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Titre : Tests immunologiques par transfert d'énergie par résonance de Förster en utilisant des 
protéines modifiées pour la détection de biomarqueurs du cancer du sein 

Mots clés FRET, boîtes quantiques, complexe de lanthanides, bioconjugaison, spectroscopie résolue 
en temps 

Les protéines modifiées ont suscité un grand 
intérêt en raison de leur taille extrêmement 
petite par rapport à l'anticorps entier. Ces petites 
protéines de liaison ont démontré de nombreux 
avantages tels qu'une biodistribution rapide, une 
bonne pénétration dans le tissu tumoral et une 
élimination rapide du sérum et des tissus non-
infectés. Ainsi, ces protéines devraient être 
d'excellentes alternatives aux anticorps pour les 
applications cliniques. Cette thèse présente le 
développement de biocapteurs basés sur des 
anticorps synthétiques et le transfert d'énergie 
par résonance de type Förster (FRET) résolu en 
temps par la détection de biomarqueurs. 

Les tests immunologiques à base de FRET sont 
établis en utilisant des complexes de terbium 
(Tb) comme donneurs de FRET et des boîtes 
quantiques semi-conducteurs (QDs) comme 
accepteurs de FRET. Les propriétés 
photophysiques exceptionnelles de ce couple de 
FRET Tb-QD permettent une détection 
quantitative ultrasensible. Des anticorps 
monocaténaires (single-domain antibody, sdAb) 
et des petites protéines d’affinité synthétiques 
(albumin-binding domain-derived affinity 
protein, ADAPT) sont utilisées pour étudier 
différentes stratégies de conjugaison d'anticorps, 
et quantifier des biomarqueurs cliniques 
(EGFR, HER2). Ce travail peut être considéré 
comme une condition préalable à l’utilisation 
des QDs en diagnostic clinique. 
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Abstract : Engineered affinity proteins have 
raised great interest due to their extremely 
small size compared to full length antibodies. 
Such small binding proteins have demonstrated 
many advantages such as quick biodistribution, 
good penetration into tumor tissue, and fast 
elimination from serum and nondiseased 
tissues. Thus, they are expected to be excellent 
alternatives to antibodies for clinical 
applications. This thesis focuses on the 
development of biosensors based on engineered 
antibodies and time-resolved Förster resonance 
energy transfer (FRET) through biological 
recognition of biomarkers. 
 

FRET-based immunoassays are established 
using terbium complexes (Tb) as FRET donors 
and semiconductor quantum dots (QDs) as 
FRET acceptors. The exceptional 
photophysical properties of the Tb-QD FRET 
pair allow for ultrasensitive quantitative 
biosensing. Single-domain antibodies (sdAb) 
and small engineered scaffold antibodies 
(ADAPT) are used to investigate different 
antibody-conjugation strategies for quantifying 
human epidermal growth factor receptors 
(EGFR, HER2) as clinical biomarkers. This 
work can be considered as a prerequisite to 
implementing QDs into applied clinical 
diagnostics. 
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Chapter 1

Introduction

Early diagnosis of cancer is crucial for a successful treatment. As normal diagnostics
analysis in the laboratory can be a time-consuming and complicated process, rapid,
sensitive and specific immunoassays for protein biomarkers in serum, whole blood or
plasma have the potential to largely improve early diagnosis and follow-up treatment
[Rusling et al., 2010]. Therefore, there is an increasing demand of biosensors develop-
ment for detecting cancer biomarkers at ultralow concentrations during early stages
of the disease and disease progression-monitoring for the benefit of patients. Biosen-
sors based on Förster resonance energy transfer (FRET) have demonstrated many ad-
vantages for simple, fast, sensitive and multiplexed diagnostics. Due to the r−6 dis-
tance dependency for the transfer efficiency, also called FRET efficiency, FRET is ver-
satile and sensitive for qualitative and quantitative analysis of biological interactions
and processes in a nanoscale range of ca. 1-20 nm. FRET is a non-radiative energy
transfer between an excited donor molecule (FRET donor) and a ground state acceptor
molecule (FRET acceptor), which must be in close proximity and energetic resonance
as expressed by spectral overlap integral [Förster, 1948]. For detecting the target of in-
terest, there are many signal transduction strategies according to the signal increases or
decreases in the response of the target, which is mediated by the biomolecules to which
donor and acceptor are conjugated. For FRET-based sandwich immunoassays, both
donor and acceptor are conjugated with two different target recognition biomolecules.
The presence of the target results in binding and a close proximity of FRET donor
and acceptor to provide a measurable change of FRET signals. The unique ability of
FRET to probe target biomolecule concentrations and inter- and intramolecular sep-
aration distances has led to a rapidly growing amount of FRET studies concerning
biomolecules and biological complexes [Clegg, 1995, Selvin, 1995].

Various materials that are utilized in FRET now encompass organic dyes, fluores-
cent proteins, semiconductor quantum dots, metal chelates, noble metals and other
nanoparticles. Among all of them, the combination of luminescent lanthanide com-
plexes (LLCs) as donors and quantum dots (QDs) as acceptors are one of the most par-
ticular FRET pairs [Hildebrandt, Wegner, and Algar, 2014, Geißler et al., 2010]. Their
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photophysical properties enable exceptionally large Förster distances (R0, distance for
which FRET is 50 % efficient) up to 11 nm beyond the usual FRET distance of ca. 1 - 10
nm. LLCs are composed of a lanthanide cation coordinated by a ligand that serves as
a light-harvesting antenna. Due to the forbidden f-f transitions of the lanthanide ions,
LLCs show multiple, narrow and well-separated emission bands that are very well
suited for spectral-multiplexing. Moreover, LLCs possess long excited-state lifetimes
up to a few milliseconds, which allows for time-resolved measurements and provides
a great potential for temporal-multiplexing [Bünzli and Piguet, 2005, Geißler et al.,
2013]. QDs are semiconductor nanocrystals that display several advantages over con-
ventional organic dyes including high molar extinction coefficients, broad absorption
and narrow and symmetric emission bands with full width at half maximum (FWHM)
∼ 25-40 nm spanning from UV to near-infrared, large effective Stokes shift and re-
markable photostability. In particular, a very unique feature is their size-tunable emis-
sion as a result of quantum confinement effects. As the semiconductor material is
reduced to nanoscale, the continuous energy bands split into discrete excitonic (hole-
electron interaction) states. As a result of excitons that are confined to smaller dimen-
sions than the Bohr radius (assumed as hole-electron distance), the band gap energy
increases with decreasing QD size, which effects the absorption and emission wave-
lengths of QDs shift to the blue spectral region. The well-established synthesis and
surface functionalization strategies render QDs biocompatible and enable conjugation
with biomolecules in aqueous solution [Medintz et al., 2005]. In most of FRET-based
application, QDs are usually used as FRET donors [Willard et al., 2001]. The main
problems of accessing QDs as acceptors is their broad absorption and high extinction
coefficient, which will easily lead to efficient direct excitation of QDs at almost any
wavelength used for donor excitation due to the broad absorption spectrum of QDs.
Therefore only a minor fraction of QDs in the ground state participate in FRET. The so-
lution to this problem is the use of materials with long excited-state lifetimes as FRET
donor such as LLCs (lifetimes up to several milliseconds) and pulsed excitation. The
combination of LLCs and QDs permits spectral multiplexing of different QD colors for
the same donor with facile separation of the different emission bands due to greatly
reduced optical crosstalk. Also, their large and broad molar absorptivities (extinction
coefficients) result in large spectral overlap integrals and therefore long Förster dis-
tances [Morgner et al., 2010].

As a result of the aforementioned advantages of LLCs and QDs as FRET pairs,
FRET becomes a very promising technique for time-resolved (TR) photoluminescence
(PL) measurements that allow for efficient suppression of PL intensity due to directly
excited acceptors and sample autofluorescence. Therefore, such FRET pairs have been
used in clinical diagnostics for the detection of different biomarkers [Kupstat, Kumke,
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and Hildebrandt, 2011, Wegner et al., 2013]. The most popular approach to target those
biomarkers is to use antibodies within homogeneous immunoassay, which simplifies
the sample preparation procedure without several incubation, washing, and separa-
tion steps but only a very simple mix and measure procedure. The distance inside the
immunoassays can be adapted by the size of photoluminescent materials and the an-
tibodies. That is, by alternating smaller size of antibodies with the same specificity or
more compact luminescent materials, FRET can be further improved.

FIGURE 1.1: Principle of the homogeneous immunoassay. The combi-
nation of Tb- and QD-antibody (AB) conjugates allows for the formation
of Tb-AB-antigen-AB-QD sandwich complexes upon addition of antigen,
which results in FRET from several Tb to the central QD. Time-gated de-
tection of FRET-sensitized QD photoluminescence is used for a sensitive
quantification of the antigen concentration. The assay leads to a typical
immunoassay calibration curve, for which the FRET signal increases with
increasing antigen concentration until a saturation is reached when the
antigen concentration equals the Tb-AB or QD-AB concentration.

The aim of this work is to utilize the exceptional photophysical properties of Lumi4-
Tb complexes (LTC) and QDs for TR-FRET and investigate the influence of antibody
sizes on the sensitivity of the immunoassay for the detection of cancer protein biomark-
ers. For TR-FRET sandwich immunoassays (Figure 1.1), two antibodies that bind to
different epitopes of the antigen (biomarker) are labeled to LTC and different emitting
QDs, respectively. A detailed photophysical characterization of FRET pairs (LTC and
QD conjugates) was performed and the labeling ratios were estimated using UV/Vis
absorption spectroscopy. The formation of antibody-antigen-antibody complexes con-
jugated with LTC donors and QD acceptors gives rise to FRET. The first study (Chapter3)
presents ultrasmall (∼6.5 kDa, ∼1.0 x 1.5 x 2.5 nm3) albumin-binding domain-derived
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affinity proteins (ADAPTs) for the quantification of the human epidermal growth fac-
tor receptor 2 (HER2) [Lindbo et al., 2016, Nilvebrant et al., 2014]. These small affin-
ity proteins are beneficial for multivalent nanoparticle conjugation and efficient FRET.
ADAPT variants against HER2 containing the histidine tag (ADAPT-His6) and a cys-
teine (ADAPT-Cys) either at the N terminus or the C terminus were produced by our
collaborators from KTH - Royal Institute of Technology (Stockholm, Sweden) [Lindbo
et al., 2016, Nilvebrant et al., 2014]. Anti-HER2 pertuzumab antibody (Roche Genen-
tech) was used for LTC-NHS labeling through the primary amines of lysine residues.
Two different QD conjugation methods were applied for comparison. ADAPT-His6
can efficiently self-assemble by metal affinity coordination to the Zn-rich surfaces of
QDs emitting at 625nm (QD625, Thermo Fisher) coated with zwitterionic ligands. This
direct assembly on the QD surface provides efficient FRET. Another way is to use
ADAPT-Cys, which can label to ITK QDs with amino-PEG emitting at 705 nm (QD705,
Thermo Fisher) through sulfhydrl chemistry. The amine-reactive QDs were converted
to maleimide-reactive QDs by using the heterobifunctional crosslinker sulfo-EMCS,
which has NHS ester and maleimide reactive groups. The maleimide activated QDs
were then conjugated to the ADAPT-Cys via free sulfhydryl groups, which were re-
duced by TCEP. The labeling ratios of QD and ADAPTs is very difficult to quantify due
to the large difference of extinction coefficients of the QDs and ADAPTs at 280 nm but
the large excess of ADAPTs per QD and the functionality of the FRET assays provided
very good evidence for a successful ADAPT-QD conjugation. Homogeneous TR-FRET
immunoassays could quantify HER2 both in 50 uL buffer and serum-containing sam-
ples with sub-nanomolar detection limits using a clinical benchtop immunoassay an-
alyzer (KRYPTOR compact plus). The limit of detection (LOD) was acquired from the
linear part of the calibration curve. The LOD of QD625 conjugate outperformed pre-
viously tested assays with antibodies, antibody fragments, and nanobodies. Although
the QD705 conjugate showed higher detection limits than the QD625 conjugate, the re-
sults provided important information concerning the possibility of color multiplexing
and versatility of ADAPT-conjugation to other nanoparticles.

The second study (Chapter4) focuses on single-domain antibodies (sdAb), which
are antibody fragments consisting of a single monomeric variable domain with a molec-
ular weight of only 15 kDa and are used in many different antibody based applications
[Schumacher et al., 2018]. For the realization of the sandwich immunoassays two kinds
sdAb were provided by our collaborators at Utrecht University (Netherlands). These
nanobodies bind to non-overlapping epitopes of the human epidermal growth fac-
tor receptor 1 (EGFR), noted as EgA1 and EgB4, with three separation tags (histidine,
biotin, cysteine) and without tag (no tag) for several conjugating strategies with FRET
pairs. EgA1-no tag and EgA1-His6 were used for LTC labeling. EgB4-His6, EgB4-biotin
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and EgB4-Cys were used for three different conjugation strategies. The QDs applied in
these systems were the same QD625 and QD705 that were used in the previous study.
Additionally, another commercial QD emitting at 705 nm (sAvQD705, 705 ITK Strepta-
vidin Conjugate Kits) is introduced here for biotin-streptavidin recognition, where the
streptavidin covalently attached to the inner amphiphilic coating without a PEG linker,
and therefore provided more freedom for the co-assembly of other biomolecules to the
QD. Thus, the detection limit of EgB4-biotin-sAvQD705 conjugate is lower than EgB4-
Cys-QD705 conjugate. Interestingly, another FRET pair EgA1-His6-LTC and EgB4-
His6-QD625 showed slightly reduced FRET with increasing EGFR concentrations due
to the LTC-conjugate self-assembled on the QD625 by metal polyhistidine affinity. The
addition of EGFR replaces some of the LTC-conjugates resulting in a competitive dis-
placement immunoassay. The concept was confirmed by another experiment, in which
the QD FRET acceptor without conjugated sdAb, that is EgA1-His6-LTC and QD625,
still showed the same competitive result, which was applicable to detect EGFR at sub-
nanomolar concentrations. This competitive assay is highly interesting because it re-
quires only one single type of EGFR-specific sdAb, which strongly reduces the anti-
body development and reagent costs.

In summary, the results from this PhD thesis demonstrate that small affinity pro-
teins can be very advantageous for QD-based immunoassays. Such small proteins (e.g.,
ADAPT, sdAb) allow for multivalent QD conjugation, which can increase QD FRET-
sensitization. ADAPTs were shown to outperform any other types of antibodies for
HER2 immunoassays. SdAbs were used to develop a competitive homogeneous im-
munoassay that requires only one antibody (instead of two), which can be considered
as a useful alternative strategy for EGFR detection. Both strategies for QD-based ho-
mogeneous FRET-immunoassays with small affinity proteins provide a large potential
for advanced in vitro diagnostics and other FRET-based biosensing applications, e.g.,
for imaging analysis of epidermal growth factor receptor dimerization.
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Chapter 2

Background

2.1 Förster resonance energy transfer

2.1.1 Introduction

Energy transfer can be divided to four mechanisms, that is Förster resonance energy
transfer (FRET), reabsorption, complex formation and collision quenching where ex-
citation energy can be transfered from donor to acceptor. These mechanisms can take
place by either radiative or non-radiative pathways. Radiative energy transfer, also
known as reabsorption that requires emission of a photon by donor with subsequent
absorption of that photon by acceptor, occurs from 1 µm to infinity. In contrast to ra-
diative energy transfer, non-radiative energy transfer occurs without absorption and
emission of a photon. There are two energy transfer mechanisms. 1) Dexter energy
transfer mechanism happens when donor and acceptor in short distance (0-1 nm) ac-
companied with electron exchange; 2) The FRET mechanism takes effect at longer dis-
tances (1-20 nm) through coupling of the transition dipole moments of donor acceptor
pairs. Among all of them, FRET appears to be the most popular and important tool in
biology and biochemistry [Meer, 2013].

To explore the discovery, the biological mechanism in the human body is always
a goal for the scientist. Due to its extremely sensitive distance (1-20 nm) dependence
under physiological condition, the energy transfer between donor and acceptor flu-
orophores at nanometric distances can be obtained from the luminescence measure-
ment, which will occur but not be significantly affected by the biomolecules in the
sample. It can provide the information for cellular signaling, receptor-ligand binding,
protein-protein interaction, DNA/RNA analysis and enzymatic reaction [Hildebrandt,
Wegner, and Algar, 2014]. These favorable properties allow this technique to be widely
used in the biochemistry, structural biology and polymer chemistry to investigate the
mechanism of biological process [Lakowicz, 2006]. This chapter will cover a basic intro-
duction of theoretical background, how to choose adequate pairs to perform successful
FRET experiments and related applications.
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FIGURE 2.1: Left. The overlap (gray area) between donor emission(D)
and acceptor absorption(A) defines overlap integral (J) to calculate Förster
distance (R0). Right. The simplified Jablonski diagram shows that FRET
happens upon resonance of electronic transitions between excited state of
donor (D∗) and acceptor (A∗) then followed by radiative and nonradiative
decay to the ground state (A). (Reprinted from [Hildebrandt, 2013])

2.1.2 Theory and Formalism

Resonance energy transfer was proposed in theory and successfully elucidated with
experimental data using spectral overlap, quantum yields and lifetimes by a German
scientist Theodor Förster in the late 1940s. In honor of his work, FRET is named as
Förster resonance energy transfer. In a verbal definition, FRET is a non-radiative en-
ergy transfer from an excited-state donor molecule (D∗) to a ground state acceptor
molecule (A), where the donor-acceptor distance is between 1-20 nm. In this close
proximity, FRET is based on the approximation that dipole-dipole coupling can be rep-
resented by Coulombic coupling. The basic principle of FRET is shown in the Jablonski
diagram (Figure 2.1 Right), the transitions are in energetic resonance. The FRET pro-
cess can be considered one of deactivation pathways for an excited donor. The rate of
energy transfer kFRET is given by Equation 2.1 and the inverse sixth power distance
dependency (r−6) can be observed here [Förster, 1948, Clegg, 1995].

kFRET = τ−1
D

(
R0

r

)6

(2.1)

τD is the luminescence lifetime of donor (in the absence of acceptor), r is the sepa-
ration distance between donor and acceptor, where the FRET rate (kFRET ) and all other
decay rate for radiative and non-radiative (kR and kNR) are in equilibrium kFRET =
kR + kNR = τD

−1, the FRET efficiency is 50 %. This distance is commonly referred to as
Förster distanceR0, giving rise to Equation 2.2 which includes several crucial variables.

R0 =

(
9(ln10)κ2ΦD

128π5NAn4
J(λ)

)1/6

(2.2)
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FIGURE 2.2: Left. Angles used in the equation 2.5 and 2.6. Right. Values
of κ2 depends on the orientation of donor and acceptor transition dipole
moment. (Reprinted from [Valeur, 2001])

where κ2 is the orientation factor between D and A, ΦD is the quantum yield of the
donor, NA is Avagadro’s constant, n is the refractive index of the medium, and J(λ)

is the spectral overlap between donor emission and acceptor absorption. The spectral
overlap J is defined as:

J =

∫
ID(λ)εA(λ)λ4dλ (2.3)

where ID is the area-normalized donor emission and εA(λ) is the extinction coefficient
(molar absorption) of the acceptor (Figure 2.1 Left.). Using NA = 6.023 x1023 mol−1, nm
units for λ, and M−1cm−1 for the extinction coefficient leads to

R0 = 0.02108(κ2ΦDn
−4J)1/6(nm) (2.4)

One of the important variable called orientation factor, κ2 describes the orientation
of the transition dipole moments of donor and acceptor and can be calculated with the
following equation:

κ2 = (cos θDA − 3 cos θD cos θA)2 (2.5)

cos θDA = sin θD sin θA cosφ+ cos θD cos θA (2.6)

where cos θDA is the angle between donor and acceptor transition dipole moments,
and θD and θA are the angles between donor and acceptor transition dipole moments
and the vector ~r connecting donor and acceptor. κ2 can range from 0 (perpendicular
transition moments) to 4 (collinear transition moments), when transition moments are
parallel κ2 = 1 (Figure 2.2 Right). In most FRET experiments we consider κ2 = 2/3,
means that during FRET the donor and acceptor are able to rotate in all the orientation
at a rate that is much faster than the excited state lifetime of donor (isotropic dynamic
averaging, sphere). But not all the FRET system are applicable in the assumption. For
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FIGURE 2.3: FRET efficiency as a function of D-A distance

example, if using fluorescent proteins as donor and acceptor, or attach the fluorophore
to the double-helical DNA in the rigid structure, they may have a fixed orientation
(static isotropic averaging, line) then this assumption is no longer valid. The κ2 can
take values between 1/3 and 4/3 (from sphere to line, or line to sphere), or range from
0 to 4 (line to line). Hence, it is important to take into account the orientation of donor
and acceptor transition dipole moments, otherwise it will cause a serious error in the
calculations.

The efficiency of energy transfer (FRET efficiency, ηFRET ) is the quantum yield of
energy transfer, can be calculated by using the FRET rate and the decay rate of the
donor in the first part of Equation 2.7, combing Equation 2.1 to the Equation 2.7 leads
to the relationship of Förster distance R0 and the distance between donor and acceptor
r. As shown in the Figure 2.3 due to the r−6 distance dependency, FRET efficiency is
mostly sensitive in the region of 0.5R0 to 2.0R0, beyond this range FRET is either too
efficient for shorter distances or negligible for longer distances.

ηFRET =
kFRET

kFRET + kD + kD
=

kFRET

kFRET + τ−1
D

=
1

1 + (r/R0)6
=

R6
0

R6
0 + r6

(2.7)

FRET efficiency can also be determined by measurable photophysical properties
such as intensity (I), litetime (τ) and quantum yield (Φ). In Equation 2.8, the spectro-
scopic data of D in the absence (subscript D) and presence of A (subscript DA) are used
to calculate FRET efficiency. Combing Equation 2.8 with Equation 2.7 enables to esti-
mate the donor and acceptor distance r, which allows to use FRET as a spectroscopic
molecular ruler.
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ηFRET = 1− IDA

ID
= 1− τDA

τD
= 1− ΦDA

ΦD

(2.8)

In most biosensing applications, the main interest is to quantitatively detect the
analytes. Using the ratiometric approach to calculate FRET ratio (FR) by measuring
donor (ID) and acceptor (IA) intensity simultaneously, we can know the analyte con-
centration. This method can be very advantageous for analytical application as it can
intrinsically correct for medium interferences and excitation energy fluctuation. More
details will be discussed in Section 2.7.2.

FR =
IA
ID

(2.9)

2.2 FRET-based application

FRET-based application can be divided into two categories, that is target sensing and
structural analysis. The intrinsic distance dependence of FRET makes it ideal for mon-
itoring a wide range of molecular recognition events, and detecting many types of
target analytes. There are a number of potential in vitro target analytes of interest, in-
cluding proteins, metabolites, drugs, toxins, nucleic acids, human cells, microbes and
other pathogens [Gubala et al., 2011]. Biomarkers are of particular interest in the clin-
ical diagnostics because they act as an indicator to measure and evaluate the normal
biological process, pathogenic process or pharmacologic responses to a therapeutic
intervention [Group et al., 2001]. Especially it can identify the type and stage of dis-
eases, determine disease prognosis, and monitor the treatment outcomes [Sapsford et
al., 2010]. The recognition molecules can interact with the target of interest through
various mechanisms, including cleavage, binding or structural rearrangement result-
ing in measurable change of FRET signal. These recognition molecules can take vari-
ous forms such as antibodies, aptamers, oligonucleotides (DNA, RNA), peptides, and
small organic molecules. FRET assays by nucleic acid and protein-based are the main
types of FRET-based sensors currently being used. The implementation of FRET and
microscopy techniques are used to study the folding and conformational changes of
biological structures and provide an inside view in inter- and intra-cellular processes
[Schuler and Eaton, 2008, Prevo and Peterman, 2014]. In the following section mainly
focus on the FRET-based immunoassay, it is also the main part within the work and a
short summary of FRET-based sensing in the cellular environment.
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2.2.1 Immunoassays

Immunoaasays can be considered one of the most widespread use analytical tools in
medicine and fundamental life-science research which are used to detect an analyte
based on binding reaction between an antibody and an analyte. The special properties
of antibodies concerning specificity, sensitivity and flexibility are i) an extremely wide
range of binding targets, e.g. natural and synthetic chemical, biomolecules, cells and
viruses; ii) the high specificity of each antibody to its target; and iii) the strong binding
affinity between an antibody and its target. In general, immunoassays can be classified
into two groups, heterogeneous and homogeneous assays, which depend on a sepa-
ration of unbound labeled analyte before bound signal is measured. Heterogeneous
assays require several washing steps to separate the unbound components due to the
immobilization of the antibody or analyte on a solid phase. For homogeneous assays
no washing and separation steps are required, as it generates signal only when the
binding reaction happens [Wild, 2013].

Heterogeneous and homogeneous assays can be performed either in competitive
or immunometric (non-competitive) design. Non-competitive immunoassay is also
known as two-site or sandwich immunoassay, consists of two antibodies bind to the
different epitopes of analyte to form a sandwich complex. One antibody is used to
capture the analyte and another antibody is labeled with fluorophore, chromophore or
radioactive isotope for signal generation to detect upon biological reaction. The signal
intensity is directly proportional to the analyte concentration (Figure 2.4 Left). The
competitive immunoassay is mainly used for the detection the small analyte which
can only bind to one antibody, the analyte compete with labeled analyte to the limited
amount of capture antibody, hence the detected signal is indirectly proportional to the
analyte concentration of the sample (Figure 2.4 Right).

The accuracy of an immunoassay may be influenced by sources of interference,
which decrease the accuracy. The most predominant is the hook effect, which can be
directly seen in the calibration curve (Figure 2.5). Low-dose hook effects appear oc-
casionally in competitive assays. At low concentration of analyte, in particular those
radioactive assays where the antigen is labeled to a very high specific activity and re-
sult in higher signal than in the absence of analyte. The high-dose hook effect mostly
occurs in the immunometric (sandwich) immunoassay due to the excess analyte sat-
urates both capture and detection antibody simultaneously and result in falsely de-
creased results that prevents the formation of capture antibody-antigen-detection an-
tibody complex. Therefore, it is necessary to ensure the concentration of capture and
detection antibodies are enough to cope with the levels of analytes. This effect can be
avoided by increasing the amount of antibody and reducing the amount of analyte or
by sample dilution [Davies, 2013].
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FIGURE 2.4: Left. Non-competitive immunoassay (sandwich format)
Right. Competitive immunoassay (orange:capture antibody, gray with red
star:labeled detection antibody, green:antigen)

FRET-based Immunoassay

The conventional enzyme-linked immunosorbent assay (ELISA) is commonly used
method in medical research laboratories for detecting and quantifying analytes indi-
cated by a color change brought by an enzymatic reaction in a complex mixture [Van
Weemen and Schuurs, 1971, Engvall and Perlmann, 1971]. This method requires care-
ful surface immobilization of capture antibodies, antigens and detection antibodies
with crucial washing to remove unbound species. In comparison, to perform FRET-
based immunoassay, homogeneous sandwich immunoassay is more advantageous.
A competitive homogeneous energy transfer-based immunoassay was first demon-
strated by Ullman et al. in 1976, since then, FRET-based immunoassays have been
greatly improved [Ullman, Schwarzberg, and Rubenstein, 1976]. It can directly detect
the analyte in the solution, overcoming limitations such as long incubation times, mul-
tiple washing steps, nonspecific adsorption on surface upon immobilization. Besides,
different FRET pairs enable FRET in the 1-20 nm range to detect small and large an-
alyte, thereby in the presence of the analyte brought the donor and acceptor together
into the close proximity at which FRET can occur. FRET signal can be monitored by the
extent of donor quenching and acceptor sensitization to estimate the analyte concen-
tration. The amino acid within antibodies provide a wide range of functional groups,
thus can use various labeling strategies for bioconjugation.

Even though the sandwich assay represents the mainstream immunoassay format
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FIGURE 2.5: Left. Low-dose effect Right. High-dose effect

using FRET-based biosensing, the relatively large dimensions of antibody-antigen-
antibody complex can decrease the energy transfer efficiency. To overcome this lim-
itations, new FRET materials such as lanthanide complexes and QDs or fragmented
antibodies have reported to improve FRET efficiency. The high quantum yields of
QDs have been used to extend the Förster distance (R0) for sensitive detection of estro-
gen receptor β-antigen using IgGs in a sandwich assay format [Wei et al., 2006]. QDs
and lanthanide complex as FRET pairs have been developed to detect prostate-specific
antigen [Kupstat, Kumke, and Hildebrandt, 2011] and alpha-fetoprotein [Chen et al.,
2012] in homogeneous sandwich immunoassay format. The narrow emission bands
of QDs to avoid spectral crosstalk and the use of long-lifetime lanthanide complexes
allowed time-resolved measurement to decrease background signal and increase the
sensitivity. These advantages allowed to perform multiplexing detection in the diag-
nostics. QDs and terbium-complex has been recently designed for multiplexing de-
tection of EGFR/HER2 in a single sample using antibodies and nanobodies systems
[Qiu et al., 2016]. There also has been increasing interest in using near-infrared (NIR)
emitting lanthanides and upconversion nanoparticles (UCNPs) because of anti-Stokes
energy transfer that eliminates the background signal from the direct excited acceptors
[Laitala and Hemmilä, 2005].

In addition to the direct labeling of antibodies, attaching either donor or the ac-
ceptor fluorescent probe with complementary single-strand deoxyribonucleic acid (ss-
DNA) can resulting efficient FRET between the donor and acceptor fluorophores upon
target hybridization[Heyduk and Heyduk, 2010, Wang, Tian, and Chang, 2012]. An
alternative approach to improving FRET efficiency is to decrease the distance between
donor and acceptor through fragmented antibodies [Ohiro et al., 2007, Sasajima et al.,
2006] and small-size engineered antibodies [Wegner et al., 2014].
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2.2.2 Cellular-based imaging

FRET-based imaging techniques are more advantageous for understanding molecu-
lar mechanisms within a living cell or tissue using microscopy. In fluorescence mi-
croscopy, colocalization refers to the observation of the spatial overlap between two
fluorophores. Due to the resolution limit of classical microscope (diffraction limit),
this method can only detect in 200-500 nm range, therefore the colocalisation between
two proteins does not provide the evidence about their interaction degree. Since FRET
occurs over distances of 1-10 nm, FRET-based microscopy has been considered as an
ideal technique to study protein-protein interactions in the close proximity, which pro-
vides the additional magnification surpassing the optical resolution of the light micro-
scope. There are several intensity-based imaging techniques that apply the method
of FRET to conventional wide-field, confocal and multi-photon microscopes. How-
ever, quantitative intensity-based FRET methods are problematic for some situations,
such as donor bleedthrough (saturation) or directly excited acceptor fluorescence. On
the other hand, fluorescence lifetime imaging microscopy (FLIM) is the most rigorous
method for determining FRET. The lifetime of fluorophores can be measured directly
by time-correlated single-photon counting (TCSPC), in which fluorescence decay his-
tograms are compiled from fluorescence photon arrival times after pulsed excitation
on a nanosecond timescale. It is more sensitive than intensity-based method as the
fluorescence lifetime does not depend on concentration, photobleaching, excitation in-
tensity to avoid less crosstalk artifacts [Sekar and Periasamy, 2003, Zeug et al., 2012,
Becker, 2012].

However, the assemble FRET experiment provide only the average observation
based on an ensemble, it is hard to explain the intrinsic phenomena in many physical,
chemical and biological process. Recently the major progress in the fluorescence mi-
croscopy instrumentation, raising its detection sensitivity to the single-molecule level.
The single-molecule FRET (smFRET), which involves labeling biomolecules of interest
with FRET pairs, ables to identify subpopulations that would be indistinguishable in
ensemble FRET measurement. This allows to study the dynamics of conformational
fluctuation, for example protein folding and DNA/RNA folding dynamics. One of the
most promising challenges is to translate smFRET measurement from in vitro to the in-
tracellular environment, and coupled with single-molecule tracking to fully character-
ize single-molecule conformation, dynamics and interaction with the complex medium
[Schuler and Eaton, 2008, Ha, 2001].
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2.3 Luminescent lanthanides

2.3.1 Introduction

The lanthanides series comprises 15 elements (from lanthanum to lutetium), which are
located at the sixth period and Group IIIB of the periodic table. Lanthanides including
scandium and yttrium are called rare earth metals instead of the scarcity on earth but
the difficulty to find them in larger amounts of pure element [Tyler, 2004]. The first
rare earth metals were discovered in 1787 with the mineral Yetterbite, which found
nearby the village of Ytterby (Sweden). The mineral was studied by a Finnish chemist
John Gadolin and found an unknown oxide, which he named yttria. Later on the pure
element yttrium was obtained then more lanthanides were revealed until the last one
promethium (Pr) to be discovered in 1938. The discovery of lanthanides took more
than 100 years, due to the similarity in their chemical properties, and found as oxides
which have proved to be particularly difficult to separate from each other [Werts, 2005].

The similarity can be explained by the electronic configuration of the lanthanide
atoms and their corresponding ions. Lanthanides from cerium (Ce) to lutetium (Lu)
are progressive filled valence electrons in 4f orbitals and share the electronic configura-
tion of xenon. The general electronic configuration is usually donated as [Xe]4fn5d16s2

(n = 0-14). Particularly, the oxidation state of lanthanides Ln3+ ([Xe]4fn, n = 0-14) is the
most stable for all lanthanide in the aqueous solutions and only show small difference
in complex formation and solubility. These small differences are due to their decrease
in ionic radii of ions with increasing nuclear charge. This consequence is so called lan-
thanide contraction, which caused by the large size and diffuse localization of electrons
in f orbitals providing the poor shielding of the outer electrons from the increasing nu-
clear charge. Furthermore, the electrons in the 4f orbitals are shielded by the filled 5s
and 5p orbitals, thus the 4f orbitals do not directly participate in chemical bonding.
The emission wavelengths of lanthanide are minimally perturbed by the surrounding
environment, resulting in sharp and narrow-line emission bands. The f-f transition are
parity forbidden by the spin and Laporte rule leading to very low extinction coefficient
and long excited-state lifetime to several millisecond [Bünzli and Piguet, 2005].

Most of lanthanide ions are luminescent, this property can be explained by a vast
number of energy levels involving a redistribution of electrons in 4f orbitals. Here
we use Eu3+ as example (Figure 2.6 Right.). The energy levels of free Eu3+ ions in 4f
orbitals are determined by the Coulombic interaction and the spin-orbit coupling be-
tween f electrons. The Coulombic interaction, which represents the electron-electron
repulsion within the 4f orbitals, generates total orbital angular momentum (L) and
total spin angular momentum (S) with a separation in the order of 104 cm−1. Each
of these terms is split into several J-levels by spin-orbit coupling to an extent of 103
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FIGURE 2.6: Left. A summary of ground and excited-state energy levels
for the Ln3+ series. The main luminescent excited state are highlighted in
red, while the ground state term is indicated in blue (Reprinted from [Bün-
zli and Piguet, 2005]) Right. Diagram represents the interaction leading to
the splitting of electronic energy level of Eu3+. (Reprinted from [Werts,
2005])

cm−1, which makes the total angular momentum (J) of the f electrons. When present
in a complex environment, where the Eu3+ is coordinated with ligands, the individual
J-levels are split up further to sublevels by the electric field of the ligand, which is usu-
ally referred to as the crystal field. These splittings are usually small (102 cm−1) and,
depending on the spectral resolution of the spectrometer, appear as fine structure on
the individual bands. Therefore, each set of L, S, and J corresponds to a specific dis-
tribution of electrons within the 4 f-shell and defines a particular energy level. Thus,
the free ion levels can be described by the term symbols (2S+1)LJ with (2S+1) the to-
tal spin multiplicity. The ground state and excited state energy level of Ln3+ ions are
shown in Figure 2.6 Left, where radiative transition between the energy levels occurs to
give rise the luminescent lanthanide ions. With respect to the energy gap requirement,
Eu3+, Gd3+ and Tb3+ seems to be the best ions in terms of their emission properties.
However, Gd3+ emits in the UV region due to the large energy gap between 8S7/2 and
6P7/2, whereas Eu3+ and Tb3+ have their emission in the visible range and are highly
suited for application in bioanalysis. Several other ions (Pr3+, Nd3+, Er3+, Yb3+) emit
weak luminescence in the NIR region, which have gained in popularity with efficient
sensitizing groups. With NIR excitation, light scattering and autofluorescence by bio-
logical tissues is substantially reduced, results in a depth of penetration in tissue much
larger than UV/Vis excitation. Based on theses properties, lanthanide containing lumi-
nescent probes are now increasingly being used for cancer detection by time-resolved
imaging and in many biological applications [Werts, 2005, Han et al., 2014].
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2.3.2 Lanthanide complexes

FIGURE 2.7: A) The simplified Jablonski diagram of antenna effect. B)
Luminescent 4f-4f transitions of Eu(red) and Tb(green) complex and com-
monly observed emission wavelength from 5DJ excited state to the 7FJ

ground states. (Reprinted from [Heffern, Matosziuk, and Meade, 2013])

Since the parity (Laporte) forbidden nature of 4f transitions, the direct absorption
of Ln3+ is very weak hence suffer the consequence of weak luminescence of Ln3+ due
to low molar extinction coefficient (< 1 M−1cm−1) [Gschneidner, Eyring, and Lan-
der, 2002] and their luminescence is efficiently quenched by coordination of water
molecules [Horrocks Jr and Sudnick, 1979]. In order to overcome these low extinction
coefficient, an alternative path has been worked out which is called antenna effect, that
is luminescent metal ions can be chelated to a chromophore ligand that acts as an "an-
tenna [Weissman, 1942]. The mechanism is shown in a simplified Jablonski diagram
(Figure 2.7A), the antenna ligand absorbs a photon (hv∗) to the singlet excited state
(S0→ S1) then undergoing intersystem crossing to the longer-lived triplet state (S1→
T1) and populates the Ln3+ excited states through intramolecular energy transfer (T1
→ 5DJ ). In some cases, the singlet state may directly transfer energy to the central ion,
but it is not common, due to short-lived singlet state the process is not efficient. Finally,
characteristic radiative emission from 5DJ excited state to the 7FJ ground state via in-
ternal conversion. This is so called luminescent lanthanide complex (LLC). In addition
to transferring energy to the metal, the ligand also serves as a shield against solvent
molecules from the first coordination sphere, which is essential to avoid quenching of
the lanthanide luminescence through non-radiative deactivation process based on vi-
bration of O-H and N-H bonds, and provide stable metal complexes. Furthermore, the
antenna effect results in large "Stokes shift" between ligand absorption and lanthanide
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emission which makes it easily detected without inner filter effect from LLC absorp-
tion. The overall quantum yield (ΦL

Ln) of a lanthanide complex is given by Equation
2.10:

ΦL
Ln = ηET · ΦLn

Ln (2.10)

where ΦL
Ln is the quantum yields from the indirect excitation upon ligand to the

centered metal ion, ΦLn
Ln is the intrinsic quantum yields of the lanthanide metal ions

when direct excitation on the 4f excited state and ηET represents the sensitization effi-
ciency from ligand to the lanthanide ions. The intrinsic quantum yield ΦLn

Ln essentially
depends on the energy gap between the lowest lying excited state of the metal ion and
highest sublevel of its ground multiplet. The smaller this gap will lead to depopulation
by nonradiative processes. Even if the intrinsic quantum yield is large, high excitation
energy is required to get the sharpness of the absorption bands ([Bünzli and Piguet,
2005]). The best way to improve the overall quantum yield (ΦL

Ln) is use antenna with
high energy gap between the triplet excited state of the ligand and the lowest emitting
levels of the Ln3+ ions, at least 2,500 cm−1 to 3,000 cm−1 difference. A low energy gap
will limit quantum yield due to the thermal deactivation caused by back-energy trans-
fer. The ligand must form stable complexes over a wide pH range and resist aqueous
hydrolysis at subnanomolar concentrations. Furthermore, the ligand also should be
multidentate (common coordination number is 8 to 9) that able to saturate the Ln3+ co-
ordination sphere to prevent water act as quencher to reduce the luminescence due to
the enhanced non-radiative deactivation process based on high energy vibration of the
O-H bond. And the ligand should have high absorption coefficient. The lanthanide
terbium complex (LTCs) used in this thesis is octadentate, macrocyclic ligand of the
Lumi4-Tb complex developed by Raymond and co-workers (Figure 2.8 middle) which
contains 2-hydroxyisophthalamide moieties with maximum absorption at ca. 340 nm
and a noticeable extinction coefficient of 26,000 M−1cm−1 in a buffered aqueous solu-
tion [Xu et al., 2011]. This LTCs can be conjugated to the biomolecules via maleimide
or -NHS functional group and has been demonstrated to be very efficient donor in the
time-resolved FRET experiments [Geißler et al., 2013].

2.3.3 Lanthanide Tb complexes as FRET donors

Tb and Eu ions are the most often used lanthanides as FRET donors, in the following
mainly focus on discussion concerning the characterization of LTCs as FRET donors.
LTCs shows several promising properties for using as FRET donor especially com-
bined with QD as FRET acceptors (i) unpolarized emission, Tb possess multiple emis-
sion transition dipole moments and therefore a dynamic averaging can be applied that
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FIGURE 2.8: Representative examples of LLC (R stands for the place of
introduction of the activated function). (Reprinted from [Geißler et al.,
2013])

limits the orientation factor κ2 to values between 1/3 and 4/3 (average κ2 = 2/3); (ii)
long-lived excited states up to millisecond lifetimes which can easily avoid autofluo-
rescence background in the time-gated measurements, which can be used for temporal
multiplexing. The PL lifetime of the LTC donors (τD > 2 ms) is much longer than the
PL lifetime of dye or QD acceptor (τA < 100 ns), this fast acceptor decay can be ne-
glected against the long FRET-quenched donor lifetime (τDA), and thus the lifetime of
the donor in the presence of acceptor (τDA) is equal to the lifetime of FRET-sensitized
acceptor (τAD), which leads to the equation 2.12

ηFRET =
R6

0

R6
0 + r6

= 1− τDA

τD
(2.11)

If τD » τA :

ηFRET =
R6

0

R6
0 + r6

= 1− τDA

τD
= 1− τAD

τD
(2.12)

(iii) large Stokes shift (usually more than 150 nm), due to the separation of excita-
tion by the antenna effect and emission from chelated lanthanide ions, which is suitable
for time-gated detection; (iv) well-separated emission bands; the possibility of energy
transfer over large distance and combine several acceptors with emission maximum
between or beyond the emission bands of LTC to perform spectral multiplexing. All
these advantages of lanthanide complexes in the application of FRET-based biosensing
are used in homogeneous assays and also can be found in many commercially available
bioassays with time-resolved FRET (TR-FRET). Such detection technologies are for ex-
ample homogeneous time-resolved fluorescence (HTRF) [Mathis, 1999], time-resolved
amplified cryptate emission (TRACE) [Bazin, Trinquet, and Mathis, 2002], lanthanide
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chelate excitation (LANCE) [Hemmila, 1999], or LanthaScreen [Robers et al., 2008].

2.4 Quantum Dots

2.4.1 Introduction

Quantum dots (QDs) are nanometer-sized semiconductor nanocrystals which are syn-
thesized from mixture of II-VI, III-V, and IV-VI groups of the periodic table, such as
ZnS, ZnSe, CdS, CdSe, CdTe, InP and etc. While many early studies mainly focused on
their size-dependent optical properties, now has merged as an important class of mate-
rial extending from biomedical, electronics and energy applications. Due to their small
nanometric sizes, quantum mechanical behavior can be observed from their tunable
PL emission color by varying the core size of QDs (Figure 2.9) [Alivisatos, 1996]. The
initiation of using QDs for biological applications was reported by two publication of
articles in 1998, showing the potential of water-soluble QDs for cellular imaging [Chan
and Nie, 1998, Bruchez et al., 1998]. The most popular QD fluorophores for biolog-
ical applications are made of CdS, CdSe and CdTe cores overcoated with a layer of
ZnS because this chemistry and conjugation strategies are the most defined. The ZnS
layer in the shell is to protect the core from oxidation and exposure to the surround-
ing environment also greatly improves the PL yield [Dabbousi et al., 1997, Hines and
Guyot-Sionnest, 1996]. III/V group or ternary semiconductors such as InP and InGaP
are possible alternatives which lack of cytotoxic cadmium ions [Li and Reiss, 2008].
Although, the usage of QDs in the biological application is controversial due to its tox-
icity of heavy metals, so that this question is under debate. Their unique photophysical
properties still allow them to have great potential in biological application and regard
as alternatives to complement the deficiencies of conventional organic dyes [Medintz
et al., 2005].

2.4.2 Photophysical properties of QDs

QDs properties show high interest to biologists include (i) brightness: arises from high
quantum yield (QY ≈ 0.2-0.9) and high molar extinction coefficient (ε ≈ 104-106 M−1

cm−1, that ∼10-100 times more than organic dyes); (ii) broad absorption with nar-
row, size-dependent, symmetric photoluminescence (PL) spectra (full-width at half-
maximum ∼25-40 nm) range from UV to NIR that are more suitable for spectral mul-
tiplexing; (iii) large effective stokes shifts allows efficient separation the excitation and
emission light to avoid spectral crosstalk; (iv) remarkable photostability have high re-
sistance to photobleaching and photo- chemical degradation to the environment; (v)
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FIGURE 2.9: Quantum confinement effect results in size-tunable QD PL.
Quantization of the energy level as a result of the quantum confinement
effect in a QD.Eg represent the bandgaps energies,Em the radiative emis-
sion of a photon upon recombination of electron (e−) and hole (h+). En-
ergy levels are color coded: The smaller the QD the more blue shifted will
be its photoluminescence. Continuous conduction band (CB) and valence
band (VB) of bulk semiconductor shown as comparison.(Reprinted from
[Algar et al., 2011a])

some QDs provide high two-photon absorption cross sections, which can excite at NIR
to have deeper tissue penetration and decrease the autofluorescence from biological
matrix [Resch-Genger et al., 2008, Rosenthal et al., 2011].

The unique properties of QDs are based on their size-dependent optical and elec-
tronic properties, which are intermediate between those of bulk semiconductors and
discrete molecules. In a bulk semiconductor, the valence band is occupied with elec-
trons and the conduction band is empty separated by an energy bandgap of 0.5-3.5 eV
(Figure 2.9). When it is excited by a photon of energy, a promoted electron into the
quasi-continuum conduction band and left a positive hole in the valence band. The
Coulomb interaction between the electron and the hole leads to a quasi-particle, which
is called an exciton. The average distance between electron and hole is referred as
the Bohr radius. In the case of QDs, the density of electronic states is not sufficient to
form complete band structures and discrete energy levels exist at the band edge. As
the QDs material is reduced to nanoscale, the continuous energy bands split into dis-
crete excitonic states. As a result of excitons that are confined to smaller dimensions
than the Bohr radius, the band gap energy increases with decreasing QD size, which
effects the absorption and emission wavelengths of QDs shift to the blue spectral re-
gion. This phenomenon is known as quantum confinement effect. It should be noted
that large surface-to-volume ratio of QDs is also an important aspect, which effect their
photophysical properties due to large fraction of atoms on the surface. For example,
a 5 nm CdS QD has approximately 15% of its 3300 atoms on the nanocrystal surface
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FIGURE 2.10: Representative QD core materials and their emission ranges
for the most studied types in the biological application. (Reprinted from
[Medintz et al., 2005])

and a 4 nm CdSe QD has approximately 33 % of its 1500 atoms at the surface. The im-
purities, dangling bonds, vacancies on the surface of QDs, which are referred as trap
state, can greatly reduce quantum yield by non-radiative recombination of the exciton.
In order to minimize trap state and confine the core excitons, the core QD is usually
coated by one or more shells with suitable lattice parameter and a higher band-gap
energy semiconductor material. Such core/shell or core/shell/shell QD structure can
effectively increase fluorescence quantum yield, photochemical stability and minimize
blinking. By controlling their core sizes, the shell thickness and the composition of
the semiconductor materials of cores and shells. Thus, the final absorption and and
emission of QDs can be tuned to PL colors emitting across the near-ultraviolet, visible,
and near-infrared spectrum, making them ideally suited for all kinds of spectroscopic
applications (Figure 2.10) [Algar, Massey, and Krull, 2013].

2.4.3 Surface functionalization

The preparation of water-soluble, biocompatible, highly luminescent and monodis-
perse QD is extremely important for use in biological application. The big milestone
of synthesizing high-quality QDs is reported by Bawendi group, that QDs are synthe-
sized at high temperature by pyrolysis of organometallic precursors in the presence of
hydrophobic coordinating ligands (mixture of trioctyl phosphine/trioctyl phosphine
oxide, TOP/TOPO) in organic solvents which passivate the surface and permit slow
steady crystallite growth [Murray, Norris, and Bawendi, 1993]. In order to make it
soluble, phase transfer to the aqueous solution is required by surface functionaliza-
tion with hydrophilic ligands either through ligand exchange, encapsulation or silica
coating [Medintz et al., 2005]. Figure 2.11 shows a schematic overview of how these
chemical strategies are implemented with QDs.
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Ligand exchange is the method to replace QDs native hydrophobic ligand TOP/TOPO
with bifuncational ligands that contain a surface anchoring moiety to bind to the inor-
ganic QD surface and an opposite hydrophilic end group to achieve water solubility.
Surface anchoring moiety can be thiol (-SH), amine (-NH2), or phosphine (-PH2) func-
tionality. Hydrophilic functionality groups such as hydroxyl (-OH), carboxyl (-COOH),
methoxy (-OCH3) and poly(ethylene glycol) (PEG) [(-OCH2CH2)n] are for aqueous
dispersion [Bergman and McHale, 2011]. Thiol groups have been the most popular
utilized as anchors due to the strong affinity with QD surface metal atoms (Cd and
Zn). The simplest embodiment of a coating is mercaptoacetic acid (MAA), a monoth-
iolate ligand bind the QD surface and the other end a carboxylate group provide aque-
ous colloidal stability [Chan and Nie, 1998]. However, deprotonation of the carboxyl
groups limiting the QD utility in basic pHs and low ionic strength. To overcome these
problems, Mattoussi et al. first developed the use of PEGylated- dihydrolipoic acid
(DHLA), a bidentate, dithiol ligand that binds the QD more tightly to enhance colloidal
stability over a large pH range and ionic strength [Mattoussi et al., 2000]. Poly(ethylene
glycol) (PEG) also improves biocompatibility and reduce nonspecific binding and suc-
cessfully incorporate a variety of functional groups for bioconjugation [Susumu et al.,
2007]. Another important goal is to develop coating that can minimize the QDs hydro-
dynamic size while still retaining stability and biocompatibility, because thin coatings
are crucial for cellular uptake and biosensing application based on FRET where the
efficiency is directly related to the distance between donor and acceptor molecules.
Thus, zwitterionic ligands are explored as alternatives to larger PEG ligands. Susumu
et al. developed a series of DHLA-based zwitterionic ligand allowing high affinity
with QD attachment and showing rapid and efficient cellular uptake [Susumu et al.,
2011]. These zwitterionic ligand resulted in compact QDs with small hydrodynamic
diameters, colloidal stability under wide pH range and high salt concentration, low
cellular toxicity and directly conjugate with His-tagged biomolecules onto QD sur-
face in a close proximity also could be functionalized with other reactive groups for
biomolecule attachment. Ligand exchange can provide water-soluble QDs with small
hydrodynamic diameter but sometimes it suffer from a decrease of quantum yield as
surface state is modified. The other strategy for preparing aqueous QDs with a min-
imal decrease in quantum yield is by encapsulation of the native QD inside an am-
phiphilic ligand [Algar et al., 2011a].

Encapsulation is a method by overcoating the QDs that still retaining their origi-
nal synthesized hydrophobic ligands with amphiphilic ligands through hydrophobic
interaction. Phospholipids and amphiphilic polymers are the most common used am-
phiphilic ligands. Although the encapulation method with polymer coating keep the
original hydrophobic ligand of QDs and prevent water from interacting with surface



24 Chapter 2. Background

FIGURE 2.11: Three are three chemistry approaches to make QDs col-
loidally stable in aqueous solution (i) ligand exchange (ii) encapsulation
(iii) silica coating. (Reprinted from [Hildebrandt et al., 2016])

to preserve their original quantum yields. However, it often results in large hydrody-
namic diameter, which is not favorable for FRET applications. Silica coating consists of
a siloxane network formation on the QD surface through hydrolysis of silane molecules
and subsequent cross-linking [Bruchez et al., 1998]. Compared to the ligand exchange
method, the silica layer is still relatively thick resulting in large hydrodynamic diam-
eter, so not too many biosensing studies using silica-coated QD [Hildebrandt et al.,
2016].

These surface preparations not only change the QDs photophysical properties, but
also directly influence subsequent bioconjugation. The different strategies can con-
tribute to the size, surface charge and hydrodynamic diameter of the final hydrophilic
QD. When designing QD-based biosensing assays, it is important to take into accounts
all the factors because they can impact the intended utility, such as FRET interactions,
cellular delivery, and in vivo circulation, distribution. Therefore, many researches are
dedicated to develop new hydrophilic compact ligand to minimize the thickness of QD
surface ligand layer and improve synthesis methods for biological applications.

2.4.4 Quantum dots as FRET donors and acceptors

QDs can be used as both FRET donors and acceptors, which have been published many
studies in literatures. In the most of applications, QDs are used as FRET donors in
bioassays with various organic dye acceptors [Clapp, Medintz, and Mattoussi, 2006],
due to its photopysical properties which are (i) size tunability, which allows for an
ideal spectral overlap with other acceptors; (ii) broad absorbance band, which enables
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for excitation at any wavelength to avoid acceptor absorption; (iii) large QD surface,
which allows to attach many acceptors to QDs therefore increase the FRET efficiency
with increase numbers of acceptors (n):

ηFRET =
nR6

0

nR6
0 + r6

(2.13)

where n is the number of acceptors surrounding a single donor [Clapp et al., 2004].
The major limitation for using them as FRET acceptors is their wide excitation spectra,
which will easily lead to spectral crosstalk from the direct excitation when using com-
mon organic fluorophores as FRET donors. The problems arises from the lifetime of a
QD (>10 ns) compared to the typical organic dye (<5 ns). When both QDs and dyes are
excited, dye will decay back to its ground state while many QDs acceptors in the ex-
cited states, which strongly limits the possibility for FRET [Clapp et al., 2005]. FRET is a
non-radiative energy transfer from the excited state donor to the ground state acceptor,
therefore the acceptor must be in the ground state [Algar et al., 2014]. To overcome this
limitation, the best way is to use lanthanide complex as FRET donors based on their
extremely long lifetimes (millisecond). Here we use LTCs as FRET donor as example.
After excitation, both LTCs and QD are in the excited states, after several nanoseconds
the main fraction of QDs have decayed back to their ground states when most of the
LTCs are still in the excited states, which allows for efficient FRET. We have mentioned
in Section 2.3.3 the unique PL properties of LTCs as FRET donor. Another alternatives
to avoid light excitation is the use of bioluminescent, chemiluminescent as donors, or
UCNPs due to their ability to excite at NIR region. The main advantages of using QDs
as FRET acceptors are (i) narrow, symmetric and tunable emission bands, which al-
lows to use several QD acceptors with the same donor without spectral crosstalk and
provide a great potential for spectral multiplexing (Figure 2.12); (ii) high extinction
coefficient, which can cover most of LTCs emission peaks resulting in large spectral
overlap integral and long Förster distance (up to 11 nm) (Figure 2.12); (iii) large QD
surface, which allows conjugation of several donors to increase the possibility of QD
FRET sensitization with the number of donors (m), but not increase FRET efficiency
[Geißler et al., 2013, Geißler et al., 2010]. The probability of QD FRET sensitization by
LTC donors (m) can be approximated as:

P = 1− (1− ηFRET )m = 1− (
r6

R6
0 + r6

)m (2.14)
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FIGURE 2.12: LTC-donor-based multiplexed FRET using different organic
dyes (Left) and QDs (Right). LTC-PL spectra in black. Left: organic dyes
OregonGreen (blue), AlexaFluor555 (green), AlexaFluor568 (orange), Cy5
(red) and AlexaFluor700 (brown); Right: Qdot525 (blue), Qdot565 (green),
Qdot605 (orange), Qdot655 (red) and Qdot705 (brown). It clearly show
that several QD acceptors are suitable for the spectral multiplexing, but
several dye emission spectra with a shoulder, which leads to spectral
crosstalk of various dyes to different detection channel. (Reprinted from
[Hildebrandt, Wegner, and Algar, 2014])

2.5 Bioconjugation

2.5.1 Introduction

Bioconjugation is a crucial strategy that can label biomolecules with different sub-
strates for further sensing application. Conjugation techniques are dependent on two
interrelated parts; reactive groups and the functional groups. The functional groups
can be found in biomolecules (proteins, DNA, carbohydrates, lipids, etc.). The amino
acid residues within the proteins and peptides are often targeted for conjugation. The
major functional groups including primary amines (-NH2), carboxyls (-COOH), sulfhydryls
(-SH) and carbonyls (-CHO) can be targeted by a number of chemical reactive groups.
Reactive groups such as crosslinker, tags and probes, provide the means to specially
label on the functional groups of biomolecules [Hermanson, 2013, Sapsford et al., 2010
]. The initial choice of bioconjugation chemistry can play an important role in the sub-
sequent applications. There are several important criteria to be satisfied that allow con-
trolled attachment of protein or other biomolecules to any NP (e.g. QD), including the
ratio of biomolecule per QD, the biomolecule orientation on the QD, the relative sepa-
ration distance from the QD, the attachment affinity, and it should always maintain the
optimal function and activity after conjugation (Figure 2.13). Although in practice it is
not easy to achieve all these criteria, keep these in mind will provide us a capability to
design and optimize of such QD-based FRET sensors [Hildebrandt et al., 2016].

In general, five bioconjugation methods are used as highlighted by the use of a
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FIGURE 2.13: Schematic representation of principle criteria for controlled
attachment of a protein or biomolecule to the NP. (Reprinted from [Med-
intz, 2006])

peptide and NP as example, it is the same principle of protein and QD (Figure 2.14).
(i) Electrostatic interaction: the opposite charge on the surface of NP and the peptide,
by charge-charge interaction create a NP-peptide assembly; (ii) Direct attachment: the
functional groups of biomolecules can directly coordinate on the surface of NP, e.g.
a thiol from the cysteine residue of peptide coordinate to the Zn on the QD surface,
or biomolecules with polyhistidine (Hisn) can directly attach to Zn rich surface QDs
through metal-affinity coordination. Hisn also has affinity for other metals (Ni, Cu, Co,
Fe, Mn) which would be applicable to other material NPs; (iii) Secondary interaction:
use ligand-receptor interaction such as biotin-streptavidin recognition, e.g. biotiny-
lated peptide can bind to the NP-streptavidin conjugate; (iv) Covalent attachment: use
classical bioconjugation chemistry by crosslinkers such as the ligand with carboxyl
group can conjugate to the aminated peptide through carbodiimide (EDC) chemistry
using sulfo-NHS (N-hydroxysulfosuccinimide) or amino (PEG) NPs can join to the
thiol from biomolecules through sulfhydryl-reactive chemistry using sulfo-EMCS (N-
ε-maleimidocaproyl-oxysulfosuccinimide ester). The converse use of the above men-
tioned methods are equally the same; (v) Encapsulation: the peptide is within the ma-
trix during or after NP synthesis, which is a very common method for designing drug
delivery (Sapsford et al., 2013, Hildebrandt et al., 2016). Three different conjugation
methods and materials are introduced which are related to this work.

2.5.2 Streptavidin-Biotin interaction

Streptavidin-biotin binding interaction perhaps is the most well-known method used
for preparing QD-bioconjugate. Such high affinity binding is the strongest noncovalent
protein-ligand interaction in nature currently known with a dissociation constant of
10−15M. Native Streptavidin (sAv) is a tetrameric glycoprotein which has the ability to
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FIGURE 2.14: Five general attachment schemes used for bioconjugation
biomolecules to the NPs. (Reprinted from [Sapsford et al., 2013, Aubin-
Tam and Hamad-Schifferli, 2008])

bind up to four biotin molecules. This strong binding between biotin and sAv is due to
the hydrogen bonding from the heteroatoms of biotin and amino acids residues of sAv.
Moreover, there are numerous van der Waals force-mediated contacts and hydropho-
bic interactions between biotin and tryptophane resides in the binding site. This supe-
rior property is ideal for purification and detection strategies in developing biological
applications. Many Streptavidin-coated QDs are commercially available. Biotinlayed
proteins or other biomolecules can be obtained by using enzymes through monophos-
phorylation and transfers the biotinyl moiety to the target protein during expression
or reacting with biotin crosslinkers such as succinimidyl and maleimide derivatives.
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2.5.3 Polyhistidine-metal affinity

One of direct attachment used in this work was based on metal coordination by his-
tidine residues. The imidazole side chains on the polyhistidine residues can coordi-
nate directly to the transition metals such as Co2+, Cu2+, Ni2+, and Zn2+. This strong
affinity between the polyhistidine residues and the metal ions, which is also utilized
in immobilized metal ion affinity chromatography (IMAC) for protein purification.
Moreover, the small size of histidine tags shows no significant effect on the protein
function. These properties of polyhistidine can be used to bioconjugate with different
kinds of inorganic NPs. For QD bioconjugation, three ways are shown in Figure 2.15,
A) self-assembly of polyhistidine to ZnS surface of QD through imidazole moieties;
B) self-assembly of polyhistidine to the Ni2+ supplemented carboxyl polymer-coated
QDs; C) self-assembly of polyhistidine through nickel(II)-nitrilotriacetic acid (Ni2+-
NTA) coated NP [Algar et al., 2011b].

Imidazole side chain of Hisn-tagged biomolecules directly coordinate to the Zn2+

at the surface of the ZnS shell that commonly surrounds the core CdSe nanocrystals.
This strong interaction has a dissociation constant (KD) in nanomolar range (10−7-
10−10M). The self-assembly in bulk solution is very fast, reaching equilibrium within
minutes (∼ 100-200 s) at room temperature with dissociation constant KD ≈ 10−9M
[Sapsford et al., 2007]. However, it is still stronger than most antibody bindings (10−6-
10−9M). The dissociation constant may vary depending on the number of histidine
monomer. Histidine tags shorter than four monomers providing lower binding affinity
and larger dissociation constant, whereas more than six monomers does not improve
both properties. Therefore, the most common polyhistidine tags are formed of six his-
tidine residues (His6). This strong affinity is due to the linear arrangement of histidine
residues that provide polyvalency and cooperative interactions with the nanoparticle
surface [Hainfeld et al., 1999]. Due to this reason polyhisitidine self-assembly can con-
trol the ratio of biomolecule per QD simply through one-to-one stoichiometry and pro-
vides effectively zero-length conjugation between the QD and biomolecule [Sapsford et
al., 2007]. This cause Hisn conjugation advantageous in FRET applications that shorter
the distance between donor and acceptor in comparison to the biotin-streptavidin sys-
tem and is considered the closest approach to meet all the criteria for ideal bioconjuga-
tion [Blanco-Canosa et al., 2014].

2.5.4 Covalent attachment

Crosslinking is the process of chemically joining two or more molecules by a cova-
lent bond. Most frequent way is to use commercial crosslinking reagents that possess
reactive ends to specific functional groups such as primary amines or sulfhydryls on
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FIGURE 2.15: (A) Zn2+-polyhistidine self-assembly. (B) Carboxylate-
Ni2+-polyhistidine self-assembly. (C) Nitrilotriacetic acid-Ni2+-
polyhistidine self-assembly. (Reprinted from [Hildebrandt et al.,
2016, Algar et al., 2011b])

proteins, peptide, oligonucleotides or other biomolecules. There are various bioconju-
gation strategies for attaching fluorophores or nanoparticles to biomolecules. The most
common chemistries targeting these groups are illustrated in Figure 2.16. Among them
amine-reactive chemistry using succinimidyl (NHS) ester, carboxyl-reactive chemistry
using carbodiimides (EDC crosslinking for coupling with an amine containing com-
pound), and sulfhydryl-reactive chemistry using maleic acid imides are very frequently
used strategies. In this work, we mainly targeted primary amines to react with NHS
for LTC conjugation, and free thiol groups to react with maleimide reactive groups
for QD conjugation. In order to transform the amino-reactive QDs into maleimide-
reactive QDs, we use sulfo-EMCS, a water soluble heterobifunctional crosslinker that
contains NHS ester on one end and a maleimide reactive group on the other end. Re-
cently, a system study using commercial 605, 650, 705 nm Qdot ITK amino PEG QDs
(Thermo Fisher) showed the standard conjugation procedure of these QDs via sulfo-
EMCS crosslinkers [Bhuckory et al., 2016]. When applying different materials, this
method requires optimization and several purification steps to get fine-tune conjugate
activity. Therefore it is relatively difficult to control the labeling ratio compared to the
streptavidin-biotin and polyhistinde-metal systems. Figure 2.17 gives an overview of
bioconjugation and surface coating strategies that can be performed on a QD.
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FIGURE 2.16: Selected biological functional groups and representative re-
action mechanisms. (Reprinted from [Sapsford et al., 2013])
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FIGURE 2.17: Overview of different bioconjugation (left side, BOI =
biomolecule of interest) and surface coating (right side) strategies for QDs.
(Reprinted from [Wegner and Hildebrandt, 2015])

2.6 Instrumentation

2.6.1 Characterization

Absorption spectra were acquired using a Lambda 35 UV/Vis spectrometer from Perkim
Elmer (Waltham, MA, USA) or SPECTROstar Nano (BMG-Labtech, Germany) in com-
bination with LVis plate. Emission spectra of LTC and QD were recorded on FluoTime
300 fluorescence spectrometer from PicoQuant (Berlin, Germany) using a continuous-
wave Xe lamp as excitation source or a spectrophotometer (Xenius, SAFAS, Monaco).

2.6.2 Time-resolved immunoassays

FRET immunoassay with time-resolved measurement provided highly sensitive de-
tection compared to traditional fluorescence immunoassays. The requirement for per-
forming time-resolved FRET is utilizing donors with much longer excited-state life-
times than the acceptors. It is usually applicable using lanthanide-based donors with
millisecond lifetimes and dye or quantum dots with nanosecond lifetime. The large
difference of lifetime integrating with a time delay of ca. 50-150 µs allows for efficient
suppression of PL from directly excited acceptors and sample autofluorescence from
the media. After a short-pulsed excitation, the excited long-lived donor will transfer
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energy non-radiatively to the short-lived acceptor in a close proximity which result
in donor quenching and acceptor sensitization. Both signals can be measured by ap-
plying a period of time-gated (TG) window after pulsed excitation, so that the signal
only participate in FRET will be detected (Figure 2.18). This time-gated window can
be varied depending on the experiment to optimize the signal-to-noise ratio.

FIGURE 2.18: Principle of time-gated FRET detection. The PL decay curve
of long-lived fluorophore (black dotted line, τ = 2 ms) can be efficiently
distinguished from those of a short-lived fluorophore (black solid line, τ =
20 ns) and autofluorescence background (filled curve in the background,
τ = 5 µs) by using TG detection window that opens with a delay that is
longer than the short-lived PL decays. In the case of FRET from long-
lived donor to short-lived acceptor, these fluorophores get quenched and
sensitized (indicated by the large arrows), respectively. The resulting PL
decay curves (gray) both have the same PL decay time (τ = 0.5 ms in the
case of 75 % FRET efficiency) and can both be detected in the TG detection
window. (Reprinted from [Zwier and Hildebrandt, 2017])

All PL decay curves were acquired on an EI plate reader (Edinburgh Instruments)
integrated with multi-channel scaling (MCS) card functions as photon-counting detec-
tors that can count the photons within a time intervals and store the results in subse-
quent memory locations of a fast data memory for recording long-lived decay time, us-
ing 4000 detection bins of 2 µs integration time and nitrogen laser (VSL 337 ND, Spectra
Physics) excitation (337.1 nm, 20 Hz). Time-gated PL intensity measurements were per-
formed on a KRYPTOR compact plus fluorescence plate reader (Cezanne/BRAHMS/Thermo
Fisher Scientific) using 500 detection bins of 2 µs integration time and nitrogen laser ex-
citation (337.1 nm, 20 Hz, 100 pulses). After sample excitation, emission signals were
split in two parallel channels, which were separated by a dichroic mirror (500 nm,
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FIGURE 2.19: Left. Principle of homogeneous sandwich immunoassay
shows FRET between LTC to QD in the presence of biomarker. Right.
Simplified schematic instrumental set up of fluorescence plate reader (Re-
produced from Geißler et al., 2010).

Semrock) with bandpass detection filters for donor and acceptor signal using two pho-
tomultiplier tubes (PMTs). The simplified schematic instrument set is shown in Figure
2.19 Right. In our case, we will use a lanthanide complex of terbium (LTC) with a
decay time of ca. 2.6 ms as FRET donor (donor channel, ChD) and quantum dots as
FRET acceptor (acceptor channel, ChA) with lifetime ranging from 6 to 90 ns. TG PL
intensity of ChA and ChD are measured in a time window from 100 µs to 900 µs after
excitation. The ratiometric measurement can be obtained by FRET ratio (FR):

FR =
I(ChA)

I(ChD)
=

IQD(100− 900µs)

ILTC(100− 900µs)
(2.15)

The calculated FRET ratios for the different concentrations of biomarker in the im-
munoassay were plotted as a function of the biomarker concentration. The resulting
curve is known as calibration curve. The important parameter to characterize the sen-
sitivity and performance of the individual immunoassays were quantified by limit of
detection (LOD). LOD is the lowest concentration of the analyte that can be detected
in a reasonable range. It can be calculated from the linear part of calibration curve us-
ing Equation 2.16. The 3×SD is equivalent to 99.7% confidence limit. The slope of the
calibration curve determines the sensitivity of the immunoassay.

LOD =
3× (SD)

slope
(2.16)
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Chapter 3

ADAPT for HER2 detection

3.1 Introduction

Immunoassays are dominated by the use of antibodies due to their broad accessibil-
ity and also since there are fewer restrictions for biosensing in solution regarding size,
structure, and environment. However, the large sizes, complex structures, and rela-
tively expensive and laborious production of IgG antibodies have led to the develop-
ment of alternative affinity proteins [Gilbreth and Koide, 2012]. Small single-domain
antibodies (or nanobodies) [Muyldermans, 2013] are naturally produced, but they can
also be selcected in vitro. Similarity, engineered scaffold proteins are selected in vitro
and can either be produced in bacterial hosts or chemically synthesized. The most
common synthetic binding proteins are (in alphabetical order) affibodies [Löfblom et
al., 2010], anticalins [Richter, Eggenstein, and Skerra, 2014], designed ankyrin repeat
proteins (DARPins) [Plückthun, 2015], and monobodies [Sha et al., 2017]. The main ap-
plications of these antibody alternatives are therapy, drug delivery, and in vivo and in
vitro imaging [Schumacher et al., 2018]. However, these much smaller affinity binders
would have significant advantages for bioassays based on Förster resonance energy
transfer (FRET) and nanoparticles. The limited FRET distance of approximately 10 nm
and the requirement of oriented and multivalent conjugation on nanoparticles [Saps-
ford et al., 2013] in combination with their already relatively large sizes clearly favor
the use of small biomolecules for biosensing. Surprisingly, only few studies have re-
ported the combination of synthesized scaffold proteins with FRET [Limsakul et al.,
2018, Renberg et al., 2004] or nanoparticles [Gao et al., 2011, Gurunatha et al., 2016].
Semiconductor quantum dots (QDs) are important optical nanomaterials for diagnos-
tics and imaging, and exhibit unique properties for versatile FRET biosensing [Wegner
and Hildebrandt, 2015]. Nanobodies have been conjugated to QDs and applied for
both FRET immunoassays and FRET imaging in combination with luminescent ter-
bium complexes (LTC) and time-gated (TG) detection [Wegner et al., 2014, Afsari et al.,
2016]. The application and performance of even smaller engineered scaffold proteins
in such QD-FRET immunosensors remains to be demonstrated.
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FIGURE 3.1: (A) QD705 was conjugated with ADAPT-Cys via sulfhydryl
reaction by adding sulfo-EMCS to introduce maleimide to the amino-
PEG QD705. QD625 was conjugated with ADAPT-His6 via Zn-His6 self-
assembly. (B) Mixing of LTC-conjugated IgG (Pertuzumab), ADAPT- con-
jugated QDs, and soluble HER2 led to the formation of immunological
sandwich complexes and a concomitant close proximity between LTC and
QD, which, in turn, resulted in LTC-to-QD FRET for HER2 quantification.

Here, we show that a new class of very small (∼6.5 kDa, ∼1.0 x 1.5 x 2.5 nm3)
albumin-binding domain-derived affinity proteins (ADAPTs) against HER2 [Lindbo
et al., 2016, Nilvebrant et al., 2014], which have previously been used for in vivo ra-
dionuclide imaging of HER2 positive tumor xenografts [Garousi et al., 2017, Garousi
et al., 2015, Lindbo et al., 2018], can be applied for advanced LTC-to-QD FRET im-
munoassays against HER2. Specifically engineered anti-HER2-ADAPTs with histidine
tags (His6) or single cysteines (Cys) were used for conjugation to two different QDs
emitting at 625 nm and 705 nm, respectively. These ADAPT-QD conjugates are sig-
nificantly smaller than QD-conjugates based on IgG, Fab’, or single-domain antibod-
ies. We demonstrate immediate applicability by the quantification of HER2 in serum-
containing samples using time-gated LTC-to-QD FRET detection on the clinical bench-
top immunoassay analyzer KRYPTOR. Limits of detection down to 40 pM (∼8ng/mL)
were in a relevant clinical concentration range and outperformed previously tested
assays with antibodies, antibody fragments, and nanobodies.
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3.2 Materials and Methods

Recombinant human HER2 Fc chimera (#1129-ER-050) dimers (MW = 196 KDa) were
purchased from R&D system. ADAPT variants against HER2 containing the histidine
tags (ADAPT-His6, MW = 6.95 kDa) and a cysteine (ADAPT-Cys, MW = 6.30 kDa)
either at the N terminus or the C terminus were produced, purified, and character-
ized by KTH royal institute of technology (Sweden) [Garousi et al., 2017, Lindbo et
al., 2016, Nilvebrant et al., 2014]. Pertuzumab antibody against HER2 was provided
by Genentech/Roche Diagnostics GmbH, Penzberg (Germany). 705-nm emitting ITK
QDs with amino-PEG (QD705) and 625 nm emitting organic Qdots (QD625) were pur-
chased from Thermo Fisher. Lumi4-LTC complex functionalized with NHS were pro-
vided by Lumiphore Inc [Xu et al., 2011].

Trizma hydrochloride, phosphate buffered saline (1xPBS), hydrochloric acid (HCl),
sodium hydroxide (NaOH), Tris(2-carboxyethyl) phospine hydrochloride (TCEP), N,N-
dimethylformamide (DMF), Sodium tetraborate decahydrate (Na2B4O7·10H2O), sodium
bicarbonate (NaHCO3), bovine serum albumin (BSA) and sulfo-EMCS crosslinker were
purchased from Sigma-Aldrich. Sodium chloride (NaCl) was purchased from Duchefa.
All chemicals were used as received. Newborn calf serum was provided by Thermo
Fisher Scientific. High-quality Milli-Q water with a resistivity of 18.2 MΩ.cm was used
for preparing solutions.

3.3 QD-antibody conjugation

Conjugation of ADAPTs-Cys to the QD705 was performed using sulfo-EMCS crosslink-
ers. To receive maleimide-reactive QD705 a >50000-fold molar excess of sulfo-EMCS
was mixed with QD for 1 hour at 30 rpm using an ELMI Intelli-Mixer shaker at room
temperature. Maleimide-active QD was purified using 100 kDa molecular weight
cutoff (MWCO) Amicon spin column from Millipore (Billerica, MA, USA) by wash-
ing three times with 1xPBS buffer (pH 7.4) to remove excess crosslinker in a bench-
top centrifuge at 4000 g for 3 minutes. Disulfide bonds of ADAPTs were reduced to
sulfhydryls with 5 mM TCEP by mixing for 30 minutes at 30 rpm at room tempera-
ture without further purification. For final conjugation both solutions (43 µl of 158.9
µM ADAPT + 100 µl of 0.64 µM QD) were mixed and incubated for 6 hours at 30 rpm
at room temperature in the dark. Unbounded ADAPTs were separated by 100 kDa
MWCO Amicon spin column by washing four times with 100 mM sodium tetraborate
buffer (pH 8.4). Purified conjugates were centrifuged at 4000 g and supernatant were
taken and stored at 4 ◦C. QD concentrations were determined by absorbance mea-
surements using molar absorptivity of 8.3 x 106 M−1 cm−1 (at 405 nm) for QD705 as
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provided by manufacturer. ADAPTs were quantified by absorbance measurement at
280 nm using an extinction coefficient 4 470 M−1 cm−1. The Zn-rich surface of QD625
were functionalized with CL4, a short zwitterionic compact ligand. For conjugation
of ADAPTs-His6 to the QD625 was performed in a molar ratio of 20:1 (ADAPT-His6
per QD) and mixed for 30 minutes freshly prepared before FRET immunoassays. QD
concentrations were determined by the absorbance measurement using a molar extinc-
tion coefficient of 9.9 x 106 M−1 cm−1 (at 405 nm) for QD625 as provided by manufac-
turer. Based on prior work that showed very rapid and stable metal-affinity driven
self-assembly between proteins and QDs with an equilibrium constant of 1 nM (Saps-
ford et al., 2007), we assumed a 100% conjugation efficiency.

FIGURE 3.2: Schematic presentation of the two ADAPT-QD conjugation
strategies

3.4 LTC-antibody conjugation

Lumi4-Tb-NHS (LTC) was dissolved to 8 mM in anhydrous DMF and mixed with the
pertuzumab antibody in 100 mM carbonate buffer (pH 9.0). The mixture was incu-
bated for 2 hours at 25 rpm at room temperature. For LTC-conjugate purification, the
samples were washed four to six times with 100 mM TRIS-Cl (pH 7.4) using 50 kDa
MWCO Amicon spin column in a benchtop centrifuge at 4000 g. LTC concentration
was determined by absorbance measurements at 340 nm using a molar absorptivity
of 26 000 M−1 cm−1 as provided by the manufacturer. Antibody was quantified by
absorbance measurements at 280 nm using an extinction coefficient of 1.4 g−1Lcm−1

(207 200 M−1cm−1) as provided by the manufacturer. The conjugation ratios were
determined by a linear combination of the respective absorbance values of LTC and
antibody within the LTC-antibody conjugate absorbance.
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3.5 Characterization of FRET pairs

Absorption spectra were acquired using a Lambda 35 UV/VIS spectrometer (PerkimElmer).
Emission spectra of LTC and QD705 were recorded on a FluoTime 300 fluorescence
spectrometer (PicoQuant) using a continuous-wave Xe lamp as excitation source. For
QD625 emission spectra were recorded on a Xenius spectrophotometer (SAFAS). LTC-
conjugates and QD-conjugates were measured in 100 mM TRIS-Cl buffer (pH7.4) and
100 mM sodium tetraborate buffer (pH 8.4) respectively. Förster distances (R0) of the
FRET pairs were R0(LTC/QD625) = 9.7 nm and R0(LTC/QD705) = 10.4 nm using the
following equations:

R0 = 0.02108(κ2ΦDn
−4J)1/6(nm) (3.1)

with
J =

∫
ĪLTCεQD(λ)λ4dλ (3.2)

and ID being the area-normalized PL spectrum of LTC (Figure 3.3), εA(λ) begin mo-
lar absorption of QD625 or QD705 (Figure 3.3), κ2 being the donor-acceptor orientation
factor (κ2=2/3), ΦD being the LTC3+ PL quantum yield (ΦLTC = 0.67), and n being the
refractive index of the surrounding medium (n = 1.4).

FIGURE 3.3: LTC PL spectrum (green, integral between 450 and 700nm
normalized to unity) and QD625 (orange) and QD705 (red) molar absorp-
tivity spectra used for calculating the overlap integral.
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3.6 Homogeneous FRET immunoassays

The LTC-Pert and QD-ADAPT conjugates were each dissolved in 50 µL 10 mM TRIS/Cl
buffer (pH 7.4) containing 0.5% bovine serum albumin (BSA, Sigma-Aldrich). 50 µL
buffer or 10% serum samples with increasing concentration of HER2 were added to the
100 µL of a constant assay solution (50 µL of LTC-Pert conjugate with 3nM Pertuzumab
and 50 µL of ADAPT-QD conjugate with 1.5 nM of QD). Optical bandpass filters (Delta
and Semrock) for LTC donor and QD acceptor channel were 494±20 nm for LTC and
640±14 nm, and 716±40 nm for QD625 and QD705, respectively. All FRET assays were
measured in black 96-well microtiter plates with an optimal working volume of 150 µL.
Each sample containing HER2 antigen sample was prepared three times, and the sam-
ples without HER2 were prepared 10 times. All samples were measured in triplicates.
After sample preparation the microtiter plates were incubated for 180 minutes at 37 ◦C
before measurements on KRYPTOR and EI fluorescence plate readers.

3.7 Results and discussion

3.7.1 Antibody conjugates

To produce ADAPT-QD conjugates, we applied two different approaches (experimen-
tal details in the previous section) that we previously used to prepare various QD con-
jugates with antibodies and nanobodies. The first conjugation strategy attached his-
tidine tag containing ADAPTs by metal-affinity mediated selfassembly to the Zn-rich
surface of commercial QDs emitting at 625 nm (Qdot625, Thermo Fisher) coated with
compact zwitterionic ligands (CL4). This direct conjugation procedure allowed for a
very close proximity between the QD surface and the anti-HER2-ADAPT. The second
conjugation technique attached cysteine (Cys) terminated ADAPTs to the amino-PEG
coated surfaces of QD705 (Qdot705, Thermo Fisher) via a sulfo-EMCS crosslinker. In
contrast to the QD625-ADAPTs, the additional PEG coating on the QD705 placed the
ADAPTs significantly further form the QD surface. The more than 1000-fold difference
in extinction coefficients at 280 nm between the QDs (∼30 to 40 x 106 M−1 cm−1)and
ADAPTs (∼4.5 x 103 M−1 cm−1) did not allow for a quantification of the exact num-
ber of ADAPTs per QD, but an excess of ADAPTs per QD could be confirmed by the
FRET immunoassays. Taking into account a conjugation efficiency of close to unity
for His6-Zn selfassembly on QD surfaces, we assumed a circa 20:1 ADAPT/QD625 la-
beling ratio. The large excess of ADAPT-Cys per QD705 (107:1) during conjugation
and the larger size compared to the QD625 let us estimate an even higher number
of ADAPTs per QD705. As we did not aim at systematically studying the valency of
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ADAPT molecules on the QD surfaces, an excess of ADAPTs per QD (without knowing
the exact number) was an adequate condition for our FRET immunoassays.

FIGURE 3.4: Absorption (dotted lines) and PL emission spectra of QD625
(orange) and QD705 (red), PL emission spectrum of LTC (green), and
transmission spectra of the bandpass filters used for LTC and QD de-
tection (gray). The absorption maximum of LTC is at circa 339 nm (not
shown)

As the donor counterpart for the HER2 FRET immunoassays, we used a full length
IgG anti-HER2 antibody (Pertuzumab) that was conjugated with Lumi4-LTC. Pertuzumab
was used as LTC donor antibody since it recognizes a different epitope on HER2 than
anti-HER2 ADAPT. Upon addition of HER2 containing samples to solutions of LTC
and QD conjugates, both LTC-Pertuzumab and ADAPT-QD bound to HER2, which
brought LTC and QD in close proximity and led to FRET from LTC to QD upon exci-
tation of LTC. As shown in Figure 3.3, the photoluminescence (PL) spectrum of LTC
and the absorption spectra of both QDs overlap significantly, which resulted in Förster
distances of R0(LTC/QD625) = 9.7 nm and R0(LTC/QD705) = 10.4 nm (see the previ-
ous part for determination). The CL4 coated QD625 allowed for a direct attachment of
ADAPT and therefore gave a shorter distance to the QD surface compared to QD705
and thereby also higher FRET efficiency. On the other hand, the larger Förster dis-
tance of the LTC-QD705 FRET pair provides a spectrally broader detection of FRET-
sensitized QD PL with significantly lower background PL from LTC (Figure 3.4) This
usually results in higher sensitivity compared to LTC-QD FRET pairs with shorter QD
PL wavelengths.
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3.7.2 HER2 sensor development

To evaluate the biosensing performance of the ADAPT-QD conjugates, we studied
homogeneous LTC-to-QD FRET immunoassays against HER2 with both conjugates
(ADAPT-His6-QD625 and ADAPT-Cys-QD705). The ADAPT constructs had similar
affinities to HER2 than pertuzumab (KD (ADAPT-His6) = 1.3 nM; KD (ADAPT-Cys)
= 4 nM; KD (Pertuzumab) = 1.9 nM), suggesting their suitability for sensitive detec-
tion of HER2 in FRET-based assays. The immunoassays were performed both in TRIS
buffer containing 0.5% BSA and in samples containing serum and assay calibration
curves (Figure 3.7) were acquired on a KRYPTOR compact plus (Thermo Fisher) clin-
ical immunofluorescence plate reader, which simultaneously detected the time-gated
(0.1-0.9 ms) PL intensities of LTC donor (ILTC) and QD acceptor (IQD). The FRET ratio
FR = IQD/ ILTC was used to determine HER2 concentration. The PL decay curves were
measured on a time-resolved fluorescence plate reader (Edinburgh Instruments). A
test assay was performed to check the performance of conjugate, the PL decay curves
of both QDs at the acceptor channels showed QD significant sensitization via FRET
from LTC with increasing concentration of HER2 (Figure.3.5). Then we also tested the
FRET assays in the sample containing 10%, 20% and 30% of serum (Figure 3.6) and
10% serum showed the best performance to perform statistical immunoassays.

FIGURE 3.5: PL decay curves of FRET immunoassays showing sensitiza-
tion of the QDs due to FRET. Left. QD625 in buffer Right. QD705 in buffer.

The statistical immunoassays were performed both in TRIS buffer containing 0.5%
BSA and in samples containing 10% of serum (Figure 3.7 A). All assay curves showed
a strong increase of FRET-ratio with increasing HER2 concentration from 0.075 nM to
circa 3 nM, after which the curves start to level off and remains at an approximately
constant FRET-ratio between 6 and 12 nM HER2. Such saturation is typical for homo-
geneous separation-free FRET immunoassays and is caused by the complete binding
of one or both affinity binders (ADAPT or antibody) to the HER2 antigens. 50 µL
HER2 sample was added to a 100 µL solution of 1.5 nM LTC-Pertuzumab and 0.75 nM
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FIGURE 3.6: FRET immunoassay performance in the sample containing
10%, 20% and 30% of serum. Left. ADAPT-His6-QD625 Right. ADAPT-
Cys-QD705

ADAPT-QD (concentrations of Pertuzumab and QD, respectively). 3 nM HER2 corre-
sponded to 1 nM in the measuring volume of 150 µL, which showed that the saturation
was caused by the LTC-Pertuzumab concentration (1 nM in 150 µL). It also confirmed
the excess of ADAPT per QD, because the QD concentration was only 0.5 nM in the
150 µL assay volume.

Limits of detection (LODs) were determined using the slope of the linear increas-
ing part from 0 to 0.6 nM concentration range (Figure 3.7 B). HER2 detection limits of
39±9 pM (7.8±1.8 ng/mL) in TRIS buffer containing 0.5% BSA and 46±11 pM (9.7±2.2
ng/mL) in samples containing 10% serum using ADAPT-His6-QD625 conjugates and
260±20 pM (51±4 ng/mL) in TRIS buffer containing 0.5% BSA and 300±30 pM (59±6
ng/mL) in samples containing 10% serum using ADAPT-Cys-QD705 conjugates were
in a clinically relevant concentration range of soluble HER2 for breast cancer diag-
nostics (7 to 3000 ng/mL) and in the case of the ADAPT-His6-QD625 conjugates even
below the clinical cutoff level of 15 ng/mL HER2. The ADAPT-His6-QD625 also out-
performed QD conjugates based on nanobodies, Fab’ fragments, and IgG antibodies
that were previously used in similar LTC-to-QD FRET immunoassays against HER2.

Although both types of ADAPT-QD assays could distinguish HER2 concentrations
in clinically relevant concentrations for breast cancer diagnostics the slopes (sensitiv-
ity), the FRET-ratio saturation values of the calibration curves (Figure 3.7A) and the
limits of detection (LODs, Figure 3.7B and Table 3.1) clearly show the superior per-
formance of the ADAPT-His6-QD625. While 10% of serum inside the sample led to
slightly higher LODs, they were still below the clinical cutoff level recommended for
soluble HER2 (15 ng/mL). The LTC-Pertuzumab-HER2-ADAPT-QD625 FRET assay
also outperformed other affinity binder combinations including nanobodies, Fab’ frag-
ments, and IgGs (Table 3.1). Only a combination of VHH nanobodies that were attached
to QDs by a terminal cysteine (oriented conjugation) showed similar LODs (Table 3.1).
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However, these assays were not performed in serum containing samples. By optimiza-
tion of the ADAPT-His6-QD conjugation, e.g., by a detailed investigation of different
numbers of ADAPT per QD, or multiplexing with different QDs further improvement
of the performance and versatility of the ADAPT-QD conjugates for biosensing should
in principle be possible.

FIGURE 3.7: (A) Calibration curves of LTC-to-QD FRET immunoassay
against HER2 using ADAPT-His6-QD625 (triangles; blue and red) and
ADAPT-Cys-QD705 (circles; magenta and green). Concentrations corre-
spond to HER2 in a 50 µL sample of TRIS buffer with 0.5% BSA (filled
symbols; red and magenta) or TRIS buffer with 0.5% BSA and 10% of
serum (open symbols; blue and green). Concentration in a pure serum
sample (5 µL within the 50 µL sample) would be 10-fold higher. Dotted
lines present the linearly increasing part of the calibration curves at low
concentrations. (B) Lower concentration range of the calibration curves
from A, which was used to estimate the LODs (3σ above zero). Error bars
correspond to standard deviations (σ) with n = 3 for all HER2 containing
samples and n = 30 for the zero-control (no HER2).

In conclusion, we have demonstrated that small engineered affinity proteins, namely
ADAPTs with an approximate molecular weight of 6.5 kDa, can be efficiently self-
assembled to 625 nm emitting QDs via histidine tags and that these ADAPT-QD conju-
gates can be applied for highly sensitive FRET immunoassays against HER2. This new
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This work LOD (nM) LOD (ng/mL)

LTC-IgG / ADAPT-His6-QD625 0.039±0.009 7.8±1.8
LTC-IgG / ADAPT-His6-QD625 10% serum 0.046±0.011 9.7±2.2
LTC-IgG / ADAPT-Cys-QD705 0.26±0.02 51±4
LTC-IgG / ADAPT-Cys-QD705 10% serum 0.30±0.03 59±6

LODs in previous work (only buffer)

LTC-IgG / IgG-QD650 0.09 nM LTC-VHH-QD650 (O) 0.05 nM
LTC-IgG / IgG-QD605 0.15 nM LTC-VHH-QD650 (R) 0.08 nM
LTC-IgG / Fab’-QD650 0.11 nM LTC-VHH-QD605 (O) 0.04 nM
LTC-IgG / Fab’-QD605 0.12 nM LTC-VHH-QD605 (R) 0.12 nM

TABLE 3.1: Limits of detection (LODs) for HER2 in 50 µL samples us-
ing combinations of different engineered and natural affinity proteins
(ADAPT, VHH nanobodies, Fab’ fragments, and IgG). The abbreviation

O means oriented labeling, R means random labeling [Qiu et al., 2016]

nanobiomaterial combination showed an improved FRET assay performance compared
to QD conjugates with antibodies, antibody fragments, or nanobodies and may be-
come a useful tool for many other optical biosensing and clinical applications in both
spectroscopy and imaging. We also showed an alternative conjugation approach of
cysteine-terminated ADAPTs through labeling to amino-PEG coated QDs via sulfo-
EMCS crosslinkers. Although the detection limits were higher for this strategy, our
results demonstrated the versatility of ADAPT conjugation to nanoparticles and the
application to another QD color (emitting at 705 nm) showed the general possibility
of color multiplexing. Our future efforts will be directed to further sensitivity opti-
mization, the implementation of ADAPT-QD conjugates for different biomarkers, and
the multiplexed detection of different analytes from single samples by different QD
acceptors. Our proof-of-concept study showed the benefits of combining small affinity
binders with QDs for improved FRET biosensing. With the development of ADAPTs
against various biomarkers, this nanoaffinity concept can become a very versatile and
practical tool for FRET biosensing and other bioanalytical and clinical applications.
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Chapter 4

Nanobodies for EGFR detection

4.1 Introduction

Among all the smaller scaffold proteins, single-domain antibodies (sdAb) have emerged
as powerful antigen binders next to conventional antibodies and other classes of syn-
thetic binding proteins. This type of antibody is so-called heavy chain antibodies
(HcAbs, ∼95 kDa) naturally produced from animals camelidae, nurse shark and rat-
fish. To date, they are established functional biomolecules that can be easily selected,
produced, and manipulated using standard molecular biology techniques. The vari-
able domain alone of HcAbs (VHH) was proven to have sufficient antigen binding
properties with the approximate molecular weight of 15 kDa (∼4 x 2.5 x 3 nm3), which
are used in many different antibody based applications [Marco, 2011, Schumacher et
al., 2018]. Thus, it can be considered as the smallest naturally derived antigen-binding
fragment and the term "nanobodies" was particularly referred to their small size in
nanometer range. Despite the many advantages of nanobodies, only few have been
applied in the non-competitive FRET immunoassays [Wegner et al., 2014, Qiu et al.,
2016]. In our group, Qiu et al. has demonstrated a systematic study of type, orienta-
tion, specificity, nonspecific binding, and cross-reactivity of different sizes of antibod-
ies (IgG, F(ab)2, Fab’, VHH). Such as using small antibody fragments or nanobodies as
an alternative to conventional antibody, have been proposed for improving the FRET
efficiency of donor and acceptor in no-wash immunosensors of protein. In this work,
I focus on the three different QD conjugation strategies to study the influence of per-
formance in the detection limit. These nanobodies bind to nonoverlapping epitopes of
the human epidermal growth factor receptor 1 (EGFR), noted as EgA1 and EgB4, with
three different separation tags (histidine, biotin, cysteine) and without tag (no tag) for
several conjugating strategies with FRET pairs. EgA1-no tag and EgA1-His6 were used
for LTC labeling. EgB4-His6, EgB4-biotin and EgB4-Cys were used for QD labeling.
We first studied the performance of non-competitive immunoassays using two conju-
gation strategies, biotin-streptavidin recognition and crosslinker covalent attachment.
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Biotin-streptavidin showed better sensitivity than the other due to the closer proxim-
ity of donor and acceptor. The competitive immunoassays were performed based on
metal-polyhistidine coordination. We found out that using only one single type of
EGFR-specific sdAb, the EGFR limit of detection can be obtained in sub-nanomolar
range, which may be of interest for bioassay applications.

4.2 Materials and Methods

Recombinant human EGFR Fc chimera (#344-ER-050) dimers (MW = 190 KDa) were
purchased from R&D system. Nanobodies against EGFR containing biotin, histidine, a
single cysteine and without tag (EgA1-no tag, EgA1-His6, EgB4-His6-biotin, EgB4-His6,
EgB4-EPEA-Cys, EgB4-no tag) were produced from our collaborator (Utrech Univer-
sity, Netherlands). 705 nm emitting Qdots ITK Streptavidin Conjugate Kit (sAvQD705),
705 nm emitting ITK Qdots with amino-PEG (QD705) and 625 nm emitting organic
Qdots (QD625) were purchased from Thermo Fisher. Lumi4-LTC complexes function-
alized with NHS were provided by Lumiphore Inc.

Trizma hydrochloride, phosphate buffered saline (1xPBS), hydrochloric acid (HCl),
sodium hydroxide (NaOH), Tris(2-carboxyethyl) phospine hydrochloride (TCEP), N,N-
dimethylformamide (DMF), Sodium tetraborate decahydrate (Na2B4O7·10H2O), sodium
bicarbonate (NaHCO3), bovine serum albumin (BSA) and sulfo-EMCS crosslinker were
purchased from Sigma-Aldrich. Sodium chloride (NaCl) was purchased from Duchefa.
All chemicals were used as received. Newborn calf serum was provided by Thermo
Fisher Scientific. High-quality Milli-Q water with a resistivity of 18.2 MΩ.cm was used
for preparing solutions.

4.3 QD-antibody conjugation

Crosslinker covalent attachment
Conjugation of EgB4-Cys to the QD705 was performed using sulfo-EMCS crosslink-
ers. To receive maleimide-reactive QD705, a >50000-fold molar excess of sulfo-EMCS
was mixed with QD705 for 1 h at 30 rpm at room temperature. Maleimide-activated
QDs were purified using 100 kDa MWCO spin column from Millipore (Billerica, MA,
USA) by washing three times with 1xPBS buffer (pH 7.4) to remove excess crosslinker.
Disulfide bonds of EgB4 were reduced to sulfhydryls with 5 mM TCEP by mixing for
30 minutes at 30 rpm at room temperature without further purification. For final con-
jugation, both solutions (43 µl of 130.9 µM EgB4 + 100 µl of 0.64 µM QD) were mixed
and incubated for 6 h at 30 rpm at room temperature in the dark. Unbound EgB4
were separated by 100 kDa MWCO spin column by washing four times with 100 mM
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sodium tetraborate buffer (pH 8.4). Purified conjugates were centrifuged at 4000 g and
supernatants were stored at 4◦C. QD concentrations were determined by absorbance
measurements using a molar extinction coefficient of 8.3 x 106 M−1 cm−1 (at 405 nm)
for QD705 as provided by the manufacturer. EgB4 were quantified by absorbance mea-
surement at 280 nm using an extinction coefficient of 35,535 M−1 cm−1. The labeling
ratios were determined by linear combination of the respective absorbance values of
QD705 and EgB4 within the EgB4-Cys-QD705 conjugates.

Metal-polyhistidine self-assembly
The Zn-rich surfaces of QD625 were functionalized with CL4 compact ligands as de-
scribed previously. Conjugation of EgB4-His6 to the QD625 was performed in a mo-
lar ratio of 20:1 (EgB4-His6 per QD) and mixed for 30 minutes. The conjugates were
freshly prepared before FRET immunoassays. QD concentrations were determined by
absorbance measurements using a molar extinction coefficient of 9.9 x 106 M−1 cm−1

(at 405 nm) for QD625 as provided by the manufacturer. EgB4 was quantified by ab-
sorbance measurement at 280 nm using an extinction coefficient of 37,515 M−1 cm−1.

Biotin-streptavidin self-assembly
For EgB4-His6-biotin to the sAvQD705 conjugation was performed in a molar ratio of
20:1 (EgB4-biotin per QD) and mixed for 30 minutes. The conjugates were freshly pre-
pared before FRET immunoassays. QD concentrations were determined by absorbance
measurements using a molar extinction coefficient of 8.3 x 106 M−1 (at 405 nm) for
sAvQD705 as provided by the manufacturer. EgB4 was quantified by absorbance mea-
surement at 280 nm using an extinction coefficient of 38,055 M−1 cm−1.

4.4 LTC-antibody conjugation

Lumi4-Tb-NHS (LTC) was dissolved to 8 mM in anhydrous DMF and mixed (the reac-
tion ratio of LTC/VHH = 3) with the nanobodies (EgA1-no tag, EgA1-His6) in 100 mM
carbonate buffer (pH 9.0). The mixture was incubated for 2 hours at 25 rpm at room
temperature. For LTC-conjugate purification, the samples were washed four to six
times with 100 mM TRIS-Cl (pH 7.4) using 3 kDa MWCO Amicon spin column at 4000
g. LTC concentration was determined by absorbance measurements at 340 nm using a
molar absorptivity of 26,000 M−1 cm−1 as provided by the manufacturer. Nanobodies
were quantified by absorbance measurements at 280 nm using an extinction coefficient
of 34,505 M−1 cm−1 (EgA1-no tag) and 38,878 M−1 cm−1 (EgA1-His6). The conjugation
ratios were determined by a linear combination of the respective absorbance values of
LTC and nanobodies within the LTC-nanobody conjugate absorbance.
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Conjugation ratios

LTC conjugate LTC/VHH

LTC-EgA1-no tag 2
LTC-EgA1-His6 2

QD conjugate VHH/QD

EgB4-His6-QD625 20
EgB4-Cys-QD705 28
EgB4-biotin-sAvQD705 20

TABLE 4.1: Labeling ratio of the conjugate in this study.

4.5 Characterization of FRET pairs

LTC-conjugates and QD-conjugates were measured in 100 mM TRIS-Cl buffer (pH7.4)
and 100 mM sodium tetraborate buffer (pH 8.4) respectively. Förster distances (R0)
of the FRET pairs were R0(LTC/QD625) = 9.7 nm, R0(LTC/QD705) = 10.4 nm and
R0(LTC/sAvQD705) = 10.6 nm.

FIGURE 4.1: LTC PL spectrum (green, integral between 450 and 700nm
normalized to unity) and QD625 (orange dot), QD705 (red dot) and
sAvQD705 (purple line) molar absorptivity spectra used for calculating
the overlap integral.
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4.6 Homogeneous FRET immunoassay

The LTC-EgA1 and QD-EgB4 conjugates were each dissolved in 50 µL 10 mM TRIS/Cl
buffer (pH 7.4) containing 0.5% bovine serum albumin (BSA, Sigma-Aldrich). Ho-
mogeneous FRET immunoassay calibration curves against EGFR, where the overall
measuring volume of 150 µL contained 100 µL of a constant assay solution (50 µL of
LTC-EgA1 with 6 nM EgA1 and 50 µL of EgB4-QD conjugate with 1.5 nM QD705 or
3 nM sAvQD705). Competitive displacement FRET immunoassay calibration curves
against EGFR, where the overall measuring volume of 150 µL contained 100 µL of a
constant assay solution (50 µL of LTC-EgA1 with 6 nM EgA1 and 50 µL of EgB4-QD
conjugate or QD only with 1.5 nM QD625). Optical bandpass filters (Delta and Sem-
rock) for LTC donor and QD acceptor channel were 494±20 nm for LTC and 640±14
nm, and 716±40 nm for QD625 and QD705, respectively. All FRET assays were mea-
sured in black 96-well microtiter plates with an optimal working volume of 150 µL.
Each sample containing EGFR antigen sample was prepared three times, and the sam-
ples without EGFR were prepared 10 times. All samples were measured in triplicates.
After sample preparation the microtiter plates were incubated for 180 minutes at 37 ◦C
before measurements on KRYPTOR compact plus (Thermo Fisher) and EI fluorescence
plate readers.

4.7 Results and discussion

To evaluate the biosensing performance of the LTC-EgA1-no tag and EgB4-QD conju-
gate, we studied homogeneous LTC-to-QD FRET immunoassays against EGFR with
both conjugation strategies, which are streptavidin-biotin interaction and crosslinker
covalent attachment. The immunoassays assay calibration curves (Figure 4.2) were ac-
quired on a KRYPTOR with simultaneous time-gated (0.1-0.9 ms) PL intensities of LTC
donor (ILTC) and QD acceptor (IQD). The FRET ratio FR = IQD/ ILTC was used to de-
termine EGFR concentration. The PL decay curves were measured on a time-resolved
fluorescence plate reader (Edinburgh Instruments). All assays showed an increase of
FRET-ratio with increasing EGFR concentration (Figure 4.2). For EgB4-Cys-QD705 the
curve showed a saturation at 2 nM EGFR, after which the curves start to level off. For
EgB4-biotin-sAvQD705 the FRET ratio increased until ca. 6 nM EGFR. The sensitivity
of an immunoassay is determined by the slope of its calibration curve. The trend of
the curves from Figure 4.2 showed higher sensitivity of EgB4-biotin-sAvQD705 than
EgB4-Cys-QD705. EGFR detection limits were 0.48 nM using EgB4-Cys-QD705 con-
jugate and 0.19 nM using EgB4-biotin-sAv705 in TRIS buffer containing 0.5 % BSA. It
can be explained by the average donor-acceptor distance (rDA). The 705 nm emitting
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Qdots were coated with streptavidin (sAvQD705, diameter 18.5 nm), where the strep-
tavidin covalently attached to the inner amphiphilic coating without a PEG linker, and
therefore provided more freedom for the co-assembly of EgB4-biotin to the QD. The
705 nm emitting Qdots were functionalized with amine-derivatized PEG (QD705, di-
ameter 20.5 nm), which prevented non-specific interactions but also increased the size
of QDs. After labeling with crosslinker Sulfo-EMCS (spacer arm length 9.4 Å), the
distance of donor and acceptor is even farther away. Thus, the detection limit of EgB4-
biotin-sAvQD705 conjugate is lower than EgB4-Cys-QD705 conjugate.

FIGURE 4.2: Homogeneous FRET immunoassay calibration curves against
EGFR using LTC-EgA1-no tag/EgB4-biotin-sAvQD705 (black) and LTC-
EgA1-no tag/EgB4-Cys-QD705 (red).

To demonstrate the proof of concept, decay time fitting in the two channels were
performed to estimate the donor to acceptor distance (r) and FRET efficiency (ηFRET ).
In PL FRET decay curves, for EgB4-biotin-sAvQD705 revealed obvious FRET sensiti-
zation in QD channel but for EgB4-Cys-QD705 only a little FRET sensitization. In the
LTC channel, both systems showed not significant quenched LTC signals which can be
attributed to long distance between donor and acceptor (Figure 4.3). In this case, only
EgB4-biotin-sAvQD705 in acceptor channel is applicable for decay time fitting. The
pure LTC-EgA1 conjugate exhibit a double-exponential decay resulting in a short τD1

and a long dominant decay time τD2 with amplitude fraction αD1 and αD2 in the donor
channel. Because all decay curves contain a certain amount of unquenched LTC decay,
this pure LTC decay time (τD2) was fixed in the fit functions. FRET-sensitized acceptor
decays were fitted with a quadruple-exponential function. Due to sample autofluores-
cence, direct excitation QD at short time and contribution of LTC donor crosstalk in the
QD acceptor channel in the long time range, a time delay starting around 10 µs to 50 µs
after the excitation pulse was introduced to fit the decay curves. Such fits can be used
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when the fitted lifetime is much longer than IRF (instrument response function) and
also called tail fitting, which means fit from the different start time t0 for improving
fit quality. All decay curves were fitted using a multiexponential PL intensity decay
function:

FIGURE 4.3: Representative PL decay curves. Top Left: Donor channel
of LTC-EgA1-no tag/EgB4-Cys-QD705. Top Right: Acceptor channel of
LTC-EgA1-no tag/EgB4-Cys-QD705. Down Left: Donor channel of LTC-
EgA1-no tag/EgB4-biotin-sAvQD705. Down Right: Acceptor channel of
LTC-EgA1-no tag/EgB4-biotin-sAvQD705.

I =
∑
i

Ai exp

(
− t

τi

)
= A

∑
i

αi exp

(
− t

τi

)
(4.1)

where A is the total amplitude and αi are the amplitude fractions (
∑
αi = 1). All PL

lifetime averaging for the dynamic FRET quenching process was performed using am-
plitude weighted average lifetime. The function after correction of start time :

I = Ai−FIT · exp

(
−t− t0

τ

)
= Ai · exp

(
− t
τ

)
→ Ai = Ai−FIT · exp

(
t0
τ

)
(4.2)
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Taking the multiexponential PL decay function from Equation 4.1 leads to the fol-
lowing amplitude-averaged decay time:

〈τ〉 =

∑
Aiτi∑
Ai

=
∑

αiτi (4.3)

The FRET-sensitized QD acceptors were fitted with a quadruple-exponential func-
tion with amplitude fractions αAD∗1, αAD∗2, αAD∗3 and αAD∗0 and the decay times τAD1,
τAD2, τAD3 and τAD0. The fourth decay time has to be fixed to the free and unquenched
pure donor τAD0 = τD2 due to the crosstalk of LTC in the acceptor channel. The shorter
component of pure LTC also has be corrected using the correction factor zA although it
is almost negligible.

zA = αD1(
αAD∗0

αD2

) (4.4)

To calculate the average FRET-sensitized decay times only the first three compo-
nents are taken into account. Therefore, the fraction αADi (i=1-3) needs to be corrected
by the FRET rate kFRETi = τ−1

ADi - 〈τD〉−1 by combing Equation 2.7 and 2.8 which consid-
ers the dependence of the excitation of the acceptors on the different FRET efficiencies
for the different distances, the corrected amplitude fractions is:

αADi =
αAD∗i/kFRETi

(αAD∗1/kFRET1) + (αAD∗2/kFRET2) + (αAD∗3/kFRET3)
(4.5)

The corrected averaged FRET sensitized decay time is calculated by:

〈τAD〉 =
αAD1τAD1 + αAD2τAD2 + αAD3τAD3 − zAτD1

1− zA
(4.6)

and the average FRET-efficiency is

〈ηFRET 〉 = 1− 〈τAD〉
〈τD〉

(4.7)

The distance of donor and acceptor 〈rAD〉 can be calculated by:

〈rAD〉 = R0

{
〈τAD〉

〈τD〉 − 〈τAD〉

}1/6

(4.8)

Using the above correction for taking account the unquenched LTC donor (τD =
2.61 ms), the acceptor channel fitting for EgB4-biotin-sAvQD705 resulted in 〈τAD〉=
1.00 ms, FRET-efficiency of 62 % with an estimated donor and acceptor distance of 9.8
nm (a detail decay time fitting data were shown in Appendix). The result is reason-
able when we consider the ∼ 9.3 nm radius of sAvQD705 with two VHH and EGFR
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FIGURE 4.4: Schematic of the LTC-QD FRET based on two QD conjuga-
tion strategies (Left. streptavidin-biotin interaction. Right. crosslinker co-
valent attachment.), which composed of 705 nm emitting QD (red), PEG
(light gray with dotted line), EgB4-biotin (orange), EgB4-Cys (purple) and
LTC-EgA1-no tag (green-gray).

dimer. Due to the four binding site of sAv, EgB4-biotin may bind to the different ori-
entation on the QD surface, it may cause the overall average distance between donor
and acceptor closer than expected. Although we could not fit the PL decay curve of
EgB4-Cys-QD705, we believe that the ∼ 10.3 nm radius of sAvQD705 plus crosslinker
Sulfo-EMCS (94 Å) is ∼ 11.3 nm (Figure 4.4), which result in longer rDA and decrease
QD sensitization therefore assay sensitivity.

Interestingly, another FRET pair of LTC-His6-EgA1/EgB4-His6-QD625 showed slightly
reduced FRET with increasing concentration of EGFR in both channels, most probably
due to the LTC-His6-EgA1 self-assembled on the QD625 by metal polyhistidine coor-
dination. The EgB4 had similar affinities to EGFR than metal polyhistine self-assembly
(KD (EgB4-His6-EGFR) = 0.56 nM; KD (Zn-His6) = ∼ 1 nM), suggesting that the EgA1-
His6-LTC self-assembled on the QDs and the addition of EGFR replace some of LTC-
conjugates resulting in a competitive displacement immunoassay. The QD channel
(Figure 4.5 Top Left) showed that the quenching of LTC-His6-EgA1 by EGFR (Figure 4.5
Top Right) also reduces the QD PL intensity (FRET from LTC). However, the displace-
ment of LTC-His6-EgA1 from the QD surface to the EgB4-His6 (binding with EGFR)
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FIGURE 4.5: Time-gated PL intensity (integration from 0.1-0.9 ms). Top
Left: Acceptor channel of LTC-EgA1-His6/EgB4-His6-QD625. Top Right:
Donor channel of LTC-EgA1-His6/EgB4-His6-QD625. Down Left: Accep-
tor channel of LTC-EgA1-His6/QD625. Down Right: Donor channel of
LTC-EgA1-His6/QD625.

leads to additional QD quenching. In the donor channel (Figure 4.5 Top Right), LTC-
His6-EgA1 is quenched by EGFR almost linearly down to 70%. The QD quenching
(Figure 4.5 Top Left) is stronger down to 60 % and the curved form shows a coopera-
tive quenching of the LTC donor by EGFR and reduced FRET due to displacement of
LTC-His6-EgA1 from the QD surface. The concept was confirmed by another experi-
ment, in which the QD FRET acceptor was not conjugated with VHH. The LTC-His6-
EgA1/QD625 FRET pair showed a "pure" displacement assay (Figure 4.6), LTC-His6-
EgA1 is displaced from QD surface by EGFR, which leads to LTC intensity increase
and QD intensity decrease due to reduced FRET (Figure 4.5 Down.). The FRET ra-
tio in both systems are correlates with the EGFR concentration (Figure 4.7), which are
capable to detect EGFR at sub-nanomolar concentrations. EGFR detection limits are
0.39 nM using EgB4-His6-QD625 conjugate and 0.27 nM using QD625 in TRIS buffer
containing 0.5 % BSA. Further control experiments need to be done with LTC-EgA1-no
tag to study the detailed mechanism of EgB4-His6-QD625 FRET pair. Although the er-
ror bar is quite large compared to the non-competitive immunoassay, this competitive
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immunoassay is highly interesting because it requires only one single type of EGFR-
specific sdAb, which strongly reduces the antibody development and reagent costs.
The performance of assay can be also improved by optimizing assay components (e.g.
buffer, probe concentration, incubation time) to accomplish optimized results.

FIGURE 4.6: Schematic of the LTC-to-QD FRET immunoassay against
EGFR using QD625 alone. Dotted gray arrow denotes LTC-His6-EgA1 is
displaced from QD surface by EGFR.

FIGURE 4.7: Calibration curves of LTC-to-QD FRET immunoassay against
EGFR using EgB4-His6-QD625 (blue) and QD625 conjugate (green).

FRET pairs LOD (nM) LOD (ng/mL)

LTC-EgA1-no tag/EgB4-Cys-QD705 0.48 91.3
LTC-EgA1-no tag/EgB4-biotin-sAvQD705 0.19 36.1
LTC-EgA1-His6/EgB4-His6-QD625 0.39 74.2
LTC-EgA1-His6/QD625 0.27 51.4

TABLE 4.2: Limit of detection in this study.
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Summary and outlook

The application of LTC-to-QD FRET homogeneous immunoassay using small affin-
ity proteins has demonstrated the versatility for the detection of cancer biomarkers.
All FRET immunoassays were based on the time-resolved (TR) measurements in com-
bination with the unique properties of the LTC (e.g. long luminescent decay time,
well-separated emission bands) and QD (e.g. multiplexing capability, large surfaces,
high extinction coefficient) for binding with different kinds of biomolecules, making
TR-FRET advantageous in high-throughput assays.

Small affinity proteins (e.g., ADAPT, sdAb) allow for multivalent QD conjuga-
tion, which can increase QD FRET sensitization. ADAPTs-His6-QD625 conjugate were
shown to outperform any other types of antibodies for HER2 immunoassays. SdAbs
were used to develop non-competitive immunoassays by using biotin-streptavidin
recognition and crosslinker covalent attachment. When comparing these two systems,
the smaller distance of donor and acceptor showed better limit of detection. Thus, to
increase the FRET may be obtained by using smaller size of QDs or improving QD
chemistry: choosing one blue-shifted QDs (QD605 or QD655) or using maleimide-
functionalized QDs without crosslinker (e.g. eBioscience/Affymetrix QD), and metal-
histidine coordination (QD625) for more compact sandwich immunoassays. For com-
petitive homogeneous immunoassays, we showed that they require only one antibody
(instead of two), which can be considered as an useful alternative strategy for EGFR
detection.

Both strategies for QD-based homogeneous FRET-immunoassays with small affin-
ity proteins provide a large potential for advanced in vitro diagnostics and other FRET-
based biosensing applications, e.g., for imaging analysis of epidermal growth factor
receptor dimerization, new approaches for the cellular delivery in live-cell immunola-
beling and antigen manipulation.
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Chapter 6

Appendix

LTC-Pert-HER2-ADAPT-His6-QD625 decay curves

FIGURE 6.1: PL decay curves of LTC (494±10nm, left), and QD625
(640±7nm, right) of LTC-Pert-HER2-ADAPT-His6-QD625 immunoassays
(in buffer)

FIGURE 6.2: PL decay curves of LTC (494±10nm, left), and QD625
(640±7nm, right) of LTC-Pert-HER2-ADAPT-His6-QD625 immunoassays
(in serum)
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LTC-Pert-HER2-ADAPT-Cys-QD705 decay curves

FIGURE 6.3: PL decay curves of LTC (494±10nm, left), and QD705
(716±20nm, right) of LTC-Pert-HER2-ADAPT-Cys-QD705 immunoassays
(in buffer)

FIGURE 6.4: PL decay curves of LTC (494±10nm, left), and QD705
(716±20nm, right) of LTC-Pert-HER2-ADAPT-Cys-QD705 immunoassays
(in serum)
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LTC-EgA1-no tag-EGFR-EgB4-Cys-QD705

FIGURE 6.5: PL decay curves of LTC (494±10nm, left), and QD705
(716±20nm, right) of LTC-EgA1-no tag-EGFR-EgB4-Cys-QD705

FIGURE 6.6: Left. Calibration curve of LTC-to-QD immunoassay against
EGFR using LTC-EgA1-no tag-EGFR-EgB4-Cys-QD705. Right. Lower
concentration range was used to estimate LOD.
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LTC-EgA1-no tag-EGFR-EgB4-biotin-sAvQD705

FIGURE 6.7: PL decay curves of LTC (494±10nm, left), and QD705
(716±20nm, right) of LTC-EgA1-no tag-EGFR-EgB4-biotin-sAvQD705

FIGURE 6.8: Left. Calibration curve of LTC-to-QD immunoassay against
EGFR using LTC-EgA1-no tag-EGFR-EgB4-biotin-sAvQD705. Right.
Lower concentration range was used to estimate LOD.
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LTC-EgA1-His6-EGFR-EgB4-His6-QD625

FIGURE 6.9: PL decay curves of LTC (494±10nm, left), and QD625
(640±7nm, right) of LTC-EgA1-His6-EGFR-EgB4-His6-QD625

FIGURE 6.10: Left. Calibration curve of LTC-to-QD immunoassay against
EGFR using LTC-EgA1-His6-EGFR-EgB4-His6-QD625. Right. Lower con-
centration range was used to estimate LOD.
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LTC-EgA1-His6-EGFR-QD625

FIGURE 6.11: PL decay curves of LTC (494±10nm, left), and QD625
(640±7nm, right) of LTC-EgA1-His6-EGFR-QD625

FIGURE 6.12: Left. Calibration curve of LTC-to-QD immunoassay against
EGFR using LTC-EgA1-His6-EGFR-EgB4-QD625. Right. Lower concen-
tration range was used to estimate LOD.
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Synthèse en français 

Le diagnostic précoce du cancer est crucial pour un traitement performant. Comme l'analyse 

diagnostique en laboratoire peut être un processus long et compliqué, des immunodosages 

rapides, sensibles et spécifiques de biomarqueurs protéiques dans le sérum, le sang total ou le 

plasma peuvent améliorer significativement le diagnostic précoce de cancer et son traitement 

ultérieur. Par conséquent, il existe une demande croissante pour la mise au point de biocapteurs 

permettant de détecter les biomarqueurs du cancer à des concentrations très basses au cours des 

stades précoces, ainsi que pour la surveillance de la progression de la maladie. Les biocapteurs 

basés sur le transfert d'énergie par résonance de type Förster (FRET) ont démontré de nombreux 

avantages pour des diagnostics simples, rapides, sensibles et multiplexés. Le FRET est un 

transfert d'énergie non radiatif entre une molécule donneur excitée (donneur FRET) et une 

molécule accepteur dans l'état fondamental (accepteur de FRET), qui doit être proche et en 

résonnance énergétique comme prévu par le recouvrement spectral. En raison de la dépendance 

de l’efficacité de ce transfert d’énergie en fonction de la distance du donneur et de l’accepteur 

(en r
-6

), également appelée efficacité du FRET, cette technique est polyvalente et sensible pour 

l'analyse qualitative et quantitative des interactions biologiques et des processus dans une gamme 

nanométrique d’environ 1-20 nm. Pour la détection de la cible d'intérêt, il existe de nombreuses 

stratégies de transduction du signal en fonction de sa variation, qui est médiée par les 

biomolécules auxquelles le donneur et l'accepteur sont conjugués. Pour les immunodosages en 

sandwich à base de FRET, le donneur et l'accepteur sont conjugués avec deux biomolécules qui 

reconnaitront la molécule d’intérêt (biomarqueur) sur deux sites (épitopes) distincts. La présence 

du biomarqueur entraîne la liaison d'un donneur et d'un accepteur de FRET à celui-ci. Le 

donneur et l’accepteur se retrouveront ainsi proches, induisant un changement mesurable des 

signaux FRET. La capacité unique du FRET à sonder les concentrations de biomarqueurs et les 

distances de séparation inter et intramoléculaires a conduit à une augmentation rapide des études 

FRET dans la détection diagnostique des biomarqueurs. 

Divers matériaux sont actuellement utilisés pour le FRET, comme les colorants organiques, les 

protéines fluorescentes, les boîtes quantiques semiconducteurs (QDs), les chélates métalliques, 

les métaux nobles et d'autres nanoparticules. Parmi ceux-ci, la combinaison de complexes de 

lanthanides luminescents (LLC) en tant que donneurs et des QDs en tant qu'accepteurs est l'une 



des paires de FRET les plus prometteuses. De plus, les LLC possèdent de longues durées de vie à 

l’état excité, allant jusqu'à quelques millisecondes, ce qui permet des mesures résolues dans le 

temps et offre un grand potentiel pour le multiplexage temporel.  

Les QD sont des nanocristaux semiconducteurs qui présentent plusieurs avantages par rapport 

aux colorants organiques conventionnels, notamment des coefficients d'extinction molaires 

élevés, des bandes d'émission étroites et symétriques de largeur maximale à mi-hauteur (FWHM) 

~ 25-40 nm allant de l'UV au proche infrarouge. Ils possèdent aussi un déplacement de Stokes et 

une photo stabilité remarquable. En particulier, une caractéristique tout à fait unique des QDs est 

leurs bandes d'émission dépendantes de leur taille en raison des effets de confinement quantique. 

Lorsque le matériau semi-conducteur est réduit à l'échelle nanométrique, les bandes d'énergie 

continue se divisent en états excitoniques discrets (interaction trou-électron). A cause d'excitons 

confinés à des dimensions plus petites que le rayon de Böhr (distance électron-trou), l'énergie de 

la bande interdite augmente avec la diminution de taille du QD, ce qui engendre un décalage vers 

le bleu des longueurs d'onde d'absorption et d'émission. Les stratégies bien établies de synthèse 

et de fonctionnalisation de surface rendent les QDs biocompatibles et permettent la conjugaison 

avec des biomolécules en solution aqueuse. Dans la plupart des applications du FRET, les QDs 

sont généralement utilisés comme donneurs du FRET. Les principaux problèmes de l’utilisation 

des QDs en tant qu'accepteurs sont leur spectre large d’absorption et leur coefficient d'extinction 

élevé, qui conduisent à une excitation directe des QDs à quasiment n'importe quelle longueur 

d'onde utilisée pour l'excitation du donneur. Par conséquent, seule une fraction mineure des QDs 

étant dans l'état fondamental participe au FRET. Les solutions à ce problème sont l'utilisation de 

matériaux ayant de longues durées de vie à l'état excité en tant que donneur de FRET tels que les 

LLC (durée de vie jusqu'à plusieurs millisecondes) et l'excitation pulsée. La combinaison des 

LLC et des QDs permet le multiplexage spectral des QDs de différentes couleurs pour un même 

donneur avec une séparation facile des différentes bandes d'émission grâce à une diaphonie 

optique fortement réduite. De plus, leurs absorptivités molaires larges (coefficients d'extinction) 

entraînent de grandes intégrales de recouvrement spectral et donc de longues distances de 

Förster.  

En raison des avantages précités des LLC et des QDs en tant que paires de FRET, celui-ci 

devient une technique très prometteuse pour les mesures de photoluminescence (PL) à résolution 



temporelle (TR) permettant une suppression efficace de l'intensité PL due aux accepteurs 

directement excités et à l'autofluorescence. Par conséquent, de telles paires de FRET ont été 

utilisées dans des diagnostics cliniques pour la détection de différents biomarqueurs. L'approche 

la plus populaire pour cibler ces biomarqueurs consiste à utiliser des anticorps dans un 

immunodosage homogène, ce qui simplifie la procédure de préparation des échantillons sans 

plusieurs étapes d'incubation, de lavage et de séparation, mais seulement une procédure de 

mélange et de mesure très simple. La distance à l'intérieur des immunodosages peut être adaptée 

à la taille des matériaux photoluminescents et des anticorps. Ainsi, en diminuant la taille 

d'anticorps tout en gardant la même spécificité ou en utilisant des matériaux luminescents plus 

compacts, le FRET peut encore être amélioré.  

 

 

Figure 1.1 Principe de l'immunodosage homogène. La conjugaison d’anticorps (AB) liés à un 

LLC (comprenant par exemple du Terbium, Tb) et d’un QD permet la formation de complexes 

en sandwich Tb-AB-antigène-AB-QD lors de l'addition d'antigène, ce qui entraîne le FRET de 

plusieurs molécules de Tb vers le QD. La mesure résolue dans le temps de la photoluminescence 

des QDs excités par le FRET est utilisé pour une quantification précise de la concentration 

de l’antigène. Le test conduit à une courbe d'étalonnage d'immunodosage typique, pour laquelle 

le signal FRET augmente avec l'augmentation de la concentration d'antigène jusqu'à un plateau 

de saturation lorsque la concentration d'antigène est égale à la concentration de Tb-AB ou QD-

AB. 



Le but de ce travail est d'utiliser les propriétés photophysiques exceptionnelles des complexes 

Lumi4-Tb (LTC) et QD pour le TR-FRET et d'étudier l'influence des tailles d'anticorps sur la 

sensibilité du dosage immunologique pour la détection des biomarqueurs des protéines 

cancéreuses. Pour les immunodosages en sandwich étudiés par TR-FRET (Figure 1.1), des LTC 

et différents QDs sont marqués respectivement par deux anticorps qui se lient à différents 

épitopes de l'antigène (biomarqueur). Une caractérisation photophysique détaillée des paires de 

FRET (conjugués LTC et QD) a été réalisée et les ratios de marquage ont été estimés en utilisant 

la spectroscopie d'absorption UV / Vis. La première étude (Chapitre 4) présente des protéines 

d'affinité dérivé du domaine de liaison à l'albumine (ADAPTs, ~ 6,5 kDa, ~ 1,0 x 1,5 x 2,5 nm) 

pour la quantification du récepteur du facteur de croissance épidermique humain 2 (HER2). Ces 

petites protéines d'affinité sont bénéfiques pour la conjugaison de nanoparticules multivalentes et 

pour un FRET efficace. Des variantes d’ADAPT spécifique d’HER2 contenant l'étiquette 

histidine (ADAPT-His6) et une cystéine (ADAPT-Cys) soit à l'extrémité N-terminale, soit à 

l'extrémité C-terminale, ont été produites par nos collaborateurs du KTH - Royal Institute of 

Technology (Stockholm, Suède). L'anticorps anti-HER2 pertuzumab (Roche Genentech) a été 

utilisé pour le marquage du LTC-NHS par les amines primaires du résidu lysine. Deux méthodes 

différentes de conjugaison des QDs ont également été comparés. ADAPT-His6 peut se lier 

efficacement par coordination d'affinité métallique aux surfaces riches en Zn des QD émettant à 

625 nm (QD625, Thermo Fisher) revêtues de ligands zwittérioniques. Cet assemblage direct sur 

la surface du QD fournit un FRET efficace. Une autre façon est d'utiliser un ADAPT-Cys, qui 

peut marquer les QD ITK avec des PEG-aminés émettant à 705 nm (QD705, Thermo Fisher) par 

la chimie sulfhydrique. Les QD réactifs à l'amine ont été convertis en QD réactifs au maléimide 

en utilisant l'agent de réticulation hétérobifonctionnel sulfo-EMCS qui a des groupes réactifs 

NHS ester et maléimide. Les QD activés par le maléimide ont ensuite été conjuguées à 

l'ADAPT-Cys via des groupes sulfhydryl libres, qui ont été réduits par le TCEP. Les ratios de 

marquage de QD / ADAPT sont très difficiles à quantifier en raison de la grande différence de 

coefficient d'extinction des QD et des ADAPT à 280 nm, mais le grand excès d'ADAPT par 

rapport aux QD et la fonctionnalité des tests FRET ont fourni de très bonnes preuves d’une 

conjugaison ADAPT-QD. Des immunodosages par TR-FRET ont permis de quantifier HER2 à 

la fois dans 50 μL de tampon et dans des échantillons contenant du sérum avec des limites de 

détection sub-nanomolaires, en utilisant un instrument d'immunoanalyse clinique (KRYPTOR 



compact plus). La limite de détection (LOD) a été acquise à partir de la partie linéaire de la 

courbe d'étalonnage. La LOD du conjugué QD625 a surpassé les précédents tests effectués avec 

des anticorps, des fragments d'anticorps ou des nanocorps. Bien que le conjugué QD705 ait 

montré des LOD plus élevées que le conjugué QD625, les résultats ont fourni des informations 

importantes concernant la possibilité de multiplexer différentes longueurs d’ondes et la 

polyvalence de la conjugaison d’ADAPT à d'autres nanoparticules.  

La deuxième étude (Chapitre 5) se concentre sur les anticorps monocaténaires (sdAb), des 

fragments d'anticorps constitués d'un seul monomère à domaine variable avec un poids 

moléculaire de seulement 15 kDa qui sont utilisés dans de nombreuses applications 

immunologiques. Pour la réalisation des immunodosages en sandwich, les deux types de sdAb 

ont été fournis par nos collaborateurs à l'Université d'Utrecht (Pays-Bas). Ces nanocorps se lient 

à des épitopes distincts du récepteur du facteur de croissance épidermique humain 1 (EGFR), 

notés EgA1 et EgB4. Quatre systèmes de liaison différents (histidine, biotine, cystéine, pas de 

marqueur) ont été utilisés pour tester plusieurs stratégies de conjugaison des nanocorps avec des 

paires de FRET. EgA1-no tag et EgA1-His6 ont été utilisés pour le marquage de LTC. EgB4-

His6, EgB4-biotine et EgB4-Cys ont été utilisés pour trois stratégies de conjugaison différentes. 

Les QD utilisés dans ces systèmes étaient les mêmes QD625 et QD705 que ceux employés dans 

l'étude précédente. De plus, un autre QD commercial émettant à 705 nm (sAvQD705, 705 ITK 

Streptavidin Conjugate Kits) a été introduit ici pour la reconnaissance de la biotine-streptavidine, 

où la streptavidine est fixée de manière covalente au revêtement amphiphile interne du QD sans 

un lieur PEG, permettant un co-assemblage plus aisé d'autres biomolécules au QD. Ainsi, la 

limite de détection du conjugué EgB4-biotine-sAvQD705 est supérieure à celle du conjugué 

EgB4-Cys-QD705. Fait intéressant, une autre paire de FRET EgA1-His6-LTC et EgB4-His6-

QD625 a montré un FRET légèrement réduit avec des concentrations croissantes d'EGFR en 

raison de la liaison de l’étiquette polyhistidine de EgA1-His6-LTC sur le QD625. L'addition 

d'EGFR remplace certains des conjugués LTC, ce qui résulte en un immunodosage par 

déplacement compétitif. Le concept a été confirmé par une autre expérience, dans laquelle le 

QD, l'accepteur FRET, sans sdAb conjugué, c'est-à-dire EgA1-His6-LTC et QD625, présentait 

toujours le même résultat compétitif, qui était applicable pour détecter l'EGFR aux 

concentrations sub-nanomolaires. Ce test compétitif est très intéressant car il ne nécessite qu'un 



seul type de sdAb spécifique de l'EGFR, ce qui réduit fortement le coût du développement de 

l'anticorps et du réactif.  

En résumé, les résultats de cette thèse montrent que des petites protéines d'affinité se sont 

révélées très utiles pour les immunodosages à base de QDs. De telles protéines de petite taille 

(par exemple ADAPT, sdAb) permettent une conjugaison de QDs multivalente pour augmenter 

la sensibilisation des QDs au FRET. Il a été montré que les ADAPT surpassaient tous les autres 

types d'anticorps pour les immunodosages HER2. Les sdAbs ont été utilisés pour développer un 

immunodosage homogène compétitif qui ne nécessite qu'un seul anticorps (au lieu de deux), ce 

qui peut être considéré comme une stratégie alternative utile pour la détection de l'EGFR. Les 

deux stratégies pour des immunodosages FRET homogènes à base de QDs avec de petites 

protéines d'affinité fournissent un potentiel important pour des diagnostics in vitro avancés et 

d'autres applications de biocapteurs à base de FRET, par exemple pour l'imagerie de la 

dimérisation du récepteur du facteur de croissance épidermique. 
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Titre : Tests immunologiques par transfert d'énergie par résonance de Förster en utilisant des 
protéines modifiées pour la détection de biomarqueurs du cancer du sein 

Mots clés FRET, boîtes quantiques, complexe de lanthanides, bioconjugaison, spectroscopie résolue 
en temps 

Les protéines modifiées ont suscité un grand 
intérêt en raison de leur taille extrêmement 
petite par rapport à l'anticorps entier. Ces petites 
protéines de liaison ont démontré de nombreux 
avantages tels qu'une biodistribution rapide, une 
bonne pénétration dans le tissu tumoral et une 
élimination rapide du sérum et des tissus non-
infectés. Ainsi, ces protéines devraient être 
d'excellentes alternatives aux anticorps pour les 
applications cliniques. Cette thèse présente le 
développement de biocapteurs basés sur des 
anticorps synthétiques et le transfert d'énergie 
par résonance de type Förster (FRET) résolu en 
temps par la détection de biomarqueurs. 

Les tests immunologiques à base de FRET sont 
établis en utilisant des complexes de terbium 
(Tb) comme donneurs de FRET et des boîtes 
quantiques semi-conducteurs (QDs) comme 
accepteurs de FRET. Les propriétés 
photophysiques exceptionnelles de ce couple de 
FRET Tb-QD permettent une détection 
quantitative ultrasensible. Des anticorps 
monocaténaires (single-domain antibody, sdAb) 
et des petites protéines d’affinité synthétiques 
(albumin-binding domain-derived affinity 
protein, ADAPT) sont utilisées pour étudier 
différentes stratégies de conjugaison d'anticorps, 
et quantifier des biomarqueurs cliniques 
(EGFR, HER2). Ce travail peut être considéré 
comme une condition préalable à l’utilisation 
des QDs en diagnostic clinique. 

 

 

Title : Förster resonance energy transfer immunoassays using engineered proteins for breast cancer 
biomarker detection 

Keywords : FRET, quantum dots, lanthanide complex, bioconjugation, time-resolved spectroscopy 

Abstract : Engineered affinity proteins have 
raised great interest due to their extremely 
small size compared to full length antibodies. 
Such small binding proteins have demonstrated 
many advantages such as quick biodistribution, 
good penetration into tumor tissue, and fast 
elimination from serum and nondiseased 
tissues. Thus, they are expected to be excellent 
alternatives to antibodies for clinical 
applications. This thesis focuses on the 
development of biosensors based on engineered 
antibodies and time-resolved Förster resonance 
energy transfer (FRET) through biological 
recognition of biomarkers. 
 

FRET-based immunoassays are established 
using terbium complexes (Tb) as FRET donors 
and semiconductor quantum dots (QDs) as 
FRET acceptors. The exceptional 
photophysical properties of the Tb-QD FRET 
pair allow for ultrasensitive quantitative 
biosensing. Single-domain antibodies (sdAb) 
and small engineered scaffold antibodies 
(ADAPT) are used to investigate different 
antibody-conjugation strategies for quantifying 
human epidermal growth factor receptors 
(EGFR, HER2) as clinical biomarkers. This 
work can be considered as a prerequisite to 
implementing QDs into applied clinical 
diagnostics. 
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