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Part 1
Introduction

1 2d quantum gravity and Liouville theory: con-
text

1.1 2d quantum gravity and Liouville theory

In a quest of simplification of our understanding of the world into one consistent theory
with respect to the experiments, the aim of quantum gravity is to get a quantum
description of general relativity. In classical general relativity, the gravitational force is
governed by the geometry of space-time. Space-time is a (pseudo) Riemannian space,
and its geometry is supposed to be determined from the matter (and equivalently the
energy) content of the universe, and conversely, the geometry of space-time acts on the
matter content of the universe and constrains its movement. The interaction between

geometry and matter content is governed by the celebrated Einstein equation:
G =KT,,. (1.1)

Einstein tensor G, = R, — %gm,R, expressed in terms of the metric g,, and the

Ricci tensor R, contains the information on the geometry of space-time, whereas

v
the stress-energy tensor 7, describes the matter content part. The curvature of the
space and the matter content are related through a proportionality constant x. In
classical general relativity — in opposition to quantum general relativity —, Einstein
tensor must be a solution of equation [I.I and corresponds to the saddle-point of the

Einstein-Hilbert action:

Serguw, P] = /

5 (%} i cM[cp]) = detgud’s, (1.2)
where we consider here D dimensional space-time (one dimension for time and D — 1
dimensions for space) so the measure is dPx. The Greek indices run from 1 to D. The
term L), stands for the Lagrangian associated to the matter fields, generically denoted
by ®, present in the universe, and the signature of the metric is (—,+,+,...). In
a pure gravity description, we forget about matter field in order to focus exclusively
on the geometry of space-time, so in that case, Einstein-Hilbert action reduces to the
curvature term. It is also customary to add a cosmological term — here to reproduce

the expansion of the universe — to this action, namely:

Salg] = / Ay/=det gydPa. (1.3)
RD
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The constant A is the cosmological constant. In the end, the pure gravity action is the

sum of the Einstein-Hilbert action and the cosmological term:

Sgrav (9] = Sen(90] + Salgu]-

In a quantum description of general relativity, one allows the topology of the space
and the geometry itself to have fluctuations away from the classical solution, that is
to say, the actual Einstein tensor may differ from the solution of Einstein equation.
Potentially any Einstein tensor can appear, and to each of those instances is assigned
a probability of occurrence. The most probable event must be the tensor which is
solution of the Euler-Lagrange equations associated to the pure gravity action, that
is to say the classical solution of Einstein equation. For other generic instance G,
that may not correspond to the saddle-point of the action, the assigned probability is
related to the gravity action evaluated on this instance Sgayv[guw]. The closer to the
saddle point the tensor is, the more probable the Einstein tensor is. The action of the
matter fields ® is denoted Spagter[P, g], it depends on the geometry of the space. In
the path-integral formalism, the partition function of quantum gravity coupled with

matter fields is:

Zgray = Z ’Dg'Dcpe—(Sgrav[gHSmatter [®.9]) (1.4)

topology

The measures Dg, D® on the metric and the scalar fields are ill-defined, and they sup-
pose a choice of gauge for the metric, as the action is invariant under reparametrization.
This path-integral is supposed to quantize gravity. The procedure to quantize a theory
by path-integral formalism in quantum field theory usually uses a perturbative expan-
sion in the coupling constants of the theory. Here, the coupling constants associated to
the metric are k and A. However, in D = 4 (the dimension of the physical macroscopic
world), this perturbative procedure is doomed to fail, since gravity is not renormal-
1zable in this case. In this thesis, in order to dodge this problem, we study quantum
gravity in 2 dimensions (called thereon 2d quantum gravity) for Euclidean spaces in-
stead of Minkowskian spaces, in a non perturbative way. It is quite unphysical, but
mathematically interesting though. Also there is an indirect link between 2d quantum
gravity and D dimensional quantum gravity. Indeed, a way to overpass the renormal-
ization problem and to define a perturbative quantification of gravity, is to turn the
point-like particles into (closed or open) one-dimensional objects, called the strings.
When a string propagates in a target flat space X of dimension D, it sweeps out a
2 dimensional world sheet M. This world sheet is endowed with a metric tensor g%

(where 4, j = 1, 2), the space X is endowed with Minkowski metric n,, = (—, +,+,...).

10



The action associated to a field ® propagating in a D is the area of the world sheet:

1
Aoy

Sworld sheet — —

// d*¢+/det g1 g" 0,9 ,0;®,n", (1.5)
M

1 .
5 openstring

with o/ = {2 )
7 closed string

Polyakov, in one of the founding papers of 2d quan-

tum gravity [Polyakov, 1981], showed that this action, initially designed to explain
the 4d macroscopic world, can be turned so as to study 2d Euclidean quantum grav-
ity, provided that one adds a cosmological constant term to the world sheet action :
S I A\/W d*€. Let us precise that the usual trick to turn from an Euclidean quan-
tum theory to a Minkowskian one is to use Wick rotation, but in the case of quantum
gravity, this trick may not work. Now that we have motivated a little bit the study of
2d qantum gravity, we may expose how it is related to Liouville action.

In 2d quantum gravity on closed Riemann surfaces, the topology surface M as well as

its metric can fluctuate. The partition function writes

Z2dQG — Z ’Dg’DcI)e*ﬁ S A/ det gij Rd*¢€—p Jar A/ det 9i7d%€—Smatter [@,g}' (16)
topology
of M

where the metric tensors g on M are Riemannian, and the cosmological constant is now
denoted p. The scalar curvature is still denoted R. In two dimensions, the integral of
the curvature is a topological invariant, as it is proportional to the Euler characteristic
of the surface, and the cosmological constant multiplies the area of the surface M

measure with the metric g:

Sy V/detgi Rd2¢ = dmx (M) (1.7)
oy /AT gy’ = AQM, ). |

This decomposition of the action into the Euler characteristic and the area will be visi-
ble at the level of discretized approach, but we shall forget about it for the moment, and
first transform the partition function according to Polyakov’s ideas [Polyakov, 1981].
The latter involves a formal integration over the possible metric tensors, with the “mea-
sure” Dg over all the possible compact Riemann surfaces. The topology of a compact
Riemann surface M is entirely described by its genus A, which is the number of handles
of the surface, so the sum over the possible topology of M is actually a sum over the
genera. For a given genus h, two Riemann surfaces M and M’ with metric tensors g
and ¢’ are conformally equivalent (they have the same conformal structure), if there
exist coordinate systems &;, &, in which g;; = A(€1,€2)g;;. By Riemann uniformization
theorem, a class of conformal structure of a Riemann surface of a given genus is de-

scribed by the moduli m of the surface. It means that if m is fixed, and M, g™ is a
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Riemann surface along with a metric tensor corresponding to this moduli, any other
metric ¢’ on M which corresponds to the same moduli is conformally equivalent to g.
For each moduli m, let us choose a background metric g™, this gives a family of metrics
indexed by the moduli. The choice of the family (¢™),, is a gauge fixing choice, that
gives birth to Faddeev-Popov ghost fields. All the possible metrics one can construct
from a Riemann surface of moduli m take the form g(z) = ¢7¢*)g™(z). For a given
genus, the space of moduli is finite dimensional, so the measure Dg can be decomposed
into a finite dimensional measure dm over the moduli, a measure over the ghosts, and
an infinite dimensional measure D¢ over the conformal factors. In the end, Polyakov
showed that for a metric tensor g = €7 the action of 2d gravity coupled with matter

can be decomposed in three actions:

SZdQG[g: (I)] = Sz7u[¢] + Sghosts[gm] + SCFT[gma (I)]a (18)

where the action Sghosts[g™] accounts for the coupling between the background metric
and the ghosts field, the action Scpr[g™, ®] describes the conformal field theory of the
matter content on a surface with fixed background metric ¢g"™. Last, the gravitational

action is given by Liouville action:

1

—/M(Ivgmeﬁ(2)|2+R[gm]Q¢( 2) + dmpe’®?) | [det g (2)dz,  (1.9)

STt e, g™ = ym

where V,m is the gradient associated to the background metric g™, R[g™] is the cur-
vature measured with the background metric, v €]0,2[ is a parameter of the theory,
the charge @ satisfies Q = 7 + % The cosmological constant p is a strictly positive
parameter of the the theory. The pure gravity part of the action associated is thus
Liouville action, and the partition function of 2d pure quantum gravity on a compact
Riemann surface M with given genus and moduli m depends on the parameters v, u
of the Liouville action, and can be written in this form:

20k / Depe 51 199", (1.10)

puregravity

The observables of pure quantum gravity on M are the so-called vertex operators
Va(z) = e*®®) where z € M. The parameter « is the charge of the operator. Then,

the correlation functions one wants to compute are the expectation values of the vertex

<Hva . > /m I e et (1.11)

Remark 1.1. Let us address a vocabulary point here. In this thesis, the term “observ-

operators:

able” is used for a quantity or an event O one can observe in the framework of a theory,
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it is the equivalent of “random variable” in mathematics. The “expectation value” (O)
of an observable is the average value when one observes this very event or quantity.
If the observable O can be decomposed into k similar sub-observables Oy, ..., Oy, that
1s to say the event O is the simultaneous realization of events O1,...,Oy, then its

expectation value is called a “correlation function” or equivalently a “k-point function”.

Hence, this is the framework of 2d quantum gravity. However, there are many
unknowns in this theory, coming from the fact that the objects are ill-defined mathe-
matically, that is to say the probability theory of 2d quantum gravity is not defined.
First, in the partition function, the set of fields ¢ over which one has to integrate is
not precised — put another way, the space of probability is not defined. In order to get
the most general set of possible metrics, the possible fields ¢ can be generalizations
of functions, that is to say, distributions. Then, the measure D¢ is supposed to be a
kind of Lebesgue measure over the set of metrics on which we integrate, and it is not
obvious how to define it in the path-integral formalism — thus the probability measure
is not defined either. What is more, in Liouville action, the term that multiplies the
cosmological constant involves the exponential of a potential distribution, which is not
defined. Therefore, the path-integral is ill-defined, and one has to make sense of it. We
sum up in few words the general ideas of the different approaches developed to address

these problems up to now, in order to situate the approach used in this thesis.

1.2 A brief review of the approaches of 2d quantum gravity

1.2.1 The path integral formalism

During the eighties, 2d quantum gravity was extensively studied with path in-
tegral methods in complement with discretized approaches (see [David, 1988a],
[Distler and Kawai, 1989]). The path integral formulation, which is a continuous ap-
proach, is very efficient for physical predictions, and computing various critical expo-
nents. The matter content is supposed to be described by a conformal field theory
(CFT). CFTs are indexed by their central charges ¢, and a matter field in 2 dimensions
is described by a CFT with a given central charge. If the matter field does not interact
with the metric (i.e. with gravity), the study reduces to the study of the CFT. If
the matter field is coupled with gravity, then the CFT is “dressed” by gravity. The
celebrated KPZ formula (for Knizhnik, Polyakov and Zamolodchikov) relates critical
exponents for a CF'T without coupling to gravity and critical exponents for CF'T dressed
with gravity, see |[Knizhnik - Polyakov - Zamolodchikov, 1988|. Later, Dorn, Otto,
Zamolodchikov and Zamolodchikov conjectured a formula for the three point functions,
the DOZZ formula [Dorn and Otto, 1994], [Zamolodchikov and Zamolodchikov, 1995],
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[Zamolodchikov and Zamolodchikov, 1996]. However, the drawback of path integral is
that it is mathematically ill-defined. There are two essential hurdles, already discussed

in previous section:

e the set of fields on which to integrate needs to be defined properly, as well as the

measure Dao.

e if one integrates over distributions, the term of the cosmological constant 4 ue??

needs also to be defined, as the exponential of distribution is ill defined.

In order to overpass those difficulties, other approaches were developed at the same

time.

1.2.2 Discretized approaches

As the set of all possible fields ¢ on a surface M is infinite dimensional, a first idea is to
discretize the surface by a polygonal decomposition of the surface (called a map) with
n faces. For 2d surfaces, the faces are polygons, and a discretized field on a polygon
fr gets a single value ¢, on the whole polygon. If the map has finitely many faces,
the space of possible fields is finite dimensional. Therefore, the discretization allows to

make sense of the measure D¢ and of the Liouville action. The partition function is

> /D¢—>Z > ﬁd(pk. (1.12)

topologies h  mmapof k=1
genus h
sizen

transformed:

The hope is that when the mesh of the discretized surface tends to 0 (the number n
of faces grows to infinity), one recovers a limiting theory, also called the continuous
limit, which is Liouville quantum gravity. This thesis stands in this framework, so we
dwell on the ideas and results of this approach in more details in chapter [[I. At the
discretized level, decorations of the polygons can mimic some matter content, so in
this case, if a continuous limit exists, it shall be described by a CFT coupled with

gravity.

Those discretized approaches were first used to prove convergence of observables
that do not take into account metric information (distances between two points in the
surface for instance), see for instance [David, 1985]. Then, Ambjgrn and Watabiki
[Ambjern and Watabiki, 1995] studied distances properties in this framework, by de-
veloping a sort of peeling process of the random maps. The critical exponents are the
same as the ones found by path integral methods. Later, mathematicians proved that

for some discretized models, the limit of random maps in terms of metric spaces exists,
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and the continuous limit is the Brownian map (see [Le Gall, 2013], [Miermont, 2013]).
The techniques employed are mainly combinatorial methods in order to enumerate
maps of a certain size, and probabilistic tools to prove convergence of correlations in
the continuous limit. Most of the results of this thesis concern enumeration of maps

and are purely combinatorial.

1.2.3 Continuous approaches

Another way of making sense of Liouville theories is to tackle the problem directly
in the continuum. Let us mention 3 approaches here, in which we can distinguish
algebraic methods and probabilistic ones. Those methods were developed at the same
time as discretized approaches, and they often are complementary. The presentation
adopted here is not chronological. Also, the diverse methods benefit from each other
through fruitful interchanges.

First, an algebraic approach for continuous is the conformal bootstrap. The bootstrap
idea comes from Polyakov [Polyakov, 1974], it consists in assuming symmetries satis-
fied by a theory and in deducing constraints satisfied by the correlation functions. If
those constraints are strong enough, the correlation functions can be computed. In
2 dimensions, conformal bootstrap was initiated by Belavin, Polyakov and Zamolod-
chikov [Belavin et al., 1984], and involves the study of representations of the Virasoro
algebra. In the bootstrap approach, the theory is defined by a set of axioms, which

are so constraining in 2 dimensions that they allow to determine all the amplitudes
k

<H Vo, (xl)> (this is the probability amplitude for k particles of of respective types
i=1

o1,...,0 located at xy, ..., xy to interact). They are even over determined in the sense
that there are several different ways to compute a given amplitude. The difficult goal
of the conformal bootstrap approach is to prove that the axioms are consistent, that is
to say that the constraints do not contradict each other, or that the different ways of
computing the amplitudes yield the same result. Conformal bootstrap is used for the
study of CFT, and for 2d quantum gravity, the interesting CF'T is Liouville CFT. It has
known many developments since it has been defined [Teschner, 1995], [Ribault, 2014].
A second continuous approach was initiated by David, Kupiainen, Rhodes and Vargas
(see [David et al., 2015] and the course of Vargas on the subject [Vargas, 2017]), who
have been defining properly Liouville quantum gravity as a probabilistic theory. Their
study relies on the Gaussian free field (GFF) on a domain of the complex plane. They
define rigorously the “Gaussian multiplicative chaos” in order to make sense of the

term €%, and are able to make the k-point functions of vertex operators

<H vai<zz->> (1.13)
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quantum surfaces

imaginary geometry

Figure 1: Summary of approaches to 2d quantum gravity. In red, the type of approach,
and in small font, some keywords of the approach.

meaningful. By this powerful approach, Kupiainen, Rhodes and Vargas have recently

managed to prove DOZZ formula |[Kupiainen et al., 2017].

Third, another probabilistic approach was initiated by Duplantier, Miller and Sheffield

|[Duplantier et al., 2014]. They have been relating the Brownian map — which is a

continuous object — with v = %—Liouville quantum gravity, which is suspected to
describe pure 2d quantum gravity. The theory needs the machinery of imaginary
geometry and the study of fractal objects such as SLE, curves and conformal loop
ensembles CLE,..

Figure [1| summarizes the different approaches for 2d quantum gravity.

2 Content of the thesis

This thesis adresses three aspects of discretized approaches to 2d quantum gravity. It

is organized as follow.
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In the second chapter, the main ideas behind discretized methods are introduced. To
do so, we define random maps and what we mean by their continuous limit. A powerful
tool to study random maps combinatorics is the formulation in terms of matrix models:
since we will encounter them throughout the thesis, they are also introduced as well as
some subsequent techniques.

The contributions of the thesis sit in the four following chapters. They form three
groups: chapter [[TI chapters [[V] and [V] together, and chapter [VI. Each group is dedi-
cated to the study of a specific random maps model, which is introduced in the begin-
ning of the chapters. Also, each group is dedicated to the study of an aspect of random
maps. In chapter [[TI, we use Delaunay triangulations and circle patterns in order to
study various properties of the measure defined on this set. Those properties are of two
types: first we show that the measure is related to the widely studied Weil-Petersson
measure on moduli space of Riemann surfaces, second we prove some local inequalities
on the measure as preliminary steps for the study of the continuous limit of Delaunay
triangulations.

Chapters [[V] and [V] tackle the computation of expectation values of observables on
random maps and their convergence in the continuous limit in the context of Strebel
graphs, that, as we discuss in chapter [[V] look like duals of Delaunay triangulations.
The expectation values are first explicitely computed in chapter [[V] thanks to Kontse-
vich’s bijection on Strebel graphs. Then, in chapter [V] the computation is made more
systematic by resorting to topological recursion. This procedure allows to study the
convergence of the expectation value in the continuous limit. We then identify the
continuous limit of Strebel graphs with (3,2) minimal model.

A third aspect of random maps addressed in this thesis concerns the symmetry of cor-
relation functions defined from random maps combinatorics. Those symmetries have
consequences in terms of constrains imposed, and for further study of the correlation
functions as amplitudes of an integrable system. Certain symmetries of the correlation
functions computed from the Ising model on random maps are proven. The proof al-
lows to reformulate the recursion which determines planar correlation functions, and
we show that the correlation functions are expressed in terms of link patterns.

Each chapter comes with a related flipbook in the bottom right corner. They are com-
plete when the chapter, and the observation of the progress of the animation during
the reading may plummet the reader into despair, or fill him/her with hope.

Along the thesis, some additional concepts are required, such as moduli space of Rie-
mann surfaces, intersection numbers, minimal models or topological recursion. They
are introduced when they appear the first time in the manuscript.

Last, the appendices are dedicated to technical details of computations and proofs, and
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to the special functions appearing in the thesis.
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Part 11
Random maps and matrix models

“Tout ce qui est simple, tout ce qui est fort en nous, tout ce qui est durable méme, est
le don d’un instant.

Pour lutter tout de suite sur le terrain le plus difficile, soulignons par exemple que le
souvenir de la durée est parmi les souvenirs les moins durables. On se souvient
d’avoir été, on ne se souvient pas d’avoir duré.”

Gaston Bachelard, L’ intuition de l'instant

We define precisely the discretization method to approach Liouville quantum gravity.
A hope of the discretization in 2d quantum gravity is that a continuous surface can
be approached by a lattice with sufficiently “small” mesh. Hence, we overpass Zeno
of Elea’s paradox of the arrow, and take as paradigm that the continuous space-time
can be approached by little pieces of discrete space-time. A central notion is random

maps, that we introduce here.

3 Random maps

In order to define maps, we need various preliminary definitions. Maps are subclass of

graphs, that are combinatorial objects.

Definition 3.1. A finite connected graph I is the data of a finite set of vertices V(I)
and a set E(I') of adjacency relations (the edges) between them.

If v1,v9 € V(I') are adjacent, there exists e € £(I'), and we write e = (vy,v3). A
graph is a purely combinatorial object that does not come with a canonical way to

represent it. An embedding gives a way to draw a graph (see figure [2):

Definition 3.2. Let M be a compact orientable smooth surface. A embedding I'/*M of
[ into M is a map f : T — M, which sends vertices v; € V(I') to distinct points of M,
and sends any edges e = (v;,v;) € E(T') to a curve of M whose ends are v; and vj. The
embedding is proper if (i) distinct edges do not intersect, except at their extremities,

and (i) the set M\TTM s a union of domains homeomorphic to disks.

To illustrate the second condition for proper embeddings, figure[3|shows an improper
embedding. The genus of a properly embedded graph I'*™ is the genus ¢ of the surface
M. For a graph I', the notion of face is not rigid, as it depends on the embedding.
Figure [2] shows two embeddings of a same graph that define different sets of faces.
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proper embedding in a torus proper embedding in a sphere

<
C_ > S

Figure 2: A graph and two possible proper embeddings. The embedding on the torus
has 2 faces, whereas the embedding on the sphere has 4 faces. All the faces have the
topology of a disk.

Maps are combinatorial objects that allow to define faces. In order to define maps, let

us introduce an equivalence relation between embeddings:

Definition 3.3. Two embeddings T/M, T"N of T are equivalent I'"M ~ TN if there

exists a homeomorphism ¢ : M — N that preserves orientation, such that h = po f.
Then, we can give a definition of maps:

Definition 3.4. A map m of genus g is an equivalence class of a finite connected graph
properly embedded in a surface of genus g. V(m), £(m) and F(m) refer respectively to

the sets of vertices, edges and faces of m.

A map is an equivalence class of embedded graph. Figure 4| shows an example of
two embedded graphs in the same equivalence class. If the genus of a map is 0, we call
it a planar map, and it can be drawn on a sphere. To show that a map is a purely
combinatorial object, we give another equivalent definition, equivalent to definition [3.4]
which does not refer to embeddings. To construct a map with n edges, one can “cut”
those edges in two to obtain 2n half-edges, that we label by 1,2,...,2n. The following

definition defines a map by connecting those half edges thanks to permutations:
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Figure 3: Example of an improper embedding. Although none of the edges intersect
each other, the face f; has the topology of a cylinder.

Figure 4: Two equivalent embeddings of a graph, depicting the same map.
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Definition 3.5. A connected map with n edges is the data of 2 permutations o, € Sg,
such that « is a fized point free involution and the group generated by o and v acts

transitively on {1,2...,2n}.

The fact that a is a fixed point free involution means that it can be written as
a product of n transposition with pairwise distinct supports. In this interpretation,
the edges are the cycles of o (the n transpositions), the vertices are the cycles of v,
and the faces are the cycles of ap. The permutation ¢ allows to define an ordering of
the half-edges around each vertex. Figure 5| gives the relation between («, ) and the
drawing of a map.

Let us mention that another equivalent approach, that we consider also in chapter [V]]
is to consider a genus g map as a gluing of polygons along their edges, such that the
resulting surface is orientable, compact and has genus g.

The size of a map receives different meanings according to the model of random maps
one considers. It can be defined as the number of vertices, as the number of edges, or
as the number of faces. In chapter [[TI] it is the number of vertices whereas in chapter
and [V] it is the number of faces.

Let us denote by M, (n) the set of maps of genus ¢ of size n, (for the suited definition
of size). The degree of a vertex (respectively a face) is the number of edges adjacent
to this vertex (resp. this face). If a map m has genus g, then the numbers of vertices,

edges and faces satisfy Euler relation:
V(m)| = [E(m)| + |F(m)| =2 =29 = x(m). (3.1)

x(m) is the Euler characteristic of m. For a map m with n edges, defined by the
permutations a and ¢ like in definition [3.5] let us note Aut(m) the group of symmetries
(or automorphisms) of m. It is a subgroup of Sy, and consists of permutations of the

half-edges that leave m unchanged in the following manner:

Aut(m) = {¢ € Gyla=goaocd ™ ;9 =¢oyog '} (3.2)

The cardinal |Aut(m)| is the symmetry factor of m. Obviously, the identity is an
automorphism of any map, so [Aut(m)| > 1. For a generic map, the symmetry factor

is 1. The following example shows a case where the symmetry group is not trivial.

Example 3.1. Let us consider the map m with 6 edges (hence 12 half-edges), defined

by the permutations:

(1,2,3)(4,5,6)(7,8,9)(10,11,12)

v
{0‘ = (1,12)(2,11)(3,4)(5, 8)(6, 7)(9, 10). (3.3)
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4 5 38
v=(1,2,3,4)(5,6,7) _|_1
(8,9,10) > 3 A7 A

a=(1,10)(2,5)
3,8)(4,6)(7,9)

Figure 5: Construction of a map from 2 permutations ¢, on a set of half-edges
{1,...,10}. The permutation ¢» = (1,2,3,4)(5,6,7)(8,9,10) has 3 cycles and defines 3
vertices. a = (1,10)(2,5)(3,8)(4,6)(7,9) is a fixed-point free involution, which defines
the edges on the map (we link the half edges ¢ and j if they appear in «v as a transposition
(7,7). Last, we obtain a map, that we can embed in a torus. The faces of the map
are the cycles of ay) = (1,5,4,10,3,6,9)(2,8,7): the red face corresponds to the cycle
(1,5,4,10,3,6,9), while the green face corresponds to the cycle (2,8, 7).
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12 1
10{11 213

Figure 6: Map defined by the permutations ¢ = (1,2, 3)(4,5,6)(7,8,9)(10,11,12) and
a = (1,12)(2,11)(3,4)(5,8)(6,7)(9, 10).

A proper embedding of this map is shown in figure [f The symmetry group Aut(m) is

generated by the two following automorphisms:

¢ = (1v7)(
Oy = (1,5)(2,6)(3,4)(7,11)(8,12)(9,10) (3.4)

So Aut(m) = {Id, ¢1, da, p102}, and |[Aut(m)| = 4.

If a vertex v*® of m is marked, as well as an adjacent edge e®, then the map is
rooted. We denote M (n) the set of rooted maps of genus g and size n. A map m
has k boundaries if k faces are labeled (f,. .., fr), and each labeled face has a marked
oriented edge, such that the marked face is on the right hand side of the edge along
its orientation. The degree ¢; of the boundary f; is the length of the boundary. A map
with & > 1 boundaries is rooted. The set of maps of size n, genus g with k£ boundaries
is denoted M ;(n). See figures [7| and [§| for examples. The symmetry group of a map
with £ > 1 boundaries is trivial, so |Aut(m)| =1 for m € M, x(n).

Maps are used as discretizations of surfaces, and as candidates to mimic matter
fields coupled to gravity or pure gravity in 2d. In order to mimic, at a discretized level,
a field (matter field or metric field), it is necessary to specify a class of maps, which
we call here a model of maps. The 4 chapters of this thesis are dedicated to the study
of 3 models of maps. Specifying a model of maps means that one shall restrain the
set of maps M,(n) by putting constraints, and shall add decorations to maps. There
exist many ways to restrain and to decorate the set of maps, but the most convenient
ways to do so are to put local constraints and decorations (as opposed to global ones).
A constraint or a decoration on a map is local if it involves to know the structure
of the map around one vertex (resp. one edge, one face) to enforce it, and not the
knowledge of the whole structure of the map. Let us look at examples of constraints

and decorations to get an idea of this locality condition.
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Figure 7: Example of a rooted map. Figure 8: Example of a map with 3

The marked edge has a natural orien- boundaries of respective lengths 5, 4

tation, away from the marked vertex. and 3.The marked edge is oriented such
that the boundaries have clockwise ori-
entation.

b

Figure 9: Examples of maps with constraints. On the left hand side, all the faces have
degree 3 whereas on the right hand side, all the vertices have valency 3.

e Examples of constraints: one may restrict its study to the subset of M, (n)
composed of maps having faces of certain degrees. For instance, in chapter [[II]
we allow uniquely maps with faces of degree 3, that is to say triangles. This
constraint is local, since in order to check if it is satisfied, one has to look at
each face individually. One can also restrict M,(n) to maps having vertices of
certain degrees, as it is the case of Strebel graphs in chapters [V] and [V] where
we consider maps with trivalent vertices (of degree 3). See figure [J] for those

examples.

e Examples of decorations: the intuitive idea is that if one considers planar
maps without decorations, he may describe only the geometry of surfaces with-

out matter on them. One of the aims of decorated maps is to add some matter
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Figure 10: Three examples of decorations on a triangulation of the torus. In the first
case, an integer (between 1 and 19) is associated to each edge, in the second case, each
face has a color, and in the third case, a system of non intersecting (red) loops is drawn
on the triangulation.

content at the discrete level, in order to hope for a description of matter coupled
with gravity when one tends to the continuous limit (limit that we define later).
As examples of decorations one can add (see figure , one can associate to each
edge e € £(m) a discrete or continuous parameter. It is the case of Delaunay
triangulations (chapter and Strebel graphs (chapters and E[) Labels can
be associated to vertices of faces, making the maps labeled. One can also assign
a classical spin (equivalently a color) to each face, or draw systems of non inter-
secting loops on triangulations. This non intersecting condition seems non local
since it involves all the faces crossed by the loop, but it can be made local by
forcing pieces of loops to cross the triangles in either of the two ways depicted in
figure [11} In appendix [E] we propose to construct a bi-colored quadrangulation

on a torus with two boundaries.
By imposing constraints and decorating the maps, for each (g,n) we end up with a
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Figure 11: The 2 ways of crossing a triangle for a loop coming from the upper left edge.
This rule prevents loops from intersecting each other.

set of decorated maps Mg(n). This set specifies the model of maps studied. Although
the set M, (n) is finite, the set Mg(n) may be infinite (but of finite dimension), if the
decorations involve continuous parameters. Now, we introduce some randomness in
the set Mg(n) by giving a weight to each of its elements. For a given model, we may
want to focus on the specificities of this model: for instance, if maps are decorated with
spins, one may want to study the statistics of spins on the maps. So for a given model,
let us define a set of “interesting” local objects LO (trivalent vertices, quadrangles,
spin +, loops etc.) of this model. For a local object fo € LO, define a fugacity fi, € C.
The fugacity is equivalent to the energy associated to a local configuration. For each
m € Mg(n), one can count how many of each local object fo € LO there is in m, and
note ny,(m) this number. In order to give a weight to each map, we distinguish two

case.

e The set Mg(n) is finite or countable: the weight of a map w(m) is given by:

wim)= T £ (3.5)

LoeLO

The set of fugacities is said admissible if the sum

1
Zyn= Y. mw(m) (3.6)

meMgy(n)

is finite.

e If the set Mg(n) is also decorated with continuous parameters. For a map m €
Mg(n), we distinguish between the decorations that are continuous parameters,
and the others, called countable decorations (the name is not canonical). We
call the M, (n)® the set of maps with countable decorations. Then M,(n) has a

cellular decomposition Mg(n) =] Mg(n)mc: to each map structure m¢

mceMg(n)e
decorated with countable decorations, is associated the continuous set M, (n)™
of all possible continuous decorations on this structure. Then, we give a weight

w(m®) to the map structure by formula and we put a measure dv,,(m°) on
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the set I\\7J1g(n)mc of continuous parameters. In the end, we get a measure on the
whole set Mg(n) by:
dvgn(m) = w(m®)dvy ,(m°). (3.7)

The set of fugacities along with the measure are admissible if

1
Zyw= Y mw(mC) [ vy, (m°) (3.8)

c
meceMg(n)e Mg (n)™

is finite.

Whether it be in the countable or the uncountable case, if the fugacities and the
measure are admissible, the quantity Z,,, is called the partition function of the model
for genus g and size n maps. The weights and the measure allow to define probability
distribution for maps of genus ¢ and size n. To introduce the remaining notions, let
us restrain to the countable case for clarity, examples for continuous parameters case
are treated explicitly in chapters [[TI] and [[V] We define the probability that one picks

a map m € Mg(n) as:
B 1 w(m)
[Aut(m)] Zy

P(m) (3.9)

An observable O of the model is a subset of Mg(n). The expectation value of O is
defined by:

1 w(m)

0) = .
O = 7 2 TAut(m)

(3.10)

Often, the observable O is a subset defined by conditions of the type “faces (vertices)
1, ...,k have prescribed degrees (decorations)”. This kind of observables are correlation
functions between faces, and are also called k—point functions.

The partition function of the grand canonical ensemble for the maps of genus g is the

following formal series in t:

—+00

Zy =Y t"Zyn € C[[t]], (3.11)

t is the fugacity associated to the size of the maps. To recover the partition function
of maps of genus ¢ and size n, one must compute the coefficient of ¢". If the radius
of convergence of the series is strictly positive, this coefficient is simply recovered by
carrying out the residue:

Zyn = Rest ™" 17, (t)dt. (3.12)

t—0
The partition functions and the expectation values are generating functions with pa-

rameters ¢ and the fugacities of the model. For instance, if one wants to compute the
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(weighted) number of maps of genus g and size n having n; occurences of the local

object fo € LO, this number is simply given by:
—ni1—1
Res fi," ™" 2yl (3.13)

Therefore, one sees that the expectation value of an observable, as defined in equation
3.10, reduces to an enumeration problem. This is why models of random maps are
often seen as combinatorial problems. The techniques to enumerate maps are diverse,
we dwell on the formal matrix models methods in section [5 bellow. We can distinguish

two types of approaches to enumerate maps:

e By solving equations “a la Tutte” [Tutte, 1962]. The principle of those equations,
whose name is due to William Thomas Tutte, is to find a relation satisfied by

the generating function of maps, by erasing an edge of the map.

e By bijective approaches, .e by finding a bijection between the set of maps Mg(n)
and a set of better known objects (for which the enumeration has already been
done or is trivial). For random maps, the most used bijections are Schaeffer
bijection [Schaeffer, 1998] and a generalization, Bouttier, Di Francesco, Guitter
bijection [Bouttier - Di Francesco - Guitter, 2004]. Those are bijections between

bipartite maps and decorated trees.

The interest of discretization for 2d quantum gravity is that it allows, for each size
n, to define properly the expectation values of observables. In order to recover the
continuous theory of Liouville quantum gravity, one must make the size of the maps
grow to infinity, so that the mesh formed by the embeddings of the maps on a fixed
surface becomes denser and denser. In the end, the mesh shall be so dense as to mimic
in itself a continuous surface. To give a sense to the limiting theory that can arise, one
must define and study the large n limit of a model of random maps, also called the

continuous limit of the model.

4 Continuous limit of random maps

The continuous limit of random maps has two main acceptations.

Convergence as probabilistic spaces The type of convergence we are studying in
chapters[[II} [V] and [V] the convergence of random maps models viewed as probabilistic
spaces. For each model of random maps, we see that formula [3.9| allows to define a
probability distribution on sets of maps, from the weights of maps (and the measure if

continuous parameters are present). 2d quantum gravity (in the continuous aproach)
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can be viewed as a probabilistic theory (the approach DKRV gives a rigorous meaning
to this theory). Viewed as a stochastic space, the correlation functions of 2d quantum
gravity one wants to compute are actually expectation values of observables. The mea-
sure Dpe 59! in the path-integral formalism on the fields ¢ has to be understood
rather as a probability measure on a set of distributions.

The first way of defining the continuous limit is to study the convergence of the prob-
ability measure in the sense of distributions. For a given model of random maps, we
are able to define probability measure dv,,, on the set I\Nﬂg(n) for every n € N, whether
it be in the case where Mg (n) is discrete or continuous. The questions to tackle in the

case of 2d quantum gravity are:

e do the measures dv,, converge in the sense of distributions towards a limiting

d . P
measure dvg, Q dv, when the size grows to infinity n — oo ?

e Does the limit measure dv, have the same properties as the one defined for

continuous theories, such as DKRV’s approach 7

In order to answer those questions, the convergence is studied here in two ways. The
first way, which is the convergence of the measure in itself, is carried out for Delaunay
triangulations: section [8| is dedicated to prove properties of the measure dv, itself.
Those properties are preliminary steps to the possible study of the convergence of the
measures in the continuous limit, in the sense of distributions.

The second way is weaker (for proving convergence), but more tractable. It con-
sists in studying the convergence of expectation values of observables (equivalently
random variables) when the size of the maps tend to infinity, so it amounts to
studying the convergence of the measures dv,, integrated against test functions.
More precisely, choose an observable O that has a meaning for all the sets Mg(n)
with n > ng, and call O, the observable for the set Mg(n). For instance, if
the model of maps considered is the set of planar triangulations with labeled faces
where the size is the number of faces, a possible choice of observable is O =
{triangulations such that triangles 2, 3,4 share an edge with triangle 1}. This observ-
able supposes that n > 4, and has a meaning for all n. On the contrary, the observable
O = {triangulations with 6 edges} is not eligible, because only triangulations of size 4
match the condition. Then, one looks at the convergence of the sequence ((On)),,>p,-
By this way, we get a flavour of what is the limiting theory, but we cannot characterize
entirely the latter. However, it is a legitimate way of tackling the study of 2d quan-
tum gravity, since a physical theory is relevant if the quantities that we can compute
from it, which are precisely expectation values of observables in a quantum theory, are

coherent with the experiments. Of course, experiments do not exist for 2d quantum
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gravity, but we can fix as a goal to recover the same expectation values as the one

found in the path-integral formalism.

Convergence as metric spaces The second way is to view the sets I\Nﬂg(n) as metric
spaces, by defining a suitable (with respect to the model) distance d,,(vi,v) on each
map m € Mg (n) between any two vertices vy, vo € V(m). The study of random maps as
metric spaces is not the purpose of this thesis, however throughout this manuscript, we
mention natural graph metrics (for Delaunay triangulations in chapter [[1Ij and Strebel
graphs in chapter that are eligible for a metric study of those models in further
developments. We give here the meaning of a convergence in the continuous limit as a
metric space for random maps, in order to justify the fact that we will insist on the fact
that we have natural distances associated to our maps. Each map is a metric space, so
in order to compare two metric spaces, one uses Gromov-Hausdorff topology. Gromov-
Hausdorff topology is based on Gromov-Hausdorff distance dgp(X,Y’) between two

metric spaces X, Y

Definition 4.1. If X and Y are submetric spaces of a metric space M (with distance
d), the Hausdorff distance dy between X and Y is:

dy(X,Y) = max <;g}f{d(m‘, Y),;g}f/d(y, X)> : (4.1)
Then, the Gromov-Hausdorff distance dgy measures how two metric spaces X,Y are
similar, by minimizing the Hausdorff distance on all isometries v, 1, embedding X and
Y in the same space:

den(X,Y) = inf_dy(p(X), (V). (4.2)

b

Y Y =M

isometries

The metric space Mg = UneNMg(n) equipped with Gromov-Hausdorff distance,

can be completed to form Mg. The continuous limit of random maps must then be
understood in the following way: it is the limit of a converging (in Gromov-Hausdorff
sense) sequence of random maps (my,),eny With m,, of size n.
Actually, it is not necessary to compute the infimum of all possible isometries between
graphs, and to prove that a sequence (m,,),en converges, it is enough to find a family of
isometries ,, : m, — M for which the sequence (¢(m,,))nen converges in the Hausdorff
topology.
The convergence of metric spaces has been first solved for certain models of random
maps in the works of Le Gall [Le Gall, 2013], Miermont [Miermont, 2013].
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Universality There are various ways to define a model of random maps. The con-
straints imposed may be of different types (for instance the degrees of the faces, of the
vertices), as well as the decorations, the weights of local objects, the measure on con-
tinuous parameters, and the distances on the maps. Therefore, it is legitimate to think
that the continuous limits differ for two different models. It is actually the case, but for
some close models, the continuous limits are almost the same. Let us illustrate more
precisely this universality property, and let us consider the three following examples of

random maps:

Example 4.1. In the first model, we only put a constrain on the faces, which we force to
have degree 3, and we mark an edge and a vertex, that is to say the set I\\7Jlg(n) =T, (n)
18 the set of rooted triangulations with n vertices and genus g. The fugacity associated
to a vertex is t". The weight of a triangulation T € T2 (n) is w(T) = (t)". The

generating function of rooted triangulations of genus g has the following expression:

Z Z Zn (4.3)

n= OmET’(n)
and it has the singular behaviour when t7 reaches the critical value t] = ﬁzﬁ
[Eynard, 2016]:
T AR T 5T
2-2

where FgT is independent of t”. One sees that for g > 2, the generating function diverges
when the fugaticty of the vertices reaches the critical value. The critical exponent can

be written in terms of the string susceptibility exponent fyg—: g(l —g) =2-— ’yg—. I
59—1
1
to the behaviour of the generating functions close to their critical points, so the string

gives the string susceptibility: fygT = The large n limit of the model is related

susceptibility is a feature of the continuous limit.

Example 4.2. Second, instead of looking at rooted triangulations, we consider rooted
quadrangulations: Mgy(n) = Qf(n), where n is still the number of vertices, whose fu-

gacity is set to t2. Again, the generating function of rooted quadrangulations of genus

Z Z 7)71 (4.5)

n=0meQy n)

g 1s gien by:

which has the singular behaviour when t< reaches the critical value t2 = %
[Eynard, 2016):



where ﬁg is independent of t<, and is actually equal to FgT. Again, the string suscep-

tibility is v; = 59 L

Example 4.3. Last, let us consider the set of rooted quadrangulations whose faces
are decorated with spins. + spins correspond to red-colored quadrangles, and — spins
to black quadrangles. We call I;(n) the set of colored and rooted quadrangulations of

genus g with n vertices. The fugacities of the local objects are chosen to be:
o vertex: % ;

e cdge separating two red faces, or two black faces: 14—5 ;

L
15"

e edge separating a red face and a black face:
We see that the energy associated to a bi-colored edge (separating two faces of different
colors), is greater than the energy associated to mono-colored edge. Therefore, the
configurations where there are few interfaces between red and black faces are more
likely to appear than the others. So we see in this example that for a given map, all
the decorations do not have the same probability to appear, there is a coupling between
matter (the color on the faces) and gravity (the structure of the map). The generating

function of colored rooted quadrangulations of genus g is defined as:

-3 > Tt 7

One can show [Eynard, 2016] that for t* ~ £ = —%0 and g > 2, the generating function

18 singular and behaves like:

- tI %(1_9) . -
2-2
FT ~ (L——) ()2 L, (4.8)

I 41z 174

T ;e g 7 : T ; N o AL
f;uhelre F; is independent of t*, and differs from F . The string susceptibilty is v; =
g
=

From those examples, one sees that, for the enumeration of triangulations or quad-
rangulations (examples [4.1 and .D the generating functions F 7 and F, < show many
similarities at their critical points, although their critical points are dlfferent T and

12 respectively. Actually, the string susceptibilities are equal, and the critical generat-

1
T _ A9
{@"% (4.9)
)

ing functions also:
This means that in the continuous limit, many of the features of random triangulations

should be the same as the features of large random quadrangulations. If two models
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show such similar features, such as common critical exponents, are said to sit in the
same universality class, and their continuous limit shall be the same theory. The
intuitive idea behind universality is that, if, in their definition, two models of random
maps differ by features which seem to be details (irrelevant), those details should not
be important in the continuous limit. For the previous examples, the fact that one
looks at random maps with faces of degree 3 or 4 should not have a great influence
on the continuous limit. On the contrary, some features of a model (decorations or
constraints) may be crucial, as they can have an influence on the structures of the
maps more likely to appear, so there is not only one universality class for random
maps. For instance, the case of example (which is the Ising model on random
quadrangulations), shows very different behaviour at the critical point, whether it be
for the value of the string susceptibility or the form of the function F gI . This means
that the continuous limit of this model is different from the continuous limit of the
two others. In the Ising model, some colored configurations have a greater weight than
others, and there is an interplay between the map structure and the decorations. Thus,
in the continuous limit, the colored map shall mimic the interaction between a matter
field and the metric (i.e. gravity), which is different from mimicking purely gravity.
The model Z} stands therefore in another universality class than 7 and Q3.

In chapters and [[V], we define models that we show to be in the universality class
of 2d pure gravity, so in the continuous limit, they are supposed to converge to the
same theory. The interest of looking at different models for a same continuous limit,
is that the computation of expectation values of some observables is more convenient

for certain models.

5 Formal matrix models

In many models of random maps, an instance of a map and its associated weight can be
interpreted as a Feynman diagram and its amplitude of a zero-dimensional field theory
of formal matrices. It is the case of Strebel graphs (in chapter , and of the Ising
model (in chapter . We briefly describe here the relation between formal matrix
models and random maps. This relation was noticed by ’t Hooft [t Hooft, 1974],
and first used for the study of 2d quantum gravity by Brézin-Itzykson-Parisi-Zuber
[Brézin et al., 1978]. The formalism of matrix models is powerful for finding equations
satisfied by the generating functions (the loop equations), and very helpful to solve the
enumeration of random maps and the computation of certain expectation values. This
presentation is inspired by |[Eynard, 2016] and [Di Francesco et al., 1995]. We restrain

it to random Hermitian matrices, although other ensembles of matrices can be used.
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5.1 Feynman graphs of matrix integrals

Let us consider the set Hy of Hermitian matrices of size N, and the Lebesgue measure

on Hy:

N
dM =[JdMi; ] dM;dbs;. (5.1)

i=1 1<i<j<N

We note Z, the Gaussian integral over Hy:

N2
Zy = /H dMe= 3 TM? — oF (%) . (5.2)
N

The “0” subscript stands for the fact that, as we will see in next subsection, this
quantity corresponds to the partition function of a matrix model without potential.

The expectation value of an observable O(M) is defined by:

(O(M)), — Zio O(M)dMe 5T M. (5.3)

A fundamental piece of matrix models is the propagator:

(M M), = N(Sﬂéjk. (5.4)
Let vy,...,v, > 1 be n integers. Then, the following Gaussian integral has a diagram-
matic interpretation:
n 4 n 5
HNTI'M _ i dMHNTrM e—%TrM2
i1 (% 0 2 Hy . (%
1 _N Ty 2
= A dM H Z M, j, M, s - ijiﬁ e"2 "M
0 Hy =1 .717 a]v,b—l

(5.5)

n
It is the correlation function of ) v; matrix elements. As it is a Gaussian integral, it
i=1

does not vanish only if zn: v; = 2k is even. The diagrammatic decomposition relies on
Wick’s theorem and eqh_;tion (.4 Wick’s theorem states that the expectation value
(with a Gaussian measure) of a product of 2k matrix elements is the sum over all
possible pairings of the propagators. A pairing of 2k elements is a fixed-point free
involution o € G,,. Such permutation can be written as a product of £ transpositions
with disjoint support o = (¢1,0(¢1)) ... (¢, 0(lx)). Wick’s theorem is summarized in

the following equation:

<Mi1,j1 t 221@7]% Z H < U Jlm, a(em)]a(em)> (56)

o pairings m=1
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Figure 12: Vertex of a ribbon graph. The weight is Uﬂ

For instance, Wick’s theorem applied to the observable N Tr M* gives:

<NTrM4> _
4 0

N
1 <MiijkMklMli>0

<
>

iMz

b

=1
N
Z (<Mz’ijk>0 (Mg M) + (M M) (M M),

wick IV
4
3,9,k =1
+ <sz li>o <MjkMkl>0)
N <« 1
qaf T Z 2 (OirOri + 00050k + 651015)
0,9,k 0=1
- 1(N2+N2+1)— 2+1 (5.7)
= 1 T2 Ty '

The diagrammatic representation of the expectation value [5.5[ works as follow:

e In the definition of the observable, to each trace N Trv—m, we associate a vertex
of degree v;, where each edge is fattened in order to carry 2 indices (that are the
indices of the matrices). Each line of the fattened edge carries an orientation,
and two lines are connected if their indices are equal and their orientations are
consistent. On a diagram, a vertex of degree v; carries a weight vﬂ This rule is

depicted in figure [12]

e For a given pairing o = ({1,0((1)) ... (¢, 0(¢x)), the integral [5.5]is the product of
propagators. In the diagram, the propagator (M;; M), = %51153'1@ forces the lines
having the indices 7, j to carry the same indices as the lines carrying respectively
the indices [, k. Diagrammatically, the edge 7,5 is connected to the edge [,k
consistently with their orientations, forming a propagator (see figure . The
weight associated to a propagator is %

e In the end, one obtains a non necessarily connected graph with fat edges com-
posed of 2 lines. Such graph is called a ribbon graph. All the lines are closed,

and if one properly embeds the ribbon graph on a Riemann surface, each closed
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Figure 13: Propagator of a ribbon graph. The weight is *&2=.

WA
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Figure 14: Example of a ribbon graph with 2 closed lines, one red and one black. In a
proper embedding (on a torus), this graph has 2 faces.

line corresponds to a face (see figure [14)). Each closed line carries a weight N (it

corresponds to the summation over the index associated to the line).

In the end, the expectation value of equation (5.5 is a sum over ribbon graphs with
n vertices. For a properly embedded ribbon graph G, note |V(G)|, |E(G)|, and |F(G)|
respectively the number of vertices, the number of fat edges and the number of closed
lines (faces) of G. The weight associated to G is:

w(G) = NVOIHE@HF@] 1

v;
i=1 ¢

(5.8)

For a connected ribbon graph, the power of N is the Euler characteristic x(G) of the
embedded graph G. Some ribbon graphs are equivalent as maps, as we can see in

example [5.1}

2
Example 5.1. Let us compute the expectation value <<NTrTMB> > with the dia-

grammatic rules. In total, there are 15 connected ribbon graphs in the sum, that we
can classify into three sets (see ﬁgures and. The first set comprises 9 graphs
of genus 0 which have the form of “handcuffs”, with 2 faces of length 1 and one face
of length 4. The dual of each graph of this set is the map my. In the second set, the
three graphs are also planar, with 3 faces of degree 2. The dual map corresponding to
those ribbon graphs is denoted mso. Last, in the third set, each of the three graphs has

genus 1, with only one face of degree 6. The dual map is called mg. The maps m; are
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depicted in figure . The weight of each ribbon graph of genus 0 is NTQ, and the weight

of each ribbon graph of genus 1 is N?O. In the end, we get:

NIV gV N
3 . 79 9 9

4 1

~N?+ -N° 5.9
gV +3 (5.9)
One can recover this formula by summing over the three maps my, ma, ms:
Tr M3\ ? N2 N? NO
3 . |[Aut(my)|  [Aut(msg)| = |Aut(ms)|
N%?2 N2 N©
= — 4+ —4 —. 5.10
1 + 3 + 3 ( )

Indeed, the group of automorphisms of my is trivial whereas those of mo and ms have

3 elements.

The sum over ribbon graphs can be reduced to a sum over maps (where the edges

are fattened):

Theorem 5.1. [Brézin et al., 1978] The expectation value [] N% can be com-
i=1 ‘
puted as a sum over (non necessarily connected) maps having n vertices of valencies

n g NIV |1 m) -+ Fm)|
N _ . 5.11
<ZI_I1 V; >0 Z |Aut(m)| ( )

m map

Vlyevny, Upl

This theorem shows the relation between Gaussian matrix integrals and maps. The
diagrammatic decomposition in theorem is exact in the sense that the integrals are
convergent and the sum over maps is finite. The connected expectation value restrains
the sum to connected maps:

n C
Ty Mvi NWV)—Em)|+|F(m)]|
H N = Z . (5.12)
, v; |Aut(m)]|
i=1 0 m map
connected

The dual of a ribbon graph is a map (see figure , so when one carries out the sums
over ribbon graphs, it is equivalent to carry out the sum over their duals. In the end,

we have that:

o Tr MY w(Q)
IR D
< i=1 i >0 G ribbon graph |AUt (G) |

Z NIV @) =[E(m)[+]F(m)]

mma; |‘Aut (m) ’ 7
p
dual of G

(5.13)
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Figure 15: Ribbon graphs of the first set. The weight of each graph is NTz.

()

Figure 16: Ribbon graphs of the second set. The weight of each graph is NTQ.

L ),

Figure 17: Ribbon graphs of the third set. The weight of each graph is NTO.
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mj

Figure 18: The maps my, ms, m3 corresponding to each set of ribbon graphs.
Each map is the gluing of two triangles.

39



Figure 19: The dual of a ribbon graph is a map.

where we have, for m = G*, |Aut(G)| = |Aut(m)| (the group of automorphisms of a
graph has the same cardinal as the group of automorphisms of its dual), and w(G) =
NY@IHEGOHFAO]N = NFm)=IEmIFVmI = (m) (the vertices, edges and faces of a
graph correspond respectively to the faces, edges and vertices of its dual). We shall
privilege this way of writing the expectation values, and in the following, when a sum

over maps is written, the sum runs implicitly over the duals of ribbon graphs.

5.2 Formal matrix models

In the following, we interpret random maps models in terms of formal matrix models.
We begin with generic one-matrix models, and extend to the case of 2-matrix models,
as it is used in chapter [V1]

One matrix model Define the following potential:

V(M) =—- - zd:tjM—.j, (5.14)

=/

then the partition function of the formal matrix model associated to this potential is
the formal integral:

Z= dMe=NTr VD), (5.15)

formal
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It has to be understood as a formal series in t3,...,ts: Z € QI[[t3,...,t4]], where each
coefficient is a sum of Gaussian integrals over Hy. The series is not convergent, and

the study of formal matrix models is different from the study of convergent matrix

00 1 d n Mkl
Z(ty, ... ta, N) = jﬁ > 20<HNt,% - > . (5.16)
. 7 0

n=0 " ki,...kn=3

models.

By using the theorem of the previous section, the partition function can be written
as a formal series over (non necessarily connected) ribbon with vertices of degrees
3,...,d. It corresponds to a formal series over non connected maps with faces of

degrees between 3 and d. For a map m, we note n;(m) the number of faces of degree i

n m.
NIV =€)+ F(m)|
Z(ty, ...t N) = Z, gpstm) - gralm)
m%a:ps |Aut(m)|
~w(m)
= Z NX(m 5.17
Om%a:ps |Aut m)|’ (5.17)

By this formula, we see that the partition function of a formal matrix model is a sum
over maps m, each one carrying a weight w(m). This weight is a product of fugacities.
The power of N (the size of the matrices) accounts for the topology of the map through
the Euler characteristic of the map. The fugacity associated to a face of degree k is ty.
We then have a model of random maps with faces constrained to have degrees 3, ..., d.
Therefore, the partition function of this formal matrix model is the partition function
that enumerates not connected maps. The partition function of connected maps is the

free energy of the model and is given by the logarithm of Z ; it is denoted F"

F(tl,...,td,N) = lOgZ(th...,td,N)

w(m)(t,...,tq
— > N (| /i(ut(m” ). (5.18)

m connected map
F' is a formal series in ¢;. Since the maps are connected, the Euler characteristic of a
map x(m) is simply expressed in terms of its genus: x(m) = 2 — 2¢g. If one views the
free energy also as a formal series in N, then the coefficient F, of N2~ is a formal

series in ty,...,t4, and it is the partition function of connected maps of genus g:

F(t,..taN) = S N*F,(ty,... 1)

o\ 2-2¢ w(m)(ty, ..., ta)
N ;N 2 Aut(m)] (5.19)

meMy

where the set of maps M, is restrained to the connected maps of genus g, of generic

size, and with faces of valencies 3,...,d. When the size N of the matrices tends to
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infinity, only the leading order term in N?, which is the partition function of planar
maps, survives.

The observables of interest for formal matrix models are

¢
H Tr MF:,
i=1

The expectation value of such observable is a formal series in the fugacities tq, ..., 14,

and it is defined by the following formula:

<HTer> Z dMe NIV M HTer (5.20)

formal

It is worth noticing that both the numerator and the denominator are formal series.
Translating this expectation value as a sum over maps, it is the partition function
of connected maps having ¢ boundary faces of lengths ki, ..., k,. The non-connected
maps are canceled out by the term % The distinguished faces do not have fugacities,
and can have lengths greater than d (the maximum length of the faces of the interior

of the map).
¢
<H Tr M’“i> = ) N*¥u(m). (5.21)
=1 mGMg’k

(The automorphism group of a map with boundaries is trivial, so [Aut(m)| = 1).

Two-matrix model A slight extension of the one-matrix model is the two-matrix
model, first introduced by Kazakov [Kazakov, 1986] to study the Ising model on random

maps. Let us look at two Hermitian matrices M; and M,, and the potentials:

2 i
Vi(My) = tz% - gtzﬂ?
v 5.22
I (522
Vo(My) = ta=% — > ti—
=3

The partition function of the formal 2-matrix model we look at in chapter [VI] is:

Zg(tg, PN ,tdl; 2?2, SN ,EdQ) = / G_NTr (Vl(M1)+V2(M2)_CM1M2)dM1dM2. (523)

formal
Again, this partition function has to be understood as a formal series in
t3,...,tq,,t3,...,tq,. In the same manner as for the one matrix model, this parti-
tion function can be interpreted as a sum over ribbon graphs, or, looking at the dual,
a sum over random maps. Let us first focus on the ribbon graph interpretation. When

looking at a coefficient of the formal series, the typical integral to compute is:

4 ki n k; M2~ M2
Te MF L T MY v (122452 _oar o,
/ [Ttr—[[5—2c (150 )dMlsz. (5.24)
I‘I]\]XI’INZ 1 k

. J
g j=1 kj
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Figure 20: The propagators of the bi-colored ribbon graphs. The weight of a red (resp.

black) propagator is % QéQ_CQ (resp. % t2£;2_62). The weight of mixed propagators is
1
Ntzfgc—cz'

Figure 21: The vertices of the bi-colored ribbon graphs. The weight of a red (resp.

black) vertex of degree k; (resp. k;) is N * (resp. N tki)

Applying Wick’s theorem, this integral can be written as a sum over pairings of matrix
coefficients. The crossed term cM; Ms in the Gaussian integral allows to pair coeflicients
of the matrix M; with coefficients of the matrix M,. Each pairing corresponds to a
bi-colored ribbon graph G, and given a ribbon graph G appearing in the sum, one

computes its weight with the following rules:

o A fat edge of G is red when it carries the indices of the matrix M, it is black
when it carries the indices of matrix M,. Three types of propagators are allowed
in the ribbon graph. The two first types are mono-colored propagators, which
connect red (resp. black) fat edges to red (resp black) fat edges. A red (resp.)

propagator has weight L —2 >— (resp. % =). The third type is mixed prop—

N tato t2 t
agators, which connect red fat edges to black fat edges with a weight -+

Nty t2 —c2’
Figure [20] summarizes those weights.

e There are red and black vertices ; red vertices have valencies kq, ..., k,, and black

vertices have degrees k1,..., kn. A red vertex of degree k; has weight N tki, a black
vertex of degree k; has weight NV tkﬁ, see figure .

e The lines of G are closed, but can change color. Each closed lines contributes to
the weight of G with a factor N.

The weight of G is the product of the weights associated to the propagators, the

vertices, and the closed lines. If one notes n,,.(G), nw(G) and n,,(G) respectively the
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Figure 22: The dual of a bi-colored ribbon graph is a bi-colored map.

number of red, black, and mixed propagators of GG, the integral [5.24] can be written
as the following sum over non connected ribbon graphs with ¢ red vertices of degree
k1, ..., ke, and n black vertices of degree /{;1, e kn:

2 a2 14 noq.
/ e—N Tr (tg%-‘rtg?—chMg) dMl dM2 H tk’L H {ﬁ
HNXHN k’L

i=1 j=1"J
g nrr(G) npp(G) np (G
Z NX(G) 1 ~t2 N ts 06 (G) c v(G) (5.25)
G ribbon graph [Aut(G)| \taty — 2 toty — C? toty — tots — 2

Equivalently, this sum can be written as a sum over maps, by considering the dual
of the bi-colored ribbon graphs (see figure . We obtain a sum over non connected

maps which have ¢ red faces of degree ki, . .., k, and n black faces of degree ki, . .., k.

The weight associated to a red (resp. black) face of degree k; (resp. black) is N * By

(resp. N tk ). The weight of an edge separating two red (resp. black) faces is 3 ttQ_CQ

(resp. Nhé—{cQ) The weight of an edge separating a red face and a black face is
%%%62 Last, a vertex contributes a factor N to the weight of the map. We note
nyr(m), npp(m) and n,,(m) respectively the number of red, black, and mixed edges of

the non connected map m. Then the integral is worth:

—NTr (tzM?%+sz722—cM1M2) 17 -
(/HNXHNe dM, dM H k; H

i=1 ¢ =1 "J

~
ES

J

wz|

44



Z Nx(m) 1 52 ’I’er(m) t2 nbb(m) c TLTb(TTLES 26)
|Aut(m)| \ taty — 2 toty — 2 toty — 2 '

m non connected
map

The partition function Z, enumerates non connected bi-colored and weighted maps
with red faces of degrees between 3 and d;, and black faces of degrees between 3 and

ds. The partition function of connected bi-colored maps is the following formal series:

F(tg,...,tdl;gg,...,£d2) = 10g22(t2,...,tdl;fg,...,lih)
- ZNQ_QgFg(tz,...,tdl;t~2,...,t~d2), (5.27)

Where the Fy’s are the partition functions of connected bi-colored maps of genus g.

The observables that one computes in the Ising model have the form:
O(M,, My) = H Tv ME H Tr MY H Tv (MFet pgfer | pfPeto prfate)  (5.08)

whose expectation value is the formal series:

1
(O(My, My)) = — / O(My, My)e™N T Vi)+Va(Ma)=eMiM2) g d M. (5.29)
formal

It enumerates connected (thanks to the denominator Z5) bi-colored maps of any genus,

with ¢ red boundaries of lengths k1, ..., ks, n black boundaries of lengths ki, ...k,
and p mixed boundaries. The mixed boundary « is a boundary of length Z koi+ INcaﬂ;,
i=1

which has k.1 consecutive red edges, followed by k, 2 consecutive black edges, and so
on.
Example 5.2. The map showed in figure 23| has 3 boundaries:

e boundary 1 has length 8 and is uniformly red ;

e boundary 2 has length 9 and is uniformly black ;

e boundary 3 has length 11, with an alternating pattern of colors, there are 3

changes of colors.
This map appears in the moment

(Te(MY)Tr(My)Tr (M7 My My My M{ My)),
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Figure 23: Example of a map with 3 boundaries.

5.3 Reduction of the integrals, orthogonal polynomials and
loop equations

The matrix models allow to study a large range of random maps models. Although it
is not the way we are tackling our models in this thesis, we use repeatedly results that
come from formal matrix methods, especially in chapters [V] and [VI[ We expose here
some techniques that allows to get the results that we use later, in the optics of clarity

of this manuscript.

Separation between radial and angular parts of matrix integrals The first
simplification of the matrix integrals is to separate it into integral over angular part and
radial part. In the formal matrix models introduced above, the matrices are Hermitian.

This entails that they are diagonalizable:
VM € Hy, 3U € U(N), Ay,..., Ay €R s.t. M = UAU", (5.30)

where A = Diag(Aq,...,Ax). The matrix U is called the angular part of M, and the
matrix A, which consists of the eigenvalues of M, is its radial part. The diagonalization

property means that the map:

UN)xRY — Hy
(U,A) — UAU! (5.31)

is surjective. Carrying out the change of variable M = UAU' in the matrix integrals

of the one-matrix models, we get:
/ dM f(M) = CN/ d\; ... dANN(A)/ DU f(UAUY), (5.32)
Hy RN U(N)

where:
e f(M) is a function of M

e ('y is a coefficient independent of U and A
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e DU is the Haar measure — that is, invariant under the group structure — on
U(N)/UL)Y
e AN = I (A\j—X\)= det (M7 isthe Vandermonde determinant of the

1<i<j<N 1<i,5<N
eigenvalues \;.
This formula is a change of variable, and CyA?()) is the Jacobian of the reparametriza-

tion. If one applies this formula to the one-matrix model, it yields:

z fomal o / dAy .. dANAZ(N) / DU ¢ N VUAUT
RN U

ezl Oy / dAr .. dANAP(N) / DU e N TUVIOT
RN U(N

N
omal o0 Vol(U (V) / A*(\) [T drie VTV (5.33)

Thanks to the cyclicity of the trace Tr (ABC) = Tr (CAB), the one-matrix model
is reduced to a N-dimensional integral over the radial part, since the angular part is
traced out. The constant C'yVol(U (V) is irrelevant for the computation of expectation
values. The equalities above make sense as formal series, hence the term “formal” over
the equality signs. The same simplification occurs for expectation values of observables

implying traces of M, and one gets:

N
f]RN ) H e~ NTr V(\i)
(O(M)) Pz = . (5.34)
fRN H d)\; e~ NTrV(x)
In the case of 2-matrix models, the matrices M; and M, are diagonalizable:
M, = U, XU
L (5.35)
My = UYU,.

Yet, since they do not commute (in general), the angular part of the integrals cannot

be carried out so simply because of the crossed term Tr cM; Ms:

Tr MM, = c¢TrUXUU,YU]
= T (UL XUIU,Y. (5.36)

This entails that the partition function of the 2-matrix model takes this form:

N N
Z, formal / AQ(X>A2<Y> H dz; e~ N Tr Vi(z:) H dyj e~ N Tr Va(y;) DU N T UXUty
RN xRN 1 i—1 U(N)

fognal /RN . AX dY AQ(X)A2(Y>€—NTr (Vi(X)+V2(Y)) / DU €CNTr UXUTY. (537)
X

This transformation of the 2-matrix model is used in chapter [VI|
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Orthogonal polynomials Rewriting the one-matrix model as an integral over the
eigenvalues of the Hermitian matrices opens the way for the technique of orthogonal
polynomials. This technique is not applied in this thesis, but its consequences are, in
the case of the continuous limit of planar Strebel graphs in chapter [V} The technique

of orthogonal polynomials relies on the fact that, since A(\) = 1<de£ N)\{ ~!if one takes
L)

any family (7;);>0 of monic polynomials, that is:
m:(\) = A" + lower degree terms,
then the following identity holds:

A = det mj_1(\). (5.38)

1<ij<N

From this identity and equation |5.33] one gets easily the determinantal formula for the

partition function:

2 °2 Oy Vol(U(N)) det V dAmia (N (Ne M (5.39)
R

1<ij<N

For a fixed N, we construct the monic polynomial family (py n)k>0, such that they are

pairwise orthogonal with respect to the following scalar product:

(o = [ dxfONge 1. (5.40)
R
In other terms, we can write:

<pi,N‘pj,N>N = hz’,N%', (5-41>
and the partition function simplifies:

= formal CyVol(U(N))  det <pi,N’pj,N>N

0<ij<N—1
N-1
ez CnVol(U(N) T hi-
i=0
(5.42)
From the orthogonal polynomials p; xy we define the functions 9y n:

YN (A) = p—k’N()\)efgv(A)y
b, N

which are orthonormal for the scalar product (f|g) = [ dAf(X)g(N):

(Ve N|r N) = Op -

48



Those orthonormal functions will appear indirectly in chapter [V] in the study of the
continuous limit of Strebel graphs, via two operators Q = x, P = % acting on them.

They act on the basis of orthonormal functions in this way:

o N(x) = Q%LWHLN(I) + Q%)ww(w) + Q;(C{\,?_ﬂbk—LN(I)
ktd-1 (5.43)
N
e (@) = 30 P (@)
j=
where d is the degree of the potential V. Although the operators ), P do not depend
on the size N of the matrices, their coefficients in the basis (¢ ) do, because the
orthonormal functions depend on N. The operators P and () satisfy the so-called
string equation:

[P, Q] =1d. (5.44)

We will encounter this equation in the continuous limit of Strebel graphs. The contin-
uous limit of a matrix model can be studied with the formalism of orthogonal poly-
nomials, by taking the double scaling limit, which consists in letting N tend towards
infinity while the parameters ¢; of the potential tend to their critical value ¢{ with a

rate depending on V:

N —
< (5.45)
t; — ¢ = Nog,.
In this double scaling limit, we transform the family (¢ n(x))r>0 into the function
of two variables u(s,z), with s = % The operators P and () are then differential

operators in the variable s. Tuning the parameters of the matrix model in a specific
way, we reach the so-called (3,2) minimal model, described in chapter and the

operators take the form:

Q = 0% — 2up(s, N) (5.46)
P =02 —3vi(s, N)Js + va(s, N). '

Those equations will be discussed later in the continuous limit of Strebel graphs.

49



Part 111

Local properties of the random
Delaunay triangulation model and
topological models of 2D gravity

We stressed in the introductory part (see section , that there are several ways to
study the continuous limit of maps, and our approach is to study the convergence of
random maps as probabilistic spaces. For a given model of random maps and at the
discrete level, i.e. for a given size of maps, the probabilistic space is constructed by
putting a measure on the set of maps of given size. Then, a natural way to study the
probabilistic space constructed on random maps is to study the measure. This is the
aspect addressed in this part.

In order to do so, we introduce the model of Delaunay triangulations and the as-
sociated measure. This model has already been studied by David and Eynard
[David and Eynard, 2014] and we recall some of their results that we shall use in the
following. The results of this part are of two kinds. The first result relates the measure
over Delaunay triangulations with the Weil-Petersson measure on the moduli space
of punctured Riemann surfaces. The notion of moduli space is briefly reviewed to fit
our purposes. This result allows to relate our combinatorial problem to a well studied
problem of geometry. The second kind of results concerns more local properties of the
measure, as preliminary steps to study the continuous limit of the measure. The results

of this chapter are based on the article [II].

6 Delaunay triangulations

6.1 Circle patterns and Delaunay triangulations

Triangulations of the sphere are planar maps such that every face has degree 3. We
restrict the set of triangulations to maps which do not contain any self loop or double
edges (two edges joining the same vertices). For instance, the situation of figure [24]is
forbidden. Let us call 7,, this restriction of the set of triangulations of the sphere with
n vertices. In this chapter, the size of a triangulation is the number of vertices. For
T € T,, let us note V(T'), E(T) and F(T') respectively the sets of vertices, edges and
faces of T. T is planar, so the Euler relation gives |V(T)| — |E(T)| + |F(T)| = 2. As
T is a triangulation, we also know that |F(7")| = 2|E(T")|. Then the sizes of those sets
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Figure 24: Part of a triangulation: all the faces are triangles (the dotted and dashed
edges are taken into account). The green dashed edge is a self loop: the ends of the
edge is a single vertex. The red dotted edges are double edges: they are adjacent to
the same vertices.

| V(T)| = n
IE(T)| = 3n — 6 (6.1)
|F(T)| = 2n — 4.

A triangulation T € 7T, is an abstract triangulation, in the sense that it contains only
information on the structure of the triangulation — the adjacency relations between
vertices, the order of the half-edges —, and not on the embedding in the Riemann
sphere S; = CU{oo} = C - that is to say the way to represent the map on the sphere.
For a given triangulation, there are infinitely many ways to embed it in the sphere.
In this chapter, two equivalent approaches are employed to describe the problem of
Delaunay triangulations. The first one starts from an abstract triangulation, and by
solving a circle pattern problem, embed it in the Riemann sphere. The second one
takes a configuration of points as a support for drawing triangulations, and consists in

finding a Delaunay triangulation.

6.1.1 Circle patterns

The circle packing problem, solved by Koebe [Koebe, 1936], is the following: let T' €
T., is there a way to embed T in a complex domain, such that to each vertex v €
V(T is associated a circle %, centered at v, tangent to all the neighboring circles %,
with v adjacent to v, and intersecting no other circle ? By Koebe-Andreev-Thurston
theorem [Koebe, 1936], it is possible. Circle pattern problems are extensions of circle

packing. In the one considered here, and solved by Rivin [Rivin, 1994], the circles
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¢y are circumcircles of the faces f — that are triangles. Then, we endow each edge
e € £(T) with an angle 6(e) € R, where 6 : £(T) — R. Let us note T = (T,6), and
call the set 8 = 6(e);e € E(T) the angle pattern. The problem is the following: is it
possible to find an embedding of the triangulation, such that

e the interior of the circle € of a face does not contain any vertex of the triangu-

lation ;

e the circles €7, €y of two adjacent faces separated by an edge e, intersect with
an angle m — 6(e) 7

By Rivin’s theorem [Rivin, 1994], the embedding exists and is unique up to Mobius
transformations for admissible flat Euclidean triangulations. The proof relies on the
minimization of a functional. We present this theorem hereafter. First, let us define

the set of admissible flat Euclidean triangulations:

Definition 6.1. An Euclidean triangulation T = (T,0) is a triangulation T plus an

associated edge angle pattern @, such that
0<fe)<m. (6.2)

An Euclidean triangulation is flat if for each vertex v € V(T'), the sum of the angles
of the adjacent edges satisfy

> 0(e) =2n (6.3)

e—v
A flat Euclidean triangulation is admissible if for any closed oriented contour C* on
the dual graph T* of the triangulation T', the sum of the angles associated to the edges
e dual (orthogonal) to the edges e* of C* satisfy

> 0(e) > 27 (6.4)

elC*

The set of admissible flat Euclidean triangulations of size n is denoted by 7N;f.

Those conditions are represented in figure 25 The flatness condition is not required
for Rivin theorem, but it is the framework we use to study Delaunay triangulations.
Allowing different sums around a vertex in equation , that is >

alent to embed a triangulation on a sphere having conical singularities located at the

esy = Dy, 18 equiv-

vertices. This generalization will be discussed in the end of chapter [V] For the mo-
ment, we shall require equation to hold. For a triangulation T = (T, 0) € ﬁf , we
can distinguish the structure 7 € 7, of T, and the angular part 6. For a given size

n, there are finitely many structures of triangulations. Yet, for a given T, there are
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Figure 25: Part of a triangulation (plain lines), along with its dual graph (dashed
lines). On the left hand side, the condition of equation is shown. The contour C*
of the dual graph is in red thick dashed lines. The sum runs over the red plain edges
that cross the contour. On the right hand side, the condition [6.3] concerns the sum
over the blue plain edges around the vertex v.

infinitely many angle patterns which match equations [6.2] and [6.4] Let us call
THTy) = {T € T, T = (Tp, )} the cell associated to the structure 7. Then the set
ﬁf can be decomposed in cells, indexed by the structure of the triangulations:

Tf _ T7f
7= U T (6.5)

Let us compute the dimension of each cell. For T' € T € T,,(T), there are |£(T)| = 3n—6
real angles f(e) and [V(T')| = n constraints, so there are 2n — 6 free real angles.
Therefore, dimg(7/(T)) = 2n — 6.

The theorem of Rivin allows to solve the circle pattern problem:

Theorem 6.1. [Rivin, 199j] There exist a unique embedding, up to Mdbius transfor-
mations, of an admissible flat Euclidean triangulation T in the compactified complex
plane C, such that the circumcircles of adjacent faces f, f' separated by the edge e
intersect with angle 0*(e) = m—6(e), and such that the interior of any circumcircle €y

does not contain any vertez.

Mobius transformations are the automorphisms of the Riemann sphere, they cor-
respond to transformations:

o az+0b

cz+d

We identify (a,b,c,d) with (—a, —b, —c,—d). A Mobius transformation is equivalent

to the data of the matrix

a,b,c,d € C, ad —bc=1 (6.6)

m— (Z Z) . me PSLy(C), (6.7)
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so the group of Mobius transformations is identified with P.SLy(C).
In figure 26, the angles 6(e), 0*(e) associated to the edge e are shown in the embedding

Figure 26: The triangles f and f’, the circumcircles C and C" and angles 6 and ¢/ = 7—60
associated to an edge e = (v, v3) of a Delaunay triangulation. Here, R and R’ are the
radii of C and C’ respectively.

corresponding to the circle pattern.
Some care must be given to the notion of interior of a circle here. Indeed, in the
Riemann sphere C U {oo}, the point at infinity is included. There are then two cases

for the embedding chosen:
e cither there is a vertex at infinity ;
e or oo belongs to a face of the triangulation.

It is always possible, by a Mobius transform, to be in the second case. Let us call fu
the face which contains co. Let us say that it is the face of the vertices vy, v9, v3. If one
draws the circumcircle of f., then the interior is the domain of C containing co. This
means that all the vertices must be located in the disc defined by the circumcircle. The
situation is depicted in figure 27

A triangulation embedded in the compactified complex plane such that no vertex

is located in the interior of any circumcircle is called a Delaunay triangulation. Such
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Figure 27: If the point at infinity is in the face (21, 22, 23), the interior of the circumcircle
associated to this face (green dashed line), is the region shown in green.

Figure 28: Two examples of Delaunay triangulations of size 6. In the first case, a point
of the triangulation is at infinity, and is linked to four points by red edges. In the second
case, the point at infinity is inside a face. The dashed circles are the circumcircles of
the faces. No vertex belongs to the interior of a circumcircle.

triangulations are shown in figure [28| (the two cases for the point at infinity are repre-
sented).

As it was mentioned previously, the proof of Rivin theorem relies on a variational
principle. We excluded self loops in triangulations, so every edge e separates two dis-
tinct faces fi, fo, so we may write e = (fi, f2). For what follows, the ordering induced
by the labels does not matter. Let us consider any embeddding — which does not match
the conditions for the circle pattern problem a priori — of the triangulation T' € ﬁf (7).
This embedding is the data of the positions z = {z1,...,2,} of the vertices of the
triangulation in the complex plane. For such a configuration of points, the radius of
the circumcircle of face f is denoted by r¢. Then, the functional used by Bobenko and

Springborn associates an energy to the embedding by the formula:

S(T.0z) = % (ImLip (226%9) + ImLiy (226%9)) — (r — 0(e)) In(ry,rp)
e=(f1,f2)€E(T) ( < fa ) < £ ) fil fe )

%)
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+2r > In(ry). (6.8)
fer(T)

The function Li, is the dilogarithm, see appendix [A]for the definition. The fact that the
order of the indices for the faces is irrelevant, is manifest in the formula. Bobenko and
Springborn [Bobenko and Springborn, 2004] showed that the configurations of points
z1, ..., 2, which solve the circle pattern problem exposed above are the minima of this
functional. This formula shows that circle patterns minimize an energy involving the

dilogarithm, a feature that we shall recognize later in this chapter.

6.1.2 Delaunay triangulations

The second equivalent approach consists in stating the problem in the reverse manner.
Let us take n > 3 distinct points zi,...,2, € C. By a Mobius transform, we can
fix (z1,22,23) = (0,1,00). The problem is then the following: is there a Delaunay
triangulation TP whose vertices are {z1,...,2,} ? Indeed, for a generic triangulation
T having z,..., 2, as vertices, there are vertices located inside the interior of some
circumcircle, so it is not a Delaunay triangulation. However, it is always possible to
construct a Delaunay triangulation out of a configuration of points on the Riemann
sphere. There exist several algorithms to build the Delaunay triangulation of a
configuration of points. As we will use one of these algorithms in this chapter, we
describe it here, and it relies on the Lawson flip algorithm (LFA). The Delaunay
algorithm is taken from [Brévilliers, 2008], and the Lawson flip algorithm was first
described by Lawson [Lawson, 1972].

Initialization: first, draw the convex hull of the points 0,1, 24, ..., z,,. Draw an edge
between all the vertices belonging to the convex hull and the point at infinity. Then,
draw a planar triangulation of the points 0,1, 24, ..., 2,, such that the edges of the
convex hull are edges of the triangulation (see figure . We obtain a triangulation
Ty of the points 0,1, 00, 24, .. ., z,, which is not a Delaunay triangulation in general.
Consider an edge e € £(Tp), which links the vertices v, w. It separates two faces ff, fs.
The faces ff, ff are the triangles (v, w,x;) and (v, w,x2) respectively. One can draw
the circumcircles Ge, €e of those faces. Then, the edge e is said illegal if z; is in the
interior of €, and x, is in the interior of €. In the triangulation Ty, identify all the
illegal edges. By construction, the edges adjacent to oo, and the edges of the convex
hull are not illegal. If there is no illegal edge, then T} is a Delaunay triangulation.
Else, let us note ey, ..., e, those illegal edges.

Steps of the algorithm: from the triangulation 7j, we construct successively the
triangulations T, ...,T, = TP. The step T; — Tj;; is described. Choose an illegal
edge e; = (b',c') € E(T;), separating the faces (a’, %, ¢') and (d', b, c?). Then, perform
the Lawson flip for this edge (see figure 30). It transforms the edge ¢; = (', ¢) into
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Figure 29: We begin with a configuration of 11 points (one is at co) in the plane (top
left corner). We draw the convex hull of the points, and link the outer points to co
(red lines in the top right corner). Then, we draw a generic triangulation in the convex
hull. The illegal edges are identified in blue (bottom left corner). In the end, the graph
is a Delaunay triangulation (bottom right corner).

ei(a',d"), which is not illegal anymore. The triangulation T}, is the triangulation
obtained after the flip (see [Brévilliers, 2008]).

Final step: in the end, one obtains a triangulation 7} which does not contain any
illegal edge, and this triangulation is precisely the Delaunay triangulation T of the

points 0, 1,00, 24, . . ., 2.

Once this Delaunay triangulation TP is constructed, the angle 6*(e) = 7 — 60(e)
associated to the edge e € £(TP) is the angle of intersection of the circumcircles of
the adjacent faces (see figure . For a generic configuration of points, the Delaunay
triangulation is unique. Yet, if four vertices a, b, ¢, d of the triangulation are cocyclic,

there are two choices to define the Delaunay triangulation (see figure . In this special
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Figure 30: Effect of a flip at one step of the Lawson Flip Algorithm. The illegal edge
is flipped.

case, the angle (e) associated to the internal edge is null. This situation is specific, so
for the following reasoning, let us consider a generic set of points such that the Delaunay
triangulation is unique. A configuration of distinct points z = {0,1,00, 24,...,2,}
determines a single Delaunay triangulation T”(z), from which we deduce an angle
pattern 0(z). Therefore, we started with an embedding, that is to say the points z,
and we ended with a triangulation 7" (z) along with an angle pattern 8(z). It is easy to
check that this angle pattern satisfies conditions[6.2] [6.3and [6.4] So we considered here
the reverse problem of previous section. The free parameters in this approach are the
positions of the points zy, ..., z,. So there are 2(n — 3) = 2n — 6 free real parameters.
It corresponds to the dimension of a cell dimg (7 (7)) in the other approach, so it is
consistent.

For n > 3, let us call ®,, = {{0,1,00, 24, ..., 2,} € C"|z; # z;fori # j} C C" 2 the set

of Delaunay triangulations of the plane. In the end, there is a bijection:

T! & D

n

When we refer to Delaunay triangulations, we equivalently consider elements of ﬁf or
D

A Delaunay triangulation is dual to a Voronoi tessellation: given T' € 7N;Lf , whose embed-
ding in the Riemann sphere has vertices at zy, ..., 2,. The centers of the circumcircles
of the faces are noted ci, . . ., can_s. Then, the dual graph T* of the Delaunay triangu-
lation, drawn with straight lines between the vertices ¢;, is the Voronoi tessellation of

the points zq,..., 2,.
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Figure 31: If 4 points of the triangulation are cocyclic (here vy, vq, v3, v4), there are
two choices for the Delaunay triangulation: if one flips the edge (v, v4) (left hand side)
into (vy,v3) (right hand side), the graph remains a Delaunay triangulation.

6.2 Metric associated to a Delaunay triangulation

In the view of quantum gravity, a triangulation of the sphere of size n and its embedding
represent an instance of a “discretized” metric. This discretized metric associated
to a triangulation can be defined in various ways, one is discussed here. The term
“discretized” used here does not mean that the metric must have discrete values on
the triangulation. It means that it is defined on a discretized surface (a triangulation
of size n), rendering the space of functions defined on this surface of finite dimension.
Let us take n > 3.

To any Delaunay triangulation T with n points on the complex plane, we can associate
an explicit surface S with constant negative curvature and n punctures as follows. Let
Hz = C x Rl be the upper half-space above C, with coordinates (z, h) embodied with
the Poincaré metric ds* = (dzdz + dh?)/h%. Tt makes Hj the 3-dimensional hyperbolic
space, with CU{oo} its asymptotic boundary at infinity. Consider a triangle fio3 with
vertices (1,2,3) (in counter clockwise order) with complex coordinates (z1, 22, 23) in C.
Let Bio3 be the hemisphere in Hj whose center is the center of the circumcircle of fi93
(in C), and which contains the points (1,2,3). Bja3, embodied with the restriction of
the Poincaré metric ds? of Hs, is isometric to the 2 dimensional hyperbolic disk Ho.
Let L5 be the intersection of Biy3 with the half plane orthogonal to C which contains
the points 1 and 2, this is a semicircle orthogonal to C. With a similar definition for
(23) and (31), the semicircles L2, Lo3 and L3 delimit a spherical triangle Sjo3 on the
hemisphere in Hs. The semicircles L5, Lo3 and L3; are geodesics in Hs, hence in Bjos,
so that Sia3 is an ideal triangle in Hy. Sjo3 is nothing but the face (123) of the ideal
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Figure 32: A triangle f = (1,2, 3) (left) and the associated ideal spherical triangle Sia3
in Hj (right).

tetraedra (21, 22, 23, 00) in Hs, see figure .

Now consider a Delaunay triangulation T in the plane, with n points, and with one
point at infinity for simplicity. The union of the ideal spherical triangles S; associated
to the faces f of T form surface S in Hj

s=J s (6.9)
)

feF(T

See figure |33 The surface S embodied with the restriction of the Poincaré metric of
Hs, is a constant negative curvature surface. Indeed since the triangles Sy are glued
along geodesics, no curvature is localized along the edges of these triangles. It is easy
to see that the endpoints z; of the triangulations are puncture curvature singularities
of S, i.e. points where the metric can be written (in local conformal coordinates with
the puncture at the origin)

dwdw

ds® =
[w|?|log(1/[w])[?

(6.10)

Through the orthogonal projection from S to the plane C, the metric in each Sy
become the standard Beltrami-Cayley-Klein hyperbolic metric in the triangle f. We
recall that it is defined in the unit disk Dy = {z; |z| < 1} in radial coordinates as

_dr®+1r2d0? (rdr)?

sz, = A= Ta—ee (6.11)

that it is not conformal, and is such that geodesics are straight lines in the disk. This
is an example of continuous metrics defined by a triangulation, which has singularities

at the vertices. It will be used to prove the link between the measure on the set
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Figure 33: A triangulation and the associated punctured surface

of Delaunay triangulations, and the Weil-Petersson volume form on a moduli space.
Having this natural metric allows also to define a natural distance on the dual of a

Delaunay triangulation. This is discussed in section [6.4]

6.3 Measure on the Delaunay triangulations

Each discretized metric of size n — associated to a triangulation of size n — has a
probability of apparition. Actually, the set of admissible flat Euclidean triangulations
of size n has dimension 2n — 6, so we must give a probability distribution to the set of
triangulations. This is the meaning of the measure dv we put on ’ﬁf . As there are two
approaches to describe the Delaunay triangulations, there are two equivalent measures

dv and dv on ﬁf and ®,, respectively, according to which approach we use.

Following the works of David and Eynard |[David and Eynard, 2014], the measure on

the set ﬁf is given by:

dv(T) = dvy (T, 6) = uniform(T) H do(e) H o( Z 6(e)—2m) H o Z 0(e)—2m)
) e

ec&(T) veV(T) e—v elC*
(6.12)
lifxz>0

where, ©O(z) = 0if 0 is the Heaviside function, and the notation e — v means
Irr<

that the sum runs over the edges adjacent to vertex v. It is the flat Lebesgue measure
on the admissible flat Euclidean triangulations. When expressed in terms of the con-

figurations of points in ®,,, this measure is not the Lebesgue measure on C"~3, but it
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rather writes:

n

dvo(T.0) = din(z) = Df;.u(2) [] &= (6.13)

vi gk

where D{Ti7 jxy(2) 1s the Jacobian to switch from the variables f(e) to the points z, of
the embedding. The Jacobian depends on the structure of the triangulation 7', hence
the superscript ; and it depends on which points are fixed by a Mobius transform.
Here, we consider that the points z;, z;, 2; are kept fixed, this is why the subscript is
{i,4,k}. N

The volume of 7,/ computed with the measure du,, is finite, as it is bounded by 72"~6 x
|7.|, where the number of triangulations |7, is finite, so the measure dv,, enables us
to endorse 7 with a probability distribution. Let us note V7 = S5 dvn (T, 0) the
volume of the set of admissible flat Euclidean triangulations of size n. The probability
distribution of a triangulation Ty = (Tp, 6) € 7N;Lf is given by d”;;—(g“.

Let us stress the fact that, for fixed n, the measure dv, (7T, 0) is e:dmissible. Indeed, for
a given triangulation, if one integrates the volume dv,, over the configurations of the

parameters 0(e), it is obvious that:
/ dv, (T, 0) < uniform(T") 7"~ °. (6.14)
T fixed

As the number of simple triangulations of size n is finite, the volume of Delaunay

triangulations measured with dv, is finite. Hence, the measure dv,, is admissible.

6.4 Study of the measure

This chapter is dedicated to the study of the measures dv,(7,0) = di,(z). Along
the computations we carry out, we may switch from one representation to another,
according to their convenience. The study carried out here has two sides. On the one
hand, we study the measure for n fixed, in order to relate it to a well-known formalism,
which is the Weil-Petersson measure on the moduli space Mom of Riemann surfaces.
This result allows to compute explicitly the volume of ﬁf , and correlation functions
of the Delaunay triangulations that depend only on the topology (and not on metric
properties). On the other hand, the study addresses the properties of the measures
when n changes. The ultimate goal is to study the continuous limit of the model, that
is to say the limit n — oo in one of the meanings given in the introduction. Since we
saw two mathematical meanings for the concept of “continuous limit”, let us briefly

discuss those meanings in order to defuse the possible confusion.
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Random metrics: One may first consider our model as a model of random Rieman-
nian metrics on the plane. Indeed, if one looks at a configuration of distinct points
{z1,...,2,} on the Riemann sphere and adds progressively points z,.1, Zpi2,..., We
have seen in section that at each step, one can embody each triangle of the De-
launay triangulation with its natural Beltrami hyperbolic metric. This will happen to
be a useful tool to prove the relation with Weil Petersson measure. It gives a global
metric which is hyperbolic but has puncture singularities at the points z; (see equation
. Since the punctures are at infinite distances, and the metric is not compact,
there is clearly no hope, even with an ad hoc rescaling of the metric, that the space of
triangulations equipped with the Beltrami metric has a limit in the Gromov-Hausdorff
sense when n — oo.

However, in order to have a chance of convergence and by analogy with the random
planar map model, one may rather consider random discrete metrics spaces constructed
from the random triangulations. Here is an eligible example of discrete metric space as-
sociated to a Delaunay triangulation and using the Beltrami metric defined previously.
Consider the random Voronoi graph 7™, dual to the random Delaunay triangulation 7',
whose vertices are the centers (with coordinates wy) of the circumcircles to the faces
(the triangles) f of the triangulation 7. An edge e* = (wy,wy) of T* is dual to an
edge of T, since it is the straight segment between the centers of two faces f and f’
adjacents to an edge € = (2y,, 2,,) of T' (with the notations of figure 26). This dual
edge e* is in fact a geodesic in the global hyperbolic Beltrami metric, with length

o1 (1 + sin(6,,))(1 + sin(6s))
Her) = glos ((1 s (0,1 smws))) (6.15)

where 6, = Arg((ws — 21)/(20, — #u,)) 1s the angle between the vectors (vy,vs) and
(v1, f) while 8, = Arg((2zy, — 20, )/Wp — 2,,)) is the angle between the vectors (vy, f')
and (vy,vy). This defines a distance function dp+ on the Voronoi graph T*, and this
mapping T* — dp- is continuous on the space of Delaunay triangulations with n
points, since it is continuons when one performs a flip. Indeed an edge e is flipped if
0(e) = 0,,+0s =0, hence when [(e*) = 0. The distance is defined between two vertices
wy,wy € V(T*) by the first passage percolation distance:

dr-(wi,wp) = min > 1(e"), (6.16)

v pathinT*
e*€&(7)

where the paths ~ join the vertices w; and wsy. Other natural choices of edge lengths
can be done for Delaunay triangulations. For instance, one can assign to an edge e*
the length:

l(e*) = 0(e), (6.17)
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defining this way another first passage percolation distance d’n.. The mapping 7™ —
dp~ is still continuous on the space of Delaunay triangulations with n points, since an
edge e is flipped when f(e) = ¢(e*) = 0. A natural conjecture, is that for those metric
spaces (for the distances dr« and d’..), the large n limit makes sense and is in the same
universality class as the random planar map model, namely that (7%, n~"/*dp.), consid-
ered as a random (discrete) metric space, converges in the Gromov-Hausdorff sense to-
wards the Brownian map as in LeGall [Le Gall, 2013] and Miermont [Miermont, 2013].
However, this is not the convergence we are tackling in this chapter. We mention those

natural discrete metrics for future developments.

Random (conformal) measures: Secondly, one may rather consider our model as
a model of random measures on the plane, to study the convergence as probability
space. This is the point of view developed in the introduction, that we use in this
work, and this is the one relevant when discussing the relation between the continuum
limit of our model, or of random maps, with the Liouville quantum gravity. Indeed, in
the Liouville theory the Liouville field ¢; defines by its exponential exp(y¢y) random
measures with fascinating multifractal properties linked to multiplicative chaos theory
(see for instance [David et al., 2015] and references therein), and conformal invariance.
It is for instance expected that the moments of the local density of points p(z)” are
related to the local vertex operators exp(a¢r(z)) in the Liouville theory.

For the rest of the chapter, we suppose that n > 3, so that the notion of De-
launay triangulation is well-defined, and so that the group of automorphisms of
(C;{z1,...,2,}) is finite.

6.5 Known results

The results presented in this chapter are a continuation of the work of David and
Eynard. They showed several properties of the measures dv,, dv,, that are useful in
the proof of our results. We present them in this section, all the following theorems are
from their article [David and Eynard, 2014]. The size of the triangulations is supposed
to be greater than 3. The first three results concern the measure dr,, that is to say the
Delaunay triangulations viewed from configurations of points, whereas the last result
deals with the angular form of the measure dv,,.

First, we define the hyperbolic volume of the face and the prepotential. Ar(z).

Definition 6.2. For a triangle f with (counter clockwise oriented) vertices (zq, 2p, 2c),

the hyperbolic volume Vol( f) in the hyperbolic upper half space H?® of the ideal tetraedron
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with vertices (zq, 2, 2, 00) on its boundary (see figure[33) is given by:

e Fal Arg (ZC - Zb) . (6.18)

Zp — Za Zy — Zp

Vol(f) = ImLi, (ZC - Z“) +In

Zp — Za

For a triangulation T of the points z = {z1, ..., z,}, the prepotential Ap(z) is the sum
of the hyperbolic volumes associated to the faces:
Z Vol(f (6.19)
fEF(T
The prepotential is then the hyperbolic volume of the domain located above the
surface S defined in equation from the triangulation 7. The reason for the calling
Ar the prepotential comes from the following theorem, showing that the measure on

the triangulations is a Kahler measure with prepotential Ar.

Theorem 6.2. The measure dv,(T,0) = dv,(z) on ®, is a Kdhler measure of the

local form

dﬂn( ) =23 det D{z,y k} H dQZv (620)
U#ZJJC
where Dy; j iy s the restriction to the n —3 lines and columns u,v € {1,...,n}\{7,j,k}
of the Kahler metric on C":
o 0
Dy 21
o8) = 5o An(). (021

As a side remark, this theorem relates the jacobian D{Ti’ iy O the prepotential Ap
which involves the dilogarithm. This special function already appeared in the functional
allowing to embed the triangulation in the plane, so this function is central in the study
of Delaunay triangulations.

Note that the Ké&hler metric D is also defined for generic triangulations (not necessarily
Delaunay). The three following results show properties for generic triangulations. The

Kahler metric can be expressed in terms of the matrices A and E:

Theorem 6.3. |
D= ZAEAT (6.22)
i

with A the n x 3(n — 2) vertez-edge matrix

L if i d point of the edge e = (u,u') of T,
A =) if u s én end point of the edge e = (u,u') of (6.23)
0 otherwise.

and E the 3(n — 2) x 3(n — 2) antisymmetric matrix

+1  if e and € consecutive edges of a face f, in c.w. order,
E.o = ¢ —1 ifeand € consecutive edges of a face f, in c.c.w. order, (6.24)

0 otherwise.
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Figure 34: The red edges form a basis of edges of a triangulation of size 16. Their
complementary (black edges) form a cycle-rooted spanning tree of the triangulation.
The cycle is of length 3, and the cycle-rooted spanning tree has 16 edges.

The Kahler metric D is positive:

Lemma 6.1. If the faces of a planar triangulation T are all positively oriented, the
Hermitian for D, ,(T) is positive.

The Jacobian D{TL ;1) depends on the three points z;, z;, 2, chosen to be kept fixed,
but the following lemma shows a covariance property with respect to the choice of the
3 points.

Lemma 6.2. The quantity
DT
{ig.k}
|A3(7;7j7 k)|2
with As(i, j, k) = (2 — 2;)(zi — 21) (2 — 2x), is independent of the choice of the three
fized points {z;, zj, 2}

It allows to change the three fixed points in a computation. For the last result,
we switch to the other viewpoint for the measure. It allows the delta functions to get
rid-off the measure.

Definition 6.3. Given a triangulation T' € T,, a cycle-rooted spanning tree of T' is a
subgraph of T which contains all the vertices of T, and has n edges. It necessarily has
a cycle. A set & C E(T) of 2n — 6 edges is a basis if its complementary E(T)\E is a

cycle-rooted spanning tree of the triangulation T', where the cycle is of odd-length.

For a same triangulation, several basis of edges exist. An example is shown in figure

34
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Theorem 6.4. Let T' € T, be a triangulation of size n, and note & a basis of edges.
In the cell ﬁf(T) C ﬁf, the measure can be written in this ways:

dvy (T, 0) = %uniform(T) [T 0. (6.25)

ecé&

In particular, it s independent of the choice of basis &.

This theorem will be useful for the simple case of a Delaunay triangulation of size

7 Relation with Weil-Petersson metric

As was mentioned in previous section, David and Eynard |[David and Eynard, 2014]
showed that the flat measure on Delaunay triangulations can be expressed in terms
of a Kéhler metric D, defined in equation [6.21] We showed with David and Eynard
[II] that this very Kéhler metric D is related to the Weil-Petersson metric on the
moduli space of decorated punctured surfaces. Hence, this result allows to use the
known results on Weil-Petersson metric to study the model of Delaunay triangulations
presented in the previous section. In the reverse manner, it also furnishes another way
to realize the Weil-Petersson in a random map model. We first present briefly the
moduli space of punctured surfaces decorated with horospheres, and give a formula for
the Weil-Petersson 2-form €2y 5. Then, we relate the latter to a 2-form defined from

the Kahler metric D. Last, we discuss the consequences of this relation.

7.1 Moduli space of decorated punctured surfaces

We briefly present the moduli space of marked Riemann surfaces, which will be useful
in next chapter too, and Teichmiiller space of marked surfaces. Then we decorate this
moduli space with A-lengths, and relate it to the Weil-Petersson measure on the moduli
space.

Let M, be the moduli space of compact Riemann surfaces of genus g, with n

distinct marked points:

Mg:n = {(Zg>p1>-"apn)}/lso (71)

where Y, is a Riemann surface of genus g and pi,...,p, are n distinct and la-

beled marked points on ;. Two marked Riemann surfaces (Xy,p1,...,p,) and

(X4, P1,--.,Pn) are isomorphic iff there exists an analytic bijection ¢ (whose inverse
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¢! is also analytic) that maps one to the other, respecting the marked points:

@ Ny — i]g analytic bijection
e ' %, = %, analytic (7.2)
Vie{l,...,n} o(p;) = pi-

In this case the marked surfaces are equivalent: (Xg,p1,...,pn) ~ (X4, P1,...,Pn), and
in the moduli space M, ,, they are identified. The points of M,,, are equivalence
classes of marked Riemann surfaces, that are quotiented by the group of automor-
phisms (isomorphisms of (X,,ps,...,p,) onto itself). For instance, the identity is an
automorphism. Therefore, the space M, ,, is an orbifold (locally a manifold quotiented
by a group). It is well defined if its elements have finite automorphism groups ; in this
case the elements are called stable marked surfaces. The following examples show an

example of an unstable surface and two examples of stable surface.

Example 7.1. Let (Xg,p1,p2) be a Riemann surface of genus 0 with two distinct
marked points. By Riemann uniformization theorem, ¥y is isomorphic to the Riemann
sphere , i.e. the complex plane compactified by adding a point at oo, and this is also

the complex projective line, we write it

C=CuU{oo} =CP". (7.3)

z—2z1

(z=21) <1+ 21 122

have (X, p1,p2) ~ (C,0,1). The automorphisms of the Riemann sphere are Mdbius

Therefore, (X, p1,p2) ~ (C, 21, 25). By the isomorphism z

>+ , We even

transformations z — (az + b)/(cz + d) with ad — bc = 1. The automorphisms of the
Riemann sphere with two marked points 0, 1 are Mébius transformations that have 0

and 1 as fixed points. They take the form 2z — P Vd € C*. This group is cleary

17Zd)+dv
infinite, so genus 0 surfaces with 2 marked points are unstable.

Example 7.2. If one considers a the Riemann sphere with n > 3 distinct marked points
(C,21,...,2,), then there is a unique Mobius transformation which maps 21, 2, 23 to
respectively 0, 1, oo. Therefore, (C, 21, ...,2,) ~ (C,0,1,00,p4, ..., pn). The automor-
phisms of (C,0,1,00,p4,...,p,) are Mdbius transformations that must leave 0,1, co
unchanged, so the only automorphism of this marked sphere is the identity, so it is
stable.

The moduli space of genus 0 compact Riemann surfaces with n > 3 marked points has

the following description:
MO,n = {(@7 07 17 00, P4y - - - 7pn)|pl % Pj, 07 17 OO} (74>
So dimg (M) = 2(n — 3).
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Example 7.3. Let X, be an unmarked genus g surface, with g > 2. By Hurwitz’s
automorphism theorem:

[Aut ()| < 84(g — 1), (7.5)
so any surface of genus g > 2 is stable.

More generally, marked Riemann surfaces (Xg,p1, ..., p,) are stable if 2—2g—n < 0

(it is its Euler characteristic). For 2—2¢g—n < 0, the orbifold M, ,, has real dimension
dimg M, = 2(3g — 3 +n). (7.6)

This means that it can be parametrized (locally) by 2(3g — 3 + n) real parameters, or
also by 3g — 3 + n complex parameters.

Last, we will compute volumes of moduli spaces, so we need compact spaces. To do so,
we use Deligne-Mumford compactification (see [Deligne and Mumford, 1969]), which,
by adding nodal surfaces to the moduli spaces M, ,, is a procedure giving compact
moduli spaces M, ,.

Another useful space is the Teichmiiller space of marked surfaces, defined as follows.
Let 3, be a compact Riemann surface of genus g, and P = {p1,...,p,} C X, be a set
of n distinct points in X,. Let ¢1, @9 be two diffeomorphisms: ¢; : (X4, P) — (Z;, Q:),
where =; are 2 Riemann surfaces and ); C =; are marked points on those surfaces. ¢,
and 9 are said equivalent @1 ~ @ if there exists a biholomorphic map ® : (£, Q) <>
(22, Q) such that ® o ¢y is isotopic to ¢o, and where the diffeomorphisms preserve
the set P (they can permute the points of P). Then the Teichmiiller space Ty, p of
a marked surfaces of genus ¢ is composed of equivalence classes of diffeomorphisms.

Equivalently, it is the equivalence classes of hyperbolic structures on (X, P):

To,p = {¢p: (%, P) = (E,Q)}/ =
= {Hyperbolicstructureson (3,4, P)}/ ~ . (7.7)

The Teichmiiller space Ts, (p,,.p,} Of marked surfaces is related to the mod-
uli space M, of marked Riemann surfaces thanks to the mapping class group
MC(X,,{p1,---,pn}), which is the group of isotopy classes of orientation-preserving
homeomorphisms of (£, {p1,...,pn}). Then we have the following:

Mgn =T, p1pn} [ MC(Zg, {1, - -, P })- (7.8)

The Teichmiiller space of marked surfaces is the universal cover of the moduli space of

Riemann surfaces.

Example 7.4. For compact genus 0 surfaces, the mapping class group of

(30, {p1,- - pn}) is the group of permutations &, of the marked points, so
Mon = 7’207{1917---71%}/6”'
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Once those concepts are introduced, we relate them to our problem of Delaunay
triangulations. We saw in section that each Delaunay triangulation — modulo
PSL(2,C) transformations — gives explicitly a surface with constant negative curvature.
So each Delaunay triangulation of size n represents a point in the moduli space My,,.
We want to compare the measure of Delaunay triangulations with a measure on moduli
space of surfaces. To do so, we relate our Delaunay triangulations with decorated
Teichmiiller and moduli.Those are not decorated yet, in the sense that a point in
M, is simply a punctured surface. Following [Penner, 1987], we decorate surfaces
by supplementing each puncture v by a horocycle b,, i.e. a closed curve orthogonal
to the geodesics emanating from v (in the constant curvature metric). Horocycles are
uniquely characterized by their length ¢,. The moduli space of decorated punctured

surfaces is simply
Mg;n = M‘g,n ® Rfu (79)

A geodesic triangulation ¥ of the abstract surface S is a triangulation such that the
edges are (infinite length) geodesics joining the punctures, and the triangles are oriented
counter clockwise (and non-overlapping). For a decorated surface S, for any geodesics
¢ joining two punctures u and v (generically one may have u = v), its A-length A.(u, v)
is defined from the (finite, algebraically defined) geodesic distance d,(u',v") along e

between the intersections u’ and v’ of e with the horocycles b, and b, by
A (u,v) = exp(d,(u',v")/2) (7.10)

For a given triangulation ¥ (of a genus g surface with n punctures), it is known that
the set of the independent A-lengths A, € R, for the 6g + 3n — 6 edges of ¥ provide
a complete set of coordinates for the decorated Teichmuiiller space 7~'Eg,{p1,...,pn}- This
parametrization is independent of the choice of triangulation, thanks to the Ptolemy’s
relations between lambda-lengths when one passes from a triangulation ¥ to another

one ¥’ through a flip similar to the ones of figure |54, namely
A3y = NiaAsy + AqgAos (7.11)

In this parametrization, the so-called Weil-Petersson 2-form on M,,, (through its
projection from 7’257{101,”.4,"}) can be written simply as a sum over the 2(2g + n + 2)

oriented faces (triangles) f of T, as

Qo = =2 ) dlog(Ar2) Adlog(Ass) + dlog(Ags) A dlog(Asy) + dlog(Ag) A dlog(Arz)
faces f

(7.12)
where (1,2,3) denote the vertices (punctures) vy (f), va(f) and v3(f) (here in counter
clockwise order) of the geodesic triangle § of ¥, and the A;; denote the A-length of the
edges of the triangle.
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Figure 35: The punctured surface decorated with horospheres. Although this 3d rep-
resentation looks non smooth at the edges, the intrinsic metric of the surface is indeed
a smooth constant curvature metric.

In order to compare the 2-form €2, to a 2-form defined from a Delaunay triangu-
lation, one simply has to look at horocycles and A-lengths in Delaunay triangulations.
We have an explicit representation of a point in M, as the constant curvature sur-
face S in Hj constructed above the Delaunay triangulation 7' for the set of points
z = {z;}i=1» in the complex plane. Horocycles are easily constructed by decorating
each point (puncture) z; by a horosphere H;, i.e. an Euclidean sphere in R3, tangent to
the complex place C at the point z;, and lying above z; (i.e. in Hj). The intersection
(in Hj) of the horosphere #H; with the union of the ideal spherical triangles Sy for the
faces f which share the vertex i defines the horocircle h; associated to the puncture ¢
of S. It is depicted in figure

Let R; denote the Euclidean radius of the horosphere H; above vertex i. The \-
length for the edge joining two vertices (i,j) of the triangulation is easily calculated

(applying for instance the formula in the Poincaré half-plane in 2 dimensions) and is

_Ja— )

A(i,j) = 2L (7.13)

VAR R,

where |z; — z;| is the Euclidean distance between the points i and j in the plane C. See
figure [36]
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Figure 36: The geodesics between the horospheres H; and H, at points 1 and 2.

Incorporating this into [7.12] the Weil-Petersson 2-form the takes the form:
QZC”Zl —22 d’ZQ —23]+d’22 _ZS]/\d’ZS_Zl]_I_d’ZS —Zl]/\d’Zj —ZQ]
M—@\|@—%\ 22— 23] [z —a] o] - 2
(7.14)

Let us remark that, although this formula refers to a given geodesic triangulation, the

resulting 2-form 2., is known to be independent of the triangulation through the
Ptolemy’s relation. This 2-form is related to a 2-form associated to the Kahler metric

of Delaunay triangulations, as shown in next section.

7.2 Kahler metric and Weil-Petersson 2-form

The set of Delaunay triangulations allows to define the Delaunay Kdhler 2-form:
1
Oy (z) = gdzu A dzZ, D, (z), (7.15)
i

where the Kahler metric D was defined in equation Let us note that Qg is

continuous across flips, so it is continuous on ﬁf . We show the following result:

Theorem 7.1. )

Proof. We use theorem of David and Eynard [David and Eynard, 2014] to express
the matrix D in the following form:
D= l_AEAT. (7.17)
43
With this factorization, the 2-form (g takes a simple form, as a sum over faces (trian-
gles) f of T'. Let us denote (f1, fo, f3) the vertices of a triangle f, in counter clockwise

order (this is defined up to a cyclic permutation of the 3 vertices).

Qg.(z) = Z w@(’zflvzfzazfs) (7.18)

faces f
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with, for a face f with vertices labelled (1,2,3) (for simplicity), and denoting z;; =

Zj—ZZ‘

d log(z23) A d log(Z31) + d log(Za3) A d log(z31)
Wo. (21,22, 23) = = | +d log(zs1) A dlog(Z12) + d log(Zs1) A d log(z12) (7.19)
+ d 10g(212> Ad 10g(223) + d log(ilg) ANd 10g(223>

Reexpressed in term of the log of the modulus and of the argument of the z;;’s
Nij =log(|z; — z)| . 0 = arg(z; — ) (7.20)

we obtain

Wg. = Wiength T Wangle (721)

with the length contribution

Wiength = i(d A2 AdXaz +d Aoz Ad gy +d Az Ad o) (7.22)
and the angle contribution

Cangle = }l(d 1o A d0as + d sy A d sy + d s A dro) (7.23)

Reexpressed in terms of the angles a;y, as and ag of the triangle (1,2,3) (using ay =

3 — 12, etc.), and using ag + ag + a3 = 7, one has
1 1 1
Wangle = Z(dal VAN dOéQ) = Z(dOQ A\ dOég) = Z—L(d(lg N dC‘q) (724)

Using the triangle relation

sin(a;) _ sin(az) _ sin(ay)
exp(Aaz)  exp(Az1)  exp(Aa) (7.25)

one gets

dO./l cot ] — d)\gg :dOZQ cot g — d)\gl = dOég cot a3 — d)\lg
cot oy cotag — 1

=(d d —dA 7.26
( o+ a2) cot o + cot an 12 ( )

which gives

csc? ag cot g cotay — 1
day = dAo3 — dA dA31 — dA 7.27
al cot a; + cot an ( 23 12) + cot oy + cot ap ( 3 12) ( )
t tag — 1 2
da = S 2 7 Dy — dAgs) + ——— N (g — dra) (7.28)

cot vy + cot vy cot ap + cot a

which implies
dOél VAN dOéQ = d)\lg VAN d)\gg + d/\23 VAN d)\gl —f-d)\gl A d>\12 (729)
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Hence wangle = Wiengtn- Therefore one has

1
Wg. = §(d )\12 VAN d)\23 + d/\gg VAN d)\gl + d)\31 A d)\lg). (730)

This means that the Delaunay Kahler 2-form has the following expression:

_ 2t Z d|Zl—ZQ d|22—23]+d|22—23]/\6”23—21]+d|2}3—21}/\d|21—22]

fe}'(T) 21— 2| |-z -zl lm-al |lmeal o -]
(7.31)
This shows the theorem [7.1] of this section:
1
Qy. = 5971/9- (7.32)
L]

7.3 Consequences

This identity between the Weil-Petersson form and our form on the space of random
triangulations shows that the random Delaunay triangulation model is equivalent to
the more abstract topological Witten-Kontsevich intersection theory based on the Weil-
Petersson measure on moduli spaces. The Weil-Petersson volume form dv”” on M,
is a 2n — 6 form, and is given by:
1
/2 n—3
dv,” = —(n — 3)!9%@. (7.33)
Then, the Weil-Petersson volume of the moduli space Hoyn of Riemann surfaces of
genus 0 with n punctures is
_ 1
Volys (Mon) = — Qs 7.34
//5”( 0, ) /Mo,n (n—3)! WD ( )
By theorem of David and Eynard, the measure di,(z) can in turn be expressed in
terms of the two-form Qg4: ,
2"~
din(z) = ——=Q5 %, 7.35
@ = o3 (7.35)

Therefore, the previous result shows that the two following volumes are actually equal:
V.7 = Volyy (M) - (7.36)

The total Weil-Petersson volume of the M,, was computed by Zograf, Kauf-
mann, Manin, Zagier, and finally by Mirzakhani for all genera ([Zograf, 1993]
[Kaufmann et al., 1996], [Manin and Zograf, 2000]). It behaves for large n as

Volysp (Myn) = C"n702 (0, + O(1/n)) (7.37)
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C' and the a, are known positive constants. Note that we omit the n! factor in the
explicit result of Mirzakhani [Manin and Zograf, 2000]). This factor comes from the
labelling of the punctures, while in our model the punctures are unlabelled. For planar
Delaunay triangulations, we shall take ¢ = 0 and mutiply by 273, This result, in
particular the explicit form of the “string exposent” (59 — 7)/2 which is the same as
for random maps, shows that the Random Delaunay model is in the universality class
of pure two-dimensional gravity (Liouville theory with v = \/% and Cpagter = 0).
For finite n, the volume Voly (ﬂom) is given in the same references. We shall come
back to those volumes in next chapter when we will compare the features of Delaunay

triangulations volumes to the Strebel graph volumes (see section [13.2)).

Apart from the volumes of the sets 7~;Lf , the identification of Delaunay triangulations
with the Witten-Kontsevich intersection theory based allows to compute explicitly
other generating functions on Delaunay triangulations, that are topological in the sense
that they do not depend on the metric associated to a triangulation (whether it be
a discrete metric or the Beltrami metric). Those accessible topological generating
functions Zf L (O1,...,0y) are briefly discussed in section |13| of next chapter, and are
defined by analogy to the generating functions of Strebel graphs.

Note that it is possible to generalize the random Delaunay model from the planar
case (genus g = 0) to the higher genus g > 0 case. Since the identification [7.32| between
the Delaunay Kahler form and the Weil-Petersson form is local, it should also be valid
for the g > 0 case. As it was visible in equation[7.37] the higher genera volumes are also
known, and this makes the identification of the 2-forms an effective tools to compute

volumes of Delaunay triangulations of any genus g.

Therefore, this identification of the measures shows very effective to compute gen-
erating functions and extend the model of Delaunay triangulations. However, is the
study of Delaunay triangulations in the frame of quantum gravity worth to be con-
tinued if it seems contained in the Witten-Kontsevich intersection theory 7 Actually,
the random Delaunay model remains an interesting model of random two-dimensional
geometry since it is an explicit model of a global conformal mapping of an abstract
(or intrinsic) but continuous two-dimensional geometry model onto the complex plane.
This mapping through Delaunay triangulations is different, and somehow simpler, than
the general mapping provided by the Riemann uniformization theorem, which is usually
considered. Indeed a local modification of the position of one vertex of the triangula-
tion translates in a local modification of the associated Kéhler form, since the Kéhler
potential Az given by is a sum over local terms (the hyperbolic volumes V(f) of
the triangles). This is not the case for the uniformization mapping, which leads to a

global Kéhler potential (a classical Liouville action).
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Therefore the model discussed here should allow to study the local properties of
the conformal mapping of a random metric onto the plane, as we shall see in the next

section where two preliminary local results are presented.

8 Local properties of the measure

In the previous part, we showed that the measure dv,, = dv,(z) on 7N;Lf can be expressed
locally in terms of the Weil-Petersson measure on ﬂom- Although this result allows
to compute various correlation functions such as the volume of ’if , the study of finer
observables (which depend on the metrics) is out of the reach of Weil-Petersson mea-
sure. In order to get more effective tools to study the convergence of the correlations
functions (moments and cumulants) for this random measure in the complex plane
(defined from Delaunay triangulations), it is necessary to know the local properties of
this random measure, considered as a random point process in C. In this section we

present two first results on the properties of this measure.

8.1 Maximality property over the Delaunay triangulations

Looking at the measure di,(z) on ©,, (the space of distributions of n points on the
Riemann sphere), theorem gives

i, (z) = 2" det [Dy1 03 (2) Hdzzv,

where, implicitely, the Kahler metric D is defined from the Delaunay triangulation 7P
of the points {z1,...,2,}. However, for a generic triangulation T" of those points, the
Kahler metric D(T) is still well defined. A question on can legitimately ask is wether
the Kahler metric has special properties when it is defined on Delaunay triangulations
rather than generic ones. We prove here two properties on the metric when one varies
the structure of the triangulations. The second one shows that, indeed, Delaunay
triangulations are special for the Kahler metric. We use a short-hand notation in this

section:
d(ijiy(T) = det [Dyi jay(T)]. (8.1)

In order to compare the metric of a generic triangulation 7" with the metric of a
Delaunay triangulation T, we use the Lawson Flip Algorithm described in section
. With this algorithm, two successive triangulation differ by an edge flip (see
figure 37). A preliminary result concerns the variation of djr)(T) when T undergoes
a Lawson flip. The final triangulation is called 7’. With the notations of figure [37
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Figure 37: Lawson flip, the illegal edge (13) is flipped.

we consider that the edge (z1, 23) is flipped into (23, z4), and note this flip T’ Ela; T
24
Through this flip the Kahler metric changes according to this lemma:

Lemma 8.1. Denote f the triangle (124), and wy, Ry respectively the center and the

radius of its circumcircle. Then

/ |Z3_<"}f|2_Rf2
da24)(T") —d24y(T) = det [D{1,2,3,4}<T)] x Area(f)

(8.2)

2 2 2
|Z3 - 21| 123 - Z2| |Z3 - Z4|

where Dy 234y means that we restrict the matriz D, , to the indices u,v # 1,2,3,4,
and Area(f) is the Fuclidean area of the triangle f.

Proof. The proof of this lemma is given in appendix [C] O

This preliminary result will appear useful to prove a maximality property specific

to Delaunay triangulations:

Theorem 8.1. Given n points z1,. .., z, in C, their Delaunay triangulation TP (z) is
the one which maximizes dji)(T) among all possible triangulations T ':

d(ijk) (TD(Z)) = max d(ijk)(T). (83)

T triangulation of z

Proof of the theorem[8.1]. For the configuration of points {z,}, take a generic triangu-
lation 7" on this configuration, and note TP the Delaunay triangulation of those points.
We must prove that d(123)(T") > d123)(T).

The proof relies on the Lawson Flip Algorithm (LFA) described in section [6.1.2] It
transforms the triangulation 7" into T by a sequence of edge flip. At each step of the
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algorithm, the LFA applies a single edge flip. Note (T;)o<;<x the sequence of successive
triangulations obtained by the LFA, with Ty = T and T}, = TP ({z,}):

(e @),
(aldl) (a2d2) (akdk)

Ty=T T, =T”({z}). (8.4)

At each step, the illegal edge (b°,c’) is flipped into the edge (a',d’) (see figure [30| in
section [6.1.2). It follows that for the two new faces (a,c’,d") and (a',d’,b%), their

circumcircles enclose respectively neither b nor ¢!. We prove that:
d(ai7ci,di)(ﬂ+1) — d(ai7ci7di)(ﬂ> > 0.
Indeed, from lemma [8.1] this difference yields:

i ei.aiy(T3) = digi i gy (Tim1) = det [Dygigi eiaiy(Ti)] % Area(a’c’d’)x
2
— R(aicidi)z

o= @ — Pl —

‘bl — w(aicidi)

(8.5)

As all the faces are positively oriented (we enforce it in our notations), lemmal6.1] states
that the Hermitian for D(7;) is positive, so the principal minors of D(T;) are positive.
Therefore,

det [Dyqipi i aiy (T3)] > 0.
Then, the difference dgi i gi)(Ti) — digi i ai(Ti—1) is positive only if b is outside the
circumcircle of (a’c'd’). Precisely, the flip was done in order to satisfy this condition.
So we have:

(i ety (T3) = digi ei.aiy(Ti—1) > 0. (8.6)

This is true at each step, and now, using the covariance property of the measure (see

lemma , we have:

dazy) —  dugw (8.7)
|A3(172a3)|2 |A3(i7j> k)|2 ‘
Therefore, inequality can propagate along the steps:
k
da23)(TP) = duas)(T) = Y [daas)(T) — daasy (Ti-a)]
i=1
k
= 182y | e e O
i=1 |As(a’, di)ﬁ
> 0.
This ends the proof. m

The measure di,(z) used is then maximal over the Delaunay triangulations.
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8.2 Growth of the volume

The second result relates to the n dependence of the total volume

V7 = /%f dv, (T, 0)
_ / i (z). (8.8)

The space ©,, of configurations of n distinct points modulo Mobius tranformations in
contained in C"3. As the set C*3\D,, is of measure 0 (with the measure dr,,), we

can write:

V7 = / 2" det [Dy123,(T" ({20})) Hd2zv (8.9)
Cn 3

It is the volume of the space of Delaunay triangulations with n vertices with the
measure di,(z). A lower bound of the growth of the volume when the number of

vertices increases is given by the following inequalities:

Theorem 8.2. If we add a n + 1°th point to a given triangulation and integrate over

its position, the following inequality holds:

/Cd2zn+1 det [D{l’g’g} (TD({Zl, o ,Zn+1}))]
> (n— 2)%2 det [Dy1os (TP ({21, -, 20 }))] (8.10)

It involves the inequality for the total volumes
1 Ry
Vii>(n—-2)=V". (8.11)

Before proving the theorem, let us stress that this growth property is global with
respect to the last point z,,1. The result gives more information than the inequality
8.11f on the volumes, which is of little interest once we know from last section that it
is a volume of Weil-Petersson. The inequality is local in the variables zq, ..., z,,
and this is the interesting feature for this result.

A similar inequality does not stand locally for the measure det [Dyy53(T?({2,}))]
when one adds a vertex at a fixed position to an existing Delaunay triangulation. This

has been checked numerically.

Proof. We first focus on the inequality [8.10, The proof follows the following procedure:

e Fix n points {z1,...,2,} in C, and note T”({z,}) the Delaunay triangulation

constructed on this configuration.
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e Pave the Riemann sphere with regions R(f) (defined bellow) associated with the

faces f of the triangulation.

e Then add a point z,,; in C to this triangulation. Depending on the region
R(f) where it stands, transform the triangulation to include the new point and

compute the measure associated with this triangulation.

e Integrate over z,.1, find a lower bound on of the integral, and compare the result

with the measure associated with T ({z1,...,2,}).

For the Delaunay triangulation constructed over {zi,...z,}, the Riemann sphere
can be conformally paved with regions R(f) associated to each face in the following
way. Let us look at the edge e whose neighboring faces are f and f’. The cir-
cumcircles of f and f’ meet at the vertices located at the ends of e with an angle
¢'(e) = (m — 6(e)). Define C. the arc of a circle joining the ends of e, and making an
angle ¢'(e)/2 = (m — 0(e))/2 with each of the circumcircles of f and f’ at the vertices
of e. See figure The region R(f) is now defined as the domain enclosed in the three
arcs of a circle C,,, C.,, Ce, corresponding to the three edges e1, ey, e3 surrounding f (see

figure . This domain is now transformed covariantly under a Mébius transformation.

We add the point z,.; in the Riemann sphere. If z,,1 € R(f), we construct

S 9*(3)

7
~< _-"Zc @

Figure 38: Definition of the arc Ce.

the triangulation Tf’({zl, ey Zn}, Zny1) by joining the vertex z,.; to the vertices a,
b and c of the face f. The triangulation TP ({21, ..., 2n}, Zns1) is in general different
from the Delaunay triangulation TP ({z1,...,2,41}). Yet it is still possible to define
the measure det Dy 55y (Tf ({20}, zn41)), which is still a positive quantity, and which,
from theorem [8.1] satisfies:

det [Dg123)(TF ({20}, 2n41))] < det [Diaasy (TP ({21, - -+, 2041}))] (8.12)
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[ Figure 40: The region B(f) associ-
ated with a face f.
Figure 39: The region R(f) is en-
closed in the bissector arcs.

The aim is to find a lower bound to the integral over each region R(f). The
interesting result is that we found a lower bound that does not depend on the region,
although the shapes of the regions depend on the angle 6(e) between two neighboring
circumcircles. We take this dependence out by integrating over smaller regions
B(f) € R(f). for the face f, B(f) is the region enclosed by the three arcs of circle

that pass through two of the vertices of f and that are orthogonal to the circumcircle

of f (see figure [A0)).

The integration over z,,; thus decomposes in the following way:

/ d*zp11 det [Dyiosy (TP ({21, .., 201 }))]
C

-3 / Pz det [Dposy (TP (e 201 1))
YR

> Z/ d*zny1 det [ Doy (TP ({20}, 2n41))]
r IR

>3 / | Ao det [Dasy (TP (), 20e0)] (8.13)
§ UBU

In the last line, the integral can be computed explicitly. If z,,1 € B(f) with f = (abc),
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one can compute the integration on B(f) using lemma [6.2}

| e det [Dyany(TP ({2}, 20e1)]
B(f)

_ A3<Zla 22, ZS)

i t [Dap.er (TF . 14
A3(a, b, C) /B(f) d “n+1 de [ {‘I,b,c}( f ({Zv}a Zn—f-l))} (8 )

Then the right term factorizes nicely thanks to the shape of the triangulation around

Zn41-

/B | @ 4ot [Doasy (T (20

_ / 2 det [Dyapey (TP ({20 1))] % det [Diapey (TP ({asb e, 2o })]. (8.15)
B(f)
In the integrand, the term depending on z,,.; is the second determinant, so we need

to estimate:

[ / P21 det [Dyaney (TP ({0, b, ¢, 201 }))]. (8.16)
B(f)

It is the integral of the measure on the Delaunay triangulation made of the 4 points a,
b, c and 2,41, where z,,; crosses the region B(f) (see figure [41)):

I :/ dvy({a,b,c, zpi1}). (8.17)
B(f)

The integral is computable if one switches the approach and considers the measure dvy
in terms of the angles. Using the theorem [6.4] we express the measure dvy in terms of
a basis of two angles 6, 0, (they are depicted in figure :

1
2 zn+1€B(f)

The point z,4; belongs to the region B(f) if "™ < 6; < 0™ + Z for i = 1,2,3.
gin corresponds to the angle 6; for which the point z,.; is on the boundary arc of
B(f) associated with the edge i.

We also have 0y + 0, + 03 = 7 and 07" 4 05 + 05 = T so eventually, z,,1 € B(f) if:

min < g, < gmin 4 g (8.19)
fmin < g, < gmin 4 g (8.20)

) ) ) ) T
6111'111'1 + 93’111’1 S 91 + 92 S 9;1’1111 + egun + .

5 (8.21)
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Figure 41: The Delaunay triangulation (in black) with the associated circumcircles.
The center of the external face is at co.
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From these conditions we immediately obtain that I = % [% (3)2} = Z-. Then, one

gets in equation [8.15}
/( )dQZn—H det [D{a,b,c}(TfD({ZU}aZn—i—l))}
B(f

2
™
= 1696t [Dianey (TP ({21, 2})]
o 7T2 AS(a7 ba C)

B 1_6A3(Z1, 29, 23) det [D{1’2’3}(TD({Z1’ U Z"}m (8:22)

So in the end:
/ d22n+1 det [D{1?273} (TD<{21, ce >Zn+1}))]
C

> Y % det [Dpasy (TP ({21, - 2}))]

feF(TP)
2
7
2 (n — 2)@ det [D{1’2’3} (TD<{21, c. ,Zn}))] s (823)

which is the inequality [8.10, A corollary is:

2
Vi 2 (n— 2)%‘/@ (8.24)

n

]

The previous result gives a lower bound which does not depend on the shape of the
triangle, by integrating over a restrained region B(f). If we do the same calculation
and keep the region R(f), then the lower bound is more accurate, but not universal
any more (it depends on the triangulation of size n). In this case, we then get a refined

result:

Theorem 8.3.

/ d22n+1 det [D{1,273} (TD({Zl, Ce 7Zn+1})):|
C

> |(n— 2)% + % Z O(e)(2m —O(e)) | det [D{17273}<TD({21, e zn}))}
ec&(TP)

(8.25)

(See appendix@ for a proof). We see that the angles associated to the triangulation
appear. This angle-dependent term should be related to the kinetic term of the Liouville

action in the continuum limit.
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Part 1V

Convergence of correlation
functions: the case of iso-perimetric
planar Strebel graphs

In previous chapter, a model of random maps — namely Delaunay triangulations — was
studied through a measure defined on the set of random maps. Therefore, all the results
proven for Delaunay triangulations address directly the properties of the measure.
Another way to characterize the measure, and to get a flavor of the continuous limit of
the model is to define observables on the random maps model whose expectation value
with respect to the measure are computable explicitly. This is equivalent to studying
the measure through its moments, so it is less complete mathematically than directly
studying the measure. However, this approach makes sense physically. Indeed, the only
way to know about a physical system is by its interactions : for instance, a particle
cannot be detected if it does not interact with an instrument. A physical system can
only be characterized by the quantity one is able to observe, that is by the expectation
values of observables. It cannot be known intrinsically from scratch. Another image
is that of the definition of tangent spaces of differentiable manifolds in mathematics.
The tangent space of a manifold at a point is defined thanks to the way functions
defined on the manifold vary around this point: in order to know the tangent space, it
is necessary to “test” the manifold with functions, and to see how they behave. In a
similar manner, in order to know the physical system defined by a random map model,
it is necessary to test it with observables, and look at their behaviour when the maps
vary.

We adopt this paradigm here, so the aspect studied in this chapter is the computation
of observables. In order to do so, we introduce a different map model, isoperimetric
planar Strebel graphs which looks very alike duals of Delaunay triangulations, we
embody them with a measure, and we define observables. The model defined may
look very special as the constraints may look fancy and arbitrary. However, they
are justified by the fact that they allow to compute explicitly the expectation values
of many observables, thanks to a theorem of Kontsevich. This theorem supposes to
introduce Chern classes, which we do. The result will show that Bessel functions play a
primordial role. We analyze the continuous limit of the one-point function with different
scalings for the perimeters, in order to spot how the large Strebel graphs behave when

one face has a different perimeter. Last, we dwell on the similarities and the differences
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between Strebel graphs and Delaunay triangulations. It appears that Bessel functions
also appears in expectation values of observables of Delaunay triangulations, and that
the Strebel graphs constitute a source of inspiration for defining observable of Delaunay
triangulations. The articles [I] (for the Strebel graphs) and [II] (for the result on

Delaunay) cover the problems addressed in this part.

9 Presentation of Strebel graphs

The Strebel graphs are ribbon graphs, with trivalent vertice Let us first define formally
the Strebel graphs:

Definition 9.1. A Strebel graph of genus g with n faces, is a connected ribbon graph,
that can be embedded on a surface of genus g, with trivalent vertices, whose n faces are
labeled topological discs (it is a cellular graph ), and which is metric: the edges e carry
a real positive number called the edge length (. > 0. n is the size of the graph, and we
denote by 4, , the set of Strebel graphs of genus g and size n.

In the same fashion as in the previous part, if I' € .7 ,,, we call F(I') = {f1, ..., fu}s
E(T") and V(I') respectively the set of faces, edges and vertices of I'. The Euler relation

stands:

[F(O)| = &M@ + V()] =2 - 29, (9-1)
and as the vertices are trivalent, we have the constrain 2|E(T")| = 3|V(T')], so in the
end:

[FIO)] = n (9.2)
IEMT)| = 3n—6+6g (9.3)
V(I = 2n—4+4g. (9.4)

Example 9.1. In figure [42] a planar (that is to say, g = 0) Strebel graph of size 20 is

shown. It is an element of .7 99

As the faces are bounded by edges carrying lengths, one can define the perimeter
Py of the face f:

Pr=>Y "t (9.5)

e—f
where the notation e — f means that the sum runs over the edges adjacent to the
face f. Then, one denotes by .%,, (L1, ..., L,) the subset of .#,, such that, for all
i € {1,...,n} the face i has perimeter L;: P, = L;, Vi. It is a stratum of .7, In
example [0.1] the graph belongs to .#20(10). The sets . and %, (P, ..., P,) have
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Figure 42: Example of a planar isoperimetric Strebel graph of size 20. Each face has
perimeter 10 (£0.05). It belongs to the set . 2(10)
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cellular decompositions, where each cell is indexed by a graph structure. A (g, n)-graph
structure I'y ,, is a cellular trivalent connected graph of genus g and size n. Then the
following holds:

yg,n = FU {(Fg,nagh s a£3n76+6g)’€i € RJr}
ngn(Ll, R 7Ln) = FU {(PQ,TU 61, C 7€3n—6+6g)|€i € R+, Pf = Lf} (96)

For g and n given, there are finitely many cells, but each cell is uncountable. For . ,,
the real dimension of a cell is the number of edges, that is 3n — 6 + 6¢g, and the lengths
Uy, ..., l3,_g16g are local coordinates.

A standard way to study distances (see the review of Miermont for a summary of
results [Miermont, 2009]) for the study of random maps as metric spaces is to take the
graph distance (each edge is considered to be of length 1), that is to say, the distance
between two vertices vy, vy € V(I') is:

d(vi,vg) = min |]. (9.7)

[ path from v to va

For Strebel graphs, the natural distance to consider on the graph is the first passage
percolation distance, that takes the lengths of the edges into account (a similar distance
was shown in previous chapter):

d(vr, v2) = ! path from b1 to 03 ezel L. (9:8)
Actually, a great asset of Strebel graphs is that from the combinatorial data of a graph
I'e Syn(Ly,...,Ly,) with 2 —2g —n < 0, it is possible to construct a metric w on a
Riemann surface of genus g with n punctures, such that I" is composed of geodesics of
w, and such that the lengths /. of the Strebel graphs are the lengths of the geodesics
measured with the metric w. Therefore, one can extend the notion of distance from

the graph to a whole surface of genus g by using the metric w. The way to construct

w from I is described hereafter, and it needs quadratic differentials.

9.1 Strebel differentials on Riemann surfaces

From marked Riemann surfaces to Strebel graphs: Strebel’s theorem

Let Y, be a compact Riemann surface of genus ¢ ; p1,...,p, € X4, n labeled marked
points ; and Py, ..., P, € Ry, n positive real numbers. Let {U,, ¢, } be an atlas of ;.
In the following, the local coordinate inherited from ¢, on U, will be denoted by z,

A meromorphic quadratic differential is a meromorphic section
) 2
Q: %, = Ky,
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where Ky, is the canonical bundle of ¥, and K %g the symmetric square of the canonical
bundle. Locally, we say that €2 is a meromorphic quadratic differential, if for all chart

U,, €1 can be written in the form:

2a) = falza) (dza)”, (9.9)

with f, a meromorphic function on U,. If p € U, N Up lays in the intersection of two

charts, the local functions f, and fz must satisfy:

Falzal®)) = Fa(z5(0) (;%j(p)) (9.10)

Strebel differentials are quadratic differentials, with contraints. Let us specify them in
the following, and state Strebel’s theorem. First, the poles of a Strebel differential €2
must be of order 2: let p € U, (we note p, = z,(p)) be a pole of €2, then the admissible

poles for a Strebel differential are double poles of this form:

14 Oz — pa)(dza) (9.11)

Q(Za) Zaipa (Za _pa)

with R € R,. According to the rule the coefficient —R? does not depend on the
local coordinate. It is the residue of €2, for the following reason: if €, is a small simple

loop circling around p, then v/ is well defined on ¢, and one has:

f VQ = flR \/1+O Pa) = —27R (9.12)

(modulo the sign). Second, a Strebel differential allows to define horizontal and vertical

trajectories:

Definition 9.2. Let us consider v : [0,1] = X, a C* parametric curve. Let us suppose
without loss of generality that v([0,1]) C U,. Then 7 is said to be:

2
e a horizontal trajectory, if Vt € [0,1], fo(za(7(1))) (dzag(t))> <0

2
e a vertical trajectory, if Vt € [0,1], fa(za(7(1))) <dza£l'z(t))> <0.

Horizontal (resp. vertical) trajectories correspond to lines for which Im( [ "®) \/ﬁ) =
constant (resp. Re([ ") VQ) = constant). Near a pole p of Q with residue R, there
exists a local coordinate z such that z(p) = 0 and §2 can be written as Q = —dezi;.

The horizontal trajectories satisfy:

_R? (dlgt(z>)2 >0, (9.13)
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\\Horizontal nne/ \\ g
=

Figure 43: Horizontal trajectories (black  Figure 44: Horizontal lines around a sim-

plain circles) and vertical trajectories (red  ple zero. The thick red rays are critical
dashed rays) around a pole p. lines.

that is to say, if we are close enough to p, Reln(z) = constant, so the horizontal
trajectories near p in the coordinate z are circles of center p. The vertical trajectories
must satisfy ImIn(z) = constant, so they are rays stemming from p. Figure [43| shows
the horizontal and vertical trajectories in the vicinity of p. Near a zero a € U, of 2
of order k > 0, take a local coordinate z such that z(a) = 0 and such that the Strebel
differential has the local behaviour:

Q- (k+2)°

k(7.2
= ¢ (dz)”. (9.14)

The horizontal and vertical trajectories obey respectively:

2
(iz’“?") < 0 (9.15)

Therefore, in the coordinate z, k 4+ 2 horizontal lines and vertical lines meet at 0 with

2
k+2

Among the horizontal trajectories of a generic quadratic differential with double poles

angle (see figure . For a simple zero, 3 horizontal lines meet with an angle 27”
satisfying equation [9.11] we distinguish the critical trajectories, which are the hori-
zontal trajectories that arrive at a zero of (2. Note that generically, the horizontal
trajectories that emerge from a zero of (2 are not compact and can wind a infinite
times around a domain. In that case, the critical trajectories are the accumulation

points of the horizontal trajectories. It is now possible to define Strebel differentials:

Definition 9.3. A Strebel differential on X, Q with poles pi,...,p, and residues

—P2?,...,—P2% is a meromorphic quadratic differential, having the behaviour of equa-
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tion|9. 11 with residue P; around the pole p;, and such that the critical trajectories form

a connected cellular graph.

The set of critical trajectories form a connected graph of genus g. The vertices
a; are the zeros of €2, and for a Strebel differential with simple zeros, the vertices are
trivalent. The pole p; of € sits in the center of the face f;.
The critical trajectory é,, ., linking a; and ay is the edge e between the vertices a,
and ay. On 6, 4,, we have [ VQ > 0 uniformly or I VQ < 0 uniformly. We define
the length of e as:
[

:271'

VQ

(@ﬂal,ag

. (9.16)

What is more, the perimeter of the face f; is simply the residue P; of €2 at the pole p;:

Z_ee_%jé Va

Pq
Therefore, a Strebel differential of genus g with simple zeros and residues P, ..., P, at

=P, (9.17)

the poles p1, ..., p,, defines naturally a Strebel graph of genus g, size n, with perimeters
Py, ..., P,. Strebel’s theorem allows to make a one-to-one correspondence between

Strebel differentials and marked compact Riemann surfaces with perimeters:

Theorem 9.1. Strebel |Strebel, 1984] For g > 0, n > 1 and 2g+n —2 > 0, let ¥,
be a compact Riemann surface of genus g, p1,...,pn be n marked points on g, and
Py,...,P, € Ry. Then, there exists a unique Strebel differential on ¥, whose only

poles are py, . .., pn with respective residues — P, ..., —P2.

Example 9.2. In figure [45] a representation of horizontal lines of a Strebel differential
of genus 0 with 4 poles is shown, as well as the Strebel graph corresponding to it. It
belongs to .4 4(1,1,1,1).

The metric associated to a Strebel differential €2 is then
w = Vaxva
T
= %|fa(za)|dzad2a (9.18)

A face f of the Strebel graph obtained from a Strebel differential €2, endowed with the

metric w is a semi-infinite cylinder of perimeter Py. Indeed, near a pole p;, one can use
the local coordinate z; such that z;(p;) = 0 and such that 2 = —Pf(dj—_%)z. If one uses

the coordinate x; = In(z;) for z; ¢ R_, the coordinate x; is defined on a étrip (see figure
. If one identifies the sides of the strip, z; is defined on a cylinder. In this local
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-4 -2 0 2 4
Re(z)
Figure 45: Horisontal lines of a Strebel differential of genus 0 with four poles
(p1,p2,p3,p4) = (0,1, 2i, J;Q_m) The critical lines (red and thick) form an isoperi-
e 6 4273

metric Strebel graph. In this example, each edge is of length % so that the graph is in
Z04(1,1,1,1). The white pieces of circles cutting the horizontal lines are due to the
cut coming from the square roots in computing the integral [ V.
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a7 — —

X

Figure 46: The change of coordinates from z; to z; transforms the circles in straight
vertical lines in a strip, where the lines Im(x;) = +im are identified.

coordinate, the metric is just w = P?dx;dz;: it is a flat metric, defined on a cylinder.
The perimeter of the cylinder is just the width of the strip, that is P;. Globally, the
surface ¥, endowed with the metric w is a punctured surface with singularities at the
marked points p;, and which is a gluing of semi-infinite cylinders (see figure [47| for a 3
dimensional view of this gluing).

From Strebel graphs to marked Riemann surfaces In what precedes, Strebel
graphs arise as critical curves on Riemann surface. The critical curves are defined
through a quadratic differential 2, that allows to define a metric 5= || on the whole
surface. The converse problem is the following: given a Strebel graph, that is, the
combinatorial data of a metric cellular trivalent ribbon graph, is it possible to construct
the differential 2 ? The answer is yes, and we describe the procedure to locally (that
is, in a system of charts) construct . Given a Strebel graph I', there is a canonical
way to describe it as the critical graph of a Strebel differential, so there is a canonical
way to associate a metric to a Strebel graph. We show here a local description (that
is, in a system of charts) of the Strebel differential, inspired from Mulase and Penkava
[Mulase and Penkava, 1998]. The set of charts is divided in three sets

U U, U U U U. (9.19)
veV(T)  ec€(T)  feF(D)

The chart U, (respectively U,, Uy) is defined in the neighborhood of the vertex v (resp.
center of edge e, center of face f), and containing no other vertex (resp. edge, face). We
describe the charts and the local coordinates, the Strebel differential and the transition
functions between the charts.

Charts associated to the vertices Radius [,,in. The coordinate z, chosen around
vertex v is such that the half-edges meeting at v are straight rays meeting at 0 (see
figure with an angle %” Then, Strebel differential has the form :

Q- gzv(dzv)Z (9.20)

93

)



Figure 47: In this plot, the Riemann sphere is the unit sphere S? =
{(cos@sin p,sinfsin p, cos ), (0,¢) € [0,2r[x[0,F]}. The surface depicts the radial

view of ‘Re i ‘ \/ﬁ’ above S?: the distance between the origin and the surface in a
direction (6, ) (above the point z = (cos 8 sin ¢, sin 8 sin ¢, cos ¢)) is equal to the value

1+ ’Re i “VQ ‘ The picture emphasizes the fact that a Strebel Differential corresponds
to a gluing of cylinders.
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With this local coordinate, the chart U, is a disk of radius l’";".

Charts associated to the edges Close to an edge e of length [, the coordinate z.

27
3

Figure 48: Critical lines meeting at 0 in the chart U, with the local coordinate z,.

chosen is such that the edge is the segment [0, 27] and such that Strebel differential is
Q = (dz,)? (9.21)

In this system of coordinates, the chart U, is an infinite strip {z. € C,0 < Re(z.) < l.}.
Charts associated to the faces The perimeter of face f is Py, so we choose z; such
that:

P} (dz)?
[ i 9.22
472 zJ% ( )
And in this system of coordinates, the chart Uy is a disk.
Transition functions
o If p e U,NU,, then the transition relation between local coordinates is:
2
2(p) = cze(p)® (9.23)
where c is a 3" root of unity.
o If p € U.NUy, one has:
2mize (p) 2mi , ,
)= T efr el (9.24)

where one choses arbitrarily an edge of reference e; on the face f, and assign a

label to the edges in counterclockwise order.

o If p € U, N Uy, the transition is given by:

3
—27zy(p) 2

zp(p) =ye 7 (9.25)
where v is a constant of integration.
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In the end, the data of a Strebel graph allows to define a metric on a whole punctured
sphere. At the level of quantum gravity, as it was mentioned in previous chapter for
Delaunay triangulations, there is no hope that, when the number of faces grows to
infinity, that is to say, the number of punctures grows to infinity, the metrics converge
toward a meaningful limiting metric. Yet, the interest of endorsing a graph with a
metric on the whole surface, is that one is able to study naturally the distances in
the graphs, without invoking the discrete graph metric. Strebel graphs considered as
discrete metric spaces with the natural distances have chances to converge to a limiting

metric space in the continuous limit.

10 Definition of the correlation functions

We specialize the model of Strebel graphs by adding two constraints: first, we consider
planar graphs (g=0). Second, let L > 0, we consider isoperimetric Strebel graph,
by requiring all the perimeters to satisfy P, = L. Therefore, the set of interest is
Fon(L, ..., L), that is denoted .7 ,(L). In figure [42|is shown a example where L =
10. As in the case of Delaunay triangulations, the Lebesgue measure dyit--In of
a stratum %, (L1,...,L,) of #, allows to define a probability distribution over
Fon(Pr,...,P,). Let 'y, be a (g,n)-graph structure. Then locally, that is to say for

a given graph structure) , the measure can be expressed in terms of the edge lengths:
dylren (D, ) = H d, H §(P;— Ly). (10.1)
e€€(Lgn)  fEF(Tgn)
For isoperimetric Strebel graphs, the measure is:
dvy(Ty)= [ dat. J[ oPr—1L). (10.2)
e€€(Lgn)  fEF(Tgm)

As for the measure defined on Delaunay triangulations, this one is also admissible.
Indeed, for a given graph structure Iy ,,, the integral of the measure over the parameters

/. has an obvious upper bound:

[0,L]3n—6+6g
Moreover, the number of graph structures for g, n fixed is finite, so the total volume:
/ e (10.4)
I'y,n graph [O)L]37L76+69

structure

is finite. Therefore, the measure is admissible.
The reference sets under study are the strata %, (L), for n > 3. The aim is to
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characterize % ,(L) with the measure dvt when n — oco. For a fixed large n and
k > 0 bounded (in the limit n — oo, k < n), it is useful to study deformations of
the stratum .74 ,+x(L), by letting k perimeters to be different from L. In other words,
the strata . 4k (L; L1, ..., Ly) = {I' € Hpyi|Ph =--- =P, =L, P,y; = L;}, that
are deformations of the stratum .%,+x(L), will allow to define correlation functions
of the model. The k faces for which the perimeters may vary are similar to k£ sensors
on k(L) allowing to study the sensibility of the set .#,,4x(L) to a change of

perimeter.

Definition 10.1. Let n > 3 and k > 0. The correlation functions of Strebel graphs

are defined as follows:

o The volume of Sy nik(L):

Vasn(L) = Z / vy 1 (Toni) (10.5)
[0,L]3(n+k)—6 '

I'o,n+k graph structure

o The k-point function:

Zu(L; Ly, ... Ly) = > /[ ” o Do) (10.6)
0, n -

I'o,n+k graph structure
It is the volume of S pik(L; La, ..., Lg).

Those correlation functions are encoded in the generating functions V(u, L) and
Zk’(:u7 La Lla SR >Lk):

+0o
2
n=3
400
n=3

Those generating functions are series in p defined for p close to 0. If one knows V(u, L)
and if it is analytic in a neighborhood of 0, it is possible to recover any volume V;,(L)
for n > 3:

Vo(L) =n! ResM

pu—0 :un+1

dy. (10.8)

From the generating functions Zj one can define the Legendre transform f, and the

Laplace transform Fj:

1 1% Hk—4 151 dk!22dk
Un(p, Lidy, ..o ody) = m/ d,uk—4/ d,uk—5"'/ dpo Res ———=dLy . ..

L0 [ 201
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d, 1220
LP}ESO 120 dLy Zy(po, Li Ly, - . ., Ly,)

fk(”v L7 2’1,...,Zk) = / dLl/ dee_ZiC:lZiLiZk(lua La le"'7Lk) (109>
0 0

Those auxiliary functions are redundant with Zj, yet in chapter [V we shall see that
the Laplace transform plays an important role. In this chapter, except for section [15],
the Strebel graphs of interest are planar. This is why, for convenience, there is no
mention of the genus in the correlation functions defined above. Yet, it will be useful,

in chapter [V] to consider correlation functions of generic genus. For generic g > 0:

Vi(u L) = PVol(S,0(L)
n=1 ’
ZI?(M>L7L177LIC) = %VO1<yg,n+k(L;Lla"'7Lk))
n=1 "
Fg,k(M7L;Z17"-7Zk) = / dLl/ dee_Z§:12iLiZ]g(MaL;Ll7"'7Lk>
0
(10.10)

Now that the correlation functions are defined, the tools to compute them are presented

in next section.

Remark 10.1. Strebel graphs, and more precisely their duals, Kontsevich graphs, are
encoded in a matriz model. Let A = diag(Ay, ..., A\y) be a real diagonal matriz of size

N, and V(M) be the following potential on the Hermitian matrices:

3
Va(M) = AM2—MT (10.11)

The the matrix model encoding Kontsevich graphs is encoded in the partition function:

f dM e~ NTr VA (M)
Hy
_NTr 2
fHN dMe—N Tr AM
_NTr AM2-M°
fHN dM e 3

f dMe—NTr AM?2
Hy

formal

Zk

formal

(10.12)

In this matriz model, the vertices of the ribbon graphs are trivalent, and the propagators

now have weights:
1 1

N\ + A

Each face — or closed line — of the ribbon graph then carries an index j, and a parameter

<Mz]Mkl> 5115jk (1013)

Aj € R. The parameters \; of the ribbon graphs correspond to the parameters introduced
if one makes the laplace transform of the perimeters of a Strebel graphs. Indeed, let us

take a Strebel graphs of size n with perimeters Ly, ..., L,. If one fattens every edge of
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the graph into a ribbon bordered by 2 lines, and then associate the index i to the line in
face i, and if one carries out the Laplace transform fR dL;e % of the perimeters to

replace them by \;, then we end up with a ribbon graph that appears in the diagrammatic
expansion of the partition function |10.12.

11 Moduli space, Kontsevich theorem and intersec-
tion numbers

As was advertised in the introduction of the chapter, there is a practical interest for
defining the specific model of isoperimetric Strebel graphs with the correlation func-
tions V,, and Z,, 1, being that those are explicitly computable by applying Kontsevich’s
theorem. This theorem relates the sets Strebel graphs and moduli spaces of Riemann
surfaces. After a brief presentation of decorated moduli space of Riemann surfaces and
of the Chern classes and intersection numbers, Kontsevich’s theorem is stated. The
moduli space of marked Riemann surfaces was introduced in section of previous
chapter. In order to relate the moduli space M, , to the set of Strebel graphs . ,,
we decorate each marked point p; of a Riemann surface with a positive real number
L;, which plays the role of perimeters in the case of Strebel graphs. In other words, we

consider the extension:
Myn =My, xR (11.1)

Its dimension is

dimg M,,, = 3n + 69 — 6. (11.2)
It has the same dimension as .7,,, and by Strebel’s theorem (theorem
9.1) [Strebel, 1984], and the works of Penner [Penner, 1988], Harer, Zagier
[Harer - Zagier, 1986], Kontsevich [Kontsevich, 1992], there exists an orbifold-

isomorphism, i.e. respecting the quotients by automorphism groups on both sides:
Mg,n ~ Syn. (11.3)

A point of ./\;lg,n, is therefore uniquely represented by a Strebel graph, and the edge
lengths provide a set of real coordinates. The interest of this isomorphism is that the

measure dy1

Ln defined on the set of planar Strebel graphs can be pulled back to
a measure on the moduli space genus 0 surfaces, which requires the introduction of
Chern classes.

11.1 Chern classes over M,

Let us first recall the notion of cohomological class. Let U be a manifold and QF(U)

the set of differential k-forms. For each k, the exterior derivative d maps a k form to
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a k -+ 1 form:

QU) -5 QMUY L QR U) - oY) <L L (11.4)
A k-form w € QF(U) is closed if dw = 0, that is to say if:
w € ker(d)  d:QMU) — QL. (11.5)
It is exact if there exists a € Q*1(U) such that w = da, i.e. :
welm(d)  d:QHU) — Q). (11.6)

The set of closed (respectively exact) k-forms is denoted Z*(U) (respectively B*(U)).
Since d o d = 0, every exact form is closed: B*(U) c Z*¥(U) c Q¥(U). The quotient
space Z*(U)/B*(U) is denoted H*(U), and it is the kth cohomology group of U. The
elements of [w] € H*(U) are cohomology classes, and any two elements wy, wy of a same
class differ by an exact form w; — wy = da.

For instance, if U = R?*\{0} with canonical coordinates x,y. The following one-form
a € QYU):
xdy — ydx
ETa
is closed dav = 0, but not exact, so [a] # 0.

(11.7)

Chern classes are cohomology classes, that are defined on fiber bundles. Let £ be
a complex vector bundle over the complex manifold U, whose fibers are of complex
dimension r: C". U is covered by a set of charts U;, and locally, the fiber bundle can
be trivialized as U; x C". The coordinates on U; are denoted x,. Then, let us choose a
connection one-form w € Q' (£) ® End(C"), whose expression in local coordinates takes
the form
w= (0" — A")dx,. (11.8)
The term A* is a matrix of size r, which acts on the fibers of the bundle. The curvature
F of the connection is an element of Q*(£) ® End(C"), and has the following local
expression:
F = (0"A” — 0" A")dx,, N dz,. (11.9)

Chern classes are defined from the matrix value 2-form F'.

Definition 11.1. Giwen a complex vector bundle L over the complex manifold U with
fibers C" and F the curvature of a connection on L, the Chern classes cq,...,c, are
the coefficients of the characteristic polynomial of F.

T

det(y — F) = (=1)f ey . (11.10)

rXr
k=0

The cohomology class cy(L) is the k™ Chern class of L, it belongs to H*(U).
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The 0 Chern class is just a trivial constant function. In the case of a line bundle
(r = 1), the only non trivial Chern class is the first Chern class ¢;(£), which is an
element of H%(U): it is the cohomology class of the curvature ¢;(£) = [F].
The Chern classes are independent of the choice of connection on £, and are topological
invariants of £. Note that for any trivial line bundle £ over U, ¢;(£) = 0. In the case
of the moduli space M, ,,, the line bundles £,,..., L, over M, ,, are respectively the
bundles whose fibers over (X,,p1,...,p,) are the cotangent spaces Ty X, Ty Xy

of the Riemann surface at the marked points py,...,p,. In the same fashion, n line

bundles £~1, e ,[ﬁn are defined over ./\;lgm:

Li 5 Mg,
(B, P15, 00, T 8g) = (Zg,p1,---,Pn) (11.11)

and

L 5 My,
(Zg,pl,...,pn,[zl,...,Ln,T;iEg) —> (Egapla'--7pn7L17'--7Ln)' (1112)

The first Chern classes of those bundles are denoted:
wi = C1 (ﬁz) and 1;1 = C1 (ﬁz) (1113)

Since ./\>lg7n = Mg, x RY is a product bundle, the Chern classes add, and since R is a

trivial bundle its Chern class vanishes, so that, by misuse of notations, the two objects
¢; and 1) (11.14)

will be denoted the same way. The class ¢; is a 2-form, so (37, L2¢;)" > is a
2n — 6 + 6g form, which is the dimension of M, so it is a volume form on M.
As it was mentioned in section [7.1], the volume of Mg, measured with this volume
form makes sense if one compactifies M,,. By Deligne-Mumford compactification

procedure, ﬂgﬁn is a compact space, and the following volume:

n n—3+3g
/ (Z L,?m) (11.15)
Mg

i=1
is well-defined. Thus, Chern classes allow to define a measure over the moduli spaces
M, . Kontsevich’s theorem relates this measure to a measure over Strebel graphs.

11.2 Kontsevich’s theorem

Kontsevich used the isomorphism between j\;lg,n and ., to express the Chern
classes 1; in terms of edge lengths ¢, and perimeters. Then, he related the measure
(S0, L) PP [T, dL; over M,,,, to the Lebesgue measure over Strebel graphs.
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Theorem 11.1. Kontsevich [Kontsevich, 1992] Using the edge length coordinates in-
duced by the isomorphism ./\;lg,n ~ Fyn (for a point (34,01, ..,pn, L1,...,Ly) corre-
sponding to a graph 'y, € 3, (La,...,Ly)), the Chern class takes locally the form

14 Lo
; = dl =) Ad| = , L;= Py, 11.16
s X a(y)na(f) o (116)
e<e’ ,adjacent top;
where the e’s adjacent to the vertex z; are labelled in counterclockwise order. With this
convention, the notation “e < €' adjacent to z;” means that the sum runs on the pairs
of edges e, €' adjacent to the vertex z; and such that their labels satisfy e < €'. What is

more,
n—3+3g9 ,

25—59—277, n )
H )dge — m (Z; szl> ];!:dLZ (1117)

eGS(Fg,n

11.3 Genus 0 case and intersection numbers

From now on, we shall focus on the planar case g = 0, and require that the number
of marked points be n > 3 (see example [7.2). The previous result applied to g = 0
allows to reexpress the correlation functions of Strebel graphs as integrals over moduli

spaces. Namely, for k& > 0:

95-2(n-+k) ntk RS

Visr(L) = —/ Py, dFp;

* (n+k—3)! Mo,y xR0 ; g
n+k

[[sP—1) (11.18)

25—2(n+k) n+k n+k-3 n+k
Znp(L; Ly, ..., Ly) = —/ P dP;
(n+k—3)! Mo,y xR0 ; g

n k

[ToP =) [ 6(Poin — Lun) (11.19)

j=1

The integrals over P; are easily done:

2572(n+k) ntk k=3
V(L) = m/ <ZL2%‘) (11.20)

Mo ntk i=1

k—3
95-2(n-+k) nr

n k
Zow(L:Ly,..., L) = ——— L) L, 11.21
,k( s L1, 5 k) (n+k—3>'/Mo,n+k <Z w +; Hﬂ +> ( )

i=1

For all the correlation functions, it remains integrals over moduli spaces of marked

Riemann spheres. If one develops the powers of the sums, it entails that the correlation
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functions defined for Strebel graphs are combinations of terms of this form:

/ B, (11.22)
MO,n+k

These called are intersection numbers of My, 1k, and noted:

d dp, d dy,
/ B = B = (T Ta o (11.23)
MO,'rH»k
With this notation, the Legendre transform U, of Z; takes the form

Z/[k(lu’v L;dla' .- adk) =
I & p" < e\ 2d;—2, ) di
§Z_Q2n(n+k‘)!/ Sl B (22l SRV C 2
0

n=0 Mo,ntk+3 \ d= i=1
The term intersection comes from the notion of intersection of cycles on a manifold.
Let us look at an example with 2 oriented cycles v; and 7, drawn on an oriented
surface M (that has real dimension 2). -, can cross 7, in two ways: either the crossing
is direct with respect to the orientation of the surface, in which case one associates
the number +1 to the crossing, or it is indirect and the crossing bears a —1 (see
figure . The intersection number 7; N 7, is the sum of the crossing numbers of
Y2 intersecting ;. It is anti-symmetric: 4 Ny = —72 Ny, In figure 9] we have
v1 N2 = +1. The intersection number is invariant under a homotopic change of ~;
and 79, so actually it is defined for homology classes [v1],[y2] € Hi(M,R), that are
linear combinations of cycles (the addition of two classes is the concatenation of the
cycles), seen up to homotopy. The elements of H;(M,R) are generalized cycles that

have the form ) a;[7y;], where 7; are cycles and a; € R. The intersection number is a

bilinear map, sol(ozl[%] +as[y2]) N3] = aq[y1]N[ys]+alv2]N[ys]. This example covers
only the case of a surface of real dimension 2, with two paths that have dimension 1.

Let us extend the intersection of cycles to a more general case, where now M is an
orientable manifold of dimension r, [y;] € Hi(M) is a homology class of order k (that
has co-dimension r — k), and [ys] € H,_x(M). Note that the co-dimensions of 7, ¥,
must sum up to give r, the dimension of the manifold. In order to define v, N 7o,
we resort to Poincaré duality theorem: it allows to define a form-cycle duality, by
associating to a homology class (a generalized cycle) [y] € Hy(M,R), a cohomology
class (a form) [y*] € H"*(M,R). Then, the intersection number is defined by:

nlN[e] = /7 %

Z—/vi‘
Y2
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[N/
+ + IR

crossing: +1 crossing: —1

Figure 49: On the left hand side, the types of crossings of two oriented cycles with
their crossing numbers ; on the right hand side, an example of two intersecting cycles
on a torus with intersection number 3 Ny =1—-1+1= +1.

= /7{/\75. (11.25)
M

The intersection number of two cycles defined on a manifold is an integer, so the integral
Jy i A5 € Z in this case.

di %k s the intersection of the

In our case, the integral of Chern classes fﬂo LU
,n

homology classes
[N NG € Q.

These intersection numbers are not integers (except for ¢ = 0) but rather rational
numbers because Mgm is an orbifold and not a manifold.
If the set of Strebel graphs has been specialized to planar graphs in this study, it is

because the intersection numbers in genus 0 are known:

(ntk=3)! e g 4o hd o =n4+k—3
(Tay - Ta, )0 = {dl!mdn%l ' n+k

0 otherwise.

(11.26)

12 Computation of the correlation functions and
Bessel functions

The correlation functions are now computed, the whole section relies on formula [11.26]

The modified Bessel function will arise naturally from the generating functions.

12.1 Volumes of Strebel graphs

It is easier to compute the 3rd derivative of the volume generating function. Using

[[1:26] we get:

83 o Mn
mv(ﬂa ) - ;)_ n+3

n!
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1 Mn L2n n+3
- 5 22n nl Z Hn+3 d.! H Td;
i 0
1
2

n=0 : di++dnt3z=n i=1 i=1
f— omn ] Z n+3 N n+3 A
— 22n n)! P T2 di! TLZ di!
00
o 1 nLQn 1
2 2 H 2 [[53 22di g, 12
n=0 di+-Fdppz=n L li=1 v

(12.1)

Let us consider the first kind modified Bessel function Iy(z):

> 22d
Iy(z) = ; R (12.2)
We have
1 n n dz n
Y. frmmar = M = Ress o i o), (123)

di+-+dny3=n

where [2¥]f(2) stands for the coefficient of z¥ in the expansion of f around 0.

Therefore

63 1 = dz n+3 2\n
GaVel) = 537 Res LIy () L)

1 dz In(2)?
= — ¢ — 12.4
Ami Jo 2z 1 — pl2ly(2)/22 (124)

where C is the integration contour of ﬁg below. Indeed, the residue E{_e>(s) f(2)dz
is an integral over a contour C encircling 0, and no other pole of f(z): IZ%_e)(s) f(z)dz =
5= $ f(z)dz. The size of the contour is fixed after exchanging the sum and the residue.
Once they are formally exchanged, one ends up with 3= ¢, dz >, s Io(2)" 3 (uL?)™.
The sum is convergent iff ’IOZ—(QZ)‘ > pL?, so the contour C has to surround +u(uL?),

defined as the O(u) solutions of

U2

 Io(u)’
The function u?/I(u) is plotted in figl50] As one sees on the plot, the O(u) solutions

of equation cease to make sense when |u| > u. &~ 2.58. This value is critical, and

uL? (12.5)

the study of its neighborhood is crucial to get the large n limit of volumes.
The contour integral can be evaluated; it consists of residues of the 2 poles at
2 = Fu(ul?):

83 1 [0(U)3

oY) = L S — B

105



0.5

-4 -2 3 u(p) 2 4

Figure 50: Plot of the function #2;) Figure 51: Contour of integration

Io(u)*
21 (u) — ulj(u)

(12.6)

The derivative of the Bessel function [ is the Bessel function I; (see appendix , thus

3 B Io(u)? ~ulp(u)? du
a_/ﬁv(“’L) T 2—uli(u)/I(w) L2 du (12.7)
Using I (u) = Ip(u) — I1(u)/u, we can integrate:
02 _w¥(o(u)? — L(u)?)

Further integration is not doable explicitly, but this formula fits for our purpose of
getting the behaviour of the large n volumes (see section .

12.2 k-point functions

Let us fix dy, ..., dy, and note D o Zle(di — 1). We begin with the auxiliary gen-

erating function . In the same manner as for the volumes, we introduce the Bessel
function Iy(z) and we have:

1 pn L dz .
uk(/.L,L, dl7"-7dk> = 52 Hk 21 Reszﬁo m[o(z) +3
n =1 "

11 ]{zwdz Io(2)3
i [ d! Jo = 1 —pl?ly(z)/2?

(12.9)

The residues at the two poles z = +u(uL?) can be evaluated easily. Besides, if D < 0,

there can be another pole at z = 0. We have

Res at +u
1 U2D Io(u)4

Uk(N,L,d1,7dk) =
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1 1 Io(2)3
- Res, 2D+l g, T0F)
* 2 ][ d! EPem0 2 T2 ulL?1y(z)
Res at?)rifD<0
1 U2D [0(U)4

gnd'Z g s #4092
(1

(12.10)

If D < 0, the first term, proportional to u?” is a Laurent formal series of uL?,
starting with a negative power, whereas the last term contributing only if D < 0, is a
polynomial of 1/uL?. Since the whole result should be a power series of pL? with only
positive powers, we understand that the last term just cancels the negative part of the

first. We thus may write:

U, Lidy, ... dyy) = dei! <2[:zu) ﬁ)(zf)l(u)x (12.11)

meaning that we keep only positive powers of uL? in the Laurent expansion. We
observe that upon multiplying by [], d;!, the right hand side depends only on D and

u, we write it

1 u?P Io(u)?

mﬁ)(u) , fo(u) = (2]0(u) —uli(u)

The relationship to our previously defined generating functions is

Z/{k(,u, L, dl, Ce ,dk> =

) L (12.12)

0 L2dzL 2d;
Zk(uaL;le"'uLk> = L2k Z HW 8573 (:ukuk<:u7L7d177dk))
di,...,dp=0 i=1 [
(12.13)
So
Zi(p, L L1, -5 L)
2% LZdZL M sk 2
= I* ) HW 0,7 (1" fo(u(uL?)))
dy,...,dy i=1 v
k=3 [ k72K 2 LleL 2di
- 9, pL ZfD(u('LLL ) Z H 92d; (], 12
D di+-+dp=D+k i=1

. dz
= aﬁ 3 /,I/kLZka ( (IU,L ))RGSZ%O m HI(] ZL /L))
D

— 85’3 P L Res, o —— 21+2k HIO (2L;/L) Z 2720 fp(u (uLQ)))

D=—k
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(12.14)

Carrying out the sum over D is possible if we impose |z| > |u|, so enforcing this
condition, one gets:

1 fD 1 z IO(U)4
N 12.15
142k Z z2D (u% 22 —u? 2Iy(u) —uly(u) / ( )

Then we can rewrite Z; in the following way:

Zy(p, L L Ly = T blw’
. Li Ly, L ot W 2Ug(u) — a1 (W)

fcﬁ ililo(zLi/L) )

bes [ kror | 1 Io(u)* :
- a” <,u L [W QIo(U> (—Lh(u) Zl_Il IO(ULi/L) ] )
(12.16) !

The contour integral is now C (see figure , because, though the residue is around 0,

we imposed |z| > |ul, in order to sum over D. Its Laplace transform is

1 Io(u)?
Filp Ly 21, o) = 0,77 (ukL% [W 2]0(U>0(—L]1(U) H<Zi2 a U2/L2)_1/2] ) |
+

=1

(12.17)
Again, note that the third derivative simplifies the result:
\ o [ pFL* 2/ 72y-1/2
a0 Fk(p, Ly 21, . . =0 L?) . (1218
o k(:ua %1, 7Zk) m w2k 2][) _ U]l H / ( )

In the end, we see that we can compute all the k-point functions we defined. More
generally, for the set .%,,(L) we can compute all the correlation functions expressible
in terms of Chern classes 1, ...,%,. Therefore, we can compute n independent cor-
relation functions (that is to say observables depending on n independent sets of edge
lengths). The number of independent observables one can compute is the number of
independent edge lengths in ., (L), which is 2n — 6. Hence we are able to compute
approximately half of the possible independent correlation functions. Among the cor-
relation functions that are not computed here, there is the correlation function that

compute the average distance (on the graph) between two vertices for instance.
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13 Link with Delaunay triangulations

Strebel graphs and Delaunay triangulations are very close to be dual sets, that is,
Strebel graphs and Voronoi tessellations look alike. Indeed, consider a Delaunay trian-
gulation with n > 3 vertices T € T,,. To each edge e € £(T) is associated the angle 6,.
At each vertex v € V(T'), the constraint

> 0.=2r (13.1)
e—v
holds. 7" has 3n — 6 edges. Now, consider the dual 7™ of T'. It is a Voronoi tessellation
with n faces, 3n — 6 edges, and trivalent vertices (as the faces of 7" are triangles).
The label £« of an edge e* € £(T*) dual to the edge e € E(T) is simply the angle 6,
associated to e: £.- = 6, The constraint becomes

>l =2r (13.2)

e*—f*

for any f* € F(T*). Therefore, T* is an isoperimetric Strebel graph of size n:
T* € Sn(2m). The inclusion 7 C %, may incite to use the results obtained for
Strebel graphs in previous section to Delaunay triangulations. Yet, many discrepan-
cies appear when looking at the details of the models, preventing from making a strict
correspondence between the models. Still, it is possible to compute correlation func-
tions of Delaunay triangulations using cohomology classes, and the common feature of
Bessel functions appears. Hereafter I stress on the differences and the similarities of
the models.

13.1 Differences between Strebel graphs and Delaunay trian-
gulations

First, the dual set of Delaunay triangulations is a strict subset of isoperimetric Strebel
graphs. Indeed, consider the Strebel graph depicted in figure . It belongs to .7 5(2)
and yet, its dual (depicted in dashed lines), although it is a triangulation, does not
have the structure of a Delaunay triangulation, because of the edge € linking the vertex
vy to itself: Delaunay triangulations are simple graphs.

Second, once one knows that 7, & ., (27), one may still want to use the local
expression of Chern classes (see theorem and transpose the volumes of Delaunay
triangulations in terms of intersection numbers of Chern classes, by integrating the
cohomology classes on a subset of My ,. It happens that this is doomed to fail, for the

following argument, that we developed in [II].

109

@



Figure 52: Example of an isoperimetric Strebel graph (black, plain lines) in .7 5(2)
whose dual (red, dashed lines) is a triangulation, but cannot be a Delaunay triangula-
tion.

Relation with topological Witten-Kontsevich intersection theory For a De-
launay triangulation T" € 7T,,, n > 3 with n vertices, the formula defining locally
the Chern class 1; for each face 7 in the Strebel graphs case, can be transposed in order
to define a cohomology class 1, for each vertex v € V(T'), provided that one replaces
l, by 0., and L; by 27:

1 0 0!

b = dl =) Ad| =5, 13.3
= 2 (5:) 1 (5) (s
with the same counterclockwise orientation of the edges as in formula [11.16] This idea
of applying the local definition of Chern classes to the case of Delaunay triangulations
was introduced in [David and Eynard, 2014]. The authors showed that indeed, the

measure on Delaunay triangulations satisfies:

n—3
22n—5

T > (21)*, . (13.4)

veV(T)

dv, (T, 0) =

Also, there is a one-to-one correspondence between the set 7, and the moduli space
My, of conformal structures of the sphere with n marked points, so we identify 7,
with Mg,. Thus, it seems that the class 9, is a Chern class of a U(1) line bundle
L, — My, attached to the vertex v, in the same manner as i, = ¢;(£;). Yet, in

order to be a Chern class over the set of Delaunay triangulations, the class v, has
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to be the curvature of a global connection. In the same paper of David and Eynard
[David and Eynard, 2014], the 2-form 1, was defined explicitly as the curvature du, of

the U(1) connection

- % SO 0F,) dy(f) (13.5)
f—v

In the sum runs over the faces f adjacent to the vertex v. ~,(f) is the angle
between a reference half-line v, with endpoint v and the half line starting from v and
passing through the center of the (circumcircle of the) face f. fy is the leftmost edge

of f adjacent to v (see figure . This connection is locally continuous inside each cell

Figure 53: Construction of the connection w,

(a cell corresponds to a triangulation structure T'), but, as is shown in next paragraph,
not continuous at the boundaries of the cells. Hence, the cohomology class is not a

Chern class.

Discontinuities of the connection The total cohomology class of interest through
on Delaunay trinagulations is

(T, {db}) = Z Py (13.6)

veV(T

Inside a cell, that is for a triangulation structure 7', the following equality holds

(T {d0}) = du(T, {d0}) , u= > u, (13.7)

veV(T)
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The curvature 2-form ¢ and the 1-form u (the global U(1) connection) depend
implicitly on a choice of triangulation T of the marked sphere, which is supposed to
be kept fixed, but the final measure p and its integral over the moduli space does not

depend on the choice of triangulation.

In our formulation, the moduli space M,,, is the closure of the union of disjoint
domains M) where the triangulation 7" is combinatorially a given structure of Delau-
nay triangulation. Two domains M and MT meet along a face (of codimension
1) where the four vertices of two faces sharing an edge are cocyclic, so that one passes
from T to T" by a flip, as depicted on Fig. [54. Hence, more generally, the 2-form

can be written in this form:

v= > X du(T,{d6}) (13.8)

T triangulation
structure

where Y, is the indicator function (hence a 0-form) of the domain M) and u(T, {d6})
the 1-form for the triangulation 7. David and Eynard |[David and Eynard, 2014]
showed that this measure is continuous at the boundary between two adjacent do-
mains M{ and MY, so that the definition is global.

The total class ¢ is a Chern class if it is the curvature of a connection. Let us define

i= >  xmu(T {dd}). (13.9)

T triangulation
structure

Then @ is a global U(1) connection, and its curvature is

di. = > Xy du(T {d6}) + dxr) Au(T, {df})

T triangulation
structure

= v+ > dxm Au(T,{do}) (13.10)

T triangulation
structure

Therefore, ¥ is a Chern class if the last sum vanishes. Inside a cell, one has obviously
dx(ry = 0, but on the boundary, if u is not continuous along a flip, ¥ might not be
exact. In this case, the measure over the Delaunay triangulation would be different
from the measure over the moduli space of marked Riemann spheres.

Let us therefore compare the 1-form u for a triangulation 7" and the corresponding
I-form u' for the triangulation 7" obtained from T' by the flip (2,4) — (1, 3) depicted
on Fig. The angles 6 of the edges of T" and 6’ of the edges of T are a priori different
for the five edges depicted here (when the points 1, 2, 3 an 4 are not cocyclic) but only

six among the ten angles are independent, since they satisfy the relation at vertex 1

1o + 014 = 015 + 015+ 01, (13.11)
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Figure 54

and the three similar relations for vertex 2, 3 and 4. These relations involve for instance
that 624 + 675 = 0. From the definition [13.5] of the 1-forms u and u’ one computes easily
u — u' (which depends a priori on the choice of section angles v, ... 74). However we
are interested at the difference at the flip between the Delaunay triangulations 7" and
T’ i.e when the 4 points are cocyclic. Then 619 = 65, 614 = 01, Oa3 = 05, O34 = 0%,

and 0oy = 013 = 0 and we get

U(T, {dﬁ}) — U/<T/, {d@l})|ﬂip = (‘914 + 923 — 912 — 934)((1912 — d9/12) + (014 + 923)d924.
(13.12)
Despite of the apparent dihedral symmetry breaking of formula [13.12] it is actually

symmetric, and using the relations holding at the vertices, it is equivalent to:

w(T,{d0}) — o' (T",{d0'}) gy, (012 + O34)(dOy — db:2 + b3, — dOs4)

1
2 / /
Therefore the 1-form w is not continuous on the boundary of a cell T'. This means that

1 fails to be the curvature of a connection at the boundaries of the domains M%T), SO

it is not a Chern class.

13.2 Common features of the models.

Despite the class 1 is not a Chern class, we showed (see chapter that the measure
over Delaunay triangulations of size n is the Weil-Petersson measure over My, — up

to a factor 5:=. Therefore, the volume

V7 = Vol(T!) = / dv, (T, 0) (13.14)
7 ()

T€Tn
triangulation
structure
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Figure 55: Plot of the function u = vV VZJ;(2v' V7). The relation is valid for V7 €
[07 Vcrit] .

of Delaunay triangulations of size n is equal to the Weil-Petersson volume V/'? =
Voly 5(My.,,) of the moduli space My,,: V.7 =V ?. V”? was computed by Zograf
[Zograf, 1993], Kaufmann, Manin and Zagier [Kaufmann et al., 1996], Manin and Zo-
graf [Manin and Zograf, 2000, and more generally by Mirzakhani |Mirzakhani, 2007,

who extended the formula for higher genus cases. In the same manner as for the vol-
umes of Strebel graphs, one can encode the volumes V7 Weil-Petersson volumes in a

generating function:

& n—2
g 1% 9
V() = v,
(1) nZ:?)(n—Z)!(n—i’))!
& n—2
" yro. (13.15)

(n—=2)(n-=3)""

Il
w

n

The generating function is defined for p close to 0. Kaufmann, Manin and Zagier

IKaufmann et al., 1996] showed that this generating function satisfies the relation:

no= Z%(W(u))m

= VV7J,(2VV?) (13.16)

where J;(z) = 231 % (%) is a Bessel function of the first kind. It is related
to I1(z) by Ji(iz) = il1(z). Equation |13.16|is valid for p close to 0. In figure |55 is
plotted the function x(V?). As for Strebel graphs, there is a critical value p, =~ 0.312115

above which equation [13.16|is not valid anymore. Hence, a common feature between

Strebel graphs and Delaunay triangulations is the presence of Bessel functions for the

generating functions of the volumes.
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This common features incites us to define k-point functions for Delaunay triangulations
in a similar fashion as for Strebel graphs. Let us consider a Delaunay triangulation
with n + k vertices (n > 3, k > 0), for which one allows k vertices v, 41, ..., Uyt tO
have respective conical singularities ©4,...,0; € Ry, that is, at those vertices, the

condition [13.1] transforms into:

> 0.=0; Vie{l,... .k} (13.17)
e—Unti

It is equivalent to allowing some perimeters L; to be different from L in the case
of isoperimetric Strebel graphs. Let us note ﬁ+k(@1, ..., 0y) the set of Delaunay
triangulations with & vertices satisfying the condition [I3.17, Note that Delaunay tri-
angulations have unlabeled vertices, so the k vertices can be any of the n+ k vertices of
the triangulation. Allowing k vertices to have some default angles enables to test the
sensibility of Delaunay triangulations to the change of constraints. Then, in the same
manner as for Strebel graphs, the k-point function ZZ L (O1,...,0y) is the volume of

the stratum

Z'Zk(®17 sy Gk) = V01(7:l+k(®1, cey @k))
- ) dvnsi(T,0,0;). (13.18)

T triangulation
structure

Those correlation functions are expressible in terms of Weil-Petersson volumes, and a
similar analysis as for the volumes stands. Therefore, the study of Strebel graphs has

allowed us to define computable correlation functions for Delaunay triangulations.

14 Asymptotic behaviour of the volume and the
one-point function

It remains to study the large N behaviour of the observables. Since n + k is the
number of faces of the Strebel graph (number of vertices of the dual triangulation),
the large n limit should be the continuum limit of large maps. It should tend towards
the Brownian map (according to [Le Gall, 2013]-[Miermont, 2013]) and it is expected
to converge towards Liouville theory.

Large n expansions are controlled by the singularities of the generating functions,
that is to say we have to study the behavior as uL? — p.L?, where . is a point (closest
to 0) at which the generating functions are not analytic.

Volume and correlation functions large n asymptotics are then related to the sin-
gular behavior of their respective generating functions when approaching the critical

point fi.
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Figure 56: Plot of the third derivative of the generating function of the volumes 0,V
in terms of pL? The generating function diverges at ji.L>.

We first focuse on asymptotics of the volume, using the explicit computation we
did in the second part. In order to compute the one point function at large N, we
enforce the saddle point method in a second time. This allows us to identify a typical
length scale for large maps. Last, we use Topological Recursion results and the critical

Spectral curve to compute n-point functions.

14.1 Asymptotics of the volume

The third derivative of the generating function for the volume is given by formula

of section 2.1t )
Io(u)

- 2Ip(u) — uly(u)
A plot of this generating function is given in figure [56 It diverges at the critical point

(14.1)

9V (1, L)

pe, for which 27g(u(pe)) — w(pe) I (u(pe)) = 0. This critical value is precisely the one

for which I(:L(gf():)) is maximal (see figure .
If p is close to p, i.e. u is close to u., we have:
2 2
ILL . uc — 4 2 3 UC - .
LT T (ue — u)* + O ((ue — u)?) : 2z 0.2005
ie.
2u? m 2u?
Ue— | — 1-—=1+0(1-p/p)) ——=1223... (14.2)
ut —4 [e uz —4
So we get:
C 1 ]0(U6>3
PV(u, L) ~ —— +0(1 , C=—-—"F-"_=1869... 14.3
WD) e +00) W e (143)
He
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93V (1, L) behaves as (1—pu/pc) ™2, so V(p, L) has a (1 — 1/ puc)*? singularity. Writing
that

Z“ C(n— (14.4)

A / M n>0 inuc

and comparing with:

= Va(L), (14.5)
“— (n—3)!
we find the large n behavior of the volume
(2n — 7! (2n — 7)) L2 9
Vo(L) ~ C = : L7 =1.902...
) o 2n 2n(pe L) g
~ CnlA(L)"n"?
n—oo
with A(L) = o L2 The exponent —Z is the same as the one for the large n volumes of

Delaunay triangulations. It is a unlversal feature of pure gravity random map models,

so this confirms that Strebel graphs lay in this universality class.

14.2 One-point function — Saddle point method

We want to study the large n limit of the one-point function:

fa (L %) © Zua(L, L)
=... (14.6)

2n—4
_%Res@h( )2e™ —2)(Info(2)=2In 2+ 515 In fo(2L1 /L)) (14.7)

o z—0 2

The detail of the computation has been transferred to appendix [B] for readability, as

the calculus is close to the one for the volume. Let us define

Sl (IE ) (14.8)

S, is an even function. In the large n limit, we use the saddle point approximation

Sn(2) =Inly(z) —2Inz +

to compute the residue, hence we have to find the saddle point of S,. First, let us
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compute its derivatives.

) o Li(z +iy) 2 1 Ly L (B (z+iy))
a—ySn(x—l—zy)— To(x + iy) _x+z'y+n—2flo (L (z +iy))
(14.9)
0 i) — B I (z + iy) Rx+iy) 2
dy? Sul@ +iy) b (@ + ig)lo(e +1y) Iz +iy) (v +iy)?
(14.10)
1 (ﬁ)g L h(FEery) R(RE+iy)
n—2\ L Bz +ig)l (B (e +iy) 13 (5 (x +iy))
(14.11)
(14.12)

We distinguish three regimes for the behaviour of L, at large n. For each regime, we

may compute the saddle points and carry out the residue. Let us note in all the regimes
_ L

[ ==

Regime 1: [ — 0 when n — oo In this regime, the term ﬁ In I (%z) is negligible,

the saddle point is the saddle point of In Iy(2) — 21n z, it is independent of L, /L, and

it is worth z = +wu,. This gives

L L ut fu2 4
Zya(L; L) ~ Cnl [L2A; (D] " n 2 Iy (nlu.) (14.14)
(14.15)
Io(uc)

with A;(l) = =5 (it is independent of [, but the parameter is kept to uniformize the
notations with the other regimes).

Regime 2: [ = O(1) when n — oo We use the asymptotics:

L) = —— (1+O<i)) (14.16)

r—_>oo 2Qmx

which gives:

Sp(z) =In (@) +1z+0 (m—”) (14.17)

n
By the same argument as in the first regime, there are two saddle points z¢(l), x1(l) =
—1xo(l) situated on the real axis. Again, let xy be the positive one. The equation
S! (zg) = 0 gives:
zoli(z) — (2 — lxg) Lo(z0) =0 (14.18)
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At the point x(1):

Sp(zo) = InIo(zo) — 2In g + lzo + 0(1) (14.19)
0? 41 4
—Sp(w)=—(1+—— 5 =1 1 14.20
By (x0) ( + P ) +o(1) ( )
9\ 2
=—1+ (l — —) +o(1) (14.21)
To
=0(1) (14.22)
We then have:
n (n—2)lzo(l) /
fa (L, ﬂ) = (n— 2)!L2"‘4[0(x0§l))4 e 2n
L zo(1)> 4 /21 (n — 2)lxo(l) /(12 + 1)ao(1)2 + 5xo(l) — 4
(14.23)
Of course, the factors 27 simplify, but in this form, we see that f,, in the second regime
is matching the one of the first regime. Indeed, as % ~ nl, we have:
Ll enlmg(l)
Iy | —xo(l ~ 14.24
’ ( L of )) n—oo  /2mnlx(l) ( )

. —— . NoT
What is more, if [ = 0, the last fraction is equal to —\/@. So we recover the first

regime in this limit, and more generally, in this regime:

Zpi(Li L) ~ Cnl [L*A; (D)]" n 2 Iy (nl (1))

n—oo

with Ay(7) = i),

Regime 3: | —+ oo when n — oo In this regime, [ > 1. We can show that in this

regime, we have necessarily, for the saddle point xg:

9 — 0 (14.25)
n—o0
By 1420
We can then expand x( as a series of n® (%)B We find:
zo(l) = % + g% + 0 (%) (14.27)
We then get: ,
%f(xo(z)) _ —%(1 10 <%)) (14.28)
119



and

InIy(2n — 4)) (14.29)

2 2

In the end, we obtain:

fa (L, %) =nlL*"* {10 (%)T (é)QM n2/mlh(2n — 4), (14.30)

so in the third regime:

Zp1(LyLy) ~ Cnl [L*A3(1)]"n™2Iy(2n)

n—oo

with As(1) = & I (2).
To summarize, for large n (for which Inn is negligible compared to n), the one-point

function has the following behaviour :

lln Zna(L; Ly) _ I A + In Io(nlzo(l))

!LQn —2
TR W) + L)), " (14.31)

The plot of this function is displayed in figure[57] The domain of validity of each regime
is shown on the plot. One sees that in regime 1, the one-point function does-not depend
on [, as it is nearly constant, so the coupling between the small face and the rest of
the graph does not appear at the leading order ; in regime 3, the dependence becomes
linear, so again, the face with a large perimeter decouples from the rest of the graph.
Last, in regime 2, for which L; ~ nL, one sees a transition phase and a non trivial
dependence of the one-point function. Therefore, the face with perimeter L; shows a

strong coupling with the rest of the graph when L, scales as n.

15 Extension to genus 1

What makes all the previous computations possible is the fact that intersection numbers
of Chern classes in genus 0 are known in a closed formula. This crucial fact is also true

for genus 1:

1 n! =

Following exactly the same steps as for genus 0, we end-up with the explicit formulas
for those functions:

1 21o(u)

24 210 (u) — ul (u)

1 dF & i L.
Z,i(,u, L; Ll,...,Lk) = ﬂd_'uk (/LLQ)nJrk [Z2n] ([O(Z)nH[O (sz>>
n=0 j=1

Vi, L) =
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Figure 57: Plot of the dependence of the one-point function in terms of In/

1 o |1 21o(u) (L
= aF <<“L> lﬁzz()(u)_uh(u)llfo <I>D

The results are very similar to the genus 0 case: instead of having Iy(u)* at the nu-
merator, we get Io(u), and the order of the derivative with respect to p changes also.
Therefore, the combinatorics of isoperimetric Strebel graphs for genera 0 and 1 are

very similar.
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Part V

Spectral curve and topological
recursion for Strebel graphs

The expectation values of the observables defined on isoperimetric planar Strebel
graphs are explicitly known from previous chapter. Taking advantage of this result, it is
possible to study the continuous limit of any k-point function Z,, ;. However, as we see
in the case of the one-point function, whose continuous limit was approached via saddle
point approximation, the computations are rather long, and for k-point functions with
k > 2, the saddle point approximation is way subtler than for the 1-point function.
Moreover, the continuous limit has to be derived for each correlation function, which
means that, for the moment, we do not have a global view of what happens in the con-
tinuous limit, and hard to identify towards which theory it converges, if it does. It is
therefore useful to be able to derive those correlation functions, encoded in generating
functions, in a more systematic way. This way, in our case, is topological recursion,
which is a procedure to compute certain class of generating functions of combinatorial
models (among others), from the data of a spectral curve.

This chapter treats the same aspect of random maps as the previous one, that is, the
computation of expectation values of observables, and it is realized thanks to topolog-
ical recursion applied to the same model as the previous part, isoperimetric Strebel
graphs. First, we introduce the procedure of topological recursion, developed by Ey-
nard and Orantin [Eynard and Orantin, 2007]. Then, to apply it to Strebel graphs, we
compute the spectral curve in our case. It allows to compute the generating functions
of correlation functions defined previously, and also to generalize the computation to
higher genera (and not only to planar correlation functions). As we will see, the con-
tinuous limit of Strebel graphs corresponds to critical point of the spectral curve, found
by tuning the parameter p of the model to a critical value p.. We exhibit the critical
spectral curve and the scalings when the parameter u is close to p.. Once the criti-
cal spectral curve and the different scalings are identified, there are two consequences.
First we can determine to which theory the continuous limit of Strebel graphs is eligible
to converge. We show that in the continuous limit, the model of Strebel graphs should
be equivalent to the (3,2) minimal model, that we define briefly, dressed with gravity.
This (3,2) minimal model corresponds to a conformal field theory with central charge
c = 0, known to describe pure quantum gravity once dressed with Liouville theory.
Second we are able to compute easily the behaviour of the correlation functions in the

large n limit (the continuous limit).
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The results proven in this section may make appear the one-point function analy-
sis with the saddle-point machinery of previous chapter completely obsolete. Yet,
this pedestrian study was necessary in order to spot the “interesting” regime for the
marked perimeters Ly, ..., Ly (for which the behaviour of the generating functions is
non-trivial). Indeed, we will use here the regime L; ~ nL found in chapter . This

chapter is based on the article [I].

16 Spectral curve and topological recursion

Topological recursion was developed by Eynard and Orantin
[Eynard and Orantin, 2007]. It is a procedure that allows, from the data of a
spectral curve S, to compute recursively invariants wg (21, ..., 2), which are mero-
morphic forms on a Riemann surface ¥, where g, & € N. The recursion is on the
quantity 2 — 2g — k, which is the Euler characteristic x4, of a compact Riemann
surface of genus ¢ with & boundaries, and Eynard proved [Eynard, 2011] that the
invariant w,, is related to integrals over the moduli space M, ; of Riemann surfaces
of genus g with k& boundaries, hence the name for “topological recursion”. Let us give
the definitions of the spectral curve and of topological recursion.

First, let us precise the notation: given a Riemann surface 3, we note .#'(32) the set
of meromorphic 1-forms on 3. In the following, the meromorphic k-forms we refer to
are not exterior k-forms but rather elements of .#'(X) ® --- @ .4 1(22.

k times

A spectral curve § = (2, C, z,y, wp2) is the data of

e a Riemann surface ¥ (not necessarily connected nor compact) ;
e a base curve Yy, which is also a Riemann surface, we consider here that ¥y = C ;
e two meromorphic maps z, y : X — C ;

e a symmetric meromorphic 2-form wp o € ' (3X)@%™ .4 (2) whose only poles are

double poles at coinciding points with this behaviour wpa(z1, 22) ~ dz1@dzy

2z (F1722)
analytic.

Figure allows to visualize the curve Y, the base curve ¥y and the map x. In an
equivalent way, if we define the 1-form wy1(z) = y(2)dz(z), the spectral curve is also
the data of (X, C, z,wq1,wo2). In an abuse of notation, later we shall identify the map
x with the variable x(p) for p € ¥, and treat = as a variable on the base curve ¥, = C.
The maps z and y allow to embed the curve ¥ in the space C x C.

The recursive formula defining the w, requires the introduction of the branchpoints

of S, the involution o,, and the kernel K,(z; z).
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x X(2)
Zo

Figure 58: Representation of a spectral curve, with the elements X, ¥y = C and =.

e A branchpoint a € ¥ of is a point of the curve such that dz(a) = 0. Generically,
the branchpoints are simple, that is, the zero of dx in a is simple. A branchpoint
a of order m is a zero of order m of dx(z).

e In a neighborhood U, of a simple branchpoint a (in this manuscript, all the

branchpoints are simple), there exists an analytic involution o, : U, — U,,
o, # 1d, such that z(z) = 2(0,(2)).

e The kernel K,(z, z1) associated to a simple branchpoint a is given by the formula:

1 st:o'a(z) w072(217 S)

Ka(z21) = 2wo,1(2) = woi(0a(2))’

(16.1)

1

Ro(a) 18 @ 1-form in z.

it is a 1-form in z;, and

The formula of topological recursion for £k > 1, g € N, 2 —2g — k < 0 is:

wor(z1, o) = Y Res Ko(z;21) [wg1k41(2,0(2), 22,5 2)
dz(@)=0

/

+ Z Woy 1410 (25 11 )Wey 11115 (0 (2) 12) (16.2)

g1t+g2=9
IﬂJIQZ{ZQ,...,Zk}

where Y ' means that the sum excludes the pairs (g, I;) = (0,2). On the right hand
side, the invariants wy j satisfy 2 — 2¢' — k' > 2 — 2¢g — k, therefore this formula is a
recursive formula on 2 — 2g — k. For all g, k, w,; is a meromorphic k-form on X.

The so-called free energies F, with g > 1 are computed from those invariants through:

1
e Y Res®(2)wya(z), (16.3)

dz(@)=0
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where @ is a primitive of ydx, that is, once a base point o € ¥ is chosen:

B(2) = / iz, (16.4)

There exist other formulations of topological recursion (see Kontsevich-Soibelman
[Kontsevich and Soibelman, 2017],  [Andersen - Borot - Chekhov - Orantin, 2017]),
but this one fits for our purposes. This recursion relation is a type B-model, that is to
say it defines invariants w, , from a complex curve S. In section , we shall see that a
theorem from Eynard [Eynard, 2011] relates those invariants computed from a specific
spectral curve (found in next section) to the problem of enumerating isoperimetric
Strebel graphs. Problems of enumerative geometry are type A models. The interest of
topological recursion for us is the correspondence between a type A model and a type

B. This correspondence is the mirror symmetry.

An important property is that the invariants w,; are unchanged under a
reparametrization of the spectral curve. What is more, if one adds to y a polyno-
mial in x, the kernel K,(z; z;) remains unchanged. Indeed, if one adds a monomial 2™,
then

wo1(2) —woi(0a(2)) = y(2)dz(2) — y(ou(2))dr(ou(2))
+z(2)"dx(z) — x(04(2))"dz(04(2))
= y(2)dz(2) — y(oa(2))dz(0a(2)).

Therefore, the invariants w, ; remain unchanged under y — y + ™.

(16.5)

17 Spectral curve for Strebel graphs

The spectral curve of the planar isoperimetric Strebel graphs derives from results shown
by Eynard in [Eynard, 2007], [Eynard, 2011]. We have two parameters u, L in our
model, so actually, we need to determine the family of spectral curves S(u, L) indexed
by those parameters. In order to express them, let us transform the formula for the
generating function of the volumes in terms of times t;. We showed in chapter [[V]
using a theorem by Kontsevich, that the generating function of the volumes V(u, L)

can be expressed in terms of Chern classes. More precisely, if one looks at equation

2.1k

X 53, n n 2d;
vier) = 3320 5 (M)

n=3 " di4tdn=n—3 \i=1 0
B o) Hn o L2d
= lij{: g <:<j£: Qdd!7d> >
n=0 d=0 0
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— 4 <6523"—0M§51Td> (17.1)
0

where, to pass from the first line to the second line, we used the convention
(Tgy - Ta,)o = 0if n < 3ordy +...d, # n— 3. We shall write it in the follow-
ing form:

V(u, L) =4 <€% 23‘;0(2d—1)!!t2d+1(u,L)m> , (17.2)
0

with the times tog 1 (1, L) = L We can define the even times — which do not appear
+1 M 2a)!

here thus one can choose them arbitrarily — to be to4(p, L) = %, so that in general
ford>0 ]
uL

tara(p, L) =~ (17.3)

For a given (u, L), the spectral curve S(u, L) of isoperimetric planar Strebel graphs
is defined by the times ¢(u, L) = (t1(p, L), to(pt, L), t3(pe, L),...). They are functions
of p and L, in the following we may drop the out (i, L) in the formulas to get more
readable expressions. Once S(u, L) is found, Topological Recursion allows to compute

the quantities
Fy(pu, L) = <e%2310(2d_1)”t2d+”d> forg > 2, (17.4)

g
which are the generating functions of the volumes of isoperimetric Strebel graphs of

genus g:
Iun
Fy( L) = S~ Bovol(7,(1). (17.5)
n=0 ’

It has been shown (see e.g. [Eynard, 2011]) that for g > 2, one can express the free

energies I, in terms of Chern classes 74 with d > 0:

Fg(M’ L) _ <€% 23021(2d_1)”£2d+1(#7L)7d> (17.6)

g

provided that the family of times #(u, L) = (£y(u, L), t2(p, L), £3(p, L), . .. ) are related
to t by

L = (25— . — (2k +2j + ! .
=Y Qj—j't{twﬂ c o k=) ST Ftoprojrs.  (17.7)
:0 * ]:0 . .

It is necessary to have g > 1 for the equality to hold. Indeed, for genus 0, we
saw that (74, ...74,00 = 0if dy + -+ +d, # n— 3. But if d; > 0, we must have
di+---+d, >n, so

<6§ zsil<2d—1)!!t‘zd+m> — 0. (17.8)
0

Still, the spectral curve associated to the invariants Fj; must be the spectral curve

associated to V), because the times ¢ are the same. Eynard showed in [Eynard, 2007]
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and [Eynard, 2011] that the spectral curve S(yu, L) for the invariants Fy(u, L) is:
le & dZQ )

S(u, L) = <@C,fc(u7 L),y(p, L), o —2)?
v(pu, Lyz) = 2° + 1

. (17.9)
y(u,L;z) = z — %ZLO fop g2kt

Therefore the Riemann surface is ¥ = C, the base space is ¥y = C, and the Bergman

dz1®dzo
(z1—22)?"
i, L. In order to get explicit formulas for the functions x and y, we simply need to

compute the times #(u, L), defined by equations in terms of the times ¢(u, L).
Time #,(p, L)
The equation determining £;(u, L) is

§ S .
i L) =p) gL = mlo(L/Ei(m, L)), (17.10)
Jj=0 ha

kernel is B(z1, 22) = Those three objects are independent of the parameters

That is to say:
t L)L?
1l L) = pul?, (17.11)
Io(v/ta(p, L)L?)
which is precisely the equation defining u(uL?). This means that actually £;(u, L) =

u(uL?)?
Iz -

Times f2k+3(u, L)

Once the time #; found, the derivation of times o3 is straightforward, by application
of formula For £ >0

) = (2k+2j+ 1)
toprs(p, L) = Z 157 1 ttok+243
= (2k 4+ 1)1 274!
pL+? & 1 e

: f
(2k + DI £ 2204041 (B + 1+ )11 !

puL2k+2 > Y20kt
(2k 4+ 1)Nu(pL?)F+1 jZO 225k (k + 1 + j)lj!
B ,uLQkJrZ
2k + 1)!!U(ML2)k+1Ik+1(u)a (17.12)

where I}, is the k" modified Bessel function of the first kind (see appendix . Hence,

the functions x and y can be expanded in terms of Bessel functions of u(uL?).

le (24 dZQ )

S(u, L) = (@,C,x(u,L),y(u, L), [CE=FSE
Liz) = 22 4 WlD?
{x(,u, j2) =22+ B (17.13)

D o pL? oo LIy (u) 2k+1
y(:uv L7 Z) =z 2u k=0 (2k+1)!luk & ’
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The functions = and y allow to embed the spectral curve in C x C. In figure
are depicted the intersection of this embedding with R x R of the spectral curve for
different values of the parameter uL?. The generic case corresponds to the first plot.

In order to run topological recursion, it is necessary to identify the branchpoints, the

involutions o, and the kernels K,(z; z).

e There is one branchpoint: dz(a) = 0 for a = 0, it is a simple branchpoint.
e The associated involution is simply o,(z) = 0¢(2) = —=z.

e As we see in the formula[16.1]for the kernel K,(z; 21), a more fundamental object
than the function y is the one form wq(u, L; 2) = y(u, L; 2)dx(p, L; 2). Indeed,
the invariants computed through topological recursion are differential forms wy, ,,,
that can be deduced from wp; and wy 2. It follows immediately from the descrip-
tion of S(u, L) that

u (2k + 1)Nuk

L2 +oo LZkI
wo(p, L; 2) = (222 - > (1) 22’”2) dz (17.14)
k=0

So the kernel is:
z dzy

Ko(z;21) = (17.15)

1
2 Z% — 22 Wo,l(ﬂa L; Z) .

The spectral curve depends on the parameters p and L, but actually, the parameter
L, which is the perimeter of the faces of the Strebel graphs, is just there to fix the scale
of lengths. In the following, we may fix L, and then vary u, so the spectral curves

S(u, L) depend on one parameter fi.

18 topological recursion for strebel graphs of any
genus

In this section, as a corollary of a result proved by Eynard in [Eynard, 2011], we see that
topological recursion implemented on the spectral curve S(u, L) allows to compute the
Laplace transform of correlation functions of isoperimetric Strebel graphs. Therefore,
the correlation functions Z,; of isoperimetric Strebel graphs — which is an A-model
—, can be deduced from the invariants w,; computed through topological recursion on
S(p, L) — B-model invariants. The following theorem is the
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Figure 59: Intersections with R? of the embedding of the spectral curves in C’. The firs
plot corresponds to a generic value of the parameter L2, the second plot corresponds
to the critical value p.L?, for which the curve is singular and has a cusp. The third
curve is the critical spectral curve, which happens to be the spectral curve of the (3,2)
minimal model. For an animation of the variation of the embedding between the first
plot (generic pL?) and the second one (at the critical value), see the flipbook animation

in the bottom right hand side corner along this chapter.
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Theorem 18.1. |Eynard, 2011] The invariants d,, .. .d, Fyr(\; 21, ..., 2) defined for

generic times t(\) as:

k k
92-2g—k Z H 2d _2: +2”dzl <6% Pdeo(2d—1)tag11(M) Ty H 7—d'>
di,...,dp =1 Z i=1 g
=0
=dy ... dy For(N 21, ... 26) (18.1)
are the Eynard-Orantin invariants wy g (\; 21, . . ., 2) for the spectral curve S(N) deduced

from the times t.

As one looks at the expression on left hand side for genus 0, we see that these
are precisely the Laplace transforms Fox(u, L; 21, . . ., 2z;) of the generating functions
Zi(p, Ly Ly, ..., L), if we specialize the times ¢ to be toq.1(p, L) = ‘(LZL—;)(T. We shall
note those invariants in the following way F,(S(p, L); 21, ..., 2;) to emphasize the
fact that they are computable from the spectral curve. The theorem is true for genus
0 invariants, provided that k > 3. Therefore, the recursion for the F, is (we drop the
dependence on S(u, L) for readability):

1 1 d
Res - “l

d21 e dzk]:guk(zl’ o ’Zk) 2—0 2 22 - 21 y(:U“: L; Z)d .

[dzd_zdz2 . d .F -1 k+l( —Z, 29 ..., Zk)
/

+ Z d dZIIJ:I 14|11 | (Z ]1)

g1+g2=g
11L|12:{22,...,Zk}

dfzd212f92,1+|12|<_za [2)] .
(18.2)

As an example of application, let us compute the Laplace transform of the 3-point

function.

Example 18.1. The invariant wy 3 worthes:

w0,3(2’1, Z9, 23) = dzl dzgsz}—o,?)(S(M,;); 21, 22, 23)
1 Z1

+wo2(2, 23)000,2(—2, %))
B ER dz dzdzadzs 1 n 1
T 222y Liz) \(z - 22+ ) (2 )2z + )
_d21d22d2'3 dz
22325 =0 y(2)
2[0(U) ledZQdZ:g

C2Iy(u) — uly(u) 222222

(18.3)
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From wy 3 we deduce Fy 3:

Fos(S(p, L); 21, 20, 23) = 20o(u) — uli(u) 717275 (18.4)

19 Critical point and (3,2) minimal model

In previous chapter, we saw that the parameter ©L? has a critical value, which allows
to study the large n limit of correlation functions and volumes. What motivates the
study of the large n limit (or continuum limit) of correlation functions is the study of
correlation functions in a conformal field theory coupled with Liouville theory. This
is equivalent to study correlation functions of a matter field (which abides by the
CFT laws) dressed by gravity (the dressing corresponds to the coupling with Liouville
theory). Conformal field theories are indexed by their central charge c¢. The question
one may ask when studying a particular model of random maps is: to which gravity
dressed conformal field theory does the model converge 7 If one knows the family of
spectral curves S(\) spectral curve of a family of models of random maps indexed by
the set of parameters A, the continuum limit of the random maps is related to a critical
spectral curve S,, corresponding to critical values of the set of parameters A.. Then, the
conformal field theory, towards which the model random maps converges in the large n
limit, can be deduced from the critical spectral curve. This section is dedicated to the
critical spectral cure of isoperimetric Strebel graphs, that we find to be the spectral
curve of the (3,2) minimal model dressed by gravity, corresponding to a conformal field
theory of central charge 0 coupled with gravity, also known as a pure gravity. Thus,
we prove that in the continuum limit, the model of isoperimetric Strebel graphs mimic
pure (that is to say, with no content of matter) quantum gravity in 2d. The procedure
to find a critical goes as what follows. To each parameters u, L is associated a spectral
curve S(p, L). For generic p and L, the spectral curve is regular, that is to say, for all
z €% =C, (de(u, L; 2),dy(u, L; 2)) # (0,0). Yet, 4 and L can be tuned to critical

values fi., L, in order to get, at some z, € C:

dx(pie, Le; 20) = dy(the, Le; 20) = 0.

At that point, the spectral curve is singular, and its embedding in C x C has a cusp.
By rescaling x(\; z) and y(A; z) close to (A z9) by powers of A — A, it is possible to

resolve the singularity, to obtain a critical spectral curve

S = )\hH}\l (C,C, (A= Xe) ™x(N2z0+ (A= A)"(2 — 20)),
le & d22 )

(A= 2) YN 20 + (A = Ao (2 — 20)), 1 — )
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- (@,M@,g(s) e ®§§) (19.1)

In the case of Strebel graphs, Eynard showed in [Eynard, 2007] and [Eynard, 2011]
that for any times ¢:

<6%Z;‘;0(2d—1)”t2d+17d> = eZ;‘;O Fg. (192)

all genera

Kontsevich proved that precisely the left hand side is a KdV tau function evaluated at

times ¢: 1
<6%220:0(2d—1)”t2d+17d> = Tray (E(Qd — 1)!!t2d+1) (19.3)

(the KAV hierarchy is independent of even times). Therefore, for isoperimetric Strebel

graphs, we specialize the times to t4,1 = ’%,

KdV tau function. Thus, the critical spectral curve of isoperimetric Strebel graphs is

all genera

and the invariants Fj are linked to a

related to a “critical” KdV tau function. This critical KdV tau function is related to a
minimal model M, ,. Once the minimal model of the critical spectral curve is identified
and the rescaling exponents known, the continuum limit of correlation functions and
of the model are known.

Let us apply this procedure to our spectral curve. The parameters of the model are
A = (u, L). In what follows, the notation u, implicitly means u((uL?).). The equations
for getting a singular curve are:

220dZO =0 (19 4)
2 0 k Ue .
(1 42 1% Bl ) d =0
From which we deduce the critical parameters:
(1L?)c
=0 ; T 1 19.5
<0 ) 2, 1(ue) = ( )

Actually, the second equation is an equation for pL? This means that we obtain a
family of critical parameters ; to each perimeter L > 0 there exists one critical value p,
such that the spectral curve is singular. If one recalls that uL? = u?/Iy(u), the second

equation is simply equivalent to

a
du Iy(u)

= 0. (19.6)

Uce

That is to say, the critical parameter u, is precisely the point for which pL? is maximal
(see the plot of figure . There are two solutions for u, to this equation, both of them

corresponding to the same critical parameter ji.L?:

u, = +2.5844 . .. ; peL? =1.902. ... (19.7)
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The spectral curve is thus critical when the parameters are equal to the critical values
found in the previous chapter. This is not surprising as in both cases, we search for
parameters eligible for a study of large n maps. Let us consider — without loss of
generality — the critical u. > 0. In figure 9] the second plot, which is the intersection
of the singular spectral curve with the plane R?, shows a cusp. This means that for

2 — 29 = (peL? — uL?)¥¢, the functions x and y scale as

2w, L; 2) — 2pe, Li o)~ (pel? — pL?)™
y(p, Ly 2) = y(pe, Ly 20)  ~ (pel? — pL?)P. (19.8)

Rescaling z, z, y respectively by (u.L* — uL?)™", (u.L? — puL?)~% and (u.L? — pL*)~P"
allows to desingularize the curve and to define the critical spectral curve S.

In our case:

‘T(M7 LJ Z) - x(,uc, L, Zo) — (,UCL2 _ ML2>2VC2

u2 —4
y(p Li2) = ylpe, Lizo) = (el = pL?)" 3¢ [ Io(ue) =5

2
—4
—(poL? — uL?)* 3Uc
(1 pL7)™¢ 22

+O((ueL® — pL?)™). (19.9)

One sees that for v = 1, the function y scales as (p.L? — 1L2)5 (bC3 + ¢¢), so we choose

this value for v. Then, after a reparametrization of (:

. L 2u2Ty(u,)\ 7
2 = (pl® = pL?)i¢ = (ul? — pl?)s <;1(L;g—0£u4§> 3
v(p,Liz) = wo+ A(ueL? — pL?)3 (€% — 2) + O((peL? — pL?)7)
y(p, Liz) = B(uL? — uL?)i(€® - 3¢) + O((u.L? — uL?)) (19.10)

3
with zy = “—% A=75 Qi%(fz) and B = (u? — 4)i%. Therefore, the exponents

y =
are known : v = %, qg =2, p=3, and we can take the following limits:

e Ao L2 — L)
lim — Y E2) g 7). (19.11)
nobe B(peL? — pl?)t
The critical spectral curve is then:
3 == ~ ~ A& ®d&
S - (C7C7x7y7 ( 1 — 52)2)
~ 2
e = 63 : (19.12)
y§) =& =3¢
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This critical spectral curve, whose intersection with R? of its embedding into T s
displayed in the third plot of figure [59] is the spectral curve of the first reduction of
the Korteweg-De-Vries (KdV) hierarchy. This reduction is also known as the minimal
model Mz, ; Douglas [Douglas, 1990], studying the critical points of chain matrix
models, formulated it in terms of differential operators. The generic minimal model
Ms 5 is the data of 2 differential operators P and () which statisfy the equations:

[P,Q] = Id
Q = 9°—2uy(s,N)
P = 0 —3v(s,N)0+va(s,N) (19.13)
where s, N are two additional parameters, and 0 = %d%. Those equations are obtained

by considering the operators P, () that act on orthogonal polynomials of a matrix model
when the parameters of the potential of the matrix model are tuned. The operators
P, @ and the orthogonal polynomials were briefly covered in section .3} In the frame
of integrable systems, N is a parameter linked to the genus of the correlation one
computes. It is, in the matrix model formalism, the size of the matrices. Therefore,
the powers of N introduce a grading in the correlation functions. As far as we are
concerned here, we are looking for genus 0 correlation functions, so in the following,
we will select the leading order in N. The parameter s is related to a position in
the integrable models, but for Strebel graphs, we will work at s fixed, and there is no
specific interpretation for this parameter in the continuum limit of Strebel graphs. The

first equation is the so-called “string equation” ; the derivation operator is a derivation

with respect to s, 9 = %% ; and vy, vy, vo are functions to be determined by the string
equation.

Solving the string equation leads to the following solution:

Q = 9*—2u(s)
3 3 1
- _ - 7 - 5 3
P o= &+ (a=30(s))0 - 5-i(s) <Q )+ +a (Q >+, (19.14)
under the condition that v satisfies the constraint:
aRi(v(s)) + Ra(v(s)) = s. (19.15)

Ry and R,y are Gelfand-Dikii polynomials, which are worth:

Ry(v) = —2v
{RQ(U) I (19.16)

2N2"

Therefore the constraint [19.15in the minimal model M; 5 reduces to Painlevé I equa-
tion:

3v(s)* — % —2av(s) = s (19.17)
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The critical spectral curve we found corresponds to operators P = 9% — 30, Q = 0> — 2.
It is a planar solution of the string equation (i.e. we take the limit N — oo to get only
the leading order), with v = 0, and v evaluated at sy such that v(sg) = 1. In this case,
the planar solution of Painlevé I is v(s) = ‘/?g\/g, so 5o = 3. Therefore, we see that the
large n limit of Strebel graphs is related to an integrable system. This integrability
allows to determine the correlation functions in the limit. In order to relate the critical
spectral curve with a conformal field theory coupled to Liouville theory, it is useful to
keep the function v(s) = \/Tg\/g generic, and specialize it to 1 in the end by evaluating it
at sp = 3. The link between minimal models M, , and amplitudes of a conformal field
theory dressed by gravity — equivalently, coupled with Liouville theory— has been done
by Di Francesco and Kutasov in [Di Francesco and Kutasov, 1990]. They related the

partition function and certain correlation functions derived from the minimal model

M, , with amplitudes of a Liouville conformal field theory, provided that its central
charge is given by:
6 _ )2
e S0 (19.18)
pq

For the minimal model Mj3 5, this corresponds to a central charge ¢ = 0.

For generic minimal model M, ,, the amplitudes of the conformal field theory one can
recover by their method does not span the whole possible amplitudes. Yet, we know
that for a null central charge, there is only one operator in the CFT, the identity. The
primary field corresponding to the identity operator is ¢(; ;). The amplitudes that we

can compute in this CF'T are then the dressed k point functions:

(D (1) b (@) ... () -

Those amplitudes can be computed from the operators P, () of the minimal model.
First, let L be a pseudo-differential operator such that, for all & > 0, QF = (LQk)+.
In our model,L = & —vd~' + .... For a minimal model M, ,, one can construct the

operators:
R.y=L"  1<s<r<g-1 (19.19)

For Ms 5, there is one operator R;; = L. Then, Di Francesco and Kutasov showed

[Di Francesco and Kutasov, 1990]:

<¢(171)(I1)¢(171) (372) ce (b(l,l) (.’L’k)> = —2( R,GS L)(k), (1920)

with Res L being the coefficient of ! in L, which is —uv(s). This involves that the

dressed k-point functions for a generic s is:

(P (@)ean (@) - - dan () = (_41),“ ((2:__11))!!3"”5. (19.21)

°<
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Figure 60: Summary of the reasoning for the large n limit of isoperimetric Strebel
graphs and pure gravity.

At sg, it worthes:

1) .
<§Z5(171) <I1)¢(171)($2) e ¢(171) ([Ek>> — (_41)k_1 ((Qkk_ 1].>)!'3—k+2, (1922)

It turns out that they are trivial (there is no dependence in the z;’s), which is the
feature of the correlation of the identity operator.

In the end, the correlation functions of large isoperimetric Strebel graphs are com-
puted from a critical spectral curve. This spectral curve is the one of a Liouville
conformal field theory with ¢ = 0, therefore the correlation functions we compute for
Strebel graphs must be linear combination of amplitudes of a CF'T dressed by gravity
with central charge 0. This liouville CF'T is called pure gravity, as there is no matter
field, and just a trivial operator — the identity — in the matter content.The scheme

sums up the reasoning for this section.

20 Large n asymptotics of k-point functions

We saw in last chapter that we are able to compute explicitly the k-point generating
functions Z; and the large n limit of Z,1(u, L; Ly). Yet, we needed to use the
saddle point approximation, which is efficient for computing one point functions,
but hard to handle for k& point functions with k& > 2. Hence, having a more generic
results is necessary to get the continuous limit of generic correlation functions.
As was stated in the previous section, the knowledge of S, v, ¢, and p allows to
compute the large n limit of correlation functions. This is due to two results, from
Eynard [Eynard, 2011] and Eynard and Orantin [Eynard and Orantin, 2007]. The
first one is theorem [I8.1] seen in section [I§] states that the Laplace transforms
Fi(p, Ly z1, ..., z;) are topological recursion invariants of the spectral curve S(u, L)

found in this chapter. The second theorem gives the scalings of the invariants

136



Fyi- Let us state the latter, and apply the two results to our model. Our main
result is to transform the scaling of the Laplace transforms F,; into the large n
limit of any k point function, provided that the marked faces have large perime-

ters. As an application of this result, we apply it to the cases of 3 and 4 point functions.

Theorem 20.1. [Eynard and Orantin, 2007 Let us consider a family of spectral curves

S(X) near a critical parameter ., having those scalings:

z—20 = (Ae—AN)"E
z(\; 2) (Ac;20) + (Ae — N)?Z(E)
y(Nz) = v 20) + (A = N)PG(8). (20.1)

The critical spectral curve is noted S. Note For(SA); 215, 2) and ﬁg,k(SQ &1y k)
the invariants computed from the spectral curves S(\) and S respectively. Then, for
2—-29—k<0:

I
=

i (A — A) 5% Fy (SN 21,5 20) = FaulS; 61,5 En), (20.2)

A= Ae
where v 1" = (2 =29 — k)(p + q)v.

Let us apply those result to isoperimetric planar Strebel graphs, that is with the
parameter A = y and scaling exponents (v,p, q) = (5, 3,2) for k > 3 point functions in
genus g = 0. Then 2 —2g9g —k =2 — k < 0, so we can apply the results. The critical
spectral curve S is the one of the minimal model Ms .

lim (g — M)_g@_k)fo,k(s(l% L)z, ) = C(L)* FFor(S;&,...,&)(20.3)

H—r e

5
where C'(L) = <%> ! e te— ut g global coefficient depending only on L.

Example 20.1. Let us look at the 3-point functions and 4-point functions. The
invariants Fo3(S; &1, &, &) and Fou(S; &1, &, €5, &) have the following expressions
[Eynard, 2016]:

1

«7:_0,3(3;51,52753) = 616083 (20-4)

- - 1 1 1 1 1
Fo,4(S:61,82,83,8) = TGt +£1 +€2 +€3 +£4 (20.5)

So the scalings are the following close to the critical parameter p.:

1 1
F073(8</¢L, L)7 ARR L Z3) u:Mc (#C . M)%O(L) 6515253
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1 L 1 n 1 n 1 . 1
BaGaG | & 8 88

‘FO,4<S(M7 L)? 21,22, 23, 24)

(20.6)

The expression for .7:"073 is consistent with the one found in formula for the invariant
Fo,3 at a generic value of the parameter . Also, the scaling deduced from the theorem

of Eynard and Orantin, is consistent with the one we would find if we let p tend to p.
in equation [18.4]

Yet, with these results, we only get the scaling of the Laplace transforms of the
original generating functions Z. Therefore, we still do not have access to the large n
limit of correlation functions Z, ;. It remains to perform the inverse Laplace transform
with respect to the variables &; to get the asymptotics of correlation functions. One
has to be careful in carrying out the inverse Laplace transform to be sure to take into
account all the poles. This is the purpose of the following computations, whose result

is stated in:

Theorem 20.2. Fork >3, if Ly, ..., Ly scale as L(p. — u)’%, the k-point generating
function Zy(u, L; Ly, ..., Ly) has the following behaviour:

2k 53, s LF [T +o0
Ze(p, Ly Ly) o W(uc—u)z "APC(L) " déy- - - dc,
k L
Heu H He %T uc—u)CJC}“Ok(S ZC])(l—i—O( /—,u))(QO.?)
i=1 j=1

5
with A = ,/212(“2) and C(L) = (25;(_72)) ! He 2 uz—d , that are global coefficients de-

pending only on the choice of perimeter L.

Indeed, for k£ > 3, we have:

k ok
92—k | |(2di — N <egZd—0 25T | | Tdi> Res | | 2z For(S(u, L) 21, - .o 2).
2;—00
i—1 i=1

(20.8)
The quantity we are interested in is Z(p, L; Ly, . . ., L) and we want to recover it from
the previous expression. The left hand side is equal to:
k_di7-2D . AR
Lhs. =2 Ximdif~ H(Zdi — 1)!!(9#,%3 (WU, Ly dy s . dy)] (20.9)
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Hence, in order to recover Z;, we have to carry out the following sum:

L2d
Zu(u, Ly Ly, ... Ly) = ZHQC[ Qd_lnd‘xl.h.s. (20.10)
dkzl
= ldz ,L,12 A1
3 Ty B I ntste s pennn

The functions Fo ;. (S(p, L); z,) are entire functions of the L’s. By the following change
of coordinates : z; = /72 + %, the functlons For(S(p, L); Z;) become polynomials in

the Zi Indeed, if Z; € C, the variables z2 + % ﬁ are the x;’s, living on the base space X,

and are then more ‘canonical’ than the z;’s. So we have:

L2d k dz_§ N N B
Ze(p, L; L) Z H eEOH (z + L2> 22;dZFor(S(p, L); 2). (20.12)

o T )z~
The residue is taken at infinity, and we want to deform its contour of integratioln. The
function Fo ,(S(p, L); Z;) has poles only around Z; = 0; the term <§12 + z_z>di2 has a
cut on the segment [—i%; +i%] (the branch cut for / 1s —iR). Hence, we can deform
the contour of integration into the one described in figure [6I} The contour surrounds

the segment [—i%; +i%}, and the pole at 0.

Now it is possible to exchange > and Res, because the contour is no longer at

infinity. This gives:

k 7%~ ~
2% L) z) o
2, L L) = Z H ,/ " ZiFor(Sk 2) ) gz (2013)
AR Vi+ 5
~ 2" Res He N S GO L) Z)cr (20.14)

We want the asymptotic behaviour (n — oo) of the Strebel Graph volumes with

k marked faces, which corresponds to looking at the limit g — p. in the function Zj.
In that limit, the contour can be divided into two regions (see figure : region 1
corresponds to the parts of the contour which are close to the pole (Z; = 0) of Foyy,
region 2 corresponds to the rest of the contour.

The contour integral over region 2 remains finite (of order 1) when p — .. As we may
see in the following, on the contrary, the integral over region 1 diverges as p — fic.

Region 1 is the part of the integral close to 0. Let us define:

m \/_ (20.15)

<



Figure 61: The contour of integration of Res is deformed and encloses a cut.
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Figure 62: Contour of the region 1 in the variable &;.

From the scaling of formula we can replace Fy, by its scaling, expressed in terms
of the minimal model Ms, invariants. Foj behaves like (. — u)g(Q’k), so, as k > 3, it
is divergent when g — fic.

In order to get the dominant order in the large n limit, we may then focus our attention
on the region 1. In the variables &;, we have to carry out the integration over the
contours ¢, €_ (see figure [62)). ¢ is going from +ico to —ioco, with Re(&;) > 0 ; €
is going from —ioco to +ioco, with Re(&;) < 0.

We look at the expansion in p. — i, so we re-express the square root as:

o W uz Ye ¢ 2
2l o e ) (€ 2+ O~ (2010)
= 1 (€ =)+ O(ue —w)?) (20.17)
U
U  lue—u, , 9
= —+ = " —2)+ O((u. — 20.18
ey S - 2) 4+ O((we — w)?) (2018
We are also looking at a regime where 7+ — oo as y — p.. From the previous
expansion, we see that the argument of the exponential contains £ (u. — u)(&? — 2),
which, at ¢ fixed, remains of order 1 if £ ~ (u.—u)™" ~ (. — 11)~2. This corresponds
to a regime where X ~ \/n.

The function to integrate is odd, but %, and %_ have opposite orientations, so we can

<
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restrict to the integration over €, :

2 —1400 2 —100
Zu(p L; L)~ 2k<uc——uoi@‘k>cw102‘k—f—§/" ... —— dé,
JF

100 2 +i00

k
Li 1L 2 U &
eu(;f—i-gf(uc—u)(fi —2) (uc o u)_ _z X
Ll ]

(m—m?“ﬁﬁwﬁ*(/fda~/f %Q
+100 +100

k
Liy 1L, _u)(e2-2) Si + s 3
Heuchr; 7 (ue—u)(€? 2)§_}~0’k(3;§i)(1 + O(pte — u)é)

ppe  (2im)k

=1 %
(20.19)
with A = 75 25;—(3). We carry out the change of variable §; = i(;, and in the end:
2, L; Ly) 2 (e — B aro(ny L /oo d¢ /OO d¢
s Li ~ o (e — — id¢y- - - i
kM, L i pte ikrk 2 2 U’g . 1 . k

k

k
e em2 T (Wi Fo (8¢ (1 + O(Viie — 1))
=1 J

—

2k T kLk —+o00 “+0o0
(- i AR (L / ac- - / dce

H—>phe 7 7Tk U/é:

k k N _
i=1 J=1

(20.20)

This is the result announced in theorem [20.2] Let us apply it to the 3-point and the

4-point functions.

Example 20.2. 3-point function and 4-point function in the large n limit
Applying the result of formula [20.20] we obtain:

3 3
2\? L ue
Za(u, Ly L;) ~ 8<—> (e~ w)E [[—— (20.21)

pote NT/ 0wl (u2 —4) i=1 ) 2 (ue — u)

It may seem that this quantity is not divergent, but remember that, in the exponentials,

we have L~ (u, —u) ™" ~ (pe — p1) 2.

For the 4-point function:

6415 1 B L: eue't
o), S gt (13 B TT 5=
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Here, the divergence is clear. We want to underline that the terms >, % (u, — u) are

not subdominant, but of order 1, so we have to take them into account.
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Part VI
Symmetries of correlation functions

The three preceding parts addressed the random maps as probabilistic spaces that need
to be characterized, and whose continuous limit needs to be identified. This chapter
is dedicated to another aspect of random maps, and does not concern the potential
continuous limit of a model, but rather the symmetries arising in the enumeration of
maps. In a model of maps, the maps that satisfy certain conditions, such as having
k boundaries and genus ¢ for instance, can often be enumerated, and the numbers of
maps, called correlation functions, are encoded in generating functions. Those generat-
ing functions depend on a set of variables, and they inherit symmetry properties under
certain permutations of variables from the symmetries of the random maps. Actually,
random maps are a source of motivation and of intuition for such symmetries, but we
shall progressively consider the problem of symmetries of expectation values for generic
correlation functions, whether they be defined from random maps models or not. Those
symmetries of correlation functions, defined independently of the underlying random
maps, allow to put strong additional constraints on the correlation functions. It is
then tempting to consider the correlation functions as amplitudes of states of an effec-
tive theory on the boundaries of the random maps, which is reminiscent of a kind of
AdS/CFT duality between the theory in the bulk (the enumeration of random maps
on surfaces with boundaries) and the theory on the boundaries. The constraints on the
correlation functions are a clue that the enumeration of random maps can be related
to integrable systems.

In this chapter, we show symmetry properties of correlation functions computed from
the Ising model on random maps. First we review some symmetry properties inher-
ited from the topological recursion. Second, we introduce the Ising model on random
maps, the correlation functions that encode the combinatorics of such maps, the matrix
model formulation of the model, and we give the recursive relation which presides over
the computation of correlation functions, which was proven by Eynard and Orantin
[Eynard and Orantin, 2008]. In this very section, we define the transformation that
maps can undergo, and the possible symmetries of the correlation functions that we
can hope to stand for the correlation functions. The recursion formula shows to be
similar to the topological recursion in some of its aspects, but has also fundamental
differences that prevent us from deducing symmetry properties. In the third section,
we state the precise problem that we tackle, we give the already known results that
we use after in our proofs, and we state the main theorem of the chapter. This result

shows that certain planar correlation functions computed from the recursive relation
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satisfy another recursion — which involves link patterns —, and as a corollary, they are
also invariant under rotation and inversion transformations. We also give the first
form a some kind of “forgetful map” for removing a change of color in the correlation
functions. We then, in the fourth section, investigate some of the consequences of the
main theorem. We show, using the work of Eynard [Eynard, 2016], that the correla-
tion functions satisfy strong constraints, it is a first step for relating the correlation
functions to an integrable system on the boundaries of the maps. We have only an
inkling of this relation to integrable systems for the moment, and we still investigate
at the time of writing this manuscript. Section [25|is dedicated to the quite technical
proof of the theorem, and the sixth and last section addresses the future extensions of

the theorem.

21 Introduction

21.1 Symmetries in Topological Recursion

Let us consider a spectral curve S. We saw in chapter [V| the formula of topological
recursion (equation , allowing to define invariants w, (21, . .., 2) from the knowl-
edge of §. In this formula, the variable z; plays a specific role with regards to z», ..., 2k,
as it appears in the kernel of recursion K,(z;21) and not in the invariants wy s present
in the remaining part. This apparent lack of symmetry should naturally lead to in-
variants wg ;, that are not symmetric under the exchange of variables z; <+ z;. Yet, for
some spectral curves, the invariant wy j, is related to the enumeration of random maps
drawn on a genus ¢ surface with k£ boundaries. In the perspective of the combinatorial
model, exchanging two boundaries do not affect the combinatorics: it amounts to apply
a homeomorphism to the underlying surface, which has no effect on the enumeration of
random maps (they are unchanged under such homeomorphisms). Therefore, for those
spectral curves, it is obvious, from the combinatorial model, that the invariants w j
are symmetric under a exchange of variables. Hence the legitimate question: is this
symmetry attributable to the specificity of the spectral curves deduced from random
maps models, or a systematic property of topological recursion ?

The answer, given by Eynard and Orantin [Eynard and Orantin, 2008], is that the
invariants wg (21, ..., 2;) are symmetric under the exchange of variables, no matter

which spectral curve is used:

Lemma 21.1. For any spectral curve S, the invariants wg computed through topolog-

ical recursion are symmetric:

Vo € Gy, wyr(21,.. ., 2) = Wek(Zo(1)s - - - s Zo(k))- (21.1)

®
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The proof is carried out by an easy recursion on 2g+ k. Hence, although the formu-
lation of topological recursion is not symmetric, it defines symmetric invariants. This
statement sums up the general idea of this chapter: we prove properties of symmetry

for invariants computed from a recursion that is not symmetric in its formulation.

21.2 Forgetful map

Topological recursion allows to compute invariants wy ; from wy; anf wy o by recurrence
on 2 — 2g — k. The knowledge of the invariants wy j with 2¢' + k' < 2¢g + k allows to
determine w, . The inverse question is the following: if one knows w, x, is it possible to
recover wy ;—1 (provided that k£ > 2) ? The answer is yes, and the operator carrying out
the deletion of a boundary is the forgetful map O . It is valid for invariants computed
by topological recursion. We introduce it here, following the results of Eynard and
Orantin [Eynard and Orantin, 2007].

The root of the one-form y(z)dz(z) is defined as:

O(2) = /Z y(z)dz(z), (21.2)

where o € ¥ is any base point on the spectral curve. Let us fix k& > 2. The operator

OTR . Q" ' (2) - Q' 4 (D) is defined as:
Res ®(z3) f(z1, 22) if k=2

Og‘Rf(Zl7 ey Zk) — 22—21 |
m Zabranchpoint ZE{SSa(I)(Zk)f(Zl’ RN Zk) if B> 2’

(21.3)

where f is a meromorphic k-form. Eynard and Orantin showed in

[Eynard and Orantin, 2007], that the operator O erases the last boundary in the

invariant wy, that is:
OFfwy k(21 s 28) = wWono1 (21, -+ o5 211)- (21.4)

As we will define a forgetful map in this chapter, let us stress an important feature of
the operator O7 " that we will want to impose to our operator: except for k = 2, Ot
is independent of the other variables zi,...,2,_1, and depends only on the spectral
curve (through the branchpoints and the root). We will show an operator in section
that matches this generic requirement.

22 Ising model on random maps

As was mentioned in the previous section, we shall prove properties of a recursion
formula (equation [22.12| below), no matter what the underlying physical and combina-
torial model — from which it comes from — is. However, it is useful to describe first this
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Figure 63: Riemann surface X; 3 of genus
1 with 3 boundaries

Figure 65: Ising model on X 3

very model, in order to understand how the properties translate in the physical side,
and which are the consequences of such symmetries. This section briefly describes the

Ising model on random maps, and the invariants H, @) that enumerate the maps.

ky,;min

22.1 Combinatorics of the Ising model

Consider an orientable surface ¥, x of genus g with K labeled boundaries (figure ,
and a map M embedded in X, x, having faces of degree smaller than d,.x (see fig-
ure . We assign a color (red or black) to every face of the map (see figure .
Three types of boundaries can arise: uniform red boundaries (boundary 1 in ﬁgure,
corresponding to boundaries having only red edges ; uniform black boundaries (e.g.
boundary 2, figure [65)) , whose edges are black ; and mixed boundaries (boundary 3),
having both red and black edges. We give a type to every boundary edge of the map

(see figure [66)):

e For the edges belonging to a uniform (red or black) face, their type is the label
of the face.

e For the mixed boundary i, we define
k; = #connected sets of red edges of the boundary.

For instance, in figure [66], k; = 4. The edges are labeled in the following manner.

One chooses arbitrarily a connected part of red edges on the boundary (this part

®
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(i, 1)

(i.2)

i (i,2)

Figure 66: Ways to assign a type to any boundary edge according to the boundary
type.

must be neighboured by black edges), and assigns to these edges the type (i, 1).
Then, the black edges part following clockwisely is given the same type (i, 1).
The next (in the clockwise order around the boundary) set of red edges then

has label (7,2), etc. In the end, the edges of the mixed boundary i have types
(0,1),..., (i, k;).

Definition 22.1. We define M as the set of connected random maps of genus

ky,;min
g with L mized boundaries with ky, = {ky,...,kp} changes of colors, m uniform red

boundaries and n uniform black boundaries.

In appendix [E] the map we propose to build is a quadrangulation belonging to
M§300-

In order to assign a Boltzmann weight to a map M € M

we assign a weight to

ky,;m;n?
local objects composing M: The weight of M is then
J— Ny N0 Tbr
W(M) - H H I+1 l*JJrlCrr Cop Copr - (221>
k=1 1,J Tr o Y;

types of edges

(9)

kL;min for

The invariants of interest in this article are the partition functions of M

all (g,kr, m,n). They are then computed by enumerating the weighted maps M €

Mgcgl?;m;n‘
Definition 22.2. The generating function of the set Ml((gz;m;n 1s denoted by Hl(i);m;n' It
s given by:
HO = > WM. (22.2)
MeMl((ng;m;n

Those partition functions also called the correlation functions, generating functions,
invariants, observables or amplitudes of the Ising model on random maps with boundary

conditions, depending on the context.
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Boltzmann | number

Object Description weight in M

Red k-gone (k > 3) ty ng

Black k-gone (k > 3)

Edge between 2 red faces Crr = N

Edge between 2 black faces Cob = 7 Ty

Edge between a red face

and a black face Cor = Mo

Red boundary edge of type J Ty ly

;H
N
ol

Black boundary edge of type J’ Y Ly

The generating functions depend on the complex fugacities x; and y;. Namely:

H}ii);mm ((xl,layl,la LR 7$1,k1ay1,k1)7 cee (xL,la s 7yL,kL);$17 ey Ty Y1, - - 7yn) .

The generating functions Hl({i) are formal power series in the times ty,  (k > 3),

ymim

in the weights ¢, ¢y, Cor, and in the variables 1/z;, 1/y;, but as it was shown in

[Eynard and Orantin, 2008], they are actually algebraic functions of the times t;, #,

of the weights ¢, cw, cp-, and of the variables z;, y.

Physically, assigning a Boltzmann weight to a colored random map with boundaries,
is equivalent to assigning an energy to a configuration of spins on the random map.
Indeed, if red faces corresponds to faces of classical spin +, and black faces are faces
of classical spin —, then the weights c¢,.., ¢, ¢y are the energies of interaction between
respectively 2 neighboring + /4 faces, 2 neighboring +/— faces, and two neighboring
—/— faces. This is the reason why this model is called the Ising model. The hope, in
the quantum gravity frame, is that when the number of faces increases toward infinity,
the configuration of spins mimic a matter field of spin %, coupled with the geometry
of the surface. This coupling means that the matter field interacts with the geometry,

and therefore with gravity. At the level of finite random maps, the coupling between

®
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Figure 67: Representation of a map of genus g with m uniform red boundaries, n
uniform black boundaries, and L mixed boundaries with {k1, ..., kz} changes of colors.

the spins and the geometry is visible in the Boltzmann weights. Indeed, the energy
of a configuration depends on the structure of the random maps, that is to say the
neighboring relations between the faces.
Graphically, we represent the generating function Hl(fi );mm as in figure .

An alternative way to encode the correlation functions is to interpret them as
expectation values in a random matrix model, introduced by Kazakov [Kazakov, 1986],
as we saw in section [l This 2-matrix model has a partition function that is expressible

in terms of a formal integral over Hermitian matrices of size N:
Z = / dMldMge_NTr(vl(M1)+V2(M2)_CM1M2), (223)
formal

where V; and V5 are the following polynomials:

2 ditl k
Viw) =t — 5 4,2
o d];:31~ . (22.4)
Va(x) = 2% - kz%
k=3

The partition function enumerates (not necessarily connected) colored random maps,
each random map being given the Boltzmann weight defined in what precedes. In the
matrix model, the expectation value of an observable O(M;, M,) depending on the

hermitian matrices M; and Ms is given by the formula:

1
(O(My, My)) = = / AMdM,O(My, My)e  NTFVI(M)+V(Mo)=eMid) = (99 5)

formal

For instance, the moment <TrM1k> is the generating function of maps of any genus,

having one red boundary of length k. Yet, in this enumeration, the boundary edges
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have weight 1. Those maps are not connected in general. The moment which enumer-
ates the connected maps only, is denoted (TrM{) . Similarly, the moments (Tr(M3)) ,
<Tr(MfM2£)>C count connected maps of any genera, with respectively one black bound-
ary of length ¢, and one mixed boundary with k& consecutive red edges and ¢ consecutive

black edges.

Example 22.1. The map showed in figure 65| has 3 boundaries:
e boundary 1 has length 8 and is uniformly red ;
e boundary 2 has length 9 and is uniformly black ;

e boundary 3 has length 11, with an alternating pattern of colors, there are 3

changes of colors.

This map appears in the moment
(Tr(M7) Te(My) Tr(M{ My My M3 MPM3)),

In order to integrate the fugacities of the boundary edges in the counting, we use

the following notation:
1 <= (TrM*)
k=0

Example 22.2. The map of figure [65| will appear in the moment:

1 1 1 1 1 1 1 1
Tr Tr Tr
=My wo— My, xy3—Miyig— Maxyo— Myyro— My 3 — My 3 — Mo

For the generating functions of generic random maps, if [ > 1 — we are interested
in maps having at least one mixed boundary —, the invariants H are defined in the

following way:

HkL,mn(SL;xlw- xm7yla'-'7yn =

(o s )i () ().

l\Do

It enumerates connected maps of any genus with the boundary conditions of figure [67]

It admits a topological expansion, that is, at large N:

+o00
_ 2—2g—l—m—n 17(9)
HkL;m;n - E :N I HkL;m;n'

g9=0
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9)

In this expansion, the term H1(< ., enumerates uniquely connected maps of genus g.

m;
This description of the generatiI;lg functions in terms of a matrix model will be useful
for deriving the consequences of the symmetries in the following.

In the article [Eynard and Orantin, 2008], Eynard and Orantin showed that the
generating functions are computable by a recurrence relation. This recurrence relation
differs from topological recursion in its expression but the principle is the same, as all
the generating functions defined are encoded in a spectral curve § = (X, X, z,y, B)
(see chapter [V| for the definition of the spectral curve). The meromorphic functions
x and y are related by an algebraic equation E(x(z),y(z)) = 0, Vz € 3. In the Ising

model, the spectral curve is rational. That is to say, it has the following form:
e the surfaces ¥ and Xy are both the Riemann sphere C.

e The meromorphic functions z and y admit a rational parametrization:

2(p) =+ Yigup 998
{y(Q) =0+ X Bkdt. (228

In this case, the algebraic equation E(x(2),y(z)) =0, ¥z € C is a polynomial in

x and y of respective degrees d; and ds.

e As the curve X is of genus 0, the Bergman kernel is simply:

dp1 ® dps

(1 — o) (22.9)

B(p1,p2) =

In what follows, let us consider generic spectral curves, that are not necessarily related

to the combinatorics of Ising model. For given x, y € ¥, there are respectively d; + 1
and dy + 1 preimages in . We note them in this way:

00 pl0 . pBOsuch that z(p'°) = =z,

po 0 po 1 po d <p0 ) (22.10)

pP pYt o pY® such that y(p®?) =y

(we take p9 = p). More generally,
Vi=0,...,d,¥i=0,....dy, y(p™?) = y(p*°)

Vi=0,...,d,¥]=0,....dy, 2(p") = z(p™).

Actually, the boundary edges fugacities x;; and y ; are the images z(p;;), y(gv ;)
of p;; and gy . The generating functions defined in equation in terms of the

fugacities z; j, v € ¥o, are meromorphic functions of the variables p; ;, ¢ j € X:

Hlii);m;n ((Pr15 QL1 -+ s PRy @1y )5 - o5 (PL1s s QLo )5 PLs s P Qs -+ -5 Q) -
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This statement deserves to be analysed. If one replaces the variable p;; (resp. ¢ ;)
by pi;o with k& # 0 (resp. qg i), then the value of HY

kr,;m;n
have replaced z;; = x(p;;) (resp. vi; = y(g;)) by a:(pm-) = z(pi;) = x;; (resp.
y(qf ’]-O) = y(qij) = yij): the fugacities are not changed. Therefore, it states that the

changes. In this case, we

original generating functions, defined in equation [22.2] with fugacities living in the
base space Y is actually a multivalued function. It is monovalued only if one restrict
the curve ¥ to the so-called “physical sheet”, which corresponds for the variable p
— parameter of x — to the branch of ¥ in the vicinity of oo, and for the variable ¢ —
parameter of y — to the branch of ¥ in the vicinity of 0. If p and ¢ are in their respective

physical sheets, let us denote:
and

The generating function of the Ising model on planar maps having one mixed boundary

with 1 change of color has been computed in [Eynard and Orantin, 2005], and is worth:

E(x(p),y(q))
(z(p) — 2(9))(y(q) — y(p))

An important property of this function is that it has only a pole at p — ¢. If one

H{(p,q) = (22.11)

considers a generic spectral curve, this equation stands as a definition for the invariant.

22.2 Recurrence relation

In order to make expressions more compact, we introduce the notations:

© Si=(Pin, %1, Pi2:Qi2,-- -+ Dik;s Uik )- 1t represents the variables associated to the

i'" mixed boundary.

o Si(r) = (r,qi1,Pi2s Gi2y - - Dikss Gk, ) the first variable of the boundary is re-
placed by 7.

Topological recursion [Eynard and Orantin, 2007] allows to compute the uniform

invariants wg ., (p1, ..., Pm) = Hé;ggl;o(pl, ooy Pm)dx(pr) - dx (D), Qgnlqr, - qn) =

HY (a1, - @)dy(ar) - . dy(gm), and H) (p1,...,pmiqu, .- 4n). The generating
function H 1(?370 (p, q) is also known, by formula[22.11] Once those invariants are known,

it remains therefore to compute the generating functions with mixed boundaries. A re-

QO
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cursion allowing to determine them was found to be (see [Eynard and Orantin, 2008]):

HY (SLip1, . Dii s G0) =
R Hf,g,o(Pl,h CILkl)dx(T)
cS 0, © X
roiapiapid ity (2(p11) — 2(r) (Y(gue) — y(r) Hioo(r, que )

(h
Z Z Z Z Hkl) a+lkg:m ‘]|;n_u|({p1,aa Qlas -« Qi } SB; PM/T; AN/J)

h  AUB={2,.,l} =2 I,J

“h
y Hé{1711A;|1‘;|J|({r, Q1> Pla-1,qLa—1}, SA; PI; A7)

(pl,a> - ZE(T)
+ — X
1
Hc(vgfl’])glfa+1 kL/{1}~m~n({Ta q1,15--+5P1,a—1, ql,a—1}7 {pl,om 1o -+ Ch,kl}, SL/{1}7 Pwm; qN)
l k;
10 3) SR R
=2 a=1 Pi.o

)
H lLki,kL/{l 1}'m;n({51<r) Disas Qisors Pirat1s -+ - s Qikss Pists - - -5 Qira—1 1} SL/{1,i}; PM; ON) +

(9
k1

H(h ()S e )H(g—h) (Sp;r . )
§ E E kykasll; |J| OAPL ATy 141010 OB T PM/AT) AN/{}
h  AUB={2,.

A Ay 1L
h h
ZHél)o H;if, Ll, W(S1(r), S2, - S, P Qs - )

Hl(fL i (S (r); 7, P qN)] (22.12)

It is a recurrence on 2g + L 4+ n + m. In the residue, the notation q?:il, that has been
introduced in the previous section, appears and j is non zero. This formula is valid to
compute the Ising model generating functions (with a rational spectral curve). It is
however possible to apply it with a generic spectral curve. In this case, the recurrence
serves as a definition of the functions Hﬁg)mn,

functions of combinatorial objects such as maps. The order of the boundaries imports

that are not necessarily generating

a priori. The spectral curve is present at several places in this formula:

e In order to know the location of q%l, one has to know the embedding of the

spectral curve, namely the analytic functions z(p), y(q).

e In the right hand side, the function Hl( 0.0 and potentially the 2-form B(p, ) can
appear. Both are directly linked to the spectral curve S.

One can prove by induction on 2g + L + m + n the following;:
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Lemma 22.1. H( ., has the following poles:

np;; =gy
mn p; = gy j (22.13)
np;;=qr
Differences with topological recursion: let us stress the differences between
formula[22.12] and the formula of topological recursion for w, . First, a slight dif-

ference is that the invariants H\

lp - ar€ functions and not differential forms. In order

to get proper invariants one has to take into account the differential forms dx(p)dy(q),

that is to say, the invariants hgf mn(SLiP1, -+ Pmi @1, - - - 5 @n) have Tather this form:

h’l((gL mn(SL;ph <oy Pmiqa, - 7q7L) = HkL mn(SL Piy-- -3 Pmsiq1, - - 7qn)><
dz(pi) - dz(puy)dy(qra) - - - dy(air)

dz(p1) - .. dx(pm)dy(qr) - - - dy(gn)-
(22.14)

Second, although formula [22.12]is recursive on the topology 2 — 29 — L —n — m of the
correlation functions, two features of topological recursion are missing;:

e the residues are carried out on the variables p;, and qk’J , instead of the branch-

7.7

points of the spectral curve. Also, the residues g, are very non local terms, as

they are located in the non physical sheets of the spectral curve.

e The kernel of recursion is the following one:

Higo(p, q)
H1(Ooo(7“ q)(x(r) —z(p))(y(r) —y(q))

It is obviously different from the one of topological recursion defined in equation

16.1} as it involves the invariant A f?&o, and not the one-form ydz nor the two-form

B(p1, p2)-

Remark 22.1. The recursion for the generating functions Hl((i)

K(r,p,q) =

(22.15)

i SOlves the loop
equations of those generating functions. Those loop equations are recursive relations
“a la Tutte”, and in the present case, they are determined from the 2-matriz model
through Schwinger-Dyson equations. Schwinger-Dyson equations translate the fact that
the expectation values of observables, that are formal integral over Hermitian matrices

My and My, are invariant under change of variable of My and Ms.

22.3 Symmetries of the generating functions

Looking at the combinatorial problem of counting weighted colored maps on a surface,
some obvious symmetries arise. To be more precise, let us look at three types of

transformations one can do.
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Figure 68: Boundary conditions before ro- Figure 69: Boundary conditions after ro-
tation tation

22.3.1 Rotation transformation

This transformation is illustrated in figures [68 and It consists in rotating all the
edges of a given boundary i, and leaving all the other boundaries unchanged. For a

boundary 7, let us note R; the following rotation of the edges:

RiSi = Ri(Pins Q> Pi2s G2y - - s Diess Qiks) (22.16)
= (Pi2:%i2:Di3> i3 - - Diker> Qiks» Pits Qi) (22.17)

Any rotation of the edges of the i boundary is then a power of the operator R,. We

extend the definition of this operator to the generating functions:

(Sl7"'7SL;m;n) = H(g)

kL;m;n<

RiH(g)

ky,;min

Sl,...,RiSi,...,SL;m;n). (2218)

22.3.2 Inversion transformation

The so-called inversion transformation represents, in this paper, the operation of chang-
ing the labelling of all the mixed boundaries from a clockwise ordering to a counter-
clockwise ordering (see figures [70| and . Let us note Z the operator corresponding

to this transformation. Then, one has:
Vie{l,..., Ly IS, = (Piny Qikis Pikir Qikiys - - - Pi2s Gi1)- (22.19)
We define the action of Z on the generating functions by:

THY,,(Si,...,Spymin) = HY

ky,;min

(ISl,...,ISi,...,ISL;m;n). (2220)
This is equivalent to consider the surface from the inside rather than from the outside.
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. o ~ Figure 71: Boundary conditions after in-
Figure 70: Boundary conditions before in- version: all the mixed boundaries have

version changed.

22.3.3 Symmetry under the exchange of boundaries

The symmetry exposed in the introductory section on symmetries of the formula

of topological recursion concerns the permutation boundaries. In the same way

for the invariants Hl(i);mm(Sl,...,SL;m;n), one can ask if it is unchanged under
(S1,...,5L) = (So(1), - - - Se(r)) for any permutation o € &. Indeed, we mentioned
that the order of the mixed boundaries Sy, ..., Sy imports a priori in the definition of

the invariants through the recursion formula 22.12] However, from the point of view
of the enumeration of colored maps, the symmetry is obvious, as it amounts to de-
form the underlying surface on which the random map is drawn, in order to exchange
the boundaries. This operation does not change the structure of the graphs, so the
counting is unchanged too. Hence, this symmetry shall be studied for generic spectral
curves.

The group of permutations &, is generated by the transpositions (1,7), i = 2,..., L,

so it is enough to study the transformations:
7;(51, SQ ce ,Si—l, Si7 Si+17 ey SL) = (Szv SQ, Ce 781'—17 Sl, Si+17 e ,SL), (2221)
whose action on the generating functions are:

THY, (St Spymin) = HY

L;m;n kp;min

(T:(S1,...,5L);m;n). (22.22)

This transformation is pictured in figures [72] and [73]
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Figure 72: Boundary conditions before the Figure 73: Boundary conditions after the
exchange of boundaries exchange of mixed boundaries 1 and 1.

23 Problematics and results

23.1 Generic spectral curve: problematics

The goal is to prove the invariance of the generating functions defined by the recurrence

relation 22.12] under the rotation and the inversion transformations:

RHY . = HY  Yie{l,.. L} (23.1)
IHY = HY . (23.2)

Remark 23.1. These invariances are trivially satisfied for the combinatorial problem
of counting colored maps with given boundary conditions exposed in the previous section.
In the generic case (i.e. for a generic spectral curve), the generating functions are only
defined through the recurrence relation [22.13. The symmetries are then not obvious,
as, for ezample, the parameter py1 plays a special role regarding to the other p variables

in the recursion.

23.2 Notations

We shall use short hand notations for A 1(?0);0:

H;j = H{;Og;o(pl,i, ¢j)- (23.3)
Also:

Tij = x(p1,) —$(p1,j)

Yij = y(qi) — y(quy)

T = x(r) —z(p1,)

yri = y(r) —yla,)



0
H;E;S;O(pl,l, Qis- DLk QLk) = H,?(pl, Qs - - -5 Py Q)
Computing the generating function HY by the recurrence formula [22.12] one sees that

it contains terms proportional to Hj;:
H,S(pl, Qs Pk k) = Hyja({pi, ¢;}) + terms not proportional to Hy ;,

so, in order to extract the content in H;; from Hj, and with the previous equation

notation, we define:

Hg[j]({pia q}) = al{pi, q;}).

Example 23.1. In [Fynard and Orantin, 2008, the following generating function was
explicitly computed:

H,,Hy, — H1H

HY(p1, 1,2, g2) = ——————2 (23.4)

T1,2Y1,2

We then have: o
Hg[l](thhp%QQ) = _WQJM (23 5)
HO ( ) _ Ho :
2[2]\P15 41, P2, 42 x1,291,2
Another short hand notation is:

h(q) := Res H(p, q) dz(p). (23.6)

p—q

23.3 Known result for Ising model

In [Eynard and Orantin, 2005, the authors proved that the generating functions of
planar random maps coupled to the Ising model with one mixed boundary could be
written as a sum over planar link patterns. We will prove this decomposition in theorem
for generic spectral curves, so it is useful to recall the results obtained by Eynard
and Orantin, in order to introduce the notations. The presentation of this section is
adapted from section 4 of [Eynard and Orantin, 2005].

Let us consider one mixed boundary with k£ changes of colors. The fugacities are
T1,Y1,-- -, Tk, Yk, clockwisely. One can draw them as points located on a circle (see
figure .

A first ingredient we need is the notion of planar permutations &, of length k, which
is a subset of the permutations &. The cycle (1,2,..., k) is denoted S.

A permutation o € &y, is called planar if when one draws a straight line (that we call
a link) between each pair (x;,ys(;)), the lines don’t intersect. The pattern formed by
the lines associated with a planar permutation o is called the link pattern of o. The

flipbook in bottom right hand side corner of this chapter shows a planar permutation

S
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Figure 74: Link pattern on a boundary with 10 changes of colors. The arrows symbolize
the orientations of the faces in which they sit.

of &3 (the lines are not straight for visibility). The k -+ 1 faces of the link pattern are
the cycles of 0 and So.
Equivalently, o € & is planar if

nCyClGS(J) + ncycles(SU) =k+ 1,

where neyees(0) is the number of irreducible cycles composing the permutation o.
We note & the set of planar permutation of rank k. The notation 6k(i1, coy i) S
used when the permutation is on the set {i,..., 4} instead of {1,...,k}.

Last, the faces of the link pattern are given an orientation:

e if the face corresponds to a cycle of o, the orientation is counterclockwise ;

e if the face is a cycle of So, the orientation is clockwise.

The order of a face is the number of links that belong to the face, which is also the

length of the cycle.

Example 23.2. In figure the planar permutation is o = (1, 2)(5, 10,9)(6,8,7), the

cycle decomposition of ¢ and So is

{0 = (1,2)(3)(4)(5, 10,9)(6,8,7)

So = (1,3,4,5)(2)(10)(8)(7)(6,9). (23.7)
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The faces corresponding to cycles of o are slightly colored (in red), and the faces of So

are simply white. The orientations are given by the arrows in the faces.

To each link pattern corresponding to a planar permutation o, we associate a ra-
tional function C% (1,41, ., %k, y). This function is a product of rational functions
FU over the faces of the link pattern. Therefore, the planar permutations ¢ are the
underlying diagrams on which we sum, and the functions FU), oW depend on the
structure of o.

Let us consider a face of the link pattern. Let ¢ be its order, and suppose that, following
its orientation, the fugacities are x;,,y;,, ..., %;,,y;,. Then to this face is associated the
function F®)(x;,, Yjrs - - -+ Tipy Yj,), which is a rational function of the fugacities. The

(¢

functions F) are defined recursively on ¢:

Definition 23.1.

F(l)(xlayl) =1
® =1 FD (2, )P (241, 0) (23.8)
F (xly Y1y -,Ty, yé) - ijl (flle)(ylfyj) fOI“ E Z 2
For instance:
1
F(Q)(xbylax%gh) = (

Ty — 1’2)(3/1 - y2)1

(xh Y1, L2, Y2, T3, ys) (x?’ — 1'1)(y3 _ yl)l(xz _ 933)(3/2 — yg)

(23 — 1) (y2 — y3) (@1 — 22) (11 — ¥2) (23.9)

Now, for a link pattern, the product of all the faces functions gives the rational function

C’gk)(xl, Y1, -, Tk, Yg)- In more detail, the decomposition in cycle of ¢ and So is:
0 =010y...0,
{ 1z B (23.10)
So =0105...0,,

¢;, U; are respectively the lengths of o;, ;. The cycles are:

oy = (J1, Jos - -5 Je;)

5-]' = (jlaj?v"'?jgj)'
(23.11)

Therefore, following their orientations, the faces have these forms:

(:Ejvij Ljyy - - "Tjej ) yj1) for Cyde 0j

(1‘31, ngfh $;2, ce ,2332' > yjrl) for cycle 6j. (23.12)
J
In the end, the function c¥ is given by:
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Definition 23.2.

C(Sk)<x17y17"-7xk7yk) = (Ej)(a;j17yj27xj27"’7xjej7yj1)><

) (o - - . -
’ (le’yjz—l’ Ly oo ’xjgj ) yj1—1)'

Once we have those functions, the theorem showed by Eynard and Orantin
[Eynard and Orantin, 2005] is:

Theorem 23.1. The generating functions of planar maps coupled to the Ising model

with one mixed boundary having k changes of colors are given by the formula:

k
ng?g;o<$1, Y1y o s Tk, yk) = Z C((rk:) (:El; Y1y ooy T, yk) H Hi,o‘(i) (2314)

o€y, i=1

The proof of this result relies on the combinatorics of random maps, and inde-
pendent of the recurrence relation [22.12} so it is not valid for generic spectral curves.
Hereafter we give an example of application of this formula for planar maps with one

mixed boundary of size 3.

Example 23.3. The set G3 of planar permutations of size 3 has 5 elements. The
generating function Hé?o);o is therefore a sum of 5 terms, which we detail in the follow-
ing table. The orientations of the faces having one link do not matter because their

contribution is always 1, so they are not depicted for visibility.
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Link pattern o

cy

Contribution to H. 5590);0

R

F(3) (xl »Y1 :33273127137?}3)
FM (21,y1) FD (22,y2)
FD (z3,y3)

Hi1H2,2Hs,3 1 1
31423 T23Y31 T12Y12

F® (21,y1,22,y3)

Y2

FM (z1,y3) F) (z2,y2)

Y3 n
FO)(21,1) FO) (22,3) 12y
Y2
T
Y3 Y1
(2)
F (9017?/2,962,111) Hl 2H2 1H3 3
F® (z1,2,23,y3) TP ——
FO (29,51)FD (23,y3)
T3 9
Y2
T
Y3 n F(3)( )
x1,Y3,23,Y2,T2,
) 1:Y3 5<%2 2,01 Hy 3H2 1Hs 2 1 1
FU) (z1,y3)FY (23,2) o -
H) 12Y12 T23Y31 T31Y23
" " F(z2,y1)
Y2
T
Y3 (I
(2)
?(2)5117113@3@1; Hi3HaoHsa
¥2,92,L8,Y1 T23T31Y12Y31
T3 Ty

In the end, the generating function

Besides this result, they showed the cyclic invariance of this formula:

Hzg?o);o is the sum of the terms of the last column.

Lemma 23.1. The functions F, C and H are cyclically invariant. Yk > 0, 0 € &

F(k)(ajlyyla"'7$k7yk> =
C[S_k)(xlyylu"'7xk7yk> =
ng?g,(](xhyla"'vxk?yk) -

23.4 Results

(k) (3:27 Yo, ., Tk, Yk, L1, yl)
(Sk)(ﬂfm Y2, -+ Ty Y, T1, Y1)
HIE:(,)&O(J:% Y2, s Thy Yky L1, yl)

23.4.1 Preliminary result: rational functions of the faces

(23.15)

In [Eynard and Orantin, 2005], the rational functions F'*) were defined (see section

23.9).

Let us define, in the same manner, two other families of rational functions ™ and

Fb(k):
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Definition 23.3. The Fa(k)

Fi(zy, ) = 1
k k=1 F @100 FE ™ (@10, (23.16)
{Fé )(':El: Y1y ooy T,y yk) = Zj:l ((133]+1yi)w1)(yj+(1_];11) Yi) for k Z 2
The Fb(k) ’s
F(l)@byl) =1
{ b(k) k-1 Fb(j)(xlv"'vy,i)F£k7j>($.7+17---7yk) f k > (2317)
Fb <x1’ Yusos ks yk) - Zj:l (j+1—21)(y—y1) or k> 2

Then we have the following lemma:

Lemma 23.2. For all k > 1, the functions F'®, Y and Fb(k) are equal. Moreover,

their poles in x1 are simple, located at x;, j = 2,...,k, and the residues are:

Res F® (zy, ... yp)dar = FOUD @y 0, gy ) FO )
T1—T; ’ ’ Nh—Uy

(23.18)

This lemma entails the following one, that we use in section [25.2.4}

Lemma 23.3. For k > 2 and o € &, with the notations of
[Eynard and Orantin, 2005/, we have:

k— (k
C(S'k)(‘r17y17"'7xk7yk Z Z Z o,pT

)(xi-f-la s ayk)C£Z)($l7 cee 7yz)
L1,i+1Yk,j

(23.19)

and

e

-1
chk)(xla cee 7yk

HM

C(k Z)(xz-i-h s ayk)cg('i)(l‘i-i-lv Yty - 7yz)
E § o(1,i+1),p7
pEG,_; TEG;

T1i4+1Yk,j
(23.20)

23.4.2 Main theorem

We first focus on the case where there is only one mixed boundary (with & > 2 changes

of colors on the boundary). Therefore, we want to compute H,gpg,o(pl, Qs Phs k)

The recurrence relation [22.12] yields only one sum —the first one— as the other ones

individually vanish. Indeed:
e The second term vanishes because it requires g > 1.
e The third term vanishes because [ = 1 (one boundary), so the sum has no term.

e The fourth term vanishes because H(()?E;o = 0.
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The fifth term vanishes because it requires g > 1.

The last term vanishes because it requires g > 1.

So the recurrence [22.12] simplifies and we get:

H1 kdil?

Hl(c)(plaq17"'7pk7q.1€) = Res —ZHk a+1(paaQa7"'7pk7qk)X

r—p; ,qk 7 xrlxmyk’rHr
HO \(rr. - o). (23.21)

The following theorem contains 4 parts. The first one allows to simplify the recur-
rence relation 23.21] The second and third one allows to compute explicitly H}, and

the last one to prove its symmetry.

Theorem 23.2. For all k > 1, the following holds:

The generating function HY belongs to the ring of polynomials
11 1 1 Co _

C [:m,j’ E’Hi’j] [y(pz)fy(qk)’ m} , where i, 7 =1,....k andl=2,...,k.

Moreover, it has degree at most 1 in i 1

y(p)—y(ax
/
[HY,.., a®l bRt kbl e C [#, - Hi,j] such that:
)
cFsd»i

k
g > o) vy

Jj=2 ]’ J»J

) and z—, that is to say, there erist

Irr

k

ng - [‘H’S} Irr + Z

e y(p — y(ax)

bl k

(23.22)

We call [H}],,, the irreducible part of Hy.

With the notations of [Eynard and Orantin, 2005], the irreducible part of HY has

the same form as in the Ising Model:

k
[H Irr p“ Q'L Z C( xl? Yy .- T, yk) H Hj,o‘(j) (2323)

O'EGk Jj=1

For all 2 < j < k, the functions a*7 + Z e i*{“ and b%7 vanish:

-/

k kb
. crds .
a4 Z — =W =0,
j'=2 Jik
so HY is equal to its so-called irreducible part.

The generating function H} is invariant under a rotation of its variables:

H]g(pla qi;-- -, Dk, Qk) = H/S(p% q2;---,Pk, 4k, P1, ql) (2324)

The proof is given in section below.
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23.4.3 Removing one change of color and adding other boundaries

Removing one change of color This result defines an additional operator, effective
at least for the case of one mixed boundary. Its effect is similar to the forgetful map
of section : in one mixed boundary Sy = (p1,¢1,- -, Pk, k), it erases one change
of color, that is to say one pair of variable (p;, q;). This operator exists if there exists
q¢* € X such that it is a pole of y and x. For the spectral curves arising from the Ising

model, two values of ¢ match this condition: ¢* = 0 and ¢* = oc.

Lemma 23.4. The operator O; defined as:

_ (i) 4 ‘
Oi(f) = Res n) dy(q:) Res fd(pi). (23.25)

erases the i pair (p;, q;) from the generating function H,E??O;O(Sl):

. 0 0
V1 S ¢ S k17 OiH]il?o;O(Sl) = H](ﬁ)_lgo;o(ph qiy .-y Di—1,i—1, Pi+1,9Qit15 - - -y Pk le)
(23.26)

The operator O; matches the requirements of section [21.2; it depends only on the
spectral curve — through ¢*, x, y and h —, and on the variables p;, ¢; to delete, not on

the other variables pj, q;, j # 1.

Insertion of uniform boundaries The first extension concerns planar maps with
one mixed boundary and several uniform boundaries, i.e. generating functions of this
type:

HY (01, a1 P G} P D @1 0.

As we shall show in the following, it can be obtained by insertion of m red boundaries
and n black boundaries through the action of insertion operators. We begin with

defining these operators.

Definition 23.4. Let §" (8°) be the insertions operator of a uniform red (resp. black)
boundary at position z, defined by:

OY (w(21)) = Hio (21, 2)
r 77(0) _ (23.27)
5ZH0;2;0(217 22) - HO;S;O(ZD 22, Z)
(respectively:
X (y(1)) = Higoal21, 2) (23.28)
52Hé?3;2(217 22) = H(g?g;S(zh 22, Z))

Moreover, we impose the following rule:

0, Res = Res 07,

r—=p r—)Z;
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respectively
6” Res = Res &°
r—p 7”—)2
This definition suffices to define recursively the action of the insertion operators

on any generating function Hl((‘i) via the topological recursion. First, as ¢, is a

min

derivation at fixed z(z), one can deduce its action on z(y(q)):

572 (y(q) = ~Ho(a. z>fl—§<q>.

For more general generating functions, we show that:

Lemma 23.5.

6ZH1£i);m;n(Sla s 7SL; {pz}a {QJ}) - ngi);m—&—l;n(sh R SL;plv <oy Pmy 2541, JQ'I’L)
(23.29)

This lemma allows to state the result of this section, which extends the result of
the theorem 23.2}

Theorem 23.3. The invariants H")

kmen O genus 0, with one mized boundary, m uni-

form red boundaries and n uniform black boundaries, are symmetric under Ry and
z

24 Consequences

We know that in the Ising model, the generating functions H, @) enumerate random

Ky ;min
maps of fixed genus with specified boundary conditions. We m;y distinguish two parts
here: the boundaries, whose configurations are specified by the structure of the fugac-
ities S1,...,50;21, ..., Tm; Y1, ..., Yn ; and the bulk part, which is the enumeration of
the maps relying on the boundaries. The weight of a map depends on the configu-
ration of the boundaries (through the fugacities of the boundary edges), and on the
configuration of the bulk. However, it is tempting to treat the generating functions

(9)
Hki;m;n
they arose from an effective theory on the boundaries. They can be seen as amplitudes
of a configurations of spin chains located on the boundaries (section hereafter).

Those spin chains have complex interactions, as they are coupled to the bulk. But

as observables depending only on the boundaries, and not on the bulk, as if

knowing that their amplitudes satisfy a recurrence relation of the type of equation
22.12 and without computing them explicitly, are there constraints to impose to those
amplitudes, which constraint and simplify their expression ? We shall see that there

are indeed such constraints, which can determine some generating functions without

N
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YL kg,
—U—U- I A A A

Figure 75: Variables assigned to chains of up spins (resp. of down spins). The red
(resp. black) edges considered up to now are replaced by chains of up (resp. down)
spins

resorting to the recursion [22.12]

This question, that we ask for generating functions stemming from the enumeration of
random maps, can be extended to any generating function computed through formula
from a generic spectral curve. The same constraints still hold, but the proof
relies on the symmetries of the generating functions. Therefore, theorem [23.2] allows
to constraint the generating functions H ©

ksmin®

24.1 Amplitudes of spin chains

Let us take k chains of consecutive up spins (resp. down spins), that we name 1,... k.

To the chain i of up spins (resp. down spins) is associated the variable z; (resp. v;),
see figure [75]

To a pair (7, 7’) of permutations of {1,...,k} (there are k! possible permutations on

this set), one associates a set of circular spin chains:

e The right end of the i*® up spin chain is glued with the left end of the (i)™ down

spin chain.

e The right end of the i"® down spin chain is glued with the left end of the 7/~1(i")h

up spin chain.
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ULy kL) = <7/’ LL1 Nf 1) = (L,1)

YL kg, Yr1 \
’ ) « TL2
>\1< ) =(1,2) .
)
T2 mmmmm YL

Figure 76: Set of circular spin chains made from the up spin chains (1,1),..., (L, k),
the down spin chains (1,1),...,(L, k), and from the permutations (7, n’) defined in

equation |ﬂ_7|

The circular spin chains associated to (,7’) are the cycles of 77! o 7.
In figure is represented the set of circular spin chains cor-

responding to the permutations 7 = Id and 7’ on the set

(L), (LR, (21), s (20ka), ooy (L), ., (L kp)} defined by

m = Id
) = 24.1
7 ((5.9) { o 241)
If the permutation 77! o 7 has L cycles of lengths {ky,...,kr}, with 4y,... i

belonging to different cycles, one defines the following formal series in N:

Hﬂ.’ﬂ./ = Z N2—29—LH1((~1);0;0 ({%1 y Yr(in)s -« - - ,x(ﬂ./floﬂ)kl—l(il), yﬂ—((ﬂ—’*loﬂ)kl—l)(il)}> ey
g=0

{x”""’yw«w'*low)’“rl)um}> '
The power of N is the Euler characteristic x of a surface of genus g with L boundaries:
X=2—29—L.
The coefficient of NX is the invariant defined previously for the Ising model on random

maps. It counts connected maps of genus g. The following formal series allows to

count, for a given coefficient, the connected and the non-connected invariants:

Hew (X1, o Xk Y1y o, Y) = €XP (]:Imﬁx(xl, TR YLy - ,yk)) (24.2)
If 7"~lon has L cycles, the coefficient of NX is called the amplitude of genus g = 1— %
of the permutations (7, 7). It is a function of (x1,...,zx), (y1,- .-, Yx), and is denoted
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by Hfi)r,(l'l, s TRy YLy e 7yk)
Last, we define the matriz of amplitudes:

H(zy, oo ek 91, Uk) = {Hew (T1, o 101, -+ Uk) braves), - (24.3)

We note it also Hy (Z, 7).

24.2 Constraints on the amplitudes

The constraints associated to the matrix of amplitudes are commutation relations with
the matrix M, defined as:

k
1 1
Moo (1, o T Yy U €M) = H (67r(7j),7r’(i) - m@ — ) Yo — 7)))
i=1 1 (2

The parameters £ and n are called the spectral parameters, for a reason given in next
subsection on the matrix model. The parameter N is the size of the matrices when
one considers the generating functions as expectation values of a matrix model. This
parameter is the the same as the one used for the matrix of amplitudes, all the object
defined here are viewed as formal series in N, including M which is a finite sum in

powers of V.

Remark 24.1. In equation Or(i) @) = 1 if the circular chain containing the chain
i has only two pieces: the chain i of up spins, and the chain 7(i) of down spins. One
sees in this definition that the invariants H;j play a special role, and that they can be

considered as fundamental block for the construction of invariants.

Then, under certain assumptions — developed in this section —, the following holds:

véu n., [H('rla ey Ty Y1, .- 7yk)7M<x17 ey Ty Y1y - e 7yk7§77]>] = 0. (245>

This commutation relation has to be understood as valid for every coefficient in the
power series in N, for [H, M] € C[[N~]] is a formal series.

The equation [24.5|involves that the matrices H and M have the same eigenvectors. In
order to determine entirely the matrix H, i.e. the amplitudes, one has to compute the
eigenvectors of M, and the eigenvalues of H (that can be expressed in terms of H,;).
The eigenvectors of the matrix M are amplitudes of a circular spin chains. Therefore,
the knowledge of the invariants Hlii);o;o (that are sum over all maps having certain
boundary conditions) is (indirectly) determined by a statistical physics model located

on the boundaries. It is thus a sort of AdS/CFT correspondence for this class of
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problems: the amplitudes of quantities depending on the bulk and on the boundaries
of a surface are computable, by a duality principle, from a physical model on the

boundaries.

Equation [24.5[imposes constraints on the amplitudes H @ For instance, we will show

that it allows to determine recursively (on the size of the boundary) the amplitude
H ,8;0;0. Hereafter, we describe when relation [24.5 holds, for the case of matrix models
and for the case of generating functions Hk‘i 0.0 derived from the recursion relation

22.12)

24.2.1 Commutation in the matrix model

In the case where the matrix of amplitudes stems from the matrix model described
above, the commutation of the matrix of amplitudes H and the matrix M is true
for any power of N. The derivation of this result comes from a lemma of Eynard
and Prats Ferrer [Eynard and Prats Ferrer, 2006]. Let us describe how one gets to the
commutation of the matrices.

First, by the method introduced in section |5 we transform the partition function of
the formal matrix model into a formal integral over the radial parts and the angular
parts of M; and M,. Namely, there exists U € U(N) (corresponding to the angular
part), and X = diag(&y,...,¢n), Y = diag(m,...,nn) (the radial parts) such that:

Tr (MFMY) = Tr (X*UYUT). (24.6)

It entails for the mixed boundaries:

Tr ﬁ ! ! = Tr ﬁ L gL i), (24.7)
izlﬂfi—Mlyz‘—M2 - X oy Y

=1

This angular/radial decomposition allows to rewrite the expectation values of functions

O implying traces of matrices My, Ms:

ormal 1 _ _
(OO, M) "2 - AMyAMyO(My, My)e™ V1 (AR AR) ZeAh ML)
Z HN XHN
fognal i dX dYA(X)A(Y)e—N Tr (Vi(X)+Va(Y))
Z RN xRN
DUNYYU o(x, UYU). (24.8)
U(N)

The measure over U(N) is the Haar measure, and A(X) = [[,_;(& — &), A(Y) =
[Tic;(ni — ;). In the case of random maps with fugacities (z1,...,2x); (y1,...,4) =
Z; 1, we associate an expectation value to a pair of permutations 7,7’ € &;. This ex-

pectation value is a formal series in /V, and enumerates bi-colored random maps having

N
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the Boltzmann weight described in the beginning of the chapter, whose boundaries are
the cycles of 7"t omr. For m = 1,..., neyees(m' ™! o 7), let us note £, the length of
the m'™ cycle (which is the number of changes of colors of the m' boundary). The

function associated to the fugacities &,/ and the permutations 7, 7" is then:

1 Ty = My Yr(nyy — Mo

m=1

ncycles(ﬂ—liloﬂ') b
1 1
OWJF/(Mla M27 CE; g) = (51,€m + Tr H > . (249)

The expectation value associated is precisely the amplitude:
i (Z54) = (O (M1, Ma; T, 7)) (24.10)
Therefore, using the previous angular/radial decomposition, we can write:
Hpp(T7) = / dXdY A(X)A(Y)e VT (E)+1()
RN xRN

AUe NV o (X, UYUT: Z,7). (24.11)
U(N)

The angular integral can be carried out using a result of Eynard and Prats Ferrer
[Eynard and Prats Ferrer, 2006]:

N
/ QUeNYU o (X UYULE, ) = Z (1)< (HM(f; ﬂ;fi,nam)) )
U(N) e

ceCN i=1 o
(24.12)
¢(0) being the signature of the permutation. One has to be careful in the previous
formula, as the permutations m, 7" belong to &, k being the length of the vectors
Z,1, whereas ¢ belongs to Gy, where N is the size of the matrices X and Y. Now, a
property in [Eynard and Prats Ferrer, 2000] states that the matrices M with different

spectral parameters commute:

V€, CX [M(Z5 96, m), M(%5 ;¢ x)] =0, (24.13)

and that they are symmetric: M = M?. Tt is therefore possible to diagonalize simul-
taneously those matrices in the angular integration that is to say there exists a

matrix V of size k! x k! independent of the spectral parameters, such that:

M (B :6m) = Y Ve p (B )M (F, 56, 0) Vi (T, §) (24.14)

pES

where A is a vector of size k!. The angular integration [24.12] simplifies into:

D Vi@ g) det (A (Z,5:&, ;) Var o (E,5)- (24.15)

1<ij<N
pEGE
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In the end, the amplitude is simply given by the radial integration:

Hﬂ,ﬂl(f; ?7) = ZpEGk Vﬂ,p(f’ g)%r’,p(fa ?j)
Jaw gy AXAY A(X)A(Y)e N TEW@+2®)  det (A, (Z,7: & 1))

1<i,j<N
(24.16)

Two elements are important in the last formula. First, the matrix element V; , are
independent of the radial integration, as they do not depend on the spectral parameters.
Second, the radial integration depends only on the permutation p. We can conclude
that the matrix of amplitudes H is diagonalizable in the same basis as the matrices
M, so they commute. This shows that:

V¢, YT,y [H(&Y), M(Z,¥,&n)] =0. (24.17)
This demonstration, given by Eynard and Prats Ferres, uses extensively matrix inte-

grals methods, but does not explicitly require the symmetries of the generating func-
tions.

24.2.2 Commutation for generic spectral curves

If the invariants Hl(ci)'OO’ that satisfy by construction the recursive relation [22.12] are

symmetric under the rotations R; and the inversion Z, then the matrix of amplitudes
commute with the matrix M (see [Eynard, 2016]):

Ve, [H(xy, .. Tk y1, k), M(21, .o 2y, - Uk €,m)] = 0, (24.18)

In this chapter, we have proven that the invariants H,g)g,o (for which the Euler
characteristic is xy = 1) satisfy the symmetries. It allows to obtain the following

commutation relation:

Ve, [H(xy, ... xry1, - ,yk),/\/l(xl,...,xk;yl,...,yk;f,n)](o) =0, (24.19)

where by [, we mean the coefficient of N° in the formal series

[H(xlw"7Ik;yl)"'7y/€)7M(x17"‘axk;y17"'7yk;§)n)] in V.

Example 24.1. Let us look at the case k = 2. There are 2 permutations: 1d and (1,2).
The leading order coefficients in N of the matriz H(xq1,22;11,Yy2) are:
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Id (1,2)

00~ O -
(1,2) " (N) " " (N?)

where, in the parenthesis is given the power of N corresponding to such amplitudes.

The matriz M is given by:

/

NN Id (1,2)
1 1
” (1~ Aemmgomn) * | ;
1— L 1 N2c2 (z1-€)(y1—n)(x2—E) (y2—n)
Ne (z2—&)(y2—n)
(1 _ L;) N
(1 2) 1 1 Ne (z1—-€)(y2—n)
’ N2 (21—€)(y1—n)(x2—€) (y2—n) (1 1 1
Ne (z2—8)(y1—n)

In [H(z1,22;y1,y2), M| = 0, the coefficient of N° yields the equation:

H1(?0);0(ZU1, yz)Hf?o);o(iEz, y1) — Hf?&o(ﬂfbyl)Hl(?o);o(x% y2)
(w1 — 22) (1 — 1) '

Hz(?o);o(iUl, Y1, T2, Y2) = (24.20)

Therefore the commutation relation 18 constraining enough to determine entirely

the generating function Hé?o);o

Actually, the commutation of the matrix of amplitudes and the matrix M allows
to determine recursively the generating functions of planar one mixed boundaries am-

plitudes H 1&?3;0- Indeed, we have the result:

Lemma 24.1. Let k > 2, and assume H,S);)O;O is known VK < k. Then H,E,?g;o 18
determined by the equation:

[IN°IM(%;,0,0), H(Z,§)]1a,s, = 0, (24.21)

where Sy, is the cycle (1,k,k —1,...,2) and [N°] means that we take the coefficient of
N° of the formal series [M, H] € C[[N~!]].

Proof. We show that equation [24.21| allows to compute H,i?g;o(xl,yl,...,xk,yk) =
[N]Hiqs,. This means that we have to show that, at the order N°:

e Only the genus 0 parts of the H, ./ is present.
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e The leading order in N of the commutator is N°, and it involves Hl(c?,)Sk'

e besides Hyq g, , there is no other H, » with 7’ o7 being a cycle of length k. This
means that the only amplitude with one boundary of length k is Hiq g, .

Point 1: writing the coefficient Id, S; of the commutation relation gives:

Z MId,T(HT(,Sk - HId,ﬂ'MW,Sk' (2422)

TES
M o is a polynomial in N1, The leading order when N — oo is at most N°. The term
H, - represents a sum over the genus of amplitudes with at least one boundary. The
characteristic of amplitudes with genus g > 1 is therefore less or equal to 1 —2g < —1.
This means that amplitudes with genus g > 1 contribute in the commutator at most in

the coefficient of N=!. Hence, in equation [24.21] only planar amplitudes are involved.

Point 2: The contribution to order N! of the commutator is worth:
H{Ys, (INIMuaua — [NIMa, 5,) = HiYs, (1 —1) =0, (24.23)

so the commutator has leading order N°. At this order, Hiq,s, contributes in this way:

k
1 1
HY [INTY (Miqa(5 55 0,0) — M, 5, (#5;0,0)) = Hyy) < - )
Id,Sk[ ]( Id,1d< ) ks k( )) Id, Sk ; Y5, (i) TiY;
£ 0. (24.24)

The contribution of HI(((i),)Sk is not null at the order N°.
Point 3: take 7 # Id such that S;' o7 is a cycle of length k. As 7 # Id, there exists
at least two integers i, j such that (i) # i, w(j) # j. Therefore the leading order in N
of M4 is less or equal to N —2. Therefore, H, s, Miq contributes to the coefficients
N™ with m < —1. With the same argument, the terms Hyg ,M, g, with m # S, such
that 7 is a cycle, contribute to the coefficients N™ with m < —1. In the end, the only
amplitude with one boundary of length & appearing at the order N° is Hiq g, .

O

Example 24.2. As an example, we show how to compute Hé?o);o(arl, Y1, T, Y2, T3, Y3)-
It corresponds to the genus 0 part of the amplitude Hjg130)(21, %2, Z3;y1,¥2,93). In
the matrix i, we keep only the leading order terms in N, which consist in products
of planar amplitudes with one boundary. Then, we apply the commutation relation
[INO|[H(Z;9), M(T; 75 €, 1) ha.s; = 0. We specialize the spectral parameters £ = n = 0.
The matrix H is shown in the 6 x 6 following table.
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The matrix element [N][H (Z;4), M(Z;¥;0,0)]14,(1,3,2) yields the equation:

H1,3H2,1H3,2 . (H1,3H2,1 - H1,1H2,3>H3,2 + H1,3<H2,2H3,1 - H2,1H3,2>
T1ToT3Y1YaYs  TaTaYeys(T1 — T2) (Y1 — y3)  T1x3y1ys(T3 — 12) (Y1 — Y2)
_ H1,1H2,2H3,3 + (H1,2H2,1 - H1,1H2,2)H373 H2,2(H1,3H3,1 - H1,1H3,3)
T1ToT3Y1Yays  T1T3Yay3(®1 — 2) (Y1 — Y2)  Taxzyrya(T1 — 3)(y1 — Y3)
_ H2,1(H1,3H3,2 - H1,2H3,3) HI,I(H2,3H3,2 - H2,2H3,3>
12291 Y2 (21 — 23) (Y2 — y3)  T1x3y1Y2(T2 — 23) (Y2 — Y3)

1 1 1 1 1 1

+H§?3;O(x1ay17x27y2ax37y3) - + - - + = 0.
1 Tl T2Y2 T3Y2 Z1Y3 T3Y3
(24.25)

This gives H?(,?g;o as a sum over link patterns (see the table of example [23.3 for the
expression of the sum), which is consistent with the result of theorem [23.2]

It remains to extend the theorem to result to the more general cases H, l((g )

L3

.- Several
ways of generalizing the result are under consideration. Yet, the most probable plan

to tackle the problem is to show the rotational invariance in the following order:

1. Add uniform boundaries with insertion operators, and prove the rotation sym-

metry of H Igor)nn (the invariants are still planar and have one mixed boundary).
2. Prove by induction on L that:

° H(O)

ky,;m;n

° H(O)

kpL;m;n

is invariant when one permutes the two boundaries Sy, Ss.

is symmetric under the rotations R;
3. Prove the theorem for genus g > 1.

If those generalizations are true, then formula is true.

25 Proof of the results

25.1 Preliminary result

Proof. We prove this result by induction on k. It is clearly true for k =1, so let k > 2
and suppose the equality holds for all 1 < j < k — 1.

From the definitions [23.1}23.3] it is also clear that the three functions have simple poles
in ; around the z;’s for j > 2. Let 2 <y + 1 < k. We compute the residues of the

three functions around ;.

Flo) L Flk—b) .
Res FW(zy, ... yp)dzy = (T, 1 T, Y1) (a1, Yr)

1Ty 41 Y1 — Yo+
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F(ZO) (xlo—l-lu Yi ..., Ty, ylo)F(k_lO)(xlo-Fl? s 7yk)

Y1 = Yp+1

(25.1)
So the residue for F.") is of the right form.
k-1 ;
FE=9) (g .
Res F®dz, = (@1, ) Res FY(xy,...,y;)
L1 T 41 il 1 (@ = @1+1) (Yr — Yj) 21201011
k—1

F(k_j)(IjH, K 7yk) F(lO)(xzoJrh Y- Ly, yzo) %

L (e = 2ig1) (e — yj)

FUT)N (0,000 y5)
k-1

<
I
[}
. O
+

Y1 — Ylp+1

F(kij) ('rj-f-h cee 7yk)

F(lO)('xlo-‘rl? Yi-.., Ty, ylo) Z

Y1 = Yio+1 A (e = ig40) (9 — 95) g
FOTO (@000, y)
F(l0)<xlo+17 Y-, Ty, ylo)F(k_ZO)(xlo+1a cee 7yk)
Y1 — Yip+1
(25.2)

So we get the same residues for FY and F®,
Last, for Fb(k):

k-1 F(k—j)

Res Fb(k)dxl _ b (l"j+1, e ,yk) Res Fb(j)(m, o 7%)

L1141 P (Tjt1 — Tig11) (Y — Y1) 211540

l k1
_Fb( 0)(1’10+17 Y1, T, ylo)Fb( 0)($10+1, e YR)

Y — Y1
k—1 o
_ F(k J)(xj+1’ s 7yk) F(ZO)(xlo-f—la Y- 7Ilo7ylo) «
j=lot+1 (%‘H — Zig+1) (Yr — Y1) Y1 — Yo+

l k—l
F(jil())(xlo—i-la 7yj) - F( 0)(xl0+1a Yr--- ,le)F( 0)(xl0+17 ce 7yk>

Y — W

F(ZO)(mlO—FIJ Y., Ty, ylo)F(k_lO)(xlo-l-la v 7yk) «

Y — U1

(_1 4 Yk — Yio+1
Y1 — Yip+1

F(ZO)(Ilo-i-lv Yooy T, ylo)F(kilO) ($l0+1a cee 7yk)

Y1 — Yip+1

(25.3)

Therefore, the functions F®, Fék) and Fb(k) have the same poles in z, so they must

be equal for all ;. This ends the proof of the lemma.

O

Proof. The proof follows exactly the same steps as the proof of theorem 4.1 in
[Eynard and Orantin, 2005], but instead of using the recursive definition [23.1, we use

the 2 others ones of definition 3.3
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25.2 Proof of the theorem

The theorem is proved by induction on k. It is clearly true for £k = 1, so for the rest
of this section, let k¥ > 2 and assume the theorem holds for HJQ, 1< j3<k—1. The

scheme of the proof follows the points of the theorem.

e First, in section [25.2.1] we transform formula [23.21] into another one

(equation [25.13). This allows us to show that HY belongs to the ring

1 1 o1 1
xi g wiy ) W | y(p)—y(ak)’ Hik

e Second, in section [25.2.2] we give explicit expressions (from equation [25.13)) for

.
k.j k ckidsd k,j 0 . . o . .
a™ 4+ J=2 Ty b*7 and [H}J;,,. From the previous expressions, it is convenient

to define A®7 and B*7 that are functions independent of p;. This proves the first

. . 1 1
}, and to give the degrees in PO and Tix

item of the theorem.

e Third, in section [25.2.3] we show that [H}],,. satisfies the formula [23.23|in the
second item of the theorem. It requires to use the recurrence formulas of definition

23.3l

e We show that A*J = 0, then B*J = 0 in section [25.2.4] proving the third part,

and allowing to compute Hp explicitly (that is, not recursively).

e To conclude, in section [25.2.5] the symmetry of the generating functions follows

from the previous results.

25.2.1 Transformation of the recurrence formula

We use the formula 23.21| and make some manipulations first:

k—1
HZO rdq1,-.-,Diyq; d'I r
ng(pla(b) - Hl,kZHg—i(pi—i-h‘"aq]f) Res ( ! ) ( )

0,7 .
i=1 T=P1,Pi+1,4,” Lri+1Tr1

(25.4)

For a given j, we want to decompose the function HY on the basis of C[H;;|. Let us

introduce the subsets @Z C &, for j < i, of the planar permutations &;:
& = {0 € &;st. o(l) = j} (25.5)

The @g’s form a partition of &;.
As the theorem is true for i < k—1, H? is a polynomial of degree 1 in H; ;. Moreover,

calling Hio[j] the coefficient of Hj ;, we have:

Hio(ra qi,---,Pi, qz) = Z Cg—”(n Yty - - Ty, yi)Hr,a(l) H Hl,o’(l)
0’661' =2
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Recursive relation 22.12

section [25.2.1]
0 __ 0 bl bl
Hp = [H/JIHWLZZ 2 Y=y +Zz 2 W) —y(a ) Hix Zz 2 e
i i i
i i i
E section 25.2.2] E section 25.2.2] E
' ' )
Point 1 «— [H,g} - Ak Bk
| section [25.2.3

Point 2 <« [H,(ﬂ i = 2 ocSy cP IL Hiop

\ section 25.2.4

: Akd =
Point 3 < : l
Bk =0
i section P22 | .
""""""""""" l Hy, = [Hk]m
Point 4 < HY) is symmetric under R and Z

Figure 77: Scheme of the proof. Red arrows show when the successive points are
proven.
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- ZHJ > CO0 ) [ Hiow
=2

O'EGJ

= ZHT,jH?[ﬂ(r7 qlv"'apia%)

(25.6)

The functions Hio[j] belong to C [xin,%%n,l—]r’s] withm,n=1,...,i;r=2,...,i and
s=1,...,1, S#J.

Applying this decomposition of H?:

k—1 ) 0
H’r’ H (T, qi,-- -, Di, Qz)dx(r)
HY - H HY ,(pis1s- - qr) Res ]
k (psa Qs) 1,k Z k—1 (pz+17 ) Qk) Pl Z xm_s_lxmyk’THf,«,k
i=1 r—)pé";}b 7=1
qk

k—1

0 (ryqu, - pi, qi)dx(r)
= H HO i\ M1 ety R ’] } : ’ : ’
1,k Z ki (Pit1 4k Z o Ty it 1 1 Yo Hy o

=1 _>p1+1
qk

(25.7)

For a given pair 1 < 5 <1 < k — 1, we transform the factor inside the residue, using
the identity:

1 _ y(r) — y(g) 1
V) v )~y a) v e v
Restating it with our notations, this gives:
1 Yr.j 1
T T (25.9)

Yk,r YerUkj Yk

Remark 25.1. This identity was wused by Fynard and Orantin in
[Eynard and Orantin, 2008] in order to compute HS.

We use it in the residue, so that we get:

k—1 ;
- H.HY (r,q1y .. qi)da(r)
Yr, i\">d1s -5 4
Hy(pi,qi) = Hu H) (pis1, .-+ Qk) Res J
k | ; ' j=1 Z?ff Yk,rYk.j Ty ip1Tr 1 Hp g,
"
4+ 1 H JHz[]] (7‘, q1y ..., Diy q,)dx(r)
Yk, Ty ip1Tr 1 Hy '

(25.10)

Now, it is possible to compute explicitly the residues. Indeed, we have to distinguish
between the first term of the sum (on the first line), and the second one (on the second
line).

181

S



"y H”H 1 (1q1,-.pi,qi)da(r)
Yk,rYk,j $7 i+ 1T, lHr k

First term Let us characterize the poles of with respect

to r.

e The equation W tells us that Hio[j] is a rational function of x(r), having poles
inz(r) —x(p), l=2,...,1

oy ;H, ;= %ﬁ'&?;) is a rational function of x(r), having no pole in r — g;.

o Yy, H. )= —% is a rational function of z(r), which does not vanish when

r — qx, but vanishes when r — qg’m, m > 1.

ZJ—HT‘; is a rational function of x(r), regular when z(r) — oc.
3T )

Yr,j Hr ]H (T q15,.- 7p'qu)dx(r)
Yk, rYk,j xr yi+1Tr, IHT‘ k
x(p), L =1,...,i+ 1. Therefore, moving the contour C; of integration for the residues

Res to the contour Cy (see figures |78 and [79)):
?“—>p17pi+17qz’m

Yr j HTJHZO[]} (7”, qi,- .-, Di, qZ)dx<T)

Hence is a rational function of z(r), having poles in z(r) —

Res
Tﬁphpwl,qg " YkrYk,j xr,i+1xr,1Hr,k
0
. _ Z R yT:j Hr,yHer (Tv q1,---,Di, Ql)d'r(r)
=Pt Yk r Yk j xr,i+1wr,lHr,k

l y(p) —y(q) \ Hiy ., Hipra,... pia)de(r)
;((y ) s

(p1) — y(aw)yry ) Higr—r Tris1Tri

1 1 H, - HZO rdq1,---5Piyqi dx(r
_ Z (_ n ) L Res [J]( ! )dz(r)
—~\yr; (o) —yla)/) H '

Yk,j LkT—PL Tri+1Tr1
(25.11)

Second term As there is no longer v, in the denominator of the second term, there
is no pole around r — q,g’m, then we can carry out the residues around r — p; and
r — pi+1 without difficulty, and we get:

LH 1,5 Res H?[j](ra Q17"'7pi7Qi)dx<7n) 4+ 1 HZ-‘rl,] Res Hio[j]<7', q17"'7pi7Qi)dz(T)

Yi,; Hipr—m Ty ip1Tr1 Yij Hig1 pr—piv1 Ty it1Tr1

(25.12)

Bringing the first and second terms together Equations|25.11|and [25.12]yield:

k—1 i 141 0
Hi . H, H '(r7q17"'api7Qi)d’I(r)
0 ) ) _ 1,k l] 7’[.7}
Hy(pi ) ;Hk iPitts s P ) ]Z;lz; Hi kyrj T—)pz Tp1Trit1
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Figure 78: Contour of integration for the residue, and location of the poles.

0,da

d

b1 Pit1 qu’l

Figure 79: Deformed contour.
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k—1 7 7

Hy Hyj
+ Ho_ipl' y.e5q 2 J X
; P 4 = = iy — y(a))iaziin
0 . .
7]‘;i>epSlHl[]]<r7 q1, - - -, Di, Qz)d«x T)

(25.13)
This recursive formula is equivalent to equation [23.21] In the r.h.s.,
i <k-—1 and k—i<k-—1,

so the theorem applies to HY(r,qi,...,pi,q) and HY ,(pis1,Giv1,--- Dk, qx): they

actually belong to (C[Hm, T L] (with, respectively, m,n = 1,2,...,i

L xm,n’ Ym,n

and m,n = i+ 1,...,k). Therefore, we immediately see that H} belongs to

1 g 1 1
Tmyn Hmn) T | Hey g y(om) —y(ar) |

Moreover, the degrees with respect to and

j are at most 1, and the

1 1
Ho ke y(pm)—y(an

1 1
Pm)—Y(qk)’ Hm i

monomials that are allowed when decomposing H} in the ring C o are

1 1 1
and

Y(pm) — y(qr)” Hmp (Y(Pm) — y(ar)) Hmk

(There can’t be any term like

: ! or ! m # m')
(Y (m) = ¥(@) WPm) = y(@k)) HppHu ke (Y0m) = y(@k) Hu g '

Therefore, the first point of the theorem is proven. We restate it in the following way:
there exist [HY], , a®!, b #W e C [ L1 Hm} such that:

Ti50 i’

Irr 2

k k
okl bl !

k kol
o=+ 2 oy iy " 2 T G v

(it is similar to equation [23.22) but we don’t allow (better, we proved that they van-
ished) c®4!" with [ # I'). The polynomials [HY],..,
recursively by the recurrence equation [25.13| we just derived, and this is the aim of the

following section.

’
abt, bt R can be computed

25.2.2 Explicit expressions

Actually, instead of computing separately a*!, and ¢®4

k7l7

, we need to compute a combi-

nation of a®' and c®! that is encoded in the quantity A*!.
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Computation of the A’s From the decomposition of HY in equation [25.14] we can

transform it into:

k
H Irr Z
=2

kL . )
We need to compute a®! + <= (it is the coefficient of —2—— when we decompose
Hy

k kil
Z (ak’l + —) . (25.15)
—9 Hl k

7 )

y(p1)—y(gk)
H} over the ring C [m} ). It is possible to do so if we look at the recurrence

relation [25.13 m We extract easily this coefficient:

_H ! H,.
kil ik
a’—I— HY (piy1,...,q — b ResH! T q1, -, DiyQ)dx(r).
Tt ;; Foni k>Hlk$l i+17P [J]( ! Jda(r)
(25.16)
We define A*! for [ > 2 as:
k—1 i i
Ak’l e = HO D ' e L -
(q17p27q27 apkvq’ﬂ) ;; k—z(p +15 Gi+1, ’pkqu)Hkal’H_l X
ResH a(reaqu, - iy qi)da(r). (25.17)
r—p;
so that we rewrite the coefficient a*! + % as:
kLl
ki, €7 Hik
a® + — = —=A" 25.18
Hy, ( )
The A*"’s do not depend on p; from equation [25.17}
Then, equation [25.13| reads:
iitl 0
Hlk Hj[‘}(tha--wpia%')dx(r)
Hopi7Qi = H @pl y o Ak JR J
pi ) Z i) 2 T R
k
H,y kAk (J1,p2> Q- - Pk Qi)
>
1 ( ( D) — y(ax))
k kg el
1,k
_ + ’ (25.19)
I” ZQ Lk ZZ w11 y(p —Z/(Qk)

Computation of the b’s Now, from equation [25.19] we have to decompose the first
sum on C [ ] to find the coefficients b*! (and [H}];,, in the next section).

Let us take lo € {1,...,k}. From formula [25.19, the m compensate with H; j at the
numerator, so we suppose ly > 2. The coefficient of #Ok in the first sum of equation
20.19is

k—1 i
H HO_Z' Di y oo gk H
1,k Z k ( +1 ) g lo,j Res H }(r7 qi,---,Di, ql)d‘r(r>

1o 1 Hig e pury Tlgit1 = Yrg TP
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lo—1

Hyg / Hy,

—’HO— Pigs -+ -5 4k JH Py, 415 - - -5 Plo—154lp—1 25.20
xlo,lHlo,k k—lo+1 ( 0 ) ; Yk lo— 1[]]( 0 0 0 ) ( )

where, by H,Sfloﬂl, we mean:

!/
Hy o0 = Hyyy0 — Hi gy (25.21)
As k—1lo+1 < k—1, the theorem stands for HJ_, ., so we use it to compute HY_, "
0 / - HY_.(pis1, -+ ar) ' Hy. 0
Hk—l0+1 (ploa s 7q]<5> = Z : Z = Hi—l0+1[j’] (ploa iy - - 7%)
i=lo Vo i+ =ty IR

(25.22)

So, in the end, the coefficient b*% of ﬁ is:
0

k—1 j
H HY? (pis1,..., H
Bl _ 1,k Z p—i(Pit1 ) [Z 07 Reg H (7‘, Qs -y Diy @)dx(r)+

Lip,1 P Zly,i+1 | Yk,j TP
lo—1
Hl , Hl
Z OJHZOO—I[j] (plm qis .-+ DPip-1, Qlo—l) Z Oi Hz lo+1[5'] (ploa Qi - - - 7%)] :
=1 Yk =ty Ik
(25.23)
We define B*! as:
k—1 ‘
HY_i(pis1s- - qr) H,
Bhlo — hoi O’]ResH T qu,- .., Di,q)dx(r)+
% mlo,i-‘rl ]Zl yk7j r—p, ( a1 p Q) ( )
lo—1 i
H, Hy,,
Z OJHI?) 1[}(pl()JQM'"7pl0717qlofl) Z 0‘] H@O lo+1[5" ](pl()?qlo--"qi)] )
j=1 Tk ji=lo BT’
(25.24)
so that the B*’s are independent of p;, and:
H
Pt = —LE it (25.25)
Ty

1
e m] , we have computed

all the coefficients except the constant term [H}|, , which we do now.

To sum up, when we decompose H} over the ring C [

Computation of the irreducible part We have given the expression of the A¥'s
(equation [25.17) and the B*!s (equation [25.24). We can use these expressions and

equation [25.13| to compute [HpJ;
k

k
HLk AFA Hl,k Bkl
— ‘L Y\ — Y\Gk =3 L1 ik
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More specifically, using equation [25.19;

k—1 7 1+1 0
H k HZ[] (T7 qi, .- 7QZ)dx(r>
2 F Hy_i(pis1, @1, - Prr 4 1) Res —
| k]Irr ; k=i (Dit1, Qi o ik ;; Hixyrs r—m Tr1Triq1
k
}J1 % Bk,l
_ k= 25.27
Zz T Hig ( )

As Zz 9 Zl - IEj,L is the sum of the terms of the first line where the 7—s are not com-
1,1 Hik 1,k

pensated by a H;j; on the numerator, the irreducible part corresponds to the sum of

the terms in
k-1 i il

H Hyq(ryqus -5 piy gi)da(r)
Z H]E:)—i<pi+17 Qi+1y- -+ Pk, 4k Z Z ! k L Res b (2528)

H T— Ty 1Ty i
i—1 =1 1=1 LkYkj b r,1lri+1

where the ﬁs are compensated, i.e. they cancel with some H;; in the numerator.

There are 2 cases:

e cither [ =1 and ﬁ cancels out with H; j, so we get:

k—1 i
HO i \Pi41s Yit1s - v oy ) H
Z k—z(p +154i+1 Pk Qk) Z 1,7 H [j](pl Qs Dis ql) (2529>
i1 T1,i+1 =1 Yk
e cither [ > 2 and ﬁ can only cancel with a H;j coming from H} ,(piy1,-..,qk)-

So we need [ > i+ 1. From the summation bounds, we also have [ < i+ 1, so

[ =17+ 1 and we have all these terms:

k—1 0 7
H pH—l di+1; - - - Dk qk) H, kHi+1
§ E 7 2 Hz[j] (Piv1, s - - D0y @) (25.30)

i1 Tit11 =1 Ykj
In the end, the irreducible part of H} is:
[H’8:|Irr p37QS ZZ 18 i(p’i+17Qi+17"'7pk7Qk)H1,jHi0[j](p17Q17"'7Qi)

i=1 j=1 lz—i-lyk,j

—H;S_i[k] (Pi+1:Git1s - - - s Prs C]k)Hl,kHiH,jH?[j] (Pit1:q1, - - -5 Dis %ﬂ

(25.31)
We have thus decomposed the recursion relation in this way:
ng(p1>Q1a-~-apkan) = [Hl(q)]lrr(plvqlv"'7pkaq16)
k .
L Z Hyp A% (qu,pa, qas - Dis Qi)
= Tia y(p;) — y(qx)
Hl,k} Bk’j(QI7p27q27“"pk‘7qk) (25 32)
— :Ej,l Hj,k
and given the expressions for [H}];,,, A% and B
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25.2.3 Proof of the second point

From the expression of the irreducible part in equation 25.31) we first prove that [H}],

can be written this way:

[H Irr ps’ QS Z D 1'1, Yy« - T,y ?/k) H Hi,o‘(i) (2533)
o€6y i=1
where DY is a rational function of xi, Y, 1,5 = 1,...,k. Indeed, we have, from

equation [25.31) and applying the hypothesis of recurrence to the HPs and H} . (it is
legitimate because i < k—1and k —i <k —1):

k=1 1

N ( 1y - ()Il... i
[H er(p&QS) = Z Z Z C <Z+7 7yk)0 ( ) 7y)

- T1i+1Yk,j
=1 j=1 pc&;_; r€6; J
r(1)=j

k
Hl,‘r(l) H Hm,p(m)

m=i+1
i

Z Z Z (xi—i-lw"7yk)07('i)(‘ri+lay1w-wxi?yi)

- T1,i+1Yk,j
L j=1 pe@;_; €6 1Yk
(z—l—l) kT(1)=y

Hl kHH—l,] HHITZ) H Hmp(m)

=2 m=i+2

~
Il -

??')_'

>_.

7

We need to check that the following stands: if p € &,_;(i +1,...,k), 7 € &;(1,...,1),

then o
preoe = (25.35)
ifr(1)=yj,pli+1)=k=pro(lyi+1) e &

Proof. We show this graphically.

First case: If one takes p € @k,i(i +1,...,k), it is equivalent to draw a system of
non-intersecting arches on the disk (i +1,...,k). For 7 € &;(1,...,1), it is equivalent
to a system of non-intersecting arches on (1,...,7). If we open the disks and glue them
according to figure [80] we see that pr gives a system of non-intersecting arches on the
disk (1,...,k), so pr € S(1,..., k).

Second case: From figures and , one sees that, if p € Gp_;(i +1,...,k),
p(i+1) =kand 7 € &;(1,...,4), 7(1) = j, one can draw a system of (non-intersecting)
arches on the disk (1,..., k) corresponding to the planar permutation pr (it is repre-
sented in figure . Now, drawing the system of arches of pro(1,7+1) gives figure .
Obviously, it is a system of non-intersecting arches of the disk (1, ..., k), so pro(1,i+1)
is a planar permutation: pro (1,5 +1) € Si(1,...,k).
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P1
Arches

pETp_i(i+1,....k)

q;

b1

p€ S i(i+1,....k)

dk

Arches Arches

pT E g

Pi+1 q;

Figure 80: Gluing 2 systems of arches gives a system of non intersecting arches.
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qk

pEThi

pli+1)=k

pE i i

pli+1)=k

Arches Arches

Pit1

Figure 81: System of arches of pr Figure 82: System of arches of pro(1,i+1)

Therefore, the irreducible part admits a decomposition on planar permutations:
[Hi ]y, (Ps: a) Z DNy, 1, yi) H Hi; 5 i) (25.36)
o€EGy, =1

We need to show that for all 0 € &, D((;k) = C’gk). Let us take o € &,.
The proof splits in two parts:

o(1) = 7 with j <k —1 In this case, the permutation o can only come from terms
of the first 2 lines in equation [25.34 We then have:

= (k—) 0
C Lit1y-- -y CT Tiyeooy Yy
DOy ) =3 Y S 6, @iy, - ye)Cr (21, - -, W)

P — — L1,i+1Yk,j
=] peEGy_; TEG; J

(25.37)
From section [23.4.1| the r.h.s is equal to c (T1, Y15y They Yke)-

o(1) = k Here, the permutation o can only come from the last 2 lines of equation
Considering this, we get:

e

-1 k—i

ayl)

Dc(rk)(‘rh Y1, Tk, yk

HM

T1i+1Yk,j
(25.38)
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And again, from section [23.4.1] the r.h.s is equal to Cék) (T1, Y1y ey They Yke)-
Therefore, the second point is proven:

|:H Irr p“% Z C ‘rl Yis- -5 Tk, Yk H 73,0(5) (2539)

o€y,

which is equation [23.23]

25.2.4 Proof of the third point

We show successively that A®' = 0 and B*! = 0. The main tool for this step is that we
already know (see [Eynard and Orantin, 2008]) that H} has no pole in p; — p;. Then,
for all [y > 2, Res HY(ps,qs)dz(p;) = 0. So we have, Viy > 2:

pP1—P1g

Res [H}] 1oy (P25 i) dx(p1)

pP1—Pig
AED) (g1, pa, ga, . . ., DRy 1)
y(pio) — y(ar)
+B% ) (g1, p2 qo, . preqr) = 0.
(25.40)

+

From the expression of B! in equation [25.24| and the expression of [H Py, In equation
25.31 one easily finds that:

s [HY] ., Py @i)da(py) + B® (g, p2,qo, .. oy ai) = 0 (25.41)
0

So AR = 0.

From the result of the third point, we know that the irreducible part of HY is the
generating function of the Ising Model. We also know that the generating func-

tions of the Ising Model have no pole at coinciding z; (for both statements, see
[Eynard and Orantin, 2005]). We then get:

Res [Hl(ﬂ Ter (pi» gi)dz(p1) =0 (25.42)
pP1—=DPig
so BM' =0, and the third part of the theorem is true. The generating functions Hp
computed from the recursive relation [22.12| can be computed from the Ising model

generating functions:

k
ng(plu q1y- -+ Pk, Qk) = Z Ctg-k)<xla Yty -5 Tk yk) H Hj,o‘(]) (254?))

g€ j=1
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25.2.5 Conclusion

It is enough to use the proof of the symmetry of the generating functions
in[Eynard and Orantin, 2005] to conclude about rotational the symmetry of HY. This

closes the proof of the theorem.

25.3 Removing one change of color from the boundary

Let us prove the lemma for the operator O; applied to the generating function

H,gg_)l (P1, @1y -+« s Pht1, Qry1)- From the rotation symmetry proven in theorem [23.2] it is

enough to prove the lemma: O; = O;R}.

Let us suppose also that the spectral curve is such that there exists a common pole
q- € X of x and y.

From theorem [23.2] the generating function can be written as:

k+1
ng(-)i-)l(ph qi;-- -5 Pk+1, Qk+l) = Z C(E'kJrl)(xlu Y1y Th41, Z/k+1) H Hi,U(i)' (2544>
O'E@k+1 =1
As we have:
Res d H ) =01, 25.45
h(q1)p1_e>(§l ‘r(pl) (plqu) 1,5- ( )
let us then carry out the following residue:
k+1
(0) _ k+1
h(ql)pﬁ—e)idx(pl)}]k—’—l<Sk+1) = Z C’((, i )(x(Ch% Yis oo s Thtt, Yot1) ;Ll_! H; o).

o Engrl
o(1)=1

It selects the link patterns with a link between p; and ¢;. Then, using the point ¢*,

the following residue gives:

k+1
z(q1) (0) _ (k)
qies*h(ql)dy(fh)plﬁjgldx(pl)ffkﬂ(5k:+1) = 2@: Ci7 (T2, Y2, - -+, Thog 15 Yht1) ll H; 5.
ASSIA =
= HI£0)<p27 q2; - - -, Dk+1, qurl)
Therefore the " forget map of the first pair of colors” is:
O; = Res JE(Q1>0ly((_11) Res dx(p1), (25.46)
q1—q* h(ql) P1—=q1

which proves lemma [23.4
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25.4 Insertion of uniform boundaries

Proof. This result is proven by induction, using the recursion [22.12] formula.
Initialization: Let us first apply the insertion operator to the generating function

H 1(?0);0. Using the Leibniz rule for the derivations:

- G TLisew(e) —Yi(z(p))

- (SH <x (]?(_)))( (y(q<))>> ¥

L (Yi(z(p) — y(g Hi2o(p, 2) Hiyolq,2)  do
2(3) — X(5(4) (Z V) V) ) X<<>>dy”)

L0 H§2o(p, 2) HiDo(q,2)  da
= —Higo(pq) <;y(q)—Yi(1‘(p))+ ) - X ))dy( ))

It is possible to compute H {?1);0 from the recursion formula, which gives:

(0)
(0) -y _ (0) es HO;Z;O(T7 Z)dl‘(?”)
Mo 62 = Miao®0) 1S 4o (e - )

z
r— 0.7

(0)
_ (0) os H0;2;0(7"7 z)dz(r)
= Mool ) B G 2 ) ) — )
Higo(r, 2)da(r)

du Hygo(r, 2)dy(r)
3 e - o)) —y(q»)

(0) (0)
Hg.5.0(p, 2) Hys.0(q,2) dx
7 © Z 0;2;0\P; 0;2;0\4;
f;g;O(p) q) ( - (q)

i#£0

Therefore:
5TH100(Z7;Q) Hl(l) (%CI;Z);

and a similar computation yields ¢° 1;0;0(p, q) = Hf?g;l(p, ¢; z), which initializes the
induction.
Induction: First, let us rewrite the recursion relation [22.12]in a more compact way,

using the kernel K and the recursive terms ReckgL) —
Hlii);m;n - Rl?lsl IC(T7 P11, q1,k1)ReckgL;m;n(T)dx<T)7 (2547>
r%fj{ykl
Pi,«
where: )
Hio.0(p,
/C(r‘,p, (]) _ 1,0,0(p Q) ’ (25.48)

H{po(r,q)(z(r) — 2(p)) (y(r) — y(q))
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and

Recl?.  (r) =

L;mn

(h
;A BZ{: ) Z2§Hk1)a+1 kp;m |I|;n7\J|({p1,a>Q1,a7---apl,kp(h,lﬂ}aSB;pM/UqN/J)
uB={2,...,l} «

—h
HLH_LI)(A””;M({T,qu7~.~7P1,a—1,Q1,a—1}7SA;pI§QJ)

z(p1,a)— x(r)
+ Za 2 m X
Hc(yg_illl—aJrLkL/{l};m;n({ra qui; - Pla-1, Qla—1}s {PLas Qlas - -+ DLk QLks 1> SL/{1}; PM; AN)
+ Zi’:z 2221 m x
H]gfl]l-k‘z,kL/{l iyim; P ({S1(7)s Picvs Giror Pisat 1 -+ Qikis Pisds -+ 5 Pisa—1, Gia—1}, SL/{1,1); PM; AN)

h) —h
+2}3A Z{: }IZH( KaslTl; \]\(Sl( ) SA%pI%QJ)Hl((i;mlmHm,m(SBZ7“7 PM/{I}SQN/{J}>
v AUB={2,...,l

+Z 010( )ng?, hkl,mn(sl( ) SQ,"'7Sl;p17"'7pm;q1a--'aQn)
+H ), (Sk(r): 7, pass aw) (25.49)

According to the definition of the insertion operators, one gets:

OLH n(Suipaian) = Res o [/C(T Pt Gk )Req?, L (r) | da(r)

,
J
r—91 &y
Pi,«

z

= Res <(5; [’C(T’, P11, QLk1)] Recligg;m;n (T)

P11

r—>q1 kl
pz a

+K(r, p11, Q1,k1)5zReCE{gg;mm(T>> dx(r)

In the last term, we have:

5;Recl((gL);mm(r) —Rec? . (r)— HY

L;m+1n ky;myn

() H o (r, 2) (25.50)

(the term H”)

ki, ;min

(r )Hé?g;o(r, z) comes from the red part of equation [25.49). Therefore:

5TH1(§_‘ m; n(SL yovs qN) = R‘glsl <IC(7“, P11, q1,k1)ReCl(<g]3;m+1;n(r)
T—)q?:il
piz,a
+07 [K(r, pr.1, 610, ) ReCt (1)

—K(r, p1,1, Q1,k1)H1£i);mm( )H(g?Q);O(r, z)) dz(r)
= Hl(g‘);m—ﬁ-l;n(SL; PMm, Z5 QN)
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L;min

+ Rglsl (52 KC(r, pras quky )] Recl({g), (r)

»J
r—491 &,
Pi,a

K4

_’C(T7 P11, 491,k )ngi),m,n(r)H((J?g,O (T, Z)) dx(?")

It remains to show that the following holds:

Res 8 [K(r, 1, g Reid e (r)da(r) = Res K11, g ) Bl () %
r—>q(1),’i1 "y
pl;éa z
H§o (', 2)da () (25.51)
In order to make the term Reck mn(r) appear in the right hand side, we express
Hlii);mm(r ) with the recursion relation, so that the right hand side is:

Res  Res IC(r’,le,ql’kl)lC(r,r’,qul)HéOQ)O(r z)Reck e (T)d(r)dz (1) (25.52)

p1,1
/ 0,7 0,5
r'— )
91,k T Ky
z Pi,a

In order to get an expression similar to the left hand side, one has to exchange the

residues in r and 7’. Using the following rule:

Res Res = Res Res — Res Res,

r'—=p r—r’ r—=p r'—=p r'—p T—)p

we end up, for the right hand side, with the following expression:

Res Rg&IC(T’,le,qul)lC(r,r',qul)Hé?Z);O(T Z)Reckg)mn( Ydx(r")dz(r).  (25.53)

P1,1
Jopt »J
r— e Ty
DPi,a z
4

Regarding the left hand side, we compute explicitly the action of the insertion operator

on the kernel:

0 0 0
5;/C(7“, D, q) = (Hf’l)ﬁ()( 4= ) Hi;l);O(n q; Z) Hé;z);o(r, Z)

Hyq Hyy o y(r)— y(q)> Knp4)
(25.54)

The three terms can be expressed in this manner:

o First term

H o (p. ;2 -
%’C(ﬁpm— Res K(r',p.q )K(T,T/,Q)HO(?Q);O(W’Z)M—:C
D.q r _>q0] x(y") —x
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e Second term

HYo(r,q:2) (1) — x(p)
— K pa) = Res KO, )l ' ) o0 2) e — oS da(r)
4 r'—q7
(25.56)

e Third term

HS?Q);O (7"', "7’) . / / (0) / /
— —————K(r,p,q) = —ResK(r', p, ) K(r, 7", Q) Hy.5.o(r', 2)dx(r")  (25.57)
r'—r B

H,,
Summing up these terms gives:
STK(r,p,q) = Re% K, p,q)K(r, T/,q)H((]?Q);O(r',z). (25.58)
r’—q0J

z

Hence, the left hand side is equal to:

Res R%§lIC(T',le,ql,kl)lC(r,r',qul)Hé?%o(r’,z)ReC(g) (r)dz(r)dz(r), (25.59)

p1,1 kr,;min
0, ot 0,7
r— @k Ty
Di,a z
z

which is equal to the right hand side, and finally proves by induction that
OLH o (Suiparsay) = HY o (Suipar, 2 aw). (25.60)

Similar computations would give the result for the insertion of a uniform black bound-

ary:
OCHE o (Suiparsan) = HE 1 (Swipar an, 2). (25.61)
O
Proof. The theorem is a consequence of theorem and lemma [23.29 O

26 Extensions of the results

26.1 Toward several mixed boundaries

All the results obtained so far in this chapter concerns generating functions with one
mixed boundary, and genus 0. But what do we have for higher genera, and several
mixed boundaries 7 The symmetries are not proven for those cases, but if we assume
one invariance of the genus 0 generating functions, then the proof is straightforward.

Namely, suppose in the next two sections, that:
VL > 2, V{ki,... .k}, BHE oo = He oo (26.1)

Let us show that, assuming this symmetry, the rotation symmetry and the symmetry

under a permutation of mixed boundaries are statisfied.
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26.1.1 Exchange of boundaries

For all 2 < i < L, for all ky,...,k,,m,n, we prove that T;HY

D e = HY L We
simply need to prove the result for m = n = 0: to get the result for non null m, n, one
simply uses the insertion of uniform boundary operators, and the result comes straight-
forwardly. The proof is done by recursion on (L, ky, ..., k) (using the lexicographic
order).

In that case, the recursion has three terms:

0) HY(p1,1,q1,1, )dz(r)
H! = es L) X
kL?O?O(SL) Rpi,e HY (rq1,k,) (2 (r)—2(p1,1)) (y(r) —y(q1,k, )
r— 0,7
ql,kl
H ({ra 11,1 },S ) H ({P1,0r01.5, }.SB)
Zkl Z a—1kp;0;0\ U411 41,0—17, k1 —a+1,kg;0;0 yarql,ky £59OB
a=2 20 AUP S 2oL —a(r)

(0)
+ZL Zkl Hlirki’kL/{l’i};0;0({51(T)api,a»(h’,a7-~~7pi,a71,(h,cx71}’SL/{l,i})
i=2 Zia=1 z(pi,a)—2(r)

0 0
FE o H oo (S10) Sa Y, o(Smir)| . (202

There are three sums (two double sums and one simple sum) in the recurrence. We
may refer to them in the following, as the 1%¢, 2"¢ and 3¢ sum.

The initialization of the recurrence is done for L = 2, and any ki, ks € N. By assump-
tion, one has 75H,g??k2 (S1,52) = H,g(l)?b(Sl, Ss), which initializes the recurrence. In the
following, let us suppose L > 2

The second simplification we use is that, as we have the following identity on the

transpositions:
(1,4) = (1,2)(2,4)(1,2),

and as we assume the invariance under 75, we just need to prove recursively the invari-
ance of the generating function under the transposition of the boundaries 2 and i. Let

us note 7; o this transformation:
Ti2(S1,5,...,50) = (51,8, ..., Si—1, 5, Sit1, ..., SL).
The hypothesis of recurrence is the following:
Vi=3,...,L,  TioH\ oo(S1) = HY o (SL). (26.3)

If it is true up to (L, kq,..., k), let us prove that it is true for (L + 1,1,kq,..., k),
and (L,k; + 1,ks,...,kr). In both cases, we use formula to compute
H{3oo({p 0}, Ti(SL)) and HY,y oo 0({p, 0, 13, Ti(Styqay))- Tn the first case, only
the 27¢ and 3"¢ sum are present, whereas in the second case, the 3 sums are there.

In the equation [26.2] the first two sums are symmetric under the exchange Sy +» S;:

Y,
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the symmetry amounts to rearrange the sum over ALB = {2,..., L}, and to apply the
; : (0) (0) (0) 1

invariance of H,”, g, .0.00 Hy," o i2xg:00 a0d Hkﬁkj,kw{l,j};o;o({51(7")7 RS Si}, Suyqugy)
under 7,9, Vi > 3 by hypothesis of recurrence. In the last sum, the symmetry is

manifest if one reorders the sum over AU B = {2,..., L}, and uses the invariance of
0 0
Hlil?kA;O;O(Sl (T)7 SA)HI(Q;I;O(SB; 7’)

when exchanging S, and \S;: this is the invariance under 7; » Vi > 3 and 73 by hypothesis
of recurrence.

(0)

Therefore, the formulas computing Hyy ., and H,go)

Lk 10,0 aT€ respectively the

same as the one computing 7; o H 1(012L,0,0 and 7; o H (©) which prove that they are

k14+1,ky, /(130,00
. . . 0 .
equal. This proves by recurrence that the generating functions HIEL);m;n are symmetric

under a permutation of the mixed boundaries.

26.1.2 Rotation symmetry for several mixed boundaries

Once the symmetry under permutations of the mixed boundaries is proven, the rotation
symmetry under R; of generating function with several mixed boudaries of genus 0
comes also easily. As for the exchange of boundaries, we simply need to prove the
result in the case where there is no uniform boundary. Adding uniform boundaries
by applying insertion operators does not change the rotation symmetries. The proof
is carried out by recurrence over (L,ki,...,k;) with the lexicographic order. The
initialization is done for L = 1, and any k; > 1: this is the result proved in the
theorem 23.2

RiHoo(S1) = Hi oo (S1). (26.4)

Then, suppose that the symmetries under R; Vi = 1,..., L are satisfied up to order
(L, Ky, ..., k). A first remark is that for L > 1, it is enough to prove the invariance

under Rs. Indeed, we have the following:
Ri=Ti2RaT; 2. (26.5)

Ti2 leaves the generating functions invariants from previous section. The proof of

)
+1.kg/{13};0;0

section, for the invariance under 7;,. In the end, one get:

. . 0 0 . . .
invariance of Hf lzL-(yo and H ,gl under R, is the same as in the previous

VYL > 1, Yk, ... .k, Ym,n<0,V1<i<L, RHY

ky,;m;n

=H (26.6)

26.1.3 The exchange of boundaries 1 and 2.

For the two previous results to be true, it remains to show that the generating functions

are not changed if one exchange boundaries 1 and 2. One could be tempted to apply the
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proof of lemma [21.1, However, this recursive proof relies on the fact that the residues
of topological recursion are local. The crucial fact of topological recursion is that it
depends only on the Taylor expansion of the one-form wy; close to the branchpoints,
and on the Taylor expansion of the two-form wy 2 at coinciding points. We stressed that
the recursion of formula 22,12 is not local in the sense that the residues are done on
all the sheets of the spectral curve (if one considers q%l). Those residues prevent from
proving the symmetries recursively, uniquely using the master equation 22.12] This
is why we had to find another formulation of the recursion, more convenient for our
purposes in the one mixed boundary case. We ended up with a sum over link patterns,
and the recursion does not involve residues any more.

This is why it is necessary to find another equivalent formulation of the recursion [22.12
to have a hope of proving the symmetries. What follows is purely speculative. In a
first approach, it is tempting to extend the sum over planar link patterns to the case
of several mixed boundaries on a genus g surface. It would then be necessary to define
new functions for the faces, as they would not be all cellular (see figure . This
approach would give a formula similar to the recursion computing the braided gener-
ating functions found by Borot and Eynard [Borot and Eynard, 2011] in the O(n) loop
model. Namely, their recursion is a sum over planar link pattern drawn on a genus g
surfaces with boundaries.

A second approach would be to extend topological recursion to the case of mixed bound-
aries. Indeed, the residues of topological recursion are located at the branchpoints only,
so they are local. However, the formula of topological recursion allows to compute gen-
erating functions which have uniform boundaries. This means that to each boundary is
associated a parameter belonging to the spectral curve. A generalization of topological
recursion would involve to generalize the kernel of recursion and the residues. For in-
stance, if one looks at the generating function Hl(??.,l;o;o((pb @1); (P2,q2); - -5 (Drs Q1)) it
corresponds to an invariant associated to a surface of genus g with £ mixed boundaries.
To each boundary is associated a pair (p;, ¢;) of spectral parameters. It is tempting to

formally write the following recursive formula:

H soo((pr @) (2, )i i (o)) = D Res ™ “Kay™((s,1), (b1, @)%
a,b ' ’
dm‘((a)):()
dy(b)=0

[ Dool(9:0); (0usp,0))s -3 (01 0)

/
+ Z H{?%.),I;Oﬁ((pa q)’ SI) X

g1+92=9g
Iuj={2,....k}

H 1 00(0as((9.0)): S3)] (26.7)

O

199



Figure 83: A non intersecting link pattern on a surface of genus 1 with 3 boundaries
of lengths 2, 3 and 4. Some faces are no longer homeomorphic to a disk.

The quotation marks on the residues and the kernel are there to emphasize that this
formula involves to find a generalization of the kernel and the residues so that it takes
into account both parameters (p, q) € ¥?, and not only one. At the moment of writing

this thesis, such generalization has not been found yet.
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Part VII
Conclusion

Three aspects of random maps were investigated in this thesis. First, we studied a
measure over the set of Delaunay triangulations, and showed that this very measure
is the Weil-Petersson measure over the moduli space of punctured Riemann surfaces.
Also, two local properties of the measure were proven, as preliminary steps toward
the continuous limit of Delaunay triangulations. In the future, it is worth keeping on
proving other properties of this measure in order to get a more substantial flavour of
the continuous limit of the measure. Second, we computed explicitly the expectation
values of observables defined on Strebel graphs. It allowed us to study different
regimes for the marked perimeter of the one-point function when the size of the graphs
grows to infinity. Then, once the interesting regime was identified, we implemented
topological recursion in order to compute the expectation values in a more systematic
way. Through the behaviour of the correlation functions, we could tag the continuous
limit of Strebel graphs as a (3,2) minimal model dressed by gravity, corresponding to
the pure quantum gravity. However, we got this result by considering the continuous
limit of the observables accessible from the Chern class, which represent roughly half
of the possible observables on Strebel graphs. It would be useful to study the other
observables one can define on Strebel graphs, encoding for some of them the graph
distance. Hence, we could have a glimpse of the continuous limit of Strebel graphs as
metric spaces. Last, we studied the symmetry properties of the correlation functions
of the Ising model on random maps. Those symmetries were not obvious from the
recursive relation defining the correlation functions, and we showed the rotation and
inversion symmetries for some cases. The generalization of this result is currently

under study.

The continuous limit of generic random maps and its relation with Liouville
quantum gravity is still a lively area of research: although we have many physical
predictions for the large n limit, many of the statements are not proven yet. Also, the
powerful procedure of topological recursion has not shown all its possibilities yet, and

it is worth digging them.

In the forthcoming months, I intend to focus on the three following problems:

> Find a combinatorial way to compute the correlation functions of the Ising

model on random maps in order to find another recursive formula. The current
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recursion comes from the resolution of loop equations coming from the matrix model.
The combinatorial recursion would be found by exploring the interfaces between the
red and black faces of the random maps. Then, it is probable that the recursive
relation directly gives a sum over non intersecting link patterns. Such decomposition
over link patterns simplifies considerably the symmetry properties of the correlation

functions.

> Extend the topological recursion, first by applying it to other models. For
instance, the r-spin model, for which the topological recursion allows to compute
expectations of ciliated maps. Second, the extension would correspond also to a
generalization of the topological recursion, in order to get a “topological recursion”-like
formula for the correlations of the Ising model. Indeed, it has been stressed that the
current recursion is different from topological recursion because of the non-locality of
the residues.

> Third, investigate the algebraic properties of the correlation functions of the
Ising model and of the O(n) model, in order to relate them with integrable systems.
This would involve to define operators (such as Dunkl operators) and algebras acting
on the correlation functions. It is foreseen that the expectation values of the Ising
model on random maps can be interpreted as amplitudes of a Calogero model. This

relation must be strengthened.
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A Special Functions

Here are some definitions and useful properties of special functions used in this thesis
(dilogarithm and Bessel functions).
The dilogarithm Li, is defined by the series:

Lis(z) =Y % (A1)

It is also the integral of the logarithm:

“In(1 —
Lig(2) = — / =0 (A.2)
0 ¢
Bessel functions of (complex) order v is defined by the generating series
T\ (—1)* x\ 2k
()= (= -] . A.
7w = (3) kz_%r(kﬂ)r(muﬂ) (3) (A.3)

The modified Bessel functions of the first kind of order v are given by:

I(x) = (9 kzzo T(k+ 1)F(1k tr+1) @)% ' (A.4)

For n € Z, those Bessel functions are related by:

I(z) = i J,(iz) (A.5)

For all n € 7Z, the modified Bessel functions of the first kind satisfy the recurrence

relations:

In—l(x)_]n—i—l(x) = ;]n(x)
Li1(z) + Ly () = 21 (). (A.6)

B Explicit computation of the one point function

The one point function f, (L, ﬂ) can be computed in the same manner as the volumes

L
V,,. Forn >3

L
fo (Lf) = Zui(LiLy)
+o00 n
1 LQd L%dl
= 23 < (5 > 2dd!Td> 2,1
d1=0 d 0
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2(dy+-+dy, 2d
2 Py L
on 2 2dattdnirdy) g1 2y /0

d1yeodns
(B.1)
Now:
(n . 2>‘ n+1
Tdy - Tdpyoy )0 = ————F——0[n—2— d; | . B.2
(T -+ T o dil. . dp! ; (B-2)
So:
L (n — 2)1L2n—4 1 L\ 1
oL, =) = nw=ep Z - - (= - -
"\"T 2 o [ 2t \2L ) (di]. . dpir)?
1T...dpn41=N—
n—2)1L2n4 _ L
— —( ; [2*" 4]10(2)“[0 (zf)
n — 2)1 124 dz L
- P e (7))
2n—4
_ (n=2)L RGS%IO<Z)26(n72)(1n10(2)72 In =4 Ly To(2L /L)) (B.3)
2 z—0 2

C Change of the measure with a flip: proof of
lemma (8.1

When the triangulation 7" undergoes a flip to give the triangulation 7", only the two
faces surrounding the edge change. So in the prepotentials A(7") and A(7"), the only
terms that differ are those implying the changed faces:

A(T) — A(T") = Vol(124) + Vol (234) — Vol(123) — Vol(134) (C.1)

Therefore, the differences between D(T') and D(T") are located in the D; ; with 4, j €
{1,2,3,4}. As we are looking at the quantities d(124), the indices 1, 2 and 4 are not
taken into account in the determinant. So the differences between D(T") and D(T") lay
in Ds3. By expanding the determinant with respect to the third line, we get:

d(124) (T) - d(124) (T/) = [D3,3(T) - D3,3(T/)] det [D{1,27374} (T)} (C.2)
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Let us focus on the term Dj3(T) — D3 3(T"). Using the form D = ;- AEAT, and noting

Zij = z; — z;j one gets:

/ 1 A
DS,S(T) — D3,3<T) - 4_2 [Z Z A3,eEe,e’A3,e’ (CS)

e—3 e’ neighbour of e

1 (1 -1 11 11 11 1 1 1 1

T4 231 232 232231 231 234 234 231 232 234 234 232
(CA4)
1 230234%31Z42 + 231232234221 + 231234232714
1 2 12] a2 (C.5)
4i | 231|2] 232|?| 234]
1 N(z3,Z
_ ( 39 3) (06)

T 4i |2 |?|z30 ] 284 ]?

The coefficient of the term 23z3 in N(z3,%3) gives Zs2 + Zo1 + Z14 = 0. What is more,
N(z) = —N(z), so N can be written as N(z3,Z3) = az3Z3 + bzs — bZ3 + ¢, with a € iR,

b and ¢ € iR functions of z;, Z;, i = 1,2, 4. Setting w = —% and R* = —< + a]?,
N(23,23) == CL[(Zg — w)(Zg - w) - R2] (C7>

N(z3,Z3) = 0 is thus the equation of a circle for the point 3. As we have N(z;,Z;) =0
for i = 1,2,4, the circle is the circumcircle of the face f = (124), of center w;y = w
and radius Ry = R. The coefficient a is given by a = 241Z21 — 221241, which is the

(euclidean) area of the face (124). Eventually we have:

5 — ey = B3

D33(T) — D33(T") = Area(f) (C.8)

|Z31|2|»2’32|2|21°>4|2

which proves the lemma [8.1]

D Refined lower bound for the volume: proof of
theorem [8.3

The notations introduced here refer to the figure Each edge of the triangle (abc)
is surrounded by two faces. If we remove the point z,,.;, we obtain the Delaunay
Triangulation for the points {z, ..., z,}, and the triangle (abc) is one of its faces. Let
us note 0(ap), O(e),and O(cq) the angles between the face f = (abc) and the other face in
contact with the edges (ab), (bc), and (ca) respectively.

Now, in formula [8.16| instead of computing the integral of the measure over the region
B(f), we carry out the integral over the region R(f). The integrand is not changed: it

is the measure of the Delaunay triangulation made of the 4 points a, b, ¢ and z,,1.

I, = / d*z, .1 det [D{a,b,c} (T” ({a,b,c, an}))} (D.1)
R(f)
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Figure 84: Domain on which d9~1d9~2 has to be integrated. We take here 92 = 0; — Omin,

Then the computation of I; follows the same steps as for I, the only difference being
the inequalities [8.19] satisfied by #; and 6,:

i 9 ca i
. 04 ;
R (D:3)
. : : O
9?1n+9§n1n§91+92Seinm‘i‘e;nm‘i‘%"i_g (D-4)

The integral is then the area of the red region in figure 84 So we get:

71.2

1
I, = E —+ E[@(ab) (271’ — Q(Qb)) + 9((,@(27‘( — H(bc)) + Q(ca) (27T — Q(CG))].

Then, following the same steps as for the previous lower bound, the result comes:

/ d22n+1 det |:D{1’2’3}(TD({21, c. 7Zn+1})):|
C

> <n—2>%+% Y b(e)(2m —6(e)) | det [Dpag(T ({21, 20})]-

ec&(TP)

(D.5)
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E

Origamap

The equipped and courageous reader can do better than a 3d printer and build a bi-

colored quadrangulation on a torus with 2 boundaries, by following this tutorial. Some

pictures are here to help to the construction of the map.

e Duration: approximately 30 minutes.

e Equipment: liquid glue, scissors, printed version of this appendix.

Steps:

1.

Cut the pattern along the plain thick lines, in order to get two pieces of paper.

They constitute two parts of the torus.

For each piece, fold the pattern along the dashed thick lines, except the dashed
lines neighbouring the areas labeled “1” and “7”. The strips “2” and “4” must
be folded in the opposed way with respect to the other strips.

On each piece of paper, glue the areas “1” to the neighboring triangle. Then glue

the area “27.

Glue the two pieces of paper together along the areas “3”, in such a way that the

strips “4” cannot touch each other.
Then, glue successively the areas “4”, “5”7, “6” and “7”.

The origamap should look like a square donut, see figure [36]
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Figure 86: Pictures of the map in construction. On the left hand side, it is after step
3 ; on the right hand side, it is after step 4.

F Synthese des résultats

On présente dans cette annexe une synthese de certains résultats de la these, chapitre

par chapitre.

F.1 Propriétés locales d’'une mesure définie sur les triangula-
tions de Delaunay et modeles de gravité topologique en
2D

Dans ce chapitre, on étudie diverses propriétés d’une mesure définie sur les triangula-

tions de Delaunay.

Definition F.1. Etant donnés n points du plan compleze z1,. .., z, € C distincts deux

a deux, une triangulation de Delaunay de ces points est un graphe tel que:
e les neeuds du graphe sont zy, ..., 2, ;
e toutes les faces, y compris la face externe, sont de degré 3 ;
e [’intérieur du cercle circonscrit de chaque face ne contient aucun neud.

On note TP la structure (c’est-a-dire les relations d’adjacence entre les neuds) d’une
triangulation de Delaunay. On note V(T'), E(T') et F(T') respectivement l’ensemble des

neeuds, des arétes et des faces d’une triangulation T.
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Une propriété importante de telles triangulations est que pour chaque configuration
de points {z1, ..., z,}, il existe une unique triangulation de Delaunay de cette config-

uration. A chaque aréte de la triangulation est associé un angle, de la facon suivante

Definition F.2. Soit e = (z;,2;) une aréte de TP, et fi = (2, 2, 21), fo = (i, 20, 25)
les faces adjacentes a e. On note wy, wo les centres respectifs des cercles circonscrits

aux triangles fi et fo. Alors l'angle 0. associ€ a e est défini par :

o —

9@ = (wlzij) .

L’ensemble des angles d’une triangulation est noté 8. Pour toute aréte d’une triangu-

lation de Delaunay, on a 0 < 60, < 7.

La configuration d’angles associée a une triangulation de Delaunay satisfait deux

contraintes.

1. La premiére contrainte est locale : soit v un noceud de T, alors
Z 0. = 2,

ol e — v est une notation qui signifie que la somme porte sur les arétes incidentes

en v.

2. La seconde est globale : soit C un cycle du graphe dual 7" ; on note C* I’ensemble

des arétes de TP qui intersectent le contour C, alors

Zee > 2.

ecC*

Ce qu’on appelle une triangulation de Delaunay est la donnée (TP, 6) de la structure et
de la configuration d’angles. La taille d’une triangulation de Delaunay est le nombre de
noeuds de la triangulation. Un autre intérét des triangulations de Delaunay est qu’elles

satisfont une propriété d’invariance conforme :

Proposition F.1. Soit {z1,...,2,} C C une configuration de points distincts deux
a deux, et ¢ € SLo(C) une transformation de Mdébius.  Alors {z1,...,2,} et
{o(z1),...,0(zn)} ont la méme structure et la méme configuration d’angles : ces con-

figurations ont la méme triangulation de Delaunay.

Un espoir est que dans la limite continue (lorsque la taille n tend vers 'infini),

le modéle limite conserve cette propriété d’invariance conforme. On note ®, =
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C"/SLy(C) I'ensemble des triangulations de Delaunay de taille n. On définit une mesure
sur 9,

dv, (T, 0) = uniforme(T’ H do. H o (27r — Z 0 > H C) (Z 0. — 27r) ,
665 (T) veV(T) e—v mathcalC ecC*
ol © est la fonction de Heaviside. C’est la mesure de Lebesgue sur les angles, ou les

contraintes, locale d’une part et globale d’autre part, sont imposées. En terme des

coordonnées des points, cette mesure a la forme suivante :

dv,(T,0) = D{”k} 21y H d?z,,
v;éi,j,k

D{TL ik} étant le jacobien pour passer de la description en termes d’angles a la description
en termes des coordonnées des points. Ce dernier est défini que 1" soit la triangulation
de Delaunay ou pas. David et Eynard ont montré [David and Eynard, 2014] que la
mesure utilisée est Kéahlerienne, et que ce jacobien peut s’écrire sous la forme d’un
déterminant :

D{Ti’j’k}(zl, coyzn) = 2" det [Dy (21, 2],

ce qui permet de définir une 2-forme

n
Qy = %uzl D, vz, A dZ,.
Les résultats de ce chapitre sont de deux ordres. D’abord, on relie la mesure sur les
triangulations de Delaunay a la mesure de Weil-Petersson sur ’espace des modules des
surfaces de Riemann marquées de genre 0. Ensuite, on prouve 2 propriétés, de max-
imalité d’une part et de croissance d’autre part. Ces deux propriétés sont des étapes
préliminaires a une possible étude de la limite continue des triangulations de Delaunay.
Les résultats sont donc les suivants. On montre d’abord que la 2-forme )¢ est propor-

tionnelle a la 2-forme de Weil-Petersson Qy » :

Théoreme F.1. La 2-forme 1y admet ’expression:

99:1 Z d|zi—zj| /\d|ZJ—2k’ d‘Zj—Zk| /\d|2k—22’ d‘Zk—Zi| /\d|Zi—Zj‘
o2 lmmal sl sl amal s al o sl
et
1
Q_@ - 597/?

Ceci a pour conséquence directe que les formes volumes dv,, (sur D,,) et dv”? (sur

M.,) sont égales. La propriété de maximalité de la mesure est formulée ainsi :
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Théoréme F.2. Soit {z1,...,2z,} C C une configuration de points distincts. Soit T
une triangulation générique construite sur ces points (T n’est pas nécessairement la
structure de la triangulation de Delaunay de la configuration), et TP la structure de
la triangulation de Delaunay associée a cette configuration. Alors le jacobien associé a

TP est mazimal :
D?i,j,k}<zl7~--7 ) <D{z]k}<z17'--7zn)

Enfin, la propriété de croissance est la suivante.

Théoreme F.3. Soient zq,...,2,11 € C, et T,,, Ty,+1 les structures des triangulations

de Delaunay de {z1,...,z,} et {z1,..., zny1} respectivement. Alors :

2
T
/ P det [Drpo(Tin)] 2 (1~ )% det [Dyoo(T)].
C

F.2 Limite continue des fonctions de corrélation définies sur
les graphes de Strebel

Les graphes de Strebel ont été introduits par Penner [Penner, 1988].

Definition F.3. Un graphe de Strebel de genre g et de taille n est un graphe ruban
cellulaire métrique et trivalent, qui a n faces, et qui peut étre plongé dans une surface
de genre g. On note 7/, l'ensemble des graphes de Strebel de taille n et genre g. Le
pém’mire de la face i est noté P,. On note Sy,(La,...,L,) la strate constituée des
graphes de Strebel de genre g et taille n, tels que le périmétre de la face i est L;.

Etant donné un graphe ruban trivalent T, on note V(T'), E(T), F(T) respectivement
l’ensemble des nweuds, arétes, faces de I, et pour e € E(T'), la longueur associée a e est

notée L., et ’ensemble des longueurs est £.

La mesure dl/;};""L” sur Fyn(La,. .., Ly) est la mesure de Lebesgue sur les longueurs :
dl/;;l’ v H dg H (Spf—Lf
ec&(l feF (T

La strate de référence dans ce chapitre est yo,n(L) : on considere les graphes
de Strebel planaires tels que tous les périmetres sont égaux a L. Les fonctions a k-
points font intervenir les strates . ,1x(L; L1, ..., L), ol les n premieres faces ont
pour périmetre L, et les k dernieres faces ont les périmetres Ly, ..., Ly. Les fonctions

de corrélation sont :

e le volume V,,(L) de la strate ./, (L) : fy dVOn (I, ¢), on encode les

volumes dans la fonction génératrice
X n
Z By
n!
n=3
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e la fonction a k-points est le volume de la strate .#,x(L;La,..., L)
L;Ly,...,L )
Zow(L; Ly, ... L) = IVo,n+k(L;L1,...,Lk) dvy,, (T, €), qu'on encode dans la

fonction génératrice

n

| =

ka(L, Ll, ey Lk>

Zk(/JHLu L17 ce 7Lk) = Z n
n=3

En utilisant le théoréme de Kontsevich [Kontsevich, 1992], on calcule explicitement les

fonctions génératrices des fonctions a k points.

Théoreme F.4. Les fonctions génératrices V et Zy, ont les expressions suivantes :

83 Io('u,)4

8_/ﬁv(u’ L)= 21 (u) — uly(u)

k=3 1 Io(u)? i
Ze(u, L Ly, ..., Ly) = ML — Io(uL;/L
k:(luv y 1, ) k) aluk_g (/‘L u2k QIO(U) — UIl(U) H 0(“ / )
i= +
ot Iy, I sont des fonctions de Bessel modifiées du premier type ; | |+ signifie qu’on ne
garde que les puissance positives dans la série génératrice en p ; et u est une fonction

des parametres p, L

2
2 u

Hhe = Io(u)

On se sert de ces expressions pour étudier la limite n grand du volume V,, et de
la fonction a un point Z, ;. Pour le volume, le comportement dominant s’obtient en
étudiant la singularité de la fonction génératrice V(u, L) lorsque p atteint le rayon de
convergence fl.

7

Vo(L) ~ CnlA(L)"'n™2

n—o0

N . L? . N . c . , .
ou A(L) = CTNER Pour la fonction a un point, on distingue trois régimes pour le
1L, .

périmetre L, de la face marquée. On note £ = ~=* :

1.6 — 0;

n—oo

2. 0 ~ Eo;

n—oo

3. 0 — oo.

n—oo
On applique la méthode du point-selle pour les différents régimes, et on obtient le
comportement suivant

Zn(L; Ly)

nlL2"n=2 nooo

In n In A;(£) + nlxy (L),
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Figure 87: Comportement asymptotique de la fonction a un point pour les différents
régimes : In A;(¢) en fonction de In /.

ou A;(¢) est une fonction de ¢ valide dans le régime i, et xy(¢) est une fonction de ¢
valide dans tous les régimes. Le comportement de la fonction a un point est résumé
dans le graphique de la figure On déduit de cette étude asymptotique que le régime

ou la fonction a un point ne présente pas un comportement simple est le régime 2 :

0= 0(1).

F.3 Courbe spectrale associée aux graphes de Strebel

Afin d’avoir une vue englobante des fonctions de corrélation, celles-ci sont encodées
dans la courbe spectrale du modele. Pour calculer les fonctions de corrélation a partir
de la courbe spectrale, il faut appliquer la récurrence topologique, procédure développée
par Eynard et Orantin [Eynard and Orantin, 2007]. Dans le cas des graphes de Strebel,
la courbe spectrale S(u, L), qui dépend des parametres du modele, est la donnée de
5 objets : une surface de Riemann ¥ (dans notre cas ¥ = C) ; une courbe ¥y (Xo =
C) ; deux fonctions méromorphes x(u, L), y(u, L) : ¥ — 3y = C ; une forme bi-
différentielle méromorphe w2 € M (X) @™ M!(X) dont les seuls poles sont doubles
et se situent aux points coincidents avec ce comportement w072(z1, Z9) o~ Az @dzy

Z21—>22 (Zl _22)2

analytique. Pour résumer, la courbe spectrale est donnée par le quintuplet :

S(u, L) = (C,C,z(u, L), y(it, L), wo.2).

214



dz1Rdzo

i) et les

Pour les graphes de Strebel forme bi-différentielle est wpa(z1,22) =

fonctions x, y sont données par :

w(u, Liz) = 2 + 4

o0
Do) — pL? LIy (u)  2k+1
y(u, Lyz) = 2 = 5= X2 Cht1)llaF

ou les fonctions de Bessel modifiées du premier type I, et le parametre u apparais-
sent. L’objectif étant 1’étude de la limite continue des graphes de Strebel, on étudie le
comportement de la courbe spectrale lorsque les parametres p, L, et plus précisément
le parametre pL?, tendent vers la valeur critique p.L?. Comme on le voit sur la figure
88|, a cette valeur, la courbe spectrale est singuliere. Pour obtenir une courbe spec-
trale critique non singuliere, il faut redimensionner les fonctions x, y en fonction du

parametre (uL? — p.L?, et on obtient le résultat :

3
Théoreme F.5. Notons zy = Z—é; A =t [2ole) oy g — (u? — 4)%(210(%))1 trois

2\ uz—4 6L/ uc
constantes, et notons & la paramétrisation suivante :
22Ty () \ |
1 U Lo\ Ue
2= (pLl? — pL?)7 [ 8 ¢

Alors les fonctions x(p, L), y(u, L), aprés un redimensionnement, ont les limites suiv-

antes: ( I )
T\H, ;Z_$0_2_ — A
ML%CA(MCLLMB)%_g 2 = ()

M_WCB(MCLQ - MLQ)%

Cela donne la courbe spectrale critique suivante :

5= (@, C.3.g 0% d@)

(€ — &)
{fr(&) — 22
§(E) = & — 3¢

La courbe spectrale critique est celle du modele minimal (3,2) [Douglas, 1990],
qui est une réduction de la hiérarchie KdV. Di Francesco et Kutasov
[Di Francesco and Kutasov, 1990] ont relié ce mod‘ele minimal & une théorie des
champs conforme ayant une charge centrale nulle cpatiere = 0, couplée a la théorie
de Liouville. Cela est supposé correspondre a la gravité pure. Ainsi, la limite continue
des fonctions de corrélations définies sur les graphes de Strebel correspond a une théorie
conforme de charge centrale nulle, habillée par la gravité. La figure synthétise le
raisonnement des deux chapitres sur les graphes de Strebel, qui permet de déduire la

limite continue des fonctions de corrélation.
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L=1,u=1.84 L=1,u=pc=1.90...
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Blow-up

Figure 88: Intersection des fonctions x(u, L), y(u, L) avec le plan x,y € R pour
différentes valeurs du parametre pL?. Le premier graphe correspond & une valeur
générique du parametre ; le deuxieéme correspond a pL? = p.L?, et la courbe spectrale
est singuliere ; enfin le troisieme graphe est la représentation de z, g, c’est-a-dire de la
courbe spectrale critique, obtenue a partir de la courbe spectrale au parametre critique
apres redimensionnement.
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Figure 89: Schéma récapitulatif pour les graphes de Strebel

F.4 Invariances de fonctions de corrélation dans le modele
d’Ising

Dans ce chapitre, des propriétés de symétries de fonctions de corrélations inspirées
du modele d’Ising sur cartes aléatoires sont étudiées. On considere des fonctions de
corrélation de genre g, avec L bords dits “mixtes”, m bords dits “uniformes et rouges”,

et n bords dits “uniformes et noirs”.

e Le bord mixte 7 est noté S;, et sa longueur est notée k;. On associe au i-eme
bord mixte les 2k; variables (p;1,¢i1,Pi2,Gi2,---,PikQik;) (ces variables sont

ordonnées).

e Au i-eme bord uniforme rouge (resp. noir) on associe la variable p; (resp. ¢;).

Alors la fonction de corrélation de genre g, a L bords mixtes Si,..., S, m bords

uniformes rouges et n bords uniformes noirs, est notée

Hli?;m;n(‘sly e SL;ph -y Pmy 41, - - ’qn)
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. o o . L
Ces fonctions de corrélations sont définies par récurrence sur 29+ » ", ki +m+n, la

formule ayant été dérivée par Eynard et Orantin [Eynard and Orantin, 2008 :

Hlii);m;n(SL;pla sy Pms gty - - Qn) =
R Hf,g,o(pl,h Q1,k1)dl’<7“)
€S 0 © X
ropapiapiat, (T(P11) — 2(r) (Y@ ) — y(r) Hio(r qur,)

(h
Z Z Z Z Hkl) a+1lkp;m m;n_m({me Qras -« Qi } SB; PM/T; AN/J)

h AUB={2,...,l} a=2 I,J

—h
« H(g ) '|I\;|J|({T’ q1,15 -5 Pl,a-1, q1,o¢—1}7 SAa Pr; QJ)

a—1,ka;
(pl,a> - ‘T(T>

+Z MRk

xpla

1
H(Elg,l ;)gl,aﬂ kL/{l}‘m‘n({T’ qi,1y - - - Pla—1, q1,a—1}7 {pl,aa 1,05 - - - aq1,k1}7 SL/{1}; Pwm; QN)

)

ki

l

1=

()

)
H +k; kL/{ll} m,n({ ( ) Dias Qi Pt 1y - -+ 5 Qiskyy Pisly - - - 7qi,a71}7 SL/{l,i}; Pwm; qN)"—

(9)
k1
e (9—h) : )
Z Z kA,\I| |J| Sl( ) SA7pI’qJ)Hki;m—|I\+1;n_|J|<SB7rpr/{I}7qN/{J})
h AUB={2,...l} I,J

Z()f

h —h
+ Z H(g;l);O(T)ngf,,,,}gl;m;n(sl(T)u 527 R Sl;pla -y Pms 41, - - - 7Qn>
h=1

+HE ) (Sk(r)i 7 s QN)]
Trois opérateurs agissent sur les variables de bords des fonctions de corrélation :
1. la rotation R; du bord mixte ¢, qui agit de la maniere suivante :
RiSi = (pi,27 4i,2,Pi,3, 9,35 - - -y Piky» ik > Pis1s Qi,1)>

et dont I'action sur les fonctions de corrélations est simplement

RHkLmn(Sl7"'7SL;p17"'7pm;QI7'"JQH) -
kLmn(Sla' 'RiSiv"->SL;p17'"7pm;q17"'7Qn)'

2. L’inversion Z de tous les bords mixtes est la transformation qui inverse 1’ordre

des variables de tous les bords mixtes :
Vi € {17 e 7L} ZS;= (pi,la Qik;s Pikss Qiki—1y - -+ 5 Di25 %,1)7
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et dont 'action sur les fonctions de corrélations est :

IH}&?;m;n(Sh ey SL;pla <o s Pmiqry - - 7qn) -
Hlii);m;n<1517 . 7ISL;p17 <oy Pmsqr, - ’qn)

3. L’échange 7; des bords mixtes S; et S; :

%Hlig[,);m;n(sla <. 7SL;p17 <oy Pmiqa, - 7Qn) =
Hl(ci),m,n<sl7 s 7Si—17817 Si-i-lv S 7SL;p1a <oy Pmiqly .- 7Qn)

L’objectif du chapitre est de prouver que les fonctions de corrélation définies par la
formule de récurrence sont invariantes sous ces trois opérations. On prouve le théoreme

suivant :

Théoreme F.6. Les fonctions de corrélation planaires (g =0), a un bord mizte (L =
1) de taille k et sans bord uniforme (m =n = 0) ont 'expression suivante :

hn

I To

Yk—1 Y3
0 _
Hk;O;O - Z X
systemes de liens Th— o
planaires

Dans cette formule, chaque diagramme est un systeme de liens planaire. Le cercle
sur lequel sont dessinés les points rouges et noirs représente le bord mixte de taille k.
Chaque point rouge (resp. noir) porte une étiquette x; (resp. y;), qui est une fonction
de p; (resp. ¢;). Les variables sont orientées dans le sens horaire le long du cercle. Un
systeme de liens est un couplage tel que chaque point rouge est relié a un unique point
noir. Il est planaire si on peut dessiner le systéeme de liens a l'intérieur du cercle sans
que les liens ne se croisent.

Chaque diagramme ainsi dessiné a un poids, qui est le produit de poids locaux :
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e chaque lien entre z; et y; a le poids Hl(?g;o({pi, g })-

e Une face de taille £ a un poids FO(2;,, i, Tins Yjns - - - > Tjys Yj,)

ZL']']

Yje

Yja

14
F ('ijyjpsz?yjm s 7Ijg7yje)

g

~

Les fonctions F) sont définies par la formule de récurrence suivante :

F(l)(iﬁl,yl) =1
—1

FO(z ey V=D (@
F(f) (l’l, Yis- -5 Ty, yﬁ) = Zl (1 (Myill)(yz_(yj];rl yé)-
j:

Une conséquence directe de ce théoreme est que ces fonctions de corrélation sont in-

variantes par rotation et inversion du bord mixte.

Corollaire F.1. Pour tout k € N,

Rlng?O);O({pb qi;- - -, Dk, Qk}) = ng?g;o({pl7 qi;-- -, Dk, Qk})a

ZH/g?g;O({ph q1,-- - Pk, Qk}) = ng?g;O({pla q1s-- -, Pk, Qk})

En introduisant les opérateurs d’insertion de bords uniformes rouges (resp. noirs),

on étend ce résultat a des fonctions de corrélation plus génerales :

Definition F.4. On note 9] (resp. 53) lopérateur d’insertion d’un bord uniforme rouge

(resp. moir), défini par :

0nY (x(p1)) = Hyo(pr, )
5;H(§?2);0(p17p2) = H(g;o?z;()(plap%p)

(5;Res = Regég

r—z
T’—)p
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(resp.
BX (y(@r)) = Hipo(ar.q)
5bHc()Oo)2((J1 G2) = Hé?g);o(ql,%q)
5”Res = Reséb)

’I“‘)Z
Hq

Alors ces opérateurs permettent d’nseérer des bords uniformes dans les fonctions

de corrélation :

Théoreme F.7. Pour l'insertion d’un bord uniforme rouge :
O (St S AP} A0 )) = B (S Sus{pi} U i)

et de meme pour l’insertion d’un bord uniforme noir, on applique l’opérateur 52.

Grace a ces opérateurs d’insertion, on montre le corollaire suivant :

Corollaire F.2. Pour tous k,m,n € N,

R H]S:T)nn({pl LA, 7p1,/€7QI,k}7p1 <oy Pms i,y - - 7Q7l) =
kmn({pl 1,411, 7p1,k>QI,k}up1 <oy Pmiqy - - ;Qn)a

TH (P11, @t Pk Qb DL Pi Q1 - )
k;m;n({p1,17 qi,1,---5DP1ks QLk}7p1 <3 Pmi gty - .- 7Qn)
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Résumé: Cette these explore divers aspects des cartes
aléatoires par 1’étude de trois modeles. Dans un premier
temps, nous examinons les propriétés d’une mesure définie
sur I’ensemble des triangulations de Delaunay planaires
comportant n sommets, qui est un modele de cartes ou les
arétes sont décorées par des angles. Nous montrons ainsi
que la mesure est égale a la mesure de Weil-Petersson sur
I’espace des modules des surfaces de Riemann planaires
marquées. Sont aussi montrées deux propriétés de la
mesures, premiers pas d’une étude de la limite continue
de ce modele. Dans un deuxiéme temps, nous définissons
des fonctions de corrélations sur les graphes de Strebel
planaires isopérimétriques a n faces, qui sont des cartes
métriques trivalentes. Les périmetres des faces sont fixés.
Nous recourons au théoreme de Kontsevich pour cal-
culer les fonctions de corrélations en termes de nombres
d’intersection de classes de Chern sur ’espace des mod-
ules des surfaces de Riemann. Pour la fonction a une
face marquée, la limite des grandes cartes est examinée
via approximation du point-selle, pour différents régimes
du périmetre de la face marquée, et nous déduisons le

régime ou le comportement de la fonction de corrélation
n’est pas trivial. Les fonctions de corrélations peuvent
étre calculées de maniere systématique par la récurrence
topologique. Partant, nous calculons la courbe spectrale
de notre modele, ce qui nous permet de montrer qu’il
existe une courbe spectrale critique. Nous déduisons de
cette courbe critique que la limite continue des graphes de
Strebel isopérimétriques est un modele minimal de type
(3,2), habillé par la théorie de Liouville. Cela correspond
bien a la gravité pure. Enfin, nous abordons la question
des symétries dans le modele d’Ising sur cartes aléatoires.
Certaines fonctions de corrélations de ce modele comptent
le nombre de cartes bicolores avec des faces marquées, les
bords, ayant des conditions aux bords mixtes, calculées par
récurrence a partir de la courbe spectrale du modele. Nous
prouvons ici que, pour des courbes spectrales génériques,
les fonctions de corrélations des cartes a un bord mixte
sont symétriques par rotation et par inversion du bord
mixte. Nous décrivons ensuite les conséquences de telles
symétries, suggérant une possible reformulation du modele
en termes de chaines de spins.
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Abstract: This thesis explores several aspects of random
maps through the study of three models. First, we exam-
ine the properties of a measure defined on the set of planar
Delaunay triangulations with n vertices, a model in which
the edges of the maps are decorated with angles. We show
that the measure is the Weil-Petersson volume form on the
moduli space of planar Riemann surfaces having n marked
points. Two other properties, first steps toward the con-
tinuous limit study of the model, are also shown. Sec-
ond, we define correlation functions on isoperimetric pla-
nar Strebel graphs with n faces, which are trivalent maps
whose edges are decorated by positive lengths, and whose
faces have a fixed perimeter. Kontsevich’s theorem allows
us to compute the correlation functions in terms of the
intersection numbers of Chern classes of moduli space of
Riemann surfaces. The continuous limit of the one-point
function is computed in different regimes for the perime-
ter of the marked face via the saddle-point approximation.
We identify the regime in which the behaviour of the one-

point function is not trivial. The correlation functions
can be computed in a systematic way by the Topological
Recursion. To do so, we compute the spectral curve of
the model, and show that there exists a critical spectral
curve. We deduce from the latter that the continuous limit
of isoperimetric Strebel graphs is a (3,2) minimal model
dressed by Liouville theory: it corresponds to pure gravity.
Last, we address the problem of symmetries in the Ising
model on random maps. Some correlation functions of this
model count the bi-colored maps with marked faces hav-
ing mixed boundary conditions. They are computed via
a recursive formula and the spectral curve of the model.
We prove here that the correlation functions of maps with
one mixed boundary, computed from the recursive rela-
tion with generic spectral curve, are invariant under ro-
tation and inversion of the mixed boundary. We describe
the consequences of such symmetries, suggesting a possible
reformulation of the model in terms of spin chains.
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