s geometry is controlled by Coulomb exchange interactions.
Surprisingly, a contrast of more than 90 % has been observed at low
bias for an arm length12 of 1.2 µm. Such a high contrast remains up to
a bias voltage larger than 200 µV. Although decoherence mechanisms
have not yet been studied in great detail for this device, we think that
such a surprisingly high contrast as well as our discussion of coupling
constant and high energy velocity effects call for intensive studies of
single-electron decoherence in a material such as graphene.

3.5 Higher order coherences

After this rather complete study of first order coherence, let us now turn
to higher order coherences. As explained in the introduction of this the-
sis, second order electronic coherence contains all the information on
two particle entanglement in the many-body electron fluid. It is also the
physical quantity that contains a direct signature of non-trivial correla-
tions through violations of Wick’s theorem. In particular, allowing the
measurements of second order coherence, a natural question to ask con-
cerns the intrinsic second order coherence generated by a single electron
flying across an interaction region. Another question is the determina-
tion of how an incoming second order coherence may be modified by the
interaction region. These are the two questions that will be adressed in
this section. As a starting point of this investigation, we will present
the general computation of all outgoing electronic coherences from an
interaction region provided a p-electron excitation has been injected into
it.

12Even more impressive, this setup is such that one arm consists of one carrier edge
channel, while the other arm consists of two edge channels.
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3.5.1 Computing the most general expression

The ideas presented in section 3.1 can be applied directly to study any
coherence of systems with several electrons. However, the calculations
involved can become quite tedious, and have therefore been relegated to
appendix C. In the appendix, we derive the general expression of the n-
th order electronic coherence after an interaction region for an incoming
state containing p electrons on top of the Fermi sea, ∏N

i=1 ψ
†[ϕi] |F 〉.

All wavefunctions appearing in this p-electron state are supposed to be
entirely above the Fermi sea. The resulting expression, which will be
explained here, is

G(ne)
out (t1, . . . , tn|t′1, . . . , t′n) = (3.81)∫ p∏
i=1

dti+dti−ϕi(ti+)ϕ∗i (ti−)〈
ψ(t1−) · · ·ψ(tp−)ψ†(t′1) · · ·ψ†(t′n)ψ(tn) · · ·ψ(t1)ψ†(tp+) · · ·ψ†(t1+)

〉
F

n∏
k=1

p∏
i=1

γ∗+(ti− − tk)γ∗−(ti− − t′k)γ+(ti+ − t′k)γ−(ti+ − tk)

exp
(∫ ∞

0

dω
ω

iIm (t(ω))
p∑

i,j=1

(
eiω(tj−−ti−) − eiω(tj+−ti+)

))
.

In equation (3.81), we may recognize the n-th order equivalents of ev-
erything present in equation (3.26). First of all, in the absence of any
other terms, the product of all wavepackets and the Fermi sea correla-
tor would give back the incoming n-th order electronic coherence. As
expected, the outgoing coherence can thus be seen as a decohered ver-
sion of the incoming one, the decoherence coefficient being given by two
terms. The product of all γ± functions is exactly the product of all deco-
herence coefficient D(tk, t′k, ti+, ti−) arising from the passage of a single
electron in the system (see equation (3.24). It encodes the interaction of
an electron with all the excitations it generates in its environment, both
in its channel and the other one. Finally, the last exponential function
encodes a decoherence coefficient linked to the interaction of the p elec-
trons with each other. Of course, this did not appear in the case p = 1
and is specific to the injection of a many-electron excitation.

In order to perform the same analysis as for the n = 1, p = 1 case,
several steps would have to be taken. First of all, we have to go to the
frequency space and rewrite all γ functions as the sum of two parts,
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one singular and one regular, as was done in appendix B. Then, we
would need to use Wick’s theorem in order to divide the Fermi sea
correlator into several smaller, well-known parts. This is the best way
to control all the singularities arising in the computation. Unfortunately,
this expansion generates an exponentially large number of terms to write
down and compute:

N = (n+ p)!× 24np . (3.82)

In the simplest case of n = 1, p = 1, we recover the 32 terms we detailed
in appendix B. The next interesting cases are either n = 1, p = 2 or
n = 2, p = 1, and both of them contain a total of 1536 terms. Of course,
symmetries would help reducing the complexity of the task. Moreover,
one should expect some of these terms to lead to contribution that are
well understood, as they come from products between lower order ones.
But in the end, the remaining number of contributions would still be far
too much for us to be written down explicitly, at least by hand. And this
is only the first step along the way since, in the end, we have to numer-
ically evaluate a large number of high dimensional multiple integrals,
which would certainly be a highly non trivial problem untractable by
brute force methods. In the remainder of this section, we will therefore
try to simplify this problem by looking for physically relevant informa-
tion that can be extracted at a reasonable cost from equation (3.81)
in some limiting cases. We shall now focus on at most second order
electronic coherence since this is probably the best we can expect to
access in forthcoming experiments, using for example the measurement
protocols described in section 2.4.

3.5.2 Second order coherences from a single excitation

The first case we are interested in is the case of second order electronic
coherence created from the propagation of a single electron in the in-
teraction region, n = 2, p = 1. In this case, we are interested in some
intrinsic excess second order coherence since it would be completely gen-
erated by Coulomb interactions. This quantity contains interesting in-
formation on the electron/hole pairs that are generated by interactions.
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The quantity we are interested in is given by

G(2e)
out (t1, t2|t′p1, t

′
2) =

∫
dt+dt−ϕe(t+)ϕe(t−) (3.83)

×〈ψ(t−)ψ†(t′1)ψ†(t′2)ψ(t2)ψ(t1)ψ†(t+)〉F
×γ+(t+ − t′1)γ−(t+ − t1)γ∗+(t− − t1)γ∗−(t− − t′1)
×γ+(t+ − t′2)γ−(t+ − t2)γ∗+(t− − t2)γ∗−(t− − t′2) .

Of course, we need to remember that this can be decomposed, as any sec-
ond order coherence, into a Fermi sea contribution G(2e)

F , two classical
correlations parts of the form G(e)

F (ti|t′i)∆G
(e)
ρ (tj |t′j), two quantum ex-

change terms −G(e)
F (ti|t′j)∆G

(e)
ρ (tj |t′i) and finally the excess contribution

∆G(2e)
ρ . Here, those terms will appear as specific terms in the decompo-

sition of the full coherence using the properties of γ functions discussed
in appendix B.

Let us start by using Wick’s theorem to describe the Fermi sea six-
points correlators in terms of two-points correlators:

〈ψ(t−)ψ†(t′1)ψ†(t′2)ψ(t2)ψ(t1)ψ†(t+)〉F =
+ 〈ψ(t−)ψ†(t+)〉F〈ψ†(t′1)ψ(t1)〉F〈ψ†(t′2)ψ(t2)〉F (3.84a)
− 〈ψ(t−)ψ†(t+)〉F〈ψ†(t′1)ψ(t2)〉F〈ψ†(t′2)ψ(t1)〉F (3.84b)
+ 〈ψ(t−)ψ†(t′1)〉F〈ψ†(t′2)ψ(t2)〉F〈ψ(t1)ψ†(t+)〉F (3.84c)
+ 〈ψ(t−)ψ†(t′2)〉F〈ψ†(t′1)ψ(t1)〉F〈ψ(t2)ψ†(t+)〉F (3.84d)
− 〈ψ(t−)ψ†(t′1)〉F〈ψ†(t′2)ψ(t1)〉F〈ψ(t2)ψ†(t+)〉F (3.84e)
− 〈ψ(t−)ψ†(t′2)〉F〈ψ†(t′1)ψ(t2)〉F〈ψ(t1)ψ†(t+)〉F (3.84f)

We can easily recognize here three types of terms:
• Terms (3.84a) and (3.84b), together, can be recasted as the prod-
uct of G(e)

F (t+, t−) with G(2e)
F (t1, t2|t′1, t′2). Therefore, the corre-

sponding contributions may be calledmodified vacuum terms (MV)
for second order electronic coherrence.

• Terms (3.84c) and (3.84d) involve correlators of the form G(e)
F (ti|t′i),

and should thus be called modified correlations (MC) to electronic
second order coherence.

• Finally, the last two terms (3.84e) and (3.84f) involve correlators
of the form G(e)

F (ti|t′j), and will then be called modified exchange
terms (ME).

219



Chapter 3 – Section 3.5

As the reader may have noticed, we are just organizing the various contri-
butions according to the various contributions given by Wick’s theorem,
thereby generalizing what we had previously done when computing the
outgoing single electron coherence generated by the injection of a single
electron excitation into the interaction region. Of course, in the present
situation, there is no modified intrinsic excess (M∆) term, since the ex-
cess first order coherence of the incoming state is directly equal to 0.
This does not mean that there will be no intrinsic excess second order
coherence in the outgoing state, but this will come from non-obvious
processes.

To make this point more precise, we need to describe the different
γ± functions themselves. Remember that their Fourier transform can
be divided into two parts, as is defined in equation (3.30). In the time
domain, this division can be written as γ± = κ±(1+b±(t)), with κ+κ− =
1 and b± regular functions obtained as the inverse Fourier transforms of
2πB±(ω). The full decoherence coefficient given by

Dn=2,p=1(t1, t2, t′1, t′2, t+, t−) = (3.85)
γ+(t+ − t′1)γ−(t+ − t1)γ∗+(t− − t1)γ∗−(t− − t′1)
×γ+(t+ − t′2)γ−(t+ − t2)γ∗+(t− − t2)γ∗−(t− − t′2)

therefore can be decomposed into 256 terms, but some of them are more
interesting than others. To be a bit more precise, we can get the following
decomposition:

Dn=2,p=1(t1, t2, t′1, t′2, t+, t−) =
1 1 term (3.86a)

+D(t1, t′1, t+, t−) +D(t2, t′2, t+, t−)− 2 30 terms (3.86b)
+D(t1, t′2, t+, t−) +D(t2, t′1, t+, t−)− 2 30 terms (3.86c)
+all other possible terms 195 terms (3.86d)

where D(t, t′, t+, t−) = Dn=1,p=1(t, t′, t+, t−) is the single particle deco-
herence coefficient appearing in equation (3.24), consisting of a product
of 4 γ functions, and thus containing 16 terms. The −2 are needed
in order to avoid double counting the only term corresponding to the
product of all the 1s.

Now, let us put together the decompositions from equations (3.84)
and (3.86). First of all, using the 1 from equation (3.86a) with corre-
lators from terms (3.84a) and (3.84b) leads to the Fermi sea second or-
der coherence G(2e)

F (t1, t2|t′1, t′2). Then, using D(t1, t′1, t+, t−) with term
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(3.84a) leads to G(e)
F (t2|t′2)G(e)

ρ,MV(t1|t′1), while using it on term (3.84c)
leads to G(e)

F (t2|t′2)G(e)
ρ,WP(t1|t′1). Both terms, together with the −1 that

avoids double counting, lead to G(e)
F (t2|t′2)∆G(e)

ρ (t1|t′1). In the same way,
using the D(t2, t′2, t+, t−) with both terms (3.84a) and (3.84d) leads
to G(e)

F (t1|t′1)∆G(e)
ρ (t2|t′2). With the exact same idea, it is easy to see

that using equation (3.86c) with equation (3.84b) and equations (3.84e)
and (3.84f) will give us the exchange terms, −G(e)

F (t1|t′2)∆G(e)
ρ (t2|t′1) −

G(e)
F (t2|t′1)∆G(e)

ρ (t1|t′2).
Using these considerations, out of the 1536 terms that would con-

stitute the full second order electronic coherence function, we can get
down to “only” 6 × 195 + 4 × 60 = 1410 terms contributing to the in-
trinsic excess second order coherence. This is still completely unrealistic
to deal with by hand, but it allows us to understand a bit more what
needs to be done in order to compute the excess coherence coming from
interactions.

Going to the frequency space

Exactly as in section 3.1.3, it is easier to work in the frequency domain
to visualize how electronic coherence “leaks down” from one point to
another. Remember that in the first order case, we had

G̃(e)
ρ1

(
ω + δω

2

∣∣∣∣ ω − δω

2

)
= (3.87)∫ +∞

−∞
ϕe

(
ω′ + δω

2

)
ϕ∗e

(
ω′ − δω

2

)
K(ω, ω′; δω)dω′

when using the reduced variables ω and δω. Time translation invariance
therefore implies that decoherence only happens along lines of constant
δω, since points with different values of δω do not mix in the integral. A
visual representation of this was given in figure 3.3, on page 158. Now,
is there a way to do the same type of things in this second order case,
with one electron emitted in the system? The answer is yes, and we can
recast equation (3.83) in the energy domain under the following form:

G̃(2e)
out (ω, δω,Ω, δΩ) = (3.88)∫

ϕe

(
ω′ + Ω

)
ϕ∗e

(
ω′ − Ω

)
Kn=2,p=1

(
ω′, ω, δω, δΩ; Ω

)
dω′ .
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In this equation, we have used the reduced density variables defined in
equation (1.84)13. Here also, time translation invariance implies that
decoherence only happens along subspaces of constant Ω. We shall now
try to give a visual representation of where it can be expected to happen
on figures 3.30 and 3.31.

Incoming coherence coming from ϕe(ω0 + Ω0)ϕ∗e(ω0 − Ω0) seems to
“leak down”, within the Ω = Ω0 subspace. A priori, we know that
it will be contained inside a cube delimited by the planes ω = ±ω0/2,
δω = ±ω0/2 and δΩ = ±ω0/2, displayed in figure 3.30, since total energy
needs to be conserved. Yet, we can find more stringent conditions, since
we also need |ω1|, |ω2|, |ω′1|, |ω′2| to be all inferior to ω0. This leads to
some missing parts in this first cube, as can be seen in figure 3.31.
The exact form of the propagator depends on the value of Ω0 under
consideration. In a way, all these conditions are simply there to ensure
energy conservation, and it is obvious that having |Ω0| too close to ω0
means that not much energy is available for generating two particle
excitations.

It is not easy to understand how exactly things will happen when
looking only at this cutout cube. To gain a more intuitive vision of how
decoherence actually occurs, we will describe some specific simplified
situations and show how they modify second order coherence. In its
first part, this discussion may seem a bit academic, but we will attach
it to experimentally realistic processes in just a few pages.

Electron/hole pair emission

The simplest process through which an electron relaxes is by emitting
an electron/hole pair into in its own propagation channel or by releasing
a pair into the other channel. We are therefore interested in the different
manners in which such an emission can contribute to the intrinsic excess
second order coherence, starting from a system that has no such intrinsic
excess second order coherence.

For the remainder of this section, we also suppose that all electrons
are perfectly localized in energy, the incoming electron being emitted at
an energy ω0 in the system: ϕe(ω) = δ(ω − ω0). In such a case, the
incoming second order coherence is quite simple, and was discussed in
section 1.3.1, on page 73. In particular, since it is located in the Ω = 0

13In order to understand the current section in the best possible way, it will be
useful to remember most of the discussion of second order coherence in the energy
domain, starting on page 68.
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ω

δω/2

ωω′

ω0

−ω0

n = 1, p = 1

ω

δω/2δΩ/4

n = 2, p = 1
(Ω = Ω0)

Figure 3.30: A visual representation of the way in which coherence ap-
pears from a single point under the effect of interactions. Left: First
order case. The starting point ϕe(ω0 + δω0/2)ϕ∗e(ω0 − δω0/2) leads, un-
der the effect of interactions, to the apparition of coherences along the
red line, corresponding to constant δω = δω0. Right: Second order case.
The starting point is now ϕe(ω0 + Ω0)ϕ∗e(ω0 − Ω0), and it leads to the
creation of coherence within the red cube contained within the Ω = Ω0
subspace displayed here. Of course, we need to have |Ω0| < ω0/2, since
the incoming point corresponds to coherence of an electron. Each side
of the cube crosses the corresponding axis at a value ±ω0/2. Note that
the two gray planes within the cube are forbidden by Pauli principle, so
that the second order coherence will vanish there.
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ω

δω/2δΩ/4

Ω = −ω0/5 Ω = 0 Ω = ω0/2

Figure 3.31: Using more stringent conditions on the different energies at
play, we can limit even more the space in which coherence will propagate.
The exact form of that space will depend on Ω0, as can be seen in the
figure, but will always be a smaller, cutout version of the full cube we
discussed before. Here, we represent both the space in which coherence
could propagate (Top row) and the complementary part that would give
the full cube (Bottom row), as a way to make things a bit more easy
to understand, since 3D representation can be a bit tricky sometimes.
The space we are looking for is therefore a cube of which we would have
cut the angles. This comes from the fact that the 4 space diagonals of
the cube represent the projection in that space of ω1, ω2, ω′1, ω′2, which
must all be smaller than ω0/2 in absolute value.
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subspace, all outgoing coherence will also be in that same subspace,
allowing us to use the 3-dimensional representation which we also studied
in section 1.3.1. In particular, the sectors division from figure 1.18 will
be of particular help in the remainder of this section.

First of all, let us study one specific process of second order coher-
ence creation from electron/hole pair emission. We are interested in the
state displayed on the left of figure 3.32, in which the incoming electron
has lost energy ωl, and an electron/hole pair with that same energy is
created, with the electron emitted at ωe and the hole at ωh = ωe − ωl.
Once we understand the second order coherence of that state, we will
be able to change both ωe and ωl. In order to be readable, figure 3.32
only depicts the δΩ = 0 plane, which corresponds to a correlation plane
in the energy domain between the electrons under consideration. Of
course, due to symmetries, the orthogonal plane δω = 0 will display
coherences in the same places, with a minus sign.

In reality, the state created by Coulomb interactions will not be this
specific, but it will rather be a superposition of states such as the one we
considered up to now, as well as states in which more electron/hole pairs
could be generated. We also know that there must be non-zero overlaps
between the relative states in the environment for coherences between
two states to appear. However, a really simple physical process such as
a superposition between an electron that lost energy ωl and created a
specific e/h pair in its channel and one that created another pair with
the same energy, without sending anything in the environment, may
lead to second order coherence in other points of the 3-frequencies space
than the ones seen up to now14. For such a superposition, depicted on
the left of figure 3.33, there will be coherences in all the points shown
on the right of that same figure. As can easily be seen, these points are
no more contained within the 2 planes corresponding to correlations or
exchanges. When varying the two e/h pairs within the superposition,
we can therefore recover coherences at points that are contained within
the cutout cube that represents the propagator in this Ω = 0 subspace,
as seen in figure 3.31. It is interesting to note that all coherence created
by this process is in the electron+hole (e+h) sector, as we are indeed
probing both the electron and the hole from the pairs.

The second type of superposition we can be interested in are su-
perpositions between states where the holes generated by the e/h pair

14We are still in the Ω = 0 subspace, since the incoming coherence is only in that
space.
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ω

δω1/2/2

ω0 − ωl

ωe

ωF

ωh

State under
consideration

ω

δω/2

ω1ω2

Modified correlation terms
in second order coherence

Changing ωF Changing ωe

ω0/2

ω0/2

Changing ωl
(excess only)

Figure 3.32: A representation of coherences created by a simple process
in which an energy-resolved electron loses some energy through the cre-
ation of an electron/hole pair. Top left: The state under consideration.
The e/h pair is such that ωe − ωh = ωl. We also show one specific
electron of the Fermi sea as representative for correlation contributions.
Top right: Correlation terms arising from this state in the diagonal sub-
space Ω = δΩ = 0. From the 4 excitations shown on the left, we create
12 points with coherences. 6 of them, within the gray borders, are con-
tained within the correlation terms in the standard sense of second order
coherence. The other 6 are excess coherences between the initial elec-
tron which has lost energy and the excitations it created. Bottom left:
We recover the full correlation terms ∆G(e)(ω1|ω′1)G(e)

F (ω2|ω′2) + 1 ↔ 2
by changing ωF . Bottom center : Changing the position of the e/h pair
without changing its energy leads to coherences along small lines rather
than points. The correlation with Fermi sea electrons leads to greater
domains in which coherence can appear. Bottom right: Finally, chang-
ing the energy lost by the incoming excitation leads to excess coherences
within a square region that is the projection of the cube we displayed in
figure 3.30 in the subspace displayed here.
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ω

ω0 − ωlωe1

ωh1 +

ω

ω0 − ωl

ωe2

ωh2

State under
consideration

ω

δω/2
δΩ/4

ω = (ωe1 + ωe2 − ωl)/2
δω = (ωe2 − ωe1)

δΩ = −2ωl

Coherences between
both parts of the
superposition only

δω/2
δΩ/4
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δΩ/4 δω/2

ω

Changing ωe2

δΩ/4
δω/2

ω

Changing ωl

Figure 3.33: A visualization of where coherence can appear when consid-
ering a superposition of two states where the electron has lost the same
energy but created different pairs. Top left: The state under considera-
tion. Correlators of the form 〈c†(ωe2)c†(ωh1)c(ωh2)c(ωe1)〉 on that state
should be non-zero. Top right: The new excess second order coherence
points that appear specifically from the fact that we are looking at a
superposition. All points corresponding to any of the two parts taken
alone are not represented. Correlations and quantum exchange terms
with the Fermi sea are not shown either. Bottom, from left to right:
All points where such coherence could be recovered when varying the
different parameters we have. They all lie within the (e+h) sector of
second order coherence. In the last figure, the limiting points are on the
surface of a cube with sides of size ω0/2.
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creation are at the same energy, but the incoming electron has under-
gone different energy losses as displayed on figure 3.34. In this case, we
are probing coherences between the two electrons present in the super-
position, so that everything happens in the (2e) sector of second order
coherence. This type of process therefore allows us to gain access to
other parts of the propagator seen before!

Of course, we could also create superpositions between states where
it is the electron generated by interaction that always lies at the same
energy. However, due to the indiscernability of electrons, this is exactly
the same process as the one displayed in figure 3.33, since we only need
to intervert which electron is called by which name.

The real last superposition of interest for us is therefore one between
an electron that lost some energy in its environment (for example an-
other channel) and the state where the electron emitted the same state
in its environment plus some electron/hole pair in its own channel. Such
a case is displayed in figure 3.35 and leads to coherences in yet another
sector of second order coherence: the (e+e/h) one.

To conclude this brief study, we just explained how simple processes
involving only a single electron/hole pair emission can generate excess
second order coherence in almost every part of the cutout cube from
figure 3.31 that represents a generic propagator. This can be seen simply
by summing all the processes seen before. Yet, two sectors are still
unattainable with such simple processes: the (2h) and (h+e/h) ones, as
they would need the creation of more than one hole. But of course, even
at relatively small coupling more than one electron pair will be generated
by Coulomb interactions and these processes with electron/hole pairs
would contribute to second order electronic coherence in these zones.

A look at some realist processes

Although it does not seem easy to imagine what would happen in a
realistic experiment in full generality, there are two cases which we have
already discussed for first order coherence that may be enlightening to
consider under the prism of second order coherence.

High-energy excitation The first example is when the incoming sin-
gle electron excitation is injected at some high energy above the Fermi
sea and interactions are sufficiently weak and with limited bandwidth so
that we are in the so-called dynamical Coulomb blockade-like (DCB-like)
regime of electronic decoherence [32]. Remember that in this regime,
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+
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ω

δω/2
δΩ/4

ω = (ω0 + ωh)/2
δω = (ωh−ω0+ωl1+ωl2)

δΩ = 2(ωl1 − ωl2)
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Figure 3.34: A visualization of where coherence can appear when consid-
ering a superposition of two states where the electron has lost different
energies but created the same hole excitation. Top left: The state under
consideration. Correlators of the form 〈c†(ωe2)c†(ω0 − ωl2)c(ωe1)c(ω0 −
ωl1)〉 should be non-zero. Top right: The new excess second order co-
herence points that appear specifically from the fact that we are looking
at a superposition. All points corresponding to any of the two parts
taken alone are not represented. Correlations and quantum exchange
terms with the Fermi sea are not shown either. Bottom, from left to
right: All points where such coherence could be recovered when varying
the different parameters we have. They all lie within the (2e) sector of
second order coherence. In the last figure, the limiting points are on the
surface of a cube with sides of size ω0/2.
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Figure 3.35: A visualization of where coherence can appear when con-
sidering a superposition of two states where the electron has lost some
energy in an outside environment, and then either created an e/h pair in
its channel or not. Top left: The state under consideration. Correlators
of the form 〈c†(ωe)c†(ωe − ωr − ωl)c(ωh)c(ω0 − ωr)〉 should be non-zero.
Top right: The new excess second order coherence points that appear
specifically from the fact that we are looking at a superposition. All
points corresponding to any of the two parts taken alone are not repre-
sented. Correlations and quantum exchange terms with the Fermi sea
are not shown either. Bottom, from left to right: All points where such
coherence could be recovered when varying the different parameters we
have. They all lie within the (e+e/h) sector of second order coherence.
In the last figure, the limiting points are on the surface of a cube with
sides of size ω0/2.
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considering first order coherence, the wavepacket contribution is given
by equation (3.55):

∆G(e)
WP(t|t′) ' ϕe(t)ϕ∗e(t′)D(t− t′) (3.89)

with15

D(τ) = exp
(∫ +∞

0
2Re (1− t(ω))

(
eiωτ − 1

) dω
ω

)
. (3.90)

In terms of physical interpretation, D(t− t′) corresponds to the product
〈[rΛ′t]|[rΛt]〉〈[g′t]|[gt]〉, i.e. to the overlap between states generated in
both environmental channels by either an electron located at t or at
t′. The key point here is that interactions and the injection energy are
such that the electron/hole pairs are well separated from the injected
electron’s relaxation tail and consequently, excitations close to the Fermi
level can be treated as an effective environment for the injected high
energy electron. A subsequent study of D then allows us to recover
both the inelastic scattering probability of our electron and its high-
energy relaxation tail. Our idea is to try to find the same type of effective
decoherence coefficients for second order coherence generated by a single
excitation under the assumption that we are in the so called DCB-like
regime.

The main technical trick used in this approximation scheme is the
fact that if ϕe(ω) is completely separated from the Fermi sea, then two
points correlators of the form 〈ψ(a)ψ†(b)〉F with either a or b being equal
to t± can be replaced by a Dirac distribution δ(a − b). This is where
the physical assumption is expressed. It allows a rewriting of modified
correlations and exchanges terms from equations (3.84c) to (3.84f) under
the following form:

G(2e)
MC1(t1, t2|t

′
1, t
′
2) = G(e)

F (t2|t′2)∆G(e)
WP(t1|t′1) (3.91)

× γ+(t1 − t′2)γ−(t1 − t2)γ∗+(t′1 − t2)γ∗−(t′1 − t′2)

where ∆G(e)
WP(t1|t′1) is given by equation (3.55). Other correlation and

exchange terms are obtained with suitable symmetries, as always. How
can we understand this result? As expected, it looks quite like a standard

15Note that this is not the definition we have seen before, but an equivalent one in
the generic case where an external environment is present. We have studied it in the
ν = 1 case where |t| = 1, which leads to |1−t|2 = 2Re (1− T ). This comes from the
fact that there is no external environment at ν = 1.
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correlation term, with one part coming from the Fermi sea and one
from the injected electron having gone through the interaction region.
Yet, the product of γ functions means that these two simple outgoing
excitations have interacted with one another, leading to some leaking of
coherences around the specific correlation point.

Another way to rewrite the result from equation (3.91) can be ob-
tained by taking a few steps back before introducing the γ functions:

G(2e)
MC1(t1, t2|t

′
1, t
′
2) = ϕe(t1)ϕ∗e(t′1)〈[gt′1 ]|ψ†(t′2)ψ(t2)|[gt1 ]〉Dext(t1 − t′1) .

(3.92)

Remember that |[gt]〉 corresponds to the electron/hole pairs cloud gen-
erated within the channel by an electron localized at time t, and Dext
denotes the extrinsic decoherence coefficient defined in equation (3.15).
This form makes it a bit easier to understand exactly what is being
probed. After an interaction region, coherence was transformed from a
simple product between the incoming excitation part and the Fermi
sea, ϕe(t1)ϕ∗e(t′1)〈ψ†(t′2)ψ(t2)〉F to something that probes on the one
hand the incoming high-energy excitation after it went through some
environment-induced decoherence, and on the other hand the coherence
of the state it created in its own channel, which replaces the standard
Fermi sea. Another way to describe what happens is that the Fermi
sea is affected by the quantum fluctuations of the charge density of the
incoming particle. The electronic second order coherence picks a contri-
bution from the incoming electron that has possibly (or not) relaxed, as
well as the contribution from the partially quantum electron/hole pairs
cloud that has been generated (hence the factor 〈[gt′1 ]|ψ†(t′2)ψ(t2)|[gt1 ]〉).

Loop environment and plasmon emission The second interesting
example that we can study is the one discussed in section 3.3, in which an
electron emitted at an energy ω0 interacts with a closed environment. We
have shown that this situation leads to the loss of an energy ωl = π/τ+,
τ+ being the time it takes for excitations to go one lap around the
loop, and to the emission of a plasmon with that same energy in the
channel. We then asked if there was a way to show that the emitted
excitation is indeed a single plasmon, i.e. a quantum superposition of
all electron/hole pairs with a given energy, and not a statistical mixture
of them.

To answer this question, our detailed study of all possible single-pair
emission processes is perfectly relevant. The processes we are interested
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in are the following:

• The electron went through the interaction region and its outgoing
state is a mixture of all possible states: those where it lost no
energy, or those where it lost ωl and created any e/h pair with
that energy. These shall be called fully incoherent processes.

• The electron’s outgoing state is the superposition of having lost
no energy and having lost ωl with creation of any corresponding
single e/h pair. There is no superposition between the different
e/h pairs, but rather a mixture of all possible ones. We shall call
them partially incoherent processes.

• The electron’s outgoing state is the full superposition of having lost
no energy, having created one specific e/h pair, having creating any
other specific pair, and so on. This is the fully coherent emission
of plasmonic excitations.

In the first case, since all states in the mixture are independent
from one another, we only get second order coherence within each state
with an electron plus an e/h pair. This is the process shown on the
bottom center panel of figure 3.32, and it leads to excess second order
coherence only within specific lines of the δω = 0 or δΩ = 0 planes16.
This part of coherence lives within the (2e) and (e+h) subspaces, but is
fully contained within these planes.

In the second case, we would of course still have every excess coher-
ence obtained from these processes, but we have new excess second order
coherence coming from the superposition. Here, we are exactly in the
situation depicted on the bottom left panel of figure 3.35, with ωr = 0
and ωl constant: the outgoing state is the superposition of having lost no
energy and having created a single pair with the expected energy. The
mixture between all different possible pairs allows the reconstruction of
all eight lines, all contained within the (e+e/h) sector of second order
coherence. We already see a clear difference between a mixture and a
superposition in that case, since different sectors cannot be mistaken for
one another.

Finally, the last case corresponds to a superposition of states in which
an energy-resolved electron loses the same energy ωl but creates different
e/h pairs. We have already seen that this leads to electronic coherences
within 4 specific zones of our usual 3-dimensional space (see the bottom

16We still do this whole study in the Ω = 0 subspace, as before.
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center panel from figure 3.33). These zones are the 4 squares defined by

δΩ/4 = ±ωl2 and |ω ± δω/2| < ωl
2 (3.93a)

δω/2 = ±ωl2 and |ω ± δΩ/4| < ωl
2 (3.93b)

and all lie within the (e+h) sector of coherence. The important point
is that finding coherences in any point of these 4 squares that is not
within the planes δΩ = 0 or δω = 0 is a clear signature of the fact
that there is indeed a superposition of states in which different elec-
tron/hole pairs are emitted. Therefore, if the process happening when
an energy-resolved electron interact with a closed environment is indeed
the coherent emission of a single plasmon, we should be able to measure
coherence in these specific regions. Hence, second order coherence mea-
surements could provide a clear signature of the fact that we emitted a
single plasmonic state.

This simple examples shows that a measurement of two electron co-
herence, which involves at least a two-electron interference experiment
(Franson interferometry) or a double two-electron interference experi-
ment (double HOM) probes in a very specific way the generation of a
single plasmon excitation.

3.5.3 Two high-energy excitations

After this walk through the study of the excess second order coherence
generated by a single electron going through an interaction region, let
us engage in an a priori steeper road which will lead us to understand
what happens for the p = 2 situation, in which two electrons are sent
in the system initially. We will look both at first and second order
electronic coherences and try to unravel some similarities with what we
have seen before for a single electron. However, due to the increased
complexity of the problem compared to the above single electron case,
we will only be able to perform the discussion under the assumptions
of the last paragraph, that is in the case of high energy excitations and
under the hypothesis that relaxation effects do not lead the two electron
excitations to relax down to the Fermi sea.

First order coherence

For an incoming state consisting of a pure two-electron excitation in-
jected on top of the Fermi sea, the incoming first order coherence is
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given by

G(e)
in (t|t′) =

∫
dt1+dt2+dt1−dt2−ϕ1(t1+)ϕ∗1(t1−)ϕ2(t2+)ϕ∗2(t2−) (3.94)

〈ψ(t1−)ψ(t2−)ψ†(t′)ψ(t)ψ†(t2+)ψ†(t1+)〉F

where ϕ1 and ϕ2 are mutually orthogonal normalized single electron
wavepackets. We can then use Wick’s theorem to compute the Fermi
correlator, and in the case of high-energy excitation, we can as before
replace correlators of the form 〈ψ(a)ψ†(b)〉 by δ(a− b) when either a or
b is one of the integration variables. Doing that here directly leads to

G(e)
in (t|t′) = G(e)

F (t|t′) + ϕ1(t)ϕ∗1(t′) + ϕ2(t)ϕ∗2(t′) . (3.95)

For the outgoing state, things are a bit more complicated and we need
to use equation (3.81), but the idea is quite the same: we still have
our 6-points correlator on the Fermi sea and are going to compute it us-
ing Wick’s theorem. Remember that, for high-energy excitations, we are
mostly interested in the equivalent of the wavepacket term from the stan-
dard case. The first two terms in Wick’s decomposition that we could
think about are the ones where the Fermi sea coherence 〈ψ†(t′)ψ(t)〉F
appears. These two terms correspond to some kind of modified vacuum
terms and are not the ones we are the most interested in here. There-
fore, let us start with another specific term arising from Wick’s theorem:
the one that leads to ϕ1(t)ϕ∗1(t′) in the incoming coherence, for which
the δ functions are δ(t′ − t1−)δ(t − t1+)δ(t2+ − t2−). This leads to the
following result:

G(e)
ϕ1 term(t|t′) = ϕ1(t)ϕ∗1(t′)D(t− t′) (3.96)∫

dt2 ϕ2(t2)ϕ∗2(t2)γ∗+(t2 − t)γ∗−(t2 − t′)γ+(t2 − t′)γ−(t2 − t)

exp
(∫ ∞

0

dω
ω

2iIm (t(ω))
(
cos(ω(t2 − t′))− cos(ω(t2 − t)

))
which can be rewritten as

G(e)
ϕ1 term(t|t′) = ϕ1(t)ϕ∗1(t′)D(t− t′)

∫
dt2 ϕ2(t2)ϕ∗2(t2) (3.97)

exp
(∫ dω

ω
Re (1− t(ω))

(
eiω(t−t2) − e−iω(t−t2) + eiω(t2−t′) − e−iω(t2−t′)

))
.

The last part of this equation looks quite like a product of decoherence
coefficients D, but this is not exactly the case. To rewrite it more easily,
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let us decompose D(t) into its modulus and phase parts:

D(t) = |D(t)|eiζ(t) . (3.98)

Remember that D(−t) = D(t)∗, so that ζ(−t) = −ζ(t). Using the
definition of D(t), we easily obtain

|D(t)| = exp
(∫ ∞

0

dω
ω

2Re (1− t(ω)) (cos(ωt)− 1)
)

(3.99a)

ζ(t) =
∫ ∞

0

dω
ω

2Re (1− t(ω)) sin(ωt) . (3.99b)

It is therefore straightforward to rewrite

G(e)
ϕ1 term(t|t′) = ϕ1(t)ϕ∗1(t′)D(t− t′) (3.100a)

×
∫

dt2 ϕ2(t2)ϕ∗2(t2)ei(ζ(t−t2)−ζ(t′−t2)) . (3.100b)

In this form, we obviously recognize in term (3.100a) the direct decoher-
ence of the incoming wavepacket ϕ1 as would be expected if that electron
was alone in the system. Yet, the presence of the second electron is en-
coded in the factor (3.100b). In the incoming coherence, ϕ1(t)ϕ∗1(t′) was
multiplied by

∫
dt2|ϕ2(t2)|2, which was equal to 1. But for the outgoing

coherence, the multiplicative coefficient given by equation (3.100b) is
now the overlap between two distinct states ϕ2,t and ϕ2,t′ , defined as

ϕ2,t0(t) = ϕ2(t)eiζ(t0−t) . (3.101)

Under a different form, this can be rewritten as

G(e)
ϕ1 term(t|t′) = ϕ1(t)ϕ∗1(t′)Dext(t− t′) (3.102)

×
∫

dt2 ϕ2(t2)ϕ∗2(t2)〈[gt′ ]|ψ(t2)ψ†(t2)|[gt]〉 .

What do these equations mean? Taking them together, we find that the
overlap between the states where we created an electron in wavepacket
ϕ2 above the coherent plasmon states |[gt]〉 and |[gt′ ]〉 is equivalent to
the overlap between states |ϕ2,t〉 and |ϕ2,t′〉 times the overlap between
|[gt]〉 and |[gt′ ]〉:

〈[gt′ ]|ψ[ϕ2]ψ†[ϕ2]|[gt]〉 = 〈[gt′ ]|[gt]〉〈ϕ2,t′ |ϕ2,t〉 . (3.103)
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In the general case, the overlap 〈ϕ2,t′ |ϕ2,t〉 is always less than or equal to
1, meaning that decoherence can only become stronger in the presence
of an additional electron.

In terms of physical interpretation, the states described by wavefunc-
tions ϕ2,t0 can be seen as describing the excess state present in the system
due to the emission of the other electron, with respect to the interaction-
generated plasmonic coherent state |[gt0 ]〉. In a way, it probes whether
or not the electron/hole pairs generated in the channel under the effect
of interaction have an overlap with the other electron present in the sys-
tem. Indeed, the modification of ϕ2 into ϕ2,t0 is a direct consequence of
Coulomb interaction between the two injected electrons. As we said for
example in equation (1.56), applying some classical voltage to an Ohmic
contact leads to a change in the phase of the emitted excitations. Here,
the phase change for ϕ2 can be interpreted as coming from the voltage
generated by an electron present in the system at time t0, the amplitude
of probability for such an electron to be present being given by ϕ1(t0).

The same type of result can be obtained for the term proportional
to ϕ2(t)ϕ∗2(t′) in the incoming coherence, and we get

G(e)
ϕ2 term(t|t′) = ϕ2(t)ϕ∗2(t′)D(t− t′)〈ϕ1,t′ |ϕ1,t〉 . (3.104)

The interesting result is the fact that there are two other terms that
become non-zero in the general case: interference terms between the two
electrons. Indeed, the incoming coherence could have terms of the form
ϕ1(t)ϕ∗2(t′)〈ϕ1|ϕ2〉, but the orthogonality of incoming states prevented
them from appearing in equation (3.95). Yet, in the outgoing coherence,
there is no reason to remove those terms, and we get

G(e)
interference(t|t

′) =− ϕ1(t)ϕ∗2(t′)D(t− t′)〈ϕ1,t′ |ϕ2,t〉 (3.105a)
− ϕ2(t)ϕ∗1(t′)D(t− t′)〈ϕ2,t′ |ϕ1,t〉 . (3.105b)

In a realistic setup, we could expect that wavepackets ϕ1,t and ϕ2,t′ would
be quite different, so that these interference terms should be pretty small
compared to the dominant terms seen before. Still, there is no reason
for these terms to be directly equal to 0, thus showing that interactions
can lead to a much more complex and interesting coherence picture for
the outgoing state when compared to the incoming one.

Second order coherence

To conclude this study of decoherence for a two-electron system, we
will finally describe how the intrinsic second order coherence would be
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modified for the specific case of two electrons injected at high energies
above the Fermi sea. As before, we will use equation (3.81) in the
n = 2, p = 2 case, with the added result that 〈ψ(a)ψ†(b)〉F = δ(a − b)
when either a or b is an integration variable. And, exactly as before, we
can only give detailed result for cases in which there are no correlators
of the form 〈ψ†(a)ψ(b)〉F left. In our usual terminology, this means that
we will not interest ourselves to modified vacuum, modified correlations
and modified exchanges terms. The only term we are going to study is
the modified excess one, and there are already a few things to say about
decoherence in that case.

Remember that the incoming excess term is given directly, using the
ideas discussed above, by

∆G(2e)
in (t1, t2|t′1, t′2) = (3.106)∫
dt1+dt1−dt2+dt2−ϕ1(t1+)ϕ∗1(t1−)ϕ2(t2+)ϕ∗2(t2−)

× det
[
δ(t1+ − t1) δ(t1+ − t2)
δ(t2+ − t1) δ(t2+ − t2)

]
det

[
δ(t1− − t′1) δ(t1− − t′2)
δ(t2− − t′1) δ(t2− − t′2)

]

which we usually recast under the more standard form

∆G(2e)
in (t1, t2|t′1, t′2) = Φ12(t1, t2)Φ∗12(t′1, t′2) (3.107)

with Φ12(t1, t2) the Slater determinant built from wavefunctions ϕ1 and
ϕ2. After the interaction region, the modified excess (M∆) second order
coherence is given by the same type of equation, with added γ functions
and phases,

∆G(2e)
M∆(t1, t2|t′1, t′2) = (3.108)∫
dt1+dt1−dt2+dt2−ϕ1(t1+)ϕ∗1(t1−)ϕ2(t2+)ϕ∗2(t2−)

× det
[
δ(t1+ − t1) δ(t1+ − t2)
δ(t2+ − t1) δ(t2+ − t2)

]
det

[
δ(t1− − t′1) δ(t1− − t′2)
δ(t2− − t′1) δ(t2− − t′2)

]
× γ∗+(t1− − t1)γ∗−(t1− − t′1)γ+(t1+ − t′1)γ−(t1+ − t1)
× γ∗+(t2− − t1)γ∗−(t2− − t′1)γ+(t2+ − t′1)γ−(t2+ − t1)
× γ∗+(t1− − t2)γ∗−(t1− − t′2)γ+(t1+ − t′2)γ−(t1+ − t2)
× γ∗+(t2− − t2)γ∗−(t2− − t′2)γ+(t2+ − t′2)γ−(t2+ − t2)

× exp
(∫ ∞

0

dω
ω

2iIm (t(ω)) (cos(ω(t2− − t1−)− cos(ω(t2+ − t1+))
)
.
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Now, we simply need to account for the different products of δ functions
in order to rewrite this result in a more compact manner. First of
all, we see that |t1+ − t2+| will always be equal to t1 − t2, whereas
|t1− − t2−| = t′1 − t′2. This means that the phase from the last line will
always be exactly the same. Moreover, it is easy to convince ourselves
that the product of all 16 γ functions will also always be the same.
Indeed, this allows us to rewrite this coherence in a much more compact
manner, under the form

∆G(2e)
M∆(t1, t2|t′1, t′2) = (3.109)

Φ12(t1, t2)Φ∗12(t′1, t′2)
×D(t1 − t′1)D(t2 − t′2)D(t2 − t′1)D(t1 − t′2)
× γ−(t2 − t1)γ−(t1 − t2)γ∗−(t′2 − t′1)γ∗−(t′1 − t′2)

× exp
(∫ ∞

0

dω
ω

2iIm (t(ω))
(
cos(ω(t′2 − t′1)− cos(ω(t2 − t1)

))

where we used once again the fact that D(t) = γ+(t)γ∗+(−t). Now, we
only need to put the last two lines of this equation together to find
a compact form of this modified excess term. Doing so leads to the
following expression:

∆G(2e)
M∆(t1, t2|t′1, t′2) = (3.110)

Φ12(t1, t2)Φ∗12(t′1, t′2)× D(t1 − t′1)D(t2 − t′2)D(t2 − t′1)D(t1 − t′2)
|D(t1 − t2)D(t′1 − t′2)| ,

which is pretty nice since it only depends on the single electron decoher-
ence coefficient D, making it rather easy to compute and to interpret. In
terms of physical interpretation, remember first that for a single electron,
the effective decoherence coefficient D corresponds to the overlap of the
states that localized excitations would create in both the environment
and their channel,

D(t− t′) = 〈[−rΛt′ ]|[−rΛt]〉〈[(1− t)Λt′ ]|[(1− t)Λt′ ]〉 . (3.111)

Here, we can show in exactly the same way that the decoherence coef-
ficient for Slater determinants is also given by the overlap of the states
created by a pair of localized excitations, in their environment and in
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their channel:

D(2)(t1, t2, t′1, t′2)

= D(t1 − t′1)D(t2 − t′2)D(t2 − t′1)D(t1 − t′2)
|D(t1 − t2)D(t′1 − t′2)| (3.112a)

= 〈[−r(Λt′1 + Λt′2)]|[−r(Λt1 + Λt2)]〉
× 〈[(1− t)(Λt′1 + Λt′2)]|[(1− t)(Λt′1 + Λt′2)]〉 . (3.112b)

From these arguments, a reasonable guess for a more generic case is that,
whenever we send n electrons in a system, we can get that the modified
excess term for n-th order coherence after an interaction region is simply
given by

∆G(ne)
M∆,ne- inj.(t|t

′) = (3.113)
Φ1···n(t)Φ∗1···n(t′) 〈[Rt′ ]|[Rt]〉 〈[1− Tt′ ]|[1− Tt]〉

with |[Rt]〉 and |[1− Tt]〉 the states generated respectively in the envi-
ronment and the channel by a n-uplet of localized excitations emitted at
times ti. This n-th order effective decoherence coefficient may certainly
be expressed as

D(n)(t, t′) =
∏n
i=1

∏n
j=1D(ti − t′j)∏n

i=1
∏n
j=i |D(ti − tj)D(t′i − t′j)|

. (3.114)

How could we go further than this result? One thing we know about
D(t) is that its Fourier transform can be separated into an elastic and an
inelastic part: D̃(ω′) = 2π(Z∞δ(ω′) + d(ω′)). Exactly as before, using
this decomposition would be instrumental for numerically evaluating
these expressions and thus extracting explicit results.

Unfortunately, I did not have the time to perform this last but very
important test. In my opinion, some extra work is also needed to pre-
cisely understand the physical content of the expressions obtained be-
fore, and even if I have started to work on them, it did not seem mature
enough to be explicited in the present manuscript. Nevertheless, the
roadmap for completing this work is clear and it will certainly lead to
interesting and maybe surprising results.
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La houle est passée, faites
place au vide.

D É L U G E
Houle

As we come to the end of this manuscript, it is time to look back
at its title – Measurement and control of electronic coherences – un-
der the light of what has been achieved. Starting with the end of this
title, I think that it will be clear for any reader that this manuscript
was indeed about electronic coherences. We have spent a good part of
chapter 1 defining them, both in the first and higher order cases. I have
tried to explain their physical meaning and to give a clear vision of the
subtleties awaiting us when considering n-th order coherence. In partic-
ular, the symmetries and representations of second order coherence in a
4-dimensional space have been extensively discussed.

Chapter 2 is all about the very first word of this title: measure-
ment. After a complete review of the different methods used in electron
quantum optics to measure first order coherence through interferometry
experiments, this chapter presented two works to which I had the oppor-
tunity to contribute. The first of them [OP4] is the development of a new
tool to measure and analyze an unknown single electron coherence. In
this work done in close collaboration with the Laboratoire Pierre Aigrain
in Paris, we have demonstrated the two stages of what we call a quantum
signal analyzer. Even if that denomination may sound a bit exotic, it ex-
tracts and processes single electron coherence in order to provide us with
a simple and easily understandable representation of the single particle
content of the quantum electical current under consideration. Indeed,
we have demonstrated the first experimental realization of the generic
tomography protocol proposed a few years ago by C. Grenier [66], and
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pipelined it into a signal processing analysis, extracting from it what
we call electronic atoms of signal [OP5], their emission probabilities and
coherences. This approach has allowed us to discuss quantum electrical
currents in a way that is completely new in our community. For the first
time, we have extracted the different single-electron wavefunctions that
are present in the current created by a sinusoidal drive and obtained
from this analysis a better understanding of the role of electronic tem-
perature in the smoothing out of coherence as well as in the change of
electronic emission probabilities. We hope that our quantum signal an-
alyzer will become a useful tool in electron quantum optics experiments
and will earn its place among all other standard tools of mesoscopic
physics as a way to characterize quantum electrical currents.

The second part of my work on the measurement of electronic coher-
ences aims at reconstructing higher order coherences, and more specif-
ically the second order one. Inspired both by what already exists for
first order coherence measurement in our domain and for higher order
measurements in photon quantum optics, we devised a series of interfer-
ometers based on Franson interferometry. The first one, using current
correlations between the outputs of the direct equivalent of this inter-
ferometer, was discussed at the very beginning of my PhD in a work
mainly done by E. Thibierge [OP6]. It aims at reconstructing second or-
der coherence in the time domain, probing in a direct way the existence
of quantum coherence between pairs of electrons emitted at different
times. This is for example the case of time-bin entangled pairs that was
discussed in this manuscript, but could also be the case of other type of
sources. However, this proposal suffers from the same problem as the
measurement of single electron coherence by a Mach-Zehnder interferom-
eter: the drastic effect of Coulomb interactions within the measurement
device itself may obliterate the coherence signal we wish to reconstruct.

I have then explored an alternative path to two electron tomography
through its overlap with the two electron coherence signal corresponding
to well controlled sources. This is nothing but the quest for a second
order equivalent to the HOM tomography protocol devised in the first
order case. However, while I have found interferomery experiments that
lead to signals related to the overlap of second order coherence functions,
we still need to analyze more precisely which known signals are the best
for enabling a full and accurate reconstruction of the unknown second
order coherence. This project is not fully completed but we can consider
that the major steps have already been taken.
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The other important word of my title, “Control”, might look at first
glance as a strange word for anyone not familiar with the field of electron
quantum optics or quantum information. Why would we need to control
the coherence of single to few electron excitations in a conductor? Is
there some external factor, that would precisely be out of our control,
acting on electronic coherences and preventing us from using electrons
as photons in a quantum optics experiment ?

The answer, stated in chapter 3, is yes. Screened Coulomb interac-
tion between electrons in and outside of the conductor under considera-
tion is a major source of decoherence in our system. It needs to be taken
into account quantitatively in order to understand any electron quantum
optics experiment. In other words, electron quantum optics is generi-
cally non-linear, by contrast with its usual photonic counterpart. The
control of electronic decoherence then leads to two interesting questions.
Can we characterize the non-linearities of electron quantum optics? Can
we limit their effect in real experiments? Interestingly, these questions
come from the two possible meanings of the verb “control”, as it can
be used either in the sense of “supervise” or “regulate”. Both meanings
were indeed used in my approach to electronic decoherence.

Under the supervision side, I have discussed how a non-perturbative
approach can be developed to compute the effect of any effective model
for linearily screened Coulomb interactions on any single-electron wave-
packet [OP2], using it for several physical cases. This study of first order
coherence has allowed us to discuss the extent to which electrons are af-
fected by the presence of other charges in the system, highlighting the
crucial difference between pointer states that can be seen as coherent
plasmonic states such as Levitons and generic ones that are superposi-
tions of such pointer states such as energy resolved excitations. In this
latter case, interactions lead to a loss of coherence between the different
parts of the superposition, resulting in a complete destruction of the ex-
citation itself and its energy relaxation towards the Fermi level. This is
nothing but the exact analogue of Landau’s quasiparticle problem in an
unidimensional channel. The HOM experiment performed in G. Fève’s
group in Paris is indeed the first real-life implementation of this famous
thought experiment in quantum Hall edge channels, thus illustrating
that even in a complicated condensed matter system, some of the found-
ing fathers’ dreams can also be realized. These experimental results have
confirmed our predictions and the relevance of the decoherence scenario
we have unraveled, stressing the role of many-body decoherence induced
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by the edge channel’s electromagnetic environement.

The last section of my manuscript explores the few-body physics
of electrons within a strongly interacting conductor. This is really the
new frontier of electron quantum optics since it may offer us a unique
window on the buildup and dynamics of quantum correlations in a many-
body interacting quantum fluid. Motivated by this perspective, I have
computed the effect of Coulomb interaction on more general electronic
excitations, extending it both to higher order coherences and to cases
where more than one electron has been injected into the system. Even
if we have obtained a full analytical solution to the problem that can
be written down as a quite compact formula, a complete numerical im-
plementation avoiding any approximation but discretization seems to be
out or reach for the moment, apart from the few cases we have indeed
treated. Nevertheless, we have been able to discuss the physical mean-
ing of several key cases, explaining how a single high-energy excitation
could create second order coherence under the effect of interaction, as
well as how a coherent two-electron high-energy excitation evolves in
the presence of effective Coulomb interactions that are not too strong to
smash it down to the Fermi level. These preliminary results still require
some extra work in order to express their full potential but I think they
already correspond to a significant step in our understanding of the dy-
namics of few electron excitations, a problem that has not really been
investigated in depth by the quantum transport community.

Under the regulation side of the word “control”, I have discussed in
sections 3.3 and 3.4 several ideas on passive ways of limiting electronic
decoherence [OP1]. Our study of interaction with a closed region of en-
vironment shows that such sample designs could indeed lead to a good
protection against decoherence for electrons emitted under some energy
given by the specific size of the sample, while our study of the ν = 1 case
for interactions highlighted the importance of velocity in the interaction
strength, and therefore on decoherence. We suggest that changing the
material from AsGa to a higher Fermi velocity one could lead to drastic
improvements on the typical time over which decoherence would happen,
leading to even more impressive results on the length scale over which
an electron could propagate without being much disturbed by its envi-
ronment. In particular, exfoliated graphene could prove very interesting
to study. We hope that electron quantum optics experiments aiming
at measuring precisely electronic decoherence in this material will be
performed in the forthcoming years.
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However, a title is not just a bunch of fancy keywords: these words
have not been assembled for poetic reasons and the full title has a mean-
ing. Indeed, a central part of my work has been focused on the ex-
perimental confirmation of our electronic decoherence scenario. This
work [OP3], which stands at the exact crossing point of measuring
electronic coherence and trying to understand what can happen to it,
also put me at the crossing point between experimental and theoreti-
cal physics. Indeed, I have had the opportunity to contribute to this
work both from the experimental point of view under the supervision of
G. Fève and from the theoretical side under the supervision of P. Degio-
vanni. I think that the excellent agreement displayed in this thorough
study of electronic decoherence between the measurements and calcula-
tions allows us to have some confidence in our predictions, and I hope
that future works may confirm that not only our predictions are indeed
valid in the case of decoherence control but also that electron quantum
optics will now enter a new phase of its development in which various
applications will be developped.

Perspectives
As for any research work, even if many questions asked in this manuscript
have been given partial to complete answers, nothing is ever carved in
stone. It is the logic of the ever-expanding domain of fundamental re-
search that any answer calls for more questions, and this work indeed
calls for several questions, which I will divide in two main categories:

• Direct expansion of the work presented throughout this manuscript.
These are the most obvious questions and the roadmap towards
answering them is pretty clear.

• New areas of research opened by the constant evolution of electron
quantum optics as a whole. In these cases, the path to follow
is often still foggy, but significant recent progresses have already
occured and more might be in sight.

In the first category, we have already dispatched several hints in the
manuscript about what remains to be done. Let us review them for a
final wrap-up.

First of all, we are still at the very beginning of the use of tomography
protocols and quantum analyzers as tools for the characterization of
quantum electrical currents. Now that the benchmarking tests have
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been passed, it would be of great interest to use these tools on the states
emitted by single-electron sources. In particular, it would be interesting
to measure and analyze the Wigner function obtained at the output of
some interaction region in the real, experimental case.

This directly leads to another interesting development, this time from
a theoretical point of view: in order to compare the results obtained in
the laboratory with predictions for the full quantum signal processing
experiment, two things remain to be done. The first one is the im-
plementation of finite temperature effects in our theoretical apparatus
computing the effect of interactions. I have already done some part of
the analytical work. But as often, more interesting questions crossed
our path and we did not take the time to implement these formula nu-
merically. Yet, we may have such a tool in the next few months, but I
think that the results will not be drastically different from the ones ob-
tained at zero temperature when considering the decoherence of a single
electron wavefunction. Indeed, thanks to our colleagues in Marseille, we
already saw that the effect of temperature was not that strong on the
HOM signal predictions for the actual experimental parameters.

The real challenge, which englobes the temperature dependence, re-
sides in the description of Coulomb interaction effects on periodically
driven sources. This is the main problem that should be addressed in
order to expand the domain of validity of our approach to electronic de-
coherence: being able to describe not only single-electron wavepackets,
but completely generic sources, and in particular time-periodic ones. To
do so, we would need to go from the equilibrium bosonization used in
this manuscript to the recently developped non-equilibrium bosoniza-
tion [72]. First steps in this direction have already been made within
our group, but some basic issues related to gauge invariance and the
chiral anomaly still lie on our way. We know for sure that the numerical
implementation step will no longer be possible on a small scale computer
such as the one used to obtain the results presented here. High perfor-
mance supercomputing will almost surely be necessary and therefore,
all shadow zones must be cleaned up before moving on. I think that it
is not impossible, and I would expect such a research program to move
forward in a few years at most.

Still in the list of natural developments in the light of this conclusion,
the extension of all the electron quantum optics framework to second and
higher order coherences is still in its infancy. Proposing an operationally
viable tomography protocol for second order coherence based on the dif-
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ferent interferometers that were presented in this manuscript is clearly
within reach. We are looking forward to the first proposals and then
experimental demonstration of sources displaying non-trivial second or-
der coherence, such as time-bin entangled pairs. Given the difficulty of
noise measurements in a real experiment, I am unsure on how long it
could take to really implement a protocol relying on the measurement
of “noise of the noise”, i.e. correlations between four currents, within a
complex setup using single electron sources and Hong-Ou-Mandel inter-
ferometers. However, I think that such measurements of second order
coherence could lead to interesting applications. For example, as was
discussed at the very end of chapter 3, the emission of a coherent plas-
monic excitations could be probed with this type of experiments. More
generally, this type of question is related to understanding the relation
between electron quantum optics and its photonic counterpart. Studying
the light emitted by quantum electrical currents is already the subject
of research both from the theoretical [68, 114] and experimental [55, 46,
158] point of views. This question, asked in particular by C. Mora, is
under scrutiny in the context of electron quantum optics, between our
group and his, and a first step in this direction is presented in the PhD
of B. Roussel [138].

Finally, a particularly interesting extension of my work that will be
hopefully completed in the next few months is the study of delocalized
electronic excitations over several channels and their evolution under
the effect of interaction. This is of particular interest for several rea-
sons: first, this is directly related to the physics of the electronic Mach-
Zehnder interferometer since the first beamsplitter will create a delocal-
ized excitation over the two branches, which will then interact with their
environment. If we want to predict accurately the signal at the output
of a Mach-Zehnder interferometer, it is therefore necessary to develop
a way to study the evolution of such delocalized excitations. Moreover,
if we want to study decoherence protection in the Mach-Zehnder inter-
ferometers, we need to adapt the calculations made for loops in this
manuscript to the case of delocalized excitations. The second interest
comes from the idea of using single electron excitations as flying qubits
in a railroad system where being on one channel encodes a classical bit
of information. This motivates understanding the dynamics of a single
electron excitation delocalized over the two channels of a ν = 2 system.
However, we have shown that interactions would lead to a strong loss of
coherence, and it is natural to ask ourselves how the state of our flying
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qubit would evolve during its propagation along the experimental setup.
In the same idea, it would also be quite natural to try to protect this
qubit state from decoherence with a suitable choice of either the mate-
rial or the sample design. New designs may therefore be imagined and
their performances estimated using the ideas and methods developed in
this work. During my PhD, I have started this study of delocalized exci-
tations propagating across an interaction region. I have made analytical
computations of the evolution of coherence for generic cases where chan-
nels could interact with several (independent or not) environments and
with each other. Everything is ready for numerical implementation but
I did not have the time to implement the numerical evaluation of these
results, and this study could not make it into the present manuscript.
However, I am confident that this study can be finished soon, and that
its results could be of great interest in our community.

After this brief overview of the works which I have started but which
are not yet finished, let me give some insight on more prospective lines
of research for electron quantum optics. Some of them are just only
starting, but could potentially grow much bigger in the years to come.

First, the recent demonstration of superconducting correlations in
edge channels of the quantum Hall effect [102, 121, 70] asks the question
of the interplay between the concepts and ideas behind electron quantum
optics and superconductivity. In particular, superconductors could lead
to non-zero correlators of the form 〈ψψ〉, completely modifying the way
in which coherences behave and evolve in our framework. For me, there
is no doubt that this domain is bound to take off.

Second, it will be no surprise to anyone familiar with the quantum
Hall effect that I shall mention the fractional quantum Hall effect [164,
100, 154]. This new state of matter manifests itself by new plateaus in
the Hall resistance for fractional filling factors of the form p/q, with p and
q two co-prime numbers. In these states, since there are indeed many of
them, it has been shown that charge carriers where no more electrons
but composite fermions [87] that carry a charge e∗ = e/q. This was
demonstrated experimentally for several different values of q [127, 132],
and several experiments studying the shot noise of such excitations [141]
have been realized to probe the fractional charge of these elementary
excitations. From a theoretical point of view, composite fermions are
interesting particles, since it has been shown that their statistics could
be engineered to create anyons [87], a type of particles such that the
state of a pair of two anyons takes a phase which is neither 0 or π

248



Conclusion

under the braiding of the two particles. The strength of anyons is also
in their use in the field of quantum information, where proposals have
been made to create fault-tolerant quantum computers based on these
excitations [94]. From an electron quantum optics point of view, anyons
may lead to completely new physics, but the situation should be much
more complex since there is no ideal beamsplitter for anyons. Despite
this limitation, attempts have been made for extending the electron
quantum optics framework to the case of the fractional quantum Hall
regime, with proposals for single quasi-particle emission [42], studies of
minimal excitations in the fractional quantum Hall regime [130, 168],
discussions of the photoassisted noise [167], and HOM experiments with
trains of Levitons excitations in the fractional quantum Hall regime
[133].

A personal take on quantum information

As I think will be clear both from the introduction and the conclusion of
this work, I have a great interest in quantum information. Indeed, I have
spent the last three years not only working on the fate of electrons sent
in the edge channels of the quantum Hall effect, but also writing a book
on quantum information with P. Degiovanni, N. Portier, A. Feller and
B. Roussel. This two volume book should be published in 2018 or 2019
through the Éditions Savoirs Actuels, associated with the CNRS. I think
that this manuscript, and more generally all the work I did during my
PhD, have been heavily influenced by the research I did for the writing
of this book.

To be a bit more precise, our book may seem to be about quantum
physics at first sight, but its central topic is relations. It deals first
with the relations between three domains that have shaped the 20th
century, and have already interacted far more than what can be thought
at first glance: quantum physics, information theory and computation
theory. These three domains fed one another for more than 50 years now,
each of them shedding some light on some specific aspects of the others.
This led, of course, to the development of the field known today as
quantum information, which aims at using quantum resources as means
of communication [7] or computation [148, 69]. I think that the current
state of experimental quantum mechanics would be far less advanced if
the long term perspective of building a quantum computer was not so
appealing. The completely new ideas that this dream has put forward
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are unparalleled and could really lead to a huge paradigm shift in many
areas of science in the next decades.

But our book is not only a book on the development of a quantum
computer or, more generally, on quantum technologies, as this is covered
already in quite a large number of textbooks. Of course, we do provide
the reader with the necessary background to enter this exciting field. But
along writing the book, we have also decided to turn things around, and
use information theory and computation theory as a way to learn new
things about quantum physics, in the same way that quantum physics
has led to new research areas in the other domains. This intellectual
journey has taught us that quantum theory, in itself, is a theory about
relations. In particular, following the work of Everett [40], we discuss
that the state of a system cannot be an objective quantity in the general
case, but is always relative to the state of all other systems with which
it has interacted. This relational vision of quantum physics, which is of
course at the heart of the decoherence theory that was used extensively
in this manuscript, has finally allowed us to draw some parallel between
quantum physics and general relativity. Both of them are relational
theories that do not describe an absolute reality but a net of relations
betwteen different descriptions by physical observers, the real predictive
power of both theories giving us access to correlations between events
recorded by these observers.

Of course, our book does not go further than simply explaining this
parallel since a complete theory including both general relativity and
quantum theory is not yet available. However, my personal opinion is
that such a theory should exist, due to the strong conceptual similari-
ties between its two parts. Whether the answer to this question will be
quantum strings, quantum loops, or a completely unthought construc-
tion still needs to be discovered. I can only hope that the answer will
not elude the physics community for too long, and I would be glad to
be able to see it during my lifetime.
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Conventions

In this manuscript, the following conventions are adopted with respect
to wavepackets, operators, and Fourier transforms.∫

|ϕ(x)|2dx = 1 (A.1)

vF

∫
|ϕ(t)|2dt = 1 (A.2)

1
vF

∫
|ϕ(ω)|2 dω

2π = 1 (A.3)

ϕ(ω) = vF

∫
ϕ(t)eiωtdt (A.4)

{
ψ(x), ψ†(x′)

}
= δ(x− x′) (A.5)

{
ψ(t), ψ†(t′)

}
= δ(t− t′)

vF
(A.6)

{
c(ω), c†(ω′)

}
= δ(ω − ω′) (A.7)

c(ω) =
√
vF
2π

∫
ψ(t)eiωtdt (A.8)
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Computing outgoing
coherences

In this appendix, we are going to give all the building blocks that allow
us to compute numerically the outgoing first order coherence after an
interaction region.

B.1 Basic blocks

Let us briefly recall the main idea of what we are interested in, as was
discussed in section 3.1.3.

We are searching the propagators allowing to compute the outgoing
coherence from the incoming one. The best strategy, as was explained
in the main text, is to evaluate them in the frequency domain. In the
interacting case, the real part of interest is the decoherence coefficient
D(t, t′, t+, t−). Its Fourier transform can be obtained as a convolution
involving the Fourier transforms:

Γ±(ω) =
∫ +∞

−∞
eiωt exp

(
±
∫ +∞

0
(1− t(ω′))(eiω′t − 1)dω′

ω′

)
dt . (B.1)

Assuming that

κ± = exp
(
∓
∫ +∞

0
(1− t(ω))dω

ω

)
is finite and non zero, which can always be ensured by a suitable ultra-
violet regularization since it is known that t(ω)− 1 ' O(ω) at ω → 0+,
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these Fourier transforms have a δ singularity at ω = 0 and a regular
part for ω < 0:

Γ±(ω) = 2πκ± (δ(ω) +B±(−ω)) (B.2)

where B±(ω) are regular functions vanishing for ω < 0. As we shall
see, once the functions B± are known, the Fourier transform of the
decoherence coefficient is known.

More precisely, using the decomposition given by equation (B.2), the
Fourier transform of the decoherence coefficient D can be decomposed
as a sum of 24 = 16 terms. Therefore, each of the propagators is also
a sum of 16 terms. One among the 16 terms of the modified vacuum
propagator1 contains the Fermi sea contribution. This means that the
analytic expressions for the full propagator giving the excess outcoming
single electron coherence involve 31 terms which will be detailed in the
present section. Although quite tedious, these expressions provide a
perfect control of all the infrared singularities arising in a direct time
domain computation at vanishing temperature [171].

Before detailing these 31 terms, let us mention that both auxiliary
functions B±(ω) are evaluated for positive frequencies by solving numer-
ically the following integral equations:

ωB±(ω) = ±
[
1− t(ω) +

∫ ω

0
dω′B±(ω′)

(
1− t(ω − ω′)

)]
(B.3)

where the initial value B±(0+) is defined using the derivatives of t(ω) :

B±(0+) = ± lim
ω→0+

1− t(ω)
ω

. (B.4)

Expressions in the case of effective short range interactions in the ν = 2
edge channel system are given in appendix section B.3. They have been
used to check the validity of the numerical solutions for B± in this case.

1The one where we take the δ part of each Γ function.

256



Appendix B

B.2 The wave packet contribution

The wave packet contribution is a sum of two contributions of the fol-
lowing form:

∆G(e)
WP

(
ω + δω

2 , ω − δω

2

)
= ϕ̃e

(
ω + δω

2

)
ϕ̃∗e

(
ω − δω

2

)
Z
(
ω + δω

2

)
Z∗
(
ω − δω

2

)
(B.5a)

+
∫ +∞

−∞
ϕ̃e

(
ω′ + δω

2

)
ϕ̃∗e

(
ω′ − δω

2

)
K

(ne)
WP

(
ω, ω′; δω

)
dω′ . (B.5b)

The first contribution, equation (B.5a), contains the purely elastic con-
tribution corresponding to the electronic excitation going through the
interaction region without experiencing any inelastic process. The elastic
scattering amplitude Z(ω0) for an electron at incoming energy ~ω0 > 0
is given by [32]:

Z(ω0) = 1 +
∫ ω0

0
B−(ω′) dω′ . (B.6)

Let us recall that the inelastic scattering probability for the electron at
initial energy ~ω0 is then given by

σin(ω0) = 1− |Z(ω0)|2 . (B.7)

The second contribution, which contains the inelastic wave packet part
K

(ne)
WP of the propagator, is given by

K
(ne)
WP

(
ω, ω′; δω

)
= B+(ω′ − ω)Z

(
ω + δω

2

)
Z∗
(
ω′ − δω

2

)
+ conj. (B.8a)

+
∫ +∞

−∞
B+(k)B∗+(ω′ − ω − k)Z

(
ω′ + δω

2 − k
)
Z∗
(
ω − δω

2 + k

)
dk

(B.8b)

where the notation f(δω) + conj. should be understood as f(δω) +
f∗(−δω).
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The modified vacuum contribution

The vacuum contribution to the excess single electron coherence KMV
is given by:

∆G(e)
MV

(
ω + δω

2 , ω − δω

2

)
=
∫ +∞

−∞
KMV(ω, ω′; δω)× ϕ̃e

(
ω′ + δω

2

)
ϕ̃∗e

(
ω′ − δω

2

)
dω′ . (B.9)

The modified vacuum propagator KMV(ω, ω′, δω) can be expressed as a
sum of a part arising from singularities and a part which involves no δ
distributions, which is called the regular part:

KMV(ω, ω′; δω) = K
(sing)
MV (ω, ω′; δω) +

∫ +∞

ω
F (reg)
MV (k, ω′; δω) dk . (B.10)

The singular part is given by

K
(sing)
MV (ω, ω′; δω)

= B−(δω) H
(
−ω + δω

2

)
+ conj. (B.11a)

+B+(δω) H
(
−ω − δω

2

)
+ conj. (B.11b)

+ H
(
−ω + δω

2

)∫ ∞
0

B−

(
ω′ − k + δω

2

)
B∗+

(
ω′ − k − δω

2

)
dk

+ conj. . (B.11c)

The various Heaviside functions H show that K(sing)
MV (ω, ω′; δω) corre-

sponds to discontinuities at the boundaries between the (e) and (h)
quadrants as well as at the boundaries between the (e/h) and (h) quad-
rants [41]. Finally, the regular part is the integral over k from ω to
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infinity of:

F (reg)
MV (k, ω′; δω)

= B+

(
−k + δω

2

)
B−

(
k + δω

2

)
+ conj. (B.12a)

+B−

(
k + δω

2

)
B∗−

(
k − δω

2

)
H(ω′ − k) (B.12b)

+B+

(
−k + δω

2

)
B∗+

(
−k − δω

2

)
H(ω′ + k) (B.12c)

+
∫ ∞

0
B∗+

(
ω′ − q − δω

2

)
B−

(
ω′ − q + k

)
B+

(
−k + δω

2

)
dq

+ conj. (B.12d)

+
∫ ∞

0
B∗−

(
ω′ − q − δω

2

)
B+

(
ω′ − q − k

)
B−

(
k + δω

2

)
dq

+ conj. (B.12e)

+
∫ ∞

0
dq
∫ ∞
−∞

dq′ (B.12f)

×B+

(
q′ − 1

2

(
q − ω′ − δω

2 + k

))
B−

(
−q′ − 1

2

(
k − ω′ − δω

2 − k
))

×B∗+
(
−q′ − 1

2

(
q − ω′ + δω

2 + k

))
B∗−

(
q′ − 1

2

(
q − ω′ + δω

2 − k
))

The most complicated term to compute is, of course, the one involving
the most integrals, from equation (B.12f). Section 3.1.3 explains how we
can do our best to use the decomposition given above to limit the total
computational complexity.

B.3 Analytical results

To test that our numerical approach was valid, we were able to give an-
alytical expressions for functions B±(ω) and the elastic scattering prob-
ability Z(ω), in the specific case of short-range interaction in a ν = 2
system. This work was mainly done with D. Ferraro during my M1
internship, and can be used to check that our computation works as
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intended. We get

B+(ω) =− iτp+
+ τ

p−
− H(ω) + p+p−

2 (B.13a)

+ (τ− − τ+)2

τ+
e−iωτ+φ1

[1
2 + p+, 1, 3; 1− τ−

τ+
, iω(τ− − τ+)

]

B−(ω) =H(ω)
(

iτ+ F1 1 [p+, 1; iω(τ− − τ+)] (B.13b)

+ i(τ− − τ+)p+ F1 1

[1
2 + p+, 2;−iω(τ− − τ+)

])
Z(ω) =eiωτ+ F1 1 [p+, 1; iω(τ− − τ+)] (B.13c)

where p± and τ± are defined in equation (3.33), H(ω) denotes the Heav-
iside function, F1 1 (α, β; γ) is the confluent hypergeometric function and
φ1(α, β, γ;x, y) is the Humbert double series. The definition and all use-
ful properties of these complicated functions can be found, for example,
in Gradshteyn, Jeffrey, and Ryzhik [64].
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Interactions and high-order
coherences

In this appendix, we are going to detail how the compact formula from
equation (3.81) can be derived from the same type of computations as
the one done for first order coherence. What we are interested in is
therefore the n-th order coherence of a system where we emit p elec-
trons in wavefunctions (ϕi)i=1,,̇p, after going through an interaction
region of size l described by the unitary scattering matrix S(ω). All
electrons are emitted in the same channel, which we call channel 1:
|ϕin〉 = ∏p

i=1 ψ
†[ϕi] |F 〉1 ⊗ |F 〉2.

C.1 Computing the outgoing state

The first step to compute coherence is to compute the state itself, which
will only be easy in a bosonic point of view since interactions are directly
bosonic scattering. Let us use the dictionnary from section 1.4 to write
the incoming and outgoing states as bosonic states.

C.1.1 Incoming state expression

The incoming state can be written as

|ϕin〉 =
∫ p∏

i=1

[
dti,+ϕi(ti,+) U †1√

2πa
D1[−Λti,+(ω)]

]
|0〉1 ⊗ |0〉2 . (C.1)
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Using properties of the displacement operators given in equation (1.114),
we can write

D
[
−Λt1,+(ω)

]
D
[
−Λt2,+(ω)

]
= (C.2)

exp
(

i
∫ ∞

0

dω
ω

Im
(
eiω(t1,+−t2,+)

))
D
[
−Λt1,+(ω)− Λt2,+(ω)

]
.

Since all subsequent displacement operators will lead to the same types
of results, we have

p∏
i=1
D
[
−Λti,+(ω)

]
= (C.3)

exp

i
∫ ∞

0

dω
ω

∑
i>j

Im
(
eiω(ti,+−tj,+)

)D [ p∑
i=1
−Λti,+(ω)

]

and thus

|ϕin〉 =
∫ p∏

i=1
dti,+ϕi(ti,+) exp

i
∫ ∞

0

dω
ω

∑
i>j

Im
(
eiω(ti,+−tj,+)

) (C.4)

(
U †1√
2πa

)p ∣∣∣∣∣
[ p∑
i=1
−Λti,+(ω)

]〉
1
⊗ |0〉2 .

C.1.2 Outgoing state

The interaction zone is described by the bosonic scattering matrix

S(ω) =
(

t(ω) rE(ω)
r(ω) tE(ω)

)
(C.5)

leading to the entangled outgoing state

|ϕout〉 = (C.6)∫ p∏
i=1

dti,+ϕi(ti,+)
(

U †1√
2πa

)p
exp

i
∫ ∞

0

dω
ω

∑
i>j

Im
(
eiω(ti,+−tj,+)

)
∣∣∣∣∣
[ p∑
i=1
−t(ω)Λti,+(ω)

]〉
1
⊗
∣∣∣∣∣
[ p∑
i=1
−r(ω)Λti,+(ω)

]〉
2
.
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The reduced density matrix describing channel 1 is therefore

ρout,1 = (C.7)∫ p∏
i=1

dti,+dti,−ϕi(ti,+)ϕ∗i (ti,−)〈[ p∑
i=1
−r(ω)Λti,−(ω)

]∣∣∣∣∣
[ p∑
i=1
−r(ω)Λti,+(ω)

]〉
2((

U †1√
2πa

)p ∣∣∣∣∣
[ p∑
i=1
−t(ω)Λti,+(ω)

]〉
〈[ p∑

i=1
−t(ω)Λti,−(ω)

]∣∣∣∣∣
1

(
U1√
2πa

)p)

exp

i
∫ ∞

0

dω
ω

∑
i>j

Im
(
eiω(ti,+−tj,+)

)
exp

−i
∫ ∞

0

dω
ω

∑
i>j

Im
(
eiω(ti,−−tj,−)

) .

This state is, obviously, not a pure one!

C.2 Computing G(ne) on the outgoing state

C.2.1 A bit of rewriting

We are trying to compute

G(ne)
out (t1, . . . , tn|t′1, . . . , t′n) = (C.8)

Tr
[
ψ(tn) · · ·ψ(t1)ρout,1ψ†(t′1) · · ·ψ†(t′n)

]
.

To rewrite things in a more compact manner, we can write back ψ and ψ†
operators from U and U † ones. In that way, one operator can be written
for each of the ti,±, and all phases are absorbed by this rewriting. This
is completely equivalent to what we did in equation (3.14) for first order
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coherence, and leads to

G(ne)
out (t1, . . . , tn|t′1, . . . , t′n) = (C.9)∫ p∏
i=1

dti,+dti,−ϕi(ti,+)ϕ∗i (ti,−) 〈[R−]|[R+]〉2

×
〈

[1− T−]
∣∣∣(ψ(t1,−) · · ·ψ(tp,−)ψ†(t′1) · · ·ψ†(t′n)

ψ(tn) · · ·ψ(t1)ψ†(tp,+) · · ·ψ†(t1,+)
)∣∣∣[1− T+]

〉
1

where we used the compact states

|[R±]〉 =
∣∣∣∣∣
[ p∑
i=1
−r(ω)Λti,±(ω)

]〉
(C.10a)

|[1− T±]〉 =
∣∣∣∣∣
[ p∑
i=1

(1− t(ω))Λti,±(ω)
]〉

. (C.10b)

Just as we did for first order coherence, it is now possible to rewrite
the full product of ψ and ψ† operators as a single normal ordered dis-
placement operator :D [α]:, multiplied by some complex number β. A
clever way to find this constant is simply to notice that 〈:D [α]:〉F = 1 for
any value of the parameter α. Therefore, we know that the multiplica-
tive constant β is equal to the same correlators of ψ and ψ† appearing
before, taken on the Fermi sea. This leads to

G(ne)
out (t1, . . . , tn|t′1, . . . , t′n) = (C.11)∫ p∏
i=1

dti,+dti,−ϕi(ti,+)ϕ∗i (ti,−) 〈[R−]|[R+]〉2〈
ψ(t1,−) · · ·ψ(tp,−)ψ†(t′1) · · ·ψ†(t′n)ψ(tn) · · ·ψ(t1)ψ†(tp,+) · · ·ψ†(t1,+)

〉
F〈

[1− T−]
∣∣∣∣∣:D

[ p∑
i=1

Λti,+(ω)− Λti,−(ω) +
n∑
k=1

Λtk(ω)− Λt′
k
(ω)
]
:
∣∣∣∣∣[1− T+]

〉
1
.

C.2.2 Computing the different parts

The Fermi correlator part can be computed using Wick’s theorem. What
we are interested in is the decoherence coefficient constituted of two
parts:

• The extrinsic decoherence coefficient 〈[R−]|[R+]〉2 coming from the
overlap between the states created in the environment channel.
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• The intrinsic decoherence coefficient 〈[1− T−]|:D [·]:|[1− T+]〉1 com-
ing from the overlap between the electron-hole clouds generated
inside the injection channel.

Computing 〈[R−]|[R+]〉2

Using simply the definition of generalized coherent states, we have

〈[R−]|[R+]〉2 = exp
(∫ ∞

0
dωR∗−R+ −

|R+|2

2 − |R−|
2

2

)
(C.12)

and thus

〈[R−]|[R+]〉2 = (C.13)

exp

∫ ∞
0

dω
ω
|r(ω)|2

p∑
i,j=1

(
eiω(ti,+−tj,−) − eiω(ti,+−tj,+)

2 − eiω(ti,−−tj,−)

2

) .

Computing 〈[1− T−]|:D [·]:|[1− T+]〉1

There are two parts in this formula, a huge exponential function and the
scalar product 〈[1− T−]|[1− T+]〉. This second part is easy to write,
since it is exactly the same one as equation (C.13), replacing |r(ω)|2
by |1 − t(ω)|2. The real work that remains to be done is therefore
the computation of the exponential part coming from equation (1.116),
which we denote by F :

F = (C.14)

exp
(∫ ∞

0
dω
( p∑
i=1

Λti,−(ω)− Λti,+(ω) +
n∑
k=1

Λtk(ω)− Λt′
k
(ω)
)
T ∗−

−
( p∑
i=1

Λti,−(ω)− Λti,+(ω) +
n∑
k=1

Λtk(ω)− Λt′
k
(ω)
)∗

T+

)
.

We will divide this into two parts. The first one contains all terms where
one tk and one ti,± appear, denoted by F1, while the second one, F2,
takes into account all parts using two ti,±.
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Part with times tk This factor F1 is

F1 = exp
(∫ ∞

0

dω
ω

n∑
k=1

p∑
j=1

(1− t∗(ω))
(
e−iω(tj,−−tk) − e−iω(tj,−−t′k)

)

−
n∑
k=1

p∑
j=1

(1− t(ω))
(
eiω(tj,+−tk) − eiω(tj,+−t′k)

))
. (C.15)

When using the usual functions defined as

γ±(t) = exp
(
±
∫ ∞

0

dω
ω

(1− t(ω))(eiωt − 1)
)

(C.16)

we get

F1 =
n∏
k=1

p∏
j=1

γ∗+(tj,− − tk)γ∗−(tj,− − t′k)γ+(tj,+ − t′k)γ−(tj,+ − tk)

(C.17)

which reminds us of what we saw in the main text for first order coher-
ence, as in equation (3.24) for example.

Part using only times ti,± This second part can be deduced quite
easily:

F2 = exp
(∫ ∞

0

dω
ω

p∑
i,j=1

(1− t∗(ω))
(
e−iω(tj,−−ti,−) − e−iω(tj,−−ti,+)

)

−
p∑

i,j=1
(1− t(ω))

(
eiω(tj,+−ti,−) − eiω(tj,+−ti,+)

))
. (C.18)

Product of both factors

The F1 factor will stay on its own and cannot be simplified any further.
However, we can study with a bit more detail the product of the three
factors F2 〈[R−]|[R+]〉 〈[1− T−]|[1− T+]〉. When using the unitarity of
S(ω), that implies |r(ω)|2 + |t(ω)|2 = 1 or equivalently |r(ω)|2 + |1 −
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t(ω)|2 = 1− t(ω) + 1− t∗(ω), we can rewrite

F2 〈[R−]|[R+]〉 〈[1− T−]|[1− T+]〉 (C.19)

= exp
(∫ ∞

0

dω
ω

iIm (t(ω))
p∑

i,j=1

(
eiω(tj,−−ti,−) − eiω(tj,+−ti,+)

))

= exp
(∫ ∞

0

dω
ω

2iIm (t(ω))

p∑
i=1

p∑
j=i

(cos(ω(tj,− − ti,−))− cos(ω(tj,+ − ti,+)))
)
.

C.2.3 Final result

Putting everything back together, we finally get

G(ne)
out (t1, . . . , tn|t′1, . . . , t′n) = (C.20)∫ p∏
i=1

dti,+dti,−ϕi(ti,+)ϕ∗i (ti,−)〈
ψ(t1,−) · · ·ψ(tp,−)ψ†(t′1) · · ·ψ†(t′n)ψ(tn) · · ·ψ(t1)ψ†(tp,+) · · ·ψ†(t1,+)

〉
F

n∏
k=1

p∏
i=1

γ∗+(ti,− − tk)γ∗−(ti,− − t′k)γ+(ti,+ − t′k)γ−(ti,+ − tk)

exp
(∫ ∞

0

dω
ω

iIm (t(ω))
p∑

i,j=1

(
eiω(tj,−−ti,−) − eiω(tj,+−ti,+)

))
.

Of course, we can then use Wick’s theorem to divide the Fermi sea cor-
relator into several smaller, computable parts, leading to the equivalent
of wavepackets and modified vaccuum terms of this p-electrons, n-th or-
der coherence case. It is also possible to divide each γ± function into
a singular and regular part in pretty much the same way as we did in
appendix B, in order to control all singularities that could appear in this
coherence. Doing all this leads to a total number of terms N :

N = (n+ p)!× 24np . (C.21)

This result explains why we could not do a total computation for second
order coherence for example, since the second simplest case is n = 2, p =
1. Trying to find the excess second order coherence created by a single
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electron propagating through an interaction region leads to the compu-
tation of 1536 terms for full coherence, which is completely impossible
to write down explicitly.
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Résumé en français

Durant les quelques pages qui suivent, je vais essayer de résumer en
français et de manière succinte le travail présenté dans ce manuscrit.
Ce résumé ne fera pas justice à l’ensemble des détails présentés dans
la version anglaise, mais s’attachera à faire ressortir les points les plus
importants apparaissant dans cette thèse. Il s’agit essentiellement d’une
traduction condensée de l’introduction et de la conclusion de ce tra-
vail, agrémentée de quelques figures et équations mettant en avant les
résultats les plus importants de mon travail de recherche doctoral.

Contexte de cette thèse

Au sens large, cette thèse s’inscrit dans le domaine de l’information quan-
tique. Cette branche de la physique a pour but la préparation, la mani-
pulation et le contrôle de systèmes quantiques, et pourrait offrir de nou-
velles possibilités en matière de communication ou de calcul. Cependant,
malgré les très importantes avancées effectuées dans ce domaine [77],
l’utilisation de la mécanique quantique comme outil quotidien de com-
munication ou de calcul reste limitée par un effet appelé décohérence :
lorsque le système que l’on souhaite utiliser peut s’intriquer avec son
environnement, son état quantique va évoluer graduellement vers un
état dit “relatif” à celui de l’environnement [185, 89, 186]. Cet effet de
décohérence est un indice important pour la résolution de l’énigme de
l’émergence du monde classique dans lequel nous vivons à partir de son
homologue quantique [187]. Depuis les premières expériences sur le su-
jet [20], tout un pan de la recherche en physique quantique est ainsi
dévolu à la compréhension de la décohérence, afin de mieux la contrôler.
Comme nous le verrons, c’est l’une des thématiques principales de cette
thèse.

Néanmoins, revenons pour le moment au domaine de l’information
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quantique en général. Parmi les systèmes utilisables en laboratoire pour
effectuer des expériences d’information quantique, les systèmes d’optique
quantique partent avec un avantage de taille : à cause de leur nature,
les photons n’interagissent pas entre eux et sont en général faiblement
couplés à la matière, ce qui les isole de la décohérence. On a ainsi pu
démontrer que des paires de photons intriqués pouvaient garder leur co-
hérence sur des centaines de kilomètres dans des fibres optiques ou dans
l’espace [165, 131]. Cependant, cet avantage est aussi un inconvénient,
car on veut également que les systèmes que l’on utilise puissent inter-
agir entre eux. Des outils de matière condensée peuvent alors apporter
une réponse parfaite à ce problème, car certains d’entre eux permettent
de contrôler le couplage entre les degrés de liberté électromagnétique
et ceux de la matière. En particulier, les circuits supraconducteurs sont
généralement vus comme présentant les meilleurs chances dans la quête
d’un ordinateur quantique [178], tout comme les systèmes de spintro-
nique quantique qui restent un challenger prometteur combinant l’iso-
lation d’un spin nucléique ou électronique unique avec la contrôlabi-
lité d’un système mésoscopique, comme proposé par Kane [92]. Dans
ce contexte, comprendre et contrôler les courant électriques quantiques
jusqu’à l’échelle de l’électron unique paraît extrêmement important.

C’est dans cette perspective qu’un système spécfique est apparu
comme très prometteur à la fin du XXe siècle, en particulier grâce aux
fortes analogies qu’il présente avec l’optique quantique : les gaz bidi-
mensionnels d’électrons en régime d’effet Hall quantique [96]. Ces sys-
tèmes ont une première propriété intéressante : le transport électronique
s’y déroule dans des canaux de bords chiraux quasi-unidimensionnels,
qui constituent un analogue électronique des fibres optiques [22]. La
découverte expérimentale de l’équivalent électronique des lames semi-
réfléchissantes [172, 173] a ensuite constitué un pas important, permet-
tant la réalisation d’interféromètres de Mach-Zehnder [88], grâce aux-
quels on a pu observer que la cohérence des électrons dans ces canaux
de Hall pouvait être conservée sur plusieurs micromètres [137]. En paral-
lèle, les techniques permettant de mesurer des fluctuations de courants
électriques ont été grandement améliorées, à la fois en sensibilité et en
gamme de fréquence accessible [60, 122], permettant l’exploration de
la dynamique électronique sur des temps inférieurs à la nanoseconde.
Cependant, c’est la fabrication de sources à électrons uniques [44] qui
a vraiment lancé le domaine dans lequel cette thèse s’inscrit, celui de
l’optique quantique électronique [17]. Depuis cette découverte, le retard
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accumulé sur l’optique quantique des photons a été petit à petit com-
blé, notamment à travers la réalisation de nombreuses expériences d’in-
terférométrie [111] et de nouvelles sources d’électrons uniques [38, 4].
L’optique quantique électronique s’étend désormais également à d’autres
systèmes que les canaux de Hall [43], et continue à se développer rapide-
ment, comme l’atteste un récent volume de Physica Status Solidi [151]
dédié à l’état de l’art de ce domaine émergent.

Cependant, si l’avantage des photons est leur sensibilité réduite à la
décohérence, cela signifie que cette dernière constitue l’inconvénient ma-
jeur des systèmes électroniques. En effet, puisque les électrons sont des
particules chargées, il vont être sensible à l’interaction Coulombienne
lors de leur propagation. Sous l’effet de cette interaction avec tous les
autres électrons présents dans le conducteur, les états quantiques élec-
troniques vont perdre leur cohérence sur des distances de l’ordre de la
taille typique des expériences. Cet effet va empêcher en général l’utilisa-
tion des électrons se propageant dans les canaux de bord de l’effet Hall
quantique comme des “qubits volants”, même si cela avait constitué une
grande part de la motivation initiale pour développer ces systèmes [10,
86, 11, 184].

C’est dans ce contexte que mon travail prend place : puisque l’effet
des interactions semblent interdire l’utilisation des systèmes d’optique
quantique électronique pour l’information quantique, il semble alors na-
turel de nous concentrer sur l’étude des interactions elles-mêmes. Un
programme de recherche ayant pour but la prédiction de l’effet de l’in-
teraction de Coulomb sur des excitations électroniques dans des cas ex-
périmentalement réalisable a alors été mis en place à Lyon autour de
P. Degiovanni [32], tandis que le groupe expérimental dirigé par G. Fève
au Laboratoire Pierre Aigrain travaillait sur le test expérimental de ces
idées, afin de confimer ou d’infirmer les scénarios théoriques. Cette colla-
boration a mené à de nombreux développements à la fois expérimentaux
et théoriques, qui sont présentés pour la plupart dans ce manuscrit et
que je vais m’attacher à résumer dans les prochains paragraphes qui
présenteront le contenu global des 3 chapitres de ce manuscrit. Pour
chacun de ces chapitres, cette thèse contient à la fois des travaux pu-
bliés, qui sont dénotés par les références [OPx], ainsi que des résultats
plus préliminaires qui donneront lieu à des publications ultérieures.
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Chapitre 1 : Optique quantique électronique
Le premier chapitre de ce manuscrit présente une revue des divers outils
et concepts formant le cœur du cadre de l’optique quantique électro-
nique à la fois d’un point de vue expérimental et théorique, tels qu’ils
ont été résumés dans le bref contexte ci-dessus. Sa première section est
donc dévolue à la “boîte à outils” mise en jeu quotidiennement dans des
groupes tels que celui du Laboratoire Pierre Aigrain, et présente en détail
comment les gas bidimensionnaux d’électrons sous un fort champ magné-
tique transverse peuvent permettre de créer des canaux de conduction
balistiques. Les contacts ponctuels quantiques, qui constituent pour les
électrons un analogue contrôlable par l’expérimentateur des lames semi-
réfléchissantes pour les photons, sont également présentés. Enfin, cette
première section présente les différentes sources d’électrons qui sont uti-
lisées en optique quantique électronique, en s’attachant particulièrement
au fonctionnement de deux d’entre elles : les sources d’électrons uniques
résolus en temps et en énergie.

Après cette section de contexte expérimental, la section 1.2 s’inté-
resse au cadre théorique de l’optique quantique électronique et à l’étude
du concept fondamental de ce travail : celui de la fonction de cohérence
électronique. Cette quantité, introduite C. Grenier [66, 67], est un équi-
valent direct pour l’électronique des fonctions de cohérence de Glauber
pour les photons [62]. Elle est définie, en deux points et deux instants,
comme

G(e)
ρ (r, t|r′, t′) =

〈
ψ†(r′, t′)ψ(r, t)

〉
ρ
,

où ψ(r, t) est l’opérateur qui détruit un électron à la position r et à
l’instant t, ψ† son analogue pour la création d’électrons, et ρ est l’opéra-
teur densité de l’état quantique considéré. De nombreuses propriétés de
ces fonctions sont discutées dans ce chapitre, et en particulier les liens
entre la cohérence électronique et des quantités mesurables expérimenta-
lement. Dans cette thèse, j’utilise également énormément une représen-
tation temps-fréquence de cette fonction de cohérence, appelée fonction
de Wigner électronique [41], inspirée des travaux de Wigner [182] et
Ville [169], et définie comme :

W(e)(t, ω) = vF

∫ +∞

−∞
G(e)

(
t+ τ

2

∣∣∣∣ t− τ

2

)
eiωτdτ .

Cette représentation permet un accès direct à deux quantités intéres-
santes pour nous : le courant moyen à l’instant t, et le nombre d’occu-
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Figure F.1 : Fonction de Wigner électronique d’une excitation telle
qu’elle est émise dans une expérience, avec les paramètres ~ω0 = 0.7 K
et τ0 = 1/γ = 140 ps.

pation à l’énergie ~ω sont obtenus comme les distributions marginales
de W(e) : ∫ +∞

−∞
∆W(e)(t, ω)dω

2π = −〈i(t)〉
e

lim
T→∞

(
1
T

∫ +T/2

−T/2
W(e)(t, ω)dt

)
= f(ω) .

Pour mieux comprendre cette quantité, un grand nombre d’exemples est
présenté dans le corps principal du texte. Présentons-en un en particu-
lier : la source d’électons uniques du LPA, que nous utilisons le plus
souvent dans les expériences. Sa fonction de Wigner est représentée sur
la figure F.1, ainsi que les deux marginales discutées précédemment.
Comme on le voit sur cette figure, cette source émet une excitation
résolue de manière Lorentzienne en énergie, et le courant associé est
exponentiellement décroissant et contient une unique charge électrique.

La section 1.3 de ce premier chapitre continue ce tour d’horizon des
fonctions de cohérence et présente les outils permettant d’aller plus loin
que les quantités à un électron : les cohérences d’ordre 2 et d’ordre n.
Ces fonctions possèdent de nombreuses propriétés de symétrie qui sont
étudiées, et peuvent être reliées à plusieurs quantités physiques intéres-
santes, mais la lourdeur mathématique des expressions correspondantes
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m’oblige à ne pas en dire plus dans ce court résumé. Notons cepen-
dant que ces outils sont reliés à des concepts centraux d’information
quantique, puisqu’ils donnent accès à des indicateurs d’intrication élec-
tronique.

Enfin, la dernière section de ce premier chapitre présente un dernier
outil théorique d’importance pour mon travail de recherche : la bosonisa-
tion à l’équilibre. En effet, on peut montrer qu’il existe une équivalence
entre les excitations électroniques de basse énergie dans un conducteur
unidimensionnel et des ondes de densité de charge quantifiées, qui sont
des degrés de liberté bosoniques. Ces ondes de densité de charge sont
appelées magnetoplasmons de bord. Le but de cette section est donc de
donner un dictionnaire entre les électrons et les plasmons, afin de per-
mettre de passer d’une représentation à l’autre. En particulier, on peut
montrer qu’un plasmon d’énergie ~ω correspond à une superposition co-
hérente de toutes les paires électron/trou de cette énergie, tandis qu’un
électron émis à l’instant t est représenté par un état cohérent de plas-
mons, le paramètre de cet état cohérent étant dépendant de l’instant
considéré. En étudiant un même état quantique sous l’angle des élec-
trons ou des plasmons, différents phénomènes physiques peuvent être
modélisés, ce qui forme le cœur du chapitre 3 de ce manuscrit.

Chapitre 2 : Mesure de cohérences

Le deuxième chapitre de ce manuscrit s’intéresse au fonctionnement
des expériences que l’on peut effectuer en optique quantique électro-
nique. Avant de pouvoir décrire une expérience, il est nécessaire de se
demander quelles quantités peuvent être mesurées pour des problèmes
d’électronique aux échelles que nous considérons ici. C’est ce qui est
fait dans la première section de ce chapitre, qui présente les deux prin-
cipales quantités qui seront mesurées dans la suite : le courant moyen
et le bruit à fréquence finie. La relation entre ces quantités expérimen-
tales et les fonctions de cohérence définies dans le premier chapitre est
présentée, ainsi qu’un bref résumé des difficultés techniques qui sont
rencontrées dans une vraie expérience pour obtenir ces quantités. En
effet, de nombreuses étapes sont nécessaires pour pouvoir extraire un
signal exploitable : basse température, amplification cryogénique, grand
nombre de répétitions. . . Pour donner un ordre de grandeur, la sensibi-
lité que l’on cherche à atteindre pour une mesure de bruit est de l’ordre
de 10× 10−30 A2/Hz. Pour atteindre cette sensibilité en un temps de
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mesure raisonnable (quelques minutes), il a fallu de nombreuses avan-
cées expérimentales, qui sont détaillées dans la thèse de V. Freulon [52]
et rappelées brièvement dans cette section.

La section 2.2 s’intéresse ensuite aux diverses expériences d’interféro-
métrie qui ont été developées durant les dernières années dans le contexte
de l’optique quantique électronique. Deux interféromètres sont discutés
en détails : celui de Mach-Zehnder, qui est un interféromètre d’ampli-
tude, et celui de Hong-Ou-Mander qui est un interféromètre d’inten-
sité. En particulier, cette section présente tous les avantages et inconvé-
nients de ces interféromètres, ainsi que les quantités physiques auxquelles
ils donnent accès. Ainsi, le courant moyen à l’instant t en sortie d’un
Mach-Zehnder permet d’accéder à l’excès de cohérence hors diagonale
∆G(e)(t−τ1|t−τ2), τ1 et τ2 étant des paramètres de l’interféromètre. Ce-
pendant, l’effet des interactions dans cette expérience est extrêmement
élevé, ce qui entraîne dans la plupart des cas la destruction de la cohé-
rence que l’on voudrait mesurer. Ce problème est en partie résolu dans
l’interféromètre de Hong-Ou-Mandel, mais cette seconde expérience ne
permet d’accès direct à la cohérence émise par une source. À la place, on
va accèder à une quantité à deux sources à travers le bruit à fréquence
finie :

QHOM = −2e2
∫

dt
∫ dω

2π∆W(e)
1,in(t, ω)∆W(e)

2,in(t, ω) .

Ces deux types d’expériences peuvent également être interprétés d’une
manière un peu différente, en utilisant un langage inspiré de celui du
traitement du signal [OP5].

En utilisant le résultat de l’équation précédente et cette vision de
type traitement du signal, on peut remarquer que l’interférométrie Hong-
Ou-Mandel permet d’effectuer un autre type de mesure qui était il y a
encore quelques annéees réservé à l’optique quantique des photons : la
tomographie d’un état quantique inconnu. L’idée est assez simple : en
utilisant pour la source 2 une source dont la fonction de Wigner est bien
connue et bien choisie, il est possible de reconstruire complètement la
fonction de Wigner de la source 1. Ce protocole est présenté dans la
section 2.3, et j’ai participé à son développement à la fois d’un point de
vue théorique et expérimental. En particulier, nous avons pu effectuer au
cours de ma thèse la première procédure complète de reconstruction d’un
état quantique en utilisant ce protocole générique [OP4]. Cette première
expérience, dont les résultats sont visibles sur la figure F.2, peut être
vue comme l’étalonnage d’un nouvel outil d’analyse des courants quan-
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tiques, et nous espérons qu’une telle procédure pourra devenir utilisée
de manière plus systématique dans le futur.

Bien que cette reconstruction par tomographie d’une cohérence élec-
tronique soit une réussite expérimentale impressionnante, il ne s’agit pas
de la seule chose qui est obtenue à l’aide de ce que nous appelons notre
analyse de signaux quantiques. En effet, durant la thèse de B. Rous-
sel au sein du groupe de théorie de l’ENS de Lyon [138], il a inventé
une méthode d’analyse numérique des cohérences permettant l’extrac-
tion des fonctions d’ondes à un électron et à un trou présentes dans un
courant électrique quantique périodique. Cette méthode nous permet de
décrire tout courant quantique à travers les excitations élémentaires à
une particule qui le constituent, que nous appelons les atomes de signaux
électroniques [OP5]. Dans ce manuscrit, je présente les résultats princi-
paux, sur lesquels j’ai eu l’opportunité de travailler, de cette analyse de
signaux quantiques. Bien entendu, la thèse de B. Roussel contient de plus
amples informations sur ce sujet, mais mon manuscrit présente plusieurs
éléments de compréhension de cette méthode, ainsi qu’une analyse dans
le cas particulier présenté sur la figure F.2 de l’effet de la température
sur les cohérences électroniques.

Enfin, ce deuxième chapitre se conclut par une section consacrée aux
mesures de cohérences électroniques d’ordre supérieur. En s’inspirant
des expériences présentées pour les cohérences du premier ordre ainsi
que des expériences qui existent en optique quantique pour mesurer les
ordres supérieurs, je m’intéresse à divers interféromètres construits à la
manière de l’interféromètre de Franson [49, 50]. En utilisant une mé-
thode proche de celle à l’œuvre pour les expériences de Mach-Zehnder,
nous avons ansi pu proposer au tout début de ma thèse, sous l’impul-
sion d’E. Thibierge [OP6, 159], un interféromètre permettant la recons-
truction de cohérences d’ordre 2 directement dans le domaine temporel.
Une telle mesure directe de cohérences permet de sonder l’existence de
cohérences quantiques entre des paires d’électrons émises à des temps
différents, ce que l’on présente dans ce manuscrit à travers l’exemple de
l’intrication en fenêtre de temps [18, 109]. Cependant, cette première ap-
proche souffre des mêmes problèmes que la mesure de cohérences avec un
interféromètre de Mach-Zehnder : l’effet des interactions de Coulomb à
l’intérieur du système expérimental rend quasi impossible la survie de la
cohérence que l’on cherche à mesurer lors de la propagation électronique.

À la suite de cette première tentative, je me suis naturellement pen-
ché sur l’extension au cas à deux électrons du protocole de tomographie
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Figure F.2 : Résultats de mesures utilisant le protocole de tomographie
présenté dans la section 2.3, tirés de [OP4]. De haut en bas, trois types
de sources sinusoïdales sont utilisées, qui varient par leur fréquence ou
par la température du système : f = 10 MHz à Tel = 100 mK, 9 GHz
à 100 mK et enfin 9 GHz à 60 mK. À gauche : Les harmoniques de la
fonction de Wigner, ∆W(e)

S,n, obtenues à partir de mesures de bruits à
fréquence nulle (points) et comparées à des prédictions théoriques (lignes
tiretées), pour n = 0 à n = 3. À droite : Fonction de Wigner reconstruite
à partir des harmoniques mesurées dans l’expérience.
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dont nous avons parlé précédemment. Ce projet n’a pas pu aboutir com-
plètement, mais de nombreuses avancées significatives ont été obtenues.
En particulier, j’ai pu proposer plusieurs expériences d’interférométrie
dont les signaux de sorties sont reliés au recouvrement de cohérences
à deux électrons. La partie qui reste à développer est donc la manière
d’utiliser ces signaux, et plus spécifiquement les sources de référence
qu’il faudrait utiliser pour permettre une reconstruction complète de la
cohérence électronique d’ordre deux. L’implémentation d’un tel proto-
cole dans une expérience réelle reste encore à discuter, notamment du
point de vue de la géométrie des échantillons à utiliser ou des mesures
à effectuer, qui pourraient nécessiter la mesure d’un “bruit du bruit”.

Chapitre 3 : Interactions
Le troisième et dernier chapitre de cette thèse, qui est également le plus
conséquent, est dévolu à l’étude des interactions coulombiennes écrantées
en optique quantique électronique, que ce soit du point de vue de leur
effet sur les électrons présents dans le système, de leur caractérisation
ou de leur contrôle.

Dans sa première section, on utilise le dictionnaire développé dans
la section 1.4 pour montrer que la bosonisation offre un très bon outil
pour le traitement de l’interaction de Coulomb écranté. En particulier,
on peut montrer qu’une région d’interaction de taille finie se comporte
comme un diffuseur élastique pour les états cohérents, ce qui est repré-
senté schématiquement sur la figure F.3. Cependant, cette vision change
complètement lorsque l’on utilise notre dictionnaire dans l’autre sens
pour exprimer l’état de sortie sous une forme électronique, car l’état
obtenu est alors un état intriqué entre le système et son environnement.

En utilisant la forme exacte de cet état intriqué, on peut alors calculer
complètement la cohérence électronique après la région d’interaction. Le
résultat final peut être écrit sous une forme assez compacte lorsqu’on
injecte un unique électron dans le paquet d’onde ϕe dans le système en
entrée :

G(e)
sortie(t|t′) =

∫
ϕe(t+)ϕ∗e(t−)D(t, t′, t+, t−)

〈ψ(t−)ψ†(t′)ψ(t)ψ†(t+)〉F dt+dt− .

Cependant, le coefficient D(t, t′, t+, t−) est difficile à évaluer. Pour ce
faire, il faut tout d’abord le développer analytiquement sous une forme
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|Φout〉
|F 〉

|ϕe〉Point de
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tronique Région d’interaction

⊗

|0ω〉 |r(ω)Λt(ω)〉

|Λt(ω)〉 |t(ω)Λt(ω)〉Point
de vue

bosonique Diffuseur élastique
⊗ ⊗

Figure F.3 : Représentation schématique d’une région d’interaction et
de son effet sur les plasmons ou les électrons. En haut : vision plasmo-
nique. La région d’interaction se comporte comme un diffuseur élastique.
Pour le mode à ω, l’état d’entrée est un état cohérent de paramètre Λt(ω)
dans un canal accompagné du vide dans l’environnement. En sortie, on
obtient un état factorisé entre les deux canaux, chaque partie étant un
état cohérent de plasmons. En bas : vision électronique. Les électrons
étant des superpositions de plasmons, l’état de sortie est un état intri-
qué entre les deux canaux.

contrôlant “à la main” les différentes singularités qui peuvent y appa-
raître, avant d’utiliser une approche numérique pour calculer la valeur
de ces termes. Mettre en place ce calcul a été un travail en binôme, la
partie numérique étant implémentée par B. Roussel tandis que j’ai ef-
fectué la partie analytique dont le résultat est détaillé dans l’annexe B.
L’utilisation de cet outil extrêmement puissant, qui permet de calculer la
cohérence du premier ordre en prenant en compte l’effet de l’interaction
de Coulomb pour de nombreux modèles d’environnements et tout type
de paquet d’ondes monoélectronique en entrée a alors constitué l’essen-
tiel de mon travail de thèse. Ainsi, trois grandes situations ont retenu
mon attention et sont présentées dans ce manuscrit : la prédiction de ré-
sultat expérimentaux, le contrôle de la décohérence, et le cas spécifique
d’un système sans environnement extérieur.

La première situtation, décrite dans la section 3.2, cherche à relier
directement les prédictions que l’on peut faire en utilisant nos outils nu-
mériques aux résultats d’une expérience. Le système considéré est alors
un système à deux canaux interagissant par une interaction effective de
courte portée, qui a été observée expérimentalement comme étant celle
qui intervient à basse énergie. Pour ce modèle spécifique d’interaction,
on peut montrer qu’un état cohérent de plasmon va subir une fractio-
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nalisation en un mode rapide et un mode lent. C’est en particulier le
cas pour les états créés en appliquant une tension classique à un contact
ohmique. Cependant, les électrons bien résolus en énergie qui peuvent
être émis à l’aide de la source d’électrons uniques du LPA vont montrer
un comportement bien différent : une très forte relaxation en énergie a
lieu sur des temps très courts, signe de la perte de cohérence entre les
différentes parties de la superposition qui constituent cet état, avant que
la fractionalisation n’intervienne. Les figures correspondantes (3.5, 3.8,
3.9) sont malheureusement un peu grandes pour être présentées dans ce
résumé, mais forment le cœur de cette analyse [OP2].

En utilisant ces résultats théoriques, on peut également prédire des
quantités qui sont mesurables dans l’expérience, tel que des signaux de
bruit Hong-Ou-Mandel par exemple. C’est ce que nous avons fait lors
d’une collaboration entre le groupe de G. Fève à Paris, celui de T. Mar-
tin à Marseille et le nôtre [OP3], qui a menée entre autres au résultat
présenté sur la figure F.4. Sur cette figure sont représentés à la fois les
résultats expérimentaux et les prédictions théoriques correspondantes
pour la source d’électron uniques dans trois différents régimes, et on
peut remarquer un très fort accord entre la théorie et l’expérience, bien
que l’effet de la température sur le signal soit encore en dehors de la réso-
lution expérimentale. D’autre résultats sont présentés dans le manuscrit,
tels que la réapparition d’indiscernabilité, sous l’effet des interactions,
entre deux états initialement très différents, ou la discussion d’autres
modèles d’interaction à plus longue portée et les différences que cela
entraînerait sur le signal mesuré. Cette section se conclue ainsi sur une
discussion des expériences qui restent à mener pour discriminer définiti-
vement entre divers scénarios de décohérence possibles.

Cette comparaison entre théorie et expérience montre de manière
convaincante que nos prédictions peuvent donner des informations per-
tinentes sur les résultats expérimentaux. L’étape suivante est donc natu-
rellement de se servir de notre outil prédictif pour étudier des situations
qui ne sont pas toujours accessibles expérimentalement pour le moment,
dans le but de trouver des situations dans lesquelles on peut limiter
au maximum le phénomène de décohérence à l’œuvre dans notre sys-
tème. C’est ce que je présente dans les deux sections suivantes, qui sont
essentiellement tirées d’un article long publié en parallèle [OP1].

La première idée, présentée dans la section section 3.3, est d’utili-
ser des géométries bien spécifiques pour l’environnement de notre canal
d’intérêt pour protéger les excitations électroniques de la décohérence.
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Figure F.4 : Comparaison entre les prédictions théoriques et les résul-
tats expérimentaux pour une expérience de Hong-Ou-Mandel effectuée
avec des électrons uniques de même énergie ~ω0, pour différentes ré-
solutions temporelles. En haut : Résultats tirés de [OP3], contenant les
points expérimentaux, les prédictions de notre calcul à température nulle
(en pointillés) et celles du groupe de T. Martin à 100 mK (en lignes ti-
retées). On observe un très bon accord entre mesure et prédictions, bien
que l’effet de la température reste inaccessible avec la résolution expéri-
mentale actuelle. Au milieu : Fonction de Wigner des différentes excita-
tions émises par la source. En bas : Fonction de Wigner après la région
d’interaction pour chacune de ces excitations. Les prédictions théoriques
sont calculées à partir de ces fonctions de Wigner.
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En utilisant notre formalisme et nos outils numériques, nous pouvons
revisiter une idée qui a déjà été développée dans le régime DC depuis
quelques années [2, 83] : refermer l’environnement sur lui-même. On
peut alors s’intéresser à la manière dont de tels systèmes permettent
une protection contre la décohérence, mais également à l’état qui est ob-
tenu dans les cas où cette protection ne fonctionne pas. Ainsi, on peut
démontrer qu’un environnement bouclé introduit une énergie typique
en-dessous de laquelle les processus de relaxation sont bloqués, tandis
que des électrons émis à une énergie supérieure vont émettre dans leur
environnement un état très proche d’un plasmon unique. Une attention
particulière est portée à la possibilité de réaliser ces systèmes expéri-
mentalement, la section 3.3.2 décrivant spécifiquement des échantillons
qui permettraient de tester une protection contre la décohérence pour
la source d’électrons uniques du LPA.

La seconde idée est apparue de manière indirecte à partir du der-
nier type de système que j’ai étudié en détail au cours de ma thèse : le
cas d’un canal de bord unique, qui n’est couplé à aucun environnement
extérieur. Bien que ce cas semble complètement académique, puisqu’il
sera impossible en réalité d’obtenir un canal découplé de tout environ-
nement, il met déjà en œuvre une situation qui n’est pas si simple : la
décohérence de l’état à un corps dans un système à n-corps en interac-
tion. Comme je le discute dans la section 3.4, ce cas permet également
d’étudier la vitesse de propagation des excitations électroniques dans
les canaux 1D. En effet, savoir si les courants quantiques associés à un
électron unique se propagent à la vitesse de Fermi ou à la vitesse des
plasmons, qui sont différentes en présence d’interactions, est une ques-
tion récurrente dans notre communauté. La réponse à cette question est
en réalité assez subtile, et dépend particulièrement du matériau utilisé.
Ce point est souvent oublié, car la grande majorité des expériences d’op-
tique quanique électronique sont menées dans des gas bidimensionnels
d’AsGa, mais nous montrons que des matériaux avec des vitesses de
propagation plus élevés entraînent une bien meilleure protection contre
les phénomènes de décohérence. Cela pourrait par exemple être le cas
du graphène, si les premières estimations des vitesses mise en jeu dans
ce matériau sont confirmées.

De manière plus détaillée, cette section montre que les interactions
intra-canal dans les systèmes 1D donnent une vitesse de propagation
des plasmons qui dépend de la fréquence. Pour traiter plus facilement
ce type de vitesse, on peut alors introduire de manière perturbative un
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circuit électrique effectif reproduisant le comportement des interactions
à l’ordre que l’on veut. Cela nous permet de discuter quantitativement
des modèles dépendant du matériau sous la forme de circuits avec des
capacités différentes par exemple. Bien que cela ne soit pas fait dans
ce manuscrit, nous pensons également que ce modèle en circuit permet
d’introduire assez facilement des possibilités de dissipation dans le sys-
tème, permettant ainsi de traiter des cas plus complexes et sûrement
pertinents pour l’expérience.

Enfin, ce chapitre se termine sur une section un peu plus mathéma-
tique de ma thèse, qui vise à calculer le cas complètement général d’une
cohérence électronique d’ordre n en sortie d’une zone d’interaction dans
le cas où l’on a injecté p électrons en entrée. Puisque les cohérences
d’ordre 2 et plus sont la clé pour comprendre et quantifier les phéno-
mènes d’intrication dans le fluide électronique, ce calcul possède un réel
intérêt théorique dans le cadre d’une application de l’optique quantique
électronique pour l’information quantique. Il permet également de com-
mencer une étude plus complète des effets à n-corps dans les systèmes
que nous étudions.

La mauvaise nouvelle que ce calcul a mis en avant est la complexité
algorithmique du résultat, qui est complètement impossible à implémen-
ter numériquement en utilisant la même approche que pour la cohérence
du premier ordre. Cependant, on peut chercher à extraire de ces équa-
tions extrêmement lourdes des cas spécifiques intéressants. C’est ce que
je fais dans la section 3.5, où les limites à haute énergie de deux exemples
particuliers sont traitées. Dans le cas n = 2 et p = 1, on peut montrer
que la cohérence d’ordre 2 créée par un électron unique se propageant
dans le système est très différente selon la manière dont il crée des paires
particules-trou dans son environnement, permettant par exemple de faire
la différence entre une émission incohérente de telles paires ou l’émission
d’un plasmon unique. Dans le cas n = 1 et p = 2, on s’intéresse à l’effet
de l’interaction de Coulomb entre deux électrons injectés en même temps
dans le système, et on peut montrer plusieurs résultats intéressants qui
permettent de mieux comprendre la manière dont les électrons agissent
l’un sur l’autre.

Perspectives

Afin de mieux inscrire cette thèse dans son contexte, il me paraît utile
de traduire également les perspectives qui peuvent en être tirées et non
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seulement les résultats que j’ai obtenu et qui sont résumés ci-avant. Ces
perspectives se divisent naturellement en deux grandes catégories. Tout
d’abord, les extensions de ce travail, qui sont souvent visibles de manière
assez directe et pour lesquelles nous pouvons d’ores et déjà avoir une
bonne vision sur l’avenir. Ensuite, les nouvelles questions qui se posent
et les nouveaux domaines qui sont ouverts par l’évolution de l’optique
quantique électronique elle-même, qui sont souvent des perspectives un
peu plus éloignées ou brumeuses.

Commençons par la première catégorie, pour laquelle plusieurs in-
dices sont disséminés tout au long de ce manuscrit.

Tout d’abord, nous ne sommes qu’au tout début de l’utilisation
des protocoles de tomographie pour les courants électriques quantiques.
Maintenant que les expériences “d’étalonnage” sont passées, il serait na-
turellement extrêmement intéressant de se servir de ce système pour
mesurer de manière directe la fonction de Wigner correspondant à un
électron ayant traversé une région d’interaction dans une vraie expé-
rience.

Ceci m’amène directement à un autre développement intéressant,
cette fois du côté théorique : pour pouvoir comparer de manière exacte
une telle mesure avec des prédictions théoriques, deux choses restent à
faire. La première est l’implémentation des effets thermiques dans notre
calcul des cohérences, pour lesquels j’ai déjà fait une bonne partie du
travail analytique, mais qui n’a pas encore été ajoutée à notre outil nu-
mérique. Cela sera important en particulier pour l’étape d’extraction
de fonctions d’onde de notre outil de traitement de signal quantique.
La seconde chose qui pourrait être améliorée, et qui est bien plus gé-
nérale, serait de permettre directement le calcul des effets de l’inter-
action de Coulomb sur n’importe quel type de sources, en particulier
des sources périodiques, et non seulement sur des paquets monoélec-
troniques. Pour cela, il faudrait passer de la bosonisation à l’équilibre
utilisée dans ce manuscrit à sa version hors équilibre qui a été déve-
loppée très récemment [72]. De premiers pas dans cette direction ont
été effectués dans notre groupe, mais plusieurs problèmes rencontrés ont
empêchés d’aller très loin dans cette approche. Il paraît également clair
qu’une implémentation numérique d’un tel cas complètement générique
sera totalement impossible sur un ordinateur “standard”, nécessitant
potentiellement l’utilisation d’un supercalculateur. Cependant, je pense
que ce programme de recherche devrait avancer significativement dans
les prochaines années.
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Pour continuer cette liste des développements naturels de mon tra-
vail, l’extension du cadre de l’optique quantique électronique aux co-
hérences d’ordre 2 et plus en est encore à ses débuts. Un protocole de
tomographie pour la cohérence d’ordre deux qui soit expérimentalement
accessible semble complètement possible en utilisant les interféromètres
qui sont présentés dans cette thèse. De la même manière, les proposi-
tions et les réalisations de sources possédant une cohérence d’ordre deux
non triviale, comme des paires intriquées en fenêtre de temps, semblent
proches. Cependant, étant donné la difficulté des mesures de bruit, il
semble encore bien difficile de prédire le temps nécessaire avant que
des protocoles basés sur la mesure du “bruit du bruit” (c’est-à-dire des
corrélations à 4 courants) puissent être implémentés dans des systèmes
complexes contenant par exemple des sources d’électrons uniques ou des
interféromètres de Hong-Ou-Mandel. Cependant, je suis convaincu que
de telles expériences pourraient mener à de très intéressantes applica-
tions. Par exemple, j’ai pu montrer à la toute fin de la section 3.5 que
l’emission de plasmons pourrait être sondée par ce type d’expériences. De
manière plus générale, cette question est reliée à celle de la compréhen-
sion des relations qui existent entre l’optique quantique électronique et
son homologue photonique. Étudier la lumière émise par un courant élec-
trique quantique est déjà le sujet de nombreuses études théoriques [68,
114] et expérimentales [55, 46, 158]. Cette question, posée en particulier
par C. Mora dans le contexte de l’optique quantique électronique, est
actuellement l’objet d’une collaboration entre notre groupe et le sien. Un
premier pas dans cette direction est notamment présenté dans la thèse
de B. Roussel [138].

Enfin, une dernière extension particulièrement intéressante de mon
travail est l’étude d’excitations électroniques délocalisées sur plusieurs
canaux, et en particulier de leur évolution sous l’effet des interactions.
Plusieurs raisons nous poussent à nous intéresser à ce problème, qui
sera complété je l’espère dans les prochains mois. Tout d’abord, il s’agit
d’une situation directement reliée au cas de l’interféromètre de Mach-
Zehnder, dans lequel la première lame semi-réfléchissante crée une exci-
tation délocalisée sur les deux branches, qui interagit ensuite avec son
environnement. Si l’on veut pouvoir prédire avec précision le signal en
sortie d’un Mach-Zehnder, il est donc nécessaire de développer un moyen
d’étudier l’évolution de telles excitations. De plus, pour pouvoir étudier
les outils de protection contre la décohérence dans ces interféromètres,
il faut adapter les calculs menés pour des environnements fermés dans

285



Conclusion

ce manuscrit à ce cas spécifique. Un deuxième intérêt de cette étude se
retrouve dans l’idée d’utiliser des excitations électroniques comme des
qubits volants se propageant sur des “rails” bien définis, les deux bits
classiques d’information étant encodés par le fait d’être sur un canal
ou l’autre. Néanmoins, puisque nous avons montré que les interactions
mène à une forte perte de cohérence, il semble naturel de nous demander
comment l’état de notre qubit va évoluer lors de sa propagation dans
l’échantillon. De la même manière, on voudrait chercher à protéger ce
qubit de la décohérence en utilisant des matériaux ou des designs appro-
priés, qui restent encore à développer. Durant ma thèse, j’ai commencé
cette étude et effectué des calculs analytiques dans un cas générique où
les divers canaux pouvaient interagir avec plusieurs environnements (in-
dépendants ou non) et entre eux. Tout est prêt pour une implémentation
numérique que je n’ai malheureusement pas eu le temps d’effectuer, ce
qui explique que cette étude n’aie pas trouvé sa place dans ce manus-
crit. Cependant, elle devrait pouvoir être terminée bientôt, et j’espère
que des résultats intéressants pour notre communauté pourront en être
tirés.

Pour terminer ce résumé, et après ce bref aperçu des travaux que
j’ai commencé mais pas encore tout à fait terminé, je vais présenter
en quelques lignes la seconde catégorie de perspectives pour l’optique
quantique électronique en général. Ces domaines commencent tout juste
à se développer, et pourraient devenir bien plus importants dans les
prochaines années.

Tout d’abord, la démonstration récente de corrélations supraconduc-
trices dans les canaux de bord de l’effet Hall quantique [102, 121, 70]
pose la question de l’interaction entre les concepts de l’optique quantique
électronique et ceux de la supraconductivité. En particulier, la présence
de supraconducteurs pourrait mener à des corrélateurs de la forme 〈ψψ〉
non nuls, ce qui modifierait complètement la façon dont les cohérences
se comportent et évoluent dans notre approche. Pour moi, il ne fait au-
cun doute que ce domaine est voué à augmenter d’intérêt (et de taille)
extrêmement rapidement.

Enfin, cela ne sera pas une surprise pour quiconque d’un peu familier
avec l’effet Hall quantique de me voir mentionner l’effet Hall quantique
fractionnaire. [164, 100, 154]. Ce nouvel état de la matière se manifeste
sous la forme de nouveaux plateaux dans la résistance de Hall pour
des facteurs de remplissage fractionnaires de la forme p/q, p et q étant
premiers entre eux. Dans ces états, il a été montré que les porteurs de
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charges n’étaient plus les électrons mais des fermions composites [87]
portant une charge e∗ = e/q. Expérimentalement, cela a pu être observé
pour différentes valeurs de q [127, 132], et de nombreuses expériences
étudiant le bruit de grenaille de telles excitations [141] ont été réalisées
pour sonder la charge de ces excitations. D’un point de vue théorique, les
fermions composites sont des particules intéressantes, car il a été montré
que leur statistique pouvaient permettre de créer des anyonss [87], un
type de particule tel que l’état d’une paire prenne une phase qui n’est
ni 0 ni π lorsque l’on échange les deux particules. Plusieurs propositions
ont été faites dans le domaine de l’information quantique pour utili-
ser ces anyons dans la création d’ordinateurs quantiques résistants aux
erreurs [94]. Du point de vue de l’optique quantique électronique, les
anyons pourraient mener à un physique complètement nouvelle, mais
la situation devrait être beaucoup plus compliquée puisque nous ne
connaissons pas de lames semi-réfléchissantes pour ces particules. Malgré
cette limite, plusieurs tentatives ont été faites pour étendre le formalisme
de l’optique quantique électronique au cas fractionnaire, avec des propo-
sitions portant sur l’émission de quasi-particule unique [42], des études
sur les excitations minimales dans un régime d’effet Hall quantique frac-
tionnaire [130, 168] ou leur bruit photoassisté [167], ainsi que sur des
expériences de Hong-Ou-Mandel utilisant des trains de Levitons dans le
régime de l’effet Hall quantique fractionnaire [133].
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Summary
Over the last few years, extensive experimental efforts have been devoted to the

development of quantum nanoelectronics tools aiming at controlling electronic trans-
port down to the single electron level. These advances led to a paradigm shift in
the domain of coherent electronic transport, giving birth to electron quantum optics,
which is the domain of this work.

This manuscript is devoted to two problems. The first of these is the one of
Coulomb interactions between electrons, which lead to a decoherence phenomenon
that must be characterized and predicted in order to be controlled. Using an analyt-
ical and numerical approach, it became possible to predict the effect of interactions
on an experimentally relevant system, a prediction that was then confirmed in the ex-
periment. After this result, this manuscript displays some ideas aiming at controlling
interactions and proposes some ways to test them experimentally.

In this work, I also took on the problem of characterizing complex quantum states.
In particular, following the experimental demonstration of a tomography protocol for
first order coherences, I tried to extend this protocol to more complex states that
could exhibit two-electron coherences, or more. These states being also sensitive to
Coulomb interactions, an extension of the tools used to treat interactions to this
multi-electronic state is also presented in this work.

Keywords: electron quantum optics, quantum coherence, electronic interferences,
Coulomb interaction

Résumé
Ces dernières années, de considérables efforts expérimentaux ont été dévoués au

développement d’outils de nanoélectronique quantique, dans le but d’atteindre un
niveau de contrôle sur le transport électronique quantique à l’échelle de l’électron
unique. Ces avancées ont poussé à un changement de paradigme dans le domaine du
transport électronique cohérent et donné naissance à l’optique quantique électronique,
domaine dans lequel cette thèse s’inscrit.

Cette thèse est consacrée à deux problématiques. Tout d’abord, elle s’intéresse
au problème des interactions Coulombiennes entre électrons, qui donnent lieu à un
phénomène de décohérence qu’il est nécessaire de caractériser et de prédire au mieux
afin de le contrôler. En utilisant une approche analytique et numérique, il a été possi-
ble de prédire l’effet de ces interactions sur un système expérimentalement accessible,
prédiction qui a ensuite été confirmée par l’expérience. Dans la foulée de ce résultat,
cette thèse présente des possibilités de contrôle de ces interactions, et propose un
moyen de les mettre en œuvre qui devrait pouvoir être testé dans une expérience.

Je me suis également confronté à la problématique de la caractérisation d’états
quantiques complexes. En particulier, suite à la démonstration expérimentale d’un
protocole de tomographie pour des états mono-électroniques, je me suis tourné vers
l’extension de ce protocole à des états plus complexes, pouvant exhiber des propriétés
de cohérence à deux électrons, voire plus. Ces états étant également sensibles aux
interactions de Coulomb, une extension au cas multi-électronique des outils utilisés
pour traiter ces interactions est proposée dans cette thèse.

Mots-clés: optique quantique électronique, cohérence quantique, interférences
électroniques, interaction Coulombienne
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