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General introduction  
Cancer is a wide-spread disease, considered as the disease of the 21st century. The 

treatment of the different types of cancer is more and more well managed, but some of rare 

occurrences are still in the need of more efficient treatments. New therapies are currently 

developed and tested, such as immunotherapy, combined with the classical approaches (e.g. 

surgery, chemotherapy, radiotherapy, among others).  

Among all new technologies and new drugs, nanomedicines represent good alternatives or 

enhancement of the efficacy of current therapies, potentially enabling the improvement of the 

drugs’ bioavailability and efficiency, and/or to reduce their toxicity.  

Ewing Sarcoma is one of the cancer that suffers from a lack of therapeutical progress. This 

rare pediatric cancer is caused in the majority of cases by a chromosomic translocation: the 

fusion oncogene EWS-Fli1. This chromosomic aberration confers all the hallmarks of 

cancerous cells, in particular the aberrant cell proliferation and the loss of the apoptotic 

function. This specificity of the disease has been explored for years as a specific target to help 

beating this cancer, and we exploit this solution in this work. Furthermore, the high specificity 

of the junction oncogene to Ewing cells allows to only target the cancerous cells, thus 

displaying an opportunity to reduce the adverse effects of the current treatments, by a 

reduction of the prescribed doses.    

In order to fulfil the objective of only targeting EWS-Fli1, the strategy started in my team at 

the Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses (LVTA) several years 

ago, consisted in using the siRNA therapy. siRNA is a genetic tool, enabling the inhibition of 

the expression of a specific gene, presenting great promises for the treatment of several 

genetic disorder-caused diseases. Unfortunately, this double-stranded oligonucleotide is 

poorly stable in the circulation, as it is rapidly degraded by the nucleases of the organism. 

There is thus a need for a vehicle, protecting the siRNA from the circulation and allowing it to 

reach the cytoplasm of the cell, where it can have its effect.  

Several technologies have been tested in LVTA team, under the supervision of Dr Jean-

Rémi BERTRAND and Prof. Claude MALVY, by using either organic or inorganic nanovectors. 

In the latter category, the team used nanodiamonds (NDs) rendered cationic by hydrogenation 

and coated with different polymers (e.g. PEI and PAH) and showed an in vitro inhibition 

efficacy between 60% and 70%. For this project, I have extended this work to a larger variety 
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of nanodiamonds and to in vivo study. I used several nanodiamonds, originating from two 

different synthesis processes: detonation (DND) or High Pressure High Temperature (NDHPHT). 

I also used several functionalizations methods: hydrogenation (i) by a plasma-assisted method 

or (ii) by an annealing method, (iii) cationization by chemical treatments, or (iv) cationisation 

by a copolymer coating (Cop-ND).  

This PhD project took place at the interface of the different work-packages of the European 

project DiamESTar (ERA-Net EuroNanomed 2). It involved several French teams: the LVTA 

team (UMR8203) located at Gustave Roussy, Villejuif, the ‘Biophotonics” team at 

Laboratoire Aimé Cotton (UMR9188), Orsay and two teams from CEA-Saclay (Dr. Jean-

Charles ARNAULT’s team at the Diamond Sensors Laboratory, CEA-LIST, and Dr. Gregory 

PIETER’s team at the Laboratoire de Marquage par le Tritium of the Institut des sciences du 

vivant Frédéric Joliot/CEA-Saclay); but also involved two teams in Spain: Dr.Ibane 

ABASOLO-OLAORTUA’s team at the Nanomedicine and Advanced Therapies Research Center 

(CIBBIM-Nanomedicine) - Vall d'Hebron Institut of Recerca (VHIR), Barcelona and Dr. 

Oscar TIRADO-MARTINEZ’s team at the Institut d’Investigaciò Biomèdica de Bellvitge 

(IDIBELL), Barcelona; and a team in Czech Republic: Petr CIGLER’s team at the Institute of 

Organic Chemistry and Biochemistry (IOCB), Prague.  

Most of my PhD work was carried out in LVTA team at Gustave Roussy, Villejuif, where I 

have realized the in vitro characterization of the various nanodiamonds suspensions and 

treated the mice for the biodistribution assay using fluorescent nanodiamonds as siRNA 

vectors. The entire analysis of the organ mice sections was carried out at the Laboratoire 

Aimé Cotton using a home-made time-gated microscopy setup developed by Prof. François 

TREUSSART. I also had the chance to perform some experiments in Dr. Ibane ABASOLO-

OLAORTUA’s team in Barcelona. 

This manuscript contains the work carried out during the three years of my PhD work (April 

2015-May 2018), under the supervision, first of Prof. Claude MALVY, then of Dr. Lluis M. 

MIR and Prof. François TREUSSART. Dr. Jean-Rémi BERTRAND closely supervised my daily 

work.  

This manuscript contains five chapters.  

The first chapter presents the nanomedicine landscape, by presenting the main advantages 

and drawbacks of this new technology when applied to the medical field. It also proposes a 

non-exhaustive analysis of the trends in the pre-clinical publications, clinical trials and 
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commercialization of nanomedicines products, showing the growing interest for them but also 

the bottlenecks preventing a wider commercialization.  

The second chapter introduces the nanodiamond, which is at the heart of this PhD work, 

presenting the main characteristics of this nanomaterial, the main methods of synthesis, the 

optical properties that have been exploited during this PhD project and its current biomedical 

applications. This chapter aims at showing the potential that represents nanodiamonds for a 

use in medicine.  

The third chapter presents the targeted disease, Ewing Sarcoma, after a general introduction 

on cancer. The epidemiology, the causes and the current treatments of Ewing Sarcoma is 

developed. Then, the target point of our strategy, the oncogene EWS-Fli1, is introduced. 

Finally, I demonstrate how an antisense therapy, by using a siRNA sequence directed towards 

EWS-Fli1, is well adapted to inhibit this oncogene expression, and why it needs a vehicle, 

such as nanodiamond.  

The fourth chapter presents the in vitro characterization of the different nanodiamond 

suspensions, synthetized from different methods, detonation (DND) or High Pressure High 

Temperature (HPHT), and rendered cationic by different functionalizations. This chapter 

presents these different functionalization methods and their physico-chemical behavior alone 

or when bound with siRNA. It also shows the variation of the oncogene expression inhibition 

efficacy, depending on the suspension used. The aim of this chapter is to highlight the optimal 

synthesis and functionalization methods to obtain a proper inhibition of the EWS-Fli1 gene in 

vitro.  

The fifth and last chapter is devoted to the in vivo distribution studies conducted with the 

tritiated DND (3H-DND) and the Cop-ND, made fluorescent by the creation of Nitrogen-

Vacancy (NV) color centers (Cop-FND). This chapter first presents the distribution and 

elimination results obtained by the measurement of the radioactivity in the different organs, 

urine and feces of mice. Then is displayed the results of the quantitative assessment of the 

Cop-FND accumulation in the different organs of mice. This work was carried out thanks to a 

home-build time-gated microscopy imaging setup, based on an amplified picosecond diode 

laser (built by Xavier DÉLEN, Institut d’Optique Graduate School, Palaiseau), and an 

automated slide scanner and acquisition setup developed by Imstar S.A. (Paris). This system 

enabled us to obtain high-content images of whole organ sections, in fluorescence as well as 

in bright-field (white light illumination), composed of up to 15,000 fields of view recorded at 
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a 60x magnification. This approach has the sensitivity of the single FND, which has allowed 

us to precisely detect and quantify the Cop-FND in tissues with a subcellular resolution. 

The aim of my PhD project, reported in this manuscript, is to demonstrate (i) the positive 

value of nanomedicines for rare diseases like Ewing Sarcoma; (ii) the importance of the 

synthesis and functionalization methods applied to diamond nanocrystals, in order to bind 

siRNA to obtain a satisfying inhibition of the fusion oncogene EWS-Fli1 in vitro; and (iii) the 

biodistribution trend of the ND:siRNA complexes in the organisms of mice. In addition to the 

biological results, this manuscript presents an innovative setup for high-content screening of 

fluorescent nano-complexes distribution in the organism with subcellular localization. 
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1. CHAPTER 1                                                  

Is nanomedicine the future of medicine? 

1.1. Why using nanotechnology in medicine? ...................................................................... 17 

1.2. Trends in pre-clinical studies on nanomedicines............................................................. 21 

1.3. Trends in approved drugs and clinical trials involving nanoparticles for biomedical 

applications ......................................................................................................................... 30 

1.4. Conclusion of Chapter 1 .............................................................................................. 36 

 
1.1. Why using nanotechnology in medicine? 

Nanotechnologies have been used for centuries, most of the time without even knowing it. 

The oldest example of the use of nanotechnology has been reported with the famous Lycurgus 

cup. As pictured in Figure 1.1-1, this cup dating from A.D. 4, was made of dichroic glass, 

conferring a color change when held up to the light. This effect was achieved by including in 

the glass meticulously grinded gold and silver dusts, with sizes going down to the nanoscale. 

This very ancient cup inspired an entire generation in nanoplasmonics research [1].  

 

Figure 1.1-1: Lycurgus cup. Left: no light; Right: exposed to light. Credit: British Museum (London, UK) 
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Gold and silver dusts were later used during the Middle Ages to obtain the various colors in 

cathedral's stained-glass windows. It has been characterized and demonstrated in the 1990’s 

that this was the result of the emission from nanoparticle plasmon resonance [2]. The different 

colors have been associated to the nanoparticles size and shape: Red: Silver (~100 nm, 

Triangle); Yellow: Gold (~100 nm, Spheres); Green: Gold (~50 nm, Spheres); Light blue: 

Silver (~90 nm, Spheres); Blue: Silver (~40 nm, Spheres) [3]. 

It is only in 1959 that Richard FEYNMAN (CalTech Institute, USA) introduces the idea to 

work at the nanoscale in his famous talk "There's plenty of room at the bottom" [4]. He was 

the first to raise the idea that nanoscale objects could bring important progresses to all fields. 

He suggested to improve the resolution of electron microscopes to enable the observation of 

atom-sized objects, for biology and material science purposes and researches. He was also 

one the first to think about computer miniaturization. At that time, computers filled entire 

rooms, so the idea to produce actual portable computers was visionary. He encouraged the 

young generation to develop new production methods to get down at the nanoscale and 

produce new machineries.  

The term "nanotechnology" was introduced by Professor Norio TANIGUCHI from Tokyo 

University of Science (Japan) in 1974a. He described ultra-high precision manufacturing of 

semiconductors and more specifically thin film deposition and ion beam milling, that allowed 

to work on materials at the scale of one atom or one molecule. In the frame of computer 

miniaturization, the ability to produce smaller semiconductors leads to a faster computing 

processing and a decreased energy consumption.  

Nanotechnology was then very popular in science-fiction series or books, thanks to Eric 

DREXLER or Star Trek. It was imagined that nano-robots could be introduced in the body to 

treat diseases or to regenerate organs. Then began a growing interest in this area and massive 

investment were made by governments, the United States being first in this race, with over 15 

billion dollars invested during the last decade. It is forecast that by 2020, this industry would 

represent $ 75.8 billionb and is seen as the next industrial revolution.  

Working at the nanoscale is about exploiting characteristics specific to this range. Indeed, 

when materials are brought down to this size, new phenomena and different physicochemical 
                                                      
a N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan 

Society of Precision Engineering, 1974. 
b “Global Nanotechnology Market Outlook 2015-2020”, http://www.prnewswire.com  

http://www.prnewswire.com/
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properties appear. For instance, gold quantum dots (QD) present different emission spectra 

depending on their size, due to quantum confinement [5].  

Nanomedicine commonly designates the use of nanotechnology or nano-sized objects in 

health and medicine [6]. The first nanoparticles used for medical applications were magnetic 

nanoparticles in 1974-77 [7], used as contrast agent in Magnetic Resonance Imaging (MRI). 

Later in  the 1990’s, organic nanoparticles were developed, for drug delivery and imaging 

purposes [8,9]. Nanoparticles’ functionalization became more and more controlled over time, 

allowing a better proficiency. Some of them are currently in clinical trial or even 

commercialized [10], as it will be presented in Section 1.3. A timeline of the history of 

nanotechnology in medicine is presented in Figure 1.1-2. 

 

Figure 1.1-2: Evolution of nanomaterials with emphasis on drug delivery. From Ref. [7] 

Nanomedicine refers to various fields such as diagnosis [11], treatment [12], a combination 

of both in theranostic applications [13], nanobiosensing (e.g. for temperature fluctuation 

measurements at subcellular resolution [14] or as immuno sensor [15]), tissue engineering 

[16] or in miniaturized medical devices [17]. It is forecast that it will revolutionize the 

healthcare system and the way to practice medicine. Point-of-care sensors are being 

developed thanks to on-chips molecularly imprinted polymers (MIP) [18], which would 

enable practitioners to test patients’ blood for an immediate and early diagnosis. 

Nanoparticles (NP) are also being developed to act as contrast agents and tracers, bringing 

more accuracy and more specificity to medical imaging, in MRI [19], Positron Emission 
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Tomography (PET) [20] or Computed Tomography (CT) [21]. They also are studied as 

treatment particles, for magnetic field induced thermotherapy combined with radiotherapy 

[22] or Near-Infrared light or UV-triggered phototherapy [22,23]. The main advantage of 

miniaturization is the tremendous increase of surface to volume ratio, as presented in Figure 

1.1-3, allowing to load a higher quantity of molecules [24]. This nanometric size also allows a 

better accessibility to the target in the organism, and potentially an easier excretion from the 

body [25,26] compared to microparticles. 

 

Figure 1.1-3: Effect of the miniaturization on the surface area. From https://www.nano.gov/nanotech-101/special 

Besides these promises, nanomedicine is still a young technology and there are still fears 

related to their potential toxicity, the nanoparticle fate in the organism being not well known 

yet and varying from one type of particle to another. The increasing use of nanomaterials in 

cosmetics [27] and medical products raises concerns about their safety, and with very few 

data regarding their impact on the environment [28]. What makes their major advantage also 

makes their major drawback: nanoparticle size corresponds to the macromolecular level 

where biological reactions occur. Thus, they could interfere with these reactions and induce 

deleterious effects. This matter is still under discussion in the scientific community and new 

regulations established specific requirements to fulfil for nanomedicines before being 

commercialized (see EMA and FDA guidelinesc). Regulations have been put in place for the 

biomedical field but is still far from being adequate to the massive increase of the use of 

nanomaterials in all kinds of industries, such as food and cosmetics [29]. Therefore, any 

                                                      
cEMA:http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000564.jsp&mi

d=WC0b01ac05806403e0 

FDA: https://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm  

http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000564.jsp&mid=WC0b01ac05806403e0
http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000564.jsp&mid=WC0b01ac05806403e0
https://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm
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clinical study involving nanomaterials ought to investigate and monitor their pathways, once 

introduced in the organism, their biodistribution and their potential effects at the molecular 

level and at macro-scale by monitoring the inflammation reaction, but also their elimination.  

Despite all those concerns, the advent of nanotechnology and associated nanomedicine, 

allowed medicine to make great advances [6]. This technology has already helped in a better 

understanding of diseases with the identification of new mechanisms and then the 

enhancement of some therapies.  

Nanomedicine is not utopia anymore, as some nanoparticles are already commercialized, 

and others are proceeding through clinical trials. The two following sections will give a trend 

analysis of the various nanoparticles and nano-platforms currently under investigation in pre-

clinical studies, under clinical trials and commercialized. 

1.2. Trends in pre-clinical studies on nanomedicines 

As presented in the previous sub-section, nanomedicine attracts more and more interest from 

fundamental research and clinical point of views. This trend is highlighted by the number of 

publications indexed on PubMed (with keyword “nanomedicine”, excluding clinical trials 

studies and reviews) presented in Figure 1.2-1. This study encompasses a large spectrum of 

research fields and applications. We can see that the growing interest in this field started in 

2005 and steadily developed, which can be related to the increasing number of publications 

on pre-clinical studies publications.  
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Figure 1.2-1: Number of publications indexed in PubMed on "Nanomedicines” 

The advantages of nanoparticles applied to medicine [30] are numerous:  

- Improvement of the drug therapeutic index by increasing efficacy and/or decreasing 

toxicity; 

- Targeted delivery of drugs in a tissue or a cell; 

- Enhancement of the pharmaceutical properties of therapeutic molecules, e.g. stability, 

solubility, circulating half-life; 

- Enabling the sustained or stimulus-triggered drug release; 

- Enabling the delivery of biomolecules, such as DNA or siRNA, to intracellular sites of 

action; 

- Co-delivery of several drugs or biomolecules to improve the therapeutic efficacy; 

- More sensitive diagnosis and imaging, as contrast agents; 

- Miniaturized medical devices for diagnosis, drug screening and delivery; 

- Inherent therapeutic properties of some nanoparticles upon stimulation (e.g. magnetic 

NP, gold NP, for imaging or for thermotherapy purposes, respectively); 

- Ability to combine optical features and drug delivery or therapy enhancer 

(hyperthermia) capacity, enabling both the diagnosis or localization of the action site 

and the direct treatment of the target. The nanoparticle then acts as a theranostic agent. 

All the nanomaterial candidates for biomedical applications have to be first tested in vitro, 

on cultured cells or through digital modeling. For nanomedicines, the requirements from 

authorities are becoming more and more demanding concerning the physico-chemical 
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parameters and behavior of the material [7]. After having identified a drug or a molecule 

candidate from convincing results of in vitro assays, a pre-clinical testing phase has to be 

conducted on animals to demonstrate the in vivo efficacy and safety, as well as to determine 

the toxicity profile, first pharmacokinetics and pharmacodynamics assessment, and to identify 

the appropriate dose ranges [31]. There is a large range of nanomaterials available for 

biomedical applications, the first hallmarks of these being their biocompatibility and not 

inducing cytotoxicity. Table 1 summarizes the main nanoplatforms that are used in medical 

applications, describing the main features, properties and specific applications for each. One 

can see that both organic (e.g. polymer, dendrimer, lipid) and inorganic (e.g. QD, gold NP, 

silica NP, magnetic NP, carbon-based NP) nanoparticles are used.  
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Table 1: Summary of the different nanoparticle vehicles used in nanomedicine. With a differentiation between 

organic nanoparticles (top of the table) and inorganic nanoparticles (bottom of the table). From ref. [32] 

Organic vehicles are preferred for drug delivery purposes, their easy degradation in the 

organism ensuring a better biocompatibility and less long-term toxicity concerns [33]. That is 

probably the reason why organic nanoparticles were the first materials to be investigated for 

biomedical applications.  

As presented in Figure 1.2-2-A, the number of citations indexed by PubMed for “Liposome 

and micelle Nanomedicine” is the highest of all organic and inorganic nanomedicines, with a 

beginning in the early 2000’s. These types of nanomaterial, composed of a single layer of 

phospholipids in the case of lipid micelles and of a double layer of lipids for liposomes, 

 Particle type Composition/structure Properties Applications 

 

Polymer 

e.g. PLGA, glycerol, 

chitosan, DNA; 
monomers, copolymers, 
hydrogels 

Some 

biodegradability 

Drug delivery, 

passive release 
(diffusion), 
controlled release 

(triggered) 

 
Dendrimer 

PAMAM, etc. Low 

polydispersity, 
biocompatibility 

Drug delivery 

 

Lipid 

Liposomes, micelles Transport of 

hydrophobic 
cargo, 
biocompatibility 

Drug delivery 

 
Quantum dots 

CdSe, CuInSe, CdTe, etc. Broad excitation, 
low photo-
bleaching, 

tunable emission 

Optical imaging 

 
Gold 

Spheres, rods or shells Biocompatibility Drug delivery, 
hyperthermia 

therapy 

 

Silica 

Spheres, shells, 

mesoporous 

Biocompatibility Drug delivery 

(encapsulation), 
contrast agents 

 

Magnetic 

Iron oxide or cobalt-
based; spheres, 

aggregates in dextran or 
silica 

Superparamagneti
c, ferromagnetic, 

superferromagneti
c, paramagnetic 

Contrast agents 
(MRI), 

hyperthermia 
therapy 

 

Carbon-
based 

Carbon nanotubes, 
buckyballs, graphene, 
nanodiamonds 

Biocompatibility Drug delivery 
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present the simplest methods to encapsulate a drug or a molecule. In the case of lipid micelles, 

only hydrophobic drugs can be loaded [24], while in the case of liposomes, both hydrophilic, 

in an aqueous media in the inner compartment of the liposome, and hydrophobic drugs, in 

between the two lipid layers [34], can be loaded. Liposomes can also be functionalized for 

active targeting, thanks to the grafting of antibodies or ligands.  

“Polymer-based nanomedicines” are the second most studied nanomaterial among organic 

nanoparticles (cf. Figure 1.2-2-B). They are structured as nanospheres in which a polymeric 

matrix entraps the drug [35], or as nanocapsules, in which a polymeric membrane is 

protecting the aqueous or oily inner core [36]. Their synthesis can be straightforward, by 

using various techniques such as emulsion-solvent evaporation or diffusion, double emulsion 

or nanoprecipitation [37]. Nevertheless, the most widespread method to encapsulate an 

hydrophilic drug is the water-in-oil-in-water (W/O/W) double emulsion-solvent evaporation 

[38]. The main polymer used is Poly(lactic-co-glycolic acid) (PLGA), nevertheless other 

polymers are also used, among which the copolymer N-(2-Hydroxypropyl)methacrylamide 

(HPMA) and poly(ethylene glycol) (PEG) [39]. Our team at LVTA also developed 

nanoparticles transporting siRNA or drugs with polyisobutylcyanoacrylate [40] or with 

squalene [41]. Although, there is a great number of publications on pre-clinical studies using 

these polymeric nanomedicines, polymers are more and more used as coating agents on 

various types of nanoparticles, whether they are organic or inorganic [42,43]. 

“Dendrimers nanomedicines” are the less studied organic nanomaterial (cf. Figure 1.2-2-C). 

These nanoparticles with a polymeric treelike structure, e.g. composed of Poly(amidoamine) 

(PAMAM) among others, entrap within their core the drug or molecule of interest [44]. The 

cargo can either be hydrophobic or hydrophilic thanks to the tunable molecules that can be 

used to synthetize the dendrimer. This versatility also allows to control the size and the 

functionalization of the dendrimers [44]. Their development also started early, from the 

beginning of the 2000’s, but seems to be left behind for about four years. This might come 

from the complexity of synthesis, and the need for outer surface functionalization in order to 

minimize the toxicity [45].        
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Figure 1.2-2: Number of publications in PubMed dealing with pre-clinical assays with organic nanoparticles, 

from 1990 to 2018 

Just as for organic nanoparticles, inorganic nanoparticles (Figure 1.2-3) are used for drug 

delivery purposes by encapsulating the drugs [46]. They can also be functionalized in order to 

be able to graft the molecules or drugs on their surface [47,48] or coated or encapsulated by 

organic materials such as polymers [49]. They also are used as therapeutic (hyperthermia 

therapy) or imaging contrast agents.  

The most studied inorganic NP are the “magnetic nanoparticles” (MNP), mostly used for the 

improvement of diagnosis imaging [50], theranostic [51] and for enhanced therapies 

applications [52]. Composed of iron oxide [53] or nickel ferrite, the cytotoxicity of these 
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nanoparticles is still under investigation but it appeared that the size and shape had a great 

influence on cell viability and proliferation [54]. In order to prevent a too high toxicity, 

coatings are realized and have proved to diminish toxicity compared to non-modified MNPs 

[55]. By taking advantage of their magnetic properties, with a modulation of their spin-spin 

relaxation time (T2) [54], they make very suitable MRI contrast agents [56] greatly improving 

the detection and localization of tumor sites. The magnetic particle can also act as a 

potentiator of the applied magnetic field, thus locally increasing the temperature, inducing a 

cellular hyperthermia, leading to death [50]. By combining these two components, magnetic 

nanoparticles can then be used as theranostic agents, combining in real time the visualization 

of the target site (e.g. tumor site) and the treatment of the target. As it will be presented in the 

next sub-section, they are the only inorganic nanomaterial being commercialized.    

“Gold nanoparticles“ are the second most studied inorganic NP. Their applications are wide: 

they are used as drug [47] or gene [57] delivery agents, with the addition of a surface 

functionalization; as a necrosis trigger [58], by the production of Reactive Oxygen Species 

(ROS), at high concentrations [59]; as a thermotherapeutic reagent by converting light to heat, 

most of the time with a conjugation to another NP, or as a shell to encapsulate other NP (for 

iron NPs the encapsulation is needed to prevent their fast oxidation [60], or nanodiamonds 

[61]).  

Next comes the “carbon-based nanomedicines” including carbon nanotubes (CNT), 

nanodiamonds and graphene. The pre-clinical studies for biomedical applications began at the 

beginning of the 2000’s. CNT can be used as a reservoir hosting a molecule, within the tube 

or in between the walls in the case of Multi-Walled Carbon Nanotubes (MWCNT) [62], but it 

is mostly functionalized by covalent or non-covalent addition of functional groups [63]. It can 

also be used in scaffolds for stem cells growth [64] or tissue engineering [65]. The 

cytotoxicity of CNT is still under investigation, but it can be presumed that given their needle-

like shape, they can potentially cause unwanted cell damage [66]. However, it has been 

shown that when properly modified at their surface or functionalized with a polymer, like 

PEG, their toxicity was reduced [67]. I will not detail nanodiamonds’ use here, as it is the 

topic of the next chapter.  

Finally comes the “Quantum dots” (QD) and the “silica nanoparticles”. The first are mostly 

investigated for their unique optical properties as biomarkers [68]. Nevertheless, it has been 

shown that QD presented some cytotoxicity [13], limiting their use in the biomedical field. 
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Silica is mostly used to encapsulate other nanoparticles [69,70] or to directly encapsulate a 

drug or a molecule [46,48]. 
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Figure 1.2-3: Number of publications in PubMed dealing with pre-clinical assays with inorganic nanoparticles, 

from 1990 to 2018 
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Figure 1.2-2 and Figure 1.2-3 showing the number of publications by nanoplatform types, 

reveal the diversity of nanomaterials available and under pre-clinical assessment for 

biomedical applications. We can also see that the forecasts having seen the nanomedicine as a 

promising field are confirmed, considering the high number of publications on the 

nanomedicine indexed in this field in 2017. Organic nanoparticles are clearly preferred to 

inorganic nanoparticles, mainly due to a lower cytotoxicity of the organic platforms and a 

better excretion from the organism. Nevertheless, great advances have been made on the 

furtivity of inorganic NPs, thanks to surface functionalization, and this difference tends to 

decrease. 

Despite the fact that there is a fairly high number of publications, with promising pre-

clinical results, the number of nanomedicines having passed through clinical trials and being 

approved for commercialization is still very limited. The various hurdles preventing the 

nanomedicines to develop more widely and rapidly is presented in the next subsection.  

1.3. Trends in approved drugs and clinical trials involving nanoparticles for 

biomedical applications  

Following the in-depth study of the compounds during pre-clinical studies, every new drug 

request a proper clinical translation, demanding rigorous clinical trials to obtain the 

authorization to be commercialized. Different phases can be distinguished, each having its 

purpose in the testing of the compound in the human. I will briefly describe the different 

phases of a clinical trial, in order to present the complexity and the duration of this process.  

Phase I: first phase of testing in human subjects, a small group (20-50) of subjects are 

selected, including either healthy or palliative care volunteers, depending on the pathology 

[71]. Typically, in the field of oncology and HIV, the volunteers are at the end-stage of the 

disease, under treatments to ease symptoms without curing the underlying disease. For any 

other pathology, this phase is conducted on healthy subjects. This first step allows to assess 

the safety (pharmacovigilance), tolerability, pharmacokinetics and pharmacodynamics of the 

drug candidate. This phase also includes a dose-ranging assessment, in order to determine the 

appropriate dose range for therapeutic use and the maximal tolerable dose before the 

compound becomes too poisonous to administer [72].  

Phase II: performed on larger groups of 20 to 300 volunteers, this phase allows to assess the 

efficacy of the drug [73]. When a new drug development fails, this is typically the phase when 
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it is discovered not to work as planned, to have toxic effects in humans or to require a specific 

protocol of administration not to have an unexpected behavior (mode, site and kinetic of 

administration). Two sub-phases can be distinguished: Phase IIA, which is specifically 

designed to assess dosing requirements, the right amount of drug which should be given to 

obtain a treatment efficacy; Phase IIB intends to study the efficacy of the drug at the 

prescribed dose. It is not uncommon to combine Phase I and Phase II, to assess at the same 

time both efficacy and toxicity.  

Phase III: this is the largest scale and longer phase of the clinical trial process [73]. This 

phase consists in a randomized controlled multicenter, if possible worldwide, trial on large 

patient groups (300-3,000+). This phase is aimed at being the definitive assessment of the 

efficacy of the drug when compared with the current standard of care. Due to their size and 

long duration, Phase III trials are the most expensive, time-consuming and difficult trials to 

design and run. After the completion of this phase, a sales permission can be obtained if no 

toxicity was observed all along the trial and if a real improved efficacy has been showed.  

Phase IV: least known of all phases, it is the post marketing surveillance trial [74]. This is 

the ongoing pharmacovigilance and technical support of a drug after it received sales 

permission, and in a way is a phase that never ends. This phase might be required by 

authorities, to study the interactions with other drugs or with a certain population, that are 

unlikely to subject themselves to trials (e.g. pregnant women). This phase is designed to 

detect any long-term or rare adverse effects over a large population and a long period of time. 

If harmful effects are observed during this phase, the drug can be withdraw from the market 

(8.2% of all drugs in 2015 in USA [75]) or restricted to certain uses. In France, the Mediator 

(Laboratoire Servier) withdrawal is a well-known case and has raised lots of interrogation on 

how the pharmacovigilance was conducted. This drug, which was initially prescribed for the 

treatment of type 2 diabetes from 1976 to 2009, has been observed to induce an increase of 

valvular heart diseases and of pulmonary hypertension, responsible for over 1,300 deaths 

[76]. The pharmacovigilance phase is thus a crucial phase during the drug lifecycle and is 

conducted in order to protect the patients. Nevertheless, every drug can induce an adverse 

effect, most of the time on a very small fraction of the population, but it is only when the drug 

is widely used that those adverse effects can be detected [77].  

All phases are crucial and bring new information on the behavior, the pharmacokinetics, the 

pharmacodynamics, the efficacy and the toxicity of the new drug. It is also important to 
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highlight that each phase tests the drug on a different and increasingly broader population of 

patients. Even though the pre-clinical trials give very good data on the efficacy of a drug, the 

behavior in an animal can greatly differ from the behavior in human, inducing the interruption 

of the development of a majority of compounds, at different stages. Figure 1.3-1 presents the 

probability of a drug, tested either for an oncologic or for a non-oncologic application, to pass 

to the following phase of the clinical trials process and to be approved for commercialization. 

One can see that the proportion of drug for oncology purposes reaching the approval is only 

of 5%, with an entire clinical trials process duration from 10 to 15 years [31]. 

 

Figure 1.3-1: Probability of success of drug candidates in oncology and in non-oncology applications, data for 

U.S. FDA in 2015. Abbreviations: NDA: new Drug Application, BLA: Biologic License Application. From 

“Clinical Development Success Rates 2006-2015”, Biotechnology Innovation Organization (BIO), 

Biomedtracker and Amplion. 

 Nanomedicine, just like classical drugs or medical devices, must follow the same clinical 

trials process. Different reviews have observed a 3-fold increase of clinical trials involving 

nano-sized compounds within the last 5 years [31], with over 200 products involved in trials 

[7]. The applications and delivery modalities are various and cover:  

- Oral delivery of particles for imaging applications [50];  

- Local delivery of particles carrying a variety of biologics including peptides and small 

molecules [78,79]; 

- Topical application of particles to increase skin penetration [80,81]; 
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- Systemic delivery of particles transporting various molecules for the treatment of 

cancers or other diseases [7,82]. 

In 2016, 51 FDA-approved nanomedicines were identified [31], including therapeutic or 

imaging agents, in which nanoparticles were used to better control the tissue biodistribution, 

to enhance the efficacy or to reduce toxicity of the vectorized drug or molecule. As presented 

in Figure 1.3-2-a, the trend shows a clear preference for the development and then the 

commercialization of liposomal, polymeric and metallic based nanoparticles before the 

2000’s, following the trend of publications showed in the previous sub-section (Figure 1.2-2 

and Figure 1.2-3). From the 2000’s, the approvals for commercialization experienced a peak, 

with a large increase of FDA-approved nanocrystal-based platforms and still a strong 

presence of polymeric platforms. Since 2005, the number of approved nanomedicines per 5-

years period has decreased and then stayed constant, most probably because of the financial 

crisis in the 2006-2010 period [83]. These observations can be put in parallel to the number of 

clinical trials which has also dropped at this period. Figure 1.3-2-b clearly shows that “soft” 

nanomedicines (e.g. micelle, liposomes and polymeric-based NP) are preferred and are more 

likely to pass the clinical trials process. Nevertheless, it is worth noting that nanocrystals and 

metallic NP (used in radiotherapy or thermotherapy and for imaging purposes, respectively) 

also occupy a good place in the approved nanomedicines. 
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Figure 1.3-2: Trend in the development of nanomedicines from 1990's until 2015. (a) FDA-approved 

nanomedicine classified by category; (b) FDA-approved nanomedicines classified by category overall; (c) 

clinical trials identified in clinicaltrials.gov from 2011 to 2015. The arrow indicates the approximate start date of 

US law (FDAAA 801) requiring the inclusion of the trial in the FDA database. This new regulation explains the 

large increase of recorded clinical trials in the following years; (d) nanomedicines under clinical trial 

investigation stratified by category overall. From ref. [31]. 

The number of clinical trials involving nanomedicine gives precious information on which 

technology is the most promising and which one fails in human application. First, one can 

observe that the number of Phase I and Phase II clinical trials are predominant, confirming 

what was said before: Phase II stage is critical in the development of a new drug. This phase, 

which allows to test for the first time the drug at a large scale, is the one at which there is the 

highest probability of failure, as presented in Figure 1.3-1. Thus, it makes sense that only a 

small number of compounds passes this step. It is also worth highlighting the steadily increase 

of overall number of clinical trials, 2014 and 2015 being the best years, suggesting that the 

development pipeline of nanomedicines is thriving.  
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 Interestingly, a large number of protein-based nanomedicines are tested during the clinical 

trials (Figure 1.3-2-d), but from Figure 1.3-2-b, not much of them obtain FDA-approval, on the 

contrary of the other platforms.  

An exhaustive list of the various FDA-approved or still under clinical trials nanomedicine 

will not be given here, but several recent reviews have listed them [7,10,30,31]. The trend that 

can be extracted from these different reviews is that nanomedicines are tested for a great 

variety of applications: in oncology, in psychiatry, or as bone substitutes, among other 

application fields. In all cases, the nanoparticle or nano-system allows to either improve the 

drug bioavailability, or the drug loading or to reduce the drug toxicity, thus enabling an 

improved treatment and a dose reduction.  

Despite the fact that there are more and more pre-clinical studies publications, patent fillings 

and clinical trials conducted using nanomaterials, there are still bottlenecks to the wide 

commercialization of nanomedicines [84,85], mainly due to issues inherent to the large-scale 

production [86]: 

- Lack of standard “nano” nomenclature, leading to an imprecise definition of 

nanomedicines; 

- Lack of a precise control over nanoparticles manufacturing parameters; 

- Hurdle with the large scale good manufacturing (staying up to date with the current 

good manufacturing practices, cGMP) production (current compounds not fully 

‘compatible’ with large-scale production); 

- Lack of quality control of the produced nanomedicines; 

- Scalability complexity: need to enhance the production rate; 

- Reproducibility issues; 

- High fabrication costs; 

- Biocompatibility, biodistribution, toxicity to human and the environment: lack of 

knowledge regarding the interaction between NP and biosurfaces/tissues; 

- Consumer confidence and ethical issues: public’s general reluctance to trust 

innovative medical technologies; 

- Big pharma’s reluctance to massively invest in nanomedicines; the entire long and 

cost-consuming process being ensured by small or medium companies (SME), who do 

not necessarily have the funds. 
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This might also come from several hurdles in the patenting process, made quite difficult for 

the nanomedicine field [87]. The patent is the safest way to protect the invention and the 

conditions to obtain one are to demonstrate: 

- the novelty and commercial usefulness of the invention, it is called the “inventive 

step”;  

- the “non-obviousness of the invention”, from a one skilled in the art point of view; 

- the ownership/inventorship of the invention, the “first to invent” law; 

- the proof of invention: lab notebooks, archived experiments, ... 

The nanomedicine field suffers from a lack of massive investments from big pharma 

companies, thus making the patenting step even more difficult: public laboratories or SMEs 

are not necessarily well trained or managed on this matter, nor have the funds to fully finance 

the process. Thus, the nanomedicine, even though it has showed great in vitro results, has 

difficulties to pass to the step of clinical trials, mostly because of a lack of proper intellectual 

property protection. Furthermore, the delays to obtain concluding results can be very long, it 

can take more than a decade before having concluding pre-clinical results and then passing all 

steps of the clinical trials process. In such cases, the patent might be expired because of the 

timescale, and the invention then loses all its commercial value.  

1.4. Conclusion of Chapter 1 

This chapter briefly introduced the history of nanomedicine, a less than two decades old 

field, the reasons why it is such a promising technology and proposed a focus on the trends of 

the various nanoparticles that are currently under pre-clinical studies, under clinical trials or 

commercialized for medical applications. It has been demonstrated that nanomedicine is an 

active field, with a large number of publications and products already on the market. The 

clinical trials process being very selective, time and cost-consuming, about only 50 products 

have been delivered to the market since 1995 (e.g. Doxil, Abraxane) [31]. Nevertheless, the 

trend tends to demonstrate that the development pipeline of nanomedicines is prosperous, and 

we can bet that this trend will continue in the next years. A major difference from classical 

drugs and molecules tested in clinical trials, is that there are more and more SMEs entering 

the field, rather than the traditional big pharma, who, it seems, are more reluctant to massively 

invest in this new technology. The trend is that SMEs develop and support the pre-clinical 

and/or the clinical steps, and the big pharma only enters in the process as a partner or at the 

end, by buying a license to the SME which developed the technology. It is at the opposite of 
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the old drugs that were owned from the beginning by the big pharmas and took years and 

billions of dollars to develop. The nanomedicine field might then reshape the pharmaceutical 

landscape and might introduce a new process for the development of new therapeutics, with a 

greater open innovation and a greater partnership between big pharmaceutical companies and 

public laboratories or SMEs. 

Overall, nanomedicine is a very promising field, with a high number of publications, some 

products being under clinical trials and a few products commercialized. Nanomedicine is an 

attractive field but still suffers from bottlenecks to truly revolutionize medicine.  

After having introduced nanomedicine, let us now focus on the specific nanoparticle which 

was at the heart of this PhD work: diamond nanocrystal (nanodiamond). Over the past two 

decades, this material has been first investigated for its specific properties, its very small size 

( 5 to 70 nm), and for its high affinity for proteins leading to its application in matrix for 

MALDI-TOF mass spectrometry [88]. Then began the study of its fluorescence and magneto-

optical properties originating from embedded nitrogen-vacancy (NV) centers, leading to a 

large number of applications, mostly in nano-magnetometry and bioimaging.  

 The next chapter will present the characteristics of nanodiamond, the possibilities of its 

surface functionalization and the potential and currently studied biomedical applications, 

showing that nanodiamond is a remarkable tool, which can be used for our specific 

application, as a traceable vector for a new treatment of a rare pediatric cancer. 
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Nanodiamond (ND) was discovered in the early 1960’s, long before any interest in their 

nanometric size and just a few years after the first diamond man-made production in 1955 

[89]. In the late 1960’s, the first colloidal suspension of 4-5 nm individual particles diameter 

was synthesized, but researchers began to investigate their application for biomedical 

purposes only years later, in the late 1990’s. Researchers also started to take advantage of 

fluorescent nanodiamonds (FNDs) as a non-toxic and a perfectly photo-stable alternative to 
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quantum dots in biomedical imaging. From the 2000’s, began the tailoring of surface 

properties of nanodiamonds by several wet [90] and gas [91] chemistry techniques, allowing 

their use as drug and gene delivery vehicle.  

Among all nanoparticles, nanodiamond is considered as the best for numerous applications, 

thanks to several properties ranked as “the highest among known materials on earth” [92]. 

This includes exceptional mechanical properties, chemical stability [92], versatile surface 

functionalization [93], biocompatibility [94] and excellent photo-stability of embedded 

defects [95] (no bleaching or blinking in the fluorescence spectrum, as it will be detailed in 

Section 2.2.1). Consequently, aside from their exploitation for their mechanical properties as 

additives in lubricant for industrial applications [96] or of their NV defects in quantum 

computing applications [97], nanodiamonds have been investigated for three decades as drug 

delivery agents, contrast agents in biomedical imaging or as biosensors. 

Diamond is composed of carbon atoms in a sp3 hybridization state, arranged in a face-

centered cubic crystal structure, with an additional four atoms in position (
1

4
, 

1

4
,

1

4
) [98]. This 

particular arrangement, represented in Figure 2.0-1, is made possible thanks to the very strong 

covalent binding between its atoms, conferring to this material the highest hardness and 

thermal conductivity of all materials.  

 

Figure 2.0-1: Diamond lattice. By Anton [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 

(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons 

In this chapter, the main synthetic methods of production of nanodiamonds will be 

presented. Then the fluorescence properties that can be induced and their applications will be 
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introduced, and the various surface modifications that can be made on nanodiamonds will be 

described. Finally, some examples of biomedical applications using nanodiamonds will be 

given and the different biodistribution and elimination studies conducted on this vector will 

be presented.  

2.1. Nanodiamond’s main methods of production 

Diamond exists in nature and can be found in the Earth’s mantle at a depth >150 km, where 

the proper high pressure P and high temperature T (P>10 GPa and T>2000 K) for the 

production of this carbon allotrope are gathered. Diamond can also be found in meteorites 

craters, where, during the impact, the same extreme conditions for diamond formation are 

realized. Some studies also show that white dwarf stars have a core mainly composed of 

diamond [99].  

Despite the extreme conditions in which diamonds are produced in nature, synthetic 

diamond can be produced, and nanoparticle can be obtained from two main techniques: (i) by 

high-energy milling of diamond microcrystals, synthesized by high-pressure high-temperature 

process (HPHT) discovered in 1955 [89], and (ii) by detonation reaction developed in the 

USSR [100] in 1963. Nanodiamonds are now mainly synthesized by those two techniques but 

also by plasma-assisted chemical vapor deposition (CVD) [101], laser ablation, ion irradiation 

of graphite, electron irradiation of carbon onions and ultrasound cavitation [93,102,103]. For 

biomedical applications and more specifically for drug delivery and imaging purposes, the 

first two production techniques are preferred, producing single particle diamonds of size 

down to 3 nm for detonation process and of ≈10-20 nm for HPHT synthesis process [93].  

2.1.1. Detonation reaction synthesis 

Detonation synthesis is the main mean of production of nanodiamonds. It was first 

experienced by researchers from USSR in 1963, by explosive decomposition of high-

explosive mixtures within a negative oxygen balance and a non-oxidizing medium [104]. The 

most common explosive used is made of a mix of 60 wt% TNT (C6H2(NO2)3CH3) and 40 wt% 

hexogen (C3H6N6O6)(RDX) [105]. Those two compounds are detonated in a closed chamber 

with an atmosphere containing N2, CO2 and liquid or solid H2O [106]. Temperature and 

pressure extreme conditions are exposed in Figure 2.1-1-b and lead the explosive molecules to 

disintegrate into atoms. Carbon atoms released by this mean are condensed into amorphous 

carbon phase, which then undergo diffusion and liquid droplet coalescence, leading to the 
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formation of diamond, as represented in Figure 2.1-1-c [104]. This reaction produces up to 

12% weight soot by incomplete combustion, containing up to 75% weight diamond carbon 

[92].  

 

Figure 2.1-1: Diamond nanoparticles production by detonation reaction. (a) Chemical reaction used for the 

detonation. (b) Carbon phase diagram during detonation reaction. The Jouguet-Chapman condition (point A) 

corresponds to the situation when the speed of the gas forming the diamond is the same as the speed of sound, 

leading to a detonation shock wave. While temperature and pressure decrease following the isentrope (red line), 

carbon atoms condense into nanoclusters. When pressure drops under the carbon-graphite equilibrium line, 

graphite formation takes place. (c) Different phases of carbon growth during detonation reaction. (I) Shock wave 

caused by the explosion. (II) Detonation reaction where the molecules of the reaction decompose. (III)  

Chapman-Jouguet condition (point A on diagram (b)). (IV) Expansion of detonation products. (V) Formation of 

nanoclusters. (VI) Coagulation into nanodroplets. (VII) Crystallization, growth and agglomeration of 

nanodiamonds. From Ref. [103] 

The product must then be purified of metal impurities from the igniter used for the 

detonation reaction, and from the steel walls of the detonation chamber [103]. On an 

industrial scale, purification of the detonation soot is performed with liquid oxidants such as 

HNO3, a mixture of H2SO4 and HNO3, K2Cr2O7 in H2SO4, KOH/KNO3, Na2O3, HNO3/H2O2 

under pressure, or HClO4 [104]. The different purification steps are presented in Figure 2.1-2. 

The products of the soot being under the form of agglutinates of up to 500 nm, they are 

disintegrated by oxidation and zirconia bead-milling [93]. Primary particle diameter thus 

obtained is about 4 to 5 nm [107], with the notable presence of a graphitic layer, which can be 

removed by chemical baths at a later stage. This purification step is hazardous and expensive 

and is estimated to contribute to up to 40% of the production cost [103]. The nanodiamonds 
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thus produced are chemically inert and their functionalization can be performed by different 

means that will be described later.  

 

Figure 2.1-2: Purification process of detonation products. From Ref. [92] 

2.1.2. High Pressure High Temperature synthesis 

Compared to the bottom-up method of detonation reaction, the so-called HPHT 

nanodiamonds are produced by a top-down method. As presented in Figure 2.1-3, a large 

hydraulic press is used to produce a high pressure (7-10 GPa) at a high temperature (1500-

2000°C), yielding micrometer-sized diamond crystals (100-200 µm). Graphite and catalysts 

are employed in the hydraulic press for a few hours, in order to induce graphite-diamond 

conversion. To produce nanodiamond, the microcrystals are commonly milled with very hard 

beads (e.g. made of zirconium). A nano-powder is finally obtained, that needs further size 

selection by centrifugation after having been dispersed in water. The smallest HPHT ND 

currently present on the market offers a primary median size of about 18 nm [108]. A similar 

HPHT powder (with a median size of 25 nm) was reported with 60% of sub-10 nm particles, 

observed under transmission electron microscopy (TEM) analysis [109]. By using an 

additional annealing step, which allowed the removal of the amorphous sp2 carbon at the 

surface of NDs, it is even possible to obtain HPHT nanodiamonds of a size down to 1 nm 

[108].  



 

 

 

 

44 

 

Figure 2.1-3: Schematic representation of HPHT nanodiamond synthesis. From Ref. [110] 

Compared to detonation nanodiamond, the size distribution of HPHT NDs is broader, 

mainly due to the milling step, which is also responsible for the irregular shapes. Also, their 

surface is harder to modify, due to their lower reactivity and a lower surface/volume ratio, 

compared to detonation ND [70].    

Whatever the mode of production, nanodiamonds can be modified and conferred color 

centers impurities, inducing fluorescence properties. This characteristic is described in the 

following subsection.  

2.2. Fluorescent nanodiamond: production and properties of nitrogen-vacancy (NV) 

color centers  

2.2.1. Properties of NV centers 

Diamond is an optically transparent material over a large band of the electromagnetic 

spectrum, which does not show any luminescence unless presenting structural defects.  

Diamonds are classified based on their nitrogen content and optical absorption: type I are 

those containing nitrogen impurities while type II are those with no measurable traces of 

nitrogen [111]. Only type I diamonds are thus suitable for producing high concentration of 

Nitrogen-Vacancy centers. Two sub-classes of type I diamonds can be distinguished:  

- type Ia: most of the natural diamonds, nitrogen is at a concentration of 3,000 ppm and 

clustered; 
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- type Ib: most of the synthetic diamonds, nitrogen is at a concentration of about 100 ppm, 

and impurities are isolated from each other. 

Type II diamonds present a very low concentration of nitrogen (<1,020 atoms.cm3) and can 

also be divided into two sub-categories. Type IIa is the purest diamond, colorless and free 

from any impurities. Type IIb contains high quantities of boron atoms, leading to semi-

conductor properties.  

Type I diamonds fluorescence is then due to the presence of color centers, coming from 

impurities in the diamond lattice. The most utilized defect is due to a carbon vacancy 

associated to a substitutional nitrogen atom impurity, as shown in the inset of Figure 2.2-1-a. 

This defect exists in two charges states: NV- and NV0. Other single-photon sources defects 

can be produced in the diamond lattice, such as silicon-vacancy (SiV-) centers (738 nm), 

possibly nickel-related complex NE8 (793-802 nm), chromium-related emitters (750-770 nm) 

or possibly interstitial carbon-related TR12 center (470 nm), among many others [112].  

 

Figure 2.2-1: Structural and emission properties of FNDs. (a) Photoluminescence spectra (normalized from their 

respective maximum value) of single NV− (red curve) and NV0 (blue curve) color centers in nanodiamonds. The 

inset shows the atomic structure of the NV defect. From Ref. [113]. (b) Photostability of FND (red) compared to 

fluorescent polystyrene nanospheres (blue) excited in the same conditions. From Ref. [114] 

The NV- color center is efficiently excited by a laser beam emitting in the green spectrum 

(generally 488 nm <  < 575 nm) and emits in the far red – near infrared spectrum (600–

750 nm) with a very stable photo-emission [105], as presented in Figure 2.2-1-b. 

2.2.2. Production of Nitrogen-Vacancy centers in diamond lattice 

Vacancies are created in diamond by irradiation with high energy particles. When passing 

through the matter, their kinetic energy is transferred by elastic collision to a lattice carbon 

(b) 
(a) 
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atom, leading to the displacement of this atom from its equilibrium lattice position. The 

displaced atoms can also induce a cascade of atomic displacements before stopping, after 

having lost all its kinetic energy [115]. This effect is more or less significant, depending on (i) 

the heaviness of the incident particle (heavy particles are protons or alpha particles) and on 

(ii) the energy utilized (a few MeV for electrons for instance).    

Several methods of production of these color centers have been reported. The most 

commonly used ones consist in creating the vacancies by:  

- Microcrystals irradiation under a 10 MeV electron beam, followed by an annealing 

step at 800°C under vacuum, and a final step of milling, to obtain a high yield of 

fluorescent ND of size 10 nm [116]. Figure 2.2-2 shows the effect of the different 

steps. 

- Placing the nanodiamonds powder under a high energy, 13.9 MeV electron beam 

[117] or a 40-keV He+ ions bombardment [95], followed by an annealing process at 

800°C, inducing a high concentration of color centers.  

- Forming a very thin film of nanodiamonds, and irradiating it with a 3 MeV H+ or a 

40 keV He+ ion beam, followed by an annealing step at 800°C, to form the NV defects 

[118].  

The thermal annealing step is essential to NV creation as, at such temperature, the vacancies 

start migrating and eventually stabilize in the adjacent site of the nearest substitutional 

nitrogen atom, this position being thermodynamically the most favorable one.  

 

Figure 2.2-2: Microdiamond fluorescence at the different nitrogen-vacancies centers creation steps (a), (c) and 

(e): White light illumination optical microscopy image of  a diamond microcrystal, at different stages of NV 



 

 

 

 

47 

centers creation process: (a) as-received, (c) irradiated with a 8 MeV energy electron beam, at fluence of 2.1018 

electrons/cm2, and (e) irradiated and high temperature annealed (800°C, 2 hours, under vacuum) microcrystal. 

(b), (d) and (f): same microcrystal as in (a), (c) and (e) respectively, observed under epifluorescence microscopy. 

Epifluorescence microscopy acquisition conditions (same for (b)-(d)-(f)): excitation band wavelength 500-550 

nm, detection with a long-pass filter at wavelength above 600 nm, and CCD array detector integration time of 

1.5 s. Scale bar: 50 m. In (f), the high concentration of NV centers from the annealing step induces the 

saturation of the CCD array. From Ref. [119] 

In both cases, a sp2 graphitic layer is formed after the thermal annealing step, which needs to 

be removed by oxidation.  

The fluorescence of the NDs used in our application is generated by a high energy proton 

beam (15.5 MeV) [120] followed by an annealing step and several acid cleaning treatments, 

as detailed in Section 4.3.  

2.2.3. Fluorescent nanodiamond imaging and NV centers detection 

The fluorescence property of NDs is more and more explored for the biomedical 

applications, as it will be described in Section 2.4. FND can of course be imaged by 

conventional confocal microscopy, but NV center is also particularly well suited for more 

demanding methods like Stimulated Emission Depletion (STED) super-resolution microscopy 

and time-gated microscopy. 

• Stimulation Emission Depletion (STED): uses two laser beams at different wavelength: 

one “low” power beam brings the fluorophore in its exciting state, while the second at much 

higher power and larger wavelength reduces the fluorescence by stimulated emission. The 

latter beam is passed through a phase plate to yield a doughnut-like shape at the microscope 

objective focus,  leading to the situation where all molecules except those in the middle of the 

doughnut gives a fluorescent signal of sub-diffraction size [121]. Due to the high power of the 

STED beam, the resolution is usually limited by photobleaching with conventional 

fluorophores. This limitation falls in the case of NV centers that are perfectly stable.  STED 

was first applied to NV center in diamond by RITTWEGER et al. in [122], who showed a 

dramatic improvement of NV centers detection compared to confocal microscopy, as shown 

in Figure 2.2-3. STED also allows to resolve single NV centers in 40-250 nm-sized 

nanodiamonds with a resolution of ≈10 nm. This method can detect individual defects from 

multiple adjacent centers down to a relative distance of ≈15 nm [123]. 
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Figure 2.2-3: Stimulated Emission Depletion(STED) microscopy shows a greater resolution for nitrogen-

vacancy centers in diamond compared to confocal imaging. (a) Confocally detected image versus STED image 

in the center inset. (b) Respective side projection of a single NV in a ND. Green curve, signal from confocal 

image; Red curve, signal from STED image. The inset shows an SEM image of the ND. From Ref. [123] 

• Time-gated imaging:  another characteristic of NV centers in nanodiamond is their 

long excited state lifetime (≈30 ns) [124] in comparison to the one of dye or to tissue 

autofluorescence (≈2 ns) as presented in Figure 2.2-4-A. This property has been used to 

improve the signal/background imaging of FND in a biological environment. FAKLARIS et al. 

in [125] showed that NV centers fluorescence could be distinctly detected from the 

surrounding tissue autofluorescence, as presented in Figure 2.2-4-B-C, by a pulsed-laser 

excitation and a time resolved detection. 
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Figure 2.2-4: Time-gated confocal imaging property and usage. A: Fluorescence decay trace of 100-nm 

FND suspended in water (black curve) and of tissue autofluorescence (blue curve).The area shaded in 

magenta represents the signal collected after a gated time longer than 10 ns. Adapted from Ref. [126]. B 

and C: Application of the time-gated imaging on HeLa cells in the presence of FNDs. B: Image of all 

detected photons, displaying FND along with cell fluorescence. C: Time-gated raster scan constructed 

from photons detected between 15 and 53 ns after the laser excitation pulse. From Ref. [125].  

This delayed detection of fluorescence allows to only collect photons from the NV centers. 

This technique enabled the clear dynamical detection of HeLa cells containing FNDs, when 

placed in whole blood [127]. During my PhD work, I have used a similar time-delayed 

microscope setup as in Ref. [127], with some major differences: we used a faster pulsed laser 

emission rate, a larger magnification, allowing us to obtain very detailed and resolved images 

(see Section 5.2), and an automatized acquisition setup of millimeter-sized samples 

(generating up to 104 field of views). This setup will be fully described in Section 5.2.  

2.3.  Surface chemistry of nanodiamonds 

2.3.1. Colloidal properties of nanodiamonds 

Nanodiamonds offer very good colloidal properties, several studies showing that when 

prepared properly, their dispersion in water, yields a non-aggregated, very stable suspension 

over time [128]. As presented before, several complementary steps are employed to reduce 

A 

B C 
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aggregates’ sizes after detonation and HPHT production: bead milling of the aggregates 

[129], strong sonication to break aggregates and centrifugation to only collect small particles 

in the supernatant [130,131]. These methods allow to eventually obtain dispersed individual 

particles. These colloidal properties are very interesting, in particular when NDs are used as 

diamond germs for Chemical Vapor Deposition (CVD) thin layers growth [132].  

Such colloidal stability is mainly due to the electrostatic charges present at the surface of 

single nanodiamonds, inducing electrostatic repulsion between particles. Zeta potential is 

commonly used to characterize the electrophoretic mobility which is related to the surface 

charge. In water, these charges can be either positive or negative [133], depending on surface 

terminations. It also varies with the pH of the solution, as presented in Figure 2.3-1.   

 

Figure 2.3-1: Zeta potential values of detonation nanodiamond solution depending on pH. From Ref. [106] 

This colloidal property is a great advantage over other carbon-based nanomaterials that are 

naturally hydrophobic and need a chemical functionalization or specific treatments to secure 

colloidal stability.  

2.3.2. Surface modifications  

Nanodiamonds have thus a very good colloidal stability and are naturally given electrostatic 

charges after milling and annealing steps. These charges can be used to directly bind 

molecules at their surface by electrostatic attraction [88]. Surface chemical groups 

composition can be modified for example by hydrogenation [134], leading to cationic 

properties, or oxidation, or by carboxylation which yields negative charges at pH=7 [42]. 

 Surface chemistry of NDs can be of a great diversity and is a tremendous advantage over 

other inorganic NPs. Several surface cationization methods and a functionalization by the 

covalent grafting of a copolymer were tested during this PhD project. The various surface 

modifications that are possible to obtain are described in this subsection.  
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2.3.2.1. Natural functional groups at the surface of NDs 

Most of the commercially available detonation nanodiamonds carry various carbon-oxygen 

functions, as presented in Figure 2.3-2. It is due to the cooling process used during the 

detonation step, which involves water or ice, resulting in the reaction of highly reactive 

hydroxyl species [133]. Carbonyl and carboxyl groups can also be found at the surface of 

DNDs, as a result of the purification step, executed using oxidizing mineral acids and/or air 

oxidation [133]. After detonation and the different purification steps, nanodiamonds naturally 

present three different layers [135]: 

- A diamond core, containing 70-90% of the total carbon atoms; 

- An intermediate layer of amorphous carbon, containing 10-30% of the total carbon 

atoms;  

- A surface layer composed of diverse functional groups, mainly carbon, oxygen, 

hydrogen and nitrogen.        

 

Figure 2.3-2: Surface terminations of detonation nanodiamonds. From Ref. [133] 

The nitrogen atoms can be found equally in the three different layers, while the oxygen and 

hydrogen atoms are most commonly found on the surface layer.  

HPHT nanodiamonds present a relatively low concentration of carboxyl groups, compared 

to detonation ones (≈2 %). Instead, ND-HPHT surface is dominantly populated of hydroxyl 

groups [136]. The surface functionalization will then be different from DND. 

Apart from natural functional groups found after the detonation synthesis and purification 

steps, the surface of the nanodiamonds can also be modified at will, depending on the 

application. Two different families of treatment can be distinguished: wet [90] and gas [91] 

chemical treatments.  

2.3.2.2. Wet chemical treatments 

Wet chemical treatments are made from successive chemical baths and are purely chemical 

reactions creating new functional groups at the surface of NDs. Acidic treatments are typical 
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wet treatments allowing the saturation of the surface layer with carboxyl functions, that 

appear after nitric (HNO3), sulphuric (H2SO4) or chlorhydric (HCl) acid baths [137], or a mix 

of the three solutions [104]. Carboxyl groups can also be created by hydrogen peroxide (H2O2) 

treatments, such as the so called “piranha” treatment (hydrogen peroxide and sulphuric acid) 

[138]. Chemical reduction can also be done after carboxylation, by using reducing 

compounds, such as borane (BH3) or hydrures (LiAlH4) [139,140], in order to obtain hydroxyl 

groups at the surface. 

Nanodiamonds with O–H terminations are involved in esterification with acylchlorides 

yielding ND terminated by long alkyl chains and in silanization [110]. 

A DND solution of NanoAmando® (NanoCarbon Institute, Japan) was kindly provided by 

Prof. Eiji OSAWA, at a high stock solution concentration of 20 mg/mL, with a nominal 

primary particle size of 3.1±0.6 nm and a positive zeta potential of +46.2 mV. The method of 

cationization will be presented in more details in Section 4.2. Briefly, the positive zeta 

potential originates from a succession of reduction reactions. 

This ultra-small size is a key asset for biomedical applications, as the main concern of the 

use of nanoparticles is their fate in the body. Thanks to this ultra-small primary particle size, 

we expect renal clearance and facile excretion from the body.  

2.3.2.3. Physico-chemical gas treatments 

Physico-chemical modifications with a gas are generally performed under the assistance of 

microwave plasma or by heating in an oven. One of the major advantage of these techniques 

is that there is no need for extensive washings after the treatment, contrary to wet treatments. 

Furthermore, gas that are utilized are pure and thus avoid contamination from other chemical 

reactives or sub-products coming from the reaction.  

Both dry hydrogenation treatments were tested during this PhD project and were realized by 

Jean-Charles ARNAULT’s and Hugues GIRARD's team at the Diamond Sensors Laboratory of 

CEA-LIST Saclay (Gif-sur-Yvette, France) for plasma-assisted hydrogenation and by Emilie 

NEHLIG in Gregory PIETER’s team at the Laboratoire de Marquage par le Tritium of Institut 

des sciences du vivant Frédéric Joliot-CEA Saclay for hydrogenation by annealing. More 

details about these methods of hydrogenation used for our application will be presented in 

Section 4.1. Briefly, these surface treatments allow the removal of non-diamond carbon 

phases, the elimination of oxygen groups and the formation of C-H terminations on 

nanodiamond surface [91].  
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The plasma-assisted and annealing treatments can be made under several atmospheres, such 

as fluorine [141,142], chlorine [143] or ammonia [144]. The use of these gas induces at the 

surface of NDs fluorine, chlorine and amine groups, respectively. 

 Our application required cationic charges at the surface of NDs, plasma and annealing 

treatments were then made under hydrogen atmosphere on detonation nanodiamond powders 

[91]. The carboxylic acid groups (COOH groups) present at the surface of NDs were then 

reduced and oxygens removed leading to hydrogenated diamond [110].  

The different surface modifications presented allow the homogenization of the chemical 

groups located at the surface of ND. The functionalization is then eased and a great variety of 

grafting, in a covalent or non-covalent manner, can be made.  

2.3.3. Grafting functional groups on ND surface  

Surface functionalization of nanodiamonds confers new properties and allows new 

applications. Different grafting routes can be explored, depending on the terminations present 

at NDs surface and on the molecules that need to be attached to them. There are two main 

functionalization techniques, as recently detailed by NEBURKOVA et al. in [42], for synthetic 

(e.g. polyethylene glycol (PEG), methacrylate derivatives, polyglycerol (PG)) and natural 

(proteins, polysaccharides, nucleic acids) polymer coatings: 

- Covalent coating: creates stronger and better-defined bounds between the molecules 

and ND surface [133]. A distinction should be made between “grafting to” and 

“grafting from” approaches, represented in Figure 2.3-3. “Grafted to” coatings are 

synthetized separately from the nanoparticle and then attached via covalent binding. In 

“grafted from” techniques, the polymerization occurs directly at the surface of 

nanodiamonds. This approach leads to denser and better protecting coatings than 

“grafting to” approach [120]. Covalent coating of polymer, e.g. polyethylene glycol 

(PEG), is generally realized via amination [145] or esterification [146] reactions.  
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Figure 2.3-3: Polymer covalent grafting. Distinction between "grafted to": polymers are attached to a present 

surface group; and "grafted from": elongation of the polymer from the surface. From Ref. [42] 

- Non-covalent coating though electrostatic, hydrophobic, hydrophilic or Van der Waals  

interactions [42]. This grafting approach is readily made and it allows the 

immobilization of various proteins (cytochrome c [147], bovine insulin [148] or 

lysozyme [149]), drugs (doxorubicin [150]) and polymer coating (polyethylene-imine 

(PEI) [151], poly(allylamine) hydrochloride (PAH)), acting as a shell around NDs or 

to dispose of new functional groups at their surface and then graft other compounds 

such as nucleic acids [152].  

The method of cationisation tested during this PhD project relied on fluorescent HPHT 

nanodiamonds that were first covered by a thin silica shell on which a synthetic cationic 

copolymer has been covalently grafted. This approach will be described in more details in 

Section  4.3. 

Nanodiamonds present the great advantage that they can be functionalized by a broad 

variety of not too complex methods, conferring very interesting characteristics to the 

nanoparticles. The next subsection will now present the different biomedical applications, for 

which nanodiamonds are used.  
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2.4. Biomedical applications of nanodiamonds 

2.4.1. Biocompatibility and biodistribution of nanodiamonds 

Nanodiamonds present interesting features, highly suited for various biomedical 

applications, including a high biocompatibilityd and a low cytotoxicity. Indeed, several studies 

showed that nanodiamonds, produced by detonation [153] or HPHT [154] synthesis, have a 

very limited toxicity, and even no genotoxicity on C. Elegans [155]. Nevertheless, 

complementary experiments would need to be undertaken, first to assess the activation of the 

complement but also to assess if the presence of ND on cells would induce the production of 

deleterious products, mostly originating from the surface groups. Note that a study showed 

that detonation diamonds, hydrogenated under plasma, induced an increased production of 

hydroxyl radicals under X-ray radiations [156]. It is important to highlight that the surface 

terminations greatly influence the cytotoxicity, the oxygen-terminated nanodiamonds 

presenting the highest biocompatibility, compared to H-terminated NDs [157]. Long-term (6 

months) in vivo studies using detonation NanoAmando®  solution (NanoCarbon Research 

Institute Ltd., Japan) that have been conducted on a non-primate and a rat models [94] 

showed that for two different doses (15 mg/kg and 25 mg/kg) injected intravenously, no side 

effects were observed and no dysfunction of any organ appeared. These results confirm in 

vitro studies and demonstrate that nanodiamond is suited for biomedical applications, as a 

drug delivery agent for instance.  

Nanodiamond biodistribution have also been assessed on rodents models, at various time-

scales and with various injection routes [158,159]. These studies were mainly conducted with 

detonation nanodiamonds, displaying various sizes and surface functionalization.  

Table 2 summarizes the results obtained. 

Table 2: Rodent biodistribution studies of nanodiamonds, established with various detection methods, for 

different sizes of NDs, at different time-points. 

Type of 

ND 

Injection 

route 

Method of 

detection 

Size of 

injected 
NDs 

Time-

scale 

Organ of 

accumulation 
Ref. 

188Re- Intratracheal Radioactivity 2-10 nm 24h Lung, spleen, liver, [159] 

                                                      

d Biocompatible: “compatible with living cells, tissues, organs, or systems, and posing no risk of injury, toxicity 
or rejection by the immune system”. From Mosby’s Dental Dictionary, 2nd edition (Elsevier, Inc., 2008). 
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DND instillation measurement (before 

injection) 

48h urine 

18F-

DND 
IV injection 

Radioactivity 

measurement 

7-20 nm 
(before 

injection); 
actual size 

when 
injected: 
300-680 

nm 

2h 

Bladder (small sizes 
of NDs), lung, liver, 

spleen. Macrophages 
of the RES 

[160] 

125I-
DND 

IV injection 

Short-term assay: 
Radioactivity 

measurement. 
Long-term assay: 
Raman 

spectroscopy, 
UV-Vis 
absorption. 

50 nm 
0.5h up 
to 28 

days 

Liver (RES), lung, 
spleen 

[158] 

99Tc-
DND 

IV injection 
Radioactivity 
measurement 

20-30 up to 
220 nm 

24h 
Liver, spleen, lung. 
Urine: between 0 and 

10h. 

[161] 

This table shows that the nanodiamonds, displaying sizes between 20 and 700 nm, 

preferentially accumulate in the liver (in macrophages, i.e. the Kupffer cells, that are part of 

the reticuloendothelial system), the lung and the spleen. Interestingly, short-term analysis 

shows that the excretion through the urine is made pretty rapidly, typically within 10 hours, 

and favors the excretion of small-sized DNDs. I will demonstrate in Chapter 5 that we 

observed a similar trend as the one reported in  

Table 2 with both radiolabeled DND and fluorescent HPHT NDs.  

2.4.2. Nanodiamonds as a drug/gene delivery platform 

As presented in Subsection 2.3.2, the surface of nanodiamonds can be modified and 

functionalized, allowing to use them as delivery agents.  

The different surface groups obtained after the purification steps allow an electrostatic 

grafting of oligonucleotides or drugs. This basic method was used with the commercial 

solution of NanoAmando® during this PhD project, and has already been used for the efficient 

delivery of water-insoluble anti-cancer drugs [150]. Dean HO and Eiji OSAWA used 

carboxylated nanodiamonds (surface terminations COOH/COO-) in an aqueous suspension to 

adsorb doxorubicin (DOX) ions (DOX-NH3
+) [162] at their surface. The electrostatic 
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interaction between ND and DOX seems straightforward, nevertheless, an addition of salt was 

necessary to obtain an enhanced loading (0.5 wt % without salt versus 10 wt % adsorption 

when salt was added). This “basic” grafting allowed an apoptosis-inducing mechanism driven 

by the DOX-functionalized ND, on colorectal adenocarcinoma cells.  

The same process was used for gene delivery, using a first layer of 800 Da PEI, adsorbed by 

polar interactions through hydrogen bonding and through electrostatic interactions, on which 

negatively charged DNA has been immobilized onto positive charges of ND-PEI800 via 

electrostatic interactions [163], a strategy that was developed in parallel for HPHT ND in our 

groups [152,164]. 

In order to efficiently direct the treatment towards desired cells, an active targeting can be 

implemented, using, among other routes, surface antigens, carbohydrate receptors or 

transferrin receptors. To this aim, a physical adsorption at the surface of FND of 

(neo)glycoproteins was made for targeting hepatocytes via carbohydrates receptors [145]. 

This method was compared to a covalent grafting of streptavidin. This grafting was done in 

two steps: (i) reaction of the FND carboxyl groups on the amino groups of NH2-PEG-COOH; 

(ii) reaction of the carboxyl groups of HOOC-PEG-FND with the primary amine groups (-

NH2) of streptavidin (SA). In both amide bond formation [145], leading to the formation of 

SA-PEG-FND, to which biotinylated antibodies were conjugated. The study showed that the 

targeting by one or the other approach induced a specific hepatic cell labeling, offering 

interesting opportunities to direct drugs to their target with the FND complex. Such 

combination was realized successfully, by using transferrin covalently conjugated to FND and 

the addition of doxorubicin anticancer drug, which was physically adsorbed onto the FNDs 

[146]. 

Furthermore, a successful covalent attachment of paclitaxel (PTX), anti-cancer drug, was 

obtained thanks to the use of thiolated drug-oligonucleotides conjugates that was attached to 

the aminated surface of ND (ND-NH2) [165]. This complex, combined with thiolated 

antibody also grafted at the surface of ND, allowed to improve the therapeutic index of PTX 

[165] on breast adenocarcinoma, and to preserve the mitotic blockage, the apoptosis induction 

and the anti-tumorigenesis properties of this drug in lung carcinoma cells [166].   

2.4.3. Nanodiamonds as a therapeutic potentiator 

CHEVILLARD et al. demonstrated that hydrogenated nanodiamonds could be used for their 

negative electronic affinity, i.e. photo-emission of low-energy electrons, when irradiated by 
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ionizing radiations [167]. Indeed, the combination of H-ND, irradiations and dioxygen lead to 

an increase level of Reactive Oxygen Species (ROS), thus inducing an increased and 

sustained DNA damage [167]. The potentiating effect of H-ND in forming ROS may allow to 

reduce the irradiation dose in radiotherapy or/and to circumvent the resistance of certain cells. 

More and more complex functionalizations are realized, conferring ND various 

characteristics. As an example, REHOR et al. realized in Ref. [168] a very complex hybrid 

material, as presented in Figure 2.4-1. This nanostructure is composed of a plasmonic silica-

coated nanodiamond core, encapsulated in a gold shell. The latter can be heated through 

optical excitation at surface plasmon resonance, allowing to thermally ablate cancer cells. The 

PEG layer confers stealth to the gold-ND structure, thus reducing opsonization. Finally, the 

grafting of the Alexa Fluor 647 and of the azide-modified Transferrin, acts as labeling and 

targeting moities, respectively. This platform then combines therapeutic capabilities, with 

gold shell, allowing to enhance cancer cell thermoablation, complemented with targeting 

capacity of Transferrin, and the localization component of Alexa Fluor 647, making it a 

perfect example of an effective therapeutic potentiator and theranostic agent. 

 

Figure 2.4-1: Schematic representation of the functionalization of ND with different layers. Abbreviations: 

TEOS: tetraethyl orthosilicate; Sil: silica; THPC: Tetrakis(hydroxymethyl) phosphonium chloride; PEG: 

polyethylene glycol; THPTA: tris(3-hydroxypropyltriazolylmethyl) amine; Tf: Transferrin. From Ref. [168] 

2.4.4. Exploiting the fluorescence of nanodiamonds 

A majority of applications take advantage of the fluorescence of NV centers embedded in 

nanodiamonds. NV center photostability and nanodiamond’s very low toxicity represent 
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significant advantages for biomedical applications, compared to organic dyes or quantum 

dots, two other nanodevices also commonly used (Table 3).  

Table 3: Comparison of fluorescent ND to organic dyes and quantum dots, regarding properties relevant in 

biomedical applications. FND values are given for NV defects. 

PROPERTY ORGANIC DYES QUANTUM DOTS FNDs 

SIZE <1 nm 3-10 nm From 3 nm [93] 

EMISSION SPECTRUM IR-UV 
IR-UV, selected by 

size 

IR, selected by the 

defect 

EMISSION LINE WIDTH 

(FWHM) 
35-100 nm 30-90 nm 

Mostly >100 nm 

[169] 

ABSORPTION CROSS 

SECTION 
Typically 1x10-16 cm² Typically 3x10-15 cm² 

Typically 1x10-16 cm² 

[170] 

QUANTUM YIELD 0.5-1.0 0.1-0.8 0.1-0.9 

LIFETIME 1-10 ns 10-100 ns 30 ns [171] 

PHOTOSTABILITY Low High Extremely high [169] 

THERMAL STABILITY Low High Extremely high [172] 

TOXICITY Medium to high High Low [173] 

COMMERCIALIZATION Yes Yes Yese 

Application of FND to whole organisms imaging: 

As mentioned in Subsection 2.2.3, common imaging techniques used for FND detection and 

observation are confocal microscopy [145], integrated scanning Electron Microscopy and 

cathodoluminescence, allowing to excite fluorescence using a focused electron beam 

[174,175]. Stimulated Emission Depletion (STED) microscopy also offers imaging of NV 

centers with a resolution as low as ≈10 nm, well below the diffraction limit. Unfortunately, 

these imaging techniques cannot be easily extended to imaging through “thick” tissue, due to 

their auto-fluorescence. To circumvent this hurdle, time-delayed fluorescence imaging, 

described in Subsection 2.2.3, can be used. This technique, combined with the perfect 

photostability of FNDs, has allowed, in particular, to trace the intracellular transport of 

proteins in living Caenorhabditis elegans worms [126], as presented in Figure 2.4-2. They 

                                                      
e Sold for example by FND Biotech (Taiwan), Adamas Nanotechnologies (Raleigh, USA) and CymarisLabs 

(Columbus, USA). 
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showed that FND could be employed as a photostable fluorescence nanoprobe for long-term 

in vivo imaging, in living whole organisms.  

 

Figure 2.4-2: Observation of GFP:YLC-FNDs in C. elegans by different imaging techniques. (a) Fluorescence 

decay time trace of 100-nm FNDs suspended in water. The magenta area represents the fluorescence signal 

collected at the gating time longer than 10 ns. (b) Bright-field, (c) Confocal fluorescence, (d) FLIM, (e) time-

gated fluorescence, gating time > 10 ns, (f) merged bright-field and time-gated fluorescence images of a worm 

microinjected with GFP:YLC-FNDs at the distal gonad. Scale bar: 50 m. Abbreviation: YLC: yolk lipoprotein 

complexes; FLIM: Fluorescence-Lifetime Imaging Microscopy. From Ref. [126] 

 

 

Long term tracking of whole cells: 

By using the same property of very long photostability, FNDs have also been used to label 

whole cells, taking advantage of the efficient cellular uptake and the very low toxicity. This 

strategy allows to track the labelled cells for a long period of time, even in an organism. To 

this aim, sized ≈130 nm FNDs have been used to render different cancer cell lines 

fluorescent [176] with a perfect stability owing to the low exocytosis and photostability of 

FNDs. By using a microfluidic circuit combined with time-gated fluorescence microscopy, 

HUI et al. [127] were able to image, with a large signal/background ratio, individual FND-

labeled cells circulating in whole blood. Moreover, these cells could also be detected in a 

mouse ear blood vessel in vivo after injection in its caudal vein. 
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FNDs were also used to label quiescent cancer stem cells (CSCs) for their subsequent 

tracking. CSCs are suspected to be responsible for tumor initiation, growth and recurrence 

[177]. The study of these cells is not easy, and the use of classical fluorescent dyes does not 

allow the tracking over a long period of time. Using a mammosphere assay, LIN et al. 

observed that even after 20 days, FNDs could still be detected in a subpopulation of cells, 

corresponding to slow-proliferating/quiescent cancer stem cells, labelled with FNDs [178]. 

Intracellular process studies: 

Beside whole cell labeling, FNDs can be of interest to track intracellular processes such as 

endosomal transport. The intraneuronal transport parameters were measured by tracking FND 

internalized in endocytotic vesicles [179]. This study has shown that the perfect 

photostability, the high brightness and the very low toxicity of FNDs allow to sense the 

impact of very small protein concentration changes in relation with neurodegenerative 

diseases. 

2.5. Conclusion of Chapter 2 

In this chapter, I have presented the main physico-chemical properties of nanodiamonds, 

essential for a biomedical application. We have focused on their non-toxicity and their 

versatile surface chemistry modification, allowing to use them as vectors for drugs, nucleic 

acids or as theranostic agents.  

We also have emphasized that the fluorescence from embedded Nitrogen-Vacancy defects 

has a perfect photostability that can be exploited to track over a timescale of a few days and in 

whole organisms, the engraftment of stem cells, or the spread of cancerous cells.  

Given all of these outstanding properties, nanodiamond is an attractive platform for many 

other biomedical applications. Several studies demonstrated their long-term non-toxicity. It 

seems that they are preferentially taken up by the reticuloendothelial system, in the 

macrophages of the liver, the lung and the spleen. It has also been demonstrated that small-

sized NDs were easily excreted through urine.  

Various synthesis processes are available to produce nanodiamonds, I have used and 

compared four of them during this PhD thesis, for our application as a siRNA delivery 

platform to Ewing Sarcoma cells and tumor: (i) plasma-assisted hydrogenation, (ii) 

hydrogenation by annealing, (iii) cationisation by successive chemical processes, (iv) 

cationisation by the covalent binding of a copolymer onto FND surface. As it will be 
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presented later in this manuscript, the most efficient one was the last, with which we have 

made a quantification of the biodistribution in organs of mice. 

The next chapter presents the targeted disease of this study: Ewing Sarcoma. I will first 

propose a general description of cancer, and then focus on Ewing Sarcoma’s characteristics 

and the challenges of its treatment. Finally, I will present the new treatment that is currently 

developed, relying on siRNA, which needs to be vectorize. 
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Before introducing Ewing Sarcoma, the disease targeted by the work of this PhD project, 

this chapter will first briefly describe the hallmarks and characteristics of cancer, to better 

understand this major illness. Then Ewing Sarcoma will be described, and its main treatments 

will be presented. Finally, the treatment strategy of this project, using siRNA, will be 

introduced. 

3.1. Cancer: the disease of the 21st century 

Cancer is one of the most spread disease and is among the leading cause of death in the 

world (8.2 million in 2012 [180]). It exists more than a hundred types of cancer and even 

more subtypes of tumors can be described [181].  
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Cancer is caused by a series of deregulations, as described in Figure 3.1-1, which cannot be 

considered as individual and static targets. On the contrary, it is more accurate and essential to 

describe and consider them as complementary, codependent and responding to an 

evolutionary dynamic [182]. 

 

Figure 3.1-1: Acquired hallmarks of cancer. From Ref. [183] 

Within the previous figure, one can distinguish six hallmarks that were described in a first 

review [181]:  

- Sustaining proliferative signaling: ability of cancerous cells to multiply indefinitely, 

without the trigger and signal from extracellular matrix components;    

- Evading growth suppressors: normal tissue receives multiple anti-proliferative signals 

to maintain cellular quiescence and tissue homeostasis, cancerous cells evade these 

signals and proliferate; 

- Resisting cell death: classical programmed cell death, apoptosis, signal is disabled in 

cancerous cells;  

- Enabling replicative immortality: in addition to growth suppressors, apoptosis evasion 

and to autonomous growth triggers, senescence of cancerous cells is disabled, thus 

inducing an infinite replication of the cells; 

- Inducing angiogenesis: creation of new blood vessels is facilitated in the tumor micro-

environment, when it is normally regulated in healthy tissues; 
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- Activating invasion and metastasis: ability of cancerous cells to escape the primary 

tumor site and colonize new tissues in the body. In 1996, metastases were the cause 

for 90% of human cancer deaths.  

Two additional emerging hallmarks were later described by HANAHAN and WEINBERG in 

Ref. [183]: 

- Deregulating cellular energetics: expansion of the tumor environment requires an 

increased energy consumption and cancerous cells show amazing characteristics to 

circumvent unfavorable conditions such as anaerobic conditions;  

- Avoiding immune destruction: it is not yet well understood which percentage of solid 

tumors escape detection from the immune system nor how many of them can limit, in 

some extent, immunological killing, thereby circumventing eradication. 

In addition, two enabling characteristics, complementary to the cancer hallmarks, were also 

described in the later review: 

- Genome instability and mutation: the various hallmarks described above mainly rely 

on a succession of alterations of the genome, only possible after a breakdown in one or 

several components of the genomic integrity maintenance machinery and/or an 

increased sensitivity to mutagenic agents;  

- Tumor-promoting inflammation: pathologists have showed that tumors were 

infiltrated by both innate and adaptive immune systems cells, first thought to be an 

immune response to the invasion of cancerous cells. But it later paradoxically 

appeared that it was not only an immune response but that it also enhanced 

tumorigenesis and progression.  

As demonstrated, all characteristics have to be taken into account globally and not as 

individual parameters. The described parameters occur at the molecular level, when one look 

at a more global scale, one can observe that incidence of cancer is also due to three identified 

triggers:  

- Environment: for instance, the increased exposure to air pollution has been linked to 

an increasing occurrence of lung cancer [184], among other diseases. Also, endocrine 

disruptors, commonly found on everyday products, have been declared as carcinogens 

[185]; 
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- Lifestyle: tobacco, alcohol and dietary have been linked to various cancers, among 

which we can obviously cite lung cancer, liver and colon cancer [186]; 

- Genetics: some gene alteration can be passed to offspring, but also genetic predisposal 

to develop certain types of cancer. The BRCA1 gene is a well-known inherited 

mutation, inducing a 70% lifetime risk for developing breast or ovarian cancer [186].  

Cancer treatment is a very important field of research and development and historically 

includes the use of chemotherapies, radiotherapies and/or surgery. A growing interest has 

developed in the last decade over the very promising immunotherapies combined to classical 

chemotherapies, for a better specificity and efficacy of the treatment.  

My PhD project focused on a specific type of pediatric cancer, Ewing Sarcoma, a rare bone 

cancer, which treatment has not evolved much over the last decades. The following sections 

will present this cancer, its epidemiology and treatments, and finally will present how this 

PhD project can lead to an improvement of the disease management.  

3.2. Introduction on Ewing Sarcoma  

3.2.1. Incidence and epidemiology 

Ewing Sarcoma is the second most frequent pediatric primary bone cancer [187], 

representing about 5% of all child and teenagers cancers [188]. It most occurs in children and 

young adults, mainly appearing in the second decade of life: approximately 80% of patients 

diagnosed with Ewing Sarcoma are younger than 20 [189,190], with a median observed at 15 

years old. Some patients are over 30 or very young but few data are available for this 

population. It has been observed that Caucasians were more affected than Asians and 

Africans, and that males were more affected than females (55:45 ratio) [189]. It was 

determined that between 1973 and 2004 in the United States, Ewing Sarcoma had occurred in 

2.93 child over 1,000,000 [188], thus classifying it as a rare cancer.  

3.2.2. Diagnosis 

Detection of this cancer is characterized by extreme bone pain, the presence of a mass along 

the bone, extreme fatigue, unexplained weight loss and intermittent low-grade fever. 

Magnetic Resonance Imaging is the standard of care for primary tumor detection. As 

presented in Figure 3.2-1-(a), the mass of the tumor is clearly visible with this imaging 

modality. PET and CT are also very used methods for the diagnosis of primary tumor in soft 
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tissues and for metastases localization. Histomorphology, immunohistochemistry and 

molecular pathology are also conducted on biopsies.  

Figure 3.2-1-(b) shows the invading aspect of this cancer on the bone. The picture clearly 

shows that the tumor grows from the bone and one can understand better the detected mass on 

MRI or PET scan. 

 

Figure 3.2-1: (a) Magnetic Resonance Image of a pelvic presenting Ewing Sarcoma mass on the left hip. From 

[187].(b) Ewing Sarcoma tumor on a femur. From Mayo Foundation for Medical Education Research 

Lower extremities such as pelvis, femur, fibula, tibia or foot are the main primary tumor 

sites with 44% of occurrences [189]. Then comes the chest wall (23%) and the upper 

extremities. Ewing sarcoma is classified as a bone cancer but it also can appear in soft tissues, 

indeed 15% of Ewing Sarcomas arises in soft tissues [188], making its histogenesis poorly 

defined. When they occur, metastases mainly appear near the central primary tumor (40%), 

then in the proximal placement of the primary tumor (30%) and finally in the distal placement 

of the primary tumor (15%). Metastases can also spread to lung and bone marrow. About 25% 

of the patients are diagnosed with primary metastases, always presenting a low survival rate. 

Figure 3.2-2 summarizes the different occurring sites of primary tumor and metastases.  

(a) (b) 
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Figure 3.2-2: Ewing Sarcoma primary tumor and metastases sites. Primary tumor occurs in 85% of cases in 

bones, preferentially in the chest wall, in the pelvis and in the long bones of the lower part, and in 15% in soft 

tissues. Adapted from Ref. [187] 

3.2.3. Current treatments of Ewing Sarcoma 

This type of cancer has a quite good survival rate, near 70% [191], when the cancer is 

detected with no metastasis. Unfortunately, this survival rate falls at 20-30% [189], when 

diagnosis occurs after the spreading of metastases. Current treatment involves a systematic 

chemotherapy combined with either radiotherapy or surgery.  

3.2.3.1. Local treatment: surgery and radiotherapy 

Surgery and radiotherapy are used for a local control of the primary tumor. Surgery is 

preferred if the tumor is resectable after chemotherapy [190] but often implies amputation of 

limbs or resection that only delays the amputation. Radiotherapy has a larger area of action 

but is less specific to the tumor site and thus can induce secondary cancers such as leukemia. 

It can be given alone in case of tumors that are located in unfavorable locations (e.g. vertebral 

tumors) or that are too large to be resected by surgery. In those cases, it has been showed that 

patients had a poor prognosis and that in 26% of the patients treated with radiotherapy only, 

local and systemic failures were observed [187]. 
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3.2.3.2. Chemotherapy 

Systematic chemotherapy is used to treat primary tumor and distant metastases. The first 

drug investigated was cyclophosphamide, which was then combined with vincristine and 

radiotherapy, showing an outstanding result on five patients in 1968. Then began the modern 

multi-modality treatment of Ewing sarcoma. In 1974 the association of four drugs 

(vincristine, actinomycin D, cyclophosphamide, and doxorubicin) [188], the VACD scheme, 

was tested in combination with radiotherapy. This multi-modal therapy showed a great 

improvement of the survival rate in the patients tested. Indeed, this first trial showed an 

overall improvement of about 10% (96% vs. 86%) in terms of effectiveness of local control 

and of about 35% in event-free survival (60% vs. 24%) [187] compared to a three-drug 

regimen. More recently, it has been added two other drugs to this combination, Ifosfamide 

and Etoposide, given alternatively with the VADC scheme. This complement having showed 

its actual benefit in improving the survival rate, it is now considered as the standard-of-care in 

North-America [187].  

Although this course of treatment greatly improved survival rates of the disease, the four 

drugs used induce adverse effects. Ifosfamide (IFO) has been extensively studied by Angelo 

PACI’s team at UMR8203 in Gustave Roussy [192] to reduce the side effects induced by its 

use. This particular compound has been showed to induce urotoxicity, nephrotoxicity, 

encephalopathy, cardiotoxicity and neurotoxicity [193,194] in about 20% of patients. 

The other prescribed compounds also induce side effects such as hair loss, inflammations, 

tissue damage at the site of injection, heart damage and peripheral neuropathy. All are more 

or less severe adverse effects, but none are equivalent to the long-term side effects as the 

urotoxicity and nephrotoxicity induced by Ifosfamide [193]. 

3.2.4. EWS-Fli1 translocation as a target site for an innovative and personalized 

treatment 

Fusion genes play a major role in certain types of cancer, particularly in sarcomas and 

leukemias [195]. Three types of fusion can occur: (i) an interstitial deletion, (ii) a 

chromosomal inversion or (iii) a translocation. The first is a mutation that leads to the loss of 

a part of a chromosome and thus to the deletion of a DNA sequence. This fusion type leads to 

genetic disorders, that are more or less fatal depending on the portion of gene that is deleted. 

For instance, the deletion of the interstitial genes between TMPRSS2 and ERG promotes the 

progression of prostate cancer [196]. The second fusion type occurs when a portion of a 
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chromosome is inverted or rearranged within itself. This type can cause serious disorders, 

even if no DNA sequence is lost. In oncology, the EML-ALK fusion occurs after an inversion 

of chromosome 2p [Inv(2) (p21p23)] and presents an potent oncogenic activity, being one of 

the cause for Non-Small-Cell Lung Carcinoma emergence [197]. The third one is an abnormal 

rearrangement of parts of two fractured non-homologous chromosomes, on the same or on 

two different chromosomes, followed by a defective repair of those lesions. The newly 

created nucleic sequence often leads to the activation of oncogenes or the genesis of 

oncogenic fusion proteins. Two examples can be highlighted: chronic myelogenous leukemia, 

which is caused by the BCR-ABL fusion, and papillary thyroid cancer from the RET-PTC 

fusion [195]. In general, those phenomena interfere with the expression and the right 

functioning of transcription factors, leading to the deregulation of numerous genes often 

involved in cell cycle or in maintaining the integrity of DNA.    

In the case of Ewing Sarcoma, it has been characterized that about 88-95% of the tumor 

cells present a characteristic translocation in t(11;22)(q24;q12) [198,199]. As presented in 

Figure 3.2-3, the 3' portion of the Fli1 gene from chromosome 11 is translocated to the 5' 

portion of the EWS gene from chromosome 22. This translocation is characteristic from 

Ewing Sarcoma and the expressed protein plays the role of an aberrant transcriptional 

activator [200], meaning that it is involved in the over-expression of several genes. Its 

expression is partly responsible for the healthy cells transformation in tumor cells, and its 

continuous expression is necessary for tumor cells sustained growth.  
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Figure 3.2-3: EWS-Fli1 translocation and oncogene junction formation. Translocation of the 3’ portion of the 

Fli1 gene from chromosome 11 to the 5’ portion of EWS gene on chromosome 22. From Ref. [187] 

EWS gene encodes for a RNA-binding protein that can combine with components of the basal 

transcriptional machinery and post-transcriptional RNA processing [201]. It has been 

observed that mice with non-expressed EWS gene present a deficiency in homologous 

recombination and recombination repair. Fli1 gene encodes for a member of the 

erythroblastosis transforming-virus-1 (ETS) transcription factors family, one of the largest 

families of transcription factors, often playing a role in cancer proliferation. It is important to 

note that Fli1 gene can be substituted by another member of the ETS transcription factors 

family, such as ERG, ETV1, ETV4 or FEV. This PhD project only focused on the most 

occurring case of these proto-oncogene activating translocations: EWS-Fli1 translocation.  

There are many different types of EWS-Fli1 recombinations depending on the translocation 

sites of the EWS gene and the Fli1 gene [202]. The most common translocation is Type 1, 

occurring in 60% of cases [203]. Type 2 is less frequent but still represents 25% of cases and 

is characterized by a greater clinical “aggressivity” [203]. As presented in Figure 3.2-4, Type 1 

is characterized by a fusion between exon 7 of EWS to exon 6 of Fli1, whereas Type 2 

appears after fusion of exon 7 of EWS to exon 5 of Fli1 [204]. 
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Figure 3.2-4: Schematic representation of the different types of EWS-Fli1 fusions. From Ref. [205] 

The Type 1 fusion is the main focus of this project, because the rupture occurs in two 

introns, leading to the synthesis of mRNA with an homogenous junction sequence after the 

splicing of the pre-messenger [206]. This feature is more favorable to the design of an anti-

sense strand, targeting this junction, and offering a specific targeting of the tumor cells 

exclusively. Furthermore, the project focused on Type 1 fusion, because it is the most 

common occurrence of the fusion gene, thus having the largest number of cases. The 

European project in which we took part also had the ambition to target the Type 2 fusion. 

The encoded protein resulting from the EWS-Fli1 gene is then very specific since the EWS 

RNA-binding domain is replaced by the DNA-binding domain from Fli1, thus creating a 

completely new ETS transcription factor possessing unique features. Indeed, it has been 

observed that a large number of genes are up-regulated by the fusion protein but also that an 

almost equal number of genes are constantly down-regulated. In particular, KOVAR et al. 

[201] showed that EWS-Fli1 fusion protein had a double function in oncogenic 

transformation:  

-  it down-regulates the apoptosis activity of tumor cells by inhibiting proteins p21 and 

p53; 

- it activates the IGF1 path that enhances cell proliferation. 

This ability makes it the first driver of Ewing Sarcoma Family of Tumor (ESFT) 

oncogenesis and allows the tumor to grow and spread but also to be resistant to several 

chemotherapies.  

3.2.5. Conclusion of Sub-section 3.2 

Ewing Sarcoma is a rare pediatric cancer, induced by a specific fusion oncogene: EWS-Fli1. 

It has been mentioned that the conventional treatments of this disease have not evolved over 

the last three decades, inducing long-term major adverse effects, such as urotoxicity and 
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nephrotoxicity. Furthermore, Ewing Sarcoma presents a rather good 70% 5-year survival rate 

when diagnosed with no metastases, but this rate drops at 20-30% when metastases are found 

along with the primary tumor. New therapies are being studied, such as immunotherapy, in 

order to improve both long-term patient’s live but also to improve the survival rate, in 

particular when metastases have occurred.  

The EWS-Fli1 fusion gene is highly specific to Ewing Sarcoma cells and it has been 

demonstrated that it was responsible for the down-regulation of the apoptosis activity, and for 

the up-regulation of cell proliferation. This specific fusion has thus become a perfect target 

for gene therapy. Indeed, over the last couple of decades, several teams studied the inhibition 

of expression of this fusion gene, as a potential therapy, in order to restore the apoptosis 

signal and to stop cell proliferation.  

Our team has work on this gene target since the 2000’s, inducing type 1 EWS-Fli1 inhibition 

by using antisense oligonucleotides or siRNA, carried by various types of nanoparticles 

[40,152,207]. This PhD project focused on the use of siRNA to specifically target the fusion 

gene using a new technology. This technology is presented in the next section.   

3.3. Gene silencing: a variety of tools  

Gene silencing refers to the mechanism by which the expression of a specific gene is 

disabled, which can occur at different phases of the cell replication process. Indeed, cellular 

phenomena enable the silencing at the transcriptional or post-transcriptional levels but also 

during meiosis. Either way, it always results in the inhibition of the expression of the targeted 

gene encoded, and thus to the inhibition of the production of the associated protein. This 

phenomenon can be induced by natural agents such as viruses or transposons, but also by 

specifically engineered compounds. The later will be the main topic of this Section. 

Gene silencing was for the first time observed in 1990 by the plant biologist Richard 

JORGENSEN and his team [208]. They indeed witnessed a post-transcriptional gene silencing 

during one of their experiments on petunia flowers. A purple pigment-producing transgene 

was supposed to deepen flowers’ color when instead it whitened them or made appear a lack 

of pigmentation. This silencing phenomenon has been later more thoroughly described by 

FIRE, MELLO and colleagues in nematode worms, explaining the phenomenon behind gene 

silencing by showing that an endogenous double strand RNA (dsRNA) was responsible for 

gene silencing under a mechanism that they called Ribonucleic Acid interference (RNAi) 

[209]. 
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There are several ways to silence or control the expression of a gene at the post-

transcriptional level, among which oligonucleotide (ODN), ribozymes and RNAi. The main 

characteristics of each are summarized in Table 4. RNAi can be divided into four main 

categories: small interfering RNA (siRNA), micro-RNA (miRNA), short-hairpin RNA 

(shRNA) and piwi RNA (piRNA). Note that there are other types of RNAi, but they will not 

be detailed in this manuscript. 

Table 4: Comparison of different silencing tools. Abbreviations: nt: nucleotides. 

EFFECTOR STRUCTURE SILENCING 
MECHANISM 

STABILITY 
IN SERUM 

TRAITS REFERENCES 

ODNs 18-25 nt RNA 

or DNA; 
single-

stranded 

Binds to mRNA, 

RNaseH 
degradation or 

steric blocking 
mechanism 

Few minutes if 

no chemical 
modifications 

Less specific and 

efficient than 
siRNA 

[210–212] 

 

RIBOZYMES Catalytic 
RNA; three 

helices 

Hydrolysis or 
transesterification 
catalyze of self or 

other RNAs 

10 seconds to a 
few minutes 

Not stable 
enough to be 

used as a 

therapeutic 

[210,212] 
 

siRNA 21-22 nt 
RNA; double-

stranded 

Taken up by RISC 
complex and 

degradation of the 
complementary 

mRNA 

Few hours 10 - 100 folds 
more potent than 

ODNs 

[211,213–215] 
 

miRNA 20-24 nt 

RNA; single-
stranded 

Control mRNA 

degradation and 
inhibition of its 

translation 

No data Crucial in animal 

development 

[214,216,217] 

 

shRNA 19-29 nt 
RNA; double-

stranded 

Transcripted from a 
plasmid introduced 

in the cell into a 
long RNA and then 
matured in siRNA 

Constitutively 
expressed in 

cells, always at 
high 

concentrations 

even when 
degraded 

Constitutively 
expressed in 

cells. More 
cumbersome 
to use than 

siRNA 

[218–220] 
 

piRNA 29-30 nt 

RNA; single-
stranded 

Binds to Piwi 

proteins that induce 
silencing by using 

transposons 

No data Highly abundant 

in mammalian 
testes 

[221] 
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Considering all the options RNAi-based therapy can offer, only one is currently under 

extensive studies: siRNA. Indeed, as shown in Table 4, ODNs and ribozymes present more 

drawbacks than actual benefits, whereas siRNA presents good characteristics. Its mechanism 

as well as the miRNA-based gene silencing mechanism will be described in the following 

subsection.  

3.3.1. RNAi: a focus on siRNA 

RNAi mechanism is considered as an evolutionarily conserved phenomenon, stately present 

in cells and probably responsible for the genome integrity from exogenous nucleic acids 

[213]. Present in most lower eukaryotic cells in worms, plants and in embryonic cells of 

higher eukaryotes, it has been shown that RNAi was not only responsible for pathogen 

resistance but also for the regulation of endogenous genes and genomes [222]. Moreover, the 

introduction of a double stranded RNA in a cell induces a cellular stress response with 

interferons production, thus eventually leading to cell death. However, ELBASHIR et al. [223] 

showed that if a short dsRNA is introduced, then no or a very weak response is observed and 

silencing can be done. This is the reason why siRNA, which is a short dsRNA, can induce 

silencing while a longer dsRNA cannot. RNAi is more thoroughly described in Refs. [224], 

[225] and [226]. 

This technology is thus very attractive for medical applications as the down-regulation 

feature could be used in the treatment of multi-drug resistant diseases [227,228] or for 

personalized therapies. In particular, there is an increasing number of studies using RNAi in 

oncology, since cancer is closely linked to genome alteration, as presented in Section 3.1. 

RNAi encompasses several tools, such as siRNA and miRNA, which mechanisms will now 

be presented.  

siRNAs are small dsRNA (21-23 nucleotides in length) taken up by cells and which need a 

carrier, either viruses or nanoparticles, as they show a very low stability in serum [229], due 

to a rapid degradations by serum nucleases. siRNA origin can be endogenous or exogenous, 

as presented in Figure 3.3-1.  
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Figure 3.3-1: Various siRNA sources. Adapted from Ref. [222] 

When siRNA is produced from an endogenous dsRNA, the later must first be catalyzed by 

the enzyme endoribonuclease III called Dicer, which then synthesizes siRNAs. The long 

dsRNA is cleaved and gives rise to a 21-23-nucleotides-long (nt) siRNA. This includes 2 free 

nt at the 3' extremity, that will interact with the Argonaute (Ago) protein, which will then 

assemble with the RNA-induced Silencing Complex (RISC) [222]. When siRNA is 

synthetically produced, it directly interacts with Ago and then is incorporated in RISC. siRNA 

is a double stranded RNA with a 'sense' strand and an 'antisense' strand. The sense strand is 

degraded by Ago whereas the antisense strand is used by RISC to target a specific mRNA, 

identified thanks to complementary Watson-Cricks base-paring. The mRNA is cleaved in a 

sequence-specific manner leading to its degradation by Ago component and to the 

translational repression of the targeted gene. The remaining mRNA fragments are then 

attacked by exonucleases from the cells to finalize the degradation [230]. RISC and siRNA 

are recycled and can process several other cleavage cycles [213]. Figure 3.3-2 illustrates the 

siRNA silencing process.  
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Figure 3.3-2: Gene silencing at post-transcriptional level using siRNA. dsRNA is first cleaved by Dicer to 

produce siRNA. In case of synthetic siRNA, this step is bypassed. siRNA then assembles with RISC. The sense 

strand of siRNA is degraded, and the antisense strand is used to guide RISC to the targeted mRNA and cleave it. 

siRNA and RISC are recycled to process other cleavage cycles. Adapted from Ref. [230] 

The main benefit of gene therapy, and more particularly of siRNA mediated gene silencing, 

compared to conventional therapy, is the very high specificity in the selection of the targeted 

cell. siRNA mode of action being based on the very specific complementarity between the 

targeted sequence and the siRNA sequence, it should induce cytotoxicity only to the targeted 

cells. Nevertheless, three sources of toxicity have been identified:  

- off-target effects: concentration dependent and sequence mediated, they lead to the 

silencing of non-targeted genes. It has been observed that these “off-target” effects 

could occur when a partial sequence complementarity exists, between the 5’ end of the 
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transfected siRNA guide strand and the non-targeted mRNA [231]. It is also non-

negligible that the siRNA could inhibit another gene; 

- Innate immune activation: the use of siRNA and more generally of dsRNA can 

activate innate immune receptors, triggering inflammatory and interferon responses. 

Thus, chemical modifications can help to avoid binding and activation of these 

receptors [230].  

Gene silencing and more particularly siRNA is a great tool for gene therapy. The main 

hindrance of their clinical development is their very low stability in blood [232] and their low 

cellular uptake capacity [227]. siRNA thus needs a vector or a cell uptake promoter such as 

electroporation [233].  

3.3.2. Vectors used for siRNA delivery 

Although siRNA represents a lot of hope in gene silencing and thus personalized medicine, 

its wide use is still low mainly due to delivery difficulties and a lack of clinical positive 

results. Indeed, siRNA has a short half-life in serum, from a few minutes up to an hour when 

not modified or vectorized [233], and shows difficulties to go to the target through the 

systemic circulation because of nucleases-mediated degradation [211]. Furthermore, the 

various studies that have been performed showed that “naked” siRNA experienced a prompt 

renal excretion and did not readily enter cells. This behavior can be explained by the siRNA 

polyanionic property and macromolecular structure [234], which, by electrostatic forces 

induces a repulsion. Another important characteristic of RNAi-based therapy is that the 

desired gene has been observed to be silenced for three to five days [235]. Gene therapy 

should then include several administrations, depending on the expected outcome and the 

rationale of the therapy. 

It is then important to develop an efficient protector to deliver siRNAs. Prof. MALVY and 

Dr. BERTRAND, from our team at Laboratoire de Vectorologie et Thérapeutiques 

Anticancéreuses, have been extensively studying and developing various types of nanovectors 

to carry siRNA. In 2000, LAMBERT et al. successfully developed nanocapsules composed of 

polyisobutylcyanoacrylate (PIBCA) to encapsulate (yielding efficiency of about 98% [236]) 

antisense oligonucleotides targeting EWS-Fli1 oncogene [237], obtaining by this mean a 

consequent tumor growth inhibition in vivo. The same polymer was later used to encapsulate 

siRNA [238], displaying the same yield of encapsulation (≈97%), similar in vitro EWS-Fli1 

gene expression inhibition (≈60%) and in vivo tumor growth inhibition (≈43%), with 



 

 

 

 

79 

multiple intra-tumoral injections. A similar polymer was used for the inhibition of RHOA 

[239], which overexpression is responsible for an increased tumor cell proliferation and 

invasion and for tumor angiogenesis in an aggressive form of breast cancer. For this in vivo 

application, chitosan-coated polyisohexylcyanoacrylate (PIHCA) nanoparticles were used to 

encapsulate anti-RhoA siRNA, and administered intravenously every 3 days for 30 days, 

showing a total tumor growth inhibition all along the duration of the PIHCA-siRNA 

administration [239]. Chitosan-coated PIHCA-siRNA nanoparticles were also used for the 

inhibition of EWS-Fli1 and RET-PTC1 expression, in the treatment of Ewing Sarcoma [234] 

and of thyroid papillary carcinoma [240] xenografted tumors, respectively, in mice. By this 

mean, a tumor growth inhibition was again obtained, by the inhibition of EWS-Fli1 

expression for 11 days, with a total of 5 intravenous injections [234], and by the inhibition of 

RET-PTC1 expression for 11 days, with a total of 5 intra-tumoral injections [240]. In our 

most recent work with organic nanoparticles, we used a squalenic component, able to self-

organize in nanoparticles, and to complex with siRNA thanks to cationic charges at its 

surface. BERTRAND et al. obtained an EWS-Fli1 gene expression inhibition in vitro [41], and 

URBINATI et al. obtained a consequent tumor growth inhibition in the case of prostate cancer, 

by targeting the TMPRSS2-ERG oncogene [241]. Since then, our team focused on the use of 

nanodiamonds to deliver siRNA. 

 Cationic polymers or nanoparticles are one of the most studied vectors for the delivery of 

siRNA, thanks to the electrostatic interactions with the negatively charged phosphate groups 

of the siRNA [37]. Some polymers have already been tested such as the natural polymers 

chitosan combined with PEI [242] or synthetic polymers such as polyethylenimine (PEI) 

[207] or dimethylaminoethyl methacrylate (DMAEMA).  

Cationic lipoplexes or liposomes have also been studied [243,244]. Briefly a complex is 

spontaneously formed between siRNA and the polycationic polymers thanks to electrostatic 

forces between the two. The negative charges of the phosphate groups from siRNA and the 

polycationic groups from the liposome interact and can form NPs. This results in the 

entrapment of siRNA within the liposome [232]. HAMMOND et al. [245] used a multilayered 

liposome to encapsulate both the drug and siRNA, both being protected from blood stream 

and renal-excretion by a PEGylated outer layer.  

Polymers and polycation-based vectors are also good engineered solutions for gene delivery. 

Although transfection efficiency and endosomal uptake and escape are low, they present very 
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low immunogenicity and no risk of chromosomal insertion, on the contrary of viral vectors. 

Also, they can carry a large amount and large-sized DNA and they can be easily synthesized. 

However, toxicity of those carriers must be considered, even though a majority of in vivo 

studies showed successful delivery, BEHLKE et al. in [233] cited different toxicities due to the 

cationic lipids, involving electrostatic effects.  

Figure 3.3-3 presents a schematic representation of siRNA delivery by various cationic 

complexes or nanoparticles. 

 

 

Figure 3.3-3: Schematic representation of siRNA delivery by biocompatible polymer complexes or 

nanoparticles. siRNA can be vectorized in different ways: (i) entrapped in the core of the particle, (ii) ionically 

adsorbed at the surface or (iii) the sense strand can be covalently attached to one of the surface components. A 

PEG polymer chains can be added to improve the pharmacokinetics and the biodistribution behavior but also to 

improve biocompatibility. Targeting materials, such as antibody or peptides, can also be added to the surface. 

From Ref. [244] 

Another type of vectors also greatly used are the viral vectors. It is the most developed 

technique since they are widely used for gene therapy. Indeed, it is the easiest method to 

transfer genes of interest to desired cells and it is proven that it is a successful way. As a 

matter of fact, virus-based vectors get readily into the targeted cell and can even replicate 

itself. Among vectors that are used, one can cite adenovirus, retrovirus, vaccinia virus and 
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finally herpes simplex virus [246]. Although they can be very easy to use and have proven a 

great efficiency at delivering genes, viral vectors also present drawbacks such as a strong 

immune response [247]. Furthermore, even though the genes that are carried are carefully 

verified, viral vector use can cause chromosomal insertion and proto-oncogene activation. 

Finally, they can only carry a limited number of siRNA molecules and can be contaminated 

by another living viruses. 

3.4. Conclusion of Chapter 3  

RNAi therapy and more specifically siRNA showed great promises, but investments 

decreased over the years, because of a lack of clinical results. This technology could 

experience a revival, several pharmaceutical treatments based on this technology being at 

different stages of clinical trials, as indexed in the review in Ref. [248]. The leading company 

developing this technology, Alnylam, has four products, targeting hereditary ATTR 

amyloidosis, hypercholesterolemia, hemophilia and acute hepatic porphyrias, in late clinical 

stage (Phase III). All are siRNA, vectorized either by a lipid nanoparticle or by N-

acetylgalactosamine (GalNAc) delivery platformf.  

siRNA has been shown to be an attractive tool for gene silencing and thus its application for 

new cancer therapies would represent a new paradigm in the treatment of certain diseases. 

Unfortunately, siRNA suffers from a low serum stability, a rapid renal clearance and a poor 

cellular uptake. In order to improve in vivo siRNA transfection, it is necessary to use a vector 

to either encapsulate it or load it on its surface for a better stability and an increased uptake.  

The vector used for siRNA delivery during this PhD project was nanodiamond. The 

following chapters will present the different studies conducted on the nanodiamond-siRNA 

complexes. By using different types of nanodiamonds, in vitro studies and in vivo 

biodistribution were achieved.   

 

 

 

  

                                                      
f http://www.alnylam.com/alnylam-rnai-pipeline/#latestage 
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As presented previously, nanodiamonds display very interesting characteristics to be used as 

drug delivery platforms, in particular for siRNA delivery to Ewing Sarcoma cells. In a 

previous work [249], which served as a proof-of-concept, detonation nanodiamonds were 

initially exposed to a micro-wave assisted hydrogen plasma, allowing an efficient cleaning of 

oxygen groups, a removal of the non-diamond carbon layer (graphite) and the formation of C-

sp3-H terminations at the surface of the nanoparticles [91]. A more detailed description of the 

used protocol is provided in Section 4.1.1. These hydrogenated detonation nanodiamonds (H-

DND) were then suspended in de-ionized water, leading to a stable suspension with a high 

positive zeta potential of +50mV, very favorable for nucleic acid binding by electrostatic 

interactions. This study showed that siRNA was loaded on H-DND, then delivered to Ewing 

Sarcoma cell’s cytoplasm, where it induced an efficient inhibition of EWS-Fli1 gene 

expression, as presented in Figure 3.4-1. 

 

 

Figure 3.4-1: EWS-Fli1 inhibition after 24h of treatment with H-DND vectorized siRNA (antisense: siRNA AS; 

or control: siRNA Ct) on A673 Ewing cells. From Ref. [249] 

This work demonstrated the proof-of-concept in vitro. A translation of these results to an in 

vivo pre-clinical model should be feasible and would represent a great hope for Ewing 

Sarcoma treatment. The European project DiamESTar, which has supported this PhD project, 

was funded to address: (i) the in vitro efficacy of such hydrogenation when applied to H-
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DNDs of a size smaller than 5 nm; (ii) the in vivo efficacy, biodistribution and elimination of 

cationic ND:siRNA complexes. My work concerned the in vitro physico-chemical and 

biological (in terms of their ability to deliver an active siRNA in cultured cells) 

characterization of different cationic detonation nanodiamonds and functionalized HPHT 

nanodiamonds batches and the tissue distribution of the later when injected to a mouse.  

To do so, different cationization strategies were used and tested: micro-wave plasma-

assisted hydrogenation, annealing under hydrogen atmosphere, cationization by chemical 

treatment, and cationic polymer coating. The nanodiamond solutions were manufactured by 

different partners: 

- Aqueous suspensions of DND (primary size ≈5 nm) hydrogenated by plasma or by 

annealing, were made in Jean-Charles ARNAULT’s team at the Diamond Sensors 

Laboratory of CEA-LIST Saclay (Gif-sur-Yvette, France) for the former and in 

Gregory PIETER’s team at the Laboratoire de Marquage par le Tritium of Institut des 

sciences du vivant Frédéric Joliot/CEA Saclay for the later; 

- A chemically treated DND (primary size ≈3 nm) aqueous suspension of commercial 

solution NanoAmando®, was manufactured by NanoCarbon Research Institute, Ltd., 

Japan; a generous gift from Prof. Eiji OSAWA; 

- A cationic polymer coated-HPHT diamonds (primary size ≈30 nm) suspension was 

prepared by Marek KINDERMANN, PhD student, in Peter CIGLER’s Lab at the Institute 

of Organic Chemistry and Biochemistry (Czech Academy of Sciences, Prague, Czech 

Republic). 

This chapter will present the physico-chemical characterizations that were conducted for 

each nanodiamond solution received. That includes size and electrophoretic mobility (zeta 

potential) measurements, siRNA binding capacity and colloidal stability over time. The 

ND:siRNA complexes were then tested in vitro for cytotoxicity, cell internalization, the 

ability to inhibit the junction oncogene EWS-Fli1 and for apoptosis restoration. These 

preliminary assays were meant to determine the optimal cationization strategy, in order to 

then move to in vivo experiments. All the methods used for the experiments presented in this 

chapter are thoroughly described in Appendix A.  
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4.1. Plasma-assisted hydrogenation and hydrogenation by annealing of DND 

4.1.1. Methods of production 

4.1.1.1. Micro-wave plasma-assisted hydrogenation 

The plasma-assisted hydrogenation of DND (P-DND-H) was conducted in Jean-Charles 

ARNAULT’s and Hugues GIRARD's team at the Diamond Sensors Laboratory of CEA-LIST 

Saclay (Gif-sur-Yvette, France). 

Briefly, a hydrogen plasma was created in a quartz tube resisting to high temperatures, in 

which 50-100 mg of ND powder was placed [134]. To initiate a plasma in the tube, a 

continuous flow of hydrogen (10 sccm) at a controlled low pressure of 12 mbar was made 

circulating with a pumping system, and the tube was placed in a wave-guide supplied with a 

micro-wave generator (frequency 2.45 GHz, Power: 250 W). This resulted in the formation of 

a hydrogen plasma, reaching a temperature of 700-1100°C. A schematic representation of the 

setup is presented in Figure 4.1-1.   

 

Figure 4.1-1: Schematic representation of the micro-wave plasma-assisted hydrogenation of NDs. From Ref. 

[91] 

 The sample was then exposed to the plasma for 20 minutes, and the quartz tube was rotated 

during the entire process in order to ensure the homogeneity of the hydrogenation over the 

whole surface of the DNDs. The resulting hydrogenated powder was then dispersed in 

deionized water, sonicated to disaggregate the clusters (Hielscher UP400s, 300W, 24 kHz, 1h 
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under cooling system) and finally centrifuged (2,300 g, 40 min) to only collect the small 

particles left in the supernatant.  

4.1.1.2. Annealing under hydrogen atmosphere 

The DND annealed under hydrogen atmosphere (A-DND-H) were produced at the 

Laboratoire de Marquage par le Tritium of Institut des sciences du vivant Frédéric Joliot/CEA 

Saclay in Gregory PIETER’s team, by Emilie NEHLIG, post-doctoral fellow. As we intended to 

use tritium gas to study the biodistribution and the elimination of tritiated DND after injection 

in mice, the annealing method was adapted in order to work in a closed set up, as a flux could 

not be used because of the generated radioactivity. 

The annealing treatment was performed at a lower temperature (450-550°C) than the 

plasma-assisted hydrogenation. Thermal annealing in the gas phase is a “simple and 

inexpensive process” suitable for surface reduction of DNDs, conferring them low surface 

contamination, good homogeneity of their surface, negative electron affinity, high positive 

zeta potential and narrow size distribution. This treatment was first set up by KOROLKOV et al. 

in 2007 [250] and performed at high temperature (800-850°C) for 5 h. A similar treatment 

was developed by WILLIAMS et al. in 2010 [130] at a lower temperature.  

Briefly, a quartz tube was loaded with 30-35 mg of DND powder. The tube was then 

connected to the hydrogen set up, vacuum was made and the setup loaded with gas (200-250 

mbar H2). The tube containing the DND powder was placed in the oven, and connection was 

made with a trapping set up (round flask in dry ice and acetone bath). The sample was then let 

for 1h, at 550-560 °C. The tube was then closed and removed from the oven. The round flask 

was brought back to room temperature and vacuumed for 15 min. The DND powder was then 

vacuumed for 30 min before disconnection and air exposure. DNDs were placed in a glass 

vial in deionized water after 10 hours, sonicated and centrifuged (cf. previous method section 

4.1.1.1), to only retrieve small particles from the supernatant. 

Compared to micro-wave plasma-assisted hydrogenation, the annealing process allows a 

more homogeneous hydrogenation and renders a final solution with an increased colloidal 

stability, as it will be demonstrated in the following sections.   

Moreover, this annealing method allowed the CEA team to graft tritium not only at the 

surface of DNDs, by replacing 1H2
 by 3H2, but also in the core of the diamond nanocrystal, the 

tritium diffusing deep inside the nanoparticles, as demonstrated by GIRARD et al. [251]. The 
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method did not need much update: they placed DNDs in a quartz tube, with an isolation valve 

and in/out gas connections, including one connected to a cold trap. Fully reduced surface of 

DND’s was obtained at 200 mbar and 550°C after a 4-hour exposure to a 100% Tritium gas. 

The labile 3H were then removed thanks to a washing step with a protic solvent (methanol). 

4.1.2. Physico-chemical characterization of nanodiamonds 

4.1.2.1. Hydrogenated DND alone  

The size and electrophoretic mobility (zeta potential) measurements were conducted with a 

Dynamic Light Scattering (DLS) NanoBrook 90Plus PALS device (Brookhaven Instruments 

Corporation, USA). More details about the different parameters and figure of merits used in 

DLS and described in this chapter, can be found in Appendix B.  

From the different size and zeta potential measurements (Table 5), it appeared that there 

were disparities between the various batches, with more or less aggregation and fluctuation of 

the zeta potential, with no simple explanation for their causes. In Table 5, the effective 

diameter corresponds to the “Z-average” size. It is the most stable parameter produced by the 

DLS technique because it has a low sensitivity to noise. Diameters in Number results from a 

number distribution, where each particle has equal weighting. It allows to retrieve the 

contribution of small particles to the scattering, which signal intensity is dominated by the 

signal of the “large” particles or aggregates.  

The polydispersity Index (PDI) provided by the DLS estimates the width of the particle size 

distribution. This value is dimensionless and fits between 0 and 1. Values between 0 and 0.2 

are considered to be associated to well monodisperse distributions, values from 0.2 to 0.7 to 

mid-range polydisperse distribution and values greater than 0.7 to very polydisperse ones. The 

baseline index indicates the sample quality, e.g. presence of large particles/aggregates, by 

making the difference between the measured and the fitted baseline of the correlation 

function. The best quality solution should get the highest value at 10.  

The zeta potential is inferred from the electrophoretic mobility measured by the apparatus 

(by Doppler velocimetry) via the Smoluchowski diffusion theory. It is the electrostatic 

potential at the boundary dividing the compact layer and the diffuse layer of the electrical 

double layer surrounding a charged colloidal nanoparticle. Its value provides information on 

the surface charge of the nanoparticles. 

Nota bene: results from different batches and from different hydrogenation synthesis 

processes are gathered in this manuscript. Name coding was applied as follows:  
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P- DND- H- 1 to 3 1 to 5 

Plasma-

assisted 

Detonation 

nanodiamond 

hydrogenated Producer: 

1. NanoCarbon Institute; 2. 

PlasmaChemg; 3. Adamash 

Batch 

number 

A- DND- H- 2 1 to 4 

Annealed Detonation 

nanodiamond 

hydrogenated Nanodiamond powder producer: 

PlasmaChem 

Batch 

number 

Example: sample P-DND-H-24 was a plasma-assisted hydrogenated detonation diamond 

produced by PlasmaChem, batch number 4. 

Table 5: Size and zeta potential of the different batches of plasma-assisted and annealing hydrogenation 

nanodiamonds. Effective diameter represents the average diameter inferred from Intensity (Z-average), diameter 

in Number is the mean value of measures in the Number distribution, PDI is the Polydispersity Index and the 

Baseline Index shows the aggregation level of the solution. *This sample is the same that was used in the proof-

of-concept study [249] and was then considered as a reference in the following experiments.  

** The calculation of the mean excluded the batch A-DND-H-21 

Sample ID 
Effective diameter 

(nm) 

Diameter in 

Number (nm) 
PDI 

Baseline 

Index 

Zeta potential 

(mV) 

P-DND-H-11* 58.1 27.7 0.22 0.00 +38.3 

P-DND-H-12 247.5 57.1 0.16 0.00 +44.8 

P-DND-H-13 376.7 39.3 0.25 0.00 +35.0 

P-DND-H-21 161.8 53.9 0.26 6.8 +26.6 

P-DND-H-22 230.5 93.2 0.22 4.1 +33.8 

P-DND-H-23 242.7 53.0 0.20 0.00 +37.4 

P-DND-H-24 192.3 39.2 0.24 0.00 +19.6 

P-DND-H-25 116.7 72.9 0.14 9.7 +57.5 

P-DND-H-31 286.2 48.1 0.20 0.5 +39.7 

Mean 241.8 57.5 0.20 2.0 +38.3 

A-DND-H-21 1430.5 78.2 0.16 4.0 +4.5 

                                                      
g PlasmaChem nanodiamond powder: PL-D-G02, average size: 4-6 nm. 
h Adamas nanodiamond powder: information not provided  
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A-DND-H-22 171.1 65.6 0.24 5.5 +30.9 

A-DND-H-23 71.7 31.3 0.21 9.0 +45.8 

A-DND-H-24 63.4 55.7 0.18 9.7 +55.3 

Mean** 102.1 50.9 0.21 8.1 +44.0 

Table 5 shows a great difference between intensity (effective diameter) distribution and 

number (diameter in Number) distribution values. It is explained by the fact that the different 

solutions contained very small nanoparticles but also large aggregates. A positive point is that 

the PDI was around 0.2, meaning that our solutions were rather monodisperse, but the low 

baseline index suggested the presence of large aggregates. We can then assume that there 

were two populations: one composed of small aggregates (the single DND could not be 

measured in those conditions) and a second one constituted by large and very large 

aggregates.  

Overall, DLS data showed that DND hydrogenated by annealing presented smaller effective 

diameters compared to those hydrogenated under plasma-assistance. The A-DND-H-21 

sample had to be put aside for this analysis, as it obviously presented a very high degree of 

aggregation and a typical zeta potential associated to an unstable suspension [252]. The 

decrease of the effective diameter showed that there were less large aggregates, confirmed by 

the higher baseline index (close to 10). Finally, the annealing method induced a slightly larger 

zeta potential value.  

4.1.2.2. Hydrogenated DND:siRNA complex 

Figure 4.1-2 presents the size and zeta potential measurement of A-DND-H-22:siRNA 

complexes at increasing ND:siRNA mass ratio to obtain a behavioral study of the complex, 

for two different complexation protocols (i.e. with or without ultrasound sonication). 
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Figure 4.1-2: Size and zeta potential of A-DND-H-22:siRNA complex depending on the mass ratio, with 

(orange) or without (blue) ultrasound sonication during complexation. Left: Size. Right: Zeta potential 

First, one can see that the mass ratio holds an important role and its variations induced three 

distinct regions on the complex size and zeta potential graphs: 

- “Region 1”: For mass ratio smaller than 10:1, the zeta potential was negative with values 

around -35 mV and the mean size was stable around 100 nm as a result of electrostatic 

repulsion. Considering that raw hydrogenated DND are positively charged (cf. Table 5), 

this negative zeta potential indicated that siRNAs, which are negatively charged, were in 

excess around DNDs and masked the positive charges of the DNDs.  

- “Region 2”: From mass ratio 10:1 to 25:1, the complexes experienced a transitory state 

with the formation of very large aggregates (size up to 2.3 µm) and a shift of zeta 

potential from negative to positive values. This state could represent the situation where 

the complexes carry no electric charge (similarly to the iso-electric point in a zeta-

potential titration at varying pH) owing to an equilibrium of charges between 

nanodiamonds and siRNAs, inducing aggregation by short-range interaction forces (e.g.  

Van der Waals). 

- “Region 3”: For mass ratio larger than 25:1, DNDs were in excess, zeta potential was 

positive (≈+40mV), and complexes did not form aggregates thanks to electrostatic 

repulsion (like in “Region 1”).  

Secondly, one can observe a significant difference between the two methods of 

complexation. Indeed, during the transitory state where the largest aggregates are observed, 

the sonication allowed to reduce the size of the aggregates by two-fold. This aggregation state 
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of the complexes has an impact on the cell internalization. It has been observed that siRNA-

loaded nanodiamonds (DND-H primary core size  7 nm, aggregates  30 nm) entered cells 

via the micropinocytosis and the clathrin-mediated endocytosis pathways [249]. Those two 

endocytosis pathways are typical for nanoscale particles, the former enabling the engulfment 

of particles of a size < 200 nm and the later engulfing particles with a size comprised between 

200 nm and 1 m [253]. Furthermore, surface charges have also been proved to influence 

internalization efficacy: cationic particles are better internalized than neutral or anionic 

charged particles [253]. One can thus understand that (i) mass ratios used in “Region 2”, 

forming aggregates up to 2.3 m with a neutral zeta potential, are not suited for our 

application since it would disable the internalization capacity of cells; (ii) mass ratios used in 

“Region 1” would not facilitate internalization because of negative charges at the surfaces of 

our complexes. 

We chose to work at the 25:1 (DND-H:siRNA) mass ratio for two main reasons: 

- This mass ratio is at the edge of two regions (2 and 3) where the zeta potential is at 

positive values (from + 35 mV) and the size of the aggregates (under the micrometer 

size when they are not sonicated and under 200 nm when they are) are compatible 

with a cell internalization. Also, we could not use larger mass ratios because it would 

have requested a too large amount of each product to deliver a sufficient quantity of 

siRNA to induce the oncogene inhibition; 

- Our studies, former and present, show that this mass ratio was the best suited to obtain 

an inhibitory effect of EWS-Fli1, as it will be presented later.  

Concerning the siRNA binding capacity of nanodiamonds, a comparison was made (i) 

between the samples hydrogenated with plasma assistance, for the three different DND 

providers (Figure 4.1-3); (ii) between the two methods of hydrogenation, e.g. plasma-assisted 

vs annealing (Figure 4.1-4); and (iii) between the two methods of complexation, e.g. with or 

without ultrasonic sonication during complexation (Figure 4.1-5). 
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Figure 4.1-3: siRNA binding capacity to plasma-assisted hydrogenated NDs originating from three different 

nanodiamond powder producers. Blue: P-DND-H-13; Orange: P-DND-H-23; Grey: P-DND-H-31. Data label: 

mass ratio DND-H:siRNA. siRNA final concentration: 50 nM. 

Figure 4.1-3 shows that the solutions resulting from three different nanodiamond powder 

providers display different behaviors. The saturation point (i.e. ND concentration for which 

all siRNA is bound to its surface) differs from one solution to another, even though zeta 

potential values of the three solutions are similar (≈+35mV, cf. Table 5). This difference has 

not been explained yet. For P-DND-H-13 and P-DND-H-31 (blue and grey curves 

respectively), one can see that the saturation curves go below 0% of free siRNA in the 

supernatant. These values are experimental artifacts, most probably coming from a problem 

with the blank values that were too low compared to the measured values. The important 

point to notice in this type of experiment is the shape of the curve and the value at which we 

reach the saturation point, e.g. at which we reach a plateau.  

Figure 4.1-4 presents a comparison of the siRNA saturation curve for HND prepared by two 

methods of hydrogenation. It displays a difference of the saturation points, which can be 

explained by the zeta potential difference (A-DND=+44mV, P-DND=+38mV). The siRNAs 

were then more strongly bound to annealed DNDs than to plasma-assisted DNDs. 
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Figure 4.1-4: siRNA binding capacity to annealed under hydrogen (orange) or plasma-assisted (blue) 

hydrogenated nanodiamonds. Data label: mass ratio DND-H:siRNA. siRNA final concentration: 50 nM. 

Finally, Figure 4.1-5 shows that the sonication during complexation does not induce any 

difference in the binding capacity of nanodiamonds indicating that aggregation during siRNA 

fixation onto DND have no influence on bonding capacity of hydrogenated diamonds. 

 

Figure 4.1-5: Dependence on the complexation method for siRNA binding capacity on DNDs hydrogenated by 

annealing. Orange curve: with ultrasonic sonication; Blue curve: without sonication. Data label: mass ratio 

DND-H:siRNA. siRNA final concentration: 50 nM. 
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One could see from the various experiments that there was a great variation in size and zeta 

potential values of the raw DNDs from the various batches available. Variations were also 

observed for siRNA binding saturation values, among the different batches tested and 

between the two methods of hydrogenation. Complexation with siRNA under sonication 

allowed to diminish by almost two-fold the aggregates’ size but did not induce any variation 

in the titration of the binding of siRNA to DND. From this physico-chemical analysis, it 

appeared that the mass ratio (ND:siRNA) of 25:1 was the most suited, not inducing large 

aggregates ( 200 nm) and resulting in a positive zeta potential ( +35 mV).  

4.1.3. In vitro efficacy on Human Ewing Sarcoma cells 

After having characterized the received nanodiamond solutions and their behavior when 

complexed with siRNA, different in vitro assays were performed to determine (i) the 

cytotoxicity of DND-H solutions on cells, (ii) the DND-H:siRNA complex efficacy to inhibit 

EWS-Fli1 expression, and (iii) the restoration capacity of cell apoptosis. 
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4.1.3.1. Hydrogenated DND cytotoxicity assay 

 

Figure 4.1-6: P-DND-H-11 cytotoxicity on 3 different Ewing Sarcoma human cell lines after 24 (blue curve), 48 

(orange curve) and 72 h (grey curve) incubation time. MTS assay. 
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Figure 4.1-6 presents the cytotoxicity of P-DND-H on three different Ewing Sarcoma human 

cell lines: A673, TC252 and TC71, showing that a P-DND-H solution did not induce toxicity 

on cells at our working concentrations, i.e. between 0.01 and 0.05 mg/mL, and even after a 

72h exposure. Similar assays were performed with other DND-H solutions, not presented 

here, and showed the same behavior with no induced toxicity. The results of the following 

assays will only be shown for A673 cell line, assays with TC71 and TC252 cell lines having 

shown similar results. Furthermore, A673 cell line is the most represented in Ewing Sarcoma 

literature.     

4.1.3.2. Inhibition efficacy of EWS-Fli1 expression with P-DND-H:siRNA 

Inhibition efficacy was then tested, at different time points, at different siRNA 

concentrations and with different P-DND-H:siRNA mass ratios. First, Figure 4.1-7 presents 

the inhibition efficacy of the P-DND-H-11 solution, which served as a reference as it was 

successfully used in the proof-of-concept experiment published in 2015 by BERTRAND et al. 

[249]. One can see that we obtained an effective inhibition of the EWS-Fli1 gene, modulated 

by the P-DND-H:siRNA mass ratio, set at 10:1 and 50:1. This result confirmed the inhibition 

early published in Ref. [249]. 

 

Figure 4.1-7: P-DND-H-11: siRNA inhibition efficacy after a 24h incubation. Final siRNA concentration: 

50 nM. AS10: siRNA antisense used at a mass ratio P-DND-H:siRNA of 10:1; AS50: siRNA antisense used at a 

mass ratio 50:1; Ct: Control siRNA 

Figure 4.1-8 presents the comparison of different batches of P-DND-H in their capacity to 

promote EWS-Fli1 inhibition by siRNA. We observed that this inhibitory effect was not 

retrieved with newly prepared P-DND-H samples compared to P-DND-H-11 and the different 
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conditions show a disparity even between two batches from the same DND powder producer. 

Note that the Lipofectamine 2000 group was transfected in a medium without serum, as 

instructed by the producer, while all the other groups were incubated in a serum-containing 

medium. We thus obtained a very high inhibition rate with Lipofectamine 2000, but this 

platform cannot be used in vivo, as the transfectant would be degraded very quickly by the 

various proteins contained in the serum.  

 

Figure 4.1-8: Comparison of the inhibition efficacy of different P-DND-H solutions, after a 24 h incubation. 

Mass ratio P-DND-H:siRNA: 25:1; final siRNA concentration: 50 nM. 

To better understand the reasons of these negative results and determine new optimized 

parameters, we tested different siRNA final concentrations (Figure 4.1-9), and various P-

DND-H:siRNA mass ratios (Figure 4.1-10). 
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Figure 4.1-9: Inhibition efficacy optimization for different siRNA final concentration. For all curves, mass ratio 

P-DND-H:siRNA = 25:1; A673 cell line; P-DND-H-3.1 nanodiamonds. 

Figure 4.1-9 shows that the variation of siRNA final concentration did not influence much 

the inhibition effect on A673 cells. Indeed, the inhibition efficacy varied between 18 and 22% 

and there was no significant difference with the control siRNA and with the untreated cells 

group in this specific experiment. 
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Figure 4.1-10: Inhibition efficacy parameters optimization - test of different mass ratio. P-DND-H-31, siRNA 

final concentration 50 nM, A673 cell line. 

Figure 4.1-10 also shows that the inhibitory effect does not have a linear dependence to the 

mass ratio, and saturates at about 40% from mass ratio as low as 25:1. An interesting 

comparison can be made between the two similar conditions of Figure 4.1-9 and Figure 4.1-10, 

for final siRNA concentration of 50 nM and P-DND-H:siRNA mass ratio of 25:1. One can 

observe an important difference of inhibitory effect between the two biological replicates. 

This kind of variation was experienced several times all along my PhD project, making 

conclusions very hard to draw and highlighting the large variability of the different plasma-

assisted DND solutions that were tested.  

Nevertheless, despite the low replicability, the last two figures emphasize the fact that the 

initial experiments published by BERTRAND et al. [249] were already conducted in the optimal 

conditions and that a change in mass ratio or in final siRNA concentration could not improve 

the inhibition efficacy. However, one should note that the inhibition assays were only 

performed after a 24-hours incubation, and that we might have occulted a delayed effect.  
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4.1.3.3. Inhibition efficacy of EWS-Fli1 expression with A-DND-H:siRNA 

Previous results showed that hydrogenation by annealing treatment greatly improved the 

stability of the solution and the binding capacity of the nanodiamonds (see section 4.1.2). As 

for the plasma-assisted hydrogenation method, we tested several batches of the A-DND-H 

method, all produced with nanodiamond powder from the same producer. Since A-DND-H 

presented smaller aggregates than P-DND-H with a larger siRNA load per unit of mass, we 

hoped that the inhibition rate would also be increased. Unfortunately, as presented in Figure 

4.1-11, the inhibition efficacy was not improved, with a value of only ≈35% inhibition. 

  

Figure 4.1-11: Inhibition efficacy of DND hydrogenated by annealing. Blue: A-DND-H-22; Grey: A-DND-H-

23; Orange: A-DND-H-24. Mass ratio A-DND-H:siRNA=25:1 

Moreover, we did not have sufficient amounts of each solution to repeat the experiments 

extensively. The low inhibitory effect and the small amounts of solution available are the 

reasons why the following results only present experiments conducted with P-DND-H.  

4.1.3.4. Apoptotic recovery after P-DND-H:siRNA treatment 

After having tested the inhibitory efficacy, we wanted to assess if the apoptotic response was 

restored after the light inhibition of the EWS-Fli1 gene. This study was made using plasma-

assisted hydrogenated NDs only and both apoptosis and cytotoxicity assays of the DND-

H:siRNA complex were conducted. Furthermore, an association with Vincristine was made, 

acting as a trigger of the apoptosis. 
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Figure 4.1-12 shows the cytotoxicity assay conducted on A673 cell line, analyzed after a 48-h 

incubation with the different treatments. First, one can see that P-DND-H-22 alone and P-

DND-H-22 associated with siRNA against EWS-Fli1 (siAS) or with a control siRNA (siCt) 

did not induce significant toxicity. On the contrary, Vincristine at 1.5 and 2.5 ng/mL is toxic 

to cells after 48 h. However, when P-DND-H:siAS and Vincristine were associated, one can 

observe a strong and significant increase of the toxicity of about 50% for the concentration 

1.5 ng/mL and of about 6-fold for the concentration 2.5 ng/mL compared to when Vincristine 

was applied alone on cells. One can also notice a significant difference (p<0.05) between the 

group treated with siAS and siCt at 2.5 ng/mL. One can assume that the siRNA sequence 

directed toward EWS-Fli1 gene actually inhibited the gene, thus weakening even more the 

cells when treated with the cytotoxic agent Vincristine.  

 

 

Figure 4.1-12: Cell viability MTS assay of A673 cell line after a 48h incubation with P-DND-H-22, associated 

with siAS (toward EWS-Fli1), siCt (control) and/or Vincristine at different concentrations. T-test *: p<0.05, **: 

p<0.05, ****: p<10-4. 

This very encouraging result needed to be complemented by an apoptosis assay, as presented 

in Figure 4.1-13. In this experiment, CellEvent Caspase 3/7 apoptosis kit was used. We tested 
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two Vincristine final concentrations, 2 and 3 ng/mL, both exhibiting about 30% apoptosis 

induction when applied on A673 cells. Nanodiamonds associated with siAS or siCt did not 

show any apoptosis induction. However, an interesting point is that when Vincristine was 

simultaneously applied to cells with P-DND-H or with P-DND-H:siRNA, the percentage of 

living cells was reduced and the part of apoptotic cell increased. Unfortunately, the assay 

showed that this toxicity was independent from the siRNA sequence used: the group 

“ND+siCt+Vinc [2]”, which displayed a large fraction of living cells and almost no apoptotic 

cells, was most likely an experimental artefact, given the basal apoptosis induction of 

Vincristine at 2 ng/mL alone. Thus, we can assume that this increase in cell toxicity is not due 

to the restoration of the apoptotic pathway, which is stimulated by the addition of Vincristine, 

but most likely because of the association of the Vincristine molecules to P-DND-H:siRNA 

complexes, that might ease the cell entrance of Vincristine and thus increase its effect on 

cells. 

  

Figure 4.1-13: Apoptosis induction at 24h on A673 cells by P-DND-H-13 associated with siAS, siCt and/or 

Vincristine at final concentration of 2 or 3 ng/mL. siRNA final concentration = 50 nM. 

4.1.4. Conclusion of Section 4.1 

Numerous batches of plasma-assisted hydrogenation and hydrogenation by annealing of 

DND were tested. Plasma-assisted hydrogenation, which was well mastered by our 

collaborators of Diamond Sensor Lab (LIST/CEA Saclay), had worked successfully in the 
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proof-of-concept study [249]. However, the home-made system required an upgrade for 

automatization and, among other things, the micro-wave generator experienced a failure and 

needed to be replaced. It seems that the resulting setup modifications impacted the hydrogen 

termination synthesis and thus the properties of P-DND-H solutions, in particular their 

stability. The hydrogenation by annealing has, at least, improved this point. We speculate that 

the large variations in inhibition efficacy observed among different batches come from the 

setup modifications. Furthermore, we think that annealed DNDs were conferred a too high 

zeta potential, inducing a too strong binding of siRNA to these particles, preventing it from 

being released from the NDs to the cytoplasm. 

The initial aim of our study was to use ultra-small nanodiamonds (primary particle size 

<5 nm), modified at their surface by different hydrogenation treatments that allowed siRNA 

electrostatic binding and further delivery in cell cytoplasm. We demonstrated that the 

different physical hydrogenation processes were not successful in reaching this goal, we then 

decided to test another cationization technique of DND by a “wet” chemical treatment.  

4.2. Wet chemical hydrogenation: NanoAmando® solution 

A commercial aqueous solution of NanoAmando was kindly provided by Professor Eiji 

OSAWA (Nano-Carbon Research Institute, Ltd, Japan), at a very large stock concentration of 

20 mg/mL, with a nominal primary particle size of 3.1±0.6 nm and a positive zeta potential of 

+46.2 mV. The chemical cationization treatment is a long process, yielding to a stable 

solution, with a monodisperse size distribution and a positive zeta potential. 

These nanodiamonds are produced by detonation reaction [92], then milled with zirconia 

beads [107] and purified by various chemical baths of HNO3, a mixture of H2SO4 and HNO3, 

K2Cr2O7 in H2SO4, KOH/KNO3, Na2O3, HNO3/H2O2 under pressure, or HClO4 [104]. They 

present cationic surface charges (+45 mV), acquired after a strong reduction chemical 

treatment [88]. This process has been described but not fully understood yet [252,254]. This 

commercial solution also presents a very good colloidal stability with no aggregates nor 

flocculation at stock concentration.  

These DND have been tested for their physico-chemical properties and stability, once 

diluted, their siRNA binding capacity, and, of course, for the inhibition efficacy of the 

complex toward EWS-Fli1 oncogene. Internalization studies by confocal microscopy were 

also conducted. 
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4.2.1. Physico-chemical characterization of NanoAmando solution 

We started to verify the nominal size and zeta potential specifications of the provider with 

our DLS/zetameter system, as presented in Table 6. 

Table 6: NanoAmando size and zeta potential characteristics as measured in our laboratory 

Effective 

diameter (nm) 

Diameter in 

Number (nm) 
PDI Baseline Index 

Zeta potential 

(mV) 

63.49 3.52 0.287 8.9 +50.96 

 

One can see the major difference between effective diameter and diameter in Number. The 

later detects and favors ultra-small nanoparticle, when the former is mainly influenced by the 

few aggregates (cf. Appendix B). In this case, measurement in Number is the most suited. 

This highly concentrated solution is very stable over time, but it has to be diluted in order to 

be used in our in vitro assays.  

We have conducted a study of the colloidal stability upon dilution in water and the results 

presented in Figure 4.2-1 show that the NanoAmando tend to aggregate. However, with the 

largest size at 52 nm, this aggregation is still compatible with cellular internalization and drug 

delivery. Moreover, this size is still below the aggregate’s sizes we have obtained with P-

DND-H and A-DND-H. 

 

Figure 4.2-1: Hydrodynamic diameter measurement (by DLS, Number representation) of NanoAmando 

suspension after dilution at various concentrations. 

The aggregation that we observed upon dilution, is in agreement with MCHEDLOV-

PETROSSYAN et al. [128] reporting that when they are diluted, 3-nm nanodiamonds form 
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larger colloidal aggregates. This phenomenon could be explained by the fact that in 

concentrated solutions, the small particles interact through the surrounding water layer and 

tend to form periodic structures. When diluted, the distance between the particles is getting 

larger, inducing the formation of secondary aggregates, more separated and larger, because of 

the lack of close interactions through the particle’s surrounding water layer. 

siRNA binding capacity onto NanoAmando was also assessed (Figure 4.2-2) and displayed 

the same behavior as with the P-DND-H and A-DND-H, but with a full saturation in siRNA 

around a DND:siRNA mass ratio of 20:1. It is twice higher (cf. Figure 4.1-3 and Figure 4.1-4) 

than for the other solutions. 

 

Figure 4.2-2: siRNA binding capacity of NanoAmando suspension. Data label: DND:siRNA mass ratio. Final 

siRNA concentration: 50 nM. 

Apart from the siRNA binding, the size and zeta potential were also studied when 

NanoAmando DND were complexed with siRNA, as presented in Figure 4.2-3. Just as in 

Figure 4.1-2, one can observe three phases in the behavior of the complexes. Once again, two 

modes of complexation were compared: with or without ultrasound sonication during 

complexation. Briefly, small sizes were observed at DND:siRNA mass ratios between 1:1 and 

15:1, with an average size of 70 nm for complexation with sonication and of about 150 nm 

without sonication. Then, at larger mass ratios, the complexes formed very large aggregates, 

in the range of 1800 nm with sonication and 2000 nm without sonication, for the largest sizes 

measured. The size of aggregates then slowly decreased but did not reach the values similar to 

those reached at small mass ratios. The highest mass ratio tested of 80:1 might have been too 
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low to reach this point, but from the trend of the curve, one can hypothesize that the size 

would have reached, at some point, the same plateau than at low mass ratios.   

 

Figure 4.2-3: Size and zeta potential of NanoAmando:siRNA complex depending on mass ratio. 

Zeta potential values experienced the same variations as described for the other cationic 

DNDs (cf. Figure 4.1-2):  

- at low DND:siRNA mass ratios, siRNA was in excess compared to DNDs, zeta 

potential was thus negative; 

- between mass ratio 20:1 and 40:1, the complexes experienced a transitory state, the 

zeta potential switching from negative to positive values through an isoelectric point 

(at mass ratio 25:1), eventually reaching +35 mV; 

- at mass ratios higher than 40:1, DNDs were in excess, zeta potential was then positive, 

reaching +43 mV, approximately the value of zeta potential of the bare nanoparticle.  

Once again, one can put in parallel the size stability of the complexes with the zeta potential 

variations. Indeed, zeta potential values between [-20;+20] mV are considered to be a sign of 

poor colloidal stability [252] leading to the aggregation of NanoAmando:siRNA complexes, 

just as for P/A-DND-H:siRNA complexes. 

4.2.2. In vitro effects of NanoAmando:siRNA on Ewing Sarcoma cells 

First the cellular toxicity of NanoAmando DNDs needed to be assessed, to ascertain that it 

could be used in our experimental conditions.  
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Figure 4.2-4: A673 cell viability when exposed to NanoAmando during 24, 48 and 72h. MTS assay. 

Figure 4.2-4 shows a moderate toxicity of the solution on A673 cells starting from 

0.2 mg/mL NanoAmando concentration. EWS-Fli1 inhibition efficacy assays by 

NanoAmando:siRNA complexes were performed at siRNA final concentration from 10 to 

150 nM, with a mass ratio DND:siRNA from 5:1 up to 50:1, setting the NanoAmando final 

concentration between ≈0.003 and 0.05 mg/mL, thus guaranteeing the absence of toxicity.  

First, we tested different mass ratios, to control that the one determined for plasma-assisted 

and annealing hydrogenation was still adapted for NanoAmando suspension. We then tested 

three mass ratios, corresponding to the three zones observed in Figure 4.2-3, e.g. DND:siRNA 

mass ratio 5:1 (no aggregation, negative zeta potential), 25:1 (mass ratio used for P-DND and 

A-DND, but presenting a high aggregation) and 50:1 (less aggregation than 25:1 and a 

positive zeta potential). It was difficult to use higher mass ratios, because it would have had 

required to use a high quantity of siRNA, we then preferred to limit the study at a mass ratio 

of 50:1. The results displayed in Figure 4.2-5 demonstrate a mass ratio related inhibition 

efficacy of the expression of EWS-Fli1 gene and a surprisingly high inhibitory effect up to 

60% inhibition for DND:siRNA mass ratio of 25:1 and 50:1. This is the highest inhibition rate 

that we could obtain with this vector.  
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Figure 4.2-5: EWS-Fli1 inhibition by siRNA-AntiSense (siAS) or siRNA Control (siCt) [50 nM] delivered by 

NanaAmando on A673 cells after 24 h incubation, at different DND:siRNA mass ratios. 

The effect of siRNA concentration on the inhibition efficacy was also assessed, at a fixed 

DND:siRNA mass ratio of 25:1. As shown in Figure 4.2-6, the inhibition efficacy increases 

with siRNA final concentration, after a 24-h incubation with A673 cells, but still remains 

below 40%. Considering the mixed results obtained in Figure 4.2-5 and Figure 4.2-6, with the 

same mass ratio of 25:1, one could only conclude for a great variability from an experiment to 

another, which was further confirmed by the fact that we could not obtain such a high 

inhibition again. 
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Figure 4.2-6: EWS-Fli1 gene expression inhibition depending on siRNA final concentration complexed with 

NanoAmando at mass ratio 25:1 (DND:siRNA) on A673 cells, after a 24 h incubation. siAS: siRNA AntiSense; 

siCT: siRNA Control. 

We have established that siRNA binds efficiently to NanoAmando (see Figure 4.2-2). One 

possible reason of the low inhibition efficacy could be that the DND:siRNA complexes do not 

escape endosomes after endocytosis, thus preventing siRNA to reach cytoplasm and then the 

RISC complex. To test this hypothesis, we decided to treat the cells with chloroquine. This 

compound is known to promote endosomal escape [255] and it has already been used to 

improve gene transfer [256]. We tested this molecule at final concentrations of 100 and 

200 µM, with a cell incubation of 3 hours at 37°C with chloroquine alone, prior to the 

addition of the NanoAmando:siRNA complexes (used at mass ratio of 25:1 and siRNA final 

concentration of 50 nM). 
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Figure 4.2-7: Effect of the addition of chloroquine prior to NanoAmando:siRNA (AS or Ct) treatment on A673 

cells 

Figure 4.2-7 shows that chloroquine only slightly increased EWS-Fli1 inhibition when 

incubated with cells before a treatment by NanoAmando:siRNA complexes, with a final 

maximal inhibition of only 40%. Unexpectedly, we observed that the inhibition efficacy of 

EWS-Fli1 expression seemed to decrease with an increase of chloroquine concentration, but 

the difference was indeed not significant. We suspect that this decrease is a toxic effect of 

chloroquine at the 200 µM concentration. 

The potential entrapment in the vesicular compartments was examined by confocal imaging 

of A673 cells, after they had been incubated for 3 hours with NanoAmando:siRNA 

complexes, and then fixed. We used 3-color confocal microscopy to distinguish (i) the FITC-

labeled siRNA in the green channel; (ii) the intrinsic fluorescence of DND (coming most 

likely from nitrogen-vacancies color centers) in the red channel; and (iii) the DAPI dye 

labeling of cell nucleus in the blue channel.  

Figure 4.2-8 presents the XZ and YZ sections, at the bottom and at the right respectively, of 

the XY plane of the same cell. One can see the co-localization of the siRNA (green) and of 

NanoAmando (red) surrounding the cell nucleus under the form of aggregates (orange spots). 

Given the accumulation in confined dimensions, very close to the nucleus, and considering 

previous results [152,164], the complexes were most likely located in the endosomal or 

micropinocytosis compartments. A more detailed analysis by transmission electron 
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microscopy would be necessary to confirm this observation, but it was out of the scope of our 

study. 

 

Figure 4.2-8: 3-colors staining confocal microscope image (63x magnification) of A673 cells treated with 

NanoAmando:siRNA-FITC. Cell nucleus: DAPI blue; NanoAmando: red; siRNA-FITC: green. Bottom: XZ 

section; Right: YZ section. Scale bar 10 m 

4.2.3. Conclusion of Section 4.2 

We were kindly provided a commercial aqueous solution of NanoAmando®, which are DND 

with an ultra-small size of 3 nm that have been cationized by chemical treatment leading to a 

positive zeta potential of +46 mV. Thanks to their ultra-small primary size and high colloidal 
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stability in solution, we expected that these cationic DND would not suffer from a too high 

aggregation when complexed with siRNA.  

Unfortunately, only a slight inhibition of the oncogene expression was observed. The 

reasons are not understood but this might be due to a poor desorption of the siRNA from the 

nanodiamonds, thus preventing the siRNA to get to the cytoplasm and to inhibit the oncogene. 

To test this hypothesis, it would be interesting to test different NanoAmando:siRNA mass 

ratios, but such developments could not be done during this PhD thesis. 

Finally, a different cationization strategy was tested, relying on the covalent binding of a 

cationic co-polymer from the surface of nanodiamonds. For this approach, we had to switch to 

nanodiamond obtained by High Pressure High Temperature (HPHT) synthesis, which allows 

(i) more sophisticated surface functionalization methods, and (ii) to introduce a large number 

of nitrogen-vacancy color centers making the nanodiamonds strongly fluorescent. The 

downside of these improved properties is a primary size of ≈30 nm, the HPHT nanodiamonds 

being obtained by grinding HPHT faceted microdiamonds, and the fraction of size <30 nm 

being small. 

4.3. Cationic polymer covalently coated to HPHT fluorescent nanodiamonds (Cop-

FND) 

The previous results showed that hydrogenated DNDs did not offer a good colloidal stability 

and that they were not able to induce a large and reproducible inhibition of the expression of 

EWS-Fli1 when loaded with siRNA. A polymer-grafted HPHT nanodiamonds suspension has 

thus been tested to improve this low inhibition rate.  

4.3.1. Methods 

As a partner of the DiamESTar project, the organic chemist Petr CIGLER (Institute of 

Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague) proposed to 

use a combination of silica and synthetic copolymer developed by his team [120] for the 

cationic functionalization of HPHT fluorescent nanodiamonds (Cop-FNDs).  

Raw HPHT NDs (type Ib, with nitrogen impurity concentration of ≈200 ppm) supplied  by 

Microdiamant Switzerland (MSY 0-0.05), were conferred nitrogen-vacancies impurities 

according to the published protocol [257]. Briefly, NDs were oxidized by air in a tube 

furnace, treated with a mixture of HNO3 and HF and washed. NDs were irradiated with a 16.6 

MeV proton beam to obtain a high density of vacancy, then an annealing step was carried to 
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form NV centers in the diamond lattice, followed by air oxidization. The resulting powder 

was again treated with a mixture of HNO3 and HF and then washed. This procedure eventually 

provided a colloidal solution of fluorescent ND, with a high density of carboxyl groups at 

their surface, among other chemical functions. 

The silica shell (hydrated SiO2) was created using a modified Stöber procedure [257] which 

was previously described in Ref. [120,258]. Terminal methacrylate groups of the silica shell 

were used to grow a dense layer of cationic copolymer, which was synthetized via radical 

polymerization mainly from methacrylate monomers, as represented in Figure 4.3-1. This 

“grafting from“ coating approach (polymer layer is polymerized from the surface of ND) 

leads to denser and better protecting coatings than the “grafting to” approach (polymer is 

synthetized in solution and then is attached on the surface) (cf. Subsection 2.3.3) [120]. 

Positive zeta potential value of polymeric NDs, of about +50mV (in pure deionized water), 

allows the binding of siRNA molecules on the surfaces via electrostatic bond. Moreover, due 

to electrosteric stabilization, this polymer coating better prevents NDs from rapid aggregation 

in biological solutions, improves colloidal stability, confers the ability to protect siRNA 

molecules against enzymatic cleavage and exhibits high binding capacity.  

 

Figure 4.3-1: Schematic structure of the polymer coating on a fluorescent nanodiamond crystal. Redrawn from 

Ref. [120] 

As we will show in the following sections, the combination of fluorescence and cationic 

polymer coating has allowed us (i) to deliver siRNA into Ewing sarcoma cells in vitro 

inducing a high inhibition of EWS-Fli1 expression, and (ii) to track the ND:siRNA complexes 

in vivo.  
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4.3.2. In vitro efficacy of the Cop-FND:siRNA complex 

The Cop-FND has been developed and fully studied by our partner in IOCB, Prague. 

Nevertheless, we carried complementary physico-chemical characterization assays. 

Furthermore, our Czech partners provided us with Cop-FND suspensions with a relative 

concentration. The following results will thus not be presented in function of concentrations 

but will be presented thanks to mass ratios between the relative Cop-FND concentration and 

the siRNA concentration.  

 

Figure 4.3-2: siRNA binding to Cop-FND depending on ND:siRNA mass ratio. Final siRNA concentration: 50 

nM 

 After having observed a very good stability of the complex at different mass ratios (results 

not presented here) and after having shown that siRNA was well bound to Cop-FNDs (Figure 

4.3-2) at the established ND:siRNA mass ratio of 3.9:1, the efficacy to inhibit EWS-Fli1 gene 

expression needed to be assessed. We tested different final concentration of siRNA and 

different Cop-FND batches, as shown in Figure 4.3-3. 
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Figure 4.3-3: EWS-Fli1 inhibition by Cop-FND complexed with siRNA AntiSense (siAS) or Control (siCt). 

Left: comparison of two batches, siRNA final concentration 50 nM, 24 h incubation, Cop-FND:siRNA mass 

ratio = 3.9. Right: Dose/effect of siRNA final concentration with Cop-FND-1, 24 h incubation, Cop-FND:siRNA 

mass ratio = 3.9. 

First, one can see a larger inhibition of EWS-Fli1 gene expression and no dependence on the 

batch, on the contrary to cationic DNDs. Second, one can see a clear dose/effect relationship: 

when siRNA final concentration was increased, EWS-Fli1 expression inhibition also 

increased. At 75 nM siRNA final concentration, we obtained a 70%-inhibition of EWS-Fli1, 

without having the trouble of a too high concentration inducing off-target effects. 

Interestingly, for the highest concentration of siRNA, the inhibition efficacy even reached the 

value obtained with Lipofectamine 2000, which has to be used in a serum-free medium, as 

instructed by the producer, while Cop-FND:siRNA was applied in presence of serum, 

allowing their use for in vivo purposes.  

4.3.3. Conclusion of Section 4.3 

The results presented in this section showed that the silica-copolymer functionalization 

enabled to obtain a gene expression inhibition efficacy as high as with commercial 

lipofectants, which however only work in serum-free conditions, contrary to the Cop-FND 

which works in full medium, closer to the in vivo situation.  

Moreover, cationic Cop-FND is superior to previous cationic FND strategies published by 

our teams [152]. In the latter, Poly-Ethylene-Imine (PEI) cationic polymer chains were 
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adsorbed on FND, to obtain the cationic property required for siRNA electrostatic binding. 

This approach allowed to achieve in vitro a gene inhibition of 50%, but some ambiguity 

remained regarding the exact nature of the transfection agent. Indeed, PEI alone could act as a 

transfection agent for siRNA, and since it was not covalently linked to FNDs, one could not 

exclude that the transfection which led to the gene silencing resulted from PEI:siRNA 

complexes internalization, detached from FNDs and entering separately. The use of Cop-FND 

prevents such a scenario, and the high inhibition efficiency observed is a strong indication 

that the whole Cop-FND:siRNA complexes were internalized at once in cells.  Therefore, we 

can ascertain that Cop-FND is the transfection agent leading to an effective delivery of siRNA 

directed against EWS-Fli1 junction oncogene, in cultured Ewing sarcoma cells.  

We therefore decided to use this vector for in vivo biodistribution assays, relying on FND 

intrinsic fluorescence properties. In my PhD work, I only focused on the tissue distribution of 

Cop-FND:siRNA complexes, after intravenous injection in mouse bearing human xenografted 

Ewing sarcoma cells; the in vivo efficacy experiments were carried out in a partner’s 

laboratory. These results were complemented by biodistribution and elimination study of 

tritiated annealed-DND. The results we obtained in vivo are presented in the following 

chapter.   
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5. Chapter 5                                                      
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The previous chapter presented the physico-chemical characterization and in vitro efficacy 

on Ewing Sarcoma cells of various types of nanodiamonds, whose surfaces were 

functionalized by different means. We demonstrated that only one platform exhibited a 

reliable inhibition efficacy, the Cop-FND. The Cop-FNDs are meant to be tested for their in 

vivo efficacy to deliver active siRNA. Such study needs to be accompanied by a tissue 

distribution investigation, in order to assess if these complexes would accumulate in a healthy 

organ, with possible toxic effects. Even though, no positive results on the inhibition of the 

oncogene were obtained in vitro with the annealing treatment, an in vivo study is still worth to 

be conducted as in some cases, nanovectors can deliver treatments that reveals to be active in 

vivo and not in vitro [259]. Moreover, owing to their radioactivity, annealed tritiated NDs 

bring new information on biodistribution and elimination of the DNDs. 
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This chapter will first present the biodistribution and elimination results obtained with the 

tritiated nanodiamonds, and then will present the innovative setup that was used to detect and 

quantify the Cop-FND in sections of mice’s organs.       

5.1. Tissue biodistribution of tritiated DND in mice  

5.1.1. Methods 

Nude mice were used for this assay, in accordance with the ethical project submitted and 

approved by the ethical committee regulating the animal facility in Gustave Roussy. One day 

before cells grafting, nude mice were gamma irradiated at a dose of 5 Gy. Mice were then 

injected subcutaneously with 3.106 A673 cells, on one flank, and treatment was not begun 

until the tumor had reached a volume of 200 mm3. Radioactive DNDs were used for this study 

after an annealing treatment under tritium atmosphere, their preparation was presented in 

detail in Section 4.1.1.2. Tritium diffuses deep inside the nanoparticles as demonstrated by 

GIRARD et al. [251], and do not only form 3H-C bonds at the surface. Labile tritium was 

removed by intensive washing in appropriate conditions [251], but no thermodesorption of 

weakly bond 3H was done like in Ref. [251], since it would have resulted in DND that are no 

more cationic in aqueous suspension. The annealed tritiated DND (3H-DND) were dispersed 

in water and then covered with siRNA via electrostatic interactions (see Appendix A-5). 

Specific measures were undertaken to contain the radioactivity of the 3H-DND.  

After the tumor had reached its optimal volume, the mice were injected in the caudal vein 

with 100 µL of a solution of 3H-DND:siRNA (mass ratio= 4.9:1, siRNA final concentration 5 

mg/kg) or with a solution of 3H-DND. The high siRNA concentration injected, which 

previously showed a good inhibition rate [260], required us to use about the same mass ratio 

as the one established for Cop-FND complexation. This quantity of 3H-DND corresponds to 

an injected radioactive dose of 2,425 µCi/mice. The animals were kept in a metabolism cage 

to collect urine and feces, and sacrificed 24h later by cervical dislocation, in accordance with 

the ethic committee regulations. Three mice were used for each condition.  

The organs of interest (i.e. heart, lung, kidney, spleen, liver and tumor) were then collected 

and the urine and feces were retrieved from the time of injection until the sacrifice. The blood 

was collected after sacrifice in the pulmonary cavity. A part of each organ (100 mg) was then 

put in 1mL of Solvable (Perkin-Elmer, USA) for 4h at 60°C, 1h at 60°C for blood, in order to 

obtain a liquid phase. The feces were first put in 200 µL of H2O at room temperature and then 

1 mL of the Solvable solution was added for 2h at 60°C. Some samples (i.e. spleen, heart, 
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liver, lung, feces) were dark and opaque, making them difficult to analyze. Those samples 

were then treated by 100 µL of H2O2, to obtain a clear solution. Finally, 10 mL of a liquid 

scintillation cocktail, Ultima Gold (Perkin-Elmer), was added to each sample and the 

radioactivity was measured by liquid scintillation on a liquid scintillation counter Wallac 

1409 (Perkin-Elmer).  

One of the limitations of the tritium labeling method is the risk of 3H exchange with water. 

Before injection, the 3H-DND solution was ultracentrifuged for 3h at 40,000 rpm using a 50Ti 

rotor in a Beckman XL90 ultracentrifuge (Beckman Coulter, USA). The supernatant 

contained 3.6% of the total radioactivity. This fraction could correspond to either the 3H 

exchanged with cold H from water or to a fraction of small DNDs that stayed in the 

supernatant despite these ultracentrifugation conditions. These parameters were taken into 

account for the interpretation of the results.  

5.1.2. Biodistribution in organ mice 

A first representation of the distribution of 3H-DND in the different organs, feces and urine 

is given in Figure 5.1-1. The overall radioactivity measured in the different tissues and urine 

are represented, as counts per minute (cpm) given for one gram of tissue or one mL of urine. 

First, one can observe that almost no difference appeared between the injection of bare 3H-

DND and of 3H-DND:siRNA. Second, one can see that the spleen, the liver and the lung 

displayed more than ten-fold more cpm/g than all the other organs. Almost the same level of 

radioactivity was detected in the heart, tumor and blood. Urine and feces presented the lowest 

levels.  
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Figure 5.1-1: 3H-DND distribution (counts per minutes/g; logarithmic scale) in the different organs, the feces and 

the urine of mice. n=3 mice for 3H-DND and n=2 for 3H-DND+siRNA. Error bars for urine and feces are not 

displayed because the urine and feces from the 3 mice, which were in the same cage, could not be differentiated 

and were then pooled in a single sample. Sacrifice 24h after injection. Error bars = standard deviation. 

Moreover, by comparing the total amount of radioactivity collected in the different organs to 

the one of the injected solution, we estimated that we collected about 35% of the total injected 

radioactivity. We also measured the blood radioactivity, considering that we have collected 

only 10% of the total blood volume. The results can then be displayed differently: Figure 5.1-2 

presents the amount of radioactivity extrapolated to the whole organ and expressed relatively 

to the injected dose. Owing to their larger mass, the liver and the lung exhibit an even more 

accentuated difference from the other organs in this representation. Despite a smaller size, the 

spleen also presents a high rate of radioactivity. Indeed, these three organs collected just by 

themselves almost the overall radioactivity that was measured. The liver was the organ where 

the highest amount of radioactivity was measured, with 26.4%±15.6% (without siRNA) of the 

total injected dose (24.2%±2.2% with siRNA), followed by the spleen (5%±3.7% without 

siRNA, 1.26%±1.4% with siRNA) and the lungs (3.4%±2.3% without siRNA, 3.5%±0.8% 

with siRNA). 
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Figure 5.1-2: 3H-DND distribution as a percentage of the total radioactivity injected relative to the whole organ 

(logarithmic scale, left graph) or to one mL or fluid (right graph). n=3 mice for 3H-DND and n=2 for 3H-

DND+siRNA. Sacrifice 24h after injection. Error bars = standard deviation. No error bar is displayed for the 

urine, as it was collected for the 3 mice in the same cage. 

This representation enables to distinguish in more details the difference of radioactivity 

between the kidneys, the heart and the tumor. It appeared that the kidneys presented twice 

higher radioactivity levels (0.2%±0.06 without siRNA, 0.15%±0.0003 with siRNA) compared 

to the heart (0.13%±0.08 without siRNA, 0.09%±0.001 with siRNA), and four-fold more than 

the tumor (0.06%±0.02 without siRNA, 0.06%±0.03 with siRNA). Some radioactivity was 

also detected in the urine but at low levels (0.08% without siRNA, 0.05% with siRNA).  

5.1.3. Conclusion of Section 5.1 

In this section, we performed a 24h-biodistribution assay of 3H-DNDs injected in nude mice 

with or without siRNA attached to them. 

It appeared from this preliminary in vivo assay that 3H-DND preferentially accumulated in 

the liver, confirming previous studies [160]. Also, the levels detected in the feces are higher 

(1160 cpm/g without siRNA, 1629 cpm/g with siRNA) than in the urine (941 cpm/g without 

siRNA, 625 cpm/g with siRNA), showing that the liver excretion might be facilitated 

compared to the kidney excretion through the urine. Furthermore, the spleen is the second 

organ of choice in which the DND accumulated, correlating the observations of an uptake by 

the reticuloendothelial system [158]. Finally, the lung is the third organ in which the highest 

level of radioactivity was detected. The alveolar macrophages of this tissue are part of the 
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RES and could thus uptake the DNDs. Note that for each of these three organs, more than 3% 

of radioactivity of the injected solution was detected. This radioactivity was higher than the 

residual radioactivity detected in the supernatant of the injected solution (considered as the 

resulting from 3H desorption from 3H-DND), ensuring that the detected radioactivity cannot 

be entirely due to the desorption of 3H in the suspension. 

Interestingly, not much radioactivity was found in the kidneys, and even a lower level of 

radioactivity was detected in the urine. A medium speed centrifugation (90 min, 16,100 g, 

Eppendorf) was conducted on the urine. A solid pellet was obtained, and 23% of radioactive 

material was recovered in this pellet. This may represent the fraction of excreted DND by 

kidney filtration. Nevertheless, the very low radioactivity levels detected did not allow to 

conclude on the kidney excretion as a potential excretion pathway.  

Finally, the tumor and the heart are the two organs with the lowest measured radioactivity. 

The DNDs may already have been gone through the tumor by the time of sacrifice, and 

hopefully, they might have dropped off their cargoes on the way. This could be studied by a 

gene expression assay to detect possible inhibition effect of EWS-Fli1 expression induced by 

siRNA. Tissue distribution studies at shorter time analysis would also be useful. The heart 

was drained as much as possible from the blood present in the atrium and the ventricules, the 

sample was then mostly composed of the myocardium tissue and it seems that no diffusion in 

the muscle occurred.  

The next section presents the organ distribution of Cop-FND, realized thanks to a 

fluorescence wide-field time-gated setup, which will be fully described, and the quantification 

of those FND in the different organs. Our setup also enabled us to identify in which cells the 

FNDs were accumulating in the liver. 

5.2. Quantification of tissue distribution in mice by a high-throughput/high-content 

time-gated imaging setup 

After having demonstrated the efficacy for the Cop-FND:siRNA complexes to inhibit the 

EWS-Fli1 oncogene expression (cf. Section 4.3), the biodistribution of these complexes was 

investigated after injection in mice with an Ewing sarcoma xenografted tumor. The in vivo 

efficacy assays will be performed by Ibane ABASOLO-OLAORTUA’s team at CIBBIM-

Nanomedicine-VHIR laboratory, Barcelona, Spain, within the DiamESTar project 

consortium. 
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We took advantage of the “long” radiative lifetime of NV color centers that are responsible 

for FND fluorescence (cf. Section 2.2.3), to improve the signal-to-background imaging. To 

this aim, we developed an automatized time-gated fluorescence microscope capable of high-

content imaging. This section describes the setup and the quantitative results obtained with it.  

5.2.1. Methods 

Nude mice were used for this assay, in accordance with the ethical project submitted and 

approved by the ethical committee regulating the animal facility in Gustave Roussy. The mice 

were injected subcutaneously with 5.106 A673 cells, on one flank, and treatment was not 

begun until the tumor had reached a volume of 200 mm3. After reaching this point, 200 L of 

Cop-FND coupled with siRNA, according to the protocol described in Appendix A-9, were 

injected intravenously in the mouse’s caudal vein with a final siRNA concentration of 

1 mg/kg and a FND:siRNA mass ratio of 3.9:1. Mice were sacrificed 24 h after the injection, 

by cervical dislocation in accordance with ethical procedures. Heart, lungs, liver, spleen, 

kidneys and tumor were collected and stored in paraformaldehyde 4%, then embedded in 

paraffin and sectioned (thickness ≈3 µm). Sections were either let without any staining or 

colored with Hematoxylin/Eosin/Saffron (HES) staining. Sections of organs were then 

observed under a 60x microscope objective from a “home-made” time-gated fluorescence 

microscope, developed by François TREUSSART’S team in collaboration with Xavier DELEN 

(Laboratoire Charles Fabry, Palaiseau) who built the pulsed laser source, and Alexander 

PAPINE (IMSTAR S.A., Paris) who designed the acquisition software. Fluorescence and 3-

colors images of the entire organ were acquired under the form of a mosaic of fields of view, 

of size ≈110×110 µm each. The mosaic of the entire organ section was reconstructed using 

Imstar software. 

5.2.2. Setup description 

The characteristics and advantages of time-gated imaging has already been presented in 

Section 2.2.3, allowing an enhanced detection of fluorescence signal, emitted by the NV 

centers embedded in FNDs, compared to tissue autofluorescence. A schematic representation 

of our setup is presented in Figure 5.2-1. It relies on an inverted fluorescence microscope 

(Nikon Ti-E) with motorized stage and filter wheel. The excitation source is a home-made 

pulsed laser beam (emitting at 532 nm wavelength) expanded for wide-field illumination. The 

detection is made with an intensified CCD (ICCD) array detector (PI-Max3, Princeton 

Instruments, USA). The later contains a high precision oscillator that serves as the master 
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clock for acquisition timing and is used to trigger the laser pulses. The ICCD acquisition 

parameters (repetition rate, detection gate delay relative to the pulse, gate duration, and 

number of gates per image) are transferred to the ICCD through the software developed by 

IMSTAR which also manages the microscope motors, the white light illumination sources, 

collects the ICCD images, and finally analyzes the data. The acquisition time for each field of 

view was set at 350 ms, with an intensifier gain of 5 for the ICCD array detector. 

 

 

Figure 5.2-1: Schematic representation of the time-gated imaging setup. The setup allows a co-acquisition of 

both fluorescence and wide-field signal for each fields of view. The ‘home-built’ pulsed laser is set to emit at 

532 nm to excite NV centers of FNDs, at a frequency of 1 MHz. The automated slide scanner allows to scan four 

slides in a row. The inset shows the detection gate delay, set at 15 ns to avoid collecting the autofluorescence 

signal of the tissue. 
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We made the choice to acquire two images at different focusing planes (total acquisition 

width set at 3 µm) in order to allow detection of all FNDs in the whole depth of the organ 

section. Thus, each fields of view were exposed twice during 350 ms. Furthermore, the 

acquisitions were made with a 60× magnification oil immersion objective (1 pixel ≈ 200 nm), 

Numerical Aperture=1.4, allowing to obtain a high optical resolution, still limited by 

diffraction to about 300 nm (considering 700 nm as the maximum of the emission spectrum of 

FNDs). This resolution makes possible to resolve sub-micrometer FNDs aggregates. In 

addition to the fluorescence acquisition, the microscope also recorded a white light bright-

field image resulting from the successive acquisition of Red-Green-Blue images, each 

illuminated by a single-color LED embedded in a condenser. Both FND fluorescence and 3-

LED images were acquired successively, so that they were intrinsically co-registered to the 

same field of view. This procedure allowed us to precisely localize FNDs relative to the tissue 

structure, with a subcellular resolution. 

Regarding the home-built pulsed laser, a more detailed schematic is presented in Figure 

5.2-2. It was used at 1 MHz repetition rate and could deliver a tunable average power, able to 

reach 1 W but we limited this power to only 25 mW. This value allowed us to clearly detect 

single FNDs, while avoiding the saturation of the signal due to aggregates, and without 

inducing too much photobleaching damage to the tissue. Note that some organs were acquired 

with a power of 50 mW, but thanks to the linearity of the acquisition setup, demonstrated in 

Appendix C, the fluorescence intensity measures were simply divided by two-fold to allow 

comparison to data acquired at 25 mW excitation power.  
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Figure 5.2-2: Schematic representation of the 532 nm pulsed laser setup. The laser rely on a 1064 nm laser 

source that can be triggered to deliver sub-nanosecond pulses, and that is injected in a neodymium doped 

vanadate crystal (Nd:YVO4) pumped with a 60 W continuous wave diode laser at 808 nm, amplifying the 

1064 nm beam after a double passage though the crystal. The amplified 1064 nm beam (power up to 4 W) is 

frequency doubled in a 532 nm beam, using a LBO nonlinear crystal (Type 2 non-critical phase-matching) 

placed in an oven (set at 151°C) to ensure the phase matching conditions required for optimal conversion. 

Adapted from Ref. [261]. 

For each organ section, we recorded up to 15,000 fields of view of ≈110x110 µm in size 

each. In addition, the motorized microscope stage accommodates a 4-slides charger mount so 

that we could launch the fully automatized acquisition of 4 organ sections at once. Overall, 

we could acquire an entire organ (size between 25 and 110 mm2) in 6 to 10 hours, and it took 

up to three days to acquire four slides in the charger, with organs sizes between 25 and 110 

mm2. 

Figure 5.2-3 shows one high-quality image obtained thanks to this setup. One can see that the 

entire organ (here liver) section, was acquired (size ≈100mm2) and that it is possible to zoom 

in the picture, without any loss of resolution, and to go up to the cellular scale. This 

remarkable resolution is possible thanks to the high magnification that was utilized. 
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Figure 5.2-3: Fluorescence images of a mouse liver section, from the macroscopic scale up to the microscopic 

scale. The three images are extracted from the same scan, showing the high resolution while zooming in the 

image. Note that this acquisition was done on a HES-stained section, adding some fluorescence background 

despite the time-delayed detection. 

5.2.3. Determining the optimal protocol for FND detection in tissue sections 

For each organ, we had at our disposal two types of sections: some stained with 

Hematoxylin/Eosin/Saffron (HES) and others without any staining. The HES staining is one 

of the most used staining for histopathologic analysis, enabling the detection of the different 

structures and cells present in a sample. This specific staining allows to color the cells nuclei 

in blue, thanks to the hematoxylin. The eosin stains the eosinophilic structures, composed of 

extracellular or intracellular proteins, in various shades of red and purple. Typically, 

cytoplasm is stained with eosin. The saffron eases the coloration of collagen, thus staining the 

connective tissues in shades of orange.  

We started acquiring fluorescence images using the HES-stained sections, so that we could 

get at the same time the bright field color image (through RGB illumination) and infer the 

FND subcellular location by superimposing the fluorescence to all channels. Figure 5.2-4 

presents an example of field of view of the fluorescence channel of a HES-stained section.  
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Figure 5.2-4: Time-gated fluorescence image of a HES-stained section of the liver. 60× magnification objective, 

1 pixel ≈ 200 nm. White bright spots present in the image are Cop-FNDs. 

Unfortunately, it appeared that the staining induced a very high level of auto-fluorescence, 

very hard to get rid of, even with the time-gated setup. We tried to bleach the tissue to reduce 

the fluorescence, by exposing it under a laser illumination for several minutes. Although it 

was efficient to greatly enhance the FND signal to background ratio, it could hardly be 

applied because it would have considerably increased the acquisition time. Indeed, the most 

practical method consisted in imposing two consecutive exposures of the same field of view. 

Despite the very short exposition time (2x350 ms, twice, because of the two-acquisitions in 

the Z-axis), this approach allowed to reduce the background fluorescence up to 40 %, as 

presented in Figure 5.2-5. One can see from the table included in Figure 5.2-5-C, that during 

the acquisition step, after a first bleaching step, the mean fluorescence intensity remained 

between 110 and 90% for FND sites, but it dropped down to 63% for the tissue. Note that for 

the already dark regions, the loss of signal is less important, explaining some of the high 

values for the column ‘% of the bleaching step signal after the acquisition’. The ambiguous 

spots from a single exposition were then more easily distinguishable, as their fluorescence did 

not vary between the two expositions. Indeed, if the fluorescence intensity value did not 
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decrease from one exposition to another, it showed that the spot most probably contained a 

FND. This parameter was included in our detection program, as described in Section 5.2.4. 

 

Figure 5.2-5: Time-gated fluorescence image of HES-stained liver section at 60× magnification. Images (A) and 

(B) present the same field of view. (A) Bleaching step image. (B) Acquisition step image. (C) Table showing the 

mean fluorescence intensity of various spots that can either be due to HES staining or tissue autofluorescence or 

to FNDs. Thanks to a comparison of the fluorescence intensity between the acquisition and bleaching steps we 

should be able to discriminate between FNDs and other source of localized fluorescence. ROI #4 and #5 

fluorescence intensity was stable to ±5%, which is an indication that they correspond to FNDs. 

We then acquired the FND signal on non-HES-stained organ sections, with the same process 

(i.e. two consecutive exposures of the same field of view). As presented in Figure 5.2-6, the 

absence of HES staining provided a much lower background fluorescence, allowing to 

distinguish more clearly FNDs in the complex organ sections, and to quantify them 

accurately. 
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Figure 5.2-6: Comparison of FND fluorescence channel with or without HES staining for a lung section of the 

same mouse. (A) with HES staining; (B) Without staining. 60× magnification. 

5.2.4. Automatic detection of the FNDs in the organ sections 

The FNDs were automatically detected, thanks to an image analysis software developed by 

Alexandre PAPINE from Imstar S.A.. Briefly, small brighter elements and details were first 

detected by a Top-hat filter, and a ROI identifier was assigned to each of them, returning the 

elements being brighter than their surroundings. This first image processing did not include 

any size differentiation. Then, I tailored a filtering program for every organ, taking into 

account the fluorescence and the anatomy of each tissue, these parameters being different 
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from one another. This program included a filtering of the ROIs according to the following 

parameters: 

-    Value of the ratio between the ROI’s average intensity level and the average 

fluorescence level of the field of view (global contrast). This parameter can be 

associated to the contrast of the ROI compared to the global image. The ROIs were 

considered as FND only within a certain range of values; 

- Value of the local contrast: a small ring (few pixels) was selected around the detected 

object and the ratio of the fluorescence levels was calculated between the average 

fluorescence within the object and the one of the ring. This allowed to eliminate the 

ROIs with low contrast, that were most probably false positives. Figure 5.2-7 illustrate 

the need of such parameter (same field of view on the three images): image A presents 

more ROIs, compared to image B, on which a threshold was applied. When compared 

to image C, the wrongly detected ROIs in A are most likely false positives;  
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Figure 5.2-7: Importance of the local contrast ratio on the identification of the ROIs corresponding to FNDs. (A), 

(B) and (C) present the same field of view from a spleen section examined in FND fluorescence channel. (A) 

detection of the ROI (highlighted in white) without any threshold on the local contrast ratio; (B) detection of the 

ROI (highlighted in white) with a threshold specifically set for the spleen for the local contrast ratio. (C) same 

field of view without the highlighting of the ROIs. 60x magnification, non-HES staining 

- Value of the total intensity of the object detected: below a specific threshold value, 

ROIs were considered as false positives; 

- Area of the ROI: set to prevent the detection of a large part of the organ. In lung for 

instance, some parts of the organ were highly fluorescent and could be detected as 

FNDs if no size filter was applied. As presented in Figure 5.2-8, if no filter was applied 

(A), large portions of the tissue were incorrectly detected as FNDs, because of their 

high fluorescence intensity and high contrast.   

A B

C 
20 µm  



 

 

 

 

135 

 

Figure 5.2-8: Importance of a filter based on the area of the ROI for the identification of ROIs corresponding to 

FNDs. (A) and (B) present the same field of view from a lung section examined in FND fluorescence channel, 

60x magnification, non-HES staining. (A) without any threshold for the size of the ROI; (B) with a size 

threshold applied, specifically set for the lung. 

- Ratio of the fluorescence intensity between the first bleaching step and the acquisition 

step, cf. Figure 5.2-5. When this ratio was within a specific range, the detected ROIs 

were considered as FNDs (the fluorescence of the FND should not decrease after the 

bleaching step).     

The range of parameters set for each organ for which the ROIs were identified as FNDs are 

given in Table 7. 

Table 7: Values of the range within which the detected ROIs were considered as FNDs, specific for each organ. 

 Global 

contrast 

Local 

contrast 

Total 

intensity 

Area Ratio bleaching/acquisition  

steps 

Lung 1.3 1000 1.2 9999 30 9999 0.25 7.5 0.65 1.25 

Heart 0.8 1000 1.27 9999 20 9999 0.4 9 0.75 1.25 

Tumor 1.3 1000 1.13 9999 10 99999 0.25 60 0.65 1.25 

Liver 1.3 1000 1.2 9999 30 99999 0.25 20 0.65 1.25 

Spleen 1.3 1000 1.2 9999 30 99999 0.25 20 0.65 1.25 

Kidney 1.3 1000 1.2 9999 30 99999 0.25 20 0.65 1.25 
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 Figure 5.2-9 shows the result of the FND detection on an image of a liver section. One can 

see the high precision of the detection thanks to the applied thresholds.  

 

Figure 5.2-9: Visualization of the detection of FND in a section of the liver. Both images present the same field 

of view. (A) fluorescence image with FND detection as ROIs (blue lines); (B) Fluorescence without the ROIs 

displayed. 60x magnification, no HES staining. 

The statistical results of the repartition of Cop-FND in each organ will now be presented. 

Note that the results are presented for two different mice having received the same treatment 

(Cop-FND:siRNA), and statistics were made on duplicates of organ sections originating from 

the same mouse.  

5.2.5. Quantification of the FND in organ sections 

Several parameters are presented in this section:  

- The number of ROI per mm2, showing the density of ROI detected according to the 

surface acquired; 

- The sum of all ROIs fluorescence intensity in an organ section per unit of the section 

area, which is considered as proportional to the number of FNDs present in each 

organ;  

- The distribution of the surface area of the detected ROI for each organ, showing the 

state of aggregation of FNDs in each organ. 

The number of detected ROIs gives a first information on the accumulation in the different 

organs. One can see from the numbers given in Figure 5.2-10 that, at 24h, the FNDs seem to 

have preferentially accumulated in the lung, the spleen and the liver. On the other hand, not 
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that much FNDs were found in the heart, in the tumor and in the kidneys. Nevertheless, the 

detection program has not been optimized yet to distinguish multiple aggregates within a ROI, 

meaning that ROI of size larger than the point spread function of the microscope (limited by 

diffraction to ≈300 nm) were detected as single events.  

 

Figure 5.2-10: Number of ROIs detected in each organ per surface unit. Statistics were made from duplicates of 

sections originating from two different mice. Error bars = SEM. 

In order to achieve a more realistic quantification of FNDs in each organ, we considered the 

fluorescence intensity of each ROI, which is expected to be proportional to the number of 

FNDs it contains, in the ideal case of identical particles. We then summed the intensity of all 

ROI detected in an organ and to be able to compare organ’s distribution to each other’s, we 

divided it over the total surface of the section (presented in photon counts/µm2; pc/µm2, 

Figure 5.2-11).  

The organ section displaying the highest fluorescence intensity per unit area was not the 

lung as we could expect from the previous figure but the spleen (1.71±0.57 pc/µm2), closely 

followed by the liver (1.37±0.64 pc/µm2). The lung, which was the organ in which the largest 

number of ROIs had been detected, only comes third (0.75±0.35 pc/µm2). Finally, the kidneys 

(0.2±0.04 pc/µm2), the tumor (0.08±0.01 pc/µm2) and the heart (0.05±0.01 pc/µm2), presented 

much smaller accumulation of fluorescence.  
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Figure 5.2-11: Total ROIs fluorescence intensity over the organ section area. Statistics were made from 

duplicates of organ sections, from two different mice. Error bars = SEM 

The spleen, the liver and the lung remained the organs presenting the highest accumulation. 

In addition to gathering the highest density of fluorescence per unit area, spleen and liver also 

displayed the highest aggregation state, compared to the other organs, as it is presented in 

Figure 5.2-12. A box plot representation was preferred to display the wide distribution of the 

area of the detected ROIs [262] and revealed to be a great tool to compare the aggregation 

state in the different organs. The boxplot characterizes a sample using the 25 th, 50th and 75th 

percentiles, also known as the lower quartile (25% of the population, represented at the 

bottom box extremity), the median of the distribution (middle line) and the upper quartile 

(75% of the distribution, top box extremities). The interquartile range covers 50% of the 

population, is independent from outliers and preserves the information of the center spread. 

The whiskers represent 90% and 10% of the population (top and bottom whiskers, 

respectively). The outliers were not presented here, in order not to make the graph too 

congested. Since the distribution of the ROI areas does not follow a normal law, the boxplot 

representation was the most adapted to characterize them and to compare FNDs aggregation 

state in the different organs. Furthermore, notches, giving the 95% confidence interval (CI) 

for the median, have been represented, but the number of ROIs being so large, this interval is 
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very small, and the median can be trusted with very high confidence. The ROI area 

distributions presented in Figure 5.2-12, show the broad distribution that can be found in some 

organs. 

 

Figure 5.2-12: ROI Area distribution in the different organs. Statistics were made from duplicates of organ 

sections from two different mice. The central bars represent the median, the outer boxes represent 25 and 75% of 

the distribution and the whiskers represent 10 and 90% of the distribution. 

The tumor presented the lowest ROI area median value (however with a rather large 

distribution), which tends to show a minor aggregation in this tissue. When correlated with 

the low value of density of fluorescence also observed for this organ, it is difficult to know if 

the complexes actually passed through the tumor and if so, if the siRNA was dropped to have 

its effects on cancerous cells. Interestingly, the tumor displayed a more spread ROI area 

distribution than the heart. The cardiac muscle only was analyzed, our protocol not allowing 

to analyze the circulating blood. Thus, it is only represented here the FNDs that entered the 

myocardium, and one can see that there is a limited aggregation rate in this tissue. 

The kidney, the spleen and the lung presented similar ROI areas distributions. The median 

ROI area detected in spleen and kidney were very close, while the one in the lung was slightly 

higher. The aggregation in the lung was more spread, most probably because of the diversity 

of sizes of the different capillaries, in which the FNDs might have been trapped.       
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The liver presented the highest aggregation state of FNDs. The value of the median was the 

highest and the population was very spread, with a maximum at almost 11 µm2. The liver is 

one of the organs, with the kidneys, which function is to filtrate the blood and to remove 

undesirable metabolites and xenobiotics from it. We can then assume that the observed high 

aggregation is a consequence of the accumulation of FNDs in the cells ensuring this filtrating 

function.  

These results were consistent with previous studies that also localized nanodiamonds in the 

liver, the spleen and the lung, preferentially, 24h after the injection [158,161]. Nevertheless, 

the previous studies were carried thanks to radioactivity labeling of the NDs and to Raman 

spectrometry analysis and could not allow a precise localization at a subcellular resolution, as 

our setup enabled us to do. The next subsection presents this subcellular localization, in the 

case of the liver.  

5.2.6. Cellular localization: case of the liver 

In addition to the analysis of non-stained sections, HES-stained sections for all organs were 

analyzed in both fluorescence and bright-field. The HES-staining allowed us to determine in 

which cells or parts of the organ, the FNDs accumulated in, but with a diminished accuracy of 

FNDs detection.  

Unfortunately, the analysis of such data is very time-consuming, thus it has only been 

conducted on the liver by the end of this manuscript’s redaction. Nevertheless, kidney, spleen 

and lung should also be analyzed, later on, given the important role these organs seem to have 

in the clearance of FNDs. 

Figure 5.2-13 shows a schematic representation of the hepatic structure, displaying the 

different cells and vessels present in the liver. Thanks to the help of Dr. Paule OPOLON, 

pathologist, we were able to identify in our scans, the different cells and structure, and thus 

identify the localization of FNDs aggregates.   
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Figure 5.2-13: Illustration of part of the liver lobule, showing the hepatic structure. Adapted from [263] 

The Figure 5.2-14 presents a mosaic of images, built from data acquired with our setup. It 

shows that the macro-image is well reconstructed allowing us to distinguish: 

- An artery (A), which we can be differentiated from the vein (V) thanks to the 

endothelial cells surrounding the structure. Note that erythrocytes (RBC) are visible in 

both vein and artery; 

- Bile ducts (BD) that serve as a canal for the bile circulation up to the duodenum; 

- Sinusoids (S) that are the capillaries irrigating the hepatocytes with blood to filtrate; 

- Hepatocytes (H) that are the main cells from the liver (square-like cells, circled in 

black in Figure 5.2-14), which function is to filtrate the blood from metabolites; 

- Endothelial cells (E) composing the sinusoids vessels’ wall, which are long and thin 

cells; 

- Kupffer cells (K), that are macrophages, specific to the liver, long and large cells, 

typically composed of a triangular nucleus. Their major role is to transform into bile 

the pigments of the hemoglobin, released by disintegrated erythrocytes. They also 

phagocyte microbes that might have penetrated into the liver. 

Note that the last two types of cells are not highlighted in Figure 5.2-14 because of the too 

wide field of view presented in this figure. Their observation is eased in the single fields of 

view presented in Figure 5.2-15. Nevertheless, their structures are very similar under HES 

staining, the distinction between the two types was then not straightforward and no distinction 

nor quantification of FNDs in the two types was performed.  
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Figure 5.2-14: Mosaic of bright field images taken with a 60x magnification of a mouse liver section stained 

with HES. Annotations: A: artery; S: sinusoids; BD: bile duct; RBC: red blood cells e.g. erythrocytes; V: vein; 

three examples of hepatocytes are surrounded in black. 

Thanks to a better knowledge of the liver structure, we could identify in which cells the 

FNDs preferentially accumulated. From different fields of view displayed in Figure 5.2-15, it 

seems that there was a privileged accumulation of FNDs, first in cells bordering the sinusoids, 

and second, most probably inside Kupffer cells or endothelial cells, as they were detected 

close to the nucleus. Kupffer cells are specific macrophages of the liver and one of the 

components of the reticulo-endothelial system. The phagocytosis of nanodiamonds by 

Kupffer cells has already been observed [158], and it has been established about a decade ago 

that NDs were rapidly captured by RES [158] by phagocytosis for their further excretion. 

Kupffer cells should thus play an important role in the removal of these nanoparticles from 

the organism. A staining specific to macrophages like F4/80 [264] would allow to 

unambiguously distinguish Kupffer cells from endothelial cells, so that we could have an 

accurate quantification of the distribution between the two cell types. Finally, no Cop-FND 

was detected in the hepatocytes.   
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Figure 5.2-15: FND localization (indicated by white lined ROIs superimposed to the bright field) in the liver 

section. HES-stained sections, 60x magnification, scale bar 20 µm. Orange arrows point at FNDs detected on the 

border of sinusoids or in either Kupffer cells or endothelial cells. Only a macrophage specific staining will 

enable to distinguish Kupffer cells from endothelial cells. 

5.2.7. Conclusion of Section 5.2 

This section presented an innovative imaging setup, based on time-gated imaging used for 

the assessment of Cop-FNDHPHT biodistribution in mice, that were xenografted with an Ewing 

Sarcoma tumor. The mice were injected in the caudal vein with Cop-FNDHPHT:siRNA 

complexes, and sacrificed 24 hours later. The heart, the kidney, the liver, the spleen, the lung 
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and the tumor were collected, fixed and sectioned. Some organ sections were stained with 

HES.   

We established the optimal scanning protocol, showing that despite the time-gating setup, 

allowing to reject the autofluorescence signal from the tissue, a first bleaching step was 

needed prior to the acquisition step to make the analysis process more accurate. Furthermore, 

it was essential in order not to miss any Cop-FND detection, to run the quantification process 

on non-stained sections. Indeed, the fluorescence of the HES staining was too strong and 

seemed to hide the fluorescence signal from the Cop-FNDs.  

It appeared that 24h after the injection, most of the Cop-FNDs were accumulated and 

aggregated in the liver, in the spleen and in the lung (Figure 5.2-11 and Figure 5.2-12), 

confirming previous studies [265]. The accumulation in those specific organs is consistent 

with an uptake of the nanodiamonds by the reticuloendothelial system, partly composed of the 

macrophages from the liver (Kupffer cells), from the lungs (alveolar macrophages) and from 

the spleen (red pulp macrophages), which will try to degrade and eliminate NDs from the 

organism. The cellular localization study conducted in the liver, thanks to our high-content 

imaging setup, tends to show that we might be in this configuration, but still needs to be 

confirmed by a more thorough study and to be completed by a macrophage specific staining 

(F4/80 staining). Cellular localization studies also have to be conducted on spleen and lung 

sections.  

The aggregation state in the kidney, the tumor and the heart was lower (Figure 5.2-12). The 

low accumulation in the kidney is potentially explained by the fact that, at 24h, Cop-FNDs 

were preferentially processed by the liver and the spleen, in view of their excretion, and that 

the residual FNDs were then, a few days later, directed to the kidneys, as it has been reported 

in Ref. [265]. Our methodology did not allow to image the blood contained in the atrium or 

the ventricles of the heart at the time of the sacrifice. We thus only studied the myocardium 

and observed that almost no Cop-FNDs from the blood circulation aggregated in the heart 

muscle. Finally, the low aggregation state observed in the tumor might be explained by the 

fact that at 24h, a certain quantity of FNDs had already passed through it, but did not stay in 

this tissue. This only can be confirmed by a study at a shorter time-point, and by a gene 

expression analysis of the tumor at 24h. 
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Conclusion and 
perspectives 
 

Nanomedicine is a promising route for the development of innovative biomedical 

applications. Among the very large number of drug delivery nanoparticle vehicle candidates, 

nanodiamonds (NDs) have emerged as original vectors that provide a slow release of the drug 

and a long circulation time. These results stem from (i) the broad variety of surface 

modifications allowing to bind different types of drugs, and from (ii) the very low toxicity of 

nanodiamonds. During this PhD thesis, I tested different types of diamond nanoparticles as 

vehicles for a gene therapy molecule: siRNA. Some of these NDs were also fluorescent 

(owing to embedded NV defects), enabling us to track their fate in mouse organism after 

injection of the treatment. Functionalized detonation or high pressure high temperature 

synthesis NDs were provided by collaborators. We realized the biodistribution assays thanks 

to a home-built time-gated imaging setup, allowing to acquire high-content images of entire 

organ sections post-sacrifice, including a bright field color image in addition to the 

fluorescence image. The later, combined with large magnification imaging, enabled us to 

detect single ND at a subcellular resolution, providing information on which cellular type 

preferentially engulfed them.  

The testing of the various surface functionalizations revealed a certain disparity between the 

different samples and highlighted the importance of the method of functionalization. The 

experiment at the origin of the project, had involved the use of plasma-assisted hydrogenated 

detonation nanodiamonds, produced by Jean-Charles ARNAULT’s team at CEA-LIST, Paris-

Saclay. Our team at Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses had 

demonstrated that this platform could be successfully used to vectorize siRNA up to the 

cytoplasm of the cells, where it could have its effect, inducing an inhibitory effect of 50% to 

60%. During this project, we tested the same process, but we could not reproduce the high 

inhibitory effect of the proof-of-concept experiments. It also emerged that the colloidal 
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stability of the new nanodiamond suspensions was degraded. We attributed these negative 

results to the modification of the plasma hydrogenation setup. 

We then tested detonation nanodiamond hydrogenation by an annealing under a dihydrogen 

atmosphere at 550-560°C, produced by the CEA-LIST. This method yielded more stable 

colloidal hydrogenated ND solution, most probably thanks to a more homogeneously 

hydrogenated surface. Unfortunately, the use of these H-DND to deliver siRNA, did not result 

in a larger inhibition of EWS-Fli1 expression in vitro. Nevertheless, the same annealing setup 

also enabled the exposition of nanodiamonds to tritium gas, yielding tritium terminated 

nanoparticles (3H-DND), used to study the in vivo tissue distribution and elimination of 

nanodiamonds, after injection in mice. 

It appeared that the physico-chemical gas hydrogenation was not optimized for our 

application. The originality of this project relied on the use of ultra-small nanodiamonds 

(DND ≈ 3-7nm) so that they could be more easily excreted, in particular by the renal path. 

We thus kept going with detonation diamonds, offering smaller sizes than HPHT synthesis. 

We tested a suspension of DND functionalized with a wet chemical treatment. This highly 

stable colloidal suspension displayed NDs of 3 nm size and with a zeta potential of +45-

50mV. Although these cationic DND allowed us to achieve up to 60% inhibition, we did not 

have enough reproducibility to carry on with this system for in vivo assays.  

The last nanodiamonds suspension we tested originated from High Pressure High 

Temperature synthesis, with a larger primary size of about 70 nm. These NDs were irradiated 

by high energy particles to generate Nitrogen-Vacancy fluorescent defects, yielding 

fluorescent NDs. These FNDs were then functionalized with an atomically thin silica shell on 

which a cationic copolymer was covalently grown (Cop-FNDHPHT), allowing the siRNAs to be 

electrostatically bound to the particles. Cop-FNDHPHT showed a great efficacy to bind siRNA 

and to release it in the cytoplasm of the cells, inducing one of the highest inhibition rate of 

70% ever obtained on the expression of EWS-Fli1, in a serum-containing medium. This 

surface coating appeared to be the optimal functionalization and was the one selected for in 

vivo efficacy assay. The latter will be conducted soon, but after the end of my PhD. 

In parallel, I have focused my experiments on the tissue distribution of NDs, 24 hours after 

injection in mice bearing an Ewing Sarcoma xenografted tumor. Indeed, the fate of 

nanoparticle vectors in the organism is a central question of nanomedicine and is one of the 
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hurdles to their broad use. We tested two types of NDs for the in vivo tissue distribution: the 
3H-DND (small single particle size) and the Cop-FNDHPHT (larger single particle size). The 

intrinsic fluorescence conferred by the NV centers to the FNDHPHT and the surface-tritiation of 

the 3H-DND then appeared to be a real advantage, as no fluorophore needed to be added to the 

complexes to track them. Furthermore, the long fluorescence excited state life-time of NV 

centers in nanodiamonds allowed a background-reduced imaging of Cop-FNDHPHT in tissue 

section. To this aim I have used a home-built time-gated imaging system, with exclusive 

features of large magnification (60×) and numerical aperture (1.4), pulsed-laser with high 

excitation power, and 3-color LED for bright field imaging. This setup has enabled to obtain 

high-content (fluorescence + 3-color) and high-resolution images of macro(millimeter)-sized 

organ sections collected on mice that were xenografted with a tumor and on which we 

injected in the caudal vein the FND:siRNA complexes. From these images, we could 

precisely quantify FNDHPHT fluorescence, which we consider as proportional to the number of 

nanoparticles. By this mean, we assessed that the FNDs preferentially accumulated in the 

reticuloendothelial system, more precisely in the liver, spleen and lung. Indeed, our high-

resolution setup with co-registration of fluorescence and bright field images allowed us to 

resolve Cop-FNDs in Kupffer cells and/or endothelial cells of the liver. A smaller fraction 

was found in the kidneys, potentially indicating that 24h after injection, some FNDs were 

already excreted through the urine. Finally, the last two smaller fractions were found, first in 

the myocardium, indicating that the blood circulation limited a penetration in the heart 

muscle, and second in the tumor, unfortunately. In the latter case, one cannot exclude that at 

24h, the majority of the FND that had entered the tumor was already flushed out of it, leaving 

the possibility for the siRNA to have reached its target. This distribution has also been 

observed with the 3H-DND, with an additional information on the urine and feces, in which 

some radioactivity was measured, with higher levels for the feces. These observations tend to 

confirm the uptake and excretion of the complexes through the liver.     

These two biodistribution experiments will be repeated at shorter sacrifice time-points, to 

get the kinetics. Also, urine and feces will be collected when using the Cop-FND, in order to 

evaluate how efficiently these ND are eliminated. Moreover, the caudal injection is known to 

induce a rapid accumulation in the liver, if the injection is performed too quickly. Thus, to 

avoid this bias, a retro-orbital injection could be tested. Nevertheless, the limiting points of 

this mode of injection are that it is a manipulator-dependent procedure, and that it is less and 
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less approved by ethical committees, thus difficult to implement. To conclude, both 3H-DND 

and Cop-FND revealed to be useful tools for the biodistribution study, and both showed 

similar tissue distribution.  

An extension of the project will be to direct the ND:siRNA complexes towards the cancer 

cells, and limit unwanted distribution in off target organs. To this aim, the team plan to take 

advantage of the membrane protein CD99 (also called MIC2) known to be highly expressed 

on the surface of cancerous cells, and in particular of Ewing Sarcoma cells [266].  Therefore, 

CD99 can be considered as an antigen enabling active targeting of the Ewing Sarcoma cells, 

to optimize siRNA delivery. This strategy has been successful applied by LVTA team in vivo 

using polymer nanoparticles as siRNA delivery vehicles [260]. In this experiment the 

expression of EWS-Fli1 was inhibited at 78% by associating the siRNA with the CD99-

targeted nanoparticles compared with an inhibition of only 41% achieved with the non-

targeted nanoparticles. To extend this approach to the case of NDs, the chemist team of Petr 

CIGLER (IOCB, Prague) with whom we collaborate, plans to graft antiCD99 covalently to the 

copolymer of Cop-FND. This experiment will require a “large” amount (10 mg) of a specific 

clone of antiCD99 selected to be non-toxic, and which is fortunately commercially available 

from a Czech company. 

As another important and direct continuation of the project, we will be able to use soon a 

metastatic model of Ewing Sarcoma currently developed by Oscar TIRADO-MARTINEZ’s team 

at IDIBELL (Barcelona). This stage of the disease is the most fatal to patients, there is then an 

urge to develop a more efficient treatment. 

Furthermore, our strategy of using traceable cationic NDs as siRNA therapy delivery, is not 

siRNA-sequence specific. It can thus be used to vectorize a plethora of siRNA-sequence. As a 

natural extension of our project, one could use cationic ND to transport a siRNA directed 

against Type 2 EWS-Fli1 junction which represents about 25% of the cases. Among the other 

diseases that could benefit from our strategy, we can mention papillary thyroid carcinomas, 

which is caused by the expression of the RET/PTC1 oncogene. Finally, siRNA therapy should 

not be considered as a substitute to chemotherapy but more like an additive to it, inducing a 

synergetic effect between the two. This would allow to obtain less toxic treatments than the 

current one used, but despite the promising results obtained during this PhD project, there is 

still a long way before this kind of treatment to reach the bedside of patients.  
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Appendix A: Methods 
1. Size and electro-mobility (zeta potential) measurements: 

Size and zeta potential were measured by Dynamic Light Scattering (DLS) with a 

NanoBrook 90Plus PALS from Brookhaven Instruments (Long Island, USA) with a light 

scattered collected at 90°. The measurements were made right after reception of the solutions, 

on a 150-fold dilution of the stock solution in distilled water. Another measurement of the 

size and zeta potential was conducted on the nanodiamond:siRNA complex. For this purpose, 

a fixed concentration of siRNA was used while the nanodiamond concentration was 

increased, resulting in the study of the size and zeta potential of the complex depending on the 

mass ratio between DND and siRNA.  

2. siRNA binding assay: 

This study was made to assess the siRNA binding capacity of nanodiamonds depending on 

the mass ratio between DND and siRNA, at a fixed siRNA concentration and with an 

increasing DND concentration. Briefly, siRNA and DND were mixed at room temperature, in 

a mixed solution of distilled water and 100 mM Hepes (pH 7.2) + 100 mM NaCl buffer. After 

a 10-min incubation, the solution was centrifuged at 16,100 g, for 15 min at 15°C. Then 

30 µL of the supernatant was mixed with 30 µL of 1 µg/mL ethidium bromide (EtBr, Sigma 

Aldrich, USA) and the fluorescence resulting only from EtBr intercalated in RNA grooves 

was recorded with a fluorescence plate reader (GloMax®-Multi, Promega, USA; excitation 

wavelength: 525 nm, and detection range 580-640 nm). Experiments were performed in 

triplicate. 

3. Stability study: 

The colloidal stability was assessed by size measurement (NanoBrook 90Plus PALS, 

Brookhaven Instruments) and visual checking over time.  

4. Cytotoxicity assay:  

A673 and TC71 human Ewing Sarcoma cell lines were generous gifts from Dr. Elizabeth R. 

LAWLOR (University of Michigan, USA) and TC252 human Ewing Sarcoma cell line was 

kindly provided by Oscar MARTINEZ TIRADO (Institut d’Investigacio Biomedica de Bellvitge, 

Barcelona). All cell lines were grown in DMEM medium (Gibco, USA) supplemented with 
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10% fetal bovine serum (Gibco) and 1% penicillin-streptomycin antibiotics (Gibco). Cells 

were plated one day before treatment in 96-wells plates at 103 cells per well and incubated at 

37°C, 5% CO2 in a moistly atmosphere. The medium was then removed and replaced by 

100 µL medium containing increasing concentrations of P-DND-H-11, from 0 to 0.5 mg/mL. 

Cells were incubated for 24, 48 or 72 h, cell viability was then assessed thanks to a MTS 

assay. Briefly, 10 µL of MTS (Biovision, USA) were added to each well and incubated for 

3 h at 37°C. The produced formazan was then quantified by absorbance measurement at the 

wavelength of 490 nm using a microplate reader (ELx808, BioTek, USA). Each condition 

was performed in 8 replicates. Results are expressed as % of untreated cells. 

5. Inhibition of EWS-Fli1 gene expression: 

A673 cells were seeded at 2.105 cells/mL on a 12-wells plate in DMEM medium (Gibco) 

containing 10% bovine calf serum and 1% penicillin/streptomycin (Gibco) and incubated at 

37°C, 5% CO2 in moistly atmosphere one day before treatment. Medium was then replaced by 

450 µL of same medium and 50 µL of 10 mM Hepes pH 7.2, 100 mM NaCl containing P-

DND-H or A-DND-H bound to siRNA targeted toward EWS-Fli1 (Sense strand: GCA GCA 

GAA CCC UUC UUA Ud(GA); Antisense strand: AUA AGA AGG GUU CUG CUG 

Cd(CC)) or a control sequence (RP1: Sense strand: CGU UAC CAU CGA GGA UCC 

Ad(AA); Antisense strand: UGG AUC CUC GAU GGU AAC Gd(CT)) at 50 nM final 

concentration. DND-H:siRNA mass ratio was 50:1, 25:1 or 10:1. A positive control was also 

tested, by using Lipofectamine2000 (Invitrogen, USA) to deliver siRNA. Note that for this 

condition, serum-free medium, e.g. Opti-MEM, was used, according to the producer protocol. 

Cells were incubated for 24 h and total RNA was extracted by Trizol (Invitrogen, USA) 

method. Briefly, the cell culture medium was discarded, cells were then washed with PBS and 

lysed with 400 mL of Trizol solution. Finally, the lysates were collected and 60 µL of 

chloroform:isoamylic alcohol (49:1) was added. The solution was then centrifuged at 16,100 

g for 15 min at 4°C. 150 µL of the supernatant containing the RNA were added to the same 

volume of isopropanol and RNA precipitation was obtained after 15 min at room temperature. 

The solutions were then centrifuged at 16,100 g for 15 min at 4°C and the pellet washed twice 

with 70% ethanol and dried. The total extracted RNA was dissolved in 10 µL of water 

containing 0.5 U of RNasin (Promega, USA) and RNA concentration was determined by 

spectrophotometry at the wavelength of 260 nm (Nanodrop, Thermo Fisher Scientific, USA). 
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The reverse transcription was performed on 1.5 µg of total RNA by adding 2 µL of random 

hexamers 50 µg/mL (Promega), and heating at 70°C for 3 min. RNA was then incubated with 

0.5 mL M-MLV reverse transcriptase 200 U/µL (Promega), 0.5 µL DNTP 20 mM, 0.5 µL 

RNasin (40 U/µL) and 4 µL of MMLV RT buffer (Promega) for 15 min at room temperature 

followed by 1 h at 42°C, in a final volume of 20 µL. PCR quantification was carried out with 

a KAPA SYBR FAST ABI Prism kit (KAPA Biosystems, South Africa). The EWS-Fli1 gene 

was amplified with the EWS- Forward Primer: 5’-AGC AGT TAC TCT CAG CAG AAC 

ACC -3’ and Fli1-reverse primer: 5’-CCA GGA TCT GAT ACG GAT CTG GCT G-3’ 

(Eurogentec, Belgium). We mixed 0.4 µL of each primer 10 µM, with 5 µL of cDNA diluted 

1/20 (v/v) and 10 µL of KAPA SYBR Mix FAST Mix, in a final volume of 20 µL. The 

samples were amplified over 40 cycles, in a Step One Plus Real Time PCR-systems (Applied 

Biosystems, USA), as follows: 20 s at 95°C, followed by 40 cycles of 95°C for 3 s, 60 °C for 

30 s, melting curve were then obtained. The human 18S rRNA gene and GAPDH gene were 

used as controls and were amplified with the 18S Forward Primer 5’-CGT TCA GCC ACC 

CGA GAT-3’, and 18S Reverse Primer 5’-TAA TGA TCC TTC CGC AGG TT-3’. GAPDH: 

Forward Primer: 5’-CAA GGT CAT CCATGA CAA CTT TG-3’, and Reverse Primer: 

5’GTC CAC CAC CCT GTT GCT GTA G-3’. Comparative CT (threshold cycle) methods 

were used to normalize the target CT by the 18S or GAPDH control gene CT. 

6. Apoptosis assay: 

A673 cells were seeded at 2.105 cells/mL in 6-well plates the day prior treatment. The 

CellEvent Caspase 3/7 Green flow cytometry assay kit (ThermoFisher, USA) was used to 

conduct this assay. Different conditions were tested but 5 control conditions (i.e. without 

DND-H:siRNA) were essentials: 1) untreated cells without staining, 2) untreated cells with 

CellEvent green solution only, 3) untreated cells with SYTOX AADvanced solution only, 4) 

untreated cells with both staining, and 5) positive control (Etoposide at 25 µM or Vincristine 

at 2 ng/mL). Cells were incubated with P-DND-H or A-DND-H loaded or not with antisense 

siRNA or control siRNA, combined or not with Vincristine at various concentrations. The 

mass ratio used DND-H:siRNA was 25:1. After 24, 48 or 72 h incubation time, the medium 

was collected and cells were harvested thanks to TripLE Express Enzyme 1X (ThermoFisher, 

USA) and then centrifuged for 5 min at 200 g. Supernatant was discarded and the cell pellet 

was re-suspended in DMEM at a concentration of 106 cells/mL. For 1 mL of the solution, 
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1 µL of the CellEvent solution was added and incubated for 30 min at 37°C. 1 L of SYTOX 

AADvanced solution was then added to the 1 mL solution and the mix was then incubated 

again 5 min at 37°C. The analysis was finally performed within the hour by flow cytometry 

on a BD Accuri C6 flow cytometer (BD, USA). The untreated group was used to draw a 

region (gating) around the population presenting the typical characteristics of cells 

(concerning forward scatter and side scatter parameters) and to distinguish them from cell 

debris and large particles. Analysis was then made based on this gating and results are 

presented in % of this population. Living cells appeared as non-stained (CellEvent/SYTOX -/-

), apoptotic cells appeared as stained by CellEvent Caspase 3/7 green only (CellEvent/SYTOX 

+/-) and necrotic cells appeared as stained by SYTOX AAdvanced only (CellEvent/SYTOX -

/+). However, this assay does not distinguish between cells that have already undergone an 

apoptotic cell death and those that have died as a result of necrotic pathway. In both cases, the 

dead cells were stained with both CellEvent Caspase 3/7 green and SYTOX AADvanced 

(CellEvent/SYTOX +/+). The typical result obtained by flow cytometry if presented in Figure 

A-1. 

 

Figure A-1: Classical results of an apoptosis assay analyzed with flow cytometry. (A) presents the untreated 

cells, with no staining. A gating, P1, was done on this group and considered as the population on which the 

analysis can be run. FSC (Forward Scatter) displays the size of cells and SSC (Side Scatter) displays the 

granularity of the cells. The cells at the bottom left corner are debris and are thus not included in the gating. The 

data showed in B are composed of 10,000 events detected in the defined gating from A. FL1-A is used to detect 

the CellEvent channel (laser emission: 488 nm, excitation: 530/30 nm) and FL2-A to detect the SYTOX channel 

A B 
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(laser emission: 488 nm, excitation: 585/40 nm). Q1-LL = living cells, Q1-LR = apoptotic cells, Q1-UL: necrotic 

cells, Q1-UR: dead, late apoptotic cells. 

7. Cell internalization microscopy: 

A673 cells were seeded one day prior treatment at 2.105 cells/mL on a cover glass placed at 

the bottom of the well, in a 12-wells plate. Cells were then treated with P-DND-H and/or 

FITC-siRNA for a 3-hours incubation at 37°C. It is essential to have the three following 

controls to be able to set imaging parameters the more accurately: cells with no DND and no 

siRNA; cells with DND only, cells with FITC-siRNA only. After the incubation, a first wash 

of each well was performed with PBS. Then, 750 µL of a 4% formalin PBS solution was 

added to each well and let for 20 min at RT in the dark. After this incubation time, two PBS 

washings were made, before slide fixation with DAPI Fluoromount-G (eBioscience, USA), 

for cell nucleus staining. Final slides were then let at RT in the dark for 72 h for 

polymerization. Observations were then made with an epifluorescence microscope, Zeiss 

Observer Z1, or with a confocal microscope, Leica, HR-SP8.  

8. EWS-Fli1 gene expression inhibition with the addition of chloroquine: 

Same protocol as in 5, with an extra incubation of 3 hours with chloroquine on A673 cells, 

prior to treatment with NanoAmando:siRNA. Final concentration of chloroquine tested were 

100 and 200 M, directly diluted in DMEM and then added to cells.  

9. Cop-FND:siRNA complexation: 

Before complexation with siRNA, the Cop-FND solution was sonicated 15 seconds in an 

ultra-sound bath. Then, the diluted Cop-FND solution was added to the diluted siRNA 

solution at a mass ratio of ND:siRNA of 3.9:1, and the mixed solution was put again in the 

ultra-sound bath for 20 seconds. This protocol, and more particularly mass ratio, has been 

optimized to provide very stable colloidal suspensions and to strongly limit aggregation at all 

stages of the complex formation. The success of the complexation step was characterized by a 

clear and translucent final suspension, while a failure resulted in a milky suspension that 

flocculates. 
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Where: I = intensity, 

    t = time, 

    𝜏 = the delay time 

Appendix B: Particle Size Measurement 

by Dynamic Light Scattering (DLS): an 
explicative note of the different values 
 

Dynamic Light Scattering measures the variation of intensity of light scattered by particles 

in solution (due to their Brownian motion) and relates it to the size of the particles. More 

precisely, DLS measures the time dependent fluctuations of the scattered intensity (dependent 

upon particle size, see Figure B-1), from which the translational diffusion coefficient (D) and 

subsequently the hydrodynamic diameter (DH) are deduced, taken into account the solvent 

viscosity at the experiment temperature. 

 

Figure B-1: Fluctuations in diffused intensity measured by DLS and construction of the correlation coefficient 

curve, comparison of the collected signal from large and small particles. Adapted from Malvern technical 

datasheet and Creative commons image by Mike Jones (CC BY-SA 3.0) 

Auto-correlation function: inferred from the scattered intensities collected over time, 

according to:  

𝐺(𝜏) =  〈
𝐼(𝑡). 𝐼(𝑡 + 𝜏)

𝐼(𝑡)2
〉 
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Where: B = baseline at infinite time, 

    A = amplitude or intercept, 

    q = scattering vector = (
4𝜋𝑛

𝜆0
) . sin(𝜃/2) 

  n = dispersant refractive index, 

  𝜆0 = laser wavelength, 

  𝜃 = detection angle 

     D = diffusion coefficient, 

     𝜏 = the delay time 

 

Figure B-2 shows the correlation function, with a qualitative description of information that 

can be extracted from the shape of the curve. The intercept is used to evaluate the signal-to-

noise ratio from a measured sample and is often used to judge the quality of the data. The 

baseline should go to zero and be as flat as possible, if not, it is an indication for the presence 

of large particles, contaminants or aggregates.  

 

Figure B-2: Auto-correlation function description. From Malvern technical support datasheet 

The intercept and the baseline are used in the equation for modelling the correlation function 

such as: 

𝐺(𝜏) =  𝐵 +  𝐴 ∑ 𝑒−2𝑞2𝐷𝜏  
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The sum has to be understood as the contribution of different sizes, considered as discrete or 

continuous. 

The auto-correlation function also contains the diffusion coefficient information, required to 

be entered in the STOKES-EINSTEIN equation, used to calculate the hydrodynamic diameter. 

The diffusion coefficient D describes the Brownian motion of the nanoparticle in a particular 

solvent environment. It depends not only on the size of the particle core but also on surface 

structures, the concentration and the types of ions in the medium. D is obtained by fitting the 

correlation function with a suitable algorithm: cumulants analysis or distribution analysis. 

Cumulants analysis: simple method to analyze the correlation function of a DLS 

measurement. The algorithm fits the logarithm of the intensity correlation function to a 3rd 

order polynomial (ISO22412:2017), giving a mean particle size (Z-average) and an estimate 

of the width of the distribution (polydispersity index). This analysis method is perfectly suited 

for monodispersed population but becomes less descriptive for samples moving further away 

from monomodal distribution.    

Effective diameter or “Z-average”: mathematically, the harmonic intensity means of the 

particle sizes, derived from the cumulants methodsi. It is the most stable parameter produced 

by DLS technique because it has a low sensitivity to noise (considering it is inferred from a 

least square fit of the intensity correlation function). Nevertheless, it is very sensitive to the 

presence of aggregates or large contaminants (e.g. dusts) due to its inherent intensity 

weighting. 

Diameter by Number: this distribution is inferred by MIE scattering theory, from the 

intensity measurement, where each particle has equal weighting. It requires the index of 

refraction of the material composing the nanoparticle and relies on the hypothesis of spherical 

nanoparticles. It allows to retrieve the contribution of small particles to the scattering, which 

signal is dominated – in intensity – by the largest particles or aggregates, owing to the 

Rayleigh scattering cross section scaling as d 6, with d the particle diameter. Figure B-3 shows 

the difference of distribution representation depending on number, volume or intensity 

representation. 

                                                      
i https://www.azonano.com/article.aspx?ArticleID=3098 
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Figure B-3: Number, Volume and Intensity distribution representations, for a mixture composed of equal number 

of 5 nm and 50 nm spherical nanoparticles. From Malvern technical support datasheet 

Polydispersity Index: is extracted from the correlation function from the cumulants analysis: 

a single particle size distribution is assumed and a single exponential fit is applied to the 

autocorrelation function. The polydispersity describes the width of the assumed Gaussian 

distribution. This value is dimensionless and fits between 0 and 1. Values between 0 and 0.2 

are considered to be associated to highly monodisperse distributions, values from 0.2 to 0.7 to 

mid-range polydisperse distribution and values greater than 0.7 to very polydisperse ones. 

Baseline Index: indicates the sample quality, e.g. presence of large particles/aggregates, by 

making the difference between the measured and the fitted baseline of the correlation 

function.   

Hydrodynamic Diameter: diameter of a hypothetical hard sphere diffusing at the same speed 

and fashion as that of the particle being measured, as represented in Figure B-4. This value is 

indicative of the dynamic hydrated/solvated particle and is dependent upon shape, surface 

structure and ions surrounding the particle. It is calculated thanks to the Stokes-Einstein 

equation.  

Stokes − Einstein equation: 

𝐷𝐻 =
𝑘𝑇

3 𝜋 𝜂 𝐷
 

Where: DH = hydrodynamic diameter, 

    k = Boltzmann’s constant, 

    T = absolute temperature, 

    𝜂 = viscosity coefficient, 
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Figure B-4: Representation of the hydrodynamic diameter. From Horiba technical support datasheet 
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Appendix C: linearity of the intensity 

detected in time-gated microscopy with 
the excitation laser power 

The first time-gated microscopy measurements were made at a laser excitation power of 

50 mW, to facilitate the detection of Cop-FNDs, but in some cases (organ section with large 

aggregates) this power led to the saturation of the signal from large aggregates, which biases 

the final representation of the sum of total intensity. However, in most cases we did not 

observe such saturation, and the data could be processed. 

For the organ sections displaying fluorescence saturation, the acquisitions were done at the 

lower excitation power of 25 mW. In order to be able to include all data (acquired at either 25 

or 50 mW) in the same analysis, we checked whether we could simply apply a linear 

correction. 

To this aim we compared the total intensity from 100 scenes of a Cop-FND-containing 

organ section. The sum of the total intensity over the surface for each detection power is 

displayed in Table C-1.  

Table C-1: Sum of total intensity over surface area for an increasing detection power. 

Power (mW) 15 25 37,5 50 
Sum of total 

intensity/surface 
1,34 2,34 3,59 4,49 

The graphic representation of those data (Figure C-2) shows that the linear regression fits 

well the data. This is confirmed by the value of (i) the slope (close to 0.1), and (ii) of the 

correlation coefficient R2, very close to 1, reinforcing the postulate that the fluorescence 

intensity evolves linearly with the excitation power. 
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Figure C-1: Sum of total intensity over the organ section surface vs laser excitation power. The evolution can be fitted with 
a line (dashed line). 

Fluorescence images that would have been obtained at P=25 mW were extrapolated from 

P=50 mW real acquisition by applying a global factor of 2. 

 

*** 
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Résumé de la thèse en français 

Nanodiamants fluorescents pour la vectorisation           de 

siRNA : évaluation in vitro et quantification haut-débit/haute-

résolution in vivo 

Sandra Claveau 

Laboratoire Vectorologie et Thérapeutiques Anticancéreuses, UMR8203, CNRS, Univ. Paris-Sud, 

Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif cedex 

Laboratoire Aimé Cotton, UMR9188, CNRS, Univ. Paris-Sud, ENS Paris-Saclay, Université Paris-

Saclay, 91405 Orsay cedex 

Le nanodiamant (ND) est largement utilisé pour diverses applications, notamment 

biomédicales, tirant avantage de sa faible cytotoxicité et d’une bonne biocompatibilité. De 

plus, les modifications de surface des diamants ont fait l’objet de nombreux travaux qui sont 

en train de déboucher sur la fixation maîtrisée de biomolécules. Lors de cette thèse, des 

nanodiamants cationiques ont été utilisés pour vectoriser des siRNAs dans le cadre du 

développement d’une thérapie génique ciblant le Sarcome d’Ewing. Notre étude a été menée 

sur des cultures de cellules tumorales, ainsi que sur un modèle murin pré-clinique. 

Les petits ARN interférents (ou siRNA pour small interfering RNA) sont des outils 

d’inhibition de l’expression de gènes qui représentent un grand espoir pour le traitement de 

certaines maladies mais qui sont rapidement dégradés dans l’organisme par les nucléases. Ces 

molécules ont donc besoin d’un vecteur pour les protéger des dégradations et les amener 

jusqu’au cytoplasme des cellules cibles. Le Sarcome d’Ewing est un cancer pédiatrique rare 

dont la formation est due, dans 85% des cas, à une translocation chromosomique qui produit 

l’oncogène de jonction EWS-Fli1. Cette translocation confère toutes les caractéristiques de la 

cellule cancéreuse, avec notamment une perte de la fonction d’apoptose et l’induction d’une 

prolifération incontrôlée des cellules. Jean-Rémi Bertrand et son équipe (Gustave Roussy, 

UMR8203, Villejuif) ont déjà proposé et validé une séquence siRNA ciblant spécifiquement 

EWS-Fli1 et permettant son inhibition, vectorisée par différentes plateformes. 

Lors de mes travaux de thèse, j’ai utilisé des nanodiamants issus de différents modes de 

production : détonation (DND, très petite taille ≈3-10 nm) ou Haute Pression Haute 
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Température (NDHPTH, taille ≈70 nm). Ils ont été fonctionnalisés par quatre méthodes 

différentes : (i) hydrogénation par plasma ou (ii) par recuit thermique, (iii) rendus cationiques 

par traitement chimique ou (iv) par greffage covalent d’un polymère cationique (COP-

NDHPHT). Les charges positives ainsi créées à la surface des ND permettent l’adsorption 

électrostatique des siRNA.  

Mes travaux ont été articulé autour de deux axes de recherche : 

(i) Etude in vitro des complexes (Gustave Roussy, UMR8203, Villejuif) : j’ai comparé 

les caractéristiques physico-chimiques (taille, potentiel zêta et capacité d’adsorption 

des siRNA) des différents ND et mis en évidence que l’efficacité d’inhibition de 

l’oncogène par les siRNA dépend du mode production et de la fonctionnalisation des 

ND cationiques précédemment décrits. Le vecteur le plus efficace dans l’inhibition 

d’EWS-Fli1 s’est avéré être le COP-NDHPHT, avec lequel nous avons obtenu près de 

70% d’inhibition. Leur biodistribution dans les organes de la souris a ensuite été 

explorée.  

(ii) Distribution tissulaire (Laboratoire Aimé Coton, UMR 9188, Orsay) : pour cette étude 

nous avons eu recours à des NDHPHT rendus fluorescents (FNDs) par la création dans 

leur maille cristalline de centres colorés azote-lacune (NV pour Nitrogen-Vacancy). 

Ceux-ci ont pu être détectés par un système optimisé d’imagerie de fluorescence plein 

champ à fort grossissement (x60) utilisant une excitation laser impulsionnelle. Ce 

dispositif utilise une porte temporelle retardée par rapport à l’excitation pour tirer 

profit de la longue durée de vie (30 ns) du niveau excité des centres NV, par rapport à 

celle de l’autofluorescence (≈2 ns). Il permet ainsi de faire ressortir les NDs dans des 

coupes très autofluorescentes des organes des souris. Le fort grossissement permet de 

distinguer les FND individuels des agrégats au sein de l’environnement tissulaire, tout 

en ayant une très bonne résolution des sous-structures de l’organe total. Nous avons 

observé qu’après 24h les FND se trouvaient principalement dans le foie, la rate, le 

poumon et le rein. 

Ces travaux ont permis d’une part d’identifier le mode de production et de 

fonctionnalisation optimal des nanodiamants pour la vectorisation efficace de siRNA, et 

d’autre part de déterminer, par une nouvelle méthode de microscopie de fluorescence, la 

biodistribution de ces vecteurs dans les organes de souris portant une tumeur xénogreffée 

sous-cutanée. L’étude d’efficacité thérapeutique des complexes ND:siRNA sur ces souris, 
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ainsi que sur un modèle plus avancé de tumeur orthotopiques avec métastases, est en cours 

dans deux équipes partenaires. De plus, il est possible d’augmenter l’efficacité du traitement 

en dirigeant les complexes plus spécifiquement vers les cellules du Sarcome d’Ewing. En 

effet, ces dernières surexpriment l’antigène de surface CD99, si bien qu’en greffant sur les 

ND un fragment (Fab) d’anticorps ciblant CD99, il doit être possible d’augmenter 

l’internalisation des complexes ND:siRNA dans la tumeur. 

*** 
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Titre : Nanodiamants fluorescents pour la vectorisation de siRNA : évaluation in vitro et quantifications 

haut-débit/haute-résolution in vivo  

Mots clés : nanodiamant, siRNA, Sarcome d’Ewing, biodistribution 

Résumé : Le Sarcome d’Ewing est un cancer 

pédiatrique rare, principalement dû à 

l’expression de l’oncogène de jonction EWS-

Fli1, et dont les traitements médicamenteux ont 

peu évolué au cours des dernières décennies. 

Nous nous intéressons à une nouvelle approche 

thérapeutique utilisant des siRNA, ciblant 

spécifiquement l’oncogène EWS-Fli1, et 

permettant l’inhibition de la croissance 

tumorale. Durant mon travail de thèse, j’ai 
utilisé des nanocristaux de diamant issus soit de 

détonation (DND), soit de synthèse haute 

pression haute température (NDHPHT) pour 

vectoriser les siRNA, accrochés par interaction 

électrostatique. Pour ce faire, les NDs ont été 

rendus cationiques par différentes méthodes: (i) 

hydrogénation assistée par plasma, (ii) par 

recuit thermique, ou (iii) par traitement 

chimique pour les DNDs, ou (iv) greffage 

covalent d’un polymère cationique sur des 

NDHPHT (COP-NDHPHT). 

Mes travaux ont comporté deux axes: (i) étude in 

vitro des complexes ND:siRNA (caractérisation 

physico-chimiques des NDs et étude de l’efficacité 

d’inhibition de l’oncogène par le complexe); (ii) 

distribution tissulaire de COP-NDHPHT, injectés dans 

des souris, grâce à des NDHPHT  fluorescents, 

contenant des défauts azote-lacune. Pour les détecter 

individuellement dans des coupes d’organes de souris 

portant une tumeur xénogreffée sous-cutanée, nous 

avons développé un système d’imagerie en 
épifluorescence à grande ouverture numérique, et 

résolu en temps afin de rejeter l’autofluorescence 

tissulaire (de durée de vie plus courte que celle des 

NDs). Nous avons quantifié le nombre, l’état 

d’agrégation et la localisation cellulaire (grâce à un 

marquage histopathologique imagé simultanément) 

de ces vecteurs 24h après injection. Les NDs ont été 

clairement détectés dans les différents organes, dont 

la tumeur, ouvrant la voie à un contrôle de la 

progression tumoral grâce au siRNA. 

 

 
Title : Fluorescent nanodiamonds as siRNA vectors: in vitro evaluation and high-content-high-resolution 

quantifications in vivo  

Keywords : nanodiamond, siRNA, Ewing Sarcoma, biodistribution 

Abstract : Ewing Sarcoma is a rare pediatric 

cancer, caused in the majority of the cases by the 

expression of the fusion oncogene EWS-Fli1. 

Current treatments have not much evolved over 

the past decades. We are investigating a new 

therapy based on siRNA specifically targeting 

the oncogene and inhibiting the tumor growth. 

During my PhD thesis, I have tested different 

types of synthetic nanodiamonds (ND) used to 

vectorize siRNA electrostatically bound at their 

surface: ND produced by detonation (DND) and 

by High Pressure High Temperature synthesis 

(NDHPTH). Their surfaces have been cationized 

by various processes: (i) plasma or (ii) thermal 

hydrogenation, (ii) chemical treatment, or (iv) 

covalent grafting of a copolymer (COP-NDHPHT). 

 

My PhD work included two main axis: (i) in vitro 

study of ND:siRNA complexes (NDs physico-

chemical characterization and oncogene inhibition 

efficacy by the complex); (ii) tissue distribution of 

COP-NDHPHT, injected into mice, using fluorescent 

NDHPHT containing nitrogen-vacancy defects. To 

detect them individually in sections of mouse organs 

carrying a subcutaneous xenograft tumor, we 

developed an epifluorescence imaging system with 

large numerical aperture and resolved in time to 

reject tissue autofluorescence (of a shorter lifetime 

than NDs). We quantified the number, the 

aggregation state and the cell localization (thanks to 

simultaneous histopathological imaging) of these 

vectors 24 hours after injection. NDs have been 

clearly detected in different organs, including the 

tumor, paving the way for tumor progression control 

with siRNA. 
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