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Abstract

The motivation behind this thesis stems from verification tasks that check whether a given
piece of code conforms to its specification. Properties of a certain state of the program are
described through formulae pertaining to a chosen underlying logic, and it is often needed to
test whether they hold and, more importantly, whether they entail the target specification.
Satisfiability modulo theory (SMT) solvers are commonly used in practice to answer such
queries. They are powerful tools due to their ability to combine decision procedures for
several different theories.

We want to provide proof systems for entailments encountered when verifying programs
that work with recursive data structures. This adds a layer of complexity to the entailment
problem, as the formulae describing program states will need to make use of inductively
defined predicates characterizing the data structures. Moreover, the programs will use dy-
namic allocation to create as many instances of the data as needed. Thus, we are interested
in using separation logic to express properties of these programs, as it is a framework that
addresses many of the difficulties posed by reasoning about dynamically allocated heaps.

The main contribution of this thesis is a sound and complete proof system for entailments
between inductively defined predicates. We give a generalized cyclic proof system for first-
order logic, which uses the principle of infinite descent to close recurring branches of a
proof, and then adapt it to separation logic. In order to ensure soundness and completeness,
four semantic restrictions are introduced, and we analyse their decidability and complexity.
We also propose a proof-search semi-algorithm that becomes a decision procedure for the
entailment problem when the semantic restrictions hold.

This higher-order reasoning about entailments requires first-order decision procedures for
the underlying logic when applying some inference rules and during proof search. To this
end, we introduce two decision procedures for separation logic, considering the quantifier-
free and the ∃∗∀∗-quantified fragments. We study the decidability and complexity of these
fragments and show evaluation results of their respective decision procedures, which were
integrated in the open-source, DPLL(T )-based SMT solver CVC4.

Finally, we also present an implementation of our proof system for separation logic, which
makes use of the above decision procedures in CVC4. Given inductive predicate definitions
and an entailment query as input, a warning is issued when one or more semantic restrictions
are violated. If the entailment is found to be valid, the output is a proof. Otherwise, one or
more counterexamples are provided.
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Résumé

Cette thèse est motivée par les tâches de verification formelle qui établissent si un morceau
de code donné est conforme à sa spécification. Les propriétés des états du programme sont
décrites par des formules appartenant à la logique sous-jacente choisie, et il est souvent
nécessaire de tester si elles sont correctes et, plus important encore, si elles impliquent la
spécification cible. Les solveurs pour la satisfiabilité modulo des théories (SMT) sont utilisés
dans la pratique pour répondre à de telles requêtes. Ce sont des outils puissants grâce à leur
capacité de combiner des procédures de décision pour plusieurs théories.

Nous voulons fournir des systèmes de preuve pour les problèmes rencontrés lors de la
vérification des programmes qui utilisent des structures de données récursives. Cela ajoute
une couche de complexité au problème d’implication, car les formules décrivant les états
du programme devront se servir de prédicats définis de façon inductive, qui caractérisent
les structures de données. De plus, les programmes utiliseront l’allocation dynamique pour
créer autant d’instances de données que nécessaire. D’où l’intérêt d’utiliser la logique de
séparation pour exprimer les propriétés de ces programmes, car c’est un cadre qui répond
aux plusieurs difficultés posées par le raisonnement sur les tas alloués dynamiquement.

La contribution principale de cette thèse est un système de preuve correct et complet pour
les implications entre les prédicats définis de façon inductive. Nous donnons un système de
preuve cyclique généralisé pour la logique du premier ordre, qui utilise le principe de la
descente infinie pour fermer les branches récurrentes d’une preuve, puis nous l’adaptons à
la logique de séparation. Afin d’assurer la correction et la complétude, quatre restrictions
sémantiques sont introduites et nous analysons leur décidabilité et leur complexité. Nous
fournissons également un semi-algorithme de recherche de preuve qui devient une procédure
de décision pour le problème d’implication lorsque les restrictions sémantiques sont respectés.

Ce raisonnement d’ordre supérieur sur les implications nécessite des procédures de décision
de premier ordre pour la logique sous-jacente lors de l’application de certaines règles d’inférence
et lors de la recherche des preuves. À fin, nous introduisons deux procédures de décision
pour la logique de séparation, en considérant le fragment sans quantificateurs et le fragment
quantifié ∃∗∀∗. Nous étudions la décidabilité et la complexité de ces fragments et montrons
les résultats d’évaluation de leurs procédures de décision, qui ont été intégrées dans le solveur
SMT open source CVC4.

Enfin, nous fournissons une implémentation de notre système de preuve pour la logique
de séparation, qui utilise les procédures de décision ci-dessus. Étant donné un ensemble
de definitions de prédicats inductifs et une requête d’implication, un avertissement est émis
lorsqu’une ou plusieurs restrictions sémantiques sont violées. Nous obtenons une preuve si
l’implication est valide. Sinon, un ou plusieurs contre-exemples sont fournis.
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Introduction

Program verification is the use of formal and mathematical methods to provide proof that a
program meets its specification. The importance of specifying and verifying code lies in the
numerous advantages that it brings. The formal specification of a program, usually a formula
written in a suitable logic, can serve both as documentation and a guideline for implemen-
tation. It also dictates that a lot more care and scrutiny be put on software requirements,
thus contributing to the elimination of inaccuracies during early development stages, when
the cost of changes is much lower compared to later stages. Moreover, verification can help
reduce the time and cost of testing, debugging and maintaining big systems, since code that
is specified and verified is much easier to understand, reuse and maintain. In the case of
safety-critical systems, the proof that the code meets its specification serves as certification
for correct performance at all times.

Early approaches to program verification used manual annotation with assertions de-
scribing the state of the execution. A rigorous formalization of this process is given by
Hoare logic, introduced by C. A. R. Hoare [22] and based on previous work by Robert W.
Floyd, who proposed a similar system for flowcharts [17]. Hoare logic is a formal system
used to reason about Hoare triples {P}C{Q}, where C is a piece of code, P is a formula
called the precondition, describing the state before C executes, and Q is a formula called a
postcondition, describing the state after C executes.

Example 1. Consider a function swap(x, y), which swaps the values of the variables
x and y. We would like such a function to satisfy the specification given by the triple
{x = x0 ∧ y = y0} swap(x, y) {x = y0 ∧ y = x0}, where x0 and y0 are constants denoting
the initial values of x and y. J

However, manually annotating programs required a substantial effort from the user and
was prone to human mistakes. As software complexity increased and verification techniques
advanced, automated methods gained in popularity. It has become very easy and cheap
to automatically compute the postcondition for an entire block of code starting from the
precondition (or vice versa) using deduction rules. The focus has shifted from manual an-
notation to automated verification of entire functions or components given very little user
input.

Decision procedures are building blocks that lie at the basis of automated verification.
They are algorithms that, given a decision problem (i.e. a problem that can be posed as a
yes or no question of the input, usually formulae limited to a particular theory), terminate
with a correct answer [30]. Given a problem, we are interested in its decidability and we
want a clear definition for the decidable fragment of the underlying theory. Given a decision
procedure for a problem, we want it to be sound (i.e. every instance proven by the procedure
is valid) and complete (i.e. every valid instance can be proven by the procedure).

9
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In practice, however, the decidable theory fragment that guarantees completeness can be
quite restrictive and lacking in expressiveness. In consequence, we want a decision procedure
to be general enough that it can be run on any instance of a problem. Then, soundness is
enough to give us a semi-algorithm that might not terminate on some inputs, but can still
provide a correct answer on others. Additionally, a warning can be issued to the user when
termination is not guaranteed for the given input.

From a practical standpoint, the usefulness of decision procedures is highlighted by sat-
isfiability modulo theory (SMT) solvers. They are very powerful reasoning tools, able to
combine decision procedures for different theories, while preserving their soundness and
completeness. It is common practice for software verifiers to translate any kind of assertion
(e.g. preconditions, postconditions or loop conditions) into SMT formulae and use an SMT
solver to determine whether the properties can hold.

Proving entailments is a problem that regularly arises during these verification tasks due
to the rule of consequence: if a piece of code satisfies precondition P and postcondition Q,
then it also satisfies precondition P ′ and postcondition Q′ if P ′ |= P and Q |= Q′. Variations
of this rule take into account only one of these entailments and either strengthen P with P ′ or
weaken Q with Q′. In practice, proving that a program conforms to a given specification can
be done by starting with the given precondition, computing the strongest postcondition of the
code and then proving that it entails the postcondition from the specification. Conversely,
we can start with the given postcondition, compute the weakest precondition of the code
and then prove that it is entailed by the precondition from the specification.

Example 2. Consider the following in-place implementation of the swap(x, y) function
from Example 1.

swap(x, y)

{x = x0 ∧ y = y0} Precondition

x := x + y

{x = x0 + y0 ∧ y = y0}
y := x - y

{x = x0 + y0 ∧ y = x0 + y0 − y0}
x := x - y

{x = x0 + y0 − (x0 + y0 − y0) ∧ y = x0 + y0 − y0} Strongest postcondition

We try to verify that it satisfies the required specification by starting with the precondi-
tion and computing its strongest postcondition. Because x = x0 + y0 − (x0 + y0 − y0) ∧ y =
x0 + y0 − y0 |= x = y0 ∧ y = x0, we can conclude that this implementation of swap(x, y)

meets its specification. J

Function calls also introduce the necessity of proving entailments, as we need to check
that the formula describing the state before the function call entails the precondition from the
function specification. This ensures the safety of the function call and that the postcondition
given by the function specification will hold afterwards.

Example 3. If the state before a call of swap(x, y) from Example 1 is described by the
formula x = x0∧y = y0∧x0 < y0, then, because x = x0∧y = y0∧x0 < y0 |= x = x0∧y = y0,
we can safely call the function and the triple {x = x0 ∧ y = y0 ∧ x0 < y0} swap(x, y)

{x = y0 ∧ y = x0} is true. J

Modern software is required to handle data in a systematic fashion and to adapt to
any amount of information. This reflects onto the formulae that describe program states
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during verification – they must be able to capture complex data properties. Thus, the
ability to arrange data into suitable data structures is essential. As defined by Cormen, data
structures represent a way to organize data in order to facilitate access and modifications
[14]. Of particular interest are recursive data structures, due to their ubiquitous presence in
real-life software.

We can distinguish two tiers when it comes to recursive data structures. Firstly, there is
a higher tier of inductive data types, which are explicitly supported by functional languages.
They represent an abstraction for the lower, concrete tier of more classic recursive structures
used by imperative programming languages, such as linked lists, stacks, queues, and several
types of trees that may be balanced or partially balanced such as binary search trees, AVL
trees, 2-3 trees or red-black trees [14].

Inductively defined predicates can be used to describe recursive data types and, in the
case of programs that use dynamic allocation, they can also specify the shape of the memory
where the structures are stored. Thus, the ability to automatically reason about inductive
predicates becomes an important tool for program verification. Furthermore, decision pro-
cedures that incorporate inductive predicates are essential for reasoning at both the abstract
and concrete data structure tiers.

Example 4. Perhaps the simplest example of an inductive predicate is the one for natural
numbers that uses the successor function succ from Peano arithmetic:

Natural(x) ::= x = 0 | ∃y . x = succ(y) ∧ Natural(y)

Similarly, we can define predicates that describe even and odd natural numbers:

Even(x) ::= x = 0 | ∃y . x = succ(y) ∧ Odd(y)
Odd(x) ::= ∃y . x = succ(y) ∧ Even(y)

J

Abstract data structures, as proposed by Hoare [23, 38], have an associated constructor
function c and k selector functions s1, . . . , sk, which satisfy abstract structural properties
referring to:

(i) Construction: c(s1(x), . . . , sk(x)) = x;

(ii) Selection: si(c(x1, . . . , xk)) = xi for 1 ≤ i ≤ k;

(iii) Acyclicity: si(x) 6= x for 1 ≤ i ≤ k, si(sj(x)) 6= x for 1 ≤ i, j ≤ k, . . . .

These types can be easily defined in first-order logic under the Herbrand interpretation.
Alternatively, extensions of first-order logic with recursive definitions, such as Dryad [34],
have been introduced.

Example 5. A well-known implementation of an abstract data structure is the list in LISP,
with constructor cons and selectors car and cdr. A list is either nil or constructed using
cons by prepending an element to another list. The selector car returns the first element of
a list and the selector cdr returns the rest of the list. An inductively defined predicate for
this list would be

list(x) ::= x = nil | ∃y, z . x = cons(y, z) ∧ list(z)

Note how inductive definitions can only cover the construction axioms, but not selection and
acyclicity. J
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Since the amount of data a program has to work with is hardly ever predetermined,
dynamic allocation is used to create as many instances as needed. Reasoning about dynam-
ically allocated heaps poses several difficulties. Expressing the state of the memory within a
formula is hard, as it needs to cover the properties of the unbounded heap, while also taking
care of other aspects such as aliasing and reachability. Furthermore, it has been observed
that, in practice, pre- and postconditions can become very large and complex, describing
parts of the heap that a function, for instance, does not touch, but whose properties have to
be carried through the body of the function during verification.

Separation logic is a framework introduced by Ishtiaq, O’Hearn, Reynolds and Yang
[29, 37, 45] that emerged to address these issues. Its separating operators together with the
frame rule enable local reasoning by breaking down the heap into disjoint parts and allowing
only those manipulated by a certain portion of the code to be taken into consideration while
performing verification tasks.

Example 6. Consider swapSL, a variant of the swap function from Example 1 that works
with variables representing memory locations and swaps their content. Its specification is
given by the triple {x 7→ x0 ∗ y 7→ y0} swapSL(x, y) {x 7→ y0 ∗ y 7→ x0}. The 7→ predicate
indicates a single allocated cell and the ∗ connective indicates two disjoint heaps (i.e. heaps
in which two disjoint sets of locations are allocated). The implementation and verification
of swapSL are done in a similar fashion as in Example 2, the difference being that, instead of
variable assignment, we use mutation to change the values stored at the addresses indicated
by the variables x and y. J

Moreover, switching from first-order logic under the canonical interpretation to separation
logic allows for more expressiveness when defining recursive data structures. Instead of being
limited to types that can only be represented as trees, separation logic allows us to define
more complex and realistic data structures, such as doubly linked lists and trees with parent
pointers or linked leaves.

Example 7. Structurally, a separation logic definition for a doubly-linked list is analogous
to the LISP definition of a list from Example 5 – it is either empty or obtained by prepending
an element to another list. The difference lies in how the focus is shifted towards the heap
in which the list is allocated. For the former case, the head of the list x is nil and nothing is
allocated in the heap. For the latter case, the head of the list points to the next and previous
locations y and p, and, disjointly, there is a doubly-linked list starting at y with previous
location x.

dll(x, p) ::= x = nil ∧ emp | ∃y . x 7→ (y, p) ∗ dll(y, x)

Defining a binary tree is similar. Either the root is nil and the heap is empty, or the root
is allocated and points to the left and right subtrees.

tree(x) ::= x = nil ∧ emp | ∃y, z . x 7→ (y, z) ∗ tree(y) ∗ tree(z)

This definition of a tree can be expanded to obtain a binary tree with at least one allocated
node and linked leaves (i.e. there is a linked list from its leftmost leaf to its rightmost leaf).

treell(x, ll, lr) ::= x = ll ∧ x 7→ (nil, nil, lr)
| ∃y, z, u . x 7→ (y, z, nil) ∗ treell(y, ll, u) ∗ treell(z, u, lr)

J
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Contributions

The main contribution of this thesis targets proof systems for entailments involving induc-
tively defined predicates. Influenced by an antichain-based method designed for checking
language inclusion of nondeterministic finite tree automata [24], we build a generic cyclic
proof system for first-order logic, which we later adapt to separation logic. The actions
performed by our proof system are generalized to fit a wider class of entailment problems,
but certain successions of steps can be translated back to those of the above language in-
clusion check. A key aspect is the reliance on the principle of Infinite Descent [10], initially
formalized by Fermat, which is ubiquitous in cyclic proof systems [9]. In short, this principle
allows us to close recurring branches of a proof on the premise that, if a counterexample
were to be discovered on that branch, then it would lead to an infinite sequence of strictly
decreasing counterexamples in a well-founded domain, which constitutes a contradiction.

Since language inclusion is decidable for nondeterministic finite tree automata [12, Corol-
lary 1.7.9], our proof system is sure to be complete for entailment problems equivalent to
those of this restricted class. In consequence, we tried to establish some boundaries for the
inductive predicates within which the proof system remains sound and complete for more
general problems. As a result, we obtained one semantic condition that ensures soundness,
and three additional other restrictions that warrant completeness. All four constraints can
be checked using existing decision procedures, with varying complexities dictated by the cho-
sen underlying logic. This contrasts with other similar approaches, in which the inductive
predicate definitions are bounded by syntactic constraints.

Multiple inference rules from our proof system rely on existing decision procedures for
the non-inductive fragment of the underlying logic. In this sense, there are extensive, well-
established results for first order logic [13, 39], but this is not also the case for separation
logic. Therefore, we provide two decision procedures geared towards the quantifier free and
the ∃∗∀∗-quantified fragments of separation sogic, respectively. We study the decidability
and complexity of the satisfiability problem in both of these fragments. Furthermore, these
procedures were integrated in the DPLL(T )-based SMT solver CVC4 and we show the results
of their performance evaluation.

Finally, we present an entailment checker tool, Inductor, which implements our proof
search method for the specialized separation logic proof system. Inductor is written in C++
and utilizes our dedicated decision procedures for separation logic from CVC4. Given a proof
search strategy, along with an SMT-LIB script containing inductive predicate definitions and
entailments that need to be checked, Inductor uses a compact tree structure to explore all
the possible derivations enabled by the strategy, in a breadth-first fashion. The search stops
whenever a proof or a counterexample is discovered and the output is either a successful
one, accompanied by the proof, or an unsuccessful one, supported by the counterexample.
The result of the search may also be inconclusive, when all possibilities are explored without
yielding either a proof or a counterexample. The search strategy and whether the inductive
system satisfies the constraints ensuring soundness and completeness are key factors that
can lead to such situations. Appropriate warnings are displayed whenever one or more of
the constraints are violated.

Organization

This thesis studies complete proof systems for entailments involving inductive predicates, in
both first-order logic and separation logic. Chapter 1 introduces the syntax and semantics of
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inductive systems of predicates, while Chapter 2 presents proof systems for the entailment
of predicates defined by an inductive system, together with the necessary restrictions that
an inductive system needs to satisfy in order to allow for the soundness and completeness of
the proof system. Adjacently, Chapter 3 focuses on decision procedures for separation logic
in SMT, for both the quantifier-free and the ∃∗∀∗-quantified fragments. Chapter 4 describes
an implementation for our proof system targeting inductive entailments in separation logic,
which employs the decision procedures from Chapter 3, and then goes on to analyse some
insightful case studies.

Notations

The following notations will be frequently used throughout this work:

– [i, j], [i] – For two integers 0 ≤ i ≤ j, [i, j] denotes the set {i, i+ 1, . . . , j} and [i] is
shorthand for [1, i], with [0] being the empty set;

– ||S||– Given a finite set S, ||S|| denotes its cardinality;

– P(S), Pfin(S) – Given a set S, P(S) denotes its powerset and Pfin(S) the set of finite
subsets of S;

– dom(f), img(f) – For a (total or partial) mapping f : A→ B, dom(f) = A denotes the
set of values on which f is defined and img(f) = f(dom(f)) ⊆ B is the set of values
in the range of f ;

– BA – For two sets A and B, BA denotes the set of all functions f : A→ B;

– fn – For a function f : A→ B and n ∈ N, fn denotes the result of composing f with
itself n − 1 times. By convention, f0 = idA (i.e. the identity function on the domain
of f) and f1 = f ;

– N, Z, R – We use N, Z, R to denote the sets of natural, integer and real numbers,
respectively;

– {Ei}ni=1 – For conciseness, we use this notation to mean the set {E1, . . . , En} (or,
equivalently, {Ei | i ∈ [n]}), where each Ei is an element indexed in some way by
i ∈ [n];

– f↓D – Given a function f , we use this notation to refer to its restriction to the domain
D ⊆ dom(f).

– s, s – We use s = {s1, . . . , sn} and s = 〈s1, . . . , sn〉 for sets and ordered tuples, respec-
tively. Given a tuple s, we denote its length by ||s||, the element at position i ∈ [||s||] by
posi(s), and the set of all variables in s by set(s) = {x | x = posi(s) for some i ∈ [||s||]}.
We call a tuple s unique when each of its elements occurs only once (i.e. ||s|| = ||set(s)||).
Given two tuples s = 〈s1, . . . , sn〉 and s′ = 〈s′1, . . . , s′m〉, we use s · s′ to denote their
concatenation, i.e. s · s′ = 〈s1, . . . , sn, s

′
1, . . . , s

′
m〉.



Chapter 1

Inductive Systems

In this chapter, we first introduce basic syntax and semantics for both first-order logic
(Section 1.1) and separation logic (Section 1.2). We consider general first-order theories and
show how separation logic formulae can be built on top of them. We then define systems
of inductive definitions, together with their (least) solutions (Section 1.3), for a fixed first-
order theory and a more restricted class of separation logic formulae. Lastly, we describe
the entailment problem for inductive systems and show how it is undecidabile under several
interpretations (Section 1.4).

1.1 First-Order Logic (FOL)

1.1.1 Syntax

We introduce the syntax of first-order logic (FOL) in the context of a pair Σ = (Σs,Σf),
which we call a signature, such that:

• Σs = {σ1, σ2, . . .} is a set of sort symbols. We assume the existence of a location sort
Loc ∈ Σs and a boolean sort Bool = {>,⊥} ∈ Σs, where we write > and ⊥ for the
constants true and false, respectively;

• Σf = {f, g, h, ...} is a set of function symbols. For a function symbol fσ1...σnσ, n ≥ 0
is its arity and σ1 . . . σnσ is its signature, where σ1, . . . , σn ∈ Σs are the sorts of its
arguments and σ ∈ Σs is the sort of its result. A function symbol with arity 0 is a
constant symbol cσ of sort σ ∈ Σs. We omit specifying the signature of a function
symbol when it is not important.

Let Var = {x, y, z, ...} be a countable set of first-order variables. Each variable xσ ∈ Var
has an associated sort σ ∈ Σs. As we do with function symbols, we omit the sort of a variable
if it is not necessary. We write x, y, z, . . . ⊆ Var and x, y, z, . . . ∈

⋃
n∈N Varn for sets of

first-order variables and tuples of first-order variables, respectively.

Definition 1.1.1 (Term). A term t of sort σ ∈ Σs, denoted as tσ, over a signature Σ (also
called a Σ-term) is defined recursively by the grammar:

15
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tσ ::= x, xσ ∈ Var (variable)

| c, cσ ∈ Σf (constant)

| 〈t1, . . . , tn〉, tσ1
1 , . . . , tσnn terms, σ = σ1 × . . .× σn (tuple)

| f(t1, . . . , tn), fσ1...σnσ ∈ Σf , tσ1
1 , . . . , tσnn terms (function application)

Any variable or constant symbol of sort σ is a term of sort σ. If t1, . . . , tn are terms of sorts
σ1, . . . , σn and fσ1...σnσ ∈ Σf , then 〈t1, . . . , tn〉 is a term of sort σ1× . . .×σn and f(t1, . . . , tn)
is a term of sort σ.

We denote by TΣ(x) the set of all terms constructed using function symbols in Σf and
variables in the set x and extend this notation to tuples x such that TΣ(x) = TΣ(set(x)).
We write TΣ for the set TΣ(∅) of ground terms, which contain no variable occurrences.

Definition 1.1.2 (First-order formula). A first-order formula over a signature Σ (also called
a Σ-formula) is defined recursively by the grammar:

φFOL ::= > (true)

| ⊥ (false)

| t, tBool term (boolean term)

| t1≈ t2, tσ1 , tσ2 terms (equality)

| ¬ψFOL, (negation)

| ψFOL
1 ∧ ψFOL

2 , (conjunction)

| ψFOL
1 ∨ ψFOL

2 , (disjunction)

| ∃x . ψFOL, x ∈ FV(ψFOL) (existential quantification)

| ∀x . ψFOL, x ∈ FV(ψFOL) (universal quantification)

The constants > and ⊥, a boolean term, and the equality between two terms of the same
sort are FOL formulae. The negation, conjunction, disjunction, existential and universal
quantification of FOL formulae are also FOL formulae.

For a formula φ, we denote by FV(φ) the set of variables not occurring under the scope of a
quantifier in φ. Writing φ(x1, . . . ,xn) means that

⋃n
i=1 set(xi) ⊆ FV(φ), where n ≥ 0. These

notations are lifted to sets of formulae F such that FV(F ) =
⋃
φ∈F FV(φ) and F (x1, . . . ,xn)

means that
⋃n
i=1 set(xi) ⊆ FV(F ), where n ≥ 0.

Given a formula φ and a tuple of variables x = 〈x1, . . . , xn〉 (a set x = {x1, . . . , xn}) we
use ∃x . φ (∃x . φ) as a shorthand for ∃x1 . . . ∃xn . φ. We do the same for ∀x . φ (∀x . φ). For
formulae φ, ψ and ψ′, we denote by φ[ψ] the fact that ψ is a subformula of φ and by φ[ψ′/ψ]
the result of replacing ψ with ψ′ in φ. We also write φ⇒ ψ for ¬φ ∨ ψ.

We also introduce variable substitutions, which will be useful in defining certain properties
of inductive systems.

Definition 1.1.3 (Substitution and flat substitution). Given sets of variables x and y, a
substitution θ : x→ TΣ(y) maps each variable in x to a term in TΣ(y). We denote the image
of x under the substitution θ by xθ = {θ(x) | x ∈ x}. A substitution θ is flat if Varθ ⊆ Var,
i.e. each variable is mapped to a variable. A flat substitution θ : x→ y is injective if, for all
x1, x2 ∈ x, θ(x1) = θ(x2) implies x1 = x2. A flat substitution is surjective if for any y ∈ y
there exists x ∈ x such that θ(x) = y or, in other words, xθ = y.
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For a formula φ(x), we denote by φθ the result obtained by replacing each occurrence
of x ∈ x in φ with the term θ(x). This notation is lifted to sets of formulae such that
Fθ = {φθ | φ ∈ F}.

1.1.2 Semantics

The semantics of FOL formulae are defined using interpretations of the sorts and functions
in the signature Σ, and valuations of the variables in Var.

Definition 1.1.4 (Interpretation). An interpretation I for Σ (also called a Σ-interpretation)
maps each sort symbol σ ∈ Σs to a non-empty set σI , each function symbol fσ1...σnσ ∈ Σf

with n > 0 to a total function fI : σI1 × . . . × σIn → σI , and each constant symbol cσ ∈ Σf

to an element of σI .

Let I be an interpretation, fσ1...σnσ a function symbol and α : σI1 × . . . × σIn → σI a
function. We write I[f ← α] for an interpretation such that: (i) I[f ← α](σ) = I(σ) for
any sort σ ∈ Σs, (ii) I[f ← α](f) = α, and (iii) I[f ← α](g) = gI for any g ∈ Σf with g 6= f .
We extend this notation to tuples f = 〈f1, . . . , fn〉 of function symbols and α = 〈α1, . . . , αn〉
of functions and write I[f ← α] for the interpretation I[f1 ← α1] . . . [fn ← αn].

Definition 1.1.5 (Valuation). Given an interpretation I, a valuation ν maps each variable
xσ ∈ Var to an element of σI .

We use Val =
⋃
σ∈Σs σI to refer to the set of all possible sort values under the interpreta-

tion I. Also, we denote by VI the set of all possible valuations under I. Given a valuation
ν, a tuple of variables x = 〈x1, . . . , xn〉, and a set of variables x, we write ν(x) for the tuple
〈ν(x1), . . . , ν(xn)〉 and ν(x) for the set {ν(x) | x ∈ x}.

Let I be an interpretation, ν ∈ VI a valuation, xσ ∈ Var a variable, and α ∈ σI a value.
We write ν[x← α] for a valuation such that: (i) ν[x← α](x) = α, and (ii) ν[x← α](y) = ν(y)
for any y ∈ Var with y 6= x. We extend this notation to tuples x = 〈x1, . . . , xn〉 of variables
and α = 〈α1, . . . , αn〉 of values, writing ν[x← α] for the valuation ν[x1 ← α1] . . . [xn ← αn].

Definition 1.1.6 (Interpretation of a term). Given an interpretation I and a valuation
ν ∈ VI , we denote by tIν the interpretation of t, defined inductively on the structure of t:

xIν = ν(x), xσ ∈ Var

cIν = cI , cσ ∈ Σf

〈t1, . . . , tn〉Iν = 〈t1Iν , . . . , tnIν 〉, tσ1
1 , . . . , tσnn terms

(f(t1, . . . , tn))Iν = fI(t1
I
ν , . . . , tn

I
ν ), fσ1...σnσ ∈ Σf , tσ1

1 , . . . , tσnn terms

In other words, the interpretation of t relative to I and ν is obtained by replacing each
function symbol f occurring in t by its interpretation fI and each variable x occurring in t
by its valuation ν(x).

Knowing how to interpret terms when given a valuation, as per Definition 1.1.6, we can
further extend the notion of interpretation to first-order formulae.

Definition 1.1.7 (Semantics of first-order formulae). Given an interpretation I and a val-
uation ν ∈ VI , we write I, ν |=φ if the first-order formula φ is interpreted to true under I
and ν. This relation is defined inductively on the structure of φ:
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I, ν |=> always holds

I, ν |=⊥ never holds

I, ν |= t iff tIν = >, tBool term

I, ν |= t1≈ t2 iff t1
I
ν = t2

I
ν , tσ1 and tσ2 terms

I, ν |=¬ψ iff I, ν |=ψ does not hold

I, ν |=ψ1 ∧ ψ1 iff I, ν |=ψ1 and I, ν |=ψ2

I, ν |=ψ1 ∨ ψ1 iff I, ν |=ψ1 or I, ν |=ψ2

I, ν |=∃x . ψ iff I, ν[x← α] |=ψ, xσ ∈ FV(ψ), for some α ∈ σI

I, ν |=∀x . ψ iff I, ν[x← α] |=ψ, xσ ∈ FV(ψ), for any α ∈ σI

Using these semantics, we define satisfiability and entailment for FOL formulae under a
given interpretation I.

Definition 1.1.8 (Satisfiability and validity). An FOL formula φ is satisfiable in the inter-
pretation I if there exists a valuation ν such that I, ν |=φ and unsatisfiable otherwise. If
I, ν |=φ for any ν, then φ is valid and ¬φ is unsatisfiable.

Definition 1.1.9 (Entailment and equivalence). Given FOL formulae φ and ψ, we write
φ |=I ψ and say that φ entails ψ in the interpretation I if and only if I, ν |=φ implies I, ν |=ψ,
for any valuation ν. We call φ and ψ equivalent whenever φ |=I ψ and ψ |=I φ.

We encapsulate all the notions pertaining to FOL into a first-order theory.

Definition 1.1.10 (First-order theory). A first-order theory is a pair T = (Σ,M) such that
Σ is a signature and M is a non-empty set of (I, ν) pairs, called the models of T , where I
is a Σ-interpretation and ν ∈ VI is a valuation.

Given a first-order theory T = (Σ,M), any Σ-term t can also be called a T -term and, sim-
ilarly, any Σ-formula φ can also be called a T -formula. A pair (I, ν) ∈M such that I, ν |=φ
is a T -model of φ. We denote the set of all T -models of φ by [[φ]]T = {(I, ν) ∈M | I, ν |= φ}.

Definition 1.1.11 (T -satisfiability and T -validity). Given a first-order theory T = (Σ,M),
a T -formula φ is T -satisfiable if [[φ]]T 6= ∅, and T -unsatisfiable otherwise. If φ is T -satisfiable
if and only if ψ is T -satisfiable, then φ and ψ are equisatisfiable in T . If [[φ]]T = M, then φ
is T -valid and ¬φ is T -unsatisfiable.

Definition 1.1.12 (T -entailment and T -equivalence). Given a first-order theory T = (Σ,M)
and two T -formulae φ and ψ, we write φ |=T ψ and say that φ T -entails ψ if and only if
[[φ]]T ⊆ [[ψ]]T . We call φ and ψ T -equivalent whenever φ |=T ψ and ψ |=T φ.

Throughout the rest of Chapter 1 and also in Chapter 2, we only refer to satisfiability and
entailment under a specific interpretation (Definitions 1.1.8 and 1.1.9). In Chapter 3, when
discussing the satisfiability of separation logic formulae built on top a first-order theory, we
refer to the more general Definitions 1.1.11 and 1.1.12, where multiple interpretations can
be considered.
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1.2 Separation Logic (SL)

1.2.1 Syntax

The syntax for separation logic (SL) is built upon the syntax for FOL, defined in Section
1.1.1. We consider a first-order theory T = (Σ,M) such that Σs contains the sorts Loc and
Data, while Σf contains a special constant nilLoc.

Definition 1.2.1 (Separation logic formula). A separation logic formula over the first-order
theory T = (Σ,M), also called an SL(T )-formula, is defined recursively by the grammar:

φSL ::= > (true)

| ⊥ (false)

| t, tBool is a T -term (boolean term)

| t1≈ t2, tσ1 , t
σ
2 are T -terms (equality)

| emp (empty heap)

| t 7→ u, tLoc, uData are T -terms (singleton heap)

| ¬ψSL, (negation)

| ψSL
1 ∧ ψSL

2 , (conjunction)

| ψSL
1 ∨ ψSL

2 , (disjunction)

| ψSL
1 ∗ ψSL

2 , (separating conjunction)

| ψSL
1 −−∗ ψSL

2 , (separating implication)

| ∃x . ψSL, x ∈ FV(ψSL) (existential quantification)

| ∀x . ψSL, x ∈ FV(ψSL) (universal quantification)

The true and false constants, a boolean T -term, and the equality between two T -terms are
SL(T ) formulae. The two new atoms describing empty and singleton heaps are also SL(T )
formulae. The negation, conjunction, disjunction, separating conjunction and implication,
existential and universal quantification of SL(T ) formulae are SL(T ) formulae as well.

If an SL(T )-formula contains at least one occurrence of emp, 7→, ∗ or −−∗, it is called a
spatial formula. Otherwise, it is a pure formula. We extend the ∗ operator to an iterated
version ∗ that can be applied on a set of formulae such that ∗∅ = emp and ∗{φ1, . . . , φn} =
φ1 ∗ . . . ∗ φn if n ≥ 1.

We retain the notations FV(φ) (FV(F )) for the free variables of the SL(T )-formula φ (set
of SL(T )-formulae F ), ∃x . φ and ∃x . φ (∀x . φ and ∀x . φ) for ∃x1 . . . ∃xn . φ (∀x1 . . . ∃xn . φ)
when x = 〈x1, . . . , xn〉 and x = {x1, . . . , xn}, φ[ψ] for when ψ is a subformula of φ, φ[ψ′/ψ]
for the result of replacing ψ with ψ′ in φ, and also φ⇒ ψ for ¬φ ∨ ψ.

Most definitions of common recursive data structures, such as lists or trees, use a re-
stricted fragment of quantifier-free SL(T ) called symbolic heaps, which has a simpler syntax.

Definition 1.2.2 (Symbolic heap formula). A symbolic heap formula is a conjunction Π∧Θ
between a pure (Π) and a spatial (Θ) part, defined as:
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Π ::= > (true)

| ⊥ (false)

| t, tBool is a T -term (boolean variable)

| t1≈ t2, tLoc
1 , tLoc

2 are T -terms (equality)

| ¬(t1≈ t2), tLoc
1 , tLoc

2 are T -terms (disequality)

| Π1 ∧Π2, (conjunction)

Θ ::= emp (empty heap)

| t 7→ u, tLoc, uData are T -terms (singleton heap)

| Θ1 ∗Θ2, (separating conjunction)

The pure part may consist of true and false constants, a boolean variable, the equality and
disequality between two T -terms, and the conjunction of pure parts. The spatial part, on
the other hand, may consist of the empty and singleton heaps, as well as the separating
conjunction of two spatial parts.

1.2.2 Semantics

In order to define the semantics of SL(T ), we use the same notion of interpretation and
valuation described in Definition 1.1.5, but, additionally, we introduce heaps.

Definition 1.2.3 (Heap). Given an interpretation I, a heap is a finite partial mapping
h : LocI ⇀fin DataI associating locations with data. We use HeapsI to denote the set of all
heaps under the interpretation I.

Two heaps h1 and h2 are disjoint if dom(h1)∩dom(h2) = ∅ and we write h1#h2. In this
case, h1 ] h2 denotes their disjoint union, which is undefined if h1 and h2 are not disjoint.
We write

⊎
H for the disjoint union of the heaps in the set H ⊆ Heaps.

Definition 1.2.4 (Semantics of separation logic formulae). Given an interpretation I, a
valuation ν ∈ VI and a heap h ∈ Heaps, we write I, ν, h |=SL φ if the SL formula φ is interpreted
to true under I, ν and h. This relation is defined inductively on the structure of φ:

I, ν, h |=SL⊥ never holds

I, ν, h |=SL> always holds

I, ν, h |=SL t iff tIν = >, tBool is a T -term

I, ν, h |=SL t1≈ t2 iff t1
I
ν = t2

I
ν , tσ1 , t

σ
2 are T -terms

I, ν, h |=SL emp iff dom(h) = ∅

I, ν, h |=SL t 7→ u iff tIν 6= nilI and h =
{

(tIν , u
I
ν )
}

, tLoc, uLoc are T -terms

I, ν, h |=SL ¬ψ iff I, ν, h |=SL ψ does not hold

I, ν, h |=SL ψ1 ∧ ψ1 iff I, ν, h |=SL ψ1 and I, ν, h |=SL ψ2

I, ν, h |=SL ψ1 ∨ ψ1 iff I, ν, h |=SL ψ1 or I, ν, h |=SL ψ2

I, ν, h |=SL ψ1 ∗ ψ2 iff ∃h1∃h2 . h = h1 ] h2 and I, ν, h1 |=SL ψ1 and I, ν, h2 |=SL ψ2
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I, ν, h |=SL ψ1 −−∗ ψ2 iff ∀h0 . h#h0 and I, ν, h0 |=SL ψ1 imply that I, ν, h ] h0 |=SL ψ2

I, ν, h |=SL ∃x . ψ iff I, ν[x← v], h |=SL ψ, xσ ∈ FV(ψ), for some v ∈ σI

I, ν, h |=SL ∀x . ψ iff I, ν[x← v], h |=SL ψ, xσ ∈ FV(ψ), for any v ∈ σI

A triple (I, ν, h) such that (I, ν) ∈M and I, ν, h |=SL φ is an SL(T )-model for the SL(T )-
formula φ. We denote the set of all SL(T )-models of φ by [[φ]]SL(T ) = {(I, ν, h) | (I, ν) ∈M,

h ∈ HeapsI and I, ν, h |=SL φ}. Using these notations and the above semantics, we define
satisfiability and entailment for SL(T )-formulae.

Definition 1.2.5 (SL(T )-satisfiability and SL(T )-validity). Given a first-order theory T =
(Σ,M), an SL(T )-formula φ is SL(T )-satisfiable if [[φ]]SL(T ) 6= ∅, and SL(T )-unsatisfiable

otherwise. If φ is SL(T )-satisfiable if and only if ψ is SL(T )-satisfiable, then φ and ψ are
equisatisfiable in SL(T ). If [[φ]]SL(T ) = M, then φ is SL(T )-valid and ¬φ is SL(T )-unsatisfiable.

Definition 1.2.6 (SL(T )-entailment and SL(T )-equivalence). Given a first-order theory T =
(Σ,M) and two SL(T )-formulae φ and ψ, we write φ |=SL

T ψ and say that φ SL(T )-entails ψ
if and only if [[φ]]SL(T ) ⊆ [[ψ]]SL(T ). We call φ and ψ SL(T )-equivalent whenever φ |=SL

T ψ and

ψ |=SL

T φ.

For the notions discussed throughout the rest of Chapter 1 and also in Chapter 2, we
consider a restricted fragment of SL(T ). The first-order theory T = (Σ,M) is fixed such
that Σs = {Loc,Data,Bool}, Σf = {nilLoc} and Data = Lock with k ≥ 1 also fixed. Terms are
reduced to just nil and variables, while TΣ(x) = x for any x ⊆ Var. Moreover, we also fix
an interpretation I, where I(Loc) = L is a countably infinite set containing a value `nil such
that nilI = `nil. Then M = {(I, ν) | ν ∈ VI}. In this context, we omit to specify T or I any
further and we use simpler definitions for satisfiability and equivalence, closer to their FOL
equivalents described by Definitions 1.1.8 and 1.1.9.

Definition 1.2.7 (Satisfiability and validity). An SL formula φ is satisfiable if there exists
a valuation ν and a heap h such that ν, h |=SL φ and unsatisfiable otherwise. If ν, h |=SL φ for any
ν and h, then φ is valid and ¬φ is unsatisfiable.

Definition 1.2.8 (Entailment and equivalence). Given SL formulae φ and ψ, we write φ |=SL ψ
and say that φ entails ψ if and only if ν, h |=SL φ implies ν, h |=SL ψ, for any valuation ν and heap
h. We call φ and ψ equivalent whenever φ |=SL ψ and ψ |=SL φ.

1.3 Systems of Inductive Definitions

Throughout this work we will use the phrases “system of inductive (predicate) definitions”
and “inductive system (of predicates)” interchangeably. To prevent confusion with the proof
systems introduced in Chapter 2, we will avoid using the word “system” by itself.

We can define inductive systems using both first-order and separation logic. The only
syntactical difference lies in the types of formulae accepted as constraints for the predicate
rules of an inductive system, which are specific to the underlying logic. As a result, we will
describe the syntax (Section 1.3.1) in the context of any signature Σ = (Σs,Σf) and refer
to formulae without specifying their type (FOL or SL). The semantics of inductive systems,
however, are highly reliant on formula semantics and on the valuation of predicate rules
(e.g. using either classic or separating conjunction). As such, we independently describe the
semantics for inductive systems in FOL (Section 1.3.2) and in SL (Section 1.3.3).
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1.3.1 Syntax

Consider a signature Σ = (Σs,Σf) and let Pred be a countable set of predicate symbols. For
a predicate symbol pσ1...σn ∈ Pred, n ≥ 1 is its arity and σ1, . . . , σn ∈ Σs are the sorts of its
arguments. Given a tuple of terms 〈tσ1

1 , . . . , tσnn 〉, we call p(t1, . . . , tn) a predicate atom. We
denote by Atom = {p(t1, . . . , tn) | pσ1,...,σn ∈ Pred, tσii ∈ TΣ(Var) for each i ∈ [n]} the set of
all possible predicate atoms.

Definition 1.3.1 (Predicate rule). A predicate rule is a pair

〈p(x), {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)}〉 , n ≥ 0

where x,x1, . . . ,xn are unique tuples of variables such that set(x), set(x1), . . . , set(xn) are
pairwise disjoint sets. Then φ is a formula called the constraint, p(x) is a predicate atom
called the goal, and q1(x1), . . . , qn(xn) are predicate atoms called subgoals. Consequently, the
variables in x are called goal variables, whereas the ones in

⋃n
i=1 set(xi) are subgoal variables.

Equalities between the variables in x,x1, . . . ,xn may be captured by the constraint. We refer
to {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} as the body of the predicate rule.

Whenever we consider a predicate rule 〈p(x), {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)}〉, it is
implied that x,x1, . . . ,xn respect the conditions from Definition 1.3.1. We often refer to
a predicate rule body R = {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} by fixing specific tuples of
goal and subgoal variables and writing R(x,x1, . . . ,xn) or, more compactly, R(x,y), where
y = x1 ·. . .·xn. Regardless of the variables with which R was initially specified, by R(x,y) we
mean the variant of R in which x and y replace the goal and subgoal variables, respectively.
By writing only R(x) or R we consider all variants of R with fixed goal variables x or without
any fixed variables, respectively.

Definition 1.3.2 (Inductive system of predicates). An inductive system of predicates S is
a finite set of predicate rules.

Without loss of generality, we assume there are no goals with the same predicate and
different goal variables. We use the condensed notation p(x) ←S R1(x) | . . . | Rm(x) when
{〈p(x), R1(x)〉 , . . . , 〈p(x), Rm(x)〉} is the set of all predicate rules with goal p(x) in S. We
also write Sp and S c for the sets of predicate symbols and of constraints, respectively, that
occur in the rules of S.

Definition 1.3.3 (Size of an inductive system). The size of an inductive system S is the
sum of the sizes of all constraints occurring in its predicate rules:

|S| =
∑
φ∈Sc

|φ|

1.3.2 Solution of an Inductive System in FOL

Let S be an inductive system in FOL and I an interpretation for the sorts and function
symbols in S. An assignment X maps each predicate pσ1...σn ∈ Sp to a set X (p) ⊆ σI1 ×
. . .× σIn . We extend the application of X to a predicate atom p(t1, . . . , tn) such that

X (p(t1, . . . , tn)) = {ν | (t1Iν , . . . , tnIν ) ∈ X (p)}

to a set F = {φ1, . . . φk, q1(x1), . . . , qn(xn)} of formulae and predicate atoms such that

X (
∧
F ) = {ν | I, ν |=φ1 ∧ . . . ∧ φk and ν ∈ X (qi(xi)),∀i ∈ [n]}
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and to a predicate rule 〈p(x), R(x)〉 such that

X (
∧
R(x)) = {ν | ν(x) = γ(x) and γ ∈ X (

∧
R(x,y))}

Given two sets F1 and F2 of formulae and predicate atoms, the following holds:

X (
∧
F1 ∧

∧
F2) = X (

∧
F1) ∩ X (

∧
F2)

and we also define the application of X on a disjunction of such sets

X (
∧
F1 ∨

∧
F2) = X (

∧
F1) ∪ X (

∧
F2)

The set of all assignments on the predicates in S is Assign(Sp). We identify two special
elements of this set: X∅ as the assignment that maps all predicates in Sp to the empty set,
and Xσ as the assignment that maps each predicate pσ1...σn ∈ Sp to the set σI1 × . . .× σIn .

Given X1,X2 ∈ Assign(Sp), we introduce the relation 4, together with its strict variant
≺, such that

X14X2 ⇔ ∀p ∈ Sp .X1(p) ⊆ X2(p)

X1≺X2 ⇔ X14X2 ∧ X1 6= X2

We define the union of two assignments X1,X2 ∈ Assign(Sp) as

(X1gX2)(p) = X1(p) ∪ X2(p),∀p ∈ Sp

and their intersection as

(X1fX2)(p) = X1(p) ∩ X2(p),∀p ∈ Sp

We write
b
X and

c
X for the application of g and f, respectively, among the elements of

the set X ⊆ Assign(Sp).

Partial orderings and complete lattices. We briefly go over some notions about partial
orderings and complete lattices that are relevant for assignments, as they are described in
[36, Appendix A]. A partial ordering on a set L is a relation ≤L ⊆ L × L that is reflexive
(i.e. ∀l ∈ L . l≤L l), transitive (i.e. ∀l1, l2, l3 ∈ L . l1≤L l2 ∧ l2≤L l3 ⇒ l1≤L l3) and anti-
symmetric (i.e. ∀l1, l2 ∈ L . l1≤L l2 ∧ l2≤L l1 ⇒ l1 = l2). A partially ordered set (L,≤L) is a
set L equipped with a partial ordering ≤L. A set Y ⊆ L has a lower bound l if ∀l′ ∈ Y . l≤L l

′.
The greatest lower bound of Y is a lower bound l0 such that l≤L l0 for any other lower bound
l of Y. Conversely, Y ⊆ L has an upper bound l if ∀l′ ∈ Y . l′≤L l, and the least upper bound
of Y is an upper bound l0 such that l0≤L l for any other upper bound l of Y. Not all subsets
of a partially ordered set L need to have an greatest lower bound or a least upper bound,
but, due to ≤L being anti-symmetric, they are unique when they do exist and are denotedd
Y and

⊔
Y , where

d
is called the meet operator and

⊔
the join operator. A complete

lattice L = (L,≤L) = (L,≤L,
⊔
,
d
,⊥L,>L) is a partially ordered set such that any of its

subsets has a least upper bound and greatest lower bound. Furthermore, ⊥L =
⊔
∅ =

d
L

is the least element of L and >L =
d
∅ =

⊔
L is the greatest element of L.

A classic example of complete lattice is the powerset of any set S together with the set
inclusion relation – (P(S),⊆,

⋃
,
⋂
, ∅, S). The join and meet operators are set union and

intersection, respectively. The least element of P(S) is ∅ and its greatest element is S.
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Since 4,
b

and
c

are defined pointwise based on set inclusion, union and intersec-
tion, respectively, it is easy to show that 4 is a partial ordering and that Assign(Sp) =
(Assign(Sp),4) = (Assign(Sp),4,

b
,
c
,X∅,Xσ) is a complete lattice.

The relation 4 is reflexive because, given any X ∈ Assign(Sp),

∀p ∈ Sp .X (p) ⊆ X (p)⇔ X 4X

The relation 4 is transitive because, for any X1,X2,X3 ∈ Assign(Sp),

∀p ∈ Sp .
(
X1(p) ⊆ X2(p) ∧ X2(p) ⊆ X3(p)⇒ X1(p) ⊆ X3(p)

)
⇒(

∀p ∈ Sp .X1(p) ⊆ X2(p)
)
∧
(
∀p ∈ Sp .X2(p) ⊆ X3(p)

)
⇒(

∀p ∈ Sp .X1(p) ⊆ X3(p)
)
⇔ X14X2 ∧ X24X3 ⇒ X14X3

The relation 4 is anti-symmetric because, for any X1,X2 ∈ Assign(Sp),

∀p ∈ Sp .
(
X1(p) ⊆ X2(p) ∧ X2(p) ⊆ X1(p)⇒ X1(p) = X2(p)

)
⇒(

∀p ∈ Sp .X1(p) ⊆ X2(p)
)
∧
(
∀p ∈ Sp .X2(p) ⊆ X1(p)

)
⇒(

∀p ∈ Sp .X1(p) = X2(p)
)
⇔ X14X2 ∧ X24X1 ⇒ X1 = X2

Thus, (Assign(Sp),4) is partially ordered set. For any X ⊆ Assign(Sp), its greatest lower
bound is

c
X and its least greater bound is

b
X. It follows that (Assign(Sp),4) is a complete

lattice with X∅ =
b
∅ =

c
Assign(Sp) and Xσ =

b
Assign(Sp) =

c
∅ as its least and greatest

elements, respectively.

The inductive system S and the interpretation I induce a function on assignments,
FIS : Assign(Sp)→ Assign(Sp), such that

FIS(X )(p) =

m⋃
i=1

{ν(x) | ν ∈ X (
∧
Ri(x))}

where p(x)←S R1(x) | . . . | Rm(x).

Definition 1.3.4 (Solution of an FOL inductive system). A solution of S is an assign-
ment X ∈ Assign(Sp) such that FIS(X )4X . The set of all solutions of S is SolIS = {X |
FIS(X )4X}. A least solution of S is µSI ∈ SolIS such that, for any assignment X ≺µSI ,

X 6∈ SolIS .

Lemma 1.3.1. The extension of an assignment is monotonically increasing, i.e. if X1,X2 ∈
Assign(Sp) such that X14X2, then

X1(p(t1, . . . , tn)) ⊆ X2(p(t1, . . . , tn)) for any p(t1, . . . , tn) ∈ Atom and p ∈ Sp (1.1)

X1

(∧
R(x)

)
⊆ X2

(∧
R(x)

)
for any 〈p(x), R(x)〉 ∈ S (1.2)

Proof. Since X14X2, it follows that X1(p) ⊆ X2(p),∀p ∈ Sp. Therefore,

X1(p(t1, . . . , tn)) = {ν | (t1Iν , . . . , tnIν ) ∈ X1(p)}
⊆ {ν | (t1Iν , . . . , tnIν ) ∈ X2(p)} = X2(p(t1, . . . , tn))

for any p(t1, . . . , tn) ∈ Atom with p ∈ Sp. We have successfully proven (1.1).
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Let R(x,y) = {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} such that 〈p(x), R(x)〉 ∈ S and y =
x1 · . . . · xn. By the extension of assignments, for any i ∈ [2] we obtain

Xi
(∧

R(x,y)
)

= {ν | I, ν |=φ(x,x) and ν ∈ Xi(qj(xj)),∀j ∈ [n]}

= {ν | I, ν |=φ(x,y)} ∩ {ν | ν ∈ Xi(qj(xj)),∀j ∈ [n]}

= {ν | I, ν |=φ(x,y)} ∩
n⋂
j=1

Xi(qj(xj)) (1.3)

Since X14X2, it follows from (1.1) that X1(qj(xj)) ⊆ X2(qj(xj)),∀j ∈ [n]. Therefore,

n⋂
j=1

X1(qj(xj)) ⊆
n⋂
j=1

X2(qj(xj)) (1.4)

Because {ν | I, ν |=φ} ⊆ {ν | I, ν |=φ} holds trivially, it easily follows from (1.3) and (1.4)
that

{ν | I, ν |=φ} ∩
n⋂
j=1

X1(qj(xj)) ⊆ {ν | I, ν |=φ} ∩
n⋂
j=1

X2(qj(xj))

and, thus, that X1(
∧
R(x,y)) ⊆ X2(

∧
R(x,y)). We also obtain X1(

∧
R(x)) ⊆ X2(

∧
R(x)).

As R was chosen arbitrarily, we conclude that (1.2) was successfully proven.

Theorem 1.3.2 (Monotonicity of FIS). The function FIS : Assign(Sp)→ Assign(Sp), induced
by the inductive system S and the FOL interpretation I, is monotonically increasing, i.e
FIS(X1)4FIS(X2) if X1,X2 ∈ Assign(Sp) such that X14X2.

Proof. Let p ∈ Sp be any predicate symbol defined by the inductive system S such that
p(x)←S R1(x) | . . . | Rm(x). Then, as per the definition of FIS ,

FIS(Xi)(p) =

m⋃
j=1

{ν(x) | ν ∈ Xi
(∧

Rj(x)
)
} = {ν(x) | ν ∈

m⋃
j=1

Xi
(∧

Rj(x)
)
},∀i ∈ [2]

(1.5)
Because X14X2, it follows from Lemma 1.3.1 that

X1

(∧
Rj(x)

)
⊆ X2

(∧
Rj(x)

)
,∀j ∈ [m]⇒

m⋃
j=1

X1

(∧
Rj(x)

)
⊆

m⋃
j=1

X2

(∧
Rj(x)

)
(1.6)

From (1.5) and (1.6) we can quickly gather that

FIS(X1)(p) = {ν(x) | ν ∈
m⋃
j=1

X1

(∧
Rj(x)

)
} ⊆ {ν(x) | ν ∈

m⋃
j=1

X2

(∧
Rj(x)

)
} = FIS(X2)(p)

As p was chosen arbitrarily, we can conclude that FIS(X1)4FIS(X2).

Ascending chains. To make a case for the continuity of FIS , we introduce ascending
chains, as they are defined in [36, Appendix A]. Given a partially ordered set (L,≤L), a
subset Y ⊆ L is a chain if ∀l1, l2 ∈ Y . l1≤L l2 or l2≤L l1, i.e. a chain is a (possibly empty)
subset of L that is totally ordered. A sequence (li)i∈N of elements from L is an ascending
chain if ∀i, i′ ∈ N . i ≤ i′ ⇒ li≤L li′ .

In the following lemma and theorem, we use ascending chains of assignments from
Assign(Sp), denoted (Xi)i∈N, where, as per the above definition, ∀i, i′ ∈ N . i ≤ i′ ⇒ Xi4Xi′ .
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Lemma 1.3.3. The extension of an assignment is continuous, i.e. if (Xi)i∈N is an ascending
chain in Assign(Sp), then(

j

i∈N
Xi

)
(p(t1, . . . , tn)) =

⋃
i∈N
Xi(p(t1, . . . , tn)), for any p(t1, . . . , tn) ∈ Atom, p ∈ Sp (1.7)(

j

i∈N
Xi

)(∧
R(x)

)
=
⋃
i∈N
Xi
(∧

R(x)
)
, for any 〈p(x), R(x)〉 ∈ S (1.8)

Proof. By the extension of assignments and the definition of assignment union,(
j

i∈N
Xi

)
(p(t1, . . . , tn)) = {ν | (t1Iν , . . . , tnIν ) ∈

(
j

i∈N
Xi

)
(p)}

= {ν | (t1Iν , . . . , tnIν ) ∈
⋃
i∈N
Xi(p)}

=
⋃
i∈N
{ν | (t1Iν , . . . , tnIν ) ∈ Xi(p)} =

⋃
i∈N
Xi(p(t1, . . . , tn))

for any p(t1, . . . , tn) ∈ Atom with p ∈ Sp. We have successfully proven (1.1).

Let R(x,y) = {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} such that 〈p(x), R(x)〉 ∈ S and y =
x1 · . . . · xn. By the extension of assignments,(

j

i∈N
Xi

)(∧
R(x,y)

)
= {ν | I, ν |=φ(x,y) and ν ∈

(
j

i∈N
Xi

)
(qj(xj)),∀j ∈ [n]}

= {ν | I, ν |=φ(x,y)} ∩ {ν | ν ∈

(
j

i∈N
Xi

)
(qj(xj)),∀j ∈ [n]}

= {ν | I, ν |=φ(x,y)} ∩
n⋂
j=1

(
j

i∈N
Xi

)
(qj(xj)) (1.9)

(Xi)i∈N is an ascending chain, so it follows from (1.7) that
(b

i∈N Xi
)
(qj(xj)) =

⋃
i∈N Xi(qj(xj))

and we can rewrite (1.9) as(
j

i∈N
Xi

)(∧
R(x,y)

)
= {ν | I, ν |=φ(x,y)} ∩

n⋂
j=1

⋃
i∈N
Xi(qj(xj)) (1.10)

Moreover, since (Xi)i∈N is an ascending chain and the extension of assignments is monoton-
ically increasing, as per Lemma 1.3.1, then ∀i, i′ ∈ N . i ≤ i′ ⇒ Xi(qj(xj)) ⊆ Xi′(qj(xj)) and⋂n
j=1

⋃
i∈N Xi(qj(xj)) =

⋃
i∈N
⋂n
j=1 Xi(qj(xj)),∀j ∈ [n]. In consequence, (1.10) becomes(

j

i∈N
Xi

)(∧
R(x,y)

)
= {ν | I, ν |=φ} ∩

⋃
i∈N

n⋂
j=1

Xi(qj(xj))

=
⋃
i∈N

(
{ν | I, ν |=φ} ∩

n⋂
j=1

Xi(qj(xj))
)

=
⋃
i∈N
Xi
(∧

R(x,y)
)

It easily follows that also
(b

i∈N Xi
)

(
∧
R(x)) =

⋃
i∈N Xi(

∧
R(x)) and, as R was chosen

arbitrarily, we can conclude that (1.2) was successfully proven.
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Theorem 1.3.4 (Continuity of FIS). The function FIS : Assign(Sp) → Assign(Sp), induced
by the FOL inductive system S and the interpretation I, is continuous, i.e FIS

(b
i∈N Xi

)
=b

i∈N FIS(Xi) if (Xi)i∈N is an ascending chain in Assign(Sp).

Proof. Let p ∈ Sp be any predicate symbol defined by the inductive system S such that
p(x)←S R1(x) | . . . | Rm(x). Then, as per the definition of FIS ,

FIS

(
j

i∈N
Xi

)
(p) =

m⋃
j=1

{ν(x) | ν ∈

(
j

i∈N
Xi

)(∧
Rj(x)

)
} (1.11)

Since (Xi)i∈N is an ascending chain, it follows by Lemma 1.3.3 that
(b

i∈N Xi
)
(
∧
Rj(x)) =⋃

i∈N Xi(
∧
Rj(x)),∀j ∈ [m], so we can rewrite (1.11) as

FIS

(
j

i∈N
Xi

)
(p) =

m⋃
j=1

{ν(x) | ν ∈
⋃
i∈N
Xi
(∧

Rj(x)
)
}

=

m⋃
j=1

⋃
i∈N
{ν(x) | ν ∈ Xi

(∧
Rj(x)

)
}

=
⋃
i∈N

m⋃
j=1

{ν(x) | ν ∈ Xi
(∧

Rj(x)
)
}

=
⋃
i∈N

FIS(Xi)(p) =

(
j

i∈N
FIS(Xi)

)
(p)

As p was chosen arbitrarily, we can conclude that FIS
(b

i∈N Xi
)

=
b
i∈N FIS(Xi).

Theorem 1.3.5 (FOL least solution). An FOL inductive system S has a unique least solution
equal to the least fixed point of FIS , i.e. µSI = lfp(FIS). Moreover, µSI = FIS

n
(X∅), where

n ∈ N is the smallest value for which FIS
n+1

(X∅) = FIS
n
(X∅).

Proof. Let Fp(FIS) =
{
X | FIS(X ) = X

}
be the set of all fixed points of FIS . Since (Assign(Sp),4)

is a complete lattice and FIS is monotonically increasing, as shown by Theorem 1.3.2, it fol-
lows from Tarski’s fixed point theorem [47] that (Fp(FIS),4) is also a complete lattice.

This ensures the existence of a unique least fixed point for FIS and, furthermore, [47] gives
us a way to compute this least fixed point as

lfp(FIS) =
k
{X | FIS(X )4X} =

k
SolIS

Thus, lfp(FIS) is the greatest lower bound of SolIS ⊆ Assign(Sp) and it is unique because any
subset of a complete lattice has a unique greatest lower bound. Also, due to the reflexiveness
of 4,

FIS(lfp(FIS)) = lfp(FIS)4 lfp(FIS) ⇒ lfp(FIS) ∈ SolIS

So lfp(FIS) is also a solution of S. Suppose lfp(FIS) is not a least solution of S. Then, by

definition 1.3.4, there must exist some X ≺ lfp(FIS) such that X ∈ SolIS . But, since lfp(FIS)

is the greatest lower bound of SolIS , it must be the case that lfp(FIS)4X , which leads to a
contradiction. Consequently, lfp(FIS) is the unique least solution of S.
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Additionally, because FIS is also continuous, it follows from Kleene’s fixed point theorem
that we can compute lfp(FIS) as the least upper bound of the chain

X∅4FIS(X∅)4FIS
2
(X∅)4 . . .4FIS

i
(X∅)4 . . . , i ∈ N

obtained by iterating FIS on the least element X∅ of Assign(Sp). Thus,

lfp(FIS) = µSI =
j

i∈N
FIS

i
(X∅) = FIS

n
(X∅)

where n ∈ N is the smallest value for which FIS
n+1

(X∅) = FIS
n
(X∅).

1.3.3 Solution of an Inductive System in SL

Let S be an inductive system in SL. An assignment X maps each predicate p ∈ Sp of arity
n to a set X (p) ⊆ Ln × Heaps. We extend X to a predicate atom p(x) such that

X (p(x)) = {(ν, h) | (ν(x), h) ∈ X (p)}

to a set F = {φ1, . . . φk, q1(x1), . . . , qn(xn)} of formulae and predicate atoms such that

X (∗F ) = {(ν, h0 ]
⊎n
j=1 hj) | ν, h0 |=SL φ1 ∗ . . . ∗ φk and (ν, hi) ∈ X (qi(xi)),∀i ∈ [n]}

and to a predicate rule 〈p(x), R(x)〉 such that

X (∗R(x)) = {(ν, h) | ν(x) = γ(x) and (γ, h) ∈ X (∗R(x,y))}

The set of all assignments on the predicates in S is AssignSL(Sp). We write X∅ for the
assignment that maps all predicates in Sp to the empty set, and Xσ for the assignment that
maps each predicate p ∈ Sp of arity n to the set Ln × Heaps.

We use the relation 4, its strict variant ≺, and the operators g and f with a similar
meaning as in Section 1.3.2, except they are now applied to assignments in AssignSL(Sp).
Furthermore, by a similar argument as in Section 1.3.2, AssignSL(Sp) = (AssignSL(Sp),4) =
(AssignSL(Sp),4,

b
,
c
,X∅,Xσ) is a complete lattice

The inductive system S induces a function FSL

S : AssignSL(Sp)→ AssignSL(Sp) such that

FSL

S (X )(p) =

m⋃
i=1

{(ν(x), h) | (ν, h) ∈ X (∗Ri(x))}

where p(x)←S R1(x) | . . . | Rm(x).

Due to the semantics introduced above, the proofs for the following lemmas and theorems
will handle subsets of V × Heaps and Ln × Heaps. We introduce the following notation such
that, when A,B ⊆ V × Heaps,

A ]B = {(γ, h ] h′) | (γ, h) ∈ A, (γ, h′) ∈ B and h, h′ disjoint}

and, when A,B ⊆ Ln × Heaps,

A ]B = {(v · v′, h ] h′) | (v, h) ∈ A, (v′, h′) ∈ B and h, h′ disjoint}
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Consider two other sets A′, B′ such that A,A′, B,B′ are all subsets of either V × Heaps
or Ln × Heaps. Then it easily follows that

(A ∪A′) ]B = (A ]B) ∪ (A′ ]B)

because, when A,B ⊆ V × Heaps,

(A ∪A′) ]B ={(γ, h ] h′) | (γ, h) ∈ A ∪A′, (γ, h′) ∈ B, and h, h′ disjoint}
={(γ, h ] h′) | (γ, h) ∈ A, (γ, h′) ∈ B, and h, h′ disjoint}
∪ {(γ, h ] h′) | (γ, h) ∈ A′, (γ, h′) ∈ B, and h, h′ disjoint}

=(A ]B) ∪ (A′ ]B)

and, when A,B ⊆ Ln × Heaps,

(A ∪A′) ]B ={(v · v′, h ] h′) | (v, h) ∈ A ∪A′, (v′, h′) ∈ B, and h, h′ disjoint}
={(v · v′, h ] h′) | (v, h) ∈ A, (v′, h′) ∈ B, and h, h′ disjoint}
∪ {(v · v′, h ] h′) | (v, h) ∈ A′, (v′, h′) ∈ B, and h, h′ disjoint}

=(A ]B) ∪ (A′ ]B)

This enables the following property relative to set inclusion:

A ]B ⊆ A′ ]B when A ⊆ A′

because A′ ]B = (A ]B) ∪ ((A′ \A) ]B), which is clearly a superset of A ]B.

Based on these properties, it is also true that

(A ∪A′) ] (B ∪B′) = (A ]B) ∪ (A′ ]B′) when A ⊆ A′ and B ⊆ B′

because (A∪A′)] (B ∪B′) = (A] (B ∪B′))∪ (A′ ] (B ∪B′)) = (A] (B ∪B′))∪A′ ]B′ =
(A ]B) ∪ (A ]B′) ∪ (A′ ]B′) = (A ]B) ∪ (A′ ]B′)

Given now two sets F1 and F2 of formulae and predicate atoms, the following holds:

X (∗F1 ∗ ∗F2) = X (∗F1) ] X (∗F2)

and, as we did for the FOL assignments, we also define

X (∗F1 ∨∗F2) = X (∗F1) ∪ X (∗F2)

Definition 1.3.5 (Solution of an SL inductive system). A solution of S is an assignment X ∈
AssignSL(Sp) such that FSL

S (X )4X . The set of all solutions of S is SolSL

S = {X | FSL

S (X )4X}.
A least solution of S is µSSL ∈ SolSL

S such that, for any assignment X ≺µSSL, X 6∈ SolSL

S .

Lemma 1.3.6. The extension of an assignment is monotonically increasing, i.e if X1,X2 ∈
AssignSL(Sp) such that X14X2, then

X1(p(x)) ⊆ X2(p(x)), for any p(x) ∈ Atom and p ∈ Sp (1.12)

X1(∗R(x)) ⊆ X2(∗R(x)), for any 〈p(x), R(x)〉 ∈ S (1.13)

Proof. Since X14X2, it follows that X1(p) ⊆ X2(p),∀p ∈ Sp. Thus,

X1(p(x)) = {(ν, h) | (ν(x), h) ∈ X1(p)}
⊆ {(ν, h) | (ν(x), h) ∈ X2(p)} = X2(p(x)))
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for any p(x) ∈ Atom with p ∈ Sp. We have successfully proven (1.12).

Let R(x,y) = {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} such that 〈p(x), R(x)〉 ∈ S and y =
x1 · . . . · xn. By the extension of assignments, for any i ∈ [2],

Xi(∗R(x)) ={(ν, h0 ]
n⊎
j=1

hj) | ν, h0 |=SL φ(x,y) and (ν, hj) ∈ Xi(qj(xj)),∀j ∈ [n]}

={(ν, h0) | ν, h0 |=SL φ} ]
n⊎
j=1

Xi(qj(xj)) (1.14)

Since X14X2, it follows from (1.12) that X1(qj(xj)) ⊆ X2(qj(xj)),∀j ∈ [n]. Thus, by
chaining the property of ] relative to subsets,

n⊎
j=1

X1(qj(xj)) ⊆
n⊎
j=1

X1(qj(xj)) (1.15)

From (1.14) and (1.15) we obtain that

{(ν, h0) | ν, h0 |=SL φ(x,y)} ]
n⊎
j=1

X1(qj(xj)) ⊆ {(ν, h0) | ν, h0 |=SL φ(x,y)} ]
n⊎
j=1

X2(qj(xj))

and, thus, that X1(∗R(x,y)) ⊆ X2(∗R(x,y)). It easily follows that also X1(∗R(x)) ⊆
X2(∗R(x)). As R was chosen arbitrarily, we conclude that (1.13) was successfully proven.

Theorem 1.3.7 (Monotonicity of FSL

S ). The function FSL

S : AssignSL(Sp) → AssignSL(Sp),
induced by the SL inductive system S, is monotonically increasing, i.e FSL

S (X1)4FSL

S (X2) if
X1,X2 ∈ AssignSL(Sp) such that X14X2.

Proof. The proof is similar to the one of Theorem 1.3.2, by using Lemma 1.3.6 to justify the
monotonicity of assignment extension.

Lemma 1.3.8. The extension of an assignment is continuous, i.e if (Xi)i∈N is an ascending
chain in AssignSL(Sp), then(

j

i∈N
Xi

)
(p(x)) =

⋃
i∈N
Xi(p(x)), for any p(x) ∈ Atom and p ∈ Sp (1.16)(

j

i∈N
Xi

)
(∗R(x)) =

⋃
i∈N
Xi(∗R(x)), for any 〈p(x), R(x)〉 ∈ S (1.17)

Proof. By the extension of assignments and the definition of assignment union,(
j

i∈N
Xi

)
(p(x)) = {(ν, h) | (ν(x), h) ∈

(
j

i∈N
Xi

)
(p)}

= {(ν, h) | (ν(x), h) ∈
⋃
i∈N
Xi(p)}

=
⋃
i∈N
{(ν, h) | (ν(x), h) ∈ Xi(p)} =

⋃
i∈N
Xi(p(x))
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for any p(x) ∈ Atom with p ∈ Sp. We have successfully proven (1.12).

Let R(x,y) = {φ(x,x1, . . . ,xn), q1(x1), . . . , qn(xn)} such that 〈p(x), R(x)〉 ∈ S and y =
x1 · . . . · xn. By the extension of assignments,(

j

i∈N
Xi

)
(∗R(x,y)) = {(ν, h0 ]

n⊎
j=1

hj) | ν, h0 |=φ, (ν, hj) ∈

(
j

i∈N
Xi

)
(qj(xj)),∀j ∈ [n]}

= {(ν, h0) | ν, h0 |=φ(x,y)} ]
n⊎
j=1

(
j

i∈N
Xi

)
(qj(xj)) (1.18)

(Xi)i∈N is an ascending chain, so it follows from (1.16) that
(b

i∈N Xi
)
(qj(xj)) =

⋃
i∈N Xi(qj(xj))

and we can rewrite (1.18) as(
j

i∈N
Xi

)
(∗R(x,y)) = {(ν, h0) | ν, h0 |=φ(x,y)} ]

n⊎
j=1

(⋃
i∈N
Xi(qj(xj))

)
(1.19)

Due to the properties of ], and because (Xi)i∈N is an ascending chain and the extension of
assignments is monotonically increasing, as per Lemma 1.3.6, then

⊎n
j=1

⋃
i∈N Xi(qj(xj)) =⋃

i∈N
⊎n
j=1 Xi(qj(xj)). In consequence, (1.19) becomes(

j

i∈N
Xi

)
(∗R(x,y)) = {(ν, h0) | ν, h0 |=φ(x,y)} ]

⋃
i∈N

( n⊎
j=1

Xi(qj(xj))
)

=
⋃
i∈N

(
{(ν, h0) | ν, h0 |=φ} ]

n⊎
j=1

Xi(qj(xj))
)

=
⋃
i∈N
Xi(∗R(x,y))

It easily follows that also
(b

i∈N Xi
)

(∗R(x)) =
⋃
i∈N Xi(

∧
R(x)) and, as R was chosen

arbitrarily, we can conclude that (1.13) was successfully proven.

Theorem 1.3.9 (Continuity of FSL

S ). The function FSL

S : AssignSL(Sp)→ AssignSL(Sp), induced
by the SL inductive system S, is continuous, i.e FSL

S
(⋃

i∈N Xi
)

=
⋃
i∈N FSL

S (Xi) if (Xi)i∈N is an
ascending chain in AssignSL(Sp).

Proof. The proof is similar to the one of Theorem 1.3.4, by using Lemma 1.3.8 to justify the
continuity of assignment extension.

Theorem 1.3.10 (Least solution of an SL inductive system). An SL inductive system S has
a unique least solution equal to the least fixed point of FSL

S , i.e. µSSL = lfp(FSL

S ). Moreover,
µSSL = FSL

S
n(X∅), where n ∈ N is the smallest value for which FSL

S
n+1(X∅) = FSL

S
n(X∅).

Proof. The proof is similar to the one of Theorem 1.3.5, using Theorem 1.3.7 and Theorem
1.3.9 to justify the monotonicity and continuity of FSL

S , respectively.

1.4 The Entailment Problem

In order to refer to any inductive system, regardless of its underlying logic (FOL or SL), we
use µS and |=S to mean either µSI and |=IS or µSSL and |=SL

S , depending on the context.
The main concern of this thesis is the following entailment problem, which we define in the
general context of any inductive system S.
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Definition 1.4.1 (Entailment problem). Given an inductive system S and predicates pσ1...σm ,
qσ1...σm
1 , . . . , qσ1...σm

n ∈ Sp with the same tuple of argument sorts, does µS(p) ⊆
⋃n
i=1 µS(qi)

(denoted p |=S q1, . . . , qn) hold?

We consider inductive systems for which the set of constraints S c consists of quantifier-free
formulae in which no disjunction occurs positively (i.e. under an even number of ¬ applica-
tions) and no conjunction occurs negatively (i.e. under an odd number of ¬ applications).
Without loss of generality, disjunctions can be eliminated from quantifier-free constraints by
splitting each predicate rule 〈p(x), {φ1∨ . . .∨φm, q1(x1), . . . , qn(xn)}〉 into m predicate rules
of the form 〈p(x), {φi, q1(x1), . . . , qn(xn)}〉, one for each i ∈ [m].

Additionally, we assume that every p ∈ Sp is the goal of at least one predicate rule of
S. Otherwise, the least solution is empty for that predicate, i.e. µSI(p) = ∅. Furthermore,
from the way assignments (and, consequently, least solutions) are extended to predicate rule
bodies, µSI will be empty for any predicate q ∈ Sp for which p is a subgoal. Thus, all such
predicates and all the predicate rules in which they occur can be safely eliminated from S.

Example 1.4.1 (Entailment problem in FOL). Consider the following inductive system,
with FOL constraints:

p(x) ←S x≈ f(x1, x2), p1(x1), p2(x2) q(x) ←S x≈ f(x1, x2), q1(x1), q2(x2)

p1(x)←S x≈ g(x1), p1(x1) | x≈ a | x≈ f(x1, x2), q2(x1), q1(x2)

p2(x)←S x≈ g(x1), p2(x1) | x≈ b q1(x)←S x≈ g(x1), q1(x1) | x≈ a
q2(x)←S x≈ g(x1), q2(x1) | x≈ b

Intuitively, S models two tree automata with initial states given by the predicates p and q,
where p accepts trees of the form f(gn(a), gm(b)), n,m ∈ N, while q accepts both trees of
the form f(gn(a), gm(b)) and f(gn(b), gm(a)), n,m ∈ N. The entailment p |=IS q expresses
the language inclusion between the two states and it holds. On the other hand, q |=IS p does
not hold. J

Example 1.4.2 (Entailment problem in SL). Consider the following inductive system, with
symbolic heap constraints:

ls+(x, y)←S x 7→ y | y≈ y′ ∧ x 7→ x′, ls+(x′, y′)

lse(x, y) ←S x≈ y ∧ emp | y≈ y′ ∧ x 7→ x′, lso(x′, y′)

lso(x, y) ←S x 7→ y | y≈ y′ ∧ x 7→ x′, lse(x′, y′)

l̂s
+

(x, y)←S y≈ y′ ∧ x 7→ x′ ∗ lse(x′, y′) | y≈ y′ ∧ x 7→ x′ ∗ lso(x′, y′)

Intuitively, ls+(x, y) defines the set of finite list segments of at least one element between

x and y, lse and lso are list segments of even and odd length, respectively, and l̂s
+

(x, y)
is the definition of a list segment consisting of one element followed by an even or an odd

list segment. Entailments that hold include: (i) ls+ |=SL l̂s
+

, (ii) lso |=SL l̂s
+

, (iii) ls+ |=SL lse, lso

and (iv) l̂s
+

|=SL lse, lso. Some entailments that do not hold are: (i) lso |=SL lse, (ii) lse |=SL ls+,

(iii) lse |=SL l̂s
+

and (iv) l̂s
+

|=SL lso. J

1.4.1 Entailments under the Canonical Interpretation

Let N∗ be the set of sequences of natural numbers, where ε ∈ N∗ is the empty sequence and
p · q is the concatenation of two sequences p, q ∈ N∗. We call p a prefix of q if and only if
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there exists some r ∈ N∗ such that p · r = q. A set X ⊆ N∗ is prefix-closed if p ∈ X implies
that p′ ∈ X for every prefix p′ of p.

A tree over the signature Σ = (Σs,Σf) is a ground term t ∈ TΣ, viewed as a finite
partial function t : N∗ ⇀fin Σf , where dom(t) is prefix-closed and, for all α ∈ dom(t) such
that t(α) = fσ1...σnσ, we have [n] = {i ∈ N | α · i ∈ dom(t)}, i.e. t is defined at consecutive
positions from α · 1 to α · n for every argument of f . The tree t is of sort σ ∈ Σs (written as
tσ) if t(ε) = fσ1...σnσ, for some fσ1...σnσ ∈ Σf .

The set fr(t) = {α ∈ dom(t) | α · 1 6∈ dom(t)} is called the frontier of t. Given a tree t
and a position α ∈ dom(t), we denote by t|α the subtree of t rooted at p, where, for each
β ∈ N∗, we have t|α(β) = t(α ·β). The subtree order is defined by uv t if and only if u = t|α ,

for some α ∈ dom(t). For a function symbol fσ1...σnσ ∈ Σf and trees tσ1
1 , . . . , tσnn ∈ TΣ, we

denote by τn(f, t1, . . . , tn) the tree t such that t(ε) = f and t|i = ti, for all i ∈ [n].

The Herbrand (canonical) interpretation H is the one in which each constant symbol is
interpreted as itself and each function symbol as the function that applies it, as described,
for instance, in [48, Section 3.1]. Thus, terms become both syntactical objects and values.
In other words, H maps (i) each sort σ ∈ Σs into TΣ, (ii) each constant symbol c into
the tree cH = {(ε, c)} consisting of a leaf which is also the root, and (iii) each function
symbol fσ1...σnσ into the function fH such that fH(t1, . . . , tn) = τn(f, t1, . . . , tn), for any
tσ1
1 , . . . , tσnn ∈ TΣ. Under this interpretation, t1≈ t2 if and only if t1(ε) = t2(ε) = fσ1...σnσ

and t1|i ≈ t2|i ,∀i ∈ [n].

Even in this simple case, where function symbols do not have any equational properties
(e.g. commutativity, associativity, etc.) entailment problems are undecidable, as stated by
the following theorem.

Theorem 1.4.1. The entailment problem is undecidable for inductive systems under the
Herbrand interpretation.

Proof. This undecidability result can be shown by reduction from the inclusion problem for
context-free languages, which is a known undecidable problem [25, Theorem 9.22 (e)].

Consider a context-free grammar G = 〈Ξ,Σ,∆〉, where Ξ is the set of nonterminals, Σ
is the alphabet of terminals, and ∆ is a set of productions (X,w) ∈ Ξ × (Ξ ∪ Σ)∗. For a
nonterminal X ∈ Ξ, L(G,X) ⊆ Σ∗ is the language produced by G starting with X as axiom.
The problem “Given X,Y ∈ Ξ, does L(G,X) ⊆ L(G, Y )?” is undecidable.

To reduce this inclusion problem to the entailment problem under the Herbrand inter-
pretation, we define an inductive system SG based on a context-free grammar G = 〈Ξ,Σ,∆〉,
as follows:

(i) Each nonterminal X ∈ Ξ corresponds to a predicate X(xσ, yσ), where σ is the only
sort used in the reduction;

(ii) Each alphabet symbol a ∈ Σ corresponds to a function symbol âσσ, and a word w =
a1 . . . an ∈ Σ∗ is encoded by the context (i.e. the term with a hole) ŵ = â1(. . . ân(.));

(iii) Each grammar rule (X,u1X1 . . . unXnun+1) ∈ ∆ corresponds to a predicate rule of the
inductive system SG:

〈X(x, y), {φ(x, y, x1, y1, . . . , xn, yn), X1(x1, y1), . . . , Xn(xn, yn)}〉

where φ ≡ x≈ û1(x1) ∧
∧n−1
i=1 yi≈ ûi+1(xi+1) ∧ yn≈ ûn+1(y). In addition, a grammar

rule (X, ε) ∈ ∆ is mapped into a rule 〈X(x, y), {x≈ y}〉 ∈ SG.
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For any nonterminals X,Y ∈ Ξ, we must show that we have L(G,X) ⊆ L(G, Y ) if and
only if X |=H

SG Y . This is proved using the invariant

∀w ∈ Σ∗ . (∀t ∈ ΣH . [x← ŵ(t), y ← t] ∈ µSH
G(X))⇔ w ∈ L(G,X)

where [x← ŵ(t), y ← t] denotes the valuation mapping x to ŵ(t) and y to t.

1.4.2 Entailments with Symbolic Heap Constraints

Considering inductive systems with symbolic heap constraints, as described by Definition
1.2.2, there already exist negative results regarding the decidability of entailment problems,
such as [27, Theorem 2] and [1, Theorem 3].

Theorem 1.4.2. The entailment problem is undecidable for inductive systems with symbolic
heap constraints.



Chapter 2

Proof Systems for Entailments

In this chapter, we describe cyclic proof systems suited for entailments involving inductively
defined predicates. More specifically, we give a generalized one for FOL and adapt it to
SL (Section 2.3). Their design was influenced by an antichain-based method for checking
language inclusion of top-down nondeterministic finite tree automata (Section 2.1). We give
a general proof search semi-algorithm (Section 2.2), which can become a decision procedure
when soundness and completeness are assured. In order to achieve this, additional restric-
tions (Section 2.4) are necessary, and we show how they indeed guarantee the soundness and
completeness of our proof systems (Section 2.5).

2.1 Downwards Inclusion Check for Tree Automata

Consider top-down nondeterministic finite tree automata (NFTA) over a ranked alphabet F
[12], where #f is the rank of the symbol f ∈ F. Then A = {QA,F, IA,∆A} is an NFTA where
QA is a set of states, IA ⊆ QA are the initial states of A and ∆A is a set of transition rules

q
f→ (q1, . . . , qn), where n = #f for some f ∈ F. Note that NFTA also have an equivalent

bottom-up representation, where the initial states become final states and transitions are

written as (q1, . . . , qn)
f→ q.

In the top-down sense, an NFTA A = {QA,F, IA,∆A} labels an input tree with states

starting at the root and moving downwards. A transition q
f→ (q1, . . . , qn) ∈ ∆A means

that, if the input is a tree with root f labelled by state q, then the automaton can move
downwards and label the children of f with the states q1, . . . , qn, in this order. This process,
called a run, can start by using any state from IA to label the root of the input tree, and
ends successfully for each leaf a of the input labelled by state r if there exists a transition
rule r

a→ (). An input tree is accepted if there exists a successful run of A on it. Then L(A)
– called the language of A – is the set of all inputs accepted by A. Also, L(A, q) – called the
language of q in A – is the set of all inputs accepted starting from state q ∈ QA. Note that
L(A) =

⋃
q∈IA L(A, q).

An NFTA can be naturally viewed as an inductive system, where predicates represent
states and predicate rules are obtained by translation from transition rules. For instance,

q
f→ (q1, . . . , qn) is equivalent to 〈q(x), {x≈ f(x1, . . . , xn), q1(x1), . . . , qn(xn)}〉. This means

that x is a tree whose root is f and, if the automaton has labelled x with state q, then

35
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it can label its subtrees x1, . . . , xn with q1, . . . , qn, respectively. The variables range over
ground terms and the function symbols are interpreted in the canonical (Herbrand) sense.
Note that, when describing transition rules for NFTA, the direction of the arrows denotes
either the top-down or the bottom-up representation. While similar, our q(x)←S R1, . . . , Rn
notation simply means that the set of models for q is the union of the sets of models given
by the predicate rules R1, . . . , Rn, and it is not meant to indicate a certain representation.
Moreover, L(A, q) is equivalent to µSH(q) for any state q and its translation into a predicate.

Given two NFTA A = {QA,F, IA,∆A} and B = {QB ,F, IB ,∆B}, a common problem
is language inclusion, i.e. whether L(A) ⊆ L(B). This can be translated into a language
inclusion problem for states, as it is equivalent to asking whether L(A, p) ⊆

⋃
q∈IB L(B, q)

for every p ∈ IA. Considering two states p and q, and an inductive system S representing
the translation of A and B, the language inclusion problem L(A, p) ⊆ L(B, q) is equivalent
to the entailment problem p |=H

S q, which asks whether every tree model of p (defined as an
inductive predicate) is a model of q (also defined as an inductive predicate).

Example 2.1.1. The inductive system from Example 1.4.1 describes two NFTA A =
{{p, p1, p2},F, {p},∆A} and B = {{q, q1, q2},F, {q},∆B}, where F = {f(, ), g(), a, b} and

∆A = {p f→ (p1, p2), p1
g→ p1, p1

a→ (),

p2
g→ p2, p2

b→ ()}

∆B = {q f→ (q1, q2), q1
g→ q1, q1

a→ (),

q
f→ (q2, q1), q2

g→ q2, q2
b→ ()}

Then L(A) = L(A, p) = µSH(p) and L(B) = L(B, q) = µSH(q). The language inclusion
problem L(A) ⊆ L(B) is then equivalent to L(A, p) ⊆ L(B, q), which is furthermore equiva-
lent to the entailment problem p |=H

S q. J

Since language inclusion is decidable for NFTA [12, Corollary 1.7.9], we leverage an
existing algorithm for this problem by Hoĺık et al. [24] to build a complete set of inference
rules and derive a proof search technique. The downwards inclusion check proposed by Hoĺık
et al. searches for counterexamples of L(A, p) ⊆

⋃k
i=1 L(B, qi) by building a tree containing

pairs (r, {s1, . . . , sn}), where r is a state that can be reached from p via a series of transitions
in ∆A, and {s1, . . . , sn} are all the states that can be reached from q1, . . . , qk via a series of
transitions in ∆B with the same symbols. A counterexample is discovered when the algorithm

encounters a pair (r, {s1, . . . , sn}) such that there exists a transition r
f→ (r′1, . . . r

′
m) in ∆A

and there exists no transition si
f→ (s′1, . . . s

′
m) in ∆B for any i ∈ [n]. In this situation, we

reach a leaf of the form ((r′1, . . . , r
′
m), ∅), where m ≥ 0. On a different note, if a leaf ((), S)

with () ∈ S is reached, then the check was successful on its corresponding branch. This type
of leaves indicate a transition with a symbol of rank 0 that exists for both r and some state
si, with i ∈ [n], of the parent pair (r, {s1, . . . , sn}).

One important aspect is that, by the nature of tree automata, it is possible to have transi-

tions such as p
f→ (r1, . . . , rn) and q

f→ (s1
1, . . . , s

1
n), . . . , q

f→ (sk1 , . . . , s
k
n). Thus, the inclusion

L(A, p) ⊆ L(B, q) holds only if L(A, (r1, . . . , rn)) ⊆
⋃k
i=1 L(B, (si1, . . . , s

i
n)) also holds. In

this case, the algorithm reaches a pair ((r1, . . . , rn), {(s1
1, . . . , s

1
n), . . . , (si1, . . . , s

i
n)}). Be-

cause the union
⋃k
i=1 L(B, (si1, . . . , s

i
n)) =

⋃k
i=1

(
L(B, si1)× . . .× L(B, sin)

)
cannot be sim-

ply computed component-wise, there is no easy check that can be performed on such a
pair. Instead, using some properties of the Cartesian product, we can perform a split ac-
tion and obtain several groups of simpler inclusions L(A, ri) ⊆

⋃
s∈Si L(B, s), with Si ⊆
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{s1
i , . . . , s

k
i } and i ∈ [n], such that, if all the inclusions hold in at least one group, then

L(A, (r1, . . . , rn)) ⊆
⋃k
i=1 L(B, (si1, . . . , s

i
n)) also holds (see [24, Theorem 1]). Then the pair

((r1, . . . , rn), {(s1
1, . . . , s

1
n), . . . , (sk1 , . . . , s

k
n)}) can also be broken down into several groups of

pairs (ri, Si) and, if a counterexample is encountered for at least one pair in every group,
then there also exists a counterexample for ((r1, . . . , rn), {(s1

1, . . . , s
1
n), . . . , (sk1 , . . . , s

k
n)}).

The algorithm also keeps a workset of previously checked pairs and stops successfully
whenever it encounters a pair identical to one of its ancestors. This is justified by the fact
that, if the inclusion does not hold, it is not because of the sequence of pairs obtained
from the ancestor to the current one. Otherwise, by infinite descent, there would exist a
counterexample that is a strictly smaller tree than the one obtained from the ancestor and,
by repeating the path infinitely often, we would obtain an infinite sequence of strictly smaller
counterexamples, which is impossible, as we only consider finite trees.

Example 2.1.2. Consider the NFTA A and B from Example 2.1.1. To check L(A, p) ⊆
L(B, q), we start with (p, {q}). A run of the algorithm is depicted below, where the enumer-
ated pairs are organized as a tree. The algorithm perform two types of actions: transitions
(indicated by arrows labelled with symbols) and split actions (indicated by unlabelled edges).

(p, {q})

((p1, p2), {(q1, q2), (q2, q1)})

(p1, {q1, q2}) (p1, {q1}) (p2, {q2}) (p2, {q2, q1})

((), {()}) (p1, {q1, q2}) ((), {()}) (p1, {q1}) ((), {()}) (p2, {q2}) ((), {()}) (p2, {q2, q1})

f

a g a g b g b g

Note that, for the pair ((p1, p2), {(q1, q2), (q2, q1)}), this run checks the group (p1, {q1, q2}),
(p1, {q1}), (p2, {q2}) and (p2, {q2, q1}). By [24, Theorem 1], the other possibilities are:

– (p1, {q1, q2}), (p1, {q1}), (p1, {q2}) and (p2, {q2, q1});

– (p1, {q1, q2}), (p2, {q1}), (p1, {q2}) and (p2, {q2, q1});

– (p1, {q1, q2}), (p2, {q1}), (p2, {q2}) and (p2, {q2, q1}).

On the other hand, note how L(B, q) 6⊆ L(A, p). There exists only one run of the algorithm
starting with the pair (q, {p}), as depicted below.

(q, {p})

((q1, q2), {(p1, p2)}) ((q2, q1), {(p1, p2)})

(q1, {p1}) (q2, {p2}) (q2, {p1}) (q1, {p2})

((), {()}) (q1, {p1}) ((), {()}) (q2, {q2}) ((), ∅) (q2, {p1}) ((), ∅) (q1, {p2})

f f

a g b g b g a g
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Because both sets in ((q1, q2), {(p1, p2)}) and ((q2, q1), {(p1, p2)}) contain only one tuple, the
pairs can be split in only one way, component-wise. The counterexamples in this case are
f(b, a), f(b, x) with x ∈ L(B, q1), and f(x, a) with x ∈ L(B, q2). J

2.2 A Proof Search Semi-algorithm

The main idea behind the proof systems we want to build is to view a complete, counter-
example-free search tree for an inclusion problem L(A, p) ⊆

⋃k
i=1 L(B, qi) (such as the one

depicted in Example 2.1.2) as a proof for the validity of the entailment p |=H
S q1, . . . , qk, where

S contains the predicate definitions corresponding to the two NFTA in which p and q1, . . . , qk
are states. We view the pairs (r, {s1, . . . , sn}) explored by the downwards inclusion check as
sequents r(x) ` s1(x), . . . , sn(x) in the proof and apply the principle of Infinite Descent to
close those branches leading to an infinite sequence of strictly decreasing counterexamples.

We write Γ ` ∆ to denote a sequent. Typically, the left-hand side Γ is a set of quantifier-
free formulae and predicate atoms, while the right-hand side ∆ is a set of (possibly ex-
istentially quantified) conjunctions over quantifier-free formulae and predicate atoms. In
FOL, the left-hand sides are interpreted as classic conjunctions, while in SL they use the
separating conjunction. In both cases, the right-hand sides are interpreted as disjunctions.
When writing sequents we usually omit the braces in both Γ and ∆. A sequent of the form
p(x) ` q1(x), . . . , qn(x) is called basic.

Definition 2.2.1 (Proof system). A proof system R is a set of inference rule schemata:

IR
Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
side conditions

.... C

Γp ` ∆p

We call Γi ` ∆i the antecedents and Γ ` ∆ the consequent of the inference rule. When the
list of antecedents is empty (i.e. n = 0), an inference rule may have a pivot Γp ` ∆p (which
is always a sequent preceding the consequent in the transitive closure of the consequent-
antecedent relation or, in other words, an ancestor of the consequent) and C is a pivot
constraint on the path between the pivot and the consequent.

An inference rule schema (or simply inference rule, for short) allows for infinite instances
that share the same structure. We refer to these as inference rule instances or inference rule
applications. For any inference rule IR we assume that there are finitely many instances
of IR with pivot Γp ` ∆p and consequent Γ ` ∆. We denote by #(IR) the number of
its antecedents and write > for the antecedent list whenever #(IR) = 0. It is possible to
have inference rules for which #(IR) ≥ 0 and only a particular instance can determine the
exact number of antecedents. Thus, we say that #(ir) = 0 if an instance ir of IR generates
an empty list of antecedents and also write > for this particular instance. Naturally, if
#(IR) = 0, then also #(ir) = 0 for any instance ir of IR.

Definition 2.2.2 (Derivation). A derivation using the proof systemR is a (possibly infinite)
tree D = (V, v0,Seq,Rule,Par,Piv), where V is a set of vertices, v0 ∈ V is the root node,
Seq is a total mapping from V to sequents, Rule : V ⇀ R, Par : V \ {v0} → V and
Piv : V \ {v0}⇀ V such that:

(i) Each v ∈ V is labelled by a sequent Seq(v) and Rule(v), if defined, indicates the
inference rule schema whose instance is applied on Seq(v);
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(ii) For each v ∈ V \ {v0}, Par(v) ∈ V is the parent node of v and Seq(v) is an antecedent
of the Rule(Par(v)) instance applied on Seq(Par(v)). If this inference rule instance
generates an empty list of antecedents, then Seq(v) = >;

(iii) If the instance of Rule(v) applied on Seq(v) has a pivot, where v ∈ V \ {v0}, then
Piv(v) ∈ V denotes a node such that Seq(Piv(v)) is the pivot of this instance.

Definition 2.2.3 (Proof). A proof is a finite derivation D = (V, v0,Seq,Rule,Par,Piv) such
that Seq(v) = > for all leaves v ∈ V – i.e. on every branch of the derivation, the last
inference rule application has an empty list of antecedents.

Having formalized derivations and proofs, we now define backlinks, traces and paths.
These notions are instrumental to formulating properties of derivations and proofs, while
also playing an important role in establishing soundness and completeness results later on.

Definition 2.2.4 (Backlink). Given a derivation D = (V, v0,Seq,Rule,Par,Piv), a backlink
is a pair (u, v) with u, v ∈ V such that Piv(u) = v.

Definition 2.2.5 (Trace). A trace in a derivation D = (V, v0,Seq,Rule,Par,Piv) is a (possi-
bly infinite) sequence of vertices τ = v1, v2, . . . such that, for all i > 1 either vi−1 = Par(vi)
or Piv(vi−1) = vi. We say that τ contains a backlink if Piv(vi−1) = vi for some i > 1.

Definition 2.2.6 (Path). A path in a derivation D = (V, v0,Seq,Rule,Par,Piv) is a sequence
of vertices π = v1, . . . , vn such that, for all i ∈ [2, n], we have vi−1 = Par(vi). If, furthermore,
Piv(vn) = v1, then π is a direct path.

Note that, since the branching degree of a proof is finite, by König’s Lemma every
path in a proof must also be finite. Traces, however, can be infinite, in both derivations
and proofs. Given a path or a finite trace π = v1, . . . , vk, we write Λ(π) for the sequence
Rule(v1), . . . ,Rule(vk) of inference rule schemata applied along π. We can also decompose π
into several subsequences ρ1, . . . , ρm such that their concatenation is equal to π. We denote
this by π = ρ1 · . . . · ρm and, in this case, we also write Λ(π) = Λ(ρ1) · . . . · Λ(ρm).

The pivot constraint C of an inference rule schema IR is a set of finite sequences of
inference rule schemata, such that, for any instance ir of IR, if π is the direct path from the
pivot of ir to its consequent, then Λ(π) ∈ C. We usually specify C using regular expressions.

Proposition 2.2.1. Any infinite trace in a proof contains infinitely many direct paths.

Proof. Let τ be an infinite trace in the proof D = (V, v0,Seq,Rule,Par,Piv). Since V is
finite, τ must contain infinitely many backlinks. Moreover, V ×V is also finite and there can
only be a finite number of backlinks, thus there must exist a backlink (vi−1, vi) that repeats
infinitely often in τ .

We now show that, for every finite trace ρ = vi, . . . , vi−1, where (vi−1, vi) is a backlink,
there exists a direct path in ρ, by induction on the number N of backlinks in ρ. If N = 0
the direct path is trivially ρ. For the induction step N > 0, we suppose that the property
holds for any N ′ < N . Let ρ = vi, . . . , vj−1, vj , . . . , vi−1, where (vj−1, vj) is the last backlink
on ρ. Then the suffix vj . . . vi−1 of ρ is a path. Since (vi−1, vi) is a backlink, then vi is a
predecessor of vi−1 in D, thus vi, vj and vi−1 are on the same branch on D. We distinguish
two cases:

1. If vj is vi or a predecessor of vi then ρ ends in a direct path from vi to vi−1 in ρ and we
are done, because ρ = vi, . . . , vj−1, vj , . . . , vi, . . . , vi−1 and there are no more backlinks
between vj and vi−1.
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2. Else, if vi is a strict predecessor of vj , we show that there must exist another occurrence
of vj in the prefix vi, . . . , vj−1 of ρ. Note that vi, vj and vj−1 occur on the same branch
in D. Suppose, by contradiction, that vk 6= vj , for all k ∈ [i, j − 1]. To reach vj−1

from vi there must exist a strict predecessor u ∈ V of vj and a subsequence of ρ from
u to some strict successor u′ ∈ V of vj that goes through one or more backlinks (see
the figure below). However this is not possible, since each backlink leads from a leaf
of D to one of its predecessors, thus any trace starting at vi, passing through u and
then following a different branch than the one on which vi, vj and vj−1 reside, can only
return to this branch at u or predecessors of u, whereas u′ is a strict successor of u.

. . .

vi

vj

vj−1

u

u′

We have shown that there exists k ∈ [i, j − 1] such that vk = vj , thus we have a
subsequence ρ′ = vk, . . . , vj−1 of ρ, where (vj−1, vk) is a backlink, containing N ′ < N
backlinks. By the induction hypothesis, ρ′ contains a direct path, which concludes the
induction proof.

Therefore, each finite subtrace vi−1, . . . , vi contains a direct path. Because the backlink
(vi−1, vi) occurs infinitely often in τ , there are infinitely many such subtraces in τ , we can
conclude that τ contains infinitely many direct paths.

We want our proof systems to be sound and, ideally, complete. Having introduced all
the above notions, we can now define soundness and completeness.

Definition 2.2.7 (Soundness and completeness). Given an inductive system S and an in-
terpretation I, a proof system R is sound if, for every sequent p(x) ` q1(x), . . . , qn(x) that
is the root of a proof constructed with R, the entailment p |=IS q1, . . . , qn holds. Moreover,
R is complete if for every valid entailment p |=IS q1, . . . , qn there exists a proof starting with
p(x) ` q1(x), . . . , qn(x) that can be constructed with R.

Trying to build a proof with no guidance on what inference rule schema to apply at any
point can become quite a gruelling task. To this end, we introduce the notion of a strategy,
which can be used to guide a proof-search algorithm.

Definition 2.2.8 (Strategy). A strategy is a set S of inference rule schema sequences. A
derivation (or proof) D is an S-derivation (or S-proof) if the sequences of inference rule
applications along every maximal path in D belong to S.

Definition 2.2.9 (Valid prefix). Given a strategy S, a sequence s of inference rule schemata
is a valid prefix for S if there exists another, possibly empty, sequence s′ such that their
concatenation s · s′ belongs to S.

Figure 2.1 describes the data structure Node, which represents the nodes in any derivation
built using the proof system R. We also consider a constructor Node(sequent, rule, parent,
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Node { sequent : A sequent Γ ` ∆,
rule : An inference rule schema from R
parent : Parent of the current node, also of type Node,
pivot : Pivot of rule, also of type Node,
children : A list with elements of type Node }

Figure 2.1: The data structure Node, representing a node in a derivation

pivot, children) which takes four arguments of the same types as its fields and initializes
them. The proof-search semi-algorithm we propose uses this data structure, and also the
notion of applicable inference rule schema, for which we provide the following definition.

Algorithm 1: Proof search semi-algorithm.

Input : An inductive system S, a basic sequent p(x) ` q1(x), . . . , qn(x), a proof
system R and a strategy S

Output: A proof starting with p(x) ` q1(x), . . . , qn(x)

1 Root← Node(p(x) ` q1(x), . . . , qn(x),null ,null ,null , [])
2 WorkQueue← {Root}
3 while WorkQueue 6= [] do
4 Dequeue a node N from WorkQueue
5 Let π be the path between Root and N
6 Let RN = {IR | IR ∈ R and IR applicable on N.sequent and π}
7 Let R0

N = {IR | IR ∈ RN and #(IR) = 0}
8 if Λ(π) · IR valid prefix of S for some IR ∈ R0

N then
9 N.rule← IR

10 if IR has a pivot then
11 Let P be the pivot for this instance of IR
12 N.pivot← P

13 Mark N as closed

14 if N not closed and Λ(π) · IR valid prefix of S for some IR ∈ RN then
15 N.rule← IR
16 Let ir be an application of IR on N.sequent
17 foreach antecedent Γ′ ` ∆′ of ir do
18 N′ ← Node(Γ′ ` ∆′,null ,N,null , [])
19 Append N′ to N.children
20 Enqueue N′ in WorkQueue

21 if N.children is empty then
22 Mark N as closed

Definition 2.2.10 (Applicable inference rule schema). Given an inference rule IR, a sequent
Γ ` ∆ and path π starting at the root of a derivation and ending at v, where Seq(v) = Γ ` ∆,
we say that IR is applicable on Γ ` ∆ and π if there exists an instance ir of IR such that:

(i) Γ ` ∆ matches the consequent of ir such that the side conditions are satisfied;

(ii) There exists vp 6= v along π, where Seq(vp) matches the pivot of ir such that the side
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conditions are satisfied, and, if π = ρ ·vp ·η ·v, then Λ(vp ·η) ∈ C, where C is the pivot
constraint of ir .

Given an input sequent p(x) ` q1(x), . . . , qn(x), a set R of inference rule schemata and a
strategy S, the proof search semi-algorithm 1 iterates over a work queue of nodes to build a
derivation. The root node is initialized with the input sequent, an empty list of children and
nil for the parent pointer and the inference rule schema. The work queue initially contains
only the root. When a node is removed from the work queue, the path between the root
sequent and the current sequent is extracted using the parent pointers. The semi-algorithm
then computes the sets RN (of inference rule schemata applicable on the current sequent and
derivation path) and R0

N (the subset of RN containing only those inference rule schemata
with a guaranteed empty list of antecedents). Inference rule schemata in R0

N matching the
strategy are applied eagerly and the node is marked as closed, indicating a successfully
proved path. Otherwise, the semi-algorithm chooses nondeterministically an application of
an inference rule schema in RN that matches the strategy. Then, for every antecedent, a
new child node is created, which is then added to the work queue. If the inference rule
application generated an empty list of antecedents, the current node is marked as closed.

Note that, if a proof of p(x) ` q1(x), . . . , qn(x) exists, then there also exists a finite
execution of the semi-algorithm 1 on this sequent. Moreover, if the strategy S is chosen in a
way that forbids infinite derivations, this turns 1 into an algorithm, which can furthermore
become a decision procedure for the entailment problem if the input set of inference rules is
complete for the input inductive system.

2.3 Cyclic Proof Systems for Inductive Entailments

2.3.1 The Inference Rule Set RInd for FOL Entailments

We introduce the proof system RInd = {LU,RU,RD,∧R,SP,AX, ID}, suited for FOL entail-
ments. Its inference rule schemata are depicted in Figures 2.2, 2.3, 2.4 and 2.5, where long
side conditions are written underneath each respective inference rule schema instead of to
the right.

LU
〈Ri(x,yi),Γ \ p(x) ` ∆〉ni=1

Γ ` ∆
p(x) ∈ Γ, y1, . . . ,yn fresh
p(x)←S R1(x) | . . . | Rn(x)

RU
Γ ` {∃yi .

∧
Ri(x,yi)}

n
i=1 ,∆ \ p(x)

Γ ` ∆
p(x) ∈ ∆, y1, . . . ,yn fresh
p(x)←S R1(x) | . . . | Rn(x)

Figure 2.2: Inference rule schemata for predicate unfolding.

The inference rules of type LU and RU (Figure 2.2) unfold a predicate atom p(x) which
occurs on either the left- or right-hand side of a sequent Γ ` ∆, respectively. By unfolding
p(x), the atom is replaced with the set of predicate rules p(x) ←S R1(x) | . . . | Rn(x), in
which we use fresh subgoal variables. The left unfolding yields a set of sequents that must be
all proved, one for each Ri, thus creating several new branches in the derivation that need to
be all valid in order to obtain a proof. In contrast, the right unfolding simply replaces p(x)
on the right-hand side of the sequent with a set of formulae obtained by applying conjunction
over each Ri, i ∈ [n] and existentially quantifying the fresh subgoal variables in them.
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Example 2.3.1. Consider the inductive system from Example 1.4.1. In order to prove the
entailment p |=H

S q, we start a derivation from the sequent p(x) ` q(x). By applying LU on
this sequent to unfold p(x), we obtain:

p(x) ` q(x)

x ≈ f(x1, x2), p1(x1), p2(x2) ` q(x)
lu

We can further apply RU on the resulting sequent and unfold q(x):

x ≈ f(x1, x2), p1(x1), p2(x2) ` q(x)

x ≈ f(x1, x2), p1(x1), p2(x2)`∃y1, y2 . x ≈ f(y1, y2) ∧ q1(y1) ∧ q2(y2),
∃y1, y2 . x ≈ f(y1, y2) ∧ q2(y1) ∧ q1(y2)

ru

Note that, by unfolding, we have introduced the new subgoal variables x1, x2 on the left-hand
side and the new, existentially quantified subgoal variables y1, y2 for each conjunction on the
right-hand side. J

RD
p1(x1), . . . , pn(xn) ` {Qj(yjθ) | θ ∈ Sj}ij=1

φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃yj . ψj(x,yj) ∧Qj(yj)}kj=1

where φ |=I
∧i

j=1 ∃yj . ψj , φ 6|=I
∨k

j=i+1 ∃yj . ψj , Sj ⊆ VIS(φ, ψj), j ∈ [i]

∧R
Γ ` p(x) ∧Q,∆ Γ ` q(x) ∧Q,∆

Γ ` p(x) ∧ q(x) ∧Q,∆

Figure 2.3: Inference rule schemata for reducing constraints and for removal of predicate
conjunctions over the same arguments.

The inference rules of type RD (Figure 2.3) simplify sequents by eliminating the con-
straints from both the left- and right-hand sides. This is done by checking the entailments
φ |=I ∃yj . ψj , j ∈ [k] between the left constraint and each of the constraints on the right. If
the entailment does not hold, the corresponding conjunction ∃yj . ψj(x,yj) ∧ Qj(yj) from
the right-hand side is ignored. If the entailment holds, however, it is witnessed by a finite set
of substitutions Sj ⊆ VIS(φ, ψ) for the existentially quantified subgoal variables yj , where

VIS(φ, ψ) = {θ :
⋃m
j=1 set(yj) → TΣ(set(x) ∪

⋃n
i=1 set(xi)) | φ |=I ψθ}. For each valid en-

tailment, we eliminate the constraint ψj(x,yj) together with the existential quantification,
and add every conjunction of predicates Qj(yjθ) with θ ∈ Sj on the right-hand side of the
antecedent. Finally, the left-hand side of the antecedent is obtained from the left-hand side
of the consequent by simply eliminating the constraint.

Note that the application of RD, which substitutes the subgoal variables on the right-hand
side, may generate conjunctions of predicates sharing the same tuple of arguments (if there
originally were more subgoals on the right-hand side before the application of RD). These
cases are eagerly eliminated using an inference rule of type ∧R (Figure 2.3). We assume
that every application of RD is followed by a cleanup of the right-hand side of its antecedent
using sufficiently many applications of ∧R to eliminate all conjunctions of predicates with
the same arguments from the right-hand side.
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Example 2.3.2. Continuing the derivation from Example 2.3.1, we apply RD on the an-
tecedent of RU:

x ≈ f(x1, x2), p1(x1), p2(x2)`∃y1, y2 . x ≈ f(y1, y2) ∧ q1(y1) ∧ q2(y2),
∃y1, y2 . x ≈ f(y1, y2) ∧ q2(y1) ∧ q1(y2)

p1(x1), p2(x2) ` q1(x1) ∧ q2(x2), q2(x1) ∧ q1(x2)
rd

This application of RD checks the entailment x ≈ f(x1, x2) |=I ∃y1, y2 . x ≈ f(y1, y2) for
both parts of the right-hand side (since they happen to have the same constraint). The
entailment holds and is witnessed by the substitution θ = {(y1, x1), (y2, x2)}. The constraints
x ≈ f(x1, x2) and x ≈ f(y1, y2) together with the quantification ∃y1, y2 are removed and θ
is applied on both conjunctions from the right-hand side. J

SP
〈pı̄j (xı̄j ) ` {q`ı̄j (xı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}〉n

k

j=1

p1(x1), . . . , pn(xn) ` {Qj(x1, . . . ,xn)}kj=1

where set(xi) ∩ set(xj) = ∅,∀i, j ∈ [n],

Qj =
∧n

i=1 q
j
i (xi), Qj = 〈qj1, . . . , q

j
n〉, ∀j ∈ [k]

F(Q1, . . . ,Qk) = {f1, . . . , fnk}, ı̄ ∈ [n]n
k

Figure 2.4: Inference rule schema for splitting sequents without constraints.

The transition actions performed by the algorithm for tree automata inclusion checking
detailed in Section 2.1 are equivalent to applying the LU, RU and RD inference rules all at
once. This is a natural consequence of how the function symbol labelling the root of the
current input controls the transition rules for tree automata. Function symbols can only be
compared via equality, thus the constraints of the predicate rules corresponding to a tree
automata match unambiguously. For instance, x≈ f(x1, x2) |=H ∃y1∃y2 . x≈ g(y1, y2) if and
only if f and g are the same function symbol, in which case the only substitution witnessing
the validity of the entailment is θ(xi) = yi, for i ∈ [2].

However, when considering general constraints, matching requires the discovery of non-
trivial substitutions that prove an entailment between existentially quantified formulae.
Moreover, the matching step implemented by the RD rule is crucial for the completeness
of the proof system. We generalize from the simple case of tree automata constraints and
identify general properties for the set of constraints that allow matching to be complete.
Such properties are detailed in Section 2.4.

The inference rules of type SP (Figure 2.4) split a sequent without constraints, of the from
p1(x1), . . . , pn(xn) ` {Qj(x1, . . . ,xn)}kj=1, where Qj(x1, . . . ,xn) =

∧n
i=1 q

j
i (xi), into basic

sequents, with left-hand sides p1(x1), . . . , pn(xn). This inference rule corresponds to the split
action performed by the inclusion check from Section 2.1. Given a set of predicate tuples
{Q1, . . . ,Qk} ⊆ Predn, for some n ≥ 1, a choice function f maps each tuple Qj , j ∈ [n] into
an index f(Qj) ∈ [n] corresponding to a given position in the tuple. Let F(Q1, . . . ,Qk) =
{f1, . . . , fnk} be the set of all such choice functions. This set has cardinality nk, for any set
of n-tuples of predicates. Consider now a tuple of length nk containing index choices from
1 to n, each corresponding to a choice function f1, . . . , fnk . The set of all such choices is

[n]n
k
. Given a choice ı̄ ∈ [n]n

k

, let ı̄j = posj (̄ı). Then, for each ı̄ there exists an application

of SP, generating nk antecedents with left hand-side pı̄j (xı̄j ), j ∈ [nk] and right hand-side
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consisting of all predicate atoms q`ı̄j (xı̄j ), ` ∈ [k] obtained from predicates at position ı̄j in

the tuples Q` which are mapped to ı̄j by the choice function fj . In order to obtain a proof,

there must exist some application of SP – and, therefore, some ı̄ ∈ [n]n
k

– for which all the
generated antecedents can be proven. It is important to note, however, that these tuples are
meant to encode the transformation of a formula from CNF to DNF and, as such, not all
possibilities are relevant. More precisely, as shown in [24, Section 3], any ı̄ for which there
exists j ∈ [nk] such that ı̄j 6∈ img(fj) can be discarded.

To apply SP, it is necessary that all the conjunctions on the right-hand side of the
consequent contain the same number of predicate atoms as the left-hand side. This might
not always be the case after applying RD and as many instances of ∧R as possible. Note
that the substitutions from RD which map the subgoal variables yj to the subgoal variables
x1, . . . ,xn ensure that there cannot be fewer predicate atoms on the left-hand side than on
the right-hand side. Otherwise at least two predicate atoms on the right-hand side would
share the same tuple of subgoals xi for some i ∈ [n] and ∧R would be enabled, which
contradicts the assumption that we applied ∧R as many times as possible.

In order to enable the application of SP on sequents that have, on the right-hand side,
conjunctions of fewer predicate atoms than the left-hand side, we introduce a set of universal
predicate rules Su = {〈pku(x1, . . . , xk), {>}〉 | k ≥ 0} and assume that any system S contains
it by default. If there are conjunctions of predicates Q on the right-hand side such that there
exist tuples of subgoal variables xi for which ∃p ∈ Sp . p(xi) ∈ Γ, but ∀q ∈ Sp . q(xi) does

not occur in Q, then we add p
||xi||
u (xi) to Q. This change does not alter the semantics of the

entailment and is done implicitly when applying SP.

Example 2.3.3. Continuing the derivation from Example 2.3.1, we can immediately apply
SP on the antecedent of RD. As shown in [24, Section 3], using properties of the Cartesian
product, an inclusion of the form R1×R2 ⊆ S1×S2 ∪T1×T2 corresponding to this sequent
can be rewritten as

(R1 ⊆ S1 ∪ T1) ∧ (R1 ⊆ S1 ∨R2 ⊆ T2) ∧ (R1 ⊆ T1 ∨R2 ⊆ S2) ∧ (R2 ⊆ S2 ∪ T2)

and, by translating this formula into DNF, we would obtain

(R1 ⊆ S1 ∪ T1) ∧ (R1 ⊆ S1) ∧ (R1 ⊆ T1) ∧ (R2 ⊆ S2 ∪ T2) ∨
(R1 ⊆ S1 ∪ T1) ∧ (R1 ⊆ S1) ∧ (R2 ⊆ S2) ∧ (R2 ⊆ S2 ∪ T2) ∨
(R1 ⊆ S1 ∪ T1) ∧ (R2 ⊆ T2) ∧ (R1 ⊆ T1) ∧ (R2 ⊆ S2 ∪ T2) ∨
(R1 ⊆ S1 ∪ T1) ∧ (R2 ⊆ T2) ∧ (R2 ⊆ S2) ∧ (R2 ⊆ S2 ∪ T2)

SP encodes this transformation for µSH(p1) × µSH(p2) ⊆ µSH(q1) × µSH(q2) ∪ µSH(q2) ×
µSH(q1) as follows. Let Q1 = (q1, q2) and Q2 = (q2, q1) be the tuples of predicates corre-
sponding to the right-hand side. The set of choice functions is F(Q1,Q2) = {f1, f2, f3, f4}:

f1 f2 f3 f4

Q1 1 1 2 2

Q2 1 2 1 2

The set {c1, . . . , c16} of all possible index choice tuples for F(Q1,Q2) is:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

f1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

f2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

f3 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

f4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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The antecedent of RD corresponds to a valid entailment if there exists some i ∈ [16] such
that, if we choose ı̄ = ci, the application of SP with ı̄ leads to a proof. For this example, the
relevant tuples (the ones in which ı̄j ∈ img(fj) for every j ∈ [4]) are c2, c4, c6 and c8. We
choose ı̄ = c4 = (1, 1, 2, 2), generating the following application of SP:

p1(x1), p2(x2) ` q1(x1) ∧ q2(x2), q2(x1) ∧ q1(x2)

p1(x1) ` q1(x1), q2(x1) p1(x1) ` q1(x1) p2(x2) ` q2(x2) p2(x2) ` q2(x2), q1(x2)
sp

At this point, in order to prove the entailment, it is necessary to continue the derivation
and obtain a proof from each branch created by this application of SP. J

AX >
Γ ` ∆

∧
Γ |=I

∨
∆ ID >

Γθ ` ∆′θ
θ is a flat, injective substitution
∆ ⊆ ∆′

.... (RInd)∗ · LU · (RInd)∗

Γ ` ∆

Figure 2.5: Inference rule schemata for closing a valid branch of the proof.

The inference rule schema AX (Figure 2.5) closes the current branch of the proof, if the
sequent from its consequent can be proved using a decision procedure for the underlying
constraint logic, while treating all predicate symbols as uninterpreted function symbols of
boolean sort.

Example 2.3.4. Consider the sequent p1(x1) ` q1(x1), q2(x1) obtained from the application
of SP in Example 2.3.3. We continue the derivation by applying LU to unfold p1(x1) and
RU to unfold q1(x1). In order to arrive at an application of AX, we only look at the branch
generated by LU for the rule 〈p1(x1), {x1≈ a}〉. We obtain the following derivation:

p1(x1) ` q1(x1), q2(x1)

x1 ≈ a ` q1(x1), q2(x1)

x1 ≈ a ` x1 ≈ a,∃y1 . x1 ≈ g(y1) ∧ q1(y1), q2(x1)

LU

RU

Note how x ≈ a appears both on the left- and right-hand sides. Any decision procedure
for FOL that treats q1 and q2 as uninterpreted functions will indicate that x ≈ a |=H

x ≈
a ∨ (∃y1 . x ≈ g(y1) ∧ q1(y1)) ∨ q2(x) holds. Therefore, it is possible to apply AX:

x1 ≈ a ` x1 ≈ a,∃y1 . x1 ≈ g(y1) ∧ q1(y1), q2(x1)

>
AX

Thus, this particular branch of our derivation is closed and, moreover, it represents a valid
branch for the proof we are seeking. J

The inference rules ID (Figure 2.5), short for Infinite Descent, work as follows. A sequent
Γθ ` ∆′θ denotes a valid entailment whenever the pivot Γ ` ∆, encountered earlier in the
proof, is a similar sequent up to the renaming of variables by a flat, injective substitution θ.
The pivot condition (RInd)∗ · LU · (RInd)∗ asks that a rule of type LU is applied somewhere
on the path between the pivot Γ ` ∆ and the consequent Γθ ` ∆′θ in the proof. Rules
of type ID are sound if the inductive system is ranked (Definition 2.4.3), by an application
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of Fermat’s Infinite Descent principle [10]. The soundness of ID is based on the following
argument, proven in more detail in Section 2.5.1.

Consider, by contradiction, that Γ ` ∆ does not denote a valid entailment. From the
soundness of RInd \ {ID}, we show how there exists a counterexample ν ∈ µSI(

∧
Γ) \

µSI(
∨

∆), which can be propagated along the path from the pivot to the consequent of ID,
such that we obtain ν′ ∈ µSI(

∧
Γθ)\µSI(

∨
∆′θ) and ν′ is strictly smaller than ν in a chosen

well-founded ordering. This is due to the requirement that LU must be applied along this
direct path, which, in turn, requires RD to also be applied, guaranteeing a strict decrease in
the multiset image of the counterexample. Since θ is flat, injective and also surjective by con-
struction, its inverse exists and we obtain a counterexample ν′θ−1 for Γ ` ∆, which is strictly
smaller than ν. Then, for any infinite trace along which we can propagate a counterexample,
because such a trace contains infinitely many direct paths (see Proposition 2.2.1) causing a
strict decrease in the counterexample, we obtain an infinite strictly decreasing sequence of
multisets, contradicting the well-foundedness of the chosen order. Thus

∧
Γ |=IS

∨
∆ must

hold and the proof branch can be closed.

Example 2.3.5. Similar to how we proceeded in Example 2.3.4, we consider the sequent
p1(x1) ` q1(x1), q2(x1) and apply LU to unfold p(x) and RU twice to unfold both q1(x) and
q2(x). This time, however, we only look at the branch generated by LU for the predicate
rule 〈p1(x1), {x1≈ g(x11), p1(x11)}〉.

We then apply RD, which checks the following entailments:

x1 ≈ g(x11) |=I x1 ≈ a (2.1)

x1 ≈ g(x11) |=I x1 ≈ b (2.2)

x1 ≈ g(x11) |=I ∃y11 . x1 ≈ g(y11) (2.3)

Entailments (2.1) and (2.2) two do not hold and their respective conjunctions from the
right-hand side are ignored. Entailment (2.3) holds and is witnessed by the substitution
θ = {(y11, x11)}. This entailment corresponds to two conjunctions from the right-hand side,
from which we remove the constraint and the existential quantification, we apply θ, and add
the results to the right-hand side of the next sequent.

p1(x11) ` q1(x11), q2(x11)

x1 ≈ g(x11), p1(x11) ` q1(x1), q2(x1)

x1 ≈ g(x11), p1(x11) ` x1 ≈ a,∃y11 . x1 ≈ g(y) ∧ q1(y11), q2(x1)

x ≈ g(x11), p1(x11)`x1 ≈ a,∃y11 . x1 ≈ g(y11) ∧ q1(y11),
x1 ≈ b, ∃y11 . x ≈ g(y11) ∧ q2(y11)

p1(x11) ` q1(x11), q2(x11)

>

LU

RU

RU

RD

ID

Thus, we obtain p1(x11) ` q1(x11), q2(x11) and we can apply ID using the pivot p1(x1) `
q1(x1), q2(x1) to close this valid branch of our derivation. Note that, by combining Examples
2.3.4 and 2.3.3, we obtain a proof for the sequent p1(x1) ` q1(x1), q2(x1). The other three
sequents obtained from SP in Example 2.3.3 can be proved in a similar manner. J

2.3.2 The Inference Rule Set RSL
Ind for SL Entailments

In order to prove SL entailments, we modify the RInd proof system from Section 2.3.1 such
that the sets on the left-hand sides of sequents are interpreted as separating conjunctions, and
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those on the right-hand sides are interpreted as disjunctions over separating conjunctions.
Thus, we obtain the proof system RSL

Ind = {LU,RUSL,RDSL,∧R,SPSL,AXSL, ID}, where the in-
ference rule schemata RUSL, RDSL, SPSL and AXSL have been modified from their counterparts
in RInd and are depicted in Figures 2.6, 2.7, 2.8 and 2.9.

RUSL

Γ ` {∃yi . ∗Ri(x,yi)}ni=1 ,∆ \ p(x)

Γ ` ∆
p(x) ∈ ∆, y1, . . . ,yn fresh,
p(x)←S R1(x) | . . . | Rn(x)

Figure 2.6: Inference rule schema for right-hand side predicate unfolding in SL.

Applying RUSL (Figure 2.6) to a sequent is similar to applying its RU counterpart. When
p(x) ←S R1(x) | . . . | Rn(x), the singleton predicate atom p(x) on the right-hand side of a
sequent is replaced with a set of formulae obtained by applying the separating conjunction
over each Ri, i ∈ [n], and existentially quantifying the fresh subgoal variables in them.

Example 2.3.6. Consider the inductive system from Example 1.4.2. In order to prove the

entailment ls+ |=SL l̂s
+

, we start a derivation from the sequent ls+(x, y) ` l̂s
+

(x, y). We apply
LU on this sequent to unfold ls+(x, y) and consider only the branch corresponding to the
predicate rule 〈ls+(x, y), {y≈ z2 ∧ x 7→ z1, ls

+(z1, z2)}〉. We obtain:

ls+(x, y) ` l̂s
+

(x, y)

y≈ z2 ∧ x 7→ z1, ls
+(z1, z2) ` l̂s

+
(x, y)

LU

We can further apply RUSL on the resulting sequent and unfold l̂s
+

(x, y):

y≈ z2 ∧ x 7→ z1, ls
+(z1, z2) ` l̂s

+
(x, y)

y≈ z2 ∧ x 7→ z1, ls
+(z1, z2)`∃u1, u2 . y≈u2 ∧ x 7→ u1 ∗ lse(u1, u2),

∃u1, u2 . y≈u2 ∧ x 7→ u1 ∗ lso(u1, u2)
RUSL

Note that, by unfolding, we have introduced the new subgoal variables z1, z2 on the left-
hand side and the new, existentially quantified subgoal variables u1, u2 for each separating
conjunction on the right-hand side. J

RDSL

p1(x1), . . . , pn(xn) ` {Qj(yjθ) | θ ∈ Sj}ij=1

φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃yj . ψj(x,yj) ∗ Qj(yj)}kj=1

where φ |=SL
∧i

j=1 ∃yj . ψj , φ 6|=SL
∨k

j=i+1 ∃yj . ψj , Sj ⊆ VIS(φ, ψj), j ∈ [i]

Figure 2.7: Inference rule schema for reducing constraints in SL.

The inference rules of type RDSL (Figure 2.7) operate similarly to their RD counterparts,
but check the entailments φ |=SL ∃yj . ψj , j ∈ [k] between the left constraint and each of the

right constraints. Here, VIS(φ, ψ) = {θ :
⋃m
j=1 set(yj) → set(x) ∪

⋃n
i=1 set(xi) | φ |=SL ψθ}.

Furthermore, the form of the right-hand sides is changed to accommodate the new interpre-
tation of the sequents and each Qj , j ∈ [n], is a separating conjunction of predicate atoms.

Example 2.3.7. Continuing the derivation from Example 2.3.6, we apply RDSL on the
antecedent of RUSL:
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y≈ z2 ∧ x 7→ z1, ls
+(z1, z2)`∃u1, u2 . y≈u2 ∧ x 7→ u1 ∗ lse(u1, u2),

∃u1, u2 . y≈u2 ∧ x 7→ u1 ∗ lso(u1, u2)

ls+(z1, z2) ` lse(z1, z2), lso(z1, z2)
RDSL

This application of RDSL checks the entailment y≈ z2∧x 7→ z1 |=SL ∃u1∃u2 . y≈u2∧x 7→ u1

for both parts of the right-hand side (since they happen to have the same constraint). The
entailment holds and is witnessed by the substitution θ = (u1, z1), (u2, z2). The constraints
are removed and θ is applied on both separating conjunctions from the right-hand side. J

SPSL

〈pı̄j (xı̄j ) ` {q`ı̄j (xı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}〉n
k

j=1

p1(x1), . . . , pn(xn) ` {Qj(x1, . . . ,xn)}kj=1

where set(xi) ∩ set(xj) = ∅, ∀i, j ∈ [n],

Qj = ∗ni=1 q
j
i (xj), Qj = 〈qj1, . . . , q

j
n〉, ∀j ∈ [k]

F(Q1, . . . ,Qk) = {f1, . . . , fnk}, ı̄ ∈ [n]n
k

Figure 2.8: Inference rule schema for splitting sequents without constraints in SL.

The inference rules of type SPSL (Figure 2.8) and AXSL (Figure 2.9) differ from their RInd

counterparts in the form and interpretation of sequents. The right-hand side for the conse-
quent of SPSL contains separating conjunctions of predicate atoms, while the side condition
of AXSL contains a separating conjunction over the the left-hand side of its consequent.

AXSL
>

Γ ` ∆
∗Γ |=SL

∨
∆

Figure 2.9: Axiom inference rule schema for SL.

Example 2.3.8. Continuing the derivation from Example 2.3.7, note that an application
of SPSL is not needed. We apply LU to unfold ls+(z1, z2) and we separately analyse the two
branches that result for each predicate rule in the definition of ls+.

On the branch obtained by left unfolding ls+(z1, z2) with the predicate rule 〈ls+(z1, z2),
{z1 7→ z2}〉, we can apply RUSL to unfold lso(z1, z2) on the right-hand side. Then we can close
the branch by applying AXSL, because any decision procedure for SL that treats lse as an
uninterpreted function will indicate that z1 7→ z2 |=SL lse(z1, z2) ∨ z1 7→ z2 ∨ ∃u1, u2 . z2≈u2 ∧
z1 7→ u1 ∗ lse(u1, u2) holds.

ls+(z1, z2) ` lse(z1, z2), lso(z1, z2)

z1 7→ z2 ` lse(z1, z2), lso(z1, z2)

z1 7→ z2 ` lse(z1, z2), z1 7→ z2, ∃u1, u2 . z2≈u2 ∧ z1 7→ u1 ∗ lse(u1, u2)

>

LU

RUSL

AXSL

On the branch obtained by left unfolding ls+(z1, z2) with the predicate rule 〈ls+(z1, z2), {y≈
u2∧z1 7→ u1, ls

+(u1, u2)}〉, we apply RUSL twice to unfold both predicate atoms on the right-
hand side, we eliminate the constraints by RDSL and then we can close the branch by ID.
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ls+(z1, z2) ` lse(z1, z2), lso(z1, z2)

z2≈u2 ∧ z1 7→ u1, ls
+(u1, u2) ` lse(z1, z2), lso(z1, z2)

z2≈u2 ∧ z1 7→ u1, ls
+(u1, u2)` z1≈ z2 ∧ emp, ∃v1, v2 . z2≈ v2 ∧ z1 7→ v1 ∗ lso(v1, v2),

lso(z1, z2)

z2≈u2 ∧ z1 7→ u1, ls
+(u1, u2)` z1≈ z2 ∧ emp, ∃v1, v2 . z2≈ v2 ∧ z1 7→ v1 ∗ lso(v1, v2),

z1 7→ z2,∃v1, v2 . z2≈ v2 ∧ z1 7→ v1 ∗ lse(v1, v2)

ls+(u1, u2) ` lso(u1, u2), lse(u1, u2)

>

LU

RUSL

RUSL

RDSL

ID

2.4 Restricting the Set of Constraints

The undecidability results of Theorems 1.4.1 and 1.4.2 indicate that a number of restric-
tions on the constraints of an inductive system are required to ensure the soundness and
completeness of our proof systems. Checking whether a given inductive system respects
the restrictions that we propose is subject to the existence of a decision procedure of the
∃∗∀∗-quantified fragment of the underlying logic, in which the constraints in every predi-
cate rule are expressed. For first-order logic with the canonical interpretation, this problem
is known as disunification and has been shown decidable in [13], with tighter complexity
bounds in [39]. For separation logic, we provide our own decision procedures in Chapter 3.
We only consider SL inductive systems whose constraints are −−∗-free, since the presence of
the separating implication leads to the undecidability of the satisfiability problem for the
∃∗∀∗-quantified fragment (see Section 3.3.1).

2.4.1 Well-quasi-orderings

We introduce the notion of quasi-ordering as it is defined in [31]. It is useful in defining
ranked inductive systems in Section 2.4.3 and necessary for proving certain results related
to derivation and proof trees in Section 2.5. Given a set D, a quasi-ordering or qo is a
relation ≤D ⊆ D ×D that is reflexive (i.e. ∀d ∈ D . d≤D d) and transitive (i.e. ∀d1, d2, d3 ∈
D . d1≤D d2 and d2≤D d3 ⇒ d1≤D d3). An infinite sequence d1, d2, . . . from D is saturating
if it contains an increasing pair di≤D dj for some i < j.

A quasi-ordering ≤D on D is a well-quasi-ordering or wqo if every infinite sequence in D
is saturating. A quasi-ordering ≤D on D is well-founded or a wfqo if and only if there are no
infinite decreasing sequences d1>D d2>D . . . in D, where d1>D d2 ⇔ d2≤D d1 and d1 6= d2.
Every wqo is a wfqo, but not vice versa.

Example 2.4.1. A simple example of wqo is (N,≤), the set of natural numbers together
with the standard number ordering. Note that its integer counterpart, (Z,≤), is not a wqo
because it is not well-founded. On the other hand, (N, |), the set of natural numbers ordered
by the divisibility relation, is a wfqo, but not a wqo, because the prime numbers form an
infinite, non-saturating sequence.

A wfqo that is relevant for our work is (TΣ,v), as defined by the Herbrand interpretation
in Section 1.4.1. Since TΣ consists only of finite trees, it is impossible to build an infinite
strictly decreasing sequence of subtrees, thus making it well-founded. On the other hand,
infinite non-saturating sequences do exist. Consider, for instance, Σs = {σ} and Σf =
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{aσ, fσσ, gσσ}. Then the sequence f(a), f(g(a)), . . . , f(gn(a)), . . . , n ∈ N is infinite and non-
saturating. Therefore (TΣ,v) is not a wqo. J

We extend any qo (D,≤D) to the following order on the set of finite subsets of D. For
all finite sets Y,Z ∈ Pfin(D), we have Y ≤∀∃D Z if and only if for all d ∈ Y there exists d′ ∈ Z
such that d≤D d

′. The following result is a consequence of Higman’s lemma [21].

Lemma 2.4.1. Given a countable set D, if (D,≤D) is a wqo, then (Pfin(D),≤∀∃D ) is also a
wqo.

Proof. Let D∗ be the set of finite sequences of elements from D, where ui denotes the i-th
element of u ∈ D∗ and |u| is the length of u. The subword order ≤sw

D on D∗ is defined as
u≤sw

D v if and only if there exists a strictly increasing mapping f : [|u|] → [|v|] such that
ui = vf(i) for all i ∈ [|u|]. The qo ≤D on D induces the following ordering on the set D∗: for

all u, v ∈ D∗, u≤*
D v if there exists v′≤sw

D v such that |u| = |v′| and ui≤D v
′
i, for all i ∈ [|u|].

We have obtained a set of sequences D∗ over a well-quasi-ordered alphabet D, with the
subsequence relation ≤*

D which allows the replacement of elements with smaller ones in the
well-quasi-ordering ≤D of D. Then, according to Higman’s lemma [21], (D∗,≤*

D) is a wqo.
Because D is countable, there is an indexing of its elements. Then we can uniquely represent
each finite set S ∈ Pfin(D) as a finite word and Pfin(D) as subset of D∗, with the ordering ≤∀∃D
on Pfin(D) being the equivalent of ≤*

D on D∗. Consequently, (Pfin(D),≤∀∃D ) is also a wqo.

A multiset over D is a mapping M : D → N. The multiset M is finite if M(d) > 0 for a
finite number of elements d ∈ D. Given two sets A,B and a function f : A→ B, we define
the multiset f [[A]] : f(A)→ N, where f [[A]](y) = ||{x | x ∈ A, f(x) = y}|| for every y ∈ f(A).

The set of finite multisets over D is M(D). Given two multisets M1,M2 ∈ M(D),
we define the membership and inclusion relations, as well as the union, intersection and
difference operations:

d ∈M1 ⇔ ∃d ∈ D .M1(d) > 0

M1 ⊆M2 ⇔ ∀d ∈ D .M1(d) ≤M2(d)

(M1 ∪M2)(d) = max(M1(d),M2(d)),∀d ∈ D

(M1 ∩M2)(d) = min(M1(d),M2(d)),∀d ∈ D

(M1 \M2)(d) = max(0,M1(d)−M2(d)),∀d ∈ D

The multiset order induced by ≤D is defined as follows: M ≤†DN if and only if either
M = N , or there exists a non-empty finite multiset X ⊆ N and a (possibly empty) multiset
Y , such that ∀y ∈ Y ∃x ∈ X . y <D x and M = (N \X) ∪ Y . In other words, M is obtained
by replacing a non-empty subset of N with a possibly empty multiset of smaller elements.
An equivalent definition is given by Huet and Oppen in [26]: M <†DN if and only if M 6= N
and, for all x ∈ D, M(x) > N(x) ⇒ ∃y ∈ D .x<D y and M(y) < N(y). The following
theorem was proved by Dershowittz and Manna in [15].

Theorem 2.4.2. (M(D),≤†D) is a wfqo if and only if (D,≤D) is a wfqo.

2.4.2 Non-filtering

The non-filtering condition for an inductive system requires that, given any models for the
subgoals of a predicate rule, it be possible to find an all-encompassing model that also satisfies
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the constraint of the rule. This property is important because inductive systems that are
filtering lead, in general, to the undecidability of the entailment problem. Such is the case,
for instance, of tree automata with equality and disequality constraints [12, Theorem 4.2.10].

The Non-filtering Property in FOL

Definition 2.4.1 (Non-filtering in FOL). Given an interpretation I and an FOL inductive
system S, a predicate rule 〈p(x), {φ, q1(x1), . . . , qn(xn)}〉 ∈ S is non-filtering if and only if,
for all i ∈ [n] and vi ∈ µSI(qi), there exists a valuation ν such that ν(xi) = vi and I, ν |= φ.
The inductive system S is non-filtering if and only if each rule in S is non-filtering.

Example 2.4.2. Consider the inductive system in Example 1.4.1. It is easy to see that it
satisfies the non-filtering property. However, if we were to change, for instance, the predicate
rule for p into

p(x)←S x≈ f(x1, x2) ∧ x1≈x2, p1(x1), p2(x2)

then S would become filtering, as all the subgoals models for which the values of x1 and x2

differ would be rejected by the new predicate rule. J

Checking whether a given inductive system in FOL is non-filtering is undecidable, as
shown by the following lemma.

Lemma 2.4.3. The problem “Given an inductive system S with FOL constraints, is S
non-filtering?” is undecidable in the Herbrand interpretation.

Proof. We show the undecidability of the non-filtering problem in FOL by reduction from
the disjointness problem for context-free languages, which is a known undecidable problem
[25, Theorem 9.22 (a)].

As in the proof of Theorem 1.4.1, consider a context-free grammar G = 〈Ξ,Σ,∆〉, where
Ξ is the set of nonterminals, Σ is the alphabet of terminals, ∆ is a set of productions
(X,w) ∈ Ξ× (Ξ∪Σ)∗, and L(G,X) ⊆ Σ∗ denotes the language produced by G starting with
the nonterminal X as axiom. The problem “Given two nonterminals X,Y ∈ Ξ, is it the case
that L(G,X) ∩ L(G, Y ) 6= ∅?” is undecidable.

We can encode G as an inductive system SG, in the same way as done in the proof of
Theorem 1.4.1, each nonterminal Z ∈ Ξ corresponding to a predicate Z(x, y). Then we add
the following predicate rule:

〈P (), {x1≈x2 ∧ y1≈ y2, X(x1, y1), Y (x2, y2)}〉

Then SG is non-filtering if and only if L(G,X) ∩ L(G, Y ) 6= ∅.

This negative result prompts us to adopt a stronger sufficient condition requiring that
∀x1 . . . ∀xn∃x . φ(x,x1, . . . ,xn) holds for each constraint φ ∈ S c. Checking this condition
becomes decidable in the canonical Herbrand interpretation, because each constraint φ is
a conjunction of equalities s≈ t and disequalities ¬(s≈ t) between terms s, t ∈ TΣ(set(x) ∪⋃n
i=1 set(xi)). Establishing the validity of ∀x1 . . . ∀xn∃x . φ(x,x1, . . . ,xn) is equivalent to

checking the unsatisfiability of the equational problem ∃x1 . . . ∃xn∀x .¬φ(x,x1, . . . ,xn).

Because the constraints in S c do not contain disjunctions, ¬φ is a disjunction of equalities
and disequalities, thus it is trivially in conjunctive normal form. By [39, Theorem 5.2], the
satisfiability of formulae ∃y∀x . φ(x,y) in conjunctive normal form is NP-complete. Thus,
our validity problem (and, consequently, the problem of checking the non-filtering property
using this sufficient condition) is in co-NP.
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The Non-filtering Property in SL

Definition 2.4.2 (Non-filtering in SL). Given an SL inductive system S, a predicate rule
〈p(x), {φ, q1(x1), . . . , qn(xn)}〉 ∈ S is non-filtering if and only if, for all i ∈ [n] and (`i, hi) ∈
µSSL(qi), where all hi are pairwise disjoint, there exists a valuation ν and a heap h, disjoint
from

⊎n
i=1 hi, such that ν(xi) = `i and ν, h |=SL φ, for all i ∈ [n]. The inductive system S is

non-filtering if and only if each rule in S is non-filtering.

Example 2.4.3. The inductive system from Example 1.4.2 is non-filtering because there
exists a model ν, h |=SL y≈ y′∧x 7→ x′, such that ν(x′) = `1, ν(y′) = `2 and dom(h)∩dom(h′) =
∅, for each given pair (〈`1, `2〉, h′) in µSSL(ls+), µSSL(lse), or µSSL(lso). Since the set L is
infinite, it is always possible to find a value ν(x) 6∈ dom(h′). J

The non-filtering property is decidable for inductive systems with SL constraints, unlike
the case with FOL constraints under the Herbrand interpretation (Lemma 2.4.3). This is
because it is possible to build an over-approximation of the least solution, that is both
necessary and sufficient to characterize the satisfiability of a quantifier-free SL formula using
predicate atoms [7]. The lemma below establishes the upper bound for the complexity of
deciding whether a given inductive system is non-filtering.

Lemma 2.4.4. The problem “Given an inductive system S with −−∗-free SL constraints, is
S non-filtering?” is in EXPSPACE.

Proof. The abstraction we need is defined as the least fixed point µS] of an operator F]S .
We introduce an abstract assignment Y that maps a predicate pσ1...σn into a set of pairs
(A,E), where A ∈ P([n]) is a set of positions corresponding to allocated arguments and
E ⊆ [n] × [n] is a set of equality constraints. For each model (〈`1, . . . , `n〉 , h) ∈ µSSL(p)
there exists a corresponding pair (A,E) ∈ µS](p) in which A = {i ∈ [n] | `i ∈ dom(h)} and
E = {(i, j) ∈ [n]× [n] | `i = `j}.

Given a quantifier-free SL formula ϕ, we define the following sets:

alloc+(ϕ) = {x ∈ FV(ϕ) | ϕ ∧ ∃z1 . . . ∃zk . x 7→ (z1, . . . , zk) ∗ > is satisfiable}
alloc−(ϕ) =

{
x ∈ FV(ϕ) | ϕ |=SL ∃z1 . . . ∃zk . x 7→ (z1, . . . , zk) ∗ >

}
eq(ϕ) =

{
(x, y) ∈ FV(ϕ)× FV(ϕ) | ϕ |=SL x≈ y

}
Intuitively, alloc+(ϕ) is the set of all variable that may represent allocated locations,

alloc−(ϕ) is the set of all variables that must represent allocated locations and eq(ϕ) is the
equality relation induced by ϕ. Computing these sets can be done in polynomial space for
general, −−∗-free SL formulae, using the decision procedures for quantifier-free and Bernays-
Schoenfinkel-Ramsey SL formulae given in Chapter 3. For symbolic heaps, it can be done in
polynomial time.

Dually, for any set U ⊆ Var and relation V ⊆ Var×Var, we consider the following formulae
that build the corresponding heap and equality constraints:

A(U) = ∗
x∈U
∃z1 . . . ∃zk . x 7→ (z1, . . . , zk)

E(V ) =
∧

(x,y)∈V

x≈ y ∧
∧

(x,y) 6∈V

¬(x≈ y)

For the remainder of this proof, consider a predicate rule R of S, where R = 〈p(x), {φ(x,
y1, . . . ,ym), q1(y1), . . . , qm(ym)}〉, x = 〈x1, . . . , xn〉 and yi = 〈yi1, . . . , yini〉, ∀i ∈ [m]. For
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any relation Rel ⊆ FV(φ) × FV(φ) and tuple P = 〈(A1, E1), . . . , (Am, Em)〉 ∈ µS](q1) ×
. . .× µS](qm), we define:

ωR(P, Rel) ≡ ∗
i∈[m]

A({xj | j ∈ Ai}) ∧E({(yir, yis) | (r, s) ∈ Ei, i ∈ [m]}) ∧E(Rel)

ηR(P, Rel) ≡ ∃y1 . . . ∃ym .
(
φ(x,y1, . . . ,ym) ∗ ωR(P, Rel)

)
We extend the abstract assignment Y to predicate rules and define Y(R) as the set of

pairs (A,E) for which there exists a tuple P ∈ µS](q1) × . . . × µS](qm) and a relation
Rel ⊆ FV(φ)× FV(φ) such that:

A = {i ∈ [n] | xi ∈ All, alloc−(ηR(P, Rel)) ⊆ All ⊆ alloc+(ηR(P, Rel))}

E = {(i, j) ∈ [n]× [n] | (xi, xj) ∈ eq(ηR(P, Rel))}

If ηR(P, Rel) is unsatisfiable, then alloc−(ηR(P, Rel)) = set(x), alloc+(ηR(P, Rel)) = ∅ and
there can be no choice for the set All – thus there exists no corresponding pair (A,E) either.

If p(x) ←S R1 | . . . | Rm are all the predicate rules for p in S, then the abstract

assignment F]S(Y) maps the predicate p to the set F]S(Y)(p) =
⋃m
i=1 Y(Ri). Similarly to FSL

S
and µSSL in Section 1.3.3, the operator F]S is monotone and continuous, with µS] as its least
fixed point.

Considering again the arbitrary predicate rule R ∈ S described above, let P = 〈(A1, E1),
. . . , (Am, Em)〉 ∈ µS](q1) × . . . × µS](qm) be a tuple of pairs and Rel ⊆ FV(φ) × FV(φ)
a relation on variables, such that ωR(P, Rel) is satisfiable. We claim that, if the for-
mula φ ∗ ωR(P, Rel) is satisfiable, then for each tuple of models 〈(`1, h1), . . . , (`m, hm)〉 ∈
µSSL(q1) × . . . × µSSL(qm), there exist a valuation ν and a heap h such that ν, h |=SL φ and
ν,
⊎m
i=1 hi |=

SL ωR(P, Rel), where ν(yi) = `i, ∀i ∈ [m], and dom(h) ∩ (
⋃m
i=1 dom(hi)) = ∅.

The proof idea for this claim is that, because ωR(P, Rel) specifies exactly those variables
which are allocated, as well as those which are not, and the pairs of variables which are equal,
along with the ones which are not, the truth value of φ ∗ ωR(P, Rel) is invariant under the
renaming of the values of set(x) ∪

⋃m
i=1 set(yi), as long as the allocations and equalities are

preserved. Moreover, each tuple of models 〈(`1, h1), . . . , (`m, hm)〉 ∈ µSSL(q1)×. . .×µSSL(qm)
is a model of ωR(P, Rel), for some P = 〈(A1, E1), . . . , (Am, Em)〉 ∈ µS](q1)× . . .× µS](qm)
and Rel ⊆ FV(φ) × FV(φ). Then, for each predicate rule R ∈ S we need to check the
satisfiability of φ ∗ ωR(P, Rel), for each P and Rel for which ωR(P, Rel) is satisfiable.

Since there are finitely many variables in S, for a predicate pσ1...σn ∈ Sp the set of
pairs (A,E) is finite, of cardinality at most 2n+n2

. Then µS](p) can be computed in an
exponential number of steps1, each step requiring polynomial space. These pairs can be
stored in a table that requires 2O(n2) space, indexed by O(n2) bits, where each pair occupies
O(n) bits. Checking the satisfiability of a formula φ ∗ ωR(P, Rel) is possible in polynomial
space.

In conclusion, we can check if a predicate rule in S is non-filtering, by checking the
satisfiability of an exponential number of SL formulae, where each satisfiability check can
be done in polynomial space. Thus, the overall complexity of checking if an SL inductive
system is non-filtering is EXPSPACE.

1See [7, Lemma 4.6] for an analogous construction for inductive systems with symbolic heap constraints.
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2.4.3 Ranked

The ranked condition requires that, in any predicate rule of an inductive system, each value
assigned to a subgoal variable is strictly smaller (with respect to a chosen wfqo) than the
value of some goal variable. This property ensures that the principle of Infinite Descent [10]
can be applied to close a branch of the proof tree.

The Ranked Property in FOL

We fix an interpretation I and assume that (σI ,≤I,σ) is a wfqo, for each σ ∈ Σs. Given a
valuation ν and a set of variables x ⊆ Var, we write [[x]]ν for the multiset [[ν(x) | x ∈ x]]. For

two valuations ν and γ and two multisets [[x]]ν and [[y]]γ , we define an order ≤‡I and a strict

version <‡I such that [[x]]ν ≤
‡
I [[y]]γ and, respectively, [[x]]ν <

‡
I [[y]]γ , if and only if for each

xσ ∈ x there exists yσ ∈ y, of the same sort σ, such that ν(x) ≤I,σ γ(y) and, respectively,

ν(x) <I,σ γ(y). Given a chain [[x1]]ν1 ∼ [[x2]]ν2 ∼ . . . ∼ [[xk]]νk , where ∼ is either ≥‡I or >‡I ,

it easily follows that we have [[x1]]ν1 >
‡
I [[xk]]νk if and only if [[xi]]νi >

‡
I [[xi+1]]νi+1

for at least

some i ∈ [k − 1].

Proposition 2.4.5. Given a signature Σ and an interpretation I, (M(Val), <‡I) is a wfqo
provided that, for each σ ∈ Σs, (σI ,≤I,σ) is a wfqo.

Proof. Consider two valuations ν and γ and two multisets [[x]]ν and [[y]]γ . Then [[x]]ν <
‡
I

[[y]]γ trivially gives us [[x]]ν = ([[y]]γ \ [[y]]γ) ∪ [[x]]ν , where for all a ∈ [[x]]ν there exists

b ∈ [[y]]γ such that a <I,σ b and a, b ∈ σI for some σ ∈ Σs. Therefore, [[x]]ν <†I [[y]]γ ,

where <†I is the Manna-Dershowitz wfqo on multisets (see Theorem 2.4.2). Then an infinite

strictly decreasing sequence in <‡I would imply the existence of an infinite strictly decreasing

sequence in <†I , contradicting [15, Theorem 1].

Definition 2.4.3 (Ranked in FOL). Given an interpretation I and an FOL inductive sys-
tem S, let φ(x,x1, . . . ,xn) be any constraint in S c with goal variables x and subgoal vari-
ables

⋃n
i=1 xi. Then S is ranked if, given any valuation ν such that I, ν |= φ, we have

[[
⋃n
i=1 set(xi)]]ν <

‡
I [[set(x)]]ν .

Example 2.4.4. The inductive system from Example 1.4.1 is ranked. The only constraints
involving subgoal variables are (i) x≈ f(x1, x2) and (ii) x≈ g(x1). For each valuation ν we
have ν(x1)@ ν(x) and ν(x2)@ ν(x), if ν satisfies the constraint (i), and ν(x1)@ ν(x), if ν
satisfies the constraint (ii). J

Lemma 2.4.6. The problem “Given an inductive system S with FOL constraints, is S
ranked in the subtree order (TΣ,v)?” is in co-NP.

Proof. For each constraint φ(x,x1, . . . ,xn) with goal variables x and subgoal variables x1 ∪
. . . ∪ xn, we need to check if the formula

φ ∧ ¬
( ∧
y∈x1∪...∪xn

∨
x∈x

y@x

)
= φ ∧

( ∨
y∈x1∪...∪xn

∧
x∈x

(y≈x ∨ ¬(yvx))

)
(2.4)

is unsatisfiable. The satisfiability of the quantifier-free fragment of FOL with a subterm
relation is an NP-complete problem [49]. Since the size of the formula (2.4) is polynomially
bounded by the number of variables occurring in φ, if follows that the problem of checking
if a given inductive system is ranked is in co-NP.
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The Ranked Property in SL

Since there are no relations other than equality defined on the set of locations L, there does
not exist a natural wfqo on L. Therefore, we consider the following wfqo on heaps. For any
h1, h2 ∈ Heaps, we have h1Eh2 if and only if there exists h ∈ Heaps such that h2 = h1 ] h.
If, moreover, h 6= ∅, then we write h1Ch2.

Definition 2.4.4 (Ranked in SL). Given an SL inductive system S, let 〈p(x), {φ, q1(x1), . . . ,
qn(xn)}〉 be any predicate rule in S. Then S is ranked if, for any pairs (`i, hi) ∈ µS(qi),
i ∈ [n], where h1, . . . , hn are disjoint, there exists (`, h) ∈ µS(p) such that

⊎n
i=1 hiCh.

Note that this property targets only the predicate rules in S that have at least one subgoal
and requires that their constraints do not admit an empty heap model. The constraints of
predicate rules without subgoals, however, are allowed to admit models with empty heaps.

Example 2.4.5. The inductive system from Example 1.4.2 is ranked because each predicate
rule with at least one subgoal has a constraint y≈ y′ ∧ x 7→ x′, which does not admit an
empty heap model. J

Lemma 2.4.7. The problem “Given an inductive system S with SL constraints, is S ranked
in the subheap order (Heaps,E)?” is in PSPACE. When considering symbolic heap con-
straints, the problem is in P.

Proof. Since all SL constraints in an inductive system S are quantifier-free SL formulae, we
can determine if S is ranked by checking the validity of φ |=SL ¬emp, which is equivalent to
checking the satisfiability of φ ∧ emp for each constraint φ belonging to predicate rules with
subgoals. We know that the latter is in PSPACE [11].

The PSPACE bound drops to P for inductive systems with symbolic heap constraints
because a symbolic heap Π ∧ Θ admits an empty heap model if and only if Θ does not
contain any atoms of the form x 7→ (y1, . . . , yk). This check can be performed in polynomial
time, proportional to the number of atoms (or the number of ∗ occurrences) in Θ.

2.4.4 Finite Variable Instantiation

The finite variable instantiation condition requires that, for any two constraints φ and ψ
from an inductive system, having the same goal variables, there exist a finite number of
substitutions θ mapping each group of subgoal variables in ψ to a group of subgoal variables
in φ such that φ entails ψθ. This property guarantees that all constraints can be eliminated
from a proof sequent by instantiating the subgoal variables on the right-hand side using
finitely many substitutions that map them to the subgoal variables from the left-hand side.

The Finite Variable Instantiation Property in FOL

When the constraints φ(x,x1, . . . ,xn) and ψ(x,y1, . . . ,ym) occur in a sequent

φ, p1(x1), . . . , pn(xn) ` ∃y1 . . . ∃ym . ψ ∧ q1(y1) ∧ . . . ∧ qm(ym)

and the entailment φ |=I ∃y1 . . . ∃ym . ψ is valid, we want to continue the derivation with the
sequent

p1(x1), . . . , pn(xn) ` {q1(y1θ) ∧ . . . ∧ qm(ymθ) | θ ∈ S}
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where S is a finite set of substitutions witnessing the entailment, i.e. φ |=I ψθ, for each
θ ∈ S. This elimination of constraints from sequents is generally sound but incomplete. For
instance, the entailment

φ(x,x1, . . . ,xn) |=I ∃y1 . . . ∃ym . ψ(x,y1, . . . ,ym)

is valid if and only if φ(x,x1, . . . ,xn) |=I ψ′(x,x1, . . . ,xn), where ψ′ is obtained from ψ
by replacing each y ∈

⋃m
j=1 set(yj) with a Skolem function symbol fy(x,x1, . . . ,xn) not

occurring in φ or ψ2.

A complete proof rule based on this replacement has to consider every possible interpreta-
tion of these Skolem witnesses. However, in general, this is impossible, because the definitions
of these functions are not bound to any particular form. In order to achieve completeness, we
require that these functions are always flat substitutions defined on the quantified variables⋃m
j=1 set(yj) and ranging over the free variables of the entailment set(x)∪

⋃n
i=1 set(xi). This

condition ensures, moreover, that there are finitely many possible interpretations of these
Skolem witnesses.

Definition 2.4.5 (Finite variable instantiation in FOL). An FOL inductive system S has
the finite instantiation (fi) property if and only if for any two constraints φ(x,x1, . . . ,xn)
and ψ(x,y1, . . . ,ym) from S, with goal variables set(x) and subgoal variables

⋃n
i=1 xi and⋃m

j=1 set(yj), respectively, the set VIS(φ, ψ) = {θ :
⋃m
j=1 set(yj)→ TΣ(set(x)∪

⋃n
i=1 set(xi)) |

φ |=I ψθ} is finite. Moreover, S has the finite variable instantiation (fvi) property if, given
any θ ∈ VIS(φ, ψ), for all j ∈ [m] there exists i ∈ [n] such that set(yj)θ = set(xi).

Note that, whenever an FOL inductive system S has the fvi property, a constraint φ(x)
with no subgoal variables cannot entail a constraint ψ(x,y1, . . . ,ym), where

⋃m
j=1 set(yj) 6=

∅. If this were the case, φ(x) |=I ∃y1 . . . ∃ym . ψ(x,y1, . . . ,ym) would imply that VIS(φ, ψ) 6=
∅. But then each flat substitution θ ∈ VIS(φ, ψ) would have an empty range, which is not
possible.

Example 2.4.6. Consider the inductive system in Example 1.4.1. It can easily be shown
that it has the fvi property. Take, for instance, the constraints φ ≡ x≈ f(x1, x2) and
ψ ≡ x≈ f(y1, y2). The entailment φ |=H ∃y1∃y2 . ψ is witnessed by a single substitution θ
with θ(x1) = y1 and θ(x2) = y2, which means that VIS(φ, ψ) = {θ}. J

The following lemma gives an upper bound for the complexity of checking whether
whether a given FOL inductive system has the fvi property under the canonical Herbrand
interpretation. It is unclear, for now, whether the bound can be tightened, because the exact
complexity of the satisfiability of equational problems is still unknown, in general.

Lemma 2.4.8. The problem “Given an FOL inductive system S, does S have the fvi prop-
erty?” is in NEXPTIME under the Herbrand interpretation. If there exists a constant K > 0,
independent of the input, such that for each constraint φ(x,x1, . . . ,xn) in S, with goal vari-
ables x and subgoal variables

⋃n
i=1 set(xi), respectively, we have ||xi|| ≤ K, then the problem

is in NP.

Proof. An FOL inductive system S has the fvi property if, for any two constraints φ(x,x1, . . . ,
xn) and ψ(x,y1, . . . ,ym) in S c, with goal variables set(x) and subgoal variables

⋃n
i=1 set(xi)

2We assume w.l.o.g. that these function symbols belong to the signature, i.e. fy ∈ Σf .
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and
⋃m
j=1 set(yj), respectively, the following entailment is not valid:

φ(x,x1, . . . ,xn) |=H ∃y1 . . . ∃ym .
(
ψ(x,y1, . . . ,ym) ∧

m∨
j=1

n∧
i=1

¬(xi ∼= yj)

)

where xi ∼= yj is shorthand for
(∧

y∈set(yj)

∨
x∈set(xi)

x≈ y
)
∧
(∧

x∈set(xi)

∨
y∈set(yj)

x≈ y
)

.

This entailment is equivalent to the formula

∀x ∀x1 . . . ∀xn .
(
¬φ(x,x1, . . . ,xn) ∨ ∃y1 . . . ∃ym .

(
ψ(x,y1, . . . ,ym) ∧

m∨
j=1

n∧
i=1

¬(xi ∼= yj)

))
and checking its validity is equivalent to checking the unsatisfiability of the formula

∃x ∃x1 . . . ∃xn .
(
φ(x,x1, . . . ,xn) ∧ ∀y1 . . . ∀ym .

(
¬ψ(x,y1, . . . ,ym) ∨

m∧
j=1

n∨
i=1

xi ∼= yj

))
which, in turn, can be rewritten as

∃x ∃x1 . . . ∃xn ∀y1 . . . ∀ym .
(
φ(x,x1, . . . ,xn) ∧

m∧
j=1

(
¬ψ(x,y1, . . . ,ym) ∨

n∨
i=1

xi ∼= yj

))
This formula is not in conjunctive normal form (CNF) and expanding xi ∼= yj to obtain
the CNF causes an exponential blowup. Since checking the satisfiability of an equational
problem in CNF is NP-complete, the above check can be performed in NEXPTIME. If the
size of each set of subgoal variables is bound to a constant K, independent of the input,
the size of each clause in the CNF expansion of the above formula is bound by a constant.
Since there are at most polynomially many such constants, we can apply [39, Theorem 5.2]
to obtain the NP upper bound.

The Finite Variable Instantiation Property in SL

Definition 2.4.6 (Finite variable instantiation in SL). An SL inductive system S has the
finite instantiation (fi) and finite variable instantiation (fvi) properties under the same con-
ditions as the ones in Definition 2.4.5, where VIS(φ, ψ) = {θ :

⋃m
j=1 set(yj) → set(x) ∪⋃n

i=1 set(xi) | φ |=SL ψθ} for any two constraints φ(x,x1, . . . ,xn) and ψ(x,y1, . . . ,ym) from S,
with goal variables set(x) and subgoal variables

⋃n
i=1 set(xi) and

⋃m
j=1 set(yj), respectively.

Example 2.4.7. The system from Example 1.4.2 has the fvi property, because the entail-
ment y≈ y′ ∧ x 7→ x′ |=SL ∃y′′∃x′′ . y≈ y′′ ∧ x 7→ x′′ is witnessed by a single substitution θ with
θ(x′′) = x′ and θ(y′′) = y′. J

Lemma 2.4.9. The problem “Given an SL inductive system S, does S have the fvi prop-
erty?” is in PSPACE if S has quantifier-free and −−∗-free SL constraints, and in ΣP

2 if S has
symbolic heap constraints.

Proof. Similarly to the proof for Lemma 2.4.8, an SL inductive system S has the fvi property
if, for any two constraints φ(x,x1, . . . ,xn) and ψ(x,y1, . . . ,ym) in S c, with goal variables
set(x) and subgoal variables

⋃n
i=1 set(xi) and

⋃m
j=1 set(yj), respectively, the following en-

tailment is not valid:

φ(x,x1, . . . ,xn) |=SL ∃y1 . . . ∃ym .
(
ψ(x,y1, . . . ,ym) ∧

m∨
j=1

n∧
i=1

¬(xi ∼= yj)

)
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where xi ∼= yj is shorthand for
(∧

y∈set(yj)

∨
x∈set(xi)

x≈ y
)
∧
(∧

x∈set(xi)

∨
y∈set(yj)

x≈ y
)

.

Just as in the proof for Lemma 2.4.8, this entailment is valid only if the following formula is
unsatisfiable:

∃x ∃x1 . . . ∃xn ∀y1 . . . ∀ym .
(
φ(x,x1, . . . ,xn) ∧

m∧
j=1

(
¬ψ(x,y1, . . . ,ym) ∨

n∨
i=1

xi ∼= yj

))

We know that checking the satisfiability for the above formula is in PSPACE when φ and ψ
are quantifier-free and −−∗-free SL formulae (see Section 3.3.1) and, thus, the fvi problem is
in PSPACE. If, however, φ and ψ are symbolic heaps, the initial entailment problem is in ΠP

2

[1, Theorem 6], thus the fvi problem is in ΣP
2 .

2.4.5 Non-overlapping

The non-overlapping condition requires that, if any two constraints from an inductive system
overlap (i.e. have at least one model in common), then one must entail the other. This
property is required for completeness and is also related to the elimination of constraints
from sequents.

The Non-overlapping Property in FOL

Definition 2.4.7 (Non-overlapping in FOL). Given an interpretation I, an FOL inductive
system S is non-overlapping if, for any two constraints φ(x,x1, . . . ,xn) and ψ(x,y1, . . . ,ym)
in S c, with goal variables x and subgoal variables

⋃n
i=1 xi and

⋃m
j=1 yj , respectively, φ ∧ ψ

is satisfiable only if φ |=I ∃y1 . . . ∃ym . ψ.

Note that, for a non-overlapping system, if φ(x,x1, . . . ,xn) ∧ ψ(x,y1, . . . ,ym) is a sat-
isfiable conjunction of constraints, then the formulae ∃x1 . . . ∃xn . φ and ∃y1 . . .ym . ψ are
equivalent.

Example 2.4.8. The FOL inductive system from Example 1.4.1 is non-overlapping. Take,
for instance, the constraints x≈ f(x1, x2) and x≈ f(y1, y2). Then x≈ f(x1, x2)∧x≈ f(y1, y2)
is satisfiable and x≈ f(x1, x2) |=H ∃y1∃y2 . x≈ f(y1, y2) holds. However, if we take the con-
straints x≈ f(x1, x2) and x≈ g(y1), then x≈ f(x1, x2) ∧ x≈ g(y1) is unsatisfiable. J

Lemma 2.4.10. The problem “Given an FOL inductive system S, does S have the non-
overlapping property?” is in NP under the Herbrand interpretation.

Proof. Given an FOL inductive system S, in order to determine if S has the non-overlappig
property, we need to perform two checks for any pairs of constraints φ, ψ ∈ S c with goal
variables x and subgoal variables

⋃n
i=1 xi and

⋃m
j=1 yj , respectively: (i) whether φ∧ψ is sat-

isfiable and (ii) whether φ |=I ∃y1 . . . ∃ym . ψ is valid. Checking the validity of the entailment
in (ii) can be reduced to checking whether the formula ∃x ∃x1 . . . ∃xn ∀y1 . . . ∀ym . φ∧¬ψ is
unsatisfiable.

Under the Herbrand interpretation, since φ and ψ are both conjunctions of literals, φ∧ψ
and φ∧¬ψ are in conjunctive normal form. Then both problems (i) and (ii) are in NP [39],
and thus the non-overlapping problem under the Herbrand interpretation is in NP.
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The Non-overlapping Property in SL

Definition 2.4.8 (Non-overlapping in SL). An SL inductive system S is non-overlapping
under similar conditions as the ones in Definition 2.4.7, where, for any two constraints
φ(x,x1, . . . ,xn) and ψ(x,y1, . . . ,ym) in S c, with goal variables x and subgoal variables⋃n
i=1 xi and

⋃m
j=1 yj , respectively, φ ∧ ψ is satisfiable only if φ |=SL ∃y1 . . . ∃ym . ψ.

Example 2.4.9. The SL inductive system in Example 1.4.2 is non-overlapping. Take, for
instance, the constraints y≈ y′ ∧ x 7→ x′ and y≈ y′′ ∧ x 7→ x′′. It is easy to see that
(y≈ y′ ∧ x 7→ x′) ∧ (y≈ y′′ ∧ x 7→ x′′) is satisfiable and that the entailment y≈ y′ ∧ x 7→
x′ |=SL ∃x′′∃y′′ . y≈ y′′ ∧ x 7→ x′′ holds. J

Lemma 2.4.11. The problem “Given an SL inductive system S, does S have the non-
overlapping property?” is in PSPACE if S has quantifier-free and −−∗-free SL constraints, and
in ΠP

2 if S has symbolic heap constraints.

Proof. Similarly to the FOL case, as shown in the proof of Lemma 2.4.10, given an SL
inductive system S, in order to determine if S has the non-overlapping property, we need to
perform two checks for any pairs of constraints φ, ψ ∈ S c with goal variables x and subgoal
variables

⋃n
i=1 xi and

⋃m
j=1 yj , respectively: (i) φ∧ψ is satisfiable and (ii) φ |=SL ∃y1 . . . ∃ym . ψ

is valid (or, conversely, that ∃x ∃x1 . . . ∃xn ∀y1 . . . ∀ym . φ ∧ ¬ψ is unsatisfiable).

When φ and ψ are quantifier-free and −−∗-free SL formulae, then (ii) is in PSPACE (see
Section 3.3.1) and, thus, the non-overlapping problem is in PSPACE. If, however, φ and ψ
are symbolic heaps, then the satisfiability problem (i) for symbolic heaps is in NP [11] and
the entailment (ii) between existentially quantified symbolic heaps is ΠP

2 -complete [1], thus
the non-overlapping problem is in ΠP

2 .

2.5 Soundness and Completeness

In this section we address the soundness and completeness of the inference rule sets RInd

and RSL

Ind, and show that they are sound for entailments in a ranked inductive system S.
Completeness is guaranteed if, moreover, S is non-filtering, non-overlapping and has the fvi
property. Note that both soundness and completeness are independent of any particular
interpretation and rely only on the restrictions laid out in Section 2.4.

2.5.1 The Soundness and Completeness of RInd

Soundness

We develop our argument for the soundness of RInd by first showing how every inference rule
in RInd \ {ID} is locally sound. To this end, we give the following lemma, which relies on an
important result from [24] and is integral to showing that SP is locally sound.

Lemma 2.5.1. Consider an FOL inductive system S, the predicates p1, . . . , pn ∈ Sp and the
tuples of predicates Qj = 〈qj1, . . . , qjn〉 ∈ (Sp)n, j ∈ [k]. Then

µSI(p1)× . . .× µSI(pn) ⊆
k⋃
j=1

µSI(qj1)× . . .× µSI(qjn)
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if and only if there exists a tuple ı̄ ∈ [n]n
k

, such that

∀j ∈ [nk] . µSI(pı̄j ) ⊆
⋃
{µSI(q`ı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}

where F(Q1, . . . ,Qk) = {f1, . . . , fnk} are the choice functions over (Q1, . . . ,Qk).

Proof. From [24, Theorem 1], it follows that

µSI(p1)× . . .× µSI(pn) ⊆
k⋃
j=1

µSI(qj1)× . . .× µSI(qjn) ⇔
nk∧
j=1

n∨
i=1

(
µSI(pi) ⊆

⋃
{µSI(q`i ) | ` ∈ [k], fj(Q`) = i}

)
⇔∨

ı̄∈[n]nk

nk∧
j=1

(
µSI(pı̄j ) ⊆

⋃
{µSI(q`ı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}

)
The last step describes the translation of the formula from conjunctive normal form to
disjunctive normal form.

The local soundness of RInd\{ID} means that, if the consequent Γ ` ∆ denotes an invalid
entailment, then at least one of its antecedents also denotes an invalid entailment. Moreover,
their respective counterexamples can be related by a wfqo.

Lemma 2.5.2. Given an FOL inductive system S that is ranked in the interpretation I, for
each instance of an inference rule schema in RInd \ {ID}, having the consequent Γ ` ∆ and
antecedents Γi ` ∆i with i ∈ [n], and each valuation ν ∈ µSI(

∧
Γ) \ µSI(

∨
∆), there exists

νi ∈ µSI(
∧

Γi) \ µSI(
∨

∆i) for some i ∈ [n] such that [[FV(Γi)]]νi ≤
‡
I [[FV(Γ)]]ν .

Proof. For AX, soundness follows from the side condition and its consequent admits no
counterexamples, thus the lemma is trivially true in this case. We analyse LU, RU, RD, ∧R
and SP individually, as follows.

(LU) Let p(x) ∈ Γ be a predicate atom, where p(x) ←S R1(x) | . . . | Rn(x). The an-
tecedents of Γ ` ∆ are Γi ` ∆i ≡ Ri(x,yi),Γ\p(x) ` ∆, where i ∈ [n] and each yi is a tuple
of fresh variables. In this case, the least solution of Γ is

µSI
(∧

Γ
)

= µSI
(
p(x) ∧

∧
(Γ \ {p(x)})

)
= µSI(p(x)) ∩ µSI

(∧
(Γ \ {p(x)})

)
=

(
n⋃
i=1

µSI
(∧

Ri(x)
))
∩ µSI

(∧
(Γ \ {p(x)})

)
=

n⋃
i=1

(
µSI

(∧
Ri(x)

)
∩ µSI

(∧
(Γ \ {p(x)})

))
=

n⋃
i=1

µSI
(∧

Ri(x) ∧
∧

(Γ \ {p(x)})
)

If there exists ν ∈ µSI(
∧

Γ)\µSI(
∨

∆), then ν ∈ µSI(
∧
Ri(x)∧

∧
(Γ\{p(x)}))\µSI(

∨
∆)

for some i ∈ [n] and there also exists νi ∈ µSI(
∧
Ri(x,yi) ∧

∧
(Γ \ {p(x)})) \ µSI(

∨
∆)

such that for every x ∈ FV(Γ) we have νi(x) = ν(x). Furthermore, because S is ranked,

[[set(xi)]]νi <
‡
I [[set(x)]]ν . Since FV(Γi) = FV(Γ) ∪ set(xi) and set(x) ⊆ FV(Γ), it follows

that [[FV(Γi)]]νi ≤
‡
I [[FV(Γ)]]ν .
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(RU) Let p(x) ∈ ∆ be a predicate atom, where p(x)←S R1(x) | . . . | Rn(x). Then Γ ` ∆
has only one antecedent Γ1 ` ∆1 ≡ Γ ` ∃y1.

∧
R1(x,y1), . . . ,∃yn.

∧
Rn(x,yn),∆ \ p(x),

where each yi with i ∈ [n] is a tuple of fresh variables. Note that FV(Γ1) = FV(Γ). In this
case, the least solution of ∆ is

µSI
(∨

∆
)

= µSI
(
p(x) ∨

∨
(∆ \ {p(x)})

)
= µSI(p(x)) ∪ µSI

(∨
(∆ \ {p(x)})

)
=

(
n⋃
i=1

µSI
(∧

Ri(x)
))
∪ µSI

(∨
(∆ \ {p(x)})

)
=

(
n⋃
i=1

µSI
(
∃yi.

∧
Ri(x,yi)

))
∪ µSI

(∨
(∆ \ {p(x)})

)
= µSI

(
n∨
i=1

∃yi.
∧
Ri(x,yi)

)
∪ µSI

(∨
(∆ \ {p(x)})

)
= µSI

(
n∨
i=1

∃yi.
∧
Ri(x,yi) ∨

∨
(∆ \ {p(x)})

)
= µSI

(∨
∆1

)

If there exists a valuation ν ∈ µSI (
∧

Γ) \ µSI (
∨

∆), then it is also the case that ν ∈
µSI(

∧
Γ1) \ µSI (

∨
∆1). Therefore, the counterexample for the antecedent is ν1 = ν and

[[FV(Γ1)]]ν1 ≤
‡
I [[FV(Γ)]]ν holds trivially.

(RD) Then the sequent Γ ` ∆ ≡ φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃yj .ψj(x,yj) ∧
Qj(yj)}kj=1 has only one antecedent Γ1 ` ∆1 ≡ p1(x1), . . . , pn(xn) ` {Qjθ | θ ∈ Sj}ij=1. By

the side condition of RD, φ |=I
∧i
j=1 ∃yj .ψj . Also, by Definition 2.4.5, we have µSI(φ) ⊆

µSI(ψjθ) for each θ ∈ VIS(φ, ψj) and j ∈ [i]. In this case, the least solution of ∆ is

µSI
(∨

∆
)

= µSI
 k∨
j=1

∃yj .ψj ∧Qj

 =

k⋃
j=1

µSI
(
∃yj .ψj ∧Qj

)
⊇

i⋃
j=1

µSI
(
∃yj .ψj ∧Qj

)
⊇

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI ((ψj ∧Qj)θ)

=

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI (ψjθ ∧Qjθ) =

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

(
µSI (ψjθ) ∩ µSI(Qjθ)

)
=

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI (ψjθ) ∩
i⋃

j=1

⋃
θ∈VIS(φ,ψj)

µSI(Qjθ)

Note that also µSI(
∧

Γ) = µSI (φ)∩µSI (p1(x1) ∧ . . . ∧ pn(xn)). If there exists a valuation
ν ∈ µSI(

∧
Γ) \ µSI (

∨
∆), then
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ν ∈ µSI
(∧

Γ
)
\

 i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI (ψjθ) ∩
i⋃

j=1

⋃
θ∈VIS(φ,ψj)

µSI(Qjθ)


= µSI

(∧
Γ
)
\

 i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI (ψjθ)

 ∪ µSI(
∧

Γ) \

 i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI(Qjθ)


= ∅ ∪ µSI

(∧
Γ
)
\

 i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI(Qjθ)


⊆ µSI (p1(x1) ∧ . . . ∧ pn(xn)) \

 i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSI(Qjθ)


⊆ µSI (p1(x1) ∧ . . . ∧ pn(xn)) \

 i⋃
j=1

⋃
θ∈Sj

µSI(Qjθ)


= µSI

(∧
Γ1

)
\ µSI

(∨
∆1

)
Therefore, the counterexample for the antecedent is ν1 = ν. Because φ is introduced to the
left-hand side by left unfolding and S is ranked, we have [[set(x1)∪. . .∪set(xn)]]ν <

‡
I [[set(x)]]ν .

Then [[FV(Γ1)]]ν1 <
‡
I [[FV(Γ)]]ν .

(∧R) Let ∆ = {p(x) ∧ q(x) ∧ Q} ∪∆′. Then the antecedents of Γ ` ∆ are Γ1 ` ∆1 ≡ Γ `
p(x) ∧Q,∆′ and Γ2 ` ∆2 ≡ Γ ` q(x) ∧Q,∆′. In this case, the least solution of ∆ is

µSI(
∨

∆) = µSI
(
p(x) ∧ q(x) ∧Q ∨

∨
∆′
)

= µSI
(
p(x) ∧Q ∧ q(x) ∧Q ∨

∨
∆′
)

= µSI (p(x) ∧Q) ∩ µSI (q(x) ∧Q) ∪ µSI
(∨

∆′
)

=
(
µSI(p(x) ∧Q) ∪ µSI

(∨
∆′
))
∩
(
µSI(q(x) ∧Q) ∪ µSI

(∨
∆′
))

= µSI
(
p(x) ∧Q ∨

∨
∆′
)
∩ µSI

(
q(x) ∧Q ∨

∨
∆′
)

= µSI
(∨

∆1

)
∩ µSI

(∨
∆2

)
If there exists a valuation ν ∈ µSI(

∧
Γ)\µSI (

∨
∆), then also ν ∈ µSI(

∧
Γ)\(µSI(

∨
∆1)∩

µSI(
∨

∆2)) = (µSI(
∧

Γ)\µSI(
∨

∆1))∪(µSI(
∧

Γ)\µSI(
∨

∆2)). Therefore, ν ∈ µSI(
∧

Γi)\
µSI(

∨
∆i) for some i ∈ [2] and the counterexample for Γi ` ∆i is νi = ν. Because

Γ = Γ1 = Γ2, we have [[FV(Γi)]]νi ≤
‡
I [[FV(Γ)]]ν .

(SP) Then Γ ` ∆ ≡ p1(x1), . . . , pn(xn) ` {
∧n
i=1 q

j
i (xi)}kj=1. For each ı̄ ∈ [n]n

k

, the

antecedents of Γ ` ∆ are Γı̄j ` ∆ı̄
j ≡ pı̄j (xı̄j ) ` {q`ı̄j (xı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}, j ∈ [nk].

If there exists a valuation ν ∈ µSI (
∧n
i=1 pi(xi)) \ µSI

(∨k
j=1

∧n
i=1 q

j
i (xi)

)
, then by

the proof of Lemma 2.5.1, there exist j ∈ [nk] and counterexamples ν1, . . . , νn such that
νi ∈ µSI(pi(xi)) \

⋃
{µSI(q`i ) | ` ∈ [k], fj(Q`(xi))) = i} and ν(xi) = νi(xi) for all i ∈ [n].
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In other words, for all tuples ı̄ ∈ [n]n
k

we have νı̄j ∈ µSI(pı̄j (xı̄j )) \
⋃
{µSI(q`ı̄j (xı̄j )) |

` ∈ [k], fj(Q`) = ı̄j} = µSI(
∧

Γı̄j) \ µSI(
∨

∆ı̄
j). Therefore, given such j ∈ [nk], the coun-

terexample for each antecedent Γı̄j ` ∆ı̄
j is νı̄j . Since FV(Γı̄j) = set(xı̄j ) ⊆ FV(Γ) and

ν(xı̄j ) = νi(xı̄j ), we have [[FV(Γı̄j)]]νi ≤
‡
I [[FV(Γ)]]ν , for each ı̄ ∈ [n]n

k

.

This result allows us to define a reachability relation between counterexamples and write
νmν′ when, given any instance of an inference rule in RInd \ ID, ν is a counterexample of the
consequent and ν′ is a counterexample of one of its antecedents obtained from ν, as shown
in the proof of Lemma 2.5.2.

Definition 2.5.1 (Counterexample path in FOL). A path π = v1, v2, . . . , vk in a proof
D = (V, v0,Seq,Rule,Par,Piv) built with RInd is a counterexample path if there exists a
sequence of valuations ν1, ν2, . . . , νk such that, for all i ∈ [k]: (i) νi ∈ µSI(

∧
Γi)\µSI(

∨
∆i),

where Seq(vi) = Γi ` ∆i, and (ii) νi m νi+1 if i < k.

The following lemma shows that, if the given FOL inductive system is ranked, any di-
rect counterexample path in a proof causes a strict decrease in the multiset images of the
counterexamples for the pivot and consequent delimiting the path.

Lemma 2.5.3. Given an FOL inductive system S that is ranked in the interpretation I,
let D = (V, v0,Seq,Rule,Par,Piv) be a proof built with RInd and π = v1, . . . , vk be a direct
counterexample path in D for a backlink (vk, v1), with valuations ν1 m . . . m νk. Then

[[FV(Γ1)]]ν1 >
‡
I [[FV(Γk)]]νk , where Seq(vi) = Γi ` ∆i, for all i ∈ [k].

Proof. Since π is a direct path, it follows that ID does not occur in Λ(v1, . . . , vk−1). As
shown in the proof of Lemma 2.5.2, which ensures the local soundness of RInd \ {ID}, we

obtain a sequence of valuations ν1 m . . .m νk such that [[FV(Γ1)]]ν1 ≥
‡
I . . . ≥

‡
I [[FV(Γk)]]νk .

We know that Seq(v1) = Γ1 ` ∆1, Seq(vk) = Γk ` ∆k = Γ1θ ` ∆′1θ with ∆1 ⊆ ∆′1 and
LU occurs in Λ(π), as required by the side condition of the ID instance applied at vk. We
show that RD is also required to occur in Λ(π) by the following analysis on the form of Γ1:

(i) If Γ1 = {p(x)}, then LU is the only inference rule applicable on Γ1 ` ∆1 that changes
Γ1. This required application introduces a constraint on the left-hand side. In order
to reach any sequent that has a constraint-free left-hand side, an application of RD is
also required. To specifically reach Γ1θ ` ∆′1θ with Γ1θ = {p(xθ)}, Λ(π) may contain
additional occurrences of LU and RD, but at least one RD is required;

(ii) If Γ1 = {p1(x1), . . . , pn(xn)} with n > 1, then LU is immediately applicable, but
it would introduce a constraint that cannot be reduced (this requires all arguments
of predicate atoms to be subgoals in the constraint) thus making it impossible to
reach any sequent with only predicate atoms on the left-hand side. Therefore, SP
should be applied before the required LU and, later on, RD is needed to remove the
constraint introduced by LU. In order to specifically reach Γ1θ ` ∆′1θ with Γ1θ =
{p1(x1θ), . . . , pn(xnθ)}, Λ(π) may contain additional occurrences of SP, LU and RD,
but at least one RD is required;

(iii) If Γ1 = {φ, p1(x1), . . . , pn(xn)} with n ≥ 1, then, just as in case (ii), applying LU before
another inference rule that modifies the left-hand side introduces a second constraint
impossible to reduce (this requires a single constraint on the left-hand side), thus
preventing the reaching of any sequent with only one constraint on the left-hand side.
Therefore, RD is necessary to remove φ before applying LU. In order to specifically
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reach Γ1θ ` ∆′1θ with Γ1θ = {φθ, p1(x1θ), . . . , pn(xnθ)}, Λ(π) may contain additional
occurrences of RD, SP and LU, but at least one RD is required;

(iv) If Γ1 = {φ1, . . . , φm} with m ≥ 1, then LU is not applicable on any path starting with
Γ1 ` ∆1 because we cannot create a derivation with RInd that introduces predicate
atoms on the left-hand side;

(v) If Γ1 = {φ1, . . . , φm, p1(x1), . . . , pn(xn)} with m,n > 1, then LU is the only in-
ference rule applicable on Γ1 ` ∆1, and on all of the sequents derived from it,
that modifies the left-hand side. Therefore, it is impossible to reach any sequent
having m constraints on the left-hand side, which includes Γ1θ ` ∆′1θ with Γ1θ =
{φ1θ, . . . , φmθ, p1(x1θ), . . . , pn(xnθ)}, because LU would introduce extra constraints
in any derived sequent that cannot be removed because RD is not applicable.

It follows from cases (i), (ii), (iii), i.e. the ones allowing the existence of the path π with the

necessary LU occurrence in Λ(π), that RD is required to occur in Λ(π). Then [[FV(Γi)]]νi >
‡
I

[[FV(Γi+1)]]νi+1
for some i ∈ [k − 1], which leads to [[FV(Γ1)]]ν1 >

‡
I [[FV(Γk)]]νk .

Through the next lemma, we extend the reachability relation m to backlinks and show
that any infinite trace in a proof leads to an infinite strictly decreasing sequence of multi-
sets associated with counterexamples, contradicting the well-foundedness of the wfqo which
makes the inductive system be ranked (Defintion 2.4.3). Then there cannot exist a coun-
terexample for any sequent labelling the root of a proof built with RInd and the associated
entailment must hold.

Theorem 2.5.4. Given an FOL inductive system S that is ranked in the interpretation I,
if a sequent Γ ` ∆ has a proof D = (V, v0,Seq,Rule,Par,Piv) built with RInd and Seq(v0) ≡
Γ ` ∆, then the entailment

∧
Γ |=IS

∨
∆ holds.

Proof. Suppose, by contradiction, that
∧

Γ |=IS
∨

∆ does not hold, i.e. there exists a valuation
ν0 ∈ µSI(

∧
Γ) \ µSI(

∨
∆). Since v0 is the root of the proof, it is also the consequent of

an instance of Rule(v0) and, by Lemma 2.5.2, an antecedent of this inference rule has a
counterexample ν1, such that ν0 m ν1. Applying this argument iteratively, we build a path
from v0 to a leaf vk ∈ V and a sequence of valuations ν0 m ν1 m . . .m νk.

Since AX inference rules, by their side condition, cannot be applied on sequents that
accept counterexamples, it must be the case that Rule(vk) 6= AX. Since vk is a leaf, then
Rule(vk) = ID and let vk+1 = Piv(vk). Then Seq(vk) = Γk ` ∆k and Seq(vk+1) = Γk+1 `
∆k+1 such that Γk = Γk+1θ, ∆k = ∆′k+1θ and ∆k+1 ⊆ ∆′k+1, for some injective substitution
θ : FV(Γk+1 ∪ ∆k+1) → FV(Γk ∪ ∆k). We can assume w.l.o.g. that θ is surjective, by
defining θ(x) = x for each x ∈ FV(Γk ∪∆k) \ θ(FV(Γk+1 ∪∆k+1)). Since θ is also injective,
by the side condition of ID, its inverse exists and νkθ

−1 is a counterexample for Γk+1 ` ∆k+1.
Therefore, we can extend the relation m with the pair (νk, νkθ

−1).

This argument can be continued ad infinitum and we obtain an infinite trace τ = v0, v1, . . .
in D together with an infinite sequence of valuations ν0 m ν1 m . . .. If Seq(vi) = Γi ` ∆i,

for each i ≥ 0, by Lemma 2.5.2, we have [[FV(Γi)]]νi ≥
‡
I [[FV(Γi+1)]]νi+1

, for all i ≥ 0. By

Proposition 2.2.1, τ contains infinitely many direct paths πj = vkj , . . . , v`j , where {kj}j≥0

and {`j}j≥0 are infinite strictly increasing sequences of integers such that kj < `j ≤ kj+1 <

`j+1, for all j ≥ 0. By Lemma 2.5.3, we obtain that [[FV(Γkj )]]νkj
>‡I [[FV(Γ`j )]]ν`j

, for all

j ≥ 0. Since [[FV(Γ`j )]]ν`j
≥‡I [[FV(Γkj+1

)]]νkj+1
, for all j ≥ 0, we obtain a strictly decreasing
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sequence [[FV(Γk0)]]νk0
>‡I [[FV(Γk1)]]νk1

>‡I . . ., which contradicts that >‡I is a wfqo, by

Proposition 2.4.5. We can conclude that our assumption was false, thus the entailment∧
Γ |=IS

∨
∆ holds.

Completeness

We will show that RInd is complete for entailments between predicates defined by FOL induc-
tive systems that are ranked, non-filtering, non-overlapping and have the fvi property. To
facilitate this proof, we first show some properties of the derivations built using the inference
rules in RInd.

We introduce maximal, irreducible and structured derivations, and use D(Γ ` ∆) for the
set of all derivations built with RInd whose roots are labelled with Γ ` ∆ and that are, at
the same time, maximal, irreducible and structured.

Definition 2.5.2 (Maximal derivation). A derivation using theRInd proof system is maximal
if it cannot be extended by an application of any inference rule from RInd.

Definition 2.5.3 (Irreducible derivation). A derivation D using the RInd proof system is
irreducible if there exists no path in D on which ID is applicable. Otherwise, D is reducible.

Note that the proof-search semi-algorithm 1 from Section 2.2 only produces irreducible
derivations, as it will eagerly try to apply AX and ID before the other inference rules.

Definition 2.5.4 (Structured derivation). A derivation D is structured if, on every path
of D, there exists an application of RD between any two consecutive applications of LU.
Otherwise, D is unstructured.

We are interested in structured derivations because, intuitively, unstructured derivations
constitute poor candidates for proofs. It will always be possible, for instance, to create a
derivation by repeatedly applying LU and no other inference rule. However, this kind of
derivation will only grow the left-hand side without making significant progress towards >
or a counterexample. Note how any subtree of a structured derivation is also structured.

Lemma 2.5.5. If the FOL inductive system S has the fvi property, then the following
properties of derivations built with RInd hold:

(1) Any irreducible and structured derivation is finite;

(2) For any sequent Γ ` ∆, the set D(Γ ` ∆) is finite.

Proof. Given an FOL inductive system S, we introduce the following constants relative to S:

– r# = ||S|| is the number of predicate rules in S;

– p# = ||Sp|| is the number of predicates in the inductive system S;

– s# is the maximum number of subgoals occurring in each predicate rule of S.

Since p# is finite for any inductive system S, there is also a finite number b# of basic
sequents that can be constructed using the predicates in Sp. As there are p# predicates that

can occur on the left-hand side and 2p# − 1 possible non-empty subsets of predicates that

can occur on the right-hand side, it follows that b# = p# ∗ (2p# − 1).
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Let D be a structured derivation starting from the basic sequent p(x) ` q1(x), . . . , qn(x)
and π be a path in D from the root to another basic sequent r(y) ` s1(y), . . . , sm(y), without
containing any other basic sequents. Only LU, RU, ∧R, RD and SP can be applied along π,
otherwise AX and ID would not allow us to reach the second basic sequent. The left-hand
side of the sequents along π allows for

– at most one application of LU, on p(x);

– at most one application of RD, after LU, on the predicate rule that replaces p(x);

– at most one application of SP, after RD and ∧R, if we are left with multiple predicate
atoms on the left-hand side.

The right-hand side of the sequents along π allows for

– n applications of RU, where n is at most p#;

– r# ∗ (s#− 1) applications of ∧R, because there can be at most s#− 1 for every sequent
resulting from RU and reduced by RD, and there can be at most r# predicate rules
that can be used to apply RU.

Thus, any path between two consecutive basic sequents is of length at most b#
π = 3 + p# +

r# ∗ (s# − 1), which is a constant determined by the inductive system S.

Case (1) Let D be an irreducible and structured derivation. Suppose, by contradiction,
that D is not finite. By König’s Lemma, D must have an infinite path. Let π be an arbitrary
infinite path in D. Let ρ be any subsequence of π on which no LU rule has been applied.
The maximum possible length of ρ is reached when the sequence starts with an antedecedent
of LU applied on a basic sequent and it extends until the consequent of the next possible
application of LU, while encountering the next basic sequent and covering the applications
of all possible inference rules before the second LU. The only inference rule applicable on
a basic sequent before LU is RU and it can occur a maximum of p# times. Thus, ρ has a
maximum length of b#

π − 1 + p# and is finite.

Then, for π to be infinite, LU must be applied infinitely often along π. Since D
is structured, RD must also be applied infinitely often. The antecedent of each appli-
cation of RD contains no constraints and each corresponding consequent is of the form
φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` ∆, where the left hand side of such sequents must
have been produced by an application of LU on a sequent of the form p(x) ` ∆. Such se-
quents can only be the antecedents of RD, ∧R or SP, the first two having a single predicate
atom on the left-hand side of their consequent. If p(x) ` ∆ is the antecedent of RD or ∧R,
then ∆ consists of singleton predicate atoms and the sequent is basic, because S has the
fvi property and ∧R is used eagerly after an application of RD to rule out conjunctions of
predicate atoms with the same argument list. This is also the case for SP due to the form
of its antecedents and, moreover, the consequent of SP must have been obtained from an
application of RD, optionally followed by ∧R.

Therefore, between every two consecutive applications of RD there exists a basic sequent
and, for π to be infinite, basic sequents must occur infinitely often along it. Since the number
of basic sequents is bounded by b#, some basic sequent must occur at least twice along π,
which makes ID applicable and contradicts the assumption that D is irreducible. Hence, π
must be finite, and, since it was chosen arbitrarily, D cannot have an infinite path and is a
finite derivation.
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Case (2) Suppose, by contradiction, that D(Γ ` ∆) is infinite. We know from (1) that each
derivation in D(Γ ` ∆) is finite. Let D1, D2, . . . be an infinite sequence of distinct, maximal
derivations from D(Γ ` ∆) obtained by applying more than one inference rule. Such a
sequence exists because there is only a finite number of derivations obtained by applying
only one inference rule. Since there can be at most b# distinct basic sequents and any path
between two consecutive basic sequents is of finite length at most b#

π , then there must exist
a derivation Di in the infinite sequence chosen above that contains a path in which the same
basic sequent appears at least twice. But then this means that Di is reducible and, thus,
that Di 6∈ D(Γ ` ∆), which contradicts our assumption.

Definition 2.5.5 (Tree-shaped set). A set F = {φ1, . . . , φm, p1(x1), . . . , pn(xn)}, where
φ1, . . . , φm are constraints and p1(x1), . . . pn(xn) are predicate atoms, is tree-shaped if there
exist trees t1, . . . , tk such that:

1. Each node labelled with a constraint φi(y,y1, . . . ,yh) in some tree t`, ` ∈ [k] has
exactly h children and, for all j ∈ [h], the j-th child is labelled either with (i) a
constraint whose goal variables are yj , or (ii) a predicate atom q(yj), q ∈ {p1, . . . , pn}.

2. A predicate atom pi(xi), i ∈ [n] may occur only on the frontier of a tree tj , j ∈ [k].

If k = 1, then F is called singly-tree shaped.

Because tree-shaped sets can be uniquely represented as trees labelled with formulae,
we use sets of trees and sets of formulae interchangeably. We write Γ ` ∆  Γ′ ` ∆′

whenever Γ′ ` ∆′ labels a node in a derivation from D(Γ ` ∆). The following lemma shows
an invariant on the shape of the sequents in any derivation that starts with a basic sequent.

Lemma 2.5.6. Given an FOL inductive system S and predicates p, q1, . . . , qn ∈ Sp, in every
sequent Γ ` ∆ such that p(x) ` q1(x), . . . , qn(x)  Γ ` ∆, Γ is a tree-shaped set and ∆
consists of finite conjunctions over tree-shaped sets, with all subgoal variables existentially
quantified.

Proof. We prove this lemma by induction on the length of the path p(x) ` q1(x), . . . , qn(x) =
Γ1 ` ∆1, . . . ,ΓN ` ∆N = Γ ` ∆ from the derivation in which Γ ` ∆ occurs. Let T (N) mean
“ΓN is a tree-shaped set and ∆N consists of finite conjunctions over tree-shaped sets, with
all subgoal variables existentially quantified”.

Base case. We consider the case where N = 1. Then Γ1 = {p(x)} is trivially tree-shaped
and ∆1 = {q1(x), . . . , qn(x)} trivially consists of singleton conjunctions over the tree-shaped
sets {q1(x)}, . . . , {qn(x)}, therefore T (1) holds.

Inductive case. Assuming that T (N − 1) holds, we prove that T (N) also holds by doing
a case split on the type of the last inference rule applied on the path.

– (LU) In this case, ∆N = ∆N−1. Based the induction hypothesis, ΓN−1 is tree-
shaped and there exists a tree t associated with ΓN−1 such that t(α) = r(y), for some
frontier position α ∈ fr(t) and predicate atom r(y). Then there exists a predicate
rule 〈r(y), R(y)〉 ∈ S such that ΓN = R(y,y′) ∪ ΓN−1 \ {r(y)}, where R(y,y′) =
φ(y,y1, . . . ,ym), s1(y1), . . . , sm(ym), and t[α] ◦ τm(R(y,y′)) replaces t in the set of
trees that represents ΓN . Therefore, T (N) holds.
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– (RU) In this case, ΓN = ΓN−1. Based the induction hypothesis, there exists
r(y) ∈ ∆N−1 and a tree consisting of a single node labelled with r(y). This tree
is replaced in ∆N by trees t1, . . . , tm corresponding to conjunctions over the tree-
shaped sets R1(y, z1), . . . , Rm(y, zm) with existentially quantified subgoal variables,
where r(y)←S R1(y) | . . . | Rm(y). Thus, T (N) holds.

– (RD) Any antecedent of an RD application is of the form

ΓN ` ∆N ≡ r1(y1), . . . , rm(ym) ` {sj1(zj1) ∧ . . . ∧ sj`j (z
j
`j

)}kj=1

Therefore, T (N) trivially holds.

– (∧R) In this case, ΓN = ΓN−1. Based on the inductive hypothesis, ∆N contains all
the elements of ∆N−1, except for one whose corresponding tree has lost a leaf consisting
of a predicate atom. Therefore, T (N) holds.

– (SP) Any antecedent of an SP application is of the form

ΓN ` ∆N ≡ r(y) ` s1(y), . . . , sm(y)

Therefore, T (N) trivially holds.

Since T (1) holds and T (N − 1) implies T (N) for any N > 1, we can conclude that T (N)
holds for any N ≥ 1.

The following lemma is crucial for establishing the completeness of RInd. It provides an
invariant on the set of derivations for a sequent that denotes an invalid entailment and proves
that they indicate the existence of a counterexample.

Lemma 2.5.7. Given an interpretation I, a non-filtering and non-overlapping FOL inductive
system S with the fvi property, the predicates p, q1, . . . , qn ∈ Sp, and a sequent Γ ` ∆ such
that p(x) ` q1(x), . . . , qn(x)  Γ ` ∆, if every derivation D ∈ D(Γ ` ∆) contains a leaf
Γ′ ` ∅ then there exists a valuation ν ∈ µSI(

∧
Γ) \ µSI(

∨
∆).

Proof. Let D∗(Γ ` ∆) = {d | d ∈ D(Γ ` ∆) or ∃d′ ∈ D∗(Γ ` ∆) . d@ d′}. Because, by
Lemma 2.5.5, any derivation in D(Γ ` ∆) is finite and D(Γ ` ∆) itself is finite, then D∗(Γ `
∆) is also finite. Since (D∗(Γ ` ∆),v) is a wqo, by Lemma 2.4.1 (Pfin(D∗(Γ ` ∆)),v∀∃) is
also a wqo and we can prove this lemma by induction on it.

Let D(Γ ` ∆) =
⋃

IR∈RInd
DIR(Γ ` ∆), where DIR(Γ ` ∆) denotes the subset of D(Γ ` ∆)

consisting of derivations starting with an instance of the inference rule IR. We do not consider
the cases IR ∈ {AX, ID} because these inference rules do not lead to a leaf of the required
form. Given D ∈ DIR(Γ ` ∆) with IR ∈ RInd\{AX, ID}, we assume that, for each antecedent
Γ′ ` ∆′ of Γ ` ∆, the lemma holds for any D′ ∈

⋃
IR′∈RInd

DIR′(Γ′ ` ∆′) and show that it
extends to D.

(LU) Let r(y) ∈ Γ be the predicate atom chosen for replacement and r(y)←S R1(y) | . . . |
Rm(y). Then R1(y,y1),Γ \ r(y) ` ∆, . . . , Rm(y,ym),Γ \ r(y) ` ∆ are the antecedents for
the application of IR = LU on Γ ` ∆, for some fresh tuples of variables y1, . . . ,ym.

The right-hand side of any antecedent is ∅ only if ∆ was already ∅. Because p(x) `
q1(x), . . . , qn(x) Γ ` ∆, S is non-filtering, every constraint in S c is satisfiable, and there are
no predicates with empty least solutions, it follows that µSI(

∧
Γ) is not empty. Therefore,

there exists a counterexample ν ∈ µSI(
∧

Γ) \ µSI(
∨

∆) = µSI(
∧

Γ).



70 Chapter 2. Proof Systems for Entailments

If ∆ 6= ∅, suppose that, for each i ∈ [m], there exists Di ∈ D(Ri(y,yi),Γ \ r(y) ` ∆) not
containing any leaf Γ′ ` ∅. Then we can choose these derivations and create one for Γ ` ∆
with the same property, which contradicts the hypothesis of the lemma. Therefore, for some
i ∈ [m] every derivation in D(Ri(y,yi),Γ \ r(y) ` ∆) must contain a leaf Γ′ ` ∅.

By the induction hypothesis, there exists ν ∈ µSI(
∧

(Ri(y,yi)∪Γ\{r(y)}))\µSI(
∨

∆).
Then it is also the case that ν ∈ µSI(

∧
Γ) \ µSI(

∨
∆), because

µSI
(∧

(Ri(y,yi) ∪ Γ \ {r(y)})
)

= µSI
(∧

Ri(y,yi)
)
∩ µSI

(∧
(Γ \ {r(y)})

)
⊆ µSI

(∧
(r(y)

)
∩ µSI

(∧
(Γ \ {r(y)})

)
⊆ µSI

(∧
(r(y) ∧

∧
(Γ \ {r(y)})

)
⊆ µSI

(∧
(r(y) ∪ Γ \ {r(y)})

)
= µSI

(∧
Γ
)

(RU) Let r(y) ∈ ∆ be the predicate atom chosen for replacement and r(y) ←S R1(y) |
. . . | Rm(y). Then Γ ` ∃z1.

∧
R1(y, z1), . . . ,∃zm.

∧
Rm(y, zm),∆ \ r(y) is the antecedent

for the application of IR = RU on Γ ` ∆. Note that, because RU is applicable, ∆ 6= ∅. Also,
the right-hand side of the antecedent cannot be ∅ because all predicates in Sp must be goals
for at least one predicate rule of S.

Suppose that there exists D ∈ D(Γ ` ∃z1.
∧
R1(y, z1), . . . ,∃zm.

∧
Rm(y, zm),∆ \ r(y))

not containing any leaf Γ′ ` ∅. Then we can choose D and create a derivation for Γ ` ∆
with the same property, which contradicts the hypothesis of the lemma. Therefore, it must
be the case that every derivation in D(Γ ` ∃z1.

∧
R1(y, z1), . . . ,∃zm.

∧
Rm(y, zm),∆\ r(y))

contains a leaf Γ′ ` ∅.
By the induction hypothesis, there exists ν ∈ µSI(

∧
Γ) \ µSI(

∨m
i=1 ∃zi.

∧
Ri ∨

∨
(∆ \

{r(y)})). Then it is also the case that ν ∈ µSI(
∧

Γ) \ µSI(
∨

∆), because µSI(
∨

∆) =
µSI(

∨m
i=1 ∃zi.

∧
Ri(y, zi) ∨

∨
(∆ \ {r(y)})), as previously shown in the (RU) case of the

proof for Theorem 2.5.2.

(RD) Let Γ = {φ(y,y1, . . . ,ym), r1(y1), . . . , rm(ym)} and ∆ = {∃z1.ψ1(y, z1)∧Q1(z1), . . . ,
∃zk.ψk(y, zk) ∧ Qk(zk)}, where Q1, . . . ,Qk are conjunctions of predicate atoms. Also, let
Sj = VIS(φ, ψj), for all j ∈ [k]. Each Sj is finite because S has the fvi property.

If m = 0, then Γ contains no predicate atoms. Since p(x) ` q1(x), . . . , qn(x)  Γ ` ∆,
then, by Lemma 2.5.6, Γ is tree-shaped, meaning that Γ = {φ(y)} and φ has no subgoal
variables. We distinguish the following cases:

– If k = 0, then ∆ = ∅. Since φ ∈ S c, it must be satisfiable. Thus any valuation ν such
that I, ν |= φ contradicts the entailment φ(y) |=I ⊥. Such a valuation exists because
all constraints in S c are satisfiable.

– If k > 0, then φ(y) 6|=I ∃zj .ψj(y, zj) for each j ∈ [k], because S has the fvi property.
As in the previous case, any model of φ contradicts the entailment and such a model
exists because φ is satisfiable.

If m > 0, then r1(y1), . . . , rm(ym) ` {Qjθ | θ ∈ Sj}ij=1 is the antecedent for the ap-

plication of IR = RD on Γ ` ∆, where, by the side condition, φ |=I
∧i
j=1 ∃zj .ψj and

φ 6|=I
∨k
j=i+1 ∃zj .ψj (with a possible reordering of ∆). If k = 0, because S is non-
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filtering, y1, . . . ,ym are distinct and there are no predicates in Sp with empty least so-
lutions, it follows that µSI(

∧
Γ) is not empty. Therefore there exists a counterexample

ν ∈ µSI(
∧

Γ) \ µSI(
∨

∆) = µSI(
∧

Γ). Similarly, if i = 0, we have that µSI(r1(y1) ∧
. . . ∧ rm(ym)) is not empty and it contains counterexamples for the antecedent. Given

ν ∈ µSI(r1(y1) ∧ . . . ∧ rm(ym)), because the system is non-filtering, there exists v ∈ Val||y||

such that I, ν′ |=φ and ν′ = ν[y ← v]. Because, by the side condition of RD and the
fact that S is non-overlapping, we have that I, ν′ 6|=∃zj .ψj for any j ∈ [k], we obtain
ν′ 6∈ µSI(∃zj .ψj ∧Qj(zj)),∀j ∈ [k], thus ν′ ∈ µSI(

∧
Γ) \ µSI(

∨
∆).

If both k > 0 and i > 0, suppose that there exists D ∈ D(r1(y1), . . . , rm(ym) ` {Qjθ |
θ ∈ Sj}ij=1) not containing any leaf Γ′ ` ∅. Then we can choose D and create a derivation for
Γ ` ∆ with the same property, which contradicts the hypothesis of the lemma. Therefore,
it must be the case that every derivation in D(r1(y1), . . . , rm(ym) ` {Qjθ | θ ∈ Sj}ij=1

contains a leaf Γ′ ` ∅.
By the induction hypothesis, there exists a valuation ν ∈ µSI (r1(y1) ∧ . . . ∧ rm(ym)) \

µSI
(∨i

j=1{Qjθ | θ ∈ Sj}
)

, and also ν ∈ µSI (r1(y1) ∧ . . . ∧ rm(ym)) \ µSI(Qjθ) for every

j ∈ [i] and θ ∈ Sj . Because S is non-filtering, there exists v ∈ Val||y|| such that I, ν′ |=φ and
ν′ = ν[y← v]. This means that ν′ ∈ µSI(

∧
Γ). Note that the only free variables occurring

in the antecedent are
⋃m
j=1 yj . Then it is also true that ν′ ∈ µSI (r1(y1) ∧ . . . ∧ rm(ym)) \

µSI(Qjθ), for every j ∈ [i] and θ ∈ Sj . Furthermore, because S is non-overlapping and
φ 6|=I ∃zj .ψj for all j ∈ [i + 1, k], it follows that φ ∧ ∃zj .ψj is unsatisfiable, hence ν′ is
also a counterexample for each entailment φ |=I ∃zj .ψj with j ∈ [i+ 1, k], and thus for the

entailment φ |=I
∨k
j=i+1 ∃zj .ψj .

Suppose that ν′ is a model of ∃zj .ψj(y, zj) ∧ Qj(zj) for some j ∈ [k]. Then we get
I, ν′ |= ∃zj .ψj(y, zj) and, because S is non-overlapping, we have that φ |=I ∃zj .ψj . It follows
that i 6∈ [i + 1, k], otherwise it would contradict the side condition φ 6|=I ∃zi+1.ψi+1 ∨ . . . ∨
∃zk.ψk. Therefore, j ∈ [i] and, since S has the fvi property, I, ν′ |=ψjθ for all θ ∈ Sj .
Moreover, there is no other Skolem function that witnesses this, besides the ones in Sj .
Then also ν′ ∈ µSI(Qjθ) for all θ ∈ Sj and only for these substitutions. Because the range
of each θ ∈ Sj is y1 ∪ . . . ∪ ym, it must be the case that ν ∈ µSI(Qjθ) for all θ ∈ Sj , which
contradicts the fact that ν is a counterexample of the antecedent. It follows that ν′ cannot
be a model of ∃zj .ψj(y, zj) ∧ Qj(zj) for any j ∈ [k] and ν′ ∈ µSI(

∧
Γ) \ µSI(

∨
∆), as

required.

(∧R) Let ∆ = r(y) ∧ s(y) ∧ Q,∆′. Then Γ ` r(y) ∧ Q,∆′ and Γ ` s(y) ∧ Q,∆′ are the
antecedents for the application of IR = ∧R on Γ ` ∆. Note that, because ∧R is applicable,
∆ 6= ∅. Also, the right-hand side of the antecedents cannot be ∅ either.

Suppose that there exist D1 ∈ D(Γ ` r(y) ∧ Q,∆′) and D2 ∈ D(Γ ` s(y) ∧ Q,∆′) not
containing any leaf Γ′ ` ∅. Then we can choose D1 and D2 and create a derivation for Γ ` ∆
with the same property, which contradicts the hypothesis of the lemma. Therefore, it must
be the case that every derivation in D(Γ ` r(y) ∧ Q,∆′) or D(Γ ` s(y) ∧ Q,∆′) contains a
leaf Γ′ ` ∅.

µSI
(
r(y) ∧Q ∨

∨
∆′
)

= µSI (r(y)) ∩ µSI
(
Q∨

∨
∆′
)

⊇ µSI (r(y)) ∩ µSI (s(y)) ∩ µSI
(
Q∨

∨
∆′
)

= µSI
(
r(y) ∧ s(y) ∧Q ∨

∨
∆′
)

= µSI(
∨

∆)



72 Chapter 2. Proof Systems for Entailments

If every derivation in D(Γ ` r(y) ∧ Q,∆′) contains a leaf Γ′ ` ∅, by the induction
hypothesis there exists ν1 ∈ µSI (

∧
Γ)\µSI (r(y) ∧Q ∨

∨
∆′). Then it is also the case that

ν1 ∈ µSI(
∧

Γ) \ µSI(
∨

∆), because of the inclusion above.

Similarly, if every derivation in D(Γ ` s(y) ∧ Q,∆′) contains a leaf Γ′ ` ∅, by the
induction hypothesis there exists ν2 ∈ µSI (

∧
Γ) \ µSI (s(y) ∧Q ∨

∨
∆′) and also ν2 ∈

µSI(
∧

Γ) \ µSI(
∨

∆).

(SP) Let Γ = {r1(y1), . . . , rm(ym)} and ∆ = {
∧m
i=1 s

j
i (yi)}kj=1. Then, for a given ı̄ ∈

[m]m
k

, the antecedents for the application of IR = SP are rı̄j (yı̄j ) ` {s
`
ı̄j (yı̄j ) | ` ∈

[k], fj(Q`) = ı̄j}, for every j ∈ [mk].

The right-hand side of any antecedent is ∅ only if ∆ was already ∅, meaning k = 0.
Because y1, . . . ,ym are distinct and there are no predicates in Sp with empty least so-
lutions, it follows that µSI(

∧
Γ) is not empty. Therefore, there exists a counterexample

ν ∈ µSI(
∧

Γ) \ µSI(
∨

∆) = µSI(
∧

Γ).

If ∆ 6= ∅, suppose that there exists ı̄ ∈ [m]m
k

and Dj ∈ D(rı̄j (yı̄j ) ` {s
`
ı̄j (yı̄j ) | ` ∈

[k], fj(Q`) = ı̄j}) not containing any leaf Γ′ ` ∅, for every j ∈ [mk]. Then we can choose
these derivations and create one for Γ ` ∆ with the same property, which contradicts the

hypothesis of the lemma. Therefore, it must be the case that, for any ı̄ ∈ [m]m
k

there exists
j ∈ [mk] such that every derivation in D(rı̄j (yı̄j ) ` {s

`
ı̄j (yı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}) contains

a leaf Γ′ ` ∅.
By the induction hypothesis, for any ı̄ ∈ [n]n

k

there exist j ∈ [nk] and a valuation

νj ∈ µSI(rı̄j (yı̄j )) \ µS
I
(∨
{s`ı̄j (yı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}

)
. Because this is equivalent to

µSI(rı̄j ) 6⊆ µSI
(∨
{s`ı̄j | ` ∈ [k], fj(Q`) = ı̄j}

)
, it follows by Lemma 2.5.1 that µSI(r1) ×

. . . × µSI(rm) 6⊆
⋃k
j=1 µSI(qj1) × . . . × µSI(qjm). This is equivalent to µSI(r1(y1) ∧ . . . ∧

rm(ym)) 6⊆ µSI(
∨k
j=1

∧n
i=1 q

j
i (yi)), as previously shown in the (SP) case of the proof for

Theorem 2.5.4. Then, there must exist ν ∈ µSI(
∧

Γ) \ µSI(
∨

∆).

The following theorem establishes the completeness of the inference rule set RInd, while
also providing a proof search strategy S.

Theorem 2.5.8. Given an non-filtering, non-overlapping FOL inductive system S with the
fvi property, which is also ranked in the interpretation I, let p, q1, . . . , qn ∈ Sp. Then
the entailment p |=IS q1, . . . , qn holds only if the sequent p(x) ` q1(x), . . . , qn(x) has an S-
proof with the inference rule schemata RInd, where S is defined by the regular expression
(LU · RU∗ · RD · ∧R∗ · SP?)∗ · LU? · RU∗ · (AX | ID).

Proof. Since p |=IS q1, . . . , qn and S is non-filtering, non-overlapping, and has the fvi property,
it follows by Lemma 2.5.7 that there exists a finite maximal, structured and irreducible
derivation D ∈ D(p(x) ` q1(x), . . . , qn(x)) which does not contain any leaf of the form
Γ ` ∅. Furthermore, no other node in D is of the form Γ ` ∅, because all descendants of
such a node (including leaves of the derivation) would have empty right-hand sides as well.

Step 1. We first show that this derivation is actually a proof (i.e. all its leaves are >).
Suppose, by contradiction, that there exists a leaf which is not >. Then this leaf must be a
sequent Γ ` ∆, where ∆ 6= ∅. Let π be the path in D from the root to Γ ` ∆. Since D is
a maximal derivation, π cannot be extended any further by the application of an inference
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rule. Let IR be the last inference rule schema applied on π and let Γ′ ` ∆′ be its consequent.
Since p(x) ` q1(x), . . . , qn(x) Γ′ ` ∆′, it follows by Lemma 2.5.6 that Γ′ is a tree-shaped
set and ∆′ consists of existentially quantified finite conjunctions of tree-shaped sets. Also,
IR cannot be AX or ID, otherwise the leaf would be >. We do a case split on IR.

(LU) Then Γ = R(y,y′)∪Γ′\{r(y)} and ∆ = ∆′, where 〈r(y), R(y)〉 ∈ S. If ∆ contains at
least one singleton predicate atom, we can still apply RU, which contradicts the fact that D
is maximal. Otherwise, because ∆ 6= ∅ consists of existentially quantified finite conjunctions
of tree-shaped sets and it does not contain any singleton predicate atoms, then ∆ contains
only existentially quantified conjunctions over predicate rules from S, obtained from previous
applications of RU, or predicate atom conjunctions that are not singleton, obtained from
previous applications of RD. We distinguish the following cases:

– Γ′ \ {r(y)} = ∅. Then we can apply RD to the sequent Γ ` ∆ and extend D, which
leads to a contradiction.

– Γ′\{r(y)} 6= ∅. In this case, IR cannot be the first occurrence of LU along π, otherwise
we would have Γ′ \ {r(y)} = ∅. Then there must have been a previous application of
LU on π, and, because D is structured, RD must have been applied between them.
Therefore, since Γ′ is tree-shaped, Γ′\{r(y)} can only contain predicate atoms, because
the constraints introduced by LU are always eliminated by RD. Then we can apply
LU and extend D, which leads to a contradiction.

(RU) Then Γ = Γ′ and ∆ = {∃zi.
∧
Ri(y, zi)}mi=1 ∪ ∆′ \ {r(y)}, where r(y) ←S R1(y) |

. . . | Rm(y). If ∆′ \{p(x)} contains at least one singleton predicate atom, we can continue to
apply RU and extend D, which leads to a contradiction. Otherwise, because ∆′ 6= ∅ consists
of existentially quantified finite conjunctions of tree-shaped sets and it does not contain
any singleton predicate atoms, then it must be the case that ∆′ contains only existentially
quantified conjunctions over predicate rules from S, obtained from previous applications
of RU, or conjunctions of predicate atoms that are not singleton, obtained from previous
applications of RD. We distinguish the following cases for Γ:

– Γ contains a predicate atom. Then we can apply LU and extend D, which leads to a
contradiction.

– Γ does not contain predicate atoms. Then it can only contain a constraint with no
subgoal variables, because Γ is tree-shaped and D is structured. Therefore, we can
apply RD and extend D, which leads to a contradiction.

(RD) Then Γ = {r1(y1), . . . , rm(ym)} and ∆ = {Q1, . . . ,Qi}, where each Qj , j ∈ [i] is
a conjunction of predicate atoms. It is possible to apply LU – or even ∧R, RU or SP if
their side conditions are satisfied. This means that π can still be extended, which leads to a
contradiction.

(∧R) Then Γ = Γ′ and ∆ = {r(y)∧Q}∪∆′′, where Q is a conjunction of predicate atoms
and ∆′′ only contains conjunctions of predicate atoms. Since we only apply (∧R) as cleanup
after RD, Γ only contains predicate atoms. If r(y)∧Q or any member of ∆′′ contains some
conjunction s1(z)∧ s2(z) we can again apply ∧R. Otherwise, we can apply LU – or even RU
or SP if their side conditions are satisfied. This means that π can still be extended, which
leads to a contradiction.
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(SP) Then Γ = r(y) and ∆ = {s1(y), . . . , sm(y)}. We can apply LU or RU to Γ ` ∆,
which means that π can still be extended and leads to a contradiction.

Step 2. We now show that the sequences of inference rules applied along each branch in
D are captured by the strategy S. Let π be an arbitrary branch in D, starting at the root.
Since D is maximal, π cannot be extended by the application of any inference rule. We
assume that the first instance of LU along π does not immediately follow an application of
RU — otherwise, the same sequent can be obtained by changing the order of the inference
rules such that LU is applied first. We do a proof by induction on the number N ≥ 1 of
basic sequents that occur on π.

(N = 1) The only basic sequent is the root p(x) ` q1(x), . . . , qn(x) and it occurs on the
first position of π. In this case, SP is never applied along π, otherwise we would obtain more
than one basic sequent. Note that the rules applicable on a basic sequent are AX, LU and
RU. We distinguish the following cases:

– If LU is not applied on π, then the only possibility to obtain a maximal π is to directly
apply AX on the root. Since we exclude LU, the only other applicable inference rule
would be RU, but, since it preserves the left-hand side, π would not be maximal after
all possible applications of RU. Therefore, Λ(π) = AX ∈ S.

– If LU is applied on π, then there are multiple possibilities for Λ(π), which we obtain
from analysing the sequents created by each potential choice of inference rules.

– Since AX would close the path and we assumed that RU does not immediately
precede LU, it follows that LU must be the first inference rule in Λ(π). Let
〈p(x), R(x)〉 ∈ S be the predicate rule chosen for applying LU on the root;

– We obtain R(x,x′) ` q1(x), . . . , qn(x) as the second sequent in π. We can continue
by LU (if R contains at least one predicate atom) or RU. However, LU is not
allowed at this point because the derivation is structured, so the only choice is to
apply RU for one of the predicate atoms on the right-hand side.

– If the next sequent satisfies the side condition of AX, then we can close π. Other-
wise we can continue with at most n− 1 instances of RU. If, at any point during
the right unfolding, AX becomes applicable, then π can be closed. We obtain
Λ(π) = LU · RU∗ ·AX ∈ S.

– After n− 1 more right unfoldings, we reach a sequent R(x,x′) ` ∃y1 . R1(x,y1),
. . . ,∃ym . Rm(x,ym), where the right-hand side is obtained from all the predicate
rules for q1, . . . , qn in S. If AX is not applicable, we can only continue by RD
and, immediately, as many ∧R applications as necessary.

– We reach a sequent r1(x1), . . . , rh(xh) ` Q1, . . . ,Qk, where each Qi with i ∈ [k]
is a conjunction of predicate atoms over the tuples {x1, . . . ,xh}, such that no
two predicate atoms in the same Qi have the same arguments. Then h 6= 1,
otherwise this sequent would be basic, contradicting the assumption that N = 1.
Also, h 6= 0, otherwise it would lead to k = 0 after RD, which, by Lemma 2.5.7,
indicates the existence of a counterexample and contradicts the fact that D is a
proof. Since SP cannot occur along π, the only possibilities for continuation are
AX, ID, LU and RU. However, LU is applicable at most once, because RD is
required between two consecutive left unfoldings and RD is only applicable on
sequents with a singly tree-shaped left-hand side, which is impossible here due
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to h > 1. Also, RU can only be applied a finite number of times, equal to the
number of singleton predicate atoms on the right hand side. In both cases, π is
not maximal, because LU is enabled by h > 1. Then the only possibility is to end
π by AX or ID, obtaining Λ(π) ∈ LU ·RU∗ ·RD · ∧R∗ ·LU? ·RU∗ · (AX | ID) ⊆ S.

(N > 1) Let π = τ ·ρ, where ρ starts with the second occurrence of a basic sequent in π. As
before, the first occurrence is the initial sequent p(x) ` q1(x), . . . , qn(x). Then the head of ρ
is obtained after a sequence RD · ∧R∗ · SP?, where SP is only required if the left-hand side
for the consequent of RD contains more than one predicate atom. The left-hand side of this
RD consequent is a predicate rule in S with goal p(x), introduced by a previous application
of LU. It follows that only RU can be applied between LU and RD and, also, RU is the only
other rule applicable before LU. However, the order of the LU and RU applications is not
important and we consider that the left unfolding is always performed first. Assuming that
Λ(ρ) ∈ S, we obtain that Λ(π) ∈ (LU · RU∗ · RD · ∧R∗ · SP?) · S ⊆ S.

As previously discussed, the proof-search semi-algorithm 1 only produces irreducible
derivations. If it is executed with S, then these derivations will also be structured. This
guarantees termination because, by point (1) of Lemma 2.5.5, each irreducible and structured
derivation is finite. If the input inductive system S is ranked, non-filtering, non-overlapping
and has the fvi property, then RInd is complete, thus algorithm 1 becomes a decision proce-
dure for this class of entailment problems.

2.5.2 The Soundness and Completeness of RSL
Ind

Soundness

We develop our argument for the soundness of RSL

Ind in a similar fashion as the one for RInd.
The following lemma is the counterpart of Lemma 2.5.1 and its proof adapts the result of
[24, Theorem 1] to support the local soundness of SPSL.

Lemma 2.5.9. Consider an SL inductive system S, the predicates p1, . . . , pn ∈ Sp, and the
tuples of predicates Qj = 〈qj1, . . . , qjn〉 ∈ (Sp)n, j ∈ [k]. Then

µSSL(p1(x1) ∗ . . . ∗ pn(xn)) ⊆
k⋃
j=1

µSSL(qj1(x1) ∗ . . . ∗ qjn(xn))

only if there exists a tuple ı̄ ∈ [n]n
k

, such that:

µSSL(pı̄j ) ⊆ {µSSL(q`ı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}

for all j ∈ [nk], where F(Q1, . . . ,Qk) = {f1, . . . , fnk}.

Proof. Let Uk = Lk × Heaps. Then, given some predicates r1, . . . , rn ∈ Sp, the following
property holds:

n⊎
i=1

µSSL(ri) ⊆
n⋂
i=1

i−1⊎
j=1

U||xj || ] µS
SL(ri) ]

n⊎
j=i+1

U||xj ||

 (2.5)
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This proof closely follows the outline of the proof for Theorem 1 in [24]. Using property
(2.5), the inclusion we need to prove can be rewritten as

µSSL(p1(x1) ∗ . . . ∗ pn(xn)) ⊆
k⋃
j=1

µSSL(qj1(x1) ∗ . . . ∗ qjn(xn)) ⇔

n⊎
i=1

µSSL(pi) ⊆
k⋃
j=1

n⊎
i=1

µSSL(qji ) ⇔

n⊎
i=1

µSSL(pi) ⊆
k⋃
j=1

n⋂
i=1

(
i−1⊎
`=1

U||x`|| ] µS
SL(qji ) ]

n⊎
`=i+1

U||x`||

)
(2.6)

As in the proof of [24, Theorem 1], because the power set lattice (2V ,⊆) of any set V is
a completely distributive lattice, for any doubly indexed family

{Sj,k ∈ 2V | j ∈ J, k ∈ Kj}

it holds that ⋃
j∈J

⋂
k∈Kj

Sj,k =
⋂
f∈F

⋃
j∈J

Sj,f(j)

where F is the set of choice functions f choosing for each index j ∈ J some index f(j) ∈ Kj .
In our case, let F = F(Q1, . . . ,Qk). Then, we can rewrite (2.6) as

n⊎
i=1

µSSL(pi) ⊆
k⋃
j=1

n⋂
i=1

(
i−1⊎
`=1

U||x`|| ] µS
SL(qji ) ]

n⊎
`=i+1

U||x`||

)
⇔

n⊎
i=1

µSSL(pi) ⊆
⋂
f∈F

k⋃
j=1

f(Qj)−1⊎
`=1

U||x`|| ] µS
SL(qj

f(Qj)
) ]

n⊎
`=f(Qj)+1

U||x`||

 ⇔

∀f ∈ F.
n⊎
i=1

µSSL(pi) ⊆
k⋃
j=1

f(Qj)−1⊎
`=1

U||x`|| ] µS
SL(qi

f(Qj)
) ]

n⊎
`=f(Qj)+1

U||x`||

 (2.7)

For a fixed f , we can rewrite the right hand-side of (2.7) as

k⋃
j=1

f(Qj)−1⊎
`=1

U||x`|| ] µS
SL(qj

f(Qj)
) ]

n⊎
`=f(Qj)+1

U||x`||

 =

n⋃
i=1

⋃
j∈[k],f(Qj)=i

(
i−1⊎
`=1

U||x`|| ] µS
SL(qji ) ]

n⊎
`=i+1

U||x`||

)
=

n⋃
i=1

i−1⊎
`=1

U||x`|| ]

 ⋃
j∈[k],f(Qj)=i

µSSL(qji )

 ] n⊎
`=i+1

U||x`||

 (2.8)
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Using (2.8), the inclusion query (2.7) becomes

∀f ∈ F.
n⊎
i=1

µSSL(pi) ⊆
n⋃
i=1

i−1⊎
`=1

U||x`|| ]

 ⋃
j∈[k],f(Qj)=i

µSSL(qji )

 ] n⊎
`=i+1

U||x`||

 ⇔

∀f ∈ F ∃i ∈ [n] . µSSL(pi) ⊆
⋃

j∈[k],f(Qj)=i

µSSL(qji ) ⇔

nk∧
j=1

n∨
i=1

(
µSSL(pi) ⊆ {µSSL(q`i ) | ` ∈ [k], fj(Q`) = i}

)
⇔

∨
ı̄∈[n]nk

nk∧
j=1

(
µSSL(pı̄j ) ⊆ {µSSL(q`ı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}

)
(2.9)

Inclusion (2.9) is true only when there exists a tuple ı̄ ∈ [n]n
k

, for all j ∈ [nk], such that
µSSL(pı̄j ) ⊆ {µSSL(q`ı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}.

The local soundness of RSL

Ind\{ID} means that, if the consequent Γ ` ∆ denotes an invalid
entailment, then at least one of its antecedents also denotes an invalid entailment. Moreover,
their respective counterexamples can be related by E.

Lemma 2.5.10. Given a ranked SL inductive system S, for each instance of an inference rule
schema in RSL

Ind \ {ID}, having the consequent Γ ` ∆ and antecedents Γi ` ∆i with i ∈ [n],
and each (ν, h) ∈ µSSL(

∧
Γ) \ µSSL(

∨
∆), there exists (νi, hi) ∈ µSSL(

∧
Γi) \ µSSL(

∨
∆i) for

some i ∈ [n] such that hiEh.

Proof. For AXSL, soundness follows from the side condition and its consequent admits no
counterexamples, thus the lemma is trivially true in this case. We analyse LU, RUSL, RDSL,
∧R and SPSL individually, in a similar fashion as we did for the local soundness of RInd

(Lemma 2.5.2).

(LU) Let p(x) ∈ Γ be a predicate atom, where p(x) ←S R1(x) | . . . | Rn(x). The an-
tecedents of Γ ` ∆ are Γi ` ∆i ≡ Ri(x,yi),Γ\p(x) ` ∆, where i ∈ [n] and each yi is a tuple
of fresh variables. In this case, the least solution of Γ is

µSSL(∗Γ) = µSSL (p(x) ∗ ∗ (Γ \ {p(x)})) = µSSL(p(x)) ] µSSL (∗ (Γ \ {p(x)}))

=

(
n⋃
i=1

µSSL (∗Ri(x))

)
] µSSL (∗ (Γ \ {p(x)}))

=

n⋃
i=1

(µSSL (∗Ri(x)) ] µSSL (∗ (Γ \ {p(x)})))

=

n⋃
i=1

µSSL (∗Ri(x) ∗ ∗ (Γ \ {p(x)}))

If there exists (ν, h) ∈ µSSL(∗Γ) \ µSSL(
∨

∆), then (ν, h) ∈ µSSL(∗Ri(x) ∧∗(Γ \ {p(x)})) \
µSSL(

∨
∆) for some i ∈ [n]. In consequence, there also exists (νi, hi) ∈ µSSL(∗Ri(x,yi) ∗∗(Γ \ {p(x)})) \µSSL(

∨
∆) such that hi = h and for every x ∈ FV(Γ) we have νi(x) = ν(x).

Then hiEh holds trivially.
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(RUSL) Let p(x) ∈ ∆ be a predicate atom, where p(x)←S R1(x) | . . . | Rn(x). Then Γ ` ∆
has only one antecedent Γ1 ` ∆1 ≡ Γ ` ∃y1.∗R1(x,y1), . . . ,∃yn.∗Rn(x,yn),∆ \ p(x),
where each yi with i ∈ [n] is a tuple of fresh variables. In this case, the least solution of ∆ is

µSSL

(∨
∆
)

= µSSL

(
p(x) ∨

∨
(∆ \ {p(x)})

)
= µSSL(p(x)) ∪ µSSL

(∨
(∆ \ {p(x)})

)
=

(
n⋃
i=1

µSSL (∗Ri(x))

)
∪ µSSL

(∨
(∆ \ {p(x)})

)
=

(
n⋃
i=1

µSSL (∃yi.∗Ri(x,yi))
)
∪ µSSL

(∨
(∆ \ {p(x)})

)
= µSSL

(
n∨
i=1

∃yi.∗Ri(x,yi)
)
∪ µSSL

(∨
(∆ \ {p(x)})

)
= µSSL

(
n∨
i=1

∃yi.∗Ri(x,yi) ∨
∨

(∆ \ {p(x)})

)
= µSI(

∨
∆1)

If there exists (ν, h) ∈ µSSL (∗Γ)\µSSL (
∨

∆), then it is also the case that (ν, h) ∈ µSSL(∗Γ1)\
µSSL (

∨
∆1). Therefore, the counterexample for the antecedent is (ν1, h1) = (ν, h) and h1Eh

holds trivially.

(RDSL) Then the sequent Γ ` ∆ ≡ φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃yj .ψj(x,yj) ∗
Qj(yj)}kj=1 has only one antecedent Γ1 ` ∆1 ≡ p1(x1), . . . , pn(xn) ` {Qjθ | θ ∈ Sj}ij=1. By

the side condition of RD, φ |=SL∗ij=1 ∃yj .ψj . Also, by Definition 2.4.6, we have µSSL(φ) ⊆
µSSL(ψjθ) for each θ ∈ VIS(φ, ψj) and j ∈ [i]. In this case, the least solution of ∆ is

µSSL

(∨
∆
)

= µSSL

 k∨
j=1

∃yj .ψj ∗ Qj

 =

k⋃
j=1

µSSL
(
∃yj .ψj ∗ Qj

)
⊇

i⋃
j=1

µSSL
(
∃yj .ψj ∗ Qj

)
⊇

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSSL ((ψj ∗ Qj)θ)

=

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

µSSL (ψjθ ∗ Qjθ) =

i⋃
j=1

⋃
θ∈VIS(φ,ψj)

(µSSL (ψjθ) ] µSSL(Qjθ))

=
i⋃

j=1

⋃
θ∈VIS(φ,ψj)

µSSL (ψjθ) ]
i⋃

j=1

⋃
θ∈VIS(φ,ψj)

µSSL(Qjθ)

Note that also µSSL(∗Γ) = µSSL (φ) ] µSSL (p1(x1) ∗ . . . ∗ pn(xn)). If there exists (ν, h) ∈
µSSL(∗Γ)\µSSL (

∨
∆), then h = h′]h′′ such that (ν, h′) ∈ µSSL (φ) and (ν, h′′) ∈ µSSL(p1(x1)∗

. . . ∗ pn(xn)). It follows that we have (ν, h′ ] h′′) ∈ (µSSL (φ) ] µSSL (p1(x1) ∗ . . . ∗ pn(xn))) \(⋃i
j=1

⋃
θ∈VIS(φ,ψj)

µSSL (ψjθ) ]
⋃i
j=1

⋃
θ∈VIS(φ,ψj)

µSSL(Qjθ)
)

and, since as previously stated

µSSL(φ) ⊆
⋃i
j=1

⋃
θ∈VIS(φ,ψj)

µSSL (ψjθ), we obtain (ν, h′′) ∈ µSSL (p1(x1) ∗ . . . ∗ pn(xn)) \⋃i
j=1

⋃
θ∈VIS(φ,ψj)

µSSL(Qjθ) = µSSL(∗Γ1) \ µSSL(
∨

∆1). Therefore, the counterexample for

the antecedent is (ν1, h1) = (ν, h′′). Because φ is introduced to the left-hand side by left
unfolding and S is ranked, we have that h′ 6= ∅ and, thus, h1Ch.
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(∧R) As in the ∧R case from the proof of Theorem 2.5.4, we have that, for any coun-
terexample (ν, h) ∈ µSSL(∗Γ) \ µSSL (

∨
∆), it is also the case that (ν, h) ∈ (µSSL(∗Γ1) \

µSSL(
∨

∆1)) ∪ (µSSL(∗Γ2) \ µSSL(
∨

∆2)). Therefore, ν ∈ µSSL(∗Γi) \ µSSL(
∨

∆i) for some
i ∈ [2] and the counterexample for Γi ` ∆i is (νi, hi) = (ν, h). Then hiEh holds trivially.

(SPSL) Then Γ ` ∆ ≡ p1(x1), . . . , pn(xn) ` {∗ni=1 q
j
i (xi)}kj=1. For each ı̄ ∈ [n]n

k

, the

antecedents of Γ ` ∆ are Γı̄j ` ∆ı̄
j ≡ pı̄j (xı̄j ) ` {q`ı̄j (xı̄j ) | ` ∈ [k], fj(Q`) = ı̄j}, j ∈ [nk].

If there exists (ν, h) ∈ µSSL (∗ni=1 pi(xi)) \ µSSL

(∨k
j=1∗ni=1 q

j
i (xi)

)
, then by the proof

of Lemma 2.5.9, there exists j ∈ [nk] and pairs (ν1, h1), . . . , (νn, hn) such that (νi, hi) ∈
µSSL(pi(xi)) \

⋃
{µSSL(q`i ) | ` ∈ [k], fj(Q`(xi))) = i} for all i ∈ [n], where h = h1 ] . . . ] hn

and ν(xi) = νi(xi) for each i ∈ [n]. In other words, for all tuples ı̄ ∈ [n]n
k

we have
(νı̄j , hı̄j ) ∈ µSSL(pı̄j (xı̄j ))\

⋃
{µSSL(q`ı̄j (xı̄j )) | ` ∈ [k], fj(Q`) = ı̄j} = µSSL(∗Γı̄j)\µSSL(

∨
∆ı̄
j).

Therefore, given such j ∈ [nk], the counterexample for each antecedent Γı̄j ` ∆ı̄
j is (νı̄j , hı̄j ).

Since h = h1 ] . . . ] hn, we have hı̄j Eh, for each ı̄ ∈ [n]n
k

.

Based on this result, we again consider a reachability relation between counterexamples
and write (ν, h)m (ν′, h′) when, given any instance of an inference rule in RSL

Ind \ ID, (ν, h) is a
counterexample of the consequent and (ν′, h′) is a counterexample of one of its antecedents
obtained from (ν, h), as shown in the proof of Lemma 2.5.10. With this in mind, we revisit
the definition of a counterexample path and adapt it to SL.

Definition 2.5.6 (Counterexample path in SL). A path π = v1, v2, . . . , vk in a proof D =
(V, v0,Seq,Rule,Par,Piv) built with RSL

Ind is a counterexample path if there exists a sequence of
pairs (ν1, h1), (ν2, h2), . . . , (νk, hk) such that, for all i ∈ [k] we have: (i) (νi, hi) ∈ µSSL(∗Γi)\
µSSL(

∨
∆i), where Seq(vi) = Γi ` ∆i, and (ii) (νi, hi) m (νi+1, hi+1) if i < k.

The following lemma is the counterpart of Lemma 2.5.3 and shows that, if the given SL
inductive system is ranked, any direct counterexample path in a proof causes a strict heap
decrease in the counterexamples for the pivot and consequent delimiting the path.

Lemma 2.5.11. Given a ranked SL inductive system S, let D = (V, v0,Seq,Rule,Par,Piv)
be a proof built with RSL

Ind and π = v1, . . . , vk be a direct counterexample path in D for a
backlink (vk, v1), with counterexamples (ν1, h1) m . . .m (νk, hk). Then h1Bhk.

Proof. Through a similar reasoning as the one in the proof of Lemma 2.5.3 and using Lemma
2.5.10 to support the fact that h1D . . .Dhk, we obtain that RDSL is required to occur in Λ(π),
leading to hiBhi+1 for some i ∈ [k − 1]. Then h1Bhk.

Finally, the following theorem extends the reachability relation m to backlinks and shows
that any infinite trace in a proof leads to an infinite strictly decreasing sequence of heaps,
contradicting the well-foundedness of the wfqo which makes the inductive system be ranked
(Definition 2.4.4). Then there cannot exist a counterexample for any sequent labelling the
root of a proof built with RSL

Ind and the associated entailment must hold.

Theorem 2.5.12. Given a ranked SL inductive system S, if a sequent Γ ` ∆ has a proof
D = (V, v0,Seq,Rule,Par,Piv) built with RSL

Ind and Seq(v0) ≡ Γ ` ∆, then the entailment

∗Γ |=SL

S
∨

∆ holds.
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Proof. This proof by contradiction closely follows the one of Theorem 2.5.4. We suppose
that ∗Γ |=SL

S
∨

∆ does not hold and, by Lemma 2.5.10, obtain a path from v0 to a leaf vk ∈ V
and an associated sequence of counterexamples (ν1, h1) m . . .m (νk, hk).

Clearly, Rule(vk) = ID. Let vk+1 = Piv(vk), Seq(vk) = Γk ` ∆k and Seq(vk+1) =
Γk+1 ` ∆k+1 such that Γk = Γk+1θ, ∆k = ∆′k+1θ and ∆k+1 ⊆ ∆′k+1, for some injective
substitution θ : FV(Γk+1 ∪ ∆k+1) → FV(Γk ∪ ∆k). Again, we can assume w.l.o.g. that
θ is surjective, by defining θ(x) = x for each x ∈ FV(Γk ∪ ∆k) \ θ(FV(Γk+1 ∪ ∆k+1)).
Since θ is also injective, by the side condition of ID, its inverse exists and (νkθ

−1, hk) is a
counterexample for Γk+1 ` ∆k+1. Therefore, we can extend the relation m with the pair
((νk, hk), (νkθ

−1, hk)).

We obtain an infinite trace τ = v0, v1, . . . in D together with an infinite sequence (ν0, h0)m
(ν1, h1) m . . .. By Lemma 2.5.10, we have hiDhi+1, for all i ≥ 0. By Proposition 2.2.1,
τ contains infinitely many direct paths πj = vkj , . . . , v`j , where {kj}j≥0 and {`j}j≥0 are
infinite strictly increasing sequences of integers such that kj < `j ≤ kj+1 < `j+1, for all
j ≥ 0. By Lemma 2.5.11, we obtain that hkj Bh`j , for all j ≥ 0. Since h`j Dhkj+1

for all
j ≥ 0, this leads to a strictly decreasing sequence hk0 Bhk1 B . . ., contradicting the fact that
E is a wfqo. We can conclude that our initial assumption was false, thus the entailment

∗Γ |=SL

S
∨

∆ holds.

Completeness

The RSL

Ind proof system is not complete for SL entailments, even if the predicates involved in
the entailment are defined by inductive systems that satisfy all the restrictions introduced
in Section 2.4. Instead, we will show completeness for a more restricted class of entailment
problems. Whether a complete set of inference rules for the general entailment problem in
SL exists is, to our knowledge, still an open question.

The restricted semantics that we consider for SL entailments take into consideration the
way a predicate definition unfolds a heap. The same heap can be built in different ways, but
RSL

Ind is complete only for entailments that involve predicates whose definitions unfold the
heap in a similar manner.

Definition 2.5.7 (Coverage trees). A coverage tree for a heap h ∈ Heaps is a tree t : N∗ ⇀fin

Heaps such that dom(t(α1))∩ dom(t(α2)) = ∅ for all α1, α2 ∈ dom(t) with α1 6= α2 and also
h =

⊎
α∈dom(t) t(α). In other words, the labels of the coverage tree form a partition of the

heap. We write Cover to mean the set of all coverage trees.

We restrict the class of SL entailments by defining a new type of assignments that map
a predicate of arity n into a subset of Ln ×Heaps× Cover. Given an SL inductive system S,
we refer to the set of all assignments on the predicates of S as AssignU(Sp). We extend any
assignment X ∈ AssignU(Sp) to a singly tree-shaped set represented as a tree T and define
X (∗T ) as the set of tuples (ν, h, t), where ν :

⋃
α∈dom(T ) FV(T (α))→ Loc is a valuation, h

is a heap and t is a coverage tree for h such that:

– For each α ∈ dom(T ) \ fr(T ) we have that ν, t(α) |=SL T (α);

– For each α ∈ fr(T ) such that T (α) = p(x) there exists (ν(x), t(α), t|α) ∈ X (p).

We can further extend the above definition to a tree-shaped set T = T1 ∪ . . .∪ Tk, which
consists of multiple singly tree-shaped sets T1, . . . , Tk. Then X (∗T ) = X (∗T1∗. . .∗∗Tk) =
{(ν, h1 ] . . . ] hk, {t1, . . . , tk}) | (ν, hi, ti) ∈ X (∗Ti), i ∈ [k]}. As it was the case for the
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previous types of assignments, X (∗T ∧ ∗T ′) = X (∗T ) ∩ X (∗T ′), X (∗T ∨ ∗T ′) =
X (∗T ) ∪ X (∗T ′) and X (∃x . ∗T ) = X (∗T ) for any two tree-shaped sets T and T ′.

The SL inductive system S now induces a function on assignments, FU

S : AssignU(Sp) →
AssignU(Sp), such that FU

S(X )(p) =
⋃m
i=1{(ν(x), h, t) | (ν, h, t) ∈ X (Ri)}, where p(x) ←S

R1(x) | . . . | Rm(x). It can easily be shown that FU

S is monotone and continuous, just as
we previously have shown for FSL

S in Theorems 1.3.7 and 1.3.9. These proofs are enabled
by introducing an operator τ k with k ∈ N such that, given sets A ∈ Ln × Heaps, B1 ∈
Ln1 × Heaps × Cover, . . . , Bk ∈ Lnk × Heaps × Cover, we have τ k(A,B1, . . . , Bk) = {(` · `1 ·
. . . · `k, h ] h1 ] . . . ] hk, τk(h, t1, . . . , tk)) | (`, h) ∈ A, (`i, hi, ti) ∈ Bi, i ∈ [k]}. We similarly
use it for sets A ∈ V × Heaps, B1 ∈ V × Heaps× Cover, . . . , Bk ∈ V × Heaps× Cover.

A solution of the SL inductive system S is now an assignment X ∈ AssignU(Sp) such that
FU

S(X )4X . The set of all solutions of S is SolU

S = {X | FU

S(X )4X}. A least solution of S
is µSU ∈ SolU

S such that, for any assignment X ≺µSU, X 6∈ SolU

S . Similar to Theorem 1.3.10,
it can be shown that µSU is unique and µSU = FU

S
n(X∅), where n ∈ N is the smallest value

for which FU

S
n+1(X∅) = FU

S
n(X∅).

For each (ν, h, t) ∈ µSU(p), for a predicate p ∈ Sp, we call t an unfolding tree of p.
Given p, q1, . . . , qn ∈ Sp, the entailment problem now becomes p(x) |=U

S q1(x), . . . , qn(x) if
and only if µSU(p) ⊆ µSU(q1) ∪ . . . ∪ µSU(qn). Note that p(x) |=U

S q1(x), . . . , qn(x) implies
p(x) |=SL

S q1(x), . . . , qn(x), but not the other way around.

Example 2.5.1. Consider the following SL inductive system S:

ls1(x, y)←S x≈ y ∧ emp | y≈ y′ ∧ x 7→ x′, ls1(x
′, y′)

ls2(x, y)←S x≈ y ∧ emp | y≈ y′ ∧ x 7→ x′ ∗ x′ 7→ z′, ls2(z
′, y′)

The predicates ls1(x, y) and ls2(x, y) both define list segments, but the latter only covers
list segments of even length and unfolds them two elements at a time. The entailment
ls2 |=SL

S ls1 holds. Given (`, h) = (〈1, 5〉, {(1, 2), (2, 3), (3, 4), (4, 5)}), clearly (`, h) ∈ µSSL(ls1)
and (`, h) ∈ µSSL(ls2). However, the two definitions generate different coverage trees t1 and
t2 for h, such that (`, h, t1) ∈ µSU(ls1) and (`, h, t2) ∈ µSU(ls2):

t1 = {(1, 2)}

{(2, 3)}

{(3, 4)}

{(4, 5)}

∅

t2 = {(1, 2), (2, 3)}

{(3, 4), (4, 5)}

∅

It follows that µSU(ls2) 6⊆ µSU(ls1) and the entailment ls2 |=U

S ls1 does not hold.

On a different vein, consider the SL inductive system S ′:

dlls(hd, p, tl, n) ←S′ hd≈ tl ∧ hd 7→ (p, n)

| p′≈hd ∧ tl′≈ tl ∧ n′≈n ∧ hd 7→ (p, hd′), dlls(hd′, p′, tl′, n′)

dllsr(hd, p, tl, n)←S′ hd≈ tl ∧ hd 7→ (p, n)

| hd′≈hd ∧ p′≈ p ∧ n′≈ tl ∧ tl 7→ (n, tl′), dllsr(hd′, p′, tl′, n′)

Both predicates define doubly-linked list segments, but dlls unfolds them starting at the head,
while dllsr unfolds starting at the tail. The entailments dlls |=SL

S′ dllsr and dllsr |=SL

S′ dlls hold.
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Let (`
′
, h′) = (〈0, 1, 4, 5〉, {(1, 〈0, 2〉), (2, 〈1, 3〉), (3, 〈2, 4〉), (4, 〈3, 5〉)}). It is easy to see that

(`
′
, h′) ∈ µSSL(dlls) and (`

′
, h′) ∈ µSSL(dllsr). Again, the two definitions generate different

coverage trees t′1 and t′2 for h′, such that (`
′
, h′, t′1) ∈ µSU(dlls) and (`

′
, h′, t′2) ∈ µSU(dllsr):

t′1 = {(1, 〈0, 2〉)}

{(2, 〈1, 3〉)}

{(3, 〈2, 4〉)}

{(4, 〈3, 5〉)}

t′2 = {(4, 〈3, 5〉)}

{(3, 〈2, 4〉)}

{(2, 〈1, 3〉)}

{(1, 〈0, 2〉)}

It follows that µSU(dlls) 6⊆ µSU(dllsr) and µSU(dllsr) 6⊆ µSU(dlls). The corresponding
entailments dlls |=U

S′ dllsr and dllsr |=U

S′ dlls do not hold. J

The definitions for maximal and irreducible derivations using RSL

Ind are the same as their
RInd counterparts in Section 2.5.1. Similarly, a derivation built with RSL

Ind is structured if and
only if RDSL occurs between any two consecutive applications of LU. We use DSL(Γ ` ∆) for
the set of irreducible, maximal and structured having Γ ` ∆ as a root and using RSL

Ind. We
also write Γ ` ∆ SL Γ′ ` ∆′ if Γ′ ` ∆′ occurs as a node in a derivation from DSL(Γ ` ∆).

The following lemmas are the SL counterparts of the ones in Section 2.5.1. Since RSL

Ind is
structurally the same as RInd, we need not redo the proofs, as they closely resemble the ones
for Lemma 2.5.5 and Lemma 2.5.6.

Lemma 2.5.13. If the SL inductive system S has the fvi property, then the following
properties of derivations built with RSL

Ind hold:

(1) Any irreducible and structured derivation is finite;

(2) For any sequent Γ ` ∆, the set DSL(Γ ` ∆) is finite.

Lemma 2.5.14. Given an SL inductive system S and predicates p, q1, . . . , qn ∈ Sp, in every
sequent Γ ` ∆ such that p(x) ` q1(x), . . . , qn(x)  SL Γ ` ∆, Γ is a tree-shaped set and
∆ consists of finite separating conjunctions over tree-shaped sets, with all subgoal variables
existentially quantified.

The following lemma is the counterpart of Lemma 2.5.7, providing a similar invariant on
the set of derivations for a sequent that denotes an invalid entailment. As in the FOL case,
this result is important for showing the completeness of RSL

Ind under the new interpretation
of entailments, based on unfolding trees.

Lemma 2.5.15. Given a non-filtering and non-overlapping SL inductive system with the
fvi property, the predicates p, q1, . . . , qn ∈ Sp, and a sequent Γ ` ∆ such that p(x) `
q1(x), . . . , qn(x)  SL Γ ` ∆, if every derivation D ∈ DSL(Γ ` ∆) contains a leaf Γ′ ` ∅
then there exists a valuation ν, a heap h and a set of unfolding trees U such that (ν, h, U) ∈
µSU(∗Γ) \ µSU(

∨
∆).

Proof. Let (DSL)∗(Γ ` ∆) = {d | d ∈ DSL(Γ ` ∆) or ∃d′ ∈ (DSL)∗(Γ ` ∆) . d@ d′}. Because,
by Lemma 2.5.13, any derivation in DSL(Γ ` ∆) is finite and DSL(Γ ` ∆) itself is finite,
then (DSL)∗(Γ ` ∆) is also finite. Since ((DSL)∗(Γ ` ∆),v) is a wqo, by Lemma 2.4.1
(Pfin((DSL)∗(Γ ` ∆)),v∀∃) is also a wqo and we can prove this lemma by induction on it.
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Let DSL(Γ ` ∆) =
⋃

IR∈RSL
Ind
DSL

IR(Γ ` ∆), where DSL

IR(Γ ` ∆) denotes the subset of

DSL(Γ ` ∆) consisting of derivations starting with an instance of the inference rule IR. We
do not consider the cases IR ∈ {AXSL, ID} because these inference rules do not lead to a leaf
of the required form. Given D ∈ DSL

IR(Γ ` ∆) with IR ∈ RSL

Ind \ {AXSL, ID}, we assume that,
for each antecedent Γ′ ` ∆′ of Γ ` ∆, the lemma holds for any D′ ∈

⋃
IR′∈RInd

DSL

IR′(Γ′ ` ∆′)
and show that it extends to D.

(LU) Let r(y) ∈ Γ be the predicate atom chosen for replacement and r(y)←S R1(y) | . . . |
Rm(y). Then R1(y,y1),Γ \ r(y) ` ∆, . . . , Rm(y,ym),Γ \ r(y) ` ∆ are the antecedents for
the application of IR = LU on Γ ` ∆. If ∆ = ∅, then, similarly to the LU case in Lemma
2.5.7, there exists a counterexample ν ∈ µSU(∗Γ) \ µSU(

∨
∆) = µSU(∗Γ).

If ∆ 6= ∅, suppose that, for each i ∈ [m], there exists Di ∈ DSL(Ri(y,yi),Γ \ r(y) ` ∆)
not containing any leaf Γ′ ` ∅. Then we can choose these derivations and create one for
Γ ` ∆ with the same property, which contradicts the hypothesis of the lemma. Therefore,
there must exist i ∈ [m] such that every derivation in DSL(Ri(y,yi),Γ \ r(y) ` ∆) contains
a leaf Γ′ ` ∅.

Because p(x) ` q1(x), . . . , qn(x)  SL Γ ` ∆, Γ is a tree-shaped set and let T1, . . . , Tk
be the singly-tree shaped sets, represented as trees labelled with formulae, such that Γ =⋃k
i=1 Ti. Then there exists a tree Tj , j ∈ [k] and a frontier position αr ∈ fr(Tj) such that

Tj(αr) = r(y). Then the tree-shaped set Ri(y,yi),Γ \ r(y) is represented by the singly-tree
shaped sets T ′1, . . . , T

′
k, where T ′` = T` for all ` ∈ [k] \ {j} and T ′j = Tj [αr] ◦Ri(y,yi).

By the induction hypothesis, there exists a counterexample (ν, h1]. . .]hk, {t1, . . . , tk}) ∈
µSU(∗(Ri(y,yi) ∪ Γ \ {r(y)})) \ µSU(

∨
∆), where (ν, h`, t`) ∈ µSU(∗T ′`), for all ` ∈ [k].

Because T ′` = T` for all ` ∈ [k] \ {j}, we only need to show that (ν, hj , tj) ∈ µSU(∗Tj).
Since (ν, hj , tj) ∈ µSU(∗(Tj [αr] ◦ Ri(y,yi))), there exist some disjoint heaps h′j and h′′j , a

context t′j [αr]
and a cover t′′j such that: (i) hj = h′j ] h′′j and tj = t′j [αr]

◦ t′′j , (ii) t′j [αr]

covers h′j and (ν, t′′j , h
′′
j ) ∈ µSU(∗Ri(y,yi)). Since 〈r(y), Ri(y)〉 ∈ S is a predicate rule, we

have µSU(∗Ri(y,yi)) ⊆ µSU(r(y)). This leads to (ν, t′′j , h
′′
j ) ∈ µSU(r(y)) and (ν, hj , tj) ∈

µSU(∗(Tj [αr] ◦ Ri(y,yi))) ⊆ µSU(∗(Tj [αr] ◦ r(y))) = µSU(∗Tj). Therefore, (ν, h`, t`) ∈
µSU(∗T`) for all ` ∈ [k] and (ν, h1 ] . . . ] hk, {t1, . . . , tk}) ∈ µSU(∗Γ) \ µSU(

∨
∆).

(RUSL) Let r(y) ∈ ∆ be the predicate atom chosen for replacement and r(y) ←S R1(y) |
. . . | Rm(y). Then Γ ` ∃z1.∗R1(y, z1), . . . ,∃zm.∗Rm(y, zm),∆\r(y) is the antecedent for
the application of IR = RUSL on Γ ` ∆. Since RU is applicable, ∆ 6= ∅. Also, the right-hand
side of the antecedent cannot be ∅ because all predicates in Sp must be goals for at least one
predicate rule of S.

Suppose that there exists D ∈ DSL(Γ ` ∃z1.∗R1(y, z1), . . . ,∃zm.∗Rm(y, zm),∆ \ r(y))
not containing any leaf Γ′ ` ∅. Then we can choose D and create a derivation for Γ ` ∆ with
the same property, which contradicts the hypothesis of the lemma. Therefore, it must be
the case that every derivation in DSL(Γ ` ∃z1.∗R1(y, z1), . . . ,∃zm.∗Rm(y, zm),∆ \ r(y))
contains a leaf Γ′ ` ∅.

By the induction hypothesis, there exists (ν, h, U) ∈ µSU(∗Γ)\µSU(
∨m
i=1 ∃zi.∗Ri(y, zi)∨∨

(∆ \ {r(y)})). Then it is also the case that (ν, h, U) ∈ µSU(∗Γ) \ µSU(
∨

∆), because
µSU(

∨
∆) = µSU(

∨m
i=1 ∃zi.∗Ri(y, zi) ∨ ∨(∆ \ {r(y)})) by a similar argument as in the

(RUSL) case of the proof for Theorem 2.5.10.
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(RDSL) Let Γ = {φ(y,y1, . . . ,yn), r1(y1), . . . , rm(ym)} and ∆ = {∃z1.ψ1(y, z1)∗Q1(z1), . . . ,
∃zk.ψk(y, zk) ∗ Qk(yk)}, where Q1, . . . ,Qk are separating conjunctions of predicate atoms.
Also, let Sj = VIS(φ, ψj), for all j ∈ [k]. Each Sj is finite because S has the fvi property.

If m = 0, the proof is similar to the one in the (RD) case of Lemma 2.5.7.

If m > 0, then r1(y1), . . . , rm(ym) ` {Qjθ | θ ∈ Sj}ij=1 is the antecedent for the

application of IR = RDSL on Γ ` ∆, where, by the side condition, φ |=U
∧i
j=1 ∃yj .ψj and

φ 6|=U
∨k
j=i+1 ∃yj .ψj (with a possible reordering of ∆). If k = 0, because S is non-filtering,

y1, . . . ,ym are distinct and there are no predicates in Sp with empty least solutions, it
follows that µSU(∗Γ) is not empty. Therefore there exists a counterexample (ν, h, t) ∈
µSU(∗Γ)\µSU(

∨
∆) = µSU(∗Γ). Similarly, if i = 0, we have that µSU(r1(y1)∗. . .∗rm(ym))

is not empty and it contains counterexamples for the antecedent. Given (ν, h, {t1, . . . , tm}) ∈
µSU(r1(y1) ∗ . . . ∗ rm(ym)), because the system is non-filtering, there exist a pair (`, h0) ∈
L||y|| × Heaps such that h0 is disjoint from h and ν[y ← `], h0 |=SL φ. By the side condition of
RD and the fact that S is non-overlapping, we have that ν[y ← `], h 6|=SL ∃zj .ψj(zj),∀j ∈ [k].
We obtain (ν[y← `], h0 ] h, τm(h0, t1, . . . , tm)) 6∈ µSU(∃zj .ψj(y, zj) ∗ Qj(zj)),∀j ∈ [k], thus
(ν[y← `], h0 ] h, τm(h0, t1, . . . , tm)) ∈ µSU(∗Γ) \ µSU(

∨
∆).

If both k > 0 and i > 0, suppose that there exists D ∈ DSL(r1(y1), . . . , rm(ym) ` {Qjθ |
θ ∈ Sj}ij=1) not containing any leaf Γ′ ` ∅. Then we can choose D and create a derivation
for Γ ` ∆ with the same property, which contradicts the hypothesis of the lemma. Thus,
it must be the case that every derivation in DSL(p1(x1), . . . , pn(xn) ` {Qjθ | θ ∈ Sj}ij=1

contains a leaf Γ′ ` ∅.
By the induction hypothesis, there exists (ν, h, {t1, . . . , tm}) ∈ µSU(r1(y1)∗. . .∗rm(ym))\

µSU

(∨i
j=1{Qjθ | θ ∈ Sj}

)
, and also, for every j ∈ [i] and θ ∈ Sj , (ν, h, {t1, . . . , tm}) ∈

µSU (r1(y1) ∗ . . . ∗ rm(ym)) \ µSU(Qjθ). Then h =
⊎m
j=1 hj , where (ν(yj), hj , tj) ∈ µSU(rj),

for all j ∈ [m]. Because S is non-filtering, there exists a pair (`, h0) ∈ L||y||×Heaps such that
h0 is disjoint from h and ν[y ← `], h0 |=SL φ. Because p(x) ` q1(x), . . . , qn(x)  SL Γ ` ∆, by
Lemma 2.5.6 the set Γ = {φ(y,y1, . . . ,ym), r1(y1), . . . , rm(ym)} is tree-shaped, and because
the number of predicate atoms equals the number of tuples of subgoal variables, it must be
a singly-tree shaped set. Then (ν[y← `], h0 ] h, τn(h0, t1, . . . , tn)) ∈ µSU(∗Γ).

Suppose that (ν[x ← `], h0 ] h, τn(h0, t1, . . . , tm)) is a model of ∃zj .ψj(x, zj) ∗ Qj(zj)
for some j ∈ [k]. Then ν[x ← `], h0 |=SL ∃zj .ψj(x, zj) and, because S is non-overlapping, we
have that φ |=SL ∃zj .ψj . It follows that j 6∈ [i + 1, k], otherwise it would contradict the side
condition φ 6|=SL ∃zi+1.ψi+1∨. . .∨∃zk.ψk. Therefore, j ∈ [i] and, because S has the fvi property,
ν[x← `], h0 |=SL ψjθ, for all θ ∈ VIS(φ, ψj). Moreover, there is no other Skolem function that
witnesses this entailment, besides the ones in Sj . Then also (ν[x ← `], h, {t1, . . . , tn}) ∈
µSU(Qjθ), for all θ ∈ Sj and only for these substitutions. Because the range of each θ ∈ Sj
is y1 ∪ . . . ∪ ym, it must be the case that (ν, h, {t1, . . . , tm}) ∈ µSU(Qjθ) for all θ ∈ Sj ,
which contradicts our assumption that this is a counterexample of the antecedent. It follows
that (ν[x← `], h0]h, τn(h0, t1, . . . , tm)) cannot be a model of ∃zj .ψj(x, zj)∧Qj(zj) for any
j ∈ [k] and (ν[x← `], h0 ] h, τn(h0, t1, . . . , tn)) ∈ µSU(∗Γ) \ µSU(

∨
∆), as required.

(∧R) Similar to the (∧R) case in the proof of Lemma 2.5.7.

(SPSL) Similar to the (SP) case in the proof of Lemma 2.5.7, using a variation of Lemma

2.5.9 in which Uk = Lk × Heaps × Cover and
⊎n
i=1 µSU(pi)

def
= {(`1 · . . . · `n, h1 ] . . . ]

hn, {t1, . . . , tn}) | (`i, hi, ti) ∈ µSU(pi), i ∈ [n]}, for some predicates p1, . . . , pn ∈ Sp.
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The following theorem establishes the completeness of RSL

Ind under the unfolding trees
interpretation of entailments, while also providing a proof search strategy S that is similar
to its FOL counterpart.

Theorem 2.5.16. Given a ranked, non-filtering, non-overlapping SL inductive system S
with the fvi property, let p, q1, . . . , qn ∈ Sp. Then the entailment p |=U

S q1, . . . , qn holds only
if p(x) ` q1(x), . . . , qn(x) has an S-proof with the inference rule schemata RSL

Ind, where S is
defined by the regular expression (LU · RU∗SL · RDSL · ∧R∗ · SPSL?)∗ · LU? · RU∗SL · (AXSL | ID).

Proof. Since the proof systems RSL

Ind and RInd are structurally the same, only replacing the
classical conjunction with the separating conjunction in RUSL, RDSL, SPSL and AXSL, the
completeness proof for SL inductive systems closely mirrors the proof of Theorem 2.5.8.

As in the FOL case, the fact that each S-derivation is irreducible and structured allows the
proof search semi-algorithm 1 to terminate on all inputs, thus becoming a decision procedure
for entailments p |=U

S q1, . . . , qn, where p, q1, . . . , qn ∈ Sp and the SL inductive system S is
ranked, non-filtering, non-overlapping and has the fvi property.





Chapter 3

Decision procedures for
Separation Logic in SMT

In this chapter, we provide decision procedures for the satisfiability problem of the quantifier-
free (Section 3.2) and ∃∗∀∗-quantified (Section 3.3) fragments of SL(T ) parametrized by a
theory of heap locations and data, chosen from the wide array of theories handled by SMT
solvers, such as integer or real arithmetic, strings, sets or uninterpreted functions. This is a
joint work with Andrew Reynolds (University of Iowa) and Tim King (Google Inc.) [42, 41].

Both procedures are designed as components of a DPLL(T ) architecture, widely used by
modern SMT solvers, and implemented as subsolvers of CVC4 [3], which, as indicated by our
experimental evaluation, is able to handle non-trivial examples quite effectively. Practical
uses of our procedures, which guided our choice for the evaluation benchmarks, include:

– Integration with theorem provers for SL with inductively defined predicates. Most
inductive provers for SL (including our RSL

Ind from Section 2.3.2) use a higher level proof
search strategy relying on separate decision procedures for non-inductive entailments
to simplify proof obligations [8]. The difficulty posed by these entailments in the
general fragment of SL usually leads to only using symbolic heap formulae, for which
entailments are proved by syntactic substitutions and matching. It is thus possible
to extend the language of inductive SL solvers and allow our specialized procedure to
tackle a more expressive range of non-inductive entailments. To justify this use case, a
significant portion of our experiments focuses on entailments between finite unfoldings
of inductive predicates commonly used in practice.

– Back-end component in a bounded model checker for programs with pointer and data
manipulations, using a complete weakest precondition calculus involving the magic
wand such as the one described in [29]. This led us to test our procedures on verification
conditions automatically generated by applying the weakest precondition calculus of
[29] to several program fragments that manipulate lists, with or without data fields.

3.1 The SL(T )-satisfiability problem

We tackle the SL(T )-satisfiability problem, as defined below, under the assumption that the
quantifier-free theory T = (Σ,M) has a decidable satisfiability problem.

87
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Definition 3.1.1 (T -satisfiability problem). Given a theory T = (Σ,M) and a T -formula
φ, is [[φ]]T 6= ∅ (i.e. does φ have a T -model)?

Definition 3.1.2 (SL(T )-satisfiability problem). Given a theory T = (Σ,M) and an SL(T )-
formula φ, is [[φ]]SL(T ) 6= ∅ (i.e. does φ have an SL(T )-model)?

It has been proved by Calcagno et al. [11] that the satisfiability problem is PSPACE-
complete for the SL(T ) fragment in which Data = Loc × Loc. We try to generalize this
result and consider any first-order theory T whose quantifier-free fragment has a satisfiability
problem in PSPACE. In general, this is the case for most theories supported by SMT solvers,
which are typically in NP (e.g. linear arithmetic of integers or reals, possibly with sets and
uninterpreted functions).

3.2 The Quantifier-Free Fragment of SL(T )

We show that the satisfiability problem for the quantifier-free fragment of SL(T ) is PSPACE-
complete if the satisfiability problem of the base theory T is in PSPACE. A semantics-
preserving translation is used to transform SL(T )-formulae into second-order T -formulae
with quantifiers that range over a domain of sets and uninterpreted functions, where the
cardinality of these sets is polynomially bound by the size of the input formula. We then
introduce a method for lazy, counterexample-driven quantifier instantiation, tailored specif-
ically for this fragment of T -formulae translated from SL(T ), and show that it is sound,
complete and terminating.

3.2.1 Reducing SL(T ) to Multisorted Second-Order Logic

Due to the behaviour of the ∗ and −−∗ connectives, separation logic cannot be formalized as
a classical (unsorted) first-order theory. The separating conjunction does not comply with
the standard rules of contraction and weakening, meaning that φ ⇒ φ ∗ φ and φ ∗ ψ ⇒ φ
do not hold because ∗ requires its operands to hold on disjoint heaps. Similarly, φ −−∗ ψ
holds on a heap that, when extended by a disjoint heap satisfying φ, must satisfy ψ. We
capitalize on the expressiveness of multi-sorted first-order theories by translating SL(T )-
formulae into quantified T -formulae, under the assumption that T subsumes a theory of sets
and uninterpreted functions.

To integrate separation logic within the DPLL(T ) framework [18], it is necessary to
present the input logic as a multi-sorted one. We assume, without loss of generality, the ex-
istence of a fixed theory T = (Σ,M) that subsumes a theory for sets of sort Set(σ) [2], for any
sort σ ∈ Σs of set elements. The functions for the set theory are the union ∪Set(σ) Set(σ) Set(σ),

intersection ∩Set(σ) Set(σ) Set(σ), singleton set {.}σ Set(σ)
and empty set ∅Set(σ). The inter-

pretation of these functions is the classical one. We introduce the shorthands s ⊆ s′ for
s ∪ s′≈ s′ and t ∈ s for {t} ⊆ s, given any terms s and s′ of sort Set(σ) and t of sort σ.
Moreover, Loc,Data ∈ Σs, nil ∈ Σf and we assume that Σf contains infinitely many func-
tion symbols ptLoc Data. Additionally, we consider an if-then-else operator ite(b, t, u), of sort
Bool× σ × σ → σ, for each sort σ ∈ Σs, that evaluates to t if b is true, and to u, otherwise.

The aim is to express separation logic connectives in multi-sorted second-order logic
through a labelling transformation which introduces (i) constraints over variables of sort
Set(Loc) and (ii) terms over uninterpreted points-to functions of sort Loc→ Data.
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(φ ∗ ψ) / [`, pt]

¬∀`1∀`2 .¬(`1 ∩ `2≈∅ ∧ `1 ∪ `2≈
⋃
` ∧ φ / [`1 ∩ `, pt] ∧ ψ / [`2 ∩ `, pt])

(φ −−∗ ψ) / [`, pt]

∀`′∀pt′ . (`′ ∩ (
⋃
`)≈∅ ∧ φ / [`′, pt′])⇒ ψ / [`′ · `, pt′ · pt]

t 7→ u / [`, pt]⋃
`≈{t} ∧ ite(t ∈ `, pt(t)≈u) ∧ ¬(t≈ nil)

(φ ∧ ψ) / [`, pt]

φ / [`, pt] ∧ ψ / [`, pt]

(¬φ) / [`, pt]

¬(φ / [`, pt])

emp / [`, pt]⋃
`≈∅

φ / [`, pt]

φ
φ is a T -formula

Figure 3.1: Labelling Rules

Given a SL(T )-formula φ, we denote its translation as φ / [`, pt], where ` = 〈`1, . . . , `n〉
is a tuple of variables of sort Set(Loc) and pt = 〈pt1, . . . , ptn〉 is a tuple of universally
quantified uninterpreted function symbols. To ease the notation, we write ` and pt for the
singleton tuples 〈`〉 and 〈pt〉,

⋃
` for `1 ∪ . . . ∪ `n, `′ ∩ ` for 〈`′ ∩ `1, . . . , `′ ∩ `n〉, `′ · ` for

〈`′, `1, . . . , `n〉, and ite(t ∈ `, pt(t)≈u) for ite(t ∈ `1, pt1(t)≈u, ite(t ∈ `2, pt2(t)≈u, . . . ite(t ∈
`n, ptn(t)≈u,>) . . .)).

Intuitively, a labelled formula φ / [`, pt] indicates that it is possible to build, from any
of its models (I, ν), a heap h such that I, ν, h |=SL φ, where dom(h) = ν(`1) ∪ . . . ∪ ν(`n) and
h = ptI1↓ν(`1) ∪ . . . ∪ ptIn↓ν(`n). For any i ∈ [n], `i defines a slice of the domain of the heap,
while the restriction of pti to the valuation of `i describes the heap relation on that slice.
Note how each interpretation I of pt and valuation ν ∈ VI of ` such that ν(`i) ∩ ν(`j) = ∅,
for all i, j ∈ [k] with i 6= j, define a unique heap.

The rewriting rules in Figure 3.1 translate an input SL(T ) formula φ into a labelled
second-order formula, with quantifiers over sets and uninterpreted functions. A labelling
step φ[ψ] =⇒ φ[ψ′/ψ] can be applied to φ if ψ and ψ′ match the antecedent and consequent
of a rewriting rule, respectively. We write φ =⇒∗ φ′ to indicate that φ′ was obtained from φ
after one or more labelling steps. Our rewriting system is confluent, and we use φ⇓ for the
normal form of φ with respect to the application of labelling steps.

Example 3.2.1. Consider the SL(T ) formula emp ∧ (x 7→ a −−∗ y 7→ b). The reduction to
second-order logic is given below:

(emp ∧ (x 7→ a −−∗ y 7→ b)) / [`, pt]
∧

=⇒

emp / [`, pt] ∧ (x 7→ a −−∗ y 7→ b) / [`, pt]
emp
=⇒

`≈∅ ∧ (x 7→ a −−∗ y 7→ b) / [`, pt]
−−∗
=⇒

`≈∅ ∧ (∀`′∀pt′ . `′ ∩ `≈∅ ∧ x 7→ a / [`′, pt′]⇒ y 7→ b / [〈`′, `〉 , 〈pt′, pt〉]) 7→
=⇒

`≈∅ ∧ (∀`′∀pt′ . `′ ∩ `≈∅ ∧ `′≈{x} ∧ ite(x ∈ `′, pt′(x)≈ a,>) ∧ ¬(x≈ nil)⇒
`′ ∪ `≈{y} ∧ ite(y ∈ `′, pt′(y)≈ b, ite(y ∈ `, pt(y)≈ b,>)) ∧ ¬(y≈ nil)) J

The following lemma reduces the SL(T )-satisfiability problem to the satisfiability of a
second-order fragment of the multi-sorted theory T , with quantifiers over sets and uninter-
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preted functions. Given the tuple of heaps h = 〈h1, . . . , hn〉, we write dom(h) to denote the
tuple 〈dom(h1), . . . ,dom(hn)〉.

Lemma 3.2.1. Given an SL(T )-formula φ and the tuples ` = 〈`1, . . . , `n〉, pt = 〈pt1, . . . , ptn〉
with n > 0, then, for any interpretation I, valuation ν ∈ VI and heap h ∈ HeapsI , we have
that I, ν, h |=SL φ if and only if the entailment I[pt ← h′], ν[` ← dom(h)] |=T φ / [`, pt] ⇓
holds: (1) for all heaps h = 〈h1, . . . , hn〉 such that h = h1 ] . . . ] hn, and (2) for all heaps
h′ = 〈h′1, . . . , h′n〉 such that h1 ⊆ h′1, . . . , hn ⊆ h′n.

Proof. We prove this lemma by induction on the structure of φ.

– If φ is a T -formula, then the lemma holds trivially, as φ / [`, pt]⇓≡ φ and the symbols
from ` and pt do not occur in φ.

– If φ ≡ emp, then I, h, ν |=SL emp if and only if dom(h) = ∅.
“⇒” For any tuples h satisfying condition (1) we have dom(hi) = ∅ for all i ∈ [n],

thus I[pt← h
′
], ν[`← dom(h)] |=T

⋃
` = ∅ for all h

′
satisfying condition (2).

“⇐” Let h and h
′

be tuples of heaps satisfying conditions (1) and (2), such that

I[pt← h
′
], ν[`← dom(h)] |=T emp / [`, pt]⇓, then dom(h) = ∅ and I, h, ν |=SL emp.

– If φ ≡ t 7→ u, then I, h, ν |=SL t 7→ u if and only if h = {(tIν , uIν )} and tIν 6= nilI .

“⇒” Let h and h
′

be tuples of heaps satisfying the conditions (1) and (2). Then
there exists i ∈ [n] such that dom(hi) = {tIν}, h′i(tIν ) = uIν and dom(hj) = ∅ for all

j ∈ [n] \ {i}. In consequence, we obtain that I[pt ← h
′
], ν[` ← dom(h)] |=T

⋃
` =

{t} ∧ ite(t ∈ `, pt(t)≈u) ∧ ¬(t≈ nil).

“⇐” If I[pt ← h
′
], ν[` ← dom(h)] |=T t 7→ u / [`, pt]⇓ for each h and h

′
satisfying

conditions (1) and (2), we easily obtain that {tIν} = dom(hi) ⊆ dom(h′i) and h′i(t
I
ν ) =

uIν for some i ∈ [n], leading to h = {(tIν , uIν )}. Moreover, ¬(tIν ≈ nil) holds, thus we
obtain I, h, ν |=SL t 7→ u.

– If φ ≡ ψ1∗ψ2, then I, h, ν |=SL ψ1∗ψ2 if and only if there exist heaps g1, g2 with h = g1]g2

such that I, g1, ν |=SL ψ1 and I, g2, ν |=SL ψ2.

“⇒” Let h and h′ be tuples of heaps satisfying conditions (1) and (2). By the induction
hypothesis we obtain

I[pt← h′], ν[`1 ← dom(g1)][`← dom(h)] |=T ψ1 / [`1 ∩ `, pt]⇓
I[pt← h′], ν[`2 ← dom(g2)][`← dom(h)] |=T ψ2 / [`2 ∩ `, pt]⇓

because gj ∩hi ⊆ h′i for each j ∈ [2] and i ∈ [n]. Moreover, dom(g1)∩dom(g2) = ∅ and
dom(g1)∪dom(g2) =

⋃n
i=1 dom(hi), thus we obtain I[pt← h′], ν[`← dom(h)] |=T ψ1 ∗

ψ2 / [`, pt]⇓.

“⇐” If I[pt ← h′], ν[` ← dom(h)] |=T ψ1 ∗ ψ2 / [`, pt]⇓, there exist sets L1, L2 ⊆ Loc
such that L1 ∩ L2 = ∅ and dom(h) = L1 ∪ L2. Let g1 = h↓L1 and g2 = h↓L2 . We have
that h = g1 ] g2 and

I[pt← h′], ν[`1 ← dom(g1)][`← dom(h)] |=T ψ1 / [`1 ∩ `, pt]⇓
I[pt← h′], ν[`2 ← dom(g2)][`← dom(h)] |=T ψ2 / [`2 ∩ `, pt]⇓

Moreover, gj =
⊎n
i=1 gj ∩hi and gj ∩hi ⊆ h′i, for j ∈ [2] and i ∈ [n], thus we can apply

the induction hypothesis to obtain I, g1, ν |=SL ψ1 and I, g2, ν |=SL ψ2, which together give
us I, h, ν |=SL ψ1 ∗ ψ2.
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– If φ ≡ ψ1 −−∗ ψ2, then I, h, ν |=SL ψ1 −−∗ ψ2 if and only if for any heap h0#h such that
I, h0, ν |=SL ψ1, we have I, h0 ] h, ν |=SL ψ2.

“⇒” Suppose that I, h, ν |=SL ψ1 −−∗ ψ2 and let g ⊆ g′ be heaps such that g#h and
I[pt′ ← g′], ν[`′ ← dom(g)] |=T ψ1 / [`′, pt′]⇓. By the induction hypothesis, we obtain
I, g, ν |=SL ψ1, thus I, g]h, ν |=SL ψ2. Since, moreover, g ·h and g′ ·h′ satisfy the conditions

(1) and (2), by the induction hypothesis, we obtain I[pt′ ← g′][pt ← h
′
], ν[`′ ←

dom(g)][`← dom(h)] |=T ψ2 / [`′ · `, pt′ ·pt]⇓. Since the choice of g and g′ was arbitrary,

it follows that I[pt← h
′
], ν[`← dom(h)] |=T ψ1 −−∗ ψ2 / [`, pt]⇓.

“⇐” Suppose that I[pt ← h
′
], ν[` ← dom(h)] |=T ψ1 −−∗ ψ2 / [`, pt]⇓ and let g ⊆ g′

be heaps such that g#h and I, g, ν |=SL ψ1. By the induction hypothesis, we have that
I[pt′ ← g′], ν[`′ ← dom(g)] |=T ψ1 / [`′, pt′]⇓ and, since dom(g) ∩ (

⋃n
i=1 dom(hi)) = ∅,

we have I[pt′ ← g′][pt← h
′
], ν[`′ ← dom(g)][`← dom(h)] |=T ψ2 / [`′ · `, pt′ · pt]⇓. By

the induction hypothesis, we obtain I, g ] h, ν |=SL ψ2, thus I, h, ν |=SL ψ1 −−∗ ψ2.

We omit the cases φ ≡ ψ1∧ψ2 and φ ≡ ¬ψ, since they are straightforward and can be proved
by simple applications of the inductive hypothesis.

Although satisfiability is undecidable in the presence of quantifiers and uninterpreted
functions, the following section strengthens the reduction by adapting the rewriting rules for
∗ and −−∗ (Figure 3.1) to use bounded quantification over finite set domains.

3.2.2 Reducing SL(T ) to Quantifiers over Bounded Sets

Through the translation introduced in the previous section, we have reduced any instance of
the SL(T )-satisfiability problem to an instance of the T -satisfiability problem in the second-
order multi-sorted extension of the theory T , which subsumes a theory for sets and uninter-
preted function symbols. A key aspect of this translation is that the quantifiers occurring
in second order T -formulae range over variables of sort Set(Loc) and function symbols of
sort Loc → Data. Building upon a small model property for SL over the data domain
Data = Loc× Loc [11], we can show that it is sufficient to consider quantified variables that
range over a bounded domain of sets. This enables the replacement of universal quantifiers
with finite conjunctions and leads to a decidability result that only relies on the decidability
of the quantifier-free theory T , with sets and uninterpreted functions. We then develop an
efficient procedure for lazy quantifier instantiation, based on counterexample-driven refine-
ment, in Section 3.2.3.

With this purpose in mind, we quote Proposition 96 from [50], emphasizing the fact that
its proof does not rely on the assumption that Data = Loc × Loc. Given an SL(T )-formula
φ, we introduce the following measure:

|φ ∗ ψ|h = |φ|h + |ψ|h |φ −−∗ ψ|h = |ψ|h |φ ∧ ψ|h = max(|φ|h, |ψ|h) |¬φ|h = |φ|h
|t 7→ u|h = 1 |emp|h = 1 |φ|h = 0 if φ is pure

Intuitively, |φ|h is the the maximum number of invisible locations in the domain of a heap
h that are distinguished by φ but are not in the range of any valuation ν ∈ VI such that
I, ν, h |=SL φ. For instance, if I, ν, h |=SL ¬emp ∗ ¬emp and dom(h) ≥ 2, then it is possible to
restrict dom(h) to |¬emp ∗ ¬emp|h = 2 locations only, to satisfy this formula.

Let Pt(φ) denote the set of terms (of sort Loc ∪ Data) that occur on the left- or right-
hand side of a 7→ operator in φ. We define Pt(t 7→ u) = {t, u}, Pt(φ ∗ ψ) = Pt(φ −−∗ ψ) =
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Pt(φ) ∪ Pt(ψ), Pt(¬φ) = Pt(φ), and Pt(emp) = Pt(φ) = ∅ for a pure formula φ. The small
model property is given by the following lemma.

Lemma 3.2.2. [50, Proposition 96] Given an SL(T )-formula φ, for any interpretation I and
any valuation ν ∈ VI , let L ⊆ LocI \ Pt(φ)Iν be a set of locations, such that ||L|| = |φ|h
and v ∈ DataI \ Pt(φ)Iν . Then for any heap h ∈ HeapsI we have I, ν, h |=SL φ if and only
if I, ν, h′ |=SL φ for any h′ ∈ HeapsI such that: (1) dom(h′) ⊆ L ∪ Pt(φ)I , and (2) for all
` ∈ dom(h′), h′(`) ∈ Pt(φ)I ∪ {v}.

The decidability of separation logic when Data = Loc × Loc is justified by the fact that
that, when an interpretation I of the free variables is fixed, it is enough to look within a
finite set of heaps h′, satisfying the above conditions, in order to find a heap model h for a
separation logic formula. This gives a PSPACE upper bound for the satisfiability problem in
this fragment.

Since the proof of Lemma 3.2.2 [50] does not involve reasoning about data values, other
than equality checking, we can refine our reduction from the previous section by bounding the
quantifiers to finite sets of constants of known size. We assume the existence of a total order
on the (countable) set of constants in Σf of sort Loc, disjoint from any terms that occur in
a given formula φ, and define Bnd(φ,C) = {cm+1, . . . , cm+|φ|h}, where m = max{i | ci ∈ C},
and m = 0 if C = ∅. Clearly, we have Pt(φ) ∩ Bnd(φ,C) = ∅ and also C ∩ Bnd(φ,C) = ∅,
for any C and any φ.

φ ∗ ψ / [`, pt, C]

¬∀`1∀`2 . `1 ∪ `2 ⊆ C ∪ Pt(φ ∗ ψ)⇒
¬(`1 ∩ `2≈∅ ∧ `1 ∪ `2≈

⋃
` ∧ φ / [`1 ∩ `, pt, C] ∧ ψ / [`2 ∩ `, pt, C])

φ −−∗ ψ / [`, pt, C]

∀`′∀pt′ . `′ ⊆ C ′ ∪ Pt(φ −−∗ ψ) ∧
pt′ ⊆ (C ′ ∪ Pt(φ −−∗ ψ))× (Pt(φ −−∗ ψ) ∪ {d})⇒
((`′ ∩ (

⋃
`)≈∅ ∧ φ / [`′, pt′, C ′])⇒ ψ / [`′ · `, pt′ · pt, C])

C ′ = Bnd(φ ∧ ψ,C)
d 6∈ Pt(φ −−∗ ψ)

Figure 3.2: Bounded Quantifier Labelling Rules for ∗ and −−∗

We now consider labelling judgements of the form ϕ / [`, pt, C], where C is a finite set of
constants of sort Loc, and modify all the rules in Figure 3.1, besides the ones with premises
(φ ∗ ψ) / [`, pt] and (φ −−∗ ψ) / [`, pt], by replacing any judgement ϕ / [`, pt] with ϕ / [`, pt, C].
The two rules in Figure 3.2 are the bounded-quantifier equivalents of the (φ ∗ψ) / [`, pt] and
(φ −−∗ ψ) / [`, pt] rules in Figure 3.1. We denote by (φ / [`, pt, C])⇓ the formula obtained by
exhaustively applying the new labelling rules to φ / [`, pt, C].

The result of the labelling process is a formula in which all quantifiers are of the form
∀`1 . . . ∀`n∀pt1 . . . ∀ptn.

∧n
i=1 `i ⊆ Li ∧

∧n
i=1 pti ⊆ Li ×Di ⇒ ψ(`, pt), where Li and Di are

finite sets of terms, none of which involve quantified variables, and ψ is a formula in the theory
T with sets and uninterpreted functions. Moreover, the labelling rule for φ −−∗ ψ / [`, pt, C]
uses a fresh constant d that does not occur in φ or ψ.
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Example 3.2.2. We revisit below the labelling of from Example 3.2.1.

(emp ∧ (x 7→ a −−∗ y 7→ b)) / [`, pt, {c1}] =⇒∗

`≈∅ ∧ (x 7→ a −−∗ y 7→ b) / [`, pt, {c1}]
−−∗
=⇒

`≈∅ ∧ (∀`′∀pt′ . `′ ⊆ {x, y, a, b, c2} ∧ pt′ ⊆ {x, y, a, b, c2} × {x, y, a, b, d} ⇒
((`′ ∩ `≈∅ ∧ x 7→ a / [`′, pt′, {c2}])⇒ y 7→ b / [〈`′, `〉 , 〈pt′, pt〉 , {c1}]))

7→
=⇒

`≈∅ ∧ (∀`′∀pt′ . `′ ⊆ {x, y, a, b, c2} ∧ pt′ ⊆ {x, y, a, b, c2} × {x, y, a, b, d} ⇒
(`′ ∩ `≈∅ ∧ `′≈{x} ∧ ite(x ∈ `′, pt′(x)≈ a,>) ∧ ¬(x≈ nil)⇒
`′ ∪ `≈{y} ∧ ite(y ∈ `′, pt′(y)≈ b, ite(y ∈ `, pt(y)≈ b,>)) ∧ ¬(y≈ nil)))

We start the labelling using a set C = {c1}, since |emp ∧ (x 7→ a −−∗ y 7→ b)|h = 1. The rules
for ∧ and emp have the same behaviour, but they additionally carry over the set C. We apply
the bounded quantifier version of the rule for−−∗. Note that Pt(x 7→ a −−∗ y 7→ b) = {x, y, a, b}.
Because |x 7→ a ∧ y 7→ b|h = 1, the bounded quantifier labelling of the term x 7→ a −−∗ y 7→ b
introduces C ′ = {c2}. The rule for 7→ is applied as usual. J

We now establish the soundness of the translation of SL(T ) formulae in a fragment of
T that contains only bounded quantifiers, using the rules in Figure 3.2. This relies on the
following technical property of the magic wand.

Proposition 3.2.3. [50, Proposition 89] Given two SL(T )-formulae φ and ψ, for any in-
terpretation I of T and any valuation ν under I, let L ⊆ LocI \ Pt(φ −−∗ ψ)Iν be a set
such that ||L|| = max(|φ|h, |ψ|h) and v ∈ DataI \ Pt(φ −−∗ ψ)Iν be a data value. Then
for any heap h ∈ HeapsI we have I, h, ν |=SL φ −−∗ ψ if and only if I, h ] h′, ν |=SL ψ for any
h′ ∈ HeapsI , where h′#h and I, h′, ν |=SL φ, such that: (1) dom(h′) ⊆ L ∪ Pt(φ −−∗ ψ)Iν , and
(2) h′(`) ∈ Pt(φ −−∗ ψ)Iν ∪ {v}, for all ` ∈ dom(h′).

Lemma 3.2.4. Given a formula φ in the language SL(T ), for any interpretation I of T
and valuation ν under I, let L ⊆ LocI \ Pt(φ)Iν be a set of locations such that ||L|| = |φ|h
and v ∈ DataI \ Pt(φ)I be a data value. Then there exists a heap h such that I, ν, h |=SL φ if
and only if there exist heaps h′ = 〈h′1, . . . , h′n〉 and h′′ = 〈h′′1 , . . . , h′′n〉 such that: (1) for
all i, j ∈ [n] with i < j, we have h′i#h

′
j , (2) for all i ∈ [n], we have h′i ⊆ h′′i and

(3) I[pt← h′′][C ← L][d← v], ν[`← dom(h′)] |=T φ / [`, pt, C]⇓ .

Proof. By Lemma 3.2.2, there exists h such that I, h, ν |=SL φ if and only if there exists h′

such that dom(h′) ⊆ L ∪ Pt(φ)Iν and for all ` ∈ dom(h′), h′(`) ∈ Pt(φ)I ∪ {v}, for a value
v ∈ DataI \ Pt(φ)I . It is thus sufficient to prove the statement for these heaps only and
assume that h satisfies the conditions of Lemma 3.2.2.

We show the following stronger statement. For any heap h, where dom(h) ⊆ L ∪ Pt(φ)Iν
and img(h) ∈ Pt(φ)Iν ∪ {v}, we have I, h, ν |=SL φ if and only if I[pt ← h

′
][C ← L][d ←

v], ν[`← dom(h)] |=T φ/ [`, pt, C]⇓ for all tuples h = 〈h1, . . . , hn〉 and h′ = 〈h′1, . . . , h′n〉 such
that h = h1 ] . . . ] hn and h1 ⊆ h′1, . . . , hn ⊆ h′n.

This can be proven by induction on the structure of φ, similarly to the proof of Lemma
3.2.1. It can be easily verified that the quantified sets variables and uninterpreted functions
belong to the domains required by the rules of Figure 3.2 – for magic wand, in particular,
this is ensured by Proposition 3.2.3.
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3.2.3 A Decision Procedure for Quantifier-Free SL(T ) in SMT

This section presents our decision procedure for the SL(T )-satisfiability of quantifier-free
SL(T ) formulae φ, which uses an underlying efficient decision procedure for the T -satisfiability
of φ / [`, pt, C]⇓, obtained from the transformation described in Section 3.2.2. The main
challenge presented by this problem is treating the universal quantification occurring in
φ / [`, pt, C]⇓, which may involve arbitrary levels of quantifier alternation. As previously
mentioned, the key factor for decidability is that all universally quantified symbols range
over bounded sets.

More concretely, all universally quantified subformulae of φ / [`, pt, C]⇓ are of the form
∀x . (

∧
x ⊆ s)⇒ ψ, where x is a tuple of ground terms and s is a tuple of sets (or products

of sets) containing ground terms. For brevity, we refer to such formulae using the shorthand
∀x ⊆ s . ψ to denote a quantified formula of this form. While we can clearly reduce any
such formulae to a quantifier-free conjunction of instances, constructing these instances is,
in practice, very expensive. Following recent approaches for handling universal quantifica-
tion [19, 40, 5, 43], we use a counterexample-guided method for choosing the instances of
quantified formulae that are relevant to the satisfiability of our input. This method relies
on an iterative procedure that maintains an evolving, equisatisfiable set Γ of quantifier-free
formulae, which is initially obtained from φ by a purification step.

To this end, we extend some notions related to T -satisfiability (Definition 1.1.11) and
T -entailment (Definition 1.1.12) to sets of formulae. Let F , F1 and F1 be sets of T -formulae.
We write [[F ]]T for [[

∧
F ]]T and say that F is T -satisfiable whenever [[F ]]T 6= ∅. Also, F1 |=T F2

if and only if [[F1]]T ⊆ [[F2]]T . We call F1 and F2 equisatisfiable whenever [[F1]]T 6= ∅ implies
[[F2]]T 6= ∅. In the case of our procedure, the sets Γ and {φ} are equisatisfiable, where φ is
the input formula.

For a closed quantified (i.e. not occurring under any other quantifiers) formula ∀x ⊆ s . φ,
the purification step involves associating it to a boolean variable A, called the guard of the
formula and a unique tuple of Skolem symbols k of the same length and sorts as x. We write
(A,k)� ∀x ⊆ s . φ to show that A and k are associated with the formula.

Given a set of T -formulae Γ, we use Q(Γ) for the set of quantified formulae whose guard
occurs within a formula in Γ. Replacing all closed quantified subformulae in φ with their
corresponding guards is called purifying φ and we refer to the result as bφc. Conversely,
replacing all guards in Γ by the quantified formulae they are associated with is called unpu-
rifying and we denote the result by dΓe.

We use bφc∗ for the the smallest set of formulae obtained by purifying an input formula
φ and continuing to apply the purification step to its subformulae such that:

bφc ∈ bφc∗

(¬A⇒ b¬ψ[k/x]c) ∈ bφc∗ if ∀x ⊆ s . ψ ∈ Q(bφc∗) where (A,k)� ∀x ⊆ s . ψ

In other words, bφc∗ contains clauses that witness the negation of each universally quantified
formula occurring in φ. If φ is a T -formula possibly containing quantifiers, then bφc∗ is a
set of quantifier-free T -formulae. Moreover, if all quantified formulae in φ are of the form
∀x ⊆ s . ψ mentioned above, then all quantified formulae in Q(bφc∗) are also of this form.

Example 3.2.3. Consider the SL(T ) formula φ ≡ emp ∧ (y 7→ 0 −−∗ y 7→ 1) ∧ ¬(y≈ nil).
Through a translation process similar to the one in Example 3.2.2, we obtain:

(φ / [`, pt, {c1}])⇓≡ `≈∅ ∧ (∀`′∀pt′ . `′ ⊆ {y, 0, 1, c2} ∧ pt′ ⊆ {y, 0, 1, c2} × {y, 0, 1, d} ⇒
(`′ ∩ `≈∅ ∧ `′≈{y} ∧ ite(y ∈ `′, pt′(y)≈ 0,>) ∧ ¬(y≈ nil)⇒ `′ ∪ `≈{y}
∧ ite(y ∈ `′, pt′(y)≈ 1, ite(y ∈ `, pt(y)≈ 1,>)) ∧ ¬(y≈ nil))) ∧ ¬(y≈ nil)
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Let (φ/ [`, pt, {c1}])⇓= `≈∅∧ (∀`′∀pt′ . ψ)∧¬(y≈ nil). Purifying the result of the translation
yields the following set, where (A, 〈k1, k2〉)� ∀`′∀pt′ . ψ:

b(φ / [`, pt, {c1}])⇓c∗ = {`≈∅ ∧A ∧ ¬(y≈ nil),¬A⇒ ¬ψ[〈k1, k2〉/〈`′, pt′〉]}

This set is obtained by first adding `≈∅∧A∧¬(y≈ nil) ≡ b(φ/[`, pt, {c1}])⇓c. Then, because
∀`′∀pt′ . ψ ∈ Q(b(φ/[`, pt, {c1}])⇓c∗), we also need to add ¬A⇒ b¬ψ[〈k1, k2〉/〈`′, pt′〉]c. Since
ψ does not contain any other quantified subformulae, we have that b¬ψ[〈k1, k2〉/〈`′, pt′〉]c ≡
¬ψ[〈k1, k2〉/〈`′, pt′〉] and the recursive purification stops here. J

solveSL(T )(φ):

Let C be a set of fresh constants of sort Loc such that ||C|| = |φ|h.

Let ` and pt be fresh symbols of sort Set(Loc) and Loc→ Data, respectively.

Return solveT (b(φ / [`, pt, C])⇓c∗).

solveT (Γ):

1. If Γ is T -unsatisfiable,

return “unsat”,

else let (I, ν) be a T -model of Γ.

2. If Γ∪{A} |=T bψ[k/x]c for all ∀x ⊆ s . ψ ∈ Q(Γ), (A,k)� ∀x ⊆ s . ψ and AI = >,

return “sat”,

else let (J , γ) be a T -model of Γ ∪ {A,¬bψ[k/x]c} for some ≺Γ,(I,ν)-minimal

∀x ⊆ s . ψ, where (A,k)� ∀x ⊆ s.ψ.

3. Let t be a vector of terms, such that t ⊆ s, and t
J
γ = k

J
γ .

Return solveT ( Γ ∪ bA⇒ ψ[t/x]c∗).

Figure 3.3: Procedure for deciding the satisfiability of the SL(T ) formula φ.

Figure 3.3 illustrates our solveSL(T ) procedure for determining the SL(T )-satisfiability of
the input formula φ. It operates by first constructing the set C of fresh constant symbols
based on the value of |φ|h, computed by traversing the structure of φ, and also choosing the
fresh symbols ` and pt. By applying the rules in Figure 3.2, φ is translated to (φ / [`, C])⇓,
then purified to obtain b(φ / [`, pt, C])⇓c∗. The subprocedure solveT is invoked on the set
resulting from the purification.

Broadly speaking, the recursive procedure solveT takes as input a quantifier-free set of
T -formulae Γ that is T -unsatisfiable if and only if φ / [`, pt, C] ⇓ is. The set Γ can be
viewed as an under-approximation of φ / [`, pt, C]⇓, where the models for Γ are a super-
set of those for φ / [`, pt, C] ⇓. On each call, solveT either (i) terminates with “unsat”,
indicating that φ / [`, pt, C]⇓ is T -unsatisfiable, (ii) terminates with “sat”, indicating that
φ / [`, pt, C]⇓ is T -satisfiable, or (iii) adds the set resulting from the purification of the
instance bA⇒ ψ[t/x]c∗ to Γ and repeats.
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More concretely, Step 1 of the procedure determines the T -satisfiability of Γ using a
combination of a satisfiability solver and a decision procedure for T . Non-constant Skolem
symbols k introduced by the procedure may be treated as uninterpreted functions. Con-
straints of the form k ⊆ S1 × S2 are translated to

∧
c∈S1

k(c) ∈ S2, while the domain of

k may be restricted to the set {cI | c ∈ S1} in models (I, ν) found in steps 1 and 2 of
the procedure. By the construction of φ / [`, pt, C]⇓, k is only applied to the terms in S1,
thus these restrictions do not cause a loss of generality. Because Γ is T -entailed by dΓe, if
it is established that Γ is T -unsatisfiable, then the procedure may terminate with “unsat”.
Otherwise, there exists a T -model I for Γ.

For each guard A that is mapped to true by ν, Step 2 of the procedure solveT checks
whether Γ∪{A} T -entails bψ[k/x]c for the fresh free constants k. This can be accomplished
by determining whether Γ∪{A,¬bψ[k/x]c} is T -unsatisfiable. A successful check for a quan-
tified formula ∀x . ψ means that Γ |=T {∀x . ψ}. If this check succeeds for all such quantified
formulae, then Γ is equivalent to dΓe and the procedure may terminate with “sat”. Other-
wise, let Q+

(I,ν)(Γ) be the subset of Q(Γ) for which this check did not succeed and which we

call active quantified formulae for Γ and (I, ν). We consider an active quantified formula
that is minimal with respect to the relation ≺Γ,(I,ν) over Q(Γ), where:

ψ ≺Γ,(I,ν) φ if and only if ψ ∈ Q(bφc∗) ∩Q+
(I,ν)(Γ)

Through this ordering, we consider the innermost active quantified formulae first. Let ∀x . ψ
be minimal with respect to ≺Γ,(I,ν), where (A,k) � ∀x . ψ. Since Γ ∪ A does not T -entail

bψ[k/x]c, there must exist a model (J , γ) for Γ ∪ {b¬ψ[k/x]c} where AJ = >.

Step 3 of the procedure chooses a tuple of terms t = 〈t1, . . . , tn〉 based on the model
(J , γ) and adds to Γ the set of formulae obtained by purifying A⇒ ψ[t/x], where A is the
guard of ∀x ⊆ s . ψ. Let s = 〈s1, . . . , sn〉, where each si is a finite union of ground T -terms.

Each tuple t is chosen such that ti is a subset of si, for all i ∈ [n], with t
J
γ = k

J
γ . These

two criteria are essential to the termination of our algorithm: the former ensures that only
a finite number of possible instances can ever be added to Γ, and the latter ensures that the
same instance is never added more than once.

We now show the correctness of our procedure, which requires some intermediate lemmas.

Lemma 3.2.5. Given any T -formula φ, the following hold:

(1) φ is T -satisfiable only if bφc∗ is T -satisfiable, and

(2) φ and dbφc∗e are T -equivalent up to their shared variables.

Proof. (Sketch) To show (1), let (I, ν) be a T -model of φ. Let γ be an extension of ν such
that γ(A) = (∀x.ψ)Iν , for each ∀x.ψ ∈ Q(bφc∗) where (A,k) � ∀x.ψ. Then the pair (I, γ)
is a T -model for bφc∗.

To show (2), notice that dbφc∗e is a set that can be constructed from an initial value
{φ}, and updated by adding formulae of the form (¬∀x.ψ ⇒ ¬ψ[k/x]) for fresh constants
k. For each step of this construction, the set of models are the same when restricted to
the interpretation of all variables apart from k. Thus, by induction, φ and dbφc∗e are T -
equivalent up to their shared variables.

Lemma 3.2.6. For every recursive call to solveT (Γ), if Γ ∪ A |=T bψ[k/x]c, where (A,k)�
∀x.ψ, then Γ |=T ∀x.ψ.
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Proof. It suffices to show there exists a subset Γ′ of Γ such that Γ′ does not contain k and
Γ′ |=T bψ[k/x]c. Note that, if such a Γ′ exists, then, since Γ′ ⊆ Γ and Γ′ do not contain k,
we have that Γ |=T ∀x.ψ. By construction, Γ may be partitioned into sets Γ′ and Γ′′, where
Γ′ does not contain k, and Γ′′ contains only (i) ¬A ⇒ b¬ψ[k/x]c, and (ii) constraints of
the form ¬A1 ⇒ b¬ψ1[j/y]c and bA1 ⇒ ψ1[t/y]c∗, where (A1, j) � ∀y.ψ1 and A1 does not
occur in Γ′.

Assume that Γ \ Γ′′, A, b¬ψ[k/x]c has a T -model (I, ν). Let γ be an extension of ν such
that for each (A1, j)� ∀x.ψ1 occurring in Q(Γ′′) and not in Q(Γ′) we have γ(A1) = (∀x.ψ1)Iν .
The pair (I, γ) is a T -model for Γ, A and b¬ψ[k/x]c, noting that the constraint ¬A ⇒
b¬ψ[k/x]c holds since γ(A) must be >. This contradicts the assumption Γ∪{A} |=T bψ[k/x]c,
and thus (Γ\Γ′′)∪{A}∪b¬ψ[k/x]c is T -unsatisfiable. In other words, Γ′∪{A} |=T bψ[k/x]c.
Since A does not occur in bψ[k/x]c, we have that Γ′ |=T bψ[k/x]c, and the lemma holds.

Lemma 3.2.7. If Γ = {bφc∗ | φ ∈ S} for some set S, and ∀x.ψ ∈ Q(Γ) is ≺Γ,(I,ν)-minimal,

then Γ ∪ {(¬)bψ[k/x]c} and Γ ∪ {(¬)ψ[k/x]} are T -equivalent up to their shared variables.

Proof. (Sketch) By definition of ≺Γ,(I,ν)-minimal, we have that Γ, A0 |=T bψ0[k/x]c for all

∀x0.ψ0 ∈ Q+
I (bψ[k0/x0]c) where (A0,k0) � ∀x0.ψ0. For each such formula, by Lemma

3.2.6, Γ |=T ∀x0.ψ0. Therefore, Γ∪{(¬)bψ[k/x]c} and Γ∪{(¬)dbψ[k/x]ce} are T -equivalent
up to their shared variables, which by Lemma 3.2.5.(2) implies that Γ ∪ {(¬)bψ[k/x]c} and
Γ ∪ {(¬)ψ[k/x]} are T -equivalent up to their shared variables.

Lemma 3.2.8. Given any SL(T )-formula φ, solveT (bψc∗) where ψ is (φ / [`, pt, C])⇓:

(1) Answers “unsat” only if ψ is T -unsatisfiable.

(2) Answers “sat” only if ψ is T -satisfiable.

(3) Terminates.

Proof. Assume solveT (Γi) calls solveT (Γi+1) for i ∈ [n− 1], where n is finite and Γ0 = bψc∗.
By the definition of solveT and Lemma 3.2.5 (2), it can be shown that dΓie and dΓi+1e are
equisatisfiable in T , and thus, by induction, dΓje and dΓke are equisatisfiable in T for each
j, k ∈ [n].

To show (1), assume without loss of generality, that solveT (Γn) answers “unsat”. Then
Γn is T -unsatisfiable, and, by Lemma 3.2.5.(1), we have that dΓne is T -unsatisfiable. Thus,
dΓ0e is T -unsatisfiable, and thus, by Lemma 3.2.5.(2), ψ is T -unsatisfiable.

To show (2), assume without loss of generality that solveT (Γn) answers “sat”. Then Γn is
T -satisfiable with model (I, ν). We argue that (I, ν) is a model for dΓne, which implies that
dΓ0e is T -satisfiable, and thus by Lemma 3.2.5 (2), ψ is T -satisfiable. Assume that (I, ν)
is a model for Γn but not for dΓne. Thus, ν(A) 6= (∀x.ψ)Iν for some ∀x.ψ ∈ Q(Γn) where
(A,k)� ∀x.ψ. In the case that ν(A) = ⊥I and (∀x.ψ)Iν = >I , note that (I, ν) is not a model
for (¬A⇒ b¬φ[k/x]c) ∈ Γn. In the case that ν(A) = >I and (∀x.ψ)Iν = ⊥I , by the definition
of solveT , we have Γn ∪{A} |=T bψ[k/x]c. By Lemma 3.2.6, we have that Γn |=T ∀x.ψ. Since
(I, ν) is a model of Γn, it must be the case that (∀x.ψ)Iν = >I , contradicting the fact that
(∀x.ψ)Iν = ⊥I . Therefore, our assumption that (I, ν) is not a model for dΓne is false.

To show (3), first note that the checks for T -satisfiability and T -entailment terminate,
by assumption of a decision procedure for the T -satisfiability of quantifier-free formulae.
Moreover, for each quantified formula ∀x.ψ, only a finite number of instances A ⇒ ψ[t/x]
exist for which the algorithm will add bA⇒ ψ[t/x]c∗ to Γ, which implies that the algorithm
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will consider only a finite number of quantified formulae, and for each only a finite number
of instances will be added in this way. Thus, it suffices to show that the algorithm adds
to Γ only sets bA ⇒ ψ[t/x]c∗ that are not a subset of Γ. Assume this is not the case for
some bA ⇒ ψ[t/x]c∗, where ∀x.ψ ∈ Q(Γn), ∀x.ψ is ≺Γ,(I,ν)-minimal, and (A,k) � ∀x.ψ.
The terms t meet the criteria in the procedure. In particular, for some model (J , γ) of

Γ ∪ {¬bψ[k/x]c} where γ(A) = >I , we have t
J
γ = k

J
γ . Since γ(A) = >I and (A ⇒

bψ[t/x]c) ∈ bA ⇒ ψ[t/x]c∗ ⊆ Γ, (J , γ) is a model for bψ[t/x]c and also ¬bψ[k/x]c. By
Lemma 3.2.7, since ∀x.ψ is ≺Γ,(I,ν)-minimal, (J , γ) satisfies ψ[t/x] and ¬ψ[k/x]. Therefore,

we obtain that k
J
γ 6= t

J
γ , which is a contradiction, thus our initial assumption is false.

Theorem 3.2.9. Given any SL(T )-formula φ, solveSL(T )(φ):

(1) Answers “unsat” only if φ is SL(T )-unsatisfiable.

(2) Answers “sat” only if φ is SL(T )-satisfiable.

(3) Terminates.

Proof. To show (1), by Lemma 3.2.8 (1), it must be the case that (φ / [`, pt, C])⇓ is T -
unsatisfiable. Thus, there cannot be heaps meeting the requirements of h′ and h′′ in Lemma
3.2.1, and by that lemma we get that φ is SL(T )-unsatisfiable.

To show (2), by Lemma 3.2.8 (2), it must be the case that (φ / [`, pt, C])⇓ has a T -model
(J , γ). Let h′ be the heap with domain γ(`) such that h′(u) = ptJ (u) for all u ∈ γ(`), and
let h′′ = ptJ . Since LocJ has infinite cardinality, and due to the structure of (φ/ [`, pt, C])⇓,
we may assume that CJ ⊆ LocJ \ Pt(φ)Jγ and call this set L. Let v = dJ . Consider
(I, ν) such that (J , γ) = (I[pt ← [ h′′][C ← L][d ← v], ν[` ← dom(h′)]). Since we assumed
J , γ |=T (φ / [`, pt, C])⇓, then, by Lemma 3.2.4, there exists a heap h such that I, ν, h |=SL φ,
and thus φ is SL(T )-satisfiable.

Lastly, (3) is an immediate consequence of Lemma 3.2.8 (3).

Theorem 3.2.9 establishes that solveSL(T ) is a decision procedure for the SL(T )-satisfiability
of quantifier-free SL(T )-formulae. A tight complexity bound for this problem is given by the
following corollary.

Corollary 3.2.10. The SL(T )-satisfiability problem is PSPACE-complete for any theory T
whose satisfiability problem for the quantifier-free fragment is in PSPACE.

Proof. PSPACE-hardness can be obtained by reduction from QSAT, which generalizes [11,
Definition 7] to our case. Let φ ≡ ∀x1∃y1 . . . ∀xn∃yn.ψ be an instance of QSAT, where ψ is
a boolean combination of the variables xi and yi of sort Bool. We encode φ in SL(T ) using
the translation function Tr(.), defined recursively on the structure of φ as follows:

Tr(xi) ≡ (ti 7→ d) ∗ > Tr(yi) ≡ (ui 7→ d) ∗ >
Tr(¬ψ) ≡ ¬Tr(ψ) Tr(ψ1 • ψ2) ≡ Tr(ψ1) • Tr(ψ2)

Tr(∃yi . ψ) ≡ ((ui 7→ d) ∨ emp) ∗ Tr(ψ) Tr(∀xi . ψ) ≡ ¬(((ti 7→ d) ∨ emp) ∗ ¬Tr(ψ))

where d is constant of sort Data and • ∈ {∧,∨}. It is not hard to check that φ is satisfiable if
and only if there exists a T -model (I, ν) and a heap h such that I, ν, h |=SL Tr(φ). To prove that
SL(T )-satisfiability is in PSPACE, we analyse the space complexity of the solveSL(T ) algorithm.
First, for any SL(T )-formula φ, let Size(φ) be the size of the syntax tree of φ. Clearly
||bφc∗|| ≤ Size(φ), and moreover, Size(ψ) ≤ Size(φ) for each ψ ∈ bφc∗. Then a representation
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of the set bφc∗ by simply enumerating its elements will take space at most Size(φ)2. For a set
of formulae Γ, let Size(Γ) =

∑
φ∈Γ Size(φ) denote the size of its enumerative representation.

Secondly, it is not difficult to see that |φ|h ≤ Size(φ) and ||Pt(φ)|| ≤ Size(φ), for any SL(T )-
formula φ. Then, for each subformula ∀x ⊆ s . ψ of φ / [`, pt, C]⇓, we have ||s|| ≤ Size(φ)2 –
in fact ||s|| ≤ Size(φ) if x is of sort Set(Loc) and ||s|| ≤ Size(φ)2 if x is of sort Loc 7→ Data.
Then there are at most Size(φ)2 recursive calls on line 3 of the solveT procedure, that
corresponds to an instance of the subformula ∀x ⊆ s . ψ of φ / [`, pt, C] ⇓. Since there
are at most Size(φ) such subformulae, there are at most Size(φ)3 recursive calls to solveT
with arguments Γ0, . . . ,Γn, respectively. Moreover, we have Γ0 = {φ / [`, pt, C]⇓}, thus
Size(Γ0) = O(Size(φ)) and Size(Γi+1) ≤ Size(Γi)+Size(φ)2 for each i ∈ [n−1], because a set
of formulae bA⇒ ψ[t/x]c∗ of size at most Size(φ)2 is added to Γi. Because T -satisfiability is
in PSPACE, by the hypothesis, the checks at lines 1 and 2 can be done within space bounded
by a polynomial in Size(φ), thus the space needed by solveSL(T )(φ) is also bounded by a
polynomial in Size(φ). Hence the SL(T )-satisfiability problem is in PSPACE.

In practice, the procedure solveSL(T ) terminates in much less time that the theoretical
worst-case complexity given by the above corollary. Our evaluation of the prototype im-
plementation, described in Section 3.2.5, corroborates this fact. Moreover, the following
example also illustrates this aspect.

Example 3.2.4. The translation and purification shown in Example 3.2.2 cover the steps
taken by our solveSL(T ) procedure before the call to solveT . We now show what hap-
pens when the procedure solveT is invoked, having Γ0 = {`≈∅ ∧ A ∧ ¬(y≈ nil),¬A ⇒
¬ψ[〈k1, k2〉/〈`′, pt′〉]} as input.

Step 1 determines that Γ0 is T -satisfiable with a model I such that AI = >I . Since
Γ0 ∪ {A} |=T ψ[〈k1, k2〉/〈`′, pt′〉] does not hold, Step 2 of solveT finds a model J for the set
Γ0 ∪ {A,¬ψ[〈k1, k2〉/〈`′, pt′〉]}. Note that

¬ψ ≡ `′ ⊆ {y, 0, 1, c2} ∧ pt′ ⊆ {y, 0, 1, c2} × {y, 0, 1, d})∧
`′ ∩ `≈∅ ∧ `′≈{y} ∧ ite(y ∈ `′, pt′(y)≈ 0,>) ∧ ¬(y≈ nil)∧
¬(`′ ∪ `≈{y} ∧ ite(y ∈ `′, pt′(y)≈ 1, ite(y ∈ `, pt(y)≈ 1,>)) ∧ ¬(y≈ nil))

We can choose 〈t1, t2〉 such that tJ1 = kJ1 = {y} and tJ2 = kJ2 . It is required that t2 ⊆
{y, 0, 1, c2}× {y, 0, 1, d} and t2(y)J = 0J . Then Step 3 recursively invokes solveT on the set

Γ1 = Γ0 ∪ bA⇒ ψ[〈t1, t2〉 / 〈`′, pt′〉]c∗

≡ Γ0 ∪ {A⇒ (¬(y≈ nil)⇒ ({y}≈{y} ∧ ite(y ∈ {y}, 0≈ 1, pt(y)≈ 1) ∧ ¬(y≈ nil)))}
≡ Γ0 ∪ {A⇒ (¬(y≈ nil)⇒ ⊥)}

The new formula added to Γ1 contradicts `≈∅ ∧A ∧ ¬(y≈ nil), thus the next call to solveT
will determine that the input set is T -unsatisfiable. Therefore, the input formula φ is also
SL(T )-unsatisfiable. J

3.2.4 Partial Support for Quantifiers

In many practical cases it is useful to check the validity of entailments between existentially
quantified SL(T )-formulae such as ∃x . φ(x) and ∃y . ψ(y). Typically, this problem translates
into a satisfiability query for an SL(T )-formula ∃x∀y . φ(x) ∧ ¬ψ(y), with one quantifier
alternation. A partial solution to this problem is to first check the satisfiability of φ. If φ
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ls1(x, y, a)← x≈ y ∧ emp | b≈ a+ 10 ∧ x 7→ (a, z), ls1(z, y, b)

ls2(x, y, a)← x≈ y ∧ emp | a ≤ b ∧ x 7→ (a, z), ls2(z, y, b)

tree1(x, a)← x≈ nil ∧ emp | b≈ a− 10 ∧ c≈ a+ 10 ∧ x 7→ (a, y, z), tree1(y, b), tree1(z, c)

tree2(x, a)← x≈ nil ∧ emp | b ≤ a ∧ a ≤ c ∧ x 7→ (a, y, z), tree2(y, b), tree2(z, c)

pos1(x, a) ← x 7→ a | x 7→ a, pos1(y, b)

pos2(x, y) ← x 7→ y | x 7→ y, pos2(y, z)

neg1(x, a)← ¬(x 7→ a) | x 7→ a, neg1(y, b)

neg2(x, a)← x 7→ a | ¬(x 7→ a), neg2(y, b)

neg3(x, a)← x 7→ a | x 7→ a,¬neg3(y, b)

neg4(x, a)← x 7→ a | ¬(x 7→ a),¬neg4(y, b)

neg5(x, y)← ¬(x 7→ y) | x 7→ y, neg5(y, z)

neg6(x, y)← x 7→ y | ¬(x 7→ y), neg6(y, z)

Figure 3.4: Inductive predicates whose finite unfoldings are used in the experiments

is not satisfiable, the entailment holds trivially, so let us assume that φ has a model. We
then check the satisfiability of φ ∧ ψ. If unsatisfiable, then the entailment cannot hold,
because there exists a model of φ which is not a model of ψ. Else, if φ ∧ ψ has a model, we
add an equality x≈ y for each pair of variables (x, y) ∈ x× y that are mapped to the same
term in this model, the result being a conjunction E(x,y) of equalities. Finally, we check the
satisfiability of the formula E∧φ∧¬ψ. If this formula is unsatisfiable, the entailment is valid,
otherwise, the test is inconclusive. This method was applied manually for all entailments in
our evaluation set, described in Section 3.2.5. A general procedure for quantifier instantiation
in the context of the ∃∗∀∗-quantified fragment of SL(T ) is introduced in Section 3.3.

3.2.5 Experimental Evaluation

We tested our implementation of the SL(T )-satisfiability procedure in CVC4 version 1.51. on
two kinds of benchmarks. All experiments were run on a 2.80GHz Intel R© CoreTM i7-4600U
CPU machine with 8MB of cache.

The first part of our experiments focuses on finite unfoldings of the inductive predicates
shown in Figure 3.4, mostly inspired by existing benchmarks, such as SL-COMP’14 [46]. For
instance, unfolding ls1 once results in the formula

x≈ y ∧ emp ∨ ∃z∃b . (b = a+ 10 ∧ x 7→ (a, z)) ∗ (z≈ y ∧ emp)

while unfolding it twice gives the formula

x≈ y ∧ emp∨
∃z∃b . (b≈ a+ 10 ∧ x 7→ (a, z)) ∗ (z≈ y ∧ emp ∨ (c = b+ 10 ∧ z 7→ (b, w)) ∗ (w≈ y ∧ emp))

Since our decision procedure targets the quantifier-free fragment of SL(T ), for each en-
tailment we unfold both predicates using the same variables. We checked the validity of the
entailment between LHS and RHS, where both predicates are unfolded n = 1, n = 2, n = 3,
n = 4 and n = 8 times, by applying the manual instantiation method described in Section
3.2.4. The entailment in which LHS is ls1(x, y, a), RHS is ls2(x, y, a) and n = 1 is, actually,

∃z∃b . x≈ y ∧ emp∨
(b≈ a+ 10 ∧ x 7→ (a, z)) ∗ (z≈ y ∧ emp)

|=SL ∃z′∃b′ . x≈ y ∧ emp∨
(a ≤ b′ ∧ x 7→ (a, z′)) ∗ (z′≈ y ∧ emp)

1Available at http://cvc4.cs.nyu.edu/web/.
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and the final formula being checked by the decision procedure is

z′≈ z ∧ b′≈ b ∧ (x≈ y ∧ emp ∨ (b≈ a+ 10 ∧ x 7→ (a, z)) ∗ (z≈ y ∧ emp))∧
¬(x≈ y ∧ emp ∨ (a ≤ b′ ∧ x 7→ (a, z′)) ∗ (z′≈ y ∧ emp))

The second part of our experiments uses verification conditions automatically gener-
ated by applying the weakest precondition calculus of [29] several times to the program
loops depicted in Figure 3.5. These verification conditions are of the forms φ |=SL wp(l, φ) and
φ |=SL wpn(l, φ), where wp(l, φ) denotes the weakest precondition of the SL formula φ with
respect to the sequence of statements l, and wpn(l, φ) = wp(l, . . .wp(l,wp(l, φ)) . . .) denotes
the iterative application of the weakest precondition calculus n times in a row. For each loop
l we also consider the variant zl as well, which, through the assertions on line 2 of each loop,
tests that the data values contained within the memory cells are 0. The postconditions are
specified using lists of specific lengths, defined by the predicates listn and zlistn with n ≥ 0.
The manual instantiation method described in Section 3.2.4 was again used to eliminate the
quantified variables in these verification conditions.

1: while w 6= nil do
2: assert(w.data = 0)
3: v := w;
4: w := w.next;
5: dispose(v);
6: do

(z)disp

1: while u 6= nil do
2: assert(u.data = 0)
3: w := u.next;
4: u.next := v;
5: v := u;
6: u := w;
7: do

(z)rev

list0(x) ← x≈ nil ∧ emp zlist0(x) ← x≈ nil ∧ emp
listn(x) ← ∃y . x 7→ y ∗ listn−1(y) zlistn(x) ← ∃y . x 7→ (0, y) ∗ zlistn−1(y)

Figure 3.5: Program loops and the list definitions on which they operate

As an example, list2(w) is the formula ∃u∃v . w 7→ u ∗ u 7→ v ∗ (v≈ nil ∧ emp) and the
weakest precondition calculus wp2(disp, emp ∧ w = nil) yields

∃w1∃w2∃w3∃w4 . ((((w2≈ nil∧ emp) ∗w4 7→ w1)∧ (w4 7→ w2 ∗>)) ∗w 7→ w3)∧ (w 7→ w4 ∗>)

Then the final formula checked by our decision procedure is

w1≈ v ∧ w2≈ v ∧ w3≈u ∧ w4≈u ∧ (w 7→ u ∗ u 7→ v ∗ (v≈ nil ∧ emp))∧
¬((((w2≈ nil ∧ emp) ∗ w4 7→ w1) ∧ (w4 7→ w2 ∗ >)) ∗ w 7→ w3) ∧ (w 7→ w4 ∗ >)

For a majority of benchmarks, the runtime of CVC4 is quite low, with the exception
of the n = 4 and n = 8 cases of the entailments between tree1 and tree2 formulae, which
resulted in a timeout after 300 seconds due to the exponential blow-up in the size of the
formulae and the number of variables used. For such cases in which CVC4 times out, the
performance bottleneck resides in its ground decision procedure for finite sets, indicating
efficient support for this theory is important for our approach to separation logic.
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LHS RHS n = 1 n = 2 n = 3 n = 4 n = 8

Unfoldings of inductive predicates

ls1(x, y, a) ls2(x, y, a)
unsat unsat unsat unsat unsat

< 0.01s < 0.01s < 0.01s 0.01s 0.01s

tree1(x, a) tree2(x, a)
unsat unsat unsat timeout timeout

< 0.01s 0.06s 1.89s > 300s > 300s

pos1(x, a) neg1(x, a)
unsat unsat unsat unsat unsat

0.02s 0.04s 0.11s 0.25 s 3.01s

pos1(x, a) neg2(x, a)
unsat unsat unsat unsat unsat

0.01s 0.05s 0.11s 0.23s 2.10s

pos1(x, a) neg3(x, a)
unsat unsat unsat unsat unsat

0.02s 0.07s 0.24s 0.46s 4.05s

pos1(x, a) neg4(x, a)
unsat sat unsat sat sat
0.05s 0.24s 0.33s 2.77s 24.72s

pos2(x, y) neg5(x, y)
unsat unsat unsat unsat unsat

0.02s 0.05s 0.14s 0.32s 3.69s

pos2(x, y) neg6(x, y)
sat unsat unsat unsat unsat

0.02s 0.04s 0.13s 0.27s 2.22s

Verification conditions

listn(w) wp(disp, listn−1(w)) < 0.01s 0.02s 0.05s 0.12s 1.97s

listn(w) wpn(disp, list0(w) < 0.01s 0.02s 0.12s 0.41s 22.97s

zlistn(w) wp(zdisp, zlistn−1(w)) 0.01s 0.02s 0.05s 0.11s 1.34s

zlistn(w) wpn(zdisp, zlist0(w) 0.01s 0.02s 0.11s 0.43s 24.13s

listn(u) ∗ list0(v) wp(rev, listn−1(u) ∗ list1(v)) 0.06s 0.08s 0.14s 0.30s 2.83s

listn(u) ∗ list0(v) wpn(rev, list0(u) ∗ listn(v)) 0.06s 0.12s 0.56s 1.75s 27.82s

zlistn(u) ∗ zlist0(v) wp(zrev, zlistn−1(u) ∗ zlist1(v)) 0.22s 0.04s 0.12s 0.25s 2.16s

zlistn(u) ∗ zlist0(v) wpn(zrev, zlist0(u) ∗ zlistn(v)) 0.04s 0.10s 0.41s 1.27s 20.26s

Table 3.1: Experimental results of our procedure for quantifier-free SL(T ) inputs

3.3 The Bernays-Schönfinkel-Ramsey Fragment of SL(T )

The Bernays-Schönfinkel-Ramsey class refers to the ∃∗∀∗-quantified fragment of first-order
logic with equality and uninterpreted predicate symbols, but without any function sym-
bols [33]. We use this name to analogously refer to the ∃∗∀∗-quantified fragment of SL(T )
and consider formulae φ ≡ ∃x1 . . . ∃xm∀y1 . . . ∀yn . ψ(x1, . . . , xm, y1, . . . , yn), where ψ is any
quantifier-free SL(T )-formula and the quantified variables range over the set of memory loca-
tions. Then φ is satisfiable if and only if its functional form ∀y1 . . . ∀yn . ψ[c1/x1, . . . , cm/xm]
is satisfiable, where c1, . . . , cm are fresh (Skolem) constant symbols.

We explicitly refer to the sorts for memory locations and data by writing SL(T )Loc,Data,
and we denote the Bernays-Schönfinkel-Ramsey fragment by ∃∗∀∗SL(T )Loc,Data. For pro-
grams using pointer arithmetic, as it is the case of C or C++, it is useful to consider LIA
(Liniar Integer Arithmetic) for the theory of memory addresses. Otherwise, if the program
only performs equality checks on the values of the pointers, as in Java, we can use E (Equality
with Uninterpreted Functions) for this purpose.
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3.3.1 Decidability and complexity results

We consider the satisfiability of the ∃∗∀∗SL(T )Loc,Data fragment in the following cases:

1. Loc is interpreted as the sort U of E and Data as Uk, for some k ≥ 1. In general, the
satisfiability problem for ∃∗∀∗SL(E)U,Uk with k ≥ 2 is undecidable [16, Theorem 1].
The root cause of this undecidability result is the occurrence of universally quantified
variables within the scope of a separating implication, which, moreover, appears under
an even number of negations. We can recover decidability when U is finite or countably
infinite by considering more restricted fragments in which we forbid universally quan-
tified variables from appearing under the scope of any positive separating implication
or, respectively, forbid any positive occurrence of separating implications whatsoever
[16, Theorems 2 and 3]. In this cases, the satisfiability problem for ∃∗∀∗SL(E)U,Uk
becomes PSPACE-complete. In consequence, satisfiability for the −−∗-free fragment of
∃∗∀∗SL(E)U,Uk when U is either finite or countably infinite is also PSPACE-complete.

2. Both Loc and Data are interpreted as Int, equipped with addition and total order. Then
the satisfiability problem for ∃∗∀∗SL(LIA)Int,Int is undecidable;

3. Loc is interpreted as the sort U of E, and Data as U × Int. Then the satisfiability
problem for ∃∗∀∗SL(ELIA)U,U×Int is undecidable.

The results for cases 2 and 3 rely on an undecidability argument for a fragment of
Presburger arithmetic with one monadic predicate symbol, interpreted over finite sets. We
denote by (∃∗∀∗ ∩∀∗∃∗)-LIA the set of conjunctions between two linear arithmetic formulae,
one ∃∗∀∗-quantified, and the other ∀∗∃∗-quantified.

Theorem 3.3.1. The satisfiability problem is undecidable for the fragment (∃∗∀∗ ∩∀∗∃∗)−
LIA, with one monadic predicate symbol, interpreted over finite sets of integers.

Proof. We reduce from the following variant of Hilbert’s 10th Problem: given a multivariate
Diophantine polynomial R(x1, . . . , xn), the problem “does R(x1, . . . , xn) = 0 have a solution
in Nn?” is undecidable [35].

By introducing sufficiently many free variables, we encode R(x1, . . . , xn) = 0 as an equi-
satisfiable Diophantine system of degree at most two, containing only equations of the form
x = yz (resp. x = y2) and linear equations

∑k
i=1 aixi = b, where a1, . . . , ak, b ∈ Z. Next, we

replace each equation of the form x = yz, with y and z distinct variables, with the quadratic
system 2x + ty + tz = ty+z ∧ ty = y2 ∧ tz = z2 ∧ ty+z = (y + z)2, where ty, tz and ty+z are
fresh (free) variables. In this way, we replace all multiplications between distinct variables
by occurrences of the squaring function. Let ΨR(x1,...,xn)=0 be the conjunction of the above
equations. It is manifest that R(x1, . . . , xn) = 0 has a solution in Nn iff ΨR(x1,...,xn)=0 is
satisfiable, with all free variables ranging over N.

Now we introduce a monadic predicate symbol P , which is intended to denote a (possibly
finite) set of consecutive perfect squares, starting with 0. To capture this definition, we
require the following:

P (0) ∧ P (1) ∧ ∀x∀y∀z . P (x) ∧ P (y) ∧ P (z) ∧ x < y < z ∧
(∀u . x < u < y ∨ y < u < z ⇒ ¬P (u))⇒ z − y = y − x+ 2

(sqr)

Observe that this formula is a weakening of the definition of the infinite set of perfect squares
given by Halpern [20], from which the conjunct ∀x∃y . y > x ∧ P (y), requiring that P is an
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infinite set of natural numbers, has been dropped. Moreover, notice that sqr has quantifier
prefix ∀3∃, due to the fact that ∀u occurs implicitly under negation, on the left-hand side of
an implication. If P is interpreted as a finite set P I = {p0, p1, . . . , pN} such that (w.l.o.g.)
p0 < p1 < . . . < pN , it is easy to show, by induction on N > 0, that pi = i2, for all
i = 0, 1, . . . , N .

The next step is encoding the squaring function using the monadic predicate P . This is
done by replacing each atomic proposition x = y2 in ΨR(x1,...,xn)=0 by the formula θx=y2 ≡
P (x) ∧ P (x+ 2y + 1) ∧ ∀z . x < z < x+ 2y + 1⇒ ¬P (z).

Fact 1. For each interpretation I and valuation ν ∈ VI mapping x and y into N, I, ν |= x =
y2 if and only if I can be extended to an interpretation of P as a finite set of consecutive
perfect squares such that I, ν |= θx=y2 .

Proof of Fact 1. For the direct implication, if I, ν |= x = y2 then we have (ν(y) + 1)2 =
ν(x) + 2ν(y) + 1. Let P I be the set {0, 1, . . . , (ν(y) + 1)2}. Clearly ν(x), ν(x) + 2ν(y) + 1 ∈
P I and, since they are consecutive perfect squares, every number in between ν(x) and
ν(x)+2ν(y)+1 does not belong to P I . Thus I, ν |= θx=y2 . Considering the reverse implica-
tion, if I, ν |= θx=y2 and P I is a set of consecutive perfect squares, it follows that ν(x) and
ν(x)+2ν(y)+1 are consecutive perfect squares, i.e. ν(x) = n2 and ν(x)+2ν(y)+1 = (n+1)2

for some n ∈ N. Then ν(y) = n, thus I, ν |= x = y2.

Let ΦR(x1,...,xn)=0 be the conjunction of sqr with the formula obtained by replacing each
atomic proposition x = y2 with θx=y2 in ΨR(x1,...,xn)=0. Observe that each universally quan-
tified variable in ΦR(x1,...,xn)=0 occurs either in sqr or in some θx=y2 , and moreover, each
θx=y2 belongs to the ∃∗∀∗ fragment of LIA. ΦR(x1,...,xn)=0 belongs thus to the ∃∗∀∗ ∩ ∀∗∃∗
fragment of LIA, with P being the only monadic predicate symbol. Finally, we prove that
R(x1, . . . , xn) = 0 has a solution in Nn iff ΦR(x1,...,xn)=0 is satisfiable.

“⇒” Let I be an interpretation I and ν ∈ VI be a valuation mapping x1, . . . , xn into N, such
that I, ν |= R(x1, . . . , xn) = 0. Obviously, ν can be extended to a model of ΨR(x1,...,xn)=0

by assigning ν(tx) = (ν(x))2 for all auxiliary variables tx occurring in ΨR(x1,...,xn)=0. We
extend (I, ν) to a model of ΦR(x1,...,xn)=0 by assigning P I = {n2 | 0 ≤ n ≤

√
m}, where

m = max{(ν(x) + 1)2 | x ∈ FV(ΨR(x1,...,xn)=0)}. Clearly P I meets the requirements of sqr.
By Fact 1, we obtain that I, ν |= θx=y2 for each subformula θx=y2 of ΦR(x1,...,xn)=0, thus
I, ν |= ΦR(x1,...,xn)=0.

“⇐” If I, ν |= ΨR(x1,...,xn)=0 then, by sqr, P I is a set of consecutive perfect squares, and, by
Fact 1, I, ν |= x = y2 for each subformula θx=y2 of ΦR(x1,...,xn)=0. Then I, ν |= ΨR(x1,...,xn)=0

and, consequently, I, ν |= R(x1, . . . , xn) = 0.

Consider now the satisfiability problem for the fragment ∃∗∀∗SL(LIA)Int,Int where both
Loc and Data are the Int sort, equipped with addition and total order. In this case, the heap
consists of a set of lists with possible aliases and circularities. Without loss of generality,
we consider that Int is the set of positive integers – extending the interpretation of Loc to
include negative integers does not make any difference for the undecidability result.

The above theorem cannot be directly used for the undecidability of ∃∗∀∗SL(LIA)Int,Int,
by interpreting the (unique) monadic predicate as the (finite) domain of the heap. This is
due to the sqr formula, which defines the interpretation of the monadic predicate as a set
of consecutive perfect squares 0, 1, . . . , n2, and whose quantifier prefix belongs to the ∀∗∃∗
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fragment. We overcome this problem by replacing the sqr formula above with a definition of
such sets in ∃∗∀∗SL(LIA)Int,Int. Consider first the following SL properties: [6]:

]x ≥ 1 ≡ ∃u . u 7→ x ∗ >
]x ≤ 1 ≡ ∀u∀t .¬(u 7→ x ∗ t 7→ x ∗ >)

Intuitively, ]x ≥ 1 states that x has at least one predecessor in the heap and ]x ≤ 1 states
that x has at most one predecessor. We use ]x = 0 and ]x = 1 as shorthands for ¬(]x ≥ 1)
and ]x ≥ 1∧]x ≤ 1, respectively. The formula below states that the heap can be decomposed
into a list segment, starting with x and ending in y, and several disjoint cyclic lists:

x
	−→

+
y ≡ ]x = 0 ∧ alloc(x) ∧ ]y = 1 ∧ ¬alloc(y) ∧

∀z .¬(z≈ y)⇒ (]z = 1⇒ alloc(z)) ∧ ∀z . ]z ≤ 1

We forbid the existence of circular lists by adding the following arithmetic constraint:

∀u∀t . u 7→ t ∗ > ⇒ u < t (nocyc)

We also ask that the elements of the list segment starting in x are consecutive perfect squares:

consqr(x) ≡ x = 0 ∧ x 7→ 1 ∗ > ∧ ∀z∀u∀t . z 7→ u ∗ u 7→ t ∗ > ⇒ t− u = u− z + 2 (consqr)

The formula ∃x∃y . x 	−→
+
y ∧ nocyc ∧ consqr(x) belongs to the ∃∗∀∗SL(LIA)Int,Int fragment.

Theorem 3.3.2. The satisfiability problem for ∃∗∀∗SL(LIA)Int,Int is undecidable.

Proof. We use the same reduction as in the proof of Theorem 3.3.1, but replace sqr by

∃x∃y . x 	−→
+
y ∧ nocyc∧ consqr(x), and define θx=y2 as alloc(x)∧ alloc(x+ 2y+ 1)∧ ∀z . x <

z < x+ 2y + 1⇒ ¬alloc(z).

Finally, we consider a variation on the previous undecidability result, where locations are
the (uninterpreted) sort U of E and the data consists of tuples of sort U × Int. This fragment
of SL can be useful when reasoning about lists with integer data. Its undecidability can be
proved in a manner similar with Theorem 3.3.2.

Theorem 3.3.3. The satisfiability problem for ∃∗∀∗SL(ELIA)U,U×Int is undecidable.

Proof. We redefine the following shorthands:

]x ≥ 1 ≡ ∃uU∃dInt . u 7→ (d, x) ∗ >
]x ≤ 1 ≡ ∀uU∀tU∀dInt .¬(u 7→ (d, x) ∗ t 7→ (d, x) ∗ >)

nocyc ≡ ∀uU∀tU∀vU∀dInt∀eInt . u 7→ (d, t) ∗ t 7→ (e, v) ∗ > ⇒ d < e

consqr(x) ≡ ∃yU∃zU . x 7→ (0, y) ∗ y 7→ (1, z) ∗ >∧
∀uU∀tU∀vU∀wU∀dInt∀eInt∀f Int . u 7→ (d, t) ∗ t 7→ (e, v) ∗ v 7→ (f, w) ∗ > ⇒
f − e = e− d+ 2

The proof is similar to the one of Theorem 3.3.1, using the above shorthands.
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3.3.2 A Semi-decision Procedure for ∃∗∀∗SL(T ) in SMT

We present a procedure for the satisfiability of ∃∗∀∗SL(E)U,Uk formulae implemented in the
SMT solver CVC4 and building upon the one given in Section 3.2.3, designed for quantifier-
free SL(T )Loc,Data inputs, where T is a first-order theory who has a decidable satisfiability
problem for quantifier-free T -constraints. Similar to other existing approaches for quantified
formulae in SMT [19, 40], our procedure uses incremental quantifier instantiation based on
candidate models returned by a solver for quantifier-free inputs.

solve(∃x ∀y. φ(x,y)) where x = 〈x1, . . . , xm〉 and y = 〈y1, . . . , yn〉:

Let k = 〈k1, . . . , km〉 and e = 〈e1, . . . , en〉 be tuples of fresh constants with the
same sorts as x and y, respectively

Let L = L′ ∪ set(k) and L′ be a set of fresh constants with ||L′|| = |φ(x,y)|h + n.

Return solve rec(∃x ∀y. φ(x,y), ∅, L).

solve rec(∃x ∀y. φ(x,y),Γ, L):

1. If Γ is SL(E)-unsat, return “unsat”.

2. Assume ∃x ∀y. φ(x,y) is equivalent to ∃x.(∀y. φ1(x,y) ∧ . . . ∧ ∀y. φp(x,y)).

If Γ′j = Γ ∪ {¬φj(k, e) ∧
n∧
i=1

∨
t∈L

ei≈ t} is SL(E)-unsat for all j ∈ [p], return “sat”.

3. Otherwise, let I, ν, h |=SL
∧

Γ′j for some j ∈ [p].

Let t = 〈t1, . . . , tn〉 be a tuple such that eIi = tIi and ti ∈ L for each i ∈ [n].

Return solve rec(∃x ∀y. φ(x,y),Γ ∪ {φj(k, t)}, L).

Figure 3.6: A counterexample-guided procedure for ∃∗∀∗SL(E)U,Uk formulae

Our counterexample-guided approach for establishing the satisfiability of ∃x ∀y. φ(x,y)
is described in Figure 3.6. We first introduce the tuples k and e, containing fresh constants
of the same type as x and y, respectively. The basis of the procedure lies in finding a set
of instantiations of ∀y. φ(k,y) that are either collectively unsatisfiable or are satisfiable and
entail our input. We then construct a set L which consists of the union between the constants
in k and a set L′ of fresh constants, whose cardinality is equal to |φ(x,y)|h plus the number
n of universal variables in our input. As such, L represents a finite set of terms from which
the instantiations of y in ∀y. φ(k,y) can be built.

We then invoke the recursive subprocedure solve rec on the initially empty set of formulae
Γ and the set of constants L, which will incrementally add instances of ∀y. φ(k,y) to Γ. Step
1 checks whether Γ is SL(E)-unsatisfiable using the procedure from Section 3.2.3. If this is
the case, then our input is also SL(E)-unsatisfiable and the procedure returns “unsat”.

Otherwise, Step 2 considers the miniscoped form ∃x. (∀y. φ1(x,y)∧ . . .∧ ∀y. φp(x,y)) of
our input, where the quantification over x is distributed over conjunctions. Note that we
may omit quantification on conjuncts φj that do not contain variables from y. Given this
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miniscoped formula, we construct a set Γ′j , for each j ∈ [p], containing Γ, the negation of φj
in which y is replaced by the fresh constants in e, and a conjunction of constraints requiring
each ei to be equal to at least one term in L for i = [n]. If Γ′j is SL(E)-unsatisfiable for all
j ∈ [p], we can conclude that our input is SL(E)-satisfiable.

Otherwise, given an interpretation I, a valuation ν ∈ VI and heap h satisfying
∧

Γ′j ,

Step 3 constructs a tuple of terms t = 〈t1, . . . , tn〉 that is used to instantiate ∀y. φj(k,y).
For each i ∈ [n], we choose a constant ti from L, whose interpretation under I coincides
with the one of ei. The existence of such a ti is guaranteed by the equality constraints
from Γ′j introduced in Step 2 and by the fact that I satisfies

∧
Γ′j , together with ν and

h. This selection helps ensure that, in each iteration, the instantiations are unique and are
chosen from a finite set of possibilities. The formula φj(k, t) is added to Γ and solve rec is
invoked recursively. In practice, for both unsatisfiable and satisfiable inputs, the procedure
terminates before considering all t from Ln for each ∀y. φj(x,y).

Theorem 3.3.4. Let U be an uninterpreted sort belonging to the signature of E. Given any
∃∗∀∗SL(E)U,Uk formula ψ of the form ∃x ∀y. φ(x,y), solve(ψ):

(1) Answers “unsat” only if ψ is SL(E)-unsatisfiable.

(2) Terminates.

Proof. For point (1), note that Γ contains only formulae φj(k, t), which are consequences of
our input. Therefore, when Γ is SL(E)-unsatisfiable, our input is SL(E)-unsatisfiable as well.

For point (2), clearly only a finite number of possible formulae can be added to Γ as a
result of the procedure, since all terms t belong to the finite set L and p is finite. Furthermore,
on every iteration, for any j, I satisfies Γ and ¬φj(k, e). Since eIi = tIi for each i = 1, . . . , n,
we have that φj(k, t) 6∈ Γ, and thus a new formula is added to Γ on every call. Only a finite
number of recursive calls are made to solve rec. Since the SL(E)-satisfiability of quantifier-free
is decidable, all steps in the procedure are terminating, and thus solve terminates.

We discuss a few important details regarding our implementation of the procedure.

Miniscoping. In practice, the universal quantification in our input ∃x ∀y. φ(x,y) may be
transformed into a formula of the form ∃x . ψ1 ∧ . . . ∧ ψk, where each ψi ≡ ∀z. ϕi(x, z) for
a (possibly empty) tuple z of variables that are a subset of those in y, and ϕi is quantifier-
free. Our procedure then instantiates each of these quantified formulae independently in the
manner described in Figure 3.6. In each iteration, an instance of some ∀z. ϕi(x, z) is added to

Γ. The procedure terminates with “sat” only when the set Γ∪{ϕi(k, z)[y/e]∧
n∧
i=1

∨
t∈L

ei≈ t}

is SL(E)-unsatisfiable for all i ∈ [k].

Matching heuristics. When constructing the terms t for instantiation, it is possible that
there exists i ∈ [n] such that eIi = uI for multiple u ∈ L. In this case, the procedure will
choose one such u for instantiation. To increase the likelihood of the instantiation being
relevant to the satisfiability of our input, we use heuristics for selecting the best possible u
among those whose interpretation is equal to ei in I. In particular, if eIi = uI1 = uI2 , and Γ′

contains atoms of the form ei 7→ v and u1 7→ v1 for some v, v1 where vI = vI1 but no atom
of the form u2 7→ v2 for some v2 where vI = vI2 , then we strictly prefer u1 over u2 when
choosing ti for ei.
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Finding minimal models. Efficient techniques for finding small models for uninterpreted
sorts in CVC4 have been developed in previous work [44]. We have found these techniques
beneficial to the performance of the procedure in Figure 3.6. We use these techniques to find
interpretations I in solve rec that map U to a finite set of minimal size. When combined with
the matching heuristics discussed above, these techniques lead to finding useful instantiations
more quickly, since more constants are constrained to be equal to ei, for i ∈ [n], under the
interpretations I.

Symmetry breaking. The procedure in Figure 3.6 introduces a set of fresh constants L,
which in turn introduce the possibility of discovering interpretations I that are isomorphic
– i.e. identical up to the renaming of constants in L′. We introduce additional constraints
in Γ, which do not affect its satisfiability, but reduce the number of isomorphic models. We
consider an ordering ≺ on the constants from L′, and add constraints that ensure that, for
all models (I, ν, h) of Γ, if `I1 6∈ dom(h) then `I2 6∈ dom(h) for all `2 such that `1 ≺ `2.

Example 3.3.1. Consider the entailment ¬(x≈ y)∧x 7→ z |=SL ∃u . x 7→ u, where x, y, z, u are
of sort U of E. It is valid if and only if the formula ∃x∃y∃z∀u .¬(x≈ y) ∧ x 7→ z ∧ ¬x 7→ u
is SL(E)-unsatisfiable. Since |¬(x≈ y) ∧ x 7→ z ∧ ¬x 7→ u|h = 1, a run of the procedure in
Figure 3.6 on this input constructs k = 〈kx, ky, kz〉, e = 〈eu〉 and L = {kx, ky, kz, `1, `2}. We
then invoke solve rec where Γ is initially empty. By miniscoping, our input is equivalent to
∃x∃y∃z .¬(x≈ y)∧x 7→ z∧∀u .¬x 7→ u. On the first two recursive calls to solve rec, we may
add ¬(kx≈ ky) and kx 7→ kz to Γ by trivial instantiation of the first two conjuncts. On the
third recursive call, Γ is SL(E)-satisfiable, and we check the satisfiability of:

Γ′ = {¬(kx≈ ky), kx 7→ kz, kx 7→ eu ∧ (eu≈ kx ∨ eu≈ ky ∨ eu≈ kz ∨ eu≈ `1 ∨ eu≈ `2)}

Since kx 7→ kz and kx 7→ eu are in Γ′, for all interpretations I, valuations ν ∈ VI and
heaps h such that I, ν, h |=SL Γ′ we have eIu = kIz . Since kz ∈ L, we may choose to add the
instantiation ¬kx 7→ kz to Γ. In consequence, Γ is SL(E)-unsatisfiable on the next recursive
call to solve rec. Thus, our input is SL(E)-unsatisfiable and the entailment is valid. J

A modified version of the procedure in Figure 3.6 can be used for establishing the sat-
isfiability of ∃∗∀∗SL(T )Loc,Data formulae for theories T beyond equality, and where Loc and
Data are not restricted to uninterpreted sorts. In such cases, solve rec cannot restrict inter-
pretations I to map each ei to the same value as a member of the finite set L. Therefore,

ls3(x, y)← x≈ y ∧ emp | ¬(x≈ y) ∧ x 7→ z, ls3(z, y)

ls4(x, y)← x≈ y ∧ emp | x 7→ z, ls4(z, y)

tree3(x)← x≈ nil ∧ emp | ¬(l≈ r) ∧ x 7→ (l, r), tree3(l), tree3(r)

tree4(x)← x≈ nil ∧ emp | x 7→ (l, r), tree4(l), tree4(r)

ts1(x, y)← x≈ y ∧ emp | ¬(x≈ y) ∧ x 7→ (l, r), ts1(l, y), tree4(r)

| ¬(x≈ y) ∧ x 7→ (l, r), tree4(l), ts1(r, y)

ts2(x, y)← x≈ y ∧ emp | x 7→ (l, r), ts2(l, y), tree4(r)

| x 7→ (l, r), tree4(l), ts2(r, y)

Figure 3.7: Inductive predicates whose finite unfoldings are used in the experiments
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solve rec requires a modification that omits the equality constraint between the elements of
e and L in Step 2. This modified procedure is still sound, but is no longer terminating in
general. Nevertheless, it can still be used as a heuristic for ∃∗∀∗SL(T )Loc,Data-satisfiability.

3.3.3 Experimental Evaluation

The solve procedure from Figure 3.6 was implemented within the CVC4 SMT solver and
tested on similar benchmarks as the ones presented in Section 3.2.5: entailments between
predicate unfoldings and verification conditions obtained from the weakest precondition cal-
culus. In the former case, we preserved the entailments involving pos1, pos2, neg1, neg2, neg5

and neg6, while also introducing some new predicates, whose definitions are shown in Figure
3.7. In the latter case, the benchmarks remained the same. All experiments were run on the
same 2.80GHz Intel R© CoreTM i7 CPU machine with 8MB of cache.

LHS RHS n = 1 n = 2 n = 3 n = 4 n = 8

Unfoldings of inductive predicates

ls3(x, y) ls4(x, y)
solve < 0.01s 0.02s 0.03s 0.05s 0.21s

manual < 0.01s < 0.01s < 0.01s < 0.01s < 0.01s

tree3(x) tree4(x)
solve < 0.01s 0.04s 1.43s 23.42s > 300s

manual < 0.01s < 0.01s < 0.01s < 0.01s 0.09s

ts1(x, a) ts2(x, a)
solve < 0.01s 0.81s > 300s > 300s > 300s

manual < 0.01s 0.03s 103.89s > 300s > 300s

pos1(x, a) neg1(x, a)
solve 0.34s 0.01s 0.31s 0.76s 21.19s

manual 0.04s 0.05s 0.08s 0.12s 0.53s

pos1(x, a) neg2(x, a)
solve 0.03s 0.12s 0.23s 0.46s 3.60s

manual 0.05s 0.08s 0.08s 0.12s 0.54s

pos2(x, a) neg5(x, a)
solve 0.04s 0.13s 0.28s 0.48s 4.20s

manual 0.01s 0.03s 0.05s 0.09s 0.45s

pos2(x, a) neg6(x, a)
solve — 0.08s 0.15s 0.26s 1.33s

manual — 0.03s 0.06s 0.09s 0.46s

Verification conditions

listn(w) wp(disp, listn−1(w))
solve 0.01s 0.03s 0.08s 0.19s 1.47s

manual < 0.01s 0.01s 0.02s 0.05s 0.26s

listn(w) wpn(disp, list0(w))
solve 0.01s 0.06s 0.17s 0.53s 7.08s

manual < 0.01s 0.02s 0.08s 0.14s 2.26s

zlistn(w) wp(zdisp, zlistn−1(w))
solve 0.04s 0.05s 0.09s 0.19s 1.25s

manual < 0.01s 0.01s 0.02s 0.04s 0.29s

zlistn(w) wpn(zdisp, zlist0(w))
solve 0.01s 0.10s 0.32s 0.87s 11.88s

manual 0.01s 0.02s 0.07s 0.15s 2.20s

listn(u) ∗ list0(v) wp(rev, listn−1(u) ∗ list1(v))
solve 0.38s 0.06s 0.11s 0.16s 0.56s

manual 0.07s 0.03s 0.07s 0.11s 0.43s

listn(u) ∗ list0(v) wpn(rev, list0(u) ∗ listn(v))
solve 0.38s 0.07s 0.30s 68.68s > 300s

manual 0.08s 0.06s 0.11s 0.23s 1.79s

zlistn(u) ∗ zlist0(v) wp(zrev, zlistn−1(u) ∗ zlist1(v))
solve 0.22s 0.07s 0.15s 0.21s 0.75s

manual 0.04s 0.02s 0.04s 0.06s 0.31s

zlistn(u) ∗ zlist0(v) wpn(zrev, zlist0(u) ∗ zlistn(v))
solve 0.23s 0.09s 0.17s 0.30s 2.06s

manual 0.04s 0.02s 0.05s 0.09s 0.48s

Table 3.2: Experimental results of our procedure for ∃∗∀∗-quantified SL(T ) inputs

We compared the performance of this procedure with the results of applying our previous
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CVC4 decision procedure for the quantifier-free SL(T ) inputs to a variant of the benchmarks
obtained by manual quantifier instantiation, as described in Section 3.2.4. For each set of
benchmarks, Table 3.2 lists the results of both methods. Note that the entailment between
pos2 and neg4 when n = 1 is skipped because it is not valid – since the negated formula is
satisfiable, we cannot generate the manual instantiation.

Compared to checking the manual instantiation, the fully automated solver was less than
0.5 seconds slower on 72% of the test cases, and less than 1 second slower on 79% of the test
cases. The automated solver experienced 3 timeouts in cases where the manual instantiation
succeeds – for the entailments between tree3 and tree4 with n = 8, ts1 and ts2 with n = 3,
listn(u) ∗ list0(v) and wpn(rev, list0(u) ∗ listn(v)) with n = 8. These timeouts are caused by
the first call to the quantifier-free SL(T ) decision procedure, which fails to produce a model
in less than 300 seconds (time not accounted for in the manually produced instance of the
problem).



Chapter 4

An Inductive Entailment
Checker for Separation Logic

In this chapter we describe Inductor, an entailment checker tool that implements the proof-
search semi-algorithm 1 from Section 2.2, using the set RSL

Ind of inference rules for inductive
entailments in separation logic, introduced in Section 2.3.2. Inductor is written in C++
and uses the DPLL(T )-based SMT solver CVC4 [3] as a back-end that it queries in order to
establish the satisfiability of SL(T )-formulae, in which the occurrences of inductive predicates
are treated as uninterpreted functions. More specifically, these queries are handled by the
decision procedures provided in Chapter 3 and integrated into CVC4.

Some key implementation details are provided in Section 4.1. We also analyse several case
studies in Sections 4.2–4.5, which portray the behaviour of our tool for a series of interesting
inputs. These case studies demonstrate how proofs and counterexamples are obtained, while
also illustrating the range of problems Inductor can handle.

4.1 Implementation Details

The inputs mainly handled by Inductor are SMT-LIB scripts, abiding by the SMT-LIB
Standard: Version 2.6 [4]. Theory and logic files are loaded automatically, based on the
logic set in the input script being handled. Additionally, proof strategies are specified as
nondeterministic finite word automata, in a language similar to that accepted by libVATA
[32]. The front-end interprets these input files using custom parsers constructed with Flex1

and Bison2, which generate abstract syntax trees. In the case of SMT-LIB scripts, an
additional well-sortedness check can be performed to ensure their correctness. The abstract
syntax trees are then transformed into hierarchies specifically tailored for inductive predicate
entailments in separation logic and proof strategies, respectively.

4.1.1 Defining SL Inductive Predicates in SMT-LIB

In order to use SL connectives in the predicate definitions expressed in SMT-LIB, we de-
clare them as function symbols in a new theory, depicted in Listing 4.1. Specifying the

1Flex – The Fast Lexical Analyzer, https://github.com/westes/flex
2GNU Bison – The Yacc-compatible Parser Generator, https://www.gnu.org/software/bison
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:left-assoc and :right-assoc attributes for sep and wand allows them to be used for
more than two arguments. The pto and nil function symbols are parametric with respect
to the location and data sorts.

(theory SepLogic :funs ( (emp Bool)

(sep Bool Bool Bool :left-assoc)

(wand Bool Bool Bool :right-assoc)

(par (Loc Data) (pto Loc Data Bool))

(par (Loc) (nil Loc)) ) )

Listing 4.1: An SMT-LIB theory declaration for separation logic

This new theory may be combined with some already existing ones, such as Ints to
obtain the SEPLOGLIA logic in Listing 4.2. Such a logic can then be set in an SMT-LIB
script to indicate the theories in which its content is expressed.

(logic SEPLOGLIA :theories (SepLogic Ints) )

Listing 4.2: An SMT-LIB logic declaration for combining SepLogic with Ints

Inductive predicates can be defined as recursive functions, using two available commands:
define-fun-rec for a single predicate, and define-funs-rec for (possibly) multiple mu-
tually recursive predicates. A simple definition for a singly-linked list with integer memory
locations is shown in Listing 4.3.

(set-logic SEPLOGLIA)

(define-fun-rec ls ((x Int) (y Int)) Bool

(or (and (= x y) emp)

(exists ((z Int)) (sep (pto x z) (ls z y))) ) )

Listing 4.3: The definition of a list segment in SMT-LIB

Whenever memory locations need to point to tuples of values, such as in the case of a
tree definition, we declare an additional datatype with constructors and selectors for each
of its fields. Two commands are at our disposal for this purpose: declare-datatype for a
single algebraic datatype, and declare-datatypes for (possibly) multiple mutually recursive
datatypes. A simple binary tree is defined in this manner in Listing 4.4.

(set-logic SEPLOGLIA)

(declare-datatypes ((Node 0)) (((node (left Int) (right Int)))))

(define-fun-rec tree ((x Int)) Bool

(or (and (= x (as nil Int)) emp)

(exists ((l Int) (r Int)) (sep (pto x (node l r)) (tree l) (tree r))) ) )

Listing 4.4: The definition of a binary tree in SMT-LIB
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4.1.2 Specifying Proof Strategies as Automata

As previously mentioned, Inductor can also accept a regular expression representing a proof
strategy as input – if no proof strategy is given, then S from Theorem 2.5.16 will be used
as default. By Kleene’s Theorem, it is known that, given a regular expression, there exists
an equivalent nondeterministic finite word automaton (NFA), possibly with ε-transitions
(NFA-ε). Figure 4.1 depicts a straightforward NFA-ε that is equivalent to S.

q0start q1 q2 q3 q4 q5
LU

RUSL

RDSL

∧R

SPSL LU

RU
AX

ID
ε

ε ε

ε

Figure 4.1: An NFA-ε equivalent to our default proof strategy S

We are more interested in such a representation because, after applying a certain inference
rule, we want to easily check which inference rules that comply with the strategy could be
applied next. However, given an NFA-ε, the ε-transitions are cumbersome and, thus, we
prefer an equivalent NFA – which is guaranteed to exist, since the two classes of automata
are known to be equivalent.

As such, the proof strategies that Inductor accepts as input are given as NFA, rather
than regular expressions. The definition of such an NFA is specified in a language inspired
by the simplicity of the one used by libVATA and whose grammar is depicted in Listing 4.5.

<file> : ’Rules’ <rule_list> <automaton>

<rule_list> : <rule> <rule> ...

<rule> : string

<automaton> : ’Automaton’ string ’States’ <state_list> ’Initial State’ <state>

’Final States’ <state_list> ’Transitions’ <trans_list>

<state_list> : <state> <state> ...

<state> : string

<trans_list> : <trans> <trans> ...

<trans> : ’(’ <state> ’,’ <rule> ’)’ ’->’ <state>

Listing 4.5: Grammar for files specifying proof strategies as NFA

Using this language, Listing 4.6 defines an NFA that is equivalent with the NFA-ε from
Figure 4.1, and consequently, is also equivalent with our default proof search strategy.

Rules LU RU RD RI SP ID AX

Automaton Default States q0 q1 q2 q3 q4 q5 Initial state q0 Final states q5

Transitions

(q0, LU) -> q1 (q1, RD) -> q0 (q2, RU) -> q4 (q2, SP) -> q3 (q3, AX) -> q5

(q0, LU) -> q4 (q1, RD) -> q2 (q2, RI) -> q0 (q2, SP) -> q4 (q3, ID) -> q5

(q0, RU) -> q4 (q1, RD) -> q3 (q2, RI) -> q2 (q2, AX) -> q5 (q4, RU) -> q4

(q0, AX) -> q5 (q1, RD) -> q4 (q2, RI) -> q3 (q2, ID) -> q5 (q4, AX) -> q5

(q0, ID) -> q5 (q2, LU) -> q1 (q2, RI) -> q4 (q3, LU) -> q4 (q4, ID) -> q5

(q1, RU) -> q1 (q2, LU) -> q4 (q2, SP) -> q0 (q3, RU) -> q4

Listing 4.6: The definition of the NFA corresponding to the default proof search strategy
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4.1.3 A Breadth-First Proof Search Implementation

The proof search method sketched by semi-algorithm 1 is reliant on the choice of IR made
at line 14. Whenever there are more than one applicable inference rules, only one is selected
and the rest are discarded. Furthermore, as is the case for SPSL, some inference rules can
have multiple possible instances for the same sequent, where only one is required to succeed
in obtaining a proof. Algorithm 1 again only chooses one of them. In our implementation,
we wanted to explore all the potential derivations resulting from the inference rule instances
available at any point. Moreover, since we use a queue for the nodes still needing to be ex-
plored, we generate derivations in a breadth-first fashion. Thus, any proof or counterexample
we obtain is guaranteed to result from the shortest possible paths.

Consequently, we use a different tree-like structure to compactly store all the derivations
explored at any given moment. This structure accepts two types of nodes, depicted in Figure
4.2, which represent sequents (SNode) and inference rule instances (RNode), respectively. The
node types alternate in the tree, thus an SNode only has RNode children, and vice-versa.

SNode { sequent : A sequent Γ ` ∆,
states : A list of states in the search strategy
parent : RNode parent of the current node
children : A list with children of type RNode }

RNode { rule : An inference rule schema
pivot : SNode pivot for this instance of rule,
parent : SNode parent of the current node,
children : A list with children of type SNode }

Figure 4.2: The data structures representing sequents and inference rule instances

With these new data structures, we say that an inference rule IR ∈ RSL

Ind is applicable on
a given SNode N whenever there exists an instance ir of IR for which: (i) the consequent of ir
matches N.sequent and the pivot of ir (if it exists) matches A.sequent , for some SNode ances-
tor A of N, such that the side conditions of ir are satisfied, and (ii) if R1, . . . ,Rn is the RNode

sequence extracted from the path starting at A and ending at N, then R1.rule · . . . · Rn.rule
satisfies the pivot condition of ir (if it exists).

Both types of nodes are marked with either a Closed, Failed or Unknown status. By
default, all nodes are initially Unknown. The status of an SNode can be changed to Closed
whenever: (i) its sequent is >, or (ii) at least one of its RNode children is Closed. An RNode

becomes Closed when all of its SNode children are Closed. Conversely, an SNode is marked
as Failed whenever: (i) its sequent is of the form Γ ` ∅, or (ii) all of its RNode children are
Failed. An RNode is marked Failed when at least one of its SNode children is Failed. Changing
the status of a node always prompts a status update for all of its ancestors.

Algorithm 2 provides a sketch of our proof search implementation for RSL

Ind, which, given
an input sequent p(x) ` q1(x), . . . , qn(x) and an NFA Strat = (QStrat,RSL

Ind,∆Strat, q0, FStrat)
describing the proof strategy, explores all possible derivations rooted at the input sequent.
We construct a node Root, with which we initialise the work queue. While the work queue
is not empty and the status of Root is Unknown, we dequeue an SNode N. We denote by
QIR

N the set of states in Strat towards which we transition from N.states by applying IR, and
build a set RN of applicable inference rule schema that are also accepted by the strategy.

If AXSL or ID are in RN and, moreover, their application leads Strat to transition to some
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Algorithm 2: A sketch of our exhaustive proof search implementation for RSL

Ind

Input : An SL inductive system S, a basic sequent p(x) ` q1(x), . . . , qn(x), a proof
strategy Strat = (QStrat,RSL

Ind,∆Strat, q0, FStrat) represented as an NFA
Output: VALID and a proof starting with p(x) ` q1(x), . . . , qn(x);

INVALID and a counterexample for p(x) |=SL

S q1(x) ∨ . . . ∨ qn(x);
UNKNOWN and the proof search tree constructed by the algorithm

1 Root← SNode(p(x) ` q1(x), . . . , qn(x), [q0],null , [])
2 WorkQueue← {Root}
3 while WorkQueue 6= [] and Root is Unknown do
4 Dequeue a node N from WorkQueue
5 Let QIR

N = {q′ | (q, IR)→ q′ ∈ ∆Strat and q ∈ N.states} for any IR ∈ RSL

Ind

6 Let RN = {IR | QIR
N 6= ∅ and IR applicable on N}

7 if AXSL ∈ RN and QAXSL

N ∩ FStrat 6= ∅ then
8 R← RNode(AXSL,null ,N, [])

9 N′ ← SNode(>, QAXSL

N ,R, [])
10 Add R to N.children
11 Add N′ to R.children and mark it as Closed

12 else if ID ∈ RN and QID
N ∩ FStrat 6= ∅ then

13 R← RNode(ID,A,N, []) for some ancestor A of N that is pivot for ID

14 N′ ← SNode(>, QID
N ,R, [])

15 Add R to N.children
16 Add N′ to R.children and mark it as Closed

17 else
18 foreach instance ir of each IR ∈ RN do
19 R← RNode(IR,null ,N, [])
20 Add R to N.children
21 Let k be the number of antecedents generated by ir
22 if k = 0 and QIR

N ∩ FStrat 6= ∅ then
23 N′ ← SNode(>, QIR

N ,R, [])
24 Add N′ to R.children and mark it as Closed

25 foreach antecedent Γi ` ∆i of ir with i ∈ [k] do
26 Ni ← SNode(Γi ` ∆i, Q

IR
N ,R, [])

27 Add Ni to R.children
28 if ∆i = ∅ then
29 Mark Ni as Failed

30 if R is not Failed then
31 Enqueue N1, . . . ,Nk in WorkQueue

32 if Root is Closed then
33 return VALID and ExtractProof(Root)
34 else if Root is Failed then
35 return INVALID and ExtractCounterexamples(Root)
36 else
37 return UNKNOWN and Root
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final states, then this branch of the derivation has been successful. We add a > leaf, which
is marked as Closed.

Otherwise, for each inference rule IR ∈ RN we consider each instance ir of IR with
antecedents Γ1 ` ∆1, . . . ,Γk ` ∆k. If k = 0 and, by applying IR, we reach some final state
in Strat, then this branch has been successful. As before, we add a > leaf that we mark as
Closed. Otherwise, if k > 1, we create an RNode R for ir and an SNode Ni for each of its
antecedents. If ∆i = ∅ for some i ∈ [k], then Ni is marked as Failed. If this is not the case
for any i ∈ [k], then we add N1, . . . ,Nk to the work queue and continue.

When the status of Root changes to Closed, then a proof has been obtained. The proof
is extracted from the proof search tree and offered as a certificate. Otherwise, if it changes
to Failed, then at least one counterexample has been discovered. We extract the counterex-
amples from the proof search tree and give them as witnesses. If the work queue becomes
empty, but the status of Root is still Unknown, then the proof search was inconclusive and
our entire proof search tree is returned as justification.

4.2 Case Study: Binary Trees

Consider the following definitions for binary trees. The predicate tree accepts any binary
tree as model, tree+1 accepts binary trees with at least one node, and tree+2 accepts binary
trees with at least one node in which the children of any node are either both allocated or
both nil. Note that St is ranked, non-filtering, non-overlapping and has the fvi property.

tree(x)←St x≈ nil ∧ emp | x 7→ (l, r), tree(l), tree(r)

tree+

1 (x)←St x 7→ (nil, nil) | x 7→ (l, r), tree+

1 (l), tree(r)

| x 7→ (l, r), tree(l), tree+

1 (r)

tree+

2 (x)←St x 7→ (nil, nil) | x 7→ (l, r), tree+

2 (l), tree+

2 (r)

The equivalent SMT-LIB definitions for tree, tree+1 and tree+2 are provided in Listing 4.7.

(set-logic SEPLOGLIA)

(declare-datatypes ((Node 0)) (((node (left Int) (right Int)))))

(define-fun-rec tree ((x Int)) Bool

(or (and (= x (as nil Int)) emp)

(exists ((l Int) (r Int)) (sep (pto x (node l r)) (tree l) (tree r))) ) )

(define-fun-rec treep1 ((x Int)) Bool

(or (pto x (node (as nil Int) (as nil Int)))

(exists ((l Int) (r Int)) (sep (pto x (node l r)) (treep1 l) (tree r)))

(exists ((l Int) (r Int)) (sep (pto x (node l r)) (tree l) (treep1 r))) ) )

(define-fun-rec treep2 ((x Int)) Bool

(or (pto x (node (as nil Int) (as nil Int)))

(exists ((l Int) (r Int)) (sep (pto x (node l r)) (treep2 l) (treep2 r))) ))

Listing 4.7: Definitions of binary trees in SMT-LIB

The entailments tree+

1 |=
SL

St tree, tree+

2 |=
SL

S tree and tree+

2 |=
SL

St tree+

1 hold, facts corroborated
by Inductor. A branch of the proof for tree+

2 (x) ` tree+

1 (x) is depicted below.
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tree+
2 (x) ` tree+

1 (x)

x 7→ (l0, r0), tree+
2 (l0), tree+

2 (r0) ` tree+
1 (x)

x 7→ (l0, r0), tree+
2 (l0), tree+

2 (r0)`x 7→ (nil, nil),
∃l1∃r1 . x 7→ (l1, r1) ∗ tree+

1 (l1) ∗ tree(r1),
∃l1∃r1 . x 7→ (l1, r1) ∗ tree(l1) ∗ tree+

1 (r1)

tree+
2 (l0), tree+

2 (r0) ` tree+
1 (l0) ∗ tree(r0), tree(l0) ∗ tree+

1 (r0)

tree+
2 (r0) ` tree(r0)

r0 7→ (l01, r01), tree+
2 (l01), tree+

2 (r01) ` tree(r0)

r0 7→ (l01, r01), tree+
2 (l01), tree+

2 (r01)` r0 7→ (nil, nil),
∃l11∃r11 . r0 7→ (l11, r11) ∗ tree(l11) ∗ tree(r11)

tree+
2 (l01), tree+

2 (r01) ` tree(l01) ∗ tree(r01)

tree+
2 (l01) ` tree(l01)

>

LU

RUSL

RDSL

SPSL

LU

RUSL

RDSL

SPSL

ID

However, the reversed entailments do not hold and the following witnesses are provided:

– x≈ nil ∧ emp for tree(x) ` tree+

1 (x) and tree(x) ` tree+

2 (x);

– x 7→ (l0, r0) ∗ tree+

1 (l0) ∗ (r0≈ nil ∧ emp) for tree+

2 (x) ` tree+

1 (x). Note that predicate
atoms can occur within counterexamples and indicate that they can be substituted by
any model to obtain a more concrete one. In this case, an immediate substitution with
the base case of tree+

1 (l0) gives us x 7→ (l0, r0) ∗ l0 7→ (nil, nil) ∗ (r0≈ nil ∧ emp).

4.3 Case Study: Acyclic List Segments

Consider the following definitions for cyclic and acyclic list segments. Note that Sl is ranked,
non-filtering, non-overlapping and has the fvi property.

ls(x, y)←Sl
x≈ y ∧ emp | x 7→ z, ls(z, y)

lsa(x, y)←Sl
x≈ y ∧ emp | ¬(x≈ y) ∧ x 7→ z, lsa(z, y)

The equivalent SMT-LIB definitions for ls and lsa are provided in Listing 4.8.

(set-logic SEPLOGLIA)

(define-fun-rec ls ((x Int) (y Int)) Bool

(or (and (= x y) emp)

(exists ((z Int)) (sep (pto x z) (ls z y))) ) )

(define-fun-rec lsa ((x Int) (y Int)) Bool

(or (sep (= x y) emp)

(exists ((z Int)) (sep (distinct x y) (pto x z) (lsa z y))) ) )

Listing 4.8: Definitions of possibly cyclic and acyclic list segments in SMT-LIB

Naturally, the entailment lsa |=SL

Sl
ls holds, while ls |=SL

Sl
lsa does not. In the latter case,

the counterexample provided by Inductor for ls(x, y) ` lsa(x, y) is x≈ y∧x 7→ z0 ∗ ls(z0, y),
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from which we can obtain the more concrete one x≈ y ∧ x 7→ z0 ∗ (z0≈ y ∧ emp). The proof
for the former case is shown below.

lsa(x, y) ` ls(x, y)

x≈ y ∧ emp ` ls(x, y)

x≈ y ∧ emp`x≈ y ∧ emp,
∃z1.x 7→ z1 ∗ ls(z1, y)

>

¬(x≈ y) ∧ x 7→ z0, ls
a(z0, y) ` ls(x, y)

¬(x≈ y) ∧ x 7→ z0, ls
a(z0, y)`x≈ y ∧ emp,

∃z1.x 7→ z1 ∗ ls(z1, y)

lsa(z0, y) ` ls(z1, y)

>

LU

RUSL

AXSL

RUSL

RDSL

ID

4.4 Case Study: List Segments of Even and Odd Length

Consider the following definitions for list segments of even and odd length, together with
the previously introduced definition for list segments and two alternate definitions of list
segments with at least one element.

lse(x, y)←Seo
x≈ y ∧ emp | x 7→ z, lso(z, y)

lso(x, y)←Seo x 7→ y | x 7→ z, lse(z, y)

ls(x, y)←Seo
x≈ y ∧ emp | x 7→ z, ls(z, y)

ls+(x, y)←Seo
x 7→ y | x 7→ z, ls+(z, y)

l̂s
+

(x, y)←Seo x 7→ z, lse(z, y) | x 7→ z, lso(z, y)

Listing 4.9 shows the equivalent SMT-LIB definitions for lse, lso, ls, ls+ and l̂s .

(set-logic SEPLOGLIA)

(define-funs-rec ((lse ((x Int) (y Int)) Bool)

(lso ((x Int) (y Int)) Bool))

((or (and (= x y) emp)

(exists ((z Int)) (sep (pto x z) (lso z y))))

(or (pto x y)

(exists ((z Int)) (sep (pto x z) (lse z y)))) ) )

(define-fun-rec ls ((x Int) (y Int)) Bool

(or (and (= x y) emp)

(exists ((z Int)) (sep (pto x z) (ls z y))) ) )

(define-fun-rec lsp ((x Int) (y Int)) Bool

(or (pto x y)

(exists ((z Int)) (sep (pto x z) (lsa z y))) ) )

(define-fun-rec lspeo ((x Int) (y Int)) Bool

(or (exists ((z Int)) (sep (pto x z) (lse z y)))

(exists ((z Int)) (sep (pto x z) (lso z y))) ) )

Listing 4.9: Definitions for list segments of even and odd length in SMT-LIB
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The entailments lso |=SL

Seo
l̂s

+

, ls+ |=SL

Seo
l̂s

+

, l̂s
+

|=SL

Seo
ls+, ls+ |=SL

Seo
lse, lso and l̂s

+

|=SL

Seo
lse, lso

hold. A branch of the proof for ls+(x, y) ` l̂s
+

(x, y) is shown below.

ls+(x, y) ` l̂s
+

(x, y)

x 7→ z0, ls
+(z0, y) ` l̂s

+
(x, y)

x 7→ z0, ls
+(z0, y)`∃z1 . x 7→ z1 ∗ lse(z1, y), ∃z1 . x 7→ z1 ∗ lso(z1, y)

ls+(z0, y) ` lse(z0, y), lso(z0, y)

z0 7→ z00, ls
+(z00, y) ` lse(z0, y), lso(z0, y)

z0 7→ z00, ls
+(z00, y) ` z0≈ y ∧ emp, ∃z01 . z0 7→ z01 ∗ lso(z01, y), lso(z0, y)

z0 7→ z00, ls
+(z00, y)` z0≈ y ∧ emp,∃z01 . z0 7→ z01 ∗ lso(z01, y), z0 7→ y,∃z11 . z0 7→ z11 ∗ lse(z11, y)

ls+(z00, y) ` lso(z00, y), lse(z00, y)

>

LU

RU

RD

LU

RU

RU

RD

ID

On the other hand, entailments such as lse |=SL

Seo
l̂s

+

, lse |=SL

Seo
lso, lso |=SL

Seo
lse, ls+ |=SL

Seo
lse

or l̂s
+

|=SL

Seo
lso do not. Inductor gives the following counterexamples:

– x≈ y ∧ emp for lse(x, y) ` l̂s
+

(x, y) and lse(x, y) ` lso(x, y);

– x 7→ y for lso(x, y) ` lse(x, y) and ls+(x, y) ` lse(x, y);

– x 7→ z0 ∗ z0 7→ y for l̂s
+

(x, y) ` lso(x, y).

4.5 Case Study: Lists of Acyclic List Segments

We adapt the acyclic list segments definitions from the previous section to a fragment in
which each memory location points to a pair of locations, and use them to define lists whose
elements point at cyclic or acyclic list segments. Note that Sll is still ranked, non-filtering,
non-overlapping and has the fvi property.

ls(x, y)←Sll
x≈ y ∧ emp | x 7→ (z, nil), ls(z, y)

lsa(x, y)←Sll
x≈ y ∧ emp | ¬(x≈ y) ∧ x 7→ (z, nil), lsa(z, y)

lls(x, v)←Sll
x≈ nil ∧ emp | x 7→ (z, u), ls(u, v), lls(z, w)

llsa(x, v)←Sll
x≈ nil ∧ emp | x 7→ (z, u), lsa(u, v), llsa(z, w)

The equivalent SMT-LIB definitions for ls, lsa, lls and llsa are provided in Listing 4.10.

(set-logic SEPLOGLIA)

(declare-datatypes ((Node 0)) (((node (next Int) (data Int)))))

(define-fun-rec ls ((x Int) (y Int)) Bool

(or (and (= x y) emp)

(exists ((z Int)) (sep (pto x (node z (as nil Int))) (ls z y))) ) )

(define-fun-rec lsa ((x Int) (y Int)) Bool

(or (and (= x y) emp)
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(exists ((z Int))

(sep (distinct x y) (pto x (node z (as nil Int))) (lsa z y))) ) )

(define-fun-rec lls ((x Int) (v Int)) Bool

(or (and (= x (as nil Int)) emp)

(exists ((z Int) (u Int) (w Int))

(sep (pto x (node z u)) (ls u v) (lls z w))) ) )

(define-fun-rec llsa ((x Int) (v Int)) Bool

(or (and (= x (as nil Int)) emp)

(exists ((z Int) (u Int) (w Int))

(sep (pto x (node z u)) (lsa u v) (llsa z w))) ) )

Listing 4.10: Definitions for lists of possibly cyclic and acyclic list segments in SMT-LIB

The entailment llsa |=SL

Sll
lls holds, while its reverse lls |=SL

Sll
llsa does not. In the latter case,

the counterexample provided by Inductor is x 7→ (z0, u0) ∗ (u0≈ v ∧ u0 7→ u00 ∗ ls(u00, v)) ∗
lls(z0, w0), from which we can obtain the more concrete one x 7→ (z0, u0) ∗ (u0≈ v ∧ u0 7→
u00 ∗(u00≈ y∧emp))∗(z≈ nil∧emp). The proof for the former case is partially shown below.
The subproof for lsa(u0, v) ` ls(u0, v) is skipped as it is identical to the one from Section 4.3
modulo a variable renaming.

llsa(x, v) ` lls(x, v)

x 7→ (z0, u0), lsa(u0, v), llsa(z0, w0) ` lls(x, v)

x 7→ (z0, u0), lsa(u0, v), llsa(z0, w0)`x≈ nil ∧ emp,
∃z1∃u1∃w1 . x 7→ (z1, u1) ∗ ls(u1, v) ∗ lls(z1, w1)

lsa(u0, v), llsa(z0, w0) ` ls(u0, v) ∗ lls(z0, w0)

lsa(u0, v) ` ls(u0, v)

...

lsa(u00, v) ` ls(u00, v)

>

llsa(z0, w0) ` lls(u0, w0)

>

LU

RUSL

RDSL

SPSL

LU

ID

ID

4.6 Experimental results

Table 4.1 summarizes the experimental results obtained for the entailments discussed in
Sections 4.2-4.5. All experiments were run on a 2.10GHz Intel R© CoreTM i7-4600U CPU
machine with 4MB of cache. For each case, we indicate:

– The result (column Result), which can be VALID or INVALID;

– The total number of sequent nodes created (column Sequents);

– The total number of inference rule nodes created (column Rules);

– The maximum number of sequent nodes along a branch (column HSeq);

– The maximum number of LU applications along a branch (column HLU);

– The maximum number of SP applications along a branch (column HSP);
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– The run time for the proof search algorithm (column Time);

– The total number of calls made to CVC4 (column CVC4).

LHS RHS Result Sequents Rules HSeq HLU HSP Time CVC4

tree+

1 tree VALID 34 22 7 2 1 0.096s 9

tree+

2 tree VALID 21 15 7 2 1 0.053s 7

tree+

2 tree+

1 VALID 1477 889 11 3 2 5.515s 37

tree tree+

1 INVALID 7 5 4 1 0 0.033s 7

tree tree+

2 INVALID 7 5 4 1 0 0.028s 5

tree+

1 tree+

2 INVALID 38 25 8 2 1 0.096s 14

lsa ls VALID 8 6 5 1 0 0.014s 2

ls lsa INVALID 7 5 4 1 0 0.015s 2

llsa lls VALID 21 15 9 2 1 0.048s 4

lls llsa INVALID 20 14 8 2 1 0.043s 4

lso l̂s
+

VALID 10 8 6 1 0 0.032s 5

ls+ l̂s
+

VALID 16 13 8 2 0 0.049s 9

ls+ lse, lso VALID 8 6 5 1 0 0.020s 4

l̂s
+

lse, lso VALID 9 7 5 1 0 0.028s 8

lse l̂s
+

INVALID 7 5 4 1 0 0.024s 4

lse lso INVALID 7 5 4 1 0 0.030s 5

ls+ lse INVALID 13 10 6 2 0 0.075s 8

l̂s
+

lso INVALID 20 16 9 3 0 0.143s 12

Table 4.1: Experimental results for Inductor

As shown by the Time column, the execution times are fairly low. The size of the
derivations are influenced by how elaborate the inductive definitions are. For instance,
tree+

1 is defined by three predicate rules, thus when encountered on the left-hand side of
an entailment will generate a larger number of nodes due to left-unfolding. On the right-
hand side, the number of predicate rules in a definition and the number of subgoals in each
predicate rule both influence the complexity of SP, which can lead to higher execution times
than expected, given the size of the derivation, since all instances of SP need to be generated
and then checked. In the tree+

2 |=
SL

St tree+

1 case, the large number of sequents generated is
caused by both the complexity of the inductive definitions and the number of SP applications
along a branch. Moreover, the fact that we only allow ancestral pivots for ID creates a large
number of redundancies, requiring sequents that only differ by a substitution of variables
to be proved multiple times, in different parts of the derivation. This case alone is enough
motivation to consider non-ancestral pivot nodes as future work.





Conclusions

We propose cyclic proof systems for entailments between inductively defined predicates in
(multisorted) first-order logic and separation logic, based on Fermat’s principle of infinite
descent, which allows inductive invariants to be produced during proof search, as opposed
to classical induction, where they have to be provided. We have established the boundaries
within which these proof systems remain sound and complete using semantic constraints.
Soundness is ensured by requiring the models generated by unfoldings to decrease in a well-
founded domain. Completeness is determined by three additional conditions on the set of
constraints used in the inductive definitions.

These restrictions are decidable, with computational complexities that depend on the
logical fragment in which the constraints of the inductive system are written, and they can
all be essentially reduced to determining the satisfiability of ∃∗∀∗-quantified formulae. While
there already were well-established results for first-order logic, this was not also the case for
separation logic. Hence, we provide two decision procedures for the satisfiability of formulae
written in separation logic and belonging either to the quantifier-free or the ∃∗∀∗-quantified
fragments. We also analyse decidability and complexity bounds for these fragments.

Ultimately, we describe an entailment checker tool called Inductor, which implements
our proof system for separation logic and utilizes the aforementioned decision procedures.
The tool outputs a proof whenever an entailment is found to be valid, or counterexamples
when it is not. It is still possible to use Inductor outside of the boundaries that warrant
soundness and completeness, and warnings are emitted whenever one or more semantic
restrictions are violated. In this case, however, the proof search results may be inconclusive.

Future work

As mentioned in Section 2.5.2, our proof system for entailments involving inductive predicates
written in separation logic is only complete when the predicates unfold the heap in a similar
manner. In practice, however, it is often useful to prove entailments such as dlls |=SL

S′ dllsr and
dllsr |=SL

S′ dlls from Example 2.5.1. Unfolding these predicates generates different coverage
trees for the heap, but they still are related by a tree isomorphism resulting from a rotation.

This type of behaviour can be captured by a CUT inference rule, as used by other cyclic
proof systems [8, 9]. In our case, if Γ ` ∗Υ is a predecessor of Γ′,Γθ ` ∆, CUT would allow
the replacement of Γθ with Υθ on the left-hand side of the latter sequent. At a semantic
level, this replacement should be viewed as extracting the coverage tree corresponding to Γθ
from the larger one corresponding to {Γ′,Γθ}, thus creating a hole, and then rotating the
latter such that the parent of Γθ becomes the new root, while the hole propagates to the
node that was the old root. Then, the coverage tree corresponding to Υθ is attached at the
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newly obtained hole. A proof system containing such a CUT inference rule would be sound,
but would cease to be complete. However, coupled with a comprehensive proof strategy, it
could still prove its usefulness in practice.

On a different note, from a practical standpoint, we are often interested to separately
reason about the shape of a data structure (e.g. a singly-linked list, a doubly-linked list,
a tree) and the information stored by each node (e.g. a sorted list, a binary search tree).
Capturing both types of information in a single constraint for an inductive predicate rule
can often lead to violating the non-overlapping restriction.

Consider the following singly-linked list definitions with integer data constraints:

p0(x0, d0)←S x0 7→ (x1, d1) ∧ 0 ≤ d1 ≤ 1, p1(x1, d1)

p1(x0, d0)←S x0 7→ (x1, d1) ∧ d1 = 1− d0, p1(x1, d1) | x0≈ nil ∧ emp

q0(x0, d0) ←S x0 7→ (x1, d1) ∧ d1 ≤ 0, q1(x1, d1)

| x0 7→ (x1, d1) ∧ d1 ≥ 1, q2(x1, d1)

q1(x0, d0) ←S x0 7→ (x1, d1) ∧ d1 = d0 + 1, q0(x1, d1) | x0≈ nil ∧ emp

q2(x0, d0) ←S x0 7→ (x1, d1) ∧ d1 = d0 − 1, q0(x1, d1) | x0≈ nil ∧ emp

From a structural standpoint, both p0 and q0 describe the same kind of singly-linked lists and,
moreover, the coverage trees obtained by unfolding them can be matched directly. However,
the data constraints make S overlapping. For instance, φ ≡ x0 7→ (x1, d1) ∧ 0 ≤ d1 ≤ 1 and
ψ ≡ x0 7→ (x1, d1)∧ d1 ≤ 0 have common models where d1 = 0, but neither φ |=SL ψ nor ψ |=SL φ
hold. The entailment p0 |=SL

S q0 holds, but has no proof using RSL

Ind.

Alternating data automata, however, are better equipped for modelling and reasoning
about relations between past and current data variables. Their main advantage is the fact
that complementation and intersection are possible in real time, which enables a concise
encoding of trace inclusions – an inclusion problem L(A) ⊆ L(B) is reduced to the non-
emptiness of the intersection L(A) ∩ L(B), where B is the complement of B. Although the
emptiness problem is undecidable in general, efficient model-checking semi-algorithms, based
on abstraction refinement methods, have been provided [28]. For future work, we envision a
merging of the two approaches by extracting traces from failed branches of derivations built
with our inference rules, using them to construct an interpolation problem, and then using
the interpolant obtained as a solution to refine the derivation such that sequents containing
overlapping constraints are split into several non-overlapping ones, which together correctly
capture the original entailment problem.
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decision procedure for satisfiability in separation logic with inductive predicates. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, pages 25:1–25:10, New York, NY,
USA, 2014. ACM.

[8] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic cyclic theo-
rem prover. In Programming Languages and Systems: 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings, pages 350–367. Springer Berlin
Heidelberg, 2012.

[9] James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, 2011.

125



126 Bibliography

[10] W. H. Bussey. Fermat’s method of infinite descent. The American Mathematical
Monthly, 25(8):333–337, 1918.

[11] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and com-
plexity results for a spatial assertion language for data structures. In FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science: 21st Confer-
ence Bangalore, India, December 13–15, 2001, Proceedings, pages 108–119, London,
UK, 2001. Springer Berlin Heidelberg.
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