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Abstract

We consider a real bivariate polynomial function vanishing at the origin and exhibiting a
strict local minimum at this point. We work in a neighbourhood of the origin in which the
non-zero level curves of this function are smooth Jordan curves. Whenever the origin is a Morse
critical point, the sufficiently small levels become boundaries of convex disks. Otherwise, these
level curves may fail to be convex, as was shown by Coste.

The aim of the present thesis is twofold. Firstly, to construct examples of non-Morse strict
local minima whose sufficiently small level curves are far from being convex. And secondly, to
study a combinatorial object measuring this non-convexity, namely the Poincaré-Reeb tree of the
restriction of the first coordinate to the region bounded by a given level curve. These planar trees
are rooted and their vertices roughly speaking correspond to points on the curve with vertical
tangent lines.

The main objective of our study is to characterise all possible topological types of Poincaré-
Reeb trees. To this end, we construct a family of examples realising a large class of such trees.
As a preliminary step, we restrict our attention to the univariate case, using a tool inspired by
Ghys’ work. One of our main results gives a new and constructive proof of the existence of Morse
polynomials whose associated permutation (the so-called “Arnold’s snake”) is separable.

A variation of Coste’s example: a level curve near a non-Morse strict minimum at the origin and
a Poincaré-Reeb tree associated to it.
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Résumé

Les formes des lignes de niveau des polynômes réels près d’un minimum local strict

Nous considérons une fonction polynomiale de deux variables réelles qui s’annule à l’origine et
qui a un minimum local strict en ce point. Nous nous plaçons dans un voisinage de l’origine dans
lequel les lignes de niveau non nulles de cette fonction sont des courbes de Jordan lisses. Chaque
fois que l’origine est un point critique de Morse, les niveaux suffisamment petits deviennent des
bords de disques convexes. Si l’origine n’est pas de Morse, ces courbes de niveau peuvent ne pas
être convexes, comme l’a montré Coste.

Le but de cette thèse est double. Tout d’abord, nous nous intéressons à la construction
d’exemples de minimums locaux stricts et non-Morse dont les lignes de niveau suffisamment pe-
tites sont loin d’être convexes. Et deuxièmement, nous étudions un objet combinatoire mesurant
cette non-convexité : l’arbre de Poincaré-Reeb de la restriction de la première coordonnée à la
région délimitée par une ligne de niveau donnée. Ces arbres planaires sont enracinés et leurs
sommets correspondent en gros aux points de la courbe où les tangentes sont verticales.

L’objectif principal de notre étude est de caractériser tous les types topologiques possibles
d’arbres de Poincaré-Reeb. À cette fin, nous construisons une famille d’exemples réalisant une
grande classe de tels arbres. Dans un premier temps, nous concentrons notre attention sur le
cas des polynômes d’une variable, en utilisant un outil inspiré du travail de Ghys. L’un de nos
résultats principaux donne une preuve nouvelle et constructive de l’existence de polynômes de
Morse dont la permutation associée (appelée «le serpent d’Arnold») est séparable.

Une variante de l’exemple de Coste : une ligne de niveau d’un minimum strict et non-Morse à
l’origine et un arbre de Poincaré-Reeb qui lui est associé.
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Introduction - Version française

Contexte et motivation

Topologie locale des courbes algébriques dans le plan réel

Dans son livre récent ([Ghy17]), É. Ghys a étudié la topologie locale des courbes algébriques
réelles. Il a décrit, en termes de permutations, les configurations locales possibles d’une famille
{ai(x)} de polynômes réels d’une variable dans un voisinage de l’origine du plan réel. Les graphes
de ces polynômes changent leurs position relative lorsqu’ils passent par un zéro commun (voir
la Figure 3). Il a prouvé que les permutations pouvant être obtenues de cette manière sont
exactement les permutations dites “séparables”.

Figure 3: Les graphes des polynômes ai(x) dans un voisinage de l’origine.

Des chercheurs ont récemment montré un grand intérêt pour les permutations séparables
(introduites dans [BBL98]), qui possèdent de belles propriétés algorithmiques et combinatoires
(voir par exemple [Ghy17, page 27], [Bas+18], [Kit11, page 57]). Une permutation séparable
est une permutation qui ne “contient” (voir par exemple [Ghy17, page 13, 18]) aucune des deux
sous-permutations “interdites” suivantes:

(
1 2 3 4
2 4 1 3

)
ou
(

1 2 3 4
3 1 4 2

)
.

Un exemple de permutation qui n’est pas séparable est

η :=

(
1 2 3 4 5 6 7 8
2 3 6 8 1 7 5 4

)
,

puisque η “contient” la sous-permutation
(

1 2 3 4
3 1 4 2

)
. Il existe quatre indices i1 := 2, i2 := 3,

i3 := 5, i4 := 8 tels que : i1 < i2 < i3 < i4, alors que nous avons (voir la Figure 4) : η(i3) �
η(i1)� η(i4)� η(i2).

13
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Figure 4: La permutation non séparable η contient l’une des deux permutations “interdites”.

Une représentation alternative (inspirée de [Kit11, page 4]) de la permutation η, à travers
son graphe, est dessinée dans la Figure 5, où nous marquons un point pour chaque paire (i, η(i)).
La sous-permutation interdite est marquée par des triangles bleus.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7
8

Figure 5: Une représentation alternative de la permutation η. La sous-permutation “interdite”
est marquée par des triangles.

De plus, dans le même livre ([Ghy17]), E. Ghys a étudié les courbes algébriques réelles
données par une équation polynomiale implicite f(x, y) = 0 en deux variables réelles. Il a codé
leurs combinatoires en termes des “diagrammes de cordes” (voir la Figure 6).

Figure 6: Une courbe singulière à trois branches (côté gauche) et son diagramme de cordes associé
(côté droit).

14
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Le but d’Étienne Ghys était de caractériser toutes les configurations topologiques possibles
des branches d’une courbe algébrique dans un voisinage suffisamment petit de l’un de ses points
singuliers. En collaboration avec Christopher-Lloyd Simon, il a prouvé:

Théorème. [Ghy17, page 266 (Ghys et Simon)] Un diagramme de cordes donné est réalisable
par une courbe plane algébrique réelle au voisinage d’un point singulier si et seulement si le
diagramme de cordes ne contient aucun des sous-diagrammes de cordes illustrés ci-dessous
(notez que le dernier sous-diagramme de cordes contient au moins cinq cordes):

Le point de départ de cette thèse

Dans le travail de Ghys, la courbe était le lieu des zéros d’une fonction polynomiale réelle
en deux variables. Nous allons considérer un polynôme avec le lieu des zéros réduit à un point
(au moins dans un voisinage assez petit de l’origine). Nous étudierons les formes des courbes de
niveau proches, qui peuvent être considérées comme les fibres de Milnor réelles du polynôme à
l’origine.

Considérons une fonction polynomiale f : R2 → R qui s’annule à l’origine O et qui présente
un minimum local strict en ce point. Considérons l’ensemble f−1([0, ε]) et notons par Dε la
composante connexe contenant l’origine. Pour ε > 0 suffisamment petit, Dε est un disque
topologique bordé par une courbe de Jordan lisse, notée Cε.

Chaque fois que l’origine est un minimum local strict de Morse (par exemple, f(x, y) = x2+y2)
et ε > 0 est assez petit, le disque topologique Dε est un disque convexe. Notez que les niveaux
éloignés de l’origine peuvent être non convexes, comme le montre la Figure 7 ci-dessous.

Figure 7: Des courbes de niveau suffisamment petites à proximité d’un minimum local strict de
Morse deviennent des limites de disques topologiques convexes.

Le point de départ de cette recherche est la question suivante posée en juin 2004 par E. Giroux
à P. Popescu-Pampu:

Question. Les petites courbes de niveau de f proches de minima locaux stricts sont-elles
toujours des bords des disques convexes (même pour les singularités non-Morse) ?

15
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La réponse à cette question est négative, comme le montre le contre-exemple suivant de M.
Coste:

f(x, y) := x2 + (y2 − x)2.

Cette fonction f est un polynôme réel bivarié avec un minimum local strict non-Morse à l’origine
et dont les lignes de niveau suffisamment petites (voir la Figure 8) ne seront jamais convexes.

Figure 8: Quelques courbes de niveau de l’exemple de Coste.

Questions et objectifs

Notre première étape a été de construire quelques variantes de l’exemple de Coste (par ex-
emple, celui donné dans la Figure 9).

Figure 9: Une courbe de niveau Cε, pour f(x, y) := x6 + (y4 + y2 − x)2(y2 − x)2.

La question centrale suivante est apparue:

Question. Quel objet combinatoire peut coder la forme en mesurant la non-convexité d’une
composante connexe lisse et compacte d’une courbe algébrique réelle dans R2 ? Quelles sont
les caractéristiques de cet objet - à la fois dans un contexte général et dans un contexte
asymptotique (c’est-à-dire pour une famille de lignes de niveau convergeant vers un minimum
local strict d’une fonction polynomiale) ?

Réponse : Nous prenons la topologie quotient donnée par la relation d’équivalence suivante
dans R2 : deux points de Dε sont équivalents s’ils appartiennent à la même composante connexe
d’une fibre de la projection Π : R2 → R, Π(x, y) := x. De cette façon, nous construisons un
objet appelé graphe de Poincaré-Reeb, qui est un type spécial d’arbre plan (voir la Figure 10). Le

16
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graphe de Poincaré-Reeb est en fait l’image du disque Dε sous cette topologie quotient, plongée
dans l’espace quotient de R2, qui est homéomorphe à R2.

Figure 10: Une variante de l’exemple de Coste : une ligne de niveau d’un minimum strict non-
Morse à l’origine et l’arbre de Poincaré-Reeb qui lui est associé.

Notez que les arêtes ouvertes de l’arbre de Poincaré-Reeb sont transverses aux feuilles ver-
ticales. Appelons arbre transverse générique enraciné un arbre binaire complet enraciné
dont les arêtes ouvertes sont transverses au feuilletage trivial, orienté et coorienté du plan, induit
par la fonction x, de sorte que ses sommets sont munis d’une relation d’ordre totale induite par
ce feuilletage et que cet ordre est monotone sur chaque géodésique à partir de la racine.

Question. Etant donné un arbre transverse générique enraciné, existe-t-il une équation d’un
polynôme réel en deux variables avec un minimum isolé à l’origine qui réalise l’arbre donné
sous la forme d’un arbre de Poincaré-Reeb ?

Réponse : Nous donnons une famille de polynômes en deux variables qui réalise une grande
classe de tels arbres.

À cette fin, nous étudions la courbe polaire f par rapport à la direction x :

Γ(f, x) :=

{
(x, y) ∈ R2

∣∣∣∣ ∂f∂y (x, y) = 0

}
.

C’est l’ensemble des points où la tangente à une ligne de niveau est verticale (voir Figure 11).

17
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Figure 11: Un arbre de Poincaré-Reeb.

Notez que les sommets de l’arbre de Poincaré-Reeb sont des images des points de la courbe
avec des tangentes verticales. Lorsque nous étudions la famille des lignes de niveau, les points
de tangence verticale se déplacent le long des branches de la courbe polaire Γ(f, x) (voir Figure
12). C’est la raison pour laquelle la courbe polaire jouera un rôle crucial dans notre recherche.

Figure 12: La courbe polaire pour l’exemple de Coste est Γ(f, x) = {(x, y) ∈ R2 | y(y−x2) = 0}.

La notion de courbe polaire remonte au XIXème siècle, apparaissant dans les travaux de J.-V.
Poncelet ([Pon17]) et M. Plücker ([Plü37]) dans la période 1813-1830 (voir par exemple [Tei90],
[Tei77], [TF16]). À partir des années 1970, la théorie des courbes polaires (voir [BK86, page 589])
a été renouvelée grâce à d’importantes recherches et contributions dues à Lê ([LMW89]), Teissier,
Merle, Eggers, Delgado, García Barroso ([GB00], [GB98], [GB96]), Płoski, Gwoździewicz, Casas-
Alvero, Michel, Weber, Maugendre ([Mau99]), Hefez entre autres.

Des recherches considérables sur les courbes polaires ont été menées dans le cadre complexe.
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Cependant, on en sait moins sur les courbes polaires réelles.

Cas univarié

La manière dont nous avons accès à la structure de l’arbre de Poincaré-Reeb consiste à étudier
les formes asymptotiques des graphes d’un polynôme d’une variable fx(y), quand x tend
vers zéro. Cela nous a amenés à étudier le cas univarié.

Notez que, dans le cas univarié, des recherches sur les courbes réelles ont été effectuées, où
Davis ([Dav57]), Arnold ([Arn92]) et Douady ([Dou97]) ont chacun trouvé des preuves d’existence
pour des formes données de graphes de polynômes. Cependant, ils n’ont pas construit les équa-
tions polynomiales associées. Présentons brièvement leurs résultats, après avoir introduit intu-
itivement deux outils nécessaires : les “suites alternées de nombres réels” et les “serpents”.
• Un exemple de suite alternée de nombres réels est présenté dans la Figure 13 ci-dessous.

Figure 13: Une suite alternée de nombres réels y1 > y2 < y3 > y4 < y5 > y6 < y7 > y8

Si nous autorisons les égalités entre des nombres réels consécutifs, nous aurons une suite
faiblement alternée.

Théorème. [Dav57; Dou97] Soit une suite faiblement alternée de n nombres réels. Il existe
un polynôme de degré n+ 1 dont la suite de valeurs critiques est la suite donnée.

Notez que pour un polynôme P ∈ R[x], ses valeurs critiques sont les images des points
critiques.
•Néanmoins, Arnold a utilisé des suites alternées spéciales d’éléments de l’ensemble {1, 2, . . . , n},

où n ∈ N∗, qui sont des permutations alternées. Plus précisément, il a appelé une permutation

σ : {1, 2, . . . , n} → {1, 2, . . . , n}

un serpent si [σ(1), σ(2), . . . , σ(n)] est une suite alternée.

Par exemple, σ1 =

(
1 2 3 4
2 1 4 3

)
ou σ2 =

(
1 2 3 4
3 2 4 1

)
sont des serpents.
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Definition. [Lan03, page 64] Fixons n ≥ 1. Nous disons qu’un polynôme P : R → R est un
n-polynôme de Morse s’il remplit les conditions suivantes:

(a) degP = n;

(b) P est monique, c’est-à-dire que le coefficient principal de P est égal à 1;

(c) ses points critiques (c’est-à-dire les valeurs xi ∈ C telles que P ′(xi) = 0) sont réelles et
simples;

(d) ses valeurs critiques (c’est-à-dire les valeurs P (xi), où xi est un point critique) sont toutes
distinctes.

Dans la Figure 14 ci-dessous, nous montrons comment associer un serpent σ :=

(
1 2 3 4 5
4 5 1 3 2

)
à un polynôme de Morse (voir [Lan03, page 67]), en considérant deux relations d’ordre totales
sur l’ensemble de ses points critiques : un ordre est le canonique, lu sur l’axe des x, tandis que
l’autre ordre est celui donné par leurs valeurs critiques correspondantes.

Figure 14: Associer un serpent à un polynôme de Morse en définissant deux relations d’ordre
totales sur l’ensemble de ses points critiques.

Théorème. [Arn92, Théorème 29, page 37] Le nombre de serpents de n éléments est égal au
nombre de polynômes de Morse topologiquement inéquivalents de degré n+ 1 en une variable
avec n valeurs critiques.

Les résultats en bref

Expliquons maintenant nos résultats en bref.

A. Dans un premier temps, nous nous intéressons au cas des polynômes en une variable réelle.
Nous donnons une construction effective de tous les serpents séparables par des équations de

polynômes de Morse réels univariés. En gros, notre résultat principal dans le cas univarié est le
suivant:
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Théorème. Étant donné un serpent séparable σ, nous construisons une famille de polynômes
de Morse Qx(y) ∈ R[x][y], dont le serpent associé est σ, pour x > 0 suffisamment petit.

Notez que, comme une amélioration des résultats antérieurs dans la littérature, nous donnons
des formules explicites. Nos polynômes sont de la forme

Qx(y) :=

∫ y

0

n∏
i=1

(
t− ai(x)

)
dt,

pour un choix convenable des polynômes ai(x) ∈ R[x].

B. Ensuite, nous nous concentrons sur le cas en deux variables. L’objectif principal de notre
étude est de caractériser tous les types topologiques possibles de graphes de Poincaré-Reeb as-
sociés à une direction de projection x et à une composante connexe lisse et compacte d’une
courbe algébrique réelle dans R2. Nous commençons par prouver que ces graphes sont des arbres
planaires dont les arêtes ouvertes sont transverses aux feuilles verticales.

De plus, nous nous situons dans le cas asymptotique, c’est-à-dire que nous étudions les
arbres de Poincaré-Reeb associés à des lignes de niveau Cε, pour ε > 0 assez petit, près d’un
minimum isolé à l’origine. En utilisant la courbe polaire, nous montrons que lorsque ε > 0
est suffisamment petit, l’arbre de Poincaré-Reeb se stabilise de manière combinatoire. De plus,
ses bords ne reculent pas. Ils ne font que s’éloigner de l’origine. L’arbre de Poincaré-Reeb est
enraciné et c’est l’union d’un arbre positif (à droite de l’origine) et d’un arbre négatif (situé à
gauche de l’origine). C’est ce que nous appelons l’arbre asymptotique de Poincaré-Reeb.

Si nous supposons aussi que la direction de la projection x est une direction générique, alors
en utilisant les notions de crêtes et de vallées introduites par Coste et de la Puente (voir [CP01]),
nous montrons que l’arbre asymptotique de Poincaré-Reeb est un arbre planaire binaire complet
et que ses sommets sont totalement ordonnés par la foliation ambiante. Le préordre défini par
le feuilletage x est un ordre total. Nous l’appelons un arbre générique asymptotique de
Poincaré-Reeb. Voir la Figure 10. C’est un arbre transverse générique enraciné, dans le sens
suivant:

Definition. Appelons arbre transverse générique enraciné un arbre binaire complet enrac-
iné dont les arêtes ouvertes sont transverses au feuilletage trivial, orienté et coorienté du plan,
induit par la fonction x, de sorte que ses sommets sont munis d’une relation d’ordre totale induite
par ce feuilletage et que cet ordre est monotone sur chaque géodésique à partir de la racine.

Nous reviendrons plus tard sur la relation entre les arbres négatifs et positifs. Concentrons-
nous maintenant sur le demi-plan x > 0, à savoir sur ce que nous appelons les arbres positifs.

L’un de nos principaux théorèmes est le suivant :

Théorème. Chaque arbre transverse générique positif séparable est réalisable de manière ef-
fective par un minimum local strict d’une fonction polynomiale réelle en deux variables dans
un voisinage suffisamment petit de l’origine.

Notez que nous appelons ici “séparable” un arbre auquel nous pouvons associer une permuta-
tion séparable. En gros, pour associer une permutation à un arbre transverse générique enraciné,
examinons son plongement vertical dans le plan réel, de telle sorte que sa racine soit au-dessus.
On peut numéroter ses sommets de deux manières :

- l’ordre naturel sur l’ensemble de ses sommets : lisez d’abord les feuilles dans l’ordre induit
par le plan réel; puis entre chaque paire de feuilles consécutives (a, b), intercalez le sommet de
bifurcation interne a ∧ b;
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- l’ordre vertical de ses sommets.
Ces deux relations d’ordre totale sur l’ensemble des sommets d’un arbre transverse générique

enraciné fournissent une permutation (voir la Figure 15).

Figure 15: Associer une permutation à un arbre transverse générique enraciné.

Remarque. Notez que c’est une nouvelle manière d’associer une permutation à un arbre planaire,
différente de celle définie dans [Ghy17], où Ghys a muni l’ensemble des graphes d’une famille finie
donnée de polynômes dans un voisinage suffisamment petit d’un zéro commun de deux ordres
totaux : un ordre donné par leur position pour x > 0 et l’autre par la position des polynômes
pour x < 0, comme indiqué dans la Figure 16. Il a prouvé qu’une permutation peut être réalisée
par des graphes de polynômes dans un voisinage d’un zéro commun si et seulement s’il s’agit
d’une permutation séparable.

Figure 16: Associer une permutation à un ensemble de graphes de polynômes au voisinage d’un
zéro commun.
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Dans la preuve de notre théorème, nous utilisons la courbe polaire, qui est le lieu critique de
l’application φ que nous détaillerons plus tard. L’allure à droite (c’est-à-dire pour x > 0) des
lignes de niveau Cε, pour ε > 0 suffisamment petit, est déterminée par l’interaction combinatoire
entre le lieu critique et l’image critique de l’application φ, qui ont tous deux un rôle crucial dans
ce travail.

Enfin, nous nous intéressons simultanément aux arbres positifs et négatifs. Pour un arbre
de Poincaré-Reeb positif séparable T , nous présentons un nouvel algorithme dont le résultat est
constitué de tous les arbres de Poincaré-Reeb négatifs qui forment des paires avec T , par notre
construction d’un minimum local strict.

Les résultats principaux en détail et la structure de la thèse

L’arbre de Poincaré-Reeb

Décrivons notre nouvelle construction de ce que nous appelons les graphes de Poincaré-Reeb,
associés à une composante connexe lisse et compacte d’une courbe algébrique réelle dans R2 et à
une direction de projection donnée x. Le Chapitre 2 est dédié à cet objet combinatoire, destiné
à capturer la non-convexité des courbes. Il est inspiré de la construction classique introduite
par H. Poincaré (voir [Poi10, 1904, page 221]), qui a été redécouverte par G. Reeb en 1946 (voir
[Ree46]). Les deux l’ont utilisé comme outil dans la théorie de Morse. À savoir, étant donné une
fonction de Morse sur une variété compacte sans bord, ils lui ont associé un graphe obtenu en
quotiant la variété par la relation d’équivalence dont les classes sont les composantes connexes
des niveaux de la fonction. Nous allons effectuer une construction analogue pour un type spécial
de variété à bord.
• Considérons une composante connexe compacte et lisse C d’une courbe algébrique réelle

contenue dans le plan R2 (voir Figure 17).

Figure 17: Le graphe de Poincaré-Reeb d’une composante connexe compacte et lisse C d’une
courbe algébrique réelle contenue dans le plan R2.

On désigne par D le disque délimité par C. Munissons le plan R2 de son orientation canonique
et du feuilletage par des lignes verticales. La courbe C, étant une composante connexe d’une
courbe algébrique, n’a que un nombre fini de points de tangence verticale. Nous sommes prêts
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pour la construction du graphe de Poincaré-Reeb. Ses sommets sont des images des points de la
courbe ayant une tangente verticale. Considérez la projection Π : D → R, Π(x, y) := x. Pour
x0 ∈ R, si la fibre Π−1(x0) n’est pas un ensemble vide, il s’agit d’une union finie de segments
verticaux. Nous définissons une relation d’équivalence qui nous permet de contracter chacun
de ces segments en un point. Par la topologie quotient, l’image du disque initial devient un
sous-espace topologique connexe unidimensionnel plongé dans le plan réel. Plus précisément, il
s’agit d’un graphe planaire connexe. Nous prouvons le résultat suivant:

Théorème 0.1 (voir Corollary 2.37). Le graphe de Poincaré-Reeb associé à une composante
connexe compacte et lisse C d’une courbe algébrique réelle contenue dans le plan R2 et à une
direction de projection x est un arbre planaire dont les arêtes ouvertes sont transverses au
feuilletage induit par la fonction x. Ses sommets sont munis d’une relation de préordre totale
induite par la fonction x.

Dans la suite, nous l’appellerons l’arbre de Poincaré-Reeb. Notez que par préordre nous
entendons une relation binaire, qui est réflexive et transitive.

Le principal outil utilisé dans la preuve du Théorème 0.1 est l’intégration par rapport à la
caractéristique d’Euler.
• Limitons maintenant l’étude de cet arbre au cas asymptotique, c’est-à-dire, étudions les

arbres de Poincaré-Reeb associés à des lignes de niveau suffisamment petites d’une fonction
polynomiale bivariée réelle, proches d’un minimum local strict à l’origine. L’arbre se stabilise pour
des lignes de niveau suffisamment petites. Appelez-le l’arbre asymptotique de Poincaré-
Reeb.

Théorème 0.2 (voir Théorème 2.70). L’arbre asymptotique de Poincaré-Reeb est un arbre
enraciné et la relation de préordre totale sur ses sommets, induite par la fonction x, est
strictement monotone sur chaque géodésique à partir de la racine.

Remarque. La monotonie stricte sur les géodésiques à partir de la racine implique que les
courbes de niveau suffisamment petites Cε ne présentent aucun phénomène de retournement ou
de spirale. En particulier, pour ε > 0 suffisamment petit, il n’existe aucune forme Cε semblable
à celle de la Figure 18.

Figure 18: Forme interdite pour un ε > 0 assez pettit : on ne peut pas revenir en arrière comme
ça.
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Un arbre asymptotique de Poincaré-Reeb dont les sommets sont munis d’une relation de
préordre induite par x est présenté dans la Figure 19 ci-dessous. C’est l’union d’un arbre positif
(à droite de l’origine) et négatif (à gauche de l’origine), les deux derniers ayant une racine
commune, c’est-à-dire l’image de l’origine. Nous ne parlons que d’une relation de préordre pour
les sommets d’un arbre asymptotique de Poincaré-Reeb, car il pourrait y avoir plus d’un sommet
au même niveau du feuilletage du plan donné par x.

Figure 19: Un arbre asymptotique de Poincaré-Reeb dont les sommets sont dotés d’une relation
de préordre induite par x : les deux sommets les plus à droite sont situés au même niveau.

• Plaçons-nous dans le cas asymptotique. Si, en plus, la direction x de la projection que
nous considérons est générique, c’est-à-dire s’il s’agit d’une direction qui évite les bitangentes à
Cε et les tangentes d’inflexion verticales, alors nous obtenons ce que nous appelons un arbre
générique asymptotique de Poincaré-Reeb.

Théorème 0.3 (voir Théorème 2.124). Outre les propriétés d’un arbre asymptotique de
Poincaré-Reeb, un arbre asymptotique de Poincaré-Reeb générique présente les caractéristiques
suivantes : le préordre défini par le feuilletage ambiant x est une relation d’ordre totale et
il s’agit d’un arbre binaire complet (chaque sommet interne a exactement deux enfants).

Exemple. Un exemple de deux arbres génériques asymptotiques de Poincaré-Reeb avec des
relations d’ordre totales sur leurs sommets. Notez que les deux arbres sont des arbres de Poincaré-
Reeb topologiquement inéquivalents.
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Figure 20: Deux arbres génériques asymptotiques de Poincaré-Reeb topologiquement inéquiva-
lents.

En conclusion, nous avons construit et décrit un nouvel objet combinatoire, appelé arbre
asymptotique de Poincaré-Reeb, dont le rôle est de quantifier la non-convexité des lignes de
niveau suffisamment petites Cε. C’est un arbre transverse. Ensuite, notre objectif est de
détecter quels arbres transverses peuvent être réalisés sous forme d’arbres asymptotiques de
Poincaré-Reeb.

Le lien entre le cas bivarié et le cas univarié

Rappelons que, étant donné un arbre transverse générique enraciné T , nous voulons construire
une fonction polynomiale f(x, y) ∈ R[x, y] avec un minimum local strict à l’origine, tel que l’arbre
asymptotique de Poincaré-Reeb associé à f et à la direction x soit T . Dans la suite, nous allons
expliquer la transition du cas bivarié au cas univarié. Nous présentons brièvement la relation
géométrique et combinatoire entre les deux cas.

Pour le moment, limitons notre étude au demi-plan x > 0 du plan (Oxy) : le Chapitre 3
est dédié à la construction d’un polynôme réel avec un minimum local strict en O, qui réalise un
serpent donné de la courbe de niveau Cε à droite de l’origine (c’est-à-dire, pour x > 0).
• Tout d’abord, le serpent σε indiqué dans la Figure 21 code la forme de Cε ⊂ (Oxy) pour

x > 0 (sous certaines hypothèses). Le serpent est déterminé par l’alternance de crêtes et de
vallées.

Figure 21: Le serpent asymptotique à droite.
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• Deuxièmement, considérons le graphe de f :

graph(f) := {(x, y, z) ∈ R3 | z = f(x, y)}.

C’est une surface représentée dans la Figure 22. L’intersection de graph(f) avec le plan x = x0,
pour un x0 > 0 suffisamment petit, consiste en une courbe algébrique plane qui est le graphe du
polynôme univarié f(x0, y). Sous certaines hypothèses, il s’agit d’un polynôme de Morse auquel
on peut associer un serpent, appelé τ.

Figure 22: Serpents égaux : σε = τ .

Théorème 0.4 (voir Théorème 3.33). Sous certaines hypothèses (à préciser ultérieurement),
les deux serpents sont égaux : σε = τ .

L’idée principale est qu’à partir d’un serpent σ, afin de construire un polynôme f(x, y) ∈
R[x, y] qui réalise σ à droite, nous allons construire une famille asymptotique de polynômes
d’une variable y avec des coefficients dans R[x], c’est-à-dire des polynômes dans R[x][y], tels que
pour un x > 0 suffisamment petit le serpent τ est égal à σ.

Nous allons préciser les hypothèses mentionnées ci-dessus dans ce qui suit.
Étudions plus en détail la relation combinatoire entre le serpent σε à droite et ce que nous

appelons la courbe polaire “positive” par rapport à x.
Considérons l’application

Φ : R2
x,y → R2

x,z,Φ(x, y) := (x, f(x, y)).

Le lieu critique de Φ est la courbe polaire Γ(f, x).
Dans la Figure 23, nous voyons trois ensembles de courbes:
• la partie “positive” de la courbe polaire, notée Γ+ := Γ(f, x) ∩ (x > 0);
• l’image critique (ou courbe discriminante) “positive” ∆+ := Φ(Γ+) (en vert);
• le contour apparent sur la surface graph(f) (en rouge), lorsque le graphe est projeté sur le

plan (Oxz).
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Figure 23: L’homéomorphisme entre la courbe polaire positive réduite Γ+ et son image ∆+.

Les polynômes que nous construisons satisfont les deux hypothèses de généricité suivantes:
• la courbe Γ+ est réduite;
• l’application Φ|Γ+

: Γ+ → ∆+ est un homéomorphisme.

Nous obtiendrons le résultat suivant:

Théorème 0.5 (voir Proposition 3.32). Sous les hypothèses de généricité précédentes, la
permutation réalisée par la bijection entre la courbe polaire positive Γ+ et son image ∆+ est
égale au serpent σε.

Remarque. Intuitivement, pour associer une permutation à la bijection entre l’ensemble des
branches de Γ+ et l’ensemble des branches de ∆+, examinons les deux relations d’ordre totales
suivantes : les positions relatives des courbes dans Γ+ et les positions relatives de leurs images
dans ∆+. L’interaction entre ces deux ensembles d’objets donne un serpent.

Nous dirigerons notre attention sur le passage inverse, c’est-à-dire sur le passage de polynômes
en une variable aux polynômes en deux variables, seulement après avoir présenté ci-dessous le
cas univarié.

Construction de polynômes en une variable

La stratégie que nous avons adoptée consistait à étudier les polynômes en deux variables
dans R[x, y] comme familles asymptotiques de polynômes univariés fx(y) ∈ R[x][y], pour un x
suffisamment petit qui tend vers zéro. Par conséquent, nous consacrons le Chapitre 1 à la
construction d’équations polynomiales univariées permettant de réaliser un serpent donné.

Théorème 0.6 (voir Théorème 1.149). Soit σ un serpent séparable, nous construisons ex-
plicitement une équation d’une famille de polynômes de Morse Qx(y) ∈ R[x][y], Qx(y) :=∫ y

0

∏n
i=1(t − ai(x))dt, telle que pour un x > 0 suffisamment petit le serpent associé à Qx(y)

est σ.
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Notez que notre choix des polynômes ai(x) ∈ R[x] est déterminé par les propriétés combi-
natoires du serpent séparable donné. La preuve repose sur la gestion d’un autre objet com-
binatoire présenté dans le Chapitre 1, appelé l’arbre de contact, associé à un ensemble fini
de polynômes univariés réels {ai(x)}. C’est un arbre enraciné dont les sommets internes sont
décorés d’informations numériques extraites des polynômes donnés. Son rôle dans nos recherches
est d’encoder la proximité entre différentes familles de polynômes réels à une variable.

Le principal défi consistait à déterminer le serpent (ou, de manière équivalente, l’arbre
générique asymptotique de Poincaré-Reeb) en fonction de l’arbre de contact.

Construction de polynômes en deux variables, à droite

Revenons maintenant à notre objectif initial, en obtenant le résultat principal de la thèse,
auquel nous dédions la dernière partie du Chapitre 3:

Théorème 0.7 (voir Théorème 3.34). Soit σ un serpent séparable.
(a) Il existe un polynôme réel bivarié f ∈ R[x, y] avec un minimum isolé à l’origine dont le

serpent à droite (c’est-à-dire pour x > 0 et ε > 0 les deux suffisamment petits) est le serpent
donné σ.

(b) L’existence est réalisable de manière explicite, en suivant les deux étapes suivantes:
• on construit le polynôme d’une variable Qx(y), avec x > 0 assez petit, dont le serpent

associé est le serpent séparable donné σ, comme dans Théorème 0.6;
• on définit le polynôme à deux variables f(x, y) := x2 +Qx(y).

Nous prouvons que notre famille de polynômes a en effet un minimum local strict à l’origine,
en utilisant un critère basé sur le polygone de Newton.

Pour donner l’équation du polynôme souhaité en deux variables, nous choisissons d’abord sa
courbe polaire par rapport à x. Toutes les branches de la courbe polaire par rapport à x dans
notre construction sont réelles, lisses et transverses à l’axe des y, de sorte que la courbe polaire
vérifie les hypothèses de Théorème 0.5.

Paires d’arbres de Poincaré-Reeb négatifs-positifs obtenus avec notre méthode

Nous pouvons construire des équations qui permettent de réaliser tout arbre transverse
générique enraciné séparable, positif (c’est-à-dire à droite de l’origine). Par symétrie, nous pou-
vons également réaliser l’un de ces arbres à gauche. Cependant, nous nous intéressons maintenant
aux couples de ces arbres séparables qui peuvent être réalisés simultanément, en tant que paire
d’arbres de Poincaré-Reeb négatifs-positifs à proximité d’un minimum isolé.

Question. Étant donné un arbre de Poincaré-Reeb séparable positif T (c’est-à-dire à droite
de l’origine), quels sont les arbres de Poincaré-Reeb négatifs (c’est-à-dire à gauche de l’origine)
qui forment des paires avec T , dans notre construction ?

Réponse : Dans le Chapitre 4, nous fournissons un algorithme (voir Algorithme 4.25) dont le
résultat est l’ensemble de tous les arbres de Poincaré-Reeb négatifs, que nous pouvons réaliser et
qui forment des paires avec un arbre de Poincaré-Reeb positif séparable donné, en utilisant notre
construction. Plus précisément, les arbres-unions ainsi formés sont explicitement réalisables par
notre famille de polynômes en tant qu’arbres génériques asymptotiques de Poincaré-Reeb près
d’un minimum local strict dans un voisinage suffisamment petit de l’origine (voir le Théorème
4.26).

Exemple. Considérons un arbre de Poincaré-Reeb positif séparable T (voir Figure 24).
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Figure 24: Quels sont les arbres de Poincaré-Reeb négatifs, qui forment des paires avec l’arbre
de Poincaré-Reeb donné séparable T , en utilisant notre construction ?

Toutes les paires d’arbres possibles de cet exemple et leurs lignes de niveau correspondantes
Cε sont montrées dans la Figure 25.

Figure 25: Lignes de niveau non convexes et leurs paires correspondantes d’arbres de Poincaré-
Reeb négatifs-positifs réalisés avec notre construction par un minimum local strict à l’origine
d’une fonction polynomiale en deux variables réelles, étant donné l’arbre de Poincaré-Reeb positif
(l’arbre du côté droit de l’origine).

Par conséquent, en exécutant notre algorithme, nous fournissons tous les arbres de Poincaré-
Reeb négatifs qui peuvent former une paire avec T et que nous pouvons réaliser effectivement
par notre construction.
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Context and motivation

Local topology of real plane algebraic curves

In his recent book [Ghy17], E. Ghys studied the local topology of real plane algebraic curves.
He described, in terms of permutations, the possible local configurations of a family {ai(x)} of
real polynomials in one variable near the origin of the real plane. The graphs of these polynomials
change their relative positions when they pass through a common zero (see Figure 26). He proved
that the permutations that can be obtained in this manner are exactly the so-called “separable”
permutations.

Figure 26: The graphs of the polynomials ai(x) in a neighbourhood of the origin.

Recently, researchers have shown increased interest in the separable permutations (introduced
in [BBL98]), that have nice algorithmic and combinatorial properties (see for instance [Ghy17,
page 27], [Bas+18], [Kit11, page 57]). A separable permutation is a permutation that does
not “contain” (see for instance [Ghy17, page 13, 18]) either of the next two “forbidden” sub-
permutations: (

1 2 3 4
2 4 1 3

)
or
(

1 2 3 4
3 1 4 2

)
.

An example of a permutation that is not separable is

η :=

(
1 2 3 4 5 6 7 8
2 3 6 8 1 7 5 4

)
,

since it “contains” the sub-permutation
(

1 2 3 4
3 1 4 2

)
. Namely, there exist four indices i1 := 2,

i2 := 3, i3 := 5, i4 := 8 such that: i1 < i2 < i3 < i4, while we have (see Figure 27): η(i3) �
η(i1)� η(i4)� η(i2).
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Figure 27: The nonseparable permutation η contains one of the two “forbidden” permutations.

An alternative representation (inspired from [Kit11, page 4]) of the permutation η, through
its graph, is drawn in Figure 28, where we mark a dot for each pair (i, η(i)). The forbidden
sub-permutation is marked by blue triangles.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7
8

Figure 28: An alternative representation of the permutation η. The “forbidden” sub-permutation
is marked by triangles.

Furthermore, in the same book ([Ghy17]), E. Ghys studied real algebraic curves given by an
implicit polynomial equation f(x, y) = 0 in two real variables. He encoded their combinatorics
in the so-called “chord diagrams” (see Figure 29).

Figure 29: A singular curve with three branches (left side) and its associated chord diagram
(right side).
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Étienne Ghys’ aim was to characterise all the possible topological configurations of the
branches of an algebraic curve in a small enough neighbourhood of one of its singular points. In
collaboration with Christopher-Lloyd Simon, he proved:

Theorem. [Ghy17, page 266 (Ghys and Simon)] A given chord diagram is realisable by a real
algebraic plane curve in a neighbourhood of a singular point if and only if the chord diagram
does not contain any of the sub-chord diagrams illustrated below (note that the last sub-chord
diagram contains at least five chords):

The starting point of this thesis

In Ghys’ work the curve was the zero locus of a bivariate real polynomial function. Instead,
we will consider a polynomial with the zero locus reduced to a point (at least in a small enough
neighbourhood of the origin). We will study the shapes of the nearby level curves, which may
be thought of as the real Milnor fibres of the polynomial at the origin.

Let us consider a polynomial function f : R2 → R that vanishes at the origin O, exhibiting
a strict local minimum at this point. Consider the set f−1([0, ε]) and denote the connected
component that contains the origin by Dε. For sufficiently small ε > 0, Dε is a topological disk
bounded by a smooth Jordan curve, denoted by Cε.

Whenever the origin is a Morse strict local minimum (for example, f(x, y) = x2 + y2), and
ε > 0 is small enough, the topological disk Dε is a convex disk. Note that the levels far from the
origin can be non-convex, as we show in Figure 30 below.

Figure 30: Small enough level curves near a Morse strict local minimum become boundaries of
convex topological disks.

The starting point of this research is the following question posed in June 2004 by E. Giroux
to P. Popescu-Pampu:

Question. Are the small enough level curves of f near strict local minima always boundaries
of convex disks (even for non-Morse singularities)?

The answer to this question is negative, as the following counterexample by M. Coste shows:

f(x, y) := x2 + (y2 − x)2.
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This function f is a bivariate real polynomial with a non-Morse strict local minimum at the
origin and whose small enough level curves (see Figure 31) will never be convex.

Figure 31: Some level curves of Coste’s example.

Questions and goals

Our first step was to construct some variations of Coste’s example (for instance, the one given
in Figure 32).

Figure 32: A level curve Cε, for f(x, y) := x6 + (y4 + y2 − x)2(y2 − x)2.

The following central question appeared:

Question. What combinatorial object can encode the shape by measuring the non-convexity
of a smooth and compact connected component of a real algebraic curve in R2? What are the
characteristics of this object - both in a general setting and in the asymptotic one (that is, for
a family of level curves converging to a strict local minimum of a polynomial function)?

Answer: We take the quotient map given by the following equivalence relation in R2: two points
of Dε are equivalent if they belong to the same connected component of a fibre of the projection
Π : R2 → R, Π(x, y) := x. In this way we construct an object called the Poincaré-Reeb graph,
which is a special type of plane tree (see Figure 33). The Poincaré-Reeb graph is in fact the
image of the disk Dε under this quotient map, seen embedded in the quotient of R2, which is
homeomorphic to R2.
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Figure 33: A variation of the Coste example: a level curve of a non-Morse strict minimum at
the origin and the Poincaré-Reeb tree associated to it.

Note that the open edges of the Poincaré-Reeb tree are transverse to the vertical lines. Let
us call generic rooted transversal tree a rooted plane complete binary tree whose open edges
are transverse to the trivialisable, oriented and cooriented foliation of the plane induced by the
function x, such that its vertices are endowed with a total order relation induced by this foliation
and this order is monotone on each geodesic starting from the root.

Question. Given a generic rooted transversal tree, does there exist an equation of a real
bivariate polynomial with isolated minimum at the origin which realises the given tree as a
Poincaré-Reeb tree?

Answer: We give a family of polynomials in two variables that realises a large class of such
trees.

To this end, we study the so-called polar curve of f with respect to the direction x:

Γ(f, x) :=

{
(x, y) ∈ R2

∣∣∣∣ ∂f∂y (x, y) = 0

}
.

It is the set of points where the tangent to a level curve is vertical (see Figure 34).
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Figure 34: A Poincaré-Reeb tree.

Note that the vertices of the Poincaré-Reeb tree roughly speaking correspond to points on
the curve with vertical tangent lines. When we study the family of level curves, the points of
vertical tangency move along the branches of the polar curve Γ(f, x) (see Figure 35). This is the
reason why the polar curve will play a crucial role in our research.

Figure 35: The polar curve for the Coste example is Γ(f, x) = {(x, y) ∈ R2 | y(y − x2) = 0}.

The notion of a polar curve goes back to the XIXth century, appearing in the work of J.-V.
Poncelet ([Pon17]) and M. Plücker ([Plü37]) in the period of 1813-1830 (see for instance [Tei90],
[Tei77], [TF16]). Starting with the 1970s, the theory of polar curves (see [BK86, page 589]) was
renewed by important investigations and contributions due to Lê ([LMW89]), Teissier, Merle,
Eggers, Delgado, García Barroso ([GB00], [GB98], [GB96]), Płoski, Gwoździewicz, Casas-Alvero,
Michel, Weber, Maugendre ([Mau99]), Hefez among others. Considerable research on the polar
curves has been carried out in the complex setting. However, less is known about the real polar
curves.
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Univariate setting

The manner in which we have access to the structure of the Poincaré-Reeb tree is via the
study of asymptotic forms of the graphs of one variate polynomials fx(y), for x tending to
zero. This led us to the study of the univariate setting.

Note that in the univariate case some research on the subject of real curves has been carried,
where Davis ([Dav57]), Arnold ([Arn92]) and Douady ([Dou97]) each found proofs of existence
of given shapes of graphs of polynomials. However, they did not construct effectively the associ-
ated polynomial equations. Let us present briefly their results, after introducing intuitively two
necessary tools, namely the “alternating sequences of real numbers” and the “snakes”.
• An example of a given alternating sequence of real numbers is shown in Figure 36 below.

Figure 36: An alternating sequence of real numbers y1 > y2 < y3 > y4 < y5 > y6 < y7 > y8

If we allow equalities to take place between consecutive real numbers, we have a weakly
alternating sequence.

Theorem. [Dav57; Dou97] Given a weakly alternating sequence of n real numbers, there exists
a polynomial of degree n+ 1 whose sequence of critical values is the given sequence.

Note that for a polynomial P ∈ R[x], its critical values are the images of the critical points.
• Nevertheless, Arnold used special alternating sequences of elements of the set {1, 2, . . . , n},

where n ∈ N∗, which are alternating permutations. More precisely, he called a permutation

σ : {1, 2, . . . , n} → {1, 2, . . . , n}

a snake if [σ(1), σ(2), . . . , σ(n)] is an alternating sequence.

For instance σ1 =

(
1 2 3 4
2 1 4 3

)
or σ2 =

(
1 2 3 4
3 2 4 1

)
are snakes.

Definition. [Lan03, page 64]Let us fix n ≥ 1. We say that a polynomial P : R → R is an
n-Morse polynomial if it satisfies the following conditions:

(a) degP = n;
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(b) P is monic, i.e. the leading coefficient of P is equal to 1;

(c) its critical points (i.e. the values xi ∈ C such that P ′(xi) = 0) are real and distinct;

(d) its critical values (i.e. the values P (xi), where xi is a critical point) are all distinct.

In Figure 37 below, we show how one can associate a snake σ :=

(
1 2 3 4 5
4 5 1 3 2

)
to a

Morse polynomial (see [Lan03, page 67]), by considering two total order relations on the set of
its critical points: one order is the canonical one, read on the Ox-axis, while the other order is
the one given by their corresponding critical values.

Figure 37: Associating a snake to a Morse polynomial by defining two total order relations on
the set of its critical points.

Theorem. [Arn92, Theorem 29, page 37] The number of snakes of n elements is equal to the
number of topologically inequivalent Morse polynomials of degree n+ 1 in one variable with n
critical values.

The results in brief

Let us now explain our results in brief.

A. Firstly, we focus on the case of polynomials in one real variable.
We give an effective construction of all the separable snakes by equations of univariate real

Morse polynomials. Roughly speaking, our main result in the univariate setting is the following:

Theorem. Given a separable snake σ, we construct a family of Morse polynomials Qx(y) ∈
R[x][y], whose associated snake is σ, for x > 0 sufficiently small.
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Notice that, as an improvement to earlier results in the literature, we write explicit formulae.
Our polynomials are of the form

Qx(y) :=

∫ y

0

n∏
i=1

(
t− ai(x)

)
dt,

for a suitable choice of the polynomials ai(x) ∈ R[x].

B. Then we focus on the bivariate case. The main objective of our study is to characterise
all possible topological types of Poincaré-Reeb graphs associated to a direction of projection x
and to a given smooth and compact connected component of a real algebraic curve in R2. We
start by proving that these graphs are plane trees whose open edges are transverse to the
vertical lines.

Furthermore we place ourselves in the asymptotic setting, namely we study the Poincaré-
Reeb trees of level curves Cε, for ε > 0 small enough, near an isolated minimum at the origin.
Using the polar curve, we show that when ε > 0 is sufficiently small, the Poincaré-Reeb tree
combinatorically stabilises. In addition, its edges do not move backwards. They only move
further from the origin. The Poincaré-Reeb tree is rooted and it is the union between a positive
tree (to the right of the origin) and a negative tree (situated to the left of the origin). This is
what we call the asymptotic Poincaré-Reeb tree.

If we suppose also that the direction of projection x is a generic direction, then using the
notions of crests and valleys introduced by Coste and de la Puente (see [CP01]) we show that
the asymptotic Poincaré-Reeb tree is moreover a complete binary plane tree and its vertices get
totally ordered by the ambient foliation. Namely, the preorder defined by the foliation x is a
total order. We call it a generic asymptotic Poincaré-Reeb tree. See Figure 33. It is a
generic rooted transversal tree, in the following sense:

Definition. Let us call generic rooted transversal tree a rooted plane complete binary tree
whose open edges are transverse to the trivialisable, oriented and cooriented foliation of the plane
induced by the function x, such that its vertices are endowed with a total order relation induced
by this foliation and this order is monotone on each geodesic starting from the root.

We will come back to the relation between the negative and positive trees later on. Let us
now focus on the half-plane x > 0, namely on what we call positive trees.

One of our main theorems is the following:

Theorem. Every separable positive generic rooted transversal tree is realisable in an effective
way by a strict local minimum of a bivariate real polynomial function in a small enough
neighbourhood of the origin.

Note that here we call “separable” a tree to which we can associate a separable permutation.
Roughly speaking, to associate a permutation to a generic rooted transversal tree, let us look at
its vertical embedding in the real plane, such that its root is on top. We can order its vertices
in two manners:

- the natural order on the set of its vertices: first read the leaves in the order induced by the
real plane; then between each pair of consecutive leaves (a, b), intercalate the internal bifurcation
vertex a ∧ b;

- the vertical order of its vertices.
These two total order relations on the set of the vertices of a generic rooted transversal tree

provide a permutation (see Figure 38).
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Figure 38: Associating a permutation to a generic rooted transversal tree.

Remark. Note that this is a new manner to associate a permutation to a plane tree, different
to the one defined in [Ghy17], where Ghys endowed the set of graphs of a given finite family of
polynomials in a small enough neighbourhood of a common zero with two total orders: one order
given by their position for x > 0 and the other order given by the position of the polynomials for
x < 0, as shown in Figure 39. He proved that a permutation can be realised by real polynomial
graphs near a common zero if and only if it is a separable permutation.

Figure 39: Associating a permutation to a set of graphs of polynomials near a common zero.

For the proof of our theorem, we rely on the polar curve, which is the critical locus of a map
φ we introduce in more details later. The shape to the right (i.e. for x > 0) of the level curves
Cε, for ε > 0 sufficiently small, is determined by the combinatorial interplay between the critical
locus and the critical image of the map φ, which both have a crucial role in this work.
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Finally, we are interested in both the positive and the negative trees simultaneously. For a
given separable positive Poincaré-Reeb tree T , we present a new algorithm whose output consists
of all the negative Poincaré-Reeb trees that form pairs with T , by our construction of a strict
local minimum.

Main results in detail and structure of the thesis

The Poincaré-Reeb tree

Let us describe our new construction of what we call the Poincaré-Reeb graphs, associated
to a smooth and compact connected component of a real algebraic curve in R2 and to a given
projection direction x. Chapter 2 is dedicated to this combinatorial object, that is meant to
capture the non-convexity of the curves. It is adapted from the classical construction introduced
by H. Poincaré (see [Poi10, 1904, Fifth supplement, page 221]), which was rediscovered by G.
Reeb in 1946 (in [Ree46]). Both used it as a tool in Morse theory. Namely, given a Morse
function on a closed manifold, they associated it a graph as a quotient of the manifold by the
equivalence relation whose classes are the connected components of the levels of the function.
We will perform an analogous construction for a special type of manifold with boundary.
• Consider a compact and smooth connected component C of a real algebraic curve contained

in the plane R2 (see Figure 40).

Figure 40: The Poincaré-Reeb graph of a smooth and compact connected component of a real
algebraic curve in R2.

Denote by D the disk bounded by C. Endow the plane R2 with its canonical orientation and
with its foliation by vertical lines. The curve C, being a connected component of an algebraic
curve, has only finitely many points of vertical tangency. We are ready now for the construction
of the Poincaré-Reeb graph. Its vertices correspond to the points of the curve having vertical
tangent. Consider the projection Π : D → R, Π(x, y) := x. For x0 ∈ R, if the fibre Π−1(x0) is
not the empty set, then it is a finite union of vertical segments. We define an equivalence relation
that lets us contract each of these segments into a point. By the quotient map, the image of
the initial disk becomes a one-dimensional connected topological subspace embedded in the real
plane. More precisely, it is a connected plane graph. We prove the following result:
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Theorem 0.1 (see Corollary 2.37). The Poincaré-Reeb graph associated to a compact and
smooth connected component of a real algebraic plane curve and to a direction of projection x
is a plane tree whose open edges are transverse to the foliation induced by the function x. Its
vertices are endowed with a total preorder relation induced by the function x.

In the sequel, we will call it the Poincaré-Reeb tree. Note that by preorder we mean a
binary relation, that is reflexive and transitive.

The main tool used in the proof of Theorem 0.1 is the integration with respect to the Euler
characteristic.

• Let us now restrict the study of this tree to the asymptotic setting, namely let us study
the Poincaré-Reeb trees associated to small enough level curves of a real bivariate polynomial
function, near a strict local minimum at the origin of the plane. The tree stabilises for sufficiently
small level curves. Call it the asymptotic Poincaré-Reeb tree.

Theorem 0.2 (see Theorem 2.70). The asymptotic Poincaré-Reeb tree is a rooted tree and
the total preorder relation on its vertices, induced by the function x, is strictly monotone on
each geodesic starting from the root.

Remark. The strict monotonicity on the geodesics starting from the root implies that the small
enough level curves Cε have no turning back or spiralling phenomena. In particular, for ε > 0
sufficiently small, there are no shapes Cε like the one in Figure 41.

Figure 41: Forbidden shape for small enough ε > 0: there are no going backwards like this.

An asymptotic Poincaré-Reeb tree whose vertices are endowed with a preorder relation in-
duced by x is shown in Figure 42 below. It is a union-tree of a positive tree (at the right of
the origin) and a negative tree (at the left of the origin), the latter two having a common root,
that is the image of the origin. We only speak about a preorder relation for the vertices of an
asymptotic Poincaré-Reeb tree since there might be more than one vertex on the same level of
the foliation of the plane given by x.
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Figure 42: An asymptotic Poincaré-Reeb tree whose vertices are endowed with a preorder relation
induced by x: the two rightmost vertices are situated on the same level.

• Let us place ourselves in the asymptotic case. If, in addition, the direction x of projection
we consider is generic, namely if it is a direction that avoids bitangents to Cε and tangents to
vertical inflection points, then we obtain what we call a generic asymptotic Poincaré-Reeb
tree.

Theorem 0.3 (see Theorem 2.124). Besides the properties of an asymptotic Poincaré-Reeb
tree, a generic asymptotic Poincaré-Reeb tree has the following characteristics: the preorder
defined by the ambient foliation x is a total order relation and it is a complete binary tree
(i.e. each internal vertex has exactly two children).

Example. An example of two generic asymptotic Poincaré-Reeb trees with total order relations
endowing their vertices. Note that the two are topologically inequivalent Poincaré-Reeb trees.

Figure 43: Two topologically inequivalent generic asymptotic Poincaré-Reeb trees.

In conclusion, we constructed and described a new combinatorial object, called the asymp-
totic Poincaré-Reeb tree, whose role is to quantify the non-convexity of small enough level
curves Cε. It is a transversal tree. Next, our aim is to detect which transversal trees can be
realised as asymptotic Poincaré-Reeb trees.
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The connection between the bivariate case and the univariate case

Recall that, given a generic rooted transversal tree T , we want to construct a polynomial
function f(x, y) ∈ R[x, y] with a strict local minimum at the origin, such that the asymptotic
Poincaré-Reeb tree associated to f and to the direction x is T . In the sequel, we explain the
transition from the bivariate setting to the univariate one. We present briefly the geometrical
and combinatorial relation between the two settings.

For the moment, let us restrain our study to the half-plane x > 0 of the plane (Oxy):
Chapter 3 is dedicated to the construction of a real polynomial with a strict local minimum at
O, that realises a given snake of the level curve Cε to the right of the origin (that is, for x > 0).

• First, the snake σε shown in Figure 44 encodes the shape of Cε ⊂ (Oxy) for x > 0 (under
a certain hypothesis). The snake is determined by the alternating sequence of right crests and
right valleys.

Figure 44: The right asymptotic snake.

• Secondly, consider the graph of f :

graph(f) := {(x, y, z) ∈ R3 | z = f(x, y)}.

It is a surface represented in Figure 45. The intersection of graph(f) with the plane x = x0,
for a sufficiently small x0 > 0, consists of a plane algebraic curve which is the graph of the one
variable polynomial f(x0, y). Under some hypotheses, this is a Morse polynomial and we can
associate to it a snake, called τ.
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Figure 45: Equal snakes: σε = τ .

Theorem 0.4 (see Theorem 3.33). Under certain hypotheses (to be made precise later), the
two snakes are equal: σε = τ .

Roughly speaking, the key idea is that given a snake σ, in order to construct a polynomial
f(x, y) ∈ R[x, y] that realises σ to the right, we will construct an asymptotic family of polynomials
in one variable y with coefficients in x, that is, polynomials in R[x][y], such that for sufficiently
small x > 0 the snake τ is equal to σ.

We will make the above mentioned hypotheses clear in what follows.

Let us further study the combinatorial relationship between the snake σε to the right and
what we call the “positive” polar curve with respect to x.

Consider the map

Φ : R2
x,y → R2

x,z,Φ(x, y) := (x, f(x, y)).

The critical locus of Φ is the polar curve Γ(f, x).

In Figure 46, we see three sets of curves:

• the “positive” part of the polar curve, denoted Γ+ := Γ(f, x) ∩ (x > 0);

• the “positive” critical image (or discriminant curve) ∆+ := Φ(Γ+) (in green);

• the apparent contour on the surface graph(f) (in red), when projected to the (Oxz)-plane.
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Figure 46: The homeomorphism between the reduced positive polar curve Γ+ and its image ∆+.

The polynomials that we construct satisfy the following two geometrical hypotheses:
• the curve Γ+ is reduced;
• the map Φ|Γ+

: Γ+ → ∆+ is a homeomorphism.

We will obtain the following result:

Theorem 0.5 (see Proposition 3.32). Under the previous genericity hypotheses, the permu-
tation realised by the bijection between the positive polar curve Γ+ and its image ∆+ is equal
to the snake σε.

Remark. Intuitively, to associate a permutation to the bijection between the set of branches in
Γ+ and the set of branches in ∆+, we look at the following two total order relations: the relative
positions of the curves in Γ+ and the relative positions of their images in ∆+. The interplay
between these two sets of objects yields a snake.

We shall direct our attention on the inverse transition, namely passing from one variable to
two variable polynomials only after we will have presented the univariate case below.

Construction of one variable polynomials

The strategy we adopted was to study bivariate polynomials in R[x, y] as asymptotic families
of univariate polynomials fx(y) ∈ R[x][y], for sufficiently small x tending to zero. Hence we
dedicate Chapter 1 to the construction of univariate polynomial equations that realise a given
snake.

Theorem 0.6 (see Theorem 1.149). Given a separable snake σ, we construct explicitly an
equation of a family of Morse polynomials Qx(y) ∈ R[x][y], Qx(y) :=

∫ y
0

∏n
i=1(t − ai(x))dt,

such that for sufficiently small x > 0 the snake associated to Qx(y) is σ.

Note that our choice of the polynomials ai(x) ∈ R[x] is determined by the combinatorial
properties of the given separable snake. The proof is based on handling another combinatorial
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object introduced in Chapter 1, called the contact tree, associated to a finite set of real
univariate polynomials {ai(x)}. It is a rooted plane tree whose internal vertices are decorated
with numerical information extracted from the given polynomials. Its role in our research is to
encode the proximity between different families of real one variable polynomials.

The main challenge was to determine the snake (or, equivalently, the generic asymptotic
Poincaré-Reeb tree) in function of the contact tree.

Construction of polynomials in two variables, to the right

Let us return now to our initial objective, obtaining the main result of the thesis, to
which we dedicate the last part of Chapter 3:

Theorem 0.7 (see Theorem 3.34). Let σ be a separable snake.
(a) There exists a real bivariate polynomial f ∈ R[x, y] with an isolated minimum at the

origin whose snake to the right (i.e. for x > 0 and ε > 0 both sufficiently small), denoted σε,
is the given snake σ.

(b) The existence is realisable in an explicit way, by following the next two steps:
• construct the one variable polynomial Qx(y), with x > 0 small enough, whose associated

snake is the given separable snake σ, as in Theorem 0.6;
• define the polynomial in two variables f(x, y) := x2 +Qx(y).

We prove that our family of polynomials has indeed a strict local minimum at the origin,
using a criterion based on the Newton polygon.

To give the equation of the desired polynomial in two variables, we first choose its polar curve
with respect to x. All the branches of the polar curve with respect to x in our construction are
real, smooth and transverse to the Oy-axis, such that the polar curve satisfies the hypotheses of
Theorem 0.5.

Pairs of negative-positive Poincaré-Reeb trees obtained with our method

We can construct equations that realise any given separable, positive (i.e. to the right of the
origin) generic rooted transversal tree. By symmetry, we can also realise any of these trees to
the left. However, we are now interested in which couples of these separable trees can be realised
simultaneously, as a pair of negative-positive Poincaré-Reeb trees near an isolated minimum.

Question. Given a separable positive Poincaré-Reeb tree T (i.e. to the right of the origin),
which are the negative Poincaré-Reeb trees (i.e. to the left of the origin) that form pairs with
T , in our construction?

Answer: In Chapter 4 we provide an algorithm (see Algorithm 4.25) whose output is the set
of all the negative Poincaré-Reeb trees, that we can realise and that form pairs with a given
separable positive Poincaré-Reeb tree, by using our construction. More precisely, the union-trees
formed in this way are explicitly realisable by our family of polynomials as generic asymptotic
Poincaré-Reeb trees near a strict local minimum in a small enough neighbourhood of the origin
(see Theorem 4.26).

Example. Let us consider a given separable positive Poincaré-Reeb tree T (see Figure 47).
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Figure 47: Which are the negative Poincaré-Reeb trees, that form pairs with the given separable,
positive Poincaré-Reeb tree T , using our construction?

All the possible pairs of trees of this example and their corresponding level curves Cε are
shown in Figure 48.

Figure 48: Non-convex level curves and their corresponding pairs of negative-positive Poincaré-
Reeb trees realised with our construction by a strict local minimum at the origin of a polynomial
function in two real variables, given the positive Poincaré-Reeb tree (the tree on the right side
of the origin).

Therefore, by running our algorithm we provide all the negative Poincaré-Reeb trees that
can form a pair with T and that we can realise effectively by our construction.
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Chapter 1

The Poincaré-Reeb tree of univariate
polynomial functions

In this chapter, we describe combinatorial objects that code geometrical and topological
shapes. We start by coding the graph of a polynomial in one real variable.

1.1 Alternating sequences

Definition 1.1. Let A := [a1, a2, . . . , an] be a finite sequence of pairwise distinct real numbers,
where n ≥ 1.

We call it:

(a) an α-down-up sequence if a1 > a2 < a3 > a4 < . . . ;

(b) an α-up-down sequence if a1 < a2 > a3 < a4 > . . . ;

(c) an ω-down-up sequence if . . . an−2 > an−1 < an;

(d) an ω-up-down sequence if . . . an−2 < an−1 > an.

If A is of one of the previous kinds, we say simply that A is an alternating sequence.

Example 1.2. An alternating sequence of seven numbers is for instance

A := [3, 1, 6,−5, 0,−1, 100].

This alternating sequence is both an α-down-up sequence and an ω-down-up sequence.

Definition 1.3. Let A := [a1, a2, . . . , an] be a sequence of real numbers, where n ≥ 1. We call it
a weakly alternating sequence if we allow non strict inequalities between the real numbers
ai.

1.1.1 Some historical remarks

Remark 1.4. In the nineteenth century, André (see [And81], [And79]) introduced the notion of
alternating permutation, as follows: he considered n distinct objects α1, α2, . . . , αn and formed
all the possible permutations of these elements. Take, for instance, the permutation

απ(1), απ(2), απ(3), . . . , απ(n).

Let us consider the consecutive differences between the indices, namely π(i + 1) − π(i), for
i = 1, . . . , n− 1. In [And81, page 168], André called the permutation απ(1), απ(2), απ(3), . . . , απ(n)
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an alternating permutation if and only if one obtains an alternation of positive and negative
differences of the indices of α, namely π(i + 1) − π(i), for i = 1, . . . , n − 1, such that no two
consecutive positive (respectively negative) differences occur.

For instance, for n = 5, the permutation

α1, α4, α3, α5, α2

is an alternating permutation, while

α1, α3, α4, α2, α5

is not.
André proved that the number of alternating permutations is always even and denoted by 2An

the number of alternating permutations of n elements. He gave a combinatorial interpretation
of the coefficients of the Taylor development of tan(x) and of sec(x) = 1

cos(x) in [And79]:

sec(x) = A0 +A2
x2

2!
+A4

x4

4!
+ . . .

and

tan(x) = A1
x

1!
+A3

x3

3!
+A5

x5

5!
+ . . .

Let us recall now from [Lan03, page 64] and [Arn00, page 60] the notion of Bernoulli-Euler
triangle. Each entry of this triangle counts the number of possible paths from the top vertex
to the given entry. The paths must be alternating left-right, starting always to the left. The
left-hand edge of the Bernoulli-Euler triangle is called the Bernoulli side, while the right-hand
edge is called the Euler side (see Figure 1.1).

Figure 1.1: The Bernoulli-Euler triangle.

In [Lan03, page 70], the author proved that the above numbers An, for n odd, give the
Bernoulli side of the Bernoulli-Euler triangle, while for n even, they give the Euler side of the
Bernoulli-Euler triangle.
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Remark 1.5. In his survey [Sta10], Stanley used the notion of an alternating permutation

(respectively reverse alternating permutation), as follows. Let σ :=

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
be

a permutation of {1, 2, . . . , n}. Stanley said that σ is:

(a) an alternating permutation, if σ(i) < σ(i+ 1) for i even, while σ(i) > σ(i+ 1) for i odd;

(b) a reverse alternating permutation, if σ(i) > σ(i+ 1) for i even, while σ(i) < σ(i+ 1) for i
odd.

Nevertheless, we shall use only the terminology we introduce in Definition 1.1, Definition 1.3
and Definition 1.6.

1.2 Snakes

Let us present a related notion which was used by Arnold (see [Arn92, page 2], [Arn00]):

Definition 1.6. Let us consider a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}. We say that σ
is an n-snake if [σ(1), σ(2), . . . , σ(n)] is an alternating sequence in the sense of Definition 1.1.
We call (i, σ(i)) a critical point of the snake σ.

Remark 1.7. For a given snake σ :=

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
, let us take the set

{(i, σ(i)) | i = 1, . . . , n}

of points in the real plane. Then for each i = 1, . . . , n− 1 let us connect the consecutive points
(i, σ(i)) and (i + 1, σ(i + 1)) by an edge. This is the graphic representation of snakes that we
shall use in what follows.

Example 1.8. Let us give an example of a 3-snake: σ :=

(
1 2 3
2 1 3

)
, which is represented in

Figure 1.2. Its alternating sequence is [2 > 1 < 3].

i

σ(i)

O
1 2 3

1

2

3

Figure 1.2: Example of a 3-snake σ.

Notation 1.9. Let us denote by An the set of alternating sequences of n real numbers and by
Sn the set of n-snakes.
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Definition 1.10. Let A := [a1, . . . , an] ∈ An be an alternating sequence of n distinct real
numbers ai ∈ R. Consider a second sequence A′ obtained by reordering the elements of A in a
strictly increasing way. Define the rank of ai, denoted rk (ai), to be the position of ai in this
strictly increasing sequence A′. The snake ϕA of A is defined by

ϕA(i) := rk (ai).

Now we can define the function ϕ : An → Sn as follows: ϕ(A) := ϕA.

Remark 1.11. The function ϕ is a surjection.
Example 1.12. Consider the following alternating sequence: [3 > 1 < 4 > −1 < 6]. Thus the
set of the real numbers to be ordered is {3, 1, 4,−1, 6}. We obtain rank (3) = 3, rank (1) = 2,
rank (4) = 4, rank (−1) = 1, rank (6) = 5. Hence, the 5-snake associated to [3 > 1 < 4 > −1 < 6]

is σ :=

(
1 2 3 4 5
3 2 4 1 5

)
, as one can observe in Figure 1.3.

x

y

−1

O
1 2 3 4 5

6

1

2

3

4

5

x

y

O
1 2 3 4 5

1

2

3

4

5

Figure 1.3: From the alternating sequence to the snake σ, as in Example 1.12.

Proposition 1.13. Between any two consecutive local maxima (respectively minima) of a poly-
nomial function P : R → R there exists a unique local minimum (respectively maximum) of P .
In other words, the minima and maxima alternate.

Proof.

• Part 1: Let x1 and x2 be two consecutive local maxima of P , i.e. there exists no other real
number x ∈]x1, x2[ such that x is a local maximum of P. Since P is continuous, one can apply
the Extreme values theorem (due to Weierstrass) on the closed interval [x1, x2]. Thus there exists
m ∈ [x1, x2] such that f(m) ≤ f(x), for any x ∈ [x1, x2]. In other words, P has a local minimum
on any interval delimited by two consecutive local maxima of P .
• Part 2: For two consecutive local minima, the proof is similar.
• Part 3: Let us now prove that the local minimum between any two consecutive local maxima

is unique. We argue by contradiction. If there existed two local minima m1 and m2 between the
two consecutive local maxima x1 and x2, then by Part 2, we have a local maximum between m1

and m2, which contradicts the fact that x1 and x2 are consecutive local maxima.
• Part 4: Similarly we prove that the local maximum between any two consecutive local

minima is unique.
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Definition 1.14. [Lan03, page 64] Let us fix n ≥ 1. We say that a polynomial P : R→ R is an
n-Morse polynomial if it satisfies the following conditions:

(a) degP = n;

(b) P is monic, i.e. the leading coefficient of P is equal to 1;

(c) its critical points (i.e. the values xi ∈ C such that P ′(xi) = 0) are distinct (i.e. simple)
and real;

(d) its critical values (i.e. the values P (xi), where xi is a critical point) are all distinct.

The following Definition 1.15 is inspired from [KS02].

Definition 1.15. We say that a polynomial is a hyperbolic polynomial if all its roots are
real and distinct.

Proposition 1.16. The derivative of an n-Morse polynomial is a hyperbolic polynomial.

Notation 1.17. Let P : R→ R be an n-Morse polynomial. Let us denote by [η1, η2, η3, . . . , ηn−1]
the sequence of the critical values of P , ordered according to the order of the corresponding critical
points, seen as elements of R endowed with the usual total order.

Corollary 1.18. The sequence [η1, η2, η3, . . . , ηn−1] is an alternating sequence. Namely this is
an ω-up-down sequence since P is monic by Definition 1.14

Proof. This is a Corollary of Proposition 1.13.

The following definition is similar to the one given in [Lan03, pages 66-67].

Definition 1.19. Let P : R→ R be an n-Morse polynomial.
The (n − 1)-snake associated to the alternating sequence of the critical values of P (see

Definition 1.10) is called the snake associated to the polynomial P .

Example 1.20. Let us consider the polynomial Q : R → R, Q(x) := (x − 1)(3x − 2). By
integration, we obtain the polynomial P : R→ R,

P (x) :=

∫ x

0
Q(t)dt,

namely P : R → R, P (x) = x3 − 5
2x

2 + 2x. Thus P has two critical points (x1 = 2
3 , x2 = 1)

and their corresponding critical values η1 := P (2
3) = 14

27 and η2 := P (1) = 1
2 form the following

alternating sequence: [14
27 ,

1
2 ]. By Definition 1.10 we obtain the snake associated to P :

σ :=

(
1 2
2 1

)
.

Let us see a slightly more complicated example.

Example 1.21. Let us consider the polynomial Q : R→ R, Q(x) := (5x−5)(x−2)(x−4)(x−7).
By integration, we obtain the polynomial P : R→ R,

P (x) :=

∫ x

0
Q(t)dt,

namely P (x) = x5− 35
2 x

4+105x3−265x2+280x. Thus P has four critical points and the following
critical values: η1 := P (1) = 103.5, η2 := P (2) = 92, η3 := P (4) = 144 and η4 := P (7) = −220.5
The alternating sequence of the critical values is [20.7, 18.4, 28.8,−44.1]. The snake associated

to P is σ :=

(
1 2 3 4
3 2 4 1

)
and it is shown in Figure 1.4.
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x

y

O
1 2 3 4

1

2

3

4

Figure 1.4: Snake σ from Example 1.21.

Remark 1.22. Since P is monic, the last critical value is a local minimum both in the case
where P has an even degree n, and in the case where P has an odd degree. Nonetheless, if we
would work also with non-monic polynomials, for instance with the leading term being −xn, the
last critical value could be a local maximum.

In conclusion: if one considers an n−Morse polynomial function P : R→ R, then one can
associate to it both an alternating sequence and a snake.

Conversely, two questions appear, both regarding the existence of polynomials
with constraints:

Question 1.23. Given an ω-up-down sequence A := [η1, . . . , ηn−1], does there exist an
n−Morse polynomial that realises the alternating sequence?

Question 1.23 will be treated in Subsection 1.3.2. As a subquestion, we have:

Question 1.24. Given an (n− 1)-snake σ, which has the property that σ(n− 2) > σ(n− 1),
does there exist an n−Morse polynomial that realises σ?

By [Arn92], the answer to Question 1.24 is affirmative. For instance, see Figure 1.5 for all
the 1, 2, 3, 4-snakes: they are realised by polynomials. The purpose of this chapter is to give
a constructive answer to Question 1.24, in a special case, namely in the case of separable
snakes (which will be introduced later in Definition 1.128).

σ :=

(
1 2
2 1

)
σ :=

(
1
1

)
σ :=

(
1 2 3
1 3 2

)
σ :=

(
1 2 3
2 3 1

)

σ :=

(
1 2 3 4
2 1 4 3

)
σ :=

(
1 2 3 4
3 1 4 2

)
σ :=

(
1 2 3 4
3 2 4 1

)
σ :=

(
1 2 3 4
4 1 3 2

)
σ :=

(
1 2 3 4
4 2 3 1

)

Figure 1.5: Examples of n−Morse polynomials of degrees n = 2, 3, 4 and 5 respectively that
realise the given (n− 1)-snakes σ (see [Lan03, page 67], [Arn00, Leçon 3, page 59]).
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1.3 Proofs of the existence, which are not constructive

1.3.1 Arnold’s snakes theorem

The answer to Question 1.24 is given in Theorem 1.25, proved by Arnold; he only takes
into account the relative position of the critical values, given by the snake. He does not
consider alternating sequences (i.e. the exact extreme values); however, Arnold only proved
the existence of monic Morse polynomials which realise any given snake. We shall present
our constructive proof in Section 1.8, for the case of separable snakes (see Definition 1.128).

Theorem 1.25. [Arn92, Theorem 29, page 37] The number of n−snakes which have the property
that σ(n − 1) > σ(n) is equal to the number of topologically inequivalent Morse polynomials of
one variable with n critical values that behave like xn+1 at infinity.

Remark 1.26. For the proof and for more information on the enumeration of snakes, see [Lan03,
Chapter 5, page 59], [Arn92], [Arn00]. In fact, the number of n−snakes which have the property
that σ(n− 1) > σ(n) is equal to the number An of André (see Remark 1.4).

1.3.2 Proof of existence by Davis

In the sequel, we are going to prove the existence of a polynomial with prescribed critical
values, which gives an answer to Question 1.23. More precisely, we add details to the initial
solution given in 1956 by Davis in [Dav57]. Note that we are going to use most of Davis’
notations. Nevertheless, Davis’ approach was not constructive. This fact motivated us in our
research to find explicitly such a polynomial, as the reader shall see in the following sections.

In [Dav57], Davis stated the following problem:

“For a real polynomial P (x) of degree n, denote the zeros of P ′(x) (multiplicity
counted) by ξi, i = 1, . . . , n− 1. Assume all ξi are real and let ξ1 ≤ ξ2 ≤ . . . ≤ ξn−1.
Now to what extent are the numbers P (ξi) arbitrary? More precisely, give necessary
and sufficient conditions on an (n − 1)-tuple of real numbers η1, . . . , ηn−1 in order
that there exists a polynomial P such that P ′(ξi) = 0, P (ξi) = ηi, i = 1, . . . , n− 1.”

The solution proposed by Davis was that the numbers (−1)i(ηi−ηi−1), i = 2, . . . , n−1 must
be either all non negative or all non positive. Let us choose without loss of generality the case
where the numbers (−1)i(ηi − ηi−1), i = 2, . . . , n− 1 are all non negative.

Note that the derivative of P (x) can have multiple roots, thus this is why ηi, i = 1, . . . , n− 1
form a weakly alternating sequence of real numbers (see Definition 1.3).

Before we describe in more detail the solution proposed by Davis, let us present two lemmas
proven by Jan Mycielski in [Myc70].

Lemma 1.27. [Myc70] Let us consider two subsets A and B of a topological space X. If A ⊂ B
and A is dense in X and connected, then B is dense in X and connected.

Proof. Let us suppose by contraposition that B is not connected, hence by definition there exist
two disjoint open sets U1 and U2 of X, such that B = (B ∩ U1) ∪ (B ∩ U2), where B ∩ U1 6= ∅
and B ∩ U2 6= ∅. Since A ⊂ B, one has A = (A ∩ U1) ∪ (A ∩ U2). One obtains a contradiction:
since A is dense, A ∩ Ui 6= ∅, i = 1, 2, thus A is not connected.

Lemma 1.28. [Myc70] Let f be a continuous mapping of a compact Hausdorff space X into
a space Y and O ⊂ X be a nonempty set such that f(O) is open and the set Y \ f(X \ O) is
connected and dense in Y . Then f maps X onto Y .
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For the proof, see [Myc70].

Definition 1.29. Aweakly-Morse polynomial is a real one variable polynomial whose deriva-
tive has only real roots.

Remark 1.30. The difference between an n-Morse polynomial and a weakly-Morse polynomial
is the following: the weakly-Morse polynomials can have derivatives with multiple roots, while
the roots of the derivative of an n-Morse polynomial are simple.

Theorem 1.31. [Dav57] Given a weakly alternating sequence of n real numbers, there exists a
weakly-Morse polynomial of degree n+ 1 whose sequence of critical values is the given sequence.

The proof consists, briefly speaking, of the following three steps:

(a) if we choose a real positive number A > 0, one can write

(1.1) P (x) = A

∫ x

0

n−1∏
i=1

(t− ξi)dt.

For i = 1, . . . , n, we denote by

δi := A(ξi − ξi−1);

(b) we introduce the real numbers (see Figure 1.6)

φi := (−1)i−1(ηi − ηi−1) = (−1)i−1(P (ξi)− P (ξi−1)),

i = 1, . . . , n where ηi := P (ξi), in order to define the continuous mapping

φ : (R+)n → (R+)n, φ(δ1, . . . , δn) = (φ1, . . . , φn);

(c) we prove that φ is a local diffeomorphism in the interior of (R+)n;

(d) we prove that the map φ : (R+)n \ {0} → (R+)n \ {0} is surjective.
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η1φ1

η2

φ2
η3

φ3

η4
φ4

ξ1

ξ2

ξ3

O ξ4

x

P (x)

Figure 1.6: The values ηi, φi, ξi.

Proof. The following proof is due to Davis (see [Dav57]). We shall present it in more detail, from
our point of view. Note that we are going to use most of Davis’ notations.

Let us suppose that P (0) = 0. This may be achieved by replacing P (x) by a polynomial of
the form P (x− α) + β, where α, β ∈ R.

If we fix the extremities ξ0 := 0 and ξn := 1, we have

ξ0 = 0 ≤ ξ1 ≤ . . . ≤ ξn−1 ≤ 1 = ξn.

Choosing a real positive number A > 0, one can write

(1.2) P (x) = A

∫ x

0

n−1∏
i=1

(t− ξi)dt.

Note that ξ0 and ξn are not roots of P ′.
For i = 1, . . . , n, if we denote by

δi := A(ξi − ξi−1),

then
∑n

i=1 δi = A.
Denote by ηi := P (ξi).
We introduce the real numbers

(1.3) φi := (−1)i−1(ηi − ηi−1) = (−1)i−1(P (ξi)− P (ξi−1)),
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i = 1, . . . , n. One can define the continuous mapping

φ : (R+)n → (R+)n, φ(δ1, . . . , δn) = (φ1, . . . , φn).

One should remark that ξ1, . . . , ξn−1, A are continuous functions of δ1, . . . , δn and that the func-
tions φi, i = 1, . . . , n are continuous functions of ξ1, . . . , ξn−1, A. Moreover, there is a bijective
continuous map

ψ1 : Rn → Rn, ψ1(ξ1, . . . , ξn−1, A) = (δ1, . . . , δn).

The map ψ2 is given by the above Equation 1.3. Note that the polynomial P (x) depends
also on the real positive number A.

Therefore, we prefer expressing φ in function of the variables δi, and not in terms of the
variables ξi and A. More precisely, we have φ = ψ2◦ψ−1

1 , thus the diagram below is commutative:

(δ1, . . . , δn) (ξ1, . . . , ξn−1, A)

(φ1, . . . , φn)

ψ−1
1

φ ψ2

By Rolle’s theorem, applied to two consecutive critical points of the polynomial P , one has
the equivalence φi = 0 ⇔ ξi = ξi−1 ⇔ δi = 0, hence the boundary of (R+)n is mapped into the
boundary of (R+)n and the interior into the interior.

Let us define a polynomial Q such that

Q(x) := A

∫ x

0

n−1∏
i=1

(t− λξi)dt.

In addition, let us introduce the real numbers φ̃i := (−1)i−1(Q(λξi) − Q(λξi−1)), i = 1, . . . , n.
Then

Q(λx) = A

∫ λx

0

n−1∏
i=1

(t− λξi)dt = A

∫ x

0

n−1∏
i=1

(λu− λξi)λdu = Aλn
∫ x

0

n−1∏
i=1

(u− ξi)du = λnP (x).

Hence
Q(λξi+1)−Q(λξi) = λn(P (ξi+1)− P (ξi))

and one obtains φ̃i = λnφi. This can be written shortly as follows:

φ(λδ1, . . . , λδn) = (λnφ1, . . . , λ
nφn),

which means that φ maps any ray through the origin onto some ray through the origin.
We are going to prove that φ is a local diffeomorphism in the interior of (R+)n and that φ is

surjective on (R+)n \ {0}.

Let us first prove that φ is a local diffeomorphism in the interior of (R+)n. It is sufficient
to prove that ψ−1

1 and ψ2 are local diffeomorphisms.

In what follows, we shall denote by J(F ) the Jacobian matrix of a map F . By applying the
chain rule to ψ2 ◦ ψ−1

1 , one gets:

det J(φ) = det J(ψ2 ◦ ψ−1
1 ) = det Jψ−1

1
(ψ2) det J(ψ−1

1 ).
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Since

det J(ψ−1
1 ) = det


∂δ1
∂ξ1

∂δ1
∂ξ2

. . . ∂δ1
∂ξn−1

∂δ1
∂A

∂δ2
∂ξ1

∂δ2
∂ξ2

. . . ∂δ2
∂ξn−1

∂δ2
∂A

...
...

. . .
...

...
∂δn
∂ξ1

∂δn
∂ξ2

. . . ∂δn
∂ξn−1

∂δn
∂A .

 ,
after computations, one gets det J(ψ1) = An−1 6= 0. Clearly ψ−1

1 is a local diffeomorphism, since

det J(ψ−1
1 ) =

1

det J(ψ1)
=

1

An−1
6= 0.

We shall prove in the following that ψ2 is also a local diffeomorphism. Let us denote by
aij := ∂φi

∂ξj
, for i, j = 1, . . . , n− 1 and ain := ∂φi

∂A .

Let us recall below the classic Leibniz rule for differentiating under an integral. Two different
proofs can be found for instance in [Fla73] and [Woo26, page 142].

d

dx

(∫ b(x)

a(x)
f(x, t)dt

)
=

∫ b(x)

a(x)

∂f(x, t)

∂x
dt+ f(b(x), x)b′(x)− f(a(x), x)a′(x).

Since we need aij := ∂φi
∂ξj
, let us first compute ∂P (ξi0 )

∂ξj
.

If j 6= i0, then
∂P (ξi0)

∂ξj
= A

∫ ξi0

0

∂

∂ξj

∏
i

(t− ξi)dt.

If j = i0, then

∂P (ξi0)

∂ξi0
= A

∫ ξi0

0

∂

∂ξi0

∏
i

(t− ξi)dt+ (ξi0)′
∏
i

(ξi0 − ξi) = A

∫ ξi0

0

∂

∂ξi0

∏
i

(t− ξi)dt.

One has ∂
∂ξj

∏
k(ξk − t)dt =

∏
k 6=j(ξk − t) = P ′(t)

A(ξj−t) , hence

aij = (−1)i−1∂P (ξi)

∂ξj
− ∂P (ξi−1)

∂ξj
= (−1)i−1

∫ ξi

ξi−1

P ′(t)

A(ξj − t)
dt.

In addition, one has

ain = (−1)i−1∂P (ξi)

∂A
− ∂P (ξi−1)

∂A
=

∫ ξi

0

P ′(t)

A
dt−

∫ ξi−1

0

P ′(t)

A
dt =

∫ ξi

ξi−1

P ′(t)

A
dt.

We argue by contradiction. If we suppose that det(aij) = 0, then there exist numbers
c1, . . . , cn ∈ R∗ such that

∑n
j=1 cjaij = 0, which is equivalent to

n−1∑
j=1

cj
A

∫ ξi

ξi−1

P ′(t)

ξj − t
dt+

cn
A

∫ ξi

ξi−1

P ′(t)dt = 0⇔

∫ ξi

ξi−1

(

n−1∑
j=1

cj
A

P ′(t)

ξj − t
+
cn
A
P ′(t))dt = 0.

If we denote by F (t) :=
∑n−1

j=1
cj
A
P ′(t)
ξj−t + cn

A P
′(t), then the above equality implies that

(1.4)
∫ ξi

ξi−1

F (t)dt = 0.
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In addition, F is a polynomial of degree less or equal to n− 1.
If one denotes by g(x) :=

∫ x
0 F (t)dt, then g(0) = 0; since ξ0 = 0, g(ξ1) = 0, by relation (1.4),

g(ξ2) =
∫ ξ2

0 F (t)dt =
∫ ξ1

0 F (t)dt +
∫ ξ2
ξi
F (t)dt = 0, . . . , g(ξn) = 0, hence g is a polynomial with

deg g ≤ n and with at least n+ 1 roots. Clearly, F ≡ 0 and

n−1∑
j=1

cj
A

P ′(t)

ξj − t
+
cn
A
P ′(t) = 0,

for any t ∈ R. Since in the interior of (R+)n the polynomials P ′(t)
ξj−t , j = 1, . . . , n− 1 and P ′(t) are

linearly independent, one obtains cj = 0, for any j = 1, . . . , n. Thus we obtained a contradiction
with cj ∈ R∗, j = 1, . . . , n, which proves that the columns of the (aij) matrix are linearly
independent. More precisely, det(aij) 6= 0, thus ψ2 is a local diffeomorphism in the interior of
(R+)n.

In conclusion, φ is a local diffeomorphism in the interior of (R+)n.

In the following we will prove that φ : (R+)n \ {0} → (R+)n \ {0} is surjective by applying
Lemma 1.28 to a continuous function φ.

First, let us denote by (R∗+)n the interior of (R+)n. We have proved that φ is a local
diffeomorphism in the interior of (R+)n, thus φ is an open map, hence φ((R∗+)n) is an open set
in (R+)n.

Secondly, let us compactify the space, by considering the projective homogeneous coordinates
with the classical notation [x1 : x2 : . . . : xn]. Let us denote by

RPn−1
+ := {[x1 : . . . : xn] | xi ≥ 0, ∀i}.

For [δ1 : δ2 : . . . : δn] ∈ RPn−1
+ and [φ1 : φ2 : . . . : φn] ∈ RPn−1

+ , define the map

φ : RPn−1
+ → RPn−1

+ , φ([δ1 : δ2 : . . . : δn]) := [φ1 : φ2 : . . . : φn].

Let us prove that φ is well-defined. If one takes (δ1, δ2, . . . , δn) ∈ RPn−1
+ , then

φ[λδ1 : λδ2 : . . . : λδn] = [λnφ1 : . . . : λnφn] = [φ1 : . . . : φn] = φ[δ1 : . . . : δn],

hence φ is well-defined.
After a choice of representatives, one can identify RPn−1

+ with Rn+ ∩ Sn−1
1 , where Sn−1

1 :=
{x ∈ Rn | ‖x‖ = 1} is the unit (n− 1)-sphere. Thus RPn−1

+ is compact, being homeomorphic to
the intersection between a closed set and a compact set.

Apply in the sequel Lemma 1.28 to the continuous function φ.
Let us denote by Sn−1

+ := Sn−1
1 ∩ {(x1, . . . , xn) | xi ≥ 0} and by O := Int Sn−1

+ , thus

O = Sn−1
1 ∩ {(x1, . . . , xn) | xi > 0}.

By the induced topology, φ(O) is an open set of Sn−1
+ . The nonempty set O is dense and connected

in Sn−1
+ . In addition, we have O ⊂ Sn−1

+ \ φ(∂O) = Sn−1
+ \ φ(Sn−1

+ \O). Thus by Lemma 1.27, we
conclude that the set Sn−1

+ \ φ(Sn−1
+ \O) is dense and connected.

To conclude, we proved that all the hypotheses of Lemma 1.28 are satisfied hence φ is
surjective. Hence φ is surjective and thus the proof of the existence of a polynomial associated
to (φ1, . . . , φn) is completed.
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Remark 1.32. A similar proof to the one of Davis’ can be found in [Dou97, page 17], where
Douady gave a proof of existence for polynomials of degree 4 and a sketch of the proof for the
general case. For more references, see [Myc70, page 853].

1.4 Basic notions about graphs and trees

1.4.1 Standard vocabulary for graphs and trees

This subsection is meant to present briefly standard terminology for graphs and trees.
Whoever is already familiar with these notions, is invited to go to Subsection 1.4.2.

Intuitively, a graph represents a collection of vertices and of edges such that each edge con-
nects two vertices. For a detailed description of graphs and for the basic terminology, the reader
is invited to refer to [Gos09], which represents the main source for the standard notions we
introduce in what follows. Other useful sources are [PP01], [Die10], [Bol98], [Tut84], [BM08],
[Tru93].

Definition 1.33. [Gos09, page 592] A graph G = (V,E, ϕ) consists of a nonempty finite set of
vertices V , a finite set of edges E and an incidence function ϕ that maps edges to unordered
pairs of vertices. If the two vertices in the unordered pair are the same vertex, then the edge is
called a loop.

Definition 1.34. [Die10] The valency of a vertex v is the number of edges of v.

Definition 1.35. [Gos09, pages 600-601] A nonempty sequence of alternating vertices and edges
of the form

(a1, e1, a2, e2, . . . , en−1, an),

with n ≥ 1 and the edge ei connecting the vertices ai et ai+1 is called a walk.
The length of a walk is the number of its edges.
A trail is a walk with no repeated edges.
A path is a walk with no repeated vertices.
A walk is closed if it has length of at least one and its endpoints are the same vertex.
A circuit is a closed trail.
A cycle is a circuit in which the endpoints are the only repeated vertices.

Definition 1.36. [Gos09, page 601] A graph G = (V,E, ϕ) is connected if it has only one
vertex or if there is a walk in G between every pair of distinct vertices.

In the following and more restrictive definition, one can observe that loops and multiple edges
between two vertices are not allowed to appear in the well-known notion of simple graph.

Definition 1.37. [Gos09, page 592] A simple graph G = (V,E, ϕ) consists of a nonempty
finite set of vertices V , a finite set of edges E and an injective incidence function ϕ that maps
edges to unordered pairs of distinct vertices.

When we name a walk of a simple graph, we shall only list its vertices (it is not necessary to
include the edges, since the reader can deduce them from the notation).

Definition 1.38. [Gos09, page 602] Two distinct vertices u and v are adjacent if there exists
an edge e such that ϕ(e) = {u, v}.
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Example 1.39. In Figure 1.7 (inspired from [Gos09, Example 10.8, page 601]), the graph contains
several walks. For instance, the walk abdedc has length 5. Moreover, abdca is a closed walk. The
walk acdfg is both a trail and a path. An example of cycle is hh, while dbhhed is a circuit.
Finally, hegfdeh is a trail which is neither a path, nor a circuit.

Figure 1.7: Walks, trails, paths, circuit, cycles.

We will be particularly interested in the following class of simple graphs.

Definition 1.40. [Gos09, page 673, Chapter 11] A tree is a connected graph without cycles.
A rooted tree is a tree endowed with a base vertex, called its root.

Remark 1.41. As a consequence of Definition 1.40, trees have no loops, nor multiple edges.

Theorem 1.42. [Gos09, page 668] A connected simple graph is a tree if and only if it contains
a unique path between any two vertices.

Theorem 1.42 can be seen as a characterisation of trees. Its proof is given in [Gos09, page
668].

Definition 1.43. [Ser80, Section 2.2, page 18] A geodesic between two vertices of a tree is the
shortest path between the two vertices.

Remark 1.44. In this section, our convention is to draw the root on the top of the tree.

Example 1.45. A geodesic is shown in Figure 1.8 below.
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R

Vi

Vk

Figure 1.8: Geodesic in a tree, between the vertices Vi and Vk.

Definition 1.46. [Gos09, page 669]

(a) In a rooted tree, the length (i.e. the number of edges) of the geodesic from the root to a
vertex is called the level of the vertex. The root is at level zero.

(b) A vertex p of a rooted tree is called the parent of a vertex c if p and c are adjacent and the
level of c is one plus the level of p. We say then also that c is a child of p. We call ancestor
of a vertex c every vertex on the path from c to the root (excluding c but including the
root). The vertex c is said to be a descendant of each of its ancestors. Two vertices are
called siblings if they have the same parent.

(c) In a rooted tree, a vertex is called a leaf if it has no children. A vertex that is not a leaf,
i.e. it has children, is said to be an internal vertex.

(d) Let v be a vertex of the rooted tree T . The subtree of T rooted at v is the tree consisting
of all the descendants of v in T , including v itself.

1.4.2 Non-standard vocabulary for trees

Here we present some non-standard terminology that we need in this thesis.

Definition 1.47. A real oriented plane is a topological surface which is oriented and home-
omorphic to R2.

Remark 1.48. The following definition is inspired from [Tru93, Section 3] and [Gos09, page
624]. Note the difference between the notion of planar tree (can be embedded in a real plane)
and plane tree (it is embedded in a real plane).

Definition 1.49. A plane tree is a tree which is embedded in a real oriented plane without
edge crossings.

Remark 1.50. One can also give the following abstract characterisation of plane trees: plane
trees are abstract ordered trees, in the sense that each vertex has a cyclic order of the edges
adjacent to it (see [Knu05, page 308]). Any embedding of a rooted tree in an oriented plane gives
the order of children for each vertex: from left to right, for instance (see [Wi ]). Note that, to
give an abstract order on a rooted tree is the same as cyclically ordering the set of children of
the root and totally ordering the set of children of any other vertex.
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Example 1.51. Two different embeddings of the same abstract rooted tree in the real plane are
shown in Figure 1.9.

R R

Figure 1.9: Two different embeddings of the same abstract rooted tree.

Definition 1.52. [AF08, page 410] Let T1 and T2 be two different embeddings of the same tree
in a real oriented plane P. We say that the two embeddings are equivalent if there exists an
orientation preserving homeomorphism φ from P to P such that φ(T1) = T2 and the image of
the root of T1 is the root of T2.

Definition 1.53. [Gos09, page 670] A binary tree is a rooted tree in which every vertex has
at most two children.

The following definition is inspired from [Sta12, page 24], [Sta10, page 7].

Definition 1.54. A plane binary tree is called complete if the root and the internal vertices
have each exactly two children.

Example 1.55. In Figure 1.10 we present a plane binary tree which is not complete, while in
Figure 1.11 a complete binary tree is shown.

R

Figure 1.10: A plane binary tree which is not complete.
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R

Figure 1.11: A plane complete binary tree.

Remark 1.56. We provide below a recursive definition of the set of complete plane binary trees
(inspired from [Knu05, page 308]). We need two steps in order to define it. The first step is the
basic one: we specify an initial collection of elements of the set. The second step is the recursive
one: we give a rule to form new elements from those already known to be in the set.

The advantage of using the recursion for this definition lies in the fact that we shall need a
structural induction (see [Sha]) for the proof of Proposition 1.141. The set of complete plane
binary trees is defined recursively as follows:

(a) the tree consisting of a single vertex is a complete plane binary tree whose root is itself.

(b) if T1 and T2 are disjoint complete plane binary trees whose roots areR1 andR2 respectively,
let us denote by T the tree consisting of a root R with edges connecting R to the roots
R1 and R2 such that T1 is the left subtree and T2 is the right subtree. Then T is also a
complete plane binary tree.

Example 1.57. In Figure 1.12, one can observe the recursive step in the construction of a
complete plane binary tree: the new root is in red and it has as children the two given trees, in
green and in blue.

Figure 1.12: The recursive construction of a complete plane binary tree.
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The following terminology of end-rooted tree is inspired from [GBGPPP18, Definition 3.6].

Definition 1.58. An end-rooted rooted tree is a rooted tree whose root has exactly one
neighbour.

Example 1.59. In Figure 1.13, let us observe the root (R), the internal vertices (IV ), the leaves
(L), vertices that are parents (P ), left children (LC), right children (RC) and in red a subtree
of the initial tree.

R

IV , P

L, LC IV , P , RC

IV , P , LC

L, LC L, RC

L, RC

Figure 1.13: Vocabulary for the elements of an end-rooted complete plane binary tree.

Remark 1.60. The terminology of left child, respectively right child is motivated by our con-
vention of drawing the root on the top of the tree.

1.5 Snake-trees

Definitions 1.61 and 1.63 are inspired from Stanley’s survey [Sta10, page 7].

Definition 1.61. A rooted plane tree with m vertices is called a decreasing tree (respectively
an increasing tree) if each vertex is decorated by a different number of {1, 2, . . . ,m}, such that
any sequence of numbers formed by any geodesic starting from the root is a strictly decreasing
sequence (respectively a strictly increasing sequence).

Example 1.62. A decreasing tree is shown in Figure 1.14 below.
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x

y

1

5

2

4

3

R∞

Figure 1.14: A decreasing tree.

In the sequel, we show that to any (n − 1)-snake σ we can associate a complete binary
decreasing tree, denoted by T (σ), using an idea from [Sta10].

Definition 1.63. Let us consider an (n− 1)-snake

σ =

(
1 2 . . . n− 1

σ(1) σ(2) . . . σ(n− 1)

)
such that σ(n− 2) > σ(n− 1).

We call snake-tree associated to σ and we denote by T (σ), the end-rooted complete plane
binary decreasing tree constructed recursively as follows:

(a) if σ is empty (i.e. n ≤ 1) then set T (σ) = ∅ and the algorithm stops;

(b) find the position j such that max{σ(i) | i = 1, . . . , n− 1} = σ(j);

(c) create a vertex decorated with σj and having the coordinates (j, σ(j)); add an edge from
it to the previous vertex added (if any);

(d) the alternating sequence associated to the given snake σ can now be uniquely decomposed
in the form

σ =

(
1 2 . . . j − 1 j j + 1 . . . n− 1

σ(1) σ(2) . . . σ(j − 1) σ(j) σ(j + 1) . . . σ(n− 1)

)
,

where we denote by α the alternating sequence situated to the left of the j-th position:

α :=

(
1 2 . . . j − 1

σ(1) σ(2) . . . σ(j − 1)

)
and by β the alternating sequence situated to the right of the j-th position:

β :=

(
j + 1 j + 2 . . . n− 1

σ(j + 1) σ(j + 2) . . . σ(n− 1)

)
Apply recursively the above construction for the alternating sequences α and β.

In the end, fix a root denoted R∞ and having the coordinates (j, n); note that when we
draw the tree, we shall draw the root at the top.
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This algorithm yields an inductive definition of the snake-tree. In the case of odd degree polyno-
mials, at some point the left sequence is empty; by convention, the vertex added to T (ρ) will be
decorated with −∞ and the coordinates of this vertex will be (0, 0); in addition, the edge which
connects the −∞ vertex to the rest of the tree is symbolized by an arrow.

Example 1.64. For the snake

ρ :=

(
1 2 3 4 5
1 5 2 4 3

)
,

we find the biggest entry 5, and obtain the left sequence (1) and the right sequence (2, 4, 3). By
following the algorithm from Definition 1.63 and adding the nodes in the snake-tree T (ρ), we
obtain:

x

y

1

5

2

4

3

R∞

O

1

2

3

4

5

1 2 3 4 5

Figure 1.15: The snake-tree of a snake with odd number of entries.

Example 1.65. For the snake σ := (6, 1, 4, 2, 5, 3), we find the biggest entry 6, and obtain the
empty left sequence ∅ and the right sequence (1, 4, 2, 5, 3). By following the algorithm from
Definition 1.63 and adding the vertices in the snake-tree T (σ), we obtain:
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x

y

−∞

6

1

4

2

5

3

R∞

O
1

2

3

4

5

6

1 2 3 4 5 6

Figure 1.16: The snake-tree of a snake with even number of entries.

Remark 1.66. The above mentioned construction gives us a tree with the following properties:

(a) it is rooted: the root is always connected by an edge to the highest vertex; by convention,
we fix the y-coordinate of the root to be a real number bigger than n;

(b) it is binary: each time we separate in left and right, thus each vertex has at most two
children;

(c) it is complete: by convention, if needed we add the vertex −∞, such that each vertex has
exactly two children;

(d) it is plane: as we prove in Lemma 1.67 below.

Lemma 1.67. The snake-tree is embedded in the real plane.

Proof. All the vertices of the snake-tree are distinct, since the snake is a permutation. By
recursion, at each step of the construction (see Definition 1.63) we create a subtree to the left
and a subtree to the right, each with descending edges, thus the open edges do not intersect.

Remark 1.68. The algorithm used in Definition 1.63 to construct the snake-tree is similar to
the one described by Stanley in [Sta10, Section 3.1, page 7] and [Sta12, page 23].

Proposition 1.69. There is a bijection between the set of snakes and the set of snake-trees.

Proof. Let us show that the algorithm given in Definition 1.63 provided us a bijection T .
• Let us first prove that T is injective. Consider two different n-snakes σ and τ . Therefore

there exists i ∈ 1, . . . , n such that σ(i) 6= τ(i). Let us construct using the algorithm in Definition
1.63 the trees T (σ) and T (τ). By construction, there exists a vertex (i, σ(i)) in T (σ) which is
different than the vertex (i, τ(i)) in T (τ), thus T (σ) 6= T (τ).

• Let us prove the surjectivity. Let T be an end-rooted complete plane binary decreasing tree
with n vertices (see Definition 1.61). Namely, each vertex v is labelled with a different number
of {1, . . . , n}, denoted by p(v) such that any sequence of numbers read along a geodesic starting
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from the root is a strictly decreasing sequence. We shall give a second label to each vertex, using
the following depth-first inspired algorithm (see Figure 1.17).

BEGIN
-Let N := 0.
-Start visiting the vertices of the tree, from the root.
-If the vertex v visited is a leaf, then put N := N + 1 and q(v) := N, then go one step up

and visit its parent.
-If the vertex v visited is an internal vertex, then
(a) if you have not labelled its left subtree, go visit its left child. Repeat the step until you

find a leaf.
(b) if you have already labelled its left subtree, then put N := N + 1 and q(v) := N,then go

visit its right child.
END
Therefore each vertex v of T has two labels, namely p(v) and q(v). Construct the snake as

follows. For each vertex v, put σ(q(v)) := p(v). Thus for each end-rooted complete plane binary
decreasing tree T , there exists a snake σ such that T is the snake-tree of σ. Thus the function
T is surjective.

In conclusion, T is a bijection.

x

y

p = 1, q = 1

p = 5, q = 2

p = 2, q = 3

p = 4, q = 4

p = 3, q = 5

R∞

O

1

2

3

4

5

1 2 3 4 5

Figure 1.17: The second label q(v) to each vertex v, following a depth-first type algorithm.

1.6 The Poincaré-Reeb tree of a one variable polynomial

Remark 1.70. In the sequel we define the Poincaré-Reeb tree for one variable polynomials. In
this chapter we will call it shortly the Poincaré-Reeb tree. However, in the next chapter we
will introduce the Poincaré-Reeb tree for polynomials in two variables. We will call those also
Poincaré-Reeb trees, if there is no confusion in the context.
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Definition 1.71. [AB06, page 8] Let P : R → R be a one variable polynomial function. The
epigraph of P is the following unbounded semialgebraic subset of R2, situated above or on the
graph of P :

epiP :=

{
(x, y) ∈ R2 | y ≥ P (x)

}
⊂ R2.

Let y : R2 → R be the second projection.

Definition 1.72. We say that two points in the real plane, say (x, y) and (x′, y′) are equivalent,
denoted by (x, y) ∼ (x′, y′) if and only if they belong to the same connected component of a fibre
of the restriction of y to epiP .

Denote by [(x, y)] the equivalence class of the point (x, y) ∈ R2.

We take the quotient space R2/∼ given by ∼, with the natural quotient topology. Denote
by q : R2 → R2/∼ the quotient map. The function y being constant on equivalence classes, it
descends to the quotient, and this is what we call ỹ. By [Wil70, Theorem 9.4], the function
ỹ : R2/∼ → R makes the diagram from Figure 1.18 commute and it is continuous.

Figure 1.18: The quotient space R2/∼

Definition 1.73. The image of the epigraph of P (x), by the quotient map q, namely

R := q(epiP )

is called the Poincaré-Reeb tree of a one variable polynomial P (see Figure 1.19).
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x

y

graph y = P (x)

epiP

O

R∞

R(P )

Figure 1.19: The epigraph and the Poincaré-Reeb tree R(P ) of an n-Morse polynomial P when
the degree n is even.

The Poincaré-Reeb tree is a tree embedded in the real plane. The vertices of this tree
correspond to the critical points of the polynomial. We shall prove this in more detail and in a
more general setting in Chapter 2 (see Subsection 2.4.1).

Proposition 1.74. The Poincaré-Reeb tree of P , is a rooted plane tree such that the function ỹ
is decreasing on each of the geodesics starting from the root.

Remark 1.75. By convention, the root r is situated in the real plane, such that its y−coordinate
approaches infinity. We shall always draw the root in the real plane, by choosing its y−coordinate
bigger than all the critical values of P (x).

Remark 1.76. In the sequel, we shall only study the Poincaré-Reeb tree of P , where P is an
n-Morse polynomial (see Definition 1.14).

Remark 1.77. Both in the case of an odd degree polynomial P and in the case of an even degree
polynomial P , we add to its Poincaré-Reeb tree a supplementary vertex denoted by R∞ which
is marked by an arrow and is called the root; this symbolises the fact that the edge should be
infinite and corresponds to lim

y→+∞
π−1(y). In addition, since the Poincaré-Reeb tree of an odd

degree polynomial P verifies lim
x→−∞

P (x) = −∞ (because we only consider Morse polynomials

(see Definition 1.14), which are monic by definition), we add a supplementary vertex to R(P ),
namely the vertex corresponding to lim

y→−∞
π−1(y); we mark it by an arrow to symbolise that the

edge should be infinite (see Figure 1.20). In this way, the Poincaré-Reeb tree R is an end-rooted
complete plane binary tree.
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x

y

graph y = P (x)

epiP

O

R∞

R(P )

Figure 1.20: The epigraph and the Poincaré-Reeb tree R(P ) of an n-Morse polynomial P when
the degree n is odd.

Let us present a more complicated example in Figure 1.21 below.

x

y

graph y = P (x)

epiP

O

R∞

R(P )

Figure 1.21: The epigraph and the Poincaré-Reeb tree R(P ) of a 6-Morse polynomial.

Lemma 1.78. The Poincaré-Reeb tree of an n-Morse polynomial is a tree whose vertices are in
a total order relation given by the induced application ỹ := y (see Definition 1.73), such that this
total order is strictly decreasing on any geodesic going from the root to the leaves.

Proof. Recall from Definition 1.73 that ỹ denotes the quotient of y, defined on the plane in which
lives the Poincaré-Reeb tree. Restrict it to this tree.

The order between the vertices is given by the values of ỹ on the vertices. Since the polynomial
is n-Morse (see Definition 1.14), it has pairwise distinct critical values, thus it is a total order
relation.

Corollary 1.79. The Poincaré-Reeb tree R(P ) is a decreasing tree.

Proposition 1.80. Let us consider an n-Morse polynomial P : R → R. If σ(P ) is the snake
associated to P , T (σ(P )) is its snake-tree and R(P ) is the Poincaré-Reeb tree of P , then the
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snake-tree T (σ(P )) is isomorphic to the Poincaré-Reeb tree R(P ):

T (σ(P )) ' R(P ).

Proof. By construction (see Definition 1.63) the snake tree is a decreasing tree. Similarly, by
Corollary 1.79, the Poincaré-Reeb tree is a decreasing tree. In addition, the vertical total order
between the vertices of the Poincaré-Reeb tree is the same as the one between the vertices of the
snake-tree, since these orders are both given by the critical values of the n-Morse polynomial P .
Similarly, the horizontal total orders are the same in both trees.

In other words, we can identify (up to a tree isomorphism) the snake-tree of P and the
Poincaré-Reeb tree of the epigraph of P .

Corollary 1.81. There is a bijection between the set of snakes and the set of Poincaré-Reeb trees
of one variable Morse polynomials, up to isomorphism.

Proof. This follows from Proposition 1.80 and Proposition 1.69.

In Figure 1.22 below, we can see a Poincaré-Reeb tree in one variable and its unique corre-
sponding snake.

Figure 1.22: A Poincaré-Reeb tree in one variable and its corresponding snake.

1.7 The contact tree

Question 1.82. Given a snake σ, is it possible to construct a Morse polynomial Q : R → R
that realises σ?

While we know (see Theorem 1.25) that the existence of such a Morse polynomial is proven,
the goal of this chapter is to give a constructive answer, for a special class of snakes, i.e. in
the case of separable snakes. The contact tree, described in the next sections, plays a key role
in our construction.

1.7.1 Notations

In this subsection we will set up notations and terminology.
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Definition 1.83. Let P ∈ R[x] and Q ∈ R[x] be two polynomials. We say that the polynomial
P is smaller than the polynomial Q to the right, denoted by P ≺+ Q, if and only if one
has P (x) < Q(x) for any sufficiently small 0 < x � 1, that is to say there exists x0 > 0 such
that for any 0 < x < x0, one has P (x) < Q(x).

Let us consider the monic polynomial Px(y) ∈ R[x][y], such that

(1.5) Px(y) :=

m+1∏
i=1

(y − ai(x)) ∈ R[x][y],

where m ∈ N, the roots ai(x) ∈ R[x] for any i = 1, . . . ,m+ 1 and

(1.6) a1(x) ≺+ a2(x) ≺+ . . . ≺+ am+1(x),

as one can see in Figure 1.23 below.
In what follows we denote by

(1.7) A := {a1(x), . . . , am+1(x)}

the set of roots of Px(y).

x

y

δ1

δ2

δm

O

a1(x)

a2(x)

a3(x)

am+1(x)

Figure 1.23: The roots of Px(y), ordered.

The following definition is well-known:

Definition 1.84. Let a(x) = b0 + b1x + b2x
2 + . . . be a polynomial. The valuation of a at 0,

denoted by νx(a), is the smallest integer k ≥ 0 such that bk 6= 0. By convention, the valuation of
the zero polynomial is ∞.

In the sequel, we will consider only polynomials ai such that νx(ai) ≥ 1, i.e. ai(0) = 0, for
any i = 1, . . . ,m+ 1.
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Definition 1.85. For any i = 1, . . . ,m, the difference

δi(x) := ai+1(x)− ai(x)

is called the gap between ai+1(x) and ai(x).

Remark 1.86. Note that by the initial hypothesis (1.6), one has 0 ≺+ δi(x), for any i = 1, . . . ,m.

Definition 1.87. For any i = 1, . . . ,m, the number

Si(x) :=

∣∣∣∣∣
∫ ai+1(x)

ai(x)
Px(y)dy

∣∣∣∣∣
is called the i-th area.

This section is intended to construct a polynomial P that realises a given configuration of
areas Si. More precisely, we want the following equivalence to hold for any i 6= j :

δi ≺+ δj ⇔ Si ≺+ Sj ,

as in Figure 1.24 below.

δ1

δ2

δ3

δ4

a1(x)

a2(x)

a3(x)

a4(x)

a5(x)

S1

S2

S3

S4

y

Px(y)

Figure 1.24: A given configuration of areas Si.

Definition 1.88. Let us consider a sufficiently small 0 < x � 1. From now on, ei stands for
the valuation of each δi, namely

ei := νx(δi) ∈ N.

76



1.7. The contact tree

1.7.2 Construction of the contact tree

In order to study the type of contact between the polynomials ai(x) (the roots of the
polynomial Px(y)) for a sufficiently small x > 0, we shall now define a combinatorial object,
which takes the form of a tree with numerical information attached. In the sequel we give a
constructive definition of this object called the contact tree.

Remark 1.89. The notion of contact tree is inspired from the Eggers-Wall tree (see
[GBGPPP18, Section 4.3], [Wal04, page 75, Section 4.2]). Our definition of the contact
tree agrees with the one given by Ghys in [Ghy17, pages 27-28], [Ghy13] and with the one in
[Kap93, Section 3, Definition 3.5, pages 131-132], where Kapranov called it the Bruhat-Tits
tree.

Let us first start with some examples, making Definition 1.92 easier to understand.

Example 1.90. Let us consider Figure 1.25 and let us study the contact tree of the following
three polynomials in x:

a1(x) := x1 + x2 + x4 + x5 + 2x6 + . . .

a2(x) := x1 + x2 + 2x4 + x5 + x6 + . . .

a3(x) := x1 + x2 + x3 + 3x4 + x5 + . . . .

For sufficiently small x > 0, the three polynomials are ordered increasingly: a1(x) ≺+ a2(x) ≺+

a3(x). One obtains νx(a2(x)− a1(x)) = 4 and νx(a3(x)− a2(x)) = 3.

x0 x1 x2 x3 x4

0 1 1 0 1

0 1 1 0 2

0 1 1 1 3

x

y

a1

a2

a3

O

x

y a3

a2

a1

43O

Figure 1.25: Example of the rooted, oriented, embedded contact tree of three polynomials in x:
a1(x), a2(x) and a3(x) given in Example 1.90.

Example 1.91. An example of the construction of the contact tree of two given polynomials

a1 := m0x
0 +m1x

1 + . . .+mkx
k + . . .
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and
a2 := n0x

0 + n1x
1 + . . .+ nkx

k + . . . ,

where mi = ni, for i = 1, . . . , k − 1 and mk < nk is shown in Figure 1.26 below. Let us observe
that the relation mk < nk gives the order of the two polynomials: a1 ≺+ a2.

The construction consists of identifying the points of the real plane up to the point where
the contact of the corresponding polynomials ends and the respective coefficients of the two
polynomials are starting to differ.

More precisely, if we consider the xOy coordinate system in the real plane, then let each
polynomial ai, i = 1, 2 be represented by the semi-straight line (y = i) ∩ (x > 0) in the first
quadrant R2

+. The line is called the ai-axis.
The point of coordinate (`, 0) on the Ox axis corresponds to the monomial x`. On each

ai-axis a point (`, i) is decorated with the coefficient corresponding to the monomial x`, as it
appears in the polynomials ai.

In this example, the valuation νx(a2(x) − a1(x)) = k. Let us now identify the points of
the first quandrant situated between a2(x) and a1(x), up to the point x = k, where the two
polynomials separate.

As one can see, the vertices of the tree are only the root, the bifurcation vertex and the two
leaves. By construction, the contact tree is rooted, embedded in the real plane.

x0 x1 xk−1 xk

m0

m1 mk−1 mk

n0

n1 nk−1 nk

x

y

a1

a2

O

x

y

a2

a1

k

O

Figure 1.26: Construction of the contact tree of two polynomials.

Definition 1.92. Given the polynomials ai(x) ∈ A (see notation 1.7) such that ai(0) = 0, for
any i = 1, . . . ,m+ 1, we construct the contact tree associated to all the polynomials in A as
follows.

Let us consider the xOy coordinate system in the real plane. In the first quadrant R2
+, let each

polynomial ai be represented by the semi-straight line (y = i) ∩ (x > 0). We call it the ai-axis.
Recall that, by hypothesis, the polynomials are ordered: a1(x) ≺+ a2(x) ≺+ . . . ≺+ am+1(x).

The point of coordinate (k, 0) on the Ox axis corresponds to the monomial xk. On each
ai-axis a point (k, i) is decorated with the coefficient corresponding to the monomial xk, as it
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appears in the polynomial ai.
Note that for each i = 1, . . . ,m, the valuation νx(ai+1(x) − ai(x)) measures the contact

between the polynomials ai+1(x) and ai(x). In particular, it is the exponent of maximal contact
between ai+1(x) and ai(x).

For each i let us identify the points of the first quadrant situated between ai+1(x) and ai(x),
up to the point where the two polynomials separate. Formally, for each i = 1, . . . ,m let us
consider the equivalence relation: (x1, y1) ∼ (x2, y2)⇔ x1 = x2 and x1, x2 ≤ νx(ai+1(x)−ai(x)),
for any two points (x1, y1) and (x2, y2) with i ≤ y1, y2 ≤ i+ 1.

Now we are able to construct inductively the contact tree, by applying the equivalence relation
described above, for all i = 1, . . . ,m. We denote by CT (A) the quotient given by this equivalence
relation and let us call Λ : R2

+ → CT (A) the quotient map. By construction, the quotient CT (A)
is embedded in the real plane, since the orientation of the contact tree, both horizontally and
vertically, is induced by the orientation of the real line R, since the polynomials ai(x) are ordered
increasingly as horizontal semi-straight lines with their ends on the Oy-axis, and the valuations
of their corresponding monomials increase along the Ox-axis.

In addition, one has Λ(0, 0) ≡ Λ(0, i), for any i. Therefore CT (A) is a tree, whose root is
Λ(0, 0).

We call bifurcation vertices of the contact tree, the vertices whose valency is greater or
equal to 3. We preserve as numerical decoration only the values of the valuation function in its
bifurcation vertices νx(ai+1(x)− ai(x)), for any i = 1, . . . ,m. Namely, each bifurcation vertex of
the contact tree is the point where the contact of the corresponding polynomials ai and ai+1 ends
and the respective coefficients of the two polynomials are starting to differ. For a bifurcation
vertex v, we shall denote this by νx(v) := νx(ai+1(x)− ai(x)).

The vertices of the contact tree are: the bifurcation vertices, the leaves and the root.
The leaves, i.e. the extremities of the maximal geodesics going from the root, are decorated

with arrows and are in a bijective correspondence with the polynomials ai ∈ A of the given poly-
nomial. In other words, each leaf of the tree is decorated with and denoted by its corresponding
polynomial ai. Let us denote the geodesic from the root to ai by Gi, for all i.

The decorating valuations associated to the bifurcation vertices are, by construction, increas-
ing along any geodesic which starts from the root towards the leaves.

By construction, the contact tree is rooted, embedded in the real plane, which induces an
orientation on its leaves: its leaves are totally ordered, and the order is given by the vertical
order on the Oy-axis.

Some examples of contact trees can be seen in Figure 1.25, Figure 1.26 and Figure 1.28.

1.7.3 Properties of the contact tree

By construction, we saw that the contact tree is a rooted tree, embedded in the real plane,
whose leaves are labelled by the polynomials ai, for i = 1, . . . ,m+ 1.

The property of being a tree gives the contact tree also the structure of a lower semi-lattice.
Furthermore we want to consider only the complete binary contact trees, in order to have

a bijection between the bifurcation vertices of the complete binary contact tree and the pairs
(ai+1, ai) for i = 1, . . . ,m.

Definition 1.93. [Vic89, page 13] A partially ordered set (called also poset) is a set endowed
with a binary relation that is reflexive, transitive and antisymmetric.

Definition 1.94. [Vic89, page 14] Let us consider a partially ordered set S and a subset A ⊆ S.
Take b ∈ S. We say that b is a greatest lower bound for the subset A, if the following
conditions hold:

-the element b is a lower bound for A;
-any other lower bound c for A has the property: c ≤ b.
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Definition 1.95. [Vic89, page 38] A lower semi-lattice is a partially ordered set whose every
finite subset has a greatest lower bound.

Definition 1.96. Let us consider two vertices V1 and V2 of a rooted tree T . We denote by G1

the geodesic from the root of T to V1 and by G2 the geodesic from the root of T to V2. If G1 ⊆ G2,
then we say that V1 ≤T V2. In other words, the smallest vertex is the one closer to the root on
the geodesic G2.

If V1 ≤T V2 or V2 ≤T V1, then we say that V1 and V2 are comparable vertices of the tree
T . If neither of the two cases mentioned above is true, then one says that V1 and V2 are not
comparable.

Proposition 1.97. The contact tree is a lower semi-lattice.

Proof. This follows directly from the fact that any rooted tree is a lower semi-lattice (see [Vic89;
LG95] for more details).

We are thus allowed to introduce the following definition:

Definition 1.98. We call the meet (or greatest lower bound) of any two distinct vertices vi
and vj ∈ R[x], with i 6= j, denoted by vi ∧ vj the vertex where the geodesic from the root to vi
and the geodesic from the root to vj separate in the contact tree. Namely, vi ∧ vj is the furthest
vertex from the root and it is the most recent common ancestor of vi and vj . See Figure 1.27.

R

vi ∧ vj
vj

vi

Figure 1.27: The vertex vi ∧ vj where the geodesics of vi and vj separate.

Since the meet in any semilattice is associative as a binary operation (see [SS15, page 199]),
one has (ai ∧ aj) ∧ ak = ai ∧ (aj ∧ ak) and we usually skip the parentheses and use the simple
notation ai ∧ aj ∧ ak.
Remark 1.99. The important thing to note here is the fact that by Definition 1.98 and the
notations introduced before, the meet of two consecutive polynomials ai+1(x) and ai(x) ∈ A has
the property

νx(ai ∧ ai+1) = νx(ai+1(x)− ai(x)) = νx(δi) = ei.

Proposition 1.100. The map (ai, ai+1) 7→ ai ∧ ai+1 is a surjection from the set of pairs of
consecutive leaves to the set of internal vertices of the contact tree.

Proof. By construction of the contact tree, for each internal vertex v, called also bifurcation
vertex, there is at least a pair of consecutive polynomials (ai, ai+1), such that the meet of ai and
ai+1 is v, where i ∈ {1, . . . ,m}.

Corollary 1.101. If the contact tree is an end-rooted complete binary plane tree then there is a
bijection between the set of internal vertices of the contact tree and the set of the vertices ai∧ai+1,
for i = 1, . . . ,m.
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Remark 1.102. To be more precise, if the contact tree is complete binary, then there is a bijection
between the set {ai ∧ ai+1 | i = 1, . . . ,m} and the set of pairs {(ai, ai+1) | i = 1, . . . ,m− 1}: to
each pair of consecutive polynomials it corresponds the unique vertex ai ∧ ai+1 and vice-versa.
In this case, the contact tree is necessarily an end-rooted complete plane binary tree.

Example 1.103. Let us give an example of a non binary contact tree:

CT (0, x1, x1 + x2,
3

2
x1 + x2,

3

2
x1 + x2 + x3),

presented in Figure 1.28 below. Namely, given

a1(x) = 0,

a2(x) = x1,

a3(x) = x1 + x2,

a4(x) =
3

2
x1 + x2,

a5(x) =
3

2
x1 + x2 + x3,

there exist two gaps δ1 and δ3, such that e1 = e3 = 1. In this situation the vertex a1∧a2 coincides
with the vertex a3 ∧ a4 and has valency 4.
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x0 x1 x2 x3 x4

0 0 0 0 0

0 1 0 0 0

0 1 1 0 0

0 1.5 1 0 0

0 1.5 1 1 0

x

y

a1

a2

a3

a4

a5

O

x

y

O 1

a12

a2

a3

3

a4

a5

Figure 1.28: Example of a non binary contact tree, where the vertex a1 ∧ a2 is the same as the
vertex a3 ∧ a4.

Lemma 1.104. If three polynomials ai, ai+1 and ai+2 ∈ A (see Subsection 1.7.1, notation 1.7),
such that ai ≺+ ai+1 ≺+ ai+2 are consecutive roots of the polynomial P ∈ R[x][y], i.e. three
consecutive leaves in the contact tree CT (A), then ai∧ai+1∧ai+2 is either ai∧ai+1 or ai+1∧ai+2.
In particular, one has:

νx(ai ∧ ai+1 ∧ ai+2) = min (νx(ai ∧ ai+1), νx(ai+1 ∧ ai+2)).

Example 1.105. An example where ai ∧ ai+1 ∧ ai+2 ≡ ai+1 ∧ ai+2 is presented in Figure 1.29.

ai ∧ ai+1 ∧ ai+2= ai ∧ ai+1

ai+1 ∧ ai+2

ai+2

ai+1

ai

Figure 1.29: Example of ai ∧ ai+1 ∧ ai+2 ≡ ai+1 ∧ ai+2.
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Proof. Recall that the meet in any semilattice is associative (see [SS15, page 199]) as a binary
operation, that is to say (ai ∧ ai+1) ∧ ai+2 = ai ∧ (ai+1 ∧ ai+2) = ai ∧ ai+1 ∧ ai+2. In addition,
by definition of the meet ∧, one has both

(1.8) νx(ai ∧ ai+1 ∧ ai+2) = νx((ai ∧ ai+1) ∧ ai+2) ≤ νx(ai ∧ ai+1)

and

(1.9) νx(ai ∧ ai+1 ∧ ai+2) = νx(ai ∧ (ai+1 ∧ ai+2)) ≤ νx(ai+1 ∧ ai+2).

However, there are only the following three possibilities as one can see in Figure 1.30 below.

ai ∧ ai+1 ∧ ai+2

ai+2

ai+1

ai
ai ∧ ai+1 ∧ ai+2= ai ∧ ai+1

ai+1 ∧ ai+2

ai+2

ai+1

ai

ai ∧ ai+1 ∧ ai+2 = ai+1 ∧ ai+2

ai+2

ai+1 ∧ ai

ai+1

ai

Figure 1.30: The only three possible configurations of ai ∧ ai+1 ∧ ai+2.

The conclusion is true for all the three situations above, except for the one presented in Figure
1.31 below. The case in Figure 1.31 could be considered in terms of graphs, but it is impossible
in terms of trees, because it creates a cycle inside the contact tree, which is not permitted by
definition (see Definition 1.40). This concludes the proof.

ai ∧ ai+1 ∧ ai+2

ai+1 ∧ ai+2

ai ∧ ai+1

ai+2

ai+1

ai

Figure 1.31: Impossible configuration for ai ∧ ai+1 ∧ ai+2.

Corollary 1.106. If the polynomials ai, ai+1 and ai+2 ∈ A, ai ≺+ ai+1 ≺+ ai+2 are consecutive
roots of the polynomial Px(y) ∈ R[x][y], i.e. three consecutive leaves in the contact tree CT (A),
then one has the following equality: ai ∧ ai+1 ∧ ai+2 = ai ∧ ai+2.
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Corollary 1.107. Let us consider an arbitrary number of consecutive roots of the polynomial
P ∈ R[x][y], denoted by ai, ai+1, . . . , aj, j > i,. Therefore, ai, ai+1, . . . , aj are consecutive leaves
of the contact tree CT ({a1, a2, . . . , am+1}). Then one has the following equality:

νx(ai ∧ ai+1 ∧ . . . ∧ aj) = min (νx(ai ∧ ai+1), νx(ai+1 ∧ ai+2), . . . , νx(aj−1 ∧ aj)).

Moreover, one also has the following equality:

ai ∧ ai+1 ∧ . . . ∧ aj = ai ∧ aj .

Example 1.108. An example of the conclusions presented in Corollary 1.107 can be seen in
Figure 1.32.

R

ai ∧ aj
ai

ai+1

ai+2

aj ≡ ai+3

Figure 1.32: The maximal contact between several consecutive roots.

Proof. For the proof of Corollary 1.107, let us proceed by induction on the number, say n − 1,
of the leaves ai, ai+1, . . . , aj . Denote by P(k) the proposition “if ai, ai+1, . . . , aj are k consecutive
leaves in the contact tree CT (A), then νx(ai ∧ ai+1 ∧ . . . ∧ aj) = min (νx(ai ∧ ai+1), νx(ai+1 ∧
ai+2), . . . , νx(aj−1 ∧ aj)).”

By Corollary 1.106, the proposition P(3) is true.

Let us prove that if P(n− 1) is true then P(n) is also true. There are two situations, as the
reader can observe in Figure 1.33 and Figure 1.34 below:

(a) either ai∧ . . .∧aj ≤CT aj ∧aj+1 and then by the hypothesis P(n− 1) we have P(n) is also
true;
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Figure 1.33: Recursive step case (a).

(b) or ai ∧ . . . ∧ aj >CT aj ∧ aj+1; in this case, νx(ai ∧ ai+1 ∧ . . . ∧ aj ∧ aj+1) = νx(aj ∧ aj+1).
Since ai ∧ . . . ∧ aj >CT aj ∧ aj+1, we have νx(aj ∧ aj+1) = min (νx(ai ∧ ai+1), νx(ai+1 ∧
ai+2), . . . , νx(aj−1 ∧ aj)) and the induction step is finished.

Figure 1.34: Recursive step case (b).
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1.7.4 Computing the valuations of the areas Si

In the sequel, we fix i and we compute νx(Si(x)), in terms of the contact tree and of the
valuations ej := νx(δj(x)), for j = 1, . . . ,m.

The reader should remember the notations we introduced in Section 1.7. The roots of the
polynomial

Px(y) :=

m+1∏
i=1

(y − ai(x)) ∈ R[x][y]

(see equation 1.5), namely ai(x) ∈ A verify equation 1.6:

a1(x) ≺+ a2(x) ≺+ . . . ≺+ am+1(x).

For any i = 1, . . . ,m+ 1, one has

δi(x) := ai+1(x)− ai(x),

νx(δi(x)) := ei

and the area

Si(x) :=

∣∣∣∣∣
∫ ai+1(x)

ai(x)
Px(y)dy

∣∣∣∣∣ .

ai(x) ai+1(x)Si(x)

δi(x)
y

Px(y)

Figure 1.35: Area Si, corresponding to δi = ai+1 − ai.

Proposition 1.109. Let us consider the geodesic Gi, from the root to ai. One has the formula:

(1.10) νx(Si) = ei +
∑

{G∈Gi|G≤CT ai∧ai+1}

cG(i)νx(G),

where the coefficient cG(i) ∈ N represents the number of leaves of the contact tree CT (A), whose
most recent ancestor belonging to Gi is G. We shall further write cG(i) := cG if i is clear from
the context.
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Before proceeding to the proof of Proposition 1.109, we strongly recommend the lecture of
Example 1.110 below.

Example 1.110. Let us consider the following given roots of the polynomial Px(y) :

a1(x) = 0,

a2(x) = x4,
a3(x) = x3 + x4,
a4(x) = x2 + x3 + x4,
a5(x) = x1 + x2 + x3 + x4.

Therefore, we obtain:
δ1 := a2(x)− a1(x) = x4, e1 := νx(δ1) = 4,
δ2 := a3(x)− a2(x) = x3, e2 := νx(δ2) = 3,
δ3 := a4(x)− a3(x) = x2, e3 := νx(δ3) = 2,
δ4 := a5(x)− a4(x) = x1, e4 := νx(δ4) = 1.

We want to compute the valuation of the following area S3(x) :=
∣∣∣∫ a4(x)
a3(x) Px(y)dy

∣∣∣ .
We may write S3(x) =

∫ a4(x)
a3(x) (y − a1(x))(y − a2(x))(y − a3(x))(a4(x)− y)(a5(x)− y)dy.

Let us now make the following change of variable: y := a3(x) + sδ3(x), where s ∈ [0, 1]. We
obtain :

S3(x) =
∫ 1

0 (δ1(x)+δ2(x)+sδ3(x))(δ2(x)+sδ3(x))sδ3(x)(1−s)δ3(x)(δ4(x)+(1−s)δ3(x))δ3(x)ds =

= δ1(x)δ2(x)δ3(x)3δ4(x)
∫ 1

0 s(1− s)ds+
+δ1(x)δ2(x)δ3(x)4

∫ 1
0 s(1− s)2ds+

+δ1(x)δ3(x)4δ4(x)
∫ 1

0 s
2(1− s)ds+

+δ1(x)δ3(x)5
∫ 1

0 s
2(1− s)2ds+

+δ2(x)2δ3(x)3δ4(x)
∫ 1

0 s(1− s)ds+
+δ2(x)2δ3(x)4

∫ 1
0 s(1− s)2ds+

+δ2(x)δ3(x)4δ4(x)
∫ 1

0 2s2(1− s)ds+
+δ2(x)δ3(x)5

∫ 1
0 2s2(1− s)ds+

+δ3(x)5δ4(x)
∫ 1

0 s
3(1− s)ds+

+δ3(x)6
∫ 1

0 s
3(1− s)ds.

Now, νx(S3(x)) = min{νx(δ1(x)δ2(x)δ3(x)3δ4(x)), νx(δ1(x)δ2(x)δ3(x)4), νx(δ1(x)δ3(x)4δ4(x)),

νx(δ1(x)δ3(x)5), νx(δ2(x)2δ3(x)3δ4(x)), νx(δ2(x)2δ3(x)4),

νx(δ2(x)δ3(x)4δ4(x)), νx(δ2(x)δ3(x)5), νx(δ3(x)5δ4(x)), νx(δ3(x)6)} =

= νx(δ3(x)5δ4(x)) = 5e3 + e4 = 11.
Let us now interpret the result obtained above, this time with respect to the contact tree.

Denote by Gi, the geodesic from the root to ai. We shall prove that:
νx(S3) = e3 +

∑
{G∈G3|G≤CT a3∧a4} cG(3)νx(G),

where the coefficient cG(3) ∈ N represents the number of leaves of the contact tree CT (A), whose
most recent ancestor belonging to G3 is G.

In this example, a3 ∧ a4 ≡ G2 and we can check if the formula 1.10 gives us the same result,
namely νx(S3(x)) = 11: the vertices on the geodesic G3 which are ≤CT G2 are G1 and G2. We
have cG1(3) = 1 representing the number of leaves of the contact tree CT (A), whose most recent
ancestor belonging to G3 is G1. Also, cG2(3) = 4 representing the number of leaves of the contact
tree CT (A), whose most recent ancestor belonging to G3 is G2.

Thus νx(S3) = e3 + cG1(3)νx(G1) + cG2(3)νx(G2) = 2 + 1× 1 + 4× 2 = 11. The verification
is completed.
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x0 x1 x2 x3 x4

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

x

y

a1

a2

a3

a4

a5

O

x

y

O 1

G1

a1

a5

2

G2

a4

a3

3 4

a2

δ1

δ2

δ3

δ4

Figure 1.36: How to read the valuation of S3(x) on the contact tree of the roots ai(x) ∈ A.

Proof. Let us prove Proposition 1.109. We have (recall equation 1.5)

Si(x) :=

∣∣∣∣∣
∫ ai+1(x)

ai(x)
Px(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ ai+1(x)

ai(x)
(y − a1(x))(y − a2(x)) · · · (y − am+1(x))dy

∣∣∣∣∣ .

Let us observe that y ≥ ak(x), for any k ≤ i and that y ≤ ak(x) for any k ≥ i + 1, thus by
taking the absolute value we have

Si(x) =

∫ ai+1(x)

ai(x)
(y−a1(x))(y−a2(x)) · · · (y−ai(x))(ai+1(x)−y)(ai+2(x)−y) · · · (am+1(x)−y)dy.

Now let us make the change of variables given by y = ai(x) + sδi(x), where s ∈ [0, 1], as in
Figure 1.37 below.
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a1(x)

δ1

a2(x)

δ2

a3(x) ai(x)· · · y ai+1 · · · am

δm

am+1

Figure 1.37: Change of variable y = ai(x) + sδi(x)

Thus we obtain

Si(x) =

∫ 1

0
(δ1(x) + δ2(x) + · · ·+ δi−1(x) + sδi(x))(δ2(x) + · · ·+ δi−1(x) + sδi(x)) · · ·

· · · (0+sδi(x))((1−s)δi(x))((1−s)δi(x)+δi+1(x)) · · · ((1−s)δi(x)+δi+1(x)+· · ·+δm(x))(δi(x)ds).

Let us study the valuation in x of one of the parenthesis, say ν := νx((1− s)δi(x) + δi+1(x) +
· · · + δj(x)). The other parenthesis can all be treated similarly. The key observation is the fact
that by integrating in s one does not change the valuation in x.

Since a1 ≺+ a2 ≺+ . . . ≺+ am+1, one has δi(x) > 0, for any 0 < x � 1 and for any
i = 1, . . . ,m. Thus we need to compute the valuation of a sum of positive terms. There-
fore the valuation will be equal to the minimum of the valuations of the terms in the cho-
sen parenthesis, namely: ν = min (νx(δi), νx(δi+1), . . . , νx(δj)). By Remark 1.99 we get ν =
min (νx(ai ∧ ai+1), νx(ai+1 ∧ ai+2), . . . , νx(aj ∧ aj+1)). Now we apply Corollary 1.107 and we
obtain ν = νx(ai ∧ ai+1 ∧ . . . ∧ aj+1). There are two consequences of this fact, as follows:

(a) ν ≤ νx(ai ∧ ai+1) = ei;

(b) by Corollary 1.107, ν = νx(ai ∧ aj+1), namely the valuation of the vertex G where the
geodesic of ai and the geodesic of aj+1 separate in the contact tree. Thus the vertex G is
on the geodesic Gi.

In conclusion, to each leaf aj , j = 1, . . . ,m+ 1, it corresponds a parenthesis in the expression
of Si as above. As we have just seen, the parenthesis corresponds to exactly one vertex G situated
on the geodesic Gi such that G ≤CT ai ∧ ai+1.

Let us count differently, namely for each vertex G laying on the geodesic Gi, with G ≤CT
ai ∧ ai+1, we count the number of leaves of CT whose most recent ancestor belonging to Gi is
G. Denote this number by cG. Note that we only consider the vertices G ≤CT ai ∧ ai+1 since
we proved above that for each parenthesis we have ν ≤ νx(ai ∧ ai+1) = ei. Let us observe that
when we make the change of variable, another factor δi appeared in the product. The valuation
ei = νx(δi) has to be taken into consideration when we sum all the terms. In conclusion,

νx(Si) = ei +
∑

{G∈Gi|G≤CT ai∧ai+1}

cGνx(G).

Below we give some more examples.

Example 1.111. Given the roots a1(x) = 0, a2(x) = x6, a3(x) = x + x6, a4(x) = x + x2 + x6,
a5(x) = x+ x2 + x3 + x6, a6(x) = x+ x2 + x3 + x4 + x6, a7(x) = x+ x2 + x3 + x4 + x5 + x6, let
us compute νx(Si(x)), for i = 4.

We have δ1 = x6, e1 = 6, δ2 = x, e2 = 1, δ3 = x2, e3 = 2, δ4 = x3, e4 = 3, δ5 = x4, e5 = 4,
δ6 = x5, e6 = 5.

Let us consider three steps: first we compute the valuation by integration; second we compute
the valuation by using formula 1.10; in the end, the third step is to check if the two results
coincide.
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• Step 1: integration
We have

S4(x) =

∫ 1

0
(δ1+δ2+δ3+sδ4)(δ2+δ3+sδ4)(δ3+sδ4)sδ4(1−s)δ4((1−s)δ4+δ5)((1−s)δ4+δ5+δ6)(δ4ds) =

=

∫ 1

0
(x6+x1+x2+sx3)(x1+x2+sx3)(x2+sx3)sx3(1−s)x3((1−s)x3+x4)((1−s)x3+x4+x5)(x3ds).

We obtain νx(S4(x)) = νx(
∫ 1

0 x
1x1x2sx3(1− s)x3(1− s)x3(1− s)x3(x3ds)), hence

νx(S4(x)) = 2νx(x1) + 1νx(x2) + 4νx(x3) + νx(x3) = 2e2 + 1e3 + 4e4 + e4 = 19.

• Step 2: formula and contact tree
Let us see this better in Figure 1.38, where we compute the coefficients ck in the formula for

the valuation of S4.

x0 x

x6

a1

a2

x2

a3

x3

a4

x4

a5

x5

a6

a7

δ1

δ2

δ3

δ4

δ5

δ6

Figure 1.38: How to compute the coefficients ck in the formula for the valuation of S4, by counting
the leaves whose most recent common ancestor is each of the vertices on the geodesic to a4 ∧ a5.

The vertex a4 ∧ a5 corresponds to δ4. Here a1 ∧ a2 6∈ G4, so e1 does not appear in the sum.
For each G on the geodesic G4 with G ≤CT a4 ∧ a5, we count the number of leaves of CT whose
most recent ancestor belonging to G4 is G. Thus ca2∧a3 = 2, ca3∧a4 = 1, ca4∧a5 = 4.

Thus νx(S4(x)) = 2× 1 + 1× 2 + 4× 3 + 3 = 19.

• Step 3: comparison of the two results
Both methods give the same result: νx(S4(x)) = 19.

Example 1.112. For the same roots as in Example 1.111, compute νx(Si(x)), for i = 3. From
the contact tree given in Figure 1.38, we have ca2∧a3 = 2, ca3∧a4 = 5, thus by the formula given
in Proposition 1.109. νx(S3(x)) = 2νx(x1) + 5νx(x2) + νx(x2) = 2e2 + 5e3 + e3 = 14.

Corollary 1.113. With the hypotheses and notations from Proposition 1.109, one can write

νx(Si) = ei +

i∑
j=1

qijej ,
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where qij ∈ N, qij =

{
cG(i), if G is comparable to ai ∧ ai+1 and G ∈ Gi, G ≤CT ai ∧ ai+1;

0 else.

The purpose of Corollary 1.113 is to be able to express νx(Si) in function of all the ej , for
j = 1, i, even if some of the ej will have zero coefficient.

Also under the hypotheses and notations from Proposition 1.109, we conclude this subsection
with a lemma and a corollary, which we will need later, in Subsection 1.8.2.

Lemma 1.114. If Px(y) is a monic polynomial such that all its roots ai ∈ A, i = 1, . . . ,m + 1

are distinct, then we have
∫ ai+1(x)
ai(x) Px(t)dt = (−1)m+1−i Si.

Proof. Since Px(y) is a monic polynomial, we know that limy→∞ Px(y) = ∞, thus the area∫ am+1(x)
am(x) Px(t)dt = −Sm (namely the corresponding area is always under the horizontal Oy-
axis). By hypothesis, all the roots of Px(y) are distinct, thus the areas are alternatively above
and under the Oy-axis drawn horizontally. One can conclude that a given area Si is above
Oy-axis if and only if m+ 1− i is even and we have

∫ ai+1(x)
ai(x) Px(t)dt = (−1)m+1−i Si.

Corollary 1.115. If Si :=
∫ ai+1(x)
ai(x) Px(t)dt, then Si is above Oy-axis if and only if m+ 1− i is

even.

1.7.5 The inequalities between areas Si, read on the contact tree

If one considers the contact tree CT and two comparable vertices vk and v`, then we
are interested if the order relation between the two vertices gives us an order between the
corresponding areas Sk and S`.

Proposition 1.116. Let vk := ak ∧ ak+1 and v` := a` ∧ a`+1 denote two comparable vertices of
the contact tree CT . If vk <CT v`, then we have the polynomial inequality Sk �+ S`.

Before reading the proof of Proposition 1.116, we suggest to look at the following example.

Example 1.117. For the contact tree in Figure 1.39, we want to compare the coefficients which
appear in the computation of νx(S3), i.e. cai∧ai+1(3) with the coefficients which appear in the
computation of νx(S7), i.e. cai∧ai+1(7). We have the inclusion of geodesics G3 ⊂ G7.

Let us count the number of leaves that exit each vertex, for both geodesics. We find equality
in the case of the common vertices:

ca1∧a2(3) = ca1∧a2(7) = 1,
ca2∧a3(3) = ca2∧a3(7) = 1.

Starting with the vertex a3∧a4, which is the end on the first geodesic G3, we obtain different
number of leaves which exit the two geodesics:

ca3∧a4(3) = 6 and ca3∧a4(7) = 1.

Moreover, since the vertices a4 ∧ a5, a5 ∧ a6, a6 ∧ a7 and a7 ∧ a8 are not on the geodesic G3,
it follows that:

ca4∧a5(3) = ca5∧a6(3) = ca6∧a7(3) = ca7∧a8(3) = 0.

However, on the rest of the geodesic G7, i.e. on G7 \ G3 we have:
ca4∧a5(7) = 1, ca5∧a6(7) = 1;

Since a6 ∧ a7 /∈ G7 we have ca6∧a7(7) = 0.
Finally, we have ca7∧a8 = 3, wince there are three leaves that exit G7 at the vertex a7 ∧ a8.
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R

a1 ∧ a2

a1

a2 ∧ a3
a2

a3 ∧ a4 a3

a4 ∧ a5 a4

a5 ∧ a6
a5

a7 ∧ a8

a6 ∧ a7

a6

a7

a8

Figure 1.39: Computing the valuation of S3 and of S7.

Proof. Let us prove Proposition 1.116. Since vk <CT v`, by Definition 1.96 we know that Gk ⊂ G`.
The main idea is to compare the number of leaves on each vertex of the geodesic to v`. Namely,
on the common geodesic Gk, the number of leaves that exit the geodesic at a vertex different
from vk is the same both in the computation of νx(Sk) and in the computation of νx(S`): for
{G ∈ G` | G <CT ak−1 ∧ ak} we have cG(k) = cG(`). Then, in the case of νx(Sk), the number of
leaves that exit the geodesic at vk (denoted by cak∧ak+1

(k)) is the sum of all the leaves that exit
the geodesic G` computed for νx(S`) i.e.

∑
{G∈G`|ak∧ak+1≤CT G≤CT a`∧a`+1} cG(`) = cak∧ak+1

(k).
By Proposition 1.109, if we denote by ek := νx(vk) we have

νx(Sk) = ek +
∑

{G∈Gk|G≤CT ak∧ak+1}

cG(k)νx(G),

where the coefficient cG(k) ∈ N represents the number of leaves of the contact tree CT (A), whose
most recent ancestor belonging to Gk is G.

Similarly, if we denote by e` := νx(v`) we have

νx(S`) = e` +
∑

{G∈G`|G≤CT a`∧a`+1}

cG(`)νx(G),

where the coefficient cG(`) ∈ N represents the number of leaves of the contact tree CT (A), whose
most recent ancestor belonging to G` is G.

By Definition 1.92, since on each geodesic the integers decorating the bifurcation vertices of
CT (A) form a strictly increasing subsequence, we obtain that ek < e`.

Thus
νx(S`) = e` +

∑
{G∈G`|G≤CT a`∧a`+1}

cG(`)νx(G) >

> ek +
∑

{G∈G`|G≤CT ak−1∧ak}

cG(`)νx(G) +
∑

{G∈G`|ak∧ak+1≤CT G≤CT a`∧a`+1}

cG(`)νx(G).

Since for {G ∈ G` | G <CT ak−1∧ak} we have cG(k) = cG(`) and for {G ∈ G` | ak ∧ak+1 ≤CT
G ≤CT a` ∧ a`+1}, we have νx(G) > ek, we obtain

νx(S`) > ek +
∑

{G∈G`|G<CT ak−1∧ak}

cG(k)νx(G) +
∑

{G∈G`|ak∧ak+1≤CT G≤CT a`∧a`+1}

cG(`)ek =
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= ek +
∑

{G∈G`|G<CT ak−1∧ak}

cG(k)νx(G) + ek
∑

{G∈G`|ak∧ak+1≤CT G≤CT a`∧a`+1}

cG(`).

Since
∑
{G∈G`|ak∧ak+1≤CT G≤CT a`∧a`+1} cG(`) = cak∧ak+1

(k), we have

νx(S`) > ek +
∑

{G∈G`|G<CT ak−1∧ak}

cG(k)νx(G) + ekcak∧ak+1
(k) =

= ek +
∑

{G∈Gk|G≤CT ak∧ak+1}

cG(k)νx(G) = νx(Sk).

Remark 1.118. By Definition 1.92 and by the initial hypothesis that a1 ≺+ a2 ≺+ . . . ≺+ am+1,
if Vk <CT V`, then one has ek < e`, which is equivalent to δk �+ δ`. By Proposition 1.116,
Sk �+ S`. However, if V` and Vk are not comparable, then it may happen that either Sk �+ S`,
or Sk ≺+ S`. See Example 1.119.

Example 1.119. Let us study the contact tree given in Figure 1.40 below and let us compute
the valuations of S7, S1 and S3 using Corollary 1.113. We get νx(S7) = 2 · 6 + 2 · 4 + 4 = 24,
νx(S1) = 2 ·8+1 ·6+3 ·3+2 ·2+8 = 43 and νx(S3) = 2 ·2+3 ·6+3 = 25. Here the vertices a7∧a8

and a3 ∧ a4 are not comparable. We cannot apply Proposition 1.116. We have e3 = 3 < e7 = 4
thus δ7 ≺+ δ3, i.e. S3 ≺+ S7. On the other hand, for other two non comparable vertices a7 ∧ a8

and a1∧a2 we have e7 = 4 < e1 = 8 thus δ1 ≺+ δ7 but we obtain the opposite inequality, namely
S1 ≺+ S7.

Figure 1.40: Illustration for Example 1.119.

Proposition 1.120. Let us consider the contact tree CT (A) of the roots ai(x) ∈ A, i =
1, . . . ,m+ 1 of the polynomial Px(y). Let us suppose that the contact tree is complete binary. If
i < j, then

νx (±Si ± Si+1 ± . . .± Sj−1) = νx(Sk) ,

where Sk denotes the unique area corresponding to the bifurcation vertex ai ∧ aj .
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Proof. Let us take ` ∈ {i, . . . , j − 1} such that ` 6= k. We have vk <CT v`. By Proposition 1.116,
we have νx(S`) > νx(Sk).

Now, since Sk has the minimal valuation in the sum ±Si ± Si+1 ± . . . ± Sj−1 and since the
contact tree is binary this valuation appears only once, we conclude that

νx (±Si ± Si+1 ± · · · ± Sj−1) = νx(Sk).

1.7.6 Doubly asymptotic inequalities

Question 1.121. How can we construct explicitly a polynomial such that for any i 6= j,

δi ≺+ δj ⇔ Si ≺+ Sj?

Answer: By choosing the special valuations

ei := pfi ,

with p sufficiently large and fi ∈ N.
It will be important in the sequel to keep in mind the following equivalences:

fk < f` ⇔ ek < e` ⇔ δk �+ δ`.

δk δ`

ak(x)

ak+1(x)

a`(x)

a`+1(x)
Sk

S`

y

Px(y)

Figure 1.41: For any k 6= l, δk �+ δ` implies Sk �+ S`.
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Example 1.122. We can consider for instance δi(x) := xp
fi and thus a1(x) = 0, a2(x) = δ1 =

xp
f1 , a3(x) = δ1 + δ2 = xp

f1 + xp
f2 etcetera, am+1(x) = δ1 + . . . + δm = xp

f1 + . . . + xp
fm .

In this case, we shall be able to compare the areas two by two as follows (see Theorem 1.125):
δk(x) > δ`(x)⇔ Sk(x) > S`(x),∀k 6= l.

Problem 1.123. One can obtain any total order relation between all the valuations ei, for
i = 1, . . . ,m which decorate the contact tree, by choosing the right family of polynomials which
realise the tree as described in Definition 1.92. The problem is that a total order relation is not
sufficient to determine the total order relation between the areas Si, for i = 1, . . . ,m, as one
saw in Example 1.119. This example provides a complete binary contact tree where there exist
e7 > e3 but νx(S7) < νx(S3), which is the opposite inequality compared to the one we want
to obtain. Therefore, imposing the conditions that the contact tree is an end-rooted complete
binary plane tree and that there is a total order relation between the vertices of the contact tree
is not sufficient for the answer to Question 1.121.
Idea 1.124. If we choose special valuations ei, i = 1, . . . ,m, which depend on a parameter
p � 1, p ∈ N, we obtain the total order relation between the areas. In other words, if besides
the total order relation of the valuations for a sufficiently small x > 0 we have ei ∈ Z[p], monic
polynomials with integer coefficients, deg(ei) := fi ≥ 1, such that fi 6= fj for any i 6= j, we shall
obtain the total order relation between the areas, as we prove in Theorem 1.125 below.

Theorem 1.125. Let us consider two vertices V` and Vk in a contact tree which is an end-rooted
complete binary plane tree. Recall that ei := νx(δi), for any i = 1, . . . ,m. Take p � 1, p ∈ N
large enough and the natural numbers fi ∈ N such that fi 6= fj for i 6= j. If we choose ei := pfi ,
then for any sufficiently small 0 < x� 1, the following equivalence holds:

δk(x) > δ`(x)⇔ Sk(x) > S`(x),∀k 6= l.

Proof. If V` and Vk are comparable, we are in the situation of Proposition 1.116.
Let us consider two vertices V` and Vk which are not comparable. By Corollary 1.113, one

has νx(Sk) =
∑k

j=1 qkjej + ek =
∑k

j=1 qkjp
fj + pfk = (qkk + 1)pfk + L.O.Tp→∞ and νx(S`) =∑l

j=1 q`jej + e` =
∑l

j=1 q`jp
fj + pf` = (q`` + 1)pf` + L.O.Tp→∞. By hypothesis, δk > δ`, namely

ek < e`, which is equivalent to pfk < pf` . Thus for a sufficiently large p → ∞, (qkk + 1)pfk <
(q`` + 1)pf` . In conclusion, νx(Sk) < νx(S`), hence Sk � S`.

1.8 A construction of all the separable Poincaré-Reeb trees in
one variable

The aim of this section is to associate to every separable snake σ : {1, 2, . . . ,m + 1} →
{1, 2, . . . ,m + 1} such that σ(m) > σ(m + 1), an explicit polynomial Qx(y) ∈ R[x][y] such
that for every sufficiently small x > 0, the univariate polynomial Qx(y) is (m+ 2)-Morse and
realises the given snake (see Theorem 1.149).

1.8.1 Separable permutations

In this section, we consider a special set of snakes (see Definition 1.6), i.e. the snakes that
are separable permutations.

Definition 1.126. [Kit11, page 57] Let π : {1, . . . ,m} → {1, . . . ,m} and σ : {1, . . . , n} →
{1, . . . , n} be two permutations. Then their direct sum π ⊕ σ and their skew sum π 	 σ are
defined as follows:

π ⊕ σ(i) :=

{
π(i), i = 1, . . . ,m;

σ(i−m) +m, i = m+ 1, . . . ,m+ n.
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π 	 σ(i) :=

{
π(i) + n, i = 1, . . . ,m;

σ(i−m), i = m+ 1, . . . ,m+ n.

Example 1.127. Let us consider the following two permutations: π :=

(
1 2 3 4 5 6
4 6 5 3 1 2

)
and

σ :=

(
1 2 3
1 3 2

)
. Thus by Definition 1.126, we obtain:

π ⊕ σ =

(
1 2 3 4 5 6 7 8 9
4 6 5 3 1 2 7 9 8

)
π 	 σ =

(
1 2 3 4 5 6 7 8 9
7 9 8 6 4 5 1 3 2

)
A very useful visual matrix representation of the direct sum (respectively of the skew sum)

of π and σ can be seen in Figure 1.42 (respectively in Figure 1.43) below (see [Kit11, page 4]).

1 2 3 4 5 6

1

2

3

4

5

6

⊕
1 2 3

1

2

3

=

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 1.42: The direct sum π ⊕ σ.

1 2 3 4 5 6

1

2

3

4

5

6

	
1 2 3

1

2

3

=

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 1.43: The skew sum π 	 σ.

The notion of separable permutation was introduced in [BBL98].
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Definition 1.128. [Kit11, page 57] A separable permutation is a permutation that is ob-
tained by applying several times the ⊕ and 	 operations to the identity permutation of a single

element, denoted by � :=

(
1
1

)
.

Definition 1.129. Given a separable permutation σ, a decomposition of σ consists of a

sequence of operations ⊕ and 	 applied to the identity permutation � :=

(
1
1

)
, such that the

result gives us σ.

Remark 1.130. The ⊕ operation is (individually) associative and the 	 operation is (individ-
ually) associative (see [AHP15, page 2]). Therefore, a separable permutation can have several
decompositions.

For a new characterisation of the set of separable permutations, the reader should refer to
Étienne Ghys’s recent book [Ghy17, page 27].

The following definition of a binary separating tree associated to a separable permutation
follows the one given in [BBL98, page 280].

The reader should remember Definition 1.58 of an end-rooted complete plane binary tree.

Definition 1.131. [Kit11, page 5] An interval is a non-empty sequence of contiguous integers.

Example 1.132. An example of interval is a permutation.

Definition 1.133. If σ is a separable permutation of {1, 2, . . . ,m + 1}, then a binary sepa-
rating tree associated to the separable permutation σ is a complete plane binary tree T
such that:

(a) its root is at the top;

(b) its leaves are decorated with σ(1), σ(2),. . . , σ(m+ 1) in this order from left to right;

(c) for every internal vertex v, the leaves (seen as a non-ordred set of numbers, for instance (2
3 1)) of the subtree of v form an interval, which we call the interval of the node v;

(d) let us denote by vleft and by vright the left child and the right child of the node v, respec-
tively; the internal vertices of T are decorated with ⊕ or 	 as follows:

-if all the numbers of the interval of vleft are smaller than all the numbers of the interval
of vright, then v is a positive vertex and is decorated with the ⊕ sign;

-if all the numbers of the interval of vleft are bigger than all the numbers of the interval of
vright, then v is a negative vertex and is decorated with the 	 sign.

To obtain the separating tree, one should follow step by step the decomposition in direct sums
and skew sums of a separable permutation.

Remark 1.134. To a separable permutation one may associate several binary separating trees,
as one could see for instance in Example 1.135. This is due to the associativity mentioned in
Remark 1.130.

Example 1.135. An example of a separable permutation is σ :=

(
1 2 3 4 5 6 7
6 7 4 5 1 3 2

)
. The

reader can observe in Figure 1.44 and in Figure 1.45 two possible ways in which σ can be
decomposed by repeatedly applying the ⊕ and 	 operations. The algorithm gives us two binary
separating trees of σ. The non-unicity of the decompositions of a separable permutation is due
to the associativity of the operation ⊕ and of the associativity of the operation 	.
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1 2 3 4 5

1
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4
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1 2

1

2

1

1

1

1

1 2 3

1

2

3

1

1

1 2

1

2

1

1

1

1

	

⊕ 	

⊕ ⊕

	

6 7

4 5
1

3 2
Figure 1.44: One possible decomposition: σ = (�⊕�)	 ((�⊕�)	 (�⊕ (�	�))).
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1 2 3 4 5 6 7
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1

2

1

1

1

1

1 2

1

2

1

1

1

1

1 2 3

1

2

3

1

1

1 2

1

2

1

1

1

1

	

	

⊕ ⊕

⊕

	

6 7 4 5

1

3 2
Figure 1.45: Another possible decomposition: σ = ((�⊕�)	 (�⊕�))	 (�⊕ (�	�)).

Remark 1.136. [BR06, page 3] If one also considers non-binary separating trees, then each
separable permutation possesses a unique tree, obtained from any of its binary separating trees
by contracting all edges between vertices decorated with the same sign (see Figure 1.46). This is
due to the associativity properties of ⊕, respectively 	, operations. We shall not go into further
details, since our interest are the binary trees associated to separable permutations. See [AHP15,
page 4].

Example 1.137. Let us consider the same separable permutation σ :=

(
1 2 3 4 5 6 7
6 7 4 5 1 3 2

)
from Example 1.135. Thanks to the associativity of the 	 operation, we can contract any of its
two binary separating trees (see Figure 1.44 and Figure 1.45) in a non-binary tree. This is due
to the fact that a parent node and its child have the same sign (here, 	). The contracted tree is
shown in Figure 1.46 below.
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⊕ ⊕ ⊕

	
6 7 4 5

1
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Figure 1.46: The associativity of 	 gives us the unique contracted tree associated to a separable
permutation from any of its binary separating trees: σ = (�⊕�)	 (�⊕�)	 (�⊕ (�	�)).

By Definition 1.128, the separable permutations have a recursive structure. We give now a
recursive definition (see Remark in 1.56) of these binary decompositions that are obtained by
applying several times the ⊕ and 	 operations.

Definition 1.138. The set of binary decompositions is defined recursively as follows:

(a) the trivial permutation � :=

(
1
1

)
is itself a binary decomposition;

(b) if d1 and d2 are two binary decompositions, then the direct sum d1⊕ d2 and the skew sum
d1 	 d2 are both binary decompositions.

The above recursive definition will play an important role in establishing a bijection between
the set of all the binary decompositions of a separable permutation σ and the set of all the binary
separating trees associated to σ (recall the recursive Definition 1.54 and Definition 1.133), as the
following Proposition 1.141 shows.
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Notation 1.139. If T1 and T2 are two complete binary plane trees, then by T1⊕T2 (respectively
T1	T2) we denote the new complete binary plane tree obtained by creating a new vertex decorated
with the sign ⊕ (respectively 	) such that its left subtree is T1 and its right subtree is T2.

A reformulation of Definition 1.128 is the following:

Proposition 1.140. [BBL98, page 280] A permutation σ is separable if and only if there exists
a binary tree that is a separating tree associated to σ.

Proposition 1.141. There is a bijection between the set of all the binary decompositions of a
separable permutation σ and the set of all the binary separating trees associated to σ.

Proof. We give an inductive proof that follows the structure of the recursively defined sets (see
Definition 1.54 and 1.138). The proof has two parts: (a), where we show that the proposition
holds for all the minimal structures of the set, and (b) where we prove that if it holds for the
immediate substructures of a certain structure S then it must hold for S too.

(a) First let us show by structural induction that to every binary decomposition one can
associate a unique binary separating tree.

-to the trivial permutation one can associate uniquely the tree with one vertex;

-if d1 and d2 are two binary decompositions which have each a uniquely associated binary
separating tree T1 and T2 respectively, then to d1 ⊕ d2 (respectively d1 	 d2) we shall
associate the unique binary separating tree T1 ⊕ T2 (respectively T1 	 T2).

(b) A similar structural recursive proof can be given to show that to each binary separating
tree one can associate a unique binary decomposition.

Remark 1.142. Given a complete binary plane tree such that all its vertices, except from the
leaves are decorated with ⊕ or 	 sign, we can construct the unique separable permutation
corresponding to it, by using Proposition 1.141 to obtain the decomposition of the permutation.

In other words, one can see any binary decomposition of a separable permutation σ as a
complete plane binary tree which is in fact one of the binary separating trees of σ. In addition,
if the binary decomposition has m signs, then the tree has m internal nodes and m+ 1 leaves.

Example 1.143. An example which illustrates the bijection from 1.141 is shown in Figure 1.44
and Figure 1.45.

We have now a Corollary of Proposition 1.140, as follows:

Corollary 1.144. A permutation σ is separable if and only if σ has a binary separating decom-
position.

We conclude by emphasizing the fact that there is a bijective correspondence between the
signs in a binary decomposition of σ and the internal vertices of the corresponding binary sep-
arating trees associated to σ. In addition, the internal vertices are not only decorated with the
corresponding signs ⊕ or 	, but they also correspond to a certain matrix as one can see in the
following definition.

Definition 1.145. Let us consider a separable permutation σ and one of its binary separating
trees, say T (σ). Let us suppose that i < j. We denote by σ(i)∧ σ(j) the internal vertex of T (σ)
where the geodesics from the root to the leaves σ(i) and σ(j) separate.

Definition 1.146. Let us consider a separable permutation σ. Let us denote by mat(σ(i)∧σ(j))
the minimal submatrix of σ that contains σ(i) and σ(j).
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In order to understand better the notion of minimal submatrix of a permutation, the reader
is invited to read Example 1.147.

Example 1.147. If σ :=

(
1 2 3 4 5 6 7
6 7 4 5 1 3 2

)
, let us illustrate in Figure 1.47 the matrix

mat(σ(1) ∧ σ(4)) =

(
1 2 3 4
3 4 1 2

)
which is the minimal submatrix of σ that contains σ(1) = 6

and σ(4) = 5. In addition, we show sign(σ(1) ∧ σ(4)) = 	. Let us remark that σ(1) > σ(4), i.e.
6 > 5.
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1
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1
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1

1

1

1

	

	

⊕ ⊕

⊕

	

σ(1) = 6 7 4 σ(4) = 5

1

3 2
Figure 1.47: The matrix (in red) of σ(1) ∧ σ(4) (in red) and the sign 	 of its corresponding
vertex in the separating tree of σ.

Proposition 1.148. Let us consider a separable permutation σ and one of its binary separating
trees, say T (σ). Let us suppose that i < j. If one denotes by σ(i) ∧ σ(j) the internal vertex of
T (σ) where the geodesics from the root to the leaves σ(i) and σ(j) separate, then

σ(i) < σ(j)⇔ sign(σ(i) ∧ σ(j)) = ⊕

102



1.8. A construction of all the separable Poincaré-Reeb trees in one variable

and
σ(i) > σ(j)⇔ sign(σ(i) ∧ σ(j)) = 	.

Proof. We have sign(σ(i) ∧ σ(j)) = ⊕ (respectively sign(σ(i) ∧ σ(j)) = 	) if and only if we can
decompose the submatrix mat(σ(i)∧σ(j)) = m1⊕m2 (respectively mat(σ(i)∧σ(j)) = m1	m2)
such that m1 contains σ(i) and m2 contains σ(j). Now by Definition 1.126, mat(σ(i) ∧ σ(j)) =
m1 ⊕ m2 if and only if σ(i) < σ(j) (respectively mat(σ(i) ∧ σ(j)) = m1 	 m2 if and only if
σ(i) > σ(j)).

1.8.2 Realising a given separable snake

The fact that Davis’, Arnold’s and Douady’s approaches (see Section 1.3) were not con-
structive motivated us to write this section, which is dedicated to our new and constructive
proof of the existence of a polynomial with preassigned critical values configuration (i.e. which
should be associated to a given snake). More precisely, we present here an origina result that,
in comparison with the one in Section 1.3.1, is constructive: Theorem 1.149.

Theorem 1.149. Consider m ∈ N and fix a separable (m+ 1)-snake σ : {1, 2, . . . ,m+ 1} →
{1, 2, . . . ,m+1} such that σ(m) > σ(m+1). Then we construct a polynomial Qx(y) ∈ R[x][y],

Qx(y) :=

∫ y

0

n∏
i=1

(
t− ai(x)

)
dt,

which is (m+ 2)-Morse (see Definition 1.14) such that, for sufficiently small x > 0, the snake
associated to Qx(y) is σ, by choosing the polynomials ai(x) ∈ R[x] such that their contact tree
is one of the binary separating trees of σ.

Remark 1.150. Notice that we do not give a precise value x0 > 0 sufficiently small such that
the above theorem holds for all 0 < x ≤ x0.

Before the proof of Theorem 1.149, let us prove some useful lemmas.

Lemma 1.151. Let σ : {1, 2, . . . ,m + 1} → {1, 2, . . . ,m + 1} be a separable permutation. A
binary decomposition of σ has alternating signs ⊕ and 	 if and only if σ is an (m + 1)-snake
(see Definition 1.6).

Proof. By Definition 1.126 and Definition 1.128, if there are two signs ⊕ (respectively two signs
	) that appear consecutively in the binary decomposition, then σ is not a snake. Reversely, if
σ is not a snake, then it has three leaves such that σ(i) < σ(i + 1) < σ(i + 2) (respectively
σ(i) > σ(i+ 1) > σ(i+ 2)) and this implies two signs ⊕ (respectively two signs 	) that appear
consecutively in the binary decomposition.

Corollary 1.152. Let σ : {1, 2, . . . ,m + 1} → {1, 2, . . . ,m + 1} be a separable snake such that
σ(m) > σ(m+ 1). Then any binary decomposition of σ has alternating signs ⊕ and 	 such that
the rightmost sign is 	.

Lemma 1.153. Let K+ be an end-rooted complete plane binary tree, which hasm+1 leaves. Then
there exist m+ 1 polynomials with real coefficients ai(x) ∈ R[x], for i = 1, . . . ,m+ 1, such that
ai(0) = 0 for i = 1, . . . ,m+1 and K+ = CT (a1(x), . . . , am+1(x)), where CT (a1(x), . . . , am+1(x))
represents the contact tree of the polynomials ai, introduced in Section 1.7.

The result of Lemma 1.153 is already mentioned in [Ghy17, page 29]. Let us give a proof.
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Proof. We shall construct the polynomials ai(x) ∈ R[x] as follows: we decorate each internal
vertex, i.e. bifurcation vertex, with a positive integer number such that the sequence of integer
numbers is strictly increasing on each geodesic from the root towards any leaf. The root is
decorated with 0. In other words: by taking into account the fact that on each geodesic going
from the root the valuations of the monomials in x are increasing, we can assign to each vertex
a valuation, say ν(v) := p ∈ N (the root is assigned the 0 valuation); since K+ is an end-rooted
complete binary tree by hypothesis, each internal vertex v of K+ has exactly two children. Each
of the two children of v is connected to v by an edge. Since K+ is embedded in the real plane, one
can decide which is the first child and which is the second child of v, by the induced orientation
of R2. Now let us label the edge connecting v to its first child with the coefficient cfirst(v) := 0
(obtaining thus the monomial 0× xp). Similarly, let us label the edge connecting v to its second
child with the coefficient csecond(v) := 1 (obtaining thus the monomial 1× xp). The unique edge
starting from the root will have coefficient 0. Now for each leaf ai(x) we add the monomials on
the geodesic Gi from the root to ai(x), thus obtaining ai(x) =

∑
v∈Gi c∗(v)xν(v), where ∗ is either

first or second, depending on the geodesic we are following.

Remark 1.154. The condition ai(0) = 0 for i = 1, . . . ,m + 1 is realisable since by hypothesis
the tree K+ is an end-rooted complete plane binary tree.
Example 1.155. Given the end-rooted complete plane binary treeK+ with 5 leaves like in Figure
1.48, one constructs the following polynomials ai(x), i = 1, . . . , 5 such that CT ({a1(x), . . . , a5(x)}) =
K+. We shall procede by following the proof of Lemma 1.153. Namely, let us explain the con-
struction of the leaf a1(x). On the geodesic G1 there are two bifurcation vertices, say v1 and
v2. Let us say that we choose ν(v1) = 2 and ν(v2) = 3. Following the rule, we have a1(x) =
cfirst(v1)xν(v1) +cfirst(v2)xν(v2) = 0x2 +0x3 = 0. Similarly, we construct a2(x) = 0x2 +1x3 = x3,
a3(x) = 1x2 + 0x5 = x2, a4(x) = 1x2 + 1x5 + 0x6 = x2 + x5 and a5(x) = 1x2 + 1x5 + 1x6 =
x2 + x5 + x6.

x

y

O x2

a1 G1
x3

a2

a3

x5

x6

a4

a5

0 0 0

111

1

1

0

0

Figure 1.48: The polynomials realising a given end-rooted complete plane binary tree K+ as
their contact tree.

Proof. Let us prove now Theorem 1.149.

There are several steps. First, given a separable (m + 1)-snake σ : {1, 2, . . . ,m + 1} →
{1, 2, . . . ,m + 1} such that σ(m) > σ(m + 1), we construct one of its binary decomposition
trees, denoted by K+. By Definition 1.133, the leaves of K+ are in a bijective relation with
{σ(1), . . . , σ(m + 1)}. By Lemma 1.153 we can choose real polynomials a1(x), . . . , am+1(x)
such that (after adding an extra root to K+, thus transforming it into an end-rooted binary
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complete tree) we have K+ = CT (a1(x), . . . , am+1(x)). By the construction of the contact
tree, the polynomials are in bijective correspondence with the leaves of the contact tree. In
this proof, by abuse of language, if a leaf corresponds to the label σ(i) we will sometimes label
it with ai(x), for any i ∈ {1, . . . ,m+ 1}. Since K+ is an embedded tree which represents both
a contact tree and a binary separating tree of σ, this double labelling of the leaves will enable
us to identify in the tree the vertices as follows: ai ∧ aj ≡ σ(i)∧ σ(j). Furthermore, we define
the one real variable polynomials Px(y), Qx(y) ∈ R[x][y], Px(y) :=

∏m+1
i=1

(
y−ai(x)

)
and then

Qx(y) := (m+ 2)
∫ y

0 Px(t)dt. Denote by ci the critical values of Qx(y). Finally, we prove that
for a sufficiently small x > 0, this construction gives us the desired equivalence ci > cj if and
only if σ(i) > σ(j).

By hypothesis, σ is separable, thus by Proposition 1.140 σ has at least one binary decom-
position. By Proposition 1.141, the binary decomposition corresponds to a binary separating
tree. Let us denote this tree by K+. Now, we have obtained K+, a binary complete tree. In
addition, since σ is also an (m + 1)-snake σ : {1, 2, . . . ,m + 1} → {1, 2, . . . ,m + 1} such that
σ(m) > σ(m+1), by Lemma 1.151 and by Corollary 1.152 we know that the signs of the internal
vertices of K+ alternate and that the rightmost internal vertex is decorated with the 	 sign.

After adding an extra root to K+, thus transforming it into an end-rooted binary complete
tree, let us now apply Lemma 1.153 and construct the polynomials ai(x) ∈ R[x] such that
K+ = CT (a1(x), . . . , am+1(x)).

Let us now define the unitary polynomial Px(y) ∈ R[x][y], of degree m+ 1 in the variable y
such that Px(y) has as simple real distinct roots the polynomials ai(x) constructed above:

Px(y) :=
m+1∏
i=1

(
y − ai(x)

)
.

Denote by

Si(x) :=

∣∣∣∣ ∫ ai+1(x)

ai(x)
Px(y)dy

∣∣∣∣.
By Corollary 1.115, we have that the area Sm is situated below the Ox-axis and then the positions
of the areas alternate above and below. In other words, we say that an area Si is situated below
(respectively above) the Ox-axis when the integral

∫ ai+1(x)
ai(x) Px(y)dy is negative (respectively

positive), thus we associate the minus (respectively plus) sign to the area Si.
Similarly, the reader should remember that the signs of a binary decomposition of the sepa-

rable snake σ are alternating and ending with 	. Therefore we obtain

sign(σ(i) ∧ σ(i+ 1)) = 	 ⇔
∫ ai+1(x)

ai(x)
Px(y)dy < 0

and

sign(σ(i) ∧ σ(i+ 1)) = ⊕ ⇔
∫ ai+1(x)

ai(x)
Px(y)dy > 0.

Furthermore, we denote by

Qx(y) := (m+ 2)

∫ y

0
Px(t)dt,

the unitary polynomial in R[x][y] such that ∂Qx(y)
∂y = (m + 2)Px(y), Qx(0) = 0. Therefore, the

critical points of Qx(y) are the roots of Px(y), i.e. the polynomials ai(x), for i = 1, . . . ,m + 1.
The critical values of Qx(y) are thus

ci := Qx(ai(x)),

for i = 1, . . . ,m+ 1.
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Now by using Corollary 1.115, let us compute the difference between two arbitrary critical
values of Qx(y), say

cj−ci = Qx(aj(x))−Qx(ai(x)) = (m+2)

∫ aj(x)

ai(x)
Px(t)dt = (m+2)((−1)m+1−iSi+. . .+(−1)m+1−jSj).

For a better understanding, the reader should study Figure 1.49 below.

Figure 1.49: Comparing the critical values of the polynomial Qx(y), in terms of the areas Si.

By Proposition 1.120, if i < j, then

νx (±Si ± Si+1 ± . . .± Sj−1) = νx(Sk),

where Sk denotes the unique area corresponding to the bifurcation vertex ai∧aj . Thus cj−ci > 0
if and only if the area Sk is situated above the Ox-axis, namely if and only if sign(σ(i)∧σ(j)) = ⊕,
which by Proposition 1.148 is equivalent to σ(j) > σ(i).

The proof is complete: we constructed a polynomial Qx(y) ∈ R[x][y] such that for a suffi-
ciently small x > 0 the critical values of Qx(y) verify cj > ci ⇔ σ(j) > σ(i), where σ is the given
separable snake.

Example 1.156. Given the separable snake σ :=

(
1 2 3 4 5
4 5 1 3 2

)
, let us construct the real one

variable 6-Morse polynomial Qx(y) ∈ R[x][y] such that its associated snake is σ.
First step: obtain a binary separating tree of σ, denoted by K+, and its associated binary

decomposition (see Figure 1.50 below).
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Figure 1.50: A binary separating tree of σ = (�⊕�)	 (�⊕ (�	�)).

Second step: construct the polynomials ai(x), for i = 1, . . . , 5 such that CT (a1(x), . . . , a5(x))
is the separating tree K+ of σ. This has already been done for this tree, in Example 1.155 (see
Figure 1.51): a1(x) = 0, a2(x) = x3, a3(x) = x2, a4(x) = x2 + x5 and a5(x) = x2 + x5 + x6. For
a better vision we just rotate the embedded separating tree π/2 counterclockwise, to obtain the
tree in Figure 1.51:
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Figure 1.51: The polynomials realising a given end-rooted complete plane binary tree K+ as
their contact tree.

Now, for a sufficiently small x > 0, define Px(y) ∈ R[x][y], Px(y) :=
∏5
i=1(y − ai(x)) (see

Figure 1.52), then Qx(y) := 6
∫ y

0 Px(t)dt (see Figure 1.53). The critical points of Qx(y) are the
roots of Px(y). Let us denote by ci := Qx(ai(x)) the i-th critical value of Qx(y).
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⊕

a1 a2

⊕

a3 	

a4 a5

Figure 1.52: The graph of Px(y) for x > 0 small enough: the 5 roots of the polynomial Px(y) are
in bijective correspondance with the leaves of the separating tree of the given separable snake
σ; the sign of the internal vertices of the tree are in bijective corespondance with the position of
the areas Si (⊕ for an area above Ox, respectively 	 for an area below Ox).

Figure 1.53: The graph of Qx(y) for x > 0 small enough: the snake associated to Qx(y) is σ.

1 2 3 4 5

1
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3

4

5

Figure 1.54: The matrix of the separable snake σ.

Remark 1.157. Note that separability of the snakes is due to the hypothesis we impose on the
contact trees: they are complete and binary. See Example 1.158, where a non-binary contact
tree provides a nonseparable snake.

Example 1.158. In Figure 1.55 we show the snake of the polynomial Qx(y) :=
∫ y

0 Px(t)dt, where

Px(y) = y(y− 3x)(y− 5x)(y− 8x)(y− 10x). Namely, the snake is σ :=

(
1 2 3 4 5
1 4 2 5 3

)
which

is clearly nonseparable, by Lemma [Ghy17, page 14], since there are no two consecutive integers
whose images through σ are consecutive.

Note that here the contact tree is not binary.
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Figure 1.55: Nonseparable snake σ of the polynomial Qx(y).

1.8.3 The property of the trees associated to separable snakes

In this subsection we will study the separable permutations using their characterisation in
terms of avoiding sub-permutations.

Definition 1.159. [Ghy17] The permutations
(

1 2 3 4
2 4 1 3

)
and

(
1 2 3 4
3 1 4 2

)
are calledKont-

sevich’s permutations.

Definition 1.160. [Ghy17, page 17] A permutation π contains one of the Kontsevich’s permuta-
tions if there are four indices 1 ≤ i1 < i2 < i3 < i4 such that either π(i2) < π(i4) < π(i1) < π(i3)
or π(i3) < π(i1) < π(i4) < π(i2).

A separable permutation is a permutation that does not “contain” (see for instance [Ghy17,
page 13]) either of the next two “forbidden” sub-permutations:(

1 2 3 4
2 4 1 3

)
or (

1 2 3 4
3 1 4 2

)
.
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An example of a permutation that is not separable is

η :=

(
1 2 3 4 5 6 7 8
2 3 6 8 1 7 5 4

)
,

since it “contains” (see [Ghy17, page 18]) the sub-permutation
(

1 2 3 4
3 1 4 2

)
. Namely, there

exist four indices i1 := 2, i2 := 3, i3 := 5, i4 := 8 such that: i1 < i2 < i3 < i4, while we have (see
Figure 27): η(i3)� η(i1)� η(i4)� η(i2).

Figure 1.56: The nonseparable permutation η “contains” one of the two “forbidden” permutations.

As before, an alternative representation of the permutation η, through its graph, is drawn
in Figure 1.57, where we mark a dot for each pair (i, η(i)). The forbidden sub-permutation is
marked by blue triangles.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7
8

Figure 1.57: The nonseparable permutation η. The “forbidden” sub-permutation is marked by
triangles.

Definition 1.161. Let T be an end-rooted complete plane binary tree. Let us denote by V∗ the
set of all its vertices, except the root, i.e. all its internal nodes and leaves. We denote by a ∧ b
the bifurcation vertex of the geodesics from the root to the leaves a and b. Then the natural
order relation on V∗ is obtained in two steps:

(a) first read the leaves in the order induced by the real plane;

110



1.8. A construction of all the separable Poincaré-Reeb trees in one variable

(b) between each pair of consecutive leaves (a, b), intercalate the internal bifurcation vertex
a ∧ b.

If V1 and V2 ∈ V∗, then the notation we shall use for the natural order is V1 <nat V2.

Remark 1.162. Since by hypothesis the tree T is complete binary, we have a bijection from the
set of pairs of consecutive leaves of T to the set of internal vertices of T . Therefore the order
from Definition 1.161 is a total order relation on V∗.
Example 1.163. In Figure 1.58 there is an example of the natural order of an end-rooted
complete plane binary tree with four leaves and three internal vertices:

V1 <nat V2 <nat V3 <nat V4 <nat V5 <nat V6 <nat V7.

Figure 1.58: Example of the natural order of an end-rooted complete plane binary tree.

Definition 1.164. Let T be an end-rooted complete plane binary tree that is also a snake-tree
(see Definition 1.63). The planarity allows us to define the vertical order on the set of vertices
V∗, which is the order induced by the coordinates of the real plane, as follows: if Vi and Vj ∈ V∗,
then we say that Vi <vert Vj if Vi is below Vj .

Remark 1.165. The order from Definition 1.164 is a total order relation on V∗.

Definition 1.166. Let T be an end-rooted complete plane binary tree that is a snake-tree
enriched with its natural order on the set of vertices V∗, denoted by <nat and with the vertical
order on the set of vertices V∗, denoted by <vert . We say that T is a separable tree if there
do not exist four vertices

Vi1 <nat Vi2 <nat Vi3 <nat Vi4

such that either
Vi2 <vert Vi4 <vert Vi1 <vert Vi3

or
Vi3 <vert Vi1 <vert Vi4 <vert Vi2

.
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Example 1.167. In Figure 1.59 we show an example of a separable tree, while Figure 1.60
presents a nonseparable tree.

Figure 1.59: Separable tree.

Figure 1.60: Nonseparable tree.

Lemma 1.168. Let us fix a separable (m + 1)-snake σ : {1, 2, . . . ,m + 1} → {1, 2, . . . ,m + 1}
such that σ(m) > σ(m+1), where m is even. Then the snake-tree associated to σ (see Definition
1.63) is a separable tree.

Proof. By Definition 1.63 and by Remark 1.66, the tree associated to σ is an end-rooted complete
plane binary tree. The only thing left to prove is that there do not exist four vertices

Vi1 <nat Vi2 <nat Vi3 <nat Vi4

such that either
Vi2 <vert Vi4 <vert Vi1 <vert Vi3

or
Vi3 <vert Vi1 <vert Vi4 <vert Vi2 .
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This follows immediately since a permutation is separable if and only if it does not contain(
1 2 3 4
2 4 1 3

)
or
(

1 2 3 4
3 1 4 2

)
.

Corollary 1.169. Given a separable tree T , we can construct a one variable polynomial Qx(y) ∈
R[x][y] such that the Poincaré-Reeb tree of its epigraph is T .

Proof. This follows now directly from Theorem 1.149 and by Lemma 1.168 .
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Chapter 2

The Poincaré-Reeb tree of a bivariate
polynomial function
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We dedicate this chapter to the answer of the following question:

Question 2.1. What combinatorial object can encode the shape by measuring the non-
convexity of a compact and smooth connected component of a real algebraic plane curve?
What are the characteristics of this object - both in a general setting and in the asymptotic
one, that is, for sufficiently small levels of a bivariate polynomial in a neighbourhood of a
strict local minimum?

Answer: We shall construct an object called the Poincaré-Reeb graph, which is a plane tree.

2.1 Notations and hypotheses

In this chapter, the expressions “sufficiently small ε” or “small enough ε” mean: “there exists
ε0 > 0 such that, for any 0 < ε < ε0, one has . . . ”. We will often denote this by 0 < ε� 1.

We will consider a polynomial function f : R2 → R in two variables with f(0, 0) = 0. Let us
fix a neighbourhood V of (0, 0) such that:

- the point (0, 0) is the only strict local minimum of f in V ;

- we have V ∩ (f = 0) = {(0, 0)}.

Definition 2.2. Let us consider a polynomial function f : R2 → R that vanishes at the origin O,
exhibiting a strict local minimum at this point. For ε > 0, consider the set f−1([0, ε]) and denote
its connected component that contains the origin by Dε. Denote by Cε := Dε \ Int Dε.
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Figure 2.1: The curve Cε.

Later on (see Lemma 2.42), we shall prove that for ε > 0 sufficiently small Cε is diffeomor-
phic to a circle and that Dε is diffeomorphic to a disk, completely included in V .

Example 2.3. The surface graph(f) := {(x, y, z) ∈ R3 | z = f(x, y)} of the cubic f(x, y) :=
y2 − x3 + x2 is shown in Figure 2.2 (see for instance [Wal78, page 57, Figure 2.2]).

Figure 2.2: The graph of the cubic f(x, y) := y2 − x3 + x2.

We did not choose yet a sufficiently small neighbourhood V of the origin. An illustration of
such a neighbourhood V that satisfies the hypotheses from Section 2.1 is shown in Figure 2.3
below. The zero locus of f has two connected components: a point and a curve. We take V
small enough such that it does not intersect the curve, that is the connected component far from
the origin.
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Figure 2.3: Choose a small enough neighbourhood V of the origin such that the point (0, 0) is
the only strict local minimum of f in V and V ∩ (f = 0) = {(0, 0)}.

Examples of functions f as in Section 2.1 are shown in Figure 2.4, Figure 2.6, Figure 2.8b.
In order to define what we will consider to be a good neighbourhood V of O(0, 0) to work in,

let us first give the following classical definition of a singularity of a polynomial map.
For the following definition see for instance [Mil68, page 10]:

Definition 2.4. Let ϕ : Rn → Rp, with n, p ∈ N∗, n ≥ p, be a polynomial map.
Let ρ := max{rank Jac(ϕ)(x) | x ∈ Rn} be the maximal rank of ϕ, where Jac(ϕ)(x) is the

Jacobian matrix of ϕ, evaluated at x.
Then the set of singular points (called also critical points) of ϕ is by definition

Sing(ϕ) := {x ∈ Rn | rank Jac(ϕ)(x) < ρ}.
The image of a singular point under ϕ is called a singular value of ϕ.

A point x ∈ Rn is called regular of ϕ if it is not singular.

Example 2.5. Let f : R2 → R be a polynomial function. Then by Definition 2.4, the set of
singular points of f is Singf =

{
(x, y) ∈ R2

∣∣∣ ∂f∂x (x, y) = ∂f
∂y (x, y) = 0

}
.

See some examples of singular points of curves in [Wal78, page 57].

2.2 Morse extrema and convex level sets

The classical well-known statement that follows is meant to present equivalent characterisa-
tions of convex functions (see, for instance, [Rek+83, pages 640-650]).

Theorem 2.6. Let us consider a convex set C ⊂ R2 and a C2 function f : C → R. The following
properties are equivalent:

(1) for any two points x, y ∈ C, for any t ∈ [0, 1], we have

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y);

(2) the set epi(f) := {(x, y, z) ∈ R3 | z ≥ f(x, y)} is convex;
(3) the Hessian matrix of f , denoted by Hessf (x, y), is everywhere positive definite or positive

semidefinite.
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Definition 2.7. A C2 function f : R2 → R is convex if f verifies one of the properties from
Theorem 2.6.

The main purpose of this section is to prove that topological disks bounded by the level
curves of f in a small enough neighbourhood (see Definition 2.2) of a non-degenerated
critical point (i.e. Morse critical point) are convex sets.

Theorem 2.8. Let f : R2 → R be a polynomial function of the form f(x, y) = ax2 + by2 +
h(x, y), where a, b ∈ R, a > 0, b > 0, f(0, 0) = 0 and h : R2 → R is a polynomial function of
degree of each monomial at least 3. Then for a sufficiently small ε > 0, Dε is a convex set in
a small enough neighbourhood of the origin.

Let us now present the proof of Theorem 2.8.

Proof. Note that we are situated in a small enough neighbourhood of the origin. We have a > 0,
b > 0, lim(x,y)→(0,0) detHf (x, y) = ab > 0, for any (x, y) in a small enough neighbourhood of
(0, 0). Thus the Hessian matrix is positive definite and we conclude that f is a convex function,
since we are in dimension 2 and by Sylvester criterion if a symmetric matrix has all diagonal
elements and all the leading principal determinants positive, then the matrix is a positive definite
matrix (see [Gil91, page 45], or [Rek+83]). Recall the fact that positive definite forms form an
open set in the space of all forms. Since the function f is C2, its Hessian form varies continuously.

Therefore, the epigraph of f restricted to a convex domain is a convex set. Let us consider
ε > 0, sufficiently small. Since D̃ε := epi(f) ∩ (z = ε), we obtain that D̃ε is a convex set, since
it is the intersection of two convex sets. Thus, the projection of D̃ε on the plane xOy is also
convex, in fact it is equal to Dε.

Let us sketch a second proof. Since limx,y→(0,0) detHf (x, y) = ab 6= 0, for any (x, y) in a small
enough neighbourhood of (0, 0), the Hessian curve of f given by {(x, y) ∈ R2 | detHf (x, y) = 0},
is empty. Thus (see [Wal04, page 71]) for a sufficiently small ε > 0, the level curve Cε has no
inflexion points, hence it is convex.

Example 2.9. The circular paraboloid z = x2 + y2 (see in Figure 2.4 below): Cε are circles.

Figure 2.4: A non-degenerated (namely, Morse) critical point: we obtain convex disks.
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2.3 The example of Coste and our generalisations

The starting point of this research is the following question posed in June 2004 by E. Giroux
to P. Popescu-Pampu:

Question. Are the small enough level curves of f near strict local minima always boundaries
of convex disks (even for non-Morse singularities)?

Answer: The answer to this question is negative, as the following counterexample by M. Coste
shows: f(x, y) := x2 + (y2 − x)2.

Example 2.10. We begin with the counterexample found by Coste:

f(x, y) := x2 + (y2 − x)2.

The reader is invited to look at Figure 2.5b for the family of its level sets whose shape is like a
banana. Figure 2.6 illustrates the graph of f and Figure 2.5a a single level (f(x, y) = 0.1). The
idea used by Coste was that instead of taking the sum of squares of functions defining transverse
curves like in x2 + y2 (i.e. the lines defined by x = 0 and y = 0 are transverse), to take the sum
of squares of x and y2 − x, which define two curves that are tangent at the origin.

The previous function was mentioned also in [JK11], [Bol80].

(a) The level curve (f(x, y) = 0.1) in R2, where
the function f(x, y) := x2 + (y2 − x)2.

(b) A family of level curves in R2 of f(x, y) :=
x2 + (y2 − x)2.

Figure 2.5: The counterexample provided by Coste.
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Figure 2.6: The graph of Coste’s example in R3.

Proposition 2.11. The topological disks Dε from Example 2.10 are never convex for ε > 0.

Proof. Indeed, if we denote by Mε := Cε ∩ {x > 0 | y = 0}, by Pε := Cε ∩ {y > 0 | y2 − x = 0}
and by Nε := Cε ∩ {y < 0 | y2 − x = 0}, then we get xMε =

√
ε
2 , yMε = 0, xPε =

√
ε, yPε = 4

√
ε,

and xNε =
√
ε, yNε = − 4

√
ε (see Figure 2.7).

Figure 2.7: Coste’s example is non-convex.

Denote by Qε the midpoint of [NεPε]. Then xQε =
√
ε > xMε . Since yMε = yQε = 0 and

there is no other point to the right of Mε, we conclude that Qε 6∈ Dε. Hence there exist the
points Nε ∈ Dε and Pε ∈ Dε such that the segment [NεPε] is not included in Dε. In conclusion,
we proved that there exists at least a point outside the disk Dε on the segment [NεPε].

In the sequel we give some new examples of functions f : R2 → R with a strict local minimum
at the origin (0, 0), whose level sets (f(x, y) = ε) are all boundaries of non-convex disks for a
sufficiently small 0 < ε � 1. The shape of these level curves Cε stabilises for sufficiently small
ε > 0, as we shall prove in this chapter.
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Example 2.12. Let us take the following polynomial:

f(x, y) := x16 + (y2 + x)2(y2 − x)2.

Its level curves have the shape of a bone, as one can see in Figure 2.8a. For a family of level
curves of f , see Figure 2.8b.

(a) The level curve (f(x, y) = 0.1) in R2,
where the function f(x, y) := x16 + (y2 +
x)2(y2 − x)2

(b) A family of level curves in R2 of
f(x, y) := x16 + (y2 + x)2(y2 − x)2.

Figure 2.8: A variation of Coste’s counterexample.

Example 2.13. Let us consider the following polynomial:

f(x, y) := x6 + (y4 + y2 − x)2(y2 − x)2.

The shape of its level curves is shown in Figure 2.9.

Figure 2.9: The sketch of the double banana shape of a level curve (f = ε), for f(x, y) :=
x6 + (y4 + y2 − x)2(y2 − x)2.

2.3.1 Star domains

We have seen in Proposition 2.11 that the set Dε is not always convex. Question: is Dε
always a star-domain? We shall prove in the following that the answer is negative.

The following definition is well-known:
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Definition 2.14. [AB06, page 168] A set S in the Euclidean space Rn is called a star domain
with respect to x0 ∈ S if for all x ∈ S, the line segment from x0 to x is in S.

Proposition 2.15. The polynomial function f : R2 → R

f(x, y) := x2p + (y2 − x)2

for p ≥ 3, has the following properties: O is a strict local minimum and for sufficiently small
ε > 0, the set Dε := f−1([0, ε]) is not a star domain with respect to any point P ∈ Dε.

Before the proof, let us first present the following Lemma:

Lemma 2.16. If a set D ⊂ R2 is a star domain with respect to a point and if D admits a
symmetry axis, say ∆ (see Figure 2.10), then there exists a point P ∈ D ∩∆ such that D is a
star domain with respect to P .

Figure 2.10: A star domain D with a symmetry axis ∆.

Proof. By hypothesis, the given set D ⊂ R2 is a star domain with respect to a point. Denote
this point by P1. If P1 ∈ ∆, there is nothing to prove. Let us consider P1 6∈ ∆, as pictured in
Figure 2.11.

Figure 2.11: There exists P ∈ D ∩∆ such that D is a star domain with respect to P .

By hypothesis, ∆ is a symmetry axis for D. Let us denote by P2 ∈ D the symmetric of P1

with respect to ∆. Denote by P the midpoint of the segment [P1P2]. Hence, P ∈ ∆ and by
symmetry, D is a star domain also with respect to P2. Let us now prove that D is a star domain
with respect to any point Q ∈ [P1P2], hence D is a star domain with respect to the point P .

Let M ∈ D. Since D is a star domain with respect to both P1 and P2, we have that [MP1],
[MP2] and [P1P2] are included in D. Thus, both the triangle 4MP1P2 and its interior are
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included in D, since the interior is the union of ]P1X[, for all X ∈]P2M [. In particular, for any
point Q ∈ [P1P2], we obtain [QM ] ⊂ D. Namely, D is a star domain with respect to any point
Q ∈ [P1P2]. In conclusion, D is a star domain with respect to P.

In the following let us present the proof of Proposition 2.15.

Proof. By Lemma 2.16, it is sufficient to prove that Dε is not a star domain with respect to any
point B(xB, 0) on (y = 0)∩Dε, such that f(B) ≤ ε, because the line ∆ := (y = 0) is a symmetry
axis for Dε.

Take the point

Aε

(
ε

1
2p , ε

1
4p

)
∈ (y2 − x = 0) ∩ (f = ε).

Then the midpoint of the segment [BAε] (see Figure 2.12 below) is the point

Mε

(
ε

1
2p + xB

2
,
ε

1
4p

2

)
.

We will prove that Mε 6∈ Dε.

Figure 2.12: Example of a non-star domain.

Since f(B) ≤ ε, we have x2p
B + x2

B ≤ ε. For sufficiently small ε > 0, we have xB sufficiently
small, thus x2p

B < x2
B. Hence |xB| <

√
ε.

We have f(Mε)− ε > (1
4ε

1
2p − 1

2(ε
1
2p + xB))2 − ε = 1

16ε
1
p + 1

2ε
1
2pxB + 1

4x
2
B − ε.

There are two cases to consider. First, if xB ≥ 0, then we have f(Mε) − ε ≥ 1
16ε

1
p − ε > 0

for a sufficiently small ε > 0. Secondly, if xB < 0, then f(Mε) − ε ≥ 1
16ε

1
p + 1

2ε
1
2pxB − ε. Since

|xB| ≤
√
ε and ε

1
2p < 1, we obtain |xB|ε

1
2p ≤ √ε. Thus, f(Mε)− ε ≥ 1

16ε
1
p − 1

2

√
ε− ε > 0 for a

sufficiently small ε > 0 and for p ≥ 3. In both cases, we get f(Mε) > ε, hence M 6∈ Dε and thus
the segment [BAε] is not included in Dε, even though Aε, B ∈ Dε. In other words, Dε is not a
star domain with respect to any B ∈ Dε ∩∆.
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2.4 The Poincaré-Reeb tree

2.4.1 The Poincaré-Reeb construction

The main purpose of this section is to introduce a new combinatorial object for studying the
departure from convexity of a smooth and compact connected component of a real algebraic
curve in R2. Our purpose is to define the Poincaré-Reeb graph, associated to the given curve
and to a direction of projection x. It is adapted from the classical construction introduced
by H. Poincaré (see [Poi10, 1904, Fifth supplement, page 221]), which was rediscovered by G.
Reeb (in [Ree46]). Both used it as a tool in Morse theory (see [Mat02]). Namely, given a Morse
function on a closed manifold, they associated it a graph as a quotient of the manifold by the
equivalence relation whose classes are the connected components of the levels of the function.
We will perform an analogous construction for a special type of manifold with boundary.

• Let us consider a smooth and compact connected component of a real algebraic curve in
R2, denoted by C. Let D denote the topological disk bounded by C (see Figure 2.13 below).
Moreover, let us define the projection Π : R2 → R, Π(x, y) := x.

Figure 2.13: A Poincaré-Reeb graph of a smooth and compact connected component of a real
algebraic curve C.

Definition 2.17. For each x ∈ R, Π−1(x) ∩ D is a finite union of connected vertical segments.
Let us define the equivalence relation ∼ as follows: if (x, y) and (x, y′) are two points in
the real plane R2 then (x, y) ∼ (x, y′) if and only if they belong to the same vertical connected
component of the fibre Π−1(x) ∩ D.

Given the above equivalence relation, let us consider the canonical quotient map

q : R2 → R2/ ∼ .

Denote by P := R2 and by P̃ := R2/ ∼ . The coordinates in P̃ are (x̃, ỹ), with x̃ = x.
The function Π descends to the quotient in a function Π̃ : P̃ → R, Π̃(x, ỹ) := x. The function

Π̃ is continuous, since Π is continuous.
We have the following commutative diagram (see Figure 2.14):
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Figure 2.14: The diagram is commutative: Π = Π̃ ◦ q.

• Our next aim is to prove that P̃ is homeomorphic to R2. The first step will be to show
that P̃, endowed with the function Π̃ is a fibre bundle, i.e. that satisfies a local triviality. We
will prove that it is locally a cartesian product of two sub-spaces. Furthermore, we shall prove
that the local trivialisation of the fibre bundle P̃ implies that P̃ is a trivial fibre bundle, i.e. it
is not just locally a product of two spaces, but globally.

Proposition 2.18. The topological space P̃ endowed with the function Π̃ is a fibre bundle.

Proof. By the definition of the fibre bundle (see for instance [Frè13, page 51]), what we need
to prove is that there exists a local trivialisation of P̃ . Let us consider a point x0 ∈ R in the
base space, that is the Ox-axis. Take an open neighbourhood of x0, called U ⊂ R. We want
to show that the set Π̃−1(U) is homeomorphic to U × R, here by R we mean a space that is
homeomorphic to the real line R. To this end, we have the following two arguments:

1. If on a vertical line we contract a finite number of segments into points (by the quotient
map q described above), we obtain a topological space that is homeomorphic to R. Denote this
space by R.

2. The set D ∩ Π−1(x0) is a finite union of intervals (some of them empty intervals), whose
extremities depend continuously on x (see Figure 2.15), except when x0 is a critical point.

Hence we have the local triviality: Π̃−1(U) is homeomorphic to U ×R. Thus the image P̃ of
the plane P , by the quotient map q, is a fibre bundle.
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Figure 2.15: The extremities of the intervals in D∩Π−1(x0) depend continously on x. After the
quotient, we obtain vertical lines homeomorphic to R.

Proposition 2.19. The topological space P̃ endowed with the function Π̃ is a trivial fibre bundle.

Proof. The base space of the fibre bundle P̃ is the Ox-axis, namely R, and R is contractible to a
point. Thus we conclude that P̃ is a trivial fibre bundle, since by [Osb82, Proposition 3.5, page
75] a fibre bundle over a base space that is contractible to a point is trivial. To be more precise,
we have P̃ homeomorphic to R2.

Corollary 2.20. The topological subspace D̃ := q(D) is embedded in a real plane (see Definition
1.47).

Theorem 2.21. The topological subspace D̃ is connected.

Proof. The image of a connected space by a continuous function is connected. Since D̃ :=
q(D), the topological disk D is connected and the quotient map q is continuous, the proof is
complete.

Theorem 2.22. The topological subspace D̃ is a one-dimensional subspace of P̃ . In each of the
regular points of D̃, we have D̃ transverse to the foliation of the plane P̃ by vertical lines, induced
by Π̃.

Proof. Since the given curve C is a connected component of a real algebraic curve, that is, it
is an analytic curve, it has finitely many points of vertical tangency. In other words, there are
finitely many critical levels of the projection Π|C : C → R. Locally near a critical point, one may
have a tangency point of even order (see Figure 2.16a) or of odd order (see Figure 2.16b):
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(a) Points on C of vertical even tangency (b) Points on C of vertical odd tangency

Figure 2.16: Vertical tangents.

Between any two critical levels, we have only what we call “bands” of the initial disk D. See,
for a better comprehension, Figure 2.17 below.

Figure 2.17: “Bands” of the disk D, between two consecutive critical levels of the vertical pro-
jection Π. The bands contract into one-dimensional transverse arcs.

After taking the quotient, each band contracts into an arc of dimension one, transverse to
the vertical foliation of the real plane P̃ . Therefore, the topological space D̃ is a graph, being a
finite union of transverse arcs.

Definition 2.23. [Vic89, pages 13-14] A preorder on a set is a binary relation that is reflexive
and transitive.

As we mentioned before, Definition 2.24 from below is adapted from the classical construction
introduced by H. Poincaré (see [Poi10, 1904, Fifth supplement, page 221]), which was rediscovered
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by G. Reeb (in [Ree46, p. 1946]). Both used it as a tool in Morse theory (see [Mat02]). Namely,
given a Morse function on a closed manifold, they associated it a graph as a quotient of the
manifold by the equivalence relation whose classes are the connected components of the levels
of the function. We will perform an analogous construction for a special type of manifold with
boundary, that is a topological disk D bounded by a smooth and compact connected component
of a real algebraic curve.

Definition 2.24. Given the projection Π : R2 → R, let us consider the image D̃ := q(D), of
the topological disk D bounded by the smooth and compact connected component of a real
algebraic curve C, where q the quotient map introduced before. The image D̃, endowed with
special vertices, namely the finitely many points corresponding to the critical points of Π on C
is called the Poincaré-Reeb graph associated to the curve C and to Π, denoted by R(C,Π).
Endow the real plane with the trivial fibre bundle P̃ , then endow the vertices of the graph
with the induced preorder.

In conclusion, the Poincaré-Reeb construction gives us a plane connected graph, embedded
in a surface that is homeomorphic to R2. We will prove in the next section that it is in fact a
tree.

2.4.2 Constructible functions and a Fubini type theorem

In this section we will recall the integration of constructible functions with respect to the
Euler characteristic and a Fubini-type theorem for it. Then we will apply it to the proof of
Proposition 2.36.

We will first introduce the necessary tools: constructible functions. We shall follow the
definitions and results from [Cos05, Chapter 3, pages 21-22]. For more details, the reader should
refer to [Wal04, page 162]. Constructible functions have applications in the study of the topology
of singular real algebraic sets. The main tool is the integration against the Euler characteristic,
which was first described in Viro’s paper [Vir88].

Definition 2.25. [Cos02, page 25] A basic semialgebraic set is a subset of Rn satisfying a
finite number of polynomial equations and inequations with real coefficients.

Example 2.26.
• All algebraic sets are basic semialgebraic.
• Unions of finitely many points and open intervals in R are basic semialgebraic sets.

Definition 2.27. [Cos02, page 29] Let us consider two basic semialgebraic sets M ⊂ Rm and
N ⊂ Rn. We say that a continuous map s : M → N is a semialgebraic map if its graph
{(x, y) ∈M ×N | y = s(x)} is a semialgebraic subset of Rm × Rn.

Definition 2.28. [Cos05, Chapter 3, page 21] A constructible function on a semialgebraic
set A is a function ϕ : A → Z which takes finitely many values and such that, for every n ∈ Z,
ϕ−1(n) is a semialgebraic subset of A.

Remark 2.29. [Wal04, page 162] Each constructible function is an integer linear combination
of characteristic functions of constructible sets Xi, i.e. of semialgebraic subsets of A:

ϕ =
∑
i∈I

mi1Xi ,

where mi ∈ Z and 1Xi is the characteristic function of Xi.
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Definition 2.30. [Cos05, Chapter 3, page 22] Let ϕ be a constructible function on a semialge-
braic set X. The integral of ϕ with respect to the Euler characteristic χ is by definition:∫

X
ϕdχ :=

∑
n∈Z

nχ(ϕ−1(n) ∩X),

where χ denotes the Euler characteristic.

Definition 2.31. [Cos05, Chapter 3, page 22] Let us consider a continuous semialgebraic map
f : A → B and let ϕ be a constructible function on A. The pushforward of ϕ along f (see
Figure 2.18) is the function f∗ϕ : B → Z,

f∗ϕ(y) :=

∫
f−1(y)

ϕdχ.

Figure 2.18: The pushforward f∗ϕ of ϕ along f .

Remark 2.32. If we apply the definition of push-forward to the application from a set A towards
a point, we obtain the function that associates at this point the integral with respect to the Euler
characteristic of the starting function on A.

Remark 2.33. The diagram from Figure 2.18 is not commutative. If, for example, A := {a, b},
B := {c}, where a, b, c are points in R2, f : A→ B a semialgebraic map such that f(a) = f(b) :=
c and ϕ a constructible function on A such that ϕ(a) := −1, ϕ(b) := 1, then by definition we
compute f∗ϕ(b) =

∫
f−1(c) ϕdχ = −1 + 1 = 0. Thus f∗ϕ ◦ f(a) = 0 while ϕ(a) = −1. Therefore

f∗ϕ ◦ f 6= ϕ.

Remark 2.34. The following proofs can be extended to semianalytic sets, with the more general
hypothesis that f is analytic.

Theorem 2.35. [Cos05, Chapter 3, page 22] Fubini Type Theorem: Let f : A → B be a
semialgebraic map and ϕ a constructible function on A. Then∫

B
f∗ϕdχ =

∫
A
ϕdχ.

We are ready now to prove the main result of this section, namely Proposition 2.36.

Proposition 2.36. The Poincaré-Reeb graph of a topological disk D bounded by a smooth and
compact connected component of a real algebraic curve in R2 is a tree.
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Proof. In Definition 2.31 let us replace A with the disk D, B with the graph G obtained after
the Poincaré-Reeb contraction π, the function f with the Poincaré-Reeb contraction π and ϕ
with the characteristic function 1D, as in Figure 2.19:

Figure 2.19: The pushforward π∗1D of 1D along π.

In other words, we apply the Fubini Type Theorem 2.35 for the pushforward of the con-
structible function 1D.

Now for g ∈ G, we obtain:

π∗1D(g) =

∫
π−1(g)

1Ddχ =
∑
n∈Z

nχ(1−1
D (n) ∩ π−1(g)) = χ(π−1(g)) = 1,

since π−1(g) is a connected component of the fibre, i.e. a segment. Thus

π∗1D = 1G.

By Theorem 2.35, we have now ∫
D
1Ddχ =

∫
G
π∗1Ddχ.

Since π∗1D = 1G, we obtain: ∫
D
1Ddχ =

∫
G
1Gdχ.

Therefore, χ(D) = χ(G). Since D is a disk, we have χ(D) = 1. In Section 2.4 we proved that G
is a connected graph, thus the Betti number b0 = 1. We have χ(G) = b0 − b1. Since we proved
that its Euler characteristic is χ(G) = 1, we get that the Betti number b1 = 0. Thus we conclude
that G has no cycles, hence G is a tree.

Corollary 2.37. The Poincaré-Reeb graph associated to a compact and smooth connected
component of a real algebraic plane curve and to a direction of projection x is a plane tree
whose open edges are transverse to the foliation induced by the function x. Its vertices are
endowed with a total preorder relation induced by the function x.
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2.5. Asymptotic properties near a strict local minimum

Definition 2.38.
• A transversal tree is a finite tree embedded in a real oriented plane P endowed with a
trivialisable fibre bundle Π : P → R, such that each one of its edges is transversal to the fibres
of Π.
• Two transversal trees (P1, T1) and (P2, T2) are considered to be equivalent if there ex-
ists an orientation preserving homeomorphism ψ sending one pair into the other one and
one fibre bundle into the other one (in the sense that there exists an orientation-preserving
homeomorphism λ : R→ R such that Π2 ◦ ψ = λ ◦Π1).

Remark 2.39. We introduce Definition 2.38 since one of the main objectives of this thesis is
to characterise the Poincaré-Reeb trees. To this end, in the following chapters our aim is to
discover which transversal trees we can realise explicitly as Poincaré-Reeb trees by a strict local
minimum of a polynomial function.

2.5 Asymptotic properties near a strict local minimum

Let us consider a polynomial function f : R2 → R with a strict local minimum at the
origin (see Section 2.1). The aim of this section is to prepare our study in the next Section
2.6. There, we shall focus of the asymptotic shape of the Poincaré-Reeb trees of its sufficiently
small levels and we will prove that their shapes stabilise to a limit shape which we shall call
the “asymptotic Poincaré-Reeb tree of the strict minimum with respect to the function x”.
Moreover, we prove several general properties of those trees.

2.5.1 Nested Jordan curves

The following definition and theorem are well-known:

Definition 2.40. [Kra99, page 19] A Jordan curve is the image of a continuous application
γ : [a, b] → R2, where a, b ∈ R are distinct real numbers, such that γ(a) = γ(b) and γ|[a,b[ is
injective.

Theorem 2.41. The complement in R2 of a Jordan curve J consists of two connected compo-
nents, each of which has J as its boundary (see Figure 2.20). Both components are path-connected
and open and exactly one is unbounded.

Proofs of Theorem 2.41 can be found in [Wal72, pages 119, 133].

Figure 2.20: A Jordan Curve J : the bounded component of the real plane is B, while the
unbounded component is U .
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Chapter 2. The Poincaré-Reeb tree of a bivariate polynomial function

Lemma 2.42. Under the notations and hypotheses listed in Section 2.1, for all sufficiently small
ε > 0, the curve Cε is a Jordan curve; more precisely, Cε is diffeomorphic to S1 and Dε is
diffeomorphic to a disk. If one denotes by Int Cε the bounded connected component of R2 \ Cε,
then (0, 0) ∈ Int Cε.
Proof. Let us start by giving a slightly different definition of Cε. At the end of this proof, we
will have justified Definition 2.2.

Suppose that Cε is the union of connected components of f−1(ε), near the origin.
First step: let us prove that Cε is a one-dimensional manifold.
By hypothesis (Section 2.1), C0 = {(0, 0)} is an isolated local minimum of f , thus for a

sufficiently small ε, the level curve Cε has no critical points. Therefore, Cε is a one-dimensional
manifold. By [Mil65, Appendix “Classifying 1-manifolds”, page 65], the manifold Cε is diffeomor-
phic to a disjoint union of circles S1, or of some intervals of real numbers: the real line R, the
half-line R+ or the closed interval [0, 1].

Second step: we prove that one cannot obtain components of Cε which are dif-
feomorphic to closed or semiclosed segments in R.

Let us show that Cε has no connected components diffeomorphic to [0, 1] or [0,+∞[. The
reader should recall that 0 < ε� 1 is a regular value of f , thus (see [GP74, Preimage Theorem,
page 21]) the set Cε = f−1(ε) is a submanifold of R2 of dimension 1. Let P ∈ Cε be a point. If
BP is an open disk centered at P , then Cε ∩BP is diffeomorphic to an open interval ]a, b[, where
the image of P is in ]a, b[. Since the point P was chosen arbitrarily, we conclude that one cannot
obtain connected components of Cε diffeomorphic to either closed or semiclosed segments in R.

Third step: let us prove that Cε is a disjoint union of connected components
which are all diffeomorphic to the circle S1.

We fix r ∈ R small enough, r > 0 and we fix the neighbourhood V to be Dr := {(x, y) ∈ R2 |
||(x, y)|| ≤ r} such that (0, 0) is the only critical point of f in the disk Dr. Firstly, we have Cε is
a closed set, since the preimage of a closed set by the continuous function f is closed. Since Cε
is also bounded, it is compact.

Secondly, we will show that Cε ∩ ∂Dr = ∅. Since for ε sufficiently small, the curve (f = ε)
lies sufficiently close to the origin (0, 0), there exists 0 < ε1 � 1 such that Cε ∩D r

2
6= ∅ for all

ε < ε1. We want to prove that there exists 0 < ε2 � ε1 such that Cε ⊂ D r
2
for all ε < ε2. We

argue by contradiction. Suppose there exists a sequence εn → 0 such that Cεn 6⊂ D r
2
, namely

Cεn∩Dr\D r
2
6= ∅. Hence, for any εn, there exists a point (xεn , yεn) ∈ Cεn , namely f(xεn , yεn) = εn,

such that (xεn , yεn) ∈ Dr \D r
2
. If ε := 1

n , then one obtains a sequence (xn, yn) with the following
properties:

(a) (xn, yn) ∈ Dr \D r
2
;

(b) f(xn, yn) = 1
n .

Since Dr \D r
2
is a compact, there exists a convergent subsequence (xφ(n), yφ(n)) of (xn, yn). More

precisely, φ(n) is a strictly increasing and unbounded sequence of natural numbers.Let us denote
by limn→∞(xφ(n), yφ(n)) = (x∞, y∞) ∈ Dr \ D r

2
. One obtains f(xφ(n), yφ(n)) = 1

φ(n) and by the
continuity of f , f(x∞, y∞) = limn→∞ f(xφ(n), yφ(n)) = limn→∞

1
φ(n) = 0. Therefore, there exists

(x∞, y∞) 6= (0, 0), (x∞, y∞) ∈ Dr, such that f(x∞, y∞) = 0. This gives a contradiction with our
hypothesis that (0, 0) is the isolated local minimum of f in Dr. Hence, Cε is bounded.

In conclusion, we proved that Cε∩∂Dr = ∅. Hence we conclude that the level set Cε could be
a disjoint union of connected components which are either diffeomorphic to the segment [0, 1],
or to the circle S1. Since we have excluded the closed segments at the first step of our proof, Cε
is a disjoint union of connected components which are all diffeomorphic to the circle S1.

Fourth and last step: we prove that Cε
diffeo' S1.

We argue by contradiction. Let us suppose that Cε is a disjoint union of at least two distinct
connected components, say S1 and S2, which are both diffeomorphic to the circle S1. By the
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2.5. Asymptotic properties near a strict local minimum

Extreme Value Theorem, in the interiors of both these two connected components there is a
local extremum of f . Since locally the origin is the only critical point in V that f admits by
hypothesis, we obtain (0, 0) ∈ Int S1 and (0, 0) ∈ Int S2. Since Cε is not self-intersecting, the
configuration from Figure 2.21(a) below is impossible.

(a) Impossible configuration for Cε. (b) The annulus Aε in pink.

Figure 2.21: Configurations for S1 and S2.

Hence the only two possible situations would be either S1 ⊂ Int S2 or S2 ⊂ Int S1. Without
any loss of generality, let us choose S2 ⊂ Int S1. We have (0, 0) ∈ Int S2. Let us consider the
closed annulus bounded by the two circles, namely Aε := S1∪(Int S1\Int S2). See Figure 2.21(b)
above.

Since Aε is compact, by the Extreme Value Theorem, the function f must attain a maximum
value and a minimum value on Aε. We recall that f is not constant, since (0, 0) = f−1(0) is a
strict local minimum of f . If one extremum value is attained by f on S1 and on S2 (f = ε both
on S1 and on S2), then the other extremum value will necessarily be attained in Int Aε. Hence
we obtain a contradiction with the hypothesis of the unique singularity of f in a neighbourhood
of the origin. Therefore, we conclude that Cε cannot have more than one connected component
diffeomorphic to the circle S1, thus Cε

diffeo' S1 and (0, 0) ∈ Cε.

2.5.2 The polar curve

The notion of a polar curve goes back to the XIXth century, appearing in the work of J.-V.
Poncelet ([Pon17]) and M. Plücker ([Plü37]) in the period of 1813-1830 (see for instance [Tei90],
[Tei77], [TF16]). Starting with the 1970s, the theory of polar curves (see [BK86, page 589]) was
renewed by important investigations and contributions due to Lê ([LMW89]), Teissier, Merle,
Eggers, Delgado, García Barroso ([GB00], [GB98], [GB96]), Płoski, Gwoździewicz, Casas-
Alvero, Michel, Weber, Maugendre ([Mau99]), Hefez among others. Considerable research on
the polar curves has been carried out in the complex setting. However, less is known about
the real polar curves.

Definition 2.43. [GB00, Section 4] Let f : R2 → R be a polynomial function. The set

Γ(f, x) =

{
(x, y) ∈ R2 | ∂f

∂y
(x, y) = 0

}
is called the polar curve of f with respect to x.
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Remark 2.44. The polar curve Γ(f, x) consists of the points (x, y) ∈ R2 where the level curves
of f have a vertical tangent. However, if f has a strict local minimum, then the polar curve does
not contain the projection direction (see Proposition 2.45).

Proposition 2.45. If f : R2 → R has a strict local minimum at the origin and f(0, 0) = 0, then
the polar curve Γ(f, x) does not contain the line x = 0.

Proof. We argue by contradiction. If the line x = 0 is contained in Γ(f, x), then we may write
∂f
∂y (x, y) = xg(x, y), where g ∈ R[x, y]. Then f(x, y) = f(x, 0) +

∫ y
0 xg(x, t)dt = xϕ(x, y), since

f(0, 0) = 0. Hence f does not have a strict local minimum at the origin, because it vanishes on
x = 0. Contradiction.

Example 2.46. In Figure 2.22 is represented the polar curve Γ(f, x) of Coste’s example (see
Example 2.10: f(x, y) := x2 + (y2 − x)2). It has two irreducible components, with equations
(y = 0) ∪ (y2 − x = 0).

Figure 2.22: The polar curve (y = 0) ∪ (y2 − x = 0) for Example 2.10, namely Coste’s example

Example 2.47. Recall our Example 2.12: f(x, y) := x16 + (y2 + x)2(y2 − x)2. In Figure 2.23,
the polar curve Γ(f, x) has three components (y = 0) ∪ (y2 + x = 0) ∪ (y2 − x = 0).

Figure 2.23: The polar curve (y = 0) ∪ (y2 + x = 0) ∪ (y2 − x = 0) for Example 2.12.
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Example 2.48. We can create new examples starting from Coste’s example by taking the
parametrisation of a branch γ of the polar curve Γ(f, x), namely t 7→ (t2, t), and modify it,
as follows.

Consider the new parametrisation (t 7→ p(t), q(t)), where p(t) = t2 + t3 and q(t) := t. Let us
compute the resultant of the polynomials g(t) := x − p(t) and h(t) := y − q(t), in order to find
the implicit polynomial whose zero locus is γ. We have the resultant (see for instance [BK86,
page 178])

Rest(x, y) = det


−1 −1 0 x
−1 y 0 0
0 −1 y 0
0 0 −1 y

 = x− y3 − y2.

Thus, (see [BK86, page 181]) we have a new algebraic branch γ̃ := {(x, y) ∈ R2 | x−y3−y2 =
0}.

Take now f̃(x, y) := x2 + (x− y3 − y2)2(x− y2)2 and obtain the local situation of the polar
curve in a small enough neighbourhood of the origin as presented in Figure 2.24 below.

Figure 2.24: We modified the initial parabola γ (in red) into γ̃ (in green), both branches of the
polar curve Γ(f̃, x), to obtain a different local shape of Cε when compared to the initial one in
Coste’s example.

Example 2.49. Recall our Example 2.13: f(x, y) := x6 + (y4 + y2 − x)2(y2 − x)2. In Figure
2.25, the polar curve Γ(f, x) has four components.

Figure 2.25: The polar curve for our Example 2.13.
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For more details about the next Lemma 2.50, one should see [Ghy17, page 105].

Lemma 2.50. [Mil68] Let Γ be a real algebraic curve. Firstly, there exists a Milnor disk for
Γ at the origin: a Euclidean disk such that the boundaries of all the concentric disks inside the
Milnor disk are transverse to the curve. Secondly, if the curve is analytically irreducible at the
origin, then in such a disk the curve is homeomorphic to a segment.

A proof can be found in [Mil68, Lemma 3.3, page 28] and [Ghy17, page 105].

Definition 2.51. [Ghy17, page 2] A real branch is the germ at the origin of an analytically
irreducible curve at this point.

A definition similar to Definition 2.52 can be found, for instance, in [Cas15, page 97].

Definition 2.52. A half-branch (see Figure 2.26 below) is the germ at the origin of the closure
of one of the connected components of the complementary of the origin in a Milnor representative
of a branch.

Remark 2.53. We can choose to denote one half-branch by γ+
i and the other one by γ−i .

Definition 2.54 is inspired by [CP01, Section 2].

Definition 2.54. We call polar half-branches the half-branches of the polar curve Γ :=
Γ(f, x), in the sense of Definition 2.52. Let γ∗ ⊂ Γ be a polar half-branch and let V be a
good neighbourhood of the origin, as in Definition 2.67. We say that γ∗ in V is a right polar
half-branch if x|γ∗ ≥ 0. If x|γ∗ ≤ 0, we say that γ∗ in V is a left polar half-branch.

Remark 2.55. By Corollary 2.62, in a sufficiently small V we always have that x is strictly
increasing when restricted to the right polar half-branches and strictly decreasing when restricted
to the left polar half-branches.
Remark 2.56. We sometimes call the union of the right polar half-branches the positive polar
curve.

Figure 2.26: A branch γi of Γ has exactly two half-branches: γ−i and γ+
i .

A result similar to the following lemma can be found in [FCP96, Lemma 1.1].

Lemma 2.57. Let g : R2 → R be a polynomial function with a strict local minimum at the origin
O = (0, 0) and let Γ be an algebraic curve passing through the origin. In a small enough neigh-
bourhood V of the origin, for any half-branch γ∗ ⊂ Γ, the restriction g|γ∗ is strictly monotone. In
particular, in the sufficiently small neighbourhood V , for a small enough ε > 0, the intersection
(g = ε) ∩ γ∗ consists of exactly one point, for each half-branch γ∗ (see Figure 2.27). Here the
symbol ∗ ∈ {+,−}.
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2.5. Asymptotic properties near a strict local minimum

Figure 2.27: For a small enough neighbourhood V and for a sufficiently small ε > 0, the inter-
section Cε ∩ γ− (respectively Cε ∩ γ+) consists of exactly one point.

Proof. Let us choose, without loss of generality, to study the behaviour of g on γ+. Suppose that
g|γ+ is not constant. Since Γ is an algebraic curve, it has only a finite number of critical points.
Therefore one can assume that in a small enough neighbourhood V of the origin O = (0, 0), the
half-branch γ+ has no critical points except maybe the origin O = (0, 0). By [Mil68, Lemma
2.7], applied to the polynomial function g and to the one-dimensional manifold γ+, which is a
subset of the algebraic curve Γ, in the sufficiently small neighbourhood of O = (0, 0), the set of
the local extrema of g|γ+ is an algebraic set of dimension zero. Thus, by [Eis95, Corollary 9.1,
page 227], the set of local extrema is finite. Now let us choose V sufficiently small such that in V
there are no local extrema of the function g|γ+\{(0,0)}. Thus, in V , g|γ+ is strictly monotone.

Corollary 2.58. Given a polynomial function f with a strict local minimum at the origin and
its polar curve Γ(f, x), if γ+ is a right polar half-branch, then fγ+ is always strictly increasing
in V , when going further from the origin.

Proof. Apply Lemma 2.57 for the function f and the polar curve Γ(f, x), taking into account
that (0, 0) is a strict local minimum.

Example 2.59. Let us present in Figure 2.28 a configuration which is impossible asymptotically
(i.e. for ε > 0 sufficiently small) in V : even if x|γ+ is strictly increasing, we have f|γ+ not strictly
increasing.

Figure 2.28: Locally impossible configuration in V : f|γ+ not strictly increasing.

Corollary 2.60. In particular, the shape of Cε in a sufficiently small enough V cannot go back-
wards or be spiral shaped.
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Corollary 2.61. We can choose a sufficiently small neighbourhood V such that the intersection
γ∗ ∩ Cε consists of exactly one point, where Cε := (f = ε) ∩ V .

Proof. By Corollary 2.58, for any polar half-branch γ∗ one has fγ∗ is locally strictly increasing,
thus for sufficiently small ε, the intersection (f = ε) ∩ γ∗ consists of at most one point.

A consequence of Lemma 2.57, applied to the polar curve Γ(f, x) of f and for the function
g : R2 → R, g(x, y) := x is the following result.

Corollary 2.62. Let f be a polynomial function with a strict local minimum at the origin and
let Γ(f, x) :=

{
(x, y) ∈ R2

∣∣∣ ∂f∂y (x, y) = 0
}
be its polar curve with respect to x. In a small enough

neighbourhood V of the origin, for any polar half-branch γ∗ ⊂ Γ, the restriction x|γ∗ is strictly
monotone. Here the symbol ∗ ∈ {+,−}.

Proof. Since x is not constant on Γ(f, x) by Proposition 2.45, we can apply Lemma 2.57.

Example 2.63. Let us present in Figure 2.29 a locally impossible configuration in V of Cε with
a polar half-branch γ+: even if f|γ+ is strictly increasing, we have x|γ+ not strictly increasing.

Figure 2.29: Impossible asymptotic configuration in V , since x|γ+ is not strictly increasing.

Remark 2.64. In particular, the shape of Cε in a sufficiently small enough V cannot “go back-
wards”. More rigorously, if we choose V small enough, then the polar curve Γ(f, x) has no
vertical tangents in V . A vertical tangent of a polar half-branch γ∗ would correspond to a local
extremum of the function x|γ∗ , which is impossible.

A consequence of Lemma 2.57, applied to the polar curve Γ(f, x) of a polynomial function
f with a strict local minimum at the origin and to the function square of the distance to the
origin, namely x2 + y2 is the following result.

Corollary 2.65. Let f be a polynomial function f with a strict local minimum at the origin and
let Γ(f, x) be its polar curve with respect to x. In a small enough neighbourhood V of the origin,
for any polar half-branch γ∗ ⊂ Γ, the restriction x2 + y2

|γ∗ is strictly monotone. Here the symbol
∗ ∈ {+,−}.

Corollary 2.66. We can choose a sufficiently small neighbourhood V such that for any polar
half-branch γ∗, the intersection γ∗ ∩ ∂V consists of exactly one point.
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2.6 The asymptotic Poincaré-Reeb tree

The Poincaré-Reeb tree stabilises up to equivalence (see Definition 2.38) when the level
gets small enough. This “limit” transversal tree is called “the asymptotic Poincaré-Reeb
tree” of f relative to x. It has the following properties:

- the image of the origin is a point of valency 2, which will be considered to be the root of
the tree;

- the preorder on the set of vertices induced by the function x is strictly monotonous on
each geodesic starting from the root.

Here “limit” means for a sufficiently small ε > 0.

Figure 2.30: An asymptotic Poincaré-Reeb tree.

Definition 2.67. Let us consider a polynomial function f : R2 → R with a strict local minimum
at the origin, such that f(0, 0) = 0. Denote by Γ(f, x) the polar curve of f with respect to the
direction x. Let V be a neighbourhood of the origin O(0, 0). We say that the neighbourhood V
is a good neighbourhood of the origin for the couple (f, x) if V satisfies:

(i) the point (0, 0) is the only strict local minimum of f in V ;
(ii) we have V ∩ (f = 0) = {(0, 0)}.
(iii) Sing(Γ(f, x)) ∩ V ⊆ {(0, 0)};
(iv) V is small enough such that on each polar half-branch γ∗ of Γ(f, x) we have f|γ∗ is strictly

monotone;
(v) V is small enough such that on each polar half-branch γ∗ of Γ(f, x) we have x|γ∗ is strictly

monotone.
(vi) V is small enough such that for any polar half-branch γ∗, the intersection γ∗∩∂V consists

of exactly one point

Remark 2.68. Condition (i) implies for any two distinct polar half-branches γ∗i and γ∗j , we have

(γ∗i ∩ γ∗j ) ∩ V = {(0, 0)}.
Definition 2.69. Consider a polynomial function f with a strict local minimum at the origin,
such that f(0, 0) = 0. The asymptotic Poincaré-Reeb tree of f relative to x is the “limit”
Poincaré-Reeb tree of its sufficiently small levels near the origin with respect to x. Here by “limit”
we mean: for a sufficiently small ε > 0.

Theorem 2.70. Besides the properties of the Poincaré-Reeb tree (see Corollary 2.37), the
asymptotic Poincaré-Reeb tree stabilises up to equivalence (see Definition 2.38) when the
level gets small enough. It is a rooted plane tree, the root being the image of the origin. The
total preorder relation on its vertices, induced by the function x, is strictly monotone on
each geodesic starting from the root. In addition, the asymptotic Poincaré-Reeb tree is a union
of a positive tree (at the right of the origin) and a negative tree (at the left of the origin),
the latter two having a common root, that is the image of the origin.
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Proof. Let us first prove the stabilisation. Take two right polar half-branches γi and γj . De-
note by (xi(t), yi(t)), respectively (xj(t), yj(t)) their corresponding Newton-Puiseux parametrisa-
tions (see [Wal04, Theorem 2.1.1]). Here x1(t), y1(t), x2(t), y2(t) ∈ R{t} are convergent analytic
parametrisations. Now denote by g(t) := xi(t)−xj(t). We have two possibilities: either g(t) ≡ 0,
i.e. we have a vertical bitangent, or g(t) 6≡ 0. In the second case, by taking a sufficiently small
t, the sign of the analytic function g does not change. Since there are finitely many polar
half-branches, we can choose a sufficiently small t such that the total preorder stabilises.

In the asymptotic setting, if we consider a polynomial function f : R2 → R with a strict
local minimum at the origin such that f(0, 0) = 0, then the root of the Poincaré-Reeb tree is
the image of the origin by the quotient map (see Section 2.4). By Lemma 2.42, the origin is in
the interior of the disk Dε. Since the real plane is cooriented, we distinguish without ambiguity
between the positive tree (at the right of the origin) and the negative tree (at the left of the
origin), the latter two having the common root, that is the image of the origin.

Moreover, we have the induced application x̃ := x of the projection function x : R2 → R to
the embedded Poincaré-Reeb tree. By Corollary 2.62: for any polar half-branch γ∗ ⊂ Γ(f, x),
the restriction x|γ∗ is strictly monotone. Thus, x̃ has no internal local extremum on an edge of
R(f, x). To the right, x̃ only attains its local maxima on the leaves of R(f, x). Similarly, to the
left, x̃ only attains its local minima on the leaves of R(f, x). In other words, there are no edges
of x̃ only attains its local maxima on the leaves of R(f, x) which “go backwards”.

Remark 2.71. Since we did not impose any condition of genericity for the direction of projection,
one can obtain several vertices of the asymptotic Poincaré-Reeb tree on the same level of the
foliation of the plane given by x (namely they are points on a vertical bitangent, see Figure 2.31),
thus we only have a total preorder relation, not a total order relation on the vertices.

Example 2.72. A Poincaré-Reeb tree whose vertices are in a total preorder relation, which is not
a total order relation, since there exist vertical bitangents (in blue and in pink, see Figure 2.31).
Thus the vertices v1 and v2 (in blue) have the same x-coordinate and x̃-coordinate. Similarly,
the points v3, v4 and v5 (in pink) have the same x-coordinate and x̃-coordinate.

Figure 2.31: A total preorder relation, which is not a total order relation.
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Remark 2.73. If the asymptotic Poincaré-Reeb tree is generic (see Section 2.8 below), we do
not have the phenomenon from Example 2.72.

Remark 2.74. The strict monotonicity on the geodesics starting from the root implies that the
small enough level curves Cε have no turning back or spiralling phenomena. In particular, for
ε > 0 sufficiently small, there are no shapes Cε like the one in Figure 2.32.

Figure 2.32: Forbidden shape for small enough ε > 0: there are no going backwards like this.

2.6.1 Positive tree, negative tree, union tree

The image of the origin will be the root of the Poincaré-Reeb tree. The real line is oriented,
thus once the root is fixed, the root will separate without ambiguity between the negative side
(i.e. left side) and the positive side (i.e. right side), as we shall see in the sequel.

Definition 2.75. If v1(x1, y1) and v2(x2, y2) are two points in a real plane P endowed with a
trivial fibre bundle Π : P → R, we say that v2 is to the right of v1 if x2 > x1. If x2 < x1, we
say that v2 is to the left of v1.

Definition 2.76. We call a positive tree a plane tree in which every vertex has its children to
the right. We call positive edges the edges belonging to a complete plane binary positive tree.

Example 2.77. The following Figure 2.33 shows a complete plane binary positive tree. For
instance, the vertex v2 is to the right of the vertex v1.

Figure 2.33: A complete plane binary positive tree.
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Definition 2.78. We call a negative tree a plane tree in which every vertex has its children to
the left. We call negative edges the edges belonging to a complete plane binary negative tree.

Definition 2.79. Let T+ be a positive tree and T− be a negative tree. We call the union tree
between T− and T+, denoted by T− −O− T+, the plane tree obtained by making the connected
sum of the two trees: we glue their roots into a point O, which becomes the root of the union-tree.

Example 2.80. We show in Figure 2.34 how we make the union tree, by making the connected
sum of two half-planes. The arrows show the orientation of the half-planes, such that at the
glued line the orientations are reversed.

Figure 2.34: The union tree of a negative tree and a positive tree.

Remark 2.81. The asymptotic Poincaré-Reeb tree is a union tree of a positive tree and a negative
tree (see Figure 2.35).

Since the plane is cooriented the image of the origin by the quotient map q separates the
asymptotic Poincaré-Reeb tree in a negative tree and a positive tree. They form a union tree,
whose root is the image of the origin.

Figure 2.35: The asymptotic Poincaré-Reeb tree is a union of a negative tree and a positive tree.
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Remark 2.82. The root is a special vertex of the union tree. More precisely, the root of the
union tree will be the only vertex with valency equal to two.

2.7 Generic directions of projection

2.7.1 Choosing the direction of a generic projection for one level curve

Definition 2.83. [Fis01, page 74] Let C ⊂ CP2 be an algebraic curve. Then

C∗ :=
{
L ∈ CP2 | L is tangent to C at some point p ∈ C

}
is called the dual curve of C.

Remark 2.84. Definition 2.83 is standard (see for instance [Fis01, pages 73-74], [BK86, page
252]). We denote the dual projective space by (CP2)∗. To a point

y = [y0 : y1 : y2] ∈ (CP2)∗,

it corresponds the line V (y0X0 + y1X1 + y2X2) ⊂ CP2.
The dual curve can be visually constructed by using the theory of pole-polar relation in a

circle, see Figure 2.36 below and [BK86, pages 577-583].

Figure 2.36: A curve and its dual (see [Wv]).

The three next results are classical. The proofs can be found, for instance, in [Fis01, Chapter
5], [Wal04, Chapter 7] or [GKZ94, Chapter 1].

Proposition 2.85. [Fis01, page 74] Let C ⊂ CP2 be an algebraic curve that has no lines as
components. Then:

(a) the dual curve of C, denoted by C∗, is an algebraic curve;
(b) C∗∗ = C;
(c) if C is irreducible, then C∗ is irreducible and deg C∗ ≥ 2.

Lemma 2.86. [GKZ94, page 20] For a smooth curve C, cusps of C∗ correspond to the simple
inflection points of C, i.e. such points where the tangent line has tangency to C of exactly the
second order and is not tangent to C anywhere else. Similarly, nodes of C∗ correspond to simple
bitangents of C, i.e. such that both tangencies are of first order and there are no other points of
tangency.

Lemma 2.87. [Fis01, page 49] An irreducible algebraic curve C ⊂ CP2 of degree n has at most
1
2(n− 1)(n− 2) singularities.

In the sequel, let us prove that any irreducible algebraic curve C ⊂ CP2 has a finite number
of bitangent lines and finitely many inflection points. These proofs will lead us to the choice of
the direction of a generic projection with respect to Cε, for a small enough ε > 0, as we shall see
at the end of this section.

Lemma 2.88. An irreducible algebraic curve C ⊂ CP2 has a finite number of bitangent lines.
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Proof. By Proposition 2.85, (b), we have C∗ is also an algebraic curve. Thus, by Lemma 2.87,
the dual algebraic curve C∗ has a finite number of double nodes, namely 1

2(n∗−1)(n∗−2), where
n∗ := degC∗. By Lemma 2.86, the bitangents of C correspond to the double nodes of C∗.

A similar result for the inflection points can be given, but [Fis01] gave a better result, in
function of n := deg C, as follows:
Lemma 2.89. [Fis01, page 68] An algebraic curve C ⊂ CP2 of degree deg C ≥ 2 that contains
no lines has at most 3n(n− 2) inflection points.

Since we have the finiteness conditions given by Lemma 2.88 and Lemma 2.89, we are ready
to introduce the following Definition 2.90 of a generic projection, which will be used in the
next sections, followed by Proposition 2.91.

Definition 2.90. Let us consider a polynomial function f : R2 → R and let us denote by
Cε := {(x, y) ∈ R2 | f(x, y) = ε}, for a sufficiently small fixed 0 < ε � 1. We call a generic
direction with respect to Cε, a direction d which satisfies the following conditions:

(i) d is not the direction of any bitangent of Cε;
(ii) d is not the direction of any tangent which passes through any inflection point of Cε;

Proposition 2.91. All but finitely many directions of projection are generic, for a fixed ε > 0.

Proof. The proof is a consequence of Lemma 2.88 and Lemma 2.89, using Definition 2.90.

Lemma 2.92. In a good neighbourhood of the origin (see Definition 2.67), if the direction x is
generic, then the Poincaré-Reeb tree is a rooted plane tree whose vertices are in a total order
relation given by the induced application x̃ := x (see Definition 2.24), such that this total order
is strictly increasing (respectively decreasing) on any geodesic going from the root to the right
(respectively left).

Proof. It is a corollary of Theorem 2.70, but in the case of a generic projection, the total preorder
relation between the vertices of the Poincaré-Reeb tree becomes a total order relation, since for
a generic direction x there will be no bitangents, namely no two vertices which have the same
x-coordinate.

2.7.2 Choosing the direction of a generic projection for a family of level
curves

The purpose of this section is to prove that, except for finitely many small intervals on the
circle of projection directions, all the directions are generic (in the sense of Definition 2.90)
for all Cε, where ε > 0 is sufficiently small.

Theorem 2.93. There exists ν > 0, there are finitely many intervals Ui ⊂ RP1, of length ν, such
that for any 0 < ε� ν, all the projection directions of RP1 \⋃i Ui are generic (as in Definition
2.90).

Remark 2.94. We consider the metric on RP1 to be the one induced by the one on S1/∼, where
∼ is the antipodal equivalence relation.

Proof. • Firstly, let us consider the Hessian matrix of f , namely

Hess (f)(x, y) :=

[
∂2f
∂x2

(x, y) ∂2f
∂x∂y (x, y)

∂2f
∂y∂x(x, y) ∂2f

∂y2
(x, y)

]
.

Denote by H := {(x, y) ∈ R2 | det Hess (f) = 0} the set of inflection points of the level sets
of f. Thus H ⊂ R2 is a real algebraic set of dimension less or equal to 1 (see Figure 2.37, in
green).
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Figure 2.37: In green, an arc γH ⊂ H. In red, an arc γB ⊂ B. The curves in black represent
three curves Cε, for sufficiently small ε > 0.

• Secondly, let B := {P ∈ R2 | ∃Q ∈ R2, Q 6= P,∃ε > 0 such that f(P ) = f(Q) = ε and P +
TPCε = Q + TQCε} be the set of points where there exists a bitangent to a level set of f . Here
TPCε is the tangent to Cε at the point P . We want to prove that B is a semialgebraic set of
dimension less or equal to 1 (see Figure 2.37, in red).

Let Σ := {(P,Q) ∈ R2×R2 | ∃ε > 0 such that f(P ) = f(Q) = ε and P +TPCε = Q+TQCε}
and δ = {(P, P ) ∈ R2 × R2 | ∃ε > 0 such that f(P ) = ε and P + TPCε = P + TPCε} the
diagonal of Σ. Thus Σ \ δ is a semialgebraic set of R2 × R2. Let us consider the projection
Π : R2 × R2 → R2, Π(P,Q) = P. By Tarski-Seidenberg principle (see [Cos02, Section 2.1.2]),
Π(Σ \ δ) is a semialgebraic set of R2. Since Π(Σ \ δ) = B, we have that B is a semialgebraic set.

Let us argue by contradiction to prove that the set B, has dimension at most 1. Suppose B had
dimension 2. Take P ∈ B then there exists a disk centred at P included in B. If εP := f(P ) > 0,
we obtain that there exists a level curve CεP , which intersects this disk in infinitely many points.
This in impossible, by Proposition 2.91: for a fixed εP > 0 there is a finite number of bitangents
to Cε. In conclusion dim (Π(Σ \ δ)) ≤ 1.

• Therefore we have H̊ := H\{O} and B̊ := H\{O} are semialgebraic sets of dimension less
or equal to 1. Hence the set H̊∪ B̊ is also a semialgebraic set of dimension at most 1 of R2 \{O}.
Therefore, it has a finite number of arcs at the origin.
• The next step of the proof is to define the polynomial map Φ : R2 → R2,

Φ(x, y) :=

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
.

The set H̊ ∪ B̊ is semialgebraic of dimension at most 1, it is the union of finitely many half-
branches: H̊ ∪ B̊ = ∪γi, for finitely many i. Namely we have γi : R→ R2.

Let us fix i0. The image by Φ of the arc γi0(t) is the arc Φ(γi0(t)). The slope of a secant of

the arc Φ(γi0(t)) is given by
∂f
∂y

(γi0 (t))−0
∂f
∂x

(γi0 (t))−0
. Since γi0 is a semialgebraic arc, there exists the limit

lim
t→0

∂f
∂y (γi0(t))

∂f
∂x (γi0(t))

:= pi0 ,

which is the slope of the tangent at the origin. In other words, we use the well-known fact that
an algebraic arc never reaches the origin as an infinite spiral (see for instance [Ghy17, p. 105]).
If pi0 =∞, then make a change of coordinates. Therefore we can suppose that pi0 ∈ R without
loss of generality.
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• The next step is to consider the map ψ : R2 → RP1, defined by

ψ(x, y) :=

[
∂f

∂y
(x, y) :

∂f

∂x
(x, y)

]
.

Thus

lim
t→0

ψ(γi0(t)) = lim
t→0

[
∂f

∂y
(γi0(t)) :

∂f

∂x
(γi0(t))

]
= lim

t→0

[
∂f
∂y (γi0(t))

∂f
∂xγi0(t))

: 1

]
= [pi0 : 1].

Since there are finitely many half-branches, we obtain finitely many points [pi : 1]. For each of
them, let us define a small neighbourhood Ui ⊂ RP1. There exists a real number ν > 0 such that
the directions corresponding to RP1 \ ∪iUi are all generic directions (in the sense of Definition
2.90).

2.7.3 Geometric hypotheses for having a generic direction

In the asymptotic case, i.e. for ε > 0 sufficiently small, the level curve Cε does not have
tangents that pass through the origin.

Proposition 2.95. There are no vertical tangents to Cε, for ε > 0 sufficiently small, that pass
through the origin.

Proof. Let M0(x0, y0) ∈ Cε be a point such that Cε has a vertical tangent at M0 and such that
this tangent passes through the origin. Hence the equation of the tangent is x0

∂f
∂x (x0, y0) +

y0
∂f
∂y (x0, y0) = 0. In other words, the vectors

−−−→
OM0 and gradf (x0, y0) are perpendicular, since

their scalar product is zero. Since the tangent is vertical, the vector gradf (x0, y0) is horizontal,
thus

−−−→
OM0 is a vertical vector.

Since M0 was arbitrarily chosen, we conclude that there exists a sequence of points Mi

that satisfy this property, namely that the Oy-axis is included in the polar curve Γ(f, x). By
Proposition 2.45, we obtain a contradiction.

Recall Theorem 2.93, where we proved that the directions of projections which avoid bitan-
gents and inflection tangents are generic.

We are now going to give two hypotheses that imply that there are no vertical bitangents
and no vertical inflection tangents on Cε.

Proposition 2.96. If the polar curve of f with respect to x, that is Γ(f, x), is reduced, then
there are no vertical inflection tangents to the curve Cε, for ε > 0 sufficiently small.

Proof. Fix x0 > 0. The vertical tangent at (x0, y0, 0) to Cε in the xOy plane, if it exists, is
the projection of the horizontal tangent at the point (x0, y0, ε) to the graph of the one variable
polynomial f(x0, y) in the x = x0 plane. See Figure 2.38.
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Figure 2.38: An inflection point of the one variable polynomial f(x0, y) corresponding to a
vertical inflection tangent of Cε.

For fixed x0 > 0, we have (x0, y0) ∈ Cε, that is f(x0, y0) = ε. Since (x0, y0) is a vertical
inflection point, we have:

-if y < y0, f(x0, y) > ε;
-if y > y0, f(x0, y) < ε
(or its symmetric situation, that can be treated similarly).
This means that on the surface graph(f) := {(x, y, z) ∈ R3 | z = f(x, y)} we have the

corresponding two cases:
-if y < y0, the graph of the one variable polynomial f(x0, y) is above z = ε;
-if y > y0, the graph of the one variable polynomial f(x0, y) is below z = ε.
In other words, for a fixed sufficiently small x0 > 0, the vertical inflection points of Cε

correspond to the inflection points of the one variable polynomial f(x0, y), since in the univariate
case, the polynomial f(x0, y) has an inflection point (x0, y0) if and only if (x0, y0) is a double
root of the derivative of f(x0, y), that is a double root of the equation ∂f

∂y (x0, y) = 0.
Since the above mentioned is true for any x0 > 0 small enough, this means there is a family

of double roots of ∂f∂y (x, y) = 0. In other words, the equation of the polar curve has factors with
multiplicity greater than one, that is the polar curve is not reduced.

In conclusion, if the polar curve Γ(f, x) :=
{

(x, y) ∈ R2
∣∣∣ ∂f∂y (x, y) = 0

}
is reduced, there are

no vertical inflection tangents to Cε, for sufficiently small ε > 0.

Corollary 2.97. If the polar curve is reduced, then the asymptotic Poincaré-Reeb tree has no
vertices of valency equal to two, except for the root.

Proposition 2.98. Let us consider the polar curve of f with respect to x, that is

Γ :=

{
(x, y) ∈ R2

∣∣∣∣ ∂f∂y (x, y) = 0

}
,

and the map
φ : R2

x,y → R2
x,z, φ(x, y) := (x, f(x, y)).

If the restriction of the map φ to the polar curve is a homeomorphism on the image φ(Γ), then
there are no vertical bitangents to the curve Cε, for ε > 0 sufficiently small.
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Remark 2.99. The fact that the restriction of φ to Γ is a homeomorphism onto φ(Γ) means that
any two distinct polar branches of Γ have different images by φ.

Proof. Let us suppose there existed vertical bitangents to Cε, i.e. there exists x0 ∈ R, x0 > 0
sufficiently small and there exist y1 6= y2 such that f(x0, y1) = f(x0, y2), with vertical tangent at
both (x0, y1) and at (x0, y2). To be more precise, this means that there exist two different polar
branches γ1 6= γ2, with (x0, y1) ∈ γ1, (x0, y2) ∈ γ2 such that (x0, y1) 6= (x0, y2) (see Figure 2.39)
but φ(x0, y1) = φ(x0, y2). Hence φ is not a homeomorphism when restricted to Γ on its image.

Figure 2.39: Two different polar branches γ1 6= γ2, with (x0, y1) ∈ γ1, (x0, y2) ∈ γ2 such that
(x0, y1) 6= (x0, y2).

Corollary 2.100. Let us consider the polar curve Γ(f, x) :=
{

(x, y) ∈ R2
∣∣∣ ∂f∂y (x, y) = 0

}
, and

the map φ : R2
x,y → R2

x,z, φ(x, y) := (x, f(x, y)). If the restriction of the map φ to the polar curve
is a homeomorphism on the image φ(Γ), then the asymptotic Poincaré-Reeb tree has no vertices
of valency strictly bigger than 3.

2.8 The generic asymptotic Poincaré-Reeb trees

If the direction x of projection we consider is generic, namely if it is a direction that avoids
bitangents to Cε and tangents to inflection points, then we obtain what we call a generic
asymptotic Poincaré-Reeb tree. We proved in Subsection 2.7.3 that if some hypotheses
on the polar curve are satisfied, the direction is generic in the sense of Definition 2.90. Besides
the properties of an asymptotic Poincaré-Reeb tree, a generic asymptotic Poincaré-Reeb tree
(see Figure 2.40) has the following characteristics:
• the preorder induced by x on its set of vertices is a total order;
• it is a complete binary tree (i.e. each internal vertex has exactly two children).
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Figure 2.40: Two topologically inequivalent generic asymptotic Poincaré-Reeb trees.

Definition 2.101. If the direction of projection x is generic, then the asymptotic Poincaré-Reeb
tree is called a generic asymptotic Poincaré-Reeb tree of f with respect to the generic
direction.

Remark 2.102. The aim of this section is to prove that the generic asymptotic Poincaré-Reeb
tree, besides being an asymptotic Poincaré-Reeb tree, it is complete binary and such that the
preorder defined by x on its vertices is a total order.

Example 2.103. In Figure 2.41 we show an example of a generic asymptotic Poincaré-Reeb tree.

Figure 2.41: A generic asymptotic Poincaré-Reeb tree.

Remark 2.104. A generic asymptotic Poincaré-Reeb tree is a generic rooted transversal tree, in
the sense of the following definition:
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Definition 2.105. A generic rooted transversal tree is a complete binary transversal tree
such that the preorder defined by x on its vertices is a total order which is strictly monotone
on the geodesics starting from the root.

Remark 2.106. We introduce Definition 2.105 because in the next chapters we are interested
in which (generic rooted) transversal trees (see also Definition 2.38) we can realise explicitly
as generic asymptotic Poincaré-Reeb trees by a strict local minimum of a polynomial function.

Example 2.107. An example of two topologically inequivalent generic asymptotic Poincaré-Reeb
trees is shown in Figure 2.42 below.

Figure 2.42: Two topologically inequivalent generic asymptotic Poincaré-Reeb trees.

The lack of equivalence (see 2.38) is due to the fact that in order to pass from one tree to
the other one, we reach a non-generic tree, where the two leaves have the same x−coordinate,
see Figure 2.43.

Figure 2.43: A non-generic tree: the two leaves are situated on the same x-level.

2.8.1 Crests and valleys

Let us suppose from now on that the polar curve Γ(f, x) is reduced. This is equivalent to the
fact that the levels of f have only order 2 intersections with their vertical tangents.

Let γ∗ be a polar half-branch and let (x0, y0) := γ∗∩Cε. By Definition 2.43 of the polar curve
Γ(f, x), the tangent to Cε at the point (x0, y0), say T(x0,y0)Cε, is the vertical line (x = x0). In the
following, we shall use the notations introduced in the previous sections.

The terminology of crest and valley is inspired by [CP01, Definition 2], where Coste and
de la Puente used it to study atypical values of real bivariate polynomial functions at infinity.

Definition 2.108. Let γ∗ be a polar half-branch. We say that a point (x0, y0) := γ∗ ∩ Cε is a
right crest (respectively right valley) of Cε if and only if x0 > 0 and Cε is situated to the right
(respectively, left) of the vertical line (x = x0), in a small enough neighbourhood of (x0, y0).
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Let γ∗ be a polar half-branch. We say that a point (x0, y0) := γ∗ ∩ Cε is a left crest
(respectively left valley) of Cε if and only if x0 < 0 and Cε is situated to the left (respectively,
right) of the vertical line (x = x0), in a small enough neighbourhood of (x0, y0).

See Figure 2.44.

Figure 2.44: Left and right crests in blue; left and right valleys in red.

Remark 2.109. The reason we chose these names is to be consistent with the legends of geo-
graphical maps (see, for instance, [Geoa] and [Geob]). However, in our case the observer who is
studying the topographic map of the three-dimensional landscape is situated at infinity in the
vertical direction of the Oz axis. So our terminology of “valley” and “crest” is not intrinsic, since
it depends on the position of the observer, as one will see later in Proposition 3.17.

Remark 2.110. By Definition 2.108, one has the following properties in a small enough neigh-
bourhood of (x0, y0) :

(i) (x0, y0) = Cε ∩ γ∗ is a right crest if and only if x0 > 0 and x|Cε ≥ x0.

(ii) (x0, y0) = Cε ∩ γ∗ is a right valley if and only if x0 > 0 and x|Cε ≤ x0.

(iii) (x0, y0) = Cε ∩ γ∗ is a left crest if and only if x0 < 0 and x|Cε ≤ x0.

(iv) (x0, y0) = Cε ∩ γ∗ is a left valley if and only if x0 < 0 and x|Cε ≥ x0.

Let us define two total order relations: on the sets of right polar half-branches and of left
polar half-branches. This is possible by Corollary 2.66, if we are in a good neighbourhood V of
the origin (see Definition 2.67).

Definition 2.111. The canonical total order on the set of right polar half-branches is
the restriction of the trigonometric order to it. The canonical total order on the set of left
polar half-branches is the restriction of the anti-trigonometric order to it.

Remark 2.112. The order relation from Definition 2.111 is well-defined, since we are in a good
neighbourhood V of the origin. Recall Corollary 2.66 and Remark 2.68. Thus all the inequalities
are strict and we have a total order relation between the right polar half-branches and a total
order relation between the left polar half-branches.
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Figure 2.45: Right half-branches: γ+
1 < γ+

2 < γ+
3 and left half-branches: γ−1 < γ−3 < γ−2 of the

polar curve Γ(f, x).

Proposition 2.113. Let γ+
1 < γ+

2 < . . . < γ+
k be all the right polar half-branches of Γ(f, x). If

Pi := Cε ∩ γ+
i , Pi(xi, yi) in a good neighbourhood V of the origin, then the points P1, P2, . . . , Pk,

in this order, consist of an alternation of right valleys and right crests, i.e. there are no two
consecutive right valleys and no two consecutive right crests.

To the left there is an alternation of left valleys and left crests, i.e. there are no two consecutive
left valleys and no two consecutive left crests.

Proof. It is sufficient to prove the statement only for the right side, and only for two consecutive
right polar half-branches.

We shall prove that there are no two consecutive right polar half-branches γi0 and γi0+1 such
that the points Pi0(xi0 , yi0) := Cε∩γi0 and Pi0+1(xi0+1, yi0+1) := Cε∩γi0+1 are both right valleys
of Cε.

We argue by contradiction. Let us suppose the contrary, namely that Pi0 and Pi0+1 are both
right valleys. Furthermore, assume without loss of generality that xi0+1 < xi0 .

Let us consider a ∈]xi0+1, xi0 [ and the vertical line x = a. Recall Definition 2.67 and let
us choose a good neighbourhood V of the origin. Then there is a unique intersection point
A := γ+

i0+1 ∩ (x = a) and a unique intersection point B := γ+
i0
∩ (x = a). Hence one obtains the

points A(a, yA) and B(a, yB). By Corollary 2.58 and Definition 2.67, since f|γ+i0
and f|γ+i0+1

are

strictly increasing in V , we have f(A) > f(Pi0+1) = ε and f(B) < f(Pi0) = ε. See Figure 2.46.
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Figure 2.46: No two consecutive right valleys.

If we denote by F : R→ R the function

F (y) := f(a, y)− ε,

then F (yA) > 0 and F (yB) < 0. By the continuity of the polynomial function F, there exists
b ∈ R, yB < b < yA, such that F (b) = 0. Namely, there exists a point C(a, b) with yB < b < yA,
such that C(a, b) ∈ Cε.

Now since the above holds for any a ∈]xi0+1, xi0 [, let us consider a continuous sequence
(ak) ∈]xi0+1, xi0 [. We obtain a sequence of points Ck(ak, bk) with yB < bk < yA, such that
C(ak, bk) ∈ Cε. Therefore we have just proved that for all ak ∈]xi0+1, xi0 [, there exists a point
C(ak, bk) ∈ Cε, i.e. F (ak, bk) = 0. Thus one obtains a continuous sequence of points C(ak, bk)
in the compact set Cε, hence one can subtract a convergent subsequence C ′(ak, bk) which has its
limit in Cε. Denote this limit by L := limak→xi C

′(ak, bk).

Now there are two possibilities:

(a) if L ≡ Pi0+1, then one obtains a contradiction with Remark 2.110, (ii), namely with the
definition of a valley at Pi0+1;

(b) if L ≡ Q 6= Pi0+1, Q(xi0+1, yQ):

let us first redefine the function F : R→ R, namely

F (y) := f(xi0+1, y)− ε;

since both Q ∈ Cε and Pi0+1 ∈ Cε , i.e. F (yQ) = F (yi0+1) = 0, one can apply Rolle’s
theorem to the continuous and differentiable function F . Hence there exists yS ∈]yQ, yi0+1[

such that F ′(yS) = 0. But F ′(yS) = ∂f
∂y (xi0+1, ys), thus the point S(xi0+1, ys) ∈ ΓThis

is in contradiction with the hypothesis that γ+
i0

and γ+
i0+1 are consecutive right polar

half-branches.

In conclusion, we have proved that two consecutive right polar half-branches cannot determine
two right-valleys of Cε.
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Using a similar reasoning, one can prove that two consecutive right polar half-branches cannot
give two right-crests of Cε.

We conclude that the right valleys and the right crests must alternate. A similar result can
be established for left valleys and left crests.

We saw in Subsection 2.7.3 that if the polar curve Γ is reduced and the restriction of the
map φ : R2

x,y → R2
x,z, φ(x, y) := (x, f(x, y)) to the polar curve is a homeomorphism onto the

image φ(Γ), then the generic asymptotic Poincaré-Reeb tree has a total order relation on its
vertices and is complete and binary. Another way to see the generic Poincaré-Reeb tree (we
will prove this in Chapter 3) is the snake to the right, that we define below. The conclusions
from Subsection 2.7.3 are still true if we restrict our attention only to the right, namely for
x > 0.

Definition 2.114. The right asymptotic snake of f at the origin relative to a generic direction
x is given by the two total order relations endowing the right crests and right valleys, as follows:
one is the order induced by the total order of the right polar half-branches, i.e. the one we obtain
by reading the right crests and right valleys along the curve Cε. The other order is the one given
by the x-coordinate of the right crests and right valleys.

Example 2.115. See Figure 2.47. the one obtained by reading the right crests and right valleys
along the curve (i.e. in the order given by the right polar half-branches) and the other order
given by the x-coordinate.

Figure 2.47: Two total order relations on the set of right crests and right valleys.

It is a biordered set of five points, to which we associate the snake σ =

(
1 2 3 4 5
1 5 3 4 2

)
,

by choosing the convention of reading the labels given by the order along the curve, from right
to left. See Figure 2.48.
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2.8. The generic asymptotic Poincaré-Reeb trees

Figure 2.48: The snake to the right of the curve Cε.

Remark 2.116. However, the order given by the y−coordinate may not always correspond to
the one along the curve, as the below Figure 2.49 shows.

Figure 2.49: The canonical order is the one obtained by reading the crests and valleys along the
curve, not by their y−coordinate.

Corollary 2.117. If γ+
i and γ+

i+1 are two consecutive right polar half-branches with Pi := Cε∩γ+
i

and Pi+1 := Cε ∩ γ+
i+1, 0 < ε� 1, in a good neighbourhood V of the origin (see Definition 2.67),

then the following implications hold:

(a) If Pi+1 is a right-crest and Pi is a right-valley, then xi+1 < xi.

(b) If Pi+1 is a right-valley and Pi is a right-crest, then xi < xi+1.

Proof. (a) We argue by contradiction. If we suppose that xi+1 > xi, then we apply the same
steps as in Proposition 2.113 and by Rolle’s theorem we obtain a contradiction with the
hypothesis that γ+

i and γ+
i+1 are consecutive right polar half-branches.

(b) Analogous reasoning.

Lemma 2.118. The point P1 := Cε ∩ γ+
1 , P1(x1, y1) determined by the first right polar half-

branch γ+
1 and the point Pk := Cε ∩ γ+

k , Pk(xk, yk) determined by the last right polar half-branch
γ+
k are both right-valleys of Cε, in a good neighbourhood of the origin, denoted by V .

155



Chapter 2. The Poincaré-Reeb tree of a bivariate polynomial function

Proof. We argue by contradiction. Let us suppose that Pk is a right-crest of Cε, as in Figure
2.50.

Figure 2.50: Arguing by contradiction: if Pk were a right crest.

Let us denote by δ := {(x, y) ∈ Cε | x > xk and y > yk} ∩ V .
Let A := (x = xk) ∩ ∂V and B := γ+

k ∩ ∂V. In the following we shall prove that PkAB is
a “triangular” sector of V . This follows directly from Definition 2.67 of a good neighbourhood,
since the polar curve Γ(f, x) has no vertical tangents in V . Namely, since Γ(f, x) has no vertical
tangents, neither the right polar half-branch γ+

k ⊂ Γ(f, x) has vertical tangents (see impossible
Figure 2.51).

Figure 2.51: No vertical tangents of γ+
k in V .

Moreover, since Cε is a compact curve, δ has to escape from the triangular sector PkAB. We
want to prove that this leads us to a contradiction, in three steps, as follows.

(a) We shall prove that δ ∩ (x = xk) = ∅. We argue by contradiction. If there exists a point
Q(xQ, yQ) ∈ Cε with xQ = xk and yQ > yk, then by Rolle’s theorem one obtains another
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2.8. The generic asymptotic Poincaré-Reeb trees

right polar half-branch γ+
k+1 > γ+

k . We have obtained a contradiction.

(b) Since by hypothesis δ ⊂ Cε ⊂ V , one has δ ∩ ∂V = ∅.

(c) We prove now that δ ∩ γ+
k = ∅. This follows from the fact that in a good neighbourhood

V of the origin, the right polar half-branch γ+
k intersects Cε in precisely one point Pk, for

0 < ε� 1.

Hence we obtain a contradiction with the fact that Cε has to escape from the triangular sector
PkAB, thus Pk is a right- valley of Cε.

We argue by contradiction. If P1 is a right-crest, we apply the same steps as above to prove
that we obtain a contradiction, thus P1 must also be a right-valley of Cε.

In conclusion, to the right we have alternating right crests and right valleys, starting and
ending with a right valley. Similarly, to the left.

Lemma 2.119. Let γ+ ⊂ Γ(f, x) be a right polar half-branch and let P := γ+ ∩ Cε , with
0 < ε� 1 be a right-valley of Cε. If R(f, x) denotes the Poincaré-Reeb tree of Dε, then the vertex
corresponding to P is a leaf, i.e. it has no children.

Proof. Let us consider a small enough neighbourhood of P , namely let us study Dε locally around
P .

By Lemma 2.42 Cε is a Jordan curve. Apply the classical Jordan Theorem (see 2.41) and
thus the set Int Cε := {f < ε} is either the bounded or the unbounded component of R2 \ Cε, as
it is shown in Figure 2.52 below.

Figure 2.52: Local study in a neighbourhood of a right valley of Cε.

By Lemma 2.57, one has f|γ+ is strictly increasing as one goes to the right, further from the
origin. Hence, the only possible configuration is the one where the line x = xP does not intersect
any point of Int Cε (see Figure 2.52, the left case).

Let us now study the construction of the Poincaré-Reeb tree using Definition 2.24, locally,
in a neighbourhood of a point P . After passing to the quotient, the image of the point P is a
vertex of R(f, x), say P ′ ∈ R(f, x) corresponding to the right-valley P . Since locally at P there
is only one connected component of Dε, we obtain that the vertex P ′ has no children, i.e. P ′ is
a leaf of R(f, x).
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Chapter 2. The Poincaré-Reeb tree of a bivariate polynomial function

Remark 2.120. A similar reasoning can prove that the vertices of R(f, x) which correspond to
left valleys of Cε are also leaves of R(f, x). Nevertheless, the vertices corresponding to left crests
or to right crests are always internal vertices. (For this proof, see Lemma 2.121, proven under
the hypothesis of a generic projection.)

Lemma 2.121. Let γ+ be a right polar half-branch and let P := γ+ ∩ Cε, 0 < ε � 1, be
a right-crest of Cε. Let R(f, x) denote the Poincaré-Reeb tree. If the direction x is a generic
direction, then the vertex P ′ ∈ R(f, x) which is the image of P by the quotient map, has exactly
two children. In addition, both children will be situated to the right of P ′.

Remark 2.122. Note that if the positive polar curve is reduced and if the map φ is a homeo-
morphism onto its image by φ, then x is a generic direction.

Proof. By applying the same reasoning as in the proof of Lemma 2.119, one concludes that
locally the line x = xP has no common point with (f > ε).

Moreover, we shall construct the Poincaré-Reeb tree by using Definition 2.24 locally in a
neighbourhood of the point P . Thus, we obtain the vertex P ′ which corresponds to the right
crest P and we take into account the fact that to the left of the vertical line x = xP there is one
connected component to project, while to the right of the line x = xP there are two connected
components to project. Therefore, P ′ has two children and they are both oriented to the right
of P. See Figure 2.53.

Figure 2.53: The vertex corresponding to a right crest P has two children to the right.

Remark 2.123. Similar reasoning to prove that the vertices corresponding to left crests have
two children, both oriented to the left.

Let us now gather into one theorem all the results of this chapter, in order to prove our new
result, namely Theorem 2.124.

Theorem 2.124. Let us consider the polar curve of f with respect to x, that is Γ(f, x) :={
(x, y) ∈ R2 | ∂f∂y (x, y) = 0

}
, and the map φ : R2

x,y → R2
x,z, φ(x, y) := (x, f(x, y)).

If the following two hypotheses are satisfied:
• the polar curve is reduced,
• the restriction of the map φ to the polar curve is a homeomorphism on the image φ(Γ),

then the generic asymptotic Poincaré-Reeb tree of f relative to x is a complete binary transver-
sal tree such that the preorder defined by x on its vertices is a total order which is strictly
monotone on the geodesics starting from the root.

158
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Proof. It follows from Corollary 2.97 and Corollary 2.100.

2.8.2 Examples of generic asymptotic Poincaré-Reeb trees

Example 2.125. Consider Example 2.12. In Figure 2.54 is shown its Poincaré-Reeb tree, which
is generic.

Figure 2.54: A generic asymptotic Poincaré-Reeb tree of Coste’s example from Example 2.12.

Example 2.126. Consider Example 2.13. In Figure 2.55 is shown its Poincaré-Reeb tree, which
is generic.
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Figure 2.55: A generic asymtotic Poincaré-Reeb tree of the double banana from Example 2.13.

2.8.3 Example of non-generic asymptotic Poincaré-Reeb trees

If one considers polar curves Γ that are not reduced or the restriction of the map φ on Γ is
not a homeomorphism on its image, then there exist also non-generic Poincaré-Reeb trees, since
they have vertices whose valencies are not 3, due to either bitangents or inflection tangents.

Example 2.127. Bitangents:
If the restriction of the map φ on Γ is not a homeomorphism on its image, then we may

obtain non-generic Poincaré-Reeb trees, since we do not have a total order on the vertices of the
asymptotic Poincaré-Reeb tree. Thus there might exist vertices whose valencies are not 3.

Let us consider the polynomial f : R2 → R,

f(x, y) := x10 +
y6

6
− 3x

y4

4
+ x2y2.

The Poincaré-Reeb tree of f contains a vertex with valency equal to 4. For a small enough
ε > 0, the curve Cε is represented in blue in Figure 2.56. The polar curve (in red) is

Γ(f, x) = {(x, y) ∈ R2 | y(x− y2)(2x− y2) = 0}.
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2.8. The generic asymptotic Poincaré-Reeb trees

Figure 2.56: A projection which is not generic can lead to vertices of valency greater than 3 in
the Poincaré-Reeb tree.

Example 2.128. Inflections:
If one considers polar curves Γ that are not reduced, then we may obtain non-generic Poincaré-

Reeb trees, since we can have vertical inflection tangents.
Consider the polynomial f : R2 → R,

f(x, y) := x12 +

∫ y

0
t2(t− x2)dt.

Namely, the polar curve is in red:

Γ(f, x) = {(x, y) ∈ R2 | y2(y − x2) = 0},

as one can see in Figure 2.57 below.

Figure 2.57: The level curve Cε of f(x, y) := x12 +
∫ y

0 t
2(t−x2)dt and its non reduced polar curve

Γ(f, x) = {(x, y) ∈ R2 | y2(y − x2) = 0}, in red.
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There are two vertical inflection points on the Ox axis, that will give two vertices of valency
2 in the Poincaré-Reeb tree, thus a non-generic asymptotic Poincaré-Reeb tree. The non-generic
asymptotic Poincaré-Reeb tree R(f, x) is shown in Figure 2.58.

Figure 2.58: Non-generic asymptotic Poincaré-Reeb tree R(f, x) with two vertices of valency 2,
which correspond to two vertical inflection points.
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Realising separable positive
Poincaré-Reeb trees in two variables
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Question 3.1. Which generic rooted transversal trees (see Definition 2.105) can be realised as
generic asymptotic Poincaré-Reeb trees (see Definition 2.101) of a connected component of a
real algebraic level curve Cε, in sufficiently small neighbourhoods of strict local minima? More
precisely, given a transversal tree T , can we construct a bivariate polynomial f(x, y) ∈ R[x, y]
such that the generic asymptotic Poincaré-Reeb tree associated to f and to the direction x is
T?

The following two chapters are dedicated to answering Question 3.1. We will construct a
large family of polynomials that realise the separable generic rooted transversal trees as their
Poincaré-Reeb trees.

Question 3.2. We consider a polynomial function f : R2 → R that has a strict local minimum
at the origin O and such that f(0, 0) = 0. Let us fix a neighbourhood V of O such that O is
the only critical point of f in V . For sufficiently small ε > 0, consider the set f−1([0, ε]) and
denote the connected component that contains the origin by Dε. Denote by Cε := Dε \ Int Dε.
Let us fix a small enough 0 < ε � 1 such that Cε is a Jordan curve. From now on we study
only the phenomena in V . Let us denote by πDε : Dε → R a projection, which is a generic
direction with respect to Cε (see Definition 2.90). In particular, the question we are going to
answer in this Chapter is: can one realise any (generic rooted) transverse tree? We
give a partial but constructive affirmative answer in the following chapters. Namely, we shall
present our original construction of polynomials f whose asymptotic positive Poincaré-Reeb
trees correspond to separable snakes (see Definition 1.6 and Definition 1.128).

3.1 Strict local minima

Consider a non-degenerate (i.e. Morse) singular point (that is to say the Hessian matrix at
that point has non-zero determinant). The classical second partial derivatives test determines
if the non-degenerate singular point is a strict local minimum. But for degenerate singularities,
this second partial derivatives test is inconclusive, thus one must use other techniques. In this
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section we give a new method of constructing real polynomials f ∈ R[x, y] with a strict local
minimum at the origin.

3.1.1 Newton polygon criterion for a strict local minimum

We want to construct a polynomial f ∈ R[x, y] such that f has a strict local minimum at
the origin (0, 0). In this construction, our main idea is to consider the polar curve Γ(f, x) to be
given by

Γ =

{
(x, y) ∈ R2 |

m+1∏
i=1

(y − ai(x)) = 0

}
,

where ai(x) ∈ R[x] are distinct polynomials with valuation νx(ai(x)) ≥ 1 andm is an even integer.
More precisely, f is chosen such that all the branches of its polar curve Γ :=

{
(x, y) ∈ R2 | ∂f∂y = 0

}
are real, smooth and transverse to the Oy-axis. We will prove that

f(x, y) = x2 +

∫ y

0

∂f

∂y
(x, t)dt

has the desired property (see Proposition 3.12).

Definition 3.3. [Ber09, page 338] Let A be a subset of R2. Then the smallest convex set
containing A is called the convex hull of A.

We now present the classical notion of Newton polygon and Proposition 3.10 (see e.g. [Fis01,
Appendix 4, page 197]).

Definition 3.4. [Fis01, Appendix 4, page 197] Let

f =
∑
µ,ν≥0

cµνx
µyν ∈ R{x, y}

be a power series in two variables. We define the support of f as the following set of lattice
points in the plane:

supp(f) := {(µ, ν) ∈ N2 | cµ,ν 6= 0}.

The Newton diagram of f , denoted by Ñ (f), is the convex hull of⋃
(µ,ν)∈supp(f)

{
(µ, ν) + R2

≥0

}
.

The Newton polygon N (f) of f is the union of the compact edges of ∂Ñ (f) (see Figure 3.2).

Definition 3.5. [Fis01, Appendix 4, page 197] Let

f =
∑
µ,ν≥0

cµνx
µyν ∈ R{x, y}

be a power series in two variables. If N (f) is its Newton polygon and E is an edge of N (f), then
we define the restriction of f to E by

f|E :=
∑

{(µ,ν)∈E}

cµνx
µyν .
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Example 3.6. Let us study Figure 3.1: the four-leaf clover defined by the polynomial (see [Fis01,
page 38] and [Wal04, page 58, Example 7])

f(x, y) = (x2 + y2)3 − 4x2y2 = x6 + 3x4y2 + 3x2y4 + y6 − 4x2y2.

Figure 3.1: The four-leaf clover.

The Newton polygon associated to the four-leaf clover is shown in Figure 3.2. Firstly, the
support of f is:

supp(f) = {(6, 0), (4, 2), (2, 4), (0, 6), (2, 2)}.

There are two compact edges and two non-compact edges in the boundary of the Newton diagram.
By Definition 3.4, the Newton polygon is the union of the two compact red edges.

In addition, if E is the edge defined by joining the vertices (0, 6) and (2, 2), then

f|E = y6 − 4x2y2.

Figure 3.2: The Newton polygon (in red) of the four-leaf clover given by the equation f(x, y) =
(x2 + y2)3 − 4x2y2.

Remark 3.7. See two more examples in [Coo59, pages 47-48].
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Notation 3.8. If g, h ∈ R{t} are convergent series, we say that g(t) = o(h(t)) if and only if
limt→0

g(t)
h(t) = 0.

Notation 3.9. By f(0, y) 6≡ 0 we mean that there exists y0 ∈ R such that f(0, y0) 6= 0. Similarly,
for f(x, 0) 6≡ 0.

A connection between supp(f) and the factorization of the series of f was presented in [Fis01,
Proposition, page 198], as follows.

Proposition 3.10. [Fis01, pages 197-198] Let f(x, y) ∈ R{x, y} such that f(0, 0) = 0 and
f(0, y) 6≡ 0, f(x, 0) 6≡ 0. Assume that x(t) ∈ R{t}, y(t) ∈ R{t} are convergent series such that
x(0) = y(0) = 0 and f(x(t), y(t)) ≡ 0. Namely the series x(t) and y(t) parametrise a real branch
of (f = 0). If x(t) = atα + o(tα) and y(t) = btβ + o(tβ) where a, b ∈ R∗ and α > 0, β > 0, then
there exists an edge E (of slope −α

β ) of the Newton polygon of f such that f|E(a, b) = 0.

Proof. We have

f(x(t), y(t)) =
∑
m,n

cm,n(atα + o(tα))m(btβ + o(tβ))n =
∑
m,n

cm,na
mbntαm+βn + o(tαm+βn) ≡ 0.

Denote by
` := min{αm+ βn | (m,n) ∈ supp(f)}.

Then

f(x(t), y(t)) =

t` ∑
αm+βn=l

cm,na
mbn

+ o(t`) ≡ 0.

For the above equality to take place, the term with the lowest order in the series must vanish.
Hence (x, y) = (a, b) is a solution of the equation g(x, y) = 0, where g(x, y) :=

∑
αm+βn=` cm,nx

myn

(note that (m,n) ∈ supp(f)). Since both a and b are non-zero, g must have at least two non-zero
coefficients. Therefore there must be at least two points (m1, n1) and (m2, n2) ∈ supp(f) that
lie on the line αm+ βn = `. By the minimality of `, this line contains a segment of the Newton
polygon of f , say the segment E , with slope −α

β . In addition, (a, b) verifies g(a, b) = 0, namely
f|E(a, b) = 0.

Example 3.11. In Example 3.6 we have four real analytic branches at the origin. Let us consider
the branch given by the parametrisation x(t) = 2t2 + o(t2) ∈ R{t} and y(t) = 2t+ o(t) ∈ R{t}.
In this case, by the notations introduced in Proposition 3.10, we get a = b = 2. Denote the edge
given by the points (0, 6) and (2, 2) by E . We have f|E(x, y) = y6−4x2y2. The pair (a, b) = (2, 2)
verifies the equation f|E = 0, namely f|E(2, 2) = b6 − 4a2b2 = 0.

As a remark, we underline the fact that if we take two other series x̃(t) = 2t2, ỹ(t) = 2t+ t2 ∈
R{t}, such that ã = b̃ = 2 (with the notations from above), then f(ã, b̃) = f(2, 2) = 0, although
we have f(x̃(t), ỹ(t)) 6≡ 0.

3.1.2 Application of the Newton polygon criterion

We apply Proposition 3.10 to obtain our main result of Subsection 3.1, i.e. Proposition 3.12:

Proposition 3.12. Let us consider an even integer m ≥ 2 and the polynomial function f : R2 →
R defined by

f(x, y) := x2 +

∫ y

0

m+1∏
i=1

(t− ai(x))dt,

where ai(x) ∈ R[x], ai(0) = 0. Then f has a strict local minimum at (0, 0).
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Remark 3.13. For m = 0, we obtain the function

f(x, y) = x2 +

∫ y

0
(t− a1(x))dt = x2 +

y2

2
− a1(x)y.

Thus f has a non-degenerated critical point, so one could apply the second derivative test. Note
that in this case, f has not necessarily a strict local minimum at (0, 0).

Proof. By construction, we have f(0, 0) = 0. We argue by contradiction. We suppose that the
origin (0, 0) is not a strict local minimum of f , hence in the neighbourhood of the origin, f would
take non-positive values: for any ε > 0, there exists a point of coordinates (xε, yε) in the disk of
radius ε, centered at the origin, namely (xε, yε) ∈ D2

ε(0, 0) \ {(0, 0)} such that f(xε, yε) ≤ 0.
• First step: we find some convergent series x(t), y(t) such that f(x(t), y(t)) ≡ 0.
Consider ε := 1

n . We obtain a sequence of points (xn, yn) 6= (0, 0) arbitrarily close to the
origin such that f(xn, yn) ≤ 0. We can now apply the Curve selection lemma (see [Mil68, page
25]), which allows us to construct a real analytic curve ϕ : [0, ε[→ R2 such that ϕ(0) = 0 and
f(ϕ(t)) < 0 for any t ∈]0, ε[ (see Figure 3.3).

Figure 3.3: In a sufficiently small neighbourhood of the origin there exists a real analytic arc (in
blue) denoted by δ such that f(δ(t)) = 0, where f is the function defined in Proposition 3.12.

Note that for (x, y) ∈ (Ox) \ {(0, 0)} we have f(x, y) = x2 > 0.
Denote by B ∈ ϕ(]0, ε[) a point such that f(B) < 0. Similarly, denote by A ∈ (Ox) \ {(0, 0)}

a point such that f(A) > 0. Suppose that A and B have the same x−coordinate.
Consider an arbitrarily fixed xn := 1

n � 1. Let us define g : R → R, g(y) := f(xn, y).
For A ∈ (Ox) \ {(0, 0)}, one has g(0) > 0. For B ∈ ϕ(]0, ε[), one has g(yB) < 0. Since g is a
continuous function, we apply the intermediate value theorem, hence there exists yn ∈ R such
that 0 < yn < yB such that g(yn) = 0. Thus there exists a sequence of points (xn, yn) 6= (0, 0),
arbitrarily close to the origin, such that f(xn, yn) = 0. By the Curve selection lemma, there
exists a real analytic arc, say δ : [0, ε[→ R2, such that f(δ(t)) ≡ 0, for any t ∈ [0, ε[.

In other words, there exist x(t) := atα + o(tα) ∈ R{t} and y(t) := btβ + o(tβ) ∈ R{t} such
that f(x(t), y(t)) ≡ 0, where a, b ∈ R∗, α > 0, β > 0.
• Second step: we obtain a contradiction, using the Newton criterion presented

above.
By definition,

f(x, y) = x2 +

∫ y

0

m+1∏
i=1

(t− ai(x))dt,

thus we have
f(x, 0) = x2
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and

f(0, y) =

∫ y

0

m+1∏
i=1

(t− ai(0))dt =
1

m+ 2
ym+2,

because ai(0) = 0. Thus the points A(2, 0) and B(0,m + 2) belong to supp(f) (see Figure 3.4
below).

Figure 3.4: Edge of the Newton polygon of f .

If ai(x) = 0 + a1
ix+ a2

ix
2 + o(x2), where aki ∈ R, then we have

f(x, y) = x2 +

∫ y

0

m+1∏
i=1

(
t− (0 + a1

ix+ a2
ix

2 + o(x2))
)

dt =

= x2 +

∫ y

0

(
tm+1 + c1t

mx1 + . . .+ ckt
kxm+1−k + o(tk)

)
dt =

= x2 +
1

m+ 2
ym+2 +

c1

m+ 1
ym+1x+ x2h(x, y),

where h(0, y) = 0.
Since by hypothesis m > 0, the midpoint N(1, m+2

2 ) of the segment [AB], is below the point
Q(1,m + 1). Denote by 4OAB the convex hull of the set {O,A,B}. Hence, Q 6∈ 4OAB
(although Q might belong to the support of f). In conclusion, we have

supp(f) ∩4OAB ⊆ {A,B,N}.

In addition, since we obtained f(x, y) = x2 + 1
m+2y

m+2 + c1
m+1y

m+1x+ x2h(x, y), if there are
other points of supp(f), besides those on the segment [AB], then those points are of the form
(x, y) with y ≥ m+ 2. Thus by Definition 3.4, the only edge of N (f) is [AB].
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3.2. Construction to the right of a given separable snake

By Proposition 3.10, if (x(t), y(t)) is a parametrisation of a branch of (f = 0), then the pair
of real numbers (a, b) verifies the equation f|[AB](a, b) = 0. Namely a2 + 1

m+2b
m+2 = 0. Since

by hypothesis m > 0 is even, we have a sum of squares which can only be zero if both its terms
are zero. This is impossible, since a, b ∈ R∗. In conclusion our supposition was false and f has a
strict local minimum at the origin.

3.2 Construction to the right of a given separable snake

Note that the main purpose of Chapter 3 is to prove the following result, as we shall do
in Subsection 3.2.4: Every separable positive generic rooted transversal tree is realisable in
an effective way by a strict local minimum of a bivariate real polynomial function in a small
enough neighbourhood of the origin.

Note that the construction in this section is made only to the right, namely for x > 0. We
will treat left-right configurations only in Chapter 4.

3.2.1 The image of the apparent contour of a projection

The reader should remember Definition 2.43 of the polar curve of f with respect to x,
namely

Γ(f, x) :=

{
(x, y) ∈ R2 | ∂f

∂y
(x, y) = 0

}
.

Definition 3.14. Denote by

Γ̃ :=
{

(x, y, z) ∈ R3 | z = f(x, y), (x, y) ∈ Γ(f, x)
}
.

Notation 3.15. We denote by

graph(f) := {(x, y, z) ∈ R3 | z = f(x, y)}

the surface which is the graph of the polynomial function f : R2 → R.

Furthermore, let us present the following notions of “apparent contour” and “discriminant
locus”, which appeared for instance in [AGZV12, page 13]. A more visual explanation given by
Ghys can also be found in [GL09, Le-pli-et-la-fronce].

Definition 3.16. Let Π : graph(f)→ R2
x,z be the projection (x, y, z) 7→ (x, z). The set of critical

points of Π on graph(f) is called the apparent contour at the source of the projection Π.

Proposition 3.17. The curve Γ̃ is the apparent contour of the projection

Π : graph(f)→ R2
x,z,Π(x, y, z) = (x, z).

Proof. By [Mil68, Lemma 2.7] and by Definition 3.16, the apparent contour of Π = (Π1,Π2) (i.e.
Π1(x, y, z) = x,Π2(x, y, z) = z), is given by the set

c :=

(x, y, z) ∈ graph(f) | rank

−
∂f
∂x −∂f

∂y 1
∂Π1
∂x

∂Π1
∂y

∂Π1
∂z

∂Π2
∂x

∂Π2
∂y

∂Π2
∂z

 ≤ 2

 .

Hence the apparent contour

c =

(x, y, z) ∈ graph(f) | det

−∂f
∂x −∂f

∂y 1

1 0 0
0 0 1

 = 0

 =

{
(x, y, z) ∈ graph(f) | −∂f

∂y
= 0

}
= Γ̃.
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

Definition 3.18. We call the critical image of the projection Π : graph(f) → R2
x,z, (x, y, z) 7→

(x, z), the discriminant locus of this projection.

Thus
∆ := Π(Γ̃) ⊂ R2

x,z

is the discriminant locus of the projection Π. This terminology is similar to the one found, for
instance, in [Mau99, page 440].

3.2.2 Hypotheses

• We are in the context x > 0: we want to realise a given right separable generic rooted
transversal tree.
• As in Subsection 1.7.1 let us consider the monic polynomial Px(y) ∈ R[x][y], such that

Px(y) :=

m+1∏
i=1

(y − ai(x)) ∈ R[x][y],

where m ∈ N, the roots ai(x) ∈ R[x] for any i = 1, . . . ,m+ 1 and

a1(x) ≺+ a2(x) ≺+ . . . ≺+ am+1(x),

as one can see in Figure 3.5.
• Let ai denote the graph of the polynomial ai(x), that is ai := {(x, y) ∈ R2 | y = ai(x)} and

ãi := {(x, y, z) ∈ R3 | z = f(x, y), y = ai(x)}.

The curves ai are in the positive trigonometric order in the plane Oxy, as in Figure 3.5 below.

x

y

O

a1(x)

a2(x)

am+1(x)

Figure 3.5: The right half-branches of ai for i = 1, . . . ,m+ 1.

• In the sequel, we will consider only polynomials ai such that

νx(ai) ≥ 1,

i.e. ai(0) = 0, for any i = 1, . . . ,m+ 1.
• We denote by

Γ := (Px(y) = 0).

• In addition, we suppose that the map Π : graph(f)→ R2
x,z, (x, y, z) 7→ (x, z) is a homeo-

morphism from Γ̃+ := Γ̃ ∩ (x > 0) to Π(Γ̃+), namely that there are m+ 1 half-branches in Γ̃+

(i.e. ã1, ã2, . . . , ãm+1) and m+1 half-branches in ∆ (i.e. Π(ã1),Π(ã2), . . . ,Π(ãm+1) are distinct).
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3.2. Construction to the right of a given separable snake

3.2.3 Projections

In Chapter 1 we defined the notion of snake (see Definition 1.6), then we explained how to
draw it embedded in the real plane (see Example 1.8 and Figure 1.2). In what follows, we shall
define another object that describes completely a snake, namely its snake-sequence.

Definition 3.19. Take an even integer number m ∈ N and consider the (m+ 1)-permutation

s : {1, 2, . . . ,m+ 1} → {1, 2, . . . ,m+ 1}.

Consider its inverse permutation, s−1 : {1, 2, . . . ,m + 1} → {1, 2, . . . ,m + 1}. The ordered
sequence

(s−1(1), s−1(2), . . . , s−1(m+ 1))

is called the sequence of s and it is denoted by seq(s). If s is a snake, we call it the snake-
sequence of s.

Remark 3.20. Given a snake, its snake-sequence is thus defined independently of the embedding
plane. However, if one wants to construct the sequence geometrically, first label each critical point
of the snake (see Definition 1.6) with an integer number from 1 to m+ 1, from left to right (see
Figure 3.6). Then, project the critical points of s on a fixed axis in the plane. On this axis, we
associate to each projection the label of its corresponding critical point in its preimage. At the
end, we read the numbers starting from the one corresponding to the lowest point of the snake.

Example 3.21. Let us consider the 3-snake s :=

(
1 2 3
2 3 1

)
. Its inverse is s−1 =

(
1 2 3
3 1 2

)
.

Thus its snake-sequence seq(s) = (3, 1, 2) (see Figure 3.6).

Figure 3.6: Construction of the snake-sequence, read on the vertical axis.

Lemma 3.22. Two (m+1)-snakes are identical if and only if they have the same snake-sequences.

Proof. If the snakes are identical, there is nothing to prove. If two snakes have the same snake-
sequence, then by Definition 3.19, they have the same inverse. Thus, the given snakes are
identical, since they represent the same permutation.

In the following we consider a polynomial function f : R2 → R, like in Subsection 3.2.1 above.
For a general view of the geometric aspects, the reader should see Figure 3.7 and Figure 3.8

below.
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

Figure 3.7: The geometric interpretation of the permutations σε, π and τ . Conclusion: τ = σε
for ε > 0 and for x0 > 0 small enough.
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3.2. Construction to the right of a given separable snake

Figure 3.8: The homeomorphism between the reduced positive polar curve Γ+ and its image ∆+

gives the permutation π.

In the following, for a sufficiently small x0 > 0 we have the notations: Ak(x0, yk, zk) and by
Bk(x0, 0, zk).

Definition 3.23. Denote by π the permutation given by π(i) := j if and only if the half-branch
Πxz(ãj) is on the i-th position in the discriminant ∆, when considering the positive trigonometric
order of the half-branches of ∆ (see Figure 3.9) in the plane Oxz.

Remark 3.24. To obtain π, just read the labels of the half-branches in ∆ in the trigonometric
order.

Example 3.25. If the half-branches in ∆ are ordered trigonometrically like in Figure 3.9, then

π :=

(
1 2 3
3 1 2

)
. For instance, π(1) = 3 since the image of the half-branch a3 appears in ∆ as

Π(ã3) in the first position (in the trigonometric order).
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

Figure 3.9: The permutation π = (1, 2, 3) 7→ (3, 1, 2), obtained by reading the projection of
{ãi}, for i = 1, 2, 3 on the Oxz plane. Just read the indices j of Π(ãj) in the Oxz plane in the
trigonometric order: 3, 1, 2.

Proposition 3.26. The snake-sequence of π can be read on the line d defined by the intersection
of the planes (x = x0) and Oxz, for a sufficiently small x0 > 0. More precisely, π gives the order
of the points (x0, 0, z(x0, yk)) on the line d.

Proof. For a sufficiently small x0 > 0, the projected curves Π(ãk), k = 1, . . . ,m + 1 do not
intersect, thus they do not change order. The trigonometric order is the same as the order
in which they intersect the (x = x0) axis. The points (x = x0) ∩ Π(ãk) have coordinates
(x0, 0, z(x0, yk)).

Definition 3.27. For fixed x0 > 0 small enough, denote by τ (see Figure 3.17 and Figure 3.11)
the snake associated to the one variable polynomial given by y 7→ z(x0, y), where z = f(x, y) is
the height function (see Figure 3.10 for the convention of reading the snake τ).

Figure 3.10: Convention for reading a Arnold snake τ .
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3.2. Construction to the right of a given separable snake

Notation 3.28. The critical points of the polynomial y 7→ z(x0, y), where z = f(x, y) are denoted
by Ak := (x = x0) ∩ ãk, for k = 1, . . . ,m+ 1. We have

Ak(x0, yk, z(x0, yk))

.

Proposition 3.29. The snake-sequence seq(τ) is (π(1), π(2), . . . , π(m+ 1)).

Proof. Let us project the points Ak on the line d. We obtain the points Bk := proj(x=x0)Ak (see
Figure 3.11 below), namely

Bk(x0, 0, z(x0, yk)).

The snake-sequence of τ is given by the indices of the points Bk on the line (x = x0) (the blue
line), when one reads them in the increasing order of their z-coordinates.

Figure 3.11: The snake τ = (1, 2, 3) 7→ (3, 1, 2); we project the critical points Ak(x0, yk, zk) on
the line d (in blue), situated in the green plane; we obtain the snake-sequence of τ, given by the
ordering of the points Bk(x0, 0, zk), k = 1, 2, 3.

Since Bk, obtained by projecting the point Ak, is the same one which appears in Proposition
3.26, we have now π(i) = j if and only if Bj is on the i-th position on the (x = x0) axis.

In conclusion, seq(τ) = (π(1), . . . , π(m+ 1)).

The reader should remember Section 2.1, where we stated the following hypotheses and
Definition 2.2:
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

(a) In this Chapter, the expressions “sufficiently small ε” or “small enough ε” mean: “there
exists ε0 > 0 such that, for any 0 < ε < ε0, one has . . . .” We will denote this often by
0 < ε� 1.

(b) The function f : R2 → R is a two variables polynomial function with f(0, 0) = 0.

(c) Given f , let us fix a neighbourhood V of (0, 0) such that:

- the point (0, 0) is a strict local minimum of f in V ;

- we have V ∩ (f = 0) = {(0, 0)}.

In this context, let us give the following Definition 3.30.

Definition 3.30. Consider we are in the plane z = 0. Let us define σε (see Figure 3.17) to
be the right asymptotic snake of f at the origin relative to a generic direction x (see Definition
2.114). That is the snake given by the points Ck := Cε ∩ ak (in Chapter 2 the set of points Ck
represents the set of right crests and right valleys) in the plane Oxy, where x > 0 (see Figure
3.12 for the convention of reading the snake).

Figure 3.12: Convention for reading a right asymptotic snake σε.

Remark 3.31. In the case of the snake-sequence associated to the snake of the right crests and
right valleys of f, we use the following convention: we read the projections of the minima and
maxima of the snake, starting with the furthest from the origin, on the Ox axis, as in Figure
3.13.
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3.2. Construction to the right of a given separable snake

Figure 3.13: Convention for the snake-sequence of the snake of right crests and valleys of f .

Proposition 3.32. The snake-sequence of σε is seq(σε) = (π(1), π(2), . . . , π(m + 1)) (see
Figure 3.15).

Proof. Let us start by projecting the points Ck(xk, yk, 0), k = 1, . . . ,m + 1, with f(xk, yk) = ε,
on the Ox-axis, like in Figure 3.15. We obtain the points Dk := projOx(Ck), namely Dk(xk, 0, 0).
By Definition 3.19, seq(σε) is given by the ordered sequence of points {Dk}k=1,...,m+1, read on
the Ox-axis, where the first point is the furthest from the origin.

Consider a fixed ε > 0 small enough. We call dε the line obtained as the intersection of the
plane (z = ε) with the plane Oxz. Let us denote by Ek := (xk, 0, ε). Hence, by their coordinates,
we obtain the points {Ek} in the same order on dε as the order of the points {Dk} on the Ox-axis,
going towards the origin. Note that here we only consider the case x > 0, as we stated in the
beginning of this chapter.

One reads the snake π on the line dε as follows: we have π(i) = j if and only if Ej is on
the i-th position on the line dε, read in the trigonometric order of the half-branches π(ãk) of the
discriminant set ∆.
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

Figure 3.14: The main idea of the proof: the transversality of the vertical line d (respectively of
the horizontal line dε) with the curves π(ãi), i = 1, . . . ,m+ 1 of ∆, in the plane Oxz.

As shown in Figure 3.14, for a small enough ε > 0, the curves in ∆ in the plane Oxz do not
intersect under the line dε (except for the origin O, which is their common point). Therefore, we
have π(i) = j if and only if Dj is on the i-th position on the Ox-axis.

In conclusion, the points {Dk} are ordered on Ox (the first one is the furthest from the origin
O), as follows: Dπ(1), Dπ(2), . . . , Dπ(m+1). Thus by Definition 3.19,

seq(σε) = (π(1), π(2), . . . , π(m+ 1)).

Figure 3.15: The snake-sequence of σε is (3, 1, 2). The points Ck = (xk, yk, 0).
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3.2. Construction to the right of a given separable snake

Theorem 3.33. Let us take a sufficiently small ε > 0, a sufficiently small x0 > 0. Moreover,
as in Subsection 1.7.1 let us consider the monic polynomial Px(y) ∈ R[x][y], such that

Px(y) :=
m+1∏
i=1

(y − ai(x)) ∈ R[x][y],

where m ∈ N, the roots ai(x) ∈ R[x] for any i = 1, . . . ,m+ 1 and a1(x) ≺+ a2(x) ≺+ . . . ≺+

am+1(x), such that νx(ai) ≥ 1, i.e. ai(0) = 0, for any i = 1, . . . ,m+ 1. Suppose that

Γ = (Px(y) = 0).

Then we have the following equality of the snakes introduced in Definition 3.27 and Definition
3.30 (see Figure 3.16 and Figure 3.17):

τ = σε.

Figure 3.16: We have the equality τ = σε.
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Figure 3.17: The snakes σε and τ .

Proof. From Proposition 3.29 and Proposition 3.32, we have by transitivity the equality seq(τ) =
seq(σε). By Lemma 3.22, we conclude that τ and σε are the same (m+ 1)-snake.

3.2.4 The effective construction of the Poincaré-Reeb tree to the right

We are under the hypotheses from Subsection 3.2.2 and those from Section 2.1. The
following Theorem 3.34 gives us an original construction of a given separable snake to the
right, in two variables, for a strict local minimum at the origin. In other words, we realise a
given separable positive Poincaré-Reeb tree of f : R2 → R, where f has a strict local minimum
at the origin.

The main idea is to start from a given separable snake σ. Following the steps from Section
1.8, we construct the polynomials ai(x), i = 1, . . . ,m + 1 such that the snake associated
to the polynomial Qx(y) :=

∫ y
0

∏m+1
i=1 (y − ai(x)) is σ. Consider the bivariate polynomial

Q(x, y) := Qx(y) and take f(x, y) := x2 + Q(x, y). The snake to the right (of the positive
Poincaré-Reeb tree) of f (namely the one given by the alternating right crests and right valleys
of (f(x, y) = ε)) will be exactly σ, as shown by:

Theorem 3.34. Let σ be a separable (m+ 1)-snake, with m an even integer. The polynomial
f ∈ R[x, y] constructed by the following steps (a) and (b) has a strict local minimum at the
origin whose snake to the right, namely σε, of its alternating sequence of right crests and right
valleys is σ:

(a) first, construct the one variable polynomial Qx(y) ∈ R[x][y], by following the steps
described in Theorem 1.149:

Qx(y) :=

∫ y

0

m+1∏
i=1

(
t− ai(x)

)
dt,

by choosing the polynomials ai(x) ∈ [R][x] such that their contact tree is one of the binary
separating trees of σ.

(b) take f(x, y) := x2 +Qx(y).
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3.2. Construction to the right of a given separable snake

Remark 3.35. We have ∂f
∂y = ∂Qx(y)

∂y , which by construction (see Section 1.8) is equal to∏m+1
i=1 (y − ai(x)).

Proof. By Theorem 1.149, the polynomial Qx(y) is (m+ 2)-Morse (see Definition 1.14) and for
sufficiently small x > 0, the snake associated to Qx(y) is σ. By Proposition 3.12, we know that
the polynomial f(x, y) := x2 +Qx(y) has a strict local minimum at the origin. Notice that the
snake τ of f(x0, y) = x2

0 +Qx0(y) is the same as the given snake σ for Qx0(y) (up to a translation
with x2

0) for a sufficiently small x0 > 0. In addition, by Theorem 3.33, we know that the snake
σε = τ. This concludes the proof.

3.2.5 Appendix 1: Generalisations

The results from Chapter 3 hold for a more general case, as follows:

Theorem 3.36. Let us consider f : R2 → R a polynomial function with a strict local minimum
at the origin; f(0, 0) = 0. Let φ : R2 → R2 be the map (x, y) 7→ (x, f(x, y)). Let us denote by Γ+

the right polar half-branches of the polar curve of f : R2 → R2, with the notations and hypotheses
from Section 2.1:

-Suppose that Γ+ is reduced.
-If we denote by ∆+ := φ(Γ+), let us suppose that φ|Γ+

: Γ+ → ∆+ is a homeomorphism.
Then:
(i) Cε represents a snake σε to the right;
(ii) the snake σε to the right is the permutation given by the comparison of the total order

relation of the half-branches of Γ+ and the total order relation of the half-branches of ∆+.

Remark 3.37. (a) In other words, if the two hypotheses from Theorem 3.36 are satisfied, then
the interplay between the positive polar curve and its image determines the
positive generic asymptotic Poincaré-Reeb tree.

(b) In addition, as we proved in Subsection 2.7.3,

- if the polar is reduced, then to the right of the origin Cε consists of an alternation of crests
and valleys, with no inflection points;

-if the restriction of φ to the positive polar curve is a homeomorphism on its image, then
Cε has no bitangents.

Namely, the two hypotheses imply also the existence of a snake to the right.

Theorem 3.38. If the following hypotheses are satisfied:
(a) f : R2 → R polynomial function with a strict local minimum at the origin; f(0, 0) = 0;
(b) the set Γ :=

(∂f
∂y = 0

)
has only real smooth branches, which are transverse to the Oy axis;

(c) Γ is reduced;
(d) the (positive) contact tree of Γ is an end-rooted plane binary tree;

then the snake to the right of f is separable.

Remark 3.39. (i) The hypothesis (d) (the (positive) contact tree of Γ is complete and binary)
implies the fact that ϕ|Γ+

: Γ+ → ∆+ is a homeomorphism.
(ii) If the (positive) contact tree of Γ is not complete and binary, then we might lose the

separability property of the snake to the right of f (as shown in Example 1.158).

3.2.6 Appendix 2: Biordered sets

Let us consider a finite set A, with #A = n. Let us take two total order relations on the set
A, denoted by <1, respectively by <2 . To such a pair we can associate an automorphism. The
advantage of working with total order relations on the set A is that one can restrain the total
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Chapter 3. Realising separable positive Poincaré-Reeb trees in two variables

order relations to subsets of A, whereas one cannot restrain automorphisms of A to subsets of
A.

Let us use the combinatorists’ notation [n] := {1, 2, . . . , n}. Moreover, denote by Aut(A)
(respectively Aut([n])) the set of automorphisms of A (respectively of [n]).

A total order relation on A can be seen as a bijection from the set [n] to the set A. Thus the
function <1: [n]→ A (respectively <2: A → [n]) has an inverse function, namely <1

−1 : A → [n]
(respectively <1

−1 : [n]→ A). Therefore, we have the following examples of elements of the set
Aut(A) : the identity id, <2 ◦<2

−1 or <1 ◦<2
−1. Similarly, we have the following examples of

elements of the set Aut([n]) : the identity id, <2
−1◦ <1 or <1

−1◦ <2 . Figure 3.18 illustrates the
total order relations viewed as bijections.

[n] A

<1

<2

Figure 3.18: Two total order relations viewed as bijections.

In addition, in Figure 3.19 and Figure 3.20 below we can see the two ways of constructing
automorphisms, given two total order relations <1 and <2 on the same set.

[n] [n]

id

<2
−1◦ <1

Figure 3.19: Two automorphisms of the set [n], which give us the permutation i 7→ <2
−1◦ <1 (i).

[n] [n]

id

<1
−1◦ <2

Figure 3.20: Two automorphisms of the set [n], which give us the permutation i 7→ <1
−1◦ <2 (i).

By convention, we shall choose the automorphisms from Figure 3.19. We can now define the
notion of biordered set (see [Ghy17]), viewed from the point of view of the comparison between
two total order relations on the same set.

Definition 3.40. [Ghy17, pages 17-18] A biordered set is a finite set, say A, endowed with
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3.2. Construction to the right of a given separable snake

two total order relations. By convention, given a couple {<1, <2} of total ordered relations, the
Knuth automorphism of the biordered set (A, <1, <2) is defined by σ(i) := <2

−1◦ <1 (i).

By abuse of language, we shall also call a biordered set a permutation when there is no
ambiguity.

In other words, let us denote by ai the element of A which appears in the position i in the
first total order relation. Then let us find the position p of ai in the second total order relation.
Thus Definition 3.40 says that σ(i) := p.

Example 3.41. Given the set A := {a1, a2, a3} with the first total order relation a1 <1 a2 <1 a3

and the second total order relation a1 <2 a3 <2 a2, we have (see Figure 3.21):

<2
−1◦ <1 (1) = <2

−1(a1) = 1;

<2
−1◦ <1 (2) = <2

−1(a2) = 3;

<2
−1◦ <1 (3) = <2

−1(a3) = 2.

By Definition 3.40, the Knuth automorphism of (A, <1, <2) is σ :=

(
1 2 3
1 3 2

)
.

Figure 3.21: The set A := {a1, a2, a3} with two total order relations.

3.2.7 Appendix 3: Second criterion for a strict local minimum at the origin

In this subsection we present another criterion for a polynomial function f : R2 → R
to have a strict local minimum at the origin. This criterion is independent of the Newton
polygon criterion presented in Subsection 3.1.1. Its main advantage is that it may be applied
to functions of the form:

f(x, y) := x2k +

∫ y

ai0 (x)

m+1∏
i=1

(t− ai(x))dt

for k ∈ N, k ≥ 1, while the Newton polygon criterion was studied above only for the case
k = 1.

Lemma 3.42. Let f ∈ R[x, y] such that f(0, y) has a strict local minimum at the origin. Assume
that its polar curve Γ(f, x) is real, reduced, with an odd number of branches, which are all smooth
and transversal to the y-axis. Assume moreover that the positive contact tree of Γ(f, x) is binary.
Then there exists a neighbourhood of the origin in R2 of the form I×J, where I and J are compact
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intervals, and a branch C of Γ(f, x) such that for all x0 ∈ I, the restrictions of f to the segments
{x0} × J achieve their absolute minimum only at ({x0} × J) ∩ C.

As a consequence of the previous lemma, whose proof is left to the reader, we get the following
criterion for a strict local minimum:

Proposition 3.43. Assume the same hypotheses as in Lemma 3.42. Assume moreover that the
restriction of f to C is positive in a pointed neighbourhood of O on C. Then f has a strict local
minimum at O.

As a direct consequence of the previous Proposition 3.43, of Theorem 3.33 and Theorem
1.149, we get the following Theorem 3.44 which generalises Theorem 3.34.

Theorem 3.44. Let σ be a separable (m+ 1)-snake, where m ∈ N∗ is even. Choose (m+ 1)
pairwise distinct polynomials ai(x) ∈ R[x], i ∈ {1, . . . ,m+ 1}, vanishing at 0, whose positive
contact tree is one of the binary decomposition trees of σ. Let i0 ∈ {1, . . . ,m+1} be the unique
index such that the primitives of y 7→ ∏m+1

i=1 (y − ai(x)) achieve their absolute minimum at
ai0(x), for x varying in a neighbourhood of 0. Then for any k ∈ N∗, the polynomial f ∈ R[x, y]
defined by

f(x, y) := x2k +

∫ y

ai0 (x)

m+1∏
i=1

(t− ai(x))dt

has a strict local minimum at (0, 0) and its right asymptotic snake is the given snake σ.

Figure 3.22: Second criterion for a strict local minimum at the origin.

Proof. It is enough to combine Proposition 3.43, Theorem 3.33 and Theorem 1.149. We leave
the details of the proof to the reader.
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It is important to bear in mind that all along this chapter we will only work with end-rooted
complete binary plane trees. In addition, note that we will consider sometimes different
embeddings of the same plane tree, namely vertical and horizontal, depending on the context.

4.1 The flipped tree of a contact tree

The following Definition 4.1 and Definition 4.2 are inspired by [Ghy17, page 28]. By conven-
tion, in this section we shall represent the contact trees vertically, with the root on top.

Definition 4.1. Let us consider an end-rooted complete binary plane tree T such that each of
its internal vertices is decorated with an even or an odd label. Let v be an internal vertex of T
and let us denote by A the subtree (see Definition 1.46) rooted at the left child of v and by B
the subtree rooted at the right child of v. The operation of elementary flip at the vertex v is
defined as follows (see Figure 4.1) and concerns only the two subtrees of the vertex v:

(a) if v is decorated with an odd label, then after the flip, the subtrees A and B of v are
interchanged.

(b) if v is decorated with an even label, then there is no change.
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Figure 4.1: An elementary flip at a vertex decorated with an odd label.

Definition 4.2. Let us consider an end-rooted complete binary plane tree T such that each of
its internal vertices is decorated by either an odd or an even parity. Let us apply an elementary
flip at each of these internal vertices. The new tree obtained in this way, denoted by flip(T ), is
called the flipped tree of T .

Remark 4.3. The order in which we apply the elementary flips does not matter, since an
elementary flip only interchanges the left subtree of a vertex with the right subtree, without
affecting the structure of the tree in any other way (neither above the vertex, nor inside the
subtrees interchanged). In addition, the flipped tree of an end-rooted complete binary plane tree
is also an end-rooted complete binary plane tree.

Example 4.4. In Figure 4.2, given the tree on the left side of the picture, we construct the
flipped tree by applying elementary flips to each internal vertex of the given tree. Here the
decoration of each vertex is the parity of the exponent of its associated monomial.

Figure 4.2: The flipped tree of a given tree.

Remark 4.5. In [Ghy17, Theorem, page 31], Ghys gave a characterisation of the pairs formed
by a tree and its flipped tree. He proved that there exist impossible configurations of flipped
trees. Note that Ghys also considered non binary trees.
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4.2. The flopped trees of a binary separating tree

Definition 4.6. Given an end-rooted complete binary plane tree T , whose vertices are not
decorated with parities, we denote by Flip(T ) the set of all the possible flipped trees that one
can obtain from T by decorating its internal vertices with odd and even parities. Let us call this
set the flipped forest of T .

Remark 4.7. The terminology of forest is inspired from [Knu05, p. 309] and it is a general
accepted terminology of graph theory.

Remark 4.8. Note that T ∈ Flip(T ) : we obtain T when we decorate all the internal vertices
with an even parity.

4.2 The flopped trees of a binary separating tree

In Chapter 1, we gave Definition 1.126 of the direct sum and the skew sum of two permuta-
tions. Recall that both operations are associative.

Given a separable permutation σ, let us consider its maximal decomposition up to associa-
tivity (for the proof, see Lemma 4.13). Let us suppose that we can apply the associativity inside
this decomposition. This allows us to define the following operation on a binary separating tree
of a separable permutation (see Definition 1.133):

Definition 4.9. If two vertices of a binary separating tree T are adjacent and are decorated
with the same sign in the decomposition of the separable permutation, then one can replace
them by a different pair of vertices using the so-called tree rotation operation (see [STT88]) in a
binary tree: contract an internal edge to a point (thus two vertices become a vertex with three
children), and expand this point in the other side, as shown in Figure 4.3. We say then that we
apply an elementary flop to the given tree T .

Figure 4.3: An elementary flop.

Definition 4.10. Two end-rooted complete binary plane trees, say t1 and t2, are called flop
equivalent if one can obtain t2 by applying a finite sequence of elementary flops to t1.

Remark 4.11. A binary separating tree T can have several flop equivalent trees. Let us denote
by Flop(T ) the equivalence class of T with respect to the flop relation.

Definition 4.12. [AHP15, page 3] A permutation is called ⊕-decomposable (respectively 	-
decomposable) if it can be written as a sum (respectively skew sum) of two permutations. We
call it ⊕-indecomposable (respectively 	-indecomposable) otherwise.
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 4.4: A separable permutation σ := ( 1 2 3 4 5 6 7
6 7 4 5 1 3 2 ).

As in Subsection 1.8.1, we shall represent separable permutations σ as matrices or blocks
decorated with dots corresponding to the pairs (i, σ(i)), as inspired from [Kit11, page 4] (see
Figure 4.4).

Lemma 4.13. Let us consider a separable permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}, n ∈ N,
n ≥ 2. Then it has a unique decomposition (see Definition 1.129) up to the associativity of the
⊕ and of the 	 operations.

Example 4.14. Let σ :=

(
1 2 3 4 5 6 7
6 7 4 5 1 3 2

)
be the separable permutation from Example

1.135 (see Figure 4.4).
Then up to associativity, the unique decomposition of σ is

σ =

(
�⊕�

)
	
(
�⊕�

)
	
(
�⊕(�	�)

)
.

However, σ has two binary decompositions, namely

σ =

(
(�⊕�)	 (�⊕�)

)
	
(
�⊕(�	�)

)
and

σ =

(
�⊕�

)
	
(

(�⊕�)	
(
�⊕(�	�)

))
,

which by Proposition 1.141 are in a bijective correspondence with the two binary separating trees
of σ (see Figure 4.5). In other words, by Definition 4.9, one tree is obtained from the other one
by applying an elementary flop.

Figure 4.5: Two binary separating trees of the same permutation σ, which are obtained by
applying a flop.
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4.2. The flopped trees of a binary separating tree

We present now the proof of Lemma 4.13.

Proof. Let us suppose without loss of generality that there exist k, l ∈ N∗ such that

σ = A1 ⊕A2 ⊕ · · · ⊕Ak = B1 �B2 � · · · �Bl,

where � is either ⊕ or 	, Ai is ⊕-indecomposable, for i = 1, . . . , k and Bj is �-indecomposable,
for j = 1, . . . , l.

We shall prove that � = ⊕, k = l and Ai = Bi, for i = 1, . . . , k.
• First step: let us prove that σ cannot be both ⊕-decomposable and 	-decomposable,

namely we show that
� = ⊕.

From the first decomposition of σ, we have σ = A1 ⊕ A2 ⊕ · · · ⊕ Ak, thus σ(1) < σ(n). If
� = 	, then σ(1) > σ(n), thus we obtain a contradiction.
• Second step, we prove that #A1 = #B1. Denote by k1 := #A1.
-First case: k1 ≥ 2. Since A1 is 	-decomposable, because it is not ⊕-decomposable, we

obtain σ(1) > σ(k1). Let us suppose that #B1 < k1. Then σ(k1) must belong to the block B2.
Since between B1 and B2 there is ⊕ sign we obtain σ(1) < σ(k1). Contradiction. Analogously
we prove that we cannot have #B1 > k1.

-Second case: k1 = 1, namely it is reduced to one element: A1 = �. Since σ = A1 ⊕ A2 ⊕
· · · ⊕Ak, for any j ∈ {2, . . . , n} we have σ(j) > σ(1). Let us suppose that #B1 > 1. Since B1 is
a 	-decomposable block, there exists j ∈ {2, . . . ,#B1} such that σ(j) < σ(1). Contradiction.

In conclusion, #A1 = #B1.
• By taking the restriction of σ to the indices k1 + 1,. . . ,n we can prove as before that

#A2 = #B2. Recursively, we obtain
#Ai = #Bi,

for i = 1, . . . , n. As a consequence, we have

k = l.

• Recursively we apply the steps above to prove that the decomposition of Ai is the same as
the decomposition of Bi, for i = 1, . . . , n.

Remark 4.15. See more about counting trees, decompositions and separable permutations in
[Ghy17, page 35], [Sta97], [Sta15], [Wes95, Theorem 4.3], [SS00].

Proposition 4.16. There is a bijection between the set of the separable generic rooted transversal
trees and the quotient space of binary separating trees with respect to the flop equivalence.

Proof. • Given any two binary separating trees that are flop-equivalent, by Definition 4.9 and
Lemma 4.13, they provide a unique decomposition (up to associativity) which corresponds to
a unique separable snake. By Proposition 1.69, this separable snake corresponds to a unique
separable Poincaré-Reeb tree.
• Given a separable Poincaré-Reeb tree, by Proposition 1.69, it corresponds to a unique

separable snake, say σ. By Lemma 4.13, the decomposition of σ is unique up to associativity of
the ⊕ and of the 	 operations. If there are several binary decompositions possible, thanks to
the associativity, then by Definition 4.9, they all give flop equivalent binary separating trees of
σ.

Remark 4.17. One of our main problems is to realise pairs (negative-positive) of (separable)
Poincaré-Reeb trees in two variables by a strict local minimum of a polynomial function at the
origin. In Chapter 1 the binary separating trees were used as contact trees in our construction
of Poincaré-Reeb trees for one variable polynomials. Proposition 4.16 enables us to express our
result in terms of pairs of negative-positive contact trees.
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Chapter 4. Realising pairs of separable negative-positive Poincaré-Reeb trees

4.3 The negative contact tree of a set of polynomial functions in
one real variable

Given a set of real univariate polynomials, we want to define its negative contact tree and
then describe this tree, in terms of the flipped tree of its (positive) contact tree (see Definition
1.92).

Notation 4.18. Let us consider m ∈ N and the polynomials ai(x) ∈ R[x] for any i = 1, . . . ,m+1
such that

a1(x) ≺+ a2(x) ≺+ . . . ≺+ am+1(x).

Denote by A+ := {a1(x), . . . , am+1(x)} and by A− := {a1(−x), . . . , am+1(−x)}, where x > 0 is
sufficiently small.

Definition 4.19.
• We define CT (A−) as the contact tree of the set of polynomials A−, as in Definition 1.92.
• The negative contact tree of the set of the given polynomials A+ is the symmetric of CT (A−)
with respect to the Oy axis. We denote it by CT −(A+).

Example 4.20. The contact tree (to the right of the origin) and the negative contact tree (to the
left of the origin) of the following set of three real univariate polynomials A+ := {0, x2, x2 + x3}
are shown in Figure 4.6. Note that here A− := {0, x2, x2 − x3}

Figure 4.6: The (positive) contact tree (to the right of the origin) and the negative contact tree
(to the left of the origin) of A+ := {0, x2, x2 + x3}.

Proposition 4.21. [Ghy13, page 237] The negative contact tree of A+ is the symmetric of the
flip of the contact tree of A+ with respect to the Oy axis. Namely

CT −(A+) = symOy

(
flip(CT (A+))

)
.

Proof. All we need to show is that when we flip CT (A+) we obtain CT (A−). For each vertex
labelled with an odd parity, a nontrivial elementary flip consists in interchanging the two subtrees
of that vertex. By the construction of the contact tree (see Definition 1.92), this is equivalent to
considering −x instead of x, since this changes the order of the coefficients of the corresponding
monomials, thus forcing an interchanged vertical order in the cartesian plane (see Figure 1.25).

Example 4.22. Let us consider the following polynomials: a1(x) = 0, a2(x) = x3, a3(x) =
x3 + x4, a4(x) = x2, a5(x) = x2 + x4, a6(x) = x1, a7(x) = x1 + x3, a8(x) = x1 + x3 + x4,
a9(x) = x1 + x3 + x4 + x5. For x > 0, let us denote by A+ := {a1(x), a2(x), . . . , a9(x)} and by
A− := {a1(−x), a2(−x), . . . , a9(−x)}.
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4.3. The negative contact tree of a set of polynomial functions in one real variable

See Figure 4.7 below. We have labelled the leaves of the trees in order to see better the
corresponding position of the graphs of the polynomials y = ai(x), which change position for x <
0. To understand better why we sometime choose the horizontal embedding of the positive and
negative contact tree of a set of polynomials; see Figure 4.8, where the graphs of the polynomials
y = ai(x) are shown for i = 1, . . . , 9.

Figure 4.7: The positive contact tree of A+ is situated to the right of the root O, while the
negative contact tree of A+ is situated to the left of the root O.

Figure 4.8: The graphs of y = ai(x) in a small enough neighbourhood of the origin. The position
of the graphs corresponds to the labelling of the leaves in the negative, respectively the positive
contact tree. Note that in order to get a good visual representation corresponding with the
contact trees, one has to choose a sufficiently small neighbourhood of O.
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4.4 Realising pairs of separable negative-positive Poincaré-Reeb
trees

In what follows, by convention we draw the contact trees with the root on top. We will draw
their flipped trees in the same manner, but we shall keep in mind that the negative contact tree
is the symmetric of the flipped tree, as stated in Proposition 4.21. This convention allows us to
have a total order relation of the given polynomials, which are ordered increasingly from left to
right, namely the smallest polynomial corresponds to the leaf situated to the left.

Example 4.23. Let us consider the three polynomials given in Example 4.20 in Figure 4.9.

Figure 4.9: The contact tree (to the right of the origin) and the negative contact tree (to the left
of the origin) of A+ := {0, x2, x2 + x3}.

We shall draw the (positive) contact tree and the negative contact tree as shown in Figure
4.10 below.

Figure 4.10: Convention for drawing vertically the positive contact tree (left side of the picture)
and its flip (right side of the picture). This allows us to reconstruct Figure 4.6.

4.4.1 The algorithm

Remark 4.24. By Lemma 1.153, for each chosen decoration there exist polynomials such that
the decorated tree represents their contact tree.

Let us now present the algorithm that provides all the negative Poincaré-Reeb trees which
form pairs with a given separable positive Poincaré-Reeb tree.
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4.4. Realising pairs of separable negative-positive Poincaré-Reeb trees

Algorithm 4.25.
INPUT: a separable positive Poincaré-Reeb tree.
OUTPUT: a set of negative Poincaré-Reeb trees, which will form pairs with the given sepa-
rable positive Poincaré-Reeb tree; the pairs formed in this way are realisable as a union-tree,
by a strict local minimum of a polynomial function of two real variables in a small enough
neighbourhood of the origin.
• Given a separable positive Poincaré-Reeb tree, let us first obtain its unique separable

snake, denoted by σ. Let us consider all the binary separating trees of σ. They form a set of
flop equivalent trees, denoted by Flop(σ).
• For each tree s in Flop(σ), let us decorate its internal vertices with either odd or even

labels in all the possible ways in order to obtain the set Flip(s);
- For each flipped tree t ∈ Flip(s), let us construct the separable snake, denoted by τ ,

that has t as a binary separating tree; we do this by decorating the internal vertices of t, from
right to left (considering the natural order, see Definition 1.161) with 	 and ⊕ alternatively,
starting with 	 to the right;

- For each separable snake τ obtained at the previous step, we construct its Poincaré-
Reeb tree.

See Figure 4.11 below and Example 4.29.

given a separable positive Poincaré-Reeb tree

consider its separable snake σ

compute Flop(σ), which is the
set of binary separating trees of σ

for each tree s ∈ Flop(σ), compute the set Flip(s)

for each tree t ∈ Flip(s), compute the separa-
ble snake τ that has t as binary separating tree

for each separable snake τ , con-
struct the Poincaré-Reeb tree of τ

Figure 4.11: The algorithm for obtaining the set of negative Poincaré-Reeb trees, which form
pairs with a given separable positive Poincaré-Reeb tree; the pairs are realisable by a strict local
minimum of a polynomial function of two real variables in a small enough neighbourhood of the
origin, by our family of polynomials.

To understand better the algorithm, see also Figure 4.12 below.
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Figure 4.12: The combinatorial objects appearing in Algorithm 4.25.

4.4.2 The effective realisation of the pairs provided by the algorithm

Theorem 4.26. Given a positive separable Poincaré-Reeb tree, the trees obtained by applying
Algorithm 4.25 have the following properties:
• they are end-rooted complete binary plane trees;
• they are separable;
• they form pairs with the given separable positive Poincaré-Reeb tree such that each couple

negative-positive is realisable as a union-tree, by a strict local minimum of a polynomial function
of two real variables in a small enough neighbourhood of the origin.

Proof.
• Since they are Poincaré-Reeb trees of snakes, they are end-rooted complete binary plane trees,
by construction (see Definition 1.63).
• The permutations τ in the algorithm are by construction snakes because the signs ⊕ and 	
alternate in the decoration. In addition, τ is separable, since it is the sum and skew sum of �.
Hence by Lemma 1.168, the Poincaré-Reeb tree of τ is also separable, because it is the snake-tree
of a separable permutation.
• For each tree s ∈ Flop(σ), for any decoration of even/odd chosen, we can construct a set of
polynomials A+ := {a1(x), . . . , am+1(x)}, where m+1 is the number of leaves of s, such that the
contact tree of A+ is s. By Theorem 3.34 the main idea is that following the steps from Section
1.8, we construct the polynomials ai(x), i = 1, . . . ,m + 1 such that the snake associated to the
polynomial

Qx(y) :=

∫ y

0

m+1∏
i=1

(y − ai(x))

is σ. We denote now the two variable polynomial Q(x, y) := Qx(y) and we take

f(x, y) := x2 +Q(x, y)

The right asymptotic snake of f (see Definition 2.114) of f (namely the one given by the alter-
nating right crests and right valleys of (f(x, y) = ε)) will be exactly σ, by Theorem 3.33. For the
negative contact tree, consider x > 0 sufficiently small, hence we have f(−x, y) := x2 +Q(−x, y).
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4.4. Realising pairs of separable negative-positive Poincaré-Reeb trees

By Proposition 4.21, the negative contact tree of A+ is obtained by taking the symmetric of the
flip of the positive contact tree.

Remark 4.27. In the sequel, by convention, we shall draw the positive and the negative Poincaré-
Reeb trees for two-variable polynomials with the root on top and vertically. This makes it easier
to apply the results from Chapter 1. However, the reader has to be aware of the fact that the
embedding of the positive Poincaré-Reeb tree in the neighbourhood of the origin is obtained by
applying a rotation of π2 to the vertical embedding we use when we draw the tree vertically. The
embedding of the negative Poincaré-Reeb tree is obtained after a rotation of −π

2 and a symmetry
with respect to the Ox axis applied to the vertical embedding we use when we draw the tree
vertically. This is due to Chapter 3, namely Theorem 3.33 (see Figure 3.16). Hence in the end, in
the horizontal embedding, the positive Poincaré-Reeb tree is situated on the right of the origin,
while the negative Poincaré-Reeb tree is situated on the left of the origin. The origin is their
common root.

Remark 4.28. We have to take into account all the flops of the binary separating tree of the
given separable snake, as the following Example 4.29 shows.

Example 4.29.

• Let us consider the separable snake σ :=

(
1 2 3 4 5
1 3 2 5 4

)
and its corresponding (positive)

Poincaré-Reeb tree (see Figure 4.13).

Figure 4.13: A given separable snake σ := ( 1 2 3 4 5
1 3 2 5 4 ) and its corresponding Poincare-Reeb tree.

The maximal decomposition of σ, up to associativity, is σ = �⊕ (�	�)⊕ (�	�).

• Let us choose one of the binary decompositions of σ, say σ =

(
�⊕(�	�)

)
⊕ (�	�),

which corresponds to the binary separating tree from Figure 4.14, called s1.

195



Chapter 4. Realising pairs of separable negative-positive Poincaré-Reeb trees

Figure 4.14: A binary separating tree s1 of σ.

Consider all the possible combinations of odd/even labels for the internal vertices of s1. Then
let us construct the flipped tree for each possible labelling. Note that in this example we shall
not label the internal vertices if they have the left subtree the same as the right subtree, since
the flip would make no change for symmetry reasons. We obtain therefore the set of possible
negative contact trees shown in Figure 4.15 (the trees on the middle column).

Figure 4.15: The decoration e means an even label, while o comes from odd. The negative
contact trees after the possible flips of s1 are the trees on the middle column. Then constructing
the corresponding negative Poincaré-Reeb trees: the trees in the right column.

As one can see in Figure 4.15, each of the negative contact trees gives a negative Poincaré-
Reeb tree (the trees obtained in the right column): these are the negative Poincaré-Reeb trees
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associated to the given positive Poincaré-Reeb tree, when we consider s1 the binary separating
tree of σ.

In each of the four situations, let us construct a set A+ such that the corresponding tree in
the left column in Figure 4.15 is the positive contact tree of A+. Once the polynomials ai chosen,
each case is realised by

f(x, y) := x2 +

∫ y

0

m+1∏
i=1

(t− ai(x))dt,

see Theorem 3.34.
- In the case a., we can choose a1(x) := 0, a2(x) := x4, a3(x) := x4 + x5, a4(x) := x2,

a5(x) := x2 + x3.

- In the case b., we can choose a1(x) := 0, a2(x) := x3, a3(x) := x3 + x4, a4(x) := x2,
a5(x) := x2 + x4.

- In the case c., we can choose a1(x) := 0, a2(x) := x2, a3(x) := x2 + x3, a4(x) := x1,
a5(x) := x1 + x2.

- In the case d., we can choose a1(x) := 0, a2(x) := x3, a3(x) := x3 + x4, a4(x) := x1,
a5(x) := x1 + x2.

Let us present in Figure 4.16 the pairs of negative-positive Poincaré-Reeb trees realised with
our construction by a strict local minimum at the origin of a polynomial function in two real
variables, given the positive Poincaré-Reeb tree.

Be aware that by convention, we drew the positive and the negative Poincaré-Reeb trees for
two-variable polynomials with the root on top and vertically. This made it easier to apply the
results from Chapter 1. However, the embedding of the positive Poincaré-Reeb tree that we
constructed in the neighbourhood of the origin (see Remark 4.27) is shown in Figure 4.16.

Figure 4.16: Non-convex level curves and their corresponding pairs of negative-positive Poincaré-
Reeb trees realised with our construction by a strict local minimum at the origin of a polynomial
function in two real variables, given the positive Poincaré-Reeb tree (the tree on the right side
of the origin).
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Chapter 4. Realising pairs of separable negative-positive Poincaré-Reeb trees

• Let us now choose another binary decomposition of σ, say σ = �⊕
(

(�	�)⊕ (�	�)

)
,

which corresponds to the binary separating tree from Figure 4.17, called s2.

Figure 4.17: Another binary separating tree of σ, called s2.

The possible flipped trees of s2 (after the possible choices of parity labels) are the ones shown
in Figure 4.18 (the trees in the middle column). The corresponding negative Poincaré-Reeb trees
obtained using the binary separating tree s2 are in the right column. Note that again we do
not label the internal vertices of s2 if their left subtree is the same as their right subtree, for
symmetry reasons.

Figure 4.18: The negative contact trees after the possible flips of s2 are the trees on the middle
column. The corresponding negative Poincaré-Reeb trees: the trees in the right column.

• In our example we obtain less negative Poincaré-Reeb trees if we use the binary separating
tree s2 than if we use the flop of s2, namely s1. Therefore we always have to take into account
all the set Flop(σ).
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Remark 4.30. There exist more complicated examples, where using a single decomposition is
not enough. Namely, each tree s ∈ Flop(σ) may provide new negative Poincaré-Reeb trees.
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[LMW89] Dũng-Tráng Lê, Françoise Michel, and Claude Weber. “Sur le comportement
des polaires associées aux germes de courbes planes”. In: Compositio Math. 72.1
(1989), pp. 87–113. url: http://www.numdam.org/item?id=CM_1989__72_1_
87_0 (cit. on pp. 18, 36, 133).

[Mat02] Yukio Matsumoto. An introduction to Morse theory. Vol. 208. Translations of
Mathematical Monographs. Translated from the 1997 Japanese original by Kiki
Hudson and Masahico Saito, Iwanami Series in Modern Mathematics. American
Mathematical Society, Providence, RI, 2002, pp. xiv+219 (cit. on pp. 124, 128).

[Mau99] Hélène Maugendre. “Topologie comparée d’une courbe polaire et de sa courbe
discriminante”. In: Rev. Mat. Complut. 12.2 (1999), pp. 439–450. doi: 10.5209/
rev_REMA.1999.v12.n2.17149. url: https://doi.org/10.5209/rev_REMA.
1999.v12.n2.17149 (cit. on pp. 18, 36, 133, 170).

204

http://dx.doi.org/10.4169/amer.math.monthly.118.01.022
http://dx.doi.org/10.4169/amer.math.monthly.118.01.022
https://doi.org/10.4169/amer.math.monthly.118.01.022
https://doi.org/10.4169/amer.math.monthly.118.01.022
http://dx.doi.org/10.1016/0022-4049(93)90049-Y
https://doi.org/10.1016/0022-4049(93)90049-Y
https://doi.org/10.1016/0022-4049(93)90049-Y
http://dx.doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-642-17333-2
http://dx.doi.org/10.1007/978-1-4612-1588-2
https://doi.org/10.1007/978-1-4612-1588-2
http://dx.doi.org/10.1016/S0007-4497(01)01106-X
https://doi.org/10.1016/S0007-4497(01)01106-X
https://doi.org/10.1016/S0007-4497(01)01106-X
http://dx.doi.org/10.1090/stml/023
http://dx.doi.org/10.1090/stml/023
https://doi.org/10.1090/stml/023
http://dx.doi.org/10.1016/0012-365X(94)00046-L
https://doi.org/10.1016/0012-365X(94)00046-L
https://doi.org/10.1016/0012-365X(94)00046-L
http://www.numdam.org/item?id=CM_1989__72_1_87_0
http://www.numdam.org/item?id=CM_1989__72_1_87_0
http://dx.doi.org/10.5209/rev_REMA.1999.v12.n2.17149
http://dx.doi.org/10.5209/rev_REMA.1999.v12.n2.17149
https://doi.org/10.5209/rev_REMA.1999.v12.n2.17149
https://doi.org/10.5209/rev_REMA.1999.v12.n2.17149


Bibliography

[Mil65] John Willard Milnor. Topology from the differentiable viewpoint. Based on notes
by David W. Weaver. The University Press of Virginia, Charlottesville, Va, 1965
(cit. on p. 132).

[Mil68] John Willard Milnor. Singular points of complex hypersurfaces. Annals of Math-
ematics Studies, No. 61. Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1968, pp. iii+122 (cit. on pp. 117, 136, 137, 167, 169).

[Myc70] Jan Mycielski. “Mathematical Notes: Polynomials with Preassigned Values at
their Branching Points”. In: Amer. Math. Monthly 77.8 (1970), pp. 853–855.
doi: 10.2307/2317021. url: https://doi.org/10.2307/2317021 (cit. on
pp. 55, 56, 61).

[Osb82] Howard Osborn. Vector bundles. Vol. 1. Vol. 101. Pure and Applied Mathematics.
Foundations and Stiefel Whitney classes. Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New York, 1982, pp. xii+371 (cit. on p. 126).

[Plü37] Julius Plücker. “Sur les points singuliers des courbes”. In: Journal de Mathé-
matiques pures et appliquées (Journal de Liouville) 2 (1837), pp. 11–15 (cit. on
pp. 18, 36, 133).

[Poi10] Henri Poincaré. Papers on topology, Cinquième complément à l’analysis situs.
Vol. 37. History of Mathematics. Rendiconti del Circolo Matematico di Palermo
(1884-1940), 45–110, Springer, translated and with an introduction by John Still-
well, 1904. American Mathematical Society, Providence, RI; London Mathemat-
ical Society, London, 2010, pp. xx+228 (cit. on pp. 23, 41, 124, 127).

[Pon17] Jean-Victor Poncelet. “Théorie des polaires réciproques”. In: Annales de Mathé-
matiques pures et appliqués 8 (1817), pp. 201–232 (cit. on pp. 18, 36, 133).

[PP01] Patrick Popescu-Pampu. “Arbres de contact des singularités quasi-ordinaires et
graphes d’adjacence pour les 3-variétés réelles”. PhD thesis. Université Paris-
Diderot-Paris VII, 2001. url: https://tel.archives- ouvertes.fr/tel-
00002800 (cit. on p. 61).

[Ree46] Georges Reeb. “Sur les points singuliers d’une forme de Pfaff complètement in-
tégrable ou d’une fonction numérique”. In: C. R. Acad. Sci. Paris 222 (1946),
pp. 847–849 (cit. on pp. 23, 41, 124, 128).

[Rek+83] Gintaras Victor Reklaitis et al. Engineering optimization. A Wiley-Interscience
Publication. Methods and applications. John Wiley & Sons, Inc., New York,
1983, pp. xvii+684 (cit. on pp. 117, 118).

[Ser80] Jean-Pierre Serre. Trees. Translated from the French by John Stillwell. Springer-
Verlag, Berlin-New York, 1980, pp. ix+142 (cit. on p. 62).

[Sha] Niloufar Shafiei. Recursive Definitions and Structural Induction. url: https://
pdfs.semanticscholar.org/presentation/e31f/1cc1cbe4fe0819a326b66f8513f4fcb39df1.
pdf (cit. on p. 65).

[SS00] Louis Welles Shapiro and Robert A. Sulanke. “Bijections for the Schröder num-
bers”. In: Math. Mag. 73.5 (2000), pp. 369–376. doi: 10.2307/2690814. url:
https://doi.org/10.2307/2690814 (cit. on p. 189).

[SS15] Ernest Shult and David Surowski. Algebra—a teaching and source book. Springer,
Cham, 2015, pp. xxii+539 (cit. on pp. 80, 83).

[Sta10] Richard Peter Stanley. “A survey of alternating permutations”. In: Combinatorics
and graphs. Vol. 531. Contemp. Math. Amer. Math. Soc., Providence, RI, 2010,
pp. 165–196. doi: 10.1090/conm/531/10466. url: https://doi.org/10.1090/
conm/531/10466 (cit. on pp. 51, 64, 66, 67, 69).

205

http://dx.doi.org/10.2307/2317021
https://doi.org/10.2307/2317021
https://tel.archives-ouvertes.fr/tel-00002800
https://tel.archives-ouvertes.fr/tel-00002800
https://pdfs.semanticscholar.org/presentation/e31f/1cc1cbe4fe0819a326b66f8513f4fcb39df1.pdf
https://pdfs.semanticscholar.org/presentation/e31f/1cc1cbe4fe0819a326b66f8513f4fcb39df1.pdf
https://pdfs.semanticscholar.org/presentation/e31f/1cc1cbe4fe0819a326b66f8513f4fcb39df1.pdf
http://dx.doi.org/10.2307/2690814
https://doi.org/10.2307/2690814
http://dx.doi.org/10.1090/conm/531/10466
https://doi.org/10.1090/conm/531/10466
https://doi.org/10.1090/conm/531/10466


Bibliography

[Sta12] Richard Peter Stanley. Enumerative combinatorics. Volume 1. Second. Vol. 49.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2012, pp. xiv+626 (cit. on pp. 64, 69).

[Sta15] Richard Peter Stanley. Catalan numbers. Cambridge University Press, New York,
2015, pp. viii+215. doi: 10.1017/CBO9781139871495. url: https://doi.org/
10.1017/CBO9781139871495 (cit. on p. 189).

[Sta97] Richard Peter Stanley. “Hipparchus, Plutarch, Schröder, and Hough”. In: Amer.
Math. Monthly 104.4 (1997), pp. 344–350. doi: 10.2307/2974582. url: https:
//doi.org/10.2307/2974582 (cit. on p. 189).

[STT88] Daniel Dominic Sleator, Robert Endre Tarjan, and William Paul Thurston. “Ro-
tation distance, triangulations, and hyperbolic geometry”. In: J. Amer. Math.
Soc. 1.3 (1988), pp. 647–681. doi: 10.2307/1990951. url: https://doi.org/
10.2307/1990951 (cit. on p. 187).

[Tei77] Bernard Teissier. “Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces”.
In: Invent. Math. 40.3 (1977), pp. 267–292. doi: 10.1007/BF01425742. url:
https://doi.org/10.1007/BF01425742 (cit. on pp. 18, 36, 133).

[Tei90] Bernard Teissier. “Quelques points de l’histoire des variétés polaires, de Pon-
celet à nos jours”. In: Séminaire d’Analyse, 1987–1988 (Clermont-Ferrand, 1987–
1988). Univ. Clermont-Ferrand II, Clermont-Ferrand, 1990, Exp. No. 4, 12 (cit.
on pp. 18, 36, 133).

[TF16] Bernard Teissier and Arturo Giles Flores. “Local polar varieties in the geometric
study of singularities”. In: arXiv preprint arXiv:1607.07979 (2016) (cit. on pp. 18,
36, 133).

[Tru93] Richard J. Trudeau. Introduction to graph theory. Corrected reprint of the 1976
original. Dover Publications, Inc., New York, 1993, pp. x+209 (cit. on pp. 61,
63).

[Tut84] William Thomas Tutte. Graph theory. Vol. 21. Encyclopedia of Mathematics and
its Applications. With a foreword by C. St. J. A. Nash-Williams. Addison-Wesley
Publishing Company, Advanced Book Program, Reading, MA, 1984, pp. xxi+333
(cit. on p. 61).

[Vic89] Steven Vickers. Topology via logic. Vol. 5. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge, 1989, pp. xvi+200 (cit.
on pp. 79, 80, 127).

[Vir88] Oleg Yanovich Viro. “Some integral calculus based on Euler characteristic”. In:
Topology and geometry—Rohlin Seminar. Vol. 1346. Lecture Notes in Math.
Springer, Berlin, 1988, pp. 127–138. doi: 10.1007/BFb0082775. url: https:
//doi.org/10.1007/BFb0082775 (cit. on p. 128).

[Wal04] Charles Terence Clegg Wall. Singular points of plane curves. Vol. 63. London
Mathematical Society Student Texts. Cambridge University Press, Cambridge,
2004, pp. xii+370. doi: 10.1017/CBO9780511617560. url: https://doi.org/
10.1017/CBO9780511617560 (cit. on pp. 77, 118, 128, 140, 143, 165).

[Wal72] Charles Terence CleggWall. A geometric introduction to topology. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972, pp. vii+168 (cit.
on p. 131).

[Wal78] Robert John Walker. Algebraic curves. Reprint of the 1950 edition. Springer-
Verlag, New York-Heidelberg, 1978, pp. x+201 (cit. on pp. 116, 117).

206

http://dx.doi.org/10.1017/CBO9781139871495
https://doi.org/10.1017/CBO9781139871495
https://doi.org/10.1017/CBO9781139871495
http://dx.doi.org/10.2307/2974582
https://doi.org/10.2307/2974582
https://doi.org/10.2307/2974582
http://dx.doi.org/10.2307/1990951
https://doi.org/10.2307/1990951
https://doi.org/10.2307/1990951
http://dx.doi.org/10.1007/BF01425742
https://doi.org/10.1007/BF01425742
http://dx.doi.org/10.1007/BFb0082775
https://doi.org/10.1007/BFb0082775
https://doi.org/10.1007/BFb0082775
http://dx.doi.org/10.1017/CBO9780511617560
https://doi.org/10.1017/CBO9780511617560
https://doi.org/10.1017/CBO9780511617560


Bibliography

[Wes95] Julian West. “Generating trees and the Catalan and Schröder numbers”. In: Dis-
crete Math. 146.1-3 (1995), pp. 247–262. doi: 10.1016/0012-365X(94)00067-1.
url: https://doi.org/10.1016/0012-365X(94)00067-1 (cit. on p. 189).

[Wi ] url: https://en.wikipedia.org/wiki/Tree_(graph_theory) (cit. on p. 63).

[Wil70] Stephen Willard. General topology. Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1970, pp. xii+369 (cit. on p. 71).

[Woo26] Frederick Shenstone Woods. Advanced calculus: a course arranged with special
reference to the needs of students of applied mathematics. Ginn, 1926 (cit. on
p. 59).

[Wv] url: https://wikivisually.com/wiki/Dual_curve (cit. on p. 143).

207

http://dx.doi.org/10.1016/0012-365X(94)00067-1
https://doi.org/10.1016/0012-365X(94)00067-1
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://wikivisually.com/wiki/Dual_curve


[This page intentionally left blank]



Index

alternating sequence, 49
α-down-up, 49
α-up-down, 49
ω-down-up, 49
ω-up-down, 49

apparent contour, 169
area

the i-th area, 76

biordered set, 182
Knuth automorphism, 183

comparable vertices, 80
convex function, 118
convex hull, 164
crest

left crest, 151
right crest, 150

critical point, 117

direct sum, 95
discriminant locus, 170
dual curve, 143

edge
negative edge, 142
positive edge, 141

embeddings
equivalent embeddings, 64

equivalence relation ∼, 124

flip
elementary flip, 185
flipped forest, 187
flipped tree, 186

flop, 187
flop equivalent tree, 187

function
constructible function, 128

gap, 76
generic direction, 144
geodesic, 62

good neighbourhood, 139
graph, 61

connected, 61
edge, 61
loop, 61
path, 61
simple graph, 61
trail, 61
circuit, 61

vertex, 61
adjacent vertices, 61
valency, 61

walk, 61
closed, 61

greatest lower bound, 79

half-branch
polar half-branch
canonical total order, 151

integral with respect to the Euler
characteristic χ, 129

interval, 97

Jordan curve, 131

lower semi-lattice, 79

meet, 80
Milnor disk, 136
Morse polynomial, 37, 53

Newton
diagram, 164
polyon, 164

Newton polygon
restriction to an edge, 164

order
natural order, 110
vertical order, 111

partially ordered set, 79
permutation
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Kontsevich’s permutations, 109
contains Kontsevich’s permutations,

109
separable permutation, 31, 40, 97, 109,

187, 189
binary separating tree, 97
decomposition, 97

sequence
snake-sequence, 171

skew decomposable, 187
skew indecomposable, 187
sum decomposable, 187
sum indecomposable, 187

Poincaré-Reeb graph, 128
Poincaré-Reeb tree

asymptotic, 139
generic, 39, 43, 47, 148–150, 154, 159,
163, 181

polar curve, 35, 36, 39, 40, 45, 46, 133, 137,
146, 147, 150, 169, 181

polar half-branch, 136
polynomial

epigraph, 71
hyperbolic polynomial, 53
Morse
weakly Morse, 56

power series
support, 164

preorder, 127
pushforward, 129

real branch, 136
half-branch, 136
left, 136
right, 136

real oriented plane, 63
regular point, 117

semi-lattice
lower, 80

semialgebraic
basic semialgebraic set, 128
map, 128

set of binary decompositions, 100
singular point, 117
singular value, 117

snake, 51
critical point, 51
right asymptotic snake, 154

star domain with respect to a point, 122

tree, 62
a binary separating tree associated to a

separable permutation, 97
ancestor, 63
binary tree, 64
complete, 64

contact tree, 78
negative contact tree, 190

decreasing tree, 66
descendant, 63
increasing tree, 66
negative tree, 142
plane tree, 63
positive tree, 141
root, 62
rooted
end-rooted, 66

rooted tree, 62
separable tree, 111
siblings, 63
subtree, 63
transversal tree, 131, 139, 150, 163
equivalent, 131
generic rooted transversal tree, 35,
39, 44, 47, 150, 163, 169, 170

tree associated to a snake, 67
union tree, 142
vertex
child, 63
level, 63
parent, 63

valley
left valley, 151
right valley, 150

valuation, 75
vertex

bifurcation vertex, 79
internal, 63
leaf, 63

weakly alternating sequence, 49

210


	Acknowledgements
	Abstract
	Résumé
	Introduction - Version française
	Contexte et motivation
	Les résultats en bref
	Les résultats principaux en détail et la structure de la thèse

	Introduction - English version
	Context and motivation
	The results in brief
	Details about the results and structure of the thesis

	1 The Poincaré-Reeb tree of univariate polynomial functions
	1.1 Alternating sequences
	1.1.1 Some historical remarks

	1.2 Snakes
	1.3 Proofs of the existence, which are not constructive
	1.3.1 Arnold's snakes theorem
	1.3.2 Proof of existence by Davis

	1.4 Basic notions about graphs and trees
	1.4.1 Standard vocabulary for graphs and trees
	1.4.2 Non-standard vocabulary for trees

	1.5 Snake-trees
	1.6 The Poincaré-Reeb tree of a one variable polynomial
	1.7 The contact tree
	1.7.1 Notations
	1.7.2 Construction of the contact tree
	1.7.3 Properties of the contact tree
	1.7.4 Computing the valuations of the areas Si
	1.7.5 The inequalities between areas Si, read on the contact tree
	1.7.6 Doubly asymptotic inequalities

	1.8 A construction of all the separable Poincaré-Reeb trees in one variable
	1.8.1 Separable permutations
	1.8.2 Realising a given separable snake
	1.8.3 The property of the trees associated to separable snakes


	2 The Poincaré-Reeb tree of a bivariate polynomial function
	2.1 Notations and hypotheses
	2.2 Morse extrema and convex level sets
	2.3 The example of Coste and our generalisations
	2.3.1 Star domains

	2.4 The Poincaré-Reeb tree
	2.4.1 The Poincaré-Reeb construction
	2.4.2 Constructible functions and a Fubini type theorem

	2.5 Asymptotic properties near a strict local minimum
	2.5.1 Nested Jordan curves
	2.5.2 The polar curve

	2.6 The asymptotic Poincaré-Reeb tree
	2.6.1 Positive tree, negative tree, union tree

	2.7 Generic directions of projection
	2.7.1 Choosing the direction of a generic projection for one level curve
	2.7.2 Choosing the direction of a generic projection for a family of level curves
	2.7.3 Geometric hypotheses for having a generic direction

	2.8 The generic asymptotic Poincaré-Reeb trees
	2.8.1 Crests and valleys
	2.8.2 Examples of generic asymptotic Poincaré-Reeb trees
	2.8.3 Example of non-generic asymptotic Poincaré-Reeb trees


	3 Realising separable positive Poincaré-Reeb trees in two variables
	3.1 Strict local minima
	3.1.1 Newton polygon criterion for a strict local minimum
	3.1.2 Application of the Newton polygon criterion

	3.2 Construction to the right of a given separable snake
	3.2.1 The image of the apparent contour of a projection
	3.2.2 Hypotheses
	3.2.3 Projections
	3.2.4 The effective construction of the Poincaré-Reeb tree to the right
	3.2.5 Appendix 1: Generalisations
	3.2.6 Appendix 2: Biordered sets
	3.2.7 Appendix 3: Second criterion for a strict local minimum at the origin


	4 Realising pairs of separable negative-positive Poincaré-Reeb trees
	4.1 The flipped tree of a contact tree
	4.2 The flopped trees of a binary separating tree
	4.3 The negative contact tree of a set of polynomial functions in one real variable
	4.4 Realising pairs of separable negative-positive Poincaré-Reeb trees
	4.4.1 The algorithm
	4.4.2 The effective realisation of the pairs provided by the algorithm


	Bibliography
	Index

