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Abstract

In computational aeroacoustics, time-domain impedance boundary conditions (TDIBCs) can
be employed to model a locally reacting sound absorbing material. They enable to compute
the effect of a material on the sound field after a homogenization distance and have proven
effective in noise level predictions. The broad objective of this work is to study the physical,
mathematical, and computational aspects of TDIBCs, starting from the physical literature.

The first part of this dissertation defines admissibility conditions for nonlinear TDIBCs under
the impedance, admittance, and scattering formulations. It then shows that linear physical
models, whose Laplace transforms are irrational, admit in the time domain a time-delayed
oscillatory-diffusive representation and gives its physical interpretation. This analysis enables
to derive the discrete TDIBC best suited to a particular physical model, by contrast with a one-
size-fits-all approach, and suggests elementary ways of computing the poles and weights. The
proposed time-local formulation consists in composing a set of ordinary differential equations
with a transport equation.

The main contribution of the second part is the proof of the asymptotic stability of the mul-
tidimensional wave equation coupled with various classes of admissible TDIBCs, whose Laplace
transforms are positive-real functions. The method of proof consists in formulating an abstract
Cauchy problem on an extended state space using a realization of the impedance, be it fi-
nite or infinite-dimensional. The asymptotic stability of the corresponding strongly continuous
semigroup of contractions is then obtained by verifying the sufficient spectral conditions of the
Arendt-Batty-Lyubich-Vũ theorem.

The third and last part of the dissertation tackles the discretization of the linearized Euler
equations with TDIBCs. It demonstrates the computational advantage of using the scattering
operator over the impedance and admittance operators, even for nonlinear TDIBCs. This is
achieved by a systematic semi-discrete energy analysis of the weak enforcement of a generic
nonlinear TDIBC in a discontinuous Galerkin finite element method. In particular, the analysis
highlights that the sole definition of a discrete model is not enough to fully define a TDIBC.
To support the analysis, an elementary physical nonlinear scattering operator is derived and
its computational properties are investigated in an impedance tube. Then, the derivation of
time-delayed broadband TDIBCs from physical reflection coefficient models is carried out for
single degree of freedom acoustical liners. A high-order discretization of the derived time-local
formulation, which consists in composing a set of ordinary differential equations with a transport
equation, is applied to two flow ducts.
Keywords: Time-domain impedance boundary condition, Acoustic boundary condition, Time-
delay systems, Fractional kernels, Completely monotone kernels, Oscillatory-diffusive representa-
tion, Irrational transfer functions, Positive-real functions, Wave equation, Asymptotic stability,
Memory damping, Discontinuous Galerkin, Linearized Euler equations, Duct aeroacoustics.
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Notation

Greek letters

β reflection coefficient, defined as (1.15) in the Laplace domain
Γ gamma function (Abramowitz and Stegun 1970, § 6)
γ ratio of specific heat (' 1.4 for air)
δ Dirac distribution (A.1)
κ thermal diffusivity

(
m2 · s−1)

µ dynamic viscosity (Pa · s)
µf diffusive weight associated with the function f , defined as (2.17)
µα diffusive weight, defined as (2.11) for α ∈ (0, 1)
ν kinematic viscosity

(
m2 · s−1)

ρ0 base flow density
ρ(A) resolvent set of the operator A (Yosida 1980, §VIII.1)
σ porosity (1.22)
σ(A) spectrum of the operator A (Yosida 1980, §VIII.1)
σp(A) point spectrum of A
σr(A) residual spectrum of A
σc(A) continuous spectrum of A
ϕ function defined as (2.6)
Ω open set in Rd
ΩT spacetime open set (0, T )× Ω
ω angular frequency

(
rad · s−1)

Roman letters

Arg principal value of the argument, in (−π, π]
arg argument, in R
B scattering operator (1.14)
CFL CFL number (5.28)
C field of complex numbers
C+
c open right half-plane C+

c := {s ∈ C | <(s) > c}
C+
c closed right half-plane C+

c = {s ∈ C | <(s) ≥ c}
C space of continuous functions
Ck space of functions with k continuous derivatives
C∞ space of infinitely smooth functions
C∞0 space of infinitely smooth and compactly supported functions
card cardinal of a set

xi



xii Notation

c0 speed of sound
div f divergence of a vector, div f :=

∑
i ∂ifi

D(R) := C∞0 (R), space of infinitely smooth and compactly supported functions of a
real variable

D (A) domain of the operator A
D′(R) space of distributions of a real variable
D+(R) space of causal distributions of a real variable
ex first-order causal kernel (2.3)
E(R) := C∞(R), space of infinitely smooth functions of a real variable
E ′(R) space of compactly supported distributions
F Fourier transform, see Section A.2
F ih set of interior faces, see Section 5.2
Fbh set of boundary faces, see Section 5.2
H Heaviside or step function (1 over (0,∞), null elsewhere)
H1(Ω) Sobolev space
H1

0 (Ω) Sobolev space {f∈H1(Ω) | f=0 on ∂Ω}
H−1(Ω) topological dual of H1(Ω)
In modified Bessel function of the first kind of order n
Id identity matrix of size d× d
I identity operator
j unit imaginary number j2 = −1
Jn Bessel function of the first kind of order n
ker(A) kernel of the operator A
kν :=

√
s/ν, wavenumber associated with viscous diffusion

(
m−1)

kκ :=
√
s/κ, wavenumber associated with thermal diffusion

(
m−1)

L1
loc(Ω) space of locally integrable functions

L2(Ω) space of square integrable functions
L Laplace transform, see Section A.2
L(H) space of continuous linear operators on H
M0 := |u0|/c0, base flow Mach number
N := J0,∞J, set of nonnegative integers
O big O notation
Pr := ν/κ, Prandtl number
p pressure (Pa)
pf Hadamard finite part (Zemanian 1965, § 2.5)
pv Cauchy principal value (Zemanian 1965, § 2.5) (Schwartz 1966, § I.2.2)
p̃ := p/z0

(
m · s−1)

Pkd space of polynomials of d <variables and total degree at most k
Q field of rational numbers
Res complex residue defined as (2.15)
R(A) range of the operator A
R(·,A) resolvent operator of A, defined as (4.25)
R field of real numbers
s Laplace variable in C (if applicable, rad · s−1)
supp support (closed set)
sα principal branch of the power function (2.14) with α ∈ R
S ′(R) space of tempered distributions of a real variable
t time variable (s)
Th mesh



xiii

u velocity
(
m · s−1)

u0 base flow velocity
(
m · s−1)

v state vector, defined as (3.12) with the LEEs
x space variable (m)
X
′ topological dual of X

y admittance kernel (1.10)
(
kg−1 ·m2 · s1)

Y1 Heaviside function (1 over (0,∞), null elsewhere)
Yα fractional kernel (1.6) for α > 0
Y admittance operator (1.9)
z impedance kernel, see Section 1.1

(
kg ·m−2 · s−1)

zc characteristic impedance
(
kg ·m−2 · s−1)

z0 characteristic impedance of air
(
kg ·m−2 · s−1)

Z set of integers
Z impedance operator, see Section 1.1

Miscellaneous

0d null vector of length d
0d null matrix of size d× d
1X characteristic function of X (1 over X, 0 elsewhere)
A⊥ set orthogonal to A
=(s) imaginary part of s ∈ C
<(s) real part of s ∈ C
s complex conjugate
Ω closure of Ω
Ω̊ interior of Ω
∂Ω boundary of Ω
X∗ := X\{0}
ẑ Laplace transform
〈a, b〉 duality bracket, see Appendix A
(a, b) scalar product
(a, b) open interval
[a, b] closed interval
Ja, bK ordered set of integer in [a, b]
〈·〉S spatial average over a surface S
{v} face average (5.8)
JvK face jump (5.9)
‖ · ‖X norm on X
| · | norm, absolute value, Lebesgue measure of a set
∇ nabla symbol, ∇f := [∂if ]i∈J1,dK
∈ element of
/∈ not element of
∩ intersection
∪ union
⊂ subset
:= equal, by definition
∝ proportional to
� tensor product of vectors, satisfies (a� b) · c = (b · c)a with a, b, c ∈ Rd
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Introduction

This dissertation focuses on the analysis and discretization of a class of boundary conditions
encountered in aeroacoustics, an area of fluid mechanics concerned with the generation, prop-
agation, and absorption of sound waves in a moving medium (Lighthill 1952; Rienstra and
Hirschberg 2016; Tam 2012). Specifically, the boundary conditions studied herein are known
as impedance boundary conditions (IBCs) or also time-domain impedance boundary conditions
(TDIBCs), to emphasize the contrast with IBCs used in conjunction with time-harmonic (also
frequency-domain) partial differential equations (PDEs). This introduction is split into three
parts. After a short overview of IBCs and their applications, the scope and contributions of the
study are given. Lastly, an outline of the dissertation is provided.

Impedance boundary condition
Due to the growth in air traffic during the last decades, the regulation on aircraft environmental
impact has become increasingly stringent, and bodies such as ACARE set high goals for future
noise reductions. At the certification level, the European Aviation Safety Agency issues noise
level requirements, but even an already certified airliner can see its commercial viability threat-
ened by the demands of individual airports. From the point of view of an aircraft or engine
manufacturer, it is of paramount importance to deal with these operational threats as well as
to improve future designs. To reduce the noise emitted by an aircraft, one practical solution
consists in mounting passive sound absorbing materials, commonly known as acoustical liners.
Figure 1 illustrates the use of a Micro-perforated (MP) liner in the inlet of a jet engine.

Given the cost of testing, a lot of effort is being put into improving the reliability of compu-
tational aeroacoustics (CAA) (Tam 2012) to enable better noise level predictions. An accurate
computation of the acoustic field inside a liner is costly by contemporary computing standard,
and is thus the realm of specific studies that focus on the material in isolation, see e.g. (Zhang
and Bodony 2016). Practical computations of sound absorption are typically done by modeling
the material through a boundary condition, namely an IBC as defined below.

Let p (resp. u) denote the acoustic pressure (resp. velocity) perturbation field, defined on
an open bounded set Ω with a Lipschitz boundary ∂Ω. A linear IBC links the acoustic pressure
and velocity through a continuous linear time-invariant single-input single-output operator

p(t,x) = [z(·,x) ? u(·,x) · n] (t) (x ∈ ∂Ω), (1)

where n is the outward unit normal on ∂Ω, ? denotes the time-domain convolution, and z(·, x) ∈
D′+(R) ∩ S ′(R) is a causal and tempered kernel known as the impedance kernel. A Dirichlet
boundary condition (“pressure-release” wall) is recovered for z = 0 while “z = ∞” yields a
Neumann boundary condition (hard wall).

Provided that the impedance kernel z is suitable, the IBC enables to compute the effect of a
material on the sound field after a homogenization distance, see e.g. (Laurens et al. 2014) for a
study of the homogenization problem for a perforated plate in acoustics. The effectiveness of this

xv
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(a)

Perforated plate (σp, lp, dp)

Rigid backplate

Cavity (σc, lc, dc)

(b)

Figure 1. Application of a sound absorbing material to reduce the noise emitted by a jet engine. (a)
Inlet duct of a Trent 900 (A380). The black area is the lined part of the duct. By Julian
Herzog, used under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.
en). Cropped from original. (b) MP liner. Adapted from (Rolls-Royce plc 1996, Fig. 19-6).

modeling and the advent of acoustically treated jet engines has led to IBCs becoming a staple
part of aeroacoustics (Hubbard 1991, Chaps. 13–14) (Tam 2012). Early works focused on the
prediction of sound absorption in a duct with flow: Cremer (Cremer 1953) derived an approxi-
mation of the optimal impedance and Pridmore-Brown (Pridmore-Brown 1958) established his
celebrated equation, widely used to compute duct modes. The identification of unstable surface
modes by Tester (Tester 1973c) lead to a wealth of investigations focused on the hydrodynamic
stability of a base flow with an IBC (Khamis and Brambley 2017). Inverse methodologies have
been developed to identify the IBC and provide an alternative to more intrusive measurement
techniques (Jones et al. 2005). In all of these studies, the IBC is linear and the Cauchy problem
is formulated in the frequency domain. Although less popular than their time-harmonic coun-
terparts, TDIBCs have been used in wave propagation problems including duct aeroacoustics
(Bin et al. 2009; Liu et al. 2014; Özyörük et al. 1998; Zhong et al. 2016), room acoustics (Bot-
teldooren 1995), as well as outdoor sound propagation (Cotté and Blanc-Benon 2009). Richter
et al. (Richter 2010; Richter et al. 2011) and Troian et al. (Troian et al. 2017) identified an
IBC in the time domain. Gabard & Brambley (Gabard and Brambley 2014) used a time-domain
formulation to investigate the (in)stability of the Ingard-Myers boundary condition.

For a wide range of materials, accurate models for z can be derived from first principles
under the following three hypotheses (Morse and Ingard 1968, § 6.3) (Kinsler and Frey 1962,
Chap. 10): the material is locally reacting, i.e. the tangential component u‖ does not propagate
(which is verified for materials based on the Helmholtz resonator such as MP liners); the incident
sound pressure level (SPL) is low enough so that the material behaves linearly; there is no base
flow (i.e. this is the purely acoustical case). For instance, the high-frequency approximation of
an acoustic impedance model for a MP liner without losses in the cavity reads

ẑphys
z0

(s) = 3lp
σpc0 (dp/2)2 ν + 2lp

σpc0 dp/2

√
ν
√
s+ lp

σpc0
s+ 1

σc
coth

(
lc
c0
s

)
(<(s) > 0) ,

where ẑ is the Laplace transform of the kernel z (an analytic function defined on the open right
half-plane), z0 the characteristic impedance of air, ν the kinematic viscosity, c0 the speed of
sound, σp (resp. σc) the porosity of the perforation (resp. cavity), and (lp, dp) (resp. (lc, dc))
are the length and diameter of the perforation (resp. cavity). In the expression of the physical
model ẑphys, a non-null viscosity ν induces both a constant and a fractional term

√
s, the latter

yielding a long-memory kernel. Additionally, this model exhibit a time-delay

τ = 2lc
c0

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
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due to a wave reflection in the cavity, which can be seen by rewriting the hyperbolic cotangent
term as

coth
(
lc
c0
s

)
= 1 + e−τsĥ(s), ĥ(s) = 2

1− e−τs .

The rather strong hypotheses behind the derivation of impedance models mentioned above
can be loosened to an extent, thus widening the practical applicability of IBCs. Partly empirical
corrections have been developed to model the effect of both high incident SPLs and grazing base
flows, at least separately: these effects are significant in most aeroacoustical applications. How-
ever, it must be borne in mind that there is only so much an IBC can do: a material that exhibits
a significant tangential propagation, such as some porous media, cannot be accurately described
with an IBC that only uses the normal component u ·n, as defined above and considered herein.

Remark (Time-harmonic formulation). Provided that (1) is used with a PDE linear with respect
to time, it can equivalently be formulated in the Laplace domain as

p̂(s, x) = ẑ(s, x)û(s, x) · n (x ∈ ∂Ω, <(s) > 0), (2)

where s = jω yields the Fourier transform (only formally, since the solution u may not be
tempered). As long as the problem is linear, (1) and (2) are equivalent formulations. The
use of a TDIBC may merely be more convenient than a time-harmonic one, for instance when
a broadband source is considered. However, it is indispensable when the harmonic problem
cannot be formulated, such as in the presence of time-dependent domains, moving sources,
or nonlinearities. Mathematically, nonlinearities can arise from the IBC or PDE. Physically,
nonlinear IBCs are relevant when high incident SPLs are considered and nonlinear PDEs are
of particular interest when hydrodynamic phenomena cannot be neglected, such as close to a
supersonic fan tip where shocks occur (Astley et al. 2011, § 5.3) or for flow control, see (Scalo
et al. 2015) and (Olivetti et al. 2015) for numerical investigations of the interaction between a
turbulent boundary layer and an impedance wall.

Remark (IBCs in electromagnetics). Although this work solely focuses on aeroacoustics, let us
briefly highlight that similar boundary conditions are encountered in electromagnetics, under
the name of surface IBCs (SIBCs) (Yuferev and Ida 2010). Let E (resp. H) be the electric
(resp. magnetic) field on Ω ⊂ R3. A linear SIBC links the tangential components of E and H
through

E‖(t,x) =
[
z(·,x) ?H‖(·,x)× n

]
(t) (x ∈ ∂Ω),

where n is the outward unit normal on ∂Ω and the subscript “‖” denotes the tangential com-
ponent. Physically, z models a time-invariant non-perfect conducting material that behaves
linearly. The case of a perfect conductor is recovered for z = 0 (negligible penetration depth).
The models encountered for z are similar to that from acoustics. For instance, the earliest
impedance model, known as the Leontovich or first-order model, is given by (Yuferev and Ida
2010, Eq. 1.20) (Beggs et al. 1992, Eq. 9)

ẑ(s) =
√
µ

σ
s =

√
2j

σδskin
,

where σ and µ are the conductivity and magnetic permeability of the conducting material,
respectively. The quantity δskin =

√
2

ωµσ is known as the skin depth.

Remark (IBCs in combustion). IBCs also have applications in combustion, where they are used
to truncate a part of the combustion chamber or model injectors for instance (Douasbin et al.
2018; Jaensch et al. 2016; Tudisco et al. 2017).
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Remark (IBCs with the wave equation). If p solves the wave equation, the IBC (1) reads

∂tp = −c0
z0
z ? ∂np,

where ∂np denotes the normal derivative, c0 the propagation speed, and z0 the characteristic
impedance. Hence, a hard (resp. pressure-release) wall corresponds to a Neumann (resp. Dirich-
let) boundary condition on p. In mathematical control, IBCs are commonly used to stabilize the
wave equation since they modify the underlying semigroup generator and can yield asymptotic
or even exponential stability: both finite-dimensional (Abbas and Nicaise 2015) and infinite-
dimensional IBCs have been studied, involving for example a fractional derivative (Grabowski
2013) and a time delay (Wang et al. 2011). In these studies, the IBC (related to the Dirichlet
to Neumann map) is usually written as

∂np = −z0
c0
y ? ∂tp,

where y is the admittance kernel. See (Sauter and Schanz 2017) for a numerical treatment using
convolution quadrature.

Scope and contributions

This dissertation focuses on the analysis and discretization of TDIBCs that model locally re-
acting sound absorbing materials such as the one depicted in Figure 1. Non locally reacting
media or application of IBCs to combustion chambers is out of the scope of the present work.
The starting point of this work was the finding that IBCs had been studied separately, under
various forms, by physical, computational, and mathematical communities, without much con-
nections. The broad objective is to consider all three aspects in a unified fashion, by starting
from the physical literature. The present manuscript, which is a continuation of the master
thesis (Monteghetti 2015), contributes to answering the following questions.

(a) What is the mathematical structure of physical impedance models? Part I.

(b) How does the IBC (1) affect well-posedness and stability? Part II.

(c) How to discretize an IBC? Part III.

(d) What about nonlinear absorption mechanisms? Chapter 1 and Part III.

The summary of this dissertation will be provided as answers to the above questions. A detailed
outline of the dissertation is provided below.

Outline

This dissertation is split into three parts that contribute to answering the questions highlighted
above.

Part I Physical impedance models in the time domain

This part gathers the definition and analysis of impedance models. Since the sole focus is on
impedance models, the PDE satisfied by p and u in Ω need not be defined.
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Chapter 1 Basics of impedance models 3

This chapter covers the mathematical and physical basics of impedance models. It introduces
notations, definitions, and properties that are used throughout the dissertation. Section 1.1
presents three formulations of an IBC (namely impedance, admittance, and scattering) and
defines admissibility conditions. The presentation relies on system theory and covers nonlinear
IBCs. Section 1.2 recalls the physical assumptions behind IBCs and gathers physical models.
Section 1.3 summarizes existing numerical models, known in both time and frequency domains
by design.

Section 1.1 has been published in (Monteghetti et al. 2018b), while Sections 1.2 and 1.3 have N
been published in (Monteghetti et al. 2016a). For the generalities, Section 1.2 also draws from
the master thesis (Monteghetti 2015).

Chapter 2 Realization of irrational transfer functions 23

The objective of this chapter is to derive time-local realizations of classes of irrational transfer
functions that include the physical models introduced in Section 1.2, for use in Chapters 4, 5,
and 6. The derived realizations result from the combination of two components: first, a real-
ization of the oscillatory-diffusive (OD) representation through ordinary differential equations
(ODEs), covered in both continuous and discrete forms in Sections 2.1 and 2.2; second, a hy-
perbolic realization of the time delay through a monodimensional transport equation, recalled
in Section 2.3. Application to physical models is carried out in Section 2.4.

Sections 2.1 and 2.4 are extended versions of what can be found in (Monteghetti et al. N
2016a) and (Monteghetti et al. 2018b). Section 2.3 draws from (Monteghetti et al. 2017a) and
(Monteghetti et al. 2018b). Section 2.2 is contained in (Monteghetti et al. 2016a), (Monteghetti
et al. 2018b), and (Monteghetti et al. 2018d). Parts of this chapter have been communicated in
(Monteghetti et al. 2018c, 2016b,c).

Part II Well-posedness and stability with impedance boundary condi-
tions

Part II focuses on the theoretical study of IBCs, namely the study of well-posedness and stability
using energy methods. In Chapter 3, p and u obey the linearized Euler equations, while they
obey the wave equation in Chapter 4.

Chapter 3 Boundary conditions for the linearized Euler equations 69

The objective of this chapter is to define boundary conditions suitable for the LEEs. To discuss
well-posedness it relies on the theory of Friedrichs systems, whose concise formalism will prove
handy in the energy analysis of Chapter 5. The contribution of this chapter is the application of
recent results of the theory of Friedrichs systems to the LEEs. Section 3.1 recalls the LEEs and a
proof of well-posedness in free space that relies on an a priori energy estimate. The initial bound-
ary value problem (IBVP) is covered in Section 3.2, where a literature review shows that existing
proofs of well-posedness also crucially depend on a priori energy estimates, so that boundary
conditions are required to be maximal positive, maximal dissipative, or Friedrichs-admissible.
The definition of such boundary conditions for the LEEs is investigated in Section 3.3, which
naturally leads to the definition of IBCs. Proving well-posedness of the LEEs with IBCs is
discussed in Section 3.4.

This chapter expands on what is briefly mentioned in (Monteghetti et al. 2018b, § 2). N
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Chapter 4 Stability of the wave equation with impedance boundary conditions 87

This chapter focus on the no flow case, i.e. the multidimensional wave equation, and proves
asymptotic stability with a wide range of admissible IBCs. A common method of proof, inspired
by (Matignon and Prieur 2014), is employed that consists in formulating an abstract Cauchy
problem on an extended state space using a realization of each impedance operator, be it finite
or infinite-dimensional; asymptotic stability is then obtained with the Arendt-Batty-Lyubich-Vũ
(ABLV) theorem, although a less general alternative based on the invariance principle is also
discussed. In spite of the apparent unity of the approach, no single, unified proof is known to
the author: this leads to the formulation of a conjecture at the end of this dissertation.

This chapter is drawn from (Monteghetti et al. 2018a) and has been partly communicatedN
in (Monteghetti et al. 2017b).

Part III Discretization of impedance boundary conditions

This part deals with the discretization of the LEEs coupled with IBCs, for application in duct
aeroacoustics.

This whole part is drawn from (Monteghetti et al. 2018b) and has been partly communicatedN
in (Monteghetti et al. 2017b).

Chapter 5 Weak enforcement of impedance boundary conditions 123

This chapter analyzes the weak enforcement of an admissible IBC within a discontinuous Galerkin
(DG) discretization of the LEEs, employing the numerical flux formalism to ease the transition
to other methods popular in fluid mechanics. For the analysis the IBC is only assumed admissi-
ble and need not be given by one of the models analyzed in Chapter 2, so that both chapters are
independent. The first two sections provide reminders: Section 5.1 summarizes the needed facts
on the LEEs from Chapter 3, while Section 5.2 recalls the DG discretization of the LEEs as well
as some standard estimates. The analysis given in Section 5.3 shows the computational interest
of a numerical flux based on the scattering operator B over fluxes based on the impedance or
admittance operators. These results will be further discussed in the numerical applications of
Chapter 6.

Chapter 6 Numerical validation and application to duct aeroacoustics 145

This chapter gathers numerical applications of TDIBCs in aeroacoustics, with a focus on acous-
tical liners. Section 6.1 recalls the derivation of discrete models from the analysis of physical
impedance models of liners presented in Section 2.4, leading to a time-local formulation that
consists in composing a set of ODEs with a transport equation. The OD representation is dis-
cretized using an adaptation of the optimization method given in Section 2.2 while the transport
equation is discretized with a high order DG method. Applications are then shown in the last
two sections. Section 6.2 deals with the impedance tube whose analytical solution is known even
for nonlinear impedance. In particular, it validates the analysis of Chapter 5 by investigating
the computational properties of a nonlinear algebraic scattering operator. Section 6.3 presents
an application to two flow ducts documented in the literature.

Appendices

Appendix A Convolution, Fourier and Laplace transforms 177

This appendix discusses the links between Fourier and Laplace transforms and its implications
for the formulation of admissibility conditions.
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This appendix is an extension of (Monteghetti et al. 2018b, App. A). N

Appendix B Representation of a DDOF liner impedance model 191

This appendix provides the oscillatory-diffusive representation of an impedance model for double
degree of freedom (DDOF) liners, following the methodology laid out in Section 2.4.

Appendix C Miscellaneous results of functional analysis 195

This appendix gathers some results of functional analysis used in Chapter 4.

Appendix D Aeroacoustic energy 197

The energy analysis carried out in Chapter 5 relies on the standard L2 norm, i.e. the acoustic
energy. This appendix shows that using an aeroacoustic energy instead would not change the
results.

Appendix E Energy balance of diffusive representations 201

This appendix gathers energy balances associated with diffusive realizations. Sections E.1
and E.2 recall energy balances for standard and extended diffusive kernels, which are well-
known in the literature. The last section, namely Section E.3, is original and gives the energy
balance for a diffusive kernel in the scattering formulation, which is used in a stability proof of
Chapter 5.

Appendix F Implementation details 205

This appendix provides some implementation details for the numerical application of Chapter 6.

Reader’s guide
Although there is a logical progression between the chapters, they are written to be mostly
self-contained. The table below summarizes the parts of the dissertation relevant for each topic.

Topic Relevant chapters
Design of TDIBCs Part I, Chapter 5, and Sections 6.1–6.2
PDE Section 1.1 and Part II
Numerical application to duct aeroacoustics Section 1.1 and Chapter 6
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Basics of impedance models
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This chapter covers the mathematical and physical basics of impedance models. It introduces
notations, definitions, and properties that are used throughout the dissertation. Section 1.1

presents three formulations of a nonlinear IBC and defines admissibility conditions using system
theory. Section 1.2 recalls the physical assumptions behind IBCs and gathers physical models.
It first lists some relevant and well-known acoustical models derived in the frequency domain
from first principles. Then, it discusses the modeling of base flow and nonlinear effects, the
latter due to high incident SPLs. Section 1.3 summarizes existing numerical models, known in
both time and frequency domains by design.

1.1 Admissibility of impedance operators

In this section we discuss three formulations of IBCs, each relying on a different operator: the
impedance operator Z (convolution kernel z in the linear case); the admittance operator Y
(convolution kernel y in the linear case); the scattering operator B (convolution kernel β in
the linear case, known as the reflection coefficient). The main purpose of the section, apart
from introducing notations used in later chapters, is to introduce admissibility conditions for
the operators Z, Y, and B, as well as for the kernels z, y, and β.

1.1.1 Impedance formulation

We begin this section with the impedance formulation. This formulation naturally arises when
modeling material made from connections of components in series, for example the single degree
of freedom liners covered in Section 1.2.2.

3
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If p (resp. u) denotes the acoustic perturbation of pressure (resp. velocity), defined on an
open bounded set Ω with a Lipschitz boundary ∂Ω, an IBC can be generally written as

p(t,x) = Z[x,u(·,x) · n(x)](t) ((t,x) ∈ (0,∞)× ∂Ω), (1.1)

where n is the outward unit normal (it points towards the material) and Z is a scalar-valued
operator, known as the impedance operator. In the expression (1.1) the space and time variables
are explicitly written to emphasize that the operator Z(x, ·), which may depend on space, applies
to a function of time only, not space. For the sake of clarity, the space variable is omitted so
that (1.1) is more concisely written

p(t) = Z(u · n)(t) t ∈ (0,∞),

where it is implicitly understood that Z, which may depend on x, is applied to the function of
time t 7→ u(t,x) · n. Examples of impedance operators Z are given throughout the chapter.

In this chapter, we seek to define conditions on Z so that it models a passive system; these
kind of conditions are known in the acoustical literature as admissibility conditions (Rienstra
2006). To do so, we adopt a system theory viewpoint whereby the function of time u · n is an
input, the function of time p is an output, and Z is a single-input single-ouput operator. In
particular, this implies that we do not need to detail the PDE solved by p and u at this stage.

By system theory, we here mean the theory of passive linear systems that has been formalized
in the 1950s and 1960s, often motivated by the study of electrical circuits. This section relies on
the two introductory works (Zemanian 1965, Chap. 10) and (Beltrami and Wohlers 1966, § 3.5),
which use the theory of distributions. Background material and references on harmonic analysis
and distribution theory have been gathered in Appendix A.

Herein, to define the admissibility of a nonlinear impedance operator Z we use the three
fundamental properties defined in these works, namely causality, reality, and passivity. This is
formalized below.

Definition 1.1 (Admissibility conditions). Let Z : E ′(R) → D′(R) be a continuous operator.
It is said to be an admissible impedance operator if it enjoys the following properties:

(i) (Causality) If u is causal, i.e. u ∈ D′+(R), then Z(u) exists and is causal, i.e. Z(u) ∈
D′+(R).

(ii) (Reality) Real-valued inputs are mapped to real-valued outputs.

(iii) (Passivity) For every smooth and compactly supported input u ∈ C∞0 (R) and for every
time instant t > 0,

<
(ˆ t

−∞
Z(u)(τ)u(τ) dτ

)
≥ 0, (1.2)

where the overline denotes the complex conjugate.

Physically, the left-hand side of (1.2) is the energy supplied to the system over (−∞, t). For
example, if u (resp. Z(u)) has dimension m · s−1 (resp. N ·m−2), then Z(u)u has dimension
W ·m−2, so that

I(t) =
ˆ t

−∞
Z(u)(τ)u(τ) dτ

is an energy per unit surface. The passivity condition (1.2), which applies to every passive system
encountered in physics, means that the system does not produce energy (Zemanian 1965, p. 301)
(Lozano et al. 2000, p. 12).
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Remark 1.2. The relevance of the passivity condition (1.2) can also be understood by considering
the decay of acoustic energy in a smooth bounded open set Ω ⊂ Rd (d ∈ N∗). Formally, if the
smooth functions p̃ and u satisfy

∂tp̃ = −c0∇ · u, ∂tu = −c0∇p̃,

then we have
1
2
d
dt

[ˆ
Ω
|p̃(t,x)|2 dx+

ˆ
Ω
|u(t,x)|2 dx

]
= −c0

ˆ
∂Ω
p̃u · ndx.

The intuitive fact that passive impedance operators can yield energy decay will be at the heart
of Parts II and III. However, this will not be developed further in this chapter, which focuses
on the impedance operator in isolation.
Remark 1.3 (Passivity and reality). In some references, the definition of passivity includes reality,
see e.g. (Beltrami and Wohlers 1966, § 3.5). In this dissertation, we separate the two conditions,
which is in line with the acoustical literature (Rienstra 2006). Note that if Z satisfies the reality
condition (ii) and the input u is real-valued, then the real part ”<” and overline used in the
inequality (1.2) are superfluous, since all the involved quantities are real-valued.

The admissibility of linear operators enjoys simpler characterizations. A standard result
of distribution theory, recalled in Proposition A.4, gives that if Z is linear, continuous, and
time-invariant (LTI) then it is a convolution operator. In this case, the IBC (1.1) reduces to

p(t) = [z ? u · n] (t), (1.3)

where z ∈ D′(R) is the impedance kernel and “?” denotes the time-domain convolution of
distributions. (See Appendix A for a reminder on the convolution product.)
Remark 1.4 (Passivity and causality). If Z is LTI, then it is interesting to note that Definition 1.1
could be restricted to reality and passivity. Indeed, for real LTI systems, passivity implies
causality (Zemanian 1965, Lemma. 10.3) (Beltrami and Wohlers 1966, Note 8). A consequence
of this result is that a real anticausal LTI system cannot be passive: intuitively, for such a system
the energy supplied over (−∞, t) can be made arbitrarily negative by modifying the input u in
the future.

If the impedance kernel is causal and has a finite exponential growth, i.e. z ∈ D′+(R) and
e−σtz ∈ S ′(R) for σ > σ0, then the LTI IBC (1.3) can also be formulated in the Laplace domain
as

p̂(s,x) = ẑ(s)û(s) · n (<(s) > σ0), (1.4)

where f̂ denotes the Laplace transform of f . In this dissertation, the Laplace transform is an
analytic function on some open right half-plane

C+
σ0

:= {s ∈ C | <(s) > σ0}.

The definition of the Laplace transform is recalled in Appendix A.
Remark 1.5 (Laplace or Fourier?). Formally, s = jω yields the Fourier transform but such a mere
formal substitution is error-prone, especially when dealing with admissibility conditions. The
difficulty arises from the fact that the Fourier transform is in general a tempered distribution,
by contrast with the Laplace transform which is an analytic function of an open right half-plane:
a discussion on this topic is provided in Appendix A. The Laplace transform is also useful to
derive time-domain representations of physical impedance models, as is done in Chapter 2.
Remark 1.6. The real (resp. imaginary) part of ẑ is known as the resistance (resp. reactance).
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In this dissertation, when there is no risk of confusion, the term “impedance” can designate
the single-input single-output operator Z, the convolution kernel z, or its Laplace transform
ẑ. As already mentioned, each of these quantities can have a spatial dependency (i.e. Z(x, ·),
z(x, t), or ẑ(x, s)), although it is not explicitly written for the sake of clarity.

A key fact in practice is that the admissibility of an LTI impedance can be readily verified
using its Laplace transform ẑ, as summarized in Proposition 1.8 below.

Definition 1.7 (Positive-real function). Let

C+
0 := {s ∈ C | <(s) > 0}

be the open right half-plane. A function f : C+
0 → C is positive-real if

(i) f is analytic in C+
0 ,

(ii) f(s) ∈ R for s ∈ (0,∞),

(iii) <[f(s)] ≥ 0 for <(s) > 0.

Proposition 1.8. If a LTI impedance operator Z : E ′(R)→ D′(R) is admissible, then

(i) Z(u) = z ? u with z := Z(δ) ∈ D′+(R) ∩ S ′(R),

(ii) The Laplace transform ẑ is a positive-real function.

Conversely, if f is a positive-real function, then z := L−1(f) ∈ D′+(R)∩S ′(R) and u 7→ z ?u
is an admissible LTI impedance operator.

Proof. (⇒) Since Z is LTI and maps D′+(R) to D′+(R), it is a convolution operator with causal
kernel, i.e. Z(u) = z ?u with z := Z(δ) ∈ D′+(R) (Beltrami and Wohlers 1966, p. 28). Moreover,
since Z is real and passive, the Laplace transform ẑ is a positive-real function (Beltrami and
Wohlers 1966, Thm. 3.15) (Zemanian 1965, Thm. 10.4-1). This implies that, for any ω ∈ R, the
limit

lim
σ→0

ẑ (σ + jω) (1.5)

is defined in S ′(R) (Beltrami and Wohlers 1966, Thm. 3.17), so that by inverse Fourier transform
z belongs to S ′(R).

(⇐) Since f is a positive-real function, its growth at infinity is at most polynomial:

|ẑ(s)| ≤ C(a)P (|s|) (<(s) ≥ a > 0) ,

where P is a second degree polynomial. This results follows from the integral representation of
positive-real functions (Beltrami and Wohlers 1966, Eq. 3.21). Then, by inversion of the Laplace
transform, z := L−1(f) is well-defined and belongs to D′+(R). The conclusion follows from the
fact that the limit (1.5) is defined in S ′(R).

To illustrate Proposition 1.8, let us give some practical examples of admissible impedance
models that are encountered in Section 1.2.2.

The most elementary example is the proportional-integral-derivative kernel, defined as{
zPID(t) = a−1H(t) + a0δ(t) + a1 δ

′(t)
ẑPID(s) = a−1

1
s + a0 + a1 s,

where H is the Heaviside function, δ the Dirac distribution, and δ′ is the derivative in the sense
of distributions.
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The fractional kernel of order α > 0 is

Yα(t) := H(t)
Γ(α)t1−α , Ŷα(s) = 1

sα
, (1.6)

and its distributional derivative for α ∈ (0, 1) is

z(t) = Yα ? δ
′ = pf

(
H(t)

Γ(α− 1)t2−α
)
, ẑ(s) = s1−α,

where pf denotes Hadamard finite part (Zemanian 1965, § 2.5).
The time-delayed kernel

z(t) = aδ(t) + bδ(t− τ), ẑ(s) = a+ be−sτ

is admissible if a ≥ b ≥ 0 and τ ≥ 0.
However, the following kernels are not admissible:

z(t) = 1√
jpf
(

H(t)
Γ(−1

2)t
3
2

)
, ẑ(s) =

√
s

j , (1.7)

which fails the reality condition;
ẑ(s) = a+ be−sτ

with a < b and τ ≥ 0, which is not passive;

z(t) = δ(t+ τ), ẑ(s) = esτ ,

with τ ≥ 0, which is not causal;

z(t) = etH(t), ẑ(s) = (s− 1)−1,

which is not passive (ẑ(s) is not analytic in C+
0 since it admits 1 as a pole).

The remainder of this section gives a similar treatment to the two other formulations of the
IBC (1.1), namely the admittance and scattering formulations.

1.1.2 Admittance formulation

The admittance formulation is
u(t) · n = Y[p](t), (1.8)

where Y is the admittance operator. When defined, the link between (1.1) and (1.8) is provided
by

Y ◦ Z = I, (1.9)

where I denotes the identity operator. Using the fact that the inverse of a positive-real function is
a positive-real function, one simply obtains that if Z is LTI and admissible, then the admittance
operator Y exists, is unique, and is also LTI and admissible with

y ? z = δ, ŷ(s)ẑ(s) = 1, (1.10)

where y is the admittance kernel. In this case, the IBC (1.8) reduces to

u(t) · n = [y ? p](t). (1.11)

The admissibility conditions on Y are strictly identical to that of Z, so that Proposition 1.8
with “admittance” substituted for “impedance” holds true.
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Remark 1.9. The real (resp. imaginary) part of ŷ is known as the conductance (resp. suscep-
tance).

In the LTI case, the admissibility of the impedance operator implies that of the admittance
operator: if Z is an admissible LTI impedance operator, then Y is an admissible LTI admittance
operator. This follows from the fact that the inverse of a positive-real function is a positive-real
function, see the lemma below.

Lemma 1.10. Let f : C+
0 → C be a positive-real function. Then:

(i) f has no zeros in C+
0 .

(ii) 1/f is a positive-real function.

Proof. For the particular case where f is a rational function, this result is mentioned in (Ioannou
and Tao 1987). We propose here an elementary proof. (i) By assumption, <(f(s)) ≥ 0 for any
s ∈ C+

0 , so that

∀(s0, s1) ∈ C+
0 × C+

0 , |arg(f(s0))− arg(f(s1))| ≤
(
π

2 −
(
−π2

))
= π.

Since f is analytic in C+
0 , it follows from the argument principle (Gamelin 2001, §VIII.1) that

Nf ≤
1

2ππ = 1
2

where Nf is the number of zeros of f in any open subset of C+
0 . Since Nf ∈ N, we deduce Nf = 0.

(ii) Since f is analytic and has no zeros in C+
0 , 1/f is analytic in C+

0 . Moreover, by assumption
on f , 1/f(s) ∈ R for s ∈ (0,∞). The conclusion follows from the identity <

(
1

f(s)

)
= <(f(s))
|f(s)|2 .

1.1.3 Scattering formulation

The third and last considered formulation of the IBC (1.1) is the so-called scattering formulation

p̃(t)− u(t) · n = B[p̃+ u · n](t), (1.12)

where B is the scattering operator and
p̃ := p

z0

with z0 > 0 is dimensionally homogeneous to u. The scattering formulation is ubiquitous in
system theory, see (Lozano et al. 2000, § 2.8) (Staffans 2002) and references therein. It has an
elementary physical interpretation that justifies its name: the incident wave p̃+u ·n is reflected
back as p̃− u · n. (See for instance the characteristics of the linearized Euler equations (3.1).)

The admissibility conditions given in Definition 1.1 can be readily written under their scat-
tering variant: the causality and reality properties are identical, while the passivity condition
(1.2) can be rewritten using the elementary algebraic identity

4p̃u = (p̃+ u)2 − (p̃− u)2.

This leads to the definition below.

Definition 1.11 (Admissibility conditions). Let B : E ′(R)→ D′(R) be a continuous operator.
It is said to be an admissible scattering operator if it enjoys the following properties:

(i) (Causality) If u ∈ D′+(R), then B(u) exists and belongs to D′+(R).
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(ii) (Reality) Real-valued inputs are mapped to real-valued outputs.

(iii) (Passivity) For every v ∈ C∞0 (R) and t > 0,
ˆ t

−∞
|B(v)(τ)|2 dτ ≤

ˆ t

−∞
|v(τ)|2 dτ. (1.13)

The passivity condition written under the form (1.13) implies that B, as a map from L2(R)
to L2(R), is a contraction. From this fact, the reader may guess the potential computational
benefits of B over Z and Y: an elementary numerical example is provided in Chapter 6.

When possible, the scattering operator B can be deduced from the (nonlinear) impedance
operator Z through

B :=
(Z
z0
− I

)
◦
(Z
z0

+ I
)−1

= I − 2
(Z
z0

+ I
)−1

. (1.14)

An example of physical nonlinear scattering operator derived using this expression is given in
Chapter 2. If Z is LTI and admissible, then B exists, is unique, and is an admissible LTI
scattering operator with kernel β so that the IBC (1.12) reads

p̃(t)− u(t) · n = β ? [p̃+ u · n](t).

The Laplace transform of β is given by

β̂(s) =
ẑ(s)
z0
− 1

ẑ(s)
z0

+ 1
= 1− 2

ẑ(s)
z0

+ 1
(<(s) > 0). (1.15)

Intuitively, z =∞, y = 0, and B = I (β = δ) yield a hard wall while z = 0, y =∞, and B = −I
(kernel β = −δ) yield a pressure-release wall.
Remark 1.12. The Laplace transform β̂ is known as the reflection coefficient in the acoustical
literature.

Similarly to the impedance and admittance cases, the admissibility of an LTI scattering op-
erator can be conveniently characterized using the Laplace transform of its kernel, namely the
reflection coefficient β̂. The result, given in Proposition 1.14, is identical to that of Proposi-
tion 1.8 with “bounded-real” substituted for “positive-real”.

Definition 1.13 (Bounded-real function). A function g : C+
0 → C is bounded-real if g is analytic

in C+
0 , g(s) ∈ R for s ∈ (0,∞), and |g(s)| ≤ 1 for <(s) > 0.

Proposition 1.14. If a LTI scattering operator B : E ′(R)→ D′(R) is admissible, then

(i) B(v) = β ? v with β := B(δ) ∈ D′+(R) ∩ S ′(R),

(ii) The Laplace transform β̂ is a bounded-real function.

Conversely, if g is a bounded-real function, then β := L−1(g) ∈ D′+(R)∩S ′(R) and v 7→ β ?v
is an admissible LTI scattering operator.

Proof. The proof is similar to that of Proposition 1.8.
(⇒) Since B is LTI and maps D′+(R) to D′+(R), it is a convolution operator with a causal kernel
β. Moreover, since B is real and passive in the sense of (1.13), the Laplace transform β̂ is a
bounded-real function (Beltrami and Wohlers 1966, Thm. 3.18). The conclusion follows from
the fact that, since β̂ is a bounded holomorphic function, its boundary value on jR belongs to
L∞(R).

(⇐) Since g is analytic in C+
0 and bounded, inversion of the Laplace transform gives β ∈

D′+(R). The conclusion follows from the same arguments than (⇒).
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Material Illustration Impedance model expression
CT liner Figure 1.4 (1.24) with (1.17) or (1.25)
SDOF liner Figure 1.6 (1.29) with (1.19,1.25) and, if needed, the

additive nonlinear term (1.32)
DDOF liner Figure 1.7 (1.30) with (1.16,1.19,1.25) and, if needed, the

additive nonlinear term (1.32)

Table 1.1. Summary of the sound absorbing material impedance models given in Section 1.2.

An intuitive understanding of Proposition 1.14 can be obtained by noting that the map∣∣∣∣∣∣∣
C+

0 → {s ∈ C | |s| < 1}

s 7→ s− 1
s+ 1

is conformal, i.e. analytic, one-to-one, and onto (Gamelin 2001, §XI.1). See also the following
proposition.

Proposition 1.15 ((Lozano et al. 2000, Thm. 2.9)). Let f, g : C+
0 → C. If g is bounded real

and g 6= 1 in C+
0 , then

1+g
1−g is positive-real. If h is positive-real, then h−1

1+h is bounded real.

1.2 Physical impedance models
The purpose of this section is to introduce physical aspects of IBCs. Section 1.2.1 recalls the
definition of a locally reacting surface and two basic impedance models. Section 1.2.2 builds
upon these generalities to derive the standard linear models for single and double degree of
freedom liners. The modeling of nonlinearities and grazing flow is discussed in Section 1.2.3.

We warn the reader that this section, by contrast with the previous one, contains mostly
physical considerations. The reader only interested in the expressions of physical models can
consult Table 1.1 and skip to Section 1.3.

1.2.1 Generalities

Locally reacting surface

As mentioned in the introduction and Section 1.1, IBCs are meant to model locally reacting
surfaces. To define this concept, let us consider the case of a plane progressive harmonic wave
(PPHW) reaching a surface Σ that materializes a discontinuous separation between two media
having different acoustic properties. Figure 1.1a depicts the case where the transmitted wave has
a wavenumber kt with a non-null tangential component (i.e. a non-null angle θt). By definition,
a locally reacting surface is obtained when θt = 0. (See (Kinsler and Frey 1962, § 6.7) for a
physical discussion.)

Definition 1.16 (Locally reacting surface). A locally reacting (also normally reacting) surface
is a surface that refracts waves such that the transmitted waves propagate only in the normal
direction (i.e. only at right angle to the surface), as depicted in Figure 1.1b. Such a surface can
be modeled using an IBC, introduced in Section 1.1.

Physically, an IBC models the effect of a locally reacting absorbing material on the sound
field after a homogenization distance, see (Laurens et al. 2014) and (Popie 2016) for theoretical
studies on perforated plates.
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i

r
t

θi

θr θt

z0 Σ

(a) Non-locally reacting surface.

i

r

t

θi

θr

θt = 0

z0 Σ

(b) Locally reacting surface.

Figure 1.1. Oblique incidence of a PPHW on a surface Σ that separates two media. The three depicted
wavenumbers are associated with the incident (i), transmitted (t) and reflected (r) waves.

Remark 1.17 (Resonant frequencies). For a normally incident PPHW of angular frequency ω,
the power absorption coefficient is given by (Kinsler and Frey 1962, Eq. 6.17)

αt = z1
4<[ẑ(jω)]
|z1 + ẑ(jω)|2 .

From this expression, we deduce that for an impedance ẑ to be optimal at ω, i.e. to absorb
the most energy, it is necessary that = [ẑ(jω)] = 0. Frequencies at which the reactance is null
(resp. maximal) are called resonant (resp. anti-resonant) frequencies. Note, however, that when
higher-order modes are considered the reactance of the optimal impedance is not null in general
(Cremer 1953; Tester 1973b).

Remark 1.18 (Experimental measurement). Reviews of experimental techniques can be found
in (Primus 2012, § 1.3) and (Richter 2010, § 1.3). In acoustics, the impedance of an absorbing
material can easily be deduced from two measurements of acoustic pressure in a device known
as an impedance or Kundt tube. However, in the presence of flow, impedance measurement is
a much more involved process; the existing methods can be split into two categories:

• Direct methods, where the impedance is deduced from local measurements, typically of
acoustic velocity and pressure around or inside the material. These methods are also used
with data coming from direct numerical simulations.

• Inverse methods, where the impedance is identified based on acoustic velocity and pressure
measurements.

The remainder of this section focuses on recalling basic linear impedance models in prepa-
ration for the derivations of Section 1.2.2.

Basic impedance models: impedance tube

Let us consider the impedance tube depicted in Figure 1.2 that consists in a cavity of cross-
section Sc and length lc filled with a medium of characteristic impedance zc. Its impedance,
with respect to the surface Sc, is given by

ẑ|Sc =
〈p̂〉Sc
〈û · n〉Sc

,

where 〈·〉S denotes the spatial average over S and n is the inward unit normal (i.e. it points
towards the tube).
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x = 0 x = lc

n
dc

Sc
ẑb

Figure 1.2. Cylindrical impedance tube of length lc, diameter dc, cross-section Sc, backing impedance
ẑb, and characteristic impedance zc.

The simplest way of assessing this impedance is to model the cavity as a monodimensional
waveguide (0, lc) with propagation wavenumber kc. In the Laplace domain, this reads

(jkc(s))2 p̂(x, s) = ∂2
xp̂(x, s), jkc(s) û(x, s) = − 1

zc
∂xp̂(s, x) (x ∈ (0, lc)) .

With this modeling, the backing impedance ẑb and tube impedance ẑ|Sc are given by

ẑb(s) = p̂(s, x = lc)
û(s, x = lc)

, ẑ|Sc = p̂(s, x = 0)
û(s, x = 0) .

This leads to the standard formula

ẑ|Sc = ẑtube(kclc, zc, ẑb),

with (Kinsler and Frey 1962, Eq. 8.35) (Kuttruff 2007, Eq. 8.10) (Mechel 2008, Eq.C.2.12) (Al-
lard and Atalla 2009, Eq. 2.16)

ẑtube(kclc, zc, ẑb) := zc
ẑb cos(kclc) + jzc sin(kclc)
zc cos(kclc) + jẑb sin(kclc)

= zc
ẑb cosh(jkclc) + zc sinh(jkclc)
zc cosh(jkclc) + ẑb sinh(jkclc)

. (1.16)

If the cavity is rigidly backed, i.e. if ẑb =∞, then this impedance reduces to

ẑ|Sc = −jzc cot(kclc) = zc coth(jkclc).

Following Proposition 1.8, the wavenumber kc must be chosen so that the impedance is a positive-
real function. A model for the wavenumber kc suitable for liners is covered in Section 1.2.2. The
simplest particular case is that of a lossless air-filled cavity (i.e. wave equation on (0, lc)), which
yields

jkc = s

c0
(1.17)

so that the cavity impedance is a positive-real function given by

ẑ|Sc = zc coth
(
slc
c0

)
=
0

c0lc
s

+O
(∣∣∣∣slcc0

∣∣∣∣) ,
where

He :=
∣∣∣∣slcc0

∣∣∣∣
is known as the Helmholtz number.
Remark 1.19. The derivation of (1.16) assumes that only plane waves propagate in the impedance
tube, i.e. that the considered frequencies are below the cut-off frequency. For a cylindrical tube
of diameter dc, the cut-off frequency is given by (Rienstra and Hirschberg 2016, § 7.2)

fcut-off = c0
2π

1.8412
dc/2

,

so that this is not a practical restriction when modeling micro-perforations: a diameter of 9.5 mm
gives a cut-off frequency of 21 kHz for instance.
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x = 0 x = lp

r = dp
2

n

Sp

Figure 1.3. Cylindrical perforation of length lp, diameter dp, and cross-section Sp.

Basic impedance models: perforation impedance

The second basic component of an acoustical liner is its perforation. Figure 1.3 presents a
schematic of a cylindrical perforation of length lp, diameter dp, and cross-section Sp. We recall
below the model introduced in (Crandall 1926, App. A); a detailed derivation can be found in
(Monteghetti 2015, App. C). The model relies on the following three hypotheses.

• The perforation is an infinite axisymmetric cylinder of diameter dp.

• The pressure gradient is longitudinal, i.e. ∇p ∝ ex, and independent of the radial coordi-
nate r.

• The flow obeys the Stokes equation

ρ0∂tu(r, x, t) = −∂xp(x, t) + ρ0ν∆u(r, x, t), (1.18)

with a no-slip boundary condition at r = dp/2.

Applying the Laplace transform to (1.18), solving the resulting PDE in (r, x), and taking a
cross-section average leads to

〈û〉Sp (x) = − 1
ρ0s

[1− Φ (kνdp/2)] dp̂dx(x),

where
Φ (s) := 2

s

I1
I0

(s)

with In the modified Bessel function of the first kind of order n and

kν :=
√
s

ν

is the wavenumber associated with viscous diffusion. Since the incompressibility hypothesis
implies that 〈û〉Sp is independent of x, the perforation impedance is given by

p̂(0)− p̂(lp)
〈û〉Sp

= ẑperf(lp, dp)

where

ẑperf(lp, dp) := ρ0lps [1− Φ (kνdp/2)]−1 (1.19)

=
+∞

3 ρ0lpν

(dp/2)2 + 2ρ0lp
√
ν

dp/2

√
s+ ρ0lps+O

[ 1
|kνdp/2|

]
(1.20)

=
0

8 ρ0lpν

(dp/2)2 + 4
3ρ0lps+O

[
|kνdp/2|4

]
. (1.21)
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The nondimensional number
St := |kνdp/2|

is known as the Stokes number and is proportional to the ratio of the diameter dp to the acoustic
boundary layer thickness. The provided low and high frequency approximations are positive-real
functions when the physical coefficients are nonnegative; it can be verified numerically that the
same is true about the full model (1.19), but no proof is given herein.
Remark 1.20. If the perforation is not a cylinder but a slit of width dp, the expression of ẑperf is
still (1.19) but with Φ(s) := tanh(s)/s (Allard and Atalla 2009, Chap. 4).
Remark 1.21. The use of the Stokes equation in the derivation of the perforation impedance
(1.19) assumes incompressibility; the quantity kν has the dimension of a wavenumber but is not
associated with a propagation phenomenon, by contrast with kc in (1.16). Incompressibility is
physically satisfied provided that the minimum wavelength of the considered acoustic field is
large compared to the dimensions of the cylinder, which reads He� 1 or equivalently

f � c0
2πmax(lp, dp)

.

This is not a practical limitation with a micro-perforation: for dp = 0.3 mm and lp = 0.8 mm,
we get f � 68 kHz.

Impedance corrections

The two basic impedance models covered above discard finite length effects, which can be at-
tributed to one of the following phenomena.

• (Radiation.) At a discontinuity, sound waves are radiated and diffracted.

• (Viscosity.) Although viscosity is present in the Crandall model (1.19), it does not account
for all viscous effects such as the ones at the entrance of the perforation.

• (Interaction.) The cavity or the perforation modeled above is not alone in an infinite space,
but rather one among many others on a surface.

In the acoustical literature, the common way to account for these effects is to use impedance
corrections. Corrections applicable to the two introduced models can be found in (Melling 1973,
§ 2), (Malmary 2000, Chaps. 1–2), and (Monteghetti 2015, § 3.3). These corrections typically
consists in modifying the length involved in the model, i.e. lc or lp. Since they do not change
the mathematical nature of the impedance model in the time domain, we do not recall them
here.
Remark 1.22 (Non admissible corrections). In the acoustical literature, one commonly encoun-
ters the viscous correction term ẑvisc(jω) =

√
ω, which was introduced in (Ingard 1953). This

correction is not admissible in isolation, since the corresponding kernel zvisc is complex-valued,
see (1.7). More generally, non positive-real correction terms can arise from truncated Taylor
expansions. Consider for example the radiation correction term (Guess 1975, Eq. 11), which
reads ẑrad(jω) = z0

d2
p

8c2
0
ω2 + jz0

4dp
3πc0

ω.

Surface impedance

When manipulating impedance models, it is of paramount importance to keep track of the
surface with which they have been computed: this is the reason for using the subscript “|S”
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Cavity (σc, lc, dc)

Rigid backplate

Figure 1.4. CT liner. (Adapted from (Jones et al. 2005, Fig. 3a).)

above. The mass conservation identity S0 〈û · n〉S0
= S1 〈û · n〉S1

implies

ẑ|S0 = S0
S1
ẑ|S1 = σ0

σ1
ẑ|S1 ,

where σi is the porosity of the surface Si, defined as

σi := Si
Stotal

, (1.22)

where Stotal is the total surface. In particular, the surface impedance ẑ, which is the one used
in the IBC (1.3), can be deduced from a given model ẑ|S using

ẑ = ẑ|Stotal = 1
σ
ẑ|S . (1.23)

1.2.2 Acoustical models for liners

Building upon the basic model introduced in Section 1.2.1, models for three kinds of liners are
considered herein.

Ceramic tubular (CT) liner

CT liners, described in (Jones et al. 2005) and depicted in Figure 1.4, essentially consist in
a set of long and narrow cavities. Their impedance operators stay linear for a wide range of
incident SPLs, which make them valuable materials for code validation. They are mostly used
for academic experiments.

The surface impedance is directly deduced from (1.16), namely

ẑCT = zc
σc

coth(jkclc), (1.24)

where σc is the porosity, lc the cavity length, and kc the propagation wavenumber. Assuming
the cavities to be cylindrical with diameter dc, a suitable wavenumber is (Bruneau 2006, § 3.7)

jkc (s) = s

c0

[1 + (γ − 1) Φ (kκdc/2)
1− Φ (kνdc/2)

]1/2

(1.25)

=
+∞

s

c0

[
1 +
√
ν

dc/2

(
γ − 1√

Pr
+ 1

) 1√
s

]
+O [1] (1.26)

=
0

s

c0

[
2
√

2√γν
dc/2

1√
s

]
+O

[
|kνdc/2|3

]
, (1.27)

where γ denotes the ratio of specific heat, κ the thermal diffusivity, kκ the wavenumber associated
with thermal diffusion

kκ :=
√
s

κ
= kν

√
Pr,
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Figure 1.5. Impedance model (1.24) for the CT57 liner. ( ) CT57 liner at 130 dB (Jones et al. 2005).
Dimensions: σc = 57 %, dc = 0.6 mm, and lc = 85.6 mm. ( ) Bruneau wavenumber (1.25)
using the corrected length lc = 0.84 × 85.6 mm and diameter dc = 0.8 × 0.6 mm. ( )
High-frequency approximation of the Bruneau wavenumber (1.26) using the same corrected
values. ( ) Lossless wavenumber (1.17) using the uncorrected length lc = 85.6 mm.

and Pr the Prandtl number. The provided low and high frequency approximations lead to a
positive-real impedance model when the physical coefficients are nonnegative; it can be verified
numerically that the same is true about the full model (1.24,1.25), but no proof is given herein.

The impedance model (1.24) with the three wavenumbers (1.17), (1.25), and (1.26) is plotted
in Figure 1.5 against experimental impedance measurements for the CT57 liner available in
(Jones et al. 2005). The wave number (1.17) is insufficient to fit the experimental data, as it
does not model viscous and thermal dissipation in the cavity, leading to a null resistance (resp.
reflection coefficient with modulus one) shown in the top left (resp. bottom left) graph. The
two other wavenumbers give a satisfactory fit, provided that the cavity length and diameter
are corrected. In particular, the resistance peak at 2 kHz, the first anti-resonant frequency, is
well-captured. Additional experimental data is needed to assess the validity of the model at
higher frequencies, where a damping of the resistance peaks is predicted.
Remark 1.23. In the lossless case (1.17,1.24) the resonant angular frequencies ωn and associated
wavelengths λn are given by

ωn = 2πfn = π (2n+ 1) c0
2lc
, λn = 4

2n+ 1 lc (n ∈ Z), (1.28)

so that the CT liner is a quarter-wavelength resonator.

Single degree of freedom (SDOF) liner

SDOF liners are the acoustical treatment commonly mounted in the inlet of jet engines. They are
based on the principle of the Helmholtz resonator and consist in a honeycomb structure covered
by a perforated plate, see Figure 1.6. Intuitively, the cavities set the resonant frequency while
the perforations set the viscous dissipation. As perforating a plate with sub-millimeter holes is a
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Perforated plate (σp, lp, dp)

Rigid backplate

Cavity (σc, lc, dc)

Figure 1.6. SDOF liner. (Adapted from (Rolls-Royce plc 1996, Fig. 19-6).)

Perforated plate (σp1 , lp1 , dp1)

Cavity (σc1 , lc1 , dc1)
Perforated plate (σp2 , lp2 , dp2)

Cavity (σc2 , lc2 , dc2)
Rigid backplate

Figure 1.7. DDOF liner. (Adapted from (Rolls-Royce plc 1996, Fig. 19-6).)

technical challenge, it is common to distinguish between perforated and micro-perforated plates,
which have sub-millimeter perforations. The absorption properties of micro-perforated plates
are less dependent upon the incident SPL and Mach number than their non micro-perforated
counterparts.

An impedance model can be built from the two models covered in Section 1.2.1. Namely,

ẑSDOF|Sp =
〈p̂(0)〉Sp
〈û(0)〉Sp

'
〈p̂(0)〉Sp − 〈p̂(lp)〉Sp

〈û(0)〉Sp
+
〈p̂(lp)〉Sp
〈û(lp)〉Sp

= ẑperf(lp, dp) + Sp
Sc
zc coth(jkclc),

so that the corresponding surface impedance is

ẑSDOF = 1
σp
ẑperf(lp, dp) + zc

σc
coth(jkclc). (1.29)

In practice, the porosity of the honeycomb structure is close to unity, i.e. σc ' 1. Provided
that the wavenumber kc is chosen so that the cavity impedance is a positive-real function, the
admissibility of (1.29) follows from the fact that the sum of two positive-real functions is a
positive-real function.
Remark 1.24. In the SDOF liner, the perforation and cavity are connected in series. In the
derivation above, we have assumed that 〈u〉Sp is conserved across the perforation so that the
impedance ẑSDOF is the sum of of the perforation and cavity impedance kernels.

Double degree of freedom (DDOF) liner

As depicted in Figure 1.7, a DDOF liner is simply made from the superposition of two SDOF
liners. Accordingly, the impedance model is derived along the same lines. Starting at x = 0 and
using a perforation impedance yields

ẑ|Sp1
= ẑperf(lp1 , dp1) +

〈p̂(lp1)〉Sp1

〈û(lp1)〉Sp1

= ẑperf(lp1 , dp1) + σp1

σc1

〈p̂(lp1)〉Sc1

〈û(lp1)〉Sc1

.
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Figure 1.8. Acoustic field with increasing incident sound pressure. Direct numerical simulation of a 2D
rectangular acoustic resonator. From (Roche 2011, Fig. 4.1).

The impedance ratio at x = lp1 is then computed using (1.16), leading to the surface impedance

ẑDDOF = 1
σp1

ẑperf(lp1 , dp1) + 1
σc1

ẑtube(kc1 lc1 , zc1 , ẑ2|Sc1
), (1.30)

where
ẑ2|Sc1

= σc1

σp2
ẑ2|Sp2

= σc1

σp2

[
ẑperf(lp2 , dp2) + zc2

σp2

σc2
coth(jkc2 lc2)

]
.

The admissibility of this model is obtained similarly to that of the SDOF model.

1.2.3 Grazing flow and nonlinearities

The models considered in Section 1.2.2 belong to the realm of linear acoustics. In particular,
they assume that the propagation medium is quiescent and the incident SPL is low. Models
covering grazing flow and high incident SPLs are covered below.

Nonlinear absorption mechanism

SDOF liners exhibit the following nonlinear absorption mechanism: as the amplitude of the
incident sound wave increases past a given threshold, the acoustic boundary layer within the
perforation separates, which induces vortices (Melling 1973). This purely acoustic phenomenon,
known in the literature as vortex shedding, can be visualized in Figure 1.8. The associated sound
absorption mechanism is, first, conversion of acoustic energy into rotational energy, and second,
the dissipation of this rotational energy.

A simple model of the corresponding contribution to the impedance operator can been de-
rived following (Cummings and Eversman 1983). Consider a perforated plate of porosity σp
with perforations of length lp, as depicted in Figure 1.3. At a given time t, the boundary layer
separation in the perforation is modeled as a reduction of the effective cross-section, which is Sp
at x = 0, but only

Svc = CvcSp ≤ Sp

at x = lp (vena contracta). Assuming the flow to be steady, incompressible, inviscid, and
irrotational, Bernoulli’s equation yields

p(x = lp)− p(x = 0) + ρ0
2
(
〈u〉2Svc

− 〈u〉2Sp
)

= 0.

Using the mass conservation identity

〈u〉Stot
= σp 〈u〉Sp = σpCvc 〈u〉Svc

,
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we get the pressure drop

p(x = 0)− p(x = lp) = ρ0
2

(
1

σ2
pC

2
vc
− 1
σ2
p

)
〈u〉2Stot

,

so that the corresponding (surface) impedance operator is

Z(u · n) = ρ0Cnl(u · n)2, Cnl := 1− C2
vc

2σ2
pC

2
vc
. (1.31)

However, the impedance (1.31) does not account for the fact that the position of the vena
contracta depends upon the flow direction: if 〈u〉Sp > 0 (resp. < 0) then the vena contracta is
located at x = lp (resp. x = 0). Including this phenomenon leads to (Cummings 1986, Eq. 1)

Z(u · n) = ρ0Cnl|u · n|u · n. (1.32)

The operator (1.32) is to be used as an additive correction to the surface impedance models
covered in Section 1.2.2.

The assumption of irrotationality has been removed in (Meissner 1999, 2000), where the
same model is derived. Based on these studies, a simplified frequency domain model is proposed
in (Hersh et al. 2003) for engineering design purposes. Evidence for the relevance of (1.32) has
been provided both theoretically in (Rienstra and Singh 2018), with an asymptotic study of
the Helmholtz resonator, and numerically in (Zhang and Bodony 2016) where the contraction
coefficient Cvc is computed using numerical simulations.

Note that, since we are dealing with a nonlinear phenomenon, the impedance operator is
naturally derived in the time domain. Here, it is straightforward to check the admissibility
conditions given in Definition 1.1. The impedance (1.31) satisfies the reality and causality
conditions, but is not passive. The impedance (1.32), which accounts for the change of position
of the vena contracta, is admissible. By contrast with linear models, expressing the admittance
and scattering operators from a given nonlinear impedance model is more intricate, see Chapter 2
for examples.
Remark 1.25. In (Tudisco et al. 2017), a nonlinear model is used to model injectors of a com-
bustion chamber in a LES simulation. The corresponding scattering operator is B(v)(t) =
χa(v)(t − τ) where τ > 0 is a time delay and χa is an algebraic function of the incoming
characteristic (Tudisco et al. 2017, Eq. 2.15).

Grazing flow effect

For the CT and SDOF liners introduced in Section 1.2.2, the measured or identified impedance
z exhibits a dependency on the base flow (Jones et al. 2005). This dependency typically impairs
the liner performance and innovative material designs seek to reduce it.

The experimental study (Kirby and Cummings 1998), among many others, investigated the
effect of a grazing flow on a perforated plate backed by an air cavity. The grazing flow is found to
induce an increase in resistance and a decrease in mass reactance. The following experimental
correlation between the impedance and the wall friction velocity u∗ is proposed (Kirby and
Cummings 1998, Eqs. 12-13):

θfc0
fd

=
(

26.16
(
t

d

)−0.169
− 20

)
u∗
fd
− 4.055

with
δ

δ0
=

1 u∗
ft ≤ 0.18dt

(1 + 0.6 td)e−
(
u∗
ft
−0.18 d

t

)
(1.8+ t

d) − 0.6 td
u∗
ft > 0.18dt ,
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where the experimental impedance is written as

ẑexp(jω)
ρ0c0

= t

cd

√
16πνl + jkt︸ ︷︷ ︸

no-flow impedance

+
correction︷ ︸︸ ︷
θf + jkδ,

where k = ω/c0, δ0 = 0.85d the mass end correction without flow, f is the frequency, t (resp.
d) the perforation length (resp. diameter), and l is the effective orifice length defined as l :=
=[ẑexp(jω)]

ωρ0
. The physical phenomena that arise from interaction of a liner with a grazing flow can

be studied using direct numerical simulations, see e.g. (Zhang and Bodony 2016).
Since this experimental correlation does not yield a positive-real function, it cannot be used

as is in the time domain. Hence, for this dissertation, the key takeaway from (Kirby and
Cummings 1998) is that the effect of a grazing flow can be empirically modeled as an additional
parametric dependence, which preserves the locally reacting nature of the IBC. This strategy is
followed for the numerical applications presented in Chapter 6.
Remark 1.26 (IBCs with grazing flow). The empirical formulas given above are an attempt to
model the dependency of the impedance kernel z upon a grazing flow. This dependency should
not be confused with the one found in the Ingard-Myers boundary condition (Ingard 1959; Myers
1980). Let us clarify that comment. In the literature two strategies are used to model the effect
of a grazing flow at the impedance wall:

1. The first one, used in this dissertation, consists in using a viscous base flow u0 with a
locally reacting IBC (1.1). Numerically, this can be a costly approach since the boundary
layer of u0 must be well-discretized.

2. The second one consists in using a uniform “plug” flow with an Ingard-Myers type bound-
ary condition, originally derived for plane boundaries in (Ingard 1959) using continuum
mechanics arguments and extended to curved boundaries in (Myers 1980). This boundary
condition has been shown to lead to an infinite absolute instability in (Brambley 2009)
and (Joubert 2010). Other works have shown that asymptotic analysis enables to under-
stand the corresponding assumption on the base flow: (Eversman and Beckemeyer 1972)
and (Tester 1973a, § 2) showed that the standard Ingard-Myers boundary condition can
be obtained from a linear-then-constant base flow in the limit of a vanishing boundary
layer thickness; (Brambley 2011, §V) and (Khamis and Brambley 2016) derived correc-
tions using a hyperbolic velocity profile, which is the one that we will use in the numerical
applications of Section 6.3. These corrections have been shown to accurately recover the
modes obtained by solving the boundary layer (i.e. the approach (1)).

Impedance identification has been carried out using both approaches, see (Jones et al. 2005;
Primus et al. 2013). Regardless of the chosen formulation for the IBC, for many sound absorbing
materials the identified or measured impedance values do exhibit a dependency on the base flow.

1.3 Numerical impedance models

The purpose of this section is to summarize the state of the art in numerical impedance models.
Before proceeding, we introduce the following terminological precision, used throughout the
dissertation. A discrete TDIBC consists of three components.

1. The discrete impedance model, i.e. the finite-dimensional operator (in the sense of system
theory (Brockett 1970; Curtain and Zwart 1995)) that one wishes to apply at the boundary.
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2. The numerical algorithm used to evaluate the said operator; in the case of linear continuous
time-invariant operators (i.e. of linear TDIBCs) this amounts to computing a time-domain
convolution.

Practically these first two elements go hand in hand since the expression of the convolution
kernel dictates how the convolution can be efficiently computed.

3. The (semi-)discrete formulation, i.e. how the TDIBC is enforced at the (semi-)discrete
level. In other words, this is the coupling method with the PDE.

As shown in Chapter 5, the third and last component of a discrete TDIBC should not be
overlooked. In this state of the art, we focus on the first two aspects (the third one is not always
detailed, so that it is difficult to make comparisons).

Early rational models In the earliest works, numerical impedance models were comprised of
a single polynomial or rational fraction, which yields in the time domain an ODE between the
acoustic pressure and normal velocity. This ODE is then approximated using finite-differences.
A second-degree polynomial

ẑnum(s) = a1s− a2s
2, (1.33)

was used in (S. Davis 1991) to model an open pipe. Note that if a2 6= 0 this model is not
positive-real (although <(ẑnum(jω)) ≥ 0 for all ω ∈ R when a2 ≥ 0). Tam and Auriault (Tam
and Auriault 1996) (Tam 2012, Chap. 10) considered a proportional-integral-derivative model

ẑnum(s) = a−1
s

+ a0 + a1s, (1.34)

which they called a three-parameter model. This model is positive-real when the three coeffi-
cients are nonnegative. Inspired by the progress made in the computational electromagnetics
community, Özyörük et al. followed a heuristic approach to propose an admissible rational
fraction of degree 4 (Özyörük et al. 1998, Eq. 15)

ẑnum(s) = r1 + r2 − r1
1 + r3s

+ r4s

1 +
(
s
r6

)2
+ r5s

+ r7s.

Since it can match the behavior of a CT liner until the second resonance, it has been hailed as
the first “broadband” model. This contrasts with the models (1.33,1.34) that are usually tuned
at a single frequency. This model has been widely used in aeroacoustics, see e.g. (Escouflaire
2014); the practical challenge lies in finding the suitable weights ri for the physical model at
hand, since this numerical model is not positive-real for all values of ri.

Multipole models After the work of Özyörük et al., the need for a generic, efficient, broad-
band TDIBC has led to the introduction of a new family of models, known as multipole. They
consist of a discrete sum of elementary first or second-order systems such as

ẑnum(s) =
N∑
k=1

ak
s− sk

.

The numberN of systems, as well as their respective gains ak and poles sk, are degrees of freedom
(DoF) of the TDIBC, which translates as a considerable versatility. Moreover, admissibility
conditions are straightforwardly verified, which is not the case for rational fractions expressed
with polynomials (especially of higher degree). Typically, the gains and poles are chosen so that
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the model can be written as a sum of positive-real functions (with real or complex conjugate
poles). The drawback is that they lead to N elementary convolutions, e.g. for a causal input u

z ? u(t) =
N∑
k=1

ak (esk·H ? u) (t) =
N∑
k=1

ak

ˆ t

0
eskτu(t− τ) dτ, (1.35)

where H is the Heaviside or step function. First introduced in the acoustical literature in (Fung
and Ju 2001), they have been used in a wealth of studies, to the point that they can by now be
considered a de facto standard. These studies can be roughly split into two categories, based on
the algorithms they use to compute the convolutions in (1.35).

1. A recurrent computation of the convolution, using properties of the convolution kernel,
have been employed by many authors (Cotté and Blanc-Benon 2009; Fung and Ju 2001;
X. Y. Li et al. 2012; Ostashev et al. 2007; Reymen et al. 2006). In the acoustical literature,
this strategy is often named the “recursive” convolution technique and traced back to the
computational electromagnetic work (Luebbers et al. 1990).

2. A computation of the N convolutions through ODEs. The first acoustical work using this
technique, to the best of the author’s knowledge, is (Bin et al. 2009). A comprehensive
study (Dragna et al. 2015) showed the benefit of this method, named the auxiliary differ-
ential equations method, over “recursive” convolution techniques. In the fluid mechanics
literature, this computational technique is also known as a “canonical form implementa-
tion” (Liu et al. 2014; Zhong et al. 2016) or a “state-space model” (Jaensch et al. 2016).

EHR model In all the works quoted above, the discrete impedance model is chosen based of
its ease of implementation, without providing connection with physical models (this connection is
studied in Chapter 2). As an alternative, Rienstra introduced the extended Helmholtz resonator
(EHR) model (Rienstra 2006)

ẑ(s) = a0 + a1s+ a2 coth (b0 + b1s) , (1.36)

which is positive-real when the coefficients are nonnegative. The physical meaning of each of
the parameter, see e.g. (1.29), makes fitting against experimental data easier than with purely
numerical models. The model (1.36) is however continuous and several discretization methods
have been proposed, see e.g. (Chevaugeon et al. 2006; Richter et al. 2011).

Liner discretization In (Sbardella et al. 2001), the nonlinear model

Z(u · n) = zcav ? u · n+ a1|u · n|u · n

with the linear part given by
ẑcav(s) = a0 + z0 coth

(
slc
c0

)
is implemented as a discretized SDOF liner, i.e. the convolution zcav?u·n is computed by solving
the monodimensional Euler equations in the cavity using finite differences. This approach has
been extended to the EHR model (1.36) in (Pascal et al. 2015). This model is admissible when
the coefficients are nonnegative.
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The objective of this chapter is to derive time-local realizations of classes of irrational transfer
functions that include the physical models introduced in Section 1.2, for use in Chapters 4,

5, and 6. The derived realizations result from the combination of two components: first, a
realization of the oscillatory-diffusive (OD) representation through ODEs, covered in both con-
tinuous and discrete forms in Sections 2.1 and 2.2; second, a hyperbolic realization of the time
delay through a monodimensional transport equation, recalled in Section 2.3. Application to
physical models is carried out in Section 2.4.

Terminology In this chapter, by “transfer function” we mean a Laplace transform s 7→ ĥ(s)
or an analytic function f that is the Laplace transform of some causal kernel, i.e. f = ĥ. The
impedance models covered in Chapter 1 are examples of transfer functions. The name of this
chapter follows a standard terminology, see e.g. (Hélie and Matignon 2006b).

2.1 Oscillatory-diffusive representation

This section lays out a theory of the oscillatory-diffusive representation of a convolution ker-
nel, rooted in complex analysis. After a standard reminder on the diffusive representation in
Section 2.1.1, oscillatory-diffusive representations are covered in Section 2.1.2 where original rep-
resentation theorems are given, tailored to our purposes. The realization of oscillatory-diffusive

23



24 Chapter 2. Realization of irrational transfer functions

representations is presented in Section 2.1.3. Lastly, Section 2.1.4 gathers basic examples that
illustrate the application of the representation theorems derived in Section 2.1.2; these examples,
some of them original to the best of the author’s knowledge, are chosen for their relevance to
the analysis of physical models that will be carried out in Section 2.4.

2.1.1 Introduction to the diffusive representation

This section is an introduction to the diffusive representation that draws from standard refer-
ences. It purpose is to introduce definitions and notations used in later sections.

Diffusive representation

The first synthetic presentation of diffusive representations can be found in (Montseny 1998),
see also the book (Montseny 2005).

Definition 2.1. A kernel h ∈ C∞((0,∞)) is said to be diffusive if there is a causal distribution
µ ∈ D′+(R), with e−σ·µ ∈ S ′(R) for any σ > 0, such that

h(t) = L(µ)(t) (t > 0). (2.1)

From the property of the Laplace transform, the growth at infinity of a diffusive kernel h is
at most polynomial, see Appendix A.
Remark 2.2 (Terminology). In this dissertation, we use the following terminology: the diffusive
representation of h is the identity (2.1), while the distribution µ is called the diffusive weight.
This slightly differs from (Montseny 1998) where µ is called the diffusive representation of h.

Let h ∈ C∞((0,∞)) be a diffusive kernel and let µ denotes its diffusive weight. To better
understand Definition 2.1, let us assume that the diffusive weight is locally integrable i.e. µ ∈
L1
loc([0,∞). Then, the diffusive representation (2.1) reduces to

h(t) =
ˆ ∞

0
e−ξtH(t)µ(ξ) dξ (t ∈ R), (2.2)

where the sign of µ(ξ) is indefinite in general. The representation (2.2) can be understood as a
“diagonalization” of h, whereby h is expressed using only a family of causal decaying exponential
kernels. In this work, they are denoted

ex(t) := e−xtH(t), êx(s) = 1
s+ x

(x ∈ C, t ∈ R, s ∈ C+
x ). (2.3)

In the automatic control terminology, the convolution operator u 7→ eξ ? u is known as a first-
order system.

Let us further assume that h ∈ L1
loc([0,∞)). Then, h is Laplace-transformable and the

diffusive representation (2.2) can also be written

ĥ(s) =
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ (<(s) > 0). (2.4)

A third manner to write the diffusive representation is the following. For an input u ∈
L1
loc([0,∞)), Fubini’s theorem yields

h ? u(t) =
ˆ ∞

0
ϕ(t, ξ)µ(ξ) dξ, (2.5)
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where the function ϕ is defined as

ϕ(t, z) := ez ? u(t) =
ˆ t

0
ez(τ)u(t− τ) dτ (t ∈ R, z ∈ C). (2.6)

For ξ ∈ (0,∞), ϕ(·, ξ) is known as a diffusive variable. Written as (2.5) the diffusive rep-
resentation means that the computation of h ? u is reduced to the computation of eξ ? u for
ξ ∈ suppµ. The interest of (2.5) lies in the fact that the diffusive variables can be computed
using a first-order ODE, since ϕ is the solution of{

∂tϕ(t, z) = −zϕ(t, z) + u(t) (t > 0, z ∈ C)
ϕ(t, 0) = 0,

(2.7)

which can be seen from
e
′
z = −zez + δ. (2.8)

The identities (2.5,2.7) constitute a time-local representation of the hereditary operator u 7→
h ? u and are called the diffusive realization of h, where “realization” is used in the sense of
system theory (Brockett 1970, § 17) (Curtain and Zwart 1995, § 1.2). Numerically, the diffusive
realization enables to compute h ? u using standard time-integration schemes, provided that
the integral in ξ is suitably discretized. Theoretically, the diffusive realization can be given a
meaning as a well-posed linear system (Matignon and Zwart in revision); in Section 4.5, we
define a functional framework tailored to the study of the stability of the wave equation with
an IBC.
Remark 2.3. As defined in (2.1), the diffusive representation can be a series. To illustrate this,
let us consider two sequences µ̃k and ξk ≥ 0 such that |µ̃k| =

k→∞
O(k−1) and ξk =

k→∞
O(k). From

(Gasquet and Witomski 1999, Prop. 31.1.9), the diffusive weight µ =
∑
k∈N µ̃kδξk is convergent

in S ′(R). From Proposition A.18, the series
∑
k∈Z µ̃keξk is convergent in S ′(R) and yields the

diffusive kernel h given by
h =

∑
k∈N

µ̃keξk , ĥ(s) =
∑
k∈N

µ̃k
s+ ξk

.

The distinctive feature of the diffusive representation is that the poles, here given by −ξk with
k ∈ N, belong to (−∞, 0].
Remark 2.4. The quantity µ is known under other names such as spectral function (Garrappa
et al. 2016) or relaxation spectrum (Mainardi 1997).
Remark 2.5 (Parabolic realization). The adjective “diffusive” used in Definition 2.1 can be jus-
tified by noting that the realization (2.5,2.7) can be formally written using the heat equation as
(Montseny 1998, Cor. 3.8)

∂tφ(t, x) = ∂2
xφ(t, x) + u(t) � δ(x) (t > 0, x ∈ R)

h ? u(t) = 2π
ˆ ∞
−∞

φ(t, x)F−1
[
µ(k2) |k|

]
(x)dx,

(2.9)

where � is the product of distributions. (To make (2.9) meaningful, the observation integral
should be interpreted as a suitable duality bracket.) This suggests the terminology of parabolic
realization for (2.5,2.7). Physically, diffusive kernels model non-propagating diffusion phenom-
ena; they arise for instance in acoustics, see Section 2.4 and (Hélie and Matignon 2006a),
viscoelasticity (Desch and Miller 1988; Mainardi 1997; Staffans 1994), and electromagnetics
(Garrappa et al. 2016).
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Example 2.6 (Fractional kernel). The archetypal diffusive kernel is the fractional kernel Yα
given by (1.6). For α ∈ (0, 1), it admits the diffusive representation (Hélie and Matignon 2006b;
Montseny 1998)

Yα(t) =
ˆ ∞

0
e−ξtH(t)µα(ξ) dξ (2.10)

with
µα(ξ) := sin(απ)

π
× 1
ξα
1(0,∞)(ξ), (2.11)

which can be derived using the integral expression of the Gamma function combined with Euler’s
reflection formula. The convolution operator u 7→ Yα ? u is known as the Riemann-Liouville
fractional integral of order α, see e.g. (Samko et al. 1993, § 2.3) (Matignon 2009). Provided
that the diffusive representation is suitably discretized, it constitutes a time-local alternative
to, for instance, fractional linear multistep methods (Lubich 1986) or methods based on the
Grünwald-Letnikov approximation (Scherer et al. 2011). Methods based on discrete diffusive
representations are also known as “non-classical” methods (Birk and Song 2010; Diethelm 2008).
Note that the long memory of the fractional derivative, induced by Yα =

t→∞
O
(
tα−1), is reflected

into the infinite dimension of the diffusive realization, induced by suppµ = [0,∞). By contrast,
the kernel h = eξ has a diffusive weight supported in {ξ} only.

In this work we will be faced with the following problem: given an analytic function s 7→ f(s),
coming for example from a physical impedance model, under what conditions does it admit a
diffusive representation? A non constructive answer is provided by the theory of completely
monotone functions recalled below, namely through Theorems 2.12 and 2.13. Constructive
representation theorems will be derived in Section 2.1.2 using complex calculus.

Completely monotone functions

The following definition comes from (Widder 1946, Def. IV.2c).

Definition 2.7. A function h ∈ C∞((0,∞)) is said to be completely monotone in the open
interval (0,∞) if

∀t > 0, ∀k ∈ N, (−1)kh(k)(t) ≥ 0.

For example, t 7→ t−p with p ∈ N∗ is completely monotone. This class of functions can be
characterized by the following result, found in (Gripenberg et al. 1990, Thm. 5.2.5).

Theorem 2.8 (Bernstein’s theorem). A function h : (0,∞) → [0,∞) is completely monotone
on (0,∞) if and only if

h(t) =
ˆ ∞

0
e−ξtdν(ξ), (2.12)

where ν is a positive Radon measure on [0,∞).

An immediate consequence of Bernstein’s theorem is that if h ∈ C∞((0,∞)) is a diffusive
kernel with diffusive representation µ, then it is completely monotone in (0,∞) if and only if
µ = Tν where ν is a positive Radon measure on [0,∞) and Tν is the distribution induced by the
measure ν. For instance, the fractional kernel Yα with α ∈ (0, 1) is completely monotone and
admits the representation (2.12) with

dνα(ξ) := µα(ξ) dξ,

where dξ is the Lebesgue measure.
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Remark 2.9. For the definition of Radon measures, see (Folland 1999, Chap. 7) for a measure
theory point of view and (Bony 2001, § 4.4.6) for a distribution theory point of view. Bernstein’s
theorem can also be written using the Riemann-Stieltjes integral, in which case ν denotes a
function of bounded variation (in particular ν is bounded and can be assumed non-decreasing),
see (Widder 1946, Thm. IV.12b).

Bernstein’s theorem asserts that all the information about h is contained in the measure ν.
Since it is common to know the measure ν in closed form but not h, it is therefore useful to be
able to deduce properties of h knowing ν. A simple example is that h is defined at 0 if and only
if ˆ ∞

0
dν(ξ) = ν([0,∞)) <∞.

The most important properties for our purposes are the two following integrability conditions
(Gripenberg et al. 1990, Thm. 5.2.5).

Proposition 2.10 (Integrability conditions). Let h ∈ C∞((0,∞)) be completely monotone on
(0,∞). Then,

h ∈ L1
loc([0,∞)) ⇐⇒

ˆ ∞
0

1
1 + ξ

dν(ξ) <∞

h ∈ L1([0,∞)) ⇐⇒ ν({0}) = 0 and
ˆ ∞

0

1
ξ
dν(ξ) <∞.

Remark 2.11. The condition “ν({0}) = 0” must not omitted: consider the discrete measure
ν = δ for instance.

Let h be a completely monotone kernel on (0,∞). If h ∈ L1
loc([0,∞), then it is Laplace-

transformable and its Laplace transform is given by

ĥ(s) =
ˆ ∞

0

1
s+ ξ

dν(ξ) (<(s) > 0), (2.13)

which is the frequency-domain counterpart of the representation (2.12). The results below will
show that ĥ is a positive-real function.

The Laplace transform of completely monotone kernels can be characterized using the two
following theorems. However, note that both theorems are not constructive in the sense that they
do not give the expression of the measure ν; constructive results will be given in Section 2.1.2.

Theorem 2.12. Let h ∈ C∞((0,∞))∩L1
loc([0,∞)) be a completely monotone function in (0,∞).

Then, f := ĥ satisfies the following properties.

(i) f has an analytic extension to C\(−∞, 0].

(ii) f(s) ∈ R for s ∈ (0,∞).

(iii) lims→∞
s∈R

f(s) = 0.

(iv) =(f(s)) ≤ 0 for =(s) > 0.

Conversely, a function f that satisfies (i)–(iv) can be written as f = ĥ where h ∈ C∞((0,∞))∩
L1
loc([0,∞)) is a completely monotone function in (0,∞), so that f is given by (2.13).

Proof. See (Gripenberg et al. 1990, Thm 5.2.6). The proof uses the map s 7→ j(1+s)/(1−s) from
the unit disk onto upper half-plane and a representation result for positive harmonic function
in the open unit disk.
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The case where f(∞) 6= 0 is covered by the following result (Gripenberg et al. 1990,
Cor 5.2.7).

Theorem 2.13. Let f : C+
0 → C be an analytic function. If

(i) f has an analytic extension to C\(−∞, 0],

(ii) f(s) ∈ [0,∞) for s ∈ (0,∞),

(iii) lim sups→∞
s∈R
|f(s)| <∞,

(iv) =(f(s)) ≤ 0 for =(s) > 0,
then f∞ := lims→∞

s∈R
f(s) exists and

f(s)− f∞ = ĥ,

where h ∈ C∞((0,∞)) ∩ L1
loc([0,∞)) is a completely monotone function in (0,∞).

2.1.2 Oscillatory-diffusive representation

The purpose of this section is to derive sufficient conditions for an analytic function f : C+
0 → C

to admit the representation

f(s) =
∑
k

ck
s− sk

+
ˆ ∞

0

µ(ξ)
s+ ξ

dξ (<(s) > 0),

which we call in this dissertation the oscillatory-diffusive (OD) representation. The integral
term is the diffusive part of f , a terminology already justified in Remark 2.5. The series is
the oscillatory part of f . This terminology can be justified by the fact that when f satisfies
f(s) ∈ (0,∞) for s ∈ (0,∞) (for example when f is positive-real), the poles sk belong to C\R
and go by conjugate pairs so that the series consists of terms like

ck
s− sk

+ ck
s− sk

= 2<(ck)s− 2<(cksk)
s2 − 2<(sk)s+ |sk|2

,

which is the transfer function of a monodimensional oscillator, damped if <(sk) < 0. By defini-
tion, a convolution kernel h whose Laplace transform ĥ admits an OD representation is called
an OD kernel.

If h is an OD kernel, then it admits a time-local realization, which will be written down
in Section 2.1.3. The application of the results obtained in this section will be illustrated in
Section 2.1.4 where basic examples are considered, chosen for their relevance to the model
analysis that will be carried out in Section 2.4. Let us also note that the distinction between
the oscillatory and diffusive parts is computationally relevant, as will be seen when discussing
the discretization of OD representations later in this chapter, namely in Section 2.2.

The proposed representation theorems are derived by inverting the Laplace transform using
a Bromwich contour, accounting for the presence of both poles and cuts, see (Duffy 2004) for a
wealth of examples. In the context of diffusive representations, this approach has been followed
in (Casenave and Montseny 2010) and (Héleschewitz 2000; Hélie and Matignon 2006a,b). Herein,
we are interested in deriving sufficient conditions that are general enough to cover the physical
models of interest, so that the presented theorems are tailored to our needs.

The proofs are mostly elementary and rely on standard facts of complex analysis, see
(Gamelin 2001), and distribution theory, see the references in Appendix A. Let us recall the
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Cut Γ = (−∞, 0]

Branch point γ1 = 0

−4 −2 0

−2

0

2

<(s)

=
(s

)

Arg (f(s))

Γ = (−∞, γ3] ∪ [γ2, γ1]

γ1 = 0

γ2 = −2

γ3 = −3

−4 −2 0
<(s)

Arg (f(s))

−π

−π/2

0

π/2

π

Figure 2.1. Plot of the principal value of the argument for two multivalued functions, which shows a
jump across the cut Γ. (Left) f(s) =

√
s where

√
· is the principal branch of the square

root defined in Example 2.14. (Right) f(s) =
√
s
√
s+ 2

√
s+ 3.

terminology related to multivalued functions. A complex-valued function f is multivalued if
there are complex numbers s such that f(s) can have at least two different values. Typically,
f can be viewed as an analytic function from a Riemann surface R to C, where R is obtained
by “suitably” joining at least two sheets Si ⊂ C. The restriction of f to each sheet defines a
uniquely valued analytic function known as a branch of f . The definition of the sheets is usually
not unique. In this chapter, we will only manipulate the principal branch of power functions,
recalled in the example below; see also (Gamelin 2001, § 4&7) for a detailed exposition.

Example 2.14 (Principal branch of power functions). The square root s 7→
√
s is multivalued

since
√
|s|ej

arg(s)
2 is not invariant by, for instance, 2π rotations around 0. In fact, for any s ∈ C

two values are possible. A conventional choice is two define the two sheets as identical “cut”
versions of the complex plane, namely

S1 = S2 := C\(−∞, 0],

where the semi-infinite line (−∞, 0] is known as the cut and 0 and ∞ are said to be the branch
points. The two corresponding branches fi are defined over Si as

f1(s) :=
√
|s|ej

Arg(s)
2 , f2(s) := −f1(s),

where Arg(s) ∈ (−π, π] is the principal value of arg(s). The branch f1 is called the principal
branch of

√
· and it satisfies <(f1(s)) ≥ 0. It is analytic on S1, but exhibits a jump across the

cut, i.e.
∀ξ > 0, f1(ξe−jπ)− fi(ξe+jπ) = −j

√
ξ −

(
+j
√
ξ
)

= −2j
√
ξ.

This jump is illustrated in the left plot of Figure 2.1, which shows that Arg f1 jumps from +π/2
over the cut to −π/2 under the cut. With a univalued function the jump would be 0 or 2π. Using
f1 more intricate multivalued functions can be built, see for example the right plot of Figure 2.1
where the plotted function has a cut that consists of two disjoint segments.

More generally, the function f(s) = sα with α ∈ R is multivalued with q branches if α = p/q
with p ∈ Z and q ∈ N∗, and with an infinite number of branches if α ∈ R\Q. Its principal
branch is defined by

f1(s) := |s|αejαArg(s). (2.14)
In this dissertation, sα always denotes the principal branch (2.14).
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0 <(s)

=(s)
γ1γ2γ3γ4

(a) n = 4.

0 <(s)

=(s)
γ1γ2γ3

(b) n = 3.

Figure 2.2. Examples of diffusive cuts using the notation of Definition 2.15.

In this work we restrict ourselves to cuts that are included in (−∞, 0]. This is captured by
the definition below, which is illustrated in Figure 2.2. This definition is a convenient way of
shortening the statement of the representation theorems to come.

Definition 2.15. A set Γ ⊂ (−∞, 0] is said to be a diffusive cut if there is a finite and decreasing
sequence of n ∈ N distinct points γi ≤ 0 such that

Γ =



⋃
i∈J1,pK

[γ2i−1, γ2i] (n = 2p)

 ⋃
i∈J1,pK

[γ2i−1, γ2i]

 ∪ [γn,−∞) (n = 2p+ 1).

The points γi are called the endpoints of Γ.
Before stating the first of the three representation theorems given in this section, let us

briefly recall the definition of a complex residue, which we shall use repeatedly in this chapter.
Let f be analytic in the punctured disc {0 < |s− s0| < r} with r > 0. We define the residue of
f at s0 by

Res(f, s0) := lim
ε→0

1
2jπ

˛
|s−s0|=ε

f(s)ds = lim
ε→0

ε

2π

ˆ +π

−π
f(s0 + εejθ)ejθdθ. (2.15)

This limit exists, is finite, and is equal to the coefficient a−1 of the Laurent series of f at s0,
see for instance (Gamelin 2001, Chap.VII). However, since this work is mainly concerned with
analytic functions f that have cuts in the complex plane, it will prove convenient to extend
the above definition of Res(f, s0) to the class of functions f such that: (i) f is analytic in
{0 < |s − s0| < r}\Γ with r > 0 and Γ closed straight segment; (ii) for 0 < ε < r, each circle
integral

¸
|s−s0|=ε f(s)ds exists and is finite; (iii) the limit ε→ 0 in (2.15) exists and is finite.

The archetypal example of such a function is the principal branch of the square root defined
in Example 2.14, denoted

√
· and with branch point γ1 = 0. For any r > 0, this function is

analytic in {0 < |s| < r}\Γ with Γ = [−r, 0]. Since
√
· has a continuous upper and lower limit on

Γ, each circle integral
¸
|s|=ε
√
sds exists and is finite. Then, an elementary computation shows

that the residue of s 7→
√
s at 0 exists and is given by

Res
(√
s, 0
)

= lim
ε→0

ε

2π

ˆ +π

−π

√
εejθejθdθ = 0.

Similarly the residue of s 7→ 1/
√
s at 0 exists and is given by

Res
( 1√

s
, 0
)

= lim
ε→0

ε

2π

ˆ +π

−π

ejθ√
εejθ

dθ = 0.

The first of the three representation theorems of this section is given below.
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Theorem 2.16. Let Γ ⊂ (−∞, 0] be a diffusive cut with n endpoints γk. Let f : C\Γ→ C be a
meromorphic function with poles sk. If

(i) f decays uniformly at infinity, i.e.

sup
|s|=R

|f(s)| −→
R�∞

0, (2.16)

(ii) at every endpoint γk, the residue Res(f, γk) is finite and satisfies

Res
(
f(s)est, γk

)
= Res(f, γk)eγkt (t > 0),

(iii) f has no singularity in the interior of Γ and is such that the diffusive weight

µ(ξ) := 1
2jπ

[
f(ξe−jπ)− f(ξe+jπ)

]
(2.17)

satisfies the integrability condition
ˆ ∞

0

|µ(ξ)|
1 + ξ

dξ <∞, (2.18)

(iv) the poles sk are stable, i.e. <(sk) ≤ 0, simple, and satisfy the growth condition

|Res(f, sk)|
|sk|2

=
k→±∞

O
( 1
k2

)
and lim

K→∞

∑
k∈J−K,KK

Res(f, sk)
sk

<∞, (2.19)

then f = ĥ with h ∈ S ′(R) ∩ D′+(R) given by

h(t) =
∑

k∈J1,nK
Res(f, γk)e−γk(t) +

∑
k∈Z

Res(f, sk)e−sk(t) +
ˆ ∞

0
eξ(t)µ(ξ) dξ (t ∈ R) (2.20)

ĥ(s) =
∑

k∈J1,nK

Res(f, γk)
s− γk

+
∑
k∈Z

Res(f, sk)
s− sk

+
ˆ ∞

0

µ(ξ)
s+ ξ

dξ (<(s) > 0). (2.21)

Before giving the proof, let us discuss both the usefulness and meaning of this result through
the following remarks.
Remark 2.17 (Notation of diffusive weights). In the above theorem, the diffusive weight µ is
defined with f , through (2.17). In this dissertation, when there is a risk of ambiguity we will
use a subscript to denote the function with which the diffusive weight is defined, e.g. “µf” or
“µĥ”. This notation will mostly be useful in Sections 2.1.4 and 2.4.
Remark 2.18 (Decay condition). When the meromorphic function f has poles, the decay condi-
tion (2.16) is to be understood in the following sense: there is a positive and increasing sequence
(Rn)n such that sup|s|=Rn |f(s)| −→

n�∞
0. This is possible since the poles of a meromorphic func-

tion are isolated. This abuse of notation is convenient when working with meromorphic functions
and we shall use it repeatedly in the remaining of this chapter.
Remark 2.19. The right-hand side of the OD representation (2.21) can be computed numerically,
which is useful to check the validity of an OD representation. Computing the diffusive weight
µ is as cheap and accurate as evaluating f since it is given by (2.17). Computing the poles sk
requires a nonlinear solver, but this is not a major difficulty in practice. The most expensive
quantities are the residues (2.15) and the diffusive part

´∞
0

µ(ξ)
s+ξ dξ, since they require a numerical

quadrature with possibly many nodes.
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Before proving this result, let us comment each of the four requirements of Theorem 2.16.

1. The decay condition (i) is failed by functions such as s 7→ sk with k ≥ 0 or s 7→ eτs

with τ ∈ R. However a function that fails (i) might still enjoy an OD representation.
In Section 2.1.4 we will cover examples where f fails (i) but s 7→ f(s)/s satisfies the four
conditions of Theorem 2.16, thus enabling to represent f .

2. Condition (ii) prevents f from being too singular at γk, which in practice is often a branch
point of f . (The condition is obviously satisfied if γk is a simple pole of f .) For example,
if γ1 = 0 condition (ii) is failed by s 7→ s−α with α > 1.

3. The diffusive weight µ, given by (2.17), is proportional to the jump of f across Γ, so that
if f is univalued at −ξ then µ(ξ) = 0; this implies that the support of µ is restricted to
the cut, i.e.

suppµ = −Γ.

Hence the smoothness requirement on f implies that µ can only be singular at the endpoints
γk. The integrability condition (2.18) then implies that any singularity of µ must remain
integrable: from Proposition 2.10, the diffusive part of h belongs to L1

loc([0,∞)). This
integrability condition (2.18) is known as the “well-posedness condition” in (Hélie and
Matignon 2006a,b) and (Matignon and Zwart in revision). Note that the proposed proof
shows that it is enough to require convergence of the improper integral, i.e.

lim
ε→ 0
R→∞

ˆ R

ε

µ(ξ)
1 + ξ

dξ exists and is finite. (2.22)

However, in most of the examples encountered in practice (2.18) is verified.

4. Lastly, condition (iv) restricts the growth of the residues compared to that of the poles.
Of the four conditions, it is the most difficult one to verify in practice since a closed-form
expression of the poles may not be available. However, it is lax enough so that it can
be reasonably expected to be satisfied in practice. Although poles of higher order can
be included in the representation without difficulty, we herein restrict ourselves to simple
poles since they are computationally simpler and will prove sufficient for the applications
of interest in this dissertation.

Proof. Let σ > 0 and R > 0. For t ∈ R we define

hR(t) := 1
2jπ

ˆ σ+jR

σ−jR
f(s)estds = e+σt

2π F [f(σ + j·)1(−R,R)](t). (2.23)

The proof consists in computing hR(t) by using the residue theorem on a Bromwich contour and
taking the limit R → ∞ to show that hR → h in S ′(R) and h ∈ D′+(R). The proof is inspired
from (Schwartz 1966, §VI.4) for the existence of the limit and (Duffy 2004) for the definition
of the Bromwhich contour. Let us first consider the case t < 0. Since f is analytic in C+

0 the
residue theorem (Gamelin 2001, §VII.1) on the contour depicted in Figure 2.3(a) gives

|hR(t)| =

∣∣∣∣∣∣∣∣
1

2jπ

ˆ
|s−σ|=R
<(s)≥σ

f(s)estds

∣∣∣∣∣∣∣∣ ≤ C sup
|s−σ|=R
<(s)≥σ

|f(s)|,
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(a) Contour for t < 0.
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(b) Contour for t > 0.

Figure 2.3. Integration contours used in the proof of Theorem 2.16.

where we have used Jordan’s lemma (Gamelin 2001, §VII.7). This estimates shows that for
t < 0, hR(t)→ 0 as R→∞.

The case t > 0 requires a more sophisticated contour depicted in Figure 2.3(b) where R > 0
(resp. ε > 0) are chosen sufficiently large (resp. small). This contour is included in {|s| = R},
contains the straight line from σ− jR to σ+jR, circles each endpoint γk with radius ε, and does
not pass through any pole sk, which is possible since the singularities of f in C\Γ are isolated.
This contour defines the piecewise smooth boundary of an open bounded connected set ΩR,ε.

Since the function s 7→ f(s)est is meromorphic on ΩR,ε without singularities on ∂ΩR,ε, the
residue theorem yields

1
2jπ

˛
∂ΩR,ε

f(s)estds =
∑

k∈J1,NR,εK
Res(f, sk)eskt,

where we denote by NR,ε the number of simple poles sk in ΩR,ε. By splitting the boundary
integral on ∂ΩR,ε we get the identity

hR(t) =
∑

k∈J1,NR,εK
Res(f, sk)eskt +

ˆ R

0
µ(ξ)e−ξtdξ

− 1
2jπ

[ˆ
A1A2A3

f(s)estds−
∑

k∈J1,MR,εK

˛
|s−γk|=ε

f(s)estds
]
,

(2.24)

where MR,ε denotes the number of endpoints γk circled by ΩR,ε. We will now prove that the
right-hand side of (2.24), null for t < 0, admits a limit in S ′(R) for ε→ 0 and R→∞.

The line integral over A1A2A3 can be estimated using Jordan’s lemma as

∣∣∣∣∣
ˆ
A1A2A3

f(s)estds
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
ˆ
|s|=R
<(s)≤0

f(s)estds+
ˆ jR

σ+jR
f(s)estds+

ˆ σ−jR

−jR
f(s)estds

∣∣∣∣∣∣∣∣
≤ π sup

|s|=R
|f(s)|+ 2σeσt sup

R≤|s|≤
√
σ2+R2

|f(s)|, (2.25)

where we assume that R and σ are chosen so that there are no poles sk in the annulus R ≤
|s| ≤

√
R2 + σ2. The estimate (2.25) shows that the line integral vanishes as R → ∞. Next,
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each circle integral around the endpoint γk converges towards the corresponding residue, i.e.
˛
|s−γk|=ε

f(s)estds −→
ε�0

2jπRes(f(s)eγkt, γk),

which is defined and finite by assumption; the series
∑
k∈J1,MR,εK converges since there are only

a finite number of endpoints. The convergence of
∑
k∈J1,NR,εKRes(f, sk)e

sktH(t) for R → ∞ in
S ′(R)∩D′+(R) follows directly from Proposition A.18. Lastly, the convergence of

´ R
0 µ(ξ)e−ξtdξ

as R→∞ follows from the estimate e−ξtH(t) ≤ (1 + tξ)−1. In conclusion, hR → h in S ′(R) and
h ∈ D′+(R). The continuity of the Fourier transform in S ′(R) implies

e−σth(t) = 1
2πF [f(σ + j·)](t),

so that taking the Fourier transform in S ′(R) yields

∀ω ∈ R, F [e−σ·h](ω) = f(σ + jω),

which can be written f(s) = ĥ(s) by definition of the Laplace transform.

In practice, it often happens that the behavior of f at the endpoints γk is such that the corre-
sponding residues vanish. In this case, the endpoints γk do not contribute to the OD represen-
tation. This is captured in the corollary below, whose condition (ii) is that found in (Casenave
and Montseny 2010).

Corollary 2.20. Let Γ ⊂ (−∞, 0] be a diffusive cut with n endpoints γk. Let f : C\Γ → C be
a meromorphic function with poles sk. Assume that the following conditions are satisfied:

(i) Identical to Theorem 2.16(i).

(ii) At every endpoint γk,
sup

|s−γk|=ε
|εf(s)| −→

ε�0
0. (2.26)

(iii) Identical to Theorem 2.16(iii).

(iv) Identical to Theorem 2.16(iv).

Then f = ĥ with h ∈ S ′(R) ∩ D′+(R) given by

h(t) =
∑
k∈Z

Res(f, sk)e−sk(t) +
ˆ ∞

0
eξ(t)µ(ξ) dξ (t ∈ R) (2.27)

ĥ(s) =
∑
k∈Z

Res(f, sk)
1

s− sk
+
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ (<(s) > 0). (2.28)

Proof. Identically to the proof of Theorem 2.16, the identity (2.24) is derived. The only difference
is that the circle integrals around the endpoints γk are handled with∣∣∣∣∣∣

∑
k∈J1,MR,εK

˛
|s−γk|=ε

f(s)estds

∣∣∣∣∣∣ ≤ 2πeεt
∑

k∈J1,nK
e<(γk)t sup

|s−γk|=ε
|εf(s)| −→

ε�0
0,

so that they do not contribute to the representations (2.27,2.28).
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In the two results above, µ is assumed to be smooth in the interior of its support. The case
where f has a simple pole on the cut is handled by the following result, which is similar to
Theorem 2.16 except for the presence of a principal value.

Theorem 2.21. Let Γ ⊂ (−∞, 0] be a diffusive cut with n endpoints γk. Let f : C\Γ → C be
a meromorphic function, with poles sk ∈ C\Γ, which satisfies the conditions (i), (ii) and (iv) of
Corollary 2.20. If

(i) f has a finite number of simple poles λk in the interior of Γ,

(ii) there is a neighborhood V of {|λ1|, · · · , |λL|} in (0,∞) such that the diffusive weight (2.17)
satisfies the integrability condition

ˆ
(0,∞)\V

|µ(ξ)|
1 + ξ

dξ <∞,

then f = ĥ with h ∈ S ′(R) ∩ D′+(R) given by

h(t) =
∑
k∈Z

Res(f, sk)e−sk(t) +
∑

k∈J1,LK
Res(f, λk)e−λk(t) + pv

ˆ ∞
0

eξ(t)µ(ξ) dξ (t ∈ R)

ĥ(s) =
∑
k∈Z

Res(f, sk)
1

s− sk
+

∑
k∈J1,LK

Res(f, λk)
1

s− λk
+ pv

ˆ ∞
0

1
s+ ξ

µ(ξ) dξ (<(s) > 0),

where pv denotes the Cauchy principal value.

Remark 2.22. In a neighborhood of λk, say {|s − λk| < ε}, the function f can be expressed as
f(s) = A

s−λk g(s) + b(s), where g and b are analytic in the two half-disks {|s−λk| < ε, =(s) ≥ 0}
and {|s− λk| < ε, =(s) ≤ 0}. This implies that the residue at λk is given by

Res(f, λk) := lim
ε→0

1
2jπ

˛
|s−λk|=ε

f(s)ds = A
g(|λk|e+jπ) + g(|λk|e−jπ)

2 , (2.29)

which reduces to the standard expression Ag(−λk) if g is not multivalued.

Proof. The proof is similar to that of Theorem 2.16 and Corollary 2.20 so that we only detail
the differences. Let σ > 0 and R > 0. Define hR(t) for t ∈ R as (2.23). To compute hR, we
consider integration contours identical to the ones depicted in Figure 2.3 with the additional
constraint that they circle not only the endpoints γk but also each of the L simple poles λk ∈ Γ̊.
For t < 0, hR(t) −−−−→

R→∞
0. For t > 0, the residue theorem gives

hR(t) =
∑

k∈J1,NR,εK
Res(f, sk)eskt −

1
2jπ

[ˆ
A1A2A3

f(s)estds−
∑

k∈J1,MR,εK

˛
|s−γk|=ε

f(s)estds
]

+ 1
2jπ

∑
k∈J1,LR,εK

˛
|s−λk|=ε

f(s)estds+
ˆ

(0,R)∩ΩR,ε
µ(ξ)e−ξtdξ,

where LR,ε denotes the number of simple poles λk in the contour. Let us focus on the only
differences with (2.24), namely the two terms on the second line of the right-hand side. First,
from Remark 2.22, the limit limε→0

1
2jπ
¸
|s−λk|=ε f(s)estds is finite with limit Res(f, λk)eλkt.

Second, since µ has at most a simple pole at λk and ξ 7→ e−ξt is smooth on (0,∞), the limit
limε→0

´
(0,R)∩ΩR,ε µ(ξ)e−ξtdξ exists in the sense of the principal value, see (Zemanian 1965, § 2.5)

(Schwartz 1966, § I.2.2).
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All the results above assume in particular that f has uniform decay at infinity, i.e. that
f obeys the uniform decay condition (2.16). This hypothesis is typically verified for models
that arise from diffusion phenomena. On the other hand, physical phenomena that are lossless
or without diffusion usually yield periodic functions, which are covered by the (last) theorem
below. The main change compared to Theorem 2.16 is the absence of cut and the fact that the
uniform decay condition is on a vertical line rather than a disk, to accommodate the periodic
nature of f .

Theorem 2.23. Let f : C→ C be a meromorphic function with poles sk and period jT , T > 0.
Assume that the following conditions are satisfied:

(i) f decays uniformly at infinity, i.e.

sup
<(s)=R

|f(s)| −→
R�∞

0.

(ii) Identical to Theorem 2.16(iv).

Then f = ĥ with h ∈ S ′(R) ∩ D′+(R) given by

h(t) =
∑
k∈Z

Res(f, sk)e−sk(t) (t ∈ R), ĥ(s) =
∑
k∈Z

Res(f, sk)
1

s− sk
(<(s) > 0).

Proof. The proof follows the same lines as that of Theorem 2.16 but with a square integration
contour suited to the vertical periodicity of f . Intuitively, one consequence of this change of
contour is that we cannot use Jordan’s lemma anymore; however, we can use the oscillatory
nature of the integrand at infinity to conclude (in spirit, this is close to the Riemann-Lebesgue
lemma). Let σ > 0, R > 0, and hR defined as (2.23).

For t < 0 we consider the square contour depicted in Figure 2.4(a), which does not pass
through any pole of f . Since f is analytic in C+

0 , the residue theorem gives

hR(t) = 1
2jπ

ˆ σ+R+jR

σ+R−jR
f(s)estds+ 1

2jπ

(ˆ σ+R

σ

[
f(x− jR)e−jRt − f(x+ jR)ejRt

]
extdx

)
.

The fact that hR(t) → 0 as R → ∞ is deduced from the following two estimates. The first
integral is estimated with∣∣∣∣∣

ˆ σ+R+jR

σ+R−jR
f(s)estds

∣∣∣∣∣ ≤ 2Re(σ+R)t sup
<(s)=σ+R

|f(s)| →
R→∞

0.

For the second integral, we take R = pT
2 . (Without loss of generality, we can still assume that

the contour does not pass trough any pole of f , otherwise we can shift the contour vertically.)
The second integral is estimated with∣∣∣∣∣ 1

2jπ

ˆ σ+R

σ

[
f(x− jR)e−jRt − f(x+ jR)ejRt

]
extdx

∣∣∣∣∣ =
∣∣∣∣∣sin(Rt)

π

ˆ σ+R

σ
f(x+ jR)extdx

∣∣∣∣∣
≤ | sin(Rt)|

πt

(
eσt − e(σ+R)t

)
sup

0≤<(s−σ)≤R
|f(s)| →

p→∞
0.

The case t > 0 is similar with the contour depicted in Figure 2.4(b). The residue theorem
yields

hR(t) =
∑

k∈J1,NR,εK
Res(f, sk)eskt + 1

2jπ

ˆ −R+jR

−R−jR
f(s)estds

+ 1
2jπ

ˆ σ

−R

[
f(x+ jR)e(x+jR)t − f(x− jR)e(x−jR)t

]
dx,

(2.30)
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0 <(s)

=(s)

ΩR

σ σ +R

σ + jR

σ − jR
s1

s2

s3

s4

s5

s6

(a) Contour for t < 0.

0 <(s)

=(s)

ΩR

σ−R

σ + jR

σ − jR
s1

s2

s3

s4

s5

s6

(b) Contour for t > 0.

Figure 2.4. Integration contours used in the proof of Theorem 2.23.

where we denote by NR,ε the number of poles sk within the contour. We will now prove that
the right-hand side of (2.30), null for t < 0, admits a limit in S ′(R) for ε → 0 and R → ∞.
Identically to Theorem 2.16, the convergence of

∑
k∈J1,NR,εKRes(f, sk)e

sktH(t) for R → ∞ in
S ′(R)∩D′+(R) follows from Proposition A.18. The two remaining integrals vanish thanks to the
uniform decay of f . The first one is estimated with∣∣∣∣∣

ˆ −R+jR

−R−jR
f(s)estds

∣∣∣∣∣ ≤ 2Re−Rt sup
<(s)=−R

|f(s)| −−−−→
R→∞

0.

For the second one we set R = pT to use the vertical periodicity of f :∣∣∣∣∣ 1
2jπ

ˆ σ

−R

[
f(x+ jR)e(x+jR)t − f(x− jR)e(x−jR)t

]
dx
∣∣∣∣∣

≤ |sin(Rt)|
πt

∣∣∣eσt − e−Rt∣∣∣ sup
−R≤<(s)≤σ

|f(s)| →
p→∞

0.

Remark 2.24 (Poles and cuts representation). The representation theorems given in this section
can be extended to the case where the cut Γ is not included in (−∞, 0] but is a piecewise
smooth complex path, with no loops. This leads to a more general poles and cuts representation,
following the terminology of (Hélie and Matignon 2006a,b). For example, the kernel J0, where J0
denotes the zeroth-order Bessel function of the first kind, does not admit an OD representation
(2.27) but admits a poles and cuts representation, see (Matignon 1998, § 3.3). When different
cuts are mathematically possible, a “physical cut” can be identified using a limiting process, see
(Mignot et al. 2009).

2.1.3 Standard and extended realizations

Identically to diffusive kernels, covered in Section 2.1.1, OD kernels enjoy a time-local realization.
Let h be an OD kernel that admits, say, the representation (2.27). The corresponding realization
is

h ? u(t) =
∑
k∈Z

Res(ĥ, sk)ϕ(t,−sk) +
ˆ ∞

0
ϕ(t, ξ)µĥ(ξ) dξ, (2.31)
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where the function ϕ has been defined in (2.6). The interest of (2.31) is that ϕ(·,−sk) and
ϕ(·, ξ) can be computed using the first-order ODE (2.7). The identities (2.7,2.31) are known as
the oscillatory-diffusive realization of h.

In practice, as we will see in Sections 2.1.4 and 2.4, it can happen that a function ĥ fails the
decay condition (2.16) but ĝ(s) := ĥ(s)/s satisfies the conditions of, say, Corollary 2.20, so that ĝ
admits a standard OD representation (2.28), which reads

ĝ(s) =
∑
k∈Z

Res(ĝ, sk)
1

s− sk
+
ˆ ∞

0

1
s+ ξ

µĝ(ξ) dξ (<(s) > 0),

where sk is a pole of ĝ and µĝ is the diffusive weight associated with ĝ. The representation of ĥ
can then be deduced from that of ĝ

h(t) =
∑
k∈Z

Res(ĝ, sk) (ske−sk(t) + δ(t)) +
ˆ ∞

0
(−ξeξ(t) + δ(t))µĝ(ξ) dξ (t ∈ R) (2.32)

ĥ(s) =
∑
k∈Z

Res(ĝ, sk)
s

s− sk
+
ˆ ∞

0

s

s+ ξ
µĝ(ξ) dξ (<(s) > 0), (2.33)

where we have used (2.8) to obtain (2.32). The corresponding realization is

h ? u(t) =
∑
k∈Z

Res(ĝ, sk) (skϕ(t,−sk) + u(t)) +
ˆ ∞

0
(−ξϕ(t, ξ) + u(t))µĝ(ξ) dξ. (2.34)

Borrowing the terminology employed in (Montseny 1998), we will say that the OD represen-
tations (2.32,2.33) and the OD realization (2.7,2.34) are extended by differentiation, or simply
extended.

To conclude this presentation of realizations, let us highlight the following fact that is seldom
mentioned in the literature, despite its computational interest: it may happen that an extended
OD kernel also admits a standard OD representation. To illustrate this, assume that h admits
the OD representation extended by differentiation (2.33). If the residues and diffusive weight
decay sufficiently fast, namely∑

k∈Z
Res(ĝ, sk) <∞ and

ˆ ∞
0

µĝ(ξ) dξ <∞, (2.35)

then the extended representation (2.33) can be rewritten as

ĥ(s) =
∑
k∈Z

Res(ĝ, sk) +
ˆ ∞

0
µĝ(ξ) dξ +

∑
k∈Z

Res(ĝ, sk)sk
1

s− sk
+
ˆ ∞

0

1
s+ ξ

(−ξµĝ(ξ)) dξ,

which consists of a constant and a standard OD representation. As a rule of thumb, the condi-
tions (2.35) are likely to be verified for kernels that satisfy ĥ(s) =

|s|→∞
O(1), but will fail when

ĥ(s) =
|s|→∞

O(|s|α) with α > 0. Both cases will be encountered in the examples of Section 2.1.4

as well as the in the application of Section 2.4.
Remark 2.25 (Regularization of extended OD realization). Let h = g

′ be a kernel that admits an
extended OD representation given by (2.32), obtained as we have seen above by differentiating
the OD representation of g. This differentiation incurs a loss of regularity on the kernel, so that
(2.34) may only be defined in D′+(R); for instance, h ?u(0) may not be finite. Let us clarify this
statement. For a smooth input u ∈ C∞0 (R) and z ∈ C∗, let us define ϕ̃(·, z) as the solution of

∂tϕ̃(t, z) = −zϕ̃(t, z) + u(t) (t > 0, z ∈ C∗)

ϕ̃(t, 0) = u(0)
z
,
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which differs from (2.7) through the initial condition at t = 0. By using the identity ϕ̃(t, z) =
ϕ(t, z) + u(0)

z ez(t), we can rewrite (2.34) as the sum of two terms, namely

h ? u(t) = u(0)

∑
k∈Z

Res(ĝ, sk)e−sk(t) +
ˆ ∞

0
eξ(t)µĝ(ξ) dξ

+ 〈T (t), u〉 , (2.36)

where the distribution T is defined by

〈T (t), u〉 :=
∑
k∈Z

Res(ĝ, sk) (skϕ̃(t,−sk) + u(t)) +
ˆ ∞

0
(−ξϕ̃(t, ξ) + u(t))µĝ(ξ) dξ

and is null at t = 0. If the conditions (2.35) are not satisfied, then the operator u 7→ 〈T, u〉 can
be interpreted as a regularization of the convolution operator u 7→ h ? u. This regularization
is useful to deal with input signals such that u(0) 6= 0 and is well-known in the context of
fractional calculus, see Remark 2.27 below for references. Another expression of 〈T, u〉 is given
in Remark A.3.

2.1.4 Basic examples

The purpose of this section is to gather examples to illustrate the application of the represen-
tation theorems derived in Section 2.1.2. Only examples representative of the functions that
arise in physical modeling have been chosen. As such, this section is preparatory to Section 2.4,
where physical impedance models are analyzed. Note that some known representations, such as
that given by Lemmas 2.26 and 2.34 for example, have been recalled and discussed when it is
illustrative to do so, for example when it helps highlighting pitfalls. However, to the best of the
author’s knowledge, the representations presented in Lemmas 2.30, 2.35, and 2.40 are original.

We recall that in this dissertation the power function s 7→ sα with α ∈ R is the principal
branch, defined in Example 2.14 as (2.14).

Diffusive kernels

As already mentioned in Example 2.6, the fractional kernel Yα with α ∈ (0, 1) is diffusive. Since
it is a simple yet illustrative example, we recall the derivation of the diffusive representations of
both Yα and its (distributional) derivative Y ′α below.

Lemma 2.26. Let α ∈ (0, 1). The function s 7→ s−α has the diffusive representation

s−α =
ˆ ∞

0

1
s+ ξ

µα(ξ) dξ (s ∈ C\(−∞, 0]),

where µα is given by (2.11). As a consequence, s 7→ sα has the (extended) diffusive representation

sα =
ˆ ∞

0

s

s+ ξ
µ1−α(ξ) dξ (s ∈ C\(−∞, 0]).

Proof. Let α ∈ (0, 1) and f(s) = s−α. Let us check each of the four conditions of Corollary 2.20.
By choosing the cut as Γ := (−∞, 0], f is an analytic function in C\Γ. The uniform decay
condition (2.16) is easily verified. The only branch point is γ1 = 0 and condition (2.26) is
satisfied. The diffusive weight can be explicitly computed using (2.17), which leads to, for
ξ ∈ (0,∞)

µ(ξ) := 1
2jπ

[
f(ξe−jπ)− f(ξe+jπ)

]
= 1

2jπξα
[
eαjπ − e−αjπ

]
= µα(ξ).
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Cut Γ = (−∞, 0]

Branch point γ1 = 0

−4 −2 0

−2

0

2

<(s)

=
(s

)
Arg (f(s))

Γ = [−ξ0, 0]

γ1 = 0γ2 = −ξ0

−4 −2 0
<(s)

Arg (f(s))

−π

−π/2

0

π/2

π

Figure 2.5. Plot of the principal value of the argument for two multivalued functions, which shows a
jump across the cut Γ. (Left) f(s) = 1√

s
where

√
· is the principal branch of the square

root defined in Example 2.14. (Right) f(s) = 1√
s
√
s+ξ0

with ξ0 = 2.

Condition (iii) is satisfied since f has no singularity in the interior of Γ, which is Γ̊ = (−∞, 0), and
µ satisfies the integrability condition (2.18). Since f has no poles, condition (iv) is automatically
verified.

The kernel f(s) = sα with α ∈ (0, 1) fails (2.16) as well as (2.18). However, since g(s) =
f(s)
s = sα−1 satisfies all the conditions of Corollary 2.20, we deduce the diffusive representation

of f from that of g.

Remark 2.27. For α ∈ (0, 1), note that we cannot write sα as

sα =
ˆ ∞

0
µ1−α(ξ) dξ +

ˆ ∞
0

1
s+ ξ

[−ξµ1−α(ξ)] dξ

since
´∞

0 µ1−α(ξ) dξ = +∞. In other words, ĥ(s) = sα fails condition (2.35) with µg(ξ) =
µ1−α(ξ) discussed in Section 2.1.3. This implies that the corresponding realization cannot be
reduced to the addition of a constant to a standard OD realization (2.31): it must be an extended
realization of the form (2.34). Following Remark 2.25, the operator u 7→ h ? u, known as the
Riemann-Liouville fractional derivative of order α (Samko et al. 1993, § 2.3), is not finite at
t = 0 if u(0) 6= 0. Its regularization T , known as the Caputo fractional derivative of order α, is
finite at t = 0 even if t 6= 0 (Caputo 1976) (Podlubny 1999, § 2.4.1). See also (Matignon 2009),
(Lombard and Matignon 2016), and (Monteghetti et al. 2017a, App. B).

Using Lemma 2.26, we can represent a function such as

f(s) = 1
s

+ s−β + 1 + sα + s (β ∈ (0, 1), α ∈ (0, 1), s ∈ C\(−∞, 0]).

The inverse of a fractional polynomial can be represented similarly, see the lemma below.

Lemma 2.28. The function

f(s) = 1
a0 + a1/2

√
s+ a1s

= 1
P (
√
s) (<(s) > 0),

where a0 ≥ 0, a1 ≥ 0, a1/2 > 0, and

P (σ) := a0 + a1/2σ + a1σ
2
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admits the diffusive representation

f(s) =
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ, µ(ξ) = 1
π

a1/2

√
ξ

a2
0 +

(
a2

1/2 − 2a0a1
)
ξ + a2

1ξ
2
1(0,∞)(ξ).

Proof. The (diffusive) cut is Γ = (−∞, 0] with branch point γ1 = 0. Let us verify the conditions
of Corollary 2.20. The uniform decay condition (i) is satisfied. At the only branch point γ1 = 0,
condition (ii) holds true. Condition (iii) can be verified by explicitly computing the diffusive
weight using (2.17) for ξ ∈ (0,∞), which yields

µ(ξ) = 1
2jπ

[ 1
P (−j

√
ξ)
− 1
P (+j

√
ξ)

]
= 1
π

=
[
P (+j

√
ξ)
]∣∣P (+j

√
ξ)
∣∣2 .

The lemma below shows that f has no poles, so that condition (iv) is satisfied. In conclusion, f
admits the OD representation (2.28).

Lemma 2.29. Let a0, a1 ≥ 0 and a1/2 > 0. The only possible zero of s 7→ a0 +a1/2
√
s+a1s is 0.

Proof. If a1 = 0, the result follows directly from <(
√
s) ≥ 0. Let us now assume that a1 > 0.

The roots of P are then given by ζ± = a1/2
2a1

(
−1±

√
1− 4a1a0

a2
1/2

)
, so that the only possible

zero of s 7→ a0 + a1/2
√
s + a1s would be ζ2

+. The conclusion follows from the equivalence
<(ζ+) ≥ 0⇔ a0a1 = 0.

Let us conclude this series of diffusive kernels with the example below, which will be useful
when analyzing physical impedance models in Section 2.4. An extended representation of this
function has been given in (Hélie and Matignon 2006b); here we derive a standard representation.
Lemma 2.30. The function

f(s) = e−ε
√
s (s ∈ C\(−∞, 0])

with ε > 0 admits the representation

f(s) = 2 +
ˆ ∞

0

1
s+ ξ

µ(ξ)dξ, µ(ξ) = −sin(ε
√
ξ)

π
1(0,∞)(ξ).

Proof. The (diffusive) cut is Γ = (−∞, 0] with branch point γ1 = 0. f fails the decay condition
(2.16). The function g(s) = f(s)

s fails the condition (ii) of Corollary 2.20, since g(s) =
s→0
O
(
|s|−1),

but satisfies all the conditions of Theorem 2.16. Since Res(g, 0) = f(0), g admits the OD
representation

g(s) = 1
s

+
ˆ ∞

0

1
s+ ξ

µg(ξ)dξ,

with diffusive weight

µg(ξ) := 1
2jπ

[
g(ξe−jπ)− g(ξe+jπ)

]
= 1

2jπ
1
ξ

[
e+εj
√
ξ − e−εj

√
ξ
]

= sin(ε
√
ξ)

πξ
,

from which we deduce the following representation of f

f(s) = 1 +
ˆ ∞

0

s+ ξ − ξ
s+ ξ

µg(ξ)dξ

= 1 +
ˆ ∞

0
µg(ξ)dξ +

ˆ ∞
0

1
s+ ξ

[−ξµg(ξ)] dξ,

which is the claimed representation using
´∞

0 µg(ξ)dξ = 2
π

´∞
0

sin(x)
x dx = 1.
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Remark 2.31. In the proof of Lemma 2.30, the representation of f has been obtained from that
of g(s) = f(s)/s using the fact that the diffusive weight of g has a convergent improper integral on
(0,∞), i.e. that it satisfies condition (2.35) discussed in Section 2.1.3. The representation of f
is therefore reduced to a constant added to a standard OD representation (2.28) whose diffusive
weight µ fails the integrability condition (2.18) but satisfies (2.22). This contrasts with s 7→ sα

with α ∈ (0, 1) where the OD representation was necessarily extended, see Remark 2.27.

Bounded branch cut

In the examples covered so far, there is only one branch point γ1 and the cut is (−∞, 0]. Let us
consider an example where the cut is bounded.

Lemma 2.32. The function

f(s) = 1√
s
√
s+ ξ0

(s ∈ C\[−ξ0, 0]),

with ξ0 > 0 admits the diffusive representation

f(s) =
ˆ ξ0

0

1
s+ ξ

µ(ξ) dξ, µ(ξ) =
µ1/2(ξ)√
ξ0 − ξ

1(0,ξ0)(ξ).

Proof. The (diffusive) cut is defined as Γ = [−ξ0, 0] with two branch points γ1 = 0 and γ2 = −ξ0.
The conditions (i), (ii), and (iv) of Corollary 2.20 are satisfied. To verify condition (iii), we
compute the diffusive weight using (2.17). For ξ > a, µ(ξ) = 0 since f is continuous there. For
ξ ∈ (0, ξ0), there is a jump across the cut given by

µ(ξ) = 1
2jπ

[
1√

ξe−jπ
√
ξ0 − ξ

− 1√
ξe+jπ√ξ0 − ξ

]
=

µ1/2(ξ)√
ξ0 − ξ

.

This kind of function arise in e.g. the modeling of semi-infinite ground layers (Dragna and
Blanc-Benon 2014). Note that the boundedness of the cut Γ implies the boundedness of the
support of µ, see Figure 2.5 for an illustration and a comparison with the fractional kernel Y1/2.

Simple pole on branch cut

To illustrate the application of Theorem 2.21, let us consider a case where there is a simple pole
on the cut. This representation can be found in (Héleschewitz 2000, § 4.3.2), (Casenave and
Montseny 2010, Tab. 1), and (Montseny 2005, Tab. 2).

Lemma 2.33. The function

f(s) = 1
sα(s+ s0) (s ∈ C\(−∞, 0]),

with s0 > 0 and α ∈ (0, 1) admits the OD representation

f(s) = cos(απ)
sα0

1
s+ s0

+ pv
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ, µ(ξ) = µα(ξ)
s0 − ξ

.
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Proof. The conditions (i), (ii), and (iv) of Corollary 2.20 are satisfied, but (iii) fails since the
diffusive weight µ has a simple pole at ξ = s0, which belongs to Γ̊ = (−∞, 0) (note that condition
(ii) would fail for s0 = 0). Hence we resort to Theorem 2.21 to obtain that f admits the OD
representation

f(s) = Res(f,−s0) 1
s+ s0

+ pv
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ.

Using (2.29) with A = 1 and g(s) = s−α, we get Res(f,−s0) = cos(απ)
sα0

.

The expression of the Cauchy principal value can be further explicited. For any ζ ∈ (0, s0)
we have

pv
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ =
ˆ s0−ζ

0

1
s0 − ξ

µα(ξ)
s+ ξ

dξ +
ˆ ∞
s0+ζ

1
s0 − ξ

µα(ξ)
s+ ξ

dξ

+
ˆ s0+ζ

s0−ζ

µα(ξ)
s+ξ −

µα(s0)
s+s0

s0 − ξ
dξ + µα(s0)

s+ s0
pv
ˆ s0+ζ

s0−ζ

1
s0 − ξ

dξ︸ ︷︷ ︸
:=0

.

The first three integrals of the right-hand side have a continuous integrand, so that pv
´

=
´
.

The only singular term left cancels by property of the principal value, since the integrand is odd
and the integration interval is symmetric around the singularity s0 (Schwartz 1966, § I.2.2).

Oscillatory kernels

Let us consider two examples of purely oscillatory kernels (i.e. OD kernels that do not have a
diffusive part) that arise from physical models that do not include dissipation phenomena. The
first function models a lossless brass and has been studied in (Matignon 1994, Chap. 5) while
the second one is obtained from an inviscid cavity impedance model, which will be covered in
Section 2.4.

Lemma 2.34. The function

f(s) = e−s

1− ρe−2bs (s ∈ C),

with ρ ∈ R∗ and 2b > 1 admits the oscillatory representation

f(s) = 1
2b
∑
k∈Z

e−sk

s− sk
,

where the poles are given by

∀k ∈ Z,

 bsk = ln√ρ+ jkπ (ρ > 0)

bsk = ln
√
|ρ|+ jπ2 + jkπ (ρ < 0).

(2.37)

Proof. The function f is meromorphic and periodic when b is rational. Its poles and residues
are given by (2.37) and

Res(f, sk) = e−sk

d
ds [1− ρe−2bs]sk

= e−sk

2bρe−2bsk
= e−sk

2b (k ∈ Z) ,

where we have used L’Hôpital rule to compute the residue since sk is a simple pole. If b is
rational, then both conditions (i) and (ii) of Theorem 2.23 are satisfied so that f admits a
purely oscillatory representation (2.28). This representation still holds true for the case where
b is irrational, using the density of Q in R and continuity with respect to b. (It can also be
obtained directly using a series expansion, without assumption on b.)
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In the above lemma, note that both exponential terms e−s and e−2bs are necessary to obtain
the uniform decay condition at infinity. When the e−s term is absent, which occurs in practice,
the oscillatory representation exhibits a constant term, see the lemma below.

Lemma 2.35. The function
f(s) = 1

1− ρe−2bs (s ∈ C),

with b > 0 and ρ ∈ R∗ admits the oscillatory representation

f(s) = 1
2 + 1

2b
∑
k∈Z

1
s− sk

,

where the poles sk are given by (2.37).

Proof. The absence a damping term in the numerator implies that the decay condition (2.16)
fails, which prevents the direct application of Corollary 2.20. Let us consider instead

g(s) = f(s)
s
,

which satisfies the decay condition, so that, provided that the poles and residues of g satisfy
condition (iv), g admits the OD representation (2.28) from Corollary 2.20. The expression of
the poles of g depends on the value of ρ ∈ R∗. Let us denote sk the quantity (2.37). To compute
the representation of g, we must distinguish the cases ρ 6= 1 and ρ = 1.

Let us first consider the case ρ 6= 1. Then g has only simple poles given by (sk)k∈Z and 0,
so that the representation of g is obtained from a direct application of Corollary 2.20:

g(s) = Res (g(s), 0) 1
s

+
∑
k∈Z

Res (g(s), sk)
1

s− sk
(ρ 6= 1)

with residues given by

Res(g, 0) = 1
1− ρ (ρ 6= 1), Res(g, sk) = 1

sk
d
ds [1− ρe−2bs]s=sk

= 1
2bsk

(sk 6= 0).

The corresponding representation of f exhibits a constant term C:

f(s) = C + 1
2b
∑
k∈Z

1
s− sk

, C = 1
1− ρ + 1

2b
∑
k∈Z

1
sk

(ρ 6= 1).

If ρ = 1, then g has s0 = 0 as a double pole and (sk)k∈Z∗ as simple poles. The representation
of g reads, for t ∈ R,

L−1 [g] (t) = Res
(
g(s)est, 0

)
H(t) +

∑
k∈Z∗

Res (g(s), sk) esktH(t) (ρ = 1).

A computation of the residue gives

Res
(
g(s)est, 0

)
= 1

2 + 1
2bt (ρ = 1),

so that we get
g(s) = 1

2s + 1
2bs2 + 1

2b
∑
k∈Z∗

1
sk

1
s− sk

(ρ = 1),
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and
f(s) = C + 1

2b
1
s

+ 1
2b

∑
k∈Z∗

1
s− sk

= C + 1
2b
∑
k∈Z

1
s− sk

(ρ = 1),

where the constant C has a slightly different expression, namely

C = 1
2 + 1

2b
∑
k∈Z∗

1
sk

(ρ = 1).

The computation of C is tedious but elementary. If ρ = 1, then bsk = jkπ so that the sum∑
k∈Z∗

1
bsk

is null. If ρ = −1, then bsk = j(2k + 1)π/2 so that the sum
∑
k∈Z

1
bsk

is null. If
ρ /∈ {−1, 0, 1}, we have ∑

k∈Z

1
bsk

= −1 + ρ

1− ρ,

which can be proven using the following identities (a 6= 0)
∞∑
k=1

1
a2 + k2 = − 1

2a2 + π

2a coth (πa) ,
∞∑
k=0

1
a2 + (2k + 1)2 = π

2a

[
coth (πa)− 1

2 coth
(
πa

2

)]
.

Remark 2.36. In the time domain, the representation of f is L−1(f) = 1
2δ + 1

2b
∑
k e−sk . This is

a purely oscillatory representation with an added Dirac distribution. The presence of δ could
have been expected since f(s) =

s→+∞
O(1).

Oscillatory-diffusive kernels

Let us now consider a kernel with both a diffusive and an oscillatory part. The two functions
considered below arise in the modeling of cavities with viscous and thermal losses, as we shall
see in Section 2.4.

Lemma 2.37. Let f denotes the function

f(s) = e−2ε
√
s

1− ρe−2(ε
√
s+bs) (s ∈ C\(−∞, 0]),

with b, ε > 0 and ρ ∈ R∗. (If ε = 0 see Lemma 2.35.) It admits the OD representation

f(s) =
∑
k∈K

e−2ε√sk

2b+ ε√
sk

1
s− sk

+
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ,

where the poles sk are the non-null solutions of

∀k ∈ K,

 bsk + ε
√
sk − ln√ρ− jkπ = 0 (ρ > 0)

bsk + ε
√
sk − ln

√
|ρ|+ jπ2 + jkπ = 0 (ρ < 0),

(2.38)

and the diffusive weight is given by

µ(ξ) = 1
π

sin(2ε
√
ξ)

1− 2ρe2bξ cos(2ε
√
ξ) + ρ2e4bξ 1(0,∞)(ξ). (2.39)

(There may not be a non-null solution of (2.38) for a given k ∈ Z so that K may be strictly
embedded in Z.)
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Proof. The diffusive cut is Γ = (−∞, 0] with single branch point γ1 = 0. Let us show that f
satisfies the four conditions of Corollary 2.20. Conditions (i) and (ii) are satisfied, even when
ρ = 1. To verify condition (iii), let us compute the diffusive weight using (2.17), which gives for
ξ ∈ (0,∞)

µ(ξ) = 1
2jπ

 e−2ε
(
−j
√
ξ
)

1− ρe−2(−jε
√
ξ−bξ)

− e−j2ε
√
ξ

1− ρe−2(jε
√
ξ−bξ)

 = 1
π
=

 ej2ε
√
ξ

1− ρe2bξe2jε
√
ξ

 ,
which is smooth on (0,∞) from the lemma below. Moreover, it satisfies the integrability condi-
tion since µ(ξ) =

ξ→∞
O
(
e−4bξ

)
and

µ(ξ) =
ξ→0

1
π

O(
√
ξ)

(1− ρ)2 +O(ξ) ,

so that condition (iii) is satisfied. The poles of f satisfy e2(ε√sk+bsk) = ρ with associated residues

Res(f, sk) = e−2ε√sk

d
ds

[
1− ρe−2(ε

√
s+bs)

]
s=sk

= e−2ε√sk

2b+ ε√
sk

,

from which we verify condition (iv).

Lemma 2.38. Let b, ε > 0 and ρ ∈ R∗. The diffusive weight µ has no singularity in (0,∞).

Proof. The diffusive weight can be written, for ξ ∈ (0,∞),

µ(ξ) = 1
π

sin(2ε
√
ξ)(

1− ρe2bξ cos(2ε
√
ξ)
)2 + ρ2e4bξ sin(2ε

√
ξ)2

,

so that a singularity ξ∗ ≥ 0 must satisfy

cos(2ε
√
ξ∗) = 1, sin(2ε

√
ξ∗) = 0, e2bξ∗ = 1

|ρ|
.

If |ρ| > 1 there is no such ξ∗. If ρ = ±1 then ξ∗ = 0 /∈ (0,∞). If |ρ| < 1, then ξ∗ ∈ (0,∞) and
the behavior of µ around ξ∗ is given by

µ(ξ) = 1
π

sin(2ε
√
ξ)

1− 2ρe2bξ cos(2ε
√
ξ) + ρ2e4bξ =

ξ→ξ∗

1
π

O (|ξ − ξ∗|)
1− 2 (1 +O (|ξ − ξ∗|)) + (1 +O (|ξ − ξ∗|))

=
ξ→ξ∗

1
π

O (|ξ − ξ∗|)
O (|ξ − ξ∗|)

,

so that ξ∗ is not a singularity of µ.

Let us briefly recall that the poles sk can be computed using the change of variable σ :=
√
s,

see e.g. (Matignon 1994), so that (2.38) reduces to

Pk(σk) = 0, <(σk) ≥ 0,

where Pk is a second-degree polynomial. A plot of the poles, which go by conjugate pairs since
f(s) ∈ (0,∞) for s ∈ (0,∞), is given in the left plot of Figure 2.6 for several values of the
parameters ε and ρ. The parameter ε, physically linked to dissipation phenomena, controls the
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Figure 2.6. Plot of poles defined in Lemmas 2.35 and 2.37, for b = 1. (Left) ( ) ε = 0, ρ = 1. ( ) ε = 0,
ρ = 10−4. ( ) ε = 5, ρ = 10−4. (Right) Same poles as left plot, but the marker size is
proportional to the residue Res (f, sk).

frequency-dependent losses. Specifically, if ε > 0, then the higher = (sk) (i.e. the higher the pole
frequency), the lower < (sk) (i.e. the higher the pole attenuation); by contrast, when ε = 0 every
pole has the same real part. The parameter ρ controls the frequency-independent losses (for
ε > 0 it shifts all the poles horizontally for instance). In the right plot of Figure 2.6, the exact
same poles are plotted but with a marker size proportional to the corresponding residue, thus
illustrating the exponential decay of the residues when ε > 0. Another illustration is proposed
in Figure 2.7 where the principal argument of f is plotted, showing both the poles and the cut.
Remark 2.39. A similar function arise in the study of the Lokshin equation, namely

f(s) = e−ε
√
s

1− ρe−2(ε
√
s+bs) (s ∈ C\(−∞, 0]),

see (Matignon 1994, Chap. 6) and (Héleschewitz 2000, Chap. 9).
The lemma below can be seen as a variation on Lemma 2.35 with an added cut. Again, the

lack of exponential damping in the numerator implies a constant term in the OD representation;
both the poles sk and the diffusive weight µ contribute to this constant.

Lemma 2.40. Let f denotes the function

f(s) = 1
1− ρe−2(ε

√
s+bs) (s ∈ C\(−∞, 0]),

with b, ε > 0 and ρ ∈ R\{0, 1}. (If ε = 0 see Lemma 2.35.) It admits the OD representation

f(s) = C +
∑
k∈K

1
2b+ ε√

sk

1
s− sk

+
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ,

where the constant is given by

C = 1
1− ρ +

∑
k∈K

1
sk

1
2b+ ε√

sk

−
(ˆ ∞

0

µ(ξ)
ξ

dξ
)
'
ε�1

1
1− ρ +

∑
k∈K

1
2bsk

.

The poles sk are the solutions of (2.38), which are non-null. The diffusive weight is

µ(ξ) = 1
π

ρe2bξ sin(2ε
√
ξ)

1− 2ρe2bξ cos(2ε
√
ξ) + ρ2e4bξ 1(0,∞)(ξ).
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Cut Γ = (−∞, 0]

Branch point γ1 = 0
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Figure 2.7. Plot of the principal value of the argument for two multivalued functions, which shows a
jump across the branch cut Γ and the presence of poles. Function defined in Lemma 2.37
with b = 1. (Left) ε = 5 , ρ = 10−4. All the poles sk are outside the plotted area. (Right)
ε = 5, ρ = 1.

Proof. The fact that ε > 0 implies that γ1 = 0 is a branch point, with Γ = (−∞, 0] branch
cut. Corollary 2.20 cannot be applied since the decay condition (i) fails in the right half-plane.
Hence we consider instead

g(s) = f(s)
s
,

which satisfies (i) but fails (ii) since, for instance, g(s) =
s→0

1
1−ρO

(
1
|s|

)
for ρ 6= 1. To obtain a

representation, we resort to applying Theorem 2.16 on g. The condition (ii) is satisfied since the
residue Res(g(s)est, γ1) with t ∈ R is finite and given by

Res(g(s)est, γ1) = lim
r→0

1
2π

ˆ +π

−π
f(rejθ)etrejθdθ = f(0) = 1

1− ρ.

(Note that if ρ = 1, then g(s) =
s→0

1
2εO

(
|s|−3/2

)
so that this residue is not finite.) To check the

condition (iii), we compute the diffusive weight using (2.17), which yields for ξ ∈ (0,∞)

µg(ξ) = 1
2jπ

[
g(ξe−jπ)− g(ξe+jπ)

]
= − 1

π

1
ξ
=
[

1
1− ρe2(jε

√
ξ+bξ)

]

= − 1
πξ

ρe2bξ sin(2ε
√
ξ)

1− 2ρe2bξ cos(2ε
√
ξ) + ρ2e4bξ ,

which is smooth on (0,∞), see Lemma 2.38, and is integrable on (0,∞). Hence, (iii) is satisfied.
The poles sk are the solutions of (2.38), which are non-null since ε > 0. As sk 6= 0, the poles are
simple and the associated residues are given by

Res(g, sk) = 1
sk

1
d
ds

[
1− ρe−2(ε

√
s+bs)

]
s=sk

= 1
sk

1
2b+ ε√

sk

,

and condition (iv) is satisfied. Therefore, we have the following OD representation for g:

g(s) = Res(g, 0)
s

+
∑
k∈K

Res(g, sk)
1

s− sk
+
ˆ ∞

0

1
s+ ξ

µg(ξ) dξ,
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from which we deduce

f(s) =

Res(g, 0) +
∑
k∈K

Res(g, sk) +
ˆ ∞

0
µg(ξ) dξ

+
∑
k∈K

Res(g, sk)
sk

s− sk

+
ˆ ∞

0

1
s+ ξ

(−ξµg(ξ)) dξ,

which is the claimed identity, by defining µ(ξ) := −ξµg(ξ).

2.2 Discretization of oscillatory-diffusive representations

Let h be a given OD kernel that enjoys the representation (2.20). This section focuses on the
computation of a numerical approximation of h denoted hnum and given by

hnum(t) =
Ns∑
n=1

rne−s̃n(t) +
Nξ∑
n=1

µneξn(t) (t ∈ R) (2.40)

ĥnum(s) =
Ns∑
n=1

rn
s− s̃n

+
Nξ∑
n=1

µn
s+ ξn

(<(s) > 0) , (2.41)

where rn, µn are the discrete weights and s̃n, ξn are the discrete poles. The expression of hnum
given above contains two sums instead of just one: intuitively, we expect each sum to approxi-
mate one half of the OD representation of h, i.e.

Ns∑
n=1

rn
s− s̃n

'
∑

k∈J1,nK

Res(ĥ, γk)
s− γk

+
∑
k∈Z

Res(ĥ, sk)
s− sk

,

Nξ∑
n=1

µn
s+ ξn

'
ˆ ∞

0

µĥ(ξ)
s+ ξ

dξ.

We are interested in methods that yield parsimonious approximations, i.e. for which Ns and
Nξ are as small as possible. This section is split into two parts, each one covering one family of
discretization methods for (2.20).

1. Section 2.2.1 deals with methods that rely on an optimization. It presents a standard
method that relies on a linear least squares optimization, which will be used in the time-
domain application of Chapter 6.

2. Section 2.2.2 is focused on methods based on known quadrature rules. It defines a method,
proposed in (Monteghetti et al. 2018d), which is well-suited for diffusive kernels whose
diffusive weight is “well-behaved”.

2.2.1 Optimization-based discretization

Optimization-based methods have enjoyed a wide range of applications, notably in wave prop-
agation problems. A method based on a linear least squares optimization, where the pole
distribution is chosen a priori has been introduced in (Garcia and Bernussou 1998) for the iden-
tification of a lead acid battery impedance model using time-domain measurements, and further
refined in (Hélie and Matignon 2006b) with application to a wide range of diffusive kernels.
A method based on a nonlinear least squares method has been introduced in (Lombard and
Matignon 2016).

Here, we describe a method based on a linear least squares optimization that will prove useful
in the time-domain application of Chapter 6. Since we are interested in approximating models
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that arise from physics, we assume that the OD kernel h introduced above satisfies the reality
condition, i.e. h(t) ∈ R, so that the poles sn of ĥ go by conjugate pairs, see e.g. Figure 2.6.
In light of this remark, we rewrite the discrete model ĥnum given by (2.41) under a form that
separates real poles from complex conjugate ones, namely

ĥnum(s) =
∑
n∈Nr

rn
s− s̃n

+
∑
n∈Np

rn
s− s̃n

+ rn
s− s̃n

+
Nξ∑
n=1

µn
s+ ξn

, (2.42)

where the set of indices Nr (real poles) and Np (complex conjugate poles) are formally defined
as

Nr := {n ∈ J1, NsK | s̃n ∈ R} , Nr := {n ∈ J1, NsK | =(s̃n) > 0} ,

so that
Ns = Nr + 2Np, Nr := cardNr, Np := cardNp.

Note that the reality condition hnum(t) ∈ R also constrains the weights, so that µn ∈ R and

n ∈ Nr ⇒ rn ∈ R.

We wish to compute the discrete poles and weights by minimizing

K∑
k=1
|ĥ(jωk)− ĥnum(jωk)|2, (2.43)

where the K angular frequencies ωk are given. The main challenge of such an optimization is
that ĥnum is nonlinear with respect to its poles ξn and s̃n, which furthermore can have a wide
variation since typically ξ ∈ suppµĥ = (0,∞) and |sn| −−−→→∞ ∞. The principle of the method
described below is to circumvent this difficulty by either choosing the poles following a suitable
heuristic or computing them from the knowledge of ĥ.

1. The desired number of poles in each category is chosen, namely Nr (number of real poles),
Np (number of complex conjugate poles), Nξ (number of diffusive poles).

2. Each category of poles is computed as follows.

(a) The Nξ diffusive poles are logarithmically spaced in [ξmin, ξmax] ⊂ suppµĥ, where ξmin
(resp. ξmax) is the lower (resp. upper) bound of the angular frequencies of interest.

(b) The Nr +Np poles s̃n are defined using the first poles and branch points of ĥ, i.e.

s̃n := sn or s̃n := γn (n ∈ Nr ∪Np) .

The poles sn of ĥ are obtained either by numerical computations or using an analytical
expression such as (2.37). The computational gain stems from the fact that computing
the poles of ĥ is typically a relatively cheap and accurate process. The branch points
γn are known by definition of ĥ. Note that, as shown in Section 2.1.2, they need not
be accounted for if condition (2.26) holds. Note also that, although s̃n ∈ R when
n ∈ Nr, these real poles are treated separately from the diffusive poles µn.

3. The computation of the discrete weights rn and µn is then done with a minimization of
(2.43), which is a linear least squares minimization problem. The cost function is defined
as

J(x) := ‖Cx− d‖2, (2.44)
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with the matrix C and the column vectors x and d defined as

xᵀ :=
[

[<(rn)]n∈Nr∪Np [=(rn)]n∈Np [µn]n∈J1,NξK
]
∈ R1×(Nr+2Np+Nξ)

Cx :=


[
<
(
ĥnum(jωk)

)]
k∈J1,KK[

=
(
ĥnum(jωk)

)]
k∈J1,KK


k

∈ R2K×1, d :=


[
<
(
ĥ(jωk)

)]
k∈J1,KK[

=
(
ĥ(jωk)

)]
k∈J1,KK


k

∈ R2K×1,

where the K angular frequencies ωk are logarithmically spaced in [ξmin, ξmax].

By choosing K to be large, i.e.
K � Nr + 2Np +Nξ,

the optimization problem of step 3 is overdetermined and can be directly solved by a pseudo-
inverse at a computational cost that is typically negligible on a contemporary computer. Note
that the cost function J is defined in such a way that the reality of x is enforced.

This three-step method is particularly suited for time-domain simulations, where ξmax is
naturally known from e.g. the minimum acceptable time step or the maximum frequency of
interest. The practical choice of the lower bound ξmin, which governs the long-time behavior of
hnum, can be trickier: for a given ξmax and number of poles there is usually an optimal range for
ξmin, so that ξmin must not be chosen too small. For the kernels considered in this dissertation,
a logarithmic spacing of the diffusive poles ξn have proven to yield a satisfactory result, better
than, say, a linear spacing.
Remark 2.41 (Alternative step 3). An alternative to step 3 is to compute the discrete weight rn
with

rn := Res
(
ĥ, s̃n

)
,

so that the optimization is then only done on µn. The residue can be computed either with an
analytical formula or by numerically evaluating the integral (2.15). This is particularly effective
when the residues have a fast decay (physically, when dissipation phenomena are significant in
the model, see e.g. Lemma 2.37).

The application of this method to the fractional kernel Y1/2, whose diffusive representation is
given by (2.10), is illustrated in Figure 2.8 in both time and frequency domains. The frequency-
domain plot in logarithmic axes shows that with eight variables the method yields a seven-decade
approximation. The frequency-domain plot with linear axes shows that the diffusive poles are
concentrated close to 0, where µα varies the most. A linear spacing of the diffusive poles in
[ξmin, ξmax] leads to a poorer approximation, see Figure 2.9. An additional illustration of the
above method will be given in Section 2.4, where a physical model is discretized. Many additional
examples can be found in (Hélie and Matignon 2006b).
Remark 2.42 (Enhancements). The presented optimization method can be improved on the
two following aspects. First, although the reality of x is enforced, its sign is indefinite. When
discretizing an OD kernel whose diffusive weight is nonnegative, one might want the discrete
weights µn to be nonnegative as well. This can be done by using, instead of the pseudo-inverse,
a nonnegative least squares algorithm such as (Lawson and Hanson 1974, (23.10)), implemented
in MATLAB R© lsqnonneg. The drawback of such iterative methods is that convergence may be
difficult for some triplets (ξmin, ξmax, Nξ). This is not considered further in this dissertation.

Second, a nonlinear optimization can also be considered to refine the values computed
through the linear least squares minimization. This can be done with a general algorithm
like the vector fitting algorithm (Gustavsen and Semlyen 1999) or the more specific method
proposed in (Lombard and Matignon 2016). In the numerical application of Chapter 6, we will
use a nonlinear least squares minimization to account for experimental data.
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Figure 2.8. Application of the optimization method presented in Section 2.2.1. ( ) Exact kernel
h = Y1/2, ĥ(s) = 1/

√
s. ( , ) Discrete kernel hnum obtained with Nξ = 5 logarithmically

spaced diffusive poles in [ξmin, ξmax] with ξmin = 10−3 and ξmax = 104. ( , ) hnum with
Nξ = 8.
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Figure 2.9. Application of the optimization method presented in Section 2.2.1. ( ) Exact kernel
h = Y1/2, ĥ(s) = 1/

√
s. ( , ) Discrete kernel hnum obtained with Nξ = 5 linearly spaced

diffusive poles in [ξmin, ξmax] with ξmin = 10−3 and ξmax = 104. ( , ) hnum with Nξ = 8.
(The optimization is done on ‖jω(ĥ(jω)− ĥnum(jω))‖2.)
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Remark 2.43. Note that any optimization-based discretization cannot be reliably used to check
whether a given kernel h is OD. Following Remark 2.19, verifications of this kind are better done
by discretizing the right-hand side of (2.21) as accurately as possible regardless of the cost.

2.2.2 Quadrature-based discretization

Quadrature-based methods are an alternative way to discretize the diffusive part of (2.20) by
relying on a quadrature rule instead of an optimization. Since these methods are solely focused
on the diffusive part, we redefine the kernel h and its approximation hnum as

h(t) =
ˆ ∞

0
eξ(t)µ(ξ) dξ ' hnum(t) =

Nξ∑
n=1

µneξ(t) (t ∈ R), (2.45)

where µ is smooth on (0,∞) (the case where suppµ is bounded is similar). As already highlighted
above, we are here exclusively interested in methods that lead to parsimonious approximations.
(Expensive approximations of the diffusive integral are mainly of interest to verify whether
a given kernel h is OD.) In principle, the advantage of a quadrature-based method over an
optimization-based one is the presence of only one discretization parameter Nξ, thus making
it easier to compute hnum at the desired accuracy provided that hnum(t) −−−−→

Nξ→∞
h(t). The

challenge lies in finding a rule suited for the diffusive weight at hand. This section is drawn from
(Monteghetti et al. 2018d).

In (Haddar et al. 2010), which deals with a fractional monodimensional wave equation, the
diffusive integral is split into two parts, namely a local and a historical one: while the former is
approximated ad hoc, a Gauss-Legendre quadrature rule is employed for the later, see (J.-R. Li
2010) for an analysis. Another approach consists in directly using a quadrature rule, without any
split. To get back to a finite interval, one can either truncate the semi-infinite integration domain
(Baranowski 2017) or use a change of variable (Birk and Song 2010; Diethelm 2008; Yuan and
Agrawal 2002). In (Baranowski 2017), Gauss-Legendre and Curtis-Clenshaw quadrature rules
are used on a truncated domain. A method proposed in (Yuan and Agrawal 2002), based on
a Gauss-Laguerre quadrature rule with a change of variable, has been widely investigated and
led to the definitions of methods based instead on the Gauss-Jacobi quadrature rule (Birk and
Song 2010; Diethelm 2008), see (Birk and Song 2010) for a comparison that favor (Birk and
Song 2010, Eq. 23).

Let us now describe in more details how h can be discretized using a quadrature rule.
We assume that the diffusive weight µ is smooth and monotone on (0,∞) with a power-law
singularity at ξ = 0, i.e.

µ(ξ) =
ξ→0
O
( 1
ξα

)
, (2.46)

with α ∈ (0, 1). An example of such kernel is the fractional kernel Yα. Following classical works
on numerical quadrature (P. Davis and Rabinowitz 1984, Chap. 3) (Atkinson 1989, § 5.6), the
following two methods could be envisaged to deal with a singular integral like (2.45).

1. Consider µ as a weight function and define either a new set of Gauss nodes (if possible)
or a new product quadrature rule with equidistant nodes (Atkinson 1989, § 5.6).

2. Recover a continuous integrand using a change of variables. For example, for this integral,
MATLAB R© integral function uses the change of variable ξ =

(
v

1−v

)2
, see (Shampine

2008, § 4.2).
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To simplify the implementation, we choose the second method, i.e. we seek a suitable change
of variables Ψ : (−1, 1) → (0,∞) (Ψ(−1) = 0, Ψ(1) = ∞), so that the right-hand side of the
identity

h(t) =
ˆ 1

−1
µ (Ψ(v)) e−Ψ(v)t dΨ

dv (v) dv (2.47)

can be accurately discretized using the Gauss-Legendre quadrature rule (vn, wn), thus yielding

ξn := Ψ(vn), µn := wn
dΨ
dv (vn)µ(ξn). (2.48)

Given the singularity condition (2.46), a natural choice is (P. Davis and Rabinowitz 1984, § 3.1)
(Atkinson 1989, § 5.6)

Ψβ(v) :=
(1 + v

1− v

) 1
β

, β > 0. (2.49)

This change of variables results from the composition of v 7→ 1+v
1−v , which maps (−1, 1) to (0,∞),

and the power law v 7→ v
1
β . Using Ψβ, the representation (2.47) reads

h(t) = 2
β

ˆ 1

−1
e−t(

1+v
1−v )

1
β (1− v)−1− 1

β (1 + v)
1
β
−1
µ

((1 + v

1− v

) 1
β

)
dv, (2.50)

which leads to the definition of the Qβ,N discretization method given below.

Definition 2.44. The Qβ,N discretization of (2.45) is

ξn :=
(1 + vn

1− vn

) 1
β

, µn := wn
2
β

(1 + vn)
1
β
−1 (1− vn)−1− 1

β µ (ξn) , (2.51)

where (vn, wn) is the Gauss-Legendre quadrature rule.
Intuitively, one may expect the best value for β to be dependent on properties of the diffusive

weight µ, such as the value of α in (2.46). Based on a convergence study of the quadrature rule
for the fractional kernel Yα, the two following values of β stand out.

1. If α ∈ (0, 1) ∩Q such that α = n0
n1

with ni ∈ N∗, then

β1 := 1
n1

(2.52)

yields a spectrally convergent approximation. This value is also suited for α ∈ (0, 1)∩(R\Q)
with α ' n0

n1
.

2. A larger value of β, namely
β2 := min(α, 1− α), (2.53)

yields a convergent but not spectrally convergent approximation. Numerical results show
that β2 can be preferable to β1 for moderate values of N .

In practice, both values are satisfactory, but since the largest diffusive pole grows as

ξmax =
Nξ→∞

O
(
N

2
β

ξ

)
,

for time-domain applications the largest value of the two, namely β2, is to be favored.
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Figure 2.10. Application of the quadrature rule of Definition 2.44. ( ) Exact kernel h = Y1/2, ĥ(s) =
1/
√
s. ( , ) Discrete kernel hnum obtained with Nξ = 4 and β = β2, giving ξmin = 5.6×

10−3 and ξmax = 180. ( , ) hnum with Nξ = 8 and β = β2 (ξmin = 4.1× 10−4, ξmax =
2.4× 103). ( , ) hnum obtained with the optimization method defined in Section 2.2.1
with Nξ = 8 logarithmically spaced diffusive poles in [ξmin, ξmax] with ξmin = 10−3 and
ξmax = 104. (Already plotted in Figure 2.8.)

A numerical application to the fractional kernel Yα is shown in Figure 2.10 for Nξ = 4,
giving ξmax = 180, and Nξ = 8, giving ξmax = 2.4 × 103. For comparison, the plot also shows
a kernel obtained with the optimization method for N = 8, ξmin = 10−3, and ξmax = 104,
already plotted in Figure 2.8. The two top graphs illustrate for N = 8 the difference between
a logarithmic pole distribution and that given by (2.51). The optimized kernel yields the most
accurate approximation, as one would expect since it has the highest ξmax. However, modifying
the value of ξmin, from 10−3 to 10−5 for instance, would alter its accuracy so that the quadrature
method has the advantage of being easier to use in practice. As a rule, as far as accuracy is
concerned, the optimization method has the upper hand for moderate values of Nξ, provided
that the triplet (ξmin, ξmax, Nξ) is well-chosen. These remarks do not constitute a comparison
between the two discretization methods: further details, including convergence rates in both
time and frequency domains are available in (Monteghetti et al. 2018d). In this dissertation, we
will restrict ourselves to the optimization method.

2.3 Hyperbolic realization of time delays

The purpose of this short section is to recall the realization of time delays and present its
application to the realization of irrational transfer functions, in preparation for Section 2.4.

Let τi > 0 and ai ∈ C. The time-delay kernel

ĥ(s) =
∑

i∈J1,nK
aie
−τis (<(s) > 0) , h(t) =

∑
i∈J1,nK

aiδ (t− τi)
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is causal and tempered. The corresponding convolution operator u 7→ h ? u is given by

h ? u(t) =
∑

i∈J1,nK
aiu (t− τi) .

Since ĥ fails the decay conditions of Theorems 2.16 and 2.23, an OD representation of h cannot
be derived by inverting its Laplace transform. In fact, an infinite-dimensional realization of h
can be obtained using a monodimensional transport equation as follows

∂tψ(t, θ) = cτ∂θψ(t, θ) (t > 0, θ ∈ (−lτ , 0))
ψ(t, 0) = u(t), ψ(0, θ) = 0
h ? u(t) =

∑
i∈J1,nK

aiψ(t,−cττi),
(2.54)

where
lτ = cτ max

i
τi > 0.

The intuitive interpretation of (2.54) is that delaying a quantity is formally identical to transport-
ing that quantity. This realization has been well-studied, see (Curtain and Zwart 1995, § 2.4),
(Engel and Nagel 2000, §VI.6), (Richard 2003), and (Michiels and Niculescu 2014, Chap. 2).
Since the transport equation is hyperbolic, the function ψ(t, ·) is called the hyperbolic state or
variable and (2.54) is called the hyperbolic realization of h. Our motivation for using this real-
ization is both theoretical and numerical, as it will be used in Chapter 4 to study the stability
of the wave equation and in Chapter 6 to delay a quantity in a time-local fashion.

What is important for our purposes is that the hyperbolic realization (2.54) enables to obtain
realizations of a wider range of kernels than that covered in Section 2.1. To illustrate this, let
us consider the kernel

ĝ(s) = 1 + e−τsĥ(s) (<(s) > 0) , g(t) = δ(t) + h(t− τ) (t ∈ R) ,

where h is an OD kernel that satisfies the conditions of Corollary 2.20 and τ > 0 is a time delay.
Using the OD realization of h given by (2.31), the convolution writes

g ? u(t) = u(t) + h ? u(t− τ)

= u(t) +
∑
k∈Z

Res(ĥ, sk)ϕ(t− τ,−sk) +
ˆ ∞

0
ϕ(t− τ, ξ)µĥ(ξ) dξ, (2.55)

where ϕ follows the ODE (2.7). The identity (2.55) implies that g?u can be computed through a
set of delayed ODEs. A (time-local) realization of g can be obtained by composing the hyperbolic
realization of s 7→ e−sτ with the OD realization of h given by (2.31), which yields

g ? u(t) = u(t) +
∑
k∈Z

Res(ĥ, sk)ψ(t,−sk,−cττ) +
ˆ ∞

0
ψ(t, ξ,−cττ)µĥ(ξ) dξ,

where the hyperbolic variable follows{
∂tψ(t, z, θ) = cτ∂θψ(t, z, θ) (t > 0, θ ∈ (−lτ , 0), z ∈ C)
ψ(t, z, 0) = ϕ(t, z), ψ(0, z, θ) = 0.

(2.56)

An intuitive summary of the classes of kernels that we have encountered so far in this chapter
is provided in Table 2.1. To close this section, let us consider a kernel that models a cavity with
dissipation, which will arise in the application of Section 2.4.
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Physical phenomenon Kernel ĥ Time-domain realization

Dissipation
without
propagation

Without
oscillations

Diffusive kernel´∞
0

µ(ξ)
s+ξ dξ ODE ϕ

Heat equation,
Parabolic

With oscillations
Oscillatory kernel∑
k∈Z

Res(ĥ,sk)
s−sk

Oscillator

Propagation without dissipation e−sτ , τ > 0 PDE ψ
Transport
equation,
Hyperbolic

Table 2.1. Intuitive summary of the classes of kernels covered.

Lemma 2.45. Let us consider the positive-real function

f(s) = coth(a+ ε
√
s+ bs) (s ∈ C\(−∞, 0]) ,

with a, ε ≥ 0 and b > 0. Let τ = 2b and ρ = e−2a. If ε = 0, f admits the representation

f(s) = 1 + ρe−τs + ρ

b
e−τs

∑
k∈Z

1
s− sk

,

where the poles sk are given by (2.37). If ε > 0, f admits the representation

f(s) = 1 + 2ρe−τs
∑
k∈K

e−2ε√sk

2b+ ε√
sk

1
s− sk

+
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ

 ,
where the poles sk are the non-null solutions of (2.38) and the diffusive weight is given by (2.39).

Proof. The function f satisfies f(s) =
s→+∞

O (1) so that Theorem 2.16 cannot be applied directly.
To build a representation of f , we use the identity

coth(s) = 1 + 2 e−2s

1− e−2s , (2.57)

which leads to

f(s) = 1 + 2ρe−2bsg(s), g(s) = e−2ε
√
s

1− ρe−2(ε
√
s+bs) , ρ = e−2a ∈ (0, 1].

If ε = 0, the representation of g is given by Lemma 2.35. If ε > 0, the representation of g is
given by Lemma 2.37.

2.4 Application to physical impedance models
The purpose of this section is to derive time-local realizations of the physical impedance models
introduced in Section 1.2.2, using the results of the previous sections.

2.4.1 Linear models

We cover below the CT and SDOF liner models under their impedance, admittance, and re-
flection coefficient formulations. Although this section is restricted to liner models, models that
cover some porous media and ground layers have been covered in (Monteghetti et al. 2016a).
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CT liner

The model (1.24) with wavenumber (1.26) reads

ẑCT(s)
zc

= 1
σc

coth
(
b0 + b1/2

√
s+ b1s

)
, (2.58)

where b1 > 0, b0, b1/2 ≥ 0, and σc ∈ (0, 1]. The representation of this kernel can be obtained
using the identity (2.57), which leads to

ẑCT(s)
zc

= 1
σc

+ e−τsĥ(s)

zCT(t)
zc

= 1
σc
δ(t) + h(t− τ),

(2.59)

where
τ = 2b1

is a time delay and

ĥ(s) = 2e−2b0

σc

e−2b1/2
√
s

R(s) , R(s) = 1− e−2b0e−2(b1/2
√
s+b1s). (2.60)

The kernel h is OD with representation given in Lemma 2.35 (resp. Lemma 2.37) if b1/2 = 0
(resp. b1/2 > 0). Note the physical interpretation of the time delay τ : the model (1.26) gives
b1 = lc/c0 where lc is the cavity length and c0 the propagation speed, so that τ is the back and
forth traveling time. Let us now assume that b1/2 > 0, so that Lemma 2.37 gives

ẑCT(s)
zc

= 1
σc

+ e−τs

∑
k∈Z

Res(ĥ, sk)
s− sk

+
ˆ ∞

0

1
s+ ξ

µĥ(ξ) dξ

 , (2.61)

where the poles sk are the non-null solutions of R(sk) = 0. The corresponding realization is
similar to the one covered in Section 2.3. First, the realization (2.31) of the OD representation
leads to

zCT ? u(t) = 1
σc
u(t) +

∑
k∈Z

Res(ĥ, sk)ϕ(t− τ,−sk) +
ˆ ∞

0
ϕ(t− τ, ξ)µĥ(ξ) dξ,

where ϕ follows the ODE (2.7). The sought (time-local) realization is then obtained using the
hyperbolic realization of the time delay:

zCT ? u(t) = 1
σc
u(t) +

∑
k∈Z

Res(ĥ, sk)ψ(t,−sk,−cττ) +
ˆ ∞

0
ψ(t, ξ,−cττ)µĥ(ξ) dξ, (2.62)

where the hyperbolic variable ψ follows the transport equation (2.56).
The representation of the physical model given by (2.61) naturally suggests the following

discrete impedance model

ẑnum(s)
zc

= 1
σc

+ e−τs

 Ns∑
n=1

rn
s− sn

+
Nξ∑
n=1

µn
s+ ξn

 , (2.63)

which is a “multipole” model, following the terminology of Section 1.3. The following remarks
can be made.
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Figure 2.11. Broadband approximation of ẑCT. ( ) CT57 liner at 130 dB (Jones et al. 2005). ( )
Physical model ẑCT given by (1.24,1.26) with σc = 57 %, dc = 0.8 × 0.6 mm, and lc =
0.84× 85.6 mm leading to b0 = 0, b1/2 = 5.0× 10−3, and b1 = 2.11× 10−4. ( ) Discrete
model ẑnum with Nξ = 2 diffusive poles at 50 Hz and 10 kHz and Ns = 2 oscillatory poles
(1 pair). ( ) ẑnum with Nξ = 2 and Ns = 4 (2 pairs). ( ) ẑnum with Nξ = 2 and
Ns = 8 (3 pairs).

• The discrete model (2.63) has been derived from (2.58), which is a high/low-frequency
approximation of the physical model (1.24,1.25). This sheds a light on the meaning and
applicability of multipole models, which so far were only postulated in the literature. The
physical interpretation of the components of ẑnum, namely the delay and the oscillatory
and diffusive parts, can be done with Table 2.1.

• The practical interest of this derivation is that it gives a simple way of computing the poles
and the weights in (2.63) using the methods given in Section 2.2. When these methods
are used, the poles and weights are directly obtained from a discretization of the physical
model (2.58) with b0, b1/2, and b1 given by e.g. (1.26).

• A different physical model is likely to lead to a different discrete model. This contrasts
with a one-size-fits-all approach, where one numerical model is postulated and applied
regardless of the material considered.

A comparison between ẑnum and ẑCT for the CT57 liner is proposed in Figure 2.11, where ẑnum
is computed using the linear least squares method presented in Section 2.2.1. The diffusive part
of ẑCT is well-approximated with only two diffusive poles, one at 50 Hz and one at 10 kHz. The
only difference between the three plotted discrete models is the number of oscillatory poles sn:
2, 4, and 6. The graph shows that the n-th pair of oscillatory poles enables to model the n-th
anti-resonance. Therefore, the presented model analysis has enabled us to compute a broadband
approximation of ẑCT with only a linear least squares optimization. Here, following Remark 2.41,
we compute the discrete weights rn by numerically evaluating the residues using (2.15), so that
only µ1 and µ2 are obtained through an optimization: the oscillatory and diffusive parts are
thus discretized differently.
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Remark 2.46 (Delay discretization). It is of paramount importance to note that the plots of
ẑnum given in Figure 2.11 assume that the time delay is perfectly discretized in the frequency
range of interest. When the time delay is discretized, the factor e−sτ in (2.63) is replaced with
ĥτ,num, which is a property of the chosen delay discretization method.
Remark 2.47. From now on, to avoid repetitions, we only write the representation in the Laplace
domain. The admittance of the CT liner model (2.58) is given by

zcŷCT = σc tanh
(
b0 + b1/2

√
s+ b1s

)
.

By using the identity (2.57) we get a representation similar to (2.59), namely

zcŷCT(s) = ĥ1(s) + e−τsĥ2(s), (2.64)

where τ = 2b1 and the OD kernels are given by

ĥ1(s) = 1
R(s) , ĥ2(s) = −e−2b0 e

−2b1/2
√
s

R(s) , R(s) = 1
σc

+ 1
σc
e−2(b0+b1/2

√
s+b1s). (2.65)

The representation of ĥ1 is given in Lemma 2.35 (resp. 2.40) if b1/2 = 0 (resp. b0, b1/2 > 0). The
representation of ĥ2 is given in Lemma 2.35 (resp. 2.37) if b1/2 = 0 (resp. b1/2 > 0). Note that
ĥ1 and ĥ2 have the same denominator R, so that they share the same poles. However, their
residues and diffusive weights are different.

The last formulation we consider is the reflection coefficient β̂CT, for which we will derive
two representations. The first one is obtained using the identity

β̂CT(s) =
ẑCT(s)
zc
− 1

ẑCT(s)
zc

+ 1
,

which leads to

β̂CT(s) =
1 + 2 e

−2
(
b0+b1/2

√
s+b1s

)
1−e

−2
(
b0+b1/2

√
s+b1s

) − σc
1 + 2 e

−2
(
b0+b1/2

√
s+b1s

)
1−e

−2
(
b0+b1/2

√
s+b1s

) + σc

= ĥ1(s) + e−τsĥ2(s), (2.66)

where τ = 2b1 and the OD kernels similar to that obtained with the admittance:

ĥ1(s) =
1−σc
1+σc
R(s) , ĥ2(s) = e−2b0 e

−2b1/2
√
s

R(s) , R(s) = 1 + 1− σc
1 + σc

e−2(b0+b1/2
√
s+b1s). (2.67)

Assume σc 6= 1. The representation of ĥ1 is given in Lemma 2.35 (resp. Lemma 2.40) if b1/2 = 0
(resp. b0, b1/2 > 0), while the representation of ĥ2 is given in Lemma 2.35 (resp. Lemma 2.37)
if b1/2 = 0 (resp. b1/2 > 0). If σc = 1, then ĥ1 = 0 and the representation of ĥ2 is provided by
Lemma 2.30 if b1/2 > 0 (otherwise ĥ2 = e−2b0). The second representation relies on

β̂CT(s) = 1− 2 1
ẑCT(s)
zc

+ 1
,
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which leads to

β̂CT(s) = 1− 2 1

1 + 1
σc

(
1 + 2 e

−2
(
b0+b1/2

√
s+b1s

)
1−e

−2
(
b0+b1/2

√
s+b1s

)) = 1− 2 1− e−2(b0+b1/2
√
s+b1s)

1 + 1
σc

+
(

1
σc
− 1

)
e−2(b0+b1/2

√
s+b1s)

= 1 + ĥ1(s) + e−τsĥ2(s), (2.68)

where τ = 2b1 and the OD kernels are given by

ĥ1(s) = − 2
R(s) , ĥ2(s) = 2e−2b0 e

−2b1/2
√
s

R(s) , R(s) = 1 + 1
σc

+
( 1
σc
− 1

)
e−2(b0+b1/2

√
s+b1s), (2.69)

and their representations are obtained similarly to the previous ones. The main difference is
that, when σc = 1 we do not have ĥ1 = 0 but 1 + ĥ1 = 0. The differences between the two
representations (2.66,2.67) and (2.68,2.69) are insignificant enough that they can be considered
equivalent. However, the differences between them grow significantly when considering the
SDOF liner model, covered below.
Remark 2.48 (Erratum). The representation of ẑ4 given in (Monteghetti et al. 2016a, Eq. 93)
is only valid for a0, aα > 0: if aα = 0, then a constant term must be added, as discussed in
this chapter. Let us detail this statement, using the notations of the paper. The function ĥ4 is
similar to (2.60) with

√
s replaced by sα, α ∈ (0, 1). If aα > 0, then ĥ4 satisfies the conditions

of Corollary 2.20, so that (2.28) is (Monteghetti et al. 2016a, Eq. 93). If aα = 0 and a0 > 0,
then ĥ4 fails the decay condition (2.16) but s 7→ ĥ4(s)/s satisfies the conditions of Theorem 2.16
with γ1 = 0, so that the representation of ĥ4 must be changed accordingly, as in Lemma 2.40.
Specifically, Theorem 2.16 yields

ĥ4
s

(s) =
Res

(
ĥ4
s , 0

)
s

+
∑
k

Res
(
ĥ4
s , sk

)
s− sk

+
ˆ ∞

0

µ ĥ4
s

(ξ)

s+ ξ
dξ,

where the diffusive weight is given by

µ ĥ4
s

(ξ) = −1
ξ
µĥ4

(ξ) = −1
ξ
µα4 (ξ)

and (sk)k is the sequence of poles of ĥ4 (which are non-null by definition of ĥ4, since Υ ∈ (0, 1)).
The representation of ĥ4 is therefore

ĥ4(s) = C +
∑
k

Res(ĥ4, sk)
s− sk

+
ˆ ∞

0

1
s+ ξ

µα4 (ξ) dξ,

where the added constant is given by

C = ĥ4(0) +
∑
k

Res(ĥ4, sk)
sk

−
ˆ ∞

0

1
ξ
µα4 (ξ) dξ.

SDOF liner

The impedance (1.29) with perforation model (1.20) and wavenumber (1.26) writes

ẑSDOF(s)
zc

= a0 + a1/2

√
s+ a1s+ 1

σc
coth(b0 + b1/2

√
s+ b1s), (2.70)
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where a0, a1/2, a1, b0, b1/2 ≥ 0, b1 > 0, and σc ∈ (0, 1]. The representation is

ẑSDOF(s)
zc

= a0 + a1/2ĥ1(s) + a1s+ e−τsĥ2(s),

where ĥ1(s) =
√
s, whose (extended) diffusive representation has been given in Section 2.1.4, and

ĥ2 is given by (2.60). For the sake of conciseness, in the next identities we use the polynomial

P (σ) = a0 + a1/2σ + a1σ
2.

The admittance is given by

zcŷSDOF(s) = 1
P (
√
s) + 1

σc
coth(b0 + b1/2

√
s+ b1s)

= ĥ1(s) + e−τsĥ2(s),

where τ = 2b1 and the OD kernels are given by

ĥ1(s) = 1
R(s) , ĥ2(s) = −e−2b0 e

−2b1/2
√
s

R(s) , R(s) = 1
σc

+P (
√
s)+

( 1
σc
− P (

√
s)
)
e−2(b0+b1/2

√
s+b1s).

(2.71)
The representations of these two kernels are as follows. Assume first that both a1/2 and a1 are
null. In this case, (2.71) is similar to (2.65) so that, if σca0 6= 1, the representation of ĥ1 is given
in Lemma 2.35 (resp. 2.40) if b1/2 = 0 (resp. b0, b1/2 > 0 or a0, b1/2 > 0), while the representation
of ĥ2 is given in Lemma 2.35 (resp. 2.37) if b1/2 = 0 (resp. b1/2 > 0). On the other hand, if
σca0 = 1, then R(s) = 2/σc so that ĥ1 is constant while the representation of ĥ2 is given by
Lemma 2.30.

Assume now that a1/2 6= 0 or a1 6= 0, which is likely in practice. This implies that P (∞) =∞,
thus ensuring that both ĥ1 and ĥ2 satisfy the decay condition at infinity (2.16). Both ĥ1 and
ĥ2 have the OD representation (2.21) given by Theorem 2.16.

Finally, let us consider the reflection coefficient, using the two approaches discussed when
analyzing the CT liner model above. The first approach reads

β̂SDOF(s) =
ẑSDOF(s)

zc
− 1

ẑSDOF(s)
zc

+ 1
=
P (
√
s)− 1 + 1

σc
coth(b0 + b1/2

√
s+ b1s)

1 + P (
√
s) + 1

σc
coth(b0 + b1/2

√
s+ b1s)

=
1−σc
1+σc + σc

1+σcP (
√
s)

1 + σc
1+σcP (

√
s) +

(
1−σc
1+σc −

σc
1+σcP (

√
s)
)
e−2(b0+b1/2

√
s+b1s)

+

(
1− σc

1+σcP (
√
s)
)
e−2(b0+b1/2

√
s+b1s)

1 + σc
1+σcP (

√
s) +

(
1−σc
1+σc −

σc
1+σcP (

√
s)
)
e−2(b0+b1/2

√
s+b1s) .

It leads to expressions with polynomials in both numerator and denominator, so that no decay
at infinity is achieved in general. Here, this approach is not convenient to build a representation
of β̂SDOF. By contrast the second approach directly yields an easier representation, namely

β̂SDOF(s) = 1− 2 1
1 + ẑSDOF(s)

zc

= 1− 2 1
1 + P (

√
s) + 1

σc
coth(b0 + b1/2

√
s+ b1s)

= 1 + ĥ1(s) + e−τsĥ2(s),
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where the OD kernels are given by

ĥ1(s) = − 2
R(s) , ĥ2(s) = 2e−2b0 e

−2b1/2
√
s

R(s)

R(s) = 1 + 1
σc

+ P (
√
s) +

( 1
σc
− 1− P (

√
s)
)
e−2(b0+b1/2

√
s+b1s),

(2.72)

which is similar to (2.71). For the sake of completeness, let us distinguish all cases.

• If a1/2 6= 0 or a1 6= 0, then both ĥ1 and ĥ2 have the OD representation (2.21) given by
Theorem 2.16.

• Assume now that both a1/2 and a1 are null. In this case, (2.72) is similar to (2.69).

· If a0 6= 1
σc
−1, then the representation of ĥ1 is given in Lemma 2.35 (resp. Lemma 2.40)

if b1/2 = 0 (resp. b1/2 > 0), while the representation of ĥ2 is given in Lemma 2.35
(resp. Lemma 2.37) if b1/2 = 0 (resp. b1/2 > 0).

· If a0 = 1
σc
− 1, then R(s) = 2

σc
and ĥ1(s) = −σc is a constant and the representation

of ĥ2 is provided by Lemma 2.30 if b1/2 > 0 (otherwise ĥ2 = e−2b0σc).

DDOF liner

The analysis of the DDOF, not used in the numerical application of Chapter 6, is proposed in
Appendix B.

2.4.2 Nonlinear model

The purpose of this section is to consider the realization of an impedance model that includes
the nonlinear term (19) recalled in Chapter 1. The computation of the impedance, admittance,
and scattering operators is discussed first on a simple example, thus illustrating the definitions
proposed in Section 3, then in the general case.

Algebraic model

Let us start with the following elementary example

Z
z0

(u) = a0u+ Cnl
c0
|u|u, (2.73)

where a0, Cnl ≥ 0. Since Z is algebraic, we can analytically compute the corresponding admit-
tance and scattering operators. The admittance operator is known implicitly as the solution
of

p = Z (Y(p)) (p ∈ R).

Hence, using Lemma 2.50 below, we get

Y(p) = 2p
z0a0 +

√
z2

0a
2
0 + 4 z0Cnl

c0
|p|
. (2.74)
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Note that if Cnl = 0 in (2.74) it reduces to p = z0a0Y(p). The scattering operator can be
computed in the same fashion. Using the definition (1.14) we have

B(v) =
(Z
z0
− I

)
◦
(Z
z0

+ I
)−1

(v)

= (a0 − 1)
(Z
z0

+ I
)−1

(v) + Cnl
c0

∣∣∣∣∣
(Z
z0

+ I
)−1

(v)
∣∣∣∣∣
(Z
z0

+ I
)−1

(v),

so that by using Lemma 2.50 to express
(
Z
z0

+ I
)−1

(v) we obtain

B(v) = β0
2v

1 +
√

1 + 4 Cnl
c0(a0+1)2 |v|

+ Cnl

c0 (a0 + 1)2
4|v|v(

1 +
√

1 + 4 Cnl
c0(a0+1)2 |v|

)2 , (2.75)

where β0 is the reflection coefficient associated with a0, namely

β0 = a0 − 1
a0 + 1 .

Note that if Cnl = 0 in (2.75) we recover B(v) = β0v. The nonlinear admittance operator (2.74)
satisfies the passivity condition (1.2) with Z replaced by Y. Similarly, the nonlinear scattering
operator (2.75) is passive since it satisfies (1.13), see Lemma 2.51. The expressions of Z, Y,
and B above are used in Chapter 6 to illustrate the computational interest of using a nonlinear
scattering operator.

Remark 2.49. Since the operators
(
Z
z0
− I

)
and

(
Z
z0

+ I
)−1

commute, we could also have found
an expression of B(v) by solving

Z
z0

(B(v)) + B(v) = Z
z0

(v)− v,

but this yields a less appealing formula.

Lemma 2.50. The inverse of the non-null nonlinear function

f(x) = ax+ b|x|x (x ∈ R),

with a, b ≥ 0 is given by
f−1(y) = 2y

a+
√
a2 + 4b|y|

.

Proof. Let x ∈ R and y = f(x). We seek to solve{
bx2 + ax− y = 0 (x > 0, y > 0)
− bx2 + ax− y = 0 (x < 0, y < 0).

Using Vieta’s formula to avoid a singularity at b = 0, the solutions are
x± = 2y

a±
√
a2 + 4by

(x > 0, y > 0)

x± = 2y
a±

√
a2 − 4by

(x < 0, y < 0),

which yields the claimed expression.
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Lemma 2.51. Let B : R→ R be defined as (2.75) with Cnl, c0, a0 ≥ 0. Then,

B(v) ≤ v (v ∈ R).

Proof. It suffices to rewrite B as

B(v) =

2β0 (1 + Φ(v)) + 4Cnl
c0(a0+1)2 |v|

2 (1 + Φ(v)) + 4Cnl
c0(a0+1)2 |v|

× v,
where

Φ(v) :=
√

1 + 4Cnl

c0 (a0 + 1)2 |v|.

General model

Let us now discuss the computation of the admittance and scattering operators when Z is a
generic nonlinear operator. For example, Z could be

Z
z0

(u) = 1
z0
zl ? u+ Cnl

c0
|u|u, (2.76)

where zl is an admissible impedance kernel, such as zSDOF or zCT covered in 2.4.1. Since zl ? u
can be a delayed integro-differential operator, the admittance and scattering operators cannot be
expressed analytically in general, by contrast with the algebraic model (2.73). The computation
of the admittance operator Y requires the inversion of Z, which writes{

Z (w(t)) = p(t) (t > 0)
Y(p) = w,

(2.77)

with suitable initial conditions depending on the nature of Z. For example, if Z is given by
(2.76) with zl = a0δ + a1δ

′ , we get a1ẇ(t) = −
(
a0 + z0Cnl

c0
|w(t)|

)
w(t) + p(t) (t > 0), w(0) = 0

w(0) = 0,

which is a nonlinear ODE, possibly stiff.
The computation of the scattering operator can be done in the two following ways. The first

method relies on the identity

B(v) = v − 2
(Z
z0

+ I
)−1

(v),

which implies that B(v) can be computed by inverting Zz0
+ I:

Z
z0

(w(t)) + w(t) = v(t) (t > 0)

B(v) = v − 2w.
(2.78)

The difficulty is that, similarly to (2.77), (2.78) may be a stiff ODE. The second way of computing
B(v) is by solving 

Z
z0

(w) (t) + w(t) = Z
z0

(v)(t)− v(t) (t > 0)

B(v) = w,

(2.79)
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which comes from the identity (Z
z0

+ I
)
◦ B = Z

z0
− I.

The interest of (2.79) is that it may be less stiff than (2.78). However, none of the expressions
(2.77,2.78,2.79) are further considered in this dissertation: as will be stated in the conclusion,
this constitutes a perspective of this study.
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Boundary conditions for the lin-
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The objective of this chapter is to define boundary conditions suitable for the LEEs. To
discuss well-posedness it relies on the theory of Friedrichs systems, whose concise formalism

will prove handy in the energy analysis of Chapter 5. The contribution of this chapter is
the application of recent results of the theory of Friedrichs systems to the LEEs. Section 3.1
recalls the LEEs and a proof of well-posedness in free space that relies on an a priori energy
estimate. The initial boundary value problem (IBVP) is covered in Section 3.2, where a literature
review shows that existing proofs of well-posedness also crucially depend on a priori energy
estimates, so that boundary conditions are required to be maximal positive, maximal dissipative,
or Friedrichs-admissible. The definition of such boundary conditions for the LEEs is investigated
in Section 3.3, which naturally leads to the definition of IBCs. Proving well-posedness of the
LEEs with IBCs is discussed in Section 3.4.

Motivation The problem that motivates this whole chapter comes from the numerical appli-
cation of Section 6.3. It consists in establishing the well-posedness of the LEEs (3.1) in finite
time, namely on ΩT = (0, T )×Ω with Ω ⊂ Rd, d = 2, and T > 0. The domain of interest is the
rectangle Ω = (0, L1) × (0, L2) with a boundary ∂Ω split into three disjoint parts, namely Γin,
Γout, and Γz:

Γin = {x1 = 0} ∩ Ω, Γout = {x1 = L1} ∩ Ω, Γz = ∂Ω\Γin ∪ Γout.

To each part of the boundary is associated a different boundary condition: inflow on Γin, outflow
on Γout, and finally an IBC on Γz. The subsonic base flow has only one component: u0 = u0e1

69
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with u0 ∈W 1,∞(Ω) that vanishes on Γz and is positive on both Γin and Γout. The well-posedness
of this problem is discussed in the last section of this chapter, namely Section 3.4, using the
notations and concepts introduced in the previous sections.

3.1 Linearized Euler equations in free space
In this work the hydrodynamic field is split between a steady base flow and an unsteady acoustic
perturbation. The perturbations of pressure p, velocity u, and density ρ are governed by the
homentropic linearized Euler equations (LEEs), defined on (0, T )× Ω with Ω ⊂ Rd an open set
and T > 0, 

∂tp+ (u0 · ∇)p+ z0c0∇ · u+ γp∇ · u0 = 0
∂tu+ (u0 · ∇)u+ z−1

0 c0∇p+ (u · ∇)u0 + z−1
0 c−1

0 p(u0 · ∇)u0 = 0
p = c2

0ρ.

(3.1)

The specific heat ratio is denoted γ > 1. Quantities related to the base flow are designated by
the subscript “0”: u0 is the base flow velocity, ρ0 the base flow density, c0 the speed of sound,
and z0 := ρ0c0 the characteristic impedance of the propagation medium. All quantities are
dimensional. Column vectors are denoted in bold and the symbol (u ·∇) denotes the convective
derivative defined as

(u · ∇)f :=
d∑
i=1

ui∂if

and

(u · ∇)f := ∇f · u =

 d∑
j=1

uj∂jfi


i∈J1,dK

when applied to scalar-valued and vector-valued functions, respectively. The LEEs (3.1) entail
hypotheses on both the base flow and the perturbations. The base flow is an ideal gas such
that c2

0 = γrT0 = γp0/ρ0 and solves the steady Navier-Stokes equations. The perturbations are
“small”, inviscid, and homentropic. The rather strong homentropicity assumption enables to
replace the energy equation by the algebraic relation p = c2

0ρ and implies that c0 must be constant
in Ω. As a result, the LEEs (3.1) do not include an entropy mode, but only hydrodynamic and
acoustic ones. In spite of its simplicity, this model is commonly used in duct aeroacoustics, see
Chapter 6. For the detailed derivation of the LEEs and additional physical insights, the reader
is referred to (Richter 2010, Chap. 2) and references therein.

A key feature of the LEEs (3.1) is that they can be written as a symmetric hyperbolic system,
which is useful to establish well-posedness in free space as well as to define admissible boundary
conditions, see Section 3.2. Generalities on symmetric hyperbolic systems are introduced in
Section 3.1.1 and applied to the LEEs in Section 3.1.2.

3.1.1 Well-posedness of symmetric hyperbolic IVPs

Definition 3.1 (Friedrichs operator (Friedrichs 1958) (Rauch 1985) (Ern et al. 2007, § 5.1)
(Antonić and Burazin 2010)). Let Ω ⊂ Rd be an open set. Let the first-order operator A :
L2(Ω)→ D(Ω)′ be defined by

Av :=
d∑
i=1

Ai∂iv +Bv, (3.2)

where Ai, B : Ω→ Rm×m are two real-valued matrix fields over Ω such that Ai ∈W 1,∞(Ω)m×m
and B ∈ L∞(Ω)m×m. The operator A is said to be a Friedrichs (also symmetric positive)
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operator if Ai = Aᵀ
i a.e. on Ω, and there is µ0 > 0 such that B +Bᵀ −

∑
i ∂iAi ≥ µ0Im a.e. on

Ω.

For spacetime operators, the following definition is relevant.

Definition 3.2 (Symmetric hyperbolic operator (Benzoni-Gavage and Serre 2007, Def. 1.2)).
Let Ω ⊂ Rd be an open set and define ΩT := (0, T )× Ω for T > 0. Let the first-order operator
L : L2(ΩT )→ D(ΩT )′ be defined by

Lv := ∂tv +
d∑
i=1

Ai∂iv +Bv, (3.3)

whereAi, B : Ω→ Rm×m are two real-valued matrix fields over ΩT such thatAi ∈W 1,∞(ΩT )m×m
and B ∈ L∞(ΩT )m×m. The operator L is said to be symmetric hyperbolic if Ai = Aᵀ

i a.e. on
ΩT .

Throughout this chapter, A denotes a spatial operator given by (3.2) and L denotes a
spacetime operator given by (3.3).
Remark 3.3. The graph space of A is defined as

H1
A(Ω) := {v ∈ L2(Ω) | Av ∈ L2(Ω)},

and is equipped with the usual scalar product (·, ·)H1
A

and graph norm ‖ · ‖H1
A

(Antonić and
Burazin 2009). This definition includes familiar spaces like H1 := H1

∇, H1
div and H1

rot.
Remark 3.4. If A is a Friedrichs operator, then L is both a symmetric hyperbolic and Friedrichs
operator. However, in general, a Friedrichs operator is not symmetric hyperbolic. Examples
include the heat equation (Antonić et al. 2013), and the Tricomi equation, an equation of mixed
type (elliptic-hyperbolic) with links to the modeling of transonic flow (Friedrichs 1958).
Remark 3.5. The name of Friedrichs is linked to the study of both symmetric hyperbolic and
symmetric positive systems (Friedrichs 1954, 1958). His investigation of the (I)BVP for sym-
metric positive systems was motivated by the study of the Tricomi equation.
Remark 3.6 ((Jensen 2005, § 2.1)). Beware that a Friedrichs operator A is not necessarily sym-
metric. In fact, if B +Bᵀ =

∑d
i=1 ∂iAi, then (Av,w)L2(Ω) = −(v,Aw)L2(Ω) for v,w∈ C∞0 (Ω).

The characteristic matrix of the spacetime operator L is formally defined as the following
matrix-valued field (Benzoni-Gavage and Serre 2007, Chap. 9)

A(t,x,n) :=
d∑
i=1

niAi(t,x), (3.4)

where n ∈ Sd−1. The hyperbolic nature of L is fully defined by the properties of A(n), without
consideration for its zeroth-order term B. The zeroth-order term, if defined by a sufficiently
smooth matrix B, cannot influence strong well-posedness, i.e. well-posedness in C([0, T ];X)
where X is a Banach space, which is the sole concern of this chapter. (Note, however, that
B can influence weaker well-posedness, such as S → S ′ , see (Benzoni-Gavage and Serre 2007,
Chap. 1) for a presentation of the link between hyperbolicity and well-posedness of the free space
constant coefficient Cauchy problem.) The characteristic matrix is also of primary importance
for the study of the initial boundary value problem, see Section 3.2.
Remark 3.7. A constant-coefficient symmetric hyperbolic operator L is hyperbolic in the sense
that its characteristic matrix A(n) :=

∑d
i=1 niAi is uniformly diagonalizable for n ∈ Sd−1

(Benzoni-Gavage and Serre 2007, Thm. 1.4).



72 Chapter 3. Boundary conditions for the LEEs

The interest of the introduced formulation lies in its suitability for the study of the following
Cauchy problem

∂tv +Av = f on ΩT , (3.5)

where the spatial operatorA is defined by (3.2). We distinguish between the initial value problem
(IVP), obtained for Ω = Rd, and the initial boundary value problem (IBVP), obtained when Ω
is an open bounded set strictly included in Rd. Note that the IBVP (3.5) can also be seen as
the boundary value problem (BVP)

Lv = f on ΩT , (3.6)

with L defined by (3.3).
Remark 3.8. If L is a symmetric hyperbolic operator, then there is λ > 0 such that A+ λI is a
Friedrichs operator. This is useful to recast the Cauchy problem (3.5) as ∂tṽ+(A+λI)ṽ = e−λtf
by defining ṽ := e−λtv. (Burazin and Erceg 2016)

Proofs of well-posedness for symmetric hyperbolic systems in both free and bounded space
crucially hinge on the derivation of a priori energy estimates, which are also useful in numerical
analysis, see Chapter 5. Let us assume that Ω is a bounded Lipschitz open set and that Ai
and B are smooth. An integration by parts with v ∈ C1(Ω) yields, using the symmetry of each
matrix Ai,

(Av,v)L2(Ω) = 1
2(Cv,v)L2(Ω) + 1

2(A(n)v,v)L2(∂Ω), (3.7)

where the symmetric matrix C is

C := B +Bᵀ −
d∑
i=1

∂iAi. (3.8)

This identity enables to derive a so-called continuous energy balance that expresses the evolution
of energy in the domain Ω

1
2
d
dt‖v(t)‖2L2(Ω) = −(Av,v)L2(Ω) + (f ,v)L2(Ω)

= −1
2(Cv,v)L2(Ω) −

1
2(A(n)v,v)L2(∂Ω) + (f ,v)L2(Ω), (3.9)

where
‖v(t)‖2L2(Ω) :=

ˆ
Ω
|v(t,x)|2 dx =

ˆ
Ω
|p̃(t,x)|2 dx+

ˆ
Ω
|u(t,x)|2 dx. (3.10)

The continuous energy balance (3.9) can be formalized as the following a priori estimate.

Proposition 3.9 (A priori energy estimate). Let Ω = Rd. Assume L is a symmetric hyperbolic
operator such that Ai and B belong to C∞(ΩT ). There is κ0 ≥ 0 such that for every T > 0,
κ ≥ κ0, and v ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)), the following a priori estimate holds

max
τ∈[0,T ]

e−
κ
2 τ‖v(τ)‖L2(Ω) ≤ ‖v(0)‖L2(Ω) + 2

ˆ T

0
e−

κ
2 τ‖Lv(τ)‖L2(Ω)dτ. (3.11)

Proof. Let v ∈ C1([0, T ]; C∞0 (Ω)), T > 0, and define f := Lv. For any κ ≥ 0, the following
continuous energy balance holds

d
dt
(
e−κt‖v(t)‖2L2(Ω)

)
= −e−κt((C + κIn+1)v,v)L2(Ω) + 2e−κt(f ,v)L2(Ω).
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Let κ0 = minx∈Ω λmin(C), where λmin(C) is the minimum eigenvalue of C, so that C+κIn+1 ≥ 0.
For κ ≥ κ0,

d
dt
(
e−κt‖v(t)‖2L2(Ω)

)
≤ 2e−κt(f ,v)L2(Ω),

and integrating over (0, t) with 0 ≤ t ≤ T gives

e−κt‖v(t)‖2L2(Ω) ≤ ‖v(0)‖2L2(Ω) + 2
ˆ t

0
e−κτ‖f(τ)‖L2(Ω)‖v(τ)‖L2(Ω)dτ,

using the Cauchy–Schwarz inequality in L2(Ω). Following for instance (Alinhac 2009, § 6.1), we
deduce

max
τ∈[0,T ]

e−κτ‖v(τ)‖2L2(Ω) ≤ ‖v(0)‖2L2(Ω) + 2
ˆ T

0
e−κτ‖f(τ)‖L2(Ω)‖v(τ)‖L2(Ω)dτ

≤ ‖v(0)‖2L2(Ω) + 2 max
τ∈[0,T ]

e−
κ
2 τ‖v(τ)‖L2(Ω)

ˆ T

0
e−

κ
2 τ‖f(τ)‖L2(Ω)dτ,

from which the claimed estimate follows, after a density argument.

The strong well-posedness of the IVP is given by the following result.

Theorem 3.10 (Free-space well-posedness). Let Ω = Rd. Assume L is a symmetric hyperbolic
operator with Ai, B ∈ C∞(ΩT ). For every T > 0, f ∈ L2(ΩT ), and v0 ∈ L2(Ω), there is a unique
v ∈ C([0, T ];L2(Ω)) solving (3.6) with v(t = 0) = v0. Additionally, there is C > 0 such that

max
τ∈[0,T ]

‖v(τ)‖2L2(Ω) ≤ C
(
‖v0‖2L2(Ω) +

ˆ T

0
‖f(τ)‖2L2(Ω) dτ

)
.

Proof (Sketch). A stronger version of this result, in Hs(Rn), is proven in (Benzoni-Gavage and
Serre 2007, Thm. 2.6). The first step of the proof is to extend the a priori estimate (3.9) to
v ∈ C([0, T ];Hs+1(Ω)) ∩ C1([0, T ];Hs(Ω)) for any s ∈ R, which can be done using pseudo-
differential calculus (Benzoni-Gavage and Serre 2007, Thm. 2.1). Let s ∈ R. Uniqueness in
C([0, T ];Hs(Ω)) follows directly from the a priori estimate. Existence in C([0, T ];Hs−1) relies
on the integration by parts formula: ∀ϕ,ψ ∈ C∞0 ([0, T ]× Ω),

(ϕ, L̃ψ)L2((0,T )×Ω) = (Lϕ,ψ)L2((0,T )×Ω) − (ϕ(T ), ψ(T ))L2(Ω) + (ϕ(0), ψ(0))L2(Ω),

where the formal adjoint operator L̃ is defined as L̃v := −∂tv−Aᵀ
i ∂iv+(Bᵀ − ∂iAi)v. By using

the a priori estimate on ‖ψ(t)‖H−s(Ω), it can be shown that the linear form

L̃ψ 7→ 〈f , ψ〉L2(0,T ;Hs),L2(0,T ;H−s) + 〈v0, ψ(0)〉Hs(Ω),H−s(Ω)

is both uniquely defined and bounded over L̃(C∞0 ([0, T ] × Ω) ∩ {ψ |ψ(T ) = 0}), so that it
can be extended to a bounded linear form on L2(0, T ;Hs(Ω)) by Hahn-Banach. The Riesz
representation theorem and distribution arguments yield a weak solution v in C([0, T ];Hs−1).
A weak=strong argument, relying again on the a priori estimate in Hs, shows that the solution
is actually in C([0, T ];Hs).
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3.1.2 Application to the linearized Euler equations

To recast the LEEs into a symmetric hyperbolic system, it suffices to define the perturbation
(column) vector as

v :=
(
u
p̃

)
∈ Rd+1, (3.12)

which is homogeneous to a velocity. Using this state vector, the LEEs (3.1) read (3.5) where
the characteristic matrix is given by

A(n) =
(

(u0 · n)Id c0n
c0n

ᵀ u0 · n

)
(3.13)

and

B =
(
∇u0

1
c0
∇u0 · u0

0ᵀ
n γ∇ · u0

)
, (3.14)

where Id denotes the d× d identity matrix. The symmetric amplification matrix (3.8) reads

C =
(
∇u0 +∇ᵀu0 − (∇ · u0)In 1

c0
∇u0 · u0

1
c0
u0 · ∇ᵀu0 (2γ − 1)∇ · u0

)
.

The right-hand side of the energy balance (3.9) is

(C(u0)v,v)Rn+1 = (∇ · u0)
[
(2γ − 1)p̃2 − |u|2

]
+ 2u · ∇u0 ·

(
u+ 1

c0
p̃u0

)
(3.15)

(A(n)v,v)Rn+1 = (u0 · n)
[
p̃2 + |u|2

]
+ 2c0 p̃(u · n). (3.16)

These expressions will be useful for the definition of boundary conditions in Section 3.3. Since
the operator L thus defined is a symmetric hyperbolic operator, Theorem 3.10 gives free-space
well-posedness for a smooth base flow u0 ∈ W 1,∞(ΩT ) ∩ C∞(ΩT ). If the base flow is steady,
Proposition 3.9 naturally suggests the following stability condition

min
x∈Ω

λmin(C) ≥ 0,

where λmin(C) is the minimum eigenvalue of C: this turns out to be a stringent condition on the
base flow u0 that is typically not satisfied in applications. For example, it holds for a constant
flow but fails for a Poiseuille flow. More relevant stability conditions can be obtained not by
energy analysis but by normal mode analysis, also known in the literature as a Briggs-Bers or
Kreiss analysis, see e.g. (Brambley 2009; Joubert 2010).

This section ends on Proposition 3.11 below, which gives the spectrum of the characteristic
matrix. It implies that the symmetric hyperbolic operator L obtained from the LEEs (3.1) using
the state (3.12) is also constantly hyperbolic (Benzoni-Gavage and Serre 2007, Def. 1.2) (it is
however not strictly hyperbolic since u0 · n is not a simple eigenvalue).

Proposition 3.11. Assume c0 6= 0 and n 6= 0. The real symmetric matrix (3.13) can be
diagonalized as

A(n) = P (n)Λ(n)P (n)−1,

with
Λ(n) := diag(u0 · n+ c0,u0 · n− c0,u0 · n, · · · ,u0 · n)
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and change of basis matrix P given by

P (n) :=
[

1/
√

2n −1/
√

2n t1 · · · td−1
1/
√

2 1/
√

2 0 · · · 0

]
(3.17)

with (ti)i∈J1,d−1K an orthonormal basis of the hyperplane of Rd defined by {t ∈ Rd | t · n = 0}.
In particular, the multiplicity of each eigenvalue of A(n) remains constant for any n ∈ Sd−1.
Moreover, if |n| = 1, the matrix P (n) is orthogonal, i.e. P (n)ᵀP (n) = Id+1.

Remark 3.12. The positive and negative parts of the characteristic matrix A(n) are defined as

A(n)⊕ := P (n)Λ(n)⊕P (n)−1 and A(n)	 := P (n)Λ(n)	P (n)−1,

where Λ(n)⊕ := max(Λ(n), 0) and Λ(n)	 := −min(Λ(n), 0) (component-wise) so that

A(n) = A(n)⊕ −A(n)	.

These quantities are useful to build approximate nonreflecting boundary conditions for numerical
simulations, see Example 3.17 and Chapter 6. Assuming |n| = 1 so that P (n) is orthogonal, we
have

A(n)⊕ = (u0 · n+ c0)⊕

2

[
n� n n
nᵀ 1

]
+ (u0 · n− c0)⊕

2

[
n� n −n
−nᵀ 1

]

+ (u0 · n)⊕
[ ∑d−1

i=1 ti � ti 0d
0ᵀ
d 0

]
,

where the matrix
∑d−1
i=1 ti � ti satisfies

Id = n� n+
d−1∑
i=1
ti � ti.

The corresponding decomposition of u,

u = (n� n) · u+
(
d−1∑
i=1
ti � ti

)
· u = (u · n)n+ ut,

enables to write A(n)⊕v as

A(n)⊕v = (u0 · n+ c0)⊕

2

[
(u · n)n+ p̃n
u · n+ p̃

]
+ (u0 · n− c0)⊕

2

[
(u · n)n− p̃n
−u · n+ p̃

]

+ (u0 · n)⊕
[
ut
0

]
.

The expressions of A(n)	 and A(n)	v is obtained by substituting “	” for “⊕” in the above
expressions. If n is the outward unit normal, dim kerA(n)	 is the number of outgoing char-
acteristics, i.e. the number of nonnegative eigenvalues of A(n). Incoming characteristics are
associated with the negative eigenvalues of A(n).
Remark 3.13. The same conclusions hold for the matrix associated with the spacetime operator
L

L(t,x, nt,n) = ntId+1 +
d∑
i=1

niAi(t,x),

where (nt,n) ∈ Sd, by substituting u0 · n by “nt + u0 · n”.
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Proof. The result follows from an elementary computation of the spectrum. Let v be such that
A(n)v = λv, i.e.

((u0 · n)− λ)u+ c0p̃n = 0, c0u · n+ ((u0 · n)− λ) p̃ = 0.

We distinguish two cases (acoustic and hydrodynamic modes).
(λ = u0 · n) Then p̃n = 0 and u · n = 0 and the corresponding eigenspace is (d − 1)-

dimensional.
(λ 6= u0 · n) Injecting the expression of p̃ from the second line into the first one yields

u =
(

c0
(u0 · n)− λ

)2
(u · n)n, p̃ = − c0

(u0 · n)− λu · n,

from which we deduce that u ∝ n, and λ is an eigenvalue iff u ·n 6= 0. There are now only two
cases to distinguish to get the last two one-dimensional eigenspaces.

• (λ = u0 · n− c0) Then p̃ = −u · n and u = −p̃n.

• (λ = u0 · n+ c0) Then p̃ = u · n and u = p̃n.

Let us denote by ψj the columns of the change of basis matrix (3.17), i.e. P = [ψ1 · · ·ψn+1].
If |n| = 1, it is straightforward to see that, by construction, P ᵀP = [(ψi,ψj)]i,j = Id+1.

3.2 Literature review on Friedrichs BVPs and IBVPs
This section reviews available results on the well-posedness of the BVP and IBVP for Friedrichs
systems with an emphasis on the formulation of boundary conditions, in preparation for Sec-
tions 3.3 and 3.4. Well-posedness of the IBVP (3.5) also relies on the derivation of a priori
energy estimates, but it presents significant additional difficulties compared to the free space
case covered in Section 3.1, let us mention three that are encountered with the LEEs (as with
many other problems arising from fluid mechanics): lack of smoothness of ∂Ω (results on Lips-
chitz domains are scarce); boundary of varying multiplicity (i.e. dim kerA(n) varies along some
components of ∂Ω); characteristic boundary (i.e. dim kerA(n) 6= 0 on parts of ∂Ω). (Note that
the three aforementioned difficulties are amplified should the hyperbolic system at hand be not
symmetric nor symmetrizable: in such cases, the well-posedness theory relies on proving the
existence of so-called symmetrizers (Benzoni-Gavage and Serre 2007, Chap. 9).)

An important question is the definition of a class of “admissible” boundary conditions, to
which various answers have been provided. As a preparation for the literature review, let
us intuitively introduce what an “admissible” boundary condition could look like, staying in
the energy approach initiated in Section 3.1. The first constraint is obtained by generalizing
Proposition 3.9 to a bounded set Ω.

Proposition 3.14 (A priori energy estimate). Let Ω ⊂ Rd be a bounded Lipschitz open set.
Assume L is a symmetric hyperbolic operator such that Ai and B belong to C∞(ΩT ). If for every
T > 0 and v ∈ C([0, T ];H1(Ω))

ˆ T

0
(A(n)v,v)L2(∂Ω)dτ ≥ 0, (3.18)

then there is κ0 ≥ 0 such that for every T > 0, κ ≥ κ0 and v ∈ C([0, T ];H1(Ω))∩C1([0, T ];L2(Ω))
the a priori estimate (3.11) holds.
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Proof. Integrating the continuous energy balance (3.9) leads to

e−κt‖v(t)‖2L2(Ω) ≤ ‖v(0)‖2L2(Ω) + 2
ˆ t

0
e−κτ (f ,v)L2(Ω)dτ −

ˆ t

0
e−κτ (A(n)v,v)L2(∂Ω)dτ,

so that the conclusion is immediate in view of the proof of Proposition 3.9.

Condition (3.18) is known as a positivity, dissipativity, or passivity condition. The second
constraint is based on elementary considerations from the theory of characteristics: the number
of scalar boundary conditions must equal the number of incoming characteristics (Benzoni-
Gavage and Serre 2007, § 4.1.1). These two conditions loosely defines maximal positive boundary
conditions, one of the cornerstones of the theory of Friedrichs systems. There are two variants of
the theory that differ from their formulation of the boundary conditions. In the classical theory,
boundary conditions are explicitly defined by relying on properties of traces in the graph space
H1
L(Ω) (Antonić and Burazin 2009). By contrast, in the abstract theory, boundary conditions

are implicitly defined through the definition of a subspace V ⊂ H1
L(Ω) in which the solution is

sought (Ern et al. 2007).

3.2.1 Classical theory

In the classical theory, three classes of boundary conditions are prevalent: maximal positive,
maximal dissipative, and Friedrichs-admissible. Each class is presented below, along with the
corresponding well-posedness result. (See also the literature review (Jensen 2005, § 2.6).)

Maximal positive Rauch (Rauch 1985) considers the boundary condition (we omit t for
clarity)

v(x) ∈ N(x) a.e. in ∂Ω, (3.19)

where N(x) ⊂ Rm is a linear subspace and Ω is a bounded open set lying on one side of
its C1 boundary. Condition (3.19) constrains m − dimN components of v. Well-posedness in
C([0, T ];L2(Ω)) of the IBVP (3.5) with L symmetric hyperbolic is shown under the assumptions
that the boundary condition be maximal positive, i.e.

∀v ∈ N, (A(n)v,v)Rm ≥ 0 for a.e. x ∈ ∂Ω
dimN = # of nonnegative eigenvalues of A(n) counting multiplicity

(= # of outgoing characteristics)
(= dim kerA(n)	),

(3.20)

and that ∂Ω be of constant multiplicity, i.e. dim kerA(n) remains constant on each component
of ∂Ω. Note that dimN (resp. m− dimN) is the number of outgoing (resp. incoming) charac-
teristics and kerA(n) ⊂ N . In a later work (Rauch 1994), the constant multiplicity hypothesis
is loosened: dim kerA(n) must be constant on the two components ∂Ω1 and ∂Ω2 of ∂Ω\Γ, where
Γ is a d− 2 dimensional C1 submanifold of ∂Ω. Furthermore,

N(x) =
{
Nsmall x ∈ Ω1

Nbig x ∈ Ω2
with Nsmall ⊂ Nbig. (3.21)

This requirement prevents the two boundary conditions, namely v ∈ Nsmall on ∂Ω1 and v ∈ Nbig
on ∂Ω2, from being unrelated. It has implication for the LEEs, see Section 3.3.
Remark 3.15. Merely imposing maximal positive boundary conditions (3.20) on each part of the
boundary ∂Ω is not enough for well-posedness (Rauch 1994).
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Remark 3.16. The definition (3.20) of maximal positive boundary condition is equivalent to
(Antonić and Burazin 2010, Thm. 2)

{
∀v ∈ N, (A(n)v,v)Rm ≥ 0 for a.e. x ∈ ∂Ω
∀v ∈ (A(n)N)⊥, (A(n)v,v)Rm ≤ 0 for a.e. x ∈ ∂Ω.

(3.22)

Maximal dissipative Defining N := kerR(n) in (3.19,3.20) with a rectangular real-valued
matrix R(x,n) ∈ Rp×m yields a maximal dissipative boundary condition (Benzoni-Gavage and
Serre 2007, Def. 3.2). If R(n) is full rank, then p is the number of incoming characteristics.
In (Benzoni-Gavage and Serre 2007, Thm. 3.2) a strong well-posedness result is obtained by
generating a C0-semigroup of contractions in the constant-coefficient half-plane case.

Friedrichs-admissible In the original work of Friedrichs (Friedrichs 1958), the boundary
condition is enforced with a real-valued matrix M(x,n) ∈ Rm×m through N := ker(A(n) −
M(n)). The matrix M(n) is said to be Friedrichs-admissible if

{
∀v ∈ Rm, (M(n)v,v)Rm ≥ 0 for a.e. x ∈ ∂Ω
Rm = ker(A(n)−M(n)) + ker(A(n) +M(n)).

(3.23)

Well-posedness of the BVP Av = f is shown by Jensen (Jensen 2005, Thm. 39) under technical
conditions. In particular, the application v 7→ (A(n) − M(n))v|∂Ω must define a bounded
operator from the graph space H1

A to some appropriate trace space. However, by contrast with
Rauch (Rauch 1994), the result theoretically applies to non-smooth domains.

Equivalence between the formulations (3.20) and (3.23) has been established in (Antonić
and Burazin 2010). If M(n) is Friedrichs-admissible, then N := ker(A(n)−M(n)) is maximal
positive. Conversely if N is maximal positive, then there exists a Friedrichs-admissible M(n)
such thatN = ker(A(n)−M(n)), which can be built using (Ern et al. 2007, Thm. 4.3). Note that
in practice one encounters non Friedrichs-admissible matrices M(n) such that N = ker(A(n)−
M(n)) is maximal positive: see the example below and Section 3.3.

Example 3.17 (Nonreflecting boundary conditions). With an hyperbolic law, an approxi-
mate nonreflecting boundary condition is naturally obtained by choosing M(n) := A(n)⊕ and
R(n) := A(n) − M(n) = −A(n)	, which constrains only the incoming characteristics and
is used in the numerical application presented in Chapter 6 at the inlet and outlet. From
(3.20) it defines a maximal positive boundary condition. Even though the matrix M(n) is
not Friedrichs-admissible in general (consider the diagonal system A(n) = diag(1, 0,−1)), there
exists a Friedrichs-admissible matrix M̌(n) such that kerR(n) = ker(A(n)− M̌(n)).

3.2.2 Abstract theory

In the abstract theory, the issue of formulating admissible boundary conditions is replaced by
that of finding a space V ⊂ H1

A for which the BVP

Av = f ∈ L2(Ω) (3.24)

is well-posed, where A is a Friedrichs operator given by (3.2). The theory has been introduced
in (Ern et al. 2007) by Ern, Guermond, and Caplain who gave sufficient conditions on V that
are abstract analogous of (3.22). Similarly to the equivalence between (3.22,3.23) in the classical
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theory, these sufficient conditions have been proven in (Antonić and Burazin 2010, Cor. 3) to be
equivalent to the existence of a bounded boundary operatorM∈ L(H1

L, H
1′
L ) such that∀v ∈ H

1
L, 〈Mv,v〉

H1′
L ,H

1
L
≥ 0

H1
L = ker(D −M) + ker(D +M),

(3.25)

where the boundary operator D ∈ L(H1
L, H

1′
L ) can be expressed using the boundary integral

∀v,w ∈ C∞0 (Rd), 〈Dv,w〉
H1′
L ,H

1
L

=
ˆ
∂Ω

(A(n)v,w)Rm dx.

In that case the space V is V := ker(D −M) and the analogy between (3.23) and (3.25) is by
design. The link between the classical (3.25) and abstract (3.23) conditions can be established
by also defining the boundary operatorM through a boundary integral

∀v,w ∈ C∞0 (Rd), 〈Mv,w〉
H1′
L ,H

1
L

=
ˆ
∂Ω

(M(n)v,w)Rm dx, (3.26)

where M(n) is a matrix as encountered in the classical theory. Practically, the well-posedness
of the BVP (3.24) in ker(D −M) is then mostly reduced to assessing whether (3.26) obeys
(3.25) and defines a bounded operator L(H1

L, H
1′
L ). The boundedness of the matrix M(n) is

not enough, and sufficient conditions have been proposed and applied to hyperbolic and elliptic
PDEs (Antonić and Burazin 2011, Thm. 4) (Antonić et al. 2013, Cor. 4). For later consideration
in Section 3.4, let us recall one of them.

Theorem 3.18 ((Antonić et al. 2013, Cor. 4) with (Ern et al. 2007, Thm. 4.2)). Let A be a
Friedrichs operator given by (3.2). Assume that there is a Lipschitz function P : Ω → Rm×m
satisfying ∃R ∈W 1,∞(Ω) :

∀k ∈ J1, dK, AkP = RAk. (3.27)

If M(n) := A(n)(Im − 2P ) satisfies (3.23), then for V := ker(D −M) the operator A is an
isomorphism from (V, ‖ · ‖H1

L
) to L2(Ω) and the BVP (3.24) is well posed in V .

However, Theorem 3.18 is not suited for the IBVP (3.6) with L given by (3.3), since then
condition (3.27) in the time direction is P = R, which is often too restrictive. An alternative
is to consider the IBVP as the evolution problem (3.5) and apply Theorem 3.18 to the spatial
operator A. Then, A generates a C0-semigroup of contractions (Burazin and Erceg 2016). The
applicability of this strategy to the LEEs is discussed in Section 3.4.
Remark 3.19 (Non maximal positive conditions). Although not considered herein, we mention
that boundary conditions that are not maximal positive can still lead to well-posed problems.
An alternative is provided by the Kreiss-Lopatinskĭı conditions (Benzoni-Gavage and Serre 2007,
Defs. 4.1-4.2) that, intuitively, require the absence of unstable normal modes (i.e. estv(x) with
<(s) > 0). Such an analysis is known under various names: normal mode analysis, Kreiss
analysis (Joubert 2010, Chaps. 5–6), or also Briggs-Bers analysis in the physical community
(Brambley 2009). See (Benzoni-Gavage and Serre 2007, Chap. 14) for an application to the
Euler equations.

3.3 Boundary conditions for the linearized Euler equations

This section investigates the definition of maximal positive (3.20) and Friedrichs-admissible
(3.23) boundary conditions for the LEEs (3.1), whose characteristic matrix (3.13) satisfies (3.16)
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and Proposition 3.11. Boundary conditions are sorted below by increasing number of incoming
characteristics (i.e. of negative eigenvalues of A(n)). Following Example 3.17, the square matrix
R := A(n)	 always defines a maximal positive boundary condition, so this case is not covered
further.

(Super)sonic outflow u0 · n ≥ c0

There are d + 1 outgoing characteristics, so that no boundary conditions need to be enforced.
If u0 ·n = c0 (resp. u0 ·n > c0), the boundary is characteristic (resp. non characteristic) since
dim kerA(n) = 1 (resp. dim kerA(n) = 0). Given the lower bound

(A(n)v,v)Rd+1 ≥ c0(p̃+ u · n)2,

the matrix R := 0d+1 defines a maximal positive boundary condition and M(n) := A(n) is
Friedrichs-admissible.

Impedance boundary u0 · n = 0

There are d (resp. 1) outgoing (resp. incoming) characteristics and the boundary is characteristic
since dim kerA(n) = d − 1. A maximal positive boundary condition is naturally defined by
R ∈ Rd+1 with dim kerR = d. Without loss of generality let R be given by a non-null vector

R := [rᵀ − z],

with |r| = 1 and z ≥ 0. Only the positivity condition of (3.20) needs to be checked. The
boundary term (3.16) is

(A(n)v,v)Rd+1 = 2c0p̃u · n,

so that the boundary condition r · u = zp̃ is maximal positive if and only if
z = 0, r = n (Hard wall)
z 6= 0, r = 0d (Presure-release wall)
z > 0, r = n. (Impedance wall)

By extension, this suggests defining the impedance boundary condition as p = Z(u ·n) where Z
is any passive operator. Discretization of such boundary conditions is considered in Chapters 5
and 6. Each of the three cases can be written in Friedrichs’ formalism by defining

MHW(n) := c0

[
ζn� n n
−nᵀ 0

]
, MPR(n) := c0

[
0d −n
nᵀ ζ

]
, MIW1(n) := c0

[
zn� n 0n

0n 1
z

]
,

MIW2(n) := c0

[
0d n
−nᵀ 2

z

]
, MIW3(n) := c0

[
2zn� n −n
nᵀ 0

]
.

where ζ ≥ 0 is a free parameter. All of these matrices M(n) are Friedrichs-admissible, except
MIW1(n) that fails the second condition of (3.23). However, the corresponding matrix R :=
A(n) −M(n) always defines a maximal positive boundary condition. Similar matrices M(n)
can be written for the admittance boundary condition (see Chapter 5 where the same formalism
is used).

As recalled in Section 1.1, one drawback of the impedance (resp. admittance) formulation
is that it does not include the hard (resp. pressure release) wall case, which is reflected in the
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singularities of the matrices MIW above. An alternative is to use the reflection coefficient β so
that the IBC writes (1.12). The corresponding matrix in Friedrichs’ formalism is

MIW4(n) = c0

[
(1 + β)n� n βn
−βnᵀ 1− β

]
.

To the best of our knowledge, this matrix was first introduced in (Ventribout 2006, § 1.3.2)
where it is shown to define a maximal positive boundary condition using (3.22). Since |β| ≤ 1,
MIW4(n) is also Friedrichs-admissible; the second condition of (3.23) is obtained with[

u
p̃

]
= 1

2

[
ut + (p̃+ u · n− β(p̃+ u · n))n

p̃+ u · n+ β(p̃+ u · n)

]
︸ ︷︷ ︸

∈ker(A(n)−MIW4(n))

+1
2

[
ut − (p̃− u · n− β(p̃+ u · n))n

p̃− u · n− β(p̃+ u · n)

]
︸ ︷︷ ︸

∈ker(A(n)+MIW4(n))

.

In Chapter 5, the matrix MIW4 is obtained using an energy method and generalized to the
scattering operator B. The numerical applications of Chapter 6 rely on this formulation.

Subsonic outflow 0 < u0 · n < c0

There are d (resp. 1) outgoing (resp. incoming) characteristics and the boundary is noncharac-
teristic. The boundary term (3.16) satisfies

(A(n)v,v)Rd+1 ≥ 2c0 p̃(u · n),

hence the maximal positive and Friedrichs-admissible boundary conditions covered in the impedance
wall case apply directly.

Subsonic and sonic inflow −c0 ≤ u0 · n < 0

There is 1 (resp. d) outgoing (resp. incoming) characteristic, with dim kerA(n) = 0 (resp.
dim kerA(n) = 1) in the subsonic (resp. sonic) case. One incoming characteristic is associated
with the eigenvalue u0 · n − c0, which in view of the impedance wall case suggests the scalar
condition p̃ = zu · n. (This choice is necessary to verify the jump condition (3.21).) A set of
d − 1 additional independent scalar conditions is required, let us choose ut = ζp̃n. This leads
to defining a full rank matrix R ∈ Rd×(d+1) such that

Rv :=
[
p̃− zu · n
ut − ζp̃n

]
.

This matrix satisfies the maximality condition of (3.20) by design. Let us check the positivity
condition. The boundary term (3.16) is, for any v ∈ kerR,

(A(n)v,v)Rd+1 = c0
[
−|M0 · n|(1 + ζ2)z2 + 2 z − |M0 · n|

]
(u · n)2 = c0P (z)(u · n)2.

The positivity condition requires that z ≥ 0. Assuming |ζ| small enough, any value of z within
the two real-valued roots of P leads to a maximal positive condition. In particular, if ζ = 0,
then z = 1 is admissible. Note that the non-homogeneous variant p̃ − u · n = φs and ut = 0,
where φs is given function, is a source boundary condition.

If z 6= 0, the same condition can be enforced in Friedrichs’ formalism by re-defining R :=
A(n)−M(n) with

M(n) := c0

[
(M0 · n+ (M0 · n)zζ + z)n� n 0n

0ᵀ
n

1
z +M0 · n

]
.
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Such R defines a maximal positive boundary condition if and only if

ζ < 1, |M0 · n|
1− |M0 · n|ζ

≤ z ≤ 1
|M0 · n|

.

However, it is not clear whether M(n) satisfies the second condition of (3.23).

Supersonic inflow u0 · n < −c0

There d + 1 incoming characteristics so that the whole state v must be imposed. The matrix
R := Id+1 yields a maximal positive boundary condition. However, M(n) := A(n)− Id+1 is not
Friedrichs-admissible since it fails the second condition of (3.23).

3.4 Discussion of the LEEs IBVP well-posedness

This section discusses the applicability of the results presented in Section 3.2 to the well-
posedness of the LEEs (3.1). The problem of interest, motivated by the numerical application
of Chapter 6, is the IBVP (3.5,3.12,3.13,3.14) on ΩT = (0, T )× Ω with Ω ⊂ Rd and d = 2. The
domain Ω is rectangular with a boundary ∂Ω split into three disjoint parts

Ω = (0, L1)× (0, L2), Γin = {x1 = 0} ∩ Ω, Γout = {x1 = L1} ∩ Ω, Γz = ∂Ω\Γin ∪ Γout.

The subsonic base flow has only one component u0 = u0e1 with u0 = c0M0 ∈ W 1,∞(Ω) that
vanishes on Γz and is positive on Γin and Γout. Note that the two noncharacteristic inflow and
outflow boundaries are separated from each other by the characteristic boundary Γz. Following
the discussion of Section 3.3, the following maximal positive boundary condition is considered

ut = 0 a.e. on Γin, p̃ = Z(x,u · n) a.e. on ∂Ω, (3.28)

where Z(x, ·) is a real-valued passive operator. In summary, this is an IBVP for a symmetric
hyperbolic system with a partly characteristic connected boundary along which dim kerA(n)
varies: 0 on Γin and Γout, and d − 1 on Γz. A Friedrichs system can be obtained following
Remark 3.8. The case Z ∝ I is discussed first.

3.4.1 Proportional impedance boundary condition

Here, we consider a proportional impedance boundary condition

Z(u · n) =


zinu · n (x ∈ Γin)
zu · n (x ∈ Γz)
zoutu · n (x ∈ Γout) ,

which is the simplest of the memoryless impedance kernels. Although it is physically simplistic,
it fits within both the classical and abstract theories presented in Section 3.2.

Classical theory

The boundary conditions (3.28) are maximal positive and verify the jump conditions (3.21) if
and only if zin, z, and zout are equal. Therefore, the IBVP can fit into the framework of (Rauch
1994), provided that Ω is changed so that ∂Ω is of class C1. We refer to (Ventribout 2006,
Chap. 1) for a discussion.
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Abstract theory by the boundary operator approach

In view of Remark 3.8, the LEEs on ΩT fit within the framework of the abstract Friedrichs
theory. Following (Burazin and Erceg 2016), strong well-posedness of the evolution problem can
be obtained from the Lumer-Phillips theorem if the abstract theory applies successfully to A,
i.e. if a subspace V ⊂ H1

A can be found for which A is an isomorphism from (V, ‖ · ‖H1
A

) to
L2(Ω). To build V , we use the boundary operator approach of Theorem 3.18. This choice is
motivated by the fact that this theorem applies to a transport equation over Ω, provided that
the inflow and outflow boundaries are well-separated (Antonić et al. 2014), which is the case
herein since |Γz| > 0. Applying Theorem 3.18 only requires elementary, but tedious, algebra.
The matrices P,R ∈ R(d+1)×(d+1) are sought as

P =
[
P1 P2
P ᵀ

3 p4

]
, R =

[
R1 R2
Rᵀ

3 r4

]
,

where P1, R1 ∈ Rd×d and p4, r4 ∈ R. The admissible matrices P and R are given by the lemma
below.

Lemma 3.20. Assume u0 6= 0 and u0 = u0e1, where (ek)k is an orthonormal basis of Rd. If
d = 2, then the algebraic condition (3.27) is equivalent to

P =
[
δ1Id + e1 � δ2 −M0(δ2 · e2)e2 + 1

M0
δ2

−M0(δ2 · e2)eᵀ2 δ1

]
, R =

[
δ1Id + δ2 � e1 P3

P ᵀ
2 δ1

]
. (3.29)

where δ1 ∈ R and δ2 ∈ R2 are free parameters. If d > 2, then the equivalence is obtained with

P =
[
δ1Id + (δ2 · e1)e1 � e1

1
M0

(δ2 · e1)e1
0ᵀ
d δ1

]
, R =

[
P1 0d
P ᵀ

2 δ1

]
,

where there is only two scalar parameters, δ1 and δ2 · e1.

In view of Lemma 3.20, let us investigate the relevance of Theorem 3.18 for the LEEs in the
case d = 2. To obtain well-posedness P must be Lipschitz on Ω, in particular continuous on ∂Ω.
Since M0 vanishes on Γz, this requires to impose δ2 = M0δ̃2 with δ̃2 ∈ L∞(Ω) so that

P =
[
δ1Id +M0e1 � δ̃2 −M2

0 (δ̃2 · e2)e2 + δ̃2
−M2

0 (δ̃2 · e2)eᵀ2 δ1

]
.

The corresponding boundary conditions are given by A(n) = M(n) with M(n) = A(n)(Id+1 −
2P ). On Γz, M0 = 0 so that

M(n) = c0

[
0d δ̃1n

δ̃1n
ᵀ −2n · δ̃2

]
,

where we defined δ̃1 = 1 − 2δ1. This matrix M(n) cannot define a maximal positive (3.20)
boundary condition: positivity requires δ̃1 = 0 and −2n · δ̃2 ≥ 0, while maximality requires
δ̃1 = 1 and n · δ̃2 6= 0. Therefore, Theorem 3.18 does not apply to the LEEs if d = 2, hence if
d ≥ 2 from Lemma 3.20.

However, this does not mean that the abstract theory cannot yield a well-posedness result
for the LEEs. A positive result might be obtained by defining the space V and directly verifying
the conditions (Ern et al. 2007, Thm. 3.1): this is done in (Burazin and Erceg 2016, § 3.3) for the
wave equation and in (Antonić et al. 2013) for the heat equation. Moreover, the representation
of a PDE as a Friedrichs system is not unique and different representations can enable different
boundary conditions, see (Antonić et al. 2014) for an example on the wave equation. Therefore,
it might also be fruitful to consider a different state than (3.12).
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Proof of Lemma 3.20. The conditions (3.27) read
R2 � ek = ek � P3 −M0(e1 · ek)(R1 − P1)
R1ek = p4ek −M0(e1 · ek)(R2 − P2)
r4ek = P ᵀ

1 ek −M0(e1 · ek)(R3 − P3)
R3 · ek = P2 · ek −M0(e1 · ek)(r4 − p4).

(3.30)

(Note that without any assumption on the base flow u0, (3.27) would lead to P = R ∝ Id+1,
henceM(n) ∝ A(n).) The given expressions for P and R satisfy (3.30). To derive an expression
for P , we first cover the case (d ≥ 2,k 6= 1) then the cases (d = 2,k = 1) and (d > 2,k = 1)
separately, always proceeding by equivalence.

(d ≥ 2,k 6= 1) If k 6= 1, then e1 · ek = 0 and we have the equivalence

∀k ∈ J1, dK, k 6= 1,


R2 � ek = ek � P3

R1ek = p4ek

r4ek = P ᵀ
1 ek

R3 · ek = P2 · ek

⇔



R2 = P3 = p3e2 (if d = 2)
R2 = P3 = 0d (if d > 2)
R1 = p4Id + δ4 � e1

r4Id = P ᵀ
1 + δ1 � e1

R3 = P2 + δ2e1,

(3.31)

where the first equation requires to distinguish on the dimension d, since R2 � ek = ek � P3
for every k 6= 1 is not equivalent to R2 = P3 = 0d if d = 2. The parameters p4, r4, and δi
are seemingly free and will be constrained when considering the case k = 1 below. We now
distinguish between d = 2 and d > 2, covering d = 2 first.

(d = 2,k = 1) Using the expressions of R1, R2, R3, and P3 given by (3.31), we obtain an
equivalence between (3.30) and

R2 = P3 = p3e2

R1 = p4Id + δ4 � e1

r4Id = P ᵀ
1 + δ1 � e1

R3 = P2 + δ2e1

and


P1 = p4Id + δ4 � e1 + p3

M0
(e2 � e1 − e1 � e2)

P2 = p3e2 + 1
M0
δ4

r4e1 = P ᵀ
1 e1 −M0P2 −M0δ2e1 +M0p3e2

r4 = p4 − 1
M0
δ2.

The expression of P1 gives

P ᵀ
1 e1 = p4e1 + (δ4 · e1)e1 −

p3
M0
e2.

Replacing r4, P ᵀ
1 e1, and P2 by their expressions in the third equation of the second system

yields the two scalar identities (M0 − 1
M0

)δ2 = 0 and p3 = −M0(δ4 · e2). The conditions (3.30)
are then equivalent to

R2 = P3 = −M0(δ4 · e2)e2

R1 = p4Id + δ4 � e1

r4Id = P ᵀ
1 + δ1 � e1

R3 = P2 + δ2e1

and


P1 = p4Id + e1 � δ4

P2 = −M0(δ4 · e2)e2 + 1
M0
δ4

(M0 − 1
M0

)δ2 = 0
r4 = p4 − 1

M0
δ2,

where we have used the identity (δ4 ·e1)e1�e1 +(δ4 ·e2)e1�e2 = e1�δ4. Combining the two
expressions of P1 shows that δ2Id = −M0e1 � (δ1 + δ4), hence δ1 = −δ4 and δ2 = 0, yielding
the claimed equivalence (with the change of notation δ4 → δ2 and δ2 → δ1).
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(d > 2,k = 1) When d > 2, there are less available DoF than in the case d = 2. Using the
expressions of R1, R2, R3, and P3 given by (3.31), we obtain an equivalence between (3.30)
and 

R2 = P3 = 0d
R1 = P1

r4Id = P ᵀ
1 + δ1 � e1

R3 = P2 + δ2e1

and


P1 = p4Id + δ4 � e1

P2 = 1
M0

(P1e1 − p4e1)
r4e1 = P ᵀ

1 e1 −M0P2 −M0δ2e1

δ2 = −M0(r4 − p4).

Replacing P1 by its expression in the third equation of the first system yields (r4 − p4)Id =
e1 � δ4 + δ1 � e1, which gives r4 = p4 and δ1 � e1 = −e1 � δ4, from which is deduced
δ4 = (δ4 · e1)e1, δ1 = −δ4, and δ2 = 0. Replacing P ᵀ

1 e1 and P2 in the third equation of the
second system yields (δ4 � e1)e1 = (δ4 · e1)e1. The claimed equivalence follows.

3.4.2 Positive-real impedance boundary condition

Chapter 1 has highlighted the physical relevance of an impedance boundary condition

p̃ = z ? u · n,

where the Laplace transform of the convolution kernel ẑ(s) is a positive-real function. This
boundary condition does not fit in general in the classical theory discussed in Section 3.2. How-
ever, the passivity condition (1.2) naturally suggests using the abstract theory in ΩT : consider
the spacetime equivalent of (3.25,3.26) for instance. The next chapter deals with impedance
boundary conditions under two simplifying assumptions, namely that the kernel z has a partic-
ular structure and that u0 = 0 .





Chapter 4

Asymptotic stability of the wave
equation with admissible impedance
boundary conditions

Contents
4.1 Model and preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Some elementary facts from system theory . . . . . . . . . . . . . . . . . . . 91
4.1.2 A well-posedness result in the Laplace domain . . . . . . . . . . . . . . . . 92
4.1.3 A consequence of the Rellich identity . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Abstract framework for asymptotic stability . . . . . . . . . . . . . . . . 95
4.2.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 Proportional impedance as an elementary example . . . . . . . . . . . . . . 96
4.2.3 Application of LaSalle’s invariance principle . . . . . . . . . . . . . . . . . . 98

4.3 Rational impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Positive-real lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Delay impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Time-delay realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Standard diffusive impedance . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Abstract realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Extended diffusive impedance . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.1 Abstract realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Addition of a derivative term . . . . . . . . . . . . . . . . . . . . . . . . . 118

This chapter, which has been submitted to (Monteghetti et al. 2018a), proves the asymptotic
stability of the multidimensional wave equation coupled with a wide range of admissible

IBCs using a common method of proof that relies on the Arendt-Batty-Lyubich-Vũ (ABLV) the-
orem. Section 4.1 introduces the model considered and establishes a preliminary well-posedness
result that is the cornerstone of the presented stability proofs. Section 4.2 recalls the ABLV
theorem, sets up the energy space on the elementary example of the proportional IBC, and
discusses the applicability of LaSalle’s invariance principle. Admissible IBCs of increasing com-
plexity are then covered in Sections 4.3–4.6. The extension of the derived asymptotic stability
results to IBCs that contain a pure derivative term is carried out in Section 4.7.
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Introduction

The broad focus of this chapter is the asymptotic stability of the wave equation with IBCs, also
known in the mathematical literature as acoustic boundary conditions.

Herein, the impedance operator, related to the Neumann-to-Dirichlet map, is assumed to
be continuous linear time-invariant, so that it reduces to a time-domain convolution. Passive
convolution operators (Beltrami and Wohlers 1966, § 3.5), the kernels of which have a positive-
real Laplace transform, find applications in physics in the modeling of locally reacting energy
absorbing material, such as non perfect conductors in electromagnetism (Yuferev and Ida 2010)
and liners in acoustics (Monteghetti et al. 2018b). As a result, IBCs are commonly used with
Maxwell’s equations (Hiptmair et al. 2014), the linearized Euler equations (Monteghetti et al.
2018b), or the wave equation (Sauter and Schanz 2017).

Two classes of convolution operators are well-known due to the ubiquity of the physical
phenomena they model. Slowly decaying kernels, which yield so-called long-memory operators,
arise from losses without propagation (due to e.g. viscosity or electrical/thermal resistance); they
include fractional kernels. On the other hand, lossless propagation, encountered in acoustical
cavity for instance, can be represented as a time delay. Both effects can be combined, so that
time-delayed long-memory operators model a propagation with losses.

Stabilization of the wave equation by a boundary damping, as opposed to an internal damp-
ing, has been investigated in a wealth of works, most of which employing the equivalent ad-
mittance formulation (4.5), see Remark 4.2 for the terminology. Unless otherwise specified, the
works quoted below deal with the multidimensional wave equation.

Early studies established exponential stability with a proportional admittance (Chen 1981;
Komornik and Zuazua 1990; Lagnese 1983). A delay admittance is considered in (Nicaise and
Pignotti 2006), where exponential stability is proven under a sufficient delay-independent sta-
bility condition that can be interpreted as a passivity condition of the admittance operator.
The proof of well-posedness relies on the formulation of an evolution problem using an infinite-
dimensional realization of the delay through a transport equation (see (Engel and Nagel 2000,
§VI.6) (Curtain and Zwart 1995, § 2.4) and references therein) and stability is obtained using
observability inequalities. The addition of a 2-dimensional realization to a delay admittance has
been considered in (Peralta 2018), where both exponential and asymptotic stability results are
shown under a passivity condition using the energy multiplier method. See also (Wang et al.
2011) for a monodimensional wave equation with a non-passive delay admittance, where it is
shown that exponential stability can be achieved provided that the delay is a multiple of the
domain back-and-forth traveling time.

A class of space-varying admittance with finite-dimensional realizations have received thor-
ough scrutiny in (Abbas and Nicaise 2013) for the monodimensional case and (Abbas and Nicaise
2015) for the multidimensional case. In particular, asymptotic stability is shown using the ABLV
theorem in an extended state space.

Admittance kernels defined by a Borel measure on (0,∞) have been considered in (Cornilleau
and Nicaise 2009), where exponential stability is shown under an integrability condition on the
measure (Cornilleau and Nicaise 2009, Eq. 7). This result covers both distributed and discrete
time delays, as well as a class of integrable kernels. Other classes of integrable kernels have
been studied in (Desch et al. 2010; C. Li et al. 2018; Peralta 2016). Integrable kernels coupled
with a 2-dimensional realization are considered in (C. Li et al. 2018) using energy estimates.
Kernels that are both completely monotone and integrable are considered in (Desch et al. 2010),
which uses the ABLV theorem on an extended state space, and in (Peralta 2016) with an added
time delay, which uses the energy method to prove exponential stability. The energy multiplier
method is also used in (Alabau-Boussouira et al. 2009) to prove exponential stability for a class
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of non-integrable singular kernels.
The works quoted so far do not cover fractional kernels, which are non-integrable, singular,

and completely monotone. As shown in (Matignon and Prieur 2005), asymptotic stability results
with fractional kernels can be obtained with the ABLV theorem by using their realization;
two works that follow this methodology are (Matignon and Prieur 2014), which covers the
monodimensional Webster-Lokshin equation with a rational IBC, and (Grabowski 2013), which
covers a monodimensional wave equation with a fractional admittance.

The objective of this chapter is to prove the asymptotic stability of the multidimensional
wave equation (4.2) coupled with a wide range of IBCs (4.3) chosen for their physical relevance.
All the considered IBCs share a common property: the Laplace transform of their kernel is a
positive-real function. A common method of proof, inspired by (Matignon and Prieur 2014),
is employed that consists in formulating an abstract Cauchy problem on an extended state
space (4.13) using a realization of each impedance operator, be it finite or infinite-dimensional;
asymptotic stability is then obtained with the ABLV theorem, although a less general alternative
based on the invariance principle is also discussed. In spite of the apparent unity of the approach,
no single, unified proof is known to the author: this leads to the formulation of a conjecture at
the end of this dissertation.

This chapter is organized as follows. Section 4.1 introduces the model considered, recalls
some known facts about positive-real functions, and establishes a preliminary well-posedness
result in the Laplace domain that is the cornerstone of the stability proofs. Section 4.2 formu-
lates the ABLV theorem as Corollary 4.13, sets up the energy space on the elementary example
of the proportional IBC, and discusses the applicability of the invariance principle. The ap-
plicability of Corollary 4.13 to positive-real IBCs of increasing complexity is then shown in
the subsequent sections. Rational IBCs, whose realizations are finite-dimensional, are covered
in Section 4.3 using the celebrated positive-real lemma. The remaining sections focus on IBCs
with infinite-dimensional realizations that arise in physical applications. Delay IBCs are covered
in Section 4.4, standard diffusive IBCs (e.g. fractional integral) are covered in Section 4.5, while
extended diffusive IBCs (e.g. fractional derivative) are covered in Section 4.6. The extension of
the obtained asymptotic stability results to IBCs that contain a pure derivative term is carried
out in Section 4.7.

Notation

Vector-valued quantities are denoted in bold, e.g. f . The canonical scalar product in Cd,
d ∈ J1,∞J, is denoted by

(f , g)Cd :=
d∑
i=1

figi,

where gi is the complex conjugate. Throughout the chapter, scalar products are antilinear with
respect to the second argument. Gradient and divergence are denoted by

∇f := [∂if ]i∈J1,dK , div f :=
d∑
i=1

∂ifi,

where ∂i is the weak derivative with respect to the i-th coordinate. The scalar product (resp.
norm) on a Hilbert space H is denoted by (·, ·)H (resp. ‖ · ‖H). The only exception is the space
of square integrable functions (L2(Ω))d, with Ω ⊂ Rd open set, for which the space is omitted,
i.e.

(f , g) :=
ˆ

Ω
(f(x), g(x))Cd dx, ‖f‖ :=

√
(f ,f).
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The scalar product on (H1(Ω))d is

(f , g)H1(Ω) := (f , g) + (∇f ,∇g).

The topological dual of a Hilbert space H is denoted by H ′ , and L2 is used as a pivot space so
that for instance

H
1
2 ⊂ L2 ' (L2)′ ⊂ H−

1
2 ,

which leads to the following repeatedly used identity, for p ∈ L2 and ψ ∈ H
1
2 ,

〈p, ψ〉
H−

1
2 ,H

1
2

= 〈p, ψ〉(L2)′ ,L2 = (p, ψ)L2 , (4.1)

where 〈·, ·〉 denotes the duality bracket (linear in both arguments).
Remark 4.1. All the Hilbert spaces considered in this chapter are over C.

Other commonly used notations are R∗ := R\{0}, <(s) (resp. =(s)) for the real (resp.
imaginary) part of s ∈ C, Aᵀ for the transpose of a matrix A, R(A) (resp. ker(A)) for the
range (resp. kernel) of A, C(Ω) for the space of continuous functions, C∞0 (Ω) for the space of
infinitely smooth and compactly supported functions, D′(Ω) for the space of distributions (dual
of C∞0 (Ω)), E ′(Ω) for the space of compactly supported distributions, L(H) for the space of
continuous linear operators over H, Ω for the closure of Ω, Y1 : R → {0, 1} for the Heaviside
function (1 over (0,∞), null elsewhere), and δ for the Dirac distribution.

4.1 Model and preliminary results

Let Ω ⊂ Rd be a bounded open set. The Cauchy problem considered in this chapter is the wave
equation under one of its first-order form, namely

∂t

(
u
p

)
+
(
∇p

divu

)
= 0 on Ω, (4.2)

where u(t,x) ∈ Cd and p(t,x) ∈ C. To (4.2) is associated the so-called impedance boundary
condition (IBC), formally defined as a time-domain convolution between p and u · n,

p = z ? u · n a.e. on ∂Ω, (4.3)

where n is the unit outward normal and z is the impedance kernel. In general, z is a causal
distribution, i.e. z ∈ D′+(R), so that the convolution is to be understood in the sense of
distributions (Schwartz 1966, Chap. III) (Hörmander 1990, Chap. IV).

This chapter proves the asymptotic stability of strong solutions of the evolution problem
(4.2,4.3) with an impedance kernel z whose positive-real Laplace transform is given by

ẑ(s) =
(
z0 + zτe

−τs)+ z1s+ Ẑ(s) + ẑdiff,1(s) + s ẑdiff,2(s) (<(s) > 0), (4.4)

where τ > 0, zτ ∈ R, z0 ≥ |zτ |, z1 > 0, Ẑ is a positive-real and strictly proper rational
function, and zdiff,1 as well as zdiff,2 are both locally integrable completely monotone kernels.
The motivation behind the definition of this kernel is physical as it models passive systems
that arise in e.g. electromagnetics (Garrappa et al. 2016), viscoelasticity (Desch and Miller
1988; Mainardi 1997), and acoustics (Hélie and Matignon 2006a; Lombard and Matignon 2016;
Monteghetti et al. 2016a). The proposed proof relies on the fact that the right-hand side of
(4.4) is a sum of positive-real kernels that each admit a dissipative realization. Mathematically,
each of them requires a specific treatment so that they are covered in separate sections, namely
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Sections 4.3–4.7. As already mentioned in the introduction, the similarity between the proofs
suggests a conjecture, which is given at the end of this dissertation.

The purpose of this section is to provide results that will prove useful in the later sections.
It is organized as follows. Section 4.1.1 recalls some elementary facts of system theory to show
that, in order to obtain a well-posed problem in L2, the Laplace transform of the impedance
kernel must be a positive-real function on the right half-plane. Then, a well-posedness result on
the Laplace-transformed wave equation is shown in Section 4.1.2 for later use in the proofs of
asymptotic stability. This well-posedness result relies on a lemma that is proven in Section 4.1.3.
Remark 4.2 (Terminology from Section 1.1). The boundary condition (4.3) can equivalently be
written as

u · n = y ? p a.e. on ∂Ω, (4.5)

where y is known as the admittance kernel (y ? z = δ, where δ is the Dirac distribution). This
terminology can be justified, for example, by the acoustical application: an acoustic impedance
is homogeneous to a pressure divided by a velocity. The asymptotic stability results obtained in
this chapter still hold by replacing the impedance by the admittance (in particular, the statement
“z 6= 0” becomes “y 6= 0”). The third way of formulating (4.3), not considered in this chapter,
is the so-called scattering formulation (Beltrami and Wohlers 1966, p. 89) (Lozano et al. 2000,
§ 2.8)

p− u · n = β ? (p+ u · n) a.e. on ∂Ω,

where β is known as the reflection coefficient. A Dirichlet boundary condition is recovered for
z = 0 (β = −δ) while a Neumann boundary condition is recovered for y = 0 (β = +δ), so that
the proportional IBC, obtained for z = z0δ (β = z0−1

z0+1 δ), z0 ≥ 0, can be seen as an intermediate
between the two.
Remark 4.3. The use of a convolution in (4.3) can be justified with the following classical result
(Schwartz 1966, § III.3) (Beltrami and Wohlers 1966, Thm. 1.18): if Z is a linear time-invariant
and continuous mapping from E ′(R) into D′(R), then Z(u) = Z(δ) ? u for all u ∈ E ′(R).

4.1.1 Some elementary facts from system theory

Assume that (u, p) is a strong solution, i.e. that it belongs to C([0, T ]; (H1(Ω))d+1). The
elementary a priori estimate

‖(u, p)(T )‖2 = ‖(u, p)(0)‖2 − 2<
[ˆ T

0
(p(τ),u(τ) · n)L2(∂Ω) dτ

]
(4.6)

suggests that to obtain a contraction semigroup, the impedance kernel must satisfy a passivity
condition, well-known in system theory. This justifies why we restrict ourselves to impedance
kernels that are admissible in the sense of Definition 1.1. As recalled in Section 1.1, an important
feature of admissible impedance kernels z is that their Laplace transforms ẑ are positive-real
functions, see Definition 1.7 and Proposition 1.8. Herein, the Laplace transform ẑ is an analytic
function on an open right half-plane, i.e.

ẑ(s) :=
ˆ ∞

0
z(t)e−st dt

(
s ∈ C+

c

)
,

for some c ≥ 0 with
C+
c := {s ∈ C | <(s) > c},

see Appendix A for background and references when z ∈ D′+(R).
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4.1.2 A well-posedness result in the Laplace domain

The following result is used repeatedly in the next sections. We define

C+
0 := {s ∈ C | <(s) ≥ 0}.

Proposition 4.4. Let Ω ⊂ Rd be a bounded open set with an infinitely smooth boundary. Let
z : C+

0 \{0} → C+
0 be such that z(s) ∈ R for s ∈ (0,∞). For every s ∈ C+

0 \{0} and l ∈ H−1(Ω)
there exists a unique p ∈ H1(Ω) such that

∀ψ ∈ H1(Ω), (∇p,∇ψ) + s2(p, ψ) + s

z(s)(p, ψ)L2(∂Ω) = l(ψ). (4.7)

Moreover, there is C(s) > 0 such that

‖p‖H1(Ω) ≤ C(s) ‖l‖H−1(Ω).

Remark 4.5. Note that s 7→ z(s) need not be continuous, so that Proposition 4.4 can be used
pointwise, i.e. for only some s ∈ C+

0 \{0}.

Remark 4.6. For s ∈ C+
0 , the result holds for Ω any bounded open set with a Lipschitz boundary:

the smoothness hypothesis is only required for s ∈ jR∗, due to the use of Lemma 4.11.

Remark 4.7 (Intuition). Although the need for Proposition 4.4 will appear in the proofs of the
next sections, let us give a formal motivation for Formulation (4.7). Assume that (u, p) is a
smooth solution of (4.2,4.3). Then p solves the wave equation

∂2
t p−∆p = 0 on Ω,

with the impedance boundary condition

∂tp = z ? ∂tu · n = z ? (−∇p) · n = −z ? ∂np on ∂Ω,

where ∂np denotes the normal derivative of p and the causal kernel z is, say, tempered and
locally integrable. An integration by parts with ψ ∈ H1(Ω) reads

(∇p,∇ψ) + (∂2
t p, ψ)− (∂np, ψ)L2(∂Ω) = 0.

Formulation (4.7) then follows from the application of the Laplace transform in time, which
gives ẑ ? ∂np(s) = ẑ(s)∂np̂(s) and ∂̂tp(s) = sp̂(s) assuming that p(t = 0) = 0 on ∂Ω.

Proof for s ∈ (0,∞). If s ∈ (0,∞) this is an immediate consequence of the Lax-Milgram lemma
(Lax 2002, Thm. 6.6). Define the following bilinear form over H1(Ω)×H1(Ω):

a(p, ψ) := (∇p,∇ψ) + s2(p, ψ) + s

z(s)(p, ψ)L2(∂Ω).

Its boundedness follows from the continuity of the trace H1(Ω) → L2(∂Ω) (see Section C.1).
The fact that z(s) > 0 gives

|a(ψ,ψ)| ≥ min(1, s2)‖ψ‖2H1(Ω),

which establishes the coercivity of a.
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Proof. Let s ∈ C+
0 \{0}. The Lax-Milgram lemma does not apply since the sign of <(sz(s))

is indefinite in general, but the Fredholm alternative is applicable. Using the Riesz-Fréchet
representation theorem (Lax 2002, Thm. 6.4), (4.7) can be rewritten uniquely as

(I − K(s))p = L in H1(Ω), (4.8)

where L ∈ H1(Ω) satisfies l(ψ) = (L,ψ)H1(Ω) and the operator K(s) ∈ L(H1(Ω)) is given by

(K(s)p, ψ)H1(Ω) := (1− s2)(p, ψ)− s

z(s)(p, ψ)L2(∂Ω).

The interest of (4.8) lies in the fact that K(s) turns out to be a compact operator, see Lemma 4.8.
The Fredholm alternative states that I − K(s) is injective if and only if it is surjective (Brezis
2011, Thm. 6.6). Using Lemma 4.9 and the open mapping theorem (Yosida 1980, § II.5), we
conclude that I − K(s) is a bijection with continuous inverse, which yields the claimed well-
posedness result.

Lemma 4.8. Let s ∈ C+
0 \{0}. The operator K(s) ∈ L(H1(Ω)) is compact.

Proof. Let p, ψ ∈ H1(Ω). The Cauchy–Schwarz inequality and the continuity of the trace
H1(Ω)→ L2(∂Ω) yield the existence of a constant C > 0 such that∣∣∣(K(s)p, ψ)H1(Ω)

∣∣∣ ≤ (∣∣∣1− s2
∣∣∣ ‖p‖+ C

∣∣∣∣ s

z(s)

∣∣∣∣ ‖p‖L2(∂Ω)

)
‖ψ‖H1(Ω),

from which we deduce

‖K(s)p‖H1(Ω) ≤
∣∣∣1− s2

∣∣∣ ‖p‖+ C

∣∣∣∣ s

z(s)

∣∣∣∣ ‖p‖L2(∂Ω).

Let ε ∈ (0, 1). The continuous embedding H
1
2 +ε(Ω) ⊂ L2(Ω) and the continuity of the trace

H
1
2 +ε(Ω)→ L2(∂Ω), see Section C.1, yield

‖K(s)p‖H1(Ω) ≤
(∣∣∣1− s2

∣∣∣+ C
′
∣∣∣∣ s

z(s)

∣∣∣∣) ‖p‖Hε+ 1
2 (Ω)

.

The compactness of the embedding H1(Ω) ⊂ H
1
2 +ε(Ω), see Section C.1, enables to conclude.

Lemma 4.9. Let s ∈ C+
0 \{0}. The operator I − K(s) is injective.

Proof. Assume that I − K(s) is not injective. Then there exists p ∈ H1(Ω)\{0} such that
K(s)p = p, i.e. for any ψ ∈ H1(Ω),

(∇p,∇ψ) + s2(p, ψ) + s

z(s)(p, ψ)L2(∂Ω) = 0. (4.9)

In particular, for ψ = p,

z(s)‖∇p‖2 + s2z(s)‖p‖2 + s‖p‖2L2(∂Ω) = 0. (4.10)

To derive a contradiction, we distinguish between s ∈ C+
0 and s ∈ jR∗.

(s ∈ C+
0 ) This is a direct consequence of Lemma 4.10.

(s ∈ jR∗) Let s = jω with ω ∈ R∗. Then (4.10) reads<(z(jω))
(
‖∇p‖2 − ω2‖p‖2

)
= 0

=(z(jω))
(
‖∇p‖2 − ω2‖p‖2

)
+ ω‖p‖2L2(∂Ω) = 0,
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so that p ∈ H1
0 (Ω). Going back to the first identity (4.9), we therefore have

∀ψ ∈ H1(Ω), (∇p,∇ψ) = ω2(p, ψ).

The contradiction then follows from Lemma 4.11, written in its own section below.

Lemma 4.10. Let (a0, a1, a2) ∈ [0,∞)3 and z ∈ C+
0 . The polynomial s 7→ za2 s

2 + a1 s + za0
has no roots in C+

0 .
Proof. The only case that needs investigating is ai > 0 for i ∈ J0, 2K. Let us denote by

√
· the

branch of the square root that has a nonnegative real part, with a cut on (−∞, 0] (i.e.
√
· is

analytic over C\(−∞, 0]). The roots are given by

s± := a1z

2a2|z|2
(
−1±

√
1− γz2

)
with γ := 4a0a2

a2
1
> 0 so that

<(s±) = a1
2a2|z|2

f±(z) with f±(z) := <
[
z

(
−1±

√
1− γz2

)]
.

The function f± is continuous on C+
0 \[γ−

1/2,∞) (but not analytic) and vanishes only on jR (if
f±(z) = 0, then there is ω ∈ R such that 2ωz = j

(
ω2 − γ|z|4

)
). The claim therefore follows from

f±

( 1√
2γ

)
= −
√

2± 1
2√γ < 0.

4.1.3 A consequence of the Rellich identity

This lemma is used in the proof of Proposition 4.4; it requires the smoothness of ∂Ω.
Lemma 4.11. Let Ω ⊂ Rd be a bounded open set with an infinitely smooth boundary. If
p ∈ H1

0 (Ω) satisfies
∀ψ ∈ H1(Ω), (∇p,∇ψ) = λ(p, ψ) (4.11)

for some λ ∈ C, then p ∈ C(Ω) and p = 0 in Ω.
Proof. Let p ∈ H1

0 (Ω) be such that (4.11) holds for some λ ∈ C. In particular,

∀ψ ∈ H1
0 (Ω), (∇p,∇ψ) = λ(p, ψ),

so that p is either null a.e. in Ω or an eigenfunction of the Dirichlet Laplacian. In the latter
case, since the boundary ∂Ω is of class C∞, we have the regularity result p ∈ C∞(Ω) (Gilbarg
and Trudinger 2001, Thm. 8.13). An integration by parts then shows that, for ψ ∈ H1(Ω),

(∂np, ψ)L2(∂Ω) = (∆p+ λp, ψ) = 0,

so that ∂np = 0 in ∂Ω. However since p is C2(Ω) and ∂Ω is smooth we have (Rellich 1940)

‖p‖2 =
´
∂Ω(∂np)2∂n(|x|2) dx

4λ , (4.12)

which shows that p = 0 in Ω. (The spectrum of the Dirichlet Laplacian does not include 0
(Gilbarg and Trudinger 2001, § 8.12).)

Remark 4.12. In the proof of Lemma 4.11, the use of the Rellich identity (4.12) can be avoided.
Once p ∈ C2(Ω) is established, the fact that p = 0 in Ω can be deduced from (Willms and
Gladwell 1994, Lem. 1) that requires Ω to be bounded, connected, with C2+ε boundary, ε > 0.
Moreover, although this is not the topic of the work, this method of proof could enable to loosen
the regularity assumption on Ω.
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4.2 Abstract framework for asymptotic stability
The purpose of this section is to present the strategy used in this chapter to establish asymp-
totic stability, as well as to demonstrate it on an elementary example, namely the proportional
IBC (4.18).

4.2.1 Strategy

Let the causal distribution z ∈ D′+(R) be an admissible impedance kernel. In order to prove
the asymptotic stability of (4.2,4.3), we will use in the next sections the following strategy. We
first rely on the knowledge of a realization of the impedance operator u 7→ z ? u to formulate an
abstract Cauchy problem on a Hilbert space H,

Ẋ(t) = AX, X(0) = X0 ∈ H, (4.13)

where the extended state X accounts for the memory of the IBC. The scalar product (·, ·)H
is defined using a Lyapunov functional associated with the realization. Since, by design, the
problem has the energy estimate ‖X(t)‖H ≤ ‖X0‖H , it is natural to use the Lumer-Phillips
theorem to show that the unbounded operator

A : D(A) ⊂ H → H (4.14)

generates a strongly continuous semigroup of contractions on H, denoted by T (t). For initial
data in D(A), the function

t 7→ T (t)X0 (4.15)

provides the unique strong solution in C([0,∞);D(A)) ∩ C1([0,∞);H) of the evolution problem
(4.13) (Pazy 1983, Thm. 1.3). For (less regular) initial data in H, the solution is milder, namely
C([0,∞);H).

In Sections 4.3–4.7, to prove the asymptotic stability of this solution, we rely upon the fol-
lowing result, where we denote by σ(A) (resp. σp(A)) the spectrum (resp. point spectrum) of A
(Yosida 1980, §VIII.1). This result is a corollary of the ABLV theorem, recalled in Theorem C.3.

Corollary 4.13. Let H be a complex Hilbert space and A be defined as (4.14). If

(i) A is dissipative, i.e. <(AX,X)H ≤ 0 for every X ∈ D(A),

(ii) A is injective,

(iii) sI − A is bijective for s ∈ (0,∞) ∪ jR∗,

then A is the infinitesimal generator of a strongly continuous semigroup of contractions
T (t) ∈ L(H) that is asymptotically stable, i.e.

∀X0 ∈ H, ‖T (t)X0‖H −→
t→∞

0. (4.16)

Proof. The Lumer-Phillips theorem, recalled in Theorem C.2, shows that A generates a strongly
continuous semigroup of contractions T (t) ∈ L(H). In particular A is closed, from the Hille-
Yosida theorem (Pazy 1983, Thm. 3.1), so that the resolvent operator (sI − A)−1 is closed
whenever it is defined. A direct application of the closed graph theorem (Yosida 1980, § II.6)
then yields

{s ∈ C | sI − A is bijective} ⊂ ρ(A),

where ρ(A) denotes the resolvent set of A (Yosida 1980, §VIII.1). Hence jR∗ ⊂ ρ(A) and
Theorem C.3 applies since 0 /∈ σp(A).
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Remark 4.14. Condition (iii) of Corollary 4.13 could be loosened by only requiring that sI −A
be surjective for s ∈ (0,∞) and bijective for s ∈ jR∗. However, in the proofs presented in this
chapter we always prove bijectivity for s ∈ (0,∞) ∪ jR∗.

4.2.2 Proportional impedance as an elementary example

Let us consider the simplest of all positive-real kernels, namely the so-called proportional
impedance

ẑ(s) := z0 (4.17)
with z0 > 0, so that IBC (4.3) reads

p = z0 u · n a.e. on ∂Ω. (4.18)

This case is elementary (it is known that exponential stability is achieved (Chen 1981; Komornik
and Zuazua 1990; Lagnese 1983)), but it is covered here for the sake of clarity since it provides
a blueprint for handling more advanced IBCs in Sections 4.3–4.7. In view of Proposition 4.4, in
the remainder of this chapter, we make the following assumption on the set Ω.

Assumption 4.15. The set Ω ⊂ Rd, d ∈ J1,∞J, is an open bounded set with an infinitely
smooth boundary ∂Ω.

Since the IBC (4.18) is memoryless, the state X classically reduces to

X := (u, p)

and does not include any additional variable. A direct application of the Lumer-Phillips theorem
shows that well-posedness is achieved with the following setting

H̆ := (L2(Ω))d+1, ĂX := −
(
∇p

divu

)
,

D(Ă) :=
{

(u, p) ∈ Hdiv(Ω)×H1(Ω)
∣∣∣ p = z0u · n in H−

1
2 (∂Ω)

}
,

(4.19)

with
Hdiv(Ω) :=

{
u ∈ L2(Ω)d | divu ∈ L2(Ω)

}
.

However, this setting is not suited for asymptotic stability, since Ă is not injective. Indeed, the
definition of Ă in (4.19) shows that

Hdiv 0,0(Ω)× {0L2(Ω)} ⊂ ker(Ă),

where Hdiv 0,0(Ω) is defined by

Hdiv 0,0(Ω) :=
{
u ∈ Hdiv(Ω)

∣∣∣ divu = 0, u · n = 0 in H−
1
2 (∂Ω)

}
.

In view of the orthogonal decomposition (C.2), recalled in the Section C.2, an injective evolution
operator A can be obtained by adapting the definition of the state space, namely

H := ∇H1(Ω)× L2(Ω), AX := −
(
∇p

divu

)
,

D(A) :=

(u, p) ∈ H

∣∣∣∣∣∣
(u, p) ∈ Hdiv(Ω)×H1(Ω),

p = z0u · n in H−
1
2 (∂Ω)

 .
(4.20)

Since ∇H1(Ω) is a closed subspace of L2(Ω)d, H is a Hilbert space equipped with the usual L2

scalar product, see Section C.2 for some background.
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Remark 4.16. The exclusion of the solenoidal fields u that belong to Hdiv 0,0(Ω) from the domain
of A can be physically justified by the fact that these fields are non-propagating.

To obtain the asymptotic stability of the solution of (4.13,4.20), we apply Corollary 4.13: each
of the three lemmas below cover one condition, namely Lemma 4.17 condition (i), Lemma 4.18
condition (ii), and Lemma 4.19 condition (iii).

Lemma 4.17. The operator A given by (4.20) is dissipative.

Proof. Let X ∈ D(A). Green’s formula (C.1) yields

<(AX,X)H = −<
[
〈u · n, p〉

H−
1
2 (∂Ω),H

1
2 (∂Ω)

]
.

The IBC (4.18), which implies in particular that u · n ∈ L2(∂Ω), and (4.1) yield

<(AX,X)H = −<
[
(u · n, p)L2(∂Ω)

]
= −z0‖u · n‖2L2(∂Ω) ≤ 0,

so that A is dissipative.

Lemma 4.18. The operator A given by (4.20) is injective.

Proof. Assume X ∈ D(A) satisfies AX = 0. Then ∇p = 0 and divu = 0 so that Green’s
formula (C.1) yields

〈u · n, p〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= 0.

The IBC (4.18) implies u · n = p = 0 in H
1
2 (∂Ω), so that p = 0 and u ∈ Hdiv 0,0(Ω). Since

u ∈ ∇H1(Ω) by assumption, the orthogonal decomposition (C.2) implies that u = 0, hence
X = 0.

Lemma 4.19. Let A be given by (4.20). Then, sI − A is bijective for s ∈ (0,∞) ∪ jR∗.

Proof. Let F ∈ H and s ∈ (0,∞)∪ jR∗. We seek a unique X ∈ D(A) such that (sI −A)X = F ,
i.e. {

su+∇p = fu (a)
sp+ divu = fp. (b)

(4.21)

Let ψ ∈ H1(Ω). Using Green’s formula (C.1) on (fu,∇ψ) + s (fp, ψ) yields

s(u,∇ψ) + (∇p,∇ψ) + s

[
s(p, ψ) + 〈u · n, ψ〉

H−
1
2 (∂Ω),H

1
2 (∂Ω)

− (u,∇ψ)
]

= (fu,∇ψ) + s(fp, ψ).

In summary, (sI − A)X = F with X ∈ D(A) implies

(∇p,∇ψ) + s2(p, ψ) + s

z0
(p, ψ)L2(∂Ω) = (fu,∇ψ) + s(fp, ψ). (4.22)

Let us denote by p the unique solution of (4.22) in H1(Ω), obtained by applying Proposition 4.4
with (4.17) and l(ψ) := (fu,∇ψ) + s(fp, ψ).

Let us define u using (4.21a), i.e.

u := 1
s

(−∇p+ fu) ∈ ∇H1(Ω).
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Using the expression of u, (4.22) can be rewritten as

(u,∇ψ) = −(−sp+ fp, ψ) + 1
z0

(p, ψ)L2(∂Ω), (4.23)

so that taking ψ ∈ C∞0 (Ω) in (4.23) shows that u ∈ Hdiv(Ω) with (4.21b). Using the expression
of divu, (4.23) becomes

(u,∇ψ) + (divu, ψ) = 1
z0

(p, ψ)L2(∂Ω)

and Green’s formula (C.1) shows that the proportional IBC (4.18) holds.
In summary, we have found u ∈ Hdiv(Ω) and a unique p ∈ H1(Ω) such that (4.21) holds with

the proportional IBC (4.18) in H−
1
2 (∂Ω). Although u is not unique in Hdiv(Ω), it is unique in

Hdiv(Ω) ∩ ∇H1(Ω) following (C.2). Hence there is a unique X that solves (sI − A)X = F in
D(A).

4.2.3 Application of LaSalle’s invariance principle

The purpose of this section is to justify why, in this chapter, we rely on Corollary 4.13 rather
than the invariance principle, commonly used with dynamical systems on Banach spaces.

Theorem 4.20 states the invariance principle for the case of interest herein, i.e. a linear
Cauchy problem (4.13) for which the Lyapunov functional is 1

2‖ · ‖
2
H . (For further background,

see (Luo et al. 2012, § 3.7) and (Cazenave and Haraux 1998, Chap. 9).)

Theorem 4.20 (Invariance principle). Let A be the infinitesimal generator of a strongly con-
tinuous semigroup of contractions T (t) ∈ L(H) and X0 ∈ H. If the orbit γ(X0) :=

⋃
t≥0 T (t)X0

lies in a compact set of H, then T (t)X0 → M as t → ∞, where M is the largest T -invariant
set in

{X ∈ D(A) | < [(AX,X)H ] = 0} . (4.24)

Proof. The function Φ := 1
2‖ · ‖

2
H is continuous on H and satisfies Φ(T (t)X) ≤ Φ(X) for any

X ∈ H so that it is a Lyapunov functional. The invariance principle (Hale 1969, Thm. 1) then
shows that T (t)X0 is attracted to the largest invariant set of{

X ∈ H
∣∣∣∣ lim
t→0+

t−1(Φ(T (t)X)− Φ(X)) = 0
}
.

The following criterion can be used to prove precompactness of the orbits, where for s ∈ ρ(A)
we denote the resolvent operator by

R(s,A) := (sI − A)−1. (4.25)

Theorem 4.21 ((Dafermos and Slemrod 1973, Thm. 3)). Let A be the infinitesimal generator
of a strongly continuous semigroup of contractions on H. If R(s,A) is compact for some s > 0,
then γ(X0) is precompact for any X0 ∈ H.

Let us now discuss the application of the invariance principle to (4.20), already covered in
Section 4.2.2 using Corollary 4.13. They are two main steps.

The first step is to establish that the largest invariant subset of (4.24), given by

D(A) ∩
(
Hdiv,0(Ω)×H1

0 (Ω)
)
, (4.26)

reduces to {0}. This amounts to showing that the only solution of (4.13) in (4.26) is null.
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The second step is to prove the precompactness of the orbit γ(X0) for any X0 in H. This
is obvious if d = 1. If d = 3, the compactness of the embedding D(A) ⊂ H can be proven
using the following regularity result: if Ω is a bounded simply connected open set with Lipschitz
boundary, (Costabel 1990, Thm. 2)

Hcurl(Ω) ∩
{
u ∈ Hdiv(Ω)

∣∣∣ u · n ∈ L2(∂Ω)
}
⊂ H

1
2 (Ω)d

and ∇H1(Ω) ⊂ Hcurl(Ω) (Girault and Raviart 1986, Thm. 2.9). (Note the stringent requirement
that Ω be simply connected.) However, this step complicates further when IBCs with infinite-
dimensional realizations are considered: in Sections 4.4–4.6, we will encounter IBCs that induce
a lack of precompactness of the orbit, although the cause of this lack of precompactness differs
as will be discussed in Remarks 4.36 and 4.48. These technical difficulties justify why we herein
use Corollary 4.13 instead of the invariance principle.

4.3 Rational impedance
In this section, we consider the positive-real impedance given by

ẑ(s) := z0 + Ẑ(s), (4.27)

with z0 ≥ 0 and Ẑ a positive-real rational function, analytic in C+
0 , such that Ẑ(∞) = 0. We

further impose that
ẑ(0) 6= 0,

so that z0 can be null iff Ẑ(0) 6= 0. The impedance (4.27) can be understood as arising from a
rational approximation of a physical impedance model, as done in practical numerical simulations
(Monteghetti et al. 2018b).

This section is organized as follows. Section 4.3.1 formulates a minimal realization of ẑ,
namely (4.28), and obtains a Lyapunov functional using the positive-real lemma. This is then
used in Section 4.3.2 to formulate the coupled system (4.32) and prove asymptotic stability using
Corollary 4.13.

4.3.1 Positive-real lemma

Since ẑ is a rational function such that

ẑ(∞) = z0

is finite and
ẑ(s) ∈ R (s ∈ (0,∞)),

the corresponding linear time-invariant operator u 7→ z ? u admits a minimal finite-dimensional
state-space realization (A,B,C, z0) {

ϕ̇ = Aϕ+Bu

z ? u = Cϕ+ z0u,
(4.28)

where u is a causal input (i.e. u(t) = 0 for t < 0), ϕ(t) ∈ Rm is the state vector, A ∈ Rm×m is
the state matrix, B ∈ Rm×1 is the control matrix, C ∈ R1×m is the observation matrix, and the
feedthrough matrix is here the scalar z0. For background on this result, see e.g. the textbook
(Zhou et al. 1996, § 3.7). For s ∈ ρ(A), the resolvent set of A, the impedance (4.27) can be
re-expressed as

ẑ(s) = z0 + CR(s,A)B, (4.29)
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where R(s,A) denotes the resolvent

R(s,A) := (sIm −A)−1.

The minimality of the realization (4.28) means that m is the smallest possible integer for (4.29)
to hold. For example, if ẑ has only N simple poles then m = N .

To use (4.28) with the semigroup approach considered herein, it is imperative to exhibit an
energy balance (equivalently, a Lyapunov functional). It is provided by the celebrated positive-
real lemma, also known as the Kalman–Yakubovich–Popov lemma, recalled below under a form
different than that given in (Matignon and Prieur 2014) and more suited to our purposes.
Theorem 4.22 (Positive-real lemma (Anderson 1967, Thm. 3)). Let f be a rational function
that is analytic on C+

0 apart from simple poles on jR and such that f∞ := f(∞) is finite. Let
(A,B,C, f∞) be a minimal realization of f (hence f is given by (4.29) with “f∞” instead of
“z0”). Then, f is positive-real if and only if there exists a symmetric matrix P > 0 such that[

PAᵀ +AᵀP PB − Cᵀ

BᵀP − C −2f∞

]
≤ 0.

Let P ∈ Rm×m be the symmetric positive definite matrix obtained by applying Theorem 4.22
to (4.27) and let us define the induced scalar product and norm by

(f , g)P := (Pf , g)Cm , ‖f‖2P := (f ,f)P ,

for any f , g ∈ Cm. If ϕ is a C1 solution of (4.28), an elementary computation shows the following
equivalence:

d
dt‖ϕ‖

2
P ≤ 2< [(u, z ? u)C] (4.30)

m
((PA+AᵀP )ϕ,ϕ)Cm + ((PB − Cᵀ)u,ϕ)Cm + ((BᵀP − C)ϕ, u)C − 2<(z0)|u|2 ≤ 0

m
2< [(Aϕ+Bu,ϕ)P − (u, z0u+ Cϕ)C] ≤ 0. (4.31)

In summary, thanks to the positive-real lemma, the realization (4.28) enjoys the energy balance
(4.30).

In preparation for the analysis of Section 4.3.2, we define the Hilbert space

L2
P (∂Ω;Cm) :=

{
ϕ : ∂Ω→ Cm measurable

∣∣∣∣ ˆ
∂Ω
‖ϕ‖2P dx <∞

}
,

with scalar product
(ϕ,ψ)L2

P (∂Ω;Cm) :=
ˆ
∂Ω

(ϕ,ψ)P .

Since P is invertible, the two norms ‖ · ‖L2
P (∂Ω;Cm) and ‖ · ‖L2(∂Ω;Cm) are equivalent.

Remark 4.23. Let m ≥ 1. In (Abbas and Nicaise 2013, 2015) asymptotic stability is shown with
the admittance realization {

ϕ̇ = Aϕ+Bu

y ? u = (B,ϕ)Cm ,
which is (4.28) with z0 = 0 and C = Bᵀ. This realization is additionally space-varying as both
A and B are Lipschitz continuous with

<
[
(A(x)·, ·)P (x)

]
≤ 0

where x 7→ P (x) is Lipschitz continuous with P (x) a Hermitian positive-definite matrix.
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4.3.2 Asymptotic stability

Using the realization of the IBC obtained in Section 4.3.1, we now recast (4.2,4.3) into an
abstract Cauchy problem (4.13), following the program set out in Section 4.2.1. The extended
state space is defined as

H := ∇H1(Ω)× L2(Ω)× L2
P (∂Ω;Cm),

((u, p,ϕ), (fu, fp,fϕ))H := (u,fu) + (p, fp) +
ˆ
∂Ω

(ϕ,fϕ)P ,

and the evolution operator (4.14) is defined by

D(A) 3 X :=

 u
p
ϕ

 7−→ AX :=

 −∇p
−divu

Aϕ+Bu · n

 ,
D(A) :=

(u, p,ϕ) ∈ H

∣∣∣∣∣∣
(u, p) ∈ Hdiv(Ω)×H1(Ω),

p = z0u · n+ Cϕ in H−
1
2 (∂Ω)

 .
(4.32)

Remark 4.24. For the sake of clarity there is an abuse of notation in (4.32), since we do not
differentiate between the state matrix A ∈ Rm×m and the state operator∣∣∣∣∣L

2
P (∂Ω;Cm)→ L2

P (∂Ω;Cm)
ϕ 7→ (x 7→ Aϕ(x)).

We proceed similarly for B and C.
As in Section 4.2.2, we verify the conditions of Corollary 4.13 through three lemmas, namely

Lemmas 4.25, 4.26, and 4.27 given below.

Lemma 4.25. A given by (4.32) is dissipative.

Proof. Let X ∈ D(A). In particular, the IBC implies that u · n ∈ L2(∂Ω), see Remark 4.24.
Green’s formula (C.1) and the inequality (4.31) yield

<(AX,X)H = <
[
(Aϕ+Bu · n,ϕ)L2

P (∂Ω) − 〈u · n, p〉H− 1
2 (∂Ω),H

1
2 (∂Ω)

]
= <

[
(Aϕ+Bu · n,ϕ)L2

P (∂Ω) − (u · n, z0u · n+ Cϕ)L2(∂Ω)
]
≤ 0,

where we have used (4.1).

Lemma 4.26. A given by (4.32) is injective.

Proof. Assume X ∈ D(A) satisfies AX = 0, i.e. ∇p = 0, divu = 0, and

Aϕ+Bu · n = 0 in L2
P (∂Ω). (4.33)

Identically to the proportional case covered in Lemma 4.18, Green’s formula (C.1) yields

〈u · n, p〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= 0,

and using (4.1) with the fact that u · n ∈ L2(∂Ω) we get

(u · n, z0u · n+ Cϕ)L2(∂Ω) = 0. (4.34)
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Since by assumption kerA = {0} (i.e. Ẑ does not have a pole at 0), the identity (4.33) has a
unique solution ϕ = −A−1Bu · n so that (4.34) reads

ẑ(0)(u · n,u · n)L2(∂Ω) = 0,

where we have used (4.29). As ẑ(0) 6= 0 by assumption, we deduce that u belongs to Hdiv 0,0(Ω),
ϕ = 0 in L2

P (∂Ω), and p = 0 in L2(∂Ω). The nullity of u follows fromHdiv 0,0(Ω)∩∇H1(Ω) = {0},
see (C.2).

Lemma 4.27. sI − A, with A given by (4.32), is bijective for s ∈ (0,∞) ∪ jR∗.

Proof. Let F ∈ H and s ∈ (0,∞)∪ jR∗. We seek a unique X ∈ D(A) such that (sI −A)X = F ,
i.e. 

su+∇p = fu (a)
sp+ divu = fp (b)
sϕ−Aϕ−Bu · n = fϕ. (c)

(4.35)

For later use, let us note that Equation (4.35c) and the IBC imply

ϕ = R(s,A)(Bu · n+ fϕ) in L2
P (∂Ω) (4.36)

p = ẑ(s)u · n+ CR(s,A)fϕ in L2(∂Ω). (4.37)

Let ψ ∈ H1(Ω). Similarly to what was done in the proof of Lemma 4.19, combining (fu,∇ψ) +
s(fp, ψ) with (4.37) yields

(∇p,∇ψ) + s2(p, ψ) + s

ẑ(s)(p, ψ)L2(∂Ω) = (fu,∇ψ) + s(fp, ψ)

+ s

ẑ(s)(CR(s,A)fϕ, ψ)L2(∂Ω).
(4.38)

Proposition 4.4 shows that (4.38) has a unique solution p ∈ H1(Ω). It remains to find suitable
u and ϕ so that (u, p,ϕ) ∈ D(A). Let us define u ∈ ∇H1(Ω) by (4.35a). Taking ψ ∈ C∞0 (Ω)
in (4.38) shows that u ∈ Hdiv(Ω) and that (4.35b) holds. Using the expressions of both u and
divu, the weak formulation (4.38) can be rewritten as

(u,∇ψ) + (divu, ψ) = ẑ(s)−1(p, ψ)L2(∂Ω) − ẑ(s)−1(CR(s,A)fϕ, ψ)L2(∂Ω).

Green’s formula (C.1) then yields

〈u · n, ψ〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= ẑ(s)−1(p, ψ)L2(∂Ω) − ẑ(s)−1(CR(s,A)fϕ, ψ)L2(∂Ω),

which shows that p and u satisfy (4.37). Let us now define ϕ as (4.36); it belongs to L2
P (∂Ω)

since u · n ∈ L2(∂Ω) from (4.37). By rewriting (4.37) as

p = (ẑ(s)− CR(s,A)B)u · n+ CR(s,A)(Bu · n+ fϕ),

we obtain from (4.29) and (4.36) that the IBC holds, hence (u, p,ϕ) ∈ D(A). The uniqueness
of p follows from Proposition 4.4, that of u from (C.2), and that of ϕ from the bijectivity of
sI−A.

Remark 4.28 (Invariance principle). Since the realization of ẑ is finite-dimensional, proving
asymptotic stability using the invariance principle would lead to similar discussions than those
presented at the end of Section 4.2.3. See (Matignon 2006) for the case d = 1.
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4.4 Delay impedance
This section, as well as Sections 4.5 and 4.6, deals with IBCs that have an infinite-dimensional
realization, which arise naturally in physical modeling (Monteghetti et al. 2016a). Let us first
consider the time-delayed impedance

ẑ(s) := z0 + zτe
−τs, (4.39)

where z0, zτ , τ ∈ R, so that the corresponding IBC (4.3) reads

p(t) = z0u(t) · n+ zτu(t− τ) · n a.e. on ∂Ω, t > 0.

The function (4.39) is positive-real if and only if

z0 ≥ |zτ |, τ ≥ 0, (4.40)

which is assumed in the following. From now on, in addition to (4.40), we further assume

ẑ(0) 6= 0, τ 6= 0.

This section is organized similarly to Section 4.3: a realization of ẑ is recalled in Section 4.4.1
and the stability of the coupled system is shown in Section 4.4.2.
Remark 4.29. In (Nicaise and Pignotti 2006), exponential (resp. asymptotic) stability is shown
under the condition z0 > zτ > 0 (resp. z0 ≥ zτ > 0) and τ > 0.

4.4.1 Time-delay realization

Following a well-known device, time-delays can be realized using a transport equation on a
bounded interval (Curtain and Zwart 1995, § 2.4) (Engel and Nagel 2000, §VI.6). Let u be a
causal input. The linear time-invariant operator u 7→ z ? u can be realized as

z ? u(t) = z0u(t) + zτχ(t,−τ) (t > 0),

where the state χ ∈ H1(−τ, 0) with t ≥ 0 follows the transport equation
∂tχ(t, θ) = ∂θχ(t, θ), (θ ∈ (−τ, 0), t > 0) , (a)
χ(0, θ) = 0, (θ ∈ (−τ, 0)) , (b)
χ(t, 0) = u(t), (t > 0) . (c)

(4.41)

For χ ∈ C1([0, T ];H1(−τ, 0)) solution of (4.41a), we have the following energy balance

1
2
d
dt‖χ(t, ·)‖2L2(−τ,0) = <(∂θχ(t, ·), χ(t, ·))L2(−τ,0)

= 1
2
[
|χ(t, 0)|2 − |χ(t,−τ)|2

]
,

which we shall use in the proof of Lemma 4.32.
Remark 4.30 (Multiple delays). Note that a finite number of time-delays τi > 0 can be accounted
for by setting τ := maxi τi and writing

z ? u(t) = z0u(t) +
∑
i

zτiχ(t,−τi).

The corresponding impedance ẑ(s) = z0 +
∑
i zτie

−τis is positive-real if z0 ≥
∑
i |zτi |. No

substantial change to the proofs of Section 4.4.2 is required to handle this more general case.
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4.4.2 Asymptotic stability

The state space is defined as

H := ∇H1(Ω)× L2(Ω)× L2(∂Ω;L2(−τ, 0)),
((u, p, χ), (fu, fp, fχ))H := (u,fu) + (p, fp) + k(χ, fχ)L2(∂Ω;L2(−τ,0)),

(4.42)

where k ∈ (0,∞) is a constant to be tuned to achieve dissipativity, see Lemma 4.32. The
evolution operator is defined as

D(A) 3 X :=

 u
p
χ

 7−→ AX :=

 −∇p
−divu
∂θχ

 ,

D(A) :=


(u, p, χ) ∈ H

∣∣∣∣∣∣∣∣∣∣∣

(u, p) ∈ Hdiv(Ω)×H1(Ω)
χ ∈ L2(∂Ω;H1(−τ, 0))

p = z0u · n+ zτχ(·,−τ) in H−
1
2 (∂Ω)

χ(·, 0) = u · n in H−
1
2 (∂Ω)


.

(4.43)

We apply Corollary 4.13, see the Lemmas 4.32, 4.33, and 4.34 below. Lemma 4.32 shows that
the seemingly free parameter k must be restricted for ‖ · ‖H to be a Lyapunov functional, as
formally highlighted in (Monteghetti et al. 2017a).
Remark 4.31 (Bochner’s integral). For the integrability of vector-valued functions, we follow the
definitions and results presented in (Yosida 1980, §V.5). Let B be a Banach space. We have
(Yosida 1980, Thm.V.5.1)

L2(∂Ω;B) =
{
f : ∂Ω→ B strongly measurable

∣∣∣ ‖f‖B ∈ L2(∂Ω)
}
.

In Sections 4.5 and 4.6, we repeatedly use the following result: if A ∈ L(B1,B2) and u ∈
L2(∂Ω;B1), then Au ∈ L2(∂Ω;B2).
Lemma 4.32. The operator A given by (4.43) is dissipative if and only if

k ∈
[
z0 −

√
z2

0 − z2
τ , z0 +

√
z2

0 − z2
τ

]
.

Proof. Let X ∈ D(A). In particular, u · n ∈ L2(∂Ω) since χ(·, 0) ∈ L2(∂Ω). Using Green’s
formula (C.1)

<(AX,X)H =−<
[
〈u · n, p〉

H−
1
2 (∂Ω),H

1
2 (∂Ω)

]
+ k< (∂θχ, χ)L2(∂Ω;L2(−τ,0))

=−<
[
(u · n, p)L2(∂Ω)

]
+ k

2‖χ(·, 0)‖2L2(∂Ω) −
k

2‖χ(·,−τ)‖2L2(∂Ω),

=
(
k

2 − z0

)
‖χ(·, 0)‖2L2(∂Ω) −

k

2‖χ(·,−τ)‖2L2(∂Ω)

− zτ<
[
(χ(·, 0), χ(·,−τ))L2(∂Ω)

]
,

from which we deduce that A is dissipative if and only if the matrix[
z0 − k

2
zτ
2

zτ
2

k
2

]
is positive semidefinite, i.e. if and only if its determinant and trace are nonnegative:

(2z0 − k)k ≥ z2
τ and z0 ≥ 0.

The conclusion follows the expressions of the roots of k 7→ −k2 + 2z0k − z2
τ .
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Lemma 4.33. The operator A given by (4.43) is injective.

Proof. Assume X ∈ D(A) satisfies AX = 0, i.e. ∇p = 0, divu = 0, and

∂θχ(x, θ) = 0 a.e. in ∂Ω× (−τ, 0). (4.44)

Hence χ(x, ·) is constant with

χ(·, 0) = χ(·,−τ) = u · n a.e. in ∂Ω. (4.45)

Green’s formula (C.1) yields
〈u · n, p〉

H−
1
2 (∂Ω),H

1
2 (∂Ω)

= 0,

and by combining with the IBC and (4.45)

ẑ(0)‖u · n‖2L2(∂Ω) = 0,

where we have used that u · n ∈ L2(∂Ω) since χ(·, 0) ∈ L2(∂Ω). Since ẑ(0) 6= 0 we deduce that
u ∈ Hdiv 0,0(Ω), hence u = 0 from (C.2) and χ = 0. The IBC gives p = 0 a.e. on ∂Ω, hence
p = 0 a.e. on Ω.

Lemma 4.34. Let A be given by (4.43). Then, sI − A is bijective for s ∈ (0,∞) ∪ jR∗.

Proof. Let F ∈ H and s ∈ (0,∞)∪ jR∗. We seek a unique X ∈ D(A) such that (sI −A)X = F ,
i.e. 

su+∇p = fu (a)
sp+ divu = fp (b)
sχ− ∂θχ = fχ. (c)

(4.46)

Equation (4.46c) can be uniquely solved as

χ(·, θ) = esθu · n+R(s, ∂θ)fχ(·, θ), (4.47)

where we formally denote (see Remark 4.35)

R(s, ∂θ)fχ(x, θ) := [Y1e
s· ? fχ(x, ·)] (θ) =

ˆ θ

0
es(θ−θ̃)fχ(x, θ̃) dθ̃.

The IBC can then be written as

p = ẑ(s)u · n+ zτR(s, ∂θ)fχ(·,−τ) in H−
1
2 (∂Ω), (4.48)

and this identity actually takes place in L2(∂Ω) since

x 7→ R(s, ∂θ)fχ(x,−τ) ∈ L2(∂Ω).

Let ψ ∈ H1(Ω). Combining (fu,∇ψ) + s(fp, ψ) with (4.48) yields

(∇p,∇ψ) + s2(p, ψ) + s

ẑ(s)(p, ψ)L2(∂Ω) =(fu,∇ψ) + s(fp, ψ)

+ szτ
ẑ(s)(R(s, ∂θ)fχ(·,−τ), ψ)L2(∂Ω).

(4.49)

Let p ∈ H1(Ω) be the unique solution of (4.49) obtained with Proposition 4.4. It remains to
find suitable u and χ so that (u, p, χ) ∈ D(A). Let us define u ∈ ∇H1(Ω) by (4.46a). Taking
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ψ ∈ C∞0 (Ω) in (4.49) shows that u ∈ Hdiv(Ω) with (4.46b). Using the expressions of u and divu,
and Green’s formula (C.1), the weak formulation (4.49) can be rewritten as

〈u · n, ψ〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= 1
ẑ(s)(p, ψ)L2(∂Ω) −

zτ
ẑ(s)(R(s, ∂θ)fχ(·,−τ), ψ)L2(∂Ω).

which shows that p and u satisfy (4.48). Let us now define χ in L2(∂Ω;H1(−τ, 0)) by (4.47).
By rewriting (4.48) as

p = (ẑ(s)− zτe−sτ )u · n+ zτ
(
e−sτu · n+R(s, ∂θ)fχ(·,−τ)

)
in H−

1
2 (∂Ω),

we deduce thanks to (4.39) and (4.47) that the IBC holds, i.e. that (u, p, χ) ∈ D(A). The
uniqueness of p follows Proposition 4.4, that of u from (C.2), and that of χ from the fact that
(4.46c) is uniquely solvable in D(A).

Remark 4.35. In the proof, R(s, ∂θ) is only a notation since ∂θ (hence also its resolvent operator)
cannot be defined separately from A. Indeed, the definition of ∂θ would be∣∣∣∣∣ ∂θ :D(∂θ) ⊂ L2(∂Ω;L2(−τ, 0))→ L2(∂Ω;L2(−τ, 0))

χ 7→ ∂θχ,

with domain
D(∂θ) =

{
χ ∈ L2(∂Ω;H1(−τ, 0)) | χ(·, 0) = u · n

}
that depends upon u.
Remark 4.36 (Invariance principle). Since the realization of ẑ is infinite dimensional, proving
asymptotic stability using the invariance principle is more involved: the key technical difficulty
is establishing precompactness of the orbits. Following the discussion presented in Section 4.2.3,
the compactness of R(s,A) could be established by proving that the embedding

L2(∂Ω;H1(−τ, 0)) ⊂ L2(∂Ω;L2(−τ, 0)) (4.50)

is compact, which is not obvious to the author if d ≥ 2.

4.5 Standard diffusive impedance

This section focuses on the class of so-called standard diffusive kernels (Montseny 1998), defined
as

z(t) :=
ˆ ∞

0
e−ξtY1(t) dµ(ξ), (4.51)

where t ∈ R and µ is a positive Radon measure on [0,∞) that satisfies the following well-
posedness condition ˆ ∞

0

dµ(ξ)
1 + ξ

<∞, (4.52)

which guarantees that z ∈ L1
loc([0,∞)) with Laplace transform

ẑ(s) =
ˆ ∞

0

1
s+ ξ

dµ(ξ). (4.53)

The estimate
∀s ∈ C+

0 \{0},
1

|s+ ξ|
≤
√

2 max
[
1, 1
|s|

] 1
1 + ξ

, (4.54)
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which is used below, shows that ẑ is defined on C+
0 \{0}.

This class of (positive-real) kernels is physically linked to non-propagating lossy phenom-
ena and arises in electromagnetics (Garrappa et al. 2016), viscoelasticity (Desch and Miller
1988; Mainardi 1997), and acoustics (Hélie and Matignon 2006a; Lombard and Matignon 2016;
Monteghetti et al. 2016a). Formally, ẑ admits the following realization

∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t), ϕ(0, ξ) = 0 (ξ ∈ (0,∞)) ,

z ? u(t) =
ˆ ∞

0
ϕ(t, ξ) dµ(ξ).

(4.55)

The realization (4.55) can be given a meaning using the theory of well-posed linear systems
(Matignon and Zwart in revision; Staffans 2005; Tucsnak and Weiss 2014; Weiss et al. 2001).
However, in order to prove asymptotic stability, we need a framework to give a meaning to the
coupled system (4.2,4.3,4.55), which, it turns out, can be done without defining a well-posed
linear system out of (4.55).

Similarly to the previous sections, this section is divided into two parts. Section 4.5.1 defines
the realization of (4.55) and establishes some of its properties. These properties are then used
in Section 4.5.2 to prove the asymptotic stability of the coupled system.

Remark 4.37. The typical standard diffusive operator is the Riemann-Liouville fractional integral
(Samko et al. 1993, § 2.3) (Matignon 2009)

ẑ(s) = 1
sα
, dµ(ξ) = µα(ξ)dξ, (4.56)

where α ∈ (0, 1) and µα is given by (2.11).

Remark 4.38. The expression (4.51) arises naturally when inverting multivalued Laplace trans-
forms, see (Duffy 2004, Chap. 4) for applications in partial differential equations. However, a
standard diffusive kernel can also be defined as follows: a causal kernel z is said to be standard
diffusive if it belongs to L1

loc([0,∞)) and is completely monotone on (0,∞). By Bernstein’s rep-
resentation theorem (Gripenberg et al. 1990, Thm. 5.2.5), z is standard diffusive iff (4.51,4.52)
hold. Additionally, a standard diffusive kernel z is integrable on (0,∞) iff

µ({0}) = 0 and
ˆ ∞

0

1
ξ
dµ(ξ) <∞,

a property which will be referred to in Section 4.5.1. State spaces for the realization of classes of
completely monotone kernels have been studied in (Desch and Miller 1988; Staffans 1994) and
references therein.

4.5.1 Abstract realization

To give a meaning to (4.55) suited for our purpose, we define, for any s ∈ R, the following
Hilbert space

Vs :=
{
ϕ : (0,∞)→ C measurable

∣∣∣∣ ˆ ∞
0
|ϕ(ξ)|2(1 + ξ)s dµ(ξ) <∞

}
,

with scalar product

(ϕ,ψ)Vs :=
ˆ ∞

0
(ϕ(ξ), ψ(ξ))C(1 + ξ)s dµ(ξ),
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so that the triplet (V−1, V0, V1) satisfies the continuous embeddings

V1 ⊂ V0 ⊂ V−1. (4.57)

The space V0 will be the energy space of the realization, see (4.67). Note that the spaces V−1
and V1 defined above are different from those encountered when defining a well-posed linear
system out of (4.55), see (Matignon and Zwart in revision). When dµ is given by (4.56), the
spaces V0 and V1 reduce to the spaces “Hα” and “Vα” defined in (Haddar and Matignon 2008,
Chap. 2) and (Matignon and Prieur 2014, § 3.2).

On these spaces, we wish to define the unbounded state operator A, the control operator B,
and the observation operator C so that

A : D(A) := V1 ⊂ V−1 → V−1, B ∈ L(C, V−1), C ∈ L(V1,C). (4.58)

The state operator is defined as the following multiplication operator

A :
∣∣∣∣∣D(A) := V1 ⊂ V−1 → V−1

ϕ 7→ (ξ 7→ −ξϕ(ξ)).
(4.59)

The control operator is simply
Bu := ξ 7→ 1× u, (4.60)

and belongs to L(C, V−1) thanks to condition (4.52) since, for u ∈ C,

‖Bu‖V−1 =
[ˆ ∞

0

1
1 + ξ

dµ(ξ)
]1/2

|u|.

The observation operator is
Cϕ :=

ˆ ∞
0

ϕ(ξ) dµ(ξ),

and C ∈ L(V1,C) thanks to (4.52) as, for ϕ ∈ V1,

|Cϕ| ≤
[ˆ ∞

0

1
1 + ξ

dµ(ξ)
]1/2

‖ϕ‖V1 .

The next lemma gathers properties of the triplet (A,B,C) that are used in Section 4.5.2 to
obtain asymptotic stability. Recall that if A is closed and s ∈ ρ(A), then the resolvent operator
R(s,A) defined by (4.25) belongs to L(V−1, V1) (Kato 1995, § III.6.1).

Lemma 4.39. The operator A defined by (4.59) is injective, generates a strongly continuous
semigroup of contractions on V−1, and satisfies C+

0 \{0} ⊂ ρ(A).

Proof. The proof is split into three steps, (a), (b), and (c). (a) The injectivity of A follows
directly from its definition. (b) Let us show that (0,∞) ∪ jR∗ ⊂ ρ(A). Let fϕ ∈ V−1, s ∈
(0,∞) ∪ jR∗, and define

ϕ(ξ) := 1
s+ ξ

fϕ(ξ) a.e. on (0,∞). (4.61)

Using the estimate (4.54), we have

‖ϕ‖V1 ≤
√

2 max
[
1, 1
|s|

]
‖fϕ‖V−1 ,

so that ϕ belongs to V1 and (sI − A)ϕ = fϕ is well-posed. (c) For any ϕ ∈ V1, we have
<
[
(Aϕ,ϕ)V−1

]
≤ −‖ϕ‖2V0

, so A is dissipative. By the Lumer-Phillips theorem, A generates a
strongly continuous semigroup of contractions on V−1, so that C+

0 ⊂ ρ(A) (Pazy 1983, Cor. 3.6).
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Lemma 4.40. The triplet of operators (A,B,C) defined above satisfies (4.58) as well as the
following properties.

(i) (Stability) A is closed and injective with C+
0 \{0} ⊂ ρ(A).

(ii) (Regularity)

(a) A|V1 ∈ L(V1, V−1), where the vertical line denotes the restriction.

(b) For any s ∈ C+
0 \{0},

AR(s,A)|V0 ∈ L(V0, V0). (4.62)

(iii) (Reality) For any s ∈ (0,∞),

CR(s,A)B|R ∈ L(R,R), (4.63)

(iv) (Passivity) For any (ϕ, u) ∈ D(A&B),

< [(Aϕ+Bu,ϕ)V0 − (u,Cϕ)C] ≤ 0, (4.64)

where we define
D(A&B) := {(ϕ, u) ∈ V1 × C | Aϕ+Bu ∈ V0} .

Proof. Let A, B, and C be defined as above. Each of the properties is proven below.

(i) This condition is satisfied from Lemma 4.39.

(iia) Let ϕ ∈ V1. We have

‖Aϕ‖2V−1 =
ˆ ∞

0
|ϕ(ξ)|2 ξ2

1 + ξ
dµ(ξ)

≤
ˆ ∞

0
|ϕ(ξ)|2(1 + ξ) dµ(ξ) = ‖ϕ‖2V1 ,

using the inequality ξ2 ≤ (1 + ξ)2.

(iib) Let fϕ ∈ V0 and s ∈ C+
0 \{0},

‖AR(s,A)fϕ‖V0 =
[ˆ ∞

0

∣∣∣∣ ξ

s+ ξ
fϕ

∣∣∣∣2 dµ(ξ)
]1/2

≤ ‖fϕ‖V0 ,

where we have used
∣∣∣ ξ
s+ξ

∣∣∣ ≤ ξ
<(s)+ξ ≤ 1.

(iii) Let s ∈ (0,∞) and u ∈ R. The reality condition is fulfilled since

CR(s,A)Bu = u

ˆ ∞
0

dµ(ξ)
s+ ξ

.

(iv) Let (ϕ, u) ∈ D(A&B). We have

< [(Aϕ+Bu,ϕ)V0 − (u,Cϕ)C] = −<
[ˆ ∞

0
ξ|ϕ(ξ)|2 dµ(ξ)

]
≤ 0, (4.65)

so that the passivity condition is satisfied.
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Remark 4.41. The space D(A&B) is nonempty. Indeed, it contains at least the following one
dimensional subspace

{(ϕ, u) ∈ V1 × C | ϕ = R(s,A)Bu}
for any s ∈ ρ(A) (which is nonempty from Lemma 4.40(i)); this follows from

Aϕ+Bu =AR(s,A)Bu+Bu

=sR(s,A)Bu ∈ V1.

It also contains {(R(s,A)ϕ, 0) | ϕ ∈ V0}.
For any s ∈ ρ(A), we define

z := s 7→ CR(s,A)B, (4.66)
which is analytic, from the analyticity of R(·, A) (Kato 1995, Thm. III.6.7). Additionally, we
have z(s) ∈ R for s ∈ (0,∞) from (4.63), and <(z(s)) ≥ 0 from the passivity condition (4.64)
with ϕ := R(s,A)Bu ∈ D(A&B):

<(s)‖R(s,A)Bu‖2V0 ≤ < [(u, z(s)u)C] .

Since C+
0 ⊂ ρ(A), the function z defined by (4.66) is positive-real.

Remark 4.42 (Rational case). The matrices A ∈ Cm×m, B ∈ Cm×1, and C ∈ C1×m considered
in Section 4.3.1 verify the properties of Lemma 4.40 with the spaces V−1, V0, V1, and D(A&B)
identified to Cm. Condition (i) is satisfied iff [0,∞) ∪ jR ⊂ ρ(A). Condition (ii) is satisfied.
Condition (iii) is satisfied if (A,B,C) are real-valued matrices. Condition (iv) is (4.31) (in
particular, it implies that C+

0 ⊂ ρ(A)).

4.5.2 Asymptotic stability

Let (A,B,C) be defined as in Section 4.5.1. We further assume that A, B, and C are non-
null operators. The coupling between the wave equation (4.2) and the infinite-dimensional
realization (A,B,C) can be formulated as the abstract Cauchy problem (4.13) using the following
definitions. The extended state space is

H := ∇H1(Ω)× L2(Ω)× L2(∂Ω;V0),
((u, p, ϕ), (fu, fp, fϕ))H := (u,fu) + (p, fp) + (ϕ, fϕ)L2(∂Ω;V0),

(4.67)

and the evolution operator A is

D(A) 3 X :=

 u
p
ϕ

 7−→ AX :=

 −∇p
−divu

Aϕ+Bu · n

 ,

D(A) :=

(u, p, ϕ) ∈ H

∣∣∣∣∣∣∣∣
(u, p, ϕ) ∈ Hdiv(Ω)×H1(Ω)× L2(∂Ω;V1)
(Aϕ+Bu · n) ∈ L2(∂Ω;V0)

p = Cϕ in H
1
2 (∂Ω)

 .
(4.68)

Remark 4.43. In the definition of A, there is an abuse of notation similar to that employed in
the rational case. Indeed, we still denote by A the following operator∣∣∣∣∣L

2(∂Ω;V1)→ L2(∂Ω;V−1)
ϕ 7→ (x 7→ Aϕ(x, ·)),

which is well-defined from Lemma 4.40(iia) and Remark 4.31. A similar abuse of notation is
employed for B and C.
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Asymptotic stability is proven by applying Corollary 4.13 through Lemmas 4.45, 4.46, and
4.47 below. In order to clarify the proofs presented in Lemmas 4.45 and 4.46, we first prove a
regularity property on u that follows from the definition of D(A).
Lemma 4.44 (Boundary regularity). If X = (u, p, ϕ) ∈ D(A), then u · n ∈ L2(∂Ω).
Proof. Let X ∈ D(A). By definition of D(A), we have ϕ ∈ L2(∂Ω;V1) so that Aϕ ∈ L2(∂Ω;V−1)
from Lemma 4.40(iia) and Remark 4.31. From

Bu · n = Aϕ+Bu · n︸ ︷︷ ︸
∈L2(∂Ω;V0)

−
∈L2(∂Ω;V−1)︷︸︸︷

Aϕ,

we deduce that Bu ·n ∈ L2(∂Ω;V−1). The conclusion then follows from the definition of B and
condition (4.52).

Lemma 4.45. The operator A given by (4.68) is dissipative.
Proof. Let X ∈ D(A). In particular, u · n ∈ L2(∂Ω) from Lemma 4.44. Green’s formula (C.1)
and the inequality (4.64) yield

<(AX,X)H = <
[
(Aϕ+Bu · n, ϕ)L2(∂Ω;V0) − 〈u · n, p〉H− 1

2 (∂Ω),H
1
2 (∂Ω)

]
= <

[
(Aϕ+Bu · n, ϕ)L2(∂Ω;V0) − (u · n, Cϕ)L2(∂Ω)

]
≤ 0,

where we have used that u · n ∈ L2(∂Ω).

Lemma 4.46. The operator A given by (4.68) is injective.
Proof. Assume X ∈ D(A) satisfies AX = 0. In particular ∇p = 0 and divu = 0, so that
Green’s formula (C.1) yields

〈u · n, p〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= 0,

and by combining with the IBC
(u · n, Cϕ)L2(∂Ω) = 0, (4.69)

where we have used that u ·n ∈ L2(∂Ω) from Lemma 4.44. The third equation that comes from
AX = 0 is

Aϕ(x, ·) +Bu(x) · n(x) = 0 in V0 for a.e. x ∈ ∂Ω. (4.70)
We now prove that X = 0, the key step being solving (4.70). Since A is injective, (4.70) has at
most one solution ϕ ∈ L2(∂Ω;V1). Let us distinguish the possible cases.
• If 0 ∈ ρ(A), then ϕ = R(0, A)Bu · n ∈ L2(∂Ω;V1) is the unique solution. Inserting in

(4.69) and using (4.66) yields

(u · n, z(0)u · n)L2(∂Ω) = 0,

from which we deduce that u · n = 0 since z(0) is non-null.

• If 0 ∈ σr(A) ∪ σc(A), then either R(A) 6= V−1 (definition of the residual spectrum) or
R(A) = V−1 but R(A) 6= V−1 (definition of the continuous spectrum combined with the
closed graph theorem, since A is closed). If Bu ·n /∈ L2(∂Ω;R(A)), then the only solution
is ϕ = 0 and u · n = 0. If Bu · n ∈ L2(∂Ω;R(A)), then ϕ = −A−1Bu · n is the unique
solution, where A−1 : R(A) → V1 is an unbounded closed bijection. Inserting in (4.69)
yields

(u · n, (−CA−1B)u · n)L2(∂Ω) = 0.
Since (−CA−1B) ∈ L(C,C) is a non-null operator, we deduce that u · n = 0.
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In summary, u ∈ Hdiv 0,0(Ω), ϕ = 0 in L2(∂Ω;V1), and p = 0 in L2(∂Ω). The nullity of p
follows from ∇p = 0. The nullity of u follows from Hdiv 0,0(Ω) ∩∇H1(Ω) = {0}, see (C.2).

Lemma 4.47. Let A be given by (4.68). Then, sI − A is bijective for s ∈ (0,∞) ∪ jR∗.

Proof. Let F ∈ H and s ∈ (0,∞)∪ jR∗. We seek a unique X ∈ D(A) such that (sI −A)X = F ,
i.e. 

su+∇p = fu (a)
sp+ divu = fp (b)
sϕ−Aϕ−Bu · n = fϕ. (c)

(4.71)

For later use, let us note that Equation (4.71c) and the IBC implies

ϕ = R(s,A)(Bu · n+ fϕ) in L2(∂Ω;V1) (4.72)
p = z(s)u · n+ CR(s,A)fϕ in L2(∂Ω). (4.73)

Let ψ ∈ H1(Ω). Combining (fu,∇ψ) + s(fp, ψ) with (4.73) yields

(∇p,∇ψ) + s2(p, ψ) + s

z(s)(p, ψ)L2(∂Ω) = (fu,∇ψ) + s(fp, ψ)

+ s

z(s)(CR(s,A)fϕ, ψ)L2(∂Ω).
(4.74)

Note that since CR(s,A) ∈ L(V−1,C), we have

x 7→ CR(s,A)fϕ(x) ∈ L2(∂Ω),

so that (4.74) is meaningful. Moreover, we have <(z(s)) ≥ 0, and z(s) ∈ (0,∞) for s ∈ (0,∞).
Therefore, we can apply Proposition 4.4, pointwise, for s ∈ (0,∞) ∪ jR∗.

Let us denote by p the unique solution of (4.74) in H1(Ω), obtained from Proposition 4.4.
It remains to find suitable u and ϕ, which is mostly similar to the rational case thanks to the
hypothesis (4.62).

Let us define u ∈ ∇H1(Ω) by (4.71a). Taking ψ ∈ C∞0 (Ω) in (4.74) shows that u ∈ Hdiv(Ω)
and (4.71b) holds. Using the expressions of u and divu, and Green’s formula (C.1), the weak
formulation (4.74) can be rewritten as

〈u · n, ψ〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= z(s)−1(p, ψ)L2(∂Ω) − z(s)−1(CR(s,A)fϕ, ψ)L2(∂Ω),

which shows that p and u satisfy (4.73).
Let us now define ϕ with (4.72); it belongs to L2(∂Ω;V1) since u · n ∈ L2(∂Ω) from (4.73)

and fϕ ∈ L2(∂Ω;V0). By rewriting (4.73) as

p = (z(s)− CR(s,A)B)u · n+ CR(s,A)(Bu · n+ fϕ),

we obtain from (4.66) and (4.72) that the IBC holds.
To obtain (u, p, ϕ) ∈ D(A) it remains to show that Aϕ+Bu ·n belongs to L2(∂Ω;V0). Using

the definition of ϕ, we have

Aϕ+Bu · n = AR(s,A)(Bu · n+ fϕ) +Bu · n
= (AR(s,A) + I)Bu · n+AR(s,A)fϕ
= sR(s,A)Bu · n+AR(s,A)fϕ.
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Since u · n ∈ L2(∂Ω) and R(s,A)B ∈ L(C, V1), we have

sR(s,A)Bu · n ∈ L2(∂Ω;V1).

The hypothesis (4.62) implies that

AR(s,A)fϕ ∈ L2(∂Ω;V0),

hence that (u, p, ϕ) ∈ D(A).
The uniqueness of p follows from Proposition 4.4, that of u from (C.2), and that of ϕ from

the bijectivity of sI−A.

Remark 4.48 (Invariance principle). As pointed out in (Matignon and Prieur 2014) in the context
of the Webster-Lokshin equation, the lack of precompactness of the orbits prevents from using
the invariance principle. This can be understood by noting that the embedding

L2(∂Ω;V1) ⊂ L2(∂Ω;V0) (4.75)

is not compact since the embedding V1 ⊂ V0 is not compact. This contrasts with the time-
delay impedance (4.39) for which, although the embedding H1(−τ, 0) ⊂ L2(−τ, 0) is compact,
the compactness of the embedding (4.50) is doubtful. Theorem 4.21 does not apply since the
continuous spectrum σc(R(s,A)) can be nonempty.
Remark 4.49 ((Exponential stability)). If dµ(ξ) = µ̃(ξ) dξ with µ̃(ξ) > 0 over (0, ε) for some
ε > 0, we have (−ε, 0) ⊂ (σ(A)\σp(A)); in particular, (−ε, 0) belongs to the spectrum of A by
properties of the multiplication operator, see e.g. (Engel and Nagel 2000, § I.4.b) and (Matignon
and Zwart in revision). Since 0 is an accumulation point of the spectrum of A, the growth bound
of T is nonnegative (Engel and Nagel 2000, Cor. II.1.13) and T cannot be exponentially stable.
Remark 4.50. The time-delay case does not fit into the framework proposed in Section 4.5.1, see
Remark 4.35. This justifies why delay and standard diffusive IBCs are covered separately.

4.6 Extended diffusive impedance

In this section, we focus on a variant of the standard diffusive kernel, namely the so-called
extended diffusive kernel given by

ẑ(s) :=
ˆ ∞

0

s

s+ ξ
dµ(ξ), (4.76)

where µ is a Radon measure that satisfies condition (4.52), already encountered in the standard
case, and ˆ ∞

0

1
ξ
dµ(ξ) =∞. (4.77)

The additional condition (4.77) implies that t 7→
´∞

0 e−ξt dµ(ξ) is not integrable on (0,∞), see
Remark 4.38.

From (4.55), we directly deduce that ẑ formally admits the realization
∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t), ϕ(0, ξ) = 0 (ξ ∈ (0,∞)) ,

z ? u(t) =
ˆ ∞

0
(−ξϕ(t, ξ) + u(t)) dµ(ξ),

(4.78)
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where u is a causal input. The separate treatment of the standard (4.53) and extended (4.76)
cases is justified by the fact that physical models typically yield non-integrable kernels, i.e.ˆ ∞

0
dµ(ξ) = +∞, (4.79)

which prevents from splitting the observation integral in (4.78): the observation and feedthrough
operators are combined into C&D. Although a functional setting for (4.78) has been obtained
in (Monteghetti et al. 2017a, §B.3), we shall again follow the philosophy laid out in Section 4.5.
Namely, Section 4.6.1 presents an abstract realization framework whose properties are given in
Lemma 4.54, which slightly differs from the standard case, and Section 4.6.2 shows asymptotic
stability of the coupled system (4.88).
Remark 4.51. Let α ∈ (0, 1). The typical extended diffusive operator is the Riemman-Liouville
fractional derivative (Podlubny 1999, § 2.3) (Matignon 2009), obtained for ẑ(s) = s1−α and dµ
given by (4.56), which satisfies condition (4.77). For this measure dµ, choosing the initialization
ϕ(0, ξ) = u(0)/ξ in (4.78) yields the Caputo derivative (Lombard and Matignon 2016).

4.6.1 Abstract realization

To give meaning to the realization (4.78) we follow a similar philosophy to the standard case,
namely the definition of a triplet of Hilbert spaces (V−1, V0, V1) that satisfies the continuous
embeddings (4.57) as well as a suitable triplet of operators (A,B,C).

The Hilbert spaces V−1, V0, and V1 are defined as

V1 :=
{
ϕ : (0,∞)→ C measurable

∣∣∣∣ ˆ ∞
0
|ϕ(ξ)|2(1 + ξ) dµ(ξ) <∞

}
V0 :=

{
ϕ : (0,∞)→ C measurable

∣∣∣∣ ˆ ∞
0
|ϕ(ξ)|2ξ dµ(ξ) <∞

}
V−1 :=

{
ϕ : (0,∞)→ C measurable

∣∣∣∣ ˆ ∞
0
|ϕ(ξ)|2 ξ

1 + ξ2 dµ(ξ) <∞
}
,

with scalar products

(ϕ,ψ)V1 :=
ˆ ∞

0
(ϕ(ξ), ψ(ξ))C(1 + ξ) dµ(ξ)

(ϕ,ψ)V0 :=
ˆ ∞

0
(ϕ(ξ), ψ(ξ))C ξ dµ(ξ)

(ϕ,ψ)V−1 :=
ˆ ∞

0
(ϕ(ξ), ψ(ξ))C

ξ

1 + ξ2 dµ(ξ),

so that the continuous embeddings (4.57) are satisfied. Note the change of definition of the
energy space V0, which reflects the fact that the Lyapunov functional of (4.55) is different from
that of (4.78): compare the energy balance (4.65) with (4.85). The change in the definition of
V−1 is a consequence of this new definition of V0. When dµ is given by (4.56), the spaces V0 and
V1 reduce to the spaces “H̃α” and “Vα” defined in (Haddar and Matignon 2008, Chap. 2) and
(Matignon and Prieur 2014, § 3.2).

The operators A, B, and C satisfy (contrast with (4.58))

A : D(A) := V0 ⊂ V−1 → V−1, B ∈ L(C, V−1), C ∈ L(V1,C). (4.80)

The state operator A is still the multiplication operator (4.59), but with domain V0 instead of
V1. Let us check that this definition makes sense. For any ϕ ∈ V0, we have

‖Aϕ‖V−1 =
[ˆ ∞

0
|ϕ(ξ)|2 ξ3

1 + ξ2 dµ(ξ)
]1/2

≤ ‖ϕ‖V0 . (4.81)
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The control operator B is defined as (4.60) and we have for any u ∈ C

‖Bu‖V−1 =
[ˆ ∞

0
|u|2 ξ

1 + ξ2 dµ(ξ)
]1/2

≤ C̃
[ˆ ∞

0

1
1 + ξ

dµ(ξ)
]1/2

|u|,

where the constant C̃ > 0 is
C̃ :=

∥∥∥∥ξ(1 + ξ)
1 + ξ2

∥∥∥∥
L∞(0,∞)

.

The observation operator C is identical to the standard case. For use in Section 4.6.2, properties
of (A,B,C) are gathered in Lemma 4.54 below.

Lemma 4.52. The operator A generates a strongly continuous semigroup of contractions on
V−1 and satisfies C+

0 \{0} ⊂ ρ(A).

Proof. The proof is similar to that of Lemma 4.39. Let s ∈ C+
0 \{0} and fϕ ∈ V−1. Let us define

ϕ by (4.61). (a) We have

‖ϕ‖V0 =
[ˆ ∞

0

∣∣∣∣ 1
s+ ξ

fϕ

∣∣∣∣2 ξ dµ(ξ)
]1/2

≤
√

2 max
[
1, 1
|s|

] ∥∥∥∥∥ 1 + ξ2

(1 + ξ)2

∥∥∥∥∥
L∞(0,∞)

‖fϕ‖V−1 ,

so that ϕ solves (sI − A)ϕ = fϕ in V0. Since sI − A is injective, we deduce that s ∈ ρ(A). (b)
Let ϕ ∈ V0. We have

(Aϕ,ϕ)V−1 = −
ˆ ∞

0
|ϕ(ξ)|2 ξ2

1 + ξ2 dµ(ξ) ≤ −‖ϕ‖2V0 ,

so that A is dissipative. The conclusion follows from the Lumer-Phillips theorem.

Lemma 4.53. The operators A and B are injective. Moreover, if (4.77) holds, then R(A) ∩
R(B) = {0}.

Proof. The injectivity of A and B is immediate. Let fϕ ∈ R(A)∩R(B), so that there is ϕ ∈ V0
and u ∈ C such that Aϕ = Bu, i.e. −ξϕ(ξ) = u a.e. on (0,∞). The function ϕ belongs to V0 if
and only if

|u|2
ˆ ∞

0

1
ξ
dµ(ξ) <∞.

So that, assuming (4.77), ϕ belongs to V0 if and only if u = 0 a.e on (0,∞).

Lemma 4.54. The triplet of operators (A,B,C) defined above satisfies (4.80) as well as the
following properties.

(i) (Stability) A is closed with C+
0 \{0} ⊂ ρ(A) and satisfies

∀(ϕ, u) ∈ D(C&D), Aϕ = Bu⇒ (ϕ, u) = (0, 0), (4.82)

where we define
D(C&D) := {(ϕ, u) ∈ V0 × C | Aϕ+Bu ∈ V1} .

(ii) (Regularity)
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(a) A|V0 ∈ L(V0, V−1).

(b) For any s ∈ C+
0 \{0},

AR(s,A)|V0 ∈ L(V0, V1), R(s,A)B ∈ L(C, V1). (4.83)

(iii) (Reality) Identical to Lemma 4.40(iii).

(iv) (Passivity) For any (ϕ, u) ∈ D(C&D),

< [(Aϕ+Bu,ϕ)V0 − (u,C(Aϕ+Bu))C] ≤ 0. (4.84)

Proof. Let (A,B,C) be as defined above. Each of the properties is proven below.

(i) Follows from Lemmas 4.52 and 4.53.

(iia) Follows from (4.81).

(iib) Let s ∈ C+
0 \{0}, fϕ ∈ V0, and u ∈ C. We have

‖AR(s,A)fϕ‖V1 =
[ˆ ∞

0
|fϕ(ξ)|2 ξ

2(1 + ξ)
|s+ ξ|2

dµ(ξ)
]1/2

≤
√

2 max
[
1, 1
|s|

]
‖fϕ‖V0 ,

and

‖R(s,A)Bu‖V1 =
(ˆ ∞

0

1 + ξ

|s+ ξ|2
dµ(ξ)

)1/2

|u|

≤
√

2 max
[
1, 1
|s|

](ˆ ∞
0

1
1 + ξ

dµ(ξ)
)1/2

|u|.

(iii) Immediate.

(iv) Let (ϕ, u) ∈ D(C&D). We have

<
[
(Aϕ+Bu,ϕ)V0 − (u,C(Aϕ+Bu))C

]
= <

[ˆ ∞
0

(−ξϕ(ξ) + u, ϕ(ξ))C ξ dµ(ξ)−
(
u,

ˆ ∞
0

(−ξϕ(ξ) + u) dµ(ξ)
)
C

]
= <

[ˆ ∞
0

(−ξϕ(ξ) + u, ξϕ(ξ)− u)C dµ(ξ)
]

= −<
[ˆ ∞

0
| − ξϕ(ξ) + u|2 dµ(ξ)

]
≤ 0. (4.85)

The remarks made for the standard case hold identically (in particular, D(C&D) is nonempty).
For s ∈ ρ(A) we define

z(s) := sCR(s,A)B. (4.86)
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4.6.2 Asymptotic stability

Let (A,B,C) be the triplet of operators defined in Section 4.6.1, further assumed to be non-null.
The abstract Cauchy problem (4.13) considered herein is the following. The state space is

H := ∇H1(Ω)× L2(Ω)× L2(∂Ω;V0),
((u, p, ϕ), (fu, fp, fϕ))H := (u,fu) + (p, fp) + (ϕ, fϕ)L2(∂Ω;V0),

(4.87)

and A is defined as

D(A) 3 X :=

 u
p
ϕ

 7−→ AX :=

 −∇p
−divu

Aϕ+Bu · n

 ,

D(A) :=

(u, p, ϕ) ∈ H

∣∣∣∣∣∣∣∣
(u, p) ∈ Hdiv(Ω)×H1(Ω)
(Aϕ+Bu · n) ∈ L2(∂Ω;V1)

p = C(Aϕ+Bu · n) in H
1
2 (∂Ω)

 .
(4.88)

The technicality here is that the operator (ϕ, u) 7→ C(Aϕ+Bu) is defined over D(C&D), but CB
is not defined in general: this is the abstract counterpart of (4.79). An immediate consequence
of the definition of D(A) is given in the following lemma.

Lemma 4.55 (Boundary regularity). If X = (u, p, ϕ) ∈ D(A), then u · n ∈ L2(∂Ω).

Proof. Let X ∈ D(A). By definition of D(A), we have ϕ ∈ L2(∂Ω;V0) so that Aϕ ∈ L2(∂Ω;V−1)
from Lemma 4.54(iia) and Remark 4.31. The proof is then identical to that of Lemma 4.44.

The application of Corollary 4.13 is summarized in the lemmas below, namely Lemmas 4.56,
4.57, and 4.58. Due to the similarities with the standard case, the proofs are more concise and
focus on the differences.

Lemma 4.56. The operator A defined by (4.88) is dissipative.

Proof. Let X ∈ D(A). In particular, u · n ∈ L2(∂Ω) from Lemma 4.55. Green’s formula (C.1)
and (4.84) yield

<(AX,X)H = <
[
(Aϕ+Bu · n, ϕ)L2(∂Ω;V0)

− (u · n, C(Aϕ+Bu · n))L2(∂Ω)
]
≤ 0,

using Lemma 4.54.

The next proof is much simpler than in the standard case.

Lemma 4.57. A, given by (4.88), is injective.

Proof. Assume X ∈ D(A) satisfies AX = 0, hence ∇p = 0 and divu = 0. Green’s formula
(C.1) and the IBC yield (contrast with (4.69))

(u · n, C(Aϕ+Bu · n︸ ︷︷ ︸
=0

))L2(∂Ω) = 0,

where we have used that u · n ∈ L2(∂Ω) from Lemma 4.55. The IBC gives p = 0 in L2(Ω).
Using (4.82), we deduce ϕ = 0 and u · n = 0, hence u = 0 from (C.2).
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Lemma 4.58. sI − A, with A given by (4.88), is bijective for s ∈ (0,∞) ∪ jR∗.

Proof. Let F ∈ H, s ∈ (0,∞) ∪ jR∗, and ψ ∈ H1(Ω). We seek a unique X ∈ D(A) such that
(sI − A)X = F , i.e. (4.71), which implies

(∇p,∇ψ) + s2(p, ψ) + s

z(s)(p, ψ)L2(∂Ω) =(fu,∇ψ) + s(fp, ψ)

+ s

z(s)(CAR(s,A)fϕ, ψ)L2(∂Ω).
(4.89)

Note that, from hypothesis (4.83), the left-hand side defines an anti-linear form onH1(Ω). Let us
denote by p the unique solution of (4.89) obtained from a pointwise application of Proposition 4.4
(we rely here on (4.63)). It remains to find suitable u and ϕ, in a manner identical to the standard
diffusive case.

Taking ψ ∈ C∞0 (Ω) in (4.89) shows that u ∈ Hdiv(Ω) with (4.71b). Using the expressions of
u ∈ ∇H1(Ω) and divu, and Green’s formula (C.1), the weak formulation (4.89) shows that p
and u satisfy, in L2(∂Ω),

p = z(s)u · n+ CAR(s,A)fϕ. (4.90)

Let us now define ϕ as

ϕ := R(s,A) (Bu · n+ fϕ) ∈ L2(∂Ω;V0).

Using the hypothesis (4.83), we obtain that

Aϕ+Bu · n = AR(s,A) (Bu · n+ fϕ) +Bu · n
= sR(s,A)Bu · n+AR(s,A)fϕ

belongs to L2(∂Ω;V1). We show that the IBC holds by rewriting (4.90) as

p = C(sR(s,A)Bu · n+AR(s,A)fϕ)
= C(AR(s,A)Bu · n+Bu · n+AR(s,A)fϕ)
= C(Aϕ+Bu · n),

using (4.86). Thus (u, p, ϕ) ∈ D(A). The uniqueness of p follows from Proposition 4.4, that of
u from (C.2), and that of ϕ from s ∈ ρ(A).

4.7 Addition of a derivative term
By derivative impedance we mean

ẑ(s) = z1s, z1 > 0,

for which the IBC (4.3) reduces to p = z1∂tu · n. The addition of such a derivative term
to the IBCs covered so far (4.17,4.27,4.39,4.53,4.76) leaves unchanged the asymptotic stability
results obtained with Corollary 4.13, it only makes the proofs more cumbersome as the state
space becomes lengthier. This justifies a posteriori why this term has not been included in
Sections 4.2–4.6.

Let us illustrate this fact by revisiting the delay impedance (4.4), covered in Section 4.4.
Hence, let us consider the impedance

ẑ(s) := z1s+ z0 + zτe
−τs,
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where z1 > 0 and (z0, zτ ) are defined as in Section 4.4, so that ẑ is positive-real. The inclusion
of the derivative implies the presence of an additional variable in the extended state, i.e. the
state space is (compare with (4.42))

H := ∇H1(Ω)× L2(Ω)× L2(∂Ω;L2(−τ, 0))× L2(∂Ω),
((u, p, χ, η), (fu, fp, fχ, fη))H := (u,fu) + (p, fp) + k(χ, fχ)L2(∂Ω;L2(−τ,0))

+ z1(η, fη)L2(∂Ω).

The operator A becomes (compare with (4.43))

D(A) 3 X :=


u
p
χ
η

 7−→ AX :=


−∇p
−divu
∂θχ

1
z1

[p− z0u · n− zτχ(·,−τ)]

 ,

D(A) :=

(u, p, χ, η) ∈ H

∣∣∣∣∣∣∣∣
(u, p, χ) ∈ Hdiv(Ω)×H1(Ω)× L2(∂Ω;H1(−τ, 0))
χ(·, 0) = u · n in L2(∂Ω)
η = u · n in L2(∂Ω)

 .
The application of Corollary 4.13 is identical to Section 4.4.2. For instance, for X ∈ D(A), we
have

<(AX,X)H =−<
[
(u · n, p)L2(∂Ω)

]
+ <

[
k(∂θχ, χ)L2(∂Ω;L2(−τ,0))

]
+ <

[
(p− z0u · n− zτχ(·,−τ), η)L2(∂Ω)

]
=−<

[
(u · n, p)L2(∂Ω)

]
+ k

2<
[
‖u · n‖2L2(∂Ω) − ‖χ(·,−τ)‖2L2(∂Ω)

]
+ <

[
(p− z0u · n− zτχ(·,−τ),u · n)L2(∂Ω)

]
=
(
k

2 − z0

)
‖u · n‖2L2(∂Ω) −

k

2‖χ(·,−τ)‖2L2(∂Ω)

− zτ<
[
(χ(·,−τ),u · n)L2(∂Ω)

]
,

so that the expression of <(AX,X)H is identical to that without a derivative term, see the
proof of Lemma 4.32. The proof of the injectivity of A is also identical to that carried out in
Lemma 4.33: the condition AX = 0 yields χ(·, 0) = χ(·,−τ) = u · n = η a.e. on ∂Ω. Finally,
the proof of Lemma 4.34 can also be followed almost identically to solve (sI − A)X = F with
F = (fu, fp, fχ, fη), the additional steps being straightforward; after defining uniquely p, u, and
χ, the only possibility for η is η := u · n, which belongs to L2(∂Ω), and η = χ(·, 0) is deduced
from (4.47).

Conclusion
This chapter has focused on the asymptotic stability of the wave equation coupled with positive-
real IBCs drawn from physical applications, namely rational impedance in Section 4.3, time-
delayed impedance in Section 4.4, standard diffusive impedance (e.g. fractional integral) in
Section 4.5, and extended diffusive impedance (e.g. fractional derivative) in Section 4.6. Finally,
the invariance of the derived asymptotic stability results under the addition of a derivative
term in the impedance has been discussed in Section 4.7. The proofs crucially hinge upon the
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knowledge of a dissipative realization of the IBC, since it employs the semigroup asymptotic
stability result given in (Arendt and Batty 1988; Lyubich and Vũ 1988).

By combining these results, asymptotic stability is obtained for the impedance ẑ introduced
in Section 4.1 and given by (4.4). This suggests a perspective of this work, formulated as a
conjecture in the conclusion of this dissertation.
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This chapter, drawn from (Monteghetti et al. 2018b), deals with the third component of a
TDIBC, i.e. its (semi-)discrete formulation following the terminology introduced in Sec-

tion 1.3. Specifically, it analyzes the weak enforcement of an admissible IBC within a discon-
tinuous Galerkin (DG) discretization of the LEEs, employing the numerical flux formalism to
ease the transition to other methods popular in fluid mechanics. For the analysis the IBC is
only assumed admissible and need not be given by one of the models analyzed in Chapter 2,
so that both chapters are independent. The first two sections provide reminders: Section 5.1
summarizes the needed facts on the LEEs from Chapter 3, while Section 5.2 recalls the DG
discretization of the LEEs as well as some standard estimates. The analysis given in Section 5.3
shows the computational interest of a numerical flux based on the scattering operator B (1.14),
namely the so-called B-flux (5.14,5.39), over fluxes based on the impedance and admittance,
namely the Z-flux (5.14,5.35) and the Y-flux (5.14,5.37). These results will be further discussed
in the numerical applications of Chapter 6.

State of the art

In the literature, there does not seem to be a consensus on whether a TDIBC should be based
on the impedance z (Bin et al. 2009; Gabard and Brambley 2014; Olivetti et al. 2015; Özyörük
et al. 1998; Rienstra 2006), the admittance y (Liu et al. 2014; Zhong et al. 2016), or the
reflection coefficient β (Fung and Ju 2004; Jaensch et al. 2016; Scalo et al. 2015). This topic has
been mentioned by Gabard & Brambley (Gabard and Brambley 2014) who warned that some
instabilities reported in the literature may be due to an unsuitable implementation and showed
the benefit of a characteristic-based implementation in their study, which is echoed in works
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that focus on large eddy simulations and direct numerical simulations (Douasbin et al. 2018;
Jaensch et al. 2016; Scalo et al. 2015; Tudisco et al. 2017).

The choice of one formulation over the other can be motivated by the impact of the TDIBC
on the maximum admissible time step. Although this aspect is of secondary concern for stability
studies, it is of crucial importance for large-scale applications like those that involve hydrody-
namics or for inverse methods that need to explore the impedance parameter space. To the
best of the author’s knowledge, the only known result is that for a proportional impedance (i.e.
z(t) ∝ δ(t)), using the reflection coefficient yields a CFL stability condition independent of the
impedance coefficient (Delorme et al. 2005, § 3.3) (Ventribout 2006, 2.3).

The objective of this chapter is to establish the computational advantage of the reflection
coefficient, or scattering operator for nonlinear TDIBCs, with the LEEs. This is achieved by a
systematic investigation of the weak enforcement of a generic nonlinear TDIBC in a discontinu-
ous Galerkin finite element method. The presented analysis will be supported in Section 6.2 by a
numerical investigation into the computational properties of an elementary nonlinear scattering
operator in an impedance tube.

5.1 Linearized Euler equations with IBCs

This chapter focuses on the discretization of the LEEs with IBCs, see Chapters 1 and 3. The
purpose of this section is to summarize the facts needed for the next sections. In order to make
this chapter as self-sufficient as possible some equations are copied verbatim from Chapter 3.

Linearized Euler equations

The LEEs are given by (3.1) and can be written as Friedrichs-symmetric system

∂tv(t,x) +Av(t,x) = 0 (t ∈ (0,∞), x ∈ Ω), (5.1)

where

v :=
(
u
p̃

)
∈ Rd+1

is the perturbation vector homogeneous to a velocity, and the spatial operator A is defined as

Av := A(∇)v +Bv

with

A(n) =
(

(u0 · n)Id c0n
c0n

ᵀ u0 · n

)
, B =

(
∇u0

1
c0
∇u0 · u0

0ᵀ
d γ∇ · u0

)
,

where Id denotes the d × d identity matrix. From Proposition 3.11, the characteristic matrix
A(n) is symmetric, with eigenvalues u0 ·n of multiplicity (d−1) and u0 ·n±c0|n| of multiplicity
2. (Due to the homentropicity assumption, the entropy mode is absent.) The absolute value
|A(n)|, the positive part A(n)⊕, and the negative part A(n)	 are defined using the diagonal
form of A(n) through

|A(n)| := P (n) |Λ(n)|P (n)−1, 2A(n)⊕ := |A(n)|+A(n), 2A(n)	 := |A(n)| −A(n),

where
|Λ(n)| := diag

(
[|Λi|]i∈J1,d+1K

)
.
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The symmetry of A(n) implies, by definition, that the operator ∂t + A(∇) is a Friedrichs-
symmetric operator; equivalently, (5.1) is a symmetric hyperbolic system. Using an integration
by parts, this symmetry property yields

(Av,v)L2(Ω) = 1
2(C(u0)v,v)L2(Ω) + 1

2(A(n)v,v)L2(∂Ω), (5.2)

where the symmetric amplification matrix C(u0) and the L2 scalar products are given by

C(u0) =
(
∇u0 +∇ᵀu0 − (∇ · u0)Id 1

c0
∇u0 · u0

1
c0
u0 · ∇ᵀu0 (2γ − 1)∇ · u0

)

and
(v,w)L2(Ω) :=

ˆ
Ω

(v,w)Rd+1 dx, (v,w)L2(∂Ω) :=
ˆ
∂Ω

(v,w)Rd+1 dx.

In this paper, the energy analysis is carried out with the standard acoustic energy defined as
(Morse and Ingard 1968, § 6.2) (Kinsler and Frey 1962, § 5.6)

‖v(t)‖2L2(Ω) := (v,v)L2(Ω) =
ˆ

Ω
|p̃(t,x)|2 dx+

ˆ
Ω
|u(t,x)|2 dx, (5.3)

so that the continuous energy balance, which expresses the evolution of acoustic energy in the
domain Ω, reads

1
2
d
dt‖v(t)‖2L2(Ω) = −(Av,v)L2(Ω) = −1

2(C(u0)v,v)L2(Ω) −
1
2(A(n)v,v)L2(∂Ω), (5.4)

where the right-hand side is given by

(C(u0)v,v)Rd+1 = (∇ · u0)
[
(2γ − 1)p̃2 − |u|2

]
+ 2u · ∇u0 ·

(
u+ 1

c0
p̃u0

)
(A(n)v,v)Rd+1 = (u0 · n)

[
p̃2 + |u|2

]
+ 2c0 p̃(u · n). (5.5)

Impedance boundary condition

The IBC associated with the LEEs is formulated as in Section 1.1. The expression of the
boundary term (A(n)v,v)Rd+1 in the energy balance (5.4) suggests the following assumption.

Assumption 5.1. The base flow u0 obeys (at least) a slip condition u0 ·n = 0 at the impedance
boundary Γz.

Thanks to this assumption, an admissible impedance yields
ˆ t

0
(A(n)v,v)L2(Γz) dτ ≥ 0 (t > 0),

so that there is energy dissipation at the impedance boundary Γz. Therefore, in the absence of
other boundary sources, the presence of an instability is linked to the spectrum of the amplifica-
tion matrix C(u0). As covered in Chapter 3, this a priori energy estimate yields uniqueness of the
solution and is the stepping stone to obtain well-posedness in e.g. e−κtC((0,∞);H1(Ω)d+1) with
κ finite. It also follows from the energy estimate that κ ≥ minx∈Ω λmin(u0), where λmin(u0) is the
minimum eigenvalue of C(u0). A sufficient condition for stability is that minx∈Ω λmin(u0) ≥ 0,
which is a stringent condition on the base flow u0(x). This assumption is typically not satisfied
in applications: it holds for a constant flow but fails for a Poiseuille flow for instance.
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Remark 5.2. Although the mathematical analysis leads to assuming u0 ·n = 0, it is interesting
to note that physically a no-slip condition u0 = 0 is required at the impedance wall. Indeed, if
u0 6= 0 the effect of the hydrodynamic boundary layer (refraction of sound waves (Pridmore-
Brown 1958)) must be explicitly modeled, which leads to a non-locally reacting impedance,
out of the scope of this paper. For example, the standard Ingard-Myers boundary condition
reads un = Y (p,∇p), and has been shown by Brambley using a Briggs-Bers analysis to prevent
well-posedness, in the sense that there is no finite value for κ (Brambley 2009). A corrected
impedance that accounts for both the acoustic and hydrodynamic boundary layers has been
derived by Khamis & Brambley (Khamis and Brambley 2017). The computational interest
of such non-local boundary conditions is that the boundary layer need not be discretized, see
(Gabard and Brambley 2014) for a use in the time domain.
Remark 5.3. Choosing an aeroacoustic energy instead of the acoustic energy (5.3) used herein
would not not modify the results obtained in this chapter, see Appendix D for details.

5.2 Discontinuous Galerkin discretization

This section recalls the DG discretization of the LEEs written as a Friedrichs system. Let (Th)h
be a quasi-uniform sequence of meshes indexed by

h := max
T∈Th

hT ,

where hT denotes the diameter of the element T ∈ Th. For simplicity, each mesh Th is assumed
to be simplicial, geometrically conformal, and shape-regular, see See (Ern and Guermond 2004,
Chap. 1) and (Di Pietro and Ern 2012, Chap. 1) for definitions of the mentioned properties (more
specific citations will be given when proving estimates). In the DG finite element method, the
approximation space is taken as

Vh := Pkd(Th)d+1,

where Pkd(Th) is the broken polynomial space defined as

Pkd(Th) := {v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Pkd(T )}

with Pkd denoting the space of polynomials of d variables and total degree at most k. The spatial
domain Ω is assumed to be a polyhedron, so that it can be exactly covered by each mesh. The
semi-discrete formulation of (5.1) reads: find vh ∈ C1([0,∞), Vh) such that

∂tvh +Ahvh = 0, (5.6)

where the spatial discretization is embodied by the finite-dimensional operator

Ah : Vh → Vh

defined by

∀wh ∈ Vh, (Ahvh,wh)L2(Ω) :=
∑
T∈Th

(Avh,wh)L2(T ) + ((A(n)vh)∗ −A(n)vh,wh)L2(∂T ),

where the quantity (A(n)vh)∗ is the so-called numerical flux function, uniquely defined at each
face. Intuitively, this definition can be viewed as resulting from two integration by parts. At an
interior face F ∈ F ih we use the upwind flux

(A(nF )v)∗ := A(nF )⊕v|T1 −A(nF )	v|T2 = A(nF ){v}+ 1
2 |A(nF )|JvK, (5.7)
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T1
T2nF = n1

v|T1 v|T2

F

Figure 5.1. Notations for an interior face F ∈ F ih.

where
{v} := 1

2(v|T1 + v|T2) (5.8)

is the face average and
JvK := v|T1 − v|T2 (5.9)

is the face jump, see Figure 5.1 for the face-specific notations. This leads to

(Ahvh,wh)L2(Ω) =
∑
T∈Th

(Avh,wh)L2(T ) + ((A(n)vh)∗ −A(n)vh,wh)L2(∂Ω)

−
∑
F∈Fi

h

(A(nF )JvhK, {wh})L2(F ) + 1
2
∑
F∈Fi

h

(|A(nF )|JvhK, JwhK)L2(F ).
(5.10)

At a boundary face F ∈ Fbh, the IBC is weakly enforced through a numerical flux introduced in
Section 5.3.1 and analyzed in Sections 5.3.2 and 5.3.3.

The bilinear form (5.10) is standard and fits within the framework proposed by Ern &
Guermond (Ern and Guermond 2006) for the DG discretization of Friedrichs systems, and
notations have been kept as close as possible to that employed in this seminal work. The
reader interested in an error analysis with the standard boundary condition ”A(n)v = M(n)v”
is referred to (Ern and Guermond 2006) and (Di Pietro and Ern 2012, Chaps. 3& 7). The
well-posedness of the semi-discrete formulation (5.6) follows from the Cauchy-Lipschitz-Picard
theorem (Brezis 2011, Thm. 7.3) since it is a finite-dimensional ODE.

Using the identity (5.2) on each element T enables to get

(Ahvh,vh)L2(Ω) = 1
2(C(u0)vh,vh)L2(Ω) + 1

2 |vh|
2
upw+

(
(A(n)vh)∗− 1

2A(n)vh,vh
)
L2(∂Ω)

, (5.11)

where the upwind seminorm is defined as

|vh|2upw :=
∑
F∈Fi

h

(|A(nF )|JvhK, JvhK)L2(F ).

This leads to the following semi-discrete energy balance

1
2
d
dt‖vh‖

2
L2(Ω) =− (Ahvh,vh)L2(Ω)

=− 1
2(C(u0)vh,vh)L2(Ω) −

1
2 |vh|

2
upw

−
(
(A(n)vh)∗ − 1

2(A(n)vh),vh
)
L2(∂Ω)

, (5.12)

which is to be contrasted with its continuous counterpart (5.4). The term |vh|2upw is the energy
dissipation due to the use of an upwind flux (it would be null had a centered flux been used)
while the boundary term ((A(n)vh)∗ − 1

2A(n)vh,vh)L2(∂Ω) includes the contribution of the
weakly enforced IBC, studied below.
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Discrete trace inequality

We end this section with a standard estimate, namely the discrete trace inequality, that will be
used to derive CFL-type stability conditions in Section 5.3. The background material for the
analysis can be found in (Di Pietro and Ern 2012), (Ern and Guermond 2004), and (Ern and
Guermond 2006). As mentioned above, for simplicity each mesh Th is assumed to be simplicial
(Ern and Guermond 2004, Def. 1.53) (Di Pietro and Ern 2012, Def. 1.11), geometrically confor-
mal (Ern and Guermond 2004, Def. 1.55) or “matching” (Di Pietro and Ern 2012, Def. 1.36),
shape-regular (Ern and Guermond 2004, Def. 1.107) (Di Pietro and Ern 2012, Def. 1.38), and
the mesh sequence (Th)h is assumed to be quasi-uniform (Ern and Guermond 2004, Def. 1.140)
(Di Pietro and Ern 2012, § 3.1.2).

Lemma 5.4 (Discrete trace inequality). Let (Th)h be a quasi-uniform sequence of simplicial,
geometrically conformal, and shape-regular meshes. For any dimension d ∈ N∗ and degree
k ∈ N∗, there is a constant Ctr > 0 such that ∀h > 0, ∀T ∈ Th, for any face FT ,

∀vh ∈ Pkd(Th)d+1, h
1/2‖vh‖L2(FT ) ≤ Ctr‖vh‖L2(T ). (5.13)

The constant Ctr only depends upon d, k, and the mesh regularity parameter

ρ1 := inf
h

inf
T∈Th

rT
hT

with rT the radius of the largest ball inscribed in T .

Proof. Let h > 0 and T ∈ Th. Since Th is a simplicial, geometrically conformal, and shape-
regular mesh, we have (Di Pietro and Ern 2012, Eq. 1.39)

h
1/2
T ‖vh‖L2(FT ) ≤ Ctr,s‖vh‖L2(T ),

where Ctr,s only depends upon ρ1, d, and k. By definition, the quasi-uniformity of Th gives a
constant C > 0 such that Ch ≤ minT∈Th hT .

5.3 Numerical flux for impedance boundary conditions
This section, which is the contribution of the chapter, presents an analysis of the weak enforce-
ment of an admissible IBC within a DG discretization of the LEEs. The numerical flux formalism
is employed to ease the transition to other methods popular in fluid mechanics such as finite
volume or spectral differences. In the presented analysis, the IBC need only be admissible in the
sense given in in Section 1.1, so that we do not assume any particular impedance model. The
analysis given here shows the computational interest of a numerical flux based on the scattering
operator B (1.14), namely the so-called B-flux (5.14,5.39), over fluxes based on the impedance
and admittance, namely the Z-flux (5.14,5.35) and the Y-flux (5.14,5.37).

This section is organized as follows. Section 5.3.1 defines admissibility conditions for an
impedance numerical flux, upon which the analyses of Sections 5.3.2 and 5.3.3 rely. Section 5.3.4
gathers technical proofs for the CFL-type stability conditions claimed in the previous sections.

5.3.1 Admissibility conditions for an impedance numerical flux

On a part of the boundary Γ := ∂Ω denoted Γz, the IBC is weakly enforced through a centered
flux

(A(n)v)∗ := 1
2A(n)(v + vg), (5.14)
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where vg is the so-called ghost state that needs to be suitably defined as a function of v and Z, Y,
or B. A systematic derivation of the possible expressions for A(n)vg is carried out in Section 5.3.3
with an energy analysis formalized through the so-called admissibility and continuity conditions
defined below.
Remark 5.5. The ghost state vg is a function known in closed-form and in this paper the numer-
ical flux (5.14) is enforced without adding computational nodes outside of Ω: the terminology
“ghost state” is chosen for its intuitive nature, and does not imply that “ghost nodes” or “ghost
cells” are used whatsoever.

From now on we assume that the LEEs, when coupled with admissible IBCs, always admit
a unique exact solution v in e−κtC((0,∞);V ) with κ finite and

V := H1(Ω)d+1,

see Chapter 3 for a justification. However, to carry out the semi-discrete energy analysis pre-
sented in this section, the only property that we shall use is that if v is the exact solution, then v
satisfies the IBC on Γz. By contrast, a function vh in C1([0,∞), Vh) does not necessarily satisfy
the IBC on Γz.

Before stating the admissibility conditions for an impedance numerical flux, let us recall that
the spatial discretization is said to be consistent if for v(t) ∈ V the exact solution of (5.1) with
the considered boundary conditions:

∀wh ∈ Vh, (Ahv,wh)L2(Ω) = (Av,wh)L2(Ω).

Definition 5.6 (Admissibility). The impedance numerical flux (5.14), uniquely determined by
the expression of A(n)vg, is said to be admissible if it is both consistent and passive.

• (Consistency) Let v(t) ∈ V be the exact solution (in particular, it does obey the IBC).
The consistency condition reads (A(n)v)∗ = A(n)v or equivalently

A(n)vg = A(n)v. (5.15)

• (Passivity) Let vh(t) ∈ Vh (in particular, it does not obey the IBC). The passivity condition
reads

∀t > 0,
ˆ t

0

(
(A(n)vh)∗ − 1

2A(n)vh,vh
)
L2(Γz)

dτ = 1
2

ˆ t

0
(A(n)vgh,vh)L2(Γz) dτ ≥ 0.

(5.16)

The passivity condition is to be understood in light of the semi-discrete energy balance (5.12),
see Example 5.14 for a numerical illustration of its necessity. In addition to these two admissi-
bility conditions, the two following continuity properties are also computationally desirable.

• (Hard-wall continuity) As “Z →∞” (or “Y → 0”, or “B → I”), a hard wall (u ·n = 0) is
recovered without singularity, which can be written formally as

lim
Z→∞

A(n)vg = Mhw(n)v, Mhw(n) := c0

[
2ζn� n n
−nᵀ 0

]
(5.17)

and ζ is an arbitrary non-negative parameter.

• (Pressure-release continuity) As “Z → 0” (or “Y → ∞”, or “B → −I”), a pressure-release
boundary (p̃ = 0) is recovered without singularity, i.e.

lim
Z→0

A(n)vg = Mpr(n)v, Mpr(n) := c0

[
0d,d −n
nᵀ 2ζ

]
(5.18)

and ζ is an arbitrary non-negative parameter.
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It is straightforward to verify that A(n)vg := Mhw/pr(n)v respects the consistency (5.15) and
passivity (5.16) conditions stated in Definition 5.6. The given expressions Mhw(n) and Mpr(n),
or variations thereof, are common in the literature (Ern and Guermond 2006, § 5.3) (Di Pietro
and Ern 2012, § 7.1.2) (Hesthaven and Warburton 2008, § 7.1). The ability to recover both the
hard-wall and pressure-release cases is of particular interest when performing an inverse method
on the IBC where the parameter space needs to be explored.
Remark 5.7. Note that at this stage no assumption is made regarding the time-domain dis-
cretization of the IBC: Definition 5.6 is purely semi-discrete.

The application of the energy analysis to generic nonlinear IBCs, which leads to the derivation
of the Z, Y, and B fluxes, is done in Section 5.3.3. For the sake of clarity, the elementary case of
a proportional impedance Z(u · n) ∝ u · n is first fully worked out in Section 5.3.2. In spite of
its simplicity, this example provides an intuitive understanding of the computational advantage
of the scattering operator B.

5.3.2 Weak enforcement of proportional impedance boundary conditions

This section focuses on the computational properties of numerical fluxes for the so-called pro-
portional impedance

1
z0
z(t) = a0δ(t), a0 > 0,

so that the corresponding IBC reads
p̃ = a0u · n.

From Proposition 1.8 it is admissible. To weakly enforce the IBC (1.1) using the numerical flux
(5.14), the ghost state vg is sought as linearly dependent upon v

vg :=
[
α3n⊗ n α4n
α1n

ᵀ α2

]
v, A(n)vg = c0

[
p̃gn
ug · n

]
= M0(n)v, (5.19)

where
M0(n) = c0

[
α1n⊗ n α2n
α3n

ᵀ α4

]
. (5.20)

To obtain an admissible flux from this generic expression, two of the four DoF must be removed,
as summarized in the proposition below.

Proposition 5.8. The numerical flux function given by (5.14,5.19) is admissible if and only if

α1 = (1− α2)a0, α4 = 1
a0

(1− α3),

with
α2 ≤ 1, α3 ≤ 1, (α2 + α3)2 ≤ 4(1− α2)(1− α3).

Proof. The proof is elementary and consists in using the admissibility conditions. (Consistency)
Let v = [uᵀ, p̃]ᵀ be the exact solution. The consistency condition (5.15) reads[

α1n⊗ n (α2 − 1)n
(α3 − 1)nᵀ α4

]
v = 0.

The fact that v obeys the IBC p̃ = a0u ·n readily leads to α1 = (1−α2)a0 and α4 = (1−α3)/a0,
so that the two DoF left are α2 and α3. (Passivity) Let vh ∈ Vh. Since (M0(n)vh,vh)Rd+1 =
(M̌0v̌h, v̌h)R2 with v̌h = [ uh · n p̃h ]ᵀ and

M̌0 :=
[

α1
α2+α3

2
α2+α3

2 α4

]
, (5.21)
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condition (5.16) holds if and only if M̌0 is positive semidefinite. The inequalities on α2 and α3
follows from the application of the following elementary lemma that is frequently used in the
remainder of this paper.

Lemma 5.9. A 2×2 symmetric matrix
[
u v
v w

]
is positive semidefinite if and only if v2 ≤ uw

and u+ w ≥ 0.

Proof. A symmetric 2×2 matrix Σ is positive semidefinite if and only if det Σ ≥ 0 and trΣ ≥ 0.
(Product and sum of the two real eigenvalues.)

Remark 5.10. In the case of a proportional impedance, the consistency (5.15) and passivity
(5.16) conditions are the (DG1) and (DG2) properties stated in (Ern and Guermond 2006) and
needed for the error analysis.

Therefore, after examination of the admissibility conditions there are two remaining DoF,
α2 and α3, so that

vg :=
[

α3n⊗ n 1−α3
a0
n

(1− α2)a0n
ᵀ α2

]
v, M0(n) = c0

[
(1− α2)a0n⊗ n α2n

α3n
ᵀ 1−α3

a0

]
. (5.22)

Further constraints can be obtained by considering the continuity conditions (5.17) and (5.18):

lim
a0→0

α2 = −1, lim
a0→0

α3 = 1, lim
a0→∞

α2 = 1, lim
a0→∞

α3 = −1, (5.23)

lim
a0→0

(1− α2)a0 = 0, lim
a0→0

(1− α3) 1
a0
≥ 0, lim

a0→∞
(1− α2)a0 ≥ 0, lim

a0→∞
(1− α3) 1

a0
= 0. (5.24)

The line (5.23) suggests defining α := α2 with α3 = −α, which leads to the α-flux

vg :=
[
−αn⊗ n (1+α)

a0
n

(1− α)a0n
ᵀ α

]
v, M0(n) = c0

[
(1− α)a0n⊗ n αn

−αnᵀ 1+α
a0

]
. (5.25)

Any flux of this form is admissible, as long as α ∈ [−1, 1]. To respect the remaining continuity
conditions (5.24), one can choose α = β0 := (a0 − 1)/(a0 + 1), which yields the β0-flux

vg :=
[
−β0n⊗ n (1− β0)n
(1 + β0)nᵀ β0

]
v, M0(n) = c0

[
(1 + β0)n⊗ n β0n
−β0n

ᵀ 1− β0

]
, (5.26)

an apparent computational interest of which is the boundedness of its components with respect
to a0. In summary, application of the admissibility and continuity conditions leads to (5.26),
an expression that, to the best of the authors’ knowledge, was first proposed by Ventribout
(Ventribout 2006, § 1.3.2) with a view on application to optimal control. Further insights into
the benefit of choosing α = β0 can be obtained by deriving a CFL stability condition.

CFL stability condition

For simplicity, let us consider the explicit Euler scheme

vn+1
h − vnh + ∆tÃhvnh + ∆tA{0}h vnh = 0, (5.27)

with constant time step ∆t and CFL number defined as

CFL := ∆tc0
h

. (5.28)
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To highlight the IBC contribution, the decomposition

Ahvh = Ãhvh +A{0}h vh

is used, where the operator
A{0}h : Vh → Vh

is the boundary term of Ah given by, assuming that the IBC is applied on the whole of Γ (i.e.
Γz = ∂Ω),

(A{0}h vh,wh)L2(Ω) := 1
2(M0(n)vh −A(n)vh,wh)L2(∂Ω), (5.29)

so that
(Ãhvh,wh)L2(Ω) :=

∑
T∈Th

(Avh,wh)L2(T ) −
∑
F∈F i

h

(A(nF )JvhK, {wh})L2(F )

+ 1
2
∑
F∈Fi

h

(|A(nF )|JvhK, JwhK)L2(F ).
(5.30)

Using a discrete energy method (see 5.3.4), the following sufficient stability condition can be
derived, the proof of which is postponed to Section 5.3.4.

Proposition 5.11. Assume ∇u0 = 0 (uniform base flow) and Vh = P0
d(Th)d+1 (finite volume

discretization). A sufficient L2 stability condition for (5.27) is

CFL ≤ 1
2C2

DG

1
1 + |u0|

c0

and{
α1 + α4 ≥ C2

trCFL(α2
1 + (α3 − 1)2 + α2

4 + (α2 − 1)2)
(α2 + α3)2 ≤ 4

(
α1 − C2

trCFL(α2
1 + (α3 − 1)2)

) (
α4 − C2

trCFL(α2
4 + (α2 − 1)2)

)
,

(5.31)

where the positive constants CDG and Ctr, defined in Lemmas 5.19 and 5.20, are non-dimensional
and do not depend upon the initial data or the impedance.

Remark 5.12. Recall that, to be admissible, the matrixM0(n) given by (5.20) must obey Propo-
sition 5.8. In particular, the passivity condition (5.16) requires the conditions{

α1 + α4 ≥ 0
(α2 + α3)2 ≤ 4α1α4,

that are less stringent than (5.31).
The interest of Proposition 5.11 lies in condition (5.31) that gives the influence of the nu-

merical flux on the CFL number. Let us highlight three particular cases of practical interest by
considering the α-flux (5.14,5.25) with α ∈ [−1, 1], which has been derived above.

• (1-flux) If α = 1 (α1 = 0), then p̃g = p̃ and the flux does not control uh ·n at the impedance
boundary since

(M0(n)vh,vh)Rd+1 = 2c0a
−1
0 p̃2

h.

A stability condition, namely
CFL ≤ 1

C2
tr

α4
1 + α2

4
,

can be obtained from (5.31) if and only if α2 = −1 and α3 = 1. But since α2 = α = 1, the
scheme is not provably stable with the proposed energy analysis.
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• (−1-flux) If α = −1 (α4 = 0), then ug = (u ·n)n and the numerical flux does not control
p̃h since

(M0(n)vh,vh)Rd+1 = 2c0a0(uh · n)2.

Similarly, a stability condition cannot be obtained from Proposition 5.11 since that would
require α2 = 1 and α3 = −1, values at odds with the definition of the α-flux with α = −1.

• (β0-flux) The α-flux satisfies

(M0(n)vh,vh)Rd+1 = c0a0(1− α)(uh · n)2 + c0a
−1
0 (1 + α)p̃2

h

and thus control both uh · n and p̃h if α ∈ (−1, 1). Under this assumption, the stability
condition is given by (5.31) with α1 = (1 − α)a0, α4 = (1 + α)a−1

0 , and α2 = α = −α3.
The β0-flux (5.14,5.26) yields

CFL ≤ 1
C2
tr

min
[ 1

1 + β2
0
,

1
2(1 + β0) ,

1
2(1− β0)

]
, (5.32)

which shows that the CFL number has a positive upper bound with respect to a0, namely
CFL ≤ 4−1C−2

tr . By contrast, consider the 0-flux (α2 = α3 = 0) which yields

CFL ≤ 1
C2
tr

a0
1 + a2

0
,

so that the CFL number decreases to 0 as a0 → ∞ or a0 → 0. This recovers a result of
Ventribout (Ventribout 2006, § 2.3).

In conclusion, among the admissible α-fluxes (5.14,5.25) with α ∈ [−1, 1], the β0-flux (5.14,5.26)
is the optimal choice since its components are bounded with respect to a0 ∈ [0,∞], it controls
both p̃h and uh ·n, and delivers the CFL stability condition (5.32). The extension of this result
to nonlinear scattering operators B is done next in Section 5.3.3.

5.3.3 Weak enforcement of nonlinear impedance boundary conditions

Let us now consider the generic, possibly nonlinear, IBC under the three forms defined in
Section 1.1 

p̃ = a0u · n+ aQQ(u · n) (a)
u · n = a0p̃+ aQQ(p̃) (b)
p̃− u · n = B(p̃+ u · n), (c)

(5.33)

where
a0 > 0, aQ ≥ 0,

Q is an admissible impedance operator in the sense of Definition 1.1, and B is an admissible
scattering operator in the sense of Definition 1.11. Following the methodology of Section 5.3.2,
the admissible numerical flux is derived below for each form (5.33a,5.33b,5.33c), leading to the
Z-flux (5.14,5.35), the Y-flux (5.14,5.37), and the B-flux (5.14,5.39), and establish the superiority
of the B-flux.

Remark 5.13. As already emphasized, for the analysis presented below the IBCs (5.33) are only
assumed to be admissible. In particular, they need not be given by one of the models covered in
Section 2.4, so that this chapter is independent of Chapter 2. Note that Q may be a nonlinear
operator.
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Numerical flux based on the impedance or the admittance

To weakly enforce the IBC (5.33a) (impedance operator z−1
0 Z(u · n) = a0u · n + aQQ(u · n)),

the ghost state is sought as

A(n)vg = M0(n)v +mQ(n)Q(u · n), (5.34)

where M0(n) is given by (5.20) and

mQ(n) = c0

[
γ1n
γ2

]
.

Proposition 5.15 shows that the only admissible expression is

A(n)vg = c0

[
2a0n� n −n
nᵀ 0

]
v + c0

[
2aQn

0

]
Q(u · n), (5.35)

where there are no remaining DoF. The Z-flux (5.14,5.35) fulfills the pressure-release continu-
ity condition (5.18) but not the hard-wall one (5.17) since there is a singularity as ai → ∞.
Moreover, note that

(M0(n)vh,vh)Rd+1 = 2c0a0(uh · n)2

so that there is no control of p̃2
h at the impedance boundary, a phenomenon already encountered

in Section 5.3.2.

Example 5.14. One may think that the result of Proposition 5.15 is unnecessarily stringent,
i.e. that the admissibility conditions proposed in Definition 5.6 are too constraining, but it can
be verified numerically that it is not so. Let us consider the acoustical cavity Ω = (0, 1)2 with
c0 = 1, z0 = 1, and impedance

Z(u · n) = a0u · n+ aQu̇ · n

applied to the whole of ∂Ω. Two dispersion relations ∆1D(ki, ẑ(jω), ω) can be derived for eigen-
functions with separated variables

p̃(x) = p̃1(x1)p̃2(x2), p̃i(xi) = (Aiejkixi +Bie
−jkixi)

(note that it does not provide all the eigenvalues if ẑ(s) 6= +∞). Figure 5.2 plots the eigenvalues
computed with a sixth-order DG method, see Appendix F, and numerical flux

A(n)vg = c0

[
(1− α)a0n⊗ n αn

−αnᵀ 1+α
a0

]
v + c0

[
(1− α)aQn
−(1 + α)aQa0

]
Q(u · n), (5.36)

which reduces to the α-flux (5.14,5.25) if aQ = 0. The graph shows that the value α = −1 yields
stable eigenvalues that match the exact ones until a cut-off frequency. However, for α = β0,
eigenfunctions have a less pronounced decay and can even be unstable. Hence the impedance
model Z is passive, but passivity is lost at the semi-discrete level. This conforms with the
fact that the flux (5.14,5.36) is consistent for any α but passive if and only if α = −1 from
Proposition 5.15.

Proposition 5.15. The numerical flux function (5.14,5.34) is admissible if and only if the ghost
state is given by (5.35).
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−0.1 −5 · 10−2 0 5 · 10−2 0.10
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cut-off

<(λh)

=
(λ
h
)

Hard wall a0 = aQ = 1012

−0.1 −5 · 10−2 0 5 · 10−2 0.1

cut-off

<(λh)

Soft wall a0 = aQ = 10

Figure 5.2. Eigenvalues λh ∈ σ(−Ah) for the acoustical cavity Ω = (0, 1)2 with c0 = 1, z0 = 1, and
impedance Z(u · n) = a0u · n + aQu̇ · n on ∂Ω. DG6 (NK = 8 triangles, 504 DoF). ( ):
Z-flux (5.14,5.35). ( ): flux (5.14,5.36) with α = β0. ( ): λ = jω = ±jc0

√
k2

1 + k2
2 with

two monodimensional dispersion relations ∆1D(ki, ẑ(jω), ω) = 0 (only covers eigenfunctions
with separated variables).

Proof. Consistency and passivity conditions are checked. (Consistency) Condition (5.15) yields
α1 = (1 − α2)a0, α4 = (1 − α3)/a0, γ1 = (1 − α2)a1, and γ2 = −(1 − α3)aQa0

. (Passivity) Let
vh ∈ Vh. We have

(A(n)vgh,vh)Rd+1 = (M0(n)vh,vh)Rd+1 + c0(1− α2)aQQ(uh · n)uh · n

− c0(1− α3)aQ
a0
Q(uh · n)p̃h.

The passivity condition (5.16) holds true for any vh and Q if and only if (M0(n)vh,vh)Rd+1 ≥ 0,
(1− α2)aQ ≥ 0, and α3 = 1. Lemma 5.9 gives α2 = −1 and enables to conclude.

The admittance case (5.33b) is identical, as an application of the admissibility conditions
shows that the only admissible ghost state of the form

A(n)vg = M0(n)v +mQ(n)Q(p̃)

is given by

A(n)vg = c0

[
0d,d n
−nᵀ 2a0

]
v + c0

[
0d

2aQ

]
Q(p̃), (5.37)

which obeys the hard-wall continuity condition (5.17) but not the pressure-release one (5.18).
Note that

(M0(n)vh,vh)Rd+1 = 2c0a0p̃
2
h

so that there is no control of (uh · n)2 at the impedance boundary. In view of the expressions
(5.35) and (5.37), the fluxes based on impedance and admittance have symmetrical continuity
properties such that the Z (resp. Y)-flux should be preferred to the Y (resp. Z)-flux when the
impedance is close to a pressure-release wall (resp. hard wall). However, the next section shows
these two fluxes are trumped by a flux based on the scattering operator B.

Numerical flux based on the scattering operator

To weakly enforce the IBC under its scattering formulation (5.33c), the ghost state is sought as

A(n)vg = M0(n)v +mB(n)B(p̃+ u · n), (5.38)
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where M0(n) is given by (5.20) and

mB(n) = c0

[
γ1n
γ2

]
.

Proposition 5.17 below shows that the only admissible ghost state is given by

A(n)vg = c0

[
n� n 0d

0ᵀ
d 1

]
v + c0

[
n
−1

]
B(p̃+ u · n). (5.39)

Note that with this flux there is control of both uh ·n and p̃h at the boundary, and the boundary
dissipation term is

1
2

ˆ t

0
(A(n)vgh,vh)L2(Γz) dτ = c0

4

ˆ t

0

(
‖p̃h + uh · n‖2L2(Γz) − ‖B(p̃h + uh · n)‖2L2(Γz)

)
dτ

+ c0
4

ˆ t

0
‖p̃h − uh · n− B(p̃h + uh · n)‖2L2(Γz) dτ,

(5.40)

where the two terms on the right-hand side have a clear interpretation. The first one is the
dissipation associated with the scattering operator B, see the passivity condition (1.13), and the
second one can be interpreted as a penalization term for the non-respect of the IBC.
Remark 5.16. The B-flux (5.14,5.39) derived from the energy analysis carried out in the proof
of Proposition 5.17 reads

(A(n)v)∗ = c0
2

[
n
1

]
(p̃+ u · n) + c0

2

[
n
−1

]
B(p̃+ u · n).

It is interesting to note that this flux is exactly that derived using flux vector splitting (Toro
2009, Chap. 8), which for a linear hyperbolic PDE with constant coefficients amounts to exactly
solving the monodimensional Riemann problem at the boundary. Indeed, given Assumption 5.1
we have at the impedance boundary Γz

A(n)v = A(n)⊕v −A(n)	v = c0
2

[
n� n n
nᵀ 1

]
v + c0

2

[
−n� n n
nᵀ −1

]
v

= c0
2

[
n
1

]
(p̃+ u · n) + c0

2

[
n
−1

]
(p̃− u · n).

Therefore, this flux has a direct interpretation based on characteristics, making it natural to use
with a hyperbolic law.

Proposition 5.17. The numerical flux (5.14,5.38) is admissible if and only if the ghost state
is given by (5.39).

Proof. (Consistency) Condition (5.15) leads to α1 = γ1 = 1 − α2 and α4 = −γ2 = 1 − α3 so
that there are only two DoF left, α2 and α3. (Passivity) Let vh ∈ Vh. Recall that the passivity
property of the scattering operator B reads (1.13), which makes the study of passivity more
intricate than in the previous sections. The generic expressions of M0(n) and mB(n) give

1
c0

(A(n)vgh,vh)Rd+1 = 1
c0

(M0(n)vh,vh)Rd+1 + 1
c0

(mB(n)B(p̃h + uh · n),vh)Rd+1

= (1− α2)(uh · n)2 + (1− α3)p̃2
h + (α2 + α3)p̃huh · n

− B(p̃h + uh · n)
(
(1− α3)p̃h − (1− α2)uh · n

)
.
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Using the identity ab = 1
2a

2 + 1
2b

2 − 1
2(a − b)2 on B(p̃h + uh · n)

(
(1 − α3)p̃h − (1 − α2)uh · n

)
and collecting the terms yields

1
c0

(A(n)vgh,vh)Rd+1 = 1
2(p̃h + uh · n)2 − 1

2B(p̃h + uh · n)2

+ 1
2
(
(1− α3)p̃h − (1− α2)uh · n− B(p̃h + uh · n)

)2

− 1
2(α2uh · n− α3p̃h)2.

Since this quantity must be non-negative for every admissible scattering operator B and every
vh ∈ Vh, the passivity condition (5.16) is achieved if and only if α2 = α3 = 0.

In summary, even for a generic nonlinear scattering operator B, the B-flux (5.14,5.39) keeps
the properties mentioned when studying the proportional case, such as the control of both uh ·n
and p̃h at the boundary. Note that this conclusion has been reached without considering how
B is computed, i.e. the analysis is so far independent of Section 2.4. However, to conclude this
section, it is insightful to derive a CFL stability condition, as in Section 5.3.2.

CFL stability condition

For this, let us consider the following reflection coefficient, inspired by the representation of
physical models derived in Section 2.4,

β̂(s) =
ˆ ξmax

ξmin

1
s+ ξ

dµ(ξ), (5.41)

where µ is a measure on (ξmin, ξmax) with 0 ≤ ξmin < ξmax <∞. A sufficient condition for β̂ to
be bounded-real is

‖µ‖L1‖
∥∥∥∥ µξ2

∥∥∥∥ ‖L1 ≤ 1,

see Appendix 5.3.4. The corresponding semi-discrete formulation results from a coupling between
the additional variables ϕh, defined as (2.6), and the acoustic field v (space and time variables
are explicitly stated to avoid ambiguity)

{
∂tϕh(t,x, ξ) = −ξϕh(t,x, ξ) + p̃h(t,x) + uh(t,x) · n(x) (x ∈ ∂Ω, ξ ∈ [ξmin, ξmax])
∂tvh(t) = −Ãhvh(t)−A{0}h vh(t)−A{β}h β ? (p̃h + uh · n)(t).

(5.42)
The spatial discretization is given by (5.29,5.30) with an additional boundary contribution A{β}h

in the decomposition of Ah compared to that of Section 5.3.2 given by, assuming that Γz = ∂Ω,

(A{β}h vh,wh)L2(Ω) := 1
2(mB(n)vh,wh)L2(∂Ω) = −c0

2 (vh, (wph −w
u
h · n))L2(∂Ω). (5.43)

The result, stated in Proposition 5.18, is a natural extension of Proposition 5.11 and more
specifically of (5.32). It shows that, with an explicit time integration, the maximum frequency
(2π)−1ξmax of the scattering operator stiffens the system; in practice, ξmax must be chosen
consistently with the dissipation and dispersion properties of the spatial discretization, as advo-
cated in Section 6.1.3. Numerical applications based on the scattering operator are considered
in Chapter 6.
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Proposition 5.18. Assume ∇u0 = 0 (uniform base flow), Vh = P0
d(Th)d+1 (finite volume

discretization), and β̂ bounded-real such that

‖µ‖L1

∥∥∥∥ µξ2

∥∥∥∥ ≤ 1.

A sufficient L2 stability condition for (5.42) is

CFL ≤ min

 1
2C2

DG

1
1 + |u0|

c0

,
1

2C2
tr
,

c0
h ξmax

 , (5.44)

where the positive constants CDG and Ctr, defined in Lemmas 5.22 and 5.20, are non-dimensional
and do not depend upon the initial data or the impedance.

The proof is given in the next section, alongside the similar proof of Proposition 5.11.

5.3.4 Proofs of stability conditions

This section gathers the proofs of Propositions 5.11 and 5.18.

Proof of Proposition 5.11

Proof. (Proposition 5.11) The proof follows the energy method, in the spirit of the analysis
carried out at the continuous and semi-discrete levels in Sections 5.1 and 5.3.2. A comprehensive
analysis of the energy method to derive CFL-type stability condition for coercive problems can
be found in (Levy and Tadmor 1998). Note that the stability conditions derived in (Levy and
Tadmor 1998) cannot be directly applied herein since Ah is not coercive in the sense of (Levy
and Tadmor 1998, Eq. 3.2), see (5.11). See also (Ern and Guermond 2004, Chap. 6), (Di Pietro
and Ern 2012, § 7.5.2), and (Cohen and Pernet 2017, Chap. 7).

Given the expression of the continuous energy (5.3), we define the discrete energy as

Enh := ‖vnh‖2L2(Ω).

By taking the scalar product of (5.27) with vnh and using the identity ab = 1
2a

2 + 1
2b

2− 1
2(a−b)2,

one obtains the standard discrete energy balance (Levy and Tadmor 1998, Eq. 3.4)

1
2E

n+1
h = 1

2E
n
h + 1

2‖v
n+1
h − vnh‖2L2(Ω) −∆t(Ahvnh,vnh).

The expression of (Ahvh,vh)L2(Ω) given by (5.11) yields

1
2E

n+1
h = 1

2E
n
h + 1

2‖v
n+1
h − vnh‖2L2(Ω) −

∆t
2 (C(u0)vnh,vnh)L2(Ω)

− ∆t
2 |v

n
h|2upw −

∆t
2 (M0(n)vnh,vnh)L2(∂Ω),

where each term has a clear interpretation:

• 1
2‖v

n+1
h − vnh‖2L2(Ω) is the anti-dissipation due to the explicit nature of the time-marching

scheme;

• −(C(u0)vnh,vnh)L2(Ω) is the contribution of a non-constant base flow u0;

• −|vnh|2upw is the dissipation due to the upwind flux (would be null with a centered flux);
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• −(M0(n)vnh,vnh)L2(∂Ω) is the dissipation due to the IBC.

The key step of the proof is to estimate the anti-dissipation term 1
2‖v

n+1
h − vnh‖2L2(Ω). The

decomposition of Ah readily yields the estimate

1
2‖v

n+1
h − vnh‖2L2(Ω) = ∆t2

2 ‖Ahv
n
h‖2L2(Ω) ≤ ∆t2‖Ãhvnh‖2L2(Ω) + ∆t2‖A{0}h vnh‖2L2(Ω),

where the energy production that occurs at the impedance boundary is bounded by ‖A{0}h vnh‖2L2(Ω).
The estimate of this term is provided by Lemma 5.19, which does not require the finite volume
hypothesis. Lemma 5.20 provides a bound for ‖Ãhvnh‖L2(Ω) that does need the finite volume
hypothesis. Using both Lemmas 5.19 and 5.20, the discrete energy balance becomes

1
2E

n+1
h ≤ 1

2
(
1−∆tmin

x∈Ω
λmin(u0)

)
Enh −

∆t
2
(
1− 2C2

DG∆t(c0 + |u0|)h−1)|vh|2upw
− ∆t

2 (I(n)vh,vh)L2(∂Ω),

where
I(n) := 1

2(M0(n) +M0(n)ᵀ)− C2
tr

2 CFL(N(n) +N(n)ᵀ)

so that
(I(n)vh,vh)Rd+1 = (Ǐ(n)v̌h, v̌h)R2

with v̌h := (uh · n, p̃h)ᵀ and

Ǐ(n) := c0

[ (
α1 − C2

trCFL(α2
1 + (α3 − 1)2)

) α2+α3
2

α2+α3
2 α4 − C2

trCFL(α2
4 + (α2 − 1)2)

]
.

The conclusion then follows from Lemma 5.9.

The two lemmas referred to in the above proof are given below. Note that they imply
a departure from the framework developed in (Ern and Guermond 2006), since the condition
“(DG3a)” does not hold. The first one provides an estimate for the impedance boundary term
(5.29).

Lemma 5.19. For any vh ∈ Pkd(Th)d+1,

‖A{0}h vnh‖L2(Ω) ≤
Ctr√

2
c

1/2
0 h−

1/2(N(n)vh,vh)1/2
L2(∂Ω),

where
N(n) := c0

[
(α2

1 + (α3 − 1)2)n� n 0d
0ᵀ
d α2

4 + (α2 − 1)2

]
and Ctr > 0 is defined in Lemma 5.4.

Proof. Let wh := ((wu
h)ᵀ, wp̃h)ᵀ ∈ Pkd(Th)d+1. The definition of A{0}h yields

(A{0}h vnh,wh)L2(Ω) := 1
2(M0(n)vh −A(n)vh,wh)L2(∂Ω)

= c0
2

ˆ
∂Ω


α1uh · n
(α2 − 1)p̃

(α3 − 1)uh · n
α4p̃

 ·

wu
h · n

wu
h · n
wp̃h
wp̃h

 dx.
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The Cauchy-Schwarz inequality then gives

(A{0}h vnh,wh)L2(Ω) ≤
c

1/2
0√
2

(N(n)vh,vh)1/2
L2(∂Ω)‖wh‖L2(∂Ω)

and the conclusion follows from Lemma 5.4.

The second lemma provides an estimate for the non-boundary terms of Ah, gathered in Ãh.

Lemma 5.20. For any vh ∈ Pkd(Th)d+1,

‖Ãhvh‖L2(Ω) ≤ CDGh
−1/2‖|u0|+ c0‖

1/2
L∞(Ω)|vh|upw + ‖A(∇h)vh +Bvh‖L2(Ω),

where
CDG :=

(√
2 + 1√

2

)
Ctr > 0

with Ctr defined in Lemma 5.4.

Proof. This is a standard estimate that relies on the Cauchy-Schwarz and discrete trace in-
equalities, see (Di Pietro and Ern 2012, Chaps. 3& 7) and (Ern and Guermond 2006). Let
wh ∈ Pkd(Th)d+1 with k ∈ N∗. Each of the three terms in (5.30) is estimated separately. The
first term readily yields∑

T∈Th

(Avh,wh)L2(T ) = (A(∇h)vh +Bvh,wh)L2(Ω) ≤ ‖A(∇h)vh +Bvh‖L2(Ω)‖wh‖L2(Ω).

For the last two terms, we use the inequality

(A(nF )vh,wh)L2(F ) ≤ (|A(nF )|vh,vh)1/2
L2(F )(|A(nF )|wh,wh)1/2

L2(F ), (5.45)

which follows from the fact that the real symmetric matrix A is diagonalizable with A = PΛP ᵀ,
where Λ := diag(u0 ·n+ c0,u0 ·n− c0,u0 ·n, · · · ,u0 ·n) and P is an orthogonal matrix (recall
that |A| := P |Λ|P ᵀ). (This inequality yields the (DG8) condition in (Ern and Guermond 2006).)
Using (5.45), the Cauchy-Schwarz inequality, and Lemma 5.4 give∑

F∈Fi
h

(A(nF )JvhK, {wh})L2(F ) ≤
√

2Ctrh
−1/2

(
max
F∈Fi

h

ρ(|A(nF )|)
)1/2
|vh|upw‖wh‖L2(Ω),

where ρ(|A(nF )|) denotes the spectral radius. Similarly,

1
2
∑
F∈Fi

h

(|A(nF )|JvhK, JwhK)L2(F ) ≤
1√
2
Ctrh

−1/2
(

max
F∈Fi

h

ρ(|A(nF )|)
)1/2
|vh|upw‖wh‖L2(Ω).

The final estimate follows from

max
F∈Fi

h

ρ(|A(nF )|) ≤ max
F∈Fi

h

(|u0|+ c0) ≤ ‖|u0|+ c0‖L∞(Ω).

Remark 5.21. Assuming a uniform base flow (∇u0 ≡ 0) and a finite volume discretization
(k = 0), ‖A(∇h)vh +Bvh‖L2(Ω) = 0, and the estimate of Lemma 5.20 is reduced to

‖Ãhvh‖L2(Ω) ≤ CDGh
−1/2(|u0|+ c0)1/2|vh|upw,

which is used in the above proof of Proposition 5.11 above to derive a sufficient stability condition
using an energy method.
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Proof of Proposition 5.18

The proof of Proposition 5.18 is similar to that of Proposition 5.11 but relies on an energy
balance for the additional variables ϕh, given in Appendix E.

Proof. (Proposition 5.18) The proof relies on an energy analysis similar to that of Proposi-
tion 5.11 with one additional technicality: the energy is not reduced to ‖vh‖2L2(Ω) but must
include a contribution Eβ from the diffusive variable ϕh defined as (E.4). For the sake of clarity,
we first write down the semi-discrete energy balance before considering its discretization.

(Semi-discrete energy balance) Using the energy balance associated with Eβ (E.3), the semi-
discrete energy balances reads

1
2
dEβ
dt ≤ 1

2
(
(p̃h + uh · n)2 − β(p̃h + uh · n)2)
− ‖µ‖L1

2

ˆ ξmax

ξmin
(−ξϕh + p̃h + uh · n)2dµ

ξ2

1
2
d
dt‖vh‖

2
L2(Ω)= −

1
2(C(u0)vh,vh)L2(Ω) −

1
2 |vh|

2
upw −

1
2(M0(n)vh,vh)L2(∂Ω)

− (A{β}h vh,vh)L2(Ω).

The identity (5.40) enables to rewrite the second line to explicit the energy exchange between
the diffusive variables ϕh and the perturbation field v:

1
2
dEβ
dt ≤ 1

2
(
(p̃h + uh · n)2 − β(p̃h + uh · n)2)
− ‖µ‖L1

2

ˆ ξmax

ξmin
(−ξϕh + p̃h + uh · n)2dµ

ξ2

1
2
d
dt‖vh‖

2
L2(Ω)= −

1
2(C(u0)vh,vh)L2(Ω) −

1
2 |vh|

2
upw

− c0
4
[
‖p̃h + uh · n‖2L2(∂Ω) − ‖β(p̃h + uh · n)‖2L2(∂Ω)

]
− c0

4 ‖p̃h − uh · n− β(p̃h + uh · n)‖2L2(∂Ω).

The semi-discrete energy balance is obtained by integrating the first inequality over ∂Ω, multi-
plying it by c0/2 and summing it with the second one

1
2
dEh
dt ≤−

1
2(C(u0)vh,vh)L2(Ω) −

1
2 |vh|

2
upw

− c0
4 ‖µ‖L1

ˆ ξmax

ξmin
‖ − ξϕh + p̃h + uh · n‖2L2(∂Ω)

dµ
ξ2

− c0
4 ‖p̃h − uh · n− β(p̃h + uh · n)‖2L2(∂Ω),

(5.46)

where the extended energy is defined as

Eh := ‖vh‖2L2(Ω) + c0
2 Eβ.

The third and fourth terms of the right-hand side express the dissipation that occurs at the
impedance boundary (here, ∂Ω).
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(Discrete energy balance) The explicit Euler discretization of (5.42) leads to

(vn+1
h − vnh,vnh)L2(Ω) + c0

2 ‖µ‖L1

ˆ ξmax

ξmin
(ϕn+1

h − ϕnh, ϕnh)L2(∂Ω)
dµ
ξ

≤− ∆t
2 (C(u0)vnh,vnh)L2(Ω) −

∆t
2 |v

n
h|2upw

− c0
4 ∆t‖µ‖L1

ˆ ξmax

ξmin
‖ − ξϕnh + p̃nh + unh · n‖2L2(∂Ω)

dµ
ξ2

− c0
4 ∆t‖p̃nh − unh · n− β(p̃nh + unh · n)‖2L2(∂Ω),

and the identity (a−b)b = 1
2a

2− 1
2b

2− 1
2(a−b)2 enables to rewrite this with the discrete extended

energy

Enh := ‖vnh‖2L2(Ω) + c0
2 ‖µ‖L1

ˆ ξmax

ξmin
‖ϕnh‖2L2(∂Ω)

dµ
ξ
,

leading to

1
2E

n+1
h ≤ 1

2E
n
h −

∆t
2 (C(u0)vnh,vnh)L2(Ω) −

∆t
2 |v

n
h|2upw

− c0
4 ∆t‖µ‖L1

ˆ ξmax

ξmin
‖ − ξϕnh + p̃nh + unh · n‖2L2(∂Ω)

dµ
ξ2

− c0
4 ∆t‖p̃nh − unh · n− β(p̃nh + unh · n)‖2L2(∂Ω)

+ 1
2‖v

n+1
h − vnh‖2L2(Ω) + c0

2 ‖µ‖L1

ˆ ξmax

ξmin

1
2‖ϕ

n+1
h − ϕnh‖2L2(∂Ω)

dµ
ξ
.

The task is now to estimate the two anti-dissipative terms so that they can be provably controlled
by the three dissipative ones. Let us bound the anti-dissipation on vh with Lemmas 5.22 and
5.20:

1
2‖v

n+1
h − vnh‖2L2(Ω) = ∆t2

2 ‖Ãhvh +A{0}h vh +A{β}h β(p̃h + uh · n)‖2L2(Ω)

≤ ∆t2‖Ãhvh‖2L2(Ω) + ∆t2‖A{0}h vh +A{β}h β(p̃h + uh · n)‖2L2(Ω)

≤ C2
DG∆t2(c0 + |u0|)h−1|vh|2upw

+ C2
tr

2 ∆t2c2
0h
−1‖p̃h − uh · n− β(p̃h + uh · n)‖2L2(∂Ω).

Using Lemma 5.22 and the identity 1
2‖ϕ

n+1
h −ϕnh‖2L2(∂Ω) = ∆t2

2 ‖ − ξϕ
n
h + p̃h +uh ·n‖2L2(∂Ω), the

energy balance becomes

1
2E

n+1
h ≤ 1

2E
n
h −

∆t
2 (C(u0)vnh,vnh)L2(Ω)

− ∆t
2
(
1− 2C2

DG∆t(c0 + |u0|)h−1
)
|vnh|2upw

− c0
4 ∆t‖µ‖L1

ˆ ξmax

ξmin
‖ − ξϕnh + p̃nh + unh · n‖2L2(∂Ω)

(1
ξ
−∆t

) dµ
ξ

−
(
c0
4 ∆t− C2

tr
2 ∆t2c2

0h
−1
)
‖p̃nh − unh · n− β(p̃nh + unh · n)‖2L2(∂Ω),

which enables to conclude.



5.3. Numerical flux for impedance boundary conditions 143

The estimate used in the above proof is proven below.

Lemma 5.22. For any vh ∈ Pkd(Th)d+1,

‖A{0}h vh +A{β}h β(p̃h + uh · n)‖L2(Ω) ≤
Ctr√

2
c0h
−1/2‖p̃h − uh · n− β(p̃h + uh · n)‖L2(∂Ω),

where Ctr > 0 is defined in Lemma 5.4.

Proof. Let wh := ((wu
h)ᵀ, wp̃h)ᵀ ∈ Pkd(Th)d+1. The definition of A{0}h + A{β}h and the Cauchy-

Schwarz inequality yield

(A{0}h vh,wh)L2(Ω) + (A{β}h β(p̃h + uh · n),wh)L2(Ω)

:= 1
2(M0(n)vh −A(n)vh,wh)L2(∂Ω) + 1

2(mB(n)β(p̃h + uh · n),wh)L2(∂Ω)

= c0
2 (p̃h − uh · n− β(p̃h + uh · n), wp̃h −w

u
h · n)L2(∂Ω)

≤ c0√
2
‖p̃h − uh · n− β(p̃h + uh · n)‖L2(∂Ω)‖wh‖L2(∂Ω),

and the conclusion follows from Lemma 5.4.
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This chapter, drawn from (Monteghetti et al. 2018b), gathers numerical applications of
TDIBCs in aeroacoustics, with a focus on acoustical liners. Section 6.1 contains reminders

from Section 2.4. It recalls the derivation of discrete models from the analysis of physical
impedance models of liners, leading to a time-local formulation that consists in composing a set
of ODEs with a transport equation. The OD representation is discretized using an adaptation
of the optimization method presented in Section 2.2 while the transport equation is discretized
with a high order DG method. Applications are then shown in the last two sections. Section 6.2
deals with the impedance tube whose analytical solution is known even for nonlinear impedance.
In particular, it validates the analysis of Chapter 5 by investigating the computational proper-
ties of a nonlinear algebraic scattering operator. Section 6.3 presents an application to two flow
ducts documented in the literature.

6.1 Physical reflection coefficient models in the time domain

Following the terminology introduced in Section 1.3, a discrete TDIBC consists of three compo-
nents: a discrete time-domain impedance model, an algorithm to compute said discrete model,
and a coupling method with the considered PDE. This section tackles the first two components,
while the last one has been covered independently in Chapter 5. Most of the content of this
section has been covered in Chapters 1 and 2.

Section 6.1.1 recalls the models suitable for acoustical liners, including an example of non-
linear scattering operator. Section 6.1.2 recalls the OD representation of physical reflection
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146 Chapter 6. Numerical validation and application

coefficients, which yields a formulation with an infinite number of delayed ODEs whose dis-
cretization is tackled in Section 6.1.3. The discretization methodology presented in Section 2.2
is adapted to deal with practical cases where experimental data are involved and the time delay
is recast using a transport equation.

6.1.1 Physical models for acoustical liners

The numerical applications presented in this chapter involve two liners:

• A CT liner, depicted in Figure 1.4, made from a ceramic tubular core (channel of length
lc, diameter dc, and porosity σc ∈ (0, 1]) and a rigid backplate.

• A micro-perforated (MP) liner, which is a SDOF liner made from a honeycomb core
(cell of length lc, diameter dc, and porosity σc ∈ (0, 1]) sandwiched between a perforated
facesheet (thickness lp, hole diameter dp, and porosity σp ∈ (0, 1]) and a rigid backplate,
see Figure 1.6.

CT liners are mostly used in academic and benchmark experiments, while MP liners are widely
used in industrial applications. Following Section 1.2, the standard linear impedance model for
these liners reads

ẑphys(s) = 1
σp
ẑp(s) + 1

σc
ẑc(s) (<(s) > 0) , (6.1)

where ẑp (resp. ẑc) is the impedance of a perforation (resp. cavity). The CT liner model ẑCT
is obtained with ẑp = 0, while σc = 1 yields the MP liner model ẑMP. The expression (6.1)
separates the contribution of the perforated plate from that of the cavity, a feature that assumes
the conservation of u · n across the perforation, which is satisfied as long as the perforation
thickness lp is much shorter than the considered wavelengths.

The chosen perforation model is given by a fractional polynomial

ẑp
z0

(s) = a0 + a1/2

√
s+ a1s, (6.2)

where each of the non-negative coefficients has a physical interpretation: a0 models frequency-
independent losses, a1/2 frequency-dependent losses coming from visco-thermal dissipation, and
a1 is known as the mass reactance and does not incur any loss. The square root

√
s is the

principal branch defined in Example 2.14, which is analytic in C\(−∞, 0] and coincides with
the real-valued square root on (0,∞). Values for the three coefficients can be obtained through
various theoretical or empirical models; the high-frequency approximation of a model derived
by Crandall, namely (1.20), yields

a0 = 3lpν
c0 (dp/2)2 , a1/2 = 2lp

√
ν

c0dp/2
, a1 = lp

c0
, (6.3)

where ν denotes the kinematic viscosity and c0 the speed of sound.
For the cavity, the adopted model is a monodimensional wave equation with a fractional

wavenumber kc(s)

ẑc
z0

(s) = coth(jkc(s)lc), jkc(s)lc = b0 + b1/2

√
s+ b1s. (6.4)

The non-negative coefficients b have a physical interpretation similar to those of (6.2): b0 models
frequency-independent losses, b1/2 frequency-dependent losses, and b1 is half the back-and-forth
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traveling time in the cavity. The high-frequency approximation of a wavenumber derived by
Bruneau, namely (1.26), gives

b0 = 0, b1/2 =
√
ν

c0dc/2

(
γ − 1√

Pr
+ 1

)
lc, b1 = lc

c0
, (6.5)

where Pr is the Prandtl number and γ the ratio of specific heat. From Proposition 1.8, the
admissibility of this linear model follows from the fact that ẑ is a positive-real function.

By contrast with the CT liner, the MP liner is sensitive to the incident sound pressure
level (SPL): above a given threshold, nonlinear effects occur in the perforation. The prevailing
nonlinear term for a perforated plate is given by (1.32); the computation of the corresponding
nonlinear admittance and scattering operators has been discussed in Section 2.4.2.

6.1.2 Oscillatory-diffusive representation of physical models

The analysis of Section 2.4 gives a time-local realization of the impedance model covered in
Section 6.1.1. We recall here the result for the reflection coefficient only, since Chapter 5 has
shown its computational advantage.

To obtain the desired realization, the first step is to derive the so-called oscillatory-diffusive
representation of the physical model zphys using complex calculus. The starting point of the
analysis is the identity (2.57) that enables to rewrite the reflection coefficient (1.15,6.1) as

β̂phys(s) = 1 + ĥ1(s) + e−sτ ĥ2(s), (6.6)

where the time delay τ := 2b1 > 0 is the cavity back-and-forth traveling time and the functions
ĥ1 and ĥ2, which induce deviations from the rigid wall β̂phys(s) = 1, are given by

ĥ1(s) = − 2
R(s) , ĥ2(s) = −e−2b0 ĥ1(s)e−2b1/2

√
s,

with common denominator

R(s) = 1 + 1
σc

+ ẑp(s)
σp

+
(

1
σc
− 1− ẑp(s)

σp

)
e−2jkc(s)lc .

The interest of the apparently gratuitous expression (6.6) is that both ĥ1 and ĥ2 admit an
oscillatory-diffusive representation (6.7,6.8). The analytical expression of these two functions
is used in the discretization methodology presented in Section 6.1.3. The representations of ĥ1
and ĥ2 are derived by inverting the Laplace transform using the residue theorem on a “keyhole-
shaped” Bromwich contour, see Section 2.1.2 for the theory. Among the sufficient hypotheses
needed to carry out the computations, ĥi must decay uniformly on {|s| = R} as R → ∞ and
admit finite residues at every poles and branch points (the only possible branch point of ĥi is
0). The results of the analysis are as follows.

If a1/2 or a1 are positive, which is the case for an MP liner, the oscillatory-diffusive represen-
tation of ĥi is given by Theorem 2.16 and reads

ĥi(s) =
∑
n∈I

ri,n
s− sn

+
ˆ ∞

0

µi(ξ)
s+ ξ

dξ (i ∈ {1, 2}) , (6.7)

where the sequence (sn)n solves

R(sn) = 0 (n ∈ I ⊂ Z),
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ri,n is the associated residue
ri,n := Res(ĥi, sn)

with Res defined by (2.15), and µi is the so-called diffusive weight, linked to the jump of ĥi
across its cut (−∞, 0] by

µi(ξ) := 1
2jπ

[
ĥi(ξe−jπ)− ĥi(ξe+jπ)

]
.

Remark 6.1. The sequence (sn)n may include 0, which is a branch point of ĥi when a1/2 > 0
hence not a pole since a pole is by definition an isolated singularity. However, since the focus of
this chapter is the numerical applications, we will use a slight abuse of terminology and call sn
the sequence of poles even when it contains a branch point.

As highlighted in Remark 2.19 these quantities can be readily computed numerically, which
enables to verify (6.7). The first (resp. second) term on the right-hand side of (6.7) is the
oscillatory (resp. diffusive) part of ĥi. The oscillatory part is associated with the resonances,
by contrast with the diffusive part that stems from visco-thermal losses. Indeed, without the
multivalued fractional term

√
s (physically, if ν = 0, see (6.3)) the diffusive part vanishes, i.e.

µi = 0. The admissibility conditions given by Proposition 1.14 imply that µ(ξ) ∈ R and that if
sn is a pole of ĥi with residue ri,n, then sn is a pole of ĥi with residue ri,n (hermitian symmetry).
The desired representation of β̂MP is then obtained by combining (6.6) and (6.7).

Although the physical model of the CT liner is similar to that of the MP liner, it does not
admit the same OD representation. This is due to the fact that for the CT liner ẑp(s) = 0 so
that ĥ1 (and ĥ2 if b1/2 = 0 but this case is not considered here) fails the decay condition (2.16).
By considering instead ĥ1(s)/s, the following representation can be derived, assuming σc 6= 1,

ĥ1(s) = C +
∑
n∈I

r1,n
s− sn

+
ˆ ∞

0

µ1(ξ)
s+ ξ

dξ, (6.8)

which differs from (6.7) by a real constant C whose full expression follows from Lemma 2.40 and
can be approximated as

C ' − 1
1 + σ−1

c
.

The representation of β̂CT is then obtained by combining (6.6), (6.7) with i = 2, and (6.8).
Overall, for both liners, the physical reflection coefficient has the causal representation

βphys(t) = β1 δ(t) +
∑
n∈I

r1,ne
snt+ +

ˆ ∞
0

µ1(ξ)e−ξt+dξ +
∑
n∈I

r2,ne
sn(t−τ)+

+
ˆ ∞

0
µ2(ξ)e−ξ(t−τ)+dξ,

(6.9)

where
est+ := estH(t)

denotes the causal exponential function and β1 ∈ R. The importance of (6.9) lies in the fact that
it provides a structural information on βphys, namely that it “reduces” to an infinite number of
first-order systems with delay

βphys ? v(t) = β1v(t) +
∑
n∈I

r1,nϕ(t,−sn) +
ˆ ∞

0
µ1(ξ)ϕ(t, ξ)dξ +

∑
n∈I

r2,nϕ(t− τ,−sn)

+
ˆ ∞

0
µ2(ξ)ϕ(t− τ, ξ)dξ,

(6.10)
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where ϕ is defined as (2.6) and v is a shorthand for “p̃+ u · n”. The computational interest of
(6.10) stems from the ability to compute ϕ through the first-order ODE (2.7). As a result, (6.10)
is a time-local (but infinite-dimensional) representation of the hereditary convolution operator
v 7→ βphys ? v. The above analysis informs the discrete model proposed in the next section.

6.1.3 Discrete reflection coefficient model

The identity (6.10) naturally suggests to define the discrete reflection coefficient model β̃ as

ˆ̃β(s) = β̃∞ +
Ns∑
n=1

r̃1,n
s− s̃n

+
Nξ∑
k=1

µ̃1,k

s+ ξ̃k
+ e−sτ̃

 Ns∑
n=1

r̃2,n
s− s̃n

+
Nξ∑
k=1

µ̃2,k

s+ ξ̃k

 (6.11)

β̃ ? v(t) = β̃∞v(t) +
Ns∑
n=1

r̃1,nϕ(t,−s̃n) +
Nξ∑
k=1

µ̃1,kϕ(t, ξ̃k) +
Ns∑
n=1

r̃2,nϕ(t− τ̃ ,−s̃n)

+
Nξ∑
k=1

µ̃2,kϕ(t− τ̃ , ξ̃k),

where ϕ follows the first-order ODE (2.7). It involves

Nϕ := Ns +Nξ

additional variables, where Nξ (resp. Ns) variables come from the diffusive (resp. oscillatory)
part of βphys. Note that, from Proposition 1.14,

β̃∞ = ˆ̃β(+∞) ∈ [−1, 1].

In summary, the analysis of the physical model (6.1) has led to the discrete model (6.11), which
requires the computation and delay of Nϕ ODEs. Without the delay τ̃ = 0, the derived model β̃
can be interpreted as a so-called multipole model, postulated in (Fung and Ju 2004) for instance.
In preparation for the application of (6.11) presented in Sections 6.2 and 6.3, the computation
of the poles (s̃n, ξ̃k)n,k and weights (r̃i,n, µ̃i,k)n,k as well as the discretization of the time delay
are discussed below.

Poles and weights computation

The discrete model β̃ is fully determined by the constant β̃∞, Nϕ poles (s̃n, ξ̃k)n,k, 2Nϕ weights
(r̃i,n, µ̃i,k)n,k, and time delay τ̃ . These parameters should be such that β̃ is a satisfactory
representation of the considered sound absorbing material, typically known by its physical char-
acteristics and possibly some experimental data (β̂exp(j2πfm))m. Criteria for a satisfactory
approximation include:

• ˆ̃β is a bounded real function (see Proposition 1.14);

• Nϕ is as low as possible;

• ω 7→ ˆ̃β(jω) has a physical behavior at frequencies not covered by the experimental data
(usually low and high frequencies);

• the maximum frequency
(2π)−1 max

n,k
(|s̃n|, ξ̃k)n,k

is consistent with the stability region of the time discretization scheme (otherwise the IBC
could reduce the timestep of an explicit integration).
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In Section 6.3, the three-step methodology given below is followed. The principle of the approach
is to use as much as possible the information obtained on the physical model in Section 6.1.2
to ease the optimization process. The second step is a summary of the optimization method
presented in full details in Section 2.2.1: the reader is referred to this section for background
and possible variants.

1. (Physical model) Compute the coefficients a and b from the liner dimensions using the
models (6.3,6.5). In particular, this provides a value for the constant β1 and the time
delay τ . These coefficients can then serve as an initial point for a nonlinear least squares
minimization of

ω 7→ ‖ẑphys(jω)− ẑexp(jω)‖2.

Physically, this optimization can be interpreted as computing the various physical impedance
corrections (Cummings 1986; Melling 1973).
Inputs: material characteristics (lp, dp, σc, etc.), experimental data (ẑexp(j2πfm))m.
Outputs: coefficients (σ−1

p a0, σ
−1
p a1/2, σ

−1
p a1, σc, b0, b1/2, b1), time delay τ = 2b1, constant

β1 = 1− (1 + σ−1
c )−1.

2. (Discrete model – Linear least squares) Choose Nξ diffusive poles along the cut (−∞, 0]
(typically, a logarithmic repartition is satisfactory). Compute Ns oscillatory poles s̃n by
solving R(s̃n) = 0. Compute the weights (r̃n,i)n and (µ̃k,i)k by minimizing

ω 7→

∥∥∥∥∥∥
Nξ∑
k=1

µ̃k,i

jω + ξ̃k
+

Ns∑
n=1

r̃n,i
jω − s̃n

− ĥi(jω)

∥∥∥∥∥∥
2

(6.12)

if the representation (6.7) holds (if the representation of hi is instead given by (6.8), then
add the constant term C in the cost function). This is an overdetermined linear least
squares optimization that is solved instantaneously by pseudo-inverse. Note that the time
delay τ̃ has no role whatsoever during this step.
Inputs: ĥi (from output of step 1), number of poles Ns, diffusive poles (ξk)k∈J1,NξK.
Outputs: oscillatory poles (s̃n)n∈J1,NsK, weights (r̃n,i)n∈J1,NsK and (µ̃k,i)k∈J1,NξK (i ∈ {1, 2}).

3. (Discrete model – Nonlinear least squares) Compute new poles and weights with a nonlin-
ear least squares optimization on

ω 7→ ‖ ˆ̃β(jω)− β̂exp(jω)‖2

with initial poles and weights given by step 2, β̃∞ = β1 and τ̃ = τ from step 1. The
constant β̃∞ and delay τ̃ can also be optimized along the poles and weights, but this may
lead to overfitting. Note that the expression of ˆ̃β(jω) contains the term “e−jωτ̃”, although
in practice the actual computation of the convolution β̃ ? v will involve a discretization
(hence, an approximation) of the time delay; in other words, during this optimization step,
the time delay is assumed to be perfectly approximated.
Inputs: (s̃n, ξ̃k)n,k, (r̃n,i, µ̃k,i)n,k, τ̃ = τ , β̃∞ = β1, (β̂exp(j2πfm))m.
Outputs: (s̃n, ξ̃k)n,k, (r̃n,i, µ̃k,i)n,k, (optional) τ̃ , (optional) β̃∞.

As mentioned above, variants for step 2 are presented in Section 2.2.1. However, let us highlight
here one that can yield interesting results for the problem at hand. Following Remark 2.41, it
is also possible to compute the oscillatory weight r̃n,i by computing the residue

r̃n,i := Res(ĥi, s̃n)
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using a quadrature rule to discretize the line integral (2.15). For the models considered herein,
this computation can be done with a satisfactory accuracy. One advantage of computing the
weights (r̃n,i)n,i in this way is that the only variables left in the minimization of (6.12) are
the diffusive weights (µ̃k,i)k. For instance, the discrete models presented in Figure 2.11 have
been obtained using this method. The only drawback of this method is that it may not yield
parsimonious approximations when the residue Res(ĥi, s̃n) has a slow decay as n → ∞, which
occurs when the fractional term in the expression of ĥi is negligible (physically, when there is
a lack of diffusion in the impedance model). The numerical results presented in this chapter
always rely on optimizing both the oscillatory and diffusive weights.

When the physical model is satisfactory, as is the case for the MP and CT liners considered
herein, the first two steps deliver a discrete model β̃ that may be sufficient for some engineering
applications. If step 3 is used, its role is to adjust the poles and weights to improve the fit
against experimental data. The first two steps can then be interpreted as using a physical
model to help finding an initial guess for the poles and weights. When faced with a mismatch
between the physical model and experimental data, tuning the former may be required, but this
is not a computationally intensive task since there are few parameters and they have a physical
interpretation. The third stage can be performed using any nonlinear least squares method: in
Section 6, we simply relied on the trust region optimization method (Coleman and Y. Li 1996)
implemented in MATLAB R© lsqnonlin, whose execution takes a few seconds on a contemporary
computer, but the more tailored vector fitting algorithm (Gustavsen and Semlyen 1999) can also
be used, as in (Troian et al. 2017).

However, note that step 3 comes with the following caveat. There is a trade-off between
the fit quality against the experimental data, which is usually narrowband, and the broadband
behavior of ˆ̃β. This trade-off is especially acute when using impedance identified with base flow,
as these can be associated with significant uncertainties that ideally should be accounted for in
the optimization process. This is exemplified by the question of whether to optimize the time
delay τ̃ . Physically, it is linked to the anti-resonant frequencies fn given by fn = n/τ̃ for (6.1)
with a lossless cavity b0 = b1/2 = 0 (i.e. a canonical Helmholtz resonator), see also Remark 1.23.
Therefore, although τ̃ 6= τ may enable a better fit, it may not be worth altering the broadband
behavior. Eventually, knowledge about both the model and experimental data is helpful to
inform the optimization process.

Time delay discretization

The discretization of the time delay is done independently of the choice of weights and poles
described above. Theoretically, the delay can be recast into

ϕ(t− τ̃ , s) = ψ(t, s,−lτ̃ )

where the additional function ψ(·, s, ·) obeys the following transport equation on (−lτ̃ , 0) with
lτ̃ = cτ̃ τ̃ > 0 {

∂tψ(t, s, θ) = cτ̃∂θψ(t, s, θ) (t ∈ (0,∞), θ ∈ (−lτ̃ , 0))
ψ(t, s, 0) = ϕ(t, s), ψ(0, s, θ) = 0.

(6.13)

This device is commonly used in theoretical and numerical studies of delay differential equations,
see (Curtain and Zwart 1995, § 2.4), (Engel and Nagel 2000, §VI.6), (Michiels and Niculescu
2014), and the survey paper (Richard 2003). Although not needed herein, several delays τ̃i can
also be tackled by defining τ̃ := maxi τ̃i.

The monodimensional PDE (6.13) is discretized using a DG method with NK elements and
Np ≥ 2 nodes per element (order Np). The discretization accuracy is measured by the number
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of points per wavelength
PPWτ̃ (fmax) := Nψ

τ̃ fmax
, (6.14)

where
Nψ := NKNp

is the total number of nodes and fmax is the maximum frequency of interest. Target values for
PPWτ̃ as a function of Np can be found in (Hu et al. 1999, Tab. 1), which shows that it is
advantageous to choose NK = 1 so that Np is the sole discretization parameter. The impact of
PPWτ̃ is illustrated in Section 6.3. Herein, the main argument in favor of delaying through a
transport equation, compared to continuous Runge-Kutta methods (Bellen and Zennaro 2003;
Zennaro 1986), is the meaningfulness of (6.14) for wave propagation problems, which makes the
discretization straightforward to set up a priori.

In summary, the discrete impedance model (6.11) is computed through

β̃ ? v(t) = β̃∞v(t) +
Ns∑
n=1

r̃1,nϕ(t,−s̃n) +
Nξ∑
k=1

µ̃1,kϕ(t, ξ̃k) +
Ns∑
n=1

r̃2,nψ(t,−s̃n,−lτ̃ )

+
Nξ∑
k=1

µ̃2,kψ(t, ξ̃k,−lτ̃ ),

(6.15)

which implies the use of (Nψ + 1)Nϕ additional variables. The two parameters to control are

• maxk,n(ξk, |sn|), which is to be chosen in accordance with the spatial discretization scheme;

• PPWτ̃ (fmax), for which values are given in (Hu et al. 1999, Tab. 1).

This covers the first two components of the TDIBC. The next sections deal with the numerical
applications.
Remark 6.2. The discrete model (6.15) has been derived from a mathematical analysis that
emphasizes the distinct components of the model (6.6): an oscillatory-diffusive part that models
both oscillatory and diffusion phenomena (the latter of parabolic nature), and a hyperbolic part
associated with the time delay that models a wave reflection phenomenon. See Table 2.1 for a
summary.
Remark 6.3. An alternative discretization strategy is to perform a rational approximation of the
time delay, see (Richard 2003) and references therein. For a pure time delay, i.e. β̂(s) ∝ e−τs,
a multipole approximation method is presented in (Douasbin et al. 2018): this amounts to
discretizing the delay as if it was an OD kernel.

6.2 Numerical validation on nonlinear impedance tube
The purpose of this section is to validate the numerical flux functions proposed in Chapter 5,
namely the Z-flux (5.14,5.35) and the B-flux (5.14,5.39), as well as to illustrate the computational
advantage of the latter. Since, by definition, the IBC (1.1) is locally reactive, it is enough to
consider a monodimensional impedance tube, depicted in Figure 6.1, whose analytical solution is
known even for a nonlinear impedance boundary condition. This test case is the most convenient
way of validating a TDIBC.

Let us briefly recall the impedance tube exact solution, expressed using the notations of
Figure 6.1. At x = 0 the incoming characteristic is given by

(p̃+ u)(t, 0) = φs(t) (t > 0),



6.2. Numerical validation on nonlinear impedance tube 153

x = 0

y = Ly

x = Lx

B

Figure 6.1. Impedance tube used in Section 6.2: Lx = 1 m, Ly = Lx/100, and mesh with 240 triangles.

where the source φs is causal (i.e. φs(t) = 0 for t < 0). At x = Lx, the nonlinear IBC (1.12) is
enforced. Assuming null initial conditions

p̃(0, x) = u(0, x) = 0 (x ∈ (0, Lx)) ,

the exact solution is given by
p̃(t, x) = 1

2φs
(
t− x

c0

)
+ 1

2B(φs)
(
t− 2Lx − x

c0

)
u(t, x) = 1

2φs
(
t− x

c0

)
− 1

2B(φs)
(
t− 2Lx − x

c0

)
.

(6.16)

Note that this solution, which can be derived with an elementary application of the method
of characteristics, is naturally expressed with the nonlinear scattering operator B, not the
impedance operator Z. If the IBC is linear, then B(v) = β ? v and this solution can also
be derived using the Laplace transform. The computation of the exact solution (6.16) only
requires the computation of B(φs). As detailed in Section 6.1, for the models considered herein
the computation of B(φs) may involve delayed ODEs.

In the computations presented below, the LEEs (5.1) are discretized using a fourth-order
DG method, see Appendix F for the implementation details, and the RKF84 eight-stage fourth-
order 2N -storage Runge-Kutta method (Toulorge and Desmet 2012, Tab. A.9). The mesh of
240 triangles (2400 nodes) is shown in Figure 6.1. The source vs at x = 0 is imposed using the
upwind numerical flux

(A(nF )v)∗s := A(nF )⊕v|T1 −A(nF )	vs, (6.17)

where the notation of Figure 5.1 is used. and the IBC is weakly enforced with either the Z-flux
(5.14,5.35) or the B-flux (5.14,5.39), as discussed in Chapter 5.

Figure 6.2 shows the the exact and computed solutions at the inlet x = 0 for four impedance
models and a Gaussian source centered at 2 kHz of amplitude

As =
√

2pref
z0

10
SPL
20 ,

where the pressure of reference is
pref = 2× 10−5 Pa

and the incident SPL is expressed in dB. For the sake of clarity, the impedance tube is chosen
long enough to avoid overlapping between the incident and reflected waves. For each of the four
models the exact solution matches the computed one, which validates the proposed numerical
flux functions. Let us now comment each graph individually.

The top right graph covers the linear TDIBC β̃A given in Table 6.2 and plotted in Figure 6.2
that models the MP liner studied in Section 6.3. The computation of β̃A ? v through (6.15)
involves a transport equation whose Nψ-point discretization is characterized by its number of
points per wavelength (6.14): here, Nψ = 4 is sufficient. The contrast with the hard wall shown
in the top left graph illustrates the effect of β̃A on the incident wave.

The bottom left graph covers the non-passive scattering operator B = 3I, outside of the
scope of the analysis presented in Chapter 5. However, the B-flux does enable to compute this
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Figure 6.2. Acoustic pressure p̃ at x = 0 (see Figure 6.1). Gaussian-modulated sinusoidal source cen-
tered at 2 kHz of amplitude As =

√
2pref
z0

10 SPL
20 (Lx = 1 m, Ly = Lx/100, c0 = 344.32 m · s−1,

z0 = 405.26 kg ·m−2 · s−1, pref = 2 × 10−5 Pa, and SPL = 192.15 dB). ( ) Exact solu-
tion (6.16). ( ) DG4-RKF84-B-flux (5.14,5.39) and CFL = 0.85. [Top left] Hard wall
B = I. [Bottom left] Non-passive wall B = 3I. [Bottom right] Nonlinear model (2.73) with
(a0, Cnl) = (0, 1). ( ) DG4-RKF84-Z-flux (5.14,5.35). [Top right] Linear TDIBC β̃A, see
Figure 6.5 and Table 6.2. ( ) DG4-RKF84-B-flux, Nψ = 4, and PPWτ̃ (2 kHz) = 9.64.
( ) DG4-RKF84-B-flux, Nψ = 2, and PPWτ̃ (2 kHz) = 4.82.

180 190 200 2100

0.4

0.8
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C
FL

Figure 6.3. Maximum CFL number against incident SPL for the impedance tube of Figure 6.2. ( )
Hard wall B = I and DG4-RKF84-B-flux. ( ) Nonlinear model (2.73) with (a0, Cnl) =
(0, 1) and DG4-RKF84-Z-flux. ( ) Same nonlinear model (2.75) with DG4-RKF84-B-
flux.
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case, by contrast to the Z-flux with which no stable computations could be obtained, even with
a reduced CFL number and different meshes. Therefore, although we do not prove this, the
B-flux seems to be advantageous to compute non-passive material.

Finally, the bottom right plot considers the algebraic nonlinear model (2.73) with Cnl = 1,
whose scattering operator is given by (2.75). As expected, both the Z and B fluxes lead to the
same solution, which validates the derived expressions. The graph shows harmonic distortion,
a genuinely nonlinear feature.

In all the computations of Figure 6.2, the CFL number has been kept at 0.85, its maximum
value with a hard wall, for all cases. However, the analysis of Chapter 5 has shown that the B-flux
is to be favored over the Z-flux. Figure 6.3 illustrates this point with the nonlinear model used
in Figure 6.2. With the Z-flux, the maximum CFL number that leads to a stable computation
decreases as the incident SPL increases, since the resistance increases. By contrast, the B-flux
enables to keep the same CFL number, which can be understood from the passivity condition
(1.13) that manifests itself in Lemma 2.51. The value Cnl = 1 has been chosen arbitrarily,
to highlight the nonlinear effect; as the nonlinear coefficient Cnl (resp. contraction coefficient
Cc) goes to infinity (resp. zero), the SPL value above which the CFL drops with the Z-flux
goes to zero. Although this example is elementary, it illustrates the advantage of the nonlinear
scattering formulation. A more advanced but linear application is presented in the next section.
Remark 6.4 (Value of Cnl). The value Cnl = 1 has been chosen for simplicity, as the purpose
of this section is merely to highlight a numerical effect. In Figure 6.3, the timestep reduction
when using the Z-flux occurs for incident SPLs above

SPLmax ' 194.15 dB.

Physically, at this pressure level, the LEEs should not be used as the propagation itself becomes
nonlinear. A full numerical characterization of the nonlinear impedance tube considered in this
figure would consist in plotting SPLmax against Cnl so that, given a value of Cnl, one can estimate
the range of incident SPLs for which the Z-flux yields the same timestep as the B-flux.

6.3 Aeroacoustical duct

In this section, numerical simulations to two flow ducts are compared with experimental data,
a summary of which is given in Section 6.3.1. Section 6.3.2 describes the employed numerical
methodology. Comparison with experimental data is done in the last two sections, Sections 6.3.3
and 6.3.4.

6.3.1 Experimental methodology and data

The study focuses on two ducts designed by the National Aeronautics and Space Administration
(NASA), namely the Grazing Incidence Tube (GIT) and Grazing Flow Impedance Tube (GFIT).
A short summary of the experiments reported in (Jones et al. 2005) and (Primus et al. 2013) is
provided below.

Experimental setup The GIT and GFIT share a similar geometry, described in Figure 6.4
and Table 6.1. The acoustical source is placed upstream of the entry plane x = 0, where
a reference microphone is positioned on the lower wall. The source is monochromatic, with
a frequency chosen below the lowest cut-off frequency so that only plane waves propagate in
the duct. A near-anechoic termination is placed at the exit plane x = L. The sound absorbing
material sample is mounted on the top wall between Lx1 and Lx2 , while microphones are located
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x = 0

y = Ly

x = Lx1 x = Lx2 x = Lx

β̂(s)

u0(y)

Figure 6.4. Flow duct considered in Section 6.3 (aspect ratio of the GIT). Mesh of 106 triangles used
in Figure 6.12. Pressure measurements are taken on the lower wall y = 0. See Table 6.1 for
geometrical dimensions corresponding to the GIT and GFIT.

Lx1 (mm) Lx2 (mm) Lx (mm) Ly (mm) fcut-off (kHz)
GIT (Jones et al. 2005) 203 609 812.8 51 3.38

GFIT (Primus et al. 2013) 203.2 812.8 1016 63.5 2.71

Table 6.1. Geometrical dimensions of the GIT and GFIT. The acoustical cut-off frequency is computed
through fcut-off = c0(2Ly)−1, with c0 =

√
γrT ' 344.32 m · s−1 (T = 295 K, γ = 1.4, and

r = 287.058 J · kg−1 ·K−1).

on the lower wall. A Pitot probe system enables to measure the base flow u0 at given cross-
sections. See (Jones et al. 2005, Fig. 2) and (Primus et al. 2013, Fig. 5) for visualizations of the
ducts.

Impedance identification methodology At each source frequency fs, pressure measure-
ments are taken on the lower wall y = 0 and used to identify the impedance value ẑid(j2πfs).
The inverse problem relies on the 2D convected Helmholtz equation

(∂t + u0∂x)2p− c2
0∆p = 0

derived from the LEEs (5.1) by taking a uniform base flow

u0 = c0Mavgex,

where Mavg is the measured average Mach number. Since the base flow is assumed uniform, the
IBC used for the identification is not (1.3), as considered in this dissertation, but the standard
Ingard-Myers boundary condition with uniform impedance and straight boundary: (Jones et al.
2005, Eq. 2)

−ẑid(s)∂np̂ = s

c0
p̂+ 2Mavg∂xp̂+

c0M
2
avg
s

∂2
xp̂.

Although in principle more accurate results could be obtained by using corrected versions of
the Ingard-Myers boundary condition (see Remark 5.2), the identified impedance ẑid has proven
satisfactory. Note that in addition to ẑid another impedance is identified, namely the exit
impedance enforced at the outlet x = L: this impedance is close to 1 since the exit is nearly
anechoic in the experiments.

Experimental data The material considered in the GFIT experiment is a MP liner made from
a honeycomb core (thickness lc = 38.1 mm, cell diameter dc = 9.5 mm) sandwiched between a
perforated facesheet (thickness lp = 0.8 mm, hole diameter dp = 0.3 mm, and porosity σp = 5 %)
and a rigid backplate. Impedance identifications have been done at an incident SPL of 120 dB
(chosen to minimize nonlinear effects), average Mach numbers in {0,0.180,0.271}, and frequencies
ranging from 0.4 kHz to 2.6 kHz by steps of 0.2 kHz. The GIT experiment focused on a ceramic
tubular liner (CT57) made from a ceramic tubular core (lc = 85.6 mm, dc = 0.6 mm, σc = 57 %)
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and a rigid backplate. The experimental data, partially reported in (Jones et al. 2005, Tabs. 1–9),
covers an incident SPL of 130 dB, average Mach numbers in {0,0.079,0.172,0.255,0.335,0.400},
and frequencies ranging from 0.5 kHz to 3 kHz by steps of 0.1 kHz. The 0.5 kHz data is excluded
since it is less reliable (Jones et al. 2005).

6.3.2 Numerical methodology

Discretization The discretization of the LEEs (5.1) is identical to that of Section 6.2. In all
of the computations, the CFL number is kept at 0.85, its maximum value with a hard wall (i.e.
the TDIBC does not reduce the time step). At the entry plane x = 0, a plane wave source is
imposed using the flux (A(nF )v)∗s defined by (6.17), while a non-reflecting boundary condition,
exact only for plane waves, is imposed at x = Lx using

(A(nF )v)∗out := A(nF )⊕v|T1 , (6.18)

where the notation of Figure 5.1 is used. Note that no exit impedance is considered, by contrast
with the impedance identification methodology used in (Jones et al. 2005; Primus et al. 2013).
The TDIBC is given by (6.15) and is weakly enforced with the B-flux (5.14,5.39) derived in
Section 5.3.3.

Base flow The chosen base flow is given by

u0 = c0M0(y)ex,

where y 7→ M0(y) is the hyperbolic velocity profile, proposed in (Rienstra and Vilenski 2008,
Eq. 4) and used in e.g. (Khamis and Brambley 2017, Eq. 2.4a),

M0(r) = Mc tanh
(1− |r|

δ

)
+Mc

[
1− tanh

(1
δ

)]1 + tanh
(

1
δ

)
δ

+ 1 + |r|

 (1− |r|) (6.19)

with r ∈ [−1, 1] and centerline Mach number given by

Mc = Mavg

δ ln
(
cosh

(
1
δ

))
+
[
1− tanh

(
1
δ

)] [1+tanh( 1
δ )

6δ + 2
3

] .
This velocity profile, depicted in Figure 6.4, has two parameters: the average Mach number
Mavg and the nondimensional boundary layer thickness δ ∈ (0, 1]. For δ = 1, the velocity profile
is almost identical to the Poiseuille profile

M0(r) = 3
2Mavg(1− r2) (r ∈ [−1, 1]).

More accurate alternatives to this velocity profile include using a turbulent eddy viscosity model
where M ′

0 is known analytically (Marx and Aurégan 2013, Eqs. 3-4), or, when possible, an
interpolation of the experimental flow. Using these other velocity profiles does not significantly
alter the presented results, but imply the use of a more refined mesh, hence why (6.19) is chosen
herein.

In both experiments, the identified impedance values exhibit a dependency on the grazing
base flow. In Sections 6.3.3 and 6.3.4, to account for this dependency, we follow a simple approach
inspired by the experimental study (Kirby and Cummings 1998), recalled in Section 1.2.3. The
grazing flow is considered as an additional parameter, so that the physical quantities found in
the acoustical model (6.1), such as lp or lc for instance, are tweaked when a base flow is present.
This empirical approach has been found to be sufficient to match the experimental results.
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Remark 6.5 (Base flow discretization). A characteristic of the employed DG implementation that
is relevant to highlight here relates to the discretization of the base flow, more specifically the
computation of the surface and line integrals involving the base flow u0. Our implementation,
described in Appendix F, exhibits an error when the base flow is not constant, known as a
polynomial aliasing error: the stronger the shear |M ′

0|, the larger the aliasing error. In principle,
the instability associated with this aliasing error can be reduced by decreasing the mesh size
or increasing the polynomial order, see (Hesthaven and Warburton 2008, § 5.3) and references
therein.

However, it is known that the LEEs with u0 6= 0 and an IBC can be unstable at certain
frequencies; herein, for example, such instability is encountered in the GIT around 1 kHz. At
such an unstable frequency, increasing the resolution of the spatial discretization reduces the
numerical dissipation, which destabilizes the numerical solution. Hence, in the presented results,
the mesh size and the value of δ result from an empirical trade-off between damping the physical
instability (if any) and damping the polynomial aliasing instability.

Post-processing A polychromatic source

ps(t) =
∑
fs∈I

sin(2πfst)

is used, and each frequency is then separated at the post-processing stage using a sixth-order re-
cursive band-pass filter designed and applied using the MATLAB R© Signal Processing ToolboxTM

(functions designfilt and filter). The filtered pressure signals are then used to compute root-
mean-square (RMS) values pRMS at each frequency and microphone locations along the bottom
wall. The decibel (dB) values are computed with

pdB = 20 log10(pRMS) + C,

where the constant C is chosen so that pdB(x = 0) matches the experimental value at the
reference microphone. (Since the numerical scheme is linear, decibel values are indeed defined
up to an additive constant.) The simulation is performed over 80 periods of the lowest frequency
and convergence of the RMS value is checked.

6.3.3 Grazing Flow Impedance Tube (GFIT)

Following the three-step methodology described in Section 6.1.3 discrete models β̃ are built to
match the values identified in the GFIT at Mavg = 0 and Mavg = 0.271, see Table 6.2.

Mavg = 0 case The physical model (6.1) with coefficients given by (6.3,6.5) provides a fair
initial point for the nonlinear least-squares optimization of step 1, the output of which is plotted
in Figure 6.5. The optimized model accounts for the resistance increase at 0.4 kHz and exhibits
a high frequency behavior close to that of the non-optimized model (not plotted), with anti-
resonances located around the approximate values

fn = nc0
2lc

.

The output of step 2, i.e. the discrete oscillatory-diffusive representation of the physical model
obtained using a linear least-squares optimization, is therefore satisfactory. In step 3, it is used
as an initial guess to build the final discrete model β̃A (the time delay τ̃ is not optimized)
shown in Figure 6.5. A large number of poles, namely three pairs of oscillatory poles sn and
two high frequency diffusive poles ξk, have been chosen to build a broadband approximation.
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The corresponding SPLs along the lower wall are given in Figure 6.6 for two choices of Nψ

to illustrate the impact of the delay discretization: a value of Nψ = 4 is sufficient here. The
agreement with experimental pressure measurements is satisfactory, the largest error occurring
at 1.4 kHz. However, based on the plot of |β̂id| given at the bottom left of Figure 6.5, this point
appears to be an outlier. To confirm this, the SPLs obtained with the identified impedance values
are also given. They are computed using six proportional-integral-derivative (PID) impedance
models

ẑPID,i(s) = d0,is
−1 + d1,i + d2,is

zPID,i(t) = d0,iH(t) + d1,i δ(t) + d2,i δ
′ (i ∈ J1, 6K) ,

each chosen so that
ẑPID,i(j2πfi) = ẑid(j2πfi).

The plot shows that at 1.4 kHz the tuned PID model also exhibit a significant error.
Remark 6.6 (Time-domain computation of PID models). The time-domain computation of the
first two terms of the convolution zPID,i ? u, namely

(d0,iH + d1,i δ) ? u

is done using one additional variable exactly as in (6.15) with τ̃ = 0, i.e.

(d0,iH + d1,i δ) ? u(t) = d0,iϕ(t, 0) + d1,i u(t).

The remaining derivative term is interpreted as a strong derivative, i.e.

δ
′
? u(t) = du

dt (t), (6.20)

which is already computed by the employed time-integration scheme so that only a modification
of the global mass matrix “M” is required, see Appendix F. Note that, mathematically, δ′ ? u is
the weak derivative of u so that the identity (6.20) requires u(0) = 0, see (A.4).

Mavg = 0.271 case The identified values exhibit a strong resistance increase compared to
the no flow case. Here, step 1 requires some care: the optimization of the physical model
coefficients (6.1) is strongly dependent on the initial point, in stark contrast to the other three
cases considered in this paper. A contributing factor to this sensitivity is the lack of anti-
resonance in the experimental data, which stops at 2.6 kHz. Figure 6.7 plots an optimized
model that exhibits two anti-resonances, obtained by doubling lc in the initial guess (6.1,6.3,6.5).
Additional experimental data would be needed to validate this model above 2.6 kHz. This
sensitivity is also exhibited by step 3. If the time delay τ̃ is optimized, it is greatly reduced
(i.e. τ̃ � τ) thus modifying the high frequency behavior. To illustrate this point, Figure 6.7
shows two discrete models. The model β̃C is obtained by keeping lc to its physical value in the
initial guess of step 1, choosing only one pair of oscillatory poles sn in step 2, and optimizing on
τ̃ in step 3. It provides an adequate approximation of the experimental data but a poor high
frequency behavior, linked to its negligible delay τ̃ ' τ/54. The model β̃B is obtained by using
the physical model shown in Figure 6.7 during step 1, choosing three pairs of oscillatory poles
sn and one high frequency diffusive pole ξk in step 2, and keeping τ̃ constant in step 3.

Figure 6.8 plots the computed SPL distributions. The dotted curves enable to check the
relevance of the identified impedance values. The strongest disparities are obtained below 1 kHz
where the measurements suggest the presence of a longitudinal resonance not modeled with our
non-reflecting outlet, also noticeable in the no flow case, see Figure 6.6. At these low frequencies,
the fidelity of the SPLs obtained with β̃B and β̃C is therefore bound to be limited. Although the
TDIBC B is significantly more expensive than C, both lead to similar SPLs with no significant
discrepancies. The time delay of β̃C is negligible on the considered frequency range so that the
minimal value Nψ = 2 is already too large, as shown by the value of PPWτ̃ .
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Figure 6.5. Impedance ẑ and reflection coefficient β̂. ( ) ẑid/z0 identified with the methodology de-
scribed in Section 6.3.1. MP liner in the GFIT at Mavg = 0 and 120 dB. (Primus et
al. 2013, Fig. 12) ( ) ẑMP/z0 (6.1) with optimized coefficients σ−1

p a0 = 2.221 × 10−14,
σ−1
p a1/2 = 2.518 × 10−3 s1/2, σ−1

p a1 = 3.408 × 10−5 s, σ−1
c = 1.107, b0 = 1.750 × 10−2,

b1/2 = 2.321 × 10−4 s1/2, and b1 = 1.037 × 10−4 s; time delay τ = 2b1 = 2.075 × 10−4 s.
( ) TDIBC ˆ̃βA: Nϕ = 8 poles (Nξ = 2, Ns = 6), (2π)−1 max(ξk, |sn|) = 1.008× 101 kHz,
and τ̃ = 2.075× 10−4 s. (This curve assumes that the time delay term e−2πjfτ̃ is perfectly
approximated, see Remark 2.46.)

6.3.4 Grazing Incidence Tube (GIT)

Mavg = 0 case Step 1 delivers an adequate set of coefficients for the physical model (6.1), see
Figure 6.9. The model β̃D is obtained by choosing the first two pairs of oscillatory poles sn in
step 2 and optimizing the time delay τ̃ in step 3 (although it can be kept constant as well). The
slight decay of the physical model at high frequency is linked to a small but non-null diffusive
part that can be captured by adding diffusive poles ξk to β̃D. However, this is not needed here
in view of the computed SPLs shown in Figure 6.10. Compared to the MP liner considered in
Section 6.3.3, both a higher delay and a higher maximum frequency lead to a sensible increase
in Nψ.

Mavg = 0.4 case The identified impedance values display a very low resistance within [0.7, 1.1] kHz
and the shape of |β̂id| suggests the presence of noise in the data, see the bottom left of Figure 6.11,
as one may expect due to the high value of Mavg. The output of step 1 is sensitive to the chosen
experimental points since the physical model (6.1) cannot fit both the low and high resistance
regions, namely [0.7, 1.1] kHz and [2.3, 3] kHz. However, step 1 is not sensitive to the initial guess
provided that the chosen data points cover the anti-resonance. Additionally, the 1 kHz value is
best removed since it leads to an instability with the LEEs as shown in the dotted curve at the
top right of Figure 6.12, and investigated in (Burak et al. 2009, §VI.B.2). (Including the 1 kHz
point in the optimization process has been found to systematically lead to an unstable pole, i.e.
<(sn) > 0 or ξk < 0.) Due to the shortcomings of the physical model, step 3 has a tendency to
overfit the experimental data, so that we do not optimize on the delay τ̃ during step 3.

The discrete model β̃E , plotted in Figure 6.11, is obtained by using only 2 oscillatory poles
sn and excluding the data points in/at [0.7, 0.8], [1, 1.4], 1.8, and [2.1, 2.3] kHz. Figure 6.12
shows that β̃E compares favorably to the experimental pressure measurements. The increased
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Figure 6.6. RMS values of acoustic pressure pRMS on the lower wall y = 0 (see Figure 6.4). DG4-
RKF84-B-flux on 110 triangles (1100 nodes), CFL = 0.85. ( ) TDIBC β̃A with Nψ = 4
so that PPWτ̃ (2.6 kHz) = 7.42. ( ) TDIBC β̃A with Nψ = 2 so that PPWτ̃ (2.6 kHz) =
3.71. ( ) Six proportional–integral–derivative TDIBCs β̃PID, each matching the identified
impedance at one frequency only. ( ) MP liner in the GFIT at Mavg = 0 and 120 dB.
(Primus et al. 2013)
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Figure 6.7. Impedance ẑ and reflection coefficient β̂. ( ) ẑid/z0. MP liner in the GFIT at Mavg =
0.271 and 120 dB. (Primus et al. 2013) ( ) ẑMP/z0 (6.1) with optimized coefficients
σ−1
p a0 = 2.220× 10−14, σ−1

p a1/2 = 2.220× 10−14 s1/2, σ−1
p a1 = 2.220× 10−14 s, σ−1

c = 2.116,
b0 = 2.220 × 10−14, b1/2 = 7.67 × 10−3 s1/2, and b1 = 8.494 × 10−5 s; τ = 1.699 × 10−4 s.
( ) TDIBC ˆ̃βB : Nϕ = 7 poles (Nξ = 1, Ns = 6), (2π)−1 max(ξk, |sn|) = 1.203 ×
101 kHz, and τ̃ = 1.699 × 10−4 s. ( ) TDIBC ˆ̃βC : Nϕ = 2 poles (Nξ = 0, Ns = 2),
(2π)−1 max(ξk, |sn|) = 1.136 kHz, and τ̃ = 3.101×10−6 s. (The last two curves assume that
the time delay term e−2πjfτ̃ is perfectly approximated, see Remark 2.46.)

resistance at 1 kHz compared with the identified value reduces the instability, although not
enough to fit the experiment. The discrepancy at 3 kHz, since it is also obtained with the
identified value, could be explained by the presence of higher-order modes in the experiment,
which can be assessed using the cut-off frequency of a hard walled duct with uniform flow, given
by

c0(2Ly)−1
√

1−M2
avg = 3.01 kHz.

The discrete model β̃F is obtained by excluding the data points in/at [0.7, 1.2], 1.8, and
[2.1, 2.3] kHz. Compared to β̃E , the addition of one pair of oscillatory poles sn and two high
frequency diffusive poles ξk leads to an overfit that significantly alter the high frequency behavior,
see Figure 6.11. However, the corresponding SPLs are satisfactory, especially at 3 kHz. Since
the delay of both models is close, they share a common value of Nψ.
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Figure 6.8. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 326
triangles (3260 nodes), CFL = 0.85. Base flow (6.19) withMavg = 0.271 and δ = 0.2. ( )
TDIBC β̃B with Nψ = 3 so that PPWτ̃ (2.6 kHz) = 6.79. ( ) TDIBC β̃C with Nψ = 2
so that PPWτ̃ (2.6 kHz) = 248. ( ) Six TDIBCs β̃PID with δ = 0.25. ( ) MP liner in the
GFIT at Mavg = 0.271 and 120 dB. (Primus et al. 2013)
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Figure 6.9. Impedance ẑ and reflection coefficient β̂. ( ) ẑid/z0. CT57 liner in the GIT at Mavg = 0
and 130 dB. (Jones et al. 2005) ( ) ẑCT/z0 (6.1) with optimized coefficients σ−1

c = 1.728,
b0 = 1.161 × 10−1, b1/2 = 3.413 × 10−3 s1/2, and b1 = 2.207 × 10−4 s; τ = 4.412 × 10−4 s.
( ) TDIBC ˆ̃βD: Nϕ = 4 poles (Nξ = 0, Ns = 4), (2π)−1 max(ξk, |sn|) = 5.432 kHz,
and τ̃ = 4.799× 10−4 s. (This curve assumes that the time delay term e−2πjfτ̃ is perfectly
approximated, see Remark 2.46.)

(s̃n,−ξ̃k)n,k
(
rad.s−1) r̃1,n, µ̃1,k r̃2,n, µ̃2,k

β̃A β̃∞ =1 τ̃ =2.074709e-04 s
-9.425004e+04 4.399745e+05 -3.301477e+05
-1.005288e+05 -4.844596e+05 3.648366e+05

-6.590198e+03+8.091231e+03i -3.316669e+03+1.245272e+03i 3.034471e+03-1.360501e+03i
-3.313575e+03+3.441899e+04i -2.597563e+03+2.012662e+03i 2.246072e+03-1.972699e+03i
-2.074806e+03+6.332235e+04i -2.161554e+03+1.610479e+03i 1.750988e+03-1.684290e+03i

β̃B β̃∞ =1 τ̃ =1.698885e-04 s
-4.397915e+04 -3.896423e+04 9.305033e+03

-9.339632e+03+8.499373e+03i -2.058287e+03-2.722431e+03i -1.203382e+03-2.923788e+03i
-1.645826e+04+3.974646e+04i -7.781838e+03-3.535171e+03i -8.796038e+02+3.204374e+02i
-2.106499e+04+7.256816e+04i -1.507929e+04-1.588215e+04i -1.536644e+03+7.662377e+02i

β̃C β̃∞ =1 τ̃ =3.100751e-06 s
-5.748740e+03+4.228554e+03i -1.010084e+05+2.101821e+05i 1.005155e+05-2.103401e+05i

β̃D β̃∞ =0.5 τ̃ =4.799390e-04 s
-3.816516e+03+4.734560e+03i -7.194232e+02-5.447907e+02i 1.625807e+03+9.996580e+01i
-2.765741e+04+2.000290e+04i -7.179701e+03-7.336684e+03i 1.614688e+04+1.930627e+04i

β̃E β̃∞ =0.7 τ̃ =5.099183e-04 s
-9.424902e+04+3.641784e+04i -7.932877e+04-1.495889e+05i 5.737738e+04+8.853810e+04i

β̃F β̃∞ =5.888134e-01 τ̃ =5.217335e-04 s
-6.414157e 9.506538e+04 -1.096633e+04

-2.051627e+04 -1.320127e+05 1.486746e+04
-4.849574e+03+6.072352e+03i -1.457643e+03+3.397179e+04i 5.526842e+02+7.586494e+02i
-6.618336e+03+1.885015e+04i 3.599154e+03+3.495625e+03i -4.862369e+02+5.032293e+02i

Table 6.2. TDIBCs (6.11) obtained in Section 6.3. Only poles in the upper half-plane {s | =(s) ≥ 0} are
given (the full set is obtained by complex conjugation).



6.3. Aeroacoustical duct 165

0 0.2 0.4 0.6 0.8110

120

130

140

SP
L
(d
B
)

0.6 kHz – Mavg = 0

0 0.2 0.4 0.6 0.860
80

100
120
140 1 kHz – Mavg = 0

0 0.2 0.4 0.6 0.8110

120

130

140

SP
L
(d
B
)

1.5 kHz – Mavg = 0

0 0.2 0.4 0.6 0.8120

125

130

135 2 kHz, Mavg = 0

0 0.2 0.4 0.6 0.8110

120

130

140

x (m)

SP
L
(d
B
)

2.5 kHz – Mavg = 0

0 0.2 0.4 0.6 0.8

100

120

140

x (m)

3 kHz – Mavg = 0

Figure 6.10. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 52
triangles (520 nodes), CFL = 0.85. ( ) TDIBC β̃D withNψ = 8 so that PPWτ̃ (3 kHz) =
5.56. ( ) TDIBC β̃D with Nψ = 6 so that PPWτ̃ (3 kHz) = 4.17. ( ) Six TDIBCs
β̃PID with CFL = 0.84. ( ) CT57 liner in the GIT at Mavg = 0 and 130 dB. (Jones et al.
2005, Tab. 3)
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Figure 6.11. Impedance ẑ and reflection coefficient β̂. ( ) ẑid/z0. CT57 liner in the GIT at Mavg = 0.4
and 130 dB. (Jones et al. 2005) ( ) ẑCT/z0 (6.1) with optimized coefficients σ−1

c = 1.398,
b0 = 1.442 × 10−1, b1/2 = 1.956 × 10−3 s1/2, and b1 = 2.550 × 10−4 s; τ = 5.099 × 10−4 s.
( ) TDIBC ˆ̃βE : Nϕ = 2 poles (Nξ = 0, Ns = 2), (2π)−1 max(ξk, |sn|) = 1.608 ×
101 kHz, and τ̃ = 5.099 × 10−4 s. ( ) TDIBC ˆ̃βF : Nϕ = 6 poles (Nξ = 2, Ns = 4),
(2π)−1 max(ξk, |sn|) = 3.180 kHz, and τ̃ = 5.217 × 10−4 s. (The last two curves assume
that the time delay term e−2πjfτ̃ is perfectly approximated, see Remark 2.46.)
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Figure 6.12. RMS values of acoustic pressure pRMS on the lower wall y = 0. DG4-RKF84-B-flux on 106
triangles (1060 nodes), CFL = 0.85. Base flow (6.19) with Mavg = 0.4 and δ = 0.2. ( )
TDIBC β̃E with Nψ = 8 so that PPWτ̃ (3 kHz) = 5.23. ( ) TDIBC β̃F with Nψ = 8 so
that PPWτ̃ (3 kHz) = 5.11. ( ) Six TDIBCs β̃PID with δ = 0.26. ( ) CT57 liner in the
GIT at Mavg = 0.4 and 130 dB. (Jones et al. 2005, Tab. 8)





Conclusion

Summary

The summary of this dissertation is provided below as answers to the questions formulated in
the introduction.

(a) What is the mathematical structure of physical impedance models?

This question has been answered in two steps, each one corresponding to a chapter in Part I.
Section 1.1 defined admissibility conditions for both linear and nonlinear IBCs using system

theory, where many strong results are available, such as Proposition 1.8 and 1.14. These two
propositions mean that the admissibility of a linear IBC is fully characterized by its Laplace
transform, which must be either positive-real (impedance ẑ and admittance ŷ) or bounded-real
(reflection coefficient β̂).

Linear physical models for acoustical liners, recalled in Section 1.2, turn out to have irra-
tional Laplace transforms as they exhibit terms such as

√
s or coth

√
s, linked to visco-thermal

dissipation, see e.g. (1.19) and (1.25). The derivation of time-local realizations of these mod-
els has been carried out in Section 2.4, by relying on the representation theorems derived in
Section 2.1.2 whose application has been illustrated in Section 2.1.4 on basic examples. The
derived realizations, see e.g. (2.62) for the CT liner model, consists in the composition of two
components:

• a realization of the oscillatory-diffusive parts of the model through an ODE on an infinite
dimensional state ϕ, see Section 2.1.3;

• a realization of the time delay through a monodimensional transport equation on ψ, re-
called in Section 2.3.

An intuitive physical interpretation of each component has been provided in Table 2.1.

(b) How does the IBC (1) affect well-posedness and stability?

The discussion of well-posedness and stability has been done in Part II using energy methods.
The definition of classes of boundary conditions suitable for the LEEs has been discussed

in Chapter 3 using the theory of Friedrichs system. IBCs that are admissible in the sense of
Section 1.1 naturally yield a priori energy estimates in spacetime, which gives uniqueness. The
literature review carried out in Section 3.2 has shown that although these estimates are indeed
a crucial part of existing proofs of well-posedness, they are theoretically not sufficient since
additional technical conditions are required. Section 3.4 has highlighted that these conditions
exclude non-smooth geometries such as the flow duct considered in the applications of Chapter 6,
even with an elementary proportional IBC. However, these technical difficulties stem from the
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presence of a base flow, i.e. from the current state of the theory of Friedrichs systems, not from
the proposed definition of admissible IBC.

Chapter 4 has dealt with the no flow case, i.e. the wave equation, where the focus is on
the IBC. The asymptotic stability of the multidimensional wave equation coupled with the IBC
(4.4), which consists in the addition of distinct physically-motivated positive-real components,
has been proven. The method of proof consists in formulating an abstract Cauchy problem on
an extended state space using a realization of the impedance, be it finite or infinite-dimensional.
The asymptotic stability of the corresponding strongly continuous semigroup of contractions is
then obtained by verifying the sufficient spectral conditions of the ABLV theorem.

(c) How to discretize an IBC?

Our answer to this question is spread out over Parts I and III. Let us first recall that, following
the terminology introduced in Section 1.3, a discrete TDIBC consists of three components:

1. a discrete impedance model;

2. a numerical algorithm used to evaluate the said discrete model;

3. a coupling method with the considered PDE.

Our answer for each component is as follows.

1. In Section 2.4, discrete models have been derived from the representation of physical models
of acoustical liners. For example, the representation (2.61) of the CT liner model has led
to the discrete model (2.63), which can be interpreted as a delayed multipole model. This
derivation has led us to formulating the following remarks.

• The presented analysis sheds a light on the meaning and applicability of existing
multipole models, which so far were only postulated in the literature. The physical
interpretation of each component of the discrete model, namely the time delay and
the oscillatory-diffusive part, has been given in Table 2.1.

• Practically, the presented analysis suggests an elementary way of computing the poles
and the weights of a derived multipole model, using the methods given in Section 2.2.

• As a rule, a different physical model is likely to lead to a different discrete model. This
contrasts with a one-size-fits-all approach, where one numerical model is postulated
and applied regardless of the material considered.

2. The time-domain computation of the discrete model is done by composing a set of ODEs
with a transport equation, which respects the mathematical structure of the model, dis-
cussed above in (a). For the discretization of the time delay a criterion based on the PPW
(6.14) has proven to be relevant.

3. The analysis given in Section 5.3 has shown the computational interest of a numerical flux
based on the scattering operator B (1.14), namely the so-called B-flux (5.14,5.39), over
fluxes based on the impedance and admittance, namely the Z-flux (5.14,5.35) and the
Y-flux (5.14,5.37). This has been illustrated in Chapter 6 with Figure 6.3 that shows the
impact of the incident SPL on the maximum CFL number for an algebraic nonlinear IBC.
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(d) What about nonlinear absorption mechanisms?

In Section 1.1, nonlinear definitions of the impedance, admittance, and scattering operator
have been given. The standard nonlinear perforation impedance model has been recalled in
Section 1.2.3 and the computation of the associated admittance and scattering operators has
been discussed in Section 2.4.2. In the algebraic case (2.73), the corresponding admittance and
scattering operators are given by (2.74) and (2.75). These expressions have been used used in a
numerical impedance tube in Section 6.2, thus showing the relevance of the proposed definitions.

Outlook

We list below some topics for future research that arise from this dissertation.

Physical modeling

The present work shows that TDIBCs benefit from physical knowledge about the impedance.
This calls for additional investigations into the suitability of available models in the presence
of grazing flow and broadband sources, as well as the inclusion of uncertainties during both
identification and simulation.

Additionally, the physical relevance of using a nonlinear impedance model with the LEEs
could be investigated, by comparison with experimental data gathered in an impedance tube at
high SPL.

Representation of acoustical models

The analysis of Section 2.4.1 has focused on the models (2.58,2.70), which can be interpreted
as high or low frequency approximations of (1.19,1.25), see e.g. (1.20,1.26). These approxima-
tions are accurate enough in practice, see Figure 1.5. However, whether the complete models
(2.58,2.70) admit a computationally relevant time-domain representation remains unanswered.

TDIBC for DDOF liners

Appendix B has provided the OD representation of an impedance model for DDOF liners,
following the methodology laid out in Section 2.4. However, none of the derived representations
have been used in the numerical applications of this dissertation. These representations could
serve as a basis to build a TDIBC suited to DDOF liners.

TDIBCs using Convolution Quadrature

In this dissertation, we have derived multipole models, possibly delayed, from the OD represen-
tation of physical models. When such a representation is not available, the convolution can still
be computed with the sole knowledge of the Laplace transform using the Convolution Quadra-
ture algorithm (Lubich and Ostermann 1993), see (Hiptmair et al. 2014; Sauter and Schanz
2017). This could constitutes an alternative to multipole models.

Quadrature-based discretization of diffusive representations

The main drawback of the quadrature method proposed in Definition 2.44, as well as any other
existing quadrature-based discretization method, is that it does not apply to OD kernels whose
diffusive weight µ is less well-behaved, for instance with sharp variations or oscillations, as
encountered in e.g. Lemma 2.28 for a1 � a 1

2
, Lemma 2.30, and Lemma 2.37. In these cases, any
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method that solely relies on change of variables and quadrature rules breaks down. In principle,
circumventing this issue would require to use an adaptative strategy or a method suited to
oscillatory integrals. Since MATLAB R© integral (Shampine 2008) is able to accurately compute´
e−ξtµ(ξ)dξ for most of the cases encountered in this chapter, an adaptive quadrature algorithm

possibly combined with splitting the integration domain may provide a satisfactory answer.

Computation of an integro-differential scattering operator

The nonlinear numerical applications presented in Section 6.2 are restricted to the algebraic
scattering operator (2.75), which corresponds to the impedance operator (2.73). For the general
case (2.76), formulas (2.78) and (2.79) have been proposed but not considered. The numerical
application of these formulas constitutes a perspective of this work.

IBCs with other PDEs

The last two parts of this dissertation have focused on the LEEs.
In the flow duct application presented in Section 6.3, there would be a computational benefit

in considering the linearized Navier-Stokes equations instead, since this would mitigate the
instabilities encountered at some frequencies. Doing so requires to deal with the diffusion term
at the boundary, which is well-known.

The full Navier-Stokes equations should be considered for applications where hydrodynamic
phenomena cannot be neglected, such as close to a supersonic fan tip where shocks occur (Astley
et al. 2011, § 5.3) or for flow control. For example, the interaction between an impedance wall and
a turbulent boundary layer has received scrutiny in recent works such as (Scalo et al. 2015) and
(Olivetti et al. 2015). A challenge when dealing with the Navier-Stokes equations is the filtering
of the perturbation at the boundary: the impedance models recalled in Section 1.2 apply a priori
only to acoustic waves, so that in practice one may desire to separate the “turbulent part” of the
perturbation from its “acoustic part”. If this filtering is done with a linear time-domain filter Ψ,
it can be interpreted as modifying the impedance through

z → Ψ ? z,

so that the IBC (1.3) stays locally reacting and it is admissible if and only if Ψ̂ẑ is a positive-real
function. However, if the filter Ψ has a spatial dependency (e.g. a dependency on a spatial wave
number k), then it breaks the locally reacting nature of the IBC.

Asymptotic stability of wave equation with an IBC

Chapter 4 has focused on the asymptotic stability of the wave equation coupled with admissi-
ble IBCs drawn from physical models, namely rational impedance in Section 4.3, time-delayed
impedance in Section 4.4, standard diffusive impedance (e.g. fractional integral) in Section 4.5,
and extended diffusive impedance (e.g. fractional derivative) in Section 4.6. Finally, the invari-
ance of the derived asymptotic stability results under the addition of a derivative term in the
impedance has been discussed in Section 4.7. The proofs crucially hinge upon the knowledge of
a dissipative realization of the IBC, since it employs the ABLV theorem. By combining these
results, asymptotic stability has been obtained for the impedance ẑ introduced in Section 4.1 and
given by (4.4). This suggests the following perspective of this work, formulated as a conjecture.

Conjecture 6.7. Assume ẑ is positive-real, without isolated singularities on jR. Then the
Cauchy problem (4.2,4.3) is asymptotically stable in a suitable energy space.
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The substitution of “rational positive-real” for “positive-real” yields the result of Section 4.3.
Establishing this conjecture using the method of proof used in Chapter 4 entails building a
dissipative realization of the impedance operator u 7→ z ? u, i.e. using a suitable infinite-
dimensional variant of the positive-real lemma recalled in Theorem 4.22, for instance (Staffans
2002, Thm. 5.3). This result would be sharp, in the sense that is known that exponential stability
is not achieved in general (consider for instance ẑ(s) = 1/

√
s that induces an essential spectrum

with accumulation point at 0, see Remark 4.49). If this conjecture proves true, then the rate of
decay of the solution could also be studied and linked to properties of the impedance ẑ.

To illustrate this conjecture, let us give two examples of positive-real impedance kernels that
are not covered by the results of Chapter 4. Both examples arise in physical models and have
been used in the numerical applications. The first example is a kernel similar to (4.4), namely

ẑ(s) = z0 + zτe
−τs + z1s+ Ẑ(s) +

ˆ ∞
0

µ(ξ)
s+ ξ

dξ (<(s) > 0) ,

where τ > 0, zτ ∈ R, z0 ≥ |zτ |, z1 > 0, Ẑ is a positive-real and proper rational function, and
the weight µ ∈ C∞((0,∞)) satisfies the condition

ˆ ∞
0

|µ(ξ)|
1 + ξ

dξ <∞

and is such that ẑ is positive-real. When the sign of µ is indefinite the passivity condition (4.65)
does not hold, so that this impedance is not covered by the presented results despite the fact
that, overall, ẑ is positive-real with a realization formally identical to that of the impedance
(4.4) defined in Section 4.1.

The second and last example is

ẑ(s) = z0 + zτ
e−τs√
s
,

with zτ ≥ 0, τ > 0, and z0 ≥ 0 sufficiently large for ẑ to be positive-real, specifically

z0 ≥ −zτ cos(x̃+ π

4 )
√
τ/x̃

where x̃ ' 2.13 is the smallest positive root of

x 7→ tan(x+ π

4 ) + 1
2x.

A simple realization can be obtained by combining Sections 4.4 and 4.5, i.e. by delaying the
diffusive representation using a transport equation: the convolution then reads, for a causal
input u,

z ? u = z0u+ zτ

ˆ ∞
0

χ(t,−τ, ξ) dµ(ξ),

where ϕ and µ are defined as in Section 4.5, and for a.e. ξ ∈ (0,∞) the function χ(·, ·, ξ) obeys
the transport equation (4.41ab) but with χ(t, 0, ξ) = ϕ(t, ξ). So far, the author has not been able
to find a suitable Lyapunov functional (i.e. a suitable definition of ‖ · ‖H) for this realization.
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The purpose of this appendix is to justify why in this dissertation the Laplace transform is
used instead of the Fourier transform, often encountered in acoustical works. The first two

sections gather key definitions and properties from distribution theory: Section A.1 recalls the
common spaces of distributions and the basic properties of the convolution while Section A.2
covers the Fourier and Laplace transforms. The next two sections illustrate the differences
between the Fourier and Laplace transforms on examples of interest in acoustics: the expression
of physical models in Section A.3 and the formulation of admissibility conditions in Section A.4.
Lastly, Section A.5 proves a convergence result used in the representation theorems of Chapter A.

A.1 Distribution theory

Introductions to distribution theory can be found in the following references.

• The translated book (Schwartz 1966) is aimed at physicists and cover, among other topics,
distribution theory including the definitions and properties of the Fourier and Laplace
transforms.

• The book (Dupraz 1977), only available in French, is similar and also covers both the
Fourier and Laplace transforms, with an interest in signal processing.

• The references (Zemanian 1965) and (Beltrami andWohlers 1966) cover distribution theory
with applications to the theory of passive linear systems. (As such, they have been cited
many times in Section 1.1.)
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• (Gasquet and Witomski 2000) and its translation (Gasquet and Witomski 1999) cover
distribution theory including the Fourier transform, with a focus on applications to filtering
and signal processing.

• The untranslated book (Bony 2001) covers distribution theory including the Fourier trans-
form, with applications to multidimensional PDEs.

These references cover the elements of distribution theory needed in this dissertation. More in-
depth treatments are available in (Hörmander 1990; Schwartz 1978). The purpose of this section
is to introduce the notations and spaces used in this dissertation; we refer to the references above
for proofs and details.

Definition

The space of distributions of a real variable is denoted D′(R) and is defined as the topological
dual of C∞0 (R) (the notation comes from the fact that C∞0 (R) is also denoted D(R)). The
topology on C∞0 (R) relies on the theory of locally convex spaces, but in practice the following
sequential characterization of continuity often suffices:

un
D′ (R)−−−→
n→∞

u ⇔ ∀ϕ ∈ C∞0 (R), un (ϕ) C−−−→
n→∞

u(ϕ).

The quantity un(ϕ) is commonly denoted using the duality bracket

un (ϕ) = 〈un, ϕ〉D′ (R),C∞0 (R) ,

which is useful to indicate in which spaces both quantities belongs. The simplest, and historical,
example of distribution is the Dirac distribution δ defined as

〈δ, ϕ〉D′ (R),C∞0 (R) := ϕ(0), (A.1)

whose shifted variant is
〈δ(· − τ), ϕ〉D′ (R),C∞0 (R) = ϕ(τ).

These identities can also be understood by viewing δ as a discrete measure. Any locally integrable
function u ∈ L1

loc(R) defines a distribution, also denoted u with a slight abuse of notation, such
that

〈u, ϕ〉D′ (R),C∞0 (R) =
ˆ
R
u(t)ϕ(t) dt.

This implies that non locally integrable functions such as x 7→ 1
x do not define distributions

directly, which leads to the definitions of the Cauchy principal value and Hadamard finite part.

Spaces

The three following subspaces of D′(R) are encountered in this dissertation.

• E ′(R), topological dual of C∞(R), is the space of compactly supported distributions. It
contains for example δ and any locally integrable function with compact support. (The
notation comes from the fact that C∞(R) is also denoted E(R).)

• The second subspace of interest is S ′(R), the space of tempered distributions. Intuitively,
it contains distributions that grows at most like a polynomial at infinity. For example,
any polynomial is tempered, t 7→ e−tH(t) is tempered, but t 7→ e−t is not tempered. The
notation comes from the fact that the space of tempered distributions is the topological
dual of S(R), a subspace of C∞(R) known as the Schwartz space.
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• The third space is D′+(R), the space of causal distributions, i.e. of distributions whose
support in included in [0,∞). Any locally integrable function such that u(t) = 0 for a.e.
t < 0 is a causal distribution.

Differentiation

A differentiation can be defined on D′(R) using the usual differentiation on C∞0 (R) through〈
u(n), ϕ

〉
D′ (R),C∞0 (R)

:= (−1)n
〈
u, ϕ(n)

〉
D′ (R),C∞0 (R)

(n ∈ N) . (A.2)

Therefore, since functions in C∞0 (R) are infinitely differentiable, every distribution is infinitely
differentiable. The simplest of example is the Dirac distribution, whose successive derivatives
are given by 〈

δ(n), ϕ
〉
D′ (R),C∞0 (R)

= (−1)n ϕ(n)(0),

and which is the derivative of the Heaviside function H, i.e.〈
H
′
, ϕ
〉
D′ (R),C∞0 (R)

= −
〈
H,ϕ

′〉
D′ (R),C∞0 (R)

= ϕ(0) = 〈δ, ϕ〉D′ (R),C∞0 (R) .

The differentiation defined by (A.2), known as the weak differentiation, is a generalization of
the usual, strong differentiation in the following sense: if a locally integrable function f has a
strong derivative (i.e. a derivative in the usual sense), then it admits a weak derivative and both
coincides.

A locally integrable function always admits an infinite number of weak derivatives, even
though it may not be differentiable in the strong sense. This is the case for causal functions,
which are encountered throughout the dissertation. Let u ∈ L1

loc([0,∞)) be a causal function
that is C1 on [0,∞). We can write u as

u(t) = φu(t)H(t) (t ∈ R) ,

where φu ∈ C1([0,∞)). The strong derivative of u is not defined on R but only on R∗ and is
given by

du
dt (t) =

[dφu
dt (t)

]
H(t) (t ∈ R∗) . (A.3)

By contrast, the weak derivative is well-defined in D′(R) and is given by

u
′ =

[dφu
dt

]
H + φu(0+)δ.

For convenience, we write this identity with a slight abuse of notation, namely

u
′(t) = du

dt (t) + u(0+)δ(t) (t ∈ R) , (A.4)

which emphasizes the difference between the strong and weak derivatives for a causal function u.
If u(0+) = 0 then the weak derivative u′ is a function that coincides with the strong derivative
du
dt . If u(0+) 6= 0, then u

′ is not a function anymore: the differentiation of u incurs a loss of
regularity. The difference between these two derivatives has practical implications, particularly
when using properties of the convolution product. In this case, we will see that ignoring the
Dirac term in the right-hand side of (A.4) can lead to mistakes.
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Example A.1 (First-order kernel). To illustrate formula (A.4), let us take the example of the
causal kernel eξ defined by (2.3) and that is used repeatedly in this dissertation. Since eξ is not
continuous at 0, its strong derivative is only defined on R∗ as

deξ
dt (t) = −ξeξ(t) =

{
−ξe−ξt (t > 0)

0 (t < 0)
(t ∈ R∗) . (A.5)

However, since eξ is locally integrable on R, it belongs toD′(R) and is thus infinitely differentiable
in D′(R) with first and second weak derivatives given by

e
′
ξ(t) =

(
e−ξtH(t)

)′
=
(
e−ξt

)′
H(t) +

(
e−ξt

)
H
′(t) = −ξeξ(t) + δ(t) (A.6)

e
(2)
ξ (t) = −ξe′ξ(t) + δ

′(t) = ξ2eξ(t)− ξδ(t) + δ
′(t).

Note that each differentiation induces a loss of regularity on the kernel, due to the Dirac terms:
starting from a locally integrable function eξ, e

(n)
ξ is a distribution of order n.

Convolution

If z and u both belong to L1(R), their convolution product is defined as (Gasquet and Witomski
1999, Chap. 20)

z ? u(t) =
ˆ
R
z(t− τ)u(τ) dτ (t ∈ R) , (A.7)

and is a L1(R) function such that

‖z ? u‖1 ≤ ‖z‖1‖u‖1.

If additionally both z and u are causal then (A.7) reduces to

z ? u(t) =
ˆ t

0
z(t− τ)u(τ) dτ (t ∈ R) , (A.8)

so that z ?u is also causal. The identity (A.8) also holds for z and u causal and locally integrable
on [0,∞), in which case z ? u is also causal and locally integrable on [0,∞).

The convolution product defined above can be extended to the space of distributions either
by using the multiplication of distributions � or by density: the definition can be found in the
references given above. In this dissertation, we will exclusively use the convolution product in
D′+(R), which enjoys the following elementary properties:1

• if z, u ∈ D′+(R), then z ? u exists and lies in D′+(R),

• the convolution in D′+(R) is commutative, associative, with identity element δ, i.e.

δ ? u = u.

A fundamental property of the convolution is its behavior under weak differentiation, namely

(z ? u)(n) = z(n) ? u = z ? u(n), (A.9)

1The space
(
D

′
+(R),+, ?

)
is a commutative ring. However, it is not a field since, for z ∈ D

′
+(R) given, the

convolution equation z ? u = δ may not have a causal solution u. Consider e.g. δ(· − τ) ? δ(·+ τ) = δ.
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which implies another expression of the n-th weak derivative:

δ(n) ? u = u(n). (A.10)

It is crucially important to note that in general (A.9) holds true only for the weak derivative. If
u ∈ L1

loc ([0,∞)) is a causal function, we have using (A.4) that

(z ? u)′ = z ? u
′ = z ?

[du
dt + u(0+)δ

]
= z ?

du
dt + u(0+)z. (A.11)

Example A.2 (First-order kernel). Let us illustrate the practical significance of (A.9) by con-
sidering the first-order kernel. For a causal distribution u ∈ D′+(R), the combination of (2.8)
and (A.9) yields

(eξ ? u)′ = e
′
ξ ? u = −ξeξ ? u+ u,

so that we recover the ODE followed by ϕ as defined in Section 2.1.1. However, note that
applying (A.9) with the strong derivative instead of the weak one leads to the wrong identity

d
dt(eξ ? u) = d

dteξ ? u = −ξeξ ? u.

Remark A.3 (Regularization). If we replace z by g, the identity (A.11) is exactly the identity
(2.36) encountered in Remark 2.25. Hence, using the notation of this remark, we deduce another
expression for the regularization of the convolution operator u 7→ h?u = g ?u

′ , namely 〈T, u〉 =
g ? du

dt . This regularization therefore consists in replacing the weak derivative u′ of a causal
input u ∈ L1

loc ([0,∞)) by the corresponding strong derivative. The typical example of this is
encountered in fractional calculus, where, for α ∈ (0, 1),

DRL
α u := Y1−α ? u

′ = (Y1−α ? u)′ = d
dt (Y1−α ? u) (A.12)

is the Riemann-Liouville fractional derivative, while

DC
αu := Y1−α ?

du
dt (A.13)

is the Caputo fractional derivative, see (Matignon 2009). From (A.4), both operations are
identical when u(0+) = 0.

Let us close this section of reminders of distribution theory with the following fundamental
result that states that linear, continuous, time-invariant operators are convolution operators, and
vice-versa. This is a mathematical justification for the role that convolution plays in physical
modeling.

Proposition A.4. Let Z : E ′(R)→ D′(R) be a linear, continuous, time-invariant operator. It
can be expressed as u 7→ z ? u, where z = Z (δ) ∈ D′(R). Conversely, u 7→ z ? u with z ∈ D′(R)
defines a linear, continuous, time-invariant operator that maps E ′(R) to D′(R).

Proof. First, note that the convolution z?u is well-defined and belongs to D′(R) since h ∈ D′(R)
and u ∈ E ′(R). The result can be found in (Schwartz 1978, Thm.VI.X) (if Z commutes with
translations, it commutes with differentiation, see the cited proof) and (Beltrami and Wohlers
1966, Thm. 1.18). A lighter version, aimed at physicists, can be found in (Schwartz 1966,
§ III.3).

The same results hold true for causal distributions (Beltrami and Wohlers 1966, p. 28): If
Z : D′+(R) → D′+(R) is a linear, continuous, and time-invariant, then it can be expressed as
u 7→ z ? u , where z = Z (δ) ∈ D′+(R).
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A.2 Fourier and Laplace transforms

This section gives the definitions of the Fourier and Laplace transforms used in this dissertation
and recalls some properties of the latter.

A.2.1 Fourier transform

If u ∈ L1(R), its Fourier transform is defined as (Gasquet and Witomski 1999, § 17.1)

F [u] (ω) =
ˆ
R
u(t)e−jωt dt (ω ∈ R)

and is a continuous and bounded function such that

lim
|ω|→∞

F [u] (ω) = 0.

When both u and F [u] lie in L1(R), then F−1 = (2π)−1F , i.e.

u(t) = 1
2π

ˆ
R
F [u] (ω)e+jωt dω (t ∈ R).

More generally, the Fourier transform can be defined over the set of tempered distributions
S ′(R) as follows (Schwartz 1966, Chap.V) (Zemanian 1965, Chap. 7) (Beltrami and Wohlers
1966, § 1.8) (Bony 2001, Def. 9.4.1).

Definition A.5 (Fourier transform). Let u ∈ S ′(R). Its Fourier transform is defined as

∀ϕ ∈ S(R), 〈F [u] , ϕ〉S′ (R),S(R) = 〈u,F [ϕ]〉S′ (R),S(R) .

The quantity F [ϕ] is well-defined since S(R) ⊂ L1(R). Defined as above, the Fourier trans-
form is a bijection in S ′(R) with inverse

F−1 = 1
2πF .

Note that a direct consequence of the above definition is that the Fourier transform does not
apply to exponentially growing functions like t 7→ e−ξtH(t) with ξ < 0 and t 7→ e−t.

A.2.2 Laplace transform

The Laplace transform of functions is defined below (Schwartz 1966, §VI.1) (Zemanian 1965,
§ 8.2).

Definition A.6 (Laplace transform). Let u ∈ L1
loc([0,∞)) be a locally integrable function. If

there are c > 0 and M > 0 such that

∀t > 0, e−ct |u(t)| ≤M,

then u has a Laplace transform given by

û(s) :=
ˆ ∞

0
u(t)e−st dt (<(s) > c) . (A.14)
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The most elementary example is

êξ(s) = 1
s+ ξ

(<(s) > −ξ) .

Note that, for ξ < 0, eξ does not have a Fourier transform since it is exponentially growing at
infinity. More generally, the Laplace transform is defined over the set of causal distributions
D′+(R) with at most finite exponential growth at infinity (Schwartz 1966, Chap.VI) (Zemanian
1965, Chap. 8) (Beltrami and Wohlers 1966, Chap. II), see the definition below.

Definition A.7 (Laplace transform). Let u ∈ D′+(R). If there is c > 0 such that

∀σ > c, t 7→ e−σtu(t) ∈ S ′(R),

then u admits a Laplace transform defined as

û(σ + jω) := F
[
e−σtu(t)

]
(ω) (σ > c, ω ∈ R),

which can be more compactly written as

û(s) =
〈
u, e−st

〉
(<(s) > c) .

A practical consequence of these definitions is that the Laplace transform is always an ana-
lytic function of an open right half-plane C+

c while the Fourier transform may only be a tempered
distribution. This fact will be illustrated in Section A.3.

Inversion of the Laplace transform

The proposition below answers the following question: given an analytic function f on C+
c with

c ≥ 0, does it define the Laplace transform of a causal distribution? It can be understood
as a causality condition. See (Schwartz 1978, Prop.VIII.6) and (Beltrami and Wohlers 1966,
Thm. 2.5) for a proof.

Theorem A.8. Let u ∈ D′+(R) and c ≥ 0 be such that e−σtu ∈ S ′(R) for σ > c. Then its
Laplace transform û has the following properties:

(i) û is analytic in C+
c ,

(ii) for every compact K ⊂ (c,∞), there is a polynomial PK(s) such that

∀s ∈ C : <(s) ∈ K, |û(s)| ≤ |PK(s)|.

Conversely, if a function s 7→ f(s) is analytic in C+
c and satisfies the above boundedness

condition, it is the Laplace transform of a causal distribution u such that e−σtu ∈ S ′(R) for
σ > c.

If û satisfies the condition of the theorem, the inversion formula is

u(t) = 1
2πe

+σtF [û(σ + j·)](t) (σ > c),

which reduces to
u(t) = 1

2jπ

ˆ σ+j∞

σ−j∞
û(s)e+st ds (σ > c) (A.15)

when the right-hand side of (A.15) is defined.



184 Appendix A. Convolution, Fourier and Laplace transforms

It is a basic fact of harmonic analysis that the faster the decay of û at infinity, the stronger
the regularity of u. Consider for example

δ̂(n)(s) = sn (n ∈ N) . (A.16)

This is further illustrated by the following proposition, proven in (Schwartz 1966, §VI.4).

Proposition A.9. Let f : C+
c → C be an analytic function with c ≥ 0. If there is M > 0 such

that
|f(s)| ≤ M

|s|2
(<(s) > c),

then f = û with u causal and continuous on R given by the Bromwich integral (A.15).

Laplace transform and convolution

A basic property of the Laplace transform is that, for z and u in D′+(R), we have

ẑ ? u(s) = ẑ(s)û(s) (<(s) > c)

for some c ≥ 0. By combining with (A.10) and (A.16) we obtain

û(n)(s) = snû(s).

Note that in general the above formula holds true only for the weak derivative. For a causal
function u ∈ L1

loc([0,∞)), we deduce from (A.4) that

L
[du
dt

]
(s) = sû(s)− u(0+), (A.17)

which can also be directly derived from (A.14) with an integration by parts. Equation (A.17)
is another illustration of the difference between the weak and strong derivative for a causal
function.
Remark A.10 (Fractional derivatives). For a causal function u ∈ L1

loc([0,∞)), the Laplace trans-
form of (A.12) reads

L
[
DRL
α u

]
(s) = sα−1sû(s) = sαû(s),

while that of (A.13) reads

L
[
DC
αu
]

(s) = sα−1
(
sû(s)− u(0+)

)
= sαû(s)− u(0+)sα−1.

This illustrates the difference between DRL
α u and DC

αu in the Laplace domain.

A.3 Expression of physical impedance models
The purpose of this section is to illustrate the differences between the Fourier and Laplace
transforms by considering two physical models encountered in Section 1.2.2.

As recalled in Section A.2, the Laplace transform ẑ of a physical impedance model is an
analytic function of the open right half-plane. Since, from Proposition 1.8, it is a positive-real
function, the Fourier transform F(z) exists and belongs to S ′(R) (Beltrami and Wohlers 1966,
§ 3.5). However, note that the mere substitution of jω for s in the expression of ẑ(s) does not
yield the Fourier transform in general, i.e.

F [z] (ω) 6= ẑ(jω) (ω ∈ R) .
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This is due to the fact that the limit

lim
σ→0

ẑ(σ + jω) (ω ∈ R)

may only exist in the space of tempered distributions S ′(R). In this section, we will illustrate
this on two examples. The first result covers the impedance model ẑ(s) = 1/s and is a textbook
example of this phenomenon.

Lemma A.11. Let z = H ∈ D′+(R), with Laplace transform

ẑ(s) = 1
s

(<(s) > 0) . (A.18)

The kernel z is tempered, i.e. z ∈ S ′(R), and its Fourier transform is given by

F [z] (ω) = pv
( 1
jω

)
+ πδ, (A.19)

where pv denotes the Cauchy principal value.

Proof. Let
f̂σ(ω) := ẑ(σ + jω) (σ > 0, ω ∈ R).

By definition, when σ > 0, f̂σ ∈ S
′(R) ∩ L1

loc(R). However, f̂0 /∈ L1
loc(R) since

ω 7→ 1
ω

exhibits a non-integrable singularity at ω = 0: as a result it is not a distribution and thus cannot
be a Fourier transform. Hence, we know that F [z] (ω) 6= 1

jω . To compute the limit

lim
σ→0

f̂σ

in S ′(R), the following standard trick can be used. Consider a primitive of f̂σ, given for instance
by the principal branch of the logarithm

F̂σ(ω) := 1
j [ln |σ + jω|+ jArg (σ + jω)] (ω ∈ R).

It is smooth enough to admit a limit in S ′(R) ∩ L1
loc(R) given by

F̂σ(ω) ω∈R−−−→
σ→0

1
j ln |ω|+ Arg (jω) .

By continuity of the weak derivative in S ′(R) we deduce the desired limit

f̂σ(ω) S
′ (R)−−−→
σ→0

1
j (ln |ω|)

′
+ (Arg (jω))

′
= 1

j pv
( 1
ω

)
+
(
π

2 −
(
−π2

))
δ(ω).

Since
f̂σ(ω) = F

[
H(t)e−σt

]
(ω) (σ > 0, ω ∈ R),

the result is deduced from the continuity of F in S ′(R).
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Remark A.12 (Causality). The causality of (A.19) is not obvious, by contrast with that of (A.18).
By using (Gasquet and Witomski 1999, § 31.6)

F−1
[
pv
( 1
ω

)]
(t) = j

2sign(t), F−1 [δ] = 1
2π ,

we recover
F−1 [F [z]] (t) = 1

j

[ j
2sign(t)

]
+ 1

2 = H(t).

Notice how in (A.19) the term “πδ” is needed for causality.
The second lemma considers the lossless cavity model.

Lemma A.13. Let z ∈ D′+(R) be given by its Laplace transform

ẑ(s) = coth (b1s) (<(s) > 0) , (A.20)

with b1 > 0. The kernel z is tempered, i.e. z ∈ S ′(R), and its Fourier transform is given by

F [z] (ω) = pv (coth(jb1ω)) + π

b1

∑
n∈Z

δ

(
ω − nπ

b1

)
, (A.21)

where the series converges in S ′(R).

Proof. The proof follows the same methodology than that of Lemma A.11, with the added
subtlety that ẑ is periodic. Let

f̂σ(ω) := coth (b1 (σ + jω)) (σ > 0, ω ∈ R) .

By definition, when σ > 0, f̂σ ∈ S
′(R) ∩ L1

loc(R) and is a π/b1 periodic function. However,
f̂0 /∈ L1

loc(R) since it admits singularities at the anti-resonant angular frequencies ωn = nπ/b1 and
therefore cannot be a Fourier transform, so that

F [z] (ω) 6= coth(jb1ω).

The limit σ → 0 must be taken in the sense of periodic distributions. To that end, we first
define

f̂perσ (ω) := f̂σ(ω)
(
σ > 0, ω ∈

[
− π

2b1
,
π

2b1

))
,

whose sole singularity is at 0, and a primitive

F̂ per
σ (ω) := 1

jb1
ln (sinh (b1 (σ + jω)))

(
σ > 0, ω ∈

[
− π

2b1
,
π

2b1

))
,

where ln is the principal branch of the logarithm. The function F̂ per
σ admits a limit in L1

loc given
by

F̂ per
0 (ω) = 1

jb1
ln |sin (b1ω)|+ 1

b1
Arg (j sin (b1ω))

(
ω ∈

[
− π

2b1
,
π

2b1

))
.

By using the identity (Schwartz 1966, Ex. IV.7)

(ln |sin (b1ω)|)
′

= b1 pv (cot (b1ω))

and the continuity of the weak differentiation in the space of π/b1 periodic distributions we get

lim
σ→0

f̂perσ (ω) = 1
j pv (cot (b1ω)) + 1

b1

(
π

2 −
(
−π2

))
δ(ω) = 1

j pv (cot (b1ω)) + π

b1
δ(ω).
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The corresponding π/b1 periodic distribution in S ′(R) is

lim
σ→0

f̂σ(ω) = 1
j pv (cot (b1ω)) + π

b1

∑
n∈Z

δ

(
ω − nπ

b1

)
,

and the claimed result follows by continuity of the Fourier transform in S ′(R).

Remark A.14 (Causality). By contrast with the Laplace transform (A.20), the causality of the
Fourier transform (A.21) is not obvious. Causality can be shown by using the Fourier series
expansion of both terms in the right-hand side of (A.21), namely (Dupraz 1977, Ex. III-1)

pv (cot(b1ω)) = −
∑
n≥1

jej2nb1ω +
∑
n≤−1

jej2nb1ω,

and
π

b1

∑
n∈Z

δ

(
ω − nπ

b1

)
=
∑
n∈Z

ej2nb1ω

so that

F [z] (ω) = −j

−∑
n≥1

jej2nb1ω +
∑
n≤−1

jej2nb1ω

+
∑
n∈Z

ej2nb1ω

=

−∑
n≥1

ej2nb1ω +
∑
n≤−1

ej2nb1ω

+
∑
n∈Z

ej2nb1ω

= 1 + 2
∑
n≤−1

ej2nb1ω (A.22)

and
z(t) = δ(t) + 2

∑
n≥1

δ(t− 2nb1).

In the above computations, the series
∑
n∈Z δ

(
ω − nπ

b1

)
is needed to obtain causality, since

F−1 [pv (coth(jb1ω))] is not causal.
To conclude this remark, let us note that the identity (A.22) can be obtained in a much

simpler manner using (2.57) and the sum of the geometric series. Using the notation of the
proof of Lemma A.13, we have for σ > 0

f̂σ(ω) = 1 + 2 e−2b1(σ+jω)

1− e−2b1(σ+jω) = 1 + 2e−2b1(σ+jω) ∑
n≥0

e−2nb1(σ+jω),

and (A.22) follows by taking the limit in S ′(R), which is defined from (Gasquet and Witomski
1999, Prop. 31.1.9) since a constant sequence is a slowly increasing sequence.

A.4 Admissibility conditions
In Section 1.1, admissibility conditions have been formulated using the Laplace transforms ẑ, ŷ,
and β̂, see Propositions 1.8 and 1.14. These conditions are straightforward to verify in practice
using the expressions of physical models. However, formulating the same admissibility conditions
using the Fourier transform is more involved. Let us illustrate this point by considering the
causality condition for a tempered distribution z ∈ S ′(R). The distribution z is causal if and
only if its Fourier transform F [z] satisfies a so-called dispersion relation (Beltrami and Wohlers
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1966, Thm. 3.10), which links its real and imaginary parts. By contrast, the causality condition
on the Laplace transform consists in checking its growth at infinity, see Theorem A.8.

In the particular case of a rational function, admissibility conditions can be formulated
using the Fourier transform in a simple manner, see the two propositions below, reproduced
from (Lozano et al. 2000, Thms. 2.8& 2.10).

Proposition A.15. A rational function f is positive-real if and only if it satisfies the following
conditions.

(i) f is analytic in C+
0 .

(ii) f(jω) = f(−jω) for any ω ∈ R such that jω is not a pole.

(iii) <[f(jω)] ≥ 0 for any ω ∈ R such that jω is not a pole.

(iv) If jω0 is a pole of f , then it is a simple pole whose residue is positive.

(v) If limω→±∞ |f(jω)| =∞, then limω→±∞
f(jω)
jω > 0.

Proposition A.16. A rational function f is bounded real if and only if it satisfies the following
conditions.

(i) f is analytic in C+
0 .

(ii) f(jω) = f(−jω) for any ω ∈ R.

(iii) |f(jω)| ≤ 1 for any ω ∈ R.

To conclude this section, let us consider an example that illustrates how a formal use of the
Fourier transform can lead to mistakes. Let us consider the kernel given by

z(t) = δ(t) + δ(t+ τ) (t ∈ R) ,

with τ > 0. Since τ > 0, z is not causal. A simple examination shows that its Laplace transform

ẑ(s) = 1 + e+sτ (<(s) > 0)

is not positive-real since
<
(
1 + e+sτ

)
< 0

for some s ∈ C+
0 with a sufficiently large real part. This is consistent with the fact, recalled in

Section 1.1, that a real (continuous) LTI system cannot be both anticausal and passive. However,
note that although the Laplace transform satisfies

ẑ(jω) = ẑ(−jω), <(ẑ(jω)) ≥ 0 (ω ∈ R) ,

the operator u 7→ z ? u is not passive. The link between “<[ẑ(jω)] ≥ 0” and passivity requires
causality, as illustrated by the proposition below.

Proposition A.17 (Passivity condition). Let z ∈ L1(R) be a causal kernel. The operator
u 7→ z ? u is passive if and only if

∀ω ∈ R, <[ẑ(jω)] ≥ 0.
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Proof. The proof is inspired from (Lozano et al. 2000, Chap. 2); we detail it here as it is in-
structive. Let T > 0. Let u ∈ C∞0 (R) be a real-valued input. Since z is causal, we can without
loss of generality take u causal. Since z is real-valued, we can without loss of generality take u
real-valued (see (Zemanian 1965, p. 302)). We define the truncated input

u|(0,T )(t) := u(t)1(0,T )(t) (t ∈ R).

The energy supplied to the system is
ˆ T

−∞
(z ? u)(t)u(t) dt =

ˆ T

0
(z ? u)(t)u(t) dt (Causality)

=
ˆ
R

(z ? u|(0,T ))(t)u|(0,T )(t) dt

= (2π)−1
ˆ
R
F(z ? u|(0,T ))(ω)(jω)F(u|(0,T ))(ω) dω (Parseval in L2(R))

= (2π)−1
ˆ
R
ẑ(jω)F(u|(0,T ))(ω)F(u|(0,T ))(ω) dω

= (2π)−1
ˆ
R
ẑ(jω)|F(u|(0,T ))(ω)|2 dω

= (2π)−1
ˆ
R
<
[(
ẑ(jω)

)]
|F(u|(0,T ))(ω)|2 dω,

where for the last line we have used the fact that the right-hand side is real-valued.

Note that the proof of Proposition A.17 crucially relies on the causality of h, otherwise we do
not get the nonnegative term “|F(u|(0,T ))(ω)|2” and no conclusion can be reached. Unfortunately,
the applicability of this result is rather limited since physical impedance models are usually not
integrable; consider for instance the proportional-derivative impedance

ẑ(s) = a0 + a1s (<(s) > 0) , z(t) = a0δ(t) + a1δ
′(t) (t ∈ R)

or the fractional impedance

ẑ(s) = 1√
s

(<(s) > 0) , z(t) = H(t)√
πt

(t ∈ R) .

A.5 A convergence result

Proposition A.18. Let (xn)n∈Z and (yn)n∈Z be two complex-valued sequences. If

(i) yn has only a finite number of null elements.

(ii) <(yn) ≤ 0.

(iii) There are C > 0 such that

∀n ∈ Z, |xn| ≤ C
|yn|2

1 + n2 . (A.23)

(iv) The quantity
∑
|n|≤N

xn
yn

has a limit in C for N →∞.

Then,
S := t 7→

∑
n∈Z

xne
yntH(t) ∈ S ′(R) ∩ D′+(R).
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Proof. We will prove that S belongs to S ′(R) by using the continuity of the differentiation in
S ′(R). Without loss of generality we assume that yn 6= 0 for all n ∈ Z. Let C be as in (A.23)
and define for t ∈ R

FN (t) :=
N∑

n=−N

xn
y2
n

eyntH(t), SN (t) :=
N∑

n=−N
xne

yntH(t).

Let us first focus on FN ∈ C(R). For any t ∈ R, FN (t) has a limit as N →∞ since

|FN (t)| ≤
N∑

n=−N

C

1 + n2 e
<(yn)tH(t) ≤

∞∑
n=−∞

C

1 + n2 ,

from which we deduce that FN → F in D′(R) (Gasquet and Witomski 1999, Prop. 29.3.3). Let
us now show that F ∈ S ′(R). It suffices to show that for any ϕp ∈ D(R) such that ϕp → 0 in
S(R) we have 〈F,ϕp〉 → 0 (Gasquet and Witomski 1999, Prop. 31.1.3), which follows from

|〈FN , ϕp〉| ≤
N∑

n=−N

C

1 + n2 ‖ϕp‖L∞(R).

Using (eyntH(t))′ = yne
yntH(t) + δ, we deduce

SN (t) = F
′′
N (t)−

 N∑
n=−N

xn
y2
n

 δ′(t)−
 N∑
n=−N

xn
yn

 δ(t),
since both series are convergent by assumption and F ′′N → F

′′ in S ′(R), we deduce that SN → S
in S ′(R). The causality of S follows directly from its definition.

Remark A.19. Condition (iv) of Theorem A.18 can be intuitively understood by considering the
Laplace transform of S, namely

Ŝ(s) =
∑
n∈Z

xn
s− sn

,

which is defined in s ∈ C+
0 .



Appendix B

Representation of a DDOF liner
impedance model

This appendix provides the OD representation of an impedance model for DDOF liners, fol-
lowing the methodology laid out in Section 2.4. Note that none of the formulas given below

have been used in the numerical applications of Chapter 6, which focused exclusively on a model
for SDOF liners.

In Section 1.2.2, the following physical model for DDOF liners has been given:

ẑDDOF = 1
σp1

ẑp1 + 1
σc1

ẑtube(k1, zc1 , ẑ2|Sc1
), (B.1)

with ẑtube defined as (1.16),

ẑ2|Sc1
= σc1

σp2

[
ẑp2 + zc2

σp2

σc2
coth(jk2)

]
,

and, for the sake of concision,

ẑpi := ẑperf(lpi , dpi), ki := kci lci (i ∈ {1, 2}) .

In this appendix, we consider a fractional polynomial model for both the perforation impedance
and the cavity wavenumber, namely

jki(s) = bi,0 + bi,1/2

√
s+ bi,1s

ẑpi(s) = ai,0 + ai,1/2

√
s+ ai,1s,

where bi,1 > 0 and the other coefficients are nonnegative. We define the time delays associated
with each cavity as

τi := 2bi,1 > 0.

Below, the OD representation is given for the impedance, admittance, and scattering formula-
tions.

Impedance

The OD representation of ẑp1 has already been given in Section 1.2.2 so that there are no
differences between the SDOF and DDOF model on that respect. The difficulty specific to (B.1)

191
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is the representation of ẑtube. To avoid computations that are too lengthy, it is best to rewrite
ẑtube using only cosh and sinh, and avoid coth and tanh, as follows.

1
σc1

ẑtube(k1, zc1 , ẑ2|Sc1
)

= zc1

σc1

ẑ2|Sc1
cosh(jk1) + zc1 sinh(jk1)

zc1 cosh(jk1) + ẑ2|Sc1
sinh(jk1)

= zc1

σc1

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

coth(jk2)
]

cosh(jk1) + zc1 sinh(jk1)

zc1 cosh(jk1) + σc1
σp2

[
ẑp2 + zc2

σp2
σc2

coth(jk2)
]

sinh(jk1)

= zc1

σc1

σc1
σp2

[
ẑp2 sinh(jk2) + zc2

σp2
σc2

cosh(jk2)
]

cosh(jk1) + zc1 sinh(jk2) sinh(jk1)

zc1 sinh(jk2) cosh(jk1) + σc1
σp2

[
ẑp2 sinh(jk2) + zc2

σp2
σc2

cosh(jk2)
]

sinh(jk1)
.

Then, we use the identities

cosh jki = 1 + e−2jki

2e−jki , sinh jki = 1− e−2jki

2e−jki
to get

1
σc1

ẑtube(k1, zc1 , ẑ2|Sc1
)

= zc1

σc1

σc1
σp2

[
ẑp2

[
1− e−2jk2

]
+ zc2

σp2
σc2

[
1 + e−2jk2

]] [
1 + e−2jk1

]
+ zc1

[
1− e−2jk2

] [
1− e−2jk1

]
zc1 [1− e−2jk2 ] [1 + e−2jk1 ] + σc1

σp2

[
ẑp2 [1− e−2jk2 ] + zc2

σp2
σc2

[1 + e−2jk2 ]
]

[1− e−2jk1 ]

= zc1

σc1

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

+
[
zc2

σp2
σc2
− ẑp2

]
e−2jk2

] [
1 + e−2jk1

]
+ zc1

[
1− e−2jk2

] [
1− e−2jk1

]
zc1 [1− e−2jk2 ] [1 + e−2jk1 ] + σc1

σp2

[
ẑp2 + zc2

σp2
σc2

+
[
zc2

σp2
σc2
− ẑp2

]
e−2jk2

]
[1− e−2jk1 ]

(B.2)
= ĥ1(s) + ĥ2(s)e−τ1s + ĥ3(s)e−τ2s + ĥ4(s)e−(τ1+τ2),

where

ĥ1(s) = zc1

σc1

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

]
+ zc1

R(s)

ĥ2(s) = zc1

σc1
e−2b1,0

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

]
− zc1

R(s) e−2b1,1/2
√
s

ĥ3(s) = zc1

σc1
e−2b2,0

σc1
σp2

[
zc2

σp2
σc2
− ẑp2

]
− zc1

R(s) e−2b2,1/2
√
s

ĥ4(s) = zc1

σc1
e−2(b1,0+b2,0)

σc1
σp2

[
zc2

σp2
σc2
− ẑp2

]
+ zc1

R(s) e−2(b1,1/2+b2,1/2)
√
s

with common denominator

R(s) = zc1

[
1− e−2jk2

] [
1 + e−2jk1

]
+ σc1

σp2

[
ẑp2 + zc2

σp2

σc2
+
[
zc2

σp2

σc2
− ẑp2

]
e−2jk2

] [
1− e−2jk1

]
.

The representation is similar to that of SDOF liner models, apart from the fact that there are
now three delays. The time-local realization of ẑtube requires a transport equation on

(−τ1 − τ2, 0)
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and reads (assuming for simplicity that R(∞) =∞, i.e. that a2,1/2 or a2,1 are non-null)

ztube ? u(t) =
∑
k∈Z

Res(ĥ1, sk)ψ(t,−sk, 0) +
ˆ ∞

0
ψ(t, ξ, 0)µĥ1

(ξ) dξ

+
∑
k∈Z

Res(ĥ2, sk)ψ(t,−sk,−τ1) +
ˆ ∞

0
ψ(t, ξ,−τ1)µĥ2

(ξ) dξ

+
∑
k∈Z

Res(ĥ3, sk)ψ(t,−sk,−τ2) +
ˆ ∞

0
ψ(t, ξ,−τ2)µĥ3

(ξ) dξ

+
∑
k∈Z

Res(ĥ4, sk)ψ(t,−sk,−τ1 − τ2) +
ˆ ∞

0
ψ(t, ξ,−τ1 − τ2)µĥ4

(ξ) dξ.

Admittance

The admittance is given by

ŷDDOF = 1
1
σp1

ẑp1 + 1
σc1
ẑtube(k1, zc1 , ẑ2|Sc1

)
.

We can directly use the expression (B.2) obtained above to write

ŷDDOF(s) = 1

1
σp1

ẑp1 + zc1
σc1

σc1
σp2

[
ẑp2+zc2

σp2
σc2

+
[
zc2

σp2
σc2
−ẑp2

]
e−2jk2

]
[1+e−2jk1 ]+zc1 [1−e−2jk2 ][1−e−2jk1 ]

zc1 [1−e−2jk2 ][1+e−2jk1 ]+ σc1
σp2

[
ẑp2+zc2

σp2
σc2

+
[
zc2

σp2
σc2
−ẑp2

]
e−2jk2

]
[1−e−2jk1 ]

= ĥ1(s) + ĥ2(s)e−τ1s + ĥ3(s)e−τ2s + ĥ4(s)e−(τ1+τ2),

where

ĥ1(s) =
zc1 + σc1

σp2

[
ẑp2 + zc2

σp2
σc2

]
R(s)

ĥ2(s) = e−2b1,0
zc1 −

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

]
R(s) e−2b1,1/2

√
s

ĥ3(s) = e−2b2,0
−zc1 + σc1

σp2

[
zc2

σp2
σc2
− ẑp2

]
R(s) e−2b2,1/2

√
s

ĥ4(s) = e−2(b1,0+b2,0)
−zc1 −

σc1
σp2

[
zc2

σp2
σc2
− ẑp2

]
R(s) e−2(b1,1/2+b2,1/2)

√
s

with common denominator

R(s) = 1
σp1

[
zc1

[
1− e−2jk2

] [
1 + e−2jk1

]
+ σc1

σp2

[
ẑp2 + zc2

σp2

σc2
+
[
zc2

σp2

σc2
− ẑp2

]
e−2jk2

] [
1− e−2jk1

]]
ẑp1

+ zc1

σc1

[
σc1

σp2

[
ẑp2 + zc2

σp2

σc2
+
[
zc2

σp2

σc2
− ẑp2

]
e−2jk2

] [
1 + e−2jk1

]
+ zc1

[
1− e−2jk2

] [
1− e−2jk1

]]
.
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Reflection coefficient

The reflection coefficient is given by

β̂DDOF = 1− 2
1 + ẑDDOF

= 1− 2
1 + 1

σp1
ẑp1 + 1

σc1
ẑtube(k1, zc1 , ẑ2|Sc1

)
,

so that using the expression (B.2) obtained above yields

β̂DDOF = 1− 2
1 + ẑDDOF

= 1− 2

1 + 1
σp1

ẑp1 + zc1
σc1

σc1
σp2

[
ẑp2+zc2

σp2
σc2

+
[
zc2

σp2
σc2
−ẑp2

]
e−2jk2

]
[1+e−2jk1 ]+zc1 [1−e−2jk2 ][1−e−2jk1 ]

zc1 [1−e−2jk2 ][1+e−2jk1 ]+ σc1
σp2

[
ẑp2+zc2

σp2
σc2

+
[
zc2

σp2
σc2
−ẑp2

]
e−2jk2

]
[1−e−2jk1 ]

= 1 + ĥ1(s) + ĥ2(s)e−τ1s + ĥ3(s)e−τ2s + ĥ4(s)e−(τ1+τ2),

where

ĥ1(s) = −2
zc1 + σc1

σp2

[
ẑp2 + zc2

σp2
σc2

]
R(s)

ĥ2(s) = −2e−2b1,0
zc1 −

σc1
σp2

[
ẑp2 + zc2

σp2
σc2

]
R(s) e−2b1,1/2

√
s

ĥ3(s) = −2e−2b2,0
−zc1 + σc1

σp2

[
zc2

σp2
σc2
− ẑp2

]
R(s) e−2b2,1/2

√
s

ĥ4(s) = −2e−2(b1,0+b2,0)
−zc1 −

σc1
σp2

[
zc2

σp2
σc2
− ẑp2

]
R(s) e−2(b1,1/2+b2,1/2)

√
s

with common denominator

R(s) =
[
1 + 1

σp1
ẑp1

] [
zc1

[
1− e−2jk2

] [
1 + e−2jk1

]
+ σc1

σp2

[
ẑp2 + zc2

σp2

σc2
+
[
zc2

σp2

σc2
− ẑp2

]
e−2jk2

] [
1− e−2jk1

]]

+ zc1

σc1

[
σc1

σp2

[
ẑp2 + zc2

σp2

σc2
+
[
zc2

σp2

σc2
− ẑp2

]
e−2jk2

] [
1 + e−2jk1

]
+ zc1

[
1− e−2jk2

] [
1− e−2jk1

]]
.
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Miscellaneous results of functional
analysis

Contents
C.1 Compact embedding and trace operator . . . . . . . . . . . . . . . . . . . 195
C.2 Hodge decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.3 Asymptotic stability of semigroups . . . . . . . . . . . . . . . . . . . . . . 196

This appendix gathers some results of functional analysis used in Chapter 4.

C.1 Compact embedding and trace operator

Let Ω ⊂ Rd, d ∈ J1,∞J, be a bounded open set with a Lipschitz boundary.
The embedding H1(Ω) ⊂ Hs(Ω) with s ∈ [0, 1) is compact (Grisvard 2011, Thm. 1.4.3.2).

(See (Lions and Magenes 1972, Thm. 16.17) for smooth domains.)
The trace operator Hs(Ω)→ Hs−1/2(∂Ω) with s ∈ (1/2, 1] is continuous and surjective (Gris-

vard 2011, Thm. 1.5.1.2). (See (Ding 1996, Thm. 1) if Ω is also simply connected and (Lions and
Magenes 1972, Thm. 9.4) for smooth domains.)

The trace operator Hdiv(Ω)→ H−
1
2 (∂Ω), u 7→ u ·n is continuous (Girault and Raviart 1986,

Thm. 2.5), and the following Green’s formula holds for ψ ∈ H1(Ω) (Girault and Raviart 1986,
Eq. 2.17)

(u,∇ψ) + (divu, ψ) = 〈u · n, ψ〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

. (C.1)

C.2 Hodge decomposition

Let Ω ⊂ Rd, d ∈ J1,∞J, be a connected open set with a Lipschitz boundary. The following
orthogonal decomposition holds (Dautray and Lions 1990, Prop. IX.1)

(L2(Ω))d = ∇H1(Ω) �Hdiv 0,0(Ω), (C.2)

where
∇H1(Ω) :=

{
f ∈ (L2(Ω))d | ∃g ∈ H1(Ω) : f = ∇g

}
is a closed subspace of (L2(Ω))d and

Hdiv 0,0(Ω) :=
{
f ∈ Hdiv(Ω) | div f = 0, f · n = 0 in H−

1
2 (∂Ω)

}
.
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Remark C.1. The space Hdiv 0,0(Ω) is studied in (Dautray and Lions 1990, Chap. IX) for n = 2
or 3. For instance,

H1 := Hdiv 0,0(Ω) ∩
{
f ∈ (L2(Ω))d | ∇ × f = 0

}
has a finite dimension under suitable assumptions on the set Ω (Dautray and Lions 1990,
Prop. IX.2).

C.3 Asymptotic stability of semigroups

Theorem C.2 (Lumer-Phillips). Let H be a complex Hilbert space and A : D(A) ⊂ H → H
an unbounded operator. If <(AX,X)H ≤ 0 for every X ∈ D(A) and I −A is surjective, then A
is the infinitesimal generator of a strongly continuous semigroup of contractions T (t) ∈ L(H).

Proof. The result follows from (Pazy 1983, Thms. 4.3& 4.6) since Hilbert spaces are reflexive
(Lax 2002, Thm. 8.9).

Theorem C.3 (Asymptotic stability (Arendt and Batty 1988; Lyubich and Vũ 1988)). Let
H be a complex Hilbert space and A : D(A) ⊂ H → H be the infinitesimal generator of a
strongly continuous semigroup T (t) ∈ L(H) of contractions. If σp(A) ∩ iR = ∅ and σ(A) ∩ iR
is countable, then T is asymptotically stable, i.e. T (t)X0 → 0 in H as t→∞ for any X0 ∈ H.
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Aeroacoustic energy
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The energy analysis carried out in Chapter 5 relies on the standard L2 norm, i.e. the acoustic
energy. This appendix shows that using an aeroacoustic energy instead would not change

the results.

D.1 Physical considerations
The LEEs, derived by perturbing a conservation law, do not enjoy an energy conservation law
of the form

∂te+∇ · I = 0, (D.1)

where e in J ·m−3 is an energy density and I in W ·m−2 is an energy flux. Due to the benefit
that (D.1) brings to physical analyses, many works have been dedicated to finding under which
conditions an energy conservation law can be recovered. The standard acoustic energy density
(J ·m−3) is defined as (Kinsler and Frey 1962; Morse and Ingard 1968)

ea(t) = 1
2

1
ρ0c2

0
|p|2 + 1

2ρ0|u|2,

where c0 is the speed of sound and ρ0 the medium density. With this definition, an energy
conservation law (D.1) can only be obtained under the acoustical assumption u0 = 0 that yields
the standard acoustic energy flux

Ia := pu.

This breaks down when u0 6= 0, since there are energy exchanges between the perturbation (p,u)
and the base flow u0. To include these interactions extended energies have been proposed; they
write

e = ea + ec, I = Ia + Ic,

where ec and Ic are correction terms that vanish when u0 = 0.
A naive correction can be obtained by simply changing the energy flux with

ec,1 = 0, Ic,1 = eau0,
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198 Appendix D. Aeroacoustic energy

see (5.4). This correction is rather limited since an energy conservation law can only be obtained
with a uniform flow (to cancel (C(u0)v,v)Rd+1).

The difficulty lies in finding correction terms for inhomogeneous base flow. To the best of
the author’s knowledge, the relevant correction term for the homentropic LEEs, and the one we
investigated, is that commonly attributed to Cantrell and Hart (Cantrell and Hart 1964, Eq. 16)
(Morfey 1971, Eq. 23)

ec,CH = 1
c2

0
p(u0 · u), Ic,CH = ρ0(u0 · u)u+

( 1
ρ0c2

0
p2 + 1

c2
0
(u0 · u)p

)
u0. (D.2)

Computing ∂tec,CH +∇· Ic,CH and canceling the source terms show that an energy conservation
law can be obtained under rather strong assumptions on the base flow: at least irrotational
(Morfey 1971, § 3.3). The definition of ec,CH served as a basis for additional considerations in
(Myers 1986, 1991). See also (Brazier 2011) for related considerations on the Galbrun equation
as well as numerical illustrations of the differences between various correction terms.

From now on, we focus on the correction terms (D.2).

D.2 Mathematical considerations

In order to use the correction terms (D.2), we must first check that it defines a norm. The
Cantrell-Hart energy reads

eCH = 1
2

1
ρ0c2

0
|p|2 + 1

2ρ0|u|2 + 1
c2

0
p(u0 · u),

which yields the following energy definition∥∥∥∥∥
(
u
p̃

)∥∥∥∥∥
2

CH
:= |p̃|2 + |u|2 + 2p̃(M0 · u). (D.3)

Elementary calculus shows that this can be written∥∥∥∥∥
(
u
p̃

)∥∥∥∥∥
2

CH
:= |u+ p̃M0|2 +

(
1− |M0|2

)
|p̃|2,

which directly gives that this defines a norm only for a subsonic base flow.

Proposition D.1. The Cantrell-Hart energy ‖ · ‖CH given by (D.3) defines a norm if and only
if |u0| < c0.

D.3 Impact of the norm choice on the presented analysis

Let us assume that the base flow is subsonic so that ‖ · ‖CH is a norm. What would be the
impact of using ‖ · ‖CH on the analysis presented in Chapter 5? Let us examine both the volume
and surface terms of (5.4).

Impact on the volume term In (5.4), the expression of (C(u0)v,v)L2(Ω) would change,
such that one may achieve (C(u0)v,v)L2(Ω) = 0 for a wider range of base flow, which include
potential and incompressible base flows such that u0 · ∇u0 = 0. Base flows encountered in
practice do not obey these conditions, so that it seems of little relevance to our study.
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Impact on the surface term In (5.4), the surface term (A(n)v,v)Rd+1 would be replaced
by

(ACH(n)v,v)Rd+1 := (u0 · n)
[
3p̃2 + |u|2 + 4p̃M0 · u

]
+ 2c0 [p̃+M0 · u] (u · n).

For a boundary condition to be dissipative, this quantity must be nonnegative. Note the peculiar-
ity of the situation: the incoming and outgoing characteristics of the LEEs have not changed,
so that the possible class of boundary conditions has not changed. However, the dissipative
nature of these boundary conditions is now judged using (ACH(n)v,v)Rd+1 instead of the nat-
ural boundary term (A(n)v,v)Rd+1 as in the dissertation. (The matrix A(n), known as the
characteristic matrix, is of fundamental importance to study the properties of the LEEs, see
Chapter 3.)

Following Assumption 5.1, let us assume that M0 · n = 0 at the impedance wall. The
dissipation term now reads

(ACH(n)v,v)Rd+1 := 2c0
(
p̃+ (M0,‖ · u‖)

)
u · n, (D.4)

where the subscript “‖” denotes the tangential component. We want to control the sign of (D.4)
using an IBC that, intuitively, provides an equilibrium between p̃ and u ·n. The following points
justify why this is not carried out in the dissertation.

(a) SinceM0 ·n = 0, the impedance wall is a characteristic boundary with only one incoming
characteristic so that only one scalar boundary condition can be imposed. Therefore, we
cannot impose u‖ = 0 for instance. Controlling the sign of (D.4) must therefore have to be
done, not with an IBC, but with a scalar condition of the form Φ(p̃, (M0,‖ ·u‖),u ·n) = 0.
Apart from u · n = 0, the only viable possibility we can see is p̃ = Z(u · n) −M0,‖ · u‖
where Z is an admissible impedance operator, which does not seem physically meaningful,
at least not in the modeling of locally reacting sound absorbing material.

(b) The choice of using (D.4) would be grounded in physical considerations. However, phys-
ically, as recalled in Remark 5.2, we need to impose M0 = 0 at the impedance wall, so
that

(ACH(n)v,v)Rd+1 = (A(n)v,v)Rd+1 .

In view of these remarks, using the Cantrell-Hart energy (D.3) would lead to peculiar consider-
ations and not change the results of the presented analysis.
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Energy balance of diffusive represen-
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This appendix gathers energy balances associated with diffusive realizations. Sections E.1
and E.2 recall energy balances for standard and extended diffusive kernels, which are well-

known in the literature. The last section, namely Section E.3, is original and gives the energy
balance for a diffusive kernel in the scattering formulation, which is used in a stability proof of
Chapter 5.

E.1 Standard
Let h be a diffusive kernel given by

ĥ(s) =
ˆ ∞

0

1
s+ ξ

µ(ξ) dξ (<(s) > 0) ,

where µ ∈ C((0,∞)) satisfies the integrability condition (2.18) and is real-valued. As recalled in
Section 2.1.3, the realization of h reads{

∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t) (t > 0, ξ ∈ (0,∞)) , ϕ(0, ξ) = 0
h ? u(t) =

´∞
0 ϕ(t, ξ)µ(ξ) dξ.

This realization defines a well-posed linear system, see (Matignon and Zwart 2004). For a smooth
real-valued input u, the associated energy balance is obtained as follows.

(h ? u)(t)u(t) =
ˆ ∞

0
ϕ(t, ξ)u(t)µ(ξ) dξ

=
ˆ ∞

0
ϕ(t, ξ) (∂tϕ(t, ξ) + ξϕ(t, ξ))µ(ξ) dξ

= 1
2
d
dt

ˆ ∞
0

ϕ(t, ξ)2µ(ξ) dξ +
ˆ ∞

0
ξϕ(t, ξ)2µ(ξ) dξ,
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so that when µ is nonnegative,

(h ? u)(t)u(t) ≥ 1
2
d
dt

ˆ ∞
0

ϕ(t, ξ)2µ(ξ) dξ.

Remark E.1. If µ is nonnegative, then ĥ is positive-real.

E.2 Extended
Let h be a diffusive kernel extended by differentiation, i.e.

ĥ(s) =
ˆ ∞

0

s

s+ ξ
µ(ξ) dξ,

where µ ∈ C((0,∞)) satisfies the integrability condition (2.18) and is real-valued. It formally
admits the realization{

∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t) (t > 0, ξ ∈ (0,∞)) , ϕ(0, ξ) = 0
h ? u(t ==

´∞
0 (−ξϕ(t, ξ) + u(t))µ(ξ) dξ.

When
´
µ(ξ) dξ =∞, the definition of the functional spaces for this realization is more intricate,

see Section 4.6. The energy balance is obtained as in the standard case.

(h ? u)(t)u(t) =
ˆ ∞

0
(−ξϕ(t, ξ) + u(t))u(t)µ(ξ) dξ

=
ˆ ∞

0
(−ξϕ(t, ξ) + u(t)) (−ξϕ(t, ξ) + u(t) + ξϕ(t, ξ))µ(ξ) dξ

=
ˆ ∞

0
∂tϕ(t, ξ)ξϕ(t, ξ)µ(ξ) dξ +

ˆ ∞
0

(−ξϕ(t, ξ) + u(t))2 µ(ξ) dξ

= 1
2
d
dt

ˆ ∞
0

ϕ(t, ξ)2ξµ(ξ) dξ +
ˆ ∞

0
(−ξϕ(t, ξ) + u(t))2 µ(ξ) dξ,

so that when µ is nonnegative

(h ? u)(t)u(t) ≥ 1
2
d
dt

ˆ ∞
0

ϕ(t, ξ)2ξµ(ξ) dξ.

E.3 Bounded real
Let β be a diffusive kernel given by

β̂(s) =
ˆ ξmax

ξmin

1
s+ ξ

µ(ξ) dξ,

where µ ∈ C((ξmin, ξmax)) satisfies the integrability condition (2.18) on (ξmin, ξmax) and is real-
valued. Its realization is {

∂tϕ(t, ξ) = −ξϕ(t, ξ) + a(t), ϕ(0, ξ) = 0
b(t) =

´ ξmax
ξmin

ϕ(t, ξ)µ(ξ) dξ.
(E.1)

The difference with Section E.1 is that, here, we are interested in the passivity of the associated
scattering operator u 7→ β ? u, see (1.13).



E.3. Bounded real 203

Proposition E.2. A sufficient condition for β̂ to be bounded-real is

‖µ‖1
∥∥∥∥ µξ2

∥∥∥∥
1
≤ 1. (E.2)

Then, the corresponding energy balance is

1
2b(t)

2 + 1
2
d
dtEβ(t) ≤ 1

2a(t)2 − ‖µ‖L1

2

ˆ ξmax

ξmin

(−ξϕ(t, ξ) + a(t))2 |µ(ξ)|
ξ2 dξ, (E.3)

where the energy is defined as

Eβ(t) := ‖µ‖L1

ˆ ξmax

ξmin

|ϕ(t, ξ)|2 |µ(ξ)|
ξ

dξ, (E.4)

Proof. Let a be a smooth real-valued input and let b = β ? a be the output. Using Jensen’s
inequality and the realization (E.1) of β, we get

b(t)2 =
(ˆ

ϕ(t, ξ)µ(ξ) dξ
)2
≤ ‖µ‖1

ˆ
ϕ2|µ(ξ)|dξ, (E.5)

where
‖µ‖1 =

ˆ ξmax

ξmin

|µ(ξ)| dξ.

The result will be obtained by rewriting the right-hand side of (E.5). First, we have

‖µ‖1
ˆ
ϕ2|µ(ξ)|dξ = ‖µ‖1

ˆ
(∂tϕ− a)2 |µ(ξ)|

ξ2 dξ = ‖µ‖1
ˆ (

a2 + (∂tϕ)2 − 2a∂tϕ
) |µ(ξ)|

ξ2 dξ

= ‖µ‖1
∥∥∥∥ µξ2

∥∥∥∥
1
a(t)2 + ‖µ‖1

ˆ
∂tϕ (∂tϕ− a) |µ(ξ)|

ξ2 dξ

− ‖µ‖1
ˆ
a∂tϕ

|µ(ξ)|
ξ2 dξ.

The identities
∂tϕ (∂tϕ− a) = ∂tϕ (−ξϕ) = −ξ2∂t

(
ϕ2
)

and
a∂tϕ

1
ξ2 = a (−ξϕ+ a) 1

ξ2 = −ϕa
ξ

+ a2

ξ2 = −1
2ϕ

2 + 1
2
a2

ξ2 + 1
2ξ2 (−ξϕ+ a)2

yield

‖µ‖1
ˆ
ϕ2|µ(ξ)|dξ = ‖µ‖12

∥∥∥∥ µξ2

∥∥∥∥
1
a(t)2 − ‖µ‖12

d
dt

ˆ
ϕ2 |µ(ξ)|

ξ
dξ − ‖µ‖12

ˆ
(−ξϕ+ a)2 |µ(ξ)|

ξ2 dξ

+ ‖µ‖12

ˆ
ϕ2|µ(ξ)|dξ,

hence half the right-hand side of (E.5) is
1
2‖µ‖1

ˆ
ϕ2|µ(ξ)|dξ = ‖µ‖12

∥∥∥∥ µξ2

∥∥∥∥
1
a(t)2− ‖µ‖12

d
dt

ˆ
ϕ2 |µ(ξ)|

ξ
dξ− ‖µ‖12

ˆ
(−ξϕ+ a)2 |µ(ξ)|

ξ2 dξ.

By using this identity in (E.5), we obtain the desired energy balance
1
2b(t)

2 ≤ ‖µ‖12

∥∥∥∥ µξ2

∥∥∥∥
1
a(t)2 − ‖µ‖12

d
dt

ˆ
ϕ2 |µ(ξ)|

ξ
dξ − ‖µ‖12

ˆ
(−ξϕ+ a)2 |µ(ξ)|

ξ2 dξ,

from which we deduce that the scattering operator a 7→ β ? a is passive when (E.2) holds.
However, from Proposition 1.14, β̂ must then be a bounded-real function.





Appendix F

Implementation details

The purpose of this appendix is to provide some implementation details for the numerical
application presented in Chapter 6. Section F.1 presents the spatial discretization scheme,

while Section F.2 focuses on the IBC.

F.1 Discontinuous Galerkin method

PDE

The bidimensional hyperbolic PDE of interest is written as

∂tv(t,x) +
2∑

m=1
∂m [Amv] (t,x) +Bv(t,x) = 0 (t > 0, x ∈ Ω), (F.1)

where v(t,x) ∈ RNv and Am, B : Ω→ RNv×Nv (Nv = 3 for the LEEs). To derive the numerical
flux functions, we assume that the matrix fields Am are at least continuous on Ω. Formally, the
weak formulation of (F.1) is given by

∀Φ ∈ C∞(Ω), (∂tv,Φ)L2(Ω) + (∂m [Amv] ,Φ)L2(Ω) + (Bv,Φ)L2(Ω) = 0,

which reads using Green’s theorem

∀Φ ∈ C∞(Ω), (∂tv,Φ)L2(Ω) − (Amv, ∂mΦ)L2(Ω) + (Bv,Φ)L2(Ω) = −(A(n)v,Φ)L2(∂Ω), (F.2)

where the characteristic matrix A(n) is given by

A(n) =
2∑

m=1
nmAm.

Nodal approximation

The domain Ω is discretized using NK disjoint triangles:

Ω =
⋃

k∈J1,NKK
Ωk.

The implemented space discretization is a standard DG method. The discrete solution vh is
assumed to be a polynomial of degree N over each element Ωk:

vh(t,x) :=
∑

j∈J1,NpK
vkj (t) lj(x) (k ∈ J1, NKK, x ∈ Ωk) , (F.3)
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where the Np polynomials lj are the Lagrange polynomials1 associated with Np nodes xkj , dis-
tributed on Ωk, described in (Hesthaven and Warburton 2008, § 6.1). For a polynomial of degree
N (DG of order N + 1), the number of points is given by

Np = (N + 1)(N + 2)
2 .

Hence, by definition of the discrete solution vh, we have the identity

vkj (t) = vh(t,xkj ),

which justifies the terminology “nodal approximation” to designate (F.3).

Semi-discrete formulation

To derive the semi-discrete formulation, we first write the weak formulation (F.2) on each of the
NK triangles Ωk, using the Lagrange polynomials (li)i as test functions

∀(i, k) ∈ J1, NpK× J1, NKK ,
(∂tv, li)L2(Ωk) − (Amv, ∂mli)L2(Ωk) + (Bv, li)L2(Ωk) = −(A(n)v, li)L2(∂Ωk).

We do not enforce continuity of the discrete solution vh on ∂Ωk, so that the number of DoF on an
edge shared by two triangles is twice that of a continuous approximation. Instead, the coupling
between each formulation is achieved through a numerical flux function, denoted (nmAmv)∗,
whose purpose is to approximate the boundary integral

“(A(n)v, li)L2(∂Ωk) ' ((A(n)v)∗ , li)L2(∂Ωk)”.

This leads to the semi-discrete formulation

∀(i, k) ∈ J1, NpK× J1, NKK ,
(∂tvh, li)L2(Ωk) − (Amvh, ∂mli)L2(Ωk) + (Bvh, li)L2(Ωk) = −((A(n)v)∗ , li)L2(∂Ωk).

By using (F.3), we get the final formulation

∀(i, k) ∈ J1, NpK× J1, NKK ,∑
j∈J1,NpK

(lj , li)L2(Ωk) v̇
k
j − (Amlj , ∂mli)L2(Ωk)v

k
j + (B lj , li)L2(Ωk)v

k
j = −((A(n)v)∗ , li)L2(∂Ωk),

(F.4)
which is, once the numerical flux functions are known, a finite-dimensional ODE whose unknown
is the nodal vector

(vh(xki ))i,k ∈ RNvNKNp .

Numerical flux functions

At an edge shared by two triangles, we use the upwind flux defined in Section 5.2, namely (5.7)
using the notations of Figure 5.1. In the presented numerical application, we use three kinds of
boundary conditions: inflow, outflow, and IBC. As described in Section 6.3.2, inflow and outflow
boundary conditions are weakly imposed using this upwind flux, leading to (6.17) and (6.18),
respectively. As for the IBC, the numerical flux is given by (5.14) using the desired expression
for the ghost state vg. For a generic IBC (5.33), we have considered the Z-flux (5.14,5.35), the
Y-flux (5.14,5.37), and the B-flux (5.14,5.39).

1Note that we should write lkj , but there will be little risk of confusion, since lj will always be manipulated
over Ωk.
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Numerical quadrature

To compute the solution of the finite-dimensional ODE (F.4), we first need to evaluate the
integrals that arise from the weak formulation; to do so, two strategies can be considered.

1. The first consists in using quadrature rules of sufficient accuracy, so as to reduce aliasing
error as much as practically possible (Hesthaven and Warburton 2008, § 6.6.1). Each
DG triangle Ωk then uses two sets of nodes: the interpolation nodes (xki )i∈J1,NpK already
introduced (at which the solution is computed) and the quadrature nodes. (If these are
distinct, then an additional interpolation from the solution nodes to the quadrature nodes
must be carried out.)

2. A cheaper alternative consists in approximating each integral so as to reduce it to the
simpler integrals (li, lj)L2(Ωk), (li, ∂mlj)L2(Ωk), or (li, lj)L2(∂Ωk), which only involve the nodal
basis functions and can be computed both accurately and cheaply.

Let us detail the cheaper strategy, which is systematically employed in our implementation. We
cover each of the integral in (F.4).
• The surface integral (Amlj , ∂mli)L2(Ωk) is computed as

(Amlj , ∂mli)L2(Ωk) ' Am(xkj )(lj , ∂mli)L2(Ωk). (F.5)

This crude approximation can be interpreted as making the following polynomial approx-
imation

Am(x)vh(t,x) '
∑

j∈J1,NpK
Am(xkj )vh(t,xkj )lj(x) (x ∈ Ωk) . (F.6)

In other words, the approximation (F.5) means that the function x 7→ Am(x)vh(t,x) is
considered to be a polynomial of degree N on Ωk.

• The second surface integral (B lj , li)L2(Ωk) is approximated similarly as

(B lj , li)L2(Ωk) ' B(xkj )(lj , li)L2(Ωk),

which assumes that

B(x)vh(t,x) '
∑

j∈J1,NpK
B(xkj )vh(t,xkj )lj(x) (x ∈ Ωk) .

• Let ∂Ωk,n denotes the n-th edge of the triangle Ωk. On each edge ∂Ωk,n, the line integral
in (F.4) is approximated as

((A(n)v)∗ , li)L2(∂Ωk,n) '
∑

j∈J1,NpK
(A(n)v)∗ (xkj ) (lj , li)L2(∂Ωk,n),

where the sum is actually restricted to the nodes that belongs to the edge ∂Ωk,n, since
the nodal basis function lj is non-null on ∂Ωk,n if and only if xkj ∈ ∂Ωk,n (this is a
computationally convenient property of the nodal basis). This assumes the polynomial
approximation

(A(n)v)∗ (x) '
∑

j∈J1,NpK
(A(n)v)∗ (xkj ) lj(x) (x ∈ ∂Ωk,n) .

Note that this cheap strategy comes with a drawback. A polynomial interpolation like (F.6) can
induce a large aliasing error if Am has sharp variations, which can create numerical instabilities.
If the exact solution v is smooth enough, instabilities caused by aliasing errors can be reduced
by reducing the mesh size or increasing the polynomial order N , see (Hesthaven and Warburton
2008, § 5.3) and references therein.
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(a) NK = 8. (b) NK = 32. (c) NK = 98. (d) NK = 220.

Figure F.1. Example of meshes used for the order validation.

Implementation and validation

The DG scheme described above has been implemented in object-oriented MATLAB R©; some
of the core methods are the ones described in (Hesthaven and Warburton 2008). To validate
our implementation we rely on the impedance tube exact solution given in Section 6.2. To
isolate the error due to the spatial discretization (and avoid that due to time discretization), it
is convenient to consider the time-harmonic formulation

jωp(ω,x) +∇ · u(ω,x) = 0, jωu(ω,x) +∇p(ω,x) = 0 (ω ∈ R, x ∈ Ω)

with Ω = (0, 1)× (0, 1). On {x1 = 0}, a monochromatic source boundary condition is (weakly)
imposed using the numerical flux (6.17) with

vs =

 1
1
1

 .
On both {x2 = 0} and {x2 = 1} a hard-wall condition is (weakly) imposed using the B-flux
(5.14,5.39) with B(v) = v. Finally, on {x1 = 1} the linear IBC

p(ω,x)− u(ω,x) · n = β̂(jω) (p(ω,x)− u(ω,x) · n)

is (weakly) imposed using the B-flux (5.14,5.39) with B(v) = β̂(jω) v. For the validation, we use
meshes with 8, 18, 32, 50, 98, and 220 triangles; four of them are shown in Figure F.1. The
meshes are built with Gmsh (Geuzaine and Remacle 2009). The results are shown in Figure F.2,
where the chosen characteristic length is

r := 1
NK

∑
k∈J1,NKK

rk,

with rk denoting the radius of the inscribed circle of the triangle Ωk (Hesthaven and Warburton
2008, § 6.4) and the L2 error is

εL2 :=

 1
3NKNp

∑
(j,k)∈J1,NpK×J1,NKK

∣∣∣vh (xkj)− vexact (xkj)∣∣∣2
1/2

.

F.2 Impedance boundary condition
Let us now assume that the linear TDIBC is given by

B̃(w)(t) = β̃∞w(t) +Q1(w)(t) +Q2(w)(t− τ̃),

which corresponds to the TDIBC (6.11), where w is a shorthand for “p̃h + uh · n”. The global
assembly is performed in three steps. We consider the LEEs, so Nv = 3.
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Normalized characteristic length r
r(Nk=8)

ε L
2

N = 4, Max. slope 4.7
N = 6, Max. slope 6.7
N = 8, Max. slope 8.8
N = 10, Max. slope 11
N = 12, Max. slope 13
N = 14, Max. slope 15

Figure F.2. Validation of the spatial order of the implemented DG discretization. Time-harmonic
impedance tube with ω = 20, B-flux (5.14,5.39), and β̂(jω) = 0.5. The legend gives N , the
polynomial degree on each cell Ωk, and the maximum slope.

(1) Spatial discretization

The global DG formulation of (F.4) reads

M v̇ +Kv = Fsvs + FQ1Q1(CΓzv) + FQ2Q2(CΓzv)(t− τ̃), (F.7)

where
v := (vh(xki ))i,k

is the discrete acoustic field (3NKNp elements), and M , K, and F are the standard mass,
stiffness, and flux DG matrices. The IBC manifests itself through the (rectangular) observation
matrix CΓz that are associated with the DoF that belong to the impedance boundary Γz. The
operators Qi are applied to each component of the vector CΓzv of length NΓz . Note that, at
this stage, the actual definition of the operators Qi does not matter; hence, a modification of
the IBC does not require a modification of the implementation of the spatial discretization.

(2) State-space realization

By construction, the operators Qi have a state-space realization with state vector

ϕ := (ϕi)i∈J1,NϕK

of length Nϕ that reads
ϕ̇(t) = Aϕ(t) +Bw(t)

Qi(w)(t) = CQiϕ(t) +DQiw(t),
(F.8)

where
A = diag(sn,−ξk)n,k

is a diagonal Nϕ ×Nϕ matrix,

B = (1)i∈J1,NϕK, CQi = (r̃n,i, µ̃k,i)n,k, DQi = 0.

Then, injecting (F.8) into (F.7) leads to the following formulation

M v̇(t) +Kv(t) = Fsvs(t) +Bτ (Cτv)(t− τ̃), (F.9)



210 Appendix F. Implementation details

where v now denotes the extended state

v := ((vh(xki ))i,k, (ϕk)k)

of length 3NKNp +NϕNΓz and the matrices are obtained by concatenation (the same notations
M , K, and Fs are used for the sake of concision). For instance,

Cτv = (ϕk)k = (ϕkj )k,j

is of length NϕNΓz . This is a finite-dimensional delay differential equation that can be advanced
in time with a variety of methods.

(3) Time delay computation

Following Section 6.1.3, each of the NϕNΓz variables ϕkj are delayed through a monodimensional
DG on (−lτ̃ , 0) that reads

MDG1Dψ̇
k
j +KDG1Dψ

k
j = FDG1Dϕ

k
j

ϕkj (t− τ̃) = CDG1Dψ
k
j (t),

(F.10)

where ψkj is vector of length Nψ. Note that (F.10) can be written as (F.8), i.e. it is a state-space
realization of the time delay. Combining (F.9) with (F.10) leads to the final global formulation

M v̇ +Kv = Fsvs,

where the vector v, of length 3NKNp+(Nψ+1)NϕNΓz , now includes the acoustic field [vh(xki )]i,k
as well as the additional variables (ϕkj )k,j and (ψkj )k,j .

The addition of a nonlinear term Qnl to the discrete model B̃ does not change the assembly
process described above, which yields

M v̇ +Kv = Fsvs + FQnlQnl(CQnlv).

In the case of (2.75), Qnl(w) can be directly computed. If it exists, Qnl(w) can be replaced by
its nonlinear state-space realization.
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