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Abstract

Weakly-supervised learning studies the problem of minimizing the amount
of human effort required for training state-of-the-art models. This allows
to leverage a large amount of data. However, in practice weakly-supervised
methods perform significantly worse than their fully-supervised counterparts.
This is also the case in deep learning, where the top-performing computer
vision approaches remain fully-supervised, which limits their usage in real
world applications. This thesis attempts to bridge the gap between weakly-
supervised and fully-supervised methods by utilizing motion information. It
also studies the problem of moving object segmentation itself, proposing one
of the first learning-based methods for this task.

We focus on the problem of weakly-supervised semantic segmentation.
This is especially challenging due to the need to precisely capture object
boundaries and avoid local optima, as for example segmenting the most dis-
criminative parts. In contrast to most of the state-of-the-art approaches,
which rely on static images, we leverage video data with object motion as a
strong cue. In particular, our method uses a state-of-the-art video segmenta-
tion approach to segment moving objects in videos. The approximate object
masks produced by this method are then fused with the semantic segmen-
tation model learned in an EM-like framework to infer pixel-level semantic
labels for video frames. Thus, as learning progresses, the quality of the la-
bels improves automatically. We then integrate this architecture with our
learning-based approach for video segmentation to obtain a fully trainable
framework for weakly-supervised learning from videos.

In the second part of the thesis we study unsupervised video segmenta-
tion, the task of segmenting all the objects in a video that move independently
from the camera. This task presents challenges such as strong camera motion,
inaccuracies in optical flow estimation and motion discontinuity. We address
the camera motion problem by proposing a learning-based method for mo-
tion segmentation: a convolutional neural network that takes optical flow as
input and is trained to segment objects that move independently from the
camera. It is then extended with an appearance stream and a visual memory
module to improve temporal continuity. The appearance stream capitalizes
on the semantic information which is complementary to the motion informa-
tion. The visual memory module is the key component of our approach: it
combines the outputs of the motion and appearance streams and aggregates a
spatio-temporal representation of the moving objects. The final segmentation
is then produced based on this aggregated representation. The resulting ap-
proach obtains state-of-the-art performance on several benchmark datasets,
outperforming the concurrent deep learning and heuristic-based methods.

Keywords : weakly-supervised learning, semantic segmentation, motion
segmentation, video object segmentation, computer vision, machine learning



Résumé

L’apprentissage faiblement supervisé cherche & réduire au minimum [ef-
fort humain requis pour entrainer les modéles de ’état de l'art. Cette tech-
nique permet de tirer parti d’une énorme quantité de données. Toutefois, dans
la pratique, les méthodes faiblement supervisées sont nettement moins effi-
caces que celles qui sont totalement supervisées. Plus particuliérement, dans
I’apprentissage profond, ot les approches de vision par ordinateur sont les plus
performantes, elles restent entiérement supervisées, ce qui limite leurs utilisa-
tions dans les applications du monde réel. Cette thése tente tout d’abord de
combler le fossé entre les méthodes faiblement supervisées et entiérement su-
pervisées en utilisant 'information de mouvement. Puis étudie le probléme de
la segmentation des objets en mouvement, en proposant 'une des premiéres
méthodes basées sur I'apprentissage pour cette tache.

Dans une premiére partie de la thése, nous nous concentrons sur le pro-
bléme de la segmentation sémantique faiblement supervisée. Le d’efi est de
capturer de maniéres précises les bordures des objets et d’éviter les optimums
locaux (ex : segmenter les parties les plus discriminantes). Contrairement a la
plupart des approches de I’état de ’art, qui reposent sur des images statiques,
nous utilisons les données vidéo avec le mouvement de ’objet comme informa-
tions importantes. Notre méthode utilise une approche de segmentation vidéo
de I’état de I'art pour segmenter les objets en mouvement dans les vidéos.
Les masques d’objets approximatifs produits par cette méthode sont ensuite
fusionnés avec le modéle de segmentation sémantique appris dans un EM-like
framework, afin d’inférer pour les trames vidéo, des labels sémantiques au
niveau des pixels. Ainsi, au fur et & mesure que 'apprentissage progresse, la
qualité des labels s’améliore automatiquement. Nous intégrons ensuite cette
architecture 4 notre approche basée sur ’apprentissage pour la segmenta-
tion de la vidéo afin d’obtenir un framework d’apprentissage complet pour
I’apprentissage faiblement supervisé a partir de vidéos.

Dans la deuxiéme partie de la thése, nous étudions la segmentation vi-
d’eo non supervisée, plus précisément comment segmenter tous les objets
dans une vidéo qui se déplace indépendamment de la caméra. De nombreux
défis tels qu’un grand mouvement de la caméra, des inexactitudes dans I'es-
timation du flux optique et la discontinuité du mouvement, complexifient la
tache de segmentation. Nous abordons le probléme du mouvement de caméra
en proposant une méthode basée sur l'apprentissage pour la segmentation
du mouvement : un réseau de neurones convolutif qui prend le flux optique
comme entrée et qui est entrainé pour segmenter les objets qui se déplacent
indépendamment de la caméra. Il est ensuite étendu avec un flux d’apparence
et un module de mémoire visuelle pour améliorer la continuité temporelle. Le
flux d’apparence tire profit de I'information sémantique qui est complémen-
taire de I'information de mouvement. Le module de mémoire visuelle est un



paramétre clé de notre approche : il combine les sorties des flux de mou-
vement et d’apparence et agréger une représentation spatio-temporelle des
objets en mouvement. La segmentation finale est ensuite produite a partir de
cette représentation agrégée. L’approche résultante obtient des performances
de I'état de 'art sur plusieurs jeux de données de référence, surpassant la
méthode d’apprentissage en profondeur et heuristique simultanée.

Mots-clefs : Apprentissage de maniére faiblement supervisée, segmenta-
tion sémantique, segmentation de mouvement, segmentation d’objets vidéo,
vision par ordinateur, apprentissage automatique
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Chapter 1

Introduction

Contents
1.1  Goals and challenges . . . . . .. ... ... ... .... 4
1.1.1  Weakly-supervised learning . . . . . . . .. ... 4
1.1.2  Video segmentation . . . . . . . ... ... ... 6
1.2 Contributions . . . . . .. .. ... oo 7
1.2.1  Weakly-supervised semantic segmentation . .. 7
1.2.2  Motion and video segmentation . . . ... ... 10

Machine learning and, in particular, deep learning-based approaches
have taken over nearly all areas of computer vision and Al recently. In-
deed, learning task-specific representations from data has achieved better
than human performance on image classification with CNNs [54], produced
almost human-quality results in some machine translation settings with
LSTMs [151] and beaten the best Go players in the world using deep re-
inforcement learning [127], all of which seemed unthinkable even five years
ago. In addition, deep networks have been shown to better model neural
responses in higher visual cortical areas of the human brain than earlier,
hand-designed approaches [50, 155]. A natural question arises: is this all
we need? Is deep learning going to solve computer vision and Al, given
enough data? Many researchers disagree with this statement. To see why,
consider a typical computer vision task.

In particular, let us say we want to classify image pixels into different
visual categories, a task commonly known as semantic segmentation, us-
ing deep learning. Semantic segmentation combines the problems of object
classification and precise localization, which makes it critical for many ap-
plications, including robotics, where knowing precise object boundaries is
necessary for grasping [84], or biomedical imaging [122], where accurately
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Figure 1.1 — Overview of fully-supervised semantic segmentation and our
weakly-supervised approach, that uses motion to infer pixel-level labels.

segmenting different tissues helps in diagnosing diseases. The first step
towards learning a semantic segmentation model is selecting one of the top-
performing architectures in the literature [24, 92, 159]. The set of categories
that need to be processed is defined then, hundreds to thousands of images
for each category are collected, and each image is annotated with pixel-level
labels (see Figure 1.1, left). Given that annotating each object in an im-
age takes about 79 seconds, as reported in [93], users that actively exploit
machine learning in their business tend to hire specialized data annotation
companies to label their data. After the annotations have been obtained, a
model can be trained and used for the task of semantic segmentation. If the
set of categories the model segments has to be extended later, several im-
ages for the new categories have to be collected and annotated again. The
model then has to be retrained on this extended set. Such an approach be-
comes extremely expensive as the set of categories grows and is completely
infeasible for the ultimate task of capturing the richness of the entire visual
world. A different learning framework is needed, which is less dependent
on expensive manual annotations.

The problem of reducing the amount of supervision in machine learning
has received significant attention, resulting in the fields of weakly- [33, 99|
and semi-supervised [66, 117] learning. Semi-supervised learning exploits
a small set of labeled examples to extract useful information from a large
pool of unlabeled ones, whereas weakly-supervised learning explores the
setting where each example is provided with a limited form of annotation
(e.g,, boxes instead of pixel-level labels for semantic segmentation). In this
work we focus on the weakly-supervised setting and, in particular, study
weakly-supervised semantic segmentation, which has been a core problem in
computer vision recently. For instance, Khoreva et al. [69] have developed
a method for learning state-of-the-art semantic segmentation models from
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bounding box annotations, but these annotations remain relatively costly
to obtain. Methods that use image level tags are more promising, but, de-
spite the recent progress [75, 107|, their performance remains considerably
lower than their fully-supervised counterparts, with the top approaches re-
lying on additional manual annotations [106, 109]. This is due to the fact
that the problem of weakly-supervised semantic segmentation from image
tags is under-constrained, and additional cues are needed to obtain precise
segmentations. These cues can either be provided manually, or obtained
automatically. In this dissertation we focus on the latter setting, which is
both more rewarding and more challenging. To find a natural source for
such additional cues we now turn to the literature on vision in humans.

In the human visual system, learning happens with a minimal amount
of supervision [130]. Being born with only the most primitive forms of
object perception [14, 36|, infants acquire the notion of objectness and of
semantic categories through interaction with the environment during their
initial stage of life. In [130], Elizabeth Spelke has studied cues used by four-
month old infants to group surfaces into objects. This research has shown
that motion coherence is one of the primary signals that guide the learning
of visual concepts in the early stages of development. In particular, infants
observe the world as a combination of surfaces of different colors and group
those that move together into objects, which first leads to learning the
notion of shapes and later of semantic categories. This is in strong contrast
to the majority of weakly-supervised semantic segmentation methods, which
ignore motion information, relying exclusively on static images.

We attempt to close this gap by introducing the first video-based weakly-
supervised semantic segmentation method (Figure 1.1, right) in Chapter 3.
It integrates motion cues, extracted with a heuristic-based approach, with
a semantic model learned in an expectation maximization-like framework,
which allows to obtain high-quality labels automatically for training the
model. Motion plays the role of a key learning bias in this approach, thus the
quality of motion estimation is of a special importance. This motivates us
to study the moving object segmentation problem in isolation and develop
novel, learning-based approaches for motion and video object segmentation
in Chapter 5. Finally, in Chapter 6, we integrate our video segmentation
method in the weakly-supervised semantic segmentation framework to ob-
tain a fully trainable approach for learning from videos, and demonstrate
its superiority over the original method based on heuristic motion segmen-
tation.
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Figure 1.2 — Illustration of a weakly-supervised semantic segmentation set-
ting, where only image tags are available as supervision. Some of the main
challenges specific to this setting are: appearance variability in the train
example, dominance of discriminative object parts in the cat and dog ex-
amples, and correlation of object and background in the train example.

1.1 Goals and challenges

This dissertation addresses two related but independent topics: weakly-
supervised learning and video object segmentation. The first one is con-
cerned with reducing the annotation effort in learning a semantic segmenta-
tion model. The second studies the problem of segmenting moving objects
in videos. We now briefly present these two tasks, as well as the challenges
involved in each of them.

1.1.1 Weakly-supervised learning

The goal of weakly-supervised learning is to reduce the amount of su-
pervision required to train state-of-the-art models. The particular setting
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depends on the task at hand and the desired granularity of annotations.
For instance, for semantic segmentation, which requires pixel-level labels in
a fully-supervised regime, the annotation effort can be reduced by shifting
to bounding-boxes [69, 152, 163|, image tags [75, 107, 114], or even to no
manual annotations at all, capitalizing on web search engines to query im-
ages by keywords [65]. This dissertation is concerned with the tag setting,
where only the presence of categories in an image or a video is indicated, but
not the location or the number of corresponding objects (see Figure 1.2).
Thus, the only information available to weakly-supervised methods in this
setting is co-occurrence statistics (i.e., what is common among these images
containing cats and how they differ from those which contain dogs, trains,
and birds), and low-level cues, such as colour constancy in images. This
under-constrained problem poses many challenges, including object size and
appearance variation, convergence to the most discriminative parts, object-
background correlations, and capturing the exact object boundaries. We
now elaborate on the aforementioned challenges.

The variability of the visual world itself is one of the main diffi-
culties for the tag-only setting. Objects come in a variety of shapes, poses
and sizes and state-of-the-art approaches based on co-occurrence tend to
ignore the ones that are most different from the modes of the distribution.
For example, at test time the model might perform well on large objects,
captured from canonical angles, like the flying birds in the top left corner
of Figure 1.2, but will fail to segment the head of a crane.

A major problem is convergence to the most discriminative parts,
which is is essentially a more severe version of the problem described above.
Weakly-supervised approaches, faced with large appearance variation, learn
to ignore object parts that show a large variability and segment only the
parts that have a relatively consistent appearance in most of the images.
Examples include snouts of animals or radiators of cars. Avoiding this issue
requires imposing object-specific constraints on the extent of the segmen-
tation, which can not be achieved with low-level image cues only.

Another challenge common to weakly-supervised semantic segmentation
is object-background correlation: capturing correspondence between
the object and the background during training. For example, since birds
tend to appear with sky as a background (see examples in the top left
corner of Figure 1.2), the model learns to segment sky as a bird as well.
The same type of object-background correlation occurs for most of the
categories (for instance, trains usually appear on railroad tracks and cars
on roads), making this a significant issue. Notice that this problem can be
seen as the opposite of convergence to parts and different design choices
usually lead to the model being susceptible to either one or the other.
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LDOF flow [19] Frame LDOF flow [19] Frame

Figure 1.3 — Illustration of common video segmentation challenges with
videos from DAVIS [112] and FBMS [105] datasets. The ‘parkour’ and
‘kite-surf’ examples in the top row illustrate camera motion and ‘stufft’
motion, respectively. The ‘cat’ example in the bottom row shows a case of
motion discontinuity in videos.

An issue that most of the weakly-supervised semantic segmentation ap-
proaches are facing is that of capturing the exact object boundaries.
As mentioned above, some of the challenges of weakly-supervised semantic
segmentation are conflicting with each other. Avoiding all of them at the
same time without additional information about the extent of the object
requires introducing generic constraints into the learning framework. This
results in segmentation models that can approximately capture the location
and extent of the object, but not its precise boundaries.

1.1.2 Video segmentation

The second problem studied in this dissertation is video object segmen-
tation: segmenting objects which exhibit independent motion in at least one
frame in the video [35, 108]. Apart from being useful for weakly-supervised
learning, as we will show later, this problem is of importance for video edit-
ing [145] and is related to semantic video segmentation [41, 141]. A key
component for video object segmentation is motion segmentation - estima-
tion of independent object motion between pairs of frames [101, 139]. Tt
is often used as a local, frame-level signal to bootstrap video segmentation
pipelines. The main challenges for both these problems, are strong camera
motion, ‘stuff’ motion, flow estimation inaccuracies and motion discontinu-
ity (see Figure 1.3 for examples). We now define each of these challenges
in more detail.

In the absence of camera motion, independently moving objects can
be segmented at the frame level by simply thresholding optical low mag-
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nitude. If the camera is not static, however, the problem becomes much
more challenging, as shown in the ‘parkour’ example in the top left corner
of Figure 1.3. Strong camera motion in combination with complex back-
ground can produce patterns in the optical flow field that are non-trivial
to discriminate from those formed by independent object motion (see the
strong optical flow variation on the ramp in the bottom right corner of the
‘parkour’ example).

Another issue related to background motion is that of ‘stuff’ motion
(water, smoke, etc.). These materials can indeed move independently from
the camera (see the example of moving water in the top right corner of
Figure 1.3). They, however, are not the focus of video object segmentation
approaches, as they do not constitute objects. Methods relying exclusively
on optical flow, such as [101, 139], can not resolve this ambiguity, since
the object and stuff motion patterns are similar. Thus, it is necessary to
leverage appearance cues in addition to the motion cues for video object
segmentation.

Optical flow estimation inaccuracies are a significant issue for any
motion-related task. Consider, for instance, the flow for the parkour video in
the top left corner of Figure 1.3. It is estimated with the classical LDOF al-
gorithm [19], which produces artifacts on the ramp and on the bushes. This
can in turn lead to a motion segmentation method incorrectly segmenting
these regions as moving. Object appearance and temporal consistency can
serve as additional sources of information to avoid this type of mistakes.

Another issue is that in general objects in videos do not move consis-
tently throughout the whole sequence. They exhibit motion discontinu-
ity, stopping for a part of the sequence and then resuming with a potentially
different direction and velocity. Moreover, objects can be static in the be-
ginning of the video and only manifest independent motion in the latter
parts, as shown in the bottom row in Figure 1.3, where the cat is static
at first, but starts to walk towards the camera later. Thus, segmenting
objects in all the video frames requires remembering the previous frames
to segment the current one, as well as processing the video as a whole, and
not only in the forward direction.

1.2 Contributions

1.2.1 Weakly-supervised semantic segmentation

Our contributions in weakly-supervised learning are centered around
demonstrating the importance of motion as a cue for learning with tag-only
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annotations. Traditional approaches for weakly-supervised semantic seg-
mentation relied exclusively on static images, and hence resorted to heuris-
tic learning biases. For instance, the method of Duyuglu et al. [33] operated
on the level of unsupervised segmentation proposals, thus incorporating a
strong object prior into the learned model. It’s performance was, however,
limited by the quality of the generated proposals. Some of the more recent,
FCNN-based approaches [110, 114] formulated weakly-supervised segmen-
tation as a multiple instance learning problem. They assumed that there
is only one instance of the object of interest in every image and it has
to be correctly selected from a pool of irrelevant instances. In addition to
the single-object-per-image assumption being too restrictive, these methods
are especially susceptible to the convergence to parts problem described in
Section 1.1.1.

Other methods [107, 109] have attempted to introduce generic con-
straints into the weakly-supervised learning framework. In particular, they
proposed to manually constraint the area an object can occupy in an im-
age while inferring pixel labels. These constraints allowed them to partially
mitigate the convergence to parts and object-background correlation issues.
They, however, were not object-specific and thus, did not necessarily hold
for all the images. This resulted in models that could roughly localize the
objects, but failed to capture their exact boundaries.

Some approaches proposed ways to obtain object-specific constraints for
static images. For instance, Kolesnikov et al. [75] utilized the method of
Zhou et al. [162] to extract class activation maps (CAMs) from a model
trained for image classification. These activation maps are not accurate
object segmentations per se, but can be used to estimate the object loca-
tion in an image. They then capitalized on low-level image cues, such as
colour constancy, to infer the boundaries of an object. In another work Oh
et al. [106] augment CAM localization cues with a stronger shape prior -
objectness. They employ a dataset with bounding-box level object annota-
tion to learn a generic object segmentation model. Foreground/background
segmentations produced by this model are then combined with class-specific
localization cues of Zhou et al. [162] to infer pixel-level labels for training a
semantic segmentation model. This approach achieves outstanding results,
but requires bounding box annotations for learning objectness.

Our work is different in that we propose to utilize motion as an object-
specific segmentation cue that can be obtained automatically. Our first con-
tribution is an expectation-maximization-like framework for weakly-supervised
learning from videos that encodes motion information as a prior to signifi-
cantly improve the accuracy of the label inference. The second contribution
resides in integrating a learning-based video segmentation approach into the
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Figure 1.4 — Overview of our weakly-supervised semantic segmentation
framework. The soft potentials (foreground appearance) computed from
motion segmentation and the semantic predictions computed by FCNN
jointly determine the latent segmentation (inferred labels) used to learn
the model.

EM-framework, to demonstrate the benefits of a fully-trainable model.

Weakly-Supervised Semantic Segmentation using Motion Cues.
In our ECCV’16 publication we propose motion-CNN (M-CNN) [136], a
novel fully-convolutional neural network (FCNN) framework which incor-
porates motion cues, and is learned from tag-level video annotations. Our
learning scheme to train the network, shown in Figure 1.4, uses motion
segments as soft constraints, thereby handling noisy motion information.
When trained on weakly annotated videos, our method outperforms the
state-of-the-art approach on the PASCAL VOC 2012 image segmentation
benchmark. We also demonstrate that the performance of M-CNN learned
with 150 weak video annotations is on par with state-of-the-art weakly-
supervised methods trained with thousands of images [107, 109, 110]. Fi-
nally, M-CNN substantially outperforms recent approaches in a related task
of video co-localization on the YouTube-Objects dataset. The method is
presented in detail in Chapter 3 and the implementation is available online
(see Software chapter in the end of the thesis for details).

End-To-End Learning Framework for Weakly-Supervised Seman-
tic Segmentation. After developing a learning-based approach for video
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object segmentation in Chapter 5 we extend it to the problem of weakly-
supervised semantic segmentation from videos. In particular, our two-
stream architecture with a convolutional memory module, shown in Fig-
ure 1.6, is used to infer pixel-level labels of the moving objects, which are in
turn used to train the appearance stream for the task of semantic segmen-
tation. This results in an EM-like framework, similar to M-CNN, which
is however, fully-trainable. It is learned from a small set of videos with
pixel-level, moving-object annotations and a large set of videos with weak
semantic labels. We demonstrate the benefits of the fully-trainable frame-
work by significantly improving our previous results both on the PASCAL
VOC 2012 image segmentation and on the DAVIS 2016 video object seg-
mentation benchmarks. We preset this method in Chapter 6

1.2.2 Motion and video segmentation

The problem of video object segmentation is tightly related to the task
of motion segmentation - binary classification of pixels on static and inde-
pendently moving. Thus, the research on these two topics is often coupled.
Early works on motion segmentation were based on geometry. For instance,
Philip Torr [139] proposed to identify independently moving objects by re-
covering information about 3D object motion from 2D flow. He then fit
several motion models to the video to explain the individual motions of
all the pixels, and assigned one of the models to the camera. The pixels
whose motion was not explained by the camera model were then assigned a
foreground label. Estimating 3D motion models from a single-camera video
is ambiguous, however. Thus, for instance, in [101] the authors proposed a
geometry-based model operating in the 2D space.

Other motion segmentation methods are based on heuristics instead.
In [108] Papazoglou et al. first extract motion boundaries by measuring
changes in optical flow field, and then use them to estimate moving regions.
They identify a particular pattern in the optical flow boundary filed corre-
sponding to moving objects, and devise an efficient algorithm for capturing
such patterns. A different heuristic proposed in [134] is based on object
occlusion. The authors observe that a segmentation of a scene into layers
corresponding to objects and background can be revealed when either the
object or the viewer move, causing parts of the scene to become hidden
and others dissoccluded. Such regions can be estimated as a byproduct of
optical flow algorithms. Notice however, that in the presence of a camera
motion, occlusion-based methods can also segment static objects, which is
desirable in some scenarios but not in others.
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Figure 1.5 — Our motion pattern network: MP-Net. The blue arrows in
the encoder part (a) denote convolutional layers, together with ReLU and
max-pooling layers. The red arrows in the decoder part (b) are convolu-
tional layers with ReLU, ‘up’ denotes 2 x 2 upsampling of the output of the
previous unit. The unit shown in green represents bilinear interpolation of
the output of the last decoder unit.

Unsupervised video segmentations approaches often use motion estima-
tion as a frame-level cue to bootstrap their pipeline. For instance, Papa-
zoglou et al. [108] propagate frame-level estimates of the moving regions
throughout the video with optical flow and learn an appearance model of
the moving object from these estimates. Both motion and appearance cues
are then encoded as unary terms in an objective function optimized over a
spatio-temporal graph of a video with GraphCut [15|. This allows them to
both improve object segmentation in the frames where object moves and
propagate segmentation to the frames where the object becomes static. A
similar framework is proposed in [134]. Both these approaches exploit tem-
poral relations between consecutive frames only. To overcome this limita-
tion, Faktor and Irani [35] propose to include non-local connections into the
video graph. They cluster superpixels in an appearance space and connect
the most similar ones with edges that potentially span multiple frames.

Another family of video segmentation approaches is based on long-term
analysis of pixel trajectories [18, 68|. In these methods each pixel is tracked
individually for multiple frames with optical low. The motion pattern of
each pixel is then encoded in a compact descriptor and these descriptors
are clustered to group the ones that are spatio-temporally close and exhibit
similar motion into objects.

In contrast to the previous work, our approaches to motion and video
segmentation are based on deep learning. Inspired by the progress in deep
learning for semantic segmentation we train an FCNN on a synthetic dataset
for the task of motion segmentation. We then extend this network with an
appearance stream and a visual memory module to obtain a video object
segmentation model.
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Figure 1.6 — Overview of our video object segmentation approach. Each
video frame is processed by the appearance (green) and the motion (yel-
low) networks to produce an intermediate two-stream representation. The
visual memory module combines this with the aggregated moving object
representation to compute the final segmentation result.

Learning motion patterns in videos. In our CVPR’17 publication
we have proposed the first learning-based approach for motion segmenta-
tion [137]. At its core is a fully convolutional network, which is learned
entirely from synthetic video sequences, and their ground-truth optical flow
and motion segmentation (see Figure 1.5). This encoder-decoder style ar-
chitecture first learns a coarse representation of optical flow field features,
and then refines it iteratively to produce motion labels at the original high-
resolution. The output label of each pixel denotes whether it has undergone
independent motion, i.e., irrespective of camera motion. In Section 5.4.3 we
demonstrate the benefits of this learning framework on the moving object
segmentation task, where the goal is to segment all objects in motion. It
shows high performance on the synthetic data, where most of the issues
described in Section 1.1.2 are not present, but on real videos the segmen-
tation quality is limited. Finetuning the network on real videos helps to
bridge this gap, but does not address all the model’s limitations. To this
end we propose to extend our motion segmentation model to a video object
segmentation framework, which is described in the next paragraph.

Learning video object segmentation with visual memory. In our
ICCV’17 publication we have introduced a novel two-stream neural net-
work with an explicit memory module for video object segmentation [138]
in Chapter 5. The two streams of the network, shown in Figure 1.6, encode
spatial and temporal features in a video sequence respectively, while the
memory module captures the evolution of objects over time. The module
to build a “visual memory” in video, i.e., a joint representation of all the
video frames, is realized with a convolutional recurrent unit learned from
a small number of training video sequences. Given a video frame as input,
our approach assigns each pixel an object or background label based on
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the learned spatio-temporal features as well as the “visual memory” spe-
cific to the video, acquired automatically without any manually-annotated
frames. The visual memory is implemented with convolutional gated re-
current units, which allows to propagate spatial information over time. We
evaluate our method extensively on three benchmarks, DAVIS, SegTrack-
v2 and Freiburg-Berkeley motion segmentation datasets. The code for both
motion and video object segmentation approaches is available online (see
Software chapter in the end of the thesis for details).






Part 1

WEAKLY-SUPERVISED SEMANTIC
SEGMENTATION WITH MOTION
CUES



The need for weakly-supervised learning for semantic segmentation has
been highlighted recently [52, 114, 143]. It is particularly important, as
acquiring a training set by labeling images manually at the pixel level is sig-
nificantly more expensive than assigning class labels at the image level. Re-
cent segmentation approaches have used weak annotations in several forms:
bounding boxes around objects |99, 150], image labels denoting the pres-
ence of a category [114, 143| or a combination of the two [107]. All these
previous approaches only use annotation in images, i.e., bounding boxes,
image tags, as a weak form of supervision. Naturally, additional cues would
come in handy to address this challenging problem. As noted in [18], mo-
tion is one such cue for semantic segmentation, which helps us identify the
extent of objects and their boundaries in the scene more accurately. To
our knowledge, motion has not yet been leveraged for weakly-supervised
semantic segmentation. In this part, we aim to fill this gap by learning an
accurate segmentation model with the help of motion cues extracted from
weakly-annotated videos.

The rest of this part of the thesis is organized as follows: in Chapter 2
we review the related work on weakly-supervised semantic segmentation,
including appraoches with both box-level and image-level supervision. In
Chapter 3 we introduce our method for weakly-supervised semantic segmen-
tation with motion cues and provide and extensive experimental evaluation

on the PASCAL VOC 2012 dataset.
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In this chapter we review the related work on weakly-supervised seman-
tic segmentation. We start by defining the problem in Section 2.1. The
first step towards reducing the amount of supervision for semantic segmen-
tation is shifting from pixel-level to box level annotations. We review the
box-level methods in the Section 2.2. This thesis is, however, concerned
with the setting where only image- or video-level tags are available. The
work related to this setting is reviewed in the Section 2.3. Finally, since the
main contribution described in this part is utilizing motion as an additional
cue in weakly-supervised learning, we review other methods based on other
external cues in the Section 2.4.

2.1 Weakly-supervised semantic
segmentation

Semantic segmentation is the task of assigning a category label to each
pixel in an image (see top right image in Figure 2.1). It combines the tasks
of object classification and precise localization. This makes semantic seg-
mentation of importance for many applications, including robotics, where

17
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motorbike, person.

Figure 2.1 — Different degrees of supervision on an example from the PAS-
CAL VOC’12 dataset. In the fully-supervised annotation in the top right
corner pink represents category ’person’, blue represents 'motorbike’ and
black "background’.

knowing the precise object boundaries is necessary for grasping [84], or
biomedical imaging [122], where segmenting different tissues helps in disease
diagnosing. The traditional approaches for this task [21, 22] used a variety
of hand-crafted visual features, namely, SIF'T histograms, color, texture, in
combination with a graphical or a parametric structured model. Such early
attempts have been recently outperformed by FCNN methods, shown in
Figure 2.2. FCNN architecture [23, 37, 95] adapts standard CNNs [77, 82]
to handle input images of any arbitrary size by treating the fully connected
layers as convolutions with kernels of appropriate size. This allows them
to output scores for every pixel in the image. Most of these methods rely
on strong pixel-level annotation to train the network. Let’s denote FCNN
parameters as 6, image values as x and pixel labels as y. The training ob-
jective can then be formulated as maximizing the probability of the data:

0" = argmax P(y|x, 0), (2.1)
0
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forward /inference

backward/learning

21

Figure 2.2 — Fully-convolutional network, that takes an image as input and
directly outputs scores for every pixel. Given training images with pixel-
level labels, this model can be optimized with stochastic gradient descent.
(Image courtesy of Long et al. [95])

where 6* represents the optimal model parameters. Since both x and y are
observed, this objective can be directly optimized with stochastic gradient
descent.

In addition to fully-supervised segmentation approaches, several weakly-
supervised methods have been proposed over the years: some of them use
bounding boxes [99, 163], while others rely on image labels [33, 154] (see
Figure 2.1). Nearly all of these approaches can be viewed in a probabilistic
formulation, where missing pixel labels are treated as latent variables. In
particular, let’s denote the annotations (either bounding boxes or image
tags) as z. The unobserved pixel labels y are latent variables then and the
joint distribution can be written as:

P(x,y,z,0) = P(zly,x,0)P(y|x, 0)P(0]|x)P(x), (2.2)

where 6 represents the parameters of the probability distribution of pixel
labels given the image, which is usually modeled by an FCNN. Observing
that the weak labels z are independent of x and 6, given the pixels labels
y, and that 6 is independent of x, we can simplify the previous equation:

P(x,y,2,0) = P(z]y)P(y|x,0)P(0) P(x). (2:3)

If we, in addition, assume that the priors for x and 6 are uniform, a further
simplification can be achieved:

P(x,y,z,0) ~ P(z|ly)P(y|x,0). (2.4)
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Figure 2.3 — Weakly supervised semantic segmentation in the image-label
setting. The blue box represents P(y|x, #), modeled by an FCNN, and the
orange box represents the observation model P(zly).

Learning a semantic segmentation model can then be formulated as
maximizing the joint probability with respect to ¢ over a training set

0" = argmax P(x,y,z,0)
0

N

= argmax Z P(x;,yi,2i,0)
e

N

A argmax P(z;|y;)P(yi|x;, 0
g > P(zily:) P(yilxi, 0)

=1
N

~ argmax » _log P(zily;) + log P(yilxi.0), (2.5)
T

where NNV is the number of training images. The presence of the latent vari-
ables y in this equation makes a direct, gradient-based optimization im-
possible, however. Instead, statistics literature suggests using Expectation
Maximization (EM) [30]: an alternating optimization technique consisting
of first computing the expected values of latent variables y given the pre-
vious estimate of the model parameters 6':

y = argmax log P(z|y) + log P(y|x, ), (2.6)
y

and then using these expected values to maximize the join probability with
respect to @, essentially treating y as the ground truth segmentations.

0" = argmaxlog P(z|y) + log P(¥|x, ) = argmaxlog P(y|x,0), (2.7)
0 0
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where the second equality holds, since P(z|y) is independent of #. This
process is illustrated in Figure 2.3. In the most cases the maximization
step is approximated with a single iteration of stochastic gradient descent.
For the expectation step, however, there are two main approaches: single-
pixel one, inspired by multi-instance learning and multi-pixel one. We now
describe each of them in more detail.

2.1.1 Single-pixel inference

The methods that fall into this category treat pixel label inference as
an instance of the multi-instance learning (MIL) problem. In MIL images
are modeled as bags of instances, some of which are positive, belonging to
the categories indicated by the image tags (background is treated as an
additional category present in every image) and others are negative and
are thus irrelevant for the task. Since in the tag setting the number of
instances of each category is usually unknown a simplifying assumption is
made that only one object per category is present in an image. Computing
the expected pixel labels then boils down to selecting the highest scoring
pixel for every category given in the annotation and ignoring all the other
pixels by not including them in the loss computation:

G = {c, if c € z; and j arggnaxP(yZ] clx;, 0), (2.8)

tgnore, otherwise,

where j is the pixel index in an image x;.

Single-pixel approach is appealing due to its simplicity, relatively small
number of assumptions and the lack of ambiguity in label assignment. In
practice, however, methods following the MIL framework are extremely
susceptible to the "convergence to the most discriminative parts" problem,
described in the Section 1.1.1. In particular, a model trained to segment
the highest scoring regions converges to segmenting the most discriminative
parts of objects, like animal faces, or car radiators and completely ignores
the rest of the object. Multi-pixel approaches are addressing this issue by
inferring a label assignment to all the pixels in an image.

2.1.2 Multi-pixel inference

As mentioned in the previous section, using a single pixel per category
for supervising the training of a semantic segmentation model leads to con-
vergence to segmenting object parts, not object as a whole. Thus, the
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multi-pixel approaches modify the pixel label inference equation (2.8) to
compute the labels for all the image pixels:

Vi = argmaXf(Yi,Xi,Zi,e% (2'9)

Yi

where f represents the label preference function. In its simplest form,

f(yi7Xi7Zi76) = log P(yZ|X276) + log P(Zl|yz)

= Zlog P(yij|x;,0) + log P(zi|yi;), (2.10)
J
where
—0Q, if Yij Z;,
0, otherwise,

The preference function is then equivalent to the data log likelihood accord-
ing to the semantic segmentation model being learned, with a constraint
on the possible labels coming from the image annotation. It is easy to
see though, that being put in the EM framework, such a label inference
approach allows for a trivial solution: assigning all the pixels to the back-
ground category. To avoid converging to this local optimum, additional
constraints on the label assignment have to be encoded in the observation
model P(z]y). The way these constraints are obtained is exactly what dif-
fers most of the weakly-supervised semantic segmentation approaches from
each other. We now describe the most popular formulations for the box-
level and image-level settings in the Sections 2.2 and 2.3 respectively.

2.2 Box-level approaches

In this setting, a rough localization of objects in images is provided in
the form of bounding boxes (bottom left example in Figure 2.1). This sig-
nificantly simplifies the label inference problem, by providing constraints
on the extent and location of the object segmentations. The most straight-
forward approach is directly treating the bounding boxes as segmentations
(as in the Bbox-Rect method in [107]). In this case label inference becomes
a static assignment:

~ & lf] € Bci7
bkg, otherwise,
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Figure 2.4 — Exploiting bounding boxes for supervision. Boxes can either
be directly converted to pixel labels, as shown in the image in the middle,
or first refined with a foreground /background segmentation technique. The
last image is the result of the DenseCRF [76] refinement on the initial
box segmentation obtained by the method of [107]. (Image courtesy of
Papandreou et al. [107])

where B,; is the union of all the bounding boxes of category ¢ in the image
1. To find the #* one can then directly optimize the data likelihood in
the equation (2.7) with stochastic gradient descent. However, as shown in
the middle image in Figure 2.4, many background pixels get a foreground
label assignment with this approach, further exaggerating the foreground-
background correlation issue of weakly-supervised semantic segmentation
(see Section 1.1.1).

Several works suggest to mitigate this issue by refining the initial crude
bounding box segmentations, by combining them with unsupervised region
proposal methods (see [163] and [28]) or by utilizing foreground /background,
colour-based segmentation techniques (see Figure 2.4). In particular, [152]
and [69] are using GraphCut and [107] are relying on the DenseCRF [76].
Both are based on optimizing an energy function over the pixel label as-
signment:

E(y) = Zu(yz) + Z (YY), (2.13)

i (i.5)€€
where y; € {0,1} Vi, u is a unary potential encoding the initial belief about
the pixel’s label, 1 is a colour-based label compatibility function and &
denotes all pairs of neighboring pixels in the image. The difference between
the two approaches lies in the definition of v and €. In GraphCut, to define
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Figure 2.5 — Sample result from the iterative box refinement approach
of [69]. (Image courtesy of Khoreva et al. [69])

the unary term a foreground/background colour-based GMM is learned
from the pixels inside the box treated as foreground and all the other pixels
treated as background. It is then used to compute the unary scores for the
pixels inside of the box. In contrast, [107] simply assign the « fraction of the
pixels in the center of the box the score 1 for the foreground label and 0 for
the background and the pixels outside the box get the opposite assignment.
The neighborhood graph £ is defined as a pots model for GraphCut and
as a fully-connected model for the DenseCRF. In practice, both approaches
produce a more accurate pixel label assignment and, as a result, improve
the performance of the learned semantic segmentation model.

One disadvantage of the box refinement approach is that it ignores the
semantic information being learned, since the label preference function is
independent of 0: f(y:,x;,2:,0) = f(yi,Xi,2;). Both methods described
above address this issue. In [69] the authors modify the EM inference by
performing full model optimization in the M-step, with refined boxes as
labels. The predictions of the learned model are then used to obtain more
accurate unary potentials in the GraphCut energy function (3.4) and thus
compute an improved estimate of the pixel labels §. As shown in Figure 2.5,
this process is iterated several times, allowing their method to achieve fully-
supervised performance with bounding box annotations.

A more direct approach to incorporating model predictions in the la-
bel inference framework is proposed in [107]. The authors formulate the
observation model as:

log P(zily:) = Z O (Yij, 2:) + const, (2.14)
J

where const is a normalization constant and the function ¢ is encouraging
the label assignment to be consistent with the box annotations:

b7 lf] € Bcia

, (2.15)
0, otherwise,

¢(yz‘j =c,z;) = {
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and b is a predefined constant. In other words, for the pixels that fall into
one of the bounding boxes the probability of the corresponding category
is increased and the probabilities of the remaining categories are left un-
changed. This method does performs slightly better than naively treating
bounding boxes as segmentation but is outperformed even by the simple
box refinement approach. This is due to the fact that low level image in-
formation exploited by the box refinement provides a strong cue, which is
completely ignored by this method. Nevertheless, the formulation in which
external knowledge is incorporated into the observation model and used in
the E-step of the expectation maximization algorithm is sufficiently general
and is used by many approaches we are about to review.

2.3 Image-level approaches

Early image-level methods for weakly-supervised semantic segmentation
operated on the level of segments [33] or superpixels [154], not pixels, which
allowed them to obtain non-trivial solutions with a simple constraint that
every image label must be matched with at least one segment in the E-
step. Their performance, however, was limited by the performance of the
segmentation method used to generate the input.

Some early, FCNN-based approaches, like [110] extend the MIL frame-
work used for object detection [27, 125] to segmentation by treating the
pixel with the highest prediction score for a category as its positive sample
when computing the loss. However, as we explained in the Section 2.1.1,
this approach is susceptible to standard issues suffered by MIL, like con-
verging to the most discriminative parts of objects. An alternative MIL
strategy is used in [114], by introducing a soft aggregation function that
translates pixel-level FCNN predictions into an image label distribution. In
other words, the latent variables y are removed from the model and the
distribution over the image-level labels z depends directly on x and 6:

P(Zi|}’i7xi79> = P(Zi’XmG) = aggreg(si)a (216)

where S; := {s;;,Vj} is the set of pixel category scores compute by an
FCNN, S; = fenn(x;,0) and aggreg is a differentiable score aggregation
procedure designed by the authors. Getting rid of the latent variables allows
for a direct, gradient-based optimization to find 6*. This strategy works
better in practice than [110], but requires training images that contain
only a single object, as well as explicit background images. In addition,
it produces inaccurate segmentations, which are particularly prone to false
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positives. To achieve competitive results, the authors use a complex post-
processing step, computing image-level priors with multi-scale segmentation
algorithm in testing.

Weakly-supervised FCNNs in [107] and [109] are the most relevant for
our work. They operate in the EM-framework and, like the adaptive, box-
level approach in [107], incorporate constraints on the predicted pixel labels
in the observation model P(z|y). Since no information about the cardinal-
ity, location or extent or the objects in an image is provided in this case, the
constraints encoded in the function ¢ (equation (2.15)) are more general.
[107] present two formulation, one similar to (2.15), where the condition is
applied to all the pixels in an image, and the value of b is fixed

b,if c € z,

) (2.17)
0, otherwise,

O(yij = ¢,23) = {

and another, where b is adaptively computed for every image in every iter-
ation to ensure a certain proportion of foreground and background labels
in y;. In particular, they constraint at least 20% of the pixels in an image
to be assigned to each of the image-label categories, at least 40% to the
background and enforce that no pixel is assigned to class ¢, if ¢ ¢ z;. An
heuristic-based algorithm is used to compute the bias values that would
result in a pixel label assignment y; satisfying the constraints above. This
approach performs significantly better than the baseline with a fixed b,
solving the convergence to parts issue. It was extended in [109] to include
generic linear constraints on the label space, by formulating label predic-
tion as a convex optimization problem. In practice, however, this extension
performs similarly to the simpler method of [107].

Both these methods showed state-of-the-art results on the VOC’12 dataset.
Figure 2.6 demonstrates the predictions of [107]. It is able to correctly lo-
calize the objects, but the segmentations are blobby, failing to capture the
exact object boundaries. This is due to the fixed cardinality constraints,
used to compute the bias term b in equation (2.17). Indeed, the assumption
that any object in any image occupies at least 20% of the area does not hold
in many realistic images. Thus, the same background correlation issue that
was observed for the approach using bounding boxes as segmentation in
the Section 2.2 manifests itself here as well. In fact, any general constraint
would not hold for all the images, due to the large variability of the visual
world. More specific category-level and, ideally, instance-level constraints
are necessary for learning accurate segmentation. The methods described
in the next section explore sources of such constraints and efficient ways of
integrating them in the EM-framework.
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Figure 2.6 — Sample results of the weakly-supervised method of [107] on the
images from the VOC’12 dataset.

2.4 Exploiting external cues

One example of external cues that are helpful in learning accurate seg-
mentations are constraints on the object size and location provided by the
user. Such constraints can be represented in the form of pixel- or box-level
annotations, giving rise to the fully-supervised and box-supervised scenarios
described above. In [109] and [10] the authors suggest two complementary
approaches to reducing the effort in collecting the object location and ex-
tent annotations. The former work addresses the issue of generic cardinality
constraints of [107]. Instead of assuming that any object occupies at least
20% of the image area they propose to make this constraint category spe-
cific. For example, for large objects, like trains or trucks the number can
be larger, whereas for small objects like birds or cups it can be smaller.
The exact fraction for every category is determined by the user, slightly
increasing the annotation effort, but leading to a significant improvement
in the overall performance.

In [10], the authors consider the complementary issue of object loca-
tion ambiguity. Their method extends the MIL-based approach of [110],
but instead of fully relying on the model predictions P(y;|x;, ) to select
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a positive sample for each category, they suggest to use the minimal form
of user annotation: single pixel supervision. In particular, the annotator,
in addition to identifying the presence of the categories, labels a single
pixel inside of each object instance in an image. This external informa-
tion indeed allows to improve the model’s precision and increase the overall
performance at a very little additional annotation cost. However, the con-
vergence to parts issue, common to the MIL-based approaches, still limits
the method’s performance. To address it, the authors resort to another
external cue, commonly used by weakly-supervised semantic segmentation
methods: objectness.

Objectness is defined as a probability of a pixel belonging to an object,
irrespective of the object category. It can thus be used as a natural source
of instance-specific constraints on the object extent. A lot of methods for
estimating objectness have been proposed, from early, heuristic-based that
operated on the box level [8], or pixel-level [25], to the more recent neural
network-based approaches, like [89] and [87]. The later obtain superior per-
formance, but themselves require pixel-level annotations to train. Thus, [10]
are using the early, heuristic-based method of [8] and compute pixel level
scores by aggregating the scores of the bounding boxes containing the pixel.
Since their approach does not explicitly compute the pixel label assignment
Vi, they incorporate the objectness directly into the loss function, used to
learn the semantic segmentation model parameters:

L(S,G,2,0) = Limg(S,2) — Lpoint (S, G) — Lopj (S, 0), (2.18)

where S represents the pixel-level category scores computed by the FCNN,
(G is the sparse set of manually annotate pixels and O is the set of the object-
ness scores. The individual components of the loss L;;,, and L,0n: encode
the image-level and pixel-level constraints (only categories in the image tag
can be predicted and for the manually annotated pixels the prediction has
to match the annotation), whereas L., encodes the soft objectness con-
straints:

Lo;(S,0) Zo log (Z sw> — 0;)log (1 - S) . (2.19)

ceobj ccobj

where o0bj is the set of non-background categories. This formulation encour-
ages assigning high scores to object categories for pixels with high objectness
and high background score to pixels with low objectness. In combination
with the single pixel supervision, this approach obtains both relatively high
precision and recall in testing, outperforming the generic constraint-based
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Mushroom Penguin

Figure 2.7 — Examples of the class activation maps produced by the method
of [162] on the Caltech256 dataset. (Image courtesy of Zhou et al. [162])

method of [107]. Its reliance on additional human supervision remains a
limitation though.

An alternative way of automatically obtaining object localization cues
has been proposed in [75]. Their work builds upon a weakly-supervised
object localization method of [162], where the authors design a mechanism
for extracting approximate object localization maps, which they call class
activation maps (CAMs), from a network trained for image classification
(see Figure 2.7). These maps are category specific and, in addition to an
estimate of the object extent, provide a pixel-level belief in the correctness
of the prediction. Thus, although CAMs are inaccurate overall (see, for
instance, the teapot example in Figure 2.7, where only parts of the objects
are segmented), a small subset of confident pixels can be extracted from
every image and used as annotations. These annotations are similar to the
point-supervision in [10], but can be obtained automatically. The resulting
label assignment can be written as:

cam _ 2.20
Yii tgnore, otherwise, ( )

o {c, if j € Geom,
where G{¥ is the set of the confident CAM pixels labeled with the category
c.

To increase the recall of the learned model, instead of computing pixel-
level objectness |75] utilize low-level image cues with the DenseCRF model
(see Section 2.2). In particular, the unary term u in the energy function
equation (3.4) is initialized with the model predictions P(y;|x;, ) and they
are refined using the appearance constancy assumption, to obtain pixel la-
bels y;rf . This assumption implies that if two pixels in an image have a
similar appearance they are likely to belong to the same category. This
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refinement step allows to both suppress incorrect predictions on the back-
ground regions and prevent the convergence to parts behavior, by expanding
the segmentation to the full extent of an object in many cases (the method
of [75] also has a separate component responsible for expanding the predic-
tions, but their experimental evaluation demonstrates that it’s effect on the
overall performance is marginal, thus we choose not to describe it here). No-
tice that this approach produces two independent label estimates for each
image: y5*" and yfrf . The data log likelihood equation (2.7) thus changes
to:

0* = argmax log P(3°"|x, 0) + log P(3°"/|x, 6), (2.21)

0

The optimization has to balance the hard localization constraints and the
segmentation refinement objective imposed by the DenseCRF, resulting in
the model both avoiding convergence to parts behavior and learning to
precisely capture the object boundaries.

Another way of exploiting class activation maps as an object localization
cue is explored in the recent work of [106]. The authors combine CAMs with
objectness maps, computed with a neural network, which is itself trained in
a weakly-supervised way on thousands on bounding-box annotated images.
To estimate the labels y they design an heuristic-based algorithm, that
combines class activations and generic object segmentations on the level of
connected components. The algorithm strives to obtain both high precision
and recall in the inferred labels, ignoring connected components for which
a confident prediction can not be made. This approach achieves top results
on the PASCAL VOC’12 semantic segmentation dataset, outperforming the
method of [75], but requires expensive bounding box annotations to train
the objectness model and relies on many heuristics that are not likely to
generalize to different settings.

Our work introduces an object localization cue that is complementary to
the ones described above: independent object motion. Indeed, objects mov-
ing independently from the camera in a video can be precisely segmented,
providing both localization and an accurate segmentation of an object for
free. Motion cues have been explored in the weakly-supervised object detec-
tion literature before, e.g., in [116] and [91], but we are the first to propose
a weakly-supervised semantic segmentation method that capitalizes on the
motion information.
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Our proposed framework is based on fully convolutional neural net-
works (FCNNs) [23, 37, 95, 160], which extend deep CNNs, and are able
to classify every pixel in an input image in a single forward pass. While

Image DeepLab (full) EM-Adapt (weak) M-CNN (weak)

Figure 3.1 — Comparison of state-of-the-art fully [23] and weakly [107] su-
pervised methods with our weakly-supervised M-CNN model.
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FCNNs show state-of-the-art results on segmentation benchmark datasets,
they require thousands of pixel-level annotated images to train on—a re-
quirement that limits their utility. Recently, there have been some at-
tempts [107, 109, 110, 114] to train FCNNs with weakly-annotated images,
but they remain inferior in performance to their fully-supervised equivalents
(see Figure 3.1). In this chapter, we develop a new CNN variant named M-
CNN, which leverages motion cues in weakly-labeled videos, in the form of
unsupervised motion segmentation, e.g., [L08|. It builds on the architecture
of FCNN by adding a motion segmentation based label inference step, as
shown in Figure 3.2. In other words, predictions from the FCNN layers and
motion segmentation jointly determine the loss used to learn the network
(see §3.1.2).

Our approach uses unsupervised motion segmentation from real-world
videos, such as the YouTube-Objects [116] and the ImageNet-VID [1] datasets,
to train the network. In this context, we are confronted with two main chal-
lenges. The first one is that even the best-performing algorithms cannot
produce good motion segmentations consistently, and the second one is the
ambiguity of video-level annotations, which cannot guarantee the presence
of object in all the frames. We develop a novel scheme to address these chal-
lenges automatically without any manual annotations, apart from the labels
assigned at the video level, denoting the presence of objects somewhere in
the video. To this end, we use motion segmentations as soft constraints in
the learning process, and also fine-tune our network with a small number
of video shots to refine it.

We evaluated the proposed method on two related problems: semantic
segmentation and video co-localization. When trained on weakly-annotated
videos, M-CNN outperforms state-of-the-art EM-Adapt [107] on the PAS-
CAL VOC 2012 image segmentation benchmark [34]. Furthermore, our
trained model, despite using only 150 video labels, achieves performance
similar to EM-Adapt trained on more than 10,000 VOC image labels. Aug-
menting our training set with 1,000 VOC images results in a further gain,
achieving the best performance on VOC 2012 test set in the weakly-supervised
setting (see §3.2.4). On the video co-localization task, where the goal is to
localize common objects in a set of videos, M-CNN substantially outper-
forms a recent method [79] by over 16% on the YouTube-Objects dataset.

The contributions of this work are twofold: (i) We present a novel CNN
framework for segmentation that integrates motion cues in video as soft
constraints. (ii) Experimental results show that our segmentation model
learned from weakly-annotated videos can indeed be applied to evaluate on
challenging benchmarks and achieves top performance on semantic segmen-
tation as well as video co-localization tasks.
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Figure 3.2 — Overview of our M-CNN framework, where we show only one
frame from a video example for clarity. The soft potentials (foreground ap-
pearance) computed from motion segmentation and the FCNN predictions
(category appearance) jointly determine the latent segmentation (inferred
labels) to compute the loss, and thus the network update.

3.1 Learning semantic segmentation from
video

We train our network by exploiting motion cues from video sequences.
Specifically, we extract unsupervised motion segments from video, with
algorithms such as [108], and use them in combination with the weak labels
at the video level to learn the network. We sample frames from all the
video sequences uniformly, and assign them the class label of the video.
This collection forms our training dataset, along with their corresponding
motion segments.

The parameters of M-CNN are updated with a standard mini-batch
SGD, similar to other CNN approaches [107]|, with the gradient of a loss
function. Here, the loss measures the discrepancy between the ground truth
segmentation label and the label predicted at each pixel. Thus, in order to
learn the network for the semantic segmentation task, we need pixel-level
ground truth for all the training data. These pixel-level labels are naturally
latent variables in the context of weakly-supervised learning. Now, the
task is to estimate them for our weakly-labeled videos. An ideal scenario
in this setting would be near-perfect motion segmentations, which can be
directly used as object ground truth labels. However, in practice, not only
are the segmentations far from perfect (see Figure 3.3), but also fail to
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capture moving objects in many of the shots. This makes a direct usage
of motion segmentation results suboptimal. To address this, we propose a
novel scheme, where motion segments are only used as soft constraints to
estimate the latent variables together with object appearance cues.

The other challenges when dealing with real-world video datasets, such
as YouTube-Objects and ImageNet-VID, are related to the nature of video
data itself. On one hand, not all parts of a video contain the object of
interest. For instance, a video from a show reviewing boats may contain
shots with the host talking about the boat, and showing it from the inside
for a significant part—content that is unsuitable for learning a segmentation
model for the VOC ‘boat’ category. On the other hand, a long video can
contain many nearly identical object examples which leads to an imbalance
in the training set. We address both problems by fine-tuning our M-CNN
with an automatically selected, small subset of the training data.

3.1.1 Network architecture

Our network is built on the DeepLab model for semantic image seg-
mentation [23]. It is an FCNN, obtained by converting the fully-connected
layers of the VGG-16 network [129] into convolutional layers. A few other
changes are implemented to get a dense network output for an image at its
full resolution efficiently. Our work builds on this network. We develop a
more principled and effective label prediction scheme involving motion cues
to estimate the latent variables, in contrast to the heuristic size constraints
used in [107], which is based on DeepLab.

3.1.2 Estimating latent variables with label prediction

Given an image of N pixels, let s denote the output of the softmax layer
of the convolutional network. Then, s € [0, 1] is the prediction score of the
network at pixel ¢ for label [. The parameters of the network are updated
with the gradient of the loss function, given by:

L(y,s) = ZZ& . — c)log(s!), (3.1)

where y denotes ground truth segmentation labels in the fully-supervised
case, s is the current network prediction, and 6(y; — ¢) is the Dirac delta
function, i.e., §(y; —c) = 1, if y; = ¢, and 0 otherwise. The segmentation la-
bel y; of pixel i takes values from the label set C = {0, 1, ..., C}, containing
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Figure 3.3 — Examples highlighting the importance of label prediction for
handling imprecise motion segmentations (second column). The soft po-
tentials computed from motion segments along with network predictions
produce better labels (third column) to learn the network.

the background class (0) and C object categories. Naturally, in the weakly-
supervised case, ground truth segmentation labels are unavailable, and y
represents latent segmentation variables, which need to be estimated. We
perform this estimation with soft motion segmentation cues in this work.

Given the motion segmentation m = {m;|i = 1,..., N}, where m; €
{0,1} denotes whether a pixel i belongs to foreground (1) or background
(0).* The regions assigned to foreground can represent multiple objects
when the video is tagged with more than one object label. A simple way of
transforming motion segmentation labels m; into estimated latent semantic
segmentation labels g; is with a hard assignment:

N C, if m; = 17
Yi = , (3.2)
bkg, otherwise,

where ¢ represents the video label. This hard assignment is limited to
videos containing a single object label, and also makes the assumption that
motion segments are accurate and can be used as they are. We will see in our
experiments that this performs poorly when using real-world video datasets
(cf. ‘M-CNN* hard’ in Table 3.1). We address this by using motion cues as
soft constraints for estimating the label assignment y in the following.

1. We do not include an index denoting the frame number in the video for brevity.
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Inference of the segmentation y. Our label inference procedure is
motivated by the general EM scheme (see Section 2.1). We modify it by
incorporating the motion cues m in the joint probability distribution. In
particular, an additional probability term linking motion labels with cat-
egory labels is added to the distribution: P(ml|y). The label inference
equation (2.6) then takes the following form:

y = argmaxlog P(ml|y) + log P(z]y) +log P(y|x,0'), ~ (3.3)
Yy

In practice, we formulate the label preference function used to compute the
pixel-level segmentation y as an energy function E(y) defined by:

B(y) =3 (w0 + ol (7)) + D vuslmw),  (34)

IS% (i,)€€

where V = {1,2,..., N} is the set of all the pixels, r; denotes the RGB
color at pixel ¢ and the set £ denotes all pairs of neighboring pixels in the
image. Unary terms ;" and wzf “ are computed from motion cues and current
predictions of the network respectively, with o being a scalar parameter
balancing their impact. The pairwise term v;; imposes a smoothness over
the label space.

The first unary term ;" captures the appearance of all foreground ob-
jects obtained from motion segments. To this end, we learn two Gaus-
sian mixture models (GMMs), one each for foreground and background,
with RGB values of pixel colors, similar to standard segmentation meth-
ods [108, 123]. The foreground GMM is learned with RGB values of all
the pixels assigned to foreground in the motion segmentation. The back-
ground GMM is learned in a similar fashion with the corresponding back-
ground pixels. Given the RGB values of a pixel i, ¥"(r;) is the negative
log-likelihood of the corresponding GMM (background one for [ = 0 and
foreground otherwise). Using motion cues to generate this soft potential ¢]"
helps us alleviate the issue of imperfect motion segmentation. The second
unary term wif “ represents the learned object appearance model determined
by the current network prediction s¥* for pixel 7, i.e., ¥/(s¥") = —log(s¥).

The pairwise term is based on a contrast-sensitive Potts model [15, 123]
as:

B o exp(—lri — ;%)
Vij (i, y5) = M1 — A, 7)) (1 — 0(yi — y;)) Tst(i.7) ;o (3.5)

where r; and r; are colors of pixels ¢ and j, A is a scalar parameter to
balance the order of magnitude of the pairwise term with respect to the
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unary term, and «y is a scalar parameter set to 0.5 as in [108|. The function
dist(i, 7) is the Euclidean distance between pixels. The Dirac delta function
d(y; — y;) ensures that the pairwise cost is only applicable when two neigh-
boring pixels take different labels. In addition to this, we introduce the term
(1 — A(7,4)), where A(i,7) = 1 if pixels i and j both fall in the boundary
region around the motion segment, and 0 otherwise. This accounts for the
fact that motion segments may not always respect color boundaries, and
allows the minimization algorithm to assign different labels to neighboring
pixels around motion edges.

We minimize the energy function ((3.4)) with an iterative GrabCut-
like [123] approach, wherein we first apply the alpha expansion algorithm [16]
to get a multi-label solution, use it to re-estimate the (background and fore-
ground) GMMs, and then repeat the two steps a few times. We highlight
the importance of our label prediction technique with soft motion-cue con-
straints in Fig. 3.3. Here, the original, binary motion predictions are im-
precise (bottom) or incorrect (top), whereas using them as soft constraints
in combination with the network prediction results in a more accurate esti-
mation of the latent segmentation variables.

3.1.3 Fine-tuning M-CNN

We learn an initial M-CNN model from all the videos in the dataset
which have sufficient motion information (see §3.2.2 for implementation
details). To refine this model we add a fine-tuning step, which updates the
parameters of the network with a small set of unique and reliable video
examples. This set is built automatically by selecting one shot from each
video sequence, whose motion segment has the highest overlap (intersection
over union) score with the current M-CNN prediction. The intuition behind
this selection criterion is that our MCNN has already learned to discriminate
categories of interest from the background, and thus, its predictions will
have the highest overlap with precise motion segmentations. This model
refinement leverages the most reliable exemplars and avoids near duplicates,
often occurring within one video. In Section 3.2.3 we demonstrate the
importance of this step for dealing with real-world non-curated video data.



CHAPTER 3. OUR APPROACH 38

Figure 3.4 — Illustration of the intersection over union measure between two
rectangular segments.

3.2 Experiments

3.2.1 Datasets and evaluation

In this section, we review the metrics and the datasets used for evalu-
ating weakly supervised semantic segmentation.

To evaluate the performance of weakly supervised semantic segmenta-
tion, we use the standard measure for segmentation problems: intersection
over union (IoU). It captures both precision and recall of the predicted
segmentation against the groundtruth according to the following equation:

Intersection
which is also visualized in Figure 3.4. We compute IoU for each class as well
as the average over all the classes, including background, following standard
protocols of [34].

We also evaluate our segmentation results on the video datasets in the
co-localization setting. It these experiments we are measuring how well our
algorithm is able to extract the moving objects from videos given video-
level semantic labels. Since the video datasets we are working with provide
bounding box-level annotations only, we measure the performance on this
task with the CorLoc measure ([108], [116]), which is defined as the percent-
age of images with IoU score, between ground truth and predicted bounding
boxes, more than 0.5. To convert the segmentations predicted by our model
into bounding boxes we follow the protocol of [108] and extract a tight box
around the largest connected component in the segmentation.

We trained our video-based approach in two settings. The first one is on
purely video data, and the second on a combination of image and video data.
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We performed experiments primarily with the weakly-annotated videos in
the YouTube-Objects v2.2 dataset |2]. Additionally, to demonstrate that
our approach adapts to other datasets automatically, we used the ImageNet
video (ImageNet-VID) dataset [1|. The weakly-annotated images to train
our network jointly on image and video data were taken from the training
part of the PASCAL VOC 2012 segmentation dataset [34] with their image
tags only. We then evaluated variants of our method on the VOC 2012
segmentation validation and test sets.

The VOC 2012 dataset has 20 foreground object classes and a back-
ground category. It is split into 1464 training, 1449 validation and 1456
test images. For experiments dealing with the subset of 10 classes in com-
mon with YouTube-Objects, we treat the remaining 10 from VOC as ir-
relevant classes. In other words, we exclude all the training/validation
images which contain only the irrelevant categories. This results in 914
training and 909 validation images. In images that contain an irrelevant
class together with any of the 10 classes in YouTube-Objects, we treat their
corresponding pixels as background for evaluation. Some of the state-of-art
methods [107, 109] use an augmented version of the VOC 2012 dataset,
with over 10,000 additional training images [51|. Naturally the variants
trained on this large dataset perform significantly better than those using
the original VOC dataset. We do not use this augmented dataset in our
work, but report state-of-the-art results due to our motion cues.

The YouTube-Objects dataset consists of 10 classes, with 155 videos
in total. Each video is annotated with one class label and is split auto-
matically into shots, resulting in 2511 shots overall. For evaluation, one
frame per shot is annotated with a bounding box in some of the shots. We
use this exclusively for evaluating our video co-localization performance in
Section 3.2.5.

For experiments with ImageNet-VID, we use 795 training videos cor-
responding to the 10 classes in common with YouTube-Objects. ImageNet-
VID has bounding box annotations produced semi-automatically for every
frame in a video shot (2120 shots in total). We accumulate the labels over
a shot and assign them as class labels for the entire shot. As in the case of
YouTube-Objects, we only use class labels at the video level, and none of
the available additional annotations.

3.2.2 Implementation details

Motion segmentation. In all our experiments we used [108], a state-of-
the-art method for motion segmentation. We perform two pruning steps
before training the network. First, we discard all shots with less than 20
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frames (2x the batch size of our SGD training). Second, we remove shots
without relevant motion information: (i) when there are nearly no motion
segments, or (ii) a significant part of the frame is assigned to foreground.
We prune them out by a simple criterion based on the size of the foreground
segments. We keep only the shots where the estimated foreground occupies
between 2.5% and 50% of the frame area in each frame, for at least 20
contiguous frames in the shot. In cases where motion segmentation fails in
the middle of a shot, but recovers later, producing several valid sequences,
we keep the longest one. These two steps combined remove about a third
of the shots, with 1675 and 1691 shots remaining in YouTube-Objects and
ImageNet-VID respectively. We sample 10 frames uniformly from each of
these remaining shots to train the network.

Training. We use a mini-batch of size 10 for SGD, where each mini-batch
consists of the 10 frame samples of one shot. Our CNN learning parameters
follow the setting in [107]. The initial learning rate is set to 0.001 and
multiplied by 0.1 after a fixed number of iterations. We use a momentum
of 0.9 and a weight decay of 0.0005. Also, the loss term d(y; — c) log(s)
computed for each object class [ with num; training samples, in ((3.1)), is
weighted by min;_; ;num;/num;. This accounts for imbalanced number
of training samples for each class in the dataset.

In the energy function ((3.4)), the parameter «, which controls the rel-
ative importance of the current network prediction and the soft motion
cues, is set to 1 when training on the entire dataset. It is increased to 2
for fine-tuning, where the predictions are more reliable due to an improved
network. We perform 4 iterations of the graph cut based inference algo-
rithm, updating the GMMs at each step. The inference algorithm is either
alpha expansion (for videos with multiple objects) or graph cut (when there
is only one object label for the video). Following [108], we learn GMMs for
a frame t with the motion segments from all the 10 frames in a batch,
weighting each of them inversely according to their distance from ¢. The
fine-tuning step is performed very selectively with the best shot for each
video, where the average overlap is no less than 0.2. A systematic evalua-
tion on the VOC 2012 validation set confirmed that the performance is not
sensitive to the number of iterations and the o parameter. More details
on this and our implementation in the Caffe framework [64] are available
online [3].



Table 3.1 — Performance of M-CNN and EM-Adapt variants, trained with YouTube-Objects, on the VOC 2012
validation set. “*’ denotes the M-CNN models without fine-tuning. ‘M-CNN* hard’ is the variant without the label
prediction step. ‘M-CNN’ is our complete method: with fine-tuning and label prediction.

Method FOV | bkg aero bird boat car cat cow dog horsembike train| Average
EM-Adapt small| 65.7 25.1 20.5 9.3 21.6 23.7 124 17.7 149 195 254 | 23.2+3.0
EM-Adapt large | 69.1 12.9 14.7 9.0 129 154 56 99 7.8 159 23.0|179+44

M-CNN* small| 83.4 30.3 35.2 13.5 11.6 36.5 22.1 19.8 22.2 52 13.7 | 26.7+ 1.0
M-CNN* large | 84.6 35.3 44.8 24.7 21.7 444 26.3 26.5 27.9 10.0 22.9 | 33.6 £0.2
M-CNN* hard | large | 83.6 35.3 38.6 24.0 21.2 39.6 20.2 21.3 19.2 79 179 |299+0.7
M-CNN large | 86.3 46.5 43.5 27.6 34.0 47.5 28.7 31.0 30.8 324 434 |41.2+1.3
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3.2.3 Evaluation of M-CNN

We start by evaluating the different components of our M-CNN approach
and compare to the state-of-the-art EM-Adapt method, see Table 3.1. We
train EM-Adapt and M-CNN with the pruned shots from our YouTube-
Objects training set in two network settings: large and small field of view
(FOV). The large FOV is 224x224, while the small FOV is 128x128. We
learn 5 models which vary in the order of the training samples and their
variations (cropping, mirroring), and report the mean score and standard
deviation.

The small FOV M-CNN without the fine-tuning step achieves an IoU
of 26.7%, whereas large FOV gives 33.6% on the PASCAL VOC 2012 vali-
dation set. In contrast, EM-Adapt [107] trained * on the same dataset per-
forms poorly with large FOV. Furthermore, both the variants of EM-Adapt
are lower in performance than our M-CNN. This is because EM-Adapt uses
a heuristic (where background and foreground are constrained to a fraction
of the image area) to estimate the latent segmentation labels, and fails to
leverage the weak supervision in our training dataset effectively. Our ob-
servation on this failure of EM-Adapt is further supported by the analysis
in [107], which notes that a large FOV network performs poorer than its
small FOV counterpart when only a “small amount of supervision is lever-
aged”. The label prediction step (§3.1.2) proposed in our method leverages
training data better than EM-Adapt, by optimizing an energy function in-
volving soft motion constraints and network responses. We also evaluated
the significance of using motion cues as soft constraints (M-CNN*) instead
of introducing them as hard labels (M-CNN* hard), i.e., directly using mo-
tion segmentation result as latent labels y. ‘M-CNN* hard’ achieves 29.9
compared to 33.6 with soft constraints. We then take our best variant (M-
CNN with large FOV) and fine-tune it, improving the performance further
to 41.2%. In all the remaining experiments, we use the best variants of
EM-Adapt and M-CNN.

2. We used the original implementation provided by the authors to train EM-Adapt.



Table 3.2 — Performance of our M-CNN variants on the VOC 2012 validation set is shown as IoU scores. We also
compare with the best variants of EM-Adapt [107| trained on YouTube-Objects (YTube), ImageNet-VID (ImNet),
VOC, and augmented VOC (VOC aug.) datasets. { denotes the average result of 5 trained models.

Method Dataset bkg aero bird boat car cat cow dog horsembike train | Average
EM-Adapt | YTube 65.7 25.1 20.5 9.3 21.6 23.7 124 17.7 149 19.5 254 23.2¢F
EM-Adapt | ImNet 66.1 22.8 18.7 16.9 26.7 35.7 22.4 23.6 21.4 284 243 27.9
EM-Adapt | VOC 75.5 30.5 274 24.1 41.8 36.8 25.5 33.3 29.3 40.0 29.7 35.8
EM-Adapt | VOC aug. 77.4 32.1 30.8 26.4 42.6 40.7 32.8 37.8 35.1 452 41.1 40.2
M-CNN YTube 86.3 46.5 43.5 27.6 34.0 47.5 28.7 31.0 30.8 32.4 434 41.2¢
M-CNN VOC+YTube 85.4 54.5 40.8 35.5 41.2 47.5 38.3 42.0 41.5 45.0 478 47.2F
M-CNN VOC aug.+YTube | 82.5 47.8 35.3 29.6 45.6 54.6 40.3 46.6 44.8 52.2 56.6 48.7
M-CNN ImNet 85.6 41.4 45.3 23.2 38.6 42.3 36.0 35.1 21.1 15.3 44.8 39.0
M-CNN VOC+ImNet 85.1 53.3 46.8 32.5 33.9 37.3 40.7 32.3 34.2 40.0 45.0 43.7
M-CNN VOC aug.+ImNet | 83.1 47.6 40.3 26.4 44.1 51.1 41.7 51.0 349 44.6 52.7 47.0

HOVOYddV 410 € H4.LdVHO

ey



CHAPTER 3. OUR APPROACH 44

3.2.4 Training on weakly-annotated videos & images

We also trained our M-CNN with weakly-annotated videos and images.
To this end, we used images from the VOC 2012 training set. We added the
914 images from the VOC 2012 training set containing the 10 classes, and
used only their weak annotations, i.e., image-level labels. In this setting,
we first trained the network with the pruned video shots from YouTube-
Objects, fine-tuned it with a subset of shots (as described in §3.1.3), and
then performed a second fine-tuning step with these selected video shots
and VOC images. To estimate the latent segmentation labels we use our
optimization framework (§3.1.2) when the training sample is from the video
dataset and the EM-Adapt label prediction step when it is from the VOC
set. We can alternatively use our framework with only the network predic-
tion component for images, but this is not viable when training on classes
without video data, i.e., the remaining 10 classes in VOC. As shown in
Table 3.2, using image data, with additional object instances, improves
the IoU score from 41.2 to 47.2. In comparison, EM-Adapt re-trained for
10 classes on the original VOC 2012 achieves only 35.8. Augmenting the
dataset with several additional training images [51], improves it to 40.2,
but this remains considerably lower than our result. M-CNN trained with
ImageNet-VID achieves 39.0 (ImNet in the table), which is comparable to
our result with YouTube-Objects. The performance is significantly lower
for the motorbike class (15.3 vs 32.4) owing to the small number of video
shots available for training. In this case, we only have 67 shots compared
to 272 from YouTube-Objects. Augmenting this dataset with VOC images
boosts the performance to 43.7 (VOC+ImNet). Augmenting the training
set with additional images (VOC aug.) further increases the performance.

Qualitative results. Fig. 3.5 shows qualitative results of M-CNN (trained
on VOC and YouTube-Objects) on a few sample images. These have much
more accurate object boundaries than the best variant of EM-Adapt [107],
which tends to localize the object well, but produces a ‘blob-like’ segmen-
tation, see the last three rows in the figure in particular. The first two
rows show example images containing multiple object categories. M-CNN
recognizes object classes more accurately, e.g., cow in row 4, than EM-
Adapt, which confuses cow (shown in green) with horse (shown in magenta).
Furthermore, our segmentation results compare favorably with the fully-
supervised DeepLab [23] approach (see rows 3-4), highlighting the impact
of motion to learn segmentation. There is scope for further improvement,
e.g., overcoming the confusion between similar classes in close proximity to
each other, as in the challenging case in row 2 for cat vs dog.



CHAPTER 3. OUR APPROACH

Image DeepLab (full) EM-Adapt (weak) M-CNN (weak)

Figure 3.5 — Sample results on the VOC 2012 validation set. Re-
sults of fully-supervised DeepLab|23|, weakly-supervised EM-Adapt [107]
trained on augmented VOC, and our weakly-supervised M-CNN trained on
VOC+YouTube-Objects are shown in 2nd, 3rd and 4th columns respec-
tively.

Comparison to the state of the art. Table 3.3 shows evaluation on
the VOC 2012 test set, with our M-CNN trained on 20 classes using im-
age and video data for 10 classes and image data only for the other 10.
We performed this by uploading our segmentation results to the evaluation
server, as ground truth is not publicly available for the test set. We com-
pare with several state-of-the-art methods with scores taken directly from
the publications, except [107] without the post-processing CRF step. This
result, shown as ‘[107]” in the table, is with a model we trained on the VOC
augmented dataset. We train M-CNN on all the 20 VOC classes with the
model trained (and fine-tuned) on YouTube-Objects and perform a second
fine-tuning step together with videos from YouTube-Objects and images
from VOC. This achieves 39.8 mean IoU over all the 20 classes, and 49.6
on the 10 classes with video data. This result is significantly better than
methods using only weak labels, which achieve 25.7 [110], 35.6 [109] and
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Table 3.3 — Evaluation on the VOC 2012 test set shown as IoU scores.

Method Training data # train. samples Average Avg.
10-cls
Strong/Full supervision
[114] + bb VOC+ImNet ~762,500 37.0 43.8
[114] + seg VOC+ImNet ~761,500 40.6 48.0
[95] (full) VOC aug. 9,610 622 713
[107] + seg VOC aug. 12,031  69.0 782
[100] (full) VOC aug. 10,582  69.6  79.3
[160] (full) VOC aug. 11,685 72.0 80.8
[160] (full) VOC aug.+COCO 77,784 747 82.9
[23] (full) VOC aug. 12,031 716 79.1
Weak supervision with additional info.
[114] + sp ImNet ~760,000 35.8 42.3
[109] + sz VOC aug. 10,582  43.3  48.9
[109] + sz + CRF | VOC aug. 10,582 451 512
[107] + CRF VOC aug. 12,031  39.6 45.2
Weak supervision
[110] VOC aug. 12,031 257 -
[109] VOC aug. 10,582  35.6  39.5
[107] VOC aug. 12,031 35.2 40.3
Ours VOC+YTube 3,139 39.8 49.6
Ours VOC+ImNet 3,155 36.9 48.0

35.2 [107]|. The improvement shown by our M-CNN is more prominent when
we consider the average over 10 classes where we use soft motion segmen-
tation cues, and the background, with nearly 10% and 9% boost over [109]
and [107] respectively. We also show the evaluation of the model trained
on ImageNet-VID in the table.

A few methods have used additional information in the training process,
such as the size of objects (+ sz in the table), superpixel segmentation
(+ sp), or post-processing steps, e.g., introducing a CRF with pairwise
terms learned from fully-annotated data (+ CRF), or even strong or full
supervision, such as bounding box (+ bb) or pixel-level segmentation (+
seg) annotations. Even though our pure weakly-supervised method is not
directly comparable to these approaches, we have included these results
in the table for completeness. Nevertheless, M-CNN outperforms some of
these methods [107, 114], due to our effective learning scheme. Also from
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Table 3.4 — Co-localization performance of M-CNN on the YouTube-Objects
dataset. We report per class and average CorLoc scores, and compare with
state-of-the-art unsupervised and weakly-supervised methods.

Method[ aero bird boat car cat cow dog horse mbike train |Average

Unsupervised

[18] 53.9 19.6 38.2 37.8 322 21.8 27.0 34.7 454 37.5| 34.8
[108] 65.4 67.3 389 652 46.3 40.2 65.3 484 39.0 25.0| 50.1
[79] 55.2 58.7 53.6 723 33.1 583 525 50.8 45.0 19.8 | 49.9

Weakly-supervised
[116] 51.7 175 344 347 223 179 135 26.7 41.2 25.0| 28.5
[67] 25.1 31.2 278 385 41.2 284 339 356 23.1 25.0| 31.0
[79] 56.5 66.4 58.0 76.8 399 69.3 504 56.3 53.0 31.0| 55.7
M-CNN| 76.1 577 777 688 71.6 756 879 719 80.0 526| 72.0

Table 3.3, the number of training samples used for M-CNN (number of
videos shots + number of VOC training images) is significantly lower than
those for all the other methods.

3.2.5 Co-localization

We perform co-localization in the standard setting, where videos con-
tain a common object. Here, we use our M-CNN trained on the YouTube-
Objects dataset with 10 categories. We evaluate it on all the frames in
YouTube-Objects to obtain prediction scores p, for each pixel i. With these
scores, we compute a foreground GMM by considering pixels with high pre-
dictions for the object category as foreground. A background GMM is
also computed in a similar fashion. These form the unary term ¢! in the
energy function ((3.4)). We then minimize this function with graph cut
based inference to compute the binary (object vs background) segmenta-
tion labels. Since we estimate segmentations for all the video frames, we
do this at the superpixel level [5] to reduce computation cost. We then
extract the bounding box enclosing the largest connected component in
cach frame, and evaluate them following [116]. Quantitative results with
this are summarized as CorLoc scores in Table 3.4. We observe that our re-
sult outperforms previous state of the art [79] by over 16%. Performing this
experiment with ImageNet-VID data we obtain 42.1 on average, in compar-
ison to 37.9 of [108]. ImageNet-VID being a more challenging dataset than
YouTube-Objects results in a lower performance for both these methods.

We qualitatively demonstrate the performance of our method on the
YouTube-Objects dataset in Figure 3.6. Our method produces stable results
on a variety of categories (third column in the figure). The performance of
the motion segmentation method [108] is also shown for comparison. It is
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limited by the quality of optical flow and the heuristics used to distinguish
foreground from background motion. As a result, it often fails, see second
column in the figure.

3.3 Summary

This chapter introduces a novel weakly-supervised learning approach for
semantic segmentation, which uses only class labels assigned to videos. It
integrates motion cues computed from video as soft constraints into a fully
convolutional neural network. Experimental results show that our soft mo-
tion constraints can handle noisy motion information and improve signifi-
cantly over the heuristic size constraints used by state-of-the-art approaches
for weakly-supervised semantic segmentation, i.e., EM-Adapt [107]. We
show that our approach outperforms previous state of the art [107, 109] on
the PASCAL VOC 2012 image segmentation dataset, thereby overcoming
domain-shift issues typically seen when training on video and testing on im-
ages. Furthermore, our weakly-supervised method shows excellent results
for video co-localization and improves over several methods [67, 79, 108|.
Hong et al. [57], have recently extended our method by introducing a
problem-specific network architecture and incorporating class activation
maps of Zhou et al. [162] in the label inference objective. They then trained
this model on a large dataset of videos collected from YouTube, achieving
in a significant performance improvement. We discuss their approach in
more detail in Chapter 6.
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Frame Motion seg. M-CNN

Figure 3.6 — Sample co-localization results on the YouTube-Objects dataset.
In the first column the estimated bounding boxes are shown, where yellow
corresponds to our result, and red to that of [108]. Segmentations corre-
sponding to [108] and our method are shown in columns 2 and 3 respectively.






Part 11

VIDEO OBJECT SEGMENTATION



Video object segmentation is the task of extracting spatio-temporal re-
gions that correspond to object(s) moving in at least one frame in the video
sequence. The top-performing methods for this problem |35, 108] continue
to rely on hand-crafted features and do not leverage a learned video rep-
resentation, despite the impressive results achieved by convolutional neural
networks (CNNs) for other vision tasks, e.g., image segmentation [115], ob-
ject detection [118]. Very recently, there have been attempts to build CNNs
for video object segmentation |20, 63, 72|. They are some of the the first
approaches to use deep learning for video segmentation, but suffer from
various drawbacks. For example, [20, 72| rely on a manually-segmented
subset of frames (typically the first frame of the video sequence) to guide
the segmentation pipeline. The approach of [63] does not require manual
annotations, but remains frame-based, failing to exploit temporal consis-
tency in videos. Furthermore, none of these methods has a mechanism to
memorize relevant features of objects in a scene.

In this part we propose a two-stream network with an explicit memory
module for video object segmentation. The memory module is a convolu-
tional gated recurrent unit (GRU) that encodes the spatio-temporal evolu-
tion of object(s) in the input video sequence. This spatio-temporal repre-
sentation used in the memory module is extracted from two streams—the
appearance stream which describes static features of objects in the video,
and the temporal stream which captures the independent object motion.

The rest of this part of the thesis is organized as follows: in Chapter 4 we
review the related work on motion and video object segmentation. In Chap-
ter 5 we introduce our learning-based methods for motion and video object
segmentation and present an experimental evaluation on several benchmark
dataset. In addition, we provide an extensive ablation study to analyze dif-
ferent design choices of the method.
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The contributions described in the second part of the thesis are related to
three topics: motion estimation, video object segmentation, and recurrent
neural networks. In this section we review the work relevant to these topics.
The key subproblem in video object segmentation is segmenting indepen-
dent motion between a pair of frames, thus we start by describing motion
segmentation methods in the Section 4.1. We then continue by introduc-
ing video object segmentation and reviewing the methods that addressed
this problem in the past in the Section 4.2. A convolutional recurrent unit
is an important component of our approach for video segmentation, thus
we conclude with a review of related work on recurrent neural networks in
Section 4.3.

4.1 Motion estimation

Consider a pair of frames from the FlyingThings3D dataset of [97] shown
in Figure 4.1. It depicts a scene generated synthetically, involving a moving
camera (can be easily observed by comparing the top left corners of the
images (a) and (b)), with three large objects in the centre of the frame and

23
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Figure 4.1 — (a,b) Two example frames from a sequence in the FlyingTh-
ings3D dataset [97]. The camera is in motion in this scene, along with four
independently moving objects. (c¢) Ground-truth optical flow of (a), which
illustrates motion of both foreground objects and background with respect
to the next frame (b). (d) Ground-truth segmentation of moving objects in
this scene.

several objects in the background. The problem of motion segmentation
can then be defined as segmenting the objects that move independently
from the camera (see the ground truth segmentation (d)). Observing the
corresponding optical flow field (image (c) in the figure), one can see that
this problem is not trivial, since flow is not constant on the static objects in
the background. The reason for this is that, in presence of a camera motion,
2D flow direction and magnitude depend on the distance from the camera
to the object [59]. In particular, if we denote the translational component
of the camera motion in the 3D world as T = (U, V, W) and the camera’s
angular velocity as w = (A, B, (), then the optical flow (u,v) at a static
point (z,y) can be computed as follows:

U w
w= (=7 = B+Cy) —a(~— — Ay + Ba),

‘Z/ If/ (4.1)
v = (—E—C:c+A)—y(—7—Ay+Bx).

Notice that both components of the flow vector depend on Z - the distance
from the camera to the point (z,y) in the scene, which is unknown in the
general case. To resolve this ambiguity, some approaches rely on geometric
properties of the optical flow, whereas others propose various heuristics to
identify independent motion. Next, we separately describe the methods
which fall into both categories.

4.1.1 Geometry-based methods

Early attempts for estimating independent motion were primarily geometry-
based, such as [139], where the author suggests to estimate the fundamental
matrices F;, containing all the information about the motion of a pixel in
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3D, for all the motion models in a scene (that is, for the camera motion
and for each independent object motion). Consider a pixel x; = (x;, y;, 2;)
and a pixel x; = (x;, y;, z;), which represents x; after undergoing a motion
j, the two can be related with the following equation:

x,Fx; = 0. (4.2)

The matrix Fj can thus be estimated by solving for this equation given a
set of point correspondences between two frames. Motion segmentation can
then be obtained by selecting the model corresponding to the camera and
labeling all the pixels that do not fit to the camera model as moving. Po-
tential set of motions is identified with RANSAC [39], a method consisting
of randomly sampling pixels in an image, estimating the motion model for
these pixels and evaluating the consistency of the sampled data points with
the estimated model. After several iterations the model with the highest
consistency score is selected. Pixels having a high score according to the
selected model are then removed from the set and the process is repeated
until all the pixels are assigned to a model. Notice that this algorithm is
akin to k-means clustering, when the number of clusters is not known in ad-
vance. Despite the appeal of operating directly in the 3D space, estimating
a 3D motion model from a single-camera video is often ambiguous. Thus,
the most successful approaches rely on other principles.

Some of these approaches still utilize geometry, but operate in the 2D
space instead. For instance, in [101] the authors consider the case of trans-
lational camera motion only and remark that in this scenario the direction
of optical flow vectors (unlike their magnitude) does not depend on depth.
Let’s denote by ¢y the direction of the flow at a point (x,y). It can be shown
that, in the absence of camera rotation, the flow direction can be computed
as follows

tg = arctan(Wy — Vf Wa —Uf), (4.3)

where f represents the focal length of the camera. Thus, ¢y does not de-
pend on Z and is constant for static pixels. The method proceeds sim-
ilarly to [139] by estimating orientation-based motion models for back-
ground and object motions in a probabilistic framework. Per-pixel labels
are then assigned based on consistency with one of the estimated mod-
els. This approach however, is prone to errors in case of camera rotation,
and consistent object and camera motion orientation. An extension of the
method is introduced in [13], where the estimated camera rotation compo-
nent Op is subtracted from the optical flow field O in every frame. The
flow orientation-based motion models are then computed for the estimated
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(e)

Figure 4.2 — Visualization of the approach of [108] for a frame pair (a).
Optical flow (b) is first extracted and the motion boundaries based on flow
gradients (c) and orientation differences (d) are computed and combined
in (e). (f) Final motion boundaries thresholded and overlaid on the image.
(Image courtesy of Papazoglou et al. [108])

translation component Or only:
Or =0 — Og, (4.4)

thus the equation (4.3) holds. In addition, the initial estimates of fore-
ground and background motion models are updated over time, with optical
flow orientations of the new frames. This method, however, still relies on
RANSAC for initialization, and lacks a robust learning framework. It then
fails in challenging scenarios, as was demonstrate in [137].

4.1.2 Heuristic-based methods

Recent methods have relied on other cues to estimate moving object
regions. For example, [108] first extract motion boundaries by measuring
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changes in optical flow field, and then use them to estimate moving regions
(see Figure 4.2). To increase the robustness of the approach, they combine
two complementary motion boundary estimation techniques. The first one
(image (c) in Figure 4.2) is based on flow gradient magnitude || Vf, || for
a pixel p: .

by =1~ exp(-X" || V], |, (1.5)

where 07" € [0, 1] measures the strength of the motion boundary and A\™ is
a parameter controlling steepness of the function. This measure has high
precision for rapidly moving pixels, where 07" is close to 1, but is unreliable
for pixels with b" values around 0.5. It is thus augmented by the second
measure, based on the difference in direction between the motion of a pixel
p and its neighbors N (image (d) Figure 4.2):

bg =1 —exp(=\ %16%((092 ), (4.6)

p,q

where 0912)’(1 denotes the angle between ﬁ, and j_i]. This measure is com-
plementary to b7 in that it produces confident predictions in regions with
modest flow velocity, where the other measure is uncertain. For static pixels,
however, bf, scores are not well defined, but b;" is able to suppress possible
false positives. The result of combining the two edge maps is shown in the
image (e) in Figure 4.2.

To obtain an estimate of independently moving regions from the com-
bined edge map the authors observe that objects in motion are often repre-
sented by motion boundaries that form closed contours and can be efficiently
identified. They design an algorithm which finds regions lying inside closed
motion contours based on the point-in-polygon problem in computational
geometry [60]. It states that a ray starting from a point inside a polygon
intersects its boundary an odd number of time, whereas a ray starting out-
side a polygon has an even number of intersection. Since motion boundaries
are often incomplete, they suggest to shoot several rays from a point inside
a region, evenly covering the image, to estimate its motion likelihood.

A different heuristic for identifying independent object motion based on
surface occlusion was proposed in [12] and [134]. Occlusion occurs when
either objects or the viewer move, causing parts of the scene to become
hidden and others revealed. To identify such regions, optical flow algorithms
are used. In particular, under the standard assumption of the most of the
flow algorithms (i.e., constant illumination) a point = in the frame I; is
related to the frame I;,; through the following equation:

Ii(z) = L (wi™ (@) + (@), (4.7)
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Figure 4.3 — Sample of the segmentation results produced by the method
of [134] on FBMS. Grey, blue, yellow and red regions correspond to different
scene layers inferred by the method. (Image courtesy of Taylor et al. [134])

where w!™! is the deformation filed that warps the frame I, into 7,4, which

is typically represented by the optical flow field O;™, with w™(z) =
z + Ot (x). The remaining component n;(x) models the phenomena that
violate the assumptions. Occluded regions can thus be easily identified as
the ones that yield a large residual n, after optical flow estimation.

Occlusion relations provides information about the local order between
surfaces in the scene, since the occluder surface is always closer to the
viewer than the occluded one. This local information can be aggregated
throughout the video to obtain a complete layered segmentation of every
frame. Connected components within each layer then represent distinct
objects in the scene. Notice that the objects segmented in this way include,
but are not limited to the independently moving ones, since motion of the
viewer can reveal depth ordering relation between two static objects as well,
as demonstrated in the first and third images in Figure 4.3. The last image
in this figure also shows that objects can be over-segmented when they
exhibit non-rigid motion. In practice, the results of methods capitalizing
on occlusion are often competitive with [108], but both are limited by their
heuristic initialization.

While we also set out with the goal of finding objects in motion, our so-
lution to this problem is a novel learning-based method. It is related to the
approach of [108] in that it seeks to capture patterns in the flow filed that
correspond to independent motion, but instead of defining these patterns
manually, we propose to learn them from a large dataset of synthetic videos.
In concurrent work [63] presented a deep network to segment independent
motion in the flow field as well. While their approach is related to ours,
they use frame pairs from real videos, in contrast to synthetic data in our
case. Consequently, their work relies on estimated optical flow in training.
Since obtaining accurate ground truth moving object segmentation labels
is prohibitively expensive for a large dataset, they rely on an automatic,
heuristic-based label estimation approach, which results in noisy annota-
tions. We explore the pros and cons of using this realistic but noisy dataset
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for training our motion segmentation model in Section 5.4.3.

4.2 Video object segmentation

The task of segmenting objects in video is to associate pixels belonging
to a class spatio-temporally, in other words, extract segments that respect
object boundaries, as well as associate object pixels temporally whenever
they appear in the video. This can be accomplished either by propagat-
ing manual segment labels in one or more frames to the rest of the video
sequence [119], or by capitalizing on the low-level video cues, such as inde-
pendent object motion. The former setting is usually referred to as semi-
supervised video object segmentation, and the later as unsupervised. We
review state-of-the-art methods in both setting in Sections 4.2.1 and 4.2.2
respectively.

4.2.1 Semi-supervised approaches

Many approaches in this group rely heavily on the temporal consis-
tency property of the video: the fact that video content usually does not
change rapidly between two consecutive frames. Each pixel can then be
tracked with optical flow, resulting in a spatio-temporal graph that defines
constraints on the pixel label assignment. The actual assignment can be
obtained by propagating manual segmentation labels through the graph.
To increase the robustness, as well as efficiency of this process, the graph
is often built over superpixels or generic object parts, like in the method
of [148]. An interesting extension is proposed in [140], where labeling is
interleaved with optical flow estimation (see Figure 4.4). Flow is used to
obtain temporal edges between pixels, shown in red, whereas spatial edges
are shown in black. This information is aggregated on the level of super-
pixels shown in turquoise, and used to compute the object mask M;, by
label propagation. The mask is then used to re-estimate optical flow in
object and background regions separately, and flow is, in turn, used to re-
compute temporal edges in the graph. The intuition behind this approach
is that modeling the two tasks jointly can improve performance of the both
of them.

Methods built around local label propagation are limited by the short
range of the interaction they consider, however. To address this issue, sev-
eral methods (see [113] and [157]) propose global label propagation strate-
gies. They include long-range interaction into the neighborhood graph,
connecting frames from different parts of a video, which allows to better
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Figure 4.4 — Ilustration of the approach of [140]. Red circles denote pix-
els, which belong to the superpixels marked by the turquoise circels. The
black and red lines denote spatial and temporal relationship, respectively.
The relationship between the pixels and the superpixel are denoted by the
turquoise lines. (Image courtesy of Tsai et al. [140])

handle object appearance variation and occlusion. Inference in a global
video graph built on the level of pixels or fine superpixels is prohibitively
expensive, thus the methods in this family often utilize object proposal as
basic units. This allows to decrease the cost of the graph inference step, but
limits the performance of these methods by the performance of the proposal
generation approach employed.

Very recently, CNN-based methods for video object segmentation were
introduced by [20] and [72]. Starting with CNNs pre-trained for image seg-
mentation, these methods find objects in video by fine-tuning a network
on a manually annotated frame in the sequence and applying it to all the
other video frames. This simple strategy leads to surprisingly good results,
outperforming all the label propagation approaches described above. An
obvious limitation of these CNN-based methods is that they, being trained
on a single view of an object, fail to segment it in case of a large appear-
ance variation. An extension proposed by [144] suggests to segment a video
frame by frame, starting from the annotated one, finetuning the network



CHAPTER 4. RELATED WORK 61

on the predicted segmentation in every step. Due to the temporal con-
sistency property one can assume that object appearance will not change
significantly between two consecutive frames, thus the prediction of the net-
work trained on the previous frame will still be reliable, allowing to avoid
the concept drift problem. This robustness comes at a high computational
cost, however.

4.2.2 Unsupervised approaches

This work focuses on the problem of unsupervised video object segmen-
tation: segmenting spatio-temporally consistent regions in videos without
any manually-marked regions. Several methods in this paradigm (see [17,
49, 71, 85, 153]) are built on top of spatio-temporal graphs, similarly to the
classical semi-supervised approaches described in the previous section. In
the absence of manually annotated regions to propagate the labels from,
however, they resort to unsupervised graph partitioning. For instance,
in [42] and [71] the authors suggest to partition a set of vertices V, corre-
sponding to superpixels in a video, into N disjoint subsets {57, Ss, ..., Sy}
by optimizing for the normalized cut objective:

cut Sk, V \ Sk)
vol(Sg)

N
NCut(Sy, Sa, ..., Sy) = > (4.8)

k=1

where cut(Sk,V \ Sk) denotes the cost of separating the nodes in Sy from
the rest of the graph and vol(Sy) measures the consistency of Si. This
objectives encourages splitting the video into a set of spatio-temporal seg-
ments that are consistent within each other and clearly separated from
each other. The particular result is fully determined by the definition of
the weights of the graph edges. In practice, these approaches utilize vari-
ous heuristic combinations of appearance, location and motion features to
compute the superpixel similarities. Several examples of segmentations ob-
tained by the method of [71] are shown in Figure 4.5. They demonstrate
that approaches relying purely on unsupervised graph partitioning result in
over-segmentation of videos. For instance, in the first example both cars in
the foreground are separated into several independent segments and in all
cases background region is oversegmented. While such an oversegmentation
can be a useful intermediate step for some recognition tasks in video, it has
no notion of objects. Indeed, most of the extracted segments in this case
do not directly correspond to objects, making it non-trivial to obtain video
object segmentation from this intermediate result.
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Figure 4.5 — Example segmentations obtained by the method of [71] on
the videos from VSB100 [43]. Each color corresponds to a spatio-temporal
region extracted by the algorithm. (Image courtesy of Khoreva et al. [71])

Capturing the notion of an object in a video in a purely unsupervised
way is one of the key problems in computer vision. The seminal work of [18]
addresses it in a fundamental way, by exploiting the well known principle of
"common fate" from Gestalt psychology [73]: surfaces that move together
belong together. Their method relies on long term pixel trajectories of [133].
In particular, they track each pixel individually throughout the video with
optical flow. They then define a distance between two trajectories A and
B as a maximal difference in motion between them over time:

d(A, B) = maxd(A, B), (4.9)

where d; is the distance between two trajectories at a time ¢:

it —u)? + (v = vf)?
507 '

dt(Av B) = dsp(A7 B) (

(4.10)

This formulation is based on the difference in the optical flow, as well as the
spatial distance dg, between the trajectories in the given frame, and o is a
normalization term. The intuition behind it is that only trajectories that
move similarly throughout the whole video are assigned a small distance.
Final segmentation is obtained with graph partitioning, where trajectories
that overlap spatio-temporally are connected with edges, similarly to the
methods described above. In contrast, since the clustering is performed on
the level of long term pixel trajectories, not superpixels, it produces more
coherent regions, as shown in Figure 4.6. This method, however, assumes
homogeneity of motion over the entire object, which is invalid for non-rigid
objects, like the person in the example. His left hand moves distinctly from
the rest of the body and is thus assigned a different label. This demonstrates
that performing graph partitioning on the trajectory level ameliorates but
does not completely solve the oversegmentation problem.
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Figure 4.6 — A sample result produced by the method of [18] on the FBMS
dataset. Pixel of the same colour represent trajectories that were grouped
together by the method. (Image courtesy of Brox and Malik [18])

Another issue with the approach of [18] is that it does not produce dense
segmentations. Pixels can not be reliably tracked on homogeneous regions
(see the person’s vest or the wall in the background in Figure 4.6) and
thus the method resorts to ignoring them. [103] addressed this limitation
by proposing to propagate trajectory labels to the unlabeled pixels on the
frame-level by utilizing appearance. Their formulation ensures that tra-
jectory labels are preserved and consistently propagated to homogeneous
regions. Other extensions include incorporating higher-order potentials in
the trajectory similarity graph in [104] and employing a better graph par-
titioning approach in [68].

The methods that casts video object segmentation as a foreground-
background classification task take a radical approach to the oversegmenta-
tion issue: instead of assigning a distinct label to each independently moving
region, they propose to limit the number of labels to two. All the pixels
that move independently from the camera are labeled as foreground and
the rest of the pixels as background (see Figure 4.7). In particular, these
methods usually start with one of the motion segmentation strategies de-
scribed in the Section 4.1 to get an initial estimate of the moving and static
regions in every frame (shown in the second image in Figure 4.7). They
then learn appearance models for foreground and background regions, usu-
ally realized as Gaussian Mixture Models over RGB colour values, and use
them to score all the regions in a video, providing a complementary cue to
the initial motion estimates (third image in Figure 4.7). These motion and
appearance cues are often integrated with other cues as well, e.g., saliency
maps [146], pairwise constraints [108, 156], long-range interactions between
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Figure 4.7 — Visualization of the approach of [108]. Shown from left to right:
an example video frame from the FBMS dataset; corresponding pixel-level
estimate of independent motion; combined prediction of the foreground
and background appearance models learned from the motion estimates;
final segmentation obtained by combining appearance and motion cues in
a spatio-temporal graph-based framework.

distinct parts of the video [35], or object shape estimates [83], to compute
the final object segmentation. For instance, [108| propose to optimize an
energy function over the possible binary label assignments L:

E(L) =Y A +> L)+ Y VLI + > WL (4.11)

(4,5,t)EEs (3,5,t)EEL

with the unary terms A? and L corresponding to the appearance and motion
cues respectively and pairwise terms V' and W encouraging spatial and
temporal smoothness of the segmentation.

While our proposed method is similar in spirit to this class of approaches,
in terms of formulating segmentation as a classification problem, we differ
from previous work significantly. We propose an integrated approach to
learn appearance and motion features, and update them with a memory
module, in contrast to estimating an initial region heuristically and then
propagating it over time. Our robust model outperforms all the top ones
from this class [35, 83, 108, 134, 146], as shown in Section 5.4.5. Like
us [63] augment their motion segmentation network with an appearance
model and learn the parameters of a layer to combine the predictions of the
two. Their model, however, does not feature a memory module, and also
remains frame-based. Thus, it can not exploit the temporal consistency in
video.

Our memory module is realized as a convolutional gated recurrent unit
(ConvGRU) - the state-of-the-art recurrent neural network (RNN) archi-
tecture for modeling spatio-temoporal data. In the next section we briefly
introduce RNNs and review the corresponding literature.
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Figure 4.8 — Outline of the GRU architecture of [26]. (Image courtesy of
Cho et al. [26])

4.3 Recurrent neural networks (RNNs)

Traditional neural networks, i.e., multi-layer perceptrons [40], or CNNs [81]
were designed for recognizing patterns in static inputs, thus they treat each
input z; as independent of the previous ones {1, xs,...,2;—1}. In many
domains, however, like speech recognition or natural language processing,
this assumption does not hold. Data in these domains is represented by
sequences of inputs and, to recognize corresponding patterns, all the inputs
together, as well as their order, have to be taken into account. Motivated
by this setting, RNNs were introduced by [58]| as a natural extension of
multi-layer perceptrons. The main component of an RNN is an internal
state hy, which allows to accumulate information over time. The state in
classical RNNs is updated with a weighted combination of the input z;
and the previous state h;_;, where the weights w;, and w, are learned from
training data for the task at hand:

hy = tanh(wphy—1 + wexy). (4.12)
Prediction at a time t is then obtained from the state h;:
o = softmax(wyhy), (4.13)

that is from the accumulated representation of all the previous inputs in
the sequence. A major problem with learning these models, however, is
that of the gradient vanishing exponentially quickly with the length of the
training sequence [55]. This issue was later addressed in the LSTM and
GRU architectures.
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Long short-term memory (LSTM) |56] and gated recurrent unit (GRU) [26]
architectures are improved variants of RNN. They introduce gates with
learnable parameters, to update the internal state selectively, and can prop-
agate gradients further through time. In particular, GRU augments RNN
with two gates: the reset gate r and the update gate z, that control the
extent to which previous state h;_; influences the new state h; (see Fig-
ure 5.10). State update equation (4.12) is then split into two steps. First,
the candidate state hy is computed using the reset gate to selectively zero
out h;_q:

hy = tanh(w;re © hy—1 + wyxy). (4.14)

The new state at time ¢ is then computed as a weighted sum of the previous
state and the candidate state, where the weight is defined by the update
gate: B

hi =2 ©hi—q + (1 —2) © hy. (4.15)

The gates themselves are computed from the previous state and the the
current input:

re = 0 (Whrhi—1 + Wyr ), (4.16)

2 = 0(Whohy—1 + Wesy), '
where wy,., Wy, w,, and w,, are parameters that are learned as well. The
main goal of this architecture is to break the symmetry in the computation
of RNN activations. Instead of multiplying the input and the previous state
by fixed matrices w,, wy, from equation (4.12) at every time step, adaptive
multipliers in the from of the gates are introduced. This partially mitigates
the vanishing/exploding gradient issue and allows the model to learn to
dynamically adapt its state to the changing input sequence.

Often exploiting information from the future inputs {z,1, 412, ..., z7}
can be helpful for making a prediction for the current input x;. For instance,
[48] introduce an LSTM-based model for speech recognition that takes the
whole whole sequence of phonemes into account to classify each of them.
They demonstrate that future information can help to resolve ambiguity in
cases when the speaker’s pronunciation is unclear. Recurrent models that
process an input sequence in backward as well as in forward direction are
called bidirectional. In particular, let’s denote the function representing the
GRU and depicted in Figure 5.10 as g:

ht = ﬁ(ht_l,xt). (4.].7)

Bidirectional GRU then introduces another copy of a GRU g applied in the
backward direction, with its own state h':

Wy = 9} 0). (4.18)
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Prediction at a time ¢ is then obtained from a combined state of the two
models h; and h; by either summing or concatenating them.

Recurrent models, originally used for text and speech recognition, e.g., [17,
98], are becoming increasingly popular for visual data. Initial work on vi-
sion tasks, such as image captioning [31], future frame prediction [131] and
action recognition [102], has represented the internal state of the recurrent
models as a 1D vector - without encoding any spatial information. LSTM
and GRU architectures have been extended to address this issue with the
introduction of ConvLSTM [38, 111, 126] and ConvGRU [9] respectively.
In these convolutional recurrent models the state and the gates are 3D ten-
sors and the weight vectors are replaced by 2D convolutions. These models
have only recently been applied to vision tasks, such as video frame predic-
tion |38, 111, 126], action recognition and video captioning [9].

In our work, we employ a visual memory module based on a convolu-
tional GRU (ConvGRU) into our approach, and show that it is an effective
way to encode the spatio-temporal evolution of objects in video for segmen-
tation. Further, to fully benefit from all the frames in a video sequence, we
apply the recurrent model bidirectionally. This makes our memory module
a bidirectional convolutional recurrent model.
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Our model for video object segmentation is a two-stream network with
an explicit memory module (see Figure 5.1). The two streams are the ap-
pearance stream (shown in green) that describes static features of objects
in the video, and the temporal stream (show in yellow) that captures the
independent object motion. The memory module is a convolutional gated
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Figure 5.1 — Overview of our segmentation approach. Each video frame is
processed by the appearance (green) and the motion (yellow) networks to
produce an intermediate two-stream representation. The ConvGRU module
combines this with the learned visual memory to compute the final segmen-
tation result. The width (w’) and height (h’) of the feature map and the
output are w/8 and h/8 respectively.

recurrent unit (ConvGRU) trained to aggregate the spatio-temporal repre-
sentation of the moving object(s) in the video.

The temporal stream separates independent object and camera motion
with our motion pattern network (MP-Net), a trainable model, which takes
optical flow as input and outputs a per-pixel score for moving objects. In-
spired by fully convolutional networks (FCNs) [32, 95, 122|, we propose a
related encoder-decoder style architecture to accomplish this two-label clas-
sification task. The network is trained from scratch with synthetic data [97].
An example of a such a synthetic video sequence is shown in Figure 4.1.
Pixel-level ground-truth labels for training are generated automatically (see
Figure 4.1(d)), and denote whether each pixel has moved in the scene. The
input to the network is flow fields, such as the one shown in Figure 4.1(c).
More details of the network, and the training procedure are provided in
Section 5.2.2. With this training, our model learns to distinguish motion
patterns of objects and background.

The appearance stream is the DeepLab network [23, 24|, pretrained on
the PASCAL VOC segmentation dataset, and it operates on individual
video frames. With the spatial and temporal CNN features, we train the
convolutional GRU component of the framework to learn a visual memory
representation of object(s) in the scene. Given a frame ¢ from the video
sequence as input, the network extracts its spatio-temporal features and:
(i) computes the segmentation using the memory representation aggregated
from all frames previously seen in the video, (ii) updates the memory unit
with features from ¢. The segmentation is improved further by processing
the video in the forward and the backward directions in the memory unit,
with our bidirectional convolutional GRU.

The contributions of the work are three-fold. First we demonstrate



CHAPTER 5. LEARNING TO SEGMENT MOVING OBJECTS 70

that independent motion between a pair of frames can be learned, and
emphasize the utility of synthetic data for this task. Second, we present
an approach for moving object segmentation in unconstrained videos that
does not require any manually-annotated frames in the input video (see
§5.1). Our network architecture incorporates a memory unit to capture
the evolution of object(s) in the scene (see §5.3). To our knowledge, this
is the first recurrent network based approach for the video segmentation
task. It helps address challenging scenarios where the motion patterns of
the object change over time; for example, when an object in motion stops to
move, abruptly, and then moves again, with potentially a different motion
pattern. Finally, we present state-of-the-art results on the DAVIS [112]| and
Freiburg-Berkeley motion segmentation (FBMS) [105] benchmark datasets,
and competitive results on SegTrack-v2 [86] (see §5.4.5). We also provide
an extensive experimental analysis, with ablation studies to investigate the
influence of all the components of our framework in Section 5.4.4.

5.1 Learning to segment moving objects in
videos

We start by describing the overall architecture of our video object seg-
mentation framework. It takes video frames together with their estimated
optical flow as input, and outputs binary segmentations of moving objects,
as shown in Figure 5.1. We target the most general form of this task,
wherein objects are to be segmented in the entire video if they move in at
least one frame. The proposed model is comprised of three key components:
appearance and motion networks, and a visual memory module described
below.

Appearance network. The purpose of the appearance stream is to pro-
duce a high-level encoding of a frame that will later aid the visual memory
module in forming a representation of the moving object. It takes a w x h
RGB frame as input and produces a 128 x w/8 x h/8 feature representation
(shown in green in Figure 5.1), which encodes the semantic content of the
scene. As a baseline for this stream we use the largeFOV, VGG16-based
version of the DeepLab network [23]. This network’s architecture is based
on dilated convolutions [23], which preserve a relatively high spatial reso-
lution of features, and also incorporate context information in each pixel’s
representation. It is pretrained on a semantic segmentation dataset [34],
resulting in features that can distinguish objects from background as well
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(a)

(b)

Figure 5.2 — Our motion pattern network: MP-Net. The blue arrows in
the encoder part (a) denote convolutional layers, together with ReLLU and
max-pooling layers. The red arrows in the decoder part (b) are convolu-
tional layers with ReLU, ‘up’ denotes 2 x 2 upsampling of the output of the
previous unit. The unit shown in green represents bilinear interpolation of
the output of the last decoder unit.

as from each other—a crucial aspect for the video object segmentation task.
We also experiment (in §5.4.4) with upgrading the appearance stream to
DeepLab-v2 [24], a more recent version of the model, where VGG16 archi-
tecture is replaced with ResNet101, and the network is additionally pre-
trained on the COCO semantic segmentation dataset [93].

Motion network. For the temporal stream we employ a CNN pretrained
for the motion segmentation task. It is trained to estimate independently
moving objects (i.e., irrespective of camera motion) based on optical flow
computed from a pair of frames as input; see Section 5.2 for details. This
stream (shown in yellow in Figure 5.1) produces a w/4 x h/4 motion predic-
tion output, where each value represents the likelihood of the corresponding
pixel being in motion. Its output is further downsampled by a factor 2 (in
w and h) to match the dimension of the appearance stream output.

The intuition behind using two streams is to benefit from their comple-
mentarity for building a strong representation of objects that evolves over
time. For example, both appearance and motion networks are equally ef-
fective when an object is moving in the scene, but as soon as it becomes
stationary, the motion network can not estimate the object, unlike the ap-
pearance network. We leverage this complementary nature, as done by
two-stream networks for other vision tasks [128]. Note that our approach is
not specific to the particular networks described above, but is in fact a gen-
eral framework for video object segmentation. As shown is the Section 5.4.4,
its components can easily replaced with other networks, providing scope for
future improvement.
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Memory module. The third component, i.e., visual memory module,
takes the concatenation of appearance and motion stream outputs as its
input. It refines the initial estimates from these two networks, and also
memorizes the appearance and location of objects in motion to segment
them in frames where: (i) they are static, or (ii) motion prediction fails.
The output of this ConvGRU memory module is a 64 x w/8 x h/8 feature
map obtained by combining the two-stream input with the internal state
of the memory module, as described in detail in Section 5.3. We further
improve the model by processing the video bidirectionally; see Section 5.3.1.
The output from the ConvGRU module is processed by a 1 x 1 convolutional
layer and softmax nonlinearity to produce the final pairwise segmentation
result.

5.2 Motion pattern network

Our MP-Net takes the optical flow field corresponding to two consecutive
frames of a video sequence as input, and produces per-pixel motion labels.
We treat each video as a sequence of frame pairs, and compute the labels
independently for each pair. As shown in Figure 5.2, the network com-
prises several “encoding” (convolutional and max-pooling) and “decoding”
(upsampling and convolutional) layers. The motion labels are produced
by the last layer of the network, which are then rescaled to the original
image resolution (see §5.2.1). We train the network entirely on synthetic
data—a scenario where ground-truth motion labels can be acquired easily
(see §5.2.2).

5.2.1 Network architecture

Our encoder-decoder style network is motivated by the goal of segment-
ing diverse motion patterns in flow fields, which requires a large receptive
field as well as an output at the original image resolution. A large recep-
tive field is critical to incorporate context into the model. For example,
when the spatial region of support (for performing convolution) provided
by a small receptive field falls entirely within an object with non-zero flow
values, it is impossible to determine whether it is due to object or camera
motion. On the other hand, a larger receptive field will include regions cor-
responding to the object as well as background, providing sufficient context
to determine what is moving in the scene. The second requirement of out-
put generated at the original image resolution is to capture fine details of
objects, e.g., when only a part of the object is moving. Our network satis-
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fies these two requirements with: (i) the encoder part learning features with
receptive fields of increasing sizes, and (ii) the decoder part upsampling the
intermediate layer outputs to finally predict labels at the full resolution.

Figure 5.2 illustrates our network architecture. Optical flow field input
is processed by the encoding part of the network (denoted by (a) in the
figure) to generate a coarse representation that is a 32 x 32 downsampled
version of the input. Each 3D block here represents a feature map pro-
duced by a set of layers. In the encoding part, each feature map is a result
of applying convolutions, followed by a ReLLU non-linearity layer, and then
a 2 x 2 max-pooling layer. The coarse representation learned by the final set
of operations in this part, i.e., the 32 x 32 downsampled version, is gradually
upsampled by the decoder part ((b) in the figure). In each decoder step, we
first upsample the output of the previous step by 2 x 2, and concatenate it
with the corresponding intermediate encoded representation, before max-
pooling (illustrated with black arrows pointing down in the figure). This
upscaled feature map is then processed with two convolutional layers, fol-
lowed by non-linearities, to produce input for the next (higher-resolution)
decoding step. The final decoder step produces a motion label map at half
the original resolution. We perform a bilinear interpolation on this result
to estimate labels at the original resolution.

5.2.2 Training with synthetic data

We need a large number of fully-labelled examples to train a convolu-
tional network such as the one we propose. In our case, this data corre-
sponds to videos of several types of objects, captured under different con-
ditions (e.g., moving or still camera), with their respective moving object
annotations. No large dataset of real-world scenes satisfying these require-
ments is currently available, predominantly due to the cost of generating
ground-truth annotations and flow for every frame. We adopt the popu-
lar approach of using synthetic datasets, followed in other work [32, 97].
Specifically, we use the FlyingThings3D dataset [97] containing 2250 video
sequences of several objects in motion, with ground-truth optical flow. We
augment this dataset with ground-truth moving object labels, which are ac-
curately estimated using the disparity values and camera parameters avail-
able in the dataset, as outlined in Section 5.4.1. See Figure ?7(d) for an
illustration.

We train the network with mini-batch SGD under several settings. The
one trained with ground-truth optical flow as input shows the best perfor-
mance. This is analyzed in detail in Section 5.4.3. Note that, while we
use ground-truth flow for training and evaluating the network on synthetic
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datasets, all our results on real-world test data use only the estimated op-
tical flow. After convergence of the training procedure, we obtain a learned
model for motion patterns.

Our approach capitalizes on the recent success of CNNs for pixel-level
labeling tasks, such as semantic image segmentation, which learn feature
representations at multiple scales in the RGB space. The key to their top
performance is the ability to capture local patterns in images. Various types
of object and camera motions also produce consistent local patterns in the
flow field, which our model is able to learn to recognize. This gives us
a clear advantage over other pixel-level motion estimation techniques |13,
101] that can not detect local patterns. Motion boundary based heuristics
used in [108] can be seen as one particular type of pattern, representing
independent object motion. Our model is able to learn many such patterns,
which greatly improves the quality and robustness of motion estimation.

5.2.3 Detecting motion patterns

We apply our trained model on synthetic (FlyingThings3D) as well as
real-world (DAVIS, FBMS, SegTrack-v2) test data. Figure 5.3 shows sample
predictions of our model on the FlyingThings3D test set with ground-truth
optical flow as input. Examples in the first two rows show that our model
accurately identifies fine details in objects: thin structures even when they
move subtlely, such as the neck of the guitar in the top-right corner in the
first row (see the subtle motion in the optical flow field (b)), fine structures
like leaves in the vase, and the guitar’s headstock in the second row. Fur-
thermore, our method successfully handles objects exhibiting highly varying
motions in the second example. The third row shows a limiting case, where
the receptive field of our network falls entirely within the interior of a large
object, as the moving object dominates. Traditional approaches, such as
RANSAC, do not work in this case either.

In order to detect motion patterns in real-world videos, we first compute
optical flow with popular methods [19, 61, 120, 133]. With this flow as input
to the network, we estimate a motion label map, as shown in the examples
in Figure 5.4(c). Although the prediction of our frame-pair feedforward
model is accurate in several regions in the frame ((c) in the figure), we
are faced with two challenges, which were not observed in the synthetic
training set. The first one is motion of stuff [6] in a scene, e.g., patterns on
the water due to the kiteboarder’s motion (first row in the figure), which
is irrelevant for moving object segmentation. The second one is significant
errors in optical flow, e.g., in front of the pram ((b) in the bottom row
in the figure). Furthermore, this motion segmentation approach is purely
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Figure 5.3 — Each row shows: (a) example frame from a sequence in Fly-
ingThings3D, (b) ground-truth optical flow of (a), which illustrates motion
of both foreground objects and background, with respect to the next frame,
and (c) our estimate of moving objects in this scene with ground-truth
optical flow as input.

frame-based, thus unable to exploit temporal consistency in a video, and
does not segment object in frames where they stop moving. In our previous
work [137] we introduced post-processing steps to handle some of these
problems. In particular, we incorporated an objectness map computed with
object proposals [115] to suppress motion corresponding to stuff, as well as
false positives due to errors in flow estimation. This post-processing allowed
the method to achieve competitive results, but it remained frame-level. The
video object segmentation framework presented in this chapter addresses all
these issues, as shown experimentally in Section 5.4.5.

5.3 ConvGRU visual memory module

The key component of the ConvGRU module is the state matrix h,
which encodes the visual memory. For frame ¢ in the video sequence, Con-
vGRU uses the two-stream representation x; and the previous state h;_1 to
compute the new state h;. The dynamics of this computation are guided
by an update gate z;, a forget gate r;. The states and the gates are 3D
tensors, and can characterize spatio-temporal patterns in the video, effec-
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Figure 5.4 — Sample results on the DAVIS dataset showing all the compo-
nents of our approach. Each row shows: (a) video frame, (b) optical flow
estimated with LDOF [19], (¢) output of our MP-Net with LDOF flow as
input.

tively memorizing which objects move, and where they move to. These
components are computed with convolutional operators and nonlinearities
as follows.

zr = 0Tk Wy, + hy_y *xwp, +0,), (5.1)
re = o(xyk Wy + hy_1 % wpy +0,), (5.2)
he = tanh(z, * w5 + 71 © hyy % wyj, + by), (5.3)
he = (1—2)Ohy + 2 O hy, (5.4)

where ® denotes element-wise multiplication, % represents a convolutional
operation, o is the sigmoid function, w’s are learned transformations, and
b’s are bias terms.

The new state h; in ((5.4)) is a weighted combination of the previous
state h;_; and the candidate memory l~zt. The update gate z; determines
how much of this memory is incorporated into the new state. If z; is close
to zero, the memory represented by &, is ignored. The reset gate r, controls
the influence of the previous state h;_; on the candidate memory iLt in
((5.3)), i.e., how much of the previous state is let through into the candidate
memory. If r; is close to zero, the unit forgets its previously computed state
ht—l-

The gates and the candidate memory are computed with convolutional
operations over x; and h;_; shown in equations ((5.1)-(5.3)). We illustrate
the computation of the candidate memory state hy in Figure 5.5. The state
at t — 1, hy_1, is first multiplied (element-wise) with the reset gate r,. This
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Figure 5.5 — Illustration of ConvGRU with details for the candidate hidden
state module, where h; is computed with two convolutional operations and

a tanh nonlinearity.

modulated state representation and the input z; are then convolved with
learned transformations, w,; and w,_; respectively, summed together with
a bias term b;, and passed though a tanh nonlinearity. In other words,
the visual memory representation of a pixel is determined not only by the
input and the previous state at that pixel, but also its local neighborhood.
Increasing the size of the convolutional kernels allows the model to handle
spatio-temporal patterns with larger motion.

The update and reset gates, z; and r;, are computed in an analogous
fashion using a sigmoid function instead of tanh. Our ConvGRU applies a
total of six convolutional operations at each time step. All the operations
detailed here are fully differentiable, and thus the parameters of the con-
volutions (w’s and b’s) can be learned in an end-to-end fashion with back
propagation through time [149]. In summary, the model learns to combine
appearance features of the current frame with the memorized video repre-
sentation to refine motion predictions, or even fully restore them from the
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Figure 5.6 — [llustration of the bidirectional processing with our ConvGRU
module.

previous observations in case a moving object becomes stationary.

5.3.1 Bidirectional processing

Consider an example where an object is stationary at the beginning of
a video sequence, and starts to move in the latter frames. Our approach
described so far, which processes video frames sequentially (in the forward
direction), starting with the first frame can not segment the object in the
initial frames. This is due to the lack of prior memory representation of the
object in the first frame. We improve our framework with a bidirectional
processing step, inspired by the application of recurrent models bidirection-
ally in the speech domain [46, 48|.

The bidirectional variant of our ConvGRU is illustrated in Figure 5.6.
It is composed of two ConvGRU instances with identical learned weights,
which are run in parallel. The first one processes frames in the forward
direction, starting with the first frame (shown at the bottom in the figure).
The second instance process frames in the backward direction, starting with
the last video frame (shown at the top in the figure). The activations from
these two directions are concatenated at each time step, as shown in the
figure, to produce a 128 x w/8 x h/8 output. It is then passed through a
3 x 3 convolutional layer to finally produce a 64 x w/8 x h/8 output for each
frame. Pixel-wise segmentation from this activation is the result of the last
1 x 1 convolutional layer and softmax nonlinearity, as in the unidirectional
case.
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Bidirectional ConvGRU is used both in training and in testing, allowing
the model to learn to aggregate information over the entire video. In addi-
tion to handling cases where objects move in the latter frames, it improves
the ability of the model to correct motion prediction errors. As discussed
in the experimental evaluation, bidirectional ConvGRU improves segmen-
tation performance by nearly 3% on the DAVIS dataset (see Table 5.4).
The influence of bidirectional processing is more prominent on the FBMS
dataset, where objects can be static in the beginning of a video, with 5%
improvement over the unidirectional variant.

5.3.2 Training

We train our visual memory module with the back propagation through
time algorithm [149], which unrolls the recurrent network for n time steps
and keeps all the intermediate activations to compute the gradients. Thus,
our ConvGRU model, which has six internal convolutional layers, trained
on a video sequence of length n, is equivalent to a 6n layer CNN for the
unidirectional variant, or 12n for the bidirectional model at training time.
This memory requirement makes it infeasible to train the whole model,
including appearance and motion streams, end-to-end. We resort to using
pretrained versions of the appearance and motion networks, and train the
ConvGRU.

In contrast to our motion segmentation model, which is learned on syn-
thetic videos, we use the training split of the DAVIS dataset [112] for learn-
ing the ConvGRU weights. Despite being an order of magnitude smaller,
DAVIS consists of realistic videos, which turns out to be crucial for effective
use of appearance stream to correct motion estimation errors (see §5.4.4).
Since objects move in all the frames in DAVIS, it biases the memory mod-
ule towards the presence of an uninterrupted motion stream. This results
in the ConvGRU learned from this data failing, when an object stops to
move in a test sequence. We augment the training data to simulate such
stop-and-go scenarios to learn a more robust model for realistic videos. To
this end, we create additional sequences where ground truth moving object
segmentation (instead of responses from the motion network) is provided
for all the frames, except for the last five frames. No motion input is used
for these last five frames. This ensures that the model does not have access
to motion input towards the end of the sequence, simulating a case where
objects stop moving. Given that ground truth segmentation determines
the loss for training, i.e., it is used for all the frames, ConvGRU explicitly
memorizes the moving object in the initial part of the sequence, and then
segments it in frames where motion input is missing. We do a similar train-
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ing set augmentation by using ground truth segmentation as motion input
for all but the first five frames.

5.4 Experiments

5.4.1 Datasets and Evaluation

We now review the metrics and datasets used for evaluation of video
segmentation methods. Similarly to semantic segmentation, the accuracy
of video segmentation methods is usually measured with intersection over
union (see Section 3.2.1 for details). The only exception to this is the
FBMS dataset, where performance is measured with precision, recall and
F-measure scores. Precision captures the fraction of true positives among
all the predicted positives:

true positives

precision = (5.5)

true positives + false positives’

and recall captures the fraction of the positive examples correctly identified
by the model to all the positives in the data:

true positives

recall =

— —. (5.6)
true positives + false negatives

F-measures then combines these complementary statistics with a harmonic

mean: I
2 - precision - recall

F= (5.7)

recision + recall

The goal is, similarly to IoU, to assign a high score to models that both
accurately capture the objects and do not segment background regions as
moving. Another property in which FBMS differs from the other datasets
used in our experiments (except for SegTrack-v2) is that its annotations
are instance-level, whereas we are treating video object segmentation as
a foreground-background classification problem. Thus, we convert FBMS
and SegTrack-v2 annotation to binary ones by merging all the foreground
labels into a single category, as in [134].

Measuring accuracy on the frame level is important for evaluating the
performance of video segmentation methods, but using frame-level IoU or
F-measure as the only criterion completely ignores the temporal dimension
of the data. To address this issue, a temporal stability metric 7 was in-
troduced by [112]. It captures the smoothness of segmentation over time.
This measure is hard to formalize, however, since some mask deformations
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are acceptable, whereas others are not. In practice the authors resort to
transforming the mask M, into polygons representing its contours P(M,).
They then describe each point p! € M, using the Shape Context Descriptor
(SCD) [11] and look for a matching between points p{, p,,, that minimizes
the SCD distances between the matched points, while preserving the order
of points in shapes. The resulting mean cost per matched point is used as
the measure of temporal stability. Intuitively, matching compensates mo-
tion and small deformations, but it does not compensate the oscillations
and inaccuracies of the mask contours, which are captured by this measure.

Finally, [112]| introduce an accuracy measure complementary to the in-
tersection over union. IoU gives equal importance to all the pixel in an
image, whereas for segmentation problems, arguably, pixels on the bound-
aries of the objects are more important than the rest. Thus, the authors
suggest to measure the accuracy of the segmentation on the contours sepa-
rately. To this end they compute a bipartite matching between the contour
points of the predicted and groundtruth masks ¢(M) and ¢(G) respectively.
The contour accuracy is then evaluated with the F-measure on the obtained
set of matches.

We use five datasets in the experimental analysis: FT3D and DAVIS for
training and test, FusionSeg only for training, and FBMS and SegTrack-v2
only for test.

FlyingThings3D (FT3D). We train our motion segmentation network
with the synthetic FlyingThings3D dataset [97]. It contains videos of var-
ious objects flying along randomized trajectories, in randomly constructed
scenes. The video sequences are generated with complex camera motion,
which is also randomized. FT3D comprises 2700 videos, each containing 10
stereo frames. The dataset is split into training and test sets, with 2250
and 450 videos respectively. Ground-truth optical flow, disparity, intrinsic
and extrinsic camera parameters, and object instance segmentation masks
are provided for all the videos. No annotation is directly available to dis-
tinguish moving objects from stationary ones, which is required to train
our network. We extract this from the data provided as follows. With the
given camera parameters and the stereo image pair, we first compute the
3D coordinates of all the pixels in a video frame ¢. Using ground-truth flow
between frames t and t+1 to find a pair of corresponding pixels, we retrieve
their respective 3D scene points. Now, if the pixel has not undergone any
independent motion between these two frames, the scene coordinates will be
identical (up to small rounding errors). We have made these labels publicly
available on our project website [4]. Performance on the test set is mea-
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sured as the standard intersection over union score between the predicted
segmentation and the ground-truth masks.

DAVIS. We use the densely annotated video segmentation dataset [112]
for evaluation as well as for training our visual memory module. DAVIS
contains 50 full HD videos, featuring diverse types of object and camera
motion. It includes challenging examples with occlusion, motion blur and
appearance changes. Accurate pixel-level annotations are provided for the
moving object in all the video frames. A single object is annotated in each
video, even if there are multiple moving objects in the scene. Following
the 30/20 training/validation split provided with the dataset, we train the
visual memory module on the 30 sequences, and test on the 20 valida-
tion videos. Note that our motion segmentation model is also evaluated
spearately on the entire trainval set, as it is trained exclusively on F'T3D.
We follow the protocol in [112] and use images downsampled by a factor of
two.

FusionSeg. This dataset was introduced recently in [63|, and consists
of 84929 pairs of frames extracted from the ImageNet-Video dataset [124].
The frames are annotated with an automatic segmentation method, which
combines a foreground-background appearance-based model with ground
truth bounding box annotations available in ImageNet-Video. Annotations
obtained in this way may be inaccurate, but are useful for analyzing the
impact of learning the motion network on these realistic examples, in con-
trast to using synthetic examples; see Section 5.4.3. We will refer to this
dataset as FusionSeg in the rest of the chapter.

FBMS. The Freiburg-Berkeley motion segmentation dataset [105] is com-
posed of 59 videos with ground truth annotations in a subset of frames. In
contrast to DAVIS, it has multiple moving objects in several videos with
instance-level annotations. Also, objects may move only in a fraction of
the frames, but are annotated in frames where they do not exhibit inde-
pendent motion. The dataset is split into training and test sets. Following
the standard protocol on this dataset [68|, we do not train on any of these
sequences, and evaluate separately on both these splits.

SegTrack-v2. It contains 14 videos with instance-level moving object
annotations in all the frames. We convert these annotations into a binary
form for evaluation and use intersection over union as the performance
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measure. Note that some videos in this dataset are of very low resolution,
which appears to favor traditional forms of appearance representation.

5.4.2 Implementation details

Appearance stream. For the experiments using DeepLab-v1, we extract
features from the fc6 layer of the network, which has a dilation of 12. This
approach cannot be followed for DeepLab-v2 however, since dilation is ap-
plied to fc8, the prediction layer, in this improved model. Thus, extracting
fc6 or fc7 features of DeepLab-v2 would result in a decreased field of view
compared to the baseline vl model. Moreover, there are four independent
prediction layers in v2 with dilations 6, 12, 18 and 24, whose outputs are
averaged. To make the feature representation derived from the two architec-
tures compatible, we introduce four new penultimate convolutional layers
with corresponding dilations, kernel size 3 and feature dimension 512 to the
DeepLab-v2 architecture. The maximum response over these four feature
maps is then passed to a single prediction layer. We finetune this model on
PASCAL VOC 2012 for semantic segmentation. The features after the max
operation are used as the appearance representation in our final model, and
correspond to an improved version of fc6 features from DeepLab-v1. This
representation is further passed through two 1 x 1 convolutional layers,
interleaved with tanh nonlinearities, to reduce the dimension to 128.

Training MP-Net. We use mini-batch SGD with a batch size of 13
images—the maximum possible due to GPU memory constraints. The net-
work is trained from scratch with learning rate set to 0.003, momentum to
0.9, and weight decay to 0.005. Training is done for 27 epochs, and the
learning rate and weight decay are decreased by a factor of 0.1 after every
9 epochs. We downsample the original frames of the FT3D training set by
a factor 2, and perform data augmentation by random cropping and mir-
roring. Batch normalization [62] is applied to all the convolutional layers
of the network.

Training visual memory module. We minimize the binary cross-entropy
loss using back-propagation through time and RMSProp [135] with a learn-
ing rate of 10™*. The learning rate is gradually decreased after every epoch.
Weight decay is set to 0.005. Initialization of all the convolutional layers,
except for those inside the ConvGRU, is done with the standard xzawvier
method [44]. We clip the gradients to the [—50,50] range before each pa-
rameter update, to avoid numerical issues [45]. We form batches of size 14
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by randomly selecting a video, and a subset of 14 consecutive frames in it.
Random cropping and flipping of the sequences is also performed for data
augmentation. Our full model uses 7 x 7 convolutions in all the ConvGRU
operations. The weights of the two 1 x 1 convolutional (dimensionality re-
duction) layers in the appearance network and the final 1 x 1 convolutional
layer following the memory module are learned jointly with the memory
module. The model is trained for 30000 iterations and the proportion of
batches with additional sequences (see Section 5.3.2) is set to 20%.

Other details. We perform zero-mean normalization of the flow field vec-
tors, similar to [128]. When using flow angle and magnitude together (which
we refer to as flow angle field), we scale the magnitude component, to bring
the two channels to the same range. Our final model uses a fully-connected
CRF [76] to refine boundaries in a post-processing step. The parameters
of this CRF are set to values used for a related pixel-level segmentation
task [23]. Many sequences in FBMS are several hundred frames long and
do not fit into GPU memory during evaluation. We apply our method in
a sliding window fashion in such cases, with a window of 130 frames and a
step size of 50. Our model is implemented in the Torch framework.

5.4.3 Motion pattern network

We first analyze the different design choices in our MP-Net, and then
study the influence of training data and optical flow representation on the
motion prediction performance.

Influence of input modalities

We analyze the influence of different input modalities, such as RGB
data (single frame and image pair), optical flow field (ground truth and
estimated one) directly as flow vectors, i.e., flow in x and y axes, or as
angle field (flow vector angle concatenated with flow magnitude), and a
combination of RGB data and flow, on training MP-Net. These results are
presented on the FT3D test set and also on DAVIS, to study how well the
observations on synthetic videos transfer to the real-world ones, in Table 5.1.
For computational reasons we train and test with different modalities on a
smaller version of our MP-Net, with one decoder unit instead of four. Then
we pick the best modality to train and test the full, deeper version of the
network.

From Table 5.1, the performance on DAVIS is lower than on FT3D.
This is expected as there is domain change from synthetic to real data, and
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# dec. | Trained on FT3D with ... | FT3D | DAVIS
RGB single frame 68.1 12.7
RGB pair 69.1 16.6
1 GT flow 74.5 44.3
GT angle field 73.1 46.6
RGB + GT angle field 74.8 39.6
LDOF angle field 63.2 38.1
4 GT angle field 85.9 52.4

Table 5.1 — Comparing the influence of different input modalities on the
FlyingThings3D (FT3D) test set and DAVIS. Performance is shown as mean
intersection over union scores. # dec. refers to the number of decoder units
in our MP-Net. Ground-truth flow is used for evaluation on FT3D and

LDOF flow for DAVIS.

that we use ground truth optical flow as input for FT3D test data, but
estimated flow [19, 133] for DAVIS. As a baseline, we train on single RGB
frames (‘RGB single frame’ in the table). Clearly, no motion patterns can
be learned in this case, but the network performs reasonably on FT3D test
(68.1), as it learns to correlate object appearance with its motion. This
intuition is confirmed by the fact that ‘RGB single frame’ fails on DAVIS
(12.7), where the appearance of objects and background is significantly dif-
ferent from FT3D. MP-Net trained on ‘RGB pair’, i.e., RGB data of two
consecutive frames concatenated, performs slightly better on both FT3D
(69.1) and DAVIS (16.6), suggesting that it captures some motion-like in-
formation, but continues to rely on appearance, as it does not transfer well
to DAVIS.

Training on ground-truth flow vectors corresponding to the image pair
(‘GT flow’) improves the performance on FT3D by 5.4% and on DAVIS sig-
nificantly (27.7%). This shows that MP-Net learned on flow from synthetic
examples can be transferred to real-world videos. We then experiment with
flow angle as part of the input. As discussed in [101], flow orientations are
independent of depth from the camera, unlike flow vectors, when the cam-
era is undergoing only translational motion. Using the ground truth flow
angle field (concatenation of flow angles and magnitudes) as input (‘GT
angle field’), we note a slight decrease in IoU score on FT3D (1.4%), where
strong camera rotations are abundant, but in real examples, such motion
is usually mild. Hence, ‘GT angle field’” improves IoU on DAVIS by 2.3%.
We use angle field representation in all further experiments.
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Flow in test | FT3D | DAVIS
LDOF 58.7 52.4
EpicFlow 52.5 56.9
FlowNet 2.0 | 66.3 62.6

Table 5.2 — Performance of the best MP-Net variant (4 decoder units trained
on GT angle field) with different flow inputs (LDOF, EpicFlow, FlowNet
2.0) on DAVIS and FT3D.

Using a concatenated flow and RGB representation (‘RGB + GT angle
field’) performs better on FT3D (by 1.7%), but is poorer by 7% on DAVIS,
re-confirming our observation that appearance features are not consistent
between the two datasets. Finally, training on computed flow [19] (‘LDOF
angle field’) leads to significant drop on both the datasets: 9.9% on FT3D
(with GT flow for testing) and 8.5% on DAVIS, showing the importance of
high-quality training data for learning accurate models. The full version of
our MP-Net, with 4 decoder units, improves the IoU by 12.8% on FT3D
and 5.8% on DAVIS over its shallower one-unit equivalent.

Notice that the performance of our full model on FT3D is excellent,
with the remaining errors mostly due to inherently ambiguous cases like
objects moving close to the camera (see third row in Figure 5.3), or very
strong object /camera motion. On DAVIS, the results are considerably lower
despite less challenging motion. To investigate the extent to which this is
due to errors in flow, we study the effect of flow quality in the following
section.

Effect of the flow quality

We evaluate the performance of MP-Net using two recent flow estimation
methods, EpicFlow [120] and FlowNet 2.0 [61], and LDOF [19, 133], a more
classical approach, on the FT3D test and DAVIS datasets in Table 5.2. We
observe a significant drop in performance of 27.2% (from 85.9% to 58.7%)
on FT3D when using LDOF, compared to evaluation with the ground truth
in Table 5.1. This confirms the impact of optical flow quality and suggests
that improvements in flow estimation can increase the performance of our
method on real-world videos, where no ground truth flow is available.

We experimentally demonstrate this improvement, by utilizing state-of-
the-art flow estimation methods, instead of LDOF. EpicFlow, which lever-
ages motion contours, produces more accurate object boundaries, and im-
proves over MP-Net using LDOF by 4.5% on DAVIS. On FT3D though it
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Trained on FT3D | DAVIS
FT3D 85.9 62.6
FusionSeg 40.8 60.4
FT3D + FusionSeg 43.0 63.9
DAVIS 34.0 62.3
FT3D + DAVIS 45.7 66.7
FT3D + FusionSeg + DAVIS | 40.8 68.6

Table 5.3 — Performance of the best MP-Net variant trained with different
datasets on FT3D test and DAVIS validation sets. FlowNet 2.0 is used
for flow estimation on DAVIS both in training and in testing in all these
experiments.

leads to a 6.2% decrease in performance. We observe that this is due to
EpicFlow, which does produce more accurate object boundaries, but also
smooths out small objects and objects with tiny motions. This smoothing
appears to be beneficial on real videos, but degrades the performance on
synthetic FT3D videos. FlowNet 2.0, which is a CNN-based method trained
on a mixture of synthetic and real videos to estimate optical flow from a
pair of frames, further improves the performance on DAVIS by 5.7%. It
also achieves better results on FT3D, with a 7.6% improvement over LDOF.
The remaining gap of 19.6% between the ground truth flow and FlowNet
2.0 performance on FT3D shows the potential for future improvement of
flow estimation methods.

Training on real videos

We also experiment with training out MP-Net on FusionSeg and DAVIS,
in order to explore the value real videos can bring in learning a motion
segmentation model, compared to training exclusively on synthetic videos.
On one hand, real videos contain motion patterns that have similar statistics
to those encountered in the testing phase, but on the other hand, no ground
truth flow is available, which was shown to be crucial for obtaining top
performance when training on FT3D (see §5.4.3).

All the models in this experiment are trained on flow extracted with
the state-of-the-art FlowNet 2.0 optical flow estimation approach, in order
to minimize the influence of errors in flow. FlowNet 2.0 is also used for
evaluation on the DAVIS validation set, whereas ground truth flow is used
for FT3D test set. As shown in Table 5.3, the model trained on Fusion-
Seg is 2.2% below the one trained on synthetic data in the case of DAVIS.
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On FT3D, its performance drops by 45.1%. This shows that the synthetic
dataset contains a lot more challenging motions than those typically en-
countered in real videos, and although a model learned on synthetic data
can generalize to real data, the converse does not hold. Learning the model
only on real videos also does not bring any improvement on DAVIS, due to
errors in flow estimation and labels in FusionSeg outweighing the potential
benefits. We then finetune the FT3D-trained model on FusionSeg to lever-
age the benefits of the two domains. This leads to a notable improvement
on both datasets, e.g., 3.5% on DAVIS compared to the model trained on
FusionSeg alone. The results on synthetic FT3D videos, despite the im-
provement over the FusionSeg-trained model, remain low however, showing
the significant difference between the two domains.

To further explore the use of real videos, we train our motion estima-
tion model on the DAVIS training set. This dataset contains only 2079
frames, compared to 84929 in FusionSeg, but they are manually annotated,
removing one source of errors due to incorrect labels from training. The
performance on DAVIS increases by 1.9% with this, compared to training on
FusionSeg. On FT3D, though, IoU decreases by 6.8%, because the variety
of motions in DAVIS is even smaller than that seen in FusionSeg. Combin-
ing the synthetic and real datasets, i.e., training on FT3D and finetuning
on DAVIS, improves the performance on both FT3D and DAVIS. Finetun-
ing the FT3D-trained model with FusionSeg and then DAVIS training data
further improves the performance on the DAVIS validation set, but results
in a drop in the case of FT3D, as the model further away from synthetic
data.

5.4.4 Video object segmentation framework

We use the motion network trained on FT3D with LDOF optical flow,
unless stated otherwise, and study the influence of design choices on our
overall segmentation framework.

Ablation study

Table 5.4 demonstrates the influence of different components of our ap-
proach on the DAVIS validation set. First, we study the role of the ap-
pearance stream. As a baseline, we remove it completely (“no” in “App
stream” in the table), i.e., the output of the motion stream is the only
input to our visual memory module. In this setting, the memory module
lacks sufficient information to produce accurate segmentations, which re-
sults in an 26.6% drop in performance compared to the method where the
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Aspect ‘ Variant Mean ToU
Ours (fc6, ConvGRU, Bidir, DAVIS) 70.1
no 43.5
RGB 58.3
2-layer CNN 60.9
App stream Dee}[,)Lab fc7 69.8
DeepLab convb 67.7
DeepLab-v2 72.5
App pretrain ImageNet only 64.1
Motion stream | no 59.6
no 64.1
Memory module | ConvRNN 68.7
ConvLSTM 68.9
Bidir processing | no 67.2
Train data FT3D GT Flow 55.3
FT3D LDOF Flow 59.6

Table 5.4 — Ablation study on the DAVIS validation set showing variants of
appearance and motion streams and memory module. “Ours” refers to the

model using fc6 appearance features together with a motion stream, and a
bidirectional ConvGRU trained on DAVIS.

appearance stream with fc6 features is used (“Ours” in the table). We then
provide raw RGB frames, concatenated with the motion prediction, as in-
put to the ConvGRU. This simplest form of image representation leads to
a 14.8% improvement, compared to the motion only model, showing the
importance of the appearance features. The variant where RGB input is
passed through two convolutional layers, interleaved with tanh nonlinear-
ities, that are trained jointly with the memory module (“2-layer CNN”),
further improves this. This shows the potential of learning appearance rep-
resentation as a part of the video segmentation pipeline. Next, we compare
features extracted from the fc7 and conv5 layers of the DeepLab model to
those from fc6 used by default in our method. Features from fc7 and fc6
show comparable performance, but fc7 ones are more expensive to compute.
Convb features perform significantly worse, perhaps due to a smaller field of
view. Finally, we replace the VGG16-based DeepLab architecture with the
ResNet101-based DeeplLab-v2, as described in Section 5.1. This improves
the performance over DeepLab-vl by 2.4%, which is consistent with our
previous observations that better representations directly affect the overall
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performance of the method. We thus use DeepLab-v2 appearance stream
in our final model.

The importance of appearance network pretrained on the semantic seg-
mentation task is highlighted by the “ImageNet only” variant in Table 5.4,
where the PASCAL VOC pretrained DeepLab segmentation network is re-
placed with a network trained on ImageNet classification. Although Ima-
geNet pretraining provides a rich feature representation, it is less suitable
for the video object segmentation task, which is confirmed by an 6% drop in
performance. Discarding the motion information (“no” in “Motion stream”),
although being 10.5% below our complete method, still outperforms most of
the motion-based approaches on DAVIS (see Table 5.6). This variant learns
foreground /background segmentation, which is sufficient for videos with a
single dominant object, but fails in more challenging cases. Section 5.4.4
presents additional experiments to explore the quality of motion estimation
during the training and testing phases.

Next, we evaluate the design choices in the visual memory module. We
replaced the memory module (ConvGRU) with a stack of six convolutional
layers to obtain ‘no memory’ variant of our model (“no” in “Memory mod-
ule” in Table 5.4), but with the same number of parameters. This variant
results in a 6% drop in performance compared to our full model with Con-
vGRU on the DAVIS validation set. The performance of the ‘no memory’
variant is comparable to 63.3, the performance of “MP-Net+Obj,” the ap-
proach without any memory (see Table 2 in [137]). Using a simple recurrent
model (ConvRNN) results in a slight decrease in performance. Such sim-
pler architectures can be used in case of a memory vs segmentation quality
trade off. The other variant using ConvLSTM is comparable to ConvRNN,
possibly due to the lack of sufficient training data. Performing unidirec-
tional processing instead of a bidirectional one decreases the performance
by nearly 3% (“no” in “Bidir processing”).

Lastly, we train two variants (“FT3D GT Flow” and “FT3D LDOF
Flow”) on the synthetic FT3D dataset [97] instead of DAVIS. Both of them
show a significantly lower performance than our method trained on DAVIS.
This is due to the appearance of synthetic FT3D videos being very different
from the real-world ones. The variant trained on ground truth flow (GT
Flow) is inferior to that trained on LDOF flow because the motion network
(MP-Net) achieves a high performance on FT3D with ground truth flow,
and thus our visual memory module learns to simply follow the motion
stream output.



CHAPTER 5. LEARNING TO SEGMENT MOVING OBJECTS 91

Train Test Mean IoU | + CRF
FT3D + LDOF | FT3D + LDOF 72.5 76.8
FT3D + LDOF | FSeg + FNet 72.0 75.3
FSeg + FNet FSeg + FNet 73.3 78.2
FSeg + FNet FT3D + LDOF 70.2 76.2

Table 5.5 — Influence of motion stream variants, used in training and test
phases, on the DAVIS validation set. ‘FT3D + LDOEF’ corresponds to the
segmentation model with baseline MP-Net, trained on FT3D, and Con-
vGRU module trained on DAVIS with LDOF. ‘FSeg + FNet’ is the vari-
ant with improved MP-Net finetuned on FusionSeg, and ConvGRU module
trained on DAVIS with FlowNet 2.0.

Influence of the motion network

In Sections 5.4.3 and 5.4.3 we have demonstrated that the performance
of MP-Net can be improved by using more accurate optical flow estimation
methods, and finetuning the network on FusionSeg and DAVIS. Here we
explore the influence of these improvements in motion estimation on our
video object segmentation framework. In Table 5.5 we evaluate the best
version of our framework so far (DeepLab-v2 appearance stream, ConvGRU
memory module trained on DAVIS, Bi-directional processing) with baseline
(trained on FT3D only, and uses LDOF for flow estimation) and improved
versions of MP-Net. The improved versions of MP-Net are finetuned on
FusionSeg and use FlowNet 2.0 for flow estimation. Note that the variant
finetuned on FusionSeg and then on DAVIS (see Section 5.4.3) leads to a
drop in performance due to overfitting of the segmentation model on the
small number of sequences in the DAVIS training set.

The main observation from the results in Table 5.5 is that our approach
is fairly robust to the motion model being used. The performance differs
by at most 3% here, whereas these component motion models differ by
11.5%, as seen in Tables 5.2 and 5.3. This shows that the visual memory
module learns to use appearance and temporal consistency cues to overcome
variations in quality of motion estimation.

The performance on the DAVIS validation set is best when the same
motion model is used in the training and the test phases; see the second
and the third rows in Table 5.5 for a comparison. This is expected because
ConvGRU adapts to the motion model used in training, and suffers from
a domain shift problem, if this model is replaced during the test phase.
The variant trained and tested with the ‘FSeg + FNet’ model (row 3 in
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Measure CVOS KEY MSG NLC CUT FST MP-Net FSG ARP Ours
Mean 48.2 49.8 53.3 55.1 55.2  55.8 70.0 70.7 76.2 78.2

J | Recall 54.0 59.1 61.6 55.8 57.5  64.9 85.0 835 91.1 89.1
Decay 10.5 14.1 2.4 12.6 2.3 0.0 1.4 1.5 7.0 4.1
Mean 44.7 42.7 50.8 52.3 55.2  51.1 65.9  65.3 70.6 75.9

F | Recall 52.6 37.5 60.0 51.9 61.0 51.6 79.2 73.8 83.5 84.7
Decay 11.7 10.6 5.1 11.4 3.4 2.9 2.5 1.8 7.9 3.5

T | Mean 24.4 25.2 29.1 41.4 26.3 34.3 56.3  32.8 39.3 20.2

Table 5.6 — Comparison to the state-of-the-art methods on DAVIS with
intersection over union (), F-measure (F), and temporal stability (7).

the table), which shows the best performance, with or without the CRF
post-processing is used in the remainder of the chapter.

5.4.5 Comparison to the state-of-the-art

DAVIS. Table 5.6 compares our approach to the state-of-the-art meth-
ods on DAVIS. In addition to comparing our results to the top-performing
unsupervised approaches reported in [112], we included the results of recent
methods from the benchmark website: ' CUT [68], FSG [63] and ARP [74],
as well as the frame-level variant of our method: MP-Net [137]. Our method
outperforms ARP [74], the previous state of the art by 2% on the mean IoU
measure. We also observe an 8.2% improvement over MP-Net in mean IoU
and 36.1% in temporal stability, which clearly demonstrates the significance
of the visual memory module.

Figure 5.7 shows qualitative results of our approach, and the next three
top-performing methods on DAVIS: MP-Net [137], FSG [63] and ARP [74].
In the first row, our method fully segments the dancer, whereas MP-Net
and FSG miss various parts of the person and ARP segments some of the
people in the background. All these approaches use heuristics to combine
motion and appearance cues, which become unreliable in cluttered scenes
with many objects. Our approach does not include any heuristics, which
makes it robust to this type of errors. In the second row, all the methods
segment the car, but only our approach does not leak into other cars in the
video, showing high discriminability. In the next row, our approach is able
to fully segment a complex object, whereas the other methods either miss
parts of it (MP-Net and FSG) or segment background regions as moving
(ARP). In the last row, we illustrate a failure case of our method. The
people in the background move in some of the frames in this example. MP-

1. http://davischallenge.org/soa_compare.html
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Ground truth CcuT FST MP-Net-Frame Ours

Figure 5.7 — Qualitative comparison with the top-performing methods on
DAVIS. Left to right: ground truth, results of MP-Net [137], FSG [63],
ARP [74], and our method.

Net, FSG and our method segment them to varying extents. ARP focuses
on the foreground object, but misses a part of it.

FBMS. As shown in Table 5.7, MP-Net [137] is outperformed by most of
the methods on this dataset. Our approach based on visual memory outper-
forms MP-Net by 21.3% on the test set and by 21.0% on the training set ac-
cording to the F-measure. FST [108] based post-processing (“MP-Net-V” in
the table) significantly improves the results of MP-Net on FBMS, but it re-
mains below our approach on all the measures. We compare with ARP [74]
using masks provided by the authors on the test set. Our method outper-
forms ARP on this set by 12.2% on the F-measure. Overall, our method
shows a significantly better performance than all the other approaches in
terms of precision, recall and F-measure. This demonstrates that the visual
memory module, in combination with a strong appearance representation,
handles complex video segmentation scenarios, where objects move only in
a fraction of the frames.

Figure 5.8 shows qualitative results of our method and the two next-
best methods on FBMS: MP-Net-V [137] and CUT [68]. MP-Net-V relies
highly on FST’s [108] tracking capabilities, and thus demonstrates the same
background leaking failure mode, as seen in all the three examples. CUT
misses parts of objects and incorrectly assigns background regions to the
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Measure | Set | KEY MP-Net FST ARP _CVOS CUT MP-Net-V__ Ours

» Training | 649 830 713 - 792 86.6 69.3 89.9

Test | 623 840 763 761 834  83.1 81.4 93.8

= Training | 527 542 706 - 79.0  80.3 80.8 835

Test | 56.0 494 633 669 679  7L5 73.9 75.3

= Training | 58.2 666 710 - 793 834 74.6 86.6

Test | 59.0 622 692 713 749 768 7.5 83.5

Table 5.7 — Comparison to the state-of-the-art methods on FBMS with
precision (P), recall (R), and F-measure (F).

cuT

MP-Net-V

Ours

Figure 5.8 — Qualitative comparison with the top-performing methods on
FBMS. Left to right: results of CUT [68], MP-Net-Video [137], and our

method.

foreground in some cases, whereas our method demonstrates very high pre-

cision.

SegTrack-v2. The performance of our method on SegTrack is presented
in the Table 5.8. NLC [35] is the top-performing method, followed by
FSG [63], on this dataset. Note however, that these methods are both
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Method Mean IoU
CcuT 47.8
FST 54.3
FSG 61.4
NLC 67.2
Ours 53.7
Ours w/o CRF 59.1

Table 5.8 — Comparison to the state-of-the-art methods on SegTrack-v2
with mean IoU.

tuned to SegTrack. FSG is trained directly on a subset of SegTrack se-
quences, and the parameters of NLC are set manually for this dataset. In
contrast, our method is not adapted to the test domain, which is one of the
reasons for the relatively lower performance than NLC and FSG. As shown
recently [63, 72|, the low resolution of some of the SegTrack videos poses
a significant challenge for deep learning-based video segmentation meth-
ods. Being trained on datasets like PASCAL VOC or COCO, which are
composed of high-quality images, these models suffer from the well-known
domain shift problem, when applied to low-resolution videos. Our method,
with its appearance stream trained on VOC, is subject to this issue as
well. Additionally, CRF post-processing decreases the performance of our
method on SegTrack; see ‘Ours w/o CRF’ in Table 5.8.

A qualitative comparison of our method and the variant without CRF
post-processing (‘Ours w/o CRF’) with NLC is presented in Figure 5.9. In
the first row, all the three approaches are segment the moving cars in the
challenging racing scene, but NLC is less precise than the two variants of
our method. In the second example, the monkey is extracted by all the
methods, but only our method (w/o CRF) also segments the dog. The
segmentation of the dog is however incomplete, and refinement with CRF
worsens this further due to similarity with the background colours. In
the last row, none of the methods captures the group of penguins. Our
results are further diminished by the CRF, due to unreliability of the initial
prediction (w/o CRF).

5.4.6 ConvGRU visualization

We present a visualization of the gate activity in our ConvGRU unit on
two videos from the DAVIS validation set. We use the unidirectional model
in the following for better clarity. The reset and update gates of the Con-
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NLC Ours w/o CRF Ours

Figure 5.9 — Qualitative comparison of two variants of our method with the
top-performing approach on SegTrack. Left to right: results of NLC [35],
our method without CRF post-processing, and our full method.

vGRU, r, and z; respectively, are 3D matrices of 64 x w/8 x h/8 dimension.
The overall behavior of ConvGRU is determined by the interplay of these
128 components. We use a selection of the components of 7, and (1 — z;) to
interpret the workings of the gates. Our analysis is shown on two frames
which correspond to the middle of the goat and dance-twirl sequences in
(a) and (b), respectively in Figure 5.10.

The outputs of the motion stream alone (left) and the final segmentation
result (right) of the two examples are shown in the top row in the figure. The
five rows below correspond to one of the 64 dimensions of r; and (1—2z;), with
1 denoting the dimension. These activations are shown as grayscale heat
maps. High values for either of the two activations increases the influence of
the previous state of a ConvGRU unit on the new state matrix computation.
If both values are low, the state in the corresponding locations is rewritten
with a new value; see equations ((5.3)) and ((5.4)).

For + = 8, we observe the update gate being selective based on the
appearance information, i.e., it updates the state for foreground objects
and duplicates it for the background. Note that motion does not play a
role in this case. This can be seen in the example of stationary people (in
the background) on the right, that are treated as foreground by the update
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(a) goat, t = 23 (b) dance-twirl, t = 19

S .

Ty

Figure 5.10 — Visualization of the ConvGRU gate activations for two se-
quences from the DAVIS validation set. The first row in each example
shows the motion stream output and the final segmentation result. The
other rows are the reset (r;) and the inverse of the update (1 — z;) gate ac-
tivations for the corresponding ith dimension. These activations are shown
as grayscale heat maps, where white denotes a high activation.

gate. In the second row, showing responses for ¢ = 18, both heatmaps
are uniformly close to 0.5, which implies that the new features for this
dimension are obtained by combining the previous state and the input at
time step t.

In the third row for i = 28, the update gate is driven by motion. It keeps
the state for regions that are predicted as moving, and rewrites it for other
regions in the frame. For the fourth row, where ¢ = 41, r; is uniformly close
to 0, whereas (1—z;) is close to 1. As a result, the input is effectively ignored
and the previous state is duplicated. In the last row showing ¢ = 63, a more
complex behavior can be observed, where the gates rewrite the memory
for regions in object boundaries, and use both the previous state and the
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current input for other regions in the frame.

5.5 Summary

This chapter introduces a novel approach for video object segmenta-
tion. Our method combines two complementary sources of information:
appearance and motion, with a visual memory module, realized as a bidi-
rectional convolutional gated recurrent unit. To separate object motion
from camera motion we introduce a CNN-based model, which is trained
using synthetic data to segment independently moving objects in a flow
field. The ConvGRU module encodes spatio-temporal evolution of objects
in a video based on a state-of-the-art appearance representation, and uses
this encoding to improve motion segmentation. The effectiveness of our
approach is validated on three benchmark datasets. We plan to explore
instance-level video object segmentation as part of future work.
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In this final part of the thesis we propose a joint architecture for learn-
ing video and semantic segmentation. It combines our weakly-supervised
semantic segmentation approach (M-CNN) described in Chapter 3 with the
video segmentation method from Chapter 5. The resulting fully-trainable
architecture addresses some of the limitations of the heuristic-based M-
CNN, leading to an improved performance.

Recall that M-CNN capitalized on weak semantic labels and motion
cues to infer pixel-level labels of the video frames. These labels were then
used to update a semantic model of the dominant object in the video. The
updated model, in turn, helped to improve label estimation in the next
iterations. This approach demonstrated that semantic and motion infor-
mation can indeed benefit each other and that motion is an indispensable
cue for weakly-supervised semantic segmentation. It was, however, limited

100



CHAPTER 6. INTEGRATING SEMANTIC AND VIDEO
SEGMENTATION 101

Video label: horse
’ l/
o ()~ tal

Appearance network \l u s

b /

v @ ZORIG’ _)‘ )= sl —
. ' Y
Motion /’ 64

hi g network 128

Optical flow

Figure 6.1 — Our joint framework for semantic and video object segmen-
tation. Each video frame is processed by the appearance (green) and the
motion (yellow) networks to produce an intermediate two-stream represen-
tation. The ConvGRU module combines this with the learned visual mem-
ory to compute the final segmentation result. This binary segmentation is
converted to a semantic one by utilizing the weak label of a video sequence
and used to train the appearance stream.

in that the moving object segmentation, as well as the label inference com-
ponents of the framework were heuristic-based, thus their performance did
not improve as learning progressed and could become a bottleneck of the
method.

The second part of this manuscript addressed the problem of moving
object segmentation in isolation. In particular, a video object segmentation
method was developed in Chapter 5 that combined a frame-level motion
segmentation and a semantic encoding of that frame with a convolutional
recurrent model, which aggregated a spatio-temporal representation of the
moving object. This fully trainable method has set the new state-of-the-
art performance in unsupervised video object segmentation on DAVIS and
FBMS.

To combine the two approaches described above we augment our video
object segmentation model with a semantic segmentation layer on top of
the appearance stream and use the predicted moving object masks to train
it (see Figure 6.1). A large dataset of weakly labeled videos is used in this
stage. Notice that training the appearance stream results in a change in
the feature encoding used as input to the memory module (shown in green
in Figure 6.1). This transformation of the feature space quickly leads to a
degradation of the video segmentation performance, as we demonstrate in
Section 6.2. To adapt the memory module to the changing feature space
of the appearance stream, we finetune the ConvGRU on DAVIS in a fully-
supervised way. As a result, our approach jointly learns semantic and video
object segmentation models with only a small set of fully-labeled and a
large set of weakly-labeled videos.
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Several methods have recently demonstrated the value of class activation
maps (CAMs) [162] for weakly-supervised learning (see |57, 75, 106]). They
provide approximate object locations that are category-specific, and thus
are indispensable for inferring pixel-level labels. We show that CAMs can be
seamlessly integrated into our approach as well and result in a significantly
improved performance.

The rest of this chapter is organized as follows: in Section 6.1 we describe
our joint approach for learning semantic and video-object segmentation, as
well as demonstrate how CAMs can be integrated into the framework. Then,
in Section 6.2 we outline the experimental protocol and present the results
of the joint learning approach on both weakly-supervised semantic segmen-
tation and video object segmentation. We also provide an ablation study
to investigate the different design choices that were made and compare to
several baselines. Finally, in Section 6.3 we conclude and provide potential
directions for future work.

6.1 Joint learning of semantics and motion

Our model for joint learning of semantic and video object segmenta-
tion, shown in Figure 6.1, is an extension of the video object segmentation
architecture presented in Chapter 5. In particular, the model takes video
frames together with their estimated optical flow as input, and outputs a
binary segmentation of moving objects. This binary segmentation is then
converted to a semantic segmentation by utilizing the weak label of the
video. The inferred semantic masks are, in turn, used to train the appear-
ance stream, which is augmented with a segmentation layer shown in dark
green. To adapt the memory module to the constantly changing semantic
space, ConvGRU is also jointly trained on DAVIS. Next we describe this
approach in more detail.

6.1.1 Learning framework

We train our model on two sets of videos: a small fully supervised
dataset V = {(x),yY)}Y, for video object segmentation and a large weakly-
labeled dataset S = {(x7,2z¢)} M, for semantic segmentation, where x! and
x? are sets of frames corresponding to video sequences, y! represent binary
segmentations of moving objects and z$ are weak semantic labels indicating
presence of objects of certain categories in the video. Our main goal is to
learn a semantic segmentation model from the set S using only the weak

labels z$ and motion cues. Unlike our previous weakly-supervised semantic
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segmentation method described in Chapter 3, we propose to unify the label
inference and video segmentation steps. We integrate the semantic model
into our moving object segmentation approach as an appearance stream,
thus training it should directly results in an improved label estimation. To
update the appearance model we treat the predicted moving object masks
m¢ as ground truth segmentations. Let’s assume that a video x¢ contains
only objects of a single semantic category ¢ and that all of these objects
exhibit independent motion. An estimate of the semantic labels y¢ can

then be obtained in a straightforward way:

. c,if m$ =1,
i = - (6.1)
0, otherwise,

and a semantic segmentation model P(y|x, #) can be learned by maximizing
the parameters of the appearance stream 6 with respect to the estimated
labels:
0* = argmax P(3°]x5,0). (6.2)
0

In practice this global maximization step is approximated with stochastic
gradient descent.

As mentioned above, improved appearance representation should result
in an improved performance of the video segmentation approach. Indeed,
it was shown in the ablation study in Section 5.4.4, that the quality of the
appearance representation is directly related to the segmentation quality.
Motivated by this observation, similarly to M-CNN, we switch between
updating the semantic model and using the updated model to re-estimate
moving object segmentations. Unlike M-CNN, our new model integrates
the semantic network more intimately into the video segmentation and thus
requires a different training protocol.

Recall that in M-CNN the scores s{ for the category c predicted by
the appearance network were combined with the motion cues to infer the
segmentation masks. In contrast, our proposed approach extracts a feature
encoding of a frame ¢(f) from an intermediate layer of the appearance
network and feeds it to the memory module. This allows the model to
not only reason about the location of the object in the current frame, but
also to aggregate a spatio-temporal representation of the object throughout
the video, which is crucial for the success of the approach. Such a tight
coupling, however, comes at a cost: training the appearance stream in a
weakly-supervised way results in a change in the feature representation
¢(f). The updated feature representation, in turn, changes the behavior
of the memory module and it does not necessarily produce accurate video
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object segmentation anymore. This can be seen as an instance of the domain
shift problem. A common way to adapt a model to the changed inputs is
to finetune it on the new data. We follow this path and interleave between
training the appearance stream on S and finetuning the memory module
on V - a small dataset with ground truth moving object annotations.

In practice we first train our video segmentation method on DAVIS in
the same way as described in Chapter 5, with appearance stream pretrained
on ImageNet. We then augment the model with a semantic segmentation
layer on top of the appearance stream and interleave between k iteration of
weakly-supervised semantic segmentation training and k iterations of train-
ing the video segmentation model in a fully-supervised way. In Section 6.2
we demonstrate that this joint training is essential to avoid degenerate so-
lutions.

6.1.2 Incorporating CAMs into training

(Class activation maps are approximate estimates of location of an object
of a given category in an image that can be computed by a model trained for
image classification (see Section 2.4 for details). They have been successfully
exploited by several weakly-supervised semantic segmentation approaches
recently [57, 75, 106], allowing them to achieve state-of-the-art results. In
this section we show that our video-based method can benefit from CAMs
as well.

Indeed, knowing the approximate location of an object in a video can
be useful when the object does not exhibit independent motion for a large
number of frames. Our video segmentation approach is based on a recurrent
memory module, whose state is decayed in every time step by the forget gate
(see Section 5.3 for details). Due to this update rule, if an object becomes
static the model starts to gradually forget it and eventually segments it as
background. Class activations maps, despite being inaccurate can help to
better handle such scenarios.

Following [106] we train a slightly modified version of VGG model on the
trainval set of PASCAL VOC using only image-level labels. The network is
modified by removing the last max pooling layer to increase its output reso-
lution by a factor of 2, which was show to be important for the localization
performance of CAMs. We then precompute the maps u; for all the videos
in S, where a map for a frame j in a video 7 is encoded as w;; = {cam,}X ;
and cam, is the corresponding activation map for the category c. These

maps are added to the training set S = {(x5,z5,u?)}*, and used in the

7 ) 77
label inference as described below. Notice that most of the approaches em-

ploying CAMs turn them into binary maps by thresholding category scores
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with a certain predefined value 7. This is due to the fact that activation
maps are used as seeds in these methods and thus it is enough to limit them
to small confident regions. In our approach, in contrast, we treat CAMs as
probabilities and thus need to convert them to continuous values in [0, 1]
range. To this end, we apply the sigmoid function to each class map indi-
vidually to obtain cam, = sigmoid(s.), where s. is the raw output of the
network.

To integrate CAMs into our video segmentation approach we propose
to treat them in the same way as motion segmentations shown in yellow
in Figure 6.1. Indeed, both the motion segmentation and class activation
maps are in the [0, 1] range, where high values indicate the location of the
object. We compute the new inputs to the memory module with

W' =+ (1 = N)cam,, (6.3)

where w is the predicted motion segmentation, w’ is the final input to the
memory module and c is the category of the video. In practice we simply set
A = 0.5, giving equal importance to the motion and category cues. Notice
that we use CAMs only during inference of a segmentation for weakly la-
beled videos. In training of the video segmentation component no semantic
information about the videos is available, thus we set w’ = w. Nevertheless,
the learned model can still exploit class localization information in testing,
since both cues are encoded in the same form and have a similar meaning.

6.2 Experiments

6.2.1 Implementation details

Datasets and evaluation We use DAVIS [113] as a fully-supervised
video segmentation dataset. We follow the experimental protocol described
in Section 5.4.1 both in training and evaluation of the video segmentation
performance. For learning weakly supervised semantic segmentation we uti-
lize two datasets: YouTube-Objects [116] and ImageNet-VID [1] to demon-
strate that our approach is independent of the particular set of videos. As
was noted in Section 3.2.1, a fraction of sequences in these datasets either
do not contain the objects indicated in the video labels or these objects
are static, thus, some form of data preprocessing is necessary. We explore
two possibilities: first, like in the M-CNN experiments, we filter the videos
based on the area of the predicted motion segment (see Section 3.2.1 for
details). More recently, [57] proposed to use CAMs to filter out the se-
quences which do not contain the object of interest. This approach results
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in a high precision, but does not handle static videos. Using CAM maps
in training, however, as we proposed in Section 6.1.2 can allow to segment
static objects as well (although the segmentations are less accurate). We
compare the two filtering strategies in Section 6.2.3. To evaluate the se-
mantic segmentation performance we utilize the validation set of PASCAL
VOC 2012 [34]. The details of all three datasets and the metrics used for
evaluation are described in Section 3.2.1.

Model In Section 5.4 we have thoroughly evaluated different design choices
in our video segmentation framework and concluded that the configuration
with the appearance stream based on DeepLab-v2 and motion stream fine-
tuned on FusionSeg with FlowNet2 optical flow performs best. Almost all
the other methods for weakly-supervised semantic segmentation report their
results with the DeepLab-v1 architecture, however. Hence, to fairly com-
pare to these methods, we use the configuration with appearance stream
based on DeepLab-v1 (trained on ImageNet) and motion stream finetuned
on FusionSeg with FlowNet2 optical flow in all our experiments.

Training We start by pretraining our video segmentation model on DAVIS,
as described in Section 5.3.2. To finetune it jointly for the tasks of semantic
and video segmentation then, we interleave between 10 steps of weakly-
supervised semantic segmentation training and 10 fully-supervised steps
for video object segmentation for a total of 20000 iterations. For weakly-
supervised iterations we use a batch size 10, with frames equally sampled
from a video sequence. We use SGD with a learning rate of 0.001, momen-
tum 0.9 and weight decay of 0.0005. Learning rate is decreased in every
iteration with a “poly” policy with power = 0.9. For video segmentation
iterations we use batches of 12 consecutive frames. We also include 20% of
batches with simulated discontinuous motion, as suggested in Section 5.3.2.
The optimization algorithm used is RMSProp with learning rate 0.0001,
0.9 momentum and weight decay set to 0.005. As in the experiments in
Chapter 5, the learning rate is decreased after each epoch and the gradients
are clipped to the [—50,50] range before each parameter update, to avoid
numerical issues [45]. In both cases we use random flipping and spatio-
temporal cropping for data augmentation.

6.2.2 Ablation study

We start by evaluating the importance of the different components of
our label inference approach in Table 6.1. To this end, we compare several
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Dataset | Inference | Joint train | Filtering | CAM | Mean IoU
YTube | no no motion 50 | no 19.3
YTube | yes no motion 50 | no 7.2
YTube | yes yes motion 50 | no 37.5
YTube | yes yes motion 10 | no 39.1
YTube | yes yes CAM 10 | yes 47.7
ImNet | yes yes CAM 10 | yes 47.0

Table 6.1 — Evaluating different variants of our label inference approach on

the 10 classes of PASCAL VOC 2012.

versions of our method on the 10 classes of the validation set of PASCAL
VOC 2012 (the same ones as used in the M-CNN experiments). The first
variant simply uses our video segmentation approach trained on DAVIS to
infer the moving object segmentations for all the videos in YouTubeObjects
dataset. The videos are filtered based on the size of the predicted motion
segment and only subsequences with at least 50 consecutive valid frames are
used for training ( denoted by ‘motion 50’ in the Filtering column). These
segmentations are then fixed (denoted by ‘no’ in the Inference column) and
used together with the semantic tags of the videos to train the appearance
stream in a fully-supervised way. We observe that using fixed motion labels
leads to a very low performance on VOC. We conclude that this is due to
a low performance of our video segmentation method, with its appearance
stream trained on ImageNet, on the challenging videos in the Youtube-
Objects dataset. These videos are of lower quality than those in DAVIS
and, in addition, contain irrelevant sequences. As a result, the quality of
the labels estimated by the unadapted video segmentation method is too
low to be useful.

Next, we experiment with employing our visual memory module to seg-
ment the moving objects in a video in every training iteration (denoted with
‘yves” in the Inference column). In this variant, shown in the second row of
the table, the improved appearance representation can result in improved
label estimates. This baseline, however, does not utilize joint training, that
is the parameters of the memory module are not jointly finetuned on DAVIS
to adapt to the changing appearance representation. As a result, our video
segmentation approach quickly breaks down, and resorts to predicting all
the pixels in a video as background. The semantic segmentation model then
learns the background category only as well. In contrast, our joint training
approach (row three, denoted with ‘yes’ in the Joint train column) is able



CHAPTER 6. INTEGRATING SEMANTIC AND VIDEO
SEGMENTATION 108

to successfully adapt the memory module as the appearance representa-
tion progresses, which not only leads to non-degenerate segmentations, but
also substantially outperforms the static labels baseline from the first row.
The importance of an appearance model trained on the task of semantic
segmentation for the performance of our video segmentation approach has
been already demonstrated in Section 5.4.4. Here, in addition, the appear-
ance stream gets tuned to the specific videos that are being segmented,
resulting in a further improvement in precision.

In M-CNN, as well as in these ablation experiments, only sequences of at
least 50 frames were used for training. Batches of 10 frames were then sam-
pled from them at equal distance to increase diversity. We now experiment
with including shorter sequences and forming batches of 10 consecutive
frames in the fourth row of Table 6.1. Intuitively, this will decrease diver-
sity within batches but will provide additional training examples, as well
as improve video segmentation quality for sequences with rapid motions.
Indeed, we observe a 1.6% improvement over the variant with sequences of
length at least 50. Based on this observation we relax the sequence length
constraint to 10 in the remaining experiments.

Next, we evaluate the importance of class activation maps, introduced
in Section 6.1.2, in the row five of Table 6.1. We use CAMs both for filtering
the videos to avoid irrelevant sequences, and to aid in label inference in cases
where the objects are static, or there are several moving objects in a video,
some of which are irrelevant. In line with some recent publications [57, 75,
106], integrating CAMs indeed results in a significant improvement of our
method’s performance. Despite being trained with no semantic information,
our video segmentation approach is able to capitalize on soft semantic cues
at test time, demonstrating its flexibility.

Finally, to show that our method is general and can be applied to differ-
ent video collections, we train the final variant (with joint training and class
activation maps) on the ImageNet-VID dataset (denoted as ImNet). This
datasets has different statistics compared to Youtube-Objects, nevertheless
our method is able to achieve a similar performance. In the next sections
we compare the performance of our joint approach to the state-of-the-art
methods in weakly-supervised semantic segmentation.

6.2.3 Evaluation on weakly-supervised semantic
segmentation

In this section we compare our full method to M-CNN and the top-
perfroming weakly-supervised approaches on the 10 categories of the vali-
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dation set of Pascal VOC 2012 dataset. In addition to EM-Adapt [107], we
include two more recent publications: an image-based method of Kolesnikov
and Lampert |75] and a video-based method of Hong et al. [57]. Finally, we
report the performance of the DeepLab-v1 model trained on the augmented
training set of PASCAL VOC in a fully-supervised way for a reference. The
results are presented in Table 6.2.

First of all, we observe that our fully-learnable method significantly out-
performs M-CNN when trained on videos only, both on Youtube-Objects
and ImageNet-VID datasets. This is due to the joint training approach,
which allowed to achieve higher quality of estimated labels, compared to
the heuristic-based approach used by M-CNN. Class activation maps also
served as an important cue for label inference. This is confirmed by the
fact that our models, trained on videos only, perform on par with M-CNN
trained on videos and images from VOC. Indeed, our approach also utilized
VOC images to learn a CAM model, but not to directly train the semantic
segmentation network. Incorporating images into training in a principled
way could further boost our results. This can be seen by comparing our
results to those of the heuristic-based approach of Kolesnikov and Lam-
pert [75]. They directly infer the labels of the images in the training set of
VOC, thus avoiding the domain shift problem.

The very recent video-based method of Hong et al. [57] achieves top
performance on VOC. They propose to utilize a specialized network archi-
tecture with independent classification and segmentation networks. The
segmentation network is category-agnostic, and is learned on a large set of
web-crawled videos, whereas the classification network is trained on VOC.
This allows them to achieve high recall and avoid the domain shift is-
sue. The specialized network architecture is indeed a critical component
of their approach, making it non-trivial to apply to state-of-the-art models
like ResNet [54]. In addition, although they do utilize motion during label
inference on videos, it has a relatively low weight in the objective and the
method mostly relies on CAMs. As a result, it remains heuristic-based,
and could further benefit from a more principled way of combining label
inference in images and videos.



Method Dataset bkg aero bird boat car cat cow dog horsembike train Average
EM-Adapt [107] | VOC aug. 77.4 32.1 30.8 26.4 42.6 40.7 32.8 37.8 351 452 41.1| 40.2
Kolesnikov [75] | VOC aug. 82.4 62.9 61.6 27.6 62.7 75.2 53.5 65.8 57.8 62.3 45.4| 59.7
M-CNN YTube 86.3 46.5 43.5 27.6 34.0 475 28.7 31.0 30.8 324 43.4| 41.2f
M-CNN VOC aug.+YTube | 82.5 47.8 35.3 29.6 45.6 54.6 40.3 46.6 44.8 52.2 56.6| 48.7
M-CNN ImNet 85.6 41.4 45.3 23.2 38.6 42.3 36.0 35.1 21.1 15.3 44.8| 39.0
M-CNN VOC aug.+ImNet | 83.1 47.6 40.3 26.4 44.1 51.1 41.7 51.0 349 44.6 52.7| 47.0
Hong [57] VOC aug.+Crawl | 87.0 69.3 70.2 31.2 68.5 76.5 63.8 73.5 69.5 66.5 57.4| 66.7
Ours joint YTube 87.3 49.4 39.2 32.4 59.4 49.5 41.1 42.8 32.8 47.7 43.3| 47.7
Ours joint ImNet 87.0 455 422 36.4 54.7 46.0 37.0 454 26.2 45.2 50.9| 47.0
DeepLab-v1 VOC aug. 88.9 76.0 749 60.0 78.2 782 63.9 72.4 61.7 721 77.0/ 73.0

Table 6.2 — Performance of our joint learning method on the VOC 2012 validation set is shown as IoU scores.
MCNN is our previous, heuristic-based approach described in Chapter 3. We also compare with the best variants of
EM-Adapt [107] trained on YouTube-Objects (YTube), ImageNet-VID (ImNet), and augmented VOC (VOC aug.)
datasets, as well as to more recent image-based [75] and video-based weakly-supervised approaches [57] and the
fully-supervised DeepLab-v1 [23]. T denotes the average result of 5 trained models.

NOLLVINHNOHS

OHdIA ANV DILNVINAS ONLLVHOHLNI "9 H4.LdVHD

01T



CHAPTER 6. INTEGRATING SEMANTIC AND VIDEO
SEGMENTATION 111

In Figure 6.2 we present a qualitative comparison of our fully-trainable,
weakly-supervised segmentation approach to M-CNN and the method of
Hong et al. [57] on the validation set of Pascal VOC 2012. Note that
the latter two methods are trained on videos and images, whereas ours is
trained on videos only. First of all, due to the principled way to learn
video segmentation and weakly-supervised semantic segmentation models
together, our approach produces more accurate predictions compared to
M-CNN. This is especially noticeable in the bird example in the first row,
where M-CNN incorrectly labels the feeder as bird, but our method is able
to avoid this mistake. Indeed, the motion cues used in M-CNN are fixed
and can result in noisy labels for learning the semantic model, whereas
our method is able to estimate labels more accurately. The segmentations
of [57] are even more precise, due to their task-specific architecture, where
the segmentation branch is built with deconvolutional layers, reconstructing
the fine details of the objects. This architecture is inefficient, however,
taking twice as much memory compared to the sate-of-the-art models. In
addition, it requires a separate network pass for each object in an image in
contrast to FCNNs which segment the whole image in a single pass.

6.3 Summary

In this chapter we have integrated our motion-based, weakly-supervised
semantic segmentation approach from Chapter 3 with our learning-based
video segmentation approach described in Chapter 5. The resulting archi-
tecture was jointly trained for the two tasks, demonstrating an improved
performance, compared to the heuristic-based M-CNN on the PASCAL
VOC 2012 benchmark dataset. It, however, remained behind some of the
more recent weakly-supervised methods.

Despite the impressive progress achieved by the field, the gap with the
fully-supervised methods is not fully bridged yet, and the top-performing
methods have important limitation. In the next chapter we review some of
the relevant challenges and propose ideas that could help to address them.
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Image M-CNN (Im+Vid)  Ours joint (Vid)  [57] (Im+Vid)

Figure 6.2 — Sample results on the VOC 2012 validation set. Results of M-
CNN (our previous method described in Chapter 3) trained on augmented
VOC and Youtube-Objects, our joint approach trained only on Youtube-
Objects, and the method of Hong et al. [57] trained on augmented VOC
and a dataset of web-crawled videos are shown in 2nd, 3rd and 4th columns

respectively.
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In this chapter we summarize our contributions on weakly-supervised
semantic segmentation and video segmentation in Section 7.1. We then
conclude with directions for future research in Section 7.2.

7.1 Summary of contributions

7.1.1 Weakly-supervised semantic segmentation

We have introduced a method for learning deep semantic segmentation
models from weakly-labeled videos, capitalizing on motion cues (see Chap-
ter 3). Our model, motion-CNN (M-CNN), integrates a fully-convolutional
network (FCNN) with motion information into an expectation maximization-
like framework. This framework allows to estimate accurate pixel-level la-
bels for training the FCNN from videos by combining unsupervised mo-
tion segmentations with predictions of the semantic model. Our approach
achieved state-of-the-art results on PASCAL VOC at the time of publi-
cation, while being trained from only 150 videos and 1462 images with
tag-level labels.

113



CHAPTER 7. CONCLUSION 114

With the deep-learning-based method for video object segmentation
summarized in the next section, we have addressed one of the main limita-
tion of M-CNN in Chapter 6. In particular, the moving object segmentation
and label inference algorithms used in M-CNN are heuristic-based, and thus
their performance does not improve during training. In our fully-trainable
method for weakly-supervised learning from videos we have extended the
video segmentation model from Chapter 5 with a semantic segmentation
branch. The resulting network was trained on a large set of videos with
weak semantic labels and a small set of videos with pixel-level moving ob-
ject labels, allowing to incrementally improve performance on both tasks.
This fully-trainable architecture indeed achieved a significant improvement
over the heuristic-based M-CNN.

7.1.2 Video object segmentation

Motivated by the importance of motion information for weakly-supervised
semantic segmentation, we studied the problems of motion and video object
segmentation, developing one of the first deep-learning based approaches
to these problems (see Chapter 5). Our model for video object segmen-
tation is a two-stream network with an appearance stream and a motion
stream. Their outputs are combined, and passed to the visual memory mod-
ule, which is trained to aggregate a spatio-temporal representation of the
moving object. This architecture allowed our model to produce accurate
segmentations and handle discontinuous motion.

Our motion segmentation network is a CNN trained for the task of seg-
menting the objects that move independently from the camera in a fully-
supervised way. With this learning-based approach to motion segmenta-
tion we demonstrated that motion patterns in the optical flow field can
be treated in the same way as appearance patterns in RGB images. We
believe that this insight has opened the way for learning-based solutions
to other motion-analysis problems, such as camera pose estimation. Our
full method has set the new state-of-the-art for video object segmentation
on several benchmark datasets, significantly outperforming the classical,
heuristic-based, as well as concurrent, deep-learning-based approaches.
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Frame t Frame t + 1 Optical flow

Figure 7.1 — An example of a video from the FT3D dataset with strong
camera motion. Despite the fact that the objects in the background are
static, their shapes are captured precisely by optical flow. This information
could be used to learn accurate segmentation models for static categories.

7.2 Perspectives for future research

7.2.1 Weakly-supervised semantic segmentation

Handling static objects. In this dissertation we have proposed a
method that utilized object motion to learn accurate semantic segmentation
models from videos. Our approach, however, relied on an assumption that
the object exhibits independent motion in at least one frame of the video.
While this assumption generally holds for categories like car or dog, it does
not for other types of objects like table or bottle. Moreover, a video of a
moving person can have a static car in the background, introducing noise in
the label estimation. Thus, clearly, motion cues alone are not sufficient for
learning to segment all the categories of the visual world. In our experiments
we utilized an heuristic approach to infer pixel labels for static categories. It
allowed us to achieve state-of-the-art performance at the time of publication,
but inevitably resulted in an overall loss of precision.

Recent work of Hong et al. [57] extended our M-CNN for learning se-
mantic segmentation models from videos with both dynamic and static
objects. Unlike our approach, which learns a single network for semantic
segmentation, they propose to learn separate models for approximate ob-
ject localization and precise segmentation. The segmentation network is
category-agnostic, which allows them to transfer knowledge from moving
categories to the static ones. This problem-specific architecture, however
makes applying their approach to state-of-the-art networks like ResNet non-
trivial. Their label inference algorithm is the same as in our M-CNN, but
with an additional unary term that encodes the class activation scores of
Zhou et al. [162], and a decreased weight of the motion term. Thus, despite
achieving top results on PASCAL VOC 2012, the method of Hong et al.
remains heuristic-based, and requires careful hyper-parameter tuning. An
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alternative could be utilizing ego-motion |7] to obtain information about
shape of objects in a scene irrespective of their dynamics. For examples,
Figure 7.1 shows a sequence from the FT3D dataset with a moving cam-
era and two dynamic foreground objects in the top right and bottom left
corners. The objects in the background are static, but strong ego-motion
allows to reveal their shapes nevertheless.

Incorporating other physical constraints. We drew inspiration for
our motion-based approach from the seminal work of Elizabeth Spelke [130],
which showed that independent object motion is indeed the primary cue
used by infants to learn the notion of objects. In her research, however,
other principles were identified, that are as important for object perception.
These principles can be described as physics-based in that they correspond
to the basic constraints for rigid bodies in the physical world. In particular,
they include constraints such as boundedness: two distinct objects can not
occupy the same place at the same time; or no action at distance: two sur-
faces that are visually separated constitute independent objects even if their
motion is consistent. Incorporating such constraints into weakly-supervised
learning methods, explicitly or implicitly, could help to resolve remaining
ambiguities in the label inference. For instance, a method that respects
the no action at distance constraint, would be able to better handle multi-
object videos. The first step towards achieving such capabilities is to design
a label inference algorithm that operates on the level of surfaces, not pixels,
where surfaces can be extracted with a depth estimation approach [94].

Weakly-supervised instance segmentation. Instance segmentation
can be seen as the most general setting for object recognition. It combines
the challenges of object detection and semantic segmentation, as it requires
the model to precisely segment each object instance in an image. As in
other areas of computer vision, the performance on this task improved sig-
nificantly in recent years due to the introduction of deep learning based
methods (see for instance [53, 90]). These methods, however, remain fully-
supervised. Weakly-supervised instance segmentation, especially in the case
when image-level labels only are available, is an extremely challenging prob-
lem. It exhibits all the issues of weakly-supervised semantic segmentation,
described in Section 1.1.1, and in addition requires the label inference to
distinguish between different instances of the same category. Motion cues
can be helpful here as well. In particular, distinct motion directions can
serve as an indicator that certain pixels belong to distinct objects instances
even when their appearance is consistent [13, 101]. Other physical con-
straints mentioned above can be also useful for this setting. For instance,
incorporating the no action at distance constraint can help to distinguish
between objects that exhibit similar motion patterns.
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Data-efficient learning. Reducing the amount of annotations re-
quired for learning segmentation models is a necessary but not a sufficient
condition to capture all the categories in the visual world. For many cat-
egories a large number of image or, especially, video examples is hard to
obtain in the first place — a problem commonly referred to as long tail
category distribution [142, 164]. It implies that for a small number of cate-
gories many training examples can be easily obtained, whereas for a much
larger number of categories (so called long tail of the distribution) train-
ing examples are sparse. To handle the categories in the tail the model
has to be data efficient, that is, it has to be able to build a robust seman-
tic model of a category from just a few examples. This property is often
achieved by sharing information between categories. For instance, Wang et
al. [147] pose this problem as transfer learning. They use data-rich cate-
gories in the head of the distribution to train a deep network that adapts
the weights of a classifier learned from a small number of samples. This
network captures what makes a classifier generalize better, and attempts
to transfer this knowledge to the categories in the tail of the distribution.
In contrast, Zhao et al. [158] propose to explicitly utilize semantic relations
between concepts, by embedding image representations in a space that re-
spects the wordnet hierarchy. As a result, images that are semantically
similar are closer in the feature space, facilitating information sharing be-
tween the categories. Learning representations that are disentangled by
design and thus encourage information sharing [161] is another promising
direction. Sparsity-inducing regularizers, such as L1-loss, are traditionally
used to enforce disentanglement [96], but other forms of regularization can
be explored as well.

7.2.2 Video object segmentation

Optical flow-free solutions. All the state-of-the-art methods for mo-
tion segmentation and unsupervised video object segmentation use optical
flow to extract raw motion information from pairs of RGB frames. This pre-
processing step simplifies the more abstract task of estimating independent
object motion. In addition, for learning-based approaches like our MP-Net,
it provides a natural separation of the motion estimation problem from
appearance. This separation allowed us to train a model on unrealistic,
synthetic videos and then apply it in real scenarios with only a moderate
loss in performance. Optical flow computation is expensive, however, and
its complexity might be unnecessary for the task of motion segmentation.
Indeed, optical flow strives to estimate the exact translation of each pixel
between two consecutive frames, whereas to classify whether a pixel has
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moved with respect to the background a rough approximation would be
sufficient. This has been demonstrated recently by Dave et al. [29] for the
problem of action recognition, where optical flow is traditionally used for
data preprocessing as well. They instead propose to utilize a series of recur-
rent neural networks that operate on RGB frames and sequentially make
top-down predictions about the future. The predictions are then corrected
with bottom-up observations and the resulting residual term is used for
action classification. This approach allowed their model to achieve state-
of-the-art performance on several benchmark datasets without expensive
optical flow computation. Residual video representations naturally focus
on the moving regions, and can be seen as an approximation of motion seg-
mentation. Thus, they could be used to design efficient, optical flow-free
video segmentation methods.

Video instance segmentation. As in the case of image recognition,
instance segmentation is desirable and challenging for video segmentation.
Traditional approaches for this problem rely on trajectory clustering [18, 68|
and have shown state-of-the-art performance in the past. They, however,
have been recently outperformed by our learning-based method in the fore-
ground /background setting. Extending our approach to the instance seg-
mentation scenario is yet to be explored. The main limitation here is that
state-of-the-art deep-learning methods for instance segmentation on im-
ages [53, 90| are computationally expensive, relying on object detection
pipelines. They produce hundreds of proposals for each frame and classify
them individually, thus, applying these methods directly to videos is not
practical. In addition, image-based approaches do not exploit the temporal
consistency property of the videos. Romera-Paredes et al. [121] have pro-
posed a recurrent memory-based method for instance segmentation recently,
which is more suitable for the video problems. Their method produces a sin-
gle output for every object instance and can memorize the objects detected
in the past, to simplify their segmentation in the future frames. Thus, it
would be natural to extend our approach to the instance-level setting by
replacing the ConvGRU trained for foreground/background segmentation
with the memory module of Romera-Paredes et al. The model can then be
trained on a video dataset with instance-level annotations, like FBMS [105].

Interactive video object segmentation. Unsupervised video object
segmentation is limited by the fact that it captures all the moving objects.
This might be desirable in some cases, but in many scenarios the user might
want to focus on a subset of the salient video objects. Consider, for instance,
the breakdance video from the DAVIS dataset, shown in Figure 7.2. Both
the dancer and some of the people in the background are in motion, and thus
segmented by our method. This, however, contradicts with ground truth
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Ground truth Ours full
Figure 7.2 — A video from the DAVIS dataset, where several people are
in motion. They are all segmented by our method, shown on the right, to
some extent. The ground truth annotation, however, focuses on the dancer.

Introducing some form of interaction with the user into our method could
help to resolve such ambiguous cases.

annotations in the dataset. One way of addressing this limitation is by
asking the user to mark the relevant objects in advance, but it is preferable
to allow him to select the desired instances from all the segmented ones
instead. Our approach does not provide any interaction with the user at
the moment. To implement such a functionality, the notion of instances has
to be introduced first. This will allow the user to provide binary tags for
all the segmented instances, indicating his preference. The model will then
re-segment the video using the selected instances for guidance. This can be
achieved by integrating our method with one of the recently published semi-
supervised approaches [70, 80, 88]. They are often based on finetuning the
network on test sequences, however, which is computationally expensive. A
more efficient solution could rely on a permanent memory module, described
in the next paragraph.

Long term memory. One of the main limitations of our method is
the short time span of the recurrent memory module. In particular, if the
object stops moving, like in the case of the lion in Figure 7.3, the model
can still segment it for several seconds, but, if it does not resume motion,
the memory state decays and the object gets lost. This is in part due to the
short sequences on which the model is trained, due to memory limitations,
and in part an inherent property of GRUs. The memory state gets multi-
plied by the forget gate at every time step, its values being less than one,
thus the state inevitably decays in time. Memory networks [78, 132] are
commonly used when a permanent, fully-differentiable information storage
is needed. They feature an explicit storage unit which is updated with the
new observation at every time step and older observation are only erased
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Frame ¢ + 60

Frame ¢ + 40

Frame ¢

Figure 7.3 — An example of a video from the FBMS dataset where the lion
remains mostly static for several frames. The state of our visual memory
module is decayed at every time step, thus by the end of the sequence only
the parts of the animal that moved (head, paws and tail) remain segmented,
but the body is lost. Integrating a memory network into our architecture
could help to handle such scenarios.

if the memory capacity is exceeded. Both memory update and read oper-
ations are implemented through linear and pooling layers, thus the desired
behavior can be learned jointly with the rest of the model through back
propagation. In addition to mitigating the forgetting problem, introducing
such a memory module into our framework would facilitate interactive video
segmentation. The object instances selected by the user can be stored in it
and accessed during re-segmentation of the video, thus avoiding the need
to finetune the network.
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The following software packages produced in this thesis are available online.

e Source code and pretrained models for M-CNN: http://thoth.inrialpes.
fr/research/weakseg/.

e Source code and pretrained models for MP-Net, as well as moving object
labels for FT3D: http://thoth.inrialpes.fr/research/mpnet/.

e Source code and pretrained models for the video object segmentation with
visual memory approach: http://thoth.inrialpes.fr/research/lvo/.
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