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Genomics of fitness in periodic stress

Abstract

Organisms live in dynamic environments. However, most experimental approaches study the function
and  selection  of  genes  in  steady  environments.  Therefore,  natural  selection  acting  on  fluctuating
environments remains poorly understood. The objective of my project was to determine if some genes
are especially important for fitness (growth rate) of yeast cells in oscillating environments. A genomic
screen,  based  on  an  automation  of  micro-cultures  and  on  a  multiplexing  of  sequencing  libraries,
allowed me to measure fitness of thousands of null mutants in periodic stress conditions. I found that
predictability of fitness in periodic stress, from fitness in steady environments, varies depending on the
specific  genes  and conditions  considered.  This  way,  some mutants  have  similar  growth  in  steady
conditions, and different growth in dynamic conditions. Curiously, some genes play a bivalent role:
they  strongly  favor  growth during  slow fluctuations,  and reduce  it  during fast  fluctuations.  I  also
observed many mutants with higher growth than expected at the highest frequencies of fluctuations.
This effect can be partially explained by a loss of environmental sensitivity of those mutants, that
continue to divide quickly despite the presence of a stress. Those results show how natural selection
can act on mutations in fluctuating environments. They open the door to mechanistic studies of the
predictability of fitness in periodic environments.





Génomique de la prolifération cellulaire en stress périodique

Résumé en Français

Les  organismes  vivent  dans  des  environnements  dynamiques.  Or  la  plupart  des  approches
expérimentales étudient la fonction et la sélection des gènes dans des environnements statiques. De ce
fait, la sélection naturelle agissant en environnements fluctuants reste mal comprise. L´objectif de mon
projet a été de déterminer si certains gènes sont particulièrement importants pour la fitness (taux de
croissance) de cellules de levures en environnements oscillants. Un crible génomique, basé sur une
automatisation de micro-cultures et  sur un multiplexage de banques de séquençage,  m´a permis de
mesurer la fitness de milliers de mutants nuls en conditions de stress périodique. J´ai trouvé que la
prédictibilité de la fitness en environnements  périodiques,  à  partir  de la  fitness en environnements
statiques, diffère selon les gènes et les conditions. Ainsi, certains mutants présentent des croissances
similaires en conditions statiques mais différentes en conditions dynamiques. Curieusement, quelques
gènes jouent un rôle bivalent : ils favorisent fortement la croissance lors de fluctuations lentes et ils la
défavorisent  lors  de  fluctuations  rapides.  J´ai  également  observé  de  nombreux  mutants  avec  une
croissance plus élevée qu´attendue aux fréquences de fluctuations les plus rapides. Cet effet s´explique
partiellement par une perte de sensibilité environnementale de ces mutants, qui continuent à se diviser
rapidement malgré la présence d´un stress. Ces résultats montrent comment la sélection naturelle agit
sur les mutations en environnements fluctuants. Ils ouvrent la porte à des études mécanistiques de la
prédictibilité de la fitness en environnements périodiques. 
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1 Introduction 

    I Yeast genetics

        A Introduction to yeast biology

Saccharomyces cerevisiae is a species of yeast. This eukaryotic unicellular organism of 5 to 10 µm of
width does not divide symmetrically, but by making “buds”-like shapes, which is why it is called the
“budding” yeast. Even though S. cerevisiae is invisible to the naked eye, it has been used for thousands
of years for the fabrication of beers, wine and for baking. This is due to its top fermenting abilities.
More recently, the budding yeast has been used in biotechnologies for the bioproduction of compounds,
as engineered yeast can be more stable than bacteria, and for research as a model organism. 

Yeast is a popular model organism since it  is a unicellular organism with a small  generation time
(typically less than 2 hours in standard medium) that can easily be manipulated; allowing powerful
experimental techniques. In addition, it is a eukaryote and thus shares many similarities with human
cells, such as genes, cellular conformation, metabolism… As a result, research in S. cerevisiae already
culminated in 4 nobel prices in Medicine in this millennium: Hartwell, Hunt, and Nurse in 2001 for
their work on cell cycle regulators; Blackburn, Greider, and Szosta in 2009 for their work on telomeres
and telomerase, Rothman, Schekman, and Südhof in 2013 for their work on vesicle trafficking, and
Yoshinori Ohsumi in 2016 for his work on autophagy.  Candida albicans and  Schizosaccharomyces
pombe are two other popular yeast model organisms. In this thesis, if not specified otherwise, we will
refer to S. cerevisiae when writing the word “yeast”.

S. cerevisiae has been the first eukaryotic organism to be sequenced, back in 1996  (Goffeau et al.,
1996). This choice was motivated by a small genome size: 12 million base pairs with 6275 genes (but
only ~ 5800 are functional) organised in 16 chromosomes. Yeast Open Reading Frames (ORF) are
named with the form Y$$###$, with dollars being letters and hashtags being numerals. The first letter
indicates the chromosome (from A to P), the second letter the right or left arm of the chromosome (R or
L), the numerals indicate the order on the chromosome arm (irrespective of strand), and the last letter
indicates the Watson or Crick strand (C or L). The community of researchers working in yeast benefits
from a comprehensive website; the Saccharomyces Genome Database (SGD) that gathers various types
of data (DNA sequence, proteins, phenotypes, literature…) in an easily searchable fashion (Cherry et
al., 2012a).  

As mentioned above,  yeast  shares  many conserved genes  with  humans:  31% of  yeast  genes  have
human homologs (Botstein et al., 1997). Strikingly, a recent study showed that replacing essential yeast
genes (genes that yeast needs to survive in standard conditions) by their human orthologs could rescue
about half  of them  (Kachroo et  al.,  2015). Moreover,  membership to a conserved pathway was as
important, if not more, as the level of protein conservation, for the success of the rescue. However,
essential genes are more evolutionarily conserved than other yeast gene categories, as ~70% have a



human homolog. And yeasts have specificities related to their lifestyle.

Wild  S. cerevisiae cells are living in ripe or rotten fruits or in insects, at a temperature of 30 to 35
degrees. This yeast is a sessile organism and thus it relies on insects, animals or natural elements to
disperse. This also implies a higher degree of exposure to adverse conditions, and thus strong stress
response programs to face fluctuating stressful conditions. On the contrary, C. albicans that lives within
humans or other animal hosts shows a reduced gene expression stress response (López-Maury et al.,
2008). S cerevisiae has the rare ability to be able to do both fermentation and respiration. Interestingly,
when there is ample oxygen and fermentable sugars (maltose, fructose and especially glucose) it will
choose to use fermentation, even though it produces much less energy than respiration. This paradox is
resolved when looking at the yeast ecology: during fermentation yeast produces ethanol which kills
most  competitor  micro-organisms.  Indeed,  yeast  can  survive  high  ethanol  concentration  and  even
metabolize ethanol as a carbon source after exhaustion of better carbon sources. The switching from a
rapid fermentative growth on a rich carbon source to a slower growth by aerobic respiration using
ethanol is called the diauxic shift.  

Yeast can live as diploids or haploids. As a haploid, budding yeast has two sex types that can mate
together:  MAT a and MAT alpha.  Under stressful conditions, a diploid cell may enter meiosis  and
sporulate to generate four haploid cells. This allows to generate genetic diversity that can increase the
chances of survival to new adverse conditions.  

        B The Yeast Deletion Library and powerful approaches to 
measure fitness in yeast

“Darwinian” fitness,  “selective value”,  or just  fitness,  (often denoted w or  ω)  can be defined as a
quantitative measure of the ability of an organism/a genotype to reproduce in a given environment. For
asexual  organism,  it  is  straightforward  to  assign  a  fitness  value  to  a  genotype  in  a  controlled
environment.  However,  for sexual organisms, genotypes are recombined at each generation.  In this
case, an alternative strategy is to assign fitness values to alleles by looking at the reproductive success
of all individuals bearing them. Fitter alleles will increase in the population over time due to Natural
Selection.

An  important  distinction  should  be  made  between  absolute  and  relative  fitness.  Absolute  fitness
indicates the absolute increase or decrease in the abundance of a genotype, while relative fitness is the
increase or  decrease relative to  another  genotype.  Thus,  absolute  fitness does not  reflect  the same
information as relative fitness. For instance, in case of a drought, one plant might be more resistant than
another neighbour reference plant. The resistant plant would thus have a high relative fitness. However,
its absolute fitness would probably decrease. Relative fitness is informative in terms of evolution as it
directly indicates the change in genotype frequency due to Natural Selection. The selection coefficient
is another metric that takes the value of one minus the relative fitness.

Fitness of yeast cultures can be measured using different techniques with different characteristics as
shown in Table INT1. Plating and Colony Forming Units (CFU) counting consists in spreading a liquid
culture on Petri dishes at a low-enough concentration so that each yeast is on a distinct location. After



few days, colonies appear and their  number indicates the concentration of yeast in the population.
Optical density consists in determining how much a liquid culture of yeast absorbs light. This value is
then compared to a range of reference values to determine the concentration of yeasts in the culture.
For flow-cytometry, cells are first fixed and then aspired by a flow-cytometer. This machine contains
small  pipes where yeast cells  are individually transported,  subjected to  different  lasers and can be
sorted. This provides information about the size, granularity and fluorescence (several colors can often
be measured) for each cell. Microfluidic designates a set of machines that also contain cell sized small
pipes were yeasts can be sorted or tracked over time. Those systems are often coupled with automated
high-throughput microscopes, and image processing software.  This allows to culture yeasts in very
precise and dynamic conditions, and to monitor their growth rate and their fluorescence activity over
time.

Technique Throughput Precision Time to get fitness values Total cost

Plating & CFU counting Low (IA) Very High Few days low

Optical density Medium (IA) Low Immediate low

Flow-Cytometry Medium (IA) High Few days medium

Microarrays High (PA) Medium/High Few weeks/months high

BarSeq Very high (PA) Medium/High Few months high

Microfluidics Low (IA) Very high Few weeks medium
Table  INT1.  Advantages  and  Drawbacks  of  techniques  to  measure  yeast  fitness.

Abbreviations: PA = Pooled Assay; IA: individual 

A common approach in yeast biology to determine the function of a gene is to measure the fitness of a
loss of function mutant strain in various conditions. A change in fitness indicates that the gene has a
function important in this condition. In 1996, an international effort was launched to systematically
disrupt all yeast genes. This resulted in the generation of 4 Yeast Deletion Libraries of more than 4000
viable strains each: a homozygous, a heterozygous (only one copy of the gene was deleted), the MAT a
and MAT alpha libraries (Giaever and Nislow, 2014; Giaever et al., 2002a). They were constructed in
the s288c background in order to be consistent with the genome sequencing data. These Yeast Deletion
Libraries became widely used in the last decades due to their simplicity of use and great power to
assess systematically most genes of the yeast genome. A two-steps PCR experimental strategy was used
for constructing the strains.  For each strain,  one ORF was completely removed and replaced by a
cassette of resistance to Kanamycin (KanMX), flanked by two barcodes (the uptag and the downtag).
Each barcode is unique in the library and can be amplified using a common set of primers (U1-U2 for
the uptag, D1-D2 for the downtag). Most pooled assays using a YDL follow the same pipeline: pooled
growth of a library in specific conditions, extraction of genomic DNA, PCR amplification of either the
uptag, downtag or both, and quantification of barcodes through either Oligonucleotide hybridization of
barcodes (microarrays) or Barcode Sequencing (BarSeq).

Historically,  microarrays  with  oligonucleotides  complementary  to  the  strains'  barcodes  were
synthesized. Hybridizations of the barcodes to the oligonucleotides allow to quantify the abundance of
each strain in a population. Pooling strains in this type of experiments decreases greatly the costs and
time required to do experiments (per strain).  In addition,  it  adds consistency to experiments as all



strains are subjected to the same condition.  BarSeq was developed later and take advantage of the
decreasing cost of sequencing to make the technique more and more accessible (Smith et al., 2009). In
addition, it is possible to further increase multiplexing (number of conditions tested per experiment) by
incorporating another barcode during the PCR amplification step  (Smith et  al.,  2010).  This second
barcode is present in one of the two primers and indicates the population of origin of the mutant. Then,
amplicons from different populations can be pooled and sent together to sequencing. Both the mutant
and the population barcodes can then be read in the DNA sequences.

However, there are also some drawbacks that one should be aware of when working with such deletion
libraries. First,  and most importantly, there can be interactions between strains in a pool. This can
include physical interactions between strains (i.e. biofilm production, cell to cell contact), production of
toxins,  or  exchange  of  metabolites.  Another  issue  is  the  presence  of  secondary  mutations  or
aneuploidies in strains of the pool,  which can partially or completely change the phenotype of the
mutants. One study found that most of the haploid deletion mutants acquired at least one secondary
mutation  (Teng et  al.,  2013).  Interestingly,  when deleting a gene in replicate  wild-type strains,  the
acquired secondary mutation was often the same gene or a gene with a related function, with homologs
of  human  tumour  suppressor  genes  often  targeted.  In  another  study,  over  187  haploid  yeast  null
mutants, with a fitness defect in rich liquid medium (YPD), were evolved during 400 generations in
YPD, with four replicates each (Szamecz et al., 2014). The authors found that 68% of lineages acquired
secondary mutations that reduced their fitness defect. Secondary mutations were acquired quickly and
could  compensate  defects  in  a  broad  range  of  cellular  processes.  In  particular,  mutants  with  the
strongest fitness defects were more likely to acquire secondary mutations. Four replicates were evolved
per mutant. Replicate lines showed a lack of convergent evolution for both secondary mutations and
phenotypes  (i.e.  growth)  in  various  environments.  Thus,  it  appears  that  secondary  mutations  are
common  in  mutants  of  the  Yeast  Deletion  Libraries,  especially  when  strong  fitness  defects  are
observed.

Due to those issues, complementation assays and individual strain cultivation are needed when one
wants  to  definitely confirm the role  of  a  mutation in  a given condition.  A complementation assay
consists in inserting, in a mutant, a  wild-type copy of the gene that had previously been deleted, at
another unrelated locus. If the fitness effect disappears, then it confirms the role of the gene and not of
potential aneuploidies, secondary mutations or perturbation of the regulation of other genes in cis of the
gene deletion. Another issue with the deletion library is the presence of hundreds of “sick” mutants,
that are growing so slowly that they are in practice impossible to study (Giaever and Nislow, 2014). 

In general, the homozygous library is considered of better quality than the haploids and heterozygous
library.  For  instance,  the  haploid  library  has  about  8%  of  strains  with  aneuploidies  while  the
homozygous library has less than 0.3% of tetraploids (Giaever and Nislow, 2014). However, due to the
simplicity of genetic analysis, most studies were performed in the haploid deletion. The heterozygous
library has lower fitness effects than the homozygous library (Manna et al., 2012). Thus, differences
between conditions are less marked, and more difficult to detect. Additionally, (and taking this effect
into account), the heterozygous library has much lower replicability than the homozygous library. For
instance,  some replicates  of  the  same conditions  have  anti-correlated fitness  values  (Manna et  al.,
2012). Finally, the genetic background of those deletion libraries contains several auxotrophic selective
markers, that were included to improve genetic manipulations. However, most studies using the yeast
deletion library are interested in traits related to metabolism (such as growth on different nutrients,
aging,  cell  cycle,  growth/metabolism…).  Those  studies  should  preferential  be  performed  with



prototroph strains in order to be able to catch subtle metabolic effects. For those reasons, different
prototrophic libraries were constructed recently (Gibney et al., 2013; Mulleder et al., 2012). 

The  construction  of  those  YDL was  a  huge  advance  in  genetics  and  allowed  to  address  several
fundamental questions, such as: how many genes are essential? Can we find a function to all genes?
How many genes show a dosage-dependent effect (copy number) or a dominant effect on fitness? Can
we identify new genes in well-characterized pathways using systematic approaches? For a review on
the yeast deletion libraries, please refer to (Giaever and Nislow, 2014). Briefly, it was initially found
that most genes have no growth phenotype in standard laboratory conditions, which was unexpected.
Later,  studies  of  “chemogenomics”  exposed  the  YDL to  banks  of  thousands  of  small  molecules
(Hillenmeyer et al., 2008; Hoepfner et al., 2014; Lee et al., 2014), and revealed that when the number
of tested conditions increase, almost all mutants show a growth phenotype.

An issue with using the homozygous library for screening banks of drugs is that most targets of drugs
are essential genes. For this reason, chemogenomics assays usually screen the heterozygous library, in
an experiment called HaploInsufficiency Profiling (HIP) (Giaever and Nislow, 2014). This allows to
identify genes that are direct targets of the drug. HIP also have the advantage of testing the specificity
of drugs to a gene target, and evaluate the number of potential  off-targets. A library called DAmP
(Decreased Abundance by mRNA Perturbation) in which the expression level is decreased to 10% of
the wild-type was constructed to increase the range of expression level tested (Schuldiner et al., 2005).
In addition,  to HIP, chemogenomics  assays perform HOmozygous Profiling (HOP).  This allows to
identify genes that buffer the effect of the drug. This assay is particularly useful when the drug has no
direct gene target (i.e. genes involved in multi-drug resistance). Thus, both assays are complementary
and are conveniently named HIP-HOP.

An interesting output of chemogenomics assays is the generation of co-fitness data. Those are simply
produced by the correlation of the matrix of fitness of all strains and all drugs. Then, one can rank
strains (resp. drugs) that are the more similar to another strain (resp. drug). Since there were thousands
of strains (resp. drugs) tested, the most similar strains (resp. drugs) often share the same functions
(resp. targets) or are involved in the same pathway. Even though this approach is extremely powerful to
determine the potential function of a gene, in some cases, it occurs that certain strains are highly “co-
fit” because they share the same secondary mutations.  

Synthetic Genetic Array (SGA) is a procedure initially developed in 2001 that allows to create huge
libraries of double mutants (Tong et  al.,  2001). It  consists in systematically crossing a query gene
deletion mutant with a whole Yeast Deletion Library (or a part of it). This is achieved thanks to an
automated  protocol  where  crossing,  sporulation,  selection  of  double  mutant  haploids  and  fitness
measurements  are  performed  in  an  automated  way,  using  robotic  platforms.  Then,  an  epistatic
interaction is detected if fitness is  higher (genetic enhancement) or lower (synthetic lethality) than
average fitness of both individual mutants. An epistatic interaction can indicate that two genes are part
of the same or different pathways, or have similar functions (as for chemogenomics assays). More than
23 million double mutants were constructed recently (Costanzo et  al.,  2016). The authors detected
~550,000 negative and ~350,000 positive Genetic Interactions (GI). This study showed that essential
genes were enriched in GI. It also showed that negative GI are predictive of shared genes functions,
while positive GI indicated general regulatory connection among gene pairs. Most well-known cellular
pathways and their interactions could be reconstituted using this approach. 



        C Yeast response to osmotic stress

Osmosis designates a  phenomenon whereby when a solvent  (usually  water)  is  separated by a
semipermeable membrane, it starts diffusing from the most concentrated side in osmoles to the least
concentrated  side.  The  osmole  is  a  unit  of  measure  similar  to  molarity,  that  indicates  how many
molecules  are  present  in  water.  For  cells  in  suspension,  when  there  is  a  lot  of  osmoles  in  the
surrounding medium they start losing water by osmosis, shrink and eventually die. In order to prevent
such hyperosmotic stress, cells produce compatible osmolytes: compounds that do not inhibit cellular
processes  and  can  increase  the  intracellular  osmolarity.  Hypo-osmotic  stress  is  the  opposite
phenomenon: when the extracellular milieu is  less concentrated in osmolytes than the intracellular
milieu. This induces an increase in cell volume (swelling), and eventually apoptosis.

Yeasts can grow up to glucose 40%, thus they have high resistance to hyperosmotic stress (Saito and
Posas, 2012). They can produce different osmolytes such as trehalose, amino acids, ions, but the most
effective one to mediate osmo-resistance is glycerol. Yeast response to osmotic stress starts by an arrest
of the cell cycle, an adjustment of transcription and translation and an increased production of glycerol.
Common osmotic stress used in yeast experiments include sodium chloride (NaCl), potassium chloride
(KCl),  or the sugar alcohol  sorbitol.  Ionic solutions induce an additional ionic  stress that includes
different detoxifying mechanisms.  

In  response  to  osmotic  stress,  yeasts  trigger  the  High  Osmolarity  Glycerol  (HOG)  pathway.  This
pathway has been intensively studied, partly due to its high conservation in other species, including
humans. For instance, replacing the core gene of the pathway in yeast, the HOG1 Mitogen-Activated
Protein Kinase (MAPK), by the human homolog p38 MAPK rescues the sensitivity to osmotic stress
(Saito and Posas, 2012). MAPK pathways are very conserved across eukaryotes, and regulate major
decisions  such as  mitosis,  apoptosis,  survival  or  differentiation.  MAPKs pathways  share  the  same
structure: a sensor(s) at the cell's plasma membrane and a cascade of 3 kinases (MAPKKK, MAPKK,
MAPK) that  are activated one after  the other,  until  the last  kinase,  the MAPK, gets activated and
regulates the expression of hundreds of genes. In addition, some MAPK pathways share components,
which result in crosstalk and interactions between pathways. 

There are two branches in the Hog pathway that are named by their osmosensor name: Sho1 and Sln1.
Both branches result in the activation of the MAPKK PBS2, which activates the MAPK HOG1. Once
activated some Hog1p proteins have cytosolic targets,  and some move to the nucleus and activate
transcription  factors  which  induce  the  expression  of  hundreds  of  genes.  As cells  become adapted,
negative  feedback  mechanisms  deactivate  Hog1p  and  export  it  from the  nucleus.  Upon  mild-step
osmotic stress, Hog1p gets activated in about 5 minutes and then gradually deactivates until basal level
in  about  30  minutes.  Negative  feedback  mechanisms  include  glycerol  accumulation,  protein
phosphatase activity, phosphorylation of elements upstream of Hog1p, or crosstalk with other MAPK
pathways (Saito and Posas, 2012).

Despite being functionally similar,  the Sho1 and Snl1 branches have different properties. The Sln1
branch is considered as more critical for survival to very high or low osmolarities  (O’Rourke et al.,



2002). In addition, only the Sln1 branch is basally active in standard conditions (Macia et al., 2009). A
basal activity could be a general property of MAPKs that allows a faster reaction to stimuli (i.e. there is
no time needed to “initiate” the pathway). Accordingly, a microfluidic experiment where cells were
stimulated with periodic osmotic stress showed that the Sln1 branch more faithfully follows changes in
osmotic stress concentrations than the Sho1 branch, and thus has a shorter reaction time (Hersen et al.,
2008).  

    II Adaptation to a single environmental change

        A Genetic adaptation and phenotypic plasticity

When  faced  with  new  environmental  conditions,  individuals  can  adopt  one  of  the  following
strategy: dispersal to follow their favoured environment or evolutionary adaptations (Berg et al., 2010;
Chevin  et  al.,  2010;  Kokko  and  López-Sepulcre,  2006).  Dispersal  plays  contrasting  roles  on  the
evolutionary potential of a species: on the one hand, it allows the propagation of beneficial alleles in
different niches which also increases genetic diversity and the rate of evolution. On the other hand, it
reduces the fitness of individuals that were well-adapted to their previous niche (Schiffers et al., 2013).
Also in many situations populations are not able to track their favoured environmental niche, due to
their  limited  dispersal  abilities,  or  to  the  scarcity  of  this  niche.  In  these  situations,  evolutionary
adaptation, through genetic adaptation and/or phenotypic plasticity, is needed. Interestingly, evolved
traits could be dispersal abilities, evolvability or plasticity themselves.  

Phenotypic  plasticity refers  to  the  ability  of  a  given  genotype  to  produce  different  phenotypes  in
function of the environment in which it develops/grows. Organisms that rely poorly and heavily on
phenotypic plasticity are respectively called specialists and generalists (see part IIIAi). There has been
much work on determining the costs and limits of plasticity (DeWitt et al., 1998; Murren et al., 2015).
The cost of plasticity usually refers to the cost on fitness of maintaining a plastic genotype. That is, the
fitness difference for the same value of a trait between a specialist and a generalist. However, since few
or no significant costs of plasticity have been detected despite many studies, some authors suggested
that the cost of being a specialist might outweigh the cost of plasticity in most cases  (Murren et al.,
2015). The limits of plasticity correspond to the maximal phenotypes that a species can produce. That
is the difference in trait level between a specialist and a generalist  (Auld et al., 2010; Murren et al.,
2015).  Phenotypic  plasticity  can  be  either  adaptive  or  non-adaptive  (maladaptive)  depending  on
whether  it  provides  a  fitness  advantage  or  not.  A simple  measure  of  phenotypic  plasticity  is  the
coefficient of variation of the phenotypes of one genotype tested in different environments (Valladares
et al., 2006). The reaction norm is the phenotypes/traits of one genotype across different environments.
Another measure of plasticity is the slope of a linear reaction norm (Chevin et al., 2010).

Physiological adaptation or adaptation through phenotypic plasticity refers to the organism non-genetic
changes  happening  during  an  individual  lifetime/generation  in  order  to  adjust  to  its  current
environment. Physiological adaptation occurs on very short timescales, (~generation time).



In contrast, genetic adaptation usually requires at least a hundred generations, as has been shown by
experimental evolutions of microbes. Determining the time needed for genetic adaptation to occur is a
fundamentally  complex issue as  it  depends on both population  and environmental  factors  that  are
dynamic across time. Main population factors are population size, standing genetic variation, target size
(the fraction of the genome in which mutations will increase adaptation), mutation rate, evolvability or
non-additive effects such as gene redundancy and epistasis. Environmental factors include selection
pressure of the environment, temporal or spatial environmental heterogeneity, competition with other
strains, type of environments (steady, periodic, stochastic, ramp increase...), speed of environmental
changes, or level of fluctuating selection.

The current and historical consensus in evolutionary biology is  that long-term adaptation is  purely
genetic, with the apparition and fixation of mutations as the key components. However, recently, the
role of epigenetic mechanisms to long-term adaptations has been hotly debated (Laland et al., 2014).
Indeed, it has been argued that plasticity and non-genetic transgenerational inheritance mechanisms
(see part 1-III-B) are key players and not just by-products of evolution.

        B Tracking the dynamics of adaptive mutations in microbes

Microbes have become the organisms of choice for the study of the dynamics of genetic adaptation.
Indeed, their short generation times allow for parallel experimental evolution assays in reasonably short
time-scales with a high degree of control over population genetic parameters. And their small genome
size  allows  for  Whole  Genome  Sequencing  (WGS)  in  order  to  find  the  genetic  determinants  of
adaptation. In addition, it is possible to “save” all time points of an experiment for further molecular
analysis or even “resuscitation”, through frozen fossil records. Performing WGS has become a routine
in many laboratories in the last decade due to the decreasing costs of sequencing. New techniques of
pooled sequencing were developed, such as Bulk Segregant Analysis (BSA) (Duveau et al., 2014). In a
BSA assay, individuals in a population are sorted, and individuals with extremely high or low trait
value are separated into two groups. Pooled sequencing of the DNA of those two groups can result in a
differential enrichment between the two groups, of genes important for the sorted trait. 

Experimental  evolution experiments  revealed valuable results  about  genetic  evolution (reviewed in
(Lang  and  Desai,  2014)).  For  instance,  few  examples  of  epistasis  were  found  among  beneficial
mutations.  Accordingly,  mutations  in  the same pathways often produce the same effect  on fitness.
Importantly, phenotypic convergence (parallel evolution) is common while genotypic convergence is
rare. This illustrates that there are multiple possible genetic roads to reach a given phenotype. In fact,
considering pathways instead of single genes can largely improve analysis of WGS data: it can improve
the rate of parallel evolution from 2% to 30%  (Lang and Desai, 2014). Most common mutations in
haploid microbes are loss-of-function mutation, as expected as many single point mutation can cause
them, followed by gene duplication and sometimes gene translocation.  The concept of diminishing
return epistasis indicates a negative epistasis phenomenon whereby the beneficial effect of beneficial
mutations is smaller in the presence of other beneficial mutations  (Chou et al., 2011; Martin et al.,
2007). This effect could be stronger for large effect beneficial mutations. Finally, phenotypic evolution
can be predictable on short time scales, but not on long time scales where epistasis is important and



chance mutations will start combining to produce unexpected phenotypes  (Lang and Desai, 2014).  

In a landmark study, Sasha Levy et al. developed a protocol that allows to tag ~500,000 haploid yeast
cells by transforming a plasmid library containing millions of unique barcodes in a yeast population
(Levy et al.,  2015). Using barcode sequencing, they were able to track the abundance of each cell
lineage across time, and thus to measure the apparition of new mutations and their fate: disappearance
or fixation. They found that initial small effects mutations are deterministic, while rare large effect
mutations become fixed and generate variability between replicates. However, they explain in a follow
up  study,  that  introduction  of  barcodes  induced  diploidization  of  most  cells  (~80%  of  them)
(Venkataram et  al.,  2016).  This  technique,  once  perfected,  could  allow even more  powerful  yeast
genetics. For instance, a later potential application could be to construct a yeast library with a much
higher genome saturation, for more comprehensive genomic analysis. This might be done by barcoding
a huge isogenic population, and subjecting it to DNA-damaging agents at small concentrations. This
might result in a barcoded library that would contain (probabilistically speaking), for any single point
mutation, one strain with only this mutation.

    III Adaptation to fluctuating environments

No organism lives in a constant environment. Thus, it is important to consider how adaptation
occurs in fluctuating conditions, even though it is usually more challenging to study experimentally. In
this section we will first describe the different strategies of adaptation to fluctuating environments, and
then the mechanisms of anticipation and memory (priming) that can be advantageous in fluctuating
conditions.

        A Strategies of adaptation to fluctuating conditions

            i Main strategies of adaptation to fluctuating environment

When considering adaptation to “real” fluctuating conditions, several (sometimes related) strategies
have  been  described,  such  as:  generalism,  specialism,  priming,  sensing,  bet-hedging,  plasticity,
stochastic switching, stochastic sensing, phase variation. Many theoreticians are developing models to
determine the optimal strategy in various environmental contexts. However, few experimental studies
have confirmed those predictions due to  inherent  difficulties  in  studying fluctuating environments.
Importantly, there is no doubt that organisms in the wild are not restricted to a specific strategy but
combine different strategies to some degree. However, understanding which conditions favour which
strategies is a key issue in evolutionary biology.  

Generalists designate “all-rounder” genotypes that are well  fit  in  many different environments.  In
contrast, specialists are genotypes that are highly fit in one or few environments but poorly fit in other
environments. Plasticity is the ability of a genotype to develop different phenotypes according to the
environment.  Plasticity is often related to generalism. And it  is often assumed that plasticity has a



fitness  cost  that  has  to  be  paid  to  keep  the  ability  to  produce  different  phenotypes.  Priming (or
deterministic/anticipatory  maternal  effects  or  transgenerational  phenotypic  plasticity)  is  a  strategy
where  organisms react  to  a  first  stimulus  in  anticipation  of  the  later  apparition  of  another  related
environment (see next 1IIIB). Sensing designates organisms that rely on their sensors to detect that the
environment changed and to adapt their physiology. This strategy is well characterized molecularly as it
corresponds to plasma membrane receptors that sense and transmit signals to MAPKs or other cell
signalling proteins.  Sensing is  usually opposed to bet-hedging (or randomizing maternal effects):  a
strategy  that  aims  to  reduce  the  risks  of  extinction  during  extreme environmental  conditions  (see
below).

            ii Bet-hedging

                A Different types of bet-hedging 

Bet-hedging is defined as a decrease in both arithmetic mean fitness (across environments) and its
variance and an increase in geometric mean fitness (Philippi and Seger, 1989; Sæther and Engen, 2015;
Seger and Brockman, 1987). This concept was first developed by Dan Cohen in 1966 (Cohen, 1966).
The rationale behind lies in the observation that  fitness in  fluctuating (real)  environments is  more
accurately estimated by geometric than by arithmetic mean fitness. Indeed, extreme environments can
wipe  off  entire  populations,  and  have  more  weights  on  geometric  mean  fitness  (since  it  is
multiplicative) than on arithmetic mean fitness.  

Different  forms  of  bet-hedging  have  been  described:  conservative  bet-hedging,  diversifying  bet-
hedging, and adaptive coin flipping. Conservative bet-hedging indicates a strategy where a phenotype
is produced that is neither optimal nor detrimental in any environment. A common example to illustrate
bet-hedging strategies is the size of eggs at birth  (Olofsson et al., 2009a; Philippi and Seger, 1989).
Small eggs have less chances to survive to harsh conditions, and big eggs require more resources to
produce.  In  this  case  a  conservative  bet-hedging  strategy  would  consists  in  producing  eggs  of
intermediate  size  at  each clutch.  Diversifying bet-hedging,  or  within generation bet-hedging,  is  a
strategy where a single genotype produces different phenotypes. This allows to have, in an isogenic
population (e.g. for microbes), individuals that can resist to different types of stressful environments.
This  way,  risks  are  spread  among  the  population.  This  is  the  same  principle  as  the  one  used  in
economics and finance, resumed by the adage: “don't put all your eggs in the same basket”. Coming
back to  the  bird  example,  a  diversifying  bet-hedging strategy would  consist  in  producing eggs of
various sizes at each clutch.  

Stochastic  switching,  or  phase  variation  in  bacteria,  is  a  type  of  diversified  bet-hedging  where
individuals stochastically switch their phenotypes at rates much higher than mutation rates  (Hallet,
2001; Salathé et al., 2009; Salaun et al., 2003; van der Woude, 2011). Stochastic sensing indicates a
combination of sensing with stochastic switching  (New et al., 2014). In  adaptive coin flipping, or
between  generation  bet-hedging,  the  strategy  is  randomized  at  each  generation  (i.e.  production  of
progeny; for instance once a year for plants, or once at every clutch for birds) (Cooper S. and Kaplan
H.,  1982;  Hopper  et  al.,  2003).  Thus,  there is  a  high  between-generation heterogeneity  but  a  low



within-generation heterogeneity.  For  example,  an adaptive coin  flipping strategy would  consists  in
producing eggs of different size at each clutch, with all eggs having the same size within a clutch.

Bet-hedging is  a  difficult  concept  to  prove  experimentally  since  it  requires  showing that  the  bet-
hedging phenotype induces a better fitness in dynamic environments (J. Ripa et al., 2009; Olofsson et
al.,  2009a; Rees et al.,  2010). To clarify research in this field, in 2011 Pr Andrew Simons made a
comprehensive review in which he classified over 100 studies across 16 phyla where evidence of bet-
hedging was claimed. He observed that most studies focused on diversifying bet-hedging strategies and
few on conservative bet-hedging (he did not mention adaptive coin-flipping). Candidate bet-hedging
traits were classified in six groups of increasing and cumulative evidences. In order to classify a trait in
the two highest groups, a proof should be made that the trait is adaptive under fluctuating conditions.
Results of his classification showed that most studies fell into the weakest categories of evidence (II
and III) and just 12 studies were in the two highest categories. Therefore, despite a high number of
studies claiming evidence of bet-hedging, few have shown that variability in the trait is adaptive. This
study underlines that revealing heterogeneity in the values of a trait in an isoclonal population is not
sufficient for classifying it as “purely” a bet-hedging. This heterogeneity should also be adaptive (i.e.
increase fitness) in fluctuating conditions.

                B Examples

Among the cases of diversifying bet-hedging are many examples of dormancy of seeds (Childs et al.,
2010;  Simons,  2009;  Venable,  2007),  insects  (i.e.  diapause)  (Danforth,  1999;  French et  al.,  2014),
fungus  (Graham et al.,  2014), bacteria (i.e.  persistence)  (Balaban et  al.,  2004; Kussell  and Leibler,
2005; Kussell et al., 2005; Ratcliff and Denison, 2010; Zhang and Rainey, 2010) or variabilities in egg
clutches  (A. Sarhan and H. Kokko, 2007; J. Ripa et  al.,  2009; K. Thumm and M. Mahony, 2002;
Olofsson et al., 2009b; Rees et al., 2010). In all those cases heterogeneities in dormancy durations or in
egg  size/types  allow  to  face  unpredictable  and  harsh  conditions  (such  as  a  drought,  invasion  by
predators...). For instance, a landmark study by Balaban et al used a microfluidic device to show that
persistence of bacteria to antibiotics could be due to heterogeneities in the population,  with a sub-
population of slow growing highly resistant cells (Balaban et al., 2004). Cells were switching between
two phenotypes  (high growth and low resistance versus  the  opposite)  stochastically.  This  example
showed that random phase variations have important biomedical consequences.  

Another type of bio-medical consequence of diversifying bet-hedging is illustrated by two studies on
cancer cells (Dannenberg and Berns, 2010; Roesch et al., 2010; Sharma et al., 2010). In 2010, Roesch
et al identified a subpopulation of slow growing cells in a melanoma (Roesch et al., 2010). These cells
can be distinguished since they are JARID1B (a H3K4 demethylase) positive. After knockdown of
JARID1B,  the  population  starts  growing  very  fast  and  soon  become  exhausted.  This  shows  the
important role of this sub-population in tumor maintenance. Moreover, those slow-growing cells can
switch  to  fast-growing cells  (JARID1B negative)  and  vice  versa.  In  a  related  paper  Sharma et  al
analysed various tumor cell lines and consistently identified a subpopulation of cells that showed an
increased resistance to drugs of more than 100 times  (Sharma et al., 2010). As in Roesch et al, they
found that the resistant cells were rare, transient, and reliant on JARID1A (a paralog of JARID1B
(KDM5 family)), but also on IGF-1 receptor signalling.  



Phenomenons  related  to  bet-hedging  have  also  been  observed  in  budding  yeasts.  Most  of  those
experiments focused on the resistance to different stresses, such as metal stresses in the laboratory of Pr
Simon V. Avery (Bishop et al., 2007; Holland et al., 2014; Howlett and Avery, 1999; Sumner and Avery,
2002), heat stress  (Attfield et al., 2001; Levy et al., 2012), nutrient limitations  (Breker et al., 2013;
Petrenko et al., 2013; Vardi et al., 2013).  In 2012, Levy et al set up a single-cell automated microscopy
assay to study yeasts growth heterogeneities. Trehalose is a sugar known to be important for resistance
to  several  types  of  stresses.  The  authors  found that  the  abundance  of  Tsl1p,  a  trehalose-synthesis
regulator, is negatively correlated with growth rate and positively correlated with longevity and heat
shock survival. Their results are qualitatively similar to those in the bacteria and cancer studies cited
above, with a sub-population of slow-growing and highly stress resistant cells (however they cannot
switch stochastically to a fast-growing stress sensitive phenotype in this case, as trehalose accumulation
is correlated with age).  Thus, it  appears that diversified bet-hedging is  present in many single-cell
species. And heterogeneity in the population can be maintained by a simple physiological parameter
such as cell age. However, within a population there does not seem to be many different cell types each
pre-adapted to a different environment, but just two cell types with one being rare, able to resist to
many  different  types  of  stresses,  and  with  a  slow  growth  phenotype  (Geisel  et  al.,  2011).

In order to be classified as applying a diversifying bet-hedging strategy, a trait should satisfy several
conditions. Mainly it should be both heterogeneous in the population, and this heterogeneity should be
adaptive. There have been several reviews trying to determine how such “noise” could be adaptive
(Richard and Yvert, 2014; Veening et al., 2008; Viney and Reece, 2013). One type of traits that could
be particularly subject to such bet-hedging strategies is plasma membrane proteins levels. This include
sensors of different stresses, and protein transporters of various nutrients. In order to face unpredictable
conditions,  it  could  be  advantageous  for  genotypes  to  produce  cells  with  various  levels  of  these
proteins. One computational study supports this idea  (Zhang et al., 2009). They showed that plasma
membrane  proteins  have  higher  gene  expression  variability  than  other  gene  categories.  Using
simulations, they compared two genotypes with similar and suboptimal mean gene expression levels
but different noises. They found that noise could be adaptive in unpredictable conditions, as predicted
by theory. Related to that, an experimental study found that two plasma membrane proteins were trans-
regulators of the expression variability of another gene (Fehrmann et al., 2013). 

                C Mechanisms

An interesting question to better  characterize bet-hedging strategies is  “How are heterogeneities in
different traits generated?”. There are many sources of heterogeneities or noise. Some are genetics,
other epigenetics and other physiologicals.  It is often assumed that the main sources of noise in a
population are physiological factors, such as: cell cycle stage, ultradian rhythms, growth rate or cell age
(Avery, 2006; Sumner and Avery, 2002). For this reason, studies trying to find the genetic sources of
noise usually include in their design a way to control for those factors. Epigenetic mechanisms that can
generate  noise include:  prions  (Alberti  et  al.,  2009;  Halfmann et  al.,  2010;  Newby and Lindquist,
2013),  alternative  histone  variant  (Richard  and  Yvert,  2014),  DNA methylation  or  gene  network
structures (Satory et al., 2011). Genetic sources of noise include protein copy number, retrotransposons



(Specchia et al., 2010), TATA Box and transcriptional bursts  (López-Maury et al., 2008; Richard and
Yvert, 2014). A low protein copy number increases cellular noise simply because of reduced chances of
interactions  with  other  molecules  (Niepel  et  al.,  2009).  Accordingly,  there  is  a  known  negative
correlation  between  the  number  of  proteins/genes  and  their  variability  (Newman  et  al.,  2006).

Noise or variability in gene expression can be either extrinsic or intrinsic. Intrinsic noise indicates noise
that originates from cis regulations of the gene.  While extrinsic noise indicates variability that has
sources that  are  extrinsic to cis-regulation (in trans),  such as physiological  parameters.  An elegant
experiment allowed to distinguish these two types  of noise: introducing,  at  two distant  loci in the
genome, two different fluorescent proteins under the same promoter (Elowitz et al., 2002; Raser, 2004;
Rinott et al., 2011). Then, on a Figure where each axis represents the level of one fluorescent protein,
the spreading of measurements on the identity (resp. orthogonal) axis indicates the amount of extrinsic
(resp. intrinsic) noise.

            iii Types of environmental changes determine the optimal 
strategies of adaptation

Predictable  environments  include ramp increases,  periodic environments,  or  more  generally  highly
autocorrelated  environments.  Ramp  increase is  a  gradual  and  continuous  change  from  one
environment to another. A prominent ecological example is climate change, that impacts most species.
Periodic  environments are  also  widespread,  with:  diurnal  fluctuations,  circadian  cycles,  ultradian
rhythms, and seasons.  Autocorrelation indicates the correlation of a signal with a delayed copy of
itself, as a function of delay. Spatial autocorrelation can be illustrated by a storm that affect a whole
region. Temporal autocorrelation can be illustrated by a series of bad years, or drought. Thus, a highly
(resp. poorly) autocorrelated environment is predictable (resp. unpredictable) (Hallsson and Björklund,
2012).  Plasticity  is  predicted  to  be  favoured  in  environments  that  are  both  predictable  and
heterogeneous (Dey et al., 2016; Reed et al., 2010). Unpredictable, poor/deteriorating or heterogeneous
environments favour bet-hedging or generalist genotypes  (Dey et al.,  2016; Tuljapurkar and Istock,
1993).  These  environments  correspond  to  sudden  events  that  could  not  be  anticipated:  such  as
apparition of a physical or chemical lethal stress (i.e. a predator), disappearance of a food source, or
more generally extreme and poorly autocorrelated environments.  

There is a substantial body of theoretical work on trying to determine the optimal strategy of adaptation
according to the predictability of various environments (Chevin and Lande, 2015; Donaldson-matasci
et al., 2008; Ezard et al., 2014; Geisel et al., 2011; Lande, 2009; Lof et al., 2012; Reed et al., 2010;
Salathé et al., 2009; Svardal et al., 2015; Tuljapurkar and Istock, 1993; Yamamichi et al., 2011). For
instance,  a  recent  study mathematically confirmed the theory that  unpredictable  and heterogeneous
environments are favouring a bet-hedging strategy, where the heterogeneous trait is plasticity itself
(Frankenhuis et al., 2016). The authors also predicted that this “differential plasticity” can only emerge
if the cost of being mismatched to the environment exceeds the benefits of being well matched. More
generally, many studies try to determine which parameters (in addition to predictability) influence the
choice of the optimal strategy between stochastic switching (or bet-hedging) and sensing. For instance,
studied parameters include: cellular parameters (switching rate and sensor precision in  (Wolf et al.,
2005)),  population  parameters  (composition  and  size  in  (Arnoldini  et  al.,  2012)),  environmental



parameters (fitness landscapes and selection pressure in (Kobayashi and Sughiyama, 2015; Salathé et
al.,  2009),  range  of  changes  in  (Donaldson-matasci  et  al.,  2008),  rate  of  changes  in  (Kussell  and
Leibler, 2005), autocorrelation and noise in  (Wolf et al., 2005)). Finally, fluctuating selection in the
wild is assumed to generate diversity and to decrease the strength of natural selection  (Bell,  2010;
Simons, 2009).

There  are  several  beautiful  experimental  studies  on  the  strategies  of  adaptation  in  fluctuating
environments  (Dey  et  al.,  2016;  Hallsson  and  Björklund,  2012;  Ketola  et  al.,  2013;  Kvitek  and
Sherlock,  2013;  New et  al.,  2014;  Venail  et  al.,  2011). As often,  experimental data  do not always
confirm theories. For instance, in 2016 Dey et al evolved a C. elegans strain in fluctuating normoxia-
anoxia conditions.  As predicted by theory,  they observed the evolution of anticipation of glycogen
stocks  in  periodic  conditions.  However,  they  did  not  observe  the  evolution  of  bet-hedging  in
unpredictable  conditions  of  anoxia-normoxia  fluctuations.  Lastly,  Kvitek  and  Sherlock  did  pooled
sequencing on yeast populations evolving in constant environments (Kvitek and Sherlock, 2013). They
observed that in such environments, evolution of a specialist strategy is reproducibly traded against a
lower level of sensing.  Indeed, most mutations occurred among three major signalling networks in
yeasts that govern growth: glucose signaling, cAMP-PKA and HOG.

        B Mechanisms of transcriptional anticipation and memory of 
environmental changes

Triggering  a  transcriptional  stress  response  is  a  very  costly  cellular  process,  that  involves  the
coordinated expression of hundreds of genes. However, in nature, fluctuating conditions are the norm
rather than the exception. Environmental fluctuations can be either stochastic, periodic, autocorrelated
or sequentially correlated. For instance, when the rain stops during a rainy day, there are high chances
that it will start raining again later in the day. Launching a stress response every time the rain strikes
again would be an energy sink for cells. Since living organisms are smart, they developed efficient
strategies to face such fluctuating conditions: to anticipate that rain could occur again, or to keep in
memory that it  occurred.  Importantly,  not all  environments are independent from one another:  one
environment/stimulus can increase the probability of occurrence of other types of environments. For
instance, if rain keeps preys hidden, then their predators will be forced to diet until weather improves.
Thus, organisms interpret environmental cues as changing the probabilities of occurrence of potential
future environments. Those probabilities are specific to each species, as it is linked to their ecology and
evolutionary history.

Specifically, the term priming has been proposed to describe a situation where an organism exposed to
a first  stress  (priming stimulus)  will  launch epigenetic  'memory'  mechanisms that  will  increase its
protection to a later second stress (triggering stimulus), as compared to a naive organism, (Hilker et al.,
2016). The memory time or memory phase refers to the time delay between the two stresses during
which the cell “remembers” the priming stress.  Cis-priming and trans-priming indicate that the first
stress  is  respectively  similar  or  different  to  the  second  stress.  Transgenerational  memory  can  be
achieved through transposon mobility, or DNA rearrangement (Hilker et al., 2016). However, this is not
considered as priming since the memory effect was not caused by regulated epigenetic modifications.



Transcription  is  a  highly  dynamic  process  by  which  cells  respond  quickly  to  different  stress.
Transcriptional responses are increasingly low-cost and simple to analyze thanks to decreasing costs of
sequencing and improved bioinformatic methods. For these reasons, transcriptome profiles in response
to single stresses have been generated. During the last decade, researchers have started to unravel the
molecular  determinants  of  transcriptional  priming.  In  the  following  parts,  we  will  describe  two
different aspects of priming through transcription: expression of stress response genes after a priming
stimulus in anticipation of a possible triggering stimulus, and the molecular mechanisms that allow
cells to remember a first priming stimulus and launch a faster transcriptional response during a second
triggering stimulus.
 

            i Transcription during a first stress in anticipation of a second 
stress

                A The Environmental Stress Response and transcriptional anticipation

Once subjected  to  a  stress,  Saccharomyces  cerevisiae cells  regulate  the expression of  hundreds  of
genes. Some of those genes are condition-specific genes that are important for growth in the current
stressful condition. However, most genes are not condition-specific: any stress induces the upregulation
of ~300 genes and the downregulation of ~600 genes (Gasch and Werner-Washburne, 2002; Gasch et
al., 2000). Upregulated genes are involved in stress responses, while downregulated genes encode for
ribosomal protein or ribosome biogenesis. Thus, there seems to be a cellular trade-off between stress
response and growth.  This  common stress  response has  been termed the General  Stress  Response
(GSR) or the Environmental Stress Response (ESR).  

It  is  partly  regulated by the paralog Transcription Factors (TF) Msn2, Msn4 and Yap1  (Berry and
Gasch,  2008;  Gasch et  al.,  2000).  Indeed,  nascent  protein synthesis  is  needed to survive a  severe
secondary stress (~20 to 60 minutes after the first stress) but not a mild primary stress  (Berry and
Gasch, 2008). Accordingly, mutants for msn2 or msn4 show no defect in primary mild stress resistance
but a strong defect in secondary severe stress resistance, which is consistent with their reduced gene
expression response to primary stresses (Berry and Gasch, 2008). A later study showed that a double
mutant msn2 mns4 has no defect in severe secondary stresses  (Zakrzewska et al.,  2011). Thus, the
influence  of  msn2 msn4 on the  ESR is  condition-specific,  and other  regulatory  factors  are  likely
involved. In addition, the large set of genes expressed during a stress is quite different from genes
needed to survive it (Giaever et al., 2002b; Gibney et al., 2013; Zakrzewska et al., 2011). Those results
show that most regulated ESR genes are not needed for surviving the  initial priming stress, but to
prepare the cell to potential future stresses. Interestingly, a similar ESR also exists in Escherichia coli
and in  Schizosaccharomyces  pombe but  it  is  reduced/absent  in  Candida albicans or  in  cells  from
multicellular organisms (Battesti et al., 2011; López-Maury et al., 2008). The latter cells, within living
hosts, are less directly exposed to environmental variations, which could explain why they show this
reduced gene expression response to stress.  



Importantly, a recent study showed that the common signature of ESR genes could in fact, only reflect
the distribution of cells over different cell cycle phases (O’Duibhir et al., 2014). They found that slow
growing strains – either defective mutants, or wild-type strains grown in non-optimal conditions – had
a common transcriptional signature due to an increased number of cells in the G1 phase of the cell
cycle. This study underlines that the trade-off between growth rate and stress resistance commonly
observed in many organisms/strains, also occur within the cell cycle, with arrested-G1 cells being more
resistant than dividing cells. Still, the stress resistance phenotype of G1-arrested cells represents a form
of  anticipation  of  future  stresses,  that  is  expressed  at  the  molecular  level  by  over-expression  of
hundreds of stress related genes.

Genes  expressed  during  the  ESR can  be  seen as  a  form of  molecular  memory  and  anticipation.
Molecular memory since the transcripts and proteins of those genes have a given half-life and so they
will  be maintained for some time. Molecular  anticipation since the expression of those genes will
protect the cell against the same type of stress if it occurs (cis-priming), but also of different types of
stress  (trans-priming or cross protection). Trans-priming is not always symmetrical. This behaviour
likely reflects the evolutionary history of each strain. If it has been used to encounter more frequently a
given stress after  another  specific stress,  it  might  evolve anticipation.  Thus,  studies on priming or
anticipation, when applied on many conditions, could potentially allow to adopt a reverse-engineering
approach  to  determine  the  ecology  of  micro-organisms.  Two  studies  beautifully  showed  such
anticipation features in micro-organisms (Mitchell et al., 2009; Tagkopoulos et al., 2008). Those studies
consisted in measuring fitness and gene expression profiles of microbes in environments that mimicked
the sequential changes of their habitats.  

In 2008, Tagkopoulos et al. mimicked E. coli transition from the outside environment to the oral cavity,
where the  environment  switch from less  than  30 degrees  to  37 degrees,  followed by entry  in  the
gastrointestinal tract, where the oxygen drops from ~21% O2 to ~0% O2 (Fig INT2a). Genes expressed
during an increase in temperature (entry in oral cavity) or an increase in O2 (exit from host) were highly
correlated/overlapping with genes expressed in the next phase of the cycle (respectively decrease in O2

or decrease in temperature).  They then evolved  E. coli cells  for 100 hours in an environment that
oscillated  in  the  opposite  direction  than  they  are  used  to  in  their  ecology:  high  temperature  (37
degrees), accompanied 40 minutes after by high oxygen (21% O2) for a certain duration (randomized to
avoid periodic selection), then a switch to low temperature (25 degrees) accompanied 40 minutes after
by low oxygen (0% O2) during a certain duration, before the next cycle. Comparing evolved to parental
strains, they observed that genes expressed in anticipation of future environments were largely reduced
in the evolved strains. This showed that disappearance of anticipation can occur in less than a hundred
generations.  

In  2009,  Mitchell et  al.  mimicked  the  wine  production  process  (growth  in  grape  must  medium,
followed by fermentation and respiration) for  S. cerevisiae, and the passage in the mammal intestine
(lactose, followed by maltose) for  E. coli  (Mitchell et  al.,  2009) (Fig INT2b). Results  showed that
priming provided a strong fitness advantage as long as the priming stimulus was appearing before the
triggering stimulus in the ecology of the organism. Studying in more detail the trans-priming of heat
shock (during fermentation) followed by oxidative stress (during respiration) in yeast they observed a
set of 300 genes that was highly induced by heat shock and later by oxidative stress. This trans-priming
effect  was  not  observed  when  testing  a  different  priming  stimulus  (osmotic  stress)  or  a  different
triggering stimulus (YPD).



In 2013, Dhar et al. performed an experiment similar to Tagkopoulos et al.: they evolved yeast strains
in an environment that oscillated between salt and oxidative stress (3 replicates) and in steady controls
(salt, oxidative stress, no stress; 6 replicates each) (Dhar et al., 2013) (Fig INT2c). They observed an
asymmetric trans-priming fitness gain where evolution in steady oxidative stress protected against salt
stress (and oxidative stress) but not vice-versa. Importantly, in as few as 15 cycles (20 generations per
cycle) they observed signs that gene expression anticipation evolved in the cyclic environment. This
indicates that in addition to disappear fast (Tagkopoulos et al., 2008), anticipation can quickly evolve.
However,  they explain that  it  is  very difficult  to  disentangle  the  effects  of  anticipation and trans-
priming in a fluctuating environment since it requires to know precisely the physiological states (or
phenotypic adaptation status) of cells, which are highly dynamics.

Fig INT2. Selection regimes of three studies working on anticipatory gene transcription. a) Figure
from Tagkopoulos et al., showing their selection regime: 37 °C then 21% O2 then 25 °C then 0% O2. b)
Figure from Mitchell  et al., showing the steps of the wine production process. The numbers within
arrows indicate the fold change protection of being exposed to a mild stress (arrow beginning) before a
severe stress (arrow end). c) Figure from Dhar et al., showing the selection regime in the three evolved
populations. O is oxidative stress. S is salt stress.

However, one potential problem of studies on gene anticipation is that gene expression analysis is often
performed on bulk populations. Thus, an alternative hypothesis for putative anticipation phenomenon
of all  cells,  is that few cells in a population are becoming highly resistant to future stresses.  This
subpopulation of cells could be slow growing and highly resistant. Single cells studies could help in
differentiating anticipation from such diversifying bet-hedging strategies.

                B Yeast screens for genes expressed in anticipation of future stresses

There  have  been  several  yeast screens for  finding  genes  important  for  trans-priming  effects  with
different  stresses.  Those studies  used  sequencing and/or  microarrays  to  quantify  the  abundance  of
mutants in the Yeast Deletion Library (YDL) after subjecting cells to two different stresses.

In  2011,  the  Gasch  laboratory  exposed  the  YDL to  one  of  3  different  priming  treatments  (salt,
Dithiothreitol (DTT) or heat shock) and one triggering stress (hydrogen peroxyde stress (H2O2)) (Berry
et al., 2011) (Fig  INT3b). Those priming stimulus were chosen at specific conditions (concentration
and induction time) that induce a similar increase in  H2O2  resistance in the wild-type.  Unexpectedly,
they found that mutants in which H2O2  resistance was lost/decreased were quite different depending on



the priming stress. For instance, they found only 28 genes to be important in all 3 conditions, and no
Gene Ontology enrichment was significant in this set of genes. Those results suggest that different
molecular  routes  launched  through  different  priming  stimulus  can  lead  to  resistance  to  the  same
secondary stress.  

Zakrzewska et al. tested one priming condition (2 hours mild stress; acetic acid, heat (38 degrees), cold
(10 degrees)) and 4 triggering stimuli (10 minutes severe stress; H2O2, heat (48 degrees), acetic acid)
(Zakrzewska et  al.,  2011)  (Fig  INT3a).  They  found that  all  priming  conditions  induced increased
survival  to  severe  stress,  except  cold  followed  by  heat  shock.  They  observed  a  strong  negative
correlation (r=0.7) between the mutants' growth rate just before the lethal heat stress and their survival
to  this  stress.  Moreover,  they  observed  that  growth  rate  reduction  was  a  critical  factor  for  stress
tolerance  acquisition.  They  thus  concluded that  the  reduction  in  growth  rate  is  one  of  the  key
determinants of trans-priming. The authors used linear regression to correct the survival of mutants by
their  growth rate.  After  this  correction,  a  Gene Ontology analysis  indicated that genes  involved in
transcription and epigenetic mechanisms seem to play an important role in cross-protection.

In another Study, Gibney et al. screened a haploid prototrophic YDL for cis-priming from mild to lethal
heat stress (37 to 50 degrees)  (Gibney et al., 2013) (Fig  INT3c). Death rates were computed as the
slope  of  a  linear  regression  of  the  fold  changes  of  the  mutants'  barcodes  over  the  course  of  the
experiment. They made a test to find which strain have significantly higher heat sensitivity/death rate
than the rest of the population. They found 65 and 10 mutants significantly sensitive after priming at a
p-value of respectively 0.05 and 0.01. Unfortunately, they didn't exploit their data on priming: they
stopped their analysis when they discovered that most genes that are significantly sensitive to heat after
priming, are also sensitive to heat without priming. However,  a better analysis  could have been to
divide the death rate with priming by the death rate without priming. And to test if this normalized
value is significantly higher than the rest of the population. As found in other studies they observed a
lack of correlation between genes expressed at mild stress (28–36 °C), and gene deletions sensitive to
severe stress (30–50 °C).



Fig INT3. Screens for acquired stress resistance in yeast. a,b) N (no stress) medium was YPD 30°C
(generation  time  ~=  1h30).  Experiments  were  performed  in  duplicates. In  b),  cells  were  always
maintained in exponential phase by frequent washing and dilution in fresh medium. c) N was a minimal
medium with supplements (generation time ~= 5h). Experiments were performed without replicates. d)
Potential  design  of  future  experiments  to  screen  for  yeast  genes  important  for  memory  of  stress.
Abbreviations: BE: Barcodes Extraction; MAH: MicroArrays Hybridization; SEQ: Sequencing.

These different studies all independently confirmed that there is a lack of correlation between the set of
genes expressed in response to a stress and the genes important for surviving it, even if the degree of
correlations varies depending on the conditions (Berry et al., 2011). Multiple biological processes can
explain  this  effect.  For  instance,  proteins  levels  might  be  different  from  transcripts  levels,  post-
translational modifications of proteins might be important for their functions, and low basal levels of a
protein might be sufficient for it to perform its function. These studies also confirmed that growth rate
is a key factor for yeast survival to lethal stress, with slow growing strains being more resistant. It is
not clear if it is the most important factor for heat resistance as results were incoherent on this matter
(Gibney et  al.,  2013;  Zakrzewska et  al.,  2011). However,  the  importance  of  growth rate  in  stress
resistance  is  consistent  with  the  gene  expression  trade-off  between  growth  and  stress  resistance
observed in the yeast ESR. In fact, upon a stress, cells usually experience a lag phase during which the
growth rate is reduced/absent for some time. This time is used by cells to make major physiological
changes  that  will  allow them to  become stress  resistant.  Indeed,  energy  is  limited  and  cell  must
optimize it to grow as fast as possible but also to survive to stressful and unpredictable conditions.

An important question is to determine if trans-priming effect are anticipatory or just “side effects”. That
is, are genes important for a trans-priming effect expressed only on the purpose of priming to other
stresses, or are they important for the priming stress and also for the triggering stress? In the latter case
trans-priming would be a side effect of the response to the primary stress. In the former it would be a
regulated mechanism for cells to be more fit in their ecology, as proposed in  (Mitchell et al., 2009;
Tagkopoulos  et  al.,  2008).  Dedicated  experiments  to  answer  this  question  should  determine  the



importance on fitness of all genes expressed in the priming stress on both the priming stress and the
triggering stress with or without priming.

An inherent difficulty in working with the YDL is that slow growing strains generally get depleted in
the  population.  This  problem is  more  pronounced  when  studying  stressful  conditions  due  to  two
factors: A) “sick” cells can be even sicker in this condition, and B) slow-growing cells are generally
more resistant, as described above. In the case of lethal stress, one has to get rid of dead cells before
determining barcode abundances. To this end, in Berry  et al., Zakrzewska et al., Gibney  et al., cells
were grown after the lethal stress for, respectively, 24 hours, 10 generations, until the apparition of
colonies.  However,  this  procedure of amplification can introduce a bias and it  is  not clear how to
normalize for it. The study of Berry et al. was potentially the only one that could correct for this bias
since the authors included two conditions for this purpose in their design: the initial sample, and the
initial sample after amplification (INT3-b).  

It is important to consider that all those screens involved application of a secondary stress right after
the  first  stress.  This  experimental  design  indicates  genes  that  are  important  for  acquiring  stress
protection after a first stress. However, it cannot indicate genes that are important for remembering that
a stress occurred. Performing the same type of experiments but including a time delay (memory time;
for instance 1 hour, 10 hours, 1 day, 1 week) between the two stimuli has not been done yet, as far as I
know (Fig INT3d). This could allow to find genes important for memory of stress over long timescales.
Finally, genes important for priming effects may vary with different time delays.

            ii Mechanisms of memory of the first stress

Some  molecular mechanisms of memory of stresses exposures have recently been discovered.
Those memory mechanisms can be advantageous for cells in nature, since stressful conditions can be
fluctuating. Many studies showed that this molecular memory can even be transmitted to daughter cells
for several generations. In fact, molecular memory of a stress can last up to months, as has been shown
in some plants and trees (Hilker et al., 2016). Thus, we can distinguish long-term memory that can be
transmitted  to  daughter  cells  from short-term memory that  is  not  transmitted.  Knowledge on how
memory is  generated,  maintained and transmitted  to  daughter  cells  is  currently  limited.  However,
proteins and RNAs with a high stability could be one of the most prominent vector of memory. Some
important questions could now be addressed, such as: how much of the memory of previous stress
exposure  is  transmitted  from  one  generation  to  the  next?  Which  types  of  molecular  memory
mechanisms are important for short-term and long-term memory? Are there some types of memory that
are never transmitted to daughter cells?

Transcriptional  (reinduction)  memory  usually  refers  to  the  ability  of  cells  to  induce  a  faster
transcriptional response during the triggering stimulus. This effect can last for few generations (less
than 10) and relies on proteins with long half-lives. However, other types of memory have been studied
as  well.  For  instance,  people  studying  the  GAL  network  observed  persistent  memory,  which
corresponds  to  a  long-term  memory  of  the  state  of  the  network  over  more  than  10  generations
(Stockwell et al., 2014).



The main mechanisms that have been proposed to generate molecular memory are the inheritance of
long-lived memory factors, the propagation of chromatin marks, network states that are maintained by
feedback loops and targeting of genes to the nuclear periphery. In the following sections, we describe
these different mechanisms.

                A Inheritance of long-lived memory factors

                    1 Proteins

Transgenerational memory can be strongly mediated by transmission of proteins during mitosis. This
type of memory depends on two key factors: protein abundance and protein stability. Most long-lived
and  highly  abundant  proteins  are  transmitted  to  daughter  cells,  and  can  thus  form  a  type  of
transgenerational memory. Thus, the large number of genes expressed during a priming stress (i.e. the
ESR) contribute to the memory of stresses.

In fact, most yeast proteins have a long half-life, with a median of about 8.8 hours which corresponds
to about 3 cell generations  (Christiano et al.,  2014). Thus, protein transmitted through cell division
contributes to a big part of the total proteome of a given yeast cell. This simple fact could explain why
many studies of memory of stress in yeasts describe memories that last a handful of generations (less
than 10 usually). To explore the subject, I made some basic analysis on the dataset of (Christiano et al.,
2014). I found that only 5% of yeast proteins have a half-life higher than 18.3 hours. A Gene Ontology
enrichment analysis (FunSpec version July 2011, p-value cutoff: 0.01, with Bonferroni correction) on
this top 5% of proteins with the longest half-life revealed a strong enrichment in metabolic processes
(especially arginine biosynthesis), in ubiquitin proteins and in protein localization in the cytoplasm.
Thus, proteins involved in stress responses do not seem to have a particularly long half-life. However,
these measures have been performed at steady states where metabolism is the main biological process.
Stressful conditions might induce the addition of protein modification marks that could increase the
stability  of  stress-response  proteins.  Such  protein  modifications  could  include:  phosphorylation,
sumoylation,  ubiquitination,  ADP-rybosylation,  acetylation,  methylation…  The  Ubi4p  protein
corresponds to ubiquitin in yeast, a mark that targets proteins to degradation through the ubiquitin-26S
proteasome system. The Ubi4p protein is very stable, as its half-life is 24.5 hours. Thus, ubiquitination
might  be  used  for  long-term memory effects  in  yeasts.  Some protein  modifications  determine  the
localization  of  proteins  (i.e.  sumoylation)  or  their  activity  status  (i.e.  phosphorylation).  Thus,
transmission of proteins with post-translational modifications could be seen as a memory of a protein
state.

Besides  protein stability  and activity,  another  important  factor  of  memory through transmission of
proteins is protein abundance. Upon stress, proteins and transcripts abundance of a stress-resistant gene
usually both increase (even if the correlation between protein and transcription expression is not always
high). The resulting very high level of some specific stress response proteins can stay high even after



few cell divisions, which results in transgenerational memory of stress and sometimes cross-protection.

For instance, in 2012 the Gasch laboratory tried to determine the determinants of cellular memory of
H2O2  trans-priming by NaCl. They subjected yeast cells to a mild priming stress (NaCl 0.7 M) for 60
minutes, then transferred them to YPD. They observed that these cells had a strong resistance to H 2O2

stress, even 5 hours after  the initial  priming event.  They found that acquired stress resistance was
decreasing at a similar rate as the percentage of cells in the population that experienced the priming
stress.  Using  a  reporter  system of  daughter  cells,  they  showed  that  they  have  the  same  level  of
resistance to H2O2 stress as their mother cell. This showed that stress resistance was transgenerationally
transmitted (and not due to an original resistant population), and that cell division was progressively
diluting this  effect.  Cytosolic  catalase is  a  key protein for detoxifying the cell  during H2O2  stress.
Moreover, it has a very long half-life (63rd longest half-life out of 3773 proteins in Christiano 2014,
with a half-life of 108.8 hours), thus it became their primary suspect. They found that Ctt1abundance
increased more than 100 times after salt induction, and stayed at very high levels for 5 hours; which is
the  same  duration  as  the  memory  of  H2O2 resistance  effect.  Moreover,  expressing  Ctt1  with  an
inducible promoter provided a similar memory of H2O2 resistance than priming with salt.  

In another earlier study, they showed that a Ctt1 mutant had a strong defect in trans-priming from NaCl
to H2O2 but not with Heat Shock or DTT as a primary stress (Berry et al., 2011). Then, they looked at
the gene expression levels of Ctt1 upon these primary stresses and found that Ctt1 was highly induced
only in the NaCl condition, explaining why its effect on cross-protection in the other conditions was
negligible. Heat shock and DTT trans-priming effect were probably due to the expression of proteins
involved in glutathione metabolism genes. Indeed, deletion of two such genes (Gsh1 or Glr1) resulted
in defects in acquired stress tolerance in HS or DTT but not in salt. They could not clearly identify a
protein responsible for this  memory effect,  although the protein levels  of a gluthatione peroxidase
(Gpx1) were twice higher after HS than after NaCl.

Another well characterized protein that mediate transgenerational memory through protein dilutions is
the Gal1p protein from the Galactose network  (Kundu and Peterson, 2010; Stockwell  et  al.,  2014;
Zacharioudakis et al., 2007). GAL1 and GAL3 are paralogs. However, Gal3p plays a more important
role in the initial induction of the Gal pathway: mutants for GAL1 (resp. Gal3) needs hours (resp. days)
to fully induce the pathway  (Stockwell  et  al.,  2014).  However,  Gal1p protein is  highly induced as
compared to Gal3p (1000 times vs 3 times). This, coupled with its high stability makes Gal1p an ideal
memory device. This type of memory is called reinduction memory and can last up to 6-7 generations.
During this time, the cell re-induces the Gal network much faster than naive cells  (Stockwell et al.,
2014). It was first described by the Brickner lab in 2007 (Brickner et al., 2007) (see section IIIB3). An
elegant experiment illustrated the importance of Gal1p levels for reinduction memory, as compared to
chromatin factors. The authors generated an heterokaryon in which the cytoplasm originated from a cell
that had a  recent  galactose experience,  while the nucleus originated from a cell  with no galactose
experience  (Zacharioudakis  et  al.,  2007).  The  memory  was  maintained,  proving  that  reinduction
memory of galactose is more strongly mediated by cytoplasmic factors than by chromatin state. More
informations about reinduction memory are available in section 1-III-B-ii-B-3.  



                    2 Other potential inherited memory factors

There are numerous factors that could potentially be transmitted to daughter cells during mitosis to
mediate transgenerational memory of previous environments. We will describe some of them in this
section. Obviously, mRNA play a role in memory effects, even though it should be more transient than
proteins as mRNA stability is much shorter. For instance, the median half-life of mRNA at steady states
is 11 minutes as compared to 8.8 hours for proteins (Christiano et al., 2014; Miller et al., 2014). Thus,
many transcripts are synthesized and degraded several times during a cell cycle. Few transcripts are
long-lived,  for  instance  only 100 (resp.  10)  transcripts  have a  half-life  higher  than 60 (resp.  120)
minutes. However, as for proteins, it is possible that some stressful conditions induce the stabilization
of  mRNA. For  instance,  a  mild  osmotic  shock induces  broad  destabilization  of  most  mRNA and
specific  stabilization of osmotic  stress  mRNAs  (Romero-Santacreu et  al.,  2009). RNA interference
through microRNA (miRNA) or short interfering RNA (siRNA) play an important role in regulating
mRNA levels. Accordingly, they are involved in regulating memory of stress, as has been shown in
different studies in plants (Hilker et al., 2016). Another way by which mRNA could be transmitted is
through  the  storage  in  specific  vesicles/organelles  such  as  P-bodies  and  stress  granules.  Those
ribonucleoprotein bodies are built upon stress and contain mRNAs and RNA binding proteins. There is
a link between those two bodies as stress granules are formed in P-bodies. However, the formation or
function  of  those  bodies  is  not  well  characterized  (Saarikangas  and  Barral,  2016).  P-bodies  (or
processing-bodies) are foci in a liquid state that are also important for mRNA degradation, and as such
contain RNA degradation enzymes. Stress granules are in a solid state and are sites of storage of mRNA
that have been translationally silenced (by RNAi), or are stalled in translation initiation (Saarikangas
and Barral, 2016). These bodies could allow a transient fast adaptation to adverse conditions, through
the fast release of stored mRNA upon stress. For instance, it has been shown that cells in stationary
phase contain hundreds of polyadenylated mRNA that can rapidly be released upon stress. The authors
hypothesized  that  P-bodies  were  responsible  for  this  effect  (Aragon  et  al.,  2006).  

Interestingly, a recent paper showed that P-bodies are unidirectionally transmitted to daughter cells
during cell division (Garmendia-Torres et al., 2014). This fascinating result suggest that P-bodies could
be involved in long-term molecular memory effects. It remains to be shown how long this effect can
last, as RNA degradation could induce a fast turnover of mRNA. However, this effect probably lasts for
at least one generation, as the same study showed that P-bodies are important for daughter cells growth
under nutrient limitations. It is well-known that division is asymmetric in budding yeast, as well as in
bacteria and high eukaryotes (Yang et al., 2015). However, some proteins may be more asymmetrically
inherited than others. A higher asymmetrical inheritance of stress responses proteins could result in
longer memory of stress.

In contrast, to P-bodies, some memory factors are not transmitted to daughter cells. For instance, in
2013 Caudron and Barral showed that yeast cells remember events of unsuccessful mating, but do not
transmit this memory to their progeny (Caudron and Barral, 2013). This type of memory is mediated by
Whi3, a RNA-binding protein that sequestrates Cln3 mRNAs in cytoplasmic foci. Whi3p, like many
other  RNA-binding proteins,  contains Q/N rich domains  called Prion forming Domains  (PrD) that
promote molten globule like structures (super-assembly). Upon pheromone exposure, Whi3 releases
Cln3 mRNAs and adopts a super-assembled conformation. Strikingly, this super-assembled whi3 seems
to be highly stable and could possibly last for the whole life of the cell; resulting in an indefinitely non-



transmissible molecular memory mechanism. The authors propose the name of “mnemon” to describe
this type of memory. Two key features distinguish mnemons from prions: 1/ prions form stochastically
with a very low frequency, while Whi3 superassembly is absent without pheromones and is induced in
all cells upon 3 hours of pheromone exposure and 2/ prions are transmitted to daughter cells; they are
“infectious”; while mnemons are restricted to mother cells. Interestingly, some proteins involved in P-
bodies and nucleoporin contains PrDs and could be other examples of mnemons. Two ortholog proteins
in  fruit  fly  and Aplysia  regulate  long-term plasticity  of  neurons  and  behave  like  mnemons.  They
contain PrDs domains and their super-assembly regulate memory maintenance (Keleman et al., 2007;
Si et al., 2003). This, coupled with the high number of proteins containing PrDs in yeast, as found by a
bioinformatic approach (Alberti et al., 2009) indicate that mnemon might be a common mechanism of
molecular memory.

Prions can also provide cytoplasmically-inherited memory  (Shorter and Lindquist, 2005). Prions are
“infectious” since proteins in a non-prion state change their conformation to adopt the prion state when
they meet prion proteins. Thus, they can propagate very fast in a population. Accordingly, when one
cell with a protein in a prion state mates with another cell with the same protein in non-prion state, the
resulting progeny will  have their  proteins  in  the prion state.  Proteins  in  a  non-prion conformation
change their conformation at low frequency. However, stress can increase this probability. Thus, the
prion state could be a type of adaptive bet-hedging mechanism that allows cells to randomly produce
diverse  phenotypes  in  situations  of  stress  (Newby  and  Lindquist,  2013). The  adaptive  prions
conformation then propagates in all the population as long as the stress persists. Afterwards cells with
proteins in non-prion conformations will  randomly appear and their  type will  reach fixation in the
population, as the prion state is costly in absence of stress.

                B Memory in the nucleus

                    1 Propagation of chromatin states 

There is  a  chicken-and-egg debate opposing chromatin states  to  genetic  circuits  states  for  the
maintenance of epigenetic memory. These two types of memory are strongly entwined and both seem
to be important for maintaining cellular memory long after initiation of the signaling event: genetic
circuits through feedback loops, and chromatin states through their own maintenance. Some argued that
chromatin  modifications  are  very dynamic  processes  that  are  too volatile  to  be a  true  support  for
maintenance of epigenetic memory (Nicol-Benoît et al., 2012). While this can be true in some cases
(see next section), some chromatin marks are highly stable and heritable and should thus be considered
as long-term epigenetic memory devices. The modality of propagation of histone marks should thus
determine if they are causal or consequential in maintaining cellular memory. Indeed, if a mark is lost
right after mitosis, and re-written thanks to the activity of genes from a genetic circuit, then it cannot be
considered as an epigenetic mark (Steffen and Ringrose, 2014).



The main types of chromatin states are DNA methylation, histone localization (through remodeling),
histone modifications and histone variants. DNAm usually occurs at CpG islands and promotes gene
silencing. It is the most stable and heritable mark, and also the one for which the inheritance is the best
characterized.  Propagation of DNAm during replication occurs by segregation of all  marks on one
strand,  and  template  copying  on  the  other  strand  (Chen  and  Dent,  2014).  Propagation  of  histone
modifications  or  histone  variants  are  less  well  understood.  As  for  DNAm  a  semi-conservative
mechanism could allow histone variants and histone marks to be conserved on one strand (Chen and
Dent, 2014). However, the marks on the other strand are not always replicated. It has been observed
that in some cases a histone modifying enzyme gets bound with a histone that contains the modification
it performs, and replicate the modification on the opposite strand after DNA replication  (Chen and
Dent,  2014).  However,  this  process  is  likely  not  the  general  rule  as  some  marks  decrease,  get
maintained or increase after mitosis  (Wang and Higgins, 2013 table 1) and the dynamics of histone
marks  re-apparition  after  replication  varies  between  marks  (Bar-Ziv  et  al.,  2016).  Thus,  different
mechanisms  are  probably  involved,  and  some,  but  not  all,  histone  modifications  could  be  truly
independent providers of epigenetic memory.

Even if  not  causal,  epigenetic  mechanisms can  participate  in  mechanisms of  memory of  previous
conditions. An interesting example is the GAL reinduction memory. As mentioned before Gal1p is a
key factor for this type of memory when the time spent in galactose is long (6/7 generations or > 12
hours). In 2007, Kundu and Perterson found that after growth on non-inducing nonrepressing raffinose
medium and switch to galactose medium, cells needed 40 minutes to fully adapt (Kundu et al., 2007).
Then, after one hour in glucose and switching back to galactose, cells needed only 10 minutes to adapt.
They found that Gal1p was not necessary for this short-term memory while Gal3p and SWI/SNF were
important. This result is the opposite of the GAL long-term memory effect. These contrasting results
might be due to the fact that Gal3p proteins are still present after just 1h in galactose (1 or 0 dilutions
occured  for  most  cells),  and  Gal3p  is  a  much  better  initial  inducer  of  the  pathway  than  Gal1p.
SWI/SNF function  in  this  process  is  to  remove  (remodel)  nucleosomes  upstream of  GAL genes,
allowing their induction. The effect of SWI/SNF only for short-term memory is probably due to the fact
that  it  only  accelerates  the  speed  of  induction  (Kundu  and  Peterson,  2010;  Kundu  et  al.,  2007;
Stockwell et al., 2014). It is thus not causative of memory but participates to the speed of induction.
Similarly, to SWI/SNF, incorporation of the histone variant H2A.Z seems to induce a faster induction
of  the downstream genes.  Some studies  proposed that  it  could play a  role  for maintenance of the
reinduction memory. However, its pleiotropic roles make it hard to confirm this result (Brickner et al.,
2007; D’Urso and Brickner, 2014; Stockwell et al., 2014).
 

                    2 Genetic circuits and feedback in signaling pathways that generate stable states

The concept that feedback-loops can amplify the response to an initial transient stimulus and lock
a system into self-sustaining stable states has been around for a long time with the pioneering work of
(Monod and Jacob, 1961). In this paper, they already mentioned that the lactose operon in E. coli or the
adaptation to galactose in yeasts are examples of such genetic circuits. Later studies formalized that
feedback loops can generate long-term memory storage that survive protein turnover (Lisman, 1985).
Genetic circuits can be bistable (resp. multistable) meaning that 2 (resp. multiple) stable states can be



attained. The concept of attractors describes those stable states in Waddington's epigenetic landscape
(Ferrell  Jr.,  2012;  Nicol-Benoît  et  al.,  2012).  Examples  of  bistable  switches  are  now  numerous,
especially in microbes (Dubnau and Losick, 2006; Norman et al., 2015; Satory et al., 2011; Veening et
al., 2008), and include: oocyte maturation in Xenopus oocytes (Xiong and Ferrell, 2003), acquisition of
competency in  B. subtilis (Mugler et al.,  2016), bacterial switching between different morphologies
(Gallie et al., 2015; Hernday et al., 2013), memory of hormone exposure for faster egg yolk production
(Nicol-Benoit et al., 2011).

The concept of feedback loops generating memory is better understood with simple systems containing
few loops. A simple and common case of a bistable switch is the double negative-feedback loop of the
lambda phage. In this system two genes, CI and Cro, repress each other and determine if the virus is
dormant (lysogenic cycle) or active (lytic cycle). Once a gene becomes dominant it will increase its
repression activity until reaching a stable state. Only strong rare fluctuations can then change the state
of the system  (Norman et al., 2015). Another similar positive-feedback loop is the activation of the
lactose operon in E. coli: lactose (the inducer) negatively regulates LacI (a repressor) that negatively
regulates LacY (the lactose permease). Pioneering work, done by Novick and Weiner in the laboratory
of  Jacques  Monod,  revealed  this  circuit  (Novick  and Weiner,  1957).  They showed that  subjecting
isogenic E. coli cells to low concentrations of the inducer TMG (thiomethyl-,3-D-galactoside) results in
a binary outcome with some cells fully activating the operon and others not at all. The operon state was
heritable. Thus, uninduced cells become induced by stochastic bursting events of lac genes. The low
basal level of LacI in cells (less than 1 transcript per cell per generation) can participate in generating
cellular noise and thus cells with different fates (Satory et al., 2011).

Acquisition of competence in B. subtilis is also a relatively simple system: the compK protein contains
a fast-acting positive-feedback loop and a slow-acting negative-feedback loop on itself. This network
structure  describes  an  excitable  system:  only  strong  perturbations  can  allow  the  system  to  leave
equilibrium (i.e.  to become competent).  Then,  the system becomes activated for some time before
going back to equilibrium (Norman et al., 2015).  

We described above the reinduction memory of the GAL network, which is strongly dependent on
Gal1p (or Gal3p) levels and fades over few generations. However, another type of memory exists in the
GAL network: the persistent memory (Stockwell et al., 2014). This type of memory could last much
longer,  perhaps  indefinitely,  and is  mediated  by  the  numerous  nested  feedback  loops  in  the  GAL
network. Persistent memory corresponds to the bimodal induction of the GAL genes of glucose primed
cells exposed to a partially inducing medium (either intermediate galactose and low glucose, either low
galactose). Inversely cells previously primed with a non-repressive medium (galactose or raffinose) get
activated uniformly by the partially inducing medium. This type of memory can last for more than 27
hours and was first described by Biggar and Crabtree in 2001, followed by Acar et al in 2005 (Acar et
al., 2005; Biggar and Crabtree, 2001). It is thought to depend on the several feedback loops in the GAL
network:  3  feedback loops (Gal1p,  Gal2p,  Gal3p)  and 2 negative-feedback loops (Gal1p,  Gal80p)
(Stockwell  et  al.,  2014).  The  fact  that  only  partially  inducing  conditions  result  in  bimodal  Gal1p
expression indicates that GAL network is a bistable switch and partial inductions activate stochastically
only certain cells in the population. Feedback loops then amplify this transient induction stimuli. Acar
et al. showed that a strain with a modified inducible promoter for Gal3p lose this persistent memory,
indicating that  Gal3p feedback loop promotes  this  effect  (Acar  et  al.,  2005).  Consistently,  Gal80p
showed the opposite effect with its negative feedback-loop reducing the strength of Gal1p activation. 



Finally, most genetic circuits are probably much more complex than the ones described above, with for
instance the genetic circuit controlling the white-opaque switch in C. albicans. C. albicans can adopt
one of four phenotypes: gray, white, opaque or GUT (Gastrointestinally indUced Transition) (Pande et
al., 2013; Scaduto and Bennett, 2015). Those states are highly stable and heritable, thus potentially
caused  by a  multistable  circuit.  Moreover,  they  show high phenotypic  divergence  (despite  similar
genotype) in multiple traits such as: biofilm formation, mating, stress resistance, favoured niche and
metabolism (Scaduto and Bennett, 2015). Interestingly, the white-opaque switching rates are very low
at 25 degrees (10-4) and increase drastically at high temperatures (100) and other stressful conditions. A
recent systems biology study focused on 6 main regulators of the “all-or-none” white-opaque switch
(Hernday et al., 2013). They observed multiple intertwined feedback loops among the main regulators
or among their target genes: 3,225 for the opaque network and 36 for the white network. The authors
thus propose that these loops could be responsible for maintaining the memory of the phenotypic state,
and a high degree of redundancy could explain the resistance to perturbations. Interestingly, the white
circuit seems to be included in the opaque circuit, on the contrary of lamda's Cro and CI circuits that
are mutually exclusive. This show that network structures conferring different stable phenotypic states
can evolve differently.

                    3 Memory at the nuclear periphery – reinduction memory

Reinduction  memory,  as  mentioned  above,  is  the  ability  during  few  generations  to  induce  gene
expression  faster  in  response  to  a  second  identical  or  similar  stimulus  (cis  or  trans  priming).
Reinduction memory was first described in 2007 for the inducible inositol-1-phosphate synthase INO1
gene (~3/4 generations) and the GAL1 gene (~7/8 generations) (Brickner et al., 2007). Other types of
reinduction  memory  were  then  discovered  with  similar  durations:  yeast  trans  priming  of  NaCl  to
oxidative stress (~ 4 generations) (Guan et al., 2012), interferon gamma (IFN-g)-induced class II major
histocompatibility gene DR alpha (HLA-DRA) in Hela cells (> 3 generations)  (Light et al.,  2013).
Reinduction memory was also observed in plants, sometimes with prolonged duration  (Pastor et al.,
2013). Protein abundance plays a role in this type of memory and could explain why it lasts for a
number of generations realistic with protein number dilutions, as mentioned above for Gal1p and LacY.
However,  in  the  last  decade,  several  studies  revealed  that  cells  employ  additional  sophisticated
mechanisms  conferring  fast  reinduction.  After  a  priming  stimulus,  this  memory  consists  of  three
features that are shared in the examples cited above: relocalization of the induced genes at the nuclear
periphery through interactions with different Nuclear Pore Complexes (NPC), dimethylation of H3K4,
and binding of  poised RNA Polymerase  II  PreInitiation  Complex (RNAPII  PIC).  The last  feature
allows genes to be “ready to fire” if the stimulus re-appears (D’Urso and Brickner, 2014; D’Urso et al.,
2016). In fact, the presence of genes “ready to fire” in reinduction memory effects suggests that other
genes,  not  involved  in  memory  effects,  might  be  regulated/primed  the  same  way:  with  a  faster
induction than others thanks to similar regulatory mechanisms.

The  mechanisms  of  INO1  memory  are  the  best  characterized  so  far.  Upon  activation,  the  DNA
sequence  of  INO1  gets  relocalized  and  interacts  with  Nup100p,  a  Nuclear  Pore  Complex  (NPC)
(Brickner and Walter, 2004; Brickner et al., 2007).  Zip codes are Transcription Factors Binding Sites
(TFBS) that, when bound by TF, promote targeting to the nuclear periphery and interaction with the



Nuclear  Pore  Complex  (NPC).  They  are  important  for  both  reinduction  memory  and  chromatin
boundaries.  Upon  INO1 activation,  two  INO1 zip  codes,  called  the  Gene  Recruitment  Sequences
(GRS), are bound by the transcription factors Put3p and Cbf1p, which result in DNA relocalization to
the  NPC  Nup100p  (Brickner  and  Walter,  2004;  D’Urso  and  Brickner,  2014). Right  after  gene
repression,  another  zip  code,  termed  the  Memory  Recruitment  Sequence  (MRS),  is  bound by the
transcription factor Sfl1p. Then, a modified version of the Compass/Set1p complex, without Spp1p,
deposits H3K4me2 marks on histones at the INO1 locus. Those marks are subsequently maintained by
Setp3 from the SET3C HDAC complex.  H3K4me2 marks and Cdk8p binding are both needed to
recruit inactive, poised RNA polymerase II PreInitiation Complexes (RNAPII PIC) at the promoter.
Furthermore, the role of Cdk8p seems to be specific to memory since inactivation of Cdk8p did not
affect INO1 induction but only reinduction and RNAPII poising (D’Urso and Brickner, 2014; D’Urso
et al., 2016).

In 2012, Guan et al studied NaCl to Oxidative stress trans-priming in yeast and found a group of 77
genes that are quickly induced only in primed cells. They showed that Nup42p, but not Nup59p, was
necessary for this memory effect. Nup100p could be involved too, but results were difficult to interpret
since naive  nup100 mutants showed a reinduction level similar to the primed  wild-types. Strikingly,
they identified a motif in the upstream regions of those genes that was very similar to the Memory
Recruitment Sequence of the INO1 gene. This suggests that transcriptional poising and reinduction
memory could be a common cellular mechanism.

Finally, we can imagine that relocalization of proteins, and not only genes, or even organelles, might as
well be important mechanisms of memory of previous environmental conditions. Proteins marked with
localization  tag  could  mediate  such  effects,  but  more  complex  regulations  might  also  exist.  For
instance, the speed at which molecules propagate within the cell (e.g. transcription factors shuttling)
might keep in memory regulatory events that occurred long ago.

    IV Artificial fluctuations to characterize biological dynamics

        A Experimental evolution in periodic fluctuations to characterize 
the evolution of genetic variance

Box1: genetic variance and heritability
Phenotypic variance indicates how much variations there is for one trait in a population. The genetic
variance and environmental variance indicates how much genetic or environmental factors drive this
variation. Genetic variance is the sum of three terms: the epistasis variance (interactions between loci),
the dominance variance (dominant effect) and the additive genetic variance (“raw” individual effect of
each loci independently of dominance or epistasis). In the 1930s, Fisher proposed that it corresponds to
the  rate  of  change  in  biological  fitness  (Fisher,  1930).  His  work  opened  the  door  to  extensive
quantitative genetic analysis, illustrated by those formulas:



     VP = VG + VE                          VG = VA + VD + VI                          H
2 = VG/VP                          h

2 = VA/VP

VPis the phenotypic variance, VG the genetic variance, VE the environmental variance, VA the additive

variance, VD the dominant variance and VI the epistasis variance, H2 the broad sense heritability and

h2 the narrow sense heritability.

Heritability is a measure of how much heritable the phenotypic variance is. Broad-sense heritability
includes  non-additive  genetic  effects  of  epistasis  or  dominance,  while  narrow-sense  heritability  is
restricted to purely-additive effects. Broad-sense heritability can be used for instance to determine the
respective importance of genetics and environment for the apparition of a particular disease. While
narrow-sense heritability can be helpful in determining how much a crop/livestock can be improved by
directed evolution/breeding. The problem of missing heritability underscores the paradox that while
numerous loci contributing to traits have been found their summed effect usually corresponds to a
small proportion of the total narrow sense heritability. Thus, either many variants cannot be discovered
due to a lack of power in Genome Wide Association Studies (GWAS), or narrow sense heritability is
overestimated (or both) (Zuk et al., 2012).

Starting from the 1960s,  a  series  of  experiments in  drosophila  aimed at  determining how additive
genetic variance of various traits evolve in steady or heterogeneous conditions (Beardmore, 1961). If
we reformulate, the question asked was: do heterogeneous conditions increase the speed of adaptation?
Since  drosophila  generation  time  is  typically  longer  than  a  week,  those  experimental  evolutions
experiments  usually  lasted  one  or  two  years,  sometimes  up  to  5  years.  Authors  evolved  several
replicates of highly inbred or wild populations of drosophila in temporal or spatial heterogeneity, with a
period of about 1 generation, or in steady conditions (Table INT5). Temporal heterogeneity consisted in
periodic alternations between two media. Spatial heterogeneity consisted in periodically splitting the
population in two different medium and joining the two separated populations at the end of the period.
Many traits studied were related to fitness, such as: egg to adult survival, productivity, competitive
ability. But some were partly related or unrelated such as: sternopleural chaeta (bristle) number, body
size, body mass, wing shape.

The theory that is generally proposed is that the treatments leading to a higher genetic variance, and
thus a higher speed of adaptation, are first spatial heterogeneity, then temporal heterogeneity and finally
steady conditions (Huang et al.,  2015; Mackay, 1981; Yeaman et al.,  2010). However, results were
often  contradictory,  with  some studies  claiming  to  confirm  the  theory  and  others  to  refute  it.  To
illustrate that, the results of 3 experiments are shown in Table INT5 (design on table Table INT4). On
this table, we can see that temporal heterogeneity generated the highest variance in the Mackay et al.
study, while spatial heterogeneity generated the highest variance in the Huang et al. study, and no clear
pattern emerged in the Yeaman et al. study.  

A criticism that is commonly made to studies that do not find results in accordance with the main
theory is that the traits that they measure are not, or vaguely, related to fitness. Thus, the link between
the organism’s adaptation and the trait under study is not clear. For instance, in the Yeaman et al. study,
traits under study were all related to wing veins length. In contrast, Huang et al. focused on traits quite



related to fitness. They found a higher genetic variance in the spatial environment, as predicted by the
theory.  However,  most  of  their  results  were  not,  or  barely,  statistically  significant,  due  to  a  high
measurement  error.  To conclude,  the  differences  in  results  obtained in  various  studies  is  probably
caused  by  differences  in  the  exact  experimental  designs  and  traits  measured.  Future  works  could
elucidate if fitness-related traits have indeed higher genetic variance in heterogeneous environments.

Table  INT4.  Design  of  drosophila  experiments  aiming  at  measuring  genetic  variance  of
various traits in steady, temporally varying or spatially varying environments. Period indicates the
period  in  the  temporally  heterogeneous  condition.  Environment  A /  B  indicates  the  two  growth
environment  (supplemented  medium  or  heat)  that  alternate  periodically  in  the  temporally
heterogeneous  environment,  or  in  which  the  drosophila  were  split  ~every  week  in  the  spatially
heterogeneous condition. Replicates indicates the number of replicates per condition.

Table INT5. Genetic variance of various drosophila traits in steady, temporally varying or
spatially varying environments.  In bold are highlighted the conditions that had the highest genetic
variance  for  the  considered  trait.  Not  all  traits  measured  in  each study are  included in this  table.
Abbreviations of traits. SCN: Sternopleural Chaeta (bristle) Number, ABN: Abdominal Bristle Number,
BW: Body Weight, MMS: Male Mass assayed in Salt, MMC: Male Mass assayed in Cadmium, SS:
Survival assayed in Salt, SC: Survival assayed in Cadmium, CEN: Centroid, ANG: Angle7-8-9, LIN:
Line9-10. CEN, ANG and LIN are traits related to wing veins length. Abbreviations of environmental
regimes. ST: Short Term (2 weeks period), LT: Long Term (8 weeks period), SP: Spatial heterogeneity
with panmixia, SLM: Spatial heterogeneity with Limited Migration. Values from Huang  et al. 2015
were inferred from a Figure, hence the “~” sign.

        B Applying methods from engineering to predict biological 
dynamics

Study Experiment duration Period(s) Medium A / B Replicates
Mackay 1981 2 years 2 weeks, 8 weeks no stress / ethanol 15% 2
Huang 2015 ~2.5 year (45 generations) 1 generation Salt / Cadmium 5

Yeaman 2010 116 weeks (~43 gen) 8 weeks 25°C and 16°C 5

 Study Trait Steady temporal Spatial
Mackay 1981 SCN 1.4 (no stress) 2.8
Mackay 1981 ABN 5.8 (no stress) 5.2
Mackay 1981 BW 0.015 (no stress) 0.041
Huang 2015 MMS
Huang 2015 MMC
Huang 2015 SS ~ 0
Huang 2015 SC ~ 0 ~ 0.003

Yeaman 2010 CEN 26.37
Yeaman 2010 ANG 18.29 17.92 (SP), 17.98(SLM)
Yeaman 2010 LIN 0.2 0.14 (SP), 0.19 (SLM)

4.7 (ST), 5.4 (LT)
5.8 (ST), 3.6 (LT)

0.045 (ST), 0.048 (LT)
~0 (Cadmium), ~ 2.5*10-4 (Salt) ~ 3*10-4 ~ 4.2*10-4

~ 5*10-6 (Cadmium), ~ 2.5*10-5 (Salt) ~ 2.6*10-5 ~ 6*10-5

~ 0 (Cadmium), ~ 0 (Salt) ~ 1*10-3

~0 (Cadmium), ~0.027 (Salt)
26.82 (Cold), 24.81 (Hot) 28.15 (SP), 30.63(SLM)
19.11 (Cold), 17.98 (Hot)

0.17 (Cold), 0.19 (Hot)



            i Introduction to Frequency Response Analysis and System 
Identification

Control systems are systems that can transform an input into a desired output  (Åström and Murray,
2008). Control theory aims at mathematically determining what input to provide to a control system to
get the desired output.  “Open loop” control systems describe systems where the input does not depend
on the output.  Contrarily,  systems where  the  input  depends on the output  through a sensor  and a
controller are usually called  closed loop control system (or negative-feedback control, or automatic
control). Control theory is useful in most engineering fields, since feedback-control can be required for
many applications.  In addition,  to  helping in  the construction of feedback-control  systems,  system
theory allows to build models on the system, make predictions, estimate the dynamics of the system or
its noise filtering behaviours, and testing them. Control theory can only be applied to  Linear Time
Invariant systems (LTI).

LTI systems are a class of systems that respond in a certain way when subjected to an arbitrary input.
Specifically, LTI systems are  linear systems and time invariant systems  (Åström and Murray, 2008;
Zadeh and Deoser, 1976). Linear systems follow the properties of  homogeneity and  additivity (also
called superposition). Homogeneity means that if the input is scaled by a given factor, the output will
be scaled by the same factor. Additivity means that if input A gives output A' and input B gives output
B', then input A+B gives output A'+B'. Linear systems have behaviours that are fully explained by
individual effects of components of the system: there is no interactions between members of the system
or between the system and the environment. Time invariance (resp. translational) means that applying
the input at any later time will produce the same output. Similarly, “translation invariance” means that a
shift in space doesn't change the output of the system.

Restrictions to define a system as LTI are so severe that almost no real world system meets them.
Indeed, most systems contain nonlinearities. However, many complex systems can be approximated
accurately by an LTI model, or they can be locally linear. Sometimes the system is nonlinear for certain
input (wave) of interest. In this case linear rectifiers can be applied. The advantage of working with LTI
systems is that they are solvable mathematically, which allows for deep analysis.

Control theory allows for extremely powerful predictions since, once the model has been determined, it
can theoretically predict the output from any input. Simply, this is due to the fact that any signal can be
decomposed into a multitude of sinusoids of different frequencies, amplitudes and phases, thanks to the
Fourier transform. The model, called the transfer function, consists in a map between input frequency
(or wave width) and output (phase and amplitude gain). Thus, an output can be predicted for each of
the decomposed sinusoids (as long as it is in the range of the inputs fitted by the model). The property
of additivity then allows to sum the individual effect of all decomposed sinusoids in order to predict the
output of the signal.

The reason why signals are decomposed in sine wave and not in another types of waves such as square
waves, exponential waves or different aperiodic signals, is that sinusoids are the only waveform that do
not change shape when confronted to Linear Time Invariant (LTI) systems. This means that a sine wave
retains its wave shape when added to another sine wave of the same frequency and arbitrary phase and
magnitude, contrary to square waves for instance. This is due to the fact that sine waves respect the
properties of LTI systems (time invariance, homogeneity and additivity). In mathematical terms, sine



waves are Eigenfunctions (a function that only multiply the input by a scale factor) of LTI Systems,
which simplifies mathematical analysis.  

Frequency Response Analysis refers to determining experimentally the output (amplitude, phase) of the
system to a range of input frequencies  (Ang et al., 2011; Åström and Murray, 2008). This generates
Bode plots, which are scatter plots of amplitude (or phase) vs frequencies. Analysis of Bode plot are
very instructive about the filtering behaviour of the system. If the output amplitude is amplified at some
frequencies  (which  is  called  system  gain),  then  the  system is  said  to  be  resonant.  And  the  most
amplified frequency(ies) of a system is (are) called the resonant frequency. The output amplitude can
also be filtered: in this case only some frequencies are preserved, the others are attenuated and almost
disappear. There are different types of filters:  low-pass,  high-pass or  band pass filters correspond to
systems that keep respectively only low, high or intermediate frequencies. The cutoff frequencies (also
called corner frequencies) are frequencies at which the output starts to be attenuated. Thus, there is 1
cutoff frequency for a low-pass filter or a high-pass filter and 2 cutoff frequencies for a band-pass filter.
The frequencies where the system is not filtered are called the bandwidth of the system. For example,
for  a  band-pass  system,  this  corresponds  to  the  frequencies  between  the  two  cutoff  frequencies.

System  identification  is  a  procedure  that  allows  to  obtain  an  accurate  model  of  the  input/output
behaviour  of  a  system  (Ang  et  al.,  2011).  This  procedure  consists  in  fitting  a  model  (or  transfer
function) to data from a Bode plot, which allows to solve the system for any frequency within the range
of tested frequencies.  System identification starts  by measuring experimentally  the response of the
system to different input frequencies. Then, for each input Fourier filtering is applied, only at the input
frequency, to get rid of the noise. This allows to generate Bode plots to which transfer functions can be
fitted. A transfer function is a ratio of polynomials of a complex variable. The shape of the bode plot
(number of cut-off and roll-off (the steepness of the decrease after the cutoff)) determine the degree of
the numerator and denominator equation before fitting. The last steps are to add a linear rectifier if
needed,  and  to  validate  the  accuracy  of  the  model  through  a  testing  set  (experimentally  testing
frequencies  not  used  for  building  the  model).  Finally,  several  iterations  of  different  steps  of  the
procedure can be repeated to improve the accuracy of the model.

Importantly, system identification can also be applied to square wave inputs (Ang et al., 2011). In this
case, the formula for the Fourier series is slightly modified. A square wave is a highly non-linear input
since there is a vertical increase in the input when the medium change, where one x can take several y
values.  This  nonlinearity  always  results  in  a  slightly  higher  errors  near  the  beginning and  end of
squares, an effect known as the Gibbs' phenomenon. However, increasing the number of sine waves in
the Fourier series can decrease this error close to zero.

Finally, models can be classified in three categories: white, gray or black-box models. “White-box”
models or “physical” models describe models where only information about the internal structure of the
system and different experimentally measured parameter values are used to build the model (Ang et al.,
2011). This approach allows to test different system structures or parameter values. For instance, in
biology it allows to test for different mechanisms within a pathway. The drawback is the difficulty to
obtain accurate information about the system, and to model it correctly due to the complex nature of
most  systems.  “Black  box”  models  are  using  system  identification  procedures  with  no  a  priori
knowledge to build the model. This approach offers robustness and predictive power, but no knowledge
about  the  internal  details  of  the  system.  “Gray-box” models  are  intermediate  models  where  some
knowledge  about  the  system  is  incorporated,  and  other  parameters  are  estimated  using  system



identification procedures. Ultimately, researchers want to understand the internal details of the system
under study. Gray-box models can be used as an intermediate step towards this goal.

            ii Application of System Identification to characterize network 
dynamics

Frequency  Response  analysis  has  crucial  applications  in  digital  signal  processing  (sound,  image,
wireless  communications,  electronic  circuits).  Systems  identification  has  broad  applications  in
engineering, but also in physics, economics, medicine, social systems or biology. This procedure allows
to set  up a predictive model  of a system, with no a priori  knowledge, by stimulating it  at  certain
frequencies.

Periodic fluctuations  can be applied to  characterize pathways dynamics.  This  approach consists  in
periodically applying an activating input to a cell and recording the output, which reflects activation of
the pathway. It requires using microfluidic devices that can trap cells and quickly change the input in
the medium. These are coupled with microscopy tools for monitoring pathway activation. Both the
input and output should be easily measurable and modifiable. Thus, this approach is limited to few
well-characterized systems and has been applied to the physiological adaptation of yeasts to galactose
or high osmolarity.  

In fact, one could try to measure the physiological adaptation of cells after a single step of environment
change.  This  usual  approach is  much less intensive experimentally.  However,  periodic fluctuations
have two big advantages. First, they allow to reduce the noise by performing multiple measurements.
Indeed, sampling many cycles improve the Signal to Noise Ratio (each cycle acting as a replicate).
Though this can be difficult to implement for the lowest frequencies (longest periods), for which only
one or few cycles are measured. Second, they open the door to frequency response analysis and system
identification.  Those  methods  can  have  broad implications  for  the  fields  of  synthetic  biology and
systems biology.

Indeed, synthetic biologists try to adopt an engineering approach to biology. They wish to control the
behaviour of organisms, by applying the principle of abstraction, design, modeling, modularity and
standardisation  to  engineer  living  systems  properties.  Synthetic  biology  aims  at  re-wiring  living
organisms to produce new functions. For instance,  this includes bioremediation (using microbes or
plants to de-pollute certain sites), bio-production (using microbes to produce medicines, biofuels, or
other  valuable  compounds).  “Black box” modelling  thus  seems well  fitted  to  achieve  the  level  of
control, prediction and standardisation targeted in synthetic biology.

System identification opens the door to advanced analysis on different aspects of pathways dynamics,
such as giving boundaries to the rate of action of each component in a pathway, establishing the range
of  amplified  or  filtered  frequencies,  and determining rate-limiting  components  of  a  pathway (also
called dominant processes). In the case of filtering, it is also interesting to determine the pathway's
bandwidth, which is the range of frequencies at which outputs faithfully follows inputs. Outside this
range the pathway is usually “blind” to the fluctuations, and consider that the environment is steady



with an input concentration that is the average of both alternating media. The dominant component(s)
are acting at the same rate as the bandwidths, while other components operate at higher frequencies.
Finally, the identification of resonance frequencies can reveal unexpected weaknesses of the pathway at
specific frequencies, when it gets more activated than it should (Mitchell and Lim, 2016). This could
have broad applications, such as targeting specific cell types (i.e. cancer cell, infected cells) that are
particularly sensible to a given frequency of treatment. Identifying such failures in pathways activation
(hyperactivation) in response to non-natural inputs (periodic fluctuations) could also be a new approach
to understand the pathway, the resonant frequency being the frequency at which the pathway reaches its
maximum activation level in the activating condition.

In order to use the methods of system identification, one must first determine if the system is linear, or
at least locally linear at the frequencies of interest, and if not, try to find an appropriate linear rectifier.
In  the  case  of  pathway  response  to  square  wave  periodic  fluctuations,  the  homogeneity  principle
implies that the pathway is twice as much activated when the input amplitude doubles. The additivity
principle  indicates that  the activation of  the pathway to input  A+B should be equal  to  sum of  its
response to A and B.

There have been a handful of yeast studies that performed this type of experiment so far (Table X).
Three of them focused on the High Osmolarity Glycerol pathway in periodic osmotic stress (Hersen et
al., 2008; Mettetal et al., 2008; Mitchell et al., 2015), and one on the Galactose pathway in periodic
glucose fluctuations and constant Galactose (Bennett et al., 2008). The three Hog studies used gray-box
models; linear systems theory combined with knowledge from the literature. On the contrary, Bennet et
al. constructed a white box model after analysis of the literature. This was possible since the GAL
network had been extensively characterized. Due to the knowledge of internal details of the system,
white box models allow to make predictions on specific mechanisms. Bennet et al. were indeed able to
solve a discrepancy between their model and the data (the network was more sensitive than expected at
low frequencies) by hypothesizing and experimentally validating a faster degradation rate in glucose
than in Galactose of the Gal1 transcript.  

Study Measured Output

Mitchell 2015 grey box square 0.4M Kcl 0.5 min – 128 min ∫ (Hog1-GFP NE) Band-pass
Mettetal 2008 grey box square 0.2M NaCl 2 min – 128 min Hog1-YFP NE Band-pass
Bennet 2008 white box sine 0.25% glucose 45 min to 4.5 h Gal1-yECFP WC Low-pass
Hersen 2008 grey box square 1M Sorbitol 1 sec – 16 min Hog1-GFP NE Low-pass

Type of 
model

Input: 
wave 
type

Input: Periodic 
stress

Input: Range of 
periods

Input: Range of 
frequencies in Hz

Type of 
filter

Resonant 
frequency in 
Hz (period)

1.3*10-4 – 3.3*10-2 1*10-3 (16 min)
1.3*10-4 – 8.3*10-3 2.1*10-3 (8 min)
6.2*10-5 – 3.7*10-4 6.2*10-5 (4.5 h)

1*10-3 – 1 1*10-3 (16 min)

Table INT6: Studies showing amplitude Bode plots in yeast. Hog1-GFP/YFP NE (resp. Gal1-
yECFP WC)  indicates  the  activity  of  the  HOG (resp.  GAL)  pathway.  Integral  of  Hog1-GFP NE
indicates transcriptional output of the Hog pathway. In Mitchell  et al., other output were measured:
generation time (cell growth, RP: 8 min), pixels (cell area, RP: 8 min), pStl1 (reporters of osmotic
transcriptional response, RP: 16 min), pFre (reporter of the invasive-growth pathway , RP: 8 min). The
grey box used in Mitchell et al. was adapted from Muzzley et al. Other studies build their own models.
Abbreviations: RP: Resonant Period; NE: Nuclear Enrichment; WC: Whole Cell.

Three studies measured the activity of the HOG pathway in response to osmotic stress (Table I-IV-B).
Interestingly, while applying different inputs, they all observed a resonant frequency at around 10-3



hertz. In contrast,  the Gal network seems to be acting at  much slower time-scales with a resonant
frequency potentially lower than 6.2*10-5. Those results suggest that oscillations in osmotic stress may
be more frequent and critical to yeast survival than fluctuations in galactose levels.

    V Genomics of yeast fitness in periodically fluctuating environments

        A What can we learn by experimentally studying fitness in 
periodically fluctuating conditions?

Fitness is a special phenotype/output. Indeed, fitness is a measure of the selective advantage of an
organism in a given environment. This selective advantage is important to understand the evolution of
organisms. In addition, fitness is a useful phenotype to determine the genes that control the complex
and  key  process  of  cellular  division  control,  in  various  contexts.  Fitness  of  microbes  is  usually
measured in steady conditions. However, measuring microbes' cellular proliferation/fitness in binary
periodically  fluctuating  conditions  can  provide  much  information  regarding  their  dynamics  of
phenotypic adaptation through plasticity. It could help understanding the forces that shape selection in
the wild,  and the nonlinear effects of changing environments that cannot be predicted from steady
conditions.

Yeast genes important in a given condition can be systematically determined by analysing the fitness of
yeast null mutants in this condition. However, the evolutionary interpretations of fitness values in the
wild, where environments change frequently, are not straightforward. We don't know yet if we can
predict  fitness  in  dynamic  conditions  from  fitness  values  in  steady  conditions.  Combinations  of
conditions in the wild are infinite. Thus, being able to extrapolate selective advantage in fluctuating
conditions from fitness data in steady conditions would be a major advance (Cohen, 1985). A first step
in this  direction is  to  determine how much we are able to predict  fitness in simple environmental
changes such as binary periodic fluctuations. Although the answer to this question likely depends on
the specific strains and conditions tested, general principles could be discovered.

Specifically, we can wonder: does fitness in a periodically-fluctuating environment equal the average of
fitness in steady conditions? Is there a critical rate (or frequency) of environmental changes at which
predictability  degrades? If  we have,  for instance,  steady state  fitness  values  after  several  hours  of
growth in two condition, until  which frequency of binary periodic fluctuations can we still predict
fitness? Are there some genes that are more predictable than others? And if yes, which mechanisms can
explain these differences? Can we discover the sources of nonlinear effects?

As described in chapter 3A, different strategies of adaptation to fluctuating environments have been
described, and many studies made predictions on the conditions that favours one strategy over the
others  in  the  wild.  Working  with  periodic  fluctuations  may  allow  to  experimentally  test  those
predictions and to determine how frequent those strategies are and their impact on fitness in conditions
mimicking real environments (Fig INT7.3).



Unicellular organisms use environmental cues to adapt to changes in the environments. However, not
all cells commit to launch a signaling pathway/stress response right after sensing a cue. Some cells will
never commit: they are insensitive to this particular cue. Other cells will commit later: they wait for
higher extracellular or intracellular levels of the cue. After commitment, cells usually experiment a
phase of intracellular signaling that will allow them to become well-adapted to the new environment.
During this phase, often called the lag phase, there is a reduction or an arrest of growth in order to
rewire  intracellular  signaling.  For  those  reasons,  committing  quickly  is  not  always  adaptive.  For
instance, a fast commitment can be maladaptive if the new environment quickly disappears, especially
for  long lag phases.  Thus,  cells  often face a  trade-off  between fast-growth and adaptation  to  new
conditions.  Measuring  fitness  of  many  different  strains  in  fluctuating  conditions  can  allow  to
systematically identify candidate strains with a modified speed of adaptation (which include both the
time to commitment and the lag phase duration) (Fig INT7.2). In fact, a short lag phase can be too
small  to  be  detected  after  a  single  environmental  switch.  In  this  case,  performing  multiple
environmental switches, as in periodically fluctuating conditions, can allow to amplify the signal.

In  addition,  to  changes  in  the  speed  of  adaptation,  fluctuating  conditions  can  reveal  memory
mechanisms (Fig INT7.1). Indeed, epigenetic mechanisms sometimes allow cells to remember previous
conditions for a certain duration (see chapter 1-III-B). This behaviour is especially advantageous for
cells in a fluctuating environment where recent stresses have more chances to occur again, such as in
periodic fluctuations. However, memory of stress can be a regulated process, and thus it can require
energy that could be invested in optimizing growth in the current environment. Thus, as for the speed
of adaptation, there can be a cost of maintaining a type of cellular memory. This is why memory of
stress can be maladaptive if the memorized stress does not re-occur, or if it occurs too mildly over a
short time.  

Fig INT7. What fitness in periodic fluctuations can teach us about adaptation?



        B Low throughput measures of fitness in fluctuating conditions

In this section, we will describe some of the few studies that have measured fitness during or after
binary periodic fluctuations. We will see that they observed some of the phenomenon described above
of  short  and  long-term  memory  of  stress,  lag  evolution/amplification  and  different  strategies  of
adaptation.  

Stomp et al. studied chromatic adaptation, the ability of some micro-organisms to change their color in
function of the prevailing light spectrum (Stomp et al., 2008). They exposed 3 cyanobacterial species –
one red, one green and one that can change its color in ~7 days – to fluctuations in incident light color
at 3 different frequencies (Table INT12). Despite the fact that the strain able of chromatic adaptation
outgrew the 2 others in  steady red or green light, they found that the rate of exclusion was higher in
fluctuating light conditions. This was especially true for longer periods of fluctuations, owing to the
full  adaptation  of  the  flexible  strain.  This  study  nicely  illustrates  that  the  benefits  or  phenotypic
adaptation depends on the dynamics of environmental changes.  

Beaumont et al. evolved Pseudomonas fluorescens populations with alternations of growth in steady or
shaken  microcosms  (Beaumont  et  al.,  2009).  Their  selection  protocol  at  each  round  consisted  in
growing cells in one of the two conditions for 72 hours (one propagation). Then, they looked if cells
with new heritable morphologies appeared. If not, cells were grown for another propagation in the
same condition.  Otherwise a new round of selection started in the alternative growth condition.  It
should be noted that this environment is not strictly periodic as rounds can have various length. After 6
and 9 rounds of selection (corresponding to 16 and 14 propagations) they observed that 2 out of 12
replicate lines evolved bet-hedging phenotypes, that were switching at each new round of selection
between two different morphologies adapted to each condition. Genome sequencing revealed that 9
mutations  were  involved;  with  the  last  one  being necessary  and sufficient  for  the  rapid  switching
phenotype. However, the previous 8 mutations were important to provide a fitness advantage to the
switching phenotype, possibly through epistatic effects. This study shows that selection in a fluctuating
environment  can  rapidly  lead  to  the  apparition  of  bet-hedging,  generalists’ genotypes  with  highly
plastic morphologies.  

In  2008,  Acar  et  al  engineered  two yeast strains  to  stochastically  switch  between  two phenotypes
adapted to two different environments (Acar et al., 2008). They then measured the growth rate of these
strains  in  an  environment  that  changed  periodically  between  those  two  environments  at  different
frequencies. They found that, as expected, the fast switcher strain was growing faster than the slow
switcher strain when fluctuations were rapid, and vice-versa. This suggests that phenotype switching
can be an appropriate strategy of adaptation in fluctuating environments.

Bacterial resistance to antibiotics corresponds to the maximal concentration a bacterium can grow for
an indefinite  amount  of time.  Inversely,  bacterial  tolerance corresponds to  the maximal  duration a
bacterium can survive, even at high antibiotics concentrations. Most studies so far focused on bacterial
resistance. In a 2014 paper, Fridman et al evolved E. coli strains in conditions of daily administrations
of antibiotics for different durations (3h, 5h, 8h; with two replicates lines each) (Fridman et al., 2014)
(Table INT12). After evolution, the authors found that all evolved strains improved their survival to
antibiotics  (when  exposed  to  the  same  antibiotic  concentration  and  duration  as  in  the  evolution



experiment). This improvement was not due to an increase in resistance to antibiotics but to an increase
in tolerance through a prolongation in the lag phase duration (Fig INT8a). Such “tolerance by lag” is
highly medically relevant, as it is a non-specific mechanism of tolerance that could help bacteria to
survive  many different  drugs  or  stresses.  Moreover,  improved tolerance allows bacteria  to  survive
longer and thus gain more time to evolve resistance to antibiotics (as they showed in a recent paper
(Levin-Reisman et al., 2017)). Interestingly, the mean lag time of evolved clones was very similar to
the duration of antibiotics treatments (Fig INT8c). Whole genome sequencing and complementation
assays allowed the authors to discover 3 genes involved in lag lengthening. Two of them were already
known in the literature as playing a role in increased persistence. Persistent bacteria designate bacteria
that can survive antibiotics due to the resistance of a small  fraction of cells  within the population
(Levin-Reisman  et  al.,  2017).  Finally,  a  very  interesting  result  was  that  the  population  mean  and
variance lag times were increasing together in evolved clones, with the clones evolving in the 8 hours
condition having a very broad distribution of single cells' lag time (Fig INT8b). The periodic regime
was unpredictable for the bacteria. As predicted from theory, this unpredictable situation leads to the
apparition of a diversifying bet-hedging strategy where some cells keep short lag phases, while others
have various lag phases, sometimes extremely long. This is advantageous for the organism as this
strategy  maximizes  its  survival  regardless  of  whether  the  stress  disappears,  remains  or  increases.

Fig INT8. Fridman et al. study: experimental evolution of tolerance by lag phase duration in E.
coli. tbl3a  (resp.  tbl5a,  tbl8a)  were  the  evolved  clones  from the  selection  regime  with  antibiotic
duration of 3 (resp. 5, 8) hours. a) improved tolerance of evolved clones. b) distribution of single cells
lag  time  upon  antibiotic  treatment.  c) mean  lag-time  of  evolved  clones  corresponds  to  antibiotic
duration of the corresponding selection regime. Reference: Fridman et al. 2014.

In 2014, Lambert et Kussel used a microfluidic device to grow E. coli cells in quickly-changing carbon
sources  (Lambert  and  Kussell,  2014)  (Table  INT12). They  observed  that,  when  transferred  from
glucose to lactose, cells with uninduced lac genes have a lag phase of about 1 hour. However, when
cells were fluctuating between glucose and lactose at periods equal or lower to 8 hours, there was no
lag phase after the first encounter with lactose (Fig INT9a,b).  Thus,  there seems to be a memory of
lactose  that  lasts  about  4  hours.  There  are  three  main  genes  in  the  lactose  operon:  LacZ,  a  beta-
galactosidase,  LacY, a  permease,  and LacA, a  transacetylase.  These genes  are  tightly  repressed in
glucose, and need to be expressed for growth in lactose. By using an over-expression plasmid, the
authors found that the memory effect was strongly dependent on LacZ, and LacY, but not on LacA.
When bacteria are faced with a carbon or amino acid stress they trigger the “stringent response”, which
induces the arrest of growth, reduction of translation, downregulation of metabolism and activation of
alternative biosynthetic genes.  The authors showed that memory of lactose in the 8-hours periodic
regime could be simply explained by LacYp dilution over time. They found that LacYp levels above



0.4% of full  LacYp induction prevented the lag time due to  de-repression of lactose genes.  When
slightly induced, a positive-feedback loop quickly activates the full pathway. However, there was still a
lag time due to induction of the stringent response. LacYp levels above 6.25% prevented the induction
of the stringent response and thus could explain the memory effect in the 8-hours periodic regime.
Finally, another memory effect on a shorter time scale was found: when cells are pre-grown in glucose,
switched to lactose and then back to glucose, they continue to induce their lactose genes during 20
minutes  (Fig  INT9c).  The authors  propose  that  this  effect  is  due  to  the time needed for  the LacI
repressor to get fully rid of bound inducer and to rebind to the operon's operator. This study illustrates
how simple mechanisms can lead to memory of a carbon stress that have important consequences on
fitness (or growth rate) in fluctuating conditions.

Fig INT9. Lambert and Kussel study: memory of exposure to lactose in  E. coli.  a) the lag in
lactose medium appears only at the first cycle in an 8-hours periodic regime. b) Periods below 8 hours
have no lag phase. Periods above 8 hours have increasing lag and recovery phases. Period = 2 x T0.  c)
Fluorescence of the LacY-Venus fusion protein. Any pulse of lactose induces an increase in LacYp
levels, that peak 40 minutes later. This delay includes ~14 minutes of fluorescent protein maturation,
~20 minutes of residual repressor (LacI) inactivated (bound) by the inducer (lactose), and ~6 minutes
needed for the repressors to fully rebind the lac operator sites. Reference: Lambert and Kussel  2014.

Similarly,  New  et  al. grew yeast  strains  in  changing carbon conditions  (New et  al.,  2014)  (Table
INT12). They found that wild isolates had large differences in their ability to gradually transition from
glucose to alternative carbon sources such as low glucose (LG), LG + galactose or LG + maltose. Wild
isolates' variability of fitness in gradually-changing carbon sources was correlated with their lag time in
a sudden transition from glucose to maltose. Interestingly, the wild-type laboratory strain had one of the
longest lag phase. Yeast growth on maltose depends on 3 maltose genes. When those genes were over-
expressed in the  wild-type, the lag phase disappeared. It is often assumed that a short lag phase is
adaptive. However, as mentioned previously, this is not necessarily true in changing environments. The
authors illustrated this by growing cells in glucose, then inducing them partially in maltose (~ half of
the  cells  as  measured  by  a  fluorescent  reporter  gene),  and  then  switching  them back  to  glucose.
Interestingly, cells that induced the maltose pathway had a higher doubling time than uninduced cells
(Fig  INT10a).  This  illustrates  the  cost  associated  with  fast  adaptation  if  the  environment  changes
quickly. The authors then wondered if lag time could quickly evolve. They grew wild-type strains in
glucose (20 hours) to maltose (3 days) periodic fluctuations for up to 8 cycles. Strikingly, evolved



clones had almost all a much shorter lag phase than the wild-type for a glucose to maltose transition,
which was associated with a  fitness  benefit  in this  condition.  Interestingly,  several  evolved clones
improved their fitness of transition from glucose to LG + galactose, while the selection was only on
maltose. This suggests that those clones became generalists. On the contrary, few clones evolved to
become more specialized than the  wild-type. Interestingly,  there was a strong (R2 = 0.61) negative
correlation between maximal  growth rate  in  glucose and geometric  mean growth rate  in  changing
carbon sources among the evolved clones, which reveals the trade-off between carbon specialists and
generalists. Whole genome sequencing of evolved clones and complementation assays identified one
mutation in the std1 gene, and multiple mutations in the Hxk2 gene (Fig INT10b). Hxk2 is pleiotropic
gene involved in glucose sensing, glycolysis, Ras/PKA, Snf1 and nuclear repression. Unexpectedly,
one Hxk2 clone became a specialist while others became generalists. This shows that mutations in a
single hub gene can allow cells to finely tune the duration of their lag time. Interestingly, generalists
hxk2 clones showed a bimodal distribution of maltose genes expression after dozens of hours of growth
on maltose + glucose medium. This reveals a type of stochastic sensing, or bet-hedging strategy.  In
addition,  this effect was dependent on the pre-growth medium, even after dozens of hours of growth,
indicating  that  some memory  mechanisms  allow to  maintain  a  memory  of  the  pre-growth  media.
Finally,  the  authors  make  a  model  that  predicts  the  winner  of  a  competition  between  a  glucose
specialist and a generalist at different periodically fluctuating conditions. They verify their predictions
experimentally  using  two evolved  isolates  and prove that  the  dynamics  of  environmental  changes
determine the winner of the competition (Fig INT10c).

Fig INT10. New et al. study: Experimental evolution of lag phase in budding yeast. a) cells grown
in glucose, partially induced in maltose and switched back to glucose. Cells that activated the MAL



genes (as shown by a fluorescent reporter of the MalSp) have a higher doubling time. b) Yeasts were
evolved in a glucose(20h)-maltose(72h) periodic regime for 8 cycles. Whole genome sequencing on
final isolates revealed several mutations in the Hxk2 gene. Introducing the Hxk2 allele of isolates 1 or 2
in the ancestral strain fully accounts for the reduced lag phase of evolved isolates. c) Two isolates from
the evolution experiment  evolved different  strategies:  glucose specialism (isolate  6),  or  generalism
(isolate 1). When faced in competition,  those two isolates perform as well  in a fluctuation regime
similar to the selective environment: glucose(8h)-maltose(16h). Changing the duration of maltose or
glucose events favors one of the two strategies. Reference: New et al. 2014.

In 2013, Razinkov et al. made competitions experiments between two strains: a wild-type strain, and a
strain  that  they previously  engineered to  have a  decreased speed of  phenotypic  adaptation for  the
transition from galactose to glucose, by increasing the half-life of the Gal1 transcript (Baumgartner et
al.,  2011;  Bennett  et  al.,  2008;  Grilly  et  al.,  2007;  Razinkov  et  al.,  2013). Using  a  homemade
microfluidic device, they performed co-culture assays between those two strains at different periods of
fluctuations (4h,  8h,  10h) during about  200 generations (Table INT12). They found similar fitness
values in steady conditions (constant galactose or glucose), and a very strong competitive advantage for
the  wild-type in  fluctuating  conditions  (Fig  INT11a).  Moreover,  this  advantage  was  directly
proportional to the number of environmental switches and not to the frequency of fluctuations (Fig
INT11b).  This  study proves  that  a  competitive  advantage  in  fluctuating conditions  can be  directly
related  to  molecular  mechanisms  that  increase  or  decrease  the  speed  of  phenotypic  adaptation.
Moreover,  it  shows how periodic fluctuations can amplify the effect on fitness of a prolonged lag
phase, that would have been missed with just a single environmental switch. This study also illustrates
that fitness in periodically-fluctuating conditions cannot always be predicted from fitness in steady
conditions.  

Fig INT11. Razinkov et al. study: Relationship between lag time and fitness in periodic conditions
in budding yeast. y-axis is the percentage of wild-type cells in a competition against a mutant strain,
with an increased galactose to glucose lag time. a) The wild-type wins the competition in fluctuating
conditions.  b) the number of galactose to glucose switches explains the competitive advantage of the
wild-type strain. Reference: Razinkov et al. 2013.



Table  INT12:  Studies  measuring  organism  fitness  during/after  growth  in  binary  periodic
fluctuations. 

        C My project: yeast genomics of fitness non-additivity 

As we saw above, subjecting micro-organisms to Periodically Fluctuating Conditions (PFC) can
teach us a lot about adaptation and evolution. This includes the study of: the impact of lag times and
memory effects on fitness in fluctuating environments, the optimal strategies of adaptations, or the
ability  to  predict  fitness in changing environments from fitness values  in steady conditions.  These
issues have already been approached by studies performing environmental fluctuations manually or via
microfluidics tools, as shown in the previous section. However, throughput is always limited with these
methods, preventing large scale screens.

The aim of this thesis was to explore these evolutionary aspects, by adopting a systematic approach
where  we  measured  the  impact  of  thousands  of  yeast  genes  deletions  on  fitness  in  periodically
fluctuating conditions.  Specifically, we grew the homozygous Yeast Deletion Library in 4 different
medium fluctuations (salt, no methionine, sodium metabisulfite, high glucose), with steady controls and
10 different periods each (from 6 to 60 hours). This approach has the advantage to directly points to
genes and potential mechanisms that are important in fluctuating conditions. Moreover, screening a
large pool of mutants with different phenotypes in different conditions may allow to drive general
principles about fitness in fluctuating conditions.

We focused our efforts on the salt fluctuations since phenotypes were the strongest in this condition.

Study Periods Observed phenomenon
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Razinkov 2013 75 ~500 Lag amplification

Fridman 2014 E. coli manual 10 25 min ~580
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Results showed that predictability of fitness in PFC from fitness in steady conditions was a gene-by-
gene question. However, we found that most genes were non-predictable at fast fluctuations, while
most  genes  were  predictable  at  slow  fluctuations.  Many  genes  with  extremely  high  fitness  in
fluctuating conditions were identified at short periods of fluctuations, and two of them were validated
by complementation assays. This study opens the door to mechanistic analysis for determining why
these genes protect the cell from hyper proliferation in fast PFC.



2 Methods

In this section are methods not described in the submitted publication. 

Fluctuation experiment, run 2 and spike-in. 
The Methionine and Glucose fluctuation experiments followed the same protocol than the Salt and
Sodium Metabisulfite experiments, at  the exception that a spike-in control was included. The PCR
reaction described in the submitted publication was used to amplify the DNA of two strains (Pcl9 and
Ipt1) from single colonies on streaked YPD plates. Then aliquots of these two strains, and a population
of amplified barcodes from a Yeast Deletion Library, were mixed at various concentrations. After PCR
amplification in the BarSeq experiment, 8 samples had low concentrations: the N condition at day 0 of
the  Glucose  and  Methionine experiments.  These  samples  were  not  included  when  pooling  PCR
amplicons and thus were not sequenced. Instead, the 8 spike-in populations were added to the pool of
amplicons.  After  sequencing,  spike-in  data  were  analyzed  (before  normalization)  and  were  then
removed  from all  analysis.  The  populations  that  had  been  removed  (N  condition  at  day  0)  were
computationally replaced. At day 0, all populations experienced only the N medium. Therefore, the
counts  of  mutants  in  each  missing  population  were  replaced  by  their  median  counts  in  11  other
populations. A different set of 11 populations was used to replace each missing population (the other
wells in the same row on a 96 well plates), in order to create an artificial variance between replicates.
Similarly, 6 populations had very low replicability at day 0. Those were replaced by taking the median
count per mutant in 7 wells (in the same column on a 96 well plates).

Calculation of Fold Changes and Principal Components.
Analysis were performed using R version 3.4.0 (2017-04-21). Fold changes were computed using the
function DESeq (argument fitType = “local”) and the function “results” (default paramaters) from the
package DESeq2 (version 1.14.1).  Principal  Components (PC) were computed using the “prcomp”
function (default parameters).  

Estimation of cell number and doubling time  
Computing absolute fitness values from FACS data was possible since the FACS mixed several times
vigorously each well, before aspiration at a constant speed. The rate of sampling was 1μl per second.
Since the time needed to acquire 10,000 cells was recorded in the data files, it is possible to estimate
the  concentration  of  cells in  the  population.  I  estimated  the  concentration  of  cells in  each
sample/well/population (c) by this formula:  
c = ((N/t) / (dil1 . Dil2)).  
N is the number of events (cells) acquired for a sample on the FACS (10,000 for most samples). t is the
time of acquisition of the sample on the FACS. dil1 is the dilution of the sample before fixation, equal
to 0.4. dil2 is a second dilution of the sample before acquisition, that is variable. It was set between
0.055 and 0.2 for flow-cytometry run 1 to 4. For run 5 (data of Fig IV-B.7), dil2 was set at 0.02, to keep
low speed of samples acquisition on the FACS. The unit of c is s -1. It is equivalent to l-1 because the
speed of aspiration of the FACS was constant, with unit l.s-1.

I estimated the theoretical volume of cultures that would have been produced if there was no dilutions,



by this formula:  
tv[i] = tv[i - 1] + v0 . (v1/v2)(i – 1), with tv[1] = v1
i is the number of fluctuations that occurred (from 1 to 25). v1 is the volume of cultures, equal to 220
µl. v2 is the volume of culture that is kept at each fluctuation, equal to 130 µl. v0 is the volume that is
discarded at each fluctuation, equal to 90 µl.

Cell number (cn) in each population was estimated by this formula: 
cn = tv[i] . c . pt.  
pt is the percentage of cells of type t. t can be either mutant, wild-type or all cells. Classification of cells
was based on a threshold of fluorescence levels, as described in the submitted publication.

A linear model was fit on: log2(cn) ~ time, with time in hours. The doubling time was then computed
as the inverse of the slope coefficient of the model.

Growth media
BarSeq  assay. For  the  Sodium  metabisulfite  and  Glucose  experiments,  N  medium  was  made  as
described in the submitted publication. Medium SMet (Sodium Metabisulfite) was made by adding 10
ml/L Sodium Metabisulfite 78.37 mM to medium N (final concentration of 0.7837 mM). Medium SGlu

(Glucose) was prepared as the N medium, except that 50 g of glucose were added per  liter  (final
concentration of  5%) instead  of  20g for  the N medium (final  concentration of  2%).  Medium SMet

(Methionine) was prepared as the N medium, except that a mix of amino-acids without methionine was
used.  N medium for  the methionine experiment  was made by using the same mix of  amino-acids
lacking methionine, and supplementing the medium with 149 mg of methionine per liter of medium. 
Flow cytometry pleiotropy experiments. The NaCl 0.4 M medium was made by adding 80 ml of NaCl
5M per liter of N medium. The Sorbitol 0.4 M medium was made by adding 73 g of sorbitol per liter of
N medium. The raffinose 1.9% medium was made by making a N medium with only 1g of glucose per
liter, and 19g of raffinose per liter. The ethanol 5% medium was made by adding 50 ml of ethanol
100% per liter of N medium. The KCl 0.2 M medium was made by adding 14.9 g of KCl per liter of N
medium. The LiCl 0.2 M medium was made by adding 8.5 g of LiCl per liter of N medium.



3 Results

    I Submitted publication

Genomics of cellular proliferation under periodic stress 

Jérôme Salignon * , Magali Richard * , Etienne Fulcrand, Hélène Duplus-Bottin and Gaël Yvert
*) these authors contributed equally to this work

Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS,  
Université Claude Bernard de Lyon, Université de Lyon, 69007 Lyon; France. 

In revision at Molecular Systems Biology and posted on Biorxiv on April 20, 2017.
doi: https://doi.org/10.1101/129163

    II Summary of the project

Figure II.1 illustrates the 2-steps screening approach that we adopted for this study: a genomic
screen followed by an individual mutant assay to confirm results. For both experiments, cultures of
yeast in binary periodic fluctuations were automated on a liquid handling platform. The genomic screen
was a high-throughput assay allowing to assess simultaneously the fitness of thousands of mutants from
hundreds of different populations.  This was achieved by the BarSeq technique (Fig II.2), in which
mutants'  barcodes are amplified by PCR and sequenced. Magali Richard designed a library of 384
indexing primers that  allowed multiplexing by amplifying mutants  from different  populations  with
different primers. This way, amplicons from PCR could be pooled and sent to sequencing together.
After parsing of reads,  the abundance of each mutant in each population could be quantified.  The
secondary screen experiment was similar to the primary screen, but precision was much higher (Fig
II.1).  Indeed,  in  this  experiment  there  were  only  two  strains  in  the  pool  instead  of  ~3500.  This
prevented  potential  interactions;  such  as  exchange  of  metabolites.  Moreover,  cells  were  directly
counted by a  flow-cytometer,  instead of  gDNA extraction,  PCR and sequencing that  all  introduce
biases.  The purpose of  the secondary screen was to  both validate  the effect  individual  mutants  of
interests and to determine the success rate of validation, in order to infer how reliable the genomics
analysis of our BarSeq experiment was.

https://doi.org/10.1101/129163


Fig II.1. Experimental design of the project

Fig II.2. BarSeq: multiplexing of Barcode Sequencing



Finally, we can make a parallel between the issue of determining if a system is linear and if fitness is
predictable in fluctuating conditions from fitness in steady conditions. Indeed, as shown in Fig II.3, we
can see that if the fitness of a mutant in periodic stress is equal to the (weighted geometric) average of
its fitness in steady conditions, then it probably satisfies the conditions of homogeneity and additivity.
Therefore,  mutants  that  have  (un)predictable  fitness  will  be  referred  to  as  (non)linear  mutants.
Importantly, there is a slight discrepancy in the terminology used in the submitted publication and in
this thesis. In the submitted publication, we used the term homogeneity, instead of linearity, to describe
the level of predictability of fitness in fluctuating conditions from fitness in steady conditions. 

Fig II.3. Testing for linearity of fitness in fluctuating conditions. F stands for Fitness. Non-
additivity  indicates  an  environment  x  environment  interaction.  Inhomogeneity  indicates  a  time  x
environment interaction.

    III Four genomic screens

        A Experiment

            i Beginning of the project



Magali Richard arrived at the laboratory 8 months before me, and started this project, together
with another project based on wild yeast isolates. After my arrival, I took over the study of deletion
mutants, while she continued on the study of wild strains. The experimental designs of the projects
were very similar.  In her case, she screened a library of ~25 wild isolates while I screened a pool of
~4000 yeast null mutants. During her first year in the laboratory she set up different protocols that I
used afterwards. She designed a library of 384 primers for the PCR step of the BarSeq experiment (see
part 3-III-B-ii), and optimized conditions for the PCR. She also set up an automated high-throughput
robotic  protocol  for  extracting  DNA genomic.  Finally,  she  wrote  a  first  version  of  the  script  for
automating  cultures  in  fluctuating  conditions.  She  performed  a  BarSeq-based  analysis  of  the  wild
strains and then tested pairwise strains comparisons by flow-cytometry. Unfortunately, strain-to-strain
differences  were not  validated  by  this  secondary  assay.  If  she  had validated  fitness  differences  in
fluctuations  between  two  wild  isolates  strains,  she  would  have  then  mapped  corresponding  QTL,
through the technique of Bulk Segregant Analysis. Magali Richard then worked on another project.  

            ii Description of the experiment

The experimental design of plates for this experiment is illustrated in Figure III-A.1. Briefly, each
well contained the full Yeast Deletion Library. 96-well plates were split in two, horizontally, with each
part being used for a different type of medium fluctuation. Each column contained replicates of the
same condition. During three days, binary periodic fluctuations were made between a non-stressful (N
medium) standard medium (SD all),  and a stressful medium (S medium) in which  wild-type yeast
growth is suboptimal. For each type of stress, there was a total of 12 conditions: two steady conditions
(N and S) and 10 different periods of fluctuations (NS6-60). Finally, samples were frozen once a day,
for  later  genomic  DNA extractions.  Tested  stressful  media  were  NaCl  0.2  M  (SSalt)  and  Sodium
Metabisulfite (Na2S2O5) 0.8 mM (SSul) in the first run (run 1), and glucose 5% (SGlu) and methionine 0
mM (SMet) in the second run (run 2). These concentrations were chosen to be low-enough to allow yeast
cells to grow well. Indeed, it was important for us not to lose populations growing in the stressful
condition for 3 days, since they were later necessary for computing the degree of fitness linearity at all
periods. However, stress should be tough enough in order to observe a phenotype for most mutants. For
all experiments, we decided that I would use the same concentration as Magali Richard used in her
experiment. The reasoning was that we might be able to compare our results later on. However, she
used a concentration of 0.8 M for her salt experiment, which revealed to be too strong and eradicated
all populations in the salt steady condition. Thus, for the salt experiment, I tested growth of a wild-type
yeast in different salt concentrations. I chose the concentration of 0.2 M, in which cells showed a small
but detectable increase in doubling time after 5 hours of exponential growth (Fig III-A.2). 



Fig III-A.1. Design of one 96-well plate for the primary screen fluctuation experiment

  

Fig III-A.2. Optical density (left)  and doubling time (right) of a wild-type  yeast strain at
various salt concentrations

            iii Growth of populations during fluctuation experiments

The fluctuation experiment lasted only 3 days, however, I needed 4 months to complete it correctly
twice. This delay was due to several aborted experiments after crashes of the robot. Indeed, the protocol
required a lot  of robustness to perform precisely interventions multiple times during few days and
nights. Improvements to the protocol included re-writing the code in a loop fashion; preparing 96-well
plates with media for the future fluctuations before the night (and not during the fluctuations); avoiding
trashing tips or plates; and switching from 4 to 5 autonomous fluctuations per night.

During the experiment, Optical Density (OD) was measured every second fluctuation by a sunrise plate
reader (Tecan) on the robotic platform. This allowed to observe how populations grew over time in the
different  conditions.  Figure  III-A.3  to  III-A.6  show  OD  measurements  in  the  different  media
fluctuations. We can see on those Figures that populations sizes drop every day. This occurred when I
collected and froze samples for later gDNA extraction. As expected, most of the fluctuating conditions
had population sizes that were in-between the two associated steady conditions (data not shown). The



no-stress steady condition (N) should have similar population sizes in these Figures. However,  we
observed that in the Methionine experiment, growth rate in N was lower than in the other experiments.
There were almost no growth differences between the N and SMet populations. This result suggested that
we should not expect to observe many strains with an important growth rate difference between the N
and SMet conditions after data analysis, which could limit potential genomics analysis. On the contrary,
the  biggest  difference  in  fitness  between  the  two  steady  conditions  was  observed  in  the  NaCl
experiment. Thus, we could expect that many mutants would have a detectable phenotype. Finally, the
Glucose experiment  had a  higher  variability  in  N than other  experiments,  which could  potentially
decrease the power to detect mutants with interesting phenotypes.

Fig III-A.3. Optical density measurements of populations in the salt experiment.  Green: N. Red: Ssalt.



Fig III-A.4. Optical density measurements of populations in the Sodium Metabisulfite experiment.
Green: N. Red: Ssul.

Fig III-A.5. Optical density measurements of populations in the Glucose experiment. Green: N. Red:



Sglu.

Fig III-A.6. Optical density measurements of populations in the Methionine experiment.  Green: N. Red:
Smet.

            iv Solving an apparent issue of PCR amplification of the barcodes



Fig  III-A.7.  Design  of  the  PCR  used  to  amplify  barcodes  during  the  BarSeq  experiment.

The design of the PCR used to amplify barcodes in the different populations is shown in Fig III-A.7.
Our amplicons contained two barcodes: the mutant barcode and the population barcode. For simplicity,
in the following text we will refer to mutants barcodes as “barcodes” and to populations barcodes as
“indexes”. Capture sequences allows to hybridize single stranded (denatured) DNA sequences to oligos
of a Illumina flow cell. Bridge amplification is a technique were capture sequence primers are used to
amplify  each  sequence.  After  that  all  sequences  are  bound  by  P7  capture  sites,  and  P5  capture
sequences are used for sequencing. In this PCR design, the size of the index, U2 and barcode is about
50 base pairs. Thus, I sequenced my PCR amplicons in single reads 60 base pairs. 

I expected that my PCR would yield a single band at ~180 bp. However, I unexpectedly observed two
bands: one at ~200 bp, and one at ~180 bp (Fig III-A.8). Before purifying the low band, I wanted to
assess the nature of the high band, in order to determine if I should include or exclude it, to ensure
high-quality of samples. I have performed this PCR repeatedly for 3 months, during which I tested
different conditions to get rid of the second band. However, after changing reagents and materials, two
bands  were  still  present.  Samples  sent  to  sanger  sequencing  revealed  that  both  bands  contained
barcodes. This also allowed to confirm that barcodes of different strains could be identified. I finally
found in a publication that it is normal to observe a second band when amplifying barcodes of the Yeast
Deletion Library  (Pierce et al., 2007). This second band originates from non-specific hybridizations
between amplicons from different barcodes during the annealing step of the PCR (Fig III-A.9). These
structures migrate slower due to their less compact form, and thus form another higher band. According
to the authors, this theory is supported by the fact that boiling amplicons briefly removes the higher
band.  Indeed,  boiling  results  in  only  non-specific  hybrids  and  thus  enrich  for  the  higher  band.
Fortunately, I observed the same effect after boiling an amplicon, which confirms that my problem is
indeed due to non-specific hybridizations. Since non-specific hybrids also contain relevant barcodes,
both bands were cut, purified and sent to sequencing.

Fig III-A.8. PCR with a gradient of temperatures from 70°C to 50°C and 2.5 mM of MgCl2.
Amplified DNA is a genomic DNA sample from the fluctuation experiment



Fig III-A.9. Two bands in PCR with pooled barcodes are expected because of heteroduplexes and
homoduplexes.

Fig III-A.10. Boiling amplicons before running the gel removes the low band of homoduplexes.

Since my library size was 384 primers,  and there were 192 conditions  per  medium fluctuation (4
replicates, 4 days, 12 frequencies), I pooled samples from two media fluctuations, concentrated DNA,
and sent pooled amplicons to sequencing together on a single lane of a Illumina sequencing HiSeq
2500. I decided to send to sequencing samples that originated from the same run; that is NaCl and



Sodium Metabisulfite (run 1 on lane 1). I applied the same design on another sequencing lane, pooling
the amplicons of the Glucose and of the Methionine experiment (run 2 on lane 2). 

        B First, sequencing results

            i Quality of sequencing

There were about 145 million reads per Lane. The Phred quality score (orQ-scoree) is calculated with
this formula: -10log10(probability that the base is wrong).  For instance, a quality score of 20 (resp. 30,
40) means that there is one error in 100 (resp. 1.000, 10.000) base calls. Importantly, in my data, more
than 97% of reads had a quality score higher than 30. Thus, sequencing was of high quality.

I  confirmed  the  quality  of  sequencing  data  using  the  software  fastQC  (Andrews,  2010).  In  the
following Figures is shown a fastQC analysis of one out of 26 fasta files. Other files were qualitatively
similar. In Figure III-B.1, we can see the distribution of the Q-score of all sequences in this fasta file:
with a mean quality score of ~39. As we can see on Figure III-B.2, the quality score was high for all
bases. It was a bit lower for the bases of the index, however, it is usual that the first bases have a lower
quality than others (Krueger et al., 2011). On Figure III-B.3, we can see that all sequences contained 9
base pairs varying indexes, followed by the conserved U2 sequence, the ~20 bp varying barcodes and
finally half of the conserved U1 sequence.

Fig III-B.1. FastQC – Phred quality score distribution over all sequences.



Fig III-B.2. FastQC – Phred quality score distribution over all bases.

Fig III-B.3. FastQC – Per base sequence content.

            ii Reads parsing

Parsing of reads consisted in determining both the index and the barcode in each read. Parsing on raw
reads resulted in identification of 57% (resp. 86%) of barcodes (resp. indexes) (Table III-B.4). It is
known that PCR and sequencing can introduce errors in  DNA sequences.  I  tried two strategies to
correct for these errors:  using the distance of Levenshtein  (Levenshtein, 1966), or using a code of
Hamming (Hamming, 1950).  

The distance of Levenshtein indicates how many changes are needed to transform one sequence in
another one. One change can be an insertion, a deletion or a substitution, of one letter. The Leveinshtein
Distance (LD) can be used to identify the barcode/index that is the closest (that match) to an erroneous
reads. A maximal LD can be set, that indicates how many changes are allowed. If a read do not match
any other barcodes/indexes at the given maximal LD, then it is discarded. Otherwise its sequence will
be corrected for the matched barcode/index. One potential issue when using the LD to correct errors in



reads (Leveinshtein correction) is to match error-containing reads to a wrong barcode. For instance,
let's consider two barcodes with a LD of 3 to each other. If a read for one of those two barcodes have
two errors, then it might erroneously match to the other barcode. For this reason, to use Leveinshtein
correction,  it  is  preferable  if  barcodes  in  the  library  have  high  LD  one  from  the  others.  

Therefore, in order to determine if I could use the correction of Leveinshtein, I computed the LD of all
barcodes to all other barcodes in each library. And for each mutant I kept the minimal value (minimal
LD).  We can see on Fig III-B.4 that minimal LD values are higher for the barcode library (Fig III-
B.4A) than for the indexes library (Fig III-B.4B). This difference is mainly explained by the shorter
length of DNA sequences in the indexes library (9 base pairs) than in the barcode library (~ 20 base
pairs). Using the Leveinshtein correction for correcting errors in the index library is not possible since
minimal LD are too low (either 2 or 3).  

Fig  III-B.4.  Distribution  of  minimal  Levenshtein  distances  for A the  library  of  mutants’
barcodes and B the library of indexes.

In contrast,  it  is possible to use the Leveinshtein correction for the barcode library. The authors in
Robinson et al. chose to a use a maximal LD of 2 (Robinson et al., 2014). In this case, if one read has
two errors, it may erroneously match to another barcode, since few barcodes have a minimal LD of 3.
However, in most cases it would not be an issue. I found that the number of corrected reads was modest
when using a maximal LD of 1 or 2 (5%, Table III-B.5). Therefore, in order to be conservative, I chose
to use a maximal LD of 1. This allowed to rescue 14% of the reads. 

Since it was not possible to use the Leveinshtein distance to correct for errors in the indexes library, I
tried  to  use  a  Hamming  correction.  Each  primer  from  the  indexes  library,  has  been  specifically
designed  by Magali  Richard  to  contain  a  code  of  Hamming.  A hamming code  is  a  type  of  error
correcting  code,  were  parity  bits  are  inserted  within  sequences,  every  2n letter  (Fig  III-B.6).  The
specific pattern that those parity bits cover in the sequence make it possible to detect errors, but also
sometimes to correct them. For instance, if there is only one parity bit that is false, then the error is on
the parity bit itself. A recent paper has shown how to efficiently implement quaternary Hamming codes



when  designing  libraries  of  oligos  (Bystrykh,  2012).  Specifically,  Magali  Richard  designed  a
quaternary Hamming(9,5) code. This means that there are 5 data bits and 4 parity bits. This design
allows to create up to 1024 sequences that can be error corrected. She implemented a R script code to
correct reads using a Hamming decoding algorithm. Applying her code to my data revealed only a
modest rescue of reads (2% as compared with no corrections) (Table III-B.5B). I kept this correction
since the error correction system is robust and is not likely to introduce supplementary biases.  

Table  III-B.5.  Percentage  of  barcodes  parsed  using  different  approaches. The  red  circle
indicates the final strategy that was adopted.  A mutants’ barcodes. * mean parsing on quality filtered
reads. ° mean parsing on raw reads. B populations indexes.

Fig III-B.6. Parity bits in a Hamming code.  Source: "Hamming code."  Wikipedia: The Free
Encyclopedia. Wikimedia Foundation, Inc. 17 May 2017. Web. 23 May 2017.,
en.wikipedia.org/wiki/Hamming_code

Finally, after parsing, I obtained a matrix of 6004 mutants by 768 populations. Many of those mutants
have zero counts in all conditions and were not considered further (see below).

            iii Quality controls

                A Spike-in: reliable quantification of mutants in a large range of counts

In  order  to  determine  the  accuracy  of  the  BarSeq  assay  for  quantifying  changes  in  DNA



concentrations, I designed and used spike-in controls. It consisted in doing a PCR on specific strains at
known concentrations, and to include those samples with the other samples sent to sequencing. Then,
after sequencing and parsing of reads, I compared known relative concentrations of those controls, with
the number of reads I observed in my matrix of counts.
 
Specifically, I performed a PCR in 8 wells with increasing concentrations of 2 known strains plus a
constant concentration of the pool of strains. The genomic DNA concentration was low in the 8 wells
of the N condition of the Sodium Metabisulfite and the Glucose experiment (run 2) at day 0. Thus,
before  pooling  all  samples  for  sequencing  I  replaced  those  wells  by  the  spike-in  controls.
On Fig III-B.7, we can see that there is a good precision to detect subtle changes in DNA concentration
for individual strains over a wide range of concentrations (in a log2 scale). This comforted us on the
validity of BarSeq to quantify relative mutant abundances.

Fig III-B.7. Results of the spike-in control experiment.

                B Filtering data

I first removed populations and mutants with very low number of counts. Specifically, I removed 2057
mutants that had less than 100 counts across all conditions. And I removed 3 populations that had less
than 500 counts in total. Then, I individually checked distributions of counts in every population, as
shown in Fig III-B.8. I removed 97 populations (out of 765) were distributions of counts were looking
bad as compared to their replicates.  

Then, I removed the wells that contained the spike-in data (Lane 2, day 0, N condition) and replaced



them by the median of 11 other  wells  at  day zero (see methods).  Indeed,  at  the beginning of  the
experiment, all populations have experienced the same conditions (pre-growth overnight, followed by 6
hours of growth in no stress medium). However, as a result, those wells’ variance is artificial at day
zero, and the samples are no more paired between day 0 and day 3.

Fig  III-B.8.  Distributions  of  raw  counts  in  individual  populations. Populations  of  the  same
environmental  regime  were  plotted  together.  The  colors  indicate  the  different  time  points  of  the
experiment.  Numbers  above  populations  indicate  population  replicate  number  and  id  in  the  count
matrix. Two populations have weird distributions (arrows), as compared to their replicates, and were
thus removed from further analysis. a) populations in the NaCl steady stress condition. We observe a
broadening of the distribution over time, with many mutants being depleted from populations. This
pattern was seen in most conditions (mutants in the pool are unfit).  b) populations in the Sodium
Metabisulfite steady stress condition. Replicates two and three at day 2 (arrows) showed unexpected
distributions for most conditions in Sodium Metabisulfite. There was probably a pipetting issue for
those two rows in the 96-well plates. 

                C Data normalisation

Normalisation of count data is essential for most types of differential analysis in genomics. Indeed,
the matrix of counts have populations of different sizes, with different distributions of mutants. It is
assumed  that  most  genes  are  not  differentially  represented  between  two  conditions,  and  that
distributions of replicates should look similar.  Differences between distributions can originate from
variations during library preparation or sequencing.  

For unknown reasons, a small number of genes make up most of the counts in a library. This means that
naïve normalisation approaches where all libraries are adjusted to the exact same size do not work: they
only normalize for few highly abundant genes. Optimal normalisation methods thus try to adjust the
number of counts for most of the genes so that they have comparable total counts across all conditions.
We used the R package DESeq2 for normalisation of counts data and computation of Fold changes



(Anders and Huber, 2010; Love et al., 2014a). A recent survey has shown that this tool is among the
most effective and robust for normalizing count data with different library sizes or library composition
(Dillies et al., 2013). In DESeq2, normalisation is achieved by computing a normalisation factor, called
the Size Factor,  in  each population,  and then by multiplying all  counts  by this  scale  factor.  Scale
Factors are computed by dividing each counts of a mutant by its geometric mean across all conditions.
Then, a population size factor is the median of those values within the population. As shown in Fig III-
B.9, normalisation allows to adjust the distributions of counts, so that we can compare the different
populations.  

Fig III-B.9. Illustration of the importance of normalisation.  After normalisation, we observe
that there is no differential abundance of the mutant A between day 0 and day 3. The difference before
normalisation was due to non-comparable distributions of counts between populations.

For my purposes I wanted to compare the abundance of mutants in the different periodic regimes for
one type of medium fluctuation. Thus, I adopted the following design in DESeq2: the size factors were
estimated together  for  all  populations  in a  given medium. As shown in Fig III-B.10a,  populations
among  the  same  fluctuation  regime  have  more  comparable  distributions  of  count  values  after
normalisation.  I  obtained  a  broad  distribution  of  Size  Factors,  confirming  the  importance  of
normalisation (Fig III-B.10b).  



Fig III-B.10. Normalisation in DESeq2. a) Distributions of counts for the populations in the 6-
hours periodic fluctuation regime in the salt fluctuation, before (black) and after (red) normalization by 
DESeq2. b) Distribution of calculated size factors in all populations.

                D Computation of Fold Changes

Differential  analysis  is  key  to  genomics  studies.  To determine  if  a  gene  is  differentially  abundant
between conditions, a Negative Binomal (NB) model is fitted to the gene in each of the two conditions,
using data points from the available biological replicates. NB models are well-fitted to genomics counts
data due to the over-dispersion of counts: genes with high mean counts have higher than expected
variance (between replicates).  Then,  a  Wald test  is  performed to determine if  there is  statistically-
significant difference between the two conditions, according to their NB models. Two parameters are
estimated for fitting a NB model: the mean and the dispersion. The dispersion is the most difficult
parameter  to  estimate  that  is  key  for  the  success  of  a  differential  analysis  method.  
In DESeq2, dispersion is estimated by a 3 steps approach: first a NB model is fitted to each gene,
second a regression of the mean versus the variance for all genes is made, third the dispersions of genes
are  “shrunk”  toward  the  regression  line,  at  the  exception  of  outlier  genes  that  are  far  above  the
regression line. This approach allows to consider the underestimation of gene dispersion observed in
genomics counts data (Love et al., 2014a).

In my case, data are over-dispersed, as expected from count matrix sequencing data (Fig III-B.11). I
computed fold changes of normalized counts for all possible combinations of days (e.g. day 0 vs 1, or 1
vs 2 …), and stored the results in a matrix. There are 6 possible combinations of days, 12 frequencies
and 4 media, thus the matrix had 288 fold changes values per mutant.

We will later see that I also used a Generalised Linear Model (GLM) for data analysis. Fold changes
were used mostly for preliminary analysis, to detect interesting mutants for secondary screens.



Fig III-B.11. Over-dispersion of normalized counts.  Each dot indicates the mean and variance
of normalized counts for one mutant in one condition (medium, fluctuation, day), across its biological
replicates. The red line is the identity and corresponds to what is expected from a Poisson distribution
(mean is equal to variance).

                E Expected observations for well-known mutants

On Table III-B.12, we can see that mutants that are important for response to salt stress such as the
MAPK and the MAPKK hog1 and pbs2, or  gpd1, the key enzyme for glycerol synthesis, are lost in
populations growing in 0.2 M salt. Similarly, mutants important for the synthesis of methionine, such
as met5 and met10 (sulfite reductases), or met8 (siroheme synthesis, cofactor for sulfite reductase) have
a marked growth defect in the steady condition without methionine.  

a) Mutant Fold Change 
N0 → N3

Fold Change 
SSalt0 →  SSalt3

b) Mutant Fold Change 
N0 → N3

Fold Change 
SMet0 →  SMet3

pbs2 1.43 -4.53 met10 0.782 -5.98

gpd1 -2.44 -5.51 met5 -0.646 -6.9

hog1 2.48 -2.35 met8 1.85 -6.82
          

Table III-B.12. Fold changes between day 0 and day 3 of different mutants important in salt (a) and
methionine (b), in the corresponding steady conditions.



                F Correlations between replicates: highest reproducibility for the Salt and 
Sodium Metabisulfite experiment

Correlations between replicates at day 3 were higher than at day 1 or 2, and thus we decided to use data
at day 3 for estimating fitness of mutants (data not shown). On Figure III-B.13 we can see the Pearson
correlations between replicates in the steady conditions for days 0 and 3 (data used for computing
fitness).  

First, we observed that data from the run 1 (Salt and Sodium Metabisulfite) seemed to be of higher
quality than data from the run 2 (Glucose and Methionine). At day 0, all conditions experimented only
the N medium, therefore they should be correlated. Correlations between replicates of the N condition
were higher at day 0 for the run 2. However, this is due to the method used to replace spike-in (see
methods). Correlations between replicates of the S condition, or between the S and N condition were
higher for the experiments from the run 1. This indicates a better quality of experiments in the run 1.

Second,  we observed that  the  effect  of  the  day is  very  strong.  Indeed,  for  all  media,  correlations
between replicates were very high after 3 days of growth, within the same condition (0.97 or above),
but also between the steady N and S conditions (0.77 or higher).  

Third, we observed that in Sodium Metabisulfite and Methionine, correlations between stressful and
non-stressful media at day 3 are extremely high (~ 0.95), close to correlations within the same media.
This indicates that few mutants were affected by the stress, which could be due to either to either the
nature of the stress (specific instead of pleiotropic effect), or its concentration (see discussions). For
glucose, correlations between conditions were a bit lower but still at ~ 0.9. Only salt seemed to have an
effect on a substantial number of mutants, as the correlation between N and S diminished to ~ 0.8.

This analysis suggests that data from run 1 have the highest quality, and that there is more potential for
observing pronounced genomic effects in the salt dataset.



Fig III-B.13.  Pearson correlations  of  normalized counts  between replicate  populations in
steady conditions at day 0 and 3

            iv Principal Component Analysis (PCA): days and conditions 
discriminate populations of the salt experiment

On Fig III-B.14 is shown the first and second principal components of a Principal Component Analysis
on the normalized counts. We can see that for all media, those two components explained most of the



variations (~80% for PC1 and ~16% for PC2), and were capturing mainly the effect of the day. In salt,
we observed that the steady conditions stood apart at day 2 and 3 from the fluctuating conditions, with
the highest periods being further apart. This result suggested that most mutants have important fitness
differences in the different conditions, which is  desired for genomic analysis.  In addition,  the data
seemed to follow an interesting pattern in the fluctuating conditions: a gradual separation from the
longest to the shortest periods.

Fig III-B.14. PCA on normalized counts. 

Overall,  results  of  the analysis  of  correlation of  replicates and of  PCA on normalized counts data
indicated  that  the  salt  experiment  showed high  data  quality  and  affected  the  fitness  of  numerous
mutants. In addition, this stress is highly studied in yeast which allows to compare our results and to
infer the function of different mutants in salt stress. Thus, I decided to focus my efforts on the salt



experiment for the rest of my PhD.

        C Resequencing

            i Resequencing increased the power to detect mutants with 
subtle effects

In fall 2015, I had validated the nonlinear transgressive effect in salt of various mutants (described
below). However, those validated mutants all had higher than expected fitness. None of them had lower
than expected fitness. This could be due to the fact that it is easier to detect mutants with high fitness,
since their count numbers increase, than mutants with low fitness, since they have very few counts,
with large variabilities between replicates. We therefore considered to re-sequence our libraries in order
to increase our power to detect small effects.  

Robinson  et  al. tested  different  experimental  designs  of  BarSeq  experiments  with  a  prototrophic
haploid Yeast Deletion Library (Robinson et al., 2014) for determining the number of differentially
abundant mutants between growth in glucose or galactose. They mapped almost 60 million reads per
condition.  They  found  that  by  sequencing  only  6  million  reads  per  condition  with  4  biological
replicates,  the  statistical  power  was  sufficient  to  detect  most  (>70%) mutants  with  a  fold  change
difference detected in their full dataset. This corresponds to ~1400 reads per mutant per condition, or
350 reads per mutant per population. Interestingly, they also showed that increasing the number of
biological  replicates drastically  decreases  the number of  reads  needed in order to  obtain the same
statistical power of detection. However, increasing the number of technical replicates did not increases
the power of detection. These observations guided us for planning the re-sequencing.

Our first  sequencing provided a mean of ~70 reads per mutant per population (Table III-C.1). We
thought that we could obtain the level of coverage advised in Robinson et al., in order to detect small
effects  in  our  pool  of mutants.  Thus,  we sent  to  resequencing only part  of  our frozen stocks.  We
resequenced the Salt and Sodium Metabisulfite experiments, at 7 conditions: the 2 steady conditions
and 5 periods (6h, 12h, 18h, 24h, 42h).  

This second round of sequencing was also of very high quality, with 96% of reads having a quality
score above or equal to 30 (table III-C.1). The quality of the data was overall similar to the quality of
the first sequencing. After resequencing, we obtained a mean of 363 mutants per population. Thus, we
achieved the high level of precision that we were targeting (Table III-C.1).



Table  III-C.1.  Number of  reads  sequenced  per mutant  per condition  after the  first  and
second sequencing. 57 million reads from the first round of sequencing were added to data from the
second round of sequencing.

            ii Data filtering

In order  to  analyse only high  data  quality,  I  looked at  the  distributions  of  counts  of  mutants  and
populations, and I set up arbitrary thresholds (Fig III-C.2). I ended up with a matrix of 3568 mutants
(rows) and 208 populations (columns). As for the first sequencing, I also looked at the shape of the
distributions of the replicates in each condition. No population displayed the unexpected distributions
we observed in the first sequencing.  



Fig III-C.2. Distribution of counts for mutants (a) and populations (b).  In red is the threshold of
minimal counts for keeping mutants/populations for further analysis. In green (resp. blue) is the number
of mutants that are discarded (resp. conserved).

            iii Correlations between replicates

Correlations between normalized counts of replicate population did not significantly change after 
re-sequencing (Fig III-C.3). It increased by 0.01 between some replicate populations, and decreased by 
0.01 between some non-replicate populations.



Fig III-C.3. Correlations of normalized counts of replicate populations after resequencing.

            iv Number of paired replicates of steady conditions used to 
compute fitness 

Fitness was computed using the formula of  (Qian et al., 2012). It was necessary to consider the
presence of replicates in my dataset.  Thus, I computed fitness on paired data for a given replicate
between day 0 and day 3. Then, as explained in my submitted publication, I computed the nonlinearity
of fitness (wdev) by this formula: 

wdev=
wobserved

wexpected

, where wobserved was the fitness of the mutant strain experimentally measured in

the periodic environment and wexpected was the fitness expected given the fitness of the mutant strain in
the two steady environments (N and S), calculated as:

w expected=wN
f N .wS

f S , where fN and fS were the fraction of time spent in N and S media, respectively,
during the course of the fluctuation experiment. In most cases fN = fS = 0.5.

However, my quality control analysis of the distribution of counts in the different populations led me to
remove several populations that had unexpected distributions (Fig III-B.8). This was necessary only for
data from the first round of sequencing, as the coverage was insufficient. Missing populations is an
issue for analysis of paired data. Indeed, if data are available for one population/replicate at day zero



but not at  day 3, then fitness cannot be computed for this population. Fitness values in the steady
conditions are critical as they are used to compute the nonlinearity of all other conditions. Having more
replicates  in  the  steady  conditions  means  more  robust  wdev values  in  all  associated  fluctuating
conditions.

We can see in table III-C.4 the number of replicates that were used to compute fitness in the steady
conditions of the four experiments. We can see that experiments that were sequenced only one time had
between 2 and 3 paired replicates per steady condition. In contrast, experiments that were sent to re-
sequencing had between 3 and 4 paired replicates per steady condition. Overall those results mean that
the  experiments  that  were  not  resequenced  have  fewer  replicates  to  compute  fitness  in  steady
conditions and have thus less robust wdev values in all conditions. Thus, care should be taken for
interpreting genomic results of those experiments. 

Round of
sequencing

Periods sequenced Medium
N

day 0
N

day 3
# of paired
replicates

S day
0

S day
3

# of paired
replicates

First 6h → 60h Salt 3 2 2 4 4 4

First 6h → 60h Na2S2O5 3 4 3 4 4 4

Second 6h, 12h, 18h, 24h, 42h Salt 4 3 3 4 4 4

Second 6h, 12h, 18h, 24h, 42h Na2S2O5 4 4 4 4 4 4

First 6h → 60h Glucose 4 2 2 2 3 2

First 6h → 60h
Methion

ine
4 2 2 4 3 3

Table III-C.4. Number of paired replicates in the steady conditions in all experiments after read
parsing and data filtering.

        D Generalised Linear Model (GLM)

We wanted to set up a model to determine which mutants are statistically significantly nonlinear in
periodic conditions. Poisson models are well-fitted to data of counts of events within a specific time
period. The Poisson law can be applied to data that respect the property of homoscedasticity: meaning
that variability is constant with the mean, and does not increase or decrease with higher count values.
However,  count  data  from  sequencing  are  usually  over-dispersed:  higher  counts  have  higher
variabilities. A Negative Binomial model is more fitted to this type of data (Love et al., 2014b). GLM
use a link function to predict model parameters from linear combinations of predictors.

As described in the submitted publication, we fitted a GLM to our count data. We assumed that the
normalized counts of mutant  i in condition  c (N, S or periodic) at  day  d in replicate population  r
originated from a negative binomial distribution NB(λi, α), with :  



log (λi )=offset i ,c+ β i , 1 . t c ,d
N + β i ,2 . tc , d

S + βi , 3 . N c , d
changes+ε i , c ,d , r

and offset i , c  being the median of normalized counts for condition c at day 0, t c ,d
N  and t c ,d

S

being the amount of time spent in medium N and medium S at day d, respectively, N c , d
changes  being the

number of changes between the two media that took place between days 0 and  d,  and ε being the
residual error.

If fitness is linear in a fluctuating environment, then it is insensitive to the number of changes and βi,3 =
0. Nonlinearity can therefore be inferred from the statistical significance of the term  N c , d

changes  of the
model. The corresponding p-values were converted to q-values, using package qvalue version 2.0.0 in
order to control the False Discovery Rate.

I wanted to determine if mutants with high nonlinearity of fitness at some frequencies also had high
nonlinearity of fitness at other frequencies. For this purpose, I made correlations on the q-values of the
βi,3 term of the GLM (Fig III-D.1). The only experiment for which I observed such correlation was the
salt  experiment:  the  three  shortest  periods  were  more  highly  correlated  to  each  other  than  other
conditions. This result is consistent with the PCA described above.



Fig  III-D.1.  Pearson  correlations  of  the  -log10  of  the  qvalues  of  the  GLM  in  the  different
conditions after the first sequencing.



        E Genomic analysis

            i No general relationship between expected and measured 
fitness at the 6 hours period

Comparing expected fitness versus measured fitness is indicative of the predictability of fitness in
fluctuating environments. We observed in the Salt experiment that all nonlinear mutants with expected
fitness  higher  than  ~1.07  have  higher-than-expected  measured  fitness  (Fig  III-E.1a,  submitted
publication). One could think that it may be a general effect observed in fluctuating conditions. That is,
having a high fitness in two conditions induces an even higher fitness in binary periodic fluctuations
between  those  two  conditions.  However,  this  is  not  a  general  rule  as  we  did  not  observe  this
phenomenon  in  other  types  of  media  fluctuations  (Fig  III-E.1b-d).  Indeed,  in  the  Methionine
experiment, most mutants with high expected fitness had lower than expected fitness (Fig III-E.1d). In
sodium metabisulfite, the  thi2  mutant stood out  (Fig III-E.1b). It had the highest fitness nonlinearity
(see section 3-III-F-iii).  Interestingly, the  thi2  gene plays an important role in resistance to sodium
metabisulfite stress (see discussions).

 



Fig III-E.1. Expected vs measured fitness at the 6h period in the different media fluctuations.
Presented data are from the first sequencing for the Glucose (c) and Methionine (d) media, and from
the re-sequencing for the Salt (a) and Sodium Metabisulfite (b) media. On the top left of each plot is
shown the Pearson correlation coefficient between expected and measured fitness. Genes highlighted in
red have a qvalue below 0.0001, and genes highlighted in purple are known in the literature to play a
role in the corresponding stressful condition. wN (resp. wS) is fitness at day 3 in medium N (resp. S). fn
(resp. fs) is the fraction of time spent in the N (resp. S) medium.



            ii No general relationship between Antagonistic Pleiotropy and 
fitness nonlinearity

In the submitted publication,  I defined a mutant as Antagonistic Pleiotropic (AP) if  it  had wN

(fitness in N) and wS (fitness in S) values of different sign, and a large absolute difference between wN

and wS.  In the salt fluctuation, we observed that mutants with the highest nonlinearity were mostly
Antagonistic Pleiotropic (AP) mutants with significantly higher fitness in N than in SSalt (Fig III-E.2a).
We didn't observe this effect in the other media fluctuations. Thus, the buffering effect observed for
mutants with much higher growth in N than S was specific to the salt fluctuations.

Fig III-E.2. Distance of fitness between steady conditions vs fitness nonlinearity. Presented data are
from the first sequencing for the Glucose (c) and Methionine (d) media, and from the re-sequencing for
the Salt (a) and Sodium Metabisulfite (b) media.



            iii Fitness nonlinearity as a function of fluctuating period

Looking  at  the  distributions  of  fitness  nonlinearity  values  (wdev)  in  the  different  media  revealed
different patterns than in the salt experiment (Fig III-E.3). The bulk of mutants (the extremities of the
estimated kernel densities, before outliers) have similar  wdev values in all experiments: with upper
bound at around 1.025 and lower bound at around 0.975. In all experiments, the median wdev was
centered around one. In the sodium metabisulfite experiment, there were very few outliers that had
wdev values above 1.05 or below 0.95 (Fig III-E.3b,e).  And almost all  of them are at  the longest
periods of fluctuations (48h, 54h and 60h). Finally, in the methionine experiment, the pattern was the
opposite  than  in  the  salt  experiment;  with  broader  wdev  values  for  longer  periods  (Fig  III-E.3f).
However, both the high and the low tail were increasing, indicating that mutants with higher or lower
than expected fitness  appeared in  the population.  Overall,  it  seemed that  no experiment  showed a
pattern as clear as in salt: where shorter periods have more outliers with high wdev values. It is possible
that the lower level of stress in the sodium metabisulfite experiment, and the lower quality of data in
the glucose and methionine experiment, hinder the apparition of a clear shaded effect, as seen in the salt
experiment.  Alternatively,  periodic  salt  stress  may  have  induced  a  more  pleiotropic  widespread
genomic response.



Fig III-E.3. wdev values distributions in the four experiments after the resequencing (a-b) or the 
first sequencing only (c-f)



        F Detailed plots of some interesting nonlinear mutants

A key aim of my BarSeq experiments was to discover mutants with strong nonlinear fitness. I tried
to find such mutants using different approaches. In this section, I provide details for some mutants with
nonlinear fitness in fluctuating conditions in the 3 experiments that are not described in my submitted
publication.

For all the text below; nonlinear mutants that have higher (resp. lower) than expected fitness will be
called winners (resp. losers).  

            i Biases that can lead to false positives

                A Mutants with aberrant counts in the steady conditions at day 0

In many cases, I observed that one of the two steady conditions had zero counts at day 0 or 3. For
instance, we can see that there was probably an issue with the raw counts of the ayr1 and the mrx12
mutants in the S condition at day zero (Fig III-F.1). Indeed, these data point seems completely aberrant
and result in high fold changes of counts in the S condition (up to 23 for the  ayr1  mutant) that are
probably artificial. The normalisation step didn't correct for that, since this issue is probably specific to
these genes and not to an error in the whole population.  



Fig III-F.1. Counts of the ayr1 and the mrx12 mutants over time in the Glucose experiment. Value:
log2(counts) (± s.d.) (in order to easily visualize fold changes).

I observed that data from the Glucose and Methionine experiments are very noisy in general, with
many  other  mutants  that  had  normalisation  issues  at  day  zero  or  day  4,  especially  in  the  steady
conditions, which can bias computation of fitness and wdev values. This is probably related to the
lower number of replicates available in those conditions (Table III-C.5). Another factor that explain the
increased noise in those experiments is the lower level of correlations between replicates observed
previously (Fig III-B.13). Future experiments should probably include more replicates, especially for
the steady conditions as they are critical for computation of wdev at all frequencies.

                B Mutants with aberrant counts in the steady conditions after day zero

Even when it is biologically relevant that the mutants reach zero counts after some time, this can
bias the analysis. For instance, the thi3 mutant is undetectable after 1 day in sodium metabisulfite (Fig
III-F.2).  After this  point,  its  fitness in Na2S2O5 cannot decrease anymore (since counts cannot  be
negative). It even artificially increases due to the normalisation procedure: more mutants are depleted
in the pool over time and thus relative fitness that is computed by using an “artificial” wild-type will
increase comparatively.   



Fig III-F.2.  thi3  in the Sodium Metabisulfite experiment: a-b) median of log2(counts) (± s.d.),  c)
mean fitness (± s.e.m) at day 3, d) distributions of wdev values of all mutants, with those of thi3 in red.

                C Mutants with very low counts or no counts at day 0

Some  mutants  were  present  at  a  very  low  abundance  in  the  pool  at  the  beginning  of  the
experiment. Those mutants, such as apq12, are absent (or almost) of the raw count table at day zero and
then they may increase over time. However, the increased variability of very low counts at day zero can
bias the analysis and lead to false estimation of differential abundance. For instance, we can see on Fig
III-F.3, that apq12 was a transgressive winner in Salt and a transgressive loser in Glucose when looking
at normalized counts. However, raw counts show a different pattern: variation in the initial abundance
at day zero fully explained the detected effect. Those mutants have a too low data quality and were not
considered for secondary validation assays.  



Fig III-F.3. Counts of apq12 over time. Value: median of log2(counts) (± s.d.).

                D Mutants with very high growth in all conditions

Some mutants grew faster than others in all conditions. For example, the  ras2 mutant increases in
abundance 3 to 4 fold in most conditions of the methionine experiment (Fig III-F.4). In this situation,
very slight differences in normalisation can largely impact the differential abundance of those mutants
in various conditions, resulting in important fitness differences, and thus extreme wdev values, while
raw counts data did not support such differences. Thus, caution should be taken when considering data
from such mutants. 



Fig III-F.4. ras2 in the Methionine experiment: a-b) median of log2(counts) (± s.d.), c) mean fitness 
(± s.e.m) at day 3, d) Distributions of wdev values of all mutants, with those of ras2 in red.

                E Mutants with very slow growth in all conditions 

At the opposite, some mutants were rapidly depleted in the population, such as ino4 in Glucose or
gtr1 in Methionine (Fig III-F.5). Those mutants are so unfit that they have a competitive fitness close to
zero. During the quality-control step applied to the count table, I removed strains with less than 2000
reads in all conditions. However, strains that have many reads at day zero and none at later days, or
strains that had many reads only in one experiment and few in the other, were not removed (there were
few such mutants).  gtr1 and  ino4 are depleted immediately in all four media. Across all conditions,
they  have  respectively  2414  and  16517  counts  at  day  0,  and  346  and  12  counts  after  day  zero.
Comparing quantitative fitness changes for these mutants is irrelevant and they were not considered for
further validation assays.  



Fig III-F.5. Counts of  ino4 in the Glucose experiment and  gtr1  in the Methionine experiment.
Value: median of log2(counts) (± s.d.).

                F Conclusions

To conclude, data from BarSeq experiments contain a lot of variability. Careful analysis should be
made before concluding on the fitness effect of a given mutant. When looking at individual mutants, I
observed higher level of noise in the glucose and the methionine experiment. This is consistent with the
lower correlation of replicates described above, and the lower sequencing depth. Thus, genomic results
in those conditions should be interpreted with caution.

In order to have a high confidence in the BarSeq data of a given mutant, some criteria can be defined.
Trustworthy nonlinear mutants should have: enough raw counts at day zero in all conditions (to be
above the noise inherent to small numbers), a monotonic change in fitness of all conditions over time, a
growth that is not exceptionally high or low in all conditions, no aberrant points in the steady controls,
no condition that reaches zero counts during the experiment, and a strong effect that can resist the noise
in the replicates. However, even when all those conditions are met, only secondary experiments can
ultimately validate the effect observed in a BarSeq experiment.

Mutants presented below have been selected to have interesting non-linear behaviours, with the fewest
possible of the bias described above.



            ii vhr1: pleiotropy but condition-dependent response to 
oscillations

A strong interest was to find mutants with a pleiotropic nonlinear effect in different experiments. If
such mutants were found, it could indicate that their deleted gene participates in regulating fitness in
unrelated fluctuating conditions. However, I could not find such mutant. This difficulty could be related
to the fact that conditions that I tested were probably not stressful enough. Alternatively, it could be
related to the lower quality of the glucose and methionine experiments. Finally, it could be that there
are  no  mutant  that  plays  a  pleiotropic  role  in  regulating  fitness  in  different  types  of  fluctuating
conditions. Nevertheless, one mutant displayed an interesting non-linear behaviour in several unrelated
fluctuating conditions.  

VHR1 is a transcription factor that activates biotin genes in response to low biotin concentrations. I
found that the  vhr1 mutant had a very special behaviour in the different experiments. It had similar
normalized counts profiles in the steady conditions of 3 experiments: Salt, Na2S2O5 and Methionine
(Fig III-F.6). Normalized counts were relatively constant in S, and sharply decreasing in N (Fig III-F.6).
However,  the effect  in fluctuating conditions varied in the different  media.  In the salt  experiment,
fitness was highly non-linear at almost all tested periods (Fig III-F.7a, III-F.8a). In addition, fitness was
higher than expected for the short periods, and lower than expected for the long periods (Fig III-F.8a,c).
In the sodium metabisulfite experiment fitness was lower than expected at both long periods (Fig III-
F.8e) and short periods (Fig III-F.8b,e). By comparing fitness and wdev values for the vhr1 mutant in
the sodium metabisulfite experiment, it could be though that there are apparent discrepancies (Fig III-
F.7b and Fig III-F.8b). For instance,  vhr1  has similar fitness in the periodic 6 hours and 12 hours
conditions, but different wdev values. However, as mentioned above, plots of fitness represent mean
fitness values (± s.e.m.), while wdev values are computed using median fitness values. Thus, those
plots are not directly comparable. In the methionine experiment, fitness was linear in most conditions
(Fig  III-F.8f).  It  should  be  noted  that  variability  between  replicates  was  important  in  the  Sodium
Metabisulfite and Methionine experiment (Fig III-F.6b,d, Fig III-F.7b,d).  Thus, the precise level of
linearity of fitness remain to be determined. However, differences are marked with the salt experiment.
To conclude, despite having the same growth effect in 3 different media, the  vhr1 mutant had either
linear or non-linear effects in fluctuating conditions depending on the specific frequencies and types of
media fluctuation.



Fig III-F.6. Normalized counts over time (in days) of vhr1 in the four experiments. Value: median 
of log2(counts) (± s.d.) adjusted to 0 at day 0.

Fig III-F.7. Fitness at day 3 of vhr1 in the four experiments. Value: mean fitness (± s.e.m) at day 3.



Fig III-F.8. Distributions of wdev values of all mutants, with those of vhr1 in red: after two rounds 
of sequencing in the Salt experiment (a) and in the Sodium Metabisulfite experiment (b); or after one 
round of sequencing in the Salt experiment (c), in the Glucose experiment (d), in the Sodium 
Metabisulfite experiment (e), and in the Methionine experiment (f).



            iii thi2 in sodium Metabisulfite: strong antagonistic nonlinear 
effect across periods

THI2 codes for transcription factor that activates thiamine biosynthesis genes in response to low
biotin concentration. As for the  vhr1  mutant, the  thi2  mutant showed a bivalent behaviour: with the
highest wdev values (after resequencing) at the 6h and 12h periods, and the fourth lowest wdev value at
the 42h period (Fig III-F.9). Data from the first sequencing reveals that this mutant had lower than
expected fitness at all long periods (Fig III-F.10c,d). Thus, it seems that activating thiamine genes is
useless when the environment fluctuates  quickly,  while it  is  critical  when it  fluctuates slowly (see
discussions).  

Fig III-F.9. thi2 in the Sodium Metabisulfite experiment after two rounds of sequencing: a-b)
median of log2(counts) (± s.d.), c) mean fitness (± s.e.m) at day 3, d) distributions of wdev values of all
mutants, with those of thi2 in red.



Fig III-F.10. thi2 in the Sodium Metabisulfite experiment after one round of sequencing: a-b)
median of log2(counts) (± s.d.), c) mean fitness (± s.e.m) at day 3, d) distributions of wdev values of all
mutants, with those of thi2 in red.

            iv met12 in Methionine: nonlinear loser at short periods

The  MET12 gene  codes  for  a  protein  that  has  a  major  isozyme of  methylenetetrahydrofolate
reductase (MTHFR) activity in vitro. Its activity is redundant with MET13 and less pronounced than
MET13. The  met12 mutant had transgressive loser phenotypes at most periods (Fig III-F.11) and a
good overall data quality. Results for  met12  should be tempered by the fact that at day one, it had
consequently decreased in the long fluctuations (> 48 hours periods), while it did not decrease in the N
condition. This is not expected since at day 1, mutants in long periods have only experimented the N
medium. Still, the results are convincing since we observe that  met12 is depleted very fast  at shorter
periods; with zero raw counts in the 3 shortest periods at the end of the experiment (Fig III-F.11a).
By  individually  looking  at  other  mutants  with  low wdev  values  in  the  methionine  experiment,  I
observed that none had as high data quality and interesting phenotypes as met12. 



Fig III-F.11. met12 in the Methionine experiment: a-b) median of log2(counts) (± s.d.), c) 
mean fitness (± s.e.m) at day 3, d) distributions of wdev values of all mutants, with those of met12 in 
red.

    IV Secondary Screen: single-mutant measurements in periodic salt 
stress

I chose to focus on validating results of the Salt experiment since it had a high data quality and
displayed  strong  nonlinear  effects.  Secondary  screen  assays  were  performed  only  in  the  salt
fluctuations and at the 6 hours period, since the strongest nonlinear effects were observed at this period.

 

        A Flow-cytometry assays: fitness relative to Wild-Type

In the flow-cytometry or FACS assay wells were inoculated with 50% of wild-type cells and 50%
of mutant cells (Fig IV-A.1), OD was not measured and samples were fixed with paraformaldehyde
twice a day before flow-cytometry measurements (see the submitted publication for details).



Fig IV-A.1. Design of one 96-well plate for the secondary screen Flow-Cytometry assay.

A correlation of 0.71 was observed between fitness from the BarSeq assay and from the flow-cytometry
assay (submitted publication, Fig 1F). This revealed that despite the lower precision of the BarSeq
assay, and the interactions between strains that can occur when grown in pool, most results from the
BarSeq assay can be trusted. For instance, Figure IV-A.6a-d shows the BarSeq data of 4 mutants with
very high wdev values at the 6 hours period of the Salt experiment (3 are in the top 5 highest values,
and one is in the top 30). Those mutants had low growth in S, high growth in N and a higher growth at
the 6 hours period. The effect of 3 of those mutants was confirmed by flow-cytometry assays: their
growth in all conditions was qualitatively similar to the BarSeq assay (IV-A.2a,c,d,e,g,h). yor029w had
qualitatively similar growth in N and in periodic stress, however, it had a high growth in S in the flow-
cytometry assay (IV-A.2b,f).  



Fig IV-A.2. Data of four transgressive mutants across the 3 days of the BarSeq experiment (a-d)
and FACS experiments (e-h). BarSeq log2(normalized counts) were adjusted to zero at day 0. FACS
data: frequencies of the mutant strains vs the wild-type strain. Run 1 and 2 indicates two different flow-
cytometry experiments. All plots show median values ± s.d.. 



        B Absolute fitness

            i Optical density measurements suggest that absolute fitness 
may not be transgressive

I set up a secondary validation protocol where mutants were grown individually, and their growth
was measured by optical density. Because a sunrise plate reader (Tecan) is available on the robotic
platform, this protocol was simple and fast. 

The design of the experiments was the following: one strain was tested per row of a 96-well plate, with
four replicates per condition (Fig IV-B.1). Replicates of the same condition (either N (No stress), S
(Stress) or NS6 (fluctuation 6 hours)) were separated across the row in order to avoid biases related to
the localisation of wells within the plates. Four wells per run were handled in parallel in the robotic
station. Thus, a total of 32 strains were tested in one experiment. I performed two such experiments: the
first lasted one day, and the second lasted 3 days. The wild-type strain was not included in the first
experiment, while one row of each well was dedicated to the wild-type strain in the second experiment.
A total of 45 different mutants were tested, and 16 of them were tested in both experiments.

Fig IV-B.1. Design of one 96-well plate for the secondary screen OD assay.

In the first experiment, OD was measured once at every fluctuation event: before dilution (right after
taking  plates  out  of  the  incubator).  In  the  second  experiment,  OD  was  measured  twice  at  each
fluctuation: once before dilution and once after dilution. The aim was to estimate growth of cultures in
the  incubator  independently  of  dilution:  by  comparing  OD  of  cultures  entering  and  leaving  the
incubator  with  no  bias  due  to  variability  in  dilutions  across  wells.  In  the  middle  of  the  second
experiment, I decided to make a slight modification to the protocol (just before the fluctuation at 36
hours). This modification consisted in mixing the cultures in all wells before measuring OD in the plate
reader. I thought that it could improve the accuracy of the experiment by having more homogeneous
solutions. As a result, OD values increased in the second part of the experiment (Fig IV-B.3 to IV-B.5),
with the maximum going from ~ 1.1 to ~ 1.3.   However,  variability between replicates increased,
especially for the wild-type in periodic conditions (Fig IV-B.5). Therefore, it is not clear if data quality
is higher in the first or second half of the experiment.



Results of those experiments showed no mutant with a strong transgressive phenotype (Fig IV-B.2 to
IV-B.5). Only oca1 had a slight transgressive winner phenotype in the second experiment. I was quite
disappointed at the time, and I was worried about the quality of the BarSeq data. However, I later
realised that the data quality in both experiments are good (submitted publiction, Fig 1F), but I was
comparing two different values: relative fitness and absolute fitness.

Results  from  the  OD  experiments  revealed  that  most  of  the  tested  strains  had  nonlinear  winner
phenotypes; with a growth in the fluctuating condition that was as fast as in the no-stress condition. For
instance, Fig IV-B.2 to IV-B.5 show the OD data of 4 mutants with very high wdev values in my
BarSeq assay (same mutants as in IV-A.2). This indicates those mutants are non-linear winners but not
transgressive in terms of absolute fitness values (at the exception of oca1 that is slightly transgressive).
If we want to see if those absolute data fit with our relative data from the BarSeq experiment, we can
compare them to data of the wild-type in the second experiment. Unfortunately, there was noise in the
data from the 16 replicates of the wild-type strain in the second experiment. Especially, as mentioned
above, there was a great increase in variability of the replicates for the fluctuating condition in the
second half of the experiment. In the first half, fitness of the  wild-type seemed to be either linear or
slightly nonlinear loser. This could explain the pronounced differences between wild-type and mutant
strains in fluctuating conditions.  

To conclude,  those  results  suggest  that  interesting informations  about  absolute  growth rate  can be
measured with a simple assay using a plate reader. Importantly, those experiments revealed that most
mutants with high wdev values have a transgressive relative fitness phenotype but not an absolute
transgressive fitness phenotype. indeed, out of 45 mutant strains tested for absolute fitness, only one
(oca1) had a slight transgressive winner phenotype.

Fig IV-B.2. OD values (four replicates) before dilution of four mutants for the one-day experiment. 



Fig IV-B.3. OD values (four replicates) before dilution of cin5 and yor029w for the three-days experiment.

Fig IV-B.4. OD values (four replicates) before dilution of oca1 and ygr164w for the three-days experiment. 



Fig IV-B.5. OD values (16 replicates) before dilution of the wild-type strain for the three days experiment.
One row (four replicates per condition) was dedicated to the wild-type strain in each of the four plates. 

            ii Absolute fitness estimated by flow-cytometry

 

Analysis of the OD experiment described above suggested that some mutants have a transgressive
effect only in terms of relative fitness but not in terms of absolute fitness (with the exception of oca1). I
therefore re-analyzed data of flow-cytometry experiments, in order to address this point. Computing
absolute fitness values from FACS data was possible since the FACS mixed several times vigorously
each well,  before aspiration at a constant speed. The rate of sampling was 1μl per second. Thus, I
estimated the cellular concentration in each well by dividing the number of cells sampled by the time of
sampling. I estimated the theoretical volume of cultures that would have been produced if there was no
dilutions (which is exponential, see methods). The total number of cell at each fixation was estimated
by multiplying  the  cellular  concentration  by  the  theoretical  volume.  I  could  then  determine  those
numbers for both wild-type and mutant cells. Finally, a linear model was fit on: log2(cn) ~ time, with
time in hours. The doubling time was then computed as the inverse of the slope coefficient of the
model.

In the flow-cytometry experiment, I always included at least 9 wells dedicated to  wild-type controls:
the wild-type kanamycin strain (k2) alone, the  wild-type kanamycin GFP strain (gfp2) alone, and a
competition between k2 and gfp2. These controls allowed to check if the cut-off for GFP thresholds
were appropriate, and to verify if there was no growth alteration associated with GFP in any condition



(methods).

On Fig IV-B.6 we can see the doubling time (DT) of the wild-type strain gfp2 that was cultivated alone
in different experiments/runs, as well as the DT of mutants cultivated in competition with the gfp2
strain. The wild-type strain had small DT differences between conditions (Fig IV-B.6a-c). It has been
used for all competition experiments. We can see that it had a higher DT in salt than without salt. The
DT in the fluctuating conditions was slightly superior to the salt condition. Comparatively, the mutants
had lower DT than the wild-type in the N condition (by ~ 0.15), and significantly higher DT in stressful
conditions (Fig IV-B.6d-f). In fluctuating conditions, those mutants had DT slightly lower than their
DT in the N condition. Thus, there is a very slight transgressive winner effect in absolute fitness. Those
data are  consistent  with  the OD data  and could explain  why we observe a  transgressive  effect  in
fluctuating conditions. Indeed, the differential in DT between the gfp2 strain and the mutant strains is
slightly higher in fluctuating conditions than in the N condition.

However,  these  experiments  had  two  limits  to  compute  absolute  growth  rates:  strains  grew  in
competition, and, more importantly, the rate of sampling was high and cell counting may have been
imprecise. 10,000 cells were acquired for each population. About 3,800 cells per well were then gated
for further analysis (methods of the submitted publication). Cells were acquired in the flow-cytometer
at a rate of ~1,000 cells per second. Thus, the time of acquisition of a well was about 10 seconds.
Resolution is limited since the FACS does not record time units shorter than a second.  



Fig IV-B.6. Doubling time of  wild-type and mutant strains during flow-cytometry assays. Stress
indicates salt  0.2 M and fluctu indicates the 6 hours periodic condition.  gfp2 is a  wild-type strain
bearing a GFP-expressing cassette and a kanamycin-resistance cassete, that was used in all competition
experiments. The y axis indicates the doubling time in hours. Number of replicates per condition per
plot (from left  to right,  from top to bottom): 3,  4, 3,  1, 4,  3, 8,  4, 4.  The run indicates the flow-
cytometry experiment from which data originates.

Therefore, I performed another one-day experiment, in order to take into account those issues and to
obtain clearer results on absolute growth rates. In this experiment,  different strains were cultivated
alone, and the plates were diluted about three times more than in previous experiments. This resulted in
a median sampling rate of ~350 cells per second, and a median time of acquisition of 28 seconds per
well. Results are shown in Fig IV-B.7 for the trm1 mutant and a wild-type strain. As expected, the trm1
mutant had a trangressive winner phenotype when grew in competition with the  wild-type (Fig IV-
B.7a). Importantly, I found that the wild-type strain alone was linear or slightly nonlinears loser (Fig
IV-B.7c). Importantly, the trm1 mutant alone was slightly transgressive winner in fluctuating conditions



(Fig IV-B.7b). This suggests that some strains can have a higher absolute fitness in binary periodic
fluctuating conditions than in both separate steady conditions. 

Fig IV-B.7. Absolute fitness of a transgressive winner mutant. a) frequencies of trm1 vs the 
wild-type strain over time. Values: median ± s.d.. Color code: salt 0.2 M in yellow, N in blue and 
periodic 6 hours in alternating blue and yellow. b) doubling times of the trm1 mutant cultivated alone. 
c)  doubling times of the wild-type strain gfp2 cultivated alone.

        C Negative and non-reproducible results

            i hog1 mutant showed non-reproducible results across 
experiments

Three strains displayed inconclusive results in the flow-cytometry assays: hog1, ire1 and hac1. ire1 and
hac1 had frequencies very low at the beginning of the experiment (below 10%) and were depleted
immediately after (data not shown).  hog1  showed contradictory results (Fig IV-C.1). After my first
flow-cytometry  experiment,  I  was  excited  to  observe  that  I  could  perfectly  validate  the  nonlinear
winner  phenotype  of  the  hog1  mutant  at  the  6  hours  period  of  fluctuation.  However,  in  the  two
following experiments I obtained very different results for hog1: with a seemingly linear phenotype in
fluctuating conditions. After the third experiment, we were not able to conclude on the effect of hog1 .
Importantly, other mutants were tested in different runs (run 1 and 3 or run 2 and 3), and resulted in
highly reproducible transgressive phenotypes (cin5, pde2, trm1, tom7, oca1, ygr164w). Additionally,
the gfp2 strain showed reproducible results across experiments (Fig IV-B.6). For now, it remains a



mystery why results for hog1 were not reproducible. 

Fig IV-C.1. Plots of the hog1 mutant: in the BarSeq experiment (a) and in different runs of the flow-
cytometry experiment (b-d). Values: median ± s.d..

            ii Haploid strains were not transgressive

Haploid strains were constructed for the main transgressive winner mutants and analyzed by flow-
cytometry. The motivation behind this work was to see how robust my results were to ploidy levels.
Moreover, if results were similar to diploids, working on haploid strains would have simplified later
molecular biology experiments. Haploid mutants were in competition against a GFP-tagged haploid
wild-type strain. However, none of them showed an important transgressive winner phenotype (Fig IV-
C.2). And only pde2 and cin5 had slight transgressive winner phenotype (Fig IV-C.2c,h). hog1 had an
interesting nonlinear loser phenotype (Fig IV-C.2g). However, it was fully depleted in salt after just one
day, which makes it hard to really conclude about its linearity. 



Fig IV-C.2. Null haploid mutants and wild-type haploid controls in a flow-cytometry experiment.
K is a haploid wild-type strain with a kanamycin-resistance cassette, and GFP is a haploid wild-type
strain with a kanamycin-resistance cassette and a GFP-expressing cassette. a-d) and g-j) competitions
of one strain agains the GFP strain. e) K strain alone. f) GFP strain alone. 



            iii Some complementations did not rescue the transgressive 
phenotype

Complementation assays of null mutants allow to determine if the phenotype observed is caused
by the lack of the gene product, or if it is due to other factors such as secondary mutations, perturbed
cis-regulations  or  aneuploidies.  Several  complemented strains  were  constructed.  So far  2  out  of  5
showed successful complementation (pde2 and tom7, see submitted publication).  

TRM1 encodes for a tRNA methyltransferase.  ygr164w  codes for a hypothetical protein.  Both had
strong transgressive winner phenotypes at the 6 hours period (Fig IV-C.3a,c). A tRNA (tR(UCU)G2) is
present within the sequence of YGR164W. We thought that regulation of tRNAs might be involved in
the strong transgressive winner phenotypes of the trm1 and the ygr164w mutants. Thus, we constructed
a  ygr164w  strain  that  was  complemented  only  for  the  missing  tRNA.  However,  both  the  trm1
complemented  strain  and the  ygr164w  tRNA-complemented  strain  still  had  a  transgressive  winner
phenotype  (Fig  IV-C.3d,f).  Complementation  of  the  cin5  mutant  strain  also  failed  to  rescue  the
transgressive phenotype (Fig IV-C.3e).  Importantly,  I  did not  verify that  the complementation was
functional:  that  the  complemented  genes  did  not  contain  any  error  in  their  DNA sequence  after
insertion, and that their gene product was express at standard levels. Thus, I cannot conclude that the
function of the null gene is not important for the phenotype of the strains that failed to complement. 

The complemented strain of the srf1 and hal9 mutants were constructed and tested as well. However,
the robot experienced a collision, and the experiment was aborted after one day. At this time point,
those mutants have no visible transgressive phenotypes, on the contrary of cin5, trm1 (Fig IV-C.3b,c),
pde2 and tom7 (submitted publication Fig 4F,G). Thus, I could not conclude about the involvement of
the SRF1 and HAL9 genes in the transgressive winner phenotype of the srf1 and hal9 mutants.



Fig IV-C.3. Flow-cytometry experiment of 3 complemented strains: ygr164w  (a),  cin5  (b),
trm1  (c), ygr164w  complemented  by  the  tRNA tR(UCU)G2  (d),  cin5  complemented  (e),  trm1
complemented  (f).



        D Generality of transgressive effect for the pde2 and tom7 mutants
in other environmental fluctuations

I  made  two  experiments  to  determine  if  two validated  mutant  strains  (pde2  and  tom7) showed a
transgressive behaviour in other conditions as well. However, pde2 had a nonlinear winner phenotype
(run  4,  Fig  IV-D.1c),  or  a  slightly  transgressive  phenotype  (run  5,  Fig  IV-D.2b)  but  no  strong
transgressive winner phenotype at day 1 as observed in previous experiments (submitted publication
Fig 4B). This could be because of a slightly reduced salt  concentration, because during the run 4,
phenotypes were as expected in the NaCl 0.4 M condition (Fig IV-D.1a,e). The transgressive winner
effect of tom7 was similar in both NaCl 0.2 M and NaCl 0.4 M (Fig IV-D.1e,g). 

Interestingly,  tom7 had a transgressive winner phenotype visible at day 1 in raffinose periodic stress
(Fig IV-D.1h). Raffinose, contrarily to glucose, favors mitochondrial respiration. Tom7p is involved in
mitochondrial  protein  import  (Neupert  and Herrmann,  2007).  Thus,  increased  levels  of  respiratory
growth may drive the transgressive winner phenotype of the  tom7  mutant in salt periodic stress. In
contrast,  pde2  had a nonlinear loser phenotype in raffinose periodic stress (Fig IV-D.1d). Thus, its
growth advantage in salt may be due to increased levels of fermentative growth.

I wanted to determine if fitness is transgressive only in osmotic stress or in ionic stress or in both. I
therefore tested the following stressful conditions: KCl 0.2 M, LiCl 0.2 M, NaCl 0.2 M and sorbitol 0.4
M (run 5). Unfortunately, pde2 had a slight transgressive winner effect in salt 0.2 M (Fig IV-D.2b). It is
therefore difficult to know if transgressivity is specific to NaCl. Fitness of pde2 was nonlinear in both
osmotic and ionic stress, but it was not transgressive. The pattern for tom7 was different: fitness was
slightly transgressive at day 1, it was nonlinear but not transgressive in sorbitol, and it was quite linear
in ionic stress. Thus, for tom7, osmolar stress seemed to induce more nonlinear effects than ionic stress.
While for pde2 both osmolar stress and ionic stress induced nonlinear effects. Finally, only tom7 was
transgressive in another condition (raffinose 1.9%). Thus, the transgressive winner fitness of those two
mutants was not generally pleiotropic.



Fig IV-D.1. Flow cytometry experiment (run 4) of the tom7 and pde2 mutants in various media
fluctuations. Color code: N (blue), S (yellow), 6 hours period (blue-yellow). In the raffinose medium
glucose 0.1% was used instead of glucose 2%. 



Fig IV-D.2. Flow cytometry experiment (run 5) of the tom7 and pde2 mutants in various media
fluctuations. Color code: N (blue), S (yellow), 6 hours period (blue-yellow). Concentration tested are:
a,e) Sorbitol 0.4 M, b,f) NaCl 0.2M, c,g) KCl 0.2 M and d,h) LiCl 0.2 M.  

    V Analysing co-fitness data to group mutants with similar phenotypic 
profiles

I have explored various available datasets and tools in order to try to infer the mechanistic basis of the
nonlinear phenotypes. In order to infer the function important for the phenotypes of nonlinear mutants,
I was hoping to find datasets where some nonlinear mutants share common characteristics. A type of
dataset that I found particularly interesting was datasets of correlation of fitness (co-fitness) of mutants
in many conditions (Hillenmeyer et al., 2008). In those datasets, a library of yeast mutants is exposed to
hundreds of conditions. It was showed that mutants that have high correlations of fitness across those



conditions share biological functions and Gene Ontology terms  (Hillenmeyer et al.,  2008). Another
study showed that co-fitness data can be successfully used for functional inferences  (Hoepfner et al.,
2014). My reasoning was that if some nonlinear mutants clustered by their values of co-fitness, then
they may be involved in the same pathway/function that would be key for their nonlinear phenotype.

I have looked at 3 databases of co-fitness data where: 1144 (fitDB) (Hillenmeyer et al., 2008), 3258
(HIPHOP) (Lee et al., 2014) and 1800 (FMI) (Hoepfner et al., 2014) chemicals were screened against
the whole homozygous YDL. On the FMI database, in general, correlations of 0.8 or above indicate
mutants for genes involved in the same molecular complex, or that are directly interacting within the
same pathway. For instance, in Fig V.1, we can see that hog1 is correlated at 0.94 with pbs2. Indeed,
both are crucial for the activation of the Hog pathway, and are directly interacting together. Upstream
regulators  ssk2 and  ssk1 are the next highly co-fit strains, with a correlation of ~0.55. This reduced
correlation can be explained by the fact that those genes are involved in only one out of two branches
of the Hog pathway (the Sln1 branch). After  ssk1, co-fitness values drop below 0.5. For the rim101
pathway there are about 10 genes with a correlation above 0.85. Those genes are all key genes of the
Rim101 pathway, as shown in the supplementary Figure 1 of my submitted publication.  Then, the
correlation drops to 0.65 for genes not directly involved in the Rim101 pathway.

Fig  V.1.  Homozygous  mutants  most  co-fit  to  hog1  (a)  or  rim101 (b)  on  fitDB.

I  looked  at  the  co-fitness  score  of  mutants  from  well-known  pathways  in  the  three  databases.
Surprisingly,  I  found that the fitDB and the FMI databases were more accurate  than the HIPHOP
database at recovering other mutants of the pathways in the top hit, despite their lower number of tested
molecules (data not shown). The quality of the experiments could explain this apparent discrepancy.
Thus, I focused on the fitDB and the FMI databases for my analysis.

Importantly, data from those databases are very similar to my BarSeq data: they performed the same
type of pooling assays with the same homozygous library. Thus, the same possible biases are expected,
such  as:  interactions  between  strains,  exchanges  of  metabolites  within  the  pools  or  secondary
mutations.



        A tom7 group: a potential common function related to 
mitochondria

Mrpl13p is a mitochondrial protein of the large subunit. The  mrpl13 mutant had a very strong
nonlinear winner effect at the short periods of fluctuations (Fig V-A.1b). I wondered if I could use co-
fitness data to infer why this mutant show a transgressive phenotype. We can see on fitDB that there are
6 mutants co-fit to the mrpl13 mutant, with a correlation higher than 0.6. All mutants in this group have
similar  phenotypes  in  fluctuations:  with few growth differences  in  steady conditions,  and a  strong
growth advantage in fluctuating conditions, especially at fast fluctuations (Fig V-A.1). Those 7 mutants
have all very high wdev values at the 6 hours periodic condition (Fig V-A.1) that rank among the top
109 highest values. I validated the transgressive effect of 3 (srf1, hal9, tom7) out of 6 of those mutants
during the flow-cytometry experiment (Fig V-A.2). This means that the effect of at least 3 mutants
(mrpl13,  pim1,  yap3) is not due to the function of their gene. The complemented strains for srf1 and
hal9 were constructed, but are not tested yet. So far, only the deletion of the tom7 gene has been shown
to induce a transgressive winner effect. I can hypothesize that mutants in this group might share similar
phenotypes due to perturbed mitochondrial functions (see discussion). Mutants that were not validated
in  the  secondary  screen  assay  might  mis-regulate  mitochondria  through  secondary  mutations,
aneuploies or perturbed cis-regulations. Since the tom7 mutant has been complemented, below, I will
refer to this group as the tom7 group.



Fig V-A.1. tom7 co-fitness group: a) homozygous mutants most co-fit to the mrpl13 mutant on
fitDB, b-h) BarSeq data of co-fit mutants. y-axis: normalized counts adjusted to zero at day zero (y-
axis). i) ranking of co-fit mutants among all other mutants’ wdev values for the 6 hours period.



Fig V-A.2. tom7 group flow-cytometry data. 

        B trm1 group: no obvious cellular function

Qri5p is a mitochondrial inner membrane protein required for accumulation of spliced cox1 mRNA.
The qri5 mutant showed a very strong nonlinear winner effect at the short periods of fluctuations (Fig



V-B.1d). As above, I tried to infer the molecular mechanism of its nonlinear effect by looking at co-
fitness databases. Three mutants (trm1, ygr164w, ymr031w-a) have a correlation with the qri5 mutant
higher than 0.6 on fitDB. The rpl37b mutant is missing on fitDB and also have a high correlation with
qri5, on the FMI database. Those five mutants have a phenotype similar to mutants of the tom7 group:
few growth differences in steady conditions and a strong transgressive winner effect,  especially  at
shorter periods (Fig V-B.1). Three other mutants (mig1, mck1, ras2) have a lower correlation with qri5
on fitDB, and have a  transgressive winner  phenotype but  with a  different  growth effect  in  steady
conditions. All those mutants had very high wdev values at the 6 hours period (Fig V-B.1). In this
group,  ras2,  qri5  and  rpl37b were not validated in the flow-cytometry assay (Fig V-B.1).  trm1  and
ygr164w  were validated in the flow-cytometry assay, but their complemented strains also showed a
transgressive winner phenotype. Therefore, no evident cellular function can be attributed to this group
yet. Since the  trm1  mutant showed a strong nonlinear phenotype in flow-cytometry assays (Fig IV-
C.3c), below, I will refer to this group as the trm1 group.

In 2002, Giaever et al. used differential interference contrast (DIC) microscopy to determine the shape
and  size  of  mutants  in  the  homologous  diploid  YDL.  They  classified  mutants  in  seven  classes:
‘elongated’, ‘round’, ‘small’, ‘large’, ‘pointed’, ‘clumped’ and ‘other’. Interestingly, in both the tom7
and the trm1 group, there is a significant gene ontology enrichment (Robinson et al., 2002) of mutants
with a large morphology: yap3,  tom7  and  hal9  in the  tom7  group (pvalue: 0.00069 after Bonferroni
correction) and rpl37b, mig1 and qri5 in the trm1 group (pvalue: 0.00044 after Bonferroni correction).
Thus, there might be a link between this specific cell shape and fitness transgressivity in salt periodic
fluctuations.



Fig V-B.1. trm1 co-fitness group: homozygous mutants most co-fit to the qri5 mutant on a) fitDB
and b) FMI. Atg17 and rps0a are missing in my data. Rpl37b is missing on fitDB. c-i) BarSeq data of
co-fit mutants.  y-axis:  normalized counts adjusted to zero at  day zero (y-axis).  j) ranking of co-fit
mutants among all other mutants’ wdev values for the 6 hours period. k-n) flow-cytometry data of co-
fit mutants. y-axis: percentage of mutant cells vs a wild-type strain. x-axis: days. Flow cytometry data
for the trm1 mutant in a one-day experiment are shown in Fig IV-C.3a.

        C pde2 group: only one strain highly co-fit

Since the  pde2  mutant was validated and complemented, I tried to infer its function using co-
fitness databases. The pde2 mutant has only one mutant that has a strong correlation across conditions
on fitDB: the ira2 mutant (Fig V-C.1). Unfortunately, it was missing in my data, therefore no inference



could be made. Interestingly, the tom7 mutant and the ymr031w-a mutant are among the top 10 strains
most correlated to pde2. Thus, pde2 might mediate its transgressive effect through regulation of genes
in the tom7 or trm1 group.

Fig V-C.1. pde2 co-fitness group: Homozygous mutants most co-fit to the pde2 mutant on fitDB.

        D YCR group: mutations in a region of the genome results in a 
strong transgressive winner phenotype

Ycr050cp is  a  non-essential  protein  of  unknown function.  The  ycr050c mutant  had  a  very  strong
nonlinear winner effect at the short periods of fluctuations. As above, I tried to infer the molecular
mechanism of its nonlinear effect by looking at co-fitness databases. On fitDB there are 10 mutants that
have a correlation with ycr050c higher than 0.6. In my data, those mutants look very similar; with a
strong fitness decrease in S, and strong increase in N (therefore an Antagonistic Pleiotropy phenotype)
and a shaded transgressive winner effect, stronger at shorter periods (Fig V-D.1). Those mutants have
very high wdev values at the 6 hours period that are all in the top 50 of highest wdev values at the 6
hours  period  (Fig  V-D.1).  This  transgressive  winner  phenotype  was  validated  during  the  flow-
cytometry assay for the six strains that I tested (Fig V-D.2). However, I did not do complementation
assays for any of those strains. Many of those mutants have no known function for their deleted ORF.
Curiously, several of those mutants have their deleted ORF very close on the genome: between ORF
YCR026C and YCR087W on chromosome III (Fig V-D.3) (YCR group). Thus, I can hypothesize that
mutations in those genes dis-regulate one key gene in this region. Interestingly, in the flow-cytometry
assay, all  of those mutants increase as fast in S than in N after one day (except for  ycr087w than
increases slower but longer) and then start to quickly decrease in S. Thus, they might be ignoring salt
stress response completely. By looking at their localisation on the genome (Fig V-D.3), I found that
they are localised in the proximity of the SSK22 gene, the MAPKKK of the Hog pathway. It could be
an interesting candidate gene to explain the effect of mutants in this group. Three other mutants are
highly co-fit to  ycr050c, and are localised in the YBR region on chromosome II (Fig V-D.4) (YBR
group). They are localised in a hotspot of transporter genes. The reason of their co-fitness with mutants
of the YCR region remains to be determined. 



Fig V-D.1. YCR co-fitness group: homozygous mutants most co-fit to the ycr050c mutant on a)
fitDB, and b) FMI, c-i) BarSeq data of co-fit mutants. y-axis: normalized counts adjusted to zero at day
zero (y-axis). h) ranking of co-fit mutants among all other mutants’ wdev values for the 6 hours period.
Lug1 is YCR087C-A. Atg15 is YCR068W. Rrt12 is YCR045C. Mal31 is YBR298C.



Fig V-D.2. YCR group flow-cytometry data.



Fig V-D.3. Localisation of deleted genes of mutants in the YCR group. In blue are YCR mutants
that are highly co-fit to  ycr050c. In Green is a putative secondary mutation that might explain their
common phenotype: SSK22 is a component of the Sln1 branch of the HOG pathway.

Fig  V-D.4.  YBR genes localisation:  hotspot of  transporters/permeases  genes. In  blue are  YBR
mutants that are highly co-fit to ycr050c.

        E Loser group: no obvious cellular functions



I found a group of mutants that have a loser phenotype in periodic fluctuations and low wdev values at
the 6 hours period (Fig V-E.1). Those mutants are all highly correlated on fitDB, and 2 of them were
validated in the flow-cytometry experiment (Fig V-E.1i,j).  Two genes in this  group have functions
related to protein maturation in the Endoplasmic Reticulum (yos9 and  scj1).  However,  no obvious
function could be found for this group of genes. 

Fig V-E.1. Loser co-fitness group: a) homozygous mutants most co-fit to the dur1,2 mutant on fitDB.
b-e) BarSeq data of co-fit mutants. y-axis: normalized counts adjusted to zero at day zero (y-axis). x-
axis: days. i-g) flow-cytometry data of co-fit mutants. y-axis: percentage of mutant cells vs a wild-type
strain. x-axis: days. Flow cytometry data for the trm1 mutant in a one-day experiment are shown in Fig
IV-C.3a. h) ranking of co-fit mutants among all other mutants’ wdev values for the 6 hours period. 

    VI Deviation between expected and measured fitness: costs and 
benefits of ignoring environmental stress

When looking at the plot of expected vs measured fitness in periodic salt (Fig VI.1), we can see
that many mutants have much higher fitness than expected (as shown by the grey ellipse). Mutants
highlighted in blue have been tested in at least one flow-cytometry experiment (Fig VI.1b-i). Those
mutants are all transgressive winners with similar phenotypes: a sharp decrease in fitness in salt, a high



fitness  without  salt  and  an  even  higher  fitness  in  the  6  hours  periodic  oscillations.  Strikingly,  an
interesting  phenomenon  regularly  occurred:  fitness  in  salt  was  increasing  as  fast  as  in  the  other
conditions until 15 or 24 hours. Only after it started to decrease regularly.  

I developed the following hypothesis to explain those results (Fig VI.2). Those mutants are defective
for functions needed for the response to salt stress. They are ignoring the cues indicating that there is a
salt stress, and they continue to divide at a high rate. In contrast, wild-type cells are launching different
stress responses (osmotic stress, ionic stress, ESR...), and experience a lag phase in order to adapt to
salt, which have a cost on fitness. The concentration of salt used in this experiment is not toxic to cells
until  about  one  day  of  continuous  exposure,  which  explains  the  non-monotonic  growth  of  those
mutants in the S condition. In rapid periodic conditions, the S condition does not last long enough for
the stress to be toxic. Alternatively, detoxifying mechanisms may occur in the subsequent N medium.
Thus, the growth rates of those mutants remain always high, as compared to the growth rate of the
wild-type strain, and they outperform wild-type cells in competition assays. 

 



Fig VI.1. Most mutants have no fitness defect when exposed to salt for less than a day or half
a  day.  a) Expected  vs  measured  fitness  in  6  hours  periodic  salt  stress  (Fig  1-E  in  the  submitted
publication).  Mutants  highlighted  in  blue  are  shown in  b-i) Flow-cytometry  data  of  transgressive
winner mutants at the 6 hours period. The red line highlights the time where mutants start to decrease
in relative abundance in the S condition.



Fig VI.2. Environmental insensitivity can be an adaptive strategy in artificial periodic salt
stress. 
A theory Schematic  illustration of  the  growth rate  over  time of  two yeast  strains  (green  and red)
evolving in a fluctuating environment that oscillates between a stressful (S) and a non-stressful (N)
condition. The red strain is hyper-activating stress-response pathways and experiences many events of
lag phases and slower growth. On the contrary, the green strain is ignoring environmental stresses, and
does not pay the cost of physiological adaptation. The environment changes quickly enough to not be
toxic for the cells. If the two strains were in evolving in the same environment, the green strain would
win the competition.



4 Discussion

    I Environmental insensitivity can be an adaptive strategy in artificial 
periodic salt stress 

I developed a working model to explain my most surprising result in periodic salt stress: mutants
with high expected fitness in periodic stress had much higher measured fitness. The model is that the
salt stress that we applied was low-enough that its toxicity started to impact the growth of yeast cells
only after one day (or half a day) of continuous exposure (Fig VI.2). Wild-type cells activate stress
responses as soon as they sense the apparition of the salt stress, in contrast to the nonlinear winner
mutants  that  are  defective  for  some  stress  response  pathways/mechanisms.  Activation  of  a  stress
response pathway is costly for yeast cells, as it requires energy to rewire the cell from a high-growth
rate phenotype to a stress-resistance phenotype. The impact on growth rate is immediate since there is
usually a lag phase during the early phase of adaptation to a stress. In addition, cellular energy (i.e.
ATP) is invested for up-regulating hundreds of stress response genes.  

In my artificial setup of 6h-periodic stress, all this investment is wasted, since the stress will not last
long enough to impair the cells' growth rate. Thus, in periodic stress, the  wild-type strain and most
other mutants in the pool, have a lower growth rate than the mutants ignoring environmental stress. It is
possible that some mutants have a slightly superior absolute fitness in periodic stress, as might be the
case for the trm1 mutant (Fig IV-B.7), or the oca1 and ygr164w mutant (Fig IV-B.6). This could be due
to an hormesis effect: slight doses of a stress increase an organism's defences and improve its overall
fitness/health on the long-term (Mattson, 2008).  

The optimal strategy of adaptation depends on environmental dynamics. For instance, once they sense a
stress, if they sense it, yeast cells have to either commit to stress response pathways, or not. They might
decide to commit more or less rapidly. A fast commitment might be non-adaptive (i.e. is not beneficial
for competitive fitness) if the stress disappears quickly (i.e. if they sensed just a transient stimulus). It is
always  a  bet  to  commit  or  not,  since  the  cell  cannot  guess  if  the  stress  will  remain,  increase  or
disappear.  A strain's  genome has  been  shaped  by the  strain  evolutionary  history,  and  will  largely
determine its choice to commit or not in response to a given stimulus. In the ecology of wild yeasts,
once an osmotic stress is detected (i.e. in a rotten fruit), it is common that it will last for some time, and
gradually increase. For this reason, the yeast cells will launch a stress response as soon as they sense
the stress. Even at a low concentration of 0.2 M NaCl, that impairs growth only after 1 day of exposure.
Periodic salt stress is not common in nature, especially at short periods, and thus yeasts are not well-
adapted to it. For this reason, it would have been surprising to observe many mutations that increase
absolute transgressive fitness. Indeed, that would have implied that evolving such a phenotype is easy.
And thus, that the  wild-type yeast strain has often encountered such selective pressure during their
evolutionary history. In fact, it has been proposed to use artificial periodic fluctuations, to characterize
cellular mis-perceptions of the environments, in order to better understand the dynamics of cellular
adaptation (Mitchell  and Lim, 2016).  Finally,  dedicated directed evolution experiments could most



likely generate strains that have strong transgressive absolute fitness phenotypes. Indeed, it is just a
question of re-wiring the genome to be perfectly adapted to the exact artificial period that the cell
experiences.  

In 2008, Kao and Sherlock evolved yeast cells at steady state under glucose limited conditions for 448
generations (Kao and Sherlock, 2008). In 2013, whole genome sequencing allowed them to identify
120  mutations  over  three  replicate  experiments,  most  of  which  were  reproducible  (Kvitek  and
Sherlock, 2013). They found that more than half of the mutations were in three key signaling networks
that regulate growth control: glucose signaling, Ras/cAMP/PKA (mainly Gpb2, Ira2 and Pde2) and
HOG. They conclude that the loss of environmental sensibility is adaptive in a steady environment, but
maladaptive if the environment were to change. In contrast, in my experiment, I showed that a loss of
environmental sensitivity can be adaptive in a changing environment. The exact specificities of the
dynamics and composition of the changing environment should determine if the more adaptive strategy
is  to  adapt  to  new environments,  or  to  ignore  them altogether  and grow as  fast  as  possible,  or  a
combination of those two strategies (or other strategies such as bet-hedging).

    II Low data quality in other experiments prevent from drawing general 
principles about fitness in periodic environments

The Yeast Deletion Library (YDL) can be used to screen for genes performing specific functions, or
with a specific phenotype. Another interest of using the YDL is that it represents an interesting pool of
strains with various phenotypes. Thus, a systems biology approach can be taken in order to determine
the general behaviour of living organisms in various environmental conditions. In my project, I used a
screening approach in order to find mutants with a transgressive phenotype. This was successful in
most experiments, as shown by results of the vhr1, thi2 or met12 mutants. My aim was also to adopt a
systems biology approach to draw general principles about fitness of yeasts in periodic environments.
In order to make general conclusions about a phenomenon, a large number of cases must be examined.
For this reason, a substantial number of mutants should have important fitness differences between the
conditions (N, S, periodic conditions). This number depends mainly of two factors: the strength and the
length of the stress applied. 

The concentration of the stressful agent used should be high enough to detect many mutants with a
difference in growth rate between the different conditions. If the difference in fitness between the two
conditions is too small, then BarSeq will not be resolutive enough to measure precisely this difference.
If the stress is not strong enough, only mutants for genes that are especially sensitive for the stress will
have high-enough fitness differences between conditions to be detected by BarSeq.

Another aspect to consider is the diversity of mechanisms that are used by the cell to detoxify the stress
that  is  applied.  This  diversity  of  mechanisms  will  likely  influence  the  diversity  of  fitness  values
between mutants. Indeed, genes that are involved in similar detoxifying mechanisms may be more
likely  to  share  similar  fitness  values  in  steady  and  periodic  conditions.  For  instance,  salt  stress
corresponds  to  both  an  osmotic  and  an  ionic  stress.  There  are  multiple  processes  within  cells  to
detoxify  ionic  stress  or  to  regulate  osmolarity  levels.  For  instance,  the  response to  osmolar  stress
involves the regulation of hundreds of genes through transcription factors activated by the MAPK



Hog1p. Thus, this type of stress will affect the fitness of numerous mutants. In contrast, growing a
Yeast Deletion Library in absence of methionine will likely affect the growth of a reduced panel of
mutants that are mostly involved in methionine biosynthesis.  

One way to estimate how many mutants have fitness differences between conditions in each media is to
look at the number of Antagonistic Pleiotropic (AP) mutants. I found 48, 3, 16 and 1 AP mutants in the
salt, the sodium metabisulfite, the glucose and the methionine experiment respectively (methods of the
submitted publication).  Thus,  it  seems that few mutants were affected by the stress applied in  the
glucose experiment, and even fewer in the methionine and the sodium metabisulfite experiments. This
idea is confirmed by the PCA plots (Fig III-B.14-18), where we can see that the S condition is clearly
discriminated from the other conditions in the salt experiment, barely in the glucose experiment, and
not at all in the methionine and the sodium metabisulfite experiments. Similarly, in the OD plots (Fig
III-A.3,4), we can see that at day 3 that the difference in OD between the N and S condition is of 0.5,
0.17, 0.3 and 0 for the salt, sodium metabisulfite, glucose and methionine experiments respectively.
Finally, the glucose and methionine experiments suffered from a lower overall data quality (especially
replicability) than the salt and the sodium metabisulfite experiments.  

To conclude, while I applied the same type of genomic analysis as in my submitted publication to the
other  media fluctuations,  I  am not confident  that  I  can truly make generalizations about fitness in
fluctuating conditions from those datasets. I chose those stressful medium and concentration in order to
have  comparable  results  with  another  project.  However,  future  experiments  trying  to  address  the
question  of  the  principles  of  fitness  in  periodic  stress  should  precisely  chose  the  stress  used,  by
considering the number of affected cellular functions, and the appropriate concentration necessary to
observe important phenotypes without losing all mutants in the S condition. As explained above, losing
strains before the end of the experiment is an issue since it prevents from concluding about the linearity
of fitness of the mutant (i.e. we don't know how much lower the fitness of the mutant could go down).

However, I can also look at flow-cytometry data in different media fluctuations to determine if my
results in salt are condition-specific or not, at least for some targeted mutants. During one experiment
(run 4) I tested 6 mutants with a transgressive winner phenotype in salt (pde2, tom7, cin5, hal9, srf1,
trm1) in 4 types of media fluctuations (NaCl 0.2 M, NaCl 0.4 M, Sorbitol 0.4M and Raffinose 1.9%)
(Fig IV-D.1 and data not shown). I found that, in raffinose fluctuations (carbon stress), only tom7 was a
transgressive winner,  cin5  and  pde2  were nonlinear losers, and  srf1,  hal9  and  trm1  were linear (IV-
D.1d,h and data  not  shown).  In  sorbitol,  most  of  those mutants  were linear,  some were nonlinear
winners, and none were transgressive winners. Thus, it appears that the transgressive winner phenotype
of those mutants is mostly specific to mild periodic salt stress. Thus, those preliminary analysis indicate
that fitness in periodic stress appears to be largely gene and condition dependent. 

    III Hypothesis to explain the behavior of selected nonlinear mutants

        A Mutants with a frequency-dependent phenotype



                A Vhr1

The vhr1 mutant showed a very special behavior: this mutant had similar fitness in N and S in the
salt, glucose and methionine experiment, however, its fitness in periodic conditions was different. Why
did I observe this phenomenon?

The  VHR1  gene  is  a  transcriptional  activator  of  the  high  affinity  biotin  transporter  gene  VHT1
(Vitamin  H  Transporter)  and  of  a  biotin  intermediate  precursors  importer  gene  BIO5  (biotin
biosynthesis intermediate transporter). Vhr1p activates its target genes upon low biotin concentrations.
Biotin (vitamin H) is an essential vitamin that is required for lipid metabolism, leucine metabolism and
that acts as a substrate of the biotin protein ligase (BPL1) (Hall and Dietrich, 2007). The s288c strain
(the background strain of my mutants) contains 3 core biotin biosynthesis genes (BIO2-4). However, it
lacks the initial steps of biotin biosynthesis that are mediated by the BIO1 and BIO6 genes (Hall and
Dietrich,  2007).  Thus,  it  is  auxotroph for biotin.  However,  since it  contains the other steps of the
pathway,  it  can  be  complemented  by  the  addition  of  biotin  vitamers,  such  as  the  keto  8-
aminopelargonic acid (KAPA), which is imported by the product of the BIO5 gene (Phalip et al., 1999).

The expression level of biotin biosynthesis genes and of the biotin transporter, the Vht1p, are generally
regulated in an antagonistic way by the environment. For instance, a decrease in extracellular biotin
concentrations induces up-regulation of biotin biosynthesis genes (Pirner and Stolz, 2006), while an
increase  induces  up-regulation  of  the  VHT1 gene  (Weider  et  al.,  2006).  Also,  vhr1  mutants  have
constitutively high expression levels of biotin biosynthesis genes (Pirner and Stolz, 2006). Another
example is the case of iron stress. Biotin biosynthesis proteins contains irons, but not Vht1p. It has been
shown that  in  the case  of  iron deprivation,  biotin  biosynthesis  genes  are  down-regulated,  whereas
VHT1 is up-regulated by AFT1, the major iron-dependent transcription factor (Shakoury-Elizeh et al.,
2004). The KAPA importer BIO5 is also up-regulated (Bellí et al., 2004), indicating that cells might
store biotin precursors for future iron replete conditions. In contrast,  in iron replete conditions, the
VHT1 gene is down-regulated and biotin biosynthesis genes are up-regulated (Bayeva et al.,  2013;
Shakoury-Elizeh et al., 2004).

This shows that yeast cells optimize their growth by balancing production of biotin through import of
biotin  precursors  and  biosynthesis  of  biotin,  or  import  of  biotin,  depending  on  their  external
environment. The SD-all medium, that I used for all my experiments, contains biotin (2 μg/L) but not
its  precursors  KAPA.  Thus,  in  my experiments,  production  of  biotin  relied  exclusively  on  import
through VHT1. Looking at transcriptomic data of the vhr1 haploid mutant, I saw that the vhr1 mutant is
strongly  down-regulating  both  the  BIO2  and  the  VHT1  genes  (Kemmeren  et  al.,  2014).  This
transcriptome experiment was performed in standard conditions. Thus, the vhr1 mutant is probably not
able to import biotin, or very little, in standard conditions. This explains why, in my data, the  vhr1
mutant  starts  being  depleted  after  two  days  in  the  N  conditions  (Fig  III-F.6).  Interestingly,  iron
depletion can induce the up-regulation of VHT1 through the iron-specific transcription factor AFT1.
Thus, we can imagine that different types of stress can also up-regulate biotin import, through different
stress-specific transcription factors. This could explain why we observe almost no growth defect in salt,
in  sodium metabisulfite  or  in  methionine  steady  stress.  If  this  hypothesis  is  correct,  the  different
behavior  in  fluctuating  conditions  could  be  related  to  the  different  timing  of  actions  of  those
transcription factors.  Interestingly,  the  vhr1  mutant  was a loser  at  the longest  periods  in  the three
experiments (Fig III-F.8c,e,f). Thus, there seems to be a limit of survival of ~24 hours without biotin,



which is coherent with the decrease in fitness in the N condition after 2 days. This limit of 24h could be
due to  the  number  of  generations  until  which  the  concentration  of  biotin  of  daughter  cells  is  not
limiting for their growth. That would be similar to the study of Lambert and Kussel, where cells could
grow without any lag phase in periodic lactose fluctuations of up to 8 hours periods, thanks to the
dilution of the Lac1p protein that was still  above a certain threshold (Lambert and Kussell,  2014).

Importantly, when I tested the vhr1 mutant during the flow-cytometry experiment, I observed a similar
growth effect in all conditions, but with a far weaker intensity (submitted publication Sup Fig 2). I
developed an hypothesis to explain this result. In theory, biotin is present at high concentrations in the
growth media. Therefore, the  vhr1  mutant should be able to incorporate biotin through non-specific,
low-affinity  biotin  transporters.  However,  biotin  concentration  could  vary  between  the  two
experiments. In the flow-cytometry assay, only two strains were in competition: the vhr1 mutant and
the wild-type strain. Thus, about 50% of cells used high-affinity biotin transporters for biotin uptake. In
contrast, during the BarSeq assay, there were more than 4000 mutants competing for resources. Thus,
more than 99.99% of cells used high-affinity biotin transporters for biotin uptake. Consequently, there
should be twice less biotin available in the primary screen. In addition, some strains might over-express
the biotin high-affinity transporter gene vht1, which would result in a faster depletion of biotin in the
pool of mutant. Finally, I didn't measure Optical Density during my flow-cytometry experiments. But it
is possible that cultures were denser in the BarSeq assay than in the flow-cytometry assay, which would
result in even higher biotin depletion in the pool of mutants. Future flow-cytometry experiments on the
vhr1  mutant could be performed by lowering the biotin concentration in the medium, to see if,  as
expected, it increases the differences in growth rate between conditions.  

                B Thi2

The thi2 mutant had a strong frequency-dependent effect in the sodium metabisulfite experiment. THI2
is  a  transcriptional  activator  of  thiamine  regulatory  genes  (THI  genes).  Thiamine  (vitamin  B1)  is
phosphorylated to produce Thiamine PyroPhosphate (TPP). TPP is an important co-factor for amino
acids and carbohydrate metabolisms. It is synthesized de novo in plants and microorganisms, but not by
animals (Iosue et al., 2016). In S. cerevisiae, thiamine can be either imported or synthesized, through a
large set  of thiamine biosynthesis  genes  (Iosue et  al.,  2016).  Thiamine regulation is  different from
biotin  regulation,  where  transporters  and biosynthesis  genes  are  antagonistically  regulated.  Indeed,
intracellular TPP is sensed. When it is high, expression of both thiamine high affinity transporter genes
and thiamine biosynthesis genes are down-regulated  (Iosue et al., 2016; Nosaka et al., 2012). At the
molecular level, there are 3 transcriptional activators of thiamine (THI) genes: THI2, THI3 and PDC2.
Thi2p and Pdc2p bind together or separately the THI genes promoters (Nosaka et al., 2012). Thi3p then
binds the Thi2p-Pdc2p complex, which changes the conformation of the Pdc2p protein and induces the
expression of THI genes  (Nosaka et al., 2012). Thi3p is bound by TPP, making a negative feedback
loop (Nosaka et al., 2012). Indeed, when TPP levels are low, free Thi3p is available to bind to Thi2p-
Pdc2p complexes. And when TPP levels are high again expression of THI genes is down-regulated.
Consistently,  low thiamine concentration induces stronger Thi2p-Pdc2p associations  (Nosaka et  al.,
2012).

Due to its antioxidant properties, sodium metabisulfite (Na2O5S2) is used as a food preservative, and



in the commercial wine making industry. Pediatric formulations contains mixture of vitamins, which
usually include thiamine, that are essentials for providing neonates daily requirements or to supply
possible  deficiencies.  Some  commercial  pediatric  formulations  use  sodium  metabisulfite  as  an
antioxidant. Several studies measured the stability of vitamins in those pediatric formulations. It was
found that thiamine is strongly degraded by sodium metabisulfite (Ribeiro et al., 2011; Scheiner et al.,
1981).  

The media that I used for my experiments contained thiamine (400 μg/L), which was thus depleted in
the sodium metabisulfite  experiment.  In  yeasts,  thiamine deficiencies lead to severe growth defect
(Wang et al., 2005). Therefore, in this experiment, yeasts relied on thiamine biosynthesis genes for
maintaining a high growth rate. Consistently, in my data, the thi2 and the thi3 mutants were depleted
quickly in steady sodium metabisulfite stress (data for pdc2 are missing) (Fig III-F.2 and III-F.9).  

Looking at raw counts, it seems that the thi3 mutant was depleted faster since it was already absent at
day 1. However, it had 4 times less raw counts than thi2 at day zero, thus it is unclear which mutants is
more sensitive to thiamine deprivation. Interestingly, the thi3 mutant behaved quite linearly, at least at
day 1. In contrast, the thi2 mutant had a frequency-dependent effect: it had a strong nonlinear winner
phenotype at the shortest periods, a linear phenotype at intermediate periods, and a nonlinear loser
phenotype at the longest periods. It is intriguing that two directly interacting transcriptional regulators
mutants, having similar extreme fitness differences between the two steady conditions, have different
fitness in periodic stress. One hypothesis could be that activation of Pdc2p alone by Thi3p, in the thi2
mutant, could trigger a weak induction of THI genes. This low activation could be sufficient to survive
short events of stress (3 hours or 6 hours, for respectively the 6 hours or 12 hours periodic conditions)
but not enough when the stress is prolonged. In contrast, the thi3 mutant would have no activation at all
of its THI genes and thus behave linearly. Further experiments will be needed to elucidate the origin of
the differences in fitness between the thi2 and thi3 mutants in dynamic conditions. 

        B Met12: a gene that may favor fitness in periodic methionine 
stress

The  met12  mutant showed a strong transgressive loser phenotype at most periods in the methionine
experiment.  The  MET12  gene  codes  for  a  Methylenetetrahydrofolate  reductase  (MTHFR).  This
enzyme  catalyzes  the  reduction  of  5,10-methylenetetrahydrofolate  (CH  2-THF)  to  5-
methyltetrahydrofolate  (CH  3-THF).  CH3-THF  is  then  used  with  homocysteine  to  produce
tetrahydrofolate (THF) and methionine. MTHFR deficiencies lead to several human diseases such as
neonatal lethality, hyperhomocysteinemia (Froese et al., 2016), schizophrenia, depression (Gilbody et
al., 2007), vascular diseases and neural tube defect (Raymond et al., 1999; Shan et al., 1999). In yeasts,
there  are  two MTHFR genes:  MET12 and MET13  (Raymond et  al.,  1999).  However,  despite  the
important  therapeutic  potential,  literature  on  MTHFR  yeast  genes  remain  very  scarce  since  the
characterization of the MET12 gene in 1999 (Raymond et al., 1999). In this study, the authors showed
that both Met12p and Met13p have MTHFR activity, but Met13p is responsible for most of the activity
in the cell. They found that the met12 mutant had no phenotype. In contrast, single  met13 mutant or
double  met12,  met13 mutants were auxotrophs for methionine. The auxotrophy of the  met12-met13
double mutant was complemented by a plasmid containing the MET13 gene, but not by a multicopy



plasmid containing the MET12 gene (Raymond et al., 1999). Complementation of the auxotrophy of
the met13 mutant was also successful by expression of its human homologue (Shan et al., 1999).

The met13 mutant is missing in my data. This is potentially due to the stronger MTHFRs activity of the
met13 gene, that makes the met13 mutant inviable. It has been shown in S. pombe, that even a small
reduction of MTHFR activity causes a methionine requirement  (Naula et al.,  2002). Consistently, I
observed in my data that the met12 mutant had no growth defect in N, but an important growth defect
in SMet (absence of methionine). This growth defect seemed to be exacerbated in fluctuating conditions,
as the  met12  mutant had a transgressive loser phenotype at most of the fluctuation regimes tested.
Importantly,  several  mutants  for  genes  involved in  homocysteine  biosynthesis,  through  the  sulfate
accumulation  pathway  (met14,  met16,  met10,  met5,  met8,  met28)  had,  as  well,  important  fitness
differences  between  steady  conditions.  However,  their  fitness  in  fluctuating  conditions  was  linear
(excepting met28 at the 6h period that was slightly nonlinear winner). met31, which is a transcriptional
activator of sulfur metabolic genes, was a nonlinear loser at short periods, but was not transgressive.
Thus,  impaired  production  of  methionine  should  not  be  the  correct  answer  to  explain  the  strong
transgressive loser phenotype of  met12  at short periods. One possibility to explain this phenomenon
could be that periods of methionine stress would trigger the production of homocysteine, that would
accumulate due to to unmatched CH 3-THF levels, which would be toxic for the cells. While in SMet,
there could be a feedback mechanism to adjust the production of homocystein to the production of CH
3-THF levels. However, many other explanations are possible.

Finally,  before  any  deeper  analysis,  careful  confirmation  experiments  (i.e.  by  flow-cytometry  or
microfluidics) should be made, in order to confirm the exact phenotype of the met12 mutant in periodic
absence  of  methionine.  Indeed,  as  mentioned  previously,  at  day  1,  we can  see  that  the  mutant  is
decreasing at periods equal or higher to 48 hours, while it is increasing in N (Fig III-F.11). This is
inconstant since, at day 1 for long periods, the mutant experienced only the N medium. Nevertheless,
the very strong decrease in fitness at short periods is promising.  

        C Groups of nonlinear mutants: implication of mitochondria?

I  wondered  why  most  of  the  mutants  with  the  strongest  transgressive  behavior  in  fluctuating
environments were strongly co-fit on databases of co-fitness across thousands of conditions (tom7 and
trm1 group, Fig V-A.1 and V-B.1). The similar phenotypes of those mutants could not be explained by
a close localization on the genome, as for the YCR group (V-D.3 and V-D.4). A possibility is that
highly co-fit  mutants share the same secondary mutation.  In this case,  chances are that the shared
secondary mutation is, in fact, within the deleted gene of one of the co-fit mutants. This simple theory
could be verified by sequencing, or measuring gene expression, of all deleted gene in all of the co-fit
mutants of the same group. However, that would be fastidious. And this would not be fruitful if high
correlations between mutants reflect true shared biological functions, like for instance the hog1 group,
or the rim101 group (Fig V.1). I found that some mutants in the trm1 and tom7 groups, have deleted
genes with very different functions. For instance, Srf1p is a regulator of phospholypase D, Yap3p is a
transcription factor involved in resistance to benzene, Hal9p is a transcription factor involved in ions
regulations, and Trm1p is a tRNA methyltransferase (Table 4-III-C1/2).  



However, after a deeper analysis, I found that mutants in the tom7 and trm1 group may share similar
phenotypes  due  to  perturbed  regulations  within  mitochondria  (Table  4-III-C1/2,  Fig  4-III-C3).  In
particular, I looked at the immediate neighbors on the genome of the mutants' deleted genes. And I
found that several mutants were neighbor to genes playing a role within mitochondria. I made a link
with mitochondria for four mutants in both the trm1 and the tom7 group Several mutants of the tom7
group had a quite high correlation with mutants of the  trm1  group (and  vice-versa). Thus, we can
imagine that mutants from those two groups are involved in related functions.

Importantly, I found 3 mutants with a putative role in the electron transport chain: the qri5 mutant (also
called cox24), and the psy4 and trm1 mutants, whose deletion could miss-regulate their neighbor genes
COR1 and COX26 (Fig 4-III-C3). Cox26p and Cox24p are both localized in the cytochrome c oxidase
enzyme (complex  IV),  while  Cor1p is  localized  in  the  cytochrome bc1 complex  (complex  III,  or
coenzyme Q : cytochrome c – oxidoreductase). In  S. cerevisiae, the complex IV associates with the
complex III  into supercomplexes,  for improved energy transduction  (Levchenko et  al.,  2016),  thus
those genes might be directly interacting. Cox24p plays a role in the splicing of the cox1 transcript,
however, it has at least one other unidentified function (Barros et al., 2006). The Cox1p assembles to
form complex IV. RNA processing of cox1 transcripts is very complex and involves more than 20
genes  (Barros et al., 2006). The COX24 gene is localized just upstream the 5' of the mss51 gene, a
specific  translational  activator  of  cox1  transcripts.  Thus,  the  COX24  and  MSS51  gene  might  be
regulated  together,  in  an  operon like  fashion.  Cor1p and Cox26p are  subunits  or  respectively  the
complex III and the complex IV (Levchenko et al., 2016; Tzagoloff et al., 1986). In the tom7 group,
both Pim1p and Tom7p are important for the biogenesis of mitochondria. Mrpl13p and Mrps35p are
both mitochondrial ribosomal proteins. Finally, by looking at their phenotypes on the SGD, I found that
almost all mutants from the tom7 and trm1 groups had either a decreased rate of respiratory growth, or
an absence of respiratory growth (missing data for few of them), which is consistent with a reduced
mitochondrial activity (Cherry et al., 2012b). 

Interestingly, the ygr164w and the trm1 complemented strains were constructed and tested during the
secondary screen (ygr164w was complemented by a tRNA present within the YGR164W ORF), but
their transgressive phenotypes were still present (Fig IV-C.3). For the complementation assay, the goal
was to see if I could abolish the phenotype of certain mutants. This was indeed the case for the pde2
and tom7 mutants. However, I cannot directly conclude that, for mutants for which complementation
didn't abolish the phenotype, the transgressive effect is not due to the action of the deleted gene. To do
so, one should sequence the full sequence inserted at the HO locus, to see if there are no mutations.
Additionally,  one  should  measure  the  expression  levels  of  the  complemented  genes,  for  instance
through Northern blot assays.  

However,  the  successful  complementation  of  the  tom7  mutant  confirms  the  mitochondrial  lead:
perturbed mitochondrial  regulations may be responsible for the transgressive phenotype of mutants
from the tom7 and trm1 group. Next experiments to confirm this theory could consist in measuring the
expression levels of the neighbor genes with suspected perturbed regulations (MSS51 in qri5, MRPS35
in ygr164w, COX26 in trm1, EIS1 in ymr031w-a, COR1 in psy4) as compared to wild-type expression
levels. Interestingly, both the cor1 and eis1 mutant are transgressive losers in my data. We can imagine
that  deletion  of  their  neighbor  genes  (respectively  psy4  and  ymr031w-a)  increased  their  gene
expression. This would mean that the gene dosage of those genes results in a transgressive loser or
transgressive winner phenotype.



Perturbed TOM/TIM regulation induce perturbed protein import into the mitochondria (Pellegrino and
Haynes, 2015). Since mitochondrial autophagy (mitophagy) and the mitochondrial unfolded protein
response (UPRmt) are regulated by mitochondrial protein import efficiency  (Pellegrino and Haynes,
2015), a possibility is that mutants of the  tom7  group might be involved in a mitochondrial quality
control pathway. The pde2 mutant has a quite high correlation of fitness (0.46) with the tom7 mutant
(Fig V-C.1), thus Pde2p and Tom7p might be involved in similar functions. In addition, it has been
shown that the levels of cAMP/PKA signaling can modulate the activity of mitochondria  (Leadsham
and Gourlay, 2010). One of the most over-expressed genes in a pde2 haploid mutant is the cit2 mRNA
(Kemmeren et al., 2014). This transcript is often used as a reporter of the activity of the retrograde
pathway, another type of mitochondrial  quality control pathway  (Jazwinski, 2013).  pde2 also over-
expressed DLD3 and CPA2, two genes that are direct targets of the retrograde pathway (Cherry et al.,
2012b; Kemmeren et al., 2014). In conclusion, protein quality control pathways might be involved in
the transgressive phenotype that I observed in my data.

The Ytp1p protein is  a probable type-III  integral membrane protein of unknown function,  that has
regions of similarity to mitochondrial electron transport chain proteins (West Jr. et al., 1996). The ytp1
mutant is also a transgressive winner mutant in my data (submitted publication, supplementary file:
table dat.summary). On fitDB, it is not correlated to any mutant of the trm1 or tom7 group. However,
on FMI, its most-highly correlated strains are trm1 and rpl37b. However, the correlation is poor (~0.3
as compared to ~0.6 between  rpl37b and  trm1). Thus, the transgressive behavior of the  ytp1 mutant
could also be linked to mitochondrial dysfunction and to the electron transport chain, as for the trm1,
qri5 and psy4 mutants. Even though the ytp1 mutant might have a more distant function.

Table 4-III-C1. Description on the Saccharomyces Genome Database (SGD) of genes in the
trm1 group (Cherry et al., 2012b). Mutants for the MRPS35 and COX26 genes are missing in my data.
Mutant eis1 is a transgressive loser in my data. 



Table 4-III-C2. Description on the Saccharomyces Genome Database (SGD) of genes in the
tom7 group (Cherry et al., 2012b). Mutant for the COR1 gene is a transgressive loser in my data.  

Fig 4-III-C3. Localization within mitochondria of the gene products corresponding to highly
co-fit mutants, or their neighbors. In red are mutants from the trm1 group and in green are mutants
from the tom7 group. This Figure was adapted from: "Electron transport chain" Wikipedia: The Free
Encyclopedia. Wikimedia Foundation, Inc. 24 May 2017. Web. 27 June 2017.,
en.wikipedia.org/wiki/Electron_transport_chain



        D Interactions between time and environment for selected 
mutants: the Pde2p protein has a long half-life

My project – analysis  of linearity of fitness at  different frequencies – allowed to estimate the
timescale  at  which  genes  are  critical  for  fitness.  Indeed,  if  a  mutant  is  inhomogeneous  in  some
conditions – it has interactions with time and the environment – then it will be nonlinear (see 4-IV-B-
iii). For this reason, I thought it could be interesting to look at some genomic datasets of measures
related to time. I found two interesting datasets for this purpose: one from a study where yeast cells
were exposed to NaCl 0.8 M for up to 36 minutes. RNA synthesis and degradation rates were then
measured (Miller  et  al.,  2014).  RNA half-lives are usually short,  and thus not  very informative as
compared to the timescales in my experiment. However, RNA synthesis is a good proxy for protein
levels. In contrast, to RNAs, protein can have very long half-lives. Therefore, I looked at a study where
the half-life of the two third of the yeast proteins was measured (Christiano et al., 2014). 

I found that mutants with strong nonlinear winner phenotypes in salt had interesting characteristics in
those datasets. The two genes with the most pleiotropic nonlinear phenotype (vhr1 and cin5, submitted
publication Fig 3-C/D) also had very short protein half-lives (Cin5p: 0.7 hours, 47th shortest out of
3773 proteins; Vhr1p: 3.3 hours, 293th shortest) (Christiano et al., 2014). Oppositely, the pde2 protein
had one of the longest half-life (Pde2p: 39.4 hours, 90th longest). Unfortunately, data were missing for
the  tom7  protein.  The  bre2 mutant  was the only one with a  strongly linear  behavior  in  my flow-
cytometry  assay.  The  half-life  of  the  Bre2p  protein  was  intermediate  (Bre2p:  7.4  hours,  1212th
shortest). 5 AP mutants were completely linear at the 6h period (pfk26, aim26, ylr374c, bem4 and stp4)
(submitted  publication  Fig  3C).  Protein  half-lives  were  available  for  only  2  of  them  and  were
intermediate (Pfk26p: 7.3 hours 1181th shortest, Bem4p: 9.5 hours 2299th shortest).

This very basic analysis suggests that there may indeed be a relationship between the linearity of fitness
and the half-lives of proteins. However, I found no correlation between wdev and protein half-life at
the genomic scale, which could be due to different reasons. Briefly, this includes biases specific to
pooled assays, or imprecision of measurements for many mutants (see part 4-IV-B-ii for an extensive
discussion). Now will follow some speculations about the link between the linearity effects of the pde2,
cin5 and vhr1 mutants and the kinetic measurements described above.

The  long  half-life  of  pde2p  is  the  easiest  to  interpret.  First,  the  effect  of  the  pde2  gene  on  the
transgressive phenotype was validated by the complementation assay. The Ras/cAMP/PKA is a major
determinant of the trade-off between stress resistance and metabolism and cell  cycle production in
yeast (Park et al., 2005; Pescini et al., 2012). Pde2p is a high-affinity cyclic AMP phosphodiesterase
that plays a dominant role in removing cyclic AMP to repress PKA activity (Park et al., 2005). Thus,
pde2  mutants have high PKA activity,  which corresponds to fast  proliferation and decreased stress
resistance (Park et al., 2005). PDE2 transcripts are highly induced in the presence of salt (Miller et al.,
2014). Thus, during the fluctuation experiments, wild-type cells constantly accumulates newly created
Pde2p proteins and are thus growing slower than pde2 mutant cells.  

The short half-lives of the Vhr1p and Cin5p proteins are more challenging to explain. Interestingly,
both the cin5 and the vhr1 mutants have a pleiotropic winner effect at most periods of fluctuations. And
both are transcriptional activators. However, the origin of their effect in dynamic environments may be
different. Indeed, the VHR1 gene is involved in biotin uptake, and  vhr1 is more fit in S than in N.



While the CIN5 gene is involved in salt stress, and cin5 is more fit in N than in S. But, first I need to
clarify results concerning the cin5 mutant.  

Indeed, the cin5 complemented strain had the same transgressive behavior as the cin5 mutant (Fig IV-
C.3). Importantly, this does not prove that the CIN5 gene is not involved in the transgressive effect of
the  cin5  mutant.  Indeed,  as  explained  above  (see  4-III-C),  there  could  be  mutations  in  the  DNA
sequence that was inserted, or more critically the gene might not be expressed, or be expressed at low
levels.  Several  lines  of  evidence  indicate  that  such  an  issue  may  have  happened  for  the  cin5
complemented strain. First, and most importantly, the cin5 gene is a transcription factor that mediates
pleiotropic drug resistance and salt tolerance (Hanlon et al., 2011; Mendizabal et al., 1998). This is
consistent with the fact that the cin5 mutant had a high fitness in N and a low fitness in S, in both the
BarSeq and flow-cytometry experiments  (submitted  publication Sup Fig 2,  flow-cytometry  run 3).
Second, the cin5 mutant most highly cofit strain on fitDB is Yor029w, a neighbor ORF in 5' of cin5,
with a correlation of 0.57. Other mutants have correlations bellow 0.41. This is not what would be
expected if a secondary mutation was responsible of the phenotype of the cin5 mutant. Lastly, the cin5
and  yor029w  mutants have the two highest wdev values at the 6 hours period. They also make one
separate group in the heatmap of AP mutants, the only group for which fitness is strongly non-linear at
all periods (submitted publication, Figure 3C). Yor029wp is a putative protein of unknown function.
Thus, deletion of the CIN5 gene or of its promoter through yor029w deletion is probably responsible of
the unique phenotype of the cin5 mutant in fluctuating conditions.

The transgressive-winner effect of the cin5 mutant at short periods of fluctuations is a clear example of
my theory that nonlinear winner mutants are shutting down their response to stress in order to grow
faster (Fig VI.2). However, this does not explain the effect of the cin5 mutant at long periods, and the
relationship  with  the  short  half-life  of  the  cin5  protein.  One  hypothesis  could  be  that  salt  stress
completely stabilizes the cin5 protein, and thus increases greatly its half-life. Thus, it would behave like
a  molecular  memory  of  salt  stress  (which  would  be  similar  to  pde2p's  long  half-life).  Another
possibility is that Cin5p levels are low at the beginning of each S events. And that stimulation of its
target genes is much stronger when newly synthesized Cin5p binds to its promoter, than when Cin5p
remains  bound  for  a  long  duration  (as  in  the  S  condition).  This  hyper-activation  would  result  in
repeated lag phases, and thus decreased growth rate. This would be similar to a study where periodic
salt  fluctuations  with  an  8  minutes  period  induced  a  much  stronger  transcriptional  output  than
continuous salt exposure (Mitchell et al., 2015). In fact, the Cin5p protein might be responsible for the
accumulation of the transcriptional output in periodic stimulations observed in this study.

The Vhr1p protein also has a short half-life. As proposed above (section 4-III-A-α), in the N condition,
the vhr1 mutant may be depleted because it is not importing any biotin from the environment. In the S
and periodic  conditions,  the  vhr1  mutant  is  importing  biotin,  through stress  response  transcription
factors that activate the biotin transporter gene VHT1. In periodic stress, the vhr1 mutant grow well as
long as the fluctuation period is not too long, with a limit of about 24 hours. To conclude, the dynamics
of  the  other  transcription  factor(s)  that  likely  induce(s)  the  over-expression  of  VHT1  in  stressful
conditions are probably important to explain the effect of the vhr1 mutant. However, we cannot exclude
that the short half-life of the Vhr1p protein does not play a role as well in the non-linear and pleiotropic
behavior of the vhr1 mutant.



    IV Perspectives

        A Single-cell approaches to characterize nonlinear mutants

Future single-cell studies could allow determining with a greater precision the dynamical properties of
the  nonlinear  mutants.  This  would  typically  involve  using  a  microfluidic  device,  to  change  the
environment quickly and track single cells over time, coupled with a microscope, to record growth of
each trapped cell.  Those  experiments  would allow determining with a  high precision the absolute
growth rate of nonlinear mutants and wild-type cells. This would allow determining if some mutants
have  strong  absolute  transgressive  fitness.  In  addition,  the  different  phases  of  growth  could  be
decomposed computationally,  in order  to determine if  nonlinear winners have a reduced lag phase
when transitioning from N to S or from S to N. 

Strategies  of  adaptations  could  be  studied  in  more  detail.  For  instance,  if  we  observe  two
subpopulations with different growth rates within a group of isogenic cells, then it could be indicative
of a potential diversifying bet-hedging strategy, where some cells are well-adapted to the N medium,
while  others  are  well-adapted to  the S medium. However,  I  doubt  that  many transgressive winner
mutants from the salt experiment employ a type of bet-hedging strategy. Indeed, my theory is that most
of them are insensitive mutants that grow as fast as they can and ignore the appearance of a stress (Fig
VI.2).  It  is  usually  assumed  that  bet-hedging  strategies  are  favored  in  unpredictable  and  severe
environmental conditions. In my experiment, the apparition of periodic salt stress, especially at high
periods (i.e. 6 hours), is unpredictable for yeast cells, as it is not common in their ecology. However,
the stress is quite mild, and thus it might be more adaptive for cells to ignore environmental changes, as
proposed above (see 4-I). Still, it could be interesting to study the impact of bet-hedging strategies in
fluctuating environments, and some of my mutants might implement this strategy. Using a microfluidic
device, various nonlinear mutants could be screened, and classified as either bet-hedging, sensing or
fast growth strategists. Then, strains of each class could be grown in either predictable (i.e. steady
stress, ramp increase), or unpredictable environments (i.e. non-periodic stress, periodic stress with short
periods), to determine the link between growth strategies and environmental conditions.  

Effects of priming or molecular memory of stress could also be interesting to study. For instance, one
could determine if the growth rate, right after the transition from N to S, is lower at the first cycle than
at subsequent cycles. If we observe this phenomenon in the wild-type, then we could screen for mutants
that reverse this effect, and thus that mediate molecular memory of salt stress (or another stress if S
varies). Also, one could think of tagging proteins of interest (i.e. Pde2p, Cin5p, Vhr1p) in the wild-type
strain. This way it would be possible to monitor the amount of those proteins over time in fluctuating or
steady  conditions.  This  could  give  hints  about  potential  effects  of  memory  of  stress  mediated  by
long/short protein half-lives. 



        B Perspectives for the exploration of the impact of environment 
and time on phenotypes

            i Periodic conditions can help to set up models more robust to 
environmental dynamics

In biology, researchers are summarizing knowledge about interactions between key players/molecules
involved in a given process (i.e. salt stress response, mating…) in schematic models. However, links
between molecules are quantitative and not qualitative. In order to go further, computational models are
needed. Once an accurate model is built, one can rapidly explore the impact of large sets of parameters
on the behavior of the model. If an interesting behavior is found, or if the model predicts well a set of
parameters  but  badly  another  set,  then  experiments  can  be  performed  to  improve  the  model,  and
thereby to increase knowledge on the studied process. Modeling also allows to evaluate hypothesis that
would be tedious to test experimentally. For instance, Apostu and Mackey constructed a model of the
GAL network that was capturing its bistable behaviour (Apostu and Mackey, 2012). They could then
use their model to discriminate between two hypothesis: the dissociation or non-dissociation of the
Gal3p-Gal80p complex at the GAL promoters.

However, this traditional white box modeling approach can be tedious and time-requiring to perform.
Indeed, in order to initially fit the model, or to improve it, one needs to have identified the key players
involved,  and  to  have  measures  of  their  kinetics  of  interactions.  Moreover,  different  types  of
measurements could be needed (i.e. interactions between molecules, production and degradation rates,
protein conformation…), which would involve mastering a set of experimental skills and having access
to necessary equipment. Finally,  once the model is built,  it  could be accurate only for the specific
environment  used  when  performing  the  experiments.  Performing  all  experiments  in  another
environment may be time-consuming.  

In contrast, methods of system identification and frequency response analysis do not require knowledge
about the internal structure of the system. Instead, they rely on repeated stimulation of the system, in
order to characterize its input-output behavior. In this project, I exposed yeast cells to periodic stress,
and I measured their fitness as the output. I did not build a model of the response to salt stress, that
would include the dynamics of action (or bandwidth) of the genes involved in the response to salt stress
(i.e. the HOG pathway, ion detoxifying processes, and downstream targets), since it was not the focus
of my study. The data that I generated could be helpful to scientists who would like to improve models
of the dynamic HOG response. Though supplementary flow-cytometry assays might be necessary to
validate the effect of all genes included in the model, in order to eliminate biases of the pooled assay. In
my project, I made a Generalized Linear Model to predict fitness in periodic stress from fitness in
steady conditions (expected fitness). However, many mutants had nonlinear fitness: deviations between
expected and measured fitness. It could be interesting to try to determine if there are factors that can be
incorporated in the model in order to improve its predictive power (see next section).

While I didn't go very far in the modeling aspects for this project, it allowed to have insights about the
impact of both the environment and time on the fitness of mutants. The BarSeq experiment revealed
that different mutants with similar fitness in steady conditions can have different fitness in dynamic



conditions (submitted publication Fig 1B). This was even true for mutants within the same pathway
(submitted publication Sup Fig 1). Thus, this assay allowed to determine the dynamical range at which
a gene impacts fitness in the tested condition. Interestingly, I found that the  vhr1 mutant had similar
fitness in N and S in three experiments, but various fitness in fluctuating conditions (Fig III-F.7). Thus,
periodic stimulation of null mutants can provide informations about the dynamical range at which a
gene is important for fitness in response to a stress, which can be condition-dependent. This method has
the advantage to be scalable, since different types of periodic environments can be easily tested once
the protocol is established.  

The phenotype measured during my experiments was the fitness of yeast null mutants. This phenotype
was  chosen  since  it  is  a  key  evolutionary  trait  that  reflects  the  selective  pressure  on  the  strains.
Therefore,  it  allows  to  envision  future  studies  on  the  strategies  of  adaptation  in  fluctuating
environments, for a set of selected mutants. In addition, it allowed to achieve very high-throughput
using  the  technique  of  BarSeq.  Previous  approaches  using  periodic  stimulations  to  characterize
biological dynamics in yeast have relied on fusing GFP to a gene, reporter of the state of activation of
the pathway under stimulation (table INT6-ii). These approaches relied on microfluidics devices since
they allow to quickly change the growth medium, and to monitor in real time the output of the pathway.
However, in the future, periodic stimulations could be used to study other phenotypes than fitness or
pathway activation. Those phenotypes should be simple to measure, in order to be able to test many
periodic conditions. For instance, using RNAseq, one could determine the impact of environment and
time on gene expression. This would allow to better characterize the functions and dynamics of genes. 

            ii How to improve prediction of fitness in periodic conditions 
from fitness in steady conditions?

As mentioned above, in the salt  experiment,  my hypothesis is that many nonlinear mutants with a
winner phenotype are shutting down their  stress responses (see 4-I). However, this doesn’t  tell  the
whole story, as several mutants that shut down their stress responses have linear fitness. The Rim101
pathway is good example where mutants within the same pathway, all have similar defect in constant
salt, but levels of linearity vary in periodic conditions (submitted publication Sup Fig 1). Additionally,
several Antagonistic Pleiotropic mutants, for which there is the highest precision to estimate linearity
due to the high differences in fitness between steady conditions, have linear fitness. Thus, there should
be some factors that influence the levels of linearity of fitness. 

I did some basic analysis in order to see if I could find such factors. I made correlations between my
wdev values (the full dataset or only antagonistic pleiotropic mutants, wdev or absolute wdev values)
with other datasets available online.  I was particularly interested with datasets that measured time-
related variables, such as: RNA synthesis and degradation rate, protein half-life. I also looked at factors
that could influence gene expression regulation over long time scales, such as: gene length, number of
transcription  factors  binding  sites,  presence  or  not  of  introns.  However,  none  of  them  were
correlated/enriched. Other factors that could be interesting to look at could be: the number of protein-
protein interaction partners, genetic interactions, protein localization,  or the mutants'  transcriptome.

Importantly, the reason why correlations failed may not be due to the tested factors, but to the nature of



my BarSeq data. Indeed, there are two potential issues. The first issue, is the presence of many biases in
those pooled assays, such as: interactions between mutants, or mutants for which the phenotype is not
driven by the deleted gene, but by aneuploidies, secondary mutations or mis-regulation in cis. Those
mutants would lower any correlation with other types of data that do not share those bias. The second
issue, is that a portion of mutants have few fitness differences between conditions. And thus, their wdev
values might simply reflect noise in measurements, or the absence of phenotypes. For those reasons,
efforts to make correlations or comparisons between BarSeq data and other types of data should be
made cautiously.  

For this purpose, it would be highly valuable if measures of the quality of each mutant was available.
Indeed, it has been shown that some mutants are more likely to acquire secondary mutations, and often
acquire the same secondary mutation (Teng et al., 2013). In addition, one study has made extensive
quality  controls  on  ~1400  haploid  mutants  (Kemmeren  et  al.,  2014).  Before  measuring  the
transcriptome of those mutants, they wanted to ensure of the quality of the strains. They measured
consistency  (phenotyping  of  strains  with  other  strains  in  the  same  pathway/complex  to  detect
unexpected phenotypes), aneuploidies and correct gene deletions. They re-constructed the strains for
101 low-quality mutants. It would be very useful to the community working with BarSeq in yeast, if
one study were to measure the quality of all strains in the homozygous yeast deletion library (without
the hassle of reconstructing them). This could allow to identify strains that have non-desired genetic
regulations. Another useful experiment would be to compare the phenotype of each strain, in the pooled
assay, and in competition with the wild-type, for few conditions. This way one could identify the strains
that are especially advantaged/disadvantaged by interactions with other strains in the pool, such as the
vhr1 mutant.

Direct correlations of BarSeq data to other types of data may fail due to reasons cited above. For this
reason, it may be better to trim datasets from BarSeq, in order to keep a subset of high-quality mutants
for which correlations to other datasets  would be more meaningful.  If a comprehensive list  of the
quality  of  all  mutants  was  available,  only  mutants  with  the  highest  quality  could  be  kept  for
comparisons with other datasets. In addition, one should work with mutants that have an important
differential  in fitness between conditions of interest,  in order to have measures above the noise of
measurements. In my case, I could select only mutants that are AP between any of the 3 conditions (N,
S  and  NS6).  Since  an  important  number  of  mutants  should  be  kept  in  order  to  achieve  decent
correlations, it could be interesting to lower the threshold that I used to select AP mutants (there are
only 48 AP mutants in the salt experiment). Alternatively, I could keep only mutants that have fitness
differences  that  are  significantly  above  the  noise  between  at  least  two conditions.  Other  types  of
analysis  than  correlations  could  be  performed.  For  instance,  the  set  of  studied  mutants  could  be
stratified into 3 different groups: nonlinear winners, linear or nonlinear losers. A number of online
datasets could then be analyzed and specific enrichments within one group could be detected. 

Finally, the most promising approach to discover nonlinearity factors may be to do Pathway Analysis
(PA). PA has proven to be a successful way to give biological meaning to high-throughput data (García-
Campos et  al.,  2015). It  consists in determining if  certain pathways or functions are enriched in a
dataset.  PA can be performed with a great diversity of methods,  and using a large set  of Pathway
DataBases (PDB) (García-Campos et al., 2015). A pathway, in those databases, designate a group of
genes that are involved in the same function/process. The outcome of pathway analysis are functions or
biological processes that are enriched for the measured trait. This is much easier to interpret than a list
of unrelated single genes. In addition, experimental evolution studies showed that replicated evolved



lines have few chances to evolve mutations in the same individual genes, but high chances in the same
functional units (Lang and Desai, 2014; Tenaillon et al.,  2012). Thus, it  might be more relevant to
explore  genomics  data  at  the  level  of  pathways  or  functional  units.  Finally,  as  mentioned  above,
nonlinearity is condition dependent. This would fit well with various pathways that modulate linearity
of fitness in different conditions.

To conclude, once one or few factors that modulate linearity of fitness have been discovered, they
could be incorporated into my Generalized Linear Model. Those nonlinear rectifiers would increase the
ability of the model to predict fitness in fluctuating environments from fitness in steady conditions.
Importantly, some nonlinear rectifiers may be pleiotropic, while others may be specific to one periodic
condition.

            iii Linearity, homogeneity and additivity of fitness – towards novel
assays to detect environmental interactions?

In this  study, I used the expression “linearity of fitness” to describe mutants that have a fitness in
periodic  conditions  that  corresponds  to  the  weighted  average  of  their  fitness  in  steady conditions.
Linearity of fitness can give clues on the rate of environmental change until which the deleted gene
plays a role on fitness. However, to be linear a mathematical function must satisfy the conditions of
homogeneity and additivity (Fig I-V-C). I didn’t prove that my mutants are either homogeneous or
additive.  However,  I  considered  that  if  a  mutant  was  linear,  there  were  good  chances  that  both
conditions were satisfied. In the future, it could be interesting to develop experiments to test if linear
mutants are indeed both additive and homogeneous. In addition, it could be interesting to determine if
nonlinear mutants are nonlinear because they are non-homogeneous, non-additive, or both.  

Inhomogeneity indicates that the output does not increase monotonously and proportionally with time,
thus  that  there  is  a  time  x  environment  interaction.  There  are  plenty  of  ways  this  could  happen
biologically. For instance, there could be a certain lag time to initialize production and/or degradation
of the output. Or there could be genetic circuits that attenuate (negative feedback loop) or increase
(positive feedback loop) the output over time.  

In fact, we can already have an idea of the homogeneity of some mutants, by looking at the data from
my flow-cytometry experiments (submitted publication Sup Fig 2). We can see that 3 linear mutants
(glc8,  hda2 and bre3) seemed to have homogeneous growth (excepting hda2 in N). In contrast, most
transgressive winners had non-homogeneous and non-monotonous growth in the S condition (as shown
in Fig VI.1).  This is  a  good example of  the interaction between time and the environment:  the S
medium is toxic for those yeast strains only after one day of continuous exposure. Most nonlinear
losers (mot3, ylr407w, emp46, put4, cka2, nrg1) and nonlinear winners (rim21, yap3, rrt106) seemed to
have homogeneous growth in all conditions. Thus, the nonlinear fitness effect of nonlinear winners and
nonlinear losers may be explained by a non-additivity effects.

Additivity means that o(A+B) (the output of input A+B) is equal to o(A) + o(B). In fact, additivity of
fitness has been widely studied in biology through genetic interactions assays (section 1-I-A), where
the inputs are mutation of gene A and mutation of gene B and the output is fitness. This revealed to be a



highly informative approach to determine if two genes have similar functions, or are part of the same
pathway or not. In the case of fluctuating environments, the property of additivity is respected if: o(A
then B) = o(B then A) = o(A) + o(B). In this case the inputs A and B are the growth media, and the
output is fitness. Let’s consider an AP mutant such that: o(A) > 1 > o(B). If o(A then B) > o(A) + o(B)
> o(B then A), it could mean that the first environment decides the growth strategy the mutant commits
to. That is either fast growth if environment A comes first, or stress responses if environment B comes
first. By analogy to the term of “genetic interaction”, we could say that an environmental interaction, or
an environment x environment interaction has been detected. Another type of environmental interaction
is if o(A then B) = o(B then A) < o(A) + o(B). In this case the successions of the two environments is
costly for the fitness of the mutant. This could be due to molecular factors that commits in opposite
directions  in  both  environments,  hence  a  non-productive  result  when  those  environments  occurs
successively.

Finally,  other  factors  may  introduce  nonlinearities  in  fluctuating  environments.  For  instance,
mechanisms of molecular memory of stresses can introduce nonlinearities starting from the second
cycle of the periodic fluctuations. Those could as well be predictive factors for determining fitness in
periodic stress from fitness in steady conditions.



5 Conclusions

To conclude, I found that a loss of environmental sensitivity is an adaptive strategy in periodic stress.
This was unexpected, as fluctuating environments are often assumed to favor more plastic strategies
such as bet-hedging or generalism. This result could be driven by the mildness of the stress that was
applied periodically. In addition, I found that fitness in periodic conditions could often not be predicted
from fitness in steady conditions (i.e. nonlinear fitness). For instance, some mutants involved in the
same  pathways  and  with  similar  growth  in  steady  conditions  had  varying  growth  in  fluctuating
conditions. Interestingly, some mutants had very high fitness at short periods, and very low fitness at
long periods. This behavior likely reflects a buffering of the stress at short periods, and a breakdown of
the cells at longer periods. Finally, many mutants had a higher competitive growth in periodic stress
than in steady conditions. Some of the most extreme mutants might mediate this effect by perturbed
mitochondrial regulations. To support this hypothesis, a complementation assay in a tom7 mutant strain
succeeded in removing its high competitive growth phenotype in fluctuating environment. 

While many theoretical studies proposed strategies of adaptation in fluctuating environments, very few
experimental  studies were performed.  My results  showed that a  strategy that is  usually  considered
better for growth in steady conditions – a loss of environmental sensitivity – can, in fact, be even more
beneficial  in  certain  fluctuating  environments.  I  also  found  that  fast  fluctuating  environments  can
increase the genetic variance in fitness, as compared to steady environments. Finally, I found numerous
differences in the linearity of fitness in various mutants, which suggests a wild diversity in the speed at
which different genes influence fitness in fluctuating conditions. 

Future research could be aimed at discovering the factors that underlie nonlinearities in fitness, in a
condition-specific or pleiotropic manner. Improving our predictive power to predict fitness in changing
environments would translate in a better understanding of the dynamics of actions of genes within the
cell,  but  also  of  the  dynamics  of  stress  responses.  The  nonlinear  genome  x  environment  x  time
interactions that occurs within cells have rarely been studied, and go a step further to mimicking natural
environments. Similarly, novel assays could be developed to characterize the impact on fitness of yeast
genes in single environments at different time points (time x environment interaction), or in pairs of
two environments (environment x environment interaction).

During my PhD, I had the chance to work with a Yeast Deletion library, that allowed me to easily
screen most yeast genes. However, BarSeq assays have some drawbacks, which render the analysis of
results  less  straightforward.  In  this  respect,  quality  control  studies  aiming  at  identifying  biases  of
BarSeq  studies  using  Yeast  Deletion  Libraries  could  be  highly  valuable  for  the  community.
Alternatively other types of yeast libraries may be constructed in the future. For instance, a Cre-Lox
library where all genes would be mutated upon addition of a chemical, would reduce the number of
secondary mutations at the moment where the experiment is performed. It could also be interesting to
generate libraries with higher genome saturation, such as mutation of most of the yeast base pairs (one
barcode and one mutation per strain), in order to test various levels of expression for each gene.

Finally, now that a set of mutants with various growth behavior in fluctuating environments have been
identified,  microfluidic  approaches  could  help  unravel  the  mechanisms  that  underlie  these  growth



effects. For instance, such studies could use reporter genes to measure the impact of long-lived proteins
on fitness  in  changing environments  (i.e.  memory effect).  One could  also  determine  the  phase  of
growth were a mutant has a growth advantage by measuring the lag phase and exponential phase of
growth after  each  new environment.  Finally,  mutants  with  different  strategies  of  growth  could  be
identified and grown in various fluctuating environmental conditions. This would allow to test different
theories about fitness in fluctuating conditions. 
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Résumé de chaque partie en Français

1. Introduction

1-I. Génétique de la levure
La levure est un organisme modèle très répandu du fait de sa similarité avec les cellules humaines et de
la  simplicité  et  puissance  des  expériences  réalisées  avec  cet  organisme  unicellulaire.  Un  certain
nombres  d’outils  permettent  d’étudier  les  gènes  de  la  levure.  Notamment,  plusieurs  banques  de
délétions systématiques (Yeast Deletion Library) ont été créées. Celles-ci contiennent des milliers de
souches (haploïdes ou diploïdes) dans lequel un gène a été supprimé ou atténué. 

1-II. Adaptation a un seul changement environnemental
Lorsqu’ils  sont  confronté à  de nouveaux environnements,  les  organismes s’adaptent.  Ce processus
d’adaptation peut être rapide,  par  un ajustement physiologique du métabolisme.  Ou bien long, par
l’apparition successive d’organismes avec des mutation bénéfiques, c.a.d. qui leur donnent un avantage
sélectif.  Pour  les  organismes  unicellulaires,  cet  avantage  sélectif  est  mesuré  par  la  prolifération
cellulaire (fitness) d’une souche dans un environnement donné. La baisse des coûts du séquençage a
permit de séquencer des génomes entiers (Whole Genome Sequencing) avant et après sélection dans un
environnement donné afin d’identifier les mutations bénéfiques.

1-III. Adaptation a des environnements fluctuants  
Dans  la  nature,  les  organismes  sont  confrontés  à  des  environnements  qui  fluctuent.  Une  stratégie
évolutive très répandues pour faire face aux environnements fluctuants est la répartition des risques
(bet-hedging). Pour un organisme, cette stratégie consiste à minimiser ses chances d’extinctions en
réduisant le coût sélectif des environnements défavorables, au détriment d’une fitness moins élevés
dans certains environnements. 
Par  ailleurs,  un  facteur  important  pour  la  survie  des  espèces  unicellulaires  en  environnements
changeants est la mémoire des événements passés. Ainsi des mécanismes moléculaires permettent aux
levures de garder en mémoire l’apparition d’un environnement stressant, ceci afin de réagir plus vite
lors de la prochaine confrontation avec cet environnement. L’anticipation cellulaire, via l’expression de
gènes en anticipation d’un potentiel future stress, pourrait également être un facteur important pour la
survie en environnements fluctuants.

1-IV. Des fluctuations artificielles afin de caractériser des dynamiques biologiques
Un certains  nombres  d’études  ont  cultivés  des  drosophiles  en  conditions  statiques  ou  hétérogènes
pendant des centaines de générations. Malgré des résultats contrastés, plusieurs études ont montré que
la variance génétique, et donc la vitesse d’adaptation, était plus élevée en conditions dynamiques. 
Les  méthodes  d’identification des  systèmes (SI)  s’appliquent  sur  des  systèmes linéaires,  c.a.d.  des
systèmes qui respectent les propriétés d’homogénéité (pour une fonction f : f(A * α) = α * f(A)) et
d’additivité (f(A) + f(B) = f(A+B)). Elles consistent à stimuler périodiquement un système afin de
déterminer son comportement entrées-sorties. Une poignée d’études ont appliquées les méthodes de SI



sur la levure, afin de caractériser les dynamiques d’actions de certains réseaux biologiques bien connus
(Hog, Gal). Ainsi ces études ont montré que le réseau de réponse au stress hyper-osmotique (HOG) a
une plus grande réactivité que le réseau de métabolisme du galactose.

1-V. Génomique de la croissance en environnements fluctuants periodiques
Faire pousser des microbes dans des environnements fluctuants de manière periodique a permit de
révéler plusieurs phénomènes tels que: la mémoire de l'adaptation, l'amplification du temps de latence
(lag  time)  pour  l'adaptation  a  un  environnement,  ou des  stratégies  de  répartition  des  risques  (bet-
hedging). Mon projet a consisté à mesurer la croissance (fitness) d'une banque de délétion de levures
homozygote en conditions de fluctuation environnementales périodiques, mais également en conditions
statiques. L'objectif principal était de déterminer si certains gènes sont avantageux et/ou désavantageux
en conditions dynamiques. Par ailleurs, une autre objectif était de déterminer si la fitness en conditions
dynamiques peut être prédite par la fitness en conditions statiques. 

2. Méthodes
Description de méthodes non utilisées dans la publications soumise.

3 Résultats

    3-I. Publication Soumise
 La banque de délétion a été cultivée en conditions de léger stress salin périodique, avec 5 périodes de
fluctuations (de 6h à 48h) et dans deux conditions statiques (milieu salin ou standard). Plus de la moitié
des mutants avaient une fitness non prédictible en conditions fluctuantes, dont la plupart avaient une
fitness plus haute qu'attendue en environnements dynamiques. Les mutants avec des fitness les plus
inattendues en conditions périodiques étaient des mutants pour des gènes impliqués dans des fonctions
variées.  Cependant  un  enrichissement  fut  observe  pour  des  gènes  impliqué  dans  la  régulation
transcriptionnelle, la réponse au stress, et le stress osmotique. Deux mutants ont vu leur avantage en
environnement fluctuant disparaître après l'insertion du gène supprimé à un autre locus, ce qui valide
que la fonction du gène est importante pour ce phénotype. Les gènes concernés sont: TOM7, un gène
important  pour  la  biogenèse  du  complexe  Tom  qui  régule  l'importation  de  protéines  dans  les
mitochondries, et PDE2, la principale phospho-diesterase chez la levure qui contrôle le taux d'AMP
cyclique et donc l'activité de la protéine kinase A (PKA). 
    
    3-II. Résumé du projet
Le projet avait deux étapes expérimentales, avec tout d’abord un criblage a haut débit d'une banque de
délétion homozygote par  le  biais  de la  technique de BarSeq.  Cette  technique,  à fort  multiplexage,
consiste a séquencer le code barre unique de chaque mutant afin de déterminer son abondance dans une
population de mutants cultivés ensemble. La deuxième étape consistait a mettre en compétition des
souches mutantes d’intérêt avec une souche sauvage et de mesurer la croissance de ces souches via un
cytomètre en flux.  Cette  expérience est  plus  précise  que  le  séquençage et  a  permit  de valider  les
résultats  génomiques.  Si  pour  un  mutant,  la  fitness  en  condition  périodiques  est  la  moyenne
géométrique de sa fitness en conditions statiques, alors ce mutant est désigné comme étant linéaire.
Sinon celui-ci est non-linéaire. 
 



    3-III. Quatre cribles génomiques
L'expérience a été répété dans 3 autre types de milieux fluctuants (fluctuations en sodium métabisulfite,
glucose  et  méthionine)  et  à  d'autres  périodes  de  fluctuations  (de  6h a  60h).  Différentes  étapes  de
normalisation et de contrôles qualités ont été appliqué. Deux rondes de séquençages ont été effectuées
afin d'identifier des mutants avec des effets subtils. Un Modèle Linéaire Généralisé (GLM) a été mis au
point afin de d'identifier les mutants non-linéaires. Un fort enrichissement en mutants non-linéaire a été
observé  pour  les  périodes  les  plus  courtes,  uniquement  pour  l'expérience  de  fluctuations  salines.
Certains mutants ont montre un phénotype intéressant en conditions fluctuantes, tel que: une fitness
plus basse qu'attendue aux fluctuations rapides, une fitness haute aux fluctuations rapides et basses aux
fluctuations  lentes,  ou  un  fitness  similaire  dans  différentes  paires  d'environnements  statiques  mais
différentes en conditions fluctuantes.
 
     3-IV.   Crible  secondaire:  mesures  de  mutants  individuels  en  stress  salin
périodique
Des expériences  utilisant  la  cytométrie  en flux ont  permit  de détailler  l’avantage de croissance de
nombreux mutants observé en fluctuations salines. Ces expériences suggèrent que cet avantage est un
avantage relatif et non absolu, ou alors un avantage absolu léger. Autrement dit, ces mutants ont une
croissance plus élevée en environnement standard qu’en environnement fluctuant, cependant ils ont une
croissance plus élevé en environnements fluctuants que la souche sauvage. Par ailleurs, l'avantage des
mutants pde2 et tom7 en fluctuations saline n'était pas systématique lorsque la composition des milieux
fluctuants variait.
 
    3-V. Analyse de données de co-fitness pour grouper des mutants avec des profiles
phénotypiques similaires
Des études ont exposé les banques de délétions à des milliers de petites molécules et ont mesuré leur
croissance.  Les  mutants  qui  ont  un  comportement  similaire  dans  un  grand  nombre  de  conditions
(mesuré par la corrélation des valeurs de fitness, la co-fitness) sont mutants pour des gènes souvent
impliqués  dans  des  fonctions  similaires.  J'ai  analysé  ces  jeux de  données  publiés  afin  de  faire  de
l'inférence fonctionnelle pour les mutants avec la plus grande non-linéarité de la fitness. La plupart des
mutants avec les plus grandes valeurs de non-linéarité de la fitness étaient fortement corrélés entre eux,
avec plusieurs groupes distincts de mutants corrélés. Le fonction commune des mutants dans chaque
groupe, si elle existe, reste largement a élucider. Cependant, un de ces groupes pourrait regrouper des
mutants  pour  des  gènes  impliqués  dans  les  mitochondries.  Un autre  groupe semble  regrouper  des
mutants pour des gènes partageant une localisation proche dans le génome.
 
    3-VI.  Déviations entre la fitness attendue et mesurée: coûts et bénéfices d'ignorer
le stress environnemental
De manière intéressante un certain nombre de mutant non-linéaires présentaient une croissance élevées
en condition saline après 1 jour, avant de voir leur croissance diminuer fortement par la suite. Cet effet
suggère que ces mutants ignore les signaux indiquant un changement d'environnement, et ne lancent
pas les voies de réponses au stress salin.



4. Discussion

    4-I.  L'insensibilité  environnementale  peut  être une stratégie  d'adaptation en
stress salin periodique artificiel
Une adaptation rapide à un nouvel environnement n'est pas toujours bénéfique; notamment si ce nouvel
environnement disparaît rapidement. Mes résultats suggèrent qu'ignorer le stress salin peut être une
stratégie efficace lorsque l'environnement change rapidement. 

    4-II. Une qualité de données faible dans les autres expériences empêchent de tirer
des  conclusions  sur  les  principes  généraux  de  la  fitness  en  environnements
périodiques
Mon projet avait deux objectifs principaux: identifier des gènes avec une fitness fortement non-linéaire,
et déterminer le niveau de linéarité de la fitness au niveau génomique. En conditions salines, un grand
nombre de mutants ont une fitness non-linéaire. Il est difficile de comparer ces résultats avec les autres
type de fluctuations de milieux testés car la qualité de données était sous-optimale (expériences en
méthionine  et  glucose)  ou  bien  le  stress  utilisé  était  un  peu  trop  spécifique  à  certains  fonction
cellulaires  et  ne  modulait  pas  la  fitness  d’un  grand  nombre  de  mutants  (expérience  en  sodium
métabisulfite).

    4-III.  Hypothèses pour expliquer le comportement de certains mutants non-
linéaires
Différents mécanismes sont proposé pour expliquer le comportement de certains mutants non-linéaires.
Une hypothèse proposée est qu'une réduction de la respiration cellulaire pourrait être avantageuse en
fluctuations salines périodiques. Plusieurs mutants non-linéaires ont des gènes supprimé qui codent
pour des protéines avec une courte ou longue demi-vie. Des hypothèses sont proposées afin d’expliquer
cette observation.

    4-IV. Perspectives
Ce projet a permit d'identifier différents mutants avec une fitness fortement non-linéaire en fluctuations
salines.  De  futures  études  en  cellules-uniques  permettront  de  caractériser  plus  finement  le
comportement  de  ces  mutants,  dont  notamment :  leurs  stratégies  d'adaptations,  ainsi  que  leur
implication dans des phénomènes de mémoire du stress. Des directions de recherches pour identifier
des facteurs qui modulent la non-linéarité de la fitness sont proposées. Finalement, de nouveaux types
d'expériences sont proposées afin d'étudier les interactions entre les gènes, l'environnement et le temps.

5. Conclusions
Pour conclure, de nombreux mutants non-linéaire ont été identifiés en fluctuations salines. De manière
inattendue, ignorer la présence du stress peut être une stratégie avantageuse pour les levures dans ces
conditions  artificielles.  Ce  crible  à  haut  débit  ouvre  la  porte  a  plusieurs  questions  mécanistiques.
Notamment, des études en cellules uniques pourraient permettre de mieux caractériser certains mutants
non-linéaires, et les facteurs qui modulent la non-linéarité de la fitness.
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