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eux il s'agissait toujours de moments de rencontres et de convivialité qui resteront des souvenirs forts. Il s'agit notamment de
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La théorie de Hodge mixte de Deligne fournit des structures supplémentaires sur les groupes de cohomologie des variétés algébriques complexes. Depuis, des structures de Hodge mixtes ont été construites sur les groupes d'homotopie rationnels de telles variétés par Morgan et Hain. Dans cette lignée, nous construisons des structures de Hodge mixtes sur des invariants associés aux représentations linéaires des groupes fondamentaux des variétés algébriques complexes lisses. Le point de départ est la théorie de Goldman et Millson qui relie la théorie des déformations de telles représentations à la théorie des déformations via les algèbres de Lie différentielles graduées. Ceci a été relu par P. Eyssidieux et C. Simpson dans le cas des variétés kählériennes compactes. Dans le cas non compact, et pour des représentations d'image finie, Kapovich et Millson ont construit seulement des graduations non canoniques. Pour construire des structures de Hodge mixtes dans le cas non compact et l'unifier avec le cas compact traité par Eyssidieux-Simpson, nous ré-écrivons la théorie de Goldman-Millson classique en utilisant des idées plus modernes de la théorie des déformations dérivée et une construction d'algèbres L ∞ due à Fiorenza et Manetti. Notre structure de Hodge mixte provient alors directement du H 0 d'un complexe de Hodge mixte explicite, de façon similaire à la méthode de Hain pour le groupe fondamental, et dont la fonctorialité apparaît clairement.
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Introduction (version française) A Contexte

A.1 Théorie de Hodge

La théorie de Hodge a pour but l'étude des structures additionnelles présentes sur les invariants topologiques usuels des variétés kählériennes compactes et des variétés algébriques complexes reflétant leur nature analytique ou algébrique complexe. Le premier exemple d'interaction entre la topologie algébrique et la structure complexe de telles variétés a été étudié par Hodge. Théorème (Hodge). Si X est une variété kählérienne compacte, sa cohomologie à coefficients complexes se décompose en chaque degré n en une somme directe

H n (X, C) = p+q=n H p,q
où la conjugaison complexe échange H p,q (X) et H q,p (X).

Avec ce théorème on obtient facilement des restrictions sur le topologie possible d'une variété kählérienne compacte. Par exemple, la décomposition de Hodge en degré 1 implique que la dimension de H 1 (X, C) est toujours paire. Puisque ce dernier est aussi égal à H 1 (X, C) = Hom(π 1 (X), C) on en déduit que Z ne peut jamais être le groupe fondamental π 1 (X) d'une telle variété X. La question de décrire tous les groupes qui peuvent apparaître comme groupes fondamentaux de variétés kählériennes compactes (resp. de variétés complexes projectives lisses, resp. de variétés algébriques complexes lisses quasi-projectives) est connue sous le nom de problème de Serre. Il est toujours largement ouvert, bien que de nombreux types de restrictions soient connus. La plus simple est que ces groupes doivent être finiment présentables. Mais pour les variétés non compactes, au delà de la présentabilité finie, aucune de ces restrictions n'est aussi facile à décrire que pour les variétés compactes. Cette structure sur la cohomologie a été abstraite en la notion de structure de Hodge. Depuis, les structures de Hodge ont été reconnues comme un outil utile pour étudier la topologie des variétés complexes et leurs modules. Nous nous référons aux livres de Voisin [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés[END_REF] et Peters-Steenbrink [START_REF] Peters | Mixed Hodge structures[END_REF] pour la théorie de Hodge, et à [ABC + 96] pour le problème de Serre.

A.2 Théorie de Hodge mixte

La notion de structure de Hodge pure a ensuite été généralisée par P. Deligne [START_REF] Deligne | Théorie de Hodge, I[END_REF], [START_REF]Théorie de Hodge, II[END_REF], [START_REF]Théorie de Hodge, III[END_REF]. Il montre que la cohomologie d'une variété non compacte se comporte comme une extension itérée de groupes de cohomologie de variétés compactes, provenant d'une compactification par un diviseur à croisements normaux, et définit ceci comme étant une structure de Hodge mixte. Définition (Def. 2.15). Une structure de Hodge mixte sur un espace vectoriel de dimension finie K sur un sous-corps k ⊂ R est la donnée d'une filtration croissante W de K appelée la filtration par le poids et d'une filtration décroissante F de K C appelée la filtration de Hodge telles que pour tout k ∈ Z la partie graduée de poids k

Gr W k (K) := W k K/W k-1 K
avec la filtration induite F sur C forme une structure de Hodge pure de poids k, i.e. se décompose en une somme directe de termes K p,q pour p + q = k avec la conjugaison complexe qui échange K p,q et K q,p et avec F qui filtre par rapport à p.

Depuis, des structures de Hodge mixtes ont été construites sur beaucoup d'autres invariants topologiques des variétés algébriques et ont été utilisées pour restreindre leur topologie. Toutes ces méthodes utilisent la théorie de l'homotopie rationnelle pour extraire des informations sur le type d'homotopie d'une variété à partir de son algèbre de formes différentielles. Voir le livre de Griffiths-Morgan [START_REF] Griffiths | Rational homotopy theory and differential forms[END_REF] pour ces questions. Pour travailler sur le corps des rationnels on doit construire une algèbre différentielle graduée commutative définie sur Q qui calcule l'algèbre de cohomologie à coefficients rationnels d'une variété donnée. Cela n'est pas facile car sur le complexe de cochaînes singulières usuel le cup-produit n'est pas commutatif.

Pour des raisons de théorie de Hodge, il est montré par Deligne, Griffiths, Morgan et Sullivan [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] que le type d'homotopie réelle d'une variété kählérienne compacte est assez simple : le groupe fondamental réel est déterminé par l'algèbre de cohomologie.

En combinant ces idées d'homotopie rationnelle et de théorie de Hodge mixte, J. Morgan [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF] a construit des structures de Hodge mixtes sur les groupes d'homotopie d'une variété algébrique lisse complexe. Ceci peut être utilisé pour exhiber le premier exemple d'un groupe de présentation finie qui n'est pas le groupe fondamental d'une variété algébrique, un groupe avec deux générateurs x, y et une relation donnée par un commutateur itéré

[x, [x, [• • • , [x, y] • • • ]]]
de longueur au moins cinq. Pour un tel commutateur de longueur au moins trois, ceci n'est pas le groupe fondamental d'une variété kählérienne compacte par [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF]. Cependant la construction de Morgan n'est pas complètement fonctorielle et a été suivie d'une correction [START_REF]The algebraic topology of smooth algebraic varieties[END_REF].

Une autre approche a été donnée par R. Hain [START_REF] Hain | The de Rham homotopy theory of complex algebraic varieties I[END_REF] utilisant la construction d'un certain complexe de cochaînes dont la cohomologie donne directement et fonctoriellement les groupes d'homotopie rationnels. Pour construire des structures de Hodge mixtes sur sa cohomologie, il suffit de construire sur ce complexe une structure de diagramme de Hodge mixte (voir la section 2.1.2 et la Definition 2.27) et de vérifier les axiomes correspondant.

Ces méthodes ont aussi été revues par V. Navarro Aznar [START_REF] Aznar | Sur la théorie de Hodge-Deligne[END_REF]. Il construit des diagrammes de Hodge mixtes fonctoriels qui calculent la cohomologie d'une variété algébrique complexe. Ceci doit être associé à des méthodes d'algèbre homotopique pour comprendre la catégorie homotopique des diagrammes de Hodge mixtes et améliorer la théorie de Deligne, Morgan et Hain. Voir par exemple le travail de J. Cirici [START_REF] Cirici | Cofibrant models of diagrams: mixed Hodge structures in rational homotopy[END_REF] et ses collaborateurs.

Dans cette lignée, dans cette thèse nous étudions la théorie de Hodge mixte des représentations linéaires des groupes fondamentaux des variétés kählériennes compactes et des variétés algébriques.

A.3 La théorie de Goldman et Millson

Fixons une variété complexe X qui est soit kählérienne compacte, soit algébrique lisse. Dans les deux cas son groupe fondamental est finiment présentable. Fixons un point base x ∈ X. Soit G un groupe algébrique linéaire sur un sous-corps k ⊂ R d'algèbre de Lie g. Définition (Sect. 1.1.2 et Thm. 1.26). L'ensemble des représentations de π 1 (X, x) dans G(k), i.e. de morphismes de groupes ρ : π 1 (X, x) -→ G(k), a la structure d'ensemble des points sur k d'un schéma affine qu'on note Hom(π 1 (X, x), G). On l'appelle la variété des représentations de π 1 (X, x) dans G. On note O ρ le complété de l'anneau local de la variété des représentations en un point ρ.

L'anneau local O ρ sera l'un de nos principaux objets d'étude. C'est en effet l'espace de module formel pour les déformations infinitésimales de ρ et son type de singularité décrit les possibilités de déformer des représentations et d'étendre des déformations données. Son étude a été faite par Goldman et Millson [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF] quand X est une variété kählérienne compacte.

Théorème (Goldman-Millson). Si X est une variété kählérienne compacte et ρ : π 1 (X, x) → G(R) a son image contenue dans un sous-groupe compact alors O ρ a une présentation quadratique.

Ceci peut être vu comme une version de [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] pour les représentations du groupe fondamental. Le résultat exprime que la variété des représentations a des singularités assez simples en ρ et donc que le groupe fondamental ne peut pas être trop compliqué.

Décrivons brièvement les méthodes de preuve. À ρ est associé, via la monodromie de sa représentation adjointe, un système local d'algèbres de Lie de fibre g. L'algèbre des formes différentielles réelles à valeurs dans ce système local est une algèbre de Lie différentielle graduée (Definition 1.13) qu'on note L. La construction principale relie le foncteur des déformations associé à ρ au foncteur des déformations associé à L. Définition (Def. 1.17). Le foncteur de déformation d'une algèbre de Lie DG L sur un corps k de caractéristique zéro est le foncteur Def L donnée pour une algèbre locale artinienne (A, m A ) sur k par le quotient de l'ensemble des éléments de Maurer-Cartan de

L ⊗ m A MC(L ⊗ m A ) := x ∈ L 1 ⊗ m A d(x) + 1 2 [x,
x] = 0 par l'action de L 0 ⊗ m A par transformations de jauge (Definition 1.16).

Le principe fondamental de la théorie des déformations énonce que tout problème de déformation est contrôlé par une algèbre de Lie DG (i.e. le foncteur de déformation associé est isomorphe à un foncteur Def L comme ci-dessus) et que deux algèbres de Lie DG quasi-isomorphes ont des foncteurs de déformation isomorphes. Ceci a été inspiré par une lettre de Deligne [Del86] aux auteurs.

Dans la situation de Goldman-Millson, par la théorie de Hodge, L est quasi-isomorphe à une algèbre de Lie DG avec différentielle nulle -cette propriété, appelée formalité, est la même qu'utilisée dans [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] -pour laquelle le foncteur de déformation prend une forme simplifiée et permet de donner une description simple de O ρ .

Par formalité encore, en utilisant la théorie de Hodge non abélienne, le théorème de Goldman-Millson a été étendu par C. Simpson [Sim92, § 2] au cas des représentations complexes semi-simples.

Ensuite, la description de O ρ pour des cas de représentations de groupes fondamentaux de variétés algébriques non compactes a été effectuée par Kapovich et Millson [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF].

Théorème (Kapovich-Millson). Si X est une variété algébrique lisse et ρ : π 1 (X, x) → G(R) est d'image finie, alors O ρ a une présentation homogène à poids avec des générateurs de poids 1, 2 et des relations de poids 2, 3, 4.

Ceci est obtenu en étudiant la théorie de Hodge mixte de L : sa cohomologie a une structure de Hodge mixte avec seuls poids possibles 1, 2 sur H 1 et 2, 3, 4 sur H 2 . Au lieu d'utiliser la formalité, ils utilisent le travail de Morgan et remplacent L à quasiisomorphisme près par une algèbre de Lie DG M portant une structure de Hodge mixte et étudient les conséquence de la graduation par le poids sur le foncteur de déformation de M .

Dans leur article, ils obtiennent de nouveaux exemples de groupes de présentation finie qui ne sont pas des groupes fondamentaux de variétés algébriques complexes lisses, par une étude complète de leur combinatoire et de leurs représentations finies.

Le travail de Goldman-Millson a été revu par P. Eyssidieux et C. Simpson [START_REF] Eyssidieux | Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures[END_REF] et interprété en termes de théorie de Hodge mixte. Supposons que ρ soit la monodromie d'une variation de structure de Hodge (Definition 3.1 et Definition 3.8). A l'intérieur de Hom(π 1 (X, x), G) se trouve l'orbite Ω ρ de ρ sous l'action de G par conjugaison, qui est un sous-schéma réduit. Son germe formel en ρ est un schéma formel Ω ρ défini par un idéal j ⊂ O ρ .

Théorème (Eyssidieux-Simpson). Si X est une variété kählérienne compacte et ρ est la monodromie d'une variation de structure de Hodge complexe polarisée sur X, alors O ρ a une structure de Hodge mixte complexe fonctorielle. La filtration par le poids est indexée en degré négatifs et est donnée par les puissances de l'idéal j. La partie graduée de poids zéro est O ρ /j, l'anneau local formel de Ω ρ .

Dans leur article, ceci est utilisé pour construire des variations de structure de Hodge mixte intéressantes sur X. C'est aussi un outil important dans la preuve de la conjecture de Shafarevich [START_REF] Eyssidieux | Linear Shafarevich conjecture[END_REF] sur les revêtements universels des variétés projectives lisses dont le groupe fondamental admet une représentation linéaire fidèle. De telles structures de Hodge mixtes associées à une représentation du groupe fondamental de X ont aussi été construites par Hain dans [START_REF]The Hodge de Rham theory of relative Malcev completion[END_REF].

A.4 Théorie des déformations dérivée

L'utilisation des algèbres de Lie DG en théorie des déformations, et la philosophie selon laquelle en caractéristique zéro, tout problème de déformation est contrôlé par une algèbre de Lie DG, s'est beaucoup développée depuis le travail original de Goldman-Millson et la lettre de Deligne. D'une part cela a été appliqué à beaucoup d'autres situations, voir par exemple les notes de Kontsevich [START_REF] Kontsevich | Topics in algebra, deformation theory[END_REF]. D'autre part, plusieurs personnes ont construit une équivalence entre la catégorie des algèbres de Lie DG à quasi-isomorphismes près et une catégorie à définir des problèmes de déformation. Il faut citer les articles originaux de Manetti [START_REF]Extended deformation functors[END_REF], Hinich [START_REF] Hinich | DG coalgebras as formal stacks[END_REF], le travail de Pridham [START_REF] Pridham | Unifying derived deformation theories[END_REF] qui unifie les deux, le tout culminant dans sa forme la plus générale dans la théorie de Lurie [START_REF] Lurie | Formal moduli problems[END_REF]. Ainsi cette philosophie est maintenant appelée le théorème de Pridham-Lurie. On se réfère aussi aux notes de B. Toën [START_REF] Toën | Problèmes de modules formels. Exposé 1111[END_REF].

Il est donc très intéressant de relire la théorie originale de Goldman et Millson à l'aide de ces outils nouveaux et puissants. Le fait particulièrement important pour nous est que le foncteur de déformation d'une algèbre de Lie DG L est représenté (sous l'hypothèse que H n (L) = 0 pour n ≤ 0) par une algèbre locale complète qui est obtenue comme le H 0 d'une certain complexe très explicite C (L), fonctoriel, invariant par quasi-isomorphismes. On l'appelle aussi la construction bar sur L.

Cette construction n'est pas possible à comprendre sans en appeler à la théorie des déformations dérivée. Cela nécessite au moins d'étendre les foncteurs de déformation depuis les algèbres artiniennes vers certaines catégories d'anneaux artiniens DG, à valeurs non plus dans les ensembles mais dans les groupoïdes ou dans les ensembles simpliciaux. Ces idées apparaissent pour la première fois dans une lettre de Drinfeld [START_REF] Drinfeld | Letter to V. Schechtman[END_REF]. Ces principes n'étaient pas connus à l'époque du premier travail de Goldman et Millson. Encore une fois, par formalité, tout ceci se simplifie beaucoup quand on travaille dans le cas compact mais n'est pas du tout trivial dans le cas général.

De plus, d'autres outils ont été développés pour comprendre la catégorie homotopique des algèbres de Lie DG (c'est à dire la catégorie des algèbres de Lie DG à quasiisomorphismes près) : les algèbres L ∞ . Le bon cadre est la théorie des opérades pour laquelle on se réfère au livre de Loday-Valette [START_REF] Loday | Algebraic operads[END_REF].

Brièvement, les algèbres L ∞ sont des versions affaiblies des algèbres de Lie DG équipées d'opérations supérieures et dans lesquelles l'identité de Jacobi a lieu seulement à homotopie près donnée par les opérations supérieures, satisfaisant elles-mêmes des lois de cohérence supérieures. Les algèbres de Lie DG sont exactement les algèbres L ∞ avec les opérations supérieures nulles. Puisque les algèbres L ∞ ont naturellement un foncteur de déformation associé qui étend celui des algèbres de Lie DG et qui est invariant par quasi-isomorphismes, et puisqu'un quasi-isomorphisme entre algèbres L ∞ admet automatiquement un quasi-isomorphisme inverse, ceci forme une catégorie très pratique pour étudier la théorie des déformations.

Bien que l'on sache par la théorie très abstraite que tout problème de déformation est contrôlé par une algèbre de Lie DG, ce qui est compte est de trouver la bonne avec des bonnes propriétés qui permettent de mieux comprendre le problème de déformation donné. Puisque les algèbres L ∞ sont des objets plus fins, il se peut qu'un problème de déformation soit contrôlé plus naturellement par une algèbre L ∞ que par une algèbre de Lie DG. Beaucoup d'exemples de problèmes de déformation contrôlés par des algèbres L ∞ ont été étudiés par M. Manetti et ses collaborateurs et on renvoie aux notes [START_REF]Lectures on deformations of complex manifolds. Deformations from differential graded viewpoint[END_REF].

B Résultats B.1 Travail préliminaire

Notre premier travail préliminaire, qui est maintenant un article publié [START_REF] Lefèvre | A criterion for quadraticity of a representation of the fundamental group of an algebraic variety[END_REF], est reproduit dans l'appendice A.

Ceci concerne des cas particuliers du théorème de Kapovich-Millson où on trouve plus de restrictions sur les poids possibles sur O ρ de telle façon qu'il se comporte comme dans le cas compact, obtenu en analysant la preuve et d'où ces restrictions proviennent.

Théorème A (Thm. A.2). Soit X une variété complexe lisse quasi-projective et soit ρ : π 1 (X, x) → G(R) une représentation d'image finie. Supposons que le revêtement fini Y → X associé au sous-groupe Ker(ρ) ⊂ π 1 (X, x) ait une compactification lisse Y avec premier nombre de Betti b 1 (Y ) = 0. Alors O ρ a une présentation quadratique.

La motivation principale vient du cas des complémentaires d'arrangements projectifs d'hyperplans pour la représentation triviale, pour lequel cette notion est connue sous le nom de 1-formalité, voir [START_REF] Dimca | Topology and geometry of cohomology jump loci[END_REF], [START_REF] Papadima | Geometric and algebraic aspects of 1-formality[END_REF]. Ceci devrait aussi être relié à l'énoncé que la pureté impliqué la formalité, voir par exemple le travail [START_REF] Dupont | Purity, formality, and arrangement complements[END_REF] dont nous n'étions pas informés.

Dans ce même article on donne aussi des exemples où l'hypothèse du théorème s'applique pour toutes les représentations finies. On en trouve parmi les familles de variétés abéliennes, en lien avec les divers résultats de rigidité, et parmi les espaces hermitiens localement symétriques, en lien avec la propriété (T) de Kazhdan.

B.2 Résultat principal

Notre but principal est d'étendre le résultat d'Eyssidieux-Simpson au cas non compact, en construisant une structure de Hodge mixte fonctorielle sur O ρ et en retrouvant le résultat de Kapovich-Millson. Ceci amène plusieurs difficultés importantes. D'un côté le travail d'Eyssidieux-Simpson utilise fortement la géométrie kählérienne, les laplaciens pour les formes différentielles, la formalité, et est impossible à adapter directement au cas non compact. De l'autre côté le travail de Kapovich-Millson repose sur la théorie de Morgan qui utilise des modèles minimaux pour les diagrammes de Hodge mixtes et, même si on pourrait améliorer la graduation sur O ρ en une structure de Hodge mixte, celle-ci ne serait pas du tout fonctorielle et n'aurait pas le bon comportement.

On doit donc trouver une preuve complètement différente. Au passage, on souhaite que la structure de Hodge mixte sur O ρ provienne dans les deux cas directement et fonctoriellement d'un diagramme de Hodge mixte approprié dont la construction dépende de la situation géométrique. Donnons d'abord le résultat. Fixons un corps k qui est soit un sous-corps de R soit le corps C, nous permettant de parler en même temps des structures de Hodge mixtes usuelles et des structures de Hodge mixtes complexes. On rappelle que G est un groupe algébrique linéaire sur k. Théorème B (Théorème principal). Soit X une variété kählérienne compacte et soit ρ : π 1 (X, x) → G(k) la monodromie d'une variation de structure de Hodge polarisée définie sur k sur X. Alors il y a une structure de Hodge mixte fonctorielle définie sur k sur O ρ avec poids négatifs et dont la partie graduée de poids zéro est l'anneau local formel de l'orbite de ρ.

Si X est une variété complexe lisse quasi-projective et ρ : π 1 (X, x) → G(k) est une représentation d'image finie, alors O ρ a une structure de Hodge mixte fonctorielle à poids négatifs. Les poids induits sur l'espace cotangent sont -1, -2.

Pour le moment, il n'est pas prouvé que notre structure de Hodge mixte sur O ρ dans le cas compact est la même que celle construite par Eyssidieux-Simpson, bien qu'il y ait de fortes indications pour : elle se comporte de la même façon, a la même description sur l'espace cotangent, et la même partie graduée de poids zéro. Dans le cas non compact on ne retrouve pas complètement le résultat de Kapovich-Millson : la structure de Hodge mixte sur l'espace cotangent peut être scindée sur C et des éléments de base peuvent être relevés en des générateurs homogènes à poids de O ρ , retrouvant ainsi les générateurs de poids 1, 2, mais jusque là nous ne retrouvons pas les relations homogènes à poids avec nos méthodes. On aimerait les retrouver d'une façon canonique à partir d'un idéal de relations portant une structure de Hodge mixte avec les poids 2, 3, 4 et nous sommes dans l'incapacité d'obtenir ceci.

B.3 Plan de preuve

Indiquons maintenant les théorèmes principaux nécessaires à la preuve. Dans la théorie de Goldman-Millson l'algèbre de Lie DG contrôlante L est équipée d'une augmentation ε x : L → g qui est simplement l'évaluation des formes de degré zéro au point base x. Dans le travail d'Eyssidieux-Simpson est introduit un foncteur de déformation augmenté (Definition 1.21), qui est une petite variation du foncteur de déformation Def L , et il est expliqué qu'il s'agit du bon objet à considérer pour contrôler la théorie de déformations de ρ et pour comprendre son orbite.

Dans le cas compact, L est une algèbre de Lie DG de formes différentielles à coefficients dans une variation de structure de Hodge, donc par le travail de Zucker [START_REF] Zucker | Hodge theory with degenerating coefficients: L 2 cohomology in the Poincaré metric[END_REF] a une structure de diagramme de Hodge mixte d'algèbres de Lie. Dans la situation de Kapovich-Millson, L est obtenue à partir de l'algèbre des formes différentielles sur le revêtement fini correspondant à Ker(ρ), sur lequel la représentation tirée en arrière est triviale. Donc, en suivant leurs idées et en les ré-écrivant avec les constructions de diagrammes de Hodge mixtes fonctoriels de Navarro Aznar, on trouve encore un diagramme de Hodge mixte d'algèbres de Lie qui est quasi-isomorphe à L. Résumons les structures qu'on obtient par les situations géométriques.

Théorème C (Chapitre 3). Dans toutes les situations du théorème ci-dessus, la théorie des déformations de ρ est contrôlée par un diagramme de Hodge mixte augmenté d'algèbres de Lie (Definition 2.33 et Definition 2.37) qui est fonctoriel à quasi-isomorphisme près.

Puis on souhaite appliquer la construction bar appropriée provenant de la théorie des déformations dérivée à un tel diagramme L et montrer que ceci définit un diagramme de Hodge mixte. Ainsi on obtiendra une structure de Hodge mixte fonctorielle sur un objet qui représente le foncteur de déformation de L, qui par le lemme de Yoneda est canoniquement isomorphe à O ρ .

Cependant, malgré nos efforts, nous avons été dans l'incapacité d'accéder à O ρ en utilisant cette stratégie naïve puisqu'on doit réellement travailler avec L et son augmentation ε x . Les possibilités suivantes sont naturelles :

1. On peut travailler avec L tout entier puis plus tard essayer d'extraire l'information provenant de l'augmentation. Cependant L n'a pas H 0 (L) = 0 ce qui signifie que son foncteur de déformation n'est pas représentable. De plus, la construction bar ne se comporte pas bien si H 0 (L) = 0 (les éléments de degrés 0 de L produisent des éléments de degré négatif dans C (L)).

2. On peut travailler avec L := Ker(ε x ) ⊂ L. C'est bien une algèbre de Lie DG avec H 0 (L ) = 0. Mais ce n'est plus un diagramme de Hodge mixte, puisque les axiomes de diagrammes de Hodge mixtes sont très forts et on ne peut pas a priori y considérer des noyaux.

3. À la place, on peut travailler avec le cône de ε x . C'est l'opération naturelle dans les diagrammes de Hodge mixtes qui remplace le noyau et il a bien H 0 = 0, étant en fait quasi-isomorphe à L . Cependant ce n'est plus une algèbre de Lie DG.

La solution à ce problème, nous l'avons trouvée en travaillant avec des algèbres L ∞ . Le cône d'un morphisme entre algèbres de Lie DG a été étudié par Fiorenza-Manetti [START_REF] Fiorenza | L ∞ structures on mapping cones[END_REF]. Ils montrent que le cône a une structure naturelle d'algèbre L ∞ et décrivent le foncteur de déformation associé. Nous faisons la remarque très simple mais fondamentale (pour nous) que lorsqu'on l'applique à l'augmentation ε le foncteur de déformation associé est le même que le foncteur de déformation augmenté introduit indépendamment par Eyssidieux-Simpson. Ceci nous permet de mener à bien notre stratégie de preuve. Les opérations supérieures d'algèbre L ∞ sur le cône ont des formules algébriques très explicites et c'est un calcul direct de vérifier leur compatibilité avec la structure de diagramme de Hodge mixte. On appelle diagramme de Hodge mixte d'algèbres L ∞ l'objet qui en résulte. Puis on applique la construction bar (foncteur C ) au sens des algèbres L ∞ . Ceci donne naturellement une coalgèbre DG de laquelle on extrait (via son H 0 puis en dualisant) une algèbre locale complète qui, par les principes de théorie des déformations dérivée, représente le foncteur de déformation de l'algèbre L ∞ . Donc on doit montrer que C peut être appliqué au diagramme de Hodge mixte C et qu'on obtient un diagramme de Hodge mixte de coalgèbres. Ceci est très proche de la construction bar sur des diagrammes de Hodge mixtes (d'algèbres commutatives, ou de modules sur elles, avec beaucoup de variations) de Hain, utilisée dans [START_REF] Hain | The de Rham homotopy theory of complex algebraic varieties I[END_REF] et dans de nombreux autres articles.

Lemme

B.4 Perspectives

Notre stratégie de preuve a été développée avec l'objectif constant de séparer les constructions géométriques de diagrammes de Hodge mixtes et la machinerie algébrique qui nous donne la structure de Hodge mixte. Nous pensons fortement qu'elle nous aidera à construire une structure de Hodge mixte sur O ρ dans des cas non compacts plus généraux : quand ρ est la monodromie d'une variation de structure de Hodge mixte, et même quand X est singulière. Combiné avec une étude plus approfondie de théorie des groupes, ceci pourrait aboutir à des nouvelles restrictions sur le problème de Serre.

C Organisation du travail

C.1 Plan

Ce travail est organisé comme suit. On le divise en trois chapitres, chacun formant une partie de la preuve de notre Théorème B. Puisque le travail préliminaire est indépendant et est la reproduction d'un article publié, on le place en appendice A. Aussi, on reporte toutes les constructions géométriques au chapitre 3, développant notre machinerie d'abord au travers des chapitres 1 et 2. Donc, le chapitre 1 est centré sur la théorie de Goldman-Millson et la théorie des déformations mais sans théorie de Hodge. Dans sa première partie on revoit tout le matériel nécessaire pour comprendre proprement la théorie de Goldman-Millson, du point de vue classique. La section 1.1.1 est purement algébrique et catégorique. On y introduit soigneusement le foncteur de déformation augmenté d'une algèbre de Lie DG. Dans la section 1.1.2 on introduit la variété des représentations et son étude est reliée à des constructions géométriques. Dans la deuxième partie, on expose la théorie des algèbres L ∞ et les théorèmes de théorie des déformations dont on a besoin. Puisque ceci est technique et puisque nous avons besoin des détails, on dédie toute la section 1.2.1 à l'introduction des algèbres L ∞ . Puis dans la section 1.2.2 on décrit la structure d'algèbre L ∞ de Fiorenza-Manetti. Notre unique contribution est la très simple observation du Lemme D. Enfin dans la section 1.2.3 on étudie plus en détail le foncteur de déformation d'une algèbre L ∞ et on extrait de la littérature le théorème de pro-représentabilité qu'on veut appliquer.

Puis le chapitre 2 est dédié à la théorie de Hodge. Dans sa première partie on y expose soigneusement toutes les définitions dont on a besoin : les structures de Hodge mixtes dans la section 2.1.1, les diagrammes de Hodge mixtes dans la section 2.1.2. À chaque étape on montre comment ces définitions se comportent si on ne travaille pas seulement avec des espaces vectoriels mais avec d'autres types d'algèbres. La deuxième partie contient le coeur de ce travail. Dans la section 2.2.1 on donne la définition de diagramme de Hodge mixte d'algèbres L ∞ et on démontre le Théorème E. Dans la section 2.2.2 on démontre le Théorème F et on étudie cette construction.

Enfin dans le chapitre 3 on étudie beaucoup de situations géométriques différentes dans lesquelles on construit des diagrammes de Hodge mixtes augmentés d'algèbres de Lie contrôlants, démontrant le Théorème C. On sépare le cas compact et non compact. Dans le cas compact, pour une représentation à valeurs dans une variation de structure de Hodge réelle, une telle construction est immédiate. Elle sert donc de modèle de preuve et d'application de notre méthode et est écrite en détail dans la section 3.1.1. Il est ensuite facile d'adapter la méthode à plusieurs variations de ce cas, ce que nous faisons dans la section 3.1.2. De même dans le cas non compact, on prend pour modèle détaillé les représentations réelles, dans la section 3.2.1, et on y ajoute plus tard la structure rationnelle, section 3.2.2. Pour traiter du cas non compact on expose brièvement la construction de Navarro Aznar et on l'adapte à nos besoins.

C.2 Conventions et notations

Les variétés que nous étudions sont soit kählériennes compactes (ceci inclut la classe des variétés algébriques complexes lisses projectives) soit algébriques complexes lisses quasi-projectives. Elles sont bien entendu connexes. Ceci est le cadre naturel dans lequel la théorie de Hodge (resp. de Hodge mixte) s'applique le plus directement et où on peut directement citer la littérature existante.

On note toujours k un corps de caractéristique zéro. Dans les situations géométriques c'est la plupart du temps Q, R ou C.

On utilise partout l'abréviation DG pour différentiel gradué. Nos espaces vectoriels DG sur k sont aussi connus sous le nom de complexes de cochaînes. On note toujours la graduation par un indice en exposant (i.e. V = V n ) et la différentielle d est de degré +1 (i.e. d :

V n → V n+1 ).
On utilise le symbole pour les isomorphismes et ≈ pour les équivalences faibles (quasi-isomorphismes entre espaces vectoriels DG, équivalences de catégories ou de foncteurs vers les groupoïdes). Les catégories sont notées avec des lettres grasses, par exemple : Set, Alg k , DG-Vect k .

Introduction (English version)

A Context

A.1 Hodge theory

Hodge theory is concerned with the study of the additional structures on the usual topological invariants of compact Kähler manifolds and complex algebraic varieties reflecting their complex analytic and algebraic nature. The first example of interaction between the algebraic topology and the complex structure of such manifolds was studied by Hodge.

Theorem (Hodge). If X is a compact Kähler manifold, then its cohomology with complex coefficients decomposes in each degree n as a direct sum

H n (X, C) = p+q=n H p,q
with the complex conjugation exchanging H p,q (X) and H q,p (X).

From this theorem one obtains easily restrictions on the possible topology of a compact Kähler manifold. For example, the Hodge decomposition in degree 1 implies that the dimension of H 1 (X, C) is always even. Since this also equals

H 1 (X, C) = Hom(π 1 (X), C)
then Z can never be the fundamental group π 1 (X) of such a manifold X. The question of describing all groups that can appear as fundamental groups of compact Kähler manifolds (resp. smooth complex projective varieties, resp. smooth complex quasi-projective algebraic varieties) is known as Serre's problem. It is still widely open, though many different kinds of restrictions are known. The most simple one is that these groups must be finitely presentable. But for non-compact varieties, besides finite presentability none of these restrictions is as easy to describe as the above one for compact varieties.

This structure on the cohomology has been abstracted into the notion of Hodge structure. Then, Hodge structures have proven to be a useful tool for studying the topology of complex varieties and their moduli. We refer to the books by Voisin [START_REF] Voisin | Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés[END_REF] and Peters-Steenbrink [START_REF] Peters | Mixed Hodge structures[END_REF] for Hodge theory, and to [ABC + 96] for Serre's problem.

A.2 Mixed Hodge theory

The notion of pure Hodge structure was generalized by P. Deligne [START_REF] Deligne | Théorie de Hodge, I[END_REF], [START_REF]Théorie de Hodge, II[END_REF], [START_REF]Théorie de Hodge, III[END_REF]. He shows that the cohomology groups of a non-compact algebraic variety behave like an iterated extension of cohomology groups of compact varieties, coming from of a compactification by a divisor with normal crossings, and defines this to be a mixed Hodge structure.

Definition (Def. 2.15)

. A mixed Hodge structure on a finite-dimensional vector space K over a subfield k ⊂ R is the data of an increasing filtration W of K called the weight filtration and a decreasing filtration F of K C called the Hodge filtration such that for each k ∈ Z the graded part of weight k

Gr W k (K) := W k K/W k-1 K
with the induced filtration F over C forms a pure Hodge structure of weight k, i.e. decomposes as a direct sum of terms K p,q for p + q = k with the complex conjugation exchanging K p,q and K q,p and with F filtering with respect to p.

Then, mixed Hodge structures have been constructed on many other topological invariants of algebraic varieties and used to restrict their topology. All these methods use rational homotopy theory to extract information about the homotopy type of a variety from its algebra of differential forms. See the book by Griffiths-Morgan [START_REF] Griffiths | Rational homotopy theory and differential forms[END_REF] for these questions. To work over the rational numbers one needs to construct a commutative differential graded algebra defined over Q whose cohomology computes the rational cohomology algebra of a given variety. This is not easy since on the usual singular cochain complex the cup-product is not commutative.

For Hodge-theoretical reasons, the real homotopy type of compact Kähler manifolds is shown to be quite simple by Deligne, Griffiths, Morgan and Sullivan [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF]: the real fundamental group is determined by the cohomology algebra.

Combining these ideas of rational homotopy and mixed Hodge theory, J. Morgan [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF] constructed mixed Hodge structures on the homotopy groups of a smooth complex algebraic variety. It can be used to exhibit the first example of a finitely presented group which is not the fundamental group of an algebraic variety, a group with two generators x, y and one relation given by an iterated commutator

[x, [x, [• • • , [x, y] • • • ]]]
of length at least five. For such a commutator of length at least three, this is not the fundamental group of a compact Kähler manifold by [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF]. The construction of Morgan, however, lacks some functoriality and is followed by a correction [START_REF]The algebraic topology of smooth algebraic varieties[END_REF].

Another approach was given by R. Hain [START_REF] Hain | The de Rham homotopy theory of complex algebraic varieties I[END_REF] using the construction of a certain cochain complex whose cohomology gives directly and functorially the rational homotopy groups. To construct mixed Hodge structures on its cohomology, it is enough to give this complex the structure of a mixed Hodge diagram (see section 2.1.2 and Definition 2.27) and check the corresponding axioms.

These methods were also reviewed by V. Navarro Aznar [START_REF] Aznar | Sur la théorie de Hodge-Deligne[END_REF]. He constructs functorial mixed Hodge diagrams computing the cohomology of a complex algebraic variety. This has to be associated with some methods of homotopical algebra to understand the homotopy category of mixed Hodge diagrams and improve the theory of Deligne, Morgan and Hain. See for instance the work of J. Cirici [START_REF] Cirici | Cofibrant models of diagrams: mixed Hodge structures in rational homotopy[END_REF] and her collaborators.

In this vein, in this thesis we study the mixed Hodge theory of linear representations of fundamental groups of compact Kähler manifolds and algebraic varieties.

A.3 The theory of Goldman and Millson

Let us fix a complex manifold X which is either compact Kähler, either algebraic smooth. In both cases its fundamental group is finitely presentable. Fix a base point x ∈ X. Let G be a linear algebraic group over a subfield k ⊂ R with Lie algebra g. Definition (Sect. 1.1.2 and Thm. 1.26). The set of representations of π 1 (X, x) into G(k), i.e. of group morphisms ρ :

π 1 (X, x) -→ G(k),
has the structure of points over k of an affine scheme that we denote by Hom(π 1 (X, x), G).

It is called the representation variety of π 1 (X, x) into G. We denote by O ρ the complete local ring of the representation variety at a point ρ.

The local ring O ρ will be one of the main objects of study. Namely it is the formal moduli space for infinitesimal deformations of ρ and its singularity type tells about the possibility of deforming representations and extending given deformations. His study was done by Goldman and Millson [GM88] when X is a compact Kähler manifold.

Theorem (Goldman-Millson). If X is a compact Kähler manifold and ρ : π 1 (X, x) → G(R) has image contained in a compact subgroup, then O ρ has a quadratic presentation.
This can be seen as a version of [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] for representations of the fundamental group. It states that the representation variety has quite simple singularities at ρ and thus that the fundamental group cannot be too complicated.

Let us describe briefly the methods of proof. To ρ is associated, via the monodromy of its adjoint representation, a local system of Lie algebras with fiber g. The algebra of real differential forms with values in this local system is then a differential graded Lie algebra (Definition 1.13), that we denote by L. The main construction relates the deformation functor associated with ρ to the deformation functor associated with L. Definition (Def. 1.17). The deformation functor of a DG Lie algebra L over a field k of characteristic zero is the functor Def L given on a local Artin algebra (A, m A ) over k as the quotient of the set of Maurer-Cartan elements of

L ⊗ m A MC(L ⊗ m A ) := x ∈ L 1 ⊗ m A d(x) + 1 2 [x, x] = 0
by the action of L 0 ⊗ m A by gauge transformations (Definition 1.16).

The fundamental principle of deformation theory states that every deformation problem is controlled by a DG Lie algebra (i.e. the associated deformation functor is isomorphic to some Def L as above) and that two quasi-isomorphic DG Lie algebras have isomorphic deformation functors. This was inspired by a letter of Deligne [Del86] to the authors.

So in the situation of Goldman-Millson, by using Hodge theory, L is quasi-isomorphic to a DG Lie algebra with zero differential -this property, called formality, is the same as in [START_REF] Deligne | Real homotopy theory of Kähler manifolds[END_REF] -for which the deformation functor takes a simplified form and allows us to give a simple description of O ρ .

By formality again, using non-abelian Hodge theory, the theorem of Goldman-Millson was extended by C. Simpson [Sim92, § 2] to the case of complex semi-simple representations.

Later, the description of O ρ for some cases of representations of fundamental groups of non-compact algebraic varieties was done by Kapovich and Millson [KM98].

Theorem (Kapovich-Millson). If X is a smooth algebraic variety and ρ : π 1 (X, x) → G(R) has finite image, then O ρ has a weighted-homogeneous presentation, with generators of weight 1, 2 and relations of weight 2, 3, 4. This is obtained by studying the mixed Hodge theory of L: its cohomology has a mixed Hodge structure with only possible weights 1, 2 on H 1 and 2, 3, 4 on H 2 . Instead of using formality, they use the work of Morgan and replace L up to quasi-isomorphism by a DG Lie algebra M having a mixed Hodge structure, and study the consequence of the grading by weight on the deformation functor of M .

In their article, they obtain new examples of finitely presented groups that are not fundamental groups of smooth complex algebraic varieties, by a whole study of their combinatorics and their finite representations.

The work of Goldman-Millson was reviewed by P. Eyssidieux and C. Simpson [START_REF] Eyssidieux | Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures[END_REF] and interpreted in terms of mixed Hodge theory. Assume that ρ is the mononodromy of a variation of Hodge structure (Definition 3.1 and Definition 3.8). Inside Hom(π 1 (X, x), G) lies the orbit Ω ρ of ρ under the action of G by conjugation, which is a reduced subscheme. Its formal germ at ρ is a formal scheme Ω ρ defined by an ideal j ⊂ O ρ .

Theorem (Eyssidieux-Simpson). If X is a compact Kähler manifold and ρ is the monodromy of a complex polarized variation of Hodge structure over X, then O ρ has a functorial complex mixed Hodge structure. The weight filtration is indexed in non-positive degree and is given by the powers of the ideal j. The weight zero graded piece is O ρ /j, the formal local ring of Ω ρ ..

In their article, this is used to construct interesting variations of mixed Hodge structures on X. This is an important tool in the proof of the Shafarevich conjecture [START_REF] Eyssidieux | Linear Shafarevich conjecture[END_REF] on the universal cover of smooth projective varieties whose fundamental group admits a faithful linear representation. Such mixed Hodge structures associated to a representation of the fundamental group of X where also constructed by Hain in [START_REF]The Hodge de Rham theory of relative Malcev completion[END_REF].

A.4 Derived deformation theory

The use of DG Lie algebras in deformation theory, and the philosophy according to which in characteristic zero, every deformation problem is controlled by a DG Lie algebra, has received many developments since the original work of Goldman-Millson and the letter of Deligne. On the one hand it has been applied to many other situations, see for instance the lecture notes of Kontsevich [START_REF] Kontsevich | Topics in algebra, deformation theory[END_REF]. On the other hand several people have constructed an equivalence between the category of DG Lie algebras up to quasiisomorphisms and some to-be-defined category of deformation problems. We have to cite the original articles by Manetti [START_REF]Extended deformation functors[END_REF], Hinich [START_REF] Hinich | DG coalgebras as formal stacks[END_REF], the work of Pridham [START_REF] Pridham | Unifying derived deformation theories[END_REF] that unifies both, all this culminating in the most general form in the theory of Lurie [START_REF] Lurie | Formal moduli problems[END_REF]. Therefore this philosophy is now called the Pridham-Lurie theorem. We refer also to the survey of B. Toën [START_REF] Toën | Problèmes de modules formels. Exposé 1111[END_REF].

It is then very interesting to review the original theory of Goldman and Millson with these new and powerful tools. Of particular importance for us is the fact that the deformation functor of a DG Lie algebra L is represented (under the assumption H n (L) = 0 for n ≤ 0) by a complete local algebra which is obtained as the H 0 of a very explicit complex C (L), functorial, invariant under quasi-isomorphism. It is also called the bar construction on L.

This construction is not possible to understand without appealing to derived deformation theory. This requires at least extending deformation functors from Artin algebras to some category of DG Artin algebras, taking values not any more into sets but into groupoids or simplicial sets. These ideas appear first in a letter of Drinfeld [START_REF] Drinfeld | Letter to V. Schechtman[END_REF]. These principles were not known at the time of the first work of Goldman and Millson. Again by the formality property all this simplifies much when working in the compact case, but it is not trivial at all in the general case.

Furthermore, other tools have been developed to understand the homotopy category of DG Lie algebras (that is, the category of DG Lie algebras up to quasi-isomorphisms): L ∞ algebras. The right framework is operad theory, for which we refer to the book by Loday-Valette [START_REF] Loday | Algebraic operads[END_REF].

Briefly, L ∞ algebras are weakened versions of DG Lie algebras equipped with higher operations in which the Jacobi identity only holds up to homotopy given by the higher operations, satisfying themselves higher coherence laws. DG Lie algebras are exactly the L ∞ algebras with zero higher operations. Since L ∞ algebras naturally have an associated deformation functor that extends the one of DG Lie algebras and that is invariant by quasi-isomorphisms, and since a quasi-isomorphism between L ∞ algebras automatically admits an inverse quasi-isomorphism, this forms a convenient category for studying deformation theory.

Though it is known by very abstract theory that every deformation problem is controlled by a DG Lie algebra, what matters is to find the right one with good properties that allows us to understand better the given deformation problem. Since L ∞ algebras are finer objects, it can happen that a deformation problem is controlled more naturally by a L ∞ algebra than by a DG Lie algebra. Many examples of deformation problems controlled by L ∞ algebras have been studied by M. Manetti and his collaborators and we refer to the lectures notes [START_REF]Lectures on deformations of complex manifolds. Deformations from differential graded viewpoint[END_REF].

B Results

B.1 Preliminary work

Our first preliminary work, which is now a published article [START_REF] Lefèvre | A criterion for quadraticity of a representation of the fundamental group of an algebraic variety[END_REF], is reproduced in the appendix A.

It concerns special cases of the theorem of Kapovich-Millson where we find more restrictions on the possible weights on O ρ such that it behaves as in the compact case, obtained by analyzing the proof and where these restrictions come from.

Theorem A (Thm. A.2). Let X be a smooth complex quasi-projective algebraic variety and let ρ : π 1 (X, x) → G(R) be a representation with finite image. Assume that the finite cover Y → X corresponding to the subgroup Ker(ρ) ⊂ π 1 (X, x) has a smooth compactification Y with first Betti number b 1 (Y ) = 0. Then O ρ has a quadratic presentation.

The main motivation comes from the case of complements of projective arrangements of hyperplanes at the trivial representation, for which this notion was known under the name of 1-formality, see [START_REF] Dimca | Topology and geometry of cohomology jump loci[END_REF], [START_REF] Papadima | Geometric and algebraic aspects of 1-formality[END_REF]. This should also be related to the statement that purity implies formality, see for example the work [START_REF] Dupont | Purity, formality, and arrangement complements[END_REF] that we were not aware of.

In this same article we also give examples where the hypothesis of the theorem is satisfied with respect to every finite representation. We find some among families of abelian varieties, related to the various rigidity results, and among hermitian locally symmetric spaces, related to Kazhdan's property (T).

B.2 Main result

Our main goal is to extend the result of Eyssidieux-Simpson to the non-compact case, constructing a functorial mixed Hodge structure on O ρ and recovering the result of Kapovich-Millson. This leads to several important difficulties. On one hand the work of Eyssidieux-Simpson makes strong use of Kähler geometry, laplacians for differential forms, formality, and is impossible to adapt directly in the non-compact case. On the other hand, the work of Kapovich-Millson relies on the theory of Morgan using minimal models for mixed Hodge diagrams and, though the grading on O ρ could be improved to a mixed Hodge structure, this would not at all be functorial and well-behaved.

So one has to find a completely different proof. By the way, we want the mixed Hodge structure on O ρ to come in both cases directly and functorially from an appropriate mixed Hodge diagram, whose construction depends on the geometric situation.

Let us state first the result. We fix a field k which is either a subfield of R or the field C, allowing us to speak both of usual mixed Hodge structures and of complex mixed Hodge structures, and recall that G is a linear algebraic group over k. Theorem B (Main theorem). Let X be a compact Kähler manifold and let ρ : π 1 (X, x) → G(k) be the monodromy of a polarized variation of Hodge structure defined over k on X. Then there is a functorial mixed Hodge structure over k on O ρ with non-positive weights and whose weight zero graded piece is the formal local ring of the orbit of ρ.

If X is a smooth complex quasi-projective algebraic variety and ρ : π 1 (X, x) → G(k) is a representation with finite image, then O ρ has a functorial mixed Hodge structure with non-positive weights. The induced weights on the cotangent space are -1, -2.

At this time, it is not proved that our mixed Hodge structure on O ρ in the compact case is exactly the same as the one constructed by Eyssidieux-Simpson, though there are strong indications for: it behaves the same way, has the same description on the cotangent space, and the same weight zero graded piece. In the non-compact case we do not recover completely the result of Kapovich-Millson: the mixed Hodge structure on the cotangent space can be splitted over C and basis elements can be lifted to weighted homogeneous generators of O ρ , thus recovering the generators of weight 1, 2, but until now we do not recover the weighted-homogeneous relations with our methods. We would like to recover them in some canonical way from an ideal of relations carrying a mixed Hodge structure with weights 2, 3, 4 and we are unable to get this.

B.3 Plan of proof

Now let us indicate the main theorems needed for the proof. In the theory of Goldman-Millson the controlling DG Lie algebra L is equipped with an augmentation ε x : L → g which simply evaluates degree zero forms at the base point x. In the work of Eyssidieux-Simpson is introduced an augmented deformation functor (Definition 1.21), which is a slight variation of the usual deformation functor Def L , and it is shown that this is the right object to consider in order to control the deformation theory of ρ and to understand its orbit.

In the compact case, L is a DG Lie algebra of differential forms with coefficients in a variation of Hodge structure, thus by the work of Zucker [START_REF] Zucker | Hodge theory with degenerating coefficients: L 2 cohomology in the Poincaré metric[END_REF] it has the structure of a mixed Hodge diagram of Lie algebras. In the situation of Kapovich-Millson, L is obtained from the algebra of differential forms on the finite cover corresponding to Ker(ρ), on which the pulled-back representation is trivial. So, following their ideas and re-writing them with the functorial construction of mixed Hodge diagrams of Navarro Aznar, we find again a mixed Hodge diagram of Lie algebras that is quasi-isomorphic to L. We sum up the structures we get from the geometric situations: Theorem C (Chapter 3). In all situations of the above theorem, the deformation theory of ρ is controlled by an augmented mixed Hodge diagram of Lie algebras (Definition 2.33 and Definition 2.37) that is functorial up to quasi-isomorphism.

Then we want to apply the appropriate bar construction coming from derived deformation theory to such a diagram L and show that it defines a mixed Hodge diagram. This way we will get a functorial mixed Hodge structure on an object representing the deformation functor of L, which by the Yoneda lemma is canonically isomorphic to O ρ .

However, despite our efforts, we were not able to access to O ρ using this naive strategy since one really needs to work with L together with its augmentation ε x . The following possibilities are the natural ones:

1. One can work with the full L and then later try to extract the information coming from the augmentation. However, L does not have H 0 (L) = 0 which means that its deformation functor is not representable. Also, the bar construction doesn't behave so well if H 0 (L) = 0 (elements of degree 0 in L produce elements of negative degree in C (L)).

2. One can work with L := Ker(ε x ) ⊂ L. This is a DG Lie algebra which has H 0 (L ) = 0. But it is not anymore a mixed Hodge diagram, since the axioms of mixed Hodge diagrams are very strong and one cannot a priori take kernels.

3. Instead, one can work with the mapping cone of ε x . This is the natural operation in mixed Hodge diagrams that replaces the kernel and it has H 0 = 0, in fact it is quasi-isomorphic to L . However, it is not anymore a DG Lie algebra. The solution to this problem we find by working with L ∞ algebras. The mapping cone of a morphism between DG Lie algebras was studied by Fiorenza-Manetti [START_REF] Fiorenza | L ∞ structures on mapping cones[END_REF]. They show that it carries a natural L ∞ algebra structure and describe the associated deformation functor. We make the very simple but fundamental claim (for us) that when applied to the augmentation ε x the associated deformation functor is the same as the augmented deformation functor introduced independently by Eyssidieux-Simpson.

Lemma D (Fundamental observation, Lem. 1.55, combine with Thm. 1.54). The augmented deformation functor of an augmented DG Lie algebra ε : L → g introduced by Goldman-Millson and Eyssidieux-Simpson is the deformation functor associated with the L ∞ algebra structure on the mapping cone of ε studied by Fiorenza-Manetti. This allows us to carry out our strategy of proof. The higher operations of L ∞ on the mapping cone have very explicit algebraic formulas and it is a direct calculation to check the compatibility with the structure of mixed Hodge diagram. The resulting object we call a mixed Hodge diagram of L ∞ algebras.

Theorem E (Sect. 2.2.1 and Thm. 2.38). Let ε : L → g be an augmented mixed Hodge diagram of Lie algebras coming from Theorem C. The operations of L ∞ algebra of Fiorenza-Manetti on the mapping cone C of ε give C the structure of mixed Hodge diagram of L ∞ algebras (Definition 2.34).

Then we apply the bar construction (functor C ) in the sense of L ∞ algebras. This gives naturally a DG coalgebra from which we extract (via its H 0 and then dualize) a complete local algebra that, by the principles of derived deformation theory, represents the deformation functor of the L ∞ algebra. So we show that C can be applied to the mixed Hodge diagram C and that we get a mixed Hodge diagram of coalgebras. This is very close to Hain's bar construction of mixed Hodge diagrams (of commutative algebras, or modules over them, with many variations) used in [START_REF] Hain | The de Rham homotopy theory of complex algebraic varieties I[END_REF] and several other articles.

Theorem F (Sect. 2.2.2 and Thm. 2.44). The functor C can be applied to the mixed Hodge diagram of L ∞ algebras C of Theorem E and gives a mixed Hodge diagram of coalgebras.

From this, one extracts directly a mixed Hodge structure on its H 0 that is invariant under quasi-isomorphisms. This gives the functorial mixed Hodge structure on O ρ in all situations of Theorem B.

B.4 Perspectives

Our strategy of proof was developed with the constant objective of separating the geometrical construction of mixed Hodge diagrams and the algebraic machinery giving us mixed Hodge structures. We strongly believe it will help us to construct a mixed Hodge structure on O ρ in more general non-compact cases: when ρ is the monodromy of a variation of mixed Hodge structure, and even when X is singular. Combined with a deeper study of group theory, this could lead to new restrictions on Serre's problem.

C Organization of the work C.1 Plan

This work is organized as follows. We separate it into three chapters, each forming pieces of the proof our Theorem B. Since the preliminary work is independent and is the reproduction of a published article, we put in the appendix A. Also, we postpone all the geometric constructions to the chapter 3, developing our machinery before through chapters 1 and 2.

So chapter 1 is centered around Goldman-Millson theory and deformation theory but without Hodge theory. In its first part we review all the necessary material in order to understand properly the theory of Goldman-Millson, from a classical point of view. Section 1.1.1 is purely algebraic and categorical. There we introduce carefully the augmented deformation functor of a DG Lie algebra. In section 1.1.2 is introduced the representation variety and its study is related to geometric constructions. In the second part, we expose the theory of L ∞ algebras and the theorems of deformation theory we need. Since this is technical and since we need the details, we devote the whole section 1.2.1 to introducing L ∞ algebras. Then in section 1.2.2 we describe the L ∞ algebra structure of Fiorenza-Manetti. Our only contribution is the simple observation of Lemma D. Finally in section 1.2.3 we study more in detail the deformation functor of a L ∞ algebra and we extract from the literature the pro-representability theorem we want to apply.

Then chapter 2 is devoted to Hodge theory. In its first part we expose carefully all the definitions we need: the mixed Hodge structures in section 2.1.1, the mixed Hodge diagrams in section 2.1.2. At each step we show how these definitions behave if one works not only with vector spaces but with other kinds of algebras. The second part contains the heart of the present work. In section 2.2.1 we give the definition of mixed Hodge diagram of L ∞ algebras and we prove Theorem E. In section 2.2.2 we prove Theorem F and study this construction.

Finally in chapter 3 we study many different situations in which we construct controlling augmented mixed Hodge diagrams of Lie algebras, proving Theorem C. We separate the compact and the non-compact case. In the compact case, for representations with values in a real variation of Hodge structure, such a construction is straightforward. So it serves as a model of proof and of application of our method, and is written down in detail in section 3.1.1. It is then easy to adapt the method to several variations of this case, which we do in section 3.1.2. Similarly in the non-compact case, we take as detailed model the real representations, in section 3.2.1, and later we add the rational structure, section 3.2.2. To treat the non-compact case we expose briefly the construction of Navarro Aznar and we adapt it to our needs.

C.2 Conventions and notations

The manifolds we study are either compact Kähler manifolds (this includes the class of smooth complex projective algebraic varieties) or smooth complex quasi-projective algebraic varieties. They are of course connected. This is the natural setting in which Hodge (resp. mixed Hodge) theory applies in the most direct way and where we can directly cite the existing literature.

We always denote by k a field of characteristic zero. In geometric situations this is mostly Q, R or C.

We use everywhere the abbreviation DG for differential graded. Our DG vector spaces over k are also known under the name of cochain complexes. We always denote the grading by an upper index (i.e. V = V n ) and the differential d is of degree +1 (i.e. d :

V n → V n+1 ).
We use the symbol for isomorphisms and ≈ for weak equivalences (quasi-isomorphisms between DG vector spaces, equivalences of categories or functors to groupoids). Categories are denoted with bold letters, for example: Set, Alg k , DG-Vect k .

Chapter 1 Deformation theory

The first chapter is dedicated to the study of deformation theory. We first expose all the ingredients we need, then we show how to re-write and improve the classical theory of Deligne-Goldman-Millson using tools from derived deformation theory: L ∞ algebras. These tools will be combined with mixed Hodge theory in the next chapter.

Classical deformation theory

This section is an expository section of the theory of Goldman and Millson. It contains no new result. To understand this theory it is necessary to review first groupoids, Artin algebras and DG Lie algebras.

Deligne-Goldman-Millson classical setting

The classical deformation theory is formulated in terms of functors from local Artin algebras to groupoids or sets.

Groupoids

Definition 1.1. A groupoid is a small category G all of whose morphisms are invertible. We denote by G 0 the set of objects and by G 1 the set of morphisms. We denote by π 0 (G) the set of isomorphism classes of objects of G and, for an object x, by π 1 (G, x) for the group of automorphisms of x.

Example 1.2. If X is a topological space, there is a groupoid π ≤1 (X) (the fundamental groupoid) with set of objects X and where the morphisms from x to y are given by homotopy classes of paths γ :

[0, 1] -→ X such that γ(0) = x, γ(1) = y.
In this case

π 0 (π ≤1 (X)) = π 0 (X)
is the set of path-components of X and

π 1 (π ≤1 (X), x) = π 1 (X, x)
is the fundamental group of X based at x. Whence our notations.

Groupoids form a 2-category Gpd (see [Mac88, § XII.3]) and π 0 is a functor

π 0 : Gpd -→ Set (1.1)
to the category of sets. Let us give one useful construction of groupoids.

Definition 1.3. If a group G acts on the left on a set X, one gets a groupoid [X/G] called the action groupoid with set of objects

[X/G] 0 := X (1.2)
and morphisms Hom

[X/G] (x, y) := {g ∈ G | g.x = y} (1.3) (in this case [X/G] 1 = X × G). Then π 0 ([X/G]) is the quotient set X/G and π 1 (X, x) is the stabilizer of x in G. Definition 1.4 ([GM88, § 3.7]).
If a group G acts on a set X, so that there is an action groupoid [X/G], and G acts on another set Y , we define a new groupoid

[X/G] Y := [X × Y /G]. (1.4) Lemma 1.5 ([GM88, 3.8]).
Let G be a group that acts on a set X, G a group that acts on a set X , and let ϕ :

[X/G] -→ [X /G ]
be a morphism of action groupoids (i.e. induced by a morphism of groups ψ : G → G and a ψ-equivariant map X → X ). Let Y be another set on which G acts. Then G also acts on Y via ψ and there is an induced morphism of groupoids

ϕ Y : [X/G] ψ Y -→ [X /G ] Y
(where the subscript ψ indicates that G acts on Y via ψ) which is an equivalence if ϕ is.

Local Artin algebras

From now on we work over a fixed field k of characteristic zero. Our algebras are always assumed to be associative, unital and commutative. Definition 1.6. A local Artin algebra over k is an algebra A over k, local with maximal ideal m A , with residue field A/m A = k, and finite-dimensional over k. These form a category Art k , where the morphisms are morphisms of algebras over k that are required to preserve the maximal ideals.

Remark 1.7. The finite-dimensionality is a consequence of the artinian condition on A stating that every descending sequence of ideals stabilizes, see for example [AM69, § 8] for more details. It then implies that m A is a nilpotent ideal, so A is local complete.

Example 1.8. The most basic example is

A := k[ε] (ε n ) (1.5)
with maximal ideal m A = (ε) and (m A ) n = 0.

Definition 1.9. A pro-Artin algebra over k is a complete local algebra R over k such that all quotients R/(m R ) n are local Artin algebras (so R is a projective limit of local Artin algebras). These form a category ProArt k where morphisms have to preserve the maximal ideal.

Definition 1.10. The cotangent space to a pro-Artin algebra R is the vector space

m R /(m R ) 2 (1.6) over k.
Example 1.11. The most basic examples are the formal power series algebras

k[[X 1 , . . . , X r ]].
(1.7)

For r = 1 the quotients by the powers of the maximal ideal are precisely the local Artin algebras of Example 1.8. The cotangent space is the vector space of dimension r spanned by X 1 , . . . , X r .

The category Art k is a full subcategory of ProArt k , which is itself a full subcategory of the category of complete local algebras with residue field k. Namely in all these three categories, morphisms are morphisms of algebras that furthermore preserve the maximal ideal, thus commute with the augmentation to k obtained by quotienting by the maximal ideal. The difference between complete local algebras and those which are pro-Artin (both are always assumed to have residue field k) is simply the finite-dimensionality of the cotangent space, as expressed by the following lemma.

Lemma 1.12. For a complete local algebra R over k, the following conditions are equivalent:

(1) R is pro-Artin.

(2) R is Noetherian.

(3) R/(m R ) n is finite-dimensional for all n ≥ 1. (4) m R /(m R ) 2 is finite-dimensional.
Proof. Condition (1) is equivalent to (3) almost by definition, and (3) implies (4). Consider the associated graded ring

G(R) := n≥0 (m R ) n (m R ) n+1 . (1.8) Then G(R) is naturally an algebra over R/(m R ) = k generated by its component (m R )/(m R ) 2 . If R is assumed to be Noetherian, then G(R) is also Noetherian ([AM69, 10 
.22]) which implies that G(R) is finitely generated as algebra over k ([AM69, 10.7]). So all terms are finite-dimensional, and using the exact sequence

0 -→ (m R ) n (m R ) n+1 -→ R (m R ) n+1 -→ R (m R ) n -→ 0
ends the proof that the condition (2) also implies (3) and (4). Conversely, if m R /(m R ) 2 is finite-dimensional then G(R) is finitely generated as algebra over k. This implies that G(R) is Noetherian and then that R is ([AM69, 10.25]). Finally if we assume (4) then R/(m R ) n is again Noetherian, and of dimension zero, so it is Artinian ([AM69, 8.5]) and this proves that condition (4) implies all the others. Alternatively, the Cohen structure theorem states that if R is a complete local algebra over k which is Noetherian then R is a quotient of some formal power series algebra k[[X 1 , . . . , X r ]], from which we see that R is pro-Artin with our definition.

DG Lie algebras

We start using DG vector spaces and related kinds of DG algebras. A DG vector space over k is a vector space V over k with a direct sum decomposition

V = n∈Z V n and a differential d n V : V n -→ V n+1 satisfying d n+1 V • d n V = 0.
The tensor product of two DG vector spaces V, W is the vector space V ⊗ W with the grading

(V ⊗ W ) n := i+j=n V i ⊗ W j
(1.9) and the differential

d n V ⊗W := i+j=n d i V ⊗ id W + (-1) i id V ⊗ d j W .
(1.10)

The degree of a homogeneous element x is denoted by |x|. There is a canonical isomor-

phism σ V,W : V ⊗ W -→ W ⊗ V x ⊗ y -→ (-1) |x|•|y| y ⊗ x. (1.11)
By forgetting the differential, we get the category of graded vector spaces G-Vect k . The above isomorphism (1.11) plays a crucial role when dealing with graded vector spaces.

Definition 1.13. A DG Lie algebra over k is the data of a DG vector space L together with a morphism called Lie bracket

[-, -] : L ⊗ L -→ L, (1.12)
given by a collection of morphisms

[-, -] : L i ⊗ L j -→ L i+j , (1.13)
satisfying the anti-symmetry

[x, y] + (-1) |x|•|y| [y, x] = 0 (1.14)
and the Jacobi identity

(-1) |x|•|z| [x, [y, z]] + (-1) |x|•|y| [y, [z, x]] + (-1) |y|•|z| [z, [x, y]] = 0. (1.15)
The fact that the bracket is a morphism of DG vector spaces automatically implies that d is a derivation, meaning that

d([x, y]) = [d(x), y] + (-1) |x| [x, d(y)]. (1.16)
This last one is also called Leibniz' rule. A morphism between DG Lie algebras

f : (L, [-, -] L ) -→ (M, [-, -] M )
is given by a morphism f : L → M of DG vector spaces such that

f ([x, y] L ) = [f (x), f (y)] M .
(1.17) DG Lie algebras over k form a category DG-Lie k .

The category of Lie algebras over k in the usual sense, Lie k , is a full subcategory of DG-Lie k corresponding to DG Lie algebras concentrated in degree zero.

Definition 1.14. If L is a DG Lie algebra, the set of Maurer-Cartan elements is MC(L) := x ∈ L 1 d(x) + 1 2 [x, x] = 0 . (1.18)
From it we construct the deformation functor associated to a DG Lie algebra L over k. Let A be a local Artin algebra. Then L ⊗ m A is a nilpotent DG Lie algebra with the bracket

[u ⊗ a, v ⊗ b] := [u, v] ⊗ ab, u, v ∈ L, a, b ∈ m A (1.19) and the differential d(u ⊗ a) := d(u) ⊗ a. (1.20)
Namely the nilpotency means that there is an order r such that all iterated brackets 

[x 1 , [x 2 , [. . . , [x r-1 , x r ] . . . ]]] of elements x 1 , . . . , x r ∈ L ⊗ m A vanish; since x i ∈ L ⊗ m A then the above iterated bracket is an element in L ⊗ (m A )
e α .x := x + e ad(α) -id ad(α) ([α, x] -d(α)) = x + +∞ i=0 ad(α) i (i + 1)! ([α, x] -d(α)) (1.23)
where the right-hand side is obtained by a power series expansion and the sum is finite because ad(α) is nilpotent.

The infinitesimal generator for this action is

α.x := [α, x] -d(α).
This is a formal version of the infinitesimal action of the gauge group on the space of flat connections on a principal bundle, namely the formula (1.23) can also be written as

e α .x := e α xe -α -d(e α )e -α
for the appropriate way of expanding into power series. We see that for this construction it is really important for k to have characteristic zero.

Definition 1.17. Let L be a DG Lie algebra and let A be a local Artin algebra over k. Define the Deligne-Goldman-Millson groupoid Def(L, A) to be the action groupoid (Definition 1.3)

Def(L, A) := MC(L ⊗ m A ) exp(L 0 ⊗ m A ) (1.24)
and the associated deformation functor (in the sense of [Man99, § 2])

Def L : Art k -→ Set A -→ π 0 (Def(L, A)) = MC(L⊗m A ) exp(L 0 ⊗m A ) .
(1.25) This is our first example of a deformation functor. We will not need to give a precise definition of a deformation functor but at the very least a classical deformation functor should be a functor from Art k to Set, with axioms expressing some compatibility with the fiber product of local Artin algebras and the surjective morphisms. This can be extended in several ways, to DG Artin algebras on one side, to groupoids or simplicial sets on the other side.

Definition 1.18. If a functor F : Art k → Set is isomorphic to Def L for some DG Lie algebra L, we say that L controls the deformation problem F .

The fundamental theorem in the classical deformation theory is:

Theorem 1.19 ([GM88, 2.4]). Let ϕ : L ≈ -

→M be a quasi-isomorphism between DG Lie algebras over k (i.e. ϕ induces an isomorphism on cohomology). Then there is an induced equivalence of groupoids

Def(L, A) ≈ -→ Def(M, A), A ∈ Art k inducing an isomorphism of deformation functors Def L -→ Def M .
Remark 1.20. The above theorem is stated with a priori non-bounded-below DG Lie algebras. However in our concrete situations these are non-negatively graded. It is then enough for ϕ to be a 1-quasi-isomorphism (i.e. ϕ induces an isomorphism on H 0 , H 1 , and is injective on H 2 ). This shows that the deformation theory of L is essentially controlled by H 1 (L) and H 2 (L). However all our arguments will apply without discussing restrictions on the grading of L.

To deal properly will the Goldman-Millson theory, Eyssidieux and Simpson introduce the following construction. 

:= (x, e α ) ∈ (L 1 ⊗ m A ) × exp(g ⊗ m A ) d(x) + 1 2 [x, x] = 0 (1.27)
and morphisms given by Hom((x, e α ), (y, e β )) := λ ∈ L 0 ⊗ m A e λ .x = y, e β = e α * e -ε(λ) .

(1.28)

We denote by Def L,ε the associated deformation functor

Def L,ε : Art k -→ Set A -→ π 0 (Def(L, ε, A)).
(1.29)

Remark 1.22. Using the operation (Definition 1.4) one sees that

Def(L, ε, A) = Def(L, A) exp(g ⊗ m A )
where the group exp(L 0 ⊗ m A ) acts on exp(g ⊗ m A ) via

e λ .e α := e α * e -ε(λ) , e λ ∈ exp(L 0 ⊗ m A ), e α ∈ exp(g ⊗ m A ).
Since in the group exp(g⊗m A ) the element e -ε(λ) is the inverse of e ε(λ) , this is well-defined as a left action. This is not exactly the same action as in [START_REF] Eyssidieux | Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures[END_REF], but we make this choice so as to be compatible with the construction developed in section 1.2.2.

The fundamental theorem has a small variation for the augmented deformation functor.

Lemma 1.23. Let ϕ : L

≈ -→ L be a quasi-isomorphism of augmented DG Lie algebras commuting with the augmentations as in the diagram

L ε ϕ ≈ / / L ε g.

Then ϕ induces and equivalence of groupoids

Def(L, ε, A) ≈ -→ Def(L , ε , A), A ∈ Art k .
Proof. Writing it with the operation as in Remark 1.22, this is an immediate combination of the fundamental Theorem 1.19 with the Lemma 1.5.

Pro-representability Definition 1.24. A functor

F : Art k → Set is said to be pro-representable if there is a pro-Artin algebra R such that F is isomorphic to A ∈ Art k -→ Hom ProArt (R, A).
(1.30)

We also say that R controls the deformation problem F (indeed such a pro-representable functor is always a deformation functor).

Theorem 1.25 (Pro-Yoneda Lemma, see [Sch68, § 2], [GM88, 3.1]). If F : Art k → Set is pro-represented by R, then R is unique up to a unique isomorphism. More precisely, a morphism of functors on Art k ϕ : Hom ProArt (R, -) -→ F is determined uniquely by the family of objects ϕ R R/(m R ) n ∈ F R/(m R ) n .
It is an isomorphism if and only if there exists a compatible family

ξ n ∈ F (R/(m R ) n ) n≥0 ,
where compatible means that

F R/(m R ) p R/(m R ) n (ξ p ) = ξ n , p ≥ n such that any other compatible family (x n ) is obtained via a unique map f : (ξ n ) -→ (x n ) as (x n ) = F (f )(ξ n ).
In others words, an algebra that pro-represents a functor is unique up to a unique isomorphism and one can describe explicitly how, exactly as in the classical Yoneda lemma, the difference being that A lives in a smaller category than R. But since R is a projective limit of objects of the category where A lives, the proof is essentially the same as for the classical Yoneda lemma combined with an induction over the tower of R/(m R ) n .

Goldman-Millson theory of deformations of representations of the fundamental group

Let G be a linear algebraic group over k = Q, R or C. We think of G as a representable functor

G : Alg k -→ Grp (1.31)
from the category of algebras over k to the category of groups. We are interested in studying a group Γ by looking at its representations into G(k), and actually into all G(A) for varying algebras A over k.

Variety of representations Theorem 1.26 ([LM85]

). For any finitely generated group Γ the functor

Hom(Γ, G) : Alg k -→ Set A -→ Hom Grp (Γ, G(A)) (1.32)
is represented by an affine scheme of finite type over k. We denote it again by Hom(Γ, G) (we think of it as a scheme structure on Hom(Γ,

G(k))). It is called the representation variety of Γ into G.
Example 1.27. If Γ is a free group on r generators, then by its universal property

Hom(Γ, G(A)) G(A) r

(a map from Γ to G(A) is given by the image of each generator, without relations) so as schemes Hom(Γ, G) G r .

More generally, the choice of a presentation of Γ on r generators embeds naturally Hom(Γ, G) as a closed subscheme of G r , the relations in Γ being translated into algebraic equations in G r .

Any representation ρ : Γ → G(k) can thus be seen as a point of Hom(Γ, G) over k. We denote by O ρ the complete local ring of Hom(Γ, G) at ρ. It is a pro-Artin algebra whose corresponding pro-representable functor on local Artin algebras over k

Hom( O ρ , -) : Art k -→ Set A -→ Hom ProArt ( O ρ , A) (1.33) is canonically isomorphic to the functor of formal deformations of ρ Def 0 (ρ, -) : A -→ ρ : Γ → G(A) ρ = ρ mod m A . (1.34)
By the pro-Yoneda Lemma 1.25, this is equivalent to saying that there is a universal (or tautological) representation

ρ u : Γ -→ G( O ρ ), (1.35)
equivalently a compatible family of representations

ρ u n : Γ -→ G( O ρ /m n ), (1.36) such that any deformation ρ of ρ over A ∈ Art k is obtained from ρ u by a unique map f : O ρ → A as ρ : Γ ρ u -→ G( O ρ ) f -→ G(A).
Define G 0 to be the functor

G 0 : Art k -→ Grp A -→ g ∈ G(A) g = 1 G(k) mod m A (1.37) then G 0 (A) acts on Def 0 (ρ, A) by conjugation because if ρ = ρ and g = 1 modulo m A then g • ρ • g -1 = ρ mod m A .
This action is functorial in A. If g is the Lie algebra of G then G 0 (A) has g ⊗ m A as Lie algebra and actually one can construct it as

G 0 (A) = exp(g ⊗ m A ).
(1.38)

Definition 1.28. Let A be a local Artin algebra. Define the groupoid of deformations of ρ over A to be

Def(ρ, A) := {ρ : Γ → G(A) | ρ = ρ mod m A } G 0 (A) (1.39)
with associated deformation functor

Def ρ : Art k -→ Set A -→ π 0 (Def(ρ, A)) = Def 0 (ρ,A) G 0 (A) .
(1.40)

Goldman-Millson construction

Let now X be a manifold whose fundamental group is finitely presentable. This hypothesis encompasses both the compact Kähler manifolds and the smooth algebraic varieties over C. Let x be a base point of X. We are interested in the deformation theory of representations of π 1 (X, x). We assume that we work with a fix field either R or C and we write G for G(k) which is either a real or complex Lie group. Let

ρ : π 1 (X, x) → G(k)
(1.41) be a representation. Let g be the Lie algebra of G. Let P → X be the flat principal G-bundle given by the holonomy of ρ. Recall that concretely P can be constructed as

P := X × π 1 (X,x) G (1.42)
where X is the universal cover of X, seen as a principal π 1 (X, x)-bundle, and π 1 (X, x) acts on X on the right and on G by left multiplication via ρ. Let

Ad(P ) := P × G g = X × π 1 (X,x) g (1.43)
be the adjoint bundle (G acts on g via Ad, and so π 1 (X, x) acts via Ad •ρ). Let

L := E • (X, Ad(P )) (1.44)
be the DG Lie algebra of C ∞ differential forms with values in the local system of Lie algebras Ad(P ). Locally, an element of L is given by a sum α i ⊗ u i where α i is a differential form and u i is an element of g. The differential is given by

d(α ⊗ u) := d(α) ⊗ u (1.45)
(this is because P is a flat bundle) and the Lie bracket is given by

[α ⊗ u, β ⊗ v] := (α ∧ β) ⊗ [u, v]. (1.46)
As we constructed it, there is a canonical identification of fibers Ad(P ) x g.

One part of the main theorem of Goldman and Millson can be stated as follows.

Theorem 1.29 ([GM88]

). There is a canonical equivalence of functors from local Artin algebras to groupoids Def(L, -)

≈ -→ Def(ρ, -) (1.47)
given by holonomy.

Sketch of proof. Roughly, a representation ρ of π 1 (X, x) into G modulo conjugation is interpreted as a flat principal G-bundle P modulo gauge transformations via the usual holonomy construction. Recall that connections on P form an affine space over E 1 (X, Ad(P )), and that a flat connection on P defines a differential on L = E • (X, Ad(P )) giving it the structure of a DG Lie algebra. Then flat connections correspond to solutions of the Maurer-Cartan equation in L and L 0 is the Lie algebra of the gauge group; the exponential action of L 0 is the infinitesimal action of the gauge group. In their article, Goldman and Millson interpret deformations of ρ into G(A) (which is again a Lie group over k) as flat A-linear connections on the principal G(A)-bundle P × G(k) G(A) which in some sense restrict to the given flat connection on P , and again the conjugation of deformed representations corresponds to the gauge equivalence of deformed connections. This gives the equivalence (1.47). Of course it induces an isomorphism between the deformation functors Def L and Def ρ , which are the sets of isomorphism classes of these groupoids.

However, we are really interested in the functor Def 0 (ρ, -) (1.34) (which is the set of objects of the groupoid Def(ρ, -)) on the right side because it is isomorphic to the pro-representable functor associated with O ρ (1.33) so it allows us to access, via the pro-Yoneda Lemma 1.25, to O ρ itself. This works by replacing the deformation functor of L by its augmented version, which is some sort of gauge fixing procedure.

For this, let

ε x : L = E • (X, Ad(P )) -→ Ad(P ) x g (1.48)
be the augmentation of L given by evaluating 0-forms at x and higher-degree forms to zero.

Theorem 1.30 ([GM88]). The equivalence (1.47) induces an isomorphism of functors from local Artin algebras to sets

Def L,εx -→ Def 0 (ρ, -).

(1.49)

Proof. Given A ∈ Art k , start from the equivalence Def(L, A) ≈ -→ Def(ρ, A) (1.50)
where Def(L, A) is an action groupoid for exp(L 0 ⊗ m A ), Def(ρ, A) is an action groupoid for G 0 (A) = exp(g ⊗ m A ) (see (1.38)), and the morphism

exp(L 0 ⊗ m A ) -→ exp(g ⊗ m A )
is induced by ε x . Then exp(g ⊗ m A ) acts on itself on the left via

e α .e β := e β * e -α
(in the exponential group, e -α is the inverse for e α ) such that the pull-back of this action via ε x to an action of exp(L 0 ⊗ m A ) on exp(g ⊗ m A ) is precisely the action appearing in Remark 1.22. One then applies the operation G 0 (A) (Definition 1.4) to both sides of the equivalence (1.50) to get by Lemma 1.5 an equivalence

Def(L, ε x , A) ≈ -→ Def(ρ, A) G 0 (A). (1.51)
Now check carefully that there is an equivalence of groupoids

Def 0 (ρ, A) ≈ -→ Def(ρ, A) G 0 (A) (1.52)
where the left-hand side is a set considered as a discrete groupoid (i.e. with only identity morphisms), sending ρ to (ρ, 1 G 0 (A) ). Then apply π 0 to both sides of 1.51 gives the desired isomorphism.

Remark 1.31. The whole construction we described is compatible with the change of coefficients from R to C. If G is defined over R and 

ρ : π 1 (X, x) -→ G(R)

Derived deformation theory

We start introducing much more powerful tools for working with deformation theory. We saw in the preceding section that we have to work with a deformation functor associated to an augmented DG Lie algebra

ε : L -→ g.
We are going to show that the functor Def(L, ε, -) of Definition 1.21 is in fact the deformation functor associated with an L ∞ algebra, following the article of Fiorenza-Manetti [START_REF] Fiorenza | L ∞ structures on mapping cones[END_REF].

This L ∞ algebra is an algebraic structure on the mapping cone of ε. By the way, L ∞ algebras naturally have a deformation functor which extends the deformation functor for DG Lie algebras and this has been intensively studied in the literature since the first examples of deformation problems controlled by DG Lie algebras appeared. From this literature, we extract a functorial construction of an algebra that pro-represents the augmented deformation functor and is invariant under quasi-isomorphisms. This is a very strong result that improves much the classical theory and is an important step to re-write it.

The main result of this section is the very simple Lemma 1.55 that claims that the augmented deformation functor defined by Eyssidieux-Simpson was also worked out independently by Manetti and put in his very general framework of L ∞ algebras and extended deformation functors. This simple and crucial observation is the main motivation for rewriting the classical theory with L ∞ algebras. Also this L ∞ algebra structure is very explicit and thus will have good compatibility with Hodge theory.

In this whole section k is a fix field of characteristic zero and we work with various kind of algebras and coalgebras over k.

L ∞ algebras

First we need to recall more about graded vector spaces and algebras. L ∞ algebras are better described in terms of codifferentials on conilpotent graded coalgebras. For these two parts, we refer to the lecture notes of Manetti [Man04, § VIII-IX] and the book of Loday-Valette [START_REF] Loday | Algebraic operads[END_REF] that are very well written and contain all the technical details.

Coalgebras

Definition 1.32. A DG coalgebra over k is the data of a DG vector space X together with a morphism called comultiplication ∆ : X -→ X ⊗ X.

(1.53)

The fact that ∆ is a morphism of DG vector spaces, together with the construction of the differential on the tensor product (1.10), implies that d is a coderivation meaning that

∆ • d = (d ⊗ id + id ⊗ d) • ∆. (1.54) Since d is of degree 1, if one writes ∆(x) = u i ⊗ v i for x ∈ X this last equation has to be written ∆(d(x)) = d(u i ) ⊗ v i + (-1) |u i | u i ⊗ d(v i ) . (1.55)
The coalgebra is said to be coassociative if the bracket satisfies

(id ⊗ ∆) • ∆ = (∆ ⊗ id) • ∆ : X -→ X ⊗3 . (1.56) A counit is a morphism ε : X -→ k (1.57) such that (id ⊗ ε) • ∆ = (ε ⊗ id) • ∆ = id : X -→ X, (1.58)
in particular it is identified with a morphism of DG coalgebras for the trivial comultiplication on k given by ∆

(x) = x ⊗ 1 = 1 ⊗ x (1.59)
and ε commutes with d. The coalgebra X is said to be counital if it is equipped with a counit. It is cocommutative if the bracket satisfies

σ X,X • ∆ = ∆ (1.60)
where σ is the interchange map (1.11). A morphism of DG coalgebras

f : (X, ∆ X ) -→ (Y, ∆ Y )
is given by a morphism f : X → Y of DG vector spaces such that

(f ⊗ f ) • ∆ X = ∆ Y • f. (1.61)
If X, Y are equipped with counits then we also require f to commute with the counits. Our coalgebras are always assumed to be coassociative and cocommutative (but not counital) and these form a category DG-CoAlg k . Forgetting the differential, one gets the full subcategory of graded coalgebras denoted by G-CoAlg k and forgetting the grading one gets the full subcategory of coalgebras CoAlg k .

For the moment we work only with graded coalgebras and we will put a differential later on them. Definition 1.33. A graded coalgebra X has a canonical filtration over N by sub-graded coalgebras given by

X n := Ker ∆ n : X → X ⊗(n+1) (1.62)
where ∆ n is the iterated comultiplication defined inductively by 

∆ n := id ⊗i ⊗ ∆ ⊗ id ⊗(n-i-1) • ∆ n-1 : X -→ X ⊗(n+1) (1.
(x) = 0 then (ε ⊗ id)(∆(x)) = x = 0.
Our notions for coalgebras are much easier stated when we work without counits. Anyway one can always add a counit as does Hinich [Hin01, § 2.1], see also [LV12, § 1.2.1]. Let us describe this procedure: if X is a graded coalgebra with a counit ε, a unit for X is an element u ∈ X of degree zero such that ∆(u) = u ⊗ u and ε(u) = 1. Equivalently, it is a morphism of graded coalgebras k → X for the trivial coalgebra structure on k (1.59). Then there is a canonical decomposition

X = k.u ⊕ X, X := Ker(ε)
where X is the reduced coalgebra equipped with the reduced coproduct

∆ := ∆ -id ⊗ u -u ⊗ id.
Then X has no unit nor counit. And by the same formulas one can add u to X to recover X. As is expressed in the next lemma, this is dual to working with augmented algebras or only with their maximal ideal: to an algebra m without unit, one can consider A := k ⊕ m as an algebra with unit 1 ∈ k (which determines in an obvious way how to extend the multiplication to A) and augmentation the projection to k. Then m is the corresponding maximal ideal of A. Since we are more used to work with algebras rather than coalgebras, we choose to work with coalgebras without units but add them to their dual algebras.

Lemma 1.35. The linear dual

X * := Hom Vect (X, k) (1.65)
of a conilpotent coalgebra X is the maximal ideal of a complete local algebra.

Proof. First X * has a multiplication. Namely the comultiplication

∆ : X -→ X ⊗ X dualizes to a linear map ∆ * : (X ⊗ X) * -→ X *
that one can pre-compose by the canonical map

X * ⊗ X * -→ (X ⊗ X) * ϕ ⊗ ψ -→ (x, y) → ϕ(x)ψ(y) (1.66) to get a multiplication µ in m := X * . See [Swe69, § 1.1-1.3].
The axioms of coassociativity and cocommutativity for (X, ∆) tell us respectively that (m, µ) is associative and commutative. Consider A := k ⊕ m, with the multiplication induced by µ such that 1 ∈ k is a unit for A. Then m is a maximal ideal of A. The dual of the conilpotency condition tells us precisely that A is complete with respect to m. And then A is necessarily local.

But for the moment our interest in conilpotent coalgebras lies also in the fact that there is an explicit description of the cofree objects. For this we need to describe the symmetric algebra in the differential graded setting. Definition 1.36 ([Man04, § VIII.1]). Let S(r) be the symmetric group on r elements. Given a DG vector space V , homogeneous elements v 1 , . . . , v r , and a permutation τ ∈ S(r), the Koszul sign

ε(τ ; v 1 , . . . , v r ) (1.67)
is defined to be the sign such that the canonical isomorphism

V 1 ⊗ • • • ⊗ V r -→ V τ (1) ⊗ • • • ⊗ V τ (r)
(where V 1 , . . . , V r are r copies of V ), given by using the isomorphisms (1.11) in any order, is given by

v 1 ⊗ • • • ⊗ v r -→ ε(τ ; v 1 , . . . , v r ) v τ (1) ⊗ • • • ⊗ v τ (r) . (1.68)
Thus by definition the sign of the transposition of v 1 and v 2 is

ε(τ ; v 1 , v 2 ) = (-1) |v 1 |•|v 2 | .
We also denote by ε(τ ) the signature of τ . By definition if τ is the transposition of v 1 and v 2 then ε(τ ) = -1.

Definition 1.37 ([Man04, VIII.2]). Inside S(r), the set of unshuffles of type (p, q) (for p + q = r), denoted by S(p, q), is the set of permutations whose restrictions to {1, . . . , p}, {p + 1, . . . , p + q} are increasing.

Definition 1.38. Let V be a DG vector space. Denote by V ⊗r its r-th tensor power

V ⊗r := V ⊗ • • • ⊗ V (r ≥ 0). (1.69) For v ∈ V the element v ⊗ • • • ⊗ v ∈ V ⊗r is denoted by v ⊗r .
By definition the r-th symmetric power of V is the quotient of V ⊗r by the ideal generated by elements

v 1 ⊗ • • • ⊗ v n -ε(τ ; v 1 , . . . , v n ) v τ (1) ⊗ • • • ⊗ v τ (r) , τ ∈ S(r). (1.70)
We denote it by V r . The symmetric algebra on V is

Sym(V ) := r≥0 V r (1.71)
and the reduced symmetric algebra is

Sym + (V ) := r≥1 V r (1.72)
Similarly, the r-th exterior power of V is the quotient of V ⊗r by the ideal generated by elements

v 1 ⊗ • • • ⊗ v n -ε(τ ) ε(τ ; v 1 , . . . , v n ) v τ (1) ⊗ • • • ⊗ v τ (r) , τ ∈ S(r). (1.73)
We denote it by V ∧r , and the exterior algebra is

Λ(V ) := r≥0 V ∧r . (1.74)
There is also a reduced exterior algebra Λ + (V ).

For the moment we only need this for graded vector spaces, forgetting the differential.

Definition 1.39. Let V be a graded vector space over k. The cofree conilpotent graded coalgebra on V is the graded vector space Sym + (V ) turned into a graded coalgebra with the comultiplication (see [LV12, 1.2.9] and [Man04, VIII.24])

∆(v 1 • • • v r ) := r p=0 τ ∈S(p,r-p) ε(τ ; v 1 , . . . , v r ) (v τ (1) • • • v τ (p) ) ⊗ (v τ (p+1) • • • v τ (r) ). (1.75)
This defines a functor

F c G-CoAlg : G-Vect k -→ G-CoAlg k (1.76) having the adjunction property Hom G-CoAlg X, F c G-CoAlg (V ) = Hom G-Vect (X, V ) (1.77)
if X is conilpotent. This last one is the definition of being cofree, which is being a right adjoint to the forgetful functor from graded coalgebras to DG vector spaces, whereas a free object corresponds to a left adjoint.

The canonical filtration is simply given by

F c G-CoAlg (V ) n := n r=1 V r (1.78)
which is clearly respected by the comultiplication. Remark 1.40. Here it is really important that the object we construct is cofree in the category of conilpotent DG coalgebras. The general cofree coalgebra exists but is much harder to describe, see [START_REF] Sweedler | Hopf algebras[END_REF]6.4.1].

Lemma 1.41 ([LV12, 1.2.2]).

A coderivation Q on the cofree conilpotent graded coalgebra on V is uniquely determined by its composition with the projection Sym + (V ) → V , that is, by a sequence of linear maps of degree 1

q r : V r -→ V (r ≥ 1). (1.79)
One recovers Q by the formula (see [START_REF]Lectures on deformations of complex manifolds. Deformations from differential graded viewpoint[END_REF]VIII.34])

Q(v 1 • • • v r ) = r p=1 τ ∈S(p,r-p) ε(τ, v 1 , . . . , v r ) q p (v τ (1) • • • v τ (p) ) v τ (p+1) • • • v τ (r) . (1.80)
Remark that if V had a differential d, the coderivation Q induced by d only is the same as the differential of Sym + (V ) induced by the symmetric product of DG vector spaces.

L ∞ algebras

We are going to apply the preceding formulas, combined with shifts of DG vector spaces.

Definition 1.42. Let V be a DG vector space over k. Define the r-shift of V to be the DG vector space V [r] with components

V [r] n := V n+r (1.81) and differential d V [r] := (-1) r d V .
(1.82)

For r = 1 this is called the suspension of V and for r = -1 the desuspension.

Summing up everything, the definition of L ∞ algebra can be given in a very short way.

Definition 1.43. Let L be a graded vector space over k. A L ∞ algebra structure on L is the data of a codifferential Q on the cofree conilpotent graded coalgebra

F c G-CoAlg (L[1]).
Let us be more explicit. By Lemma 1.41, the codifferential Q is defined uniquely by a family of linear maps of degree 1

q r : (L[1]) r -→ L[1], r ≥ 1 (1.83)
with all axioms encoded in the condition

Q • Q = 0. If v ∈ L is of degree n we denote by v[1] the same element viewed of degree n -1 in L[1] (since L[1] n-1 = L n ). If k[1]
is the DG vector space with k in degree -1, with its canonical element 1[1], there is a canonical isomorphism

L ⊗ k[1] ∼ -→ L[1] v ⊗ (1[1]) -→ (-1) |v| v[1]
(1.84)

inducing canonical isomorphisms (see [Man04, § IX.1]) (L ⊗ k[1]) ⊗r (L[1]) ⊗r -→ L ⊗r [r] (1.85) given by v 1 [1] ⊗ • • • ⊗ v r [1] -→ (-1) r j=1 (r-j)•|v j | (v 1 ⊗ • • • ⊗ v r )[r] (1.86)
and in particular isomorphisms for maps

[1] : Hom 2-r (L ⊗r , L) -→ Hom 1 ((L[1]) ⊗r , L[1]) (1.87)
given by

f [1](v 1 [1] ⊗ • • • ⊗ v r [1]) = (-1) r+ r j=1 (r-j)•|v j | f (v 1 ⊗ • • • ⊗ v r )[1]. (1.88)
This last isomorphism exchanges symmetric and exterior products, inducing

[1] : Hom 2-r (L ∧r , L) -→ Hom 1 ((L[1]) r , L[1]).
(1.89) Thus, the operations q r can be seen (via desuspension) as anti-symmetric linear maps of degree 2 -r r : L ∧r -→ L, r ≥ 1 (1.90) but in this forms the axioms of L ∞ algebras are not so easy to write down and involve some combinatorics (see[Man99, § IX.2]). In degree 1, the relation between q 1 and 1 is simply

q 1 (v[1]) := -1 (v)[1] (1.91)
and the axiom

Q • Q = 0 translates into 1 • 1 = 0 (1.92)
so that (L, 1 ) can be considered as a DG vector space; we also denote 1 by d. In degree 2, the relation between q 2 and 2 is

q 2 (u[1] v[1]) := (-1) |u| 2 (u ∧ v)[1] (1.93) and the condition Q • Q = 0 becomes 1 ( 2 (u ∧ v)) -2 ( 1 (u) ∧ v) -(-1) |u| 2 (u ∧ 1 (v)) = 0 (1.94)
which means that 1 is a derivation for 2 . In degree 3 one gets

(-1) |u|•|w| 2 ( 2 (u ∧ v) ∧ w) + (-1) |v|•|w| 2 ( 2 (w ∧ u) ∧ v) + (-1) |u|•|v| 2 ( 2 (v ∧ w) ∧ u) = (-1) |u|•|w|+1 1 • 3 (u ∧ v ∧ w) + 3 ( 1 (u) ∧ v ∧ w) + (-1) |u| 3 (u ∧ 1 (v) ∧ w) + (-1) |u|+|v| 3 (u ∧ v ∧ 1 (w)) (1.95)
and this is the Jacobi identity up to homotopy. If 3 = 0 then 2 is a Lie bracket and we denote it also by [-, -].

From these conditions, one sees that any DG Lie algebra can be seen as a L ∞ algebra with 1 being the differential and 2 the Lie bracket, and with r = 0 for r ≥ 3. Conversely, L ∞ algebras with r = 0 for r ≥ 3 are exactly DG Lie algebras. However L ∞ algebras contain the same information as DG Lie algebras at the level of cohomology.

Proposition 1.44. The cohomology of a L ∞ algebra L is a graded Lie algebra.

Proof. On H(L), d = 1 is zero and in (1.95) the defect of 2 to satisfy the Jacobi identity involves coboundaries and becomes zero in cohomology. Then one forgets the higher operations and (H(L), [-, -] = 2 ) is a graded Lie algebra. Now let us introduce the morphisms.

Definition 1.45. If L, M are L ∞ algebras, a (strong) morphism from L to M is a morphism of graded vector spaces L → M commuting with all the operations r (r ≥ 1). It is called a quasi-isomorphism if it induces a quasi-isomorphism (L, 1 ) ≈ -→ (M, 1 ).
(1.96)

We denote by L ∞,k the category of L ∞ algebras over k with these morphisms.

Definition 1.46. If a graded vector space L is equipped with a L ∞ algebra structure (given as either the maps r or q r ) we denote by C (L) the graded coalgebra

F c G-CoAlg (L[1]) equipped with the codifferential Q. The assignment L → C (L) is a functor C : L ∞,k -→ DG-CoAlg k (1.97)
that is also called the bar construction. The canonical filtration of the conilpotent coalgebra C (L) is given here by The fact that the bar filtration is a filtration by sub-DG coalgebras appears clearly from the formulas for the coproduct on a cofree coalgebra (1.75) and for the extension of a codifferential to the whole cofree coalgebra (1.80).

C s (L) := s r=1 (L[1]) r (1.
Remark 1.48. The notion of morphism we introduced is called strong morphism. It is quite clear that such a morphism f induces a morphism of DG coalgebras

C (f ) : C (L) -→ C (M )
and it is the strongest notion of morphism one can imagine. A weak morphism or L ∞morphism (Definition 1.66) from L to M is simply a morphism of DG coalgebras from C (L) to C (M ). We will see in the next section that a quasi-isomorphism of L ∞ algebras induces via C a quasi-isomorphism of DG coalgebras, so that this notion of quasiisomorphism is also the strongest one.

The following theorem is one of the main theorems of deformation theory with L ∞ algebras (compare to the fundamental Theorem 1.19). We will develop it much in section 1.2.3.

Theorem 1.49 (See sect. 1.2.3). To any L ∞ algebra L over k is associated a deformation functor Def L : Art k -→ Set (1.99)
which restricts for DG Lie algebras to the usual Deligne-Goldman-Millson deformation functor. A quasi-isomorphism of L ∞ algebras induces an isomorphism between their associated deformation functors.

Let us just say for the moment that this deformation functor is a quotient of the Maurer-Cartan functor, where the Maurer-Cartan equation for

x ∈ L 1 ⊗ m A (A ∈ Art k ) is 0 = ∞ r=1 r (x ∧r ) r! .
This is well-defined since r (x ∧r ) = 0 for r such that (m A ) r = 0. One sees that if L is a DG Lie algebra then

L ∞ algebra structure on the mapping cone

Now we use the preceding theory. We will see that L ∞ algebras arise naturally when dealing with augmented DG Lie algebras via their mapping cone. Then we show how one can re-write the theory of Goldman and Millson with L ∞ algebras.

Naive bracket on the mapping cone

Definition 1.50. Let f : V → W be a morphism between DG vector spaces. One constructs the mapping cone of f which is the DG vector space Cone(f ) with

Cone(f ) n := V n+1 ⊕ W n (1.100)
and differential

d n Cone(f ) (x, y) := -d n+1 V (x), d n W (y) -f (x) . (1.101)
It is sometimes more natural to work with the desuspended mapping cone

Cone(f )[-1], which has Cone(f )[-1] n = V n ⊕ W n-1 (1.102) and differential d n Cone(f )[-1] (x, y) = d n V (x), f (x) -d n-1 W (y) . (1.103) Lemma 1.51. If f : V → W is a morphism of DG vector spaces, there is a short exact sequence 0 -→ W -→ Cone(f ) -→ V [1] -→ 0 (1.104)
inducing a long exact sequence

• • • -→ H n (V ) -→ H n (W ) -→ H n (Cone(f )) -→ H n+1 (V ) -→ H n+1 (W ) -→ • • • (1.105) and one can replace H n (Cone(f )) by H n+1 (Cone(f )[-1]).
Consider a morphism ε : L → M between DG Lie algebras. Let C be the desuspended mapping cone of ε, Cone(ε)[-1]. Later on we will consider the case where M is concentrated in degree zero, and we will write M = g[0] where g is a Lie algebra. Definition 1.52. On C, define the naive bracket to be the bilinear map

(x, u), (y, v) := [x, y], 1 2 [u, ε(y)] + (-1) |x| 2 [ε(x), v] (1.106) for x, y ∈ L, u, v ∈ M .
Lemma 1.53. The naive bracket (1.106) is anti-symmetric and satisfies Leibniz' rule with respect to the differential of the desuspended mapping cone.

Proof. For the anti-symmetry write

(y, v), (x, u) = -(-1) |y|•|x| [x, y], - (-1) |v|•|x| 2 [ε(x), v] - (-1) |y|+|y|•|u| 2 [u, ε(y)]
and equal it with

-(-1) |x|•|y| (x, u), (y, v) using |u| = |x| -1 and |v| = |y| -1. To check Leibniz' rule, compute d (x, u), (y, v) = [d(x), y] + (-1) |x| [x, d(y)], [ε(x), ε(y)] - 1 2 [d(u), ε(y)] - (-1) |u| 2 [u, dε(y)] - (-1) |x| 2 [dε(x), v] - 1 2 [ε(x), d(v)]
and verify that it is the same thing as

d(x, u), (y, v) + (-1) |x| (x, u), d(y, v) = (d(x), ε(x) -d(u)), (y, v) + (-1) |x| (x, u), (d(y), ε(y) -d(v)) = [d(x), y], 1 2 [ε(x) -d(u), ε(y)] + (-1) |d(x)| 2 [εd(x), v] + (-1) |x| [x, d(y)], 1 2 [u, εd(y)] + (-1) |x| 2 [ε(x), ε(y) -d(v)]
using εd = dε and |d(x)| = |x| + 1.

However if one tries to check the Jacobi identity by computing the double bracket

(x, u), (y, v), (z, w) = [x, [y, z]], 1 2 [u, [ε(y), ε(z)]] + (-1) |x| 4 [ε(x), [v, ε(z)]] + (-1) |x|+|y| 4 [ε(x), [ε(y), w]]
one sees that it is clearly satisfied in the L part but a priori not in M and thus the naive bracket may not be a Lie bracket. It will satisfy only the Jacobi identity up to homotopy and this is the notion of L ∞ algebra structure on C.

The construction of Fiorenza-Manetti

Now the main motivation for this section is the following theorem and construction.

Theorem 1.54 [START_REF] Fiorenza | L ∞ structures on mapping cones[END_REF]). If ε : L → M is a morphism between DG Lie algebras, then the desuspended mapping cone C of ε has a canonical L ∞ algebra structure such that 1 is the usual differential of C and 2 is the naive bracket (1.106). The associated deformation functor on Art k is isomorphic to the functor of isomorphism classes of the groupoid with set of objects (for

A ∈ Art k ) (x, e α ) ∈ (L 1 ⊗ m A ) × exp(M 0 ⊗ m A ) d(x) + 1 2 [x, x] = 0, e α * ε(x) = 0 (1.107)
and morphisms given by Hom((x, e α ), (y, e β )) :=

(λ, µ) ∈ (L 0 ⊗ m A ) × (M -1 ⊗ m A ) e λ .x = y, e β = e d(µ) * e α * e -ε(λ) . (1.108)
This L ∞ algebra structure is functorial from the category of morphisms between DG Lie algebras to the category of L ∞ algebras with their strong morphisms.

As promised, the following very simple remark is one of the main motivations for this thesis.

Lemma 1.55. Applied to an augmentation ε : L → g to a Lie algebra g, the above deformation functor associated with the L ∞ algebra structure on the desuspended mapping cone of ε coincides with the augmented deformation functor Def L,ε of Definition 1.21.

Proof. Apply the theorem with M = g[0]. Then for degree reasons, for x ∈ L 1 ⊗ m A we have ε(x) = 0 and also µ = 0 so e d(µ) is the identity of exp(L 0 ⊗ m A ). Then we see immediately that the set of objects (1.27) and (1.107) are the same, and the set of morphisms (1.28) and (1.108) are also the same.

Let us give one simple application of working with the L ∞ algebra structure on the mapping cone by re-writing our Lemma 1.23. 

Then ϕ induces a quasi-isomorphism of the mapping cones C, C and an isomorphism of deformation functors

Def L,ε -→ Def L,ε .

Proof. Write the morphism induced by ϕ between the long exact sequences for the mapping cones:

• • • / / H n (L) / / ϕ H n (g[0]) / / id H n+1 (C) / / H n+1 (L) / / ϕ H n+1 (g[0]) id / / • • • • • • / / H n (L ) / / H n (g[0]) / / H n+1 (C) / / H n+1 (L ) / / H n+1 (g[0]) / / • • •
By the five lemma, ϕ induces a quasi-isomorphism from C to C , and by functoriality it is a morphism of L ∞ algebras. Then quasi-isomorphic L ∞ algebras have isomorphic deformation functors (Theorem 1.49).

Now we want to describe explicitly the higher operations on the mapping cone. Let us take back our morphism ε : L → M of DG Lie algebras, C the desuspended mapping cone and C[1] the (usual) mapping cone.

Theorem 1.57 ([FM07, 5.5]). The higher brackets of the L ∞ algebra C, given as the components q r of a codifferential Q on C (C), are given as follows (we write x, y, . . . for elements of L and u, v, . . . for elements of M ). First for the operations q 1 and q 2 :

q 1 (x, u) = (-d(x), d(u) -ε(x)) q 2 (x y) = (-1) |x| [x, y] q 2 (u ⊗ y) = (-1) |u|+1 2 [u, ε(y)] q 2 (u v) = 0.
From here we see that q 1 , or its associated operation 1 , corresponds to the differential of the mapping cone. Via the rule of signs (1.93) q 2 and its associated operation 2 correspond to the naive bracket. For the higher brackets, if r + k ≥ 3 and k = 1

q r+k (u 1 • • • u r ⊗ x 1 • • • x k ) = 0
and for r ≥ 2

q r+1 (u 1 • • • u r ⊗ x) = -(-1) r i=1 |u i | B r r! τ ∈S(r) ε(τ, u 1 , . . . , u r ) [u τ (1) , [u τ (2) , . . . , [u τ (r) , ε(x)] . . . ]] (1.109)
where the B n are the Bernouilli numbers ([FM07, 5.4]).

Remark 1.58. In the case M = g[0] is concentrated in degree 0 these relations simplify but there still remains a priori non-zero higher operations in each order. First

q 1 (x, u) = (-d(x), -ε(x)).
Then q 2 (u ⊗ y) is zero if y is not of degree 0. Finally the last relation for q r+1 where all terms u i have degree 0 is zero if x is not of degree 0 and else

q r+1 (u 1 • • • u r ⊗ x) = - B r r! τ ∈S(r) ε(τ ) [u τ (1) , [u τ (2) , . . . , [u τ (r) , ε(x)] . . . ]].

Deformation functor of a L ∞ algebra

This whole section is devoted to explaining the main Theorem 1.49. The deformation functor of L ∞ or DG Lie algebras has been studied a lot in the literature. Furthermore we want the pro-representability of this functor. Under the assumption that a L ∞ algebra L over k has H n (L) = 0 for n ≤ 0 we will get that the deformation functor

Def L : Art k -→ Set is isomorphic to A -→ Hom CoAlg (m A ) * , H 0 (C (L))
and under some finite-dimensionality hypothesis the dual of H 0 (C (L)) is the maximal ideal of a pro-Artin algebra, to which we add a unit to form the algebra k ⊕ H 0 (C (L)) * , and one can dualize to get

A -→ Hom ProArt k ⊕ H 0 (C (L)) * , A .
Recalling the pro-Yoneda Lemma 1.25, this says that there is a functorial pro-representing algebra for Def L .

Construction of the deformation functor

If L is a L ∞ algebra and A is a local Artin algebra with maximal ideal m A , one can extend the operations r to L ⊗ m A simply by the rule

r ((x 1 ⊗ a 1 ) ∧ • • • ∧ (x r ⊗ a r )) := r (x 1 ∧ • • • ∧ x r ) ⊗ (a 1 • • • a r ) (1.110) for x 1 , . . . , x r ∈ L and a 1 , . . . , a r ∈ m A . If x ∈ L 1 ⊗ m A then x ∧r = x ∧ • • • ∧ x ∈ L r ⊗ (m A ) r
(the left exponent r is a grading, the right one is a power of the ideal) so that

r (x ∧r ) ∈ L 2 ⊗ (m A ) r
and for r such that (m A ) r = 0 then this is zero.

Definition 1.59. Let L be a L ∞ algebra over k. Its associated Maurer-Cartan functor is the functor

MC L : Art k -→ Set (1.111) defined by MC L (A) := x ∈ L 1 ⊗ m A ∞ r=1 r (x ∧r ) r! = 0 . (1.112)
This sum is in fact finite since r (x ∧r ) = 0 if (m A ) r = 0.

Lemma 1.60 ([LV12, 13.2.9]). The linear dual X * of a conilpotent coalgebra X whose canonical filtration is finite and by finite-dimensional sub-coalgebras is the maximal ideal of a local Artin algebra. Conversely if A is a local Artin algebra then the dual (m A ) * is such a conilpotent coalgebra.

Proof. Recall Lemma 1.35. Denote by m the dual X * of a conilpotent coalgebra X, then A := k ⊕ m is a complete local algebra with maximal ideal m. Under the assumption that the canonical filtration of X is finite, then m is in fact nilpotent, so A is a local Artin algebra.

Conversely, if A is a local Artin algebra with maximal ideal m A then (m A ) * is a coalgebra: the multiplication in A, that we restrict to m A ,

m A ⊗ m A -→ m A dualizes to a linear map (m A ) * -→ (m A ⊗ m A ) *
that one can compose by the inverse of the canonical map (1.66)

(m A ) * ⊗ (m A ) * -→ (m A ⊗ m A ) * (which is invertible only if m A is finite-dimensional) to get a comultiplication in (m A ) * .
This comultiplication is coassociative and cocommutative if the multiplication of A satisfies the corresponding dual axioms. And since m A is nilpotent, the canonical filtration of X is finite.

The following simple proposition is one important step for considering extended deformation functors, from categories of DG Artin algebras to sets or simplicial sets. It gives a more powerful point of view on the Maurer-Cartan equation.

Proposition 1.61. If L is a L ∞ algebra and A is a local Artin algebra then

MC L (A) = Hom DG-CoAlg (m A ) * , C (L) (1.113)
(by the previous lemma (m A ) * is a conilpotent coalgebra).

Proof. By the cofree property (adjunction (1.77)), a morphism of graded coalgebras

ϕ : (m A ) * -→ C (L)
is determined uniquely by a morphism of graded vector spaces

ψ : (m A ) * -→ L[1]
that one can see as an element x ∈ L 1 ⊗ m A . The Maurer-Cartan equation is then the condition for ϕ to respect the codifferential (see [Man04, § IX.4]) written in terms of x.

Roughly, the deformation functor of a L ∞ algebra is the quotient of the Maurer-Cartan functor by the homotopy equivalences. However, there is a technical subtle point in the definition of homotopy equivalence for these Maurer-Cartan elements related to the fact that the Maurer-Cartan equation is defined only for elements x ∈ L 1 ⊗ m A , since they have r (x ∧r ) = 0 for r 0 and the Maurer-Cartan equation is a finite sum. So we give first the definition of homotopy equivalence in the case of DG Lie algebras. 

H ∈ MC L ⊗ m A ⊗ k[t, dt] (1.115) such that H |t=0 = x and H |t=1 = y.
This corresponds exactly to the notion of homotopy (or, path) in the simplicial set

MC L ⊗ m A ⊗ Ω k (∆)
which has for simplices of dimension n

MC L ⊗ m A ⊗ Ω k (∆ n )
between the two 0-simplices x and y. See the references [START_REF] Hovey | Model categories[END_REF] and [START_REF] Goerss | Simplicial homotopy theory[END_REF] for simplicial sets and their use in homotopy theory. The important fact is that this recovers the notion that we wrote first with gauge transformations: 

A[t, dt] ε := A ⊕ n>0 A nε t n ⊕ A nε t n-1 dt ⊂ A[t, dt] (1.116)
and it appears clearly that A[t, dt] is the union of all A[t, dt] ε over ε > 0.

Definition 1.65. Let L be a L ∞ algebra over k. Let A be a local Artin algebra. Two elements x, y of MC L (A) are said to be homotopic if there exists ε > 0 and an element

H ∈ MC L A[t, dt] ε (1.117)
such that H |t=0 = x and H |t=1 = y. The deformation functor Def L of L is the quotient of MC L by the equivalence relation generated by homotopies.

The Proposition 1.64 proves that this extends the deformation functor for DG Lie algebras.

Invariance under quasi-isomorphisms

The fact that a quasi-isomorphism of L ∞ algebras induces an isomorphism of their deformation functor is explained in [START_REF]Lectures on deformations of complex manifolds. Deformations from differential graded viewpoint[END_REF]IX.22]. We will review this and the notion of L ∞ -morphism between L ∞ algebras. A good references for this is the chapters 10 and 11 of [START_REF] Loday | Algebraic operads[END_REF]: everything is well-written in the general theory of operads.

Definition 1.66. Let L, M be L ∞ algebras. A L ∞ -morphism from L to M is the data of a morphism of conilpotent DG coalgebras f : C (L) -→ C (M ).
(1.118) Such a morphism automatically preserves the canonical filtrations and by the cofree property (adjunction (1.77)) it can be seen as a collection of linear maps of degree 0

f r [1] : (L[1]) r -→ M [1], r ≥ 1 (1.119)
or equivalently by desuspension as linear maps of degree r -1

f r : L ∧r -→ M (1.120)
satisfying some relations with the operations r that are not so easy to write in this form (see [LV12, 10.2.7]). We write such a morphism f : L M.

(1.121)

The map f 1 , which is a morphism of DG vector spaces (i.e. of degree 0 and commutes with d = 1 ), is called the linear part of f ; equivalently it is f 1 [1] which commutes with q 1 .

Remark 1.67. A strong morphism from L to M induces a morphism of DG coalgebras from C (L) to C (M ) so that strong morphisms correspond to L ∞ -morphisms with f r = 0 for r > 1 (see [Man04, IX.4]), also called linear morphisms.

Definition 1.68. A L ∞ -morphism f : L M between L ∞ algebras is called a L ∞ - quasi-isomorphism if its linear part f 1 is a quasi-isomorphism f 1 : (L, 1 ) ≈ -→ (M, 1 ), (1.122) equivalently f 1 [1] : (L[1], q 1 ) ≈ -→ (M [1], q 1 ) (1.123) is a quasi-isomorphism.
From this description one sees that a L ∞ -quasi-isomorphism which is induced by a strong morphism is the same thing as a quasi-isomorphism as in Definition 1.45. Then one of the main theorems, for which we reproduce a complete proof, is:

Theorem 1.69 ([Man04, IX.9]). A L ∞ -quasi-isomorphism f : L M (a fortiori, a strong quasi-isomorphism) between L ∞ algebras induces a quasi-isomorphism of DG coal- gebras C (f ) : C (L) ≈ -→ C (M ).
(1.124)

The essential tool of the proof, to which we will come back several times, is the computation of the spectral sequence for the bar filtration. ). Let V be a DG vector space with a decreasing filtration F • (by sub-DG vector spaces). Assume that the filtration F is bounded above (i.e. for each n there exists N such that F p V n = 0 for p ≥ N ) and exhaustive (i.e. V n = p F p V n ). Then for fixed q the term E p,q 0 is zero for p 0 and for fixed (p, q) the differential d p,q r is zero for r 0. There is a canonical isomorphism

E p,q ∞ -→ F p H p+q (V ) F p+1 H p+q (V ) . (1.125)
where E p,q ∞ is the inductive limit of the terms E p,q r .

Concretely, for fixed (p, q), the sequence E p,q r may not stabilize but for r big enough it is obtained only by taking quotients. There are canonical maps E p,q r -→ E p,q s , s ≥ r 0 whose limit defines E p,q ∞ . This applies in particular for C (L) with the bar filtration of Definition 1.46 turned into a decreasing filtration: it is bounded above since the bar filtration is bounded below, and exhaustive since C (L) is the union of the C s (L) over s ≥ 1.

Proof of Theorem 1.69. Of course, the statement for L ∞ -quasi-isomorphisms implies the one for strong quasi-isomorphisms. So assume that f has components f r and that f 1 is a quasi-isomorphism. Let C s be the bar filtration By definition the graded pieces are given by

Gr C s C (L) = C s (L) C s-1 (L) = (L[1]) s , s ≥ 1
with differential induced by q 1 only. So the induced map between the graded pieces is

Gr C s (f ) = (f 1 [1]) s : (L[1], q 1 ) s -→ (M [1], q 1 ) s . (1.126) By hypothesis f 1 [1] : (L[1], q 1 ) ≈ -→ (M [1], q 1 )
is a quasi-isomorphism, and by the Künneth formula

H((L[1], q 1 ) s ) (H(L[1], q 1 )) s
for any s ≥ 1. This follows from the usual Künneth formula for the tensor product and the fact that the symmetric product is a quotient of the tensor product by a finite group. So combining these shows that the map Gr C s (f ) of (1.126) is a quasi-isomorphism. Now compute the spectral sequence. By definition (since C is increasing we work with -s), for all integer q,

C E -s,q 0 (C (L)) = Gr C s C (L) q and C E -s,q 1 (C (L)) = H -s+q (Gr C s C (L)
). So by the previous analysis there is an isomorphism

C E -s,q 1 (C (L)) -→ C E -s,q 1 (C (M )).
Now we use the Theorem 1.70: this induces an isomorphism at the inductive limit

C E -s,q ∞ (C (L)) -→ C E -s,q ∞ (C (M )) which gives Gr C s H -s+q (C (L)) -→ Gr C s H -s+q (C (M )
), s ≥ 1 from which we deduce, step by step by induction on s (since the bar filtration is bounded below), an isomorphism

H(C (L)) -→ H(C (M )).
See also [God58, I.4.3.1] for this argument.

This has the following important consequence, which is the derived version of the classical Theorem 1.19. See the cited lectures notes and the original article [START_REF]Extended deformation functors[END_REF] (Corollary 3.3 combined with section 5) for full proofs.

Theorem 1.71 ([Man04, IX.22]). A L ∞ -quasi-isomorphism f : L M between L ∞ algebras induces an isomorphism Def L -→ Def M
between their associated deformation functors.

Before coming to the pro-representability, let us add another point of view on L ∞ algebras. This is called the rectification, and is well-known from the general theory of DG operads.

Theorem 1.72 ([LV12, 11.4.6]). Any L ∞ algebra is L ∞ -quasi-isomorphic to a DG Lie algebra.
Remark 1.73. Here we don't need to precise the direction or zig-zag of morphisms because L ∞ -quasi-isomorphisms always admit an inverse ([LV12, 10.4.4]) and being L ∞ -quasiisomorphic is an equivalence relation. So at this point we see that working with L ∞ algebras up to L ∞ -quasi-isomorphisms is much more convenient and flexible than working with DG Lie algebras up to quasi-isomorphisms. However there is an equivalence of homotopy categories between these ([LV12, 11.4.8]) expressing the fact that these two approaches contain the same information from the point of view of deformation theory.

Remark 1.74. This result combined to the main Theorem 1.71 implies that there is another description of the deformation functor of a L ∞ algebra L. Namely take any DG Lie algebra M which is L ∞ -quasi-isomorphic to L and define the deformation functor of L to be Def M (in the classical sense); up to isomorphism this does not depend on M . Actually, the article of Pridham [START_REF] Pridham | Unifying derived deformation theories[END_REF] shows that all these approaches to the deformation functor of a DG Lie or L ∞ algebra are equivalent (see in particular Remark 4.28 therein).

Pro-representability

The pro-representability theorem we use is the one proved by Hinich. This appears also earlier in the lectures notes of Kontsevich [START_REF] Kontsevich | Topics in algebra, deformation theory[END_REF].

Theorem 1.75 ([Hin01, § 9.3]). Let L be a DG Lie algebra over k with H n (L) = 0 for all n ≤ 0. Then there is a canonical isomorphism

Def L (A) = Hom CoAlg (m A ) * , H 0 (C (L)) , A ∈ Art k .
(1.127)

Remark 1.76. Actually, Hinich works with unital coalgebras. So we extract (1.127) simply by replacing his A by m A . Conversely, from this formula, one can always add a unit and a counit to H 0 (C (L)) as in Remark 1.34. Then write this equality using the Hom set of unital coalgebras (i.e. requiring morphisms to preserve the units and counits). However this is easier to do after passing to the dual algebra. Now we deduce the dualization. This step is, to our knowledge, never treated exactly as we need in the literature. It will follow from two lemmas.

Lemma 1.77. The dual X * of a conilpotent coalgebra X whose canonical filtration is by finite-dimensional sub-coalgebras is the maximal ideal of a pro-Artin algebra. Conversely if R is a pro-Artin algebra then the dual (m R ) * is a conilpotent coalgebra whose canonical filtration is by finite-dimensional sub-coalgebras. In particular if X is such a coalgebra and A is a local Artin algebra then

Hom CoAlg ((m A ) * , X) = Hom ProArt (k ⊕ X * , A).
(1.128)

Proof. This is just the extension of Lemma 1.60 to infinite filtrations, combined with the Lemma 1.12. Namely if X is a conilpotent coalgebra, then X * is the maximal ideal m R of a complete local algebra R = k ⊕ m R and the canonical filtration of X is dual to the powers of m R . When this filtration is by finite-dimensional sub-coalgebras, then R is pro-Artin. Conversely if R is a pro-Artin algebra then R/(m R ) n is a local Artin algebra for each n, so (m R /(m R ) n ) * is a conilpotent coalgebra which is finite-dimensional, and R * is the increasing union of these. One deduce the equality (1.128) simply by linear algebra. Since m A is finite-dimensional, a morphism of coalgebras f : (m A ) * -→ X factorizes through some finite-dimensional sub-coalgebra of X, that is, through some step X n of the canonical filtration. Then by linear algebra for finite-dimensional vector spaces, f dualizes perfectly to a linear map

f * : X * n -→ m A
which is a morphism of algebras (without units). Then simply add the units: k ⊕ X * has unit 1 ∈ k and f can also be seen as a morphism of algebras with units and preserving the maximal ideals (that is, a morphism of local algebras, a fortiori here a morphism of local Artin algebras)

f * : k ⊕ X * n -→ A. By definition this constructs a morphism f * : k ⊕ X * -→ A
in the category of pro-Artin algebras. Going to the reverse direction is also easy: simply note that a morphism of pro-Artin algebra g : R -→ A factorizes though some quotient R/(m R ) n since the maximal ideal of A is nilpotent, and induces a morphism of algebras without units

g : m R /(m R ) * -→ m A .
Then dualize as above, these algebras being finite-dimensional.

Remark 1.78. We warn the reader of the following possible confusion. It is known that any coalgebra X is the colimit of its finite-dimensional sub-coalgebras (this is sometimes called the fundamental theorem of coalgebras, see [Swe69, § 2.2]) so that the dual algebra X * is always a projective limit of finite-dimensional algebras. However in our Definition 1.9 a pro-Artin algebra is a projective limit of local Artin algebras in a very particular way and that is the difference with the treatment of this duality in the literature.

Lemma 1.79. Let L be a L ∞ algebra with H n (L) = 0 for n ≤ 0 and H 1 (L) finitedimensional. Then the filtration of H 0 (C (L)) induced by the bar filtration, which is the canonical filtration turning H 0 (C (L)) into a conilpotent coalgebra, is by finite-dimensional sub-coalgebras.

Proof. First C (L) is a conilpotent coalgebra and the bar filtration is its canonical filtration: the comultiplication of H 0 (C (L)) is induced by the one of C (L), from which we see clearly that it is conilpotent and its canonical filtration is induced by the bar filtration.

So, as in the proof of Theorem 1.69, we compute the spectral sequence for the bar filtration for L. It starts with

Gr C s C (L) = (L[1]) s , s ≥ 1 with the differential induced by 1 [1] = q 1 . By the hypothesis that H n (L) = 0 for n ≤ 0, with H n (L[1]) = H n+1 (L)
, the Künneth formula simply states here that

H 0 (Gr C s C (L)) = t 1 +•••+ts=0 H t 1 (L[1]) • • • H ts (L[1]) = (H 0 (L[1])) s = (H 1 (L)) s which is finite-dimensional if H 1 (L) is. This is also C E -s,s 1 (C (L)
). So we deduce that each terms C E -s,s r (C (L)) as well as C E -s,s ∞ (C (L)) (defined as in the convergence Theorem 1.70) are finite-dimensional, being sub-quotients of C E -s,s 1 (C (L)). And so is Gr C s H 0 (C (L)). Since the bar filtration is bounded below this in turns implies (via an induction on s) that the induced filtration given by

H 0 (C (L)) s := Im H 0 (C s (L)) → H 0 (C (L)) (1.129)
is by finite-dimensional sub-coalgebras.

So we deduce:

Theorem 1.80 (Pro-representability). Let L be a L ∞ algebra with H n (L) = 0 for n ≤ 0 and

H 1 (L) finite-dimensional. Then k ⊕ H 0 (C (L)) * is a pro-Artin algebra that pro- represents Def L . A quasi-isomorphism between such L ∞ algebras f : L ≈ -→ M

induces an isomorphism between their deformation functors and their pro-representing objects making commutative the following diagram of isomorphism of functors from Art

k to Set Def L f Hom k ⊕ H 0 (C (L)) * , - f Def M Hom k ⊕ H 0 (C (M )) * , -.
(1.130)

Proof. Combine the preceding theorems. The L ∞ -quasi-isomorphisms preserve our conditions on cohomology. So one can assume that L is a DG Lie algebra (as in Remark 1.74) and apply the representability theorem of Hinich 1.75. Then combine the two preceding lemmas to get that k ⊕ H 0 (C (L)) * is a pro-Artin algebra and that one can dualize to get

Def L (A) = Hom ProArt k ⊕ H 0 (C (L)) * , A , A ∈ Art k . (1.131)
Both sides of this equation are functorial in L and invariant under quasi-isomorphisms.

Remark 1.81. This theorem, though expressed as a theorem in classical deformation theory, was clearly unknown at the time of the first article of Goldman and Millson [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF]. It doesn't seem possible to understand it without appealing to L ∞ algebras and extending deformation functors to some categories of DG Artin algebras, which gives the natural interpretation of the Maurer-Cartan elements as in Proposition 1.61.

In [START_REF]The homotopy invariance of the Kuranishi space[END_REF], they proved that there is a complete local algebra that pro-represents the functor Def L and that is invariant under quasi-isomorphisms, but the construction is not functorial. It was also known by them, in [KM98, § 14], that this algebra can be constructed as a quotient of the formal power series on H 1 (L), which is the tangent space to the deformation functor Def L ([Man99, § 3.c] for the classical point of view). But in the form we give, the pro-representability theorem is a great improvement of the theory.

Examples

Let us give simple examples of computation with the functor C .

Example 1.82. Assume that L = g[0] is a Lie algebra, concentrated in degree zero. Then L[1] is concentrated in degree -1 and

Sym + (L[1]) = r≥1 (Λ r g)[r].
So C (L) is the usual Chevalley-Eilenberg complex computing the Lie algebra homology of g (it is in negative degrees with a differential of degree +1, so it really computes homology) and its dual computes the Lie algebra cohomology.

Example 1.83. Assume that L = V [-1] is a vector space concentrated in degree 1, with zero bracket and zero differential. Then

L[1] = V [0] and Sym + (L[1]) = Sym + (V )[0]
with zero differential. Its dual, to which we add k, is the algebra of formal power series on V . This is coherent with the fact that the deformation functor is simply

Def L (A) = V ⊗ m A which is smooth.
Example 1.84. Assume that L has d = 0 and L n = 0 for n ≤ 0. In this case the deformation functor is simply given by the Maurer-Cartan equation [x, x] = 0 for x ∈ L 1 .

Then L[1] is concentrated in non-negative degree and the part of degree 0 of C (L) is Sym + (L 1 ). The differential is given by the Lie bracket. So we see that H 0 (C (L)) is dual (up to adding k) to the algebra of power series at 0 of the quadratic cone defined by the Maurer-Cartan equation.

In particular this applies if L is formal, that is, quasi-isomorphic to a DG Lie algebra with d = 0, and with H 0 (L) = 0: up to quasi-isomorphism one can assume that L is of the above form.

Chapter 2

Hodge theory

In this chapter we combine Hodge theory with the algebraic constructions we described in the preceding chapter. The geometric situation of Goldman and Millson will not only give us an augmented DG Lie algebra, to which we associated a L ∞ algebra in section 1.2.2, but actually a more complicated object having both the structures of mixed Hodge complex and of augmented DG Lie algebra. Since we report all the geometric constructions to the chapter 3 we deal here only with the algebraic part of these.

So we have to study first mixed Hodge structures and mixed Hodge complexes. These last ones are more subtle to work with but are for us the essential tools for constructing mixed Hodge structures. So we need to introduce them and fix our point of view in section 2.1.

Then section 2.2 contains the heart of the work. There we define and study the structure of augmented mixed Hodge diagram of Lie algebras. The main results are Theorem 2.38, stating that from this one obtains a mixed Hodge diagram of L ∞ algebras via the construction of Fiorenza-Manetti, and the Theorem 2.44 saying that one can apply the functor C (the bar construction) on these and get again a mixed Hodge diagram, this time of conilpotent DG coalgebras. So its H 0 carries a mixed Hodge structure and we will combine this with the pro-representability Theorem 1.80.

Mixed Hodge structures and mixed Hodge complexes

We adopt all the notations and classical constructions from the original articles of Deligne [START_REF]Théorie de Hodge, II[END_REF] and [START_REF]Théorie de Hodge, III[END_REF] concerning filtrations and Hodge theory. We also refer to the book of Peters-Steenbrink [START_REF] Peters | Mixed Hodge structures[END_REF]. This first sections contains nothing new except that we fix some point of view on mixed Hodge complexes.

So let us describe some conventions and notations. All our filtrations are indexed by Z. The use of upper indices F • will denote a decreasing filtration with its graded parts Gr • F and lower indices W • correspond to an increasing filtration with graded parts Gr W • . One can always turn an increasing filtration W • into a decreasing one by letting

W k := W -k (2.1)
and thus we will mainly state results involving only one filtration for an increasing filtra-tion W . This comes from the fact that in defining mixed Hodge complexes, one complex carries the weight filtration W and one other carries the two filtrations W, F , thus results holding for one filtration appear first for W . We say that an element x of a filtered vector space (K, W • ) is of weight k if k is the smallest of the integers i such that x ∈ W i .

We assume that all our filtrations of vector spaces are finite (W k K = 0 for k 0 and W k K = K for k 0) and filtrations of complexes are biregular (on each component K n , the induced filtration is finite) unless we explicitly state that we work with inductive or projective limits of such objects.

Filtrations and mixed Hodge structures

In this section, if k is a field, L/k a field extension and K k a vector space over k, we will always denote by

K L := K k ⊗ k L (2.2)
the extension of scalars of K k from k to L.

In section 1.1 of [START_REF]Théorie de Hodge, II[END_REF] it is recalled how to construct naturally filtrations on subobjects, quotients, direct sums, tensor products etc. We review briefly what we need.

Filtered and bifiltered DG vector spaces

Definition 2.1. A filtered DG vector space over k is a DG vector space K over k with an increasing filtration W • by sub-DG vector spaces. This implies that

W k K = n W k K n (2.3) and that d(W k K n ) ⊂ W k K n+1 .
(2.4)

A bifiltered DG vector space is a DG vector space K with an increasing filtration W • and a decreasing filtration F • , such that K is filtered for W and for F . Writing

W k F p := W k ∩F p this implies that W k F p K = n W k F p K n .
(2.5)

Morphisms are required to preserve the filtrations. We denote by Fil-DG-Vect k the category of filtered DG vector spaces and by Fil 2 -DG-Vect k the category of bifiltered DG vector spaces over k.

Definition 2.2. Let (K, W • ) and (L, W • ) be filtered DG vector spaces. The following linear algebraic constructions have canonical filtrations:

1. The direct sum K ⊕ L with

W k (K ⊕ L) := (W k K) ⊕ (W k L).
(2.6) 2. The tensor product K ⊗ L (defined in (1.9)) with

W k (K ⊗ L) := i+j=k (W i K) ⊗ (W j L).
(2.7)

We call it the multiplicative extension of the filtrations on K and on L.

3. By the same multiplicative extension rule, the symmetric and exterior powers also have natural filtrations. Using the direct sum, one gets filtrations on the whole tensor, symmetric and exterior algebras.

4. The linear dual K * which has

(K * ) n := Hom(K -n , k) (2.8) is filtered with W k (K * ) := (W -k K) * (2.9)
(so this is more naturally a decreasing filtration if W is increasing).

The cohomology H(K) gets an induced filtration

W k H(K) = Im H(W k K) → H(K) .
(2.10) 6. Finally the field k has a trivial filtration with

W -1 (k) = 0, W 0 (k) = k. (2.11)
Of course, all these constructions carry over directly to bifiltered DG vector spaces.

The last operation we will be interested in is the shift. But here there are two ways of shifting filtrations and when working with bifiltered DG vector spaces we will use both.

Definition 2.3. Given a filtered DG vector space (K, W • ) and an integer r, the r-shift (Definition 1.42) K[r] has an induced filtration given by

W k (K[r] n ) = W k (K n+r ) ⊂ K n+r = K[r] n .
(2.12)

Similarly, if (K, W • , F • ) is bifiltered then K[r] has induced filtrations W, F .
Definition 2.4. Given a filtered DG vector space (K, W • ) and an integer r, the r-shift of W is the filtration W [r] defined by

W [r] k K := W k-r K.
(2.13)

The need for these two shifts is expressed by the following result.

Lemma 2.5. ). So we warn the reader that in a bifiltered DG vector space the two filtrations do not play the same role and the algebraic constructions for bifiltered DG vector spaces are not all obtained by applying two times the corresponding algebraic constructions for filtered DG vector spaces, as we will see right now.

If (K, W • ) is a filtered DG vector space then Gr W [r] k (K[r]) = (Gr W k-r K)[r]. ( 2 
Definition 2.7. Let f : (K, W • ) → (L, W • ) be a morphism between filtered DG vector spaces. Its mapping cone Cone(f ) (Definition 1.50) is filtered with

W k Cone(f ) n := W k-1 K n+1 ⊕ W k L n .
(2.15)

The desuspended mapping cone Cone(f )[-1] is filtered with

W k Cone(f )[-1] n := W k K n ⊕ W k+1 L n-1 (2.16)
which is precisely W [-1] of the filtration W on the mapping cone. If (K, W • , F • ) and (L, W • , F • ) are bifiltered and f respects also the filtration F , then the filtration F on the mapping cone is given by

F p Cone(f ) n := F p K n+1 ⊕ F p L n (2.17)
and on the desuspended mapping cone it is simply

F p Cone(f )[-1] n := F p K n ⊕ F p L n-1 .
(2.18) Also, for the needs of mixed Hodge theory, Deligne introduces the décalage filtration.

Definition 2.8 ([Del71b, 1.3.3]). Let (K, W • ) be a filtered DG vector space. The décalage filtration of K is the filtration (Dec W ) • defined by

(Dec W ) k K n := x ∈ W k-n K n dx ∈ W k-n-1 K n+1 . (2.19)
Its main properties are that for the induced filtration on cohomology

(Dec W ) k H n (K) = W k-n H n (K) = W [n] k H n (K) (2.20)
and if K is concentrated in degree zero then Dec W = W . For the induced spectral sequence there is an isomorphism

Dec W E p,q r -→ W E 2p+q,-p r+1 , r ≥ 1. (2.21)
If a morphism of DG vector spaces f : K → L is a morphism of filtered DG vector spaces for some given filtrations on K and L we will briefly say that f is compatible with the filtrations. Definition 2.9. We introduce the following categories of filtered algebras:

1. If A is a DG algebra with a filtration W as DG vector space, we say that it is a filtered DG algebra if its multiplication

µ : A ⊗ A -→ A
is compatible with the filtrations W ⊗ W induced on A ⊗ A and W on A. This reads concretely as

µ(W k A n , W A m ) ⊂ W k+ A n+m . (2.22)
If A has a unit one also requires the unit

1 A : k -→ A
to be compatible with the trivial filtration on k (2.11).

2. Similarly if L is a DG Lie algebra with a filtration W as DG vector space, we say it is a filtered DG Lie algebra if its bracket

[-, -] : L ⊗ L -→ L
is compatible with the induced filtrations. This reads as

[W k L n , W L m ] ⊂ W k+ L n+m .
(2.23)

3. If X is a coalgebra with a filtration W as DG vector space, we say it is a filtered DG coalgebra if its comultiplication ∆ : X -→ X ⊗ X is compatible with the induced filtrations. 4. Finally if L is a L ∞ algebra with a filtration W as DG vector space, we say it is a filtered L ∞ algebra if all the operations in r variables of degree 2 -r r : L ∧r -→ L, r ≥ 1 are compatible with the induced filtrations W ∧r on L ∧r (by the multiplicative rule as for the tensor product) and W on L (and not W [2 -r], see the remark below).

Remark 2.10. Let L be a L ∞ algebra with a filtration W as DG vector space. Then d = 1 can be seen as a morphism of graded vector spaces

d ∈ Hom G-Vect (L, L[1]).
However d is not a morphism of filtered graded vector spaces if we put the filtration W [1] on L[1], namely this would mean

d(W k L n ) ⊂ W k-1 L n+1
but W is increasing so this has no reason to hold. That is why in the above definition of filtered L ∞ algebra, when r is of degree 2 -r, we work with the filtration W and not W [2 -r] on the right-hand side.

Filtered quasi-isomorphisms

For a morphism between filtered DG vector spaces the condition of being a filtered quasi-isomorphism is slightly stronger that the condition of being a quasi-isomorphism compatible with the filtrations. In the former case one requires the morphism to identify all the graded pieces via a quasi-isomorphism. This notion behaves much better when working with mixed Hodge theory and spectral sequences. Lemma 2.13. A filtered quasi-isomorphism as well as a bifiltered quasi-isomorphism is in particular a quasi-isomorphism.

Definition 2.11. A morphism of filtered DG vector spaces

f : (K, W • ) → (L, W • ) is called a filtered quasi-isomorphism if for each k the induced morphism Gr W k (f ) : Gr W k (K) -→ Gr W k (L) (2.24) is a quasi-isomorphism. If f : (K, W • , F • ) → (L, W • , F • )
Proof. Do it first for the filtered case. Such a morphism f : K → L induces by definition an isomorphism at the first page of the spectral sequence for W :

W E 1 (f ) : W E 1 (K) -→ W E 1 (L).
Since the filtrations are biregular, these spectral sequences converge, in the sense that for fixed (k, n) the terms E k,n r stabilize with r. So f induces an isomorphism

W E ∞ (f ) : W E ∞ (K) -→ W E ∞ (L)
and in each degree n, f induces an isomorphism between the finitely many graded pieces

Gr W k (H n (K)) ∼ -→ Gr W k (H n (L)).
Then an induction on k concludes that H n (f ) is an isomorphism: when W is a one-step filtration (such that there is only one non-zero graded piece) this is trivial and when it is two-step this is the three lemma.

The filtered case implies immediately the bifiltered case by treating one filtration at a time.

Mixed Hodge structures

Definition 2.14. A (pure) Hodge structure of weight k over the field k ⊂ R is the data of a finite-dimensional vector space K k over k and a decreasing filtration F • of K C called the Hodge filtration such that F and its conjugate filtration F (defined with respect to the real structure coming from K k ) are k-opposed, which means that if we define

K p,q := F p K C ∩ F q K C (2.26) then K p,q = K q,p (2.27)
and

F p K C = r≥p K r,q (K p,q = 0 if p + q = r).
(2.28)

This implies then that F q K C = s≥q K p,s .

Definition 2.15. A mixed Hodge structure over k is the data of a finite-dimensional vector space K k over k with an increasing filtration W • called the weight filtration and a decreasing filtration F • on K C called the Hodge filtration such that for each k the graded piece

Gr W k (K k ), Gr W k (K k ) ⊗ C = Gr W ⊗C k (K C ), F • (2.29)
(with the induced filtration F on Gr W k (K C )) forms a pure Hodge structure of weight k.

We will soon relax notations and simply write (K, W, F ) or (K k , K C , W, F ) for such a mixed Hodge structure. The category of mixed Hodge structures is an abelian category with a tensor product. The morphisms are simply required to be induced by a morphism over k and to be compatible with both filtrations W, F . Proposition 2.16. If K, L are mixed Hodge structures, then all the algebraic operations described in Definition 2.2 applied to K, L seen as DG vector spaces concentrated in degree zero give again mixed Hodge structures.

In particular, this gives automatically rise to the notion of algebra carrying a mixed Hodge structure. This is very similar to the filtered version of Definition 2.9 but concentrated in degree zero.

Definition 2.17. If A is an algebra (associative, commutative) with a mixed Hodge structure and such that the multiplication is a morphism of mixed Hodge structures, we say that A is an algebra with a mixed Hodge structure. If A has a unit 1 we also require the morphism k → A to be a morphism of mixed Hodge structures, for the trivial mixed Hodge structure (of pure weight zero) on K := k with K C = C and K p,q = 0 if (p, q) = (0, 0).

Similarly if g is a Lie algebra with a mixed Hodge structure such that the Lie bracket is a morphism of mixed Hodge structures, we say that g is a Lie algebra with a mixed Hodge structure. And if X is a coalgebra (coassociative, cocommutative) with a mixed Hodge structure such that the comultiplication is a morphism of mixed Hodge structures, we say that X is a coalgebra with a mixed Hodge structure.

A mixed Hodge structure on K defines (in several ways) a bigrading of K C . Definition 2.18 ([PS08, 3.4]). Let K be a mixed Hodge structure. Let K p,q be the (p, q)-component of Gr W p+q (K). Define the subspace of

K C I p,q := F p ∩ W p+q ∩   F q ∩ W p+q ∩ j≥2 F q-j+1 ∩ W p+q-j   .
(2.30)

Then this defines a bigrading K C = p,q I p,q (2.31) such that the canonical projection K C → Gr W p+q (K C ) induces an isomorphism I p,q K p,q .

(2.32)

We call it the Deligne splitting. It is functorial and compatible with duals and tensor products.

Finally we describe a notion that will be used only in the geometrical constructions.

Definition 2.19.

If (K, F ) is a Hodge structure of weight k, a polarization for K is a k-bilinear form Q : K ⊗ K -→ k
which is is symmetric if k is even, anti-symmetric if k is odd, and on K C satisfies the two Riemann bilinear relations:

1. Q(K p,q , K r,s ) = 0 if (p, q) = (r, s), 2. i p-q Q(v, v) > 0 for 0 = v ∈ K p,q .

Mixed Hodge complexes

The notion of mixed Hodge complex is much more subtle that the one of mixed Hodge structure. From our point of view, this comes from the fact that the various pieces of a mixed Hodge complex live naturally in a filtered derived category. This last one is not easy to describe since the category of filtered DG vector spaces is not an abelian category.

So we prefer to fix the chain of filtered quasi-isomorphisms relating the various pieces. For this we adopt the point of view of Cirici in [START_REF] Cirici | Cofibrant models of diagrams: mixed Hodge structures in rational homotopy[END_REF] and [START_REF] Cirici | Homotopy theory of mixed Hodge complexes[END_REF].

In this section, contrary to the convention adopted in the previous section, if k is a field and L/k is a field extension then K k and K L are different vector spaces, respectively over k and over L. Then we will be interested in some comparison morphisms or quasiisomorphisms between K k ⊗ k L and K L . In the geometric constructions these part have very different origins.

Diagrams of filtered DG vector spaces

In a first step we work only with diagrams of filtered DG vector spaces. This is a more flexible category than the category of mixed Hodge complexes, for which one has to check additional non-trivial axioms.

So denote by Cat the category of all categories. We fix a finite category I of zig-zag type of length s, that is,

I = 0 -→ 1 ←-• • • -→ s -1 ←-s .
(2.33)

We call it our index category. For a functor C : I → Cat, we write C i for the category C(i) and for a morphism u : i → j we write u * for C(u) and we call it a comparison functor.

Definition 2.20 ([Cir15, 4.1]). Given a functor C : I → Cat, the category of diagrams associated with C is the category denoted by ΓC with:

-Objects given by families

K = (K i , ϕ u )
indexed by i ∈ I and u : i → j where K i is an object of C i and

ϕ u : u * (K i ) -→ K j is a morphism in C j called a comparison morphism. -Morphisms f : K = (K i , ϕ u ) -→ L = (L i , ψ u )
given by families of morphisms

f = (f i : K i → L i ) in C i such that for all u : i → j in I the diagram u * (K i ) u * (f i ) / / ϕu u * (L i ) ψu K j f j / / L j (2.34) commutes in C j .
We see that this is the natural definition for a family of objects parametrized by I belonging to possibly different categories, with some given functors u * to compare the different categories. Now again, for doing Hodge theory, consider for k a subfield of R.

Definition 2.21. Let the functor V k : I → Cat be defined as follows:

0 v / / Fil-DG-Vect k v * 1 / / Fil-DG-Vect C . . . O O . . . id O O id s -1 / / Fil-DG-Vect C s w O O / / Fil 2 -DG-Vect C w * O O (2.35)
where the comparison functor

v * (K k , W ) := (K k , W ) ⊗ k C (2.36)
is the extension of scalars from k to C and

w * (K C , W C , F ) := (K C , W C ) (2.37)
forgets the filtration F . The other comparison functors are identities. The category of objects ΓV k for this diagram is called the category of diagrams of filtered DG vector spaces over k.

When writing a general object of ΓV k we will always write (K k , W ) for K 0 and (K C , W, F ) for K s . Then K i will denote any of the components of K, which always has the filtration W . Definition 2.22. A morphism f between diagrams of filtered DG vector spaces K = (K i ), L = (L i ) is a morphism in the category ΓV k between K and L, thus is given by its components

f i : K i -→ L i
commuting with the comparison morphisms. We say that f is a quasi-isomorphism if each component f i is a filtered quasi-isomorphism and the last component f C (between K C and L C which carry two filtrations) is a bifiltered quasi-isomorphism.

Linear algebraic constructions on filtered DG vector spaces that commute with the extension of scalars can be carried out directly to diagrams of filtered DG vector spaces. Definition 2.23. If K = (K i ), L = (L i ) are diagrams of filtered DG vector spaces, then all linear algebraic constructions described in Definition 2.2 and Definition 2.3 can be done level-wise and give again diagrams of filtered DG vector spaces. In particular, the direct sum K ⊕ L has components

(K ⊕ L) i := K i ⊕ L i , (2.38) the tensor product K ⊗ L has components (K ⊗ L) i := K i ⊗ L i , (2.39) the dual has components (K * ) i := (K i ) * , (2.40)
the cohomology H(L) has components

(H(K)) i := H(K i ) (2.41)
and the r-shift K[r] (for r ∈ Z) has components

(K[r]) i := K i [r] (2.42)
all with their naturally induced filtrations.

And there is another way of shiftings the complexes and filtrations (Remark 2.6). (2.44)

Because of these constructions, our favorite kind of algebras can also be defined internally to the category of diagrams of filtered DG vector spaces. Definition 2.25. A diagram of filtered DG algebras is a diagram of filtered DG vector spaces where all the involved components have an algebra structure whose multiplication is compatible with the filtrations (as in Definition 2.9) and the comparison morphisms are morphisms of algebras. Similarly one defines diagrams of filtered DG Lie algebras, diagrams of filtered L ∞ algebras and diagrams of filtered DG coalgebras.

Finally the last construction we will use is the mapping cone. Definition 2.26 (See [START_REF] Peters | Mixed Hodge structures[END_REF]3.22]). Let f = (f i : K i → L i ) be a morphism of diagrams of filtered DG vector spaces. The mapping cone of f is the diagram of filtered DG vector spaces Cone(f ) given by the mapping cones of the f i with their filtrations induced as in Definition 2.7.

Mixed Hodge complexes

In the point of view we adopted, a mixed Hodge complex is given by additional axioms on a diagram of filtered DG vector spaces. Then the main theorem of Deligne states that the cohomology of such a diagram, whose various pieces are identified via quasi-isomorphisms, carries a mixed Hodge structure. So for us this is just a list of axioms to be checked in order to get an induced mixed Hodge structure on cohomology.

We still work with diagrams over a fixed index category I (2.33) and with a field k ⊂ R. Definition 2.27 (Compare [Del74, 8.1.5], [START_REF] Cirici | Cofibrant models of diagrams: mixed Hodge structures in rational homotopy[END_REF]4.4], [Nav87, § 7.4]). A mixed Hodge complex (over the field k, of shape given by the index category I) is a diagram of filtered DG vector spaces K = (K i , ϕ u ) over k satisfying the additional conditions:

1. All the DG vector spaces K i are bounded below complexes (i.e. K n i = 0 for n 0). 2. All comparison morphisms ϕ u are filtered quasi-isomorphisms. This implies that the cohomologies H n (K i ) are identified and H n (K k ) gives a k-structure (a fortiori, a real structure) on

H n (K C ). 3. For all n ∈ Z, H n (K) is finite-dimensional. 4. For all k ∈ Z, the differential of Gr W k (K C
) is strictly compatible with the filtration F . 5. For all n ∈ Z and all k ∈ Z, the filtration F induced on H n (Gr W k (K C )) and the form H n (Gr W k (K k )) over k are part of a pure Hodge structure of weight k + n over k on H n (Gr W k (K)). This forms a full subcategory of ΓV k .

Example 2.28. If (K, W, F ) is a mixed Hodge structure, one can see K as a mixed Hodge complex concentrated in degree 0. The comparison morphisms are simply the isomorphism K C K k ⊗ C. Conversely, if K is a mixed Hodge complex all of whose components are concentrated in degree 0 then all components K i are finite-dimensional, the comparison morphisms ϕ u identify them (compatibly with the filtrations) and K can be considered as a mixed Hodge structure.

The main theorem of Deligne is: Theorem 2.29 (Deligne [Del74,8.1.9]). If K is a mixed Hodge complex over k, then H n (K) endowed with the k-structure coming from H n (K k ), the induced filtration F , and the shift W [n] of the induced filtration W (alternatively, H(K) with Dec W of Definition 2.8), is a mixed Hodge structure. The spectral sequence for F degenerates at E 1 and the spectral sequence for W degenerates at E 2 .

The category of mixed Hodge complexes is much more rigid than the one of mixed Hodge structures and there are only a limited number of algebraic operations that one can perform on them. But for us it will be enough to have the direct sum, the tensor product, and the mapping cone.

Proposition 2.30. Let K, L be two mixed Hodge complexes. The direct sum K ⊕ L is again a mixed Hodge complex and on cohomology

H n (K ⊕ L) H n (K) ⊕ H n (L) (2.45)
as mixed Hodge structures. Similarly [START_REF]Théorie de Hodge, III[END_REF]8.1.24], [START_REF] Peters | Mixed Hodge structures[END_REF]3.20]) the tensor product K ⊗ L is a mixed Hodge complex and on cohomology, via the Künneth formula,

H n (K ⊗ L) i+j=n H i (K) ⊗ H j (L) (2.46)
as mixed Hodge structures (since K, L are bounded below complexes there is no infinite sum involved here).

Lemma 2.31. If (K, W, F ) is a mixed Hodge complex then (K[r], W [r], F ) is again a mixed Hodge complex.

Proof. By Lemma 2.5, in each component i, Gr

W [r] k (K i [r]) = (Gr W k-r K i )[r] so that H n (Gr W [r] k (K i [r])) = H n+r (Gr W k-r (K i ))
. By the axiom 5 of mixed Hodge complexes for (K, W, F ), gluing these terms for varying i gives a pure Hodge structure of weight k + n. And this checks this same axiom for (K[r], W [r], F ). The other axioms are then clearly satisfied.

Proposition 2.32 [START_REF] Peters | Mixed Hodge structures[END_REF]3.22]). The mapping cone described in Definition 2.26 of a morphism f : K → L between mixed Hodge complexes is a mixed Hodge complex. For completeness, recall that it is given by the filtrations W on the component i

W k Cone(f ) n i := W k-1 K n+1 i ⊕ W k L n i (2.47)
and on the component C carrying the filtration F it is given by

F p Cone(f ) n C := F p K n+1 C ⊕ F p L n C .
(2.48)

For the desuspended mapping cone, which is

(Cone(f )[-1], W [-1], F
), the structure of mixed Hodge complex is given by

W k (Cone(f )[-1]) n i := W k K n i ⊕ W k+1 L n-1 i (2.49) and F p (Cone(f )[-1]) n C := F p K n C ⊕ F p L n-1 C .
(2.50)

On cohomology the long exact sequence for the mapping cone

• • • -→ H n (K) -→ H n (L) -→ H n (Cone(f )) -→ H n+1 (K) -→ H n+1 (L) -→ • • • (2.

51) (where one can replace H n (Cone(f )) by H n+1 (Cone(f )[-1])) becomes a long exact sequence of mixed Hodge structures.

Remark that the suspension (K[1], W [1], F ) we described above (r = 1) is in particular the mapping cone of K → 0.

Finally, our various kinds of DG algebras or coalgebras can also be defined internally to mixed Hodge complexes. In this situation, following the original terminology of Morgan [Mor78, 3.5], we call them mixed Hodge diagrams. Definition 2.33. We define a mixed Hodge diagrams of algebras to be a diagram of filtered DG algebras which is also a mixed Hodge complex (for its underlying structure of diagram of filtered DG vector spaces). Similarly, one defines mixed Hodge diagrams of Lie algebras, mixed Hodge diagrams of L ∞ algebras and mixed Hodge diagrams of coalgebras.

These will be the main objects of study in the next section.

Mixed Hodge diagrams

Now we use all the definitions and constructions of the previous section together and relate them with the chapter 1. Our ultimate goal is to show, first that given a morphism of mixed Hodge diagrams of Lie algebras one gets a mixed Hodge diagram of L ∞ algebras L by the construction of Fiorenza-Manetti of section 1.2.2, then that the functor C applied to L gives a mixed Hodge diagram of coalgebras so as to define a mixed Hodge structure on H 0 (C (L)), with which as in section 1.2.3 we will get a mixed Hodge structure on a pro-Artin algebra pro-representing the deformation functor of L. We naturally separate these into two sections.

All our mixed Hodge complexes are indexed over a fixed category I (2.33) and defined over a field k ⊂ R.

Augmented mixed Hodge diagrams of Lie algebras and mixed Hodge diagrams of L ∞ algebras

First for completeness, let us write the full definition of mixed Hodge diagrams for Lie algebras and for L ∞ algebras. These are the objects we will work with.

Definition 2.34. A diagram of filtered L ∞ algebras is a diagram of filtered DG vector spaces L = (L i , ϕ u ) such that all the L i have a L ∞ algebra structure which is compatible with the filtrations. For the operations in r variables of degree 2 -r

r : L ∧r -→ L in the component L i one requires the compatibility with W r ((W k 1 L n 1 i ) ∧ • • • ∧ (W kr L nr i )) ⊂ W k 1 +•••+kr L n 1 +•••+nr+2-r i (2.52)
and in the component L C , carrying the filtration F , one requires 

r ((F p 1 L n 1 C ) ∧ • • • ∧ (F pr L nr C )) ⊂ F p 1 +•••+pr L n 1 +•••+nr+2-r C . ( 2 
((F p L n C ) ∧ (F q L C ) m ) ⊂ F p+q L n+m C directly induces on cohomology [F p H n (L C ), F q H m (L C )] ⊂ F p+q H n+m (L C ).
For W , in any of the components L i , one has to be more careful. Take cohomology classes

[u] ∈ (Dec W ) k H n (L i ), [v] ∈ (Dec W ) H m (L i ). Then [u] comes from an element u ∈ W k-n L n i , and [v] comes from v ∈ W -m L m i . So 2 (u ∧ v) ∈ W (k-n)+( -m) L n+m i
and this corresponds to

[[u], [v]] ∈ (Dec W ) k+ H n+m (L i ).
This proves that the Lie bracket is a morphism of mixed Hodge structures.

Recall also the notion of morphism. It is obviously obtained by our general definition of morphisms of diagrams of filtered DG vector spaces 2.22 and the definition of strong morphisms for L ∞ algebras 1.45. Definition 2.36. A morphism f between mixed Hodge diagrams of L ∞ algebras L, M is given by a collection of morphisms

f i : L i -→ M i
(2.54) that are at the same time strong morphisms of L ∞ algebras and morphisms of diagrams of filtered DG vector spaces. It is said to be a quasi-isomorphism if each f i is a filtered quasi-isomorphism and f C is a bifiltered quasi-isomorphism.

The structure we will get from the geometric situation is: Assume that in each of the components L i the filtration W has only non-negative weights (i.e. W k L i = 0 for k < 0) and that the mixed Hodge structure on g is pure of weight zero. Then the desuspended mapping cone C of ε with its L ∞ algebra structure described in section 1.2.2 is a mixed Hodge diagram of L ∞ algebras.

Proof. It is practical to consider g as a mixed Hodge diagram of Lie algebras concentrated in degree 0. So we will write terms g n i that are zero for n = 0. The structure of mixed Hodge complex on C is recalled in Proposition 2.32 (with C = Cone(ε)[-1]), the axioms to be checked are in Definition 2.34 and the operations of L ∞ algebra of C are described in Theorem 1.57. It is clear that these operations commute with the change of coefficients from k to C so the difficult part is to check the compatibility with the filtrations.

Let Q be the codifferential on the cofree coalgebra on C[1] which gives the structure of L ∞ algebra to C, with its components q r (r ≥ 1), and r are the corresponding operations on C. Up to signs and shifts of gradings, the operations q r and r are given by the same algebraic formulas.

First check the compatibility for W in some component C i .

For 1 , which is the differential of the desuspended mapping cone: take (x, u)

∈ W k C n i , so that x ∈ W k L n i and u ∈ W k+1 g n-1 i . Then we know that 1 (x, u) = (d(x), ε(x) -d(u)) (actually d = 0 on g i ). But d(x) ∈ W k L n+1 i , ε(x) ∈ W k g n i ⊂ W k+1 g n i and d(u) ∈ W k+1 g n i . So one sees that 1 (x, u) ∈ W k C n+1 i . For 2 : take (x, u) ∈ W k C n i , (y, v) ∈ W C m i , so that x ∈ W k L n i , u ∈ W k+1 g n-1 i , y ∈ W L m i , v ∈ W +1 g m-1 i
. We want to show that

2 ((x, u) ∧ (y, v)) ∈ W k+ C n+m i .
For the part 2 (x ∧ y) this is given (up to sign) by [x, y], and it is in

W k+ L n+m i . For 2 (u ⊗ y) this is given up to sign by [u, ε(y)] which is in W (k+1)+ g (n-1)+m i
. This proves the compatibility for 2 . Now for the higher operations r with r ≥ 3 there is only one compatibility in the relation (1.109) to check, and up to sign this is just an iterated bracket. So take r elements

(x j , u j ) ∈ W k j C n j i , j = 1, . . . , r so that x j ∈ W k j L n j and u j ∈ W k j +1 g n j -1 . When computing r ((x 1 , u 1 ) ∧ • • • ∧ (x r , u r )),
the only nonzero part is when we multiply only one of the x j with the others u j ; call it x s . Since g i is concentrated in degree 0, this is zero if all u are not of degree 0 or if x s is not of degree 0. So we can assume n s = 0 and n j = 1 for j = s. Then for the iterated bracket, and for a permutation {t 1 , . . . , t r-1 } of {1, . . . , ŝ, . . . , r},

[u t 1 , [u t 2 , . . . , [u t r-1 , ε(x s )] . . . ]] ∈ W (kt 1 +1)+•••+(kt r-1 +1)+ks g (nt 1 -1)+•••+(nt r-1 -1)+ns i = W k 1 +•••+kr+(r-1) g n 1 +•••+nr-r+1 i = W k 1 +•••+kr+r-1 (g i ). (2.56) One would like r ((x 1 , u 1 ) ∧ • • • ∧ (x r , u r )) ∈ W k 1 +•••+kr C n 1 +•••+nr+2-r i = W k 1 +•••+kr C 1 i so that the iterated bracket in (2.56) would land in W k 1 +•••+kr+1 (g i ).
But if we assume that g i has pure weight zero and since r ≥ 3, the condition

W k 1 +•••+kr+r-1 (g i ) ⊂ W k 1 +•••+kr+1 (g i ) ⊂ g i
is realized by an equality as soon as k 1 + • • • + k r + 1 ≥ 0. So, under the assumption that L i has only non-negative weights, one can reduce the compatibility checking to k 1 , . . . , k r ≥ 0 and this equality is realized.

The condition to check for F on C C is much easier because there is no shift in the filtration. One sees directly that (x, u)

∈ F p C n C means x ∈ F p L n C , u ∈ F p g n-1 C , so that d(x) ∈ F p L n+1 C , ε(x) ∈ F p g n C and d(u) ∈ F p g n C so 1 (x, u) ∈ F p C n+1 C . For 2 then (x, u) ∈ F p C n C , (y, v) ∈ F q C m C means that x ∈ F p L n C , u ∈ F p g n-1 C , y ∈ F q L m C , v ∈ F q g m-1 C . So 2 ((x, u) ∧ (y, v)) = [x, y], 1 2 [u, ε(y)] + (-1) |x| 2 [ε(x), v] ∈ F p+q L n+m C ⊕ F p+q g n+m-1 C = F p+q C n+m C .
Finally for the higher operations, take again (x j , u j )

∈ F p j C n j C so that x j ∈ F p j L n j C and u j ∈ F p j g n j -1 C
. Again, select one element x s and consider a permutation {t 1 , . . . , t r-1 } of {1, . . . , ŝ, . . . , r}. Then

[u t 1 , [u t 2 , . . . , [u t r-1 , ε(x s )] . . . ]] ∈ F pt 1 +•••+pt r-1 +ps g (nt 1 -1)+•••+(nt r-1 -1)+ns C = F p 1 +•••+pr g n 1 +•••+nr-r+1 C . (2.57) This checks directly that r ((x 1 , u 1 ) ∧ • • • ∧ (x r , u r )) ∈ F p 1 +•••+pr C n 1 +•••+nr+2-r C .
We see also that this construction is perfectly functorial. Furthermore we have the analogue of Lemma 1.56 for mixed Hodge diagrams: Lemma 2.39 (Compare with Lem. 1.56). Let ϕ : L ≈ -→ L be a quasi-isomorphism of augmented mixed Hodge diagrams of Lie algebras over the same Lie algebra g with a mixed Hodge structure, satisfying both the hypothesis of Theorem 2.38. Then the induced morphism ψ : C → C between the desuspended mapping cones is a quasi-isomorphism of mixed Hodge diagrams of L ∞ algebras.

Proof. By the functoriality of the L ∞ algebra structure on the mapping cone, it is already clear that ψ is a morphism of mixed Hodge diagrams of L ∞ algebras. We only have to show that it is a quasi-isomorphism. But in the component i, ϕ induces by definition a quasi-isomorphism

Gr W k (ϕ i ) : Gr W k (L i ) ≈ -→ Gr W k (L i
) augmented over g. So the same argument as in the cited lemma, using the induced morphism between the long exact sequences for the mapping cones of the augmentations, shows that there is a quasi-isomorphism

Gr W k (ψ i ) : Gr W k (C i ) ≈ -→ Gr W k (C i ).
This proves that ψ i is a filtered quasi-isomorphism. And similarly by applying Gr W k Gr p F one proves that ψ C is a bifiltered quasi-isomorphism.

Remark 2.40. The proof of Theorem 2.38 shows actually the more general result that for any morphism ε : L → M between diagrams of filtered DG Lie algebras (a fortiori, between mixed Hodge diagrams of Lie algebras), without restrictive hypothesis on M , then on the mapping cone C the operations 1 , 2 (that is, the differential and the naive bracket of Definition 1.52) respect the filtrations of C. The operations r for r ≥ 3 respect the filtration F of C C and respect W up to some shift of r -2:

r (W k 1 C n 1 i ∧ • • • ∧ W kr C nr i ) ⊂ W (k 1 +1)+•••+(kr+1)-1 M (n 1 -1)+•••+(nr-1)+1 i = W k 1 +•••+kr+r-1 M n 1 +•••+nr-r+1 i ⊂ W (k 1 +•••+kr)+(r-2) C (n 1 +•••+nr)+(2-r) i . (2.58) This should land in W k 1 +•••+kr C (n 1 +•••+nr)+(2-r) i
if one wanted r to respect perfectly the filtration W .

Bar construction on mixed Hodge diagrams

If L is a mixed Hodge diagram of L ∞ algebras, one can consider the construction C on L. It is simply defined as the construction C on each component of L, with the induced filtrations from linear algebraic operations. Since C preserves quasi-isomorphisms, C (L) will be a diagram of filtered DG coalgebras related by filtered quasi-isomorphisms. So when applying H 0 the various parts related by quasi-isomorphisms will be identified. Our goal is to construct a mixed Hodge structure on H 0 (C (L)). For this, we prove that C (L) is a mixed Hodge diagram of coalgebras. Our theory will be very close to what Hain does in [Hai87, § 3] for the bar construction on commutative DG algebras and we adopt his terminology of bar filtration. Let us be more precise.

Let L be a L ∞ algebra. Recall from Definition 1.46 that C (L), which is a conilpotent DG coalgebra (coassociative, cocommutative, but without counit nor unit) has an increasing filtration by sub-DG coalgebras given by

C s (L) := s r=1 (L[1]) r , s ≥ 1 (2.59)
called the bar filtration and that C (L) is the inductive limit (or, increasing union over s) of the terms C s (L). Recall also (Theorem 1.69 and its proof) that C sends quasiisomorphisms of L ∞ algebras to quasi-isomorphisms of DG coalgebras. Of course such a morphism is compatible with the bar filtration.

Since the beginning of section 2.1 we took the precaution of working only with biregular filtrations. A filtration of a L ∞ algebra L will induce a filtration on C (L), by the simple combination of the induced filtrations on symmetric powers and on direct sums, but this may not be biregular. However if we work with C s (L), obtained from L by a finite number of symmetric powers, and if L is a bounded-below complex, then this will be biregular. Then we will consider C (L) as the inductive limit of the C s (L) in the category of filtered DG coalgebras. Definition 2.41. Let (L, W ) be a filtered L ∞ algebra. The filtration induced by W on C (L), via W [1] on L[1] and then (W [1]) r on (L[1]) r , is called the bar-weight filtration. We denote it by C W .

The bar-weight filtration can be seen as a convolution of the weight filtration and the bar filtration (2.59). If (L, W, F ) is bifiltered, F induces simply a filtration F on L[1] and then F r on (L[1]) r , and we simply denote by F the induced filtration on C (L).

Proposition 2.42. Let L be a diagram of filtered L ∞ algebras. Assume that in each component i, L i is a bounded-below complex. Then for any s ≥ 1, C s (L) is a diagram of filtered DG coalgebras for the bar-weight filtration and C (L) is an inductive limit of diagrams of filtered DG coalgebras.

Proof. Fix a component L i of L. First work with W . As C W is induced by W [1] on L i [1]
and then by multiplicative extension, and seeing the algebraic formula for the coproduct of the cofree coalgebra (Definition 1.39), it is clear that C W is compatible with the graded coalgebra structure and gives C (L) the structure of an inductive limit of filtered graded coalgebra. Then we have to show that the codifferential Q of C s (L i ) respects the filtration, and it is enough to check it for its components q r : (L[1]) r → L[1] (r ≥ 1) because of the explicit formula for recovering Q from its components in Lemma 1.41.

So take r elements

x j [1] ∈ W [1] k j L i [1] n j , j = 1, . . . , r which means x j ∈ W k j -1 L n j +1 i . Then q r (x 1 [1] • • • x r [1]) = ± r (x 1 ∧ • • • ∧ x r ) ∈ W (k 1 -1)+•••+(kr-1) L (n 1 +1)+•••+(nr+1)+(2-r) i ⊂ W k 1 +•••+kr-1 L n 1 +•••+nr+2 i = W [1] k 1 +•••+kr L i [1] n 1 +•••+nr+1 . (2.60)
Then check the compatibility for F on L C . This is easier, since it is induced directly by F (and not F [1]). Take r elements

x j [1] ∈ F p j L C [1] n j , j = 1, . . . , r which means x j ∈ F p j L n j +1 C
and then directly

q r (x 1 [1] • • • x r [1]) = ± r (x 1 ∧ • • • ∧ x r ) ∈ F p 1 +•••+pr L (n 1 +1)+•••+(nr+1)+(2-r) C = F p 1 +•••+pr L n 1 +•••+nr+2 C = F p 1 +•••+pr L C [1] n 1 +•••+nr+1 .
Remark 2.43. The above proposition is true more generally if L is a diagram of filtered L ∞ algebras whose higher operations shift the weight filtration as in Remark 2.40. In this case, for r ≥ 3, the operation r satisfies

r (W k 1 L n 1 i ∧ • • • ∧ W kr C nr i ) ⊂ W (k 1 +•••+kr)+(r-2) L (n 1 +•••+nr)+(2-r) i
and in equation (2.60) of the preceding proof q r satisfies q r (x

1 [1] • • • x r [1]) = ± r (x 1 ∧ • • • ∧ x r ) ∈ W (k 1 -1)+•••+(kr-1)+(r-2) L (n 1 +1)+•••+(nr+1)+(2-r) i = W k 1 +•••+kr+2 L n 1 +•••+nr+2 i ⊂ W k 1 +•••+kr+1 L n 1 +•••+nr+2 i = W [1] k 1 +•••+kr L i [1] n 1 +•••+nr+1 . (2.61)
We arrive finally at our main goal. For this we follow closely the method of Hain [Hai87, § 3] for commutative DG algebras, re-writing it for L ∞ algebras. See also [START_REF] Peters | Mixed Hodge structures[END_REF]§ 8.7].

Theorem 2.44. Let L be a mixed Hodge diagram of L ∞ algebras. Assume that each component L i is non-negatively graded (L n i = 0 for n < 0) and that H 0 (L) = 0. Then C s (L) is a mixed Hodge diagram of coalgebras for any s ≥ 1 and C (L) is an inductive limit of mixed Hodge diagrams of coalgebras.

Proof. The main statement to prove is that C s (L) is a mixed Hodge complex and for this we need to check the axioms of Definition 2.27. We already know that it is a diagram of filtered DG coalgebras and then C (L) will obviously be an inductive limit in the category of mixed Hodge diagrams of coalgebras. So we fix s ≥ 1 and we fix temporarily a component L i .

Since we took the precaution of working with inductive limits, C s (L i ) is a boundedbelow complex because it is obtained by a finite number of symmetric powers and because the induced filtration W is biregular. This is the axiom 1.

The Lemma 1.79 and its proof almost check the axiom 3. Namely H n (L i ) is finitedimensional for all n so we see from the cited proof that for the spectral sequence for

C C E -s,n+s 1 = H n ((L i [1]) s ) =⇒ C E -s,n+s ∞ = Gr C s H n (C (L i ))
. By the Künneth formula and since

L i is bounded below, H n ((L i [1]) s ) is finite-dimensio- nal. So at infinity the term Gr C s H n (C (L i )
) is also finite-dimensional and on H n (C (L i )) the induced bar filtration is by finite-dimensional sub-vector spaces.

To check the other axioms we need to compute the first pages of the spectral sequence for the bar-weight filtration. Since W and C W are decreasing filtrations, we work with -k instead of k. We denote by C s (L i ) m the component of total degree m in C s (L i ). Then by definition of the spectral sequence

C W E -k,q 0 (C s (L i )) = Gr C W k C s (L i ) -k+q . Since C W k (L i [1]) r = k 1 +•••+ks=k W [1] k 1 L i [1] • • • W [1] ks L i [1] = k 1 +•••+kr=k-r W k 1 L i [1] • • • W ks L i [1] it follows that Gr C W k C s (L i ) -k+q = s r=1 Gr W k-r ((L i [1]) r ) -k+q = s r=1 Gr W k-r (L ∧r i ) -k+q+r .
So we recognize

C W E -k,q 0 (C s (L i )) = s r=1 W E -k+r,q 0 (L ∧r i ).
(2.62)

The differential

d 0 on C W E -k,• 0 (C r (L i )) is induced by the codifferential Q := q r of C (L i ).
Crucial here is the equation (2.60) appearing in the preceding proof, which shows that q r is zero on Gr C W k C (L i ) for all r ≥ 2. Thus d 0 is only induced by q 1 , which is up to sign d[1], and it is the sum of the d 0 's appearing on the right side of (2.62). But by Proposition 2.30 L ∧r is a mixed Hodge complex and this right side is a direct sum of terms W E 0 of mixed Hodge complexes.

This computation allows us to check the axioms 2 and 4 for mixed Hodge complexes. Let

ϕ u : (L i , W ) ≈ -→ (L j , W )
be some comparison morphism between the two components L i , L j , which by hypothesis is a filtered quasi-isomorphism. By the Künneth formula (combined with the fact that we work with bounded-below complexes) ϕ u induces a filtered quasi-isomorphism

((L i ) ∧r , W ∧r ) ≈ -→ ((L j ) ∧r , W ∧r ) so it induces an isomorphism W E -k+r,q 0 (L ∧r i ) -→ W E -k+r,q 0 (L ∧r j ).
So equation (2.62) tells us precisely that ϕ u induces a filtered quasi-isomorphism

(C s (L i ), C W ) ≈ -→ (C s (L j ), C W )
and this is the axiom 2.

The axiom 4 has to be checked in the component over C carrying also the filtration F . By this axiom for L ∧r C the differential of W E -k+r,• 0 (L ∧r C ) is strictly compatible with the induced filtration F , so from equation (2.62) the differential of

C W E k,• 0 (C r (L C ))
is the direct sum of these and is also strictly compatible with F .

To check the last axiom we compute the spectral sequence at the page E 1 . By definition

C W E -k,q 1 (C s (L i )) = H -k+q (Gr C W k C s (L i ))
where the cohomology is computed with respect to d 0 . Then using (2.62)

H -k+q (Gr C W k C s (L i )) = s r=1 H -k+q (Gr W k-r (L ∧r i ) •+r ) = s r=1 W E -k+r,q 1 (L ∧r i ).
So, put together,

C W E -k,q 1 (C s (L i )) = s r=1 W E -k+r,q 1 (L ∧r i ).
(2.63)

Since L ∧r is a mixed Hodge complex, in equation (2.63) the terms on the right side W E -k+r,q 1 (L ∧r i ) = H -k+r+q (Gr W k-r L ∧r i ) glue to, when varying i, a pure Hodge structure of weight q. So does their direct sum and this proves that the terms

C W E -k,q 1 (C s (L i )) = H -k+q (Gr C W k C s (L i ))
define a pure Hodge structure of weight q. This checks the last axiom 5.

We see that this construction is functorial. Furthermore we have the analogue of Theorem 1.69. Proof. By the functoriality and explicit nature of the bar construction, it is already clear that C (ϕ) is a morphism of diagrams of filtered DG coalgebras, compatible with the bar filtration. Then, following the proof of the preceding theorem, we see that in the component i and in equation (2.63) the hypothesis tells us that ϕ i induces an isomorphism on the right-hand side, so it induces an isomorphism on the left-hand side. Similarly for the bifiltered part we repeat the arguments replacing L C by Gr p F (L C ). Corollary 2.46. Under the hypothesis of Theorem 2.44, the sub-coalgebras of H 0 (C (L)) given by the canonical filtration carry a compatible mixed Hodge structure (Definition 2.17). The dual H 0 (C (L)) * , to which we add a unit with its trivial mixed Hodge structure to form a pro-Artin algebra R, is a projective limit of local Artin algebras R/(m R ) s carrying a mixed Hodge structure. A quasi-isomorphism ϕ : L ≈ -→ L between such mixed Hodge diagrams of L ∞ algebras induces an isomorphism R -→ R between the corresponding algebras with their mixed Hodge structure.

Proof. In Lemma 1.79 we proved that the canonical filtration of H 0 (C (L)) is induced by the bar filtration. So our main Theorem 2.44 proves that these sub-coalgebras, which are given by the image of H 0 (C s (L)) in H 0 (C (L)) where C s (L) is a mixed Hodge complex, have mixed Hodge structures. We see, from the various compatibilities with the filtrations, that this mixed Hodge structure is compatible with the coalgebra structure. In Lemma 1.77 we explained how the inductive limit of the H 0 (C s (L)) is dual to the projective limit of the H 0 (C s (L)) * , and the dual algebra of a coalgebra carries a natural mixed Hodge structure compatible with the multiplication. The base field k has a trivial mixed Hodge structure. So one can form the pro-Artin algebra

R := k ⊕ H 0 (C (L)) *
and it is a projective limit of the R/(m R ) s , dual to k ⊕ H 0 (C s (L)), which are Artin algebras with a compatible mixed Hodge structure (alternatively, m R /(m R ) s is dual to

H 0 (C s (L))).
This is clearly functorial in L and the statement for quasi-isomorphisms follows directly from Lemma 2.45.

Chapter 3 Geometry

In the next sections we present several different geometric situations concerning a complex manifold X and a representation ρ of its fundamental group into a linear algebraic group G. In each of them we construct an appropriate augmented mixed Hodge diagram of Lie algebras that controls the deformation problem as in the classical Goldman-Millson theory. Then the machinery we developed in the two preceding chapters gives us directly and functorially a mixed Hodge structure on the complete local ring O ρ of the representation variety Hom(π 1 (X, x), G) at ρ. The section 3.1.1 has all details written and serves as a model of the construction. The core of the method is resumed in Theorem 3.3. The other sections present variations of this situation, in which we emphasize the construction of a mixed Hodge diagram.

We will always use the letter E to refer to C ∞ differential forms, Ω for holomorphic differential forms and A for analytic differential forms.

Compact case

The case where X is a compact Kähler manifold is much easier to deal with because the usual algebra of C ∞ differential forms on X already forms a mixed Hodge complex. The complex of differential forms with coefficients in a variation of Hodge structure is also known to form a mixed Hodge complex by the work of Deligne-Zucker. So one can directly study this case and apply for the first time our method. Recall that smooth complex projective algebraic varieties are examples of compact Kähler manifolds.

Representations with values in a real variation of Hodge structure

Let X be a compact Kähler manifold.

Main construction

Definition 3.1. A real polarized variation of Hodge structure of weight k on X is the data of a local system of finite-dimensional real vector spaces V on X with a decreasing filtration of the associated holomorphic vector bundle by holomorphic sub-vector bundles

F • ⊂ V ⊗ O X , (3.1) a flat bilinear map Q : V ⊗ V -→ R, (3.2) 
and a flat connection

∇ : V ⊗ O X -→ V ⊗ Ω 1 X (3.3) such that at each point x ∈ X the data (V x , F • x , Q x ) (3.4)
forms a polarized Hodge structure of weight k (Definition 2.14 and Definition 2.19). Furthermore ∇ is required to satisfy Griffiths' transversality:

∇(F p ) ⊂ F p-1 ⊗ Ω 1 X . (3.5) So let x be a base point of X. Let ρ : π 1 (X, x) -→ GL(V x ) (3.6)
be a representation which is the monodromy of a real polarized variation of Hodge structure (V, F • , ∇, Q) of weight k on X. The local system Ad(ρ) associated to ρ is now End(V ), which by the usual linear algebraic constructions is a polarized variation of Hodge structure of weight 0. Explicitly

F p End(V ⊗ O X ) = f : V ⊗ O X → V ⊗ O X f (F • ) ⊂ F •+p . (3.7)
One constructs a real mixed Hodge diagram as follows. Let

L R := E • (X, End(V )) (3.8)
and

L C := E • (X, End(V ⊗ C)). (3.9) 
One defines a filtration W which is the trivial one (everything has weight 0) and a filtration F on L C by

F p L n C := r+s≥p E r,n-r (X, F s End(V )). (3.10)
It has a conjugate filtration

F q L n C := r+s≥q E n-r,r (X, F s End(V )). (3.11)
There is a DG Lie algebra structure as usual: locally, differential forms in L are sums of terms α ⊗ u where α is a differential form on X and u is a section of End(V ) and the Lie bracket is

[α ⊗ u, β ⊗ v] := (α ∧ β) ⊗ [u, v] (3.12)
where α ∧ β is the usual exterior product of differential forms and [u, v] is the Lie bracket in End(V ).

Then we define an augmentation ε x from (L R , L C , W, F ) to the mixed Hodge diagram of Lie algebras formed by the Hodge structure on the Lie algebra g := End(V x ) with

g C = End(V x ⊗ C) = End(V x ) ⊗ C (3.13)
and the Hodge filtration is simply

F • = F • x .
It is given by More formally it is a diagram over the index category

ε x : L -→ g ω ∈ L 0 -→ ω(x) ω ∈ L >0 -→ 0.
I = 0 -→ 1 ←-2 with L 0 = (L R , W ), L 1 = (L C , W ), L 2 = (L C , W, F )
and the comparison morphisms are the obvious ones.

Proof. The fact that L is a real mixed Hodge complex is essentially the classical Hodge theory with values in a variation of Hodge structure, proved by Deligne and written by Zucker [START_REF] Zucker | Hodge theory with degenerating coefficients: L 2 cohomology in the Poincaré metric[END_REF]. The condition that the differential be strictly compatible with F is known to be equivalent to the degeneration at E 1 of the F -spectral sequence and the last non-trivial axiom (axiom 5) requires H k (L) to carry a pure Hodge structure of weight k.

Both of these statements are consequences of the Kähler identities for differential forms with twisted coefficients and this is explained in § 2 of loc. cit. We still have to check that the Lie bracket is compatible with the filtrations and this is clear by the formula (3.12) since both the wedge product of differential forms and the Lie bracket on End(V ) are compatible with the filtration F . By definition of the filtration F • on g C , ε x clearly preserves F . Then it is clear that ε x is a morphism of mixed Hodge complexes and then that it preserves the Lie brackets.

So we apply for the first time the method we developed. Theorem 3.3. If X is a compact Kähler manifold and ρ is the monodromy of a real polarized variation of Hodge structure on X, then there is a mixed Hodge structure on the complete local ring O ρ of the representation variety Hom(π 1 (X, x), GL(V x )) at ρ which is functorial in X, x, ρ.

Proof. Over both fields R and C, L and its augmentation control the deformation theory of ρ. This is the main theorem of Goldman-Millson (Theorem 1.30) and, combined with Remark 1.31 (change of base field), we say that the functor of deformations of ρ is controlled by the augmented mixed Hodge diagram of Lie algebras L. By Lemma 1.55, this deformation functor is associated with the L ∞ algebra structure on the desuspended mapping cone C of ε x .

We need to check that H 0 (C) = 0. By definition of the cone, a closed element of C 0 is given by a C ∞ section ω of End(V ) such that d(ω) = 0, so that ω is locally constant, and such that ω(x) = 0. So ω = 0 globally.

Then the deformation functor of ρ is pro-represented by a pro-Artin algebra that we denote by R as in Theorem 1.80. By the pro-Yoneda lemma (Theorem 1.25) this R is canonically isomorphic to O ρ . Again all this construction commutes with the change of base field so we work with C as mixed Hodge diagram. The augmented mixed Hodge diagram of Lie algebras we just have defined satisfies the hypothesis of our Theorem 2.38. So C is a mixed Hodge diagram of L ∞ algebras. Then we apply the main Theorem 2.44 (or its Corollary 2.46) to get a mixed Hodge structure on the pro-Artin algebra R, which as we said is canonically isomorphic to O ρ (as pro-Artin algebra, so that each quotients by powers of the maximal ideals are isomorphic). And this induces the mixed Hodge structure on O ρ .

By definition each quotient O ρ /m n carries a mixed Hodge structure (in the usual sense, finite-dimensional) and each map O ρ /m n+1 → O ρ /m n is a morphism of mixed Hodge structures. The cotangent space m/m 2 also carries a mixed Hodge structure.

Description of this mixed Hodge structure

For the moment it is not proved that this mixed Hodge structure is the same as in [START_REF] Eyssidieux | Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures[END_REF] though there are strong indications for it. However describing the cotangent space (Definition 1.10) is easily tractable via the spectral sequence for the bar-weight filtration.

So let us describe the weight filtration. The first obvious thing is that it has nonpositive weights because we work with coalgebras with non-negative weights and then we dualize (Definition 2.2.4).

The group π 1 (X, x) acts on Hom(π 1 (X, x), GL(V x )) via ρ by conjugation. This action is algebraic. The orbit of ρ for this action has an induced reduced subscheme structure denoted by Ω ρ . Its germ at ρ is a formal scheme Ω ρ that is defined by an ideal j ⊂ O ρ . The quotient O ρ /j is the algebra of formal functions of Ω ρ . In [ES11, § 2.2.2] it is explained that O ρ /j is canonically isomorphic to the algebra of formal functions of the vector space g/ε(H 0 (L)) at 0. Proposition 3.4. On the cotangent space to O ρ the only weights of the induced mixed Hodge structure are -1, 0. The weight 0 part is (g/ε(H 0 (L))) * and the weight -1 part is (H 1 (L)) * . On O ρ the weight 0 part is O ρ /j.

Proof. We relax the notations, writing L, ε, . . . for any of the components of the mixed Hodge diagram. Let C be the desuspended mapping cone of ε. To access to the cotangent space to O ρ we use the spectral sequence for the bar-weight filtration that we computed in the proof of Theorem 2.44 and in particular the equation (2.63). There, replacing L (which was an L ∞ algebra) by our C, we proved that 

C W E -k,q 1 (C s (C)) =
W k C 1 = W k L 1 ⊕ W k+1 g. So Gr W 0 (C n ) = L n , Gr W -1 (C 1 ) = g and all other terms Gr W k (C n ) vanish.
The page E 1 of the spectral sequence looks like this q . . . . . .

2 H 2 (L) 0 1 H 1 (L) 0 0 H 0 (L) g -1 0 -k (3.17)
with the differential d 1 going to the right and all outside terms, except on the column -k = -1, are zero. So d 1 has only one non-zero component which is exactly

ε : H 0 (L) -→ g.
Thus on H 0 (C 1 (C)) there are only two weight graded pieces, with

Gr C W 0 H 0 (C 1 (C)) = g/ε(H 0 (L)), Gr C W 1 H 0 (C 1 (C)) = H 1 (L).
Going to the dual, these give the two weight graded pieces on the cotangent space to O ρ as claimed.

Then we explain how O ρ contains the ideal j defining the orbit of ρ in weight zero. First observe that the inclusion We are going to show that this defines the ideal j by computing B. First D is the DG vector space with D 0 = H 0 (L), D 1 = g and the only non-zero differential given by ε. This admits a morphism to the DG vector space E concentrated in degree 1 degree -1 0 1 2

H 0 (L) ⊂ L induces a morphism Cone ε : H 0 (L) → g [-1] -→ Cone ε : L → g [-1] = C. ( 3 
D : • • • / / 0 / / H 0 (L) ε / / g / / 0 / / • • • E : • • • / / 0 / / 0 / / g/ε(H 0 (L)) / / 0 / / • • • (3.20)
which is a quasi-isomorphism. One can see it as a morphism of desuspended mapping cones induced by the morphisms from the central commutative square of (3.20). So

H 0 (C (D)) = H 0 (C (E)).
But the L ∞ algebra structure of Fiorenza-Manetti on

E = g/ε(H 0 (L))[-1] = Cone 0 → g/ε(H 0 (L)) [-1]
is trivial, with all operations r for r ≥ 1 (including the differential and the Lie bracket) being zero. Since this is concentrated in degree 1 (see also Example 1.83) it is straightforward to compute that

H 0 (C (E)) = Sym + (g/ε(H 0 (L))) = H 0 (C (D))
and that

B = k ⊕ H 0 (C (D)) * = (Sym(g/ε(H 0 (L)))) *
which is the algebra of formal power series at 0 on the vector space g/ε(H 0 (L)). The kernel of the map (3.19) is then the ideal j and this map is a morphism of mixed Hodge structures, where B has pure weight 0. Using the strictness of the weight filtration for morphisms of mixed Hodge structures, this proves that B is also Gr W 0 ( O ρ ).

Variations

There are many possible variations of the hypothesis of our main theorem, concerning the field of definition of the mixed Hodge structure and the group in which we look at representations. In each of theses cases the variations are in the definitions and the constructions of the mixed Hodge diagrams. The description of the mixed Hodge structure in Proposition 3.4 holds in a similar way. So we will write the proofs much more briefly.

The first possible variation is to work with a subgroup G of GL(V x ). For example, one can take G to be the Zariski closure of the image of ρ in GL(V x ). Proposition 3.5. Let G be a real linear algebraic group. Let ρ : π 1 (X, x) → G(R) be a representation which is the monodromy of a real polarized variation of Hodge structure on X. Then there is a functorial mixed Hodge structure on the local ring O ρ of the representation variety Hom(π 1 (X, x), G) at ρ.

Proof. Re-write the proof of Theorem 3.3 by replacing GL(V x ) by G and End(V x ) by the Lie algebra g of G. Then again one gets L that is an augmented mixed Hodge diagram of Lie algebras over g.

The second possible variation is working with complex mixed Hodge structures. We define them only now since these are not "mixed Hodge structures over C" in the naive sense and if we would have taken this into account the redaction of the whole chapter 2 would have been much heavier. Definition 3.6 ([ES11, 1.1]). A complex Hodge structure of weight k is the data of a finite-dimensional vector space K over C with two filtrations F, G that are k-opposed.

A polarization of the complex mixed Hodge structure K is the data of a hermitian form Q on K such that for the direct sum decomposition

K = p+q=k K p,q , K p,q := F p K ∩ G q K (3.21)
are satisfied the conditions:

1. Q(K p,q , K r,s ) = 0 if (p, q) = (r, s), 2. (-1) p+k Q is definite positive on K p,q .

A complex mixed Hodge structure is the data of a finite-dimensional vector space K over C with two decreasing filtrations F, G and an increasing filtration W such that each graded part Gr W k (K) with its induced filtrations F, G is a complex Hodge structure of weight k.

For example if K is a mixed Hodge structure over k then K ⊗C is canonically a mixed Hodge structure over C with G being the conjugate filtration of F . It is polarized if K is.

Definition 3.7. A complex mixed Hodge complex is the data of a DG vector space K over C equipped with an increasing filtration W and two decreasing filtrations F, G such that:

1. K is a bounded-below complex.

2. For all n ∈ Z, H n (K) is finite-dimensional.

3. For all k ∈ Z, the differential of Gr W k (K) is strictly compatible with the two filtrations F, G.

4. For all n ∈ Z and all k ∈ Z, the filtrations F, G induced on H n (Gr W k (K)) define a complex Hodge structure of weight k + n.

Each term of the cohomology of such a complex carries a canonical complex mixed Hodge structure. Definition 3.8 ([ES11, 1.8]). A complex polarized variation of Hodge structure of weight k on X is the data of a local system of finite-dimensional complex vector spaces V on X with a decreasing filtration of the associated holomorphic vector bundle by subholomorphic bundles

F • ⊂ V ⊗ O X (3.22)
and a decreasing filtration of the associated anti-holomorphic vector bundle by anti-holomorphic sub-vector bundles

G • ⊂ V ⊗ O X , (3.23) with a flat connection ∇ = ∇ 1,0 + ∇ 0,1 (3.24) such that ∇ 1,0 : V ⊗ O X -→ V ⊗ Ω 1 X , (3.25) ∇ 0,1 : V ⊗ O X -→ V ⊗ Ω 1 X , (3.26) a flat hermitian form Q : V ⊗ V -→ C (3.27) such at at each point x ∈ X the data (V x , F x , G x , Q x ) (3.28)
forms a complex Hodge structure of weight k, and furthermore Griffiths' transversality

∇ 1,0 (F p ) ⊂ F p-1 ⊗ Ω 1 X , (3.29) ∇ 0,1 (G q ) ⊂ G q-1 ⊗ Ω 1 X , ( 3.30) is satisfied. 
Finally, one can state the most general result: Proposition 3.9. Let G be a complex linear algebraic group. Let ρ : π 1 (X, x) → G(C) be a representation which is the monodromy of a complex polarized variation of Hodge structure on X. Then there is a functorial complex mixed Hodge structure on the local ring O ρ of the representation variety Hom(π 1 (X, x), G) at ρ.

Proof. Re-write everything with complex mixed Hodge structures and complex mixed Hodge complexes.

The last possible addition to the main theorem is to show that the mixed Hodge structure on O ρ is defined over a subfield k ⊂ R if the variation of Hodge structure is.

Definition 3.10. The polarized variation of Hodge structure (V, F • , Q, ∇) over X is said to be defined over k (where k is a subfield of R) if V is a local system of finite-dimensional vector spaces over k, Q is defined over k, and at each point x ∈ X the data (V x , F •

x , Q x ) forms a polarized Hodge structure over k. Proposition 3.11 (See sect. 3.2.2). In Theorem 3.3, assume that the variation of Hodge structure is defined over k. Then the mixed Hodge structure on O ρ is defined over k. This we will prove in the next section dealing with the non-compact case since it introduces the necessary DG algebra over k computing the cohomology of X that serves as the component over k of a mixed Hodge diagram.

Non-compact case

In the case where X is non-compact, the construction of an appropriate mixed Hodge diagram that computes the cohomology of X is already more difficult than in the compact case. Furthermore this construction depends on the choice of a compactification by a divisor with normal crossings and one has to be careful when studying the functoriality of this mixed Hodge diagram.

Real representations with finite image

Let X be a smooth quasi-projective algebraic variety over C. Let x be a base point of X. Let G be a linear algebraic group over R with Lie algebra g. Let

ρ : π 1 (X, x) -→ G(R) (3.31)
be a representation and assume that ρ has finite image. Under these hypothesis we want to construct an appropriate augmented mixed Hodge diagram of Lie algebras controlling the deformation theory of ρ. The construction of such an object is already done by Kapovich-Millson and entirely contained in [KM98, § 14-15], also reviewed as an essential tool in the sections A.2.2 and A.3.1 of the preliminary work reproduced in the appendix A. So we could invoke it and we would already get a mixed Hodge structure on O ρ by the method of Theorem 3.3. However the functoriality of such a construction is not so clear: it uses the method of Morgan [Mor78, § 2-3] which involves many choices to construct a mixed Hodge diagram and then the quasi-isomorphisms to compare the resulting diagrams commute only up to homotopy. So we shall better re-write this using the construction of mixed Hodge diagrams of Navarro Aznar [START_REF] Aznar | Sur la théorie de Hodge-Deligne[END_REF] which is totally functorial on varieties with a given compactification. Before entering the construction, let us explain the strategy and fix some notations. Let the group Φ := π 1 (X, x) Ker(ρ) ρ(π 1 (X, x)).

(3.32)

To Ker(ρ) ⊂ π 1 (X, x) corresponds a finite étale Galois cover Y → X with automorphism group Φ that acts simply transitively on the fibers, and equipped with a fixed base point y ∈ Y over x. It is known that Y is automatically a smooth quasi-projective algebraic variety. The flat principal bundle P induced by the holonomy of ρ is trivial when pulledback to Y , as well as its adjoint bundle Ad(P ). So the DG Lie algebra of Goldman-Millson is (over both R and C)

L := E • (X, Ad(P )) = (E • (Y, π * Ad(P ))) Φ = (E • (Y ) ⊗ g) Φ (3.33)
(where the exponent Φ denotes the invariants by the action of Φ). In order to construct a mixed Hodge diagram that is quasi-isomorphic to this we want to find a mixed Hodge diagram for Y equipped with an action of Φ, then tensor it with g, then take the invariants by Φ.

For the augmentation, since there is a canonical identification of fibers Ad(P ) x g one can define an augmentation

ε x : E • (X, Ad(P )) -→ g (3.34)
exactly as in the compact case (3.14) by evaluating degree zero forms at x and higher degree forms to zero. This augmentation can be lifted equivariantly to Y : ε x comes from the augmentation

η x : E • (Y ) ⊗ g -→ g (3.35) defined by η x (ω ⊗ u) := 1 |Φ| g∈Φ ε y (g.(ω ⊗ u)) (3.36)
where ε y simply evaluates forms with values in g at y. Observe the notations: ε y depends on y but in the definition of η x we sum over the whole (finite) fiber of π over x so η x depends only on x. Then we see that η x induces ε x when restricted to the equivariant forms (E • (Y ) ⊗ g) Φ .

The construction of mixed Hodge diagrams of Navarro Aznar

Let Y be a smooth quasi-projective algebraic variety. 

A • Y (log D) R ⊗ C -→ A • Y (log D) C (3.43)
where in the right-hand side we consider the associated sheaf of (simple) DG algebras. Now there are various filtered quasi-isomorphisms relating the Dolbeaut complex to other complexes that are well-known to compute the cohomology of Y by sheaf theory or Hodge theory. There is a bifiltered quasi-isomorphism

(Ω • Y (log D), W, F ) ≈ -→ (A • Y (log D) C , W, F ).
(3.44) that compares the Dolbeaut complex over C with the complex of holomorphic forms with logarithmic poles along D. This last one computes the cohomology of Y with complex coefficients via the inclusion Ω

• Y (log D) → j * E • Y,C (3.45)
which is a quasi-isomorphism (see for example [Voi02, § 8.2.3]), and the filtrations W, F induced on the cohomology are simply induced by the filtrations of the logarithmic complex.

Similarly, there is a (longer !) fixed functorial chain of filtered quasi-isomorphisms showing that the real Dolbeaut complex computes the cohomology of Y with real coefficients and induces the filtration W over R. Together with the canonical isomorphism (3.43) this induces a real structure on the cohomology with complex coefficients. We sum up this situation by the following statement.

Theorem 3.12 ([Nav87, § 8]). The Dolbeaut complex computes the cohomology of Y over R and C, with the induced filtrations W, F , via a fixed chain of canonical filtered quasi-isomorphisms.

The second step is to construct functorial resolutions for these sheaves that will also have a structure of mixed Hodge diagram of algebras. Let F • be a sheaf of DG algebras on Y over the field k of characteristic zero. The Thom-Whitney resolution associates to F • a DG algebra over k whose cohomology computes the sheaf cohomology of F by the following sequence of operations:

1. First consider the Godement resolution F 

R TW Γ Y , (A • Y (log D) R , W ) , R TW Γ Y , (A • Y (log D) C , W, F ) , ( 3 

Equivariant mixed Hodge diagram

Take back our variety X with a representation ρ of its fundamental group with finite image and the cover π : Y → X with Galois group Φ. Compactify X → X by a divisor with normal crossings D X := X \ X whose components are smooth, into a smooth projective variety X, using the classical theorem of Hironaka. By the theorem of Sumihiro on equivariant completion [START_REF] Sumihiro | Equivariant completion[END_REF] and we call this an equivariant compactification of π : Y → X. Actually, X plays no role to define Y . Then we can introduce the mixed Hodge diagram MHD(Y , D) R of Theorem 3.13 that computes the cohomology of Y . To go from the cohomology of Y to that of X we use the following simple lemma. If a group Φ acts on a DG vector space V we denote by V Φ the sub-DG vector space of invariants by Φ. Lemma 3.14. Let V be a DG vector space over a field k of characteristic zero and let Φ be a finite group that acts on V . Then on cohomology

H(V Φ ) = H(V ) Φ . (3.49) As a consequence, if ψ : V ≈ -→ W
is a Φ-equivariant quasi-isomorphism between DG vector spaces on which Φ acts, then the induced morphism

ψ Φ : V Φ ≈ -→ W Φ (3.50)
is again a quasi-isomorphism.

Proof. An element in H n (V ) Φ is given by a closed element v ∈ V n such that for all g ∈ Φ there exists an element

β g ∈ V n-1 with g.v = v + d(β g ). Of course there is a natural map ϕ : H n (V Φ ) -→ H n (V ) Φ
induced by sending a closed element v of V n such that g.v = v for all g ∈ Φ to an element of H n (V ) Φ (taking β g = 0). And there is a cross-section to ϕ:

if v ∈ H n (V ) Φ , take w := 1 |Φ| g∈Φ g.v = v + d   1 |Φ| g∈Φ d(β g )  
then g.w = w for all g ∈ Φ, so w defines a cohomology class in H n (V Φ ) that is sent by ϕ to v. This proves that ϕ is an isomorphism. Proof. Lemma 3.14 allows us to check all the axioms of mixed Hodge diagrams of Definition 2.27. Note that Φ automatically acts on the cohomology of such a diagram by morphisms of mixed Hodge structures, so the invariant cohomology is again a mixed Hodge structure.

Then Lemma 3.14 again, combined with the chain of canonical quasi-isomorphisms described for the Theorem 3.12 relating the Dolbeaut complex to other canonical and functorial complexes computing the cohomology of Y , shows that MHD(Y , D) Φ R computes the cohomology of X: for example it is related canonically to the algebra E • (Y, C) via the maps (3.44) and (3.45) and the algebra of invariants under Φ of E as (compare with (3.36))

• (Y, C) is E • (X, C).

The controlling mixed

ν x (ω ⊗ u) := 1 |Φ| g∈Φ (R TW (µ y ) ⊗ id g )(g.(ω ⊗ u)). (3.56)
When restricted to the invariants by Φ, this induces an augmentation (still denoted by ν x )

ν x : M = MHD(Y , D) R ⊗ g Φ -→ g.
(3.57) Lemma 3.18. Via the canonical chain of quasi-isomorphisms relating M to L, this ν x corresponds to the augmentation ε x of (3.34).

By this we mean that the whole canonical chain of quasi-isomorphisms relating M to L has augmentations to g, commuting with the quasi-isomorphisms, and relating ν x to ε x .

Proof. First do it on Y , without the action of Φ. Then ε y is also induced by the augmentation at the level of sheaves E • Y,k -→ k y then by taking global sections and tensoring with g. This augmentation commutes with the chain of quasi-isomorphisms relating E

• Y to A • Y (log D), via the intermediate augmen- tation of Ω • Y (log D)
which is defined by the same obvious way, evaluating degree zero holomorphic forms at y (important is the fact that y is in Y and not on D). This is enough to prove the claim on Y , since then it is easy to tensor all the chain of augmented quasi-isomorphisms by g.

One goes from Y to X by simply comparing the formulas (3.56) and (3.36), from which we see by construction that ν x corresponds to the augmentation that we denoted by η x , and then by going to the invariants under Φ we see that ν x on M corresponds to ε x on L.

Conclusion

Putting everything together, we get a mixed Hodge structure on O ρ which is a priori functorial in the whole data of X, x, ρ, Y, y, Y . But Y, y are obtained functorially from X, x, ρ and different choices for Y will lead to quasi-isomorphic mixed Hodge diagrams, as in the classical case where the mixed Hodge structure of Deligne on the cohomology of a variety is independent of the choice of a compactification. Such quasi-isomorphic augmented mixed Hodge diagrams of Lie algebras will lead to the same mixed Hodge structure on O ρ .

So our main theorem in the non-compact case is: Now check the functoriality. As we said Y, y are obtained functorially from the data of X, x, ρ. This is part of the usual Galois correspondence between covering spaces of (X, x) and subgroups of π 1 (X, x). Since the augmentation depends only on these on not on the compactification, then by combining Lemma 2.39, Lemma 2.45 and Corollary 2.46 we have to show the independence of the controlling mixed Hodge diagram of Lie algebras M on the compactifications, up to quasi-isomorphisms, and the functoriality of this. And for this, by Remark 3.17, we are reduced to studying the independence of MHD(Y , D) R on the compactifications and the functoriality of this up to quasi-isomorphism. This is well-known already in the work of Navarro Aznar but we have to be careful with the equivariance condition on compactifications.

So as a first step we prove the independence on Y . We start with X, x, Y, y fixed. One can also fix a compactification X that plays anyway no role in the construction. Let As we said, by tensoring with g and taking the invariants, they also induce quasiisomorphisms of the corresponding controlling mixed Hodge diagrams of Lie algebras M , M , M , augmented over g, and then lead to the same mixed Hodge structure on O ρ .

Then we prove the functoriality. A morphism

f : (X 1 , x 1 , ρ 1 ) -→ (X 2 , x 2 , ρ 2 ),
meaning that we require f (x 1 ) = x 2 and the commutativity of

π 1 (X 1 , x 1 ) f * / / ρ 1 & & π 1 (X 2 , x 2 ) ρ 2 x x G(R), induces a morphism Φ 1 Y 1 h / / π 1 Y 2 π 2 Φ 2 X 1 f / / X 2
compatibly with the base points and equivariant with respect to Φ 1 , that acts on Y 1 and on Y 2 via the induced morphism of groups

ϕ : Φ 1 → Φ 2 .
Then we can upgrade this to a morphism of equivariant compactifications: start with such compactifications Y 1 , Y 2 and consider the graph Γ h of h seen as a subset

Γ h ⊂ Y 1 × Y 2 ⊂ Y 1 × Y 2 .
By construction, Γ h is Φ 1 -invariant, where Φ 1 acts diagonally. So is its Zariski closure. This defines a morphism Y 1 → Y 2 which is ϕ-equivariant. Such a morphism induces a morphism of mixed Hodge diagrams

MHD(Y 2 , D 2 ) R -→ MHD(Y 1 , D 1 ) R
and then a morphism of mixed Hodge diagrams of Lie algebras M 2 → M 1 augmented over g. So the canonically induced morphism

O ρ 1 -→ O ρ 2
is a morphism of mixed Hodge structures.

Description of this mixed Hodge structure

Again it is clear that the mixed Hodge structure we constructed on O ρ has nonpositive weights and we can describe its cotangent space via the spectral sequence for the bar-weight filtration. The proof of Proposition 3.4 applies in the same way to show that that the graded piece of weight zero of O ρ is isomorphic to the algebra of formal power series on g/ε(H 0 (L)) at 0 and there are two additional pieces, of weight -1 and -2. However in the case of finite representations ε is surjective so the only weights are -1, 2. So via the functorial Deligne splitting (Definition 2.18) O ρ has a grading (as complete local ring) with generators of weight 1, 2. Proposition 3.20. The mixed Hodge structure on O ρ has weights only -1 and -2 on its cotangent space. Thus the grading of O ρ obtained via the Deligne splitting has generators of weight 1, 2.

Proof. Take back the proof of Proposition 3.4. Denote simply by ε : L → g a controlling augmented mixed Hodge diagram of Lie algebras and by C its desuspended mapping cone. Re-write the spectral sequence for the cotangent space (s = 1 in (3.16))

C W E -k,q 1 (C 1 (C)) = H -k+1+q (Gr W k-1 C). (3.59)
By definition L n has weights only between 0 and n. The page E 1 of the spectral sequence is now q . . . . . . . . .

H

1 (Gr W 1 L) H 2 (Gr W 0 L) 0 1 0 H 1 (Gr W 0 L) 0 0 0 H 0 (L) g -2 -1 0 -k (3.60)
from which we see that on H 0 (C 1 (C)) there are a priori three graded pieces, of weight 0, 1, 2. The part of weight zero is as in the compact case

Gr C W 0 H 0 (C 1 (C)) = g/ε(H 0 (L)).
But for representations with finite image ε is surjective on H 0 (L). Namely it is trivially surjective at the level of the finite cover Y and an element ω in g can be lifted to Y and moreover, by an averaging procedure as in Lemma 3.14, can be lifted as an equivariant element and then descends to X. So there is no graded part of weight zero. By passing to the dual, on the cotangent space the only weights of the mixed Hodge structure are -1, -2. And then by the Deligne splitting on can see the grading of O ρ over C to be generated in weights 1, 2.

Via this spectral sequence we understand well where these weights come from. We can also recover some form of Theorem A.2. Proof. As is explained through chapter A, under this condition H 1 (L) also has pure weight 2. In the above spectral sequence (3.60) the term H 1 (Gr W 0 L) vanishes. And then the only weight on H 0 (C 1 (C)), which is dual to the cotangent space, is 2.

Variations

As in the compact case, there are several variations we can work out from the main Theorem 3.19. We keep the same notations and hypothesis as in the preceding section.

The first one is that when we drop the With these ideas we can come back to the compact case and define mixed Hodge structures over k. Let X be a compact Kähler manifold. Then in [Nav87, § 6-7] Navarro Aznar proves that a mixed Hodge diagram for computing the cohomology and the Hodge structure of X over k is given by the algebra R TW Γ(X, k X ), in addition to the usual algebras of differential forms E • (X, R) and E • (X, C).

Then we can complete the proof of Proposition 3.11. Recall that in this case ρ is the monodromy of a variation of Hodge structure defined over k, so that V is a local system of finite-dimensional vector spaces over k.

Proof of Proposition 3.11. Let L be the sheaf of sections of End(V ). It is a local system of finite-dimensional Lie algebras over k. Then R TW Γ(X, L) is a DG Lie algebra over k (the construction described in [Nav87, § 3] for commutative algebras works as well for Lie algebras). So we use it as the part over k of the mixed Hodge diagram of Lie algebras L of Theorem 3.2. The augmentation at x comes from the canonical morphism of sheaves L -→ L x where the right-hand side is the sheaf supported at x with stalk the Lie algebra End(V x ), and with R TW Γ(X, L x ) = End(V x ).

Theorem A.1 (Goldman-Millson). Let X be a compact Kähler manifold and Γ its fundamental group. Let ρ : Γ → G(R) be a representation with image contained in a compact subgroup of G(R). Then (Hom(Γ, G), ρ) is a quadratic singularity.

We will need to review this theory in section A.2.1. We exhibit a criterion under which the same conclusion holds that is inspired by the case of arrangements of hyperplanes. It is known that when ρ is the trivial representation of the fundamental group of the complement of an arrangement of hyperplanes, or of the complement of a projective algebraic curve, then ρ is a quadratic singularity in Hom(Γ, G). This is related to the notion of 1-formality developed in the work of Dimca, Papadima and Suciu, see [START_REF] Dimca | Topology and geometry of cohomology jump loci[END_REF], [START_REF] Papadima | Geometric and algebraic aspects of 1-formality[END_REF]. Our main result proved in section A.3.2 is: Theorem A.2. Let X be a smooth complex quasi-projective variety and Γ its fundamental group. Let ρ : Γ → G(R) be a representation with finite image. Corresponding to Ker(ρ) there is a finite étale Galois cover Y → X. Assume that Y has a smooth compactification Y with first Betti number b 1 (Y ) = 0. Then (Hom(Γ, G), ρ) is a quadratic singularity.

To pass from the case of Kähler manifolds to that of algebraic varieties (we restrict ourself to quasi-projective ones), we must study mixed Hodge theory and use the older results of Deligne [START_REF]Théorie de Hodge, II[END_REF] and Morgan [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF], reviewed in section A.2.2. Our theorem is obtained by reviewing the ideas of Kapovich and Millson in [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF], who proved: Theorem A.3 (Kapovich-Millson). Let X be a smooth complex algebraic variety and Γ its fundamental group. Let ρ : Γ → G(R) be a representation with finite image. Then (Hom(Γ, G), ρ) is a weighted homogeneous singularity with generators of weight 1, 2 and relations of weight 2, 3, 4.

In section A.4 we look for new examples to apply our theorem. We are first motivated by the case of arrangements of lines and some special representations. One case that has been studied, starting from the work of Hironaka [START_REF] Hironaka | Abelian coverings of the complex projective plane branched along configurations of real lines[END_REF], is the abelian covers of the complex projective plane branched over an arrangement of lines, whose compactifications are called Hirzebruch surfaces. There exists some inequalities on their first Betti number and we use them in section A.4.1 to find the cases where our theorem applies.

We next study other classes of examples where we can apply our criterion with respect to all representations with finite image. We say a smooth quasi-projective variety X has property (P) (see Definition A.15) if for all finite Galois cover Y → X there is a smooth compactification Y of Y such that b 1 (Y ) = 0; and then any representation of π 1 (X) with finite image satisfies the hypothesis of our main theorem. We show that this class of varieties is stable by taking products, by taking a C * -principal bundle over a base that satisfies (P) (Theorem A.18), and by taking some families of abelian varieties over a base that satisfies (P) (section A.4.2). Finally, related to famous rigidity results, we treat the case of hermitian locally symmetric spaces in section A.4.2.

A.2 Preliminaries

A.2.1 Review of Goldman-Millson theory

We first give a review of [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF]. We fix a field k of characteristic zero, usually k = R or C. Our schemes will always be of finite type over k. n; so Gr W n (V C ) = i+j=n V i,j with V j,i = V i,j modulo W n-1 (V C ). The category of mixed Hodge structures is abelian (this is not trivial, see [Del71b, 1.2.10]).

Given a mixed Hodge structure on V , there is one preferred way of splitting V C = A i,j such that W n (V C ) = i+j≤n A i,j , F p (V C ) = i≥p A i,j and then V i,j becomes naturally isomorphic with A i,j . We call it the Deligne splitting, see [Mor78, 1.9]

Hodge structures on cohomology groups

Suppose that X is a smooth complex quasi-projective variety. We denote by X a smooth compactification such that D := X \ X is a divisor with normal crossings. By Deligne [START_REF]Théorie de Hodge, II[END_REF], the cohomology groups of X are equipped with a mixed Hodge structure which is independent of the choice of X. On H n (X) the nonzero graded parts for W are of weight between n and 2n and Gr W n H n (X) = H n (X). In our case of interest, we will have a finite étale Galois cover Y → X and we are interested in the condition b 1 (Y ) = 0. Remark that since b 1 is a birational invariant, it is enough to have for Y a smooth compactification, not necessarily by a divisor with normal crossings.

The condition b 1 (Y ) = 0 is equivalent to one of the following:

1. H 1 (Y , Q) = 0.

2. π 1 (Y ) ab if finite.

3. q(Y ) = 0, where q := dim H 0 (Y , Ω 1 Y ) is the irregularity. 4. The mixed Hodge structure on H 1 (Y ) is pure of weight 2.

There is also one characterization that will motivate our section A.4.2. Lemma A.9. Let X be a smooth quasi-projective variety. Then b 1 (X) = 0 if and only if there is no nonconstant holomorphic map f : X → A to an abelian variety A.

Proof. Recall that X has an Albanese variety, which is an abelian variety Alb with a map alb : X → Alb through which every map to an abelian variety factors. Its dimension is exactly q(X) = b 1 (X)/2 and as soon as this is strictly positive then f is nonconstant and its image generates Alb.

If b 1 (X) > 0 then alb restricts to a map f : X → Alb. Conversely given a nonconstant map f : X → A then first f extends to X (see [START_REF] Birkenhake | Complex abelian varieties[END_REF]§ 4,9.4]), then factors through alb and so Alb must be of positive dimension.

Rational homotopy theory

We explain very briefly the ideas we need. We refer to [START_REF] Griffiths | Rational homotopy theory and differential forms[END_REF] and [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF]. Let A • be a (commutative) differential graded algebra over a field k = R or C: this means that A has a grading A = ⊕ i≥0 A i , a multiplication ∧ : A i ⊗ A j → A i+j with α ∧ β = (-1) ij β ∧ α if α ∈ A i , β ∈ A j , and a derivation of degree 1 with d(α ∧ β) = dα ∧ β + (-1) i α ∧ dβ. We denote by A + := i>0 A i .

There is a notion of 1-minimal algebra but we won't need the details. Briefly it means that A is obtained as an increasing union of elementary extensions, with in addition A 0 = k and d is decomposable which means d(A) ⊂ A + ∧ A + .

A.3 Equivariant constructions and proof of the main theorem

Now we rewrite section A.2.1, taking into account a finite covering space and equivariance, as needed in [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF]§ 15]. From now on we fix the objects we introduce: X is a smooth complex quasi-projective variety with a base point x and fundamental group Γ. We fix a linear algebraic group G over R with Lie algebra g and a representation ρ : Γ → G(R) with finite image. We introduce the finite group Φ := Γ/ Ker(ρ) ρ(Γ).

A.3.1 Covering spaces Covering spaces and compactifications

To Ker(ρ) corresponds a finite étale Galois cover π : Y → X with automorphism group Φ that acts simply transitively and with a base-point y over x. The cover Y can be taken to be algebraic by [START_REF]Séminaire de géométrie algébrique du Bois Marie 1960-1961. Revêtements étales et groupe fondamental (SGA 1)[END_REF]XII.5.1] and it will be quasi-projective by [START_REF] Grothendieck | Éléments de géométrie algébrique: II. étude globale élémentaire de quelques classes de morphismes[END_REF]5.3.4]. By [START_REF] Sumihiro | Equivariant completion[END_REF]3], it is possible to compactify Y into a variety (possibly singular) Y such that the action of Φ extends to Y , which is there called an equivariant completion. In [START_REF] Bierstone | Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant[END_REF] there is a construction of a canonical resolution of singularities Y → Y on which the action of Φ lifts (section 13 therein). We also compactify smoothly X to X. Now, π is a finite cover Y → X ramified over X \ X which is equivariant. We call this construction an equivariant compactification and this is summarized in the following diagram:

Φ Y / / π Y π Φ X / / X.
(A.13)

Bundles and augmentations

We construct the bundle Ad(P ) taking into account the augmentation. First fix some notations: if E is a flat bundle, there is a twisted algebra of differential forms with values in E denoted by E • (X, E). If E is globally trivial this is just E • (X)⊗E where we write E • (X) for E • (X, R). Given a group Φ acting on an algebra A (which can be graded, commutative, Lie, etc, and the action must respect this structure) we always denote by A Φ the sub-algebra of invariants by Φ. Given an augmentation of A, we always denote by A 0 the kernel of the augmentation.

Introduce the trivial bundle Q := Y × G and its adjoint bundle Ad(Q) := Y × g. Recall that Φ acts on Y with Y /Φ = X; on G (via ρ) and on g (via Ad •ρ); and also on E • (Y ) with E • (Y ) Φ = E • (X). It also acts naturally on products and tensor products. 

A.3.2 Minimal model for a Lie algebra

We are now able to describe an explicit differential graded Lie algebra which controls the germ of ρ in Hom(Γ, G), and which comes with a grading by weight. Everything is done in [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF]§ 15].

The minimal model

Consider G := N ⊗ g and put ν ⊗ id : G → A ⊗ g. Then G is a differential graded Lie algebra with a differential d decomposable, and ν ⊗ id is a 1-quasi-isomorphism. We call G a 1-minimal model in the sense of Lie algebras. We do not give a precise definition for this notion: it seems possible to rework all the theory of Sullivan minimal models in the context of differential graded Lie algebras. However what matters here are the properties of this algebra G .

The grading by weight on N C induces one on G C with the properties that:

1. G C = i≥0 G i . 2. Each G j i is finite dimensional. 3. [G i , G j ] ⊂ G i+j . 4. d(G i ) ⊂ G i ,
so the cohomology is also graded. 5. G 0 = g C and G 0 C = g C . 6. The only non-zero induced weights on H n (G C ) are 1, 2 for n = 1 and 2, 3, 4 for n = 2. The group Φ acts on both factors of G and preserve the grading on G C . Put M := G Φ , so that M C has a bigrading with the same properties; by transitivity M C is 1-quasiisomorphic to E • (X, Ad(P ) C ).

Augmentation

Recall the augmentations β, ε, β Y , ε Y , extend them over C. It is easy to pull them back respectively to A C , A C ⊗ g, (A C ) Φ , (A C ⊗ g) Φ and then to N C , G C , N Φ C , G Φ C all in a compatible way: N C,0 (warning with the notations, this is the kernel of the augmentation and N 0 is the degree zero graded part by weight on N C ) is then 1-quasi-isomorphic to E (Y, C) 0 such that (N C,0 ) Φ = (N Φ C ) 0 and G C,0 is 1-quasi-isomorphic to E (X, Ad(P ) C ) 0 such that (G C,0 ) Φ = (G Φ C ) 0 ; and we denote this last one by L . Recall that when constructing a minimal model N → A, N 0 is sent isomorphically to H 0 (A). Combining this with Lemma A.10, and with the various compatibilities of the augmentations, we see that L 0 = 0. Furthermore L 0 = 0.

A.3.3 The controlling Lie algebra and proof of the main theorem

The controlling Lie algebra By Theorem A.6 and Remark A.7, the analytic germ of ρ in Hom(Γ, G) is isomorphic (over C) to the one at 0 in L 1 of the equation dη + 1 2 [η, η] = 0. So L is the controlling Lie algebra to our problem.

Proof. The case of general position is already treated in Tayama's theorem. Now suppose that L is not in general position and b 1 (M N (L)) = 0. Then N = 2. As b(3, 2) = 0 and b(3, r) > 0 if r > 3 it follows from the inequality (A.23) that we must have m r = 0 for r > 3, that is L contains at most triple points.

For the converse, one can show ([Eys16, 2.5]) that if L has at most triple points and N = 2 then M N (L) is simply connected. So b 1 (M N (L)) = 0.

A.4.2 Criterion with respect to all finite representations

As we have seen the case of arrangements is quite limited. But we have other sources of interesting examples where we can apply our theorem with respect to all representations with finite image. Definition A.15. A smooth complex quasi-projective variety X is said to have property (P) if for all normal subgroup of finite index H ⊂ π 1 (X), the corresponding finite étale Galois cover π : Y → X has a (smooth) compactification Y with b 1 (Y ) = 0.

We will study this property and give two interesting classes of examples.

Construction of varieties with property (P)

It is easy to see that if X is a smooth projective variety with π 1 (X) finite, then X has property (P). Indeed a finite cover Y a smooth projective variety corresponding to H ⊂ π 1 (H) is automatically a smooth projective variety and recall that π 1 (Y ) = H. Conversely it is known (by work of J.-P. Serre) that every finite group is the fundamental group of some smooth projective variety. It is also clear that if X satisfies (P), then any finite étale Galois cover of X satisfies (P).

Example A.16. The variety C * has property (P).

Proof. It is known that every n-sheeted cover of C * is of the form C * → C * , z → z n . This can be compactified in a ramified cover P 1 → P 1 over {0, ∞} and b 1 (P 1 ) = 0. So with the next theorem we will easily see that for every finitely generated abelian group G, there is a smooth quasi-projective variety X with π 1 (X) G which has property (P).

Theorem A.17. If X 1 and X 2 satisfy (P), then X 1 × X 2 satisfies (P). Proof. Denote by Γ i := π 1 (X i ) (i = 1, 2). Let H ⊂ Γ 1 × Γ 2 be a normal subgroup of finite index. Put U i := H ∩ Γ i . Then U i is a normal subgroup of finite index in Γ i . So the Galois cover Y for H lies under the finite Galois cover corresponding to U 1 × U 2 , which is obtained as a product cover Y 1 × Y 2 , and we have a sequence of finite étale Galois covers We also have a twisted version, which may allow to construct new examples.

Y 1 × Y 2 -→ Y -→ X 1 × X 2 .
Theorem A.18. If X satisfies (P), then any (algebraic) principal C * -bundle P over X satisfies (P).

Proof. First we show that a finite étale Galois cover of P is a bundle Q with fiber C * over some finite étale Galois cover π : Y → X. Let τ : Q → P be such a cover, with H := τ * π 1 (Q) ⊂ π 1 (P ) a normal subgroup of finite index. Since p : P → X is a bundle, the induced map p * : π 1 (P ) → π 1 (X) is surjective, so p * (H) is a normal subgroup of finite index in π 1 (X). This corresponds to a finite étale Galois cover π : Y → X with π * π 1 (Y ) = p * H:

Q τ / / q P p Y π / / X.
(A.25)

Now by construction (p • τ ) * π 1 (Q) = π * π 1 (Y ) which means there is a lifting of p • τ : Q → X to a map q : Q → Y . All theses spaces and maps can be taken to be algebraic and Q is a bundle whose general fiber is a finite cover of C * , that is C * : we can see this by first looking at π * P , which is a principal C * -bundle over Y , then the induced map Q → π * P over Y which is finite étale. Now we want to apply Lemma A.9. Let A be an abelian variety and f : Q → A. Restricted to each fiber, f is a map C * → A. By rigidity it extends to P 1 (C), but a map P 1 (C) → A is constant. So f is constant on each fiber and thus is determined by its restriction to Y . But since X satisfies (P) this one is constant so f is globally constant, which proves b 1 (Q) = 0.

Families of complex tori

Our motivation for studying complex tori is the use of Lemma A.9 and the various rigidity lemmas for abelian varieties and families.

Let X be a smooth quasi-projective variety. We would like to prove, using these lemmas, that if E → X is a family of abelian varieties over a base that satisfies (P), then E satisfies (P). To deduce that b 1 (E) = 0 it will be enough to show that a map E → A to an abelian variety A is constant along fibers, so descends to X, and by hypothesis b 1 (X) = 0. Of course the family must not contain a constant factor, else the fundamental group would contain a Z 2r summand. However there is some technical difficulty coming from the fact that a finite cover of a family of abelian varieties may not be a family of abelian varieties, because of the lack of a zero section. Thus we have to work with complex tori, by which we mean a projective variety isomorphic as variety to a complex torus but without specifying an origin. Definition A.19. A family of complex tori is a smooth quasi-projective variety E with a smooth projective morphism T → X such that all fibers are isomorphic to complex tori, without specifying an origin. By a family of abelian varieties we mean the data of a family of complex tori E → X with a section, called the zero section.

When E → X is a family of abelian varieties, then there are global maps E × E → E (addition) and E → E (inverse) over X. Many definitions and results from abelian varieties carry over directly to families. A morphism of families of abelian varieties must preserve the zero section. An isogeny is a surjective morphism with finite fibers. A factor of E → X is a sub-family F such that there is another sub-family G with addition F × G → E being an isomorphism. Definition A.20. A family of abelian varieties E → X is called almost constant if it becomes constant after a finite étale base change.

To each family T → X of complex tori, we can attach a family of abelian varieties E → X such that for the associated sheaves of holomorphic sections, E acts on T (in each fiber this is the action by translation) and T is a torsor under E. An idea to construct it is that from a complex torus T x without origin, one can recover an abelian variety E x as Aut(T x ) 0 which acts on T x making it a torsor. Wee see then that a family of complex tori is isomorphic (over X) to its associated family of abelian varieties if and only if it has a section. See [Cam85, Lemme 2] for related questions.

Theorem A.21. Suppose that X satisfies (P) and let T → X be a family of complex tori. Let E → X be the associated family of abelian varieties. Assume that, up to isogeny, E has no non-trivial almost constant factor. Then T has property (P).

Proof. First, exactly as in the case of principal C * -bundles, a finite étale Galois cover of T is a projective and smooth morphism R → Y over some finite étale Galois cover Y of X, whose general fiber is a finite cover of a complex torus, that is R is a family of complex tori:

R τ / / q T p Y π / / X. (A.26)
We want to apply Lemma A.9. Let A be an abelian variety and f : R → A. Let F be the associated family of abelian varieties to R. On each fiber we have a map of varieties f : R y → A, which, by rigidity, is the composition of a translation in R y and a morphism of abelian varieties. In this way f induces a map on F and a morphism of families of abelian varieties g : F → A × Y , then an injective morphism F/ Ker(g) → A × Y . By rigidity (see [START_REF] Milne | Abelian Varieties[END_REF]16.3]) this implies that F/ Ker(g) is a constant family. But by Poincaré's reducibility theorem for families, it is possible to find a family G over Y such that addition Ker(g) × G → F is an isogeny, and F/ Ker(g) is isogenous to G. There is an induced map F → π * E over Y such that G projects to a constant factor of π * E. This corresponds to an almost constant factor of E over X. But by our hypothesis there is no non-trivial such factor, thus G is trivial which means g is constant (as morphism of families), therefore f is constant so b 1 (R) = 0.

Symmetric spaces

Our motivation comes now from rigidity theorems for hermitian locally symmetric spaces and for lattices in Lie groups, which translate into the vanishing of the first Betti number.

Theorem A.22. Let Ω = G/K be an irreducible hermitian symmetric space of noncompact type, where G is a simple Lie group of rank greater than 2, K is a maximal compact subgroup, and let Γ ⊂ G be a torsion-free lattice. Then X := Γ \ Ω has property (P).

Proof. First it is known that Ω is simply connected and that X is a smooth quasiprojective variety, see the Baily-Borel compactification (for example [START_REF] Borel | Compactifications of symmetric and locally symmetric spaces[END_REF]). A finite étale Galois cover Y of X is a quotient Γ \ Ω where Γ ⊂ Γ has finite index, so Γ is still a torsion-free lattice in G and is the fundamental group of Y . Under our hypothesis it is known by the results of Kazhdan (see [START_REF] Bekka | Kazhdan's property (T)[END_REF]p. 12]) that G has property (T), and so do Γ, Γ . This implies that b 1 (Γ ) = 0 and this is also b 1 (Y ).

In case X (and Y ) is compact, we are done. Else we take any smooth compactification Y (which may not be the Baily-Borel compactification since this one is usually not smooth) and the natural morphism Γ = π 1 (Y ) → π 1 (Y ) is surjective. This implies that π 1 (Y ) ab is finite and so b 1 (Y ) = 0.

  D (Observation fondamentale, Lem. 1.55, combiner avec Thm. 1.54). Le foncteur de déformation augmenté d'une algèbre de Lie DG augmentée ε : L → g introduit par Goldman-Millson et par Eyssidieux-Simpson est le foncteur de déformation associé à une structure d'algèbre L ∞ sur le cône de ε étudiée par Fiorenza-Manetti.

  r and vanishes for r such that (m A ) r = 0. Definition 1.15. On L 0 ⊗ m A , which is a nilpotent Lie algebra, it is possible to define a group structure denoted by * using the Baker-Campbell-Hausdorff formula (see [Man04, § V.2] for all the details) and we denote this group by exp(L 0 ⊗ m A ) (1.21) whose elements are simply denoted by e α , α ∈ L 0 ⊗ m A . The Baker-Campbell-Hausdorff formula starts with e α * e β := e α+β+ 1 2 [α,β]+••• so that if [α, β] = 0 then e α * e β = e β * e α , and e -α = (e α ) -1 . Denote by ad(α) the usual endomorphism of L defined by ad(α)(x) := [α, x]. (1.22) Definition 1.16. The gauge action of exp(L 0 ⊗ m A ) on MC(L ⊗ m A ) is the group action given by the formula

Definition 1 .

 1 21 ([ES11, § 2.1.1]). Given a DG Lie algebra L, an augmentation ε : L -→ g (1.26) to a Lie algebra g and a local Artin algebra A, define the augmented Deligne-Goldman-Millson groupoid Def(L, ε, A) with set of objects Def(L, ε, A) 0

  is a real representation, giving us a real DG Lie algebra L, then one can also consider ρ as a representation into G(C) which has as Lie algebra g ⊗ C. It gives us a complex principal bundle P C and a complex DG Lie algebra L C which is simply L ⊗ C. On one side the associated deformation functors are defined on local Artin algebras over R and allow us to access to O ρ , and on the other side there are deformation functors on local Artin algebras over C that allow us to access to O ρ ⊗ C. Now we see how to use this theorem to get information and structure on O ρ . It amounts to a careful study of L and its augmentation, or by Lemma 1.23 to a DG Lie algebra M which is quasi-isomorphic to L and thus controls the same deformation problem, and to a study of how the deformation functor of M is pro-represented. Furthermore, one can try to do Hodge theory by comparing controlling algebras over R and over C, leading to the Hodge theory of O ρ .

Lemma 1. 56 .

 56 Let ϕ : L ≈ -→ L be a quasi-isomorphism of augmented DG Lie algebras commuting with the augmentations as in the diagram L

Proposition 1 .

 1 64[START_REF] Manetti | Deformation theory via differential graded Lie algebras[END_REF] 5.5]). Let L be a DG Lie algebra and let A be a local Artin algebra. Then two elements of MC(L ⊗ m A ) are homotopic (as above) if and only if they are gauge equivalent (i.e. equivalent under the gauge action of exp(L 0 ⊗ m A )).The formula (1.113) shows that one can extend the functor MC L for L ∞ algebras to the category of DG algebras A augmented over k (such an algebra splits canonically as A = k ⊕ m A ) that are globally finite-dimensional over k and such that the augmentation ideal m A is nilpotent; because then (m A ) * is a conilpotent DG coalgebra. This is one possible definition of the category of DG Artin algebras. If A is a local Artin algebra, then A[t, dt] is an increasing union of sub-DG algebras A[t, dt] ε over ε > 0 (see[START_REF]Lectures on deformations of complex manifolds. Deformations from differential graded viewpoint[END_REF] § IX.5]) that are DG Artin algebras: for ε > 0 and n > 0 denote by A nε the sub-DG algebra of A generated by products of at least nε elements of m A and then

Theorem 1 .

 1 70 (Convergence theorem for spectral sequences [LV12, 1.5.1], [God58, § I.4.3]

Definition 2. 24 .

 24 If K = (K i ) is a diagram of filtered DG vector spaces and r ∈ Z, we denote by (K[r], W [r], F ) the diagram of filtered DG vector spaces with components (K[r], W [r]) i := (K i [r], W [r]) (2.43) and with (K[r], W [r], F ) C := (K C [r], W [r], F ).

Definition 2. 37 .

 37 An augmented mixed Hodge diagram of Lie algebras is the data of a mixed Hodge diagram of Lie algebras L and a Lie algebra g carrying a mixed Hodge structure, seen as a mixed Hodge diagram of Lie algebras over I as in Example 2.28, together with a morphism ε : L -→ g (2.55) of mixed Hodge diagrams of Lie algebras. Now we can state and prove the main theorem of this section. It claims the compatibility between the formation of the mapping cone of mixed Hodge complexes and the L ∞ algebra structure of Fiorenza-Manetti. Theorem 2.38. Let ε : L → g be an augmented mixed Hodge diagram of Lie algebras.

Lemma 2 .

 2 45 (Compare with Thm. 1.69). Let ϕ : L ≈ -→ L be a quasi-isomorphism of mixed Hodge diagrams of L ∞ algebras satisfying both the hypothesis of Theorem 2.44. Then the induced morphism C (ϕ) is a quasi-isomorphism of mixed Hodge diagrams of coalgebras.

  The data (L R , L C , W, F ) (3.15) forms a real mixed Hodge diagram of Lie algebras. Together with ε x : L → g this is an augmented mixed Hodge diagram of Lie algebras satisfying the hypothesis of Theorem 2.38.

H

  -k+r+q (Gr W k-r C ∧r ).(3.16)Letting s = 1 corresponds to computing the coalgebra which is dual to the cotangent space to O ρ . The bar-weight filtration is the natural weight filtration on C (C) and since O ρ is obtained by an H 0 , on which the construction Dec (Definition 2.8) doesn't shift the filtration, this is also (up to duality) the natural weight filtration of O ρ . Furthermore by the Theorem 2.29 of Deligne this spectral sequence degenerates at E 2 . Recall that the weight filtration on C has W k C n = W k L n for n = 1 and

  .18) Let D the desuspended mapping cone on the left-hand side with its L ∞ algebra structure. Then the map (3.18) induces an embedding C (D) -→ C (C) and gives by applying the pro-representability Theorem 1.80 a dual morphism O ρ -→ B := k ⊕ H 0 (C (D)) * . (3.19)

  , it is possible to compactify Y → Y so that the action of Φ extends to Y . And then by the work of Bierstone-Milman on canonical resolutions of singularities [BM97, § 13] one can construct a resolution of singularities Y → Y to which the action of Φ lifts. The smooth normal crossing divisor D := Y \ Y lives above D X and π extends to a finite morphism π : Y -→ X (3.47) ramified over D X and invariant under the action of Φ. We sum up this situation in the diagram Φ Y

  Since the group Φ acts on (Y , D), it acts on all objects that are functorially attached to it. In particular it acts on the whole mixed Hodge diagram MHD(Y , D) R (by morphisms of mixed Hodge diagrams) and one can define the invariant diagram MHD(Y , D) Φ R by taking the invariants in each component. Lemma 3.15. The invariant diagram MHD(Y , D) Φ R is again a mixed Hodge diagram and it computes canonically the cohomology of X with its mixed Hodge structure.

  Hodge diagram of augmented Lie algebras Equation (3.33) and the related remarks explain how to get the controlling DG algebra of Goldman-Millson in this situation. Consider the diagram of DG Lie algebras M := MHD(Y , D) R ⊗ g Φ (3.51) (in the component over the field k, we tensor by g k over k then take the invariants where Φ acts on both the DG algebra over k and g k ). Lemma 3.16. This M is a mixed Hodge diagram of Lie algebras that is canonically quasi-isomorphic to the DG Lie algebra L of Goldman-Millson controlling the deformation theory of ρ.

  Y , Y be two equivariant compactifications of Y . As in [Del71b, 3.2.II.C] we look for a third compactification Y which dominates both, i.e. with two morphisms of pairs (Y , D) Y can be obtained as a resolution of singularities of the closure of the image of the diagonal embedding of Y into Y × Y . But by invoking again the combination of the theorem of Sumihiro on equivariant completion combined with the theorem of Bierstone-Milman on canonical resolutions of singularities, one can find such an Y to which the action of Φ lifts. So in the diagram (3.58) the compactification Y dominates the two others as equivariant compactifications. Then j and j both induce quasi-isomorphisms of mixed Hodge diagrams.

Proposition 3. 21 .

 21 If the mixed Hodge structure on H 1 (Y ) is pure of weight 2 (equivalently, if b 1 (Y ) = 0) then the mixed Hodge structure on the tangent space to O ρ is pure of weight -2. The induced grading on O ρ has generators of pure weight 2.

  part over R of the mixed Hodge diagram MHD(Y , D) R one gets a complex mixed Hodge diagram and we denote it by MHD(Y , D) C . Proposition 3.22. Assume that G and ρ are defined over C. Then O ρ has a functorial complex mixed Hodge structure. Proof. In this case g is defined over C. Re-write everything with the complex mixed Hodge diagram MHD(Y , D) C . The controlling mixed Hodge diagram of Lie algebras is M := MHD(Y , D) C ⊗ g Φ where the tensor product is over C. The second one, that until now we didn't do in the compact case, is to show that the mixed Hodge structure of O ρ is defined over a subfield k ⊂ R if G and ρ are. For this we review a little bit more of the theory of Navarro Aznar, who constructs a mixed Hodge diagram MHD(Y , D) k to compute the mixed Hodge structure over k on the cohomology of Y . For any sheaf of DG algebras F • over k on Y and for a continuous map j : Y → Z of topological spaces, the Thom-Whitney direct image is the sheaf of DG algebras on Z defined by the successive operations: 1. Consider the Godement resolution F • → G . 2. Apply the functor j * to G . This is a strictly cosimplicial sheaf of DG algebras on Z. 3. Then apply the Thom-Whitney simple functor for sheaves to f * G . The resulting sheaf is denoted by R TW j * F • . Its cohomology computes canonically the derived direct image. If we apply this to j : Y → Y , and if k Y is the constant sheaf k on Y , then R TW Γ(Y , R TW j * k Y ) (3.61) is the part over k of the mixed Hodge diagram MHD(Y , D) k . It is equipped with the canonical filtration [Nav87, § 6.16]. Its tensor product with R, which is R TW Γ(Y , R TW j * R Y ), (3.62) is related by a fixed canonical chain of filtered quasi-isomorphisms to the real Dolbeaut complex. So it induces the structure over k on the cohomology of Y and defines the filtration W over k. All this is of course defined at least over Q and obtained over k by change of coefficients. Proposition 3.23. Assume that G and ρ are defined over a subfield k ⊂ R. Then the mixed Hodge structure of O ρ is defined over k. Proof. Re-write everything with the mixed Hodge diagram MHD(Y , D) k . The controlling mixed Hodge diagram of Lie algebras is M := MHD(Y , D) k ⊗ g Φ where, since g is defined over k, the tensor product is taken over k in the component over k. The augmentation is obtained from the natural map k Y → k y and thus is also defined over k. So this defines an augmented mixed Hodge diagram of Lie algebras over k and constructs on O ρ a mixed Hodge structure over k.

  So: we have P = Q/Φ and Ad(P ) = Ad(Q)/Φ, and for the twisted versionE • (X, Ad(P )) = (E • (Y, Ad(P ))) Φ = (E • (Y ) ⊗ g) Φ .(A.14)We want to lift the augmentation β : E • (X) → R, which is the evaluation of 0-forms at x, to Y . We letβ Y (f ) := 1 |Φ| γ∈Φ (γ.f )(y) (A.15)

  gives two ramified covers Y 1 × Y 2 → Y and Y → X 1 × X 2 where we take for each the corresponding equivariant compactifications. Since we are only interested in b 1 , that does not depend on the choice of the smooth compactification, we can compute b1 (Y 1 × Y 2 ) = b 1 (Y 1 ×Y 2 ) (both are a smooth compactification of Y 1 ×Y 2 )but by property (P) we have b 1 (Y 1 ) = b 1 (Y 2 ) = 0 and so b 1 (Y 1 × Y 2 ) = 0. Now if we had b 1 (Y ) > 0, there would be holomorphic one-forms on Y which could be pulled-back injectively to Y 1 × Y 2 , which is not possible. So b 1 (Y ) = 0.

  

  Théorème E (Sect. 2.2.1 et Thm. 2.38). Soit ε : L → g un diagramme de Hodge mixte augmenté d'algèbres de Lie provenant du Théorème C. Les opérations d'algèbre L ∞ de Fiorenza-Manetti sur le cône C de ε donnent à C la structure de diagramme de Hodge mixte d'algèbres L ∞ (Definition 2.34).

  Remark 1.34. We see that this definition doesn't make sense if X has a counit: by the axiom (1.58) if ∆

			63)
	independently of i by coassociativity (see [Man04, VIII.10]). The graded coalgebra X is
	said to be conilpotent (terminology of [LV12, 1.2.4]) if its canonical filtration is exhaustive,
	i.e.		
	X =	X n .	(1.64)
	n≥0		

This condition is also called connected in [Qui69, B.3] and locally nilpotent in [Man04, VIII.13] (where nilpotent means that the canonical filtration is finite). Up to adding a counit, this is the same condition as the unital coalgebras in [Hin01, 2.1.1].

  98) and is a filtration by sub-DG coalgebras called the bar filtration. Remark 1.47. If L is a DG Lie algebra this functor C is the functor considered already by Quillen [Qui69, § B], see also [Hin01, § 2.2].

  .53) Furthermore the comparison morphisms ϕ u are required to be strong morphisms of L ∞ algebras (Definition 1.45) respecting the filtrations. A mixed Hodge diagram of L ∞ algebras is a diagram of filtered L ∞ algebras that is also a mixed Hodge complex for the underlying structure of diagram of filtered DG vector spaces given by d = 1 . If we restrict to DG Lie algebras by assuming r = 0 for r > 2 in every component, then one gets diagrams of filtered DG Lie algebras and mixed Hodge diagrams of Lie algebras. By passing to cohomology we forget all the operations r for r = 2 and 2 becomes a Lie bracket [-, -]. The statement that the Lie bracket respects F is clear because the condition

	2
	One of the results that we immediately get with this definition is:
	Proposition 2.35. If L is a mixed Hodge diagram of L ∞ algebras (a fortiori, of Lie
	algebras) then on the cohomology H(L), which has the structure of a diagram of filtered

graded Lie algebras (Proposition 1.44) and each term H n (L) has a mixed Hodge structure for the induced filtrations Dec W, F (Theorem 2.29), the induced Lie bracket is a morphism of mixed Hodge structures.

Proof.

  with simple normal crossings, all whose components are smooth. From this situation, Navarro Aznar constructs a functorial real mixed Hodge diagram that we will denote by MHD(Y , D) R as follows. The first step is to construct sheaves on Y whose cohomology will compute the cohomology of Y . These sheaves are called the logarithmic Dolbeaut complexes ([Nav87, § 8]) and are constructed from analytic differentials forms on Y , to which we refer by the letter A . The part over R that carries the filtration W is denoted by A • Y (log D) R . It is a sheaf of real filtered DG algebras. Locally near a point y ∈ Y , there are local coordinates z 1 , . . . , z N such that D has equation z 1 • • • z r = 0, meaning that there are r components of D crossing at y. Then A • Y (log D) R is the sub-sheaf of j * A • Y,R locally generated by the sectionsThe filtration W is defined such that the sections in (3.41) have weight 1 and those in (3.42) have weight 0. The filtration F is defined as usual: sections in F p have at least p terms dz. There is a canonical isomorphism

	and					
		dz i , dz i , r + 1 ≤ i ≤ N.	(3.42)
						We start by choosing a smooth
	compactification					
					j : Y → Y	(3.37)
	such that the complement				
					D := Y \ Y	(3.38)
	is a divisor Re	dz i z i	, Im	dz i z i	, ln(|z i |), 1 ≤ i ≤ r	(3.39)
	and					
		Re(dz i ), Im(dz i ), r + 1 ≤ i ≤ N.	(3.40)
	The filtration W is defined such that the sections in (3.39) have weight 1 and those
	in (3.40) have weight 0, extended multiplicatively.
	The part over C is a sheaf of bidifferential bigraded algebras (i.e. admitting a bigrading
	and a differential that is a sum of two differentials of degrees respectively (1, 0) and (0, 1))
	denoted by A •,• Y (log D) C and carries two filtrations W, F . Locally, it is the sub-sheaf of j * A •,• Y,C generated by the sections
		dz i z i	,	dz i zi	, ln(|z i |), 1 ≤ i ≤ r	(3.41)

  • → G as a strictly cosimplicial sheaf of DG algebras, see [God58, § II.4.3 and Appendice]. 2. Then take the global sections of G over Y . One gets a strictly cosimplicial DG algebra Γ(Y , G ). 3. To Γ(Y , G ) apply the Thom-Whitney simple functor [Nav87, § 2]. It is obtained by first tensoring with the simplicial algebra of polynomial differential forms on the simplex Ω k (∆) of Definition 1.62, which gives an algebra with components naturally indexed by four integers that is simplicial in one of them, cosimplicial in another, and a bidifferential bigraded algebra in the last two indices. Then consider the end of this simplicial-cosimplicial object, which is a bidifferential bigraded algebras (this eliminates the simplicial-cosimplicial dependency), and take the associated simple DG algebra.The composition of these operations is denoted by R TW Γ(Y , F • ). If F • has filtrations then R TW Γ(Y , F • ) has induced filtrations and a filtered quasi-isomorphism between sheaves induces a filtered quasi-isomorphism between their Thom-Whitney resolutions. Furthermore the Thom-Whitney resolution commutes with the change of coefficients (at least for fields). So it can be used to construct mixed Hodge diagrams:

	Theorem 3.13 ([Nav87, 8.15]). The data

  .46) defines a real mixed Hodge diagram of algebras that computes canonically the cohomology of Y with its mixed Hodge structure. It is functorial in the pair (Y , D). We denote it by MHD(Y , D) R .

  Theorem 3.19. The data of M in (3.51) and ν x in (3.57) forms an augmented mixed Hodge diagram of Lie algebras that controls the deformation theory of ρ. From this there is a mixed Hodge structure on O ρ that is functorial in X, x, ρ.

Proof. Combining our Lemma 3.16 with our Lemma 3.18 shows the first part of the statement. Then the mixed Hodge structure on O ρ is constructed as in our model Theorem 3.3. By construction it is functorial in the data of X, x, ρ, Y, y, Y .

Théorème F (Sect. 2.2.2 et Thm. 2.44). Le foncteur C peut être appliqué au diagramme de Hodge mixte d'algèbres L ∞ C du Théorème E et donne un diagramme de Hodge mixte de coalgèbres. De ceci, on extrait directement une structure de Hodge mixte sur son H 0 qui est invariante par quasi-isomorphismes. Ceci donne la structure de Hodge mixte fonctorielle sur O ρ dans toutes les situations du Théorème B.

(x) = d(x),

(x ∧ x) = [x, x], r≥3 = 0so that one recovers the usual Maurer-Cartan equation.

Remerciements

Proof. First do it on Y , on which π * Ad(P ) is trivial and there is no action of Φ. Then the cohomology functors, as well as the functor Gr, commute with the operation of tensoring with g. So it is easy to see that M is a mixed Hodge diagram of Lie algebras. And by arguments similar to the proof of Lemma 3.15 this M is related by a canonical chain of quasi-isomorphisms to the DG Lie algebra of Goldman-Millson, which is simply here E • (Y, g) (over R as well as over C). For this we simply have to tensor by g the whole chain of quasi-isomorphisms relating MHD(Y , D) R to E • (Y ). Now on X, the controlling DG Lie algebra of Goldman-Millson is exactly

(3.52)

So by arguments similar to the proof of Lemma 3.15, using the Lemma 3.14, we see that when we take the invariants by Φ, M is quasi-isomorphic to L. By the fundamental Theorem 1.19 one can use M to control the deformation theory of ρ.

Remark 3.17. We see from the proof that a quasi-isomorphism ϕ between two such mixed Hodge diagrams associated with two equivariant compactifications Y , Y , with ϕ equivariant with respect to Φ, induces a quasi-isomorphism M ≈ -→ M between the corresponding mixed Hodge diagrams of Lie algebras.

The last step is to identify the augmentation ε x , via its lift η x to Y , but at the level of M . Roughly the argument is that on a manifold Y the evaluation of differential forms with values in k at a point y comes from the purely topological and sheaf-theoretical data of the canonical morphism of sheaves from the constant sheaf k Y to the sheaf concentrated on y with stalk k denoted by k y . In some sense it evaluates sections of k Y at y. Since different resolutions of k Y , that compute the cohomology of Y with coefficients in k, are always quasi-isomorphic by usual arguments of homological algebra, and since k y is already flasque so its resolution is essentially k itself, then to each such resolutions corresponds a canonical evaluation morphism to k.

So our augmentation of M is obtained by several elementary steps. Recall that x is the base point of X and y is the base point of Y over x. Let k be the field R or C. Let k y be the sheaf on Y supported on y with stalk k at y. There is a natural augmentation seen as a morphism of sheaves

that, as usual, evaluates forms of degree zero at y. By the functoriality of the Thom-Whitney construction, this induces a morphism From this one defines an augmentation

A criterion for quadraticity of a representation of the fundamental group of an algebraic variety

This is a reproduction of the published article [START_REF] Lefèvre | A criterion for quadraticity of a representation of the fundamental group of an algebraic variety[END_REF], with only few typesetting and notational changes for coherence.

Important however is the reference [START_REF] Eyssidieux | Orbifold Kähler groups and the Shafarevich conjecture for Hirzebruch's covering surfaces with equal weights[END_REF], which is an essential part in the proof of Theorem A.14 and was cited as "personal communication" and "work in preparation", that has now appeared.

Let us comment briefly: in section A.3.2 we claimed that we constructed a minimal model in the sense of Lie algebras. Since then we worked out this theory and found that this G is not minimal; namely a minimal model should at least be free as graded Lie algebra and obtained in a similar way to Sullivan's construction of minimal models [START_REF] Sullivan | Infinitesimal computations in topology[END_REF] for commutative DG algebras by an inductive limit of elementary extensions. Such a minimal model is then a cofibrant replacement for an appropriate model structure on the category DG-Lie k and this is very well-known to homotopy theorists, though not written in such a concrete way in the literature. The most recent work in this direction is [START_REF] Cirici | Sullivan minimal models of operad algebras[END_REF] which treats many other operads at the same time.

Also, our main result could be related to a series of statements purity implies formality (see [START_REF] Dupont | Purity, formality, and arrangement complements[END_REF]), that we were not aware of.

A.1 Introduction

Many restrictions are known on the question of whether a given finitely presented group Γ can be obtained as the fundamental group of a compact Kähler manifold, and some restrictions are known for smooth complex algebraic varieties. See [ABC + 96] for an introduction to these questions. One way to study these groups is via their representations into a linear algebraic group G over R: there exists a scheme Hom(Γ, G) parametrizing such representations ρ (see section A.2.1) and it is sometimes possible to describe ρ as a singularity in Hom(Γ, G), up to analytic isomorphism (see section A.2.1).

The first known theorem in this direction is obtained by Goldman and Millson in [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF].

Representation variety

Let Γ be a finitely presented group and let G be a linear algebraic group over k. There exists an affine scheme over k, denoted by Hom(Γ, G), that represents the functor from k-algebras to sets

It is called the representation variety (it is in general not a variety, but a scheme). Thus, giving a representation ρ : Γ → G(k) is the same as giving a k-point of Hom(Γ, G). When doing topology we just write G for G(R).

Analytic germs

Given a scheme S and a k-rational point s, the isomorphism class of the complete local ring O S,s is referred to as the analytic germ of S at s. That is, two germs (S 1 , s 1 ) and (S 2 , s 2 ) are said to be analytically isomorphic if their complete local rings are isomorphic.

A weighted homogeneous cone is an affine scheme defined by equations of the form P j (X 1 , . . . , X n ) = 0 in k n where the variables X i have given weights w i and the polynomials P j are homogeneous of degree d j > 0 with respect to the weights w i (a monomial

We say that w i are the weights of the generators and d j are the weights of the relations. The cone is said to be quadratic if the X i have weight 1 and all the relations have weight 2. We say that an analytic germ (S, s) is a weighted homogeneous singularity with given weights (for example, is a quadratic singularity) if it is analytically isomorphic to a weighted homogeneous cone with these given weights.

Lemma A.4. A germ (S, s) is a weighted homogeneous singularity over R if and only if it is over C, with the same weights.

Proof. Of course a weighted homogeneous cone over R can be complexified to a cone over C with the same weights. In the other direction, given the equations P j (X 1 , . . . , X n ) over C, replace the variables X i by their real and imaginary parts x i , y i and give the same weight w i to the two new variables. Then expand the relations P j (x 1 + iy 1 , . . . , x n + iy n ) = 0, separate real and imaginary part, and this gives two equations both with the same weighted homogeneous degree d j .

We denote by Art k the category of Artin local k-algebras. An element A in Art k has a unique maximal ideal which we always denote by m, has residue field k and is of finite dimension over k. This implies that m is a nilpotent ideal, and this gives a natural map A → k which is reduction modulo m. An analytic germ (S, s) defines a functor of Artin rings

Such a functor is called pro-representable.

Theorem A.5 ([GM88, 3.1]). Two germs (S 1 , s 1 ) and (S 2 , s 2 ) are analytically isomorphic if and only if the associated pro-representable functors

Thus, in order to study the analytic germ of a representation ρ in the representation variety we only have to study its pro-representable functor, which is also the functor

interpreted as the functor of deformations of ρ over Art k ; and the type of analytic singularity corresponds to the obstruction theory for deformations of ρ.

Differential graded Lie algebras

Let L be a differential graded Lie algebra. It has a grading

and a derivation d of degree 1 satisfying the usual identities in the graded sense, see [START_REF] Goldman | The deformation theory of representations of fundamental groups of compact Kähler manifolds[END_REF] and see also [START_REF] Manetti | Deformation theory via differential graded Lie algebras[END_REF]. The basic example is: take a differential graded algebra A commutative in the graded sense (for example the De Rham algebra of a smooth manifold) and a Lie algebra g and consider the tensor product

For such an L, L 0 is a usual Lie algebra and for an Artin local k-algebra A, L 0 ⊗m is a nilpotent Lie algebra on which we can define a group structure via the Baker-Campbell-Hausdorff formula. This group is denoted by exp(L 0 ⊗ m).

Recall that a groupoid is a small category C in which all arrows are invertible. An example is provided by the so-called action groupoid: let a group H act on a set E, take the set of objects to be Obj C := E and the arrows x → y are the h ∈ H such that h.x = y. We denote by Iso C the set of isomorphism classes of C ; in the case of an action groupoid this is just the usual quotient E/H.

We define a functor A → C (L, A) from Art k to groupoids, called the Deligne-Goldman-Millson functor: the set of objects is

(this one is called the Maurer-Cartan equation) and the arrows of the groupoid are given by the action of the group exp

We then have a functor A → Iso C (L, A) from Art k to sets. Given a scheme S over k and a k-rational point s, we say that L controls the germ (S, s) if the functor A → C (L, A) is isomorphic to the functor F S,s .

Recall that if L and L are two differential graded Lie algebras, a morphism ϕ : L → L is said to be a 1-quasi-isomorphism if it induces an isomorphism on the cohomology groups H 0 , H 1 and an injection on H 2 . The algebras L, L are said to be 1-quasi-isomorphic if there is a sequence of 1-quasi-isomorphisms connecting them. Thus to understand an analytic germ (S, s) it suffices to understand the functor A → Iso C (L, A) for some controlling Lie algebra L up to 1-quasi-isomorphism.

Remark A.7. If L 0 = 0 then this functor is equal to A → Obj C (L, A). If furthermore L 1 is finite-dimensional this is exactly the pro-representable functor associated to the analytic germ at 0 of the Maurer-Cartan equation dη

Main construction

We explain the main construction to relate theses objects. Let X be a real manifold, x a base point, Γ its fundamental group and G a linear algebraic group over R. Let g be the Lie algebra of G. Let ρ : Γ → G(R) be a representation. Let P be the principal bundle obtained by the left monodromy action of Γ on G via ρ. If X is a universal covering space for X, on which we make Γ act on the left, then

where Γ acts diagonally. The group G acts on its Lie algebra via the adjoint representation Ad and Γ acts on g by Ad •ρ. We denote by Ad(P ) the adjoint bundle

and it comes with a flat connection such that the algebra of differential forms with value in Ad(P ), denoted by E • (X, Ad(P )), has the structure of a differential graded Lie algebra. Given the base point x we define an augmentation ε : E • (X, Ad(P )) → g by evaluating degree 0 forms at x and sending the others to zero. We put E • (X, Ad(P )) 0 := Ker(ε).

Theorem A.8 ([GM88, 6.8]). The differential graded Lie algebra E • (X, Ad(P )) 0 controls the analytic germ (Hom(Γ, G), ρ).

It is then proven in [GM88, § 7] that when X is a compact Kähler manifold, E • (X, Ad(P )) 0 is quasi-isomorphic (over C) to a differential graded Lie algebra with zero differential and this implies that the analytic germ controlled by it is quadratic.

A.2.2 Mixed Hodge theory and rational homotopy

Next we give a short review of [START_REF]Théorie de Hodge, II[END_REF] and [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF]. See also [START_REF] Peters | Mixed Hodge structures[END_REF].

Hodge structures

Given a finite-dimensional vector space V over R, a Hodge structure of weight n over V is the data of a decreasing (finite) filtration F of V C := V ⊗ C and a decomposition in bigraded parts V C = i+j=n V i,j , where F p (V C ) = i≥p V i,j , with V j,i = V i,j . A mixed Hodge structure on V is the data of an increasing (finite) filtration W , a decreasing filtration F of V C , such that F induces on Gr W n (V ) a Hodge structure of weight n, for all A 1-minimal model for A is a 1-minimal differential algebra N with a morphism ν : N → A which is a 1-quasi-isomorphism. See [START_REF] Griffiths | Rational homotopy theory and differential forms[END_REF] and [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF] for more statements about existence and unicity. Remark that if ν :

Hodge structures on minimal models

We recall the work of Morgan [START_REF] Morgan | The algebraic topology of smooth algebraic varieties[END_REF]. The goal is to put mixed Hodge structures on several rational homotopy invariants of algebraic varieties, however we only need to study the 1-minimal model.

Let X be a smooth complex quasi-projective variety admitting a compactification X by a divisor with normal crossings D. We denote as always by E • (X, R) the algebra of real-valued differential forms on X, and by E • X (log D) the algebra of C ∞ complex-valued forms on X with logarithmic poles along D, with its filtration W by the order of poles. There is a canonical map

§ 2] for details), with a filtration W similar to the weight filtration on E X (log D), and constructs a quasiisomorphism

such that for the spectral sequence

Morgan proves that A has a real minimal model ν : N → A with a filtration W such that ν respects the filtrations (N , W ) → (A, Dec W ); of course by transitivity (N C , W ) is a also a filtered (complex) minimal model for (E X (log D), W ). Over C, the weight filtration on N C splits and we will denote by lower indices the grading by the weight, that is compatible with the grading of N as differential graded algebra. So N C = i≥0 N i , with d : N i → N i and N i ∧ N j ⊂ N i+j . The grading has the following properties:

1. Via the 1-quasi-isomorphism ν, the grading by weight on H n (N C ) coincide with the grading induced on H n (X, C) by the Deligne splitting of its mixed Hodge structure.

2. For n = 1 the only possible weights induced are 1, 2 and for n = 2 they are 2, 3, 4.

Each component

, so for each i we must have α i ∈ N 1 1 and β i ∈ N 1 0 or the other way around; but N 0 = C concentrated in degree 0 so N 1 0 = 0).

for f ∈ E 0 (Y ). Thus we sum over all of π -1 (x). Then naturally

(the first two augmentations are with respect to β, the last one to β Y ) and we can write it E • (Y ) Φ 0 . In the same way we want to lift ε :

Then naturally

and we can denote all this by (E • (Y ) ⊗ g) Φ 0 . Observe that all theses constructions extend naturally to C. Lemma A.10 (See [GM88, 5.12]). The four augmentations defined above are surjective. This implies that H 0 (E • (X, R) 0 ) = 0 and

Cohomology

We just give an elementary property relating cohomology and the action of a finite group, that will be used often.

Lemma A.11. Let A • be a differential graded commutative algebra (or Lie algebra) over a field of characteristic zero. Let Φ be a finite group acting on A • . Then on cohomology

As a consequence, if A and A are differential graded algebras (or Lie algebras) with a finite group Φ acting on both, if ψ : A → A a 1-quasi-isomorphism commuting with the actions, then ψ induces a 1-quasi-isomorphism ψ Φ : A Φ → A Φ .

Equivariant minimal model

We refer to [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF]§ 15] for this technical part. We denote by

. It is shown how to construct a 1-minimal model ν : N → A with a filtration W and an action of Φ which commutes with ν; and ν respects the filtration Dec W on A. So (Lemma A.11) N Φ is a 1-minimal model for A Φ = E • C ∞ (X). Also, by transitivity and over C, N C is a 1-minimal model for E (Y, C) and N Φ C is a 1-minimal model for E (X, C). The filtration W on N C splits and Φ commutes with the splitting.

We can simplify it as in [START_REF] Kapovich | On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties[END_REF]§ 15]. Put I := L 1 4 ⊕ d(L 1 4 ) ⊕ i≥5 L i , observe that it is and ideal in L (in the sense of differential graded Lie algebras with an additional grading by weight, that is: bigraded homogeneous, stable by d, and stable by Lie bracket with L ) such that the projection L → Q := L /I is a 1-quasi-isomorphism. This Q is simpler to study because it has all the properties of G C above and in addition Q i = 0 for i ≥ 5 and Q 1 4 = 0.

Proof of the main theorem

Theorem A.12. If we assume that the compactification Y has b 1 (Y )=0, then the differential graded Lie algebra Q above controls a quadratic germ.

Proof. By hypothesis H 1 (Y ) is a pure Hodge structure of weight 2. Looking carefully at our 1-quasi-isomorphisms that preserve filtrations by weight and gradings over C, we see that on H 1 (N i ) the only nonzero induced weight is for i = 2. This special property is also true for

and also for G C,0 because

and N C,0 is a subcomplex of N C , so all restrictions apply to it. This restriction on weights holds for L because the action of Φ preserves the grading and

and by the 1-quasi-isomorphism it holds for Q. Now look at the equation dη

). Combined with the fact that d(Q 1 1 ) = 0 and Q 1 0 = 0 we have Q 1 1 = 0. So, decompose η = η 2 + η 3 where η i is of weight i. The equation on η becomes (we truncate parts of weight ≥ 5)

Since we have H 1 (Q 3 ) = 0 and dη 3 = 0, η 3 must be exact. But a primitive must be in Q 0 3 , which is 0. So we can eliminate the equation dη 3 = 0. Since dη 2 = 0, we can just assume η 2 is in the linear subspace Z 1 2 := Ker(d) ∩ Q 1 2 and it remains only the equation 1

which is weighted homogeneous, with the generator η 2 of weight 2 and the relation of weight 4. But we can divide the degrees by two and this is isomorphic to a weighted homogeneous cone with generators of weight 1 and relations of weight 2, that is, a quadratic cone.

A.4 Examples

We now investigate several situations where we can apply our main theorem.

A.4.1 Abelian coverings of line arrangements

Motivated by the case of the trivial representation, the first example is to take for X the complement of an arrangement of hyperplanes in some complex projective space. We reduce to the case of the projective plane, thus we denote by L a finite union of lines in P 2 (C) and by X its complement. A smooth compactification of X is obtained as a blow-up of P 2 (C) at the points of intersection with multiplicity at least 3 so has clearly b 1 (X) = 0.

There is a special class of coverings of P 2 (C) branched over L that has already been studied: the Hirzebruch surfaces. The definition appears first in [START_REF] Hirzebruch | Arrangements of lines and algebraic surfaces, Arithmetic and geometry[END_REF], and a study of the Betti numbers was done in [START_REF] Hironaka | Abelian coverings of the complex projective plane branched along configurations of real lines[END_REF]. See also [START_REF] Suciu | Fundamental groups of line arrangements: enumerative aspects, Advances in algebraic geometry motivated by physics[END_REF] for a survey of these results.

For each integer N > 0, we define X N (L) to be the covering of X corresponding to the morphism π 1 (X) → H 1 (X, Z) → H 1 (X, Z/N Z). It is known that if n is the number of lines of the arrangement then H 1 (X, Z) is free of rank n -1, so X N (L) is a Galois cover of degree N n-1 . It extends to a branched covering X N (L) over L; X N (L) is a normal algebraic surface. We define the Hirzebruch surface associated to L, which we denote M N (L), to be a minimal desingularization of X N (see [START_REF] Hironaka | Abelian coverings of the complex projective plane branched along configurations of real lines[END_REF] for more details). There are various formulas for computing the Betti number b 1 (M N (L)) and we will refer to Tayama [START_REF] Tayama | First Betti numbers of abelian coverings of the complex projective plane branched over line configurations[END_REF].