
HAL Id: tel-01909849
https://theses.hal.science/tel-01909849v1

Submitted on 31 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a holistic construction of opportunistic
large-scale distributed systems

Simon Bouget

To cite this version:
Simon Bouget. Towards a holistic construction of opportunistic large-scale distributed systems. Other
[cs.OH]. Université de Rennes, 2018. English. �NNT : 2018REN1S023�. �tel-01909849�

https://theses.hal.science/tel-01909849v1
https://hal.archives-ouvertes.fr

3

4

Résumé substantiel en Français

Contexte

Les systèmes distribués à large échelle ont désormais pénétré notre vie de tous les jours.
Ces systèmes sont depuis longtemps une composante clé de l’Internet, fournissant
une large gamme de services, des traditionnelles applications web en ligne comme les
moteurs de recherche (e.g. Google) ou les réseaux sociaux (Facebook, Twitter, ...),
au partage de fichier pair-à-pair (e.g. Bittorrent) ou plus récemment aux crypto-
monnaies. Avec l’avènement de l’Internet des Objets (ou objets connectés, IoT, pour
Internet of Things), cette tendance s’est encore accélérée, avec des systèmes distribués
désormais étroitement mêlés à notre environnement physique. Cette évolution nous
laisse envisager un avenir dans lequel les utilisateurs seront entourés par un nombre
croissant d’appareils connectés, travaillant de manière autonome vers leurs objectifs
individuels tout en cherchant à coopérer et à exploiter les opportunités offertes par
leurs voisins. Que ce soit à leur domicile, au travail ou sur la route, les humains auront
régulièrement à interagir avec des systèmes distribués dans leur vie courante.

Au fur et à mesure que ces systèmes sont de plus en plus répandu, ils croissent
également en taille et en complexité. Par exemple, une installation domotique typique
se compose de dizaines de capteurs (pour la lumière, la température, la détection de
mouvement, répartis dans différentes pièces, etc.) mais aussi d’actionneurs qui con-
trôlent les différents éléments d’une maison. Ce type d’installation repose également
sur le Cloud pour relayer les informations à un utilisateur distant, pour accéder à des
statistiques ou à des protocoles de décision utilisant de l’apprentissage automatique.
En d’autre termes : les systèmes distribués modernes incluent non seulement un plus
grand nombre d’appareils, mais aussi une plus large gamme d’appareils et de services
très différents et hétérogènes.

Problématique

Leur complexité croissante rend les systèmes distribués modernes particulièrement
difficiles et coûteux à développer et maintenir. Ils deviennent rapidement trop larges,
impliquant trop de composants différents, pour être appréhendé par un individu isolé.
Cette limitation cognitive a plusieurs conséquences négatives : le processus de développe-

5

6

ment devient plus vulnérable aux erreurs humaines, le système est délicat à configurer,
déployer et maintenir efficacement, la surveillance et le provisionnement sont extrême-
ment chronophages en raison du nombre astronomique d’évènements générés, sans
même tenir du compte de la complexité croissante de chaque évènement individuel.

Autrement dit, on observe une tension croissante entre la nécessité de prendre du
recul pour être capable d’appréhender un système dans son ensemble, et le besoin
de gérer en détail des comportements individuels de plus en plus complexes. Plus
précisément, nous avons identifiés quatre challenges majeurs.

• Se concentrer sur la vue d’ensemble du système, pas le comportement individuel
de chaque composant. Toutefois, ceci est difficile avec les approches de développe-
ment traditionnelles qui consistent précisément à implémenter le comportement
individuel de chaque appareil plutôt que la fonction globale du système.

• Déployer et maintenir un système opérationnel avec un très grand nombre de
composants. Comment configurer chaque composant individuel, comment amorcer
le système ? De plus, même après un déploiement réussi, la taille du système
garantit que des plantages vont inéluctablement se produire : au moins l’un des
composants, par la simple force du nombre, subira une défaillance.

• Rendre les systèmes capables de réagir à des circonstances changeantes. En
pratique, aucune configuration ne peut convenir à toutes les circonstances qu’un
système opérationnel rencontrera, mais ajuster les réglages d’un système large
échelle en production est extrêmement complexe. Le nombre d’actions distinctes
à effectuer peut être très grand, des conflits inattendus peuvent survenir, ou des
dépendances implicites peuvent être mises en défaut.

• Rendre les systèmes capable d’évoluer au cours du temps. En effet, tout système
déployé pour une période significative verra son environnement se modifier, avec
de nouvelles infrastructures, de nouvelles fonctionnalités à exploiter et de nou-
veaux besoins à satisfaire. Un système performant devrait être capable d’évoluer
en parallèle avec son environnement, mais mettre en place ce type d’évolutivité
pour des changements qui sont inconnus au moment de la conception peut être
particulièrement délicat.

Notre vision

Pour répondre à cette tension entre le besoin d’une vision globale et la nécessité de
gérer des détails complexes, et pour adresser les challenges ci-dessus, notre intuition
est qu’une approche double est nécessaire : nous devons fournir aux concepteurs et
développeurs une approche holistique qui permet de mettre en place des systèmes
distribués opportunistes.

7

Contributions

Cette thèse avance trois contributions vers la vision que nous défendons.

Pleiades

Pleiades est un framework permettant de construire dans un réseau distribué des
structures complexes sans aucun élément coordinateur. Il est composé de trois grandes
parties, un langage domaine, une bibliothèque de formes élémentaire et un moteur
d’exécution générique reposant sur une combinaisons de protocoles épidémiques auto-
organisants qui résistent extrêmement bien en cas de défaillance et sont facilement
reconfigurables. Ce framework permet de concevoir un grand nombre de structures
complexes avec des fichiers de configuration simples et expressifs, par assemblage de
formes élémentaires issues de la bibliothèque.

MtG

MtG est un protocole distribué de détection de partition dans les réseaux mobiles ad-
hoc. En utilisant une structure de donnée probabiliste et extrêmement compacte, il
arrive à détecter pratiquement toutes les partitions apparaissant dans un réseau ad-
hoc avec un très faible taux d’erreurs, y compris dans des circonstances difficiles avec
un taux de perte des messages élevé.

HyFN

Finalement, HyFN est un algorithme distribué de construction de graphe des k-plus-
lointains-voisins, un problème complémentaire aux k-plus-proches-voisins mais que les
méthodes actuelles ne permettent pas de résoudre efficacement. Se reposant sur des
protocoles épidémiques et une approche à deux couches, il est efficace et montre que des
combinaisons simple de protocoles traditionnels permettent malgré tout de résoudre
des systèmes complexes.

Conclusion

Ces différentes contributions reposent sur des modèles théoriques validés par des sim-
ulations et des analyses mathématiques détaillées. Bien qu’elles ne permettent pas de
réaliser l’intégralité de la vision que nous défendons, elles en démontrent la pertinence
et la faisabilité.

8

Vers des approches holistiques

Pleiades, notre framework holistique pour créer des topologies complexes, montre
que des abstractions adaptées permettent de concevoir facilement une large gamme de
systèmes complexes. Il ne permet pas encore de mettre au point tout type de système
distribué et se concentre spécifiquement sur la structure des systèmes, mais il ouvre des
pistes intéressantes, telles que le développement d’une interface standardisée entre la
structure sous-jacente d’un système et l’application qui est mise en œuvre par dessus.

Vers des systèmes opportunistes

Pleiades réalise des fonctions complexes de maintenance et de résilience en combi-
nant plusieurs protocoles épidémiques isolément simples. C’est un signe encourageant
que les méthodes épidémiques sont effectivement adaptées pour créer des systèmes
opportunistes, capables de réagir à leur environnement sans intervention explicite des
opérateurs humains.

MtG permet de détecter de manière relativement fiable et extrêmement efficace
une certaine classe d’évènements se produisant dans les réseaux mobiles ad-hoc, les
partitions et autres changements notables de connectivité. C’est un premier pas vers
des systèmes capables de s’auto-adapter, et une démonstration convaincante des per-
formances des méthodes épidémiques même dans des circonstances difficiles. Les
recherches doivent toutefois se poursuivre dans deux directions indépendantes :

• d’une part, détecter plus de types d’évènements, avec une granularité plus faible,
et dans des contextes plus larges qu’uniquement les réseaux mobiles.

• d’autre part passer de la simple détection à l’adaptation, avec des systèmes
capables d’analyser les informations qu’ils détectent et de prendre des décisions
vers un nouvel objectif mis à jour.

HyFN, en étendant le champ d’application des méthodes épidémiques, nous conva-
inc qu’elles constituent un outil adapté au développement de solutions génériques et
de systèmes auto-organisants, capable de s’adapter à des circonstances très diverses,
et d’évoluer progressivement au cours de leur cycle de vie, en même temps que leur
environnement.

Globalement, l’ensemble de nos contributions montrent que notre vision, une ap-
proche holistique pour construire des systèmes opportunistes composés de blocs génériques
et auto-organisants, est viable. Elles ouvrent également de futures directions de
recherche pour poursuivre le travail vers cette vision.

Contents

1 Introduction 17

1.1 Context . 17

1.2 Challenges for modern distributed systems 18

1.3 Our vision: opportunistic systems
with a holistic approach . 19

1.4 Contributions . 21

1.5 Document organization . 22

2 State of the Art 25

2.1 Programming abstractions and Holistic Approaches 25

2.1.1 Non-distributed systems . 25

2.1.2 Static distributed systems . 26

2.1.3 Wireless and mobile networks 27

2.2 Mechanisms of adaptation . 27

2.2.1 Self-organizing overlays . 28

2.2.2 Scalability . 29

2.2.3 Partition detection . 29

2.3 Conclusion . 31

3 Hollistic construction 33

3.1 Introduction . 33

3.2 Problem, Vision, & Background . 36

3.2.1 Problem and vision . 36

3.2.2 Key challenges and roadmap . 37

3.3 The PLEIADES framework:
DSL, library & runtime . 37

3.3.1 System model and overall organization 38

3.3.2 Shape templates and port definition 39

3.3.3 PLEIADES DSL and configuration file 41

3.3.4 The Membership and Shape Building protocols 44

3.3.5 The Port Selection and Connection protocols 47

3.4 Evaluation . 49

9

10 CONTENTS

3.4.1 Evaluation set-up and methodology 50
3.4.2 Examples . 50
3.4.3 Performances . 50
3.4.4 Resilience . 55

3.5 Conclusion . 58

4 Detecting environmental changes 61

4.1 Introduction . 61
4.2 Approach . 63

4.2.1 Overview . 63
4.2.2 Self-detection protocol (MtG/Self-detect) 67
4.2.3 Assisted-detection protocol (MtG/Assisted) 69

4.3 Analysis . 69
4.3.1 System Model . 69
4.3.2 Operating in paradise (ideal conditions) 71
4.3.3 Operating in hell (imperfect aggregation and dynamic networks) 73

4.4 Evaluation . 75
4.4.1 Experimental setup and metrics 75
4.4.2 Effective representation . 76
4.4.3 Partition detection . 77
4.4.4 Pushing the limits . 78
4.4.5 Concrete parameters settings 79

4.5 Conclusion & Future Work . 80

5 Extending traditional gossip 83

5.1 Motivation . 83
5.2 Decentralized Construction of a KFN graph 84

5.2.1 Background: Decentralized KNN Graph Construction 84
5.2.2 Moving to Decentralized k-furthest-neighbor Graph Construction 86

5.3 Algorithms . 87
5.3.1 General Framework . 87
5.3.2 Instantiating the selection of far candidates 88

5.4 Evaluation . 90
5.4.1 Experimental set-up and metrics 90
5.4.2 Results . 91

5.5 Conclusion . 95

6 Conclusion 97

6.1 Summary of contributions . 97
6.2 Future research directions . 98
6.3 Perspective . 100

List of Figures

3.1 Some complex topologies encountered in modern distributed systems . 34

3.2 Creation of complex systems of systems 36

3.3 Pleiades overall approach . 38

3.4 Pleiades consists of 6 self-stabilizing protocols that build upon one
another to enforce the structural invariant described in a configuration
file distributed to all nodes in the system. 39

3.5 A simple ring template can be defined using Ering = [0, 1[as position
space, a random projection function, the modulo distance, and a shape
fanout kring = 2. 40

3.6 MongoDB-like topology: a Star of Cliques connected through a Ring . 41

3.7 A graphical representation of the Pleiades configuration files used to
create the systems shown in Figure 3.8. 49

3.8 The resulting topologies corresponding to the configurations of Fig-
ure 3.7 (after 10 rounds of simulation). 49

3.9 A system of 100 nodes converges in 6 rounds towards three connected
rings (colored in blue, red, and black). 51

3.10 The Pleiades configuration used in Figure 3.9. 51

3.11 Progress of the different protocols of Pleiades over time (in rounds)
for a ring of rings with 25,600 nodes and 10 rings. Except for Port
Connection, all protocols experience a rapid phase change. 52

3.12 Dynamic reconfiguration and convergence to a new stable state. 52

3.13 Convergence time of the Pleiades protocols for a system of 20 con-
nected rings (a ring of rings), for various system sizes. Pleiades con-
verges rapidly and scales well with the number of nodes. 54

3.14 Convergence time of the Pleiades protocols for a system of 25,600
nodes implementing a ring of rings, for various numbers of rings. The
convergence time of Pleiades only slowly increases with the number
of individual rings. 54

3.15 Bandwidth overhead of Pleiades over the shape building protocol, per
node, per round (20 shapes, 25,600 nodes). Both protocols peak once
all views have stabilized, and remain below 1kB (2kB in total). 55

11

12 LIST OF FIGURES

3.16 Pleiades’s convergence time after half of the nodes have crashed, and
after re-injecting new nodes (4 connected rings, note the log x axis).
Pleiades’s stabilization speed is logarithmic in the system’s size. . . . 56

3.17 Resilience and self-repair after a dramatic crash or a large node injection. 56
3.18 Evolution of the bandwidth overhead of Pleiades (ratio) vs. the num-

ber of basic shapes (25,600 nodes, stable state). Pleiades’s overhead
remains very small even for 50 basic shapes (< 2kB in absolute value). 57

4.1 . 63
4.2 The aggregation process of MtG . 65
4.3 MtG’s behavior during a partition . 66
4.4 Distribution of the Hamming distance of two summaries 72
4.5 Maximum network size for a probability of false negative of 10−5 when

partitioned into two partitions of equal size for different summary sizes. 72
4.6 Distribution of the Hamming distance of two summaries under churn

(64 signatures) . 73
4.7 Distribution of the Hamming distance of two summaries under churn

(128 signatures) . 74
4.8 Filters as a representation of network membership 76
4.9 Impact of network size on convergence 79
4.10 Impact of message loss on partition detection 80

5.1 A round of greedy decentralized KNN construction 85
5.2 The two heuristics we propose to construct a KFN graph 86
5.3 Converged nodes, missing links, and average similarity for HyFN 92
5.4 Impact of the α stochastic parameter on a 3200-node regular ring. . . . 94
5.5 Impact of the β stochastic parameter on a 3200-node regular ring. . . . 95
5.6 Scalability of HyFN . 96

List of Tables

2.1 Summary of various approaches and their respective properties 32

3.1 Views of membership and shape building prot. 44
3.2 State of the connection protocols on node n 44

4.1 Mind-the-Gap: Notations and variables maintained by each node . . 67
4.2 Partition detection performance. 78

13

14 LIST OF TABLES

List of Algorithms

1 SSP : Same Shape Protocol on n 45
2 RSP : Remote Shapes Protocol on n 46
3 Port Selection on node n 47
- Function getClosest(cand, k, tplate) . 47
4 Port Connection on node n 48

5 MtG/Self-detect: Filter aggregation (at pi) 68
6 MtG/Self-detect: Change of epoch (at pi) 68
7 MtG/Assisted: Change of epoch at a node pi belonging to a monitored

system . 69
8 MtG/Assisted: Signature aggregation at a node pi belonging to a moni-

toring system . 70

9 Greedy decentralized KNN algorithm executing at node p 85
10 HyFN: A generic algorithm to implement a KFN computation, executing

at node p . 88
11 A far-from-close strategy to select far candidates (at p) 88
12 A close-to-far strategy to select far candidates (at p) 89
13 Reception of a far push message (at p) 89
14 A mixed strategy to select far candidates (at node p) 89

15

16 LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Context

Large-scale distributed systems have come to pervade our everyday lives. These sys-
tems have long been part of the Internet, providing a large range of services including
traditional on-line web applications such a search or social networks, Peer-to-Peer
file sharing, or more recently cryptocurrencies. The advent of the Internet of Things
(IoT) has further accelerated their rise, by closely embedding distributed systems into
the physical world. This evolution lets us envisage a future in which users will be
surrounded with an increasing number of connected devices working autonomously to-
ward their individual goals, seeking to cooperate and leverage on each other. Whether
it be at home, at work, on the road, humans will have to interact with distributed
systems in their day-to-day life.

Take, for instance, the recent progresses toward Self-Driving Cars. Autonomous
fleets of cars will very likely need to communicate with each other as well as with their
surrounding environment, in order to obtain key information such as weather and traf-
fic conditions, emergency announcements, and city regulations. Similarly, buildings
are becoming smarter thanks to the generalization of home automation techniques,
which rely on distributed systems to control essential elements such as lighting, air
conditioning, entertainment systems, or building security. Increasingly, smart build-
ings are expected to connect with each other, and with city information systems, in
order to form what has been termed Smart Cities. As envisioned, smart cities will be
able to collaborate towards higher level goals such as managing assets (infrastructure)
and resources (water, energy, ...) more efficiently within large urban areas.

As the above systems become more common, they also grow in size and complexity.
A typical Home Automation set-up contains dozens of sensors (for light, temperature,
motion-detection) but also actuators to control the different elements of a home. It also
relies on the Cloud to relay and access statistics or machine-learning-assisted decision
making. In other words, modern distributed systems not only include more devices,
they also include a wider range of device types and functionality.

17

18 CHAPTER 1. INTRODUCTION

The resulting complexity naturally rises over time as systems evolve in order to
adapt to evolving demands and a changing technological landscape. This is because a
distributed system cannot be built in an initial ideal state and simply frozen for the
rest of its lifetime. As the system is used, new resources are added, new infrastructure
is deployed, new sub-systems and features are added to the whole, new nodes join,
potentially equipped with a newer technology, and all these changes require in turn
the system to adapt and transform itself.

Finally, modern distributed systems have to satisfy a number of hard requirements
under changing circumstances: workload may vary by orders of magnitude with the
time of day or seasons passing by; devices are likely to be leaving and joining the
network on a continuous basis, either because of failures (datacenters) or of willing
cessations in participation (P2P content sharing); hard constraints must be met in
terms of latency (Self-Driving Cars). Adding in measures to guarantee those require-
ments participates in the rising complexity of modern-days distributed systems.

1.2 Challenges for modern distributed systems

Their growing complexity is making modern distributed systems particularly difficult
and costly to develop and maintain. Modern systems are rapidly becoming too large,
too complex, they are involving too many different components to be fully grasped by
a single individual. This cognitive limitation has a number of negative consequences
for their development.

When designing new features and applications, development teams must keep in
mind all the various components of a complex system, all their multifaceted relation-
ships. As the complexity of a distributed system increases, this process becomes more
error-prone, the system becomes more difficult to configure, deploy, and maintain ef-
ficiently.

This difficulty continues on as the system goes in production, and must be moni-
tored and provisioned. Without proper tools, the sheer scale of modern systems means
it is extremely costly for an operator to react to every single event in order to adapt
to changing circumstances or to correct arising issues with an appropriate action.

In both cases, the core issue is a difficulty to consider the system as a whole,
without getting stuck into details. More precisely, we identify three key challenges:

Challenge #1: Focus on the function of the system, not the behavior of in-

dividual component For a distributed storage system, for instance, what is impor-
tant is that each element is correctly stored, with an appropriate level of redundancy,
and is easily retrievable with good performances and availability. The node-to-node
low-level communications on the other hand, while ensuring these desired properties,
do not represent the real added value of the system. Yet this holistic view is difficult to
maintain within a traditional development process that focuses on implementing the

1.3. OUR VISION: OPPORTUNISTIC SYSTEMSWITH A HOLISTIC APPROACH19

behavior of individual node or class of nodes, rather than on the high-level functions
delivered by the distributed system as a whole.

Challenge #2: Deploy and maintain a live system with a very large number

of components Deploying a large-scale system is a complex task: how do you prop-
erly configure each individual component? How do you boot-strap? Moreover, even
after a successful initial deployment, large-scale systems are highly likely to experience
some crashes or other run-time issues, simply due to the large number of components
involved: one of them is bound to have a problem. As a consequence of all that,
managing a large-scale distributed system and keeping it operational can be daunting.

Challenge #3: Make system able to react to changing circumstances and

to evolve over time In realistic situations, no single configuration is appropriate to
all circumstances, but tweaking the configuration of a large, live system is extremely
complex: the number of separate actions needed can be very large, unexpected con-
flicts may arise, or unforeseen dependencies. Also, due to the heterogeneous context
mentioned above, systems deployed for any significant length of time will see their
environment evolve around them, new infrastructure, new features. A good system
should be able to evolve in parallel, to adapt to and leverage its new environment,
but building-in this kind of forward-looking adaptability to evolutions that are still
unknown can be extremely tricky.

1.3 Our vision: opportunistic systems

with a holistic approach

In order to address the above challenges, we posit that the current ecosystem needs to
adopt a more holistic and high-level approach, at all stages of a system life, com-
bined with opportunistic basic building blocks able to collaborate and self-adapt
to evolving circumstances. We argue that high-level abstractions are needed to better
design systems as a whole, while focusing on desired features and properties, rather
than on low-level behaviors. These abstractions should ideally be embodied within
generic frameworks and smart run-time platforms with the ability to automate most
of the low level work, in order to streamline development, deployment and maintenance
efforts.

At this point, it is interesting to stop and remark that this is similar to the process
other fields of computer sciences have already gone through, such as Programming
Language Theory or Software Engineering. Things start with some ad-hoc solutions to
a few problems, then they are extended, generalized, theories are formalized, standards
emerge and best-practices are put in place. This is generally accompanied by a rise in
abstraction levels, with more recent iterations hiding a large part of the complexity and

20 CHAPTER 1. INTRODUCTION

letting the machines handle the details. Just like Programming Languages went from
Assembly to C to high-level programming paradigms such as Functional or Object-
Oriented, and now let compilers do most of the optimizations, or garbage collectors
do most of the memory management, large-scale modern distributed systems need to
go through a similar evolution.

Leveraging this parallel, we have sought in this work to organize our thought
process along the following two lines:

• we have sought to study the best practices put in place in other fields, and where
possible import and adapt them to distributed systems;

• we have then endeavored to provide new tools in order to tackle the challenges
specific to distributed systems, while hiding most of their inherent complexity.

Best practices from other fields The key point, as we already mentioned, is a
rise in abstraction levels. This provides a better mental framework to design more
complex system without getting lost among the hundreds or thousands individual
low-level components of a modern distributed system. Another notable evolution is a
push toward compartmentalization, that is to say making sure that each component in
a system fulfills a single function and is properly isolated from other components that
fill different functions. In turn, this promotes reusability and modularity, enabling
the same work to be used in multiple places, or to change some small isolated part
of a system without breaking everything. Interestingly, a push toward compartmen-
talization is already in effect for distributed systems, with trends such as containers
and micro-services, and is part of the reason why the complexity of modern systems
is increasing. But without an accompanying rise in abstraction levels, the resulting
complexity will quickly become unmanageable. Finally, the last important aspect is
encapsulating common low-level use-cases in generic parts. This has a number of pos-
itive impacts, such as hiding complexity (just like better abstractions, but from the
other side of the question), or more optimized code that benefit the whole community.
But what would be such low-level components in the context of distributed system?
That is what we will see now.

Specific issues with distributed systems Very promising candidates on this side
are self-organizing overlays and epidemic protocols (also called gossip protocols). They
are a family of protocols that naturally possess a number of desirable properties: fully
decentralized, highly resilient, very efficient both in terms of speed and bandwidth
consumption. Working with successive greedy, local optimizations, they manage to
gather or disseminate information all over a distributed system extremely quickly.

Using them as a basis, it is possible to build more advanced protocols that, through
periodic gathering of information, monitor the state of a system, detect changing cir-
cumstances, adapt to them and propagate new updated information to other partici-
pants. Those changing circumstances can be crashes or failures (since self-organizing

1.4. CONTRIBUTIONS 21

overlays are naturally resistant to it), but also additional resources being added to the
system, new information from sensors, other sub-systems available or even third-party
willing to cooperate. Leveraging epidemic protocols, it is thus possible to greatly sim-
plify the deployment and maintenance of distributed systems, effectively hiding a lot
of the complexity from the system operators.

In conclusion, by combining: (i) a rise in abstraction levels and adoption of best-
practices from other fields; with (ii) self-organizing overlays and gossip to enable dis-
tributed systems to monitor themselves, detect changes and adapt to their environ-
ment, we propose in this thesis to progress towards a holistic approach for the

development of opportunistic systems.

1.4 Contributions

More precisely, we make the following three contributions in order to get closer to this
vision:

A holistic framework for complex topologies First off, we propose Pleiades,
a framework to build, deploy and maintain complex network topologies seen as an as-
semblage of simpler shapes. In the specific context of network overlays, Pleiades ad-
dresses Challenge #1 by providing high-level abstractions to design complex topolo-
gies while ignoring the individual behaviors of each nodes, and Challenge #2 thanks
to a simple and efficient run-time engine based on epidemic protocols, which is able
to automatically maintain and repair the system to preserve the desired topology in
most circumstances, without any direct action from an operator.

This contribution is based on the work that has been presented in the following
paper:

• Simon Bouget, Yérom-David Bromberg, Adrien Luxey, François Taïani: Pleiades:
Distributed Structural Invariants at Scale. In the 48th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks, DSN 2018, Lux-

embourg City, Luxembourg, June 25-28, 2018. Proceedings, 2018 [14]

A partition-detection protocol for MANETs Our second contribution, Mind-

the-Gap (MtG for short), addresses the first step of Challenge #3 in the context
of Mobile Ad-hoc Networks (MANETs). MtG is an epidemic protocol which enables
MANETs to detect some kind of changes in their environment, namely partition events
and other large change in network connectivity, in order to react and adapt to it.
Furthermore, MtG was designed with the advent of opportunistic systems in mind
and proposes two variants: a self-detection method, and an assisted detection method
which is able to leverage the presence of third-party systems in the environment.

22 CHAPTER 1. INTRODUCTION

This contribution is based on the work that has been presented in the following
paper:

• Simon Bouget, Yérom-David Bromberg, Hugues Mercier, Etienne Rivière and
Francois Taiani: Mind the Gap: Autonomous Detection of Partitioned MANET
Systems using Opportunistic Aggregation. In the 37th IEEE International Sym-

posium on Reliable Distributed Systems, SRDS 2018, Salvador, Bahia, Brazil,

October 2-5, 2018. Proceedings, 2018 [15]

An extension to traditional epidemic protocols Our third contribution comes
from a simple observation: standard epidemic protocols suffer from an important re-
striction, they only work efficiently if there is some pseudo-transitivity between nodes,
some regularity that allows iterative greedy optimizations to function properly without
getting stuck in sub-optimal states.

However, (i) this hypothesis is unlikely to hold when a system tries to find com-
plementary nodes to collaborate on a common task, because complementary nodes
are as different as possible, not similar at all; and (ii) finding complementary nodes
that can collaborate is one of the key tenets of opportunistic systems, so this prob-
lem is almost guarantee to arise sooner rather than later. Hence why we decided to
explore if we could lift that restriction and we finally propose HyFN (for Hybrid Fur-
ther Neighbors), a two-layered epidemic protocol with good performances and low cost
even in the absence of any transitivity. We thus demonstrate the wide applicability of
epidemic protocols, and that they are great candidates to further address the many
facets of Challenge #3 in a more general fashion.

This contribution is based on the work that has been presented in the following
paper:

• Simon Bouget, Yérom-David Bromberg, François Taïani, Anthony Ventresque:
Scalable Anti-KNN: Decentralized Computation of k-Furthest-Neighbor Graphs
with HyFN. In Distributed Applications and Interoperable Systems, DAIS 2017,
held as part of the 12th International Federated Conference on Distributed Com-

puting Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017.

Proceedings, pages 101-114, 2017 [16]

1.5 Document organization

This dissertation is organized as follows. Chapter 2 presents the background and
state of the art in more details. Chapters 3 to 5 describe our three main contri-
butions, one in each chapter: Chapter 3 focuses on our holistic approach for com-
plex topologies (Pleiades); Chapter 4 moves on to our partition detection protocol
(Mind-the-Gap); and Chapter 5 deals with our extension of epidemic protocols to

1.5. DOCUMENT ORGANIZATION 23

Further Neighbors (HyFN). Finally, Chapter 6 presents our conclusions and possible
new research directions opened by our work.

24 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In the previous chapter, we argued that distributed systems need to evolve toward a
holistic approach with high-level abstractions and opportunistic systems able to react
autonomously and adapt to evolving circumstances.

This chapter will thus be organized along two main axis. First, in Section 2.1,
we focus on abstractions, we present the holistic approaches used in other fields, how
distributed systems are currently developed, and what programming models exist for
distributed systems. Then, in Section 2.2, we present the various mechanisms designed
to make distributed systems more aware of their environment and able to react to
circumstances. Finally in Section 2.3, we sum up our findings, comment on the overall
technological landscape and highlight what is still missing to realize the vision we
proposed.

2.1 Programming abstractions and Holistic Approaches

In this Section, we focus on how systems are developed and deployed. We start with
the abstractions used for non-distributed systems (Subsection 2.1.1), then we move on
to frameworks used in static distributed systems, where nodes don’t move and usually
use wired connections and are able to contact any other node (Subsection 2.1.2), and
finally we discuss the approaches used in wireless and mobile networks, where nodes are
limited by their range of communication and usually have more constrained resources,
and where the systems are much more dynamic (Subsection 2.1.3).

2.1.1 Non-distributed systems

Component-based software engineering (CBSE) promotes development by assembly.
It allows developers to construct complex systems by assembling pre-existing compo-

nents, i.e. modular reusable blocks that explicitly exposes their interfaces—both in
terms of requirements and of features provided. Components provide separation of

concerns and modularity, and facilitate re-use and continuous integration. A large

25

26 CHAPTER 2. STATE OF THE ART

number of component technologies have been successfully applied to distributed sys-
tems over the years, both in industry (e.g. Enterprise Java Beans (EJB), the Service

Component Architecture (SCA), the CORBA Component Model (CCM), .Net, and the
OSGi Remote Services Specification) and academia [20, 27].

These solutions, however, view components as software artifacts living within nodes,
and focus therefore on the workings of individual nodes rather than on a system’s
global behavior. By contrast, we propose to inverse this view, and consider compo-
nents as distributed entities enforcing a given internal structure (a star, a tree, a ring)
which developers can assemble programmatically to realize more complex topologies.
Individual nodes now live within components, and become transparent to developers,
who only perceive system-level entities they can instantiate and connect to form larger
wholes.

2.1.2 Static distributed systems

There is currently a trend to combine various services to realize more complex features.
It has been popularized especially with the massive adoption of microservices these
last years as witnessed by industry leaders like Netflix, Amazon, Twitter, Airbnb, etc..
From their loosely couple nature, thousands of microservices can be composed and
structured [74, 57]. However, if the maintenance of each individual microservice has
been simplified, it is not the case of the overall microservices ecosystem that becomes
more complex.

Originally proposed in the context of fixed networks [33], tuple spaces provide a
shared memory data abstraction to distributed systems in which tuples can be written
to, read from, and queried by individual nodes. The model has been ported to more
dynamic systems with TineeLime [26], and TOTA (Tuple On The Air) [55]. Interest-
ingly, TOTA moves away from nodes as a key programming abstraction and focus on
messages instead, which act as lightweight agents. TOTA messages carry a represen-
tation of their own behavior in terms of production of markers (akin to pheromones)
and attraction rules: the messages become the active entities which are programmed,
while nodes simply offer a medium in which these evolve. TOTA is thus related to al-
ternative computation models such as chemical programming, in which computations
arise from the asynchronous reaction of (symbolic) molecules in a chemical solution [4].

Neighborhoods primitives such as Hood [81], Abstract Regions [80], and Logical
Neighborhoods [63] are complementary to tuple spaces. They provide scoping mech-
anisms that limit communication to sets of nodes (regions, or neighborhood) selected
according to a wide range of criteria. They are largely orthogonal to the approach we
argued for in the previous chapter.

In contrast to macro-programming techniques, both tuple-based approaches and
neighborhood primitives tend to encourage a loosely coupled, decentralized view of a
wireless distributed system. In this view, programmers have the ability to finely code

2.2. MECHANISMS OF ADAPTATION 27

the behavior of localized entities (nodes, messages, or neighborhoods), but they were
not designed to provide modular and easily composable entities.

2.1.3 Wireless and mobile networks

Wireless Sensor Networks have been a fertile ground for holistic programming frame-
work. These approaches seek to alleviate the task of developers by offering higher-level
programming approaches that expose a WSN as one single programmable entity. These
works differ in the extend to which they reify underlying nodes in their programming
model.

Among them, approaches such as Kairos [37] and Regiment [65] draw their inspi-
ration from existing distributed programming models. Kairos [37] relies on a shared
memory model with distributive constructs similar to those of parallel programming
languages, while Regiment [65] uses functional programming and builds on the con-
cepts of streams and aggregation. They share however the same fundamental traits:
They provide means to quantify over multiple nodes, and hides the details of inter-node
communication and coordination.

Adopting a different stance, acquisitional query processors (e.g. TinyDB, Cougar,
MauveDB) completely hide individual nodes, and provide a usually declarative ap-
proach to express which kind of data to sense, when, where and how often to sense
and to aggregate it [29, 53, 13]. Sensing queries are then transparently mapped onto
the WSN, taking into account various constrains such as energy consumption and
reliability. Both node-dependent macro-programming approaches and acquisitional
query processors move away from individual nodes and towards holistic programming
abstractions, and represent a major advance over low level execution frameworks.
However, Kairos and Regiment still can be challenging to wrestle with, as they use
complex macro-operations to capture distribution. TinyDB and Cougar on the other
hand take an almost exclusively data-oriented view of WSNs, which limit their ap-
plicability to richer scenario. More generally, and perhaps not surprisingly since this
was not their primary intent, none of them support strong modularity. In particular,
they do not allow developers to easily express interactions between reusable software
entities, or to reason explicitly about dependencies, a critical enabler to build complex
systems from reusable components.

2.2 Mechanisms of adaptation

We already mentioned epidemic protocols in Chapter 1 as very promising candidates to
build opportunistic systems, so we start this section by examining them in more details,
especially their use in self-organizing overlays (Subsection 2.2.1). We then move on to
a number of more narrow problems and constraints that modern distributed systems
have to tackle, and the various adaptation mechanisms that have been developed

28 CHAPTER 2. STATE OF THE ART

to solve them: Scalability, or the ability to maintain good performances even when
the number of elements in a system increases greatly (Subsection 2.2.2); Partition
Detection, or being able to realize when a network get split in two, a pressing concern
in Mobile Ad-Hoc Networks, (Subsection 2.2.3).

2.2.1 Self-organizing overlays

Gossip protocols are a family of distributed protocols that disseminate information
in a computer network in a similar way to rumors propagating in a society. They
are also called epidemic protocols, in reference to how diseases spread. Each node
initially only knows about a small number of neighbors, representing its local view of
the network. Thanks to periodic exchange with those neighbors however, information
quickly spreads all over the network. There are a lot of variants, with push, pull and
push-pull models, and a varying use of random information to quicken the process, but
due to their fully decentralized nature, gossip protocols in general are highly scalable,
quick, robust and use relatively little bandwidth when compared to more brute force
approaches like flooding.

One of the big applications of gossip protocols are self-organizing overlays [42, 79],
a family of decentralized protocols that are able to autonomously arrange a large
number of nodes into a predefined topology (e.g. a torus, a ring). The idea is that
with every exchange of information, a node can use the new data to greedily update
its neighborhood and improve its view of the network until it manages to reach the
predefined topology. Self-organizing overlays are just as fast as the gossip protocols
they are based upon, resilient and self-healing, and can with appropriate extension,
conserve their overall shape even in the face of catastrophic failures [17]. They can be
used to create a ring overlay (Pastry [68]), a Euclidean space (CAN [66]), or even a
random graph (Random-Peer-Sampling [43]). Some approaches, such as Vicinity [78]
and T-Man [42], can even use a configurable distance function that enables them to
build a wide range of shapes, based on the distance considered.

Another domain of application for gossip protocols with a large body of works is
the decentralized construction of k-nearest-neighbors graphs (KNN). In such systems,
nodes (e.g. representing a user) can connect to each other using point-to-point net-
working, but once again only maintain a small partial view of the rest of the system,
typically a small-size neighborhood of other nodes. Each node also stores a profile (e.g.
a user’s browsing history, or the movies they liked), and uses a peer-to-peer epidemic
protocol to greedily converge towards an optimal neighborhood, i.e. a neighborhood
containing the k most similar other nodes in the system according to some ranking
function on profiles (e.g. cosine similarity, or Jaccard’s coefficient). Some variants also
evaluate a neighborhood as a whole, so a set of nodes in one go, instead of ranking
profiles node by node [10]. KNN construction usually involves profile spaces with much
higher dimensionality but a much less regular structure than self-organizing overlays,

2.2. MECHANISMS OF ADAPTATION 29

but they work similarly, with the ranking function taking the role of the distance
function.

Both applications have been shown to work in a large variety of settings [3, ?, ?].
Notably, the scalability and robustness of these solutions have made them particularly
well adapted to large scale systems such as decentralized social networks [56], recom-
mendation engines [5, 32, 47], news dissemination [18], search optimization [31], and
peer-to-peer storage systems [24].

Self-organizing overlays such as T-Man or Vicinity are unfortunately monolithic in
the sense that they rely on a single user-defined distance function to connect nodes
into a target structure. Simple topologies such as ring or torus are easy to realize
in this model, but more complex combinations, such as a ring or a star of cliques,
are more problematic. This model does not lend itself naturally to development by
assembly: self-organizing overlays, in their basic form, have no notion of composition,
bindings, or port.

2.2.2 Scalability

Scalability is the ability for a system to maintain good performances even when the
number of users increases by orders of magnitude. With modern applications like
file-sharing, video-streaming, or social network involving tens of thousands to billions
of users, this is an increasingly important property for modern systems. It can be
achieved in many different ways, including the aforementioned gossip protocols which,
since they only act locally in the network, don’t care much about the total size of the
system and thus remain highly scalable.

Another notable and historical approach is the concept of Fragmented Objects [54],
in which a component’s state is distributed (fragmented) among a number of dis-
tributed nodes in a manner that is fully transparent to its users. Fragmentation
distributes a component’s locus of computation, allowing for components to thus ex-
ecute concurrently in a fully distributed manner. By relying on code mobility and
state transfer mechanism, they can allow a component to extend or retract according
to current systems needs. However, implementations of fragmented components pro-
posed so far [44] tend to be heavy-weight. They also typically rely solely on RPC, an
interaction paradigm that is ill-suited to loosely coupled large-scale systems.

2.2.3 Partition detection

Partitions are often highly problematic to the workings of MANETs and Wireless
Sensor Networks, and have therefore been investigated in the past. [1]

Membership and partition detection The work of Arantes et al. [25, 2] formalizes
the notions of partition detector and partition participants detector in a manner similar
to the classical formalization of failure detectors [22]. The two algorithms they propose

30 CHAPTER 2. STATE OF THE ART

accumulate information about broadcast propagation paths over epochs in order to
construct local reachability information. When the set of nodes in the system is known
beforehand [25], a partition is detected when some of these nodes become unreachable
(possibly because of crashes). This approach is extended to systems with an arbitrary
number of unknown participants [2], for which the detector is able to return the set of
nodes present in the local partition, provided the local partition eventually stabilizes.
The accumulation of network participants in a list is similar to the way we accumulate
members in our filters. For large networks, however, such an explicit approach is likely
not to scale, contrary to the strategy we advocate.

Ritter et al. [67] propose an approach to detect partitions in MANETs in which
a subset of active nodes exchange beacon messages that traverse the network. The
proposed heuristic tends to position active nodes at the border of the network, in order
to maximize the network nodes covered by a beacon propagation path. When beacons
repeatedly fail to propagate between two active nodes, a partition is suspected. In
contrast to the approach we propose, this strategy assumes that border nodes can be
reliably detected, and only change slowly, which might not be the case.

In [48], Khelil et al. present a broadcast strategy for partitionable MANETS based
on hypergossiping, the selective re-broadcasting of partially broadcast messages. This
strategy includes a mechanism to detect partition joins, i.e. the rejoining of the two
parts of a previously disconnected network. This mechanism exploits Last Broadcast
Received (LBR) lists, a list of the IDs of the k last broadcast messages received by
a node. Nodes periodically exchange this list, and conclude that they are rejoining a
partitioned subnetwork when their local LBR substantially differ from that of their
neighbors. Because the main goal of this approach is to maximize the delivery ratio
of system-wide broadcasts, the partition join detection mechanism tends to err on the
side of over-detection, with numerous wrong detection decisions in some instances [49].

Cut detection Cut detection is a problem related, but distinct from partition de-
tection in MANETs, and focuses on (mostly static) Wireless Sensor Networks (WSN),
in which sensors forward their readings to dedicated sink nodes. A cut occurs when
some sensor nodes become disconnected from the sink.

The work of Barooah et al. [7] allows each sensor node to detect if it becomes
disconnected from the sink, and if it remains connected, to detect whether other sensor
nodes have become disconnected. The work in [82] considers only the second problem
and adds consideration about energy and robustness to malicious nodes. Because of
the specific topology of sink-based sensor networks, these approaches are however not
applicable to our scenario.

Partition prediction Some works try to predict partitions before they happen, but
require more powerful primitives than our proposal. Some papers [58] for instance use
GPS information (regarding both location and speed) to build a mobility model of the

2.3. CONCLUSION 31

network and predict when nodes are likely to get out of range. Other proposals such
as [39] assume the existence of a distributed algorithm that returns the set of disjoint
paths between two nodes, and predict partitions based on the number of paths and
their length. By comparison, our solution makes no assumption regarding the higher
level capabilities of a network, and only assumes a one-hop broadcast primitive.

2.3 Conclusion

In Table 2.1, we summarize the various technologies and approaches we described
above. A ✓ means the corresponding approach realizes a given property, a ✕ means
the opposite. We indicated “�” when the property is partially realized or can be
realized or not depending on the context and the other technologies involved in a real
use case. Finally, we indicated “N/A” when the property being realized or not does
not depend on the approach considered.

There are a few interesting patterns to pick up: The majority of approaches, es-
pecially the more feature-rich like MESOS or Kubernetes, are centralized, even those
targeted at distributed system from the start like Kairos. Higher-level abstractions
and ease of programming, such as macro-programming and modularity are generally
coupled with elements of a centralized management that ensures the interface be-
tween the high-level concepts and the low-level deployment. This usually entails some
non-optimal performances regarding the more technical properties like scalability or
resilience. On the other end of the spectrum, gossip protocols have great technical
properties (resilience, scalability, etc.) but do not offer programming facilities to ma-
nipulate higher concepts and are mostly developed from the behavior of individual
nodes.

In conclusion, in this chapter, we presented the current approaches in terms of
programming frameworks and adaptation mechanisms, and how they are currently
realized in distributed systems, and we identified in the technological landscape a lack
of high-level, easy to program approaches which can also work under harsh conditions
and scale properly while being fully decentralized, necessary to realize our vision of
opportunistic self-adaptive systems managed with a holistic approach

In the next chapter, we focus on the first face of this vision: a holistic approach
that consider distributed systems as a whole entity, without having recourse to cen-
tralization or sacrificing performances.

32 CHAPTER 2. STATE OF THE ART

Examples K
ai

ro
s,

R
eg

im
en

t

T
in

yD
B

,
C

ou
ga

r,
M

au
ve

D
B

T
in

ee
L
im

e,
T

O
T
A

H
oo

d,
A

bs
tr

ac
t

R
eg

io
ns

,
L
og

ic
al

N
ei

gh
b
or

ho
od

s

F
O

R
M

I

T
M

an
,
P
ol

ys
ty

re
ne

M
E

SO
S

K
ub

er
ne

te
s

Properties A
pp

ro
ac

he
s

Fr
am

ew
or

ks
fo

r
W

SN

A
cq

ui
si

ti
on

al
Q

ue
ry

P
ro

ce
ss

or

T
up

le
Sp

ac
es

N
ei

gh
b
or

ho
od

P
ri

m
it

iv
es

Fr
ag

m
en

te
d

O
b
je

ct
s

E
pi

de
m

ic
P

ro
to

co
ls

C
lu

st
er

M
an

ag
em

en
t

C
on

ta
in

er
s

M
an

ag
em

en
t

Macro-programming ✓ ✓ ✕ ✕ � ✕ ✕ ✕

Modularity ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕

Node placement ✕ ✕ N/A N/A ✕ N/A � �

Node-independent � ✓ ✓ N/A ✓ ✕ ✓ ✓

High-level coordination � ✓ ✓ � N/A ✕ ✓ ✓

Scoping N/A N/A ✕ ✓ ✕ ✕ ✓ ✕

Scalability / Elasticity N/A ✓ ✕ � ✓ ✓ ✓ ✓

Decentralized ✕ ✕ � � ✓ ✓ ✕ ✕

Resilience N/A ✓ N/A ✓ ✓ ✓ ✓ �

Table 2.1: Summary of various approaches and their respective properties

Chapter 3

Hollistic construction: PLEIADES

In Chapter 1, we argued for a two-fold vision: on one hand, a holistic approach
that considers a system as a whole and moves away from the behavior of individual
components; on the other hand, opportunistic systems with smarter basic blocks. In
this chapter, we explore the first face of this vision, and we demonstrate how such
a holistic approach could be realized, combining a high-level description by assembly
with a stack of concurrent and collaborating self-organizing overlays. We focus on a
specific problem: the development, deployment and maintenance of complex logical
overlays that realize elaborate topological structures. We consider this challenge in
the context of a flat network, where every node can send messages to any other node
and where peer-sampling is easily available.

3.1 Introduction

Modern distributed applications are becoming increasing large and complex. They
often bring together independently developed sub-systems (e.g. for storage, batch
processing, streaming, application logic, logging, caching) into large, geo-distributed
and heterogeneous architectures [40]. Combining, configuring, and deploying these
architectures is a difficult and multifaceted task: individual services have their own
requirements, configuration spaces, programming models, distribution logic, which
must be carefully tuned to insure the overall performance, resilience, and evolvability
of the resulting system.

This integration effort remains today largely an ad-hoc activity, that is either man-
ual or uses tool-specific scripting capabilities. This low-level approach unfortunately
scales poorly in the face of the increasingly complex deployment requirements and
topologies of the involved services [51, 34, 60, 73]. For instance, MongoDB [60], a pop-
ular document-oriented no-sql databases, uses a star topology between sets of nodes
organized in cliques (Figure 3.1a). Similarly the cross-datacenter replication feature of
Riak [73], a production-level key-value datastore, relies on the connection of multiple
rings across geo-distributed datacenters (Figure 3.1b). These services are often fur-

33

34 CHAPTER 3. HOLLISTIC CONSTRUCTION

(a) MongoDB (b) Riak

Figure 3.1: Some complex topologies encountered in modern distributed systems

ther embedded within micro-service architectures [74] resulting in increasingly complex
distributed topologies, that can be hard to describe, monitor, and adapt.

This state of affairs imposes a high toll on developers. In order to write and main-
tain the low level glue code or configuration files required to realize these topologies,
they must (i) have a deep understanding of the involved distributed services, their
specific semantics, and individual programming model ; (ii) cater for the unavoidable

volatility of the workloads and of the cloud infrastructures in which these services typ-
ically operate; and (iii) allow for a continuous integration process in which a deployed
system is modified on the fly.

Easing the development of complex distributed systems has been a long-running
and recurrent objective of middleware research. Most of these efforts have however
focused on the local behavior of individual nodes (e.g. with protocol kernels [75, 59],
or component frameworks [27, 20, 71]), rather than on the programmatic means to
describe a system’s global structure and behavior. As a result, most of these program-
ming frameworks offer little or no support for the flexible integration of individual
systems into a larger whole.

In order to fill this gap, we argue that practitioners should be allowed to program-
matically manipulate distributed systems as first class entities [11], from which whole
distributed systems can be incrementally assembled. Furthermore, the mapping of
systems to individual nodes should remain as much as possible transparent to devel-
opers. In particular developers should not have to worry about nodes failing, leaving
or joining the system (a common occurrence in public clouds for instance), or about
the intricacies of scaling operations.

As a first step towards this ambitious goal, we present Pleiades , an assembly-
based programming framework for the implementation of complex distributed topolo-
gies. Pleiades provides developers with a high level component-based programming
model [27, 20], and exploits self-organizing overlays [79, 10, 42] to map at runtime a
developer’s high-level description of a complex distributed topology onto a concrete
infrastructure. Pleiades relies on the scalability, resilience, and adaptability of self-
organizing overlays to maintain a developer’s target topology in the face of failures,
scaling and dynamic adaptations.

Pleiades goes beyond traditional component-based framework for distributed sys-

3.1. INTRODUCTION 35

tems in that it considers components as collective distributed entities enforcing a given
internal structure (a star, a tree, a ring) which developers can assemble programmat-
ically to realize more complex topologies. It also goes beyond existing self-organizing
overlays by supporting the description of a target topology as a composition of more

elementary shapes, breaking away from the monolithic design of typical self-organizing
overlay protocols.

Indeed, due to the size and complexity of these systems, and the unpredictability
of the environments, this composability cannot be a rigid construct, but must instead,
we argue, go hand-in-hand with advanced self-organization capabilities.

Current self-organizing overlays [42, 10, ?] exploit epidemic (or gossip) interac-
tions to progressively organize nodes along a predefined topology —from a random
network [43] to a ring or torus [78, 42] to an hypercube. These topologies can be
used to support the many P2P- and cloud-based applications that have been proposed
for over a decade now, such as VoIP (e.g. Skype), streaming [84], pub-sub [23], and
storage [62, 34].

Typically, gossip overlays assume that node profiles can be sorted according to a
ranking function which is used uniformly across the system, and that finding the “right”

neighbor is just optimizing this ranking function over their neighborhood. However,
more and more applications require much more complex topologies that can be hard to
obtain via the traditional protocols [34, 51], because, for more convoluted topologies
such as a ring of cliques, such a ranking function can be hard to express.

Our proposal goes beyond this limitation and relies on the following key points:

• We introduce a new programming model in which a community of distributed
nodes organized in a particular topology can be manipulated as a first class
entity, i.e a components, to incrementally construct more complex distributed
structures ;

• We present Pleiades, a component-based framework that implements our pro-
gramming model. Pleiades is capable of mapping a high-level representation
of a target topology unto an actual infrastructure, while handling the intrica-
cies involved in instantiating and composing distributed components within a
dynamic environment.

• We implement a proof-of-concept of Pleiades and perform a thorough evalu-
ation that demonstrates its genericity, expressiveness, low-overhead, and adapt-
ability.

The remainder of this chapter is structured as follows. Section 3.2 presents the con-
text and challenges motivating Pleiades; Section 3.3 introduces our component-based
programming model, and the framework built upon it, and explains how Pleiades

hides the intricacies of our approach from the programmer; Section 3.4 evaluates the
scalability and efficiency of our framework with a proof-of-concept implementation;
and Section 3.5 concludes.

36 CHAPTER 3. HOLLISTIC CONSTRUCTION

3.2 Problem, Vision, & Background

3.2.1 Problem and vision

A growing number of distributed systems rely on complex deployment topologies to
provide their services. At the level of individual services, Scatter [34] for instance
constructs a ring of cliques that each execute a Paxos instance to provide a scalable
and resilient key-value store with a high level of consistency. In the same vein, Mon-

goDB—a popular document oriented no-sql database—maintains several replica set,
a clique of nodes using a leader-election algorithm to implement a master-slave repli-
cation scheme, which communicate with app servers following a star topology [60].
Riak, a production level key-value datastore derived from Amazon Dynamo, offers a
cross-datacenter replication service that connects several sink clusters around a source

cluster in a star topology. Each Riak cluster is deployed in a ring topology, and the
source cluster use special nodes, known as fullsync coordinators to handle the replica-
tion to each sink [73]. Application level system are experiencing a similar evolution,
and are moving towards flexible, composite deployment topologies, a trend fueled the
rapid rise of container-based micro-service architectures [74, 57].

� �

�

������� ����

Figure 3.2: Creation of complex systems of systems

Provisioning, deploying and maintaining these distributed topologies is unfortu-
nately a cumbersome and error-prone task. Developers must provision nodes (Fig-
ure 3.2 ➊), specify the local services they should execute (Figure 3.2 ➋), and connect
these local services into an appropriate topology (Figure 3.2 ➌), according to the ser-
vice and application’s needs. Many of these tasks can be alleviated using deployment
automation tools such as Borg [77], Kubernetes [21], Aurora or Mesos . These tools
offer essential self-healing and scaling capabilities, but still require developers to man-
ually configure the system’s actual topology, potentially aided by low-level scripting
tools. This ad-hoc approach results in makeshift, tedious and error-prone code, as
this code must take into account the specificity of individual services, must account
for the volatility of the cloud infrastructures in which these services typically operate,

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 37

and must handle service-specific roll-back and recovery operations in case of failures
or partitioning.

In this chapter, we take a somewhat extreme stance, and argue that complex topol-
ogy maintenance and construction should follow a generic, principled and systematic

strategy. More precisely, we advocate a high-level declarative paradigm in which com-
plex topologies can be manipulated as first class programmatic entities, and composed
to form larger systems, abstracting away the individual nodes that compose them.
As a first step in this direction we propose Pleiades, an assembly-based topology
programming framework that free developers from low-level topology deployment and
maintenance. Pleiades brings together two core ideas: component-based program-

ming, a long running strategy for modular distributed development, and self-organizing

overlays, an extenstion of the autonomous and self-healing mechanisms found in some
of today’s production-grade environments. We discuss both of these core idea in turn
in the following.

3.2.2 Key challenges and roadmap

Explicitly building the targeted network topology (Figure 3.2 ➌), without a principled
and systematic programming model, is a tiresome and cumbersome task for program-
mers. A possible and promising approach is to build such complex topologies as an
assemblage of simpler shape that are then connected altogether. To reach this aim,
we introduce Pleiades, an assembly-based topology programming framework that
harnesses the autonomous properties of self-organizing overlays To deliver this model,
Pleiades must overcome dynamically the following key challenges:

• provide a high-level description of the target composite topology;
• map “system-level” components to nodes;
• realize the dynamic bindings that connect individual shapes according to the

developer’s high-level plan;
• maintain and handle communications among different components.

3.3 The PLEIADES framework:

DSL, library & runtime

The Pleiades framework comprises (i) a DSL, (ii) a basic shape library, and (iii) a
runtime. The Pleiades DSL is simple and expressive enough to describe a large ar-
ray of topologies that can be difficult to achieve with earlier methods. The Pleiades

DSL achieves this goal by allowing developers to construct a complex topology by
assembling simpler blocks, termed shapes. To support this process, the Pleiades

framework provides a shape library that includes, by default, basic shapes that im-
plement simple topological constructs such as rings, grids, etc. Finally, the Pleiades

38 CHAPTER 3. HOLLISTIC CONSTRUCTION

�

�

�

����������

����������

���������������

�

�������������

�

������������
���������������

�������
��������������

�

Figure 3.3: Pleiades overall approach

framework comes with a runtime that handles under-the-hood the role allocation and
the differentiation of nodes that belong to different shapes.

In the following, we describe the various part of the Pleiades framework in de-
tails. Subsection 3.3.1 starts with a general description of the framework architecture
and organisation. Subsection 3.3.2 then explains how shape templates are defined in
the Pleiades library, and how ports are added to connect shapes. Subsection 3.3.3
presents Pleiades DSL, and illustrates its use to describe complex target topolo-
gies. And finally, Subsection 3.3.4 and 3.3.5 discuss the various protocols comprising
Pleiades run-time.

3.3.1 System model and overall organization

We assume that the target system executes on N nodes that communicate through
message passing (e.g. using the TCP/IP stack). The overall organization of a node
executing Pleiades is shown in Figure 3.4. Each node possesses a copy of the sys-
tem’s overall configuration file (shown on the right side of the figure) which describes
(i) which basic shapes should be instantiated, and (ii) how these shapes should be
connected. For brevity’s sake, we do not discuss how this configuration file is dissem-
inated to every nodes: this step could rely on a gossip broadcast [46], or, in a cloud
infrastructure, each node could retrieve the configuration from its original VM image.
Because Pleiades is self-stabilizing, nodes may receive this configuration at different
points in time without impacting the system’s eventual convergence.

Starting from this configuration file, Pleiades constructs and enforces the corre-
sponding structural invariant (in Figure 3.4, two rings connected through two links)
thanks to six self-stabilizing and fully decentralized protocols (shown as rectangles in
the figure). These six protocols fall in three categories: the three bottom protocols
(Global RPS, Same Shape, and Remote Shapes) are membership protocols (denoted by

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 39

					

		 		

	
	

		

		

Vlocal

VRPS

Vremote

Vshape

fi	fi	

		
���������������

���������������

	 	

		 	 						 										

Figure 3.4: Pleiades consists of 6 self-stabilizing protocols that build upon one an-
other to enforce the structural invariant described in a configuration file distributed
to all nodes in the system.

the symbol), i.e. helper protocols dedicated to locate and sample nodes and shapes.
The Shape Building protocol (symbol) in the middle of the figure constructs individ-
ual shapes, and is typically where one would plug the shape library to easily get basic
shapes, while the top two protocols (Port Selection, and Port Connection) realize the
connection between individual shapes (shown with the symbol).

These six protocols execute in a fully decentralized manner, without resorting to
any centralized entities, a key property regarding the scalability and resilience of our
approach. Each of these protocols also produces a self-stabilizing overlay. As such,
each node maintains for each protocol a small set or array of other nodes in the system
(called a view) that evolves in order to respect specific properties. The view maintained
on a given node by each individual protocol is shown close to each rectangle (e.g. Vlocal

for the Same shape protocol, and towards_port [] for the Port selection protocol).
These protocols build on one another: higher protocols in Figure 3.4 use the view
constructed by lower protocols to construct their own view.

3.3.2 Shape templates and port definition

In Pleiades, a shape s is a subset Ns ⊆ N of message-passing nodes organized in
a particular elementary topology. Each shape follows a particular template, a
reusable description of a shape’s properties, that may be instantiated several times
in a configuration file. (In Figure 3.4 for instance, the two rings of the configuration
file would be two instances of the same template.) The structure enforced by a shape
template tplate is captured by four pieces of information, that are used by the Shape
Building protocol to realize the shape’s elementary topology:

40 CHAPTER 3. HOLLISTIC CONSTRUCTION

���� �����

[0	1	

�ring������
port	at	0.25	port	at	0.75	

Figure 3.5: A simple ring template can be defined using Ering = [0, 1[as position space,
a random projection function, the modulo distance, and a shape fanout kring = 2.

• the definition of a position space Etplate;
• a projection function ftplate : Ns �→ Etplate that assigns a position in Etplate to each

node selected to be part of an instance of tplate;
• a ranking function1 dtplate : Etplate × Etplate �→ R;
• a number of neighbors (or shape fanout) per node, ktplate.

This information is sufficient for the Shape Building protocol to connect each node in
Ns to its ktplate closest neighbors according to the ranking function dtplate().

For instance, a naive version of a self-stabilizing ring can be defined as follows
(Figure 3.5):

Ering = [0, 1[;

fring(n) = rand([0, 1[);

dring(x, y) = min(|x− y|, 1− |x− y|);

kring = 2.

This setting places nodes from Ns randomly on a circular identifier space, and selects
the two closest instances of each node as its neighbors. (In practice, self-stabilizing
rings typically seek to select ktplate/2 predecessors and ktplate/2 successors as neighbors
of each node, to prevent clustering. See [42, 62, 72].)

These template definition may look tedious, but they only need to be done once and
for all. Ideally, Pleiades would provide a ready-to-use shape library that contains
a set of such templates implementing various common elementary topologies (ring,
tree, torus, grid, etc.), that a developer can combine to build a complex distributed
topology.

In addition to the internal structure described by its template, a shape instance
also needs to define a set of ports to which other shape instances may connect. In
Pleiades, a port is simply defined as a position in Etplate, labeled with a name.
Returning to the ring example of Figure 3.5, we may define two ports, named left

and right, by associating them with the positions 0.25 and 0.75 within the identifier
space Ering = [0, 1[.

1As mentioned in [42], self-organizing overlays employ ranking functions that cannot always be

defined as global distance functions.

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 41

3.3.3 PLEIADES DSL and configuration file

The Pleiades DSL enables programmers to describe their expected complex dis-
tributed topology, i.e the target topology, by specifying the shape templates they want
to instantiate, the ports for each instance, and how to connect them together. For in-
stance, the code given in Figure 3.6 describes how to create the topology displayed on
the side. The described topology is nearly similar to what is actually used in current
applications such as MongoDB to create sharded databases. The only difference is
that we used a ring instead of a clique for the Router instance, solely to demonstrate
how easy it is to use different templates in the same target topology (e.g. 1 Ring
instance and 4 Cliques instances here).

�

��
��

��
��

�����

�����

�����

�����

1 import { Clique, Ring } from defaultShapes

2

3 instance Router as r using Ring

4 r.nodes(random,0,2)

5 r.addPort(port1, 0)

6 r.addPort(port2, 0,25)

7 r.addPort(port3, 0,50)

8 r.addPort(port4, 0,75)

9

10 instance Shard1 as s1 using Clique

11 s1.nodes(random,0,2)

12 s1.addPort(leader,0.254)

13

14 instance Shard2 as s2 using Clique

15 s2.nodes(random,0,2)

16 s2.addPort(leader,0.943)

17

18 instance Shard3 as s3 using Clique

19 s3.nodes(random,0,2)

20 s3.addPort(leader,0.159)

21

22 instance Shard4 as s4 using Clique

23 s4.nodes(random,0,2)

24 s4.addPort(leader,0.681)

25

26

27 connections {

28 (r.port1, s1.leader),

29 (r.port2, s2.leader),

30 (r.port3, s3.leader),

31 (r.port4, s4.leader)

32 }

Figure 3.6: MongoDB-like topology: a Star of Cliques connected through a Ring

To create this target topology, i.e. a star of cliques connected through a ring, a
developer has to go through the following process:

1. First, elementary topologies need to be imported. So both a ring and a clique
template are imported (line 1) from the shape library.

2. Next, each template is instantiated a number of times. On one hand, an instance

42 CHAPTER 3. HOLLISTIC CONSTRUCTION

named Router that implements the Ring template (line 3). On the other hand,
four instances named Shard 1 through 4 that implement the Clique template (line
10,14,18,22). The construct instance ... using ... enables the creation of
a new instance based on an existing template that has been previously imported.

3. As a shape instance is a subset of nodes, the next required step is to specify how
the available nodes of our system will be allocated at runtime to each defined
instance. This is done using the nodes(<strategie>,...) construct, with pa-
rameters for the specific strategy chosen filling the blank. For example, assuming
all nodes are identical and locally have access to a random number generator,
we can perform, at runtime, a uniform distribution of the available nodes among
the five components, by calling the strategy random with parameter 0.2 for each
component (line 4, 11, 15, 19, 23).

4. Further, to connect instances together, at least one port needs to be defined for
each instance. Adding a port to an instance at a specific position in its position
space Etplate is performed via the construct addPort(label, position). As
the Router instance has a Ring topology, a port is created at each of the four
positions 0, 0.25, 0.5, 0.75 within the position space Ering = [0, 1[(See line 5-
8). For the four other instances, a port is setup at an arbitrary position in the
position space Eclique of each component and the node in charge of that port will
be considered the leader of that clique (line 11,15,19,23). Once created, a port
can be directly addressed by its label from the corresponding component.

5. Finally, to assemble the various shape instances and build the target topology, a
list of connections between the aforementioned ports is created via the construct
connections { (port1,port2), ...} (line 27-32).

There are a couple important details to call out:

Local knowledge only: For node placement, the main constraint here is that a
node which joined the system and just received the configuration file needs to interpret
it and, using only its local knowledge of the system, determine in which shape instance
it must participate. Consequently, strategies can use any local property, or criterion,
that a node is able to self-evaluate: available bandwidth, CPU power, storage space,
local fan-out, etc. In a cloud system, where nodes represent virtual machines in servers
and are all functionally identical, the allocation can be done at random, as illustrated
just above. However, in more heterogeneous systems with specialized devices such
as a Smart Building, each device can be allocated to a fitting instance based on its
capabilities and the instance needs.

Simple but powerful allocation model: Despite being restricted to local knowl-
edge only, this allocation mechanism can exploit a deceptively wide range of strategies,

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 43

depending on uses cases : nodes in a particular location may be constrained to only
join certain shapes instances, or nodes with certain properties may be forbidden to
join certain shape templates, and so on. The main limit of this simple but powerful
model is that it cannot express constraints that restrict multiple nodes simultaneously,
such as: "I want one node from each of three datacenters in that instance."

Port selection is automatically resilient: In the port definitions, note that each
Clique instance will (eventually) reach a consensus on which node is the leader because
the configuration file is the same for every single node. The leader was, in fact, selected
when writing the configuration file and this is not a real election process. However, and
this is one of the most attractive aspect of Pleiades, since the configuration file does
not specify an individual node but only a position, the system will automatically adapt
at run-time if the chosen leader crashes or moves away from the position specified in
the configuration. More details on this automatic resilience below.

To summarize, to use the component library, developers must do the following at
design time:

• (D1) use the Pleiades DSL to describe which shape templates should be in-
stantiated, how they should be connected to each other via ports, and provide
node-provisioning policies to determine how individual node should be allocated
to components (See Figure 3.3 ❶ ❷);

• (D2) compile and deploy the resulting Pleiades configuration file to a set of
nodes executing the Pleiades runtime (Figure 3.3 ❸).

On receiving this file the runtime will

• (R1) allocate each individual node to a shape instance (determining Ns for each
shape Ns): by default each node belongs to one and only one shape instance,
but it would be relatively easy to extend our model to allow further flexibility;
(Figure 3.3 ❹)

• (R2) create each shape instance’s internal topology by executing the Shape
Building protocol according to the corresponding template;

• (R3) identify within each instance which node(s) should manage this instance’s
individual ports ; (Figure 3.3 ❺)

• (R4) finally, connect the resulting ports according to the configuration file’s
specifications. (Figure 3.3 ❻)

These runtime steps occur in a fully decentralized manner, without resorting to any
centralized entities, a key property for the scalability and resilience of our approach.
In the following subsections (3.3.4 and 3.3.5), we present how the runtime fulfills its
missions (Steps R1 through R4).

44 CHAPTER 3. HOLLISTIC CONSTRUCTION

Table 3.1: Views of membership and shape building prot.

VRPS View of the Global RPS protocol;

Vlocal View of the Same Shape protocol s;

Vremote View of the Remote Shapes protocol;

Vshape View of shape s’s shape building protocol;

Table 3.2: State of the connection protocols on node n

∀k ∈ shape.ports:

is_port[k] Boolean, whether n in charge of port k

towards_port[k] Local node that seems closest to port k

connected_to[k] Remote node that seems in charge of port k

3.3.4 The Membership and Shape Building protocols

The first step for a node joining the system is to get the configuration file, interpret it,
and determines to which shape instance it must participate. At that point, just after
joining an instance, a node possesses no information about which other nodes belong to
the same instance, or how to contact other nodes in other instances. This information
is provided by Pleiades’s three membership protocols. The Global Random Peer-

Sampling (RPS) protocol [43] maintains, on each node, a continuously changing sample
VRPS of other nodes’ descriptors. A node descriptor allows its complete identification
on the system. It contains its network address, the ID of the shape instance it resides
on, and its position in this instance.

This global peer sampling is then used to maintain two additional membership
protocols: the Same Shape Protocol (SSP), and the Remote Shapes Protocol (RSP).

These two protocols, along with the list of neighbors returned by the Shape Build-
ing protocol, are used in turn by the Port Selection and Port Connection protocols
(discussed in Subection 3.3.5), to create and maintain the connections between the
shape instances according to the specification coded in the Pleiades configuration
file.

The notations of the views maintained by each node to implement the three mem-
bership protocols (Global RPS, Same Shape Protocol, and Remote Shapes Protocol)
and the Shape Building protocol are summarized in Table 3.1. We discuss each mecha-
nism in turn in more detail in what follows. We take interest in a node n, that belongs
to a shape s.

Global Random Peer Sampling (RPS)

We assume that a RPS service is available for every node, and we simply emulate it
in our experiments. Decentralized and efficient solutions exist, such as proposed by
Jelasity et al. [43]. RPS protocols converge towards a constantly changing overlay that
is close to a fixed-degree random graph. This graph shows a short diameter, which is

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 45

Algorithm 1: SSP : Same Shape Protocol on n

Output: n.Vlocal converges to a s-sized sample of nodes from shape s

�Bootstrap by filtering the global peer sampling

1 cand ← {n� ∈ n.VRPS | n�.shape.id = n.shape.id}

2 cand ← cand ∪ n.Vlocal

�Exploit our neighbors’ knowledge

3 if cand �= ∅ then

4 q ← 1 random node ∈ cand

�Remote request to q

5 cand ← cand ∪ q.Vlocal

�Truncation

6 n.Vlocal ← up to s random nodes ∈ cand

useful to propagate or build distributed knowledge. This graph also remains connected
with high probability, even under catastrophic failures, a particularly interesting prop-
erty for our framework.

Same Shape Protocol (SSP)

This overlay provides a node n with a view Vlocal of neighbors in the same shape s.
The sub-procedure managing this overlay is shown in Algorithm 1. Upon bootstrap,
Vlocal is empty. Each round, n takes candidate neighbors from the Global RPS overlay,
keeping only nodes from its shape (line 1) in cand. It goes on merging its current Vlocal

with the candidate set on line 2. If cand is not empty (line 3), n selects a random
neighbor q from cand (line 4) and fetches q’s local view, to add it to cand (line 5).
To limit memory consumption, the size of the local view Vlocal is bound to s elements
(line 6).

If we assume the global peer-sampling overlay provides a uniformly distributed
view of the complete system, we can calculate the average number of rounds to get at
least s neighbors in function of the total number of nodes and shapes: the time to find
the first neighbor is inversely proportional to the number of shapes, and the number
of known neighbors then grows exponentially. In practice, simulations show that the
size s needed for our framework is reached in a few rounds (Section 4.4) which allows
the system to converge and reach a stable state quickly and efficiently.

Remote Shapes Protocol (RSP)

This overlay is used to initiate inter-shape contacts. Upon bootstrap, Vremote is empty.
During each round, the candidate set cand is first filled with the previous content in

46 CHAPTER 3. HOLLISTIC CONSTRUCTION

Algorithm 2: RSP : Remote Shapes Protocol on n

Output: n.Vremote converges to a view of one node per “close” shape.

�Bootstrap using the global peer sampling

1 cand ← n.Vremote ∪ n.VRPS

�Exploit other nodes’ knowledge

2 if cand �= ∅ then

3 q ← 1 random node ∈ cand

�Remote request to q

4 cand ← cand ∪ q.Vremote

�Keep one node per “close” shape

5 foreach close shape s� �= s do

6 cands� ← {n� ∈ cand | n�.shape.id = s�}

7 if cands� �= ∅ then

8 n.Vremote[s
�] ← 1 random node ∈ cands�

the remote view Vremote and the global peer sampling view VRPS on line 1. Then, n
randomly picks a node q in cand (line 3), fetches its remote view q.Vremote, and adds
it to its candidate set (line 4).

Lines 6 to 8 use the candidate set cand to fill n.Vremote with one single descriptor
per remote shape. To limit the memory consumption if the topology features many
shapes, we propose to trim each node’s remote view by keeping only descriptors from
shapes that are considered close to s. This closeness metric is left to future work, but
could be computed from the overall target topology or the shape’s ID.

In detail, for each “close” shape s�, line 6 filters candidate nodes from shape s� into
cands� , and lines 7-8 take a random node from cands� (if not empty) to fill n.Vremote[s

�]

(that is, the remote view’s descriptor slot for shape s�).

Shape Building Protocol

We use a variant of Vicinity [79] to organize the nodes that have joined a shape
s into the basic topology prescribed by the shape’s template tplate. Vicinity uses a
greedy push-pull procedure to populate each node n’s view Vshape with close neighbors,
according to the ranking function dtplate(), and then connects n to its ktplate closest
neighbors. Note that Vshape’s size must be at least ktplate, but in practice Vshape is usually
larger, and we can bound its maximum size if we want to limit memory consumption.
Vicinity exploits the transitivity of most ranking functions: if n is ranked close to o,
and o is ranked close to p, then n is likely to be ranked close to p. However, whereas
Vicinity uses a system-wide peer sampling protocol to find potential new neighbors, we

3.3. THE PLEIADES FRAMEWORK: DSL, LIBRARY & RUNTIME 47

Algorithm 3: Port Selection on node n

Output: is_port[k] and towards_port[k] are greedily resolved for each port k
in the shape s.

1 foreach k ∈ n.shape.ports do

�Find closest node to port k among local nodes

2 cand ← n.Vlocal ∪ n.Vshape ∪ {n, n.towards_port[k]}

3 closest ← getClosest(cand, k, n.shape.template)

4 n.is_port[k] ← (n = closest)

5 if n.is_port[k] then

6 n.towards_port[k] ← n

7 else

�If n is not port node, remote request to closest

8 n.towards_port[k] ← closest.towards_port[k]

Function getClosest(cand, k, tplate)
Output: Returns the closest node from port k, among cand nodes belonging to

shapeof template tplate

1 closest ← argminp∈cand (dtplate(p.id, k.id))

2 return closest

restrict our Shape Building Protocol to the view Vlocal constructed by the Same Shape

Protocol. This restriction to Vlocal insures the isolation and co-existence of multiple
shapes in the same system.

3.3.5 The Port Selection and Connection protocols

The Port Selection procedure is executed between nodes within the same shape in
order to determine which nodes are in charge of shape s’s ports (these nodes are
dubbed port nodes) while the Port Connection procedure is executed by port nodes to
locate the remote port of the linked shape, and to establish the link requested by the
Pleiades target specification. The variables used to maintain the state of the Port

Selection and Port Connection protocols are shown in Table 3.2.

getClosest(cand,k, tplate)

This function is used by both the Port Selection and Port Connection routines to find
the closest node to a port. Given a set of nodes cand and a port k, that all belong
to the same shape s of template tplate, getClosest uses the shape template’s rank
function, dtplate (see Section 3.3.2), to measure the “distance” of each node in cand to
the port k. The function returns the node whose distance to port k is minimal.

48 CHAPTER 3. HOLLISTIC CONSTRUCTION

Algorithm 4: Port Connection on node n

Output: n establishes a link with the node most likely in charge of k2 within
dist_shape

1 foreach k1 ∈ n.shape.ports do

�Only executed by presumed port node for k1

2 if n.is_port[k1] then

3 shape_id ← k1.remote_shape.id

4 shape_template ← k1.remote_shape.template

5 k2 ← k1.remote_port

�Closest remote node from k2 that n knows of

6 cand ← {n.Vremote[k1], n.connected_to[k1]}

7 closest ← getClosest(cand, k2, shape_template)

�Remote request: who is the port node for k2?

8 n.connected_to[k1] ← closest.towards_port[k2]

Port Selection

We want each node n to know the port node of each of its shape’s ports. The Port

Selection routine maintains two variables for that purpose: for each port k of shape
s, towards_port[k] contains the address of the presumed port node for k, and the
is_port[k] flag is set when n believes it is in charge of k (in that case, is_port[k]

points to n itself).

The variable shape.ports contains the whole set of shape s’s ports, given by the
configuration. To fill is_port[k] and towards_port[k], n iterates over each port k in
shape.ports (line 1). By calling getClosest, n then checks which node is closest to
the port k among all local nodes it knows of (lines 2-3). Candidates are taken from
the local view Vlocal computed by SSP, from the Shape Building protocol’s view Vshape,
in addition to n itself and the previous towards_port[k]. n sets is_port[k] to true if
it is the closest node to k, and to false otherwise (line 4). towards_port[k] is set to n

if n seems to be the port node (line 6). Otherwise, n requests the closest node’s own
towards_port[k] (line 8), making towards_port[k] greedily converge to the port node
for k.

Port Connection

When a node n believes it is in charge of a port k1, it needs to find the other end of
the topological link: the port node for k2 in the remote shape (called s2). The goal
of the Port Connection routine, when n is in charge of a port k1, is to maintain the
connected_to[k1] variable to the address of k2’s port node.

From lines 1 to 5, we iterate over each port k1 in shape.ports, check that n is in

3.4. EVALUATION 49

clique	

star	

port	

Inter-shape	
binding	��� ��� ���

Legend:	

Figure 3.7: A graphical representation of the Pleiades configuration files used to
create the systems shown in Figure 3.8.

0

6

24

18

12

3

2

5

4

1

7

11

9

10

8

27

29

28

25

26

19

21

22

23

20

14

13

16

15

17

(a) A star of 5 Clique shapes,

similar to topologies used in

database sharding.

0

5

15

3

2
4

1

10

7

9

8

6

19

16

17

18

13

11

12

14

(b) A ring of 4 Clique shapes,

similar to topologies used in dis-

tributed key-value stores.

0

13

39

26

8

3

11

7

12

10

9

2

6

4

5

1

25

16

20

17

24

22

15

21

14

19

18

23

43

49

47

45

42
44

46

48

40

41

30

32

27

37

38

28

35

34

31

29

36

33

(c) A clique of 4 Star shapes, sim-

ilar to topologies used in partially

decentralized services with super-

peers.

Figure 3.8: The resulting topologies corresponding to the configurations of Figure 3.7
(after 10 rounds of simulation).

charge of k1, and create several variables: shape_id contains the ID of the linked shape
s2, shape_template is s2’s shape template, k2 represents the remote port of k1’s link.
n then picks the closest node to k2 among two potential candidates (line 6): Vremote[k1]

(the random node from s2 provided by RSP), and connected_to[k1] (n’s previous
estimation of k2’s port node). It then calls the getClosest function on line 7, that
will use the remote shape’s ranking function to find the closest node to k2 among the
candidate set. Finally, on line 8, n requests closest for its towards_port[k2] (leveraging
the Port Selection procedure) to fill n.connected_to[k1]. This implementation again
allows connected_to[k1] to converge towards k2’s real port node in a greedy fashion.

3.4 Evaluation

In this section, we first discuss our evaluation set-up (Section 3.4.1) before briefly
illustrating how Pleiades can be used to create a range of advanced distributed
structures (Section 3.4.2). We then evaluate the performance of Pleiades without

50 CHAPTER 3. HOLLISTIC CONSTRUCTION

reconfiguration or failures, in terms of convergence speed, scalability, and communi-
cation overhead (Section 3.4.3). Finally we test the reactions of Pleiades under
important perturbations, such as when a large portion of the system crashes, or an
on-the-fly reconfiguration occurs (Section 3.4.4).

3.4.1 Evaluation set-up and methodology

We implemented the protocols that make up Pleiades on top of PeerSim [61], except
for the Global RPS protocol, which we emulated directly through PeerSim’s API. We
set the maximum size of Vlocal to 10, that of Vremote to the number of shapes in the
systems, and we did not bound Vshape, as in the original Vicinity protocol [79]. In order
to demonstrate the capabilities of Pleiades we created several shape templates (ring,
star, clique) to serve as building blocks for more complex structural invariants. All
experiments were averaged over 25 runs, to smooth the noise due to the probabilistic
nature of gossip algorithms. We computed 90% confidence intervals but did not display
them on the figures because they were too small to be readable.

3.4.2 Examples

Figure 3.7 graphically presents three configuration files used by Pleiades to construct
the three distributed systems shown in Figure 3.8. We used graphical representations
for the sake of clarity, but the real files are similar to the one already shown in Figure
3.6. These three examples connect simpler shapes together (cliques and stars, shown
symbolically in Figure 3.7 and with different colors in Figure 3.8). The resulting
toplogies can be found in real-world applications, such as database sharding (Fig-
ure 3.8a), distributed key value stores (Figure 3.8b) or partially decentralized services
using super-peers (Figure 3.8c).

These three examples illustrate Pleiades’s simplicity of use and expressiveness: a
few basic shapes suffice to create an infinite number of variations that can be tailored
to an application’s needs.

3.4.3 Performances

Pleiades targets very large systems using decentralized protocols. Decentralization,
because it avoids any central point of coordination, and carries the risk of a degraded
performance and/or high overhead. In the following we evaluate Pleiades’s perfor-
mances in terms of convergence speed (Section 3.4.3), scalability (Section 3.4.3), and
communication overhead (Section 3.4.3).

Convergence

We evaluate Pleiades’s convergence on a scenario comprising three rings connected
into a ring of rings, whose configuration is represented in Figure 3.10. Figure 3.9 shows

3.4. EVALUATION 51

0

21

1

14

32

20

6

12

7

56

2

59

11

48

51

313

10

47

4

18

33

5

16

8

9

30

61

15

17

19

85

80

54

65

22

53

23

58

66

24

25

26
71

79

27

28

89

60

29

31

34

83

77

90

35

78

39

74

70

36

49

63

41

69

37

38

46

42

40

67

94

43
44

45

95

50

93

52
64

55

57

62

68

72
88

97

82

73

81

75

96

86
76

84

87

92

91

98

99

(a) Random initial state

0

89

17

31

85

80

29

19

5

6

1
10

21

15

2

41

20

11

50 44

33

26

32
3

4

12

23

24

18

7

25

13

9

8

16

14

22

30

77

27

28

34

36

63

56

66

35
45

59
60

55

65

37
39

38

49

40

67

42

88

64

82

94

54

43 61

51

46

52

58

47

53

48

62

57

68

87

90

71

75

69

97

95

74

98

93

70

79

91

78

83

72

92

73

81

86

76

84

99

96

(b) After 2 rounds, the general

shape emerges.

0

17

28

29

19

85

110
21

5
15

2

41

20

22

50

44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35

45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61

57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

(c) After 6 rounds, the system

has converged.

Figure 3.9: A system of 100 nodes converges in 6 rounds towards three connected rings
(colored in blue, red, and black).

Figure 3.10: The Pleiades configuration used in Figure 3.9.

the execution of Pleiades with this configuration on 100 nodes at three stages of the
execution: after initialization (Fig. 3.9a), while the system is converging (Fig. 3.9b) and
once converged (Fig. 3.9c). The overall system converges to the structure prescribed
by its configuration in only 6 rounds. A round’s duration is highly dependent on an
application’s needs, but setting for instance a round to 5 seconds (a realistic assumption
in light of Pleiades’s low communication costs as we will see in Section 3.4.3), 6
rounds would correspond to a convergence time of 30s to organize 100 nodes from an
arbitrary starting state. This time is comparable to the boot up time of a virtual
machine on a public cloud.

Figure 3.11 shows the progress of the various sub-protocols that constitute Pleiades

on a ring of rings with a larger systems of 25,600 nodes, and a larger configuration
comprising 10 rings. The figure charts over time the proportion of nodes in the cor-
rect state for a given protocol, from the point of view of a global omniscient observer.
Except for the Port Connection Protocol, all protocols experience a rapid phase shift
once they start converging, as is common in decentralized greedy protocols [42, 79].
The sequence of convergence roughly follows the dependencies between the protocols
illustrated in Figure 3.4: the membership protocols Remote Shapes (RSP) and Same

Shape (SSP) are the first to converge, followed by the Shape Building protocol (which
depends on SSP), and the Port Selection protocol (which depends on Shape Building
and on SSP).

The Port Connection protocol shows a less regular progression. The peak around

52 CHAPTER 3. HOLLISTIC CONSTRUCTION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
o
n
v
e
rg

e
n
c
e

Rounds

Elementary Topology
Same-component (UO1)

Distant-component (UO2)
Port Selection

Port Connection

Figure 3.11: Progress of the different protocols of Pleiades over time (in rounds)
for a ring of rings with 25,600 nodes and 10 rings. Except for Port Connection, all
protocols experience a rapid phase change.

round 4 is due to a few nodes that briefly believe they are ports (because Port Selec-

tion has not converged yet), and erroneously connect to remote shapes, thus falsely
increasing our metric. In other words, Port Connection briefly converges to a local
maximum but quickly escapes it when Port Selection starts to converge. Note however
how ports get successfully connected even though the routing information provided by
the Port Selection protocol is not fully converged yet: after 10 rounds, both the indi-
vidual rings (Shape Building) and their connections (Port Connection) are in place to
about 90%.

0

17

28

29

19

85

110
21

5
15

2

41

20

22

50

44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35

45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61

57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

(a) The system is de-

ployed and converged to

a stable state.

0

17

28

29

19

1

10

21

5

15

2

20

22

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

34
36

63

56
52

35

45

59

60

55

65

37

50

41

38

49

39

67

40

44

42

64

54

43

61

57

51

46

58

66

47

53

48

62

68
8790

7175

69

74

95

97

93

70

77

79

85

91

78

83

72

92

82

73

81

86

99

98

76

84

96

89

80

88

94

(b) When a new configu-

ration is deployed, inter-

shape links are reset, and

nodes may be assigned to

a new shape.

0 29
28

11

19

54

1

10

63

74

58

2

41

20

12

40

65

33

24

3
32

4

23

27

22

79

78

5

31

21

6

15

7

25

13

9

8

16

14
30

37

17

85

26

50

70

89

68

18

91

38

77

34

36

52

56

66

35

53

39

49

67

42

88
64

60

94

82
57

45

43

61

51

44

59

55

46

47

62

48

69

97

95

98

93

83

71

87

90

72

75

92

73

81

86

99

76

80

84

96

(c) After 2 rounds, nodes

that did not change shape

are already converged,

and the newly introduced

shape is starting to form.

0

29

28

11

19

77

1

10

63

74

58

2
41

20

12

40

65

33

24

3

32

4

79

27

23

35

5

31

21

6

15

7

25
13

9
8

16
14

30

37

17

85

44

50

70

89

68

18

96

84

22
54

26

78

38

53

91

34

36

52

56

66

39

49

67

42

88

64

60

94

82

57

45

43

61

51

59

55

46

47

62

48

69

97

95

98

93

83

71

87

90

72

75

92

73

81

86
99

76

80

(d) The system reaches

its new stable state af-

ter 5 rounds, faster than

from a random start.

Figure 3.12: Dynamic reconfiguration and convergence to a new stable state.

3.4. EVALUATION 53

Scalability

Pleiades scales well when the number of nodes and shapes in the system augments.
We measured the convergence time of the system in rounds for a large variety of
configurations, according to the following convergence criteria:

• Same Shape Protocol (SSP): at least 90% of the nodes have found 10 neighbours
in the same shape;

• Remote Shapes Protocol (RSP): at least 90% of the nodes have found a node in
each shape;

• Shape Building Protocol : at least 90% of the nodes have found their 2 closest
neighbours in the ring;

• Port Selection Protocol : at least 90% of the ports are assigned to the correct
node (and only this one);

• Port Connection Protocol : at least 90% of the ports found their related port in
the remote shape.

In Figure 3.13, a configuration with 20 rings linked together sequentially is deployed
for different number of nodes. All protocols converge in a few rounds, even for large
number of nodes. Most importantly, they converge as fast or faster than the Shape

Building protocol. Hence, the target complex topology is achieved sensibly at the
same time as the local basic shapes.

It is interesting to note that the Remote Shape protocol (RSP) converges in con-
stant time as the number of nodes augments. This is due to the fact that the ratio
nodes/shapes is constant, so independently the total number of nodes in the system,
it is as likely to find a node in a given shape. The abnormally high point for the Shape

Building protocol (SSP) at 200 nodes is due to the fact that there are exactly 10 nodes
per shape; so the convergence criterion used means that a node must have found all
other nodes in the shape. But in practice, finding 6 or 7 of them is enough and does
not hinder the convergence of the other protocols, as depicted on the graph. For larger
numbers of nodes per shape, the convergence time is roughly constant, for the same
reason as for RSP.

The other two protocols scale logarithmically with the number of nodes, similar to
the Shape Building protocol.

In Figure 3.14, various configurations are deployed on a system of 25,600 nodes.
Convergence time increases slowly with the number of shapes involved in the system,
and even a complex system with 20 shapes converges in less than 15 rounds.

Communication overhead

Compared to an ad-hoc approach optimized for a given problem, Pleiades incurs
some overhead. This is the price to pay for a simpler and more systematic way to
design topologies. In the following, we make the (very generous) assumption that an

54 CHAPTER 3. HOLLISTIC CONSTRUCTION

 0

 5

 10

 15

 20

 25

 30

 100 1000 10000

#
 o

f
ro

u
n
d
s
 t

o
 c

o
n
v
e
rg

e

of Nodes

Elementary Topology
Same-component (UO1)

Distant-component (UO2)
Port Selection

Port Connection

Figure 3.13: Convergence time of the Pleiades protocols for a system of 20 connected
rings (a ring of rings), for various system sizes. Pleiades converges rapidly and
scales well with the number of nodes.

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

#
 o

f
ro

u
n
d
s
 t

o
 c

o
n
v
e
rg

e

of Components

Elementary Topology
Same-component (UO1)

Distant-component (UO2)
Port Selection

Port Connection

Figure 3.14: Convergence time of the Pleiades protocols for a system of 25,600
nodes implementing a ring of rings, for various numbers of rings. The convergence
time of Pleiades only slowly increases with the number of individual rings.

ad-hoc approach would not cost anything more than the resources needed to create the
basic shapes, and we use the costs from the Shape Building protocol as our baseline.

For these measures, we considered that: (i) a node ID would use 16 bytes (IPV6
address); (ii) a node "position" would use 8 bytes (64-bit double); (iii) a shape ID
would use 8 bytes (64-bit integer).

First, Figure 3.15 shows that the bandwidth consumption pattern over time is
similar for the baseline and the overhead. Both rapidly reach a state where their
bandwidth consumption per round and per node is stable. The actual values are also
pretty low. For 25,600 nodes and 20 shapes, the bandwidth consumption per round is

3.4. EVALUATION 55

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20

B
a
n
d
w

id
th

 (
b
y
te

s
)

Rounds

Baseline
Overhead

Figure 3.15: Bandwidth overhead of Pleiades over the shape building protocol, per
node, per round (20 shapes, 25,600 nodes). Both protocols peak once all views have
stabilized, and remain below 1kB (2kB in total).

around 1,800 bytes, all combined.

The overhead is, of course, dependent on the complexity of the target topology.
The more shapes and ports there are, the more messages are used to find and connect
them. But even with large numbers of shapes, the overhead remains of a magnitude
similar to the baseline. Figure 3.18 shows the ratio between baseline and overhead for
different numbers of shapes on a system of 25,600 nodes in its stable state.

This is measured once the system has converged because it is when nodes have
discovered all their neighbors that the messages exchanged are heavier and the band-
width consumption is the highest. It increases linearly with the number of shapes.
As depicted in Figure 3.18 for 50 shapes, the bandwidth ratio is around 2, which in
absolute value represents 1900 bytes, so it represents a very negligible amount.

3.4.4 Resilience

In the previous section, we showed that Pleiades performs well under normal circum-
stances. In this section, we now consider how it reacts when heavily stressed. We used
two scenarii: firstly, a dramatic crash where about half the nodes shut down (para-
graph 3.4.4); secondly, an on-the-fly reconfiguration of the target topology, changing
the number of basic shapes in the system (paragraph 3.4.4).

Dramatic crash

Pleiades is extremely resilient, even in presence of catastrophic failures. To analyze
this, a configuration with 4 shapes is deployed over different numbers of nodes, and
stressed with various dramatic events, as illustrated in Figure 3.17.

56 CHAPTER 3. HOLLISTIC CONSTRUCTION

 0

 5

 10

 15

 20

 100 1000 10000

#
 o

f
ro

u
n
d
s
 t

o
 c

o
n
v
e
rg

e

of Nodes (log scale)

Initial convergence
Convergence after 50% crash

Convergence after repair (statefull)
Convergence after repair (stateless)

Figure 3.16: Pleiades’s convergence time after half of the nodes have crashed, and
after re-injecting new nodes (4 connected rings, note the log x axis). Pleiades’s
stabilization speed is logarithmic in the system’s size.

0

33

1

31

2

3

4

36

73

69

6

10

60

11

7 74

41

8

25

9

24

26
44

57

61

12
80

13
50 18

14

15

52

20

17

21

23

27

28

29

34

32

37

35

38

43

42

45

46

48
47

49

51

55

54

56

89

90

19

22

66

65

67

68

99

70

71

72

75

76

78

77

79

86

85

88

87

92

91

93

94

97

98

5

16

30

39

40

53

58

59

62

63

64

81

82 83

84

95

96

(a) Half the nodes

crash (represented with

a dashed line). The

topology is completely

broken.

0

32

3

27

4

1

28

5

24

11

41

9

59

12

78

19

80

57

61

15

16

17

18

25

77

47

69

83

34

66

36

63

39

40
93

46

91

95

48

51

62

99

97

84

88

89

2

6

78

10

13

14

20

21

22

23

26

29

30

31

33

35

37

38

4243

44

4549

50

52

53

54

55

56

58

60

64

65

67

68 70

71

72

73

74

75

7679

81

82

85

86

87

90

92

94

9698

(b) After 3 rounds, the

system’s structure has

been reestablished.

0

32

3

27

4

128

5

24

11

2

41

9

59

12

6
7

8

57

61

78

19

80

10

43

15

16

13

47

25

14

17

1820

21

22

23

55

87

77

69

83

26

29

30 31

33

34

66

36

63

39

35

40

37

38

93

46

91

95

48

42 44

45

51

49

81

50

86

53

52

54

56

58

62

60

64

65

67

68

99

97

70

72
73

71

74

75

76

84

79

82

88
89

85
90

92

94

96

98

(c) After reinjecting the

crashed nodes, the orig-

inal structural invariant

has been lost.

0

32

35

65

3

1

33

2

31

5

6

71

4

41

9

7

8

59

11

58

61

12

26

43

24

28

10

78

80

14

15

13
47

81

16

17

18

19

20

21

22

23

55

25

87

76

60

75

77

27

29

64
30

34

67

36

66

37
38

39

40

42

93

44

92

94

45

46

48

51

49

52

50

86

53

54

56

57

62

63

68

99

69

98

70

72

73

74
79

82

83

84

85

88

89

90

91

95

96

97

(d) But after just 3

rouds the system is

back to the original tar-

get, even faster than

during the initial boot-

strap phase.

Figure 3.17: Resilience and self-repair after a dramatic crash or a large node injection.

At first, we let the system converge as in the previous experiments. Then, we
make each node crash with a probability p = 0.5, resulting in half the nodes crashing
simultaneously on average and a totally broken topology (3.17a), and we let the system
converge towards the new resulting target topology (3.17b). Finally, we simultaneously
inject as many nodes as crashed earlier (3.17c) and we let the system converge back
to the original target topology (3.17d). We consider two modes of reparation, either
restoring crashed nodes to their last known state with a back-up, or providing new
blank nodes initialized with random neighbors.

At each step, we measure the convergence time in rounds. For this experiment, we
consider the system as a whole is converged when all the criteria in subsection 3.4.3 are

3.4. EVALUATION 57

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

B
a
n
d
w

id
th

 r
a
ti

o

Number of components

Ratio of overhead bandwidth
 over baseline bandwidth

Figure 3.18: Evolution of the bandwidth overhead of Pleiades (ratio) vs. the num-
ber of basic shapes (25,600 nodes, stable state). Pleiades’s overhead remains very
small even for 50 basic shapes (< 2kB in absolute value).

satisfied. Figure 3.16 plots the results: as shown previously, the initial convergence is
quite fast and grows logarithmically with the number of nodes in the system: around
10 rounds even for very large systems of 20,000+ nodes.

More importantly, both the self-repair after crash and the return to the original
target are faster than the initial convergence, even with such a dramatic rate of failure
as we chose: they converge 2 to 5 rounds faster. Indeed, the nodes that are still online
don’t start with the same blank state as for the initial convergence, and this additional
information more than compensates the stress caused by the crashes or re-injection,
which enables the system to converge extremely fast.

Dynamic Reconfiguration

We argued that Pleiades would help composing complex systems-of-systems and
promote re-using previous works. But that means Pleiades will need to be deployed
to real systems that do not start in a random state.

We tried to dynamically reconfigure a system that was already deployed and con-
verged to a stable state. For that, we need to define a reconfiguration policy that maps
the relation between previous and current shape assignment. We shifted from a system
with 3 shapes to 4 shapes, so each node simply randomly decides to migrate to the new
shape with probability 1/4, resulting in 4 new shapes each with three quarters of the
nodes in the original shapes. Many other policies may be envisioned, from assigning
nodes without taking their prior assignment into account at all, to adding new nodes
into the system specifically to the new shape and preserving the existing shapes (only
changing the links between shapes), or even splitting one of the existing shapes in two
and leaving the other two shapes undisturbed.

58 CHAPTER 3. HOLLISTIC CONSTRUCTION

The "right" policy to use is obviously context-dependent, based on what function
is actually run on top of the topology, and so how to choose a reconfiguration policy
is out of the scope of this chapter. The simple policy we used, though, is one of the
possibilities that create the largest amount of disturbances in the system, and showing
that Pleiades is able to handle it efficiently is a convincing argument that it is able
to handle most reasonable and useful policies in practice. Note however, that just as
the initial assignment, the reconfiguration policy can only use local knowledge.

At a given round (Figure 3.12b), the new configuration is sent to all the nodes, and
some of them are allocated to the new shape. Only 2 rounds later (Figure 3.12c), the
nodes in the new shape already found each others, and the previous shapes restored
their stable state almost perfectly, despite losing some neighbors. A new stable state is
rapidly reached (Figure 3.12d). All measurements presented in Section 3.4.3 revealed
that performances are at least as good for a dynamic reconfiguration from a converged
state than for a system deployed from a random initial state. As with the crash
scenario, this is due to some nodes—those not affected by the reconfiguration—starting
with more information than with a random start.

To conclude, Pleiades is extremely resilient, even in dramatic scenarii where a
large proportion of the network is affected (up to 50%). The most difficult case is
actually the initial cold start, because nodes start with very little information. In all
other scenarii we tested, at least some nodes keep their knowledge of the network,
which is enough to speed up the process.

3.5 Conclusion

Large scale distributed systems are becoming omnipresent, and are, at the same time,
increasingly complex. It becomes a particularly tiresome and cumbersome task for
developers to specify and implement such systems. From the last decades, lots of
efforts have been done to ease their development. However most of the focus has been
on the local behavior of individual nodes rather than on the programmatic means to
describe a system’s global structure and behavior.

To address this challenge, we have proposed the Pleiades framework. Pleiades

is based, on one hand, on software engineering design principles such as encapsula-
tion and programming by assembly to rise the level of abstraction, and on the other
hand, on self-organizing overlays to handle the low level work automatically and mask
the growing complexities. However, Pleiades goes one step further by considering
components as collective distributed entities and by enabling the creation of resilient,
scalable, and complex distributed topologies through the assembly of components.

To reach this aim, the Pleiades framework comprises three core elements: (i) a
shape library, (ii) a DSL, and (iii) a runtime. The Pleiades shape library provides a
set of shape templates for elementary topological construct that developers can pick
up and combine easily. The Pleiades DSL enables developers to write a Pleiades

3.5. CONCLUSION 59

configuration file that describes a complex distributed topology in an easy manner:
mainly by specifying the shape templates they want to instantiate and how they wish
to connect them together. Finally, once the Pleiades configuration is ready and
deployed, the runtime on each node combines six self-organizing protocols that work
together to construct and maintain the target topology prescribed in the configuration.

The resulting system is able to recover from catastrophic crash failures —such as
the loss of a majority of the system’s nodes— in only a few rounds while using very
limited bandwidth. Pleiades further scales logarithmically in the number of system’s
nodes, and close to linearly in the number of elementary shapes.

Finally, we have demonstrated that our approach enables to create in an efficient
and scalable way a wide range of different topologies, representative of real-world
applications, that would have been difficult to realize otherwise. In particular, we have
lead a thorough evaluation from four different perspectives: convergence, dynamicity,
scalability, and overhead. As a result, it appears that large scale distributed systems
built with Pleiades: (i) are able to converge quickly toward the target topology
expected by the developer, (ii) are converging quickly to a stable state when dynamic
reconfigurations occur, (iii) are scaling well with the increasing number of nodes, and
finally (iv) have a negligible overhead.

Pleiades thus constitutes convincing evidence that the vision we proposed in
Chapter 1 is indeed a realistic solution to the challenges faced by modern distributed
systems. Holistic approaches are viable, and accompanied by the proper infrastruc-
ture and low level automation, they enable developers to tackle and manipulate the
increasingly complex modern systems.

In the next chapter, we will now move onto the second face of our vision: make the
basic building blocks of distributed systems self-adaptive and able to react to changing
circumstances, to combine and compose opportunistic systems.

60 CHAPTER 3. HOLLISTIC CONSTRUCTION

Chapter 4

Detecting environmental changes:

Mind-the-Gap

In Chapter 1, we argued for a two-fold vision: on one hand, a holistic approach
that considers a system as a whole and moves away from the behavior of individual
components; on the other hand, opportunistic systems with smarter basic blocks, able
to self-organize, react and adapt to changing circumstances, to automate the low-
level behaviors masked by the aforementioned approach. In the previous chapter, we
demonstrated how such a holistic approach could be realized, combining a high-level
description by assembly with a stack of concurrent and collaborating self-organizing
overlays. In this chapter, we now move onto the question of making self-adapting and
opportunistic systems.

More specifically, we focus on the first step of the self-adaptation process: the
monitoring of the system’s environment and the detection of changes in circumstances.
Additionally we address this question in one of the most difficult contexts, Mobile Ad-
hoc Networks: they are highly dynamic systems, with usually very limited capabilities
in terms of battery life, communication range, processing power, and so on. Finally,
we target a specific class of events: partitions and other large changes in network
connectivity.

4.1 Introduction

Mobile Ad-hoc Networks (MANETs) are decentralized wireless systems composed of
physically- mobile nodes. They do not rely on any fixed network infrastructure, but
instead exploit mesh networking protocols [1, 69] to overcome the mobility of nodes
and the imperfect and unpredictable nature of wireless communication, leading to
collisions and messages loss. Because they operate in open, dynamic and sometimes
hostile environments, MANETs can easily become partitioned, i.e. some parts of the
network are unable to reach some other parts, for instance because some key nodes
have failed, or because nodes have moved out of reach from one another. When this

61

62 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

occurs, the network becomes disconnected, and most routing mechanisms cease to
function1.

A partition can be mitigated by deploying additional resources such as a supporting
Flying Ad-Hoc Network (FANET) [8, 38], or through opportunistic composition with
third party systems [11]. Before any such mitigating action can be taken, however,
the partition must first be detected. Detecting a partition in a fully decentralized and
autonomous system such as a MANET is a challenging task: MANETs typically lack
any central element, forcing each node to build its own perception of the network’s
current state, and do so quickly enough so that the dynamically evolving network
that is a MANET has not changed too much. This decentralized monitoring must
also remain extremely lightweight in order to meet the memory, CPU, and energy
constraints of mobile nodes.

Previous proposals to detect partitions in MANETs have either assumed extended
node capabilities [39, 58] (such as a GPS sensors or accelerators), thus limiting their
applicability to high-end deployments, or have attempted to construct explicit mem-
bership and path information [2, 25, 67]. As MANETs reach several hundreds of nodes,
gathering explicit node lists is increasingly problematic: explicit representations incur
important communication costs and lead to a rapid depletion of energy resources.

In this work, we tackle partition detection in MANETs by coupling a probabilistic

compact representation of a network’s composition with a periodic aggregation proce-

dure inspired by gossip protocols [41, 45]. These two primitives in tandem allow us
to arbitrate the inherent trade-offs arising between speed, accuracy, and cost of the
detection (in terms of communication overhead), and thus offer an adaptable range
of guarantees tailored to each system’s requirements in a lightweight, decentralized
and accurate fashion. We instantiate them so that partitions can be self-detected by
a MANET by identifying temporal discrepancies, or detected by a second network
monitoring spatial discrepancies. The choice between these two use cases depends on
whether mitigating measures should be triggered by the partitioned network (such as
switching to an alternative wireless technology [35]), or by some external system (such
as offering bridging capabilities by a FANET [8, 11]). The protocol we propose relies
on the following key points:

1. We use random bit signatures to concisely encode a MANET’s set of nodes, or
membership list, and show that this compact and probabilistic representation
can detect large connectivity changes with very high probability.

2. We present partition-detection algorithms that combine our probabilistic rep-
resentation with a periodic aggregation procedure, and offer both an internal
self-detection mechanism and an external third-party detection service.

1Delay Tolerant Networking (DTN) protocols [30] are a noticeable exception (albeit with strong

operational and applicative constraints), which we do not consider here.

4.2. APPROACH 63

���������
�

����������
�

���������
�

���������
������������

������� �������

���������������

�������
�����

��������

Figure 4.1

3. We develop a theoretical analysis to tune implementation parameters based on
the environment in which the network is deployed. We show that as long as the
filters are not completely filled with ’1’s , we detect close to 100% of partitions
and almost none of the non-partition events.

4. We demonstrate the practical relevance of our approach through an extensive
series of simulations. As an example, we show that even with 40% message loss,
performances are still satisfying with an error rate of detection below 10%.

The remainder of this chapter is organized as follows. We present our approach in
Section 4.2, analyze it formally in Section 4.3, and present an in depth experimental
evaluation in Section 4.4. Finally we conclude in Section 4.5.

4.2 Approach

4.2.1 Overview

A simple approach to detecting a partition, or a large change in connectivity in general,
is to maintain and propagate a list of a system’s connected nodes [2, 25, 67]. If two
lists for the same system are sufficiently different, the system is likely partitioned.
Unfortunately, this direct approach is, in most cases, not tractable: it is likely to
incur high overheads in large systems, both in terms of memory usage, bandwidth
consumption, and hence energy consumption, a prime limiting factor in MANETs.

To overcome this difficulty, our approach (which we term MtG for Mind-the-Gap)
replaces the explicit representation of reachable nodes by an implicit and potentially
inaccurate but compact summary of a system’s connectivity. More precisely, each
node of a system repeatedly constructs a summary of the currently reachable network,
and nodes conclude to a partition when two summaries about the same system differ
markedly.

64 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Constructing summaries

To be practical and scalable, summaries should ideally be accurate, compact, and
robust to network delays and interference. Our approach uses fixed-size bit arrays,
termed filters, which we construct using a wireless gossip aggregation procedure. Since
MANETs are dynamic, nodes may join and leave the network over time, and we do
not want our filters to contain outdated information, so we periodically reset every
filter to a blank slate. The period between two resets alloted to build the summaries
is called an epochs,

Figure 4.2 illustrates this construction in a small network of nine nodes. Upon
initialization, each node is assigned an initial bit array (the node’s signature) of the
size of the summaries to be constructed. This initial filter contains only unset bits
except for one of them. The set bit is selected uniformly at random when a node is
configured2.

When an epoch starts, nodes initialize their local filter with their signature (La-
bel ➊, here shown for the nodes A, B, and C). They then broadcast their current filter
(Label ➋), and aggregate the filters received from other nodes with or operations on
each bit. This procedure is repeated over multiple asynchronous rounds during an
entire epoch (Label ➌). Eventually, provided the system is connected and the epoch
is long enough, each node converges to a summary of the currently reachable net-
work [41, 45]. This summary contains the bit-signatures of all participants the local
node was able to hear from (Label ➍, for clarity the figure only shows the signatures
of nodes A, B, and C).

Detecting partitions

The system summaries constructed by individual nodes can be exploited in two slightly
different ways: (i) Self-Detection to detect partitions from within a partitioned system,
and (ii) Assisted-Detection to detect the partition of a monitored system from an
external monitoring system.

Self-detection is illustrated in Figure 4.3. Suppose that a partition occurs just after
the construction of the summaries of Figure 4.2 when Epoch e ends (Label ➎). The
summaries constructed by each node during Epoch e+1 will therefore only encompass
signatures from its connected subnetwork (Label ➏). The summary obtained by Node
C for Epoch e+ 1 will not contain the signatures of A or B. This summary will thus
differ sufficiently from that of Epoch e, allowing C to detect a partition (Label ➐).

Assisted-detection works along the same lines but involves an external monitoring
system, and uses discrepancies in space rather than in time. Both types of detection

2As a side note, we could have used a hash function on the node identifier to derive a node’s

signature, in effect constructing a Bloom filter with a single hash function [12]. Bloom filters would

have allowed determining that a particular node might have been included in a filter, but as we do

not make use of this mechanism here, an initial random bit is both simpler and sufficient.

4.2. APPROACH 65

Ini$al	
A's	filter	
=	A's	signature	

B

A

C

gossip
exchanges

System S

A's	
converged	
filter	

B

A

C

Start	of	Epoch	e	

End	of	Epoch	e	

mul$ple	
gossiping	rounds	

2�

3�1�

4�

Figure 4.2: Starting from their individual signature, nodes progressively aggregate
other nodes’ signatures in their local filter. At the end of an epoch, they converge to a
summary representing the composition of the subnetwork they have been able to hear
from (only the signatures of nodes A, B, and C are shown for simplicity).

are presented more formally in Sections 4.2.2 and 4.2.3.

Parameter trade-offs

So far, we have assumed that the construction of summaries was done perfectly. In
practice, two summaries of the same system might diverge for other reasons than a
partition. First, individual nodes might crash, leading to small changes in individual
summaries. Second, filters might propagate imperfectly over an epoch due to network
failures or if an epoch is too short with respect to the network diameter. Such imperfect
propagation will lead to variations in the summaries constructed by a same node over
successive epochs (used for self-detection), and by different nodes over the same epoch
(used for assisted-detection).

Another cause of inaccuracy stems from the compact nature of node signatures and
summaries. Signatures can collide, and a partition might only cause small changes in a
network’s summaries. Consider, in the worst case, a large network using small filters.
It is highly probable that all the bits of the summaries will be set to one before and
after a large partition. Using a very large filter solves this problem but is a waste of
precious resources. The size of system summaries, the length of an epoch, the frequency
of gossiping rounds, and the threshold used to detect partitions must therefore be
selected with care, depending on the size, dynamism, memory and energy constraints
of the system. In the Evaluation section (Section 4.4), we provide pragmatic criteria

66 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

≠

Figure 4.3: When a partition occurs, the summaries between two successive epochs
change suddenly, as the signatures of unreachable nodes are no longer aggregated in the
converged summary. This sudden change can be detected, and a partition detection
event raised.

to set up those various parameters with satisfying trade-offs in common situations,
but of course, unusual circumstances may require finer tuning.

Piggybacking and saving resources

Our approach is inherently efficient in terms of memory use, due to the compact and
fixed-size filters we use. However, memory isn’t the only limited resource in MANETs,
and we also have to consider CPU, communications and energy consumption. As
detailed in the next subsections, our algorithms consist mostly of simple bitwise op-
erations between filters and integer comparisons, so CPU is not a strained resource.
Communications, on the other hand, need a bit more attention. Periodic gossiping can
quickly generate a lot of messages and cause a large increase in energy consumption.

Due to the small and fixed size of our filters, we are confident that they can fit in
empty bits of network frames generated by other protocols. Such piggybacking allows
to save most of the communication costs generated by MtG, but is heavily dependent
on the specific stack used, and hard to generalize. For instance, if the routing protocol
used by the nodes periodically emits Hello beacon, we can piggyback on those, whereas
routing protocols that have a distinct setup phase and do not periodically broadcast
during standard operations are much harder to leverage.

As we want our approach to remain independent of any specific protocol stack, we

4.2. APPROACH 67

Constants and functions

∆epoch Duration of an epoch.
γ Threshold used to detect a partition.
hdist(s1, s2) Hamming distance between the bit arrays s1 and s2.
partition(i, e) Event representing a partition in system i at epoch e.

Variables maintained by a node pi in a monitored system

sysID i The ID of the system the node pi belongs to.
clocki pi’s local clock.
epoch i pi’s current epoch number.
node_sig i The one-bit signature of pi.
filter i The system summary being constructed by pi
sum i[] An array of the system summaries observed by pi at the

end of each past epoch, indexed by epoch numbers (used for
self-detection)

Variables maintained by a node pi in a monitoring system

sumSet i The set of summaries propagated to the monitoring node.
(id, ep, s) ∈ sumSet i means that a node from system id gen-
erated a system summary s at the end of epoch ep, and that
pi is aware of this summary.

Table 4.1: Mind-the-Gap: Notations and variables maintained by each node

did not consider this aspect in details in the following, but we acknowledge it is an
important step before a real world deployment is possible. We surmise that in most
situations, an efficient implementation in terms of communication and energy costs is
possible.

In the following, we first detail the self-detection variant of our algorithm (Sec-
tion 4.2.2), before moving on to the case of assisted-detection (Section 4.2.3).

4.2.2 Self-detection protocol (MtG/Self-detect)

This first variant, termed MtG/Self-detect, allows a system to monitor its own evolu-
tion over time to detect when it becomes partitioned. The protocol is described by
Algorithms 5 and 6. Table 4.1 provides a summary of the variables and notations
used.

When a node pi starts participating to the system, it does not take part in the
current epoch (its epoch i variable is set to ⊥), and waits for the next epoch to start at

time
��

clocki

∆epoch

�

+ 1
�

×∆epoch before joining the protocol, where ∆epoch is the duration
of an epoch, and clocki represents pi’s local clock. We assume that clocks are loosely

68 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Algorithm 5: MtG/Self-detect: Filter aggregation (at pi)

1 every X seconds do

2 broadcast AGG�sysID i, epoch i, filter i�

3 on receive AGG�sysID , epoch, filter� do

4 if epoch i = epoch and sysID i = sysID then

5 filter i ← OR(filter i, filter)

Algorithm 6: MtG/Self-detect: Change of epoch (at pi)

1 on expiration epoch_timer do

2 sum i[epoch i] ← filter i

3 for t ∈ 0..epoch i − 1 do

4 if hdist(sum i[epoch i], sum i[t]) > γ then

5 raise partition(sysID i, epoch i)

6 filter i ← node_sig i �Resetting pi’s filter

7 epoch i ←
�

clocki

∆epoch

�

�New epoch

8 set timer epoch_timer at (epoch i + 1)×∆epoch

synchronized between all nodes, with a drift remaining small compared to the duration
of an epoch ∆epoch, so that all nodes in the MANET work for the same epoch during
a large fraction of ∆epoch. The code of the joining mechanism is not shown in the
presented pseudo-code for the sake of clarity.

We assume that nodes know the identifier of the system they belong to, and that
they can ignore messages sent by nodes belonging to other systems, if necessary. When
a node actively participates in an epoch, it periodically broadcasts its current filter
(lines 1-2 of Alg. 5). When it receives a neighbor’s filter for the system it belongs to,
and for the epoch it currently participates in (lines 3-4), it incorporates the received
filter into its own filter by using a logical or over the two bit fields (line 5). Other-
wise, the message is simply dropped. This simple process implements a push-based
aggregation [41], and is robust and efficient.

At the end of an epoch, each node stores its final filter as the system summary
for this epoch (line 2 of Alg. 6) and compares it to prior summaries by calculating
the Hamming distance between the two filters (hdist(−,−), line 4), i.e. counting the
number of bits in which they differ. The current filter is then reset (line 6) and a new
aggregation epoch starts (lines 7-8).

If there is “enough” difference between filters (using the threshold γ at line 4), this
is a sign of significant change in the MANET over the corresponding time interval and
a partition is detected (with the partition event at line 5). The main difficulty, and

4.3. ANALYSIS 69

Algorithm 7: MtG/Assisted: Change of epoch at a node pi belonging to a
monitored system

1 on expiration epoch_timer do

2 broadcast SUMMARY�sysID i, epoch i, filter i�
3 filter i ← node_sig i �resetting pi’s filter

4 epoch i ←
�

clocki

∆epoch

�

�New epoch

5 set timer epoch_timer at (epoch i + 1)×∆epoch

an important contribution of this work, is to determine the proper threshold γ for a big

enough difference between filters. This relies on hypotheses on the MANET evolution
and is examined in more details in Section 4.3.

4.2.3 Assisted-detection protocol (MtG/Assisted)

The second variant (MtG/Assisted) allows an assisting system to monitor our target
system in order to detect partitions in it. The protocol is detailed in Algorithms 7
and 8. The main idea consists in propagating within the monitoring system summaries
constructed by nodes of the monitored system. This propagation makes it then possible
to detect whether two nodes from the monitoring system have observed a large enough
discrepancy in two summaries of the same monitored system for the same epoch,
hinting at a partition.

More specifically, nodes in the target system execute the same aggregation gossip
as previously (cf. Alg. 5). At the end of an epoch, however, the nodes do not store the
signature but instead broadcasts them with a SUMMARY message (line 2 in Alg. 7).

When a node from the monitoring system receives a SUMMARY message (line 1
in Alg. 8), it stores it (line 3). The monitoring system then executes its own gos-
sip aggregation of the target system’s signatures with SUMMARY_SET messages
(lines 5-10 in Alg. 8). When a node receives a SUMMARY_SET message, it stores
the new summaries (line 9) and then checks if it has two different enough summaries
from the same epoch and for the same target system, indicating a potential partition
(procedure CheckPartition(), lines 11-15).

4.3 Analysis

4.3.1 System Model

We consider a mobile area network (MANET) consisting of a set S of n nodes commu-
nicating through wireless channels. At each epoch, each node ni initializes and updates
a filter of size f . At the start of the epoch, each node sets the bits of its filter to 0
except for its own signature bit node_sig i which is set to 1. This signature bit does

70 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Algorithm 8: MtG/Assisted: Signature aggregation at a node pi belonging to
a monitoring system

1 on receive SUMMARY�sysID , epoch, filter� do

2 if sysID i �= sysID then

3 sumSet i ← sumSet i ∪
�

(sysID , epoch, filter)
�

4 CheckPartition()

5 every Y seconds do

6 broadcast SUMMARY_SET�sysID i, sumSet i�

7 on receive SUMMARY_SET�sysID , sumSet� do

8 if sysID i = sysID then

9 sumSet i ← sumSet i ∪ sumSet

10 CheckPartition()

11 procedure CheckPartition() is

12 P ←
�

(i, e, s1, s2) | hdist(s1, s2) > γ ∧
�

(i, e, s1), (i, e, s2)
�

⊆ sumSet

�

13 For all (i, e, s1, s2) ∈ P do

14 sumSet i ← sumSet i \
�

(i, e, s1), (i, e, s2)
�

15 raise partition(i, e)

not change between epochs. Hence, even with unique identifiers, the identity of each
node is reduced to an integer between 1 and f chosen uniformly at random. During the
aggregation phase, each node gossips its filter to its neighbors in asynchronous rounds
and updates it with logical or operations as it receives filters from its neighbors. The
resulting filter at the end of the epoch is used as a (potentially imperfect) summary of
the system reachability for that node in that epoch. Using summaries for consecutive
epochs sum i[e] and sum i[e + 1], each node ni in the self-detection scenario wishes to
answer the following question: “Do the summaries sum i[e] and sum i[e + 1] indicate
the presence of a new network partition, and with what level of confidence?” For this
purpose, we define in Algorithms 6 and 8 a partition threshold γ beyond which proto-
cols trigger mitigating measures. This threshold is a bound on the Hamming distance
hdist(sum i[e], sum i[e + 1]) between both summaries. Please note that the question
in the assisted-detection scenario is similar, but must be answered by the monitoring
system. Furthermore, the monitoring system also has the luxury to use summaries
built by different nodes for the same epoch, which is not possible in a self-detecting
network. To simplify the discussion, for the rest of this section we assume that we are
in the self-detection scenario.

4.3. ANALYSIS 71

4.3.2 Operating in paradise (ideal conditions)

If the network is perfect (i.e., no churn, no noise) and the aggregation is sufficiently
long, all the summaries of the network (or of each subnetwork if there is a partition)
are identical at the end of each epoch. In this (highly unrealistic) scenario, if the
Hamming distance between summaries sum i[e] and sum i[e + 1] is anything but zero,
we can be sure that said filters come from different subnetworks caused by a partition,
and we can use the threshold γ = 0 in Algorithms 6 and 8.

However, even if the Hamming distance between two summaries is exactly zero,
they may still come from different systems due to collisions in the random choice of
the original node signatures. We now evaluate the likelihood of such a scenario. Let
B(sum i[e]) be the number of nonzero bits in a filter (summary) of size f when inserting
n randomly-selected bits (node signatures) into it. The expected number of bits set
to ‘1’ in the filter is

f ·

�

1−
�

1− 1

f

�n�

.

More precisely, it was shown in [6] that P(B(fe) = j) is given by the formula

P(B(sum i[e]) = j) =

�

f

j

�

· j! ·
�

n

j

�

fn

where
�

a

b

�

stands for the Stirling numbers of the second kind [36]. Stirling numbers
are gruesome to handle and are usually tackled asymptotically, but since in this work
we are ultimately interested in efficient implementations using small filters, we can
easily resort to mathematical simulations. As n and f increase, the distribution of
B(sum i[e]) is sharply concentrated around its expected value [64]. At first sight, this
is disappointing: for instance with f = 32 and n = 64 the expected number of ’1’s
in the summaries is 27.8. However, if two subnetworks of size n are disjoint following
a partition, one can easily derive that the expected size of the Hamming distance of
their respective summary is

2 · f ·

�

1− 1

f

�n

·

�

1−
�

1− 1

f

�n�

.

Figure 4.4 shows the distribution of the Hamming distance of the summaries for
two disjoint subnetworks of 64 nodes with filters of size 32. In this example, the
probability that the Hamming distance is zero is approximately 10−5. Note that this
corresponds to a network of 128 nodes partitioned into exactly two partitions of 64
nodes.

Two partitions of equal size is the worst possible scenario since the probability that
both summaries are identical decreases quickly as the size of each subnetwork diverges.
Note that in the self-detection variant, there is no central authority that can compare

72 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

0 5 10 15 20 25 30

0.03

0.06

0.09

0.12

0.15

Hamming distance between filters

P
ro
b
a
b
ili
ty

Figure 4.4: Distribution of the Hamming distance of two summaries of size f = 32

with n = 64 inserted signatures coming from independent subnetworks.

the summaries from both partitions; if the size of the partitions greatly differs, the
small subnetwork will easily detect the partition and trigger mitigating measures. This
is further discussed in the next section.

32 64 128 256 512

100

200

500

1000

2000

5000

Size of summaries

N
e
tw
o
rk
s
iz
e

Figure 4.5: Maximum network size for a probability of false negative of 10−5 when
partitioned into two partitions of equal size for different summary sizes.

Figure 4.5 shows, in this idyllic scenario without noise and churn, the maximum
network size allowing a probability of false negative of 10−5 when partitioned into two
partitions of equal size for different summary sizes (again this is the worst possible
scenario). Under perfect network and convergence assumptions, MtG can thus easily
handle partition detection with high accuracy in networks of 128 nodes or less with
32-bit summaries, in networks of 800 nodes or less with 128-bit summaries, and in
networks of 4500 nodes or less with 512-bit summaries.

Note that the size of the summary grows sub-linearly with the number of nodes n in
the network. This may look surprising at first glance, since it means we have more and
more collisions between individual node signatures as the size of the network grows,
but can in fact be easily explained. Indeed, we do not want to detect the presence
of individual nodes and we do not care about individual collisions, we just need to

4.3. ANALYSIS 73

distinguish summaries from different sub-networks. As errors essentially happen when
the summaries are both entirely filled with ‘1’s, a filter of size f can be used for a
network of size n < f.log(f), since this is equivalent to the coupon collector problem.
Or, the other way around, a network of size n needs a filter of size f > n/log(f), which
is sub-linear in n as expected.

4.3.3 Operating in hell (imperfect aggregation and dynamic

networks)

In a real deployment, of course, filters may diverge within the same subsystem due
to churn and node crashes. They may also diverge due to the imperfect aggregation
caused by network contention, node mobility or a hostile environment. One should
thus set the threshold γ to a strictly positive value to account for these differences
between epochs, otherwise the nodes or the monitoring system will constantly and
uselessly trigger mitigating measures under normal network operation. Modeling these
constraints in MANETs separately is challenging to say the least, however it is fortu-
nately unnecessary in this work as they indistinguishably all result in inaccuracies in
the node-constructed summaries. Instead, we define a generic churn parameter c and
assume that there are c nodes in epoch e that fail in epoch e+ 1, and conversely that
there are c nodes that appear in epoch e + 1 but failed in epoch e. A failing node
simply fails to disseminate its signature to other nodes in the network.

c=1

c=2

c=3

c=4

c=5

c=6

c=7

c=8

c=9

c=10

0 5 10 15 20

0.0

0.2

0.4

0.6

Hamming distance between filters

P
ro
b
a
b
ili
ty

Figure 4.6: Distribution of the Hamming distance of two summaries of size f = 32

with n = 64 inserted signatures and churn parameter c ∈ {1, 2, 3, . . . , 10} (gray curves).
The blue points correspond to two partitioned systems of 32 nodes. The probability
mass functions are calculated with 105 randomized experiments.

Figure 4.6 shows the distribution of the Hamming distance of two summaries of
size f = 32 used by a system of n = 64 nodes. Each gray curve corresponds to a churn

74 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

c=1

c=2

c=3

c=4

c=5

c=6

c=7

c=8

c=9

c=10

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Hamming distance between filters

P
ro
b
a
b
ili
ty

Figure 4.7: Distribution of the Hamming distance of two summaries of size f = 32 with
n = 128 inserted signatures and churn parameter c ∈ {1, 2, 3, . . . , 10} (gray curves).
The blue points correspond to two partitioned systems of 64 nodes. The probability
mass functions are calculated with 105 randomized experiments.

level c varying from 1 to 10. The blue points correspond to two partitioned systems
of 32 nodes. The gray and blue probability mass functions are almost disjoint, thus
if we set the partition threshold at γ = 7, we essentially catch 100% of the partitions
and no normal operational event. In figure 4.7, we repeat the process with the same
filter size but with systems of n = 128 nodes. There is a small overlap between the
gray and blue curves, but by setting the partition threshold to γ = 2, we still detect
99% of the worst possible partitions and treat less than 1% of the normal events at
c = 10 as partitions.

We emphasize that these results are conservative for three reasons. First, c = 10

and n = 64 corresponds to a churn rate of 15% per epoch. The operator of a network in
such an environment might want to trigger mitigating measures even in the absence of a
partition. Second, it assumes that the network is partitioned in two pieces of equal size.
As mentioned earlier, this is the most pessimistic scenario (i.e., it will systematically
yield the lowest Hamming distances between summaries for the different subsystems).
Third, a new partition will generate filters of unequal size between epochs, a fact that
we do not even leverage in this work. It is thus clear that like for many applications
of bit fields as a compact representation, such as Bloom filters [19], the efficiency of
our approach is uniquely determined by the size of the filters and the number of nodes
in the network: with very small filters and very large networks, the filters, even once
partitioned equally, will be filled with ‘1’s. Like for our idyllic scenario, we can very
easily tackle networks of size 128 with 32-bit filters, and networks of size 2,048 with
256-bit filters.

4.4. EVALUATION 75

4.4 Evaluation

We evaluate our proposal along three dimensions. We first investigate whether filters
can effectively distinguish between joined and partitioned networks (Section 4.4.2).
We then assess the ability of MtG protocols to detect partitions and compare them
to two state-of-the art approaches (Section 4.4.3). Finally, we explore the influence
of various parameters in Section 4.4.4 and we suggest concrete values for satisfying
trade-offs in Section 4.4.5.

4.4.1 Experimental setup and metrics

Unless stated otherwise, we configure MtG to use 32-bit filters, asynchronous rounds
of 0.3 second, and epochs of 5 seconds (i.e., up to 16 rounds per epoch). Nodes are
set up with a 100m communication range, and positioned over a 400m×400m area.
The exact number of nodes and their positions depend on the experiment, as we detail
below.

We use the Omnet++/Inet framework [76] for our simulations. Each experiment
is repeated 10 times, with different random seeds for nodes signatures and positions.
Presented results are averages over the 10 runs. We do not show error bars as they
are negligible. We use the following metrics:

• The normalized maximum pair-wise internal distance (internal distance

for short) measures the maximum Hamming distance between the filters being
maintained by two nodes of the same monitored system S, normalized by the
size of the filters f (32 in our experiments). When S is connected, this distance
should converge to zero at the end of each epoch. Formally, we have

internal_d(S) = max
(pi,pj)∈S2

�

hdist(filter i, filter j)

f

�

.

• The normalized minimum pair-wise inter-partition distance (external

distance for short) measures the minimum Hamming distance between the filters
of two partitions S1 and S2 of a system, normalized by the size of the filters.
When S1 and S2 are disconnected, this distance should remain above the γ

threshold, even in a converged state, in order to distinguish a partition from a
connected configuration. Formally we have

external_d(S1, S2) = min
(pi,pj)∈
S1×S2

�

hdist(filter i, filter j)

f

�

.

• The error rate is the number of nodes belonging to a partitioned system that
do not detect the partition (false negatives) summed with the number of nodes
belonging to a fully connected system that raise a partition alert (false positives),
over the total number of nodes. In the vast majority of cases, the error rate is

76 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

 0

 0.25

 0.5

 0.75

 0 5 10 15 20

n
o
rm

a
li
z
e
d
 d

is
ta

n
c
e

time (s)

internal distance
external distance

Figure 4.8: Filters are an effective representation of a network membership. They
converge when the system is connected, and they are clearly distinct when there is a
partition.

equivalent to the number of false negatives. Indeed, we may get false negatives
due to collisions in filters and disconnected subsystems may obtain identical
filters; but the gossip convergence of filters is extremely robust and nodes in a
non-partitioned system always converge towards the same filter under realistic
circumstances.

• The per-node per-round bandwidth (bandwidth for short) represents the
amount of information sent by each node per round, measured in bits.

4.4.2 Effective representation

We set up a system S of 120 nodes divided into two groups S1 and S2 of 60 nodes each.
S1 and S2 are initially distributed over the same 400m×400m area, but drift apart in
opposite direction at 25 m/s, S1 heading North and S2 South. S1 and S2 thus become
unable to reach each other at around 15 seconds into the experiment (end of the 3rd
epoch). We monitor over time the internal distance of S and the external distance
between S1 and S2. Figure 4.8 shows that before the partition (0-15 seconds), the
internal distance goes down to 0 very rapidly, in less than 2 seconds (6 rounds). Once
the partition occurs (15-24 seconds), the external distance between the two partitions
is always strictly positive, and converges quickly to a value noticeably above 0.

These two results combined demonstrate that filters are efficient to represent a
system membership, in a quick, accurate, and compact manner. Even after only a few
rounds, all nodes in a system agree on the same filter, while disconnected subsystems
have very distinct filters, all the while using 32-bit filters for systems containing over
a hundred nodes.

4.4. EVALUATION 77

4.4.3 Partition detection

In this second set of experiments we compare the filters used by MtG with those of
two baseline approaches:

• The graph-coloring baseline: Each node randomly choses a 16-bit integer, a
color, and gossips it. When it receives a color from another node, it keeps the
larger one. If a network is not partitioned, all nodes will eventually agree on the
same color; if there is a partition, each subsystem will agree on a different color.
Hence, the color can serve as a simple way to distinguish subsystems.

• The full-list baseline: Each node maintains an exhaustive list of all node
identifiers it has encountered, and gossips it around. At the end of an epoch,
all connected nodes agree on the same list, which is the membership list of their
subsystem. If two different lists are observed, it is a sign of a partition.

We repeat the setup of the previous subsection: two 60-node groups moving away
from each other. We run four experiments in which nodes execute either one of the
variants of MtG or one of the two other protocols.

• In the first experiment, all 120 nodes execute MtG/Self-detect, the self-detection
version of our approach.

• In the second one, we add a third group of nodes from an independent system
in the middle, serving as the monitoring group, and we run MtG/Assisted, the
third-party version of our protocol. The third group is constituted of 20 fixed
nodes, set up to ensure the coverage of the whole area of the experiment.

• In a third experiment, we used the graph-coloring baseline instead of our pro-
posed filters to represent the network membership, in self-detect mode.

• Finally in the fourth experiment, we used the full-list baseline instead of filters,
in self-detect mode.

The results are summarized in Table 4.2. The bandwidth consumption assumes
the following: filters are 32 bits long, node identifiers use 32 bits (size of an IPV4
address), and colors are 16-bit integers.

In both modes, our protocols accurately detect the partition when it occurs, with
very modest bandwidth consumption, comparable to the graph-coloring approach. In
contrast, the graph-coloring approach only detects the partition for half of the nodes.
Indeed, the nodes in the group of the “winning” color do not see any change when the
partition occurs.

The extensive-list approach detects partitions accurately, but its bandwidth con-
sumption is orders of magnitude larger than with our approach, even with a system
with as little as 120 nodes. Moreover, this bandwidth usage varies considerably over
the execution of the protocol, with a low bandwidth usage at the beginning of an
epoch (using small lists) and an uncontrolled usage as lists are aggregated to the full

78 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Error rate Bandwidth
(bits
sent/round.node)
average max

graph-coloring 50% 16 16

full list 0% 1995 3840

MtG (self-detect) 0% 32 32

MtG (monitored node) 32 32
(monitoring node) 0% 32 64

Table 4.2: Partition detection performance.

membership, e.g. up to 1,920 bits for a 60-node group, or 3,840 for a 120-node group.
This bandwidth usage is orders of magnitude higher than with the filters, and increases
asymptotically faster as the network grows. Furthermore, it is in the expected com-
mon case when the lists are converged and that there is no partition that the usage is
the highest, which is the opposite of the desired behavior.

4.4.4 Pushing the limits

We now explore specific adversarial conditions that MtG may encounter, and suggest
how to work around them.

First, the length of the epochs is a tradeoff between the quality of convergence be-
tween filters and the freshness of the information they contain. While a long epoch pro-
vides better convergence guarantees, shorter epochs avoid keeping information about
crashed or unreachable nodes, and faster mitigation following partitions. The length
of the epochs needs to be adapted to the size of the considered systems. We set up
various experiments with system of increasing sizes. We keep the density of nodes
constant between all experiments, simply distributing a larger number of nodes over
a larger area, resulting in systems of increasing diameters, from 4 to 16 hops. The
length of rounds and epochs is also constant between experiments. Figure 4.9 shows
the evolution of the internal distance of each system over time. One can clearly see
that as the diameter increases, the convergence is slower, and past a certain diameter,
filters do not have enough time to converge anymore, as the distance does not reach
zero.

Given the number and type of devices deployed in a MANET and the physical
area over which they are deployed, a user can get a rough estimation of the system’s
diameter: D ≈

√
N ≈ C/r where N is the number of devices, C is the physical

diameter of the area covered, and r is the communication range of the devices. If the
two estimations are noticeably different, it is usually a sign that the number of devices
deployed is not adapted to the area covered. We recommend to set the length of an
epoch (in rounds) to twice the expected maximal diameter of the system (in hops).

4.4. EVALUATION 79

Finally, we test the resilience of MtG to bad communication conditions and message
loss. We set up a system of 120 nodes distributed in two groups of 60 nodes each and
make them drift apart under the same scenario described above. In order to stress the
system, we reduce the length of the epoch to just 6 rounds, and we tune the drifting
speed so that a partition occurs at the end of the second epoch. MtG should hence raise
a partition alert during epoch 3. Figure 4.10 shows the fraction of nodes that raise an
alert during each epoch. With 20% of messages loss, everything works perfectly well.
With 40% loss, barely 10% of nodes confuse the bad communication conditions with
a real partition in epoch 2. We need to reach an enormous level of 60% loss before a
noticeable fraction of MtG nodes raise a false alert before the partition actually occurs.
We argue that under such harsh conditions, a system operator has more pressing issues
than partitions, and will want to trigger available counter-measures just as if a real
partition was occurring. This raises our confidence that MtG is resilient to message
loss under all realistic circumstances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

d
is

ta
n
c
e
 (

n
o
rm

a
li
z
e
d
)

time (s)

diameter > 4
diameter > 8
diameter > 12
diameter > 16

Figure 4.9: With fixed epoch and round durations, the larger the network is, the longer
it takes to converge. If the network is too large, the filters do not converge anymore,
so it is important to adapt the length of an epoch to the size of the network.

4.4.5 Concrete parameters settings

Based on the results of our simulations, we suggest for a network operator wishing to
use MtG to set-up the following parameters:

• round: if using piggybacking, this is a constraint and not a free parameter; if
not piggybacking, a round should be as short as possible without excessively

80 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Figure 4.10: Fraction of nodes answering detecting a partition, under various levels of
message loss. The real partition occurs at the end of epoch 2. Our protocol is resilient
to message loss, but when the the level of disruption is really high, it starts to confuse
message loss with partition.

flooding the waves or taxing the energy resources
• epoch: In number of rounds, an epoch should be at least one and a half as long

as the diameter of the network. A good approximation to use when the actual
network diameter is unknown is: diameter of the area covered by the network
over communication range of the devices involved. In absolute duration, an
epoch must be short enough that a node participating at the beginning of an
epoch is still in communication range at the end of the same epoch, so we suggest
trying to keep an epoch at most twice the time it takes for a device to cover its
own communication range. The first constraint is by far the most important of
the two.

• filter width: for a network of n nodes, a good approximation without resorting
to complex mathematical analysis is to use around n/8 bits for the filter; if using
empty bits from another protocol frames, use as many bits as available, as long
as it is greater than n/8.

• detection threshold: γ = 2 is a reasonable value for most realistic circumstances
with current networks.

4.5 Conclusion & Future Work

In this chapter, we presented Mind-the-Gap, a lightweight method to detect par-
titions in a MANET, either by the nodes forming the MANET themselves or by an
external supporting system. Our analysis and evaluation show the ability of our ap-
proach to detect such partitions even under aggregation imperfection and imperfect
networking conditions.

For future work, we are interested in developing a more formal method to derive
the partition threshold γ based on the filter and network sizes, or at least to provide
these thresholds for a larger number of parameters. In particular, as mentioned in
Section 4.3 we do not leverage the number of bits set to ‘1’ in our summaries. When

4.5. CONCLUSION & FUTURE WORK 81

a system is partitioned, two general cases can occur. If both partitions have the same
size, the summaries from one epoch to the next will very likely contain significantly less
bits set to ‘1’. If one partition is small and the other is large, the large partition might
view its evolution as a normal churn event, but the small partition will see an even
higher reduction in its number of summary bits set to ‘1’ between consecutive epochs.
Considering the number of bits set to ‘1’ may allow us to tackle higher noise levels, as
well as larger systems with good accuracy, without increasing the filter size. It would
also avoid triggering an alert when a large number of nodes join the network or when
two partitions reconnect, since this events increase the number of ‘1’ in the filters, but
are still detected with our current approach as large changes in membership.

Mind-the-Gap demonstrates that it is possible to use epidemic protocols to make
a distributed system aware of its circumstances and able to detect changes in its
environment, even with only local information, in an efficient and resilient manner.
Building upon this work, it is likely possible to then react and adapt to the detected
changes in a self-adaptive fashion and move toward the opportunistic systems com-
posed of smarter basic blocks we argued for in Chapter 1. In the next chapter, we will
focus on the fundamentals of gossip protocols and show how to extend their application
to new problems and new contexts.

82 CHAPTER 4. DETECTING ENVIRONMENTAL CHANGES

Chapter 5

Extending traditional gossip: HyFN

Decentralized construction of KFN

graphs

In Chapter 1, we presented a two-fold vision: a holistic approach to distributed systems
relying on opportunistic systems composed of smart basic blocks. In Chapters 3 and
4, we explored the two faces of this vision, and in both cases we used gossip protocols
to implement our proposals. In this chapter, we go deeper into gossip and show that
their field of application is even wider than it looks at first glance.

Indeed, all traditional gossip-based self-organizing overlays assume some level of
transitivity in the neighborhood relationship, but we propose a simple extension that
still functions even when such fundamental assumptions do not hold anymore, thus
demonstrating that gossip protocols are very adaptable and great candidates to solve
the many challenges faced by complex distributed systems nowadays.

5.1 Motivation

Epidemic or gossip protocols, thus named because they replicate how rumors and
diseases propagate, are a very efficient and well known approach to disseminate in-
formation in a distributed system. Notably, they are the current best method to
build k-Nearest-Neighbor (KNN) graphs. This type of graphs, which groups similar
nodes together, has found usage in a number of domains, including machine learning,
recommending system, and search optimization.

Some applications do not however require the k closest nodes, but the k most dis-
similar nodes, what we term the k-Furthest-Neighbor (KFN) graph. This is especially
the case for applications that try to find complementary profiles which need to col-
laborate on a common task, and it is consequently an important problem to solve for
opportunistic distributed systems, but also for other collaborative environments such
as mutualized data-centers.

83

84 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

For instance, Virtual Machines (VMs) placement —i.e. the (re-)assignment of
workloads in virtualised IT environments— would be a good application for KFN. The
problem consists in finding an assignment of VMs on physical machines (PMs) that
minimises some cost function(s) [70]. The problem has been described as one of the
most complex and important for the IT industry [9], with large potential savings [50].
An important challenge is that a solution does not only consist in packing VMs onto
PMs — it also requires to limit the amount of interferences between VMs hosted on
the same PM [83]. Whatever technique is used (e.g. clustering [52]), interference aware
VM placement algorithms need to identify complementary workloads — i.e. workloads
that are dissimilar enough that the interferences between them are minimised. This
is why the application of KFN graphs would make a lot of sense: quickly identifying
complementary workloads (using KFN) to help placement algorithms would decrease
the risks of interferences.

However, if the construction of KNN graphs in decentralized systems has been
widely studied in the past [42, 78, 32], those works do not transfer easily to KFN
graphs, because existing approaches typically assume a form of “likely transitivity” of
the similarity between nodes: if A is close to B, and B to C, then A is likely to be close
to C. Unfortunately this property no longer holds when constructing KFN graphs.
Consequently these approaches, as demonstrated in the remainder of this chapter, are
not working anymore when applied to this new problem.

To address this challenge, we propose HyFN (standing for Hybrid KFN, pro-
nounced hyphen), an hybrid distributed approach for the decentralized construction
of k-furthest-neighbor graphs. We show that HyFN is able to construct a KFN graph
with 3200 nodes in less than 17 rounds, when a traditional greedy approach is unable
to converge. We also show that our proposal is highly scalable, with a convergence
time evolving in O(log(n)) for larger graphs.

The remainder of this chapter is organized as follows: after a brief reminder on
k-nearest-neighbor (KNN) graphs and their decentralized construction in peer-to-peer
networks, we then present our intuition for the construction of a k-furthest-neighbor
graph (KFN) in Section 5.2. In Section 5.3, we describe in more detail HyFN and its
variants. We evaluate our approach in Section 4.4, and conclude in Section 5.5.

5.2 Decentralized Construction of a KFN graph

5.2.1 Background: Decentralized KNN Graph Construction

The problem of constructing a k-furthest-neighbor (KFN) graph can be seen as a
variant of a k-nearest-neighbor (KNN) graph construction that uses an opposed sim-
ilarity. We already presented KNN construction in Chapter 2, but we will go for a
brief reminder here.

The principle of a typical P2P protocol for KNN graph construction [28, 78] is

5.2. DECENTRALIZED CONSTRUCTION OF A KFN GRAPH 85

Algorithm 9: Greedy decentralized KNN algorithm executing at node p

1 each round do

2 q ← one random neighbor from Γ(p)

3 send 〈push,Γ(p) ∪ {p}〉 to q ; request Γ(q) from q � push - pull

4 cand ← Γ(p) ∪ Γ(q) ∪ {r random nodes} \ {p}
5 Γ(p) ← argtopk

g∈cand

(

sim(p, g)
)

6 on receiving 〈push,Γ′〉 do

7 cand ← Γ(p) ∪ Γ
′ \ {p}

8 Γ(p) ← argtopk
g∈cand

(

sim(p, g)
)

�����������
����������������

�������������
�������������

�� ��

������ ����

�����

�����������

������

Figure 5.1: A round of greedy decentralized KNN construction

shown in Algorithm 9, in its push-pull variant1. Starting from a random neighborhood,
individual nodes repeatedly select a random neighbor q (line 2), exchange their current
neighborhood with that of q (noted Γ(q), line 4), and use the gained information to
select more similar neighbors (line 5)2. Similarly, when receiving a new neighborhood
pushed to them, nodes update their local view with the new nodes they have just
heard of (lines 6-8). The intuition behind this greedy procedure is that if A is similar
to B, and B to C, C is likely to be similar to A as well. To avoid local minima, this
greedy procedure is often complemented with a few random peers (returned by a peer

sampling service [43], tuned with parameter r at line 4).

This mechanism is illustrated in Figure 5.1. In this example, node Alice is in-
terested in hearts (Alice’s profile), and is currently connected to Frank, and to Ellie.
During this round, Alice selects Bob as her exchange partner. After exchanging her
neighbors list with Bob, Alice finds out about Carl, who appears to be a better neigh-

1The presented model is close to the Vicinity algorithm [78], but variations exist, most notably

the T-Man algorithm [42], which buffers and selects nodes differently.
2argtopk returns a k-tuple of nodes that maximizes the similarity function sim(p,−). Said differ-

ently, argtopk generalizes the concept of argument of the maximum (argmax for short) to the k top

values of a function over a finite discrete set.

86 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

���������������

���������������

��

��

�close(A)

�far(A)

�far(B)

�close(D)

������

���� �����

����� ������

Figure 5.2: The two heuristics we propose to construct a KFN graph

bor than Ellie. As such, Alice replaces Ellie with Carl in her neighborhood. Similarly
Bob detects that Ellie is a better neighbor than Alice, and drops Alice in favor of Ellie.

5.2.2 Moving to Decentralized k-furthest-neighbor Graph Con-

struction

Algorithm 9 can be easily adapted to compute a decentralized k-furthest-neighbor
(KFN) graph by using a negative similarity at line 5:

Γ(p) ←
k

argtop
g∈cand

(

− sim(p, g)
)

(5.1)

Unfortunately, with this modification, one of the key premises of Algorithm 9
disappears: the far neighbors of a far neighbor are not so likely to be interesting
candidates to construct a KFN graph. Said differently, if A is far from B, and B far
from C, this does not imply that A is far from C (or further from C than any other
node taken randomly in the dataset).

Starting from this observation, we propose instead to use a dual strategy that
constructs an intermediate KNN graph in order to construct a final KFN graph. In
our approach, each node p maintains two views containing k nodes each: Γclose(p) and
Γfar(p).

Γclose(p) uses the algorithm shown in Algorithm 9 to converge towards the k most
similar other nodes in the system. Γfar(p) employs two greedy optimization heuristics
that exploits Γclose(p) to progressively discover the k furthest neighbors from p. The
intuition behind these two heuristics (shown in Figure 5.2 in the case of the node
Alice) is as follows:

• The first heuristic (termed far-from-close and labeled 1 in the figure) requests the
“far neighborhood” Γfar(B) of a node Bob found in Alice’s “close neighborhood”

5.3. ALGORITHMS 87

Γclose(A). The idea is that if Bob is close to Alice, then nodes that are far from
Bob (such as Carl in Figure 5.2) will also be far from Alice.

• The second heuristic (termed close-to-far and labeled 2 in the figure) requests the
“close neighborhood” Γclose(D) of a node Dave found in Alice’s “far neighborhood”
Γfar(A). The idea is that if Dave is far from Alice, then nodes that are close to
Dave (such as Ellie in Figure 5.2) will also be far from Alice.

In the following we present HyFN, a general algorithm that combines the two
heuristics described above in various measures.

5.3 Algorithms

5.3.1 General Framework

Algorithm 10 provides an overview of the approach we propose, termed HyFN, as ex-
ecuted by Node p. For a fair comparison with a traditional greedy approach, we limit
ourselves to one push-pull exchange per round and per node (as in Algorithm 9). This
limitation is key to properly assess the interest of our approach: an algorithm that
exchanges more information is naturally advantaged against its more frugal competi-
tors. It would for instance be unfair to compare an algorithm using multiple push-pull
exchanges to maintain multiple views against Algorithm 9, as such an algorithm would
be more costly in terms of network traffic.

To ensure only one push-pull exchange is performed per round we use the construct
with probability α do .. otherwise at line 3. This construct executes with a
given probability (here α) the first statement, and with a probability (1 − α) the
second. In this particular case, Algorithm 10 randomly alternates between invoking
updateCloseView() at line 4, and invoking updateFarView() at line 6. Both
procedures (discussed below), only generate one network exchange per node and per
round, thus enforcing our communication limit. updateCloseView() maintains
Γclose(p), p’s close neighborhood, while updateFarView() uses Γclose(p) to construct
Γfar(p). The parameter α (contained in [0, 1]) measures out how much effort each node
will spend on Γclose(p) rather than Γfar(p).

updateCloseView(), shown at lines 7-11, uses Algorithm 9 (discussed in Sec-
tion 5.2.1) to construct Γclose(p). updateFarView() depends on a pluggable proce-
dure farCandidatesXX(p), which exchanges potential new candidate nodes using
a push-pull approach to update p’s far neighborhood, Γfar(p) at line 16. The current
far neighborhood of p, the nodes received by farCandidatesXX(p), and r random
nodes are stored in the intermediate candfar variable (line 16). The k furthest nodes
from candfar then become p’s new far neighborhood (line 17; note the minus sign be-
fore sim(p, g), in contrast to line 11). (We discuss the push part of the exchange just
below.)

88 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

Algorithm 10: HyFN: A generic algorithm to implement a KFN computation,
executing at node p

1 Init: For each p, Γclose(p) and Γfar(p) are heaps of size k, initialized as empty.

2 each round do

3 with probability α do

4 updateCloseView()

5 otherwise

6 updateFarView()

7 procedure updateCloseView() is

8 q ← one random neighbor from Γclose(p)

9 send �close,Γclose(p) ∪ {p}� to q ; request Γclose(q) from q � push-pull

10 candclose ← Γclose(p) ∪ Γclose(q) ∪ {r random nodes} \ {p}
11 Γclose(p) ← argtopk

g∈candclose

�

sim(p, g)
�

12 on receiving �close,Γ�

close� do

13 candclose ← Γclose(p) ∪ Γ
�

close \ {p}

14 Γclose(p) ← argtopk
g∈candclose

�

sim(p, g)
�

15 procedure updateFarView() is

16 candfar ← Γfar(p) ∪ farCandidatesXX(p) ∪ {r random nodes}
17 Γfar(p) ← argtopk

g∈candfar

�

− sim(p, g)
�

5.3.2 Instantiating the selection of far candidates

The pluggable method farCandidatesXX(p) can be instantiated in three differ-
ent manners, with the procedures farCandidatesFarFromClose(p), farCandi-

datesCloseToFar(p) and farCandidatesMixed(p), shown in Algorithms 11, 12,
and 14.

• farCandidatesFarFromClose(p) (Algorithm 11) implements the far-from-

close strategy discussed in Section 5.2.2: the local node p first selects one of its
close neighbors qclose (line 2), and returns the far neighbors of qclose, Γfar(qclose),

Algorithm 11: A far-from-close strategy to select far candidates (at p)

1 procedure farCandidatesFarFromClose(node p) is

2 qclose ← one random neighbor from Γclose(p)

3 send �far,Γfar(p)� to qclose ; request Γfar(qclose) from qclose � pull

4 return Γfar(qclose)

5.3. ALGORITHMS 89

Algorithm 12: A close-to-far strategy to select far candidates (at p)

1 procedure farCandidatesCloseToFar(node p) is

2 qfar ← one random neighbor from Γfar(p)

3 send �far,Γclose(p) ∪ {p}� to qfar ; request Γclose(qfar) from qfar � pull

4 return Γclose(qfar)

Algorithm 13: Reception of a far push message (at p)

1 on receiving �far,Γ�

far� do

2 candfar ← Γfar(p) ∪ Γ
�

far

3 Γfar(p) ← argtopk
g∈candfar

�

− sim(p, g)
�

as new candidates to update Γfar(p). In addition, the procedure pushes towards
qclose the far neighbors of p, as nodes far from p are likely to lay far from qclose
as well. The receipt of the corresponding far message is handled by the code
shown in Algorithm 13.

• farCandidatesCloseToFar(p) (Algorithm 12) implements the close-to-far

strategy presented above: this time, p picks one of its current far neighbors qfar,
and returns the close neighbors of qfar, Γclose(qfar) in order to improve Γfar(p). The
procedure also pushes towards qfar the close neighborhood of node p, Γclose(p), as
those are likely to lay far from qfar. The push message, of type far, is handled
as above.

• farCandidatesMixed(p) (Algorithm 14) combines the two above strategies
in one single heuristics. As in Algorithm 10, we use the with probability

construct to switch between the far-from-close and close-to-far strategies with
probability β, thus insuring that only one push-pull exchange occurs every time
farCandidatesMixed(p) is invoked. The parameter β further controls how
much each strategy is used, and allows farCandidatesMixed(p) to generalize
the previous two procedures: the extreme case β = 0 corresponds to the far-

from-close strategy, while β = 1 implements a close-to-far approach.

Considered all-together, Algorithms 10 to 14 capture a family of decentralized k-

Algorithm 14: A mixed strategy to select far candidates (at node p)

1 procedure farCandidatesMixed(node p) is

2 with probability β do

3 return farCandidatesCloseToFar(p)

4 otherwise

5 return farCandidatesFarFromClose(p)

90 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

furthest-neighbor (KFN) graph construction protocols, controlled by two stochastic
parameters, α and β. Parameter α controls the distribution of efforts between the
intermediate KNN view and the final KFN view, while β arbitrates between the far-

from-close and close-to-far strategies.

Note that some gossip protocols, such as the original T-Man, tailor the candidates
they send to the specific node that requested them, while we do not. For instance,
in farCandidatesFarFromClose, q sends back the same set Γfar(q) as potential
new neighbors for p, whatever node p sent the request. This set is not tailored to a
specific node p. This is because those other protocols work with an unbounded view
that keeps all data received but fixed-size messages, and so they want to send back
the best information they have available. As our approach works with fixed-size view,
we simply send the full set of node.

5.4 Evaluation

We evaluate our framework using the simulator PeerSim [61], and compare its behavior
against a basic greedy epidemic protocol (Algorithm 9) that uses a negative similarity
metric (Equation 5.1). We term this baseline solution Far From Far and we note that
this is strictly better than taking purely random nodes: it selects the best neighbors
from candidates specifically including random nodes from the peer-sampling service,
but also some additional nodes known from one-hop neighbors.

We are essentially interested in two aspects of our solution: (i) its convergence, i.e.
how fast our framework is able to converge to a good KFN graph, and (ii) its scalability,
i.e. how does this convergence speed evolve with growing network sizes. The code used
for our experiments can be found on-line at https://gitlab.inria.fr/ASAP/HyFN.

5.4.1 Experimental set-up and metrics

Unless stated otherwise our default set-up involves 3200 nodes regularly positioned
on a [0, 1) ring. By default, we use views of k = 14 nodes, and fetch r = 3 random
nodes in each round; these values were determined empirically and are the smallest
possible that still give satisfying performances. We set the parameters of HyFN to
α = β = 0.5. These values mean that on average nodes spend the same number of
rounds constructing their KNN and KFN views (α at line 3 of Algorithm 10), and that
the construction of the KFN view uses the heuristics far-from-close and close-from-far

in equal measure (β at line 2 of Algorithm 14). We assume a random peer sampling
service (RPS) [43] is available, which we use to initialize all views with random nodes
before the protocol starts, and to provide r random nodes in each round.

To measure the convergence of the approximate KFN graph constructed by HyFN
we use the following four metrics:

5.4. EVALUATION 91

• Number of missing links: We count for each node how many of its k furthest
neighbors are missing from its KFN view. The count of all these missing links

over the network yields our first metric.
• Number of converged nodes: As a second measure of convergence, we con-

sider that a node is converged when at least 80% of its k furthest neighbors
(taking into account ties) are contained in its KFN view. As a measure of the
network’s convergence, we count in each round how many nodes are converged.

• Average KFN distance: For each node, we compute the average distance
between this node and the nodes in its KFN view. This metric should tend
toward 0.5 in a ring of perimeter 1 (our default topology), so we re-normalize
our results to be between 0 and 1 and call this the average similarity in
the various graphs below. Note that even a perfectly converged network won’t
actually reach 1 though, with the exact value depending on the density of the
network; with 3200 nodes, the difference is not visible on graphs.

• Convergence time Finally, we consider that the whole network is converged
when at least 80% of all nodes are converged, according to the above criterion.
We count the number of rounds until this convergence condition is fulfilled.

We do not report the communication overhead of either HyFN or our baseline: the
protocols are all designed to initiate one single push-pull exchange in each round, and
therefore present exactly the same communication costs, no meaningful comparison is
possible.

In the following we first evaluate HyFN on our default scenario (3200 nodes on a
regular ring, k = 14, r = 3, α = β = 0.5, the values for k and r being the smallest
values still providing functional results) and compare it against our baseline. We then
analyze the impact of the mixing parameters α and β. Finally, we study the scalability
of HyFN up to networks of 12800 nodes, both on a ring and grid topology. All reported
values are averages computed over 25 experimental runs.

5.4.2 Results

Figure 5.3 shows the convergence of HyFN in our default scenario (3200 nodes on
a regular ring), according to three convergence metrics: the percentage of converged
nodes (Figure 5.3a), the number of missing links (Figure 5.3b), and the average KFN
similarity (normalized to 1, Figure 5.3d). The behavior of three variants of HyFN are
shown, which correspond to the three heuristics presented in Algorithms 11 (Far-from-

Close), 12 (Close-to-Far), and 14 (Hybrid), discussed in Section 5.3.2.

Comparison to the Far-from-Far baseline.

From the three convergence metrics, it appears that the three versions of HyFN clearly
outperform the baseline. More precisely, all HyFN variants have reached 80% of

92 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

��
���
���
���
���
���
���
���
���
���

����

�� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
���
�
�

������
(a) Converged nodes

��
�����

������
������
������
������
������
������
������
������

�� ��� ��� ��� ��� ��� ���

�
���
���

����
��

������
(b) Missing links

�������������������������
���������������������������

�������������������
�����������������������

(c) Legend

����

����

����

����

����

����

��

�� ��� ��� ��� ��� ��� ���

��
��
��
��
���

���
���
�

������
(d) Average similarity

Figure 5.3: Converged nodes, missing links, and average similarity for the baseline
(Far-from-Far) and for three versions of HyFN (corresponding to β = 1 for Close-to-

Far, β = 0 for Far-from-Close and β = 0.5 for Hybrid) on a 3200-node regular ring.
In all cases, all three versions of HyFN significantly outperform the baseline, with the
hybrid approach (β = 0.5) being the optimal trade-off.

5.4. EVALUATION 93

converged nodes after at most 20 rounds whereas the baseline is unable to converge
even after 65 rounds (Figure 5.3a). Interestingly, the hybrid variant has the best
performances in terms of overall convergence. From the average similarity metric
(Figure 5.3d), the baseline has the worst performances, even if it gets decent results
in a reasonable time. In fact, it doesn’t get the farthest neighbors, but still it gets far
neighbors. Moreover, the metric of missing links (Figure 5.3b) shows clearly that the
baseline does not work: it just converges linearly only due to the couple of random
neighbors that are fetched at each turn. Finally, among all HyFN variants, the Hybrid

approach seems to converge most closely to the theoretically ideal network at the price
of being a slightly slower than Close-to-Far.

Influence of the parameters α and β.

Our key aim is to evaluate the effective impact of the stochastic parameters α and β

on the KFN graph and to set them accordingly. Figure 5.4 outlines the impact of the α
parameter, and shows that α = 0.5 is close to the optimal. This value provides: (i) the
best convergence time (Figure 5.4b), and (ii) the best tradeoff between the convergence
speed and the quality of the neighborhood (Figure 5.4a). Concerning the impact of
fine tuning β (Figure 5.5), having β close to 0.2 gives the best network convergence,
and convergence speed. Note that we are not able to reach 100% of converged nodes
when we choose a β value of either 0 or 1. As a result having a non hybrid heuristic
is not the most suitable choice, although the results of these kind of heuristics is still
better than the baseline. Furthermore, as soon as we use the hybrid strategy, the value
of 0 < β < 1 has a little impact on the convergence time.

Consequently, it appears that fine tuning α is predominant compared to β. In
other terms, once we have set α to its best value (i.e 0.5), the value of β has a little
impact as long as 0 < β < 1, so as long as we are actually using an hybrid approach.

Scalability.

We have investigated the applicability of the hybrid heuristic on both a ring and grid
logical networks of varying sizes from 100 to 12800 nodes (Figure 5.6). The values for
k and r in the default 3200-node configuration where the smallest possible while still
providing good performances, and it is a known property that these parameters evolve
logarithmically with respect to the size of the network s. So for every configuration,
we set up k = 1.2 ∗ log2(s) and r = 0.3 ∗ log2(s), both rounded to the closest integer
— in order to get back k = 14 and r = 3 for s = 3200. As a result, it appears that
HyFN converges as expected in logarithmic time relative to the network total size,
demonstrating thus that our approach scales well.

94 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

a
v
e
ra

g
e
 s

im
il
a
ri

ty

rounds

(KFN) α=0.0
α=.50
α=.90
α=.95

(KNN) α=1.0

(a) Convergence pace for various values of α. For α = 1, we are only updating the

KNN view, so the average similarity stagnates at 0.5, due to the uniform random

initialization which is never updated. For α = 0, we only update the KFN view,

so the similarity improves very quickly at the beginning but gets stuck in local

maxima and takes a very long time reaching a fully converged state. Other values

for 0 < α < 1 offer various trade-offs between initial speed and full convergence

time, with the optimal value at α = 0.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

c
o
n
v
e
rg

e
n
c
e
 t

im
e
 (

ro
u
n
d
s
)

α
(b) Convergence time for various value of α. The optimal value is clearly at α = 0.5,

with performances regularly degrading as we go closer to 0 or 1.

Figure 5.4: Impact of the α stochastic parameter on a 3200-node regular ring.

5.5. CONCLUSION 95

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

c
o
n
v
e
rg

e
d
 n

o
d
e
s
 (

%
)

rounds

(only FfC) β=0.0
β=0.1
β=0.6

(only CtF) β=1.0

(a) Convergence pace for various values of β. For β = 0 and β = 1, we never reach

a 100% converged state. Other values are very close to each other.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

c
o
n
v
e
rg

e
n
c
e
 t

im
e
 (

ro
u
n
d
s
)

β
(b) Convergence time for various values of β. Optimal value is approximately

β = 0.2, but the overall impact is small.

Figure 5.5: Impact of the β stochastic parameter on a 3200-node regular ring.

5.5 Conclusion

In this chapter, we have proposed HyFN, a novel and generic decentralized protocol
to compute k-furthest-neighbor (KFN) graphs. HyFN exploits an intermediate k-
nearest-neighbor (KNN) graph, which is constructed in parallel, to progressively con
verge towards an optimal solution. We have in particular proposed three heuristics to

96 CHAPTER 5. EXTENDING TRADITIONAL GOSSIP

��
���
���
���
���
���
���
���
���

���� ����� ������

��
��
��
��
��
��
���

��
���
��
��
�

������������ ��������

������������
������������

Figure 5.6: Behavior of HyFN with the hybrid heuristic for networks from s = 100
nodes to s = 12800 nodes, for a variety of network topologies (Ring and Grid in the
above figure).

exploit this KNN graph. Our evaluation shows that our proposal clearly outperforms
a naive greedy implementation based on existing KNN epidemic protocols.

Beyond its application to decentralized and pair-to-pair systems, we believe our
KFN construction framework holds a strong potential for the computation of KFN
graphs on highly parallel machines. Its inherent properties of locality and high con-
currency are likely to make it a worthwhile approach in cases in which a KFN graph
is required, including resource allocation problems such as those encountered in VM
allocation services.

More generally, HyFN is evidence that epidemic protocols are easy to combine
and extend to new domains, even where some of the basic hypothesis do not hold
anymore, and can cover a very wide range of applications. As such, they are indeed
good candidates to implement smarter basic blocks with self-adaptive mechanisms for
opportunistic systems.

In the next chapter, we will conclude this thesis with a summary of our various
contributions, a discussion of future works opened by our projects and our general
perspective on holistic approaches for self-adaptive opportunistic systems.

Chapter 6

Conclusion

Nowadays, with the advent of the Internet of Things and other large scale distributed
systems such as Smart Cities, or Self-Driving Fleets, distributed systems are becom-
ing increasingly pervasive and complex, with systems involving very heterogeneous
components, dozens to hundreds of separate components composing a single system.

Consequently, modern distributed systems are intractable, and we posit the need
for a more holistic approach, with higher-level abstractions, to consider a system’s
function as a whole, away from the behavior of individual nodes and parts.

Moreover, to go with those new abstractions and hide the growing complexity of
distributed ecosystems, basic blocks need to be smart enough to react to an evolving
environment and changing circumstances, including failures, in order to compose self-

adapting and opportunistic systems, that are easier to handle at all stages of a
system’s life: design, implementation, deployment, and maintenance.

6.1 Summary of contributions

In this thesis, we have proposed three contributions that seek to progress towards this
high-level ideal vision.

Pleiades In Chapter 3, we presented Pleiades, a holistic approach to the con-
struction and maintenance of complex distributed structures. Pleiades combines
two long-running concepts of distributed computing and software engineering: self-

organizing overlays and programming by assembly. The resulting approach allows
developers to describe programmatically complex topologies as an assemblage of sim-
pler shapes. This description is then instantiated on a population of available nodes by
a gossip-based run-time engine that handles node-to-node communication and other
low-level details, thanks to a collection of concurrent and collaborating self-stabilizing
decentralized protocols. The resulting topologies are scalable, highly resilient in the
face of failures, and lightweight, thus offering a number of attractive properties to today
large-scale distributed systems. Pleiades demonstrates that combining higher-level

97

98 CHAPTER 6. CONCLUSION

abstractions and smarter basic blocks is indeed a viable approach to make distributed
systems tractable again while hiding the growing complexity.

Mind-the-Gap In Chapter 4, we proposed Mind-the-Gap, a gossip-based pro-
tocol able to detect partitions (and other large connectivity changes) in MANETs, a
central issue users of these environments must address. Our approach relies on an
opportunistic aggregation strategy that constructs a stochastic representation of the
network’s current composition, and uses this approximate knowledge to detect large
membership changes. It shows how randomized structures can provide lightweight yet
robust services that enable highly dynamic decentralized systems to be aware of their
environment and detect changes in their circumstances, even using only local infor-
mation, a first step toward opportunistic self-adapting systems. We think it opens
interesting research paths for highly distributed application domains such as the In-
ternet of Things, Smart Cities, and Self driving fleets.

HyFN In Chapter 5, we have explored how gossip protocols could be extended to
work on a more diverse set of problems, notably in cases where nodes should be grouped
according to dissimilarity rather than sameness. This k-Furthest-Neighbors problem
is typically hard for traditional approaches which relies on an implied transitivity in
the neighborhood relationship, but our proposal, HyFN a two-layer hybrid approach,
demonstrates how the parallel composition of decentralized self-organizing protocols
can be exploited to deliver a richer functionality and better convergence properties at
no additional cost. It highlights that gossip protocols are robust and easy to combine
and extend to new applications, thus making them promising candidates to realize the
low-level maintenance needed for modern distributed systems through self-organizing
overlays.

Overall, our work has shown that the vision we proposed in Chapter 1 is a realistic
and promising direction for future research.

6.2 Future research directions

The work realized in this thesis has opened new research directions. Indeed, the vision
described in this dissertation introduction is obviously far from completed yet, but we
believe our results have confirmed its potential. The next step would be to extend and
generalize our work to less specific contexts.

Holistic approaches Starting from Pleiades, there are two distinct possibilities
to generalize our approach. The first one is to work on the interface between the
topology and the applications running on top of it. Indeed, Pleiades showed it is

6.2. FUTURE RESEARCH DIRECTIONS 99

possible to build complex topologies in a simple and efficient way thanks to proper
abstractions, but the real value of a topology is to support and enable an application
with certain properties. For instance, a ring with fingers has no immediate value, but
in Chord it allows distributed storage with efficient retrieval time. Pleiades still
lacks the necessary support to bridge that gap between topology and function, and
designing and implementing a proper API to connect the two, that is easy to use and
yet generic enough to work in a large number of contexts and support our vision would
seem particularly interesting.

The second possibility would be to go from combining shapes in order to create
topology, to combining functions in order to create more complex features. Focusing
specifically on topology allowed us to model the interface between our basic blocks quite
simply with the generic “ports” we described in Chapter 3. Extending this process to
functions would provide a bridge to recent efforts around serverless infrastructures
and Function-as-a-Service platforms such as AWS Lambda. We conjecture this would
require extensive work to precisely define a taxonomy with the basic functions of
a distributed system, along with their inputs and outputs. We would also need to
add a notion of dependency, possibly with multiple levels of importance, from critical
requirements necessary to operate the system, to optional components which only
ensure a better Quality of Service.

Another independent aspect that could be improved is the usability and pro-
grammability of our approach. Our prototype and simulations demonstrated that
a wide range of complex topologies could be described with a relatively small number
of primitives, but a designer still needs to tinker with various configuration files and
fiddle manually with parameters. Creating a proper configuration Domain Specific
Language (DSL) and the tool-chain to go with it not only would let designers tackle
more complex tasks more easily, but would also force us to refine and extend our
primitives.

Opportunistic systems Following Mind-the-Gap, we raised two independent
questions:

(i) How to detect a larger class of events, and generally increase a system awareness
of its own environment?

(ii) How to move forward from autonomous detection to self-adaptation, without
manual intervention from an operator?

For the first part, there is probably no way to work around the fact we will need a
different detector for each class of event, but the important part of the work would be
to study what a large-scale decentralized system needs to know about its environment,
what kind of events it needs to detect, and which ones are important enough to justify
the cost of monitoring, both in terms of added complexity to the system, and of
resource usage. Ultimately, the monitoring sub-system itself likely needs to be self-

100 CHAPTER 6. CONCLUSION

adapting, regulating its own resources and watching for more events when the risk is
higher.

For the second part, the solution almost certainly involves machine-learning in
some way, but adapting machine-learning methods to distributed systems is a tricky
proposition. Indeed, training is a resource intensive process that requires a lot of
computational power and large amount of data, two ingredients that are difficult to
obtain in systems where individual nodes generally have only limited capabilities and
local knowledge. Resorting to training in centralized traditional infrastructure poses
different challenges, such as gathering the data from the deployed systems and dissemi-
nating the results back. There are also ethical issues, with Smart Home or Self-Driving
Cars handling private and sometimes very sensitive information, which may be inap-
propriate to disclose for training.

6.3 Perspective

Beyond our technical contributions, we want to offer a few more general insights.

Theoretical work, practical consequences: Our first insight is that abstractions
and models are important in practice, not just idle theorizing from scientists in their
ivory tower. Programmers may not care about the theoretical aspect, but providing
them with a mental framework to manipulate complex notions do get things done, in
a more efficient and less error-prone manner.

Various related domains such as Programming Languages and Software Engineer-
ing have already gone through a similar process, and can in this respect serve as
a continuous source of inspiration. This is work that can be slow to trickle down,
but it is important nonetheless to engage in it, similarly to how communities develop
best-practices and common habits to facilitate communication and cooperation.

Furthermore, because of their rapidly evolving nature, distributed systems remain
a developing field and require the repeated application of this process. We believe that
most notably with the advent of the Internet of Things and Smart Cities, distributed
systems are entering a new development phase and have to get that work done for
those new contexts, with an holistic approach to these issues.

Basic yet Smart: The second point we want to stress is that the scale and complex-
ity of distributed systems is exploding. Even with better and higher-level abstractions,
this won’t be enough to compensate, and managing everything manually will become
strictly intractable in the short to medium term. Consequently, it is crucial when
designing modern distributed systems to make sure the basic blocks are somewhat
autonomous. They must be able to detect changes or errors, react to and correct
them, adapt and evolve over time. In other words, the basic building blocks must be
smart enough to alleviate developers and automate most of the low level work, with

6.3. PERSPECTIVE 101

self-configuration and robust interfaces at the boundaries between systems, enabling
opportunistic collaborations.

Gossip is sick, mate: Third, we want to promote gossip and epidemic protocols.
In their basic form, they are already teeming with many desirable properties: rapid
dissemination/gathering of information, quick convergence, natural resilience to nodes
crashing, fully decentralized and able to work with only local knowledge, no single point
of failure, and so on. But on top of that, they are also easy to extend and combine and
even simple greedy iterative optimizations can be creatively stacked to realize complex
higher-level functions, and their field of application is extremely wide. Simultaneously,
the rise of new fields requiring a large number of loosely coupled entities such as the
IoT provides, we believe, an excellent opportunity to further develop and apply this
family of protocols.

Everything is political: Finally, we want to conclude this scientific dissertation
with an entirely non-scientific yet very important message: technique is not every-
thing. The best algorithm ever, even with perfect performances, still need to be
recognized as such, and this is a social and political issue. Standardization, backward
compatibility with legacy software, and maturity are just some of many crucial issues
impacting the transfer of new ideas to practitioners and industry. In particular, if
holistic approaches are to be widely adopted, they will probably need a common “plat-
form” to help capitalize on past results and pool development effort. Free software (or
at least, open source code) and open standards will have a critical role in providing
this kind of positive loop and in the creation of a healthy distributed ecosystem, to
enable cooperation on a very large scale.

Also, opening further towards wider social concerns, remember that “code is law” 1,
and as distributed systems enter more deeply into our lives, we expect their ethical
aspects to become increasingly important. We would argue that Privacy and Secu-
rity concerns should be taken into account as first class issues from the design stage
up, especially when pervasive distributed systems will have access to every detail of
their users’ everyday life, or will control critical infrastructures such as roads, water
distribution or electrical power grid. This will be a fascinating challenge, but not one
that computer scientists should tackle alone, and we need inter-disciplinary work and
collaborations with law experts, regulators, and industrials, but also scientists from
other fields such as Sociology or Economy.

1Lawrence Lessig, Code is Law – On Liberty in Cyberspace, https://harvardmagazine.com/

2000/01/code-is-law-html

102 CHAPTER 6. CONCLUSION

Acknowledgment

This thesis wasn’t a solitary work, and over all those years I had the privilege to receive
a lot of help from very many great people.

First of all, I wish to express my deep gratitude to my thesis directors Prof. François
Taïani and Prof. David Bromberg for their patience and their thoughtful guidance.
This would have never been possible without them.

More generally, I would like to thank all the researchers that mentored me, during
and before my thesis, and who helped me grow, both as a scientist and as a person.
There are too many of them to cite them all, but they are not forgotten. A special
mention to Prof. Krishna Gummadi who deepened and reinforced my conviction that
good science is socially conscious and engaged in the real world.

Of course, many thanks to all the jury members who accepted to be a part of my
work’s evaluation. Academia involves a lot of volunteer service for the good of the
community, and I am very grateful for the time they gave me. I’ll do my best to repay
it forward. I am especially grateful to professors Paulo Ferreira and Philippe Lamarre
for reporting on this work.

A very special thank to Virginie Desroches and Cécile Bouton, our team assistants,
who are too often forgotten and whose tireless work make ours run smoothly. It’s too
easy to notice only when things go bad, but you have gone beyond the call of duty so
please know that your support was invaluable over those years.

To all my friends and colleagues from the ASAP/WIDE team, a big thank you for
your company, your advices, and all those lunch-and-coffee-break heated but friendly
debates. You made work a bit more fun. Special mention to my office-mates who
tolerated my prattling even outside of breaks.

But life isn’t all work, so finally, my heartfelt thoughts go to my various flat-mates
over the year. Thanks for making sure I still had a social life and taking care of me
when I didn’t do it myself.

103

104 CHAPTER 6. CONCLUSION

Bibliography

[1] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor
networks. Ad Hoc Networks, 3(3):325 – 349, 2005.

[2] L. Arantes, P. Sens, G. Thomas, D. Conan, and L. Lim. Partition participant
detector with dynamic paths in mobile networks. In 9th IEEE Intl. Symp. on

Network Computing and App., NCA, 2010.

[3] X. Bai, M. Bertier, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. Gossiping
personalized queries. In EDBT’2010.

[4] J.-P. Banâtre, P. Fradet, and Y. Radenac. Principles of chemical programming. In
5th Int. Workshop on Rule-Based Programming, volume 124(1) of ENTCS, pages
133–147. Elsevier, June 2005.

[5] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci. A peer-to-peer recommender
system for self-emerging user communities based on gossip overlays. Journal of

Computer and System Sciences, 79(2):291–308, 2013.

[6] R. Barazzutti, P. Felber, H. Mercier, E. Onica, and E. Rivière. Efficient
and confidentiality-preserving content-based publish/subscribe with prefiltering.
IEEE Trans. Dependable Sec. Comput., 14(3):308–325, 2017.

[7] P. Barooah, H. Chenji, R. Stoleru, and T. Kalmár-Nagy. Cut detection in wire-
less sensor networks. IEEE Transactions on Parallel and Distributed Systems,
23(3):483–490, 2012.

[8] I. Bekmezci, O. K. Sahingoz, and S. Temel. Flying ad-hoc networks (FANETs):
A survey. Ad Hoc Networks, 11(3), 2013.

[9] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. FGCS,
pages 755–768, 2012.

[10] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. The gossple
anonymous social network. In Middleware 2010, 2010.

105

106 BIBLIOGRAPHY

[11] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère, H. B. Ribeiro,
E. Rivière, and F. Taïani. Holons: Towards a systematic approach to composing
systems of systems. In Int. Workshop on Adaptive and Reflective Middleware,
ARM, 2015.

[12] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munication of the ACM, 13(7):422–426, 1970.

[13] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In
MDM ’01: Proceedings of the Second International Conference on Mobile Data

Management, pages 3–14, London, UK, 2001. Springer-Verlag.

[14] S. Bouget, Y.-D. Bromberg, A. Luxey, and F. Taïani. Pleiades: Distributed struc-
tural invariants at scale. In DSN 2018 – IEEE/IFIP International Conference on

Dependable Systems and Networks, pages 542–553, 2018.

[15] S. Bouget, Y.-D. Bromberg, H. Mercier, É. Rivière, and F. Taïani. Mind the
Gap: Autonomous detection of partitioned MANET systems using opportunistic
aggregation. In SRDS 2018 – 37th IEEE International Symposium on Reliable

Distributed Systems, pages 143–152, 2018.

[16] S. Bouget, Y.-D. Bromberg, F. Taïani, and A. Ventresque. Scalable Anti-KNN:
Decentralized computation of k-Furthest-Neighbor graphs with HyFN. In DAIS

2017 – IFIP International Conference on Distributed Applications and Interoper-

able Systems, pages 101–114, 2017.

[17] S. Bouget, H. Kervadec, A.-M. Kermarrec, and F. Taïani. Polystyrene: The decen-
tralized data shape that never dies. In Distributed Computing Systems (ICDCS),

2014 IEEE 34th International Conference on, pages 288–297. IEEE, 2014.

[18] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec. WhatsUp
Decentralized Instant News Recommender. In IPDPS, 2013.

[19] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2002.

[20] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java. Software: Practice . . . , pages 1257–
1284, 2006.

[21] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, omega,
and kubernetes. Communications of the ACM, 59(5):50–57, 2016.

[22] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, Mar. 1996.

BIBLIOGRAPHY 107

[23] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: a scalable
interest-aware overlay for topic-based pub/sub communication. In DEBS, pages
14–25, 2007.

[24] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Designing Privacy Enhancing

Technologies, pages 46–66, 2001.

[25] D. Conan, P. Sens, L. Arantes, and M. Bouillaguet. Failure, disconnection and
partition detection in mobile environment. In 7th IEEE International Symposium

on Networking Computing and App., NCA, 2008.

[26] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Programming wireless
sensor networks with the teenylime middleware. In Middleware, 2007.

[27] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and
T. Sivaharan. A generic component model for building systems software. ACM

TOCS, 26(1).

[28] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database Main-
tenance. In PODC’87.

[29] A. Deshpande and S. Madden. Mauvedb: supporting model-based user views
in database systems. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, pages 73–84, New York, NY,
USA, 2006. ACM.

[30] K. Fall. A delay-tolerant network architecture for challenged internets. In Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM, 2003.

[31] D. Frey, A. Jégou, and A.-M. Kermarrec. Social Market: Combining Explicit and
Implicit Social Networks. In SSS’11, Grenoble, France, Oct. 2011. LNCS.

[32] D. Frey, A.-M. Kermarrec, C. Maddock, A. Mauthe, P.-L. Roman, and F. Taïani.
Similitude: Decentralised adaptation in large-scale P2P recommenders. In IFIP

DAIS’15, pages 51–65, Grenoble, France, 2-4 June 2015.

[33] D. Gelernter. Generative communication in linda. ACM Trans. Program. Lang.

Syst., 7(1):80–112, 1985.

[34] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Scalable
consistency in Scatter. Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 15–28, 2011.

108 BIBLIOGRAPHY

[35] P. Grace, D. Hughes, B. Porter, G. S. Blair, G. Coulson, and F. Taiani. Experi-
ences with open overlays: A middleware approach to network heterogeneity. In
European Conf. on Comp. Sys., EuroSys, 2008.

[36] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, 1994.

[37] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor
networks using kairos. In International Conference on Distributed Computing in

Sensor Systems (DCOSS), number 3560 in LNCS, pages 126 –140, 2005.

[38] Z. Han, A. L. Swindlehurst, and K. R. Liu. Optimization of MANET connectiv-
ity via smart deployment/movement of unmanned air vehicles. IEEE Trans. on

Vehicular Tech., 58(7):3533–3546, 2009.

[39] M. Hauspie, J. Carle, and D. Simplot. Partition detection in mobile ad-hoc
networks using multiple disjoint paths set. In International Workshop on Objects

models and Multimedia technologies, 2003.

[40] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li. An
analysis of facebook photo caching. In SOSP, 2013.

[41] M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM TOCS, 23(3), 2005.

[42] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-based fast overlay
topology construction. Computer Networks, 53(13):2321–2339, Aug. 2009.

[43] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen.
Gossip-based peer sampling. ACM TOCS, 25(3):8, 2007.

[44] R. Kapitza, J. Domaschka, F. J. Hauck, H. P. Reiser, and H. Schmidt. Formi:
Integrating adaptive fragmented objects into java rmi. IEEE Distributed Systems

Online, 7(10), 2006.

[45] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In 44th Annual IEEE Symposium on Foundations of Computer Sci-

ence, FOCS, 2003.

[46] A.-M. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic reliable dissemina-
tion in large-scale systems. IEEE TPDS, 14(3), 2003.

[47] A.-M. Kermarrec and F. Taïani. Diverging towards the common good: heteroge-
neous self-organisation in decentralised recommenders. In SNS’2012.

BIBLIOGRAPHY 109

[48] A. Khelil, P. J. Marrón, C. Becker, and K. Rothermel. Hypergossiping: A gener-
alized broadcast strategy for mobile ad hoc networks. Ad Hoc Networks, 5(5):531–
546, 2007.

[49] A. Khelil, P. J. Marrón, R. Dietrich, and K. Rothermel. Evaluation of partition-
aware manet protocols and applications with ns-2. In Intl. Symp. on Performance

Evaluation of Computer and Telecommunication Systems, SPECTS, 2005.

[50] J. Koomey and J. Taylor. New data supports finding that nearly a third of capital
in enterprise data centers is wasted, 2015.

[51] J. C. A. Leitao and L. E. T. Rodrigues. Overnesia: A resilient overlay network
for virtual super-peers. In SRDS, 2014.

[52] X. Li, A. Ventresque, J. O. Iglesias, and J. Murphy. Scalable correlation-aware
virtual machine consolidation using two-phase clustering. In HPCS, pages 237–
245, 2015.

[53] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an
acquisitional query processing system for sensor networks. ACM Trans. Database

Syst., 30(1):122–173, 2005.

[54] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. Fragmented ob-
jects for distributed abstractions. In Readings in Distributed Computing Systems.
July 1994.

[55] M. Mamei and F. Zambonelli. Programming pervasive and mobile computing
applications: the tota approach. ACM TSEM, 2009.

[56] G. Mega, A. Montresor, and G. P. Picco. Efficient dissemination in decentralized
social networks. In IEEE P2P 2011, 2011.

[57] D. Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239):2, 2014.

[58] B. Milic, N. Milanovic, and M. Malek. Prediction of partitioning in location-
aware mobile ad hoc networks. In 38th Annual Hawaii International Conference

on System Sciences, HICSS, 2005.

[59] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel sup-
porting multiple coordinated channels. In in Proc. 21st Int. Conf. on Dis. Comp.

Sys. (ICDCS-21), pages 707–710. IEEE, 2001.

[60] MongoDB Inc. MongoDB Manual (version 3.2) / Sharded Cluster Query Routing.
accessed 11 May 2016, https://docs.mongodb.com/manual/core/sharded-cluster-
query-router/.

110 BIBLIOGRAPHY

[61] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In P2P’09,
2009.

[62] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proc. of

the IEEE Int. Conf. on Peer-to-Peer Comp (P2P’05), pages 87–94. IEEE, Au-
gust/September 2005.

[63] L. Mottola and G. P. Picco. Programming wireless sensor networks with logical
neighborhoods. In InterSense ’06: Proceedings of the first international conference

on Integrated internet ad hoc and sensor networks, New York, NY, USA, 2006.
ACM.

[64] R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

[65] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogramming sys-
tem. In IPSN ’07: Proceedings of the 6th international conference on Information

processing in sensor networks, pages 489–498, New York, NY, USA, 2007. ACM.

[66] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In SIGCOMM ’01, pages 161–172, New York, NY,
USA, 2001. ACM.

[67] H. Ritter, R. Winter, and J. Schiller. A partition detection system for mobile
ad-hoc networks. In 1st IEEE ComSoc Conference on Sensor and Ad Hoc Com-

munications and Networks, SECON, 2004.

[68] A. Rowstron and P. Druschel. Middleware 2001, 2001.

[69] P. Ruiz and P. Bouvry. Survey on broadcast algorithms for mobile ad hoc net-
works. ACM Computing Surveys, 48(1), July 2015.

[70] T. Saber, A. Ventresque, I. Brandic, J. Thorburn, and L. Murphy. Towards a
multi-objective vm reassignment for large decentralised data centres. In UCC,
2015.

[71] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Stefani.
A component-based middleware platform for reconfigurable service-oriented ar-
chitectures. Software: Practice and Experience, pages n/a–n/a, 2011.

[72] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1):17–32, 2003.

[73] B. Technologies. Riak KV Usage Reference / V3 Multi-

Datacenter Replication Reference: Architecture. accessed 11 May

BIBLIOGRAPHY 111

2016, http://docs.basho.com/riak/kv/2.1.4/using/reference/v3-multi-
datacenter/architecture/.

[74] J. Thones. Microservices. Software, IEEE, 32(1):116–116, 2015.

[75] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building
adaptive systems using ensemble. Softw. Prac. and Exp., 28(9):963–979, 1998.

[76] A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment.
In 1st Intl. Conf. on Simulation Tools and Techniques for Communications, Net-

works and Systems, Simutools, 2008.

[77] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
Large-scale cluster management at google with borg. In EuroSys. ACM, 2015.

[78] S. Voulgaris and M. v. Steen. Epidemic-style management of semantic overlays
for content-based searching. In Euro-Par 2005 Parallel Processing, number 3648,
pages 1143–1152. Springer Berlin Heidelberg, 2005.

[79] S. Voulgaris and M. van Steen. Vicinity: A pinch of randomness brings out the
structure. In Middleware 2013, pages 21–40. Springer, 2013.

[80] M. Welsh and G. Mainland. Programming sensor networks using abstract re-
gions. In First USENIX/ACM Symposium on Networked Systems Design and

Implementation (NSDI ’04), pages 29–42, 2004.

[81] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood
abstraction for sensor networks. In MobiSys, 2004.

[82] M. Won, S. M. George, and R. Stoleru. Towards robustness and energy efficiency
of cut detection in wireless sensor networks. Ad Hoc Networks, 9(3):249–264,
2011.

[83] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos. Managing performance overhead
of virtual machines in cloud computing: A survey, state of the art, and future
directions. Proceedings of the IEEE, 102(1):11–31, 2014.

[84] C. K. Yeo, B.-S. Lee, and M. H. Er. A framework for multicast video streaming
over ip networks. J. of Network and Comp. App., 26(3):273–289, 2003.

